DoE
•Jn,tnd States
of Energv
Division of Solid Fuel
Mining and Preparation
Pittsburgh PA 15213
FE-9000-1
JS Environmental Protection Agency Industrial Environmental Research EPA-600/7 78 211
Office of Research and Development Laboratory Novt-mtier 1978
Research Triangle Park NC 2/711
Computer Simulation
of Coal Preparation
Plants
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
Price: Paper Copy $9.50
Microfiche $3.00
-------
FE-9000-1
(EPA-600/7-78-211)
November 1978
Distribution Category UC-90b
Computer Simulation of Coal
Preparation Plants
by
Byron S. Gottfried
University of Pittsburgh
Pittsburgh, Pennsylvania 15261
EPA/DoE Interagency Agreement No. DXE685AK
Program Element No. EHE623A
EPA Project Officer: David A. Kirchgessner DoE Project Officer: Richard E. Hucko
Industrial Environmental Research Laboratory Division of Solid Fuel Mining and Preparation
Research Triangle Park, NC 27711 Pittsburgh, PA 15213
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
and
U.S. DEPARTMENT OF ENERGY
Division of Solid Fuel Mining and Preparation
Pittsburgh, PA 15213
-------
TABLE OF CONTENTS
1. INTRODUCTION 1
2. MATHEMATICAL PROCEDURES 3
2. 1 Washers 3
2. 2 Crushers 17
2. 3 Screens 18
2. 4 Rotary Breaker 19
2. 5 Blender 20
2. 6 Splitter 21
2. 7 Component Interconnection 21
3. USE OF THE SIMULATOR 23
4. CONCLUSIONS AND RECOMMENDATIONS 25
5. ACKNOWLEpGMENTS 27
6. REFERENCES 28
7. APPENDIX 29
7. 1 APS Report 30
7. 2 Program Structure 46
7. 2. 1 Subprograms 46
7. 2. 2 Subprogram Summary 50
7. 2. 3 Common Storage Areas 74
7. 3 Program Listing. 75
7. 4 Instructions for Data Preparation 170
7. 5 Sample Problem 182
7. 5. 1 Data Preparation 184
7. 5. 2 Computer Output 189
-------
LIST OF FIGURES
1. Typical distribution curve illustrating specific gravity
of separation 4
2. Typical generalized distribution curve 4
3. Size transformations for carrying out washer
calculations 11-14
4. Screens in coal preparation 34
5. Schematic representation of particles on a screen.... 35
6. Identification of streams 45
7. Model of rotary breaker 45
8. Schematic flowchart for sample preparation plant .... 183
-------
1. INTRODUCTION
Coal preparation, commonly known as coal washing, offers a practical
and economical approach to the removal of ash and pyritic sulfur from raw
coal. For example, the ash in a typical U.S. Northern Appalachian bi-
tuminous coal can be reduced from 14 percent to 6 percent and the total
sulfur from 3 to 1-1/2 percent by coal preparation (1). Such beneficiation
can be obtained at a yield ranging from 60 to 90 percent and at a cost of about
$2. 90 to $4. 83 per ton of clean coal (2).
A typical coal preparation plant consists primarily of various inter-
connected crushing, screening, washing, dewatering, drying, and thickening
units. Several types of washing units will be used, because each piece of
washing equipment is best suited for a certain characteristic size fraction
of coal. The crushers break the coal into the proper sizes, and the
screening units separate the crushed coal into appropriate size fractions.
The dewatering and thermal drying units reduce surface moisture to
acceptable limits. These various units are interconnected in a number of
ways, the choice being dependent upon the characteristics of the coal being
processed and the desired degree of beneficiation.
The principal consideration in operating a coal preparation plant is to
maximize the yield of clean coal while reducing the impurities to an acceptably
low level. In addition, in assessing the possible interconnection of units in an
existing plant, or when a new plant is being considered, it is essential that
-------
the optimum configuration be determined for a given degree of cleaning.
Usually these matters are handled by some prudent combination of
experience and experimentation. A computerized plant simulator, however,
is an effective aflS in comparing alternatives, provided a program can be
developed which is sufficiently comprehensive to simulate conditions found
in industrial practice.
This report describes a comprehensive computer program that allows
the user to simulate the performance of realistic coal preparation plants.
The program is very flexible in the sense that it can accommodate any
particular plant configuration that may be of interest. This allows the user
to compare the performance of different plant configurations and to determine
the impact of various modes of operation with a fixed configuration. In
addition, the program can be used to assess the degree of cleaning obtained
with different coal feeds for a given plant configuration and a given mode of
operation. Thus the user is able to consider a wide variety of alternatives
through the use of this simulator.
The simulation program has been written in modular form using standard
features of the Fortran IV language. It can therefore be implemented on
virtually any large, scientific computer. Use of the simulator requires only
that the user specify the appearance of the plant configuration, the plant
operating conditions, and a description of the coal feed.
The program has been developed at the University of Pittsburgh, although
-------
the crushing and screening routines were supplied by Automated Process
Surveys, Inc. under a subcontract. A close rapport has been maintained
with Bureau of Mines personnel throughout the course of this study. Their
advice and assistance have been most helpful in the successful completion
of the project. In particular, thanks are due to Mssrs. A. W. Deurbrouck
and P. S. Jacobsen of the Bruceton, PA Coal Preparation and Analysis
Laboratory.
Included in th:.s report are a listing of the computer program, instructions
for its use and representative sample output, in addition to a general de-
scription of the methods used to carry out the simulation.
2* MATHEMATICAL PROCEDURES
To analyze realistic plant configurations, a computer program must be
able to simulate the performance of all principal plant components (namely,
crushing, screening and washing units) under specified operating conditions.
It should be possible, mbreover, to interconnect these units to form whatever
configurations may be of interest. Both of these requirements are satisfied
in the current simulator. The manner in which the calculations are executed
is summarized below.
2.1 Washers
Coal washing equipment makes use of a float-and-sink principle, based
upon the specific gravity differences between the coal and its associated
impurities. (An exception is the froth flotation process, in which the
separation is dependent upon the difference in surface characteristics of the
coal and its associated impurities.) The performance of these float-and-sink
-------
units is characterized by a distribution curve, (also called a partition or
separation curve). Of the material in the feed having a given specific
gravity (p), this curve indicates the percentage reporting to the clean coal
product (3). A typical distribution curve is shown in figure 1.
100
3
o -
O 9
t- 2 50
z 8.
o
o
Specific gravity |
of separation)
I \! I
1.2 1.4 1.6 18 2.0
SPECIFIC GRAVITY,/)
Fig. I. Typical distribution curve
illustrating specific
gravity of separation
0.8 0.9 1.0 1.1 1.2 1.3
REDUCED SPECIFIC GRAVITY,x
Fig. 2. Typical generalized distri-
bution curve
Notice the value of specific gravity corresponding to an ordinate value of
50, the midpoint. This value is defined as the specific gravity of separation,
Pen' that is, the specific gravity of material in the feed that is divided
equally between clean coal and refuse. By making appropriate physical
adjustments on a coal washing unit, the value of the specific gravity of
separation can be increased or decreased, shifting the distribution curve
accordingly. The specific gravity of separation, therefore, is considered a
control variable. An increase in the specific gravity of separation results in
-------
an increase in the yield of clean coal but a decrease in its quality.
Recently a method has been developed for representing the distribution
curve in a manner that is independent of the specific gravity of separation (4).
To do so, the percent of feed reporting to clean coal having a given specific
gravity ( p) is plotted against "reduced" specific gravity, x, rather than
specific gravity (p). The former is defined as the ratio of specific gravity
to specific gravity of separation; that is, x = pip • Such a curve is a
generalized distribution curve. A typical generalized distribution curve is
shown in figure 2. The use of generalized distribution data greatly
simplifies the task of representing washability data in the simulator.
Float -and -sink calculations depend not only on the specific gravity of
material in the feed, but also on the size consist. Consequently, a
different generalized distribution curve is obtained for each of several size
increments of the feed material. To simulate the performance of a washer,
then, it is necessary to consider the feed as divided into several size
increments, and each size increment as subdivided into specific gravity
fractions. The washer's effect on each size and specific gravity fraction
is determined, and then the overall clean coal and refuse products are
reconstituted. Mathematically, this can be expressed as
W = f f V^KIJ (1)
where F represents the overall clean coal flowrate, F represents the
C •"*•
refuse flowrate, f. . represents the flowrate of feed in the ith size fraction
-------
and the jth specific gravity fraction, and C..(P-Q) is the distribution factor
for the ith size fraction and jth specific gravity fraction. Note that product
flowrates and values for the distribution factor depend upon the value
specified for the control parameter, p (that is, the overall specific gravity
of separation).
Since the overall specific gravity of separation (for the entire feed compos•
ite) will be specified, rather than the specific gravity of separation for each
particular size fraction, it will be necessary to determine a value for the
specific gravity of separation for each size fraction from the overall
specific gravity of separation. This can be accomplished by calculating the
ratio of the specific gravities of separation, i.e.
r. =p. /p5Q (3)
where p. refers to the specific gravity of separation for the ith size fraction.
150
A conventional distribution curve for the ith size fraction can be obtained
from the corresponding generalized distribution curve by transforming the
abscissa from x to p, i. e.
P=A x (4)
150
combining this result with Equation (3) yields
P^P50r.x (5)
Thus, if the overall specific gravity of separation and the proper value for r.
are known, a conventional distribution curve for the ith size fraction can be
constructed and the values for C.. required in Equations (1) and (2) can be
determined. The current simulation program contains tabulated
-------
values of both the generalized distribution data and the corresponding r.
factors for each of the following commonly used coal washing units:
1. Baum jig
2. Dense-medium vessel
3. Dense-medium cyclone
4. Hydrocyclone
5. Concentrating table
In each case the basic distribution data were obtained from U.S. Bureau of
Mines reports (5-9). Within the computer model a four-point Lagrangian
interpolation routine is used in conjunction with the tabular generalized
distribution data. The tabular data included in the simulation program are
also summarized by Gottfried and Jacobsen (4).
The use of Equations (1) and (2) is straightforward when the size
fractions that are used to characterize the feed coincide with the size
fractions corresponding to the distribution data. Usually, however, these
size fractions will not be the same. This problem can be resolved by
transforming the feed from its original size fractions, S, to the size fractions
corresponding to the distribution data, ff; the separation is then carried out
^^*
in the cr - space, and the product stream is then transformed back to the
«*«-
S-space.
The method used for carrying out the transformations, based upon
simple proportionality, makes use of the following two assumptions:
-------
8
1. The material is distributed uniformly within each size fraction.
2. The range of sizes corresponding to the distribution data en-
compasses the range of sizes used to characterize the feed; i.e.
a * S , and a £S . (Note that CT> a >cr>...>CT and
00 mn 012 m
Sn>S >S >...>S .)
012 n
The first assumption is quite reasonable provided the size fractions are
small (though the question of "how small" remains unanswered). The second
assumption will be valid provided the distribution data span a reasonably
large range of sizes.
Twelve different situations can arise when transforming fvom the
S-space to the a -space, as outlined below. The procedure is to select and
A^ »•—
utilize an appropriate transformation equation for each size fraction in the
a -space, i.e. for each A(T. (where Aor. = <7. - a. ., j = 1, 2, ..., m).
J
. .. .and a. *S. '
J-1 i-l 1 i '
J J
[a. - a. "
eT J~
5i - Si-l.
(see Fig. 3a)
2. a. , £ S. _ and a. ^ S. '
J-1 1"2 J i.
ES. . - a. •
1"1 J"1
5i-l * Si-2
(6a)
w
w
. (S)
a. -S.
J
s. -s.
L i i-U
(6b)
(see Fig. 3b)
-------
3. cr.
. . . . ,
j-1 i-k-2
and a.
j
S. . , - cr. ,
i-k-1 j-1
" S
i-k-2
JEN.
y w. (s) +w.(s)
•L— 1-A »* 1 ,r-
- S-
Ls.-s.
L i i-l
(6c)
(see Fig. 3c)
4. a. . >S. .and cr ^3. •
j-1 i-l j i-
.(CT) = w.(S)
3 V- 1*^
a. -S.
J i
J5- - S- i J
«- i i-l-l
(6d)
(see Fig. 3d)
5. cr. . >S ^ and cr. ^ S '
j-1 i-2 j i .
w (a) = w. .(S) +w. (S)
j *~ i-1 i^- i "^
(sse Fig. 3e)
a. - S.
J i
S. -S.
LI i-l.
(6e)
6. a. . >S. . _ and a. .
j-1 i-k -2 j i ,
k+1
w (a) =
J ^.
w. . (S) + w.(S)
1-^ fc- 1 _
• _^ •
-------
10
8. CT , £S. _ and or. w. f(S)
10. a , >S. . and a. S and a.S. . . and a
(6h)
(6k)
(see Fig. 31)
Once the separation has been carried out in the cr-space, then the
weight distribution of the products can be transformed back into the^-space
-------
11
i-1
FIGURE 3a
1 " 1
1 1
Si-2 Si-l
CT
j
S
I
FIGURE 3b
cr , a.
j-1 J
SL-2 Silk-. Sil ' ; ^i-!
FIGURE 3c
Fig. 3. Size transformations for carrying out
washer calculations
-------
12
a. , <*.
J-l J
I 1
FIGURE 3d
FIGURE 3e
."J-I
1
1
i-2
cr.
J
1
1
s1
1
°J-1
1 1 if
c c c )
&i-k-2 bi-k-l Vk
a
J
FIGURE 3f
Fig. 3. Size transformations for carrying out
washer calculations—(Con.)
-------
13
cr. .. cr.
h |J
S. S.
i-l i
FIGURE 3g
V
1 - 1
' C
1. 3
1— Z i—l
a.
J
1
S.
i
FIGURE 3h
FIGURE 3i
Fig. 3. Size transformations for carrying out
washer calculations--(Con.)
-------
14
S
1-
FIGURE 3j
FIGURE 3k
•tJ-
*'
s • s.
i-Z i-l
a.
J
V
I 1
s , o s. , . s. . ' ' s. . s.
i-k-2 i-k-1 i-k i-l i
FIGURE 3JI
Fig. 3. Size transformations for carrying out
washer calculations—(Con.)
-------
15
by reversing the above procedure. In other words, for each AS (where AS -
i i
S. - S. ,, i = 1, 2, ..., n), select an appropriate transformation equation, in
accordance with the relationship of the boundaries of AS. with respect to the
boundaries of the corresponding A cr 's.
When carrying out the calculations a set of distribution data is generated
fr9m the composite feed and clean coal. A value for p , the overall specific
gravity of separation, is then calculated from the distribution data by reverse
linear interpolation. This value is compared with the specified value for p .
If the two values do not agree to within 0. 003, then the value of p that is
used to carry out the calculations is adjusted and the entire procedure is
repeated. Convergence is normally attained in 3 or 4 iterations.
The overall ash, sulfur, and Btu content of product streams are easily
determined once the separation has been carried out. These calculations
are based upon the assumption that within each size and specific gravity
fraction, the direct (as contrasted with cumulative) values of ash, sulfur,
and Btu content are unchanged by cleaning. (In practice this assumption
is not strictly true, but it simplifies calculations during this stage of the
simulator.
After the separation has been computed a set of summary data is
generated for each size fraction, and for the overall composite feed. The
following quantities are computed.
1. Screen analysis for each flowstream (i.e. feed, clean coal, refuse
and, if applicable, middlings).
2. Percent ash for each flowstream
-------
16
3. Percent pyritic sulfur for each ftowstream
4. Percent total sulfur for each flowstream
5. BTU content of each flowstream
6. Actual recovery, theoretical recovery, recovery efficiency, BTU
recovery and ash error
7. Float in refuse, sink in clean coal, total misplaced material and
near gravity ±0. 1 material
8. Specific gravity of separation, probable error, imperfection and
error area
9. Distribution data, determined as the ratio of calculated clean
coal to feed
Most of these quantities are obtained by direct summation of the appropriate
quantities over the specific gravity fractions. However the theoretical
recovery, ash error, specific gravity of separation and probable error are
obtained by interpolation, and the error area is obtained by numerical
integration (using Simpson's rule). The composite data are obtained by
actually summing the computed results over all size fractions and interpolating
(where necessary) between the points composited in this manner.
The simulator also contains a provision for the froth flotation process, even
though the method used to carry out the computation is less precise than that for
the coal washing units listed above. In this case, the overall yield of clean
coal is taken as the value of the cumulative weight distribution in the froth
flotation feed at a specific gravity of 1. 50. Similarly, the overall ash content
-------
17
of the clean is taken as the cumulative ash of the feed at a specific
gravity of 1. 60. Detailed specific gravity analyses of the clean coal and
refuse products are obtained by applying to the feed a distribution curve
that will produce the "1. 50-yield/l. 60-ash" product. Sulfur and Btu
content of the products are obtained from the distribution curve calcu-
lations and may differ from the amounts present in either the 1. 50 or 1. 60
specific gravity feed level.
2.2 Crushers
Crushers are somewhat more difficult to model than washers,
because it is necessary to account for both the size distribution of the
original (parent) particles and the size distribution of the crushed (daughter)
particles. To carry out the calculations, the simulator employs a selection
function, S. (/3) (the fraction of feed particles in the ith size increment that
will be crushed at a given crusher setting /3 ), and a breakage function for
crushed particles, B., (/J) (the fraction of particles originally in the ith size
IK
increment that ends up in the kth size increment). In this model it is
assumed that both S.(j8) and B (/3) are dependent upon initial particle size
X IK
but independent of specific gravity. Furthermore, the breakage of a particle
is assumed to create fragments that are unchanged in specific gravity analysis.
Flowrate of crushed product in the kth size fraction, ~P,(fl), is expressed
i
-------
18
gravity fraction. Note that product flowrates depend upon the value specified
for the control parameter, /S (i. e. , the crusher setting).
The explicit forms of S.(/S) and B (/3) depend upon the type of crusher
1 IK
to be simulated and the magnitude of the control parameter. In general,
however, these functions are expressed as exponential-type equations.
The simulator contains specific equations for each of the following types
of crushers:
1. Single roll crusher
2. Multiple roll crusher
3. Gyratory/jaw crusher
4. Cage mill crusher
For each device a distinction is made between a primary and a
secondary crusher, the calculations being carried out somewhat differently
in each case. (Additional information may be found in Section 7. 1)
Once the crusher calculations have been carried out, a set of summary
data is generated for each size fraction and for the composite of all size
fractions. The summary data are similar to those generated for the washers as
described in section 2.1, except that those quantities that apply only to
washers are not included (e.g., specific gravity of separation, error area, etc.).
2.3 Screens
The computation of screen performance is similar to the computation
of washer performance. A selection function, S.(a), is again required; the
selection function now represents the fraction of feed particles in the ith size
increment that passes over the screen into the overflow (coarse) product, given
-------
19
a screen opening size a. Flowrate of overflow material F , can then be
o
written as
F (a) = E S. (a) E f.. , (8)
i 13
and flowrate of underflow (fine) material, F , can be expressed as
u
FU (a) = £ [1 - S. (a) ] E f . (9)
i * j 1J
where f. . again represents the flowrate of feed in the ith size fraction and
jth specific gravity fraction. Note that overflow and underflow rates depend
upon the value specified for the control parameter, a (i. e. , the screen open-
ing size) .
-«i
The simulation program includes several exponential-type equations
for the selection function; the exact equation depends upon the type of screen
selected. Both primary and secondary screens can be simulated, in either
a dry or a wet operating mode. (See Section 7. 1 for further information.)
Summary data for each size fraction and for the size composite are
generated after the screen calculations have been carried out.
2.4 Rotary Breaker
The methods used to simulate crusher and screen performance are
combined in the rotary breaker model. Essentially, the rotary breaker is
considered to be a sequence of consecutive events where breakage and
screening alternate, as feed material undergoes successive falls in a rotating,
perforated drum. The model includes its own breakage distribution function,
selection- for-breakage function, and screen selection function. A "work-
hardening" factor is also included for the case where initial particle flaws are
-------
20
activated primarily in the first few falls. Thus the selection- for-breakage
function decreases with subsequent falls because of its dependence on the
work- hardening factor. (See Section 7. 1 for additional information. )
The rotary breaker routine requires three input parameters ---
drum length, drum diameter, and size of openings in the drum (screen
size). The height of each fall and the number of falls (required control para-
meters) are determined from the breaker's physical dimensions.
The predictive calculations for the rotary breaker performance are
followed by the customary summary calculations for each size fraction and
for the size composite.
2. 5 Blender
A "blender" is simply a point within the plant where two different
flow streams are combined. The flowrate of blended product can be
expressed as
p-**
where P represents the flowrate of the product stream, and f. ... and f
represent the flowrates of the first and second feed streams in the ith size
fraction and the jth specific gravity fraction. Similarly, any attribute in
the blended product can be determined as
A..2 £..2) „„
where A represents the attribute (e.g. ash, sulfur or BTU content) in the
blended stream, and A... and A... represent the attributes of the first and
-------
21
second feed streams in the ith size fraction and the jth specific gravity
fraction. Notice that the blender calculations do not require the specification
of a control parameter.
Summary data for each size fraction and for the size composite are
generated at the conclusion of the above calculations.
2. 6 Splitter
A "splitter" is a point within the plant where a. portion of a flow
stream is diverted. The net effect is to create two flow streams from one
flow stream, where the combined flowrates of the two new streams equal
the flowrate of the original stream. The composition of the new streams
will be the same as the-original stream. Thus,
FI (a) = £ L of.. (12)
i J 1J
and
F (O) = L S(l-a) f.. (13)
^ . ij
i J
where f.. represents the flowrate of the feed stream in the ith siae fraction
ij
and the jth specific gravity fraction, F. and F represent the product
X c*
streams, and a is a control parameter, 0< O< 1.
After the above calculations have been carried out, a set of
summary data are generated for each size fraction and for the giz£
composite.
2. 7 Component Interconnection
The simulator allows the output from any unit (i. e., any washer,
crusher, screen, breaker, blender or splitter) to be directed to any other
unit. Thus any combination of individual units can be interconnected into
-------
22
whatever unified plant configuration the user wishes to simulate. This is
accomplished simply by specifying an origin and a destination for each
flowstream within the plant. The manner in which this is carried out is
illustrated in the sample problem presented in Section 7. 5.
-------
23
3. USE OF THE SIMULATOR
To use the simulator, the following information must be provided:
1. For each major plant component (unit), appropriate unit
settings (control parameters).
2. The origin and destination of each flowstream.
3. A screen analysis of the raw feed.
4. A specific gravity analysis for the overall feed (i. e. , the
distribution of weight, ash, pyritic sulfur, and total sulfur).
5. Constants for calculating the BTU content of the coal as a
function of its ash content.
Numerical valu&s must also be provided for other parameters, such
as total number of units, total number of flowstreams, and type of output
required.
The output generated by the simulator will always include the
following information:
1. A summary of the input data specifying the plant configuration,
the control variables and several miscellaneous program
parameters.
2. A specific gravity analysis of the feed stream (input data).
3. A table summarizing the yield and BTU recovery of each unit
•within the plant.
4. A summary table indicating the relative flowrate, composition,
BTU content and Ibs SO /MM BTU for each flowstream in the
L*
plant.
-------
24
In addition, the simulator can generate optional tables giving more detailed
information about each unit and each flowstream. Specifically, the
simulator can generate
1. A table summarizing the performance of each unit, by feed
size fractions and for the entire feed composite.
2. A complete specific gravity analysis for each flowstream.
The unit summary tables can be printed out by themselves, or else the unit
summaries can be followed by the specific gravity analyses. The latter
option provides the most complete level of output information.
The simulation program has been written in standard FORTRAN IV.
It employs a highly modularized structure, requiring 56K of memory for a
version that will accommodate a maximum of 30 units and 25 flowstrearns.
Memory requirements can be further reduced through the use of an overlay
structure, but this results in a penalty of longer execution times.
The program typically requires less than one minute of running
time on a large computer. For example, a plant configuration consisting
of 12 units and 20 flowstreams was simulated on a CDC CYBER-74
computer in 46 seconds (27 seconds required for compilation, 19 seconds
for program execution).
A representative set of output data are shown in Section 7. 5.
-------
25
4. CONCLUSIONS AND RECOMMENDATIONS
The simulation program described in this report is a flexible and
convenient tool for analyzing the performance of coal preparation plants.
When used properly it can assist a decision maker in comparing various
coal preparation alternatives, such as
• Different operating conditions for a given plant.
• Different plant configurations.
• Different coal feeds.
• Different environmental restrictions.
A characteristic of all sophisticated computer software is, however,
the fact that a program can always be further improved. This program is
no exception - additional features can be added which will enhance its
value by providing additional information or by further facilitating its use.
Specifically, the addition of the following items is recommended.
1. The simulation of additional unit operations, such as thickeners,
filters, thermal dryers and other dewatering devices.
2. A more accurate technique for simulating the froth
flotation process.
3. A provision for estimating the costs associated with coal
preparation, including both capital investment and operating
revenues.
4. The effects of flow rate on equipment performance.
5. Improvements in the crushing model to include the change in
-------
26
flow stream characteristics as a result of particle fragmentation
(i. e. , a "liberation" model).
7. The effect of beneficiation upon the direct ash, sulfur and BTU
content of specific gravity fractions in the products as
compared to the feed.
8. Implementation of the simulator on a minicomputer, thus
allowing the program to be used in an actual plant environment.
9. Implementation of the simulator in a timesharing mode, thus
providing a preparation engineer or a plant manager with an
interactive, conversational capability.
10. Expansion of the simulator into a plant optimization program.
This would allow one to determine those values of the control
parameters that cause the yield of clean coal to be maximized,
subject to imposed environmental restrictions.
In addition, the simulator should be validated by comparing the predicted
results with actual plant data.
Finally, it should be understood that this simulation program is not
intended to be used for detailed engineering design purposes.
-------
27
5. ACKNOWLEDGMENTS
Several people have made significant contributions to the successful
completion of this project. In particular, the efforts of Mr. P. S. Jacobsen,*
formerly of the U. S. Bureau of Mines Bruceton, Pa. Coal Preparation
Laboratory, have been especially valuable in the design, refinement and
assessment of the program. Mssrs. A. W. Deurbrouck and J. Wizzard
of the U. S. Bureau of Mines Bruceton Pa. Coal Preparation Laboratory
have also been very helpful in support of this activity.
The crushing and screening routines that are used in the program
were developed by Dr. A. Vaillant and his associates at Automated Process
Surveys, Inc. , New York, N. Y. Their contribution is gratefully acknowledged.
Mssrs. Wayne Baughman and Jephthah Abara of the University of
Pittsburgh were very helpful in assisting with the program development.
The financial support for this project was provided by a grant to
the University of Pittsburgh from the U. S. Bureau of Mines. Funds for this
grant were originally provided by the U. S. Environmental Protection Agency.
The author expresses his gratitude to both of these agencies, and in particular
to Mr. T. K. Janes of the EPA and Mr. A. W. Deurbrouck of the USBM, for
having made this study possible.
*Mr. Jacobsen is now with the Colorado School of Mines Research Institute,
Golden, Colorado
-------
28
6. REFERENCES
1. Cavallaro, J. A., Johnston, M. T. , and Deurbrouck, A. W., "Sulfur
Reduction Potential of the Coals of the United States, " BuMines RI 8118,
1976, 323 pp.
2. "Report on Sulfur Oxide Control Technology, " U.S. Dept. of Commerce,
Sept. 1975, 73 pp.
3. Geer, M. R. and Yancey, H. F., "Plant Performance and Forecasting
Cleaning Results, " Chapt. 18 in Coal Preparation, J. W. Leonard and
D. R. Mitchell, eds. , AIME, New York, 1968.
4. Gottfried, B. S. and Jacobsen, P. S., "A Generalized Distribution
Curve for Characterizing the Performance of Coal Cleaning Equipment, "
BuMines RI, in preparation.
5. Deurbrouck, A. W., "Performance Characteristics of Coal-Washing
Equipment: Hydrocyclones, " BuMines RI 7891, 1974, 22p.
6. Deurbrouck, A. W. and Hudy, J. Jr., "Performance Characteristics
of Coal Washing Equipment: Dense-Medium Cyclones," BuMines
RI 7673, 1972, 34 pp.
7. Deurbrouck, A. W. and Palowitch, E. R., "Performance Characteristics
of Coal-Washing Equipment: Concentrating Tables, " BuMines RI 6239,
1963, 26 pp.
8. Hudy, J. Jr., "Performance Characteristics of Coal-Washing
Equipment: Dense-Medium Coarse-Coal Vessels, " BuMines RI 7154,
1968, 29 pp.
9. Sokaski, M., Jacobsen, P. S., and Geer, M. R., "Performance of
Baum Jigs in Treating Rocky Mountain Coals, " BuMines 6306, 1963,
40pp.
-------
29
7. APPENDIX
Contents:
7. 1 Automated process Surveys' final report (crushers, screens,
rotary breaker)
7. 2 Program structure
7. 3 Program listing
7. 4 Instructions for data preparation
7.5 A sample problem, including data preparation and computer
output
-------
30
AUTOMATED PROCESS SURVEYS
7. 1 APS Final Report
AUTOMATED PROCESS SURVEYS
MODELLING CRUSHERS, BREAKERS AND SCREENS
FOR USE IN
COMPUTER SIMULATION
OP
COAL PREPARATION PLANTS
GRANT GO-155030
PREPARED BY :
A. VAILLANT
PARTNER
AUTOMATED PROCESS SURVEYS
-------
AUTOMATED
'VJS
\UES/
J PROCESS SURVEYS
31
I. AUTHORITY FOR AUTOMATED PROCESS SURVEYS, APS.
This Work has been conducted at the request of :
MR. A. W. DEUR3ROUCK - USBM
MR. P. S. JACOBSEN - USBM
DR. B. S. GOTTFRIED - UNIV. OP PITTSBURGH
under U. S. BUREAU OP-MINES Grant NO. GO-155030 and
supported by the U. S. ENVIRONMENTAL PROTECTION AGENCY.
II. OBJECTIVES
1. Supply a Subroutine and Documentation for Crusher,
Rotary Breakers, and Screens for Five Typical Coal
Preparation Circuits.
2. Design this Subroutine to be similar in Structure
to existing Washing Routines... For Incorporation
into a "FLOW-CONNECTING" Main Program.
III. CONCLUSIONS
Five Typical Washing Circuits have been modelled,
and Computer Subroutines, with a Description of
how to use these Routines, have been submitted to
the University Of Pittsburgh, to the attention of
DR. B. S. GOTTFRIED.
For better accuracy these Models should be expanded
to include :
a) EFFECT OF FLOW RATE TO A SCREEN AND CRUSHER.
b) A LIBERATION MODEL FOR FREEING COAL FROM
ASH-AND-SULFUR.
-------
32
AUTOMATED U PROCESS SURVEYS
IV - COAL WASHING - BREAKERS AND SCREENS
Coal, fed to a Preparation Plant, consists of a Mixture of
Materials which were bonded and cemented together when Coal was
first formed. During the mining of this Coal, it is broken into
a Mixture of lumps that vary in size from l8|l down to the size
of Dust. A Coal Preparation Plant expends some additional effort
to sort out this Mixture of Carbon-Rich and Carbon-Poor Materials,
often breaking the lumps into even smaller lumps in order to
physically loosen bonds between Carbon-Rich Particles and other,
heavier, particles of Rock and Ash.
Coal-Washing consists of three main Processes :
1. Sorting Coal - By Specific Gravity
2: Sorting Coal - By Sizes
3. Breaking Coal
1. SORTING COAL BY SPECIFIC GRAVITY - (PROGRAM BY UNIV. OF PITT.)
To sort Coal, it is floated in a bath of dense liquid.
Heavier Particles sink, while the Lighter Coal is skimmed off
as Product. Unfortunately, this Sorting Process is imperfect.
Some Ash and Rock float along with the good Coal, while some good
Coal sinks along with the Heavy Ash.
U.S.B.M. has performed extensive Tests on this "Float"
Equipment, in order to determine both how much Coal is misplaced,
and how much Heavy Material is misplaced.
(I) REP.: DEURBROUCK, A.W., and HuDY, J., JR. PERFORMANCE
CHARACTERISTICS: DENSE MEDIUM CYCLONES, BUMINES R.I. 7673.
(SEE REPORTS ON SPECIFIC GRAVITY SORTING BY ONE OR BOTH
AUTHORS, 6239, 7154, 7891, 7982.)
-------
33
AU1QMATEDU PROCESS SURVEYS ^ _ COAL WASHING . BREAKERS AND SCREENS (cont , d)
1. SORTING COAL BY SPECIFIC GRAVITY (cont'd)
The USBM Data on Dense Media Equipment can be written
Symbolically as C(x,g>, and is a Distribution Function. ... At
present it is a Set of Distribution Functions, Ci(g), one for
each Size Range, 1. The Symbol Ci(g) or C(x,g) represents the
"Weight Percent" of Particles (with Size x and Specific Gravity, g)
that will float into the clean Coal Stream of a given type Machine.
Peed Data includes a Size Distribution -f(x)» which
represents the "Percent" of ?eed with Size x,and includes a Sink-
Float Test, w(x.,g). Sink-Float Data, w(x,g) is determined in a Lab
for each Size x. For a Group of Particles of Size x, w(x,g) repre-
sents the "Weight Percent" that has Specific Gravity, £. For an ar-
bitrarily Fine Feed, the amount of Fesd Material, F(x,g), having
Size x and Specific Gravity, g , is obtained by simply multiply-
ing the Uncoupled Screen Data f (x), and the Sink- Float Data w(x,g),
so that :
F(x,g) = (x) • w(x,g) (1)
The Independent (Uncoupled) USBM Data, C(x,g), on the Dense
Media Machinery, enables you to calculate the amount P(x,g)j
of Material with Size x and Specific Gravity _g_, that will become
the Clean-Coal Product, by a simple, straight- forward Multiplication,
P(x,g) = C(x,g) • f(x) • w(x,g) (2)
All three terms on the right-hand side of this EQUATION are
Data supplied by the U.S.B.M.
The Heavy Refuse is obtained from l-C(x,g), again by simple
Multiplication, EQ.(3) :
REFUSE (x,g) = [l-C(x,gj] • J(x) • w(x,g) (3)
-------
34
AUTOMATED PROCESS SURVEYS
IV - COAL WASHING - BREAKERS AND SCREENS (cont
IV-2. - SORTING COAL BY SIZES (PROGRAM BY APS)
Vibrating Screens are used in sorting Coal by Sizes.
A typical application of Screens is shown in FIGURE 1, below.
For 400 TPH Coal, a Screen with one-inch holes, would actually
be Pour Machines, each 6 Feet Wide by 16 Feet Long.
I FEED
\ TO yi- - - -i
6 * I
PRODUCT
PRODUCT
PRODUCT
TO FLOTATION
FIG. 4 - SCREENS IN COAL PREPARATION
In such an application, Manufacturers of Screens would
estimate that the Screen Efficiency is 92#« This is an over-
all Figure, which means that 92% of all Material finer than
the Opening Size, yo, would pass through the Screen Openings.
Manufacturers, however, cannot tell what percent of a given size
Particle will pass through the Screen Openings. Dr. Vaillant
of Automated Process Surveys, has conducted Research on most
types of Screens manufactured in U.S.A., and on some German and
Japanese Screens.
-------
AUTOMATED
35
PROCESS SURVEYS IV - COAL WASHING - BREAKERS AND SCREENS (cont'd
IV-2 - SORTING COAL BY SIZSS (cont'd)
In order to understand the Test Results, consider Particles
on a Screen, FIGURE 2 :
SCREEN WIRE
FIG. 5 - SCHEMATIC REPRESENTATION OF PARTICLES ON A SCREEN
Let Two Particles attempt to pass through an Opening of
Size yo and let us assume that the probability of two Particles
(Size Xj and xp) passing through an opening, is the same as the
probability of "a Single Particle (of Size x.^ PLUS x2) passing
through the Opening; and assume also the event of Particle with
Size x-i passing is independent of Particle with Size x2 passing
(so that the Conditional Probability relating these events is Unity)
then we write this Assumption as :
P(x2) = P(XI
w
This Functional Equation can be solved for POO:
P(x) = Q which you can easily
verify by substituting exp(^Xi)and exP(Juz>nto EQUATION (4).
APS1 Tests on Screens show that the Fraction Cs(x)1of Feed Particles
of Size x?that goes over the Screen into the Coarse Stream is
indeed exponential in character over a wide range of x; furthermore,
C., can be written as a Function of -JL_ ,
s yo
Cs(x) = eA(l-x/yo) (5)
where A is an Experimental Constant, and yo is the Projected Screen
Opening.
-------
AUTOMATED
36
JPROCESS SURVEYS IV - COAL WASHING - TreEAfTRRS AND SCREENS (cont'd)
IV-2 - SORTING COAL BY SIZES (PROGRAM BY APS) (cont'd)
Note that the Selectivity Function, Cg(x), depends on the
Ratio x/yo. Vaillant calls the Experimental Constant, "A" the
SEPARATION STRENGTH of the Screen. Its Magnitude depends on Screen
Type, Screen Opening, and Production Rate, but it is Independent of
the Feed's Size Distribution. Thus, APS has succeeded in uncoupling
the Problem of Sorting-by-oize (Screening) much in the same way as
others have done in modelling Sorting by Specific Gravity.
The Separation Strength depends also on the Location of the
Screen Deck within the Machine. Note in FIGURE 1 that the Screen
following the Rotary Breaker consists of an Upper Deck, with one-inch
Openings, and a Lower Deck with 1/2 inch Openings. Experience shows
that a Single Deck Machine with 1/2" Screen-Openings has a higher
Separation Strength than docs a similar 1/2" Screen Deck that is
placed below another Deck. Furthermore, Separation Strength, "A",
is improved by operating wet. Some reasonable Values of "A" have
been inserted into the Screen Simulation Program supplied by APS.
Screen effectiveness, Cg(x), is ONE MINUS the Efficiency of
the Screen for Particle Size x . The Coarse Product Stream, P(x,g),
from a Screen, can be obtained from this Fundamental Screen Model by
a Simple Multiplication, EQUATION (2a) :
P(x,g) = Cg(x) « (x) . w(x,g) (2a)
where T (x) is the Feed Size Distribution to the Screen.
Two of the Three Terms on the Right-Hand Side of this
Equation (Feed Size Distribution and Sink-Float Data) were supplied
as Data by the U.S.B.M.; the Selectivity Function, C (x) was
^ s_
supplied by APS.
-------
AUTOMATED
[1ZZ£>
LJ PROCESS SURVEYS
IV - COAL WASHING - BREAKERS AND SCREENS (cont'd)
IV - 3 - BREAKING COAL (PROGRAM BY APS)
Breakers and Crushers are used in Coal Washing and
Mineral Beneficiation Plants, and Aggregate Plants where Control
of Porosity in "Packings'" of Particles is important.
Although Crusher Curves have been available since the
1930"s, all this information suffers from one draw-back ....
*No information on HOW the Crusher's Feed Size Distribution affects
its Product Size Distribution."
APS has undertaken the ambitious task of applying Data
on Single Particle Breakage, and on Screen Selectivity in order
to match Data on several Types of Commercial Crushers... Our
Objective is to build a Mathematical Model of a Crusher, that
will include such important variables as :
A. FEED SIZE DISTRIBUTION
B. CRUSHER SETTING
C. THROUGH-PUT RATE
D. LIBERATION OF ASH
Items "C" and "D" are left for future work in another Phase
of this Project.
Some Simple Breakage Concepts and Definitions are
needed, in order to understand APS's Method of Attack.
-------
nzu
AUTOMATED
38
LJ PROCESS SURVEYS
IV - COAL WASHING - BREAKERS AND SCREENS (cont'd)
IV - 3 - BREAKING COAL (cont'd)
As described in the Literature , let Bfx.y)
represent the Cumulative Size Distribution of a Group of
Daughter Particles made by Breaking a Particle,initially of
Size y . For example, Coal dropped onto a Pile has been
found to break into a Size Distribution given by :
i- e
i-eH
Notice that the Resultant Distribution depends on x/y.
This Function has been found to describe many Breakage
Events in Machinery, including Ball Mills and Hammer Mill's.
To distinguish between types of Equipment, previous
Workers have assumed that each type of Equipment has a
Characteristic Way of Selecting Particles for Breakage. This
Selection Function, S(y) , is the Fraction of Feed Particles
of Size y , that would be broken; l-S(y)^ would not be
broken. A Product, P(x) would be created by adding the
Contribution of Daughter Particles of Size x formed from
all Larger Particles that have been selected for Breakage.
*
where B is an Increment for a given size Interval surround-
ing x . Note that F(y,g) = amount of feed having size
y and specific gravity g (see F(x,g) defined on p. 33).
(1) BROADBENT AND CALCOTT: J. INST. FUEL, 29 (1956) 524-539
-------
AUTOMATED
J
39
PROCESS SURVEYS
IV - COAL WASHING - BREAKERS AND SCREENS (cont'd)
IV - 3A - BREAKING FUNCTION OF "CRUSH"
In modelling Crushers, however, APS has found it
more practical to alter the Breakage Function, B(xjy), while
fixing the Selection Function S(x). Breakage functions for :
GYRATORY CRUSHERS
DOUBLE ROLL CRUSHERS
SINGLE ROLL CRUSHERS
CAGE MILLS
ROTARY BREAKERS
are given in Subroutine "CRUSH", and "ROTARY".
-In real Crushers, Particles pass through an Opening, as
in a Screen, except that in Crushers the Particles can orient
themselves more easily. This ability, for Particle-Orientation,
enables a Crusher to discharge Particles larger than the Setting,
So.
-The "Crushing Process" is different fcr :
a) PARTICLES SMALLER THAN THE SETTING, So
b) PARTICLES LARGER THAN .1.7 TIMES THE SETTING, So, and
c) PARTICLES WITH A SIZE BETWEEN So and 1.7 So.
The Breakage Functions for each Type of Crusher (given
by APS in Subroutine "CRUSH") are used mainly for Particles in
Size Range (b), viz... Particles Larger than 1.7 So. For
Particles of Size 1.7 So and Smaller, SubRoutine "CRUSH" uses
the Natural Breakage Function, defined by EQUATION (6).
-------
40
AUTOMATED PROCESS SURVEYS _ COAL HAsmHG . BREAKERS AMD SCREENS
IV - 3B - SELECTION FUNCTION OF "CRUSH"
Particles that are slightly smaller than the Crusher's
Setting, So, may pass unbroken, depending en how much smaller
they are. The chance that a Particle of Size ^_ will
slip through, without breaking, depends on the Ratio y/So.
Since this Process of slipping through a Crusher is conceptually
similar to Particles slipping through a Screen, I have assumed
Crusher Selectivity S(x) is of the Form given by EQUATION (5)
with So replacing yo.
A Primary Crusher has a larger chance of letting Par-
ticles slip through unbroken. In Subroutine Crush, "I PRIM"
is used to choose the Selection Function for Breakage, which
distinguishes Primary Crushers from Secondary Crushers.
IV - 3C - ROTARY (DRUM) BREAKER
The Models of Screening and of Crushing are combined
Into a Model of the Rotary Breaker (Bradford). The Rotary
Breaker is modelled as a Sequence of Consecutive Events where
Breakage and Screening alternate.
In addition to having its own Breakage Function,
its own Selection- for-Breakage Function, and its own Screen
Function, Subroutine "Rotary" includes Physical Variables
such as length and diameter of the drum, size of openings in
the Rotating Drum (Hole) , and
-------
tSL
AUTOMATED
41
PROCESS SURVEYS
IV - COAL WASHING - BREAKERS AND SCREENS (cont'd)
IV - 3C - ROTARY (DRUM) BREAKER (cont'd)
a Work-hardening Function (CFALL). Rocks have their own Work-
Hardening Function (RFALL).
The Work-Hardening Function is designed to consider
that Initial Flaws are activated upon the first few Falls, but
the Daughter Fragments are then stronger, since they may have
proportionately fewer Flaws. This is allowed for in Sub-
Routine "Rotary", by using a decreasing Selection-For-Breakage
Function (CFALL), for each subsequent Fall (or Group of Falls).
An increasing Function, however, could be inserted
for "CFALL", if Field Data were to show that a Particular Coal
is weakened by successive Falls. Normally, Brittle Materials
strengthen as they "age".
Furthermore, the Selection-For-Breakage Function is
constructed so that it is also a Function of Particle Size,
since some small Particles have only a small tendency to break.
Until more Data is available on a Rotary1s Product, the Function
that accounts for Particle Size (C SELCT) is set uniformly to
Unity for all Particles.
In APS's Model, Feed Particles that are much larger
than the Crusher Setting (or "Hole" in Subroutine Rotary) will
automatically undergo more Breakage Events and so will give
a Finer Product than will be given by Feed that is only Slightly
larger than the Crusher's Setting.
-------
42
AUTOMATEDU PROCESS SURVEYS IV - COAL WASHING - BREAKERS AND SCREENS (cont'd)
IV-3D - LIBERATION
APS has found much evidence that Specific Gravity is
tied to Ash Content, but is not tied to Particle Size. This
appears true, especially for Large Particles, handled in a Coal
Washing Operation. For many Coals, only the Finest Sizes seem
to deviate from this Principle. Although this observation is of
only slight importance in both Screening and Dense Media Separa-
tions, it is Critical in Modelling Breakage Processes. Conse-
quently, APS has assumed that Particles, with a given Specific
Gravity, break into Daughter-Fragments that have the same Specific
Gravity as their Parent's (except for the smallest Fragments, since
these are broken no further) .
This Technique assures a MASS BALANCE, without needing to
identify the Parent of each Particle after Successive Breakage
Events. It accounts for the Feed's Initial Differences in -Ash vs.
Size.
Since we assume every Fragment of a Broken Particle has
the same "Chemistry", however, it is clear that this Model does
not account for "Liberation"... where Fragments of a Broken Particle
differ in Chemistry.
A Liberation Model would be needed in order to account for
the effect that Screen-Opening-Size and Crusher-Settings would
have on liberating Coal so as to improve Product Quality. Un-
fortunately, without a Liberation Model, the present Program
"COMPUTER SIMULATION OF COAL PREPARATION PLANTS", accounts- for
Crusher Settings and Screens only as a Secondary Effect, intro-
duced by the small influence that Particle Size has on the
Efficiency of Dense Media Separators.
It is left for "FUTURE" Work to devise a better Model with
True Liberation.
END.
-------
AUTOMATED
PROCESS SURVEYS
V - SUBROUTINE NOMENCLATURE
(EACH SUBROUTINE INCLUDES
V-l - SUBROUTINE " CRUSH1-' A PRINTED SET OF
"•"• — NOMENCLATURE)
L REPRESENTS EQUIPMENT NUMBER
So REPRESENTS CRUSHER SETTING
SIZE (I) REPRESENTS INCREMENTS IN SIZE
1=1 IS PCR TOP SIZE AND LARGER
1=1 IS FOR NEXT SMALLER SIZE
I = N SIZE + 1-~LAST VALUE. (l = 1,TO N SIZE + l)
PEED (I,J,1)»FEED (I,J,2) = WEIGHT OF ASH Uf THE INTERVAL I,J
PEED (I,J,1)«FEED (I,J,3) = " " PYRITIC SULFUR " " " "
FEED (I,J,1)«FEED (I,J,4) = " " TOTAL SULFUR " " " "
PROD (I,J,K) REPRESENTS PRODUCT STREAM'S NORMALIZED OUTPUT
V-1A DATA
S RATIO y/So
SP SELECTION-FOR-BREAKAGE FUNCTION ... PRIMARY CRUSHER
SS SELECTION-FOR-BREAKAGE FUNCTION ... SECONDARY CRUSHES
X = PRODUCT SIZE
B RATIO y _ pEED SIZE
Y-2 - SUBROUTINE "SCREEN"
ScSz SCREEN OPENING, INCHES
FEED FEED TO THIS EQUIPMENT (NEED NOT BE NORMALIZE
Sover OVERS ... NORMALIZED
UNDER ... NORMALIZED
IF FEED IS NORMALIZED Fover + Funder =1.0
IF FEED IS NOT NORMALIZED Fover + Funder =
21 PEED (1,1)
JL
-------
AUTOMATED
44
PROCESS SURVEYS
V - SUBROUTINE NOMENCLATURE (cont'd)
V-2A
SSZ
D2
DATA
OPENING AT WHICH DATA IS GIVEN FOR
"A" VALUES UPPER DRY
"A" VALUES LOWER DRY
"A" VALUES UPPER WET
"A" VALUES LOWER WET
"A"
SUBROUTINE ROTARY
....... HEIGHT OF DROP (STANDARD HEIGHT IS 6 FT.
HOLE ...... 6" OR 8" DATA
NFALL .... NUMBER OF FALLS IN MACHINE
TFEED ..... ROCK + COAL .... NORMALIZED
CPROD ..... UNDERS ........ COAL PRODUCT STREAM
RPROD ..... OVERS ......... ROCK
FC PROD . . . FRACTION v1 UNITY, COAL ____ FIGURE 4
PR PROD . . . FRACTION OF UNITY, ROCKS . . . FIGURE 4
V-3A
CFALL
RFALL
B
BRATIO
DATA
COAL FALL : FOR FIRST DROP ;
%(x) = (CFALL = .20)»(c SELCT)
ROCK FALL : FOR FIRST DROP ;
$.(x) = (RFALL = .oo5)«(R SELCT)
USES NATURAL BREAKAGE FUNCTION
PROD SIZE AS IN "CRUSH"
FEED SIZE
-------
45
AUTOMATED PROCESS SURVEYS
V - SUBROUTINE NOMENCLATURE (cont'd)
SPLITTING A FEED STREAM
FPROD
UNITY
COAX
I 1
ROCK
(— 1
' ROTARY '
ROCK STREAM
COAL STREAM
FIG. 6 - IDENTIFICATION OF STREAMS
PICTORIAL MODEL 01? ROTARY BREAKER CALCULATIONS
X"
OO
FEED
FTOT
G3
OVER
UNDER
- NORMALIZED
VECTOR
Ezl
• • •
R PROD ;FRPROD,.. CLOCKS)
, FC PROD. .(COAL)
FIG. 7 - MODEL OF ROTARY BREAKER
-------
46
7. 2 Program Structure
7. 2. 1 Subprograms
Subprogram Purpose Referenced By
MAIN Executive routine. Reads
input, references major
computational and output
subprograms
BLEND Blends two distinct
flowstr earns.
BTUPLB Calculates the BTU
content of coal as
function of ash content
MAIN
ROTARY
OUTPT1
OUTPT3
OUTPT4
ROTARY
SDSIZE
References
BLEND
CONVRT
CRUSH
EXPAND
FROTH
OUTPT1
OUTPT2
OUTPT3
OUTPT4
REDUCE
ROTARY
SCREEN
SEP
SPLIT
VESSEL
SDSIZE
-------
47
CONVRT Converts numerical
symbols (characters)
to actual numbers.
CRUSH Simulates crusher
MAIN
INTS
OUTPT1
OUTPT2
OUTPT3
Linear interpolation.
Prints specific gravity
analysis of a specified
flowstream.
Prints summary data for
a specified unit.
Calculates and prints
overall attributes for a
MAIN
performance.
EXPAND Converts a 1-dimensional MAIN
array to a 3-dimensional OUTPT4
array.
FROTH Simulates froth flotation MAIN
performance.
CRUSH
ROTARY
SCREEN
MAIN
MAIN
MAIN
INTS
SDSIZE
SDSIZE
Y
YINTRP
BTUPLB
BTUPLB
specified flowstream.
-------
48
OUTPT4 Calculates and prints MAIN
overall summary data
for all units and all
flowstr earns.
REDUCE Converts a 3-dimensional MAIN
array to a 1-dimensional
array.
ROTARY Simulates rotary breaker MAIN
performance.
SCREEN
SDSIZE
SEP
SPLIT
Simulates screen
performance.
Calculates composition
of a specified flowstream
by size increments.
Simulates float-sink
washer performance.
Splits a flowstream
into two distinct
MAIN
BLEND
CRUSH
FROTH
SCREEN
SEP
SPLIT
MAIN
YINTRP
MAIN
BTUPLB
EXPAND
VESSEL
BLEND
BTUPLB
INTS
INTS
SDSIZE
BTUPLB
SDSIZE
Y
SDSIZE
flowstreams.
-------
49
VESSEL, Prints the name of each
unit.
Y Contains generalized
distribution data for
washers.
YINTRP Lagrangian interpolation,
MAIN
OUTPT4
FROTH
SEP
FROTH
SEP
YINTRP
YINTRP
-------
50
7. 2. 2 Subprogram Summary
A summary of each program module is presented below. An overall
flowchart is shown for each of the more complicated program modules.
Highly detailed, computer-generated flowcharts have also been prepared,
although they are not included in this report. A copy of the computer-
generated flowcharts is on file at the University of Pittsburgh.
