DoE
          •Jn,tnd States
of Energv
Division of Solid Fuel
Mining and Preparation
Pittsburgh PA 15213
                          FE-9000-1
          JS Environmental Protection Agency  Industrial Environmental Research  EPA-600/7 78 211
          Office of Research and Development   Laboratory           Novt-mtier 1978
                          Research Triangle Park NC 2/711
          Computer Simulation
          of Coal Preparation
          Plants

          Interagency
          Energy/Environment
          R&D Program Report

-------
                  RESEARCH REPORTING SERIES


 Research reports of the Office of Research and Development, U.S. Environmental
 Protection Agency, have been grouped into nine series. These nine broad cate-
 gories were established to facilitate further development and application  of en-
 vironmental technology. Elimination of traditional  grouping was consciously
 planned to foster technology transfer and a maximum interface in related  fields.
 The nine series are:

    1. Environmental Health Effects Research

    2. Environmental Protection Technology

    3. Ecological Research

    4. Environmental Monitoring

    5. Socioeconomic Environmental Studies

    6. Scientific and Technical Assessment Reports  (STAR)

    7. Interagency Energy-Environment Research and Development

    8. "Special" Reports

    9. Miscellaneous Reports

This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH  AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency  Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the  public
health and welfare from adverse effects of pollutants associated with energy sys-
tems.  The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include  analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
                       EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

                          Price: Paper Copy $9.50
                                Microfiche $3.00

-------
                                                FE-9000-1
                                                (EPA-600/7-78-211)
                                                November 1978
                                                Distribution Category UC-90b
  Computer Simulation  of Coal
             Preparation  Plants
                              by

                          Byron S. Gottfried

                        University of Pittsburgh
                     Pittsburgh, Pennsylvania 15261
               EPA/DoE Interagency Agreement No. DXE685AK
                     Program Element No. EHE623A
 EPA Project Officer: David A. Kirchgessner          DoE Project Officer: Richard E. Hucko

Industrial Environmental Research Laboratory       Division of Solid Fuel Mining and Preparation
   Research Triangle Park, NC 27711                  Pittsburgh, PA 15213
                           Prepared for

                U.S. ENVIRONMENTAL PROTECTION AGENCY
                    Office of Research and Development
                        Washington, DC 20460

                              and

                     U.S. DEPARTMENT OF ENERGY
                 Division of Solid Fuel Mining and Preparation
                        Pittsburgh, PA 15213

-------
                         TABLE OF CONTENTS







1.      INTRODUCTION	  1




2.      MATHEMATICAL PROCEDURES	   3




           2. 1    Washers	  3




           2. 2    Crushers	  17




           2. 3    Screens	  18




           2. 4    Rotary Breaker	  19




           2. 5    Blender	20




           2. 6    Splitter	21




           2. 7    Component Interconnection	  21




3.      USE OF THE SIMULATOR	23




4.      CONCLUSIONS AND RECOMMENDATIONS	25




5.      ACKNOWLEpGMENTS	27




6.      REFERENCES	 28




7.      APPENDIX	29




           7. 1    APS Report	 30




           7. 2    Program Structure	  46




                      7. 2. 1     Subprograms	  46




                      7. 2. 2     Subprogram Summary	  50




                      7. 2. 3     Common Storage Areas	 74




           7. 3    Program Listing.	75




           7. 4    Instructions for  Data Preparation	170




           7. 5    Sample Problem	182




                      7. 5. 1     Data Preparation	184




                      7. 5. 2     Computer Output	189

-------
                           LIST OF FIGURES









1.   Typical distribution curve illustrating specific gravity




     of separation	               4




2.   Typical generalized distribution curve	               4




3.   Size transformations for carrying out washer




     calculations   	           11-14




4.   Screens in coal preparation	              34




5.   Schematic representation of particles on a screen....              35




6.   Identification of streams	              45




7.   Model of rotary breaker	              45




8.   Schematic flowchart for sample preparation plant ....             183

-------
                          1.  INTRODUCTION







    Coal preparation, commonly known as coal washing,  offers a practical




and economical approach to the removal  of ash and pyritic sulfur from raw




coal.   For example,  the ash in a typical  U.S. Northern Appalachian bi-




tuminous coal can be reduced from 14 percent to 6 percent and the total




sulfur from 3 to 1-1/2 percent by coal preparation (1).  Such beneficiation




can be obtained at a yield ranging from 60 to 90 percent and  at a cost of about




$2. 90 to $4. 83 per ton of clean coal (2).




    A typical coal  preparation  plant consists  primarily of various inter-




connected crushing, screening,  washing,  dewatering,  drying, and thickening




units. Several  types of washing units will be  used, because  each piece of




washing  equipment is best suited for a certain characteristic size fraction




of coal.   The crushers  break the coal into the proper sizes,  and the




screening units separate the crushed coal into appropriate size fractions.




The dewatering and thermal drying units reduce surface moisture to




acceptable limits.  These  various units are interconnected in a number  of




ways, the choice being dependent upon the characteristics of the coal being




processed and the desired degree of beneficiation.




    The principal consideration in operating a coal preparation plant is to




maximize the yield of clean coal while reducing the impurities to an acceptably




low level. In addition,  in assessing the  possible interconnection of units in an




existing  plant, or when a new plant is being considered, it is essential that

-------
 the optimum configuration be determined for a given degree of cleaning.




 Usually these matters are handled by some prudent combination of




 experience and experimentation.  A computerized plant simulator, however,




 is an effective aflS in comparing alternatives,  provided a program can be




 developed which is sufficiently comprehensive to simulate conditions found




 in industrial practice.




     This  report describes a comprehensive computer program that allows




 the user to simulate the performance of realistic coal preparation plants.




 The program is very flexible in the sense that it can accommodate any




 particular plant configuration that may be of interest.  This allows the user




 to compare the performance of different plant configurations and to determine




 the impact of various modes of operation with a fixed configuration.   In




 addition,  the program can be used to assess the degree of cleaning obtained




with different coal feeds for a given plant configuration and a given mode of




 operation.  Thus the user is able to consider a wide variety of alternatives




through the use of this simulator.




     The simulation program has been written in modular form using standard




features of the Fortran IV language.  It can therefore be implemented on




virtually any large,  scientific computer.  Use of the simulator requires only




that the user specify the appearance of the plant configuration, the plant




operating conditions, and  a description of the  coal feed.




     The program has been developed at the University of Pittsburgh,  although

-------
the crushing and screening routines were supplied by Automated Process




Surveys, Inc. under a subcontract. A close rapport has been maintained




with Bureau of Mines personnel throughout the course of this study.  Their




advice and assistance have been most helpful in the successful completion




of the project.  In particular,  thanks are due to Mssrs. A.  W. Deurbrouck




and P. S. Jacobsen of the Bruceton, PA Coal  Preparation and  Analysis




Laboratory.




    Included in th:.s report are a  listing of the  computer program, instructions




for its use and representative sample output,  in addition to a general de-




scription of the methods used to carry out the simulation.







                   2*  MATHEMATICAL PROCEDURES




    To analyze realistic plant configurations,  a computer program must be




able to simulate the performance of all principal plant components (namely,




crushing, screening and washing  units) under  specified operating  conditions.




It should be possible, mbreover,  to interconnect these units to form whatever




configurations may be of interest.  Both of these requirements are satisfied




in the current simulator.  The manner  in which the calculations are  executed




is summarized below.




2.1  Washers




    Coal washing equipment  makes use of a float-and-sink principle, based




upon the specific gravity differences between the coal and its associated




impurities.  (An exception is the  froth flotation process,  in which the




separation is dependent upon the difference in surface characteristics of the




coal and its associated impurities.) The performance of these float-and-sink

-------
 units is characterized by a distribution curve, (also called a partition or

 separation curve).  Of the material in the feed having a given specific

 gravity (p), this curve indicates the percentage reporting  to the clean coal

 product (3).  A typical distribution curve is shown in figure 1.
       100
  3
  o -
  O 9
  t- 2  50
  z 8.
  o

  o
           Specific gravity |
             of separation)
                 I   \! I
          1.2      1.4      1.6     18   2.0

                 SPECIFIC  GRAVITY,/)

           Fig. I.  Typical distribution curve
                  illustrating specific
                  gravity  of  separation
0.8   0.9    1.0    1.1     1.2    1.3

 REDUCED SPECIFIC GRAVITY,x

 Fig. 2. Typical generalized distri-
       bution  curve
     Notice the value of specific gravity corresponding to an ordinate value of

50, the midpoint.   This value is defined as the specific gravity of separation,

Pen'  that is, the specific gravity of material in the feed that is divided

equally between  clean coal and refuse.  By making appropriate physical

adjustments on a coal washing unit, the value of the specific gravity of

separation can be increased or decreased, shifting the distribution curve

accordingly.  The specific gravity of separation, therefore, is considered a

control variable.  An  increase in the specific gravity of separation results in

-------
an increase in the yield of clean coal but a decrease in its quality.


    Recently a method has been developed for representing the distribution


curve in a manner that is independent of the specific gravity of separation (4).


To do so, the percent of feed reporting to clean coal having a given specific


gravity ( p) is plotted against "reduced" specific gravity, x,  rather than


specific gravity (p).   The former  is defined as the ratio of specific gravity


to specific gravity of separation; that is, x = pip  •  Such a curve is a


generalized distribution curve.  A typical generalized distribution curve is


shown in figure 2.  The use of generalized distribution data greatly


simplifies the task of representing washability data in the simulator.


    Float -and -sink calculations depend not only on the specific gravity of


material in the feed, but also on the size consist.  Consequently, a


different generalized distribution curve is obtained for each of several size


increments of the feed material.  To simulate the performance of a washer,


then,  it is necessary to consider the feed as divided into several size


increments,  and each size increment as subdivided into specific gravity


fractions.  The washer's effect  on each size and specific gravity fraction


is determined, and then the overall  clean coal and refuse products  are


reconstituted. Mathematically,  this can be  expressed as



    W = f f V^KIJ                                        (1)
where F  represents the overall clean coal flowrate, F   represents the
        C                                             •"*•

refuse flowrate,  f. . represents the flowrate of feed in the ith size fraction

-------
 and the jth specific gravity fraction, and C..(P-Q) is the distribution factor

 for the ith size fraction and jth specific gravity fraction.  Note that product

 flowrates and values for the distribution factor depend upon the value

 specified for the control parameter, p   (that is, the overall specific gravity

 of separation).

     Since  the overall specific gravity of separation (for the entire feed compos•

 ite) will be specified, rather than the specific gravity of separation for each

 particular size  fraction, it will be necessary to determine a value for  the

 specific gravity of separation for  each size fraction from the overall

 specific gravity of separation. This can be accomplished by calculating the

 ratio of the specific gravities  of separation,  i.e.

     r. =p.   /p5Q                                                     (3)


where p.  refers to the specific gravity of separation for the ith size fraction.
       150
    A conventional distribution curve for the ith size fraction can be obtained

from the corresponding generalized distribution curve by transforming the

abscissa from x to p, i. e.

    P=A  x                                                          (4)
        150
combining  this result with  Equation  (3) yields

    P^P50r.x                                                        (5)

 Thus,  if the overall specific gravity of separation and the proper value for r.

are known,  a conventional  distribution curve for the ith size fraction can be

constructed and the values  for C.. required in Equations  (1) and (2) can be

determined.  The  current  simulation  program  contains  tabulated

-------
values of both the generalized distribution data and the corresponding r.



factors for each of the following commonly used coal washing units:



     1.  Baum jig



     2.  Dense-medium vessel



     3.  Dense-medium cyclone



     4.  Hydrocyclone



     5.  Concentrating table



In each case the basic distribution data were obtained from U.S.  Bureau of



Mines reports  (5-9).  Within the computer model a four-point Lagrangian



interpolation routine is used in conjunction with the  tabular generalized



distribution data.   The tabular data included in the  simulation program are



also summarized by Gottfried and Jacobsen (4).



     The use of Equations (1) and (2) is  straightforward when the size



fractions that are used to characterize  the feed coincide with the  size



fractions corresponding to  the distribution data.  Usually, however, these



size fractions will not be the same.  This problem can be resolved by



transforming the feed from its original size fractions, S,  to the size fractions



corresponding to the distribution data,  ff; the separation is then carried out
                                     ^^*


in the cr - space, and the product stream is then transformed back to the
      «*«-


S-space.



     The method used for carrying out the transformations, based upon



simple proportionality, makes use of the following two assumptions:

-------
                                                                          8
     1.   The material is distributed uniformly within each size fraction.



     2.   The range of sizes corresponding to the distribution data en-



         compasses the range of sizes used to characterize the feed; i.e.
        a  * S , and a £S .  (Note that CT> a >cr>...>CT  and
         00       mn             012       m



        Sn>S >S >...>S  .)
         012       n


 The first assumption is quite reasonable provided the size fractions are



 small (though the question of "how small" remains unanswered).  The second



 assumption will be valid provided the distribution data span a reasonably



 large range of sizes.



     Twelve different situations can arise when transforming fvom the



 S-space to the a -space, as outlined below.   The procedure is to select  and
A^            »•—


 utilize an appropriate transformation equation for each size fraction in  the



 a -space, i.e.  for each A(T. (where Aor.  = <7. - a.  ., j = 1, 2,  ..., m).
                          J
          . ..  .and a. *S. '
          J-1   i-l	1    i '
                             J    J
                      [a. - a. "

                      eT  J~
                      5i - Si-l.
        (see Fig.  3a)


    2.  a. , £ S.  _ and a. ^ S. '
         J-1    1"2      J    i.

                         ES.  .  - a. •

                          1"1    J"1

                         5i-l * Si-2
                                                             (6a)
w
                w
          . (S)
                        a. -S.
                         J
                        s. -s.
                       L i    i-U
                                                                     (6b)
        (see Fig. 3b)

-------
3.  cr.
     .  .    .  .  ,
     j-1    i-k-2
                 and a.
                      j
                        S. .   , - cr.  ,
                         i-k-1    j-1
                               " S
                                  i-k-2
            JEN.

           y     w.    (s) +w.(s)
           •L—       1-A »*    1 ,r-
                                       - S-
                                   Ls.-s.
                                   L i   i-l
                                                                   (6c)
    (see Fig. 3c)
4.  a.  .  >S. .and cr  ^3. •
     j-1    i-l     j    i-
     .(CT) = w.(S)
     3 V-     1*^
                   a.  -S.
                    J     i
                 J5- - S-  i  J
                 «- i    i-l-l
                                                                   (6d)
    (see Fig. 3d)



5.  cr.  . >S  ^ and cr. ^ S   '
     j-1   i-2      j    i  .
    w (a) = w.  .(S) +w. (S)
     j *~    i-1 i^-    i  "^


    (sse Fig. 3e)
                             a.  - S.
                              J     i
                             S. -S.
                            LI    i-l.
                                                                   (6e)
6.  a.  .  >S.  .  _ and a.   .
     j-1    i-k -2      j   i  ,
              k+1
    w (a)  =
     J ^.
                   w.  .  (S)  + w.(S)
                     1-^ fc-      1 _
                                       •    _^   •

                                       
-------
                                                                       10
     8.  CT  ,  £S.  _ and or.   w.  f(S)
    10.  a  , >S.  . and a. S    and a.S. . . and a
(6h)
                                                          (6k)
        (see Fig. 31)



    Once the separation has been carried out in the cr-space,  then the



weight distribution of the products can be transformed back into the^-space

-------
                                                          11
 i-1


                   FIGURE 3a

1 " 1
1 1
Si-2 Si-l
CT
j

S
I
                    FIGURE 3b
         cr  ,                           a.
          j-1                            J
SL-2   Silk-.  Sil      ' ;       ^i-!



                    FIGURE 3c
 Fig. 3.   Size transformations for  carrying out
           washer calculations

-------
                                                          12
    a. ,                          <*.
     J-l                           J
    I	1
                   FIGURE 3d
                   FIGURE 3e

."J-I
1
1
i-2
cr.
J
1

1
s1
1
°J-1
1 1 if
c c c )
&i-k-2 bi-k-l Vk
a
J


                   FIGURE 3f
Fig. 3.  Size  transformations for carrying out

         washer  calculations—(Con.)

-------
                                                         13
          cr. ..                             cr.


           h	|J
     S.                                S.
      i-l                               i
                  FIGURE 3g
V
1 - 1
' C
1. 3
1— Z i—l
a.
J
1

S.
i
                   FIGURE 3h
                   FIGURE 3i
Fig. 3.   Size transformations for  carrying out

          washer calculations--(Con.)

-------
                                                       14
         S
          1-
                 FIGURE 3j
                  FIGURE 3k
                       •tJ-
                                      *'


s • s.
i-Z i-l
a.
J


       V
       I	1
s  ,  o s.  ,  . s.  .  ' '  s.  .   s.
 i-k-2  i-k-1  i-k       i-l    i
                  FIGURE 3JI




Fig. 3.  Size transformations for carrying  out

         washer calculations—(Con.)

-------
                                                                          15
by reversing the above procedure.  In other words,  for each AS  (where AS  -
                                                              i          i

S. - S.  ,, i =    1, 2, ..., n),  select an appropriate transformation equation, in


accordance with the relationship of the boundaries of AS. with respect to the


boundaries of the corresponding A cr 's.


    When carrying  out the calculations a set of distribution data is generated


fr9m the  composite feed and clean coal.  A value for p  ,  the overall specific


gravity of separation, is  then  calculated from the distribution data by reverse


linear interpolation.  This value is compared with the specified value for p  .


If the two values do not agree  to within 0. 003,  then the value of p   that is


used to carry out the calculations is adjusted and the entire procedure is


repeated.  Convergence is normally attained in 3 or 4 iterations.