-------
51
MAIN
COAL PREPARATION PLANT SIMULATOR
TMt program almuletea the performance of • coal
preparation plant whoa* configuration la
•pacified, Tha program waa developed at the
Unlvaralty of Plttaburgh for the United Statoa
Buraeu of Mlnea under Grent No* 00*155030
completed Auguet* 1977. Principal 1nveat1gatori
B. 3, Gottfried* Profeaaor of Induetrlal
Engineering* Un1vera1ty of Plttaburgh, Other
principal contMbutorei A, Valllent* Automated
Proceaa Surveye* Inc,» New York City (CRUSHER*
SCREEN and BREAKER routlnee)* P. 8, Jacobean* U,
3. Bureau of Mlnea (t«aaHab111ty caUulatloni).
I Reed Input data.
i
[ Hrlte Input data.
i
Initialise feed
retreetment atreema.
and
Initialise feed atreem.
Initialise
atreema,
retreatment
Calculate counter to be uted
In convergence teat on weight
distribution for retreatmtnt
atreema*
-------
I
Carry out unit operations In
the order that the units art
specified In the Input data,
I
| Expand Input at reams.
i
Strtam blender • Expand tacond
Input stream.
| Carry out operations, I
I HHte optional unit summary, |
j Reduce product streams, [
i
Wrlta optional flowatream
summary (output streams).
1
Test retreatment streams for
convergence.
[ Apply acceleration procedure, """"[
i
Calculate overall yield* aah
and tulfur for product
streams.
I
Calculate and print summary
data for all units and
flowatreams,
52
-------
53
FUNCTION BTUPLB
This function calculate* the BTU content
of a pound of coal as e linear or
quadratic function of a$h content*
SUBROUTINE BLEND
This subroutine combines
flow streams. Both
streams must be expressed
the same size Increments,
two distinct
Incoming flow
1n terms of
i
Calculate summary data by size
Increments.
-------
54
SUBHOUUNE
This subroutine converts numerical
s to numerical quantities
Arguments required for this routine I
Set of numerical symbols ,set of
numerical quantities »mesh size
conversions ,who1e number units position
/position of numerator in fraction
,position of denominator in fraction.
Scan each symbol,
I
Symbol represents whole number
• scan again.
Convert
number.
I
integer part
of
1
Convert
number.
fractional part
of
I
Convert mesh to inches.
-------
55
SUBROUTINE CRUSH
This program determines the weight
distribution and composition of the
crusher product for a given feedt
Arguments required for subprogram!
Selection Index /type of breaker Crusher setting
/boundaries of coal size Increments ,number of
size increments /number of gravity Increments
/properties of feed stream ,properties of product
stream /product flow rate /designates size
Increment of coal /designates specific gravity
Increment of coal /designates weight»ash,pyrltic
sulphur .and total sulphur.
1
Determination of size interval
In which 1,7*SO 1s located
Breakage of material 1n size
Intervals relative to 1.7*30
Normalize weight fractions in
exit stream
Calculate summary
Increments
data by size
-------
56
This subroutine expands the
di we^s i onaH t y of a I~rti«nensiona1 array
t'O d 3-Ui mensi onal array.
-------
SUF5KUUTI.-IE FRDTh
57
This subroutine determines the weight
distribution ami composition of the
clean coal (float) and refuse (tails)
from a froth flotation cell . The
calculations are based upon the "yield
at 1.50, ash at 1,60" rule (with respect
to the feed stream). A fictitious
distribution curve is then fitted to the
overall separation in order to calculate
the weight distribution and composition
of the product streams as a function of
specific gravity.
Determine overall yield and
overall ash content in float
for each size increment.
Fit distribution data to
overall separation for each
size increment.
Carry out separation using
several distribution curves
(tables data) and 20 values
SGSP for each distribution
curve.
of
Calculate yield and ash
content for each separation
gravity.
I
Determine distribution curve
and separation gravity that
best match overall yield and
overall ash calculations.
Recalculate separation using
best distribution curve and
best value for specific
gravity of separation.
-------
58
Determine specific gravity
increment for which
(ash(j)-overal1 ash)
approaches target value most
Close!y.
. i . . I '
Modify distribution data in
specific gravity increment jk
and recalculate separation.
I
'formalize weight fractions In
exit streams.
I
Calculate summary data by size
i ncremcnts.
-------
59
SUBROUTINE INTS
Interpolation / extrapolation
routine
-------
60
SURKUUTlNt OUTPT1
This subroutine prints the specific
gravity analysis of a specified flow
stream,
v-rite output
increment,
1
for each size
Calculate weight distribution
in each specific gravity
i ncrement.
Calculate cumulative weight^
ash, pyritic sulfur, total
sulfur and BTU content.
i
output for composite.
-------
SU'iWOUTIUE OUTPT2
61
This subroutine prints summary data by
size increments for eacH unit.
I
Determine largest nonempty
size i nc recent.
I
Print summary data for washing
vessels.
1
Print summary data for rotary
breaker.
I
Print summary data for
crusHers.
Print summary data for
screens.
°rint summary data for
blenders.
Print summary data for
spli tiers.
-------
62
SUBROUTINE OUTPT3
This subroutine calculates the mean
percent ash* pyrltlc sulfur* total
sulfur, BTU content and Ibs 302/mllHon
BTU for a given flowstreem. Each of
these quantities 1s then printed.
SUBROUTINE OUTPT4
This subroutine calculates and prints
summary data for ell units and
flowstreams.
SUBROUTINE REDUCE
This subroutine reduce* the
dimensionality of a 3-dlmenslonal array
to a l-dlmens1onel array.
-------
SUBROUTINE ROTARY
63
This program
di st r i but i on
rotary breaker
the weight
and composition of the
product for a given feed.
Arguments required for subroutine!
Rreaker length f breaker diameter f
height from which material is dropped ,
opening size / number of times material
is dropped / boundaries of coal site
increments , number of size increments t
number of gravity increments , coal feed
flow rate i rock feed flow rate , total
feed stream flow rate r coal flow rate
in'coal stream , rock flow rate in co-al
stream / rock flow rate in rock stream t
coal flow rate in rock stream t coal
product flow rate t rock product flow
rate / percent of coal feed of size 1
reporting to product stream t percent of
refuse stream of size 1 composed of coal
t percent of product stream of size 1
composed of rock.
i
Split feed stream into coal
stream and rock stream.
I
Normalize weight fractions fn
exit streams.
Cal
cul
r6m
ate
summary
data
by
si
ze
I
Calculate composition of flow
streams by size increments.
-------
1
64
Calculate ratio of roal in
coal croquet stream to Coal
to^al feed after breaking.
Calculate coal/over*1ow
roc Bunder f 1 o* ratios.
-------
65
This subroutine -determines the weight
distribution an 1 composition of the
screen over ana screen under streams for
a Qi ven feed.
required for subroutine!
Indication if screen is wet nr orv
i nr'i c rtt i on if screen is an UOCM.T
lower screen , projected screen openi
, houn-jar i es of coal size increments
njmber of sire increments , number
gravitv increments , properties of
stream , properties of over*!©* s
overflow product flow rate » Properti
of underflow stream , underflo* orortu
flo^ rate > size increment of coa'
specific gravity increment of coa!
we<-]htf dshf pvritic sulphur and tot
sulphur t percent of feed of the i
size reportincj to the underflow s
or
ng
i
of
es
>
al
th
I
formalize weiyht fractions in
exit streams.
Calculate su™^.
i r>c recent s ,
^ry data
by
s1 ze
Calculate weiyht and nTU
jnderf 1 o«<-to-feed ratios.
i
Calculate undersize in
overflow anci oversize in
underf1ow.
-------
66
SUBROUTINE SDSIZE
This subroutine calculate! competition
of flow streams by size Increments*
-------
67
SUBROUTINE SEP
This subroutine determines t^e weight
distribution and composition of the
clean coal and the refuse fop a given
feed entering a specified vessel at a
given overall separation gravity. '
Arguments required for subroutine:
Flow streams /properties of the feed
stream ,properties of the clean coal
/properties of the refuse /properties of
the middlings (jig only) /boundaries of
coal size increments /boundaries of
specific gravity increments ,specific
gravities /size Increment of coal
/specific gravity increment of coal
/weight/ash,pyr1tic sulfur and total
sulf,ur ,number of size Increments of
coal /number of specific gravity
increments of coal /ratio of separation
gravity for a given size designation to
the overall separation gravity
/boundaries of separation curve size
increments /number of sizes for each
vessel /size increment of separation
curve /overall seperation gravity
/weight fraction of feed to clean coal.
I
Test for composite feed*
Transform from weight
distribution based upon size
increments of feed to weight
distribution based upon size
Increments of separation
curves.
T
Find smallest SIZE(I) that 1s
greater than or equal to
5(11,L).
-------
68
Find largest SIZt(I) that is
less than or equal to
'3 (11 +1, L ) .
I
Determine number of Intepvals
entlpely within S(H*L) and
SU1+1/U.
ICappy out transformation.
Case 1 - SIZECIMIN) < S(H/L)
and SIZECIMAX) < S(11 + 1»U.
Case 2 • left boundary <
SCIlfUl CIMINsO).
1
Case 3 - right boundapy >
8(11+1,L)l CIMAXsHSlZE+1).
i
Case 4 - left boundary <
S(IlrL) and right boundary >
3(11 + 1,Li : (IMNsO and
IMAX=NSIZEtl).
Carry out separation.
1
Special provision for 2-stage
baum jig.
i
Transform from weight
distribution based upon s1;e
Increments of separation
curves to weight distribution
based upon size Increments of
clean coal,
-------
Hnrt smallest S(I1,L) t^at is
'jreater than or equal to
SIZE(I).
i
Find largest S(Il>L) that is
less than or equal to
SIZFCI+l).
I
Determine number of intervals
entirely within SIZF(I) and
SIZF.CI + 1),
I
I Carry out transformation.
1
Composite separation.
Special provision for 2-stage
haum j ig.
1
Calculate distribution
Hatarash and sulfur
concent rat ions,yield,
separation gravityfprobable
error and imperfection.
I
Convergence test for overall
specific gravity of
separat1 on.
Normalize weight fractions 1n
exi t streams.
-------
70
Calculate sugary -lata by size
s.
Calculate theoretical
recovery,wei
-------
71
SUBROUTINE SPLIT
This subroutine causes • flowstreem
(FEED) to bo split Into two distinct
flowstreams (PRQD1 and PROD2) having tht
same compositions* F represents the
fraction of feed going Into PRODI,
SUBROUTINE VESSEL
This subroutine prints the name of
coal washing unit*
each
FUNCTION Y
This function evaluates a point on the
distribution curve for a given vessel
and given size using Lagranglan
Interpolation.
-------
72
FUNCTION YIMTRP
Lagrengian interpolation routine. The
X-values must be monotonical1y
nondecreasing.
X value too low - set Y equa
to YPTSU).
X value too High
to YPTSCO,
- set Y equal
Linear interpolation between
f1rst 2 points.
Linear interpolation between
last 2 oolnts.
Find interval containing X "C5T
will be between XPTS(K) and
XPTSCK + D).
I
Test for inverse
i nterpola* i on.
I
Test *or distinct X -values.
Linear interpolation through
XPTS(K) and XPTSCK+1).
Laqranqe interpolation through
XPTS(K-l)» XPTS(K), XPTS(K*1)
and XPTSCK+2),
-------
73
Test for
values.
monotonicity of Y •
I
Y-values are wonotonic - test
for excessive curvature in
interpolating polynomial.
-------
74
7. 2. 3 Common Storage Areas
The program includes four common storage areas: blank (unlabeled)
common, BLK1, BLK2 and SYS. The subprograms that share each common
storage area are listed below.
Blank BLK1 BLK2 SYS
MAIN
FROTH
OUTPT4
ROTARY
SCREEN
SEP
MAIN
BLEND
CRUSH
FROTH
OUTPT2
ROTARY
SCREEN
SEP
MAIN
FROTH
OUTPT2
SEP
MAIN
OUTPT1
OUTPT2
OUTPT3
OUTPT4
ROTARY
VESSEL
SPLIT
-------
75
7. 3 Program Listing
The simulator has been written in standard ANSI Fortran IV. It
should therefore be compatible with any commercial Fortran IV compiler.
A listing of the complete Fortran program is shown on the following
pages.
-------
MAIN. MAIN1.F4
FORTRAN V.5A(56J) /KI 6-OCT-T7
12128 PAGE 1
-a
en
00001
00002
00003
00004
oooos
00006
00007
00008
00009
oooto
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C 0 * I
PREPARATION
PLANT
SIMULATOR
THIS PROGRAM SIMULATES THE PERFORMANCE nF A COAL PREPARATION PLANT
WHOSE CONFIGURATION IS SPECIFIED.
THIS PROGRAM HAS DEVELOPED AT THE UNIVERSITY OF PITTSBURGH
FOR THE UNITED STATES BUREAU OF MINES UNDER GRANT NU. GO-155030
COMPLETED AUGUST, 1977
PRINCIPAL INVESTIGATORi 8, S. GOTTFRIED, PROFESSOR OF INDUSTRIAL
ENGINEERING, UNIVERSITY OF PITTSBURGH
OTHER PRINCIPAL CONTRIBUTORSl A. VATLLANT, AUTOMATED PROCESS
SURVEYS, INC., NEW YORK CITY (CRUSHER, SCREEN AND BREAKER
ROUTINES)
P. s. JACOBSEN, u. s. BUREAU OF MINES (WASHABILITY CALCULATIONS)
PRINCIPAL ARRAYS AND VARIABLES
IU
L(TU)
UNIT INDEX (FLOWSHEET IDENTIFICATION)
(SPECIFY IN ORDER THAT CALCULATIONS WILL BE
CARRIED OUT)
DESIGNATES TYPE OF UNIT
L« 1 FOR CONCENTRATING TABLE
L« 2 FOR DENSE-MEDIUM VESSEL
L« s FOR DENSE-MEDIUM CYCLONE
L» 4 FOR HYDROCYCLONE
L« 5 FOR SINGLE-STAGE BAUM JIG
Li 6 FOR 2-STAGE BAUM JIG
L» 7 FOR FROTH FLOTATION CELL
L«H FOR ROTARY BREAKER
L«i2 FOR PRIMARY MULTIPLE ROLL CRUSHER
L»13 FOR PRIMARY GYRATORY/JAW CRUSHER
L»1U FOR PRIMARY SINGLE ROLL CRUSHER
L»15 FOR PRIMARY CAGF. MILL CRUSHER
L»16 FOR SECONDARY MULTIPLE ROLL CRUSHER
L»17 FOR SECONDARY GYRATORY/JAW CRUSHER
L«18 FOR SECONDARY SINGLE ROLL CRUSHER
L«19 FOR SECONDARY CAGE MILL CRUSHER
L»21
L«22
L«23
L«24
FOR DRY UPPER SCREEN
FOR DRY LOWER SCREEN
WET UPPER SCREEN
FOR
FOR
WET LOWER SCREEN
L«41 FOR STREAM BLENDER
Dl(IU)
02CIU)
03(IU)
VSLYLD(IU)
VSLBTU(IU)
FOR STREAM SPLITTER
UNIT DECISION VARIABLE
UNIT DECISION VARIABLE
UNIT DECISION VARIABLE
YIELD FOR A GIVEN UNIT
BTU RECOVERY FOR GIVEN UNIT
-------
MAIN.
FORTRAN V.5AC563) /KI /6-OCT-77
I2i26 PAGE
00057
00056
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00062
00083
00084
00065
00066
00067
00086
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IF •
KFd.IF) •
KF(2,IF) •
FLOW(IF) a
S(IF) •
UK «
8G(IJK,IF) «
I
J
K
SIZE(I)
WT(I)
GBOUND(J)
GRAV(J)
FEED(I,J,K)
CC(I,J,K)
REF(I,J,K)
MID(I,J,K)
NUNITS •
NFLOHS •
NRETRT •
NSIZE «
NGRAV i
IOUT •
FLOWSTREAM INDEX (FLOWSHEET IDENTIFICATION)
UNIT DESIGNATION OF FLOWSTREAM ORIGIN
(0 INDICATES AN EXTERNAL ORIGIN)
UNIT DESIGNATION OF FLOWSTREAM DESTINATION
(0 INDICATES AN EXTERNAL DESTINATION)
FLOW RATE, EXPRESSED AS A FRACTION OF THE PLANT
FEED STREAM
SYMBOL INDICATING TYPE OF FLOWSTREAM
c INDICATES A CLEAN COAL STREAM
M INDICATES A MIDDLINGS STREAM
R INDICATES A REFUSE STREAM
u INDICATES A SCREEN OVERFLOW (UPPER) STREAM
OR A SPLITTER OVERFLOW (UPPER) STREAM
L INDICATES A SCREEN UNDERFLOW (LOWER) STREAM
OR A SPLITTER UNDERFLOW (LOWER) STREAM
INDEX REPRESENTING I,J OR K IN EQUIVALENT
3-DIMEN8IONAL ARRAY
SPECIFIC GRAVITY ANALYSIS OF FLOWSTREAM
DESIGNATES SIZE INCREMENT OF COAL
DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL
DESIGNATES WEIGHT, ASH, PyRITIC SULFUR AND TOTAL SULFUR
(THE WEIGHT COLUMN CONTAINS THE FRACTION OF THE ENTIRE
STREAM IN THE ITH SIZE, JTH GRAVITY INCREMENT)
BOUNDARIES OF COAL SIZE INCREMENTS
WEIGHT OF COAL IN VARIOUS SIZE INCREMENTS
BOUNDARIES OF SPECIFIC GRAVITY INCREMENTS
SPECIFIC GRAVITIES
PROPERTIES OF THE FEED STREAM
PROPERTIES OF THE CLEAN COAL
PROPERTIES OF THE REFUSE
PROPERTIES OF THE MIDDLINGS
NUMBER OF UNITS IN PLANT CONFIGURATION
MAXIMUM VALUE IS 30
NUMBER OF FLOHSTREAMS IN PLANT CONFIGURATION
MAXIMUM VALUE IS 25
NUMBER OF RETREATMENT STREAMS
MAXIMUM VALUE IS 3
a NUMBER OF SIZE INCREMENTS OF COAL
MAXIMUM VALUE IS 22
i NUMBER OF SPECIFIC GRAVITY INCREMENTS OF COAL
MAXIMUM VALUE IS 10
OUTPUT LEVEL DESIGNATION
iouT»o FOR MINIMUM OUTPUT
(SPECIFIC GRAVITY ANALYSIS OF FEED AND
OVERALL PLANT SUMMARY)
louTsi FOR MORE DETAILED OUTPUT
(SPECIFIC GRAVITY ANALYSIS OF FEED AND
PRODUCT STREAMS, SUMMARY OF EACH UNIT AND
OVERALL PLANT SUMMARY)
IOUT«2 FOR MOST DETAILED OUTPUT
(SPECIFIC GRAVITY ANALYSIS OF ALL FLOHSTREAM8,
SUMMARY OF EACH UNIT AND OVERALL PLANT SUMMARY)
IDUTiJ FOR DEBUGGING ONLY
-------
MAIN. MAINI.F4
FORTRAN V.5AC56J) XKI 6-OCT-77
13128 PAGE 1-2
00113
00114
ootts
00116
00117
00118
00119
00120
00121
00122
00123
00121
00125
00126
00127
00128
00129
00130
00131
00132
00133
00130
0013S
00136
00137
00138
00139
oo mo
00141
00142
00143
00144
OOI4S
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
C
C
C
C
C
C
C
C
C
C
C BTI
e
i
C INI
C
C
C
C TO
C
C
C TO
C
C
C TO
C
C
C
C
C
C
C
C TO
C
C
C
C ***
too
101
102
103
(COMPLETE OUTPUT FOR EACH ITERATION)
NCOMP • INDICATES HOW SEPARATIONS WILL BE DETERMINED
NCOMPiO FOR SEPARATION BY SIZE INCREMENTS
NCOMPal FOR SEPARATION USING COMPOSITE CURVE
ICOUNT • ITERATION COUNTER FOR RETREATMENT STREAMS
KCONVG • CONVERGENCE INDICATOR
KCONVGIIO INDICATES A NONCONVERGENT CONDITION
KCONVGUI INDICATES THAT CONVERGENCE HAS BEEN
ATTAINED
BTU CONTENT OF COAL IS CALCULATED AS FOLLOWS!
BTU/LB • MAXIMUM OP I *
FEEDd.J.!)**!. BTU(4))
INPUT/OUTPUT UNIT DESIGNATIONS!
6 « THE INPUT DEVICE NUMBER (CARD READER)
H • THE OUTPUT DEVICE NUMBER (LINE PRINTER)
TO CHANGE UNIT DESIGNATIONS, ALTER THE STATEMENTS LABELED * SYS *
IN COLS 73-60 (2 STATEMENTS)
TO CHANGE DIMENSIONS, ALTER APPROPRIATE STATEMENTS LABELED * DIM *
IN COLS T3-80
TO CHANGE THE MAXIMUM NUMBER OF FLOW8TREAM8, ALTER THE FOLLOWING ARRAYS!
MAINi 8G,KF,FLOW,S AND KPOINT
EXPAND! X
REOUCEl V
OUTPT4I SG,KF,FLON AND s
ALSO, THE STATEMENT «KPOINT(IF)«NRETRT*25» IN
STATEMENT NO. 70) MUST BE MODIFIED
MAIN (JUST BEFORE
TO CHANGE THE MAXIMUM NUMBER 0' UNITS, ALTER THE FOLLOWING ARRAYS!
MAINl Dl,D2,D3,L,V8LYLD AND VSLBTU
OUTPT4I D1,D2,D3,L»VSLYLD AND VSLBTU
ft************************************************************************
DIMENSION FEED(23,10,4),CC(23,10,4),REF(23,10,4),MID(23,10,4), DIM
1 8G<920,28),8YHBOL(6,23),KF(2,2S),8TZE(23),GBOUND(tl),ORAV(10), DIM
2 FLOWC28), 8(25), TITLE(20),D1 (JO), 02(30) ,03(30), LC30) ,KPOINT(25) , DIM
3 C!(S),C2(3),VSLYLD(30),VSLBTU(30),WT<23>,BTU(4) DIM
COMMON SCR(5629) DIM
COMMON /BLK1X SFEEO(24,5),SCC(24,5),3MID(24,5),SREF(24,5), DIM
1 SYLD(24),TYLD(24),EFFIC(24),BTUREC(2«),A3HERR(24), DIM
2 8FLT(24),SINK(24>,SMISPL(24),SNRGR(24),SGRAV(2a), DIM
3 8PE(24),8IMP(24),8EA(?4) DIM
COMMON /BLK2X DISTRB(24, 10) DIM
COMMON /SYS/ G,H
INTEGER G,H
INTEGER PSJ
REAL MID
DATA SI, 82*33, 84, 35, 86 / 1HC, 1HM, 1HR, I HU, 1HL, 1H / * DIM *
FORMAT(20A4)
FORM4TC26I5)
FORMAT(I3,2X,F5.3,2X,F5.3,2X,F5.3)
FORMAT(2I3,2X,A1)
-------
MAIN. MAIN1.F4 FORTRAN V.5AC563) /Kl 6-OCT-77 12126 PAGE 1*3
00169 104 FORMAT(6(6A1,4X))
00170 105 FORMAT(13(lXiF5.3))
00171 106 FORMATC6(F7.5,3X))
00172 200 FORMATUM1,20X,43HC OAL PREPARATION PLANT,
00173 1 20H SZMULATO R///,1HO,20X,20A4//)
00174 201 FORMAT(1HO,10X,11HUNIT NUMBER,24X,9HUNIT TYPE,24X,
00175 1 18HDECX8ION VARIABLES)
00176 202 FORMATUHO,14X,I2,23X,I2)
00177 203 FORMATUH*,89X,F5,S)
00178 204 FORMATClHO,7X,l7HFLOHSTREAM NUMBER,15X,20HORIGIN • UNIT NUMBER,
00179 1 16X.25HDESTINATION • UNIT NUMBER)
00180 205 FORMATC1HO,14X,I2,32X,I2,2X,A2,30X,T2)
00181 206 FORMAT(lHt,18X,6H(FEEO))
00182 207 FORMAT(lHt,18X,20H(CLEAN COAL PRODUCT))
00183 208 FORMATUH»,18X,19H8X,6HICMAX*iI3,6X,6MNCOMP«,I3/)
00222 900 FORMATUH1)
00223 C SET NUMERICAL PARAMETERS
00224 Gl5 * SYS *
-------
MAIN. MAIN1.F4
FORTRAN V.5A(563) /KI 6«OCT«77
12128 PACE 1-a
00
o
00225
00226
00237
00226
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00266
00269
00270
00271
00272
00273
00274
00275
00276
00277
00276
00279
00260
C
c
C
c
c
c
c
c
c
H«6 • 8Y8 *
NFALLi70
EP81.N1CO.001
EP8l.N2lO.001
KCONVQll
A*****************************************************************************
READ INPUT DATA *
READ (6,100) TITLE
READ (6,101) NUNIT8,NFLOH8,N8IZE,N6RAV,IOUT,ICMAX,NCOMP(P8J
IP (ICMAX.EQ.O) ICMAXiSO
IP (NCOHP.NE.O) N8IZEI1
NS»N8IZE+1
N6«NGRAY*l\
READ (6,102) ((L(IU),D1(IU),02UU),D3(IU)),IU«1,NUNITS)
READ (6,103) ((KF(l,IP),KP(2,XP),8(IFn,IF*l.NFLOH8)
READ (6,104) ((8VMBOL(K,I),K*l,6),lBl,NS) * DIM *
READ (6,105) (MT(I),Ill,N3IZE)
READ (6,105) (6BOUNO(J),Jil,NG)
NOTE CHAN6E IN READ PROM ORIGINAL PR06RAH
BTU(4)»MINIMUM BTUf BTU
-------
MAIN. MAINI.F4
FORTRAN V,5A(S63> /KI 6-OCT-77
12128 PAGE 1-5
00281
00262
00263
00264
00265
0028*
00267
00266
00269
00290
00291
00292
00293
00294
00295
00296
00297
00296
00299
00300
00301
00302
00303
00304
00305
00306
00307
00306
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DO 6 IPil,NFLOWS
WRITE CH,205) IF,KF(1,IF),8(IF),KF(2,IF)
IP CKF(l.IP).EQ.O) WRITE (H,206)
IF CCKF(2,IF),EQ.O),ANO,(S(IF).EQ,81» WRITE (H,207)
IF ((KFt2,IF).EQ.O).AND.(S(IF).EQ.S2)) WRITE (H,208)
IF C(KF(2,IF),EQ.O).ANO,(SCIF).EOi8S)> WRITE (H,209)
IF eCKF<2,IF>.EQ.O>.OR. GO TO 6
WRITE (H.210)
CONTINUE
WRITE (H,600)
WRITE CH,60t) NUNIT8»NFLOW8,NSIZE,NORAV,IOUTiICMAX,NCOMP
WRITE (H,400)
CALL OUTPTl(FEED»3YMBOL»GBOUND,BTU,FLBTU»FLS02,NSIZE.NfiRAV,NCOMP)
CALL OUTPT3(PEED»BTU,1.,NSIZE,NGRAV>
INITIALIZE FEED AND RETREATHENT STREAMS
ICOUNTiO
NRETRW
DO 8 IF«1 »NFLOW3
IG»IF
IF (KFU,IF).NE,0) GO TO 7
INITIALIZE FEED STREAM
CALL REDUCE (FEED, 80, IG,NSIZE,NGRAV)
FLOWCIP)*!.
GO TO 8
7 IF <(KF(2,IF).EQ.O).OR.(KF(2,IF).GT.KF(l,IF))) GO TO 6
INITIALIZE RETREATMENT STREAMS
NRETRTlNRETRTtl
KPOINT(IF)»NRETRT+25 * DIM *
DO 70 111,920 * DIM *
8G(I,IF)«0.
70 8G(I,KPOINT(IF))iO.
FLOW(IF)<0.
FLOW(KPOINT(IF))iO.
C2(NRETRT)«0.
IF (IOUT.LT.3) GO TO 6
WRITE (H,401) KPOINT(IF)
CALL EXPAND(80,MID,IG,N3IZE,NGR*V)
CALL OUTPT1CMID* SYMBOL, GBOUND,BTU,FLBTU,Fl30a,NSIZE,NGRAV,NCOMP)
CALL OUTPT3(MIO,BTU,FLOW(KPOINT(IF)),N8IZE,NGRAV)
6 CONTINUE
IF (NRETRT.GT.O) KCONVGlO
CALCULATE COUNTER TO BE USED IN CONVERGENCE TEST ON WEIGHT DISTRIBUTION
FOR RETREATMENT STREAMS. (SEE THE STMT -DO si u ... * FOR use OF NCONVO
NCONVG • N8IZE*NGRAV*4«3 • INDEX OF THE LAST NONTRIVIAL WEIGHT VAUUE IN '8SI
WHERE THE INDEX OF THE M-TH WEIGHT VALUE IN 136) IS GIVEN BY " l»4(M.l) »
(SEE SUBROUTINE REDUCE)
NCONVG»N8IZE*NQRAV*4-3
CARRV OUT UNIT OPERATIONS IN THE ORDER THAT THE UNITS ARE SPECIFIED *
IN THE INPUT DATA *
I**************
9 ICOUNTBlCOUNTtl
IF (ICOUNT.GE.ICMAX-1) IQUTtJ
-------
MAIN. MAIN1.F4
FORTRAN V.5A(563) /KI 6-OCT-77
12128 PAGE 1-6
00
to
00337
00336
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
003SO
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00366
00387
00368
00369
00390
00391
00392
C
C
C
C
C
C
C
KB8G«KCONVG
IP (IOUT.E0.3) KBSGal
DO 25 IU«l,NUNIT3
EXPAND INPUT STREAMS
DO 10 IFil.NFLOHS
IG«IF
IF (KF(2,IF).NE.IU) GO TO 10
CALL EXPAND(8G,PEED,IG.NSIZE.NGRAV)
FLOHIiFLOH(IF)
IF U(IU),NE,41) GO TO 13
KFUG«IFM
GO TO 11
10 CONTINUE
STREAM BLENDER • EXPAND SECOND INPUT STREAM
11 DO 12 IFnKFLAG.NFl.OHS
IG«IF
IF (KF(2,IF).NE.IU) GO TO 12
CALL EXPAND(8G.MID»IG,NSIZE,NGRAV)
FLOH2nFLOM(IF)
12 CONTINUE
CARRY OUT OPERATIONS
13 IF (L(IU).LE.6) CALL SEP(FEED,CC»REF,MID,SIZE,GRAV.GBOUND.D1(IU),
1 YLDCC. YLDMID.YLDREF.NSIZE.NGRAV.LdU),
2 NCOMP,VSLYLD(IU).V8LBTU(IU),BTU»KB8G)
IF (L(IU).EQ.7) CALL FROTH(FEED,CC»SEF,SIZE»GRAV,GBOUNO,YLDCC.
1 YLOREF.NSIZE.NGRAV.NCOMP.VSLYLDdU),
2 V3LBTU(IU),BTU,KB3G)
IF (L(IU).EQ.U) CALL ROTARY(Dl(IU),D2(IU),D3(IU),SIZE»NSIZE.
1 N6RAV,FEED,CC,YLDCC,REF.YLDREF,
2 V8LYLD(IU),VSLBTU(IU)«BTU,KBSG)
IF ((L(IU).GE.12).AND.(L(IU).LE.19)) CALL CRUSHCLCIU).01(IU).SIZE.
1 N8IZE.NGRAV.FEED.ee.YLDCC.
2 VSLYLD(IU),V3LBTU(IU),BTU.
3 KBSG)
IF ((L(IU).GE.21).AND.U(IU).LE.24)) CALL 8CREEN(L(IU),D1(IU).
i SIZE.NSIZE.NGBAV.FeEO.CC.YLDCC,REF.YLDREF,
2 VSLYLD
-------
MAIN.
PORTRAN V,5A(563) /KI 6-OCT-77
12128 PAGE 1-7
CO
da
00393
00394
00395
00396
00397
00396
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
IP (NRETRT.CT.O) WRITE (H,300) ICOUNT
CALL OUTPT2CSYMBOLiN8IZE,NGRAV,NCOMP,L(IU)fPSJ,GBOUND)
REDUCE PRODUCT STREAMS
14 IP IF»l,NFLOWS
IP ) GO TO 20
IF <(KP(1,IF).EO.IU).AND.C8
-------
MAIN. MAIN1.F4
FORTRAN V.5A(563) /KI 6-OCT-77
13126 PAGE 1-6
00449 C TEST RETREATHENT STREAMS FOR CONVERGENCE *
00450 C ******************************************************************************
00051 50 IF ((NRETRT.EQ.O).OR.
-------
MAIN. MAIN1.F4
FORTRAN V.5A(563) /KI 6«OCT-77
12126 PAGE 1-9
00505 61 WRITE (H(403) KFCl.IP)
OOS06 60 TO 64
00507 62 HRITE (H.404) KFd.IF)
0050B GO TO 64
00509 63 HRITE (H.405) KFC1.IF)
00510 64 CALL EXPANDC8G.CC»IGiNSIZE»NGRAV>
00511 CALL OUTPT1(CC.SYMBOL,GBOUND,BTU.FLBTU,FLS02»N81ZE»NGRAV,NCOMP)
00512 CALL OUTPTJ(CC»BTU,FLOH(IF),NSIZE,NGRAV)
00513 65 CONTINUE
00514 IF (NRETRT.OT.O) HRITE (H,503) ICOUNT
00515 C**********»**»******»***********************t**********************************
00516 C CALCULATE AND PRINT SUMMARY DATA FOR ALL UNITS AND PLOH3TREAM8 *
00517 C*******************************************************************************
00516 66 CALL OUTPT4<8G,L»D1,D2,D3,VSLYLD.V8LBTU,KF,8,FLOH,NUNITS,NFLOWS,
00519 1 N3IZE,NGRAV,81,S2,S3,S4,35,S6,BTU)
00520 WRITE (H,900)
00521 STOP
00522 END
00
en
COMMON BLOCKS
/,COMM,/(*1277S)
SCR +0#R
/BLK1/C*1430)
SPEED tO»R
TYLD +7700R
SINK +1160KR
SIMP +13500R
/BLK2/(t360)
OI8TRB +0»R
/SYS/(»2)
G
SCC
EFFIC
SMISPL
SEA
il70/»R
+1020*R
+1210KR
*1400«R
SMlD + 360IKR
BTUREC +1050KR
SNRGR
3REF tS50«R SYLO +740«R
ASHERR +UOO«R SFLT »U30»R
8GRAV +1270«R 3PE »1320*R
+0 I
SUBPROGRAMS CALLED
REDUCE SPI.JT SCREEN ROTARY SEP
CONVRT EXPAND CRUSH FROTH ABS, VESSEL BLEND OUTPTI ouiPT2 OUTPTS OUTPTU
SCALARS AND ARRAYS ( "*" NO EXPLICIT DECLARATION - "X" NOT REFERENCED • "#" SUBSCRIPTED 1
•S3
•NUNITS
03
•KFLAG
SYMBOL
*81
*IU
*36
TITLE
SIZE
•FL802
1 R
43 I
1677«R
3625 I
3644«R
4117 R
4265 I
66531 R
66573*R
666340R
70520 R
V8LYLD
*IF
*NG
GBOUND
02
S
*YLDREF
01
*ICOUNT
cc
*NFLOWS
2*R
44 I
1735 I
3626«R
40560R
4120«R
4266 R
66532KR
66617 I
66663*R
70521 I
*NCOMP
P8J
*S2
*NCONVG
*TOUT
KF
*J
•NFALL
*YLOCC
*F.PSLN1
*FPSLN2
40
45
1736
3641
4114
41SII
4267
66570
66620
70513
70522
I
I
R
I
I
»I
I
I
R
R
R
*DIFF
FEED
MID
*KCONVG
*FLOW2
*YLDMID
SG
*FLOW1
GRAV
*85
BTU
Ul R
-------
MAIN.
FORTRAN V.SA(S63) XKI 6«OCT«77
12128 PAGE 1-10
FLOW 72357«R
NT 724540R
•1C 725U I
TEMPORARIES
,80031 73366
.80026 7337}
.80013 73400
.80000 73405
,80003 73412
,80032 73417
.00000 73424
L 72413*1
•NGRAV 72503 I
•SUM1 72512 R
.80022
.80027
,30014
.80001
.30006
.30033
.00001
733*7
73374
73401
73406
73413
73420
73425
*SUM2
*S4
.80023
.30010
.30015
.30002
.30007
.30034
.00002
72051 R
72504 R
73370 I
73375 I
73402 I
73407 I
73414 I
73421 I
73426 1
*NRETRT
Cl
.80024
.30011
,30016
.30003
.30030
.50035
.00003
72452 I
72S05*R
73371 I
73376 I
73403 I
73410 I
73415 I
73422 I
73427 1
*I 72453 I
*KCOUNT 725io I
,30035 73372
,30012 73377
.30017 73404
,30004 73411
,30031 73416
.30020 73423
,00004 73430
LINE NUMBER/OCTAL LOCATION MAP
0123
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
ooioo
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
6
t
2
3
a
4
5
5
6
6
0 7
66 1
52 i
21 3
02 4
76 S
16 OS t
104 ]
las :
36 i
t •
30 !
.64 •
•
?4 (
:
13 3
1
!26 i
(10 •
151 3
ISO (
• •
(33 <
(66 !
• •
•25 t
1 1
15 <
56
>40 i
1 I
160 I
62 <
i !
•34 i
i70 '
1 I
33 <
3
10 <
62
»45 i
I I
>67 :
»71 l
(14 <
• !
(73 !
• 1
•35 <
4
13
64
J51
•
(77
• 74
>15
(43
(77
•
>42
-------
MA'IN.
FORTRAN V.5A(563) /KX 6-OCT-77
12128 PAGE 1-11
OWWO
00950
003*0
OOSTO
00990
00390
00400
00410
oweo
0043X)
otwwro
00450
OXW60
00470
0*4*0
00490
00500
00510
00520
•
m
•
i
-------
BLEND BLEND1.F4
FORTRAN V.5A(S6J) /K! 6.OCT.77
12132 PAGE 1
oo
00
00001 SUBROUTINE BLENDCFEED1,FEE02,PROD,FLOW1,FLOH2,FPROD,NSIZE,NGRAV,
00002 1 YLDV5L,BTUVSL.BTU,KBSG)
00004 C THIS SUBROUTINE COMBINES TWO DISTINCT FLOW STREAMS *
00005 C «
00006 c BOTH INCOMING FLOW STREAMS MUST BE EXPRESSED IN TERMS OF THE SAME *
OOOOT c SIZE INCREMENTS *
00009 DIMENSION FEEDl(23rlO,4),FEED2(23,10,4),PROD(23,10,4),BTU<4) * *I*DIM I*
00010 COMMON /BLK1/ SFEEO(24,5),SCC(24,5),3*10(24,5),SREF(24,5), * DIM *
00011 1 8YLD{24),TYLO(24),EFFTC(24),BTUREC(24),ASHERR<24), * DIM *
00012 2 SFLT(24),SINK(24),3MISPL(24),SNRGR(24),SGRAV(24), * DIM *
00013 3 3PE(24),SIMP(24),3EA(24> * DIM *
00014 DO 4 I«1,H3IZE
0001S DO 4 J«1,NGRAV
OOOlb FLOHBFtOMl*FEEDl(I,J,l)*FtOH2*FEED2fI,J,l)
00017 IF (FLOH.LE.l.E-6) GO TO 2
00016 DO | K»2,4
00019 1 PROD(I,J,K)»(FLOHl«FEEDl(I,J,l>*ltEE01
-------
ao
CD
BLEND BUENOI.FO FORTRAN v.5A(563) /KI 6-oci-77
12132 PAGE 1-1
TEMPORARIES
.80000 17 I
.80001 20 I
.30002 21 I
.80003 22 I
.40016 23 R
LINE NUMBER/OCTAL LOCATION HAP
00000
00010
00020
00030
0
•
•
•
14S
1
0
•
106
147
2
•
•
107
1S1
3
m
m
110
•
a
•
25
121
15S
5
•
31
140
6
35
143
7
•
51
•
8
•
53
•
9
•
54
•
BLEND OCTAL PROG size«23a ( SCALARS/ARRAYS*^ * TEMPS/CONSBIO + cooEiiba + ARos«22 > +
( NO ERRORS DETECTED )
-------
BTUR.B MAIN1.P4 FORTRAN V.5A(563) /K! 6-OCT-77 IZiZt PAGE 1
00001 FUNCTION BTUPLB(BTU,ASH)
00005
00004 C THIS FUNCTION CALCULATES THE BTU CONTENT OF A POUND OF COAL AS A *
00005 C LINEAR OR QUADRATIC FUNCTION OF ASH CONTENT *
00006 C ******************************************************************************
00007 DIMENSION 8TU(0)
OOOO6 MM*OfO.*A»H
00009 BTUPLB«8TU(1)«BTU(2)*X*BTU(3)*X**Z
00010 rF
-------
CONVRT CONVRT.Pa
FORTRAN V.5A(563) /KI 6«OCT«77
12129 PAGE 1
ooooi
00002
00003
00004
00005
00006
00007
00008
00009
oooto
OOOlt
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
0002B
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE CONVRT(SYMBOL,SIZE,NSIZE)
»********************t***************< __
THIS SUBROUTINE CONVERTS NUMERICAL SYMBOLS TO NUMERICAL QUANTITIES
PRINCIPAL ARRAYSl
8YMBOL(K,I) 9 SET OF NUMERICAL SYMBOLS
SIZE(I) • SET OF NUMERICAL QUANTITIES
8ME8H(I,J) • MESH SIZE CONVERSIONS
Ki DENOTES HHQLE NUMBER UNITS POSITION
K2 DENOTES POSITION OF NUMERATOR IN FRACTION
K3 DENOTES POSITION OF DENOMINATOR IN FRACTION
i*******ft*******ft******************************« ...
DIMENSION SYMBOL(6,23),SIZE(23>,3(m,C(10),8MESH(17,2)
DATA S /IHl,lH2,lH3,lH4,lH5,lH6,tH7,tH8,lH9,lHO,lH.,lH/,lH /,
1 C /I.,2.,3.,4.,5.,6.,7.,6.,9.,O.X, SMESH /4.,6.,8.,10.,14.,
2 20.,28.»3S.,48.,65.,100.,150.,200.,270.,385..400.,0.,
3 .185,.151,.095,.065,.046,.0328,.0232,.0164,,0116,.0062,
4 .0058,.0041,.0029,,0021,.0017,.0015,0./
N3«N8IZE+1
DO 7 I«1,NS
KUO
K2«0
K3«0
8IZEU>»0.
SCAN EACH SYMBOL
DO 1 K»},6
IF (8YMBOL(K,I).EO.S(ll)) Kl«K-l
IF (8YHBOL(K,I).NE,3(12)) GO TO 1
K2«K«l
K3«K*1
1 CONTINUE
IF (Kl.CT.O) GO TO 3
IF (K2.6T.O) GO TO 5
SYMBOL REPRESENTS WHOLE NUMBER • SCAN AGAIN
DO 2 Kit,6
KJ«7-K
IF (8YMBOLCKJ,I).£0.3(13)) GO TU 2
K1«KJ
GO TO 3
2 CONTINUE
CONVERT INTEGER PART OF NUMBER
3 KJ.K1-1
KK.K1-2
DO 4 J»l,tO
IF (8YMBOL(K1,I).EQ.8(J)) SIZE(I)«8TZftI)*C(J)
IF ((KJ.GT.O).AND.(SYMBOL(KJ,I).EQ.S(J))) 3IZE(I)«SIZE(I)*10.*C(J)
IF ((KK.GT.O),AND.(3YMBOL(KK,I).EQ,S(J))) SIZE(I)«8IZECI)t
1 100.«C(J)
4 CONTINUE
CONVERT FRACTIONAL PART OF NUMBER
5 IF (K3.EQ.O) GO TO 7
DO 6 J»l,10
IF (8YMBOL(K2,I).EQ.S(J)) XNUM«C(J)
IF (8YMBOL(K3,I).EQ.3(J)) XDENOH«C(J)
6 CONTINUE
DIM
DIM
DIM
DIM
DIM
DIM
* DIM *
* DIM *
* DIM *
* DIM *
-------
CONyRT CONVRTiFO
FORTRAN V.5A(563) /KI 6-OCT-77
12129 PACE
00057 8IZE<1)»8IZE
12
50
77
•
223
270
2
•
•
16
53
•
161
227
271
3
•
•
17
54
100
163
231
272
4
•
•
20
57
103
164
241
•
5
•
m
21
•
106
175
2«5
275
6
•
•
•
61
107
206
246
7
•
•
23
63
122
207
247
8
.
24
66
141
214
252
9
•
36
75
•
m
254
CONVRT OCTAL PROG sizE»«25
( NO ERRORS DETECTED )
SCALARS/ARRAY3al07 + TEMP8/CONS*16 4 CODE«300 t ARG8»0
-------
CRUSH CRUSHJ.Ffl
FORTRAN V.5A(56S) XKI 6-OCT-77
PAGE 1
to
CO
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINE CRU8H(N,SO,SIZE»NSIZE»NGRAV,FEED,PROD,FPROD,
1 YLDVSL»BTUVSL.BTU»KB8G)
THIS PROGRAM DETERMINES THE WEIGHT DISTRIBUTION AND COMPOSITION OF THE
CRUSHER PRODUCT FOR A GIVEN FEED.
VARIABLES AND ARRAYS APPEARING IN THE SUBROUTINE LIST
IPRIH * SELECTION INDEX
IPRIMll FOR PRIMARY CRUSHER
IPRIM12 FOR SECONDARY CRUSHER
ITYPE • TYPE OF BREAKER
ITYPEll FOR MULTIPLE ROLL CRUSHER
ITYPE«2 FOR GYRATORY/JAW CRUSHER
ITYPE<3 FOR SINGLE ROLL CRUSHER
ITYPE«4 FOR CAGE MIU CRUSHER-1
80 CRUSHER SETTING
SIZE(I) BOUNDARIES OF COAL SIZE INCREMENTS
N8IZE NUMBER OF SIZE INCREMENTS
NGRAV NUMBER OF GRAVITY INCREMENTS
FEED(I,J,K) PROPERTIES OF FEED STREAM
PROD(I,J,K) PROPERTIES OF PRODUCT STREAM
FPROD PRODUCT FLOW RATE
I DESIGNATES SIZE INCREMENT OF COAL
J DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL
K DESIGNATES WEIGHT, ASH, PYRITIC SULPHUR AND TOTAL SULPHUR
(THE WEIGHT COLUMN CONTAINS THE FRACTION OF THE
STREAM IN THE ITH SI7E, JTH GRAVITY INCREMENT)
******4^*O***OO*********** ft* ***********************************************
DIMENSION BTU (4), SIZE (23), FEED (23, 10, 4), PROD (23, 10, 4)
DIMENSION 8RATIO(13),SP(13),8SO3),BRATIO(13),B1(11),
DIMENSION BK(11,5),
2 8MID(23),B(I3),BR(23,23),P(23,23), F£D(23,10,4)
COMMON /BLK1/ 8FEED(24,5),SCC(24,5),3MD(24,5),SREF(24,5),
1 8YLD(24),TYLO(24),EFFIC(24),BTUREC(24),ASHERR(24),
2 SFLT(24},3INK(24),SMISPL(J4),5NRGR(24),SGRAV(2
-------
CRUSH CRU3HJ.ro
FORTRAN V.5A(563) /KI 6-OCT.77
12Ut PAGE 1-1
00057
00056
00059
00060
00061
00062
00063
00060
00065
00066
00067
00066
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00060
00061
00082
00063
00064
00065
00066
00087
00068
00069
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
IF (N.GE.16) IPRIM«2
IF «N.EQ.I3).OR.(N.EQ.i7)) ITYPE«2
IF ((N,EO.t4).OR,CN,EQ.16)> IT¥PE»3
IF ((N.EQ.15),OR.(N.EQ.19)> ITVPElO
00 2
* DIM *
BK(I,2)lB2(I)
BK(I,3)»B3CI>
BK(I,4)tB4U)
BK(I,5)iB5(I)
2 CONTINUE
DETERMINATION OF SIZE INTERVAL IN WHICH 1.7*80 IS LOCATED
DO tO Ial,N3IZE
10 8HlD(I)«(SIZE(I)*SIZE(Itl))/2.0
NNSlNSIZEtt
DO 3 Hl.NNS
IF(SIZE(I)-1,7*30) a, 3. 3
00 TO 8
3 CONTINUE
8 DO 21 m,N3IZE
DO 21 J»t,NGRAV
DO 21 Kllf4
FEDU»J»K)«PEED(I,J,K)
21 PROD(I,J,K)iO,0
* DIM *
HHtHltl
IF(Ml.EG.O) GO TO 90
BREAKAGE OF MATERIAL IN SIZE INTERVALS GREATER THAN 1.7*30
DO 15 I«l,il
15 B(I)»BK(I,ITYPE)
DO 19 I«1,H
BR(I,I)»1.0
L«I+1
NS»NSIZE-l
DO 9 II»L,N3IZE
RAT10B«SMID(II)/3MID(I)
CALL INT3(BRAT10,B, RATIOS, C, 11)
9 BR(I,II)lC
8R(I,NSIZE)«0.0
19 CONTINUE
IF(MI.EO.l) GO TO 50
DO 24 I"t,M
L«I+1
DO 23 II"LiMl
LL»II-I
* DIM *
* DIM *
DO 23 Jil,NGRAV
PROD(II,J,t)« FED(I,J,l)*P(I,m
DO 29 Ki2|4
PROD(II,J,K)»PROO(II,J, 1)* FEO(I,J,K)
29 FED(II,J,K)« FED(II,J,KJ* FED(IIf J, 1 )*PROD(II, J,K)
FED(II,J,l)i FEO(II,J,UtPROO(II,J,l)
23 CONTINUE
DO 31 II»L,M1
DO 31 Jil,NORAV
* DIM *
-------
CRUSH CRUSHl.PO
FORTRAN V.5A(563) XKI 6-OCT-77
12131 PAGE 1-2
co
C7I
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
0012S
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
0014S
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
DO 31 K»2,0
IF(FEDCH,J»1).NE.O.O) GO TO 32
FED(IIiJ,K)«0.0
GO TO 31
32 FEO(n.J.K)«FEDCII.J,K)/FED(II,J,l)
31 CONTINUE
DO 25 II»MM,N31ZE
ll*XI-l
* DIM *
DO 25 Jil,NGRAV
PROD(II,J,1)« PED(J,J,l)*PCl,in+PROD(II,J,l)
DO 27 Ki2,4
27 PROD(II,J,K)« FED(I,J,1) *P(I,II)« FEO(I, J,K)tPROD(II, J, K)
25 CONTINUE
24 CONTINUE
BREAKAGE OF MATERIAL IN 1,7*80 SIZE INTERVAL >
50 BR(MI,M1)«1.0
FRACII(Slze(Ml).|.7*80)/(SlZE(Ml).SIZE(HH))
FRAC2V1.0-FRAC1
SHlDii(SlZE(M»)M.7*SO)/2.0
SMlD2i(1.7*30+SIZE(MM))/2.0
DO 66 II>MM,NSIZE
RATIOS«SMID(II)/SHI01
CALL INT8(BRATIC,B, RATIOS, C, 11)
66 BR(HlfII)«C
BR(MI,NSIZE)*0.0
oo 26 UPHH,NSIZE
• DIM *
* DIM *
P(M1.II)»BR(H1,LL)-BR(M1,II)
DO 26 JH1,NGRAV
PROO(II,J,1)» FED(Ml,J,n*P(Ml,II)*FRACUPROD(II,J,l)
DO 28 K«2,a
28 PROD(II/J,K)» FED(H1 , J, 1 )*P(Ml , II)* FED(MJ , J,K) *FRAC 1 +
1 PROD(II,J,K)
26 CONTINUE
DO 42 I»l,1l
42 B(I)»6K(I,5)
DO 6i IHMH,NSIZE
RATIOB«SMID(II)/3MID2
CALL INTS(BRATIO,B,RATIOB,C,11)
61 BR(MI,II)»C
BR(H1,NSIZE)»0.0
8EL«.8S
* DIM
* DIM *
* DIM «
DO 62 II«MM,N3IZE
BR{H1,IJ)iBR(Ml,II)*8EL
LLlIT-1
P(Ml,n)BBR(Ml,U)-BR(Ml,II)
DO 62 J»1,NGRAV
PRODtn,J,I)» FEDCM1,J,1)*P(M1/II)«FRAC2+PROO(II,J,1)
DO 63 Kl2,4
63 PROD(II,J,K)« FED(M1,J(1)*P(H1, II)*
1 PROO(II,J,K)
62 CONTINUE
DO 64 J«1,NGRAV
PROD(Hl,J,n
, J,K)*FRAC2*
* DIM •
-------
CRUSH CRUSHI.FO
FORTRAN V.5A(563) /KI 6-OCT-77
12131
so
o»
00169
00170
00171
00172
00173
00174
0017S
00176
00177
00176
00179
001BO
00161
00162
00163
00164
00185
00186
00167
00166
00169
00190
00191
00192
00193
00194
00195
00196
00197
00196
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00216
00219
00220
00221
00222
00223
00224
DO 6« K«2,4
64 PROO(H1, J,K)«PROO(MJ,J,n* FED(H1,J,K)
00 60 I»1,H
DO 60 JlliNGRAV
DO 60 KM, 4
60 PROD(I,J,K)«0,0
BREAKAGE OF MATERIAL IN SIZE INTERVALS LESS THAN 1.7*SO
90 DO 49 IlHH.NS
Lil + l
DO 43 IHL.N8IZE
RATIOB«SHID(II)/SHID(I)
CALL 1NTS(BRATIO,B, RATIOS, C,U)
43 BR(I,II)>C
BR(I,NSIZE>«0,0
BR(N8IZE,N8XZE)«0.0
SEliBO.O
SEL2«0.0
FRAClHl.O
FRAC2tl.O
IF(8IZE(I)-80)44, 44,2,4 * DIM *
57 PROD(I1,J,K)» PED(I,J,1) *P(I,II)» F£D( I, J,K)+PROD(II, J,K)
54 CONTINUE
DO 40 IlBHM,NSIZE
DO 40 J«1,N6RAV
PROO(II,J,1)BPROD(II,J,1)+ FED(II,J,1)*(1.0-BR(II,II))
DO 40 Kl2,4 * DIM *
40 PROD(II,J,K)«PROD(II,J,K)+ FEO(II,J,K)* FED(I1 , J, I )*(! .0-BR(II , II )
1 )
DO 41 II«M1,NSIZE
DO 41 Jnl,NGRAV
DO 41 K«2,4 * DIM *
-------
CRUSH CRUSH1.F4
FORTRAN V.5A(563) /KI 6-OCT-77
12(31 PAGE 1-1
00225 IF(PROD(H,J,l),NE.O.O> GO TO 78
00226 PROD(IIfJ«K)«0.0
00227 CO TO 41
00228 78 PROD(IIfJ,K)»PRODCII,J,K)/PROD
00239 C****************************************************************************
00240 C CALCULATE SUMMARY DATA BY SIZE INCREMENTS *
00241 C****************************************************************************
00242 CALL 8DSIZE(FEEDi3FEEOiBTU,N3IZE»NGRAV)
00243 CALL 3DSIZE(PROD,SCCiBTU,NSIZE.NGRAV)
00244 RETURN
00245 END
COMMON BLOCKS
/BLKl/(tl430)
!§ SPEED +0#R
TYLO *770*R
SINK +1160*R
SIMP +13500R
SCC +1700R
EFFIC »1020*R
SMISPL +1210#R
SEA +1400IR
3MD +360*R SREF +5500R SYLD +740HR
BTUREC »1050*R ASHERR +11000R SFLT +1130«R
SNRGR +i240*R SGRAV »i27o*R SPE +i32o«R
SUBPROGRAMS CALLED
I NTS
SOSIZE
SCALARS AND ARRAYS t "*n no EXPLICIT DECLARATION - -x- NOT REFERENCED - "#" SUBSCRIPTED j
*LL
*N
•ITYPE
•FPROD
SHIO
*M1
*J
•FRACl
SIZE
*NGRAV
1 I
20 I
25 I
57 R
2747«R
4021 I
4042 I
4147 R
4202«R
4221 I
TEMPORARIES
,30021
.30026
4242 I
4247 I
B2
FEED
PROD
FED
•KBSG
*M
B5
SRATIO
BTU
•RATIOS
.80022
.30027
2»R
21«R
26*R
60«R
2776 I
0022 I
40430R
-------
CRUSH CRU3Ht.ro
FORTRAN V.5AC56J) XKI 6-OCT-T7
12131 PAGE.1*5
to
00
,30013
.30062
,80002
,30005
.80007
,30040
,80045
,80032
,80037
4254 I
4261
4266
4273
4300
0305
4312
4317
4324
.30060
.80016
.30003
.A0016
,80050
.80041
.30046
,80033
.30020
0255 I
0262 I
0267 I
4270 R
4301 I
4306 I
4313 I
4320 I
4325 I
.30014
.80017
.30050
.30052
.30055
.30042
.30047
.30034
4256
4263
4270
4275
4302
4307
0310
4321
LINE NUMBER/OCTAL LOCATION MAP
0123
,80061
,80000
,30004
,80006
,80056
.80003
,80030
.80035
4257
4260
0271
4276
4303
4310
0315
4322 I
,80015
,80001
.80051
,30051
.30057
.80000
,80031
,80036
0260
4265
0272
0277
0304
0)11
0316
0323 1
ooooo
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
001SO
00160
00170
00180
00190
00200
00210
00220
00230
00240
56
102
145
225
275
405
471
566
656
751
1023
1127
1222
1260
1323
1375
1511
1616
*
0
64
118
157
230
277
413
473
601
660
757
1033
1150
1224
1265
1325
1405
•
1617
•
•
•
•
•
•
25
65
115
176
233
305
421
SOS
603
670
762
1037
1150
1234
1275
1331
1411
1541
1623
1664
.
•
•
•
•
26
67
120
201
241
307
425
507
612
674
764
1054
1160
1240
1300
1337
1425
1547
1625
1666
30
71
126
204
245
317
426
523
621
711
774
1055
1161
1244
1306
1345
1426
1553
•
•
3?
73
131
•
207
323
433
524
627
712
1000
•
•
1945
1310
1352
1452
1554
1640
1670
34
75
132
206
257
337
442
550
632
•
1002
1102
1200
1246
1311
1355
1463
1562
1644
35
77
134
207
263
340
003
556
634
737
1006
1110
1206
1250
1315
1363
1471
1572
1646
•
•
•
m
m
02
•
140
215
266
361
454
•
644
745
1010
1114
1210
1251
1320
1365
1075
1573
1662
50
100
104
221
271
376
463
561
650
706
1020
1126
1216
1256
1322
1373
1510
1607
*
CRUSH OCTAL PROG siZE«632o
( NO ERRORS DETECTED 1
( 3CALARS/ARRAVS«4241 » TEMPS/CONS»76 * CODEH701 + ARG3160 ) + COMMON«j«jO
-------
EXPAND EXPAND.Ft FORTRAN V.SAC563) /KI 12-OCT-77 17105 PAGE 1
00001 SUBROUTINE EXPANDCX,Y,N,N3IZE,NGRAV)
00003 C THIS SUBROUTINE EXPANDS THE DIMENSIONALITY OF A 1-DIMENSIONAL ARRAY TO &
00004 C A 3-DIMENSIONAL ARRAY *
00006 DIMENSION X(920,2B),YC23,10,«) * DIM *
00007 DO 1 I»1»NSIZE
00008 DO 1 jvlrNGRAV
00009 DO 1 K«l»4 * DIM *
00010 IJKa40*(I-l)+4*(J-t)+K * DIM *
00011 Y(I,J,K)»X(IJK,N)
00012 IF ((K.EQ.1).AND.(Y(I,J,K).EQ.O.)) Yd,J»K)«1,E-6
00013 1 CONTINUE ,
00014 RETURN
00015 END
SUBPROGRAMS CALLED
SCALARS AND ARRAYS t "*" NO EXPLICIT DECLARATION - «x" NOT REFERENCED - "#" SUBSCRIPTED j
*N II *K 21 *UK 31 Y 4*R *J 51
•NSIZE 61 X 7*R *I 10 I *NGRAV 11 I
§ TEMPORARIES
.80000 12 I .80001 13 I .80002 14 I
LINE NUMBER/OCTAL LOCATION MAP
10 1 2 3 4 5 6 7 8 9
t
00000 I - 0 - - - - - 12 16 22
00010 t 23 34 51 76 - 105
EXPAND OCTAL PROG siZE=t26 c SCALARS/ARKAYSBII + TEMPs/coNS=6 4 cODE"i°7 + ARGS«O
( NO ERRORS DETECTED 1
-------
FROTH FROTH1.F4
FORTRAN V.5A(5b3) /KI 6-OCT-77
13132 PACE 1
S
oooot
00002
00003
00004
oooos
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE FROTH(FEED*CCiREF*SIZE*ORAV,GBOUND,YLDCC,YI.DREF,
1 N8IZE»NGRAV»NCOMP,YLDV8L»BTUVSL.BTU,KB3G)
******»*******»****O************iM ft*************************************
THIS SUBROUTINE DETERMINES THE WEIGHT DISTRIBUTION AND COMPOSITION OF
THE CLEAN COAL (FLOAT) AND REFUSE (TAILS) FROM A FROTH FLOTATION CELL
THE CALCULATIONS ARE BASED UPON THE "YIF.LD AT 1.50, ASH AT 1.60" RULE
(HITH RESPECT TO THE FEED STREAM)
A FICTITIOUS DISTRIBUTION CURVE IS THEN FITTED TO THE OVERALL SEPARATION
IN ORDER TO CALCULATE THE HEIGHT DISTRIBUTION AND COMPOSITION OF THE
PRODUCT STREAMS AS A FUNCTION OF SPECIFIC GRAVITY
DIMENSION FEEDC23,10,4),CC<23,10,4),REPC23,10,
-------
FROTH FROTHI.F4
FORTRAN V.5AC36J) /KI 6-OCT-77
12132 PAGE 1-1
00057
OOOS8
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00076
00079
OOOSO
00061
00062
00063
00064
00065
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
00101
00102
00103
00104
00105
00106
00107
00106
00109
001 10
00111
00112
DO 10 I«1,N3IZE
U«0
DHINil.E+38
DO 6 Ilil,T
JHI1
C CARRY OUT SEPARATION USING SEVERAL DISTRIBUTION CURVES (TABLES DATA)
C AND 20 VALUES OF 3G3P FOR EACH DISTRIBUTION CURVE
DO 7 INDEX»1»20 *
SUHJ.O.
3UM2«0.
3UM3-0.
8
CC(I,J,l)8Y(X,l,Jn*FEED(I,J,l)
REF(I,J,J)»FEED(I,J,1)-CC(I,J,1)
CC(I,J,2)«FEEDCI,J,2>
REF(I,J,2)«FEED(I,J,2)
SUMtBSUMltPEEDU.Jil)
SUM2«3UH2+CC(I,J,1)
8UMJ«SUM3tCC(I,J»1)*CC(I.J•2)
6 CONTINUE
C CALCULATE YIELD AND ASH CONTENT FOR EACH SEPARATION GRAVITY
YLDPTS(INDEX)«8UM2/SUM1
ASHPTS(INDEX)lSUH3/SUM2
IF ((INDEX.GT.l).AND.(ASHPTS(INDEX).LT.ASHPTS(INDEXED))
1 A8HPT8(INOEX)«A8HPT8(INDEX.l)
7 CONTINUE
IF ((YLDPT3(1).GT.YIELO(I)).OR.(YLDPT8(20).LT.YIELD(I))) GO TO 8
IF ((A8HPT8(1).GT.ASH(I}).OR.(ASHPT3(20).LT.ASH(I))) GO TO 8
C DETERMINE DISTRIBUTION CURVE AND SEPARATION GRAVITY THAT BEST HATCH
C OVERALL YIELD AND OVERALL ASH CALCULATIONS
8G8PllYINTRP(YLDPTS,S,VIELD(I),20) *
8G8P2«YINTRP(A8HPTS,3,A3H(I),20) *
IF (A8HPTS(20)-A8HPTS(1).LE.O,00001) SGSP2»SGSP1
SGAV«.5*(SOSPUSGSP2)
DirF»AB8(SG3P2-SG3Pl)
IF (OIFF.GE.DHIN) GO TO 8
IJ«H
868P«8CAV
OHINvDIFF
8 CONTINUE
C RECALCULATE SEPARATION USING BEST DISTRIBUTION CURVE (IJ) AND BEST
C VALUE FOR SPECIFIC GRAVITY OF SEPARATION (SUSP)
SUMl«0.
8UM2«0.
8UM3«0.
SUMQlO.
DO 9 Jlt,NGRAV
CC(I,J,1>"YIELD(I)*FEED(I,J,1)
IF (IJ.EQ.O) GO TO 80
XlGRAV(J)/8GSP
CC(I,J,nBY(Xfl,U)*FEED(I,J,l)
80
DIH *
DIM
DIH
8UHl«3UMltFEED(I,J,D
-------
FROTH FROTHl,F«
FORTRAN V.5A(563) /KI 6-OCT-77
12132 PAGE 1-2
00115
00114
OOltS
00116
00117
00116
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
3UM2«8UM2+CC(I.J,U
8UM3i8UM3+CC(lfJ*l>*FEED(I,J»2)
SUM4«3UMfltREF(I,J,n
00 9 Kl2i4
CC(I»JiK»FEED(IrJ*K)
REF(I,J,K)«FEEO(I,J»K)
9 CONTINUE
XYLD»8UM2/SUMl
XA8H«SUMS/8UM2
C ****** BEGIN FIX (MODIFICATION OF DISTRIBUTION DATA) ******
IF (IJ.EQ.O) GO TO 92
IF (AB8(YIELD(I).XYLD).LE.1.E.<1) GO TO 92
YLDAVi.5*9UN3/8UH2
92 CONTINUE
C ****** END FIX ******
8TOTt«8TOTl+SUM2
8TOT2lSTOT2+8UM«
10 CONTINUE
VLDCCB8TOT1
VLDREFI3TOT2
C NORMALIZE HEIGHT FRACTIONS IN EXIT STREAMS
DO It I»1,NSIZE
DO 11 J«1,NORAV
-------
FROTH FROTHI.P4
FORTRAN V.5A(563> /KI 6-OCT-T7
12132 PAGE 1-3
00169 CC(I.J»l)«CC(I»J»n/8TOTl
00170 11 REF
00176 CALL 8DSIZE(R6F,3REF,BTU,NSIZE»NGRAV)
00177 DO 17 Iil,NSIZE
00178 8YLD(nilOO.*STOTl*SCCCI,l)/SFEED(I,t)
00179 17 BTUREC(miOO.«YLDCC*5CC(I,t)*SCC(I,5)/{SFEED(I,l)*3PEED
-------
FROTH FROTNI.F4
FORTRAN V.5AC563) /KI 6-OCT-77
12132 PAGE 1-4
TEMPORARIES
,80010
.80015
,80002
,80006
77 1
104 I
ill I
116 I
,80011
.80016
.30003
.80007
100 I
105 I
112 I
117 I
.80012
.80017
.80004
.30020
101 I
106 I
113 I
120 I
.80013
.80000
.80005
,00000
102 I
107 I
114 I
121 1
.80011
.80001
.A0016
103 I
110 I
115 R
LINE NUMBER/OCTAL LOCATION MAP
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
0
•
•
•
•
103
161
204
226
•
372
•
46S
60S
•
•
723
•
1044
1107
1
0
•
•
•
110
166
806
230
334
377
m
900
610
642
666
725
1014
•
1113
2
m
•
•
•
112
172
212
236
340
405
434
514
•
644
700
737
1016
•
•
3
»
•
•
51
114
175
•
251
343
413
435
522
613
645
701
753
1020
•
1123
4
—
•
•
55
115
176
•I
265
•
417
436
530
615
654
702
761
1023
1060
1125
5
—
•
33
56
117
m
213
276
352
4?3
437
542
6?3
660
703
767
1025
1062
•
6
—
•
36
60
131
•
217
307
355
425
440
550
626
662
704
776
•
1064
1127
7
•
•
«1
75
143
•
220
315
364
427
444
551 .
631
663
706
1006
1027
1066
8
•
«
43
101
152
177
221
323
•
430
456
565
640
664
713
1011
1033
1070
9
.
•
•
102
156
203
222
332
m
431
460
601
•
•
717
•
1035
1075
FROTH OCTAL PROG 3KEH367
( NO ERRORS DETECTED I
SCALAR8/ARRAY8B76 * TEMPS/CONS«41 « CODE»1146 + ARGS«62
COMMONi2244
-------
INT8 INTS.Ffl FORTRAN V,5A(563) /KI 6-OCT.T7
PAGE 1
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
SUBROUTINE INT8(X,Y,RX.RY|N)
ft*****************************
LINEAR INTERPOLATION / EXTRAPOLATION ROUTINE
CALLED BV SUBROUTINES CRUSH, ROTARY AND SCREEN
ft**********************
DIMENSION X(13),Y(13>
IF(X(2)-X(J)) 3,5,0
3 DO 5 Jl2,N
K«J
IF
-------
OUTPT1 OUTPTI.F4
FORTRAN V.5A(563) /KI 6-OCT-T7
12129 PAGE 1
o
a>
OOOOt SUBROUTINE OUTPT1(FEED.SYMBOL,GBOUND,RTU,FLBTU,PLS02,N8IZE,NGRAV,
00002 1 NCOMP)
00004 C THIS SUBROUTINE PRINTS THE SPECIFIC GRAVITY ANALYSIS OF*A SPECIFIED * *
OOOOS C FLOH STREAM *
00007 DIMENSION FEED(23»10»4)iSYMBOL(6»23),GBOUNO4X,7HGRAVITY,
00014 2 2(4X,34HHEIGHT ASH PYRITIC TOTAL BTU/UB )/,
00015 3 54X,2C»SX,15HSULFUR SULFUR ,8X))
00016 SOI FOBMATC1HO,2X,6A1,4H BY ,6A1,1IX,F5.I,16H PERCENT FLOAT ,F4.2,2X,
00017 1 F5.1,1X,F5.1,2X,FS.2,2X,F5.2,2X,F6.0,5X,FS.1,1X,F5.1,2X,FS.2,
0001S 2 2X,F5.2,2X.F6,0)
00019 $02 FORHAT(46X,F4.2,lH.,F4.2»2XfFS.l»lX,F9F5.2f2X,FS.2,2X,F6(0,
00020 1 5X,FS,|,iX,F5.1i2X,F5.2,2X,FS.2»2X,F6.0)
00021 503 FORHAT(46X,5H3INK ,F4.2,2X,F5.t,1X.P5.1,2X,F5.2,2X,F5.2,2X,F6,0,
00022 1 5X,FS.1,1X,F5.I,2X,F5.2,2X,F5,2,2X,F6.0)
00023 504 FORMAT(1HO,3X,9HCOMPOSITE,15X,FS.1,I6H PERCENT FLOAT ,Pfl.2,ax,
00024 1 F5.1,lX,F5,l,2X,F5.a,2X,F5.2,2X,F6.0,SX,F5.t,lX,F5.),2X,F5.2,
00025 2 2X,F5.2,2X,F6.0)
00026 C »********#*****************»*******»<
00027 C WRITE OUTPUT FOR EACH SIZE INCREMENT
00028 C
00029 HR1TE (HiSOO)
00030 DO 5 IlltNSlZE
00031 C CALCULATE HEIGHT DISTRIBUTION IN EACH SPECIFIC GRAVITY INCREMENT
00032 PERCNT(I)«0.
00033 DO 1 J«1,NGRAV
00034 1 PERCNT(I)tPERCNT(I)»FEEO(I,J,l)
00035 IF (NCOHP.NE.O) GO TO 50
00036 IF (PERCNT(I).LE.0,000499) GO TO 5
00037 DO 2 J«1,NGRAV
00038 HT(J)llOO.*FEED(I|J,l)/PERCNT(I)
00039 2 CONTINUE
00040 C CALCULATE CUMULATIVE HEIGHT, ASH, PYRITTC SULFUR, TOTAL SULFUR AND
00041 C BTU CONTENT
00042 CUMNTiHTU)
00043 CUMASH»0.
00044 CUMP8»0,
00045 CUMTSBO.
00046 CUMBTU*0.
00047 A8HllOO.«FEEO(I,l,2)
00048 SUMA8H«FEEO(I,1,2)«HT(1)
00049 PS*100.*FEED(Iil,3)
00050 8UMP8«FEED(I.1»3)*HT(1)
00051 TS«100.*FEED(I»1»4)
00052 8UMT8«FEED(I»1»4)*NT(1)
00053 8UMBTUiBTUPLB(BTU,FEED(I,l,2))*HT(l)
00054 PERCNT(I)«JOO,*PERCNT(I)
00055 DO a3 Kit,6 * DIM *
00056 IF (8YMBOL(6»I).NE.BLANK) GO TO 21
-------
OUTPTI
FORTRAN V.5A(565) XKI 6-OCT-77
12129 PAGE 1*1
o
-i
00057 DO 20 KJ»l,5
00058 KI.7.KJ
00059 20 8YMBOU(KI,I}«3YMB01.(KI.l,n
00060 SYMBOLU.DtBLANK
00061 21 IF (SYHBOLU»I+l).NE.BLANK) GO TO 25
00062 DO 22 KJ«i,5
00063 22 SY"BOl
00064 8YMBOLC6,I»l)lBlANK
00065 23 CONTINUE
00066 IF (WTU).EQ.O.) 60 TO 24
00067 CUMA8HBASH
0006B CUHPSiPS
00069 CUMT8«T3 >
00070 XBTUU)»BTUPIB
-------
OUTPTl OUTPTl,F4
FORTRAN V.5A(563> /KI 6-OCT-77
12129 PAGE 1-2
001 13
00114
OOttS
00116
00117
00118
00119
00120
00121
00122
00123
P8»0.0
TSiO.O
ZBTUiO.O
DO 6 Ul.NSIZE
IF (J.EQ.l) PE«"PER*PERCNT(I>
0012S
00126
00127
00126
00129
00130
00131
00132
00133
00130
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
ASMB»gH*FEED(l,J,l)*FEED(I,J,2>
P8 • P8tFEEDCI,Jil)*FEED(l,J,3>
TS • T8»FEED(I,J,l)*FEED(I,,J,4>
6 ZBTU«ZBTUtFEED
-------
OUTPTl OUTPTl.Fa
FORTRAN V.5A(563) /KI 6-OCT-77
12139 PAGE 1-3
SUBPROGRAMS CALLED
BTUPLB
SCALARS AND ARRAYS t "*• NO EXPLICIT DECLARATION
"X" NOT REFERENCED • "*" SUBSCRIPTED 1
*TS
FEED
*8UMA8H
•BLANK
•CUHBTU
BTU
HT
TEMPORARIES
,80010
.80002
.80006
1 R
24 R
57 R
64 R
71*R
76«R
321 I
326 X
333 I
*H
*K
*P8
•J
*A8H
*CUM«T
•NGRAV
.soon
.80003
.80007
2 R
20 I
25 R
60 I
65 R
72 R
110 I
322 I
327 I
334 X
*CUMPS
•SUMBTU
PERCNT
*FLBTU
*N8IZE
*PER
*KX
.80012
.30004
.00000
3 R
21 R
26«R
61 p
66 \
73 R
111 I
323 I
330 I
335 1
*NCOHP
GBOUND
• ZBTU
•SUMPS
*KJ
*CUMA8H
•SUMTS
.80000
,80005
4 X
22»R
55 R
62 R
67 I
74 R
112 R
324 I
331 I
XBTU
SYMBOL
*CUMTS
•PREWT
*FLS02
• I
,80001
.A0016
5*R
23*R
56 R
63 R
70 R
75 I
325 I
332 R
LINE NUMBER/OCTAL LOCATION MAP
o
to
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
0
•
•
•
26
•
116
174
237
331
410
441
152
506
564
613
642
1
0
•
•
•
•
123
201
•
340
413
•
456
515
567
615
643
2
•
•
•
32
71
130
207
246
347
415
•
457
524
572
616
•
3
•
m
•
33
73
135
210
250
356
417
•
460
•
575
621
651
4
•
•
•
35
74
145
217
•
365
•
444
461
540
600
624
654
5
•
•
•
46
75
150
224
•
•
425
445
462
542
6nl
•
656
6
.
•
•
50
76
153
227
306
376
426
446
463
546
603
631
•
7
m
m
m
54
77
161
231
311
401
•
447
465
552
605
632
661
a
•
•
•
56
104
162
233
313
402
434
450
472
556
607
635
9
•
•
23
67
111
165
235
322
405
436
451
477
561
611
•
OUTPTl OCTAL PROG 8IZE«I450
( NO ERRORS DETECTED ]
t 8CALARS/ARRAVSM12 * FORHATS«206 + TEMPS/CON8«22 + COOE.670 + ARG8«216 ) * COMMON*2
-------
OUTPT2 OUTPT2.F8
FORTRAN V.5A(S63> XKI 6-OCT-77
12133 PAGE 1
00001 SUBROUTINE OUTPT2(8YMBOL,N8IZE,NGRAV,NCOMP,L,PSJ,GBOUND)
00002 C A***************************************************************************
00003 C THIS SUBROUTINE PRINTS SUMMARY DATA BY SIZE INCREMENTS FOR EACH UNIT
00004 C
00005 C ARRAY NAMES ARE IDENTIFIED BY THEIR CORRESPONDING FORMAT STATEMENTS
00006 C ft***************************************************************************
00007 DIMENSION 8YHBOL(6,23),8TORE(6),COMP(6),GBOUND(11) DIM
00006 COMMON /BLK1/ 8FEED(24,5),8CC{24,5),8MID(24,5),SREF(24,S), DIM
00009 1 SYLD(24),TYLO(24),EFFICf24),BTUREC(2«),ASHERR(24), DIM
00010 2 8PLT(24),8INK(24),SMISPL(24),SNRGR(2a),3GRAV(24), DIM
00011 3 8PE(Z4),81MP(24),SEA(?4) DIM
00012 COMMON /BL«/ DI8TRB(24,10) DIM
00013 COMMON /SYS/ G,H
00014 INTEGER G,H
00015 INTEGER P8J
00016 DATA BLANK,BY,COMP /1H ,2H8Y,1H ,1HC,I HO,IHM,JHP,1H / * DIM *
00017 100 FORMATC21H03IZE, INCHES OR MESH)
00018 101 FORMAT(26H08CREEN ANALYSIS, PERCENT!)
00019 102 FORMAT(3X,4HFEED,37(1H.),9(2X,F5.1,?X)}
00020 103 FORMAT<3X,10HCUEAN COAL,31(IH,),«(2X,FS.l,2X))
00021 104 FORMAT(3X,6HREFUSE,35(1H.),9(2X,F5.1,?X))
00022 105 FORMAT(3X,9HHIODLINGS,32(1H.),9<2X,F5.1,2X))
00023 106 FORMAJU4HOA8H, PERCENT!)
00024 107 FORMAT(25HOPYRITIC SULFUR, PERCENT!)
00025 106 FORMATC23HOTOTAL SULFUR, PERCENT!)
00026 109 FORMATU6HOACTUAL RECOVERY,20(1H.),BH PERCENT,9(2X,F3.1,2X))
00027 110 FORHATC21H THEORETICAL RECOVERY,15(1H.),4X,2HDO,2X,9(2X,F5.1,2X))
00026 lit FORMATION RECOVERY EFFICIENCY,16(1H.),4X,2HDO,2X,9(2X,F5.1,2X))
00029 112 FQRMATUOH ASH ERROR,26(1H.),4X,2HDn,?X,9(2X,F5.1,2X>)
00030 113 FORMAT(16HOFLOAT IN REFUSE,9(IH.),19H PERCENT OF PRODUCT,
00031 1 9(2X,F5.1,2X))
00032 114 FORMATO9H SINK IN CLEAN COAL,6(1H.),9X,2HDO,6X,9(2X,F5.1,2X))
00033 115 FORMAT(25H TOTAL MISPLACED MATERIAL,3(1H.),16H PERCENT OF FEED,
00034 1 9<2X,F5.1,2X))
00035 116 FORMAT(26H NEAR GRAVITY 0.1 MATERIAL,2{1H.),6X,2HDO,8X,9(8X,F5.1,
00036 1 2X))
00037 117 FORMAT(31HOSPECIFIC GRAVITY OF SEPARATION,13(IH,),9{2X,F5,2,2X))
00036 116 FORMAT(35H PROBABLE ERROR, SPECIFIC GRAVITY,U(1H,),9(2X,F5.3,2X))
00039 119 FORMALISM IMPERFECTION, 31 (IH. ) ,9(2X,F5.3,2X) )
00040 120 PORMATU1H ERROR AR£A,33(1H.),9(2X,F5.0,2X))
00041 121 FORMATdSH BTU RECOVERY,23(1H.),4X,8HDO,2X,9(2X,F5.1,2X))
00042 122 FORMAT(1H+,43X,4(2X,6A1,1X))
00043 123 FORMAT(44X,9(4X,A2»3X))
00044 124 FORMAT(44X,9(2X,6A1,1X))
00045 125 FORMAT(3X,aHFEEO,37(lH.),9(lX,F6,2,?X))
00046 126 FORMAT(3X,10HCLEAN COALiSl(IH.),9(1X,F6.2,2X))
00047 127 FORMAT(3X,6HREFUSE,35(1H.),9(1X,F6.?,2X))
00046 126 FORM*T(3X,9HMIDDLING8,32(1H.),9(1X,F6.2,2X))
00049 130 FORMAT(3X,18HFEED (COAL * ROCK),23(1H.),9(2X,F5.1,2X))
00050 131 FORMAT(3X,24HOVERFLOM (REFUSE) STRE»M,17(IH.),9(2X,F5.I,2X))
00051 132 FORMAT(3X,26HUNDERFLOM (PRODUCT) STREAM,15(1M.),9(2X,F5.1,2X))
00052 133 FORMAT(3X,ieHFEED (COAL * ROCK),23(1H.),9(JX,F6.2,2X))
00053 134 PORMAT(3X,24HOV£RFLOH (REFUSE) STREAM,17(1H.),9(1X,F6.2,2X))
00054 135 FORMAT(3X,26HUNDERFLON (PRODUCT) STREAM,15(1H,),9(1X,F6.2,2X))
OOOSS 136 FORMAT(23HOCOAL PRODUCT/COAL FEED,13(IH.),6H PERCENT,
00056 1 9(2X,F5.1,2X))
-------
OUTPT2 OUTPTZ.F4
FORTRAN V.5A(563) /KI 6-OCT-77
12133 PAGE 1-1
OOOS7
00056
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00072
00073
00074
00075
00076
00077
00076
00079
00060
oooet
00062
00063
00064
00065
00066
00067
00066
00069
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
OOlOt
00102
00103
00104
00105
00106
00107
00106
00109
•Oil*
Oltll
00112
137 FORMATC24H COAL IN OVERFLOW STREAM,15(1H.),1X,2HDO,2X,
i 9(2X,F5.1,2XJ)
138 PORMATC2SH ROCK IN UNOERFLOH STREAM,ia<1H.),1X,2HDO,2X,
1 9(2X,F5.1,2X))
140 FORMATC3X,12HCRUSHED COAL»29(1H.),9(2X,P5.1,2X))
141 FORMAT(3X,12HCRU8HEO COALr29(lH.),9(lX,P6,2,2X))
ISO PORMAT(3X,24HOVERFLOW (COARSE) STREAM,17(1H.),9(2X,F5.1,2X))
151 FORMAT(3X,23HUNDERFLOW (FINE) STREAM,16(1H.),9(2X,F5.1,2X))
152 FORMAT CSX,24HOVERFLOW (COARSE) STREAM,17(1H.),9(1X,F6.2,2X))
153 FORMAT(3X,23HUNDERFi.OW (FINE) STREAM,16(1H.),9(IX,F6.2,2X))
154 FORMAT(32HOMEIGHT RATIO, UNDERFLOW TO FEED,4(IH,),8H PERCENT,
1 9<2X,FS.1,2X))
155 FORMAT(29H BTU RATIO, UNDERFLOW TO FEED,7(1H.),4Xy2HDO,2X,
i 9tax,F5.1,2X))
156 FORMAT(36H UNDER8IZE MATERIAL IN OVERFLOW STREAM,1H.,IX,2HDO,2X,
1 9(2X,F5.1,2X)>
157 FORMATC36H OVERSIZE MATERIAL I* UNDERFLOW STREAM,»H,,IX,2HD0.2X,
1 9(2X,F5.1,2X))
160 FORMAT(3X,6HFEED 1,S5(IH.),9(2X,F5.1,2X))
161 FORMAT(3X,6HFEED 2,35(1H.),9(2X,P5.t,2X))
162 FORMAT(3X,7HPRODUCT,34(1H.),9(2X,F5.1,2X))
163 PORMAT(3X,6HPEED 1,35(1H.),9(1X,F6.2,2X))
164 FORMAT(3X,6HFEED 2,35(1H.),9(1X,F6.2,2X))
165 FORMAT(3X,7HPRODUCT,34(lH,),9(lx,F6,2,2X))
170 FORMATC37H1DISTRIBUTION, PERCENT TO WASHED COAL)
171 FORMAT(2X,28H(SPECIFIC GRAVITY FRACTION)!)
172 FORMAT(2X|6HFLOAT ,F4.2,32(1H.),9(2x,F5.1,2X))
173 FORMAT(3X,F4.2,1H-,F4.2,32(1H.),9(2X,F5,1,2X))
174 FORMAT(3X,5HSINK ,F4.2,32(1M,),9(2X,F5.
175 FORMAT(30HOBTU PER POUND, MOISTURE FRFEl)
176 FORMAT(3X,4HFEED,37(1H.),9(IX,F6,0,2X))
177 FORHAT(3X,10HCLEAN COAL,31(1H,),9(1X,F6.0,2X))
176 FORMAT(3X,6HREFU8E,35(1H.),9(1X,F6.n,2X))
179 FORMAT(3X,9HMIDDLING8,32(1H.),9(1X,F6.0,2X))
180 FORMAT(3X,12HCRUSHED COAL,29{1H.),9(1X,F6.0,2X))
181 FORMAT(3X,6HPEeD 1,35(1H.),9(1X,F6.o,2X))
182 FORMAT(3X,6HF£ED 2,35(1H.),9(1X,F6.0,2X))
183 FORMAT(3X,7HPRODUCT,34(1H,),9(1X,F6.0,2X))
164 FORMAT(3X,24HOVERFLOW (COARSE) STRE»M,\7(1H.j,9(ix,F6.0,2X))
185 FORMAT(3X,23HUNDERFLOH (FINE) STREAM,i8(1H.),9(IX,F6.0.2X))
166 FORMAT(3X,18HFEED (COAL * ROCK),23(1H.),9(tX,Fb,0,2X))
187 FORMAT(3X,24HOVERFLOW (REFUSE) STREAM,17(1H.),9(1X,F6.0,2X))
188 FORMAT(3X,26HUNDERFLOW (PRODUCT) STREAM,15(1H.),9(lx,F6.0,2X))
190 FORM»T(3X,24HPRODUCT 1 (UPPER STREAM),17(1H,),9(2X,F5,1,2X))
19t FORMAT(3X,24HPROOUCT 2 (LOWER STREAM),17(1H,),9(2X,F5.1,2X))
192 FOHMAT(3X,24HPRODUCT 1 (UPPER STREAM), 17(1H.),9(1X,F6.2,2X))
193 FORMAT(3X,24HPRODUCT 2 (LOWER STREAM),17((H.),9(IX,F6,2,2X))
(UPPER STREAM), 17UH.),9(1X,F6.0,2X))
(LOWER STREAM),17(1H.),9(1X,F6.0,2X))
194 FORMAT(3X,24HPRQDUCT 1
195 FORMAT(3X,24HPPOOUCT 2
200 FORMAT(1HO,132(1H*)/)
300 FORMAT(IHO,5X,17HEMPTY FEED STREAM/)
C DETERMINE LARGEST NONEMPTY SIZE INCREMENT
DO 20 Isl.NStZr
IP «I..»B.41).*»0.<.SI>eED(I,n.LT.l.OlR-2«'tGRAV)) CO TO 20
IFTaUEQ.4l).AND.(SREF(I,n.LT.1.01E-2«NGRAV)) 00 TO 20
80 TO 21
-------
OUTPT2 OUTPT2.F4
FORTRAN V.5A(563) /KI 6-OCT-77
12133 PAGE 1-2
ta
00113 20 CONTINUE
00114 WRITE (H.300)
00115 RETURN
00116 21 N8«N8IZE»1
00117 K1«N8TART
00116 K2BN8TARU8
00119 IP (NCOMP.NE.O) K1»NS
00120 00 3 H1.N8
00121 KN8«0
00122 KP«0
00123 00 1 Klli6
00124 IP (8VMBOL(K,n.NE.BLANK) KNB.KNB+1
00125 IP ((KP.EG.O).AND.(SYMBOl(K,I),NE.BLANK)) KPiK
00126 STORE(K)»8YMBOL(K,I)
00127 1 8YMBOU(K,I)mANK
00128 KBLO-KNB/2
00129 IP (KNB.EQ.J) KBLlI
00130 IP (KNB.EQ.5) KBL«0
00131 DO 2 KiliKNB
00132 KA»KBL+K
00133 KB«KP+K«1
00130 2 8VHBOL(KA,n«3TORE(KB)
00135 3 CONTINUE
00136 IP ((NCOHP.EQ.O).ANO.(N8IZE.EQ.D) N8»l
00137 4 IP (K2.0T.N3) K2«N8
00138 WRITE (H.100)
00139 IP C(N8.GT.n.AND.(K2.EQ,N8)) GO TO 5
00140 WRITE (H,122) ((8YHBOL(K,I),KB1,6),IiKJ,KJ)
00141 WRITE (H,123) (BY,I«K1,K2)
00142 WRITE (H,124) C(8YMBOL(K,1+1)(Kil,6),HK1,K2)
00143 GO TO 7
00144 5 IP CM.EO.N8> GO TO 6
00145 WRITE (H.122) C (SYMBOLCK, I) ,K«1,6) , HM ,N3IZE) ,COMP
00146 WRITE (H.123) (BY,I«K1,N8IZE)
00147 WRITE (H,124) ((8YMBOU(K,I*l),Kil,6),I«Kl,N8IZE)
00146 GO TO 7
00149 6 WRITE (H,122) COMP
00150 7 WRITE (H,10l)
00151 IP (LIE.7) GO TO 600
00152 IP (1.CO.11) GO TO 650
00153 IP «l.GE.IZ).AND.
-------
OUTPT2 OUTPT2.Ffl
FORTRAN V.5AC563) /KI 6-OCT-77
12133 PAGE 1-3
00169
00170
00171
00172
00173
00174
00175
00176
°0177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
HRITE (H,125) (SFEEDU, 3), I«K1,K2)
HRITE (H,126) , I»K1 ,K2)
HRITE (H,108)
HRITE (H,125) (8FEED(I,4), I«Kl,K2)
HRITE (H.126) C3CC (1,1) , IlKl ,K2)
WRITE CH,127) (SREF(I,4) ,!•«!, K2)
IP (L.EQ.6) WRITE (H,128) (8FEED(I,2) , I«K1 ,K2)
WRITE (H,1J1) (8CC(I,2) , I«K1 ,K2)
WRITE (H.132) (8REF(I,2) , I«K1 ,K2)
WRITE (H,107)
WRITE (H,133) (8FEED(I,3) ,
,K2)
WRITE (H,134) (3CC (1,3) , I«KJ ,K2)
WRITE (H.135) (8REF(I,3) , I«K1 ,K2)
WRITE (H,108)
WRITE (H.133) (SFEEDC I , 0) , UK1 , K2)
WRITE (H,134) (SCC (1,1) , I»Kl ,K2)
WRITE (M.155) (SREF ( I ,4) , I«K1 ,K2)
WRITE (H.175)
WRITE (H.186) (8FEEO(1,5) , I«Kl ,K2)
-------
OUTPT2 OUTPT2.PC
FORTRAN V.5ACS63) /KI 6-OCT-T7
12I3S PACE 1-a
00225 WRITE (Hi 187)
00226 WRITE (Hi 188)
00227 MRITE (Hi 136)
00228 MRITE (Hi 137)
00229 WRITE (H,13B)
00230 60 TO 9
00231 C PRINT SUMMARY DATA
00232 700 MRITE (H,102)
00233 MRITE (H,l«0)
00234 WRITE (H,106)
00235 WRITE (H,102)
00236 WRITE (H|140)
00237 WRITE (H,107)
00238 WRITE (H,125)
00239 WRITE (H,14i)
00240 WRITE (H,108)
00241 WRITE (H,125)
00242 WRITE (H,14i)
00243 WRITE (H,17S)
00244 WRITE (Hi 176)
00245 MRITE (H.180)
00246 00 TO 9
00247 C PRINT SUMMARY DATA
00248 750 WRITE (HilOZ)
00249 MRITE (H,150)
00250 MRITE (H,Hl)
00251 MRITE (H|106)
00252 MRITE (H,102)
00253 MRITE (H,150)
00254 MRITE (H,15i)
0025S WRITE (H,107)
00256 WRITE (H,125)
00257 WRITE (H,152)
00258 WRITE (H,153)
00259 WRITE (H|108)
00260 WRITE (H,125)
00261 WRITE (H,152)
00262 WRITE (H,153)
00263 WRITE (H,175)
00264 WRITE (H,176)
00265 WRITE (H|184)
00266 WRITE (H,185)
00267 WRITE (Hi 154)
00268 WRITE (Hi 155)
00269 C MRITE CH,1S6)
00270 C MRITE (Hi 157)
00271 CO TO 9
00272 C PRINT SUMMARY DATA
00273 800 MRITE (H|160)
00274 WRITE (H,16i)
00275 WRITE (H.162)
00276 WRITE (Hi 106)
00277 WRITE (H,160)
00278 WRITE (H«161)
00279 WRITE (H|162)
00280 WRITE (H|107)
(3CC(I»5),I»K1,K2)
(SINK(I),I«K1,K2)
FOR CRUSHERS
(SFEeD(I,2M«Kl,K2)
(SCC(If2)|I«Kt,K2)
(5CC(I,3),l«Kl,K2)
(SCCa,4),I«Kl,K2)
(SfEEO(I,5),I»Kl,K2)
FOR SCREENS
(3FEED(I,2),I«K1,K2)
(SCC(I,2),I«KJ,K2)
CSREP(I,2),I«K1,KS)
(SFEEO(I,3),I»K1,K2)
(SCC(I»3),I«KJ,K2)
(3REF(I,3),I»K1,K2)
(SFEED(X,4),I«Kl,K2)
(SCC(I,4),I»K1,K2)
(3REF(I,«),I«K1,K2)
(3FEED(I,5),I»K1,K2)
(3CC(I,5),HKl,K2)
(3REF(I,5),I»K1,K2)
(BTURCC(I),I«K1,K2)
(8FLT(I),I«K1,K2)
FOR BLENDERS
(3FEED(I,1),I«K1,K2)
(SREF(I,1),I«K1,K5)
(SFEED(I,2),I«K1,K2)
(SCC(I,2),UK1,K2)
(3REF(I,2),I«K1,K2)
-------
OUTPT2 OUTPT2.F4
FORTRAN V.SA(563) XKI 6-OCT-77
13133 PAGE 1-5
00361
00282
00283
0028a
00285
00286
00287
00288
00269
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
HR1TC (H.163)
WRITE (H,164)
WRITE (H,165)
WRITE (H.108)
WRITE (Hi 163)
WRITE (H.164)
WRITE (H,165)
WRITE (H,175>
WRITE (H.181)
WRITE (H,182)
WRITE (M,183)
00 TO 9
C PRINT SUMMARY DATA
900 WRITE
-------
OUTPT2 OUTPT2.F4
FORTRAN V,5A(563) /KI 6-OCT-77
12133 PACE 1-6
SUBPROGRAMS CALLED
8CALARS AND ARRAYS ( "•" NO EXPLICIT DECLARATION . "X" NOT REFERENCED - "#« SUBSCRIPTED 1
•NCQMP
*K1
•KBL
STORE
• I
TEMPORARIES
1 I
6 I
13 I
20«R
37 I
.30021
.80070
.30113
.80073
,30162
.80076
.80167
,80013
,80061
,80150
,80105
.80153
.80155
.80002
,80005
,80053
.80055
.30145
,30042
,80132
,80047
,80031
.80034
.80170
,80172
,80175
1432
1437
1444
1451
1456
1463
1470
1475
1502
1507
1514
1521
1526
1533
1540
1545
1552
1557
1564
1571
1576
1603
1610
1615
1622
1627
*NS
*K
•KNB
*NSIZE
•NORAV
2
T
14
26
00
.80022
.80024
.80072
.30027
.80116
,80164
,80010
.80101
.80015
.80104
.80064
.80107
.80156
.80003
.A0016
.30007
.80143
.80146
.80130
.80045
.80135
.80032
.30122
.80124
.80126
.30020
1433
1440
1445
1452
1457
1464
1471
1476
1503
1510
1515
1522
1S27
1534
1541
1546
1553
1560
1565
1572
1577
1604
1611
1616
1623
1630
P8J
6BOUND
*HL*NK
*NSTART
*NLIM
3 I
10*R
IS R
27 I
"I I
.80110
.80112
.30026
.80161
.80075
.80077
.80011
.80060
.80103
.80063
.80152
.30066
.80157
.30050
.80052
.30141
.80056
.80147
.80043
.80133
.30136
.80120
.80035
.80037
.80173
1434
1441
1446
1453
1460
1465
1472
1477
1504
1511
1516
1523
1530
1535
1542
1547
1554
1561
1566
1573
1600
1605
1612
1617
1624
*KB
*KA
*J
COMP
*K2
4 I
11 I
16 I
30*R
02 I
.80023
.80071
,80160
.80115
.80163
.30165
.80012
.80014
.80062
.80017
,80106
.80154
.80000
.80004
.80006
.80054
.80144
.80040
.80131
.80046
.30137
.80033
.80123
.80171
.80127
1435
1442
1447
1454
1461
1466
1473
1500
1505
1512
1517
1524
1531
1536
1543
1550 I
1555 I
1562 I
1567
1574
1601
1606
1613
1620
1625
• BY
SYMBOL
*KP
•L
5 R
12«R
17 I
36 I
.80111
.80025
,80114
,80074
.80117
.80166
,80100
.80102
,80016
,80151
,80065
.30067
,80001
.80051
.80140
.80142
.80057
.30041
.30044
,80134
.80030
.80121
.80036
,80125
.30174
1436
1443
1450
1455
1462
1467
1474
1501
1506
1513
1520
1525
1532
1537
1544
1551
1556
1563
1570
1575
1602
1607
1614
1621 I
1626 I
LINE NUMBER/OCTAL LOCATION MAP
0123
00000
00010
00020
00030
00040
00050
0
•
•
•
«
**"""— •
-------
OUTPT2 OUTPT2.F4
FORTRAN V.5A(563) XKI 6-OCT-77
13133 PAGE 1-7
00060
00070
oooeo
00090
00100
00110
00120
00130
00140
00150
00160
00170
ooieo
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
•
•
•
•
•
22
51
130
201
407
053
657
1063
1264
1461
1627
2011
2223
2364
2525
2707
•
3200
3422
3577
3761
B
•
•
.
^P
27
55
132
231
012
072
676
1102
1266
1464
1646
2030
•
2367
?544
2726
9102
3203
340}
3616
4000
•
.
•
•
•
30
56
134
247
415
511
715
1121
1305
1506
1651
2047
2224
2406
2547
2705
•
3262
3460
3621
4017
•
•
•
•
•
31
57
137
277
017
533
737
1103
1324
1511
1670
2066
2243
2425
2566
2764
3103
3301
•
3640
4036
33
60
143
300
023
536
742
1162
1343
1514
1707
2071
2262
2430
2605
2767
3122
3320
3461
3657
4041
36
67
153
303
427
555
7M
1165
136?
1543
1726
2110
2?65
2447
2624
3006
3141
3323
3500
3676
4044
•
•
•
•
•
37
100
156
334
031
574
1000
1204
1401
1570
1731
2127
2304
2466
2627
3025
3160
3302
3517
3701
4046
42
106
165
352
433
613
1017
12*3
1420
•
1750
2146
2323
•
2646
3044
3163
3361
3536
3720
4050
44
115
170
402
.
635
1041
1242
1437
1571
1767
2165
2326
2467
2665
3063
3202
3400
3541
3737
•
.
•
•
.
17
46
123
173
403
434
640
1044
1245
1456
1610
2006
2204
2345
2506
2704
.
3221
3403
3560
3756
0051
OCTAL PROG siZEai0262
( NO ERRORS DETECTED }
SCAIARS/ARRAY8«4? « FORMAT5»1367 » TEMP8/CONS»202 * CODE«4054 t ARGS>2353 ) * COHHON«2012
-------
OUTPT3 OUTPT3.F4
FORTRAN V.5A(56J) /KI 6-OCT-77
12129 PAGE 1
00001 SUBROUTINE OUTPT3
-------
OUTPT3 OUTPT3.FO
FORTRAN V.5AC563) XKI 6-OCT-77
13129 PAGE 1-1
TEMPORARIES
,30000 107 I ,80001 110 I
LINE NUMBER/OCTAL LOCATION MAP
.A0016 111 R
,00000 112 i
00000
00010
00020
00030
0
•
15
102
1
0
„
16
104
2
,
17
112
3
.
•
22
115
a
.
•
26
•
5
m
m
30
121
6 7
.
• •
40 ' 50
e
.
13
60
q
—
14
77
OUTPT3 OCTAL PROG size«270 i SCALARS/ARRAYSIIS « FORMATS*?! + TEMPS/CONS*? + cooE«i24 + ARcs«27 ) + COMMON»Z
( NO ERRORS DETECTED ]
-------
OUTPT4 OUTPT4.F4
FORTRAN V.5A(563) /KI 6-OCT-77
12132 PAGE i
00001 SUBROUTINE OUTPT4(8G»L»Dt ,02,03,V5LYLD,VSLBTU,KF,S,FLOW,NUNITS,
00002 i NFLOHS,N8IZE,NGRAV,S1,82,S3,S4,35,86,BTU)
00003 C*****»*t«**»*****»***•**«**•*•*•#***t******************************************
00004 C
00005 C THIS SUBROUTINE CALCULATES AND PRINTS SUMMARY DATA FOR ALL
00006 C UNITS AND FLOHSTREAMS
00007 C
00008 C*******************************************************************************
00009 COMMON STREAM<23,10,4) * DIH *
00010 DIMENSION 86020,26),01(JO),02(30),03(30),L<30),V3LYLD<30), * DIH *
00011 i VSLBTUC30),KF<2,25),8C25),FLOHC28),BTU(4) * 0IM *
00012 COMMON /SYS/ CiH
00013 INTEGER G,H
00014 100 FORMAT(1H1,50X,22HSUMHARY DATA FOR UNITS)
00015 101 FORMAT<1HO,84X,5HYIELD,8X,12HBTU RECOVERY)
00016 102 FORMATUH ,8X,11HUNIT NUMBER,8X,9HUNIT TYPE,20X,
00017 1 18HDECI8ION VARIABLES,8X,9H(PERCENT),7X,9H(PERCENT))
00018 103 PORMAT(1HO,12X,I2,7X,I2)
00019 104 FORMAT(IH*,62X,F6.3,16X,F5,1,11X,F5.1)
00020 105 FORMATUH*,62X,F6.3)
00021 106 FORMAT(IM*,S4X,F6.S,2X»F6.3,2X»F6,3)
00022 107 FORHATC1H ,8X,11(|H-),8X,9(1H.),20X,1«(1H-),8X,9(1H-),6X,
00023 108 FORMAT(lH>,64X,F5.1fUX*F5.1>
00024 200 FORMATUH1,45X,28HSUHMARY DATA FOR FLOMSTREAMS)
00025 201 PORM*TUHO,64X,8HFLOHRATE,15X,7HPYRTTIC,5X,5HrOTAU
00026 202 FORMATdH ,6X,10HFLOH3TREAM,20X,6HORIGIN,5X,11HDESTINATION,
00027 1 6X,8H(PERCENT» 6X,3HA8H,6X,6MSULFUR,6X,6H3ULFUR,
00028 2 8HLBS S02/)
00029 203 FORHATUH ,8X,6HNUMBER,21X,8HUNIT NO.,5X,8HUNIT NO.,8X,
00030 1 8HOF FEED),3X,9H(PERCENTJ,2X,9H(PERCENT),3X,
00031 2 9H(PERCENT)r2X,7HBTU/LB.»2X»llHMILLION BTU)
00032 204 FOPHAT(lHO,10X,I2,2aX,I2,2X,A2,9X,I2,12X,F5.1,7x,F5.1,6X,
00033 1 F5.2,6X,F5,2,6X,F6,0,SX,P5.2)
00034 205 FORMAT(lHt,14X,6H(FEED))
00035 206 FORMAT(lHtil4X,20H(CLEAN COAL PRODUCT))
00036 207 FORMAT(IH*,14X,19H(HIDOLIN6S PRODUCT))
00037 208 FORMAT(1H+,10X,16H(REFU5E PRODUCT))
00038 209 FORHATdH »6X»10(IH-),19X,8(1H-)»4X,1J(1H«),6X, 8{lH-),
00039 i 3X,9(1H-),2X,9(1H.),3X,9(1H-),?X,7(1H.),2X,11UH-))
00040 C PRINT SUMMARY DATA FOR UNITS
00041 WRITE (HilOO)
00042 HRITE (HilOl)
00043 HRITE (Hil02)
00044 HRITE (H»107)
00045 DO 10 IU»1,NUNITS
00046 HRITE CH.103) IU,LC1U)
00047 IF (L(IU),E0.41) GO TO 10
00048 IF UnU),LE,6) HRITE (H,100) Dl (IU), VSLYLD(IU)»VSLBTU(IU)
00049 IF (L(IU),EQt7) HRITE (H,108) VSLYLD(IU),VSLBTU(IU)
00050 IF ((L(IU).GT.7).AND.U(IU).NE.il)} WRITE (H,105) DKIU)
00051 IF (L(IU).EQ.ll) HRITE (H,J06) 01(IU),D2(IU),D3(IU)
00052 10 CALL VES3ELUUU),3)
00053 C PRINT SUMMARY DATA FOR FLOHSTREAMS
00054 HRITE (H,200)
00055 HRITE CH,201)
00056 WRITE (H>202)
-------
OUTPT4 OUTPT4.F4
FORTRAN V.5AC565) /KI 6-OCT-77
12132 PAGE 1-1
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00072
00073
00074
00075
00076
00077
0007B
00079
00060
00061
00062
00063
00064
WRITE (H.203)
WRITE (H,209)
00 30 IF«1»NFLON8
SUMl«0.