    The overall ash,  sulfur, and Btu content of product streams are easily


determined once the separation has been carried out.   These calculations


are based upon the assumption that within each size and specific gravity


fraction,  the direct (as contrasted with cumulative) values of ash, sulfur,


and Btu content are unchanged by cleaning.   (In practice this assumption


is not strictly  true, but it simplifies calculations during this stage of the



simulator.


    After the separation has been computed  a set of summary data is



generated for each size fraction, and for the overall composite feed.  The



following quantities are computed.


    1.  Screen analysis for each flowstream (i.e. feed, clean coal, refuse



        and, if applicable, middlings).


    2.  Percent ash for each flowstream

-------
                                                                           16
     3.  Percent pyritic sulfur for each ftowstream




     4.  Percent total sulfur for each flowstream




     5.  BTU content of each flowstream




     6.  Actual recovery,  theoretical recovery, recovery efficiency,  BTU




         recovery and ash error




     7.  Float in refuse, sink in clean coal, total misplaced material and




         near gravity ±0. 1 material




     8.  Specific gravity of separation, probable error,  imperfection and




         error area




     9.  Distribution data, determined as  the ratio of calculated clean




         coal to feed




Most of  these quantities are obtained by direct summation of the appropriate




quantities over the specific gravity fractions.  However the theoretical




recovery, ash error,  specific gravity of separation and probable error are




obtained by interpolation,  and the error area is obtained by numerical




integration (using Simpson's rule).   The composite data are obtained by




actually  summing the computed  results over all size fractions and interpolating




(where necessary) between the points composited  in this manner.




     The simulator also contains a provision for the froth flotation process, even




though the method used to carry out  the computation is less precise  than that for




the coal  washing units listed above.  In this case,  the overall yield of clean




coal is taken as the  value of the  cumulative weight distribution in the froth




flotation feed at a specific gravity of 1. 50.  Similarly,  the  overall ash content

-------
                                                                          17
of the clean is taken as the cumulative ash of the feed at a specific



gravity of 1. 60.  Detailed specific gravity analyses of the clean coal and



refuse products are obtained by applying to the feed a distribution curve



that will produce the "1. 50-yield/l. 60-ash"  product.  Sulfur and  Btu



content of the products are obtained from the distribution curve calcu-



lations  and may differ from the amounts present in either the 1. 50 or 1. 60



specific gravity feed level.



2.2  Crushers



        Crushers are somewhat more difficult to model than washers,



because it is necessary to account for both the size distribution of the



original (parent) particles and  the size distribution of the crushed (daughter)



particles. To carry out the calculations,  the simulator employs a selection



function, S. (/3) (the fraction  of feed particles in the ith size increment that



will be  crushed at a given crusher setting /3  ),  and a breakage function  for



crushed particles, B., (/J)  (the fraction of particles originally in the ith size
                     IK


increment that ends up in the kth size increment).  In this model it is



assumed that both S.(j8) and B  (/3) are dependent upon initial particle size
                   X         IK


but independent of specific gravity.  Furthermore,  the breakage  of a particle



is assumed to create fragments that are unchanged in  specific gravity analysis.



        Flowrate of crushed product in the kth size  fraction, ~P,(fl),  is  expressed




                 i
-------
                                                                          18
gravity fraction.  Note that product flowrates depend upon the value specified



for the control parameter,  /S (i. e. ,  the crusher setting).



        The explicit forms of S.(/S) and B  (/3) depend upon the type of crusher
                             1        IK


to be simulated and the magnitude of the control parameter.  In general,



however, these functions are expressed as exponential-type equations.



The simulator contains specific equations for each of the following types



of crushers:



        1.  Single roll crusher



        2.  Multiple roll crusher



        3.  Gyratory/jaw crusher



        4.  Cage mill crusher



        For each device a distinction is made between a primary and a



secondary crusher, the calculations being carried out somewhat differently



in each case.   (Additional information may be found in Section 7. 1)



       Once the crusher calculations have been carried out, a set  of summary



data is  generated for each size fraction and for the composite of all size



fractions.  The summary data are  similar to those generated for the washers  as



described in section 2.1, except that those quantities that apply only to



washers are not included (e.g., specific gravity of separation,  error area,  etc.).



2.3   Screens



        The computation of screen performance is similar to the computation



of washer performance.  A selection function, S.(a), is again required; the



selection function now represents the fraction of feed particles in the ith  size



increment that passes over the screen into the overflow (coarse) product, given

-------
                                                                         19
a screen opening size a.  Flowrate of overflow material  F ,  can then be
                                                        o

written as


        F  (a) = E S. (a) E  f.. ,                                    (8)
                   i        13
and flowrate of underflow (fine) material,  F ,  can be expressed as
                                          u

       FU (a) = £ [1 - S. (a) ] E f .                                  (9)

                i      *      j  1J


where f. .  again represents the flowrate of feed in the ith size fraction and


jth specific gravity fraction.  Note that overflow and underflow rates  depend


upon the value specified for the control parameter, a (i. e. , the screen open-


ing size) .
                      -«i

       The simulation program includes several exponential-type equations


for the selection function; the exact equation depends upon the type of screen


selected.   Both primary and secondary screens can be simulated, in  either



a dry or a wet operating mode.  (See Section 7. 1  for further information.)


       Summary data for each  size fraction and for the size composite are


generated after the screen calculations have been carried out.



2.4   Rotary Breaker


       The methods used to simulate crusher and screen performance  are


combined in the rotary breaker model.  Essentially,  the rotary breaker is


considered to be  a sequence of consecutive events where breakage and


screening alternate, as feed material undergoes successive falls in a rotating,


perforated drum. The model includes its own breakage distribution function,


selection- for-breakage function, and screen selection function. A "work-


hardening" factor is also included for the  case where initial particle  flaws are

-------
                                                                         20
activated primarily in the first few falls.  Thus the selection- for-breakage




function decreases with subsequent falls because of its dependence on the




work- hardening factor.  (See Section 7. 1 for additional information. )




        The rotary breaker routine requires three  input parameters ---




drum length, drum diameter, and size of openings in the drum (screen




size).   The height of each fall and the number of falls (required control para-




meters) are determined from the breaker's physical dimensions.




        The predictive calculations for the rotary breaker performance are




followed by the customary summary calculations for each size  fraction and




for the  size composite.




2. 5  Blender




        A "blender" is simply a point within the plant where two different




flow streams are combined.   The flowrate of blended product can be




expressed  as






        p-**





where P represents the flowrate of the product stream, and f. ... and f




represent the flowrates of the first and second feed streams in the ith size




fraction and the jth specific gravity fraction. Similarly, any attribute in




the blended product can be determined as
                                 A..2 £..2)                         „„
where A represents the attribute (e.g. ash, sulfur or BTU content) in the




blended stream,  and A... and A... represent the attributes of the first and

-------
                                                                          21
second feed streams in the ith size fraction and the jth specific gravity


fraction.  Notice that the blender calculations do not require the specification


of a control parameter.


       Summary data for each size fraction and for the size composite are


generated at the conclusion of the above calculations.


2. 6  Splitter


       A "splitter" is a point within the plant where  a. portion of a flow


stream is diverted.  The net effect is to create two flow streams from one


flow stream,  where the combined flowrates of the two new streams equal


the flowrate of the original stream.  The composition of the new streams


will be the same as the-original stream.  Thus,



       FI (a) = £  L of..                                           (12)

                 i  J   1J


and



       F  (O) = L  S(l-a) f..                                      (13)
         ^      .            ij
                i   J


where f.. represents the flowrate of the feed stream  in the ith siae fraction
       ij

and the jth specific gravity fraction, F. and F  represent the  product
                                      X      c*


streams, and a is a control parameter, 0< O< 1.


       After the above calculations have been carried out, a set of


summary data are generated for each size fraction and for the giz£



composite.


2. 7  Component Interconnection


       The simulator allows the output from any unit (i. e., any washer,



crusher,  screen,  breaker, blender or splitter) to be directed to any  other


unit.   Thus any combination of individual units can be interconnected into

-------
                                                                           22
whatever unified plant configuration the user wishes to simulate.  This is




accomplished simply by specifying an origin and a destination for each




flowstream within the plant.  The manner in which this is carried out is




illustrated in the sample problem presented in Section 7. 5.

-------
                                                                           23
                      3.  USE OF THE SIMULATOR



       To use the simulator,  the following information must be provided:



       1.   For each major plant component (unit), appropriate unit



            settings  (control parameters).



       2.   The origin and destination of each flowstream.



       3.   A screen analysis of the raw feed.



       4.   A specific gravity analysis for the overall feed (i. e. ,  the



            distribution of weight, ash,  pyritic sulfur,  and total sulfur).



       5.   Constants for calculating the BTU content of the coal as a



            function  of its ash content.



       Numerical valu&s must also be provided for other parameters,  such



as total number of units, total number of flowstreams,  and type of output



required.



       The output generated by the  simulator will always include  the



following information:



       1.   A summary of the input data specifying the  plant configuration,



            the control variables and several miscellaneous program



            parameters.



       2.   A specific gravity analysis of the feed stream (input data).



       3.   A table summarizing the yield and BTU recovery of each unit



            •within the plant.



       4.   A summary table indicating the relative flowrate,  composition,



            BTU content and Ibs SO /MM BTU for each flowstream in the
                                   L*


            plant.

-------
                                                                          24
 In addition, the simulator can generate optional tables giving more detailed




 information about each unit and each flowstream.  Specifically, the




 simulator can generate




        1.   A table summarizing the performance of each unit, by feed




            size fractions and for the entire feed composite.




        2.   A complete specific  gravity analysis for each flowstream.




 The unit summary tables can be printed out by themselves, or else the unit




 summaries  can be followed by the  specific gravity analyses.   The latter




 option provides the most complete level of output information.




        The  simulation program has been written in standard  FORTRAN IV.




It employs a highly modularized structure, requiring 56K of memory for a




version that will accommodate a maximum of 30 units and 25 flowstrearns.




Memory requirements can be further reduced through the use of an overlay




 structure, but this results in a penalty of longer execution times.




        The program typically requires less than one minute  of running




 time on a large computer.  For  example, a plant configuration consisting




 of 12  units and 20 flowstreams was simulated on a CDC  CYBER-74




 computer in 46  seconds  (27 seconds required for compilation, 19 seconds




for program execution).




        A representative set of output data are shown in  Section 7. 5.

-------
                                                                          25
               4.  CONCLUSIONS AND RECOMMENDATIONS




       The simulation program described in this report is a flexible and




convenient tool for analyzing the performance of coal preparation plants.




When used properly it can assist a decision maker in comparing various




coal preparation alternatives, such as




         •  Different operating conditions for a given plant.




         •  Different plant configurations.




         •  Different coal feeds.




          •  Different environmental restrictions.




       A characteristic of all sophisticated computer software is, however,




the fact that a program can always be further improved.   This program is




no exception - additional features  can be added which will enhance its




value by providing additional information or by further facilitating its use.




Specifically, the addition of the following items is recommended.




       1.   The simulation of additional unit operations,  such as thickeners,




            filters, thermal dryers and other dewatering devices.




       2.   A more accurate technique for simulating the froth




            flotation process.




       3.   A provision for estimating the costs associated with coal




            preparation,  including both capital investment and operating




            revenues.




       4.   The effects of flow rate on equipment performance.




       5.   Improvements in the crushing model to include the change in

-------
                                                                           26
            flow stream characteristics as a result of particle fragmentation




            (i. e. ,  a "liberation" model).




        7.   The effect of beneficiation upon the direct ash, sulfur and BTU




            content of specific gravity fractions in the products as




            compared to the feed.




        8.   Implementation of the simulator on a minicomputer,  thus




            allowing the program to be used in an actual plant environment.




        9.   Implementation of the simulator in a timesharing mode, thus




            providing  a preparation engineer or a plant  manager with an




            interactive, conversational capability.




      10.   Expansion of the simulator into a plant optimization program.




            This would allow one to determine those values of the control




            parameters that cause the yield of clean coal to be maximized,




            subject to  imposed environmental restrictions.




In addition, the simulator should be validated by comparing the predicted




results  with actual plant data.




       Finally, it  should be understood that this simulation program is not




intended to be used for detailed engineering design purposes.

-------
                                                                         27
                        5.  ACKNOWLEDGMENTS

       Several people have made significant contributions to the successful

completion of this project.  In particular,  the efforts of Mr. P.  S. Jacobsen,*

formerly of the U. S.  Bureau of Mines Bruceton, Pa. Coal Preparation

Laboratory,  have been especially valuable in the design, refinement and

assessment of the program.  Mssrs. A. W. Deurbrouck and J.  Wizzard

of the U. S.  Bureau of Mines Bruceton Pa.  Coal Preparation Laboratory

have also been very helpful in support of this activity.

       The  crushing  and screening routines that are used in the program

were  developed by  Dr.  A.  Vaillant and his associates at Automated Process

Surveys, Inc. , New York, N. Y. Their  contribution is gratefully acknowledged.

       Mssrs. Wayne Baughman and Jephthah Abara of the University of

Pittsburgh were very helpful in assisting with the program development.

       The  financial  support for this project was  provided by a grant to

the University of Pittsburgh from the U. S.  Bureau of Mines.   Funds for this

grant were originally provided by the U. S.  Environmental Protection Agency.

The author expresses his gratitude to both of these  agencies, and in particular

to Mr. T. K. Janes of the EPA and Mr. A.  W.  Deurbrouck of the USBM, for

having made this study possible.
*Mr. Jacobsen is now with the Colorado School of Mines Research Institute,
Golden, Colorado

-------
                                                                        28
                           6.  REFERENCES

 1.   Cavallaro, J. A., Johnston,  M. T. , and Deurbrouck, A. W.,  "Sulfur
     Reduction Potential of the Coals of the United States, " BuMines RI 8118,
     1976, 323 pp.

 2.   "Report on Sulfur Oxide Control Technology, " U.S. Dept. of Commerce,
     Sept. 1975,  73 pp.

 3.   Geer, M. R. and Yancey, H.  F.,  "Plant Performance and Forecasting
     Cleaning Results, " Chapt.  18 in Coal Preparation,  J. W. Leonard and
     D. R. Mitchell, eds. , AIME, New York, 1968.

 4.   Gottfried, B.  S.  and Jacobsen, P. S., "A Generalized Distribution
     Curve for Characterizing the Performance of Coal Cleaning Equipment, "
     BuMines RI,  in preparation.

 5.   Deurbrouck,  A. W.,  "Performance Characteristics of Coal-Washing
     Equipment:  Hydrocyclones, " BuMines RI 7891,  1974, 22p.

 6.   Deurbrouck,  A. W. and Hudy, J. Jr., "Performance Characteristics
     of Coal  Washing Equipment:  Dense-Medium Cyclones," BuMines
     RI 7673, 1972, 34 pp.

7.   Deurbrouck,  A. W. and Palowitch, E. R.,  "Performance Characteristics
     of Coal-Washing  Equipment:  Concentrating Tables, " BuMines  RI  6239,
     1963, 26 pp.

8.   Hudy, J. Jr., "Performance Characteristics of Coal-Washing
     Equipment:  Dense-Medium Coarse-Coal Vessels, " BuMines RI 7154,
     1968, 29 pp.

9.   Sokaski, M., Jacobsen, P. S., and Geer, M. R., "Performance  of
     Baum Jigs in Treating Rocky Mountain Coals, " BuMines 6306,  1963,
     40pp.

-------
                                                                         29
                             7.  APPENDIX










Contents:




       7. 1    Automated process Surveys' final report (crushers,  screens,




              rotary breaker)




       7. 2    Program structure




       7. 3    Program listing




       7. 4    Instructions for data preparation




       7.5    A sample problem,  including data preparation and computer





              output

-------
                                                                   30
AUTOMATED   PROCESS SURVEYS
7. 1 APS Final Report






             AUTOMATED   PROCESS   SURVEYS











                MODELLING  CRUSHERS,  BREAKERS  AND   SCREENS








                                FOR  USE  IN








                     COMPUTER   SIMULATION






                                     OP






                         COAL  PREPARATION  PLANTS





                              GRANT  GO-155030
             PREPARED  BY  :





                             A. VAILLANT



                                PARTNER
                        AUTOMATED  PROCESS  SURVEYS

-------
AUTOMATED
'VJS
 \UES/
J PROCESS SURVEYS
                                                                   31
       I.   AUTHORITY FOR AUTOMATED PROCESS SURVEYS, APS.

               This Work  has been conducted at the request of :
                       MR. A. W. DEUR3ROUCK - USBM
                       MR. P. S. JACOBSEN   - USBM
                       DR. B. S. GOTTFRIED  - UNIV. OP PITTSBURGH
           under U.  S. BUREAU OP-MINES  Grant NO. GO-155030  and
           supported by  the U.  S. ENVIRONMENTAL PROTECTION AGENCY.

      II.   OBJECTIVES

           1.   Supply  a  Subroutine and  Documentation for Crusher,
                 Rotary Breakers, and Screens for Five Typical Coal
                 Preparation Circuits.
           2.   Design  this Subroutine to be similar in Structure
                 to existing Washing  Routines... For Incorporation
                 into a "FLOW-CONNECTING" Main Program.

      III.    CONCLUSIONS
                Five Typical Washing Circuits  have been modelled,
                 and Computer Subroutines,  with a Description of
                 how to use these Routines, have been  submitted to
                 the University Of Pittsburgh,  to the  attention of
                 DR. B. S.  GOTTFRIED.
                For better accuracy these Models should be  expanded
                  to include :
                 a)  EFFECT OF FLOW RATE TO A  SCREEN AND  CRUSHER.
                 b)  A LIBERATION MODEL FOR FREEING  COAL  FROM
                         ASH-AND-SULFUR.