SUM3»0.
SUM4BO.
IG«IF
CALL EXPANDCSG, STREAM, IG,NSIZE»NGRAV)
DO 20 I«1,NSIZE
DO 20 J«1,NGRAV
SUM1«SUM1+100,*STREAM(I,J,1)«STREAM(I,J,2)
3UM2«SUM2tlOO.*STREAMCI,J,t)*STREAM(I,J,3)
SUM3«SUM3*100,*STREAM(I,J,1)»STREAM(I,J,4)
20 8UM4«SUM4+ST"f:AM
-------
OUTPTfl OUTPT4.F4
FORTRAN V.5A(563> /Kt 6.0CT-77
13133 PACE |-2
TEMPORARIES
,30000 346 I
.00000 353 1
.80001 347 I
.80002 350 I
,80003 351 I
LINE NUMBER/OCTAL LOCATION HAP
00000
00010
00030
00030
00000
00050
00060
00070
00080
0
.
•
•
•
•
133
320
357
362
1
0
•
•
»
Q5
151
225
266
37?
2
.
•
•
•
SO
170
226
300
414
3
m
m
•
•
53
•
227
307
•
4
•
•
•
•
56
201
230
314
417
5
m
•
•
•
61
204
231
316
6
—
•
•
•
65
207
233
324
7
—
•
•
•
72
212
237
•
6
m
m
m
9
77
215
241
335
9
m
•
•
•
116
220
250
345
.A0016
352
OUTPT4 OCTAL PROC size«i20o
C NO ERRORS DETECTED 1
* FORMATSVSIO * TEHPS/CONSBIZ * cooE«426 * »Rcs»237 i +
to
to
-------
REDUCE REDUCE.Ffl FORTRAN V.SA(563) /KI 6-OCT-77 12130 PAGE 1
00001 SUBROUTINE REDUCECX,Y,N,N8IZE,NGRAV)
00003 C THIS SUBROUTINE REDUCES THE DIMENSIONALITY OF A 3-OIMENSIONAL ARRAY TO *
OOOOa C A 1-DIMENSIONAL ARRAY *
00006 DIMENSION X(23.10,4),Y(920,28) * DIM *
00007 DO I Ul.NSIZE
00008 DO I JlUNORAV
00009 DO i K«l,4 * DIM *
00010 IJK«flO*(I-l)*a*(J»l)+K * DIM *
00011 1 Y(IJK,N)«X(I,J,K)
00012 RETURN
00013 END ;
SUBPROGRAMS CALLED
SCAURS AND ARRAYS [ "*" NO EXPLICIT DECLARATION • "X" NOT REFERENCED • "0* SUBSCRIPTED )
*N II *K 21 *TJK 31 Y 4*R *J SI
»NSIZ£ 61 X 7*R *I 10 I *NGRAV 11 I
TEMPORARIES
,80000 12 I ,80001 13 I .80002 la I
LINE NUMBER/OCTAL LOCATION HAP
10 1 2 3 « 5 6 7 8 9
......I[[[
I
00000 I • 0 • • - • • 12 16 22
00010 I 23 34 • 60
-------
ROTARY ROTARY,Ffl
FORTRAN V.5AC563) XKI 6-OCT-77
12130 PAGE 1
00001
00002
00003
00004
oooos
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00026
00029
00030
00031
00032
00033
00034
0003S
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE ROTARVUENGTH,DIAM,HOLE,SITE,NSIZE,NGRAV,TFEED,CPROD,
1 FCPROD,RPROD|FRPROO»YLOVSL,BTUVSL,BTU,KBSG)
****.**************************•********•**************************•****<
THIS PROGRAM DETERMINES THE WEIGHT DISTRIBUTION AND COMPOSITION OF THE
ROTARY BREAKER PRODUCT FOR A GIVEN FEED.
VARIABLES AND ARRAYS APPEARING IN THE SUBROUTINE CIST
LENGTH
DIAH
HOT
HOLE
NFALL
SIZE(I)
NSIZE
NGRAV
FCOAL
FROCK
TFEED(I,J,K)
FTOT
FCC
FRC
FRR
FCR
CPROD(I,J,K)
FCPROD
RPROD(I,J,K)
FRPROD
8YLDCX)
8FLTU)
SINK(I)
BREAKER LENGTH (FEET)
BREAKER DIAMETER (FEF.T)
HEIGHT FROM WHICH MATERIAL IS DROPPED (FEET)
OPENING SIZE (EITHER 6.0 INCHES OR 8.0 INCHES )
NUMBER OF TIMES MATERIAL IS DROPPED
BOUNDARIES OF COAL SIZE INCREMENTS
NUMBER OF SIZE INCREMENTS
NUMBER OF GRAVITY INCREMENTS
COAL FEED FLOW RATE
ROCK FEED FLOW RATE
PROPERTIES OF TOTAL FEED STREAM (COAL+ROCK)
TOTAL FEED STREAM FLOW RATE
COAL FLOW RATE IN COAL STREAM
ROCK FLOW RATE IN COAL STREAM
ROCK FLOH RATE IN ROCK STREAM
COAL FLOH RATE IN ROCK STREAM
PROPERTIES OF COAL PRODUCT STREAM
COAL PRODUCT FLOH RATE
PROPERTIES OF ROCK PRODUCT STREAM
ROCK PRODUCT FLOH RATE
PERCENT OF COAL FEED OF SIZE I REPORTING TO PRODUCT STREAM
PERCENT OF REFUSE STREAM OF SIZE i COMPOSED OF COAL
PERCENT OF PRODUCT STREAM OF SIZE I COMPOSED OF ROCK
INTEGER H
REAL LENGTH
DIMENSION CFALL(99),CSELCT(23),RFALL(99),RSELCT(2S),BRATIO<13),
1 BUS)
COMMON C<23),CSELC23),R3EL<23),
2 SMID(23).BR(23,23),RP(23,23),CP(23,83),
3 COVER(23,10,fl),ROVER(23,lO,«),CUNDRC23,10,4),RUNDR(2S,iO,0)
DIMENSION CPROO(23,10,4),RPROIH23,10,4),SIZE(23),TFEED<23,10,4)
l»BTU(4)
COMMON /BLK1X SFEED{24f5),8CC(24,5),SMD(24,5),SREF(24,5),
t SYLD(24),TYLO(24),EFFIC<24),BTUREC<24),A3HERR(24>,
2 SFLT(24),SINK(24),8MI8PU(24),SNRGR(24),SGRAV{24),
3 SPE(24),SIMP(24),SEA(?4)
COMMON /SYS/ CiH
DATA CFALL X12*,20,12*.08,12*.06,63*.OS/
DATA RFALL /.005,96*0.O/
DATA C8ELCT X23M.OX
DATA RSELCT X23*J.O/
DATA B /I.Of,8927,.7035,.54,.2952,.1564,.0605,,0572,.0406,.0206,
1 3*0./
DATA BRATIO XI .0,.8308,,5882,.4176,.2065,.1041,.0522,.0366, .026,
-1 .0131,3*0./
NFALHLENGTH/1.3
H6T»,75*OIAM
AI40.0
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
-------
ROTARY ROTARY.F4
FORTRAN V.5AC563) /KI 6-OCT-77
12130 PAGE 1-1
to
en
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00072
00073
0007a
00075
00076
00077
00076
00079
00080
00061
00062
00063
00064
00065
00066
00067
00066
00069
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
00101
00102
00103
00104
00105
00106
00107
00106
00109
00110
00111
00112
IF(HOLE.GT.7.0) A«50.
C SPLIT FEED STREAM INTO COAL STREAM AND ROCK STREAM
NS«N8IZE-1
NG«NGRAV»1
FROCKlO.
00 60 Ill,N3IZE
ROVER(I»NGRAV,l)»TFEED(I,N6RAV,l)*TFEEDU,NGRAV,2)-TFEEDCI,NG,l)*
IP (ROVERd, NGRAV, D.LT.O.) ROVER(I,NCRAV, !)«0.
COVER ( I i NGRAV, 1 ) «TFEEO ( I , NORA V , 1 ) -ROVER ( I , NORA V, 1 )
FROCK»FROCK+ROVER(I, NGRAV, 1)
ROVER(I, NGRAV, 2)«1.
ROVERd, NGRAV, 3)«0, >
ROVERd, NGRAV, a)«0.
00 60 Jal.NG
00 60 K»l,4 * DIM *
60 ROVERd, J,K)«0.
FCOALBl. -FROCK
DO 70 I«1,NSIZE
ROVER (I, NGRAV, 1)«ROVER( I, NGRAV, D/FPOCK
COVER (I, NGRAV,!) •COVER (I, NGRAV, D/FCOAU
COVCR(IfNGRAV>2)B(TFEED(I,NGRAV,t)*TFEEO(I,NGRAV,2)-ROVER(I,NGRAV,
1 1)*FROCK)X(COVER(I, NGRAV, 1)*FCOAL)
COVER (I, NGRAV, 3)«(TFEEO(I,NGRAV,t)*TFEEO(I,NGRAV,3))/(COVER(I,
1 NGRAV, 1)*FCOAL)
COVER(I»NGRAV,4)i(TFEED(I,NGRAV,l)*TFEED(I,NGRAV,4))/(COVER(I,
1 NGRAV, 1)«FCOAL)
DO 70 Jal,NG
COVER(I«J,l)«TFEED(I,J,n/FCOAL
00 70 K«2,a * DIM *
70 COVER(I,J,K)ITFEED(I,J,K)
COAL AND ROCK STREAM BREAKAGE
DO 21 I«1,N3IZE
21 SMID(I)»(SIZE(I)tSIZE(I+l))/2,0
DO 25 I»1,N5
BR(I,I)nlfO
LBTtl
DO 28 II«U,N3IZE
RATI08»8MID(II)/3HIO(n
CALL INT3(BRATIO,B,RATIOB,BRK, 10) * DIM *
22 BR(I,II)iBRK
23 BR(I,NSIZE)«0.0
BR(N8IZE,N9IZE)BO.O
FCUNDRvO.O
FRUNDRlO.O
DO 24 I«1,NSIZE
DO 24 Jil, NGRAV
DO 24 Kit, 4 * DIM *
CUNOR(I,J,K)«0.0
RUNDR(I,J,K)«0.0
24 CONTINUE
DO 25 NN>1,NFALL
FRPRODlO.O
FCPROD«O.O
DO 26 I«1,NSIZE
DO 26 Jll, NGRAV
-------
ROTARY ROTARY.P«
FORTRAN V.5AC563) XKI 6-OCT-T7
12130 PAGE 1-2
to
O)
00113 00 26 Kit,a * DIM *
00114 CPROD(I,J,K)»0.0
00115 26 RPROD(I,J,K)«0,0
00116 R8ElCNSIZE)iO.O
00117 C8ei(N8lZE)*0.0
00118 DO 5 1«1»NS
00119 R8Eim«RFAU.(NN)*RSEl.CT(I)
00120 C8EU(I)iCFAU.(NN)*CSElCT(I)
00121 IF(HGT.IE.6,0) GO TO 20
00122 R8EL(I)iR8EL(I)*HGT/6,0
00123 C8EL(I)lC8EL(I)*H6T/6.0
00124 20 LlT+t
00125 00 8 Hil,NSlZE
00126 U«II-1
00127 RP(I,II)«(BR(J,LL)-BR(I,II))*R8EU(I)
00128 CP(I,H)B(BR(I,LL)-BR(I,II))*C3EL(n
00129 DO 8 Jil.NGRAV
00130 RPROO(ri,J,n»ROVER(I,J,l)*RP(I,II)»RPROD(II,J,n
00131 CPROO(II,J,l)BCOVER(I,J,l)*CP(I|in*CPROOcn,J,n
00132 DO 9 Kl2»4 * DIM *
00133 RPROO(II,J,K)lROVER(I,.M)*RP(I,II)*ROVER(I,J,K)*RPROD(II,J,K)
00134 9 CPROO(II,J,K)lCOVER(I,J,l)*CP(I,II)*COVER(I,J,K)*CPROD(n,J,K)
00135 8 CONTINUE
00136 DO 33 Jil,NGRAV
0013T RPROD(IfJ,l)«ROVERCI,J,U*C1.0-RSEUin»RPRODCI,J,l)
00138 33 CPROD(I,J,l)»COVER(I,J,n*(l,0-CSEL(I))»CPROD(I,J,t)
00139 5 CONTINUE
00140 DO 36 JlliNGRAV
00141 RPROO(N8IZE,J,1)"ROVER(N8IZE,J»1)»RPROO(N3I2E,J,1)
00142 36 CPROD(N3IZE,J,1)«COVER(N8IZE,J»1)+CPROO(N3IZE,J|1)
00143 DO 37 Ill,NSXZE
00144 DO 37 Jut,NCRAV
00145 DO 37 K>2,4 * DIM *
00146 CPROO(I,J,K)«COVERCI,J»n*U.O-CSEL.m)*COVERCI,J,K)+CPRODU,J,K)
00147 RPROO(I/J,K)«ROVER(I,J,n*(1.0-R3EL(n)*ROVER(I,J,K)»RPROD(I,J(K)
00148 IF(RPROD(I,J»U.NE.O.O) GO TO 41
00149 RPROD(X,J,K)*0,0
00150 GO TO 42
00151 41 RPROD(I,J,K)BRPROD(I,J,K)/RPROD(I,J,n
00152 42 IFfCPROD(I,J,l),NE.O.O) GO TO 43
00153 CPROD(I,J,K)«0.0
00154 GO TO 37
00155 43 CPROD(I,J,K)«CPROD(I,J,K)/CPROD(I,J,1)
00156 37 CONTINUE
00157 C COAL AND ROCK STREAM SCREENING
00158 FCOVERlO.O
00159 FROVERVO.O
00160 DO 1 I«l,N8IZE
00161 8MlD(ni(SIZE(I)*3IZE(I»l))/2.0
00162 FRACH1.0
00163 FRACZil.O
00164 Cl«0.0
00165 C2«0,0
00166 IF(3IZE(I)-HOLE) 2,2,3
00167 3 CU1.0
00168 IF(8IZE(I+1)-HOUE) 11,10,10
-------
ROTARV ROTARY.pa
FORTRAN V.5ACS63) /KI 6-OCT-77
PAGE 1-3
00169
00170
00171
00172
00173
00174
00175
00176
00177
00170
00179
00160
00161
00162
00163
00164
00165
00166
00167
00186
00169
00190
00191
00192
00193
00194
00195
00196
00197
00196
00199
00200
00201
00202
00203
00204
00205
00206
00207
00206
00209
00210
00211
00212
00213
00214
00215
00216
00217
00216
00219
00220
00221
00222
00223
00224
il PRACli(SIZEd)-HOLE)/ (SIZE ( D-SIZE r I + U )
FRACSul.O-FRACt
SMIDa)»(HOLE+SXZE
ROVER d»«M)»Cd)*RPRODd,J,l)
IF (ROVER(I«J>l).LT,l.E-5) ROVERC I, J, 1 )•<>.
CPRODd»«M>«CPRODd,J,l)-COVERd,.M)
FCOVER«FCOVERtCOVERd,J/n
FROV€RnFROVER+ROVER(I,J,l)
FCPROD«FCPROO+CPROO(I,J,1)
FRPROO»FRPROD+RPROO(I,J,1)
DO 4 K«2»4
COVER(I,J,K)PCPROOd,J,K)
ROVER(I,J,K)«RPRODd,J,K)
4 CONTINUE
IP (FCPROD.EQ.O.) GO TO 51
DO 50 IIl,N3IZE
DO 50 J»1,NGRAV
50 CPRODd,J,l)«CPROOd,J,n/FCPROO
51 IF (FRPROD.EO.O.) GO TO 53
DO 52 I»1,N3IZE
DO 52 J«1,NGRAV
52 RPRODd,J,l)«RPRODd,J,n/FRPROD
53 CONTINUE
C
c THE FOLLOWING WRITE STATEMENTS MAY BE REMOVED
C 100 FORHATC6E20.2)
C 101 FORMATC 30X* 48H ROCK AND COAL STREAMS RESULTING FROM EACH DROP /,
C 1 5*,10H COAL OVER ,10X,10H ROCK OVER ,10X,1JH COAL UNDER ,10X,
C 2 11H ROCK UNDER )
C IP (NN.EO.l) WRITE (H,iQl>
C WRITE (H,100) FCOVER, PROVER,FCPROD|FRPROD,FCUNOR,FHUNOR
C *****************************************************************************
CALL BLEND(CPROD*CUNDR,CUNDR,FCPROD,FCUNDR,FCUNDR,NSIZE,NGRAV,
1 XOUMMY,VOUMMY,BTU»0)
CALL aLEND(RPROD,RUNDR,RUNDR,FRPROD,FRuNDR,FRUNDR,NSIZE,NGRAV,
1 XDUMMY,YDUMMY,6TU,0)
25 CONTINUE
IP (FROVER.EG.O.) GO TO 47
DO 46 I«I,NSIZE
DO 46 Jll,NGRAV
46 ROVERd,J,l)»ROVERd,J,n/FROVER
47 IP (FCOVER. EG. 0.) GO TO 49
00 4H I«1,NSIZE
DO 48 J«1,NORAV
46 COVER d *.M> /FCOVER
49 CONTINUE
PCClFCUNDR*FCOAL
PRC«FKUNDR*FROCK
-------
ROTARY ROTARY,F4
FORTRAN V.5A(563) XKI 6-OCT-77
12130 PAGE 1-4
to
00
00225
00226
00227
00226
00229
00230
00231
00232
00233
00234
0023S
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
FCR»FCOVER*FCOAL
FR»»FROVER*FROCK
CALL BLEND(CUNOR,RUNDR,CPROD,FCC»FRC»FCPROD,NSIZE,NGRAV,
i XDUMMY,YDUMMY,BTU,0)
CALL BLEND(COVER, ROVER, RPROD,FCR,FRB,FRPROD,NSIZE,NGRAV,
I XDUMHY,YDUMMY,BTU,0)
C NORMALIZE WEIGHT FRACTIONS IN EXIT STREAMS
SUMUO.
SUM2.0.
DO BO Iil,NSIZE
DO 80 JB1,NGRAV
8UMl«SUMltCPROO(I,J,l)
60 8UM2«3UM2*RPROD(I,J,1)
DO 81 IB1,NSIZE
DO 8t Jil,NGRAV
81 RPROD(I,J,1)«RPROD(I,J,J)/8UM2
IF (KB8G.EQ.O) RETURN
C************************************************** ********************
C CALCULATE SUMMARY DATA BY SIZE INCREMENTS
C**************** ******************************************************
NS « NSIZE+1
DO 280 KM, 5 * DIM *
8FEED(NS,K)»0,
8CC(NSfK)BO.
3REF(N8fK)«0.
220 8MD(NS*K)iO,
C CALCULATE COMPOSITION OF FLOW STREAMS BY SIZE INCREMENTS
DO 280 Hl.NSIZE
DO 230 K«l,5 * DIM *
8FEEO(I»K)<0.
SCCU,K)«0.
8REF(I,K)IO.
230 8MD(I,K)«0.
DO 240 J«t,NGRAV
SFEED(I,l)«SFEEO(I,miOO,*TFEeDU,J,l)
SCC(I,t)«3CC(I»n»100.*RPROD(I,J,l)
SREF(I,n»SREF(I,l) + lOO.*CPROD(IiJ,1)
DO 235 K«2,4 * DIM *
SFEED(I,K)»SFEED(I,K)tlOO,*TFEED(I,J,1)*TFEED(I,J,K)
SCC(I,K)«SCC(I»K)*100.*RPROD(I»J,1)*RPROO(I,J,K)
8ReF(I,K)«3REF(I,K)+100,*CPROD(I,J,l)*CPRQD(I,J,K)
235 CONTINUE
SFEEO(I,5)«SFEED(I,5)+100,*TFEEO(I, J, t )*BTUPLB(BTU,
1 TFEED(I,J,2))
SCCn,5)«SCC(I,5) + 100.*RPRODU,J,l)*BTUPLB(BTU,
i RPROD(I,J,2))
SReF(I,5)iSREF(I,5)»100,*CPROO(I,J,i)*BTUPLB(BTU,
1 CPROD(I,J,2))
240 CONTINUE
BFEED(I,S)iSFEED(I,5)/SFEED(I,l)
If <8CC(I,1).GT.O.) SCC (I ,5)»SCC (I ,5)/SCC ( I , 1)
IF (SREF(I,n.GT.O.) SREF ( I,5)«SREF ( I ,5) /3REF (I , 1)
IF (8REF(I,5).LT.O.) SREF(I,5)«0.
SFEED (NS, I ) iSFEED (NS, 1 ) +SFEEO (1,1)
SCC (NS, 1)«8CC (NS, 1 )+SCC (1,1)
-------
ROTARY ROTARY,Ffl FORTRAN V.5AC563) /KI 6-OCT-77 12130 PAGE 1-5
00261 3REF
00282 00 280 K»2.4 * DIM *
00263 SFEED(NS,K)iSFEED(NS»K)+9FEEO(I,K)
00284 IF <8FEED(I»U.EQ.O,) GO TO 250
00285 8FEED(I,K)BlOO.*SFEED(I,K)/sFEED(I,t)
00286 GO TO 251
00267 250 8FEEO(I,K)«0.0
00288 251 SCC(NS,K)«SCC(NS,K)*SCC(I,K)
00269 IF C8CC(I,U,EO.O.) GO TO 255
00290 3CC(!,K)B100.*8CC(I,K)/3CC(I,1)
00291 00 TO 256
00292 2SS SCC(I,K)«0.0
00293 256 3REF(N3,K)»3REF(NS,K)+3REF(I,K)
00294 IF (8REF(I,1).EQ.O,) GO TO 260
00295 SREP(I,K)BlOO,*SREF(I,K)/SREF(I,l) ;
00296 GO TO 280
00297 260 3REF(I,K)iO.O
00298 280 CONTINUE
00299 DO 290 I»1,NSIZE
00300 8FFED(NS,5)*SPEED(N3»5)+SFEEDCl»n*9FEED0.
00332 318 DO 340 I«1,NSIZE
00333 DO 320 J«1,NGRAV
00334 3GRAV(I)»SGRAV(I)tCOVER(I,J,l)
00335 8PE(I)«5PE(I)+RUNOR(I,J,i)
00336 3IMPU)»SIMP
-------
ROTARY ROTARY.F4
FORTRAN V.5AC563) /KI 6-OCT-77
12130 PAGE 1-6
00337 320 8E»(I)«5EA(I)+RPROD(I,J,1)
00338 IF (SEA(I).EO.O.) GO TO 322
00339 SFLTd '-100,*SGRAVCI)*RI/SEACI)
00340 60 TO 424
00341 322 SFlTU)iO.
00342 324 IF (SIMPCn.EQ.O.) GO TO 326
00343 SINK3217«R
+1050»R
SMID
ROVER
8REF
ASHERR
8GRAV
+105*R
•5047HR
+550*R
*UOO#R
«1270»R
BR
CUNDR
8YLD
8FLT
SPE
+134»R
+7400R
+11JOXR
*1320«R
SUBPROGRAMS CALLED
INTS EXPI BTUPLB BLEND
8CALAR8 AND ARRAYS t "*» NO EXPLICIT DECLARATION - "X" NOT REFERENCED
"#" SUBSCRIPTED 1
*LL
•TOTALS
TFEED
XYLDVSL
R8ELCT
XBTUVSL
•FROVER
*II
1 I
6 R
155«R
344«R
445 R
452 I
*TOTAL1
*TOTAL4
RPROD
CFALL
*FCOAL
•FRAC2
*J
*A
2 R
7 R
156«R
176MR
373 R
377 R
446 I
453 R
•TOTAL2
•FCOVER
• NC
tPRPROD
*FCC
BRATIO
•NFALL
*FCR
3 R
10 R
157 I
341 R
374 R
4000R
447 I
454 R
*YDUMHY
*K
•FCUNDR
CPROD
*KBSG
CSELCT
*R2
*FROCK
4 R
11 I
160 R
342KR
375 I
415«R
450 R
455 R
*NS
RFAUL
B
*BRK
*XDUMMY
•HOLE
•FRUNDR
• DIAM
5 I
12«R
161«R
343 R
376 R
444 R
451 R
456 R
-------
ROTARY ROTARY,Fa
FORTRAN V.5A(563) /KI 6-OCT-77
12130 PAGE 1-7
•FRAC1
*R1
LENGTH
•NGRAV
TEMPORARIES
,80021
,80026
.80013
,80062
,80001
,80051
,80053
,80057
,80044
,80031
,80036
457 R
464 R
471 R
476 I
503
510
515
522
527
534
541
546
553
560
565
•RATIOS
*FRC
•L
*PRR
460 R
465 R
472 I
477 R
.80022
.80027
,80060
,80016
,80002
.80005
.80007
.80040
,80045
.80032
.80037
504
511
516
523
530
535
542
547
554
561
566
*NSIZE
*HGT
*8UM2
*FCPROD
.80023
.80010
.80014
.80063
.80003
.A0016
.80054
.80041
.80046
.80033
.80020
461 I
466 R
473 R
500 R
505
512
517
524
531
536 >
543
550
555
562 I
567 I
LINE NUMBER/OCTAL LOCATION MAP
0123
SIZE
*TEMP
*I
• SUM1
.30024
.80011
.80061
.80017
.80050
,80052
.80055
.80042
,80047
.80034
,00000
462«R
467 R
474 I
501 R
506
513
520
525
532
537
514
551
556
563 I
570 1
*C2
BTU
*C1
*NN
463 R
470«R
475 R
502 I
,30025
.80012
.90015
.80000
,80004
,80006
,80056
,80043
.80030
,80035
507
514
521
526
533
540
545
552
557
564
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00260
52
137
227
314
376
443
517
600
74J
1045
1126
1167
1254
1357
•
•
1476
•
1572
1633
1676
2022
2100
0
54
143
m
324
177
444
522
614
743
1046
1130
1172
1266
1366
•
1440
1500
•
1601
1637
1705
•
2102
55
147
242
330
400
450
525
631
752
1062
1136
1200
1275
1370
•
•
»
1533
1615
•
1714
2036
2104
61
150
•
334
404
454
531
632
763
1070
1140
1212
1304
1374
•
1442
1513
1534
*
1644
1723
•
2105
33
•
166
255
337
410
455
535
655
767
1100
1141
1220
1311
1376
•
1445
1516
1535
•
1650
1724
2052
2115
37
100
171
261
315
Oil
465
500
701
773
HOt
114?
1?22
1316
1012
«
1447
1521
1541
•
1651
174U
205«5
2120
42
111
175
270
351
420
504
546
707
774
1115
1143
1224
1324
1414
»
1453
1524
1543
1617
1655
1764
2061
2127
44
121
203
271
353
427
506
550
711
1012
•1
1150
1230
1332
1420
•
1455
1527
1551
1622
1661
2004
2066
2130
126
211
•
363
436
507
562
723
1027
1124
1152
1234
1333
1422
•
1470
.
1564
1623
1665
2005
2073
2134
50
133
•
312
372
442
513
574
736
1035
1125
1157
1244
1345
•
1436
1472
1531
1570
1627
1672
•
2075
2144
-------
ROTARY ROTARY,
FORTRAN V.5AC563) /KI 6-OCT-77
12130 PAGE 1*6
00290
00300
00310
00320
00330
00340
00350
2147
2220
•
2271
2315
2365
2417
2156
2225
2255
?2T2
2316
2366
2421
2157
2231
2257
2273
2317
2370
2427
2163
2235
2260
2277
2323
2373
2430
2173
2237
2261
2300
2325
2400
2432
2176
»
2?62
2303
2333
2401
2434
2205
2263
2304
2340
2403
2442
2206
2241
2264
2305
2346
2406
2443
2212
2243
2267
2311
2356
2410
»
2216
2251
2270
2312
2360
2412
2445
ROTARY OCTAL PROG SIZEI3367 ( SCALAR8/ARRAYS«502 * TEMPS/CON8«100 * COOE«2«60 » ARGS*105 )
( NO ERRORS DETECTED )
COMMON«I«OU
60
(O
-------
SCREEN SCREN1.F4
FORTRAN V.5A(563> /KI 6-OCT-77
12131 PAGE i
co
co
00001
00002
00003
00004
00005
00006
00007
ooooa
00009
oooto
OOOlt
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00036
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE SCREEN(L,SCSZ,SIZE,NglZE.NGRAV,FEED,SOVER.FOVER,
1 SUNDER,FUNDER,YLDVSL,BTUVSL,BTU,KBSG)
>**********************************************************************<
THIS PROGRAM DETERMINES THE HEIGHT DISTRIBUTION AND COMPOSITION OF THE
SCREEN OVER AND SCREEN UNDER STREAMS FOR A GIVEN FEED.
VARIABLES AND ARRAYS APPEARING IN THE SUBROUTINE LIST
IDRV
LEVEL
SCSZ
SIZECI)
NSIZE
NGRAV
FEED(I,J,K)
80VER(I,J,K)
FOVER
SUNDER(I,J,K)
INDICATES IF SCREEN IS MET OR DRY
IDRY«1 FOR DRY SCREEN
IDRY"2 FOR MET SCREEN
INDICATES IF SCREEN IS AN UPPER OR LOWER SCREEN
LEVEL*1 FOR UPPER SCREEN
LEVEL»2 FOR LOWER SCREEN
PROJECTED SCREEN OPENING ,
BOUNDARIES OF COAL SIZE INCREMENTS
NUMBER OF SIZE INCREMENTS
NUMBER OF GRAVITY INCREMENTS
PROPERTIES OF FEED STREAM
PROPERTIES OF OVERFLOW STREAM
OVERFLOW PRODUCT FLOW RATE
PROPERTIES OF UNDERFLOW STREAM
FUNDER UNDERFLOW PRODUCT FLOW RATE
I DESIGNATES SIZE INCREMENT OF COAL
J DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL
K DESIGNATES WEIGHT, ASH, PYRITIC SULPHUR AND TOTAL SULPHUR
(THE WEIGHT COLUMN CONTAINS THE FRACTION OF THE
STREAM IN THE ITH SIZE, JTH GRAVITY INCREMENT)
SYLD(I) • PERCENT OF FEED OF THE ITH SIZE
REPORTING TO THE UNDERFLOW STREAM
COMMON A(9,2,2),C(23),SHID(23),AC(13)
DIMENSION S3Z(13),D1(9),D2(9),D3(9),D4(9)
DIMENSION SIZE(23),FEED(23,10,4),SUNDFR(23,10,4),BTU(4)
1,SOVER(23,10,4)
COMMON /BLK1/ 3FEED(24,5),SCC(24,5),SMO(24,5),SREF(2
-------
SCREEN SCRENl.Fa
FORTRAN V.5A(563) /Kl 6-OCT-77
12131 PAGE 1-1
OOOS7 CALL INT8<8SZ,AC,SCSZ,AA,9) * OIM *
00056 DO 1 I«1,NSIZE
00059 SMID(I)B
-------
SCREEN SCRENI.FO
FORTRAN V.5A<563> /KI 6-OCT-77
12131 PAGE 1-2
00113 90 SFLT(I)«SCCCI|1)
00110 60 TO 60
00115 55 SlNK
00116 60 SFLTCN3)«SFLT(N3)»3FLT(n
00117 8XNK(NS)«SINK(NS)*8INK(J)
00116 65 CONTINUE
00119 RETURN
00130 END
COMMON BLOCKS
/.COMM./CtlJT)
A + 00R
/BLKl/(tl430)
SFEED tOOIR
SMD +J60#B
BTUREC *1050*R
8NRGR +1210KR
sec
3REF
ASHERR
8GRAV
t!70*R
+550*R
+1100*R
+1270KR
8VLO
SFLT
8PE
+ 73*R
+740*R
*1130*R
»1320*R
AC
TYLO
SINK
SIMP
+122KR
+770KR
+1160«R
+1350WR
EFFIC
SMISPL
SEA
+1020»R
»1210«R
+1400HR
60
en
SUBPROGRAMS CALLED
INT3 SDSIZE EXP.
8CALAR8 AND ARRAYS I "»" NO EXPLICIT DECLARATION - "%" NOT REFERENCED - "«* SUBSCRIPTED 1
oa
D3
*FUNDER
01
SIZE
*L
16MR
HZ R
0 62
5
•
•
•
•
3a
64
6
•
•
•
•
36
66
7
m
m
m
m
37
100
8
.
•
•
•
45
102
9
•
•
•
•
53
104
-------
SCREEN SCREN1.F4
FORTRAN V,5A(56J) /K! 6-OCT-77
12131 PACE 1-3
00060
00070
oooeo
00090
00100
00110
00120
112
154
251
354
412
451
477
114
166
265
573
010
454
us
170
301
402
420
456
116
176
430
463
117
202
310
432
465
206
314
036
066
126
220
320
000
m
070
133
234
326
OQ6
•
473
143
242
335
410
406
475
146
250
336
450
SCREEN OCTAL PROG size«677 t SCALARS/ARRAYSHIO «• TEMPS/CONSSSI * CODEBSIO +
{ NO ERRORS DETECTED )
COMMON«1567
-------
3DSIZE SDSIZl.Ffl
FORTRAN V.5A(563) /KI 6-OCT-77
12153 PAGE i
co
-I
00001
00002
00003
00000
OOOOS
00006
00007
00008
00009
OOOtO
00011
00012
00013
00014
00015
00016
00017
00016
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
10
SUBROUTINE SDSIZE
15 CONTINUE
DO 21
DO 20 K«2,4
SUM(IlK)BSUM(I,K)tlOO.*FLOM(IrJ,l)*PLOH(I,J|K)
20 CONTINUE
8UM
-------
03
00
SDSIZE SDSIZI.F4
FORTRAN V.5A(563) /KI 6-OCT-77
12153 PAGE 1>1
LINE NUMBER/OCTAL LOCATION MAP
00000
00010
00020
00030
0
32
120
204
1
0
37
131
•
2
40
137
220
3
13
44
140
•
4
16
54
152
222
5
17
5S
156
6
24
76
170
7
.
77
171
8
25
•
176
9
31
115
202
8DSIZE OCTAL PROG SIZE«255 [ SCALARS/ARRAYSal1 » TEMPS/CON3H4 * CODE»225 t APGS«J )
( NO ERRORS DETECTED )
END USERI BAUGHMAN (10,110021) JOB I HAIN1 8EOt 11933 FINIsHEDi 06-OCT-77 13136 PAGESl 94 SVSTEMi B
»****»**•»»**»•****»*************************<
-------
SEP
SEPI.F4 FORTRAN V.5A(563) /KI 6-OCT-77
12133 PAGE 1
09
CO
ooooi
00002
00003
00004
oooos
00006
00007
ooooa
00009
00010
OOOil
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
0002S
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00036
00039
00040
00041
00042
00043
00044
0004S
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
SUBROUTINE 3eP(PEED,CCiREF, MID, SIZE, GRAV,GBOUND,S6XX,YLDCC,YLDMIO,
1 VLPREr,N3!ZE,NGRAV,LV,NCOMP,YUDV8L,BTUV3L,BTU,KBSG)
***********************************************************************
»***
THIS SUBROUTINE DETERMINES THE HEIGHT DISTRIBUTION AND COMPOSITION OF THE
CLEAN COAL AND THE REFUSE FOR A GIVEN FEED ENTERING A SPECIFIED VESSEL
AT A GIVEN OVERALL SEPARATION GRAVITY
PRINCIPAL ARRAYS AND VARIABLES
FLOW STREAMS
FEfD(I,J,K) PROPERTIES OF THE FEED STREAM
CC(I,J,K) PROPERTIES OF THE CLEAN COAL
REF(I,J,K) PROPERTIES OF THE REFUSE
MlD(I,J,K) PROPERTIES OF THE MIDDLINGS (JIG ONL»)
SIZE(I) BOUNDARIES OF COAL SIZE INCREMENTS
GBOUND(J) BOUNDARIES OF SPECIFIC GRAVITY INCREMENTS
GRAV(J) SPECIFIC GRAVITIES
I DESIGNATES SIZE INCREMENT OF COAL
J DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL
K DESIGNATES WEIGHT, ASH, PYRITIC SULFUR AND TOTAL SULFUR
(THE HEIGHT COLUMN CONTAINS THE FRACTION OF THE ENTIRE
STREAM IN THE ITH SIZE, JTH GRAVITY INCREMENT)
NSIZE NUMBER OF SIZE INCREMENTS OF COAL
NGRAV NUMBER OF SPECIFIC GRAVITY INCREMENTS OF COAL
GENERAL
R(I1,L) • RATIO OF SEPARATION GRAVITY FOR A GIVEN SIZE DESIGNATION
THE OVERALL SEPARATION GRAVITY
3(11, L) « BOUNDARIES OF SEPARATION CURVE SIZE INCREMENTS
N(L) 9 NUMBER OF SIZES FOR EACH VFSSEL
11 a DESIGNATES SIZE INCREMENT OF SEPARATION CURVE
L • DESIGNATES TYPE OF VESSEL
Lll FOR CONCENTRATING TABLE
H2 FOR DENSE-MEDIUM VESSEL
Ln3 FOR DENSE-MEDIUM CYCLONE
L*4 FOR HYDROCYCLONE
US FOR SINGLE-STAGE BAUM JIG
L»6 AND L»7 FOR 2. STAGE BAUH JIG
L»8 FOR FROTH FLOTATION CELL
8G8P • OVERALL SEPARATION GRAVITY
YIELD • HEIGHT FRACTION OF FEED TO CLEAN COAL
*************************************************** ********************!
A**********************************************************************'
NOTEl THE CURRENT VERSION OF THE SIMULATOR DOES NOT USE THIS SUBROUTINE
FOR FROTH FLOTATION CALCULATIONS (SEE SUBROUTINE FROTH)
•A*********************************************************************!
DIMENSION FEED(23,10,4),CC(23,10i4),RFF(23,10,4),MlD(23,10,«), *
1 SlZE(23).GRAV(10),GBOuND(in,BTU(4) *
COMMON XFEEDOO,10),XCC(10,10),XMIO(10,JO),SCMWT(20),SCMASH(20)*
DIMENSION RC10,8),S(10,8) *
COMMON FACTOR(IO),N(8) *
COMMON /BLK1X 8FEEO(2fl,5) , SCC (2
-------
SEP SEPl.FO FORTRAN V.5A(563) /KI 6-OCT-77
12133 PAGE t-l
00057 1 8YLD<24),TYLD(24),EFFIC(24),BTUREC(24),ASHERR<24), * DIM *
00058 2 SFLT(24),SINK(24),SMISPLC24),5NRGR<24),SGRAVC24), * DIM »
00059 3 SPE(24),3IMP(24),SEA(?4) * DIM »
00060 COMMON /BLK2/ DI8TRB(24,10) * DIM *
00061 REAL HID
00062 C **• A CHANGE IN THE SIZE OF N MILL AFFECT THE FOLLOWING CARD * DIM *
00063 DATA N / 8,6.7,8,8,5,8,2 /
00061 C *** A CHANGE IN THE SIZE OF R MILL AFFECT THE FOLLOWING 8 CARDS * DIM *
00065 DATA R / .966, .994, .974, .970,1.028, 1 .126,1,212,1.,2*0., TABLES
00066 1 .969,.961,.993,1.01,I,031,1.,4*0., DMV
00067 2 .995,.989,.991,.999,1.019,1.0«2,1.,3*0., DMC
00068 3 .810,,642,.861,.956,1.074,1,199,1.16?,!.,2*0., HC
00069 4 .940,.953,1.007,1.061,1,040,1.081,1.302,1.,2*0., JIG-OV
00070 5 1.074,1.094,1.161,1.282,1.262,5*0., JIG-PR
00071 6 .946,.966,1.047,1.134,1.060,1.107,1.336,1.047,2*0., JIG-SEC
00072 7 !'.,!,,6*0. / FF
00073 C **• A CHANCE IN THE SIZE OF S MILL AFFECT THE FOLLOMING 8 CARDS * DIM *
00074 DATA S / 100.,.25,.093,,046,.0232,.0116,.0058,3*0,, TABLES
00075 1 100.,.4.,2.,I,,,5,5*0., DMV
00076 2 100.,.5,.375,.25,.093,.046,4*0., DMC
00077 3 100,,.185,.093,.046,.0232,.0116,,0058,3*0., HC
00078 4 100,,3.,1,625,.5,.25,.093,.046,3*0., JIG-OV
00079 5 100.,3.,1.625,.3,6*0,, JIG-PR
00060 6 100.,3.,1.625,.5,.25,.093,.046,3*0., JIG-SEC
00061 7 100.,9*0, / FF
00082 L«LV
00083 SG8P«3GXX
00084 KCOUNT»1
00065 IF (LV.EQ.6) L«5
00086 IF (LV.NE.7) GO TO 100
00067 LuB
00066 SGSPB1.5
00069 100 N3«NSIZE»1
00090 NG«NGRAV*i
00091 C TEST FOR COMPOSITE FEED
00092 1000 IF (NCOMP.NE.O) GO TO 40
00094 C TRANSFORM FROM HEIGHT DISTRIBUTION BASED UPON SIZE INCREMENTS OF FEED*** ****!
00095 C TO HEIGHT DISTRIBUTION BASED UPON SIZE INCREMENTS OF SEPARATION CURVES *
00096 C A*****************************************************************************
00097 DO 1 Il«l,10 * DIM *
00096 DO 1 J«l,10 • DIM *
00099 XFEED(I1,J>«0.
00100 XCC(I1,J)«0,
00101 1 XHTD(I1,J)*0.
00102 NF«N(L)-l
00103 DO 16 11*1,NF
00104 C FIND SMALLEST SIZE(I) THAT IS GREATER THAN QR EQUAL TO 8(11,L)
00105 DO 2 I«1,N3
00106 IF (SIZECn.GT.Sai,L)) GO TO 2
00107 IMIN«I-1
00108 IF (8IZEU).EQ,S(I1,L)> IHINvI
00109 GO TO 3
00110 2 CONTINUE
00111 IMINBNS
00112 3 IF ((IMIN.EQ.O).AND.(SIZE(l).LE.3(11*1,L))) GO TO IS
-------
SEP 8EP1.F4 FORTRAN V.3A(563) /KI 6-OCT-77
12133 PACE 1-2
00113
ooii4
00115
00116
00117
00118
00119
00120
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00134
00135
00137
00130
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
IF (IMIN.EQ.NS) GO TO 18
c FIND LARGEST sized) THAT is LESS THAN OR EQUAL TO suui.u
DO 4 I«l,NS
IF (8IZE(I).GT.3CI1+1,L)> GO TO 4
IMAX-I
GO TO 3
4 CONTINUE
S IF (fIMAX.EQ.N8tl).AND.lFEED(IHIN,)M).C8IZEdHTN*l).S(Il,L))/«(S(IU1,L).SIZE(IMAX.1))/
2 (8IZE(IMAX).SIZE(IMAX-1))
IF (NINT.EO.O) GO TO 17
DO 7 IIll,NINT
7 XFEEO(Il,J)iXFEED(n,J)+FEED(IJ,J,n
GO TO 17
C CASE 2 • LEFT BOUNDARY .IT. S(IUL)
8 IF (NINT.GT.O) GO TO 9
XFEEO(Il,J)iFEED(IMINtl,J,l)*(8(Il+t,L).3IZE(IMIN+l))/(SIZF(IMAX).
1 8IZECIMIN*!))
GO TO 17
9 XFEED(Il,J)iFEED(IMIN+l,J,l)+FEED(IMA».l,J,l)*(SCn»l,L)-
1 6!Ze(IMAX-l»/(SIZE(IMAX)»SIZE(IMAy.1))
IF (NINT.E0.1) GO TO 17
00 10 III2.NINT
( IMAx«NSIZE*l)
10 XFEEO(n,J)iXFEEO(Il,J)*FEED(U,J,ll
GO TO 17
C CASE 3 - RIGHT BOUNDARY ,GT. SUU1.L}
11 IF (NINT.GT.O) GO TO 12
1 SIZE(IMIN))
GO TO 17
12 XFeED(Il,J)iFEED(IHlN,j,i)*(SI7EdMTN«j)-S(Il,L))/(SIZE(IMIN*n-
1 8!ZFClHIN))»FEED(IMAX.2,J,i)
IF (NINT.EQ.l) GO TO 17
NJNT'NINT.I
DO 13
13 XFEEOdl,J)iXFEED(M,J)fFEEDdJ,J,n
GO TO 17
-------
SEP 8EPI.F4 FORTRAN V.5A(563) /KI 6-OCT-77
12133 PAGE 1-3
00169
00170
00171
00172
00173
00174
0017S
00176
00177
00176
00179
00180
00161
00162
00163
00164
0016S
00166
00187
00166
00169
00190
00191
00192
00193
00194
00195
00196
00197
00196
00199
00200
00201
00202
00203
00204
00205
00206
00207
00206
00209
00210
00211
00212
00213
00214
00215
0021*
00217
00216
00219
00220
00221
00222
00223
00224
C
C
C
C
C
C
C
C
C
C
C
CASE 4 - LEFT BOUNDARY .IT, 8CI1»L> AND RIGHT BOUNDARY ,GT. 3(11*1,1)
(IMIN«0 AND IMAX«NSIZE»1)
14 IP (NINT.CT.l) GO TO 15
XFEEDCIl,J)iFeED
21 FF>Y1*XFEED(I1»J)
XI6RAV(J)/(R(II,7)*3GSP)
22 XHID(I1|J)»(1,-Y(X,7,IX))*FF
I********************************
TRANSFORM FROH HEIGHT DISTRIBUTION BASED UPON SIZE INCREMENTS OF SEPARATION
CURVES TO HEIGHT DISTRIBUTION BASED UPON SIZE INCREMENTS OF CLEAN COAL
23
DO 24 111,23
DO 24 Jal,tO
cc(i.j,n«o.
DIM *
DIM *
24 REF(I,J,1)«0.
DO 32 I«l,N8IZE
C FIND SMALLEST 8(11, L) THAT IS GREATER THAN OR EQUAL TO SIZE(I)
DO 25 Il«l,NL
IF (8(U,L).GT.8IZE(I)) GO TO 25
IMlNHl-1
IF (8(I1,L).EQ.3IZE(I)) IMIN«ll
GO TO 26
25 CONTINUE
INlNnNL
26 IF CUMIN, EQ.O). AND. CSU,L).LE.3IZE(I»1)M GO TO 32
-------
SEP
SEP1.F4 PORTRAN V.5A(563) /KI 6-OCT.77
12133 PAGE 1-4
00225
00226
00227
0022S
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
002SS
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
IF (IMIN.EQ.NL) GO TO II
c FIND LARGEST scn»u THAT is LESS THAN OR EQUAL TO SIZECI+U
DO 27 Ilil.NL
IF (SCIUU.GT.SIZECItin GO TO 27
IHAX'Il
00 TO 26
27 CONTINUE
IM*X«NL+1
28 IF (UMAX. EQ.NL+1). AND. -S*CF1«XCCCIMIN,J)/XFEED(IMIN,J) +
1 F2*XCC(IMAX-l,J)/XPEEDUMAX-i»J»
1 F2*XMID(IMAX-1,J)/XFEEDUMAX-1,J))
IF (NINT.EO.O) GO TO 31
DO 30 II«1,NINT
IJ«IMIN*II
P3«(8CIJtl,L)-S(IJ,U)/(SIZEU*l>-8IZEUn
CC(I,J,1)«CCU,J,1)*FEEDU,J,1)*F3*XCCUJ,J)/XFEEDUJ,J)
MID(I,J, 1)"MIDU,J,1)+FEEDU,J,1)»F3*XMID(IJ,J)/XFEEO(IJ,J)
30 CONTINUE
31 CONTINUE
32 CONTINUE
GO TO 44
**********
C COMPOSITE SEPARATION
C
40 NL«NCL>
DO 420 1*1,23
DO 420 J«l,10
420 MIO(I,J,1)«0.
DO 41 Jil,NGRAV
X«GRAV(J)/SGSP
41 CC(1,J,1)*Y(X,L,NL)*FEED(1,J,1)
IF (LV.NE.6) GO TO 44
C SPECIAL PROVISION FOR 2-STAGE BAUM JIG
42 DO 43 J*1,NGRAV
X1«GRAV(J)/(R(5,6)*SGSP)
FF«Y(X1,6,?)*FEED(1,J,1)
X2«GRAV(J)/(R(8,7)*SGSP)
MID(1,J,1)«(1.-Y(X2,7,8))*FF
43 CONTINUE
DIM
DIM
-------
SEP
SEPI.F4 FORTRAN V,5A(S63) /KI 6-OCT.77
12133 PAGE 1-5
00261
00282
00263
00264
00265
00266
00267
00266
00289
00290
00291
00292
00293
00294
0029S
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00326
00329
00330
00331
00332
00333
00334
00335
00336
C **•«***••***.********»**********»********•••******»****•****•*****••»***»»**»*•
C CALCULATE DISTRIBUTION DATA, ASM AND SULFUR CONCENTRATIONS, YIELD, *
C SEPARATION fiRAVITYi PROBABLE ERROR AND IMPERFECTION «
C ****•.•.*»**»****•.•****************»*****•** ************************************
44 SUMHO.
SUM2«0.
SUM3-0.
DO 49 HI,N3IZE
00 45 J«1,NCRAV
REP(I«J»1)»FEED(I,J,1)-CC(I,J,I)-HIO(I,J,1)
IP
-------
SEP
8EP1.F4 FORTRAN V.5A(563) /KI 6-OCT-77
12133 PAGE 1-6
00337
00338
00339
00340
00341
00342
00343
00344
IF(AB3C8GXX-SGRAV(N3)).LE. 0.003) 60 TO 454
IF ((KCUUNT.EU. 20). ••>:.•. (L.?u.d)) J3 TJ -l'j-1
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
KCOUNT • KCOUNT *i
00 TO 1000
c NORMALIZE HEIGHT FRACTIONS IN EXIT STREAMS
QS4 DO 46 IU,N3IZE
DO 46 J«1,NGRAV
cc(i,j,n«cc(i»J,n/8UMi
REF(I,J,1)«REF(I,J,D/SUM2
IF (8UM3.EQ.O.) GO TO 46
MIO(I,J,1)»HIDU,J,1)/SUH3
46 CONTINUE
C DEBUG STATEMENTS
WRITE(6,999) KCOUNT,SGXX,5GSP,3GRAV(NS)
999 FORMAT(1HO,5X,IKCOUNT« >,I2,SX,ISGXXX,F5.3,5X
l,'8G8P«',F5.3,SX,t3GRAV(NS)|i,F5.J)
IF (KB8G.EO.O) RETURN
C ***<
C CALCULATE SUMMARY DATA BY SIZE INCREMENTS
C
CALL SOSIZE(FEED,3FEED,BTU,NSIZE,NGRAV)
CALL 8DSIZE(CC.SCC,BTU»NSIZE,NGRAV)
CALL SDSIZE(R£F,SREF,BTU,NSlzE,NGRAv)
CALL 8D3IZE(MIO,SMIO,BTU,N8IZE,NGRAV)
DO 49Q I»1,NSIZE
3YLD(I)«100.*3UMl*8CC{I,l)/SFEED(I,t)
490 CONTINUE
SYLD(N3)»100.*YLDCC
C CALCULATE THEORETICAL RECOVERY, WEIGHT EFFICIENCY, BTU RECOVERY AND
C ASH ERROR
DO 51 Ill,NSIZE
8CMHT{1)«0.
SCMASH(1)IO.
DO 500 J*2,NG
JHJ-1
3CMMT(J)»0.
8CMA8H(J)iO.
DO SO K»1,J1
8CMHT(J)iSCMHT(J)fl.Et4*FEED(I,K,l)/3FEED(I,l)
50 8CMA8H(J)«SCMASH(J)+100.*FEED(I,K,l)*FEEO(I,K,2)
SCHA8H(J)«1.E+«*8CMASH(J)/(SCMWT(J)*SFEEO(I,U)
IF (8CMASH(J).LT.SCMASH(J.l)) SCMA3H(J)BSCMA8H(J-l)
500 CONTINUE
TYLD(I)«VINTRP(SCMASH,SCMWT,SCC(I,2l,NG)
IF {TYLD(I).GT.O.) EFFIC(I)«tOO.*SYLO(I)/TYLD(I)
BTUREC(I)«100.*YLDCC*SCC(Iil)*3CC(1,5)/(SPEED(I,IjtSFEED(1,5))
A3HERR(I)lSCC(I,2)-YINTRP(SCMHT,8CMA8H,SYLD(I),NG)
51 CONTINUE
3CHHT(l)«0.
8CHA8H(1)«0.
DO 520 J«2,NG
J1«J-1
SCMMT(J)«0.
SCMA8H(J)BO.
DO 5? K*1,J1
* DEBUG *
* DEBUG *
* DEBUG *
* DEBUG «
-------
SEP SEPI.F4 FORTRAN V.5AC563) /KI 6.OCT.77
12133 PACE 1-7
00393
00394
00395
00396
00397
00398
00399
00000
00001
00402
00003
00004
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00022
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00047
00448
00 52 I«1,NSIZE
3CMHT(J)BSCMWT(J)+100.*FCEO(I,K,n
52 3CMA8M{J)pSCMA8H(I»K,2)
$CHASH(J)ilOO.*SCHASH(J)/$CHMT(J)
If (8CMA8H(J),LT.3CM*SH(J-1J) SCMA3H( J )«SCMASH< J-l )
520 CONTINUE
TYLD(N8)iYlNTRP(3CMASH,SCMnT,5CC(N3,2),NG)
IP (TYLD(NS).GT.O.) EFFIC(NS)alOO.*SYLD(NS)/TYLD(NS)
eTtlREC(N3)BlOO.«YLDCC*3CCCNS,l)*SCCfNS,S)/,NG)
C CALCULATE FLOAT IN REFUSE, SINK IN CLEAN COAL, TOTAL MISPLACED
c MATERIAL AND NEAR GRAVITY o.to MATERIAL
S3 00 57 Iil,N3IZE
SG1«SGRAV(I)-0.1
3G2«8GRAV(I)
3GS»3GRAVCn»0.1
SFLT(plO.
SINK(I)«0.
8MI3PL(I)»0.
3NRGR(I)«0.
DO 56 J«1,NGRAV
IF (3G2.GT.G80UND(J)) GO TO 54
SMlSPL(I)"SMI3PL(I)*l.E+«*SUHi*CC(I,J,l)/SFEEO(I,n
GO TO 56
54 IF (8G2.LT.GBOUND(Jtl)) GO TO 55
SFLT(I)lSFLTmtl.E+4*REF(!,J,l}/$REF(I,l)
SMT3PL(I)«SMI$PL(I)*t.E*4*3UM2*ReF(T,J,l)/3FEED(I,l)
GO TO 56
55 F«(SG2>GBOUND(J))/(GBOUND(J+1)-GBOUND(J))
SFLT(I)l3FLT(I)+l.E+4*F*REF(I,J,l)/SREF(I,l)
3INK(I)i3INK(n*l.E+0*(l..F)*CC(I,J,n/SCC(I,n
3MI3PL(I)«3MI3PL(I)»l.E+fl*(F*SUM2*RFF(I,J,n+(l,-F)*SUMl*
1 CC(I,J,m/SFEED(I,l)
56 CONTINUE
DO 57 Jll,NGRAV
IF ((SGl.GT.OBOUND(J*n).OR.(SG3.LT.OBOUND(J))) GO TO 57
FBI.
IF ((3Gl.GE,GBOUNO(J)).AND.(SG5.LE.GBoUND(J+n))
1 F«(8G3-3GU/(GBOUND(J*l)-GBOUNO(J))
IF ((3Gl.LT.GBOUND(J».AND.(SG3lLE.GBOUNO(Jtl)))
1 F«(8G3-GBOUND(J))/(GBOUNO(J*1)-GBOHND(J))
IF ((SG1(GE*GBOUND(J)).AND.(SG3.GT.GBOUND(J«1)))
1 FB(GBOUND(J+1)-3G1)/(GBOUNOCJ*1)-GBOIIND(J»
8NRGR(I)«SNRGRCI)+l.E+0*F*FEED(I,J,1)/3FEEDU,t)
57 CONTINUE
8Gl«8GRAV(N3)-0.1
869l8GRAV(NS)
3G3l8GRAV(N3)t0.1
SFLT(N8)IO.
8INK(N8)»0.
SMI3PL(N3)»0.
3NRGR(N3)«0.
DO 63 J«1,NGRAV
-------
SEP
SEPI.F4 FORTRAN V.5A(563) XKI 6-OCT.77
12133 PAGE 1-6
00449 IP (8G2.GT.GBOUND(J)> GO TO 59
00450 00 SB Ill,N3IZE
00451 8INK(N8)«5INK(NS)+100,*CCCI,J,n
00452 58 8Ml8Pl(N8)«SMISPL(NS)tlOO,*8UMl*CCCT,J,l)
00453 60 TO 63
00454 59 IF GO TO 61
00455 DO 60 Iil,N3lZE
00456 8FLT(N8)iSFLT(N8)*100,*REF(I,J,l>
00457 60 8MlSPL(N8)«3MI3PL(NSH100.*SUM2*REIrU,J,n
00458 00 TO 63
00459 61 F«(SG2-GBOUND(J))/(GBOUND(J+1)-GBOUND(J))
00460 DO 68 Iil,N3IZE
00461 8FLT(N8)«SFLT(NS)»tOO.«F«REF(I.J.n
00462 S1NK(NS)=SIMK(MS)*100.«(1.-F)*CC(I,J/1>
00463 62 8Ml8PL(N3)«SHI8PL(NS)+100.*(Fi8UM2*REF(I,J,l)»(l..F)*8UMl*
00464 1 CC9,2
00492 3UHl*8UMU2.*YlNTRP(GRAV,FACTOR,GBOUND(nt(K»n*Dxl,NGRAV)*DXl/3,
00493 68 8UM2«8UM2+2.«YINTRP(GRAV,FACTOl',8GR*V(I)»(K-|)«DX2,NGR»V)*DX2/3.
00494 69 8CA(I)l5.*(100.*(SGRAV(I).GBOUND(in-SUMltSUH2)
00495 BTUV8L«BTUREC(NS)
00496 YLOV8L«3YLO(N3)
00497 RETURN
00498 END
COMMON BLOCKS
/,COMM./(tS46)
XFEED +0*R
XCC
*ia«#R
t310«R
8CMWT
3CMASH
tSOO*R
-------
SEP
SEP1.F4 rORTRAN V,5A(563) /KI 6-OCT-77
12133 PAGE 1-9
FACTOR
*524*R
/BLK1/CM430)
SPEED tO#R 8CC
SYLD »740*R TYLD
SPIT +1130NR SINK
SPE +13200R SIMP
/BLK2/C+360)
OISTRB +0#B
+536*1
»170*R
»770*R
*1350*R
SHIP
EFF
SMI
SFA
+3bO«R
*1020*R
+1210»R
+ 1
-------
SEP
8EPI.F4 FORTRAN V.5A(563) /KI 6-OCT-77
12|33 PAGE 1-10
LINE NUMBER/OCTAL LOCATION MAP
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
ootoo
00110
00120
00130
00140
ooiso
00160
00170
ooieo
00190
00200
00210
00220
00230
00240
00250
00260
00270
00260
00290
00300
00310
00320
00330
00340
00350
00360
00370
00360
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
0
70
105
162
222
272
373
•
550
•
710
746
1000
1051
1122
1172
1233
•
1476
1525
1614
1631
1763
2056
2140
2225
2273
«
2352
2400
2454
2526
2606
2646
2711
3015
3126
3153
3242
•
3434
3522
1
0
111
164
225
•
375
474
S51
627
713
753
1007
1054
1134
1173
1242
1367
1501
1587
•
1647
1777
2065
?147
?234
2274
23S7
?354
2401
2457
2530
2614
»647
2722
3025
3131
3155
3244
3350
3441
3541
2
47
73
121
166
241
300
400
477
•
632
•
•
1012
1055
1135
1175
1251
•
1504
1534
m
1662
2013
2072
2161
2241
•
•
2356
2406
2465
2531
•
2650
2733
3027
3133
3165
3255
•
3446
3543
3
50
•
125
177
•
304
«13
502
601
643
»
756
1020
1062
1137
1200
1255
1415
•
1550
•
1670
2022
2102
2172
2251
2275
•
2360
2410
2473
2535
2624
2651
2734
•
3135
3177
3265
3370
3450
3560
4
1
44
505
604
644
•
761
1030
1067
1141
1214
1261
1417
•
.
m
1676
2026
2105
2175
2253
2301
2344
2365
2412
2503
2537
•
2652
2744
30«7
3137
3200
•
-
3457
3577
5
53
•
131
202
250
330
4]4
520
6A6
662
716
764
•
1100
115P
•
1?76
1421
•
1553
1616
1704
2030
2111
?177
2?S5
2303
•
2367
2413
2512
2547
•
2654
2755
•
Stun
3?05
3310
3«in
316?
3615
6
57
_
134
205
•
331
416
•
610
665
722
770
•
»
•
1217
1314
1424
1505
1555
1617
1722
2040
2114
2207
•
2312
.
-
2415
2515
2564
2633
2661
2767
3067
3141
3207
3313
3412
3471
3620
7
il
75
144
215
252
•
•
521
613
667
723
771
•
1104
1155
1223
1315
1437
1510
1564
1620
1734
2044
2115
2213
2257
2321
•»
•
2427
2516
2571
2637
2672
*
•
3142
3217
3317
3425
3476
*
a
63
too
147
217
256
m
443
523
626
672
725
773
.
1107
1160
•
1330
1455
1513
1573
1621
1746
2047
2117
2216
2264
2323
2346
2373
2441
2517
2575
2642
2703
3011
3107
3143
3231
3326
•
3503
3622
4
65
101
161
220
264
371
444
•
•
675
737
775
1046
1117
1170
1225
1343
1474
1514
1602
1625
1747
2052
2130
2221
2270
2332
2350
2377
2450
2524
2600
2644
2704
3013
3121
3147
3232
3330
3430
3505
-------
3EP OCTAL PROG 8IZEi«S«S I 8CALARS/ARRAYS-336 * FORMATS*!? » TEMPS/CONS"!II + CODE«36«3 t A»G3B21« 1 + COMMON»255b
t NO ERRORS DETECTED 1
-------
SPLIT SPLITI.F4
FORTRAN V,5A(563) /KI 6-OCT-77
12131 PAGE 1
00001
00002
00003
00004
00005
OOOOb
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00016
00019
00020
00021
00022
00023
00024
0002S
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
1
1
C ****<
C THIS
C DIST
C
c f REI
c ****
i
i
i
2
3
1
C ****
C CALC
C ***«
2
10
SUBROUTINE SPLIT(FEED,PRODI,PROD2,BTU,YLD1,YLD2,D1,NSIZE,NGRAV,
YLDVSL,BTUV8L«KBSG)
*O*******Ot*****************************»***************************i
THIS SUBROUTINE CAUSES A FLOHSTREAM (FEED) TO BE SPLIT INTO TWO
DISTINCT FLOHSTREAMS (PRODI AND PROD2) HAVING THE SAME COMPOSITIONS
REPRESENTS THE FRACTION OF FEED GOING INTO PRODI
***********M**************************A*******************************!
DIMENSION PEED(23,10,4),PROD1(23,10,4),PROD2(23,10,4),BTU(, DIM
SYLD(24),TYLO(24),EFFIC<2<»),BTURECC24),ASHERRC24), DIM
3FLT(2a),SINK(2a),SMI3PL(24),5NRGR(2«),SGRAV(24), DIM
SPE(24),8IMP(24),SEA(24) DIM
DO 1 I>1,NSIZE ;
DO 1 J*i,NGRAV
DO 1 Kit,4 * DIM *
PRODKI,J,K)»FEED(I,JfK)
PROD8(I,J,K)BFEED(I,J,K)
1 CONTINUE
F«.01*01
YLOt«F
YLD2«1.-F
IF (KB8G.EO.O) RETURN
*******************o*********»i^**********************************»»*****
CALCULATE SUMMARY DATA BY SIZE INCREMENTS *
A*****************************************************************************
NS»N8IZE*1
00 2 K«l,5 * DIM *
SFEEO(NS,K)«0.
CALL SDSIZE(FEED,SFEED,BTU,NSIZE,NGRAV)
DO to I«1,N3
DO 10 K»l,5 * DIM *
3CC(NS,K)iSFEED(NS,K)
10 SREF(N3,K)»SFEED(N5,K)
YLDVSL'Dl
BTUVaL«100.*SCC(NS,5)/SFEEO(NS,5)
RETURN
END
COMMON BLOCKS
/BLKl/(+1430)
SFEED +0#R
TYLD *770l»R
SINK tll60*R
SIMP »1350*R
3CC +170«R SMlD +360#R SREF +550«R 3YLD +740«H
EFFIC *io2o*R BTUREC *IOSO*R ASHERR *UOO*R SFLT +ii30«R
SMISPL »1210*R 3NRGR «1240»R SGRAV *1270»R 3PE «1320»R
SEA +14000R
SUBPROGRAMS CALLED
3DSIZE
-------
SPLIT SPLIT1.FO
FORTRAN V.SACS63) /KI 6-OCT-77
12131 PAGE 1-1
8CALAR3 AND ARRAYS t "** NO EXPLICIT DECLARATION - "X" HOT REFERENCED - "#» SUBSCRIPTED 1
•YLD1
*KBSG
BTU
*NBRAV
TEMPORARIES
.80000
,80005
t R
6 I
I30R
20 I
22 I
27 I
*NS
*BTUV3L
PROD2
PRODI
.80001
.A0016
2 I
7 R
14«R
21*R
23 I
SO R
FEFD
*J
*I
.30002
3*R
10 I
15 I
24 I
• K
*Dt
*F
.80003
4
11
16
25
I
R
R
I
*YLOVSL
•NSIZE
*YLD2
.80004
5
12
17
2b
R
I
R
I
en
(3
LINE NUMBER/OCTAL LOCATION HAP
00000
00010
00020
00030
0
•
.
101
123
1
0
•
104
129
2
V
•
105
131
3
•
•
110
132
4
•
31
137
5
•
35
•
150
6
41
•
152
7
•
42
112
•
8
•
56
115
157
9
•
7a
116
SPLIT OCTAL PROG SIZE«2«0 t SCAURS/ARRAYS^! * TEMPS/CONSal3 t CODCB176 t ARG8«6 1 t COMMON.1430
( NO ERRORS DETECTED ]
-------
VESSEL VESSEL.
FORTRAN V.5AC563) /KI 6-OCT-77
18132 PAGE 1
01
CO
00001 SUBROUTINE VESSEL(L,N)
00002 C
00003 c THIS SUBROUTINE PRINTS THE NAME OF EACH COAL WASHING UNIT
00004 C *******************************************************»»,!
OOOOS COMMON /SYS/ G.H
00006 INTEGER G,H
00007 100 FORMAT(lHti42X.21H(CONCENTRATING TABLE))
00006 101 FORMATUH*,42X,21H(DENSE-MEDIUM VESSEL))
00009 102 FORMAT(iHt.42X,22H(DEN8E-MEDIUM CYCLONE))
00010 103 FORMAT(1H+,42X»14H(HYDROCYCLONE))
00011 104 FORMAT(lHt,42X,l7H(FROTH FLOTATION))
00012 105 FORMAT(1H*,42X«10H(BAUM JIG))
00013 106 FORMAT(1H+,42X,16H(ROTARY BREAKER))
00014 107 FORMATClH*,«ax,31H(PRIMARY MULTIPLE ROLL CRUSHER))
00015 108 FORMAT(1H*,42X,30H(PRIMARY GYRATORY/JAW CRUSHER))
00016 109 FORMATClHt»42X,29H(PRIMARY SINGLE ROLL CRUSHER)) >
00017 110 FORMAT(lHt,42X»2TH(PRIMARY CAGE HILL CRUSHER))
00018 111 FOHMAT(lHt,42X,33H(SECONDARY MULTIPLE ROLL CRUSHER))
00019 112 FORMAT(lHt,42X,32H(SECONDARY GYRATORY/JAM CRUSHER))
00020 113 FORMAT(1H+,42X,31H(SECONDARY SINGLE ROLL CRUSHER))
00021 114 FORMAT(1H+,42X,29H(SECONDARY CAGE MILL CRUSHER))
00022 115 FORMAT(lHt,42X,18H(DRY UPPER SCREEN))
00023 116 FORMAT(lHt,42X,18H(DRY LOWER SCREEN))
00024 117 FORMATUH+,42X,18H(HET UPPER SCREEN))
00025 118 FORMAT(IH»,42X,1BH(HET LOWER SCREEN))
00026 119 FORMAT(lMi,42X,16H(STREAM BLENDER))
00027 130 FORMAT(1H+,42X,1TH(STREAM SPLITTER))
00028 121 FORMATUHt,42X,i8H(2»5TAGE BAUH JIG))
00029 200 FORMATUH0.57X,19HCONCENTRATING TABLE/)
00030 201 FORMAT(1HO,57X,19HDENSE-MEDIUM VESSEL/)
00031 202 FORMATUHO,57X|20MDENSE-MEDIUM CYCLONE/)
00032 203 FORM*T(1HO»61X,12HHYOROCYCLONE/)
00033 204 FORMAT(1HO,59X,15HFROTH FLOTATION/)
00034 205 FORMAT(lHOt63X,6HBAUM JIG/)
00035 206 FORMAT(1HO»60X,14HROTARY BREAKER/)
00036 207 FORMAT(1HO*52X,29HPRIMARY MULTIPLE ROLL CRUSHER/)
00037 208 FORMAT(lHOr53X»28HPRIMARY GYRATORY/JAW CRUSHER/)
00038 209 FORM*T(1HO,S3X|27HPRIHARY SINGLE ROLL CRUSHER/)
00039 210 FORMAT(1HO,54X,2SHPRIMARY CAGE MILL CRUSHER/)
00040 211 FORMAT(1HO,51X,31HSECONDARY MULTIPLE ROLL CRUSHER/)
00041 212 FORMAT(1HO,52X,JOH8ECONDARY GYRATORY/JAN CRUSHER/)
00042 213 FORHAT(1HOI52X,29H8ECONDARV SINGLE ROLL CRUSHER/)
00043 214 FORMAT(1HO,53X,27H3ECONOARY CAGE MILL CRUSHER/)
00044 215 FORMAT(1HO,59X,16HDRY UPPER SCREEN/)
00045 216 FORMAT(!HO«59X,16HORY COMER SCREEN/)
00046 217 FORMATUHO,59X,16HWET UPPER SCREEN/)
00047 218 FORMAT(1HO,59X,16HHET LOWER SCREEN/)
00048 219 FORMAT(1HO,60X,14HSTREAM BLENDER/)
00049 220 FORHAT(1HO,60X,15HSTREAM SPLITTER/)
00050 221 FORMAT(1HO,59X,16H2«STAGE BAUM JIG/)
00051 300 FORMAT(lHt,24X,21H(CONCENTRATING TABLF))
00052 301 FORMAT(lHt,24X,21H(DENSE-MEDIU" VESSEL))
00053 302 FORMAT(1H+,24X,22H(DENSE-MEDIUM CYCLONE))
00054 303 FORMAT(|Ht,24X,14H(HYDROCYCLONE))
OOOSS 304 FORMAT(lHt,24X,17H(FROTH FLOTATION))
00056 305 FORMAT(1H+,24X,10H(BAUM JIG))
-------
VESSEL VESSEL.Ffl FORTRAN V.5A(563) /KI 6-OCT-77 1ZI32 PAGE 1-1
00057 306 FORMAT(lHt,24X,16H(ROTARY BREAKER))
00058 307 FORMATUHt,24X.31H(PRIMARY MULTIPLE ROLL CRUSHER))
00059 306 FORM.AT(1H+,24X,30HARY MULTIPLE ROLL CRUSHER))
00063 312 FORMAT(lH+,24Xi32H(SECONDARY GYRATORY/JAM CRUSHER))
00064 313 FORMAT(IH+,24X,3IH(SECONDARY SINGLE ROLL CRUSHER))
00065 314 FORMAT(IH+»24X,29H(SECONDARY CAGE MILL CRUSHER))
00066 315 FORMATUH*,24X,18H(DRY UPPER SCREEN))
00067 316 FORMAT(IH+,24X,16H(DRY LOWER SCREEN))
00068 317 FORMAT(1H+,24X»16H(WET UPPER SCREEN)}
00069 316 FORMAT(IH*,24X,18HCWET LOWER SCREEN))
00070 319 FORMATUH*,24X,16H(STREAM BLENDER))
00071 320 FORMAT(1H*»24X.17HCSTREAM SPLITTER))
00072 321 FORMATC1H+,24X,18H(2-STAG£ BAUM JIG))
00073 L1«L
00074 IF «L.GE.U).AND.(L.LT.20)) LHL-3
00075 IF «L.GE.21).ANO.(L.LT.25)) L««L-4
00076 IF (L.EQ.41) CU21
00077 IF (L.EU.St) Ll»22
00078 IF (N.EQ.2) CO TO 23
00079 IF (N.EQ.3) 00 TO 50
00060 60 TO (1,2.3,4,5,6,7,8,9, 10,11,12,13,14,15,16,17,18,19,20,21,22),
00061 1 Ll
00082 1 WRITE (H,tOO)
00083 RETURN
00084 2 WRITE (H,101)
00065 RETURN
00066 3 WRITE (H,102)
00087 RETURN
00068 4 WRITE (H,103)
00089 RETURN
00090 5 WRITE (H,lo!>)
00091 RETURN
00092 6 WRITE (H,121)
00093 RETURN
00094 7 WRITE (H,104)
00095 RETURN
00096 6 WRITE (H,J06)
00097 RETURN
00098 9 WRITE (H.107)
00099 RETURN
00100 10 WRITE (H,108)
00101 RETURN
00102 11 WRITE (H,109)
00103 RETURN
00104 12 WRITE (H,110)
ooios RETURN
00106 13 NRITE (H,lll)
00107 RETURN
00108 14 WRITE (H,112)
00109 RETURN
00110 15 WRITE (H,113)
00111 RETURN
00112 16 WRITE (H.114)
-------
VESSEL VESSEL.F«
FORTRAN V.5AC563) XKI 6-OCT«77
12132 PAGE 1-2
en
tn
00113 RETURN
00114 17 WRITE CH.U5)
00115 RETURN
00116 18 HRITE (H.116)
00117 RETURN
00118 19 HRITE (H.117)
00119 RETURN
00120 20 HRITE (H,118)
00121 RETURN
00122 21 HRITE (H.119)
00123 RETURN
00124 22 MRITC (H,120)
00125 RETURN
00126 23 60 TO (24,25,26,27,28,29,30,31,32,33,3«,35,36,37,38,39,40,41,42,
00127 1 43,44,45),LI
00126 24 NRITE (H,200)
00129 RETURN
00130 25 HRTTE (H.201)
00131 RETURN
00132 26 WRITE (H,202)
00133 RETURN
00134 27 WRITE (H,203)
00135 RETURN
00136 28 WRITE (H,205)
00137 RETURN
00138 29 WRITE CH,221)
00139 RETURN
00140 30 WRITE (H,204)
00141 RETURN
00142 31 WRITE (H,206)
00143 RETURN
00144 32 WRITE (H,207)
00145 RETURN
00146 33 WRITE (H,208)
00147 RETURN
00148 34 WRITE (H,209)
00149 RETURN
00150 35 WRITE (H.210)
ooisi RETURN
00152 36 WRITE (H,211)
00153 RETURN
00154 37 WRITE (H,212)
00155 RETURN
00156 38 WRITE (H,213)
00157 RETURN
00158 39 WRITE (H,214)
00159 RETURN
00160 40 WRITE (H,215)
00161 RETURN
00162 41 WRITE (H,2tb)
00163 RETURN
00164 42 WRITE (H,217)
00165 RETURN
00166 43 WRITE (H,218)
00167 RETURN
00168 44 WRITE (H,219)
-------
VESSEL VESSEL.
FORTRAN V.5AC563) /KI 6-OCT-77
1-3
CJI
a>
ooi69 RETURN
00170 45 WRITE (H.220)
00171 RETURN
00172 50 GO TO (51,52,53,54,55,56,57,58,5",h(1»M,63,63,64,65,
00173 1 66,67,68,69,70,71,72),LI
00174 51 WRTTF (M,300)
00175 RETURN
00176 52 HRITF. (H,301)
00177 RETURN
00178 53 WRITE (H.302)
00179 RETURN
00160 54 HRTTE (H,303)
00181 RETURN
00182 55 WRITE (M.305)
00183 RETURN
00184 56 WRITE (11,321)
00185 RETURN
00186 57 WRITE (H,304)
00187 RETURN
00188 58 WRITF (H,306)
00189 RETURN
00190 59 HRITE (H,307)
00191 RETURN
00192 60 WRITE (H,30U)
00193 RETURN
00194 61 HRITE (H,309)
00195 RETURN
00196 62 HRITE CM,310)
00197 RETURN
00198 63 HRITE (H,311)
00199 RETURN
00200 64 HRITE (H,312)
00201 RETURN
00202 65 WRITE (M.313)
00203 RETURN
00204 66 HRITE (H,314)
00205 RETURN
00206 67 HRITE (H,315)
00207 RETURN
00208 68 WRITE (H,316)
00209 RETURN
00210 69 HRITE (M,3t7)
00211 RETURN
00212 70 WRITE (H.31B)
00213 RETURN
00214 71 WRITF (H,319)
00215 RETURN
00216 72 WRITE (H,320)
00217 RETURN
00218 END
COMMON BLOCKS
XSYS/(*2>
G tO I
*1 I
-------
VESSEL VESSEL.Fo
FORTRAN V,SA(563) /Kl 6-OCT-77
i2i32 PAGE 1-4
SUBPROGRAMS CALLED
8CALARS AND ARRAYS I "** NO EXPLICIT DECLARATION . "X" NOT REFERENCED • "*" SUBSCRIPTED )
*N II *L1 21 *L 31
TEMPORARIES
.A0016 747 R >
LINE NUMBER/OCTAL LOCATION MAP
00000
00010
00020
00030
00040
00050
00060
00070
00060
00090
00100
00110
00120
00130
00140
00150
00160
00170
ooiao
00190
00200
00210
0 1
0
36
110 113
134 137
160 163
204 207
256 261
302 305
326 331
352 355
376 401
450 453
474 477
520 523
544 547
2 3
5
70 73
11« 117
140 143
164 167
210 213
262 265
306 311
332 335
356 361
402 »
454 457
500 503
524 527
550 553
4
6
74
120
144
170
214
266
312
336
362
434
460
504
530
554
5
11
77
1?3
117
173
217
271
315
341
365
417
463
507
533
557
6
22
too
124
150
174
220
272
316
342
366
440
464
510
534
560
7
26
103
127
153
177
•
275
321
345
371
443
467
513
537
•
8
32
104
130
154
200
252
276
322
346
372
unit
470
514
540
563
9
34
107
133
157
203
255
301
325
351
375
147
473
517
543
VESSEL OCTAL PROG 8IZE«2351
I NO ERRORS DETECTED )
( 8CALARS/ARRAYS«3 * FORMATS«743 + TEMPS/CONSm * CODE«566 + ARG8«614 1
COMMON»2
-------
Y.F<» FORTRAN V.5A(56J) /KI h-OCT.77
PAGE i
en
oo
00001
00002
00003
OOOOU
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
0001S
00016
00017
oooie
00019
00020
00021
00022
00023
00024
00025
00026
00027
00020
00029
00030
00031
00032
00033
00031
00035
00036
00037
00036
00039
00040
00041
00042
00043
00044
0004S
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
FUNCTION Y(X,LiIU
C
C THIS FUNCTION EVALUATES A POINT ON THE DISTRIBUTION CURVE
C FOR A GIVEN VESSEL (L) AND GIVEN SIZE (Tl)
C USING IAGRANGIAN INTERPOLATION
C ****************************************************************
DIMENSION XDATA(20»10,8),YPATA(20,10,8),
t XTA91(20),XTAB2(20>,XTAB3(20),XTAB«C?0),XTAB5(20),XTAB6(20)
XTAR7(20),XTAfl8(20),XTAB9(20),XTAB10(20),
XOMVK20),XDHV2(20),XDM.V3(20),XPMVa(?0),XDMV5(20),XDMV6(20),
XDMV7<20),XDMV8<20),XDMV9(20),XOMV1,XJOV3(20),XJOVfl0),XJOV5{20),xJOV6(20),
XJOV7(20).XJOV8(20),XJOV9(20),XJOV10(20),
XJPI(20),XJP2(20),XJP3(20),XJP4(201,XJP5(20),XJP6C20),
XJPT(20),XJP8(20),XJP9(20),XJP10(2n),
XJSI(20),XJS2(20),XJS3(20),XJS4C20),XJS5(20),XJS<><20),
XJ37(20),Xj88(20),XJS9(20),XJS10(2n)
DIMENSION YTAB1{20),YTAB2(20),YTAB3C20),YTAB4(20),YTAB5(20),
YTAB6(20),YTAB7<20),YTAB8<20),YTAB90).YTAB10(20),
YOMV1(20),YDMV2(20),YDMV3(20),YPMV«(?0),YPMV5(20),YOMV6(20)
YDMV7(20),YDMV8(20),YDMV9(20),YDMVtO(20),
YOMC1(20),YDMC2(20),YDMC3<20),YI>MC«C20),YDMCSC20),YDMC6(20),
YOHC7(20),YDMCBC20),YDMC9(20),YDMC10C20),
YMC1(20),YH.C2<20),YHC3(20>,YHC4(20),YHC5(20),YHC6(20),
YHC7(20),YHC8(20),YHC9(20>,YMC10(2i»,
YFF1(20),YFF2(30)»YFF3(20),YFF4(20),YFF5(20),YFF6(20),
YrF7<20)»YFF8(20),YFF9<20),YFF10(2iO,
YJOV1(20),YJOV2(20),YJOV3<20),YJOV4(?0),YJOV5(20),YJOV6(20),
YJOV7(20),YJOV8(20),YJOV9(20),YJOV10(20),
YJP1(20)»YJP2(20),YJP3(20),YJP4(20),YJP5(20),YJP6(20),
YjP7(20),YJP8C20),YJP9(20)|YJPiO(20),
YJSK20)»YJS2(20),YJS3(20)>YJS4(2Q),YJSS(20),YJS6(20).
YJ57(20),YJS8(20),YJS9(20),YJS10(20)
DIMENSION XUSEOC20), YUSED(20)
EQUIVALENCE (XTAB1 (1),XDATA(1
>*»*•«•»»
*
*
*
2
3
5
0
7
8
9
*
A
B
C
D
E
F
2
3
4
5
6
7
8
9
*
A
B
C
D
E
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
(XTAB2
(XTAB3
(XTABU
(XTAB5
(XTAB6
(XTAB7
(XTAB8
(XTAB9
(XTAB1
(XDHV1
(XDMV2
(XOMV3
(XDNV4
(XDMV5
(XDMV6
(D.XOATAd
(t)rXDATA(l
(1),XOATA(1
CDfXOATAU
(l).XOATA(l
(l).XOATA(l
(DtXDATAd
(1),XDATA(1
'(l).XDATA(l
(D.XDATAd
(D.XDATAd
(UtXDATAU
(1),XOATA(1
(D.XDATAd
(l),XDATAd
,1 ,1)),(YTABI d),YOATA(l
,2 ,1)),(YTAB2 (1),YDATA(I
,3 ,I)),(YTAB3 d),YOATA(l
,0 ,1)),(YTABa d),YQATA(l
,5 ,t)),(YTAB5 (1),VDATA(1
,6 , 1)),(YTAB«> (l),YOATA(t
,7 ,1)),(YTAB7 (1)»YDATA(1
,8 ,1)),(YTAB8 d),YDATAd
.9 ,1)),(YTAB9 (1),YOATA(1
,10,1)),(YTAB10(I)>YOATA(1
,1 ,2)),(YOMVt d),YOATA(l
,2 ,?)),(YDMV2 d),YOATA(l
,3 ,?)1,(YOMV3 (1),YOATA(1
»« ,?))»(YOMV4 (1),YOATA(1
,5 ,?)),(YDMVS (l),YOATA(l
16 ,2)),(YDMV6 (1),YOATA(1
0),
0),
0),
0),
),
0),
0),
0),
.1
,2
,3
.4
,5
,6
,7
,8
,9
,10
,1
,2
,3
,4
,5
,6
1 )
1 )
1 )
1 )
1 )
D)
D)
1))
m
»«))
,2))
»2) )
,2))
»2) )
,2))
,2))
TABLES
TABLES
DMV
OMV
OMC
OMC
HC
HC
FF
FF
JIG-OV
JIG-nv
JIG-PR
JIG-PR
JIG-SEC
JIG-StC
TABLES
TABLES
PMV
DMV
OMC
OMC
HC
HC
FF
FF
JIG-OV
JIG-OV
JIG-PR
JIG-PR
JIG-SEC
JIG-SEC
-------
Y.F4 FORTRAN V.SAC563) /KI 6-OCT-77
12134 PAGE 1-1
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00073
00073
00074
00075
00076
00077
00078
00079
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
OOiOl
00102
00103
00104
00105
00106
00107
00106
00109
00110
00111
00112
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
(XDMV7
(XOMV8
(XDMV9
d), XDATAd
(1), XDATAd
(1), XDATAd
«DMV10(n»XOATAd
(XDMC1
CXDMC2
(XDHC3
(XDHC4
CXDMC5
(XDHC6
(XDMC7
(XDHC8
(XDMC9
d), XDATAd
(1), XDATAd
d), XDATAd
(l),XOATAd
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
d), XDATAd
(XDHClO(l), XDATAd
(XHC1
(XHC2
(XHC3
(XHC4
(XHC5
(XHC6
(XHC7
(XHC8
(XHC9
(XHC10
(XJOV1
(XJOV2
(XJOV3
(XJOV4
(XJOV5
(XJOV6
(XJOV7
(xjove
(XJOV9
d),XDATA(l
(1), XDATAd
(1),XOATA(1
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(XJOVlOd), XDATAd
(XJPt
(XJP2
(XJP3
(XJP4
(XJP5
(XJP6
(XJP7
(XJP8
(XJP9
(XJP10
(XJ81
(XJ32
(XJ83
(XJ84
(XJS5
(XJ36
(XJ37
(XJ86
(XJS9
(XJ810
(XFFt
(XFF2
(1), XDATAd
(1), XDATAd
(l),XOATAd
(l),XOATAd
(1), XDATAd
(t), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(t), XDATAd
(l),XOATAd
(1), XDATAd
d), XDATAd
(1), XDATAd
,
,
i
i
i
i
i
,
i
i
i
i
i
i
,
,
,
i
7
8
9
,2))
,?))
,?))
10,2))
1
2
3
u
5
6
7
8
9
,3))
,3))
» ^) )
,3) )
,3))
,3))
,3))
,
,
,
,
,
,
,
,
,
,
,
,3)),
10,3))
1
2
3
a
s
,6
,
7
,8
,
,
,
,
,
,
,
9
,4))
,«))
,
,S) )
t
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,5)),
,•5))
,5))
,
,
,?)),
,S)>
,5))
10, •*))
1
2
3
a
,5
,6
,
,
,
i
,
,
,
,
,
,
,
,
,
,
,
,
7
8
9
,6))
,«»
,6))
,*))
,6))
,6))
,<>))
,M>
,<>n
10,6))
1
2
3
4
5
6
7
8
9
,7))
,7))
,7))
,7))
,7))
,7))
,7))
,7))
,7))
10,7))
1
2
,*))
,»))
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
>
,
,
,
,
,
,
,
(YDMV7
(YDMV8
(YDMV9
d),YDATA(l
d),YOATA(l
(1),YDATA(1
(YDMV10(1),YDATA(1
(YDMC1
(YDHC2
(YDMC3
(YDHC4
(VDMC5
(YDMC6
(VDMC7
(YDMC6
(YDMC9
d),VDATA(l
(l)fVDATA(l
d),VDATA(l
(1),YDATA(1
d),YDATA(l
(1),YDATA(1
(1),YDATA(1
(1),YOATA(1
(D.VDATAd
(YDMC10(1),YDATA(1
(YHC1
(YHC2
(YHC3
(YHC4
(YHC5
(YHC6
(YHC7
(YHC6
(YHC9
(YHC10
(YJDV1
(YJOV2
(YJOV3
(YJOV4
(YJOVS
(YJOV6
(YJOV7
(YJOV8
(YJOV9
(1),TDATA(1
d),YDATA(l
(1),YDATA(1
(1),YDATA(1
d),YDATA(1
(l),YDATAd
(1),YDATA(1
(DfYDATAd
d),YDATA(l
(1),YDATA(1
d),YDATA(l
d),YDATA(l
d),YDATA(l
(1),YDATA(1
d),YDATA(l
(1),YDATA(1
(l).YDATA(l
(1),YDATA(1
d),YDATA(l
(YJOVIOd)rYDATA(l
(YJP1
(YJP2
(YJP3
(YJP4
(YJP5
(YJP6
(YJP7
(YJP8
(YJP9
(YJPin
(YJ31
(YJ82
(YJ83
(YJ84
(YJ35
(YJ86
(YJ37
(YJ38
(YJ89
(YJ810
(YFFl
(YFF2
d),YDATA(l
d),YDATA(l
d),YDATA(l
d),YDATA(l
(I),YDATA(1
d),YDATA(l
d),YDATA(l
d),YDATA(l
))
,<»))
,6))
, h) )
,6))
,6))
,6))
,6))
,6))
10,6))
1
2
3
a
5
6
7
,8
t
t
9
9
9
,7)1
.7))
.7))
,7))
.7))
,7))
,7))
,7))
.7))
10,7))
1
2
,8))
,8))
-------
Y.FQ FORTRAN V.5AC563) /Kl 6-OCT.77
12I3U PAGE 1-2
00113
00110
00115
OOU6
00117
00118
00119
00120
00121
00123
00120
00125
00126
00127
00126
00120
00130
00131
00132
00133
00134
0013S
00136
00137
00136
00130
00110
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00156
00159
00160
00161
00162
00163
00164
00165
00166
00167
00166
EQUIVALENCE (XFFS (1)
EUUIVALtNCF.
L 1,«Jf,1.«Bt|I.VWW»1.
DATA XOHV7 / 20*0. /
DATA XDHV8 / 20*0. /
DATA XDMV9 / 20*0. /
DATA XDMV10 / 20*0. /
I l.JJ,i.u^r,i,W3',\.ura,i.i«e,
DATA XDHC6 / .775,.8,.835,.85,
1 1.035,1.045,1.05,1.06,1.09,1.
-------
Y.F4 FORTRAN V.5AC563) /KI 6-OCT.77
12134 PAGE 1-3
00169
00170
00171
00172
00173
00174
0017S
00176
00177
00178
00179
ooieo
00181
00182
00183
ooisa
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
DATA XDHC7 / .823, .904,. 943, .949, ,954, .961, .968, .9647, .98, 1 ..
1 r.02, 1.023, 1,03, 1.039, 1.061, 1,082, 1,124, I. 218, 1.36, I. 361 /
DATA XDHC8 / 20*0. /
DATA XOMC9 / 20*0. /
DATA XDMC10 /20*0, /
DATA XHC1 / .7, . 74, . 788, . 827,. 859, ,«8,, 91, .923, ,942,1. ,1.02,
1 I'.OSa, 1.134, 1.165, 1.206, 1.28, 1.J65, 1.08, 1.58, 1,7 /
DATA XHC2 / .6, ,7, .79, ,86, .8<»5, ,<»45,1. ,1.035. 1.077, 1.105, 1.152,
1 t'.193, 1.343, 1.282, 1,388, 1.56, 1.66, 1.708, 1.799, 1,8 /
DATA XHCS / .45, .525, .575, .635, .695, ."17, .917, .97,1. ,1.057, 1.083,
1 t'.109, 1.175,1. 233, 1.285, 1.33, 1,425, 1.575, 1.75, 1.9 /
DATA XHC4 / .3, .38, .48, .576, .618, .699, .8, .891 , .94, 1 ., 1 .074, 1 . 101 ,
1 i. 153, 1.198, 1.28, 1.322, 1,36, 1.794, 2. 32, 2,33 /
DATA XHCS / .325, .425, .517, .62, .75, .79,. 844, .883, .901,1., 1.109,
1 l'.2S, 1.242, 1.275, 1. 305, 1. 332, 1.35, 1,402, 1.575, 1,9 /
DATA XHC6 I .47, . 511, . 562, .704,. 793, ,«21,. 844, .881, .909,1, ,1.041,
1 I'.OT, 1.118, 1.263, 1.3, 1.343, 1.38, 1.511, 1.6, 1.7 /
DATA XHC7 / .5, .625, .85, .865, .875, .BBS, 1. , 1 .02, 1 .035, I .055, 1 .08,
1 I'.l, 1.155, 1.18, 1.195, 1.215, 1.25, 1.315, 1.375, 1,376 /
DATA XHC8 / .685, .728, .772, .82, .861 , I . , 1 .034, 1 .059, 1 . 1 , I . 167,
1 l'.212, 1.255, 1.299, 1.343,1.388,1.433, 1.476, 1.52, 1.521, 1.522 /
DATA XHC9 / 20*0. /
DATA XHC10 / 20*0. /
DATA XFFt / .1,. 2, .3, .4, .5, .6, .7, .8, .9, l.o, 1.1, 1,2, 1.3, 1.4, 1,5,
1 1.6,1.7,1.8,1.9,2.0 /
DATA XFF2 / .1,. 2, .3, .4, .5, .6, .7, .8, .9, l.o, 1.1, 1.2, 1.3, 1.4, 1.5,
1 1.6,1.7,1.6,1.9,2,0 /
DATA XFF3 / 20*0. /
/ 20*0. /
/ 20*0. /
/ 20*0. /
/ 20*0. /
DATA XFF8 / 20*0. /
DATA XFF9 / 20*0. /
DATA XFF10 / 20*0. t
OAJA XJOVl / .697, . 903, , 907,. 915, ,9«,. 972,1. ,1.035, 1.054, 1.057,
1 1.062,1.07,1.08,1.095,1.1,1.107,1.108,1.109,1.1,1.101 /
DATA XJOV2 / .868, .895, .903, .946, .957, .9635, .9709,1. ,1.0247,
1 r,OJ09, 1.038, 1.046, 1.066, 1,085, 1.097, 1.1 08, 1.168, 1.232, 1.233,
2 1.234 /
DATA XJOV3 / .8, .827, .851, .882, .893, .899, ,957,1, ,1.0547, 1,1004,
1 1'. 1059, 1.1 14, 1.1274, 1.1386, 1.157, 1.265, 1.445, 1.74, 1.741, 1.742 /
DATA XJOV4 / .74, .763, .785, .811, .835, .8504, .9377,1. ,1,0882,
1 T.096, 1.109, 1,145, 1,188, 1.232, 1.306, 1.418, 1.553, 1.7,1. 701, 1.702/
DATA XJOV5 / .662, .716, .76, .794, ,82, .846, .861, .9188,1. ,1.063,
1 1'.1315, 1.1555, 1.1716, 1.202, 1.246, 1.31, 1.366, 1.496, 1.708, 2. /
DATA XJOV6 / .708, .73, .748, ,768, .762, .804, .858, ,902,1. ,1,042,
1 1.059,1.084,1.114,1,1512,1.364,1.4328,1.492,1.602,1.756,1.9 /
DATA XJOV7 I .566, .612, .644, .682, .72, .74, .78, ,863,1. ,1.046, 1.064,
1 T.094, 1.146, 1.242, 1.338, 1.49, 1.678, 2. ,2. 001, 2. 002 /
DATA XJOV8 I .764, .612, .636, .855, .87, .882, .8940, .9384,1. ,1.022,
1 T.OS7, 1.1026,1. 166, 1.208, 1.235, 1,262, 1.29, 1.378, 1.722, 2. /
DATA XJOV9 / 20*0, /
DATA XJOVIO / 20*0. /
DATA XJP1 / .777, .795, .807, .824, .834, .846, .866, .904, .93, .956,1.,
I 1.046,1.1,1.145,1,196,1.294,1.429,1.566,1.715,1,9 /
DATA XFF4
DATA XFF5
DATA XFF6
DATA XFF7
DMC-COHP
OHC-COHP
DMC-8
DMC-9
DMC-10
HC-1
HC-1
HC-2
HC«2
HC-3
HC-3
HC-4
HC-4
HC-5
HC-5
HC-6
HC-6
HC-7
HC-7
HOCOMP
HC-COMP
HC-9
HC«10
FF«1
FF«1
FF.2
FF-2
FF-3
FF.4
FF«5
FF-6
PF-7
FF.8
FF-9
FF«10
JOV-1
JOV-1
JOV-2
JOV.2
JOV-2
JOV.3
JOV.3
JOV-fl
JOV.4
JOV.5
JOV-5
JOV-6
JOV-6
JOV-7
JOV«7
JOV-COMP
JOV-COMP
JOV-9
JOV-10
JP-1
JP-t
-------
OS
to
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
0024S
00246
00247
00248
00249
002SO
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
• •••—--»»»»w«»»r»B«"~r"«T^»"* w •»*™»"*»»«"«™^«r"»**™«»r»«iv»'p» w
DATA XJS9 / 20*0. /
DATA XJ310 / 20*0. /
DATA YTAB1 / 1.,.993,,987,.978,.96,.94,.92,.9,.8,,69,.5,.3,.08,
1 .06,.043,.033,.026,.023,.011,0, /
DATA YTAB2 t 1.,.997,.993,.987,.977,.963,.948,.9,,8,.675,.5,.3,
1 .24,.16,.099,.06,.01,.026,.018,0, /
DATA YTAB3 / 1.,.997,.994,.981,,96,.98,.88,,635,.5,,279,.148,,1,
1 .068,.046,.025,.018,4*0. /
DATA YTAB4 / l.i.993,.991,.983,.972,.962,,939,.887,.817,.5,.246,
1 .195,.145,.103,.073,.04,.015,3*0. /
DATA YTAB5 / 1.,.994,.987,.968,.932,.9,.8,.5,.2,.135,.099,.066,
1 ,052,.04,.026,.021,«*.02 /
DATA YTAB6 / 1.,.977,,9«1,.908,.862,,«23,.758,.5,.42,.375,.3,
1 .237,.!,.06,.06,.04,.03,3*.02 /
DATA YTAB7 / 1.,.998,,992,.961,.969,.9«7,.919,.9,,8,.5,.4,.