-------
                                                                   32
AUTOMATED U PROCESS SURVEYS
                         IV  -  COAL WASHING - BREAKERS AND SCREENS

           Coal, fed to a Preparation Plant, consists of a Mixture of
      Materials which were bonded and cemented together when Coal was
      first formed.  During the mining of this Coal, it is broken into
      a Mixture of lumps that vary in size from l8|l down to the size
      of Dust.  A Coal Preparation Plant expends some additional effort
      to sort out this Mixture of Carbon-Rich and Carbon-Poor Materials,
      often breaking the lumps into even smaller lumps in order to
      physically loosen bonds between Carbon-Rich Particles and other,
      heavier, particles of Rock and Ash.
           Coal-Washing consists of three main Processes :
                 1.  Sorting Coal  -  By Specific Gravity
                 2:  Sorting Coal  -  By Sizes
                 3.  Breaking Coal

      1.  SORTING COAL BY SPECIFIC GRAVITY - (PROGRAM BY UNIV. OF PITT.)
             To sort Coal, it is floated in a bath of dense liquid.
      Heavier Particles sink, while the Lighter  Coal is skimmed off
      as Product.  Unfortunately, this Sorting Process is imperfect.
      Some Ash and Rock float along with the good Coal, while some good
      Coal sinks along with the Heavy Ash.
                  U.S.B.M. has performed extensive Tests on this "Float"
      Equipment, in order to determine both how much Coal is misplaced,
      and how much Heavy Material is misplaced.
   (I) REP.:  DEURBROUCK, A.W., and HuDY, J., JR.    PERFORMANCE
             CHARACTERISTICS:  DENSE MEDIUM CYCLONES, BUMINES R.I. 7673.
             (SEE REPORTS ON SPECIFIC GRAVITY SORTING BY ONE OR BOTH
                AUTHORS, 6239, 7154, 7891, 7982.)

-------
                                                                    33
AU1QMATEDU PROCESS SURVEYS  ^ _ COAL WASHING . BREAKERS AND SCREENS (cont , d)

    1.  SORTING  COAL BY SPECIFIC GRAVITY  (cont'd)
            The  USBM Data on Dense Media Equipment can be written
    Symbolically as C(x,g>, and is a Distribution Function. ...  At
    present it is  a Set of Distribution Functions, Ci(g), one for
    each Size Range, 1.   The Symbol Ci(g) or C(x,g) represents the
   "Weight Percent" of Particles  (with Size x and Specific  Gravity, g)
    that will float into the clean Coal Stream of a given type Machine.
            Peed Data  includes a  Size    Distribution -f(x)» which
    represents   the "Percent" of  ?eed with Size  x,and includes a Sink-
    Float  Test,  w(x.,g).  Sink-Float Data, w(x,g) is determined in a Lab
    for each Size  x.   For  a Group of Particles of Size x, w(x,g) repre-
    sents  the "Weight  Percent" that has Specific Gravity, £.  For an  ar-
    bitrarily Fine Feed, the amount of Fesd Material, F(x,g), having
    Size   x  and Specific  Gravity,  g  , is obtained by simply multiply-
    ing the Uncoupled  Screen Data f (x), and the  Sink- Float  Data  w(x,g),
    so that  :
                       F(x,g)   =    (x)  •  w(x,g)                 (1)
             The Independent (Uncoupled) USBM Data, C(x,g),  on the Dense
     Media Machinery, enables you to calculate the     amount   P(x,g)j
     of Material with Size  x  and  Specific Gravity _g_, that will become
     the Clean-Coal Product, by a simple, straight- forward  Multiplication,
                            P(x,g)   =  C(x,g) •  f(x) • w(x,g)    (2)
        All three terms on the right-hand side of this EQUATION are
           Data supplied by the U.S.B.M.
             The Heavy Refuse is obtained from l-C(x,g), again by  simple
     Multiplication, EQ.(3) :
            REFUSE (x,g)  =  [l-C(x,gj]  • J(x)  •  w(x,g)          (3)

-------
                                                                   34
AUTOMATED  PROCESS SURVEYS
IV - COAL WASHING - BREAKERS AND SCREENS (cont
      IV-2. - SORTING COAL BY SIZES (PROGRAM BY APS)

            Vibrating Screens are used in sorting Coal by Sizes.
      A  typical application of Screens is shown in FIGURE 1,  below.
      For 400 TPH Coal, a Screen with one-inch holes, would actually
      be Pour Machines, each 6 Feet Wide by 16 Feet Long.
                         I FEED
                        \ TO yi- - - -i
                            6 * I
                          PRODUCT
                      PRODUCT
                                                PRODUCT
                                     TO FLOTATION
              FIG. 4  -  SCREENS IN COAL PREPARATION
          In such an application, Manufacturers of Screens would
     estimate that the Screen Efficiency is 92#«  This is  an over-
     all Figure, which means that 92% of all Material finer than
     the Opening Size, yo, would pass through the Screen Openings.
     Manufacturers, however, cannot tell what percent of a given  size
     Particle will pass through the Screen Openings.   Dr. Vaillant
      of Automated Process Surveys, has conducted Research on most
     types of Screens manufactured in U.S.A., and on some  German  and
     Japanese Screens.

-------
AUTOMATED
                                                                    35
PROCESS SURVEYS     IV - COAL WASHING - BREAKERS AND SCREENS (cont'd
     IV-2 - SORTING COAL BY SIZSS (cont'd)

            In order to understand the Test Results, consider  Particles
     on a Screen, FIGURE 2  :
                                                        SCREEN WIRE
      FIG. 5  -  SCHEMATIC REPRESENTATION OF PARTICLES ON A SCREEN

             Let Two Particles attempt to pass through an Opening of
     Size  yo  and let us assume that the probability of two Particles
     (Size Xj and xp) passing through an opening, is the same as the
     probability of "a Single Particle (of Size x.^ PLUS x2) passing
     through the Opening; and assume also the event of Particle with
     Size x-i passing is independent of Particle with Size x2 passing
    (so that the Conditional Probability relating these events is Unity)
     then we write this Assumption as :
                               P(x2) =   P(XI
                                                            w
             This Functional Equation can be solved for POO:
                                 P(x)  =  Q     which you can easily
     verify by substituting exp(^Xi)and exP(Juz>nto EQUATION (4).
     APS1 Tests on Screens show that the Fraction Cs(x)1of Feed Particles
     of Size x?that goes over the Screen into the Coarse Stream is
     indeed exponential in character over a wide range of x; furthermore,
     C., can be written as a Function of -JL_ ,
      s                                  yo
                    Cs(x)   =   eA(l-x/yo)                (5)
     where A is an Experimental Constant, and yo is the Projected Screen
     Opening.

-------
AUTOMATED
                                                            36

JPROCESS SURVEYS   IV - COAL WASHING - TreEAfTRRS AND SCREENS (cont'd)
   IV-2 - SORTING COAL BY SIZES  (PROGRAM BY APS)  (cont'd)

             Note that the Selectivity Function,  Cg(x),  depends on the
     Ratio x/yo.   Vaillant calls  the Experimental  Constant,  "A" the
     SEPARATION STRENGTH  of the Screen.   Its Magnitude  depends on Screen
     Type,  Screen Opening, and Production Rate, but it is Independent of
     the  Feed's Size Distribution.  Thus, APS has succeeded in uncoupling
     the  Problem  of Sorting-by-oize (Screening) much in  the same way as
     others have  done  in modelling Sorting by Specific Gravity.
            The  Separation Strength depends also on the Location of the
     Screen Deck within the Machine.  Note in FIGURE 1 that the Screen
     following the Rotary Breaker consists of an Upper Deck, with one-inch
     Openings, and a Lower Deck with 1/2 inch Openings.  Experience shows
     that a Single Deck Machine with 1/2" Screen-Openings has a higher
     Separation Strength than docs a similar 1/2" Screen Deck that is
     placed below another Deck.  Furthermore, Separation Strength, "A",
     is improved  by operating wet.  Some reasonable Values of "A" have
     been inserted into the Screen Simulation  Program supplied by APS.

            Screen effectiveness, Cg(x), is ONE MINUS the Efficiency of
     the  Screen for Particle Size  x .  The Coarse  Product Stream, P(x,g),
     from a Screen, can be  obtained from this Fundamental Screen Model by
     a Simple Multiplication, EQUATION (2a)  :
                     P(x,g)  =  Cg(x) «   (x) . w(x,g)            (2a)

    where  T (x)  is  the  Feed Size Distribution to the Screen.

             Two  of  the  Three Terms  on the Right-Hand Side of this
    Equation (Feed  Size Distribution and Sink-Float Data) were supplied
    as  Data by the  U.S.B.M.; the Selectivity Function, C (x) was
                                                       ^ s_
    supplied by  APS.

-------
AUTOMATED
         [1ZZ£>
LJ PROCESS SURVEYS
                           IV -  COAL WASHING -  BREAKERS  AND SCREENS  (cont'd)
      IV - 3  -  BREAKING COAL (PROGRAM BY APS)
              Breakers and Crushers are used in  Coal Washing and
      Mineral Beneficiation Plants, and Aggregate Plants where  Control
      of Porosity in "Packings'" of Particles is  important.
              Although Crusher Curves have been  available since the
      1930"s, all this information suffers from  one draw-back ....
     *No information on HOW the Crusher's Feed Size Distribution affects
      its Product Size Distribution."
              APS has undertaken the ambitious task of applying Data
      on Single Particle Breakage, and on Screen Selectivity in order
      to match Data on several Types of Commercial Crushers...   Our
      Objective is to build a Mathematical Model of a Crusher,  that
      will include such important variables as :
                        A.  FEED SIZE DISTRIBUTION
                        B.  CRUSHER SETTING
                        C.  THROUGH-PUT RATE
                        D.  LIBERATION OF ASH

      Items "C" and "D" are left for future work in another Phase
      of this Project.
              Some Simple Breakage Concepts and Definitions are
      needed, in order to understand APS's Method of Attack.

-------
         nzu
AUTOMATED
                                                            38
LJ PROCESS SURVEYS
                        IV - COAL WASHING -  BREAKERS AND SCREENS  (cont'd)
        IV - 3  -  BREAKING COAL  (cont'd)

                As described in the Literature     , let Bfx.y)
        represent the Cumulative Size Distribution of a Group of
        Daughter Particles made by Breaking a Particle,initially of
        Size  y .   For example, Coal dropped onto a Pile has been
        found to break into a Size Distribution given by :
                                       i- e
                                       i-eH
                Notice that the Resultant Distribution  depends on x/y.
        This Function has been found to describe many Breakage
        Events in Machinery,  including Ball Mills and Hammer Mill's.

                To distinguish between types  of Equipment, previous
        Workers have assumed that each type of Equipment has a
        Characteristic Way of Selecting Particles for Breakage.  This
        Selection Function, S(y) , is the Fraction of Feed Particles
        of Size  y , that would be broken; l-S(y)^ would not be
        broken.  A Product, P(x) would be created by adding the
        Contribution of Daughter Particles of Size  x   formed from
        all Larger Particles that have been selected for Breakage.
                                   *
        where B is an Increment  for a given size Interval surround-
        ing  x .   Note that F(y,g) = amount of feed having size
        y and specific gravity g (see F(x,g) defined on p. 33).
        (1) BROADBENT AND CALCOTT:  J. INST. FUEL,  29 (1956) 524-539

-------
AUTOMATED
J
                                                                     39
PROCESS SURVEYS
                          IV  - COAL WASHING - BREAKERS AND SCREENS (cont'd)

      IV - 3A  -  BREAKING FUNCTION OF "CRUSH"

              In modelling Crushers, however, APS has found it
      more practical to alter the Breakage Function, B(xjy), while
      fixing the Selection Function  S(x).  Breakage functions for :
                      GYRATORY CRUSHERS
                      DOUBLE  ROLL CRUSHERS
                      SINGLE  ROLL CRUSHERS
                      CAGE MILLS
                      ROTARY  BREAKERS

      are given in Subroutine "CRUSH", and "ROTARY".

              -In real Crushers, Particles pass through an Opening, as
      in a Screen, except that in Crushers the Particles can orient
      themselves more easily.  This ability, for Particle-Orientation,
      enables a Crusher to discharge Particles larger than the Setting,
      So.
              -The "Crushing Process" is  different fcr :
          a) PARTICLES SMALLER THAN THE  SETTING, So
          b) PARTICLES LARGER THAN .1.7 TIMES THE SETTING, So, and
          c) PARTICLES WITH A SIZE BETWEEN  So and 1.7 So.

              The Breakage Functions for each Type of Crusher (given
      by APS in Subroutine "CRUSH") are  used mainly for Particles in
      Size Range (b), viz...  Particles Larger than 1.7 So.   For
      Particles of Size 1.7 So and Smaller, SubRoutine "CRUSH" uses
      the Natural Breakage Function, defined by EQUATION (6).

-------
                                                                       40
AUTOMATED PROCESS SURVEYS    _ COAL HAsmHG . BREAKERS AMD SCREENS
       IV - 3B - SELECTION FUNCTION OF "CRUSH"
               Particles that are slightly smaller than the Crusher's
       Setting, So, may pass unbroken, depending en how much smaller
       they are.  The chance that a Particle of Size ^_ will
       slip through, without breaking, depends on the Ratio  y/So.
       Since this Process of slipping through a Crusher is conceptually
       similar to Particles slipping through a Screen, I have assumed
       Crusher Selectivity S(x)  is of the Form given by EQUATION (5)
       with So replacing yo.

               A Primary Crusher has a larger chance of letting Par-
       ticles slip through unbroken.  In Subroutine Crush, "I PRIM"
       is  used to choose the Selection Function for Breakage, which
       distinguishes Primary Crushers from Secondary Crushers.

     IV - 3C  -  ROTARY (DRUM)  BREAKER

               The Models of Screening and of Crushing are combined
       Into a Model of the Rotary Breaker (Bradford).  The Rotary
       Breaker is modelled as a Sequence of Consecutive Events where
       Breakage and Screening alternate.

                In addition  to having its own Breakage Function,
       its own Selection- for-Breakage Function, and its own Screen
       Function,  Subroutine  "Rotary" includes Physical Variables
       such as length and  diameter of the drum, size of openings  in
       the Rotating Drum (Hole) , and

-------
    tSL
AUTOMATED
                                                          41
PROCESS SURVEYS
                          IV - COAL WASHING - BREAKERS AND SCREENS (cont'd)
       IV - 3C -  ROTARY (DRUM) BREAKER (cont'd)

       a Work-hardening Function (CFALL).  Rocks have their own Work-
       Hardening Function (RFALL).

               The Work-Hardening Function is designed to consider
       that Initial Flaws are activated upon the first few Falls, but
       the Daughter Fragments are then stronger, since they may have
       proportionately fewer Flaws.   This is allowed for in Sub-
       Routine "Rotary", by using a decreasing Selection-For-Breakage
       Function (CFALL), for each subsequent Fall (or Group of Falls).

               An increasing Function, however, could be inserted
       for "CFALL", if Field Data were to show that a Particular Coal
       is weakened by successive Falls.  Normally, Brittle Materials
       strengthen as they "age".
               Furthermore, the Selection-For-Breakage Function is
       constructed so that it is also a Function of Particle Size,
       since some small Particles have only a small tendency to break.
       Until more Data is available on a Rotary1s Product, the Function
       that accounts for Particle Size (C SELCT) is set uniformly to
       Unity for all Particles.
               In APS's Model, Feed Particles that are much larger
       than the Crusher Setting (or "Hole" in Subroutine Rotary) will
       automatically undergo more Breakage Events and so will give
       a Finer Product than will be given by Feed that is only Slightly
       larger than the Crusher's Setting.

-------
                                                                     42
AUTOMATEDU PROCESS SURVEYS    IV - COAL WASHING -  BREAKERS AND SCREENS (cont'd)
     IV-3D - LIBERATION
             APS has found much evidence  that   Specific Gravity is
     tied to Ash Content, but is not tied to Particle  Size.    This
     appears true, especially for Large Particles,  handled in a Coal
     Washing Operation.  For many Coals,  only  the Finest Sizes seem
     to deviate from this Principle.  Although this observation is of
     only slight importance in both Screening  and Dense Media Separa-
     tions, it is Critical in Modelling Breakage Processes.   Conse-
     quently, APS has assumed that Particles,  with  a given Specific
     Gravity, break into Daughter-Fragments that have  the same Specific
     Gravity as their Parent's (except for the smallest Fragments, since
     these are broken no further) .

             This Technique assures a MASS BALANCE, without needing to
     identify the Parent of each Particle  after Successive Breakage
     Events.  It accounts for the Feed's  Initial Differences in -Ash  vs.
     Size.
             Since we assume every Fragment of a Broken Particle has
     the same "Chemistry", however, it is clear that this Model does
     not account for "Liberation"... where Fragments of a Broken Particle
     differ in Chemistry.

             A Liberation Model would be  needed in order to account for
     the effect that Screen-Opening-Size  and Crusher-Settings would
     have on liberating Coal so as to improve Product  Quality.   Un-
     fortunately, without a Liberation Model,  the  present Program
     "COMPUTER SIMULATION OF COAL PREPARATION PLANTS", accounts- for
     Crusher  Settings and Screens only as a Secondary Effect, intro-
     duced by the small influence that Particle Size has on the
     Efficiency of Dense Media Separators.
             It is left for "FUTURE" Work to devise a  better Model with
     True Liberation.
                                                             END.