1 .292,.243,.219,.177,4*.12 /
DATA YTA86 / 1.,.996,.994,.982,.97,.952,.9,.88,.83,.5,.3,.2
1 .2,.106,.08,.068,.06,.046,2*.022 /
DATA YTAB9 / 20*0. /
.4,.339,
JP-2
JP-2
JP-3
JP-3
JP-4
JP-4
JP-COMP
JP-COMP
JP-6
JP-7
JP-8
JP-9
JP-10
J8-1
J5-1
J8-2
J8-2
J8-3
J8-3
J8-4
JS-4
JS-5
J8-5
J8-6
J8-6
J8-7
J8-7
J3-COHP
J8-COMP
J8-9
J8-10
TAB-I
TAfl.l
TAB-2
TAB-2
TAB-5
TAB-3
TAB-4
TAB«fl
TAB-5
TAB-5
TAB-6
TAB-6
TAB-7
TAB.7
TAB-COMP
TAB-COMP
TAB-9
TAB-10
DHV«1
DMV-1
DMV-2
DHV-2
OHV-3
OMV«S
OMV-«
-------
Y.F4 FORTRAN V.5A(563) XKI 6-OCT-77
12l3« PAGE 1-5
o»
CO
00281
00262
00263
00264
0026S
00286
00267
00266
00269
00290
00291
00292
00293
00294
00295
00296
00297
00296
00299
00300
00301
00302
00303
00304
00305
00306
00307
00306
00309
00310
00311
00312
00313
00314
0031S
00316
00317
00316
00319
00320
00321
00322
00323
00324
00325
00326
00327
00326
00329
00330
00331
00332
00333
00334
0033S
00336
1 .013,.007,,001,6*0. X
DATA YDMV5 X 1., .997, .991, .975, ,956, .931, .699, .88, .69, .5, .3,
1 .208,.16,.12,.071,.04,.02,.006,.002,0. X
DATA YDMV6 X 1.,.997,.991,.98,.941,.9,.735,.5,.267,.18,.12,.05,
i .021,.007,,003,5*0. X
DATA YDMV7 X 20*0. X
DATA YOMV6 X 20*0. X
DATA YDHV9 X 20*0. X
DATA YDHV10 X 20*0. X
DATA YDMC1 X 1.,.997,,99,.983,.976,.964,.5,.089,.054,.04,,03,
1 .02,.012,.006,.002,5*0. X
DATA YDMC2 X 1.,.997,.991,.985,.978,.97,.952,.75,.5,.167,.09,.04,
I .029,.019..006,.002,4*0. X
DATA YDMC3 X I.,.992,.967,.982,.973,,«»68,.937,.612,.5,,266,,056,
I .044,.034,.02,.01,.005,4*0. X >
DATA YDMC4 X I.,.999,,996,,996,.986,.979,.921,.763,.5,.303,.113,
I .086,.062,.041,.024,.01,.006,3*0. /
DATA YDMC5 X 1.,.997,.994,.986,.969,.951,.928,.900,.660,,70,.5,
1 .200,.156,,!,.073,.05,.029,.016,.006,0, /
DATA YDMC6 X 1.,.996,.988,.983,.958,.937,.917,.668,.831,,684,,5,
1 .243,.17,.133,.069,,055,.036,,014,2*0. X
DATA YDMC7 X 1.,.992,,965,,98,.975,.964,.96,.95,.75,.5,,85,
I .197,.14,.I,.06,.04,.02,.01,2*0. X
DATA VDHC6 X 20*0. X
DATA YDMC9 X 30*0. X
DATA YDMC10 X 20*0. X
DATA YHC1 X 1.,.991,.965,.93,.89,.657,.793,.758,.702,.5,.44,
1 .339,.153,.109,.074,.034,.017,.007,.003,0. X
DATA YHC2 X 1.,.962,,908,,835,.768,.646,.5,.4,.298,.247,.175,
1 .115,.07,.046,.029,.012,.004,3*0. /
DATA YHC3 X 1.,,981,.965,,939,.905,.791,.678,.595,.5,.332,.277,
I ,221,.145,.095,.067,.053,.035,.017,.003,0. X
DATA YHC4 X 1.,.969,.968,.941,.925,,8«1,.806,.713,.64,.5,,326,
1 .279,.2,.14,.063,.041,.03,.011,2*0. /
DATA YHCS X 1,, ,995, .983, ,954, ,8«6, .858, .814, .769, .735, ,5, .297,
1 .094,.076,.049,,033,.024,.02,.017,.012,0, X
DATA YHC6 X 1,,,999,.994,.954,.91,.«91,.873,.636,.793,.5,.381,
1 .313,.246,,121,.093,.069,.053,.021,.009,0. X
DATA YHC7 X 1.,.985,.69,.676,.863,.644,,5,.44,.4,.361,.321,,295,
I .23,.205,.193,.179,,157,,123,2*.! X
DATA YHC6 X .936,.903,.863,.812,.761,.5,.433,.396,.353,.304,.273,
1 .244,.216,.169,.163,.142,.126,3*.116 /
DATA YHC9 X 20*0. X
YHC10 X 20*0. X
YFF1 X 20*0.6 X
20*0.8 X
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
YFP2 /
YFFS / 20*0. X
YFF4 / 20*0. X
YFFS / 20*0. X
YFF6 / 20*0. X
YPF7 / 20*0. /
YFFS X 20*0. X
YPF9 X 20*0, X
YFF10 X 20*0. X
YJOV1 X 1.,. 997, ,987, .979, .88, .699, .5, .223, .06, .064, .047,
1 .032, .019, .006, .003, 5*0. X
DMV-4
DMV-5
DMV-5
OMV-COMP
DMV-COHP
DMV-7
OMV-6
OMV-9
DMV-10
OMC-l
OMC-t
OMC-2
DMC-2
OMC.J
DHC-3
OMC-fl
DMC*4
OHC-9
OMC-5
DMC-6
DHC-6
DMC-COMP
DMC-COMP
DHC-8
OMC-9
OMC-10
HC-1
HC-l
HC-2
HC-2
HC-3
HC-3
HC««
HC«4
HC-5
HC-5
HC-6
HC-6
HC-7
HC-7
HC-COHP
HC-COMP
HC-9
HC-10
FF-1
FF-2
FF-3
ffmH
FF«5
FP-6
FF-7
FF-8
FF.9
FF-10
JOV-1
JOV-1
-------
v.ra
FORTRAN V,5A(563) /KI 6-OCT-T7
)2i3o PAGE 1-6
00337
0033fl
00339
00340
00341
00302
00343
00344
00305
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
DATA YJOV2 / 1.,.998,.99,.007,.869,.810,.75,.5,,3,.25,.201,.169, JOV-2
1 .129,.097,.083,.075,,035,J*0. / J0v.J
DATA YJOVJ / I.,.997,.991,.977,.967,,055,.699,.5,.299,.131,.113, jov-1
1 ,093,.075,.065,.057,.030,.015,3*0. / jov.J
DATA YJOV4 / 1.,.997,.989,.971,.945,."22,.681,.5,.275,.255,.229, JQV-0
i .197,,169,,145,,115,,086,,061,3*.00 / JOV-0
DATA YJOVS / 1.,.995,,9ttSf.97,,952,.931,.899,.733,.5,.366,.255, JOV-5
1 ,?17,.194,,loB,.142,,110,,0«8,.062,.028,0. / JOV-5
DATA YJOV6 / 1.,.996,.99,.98,.969,.937,.80,.739,.5,,J97,.369, JOV-6
i .337,.297,.25,.119,.089,,060,.038,.018,,01 / JOV-b
DATA VJOV7 / l.,.998,.99,.975,.908,.9?5,.8T3,.702,.5,.422,,4, JOV-7
I .376,.343,.298,.267,.229,,J93,3..103 / JQV-7
DATA YJOV8 / 1.,.997,.989,.98,.968,.953,.937,.76,.5,.015,.333, JOV-CO"P
1 .850,.14,.118,.!,.086,.076,.056,.032,.02 / JOV-eO"P
DATA YJOV9 / 20*0. / JOV-9
DATA YJOV10 X 20*0. / JOV-10
DATA YJPI / >.».'95,.988,.97,.955,.932,,829,.693,,621,.57,.5, JP«1
1 .437,.38,.345,.316,.273,.233,.198,.11.8,.132 / JP-l
DATA YJP2 / 1.,.999,,993,.98,,962,.839,,747,.694,,5,.465,,433, JP-2
1 .4,.362,.309,.243,.109,0*.068 / jp.g
DATA YJP3 / 1.,.998,,993,.982,,969,.907,.713,.5,.482,.458,.433, JP-3
1 ,396,.36,.306,,232,5*.12 / JR.3
DATA YJP4 / 1.,.996,,989,.976,.949,.921,.9,.705,.5,.48,.455,.43, JP-0
1 .398,.362,.338,.253,4*.IBS / jp.«
DATA YJP5 / 1...993,,988,,97,,84,.7,,56,.5,,449,.416,.391,.335, JP-COMP
1 .293,.247,6*.128 / JP-COMP
DATA YJP6 / 20*0. / jp.6
DATA YJP7 / 20*0. / jp.7
DATA YJP8 / 20*0. / JR.a
DATA YJP9 / 20*0. / JP-9
DATA YJPIO I 20*0. / JP-10
DATA YJS1 / 1.,.993,.981,,970,,967,.9S1,.935,.919,.799,.5,.2, JS-1
1 .039,.033,.02,.009,5*0. / Js«l
DATA YJS2 / 1.,.996,.977,.964,.941,,911,.864,.852,.642,.5,.304, JS-2
1 .874,,241,,176,.109,,067,4*0, / JS.2
DATA YJS3 / 1,,.999,.991,.983,,958,.779,.5,.279,.121,.106,,092, JS.3
i ,079,.069,.039,.021,5*.01 / js.3
DATA YJ84 / t,,.996,.985,.919,.86,.7,.5,.392,.363,.321,.281, JS-0
1 ,252,.218,.199,,138,.094,0*.055 / JS.0
DATA YJ35 / 1.,.997,.993,.985,,973,.957,.935,,916,.899,.66,,5, JS-5
1 .423,.313,.283,.252,,214,.191,,|a9,,109,.063 / JS-5
DATA YJ86 / 1.,.995,.988,.98,.969,.759,.5,.4,.341,.291,.241, JS.6
1 .195,.15,.117,.095,.08,4*.075 / J5.6
DATA YJS7 / 1.,.995,.985,.947,.897,.865,.825,.641,.5,.009,,«05, JS-7
1 .363,.321,.285,.248,5*.16 / j$.7
DATA YJ88 / 1.,,997,,992,,982,,969,.954,,735,,5,,404,,277,,237, J8-COMP
1 .201,,175,.15,.108,.062,4*.02 / J3-COMP
DATA YJS9 / 20*0. / Js«9
DATA YJS10 / 20*0. / JS-10
IF (X.6T.XOATA(1,Z1,L)) CO TO 1
YaVOATA(l,tl,L)
RETURN
IF (X.LT.XOATA(20,I1,U) GO TO 2
V«VD*TA(20,I!,L)
RETURN
DO 3 HI,20
-------
Y.F4 FORTRAN V.5A(563) /KI 6-OCT-77
12134 PAGE 1-7
00393 XUBED
en
XTABI
XTAB5
XTAB10
XDHVS
XDMVIO
XOHCS
XDMC10
XHC5
XHC10
XJOV5
XJOV10
XJP5
XJP10
XJS5
XJSiO
XFF5
XFFtO
YTABi
YTAB5
YTAB10
YOMV5
YOMViO
YDMC5
YDMC10
YHC5
YHC10
YJOV5
YJOVIO
YJP5
YJP10
YJ8S
YJ810
YFF5
YFF10
1«R
121*R
265«R
43t«R
S7SHR
7ai*R
1105*R
1251«R
»415«R
1561«R
17250R
207 J«R
2235IKR
24010R
25«5*R
27U#R
30S5*R
3101KR
3221IHR
336S«R
J33t«R
J675*R
0041KR
fl205*R
4351«R
4315CR
466 1*R
5025*R
9171KR
5J350R
5501*R
S«45«R
6011#R
61S50R
XDATA
XTAB6
XDMV1
XDHV6
XOMCi
XDHC6
XHC1
XHC6
XJOV1
XJOV6
XJPl
XJP6
XJS1
XJS6
XFF1
XFF6
YDATA
YTAB6
YOMVl
YDHV6
YDHCt
YDMC6
YHC1
YHC6
YJOV1
YJOV6
YJP1
YJP6
YJ81
YJ86
YFF1
YFF6
1*R
145«R
3U*R
45S«R
621*R
765*R
U31KR
1275DR
144i«R
1605*R
1751KR
211S«R
2261«R
2425«R
2S71MR
2735KR
3101«R
32t5«R
34U«R
3555 *R
372i«R
406SIHR
a23i«R
4375«R
45«1*R
0705KR
50«1#R
S21S«R
S3M0R
5525*R
S67i«R
6035«R
XTAB2
XTAB7
XDMV2
XDMV7
XDMC2
XDMC7
XHC2
XHCT
XJOV2
XJOV7
XJP2
XJP7
XJ32
XJ87
XFF2
XFF7
YTAB2
YTAB7
YDMV2
YDMV7
YDHC2
YDMC7
YHC2
YHC7
YJOV2
YJOV7
YJP2
YJP7
YJS2
YJ87
YFF2
YFF7
25«R
171«R
335*R
501*R
64SHR
1011MR
H55KR
1J21KR
1
-------
Y.F 1
i <
I •
) (
i
r »
» <
9
-------
Y.F4 FORTRAN V.5A(563) /KI 6-OCT.77
12134 PAGE !-<»
00120
00130
ooiao
00150
00160
00170
ooieo
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00360
00390
37
46
47
57
70
20
72
26
27
V OCTAL PROG 8IZE«63T3
( NO ERRORS DETECTED ]
t 8CALARS/ARRAYS«62S5 » TEMP8/CON3»7 + CODE»102 + ARGS-5
-------
YINTRP YINTRP.F«
FORTRAN V.5AC563) /Kt 6-OCT-77
iat3S PAGfc 1
o>
oo
00001
00002
00003
ooooa
00005
00006
00007
ooooe
00009
00010
ooott
00012
00013
00014
0001S
00016
00017
00016
00019
00020
00021
00022
00023
00020
00025
00026
00027
00026
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00046
00049
OOOSO
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
FUNCTION YINTJ?P(XPTS,YPTS,X,N)
I*****************************
LAGRANGIAN INTERPOLATION ROUTINE
THE X-VALUE5 MUST BE MONOTONICALLY NONDECREASING
p************************* i
DIMENSION XPTS(N),YPTS(H)
IF (X.GT.XPTS(l)) 60 TO 1
X VALUf TOO LOW - 3ET Y EQUAL TO YPT3(1)
YINTRP«YPT3(1)
RETURN
1 IF (X.LT.XPTS(N)) GO TO 2
X VALUE TOO HIGH - SET Y EQUAL TO VPTS(N)
VINTRPBYPT3(N)
RETURN
2 IF (X.GT.XPT5(2)) 60 TO 3
LINEAR INTERPOLATION BETWEEN FIRST 2 POINTS
YINTf»P«YPT8(l)*«YPTSn))/(XPTS(2).XPTScn)
RETURN
3 IF (X.LT.XPTS(ND) GO TO 4
LINEAR INTERPOLATION BETWEEN LAST 2 POINTS
YlNTRP»YPTS(Nnt(X-XPT3(Nl))*(YPTS(N).YPT3(Nl))/(XPTS(N)«XPT8(Nl))
RETURN
FIND INTERVAL CONTAINING x (X WILL BE BETWEEN XPTSCK) AND
4 DO 5 I«J,N1
IF (X.GT.XPTS(IJ) GO TO 5
GO TO 6
5 CONTINUE
VlNTRPMl.E+36
RETURN
TEST FOR INVERSE INTERPOLATION
6 IF (X.GE.10.) GO TO 60
TEST FOR DISTINCT X-VALUES
IF «XPT3(K.n.LT.XPTS(K)).AND.(XPTS(K»l).LT.XPTS(K+2))) GO TO 7
A*********************************************
LINEAR INTERPOLATION THROUGH XPTS(K) AND XPTSCK+D
»*
60
RETURN
»****•*<
LAGRANGE INTERPOLATION THROUGH XPTS(K-n, XPTS(K), XPTS(Ktl) AND
XPTS(K»2)
»*******)
7 Y8UM«0.
DO 9 I»KI,K2
XNUN»1.
XOENOHll.
DO 8 J«K1,K2
IF (I.EQ.J) GO TO 6
XNUH«XNUM*(X-XPTS(J))
XDeNOM«XOENOH* (XPTS ( I } «XPTS ( J) )
6 CONTINUE
-------
YINTRP YINTRP.F4
FORTRAN V.5AC563) /Kl 6-OCT-77
12135 PAGE 1-1
00057 YSUM»YSUMt(XNUM/XDENOM)*YPTS(I)
00056 9 CONTINUE
00059 YlNTRPtYSUM
00060 C TEST FOR HONOTONICXTY OF Y-VAtU£S
00061 IF C(YPT8
00070 RETURN
00071 END
SUBPROGRAMS CALLED
AHAX1. AHIN1.
SCALARS AND ARRAYS t •*" NO EXPLICIT DECLARATION . "*• NOT REFERENCED
•*" SUBSCRIPTED J
O>
CO
*N1
• VSUM
*X
TEMPORARIES
,10000
.80001
.A0004
1 I
6 R
13 R
17 I
24 I
31 R
• N
•XOENOM
• I
.10001
.80002
.A0005
2 I
7 R
14 I
20 I
25 I
32 R
*YINTRP
• XNUM
XPT3
.10002
.A0016
.A0006
3 R
10 R
15«R
21 I
26 R
33 R
• Kl
*J
*K2
.10003
.A0002
4 I
U I
16 I
22 I
27 R
*K
YPT3
.30000
.A0003
5 I
12«R
23 I
30 R
LINE NUMBER/OCTAL LOCATION MAP
ooooo
00010
00020
00030
00040
00050
00060
00070
0
•
•
66
134
154
210
•
•
1
0
31
67
136
172
212
292
316
2
•
34
•
140
•
213
•
3
•
35
74
•
•
217
265
4
•
•
116
141
•
222
*
5
•
42
•
•
•
227
277
6
46
117
144
173
23S
•
7
•
47
123
•
174
237
•
8
22
m
130
•
177
24S
300
<»
25
S3
133
•
202
2SO
307
YINTRP OCTAL PROS SIZEB402
( NO ERRORS DETECTED ]
t SCALAR8/ARRAY8H6 + TEMPS/CONSil7 + CODEI327 4 ARGS«lb )
-------
170
7.4 Instructions for Data Preparation
In order to simulate the performance of a given plant configuration the user
must provide the following information:
1. The number of units in the plant.
2. The number of fLowstreams in the plant.
3. The number of size increments in the feed stream.
4. The number of specific gravity increments in the feed stream.
5. The level of information (degree of detail) to be provided by
the simulator.
6. The maximum number of iterations (trial-and-error calculations)
for a plant that contains one or more retreatment streams.
7. The manner with which the washability calculations will be
carried out (by size increments or composite).
8. The level of information to be printed in each washer unit summary.
9. For each major plant component (unit), the type of unit and the
appropriate unit settings ("decision variables").
10. The origin and destination of each fLowstream.
11. The boundaries of the size increments for the feed stream.
12. The weight percent of coal within each size increment.
13. The boundaries of the specific gravity increments for the feed
stream. I
14. Parameters for calculating the BTU content of the coal.
15. The specific gravity analysis for the feed stream (i. e., the
distribution of weight, ash, pyritic sulfur and total sulfur).
-------
171
Some of these items can be provided by single numerical values. For others,
arrays of data will be required.
Instructions for preparing the input data on punched cards are given below.
Standard FORTRAN formats are shown for each card or set of cards.
(See the sample plant configuration and sample set of input data presented
elsewhere in this report.)
Note; All I-field entries are right-adjusted
All A-field entries are left-adjusted
-------
172
I. TITLE CARD (Format: 20A4)
Title Card -
may contain any desired descriptive information.
(This card must be present even if blank).
H. PROGRAM PARAMETERS (Format: 2613)
NUNITS, NFLOWS, NSIZE, NGRAV, IOUT, ICMAX, NCOMP, PSJ
where
NUNITS is the number of units in the plant configuration.
NFLOWS is the number of flowstrearns in the plant configuration
(cannot exceed 20).
NSIZE is the number of size increments for the feed
(cannot exceed 23).
NGRAV is the number of specific gravity increments for the
feed (cannot exceed 10).
IOUT designates the output level.
IOUT = 0 (blank) causes the printing of the specific
gravity analysis of the feed stream and an
overall plant summary.
IOUT = 1 causes the printing of the specific gravity
analyses of the feed and product streams,
summary data for each unit and an overall
plant summary.
IOUT = 2 causes the printing of the specific gravity
analyses of all flowstr earns, summary data for
each unit and an overall plant summary.
ICMAX is the maximum number of iterations for a plant
configuration containing retreatment streams.
(Automatically set equal to 50 if left blank.)
NCOMP indicates how the separations will be determined
NCOMP = 0 (blank) causes each separation to be
computed by size increments using a
different separation for each size increment.
-------
173
NCOMP = 1 causes the entire separation to be
computed using a single separation curve.
-------
174
HI. UNIT DESIGNATIONS (Format: 13, 2X, F5. 3, 2X, F5.3, 2X, F5. 3)
L(I), Dl(I), D2(I), D3(I) (one card per unit)
where L(I) designates the type of the ith unit
L = 1: Concentrating Table
L = 2: Dense-Medium Vessel
L = 3: Dense-Medium Cyclone
L = 4: Hydrocyclone
L = 5: Single-Stage Baum Jig
L = 6: 2-Stage Baum Jig
L = 7: Froth Flotation Cell
L = 11: Rotary Breaker
L = 12: Primary Multiple Roll Crusher
L = 13: Primary Gyratory/Jaw Crusher
L = 14: Primary Single Roll Crusher
L = 15: Primary Cage Mill Crusher
L = 16: Secondary Multiple Roll Crusher
L = 17: Secondary Gyratory/Jaw Crusher
L = 18: Secondary Single Roll Crusher
L = 19: Secondary Cage Mill Crusher
L = 21: Dry Upper Screen (or Single Dry Screen)
L = 22: Dry Lower Screen
L = 23: Wet Upper Screen (or Single Wet Screen)
L = 24: Wet Lower Screen
L = 41: Stream Blender
L = 51: Stream Splitter
Dl(I) - D3(I) represent the decision variables for the respective units
as follows:
Washers: Dl = Specific gravity of separation
D2 = Blank
D3 = Blank
Rotary Breaker: Dl = Length (feet)
D2 = Diameter (feet)
D3 = Screen size (inches)
(D3 should be assigned a value of
either 6 or 8 inches)
-------
175
Crushers: Dl = Crusher setting (inches)
D2 = Blank
D3 = Blank
Screens: Dl = Screen size (inches)
D2 = Blank
D3 = Blank
Splitter: Dl = Percent feed diverted to overflow stream
D2 = Blank
D3 = Blank
Blender: Dl = Blank
D2 = Blank
D3 = Blank
Note: The units must be specified in the same order that the calculations
will be carried out.
All units •will have one input stream and two output streams, with the following
exceptions
'S
1. 2-Stage Baum Jig (L = 6)
One input stream, three output streams
2. Crushers (L = 12, 13, 14, 15, 16, 17, 18, or 19)
One input stream, one output stream
3. Stream Blender (L = 41)
Two input streams, one output stream
-------
176
IV. FLOWSTREAM DESIGNATIONS (Format: 213, 2X, Al)
KF(1,J), KF(2,J), S(J) (One card per flowstream)
where
KF(1, J) designates the index (I) of the unit from which the
jth flowstream. originates.
(0 indicates feed into the plant).
KF(2, J) designates the index (I) of the unit which is the
destination of the jth flowstream.
(0 indicates a product leaving the plant).
S(J) is the symbol for a stream leaving a unit
(blank) indicates a feed stream entering the Ith unit
C indicates a clean coal stream leaving the
Ith unit
M indicates a middlings stream leaving
the Ith. unit (2-stage jig)
R indicates a refuse stream leaving the
Ith unit
U indicates an upper (overflow) stream
leaving the Ith unit (screens or splitter)
L indicates a lower (underflow) stream
leaving the Ith unit (screens or splitter)
For those units that have only one exit stream (e. g.
crushers, .blender), a stream symbol is not required
(leave blank).
-------
177
V. SIZE BOUNDARIES (Format: 8(6A1, 4X))
SYMBOL(l), SYMBOL(2). ,SYMBOL(NSIZE + 1)
where SYMBOL(l) = the lower size boundary for the first
size increment, in inches or mesh size.
SYMBOL(2) = the upper size boundary for the first
size increment (inches or mesh).
SYMBOL(3) = the upper size boundary for the second
size increment (inches or mesh).
SYMBOL(NSIZE+1) =
the upper size boundary for the last
size increment (inches or mesh).
Note; the values begin in columns 1, 11, 21, , 71. Two or three
data cards may be required, since there can be as many as 24
size boundaries.
Additional Notes: the size boundaries are actually read as characters
and converted internally to numerical quantities.
Fractional quantities must be written as fractions
(not decimals), with a slash between the numerator
and denominator. Mixed quantities (whole number
and fraction) must have a dash (actually, a minus
sign) separating the whole number from the fraction.
Thus the quantity 1-5/8 would appear as
1-5/8
Blank spaces cannot appear within the number.
-------
178
VI. WEIGHT DISTRIBUTION (Format: 13(lX, F5.3))
WT(1), WT(2), , WT(NSIZE)
where WT(1) = the weight percent of the entire feed stream in
the first size increment.
WT(2) = the weight percent of the entire feed stream in
the second size increment.
WT(NSIZE) = the weight percent of the entire feed stream
in the last size increment.
Note; The sum of these values should equal 100.
-------
179
VII. SPECIFIC GRAVITY BOUNDARIES (Format: 13(1X, F5.3))
GBOUND(l), GBOUND(2). ,GBOUND(NGRAV+1)
where GBOUND(l) = the lower specific gravity boundary for the
first specific gravity increment.
GBOUND(2) = the upper specific gravity boundary for the
first specific gravity increment.
GBOUND(3) = the upper specific gravity boundary for the
second specific gravity increment.
GJBOUND(NGRAV+1) = the upper specific gravity boundary
for the last specific gravity increment.
-------
180
VIII. BTU CONTENT (Format: 8(F7. 5, 3X))
BTU1, BTU2, BTU3, BTU4
where the above parameters are used to calculate the BTU content
of the coal (in BTU/lb) using the formula
' BTU2 - BTU3*ASH + BTU4* ASH**2
BTU/lb = Max t
BTU1
and ASH represents percent ash.
-------
181
IX. SPECIFIC GRAVITY ANALYSIS OF FEED STREAM (Format: 8(F7. 5, 3X))
FEED(I, J, 1), FEEDd. J. 2), FEED(I. J, 3), FEED(I, J, 4)
where FEED(I, J, 1) = the weight percent for the Ith size
increment, Jth specific gravity incre-
ment. (Within each size increment, the
sum of these values for all J should
equal 100.)
FEED(I, J, 2) = the percent ash for the Ith size increment,
Jth specific gravity increment.
FEED(I, J, 3) = the percent pyritic sulfur for the Ith size
increment, Jth specific gravity increment.
FEED(I, J, 4) = the percent total sulfur for the Ith size
increment, Jth specific gravity increment.
Notes:
1. The numerical values begin in columns 1, 11, 21, and 31.
There will be a total of
NSIZE x NGRAV
cards (maximum number: 23 x 10 = 230).
2. When arranging these cards in the proper order, note that the J
subscripts must increase more rapidly than the I subscripts.
In other words, the specific gravity data are nested within the
size data.
-------
182
7. 5 Sample Problem
The detailed solution of a sample problem involving a realistic plant
configuration is presented below. A schematic flowchart of the plant
configuration is shown on the next page. Note that the plant contains 3
washers, 2 crushers, 2 screens and a blender. The feed to the plant is
crushed and separated into 3 size fractions -- coarse, intermediate and
fine. Each size fraction is treated by a different type of washer, as indicated
in the flowchart.
Notice that the units are numbered on the flowchart. The unit numbers
increase in the direction of flow. The actual calculations are carried out
in this order, so that the feed to a given unit is always known when the
performance of that unit is simulated. This is essential for proper use of
the simulator.
The flowstreams are also numbered, although the order of the flowstream
numbers is immaterial. The flowstream numbers are each preceded by
the letter "F", in order to avoid confusion with the unit numbers on the
flowchart. (Note, however, that the F's are not a part of the actual flowstream
numbers that are read into the computer. )
-------
Clean
Coal I F6
1
Feed
Unit 1
2
3
4
5
6
7
8
Rotary Breaker
Dry Upper Screen
2-Stage Baum Jig
Secondary Single Roll Crusher
Blender
Dry Upper Screen
Concentrating Table
Froth Flotation Cell
Clean
Coal
V
Refuse
Clean
Coal
Refuse
Fig. 8. Schematic flowchart for sample preparation plant
00
-------
184
7. 5. 1 Data Preparation
The input data corresponding to the given flowchart are shown on
the next several pages, as they would be placed on punched cards. The
data set has been prepared in accordance with the instructions presented
in Appendix 7. 4. Note, in particular, the manner in which information
is specified for each unit and each flowstream, and for the coal feed.
-------
____ GX28-7327-6U/M050"
IBM FORTRAN Coding Form Printed in U.S.A
"°0"" SAMP££ P£o6L£M - iNf>u~r DfiTft
"<*•"•"» g. s. GOTTFRIED "•" % h7
INiUuCTIONl
G..FHIC
-UNO.
»01 1 °' ij
CAJO (LECIIO NUfc&t-
ITATtMENI
NUMIEI
s$i
5
ik
PL
1
Z I
J
1 ' C^
!3j
21
I
7
j
1
3
«
1
3
3
3
i/
4
6i
^
7
7
i j i « >
' Pt
L i!
Z2jL
. 0
ff
o
. VS"
> . 1 2
1
5
!A3aa
1 * $A
I
0 R
2 'f.
3 U
S L
0 C
0 R
e
,
I
7 (J
8 L
0 C
0 K
v
T
81
•
K
7
51
|
! i
I i
6 - I 9 10 1
1
4F
ItfJZ
n
2)
1
1 11 1* 1
E
i
airjiitf
' i;
a*iQ
I
1 • :
i I
Vi A/U!M(fi[€e
I ! 1
i I '
rrn
FORTRAN STATEMENT
|
1
1 ; i '(
AiL'PiHJC
i
"I
UA jy
' i •
UM JI
'
, I
1
fll
1
j
%
1
:
K " .X .'' ...•.'.'.•.•.-.•>• '____ • . 1 . .. .. .4 .' 1- . '. •- -1 •• . •• ' • -1 «
IDENTIFICATION
UOUCNCI
!
E
1
, 1
1
1 1
. j
'< '• •'• " -J ~i R.
00
en
-------
IBM
FORTHAN Coding Form
GX2B-7327-6U MOW
Printed in USA
ffOGUM
PtOQKAMMP
I
a.
1
0
Ij
i
f
z
i
1
0
s
1
1
5
lj
Z
1
c
2
STMtMIN!
NUMUI
9
8*
ft
91, ft
1 • 2
Q
1
I
flf)
;7
t
0
.3
1 , 3
. 1
t
1
9
1
6., 7
V.3
,3
I
•
t
3!
u
/
4
. 2.
0,9
3,3
2
1
i 1 !
Zj
•
S". 0
/
,5
^£
• 60
^
5
.5/
315
,^
J
i S
,A
1 3
Ji
*/
z
S
S
t
V
\
• 70
._2^
7
.58^
,..,.,
• *
w«
• -
FORTRAN STATEMENT
z
I
3
• 7
I . .
•
i
1
0
.
i
i
3
/.
\
—
. —
,
V
i
to
2
• •
LI
m
-
i
i— . -^ -
t
6
0
— -
'
_
-•
f.
}
iiii
—
\
L_
J
i_.
i i
-
z V
'• •**
2
r
,
_L_
i i
1
^
jr
,
I
i
iDENTIflCATION
StOUt NCI
I
f
••.-•-• ol form* p«r pad m«> . ••, i|
-------
__ _ _ GX28-7327-6 U/M 050' '
IBffl FORTRAN Coding Form Printed in U.S.A.
PtOCtAM
MOOUMMfl
DAT!
PUNCHING
INDUCTIONS
G»*fMlC
PUNCH
«* * o. y
C j
0
"7 . 3
7-9
I
;tw
1 ,7
3 1 .
1 (r
11^
7j
if'
0
8 . 0
7- V
Z.3
1, ?
31 .
Z) .
!
1
1
6
9
7 . 2
t
3 . Z
1 .9
• /
•iS.f
Y0-
f
j 1
\ \ '
yp9
9- 7
u.z
3*/,Z
«/Z. 5
rzi.z
zl V
IB
9. 6
/5. 9
33.. io
YZ . o
*Z. 9
Z,. 2
4. t
q , z
IS. V
23. y'
3Z .7
HI . o
St. Z
z.z
1
I
1
1
-
.ZS"
. zz
. Z 7
. 3 if
. 52
,;33
.;
-------
00
OD
IBM
WOGIAW
nOOUMMN
FORTRAN Coding
Mtl
njNCh
Form
ING
..,
t< Itf M
i
7
fi
2
1
1
V
1
5
g
Z
1
1
1
I
z
5
s
?
1
i
—
MAHMINI
NUMll •
j?L T
Q
4
\
9
£
,5*
d-iff
ir.jr
^
I
5
• 6
.
9
'0
, S
0 .
0
0
Q
0
0
5.
I
] t
'.'
' ;
,
.iLi
1 f" jj
3Z-.7
V -o
i, ?
«f,a
Ca
2V- 4
M ) , 9
ff"3 . f>
21.0
?l , 0
Zl ,0
Z±±A
Zl . 0
Zl .0
Z 1 . 0
21 . 0
1
ijra
.17
.20 ;
,37
• 17
. *!*
I1?*
.23
. 3J
. 5"^
, 77
. 23
,33
.33
. 33
.33
.33
.33
,,£0
.63
•^
.47
1 . 01
« O y
.40
. 63
.65-
,_£#.
' 79
• ?^
. 9^
. t7
• kJ.
.67
. £_7
,A7
. £ 7
. ^7
GX2&-7327-6U/M050"
Printed in USA
....._^ /^
rnmimrsOTf
FORTRAN STATEMENT
-
1
1
1 1 •
1 :
XI
••"
ON
j
) Ol IOfm« ,»• , , i may »«rv t j- • ,
-------
189
7. 5. 2 Computer Output
The output generated by the computer is shown on the following pages.
The first four pages (pp. 190-193) contain the input data. (These pages are
printed out in order to identify each problem. ) The simulated plant
performance is summarized at the end of the printout, on pp. 234-235.
This information is of primary importance. In addition, the simulator
provides an optional summary of each individual unit (pp. 194-203), and an
optional detailed analysis of each flowstream (pp. 204-233). These optional
tables will not be printed unless they are specifically requested (IOUT = 1
or IOUT = 2).
-------
COAL PREPARATION PLANT SIMULATOR
SAMPLE PLANT CONFIGURATION NUMBER 1 (ALPHEU8 BAUM JIG DATA)
CD
O
UNIT NUMBER
t
2
3
4
5
6
r
e
FLOMSTREAM NUMBER
I (FEED)
2 (REFUSE PRODUCT)
3
4
5
6 (CLEAN COAL PRODUCT)
7
6 (REFUSE PRODUCT)
9
10
il
12
13 (CLEAN COAL PRODUCT)
UNIT TYPE
11 (ROTARY BREAKER)
21 (DRY UPPER SCREEN)
6 (2-STAGE BAUM JIG)
18 (SECONDARY SINGLE ROLL CRUSHER)
41 (STREAM BLENDER)
21 (DRY UPPER SCREEN)
1 (CONCENTRATING TABLE)
7 (FROTH FLOTATION)
ORIGIN . UNIT NUMBER
0
1 R
1 C
2 U
2 L
3 C
3 M
3 R
a
5
6 U
6 L
7 C
• DECISION VARIABLES
22.000 5.000 6,000
1.000
1.450
0.125
0.023
1.500
DESTINATION * UNIT NUMBER
1
0
2
3
5
0
4
0
5
6
7
6
0
-------
14 (REFUSE PRODUCT) 7 R 0
15 (CLEAN COAL PRODUCT) 0 C 0
16 (REFUSE PRODUCT) R R 0
NUNXTSl B NFLOMSt 16 NSIZE* « NGRAV* 0 XOUT* 2 ICMAXi SO NCOMPB 0
-------
SPECIFIC GRAVITV ANALYSIS OF FEED
SIZE FRACTION AND HEIGHT
18 BV 12 9.0 PERCENT
12 BV 6
26.1 PERCENT
b BY
26.9 PERCENT
".2
15.4
23.6
32.7
41.0
82.2
PYR1T1C
SULFUR
0.06
0.09
0,03
0.13
0.10
0.16
0.17
0.32
0.14
0.12
0.19
0,26
0.23
0.25
0.54
0.26
0.14
0.25
0.22
0.27
0.30
0.36
0.52
0.33
0.14
0.19
0.19
0.29
0.36
0.39
0.66
0.44
0.12
0.12
0.23
0.30
0.39
0.51
0.76
0.65
0.09
0.14
0.27
0.30
0.37
0.54
0.77
0.96
TOTAL
SULFUR
0.58
0.55
0.46
0.51
0.35
0.44
0.45
0.32
0.55
0.45
0.55
0.66
0.54
0.55
0.70
0.27
0.56
0.62
0.63
0.62
0.63
0.73
0.73
0.35
0,60
0,70
0.77
0.62
0.65
1.67
1.64
0.45
0.59
0.60
0.63
0.64
0.63
1.00
1.07
0.65
0.59
0.60
0.63
0.61
0.67
0.80
0,97
1.01
BTU/LB
14644.
14383.
13629.
1259Q.
11025.
9966.
8417.
4000.
14627.
14334.
13566.
12376.
10748.
9379.
7651,
4000.
14709,
14334,
13519,
12459,
10878.
9525.
8173.
4000.
14709.
14334.
13535,
12508.
11056.
9721.
6254.
4000.
14741,
14350.
13600.
12590.
11221.
9770.
6417.
4000.
14741.
14350.
13600.
1259Q.
11221.
9770.
8417,
4000.
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
19.7
30.6
32.9
44,2
46,3
46.2
49,0
100,0
16,7
31.0
36.3
41.6
45.7
47,6
49,0
100.0
23.3
44.3
51.6
59.5
6«.2
66,6
66.3
100,0
26,8
47,8
55,7
63.1
67.0
69.3
71.1
100.0
31.6
53.4
60.6
67.4
70,6
72.5
74.2
100.0
40.8
61.4
68,2
74,3
77,2
79.0
80,5
100.0
2.8
3.4
3.7
6.7
7.5
8.4
9.0
47.5
2.9
3.7
«.<>
6.1
6.0
9.1
10,0
47.2
2.4
3.5
4.4
5.9
7.«
8,4
»,2
32.4
2.4
3.
a
*«
5,
6.
7,
8,
30.0
2.2
3.2
3.9
5,1
5.9
6.6
7.4
26.7
2,2
3,0
3,
«.
5.
5.
6.
21.
0,08
0.08
0.08
0,09
0.09
0,10
0,10
0.21
0.14
0.13
0.14
0,15
0.16
0.17
0,17
0,22
0,14
0,19
0.20
0.21
0.21
0.22
0.23
0,26
0,14
0,16
0.17
0,16
0.19
0.20
0.21
0.26
0,12
0,12
0,13
0,15
0,16
0,17
0,16
0.30
0.09
0,11
0,12
0,14
0.15
0,16
0,17
0,33
0.58
0,57
0,56
0.55
0.54
0,54
0,53
0.42
0.55
0.50
0,51
0.53
0.53
0.53
0.54
0.40
0,58
0,60
0.60
0,61
0,61
0,61
0,61
0,53
0,60
0,64
0.66
0,66
0,66
0.69
0,72
0,64
0,59
tt,59
0.60
0.60
0,60
0.61
0.62
0,63
0,59
0.59
0,60
0,60
0,60
0,61
0,61
0,69
14644,
14550,
14500,
14013,
13877,
13724.
13637,
8722.
14627,
14492.
14357.
14105.
13804,
13609.
13463,
8642.
14709,
14531,
14366,
14132.
13694.
13736.
13596.
10555,
14709,
14544.
14399.
14176,
13997.
13655,
13713,
10909.
14741,
14581.
14465,
14276,
14136.
14023.
13695.
11345.
14741.
14610,
14509,
14352.
14234,
14133,
14026.
12073,
-------
28 BY 46
2.3 PERCENT
as BY o
3.4 PERCENT
COMPOSITE
100.0 PERCENT
«o
05
FLOAT
1.30.
.35.
.40-
.50.
.60-
.70-
SINK
FLOAT
1.30-
1.35.
1.40.
1.50.
1.60.
1.70-
SINK
FLOAT
1.30.
1.35.
1.40-
1.50.
1.60.
1,70-
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
45.5
16.8
5.8
5.1
2.5
1.6
1.2
19.5
50.0
20.0
5.0
5.0
2.0
2.0
1.0
15.0
24.7
18.2
6.3
7.0
3.8
2.2
l.«
36. a
1.8
«.
8.
15.
24.
33.
"1.
63.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
3.7
5.3
9.8
16.1
25.6
33.4
42.3
82.0
0.12
0.16
0.23
0.31
0.43
0,54
0.77
0,98
0.33
0.33
0.33
0.33
0.33
0.33
0.33
*.33
0.14
0.18
0.21
0.26
0.29
0.35
0.58
0,36
0.59
0.60
0.63
0.65
0,64
0,79
0.88
0,98
0,67
0,67
0,67
0,67
0,67
0,67
0.67
0.67
0.59
0.59
0,64
0,62
0.59
0.85
0,99
0.38
14807,
14399.
13649.
12574.
11090.
9623.
8270,
4000.
11677.
11677.
11677.
11677.
11677,
11677.
11677.
11677,
1449Q.
14241.
13509.
12469.
10931.
9653.
8201.
4108.
45,5
64.3
'70.1
75.2
77.7
79.3
60.5
100,0
50.0
70.0
75.0
60.0
62,0
84.0
65.0
100.0
24.7
42.9
49,1
56,2
60,0
62.1
63.6
100.0
1.8
2.5
3,1
3,9
4,6
5.2
5.7
20.8
21.0
21,0
21,0
21.0
21.0
21.0
21.0
21.0
3,7
4.4
5.1
6,5
7.7
8.6
9,3
35.8
0.12
0,14
0,15
0.16
0,17
0,17
0.16
0,34
0,33
0,33
0,33
0,33
0.33
0.33
0.33
0,33
0.14
0.16
0.17
0,18
0.18
0,19
0,20
0,26
0,59
0,59
0.60
0,60
0,60
0,60
0.61
0.68
0.67
0.67
0.67
0.67
0,67
0,67
0,67
0.67
0,59
0.59
0.60
0.60
0,60
0.61
0.62
0,53
14607,
14687,
14602.
14464,
14355,
14260,
14171,
12187,
11677,
11677,
11677,
11677,
11677,
11677,
11677.
11677.
14490,
14384,
14273.
14047.
13649.
13704.
13576.
10129.
FLOH8TREAM SUMMARY
FLOHRATE • 100.0 PERCENT OF FEED
BTU CONTENT • 10129. BTU/LB
803 CONTENT • 1.04 IBS S02/M1LLION BTU
ASH • 35.8 PERCENT
PYRITIC SULFUR • .26 PERCENT
TOTAL SULFUR • ,53 PERCENT
-------
SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 1
ROTARY BREAKER
LENGTH • 28,00 FEET
DIAMETER • 5.00 FEET
SIZE OF OPENING • 6.00 INCHES
SIZE* INCHES OR MESri
16
BY
12
BY
6
6
BY
2
2
BY
i
1
BY
3/e
3/6
BY
26
SCREEN ANALYSIS, PERCENTl
FEED (COAL * ROCK)....'. 9.0 26.1 26.9 17.0 6.2 9.0
OVERFION (REFUSE) STREAM 21.3 75.7 0.0 0.0 0.0 0.0
UNDERFLOW (PRODUCT) STREAM............... 0.0 0.0 36.3 27,6 13.6 9,9
ASH, PERCENT!
FEED (COAL + ROCK) 17.5 47.2 32.a 30.0 26.7 21,3
OVERFLOW (REFUSE) STREAM... 90.3 92.5 0.0 0.0 0.0 0.0
UNDERFLOW (PRODUCT) STREAM 0.0 0.0 26.7 24.7 22.0 16.6
PYRITIC SULFUR, PERCENT!
FEED (COAL t ROCK) 0.21 0.22 0,26 0.26 0.30 0.33
OVERFLOW (REFUSE) STREAM.,.. 0.0? 0.03 0.00 0.00 0,00 0.00
UNDERFLOW (PRODUCT) STREAM.. 0.00 0.00 0.26 0.30 0.32 0,34
TOTAL SULFUR, PERCENTl
FEED (COAL + ROCK) 0.02 0.40 0.53 0.64 0.63 0.69
OVERFLOW (REFUSE) STREAM , 0,05 0.06 0.00 0.00 0.00 0,00
UNDERFLOW (PRODUCT) STREAM 0.00 0.00 0.56 0.64 0.65 0,71
BTU PER POUND, MOISTURE FREE!
FEED (COAL * ROCK) 6722. 6642. 1055S. 10909. 11345. 12073.
OVERFLOW (REFUSE) STREAM 4512. 4663. 0. 0. 0, 0.
UNDERFLOW (PRODUCT) STREAM 0. 0. 10692. 11146. 11546. 12360.
COAL PRODUCT/COAL FEED............. PERCENT 0.0 0.0 100.0 100.0 100.0 100,0
COAL IN OVERFLOW STREAM., DO 6.2 6.3 0.0 0.0 0.0 0,0
ROCK IN UNDERFLOW STREAM DO 0.0 0.0 21.4 17.3 14.8 9,6
26
BY
46
2.3
0.0
5.4
20.6
0.0
15.1
0.34
0,00
0.35
0,66
0,00
0,72
12167.
0.
12632.
100.0
0,0
6.3
46
BY
0
3.4
0.0
4.9
21.0
0.0
16.7
0.33
0,00
0,34
0,67
0,00
0.69
11677.
0.
12053.
100.0
0.0
2.5
COM?
100.0
100,0
100,0
35,6
92.9
24.3
0.26
0,03
0.30
0.53
0,06
0.62
10129,
0627.
11273.
96,2
T,6
16.5
-------
SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 2
DRY UPPER SCREEN
SIZE OF OPENING • 1,00 INCHES
SIZE, INCHES OR MESH
6
BY
2
2
BY
i
•>>«••........ 0,5* o.ou
OVERFLOW (COARSE) STREAM 0.56 0.60
UNDERFLOW (FINE) STREAM. 0.00 0.00
BTU PER POUND, MpISTURE FREE I
FEED,............ . •«»»»«>•>• . ... ..... .... 10692, 11146,
OVERFLOW (CQAR8E) STREAM 10692. 11148.
UNDERFLOW (FINE) STREAM....... 0. 0.
WEIGHT RATIO, UNDERFLOW TO FEED.... PERCENT 0.0 0.0
BTU RATIO, UNDERFLOW TO FEED DO 0.0 0.0
1
BY
3/8
13.8
1.7
38.5
22.0
22.0
22.0
0.32
0.32
0.32
0.65
0.65
0.65
115(16.
11546.
11546.
91.8
91.8
3/8
BY
28
9.9
0.0
30.2
16.8
16.8
16.8
0.34
0.34
0.34
0.71
0.71
0.71
12360.
12360.
12360.
99.8
99.8
28
BY
48
5.4
0.0
16.4
15.1
15.1
15.1
0.35
0.35
0.35
0.72
0,72
0.72
12632,
12632,
12632.
100.0
100.0
48
BY
0
4.9
0,0
15,0
18,7
18,7
18.7
0.34
0.34
0.34
0.69
0,69
0.69
12053.
12053.
12053.
100,0
100,0
COMP
100.0
100,0
100.0
24.3
26.9
18.8
0.30
0.29
0.33
0.62
0,59
0,69
11273,
10894,
12045,
32,9
35.2
KCOUNTl 3
SGXX»1.450
SG3P«1.517
S6RAV(NS)«1.450
-------
SUMMARY Or THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 5
2-STAGE BAUM JIG
SPECIFIC GRAVITY OF SEPARATION • 1,45
CO
o>
SIZE. INCHES OR MESH
SCREEN ANALYSIS, PERCENT!
ASH, PERCENT I
PYRITIC SULFUR, PERCENT*
TOTAL SULFUR, PERCENT |
BTU PER POUND, MOISTURE FREEl
REFUSE. •••••>«•••«•.»..>>(>•••««>>•<>«>••
MIDDLINGS. •«•«.«...........»•<>»«.>>>••«<
ACTUAL RECOVERY , PERCENT
SINK IN CLEAN COAL. DO
TOTAL MISPLACED MATERIAL... PERCENT OF FEED
NEAR GRAVITY O.t MATERIAL.. DO
6
BY
2
57.1
52.7
63.6
62.5
28.7
5.1
61.3
as.o
0.28
0.18
0.02
0.36
0.56
0.5«
0.52
0.56
10692.
14275.
5779.
8168.
53.0
56.1
93.9
70.7
0.5
5.7
1.9
«.3
25.8
1.43
.050
.127
29.
2
BY
1
«1.1
15.2
35.2
36.2
24.7
6.3
60.2
50.2
0.30
0.17
o.sa
0.48
0.60
0.62
0.68
0.70
HUB.
11077.
5527.
7090.
63.2
66.8
94.6
79,8
0.8
7.0
«.o
4.1
13.9
1.49
.084
.171
53.
1
BV
3/8
1.7
2.0
1.2
1.3
22.0
6.8
60.8
50.8
0.32
0.17
0.70
0.60
0.65
0.60
0,79
0.76
11546.
13993.
5280.
6868.
69.7
73.7
94.5
84.4
1.1
7.5
3.9
4.1
9.8
1.54
.102
.187
76.
3/8
BY
28
0.0
0.0
0.0
0.0
16.8
7.8
52.3
44,6
0.34
0.19
0.95
0.80
0.71
0.62
1.07
0.98
12360.
13832.
6570.
7837.
76.6
83.1
92.2
85.7
2.1
15.7
4,4
«.2
5.9
1.63
.227
,363
140.
28
BY
48
0.0
0.0
0.0
0.0
15.1
10.0
46.1
51.2
0,35
0.25
0.94
1.09
0,72
0,66
1.11
1.19
12632,
13469,
7580.
6757.
87.4
90.5
96.6
93.2
1.6
56.3
«.5
4,6
3.7
2.01
.325
.320
195.
48
BY
0
0.0
0,0
0.0
0.0
18,7
18.4
21.0
20.7
0.34
0.32
0.48
0.52
0.69
0.67
0,81
0.84
12053.
12096.
11673.
11724.
88,7
89,1
99,5
89,1
0.0
55.6
«,1
«.2
3.4
2.01
.325
.320
195.
COMP
100,0
100.0
100.0
100.0
26.9
5.7
60.9
46.9
0.29
0,17
0,47
0,40
0.59
0.60
0.58
0,61
10894,
14179,
5685.
7762.
57.4
61.4
93,5
74.8
0.7
10.2
0.8
3.7
12.4
1.52
.063
.140
50.
-------
DISTRIBUTION* PERCENT TO WASHED COAL
(SPECIFIC GRAVITY FRACTION)|
LOAT
.30-
.35-
,50*
.60"
.70-
SINK
•30, •*,•«.»•£•>•*.•«.>««>.,..««,.»«
leo;:;:;;;;:;:;::::;:::::::;;::;;::
100.
94.
78.
39.
3.
1.
0.
0.
0
a
j
g
1
1
0
99.
98.
93.
64.
32.
14.
4.
1.
7
1
1
0
0
7
0
0
99.4
98.3
95.0
76.1
48.5
26.0
11.4
3.3
97
95
90
79
61
46
33
11
,«
,3
,3
,1
,9
.5
.8
.6
98,9
98.0
96.7
93.2
86,6
78,5
69,7
36.2
•98.9
98,0
96,7
93,2
86,6
78,5
69,7
36,2
99,8
95,9
85,1
50.0
15.7
2,0
0.4
to
-3
-------
to
00
SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 4
SECONDARY SINGLE ROLL CRUSHER
CRUSHER SETTING • .13 INCHES
SIZE, INCHES OR MESH
SCREEN ANALYSIS, PERCENT
ASH, PERCENT 1
PYRITIC SULFUR, PERCENTi
TOTAL SULFUR, PERCENT!
BTU PER POUNDi MOISTURE FREEI
6
BY
2
2
BY
1
36.2
0.0
50.2
0.0
0.48
0,00
0.70
0.00
0.
1
BY
3/8
1.3
0.0
50.8
0.0
0.60
0.00
0.76
0.00
6888.
0.
3/8
BY
28
0.0
5,9
44.6
47.0
0.80
0,40
0.98
0.61
7837.
7759.
28
BY
48
0.0
84.1
51.2
46.9
1.09
0.40
1.19
0.61
6757.
7762.
48
BY
0
0.0
10.0
20,7
46,9
0.52
0,40
0.84
0.61
11724.
7760.
COMP
100,0
100,0
46,9
46,9
0,40
0.40
0.61
0.61
7762,
7762,
-------
SUMMARY OP THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 5
STREAM BLENDER
SIZE, INCHES OR MESH
to
cp
1
BY
3/6
3/6
BY
28
28
BY
48
48
BY
0
COMP
SCREEN ANALYSIS, PERCENT!
FEED 1 38.? 30.2 16.4 15.0 100.0
FEED 2 ..,., 0.0 5.9 84.1 10.0 100.0
PRODUCT 29.0 24.2 33.1 13.7 100.0
ASH, PERCENT I ,
FEED 1...................i............... 22.0 16.6 15.1 16.7 18.8
FEED 2 ,.,.,...,.,. 0.0 47.0 46.9 46.9 46.9
PRODUCT........ 22.0 18.6 35.1 23.8 25.8
PYRITIC SULFUR, PERCENT!
FEED 1 0.3? 0.34 0.35 0.34 0.33
FEED 2........... , 0.00 0.40 0.40 0.40 0,40
PRODUCT.. 0.3? 0.34 0.38 0.35 0,35
TOTAL SULFUR, PERCENT!
FEED 1..,. 0.65 0.71 0.72 0.69 0.69
FEED 2................. 0.00 0.61 0.61 0.61 0.61
PRODUCT. 0,65 0.70 0.65 0.68 0.67
BTU PER POUND, MOISTURE FREE!
FEED 1, 11546. 12360. 12632. 12053. 12045.
FEED 2.. , 15100. 7759. 7762. 7760. 7762,
PRODUCT. 11546. 12066. 95|1. 11225. 10954.
-------
SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 6
DRY UPPER SCREEN
SIZE OF OPENING • .02 INCHES
SIZE* INCHES OR MESH
to
o
o
1
BY
J/8
3/8
BY
28
28
BY
48
08
BY
0
COMP
SCREEN ANALYSIS, PERCENTl
FEED..... 29.0 24.2 33.1 13.7 100.0
OVERFLOW (COARSE) STREAM.. 32.5 27.1 31.3 9.1 100.0
UNDERFUOH (FINE) STREAM. 0.0 0.0 18.0 52.0 100.0
ASH, PERCENTl
FEED.. 22.0 16.6 3S.1 23.8 25.8
OVERFLOW (COARSE) STREAM 22.0 18.6 35.1 23.8 25.3
UNDERFLOW (FINE) STREAM 0.0 0.0 35.1 23.8 29.2
PYRXTIC SULFUR, PERCENT!
FEED 0.3? 0.34 0.38 0.35 0.35
OVERFLOW (COARSE) STREAM.. 0.32 0.34 0.38 0.35 0.35
UNDERFLOW (FINE) STREAM...... 0.00 0.00 0.36 0.35 0.37
TOTAL SULFUR, PERCENT]
FEED. 0,6* 0.70 0.65 0.66 0.67
OVERFLOW (COARSE) STREAM.,.. 0.65 0.70 0.65 0.66 0.67
UNDERFLOW (FINE) STREAM 0.00 0.00 0.65 0.66 0.66
BTU PER POUND, MOISTURE FREEl
FEED 11546. 12066. 9511. 11225. 10954,
OVERFLOW (COARSE) STREAM.... 11546. 12066. 9511. 11225. 11021.
UNDERFLOW (FINE) STREAM 0. 0. 9511. 11225. 10402.
WEIGHT RATIO, UNDERFLOW TO FEED.... PERCENT o.o o.o 15.6 40.6 10.7
BTU RATIO, UNDERFLOW TO FEED....... DO 0.0 0.0 15.6 40,6 10.2
KCOUNTl 2
SGXXH.SOO
SGSPll.466
SGRAV(N3)«1,499
-------
SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 7
CONCENTRATING TABLE
SPECIFIC GRAVITY OF SEPARATION e 1.50
M
o
SIZE, INCHES OR MESH
SCREEN ANALYSIS, PERCENTl
ASH, PERCENTl
PYRITIC SULFUR, PERCENTl
TOTAL SULFUR, PERCENTl
BTU PER POUND, MOISTURE FREEl
FLOAT IN REFUSE......... PERCENT OF PRODUCT
SINK IN CLEAN COAL. DO
TOTAL MISPLACED MATERIAL... PERCENT OF FEED
NEAR GRAVITY o.i MATERIAL.. DO
IMPERr ECT IQNtt(t.t.tlV|l.ti9t(tBt(C(fl|iift9i
i
BY
3/6
32.5
34.9
26.9
22. o
5.1
52.7
0.32
0.15
0.62
0.65
0.59
0.76
11546.
14263.
6564.
64.6
67."
95. B
79.8
0."
11.3
3.5
6.3
15.9
1.47
.061
.130
36.
3/6
BY
26
27.1
30.2
22.3
16.6
5.2
46.1
0.34
0.15
0,74
0.70
0.60
0.92
12066.
14256.
7593.
67,1
70,9
94.6
79.3
0.6
14.4
4.0
7.4
16.5
1.47
.065
.139
41.
26
BY
46
31.3
23.2
} 4J.6
35.1
11. 9
53.7
0.38
0.21
0.53
0.65
0.62
0.66
9511.
13167.
6578.
44.5
56.5
76.6
61.6
4.1
16.7
14.7
15.8
21.3
1.53
.134
.253
93.
46
BY
0
9.1
11.7
5.2
23.8
19.6
38.1
0.35
0.31
0.50
0.66
0.66
0.73
11225.
11913.
6884.
77,3
82,9
93.3
62.0
1.2
23.6
4,9
9.1
4.6
1.73
,244
.332
152.
COMP
100.0
100.0
100.0
25.3
8.4
50.9
0.35
0.18
0.60
0.67
0.61
0.76
11021.
13731.
6927.
60.2
66.6
90.0
75,0
1.5
13.6
15.4
10.2
17.1
1.49
.104
.206
76.
-------
DISTRIBUTION* PERCENT TO HASHED COAL
(SPECIFIC GRAVITY FRACTION)|
FLOAT
1.30«
1.35.
1.40<
1.50-
1.60«
1.70-
SINK
.30
.35
.40
.50
.60
.70
.60
.60
' ' 88.3
96.9
95.6
67.7
57.2
20.1
4.6
2.3
0.2
93 5
69.0
81.0
66.4
45.6
27.9
15.4
3.1
96.9
95.6
93.8
90.1
80.3
65.1
47.3
16.2
97.9
95.3
96.6
63.5
36.3
20.2
1 1.2
2.6
-------
SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER 8
FROTH FLOTATION
SIZE. INCHES OR MESH
8
CO
28
BY
48
48
BY
0
COMP
SCREEN ANALYSIS, PERCENTi
"'"***""""***" <*®'° '2<0 100.0
*'*'''*''"'"""*"""""' '5-«8 64(2 100.0
.,.,.,.,,,,..,,,.,,, 64.t 35.9 100.0
ASH, PERCENTi
1"*"'"" 35<1 23'8 '"•*
'•••" ll'5 l8'2 15'8
52.« 37.0 46.9
PYRITIC SULFUR, PERCENTi
FEED.......... o.Jfl 0.35 0.37
CLEAN COAL....;.;.:...,...! 0.21 0.30 0^7
REFU8E 0.51 0.48 0.50
TOTAL SULFUR, PERCENT!
FEED.................,..,.,,,,. ,. 0.65 0.68 0.66
CLEAN COAL....;.;.:...;...:.:.: ::.:. 0:*i 0 ^ o *«
REFUSE o.6R 0.72 0.70
BTU PER POUND, MOISTURE FREEl
FEED... ..,., , 9511. 11225. 10402.
CLEAN COAL....,., ,... 13229. 12141. 12531.
REFUSE. 6779. 9073. 7603.
ACTUAL RECOVERY.,.,.,...., PERCENT 42.a 70.1 56.8
BTU RECOVERY DO 58.«> 75.9 68.4
-------
SPECIFIC GRAVITY ANALYSIS OF FLOH8TREAM NUMBER i
ORIGIN . UNIT NUMBER 0 DESTINATION • UNIT NUMBER
SIZE FRACTION AND HEIGHT
16 BY 12
9.0 PERCENT
\Z BY 6
PERCENT
b BY 2
26.9 PERCENT
2 BY 1
17.0 PERCENT
1 BY 3/8
B.2 PERCENT
3/8 BY 26
5,0 PERCENT
SPECIFIC
GRAVITY
HEIGHT
DIRECT*
ASH
PERCENT
PYRITIC
SULFUR
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
1.60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
1,60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
t
•
•
•
•
•
•
t
f
•
•
•
t
•
•
•
•
t
•
t
t
0
t
0
t
•
ft
•
t
•
•
•
•
•
•
•
ft
ft
ft
ft
ft
ft
ft
30
35
40
50
60
70
60
60
30
35
40
SO
60
70
80
80
30
35
40
SO
60
70
80
80
30
35
40
50
60
70
60
80
30
35
40
50
60
70
80
80
30
35
40
50
60
19
11
2
11
2
1
0
51
16
14
5
5
4
2
1
51
23
21
7
7
it
2
1
31
26
21
8
7
3
2
1
28
31
21
7
6
3
1
1
25
40
20
6
6
2
.7
,0
.3
.3
.1
.9
.8
.0
.7
.3
.3
.3
.1
.1
.2
.0
.3
.0
.3
.'
.7
.4
.7
.7
.8
.0
.0
.«
.9
.3
,8
.9
.6
.9
.2
.8
.2
.9
.7
.6
.8
.7
.8
.1
.9
2.
4.
7.
15.
25.
31.
«1.
84.
2.
«.
9.
16.
26.
35.
45.
62.
2.
«.
9.
J6.
25.
31.
«.
«2.
2.
«.
9.
15.
2«.
33.
42.
82.
2.
«.
9.
15.
23.
32.
«1.
«2.
2.
«.
9.
15.
23.
8
4
8
0
0
5
0
6
9
7
4
7
7
1
7
9
4
7
7
2
9
2
5
2
4
7
6
9
8
0
0
9
2
6
2
4
8
7
0
2
2
6
2
4
6
0.
0.
o.
o.
0.
o,
o.
0.
0.
0.
0.
o.
o.
o.
o.
o.
0.
o.
o.
o.
o.
o.
o.
o.
0.
o.
o,
o.
o,
o.
o.
o.
06
09
03
13
10
18
17
32
14
12
19
26
23
25
54
26
14
25
22
27
30
38
52
33
14
19
19
29
36
39
66
44
0.12
o.
o.
o.
o.
o.
o.
o.
0.
o.
o.
o.
o.
12
23
30
39
51
78
65
09
14
27
30
37
TOTAL
BTU/LB
SULFUR
0.
0,
0.
0.
0.
0.
0,
0.
0.
0,
0,
0.
0.
0.
0.
0.
56
55
46
51
35
44
45
32
55
45
55
68
54
55
70
27
0,56
0.
0,
0.
0.
0.
0,
0,
0.
0.
o,
0.
0.
1.
1.
0.
0.
0.
0.
o.
0.
1.
1.
0.
0.
0,
0.
o.
o.
62
63
62
63
73
73
35
60
70
77
62
65
67
64
45
59
60
63
64
63
00
07
65
59
60
63
61
67
14644.
14383.
13829.
12590.
11025.
9966.
8417.
4000.
14627.
14334.
13566.
12378.
10748.
9379.
7651.
4000,
14709.
14334.
13519.
12459,
10878.
9525,
8173.
4000.
14709.
14334.
13535.
12506.
11058.
9721.
8254.
4000.
1474J.
14350.
13600.
12590.
11221.
9770.
6417.
4000.
14741.
14350.
13600.
12590.
11221.
CUMULATIVE* PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
19.7
30.6
32.9
44.2
46.J
46.2
49,0
100.0
16.7
31,0
36,3
41,6
45.7
47,8
49,0
100.0
23,3
44,
51,
59,
64.
66.
68.
100.0
26.8
47,8
55,7
63.1
67.0
69.3
71.1
100,0
31.6
53,4
60,6
67.4
70,6
72.5
74,2
100,0
40,8
61,4
68,2
74.3
77,2
2.8
3.4
3.7
6,7
7.5
8.4
9,0
47,5
2,9
3,7
4,6
6.1
8,0
io!o
47,2
2.4
3,5
4.4
5,9
7.4
.4
•
•
7.
».
30.0
2.2
3.2
3.9
5.1
5.9
6.6
7,«
26.7
2.2
3.0
3.6
«.*
5.3
0,06
0.06
0.08
0.09
0.09
0.10
0.10
0.21
0,14
0,13
0,14
0.15
0,16
0,17
0,17
0,22
0,14
0,19
0,20
0,21
0,21
0,22
0.23
0,26
0.14
0.16
0.17
0.16
0,19
0,20
0,21
0,28
0,12
0,12
0.13
0.15
0.16
0,17
0,18
0,30
0,09
0.11
0,12
0,14
0,15
0.56
0,57
0,56
0,55
0,54
0.54
0.53
0.42
0,55
0,50
0.51
0.53
0,53
0,53
0.54
0,40
0.58
0,60
0,60
0,61
0.61
0,61
0,61
0.53
0,60
0.64
0.66
0.66
0.66
0,69
0.72
0,64
0,59
0.59
0,60
0.60
0,60
0.61
0,62
0,63
0.59
0.59
0,60
0.60
0,60
14644,
14550,
14500,
14013.
13877.
13724,
13637,
6722.
14627.
14492,
14357,
14105,
13804.
13609,
13463.
6642,
14709,
14531,
14366,
14132,
13694,
13736.
13596,
10555,
14709,
14544,
14399,
14176,
13997,
13655.
13713,
10909,
14741.
14561,
14465,
14276,
14136.
14023,
13895,
11345,
14741,
14610,
14509,
14352,
14234,
-------
28 BY 48
48 BY 0
COMPOSITE
to
o
01
1.60-
1.70-
SINK
2,3 PERCENT FLOAT
1.30-
1.35.
1.40-
1.50-
1.60-
1.70-
SINK
3.4 PERCENT FLOAT
.30-
.35.
.40-
.50-
.60-
.70-
SINK
loo.o PERCENT FLOAT
.30.
.35-
.40-
.50-
.60.
,70-
SINK
.70
.60
,80
.30
.35
,40
.50
.60
.70
.80
,80
.30
.35
,40
.50
.60
.70
.80
.80
.30
,35
.40
.50
.60
.70
.80
.80
1.8
1.5
19.5
15.5
18.8
5.8
5.1
2.5
1.6
1.2
19.5
50.0
20.0
5.0
5.0
2.0
2.0
1.0
15.0
24.7
18,2
6,3
7,0
3,8
2.2
1,"
36,4
32.7
41,0
82.2
1.8
«.3
8.9
15.5
24.6
33.6
41.9
83.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
3.7
5.3
9.8
16.1
25.6
33.4
42.3
82.0
0.54
0.77
0.90
0.12
0.18
0.23
0.31
0.43
0.54
0.77
0,98
0.33
0.33
0.33
> 0.33
0.33
0.33
0.33
0.33
0.14
0.18
0.21
0.26
0.29
0.35
0.58
0.36
0,80
0.97
1.01
0.59
0.60
0.63
0.65
0.64
0.79
0.88
0.98
0.67
0,67
0,67
0,67
0,67
0.67
0.67
0.67
0,59
0.59
0,64
0,62
0,59
0,85
0,99
0.38
9770.
8417.
4000,
14607,
14399.
13649.
12574.
1109Q.
9623.
8270,
4000.
11677.
11677.
11677.
11677.
11677.
11677.
11677.
11677.
14490.
1424J.
13509.
12469.
10931.
9653.
8201.
4108.
79,0
80.5
'100,0
45.5
64,3
70,1
75.2
77.7
79,3
80,5
100,0
50.0
70,0
7f.O
80,0
82,0
84,0
85.0
100.0
24,7
42.9
«9.J
56,2
60,0
62,1
63,6
100,0
5.
6,
21,
1,
2,
3.1
3,9
4.6
5.2
5,7
20.8
21,0
21.0
21.0
21.0
21.0
21.0
21.0
21,0
3.7
4.4
5.1
6.5
7.7
8,6
«,3
35,8
0,16
0,17
0.33
0.12
0.14
0,15
0,16
0.17
0,17
0,18
0.34
0.33
0,33
0.33
0.33
0.33
0,33
0.33
0,33
0,14
0.16
0.17
0,18
0,18
0.19
0.20
0.26
0.61
0,61
0,69
0.59
0.59
0.60
0.60
0.60
0.60
0,61
0,68
0.67
0.67
0.67
0,67
0.67
0.67
0,67
0,67
0,59
0.59
0,60
0.60
0.60
0.61
0,62
0,53
10133.
14026.
12073,
14807.
14687,
14602,
14464,
14355.
14260,
14171.
12187,
11677,
11677,
11677,
11677,
11677,
11677,
11677,
11677,
14490,
14384,
14273,
14047,
13849.
13704.
13578.
10129,
FtOHSTREAM SUMMARY
FLOHRATE • loo.o PERCENT OF FEED
BTU CONTENT • 10129. BTU/LB
802 CONTENT • 1.04 LBS S02/MILLION BTU
ASH * 35.« PERCENT
PYRITIC SULFUR » ,26 PERCENT
TOTAL SULFUR • ,53 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF FLOWSTREAM NUMBER 2
ORIGIN - UNIT NUMBER 1 R
DESTINATION - UNIT NUMBER 0
SIZE FRACTION AND WEIGHT
te BY 12
24.3 PERCENT
12 BY 6
T5.7 PERCENT
COMPOSITE
100.0 PERCENT
FLOHSTREAM SUMMARY
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30-
1.35.
1.40.
1.50.
1,60.
1.70.
SINK
FLOAT
.30-
.35.
.40.
.50.
.60-
.70-
SINK
FLOAT
.30-
.35.
.40.
.50-
.60*
.70-
SINK
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
2.1
1.2
0.2
1.2
0.2
0.2
0.1
9«,7
2.5
1.9
0.7
1.0
0.5
0.3
0.2
93.0
2.4
1.7
0.6
1.0
0.4
0.3
0.1
93.4
2.8
4.4
7.8
15.4
25.0
31.5
41.0
99.J
2.9
4.6
9.2
16.2
26.5
34.3
44,i)
98.7
2.9
4.6
*.o
15.9
26.3
33.7
44.1
98.8
0.08
0.09
0.03
0.13
0.10
0.18
0.17
0.02
0.12
0.11
0.17
0.21
0.21
0.23
0.48
0.02
0.11
0.11
0.16
0.19
0.20
0.22
0.43
0.02
SULFUR
0.58
0.55
0.46
0.51
0.35
0.44
0.45
0.02
0.56
0.47
0.54
0.61
0.51
0.53
0,66
0,02
0.56
0.48
0.53
0.58
0,49
0.51
0.62
0,02
BTU/LB
14640.
14383.
13829.
12590.
11025.
9966.
8417.
4000.
14632.
14343.
13598.
12462.
10786.
9506.
7781.
4000.
14634,
14350,
13625,
12501,
10821.
9603.
7907,
4000.
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
2,1
3,3
3.6
4,»
5,0
5,2
5.3
100,0
2.5
4,4
5,1
6,0
6,5
6,8
7.0
100,0
2,4
4,1
6,2
6.4
6,6
100,0
2,8
3,4
3,7
6,7
7.5
8,4
9.0
94,3
2.9
3,6
4,4
6.2
7.8
9.0
9,8
92.5
2.9
3.6
4.2
6,3
7.8
8,9
9,6
92.9
0,08
0,06
0.06
0.09
0.09
0.10
0,10
0.02
0.12
0,12
0,13
0,14
0.15
0,15
0,16
0.03
0,11
0.11
0,12
0,13
0.13
0,14
0.14
0,03
0.56
0,57
0,56
0,55
0,54
0,54
0,53
0,05
0,56
0.52
0,52
0,54
0,53
0,53
0.54
0,06
0,56
0.53
0,53
0,54
0,54
0,53
0,54
0,06
14644,
14550.
14500.
14013.
13877.
13724,
13637.
4512.
14632.
14506,
14388,
14082.
13621,
13636.
13504,
4663.
14634,
14514.
14409,
14068,
13833,
13654,
13531,
4627,
FLOHRATE • 16,8 PERCENT OF FEED ASH • 92,9 PERCENT PYRITIC SULFUR « ,03 PERCENT TOTAL SULFUR • ,06 PERCENT
BTU CONTENT • 4627. BTU/LB
S02 CONTENT * 0.24 LBS S02/MILLION BTU
-------
SPECIFIC GRAVITY ANALYSIS OF FLOWSTREAM NUMBER 3
ORIGIN • UNIT NUMBER
DESTINATION • UNIT NUMBER
SIZE FRACTION AND HEIGHT
6 BY 2
36.3 PERCENT
2 BY 1
27.6 PERCENT
8
I BY 3/6
13.8 PERCENT
3/6 BY 2B
9.9 PERCENT
28 BY 48
5.4 PERCENT
46 BY 0
4.9 PERCENT
SPECIFIC
GRAVITY
DIRECT, PERCENT
HEIGHT ASH PYRITIC TOTAL
SULFUR
FLOAT 1.30
1.30*1.35
1.35- .40
1.40-
1.50-
1.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40>
1.50.
1.60.
1.70.
SINK
FLOAT
.30.
.35-
.40-
.50-
.60-
,70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.70.
SINK
FLOAT
.30.
.35.
.40.
.50*
.60-
,70-
SINK
FLOAT
1.30-
1.35-
1.40.
1,50.
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
,40
.50
,60
.70
.80
.80
.30
.35
.40
.50
.60
a«.2
20.7
7.1
6.6
4.9
2.6
1.7
30.1
27.1
21.6
7.9
8.6
4.7
2.6
1.8
25.8
30.5
22.6
7.7
8.2
4.2
2.4
1.8
22.6
36.2
22.9
7.8
8.0
«.2
2.4
1.8
16.8
40.3
22.4
7,4
7.4
3.8
2.2
1.7
14.8
49.5
20,6
5.5
5.4
2.3
2.6
«.7
«.«
16.2
26.1
34,2
43.2
73.6 t
2.5
4.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
".6
'.3
15.8
25.1
33.4
42.2
68.6
2.3
4.6
'.3
15.8
25.0
33.4
«2.2
61.4
2.1
«.s
9.2
15.7
25.0
33.5
42.2
61.0
17.9
17.8
18.2
19.8
22.1
0,13
0.21
0.20
0.25
0.27
0.32
0.51
0.46
0.14
0.17
0.19
0.26
0.30
0.33
0,59
0.60
0.13
0,14
0.21
0.27
0,32
0.39
0,67
0,78
0.11
0.15
0.23
0.27
0.32
o.ui
0,67
l.H
0.12
0.16
0.22
0.26
0,34
0.44
0.69
1.32
0.30
0.30
0.31
0.32
0.34
BTU/LB
SULFUR
0.57
0.57
0.60
0.62
0.59
0.65
0.71
0.46
0.58
0.62
0.69
0.62
0.60
1.14
1.36
0.62
0.58
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.59
0.59
0,63
0,62
0.61
0.66
1.03
1.17
0.59
0.60
0,64
0,63
0.62
0.87
1.01
1,34
0.66
0.66
0.66
0.66
0,66
14682.
14337.
13544.
12462,
10646.
9521.
6051.
4000.
14685.
14337.
13551.
12484.
10931.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14716.
14345.
13580.
12527.
11024.
9657.
8229,
5099,
14756.
14363.
13599,
12534.
11026.
9638.
8224.
5163.
12179.
12201.
12139.
11878.
11506.
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
24.2
44,9
52,1
60,7
65.6
68.3
69,9
100,0
27,1
48.7
56,5
65.1
69,7
72.4
74,2
100,0
30.5
53.1
60.6
66,9
73,2
75,6
77,4
100.0
36.2
59,0
66,8
74.8
79,0
81,4
63,2
100,0
40,3
62.7
70,1
77,5
81.3
63,5
85,2
100,0
49,5
70,1
75,6
61,0
83,3
2,6
3.5
4.4
6,0
7.5
6.6
9.4
26.7
2.5
3.5
«,3
5.9
7.2
6.2
'.0
24.7
2.4
3.3
4.1
5.5
6,6
7.5
8,3
22,0
2.3
3.2
3.'
5.2
6.3
7.1
7.8
16.6
2.1
3,0
3,6
«.8
5.7
6,5
7.2
15.1
17,9
17,9
17, «>
16,0
16.1
0.13
0,17
0.17
0.18
0.19
0,19
0,20
0.28
0.14
0,15
0.16
0.17
0.18
0.18
0.19
0,30
0,13
0.13
0.1U
0.16
0.17
0,17
0,18
0,32
0.11
0,12
0,14
0.15
0,16
0,17
0,18
0,34
0.12
0.13
0.14
0,16
0,16
0,17
0.18
0,35
0.30
0.30
0,30
0,30
0,30
0.57
0.57
0.58
0,58
0.58
0,59
0.59
0,56
0,58
0,60
0.61
0.61
0.61
0.63
0,65
0,64
0.58
0,58
0,59
0.59
0,59
0.60
0,61
0,65
0,59
0.59
0,59
0.60
0.60
0,60
0.61
0,71
0.59
0,59
0,59
0,60
0,60
0,61
0,61
0.72
0,66
0,66
0,66
0,66
0,66
14662,
14523.
14369.
14115,
13869.
13703.
13567,
10692,
14665.
14531.
14394,
14143,
13929,
13771,
13633.
11146,
14712,
14556,
14433.
14207.
14023.
13863.
13751,
11546,
14718,
14573.
14457,
14250,
14061,
13949,
13627,
12360,
14756,
14616,
14506.
14320,
14167,
14045.
13932.
12632,
12179.
12165,
12162,
12162.
12144,
-------
COMPOSITE
100.0 PERCENT
PIOWSTREAH SUMMARY
1.60-1. TO
1,70*1.60
SINK 1.60
FLOAT
1.30-
1.35-
i.oo-
1.50-
1.60-
1.70-
SINK
.30
.35
.10
.50
.60
.70
.60
.60
2.0
1.1
13.6
29. 2
21.5
T.«
8.3
1.5
2.5
l.T
20.9
23.5
26.0
20.6
3.6
5.3
'.8
16.1
25.o
33. «
«2.3
69.3
0.36
O.U3
0.58
0,10
o.ie
0,21
0,86
0.29
0.35
0.56
0.62
0.70
0.75
0.69
0.59
0.59
0.6
-------
SPECIFIC GRAVITY ANALYSIS OF FLOH8TREAH NUMBER 4
ORIGIN . UNIT NUMBER 2 U DESTINATION • UNIT NUMBER 3
SIZE FRACTION AND HEIGHT
6 BY 2
57. 1 PERCENT
2 BY 1
41.1 PERCENT
1
1 BY 3/8
1.7 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30-
1.35.
1.40.
1.50*
1.60.
1.70-
SINK
FLOAT
.30.
.35.
.40.
.50.
.60.
,70.
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.70-
8INK
FLOAT
1.30>
1.35.
1.40-
1.50.
1.60-
1.70.
SINK
.30
.35"
.40
.50
.60
.70
.80
.SO
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.80
.60
24.2
20.7
7.1
8.6
4.9
2.6
1.7
30.1
27.1
21.6
7.<»
8.6
4.7
2.6
1.8
25.8
30.5
22.6
7.7
8.2
«.2
2.4
1.8
22,6
25.5
21.1
7.4
8.6
4.8
2.6
1.7
26.2
2.6
«.7
9.5
16.2
26.1
34.2
«3.2
73.6
2.5
4.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.6
2.6
4.7
".5
16.1
25.9
34.0
«.l
72.2
0.13
0.21
0.20
0.25
0.27
*.32
0.51
0.46
0.14
0.17
0.19
0.26
0.30
0.33
0.59
0,60
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.78
0.13
0.19
0,20
0.25
0,28
0.33
0.54
0,52
BTU/LB
SULFUR
0.57
0.57
0,60
0.62
0.59
0,65
0.71
0.48
0.58
0.62
0.69
0.62
0,60
1.14
1.36
0.62
0.56
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.56
0,59
0,64
0,62
0.59
0.86
0.99
0,54
14682,
14337.
13544.
12462.
10646.
9521.
8051.
1000.
14685.
14337.
13551.
12464,
10931,
9616,
8101,
400Q,
14712.
14345.
13562.
12526.
11016.
9650.
6222,
4000,
14664.
14337.
13546.
12472.
10663.
9563.
6077.
4000,
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
24,2
44,9
52.1
60,7
65.6
66,3
69,9
100.0
27.1
46.7
56.5
65.1
69.7
72.4
74,2
100,0
30,5
53.1
60,8
66,9
73.2
75.6
ioo|o
25.5
46,6
54,1
62.7
67,5
70.1
71,6
100,0
2.6
3,5
4.4
6,0
7.5
8.6
9.4
28,7
2.5
3.5
4.3
5.9
7.2
8,2
9.0
24,7
2,4
3,3
5!5
6,6
7,5
8.3
22,0
2,6
3.5
4.3
6,0
7.4
8.4
9.2
26.9
0.13
0,17
0.17
0.18
0.19
0.19
0.20
0.28
0,14
0,15
0.16
0,17
0,16
0,18
0.19
0,30
0,13
0,13
0,14
0,16
0,17
0,17
0,16
0,32
0,13
0,16
0,17
0,16
0.16
0,19
0,20
0,29
0,57
0,57
0.56
0,56
0,58
0,59
0.59
0,56
0.56
0,60
0,61
0,61
0,61
0,63
0,65
0,64
0,58
0.56
0.59
0.59
0.59
0,60
0.61
0,65
0.56
0,56
0,59
0,60
0,60
0,61
0.61
0,59
10662.
14523.
14389,
14115,
13869,
13703.
13567.
10692,
14665.
14531,
14394.
14143.
13929,
13771,
13633,
11148.
14712,
14556,
14433.
14207,
14023,
13663.
13751,
11546,
14664.
14527.
14392.
14128,
13696,
13735,
13596,
10694,
FLOHSTREAM SUMMARY
FLOWRATE • 55.6 PERCENT OF FEED
BTU CONTENT • 10694. BTU/LB
602 CONTENT • 1.09 LBS SOS/MILLION BTU
ASH • 26.9 PERCENT
PYRITIC SULFUR • .29 PERCENT
TOTAL SULFUR • ,59 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OP FLOH8TREAM NUMBER 5
ORIGIN • UNIT NUMBER 2 I
DESTINATION - UNIT NUMBER 5
SIZE FRACTION AND HEIGHT
I BY 3/6
3/8 BY 26
CO
t-«
o
ze BY 46
46 BY 0
COMPOSITE
HT
SPECTFIC
GRAVITY
HEIGHT
DIRECT* PERCENT
ASH PYRITIC TOTAL
SULFUR
38.5 PERCENT
30.2 PERCENT
16.4 PERCENT
15.0 PERCENT
100.0 PERCENT
FLOAT
.30.
.35.
.40-
.50-
.60-
.70-
SINK
FLOAT
.30-
.35-
.40*
.SO-
.60-
.70-
SINK
FLOAT
.30-
.35-
.40-
.50.
.60-
,70.
SINK
FLOAT
1.30-
1.35.
1.40-
1.50-
1.60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.30
.35
.40
.so
.60
.70
.60
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
,60
.70
,70-1.60
SINK 1.60
30.5
22,6
7.7
6.2
1.2
2.4
1.8
22.6
36.2
32,9
7.8
8,0
4.2
2.4
1.6
16.8
40.3
22.4
7.4
7.«
3.8
2.2
1.7
14.6
49,5
20.6
5.5
5.4
2.3
2.0
1.1
13.6
36.7
Z2.3
7.3
7.6
3.6
2.3
1.7
18,2
2.4
4.6
9.3
15.8
25.1
33.4
42.2
68.8
2.3
4.6
'.3
15.8
25.0
33.4
42.2
61.4
2.1
4.5
'.2
15.7
25.0
33.5
42.2
61.0
17.9
17.6
18.2
19.8
22.1
23.3
26.4
20.6
5.5
6.4
10.3
16.2
24.8
32.1
40.6
60.3
0,13
0,14
0,21
0,27
0.32
0.39
0,67
0,78
0.11
0.15
0.23
0.27
0.32
0.41
0.67
1.14
0.12
0.16
0.22
0.26
0.34
0,44
0.69
1.32
0,30
0.30
0,31
0.32
0.34
0.36
0.43
0.58
0,15
0.17
0.23
0.26
0.32
0.40
0.65
0,93
SULFUR
0.56
0.56
0.63
0.63
0.60
0.90
1,04
0,79
0.59
0,59
0.63
0,62
0,61
0.66
1.03
1.17
0.59
0.60
0.64
0,63
0,62
0.67
1.01
1.34
0,66
0,66
0.66
0,66
0,66
0,70
0.75
0.89
0.60
0.60
0.64
0.63
0.61
0,66
1.00
0.96
BTU/L6
14712.
14345.
13562.
12526.
11016.
9650.
8222,
4000,
14716,
14345,
13580.
12527.
11024.
9657.
6229.
5099.
14756.
14363.
13599.
12534.
11026,
9636,
6224,
5163,
12179.
12201.
12139.
11676.
11506.
11297,
10604,
11715.
14209.
14052.
13424.
12459.
11064.
9867.
6464.
5320.
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
30,5
53.1
60,8
68,9
73.2
75.6
77.«
100.0
36,2
59.0
66,8
74.8
79.0
81.«
83.2
100,0
40.3
62.7
70,1
77.5
81,3
63,5
85,2
100,0
49,5
70,1
75,6
61.0
83.3
85.3
66.4
100.0
36.7
59.0
66,3
73,9
77.8
80,1
61,8
100,0
2.4
3.3
4,1
5,5
6.6
7,5
6.3
22,0
2.3
3.2
3,9
5,2
6,3
7,1
7.8
16.8
2,1
3,0
3,6
4,8
5,7
6,5
7.2
15.1
17.9
17,9
17.9
18.0
18.1
16,3
18,4
18.7
5.5
5.
6.
7
' «
8.
8.
g
T f
18.
0.13
0.13
0,14
0,16
0.17
0,17
0,18
0,32
0,11
0,12
0.14
0.15
0,16
0,17
0.18
0,34
0.12
0,13
0.14
0,16
0,16
0,17
0,16
0,35
0.30
0,30
0.30
0,30
0.30
0,30
0,30
0,34
0.15
0,16
0,17
0.16
0,19
0,19
0,20
0.33*
0,58
0.58
0,59
0,59
0,59
0,60
0,61
0,65
0,59
0,59
0,59
0,60
0,60
0,60
0,61
0,71
0,59
0,59
0,59
0,60
0,60
0,61
0,61
0,72
0.66
0,66
0.66
0,66
0,66
0,66
0,66
0,69
0,60
0.60
0,60
0,61
0.61
0,61
0,62
0,69
14712,
14556,
14433.
14207,
14023,
13663,
13751.
11546,
14716.
14573,
14457,
14250.
14081,
13949,
13627,
12360,
14756,
14616.
14508,
14320,
14167,
14045,
13932,
12632,
12179,
12165.
12162.
12162.
12144,
12123,
12106,
12053.
14209,
14150,
14069,
139Q4,
13764.
13651.
13545.
12045.
FLOH8TREAM SUMMARY
FLOHRATE • 27.4 PERCENT OF FEED
ASH • U,6 PERCENT
PYRITIC SULFUR • .33 PERCENT
TOTAL SULFUR • ,69 PERCENT
-------
BTU CONTENT • U0«6. BTU/LB
802 CONTENT • 1.14 L.B3 SOZ/MIU.ION BTU
-------
SPECIFIC GRAVITY ANALYSIS OF FLOW8TREAM NUMBER 6
ORIGIN . UNIT NUMBF.R 3 C
DESTINATION - UNIT NUMBER 0
SIZE FRACTION AND HEIGHT
6 BY 2
2 BY I
to
H*
CO
1 BY 3/8
COMPOSITE
HT
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
52.7 PERCENT
«5. 2 PERCENT
2.0 PERCENT
100.0 PERCENT
FLOAT
1.30.
1.35-
1.40*
1.50-
1.60-
1.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
1,60-
.30
.35
.40
.50
.60
.70
.BO
.60
.30
.35
.40
.50
.60
.TO
1.70-1. BO
SINK 1.80
FLOAT 1.30
1.30-1.35
1.35-
1.40.
1.50-
1.60.
1.70-
SINK
FLOAT
.30-
.35.
.40-
.50-
.60-
.70-
SINK
,«0
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
45.7
36. <>
10.6
6.4
0.«
0.1
0.0
0.0
42.8
33.5
11.6
8.7
2.4
0.6
0.1
0.4
43.5
31.
10.
8.
2.
0.
0.
1.
44.3
35.2
11.0
7.5
1.3
0.3
0.1
0.2
2.6
4.7
'.5
16.2
26.1
34.2
43.2
73.6
2.5
4.7
9.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.6
«.7
9.5
16.1
25.6
33.7
42.7
69.7
0.13
0,21
0.20
0.25
0.27
0.32
0.51
0.46
0.14
0,17
0.19
0.26
0,30
0,33
0,59
0,60
0.13
0.14
0.21
0.27
0.32
0,39
0,67
0,78
0.13
0,19
0,20
0.25
0,29
0.33
0.59
0.62
SULFUR
0,57
0,57
0.60
0.62
0.59
0.65
0.71
0,48
0.58
0.62
0.69
0,62
0,60
1.14
1.36
0.62
0.58
0.58
0.63
0,63
0.60
0,90
1.04
0.79
0.58
0.59
0.64
0.62
0,60
1.07
1,30
0.64
BTU/LB
14682.
14337.
13544.
12462.
10846.
9521.
8051.
4000.
14685.
14337.
13551.
12484.
10931.
9616.
8101,
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14664.
14337.
13548,
12475.
10923.
9612.
6137.
4026.
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
45.7
82,6
93.2
99,6
99,9
100,0
100.0
100.0
42,8
76.3
67,8
96.5
98,9
99,5
99,6
100,0
43.5
75.4
65.9
94,8
97.7
98.6
98.9
100.0
44.3
79.6
90.6
98.1
99,4
99,7
99,8
100,0
2.6
3.5
4.2
5,0
5.0
5.1
5.1
5.1
2.5
3.5
4.3
5.3
5.8
6,0
6,0
6.3
2,4
3,3
4.1
5,2
5,8
6,0
6,1
6,6
2,6
3.5
4,2
5.1
5.4
5.5
5,5
5.7
0.13
0,17
0.17
0,18
0.18
0.18
0,18
0,16
0,14
0.15
0.16
0,17
0.17
0.17
0.17
0.17
0,13
0,13
0.14
0,15
0,16
0,16
0,16
0,17
0,13
0.16
0,16
0,17
0.17
0,17
0,17
0.17
0,57
0,57
0.58
0.58
0,58
0,56
0.58
0.56
0.58
0.60
0,61
0,61
0,61
0,62
0,62
0,62
0,56
0,56
0,59
0,59
0,59
0,60
0,60
0,60
0.56
0,58
0,59
0,59
0,59
0,60
0,60
0,60
14682,
14526,
14416.
14291,
14278,
14275,
14275.
14275,
14665,
14532.
14402,
14230,
14151,
14123,
14116,
14077,
14712.
14557.
14436,
14256,
14161.
14119,
14102.
13993,
14664,
14530,
14411,
14263.
14219.
14203,
14200,
14179,
FLOWSTREAM SUMMARY
FLOWRATE • 32,1 PERCENT OF fEEO
BTU CONTENT • 14179. BTU/LB
802 CONTENT • 0.84 LBS S02/MILLION BTU
ASH • 5.7 PERCENT
PYRITIC SULFUR • .17 PERCENT
TOTAL SULFUR • ,60 PERCENT
-------
SPECIFIC GRAVITV ANALYSIS OF FUOHSTREAM NUMBER 7
ORIGIN - UNIT NUMBER 3 M DESTINATION - UNIT NUMBER 4
SIZE FRACTION AND HEIGHT
6 BY 2
62.5 PERCENT
2 BY 1
36.2 PERCENT
to
H*
CO
1 BY 3/8
1.3 PERCENT
COMPOSITE
100.0 PERCENT
FLOHSTREAM SUMMARY
SPECIFIC
GRAVITY
HEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
FLOAT
.30-
.35.
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30.
1.35.
1.40>
1.50.
1.60.
1.70-
SINK
FLOAT
1.30.
1.35.
1,40-
1.50-
1.60.
1.70-
SINK
FLOAT
.30-
.35.
.40.
.50-
.60.
1.70>
SINK
.30
.35
.40
.50
.60
.70
.60
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.80
0.5
3.2
6.0
19.1
15.3
7.1
3.9
40,9
0.2
2.0
2.4
12.7
12.6
7.0
5.5
56.5
0.6
2.4
2.3
10.6
10.8
7.7
6.2
59.4
0.4
2.8
4.6
16.7
14.3
7.4
4.5
49.3
2.6
4.7
'.5
16.2
26.1
34.2
43.2
73.6
2.5
4.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
9.3
15.8
25.1
33.4
42.2
68.8
2.6
4.7
'.5
16.1
25.9
34.0
43.1
72.0
0.13
0.21
0.20
0.25
0.27
0.32
d.si
0.46
0,14
0.17
0.19
0.26
0.30
0.33
0.59
0.60
0.13
0.14
0,21
0.27
0.32
0,39
0,67
0,78
0.13
0.20
0.20
0.25
0,28
0.33
0.55
0.53
BTU/LB
SULFUR
0.57
0.57
0.60
0.62
0.5<»
0.65
0.71
0,48
0.58
0.62
0.69
0,62
0,60
1.14
1.36
0.62
0.58
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.58
0.59
0.62
0.62
0.59
0.84
1.00
0,54
14682.
14337.
13544.
12462,
10846.
9521.
8051.
4000.
14685.
14337.
13551.
12fl«4.
109J1.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14683.
14337.
13546.
12469,
10875.
9560.
8077,
4001.
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
0,13
0,20
0,20
0.23
0,24
0.25
0,27
0,36
0.14
0.17
0.18
0,24
0.26
0,28
0,32
0,48
0.13
0.14
0,17
0.24
0.27
0,30
0,35
0,60
0,13
0.19
0.20
0,23
0,25
0,26
0,29
0.40
0.5
3.7
9.7
28.8
44.1
51.1
55.1
100,0
0,2
2,2
4,7
17,4
30.0
38.0
43.5
100.0
0.6
3.0
5.3
15.9
26.7
34.4
40,6
100,0
0.4
3.2
7,8
24.5
38.8
46.2
50,7
100,0
2.6
4,4
7.6
13.3
17.7
20.0
21.7
45,0
2,5
4,5
7.1
13,7
18,7
21,8
24.5
50.2
2.4
4.2
6,4
12.7
17,7
21.2
24.4
50,8
2.6
4.4
7.5
13.4
18.0
20.6
22,6
46,9
0,57
0,57
0.59
0.61
0.60
0,61
0,61
0.56
0.58
0,62
0,65
0,63
0,61
0,72
0,80
0,70
0,58
0,58
0,60
0,62
0,61
0,67
0,73
0,76
0.58
o.Sa
0,60
0,61
0,60
0,64
0,67
0,61
14682,
14385,
13868,
12936,
12211,
11839,
11568,
8168.
14685.
14372,
13941,
12S74,
12057,
11546.
11111.
7090,
14712.
14418,
14050,
13033,
12217.
11641,
11119,
6888.
14683,
14382,
13885,
12921.
12168,
11750,
11422,
7762,
FLOHRATE • 9.0 PERCENT OF FEED
BTU CONTENT • 7762. BTU/LB
802 CONTENT • 1.57 LBS 302/MILLION BTU
ASH • 46,9 PERCENT
PYRITIC SULFUR • ,40 PERCENT
TOTAL SULFUR • ,61 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF FLON8TREAM NUMBER 6
ORIGIN • UNIT NUMBER 3 R
DESTINATION - UNIT NUMBER 0
SIZE FRACTION AND HEIGHT
6 BY 2
63.6 PERCENT
2 BY 1
35.2 PERCENT
1 BY 3/8
1.2 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PVRITIC TOTAL
8UIFUR
FLOAT
1.30.
1.3S-
1.40.
1.50.
1.60.
1.70-
SINK
FLOAT
.30.
.35.
.40.
.50.
,60.
.70-
SINK
FLOAT
1.30-
.35.
,40-
.50-
.60-
.70-
SINK
FLOAT
.30.
.35.
.40.
.50.
.60.
.70-
SINK
.30
.35
.10
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
0.0
2. 1
1.7
6.4
6.9
4.5
3.3
75.0
0.3
0.6
0.9
5.6
6.1
5.0
4.2
77.3
0.6
0.5
0.6
3.7
4.7
4.7
4.7
80.6
0.1
1.6
1.4
6.1
6.6
4.7
3.7
75.9
2.6
«.7
".5
16.2
26,1
34.2
43.2
73.6
2.5
u.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.5
«.7
'.5
16.1
25.9
34.0
43.1
72.2
0.13
0.21
0.20
0.25
0,27
0.32
0.51
0.46
0.14
0.17
0,19
0.26
0.30
0.33
0.59
0.60
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.78
0.13
0.20
0.20
0.25
0.28
0.33
0.54
0,52
SULFUR
0.57
0.57
0.60
0.62
0.59
0.65
0.71
0.48
0.58
0.62
0.69
0.62
0.60
1.14
1,36
0,62
0.58
0,58
0.63
0.63
0.60
0.90
1,04
0,79
0,58
0.58
0.62
0.62
0.59
0.84
0.98
0.54
BTU/LB
14682.
14337.
13544.
12462.
10846.
9521.
8051.
4000.
1468$.
14337.
13551.
12480.
10931.
9616.
8101.
4000.
14712.
14345.
13582,
12526,
11016.
9650.
8222.
4000.
14687,
14337,
13546,
12470,
10875,
9559.
8075.
4000.
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
0.0
2.1
3.8
10,2
17.1
21.6
25,0
100,0
0.3
0,9
1.7
7.4
13.4
18.4
22.7
100.0
0.6
1.1
1.7
5.4
10.1
14,8
19,4
100.0
0.1
1.7
3.0
M
15.7
20.4
24.1
100.0
2.6
4.7
6,8
12.7
18,1
21.5
24,4
61,3
2.5
4.1
6.8
13.9
I'.t
23.1
26.8
60.2
2.4
3.4
5.4
12.5
18,3
23,1
27.7
60.8
2.5
4.6
6.8
13.0
18,4
22.0
25.2
60.9
0.13
0.21
0.21
0.23
0.25
0.26
0,29
0,42
0,14
0,16
0,18
0,24
0,26
0,28
0,34
0,54
0.13
0.13
0,16
0,23
0,27
0,31
0,40
0,70
0.13
0,20
0,20
0.23
0.25
0.27
0.31
0,47
0,57
0,57
0,59
0,60
0,60
0,61
0.62
0,52
0,58
0,61
0.65
0,63
0.61
0.75
0,87
0,68
0,58
0,58
0.60
0,62
0,61
0,70
0,78
0,79
0.58
0,58
0,60
0.61
0.60
0,66
0.71
0,58
14682.
14337.
13988.
13030.
12145.
11596.
11121.
5779,
14685.
14439,
13994,
12841,
11979,
11338,
10734,
5527,
14712,
14545,
14221.
13067.
12109,
11333,
10588,
5280.
14687,
14357,
13991,
12977.
12095.
11512.
10988.
5685,
FLOHSTREAM SUMMARY
FLOHRATE • 14,8 PERCENT OF FEED
BTU CONTENT • 5685. BTU/LB
802 CONTENT • 2.03 CBS 802/HILLION BTU
ASH • 60.9 PERCENT
PYRITIC SULFUR • ,47 PERCENT
TOTAL SULFUR « .58 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF FLOWSTREAM NUMBER 9
ORIGIN • UNIT NUMBER 4 DESTINATION • UNIT NUMBER 5
SIZE FRACTION AND WEIGHT
3/8 By 28
26 BY 08
to
H*
en
40 BY 0
COMPOSITE
.1
25.9
34.0
43.1
72.0
2.6
«.7
'.5
16.1
25.9
34.0
«3.1
72.0
2.6
«.7
'.5
16.1
25.9
34.0
".I
72.0
2.6
4.7
«.5
16.1
25.9
34.0
«3.1
72.0
0.13
0.20
0.20
0.25
0.28
0,33
0.55
0.53
0.13
0.20
0.20
0.25
0.28
0.33
0.55
0.53
0.13
0.20
0.20
0.25
0.28
0.33
0.55
0.53
0.13
0.20
0.20
0.25
0.28
0.33
0.55
0.53
BTU/LB
SULFUR
0,58
0.59
0,62
0.62
0.59
0.84
1.00
0.54
0.58
0,59
0.62
0.62
0.59
0.84
1.00
0.54
0.58
0.59
0.62
0.62
0,59
0,84
1.00
0.54
0.57
0.58
0.62
0.62
0.59
0,84
1.00
0.54
14683.
14337.
13546.
12469.
10876.
9561.
8077.
4000.
14683.
14337.
13546,
12469.
10875.
9560.
8077.
4000.
14679.
14337.
13546.
12469.
10876.
9561.
8078.
4000.
14683.
10337.
13546.
12469,
10876.
9561.
8078.
4000,
FLOH8TREAM SUMMARY
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
0,13
0,19
0,20
0.23
0.25
0.26
0.29
0.40
0.13
0.19
0.20
0.23
0.25
0.26
0.29
0.40
0.13
0,19
0,20
0.23
0.25
0.26
0,29
0,40
0.13
0.19
0.20
0.23
0.25
0.26
0.29
0.40
0,4
3.2
7.8
24.5
38.7
46.1
50.7
100.0
0.4
3.2
7.8
24.5
38,8
46.2
50.7
100.0
0.4
3.2
7.8
2«.5
38,7
46,1
50,7
100.0
2.6
4.4
7,5
13.4
18,0
20.6
22.6
47.0
2.6
4.4
7,5
13.4
18.0
20.5
22.6
46.9
2.6
4.4
7.5
13.4
18,0
20,6
22.6
46,9
0,4
3.2
7.8
24.5
38,8
46.2
50.7
100.0
8.6
4.4
7.5
13.4
18.0
20.5
22.6
46.9
0,58
0.58
0,60
0,61
0.60
0.64
0.68
0,61
0,58
0,58
0,60
0.61
0.60
0,64
0.67
0,61
0.58
0,58
0.60
0,61
0,60
0,64
0,68
0,61
0.57
0,58
0.60
0.61
0,60
0,64
0,67
0,61
14683,
14382.
13885,
12921.
12168.
11750,
11421,
7759,
14683,
14382,
13885,
12921.
12168,
11750,
11422,
7762.
14679,
14381,
13885,
12921,
12168,
11750,
11421,
7760,
14683,
14382,
13885,
12921,
12168,
11751,
11422,
7762.
FLOHRATE • 9.0 PERCENT OF FEED ASH * 46.9 PERCENT PYRITIC SULFUR • .40 PERCENT TOTAL SULFUR • ,61 PERCENT
BTU CONTENT • 7762. BTU/LB
802 CONTENT a 1.57 IBS 302/MILLION BTU
-------
SPECIFIC GRAVITV ANALYSIS OF FLOHSTREAH NUMBER 10
ORIGIN • UNIT NUMBER 5
DESTINATION • UNIT NUMBER t
SIZE FRACTION AND WEIGHT
I BY 3/6
29,0 PERCENT
3/8 BY 26
24.2 PERCENT
26 BY 48
33.1 PERCENT
46 BY 0
13.7 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
FLOAT i.3o
.30-1.35
.35- .40
.40- .50
.50- .60
.60- .70
1.70- .60
SINK 1.80
FLOAT i.so
1.30-
.35-
.40.
.50.
.60*
.70-
SINK
FLOAT
1.30-
1.35.
1.40-
1.50.
1.60*
1.70.
SINK
FLOAT
.30-
.35.
.40-
,50.
.60.
.70.
SINK
FLOAT
.30-
.35.
.40.
.50.
.60*
.70-
SINK
.35
.40
.50
,60
.70
.60
.80
.30
.35
!so
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.10
.50
.60
.70
.80
.60
HEIGHT
30.5
22.6
7.7
6.2
1.2
2.1
1.6
22.6
34.0
21.7
7.6
6.5
4.6
2.7
1.'
16.6
15.3
10,1
5.7
13.2
10.4
5.5
3.5
36,5
40.7
17.4
5.3
7.1
4.4
3.0
1.7
20,0
27.7
17.5
6.7
9,8
6.4
3.6
25>
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR SULFUR
2.«
4.6
'.3
15.8
25.1
33.4
12.2
68.8
2.3
1.6
'.3
15.6
25.2
33.5
«2.3
63.0
2.1
1.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
2«.3
26.0
31.2
13.5
5.5
6.4
10.2
16.2
25.4
33.1
41.6
65.8
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.78
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0.17
0.21
0,26
0,29
0.34
0.57
0.65
0.30
0.30
0.29
0.29
0.30
0.34
0.46
0.55
0.15
0.17
0,22
0.27
0.30
0.36
0.60
0,74
0.58
0.56
0.63
0.63
0.60
0.90
1.04
0,79
0.59
0.59
0.63
0.62
0.61
0.86
1.03
1,07
0.59
0.59
0.63
0.62
0.59
0,65
1.00
0,66
0,66
0,65
0,65
0.64
0.62
0.77
0.67
0.74
0.60
0.60
0.63
0,62
0,60
0,65
1.00
0.77
BTU/LB
JU712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997.
9641.
6206.
4826.
14755.
14358.
13572.
12482.
10896,
9572.
8103.
4000.
12183.
12262.
12361.
12116.
11H2.
10526.
9516.
6012.
11211.
14063,
13445.
12463.
10961,
9711.
8293.
4570,
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
30,5
53,1
60.8
68,9
73.2
75,6
77.4
100.0
34,0
55.7
63.3
71.8
76,6
7*,3
81.2
100.0
15.3
25.3
31.0
44,2
54,6
60.1
63,5
100,0
40,7
58.1
63.4
70,6
75,3
78.3
60.0
100.0
27.7
45.2
51.9
61.7
66.1
71.7
71.1
100,0
2,1
3.3
«.l
5.5
6.6
7,5
8.3
22.0
2.3
3.2
4.0
5.4
6,6
7.5
6,4
16,6
2.1
3.1
«.2
7.8
11.2
13,3
14,9
35,1
17,9
17,7
17.7
17.7
16,1
16,5
16,8
23.8
5.5
5.8
6,4
7,'
9.6
10,7
11.7
25.7
0.13
0.13
0.14
0,16
0,17
0,17
0,18
0,32
0.11
0.13
0,14
0,15
0,16
0,17
0,16
0,34
0.12
0.14
0,15
0,16
0,20
0.22
0.23
0.36
0.30
0,30
0,29
0,29
0.29
0,30
0,30
0.35
0.15
0,16
0.17
0.16
0,19
0,20
0.22
0,35
0.56
0,58
0,59
0.59
0.59
0,60
0,61
0,65
0,59
0,59
0.59
0,60
0,60
0,61
0,62
0,70
0,59
0,59
0,60
0,60
0,60
0.62
0.64
0.65
0.66
0.66
0,66
0,69
0.65
0,66
0,66
0,66
0,60
0,60
0,60
0,61
0,61
0,62
0,63
0,67
14712,
14556.
14433,
14207,
14023,
13683.
13751,
11546,
14716,
14573,
14453,
14223,
14023,
13673,
13737.
12066,
14755,
14597,
14409,
13834.
13276,
12936,
12675,
9511,
12163,
12207,
12220,
12209,
12146,
12084.
12028,
11225,
14211,
14154,
14Q63,
13606,
13540,
13349.
13166,
10954,
FLOHSTREAM SUMMARY
FLONRATE • 36.4 PERCENT OF FEED
ASH • 25.6 PERCENT
PYRITIC SULFUR • .35 PERCENT
TOTAL SULFUR • ,67 PERCENT
-------
BTU CONTENT • 10954. BTU/IB
802 CONTENT I 1.22 IBS 802/MIUION BTU
-------
SPECIFIC GRAVITY ANALYSIS OF FLOH8TREAM NUMBER 11
ORIGIN - UNIT NUMBER
6 U
DESTINATION - UNIT NUMBER
SIZE FRACTION AND HEIGHT
1 BV 5/8
32.5 PERCENT
3/8 BV 26
27.1 PERCENT
(O
i-»
00
26 BY 46
31.3 PERCENT
46 BV 0
9,1 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC DIRECT, PERCENT
GRAVITY HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
FLOAT
.30-
.35-
,40-
,50-
,60-
.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30.
1.35-
1,40-
1.50-
1.60-
1,70-
SINK
FLOAT
1.30.
1.35.
1.40-
1.50.
1.60.
1.70.
SINK
FLOAT
1.30-
1.35.
1.40.
1.50.
1.60.
1.70-
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.10
.50
.60
.70
.•0
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.«0
.50
.60
.70
.80
.80
30.5
22.6
7.7
8.2
4.2
2,«
1.8
22.6
34.0
21.7
7.6
8.5
4.8
2.7
1,"
18.8
15.3
10.1
5,7
13.2
10.4
5.5
3.5
36.5
40.7
17,4
5.3
7.«
4,4
3.0
1.7
20.0
27.6
17.9
6.8
9,8
6.3
3.5
2."
25.7
2.4
4,6
'.3
15.8
25.1
33.4
42.2
68.8
2.3
4.6
'.3
15.8
25.2
33.5
42.3
63.0
2.1
«.6
9.4
16. t
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.3
26.0
34.2
43.5
4.4
5.6
9.9
16.1
25.4
33.3
42.0
66.5
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.76
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0.17
0.21
0.26
0,29
0.34
0,57
0.65
0.30
0.30
0,29
0.29
0.30
0.34
0.46
0.55
0.14
0.16
0.22
0.26
0.30
0.37
0.61
0.75
0.58
0.58
0.63
0,63
0.60
0.90
1.04
0.79
0.59
0.59
0.63
0.62
0.61
0.66
1.03
1.07
0.59
0.59
0.63
0,62
0.59
0.65
1.00
0.66
0.66
0.65
0.65
0,64
0.62
0,77
0.87
0.74
0.59
0.59
0.63
0.62
0,60
0.86
1.01
0,79
14712.
14345.
13582.
12526.
11016,
9650.
6222.
4000.
14718.
14345.
13579.
12520.
10997.
9641.
6206.
4626.
14755.
14358.
13572.
12462.
10696.
9572.
6103.
4000.
12163.
12262.
12361.
12116.
11142.
10526.
9518.
8012.
14381.
14162.
13492.
12476.
10959.
9660,
6253.
4449.