-------
AUTOMATED

PROCESS SURVEYS
                             V  -  SUBROUTINE NOMENCLATURE
                                                  (EACH SUBROUTINE INCLUDES
         V-l   -   SUBROUTINE " CRUSH1-'                A PRINTED SET OF
         "•"•       	—                      NOMENCLATURE)
               L         REPRESENTS   EQUIPMENT NUMBER
               So        REPRESENTS   CRUSHER SETTING
               SIZE (I)  REPRESENTS   INCREMENTS IN SIZE
                       1=1     IS PCR TOP SIZE AND LARGER
                       1=1     IS FOR NEXT SMALLER SIZE
                       I = N SIZE + 1-~LAST VALUE.  (l = 1,TO N SIZE + l)
           PEED (I,J,1)»FEED (I,J,2) = WEIGHT OF ASH Uf THE INTERVAL I,J
           PEED (I,J,1)«FEED (I,J,3) =    "   " PYRITIC SULFUR "  "  " "
           FEED (I,J,1)«FEED (I,J,4) =    "   " TOTAL SULFUR  "   "  " "

           PROD (I,J,K)  REPRESENTS  PRODUCT STREAM'S NORMALIZED OUTPUT
        V-1A                        DATA
         S RATIO       y/So
         SP            SELECTION-FOR-BREAKAGE FUNCTION ... PRIMARY CRUSHER
         SS            SELECTION-FOR-BREAKAGE FUNCTION ... SECONDARY CRUSHES
                       X  =  PRODUCT SIZE
         B RATIO       y  _  pEED SIZE
        Y-2     -  SUBROUTINE "SCREEN"
               ScSz  	   SCREEN OPENING, INCHES
               FEED  	   FEED TO THIS EQUIPMENT (NEED NOT BE NORMALIZE
               Sover	   OVERS ...  NORMALIZED
                      	   UNDER ...  NORMALIZED
                      	   IF FEED IS NORMALIZED Fover + Funder =1.0
                               IF FEED IS NOT NORMALIZED Fover + Funder =
                                    21 PEED (1,1)
                                     JL

-------
AUTOMATED
                                                                   44
PROCESS SURVEYS
                         V  -  SUBROUTINE NOMENCLATURE (cont'd)
       V-2A
          SSZ
          D2
                      DATA

        OPENING AT WHICH DATA  IS GIVEN FOR
          "A"  VALUES   UPPER DRY
          "A"  VALUES   LOWER DRY
          "A"  VALUES   UPPER WET
          "A"  VALUES   LOWER WET
"A"
                 SUBROUTINE  ROTARY
                      .......  HEIGHT OF DROP (STANDARD HEIGHT IS 6 FT.
                 HOLE  ......  6" OR 8"  DATA
                 NFALL   ....  NUMBER OF FALLS IN MACHINE
                 TFEED  .....  ROCK + COAL ....   NORMALIZED
                 CPROD  .....  UNDERS  ........   COAL PRODUCT STREAM
                 RPROD  .....  OVERS  .........   ROCK
                 FC PROD  . . .  FRACTION  v1 UNITY, COAL ____  FIGURE 4
                 PR PROD  . . .  FRACTION OF UNITY, ROCKS . . .  FIGURE 4
       V-3A
                CFALL

                RFALL

                B

                BRATIO
                 DATA
                COAL FALL :  FOR FIRST DROP  ;
                  %(x) = (CFALL = .20)»(c SELCT)
                ROCK FALL :  FOR FIRST DROP ;
                  $.(x) = (RFALL = .oo5)«(R SELCT)
                USES NATURAL BREAKAGE FUNCTION

                PROD SIZE    AS IN "CRUSH"
                FEED SIZE

-------
                                                                   45
AUTOMATED  PROCESS SURVEYS
                             V  -  SUBROUTINE NOMENCLATURE  (cont'd)
             SPLITTING A FEED STREAM
                            FPROD
                                    UNITY
         COAX
                            I         1
ROCK
                          (—	1
                          '  ROTARY     '
                                           ROCK STREAM
                             COAL STREAM


                 FIG.  6  -   IDENTIFICATION OF STREAMS


          PICTORIAL MODEL 01? ROTARY BREAKER CALCULATIONS
            X"
            OO
FEED
   FTOT
                  G3
                        OVER
  UNDER
                                              - NORMALIZED
                                              VECTOR
             Ezl
                 •  • •
                                           R PROD ;FRPROD,.. CLOCKS)



                                                    ,  FC PROD. .(COAL)
               FIG.  7  -  MODEL OF ROTARY BREAKER

-------
                                                                       46
7. 2  Program Structure




7. 2. 1  Subprograms




  Subprogram        Purpose             Referenced By




    MAIN        Executive routine.  Reads




                 input,  references major




                 computational and output




                 subprograms
    BLEND      Blends two distinct




                flowstr earns.




    BTUPLB    Calculates the BTU




                content of coal as




                function of ash content
MAIN




ROTARY




OUTPT1




OUTPT3




OUTPT4




ROTARY




SDSIZE
References




  BLEND




  CONVRT




  CRUSH




  EXPAND




  FROTH




  OUTPT1




  OUTPT2




  OUTPT3




  OUTPT4




  REDUCE




  ROTARY




  SCREEN




  SEP




  SPLIT




  VESSEL




  SDSIZE

-------
                                                                    47
CONVRT     Converts numerical




             symbols (characters)




             to actual numbers.




CRUSH      Simulates crusher
                            MAIN
INTS
OUTPT1
OUTPT2
OUTPT3
Linear interpolation.
Prints specific gravity




analysis of a specified




flowstream.




Prints summary data for




a specified unit.




Calculates and prints




overall attributes for a
                            MAIN
             performance.




EXPAND     Converts a 1-dimensional    MAIN




             array to a 3-dimensional     OUTPT4




             array.





FROTH      Simulates froth flotation     MAIN




             performance.
CRUSH




ROTARY




SCREEN




MAIN
MAIN
MAIN
                 INTS




                 SDSIZE
                                             SDSIZE




                                             Y




                                             YINTRP
BTUPLB
BTUPLB
             specified flowstream.

-------
                                                                      48
OUTPT4     Calculates and prints        MAIN




             overall summary data




             for all units and all




             flowstr earns.




REDUCE     Converts a 3-dimensional    MAIN




             array to a  1-dimensional




             array.




ROTARY     Simulates rotary breaker     MAIN




             performance.
SCREEN
SDSIZE
SEP
SPLIT
Simulates screen




performance.





Calculates composition




of a specified flowstream




by size increments.
Simulates float-sink




washer performance.










Splits a flowstream




into two distinct
MAIN









BLEND




CRUSH




FROTH




SCREEN




SEP




SPLIT




MAIN









YINTRP




MAIN
                                             BTUPLB




                                             EXPAND




                                             VESSEL
BLEND




BTUPLB




INTS




INTS




SDSIZE




BTUPLB
SDSIZE




Y










SDSIZE
             flowstreams.

-------
                                                                    49
VESSEL,     Prints the name of each




             unit.




Y            Contains generalized




             distribution data for




             washers.




YINTRP     Lagrangian interpolation,
MAIN




OUTPT4




FROTH




SEP










FROTH




SEP




YINTRP
YINTRP

-------
                                                                       50







7. 2. 2  Subprogram Summary







       A summary of each program module is presented below.  An overall




flowchart is shown for each of the more complicated program modules.




Highly detailed, computer-generated flowcharts have also been prepared,




although they are not included in this report.  A copy of the computer-




generated flowcharts is on file at the University of Pittsburgh.

-------
                                                          51
                           MAIN
COAL    PREPARATION    PLANT    SIMULATOR
         TMt program almuletea the performance of  •  coal
         preparation    plant    whoa*   configuration   la
         •pacified,   Tha  program  waa  developed  at  the
         Unlvaralty  of  Plttaburgh  for  the United Statoa
         Buraeu  of  Mlnea  under  Grent   No*    00*155030
         completed  Auguet*  1977.  Principal 1nveat1gatori
         B.   3,   Gottfried*   Profeaaor   of   Induetrlal
         Engineering*   Un1vera1ty  of  Plttaburgh,   Other
         principal contMbutorei  A,   Valllent*  Automated
         Proceaa  Surveye*  Inc,»  New  York City (CRUSHER*
         SCREEN and BREAKER routlnee)* P.  8,  Jacobean* U,
         3.  Bureau of Mlnea (t«aaHab111ty caUulatloni).
                 I  Reed Input data.
                                i
                 [  Hrlte Input data.
                                i
                   Initialise      feed
                   retreetment atreema.
        and
                    Initialise  feed atreem.
                    Initialise
                    atreema,
retreatment
                   Calculate  counter  to  be   uted
                   In   convergence  teat  on weight
                   distribution   for   retreatmtnt
                   atreema*

-------
                I
   Carry out unit  operations  In
   the  order  that the units art
   specified In the Input data,
               I
|   Expand Input at reams.
               i
   Strtam blender • Expand tacond
   Input stream.
|   Carry out operations,            I
I   HHte optional unit summary,     |
j   Reduce product streams,          [

               i
   Wrlta   optional    flowatream
   summary (output streams).
               1
   Test retreatment  streams  for
   convergence.
[   Apply acceleration procedure, """"[
                i
   Calculate overall  yield*  aah
   and    tulfur    for   product
   streams.
               I
   Calculate  and  print  summary
   data   for   all   units   and
   flowatreams,
52

-------
                                                 53
            FUNCTION BTUPLB
This function calculate* the BTU content
of  a  pound  of  coal   as  e  linear or
quadratic function of a$h content*
             SUBROUTINE BLEND
 This  subroutine  combines
 flow    streams.    Both
 streams must be expressed
 the same  size  Increments,
 two  distinct
Incoming  flow
 1n  terms  of
                  i
     Calculate summary data by size
     Increments.

-------
                                                54
           SUBHOUUNE
This   subroutine   converts   numerical
      s to numerical  quantities
Arguments required for this routine I

Set  of  numerical    symbols   ,set   of
numerical    quantities    »mesh    size
conversions ,who1e number units position
/position   of   numerator  in  fraction
,position of denominator in fraction.
     Scan each symbol,
                I
Symbol represents whole number
• scan again.

Convert
number.
I
integer part

of
1
Convert
number.
fractional part
of
                I
     Convert mesh to inches.

-------
                                                       55
            SUBROUTINE CRUSH
     This  program  determines   the   weight
     distribution   and  composition  of   the
     crusher product for a given feedt
Arguments required for subprogram!
Selection Index /type of breaker Crusher  setting
/boundaries  of  coal  size  Increments ,number of
size  increments  /number  of  gravity  Increments
/properties  of feed stream ,properties of product
stream  /product  flow   rate   /designates   size
Increment  of  coal   /designates  specific gravity
Increment of coal   /designates  weight»ash,pyrltic
sulphur .and total  sulphur.
                      1
          Determination of size interval
          In which 1,7*SO 1s located
          Breakage of material   1n  size
          Intervals relative to 1.7*30
          Normalize weight  fractions  in
          exit  stream
Calculate summary
Increments
                            data by  size

-------
                                                    56
This     subroutine     expands       the
di we^s i onaH t y  of a I~rti«nensiona1  array
t'O  d 3-Ui mensi onal array.

-------
       SUF5KUUTI.-IE FRDTh
                                                57
This subroutine  determines  the  weight
distribution   ami  composition  of  the
clean coal (float)  and  refuse  (tails)
from  a  froth  flotation  cell  .   The
calculations are based upon  the  "yield
at 1.50, ash at 1,60" rule (with respect
to  the  feed  stream).   A   fictitious
distribution curve is then fitted to the
overall separation in order to calculate
the  weight distribution and composition
of the product streams as a function  of
specific gravity.

     Determine overall yield and
     overall ash content in float
     for each size increment.

     Fit distribution data to
     overall separation for each
     size increment.

     Carry out separation using
     several distribution curves
     (tables data) and 20 values
     SGSP for each distribution
     curve.
of
     Calculate yield and ash
     content for each separation
     gravity.
                 I
     Determine distribution curve
     and separation gravity that
     best match overall yield and
     overall ash calculations.

     Recalculate separation using
     best distribution curve and
     best value for specific
     gravity of separation.

-------
                                            58
Determine specific gravity
increment for which
(ash(j)-overal1 ash)
approaches target value most
Close!y.
. i  .    .      I  '
Modify distribution data in
specific gravity increment jk
and recalculate separation.
            I
'formalize weight fractions In
exit streams.
            I
Calculate summary data by size
i ncremcnts.

-------
                                               59
            SUBROUTINE INTS
        Interpolation  /   extrapolation
routine

-------
                                                60
           SURKUUTlNt OUTPT1
This  subroutine  prints  the   specific
gravity  analysis  of  a  specified flow
stream,              	
          v-rite output
          increment,
                      1
for each size
          Calculate weight  distribution
          in each  specific  gravity
          i ncrement.
          Calculate  cumulative  weight^
          ash,  pyritic  sulfur,  total
          sulfur  and BTU  content.
                      i
                output  for  composite.

-------
           SU'iWOUTIUE OUTPT2
                                                61
This subroutine prints summary  data  by
size increments for eacH unit.
                   I
     Determine largest nonempty
     size i nc recent.
                   I
     Print summary data for washing
     vessels.
                   1
     Print summary data for rotary
     breaker.
                   I
     Print summary data for
     crusHers.
     Print summary data for
     screens.
     °rint summary data for
     blenders.
     Print summary data for
     spli tiers.

-------
                                                62
           SUBROUTINE OUTPT3
This  subroutine  calculates  the   mean
percent   ash*   pyrltlc  sulfur*  total
sulfur, BTU content and Ibs  302/mllHon
BTU  for  a  given  flowstreem.  Each of
these quantities 1s then printed.
            SUBROUTINE OUTPT4
 This subroutine  calculates  and  prints
 summary   data   for   ell    units   and
 flowstreams.
            SUBROUTINE REDUCE
 This     subroutine     reduce*      the
 dimensionality  of a 3-dlmenslonal  array
 to a l-dlmens1onel array.

-------
           SUBROUTINE ROTARY
                                                 63
This  program
di st r i but i on
rotary breaker
             the   weight
and  composition  of  the
product for a given feed.
   Arguments required for subroutine!
Rreaker  length  f  breaker  diameter  f
height  from which material is dropped ,
opening size / number of times  material
is  dropped  /  boundaries  of coal site
increments , number of size increments t
number of gravity increments , coal feed
flow rate i rock feed flow rate ,  total
feed  stream  flow rate r coal flow rate
in'coal stream , rock flow rate in  co-al
stream / rock flow rate in rock stream t
coal flow rate in  rock  stream  t  coal
product  flow  rate  t rock product flow
rate / percent of coal feed  of  size  1
reporting to product stream t percent of
refuse stream of size 1 composed of coal
t  percent  of  product stream of size 1
composed of rock.
                 i
     Split feed stream into coal
     stream and rock stream.
                I
     Normalize weight fractions fn
     exit streams.

Cal
cul
r6m
ate
summary
data
by
si
ze

                 I
     Calculate composition of flow
     streams by size increments.

-------
            1
64
Calculate ratio of roal in
coal croquet stream to Coal
to^al feed after breaking.
Calculate coal/over*1ow
roc Bunder f 1 o* ratios.

-------
                                                 65
This subroutine  -determines  the  weight
distribution   an 1  composition  of  the
screen over ana screen under streams for
a Qi ven feed.
          required for subroutine!
Indication if screen is  wet  nr  orv
i nr'i c rtt i on  if  screen  is  an  UOCM.T
lower screen , projected screen  openi
,   houn-jar i es  of coal size increments
njmber of sire increments   ,  number
gravitv  increments , properties of
stream ,  properties of over*!©* s
overflow   product flow rate » Properti
of underflow stream , underflo*  orortu
flo^  rate  >  size  increment of coa'
specific  gravity  increment  of  coa!
we<-]htf  dshf  pvritic sulphur and tot
sulphur t percent of  feed  of  the   i
size reportincj to the underflow s
                                      or
                                      ng
                                       i
                                      of
                                      es
                                       >
                                      al
                                      th
                  I
     formalize weiyht fractions in
     exit streams.

Calculate su™^.
i r>c recent s ,
^ry data
by
s1 ze
     Calculate weiyht and nTU
     jnderf 1 o«<-to-feed ratios.
                 i
     Calculate undersize in
     overflow anci oversize in
     underf1ow.

-------
                                                     66
           SUBROUTINE SDSIZE
This subroutine  calculate!  competition
of flow streams by size Increments*

-------
                                                 67
             SUBROUTINE SEP
This subroutine  determines  t^e  weight
distribution   and  composition  of  the
clean coal and the refuse  fop  a  given
feed  entering  a  specified vessel at a
given overall separation gravity.      '
Arguments required for subroutine:
Flow streams  /properties  of  the  feed
stream  ,properties  of  the  clean coal
/properties of the refuse /properties of
the  middlings (jig only) /boundaries of
coal  size  increments  /boundaries   of
specific  gravity  increments  ,specific
gravities  /size   Increment   of   coal
/specific   gravity  increment  of  coal
/weight/ash,pyr1tic  sulfur  and   total
sulf,ur  ,number  of  size  Increments of
coal   /number   of   specific   gravity
increments  of coal /ratio of separation
gravity for a given size designation  to
the     overall    separation    gravity
/boundaries  of  separation  curve  size
increments  /number  of  sizes  for each
vessel  /size  increment  of  separation
curve    /overall   seperation   gravity
/weight fraction of feed to clean coal.
                 I
     Test for composite feed*
     Transform from weight
     distribution based upon size
     increments of feed to weight
     distribution based upon size
     Increments of separation
     curves.
                 T
     Find smallest SIZE(I) that 1s
     greater than or equal to
     5(11,L).

-------
                                                 68
   Find largest SIZt(I) that is
   less than or equal to
   '3 (11 +1, L ) .
               I
   Determine number of Intepvals
   entlpely within S(H*L) and
   SU1+1/U.  	
ICappy out transformation.
   Case 1 - SIZECIMIN) < S(H/L)
   and SIZECIMAX) < S(11 + 1»U.
   Case 2 • left boundary <
   SCIlfUl  CIMINsO).
                1
   Case 3 - right boundapy >
   8(11+1,L)l  CIMAXsHSlZE+1).
                i
   Case 4 - left boundary <
   S(IlrL) and right boundary >
   3(11 + 1,Li :  (IMNsO and
   IMAX=NSIZEtl).
   Carry out separation.
                1
   Special provision for 2-stage
   baum jig.
                i
   Transform from weight
   distribution based upon s1;e
   Increments of separation
   curves to weight distribution
   based upon size Increments of
   clean coal,

-------
  Hnrt  smallest S(I1,L) t^at  is
  'jreater  than or equal to
  SIZE(I).
               i
  Find  largest S(Il>L)  that  is
  less  than or equal  to
  SIZFCI+l).
               I
   Determine  number of  intervals
   entirely within SIZF(I)  and
   SIZF.CI + 1),
               I
I  Carry  out  transformation.
               1
  Composite  separation.
   Special  provision  for 2-stage
   haum  j ig.
               1
   Calculate  distribution
   Hatarash and  sulfur
   concent rat ions,yield,
   separation gravityfprobable
   error  and  imperfection.
               I
  Convergence  test  for overall
  specific  gravity  of
  separat1 on.
  Normalize  weight  fractions  1n
  exi t  streams.

-------
                                                70
Calculate sugary -lata by  size
         s.
Calculate theoretical
recovery,wei
-------
                                                  71
            SUBROUTINE SPLIT
This  subroutine  causes  •   flowstreem
(FEED)  to  bo  split  Into two distinct
flowstreams (PRQD1 and PROD2) having tht
same  compositions*   F  represents  the
fraction of feed going Into PRODI,
           SUBROUTINE VESSEL
This subroutine prints the name of
coal washing unit*
each
               FUNCTION Y
This function evaluates a point  on  the
distribution  curve  for  a given vessel
and   given   size   using    Lagranglan
Interpolation.

-------
                                                  72
            FUNCTION YIMTRP
Lagrengian interpolation  routine.   The
X-values     must    be    monotonical1y
nondecreasing.

     X value too low - set Y equa
     to YPTSU).

     X value too High
     to YPTSCO,
- set Y equal

     Linear interpolation between
     f1rst 2 points.

     Linear interpolation between
     last 2 oolnts.
     Find interval containing X "C5T
     will be between XPTS(K) and
     XPTSCK + D).
                 I
     Test for inverse
     i nterpola* i on.
                 I
     Test *or distinct X -values.

     Linear interpolation through
     XPTS(K) and XPTSCK+1).

     Laqranqe  interpolation through
     XPTS(K-l)» XPTS(K),  XPTS(K*1)
     and XPTSCK+2),

-------
                                              73
Test for
values.
monotonicity of Y •
            I
Y-values are wonotonic - test
for excessive curvature in
interpolating polynomial.

-------
                                                                    74
7. 2. 3 Common Storage Areas




    The program includes four common storage areas: blank (unlabeled)




common, BLK1, BLK2 and SYS.  The subprograms that share each common




storage area are listed below.




    Blank               BLK1                 BLK2            SYS
    MAIN




    FROTH




    OUTPT4




    ROTARY




    SCREEN




    SEP
MAIN




BLEND




CRUSH




FROTH




OUTPT2




ROTARY




SCREEN




SEP
MAIN




FROTH




OUTPT2




SEP
MAIN




OUTPT1




OUTPT2




OUTPT3




OUTPT4




ROTARY




VESSEL
                        SPLIT

-------
                                                                          75
7. 3  Program Listing







       The simulator has been written in standard ANSI Fortran IV.  It




should therefore be compatible with any commercial Fortran IV compiler.




       A listing of the complete Fortran program is shown on the following





pages.

-------
       MAIN.    MAIN1.F4
FORTRAN V.5A(56J) /KI   6-OCT-T7
                            12128   PAGE 1
-a
en
00001
00002
00003
00004
oooos
00006
00007
00008
00009
oooto
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                     C  0 *  I
 PREPARATION
              PLANT
SIMULATOR
                 THIS PROGRAM SIMULATES  THE  PERFORMANCE  nF  A  COAL PREPARATION PLANT
                 WHOSE CONFIGURATION  IS  SPECIFIED.
                     THIS PROGRAM HAS DEVELOPED  AT  THE UNIVERSITY OF  PITTSBURGH
                     FOR THE UNITED STATES  BUREAU OF  MINES  UNDER GRANT  NU. GO-155030
                     COMPLETED AUGUST,  1977
                     PRINCIPAL INVESTIGATORi  8,  S.  GOTTFRIED,  PROFESSOR OF INDUSTRIAL
                        ENGINEERING,  UNIVERSITY  OF  PITTSBURGH
                     OTHER PRINCIPAL  CONTRIBUTORSl  A. VATLLANT, AUTOMATED PROCESS
                        SURVEYS,  INC.,  NEW  YORK  CITY  (CRUSHER, SCREEN AND BREAKER
                        ROUTINES)
                     P. s. JACOBSEN,  u.  s.  BUREAU OF  MINES  (WASHABILITY CALCULATIONS)
                 PRINCIPAL ARRAYS AND  VARIABLES
                     IU
                     L(TU)
    UNIT INDEX (FLOWSHEET IDENTIFICATION)
       (SPECIFY IN ORDER THAT CALCULATIONS WILL BE
        CARRIED OUT)
    DESIGNATES TYPE OF UNIT
       L« 1 FOR CONCENTRATING TABLE
       L« 2 FOR DENSE-MEDIUM VESSEL
       L« s FOR DENSE-MEDIUM CYCLONE
       L» 4 FOR HYDROCYCLONE
       L« 5 FOR SINGLE-STAGE BAUM JIG
       Li 6 FOR 2-STAGE BAUM JIG
       L» 7 FOR FROTH FLOTATION CELL

       L«H FOR ROTARY BREAKER
       L«i2 FOR PRIMARY MULTIPLE ROLL CRUSHER
       L»13 FOR PRIMARY GYRATORY/JAW CRUSHER
       L»1U FOR PRIMARY SINGLE ROLL CRUSHER
       L»15 FOR PRIMARY CAGF. MILL CRUSHER
       L»16 FOR SECONDARY MULTIPLE ROLL CRUSHER
       L»17 FOR SECONDARY GYRATORY/JAW CRUSHER
       L«18 FOR SECONDARY SINGLE ROLL CRUSHER
       L«19 FOR SECONDARY CAGE MILL CRUSHER
                                     L»21
                                     L«22
                                     L«23
                                     L«24
            FOR DRY UPPER SCREEN
            FOR DRY LOWER SCREEN
                WET UPPER SCREEN
FOR
FOR
                WET LOWER SCREEN
                                     L«41 FOR STREAM  BLENDER
                    Dl(IU)
                    02CIU)
                    03(IU)
                    VSLYLD(IU)
                    VSLBTU(IU)
            FOR STREAM SPLITTER
    UNIT  DECISION VARIABLE
    UNIT  DECISION VARIABLE
    UNIT  DECISION VARIABLE
    YIELD FOR A GIVEN UNIT
    BTU RECOVERY FOR GIVEN UNIT

-------
MAIN.
FORTRAN V.5AC563) /KI  /6-OCT-77
I2i26   PAGE
00057
00056
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00062
00083
00084
00065
00066
00067
00086
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IF •
KFd.IF) •

KF(2,IF) •

FLOW(IF) a

S(IF) •








UK «

8G(IJK,IF) «

I
J
K


SIZE(I)
WT(I)
GBOUND(J)
GRAV(J)
FEED(I,J,K)
CC(I,J,K)
REF(I,J,K)
MID(I,J,K)

NUNITS •

NFLOHS •

NRETRT •

NSIZE «

NGRAV i

IOUT •











                            FLOWSTREAM INDEX (FLOWSHEET IDENTIFICATION)
                            UNIT DESIGNATION OF FLOWSTREAM ORIGIN
                               (0 INDICATES AN EXTERNAL ORIGIN)
                            UNIT DESIGNATION OF FLOWSTREAM DESTINATION
                               (0 INDICATES AN EXTERNAL DESTINATION)
                            FLOW RATE, EXPRESSED AS A FRACTION OF THE PLANT
                               FEED STREAM
                            SYMBOL INDICATING TYPE OF FLOWSTREAM
                               c   INDICATES A CLEAN COAL STREAM
                               M   INDICATES A MIDDLINGS STREAM
                               R   INDICATES A REFUSE STREAM
                               u   INDICATES A SCREEN OVERFLOW (UPPER) STREAM
                                        OR A SPLITTER OVERFLOW (UPPER) STREAM
                               L   INDICATES A SCREEN UNDERFLOW (LOWER) STREAM
                                        OR A SPLITTER UNDERFLOW (LOWER) STREAM

                            INDEX REPRESENTING I,J OR K IN EQUIVALENT
                               3-DIMEN8IONAL ARRAY
                            SPECIFIC GRAVITY ANALYSIS OF FLOWSTREAM

                            DESIGNATES SIZE INCREMENT OF COAL
                            DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL
                            DESIGNATES WEIGHT, ASH, PyRITIC SULFUR AND TOTAL SULFUR
                               (THE WEIGHT COLUMN CONTAINS THE FRACTION OF THE ENTIRE
                               STREAM IN THE ITH SIZE, JTH GRAVITY INCREMENT)
                            BOUNDARIES OF COAL SIZE INCREMENTS
                            WEIGHT OF COAL IN VARIOUS SIZE INCREMENTS
                            BOUNDARIES OF SPECIFIC GRAVITY INCREMENTS
                            SPECIFIC GRAVITIES
                            PROPERTIES OF THE FEED STREAM
                            PROPERTIES OF THE CLEAN COAL
                            PROPERTIES OF THE REFUSE
                            PROPERTIES OF THE MIDDLINGS

                            NUMBER OF UNITS IN PLANT CONFIGURATION
                               MAXIMUM VALUE IS 30
                            NUMBER OF FLOHSTREAMS IN PLANT CONFIGURATION
                               MAXIMUM VALUE IS 25
                            NUMBER OF RETREATMENT STREAMS
                               MAXIMUM VALUE IS 3
                          a NUMBER OF SIZE INCREMENTS OF COAL
                               MAXIMUM VALUE IS 22
                          i NUMBER OF SPECIFIC GRAVITY INCREMENTS OF COAL
                               MAXIMUM VALUE IS 10
                            OUTPUT LEVEL DESIGNATION
                               iouT»o FOR MINIMUM OUTPUT
                                   (SPECIFIC GRAVITY ANALYSIS OF FEED AND
                                   OVERALL PLANT SUMMARY)
                               louTsi FOR MORE DETAILED OUTPUT
                                   (SPECIFIC GRAVITY ANALYSIS OF FEED AND
                                   PRODUCT STREAMS, SUMMARY OF EACH UNIT AND
                                   OVERALL PLANT SUMMARY)
                               IOUT«2 FOR MOST DETAILED OUTPUT
                                   (SPECIFIC GRAVITY ANALYSIS OF ALL FLOHSTREAM8,
                                   SUMMARY OF EACH UNIT AND OVERALL PLANT SUMMARY)
                               IDUTiJ FOR DEBUGGING ONLY

-------
MAIN.   MAINI.F4
              FORTRAN V.5AC56J) XKI   6-OCT-77
13128   PAGE  1-2
00113
00114
ootts
00116
00117
00118
00119
00120
00121
00122
00123
00121
00125
00126
00127
00128
00129
00130
00131
00132
00133
00130
0013S
00136
00137
00138
00139
oo mo
00141
00142
00143
00144
OOI4S
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
C
C
C
C
C
C
C
C
C
C
C BTI

e
i
C INI
C
C
C
C TO
C
C
C TO
C
C
C TO
C
C
C
C
C
C
C
C TO
C
C
C
C ***















too
101
102
103
                        (COMPLETE OUTPUT FOR EACH ITERATION)
    NCOMP       • INDICATES HOW SEPARATIONS WILL BE DETERMINED
                     NCOMPiO FOR SEPARATION BY SIZE INCREMENTS
                     NCOMPal FOR SEPARATION USING COMPOSITE CURVE
    ICOUNT      • ITERATION COUNTER FOR RETREATMENT STREAMS
    KCONVG      • CONVERGENCE INDICATOR
                     KCONVGIIO INDICATES A NONCONVERGENT CONDITION
                     KCONVGUI INDICATES THAT CONVERGENCE HAS  BEEN
                        ATTAINED

BTU CONTENT OF COAL IS CALCULATED AS FOLLOWS!
    BTU/LB • MAXIMUM OP I  *
             FEEDd.J.!)**!.   BTU(4))

INPUT/OUTPUT UNIT DESIGNATIONS!
    6           « THE INPUT DEVICE NUMBER (CARD READER)
    H           • THE OUTPUT DEVICE NUMBER (LINE PRINTER)

TO CHANGE UNIT DESIGNATIONS, ALTER THE  STATEMENTS LABELED  *  SYS *
    IN COLS 73-60    (2 STATEMENTS)

TO CHANGE DIMENSIONS, ALTER APPROPRIATE STATEMENTS LABELED *  DIM *
    IN COLS T3-80

TO CHANGE THE MAXIMUM NUMBER OF FLOW8TREAM8, ALTER THE FOLLOWING ARRAYS!
    MAINi   8G,KF,FLOW,S  AND KPOINT
    EXPAND! X
    REOUCEl V
    OUTPT4I SG,KF,FLON AND s
    ALSO, THE STATEMENT «KPOINT(IF)«NRETRT*25» IN
       STATEMENT NO. 70)  MUST BE MODIFIED
                                                            MAIN (JUST  BEFORE
          TO  CHANGE  THE  MAXIMUM  NUMBER  0'  UNITS,  ALTER  THE  FOLLOWING  ARRAYS!
             MAINl   Dl,D2,D3,L,V8LYLD AND  VSLBTU
             OUTPT4I D1,D2,D3,L»VSLYLD AND  VSLBTU

             ft************************************************************************
             DIMENSION  FEED(23,10,4),CC(23,10,4),REF(23,10,4),MID(23,10,4),       DIM
             1 8G<920,28),8YHBOL(6,23),KF(2,2S),8TZE(23),GBOUND(tl),ORAV(10),      DIM
             2 FLOWC28), 8(25), TITLE(20),D1 (JO), 02(30) ,03(30), LC30) ,KPOINT(25) ,     DIM
             3 C!(S),C2(3),VSLYLD(30),VSLBTU(30),WT<23>,BTU(4)                     DIM
             COMMON SCR(5629)                                                     DIM
             COMMON /BLK1X SFEEO(24,5),SCC(24,5),3MID(24,5),SREF(24,5),           DIM
             1              SYLD(24),TYLD(24),EFFIC(24),BTUREC(2«),A3HERR(24),     DIM
             2              8FLT(24),SINK(24>,SMISPL(24),SNRGR(24),SGRAV(2a),      DIM
             3              8PE(24),8IMP(24),8EA(?4)                               DIM
             COMMON /BLK2X DISTRB(24, 10)                                          DIM
             COMMON /SYS/ G,H
             INTEGER G,H
             INTEGER PSJ
             REAL MID
             DATA SI, 82*33, 84, 35, 86 /  1HC, 1HM, 1HR, I HU, 1HL, 1H   /                 * DIM *
             FORMAT(20A4)
             FORM4TC26I5)
             FORMAT(I3,2X,F5.3,2X,F5.3,2X,F5.3)
             FORMAT(2I3,2X,A1)

-------
MAIN.   MAIN1.F4        FORTRAN V.5AC563) /Kl   6-OCT-77        12126   PAGE 1*3


00169     104 FORMAT(6(6A1,4X))
00170     105 FORMAT(13(lXiF5.3))
00171     106 FORMATC6(F7.5,3X))
00172     200 FORMATUM1,20X,43HC OAL   PREPARATION   PLANT,
00173        1 20H   SZMULATO R///,1HO,20X,20A4//)
00174     201 FORMAT(1HO,10X,11HUNIT NUMBER,24X,9HUNIT TYPE,24X,
00175        1 18HDECX8ION VARIABLES)
00176     202 FORMATUHO,14X,I2,23X,I2)
00177     203 FORMATUH*,89X,F5,S)
00178     204 FORMATClHO,7X,l7HFLOHSTREAM NUMBER,15X,20HORIGIN • UNIT NUMBER,
00179        1 16X.25HDESTINATION • UNIT NUMBER)
00180     205 FORMATC1HO,14X,I2,32X,I2,2X,A2,30X,T2)
00181     206 FORMAT(lHt,18X,6H(FEEO))
00182     207 FORMAT(lHt,18X,20H(CLEAN COAL PRODUCT))
00183     208 FORMATUH»,18X,19H8X,6HICMAX*iI3,6X,6MNCOMP«,I3/)
00222     900 FORMATUH1)
00223    C SET NUMERICAL PARAMETERS
00224         Gl5                                                               * SYS *

-------
       MAIN.   MAIN1.F4
               FORTRAN  V.5A(563)  /KI   6«OCT«77
12128   PACE 1-a
00
o
00225
00226
00237
00226
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00266
00269
00270
00271
00272
00273
00274
00275
00276
00277
00276
00279
00260





C
c
C











c
c
c




















c
c
c











     H«6                                                               • 8Y8 *
     NFALLi70
     EP81.N1CO.001
     EP8l.N2lO.001
     KCONVQll
 A*****************************************************************************
 READ INPUT DATA                                                              *