30.5
53.1
60,6
66,9
73.2
75,6
77.4
100,0
34.0
55,7
63,3
71.8
76,6
79.3
61.2
100.0
15.3
25.3
31,0
44.2
54.6
60.1
63.5
100,0
40,7
56.1
63,4
70.8
T5.3
76.3
60,0
100,0
27.6
45,6
52.4
62.2
66.5
72.0
74.3
100,0
2,4
3.3
4.1
5.5
6,6
7.5
8.3
22.0
2.3
3.2
4,0
5.4
6,6
7,5
8.4
18,6
2.1
3.1
4.2
7.8
11.2
13.3
14.9
35.1
17.9
17.7
17.7
17.7
18.1
16.5
18,6
23.6
4.4
4.9
5.6
7.2
6.9
10.1
11.1
25,3
0.13
0,13
0.14
0,16
0,17
0,17
0,18
0.32
0,11
0.13
0.14
0,15
0.16
0.17
0.16
0,34
0.12
0.14
0.15
0.18
0,20
0,22
0.23
0,36
0.30
0,30
0,29
0.29
0,29
0.30
0,30
0.35
0.14
0,15
0,16
0,18
0,19
0,20
0.21
0,35
0,56
0.56
0.59
0.59
0,59
0,60
0,61
0,65
0,59
0,59
0.59
0.60
0.60
0,61
0.62
0,70
0,59
0.59
0,60
0.60
0,60
0.62
0.64
0,65
0.66
0,66
0,66
0,65
0.65
0.66
0.66
0,66
0,59
0,59
0.60
0,60
0,60
0,61
0.63
0,67
14712,
14556,
14433.
14207,
14023,
13663,
13751,
11546,
14718,
14573.
14453.
14223,
14023,
13673,
13737,
12066.
14755,
14597,
14409,
13834,
13276,
12936.
12675.
9511,
12183.
12207.
12220.
12209,
12146.
12064,
12026,
11225,
14381,
14295,
14190,
13921,
13646,
13454,
13290,
11021,
FLOH8TREAM SUMMARY
FLOHRATE • 32,5 PERCENT OF FEED
ASH • 25,3 PERCENT
PYRITIC SULFUR • .35 PERCENT
TOTAL SULFUR • .67 PERCENT
-------
BTU CONTENT • 11021. BTU/lB
303 CONTENT • 1.21 IBS 302/MIUION BTU
to
H*
CO
-------
SPECIFIC GRAVITY ANALYSIS OF FLOHSTREAM NUMBER 12
ORIGIN . UNIT NUMBER 6 I
DESTINATION - UNIT NUMBER 8
SIZE FRACTION AND HEIGHT
26 BV 46
46.0 PERCENT
48 BY 0
52.0 PERCENT
to
g
COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30-
1.35-
1.40-
1.50-
1.60-
1.70.
SINK
FLOAT
.30-
.35.
,40.
.50.
.60.
.70-
SINK
FLOAT
1.30.
1.35.
1.40-
1,50.
1.60.
1.70.
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.80
.80
15.3
10.1
5.7
13.2
10.4
5.5
3.5
36.5
40.7
17.4
5.3
7.«
4.4
3.0
1.7
20.0
28.5
13.9
5.5
10.2
7.3
«.2
2.<>
27.9
2.1
4.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.5
28.0
34.2
43.5
13.8
12.9
13.1
16.9
25.3
31.7
39.9
60.3
0.12
0.17
0.21
0.26
0,29
0.34
0.57
0.65
0.30
0.30
0.29
0.29
0.30
0.34
0.48
0.55
0.25
0.25
0.25
0.27
0.29
0.34
0,54
0.61
SULFUR
0.59
0.59
0.63
0.62
0.59
0,85
1.00
0.66
0.66
0,65
0.65
0.64
0.62
0,77
0.67
0.74
0.64
0.63
0,64
0.63
0.60
0.62
0.95
0.69
BTU/LB
14755.
14356.
13572.
12482.
10696.
9572.
8103.
4000.
12183.
12262.
12361.
12116.
11142.
10528.
9518.
6012.
12646.
12992.
12963.
1234(1.
1097*1.
9929.
8601.
5494.
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
15.3
25.3
31,0
44,2
54.6
60.1
63.5
100.0
40.7
56.1
63.4
70.8
75,3
76,3
60.0
100.0
28.5
42.1
47.8
58.0
65.3
69,5
72.1
100,0
2.1
3.1
4.2
7.6
11.2
13.3
14,9
35,1
17.9
17.7
17.7
17,7
18.1
18.5
18,8
23.6
13.6
13.5
13.5
14,1
15,3
16.3
17,2
29.2
0.12
0,14
0,15
0.18
0,20
0.22
0.23
0.38
0.30
0.30
0.29
0.29
0,29
0.30
0.30
0.35
0.25
0,25
0.25
0.25
0.26
0,26
0.27
0.37
0,59
0,59
0,60
0,60
0,60
0,62
0,64
0,65
0,66
0,66
0,66
0,65
0,65
0.66
0.66
0,66
0.64
0,64
0,64
0,64
0,63
0,64
0.65
0,66
14755.
14597.
14409,
13834.
13276.
12938.
12675,
9511,
12183,
12207,
12220.
12209,
12146.
12084,
12028.
11225,
12846.
12894,
12902.
12804,
12600,
12436,
12302.
10402,
FLOMSTREAH SUMMARY
FLOWRATE » 3,9 PERCENT OF FEED
BTU CONTENT • 10402. BTU/LB
S02 CONTENT a 1.26 IBS S02/MILUON BTU
ASH • 29.2 PERCENT
PYRITIC SULFUR • .37 PERCENT
TOTAL SULFUR • .66 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF FLOHSTREAM NUMBER 13
ORIGIN • UNIT NUMBER 7 C DESTINATION • UNIT NUMBER "0
SIZE FRACTION AND WEIGHT
1 BY 3/6
3«.<» PERCENT
3/8 BY 26
30.2 PERCENT
to
to
26 BY 48
23.2 PERCENT
ae BY o
11.7 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC DIRECT, PERCENT
GRAVITY WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
FLOAT i.»o
.30.
.35-
,ao.
.50-
.60.
.70.
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.70-
SINK
FLOAT
.30.
.35.
.40-
.50-
.60.
.70.
SINK
FLOAT
.30.
.35-
.40-
.50-
.60.
.70.
SINK
FLOAT
.30-
.35-
.40-
.50-
,60-
.70.
SINK
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
47,0
34.1
10.5
7.3
1.1
0.1
0.1
0.0
50.1
30.9
0.9
7.3
l.«
0.2
0.1
0.1
32. t
20.1
10.3
19.7
10.6
3.4
1.2
2.5
51.0
21.5
6.4
8.7
".6
2.5
1.1
4.2
44,9
28.4
9,8
10.3
3.8
1.2
0.4
1.1
2.4
4.6
'.3
15.8
25.1
33.4
«2.2
68,8
2.3
«.6
".3
15.8
25.2
33.5
«2.3
63.0
2.1
«.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16,8
18.3
2«.3
28.0
3«.2
43.5
4.4
5.8
9.9
K>.2
25.4
32.4
40.4
58.2
0.13
0.14
0.21
0.27
0.32
0.39
0.67
'0,78
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0,17
0.21
0.26
0.29
0.34
0.57
0,65
0.30
0.30
0,29
0,29
0.30
0.34
0,48
0.55
0.14
0.16
0.22
0,27
0,29
0.35
0.55
0.61
0,58
0.58
0.63
0.63
0,60
0.90
1.04
0.79
0.59
0.59
0,63
0.62
0.61
0.86
1.03
1,07
0.59
0.59
0.63
0.62
0.59
0.85
1.00
0.66
0,66
0.65
0.65
0,64
0.62
0,77
0,87
0,74
0,59
0,59
0.63
0.62
0,60
0.83
0.97
0.70
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997,
9641,
8208,
4826,
14755.
14358,
I357a,
12482.
10896,
9572.
8103.
4000.
12183.
12262.
12361,
12116,
11142,
10528,
9518,
8012,
14384.
14162.
13485.
12465.
10954.
9819.
8513.
5815.
47,0
81.0
91,5
98.8
99,9
99,9
100,0
100,0
50.1
81.0
91.0
98.2
99.7
99,9
99,9
100.0
32.1
52.2
62,5
82.2
92.9
'6.3
97.5
100.0
51,0
72.5
79.0
87,6
92.2
94.8
95.8
100.0
44,9
73.4
83,2
93.5
97.3
98.5
98.9
100.0
2,«
3.3
4.0
4.9
5.1
5.1
5,1
5.1
2.3
3.2
3.9
4,8
5.1
5.1
5.1
5.2
2.1
3.1
4.1
7.0
',«
10.0
10.4
11.'
17.9
17.8
17.7
17,7
18.1
18.3
18.5
I'. 6
4,4
4,9
5,5
6.7
7.4
7.7
7."
8.4
0,13
0.13
0,14
0,15
0,15
0.15
0,15
0,15
0.11
0.12
0,14
0.15
0.15
0.15
0.15
0,15
0,12
0,14
0,15
0,18
0,19
0,19
0,20
0,21
0.30
0.30
0.29
0.29
0,29
0.30
0,30
0,31
0.14
0.15
0.16
0,17
0,17
0,18
0.18
0,18
0.58
0.58
0.59
0,59
0,59
0.59
0,59
0.59
0.59
0,59
0,59
0,59
0,59
0,59
0,60
0.60
0.59
0,59
0.60
0,60
0.60
0,61
0,61
0.62
0.66
0.66
0,66
0.65
0,65
0.66
0,66
0,66
0.59
0,59
0,60
0.60
0,60
0.60
0.61
0.61
14712.
14557,
14446,
14304,
14269.
14266,
14263,
14263,
14718,
14575.
14467,
14323.
14275.
14266.
14262.
14256.
14755,
14602.
14432.
13965.
13613.
13469.
13403,
13167,
12183,
12207,
12219,
12209,
12156,
12112,
12083,
11913,
14384.
14298,
14202.
14010.
13891.
13842,
13819,
13731,
FLOWSTREAM SUMMARY
FLOWRATE • 19,5 PERCENT OF FEED
ASH • A,4 PERCENT
PYRITIC SULFUR • ,18 PERCENT
TOTAL SULFUR • ,61 PERCENT
-------
BTU CONTENT • 13731. BTU/IB
$02 CONTENT • 0.66 IBS S02/MIUION BTU
to
to
CO
-------
SPECIFIC GRAVITY ANALYSIS OF FLOH8TREAM NUMBER 14
ORIGIN - UNIT NUMBER 7 R DESTINATION - UNIT NUMBER 0'
SIZE FRACTION AND WEIGHT
1 BY 3/8
28.9 PERCENT
1/8 BY 38
22.3 PERCENT
to
to
cs
28 BY 48
43.6 PERCENT
46 BY 0
5.2 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
FLOAT 1.30
.30-1.35
.35-1.40
.40.1.50
,50>1
.60.1
1.70-1
SINK 1
FLOAT i
1.30-1
1.35-1
1.40-1
1.50-1
1.60-1
1.70-1
SINK 1
FLOAT i
1.30-1
1.35.1
1.40-1
1.50-1
1.60-1
1.70-1
SINK 1
FLOAT i
.30-1
.35.1
.40.1
,50-1
.60-1
.70-1
SINK 1
FLOAT i
.30.1
.35-1
.40-1
.50-1
.60-1
.70-1
SINK 1
.60
.70
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
0,5 2.4 0.13 0,58 14712,
1.6 4.6 0.14 0.58 14345.
2.5 9.3 0.21 0.63 13582.
*.B 15.8 0.27 0.63 12526.
10
6
5
63
1
2
2
11
11
7
5
56
1
2
1
a
10
7
5
63
5
3
1
3
3
4
4
73
1
2
2
9
10
7
5
62
.0
,7
.0
,9
,1
18
,<}
,1
,6
,9
,8
,9
18
,0
,9
|0
,2
1
,3
7
,6
4
5
2
>8
16
.0
8
,5
1
3
iO
,1
0
2
8
25
33
42
68
2
4
9
15
25
33
42
63
2
.1
.4
.2
.8
.3
.6
.3
.8
.2
\3
.0
.1
4.6
9
16
25
33
42
70
17
17
16
18
24
28
34
43
5
5
9
16
25
33
42
66
.4
.1
.8
.9
.9
.3
.9
,4
.6
.3
.3
.0
.2
.5
.3
.7
,6
.0
,4
,5
,2
,8
0.32
0.39
0,67
0;.78
0.11
0.15
0.23
0.27
0.31
0,40
0,65
1.04
0.12
0.17
0.21
0.26
0.29
0.34
0.57
0.65
0.30
0.30
0,29
0,29
0,30
0.34
0,48
0,55
0,15
0.17
0.22
0.26
0,30
0.37
0.61
0.76
0.60
0.90
1.04
0.79
0.59
0.59
0,63
0,62
0.61
0.86
1.03
1.07
0.59
0.59
0.63
0.62
0.59
0.85
1.00
0.66
0.66
0.65
0.65
0.64
0.62
0.77
0.87
0.74
0.60
0.60
0.63
0.62
0.60
0.86
1.01
0.79
11016.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997.
9641.
8208.
4826.
14755.
14356.
13572.
1248{.
10896.
957J,
8103,
4000,
12183.
12262.
12361.
12116,
11142.
10528.
9518.
8012.
14230.
14175.
13537.
12500.
10961.
964«.
8220.
4413.
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
0.5
2.1
0.6
1U.U
24.4
31.1
36.1
100.0
1.1
3.9
6.7
17.9
29. a
37.3
43.1
100.0
1.8
3.8
5.T
13.7
23.9
31.0
36.3
100.0
5.6
9.0
10.5
13,7
17.6
22.2
26,2
100,0
1.5
3.6
5.9
14.8
24.9
32.0
37,2
100,0
2.4
4.1
7.0
13.0
17.9
21.3
24.2
52.7
2.3
4.0
6.3
12.2
17.3
20.7
23.6
46.1
2.1
3.«
5.4
11.6
17.6
21.4
24.5
53.7
17.9
17,7
17.6
IT. 8
19,2
21,0
23,1
38.1
5,3
5.5
T.I
12.5
IT, 7
21.2
24.1
50,9
0,13
0,14
0,18
0,24
0.27
0,30
0.35
0,62
0.11
0,14
0,18
0,23
0,26
0.29
0.34
0.7U
0.12
0.14
0.17
0,22
0.25
0,27
0,31
0.53
0.30
0,30
0,29
0,29
0,30
0.31
0,33
0,50
0,15
0,16
0,18
0.23
0,26
0.28
0.33
0,60
0.58
0.58
0.61
0.62
0.61
0.67
0,72
0,76
0,59
0.59
0,61
0.61
0.61
0.66
0.71
0.92
0.59
0,59
0.60
0,61
0.60
0.66
0,71
0,68
0.66
0.66
0.66
0.65
0,65
0.67
0,70
0.73
0,60
0.60
0,61
0,62
0.61
0,67
0,71
0,76
14712,
10435,
13965.
12986,
12179.
11635.
11161.
6584,
14718,
14451.
14081,
13108.
12277,
11721,
11250,
7593,
14755,
14546,
14215.
13205,
12224,
11615,
11105,
6578.
12183,
12213,
12233,
12206,
11973,
11672,
11342.
8884,
14230.
14198.
13940,
13070,
12216,
11651,
11167,
6927,
FLOW8TRCAM SUMMARY
FLOHRATE • 12.9 PERCENT OF FEED
ASH • 50,9 PERCENT
PYRITIC SULFUR • ,60 PERCENT
TOTAL SULFUR • ,76 PERCENT
-------
BTU CONTENT • *987. BTUA.B
302 CONTENT • 2,19 188 802/M1LUON BTU
to
to
-------
SPECIFIC GRAVITY ANALYSIS OF FLOHSTREAH NUMBER 15
ORIGIN . UNIT NUMBER 6 C DESTINATION - UNIT NUMBER 0
SIZE FRACTION AND HEIGHT
26 BY 46
55. 6 PERCENT
ao BY o
64.2 PERCENT
to
to
en
COMPOSITE
100.0 PERCENT
FLOHSTREAM SUMMARY
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
'LOAT
.30.
.35.
.40.
,50-
.60-
.70-
SINK
FLOAT
1.30-
1.35.
1,40>
1.50.
1.60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50.
.60.
,70.
SINK
,30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.60
.80
2T.1
23.0
12.0
21.7
10,7
2.9
0.9
1.6
57.2
23.9
7.6
7.1
2.7
0.9
0.3
0.5
46.4
23.5
'.2
12.3
5.6
1.6
0.5
0.9
2.1
4.6
9.4
2518
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.3
28.0
34.2
43.5
14.6
12.9
13.3
16.9
25.3
31.9
40.0
60.7
0.12
0.17
0.21
0.26
0,29
0,34
0.57
0.65
0.30
0.30
0,29
0,29
0.30
0.34
0.46
0.55
0,26
0.25
0.25
0.27
0.29
0.34
0.54
0.61
BTU/LB
SULFUR
0.59
0.59
0.63
0.62
0,59
0.65
1.00
0,66
0.66
0.65
0.65
0.64
0.62
0.77
0.87
0.74
0.64
0.63
0.64
0,63
0,60
0.82
0.96
0.69
14755.
14356.
13572.
12462.
10696.
9572.
6103.
4000.
12183.
12262.
12361.
12116.
11142.
10526.
9518.
8012.
12722.
12995.
12931.
12347.
10972.
9907.
8583.
5437.
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
27.1
50.1
62.2
63.6
94.6
97,5
98,4
100.0
57.2
61.0
66,6
«5.7
96.4
99.2
99.5
100.0
46.4
70.0
79.1
'1.5
97.0
96.6
99.1
100.0
2.1
3.2
4.4
7.4
9,5
10,2
10,5
11.5
17,9
17,8
17.7
17.7
17.9
16,0
18.0
18,2
14.6
»4.0
13.9
14.3
1S.O
15.2
15.4
15.8
0,12
0.14
0.15
0.18
0,19
0,20
0.20
0,21
0,30
0,30
0,29
0,29
0.29
0.30
0.30
0,30
0.26
0.26
0,26
0.26
0,26
0,26
0,26
0,27
0,59
0.59
0.60
0.60
0.60
0.61
0.61
0.61
0,66
0,66
0.66
0.65
0.65
0.65
0.66
0.66
0,64
0.64
0.64
0,64
0.64
0.64
0,64
0.64
14755,
14573.
14379,
13668,
13548.
13432.
13362,
13229,
12(63,
12206.
12220,
12212.
12163.
12169.
12162.
12141.
12722,
12614.
12627,
12762,
12660.
12616.
12596.
12531,
FLOWRATE • 2.2 PERCENT OF FEED
BTU CONTENT • 12531. BTU/LB
802 CONTENT • 1.02 LB3 SOS/MILLION BTU
ASH • 15.8 PERCENT
PYRITIC SULFUR • .27 PERCENT
TOTAL SULFUR • ,64 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF FLOH8TREAM NUMBER 16
ORIGIN • UNIT NUMBER 6 R
DESTINATION • UNIT NUMBER 0
SIZE FRACTION AND HEIGHT
26 BY 46
60.1 PERCENT
46 BY 0
35.9 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC DIRECT, PERCENT
GRAVITY WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
FLOAT
.30.
.35-
.40-
.50-
,60.
.70-
SINK
FLOAT
.30.
.35.
,40-
.50.
,60.
1,70-
3INK
FLOAT
.30.
.35-
.40-
,50-
.60-
,70-
3 INK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.80
6,6
0.6
1.0
7.0
10.1
7.4
5.3
63.1
2,0
2.2
0,0
8.1
8.6
8.0
5.2
65.8
4.9
1.2
0,6
7."
9.6
7.6
5.3
65.4
2.1
«.6
9,«
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.3
28.0
J«.2
43.5
4.4
13.4
«.4
16.«
25.3
31.7
39.9
60.3
0,12
0,17
0.21
0,26
0.29
0.34
0.57
0.65
0.30
0.30
0,29
0.29
0,30
0,34
0,48
0,55
0.14
0.26
0.21
0.27
0.29
0.34
0.54
0.61
0.59
0,59
0,63
0.62
0.59
0.65
1.00
0,66
0.66
0,65
0,65
0.64
0,62
0,77
0,87
0,74
0.60
0.63
0.63
0.63
0.60
0.82
0.95
0.69
14755.
14358.
13572.
12482.
10696.
9578.
8103.
4000.
12183.
12262.
12361.
12116.
11142.
10526.
9518.
6012.
14363.
12920.
13572.
12338.
1097*.
9935.
6604.
5496.
6.6
7.1
8.1
15.1
25.2
32.6
37,9
100.0
1.0
«.2
«.*
12.3
21.0
29,0
34.2
100,0
4.9
6.1
6.7
ifl.l
23.7
31.3
36.6
100.0
2.1
2.3
3.2
9.1
15.8
19,9
23.1
52.4
17.9
17,6
17.6
18.1
20.6
22.7
24.4
37.0
4.4
6.1
6,«
11.9
17.3
20,8
23.6
46.9
0,12
0.12
0,13
0.19
0.23
0.25
0,30
0.11
0,30
0,30
0,30
0.29
0,30
0.31
0.34
0,48
0.14
0,16
0,17
0,22
0.25
0.27
0,31
0,50
0.59
0.59
0.99
0.60
0,60
0,66
0.71
0,66
0,66
0,66
0,66
0,65
0,64
0.67
0,70
0.72
0.60
0.60
0.61
0,62
0.61
0,66
0.70
0,70
14755,
14723.
14561,
13611,
12524,
11854,
11327,
6779,
12163.
12225.
12225,
12153,
11737,
11402,
11117,
9073.
14363,
14104,
14053,
13154.
12274,
11704,
11257,
7603.
FLONSTREAM SUMMARY
FLOHRATE • 1,7 PERCENT OF FEED ASH • 46.9 PERCENT PYRITIC SULFUR • ,50 PERCENT TOTAL SULFUR • ,70 PERCENT
BTU CONTENT • 7603. BTU/LB
302 CONTENT • 1.83 UBS 802/MILLION BTU
-------
SPECIFIC GRAVITY ANALYSIS OF CUEAN COAL PRODUCT FROM UNIT NUMBER 1
SIZE FRACTION AND HEIGHT
6 BY
2 BY t
1 BY J/8
COMPOSITE
HT
SPECIFIC
GRAVITY
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL
SULFUR
52.7 PERCENT
45.2 PERCENT
2.0 PERCENT
100.0 PERCENT
FLOAT .30
.30. .35
.35- .40
.40. .50
,50. ,60
.60- .70
.70- .80
SINK .80
FLOAT 1.30
.30.1.35
.35.
.40*
.50-
.60-
.70.
SINK
FLOAT
.30-
.35.
.40*
.50.
.60.
,70.
SINK
FLOAT
.30-
.35-
.40.
,50.
.60.
.70.
SINK
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
«5.7
36.9
10.6
6.4
0,1
0.1
0.0
0.0
42.8
33.5
11.6
8.7
2.4
0.6
0.1
0.4
43.5
31.9
10.5
8.9
2.9
0.9
0.3
1.1
44.3
35.2
11.0
7.5
1.3
0,3
0,1
0,2
2.6
4.7
9.5
16.2
26.1
34.2
43.2
73.6
2.5
4.7
9.5
16.0
25 6
33.6
42.9
70.0
2.4
4.6
9.3
15.8
25.1
33.4
42.2
68.8
2.6
9|S
16.1
25.6
33.7
42.7
69.7
0.13
0.21
0.20
0,25
0,27
0.32
0.51
0.46
0.14
0.17
0.19
0.26
0.30
0.33
0.59
0.60
0.13
0,14
0.21
0.27
0.32
0.39
0.67
0,78
0.13
0.19
0.20
0.25
0.29
0.33
0.59
0.62
BTU/LB
SULFUR
0.57
0.57
0.60
0.62
0.59
0,65
0.71
0.48
0.58
0.62
0.69
0.62
0.60
1.14
1.36
0.62
0.58
0,58
0.63
0.63
0.60
0.90
1.04
0.79
0.58
0.59
0.64
0.62
0.60
1.07
I.JO
0.64
14682.
14337.
13514.
12462,
10846.
9521.
8051.
1000.
11685.
11337.
13551.
12484.
10931.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14684.
H337.
13548.
12475.
10923.
9612.
8137.
4026.
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
45.7
82.6
93.2
99.6
99.9
100.0
100.0
100.0
42.8
76.3
67.8
'6.5
98.9
99.5
99.6
100.0
43.5
75.4
85.9
94.8
97.7
98.6
98.9
100.0
44.3
79.6
90.6
98,1
99.4
99.7
99.8
100.0
2.6
3.5
4.2
5.0
5.0
5.1
5.1
5.1
2.5
3.5
4.3
5.3
5.8
6.0
6.0
6.3
2.4
3.3
4.1
5,2
5.8
6.0
6,1
6.8
2.6
3.5
4.2
5.1
5.4
5.5
5.5
5.7
0,13
0.17
0.17
0,18
0,18
0,18
0,18
0,18
0.14
0.15
0.16
0,17
0.17
0,17
0,17
0,17
0.13
0.13
0,14
0,15
0.16
0.16
0.16
0,17
0.13
0.16
0.16
0.17
0,17
0,17
0,17
0.17
0,57
0,57
0,58
0.58
0.58
0,58
0.58
0.58
0.58
0,60
0.61
0.61
0.61
0.62
0.62
0.62
0.58
0.58
0,59
0.59
0.59
0.60
0,60
0,60
0,58
0,58
0,59
0,59
0,59
0,60
0,60
0.60
14682.
14528,
144(6,
14291.
14278.
14275.
14275.
14275.
14685,
14532,
11102,
14230.
14151,
14123,
11116,
14077,
14712.
14557,
14438,
14258,
14161,
14119,
14102,
13993,
14684,
11530.
11411.
14263.
14219,
10*03,
14200,
14179,
FLOHSTREAM SUMMARY
FLOHRATE • 32.1 PERCENT OF FEED
BTU CONTENT • 14179. BTU/LB
802 CONTENT • 0.84 LBS S02/MILLION BTU
ASH • 5.7 PERCENT
PYRITIC SULFUR • .17 PERCENT
TOTAL SULFUR • .60 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF CLEAN COAL PRODUCT FROM UNIT NUMBER 7
SIZE FRACTION AND HEIGHT
1 BY 3/8
34.9 PERCENT
3/8 BY 26
50.2 PERCENT
28 BY 48
23.2 PERCENT
48 BY 0
11.7 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC DIRECT, PERCENT
GRAVITY HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
CUMULATIVE, PERCENT
HEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
FLOAT
1.30-
1.35-
1.40-
1.50.
1.60.
1.70-
SINK
FLOAT
.30-
.35.
.40-
.50.
.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40.
1,50.
1.60.
1.70-
SINK
FLOAT
.30*
.35.
.40-
.50.
.60*
,70-
8INK
FLOAT
.30-
.35.
.40.
.50-
.60.
.70.
SINK
.so
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.10
.50
.60
.TO
.80
.80
.30
.35
.40
.50
,60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
47,0
34.1
10.5
T.3
1.1
0.1
0.1
0.0
50.1
30.9
9.9
T.3
1."
0.2
0.1
0.1
32.1
20.1
10.3
I'.T
10.6
3.1
1.2
2.5
51.0
21.5
6.4
8.7
4.6
2.5
1.1
«.2
44.9
28.4
9.8
10.3
3.8
1.2
0.4
1.1
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.3
4.6
«.3
15.8
25.2
33.5
«2.3
63.0
2.1
".6
9. a
16.1
25.8
33.9
42.9
TO. 3
IT. 9
IT. 4
16.8
1«.3
24.3
28.0
34.2
43.5
4. a
5.8
9.9
16.2
25.4
32.4
40.4
58,2
0.13
0.14
0.21
0.2T
0.32
0.39
0.67
O.T8
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0.17
0.21
0.26
0.29
0.34
0.57
0.65
0.30
0.30
0.29
0.29
0.30
0,34
0.48
0.55
0.14
0.16
0.22
0.27
0,29
0,35
0.55
0,61
0,58
0.58
0.63
0.63
0.60
0.90
1,04
0.79
0.59
0,59
0,63
0,62
0,61
0.86
1.03
1.07
0,59
0.59
0.63
0.62
0,59
0.85
1,00
0,66
0.66
0.65
0.65
0,64
0.62
0.7T
0,87
0.74
0.59
0.59
0.63
0,62
0,60
0,83
0,97
0,70
14712.
14345,
13582,
12526.
1101*.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997,
9641.
8208.
4826.
14755.
14318.
13572.
12482.
10896,
9572,
8103.
4000.
12183.
12262.
12361.
12116.
11142.
10528,
9518.
8012.
14384.
14162.
13485.
12465.
10954.
9819.
8513.
5815.
47,0
81,0
91,5
98,8
99,9
99.9
100.0
100.0
50.1
81.0
91.0
98.2
99,7
99.9
99,9
100.0
32.1
52.2
62.5
82.2
92.9
«6.3
97,5
100.0
51.0
TZ.5
79,0
87,6
«2.2
94,8
95.8
100.0
44.9
T3.4
83,2
'3,5
«T,3
98.5
98,9
100,0
2,«
.3
.0
.9
,1
.1
.1
.1
.3
.2
,'
.8
,1
,1
.1
.2
.1
.1
.1
7.0
«,1
10,0
10.4
11. «
17,9
17,6
17,7
IT. 7
18,1
18.3
18,5
19,6
4,4
4,9
5.5
6,7
T.«
T,T
T,9
8,4
0.13
0,13
0.14
0.15
0.15
0.15
0,15
0.15
0.11
0.12
0.14
0.15
0.15
0.15
0.15
0,15
0.12
0,14
0,15
0,18
0,19
0,19
0.20
0.21
0.30
0,30
0,29
0.29
0.29
0,30
0.30
0.31
0,14
0,15
0,16
0,17
0,17
0.16
0.16
0,16
0,56
0,56
0,59
0,59
0,59
0.59
0.59
0,59
0,59
0,59
0,59
0,59
0,59
0,59
0,60
0.60
0,59
0,59
0.60
0,60
0,60
0,61
0.61
0,62
0,66
0.66
0,66
0,65
0.65
0,66
0.66
0.66
0.59
0,59
0,60
0,60
0.60
0,60
0,61
0,61
14712.
14557.
14446.
14304,
14269,
14266,
14263,
14263,
14718.
14575.
14467.
14323.
142TS.
14266,
14262,
14256.
14755,
14602.
14432.
13965,
13613,
13469,
13403,
13167,
12163.
12207.
12219.
12209.
12156,
12112,
12083,
11913,
14364,
14296,
14202,
14010.
13891.
13842,
13619,
13731,
FLOHSTREAM SUMMARY
FLOHRATE • 19,5 PEP-CENT OF FEED
BTU CONTENT • 13731. BTU/LB
S02 CONTENT • 0.86 LBS S02/MILLION BTU
ASH • 8.4 PERCENT
PYRITIC SULFUR • .18 PERCENT
TOTAL SULFUR • ,61 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF CLEAN COAL PRODUCT FROM UNIT NUMBER 6
SIZE FRACTION AND WEIGHT
28 BY 46
48 BY 0
COMPOSITE
SPECIFIC
HT GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
35.6 PERCENT
64.2 PERCENT
100.0 PERCENT
FLOAT i
.30.1
.35>1
.40.1
.50.1
.60.1
.70.1
SINK 1
FLOAT i
1.30-1
1.35.1
1.40.1
1.50.1
1.60.1
1.70-1
SINK 1
FLOAT i
.30-1
.35.1
.40.1
.50.1
.60.1
.70-1
SINK 1
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
27
23
12
21
10
2
0
1
57
23
7
7
2
0
0
0
46
23
9
12
5
1
0
0
.1
.0
.0
.7
,7
,9
,9
.6
,2
,9
,6
.1
,7
,9
.3
.5
.4
,5
.2
.3
.6
.6
,5
,9
2
n
9
16
25
33
42
70
17
17,
16
18
24
28,
34,
43,
14,
12.
13,
16,
35,
31.
40,
60,
,1
,6
,a
,1
.8
,9
,9
,3
0
0
0
0
0
0
0
0
.
.
.
.
.
.
.
•
12
17
21
26
29
34
57
65
^0,30
0
2
5
6
9
3
9
3
9
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.
.
.
,
.
.
.
.
.
.
.
.
,
30
29
29
30
34
46
55
26
25
25
27
29
34
54
61
SULFUR
0.59
0.59
0.63
0,62
0.59
0.65
1.00
0.66
0.66
0.65
0,65
0.64
0.62
0.77
0.67
0.74
0.64
0.63
0.64
0.63
0.60
0.62
0,96
0,69
BTU/LB
14755.
14358,
13572.
12462.
10896,
9572.
6103.
4000.
121*3.
12262.
12361.
12116,
11142.
10528.
9518.
8012.
12722.
12995.
12931.
12347.
10972.
9907.
8583.
5437.
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
ZM
50.1
62.2
$3.8
9fl,6
97.5
98.4
100,0
57,2
61.0
68.6
95,7
98.4
99,2
99,5
100.0
46.4
70.0
79.1
91.5
97.0
96.6
99.1
100.0
2.1
3.Z
4.4
10.2
10.5
U.5
17,9
17.8
17,7
17,7
17.9
18.0
18,0
18,2
14,6
14.0
13.9
14.3
15.0
15.2
15,4
15,8
0.12
0,14
0.15
0.16
0.19
0,20
0,20
0.2}
0,30
0,30
0.29
0,29
0,29
0,30
0,30
0,30
0,26
0,26
0,26
0.26
0,26
0,26
0,26
0.27
0.59
0,59
0,60
0.60
0,60
0,61
0,61
0.61
0,66
0,66
0,66
0,65
0,65
0,65
0,66
0,66
0,64
0.64
0.64
0.64
0,64
0,64
0,6«
0,64
14755,
14573,
14379,
13886.
1)546.
13432.
13362.
13229.
12163.
12206,
12220,
12212.
12163.
12169.
12162.
12141,
12722.
126)4,
12627.
12762.
12660.
12616,
12596,
12531,
FLOW8TREAM SUMMARY
FLOWRATE • 2.2 PERCENT OF FEED
BTU CONTENT • 12531. BTU/LB
802 CONTENT * 1.02 UBS SOS/MILLION BTU
ASH • 15.8 PERCENT
PYRITIC SULFUR • .27 PERCENT
TOTAL SULFUR » ,6
-------
SPECIFIC GRAVITV ANALYSIS OF REFUSE PRODUCT FROM UNIT NUMBER 1
SIZE FRACTION AND HEIGHT
IS BY 12
12 BV 6
COMPOSITE
to
co
o
HT
SPECIFIC
6RAVITV
HEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
24.3 PERCENT
T5.T PERCENT
100.0 PERCENT
FLOAT
1.30*
1,35-
1.40-
1,50-
1.60.
1.70-
SINK
FLOAT
.30.
.33.
.40-
.50-
.60.
1.70*
SINK
FLOAT
.30-
.35-
.40-
.SO*
.60-
.70-
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.80
.30
.35
.40
.50
.60
.70
,80
.80
2.1
1.2
0.2
1.2
0.2
0.2
0.1
94.7
2,5
1.9
0.7
1,0
0.5
0.3
0.2
93.0
2.4
1.7
0.6
1.0
0.4
0.3
0.1
93.4
2.8
4.4
7.S
15.4
25.0
31.5
41.0
99.1
2.9
«.6
9.2
16.2
26.5
34.3
44.9
'«.T
2.9
«,6
«.o
»5.9
26.3
33.7
44.1
98.8
0.08
0.09
0.03
0,13
0.10
0.18
0.17
0.02
0.12
0.11
0.17
0.21
0.21
0.23
0.48
0,02
0.11
0,11
0.16
0,19
0.20
0,22
0.43
0.02
SULFUR
0.58
0,55
0,46
0.51
0.35
0.44
0,45
0.02
0.56
0.47
0.54
0,61
0.51
0.53
0.66
0.02
0.56
0.48
0.53
0.58
0.49
0.51
0.62
0.02
BTU/LB
14644.
14383.
13829.
1259Q,
11025.
9966.
8417.
4000,
14632,
14343.
13598.
12462.
10786.
9506,
7781.
4000.
14634.
14350,
13625.
12501.
10821.
«603.
7907.
4000,
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
2.1
,3
,6
.8
,0
.2
.3
,5
,«
.1
.0
.3
.8
7.0
100.0
2.4
4.1
4.7
5.7
6.2
6.4
6.6
100,0
2,8
3,a
3.7
6.7
7.3
8.4
".0
10 .0 94.3
2.9
3.6
4,4
6.2
7.8
9,0
9,8
92.5
2.9
3.6
«.*
6.3
7.8
8.9
9.6
92.9
0.08
0,08
0.08
0,09
0.09
0,10
0.10
0,02
0,12
0,12
0,13
0,14
0.15
0,15
0.16
0.03
0.11
0,11
0.12
0,13
0,13
0,14
0,14
0.03
0.58
0.57
0,56
0.55
0,54
0.54
0.53
0,05
0,56
0,52
0.52
0.54
0.53
0,53
0,54
0,06
0,56
0.53
0.53
0,54
0,54
0.53
0.54
0.06
14644,
14550.
14500.
14013.
13877,
13724.
13637,
4512,
14632.
14506.
14368.
14082,
13621,
13636,
13504,
4663.
14634.
14514.
14409,
14066.
13633.
13654.
13531.
4627.
FLOHSTREAM SUMMARY
FLOHRATE • 16.8 PERCENT OF FEED
BTU CONTENT • 4627. BTU/LB
80S CONTENT • 0.24 LB8 302/MILLION BTU
ASH • 92.9 PERCENT
PYRITIC SULFUR • .03 PERCENT
TOTAL SULFUR • ,06 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF REFUSE PRODUCT FROM UNIT NUMBER 3
SIZE FRACTION AND WCI8HT
6 BY 2
2 BY 1
1 BY 5/8
to
GO
COMPOSITE
HT
63*6 PERCENT
35. 2 PERCENT
1.2 PERCENT
100.0 PERCENT
SPECIFIC
GRAVITY
FI.OAT
1.30-
1.35.
1.40-
1,50-
1,60-
1,70-
SINK
FLOAT
.30-
.35-
.40.
.50.
.60-
,70-
SINK
FLOAT
1.30.
1.35.
1.40.
1.50.
1.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40-
1.50.
1.60.
1.70-
SINK
.30
.35
.40
.50
,60
.70
,80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.70
,80
.80
.30
.35
.10
.50
.60
.70
.80
.80
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL
0.0
2.1
1.7
6.4
6.9
4.5
3.3
75,0
0.3
0.6
0,9
5.6
6.1
5.0
«.?
77.3
0.6
0.5
0.6
3.7
«.7
«,7
«.7
80.6
0.1
1.6
1.4
6.1
6.6
4,7
3.7
75.9
2.6
4.7
9.5
16.2
26.1
34.2
«3.2
73.6
2.5
4.7
9.5
16.0
25.6
33.6
42,9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.5
«.7
9.5
16.1
25.9
34,0
«3.1
72.2
SULFUR
0.13
0.21
0,20
0.25
0.27
0,32
0,51
0,46
> 0,14
0.17
0.19
0.26
0,30
0.33
0,59
0.60
0.13
0.14
0.21
0.27
0.32
0.39
0,67
0.78
0.13
0.20
0.20
0.25
0.28
0.33
0.54
0.52
BTU/LB
SULFUR
0,57
0,57
0.60
0.62
0.59
0.65
0,71
0.48
0.58
0.62
0.69
0.62
0.60
1.14
1.36
0.62
0.58
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.58
0.58
0.62
0,62
0.59
0.84
0.98
0.54
14682.
14337.
13544.
12462.
10646.
9521.
8051.
4000.
14685.
14337.
13551.
12484.
10931.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
1000,
14687.
14337.
1S5«6.
12470.
10875.
9559.
8075.
4000.
CUMULATIVE* PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
0,0
2.1
3.8
10.2
17,1
21.6
25,0
100,0
0.3
0.9
1,7
7.4
13.4
18,4
22.7
100.0
0,6
1.1
1.7
loll
19^4
100,0
0.1
1.7
3.0
1S|7
20.4
24.1
100.0
2.6
«,7
6.8
12.7
18.1
21.5
24.4
61.3
2.5
4.1
6.8
13.9
1»,«
23.1
26.8
60.2
2.4
3.4
5.4
12.5
18.3
23.1
27,7
60,8
2.5
4,6
6.8
13.0
18.4
22.0
25.2
60,9
0,13
0,21
0,21
0.23
0.25
0,26
0,29
0.42
0,14
0,16
0,18
0.24
0.26
0.28
0.34
0.54
0,13
0.13
0.16
0.23
0,27
0.31
0.40
0.70
0.13
0.20
0.20
0.23
0,25
0.27
0.31
0,47
0,57
0,57
0,59
0.60
0,60
0,61
0.62
0,52
0,58
0,61
0,65
0,63
0.61
0.75
0.87
0,68
0.58
0.58
0,60
0,62
0.61
0,70
0,78
0,79
0,58
0,58
0,60
0,61
0.60
0,66
0,71
0,58
14682,
14337.
13988,
13030.
12145,
11596,
11121,
5779,
14685,
14439,
13994,
12841,
11979,
11338.
10734,
5527.
14712,
14545.
14221.
13067.
12109.
11333.
10588,
5280,
14687,
14357.
1S99J,
12977,
12095,
11512,
10988.
5685,
FLOH8TREAM SUMMARY
FLOHRATE • 14.8 PERCENT OF FEED
BTU CONTENT • 5685. BTU/LB
802 CONTENT • 2.03 LBS 802/MILLION BTU
ASH • 60.9 PERCENT
PYRITIC SULFUR • ,47 PERCENT
TOTAL SULFUR • ,58 PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF REFUSE PRODUCT FROM UNIT NUMBER 7
SIZE FRACTION AND WEIGHT
1 BY 3/8
SPECIFIC DIRECT, PERCENT
GRAVITY HEIGHT ASH PVRITIC TOTAL BTU/LB
SULFUR SULFUR
CUMULATIVE, PERCENT
WEIGHT ASH PVRITIC TOTAL BTU/LB
SULFUR SULFUR
3/6 BY 28
26 BY 08
(O
CO
(O
as BY o
COMPOSITE
26.9 PERCENT
22.3 PERCENT
43.6 PERCENT
5.2 PERCENT
100.0 PERCENT
FLOAT
,30-
.35-
.40-
.50-
.60'
.70-
SINK
FLOAT
1.30-
1.35.
1.40-
1.50.
1.60-
1.70-
SINK
FLOAT
.30-
.35-
,40-
,50-
.60-
.70-
SINK
FLOAT
,30-
.35.
.40-
.50-
.60-
,70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
,70-
.30
.35
.10
.50
.60
.70
.60
,60
.30
.35
.10
.50
.60
.70
.60
.60
.30
.35
.10
.50
.60
.70
.80
.60
.30
.35
.10
.50
.60
.70
.»o
.80
.30
.35
.10
.50
.60
.70
.80
SINK 1.60
0.5
1.6
2.5
9.8
10.0
6.7
5.0
63.9
I.I
2.8
2."
11. 1
11.6
7.'
5.8
56.9
1.8
2.0
1."
8.0
10.2
7.1
5,3
63,7
,6
.4
.5
.2
.»
.6
1.0
73.8
1.5
2.1
2.3
«.o
10.1
7.0
5.2
62.6
2.4
1.6
9.3
15.8
25.1
33.1
12.2
66.6
2.3
1.6
'.3
15.8
25.2
33.5
12.3
63.0
2.1
«.6
9.4
16.1
25.8
33.9
12.9
70.3
17.9
17.4
16.6
18.3
21.3
28.0
31.2
13.5
5.3
5.7
'.6
16.0
25.1
33.5
12.2
66,8
0.13
0.11
0.21
0.27
0.32
0.39
0.67
0,78
0.11
0.15
0.23
0.27
0.31
0.10
0.65
1.01
0.12
0,17
0,21
0,26
0,29
0.31
0.57
0.65
0.30
0,30
0.29
0.29
0.30
0.31
0.18
0.55
0,15
0,17
0.22
0,26
0,30
0,37
0.61
0.76
0.58
0.58
0.63
0,63
0.60
0.90
1.01
0,79
0,59
0,59
0,63
0,62
0.61
0.66
1.03
1.07
0.59
0,59
0,63
0.62
0,59
0.85
1,00
0.66
0.66
0.65
0.65
0.64
0.62
0.77
0.87
0.74
0.60
0.60
0.63
0.62
0.60
0.66
1.01
0,79
11712,
11315.
13562.
12526.
11016.
9690,
8222.
1000.
14716.
14345.
13579.
12520.
10997.
9*41.
8206.
4826.
14755.
H356.
13572.
12182.
10896,
9572.
8103.
1000.
12163.
12262.
12361.
12116.
11112,
10528.
9518.
8012.
11230.
14175.
13537.
12500.
10961.
9644.
8220.
4413.
0.5
2.1
«.6
14.4
24,4
31.1
36.1
100.0
1.1
3.9
6.7
17.9
29.4
37.3
13.1
100.0
1.8
3.8
5.7
13.7
23.9
31.0
36.3
100,0
5.6
'.0
10,5
13.7
IT. 6
22.2
26.2
100,0
1.5
3.6
5.9
H.8
2«,9
32.0
37.2
100,0
2.1
1.1
7,0
13.0
17,9
21.3
21,2
52.7
2.3
1.0
6.3
12.2
1^.3
20.7
23.6
16.1
2.1
3.1
5.1
11.6
17.6
21.1
21,5
53.7
17.'
17.7
17.6
17.8
19.2
21.0
23.1
38.1
5,3
5.5
7,1
12.5
17.7
21.2
21.1
50.9
0.13
0.14
0.18
0,24
0,27
0,30
0,35
0,62
0,11
0,11
0,16
0,23
0.26
0.29
0.31
0,71
0.12
0,14
0.17
0,22
0,25
0,27
0,31
0,53
0.30
0,30
0.29
0,29
0,30
0.31
0,33
0,50
0.15
0.16
0,18
0,23
0,26
0,28
0.33
0.60
0.58
0.58
0.61
0.62
0,61
0,67
0.72
0,76
0.59
0.59
0.61
0.61
0.61
0.66
0.71
0.92
0.59
0.59
0,60
0,61
0.60
0.66
0.71
0,68
0.66
0.66
0.6*
0,65
0.65
0,67
0,70
0,73
0,60
0.60
0.61
0,62
0,61
0,67
0,71
0.76
14712.
14435.
13965.
12986,
12179,
11635,
11161.
6564,
14716,
14451,
14081.
13108.
12277.
11721.
11250,
7593.
14755.
1454*.
14215.
13205.
12224,
11*15.
11105.
6576,
12163.
12213,
12233.
12206,
11973,
11*72,
11342,
8884.
14230,
14196.
13940,
13070,
1221*.
11651.
11167,
6927.
FLOMSTREAM SUMMARY
FLONRATE • 12.9 PERCENT OF FEED
BTU CONTENT • 6927. BTU/LB
S02 CONTENT • 2,19 LB8 902/HILLION BTU
ASH • SO.9 PERCENT
PYRITIC SULFUR • ,60 PERCENT
TOTAL SULFUR • ,7* PERCENT
-------
SPECIFIC GRAVITY ANALYSIS OF REFUSE PRODUCT FROM UNIT NUMBER 8
SIZE FRACTION AND WEIGHT
28 BY 46
64.1 PERCENT
46 BY 0
35.9 PERCENT
COMPOSITE
100.0 PERCENT
to
oo
CO
SPECIFIC
GRAVITY
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30.
1.35.
1,40-
1.50-
1.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40.
1.50.
1.60.
1,70-
SINK
FLOAT
1.30.
1.35.
1.40.
1.50.
1.60.
1.70-
SINK
.30
.35
.40
.50
.60
.70
.60
.80
.30
.35
,40
.50
.60
.70
.60
.80
.30
.35
.00
.50
.60
.70
.80
.80
6.6
0,6
1.0
7.0
10. 1
7.4
5.3
62.1
2.0
2.2
0.0
6,1
8,6
6.0
5.2
65.6
4.9
1.2
0.6
9J6
7.6
5.3
63.4
2.1
4.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
2«.3
28.0
34.2
43.5
4.4
13. «
16|9
25.3
31.7
39,9
60.3
0.12
0.17
0,21
0,26
0,29
0,34
0,57
0.65
0.30
0,30
0,29
0.29
0,30
0.34
0.48
0.55
0.14
0,26
0.21
0,27
0,29
0.34
0.54
0.61
BTU/LB
SULFUR
0,59
0.59
0.63
0.62
0.59
0,85
1. 00
0.66
0.66
0.65
0,65
0.64
0,62
0,77
0,87
0,74
0.60
0.63
0.63
0.63
0,60
0,82
0.95
0.69
14755.
14356,
13573,
12463.
10896.
9572.
6103.
4000.
12183.
12262,
12361.
12116.
11142.
10528.
9516.
6012,
14363.
12920.
13573.
12336.
10976.
9935.
8604.
5496,
CUMULATIVE, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
6.6
M
8.1
15.1
25.2
32.6
37.9
100,0
2,1
2,3
3,2
9.1
15,8
19,9
23.1
52.4
2.0
«,2
1.2
12.3
21,0
29,0
34.2
100,0
4.9
6.1
6.7
1".'
23.7
31.1
36.6
100.0
17.9
17,6
17,6
16,1
20.6
22,7
24,4
37,0
4.4
6.1
6.4
11.9
17.3
20,6
23.6
46.9
0,12
0.12
0,13
0.19
0,23
0.25
0.30
0.51
0.30
0,30
0.30
0,29
0,30
0.31
0.34
0,46
0.1U
0.16
0,17
0.22
0,25
0,27
0.31
0,50
0,59
0,59
0,59
0.60
0,60
0.66
0,71
0.66
0,66
0,66
0,66
0.65
0.64
0.67
0,70
0,72
0,60
0,60
0.61
0,62
0.61
0.66
0.70
0,70
14755,
1472),
14581,
13611,
12524.
11854.
11327.
6779,
12163.
12225.
12225.
12153.
11737.
11402.
11117.
9073.
14363,
14104.
14053.
13154,
12274,
11704.
11257.
7603.
FLOWSTREAM SUMMARY
FLOWRATE • 1.7 PERCENT OF FEED
BTU CONTENT • 7603. BTU/LB
302 CONTENT * 1,63 LB8 302/MILLION BTU
ASH • 46,9 PERCENT
PYRITIC SULFUR • .50 PERCENT
TOTAL SULFUR • .70 PERCENT
-------
SUMMARY DATA FOR UNITS
YIELD BTU RECOVERY
UNIT NUMBER UNIT TYPE DECISION VARIABLES (PERCENT) (PERCENT)
••••••••••• ••••••••• •••••••••••••••••• mmmmmmmmm ••••••••••••
1 11 (ROTARY BREAKER) 22.000 5.000 6.000
2 21 (DRV UPPER SCREEN) 1.000
3 6 (2-STAGE BAUM JIG) 1.450 57.« 74.S
4 16 (SECONDARY SINOLE ROLL CRUSHER) 0.12S
S 41 (STREAM BLENDER)
6 91 (DRY UPPER SCREEN) 0.023
7 1 (CONCENTRATING TABLE) 1.500 60.2 75,0
6 7 (FROTH FLOTATION) 56.6 66.0
-------
SUMMARY DATA FOR FLOW3TREAM3
FUOH3TREAM ORIGIN
NUMBER UNIT NO.
1 (FEED)
2 (REFUSE PRODUCT)
3
4
5
6 (CLEAN COAL PRODUCT)
7
8 (REFUSE PRODUCT)
9
10
11
CO
00 , a
01 1«
13 (CLEAN COAL PRODUCT)
14 (REFUSE PRODUCT)
15 (CLEAN COAL PRODUCT)
tb (REFUSE PRODUCT)
0
1
1
2
2
3
3
3
-------
TECHNICAL REPORT DATA
(Phase read Instructions on the rererse before completing)
1. REPORT NO.
FE-9000-1 (EPA-600/7-78-211)
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Computer Simulation of Coal Preparation Plants
5. REPORT DATE
November 1978
6. PERFORMING ORGANIZATION CODE
7. AOTHOR(S)
Byron S. Gottfried
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Pittsburgh
Pittsburgh, Pennsylvania 15261
10. PROGRAM ELEMENT NO.
EHE623A
11. CONTRACT/GRANT NO.
EPA Literagency Agreement
DXE 685 AK
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 12/74 - 8/77
14. SPONSORING AGENCY CODE
EPA/600/13
15. SUPPLEMENTARY NOTES JERL-RTP project officer: D.A.Kirchgessner, MD-61, 919/541-
2851. DoE project officer: R.E.Hucko, Div. of Solid FuelTMining and Preparation,
Pittsburgh PA 15213.
. ABSTRACT
Tne rep0rt describes a comprehensive computer program which allows the
user to simulate a wide range of coal preparation plant configurations and modes of
operation. The program was designed to maximize the yield of clean coal while mini-
mizing the impurities. The configuration, mode of operation, and coal feed can be
varied to provide solutions to a wide range of problems. The program is written in
modular form using standard features of FORTRAN IV language.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COS AT I Field/Group
Pollution
Coal Preparation
ompnterized Simulation
FORTRAN
Pollution Control
Stationary Sources
13B
081
14B, 09B
8. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
240
20. SECURITY CLASS (This page/
Unclassified
22. PRICE
$9.50
EPA Form 2220-1 (9-73)
236
VS. GOVERNMENT PRINTING OFFICE: 19TO-«M92/ «7S
------- |