     READ  (6,100)  TITLE
     READ  (6,101)  NUNIT8,NFLOH8,N8IZE,N6RAV,IOUT,ICMAX,NCOMP(P8J
     IP (ICMAX.EQ.O)  ICMAXiSO
     IP (NCOHP.NE.O)  N8IZEI1
     NS»N8IZE+1
     N6«NGRAY*l\
     READ  (6,102)  ((L(IU),D1(IU),02UU),D3(IU)),IU«1,NUNITS)
     READ  (6,103)  ((KF(l,IP),KP(2,XP),8(IFn,IF*l.NFLOH8)
     READ  (6,104)  ((8VMBOL(K,I),K*l,6),lBl,NS)                         * DIM *
     READ  (6,105)  (MT(I),Ill,N3IZE)
     READ  (6,105)  (6BOUNO(J),Jil,NG)
          NOTE CHAN6E IN READ PROM ORIGINAL PR06RAH
          BTU(4)»MINIMUM BTUf BTU
-------
MAIN.   MAINI.F4
FORTRAN V,5A(S63> /KI   6-OCT-77
12128   PAGE 1-5
00281
00262
00263
00264
00265
0028*
00267
00266
00269
00290
00291
00292
00293
00294
00295
00296
00297
00296
00299
00300
00301
00302
00303
00304
00305
00306
00307
00306
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336














C
C
C





C




C















C
C
C
C
C
C

C
C
C
C


              DO 6 IPil,NFLOWS
              WRITE CH,205) IF,KF(1,IF),8(IF),KF(2,IF)
              IP CKF(l.IP).EQ.O) WRITE (H,206)
              IF CCKF(2,IF),EQ.O),ANO,(S(IF).EQ,81» WRITE (H,207)
              IF ((KFt2,IF).EQ.O).AND.(S(IF).EQ.S2)) WRITE (H,208)
              IF C(KF(2,IF),EQ.O).ANO,(SCIF).EOi8S)> WRITE (H,209)
              IF eCKF<2,IF>.EQ.O>.OR. GO TO 6
              WRITE (H.210)
              CONTINUE
              WRITE (H,600)
              WRITE CH,60t) NUNIT8»NFLOW8,NSIZE,NORAV,IOUTiICMAX,NCOMP
              WRITE (H,400)
              CALL OUTPTl(FEED»3YMBOL»GBOUND,BTU,FLBTU»FLS02,NSIZE.NfiRAV,NCOMP)
              CALL OUTPT3(PEED»BTU,1.,NSIZE,NGRAV>

          INITIALIZE FEED AND RETREATHENT STREAMS
              ICOUNTiO
              NRETRW
              DO 8 IF«1 »NFLOW3
              IG»IF
              IF (KFU,IF).NE,0) GO TO 7
          INITIALIZE FEED STREAM
              CALL REDUCE (FEED, 80, IG,NSIZE,NGRAV)
              FLOWCIP)*!.
              GO TO 8
            7 IF <(KF(2,IF).EQ.O).OR.(KF(2,IF).GT.KF(l,IF))) GO TO 6
          INITIALIZE RETREATMENT STREAMS
              NRETRTlNRETRTtl
              KPOINT(IF)»NRETRT+25                                              * DIM *
              DO 70 111,920                                                     * DIM *
              8G(I,IF)«0.
           70 8G(I,KPOINT(IF))iO.
              FLOW(IF)<0.
              FLOW(KPOINT(IF))iO.
              C2(NRETRT)«0.
              IF (IOUT.LT.3) GO TO 6
              WRITE (H,401) KPOINT(IF)
              CALL EXPAND(80,MID,IG,N3IZE,NGR*V)
              CALL OUTPT1CMID* SYMBOL, GBOUND,BTU,FLBTU,Fl30a,NSIZE,NGRAV,NCOMP)
              CALL OUTPT3(MIO,BTU,FLOW(KPOINT(IF)),N8IZE,NGRAV)
            6 CONTINUE
              IF (NRETRT.GT.O) KCONVGlO
          CALCULATE COUNTER TO BE USED IN CONVERGENCE TEST ON WEIGHT DISTRIBUTION
          FOR RETREATMENT STREAMS. (SEE THE STMT  -DO si u ... * FOR use OF NCONVO

            NCONVG • N8IZE*NGRAV*4«3 • INDEX OF THE LAST NONTRIVIAL WEIGHT VAUUE IN '8SI
            WHERE THE  INDEX OF THE M-TH WEIGHT VALUE IN 136) IS GIVEN BY " l»4(M.l) »
            (SEE SUBROUTINE REDUCE)
              NCONVG»N8IZE*NQRAV*4-3

          CARRV OUT UNIT OPERATIONS IN THE ORDER  THAT THE UNITS ARE SPECIFIED          *
          IN THE INPUT DATA                                                            *
              I**************
            9 ICOUNTBlCOUNTtl
              IF (ICOUNT.GE.ICMAX-1) IQUTtJ

-------
       MAIN.    MAIN1.F4
              FORTRAN V.5A(563) /KI   6-OCT-77
12128   PAGE 1-6
00
to
00337
00336
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
003SO
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00366
00387
00368
00369
00390
00391
00392



C









C






C









C
C
C













C









    KB8G«KCONVG
    IP (IOUT.E0.3) KBSGal
    DO 25 IU«l,NUNIT3
EXPAND INPUT STREAMS
    DO 10 IFil.NFLOHS
    IG«IF
    IF (KF(2,IF).NE.IU) GO TO 10
    CALL EXPAND(8G,PEED,IG.NSIZE.NGRAV)
    FLOHIiFLOH(IF)
    IF U(IU),NE,41) GO TO 13
    KFUG«IFM
    GO TO 11
 10 CONTINUE
STREAM BLENDER • EXPAND SECOND INPUT STREAM
 11 DO 12 IFnKFLAG.NFl.OHS
    IG«IF
    IF (KF(2,IF).NE.IU) GO TO 12
    CALL EXPAND(8G.MID»IG,NSIZE,NGRAV)
    FLOH2nFLOM(IF)
 12 CONTINUE
CARRY OUT OPERATIONS
 13 IF (L(IU).LE.6) CALL SEP(FEED,CC»REF,MID,SIZE,GRAV.GBOUND.D1(IU),
   1                         YLDCC. YLDMID.YLDREF.NSIZE.NGRAV.LdU),
   2                         NCOMP,VSLYLD(IU).V8LBTU(IU),BTU»KB8G)
    IF (L(IU).EQ.7) CALL FROTH(FEED,CC»SEF,SIZE»GRAV,GBOUNO,YLDCC.
   1                           YLOREF.NSIZE.NGRAV.NCOMP.VSLYLDdU),
   2                           V3LBTU(IU),BTU,KB3G)
    IF (L(IU).EQ.U) CALL ROTARY(Dl(IU),D2(IU),D3(IU),SIZE»NSIZE.
   1                             N6RAV,FEED,CC,YLDCC,REF.YLDREF,
   2                             V8LYLD(IU),VSLBTU(IU)«BTU,KBSG)
                     IF  ((L(IU).GE.12).AND.(L(IU).LE.19))  CALL  CRUSHCLCIU).01(IU).SIZE.
                    1                                        N8IZE.NGRAV.FEED.ee.YLDCC.
                    2                                        VSLYLD(IU),V3LBTU(IU),BTU.
                    3                                        KBSG)
                     IF  ((L(IU).GE.21).AND.U(IU).LE.24))  CALL  8CREEN(L(IU),D1(IU).
                    i                        SIZE.NSIZE.NGBAV.FeEO.CC.YLDCC,REF.YLDREF,
                    2                        VSLYLD
-------
       MAIN.
                        PORTRAN V,5A(563) /KI   6-OCT-77
                                                        12128   PAGE 1-7
CO
da
00393
00394
00395
00396
00397
00396
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
                     IP (NRETRT.CT.O)  WRITE (H,300)  ICOUNT
                     CALL OUTPT2CSYMBOLiN8IZE,NGRAV,NCOMP,L(IU)fPSJ,GBOUND)
                 REDUCE PRODUCT STREAMS
                  14  IP  IF»l,NFLOWS
      IP ) GO TO 20
      IF <(KP(1,IF).EO.IU).AND.C8
-------
 MAIN.    MAIN1.F4
FORTRAN V.5A(563) /KI   6-OCT-77
13126   PAGE  1-6
 00449    C  TEST  RETREATHENT  STREAMS  FOR  CONVERGENCE                                      *
 00450    C  ******************************************************************************
 00051       50  IF  ((NRETRT.EQ.O).OR.
-------
       MAIN.    MAIN1.F4
                        FORTRAN V.5A(563)  /KI   6«OCT-77
                                        12126   PAGE 1-9
       00505      61  WRITE (H(403)  KFCl.IP)
       OOS06         60 TO 64
       00507      62  HRITE (H.404)  KFd.IF)
       0050B         GO TO 64
       00509      63  HRITE (H.405)  KFC1.IF)
       00510      64  CALL EXPANDC8G.CC»IGiNSIZE»NGRAV>
       00511         CALL OUTPT1(CC.SYMBOL,GBOUND,BTU.FLBTU,FLS02»N81ZE»NGRAV,NCOMP)
       00512         CALL OUTPTJ(CC»BTU,FLOH(IF),NSIZE,NGRAV)
       00513      65  CONTINUE
       00514         IF (NRETRT.OT.O) HRITE  (H,503) ICOUNT
       00515   C**********»**»******»***********************t**********************************
       00516   C CALCULATE AND PRINT SUMMARY DATA FOR ALL UNITS AND PLOH3TREAM8               *
       00517   C*******************************************************************************
       00516      66  CALL OUTPT4<8G,L»D1,D2,D3,VSLYLD.V8LBTU,KF,8,FLOH,NUNITS,NFLOWS,
       00519        1            N3IZE,NGRAV,81,S2,S3,S4,35,S6,BTU)
       00520         WRITE (H,900)
       00521         STOP
       00522         END
00
en
COMMON BLOCKS

/,COMM,/(*1277S)
SCR          +0#R
/BLK1/C*1430)
SPEED        tO»R
TYLD       +7700R
SINK      +1160KR
SIMP      +13500R

/BLK2/(t360)
OI8TRB       +0»R
       /SYS/(»2)
       G
SCC
EFFIC
SMISPL
SEA
 il70/»R
+1020*R
+1210KR
*1400«R
SMlD       + 360IKR
BTUREC    +1050KR
SNRGR
3REF       tS50«R       SYLO       +740«R
ASHERR    +UOO«R       SFLT      »U30»R
8GRAV     +1270«R       3PE        »1320*R
             +0 I
       SUBPROGRAMS CALLED

       REDUCE  SPI.JT   SCREEN  ROTARY  SEP
                                        CONVRT  EXPAND  CRUSH   FROTH   ABS,    VESSEL  BLEND   OUTPTI   ouiPT2   OUTPTS  OUTPTU
       SCALARS AND ARRAYS  ( "*" NO EXPLICIT DECLARATION - "X" NOT REFERENCED • "#" SUBSCRIPTED 1
•S3
•NUNITS
03
•KFLAG
SYMBOL
*81
*IU
*36
TITLE
SIZE
•FL802
1 R
43 I
1677«R
3625 I
3644«R
4117 R
4265 I
66531 R
66573*R
666340R
70520 R
V8LYLD
*IF
*NG
GBOUND
02
S
*YLDREF
01
*ICOUNT
cc
*NFLOWS
2*R
44 I
1735 I
3626«R
40560R
4120«R
4266 R
66532KR
66617 I
66663*R
70521 I
*NCOMP
P8J
*S2
*NCONVG
*TOUT
KF
*J
•NFALL
*YLOCC
*F.PSLN1
*FPSLN2
40
45
1736
3641
4114
41SII
4267
66570
66620
70513
70522
I
I
R
I
I
»I
I
I
R
R
R
*DIFF
FEED
MID
*KCONVG
*FLOW2
*YLDMID
SG
*FLOW1
GRAV
*85
BTU
Ul R

-------
MAIN.
FORTRAN V.SA(S63) XKI   6«OCT«77
12128   PAGE 1-10
 FLOW    72357«R
 NT      724540R
•1C      725U I

TEMPORARIES
 ,80031  73366
 .80026  7337}
 .80013  73400
 .80000  73405
 ,80003  73412
 ,80032  73417
 .00000  73424
 L       72413*1
•NGRAV   72503 I
•SUM1    72512 R
.80022
.80027
,30014
.80001
.30006
.30033
.00001
         733*7
         73374
         73401
         73406
         73413
         73420
         73425
*SUM2
*S4
 .80023
 .30010
 .30015
 .30002
 .30007
 .30034
 .00002
72051 R
72504 R
73370 I
73375 I
73402 I
73407 I
73414 I
73421 I
73426 1
        *NRETRT
         Cl
         .80024
         .30011
         ,30016
         .30003
         .30030
         .50035
         .00003
                                                         72452 I
                                                         72S05*R
                                                         73371 I
                                                         73376 I
                                                         73403 I
                                                         73410 I
                                                         73415 I
                                                         73422 I
                                                         73427 1
                                                                       *I       72453 I
                                                                       *KCOUNT  725io I
,30035  73372
,30012  73377
.30017  73404
,30004  73411
,30031  73416
.30020  73423
,00004  73430
LINE NUMBER/OCTAL LOCATION MAP

        0123
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
ooioo
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
























6
t
2
3
a
4
5
5
6
6
























0 7
66 1
52 i
21 3
02 4
76 S
16 OS t
104 ]
las :
36 i
t •
30 !
.64 •
•
?4 (






















:
13 3
1
!26 i
(10 •
151 3
ISO (
• •
(33 <
(66 !
• •
•25 t






















1 1
15 <
56
>40 i
1 I
160 I
62 <
i !
•34 i
i70 '
1 I
33 <






















3
10 <
62
»45 i
I I
>67 :
»71 l
(14 <
• !
(73 !
• 1
•35 <






















4
13
64
J51
•
(77
• 74
>15
(43
(77
•
>42

-------
MA'IN.
FORTRAN V.5A(563) /KX   6-OCT-77
12128   PAGE 1-11
OWWO
00950
003*0
OOSTO
00990
00390
00400
00410
oweo
0043X)
otwwro
00450
OXW60
00470
0*4*0
00490
00500
00510
00520
•
m
•
i
-------
       BLEND   BLEND1.F4
                        FORTRAN V.5A(S6J) /K!   6.OCT.77
                                        12132   PAGE 1
oo
00
00001         SUBROUTINE BLENDCFEED1,FEE02,PROD,FLOW1,FLOH2,FPROD,NSIZE,NGRAV,
00002        1                 YLDV5L,BTUVSL.BTU,KBSG)

00004   C THIS SUBROUTINE COMBINES TWO DISTINCT FLOW STREAMS                           *
00005   C                                                                              «
00006   c BOTH INCOMING FLOW STREAMS MUST BE EXPRESSED IN TERMS OF THE SAME            *
OOOOT   c SIZE INCREMENTS                                                              *

00009         DIMENSION FEEDl(23rlO,4),FEED2(23,10,4),PROD(23,10,4),BTU<4)    *  *I*DIM I*
00010         COMMON /BLK1/ SFEEO(24,5),SCC(24,5),3*10(24,5),SREF(24,5),         * DIM *
00011        1              8YLD{24),TYLO(24),EFFTC(24),BTUREC(24),ASHERR<24),   * DIM *
00012        2              SFLT(24),SINK(24),3MISPL(24),SNRGR(24),SGRAV(24),    * DIM *
00013        3              3PE(24),SIMP(24),3EA(24>                            * DIM *
00014         DO 4 I«1,H3IZE
0001S         DO 4 J«1,NGRAV
OOOlb         FLOHBFtOMl*FEEDl(I,J,l)*FtOH2*FEED2fI,J,l)
00017         IF (FLOH.LE.l.E-6) GO TO 2
00016         DO | K»2,4
00019       1 PROD(I,J,K)»(FLOHl«FEEDl(I,J,l>*ltEE01
-------
ao
CD
       BLEND    BUENOI.FO       FORTRAN  v.5A(563)  /KI   6-oci-77
                                       12132   PAGE 1-1
       TEMPORARIES


        .80000      17  I
.80001      20 I
.30002     21  I
.80003     22 I
.40016     23  R
       LINE  NUMBER/OCTAL LOCATION HAP

00000
00010
00020
00030
0
•
•
•
14S
1
0
•
106
147
2
•
•
107
1S1
3
m
m
110
•
a
•
25
121
15S
5
•
31
140

6

35
143

7
•
51
•

8
•
53
•

9
•
54
•

       BLEND    OCTAL  PROG  size«23a   (  SCALARS/ARRAYS*^  *  TEMPS/CONSBIO  + cooEiiba + ARos«22 >  +
       ( NO ERRORS  DETECTED  )

-------
       BTUR.B  MAIN1.P4        FORTRAN  V.5A(563)  /K!    6-OCT-77         IZiZt    PAGE  1
       00001         FUNCTION BTUPLB(BTU,ASH)
       00005

       00004   C THIS FUNCTION CALCULATES  THE  BTU  CONTENT  OF  A  POUND OF COAL AS A             *
       00005   C LINEAR OR QUADRATIC FUNCTION  OF ASH  CONTENT                                   *
       00006   C ******************************************************************************
       00007         DIMENSION 8TU(0)
       OOOO6         MM*OfO.*A»H
       00009         BTUPLB«8TU(1)«BTU(2)*X*BTU(3)*X**Z
       00010         rF
-------
CONVRT  CONVRT.Pa
FORTRAN V.5A(563) /KI   6«OCT«77
12129   PAGE 1
ooooi
00002
00003
00004
00005
00006
00007
00008
00009
oooto
OOOlt
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
0002B
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056

C
C
C
C
C
C
C
C
C
C
C
C












C








C






C








C





              SUBROUTINE CONVRT(SYMBOL,SIZE,NSIZE)
             »********************t***************<	 __	
          THIS SUBROUTINE CONVERTS NUMERICAL SYMBOLS TO NUMERICAL QUANTITIES

          PRINCIPAL ARRAYSl
              8YMBOL(K,I) 9 SET OF NUMERICAL SYMBOLS
              SIZE(I)     • SET OF NUMERICAL QUANTITIES
              8ME8H(I,J)  • MESH SIZE CONVERSIONS

              Ki DENOTES HHQLE NUMBER UNITS POSITION
              K2 DENOTES POSITION OF NUMERATOR IN FRACTION
              K3 DENOTES POSITION OF DENOMINATOR IN FRACTION
              i*******ft*******ft******************************« 	...
              DIMENSION SYMBOL(6,23),SIZE(23>,3(m,C(10),8MESH(17,2)
              DATA S /IHl,lH2,lH3,lH4,lH5,lH6,tH7,tH8,lH9,lHO,lH.,lH/,lH /,
             1     C /I.,2.,3.,4.,5.,6.,7.,6.,9.,O.X, SMESH /4.,6.,8.,10.,14.,
             2     20.,28.»3S.,48.,65.,100.,150.,200.,270.,385..400.,0.,
             3     .185,.151,.095,.065,.046,.0328,.0232,.0164,,0116,.0062,
             4     .0058,.0041,.0029,,0021,.0017,.0015,0./
              N3«N8IZE+1
              DO 7 I«1,NS
              KUO
              K2«0
              K3«0
              8IZEU>»0.
          SCAN EACH SYMBOL
              DO 1 K»},6
              IF (8YMBOL(K,I).EO.S(ll)) Kl«K-l
              IF (8YHBOL(K,I).NE,3(12)) GO TO 1
              K2«K«l
              K3«K*1
            1 CONTINUE
              IF (Kl.CT.O) GO TO 3
              IF (K2.6T.O) GO TO 5
          SYMBOL REPRESENTS WHOLE NUMBER • SCAN AGAIN
              DO 2 Kit,6
              KJ«7-K
              IF (8YMBOLCKJ,I).£0.3(13)) GO TU 2
              K1«KJ
              GO TO 3
            2 CONTINUE
          CONVERT INTEGER PART OF NUMBER
            3 KJ.K1-1
              KK.K1-2
              DO 4 J»l,tO
              IF (8YMBOL(K1,I).EQ.8(J)) SIZE(I)«8TZftI)*C(J)
              IF ((KJ.GT.O).AND.(SYMBOL(KJ,I).EQ.S(J))) 3IZE(I)«SIZE(I)*10.*C(J)
              IF ((KK.GT.O),AND.(3YMBOL(KK,I).EQ,S(J))) SIZE(I)«8IZECI)t
              1  100.«C(J)
            4 CONTINUE
          CONVERT FRACTIONAL PART OF NUMBER
            5 IF (K3.EQ.O) GO TO 7
              DO 6 J»l,10
              IF (8YMBOL(K2,I).EQ.S(J)) XNUM«C(J)
              IF (8YMBOL(K3,I).EQ.3(J)) XDENOH«C(J)
            6 CONTINUE
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                        * DIM *
                                                        * DIM *
                                                        * DIM *
                                                        * DIM *

-------
       CONyRT  CONVRTiFO
             FORTRAN V.5A(563) /KI   6-OCT-77
                                        12129   PACE
       00057         8IZE<1)»8IZE
12
50
77
•
223
270
2
•
•
16
53
•
161
227
271
3
•
•
17
54
100
163
231
272
4
•
•
20
57
103
164
241
•
5
•
m
21
•
106
175
2«5
275
6
•
•
•
61
107
206
246

7
•
•
23
63
122
207
247

8

.
24
66
141
214
252

9

•
36
75
•
m
254

       CONVRT  OCTAL PROG sizE»«25
       ( NO ERRORS DETECTED )
                    SCALARS/ARRAY3al07 + TEMP8/CONS*16 4 CODE«300 t ARG8»0

-------
       CRUSH   CRUSHJ.Ffl
              FORTRAN  V.5A(56S)  XKI    6-OCT-77
                                                                        PAGE 1
to
CO
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
    SUBROUTINE  CRU8H(N,SO,SIZE»NSIZE»NGRAV,FEED,PROD,FPROD,
   1                  YLDVSL»BTUVSL.BTU»KB8G)

 THIS  PROGRAM DETERMINES  THE  WEIGHT DISTRIBUTION AND COMPOSITION OF THE
 CRUSHER  PRODUCT  FOR  A  GIVEN  FEED.


  VARIABLES  AND ARRAYS  APPEARING IN THE SUBROUTINE LIST
    IPRIH        * SELECTION  INDEX
                      IPRIMll  FOR  PRIMARY CRUSHER
                      IPRIM12  FOR  SECONDARY  CRUSHER
    ITYPE        • TYPE OF  BREAKER
                      ITYPEll  FOR  MULTIPLE  ROLL CRUSHER
                      ITYPE«2  FOR  GYRATORY/JAW CRUSHER
                      ITYPE<3  FOR  SINGLE ROLL CRUSHER
                      ITYPE«4  FOR  CAGE MIU  CRUSHER-1
    80             CRUSHER  SETTING
    SIZE(I)         BOUNDARIES OF COAL SIZE INCREMENTS
    N8IZE          NUMBER OF  SIZE INCREMENTS
    NGRAV          NUMBER OF  GRAVITY INCREMENTS
    FEED(I,J,K)    PROPERTIES OF FEED STREAM
    PROD(I,J,K)    PROPERTIES OF PRODUCT STREAM
    FPROD          PRODUCT  FLOW RATE
    I               DESIGNATES SIZE  INCREMENT  OF COAL
    J               DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL
    K               DESIGNATES WEIGHT, ASH, PYRITIC SULPHUR AND TOTAL SULPHUR
                   (THE WEIGHT COLUMN CONTAINS THE FRACTION OF THE
                   STREAM IN  THE ITH SI7E, JTH GRAVITY INCREMENT)
******4^*O***OO*********** ft* ***********************************************
                     DIMENSION BTU (4), SIZE (23), FEED (23, 10, 4), PROD (23, 10, 4)
                     DIMENSION 8RATIO(13),SP(13),8SO3),BRATIO(13),B1(11),
                     DIMENSION BK(11,5),
                    2 8MID(23),B(I3),BR(23,23),P(23,23),             F£D(23,10,4)
                     COMMON /BLK1/ 8FEED(24,5),SCC(24,5),3MD(24,5),SREF(24,5),
                    1              8YLD(24),TYLO(24),EFFIC(24),BTUREC(24),ASHERR(24),
                    2              SFLT(24},3INK(24),SMISPL(J4),5NRGR(24),SGRAV(2
-------
CRUSH   CRU3HJ.ro
             FORTRAN V.5A(563) /KI   6-OCT.77
                                                                12Ut   PAGE 1-1
00057
00056
00059
00060
00061
00062
00063
00060
00065
00066
00067
00066
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00060
00061
00082
00063
00064
00065
00066
00087
00068
00069
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
   IF (N.GE.16) IPRIM«2
   IF «N.EQ.I3).OR.(N.EQ.i7)) ITYPE«2
   IF ((N,EO.t4).OR,CN,EQ.16)> IT¥PE»3
   IF ((N.EQ.15),OR.(N.EQ.19)> ITVPElO
   00 2
                                                                                * DIM *
              BK(I,2)lB2(I)
              BK(I,3)»B3CI>
              BK(I,4)tB4U)
              BK(I,5)iB5(I)
            2 CONTINUE
              DETERMINATION OF SIZE INTERVAL IN WHICH 1.7*80 IS LOCATED
              DO tO Ial,N3IZE
           10 8HlD(I)«(SIZE(I)*SIZE(Itl))/2.0
              NNSlNSIZEtt
              DO 3 Hl.NNS
              IF(SIZE(I)-1,7*30) a, 3. 3
   00 TO 8
 3 CONTINUE
 8 DO 21 m,N3IZE
   DO 21 J»t,NGRAV
   DO 21 Kllf4
   FEDU»J»K)«PEED(I,J,K)
21 PROD(I,J,K)iO,0
                                                                                * DIM *
   HHtHltl
   IF(Ml.EG.O) GO TO 90
   BREAKAGE OF MATERIAL IN SIZE INTERVALS GREATER THAN 1.7*30
   DO 15 I«l,il
15 B(I)»BK(I,ITYPE)
   DO 19 I«1,H
   BR(I,I)»1.0
   L«I+1
   NS»NSIZE-l
   DO 9 II»L,N3IZE
   RAT10B«SMID(II)/3MID(I)
   CALL INT3(BRAT10,B, RATIOS, C, 11)
 9 BR(I,II)lC
   8R(I,NSIZE)«0.0
19 CONTINUE
   IF(MI.EO.l) GO TO 50
   DO 24 I"t,M
   L«I+1
   DO 23 II"LiMl
   LL»II-I
                                                                                * DIM *
                                                                                * DIM *
   DO 23 Jil,NGRAV
   PROD(II,J,t)« FED(I,J,l)*P(I,m
   DO 29 Ki2|4
   PROD(II,J,K)»PROO(II,J, 1)* FEO(I,J,K)
29  FED(II,J,K)« FED(II,J,KJ* FED(IIf J, 1 )*PROD(II, J,K)
    FED(II,J,l)i FEO(II,J,UtPROO(II,J,l)
23 CONTINUE
   DO 31 II»L,M1
   DO 31 Jil,NORAV
                                                                                * DIM *

-------
       CRUSH    CRUSHl.PO
             FORTRAN V.5A(563) XKI   6-OCT-77
                                                                12131   PAGE 1-2
co
C7I
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
0012S
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
0014S
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
                     DO 31  K»2,0
                     IF(FEDCH,J»1).NE.O.O)  GO TO 32
                     FED(IIiJ,K)«0.0
                     GO TO  31
                  32 FEO(n.J.K)«FEDCII.J,K)/FED(II,J,l)
                  31 CONTINUE
                     DO 25  II»MM,N31ZE
                     ll*XI-l
                                                                     * DIM *
   DO 25 Jil,NGRAV
   PROD(II,J,1)«  PED(J,J,l)*PCl,in+PROD(II,J,l)
   DO 27 Ki2,4
27 PROD(II,J,K)« FED(I,J,1) *P(I,II)« FEO(I, J,K)tPROD(II, J, K)
25 CONTINUE
24 CONTINUE
   BREAKAGE OF MATERIAL IN 1,7*80 SIZE INTERVAL    >
50 BR(MI,M1)«1.0
   FRACII(Slze(Ml).|.7*80)/(SlZE(Ml).SIZE(HH))
   FRAC2V1.0-FRAC1
   SHlDii(SlZE(M»)M.7*SO)/2.0
   SMlD2i(1.7*30+SIZE(MM))/2.0
   DO 66 II>MM,NSIZE
   RATIOS«SMID(II)/SHI01
   CALL INT8(BRATIC,B, RATIOS, C, 11)
66 BR(HlfII)«C
   BR(MI,NSIZE)*0.0
   oo 26 UPHH,NSIZE
                                                                                       • DIM *
                                                                                       * DIM *
                     P(M1.II)»BR(H1,LL)-BR(M1,II)
                     DO 26 JH1,NGRAV
                     PROO(II,J,1)»  FED(Ml,J,n*P(Ml,II)*FRACUPROD(II,J,l)
                     DO 28 K«2,a
                  28 PROD(II/J,K)»  FED(H1 , J, 1 )*P(Ml , II)* FED(MJ , J,K) *FRAC 1 +
                    1 PROD(II,J,K)
                  26 CONTINUE
                     DO 42 I»l,1l
                  42 B(I)»6K(I,5)
                     DO 6i IHMH,NSIZE
                     RATIOB«SMID(II)/3MID2
                     CALL INTS(BRATIO,B,RATIOB,C,11)
                  61 BR(MI,II)»C
                     BR(H1,NSIZE)»0.0
                     8EL«.8S
                                                                     * DIM
                                                                     * DIM *
                                                                     * DIM «
   DO 62 II«MM,N3IZE
   BR{H1,IJ)iBR(Ml,II)*8EL
   LLlIT-1
   P(Ml,n)BBR(Ml,U)-BR(Ml,II)
   DO 62 J»1,NGRAV
   PRODtn,J,I)»  FEDCM1,J,1)*P(M1/II)«FRAC2+PROO(II,J,1)
   DO 63 Kl2,4
 63 PROD(II,J,K)«  FED(M1,J(1)*P(H1, II)*
   1  PROO(II,J,K)
 62 CONTINUE
   DO 64 J«1,NGRAV
   PROD(Hl,J,n
                                                                , J,K)*FRAC2*
                                                                                       * DIM •

-------
       CRUSH   CRUSHI.FO
             FORTRAN V.5A(563) /KI   6-OCT-77
                                                                12131
so
o»
00169
00170
00171
00172
00173
00174
0017S
00176
00177
00176
00179
001BO
00161
00162
00163
00164
00185
00186
00167
00166
00169
00190
00191
00192
00193
00194
00195
00196
00197
00196
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00216
00219
00220
00221
00222
00223
00224
   DO 6« K«2,4
64 PROO(H1, J,K)«PROO(MJ,J,n* FED(H1,J,K)
   00 60 I»1,H
   DO 60 JlliNGRAV
   DO 60 KM, 4
60 PROD(I,J,K)«0,0
   BREAKAGE OF MATERIAL IN SIZE INTERVALS LESS THAN 1.7*SO
90 DO 49 IlHH.NS
   Lil + l
   DO 43 IHL.N8IZE
   RATIOB«SHID(II)/SHID(I)
   CALL 1NTS(BRATIO,B, RATIOS, C,U)
43 BR(I,II)>C
   BR(I,NSIZE>«0,0
   BR(N8IZE,N8XZE)«0.0
   SEliBO.O
   SEL2«0.0
   FRAClHl.O
   FRAC2tl.O
   IF(8IZE(I)-80)44, 44,2,4                                                       * DIM *
                  57 PROD(I1,J,K)» PED(I,J,1) *P(I,II)» F£D( I, J,K)+PROD(II, J,K)
                  54 CONTINUE
                     DO 40 IlBHM,NSIZE
                     DO 40 J«1,N6RAV
                     PROO(II,J,1)BPROD(II,J,1)+ FED(II,J,1)*(1.0-BR(II,II))
                     DO 40 Kl2,4                                                       * DIM *
                  40 PROD(II,J,K)«PROD(II,J,K)+ FEO(II,J,K)* FED(I1 , J, I )*(! .0-BR(II , II )
                    1 )
                     DO 41 II«M1,NSIZE
                     DO 41 Jnl,NGRAV
                     DO 41 K«2,4                                                       * DIM *

-------
CRUSH   CRUSH1.F4
                FORTRAN  V.5A(563)  /KI    6-OCT-77
                                                                       12(31    PAGE 1-1
00225         IF(PROD(H,J,l),NE.O.O> GO TO 78
00226         PROD(IIfJ«K)«0.0
00227         CO TO 41
00228      78 PROD(IIfJ,K)»PRODCII,J,K)/PROD
00239   C****************************************************************************
00240   C CALCULATE SUMMARY DATA BY SIZE INCREMENTS                                 *
00241   C****************************************************************************
00242         CALL 8DSIZE(FEEDi3FEEOiBTU,N3IZE»NGRAV)
00243         CALL 3DSIZE(PROD,SCCiBTU,NSIZE.NGRAV)
00244          RETURN
00245         END
       COMMON BLOCKS

       /BLKl/(tl430)
!§      SPEED        +0#R
       TYLO       *770*R
       SINK      +1160*R
       SIMP      +13500R
                        SCC        +1700R
                        EFFIC     »1020*R
                        SMISPL    +1210#R
                        SEA       +1400IR
                                        3MD        +360*R       SREF       +5500R       SYLD       +740HR
                                        BTUREC    »1050*R       ASHERR    +11000R       SFLT      +1130«R
                                        SNRGR     +i240*R       SGRAV     »i27o*R       SPE       +i32o«R
SUBPROGRAMS CALLED
I NTS
SOSIZE
SCALARS AND ARRAYS  t "*n no EXPLICIT DECLARATION - -x- NOT REFERENCED - "#" SUBSCRIPTED j
*LL
*N
•ITYPE
•FPROD
SHIO
*M1
*J
•FRACl
SIZE
*NGRAV
1 I
20 I
25 I
57 R
2747«R
4021 I
4042 I
4147 R
4202«R
4221 I
 TEMPORARIES
  ,30021
  .30026
  4242 I
  4247 I
B2
FEED
PROD
FED
•KBSG
*M
B5
SRATIO
BTU
•RATIOS
.80022
.30027
2»R
21«R
26*R
60«R
2776 I
0022 I
40430R

-------
       CRUSH   CRU3Ht.ro
FORTRAN V.5AC56J) XKI   6-OCT-T7
12131    PAGE.1*5
to
00
,30013
.30062
,80002
,30005
.80007
,30040
,80045
,80032
,80037
4254 I
4261
4266
4273
4300
0305
4312
4317
4324
.30060
.80016
.30003
.A0016
,80050
.80041
.30046
,80033
.30020
0255 I
0262 I
0267 I
4270 R
4301 I
4306 I
4313 I
4320 I
4325 I
.30014
.80017
.30050
.30052
.30055
.30042
.30047
.30034
4256
4263
4270
4275
4302
4307
0310
4321
       LINE NUMBER/OCTAL LOCATION MAP


               0123
,80061
,80000
,30004
,80006
,80056
.80003
,80030
.80035
4257
4260
0271
4276
4303
4310
0315
4322 I
,80015
,80001
.80051
,30051
.30057
.80000
,80031
,80036
0260
4265
0272
0277
0304
0)11
0316
0323 1
ooooo
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
001SO
00160
00170
00180
00190
00200
00210
00220
00230
00240






56
102
145
225
275
405
471
566
656
751
1023
1127
1222
1260
1323
1375
1511
1616
*
0





64
118
157
230
277
413
473
601
660
757
1033
1150
1224
1265
1325
1405
•
1617
•
•
•
•
•
•
25
65
115
176
233
305
421
SOS
603
670
762
1037
1150
1234
1275
1331
1411
1541
1623
1664
.
•
•
•
•
26
67
120
201
241
307
425
507
612
674
764
1054
1160
1240
1300
1337
1425
1547
1625
1666





30
71
126
204
245
317
426
523
621
711
774
1055
1161
1244
1306
1345
1426
1553
•
•





3?
73
131
•
207
323
433
524
627
712
1000
•
•
1945
1310
1352
1452
1554
1640
1670





34
75
132
206
257
337
442
550
632
•
1002
1102
1200
1246
1311
1355
1463
1562
1644






35
77
134
207
263
340
003
556
634
737
1006
1110
1206
1250
1315
1363
1471
1572
1646

•
•
•
m
m
02
•
140
215
266
361
454
•
644
745
1010
1114
1210
1251
1320
1365
1075
1573
1662






50
100
104
221
271
376
463
561
650
706
1020
1126
1216
1256
1322
1373
1510
1607
*

       CRUSH   OCTAL PROG siZE«632o
       ( NO ERRORS DETECTED 1
      ( 3CALARS/ARRAVS«4241 » TEMPS/CONS»76 * CODEH701 + ARG3160 )  + COMMON«j«jO

-------
       EXPAND  EXPAND.Ft       FORTRAN V.SAC563) /KI   12-OCT-77       17105   PAGE 1


       00001         SUBROUTINE EXPANDCX,Y,N,N3IZE,NGRAV)

       00003   C THIS SUBROUTINE EXPANDS THE DIMENSIONALITY OF A 1-DIMENSIONAL ARRAY TO       &
       00004   C A 3-DIMENSIONAL ARRAY                                                        *

       00006         DIMENSION X(920,2B),YC23,10,«)                                    * DIM *
       00007         DO 1 I»1»NSIZE
       00008         DO 1 jvlrNGRAV
       00009         DO 1 K«l»4                                                        * DIM *
       00010         IJKa40*(I-l)+4*(J-t)+K                                            * DIM *
       00011         Y(I,J,K)»X(IJK,N)
       00012         IF ((K.EQ.1).AND.(Y(I,J,K).EQ.O.)) Yd,J»K)«1,E-6
       00013       1  CONTINUE                                        ,
       00014         RETURN
       00015         END


       SUBPROGRAMS CALLED
       SCALARS AND ARRAYS t "*" NO EXPLICIT DECLARATION - «x" NOT REFERENCED - "#" SUBSCRIPTED j
       *N           II        *K           21        *UK         31         Y           4*R        *J           51
       •NSIZE       61         X           7*R        *I          10 I        *NGRAV      11 I
§      TEMPORARIES
        .80000     12 I         .80001     13 I         .80002     14 I


       LINE NUMBER/OCTAL LOCATION MAP

             10       1       2       3       4       5       6       7       8       9

             t
       00000 I -       0       -       -       -       -       -       12      16      22
       00010 t 23      34      51      76      -       105

       EXPAND  OCTAL PROG siZE=t26  c SCALARS/ARKAYSBII + TEMPs/coNS=6 4 cODE"i°7 + ARGS«O
       ( NO ERRORS DETECTED 1

-------
       FROTH   FROTH1.F4
              FORTRAN V.5A(5b3) /KI   6-OCT-77
13132   PACE 1
S
oooot
00002
00003
00004
oooos
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056


C
C
C
C
C
C
C
C
C
C
C















C
C
C
C






















C
C
                     SUBROUTINE FROTH(FEED*CCiREF*SIZE*ORAV,GBOUND,YLDCC,YI.DREF,
                    1 N8IZE»NGRAV»NCOMP,YLDV8L»BTUVSL.BTU,KB3G)
                 ******»*******»****O************iM ft*************************************
                 THIS SUBROUTINE DETERMINES THE WEIGHT DISTRIBUTION AND COMPOSITION OF
                 THE CLEAN COAL (FLOAT) AND REFUSE (TAILS) FROM A FROTH FLOTATION CELL

                 THE CALCULATIONS ARE BASED UPON THE "YIF.LD AT 1.50, ASH AT 1.60" RULE
                 (HITH RESPECT TO THE FEED STREAM)

                 A FICTITIOUS DISTRIBUTION CURVE IS THEN FITTED TO THE OVERALL SEPARATION
                 IN ORDER TO CALCULATE THE HEIGHT DISTRIBUTION AND COMPOSITION OF THE
                 PRODUCT STREAMS AS A FUNCTION OF SPECIFIC GRAVITY
    DIMENSION FEEDC23,10,4),CC<23,10,4),REPC23,10,
-------
FROTH   FROTHI.F4
                        FORTRAN V.5AC36J) /KI   6-OCT-77
                                                        12132   PAGE 1-1
00057
OOOS8
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00076
00079
OOOSO
00061
00062
00063
00064
00065
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
00101
00102
00103
00104
00105
00106
00107
00106
00109
001 10
00111
00112
      DO 10 I«1,N3IZE
      U«0
      DHINil.E+38
      DO 6 Ilil,T
      JHI1
C CARRY OUT SEPARATION USING SEVERAL DISTRIBUTION CURVES (TABLES DATA)
C AND 20 VALUES OF 3G3P FOR EACH DISTRIBUTION CURVE
      DO 7 INDEX»1»20                                                   *
      SUHJ.O.
      3UM2«0.
      3UM3-0.
      8
      CC(I,J,l)8Y(X,l,Jn*FEED(I,J,l)
      REF(I,J,J)»FEED(I,J,1)-CC(I,J,1)
      CC(I,J,2)«FEEDCI,J,2>
      REF(I,J,2)«FEED(I,J,2)
      SUMtBSUMltPEEDU.Jil)
      SUM2«3UH2+CC(I,J,1)
      8UMJ«SUM3tCC(I,J»1)*CC(I.J•2)
    6 CONTINUE
C CALCULATE YIELD AND ASH CONTENT FOR EACH SEPARATION GRAVITY
      YLDPTS(INDEX)«8UM2/SUM1
      ASHPTS(INDEX)lSUH3/SUM2
      IF ((INDEX.GT.l).AND.(ASHPTS(INDEX).LT.ASHPTS(INDEXED))
     1 A8HPT8(INOEX)«A8HPT8(INDEX.l)
    7 CONTINUE
      IF ((YLDPT3(1).GT.YIELO(I)).OR.(YLDPT8(20).LT.YIELD(I))) GO TO 8
      IF ((A8HPT8(1).GT.ASH(I}).OR.(ASHPT3(20).LT.ASH(I))) GO TO 8
C DETERMINE DISTRIBUTION CURVE AND SEPARATION GRAVITY THAT BEST HATCH
C OVERALL  YIELD AND OVERALL ASH CALCULATIONS
      8G8PllYINTRP(YLDPTS,S,VIELD(I),20)                                *
      8G8P2«YINTRP(A8HPTS,3,A3H(I),20)                                  *
      IF (A8HPTS(20)-A8HPTS(1).LE.O,00001) SGSP2»SGSP1
      SGAV«.5*(SOSPUSGSP2)
      DirF»AB8(SG3P2-SG3Pl)
      IF (OIFF.GE.DHIN) GO  TO 8
      IJ«H
      868P«8CAV
      OHINvDIFF
    8 CONTINUE
C RECALCULATE SEPARATION USING BEST  DISTRIBUTION CURVE  (IJ) AND BEST
C VALUE FOR SPECIFIC GRAVITY OF SEPARATION (SUSP)
      SUMl«0.
      8UM2«0.
      8UM3«0.
      SUMQlO.
      DO 9 Jlt,NGRAV
      CC(I,J,1>"YIELD(I)*FEED(I,J,1)
       IF  (IJ.EQ.O) GO  TO 80
      XlGRAV(J)/8GSP
      CC(I,J,nBY(Xfl,U)*FEED(I,J,l)
    80
                                                                                  DIH *
                                                                                  DIM
                                                                                  DIH
               8UHl«3UMltFEED(I,J,D

-------
FROTH   FROTHl,F«
                        FORTRAN V.5A(563)  /KI   6-OCT-77
12132   PAGE 1-2
00115
00114
OOltS
00116
00117
00116
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
              3UM2«8UM2+CC(I.J,U
              8UM3i8UM3+CC(lfJ*l>*FEED(I,J»2)
              SUM4«3UMfltREF(I,J,n
              00 9 Kl2i4
              CC(I»JiK»FEED(IrJ*K)
              REF(I,J,K)«FEEO(I,J»K)
            9 CONTINUE
              XYLD»8UM2/SUMl
              XA8H«SUMS/8UM2
        C ****** BEGIN FIX (MODIFICATION OF DISTRIBUTION DATA) ******
              IF (IJ.EQ.O) GO TO 92
              IF (AB8(YIELD(I).XYLD).LE.1.E.<1) GO TO 92
              YLDAVi.5*9UN3/8UH2
           92  CONTINUE
        C  ****** END FIX ******
              8TOTt«8TOTl+SUM2
              8TOT2lSTOT2+8UM«
           10  CONTINUE
              VLDCCB8TOT1
              VLDREFI3TOT2
        C  NORMALIZE  HEIGHT  FRACTIONS  IN EXIT  STREAMS
              DO It  I»1,NSIZE
              DO 11  J«1,NORAV

-------
FROTH   FROTHI.P4
FORTRAN V.5A(563> /KI   6-OCT-T7
      12132   PAGE 1-3
00169         CC(I.J»l)«CC(I»J»n/8TOTl
00170      11 REF
00176         CALL 8DSIZE(R6F,3REF,BTU,NSIZE»NGRAV)
00177         DO 17 Iil,NSIZE
00178         8YLD(nilOO.*STOTl*SCCCI,l)/SFEED(I,t)
00179      17 BTUREC(miOO.«YLDCC*5CC(I,t)*SCC(I,5)/{SFEED(I,l)*3PEED
-------
FROTH   FROTNI.F4
             FORTRAN V.5AC563)  /KI    6-OCT-77
                                       12132   PAGE 1-4
TEMPORARIES

 ,80010
 .80015
 ,80002
 ,80006
 77 1
104 I
ill I
116 I
,80011
.80016
.30003
.80007
100 I
105 I
112 I
117 I
.80012
.80017
.80004
.30020
101  I
106  I
113  I
120  I
.80013
.80000
.80005
,00000
102 I
107 I
114 I
121 1
.80011
.80001
.A0016
103 I
110 I
115 R
LINE NUMBER/OCTAL LOCATION MAP

00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
0
•
•
•
•
103
161
204
226
•
372
•
46S
60S
•
•
723
•
1044
1107
1
0
•
•
•
110
166
806
230
334
377
m
900
610
642
666
725
1014
•
1113
2
m
•
•
•
112
172
212
236
340
405
434
514
•
644
700
737
1016
•
•
3
»
•
•
51
114
175
•
251
343
413
435
522
613
645
701
753
1020
•
1123
4
—
•
•
55
115
176
•I
265
•
417
436
530
615
654
702
761
1023
1060
1125
5
—
•
33
56
117
m
213
276
352
4?3
437
542
6?3
660
703
767
1025
1062
•
6
—
•
36
60
131
•
217
307
355
425
440
550
626
662
704
776
•
1064
1127
7
•
•
«1
75
143
•
220
315
364
427
444
551 .
631
663
706
1006
1027
1066

8
•
«
43
101
152
177
221
323
•
430
456
565
640
664
713
1011
1033
1070

9
.
•
•
102
156
203
222
332
m
431
460
601
•
•
717
•
1035
1075

FROTH   OCTAL PROG 3KEH367
( NO ERRORS DETECTED I
       SCALAR8/ARRAY8B76  *  TEMPS/CONS«41  « CODE»1146 + ARGS«62
                                                                                 COMMONi2244

-------
       INT8    INTS.Ffl FORTRAN V,5A(563)  /KI   6-OCT.T7
                                                                PAGE 1
       00001
       00002
       00003
       00004
       00005
       00006
       00007
       00008
       00009
       00010
       00011
       00012
       00013
       00014
       00015
       00016
       00017
       00018
       00019
       00020
       00021
              SUBROUTINE  INT8(X,Y,RX.RY|N)
             ft*****************************
              LINEAR  INTERPOLATION /  EXTRAPOLATION ROUTINE

              CALLED  BV SUBROUTINES CRUSH,  ROTARY AND SCREEN
             ft**********************
              DIMENSION X(13),Y(13>
              IF(X(2)-X(J))  3,5,0
            3 DO  5  Jl2,N
              K«J
              IF
-------
       OUTPT1  OUTPTI.F4
                        FORTRAN V.5A(563) /KI   6-OCT-T7
12129   PAGE 1
o
a>
OOOOt         SUBROUTINE OUTPT1(FEED.SYMBOL,GBOUND,RTU,FLBTU,PLS02,N8IZE,NGRAV,
00002        1 NCOMP)

00004   C THIS SUBROUTINE PRINTS THE SPECIFIC GRAVITY ANALYSIS OF*A SPECIFIED    *     *
OOOOS   C FLOH STREAM                                                                  *

00007         DIMENSION FEED(23»10»4)iSYMBOL(6»23),GBOUNO4X,7HGRAVITY,
00014        2 2(4X,34HHEIGHT ASH  PYRITIC TOTAL  BTU/UB )/,
00015        3 54X,2C»SX,15HSULFUR  SULFUR ,8X))
00016     SOI FOBMATC1HO,2X,6A1,4H BY ,6A1,1IX,F5.I,16H PERCENT  FLOAT ,F4.2,2X,
00017        1 F5.1,1X,F5.1,2X,FS.2,2X,F5.2,2X,F6.0,5X,FS.1,1X,F5.1,2X,FS.2,
0001S        2 2X,F5.2,2X.F6,0)
00019     $02 FORHAT(46X,F4.2,lH.,F4.2»2XfFS.l»lX,F9F5.2f2X,FS.2,2X,F6(0,
00020        1 5X,FS,|,iX,F5.1i2X,F5.2,2X,FS.2»2X,F6.0)
00021     503 FORHAT(46X,5H3INK ,F4.2,2X,F5.t,1X.P5.1,2X,F5.2,2X,F5.2,2X,F6,0,
00022        1 5X,FS.1,1X,F5.I,2X,F5.2,2X,F5,2,2X,F6.0)
00023     504 FORMAT(1HO,3X,9HCOMPOSITE,15X,FS.1,I6H PERCENT  FLOAT ,Pfl.2,ax,
00024        1 F5.1,lX,F5,l,2X,F5.a,2X,F5.2,2X,F6.0,SX,F5.t,lX,F5.),2X,F5.2,
00025        2 2X,F5.2,2X,F6.0)
00026   C »********#*****************»*******»<
00027   C WRITE OUTPUT FOR EACH SIZE INCREMENT
00028   C
00029         HR1TE (HiSOO)
00030         DO 5 IlltNSlZE
00031   C CALCULATE HEIGHT DISTRIBUTION IN EACH SPECIFIC GRAVITY INCREMENT
00032         PERCNT(I)«0.
00033         DO 1 J«1,NGRAV
00034       1 PERCNT(I)tPERCNT(I)»FEEO(I,J,l)
00035         IF (NCOHP.NE.O) GO TO 50
00036         IF (PERCNT(I).LE.0,000499) GO TO 5
00037         DO 2 J«1,NGRAV
00038         HT(J)llOO.*FEED(I|J,l)/PERCNT(I)
00039       2 CONTINUE
00040   C CALCULATE CUMULATIVE HEIGHT, ASH, PYRITTC SULFUR, TOTAL SULFUR AND
00041   C BTU CONTENT
00042         CUMNTiHTU)
00043         CUMASH»0.
00044         CUMP8»0,
00045         CUMTSBO.
00046         CUMBTU*0.
00047         A8HllOO.«FEEO(I,l,2)
00048         SUMA8H«FEEO(I,1,2)«HT(1)
00049         PS*100.*FEED(Iil,3)
00050         8UMP8«FEED(I.1»3)*HT(1)
00051         TS«100.*FEED(I»1»4)
00052         8UMT8«FEED(I»1»4)*NT(1)
00053         8UMBTUiBTUPLB(BTU,FEED(I,l,2))*HT(l)
00054         PERCNT(I)«JOO,*PERCNT(I)
00055         DO a3 Kit,6                                                       * DIM *
00056         IF (8YMBOL(6»I).NE.BLANK) GO TO 21

-------
       OUTPTI
                        FORTRAN V.5A(565) XKI   6-OCT-77
12129   PAGE 1*1
o
-i
00057         DO 20 KJ»l,5
00058         KI.7.KJ
00059      20 8YMBOU(KI,I}«3YMB01.(KI.l,n
00060         SYMBOLU.DtBLANK
00061      21 IF (SYHBOLU»I+l).NE.BLANK) GO TO 25
00062         DO 22 KJ«i,5
00063      22 SY"BOl
00064         8YMBOLC6,I»l)lBlANK
00065      23 CONTINUE
00066         IF (WTU).EQ.O.) 60 TO 24
00067         CUMA8HBASH
0006B         CUHPSiPS
00069         CUMT8«T3                                         >
00070         XBTUU)»BTUPIB
-------
OUTPTl  OUTPTl,F4
                        FORTRAN V.5A(563> /KI   6-OCT-77
12129   PAGE 1-2
001 13
00114
OOttS
00116
00117
00118
00119
00120
00121
00122
00123
              P8»0.0
              TSiO.O
              ZBTUiO.O
              DO 6 Ul.NSIZE
              IF (J.EQ.l) PE«"PER*PERCNT(I>
0012S
00126
00127
00126
00129
00130
00131
00132
00133
00130
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
              ASMB»gH*FEED(l,J,l)*FEED(I,J,2>
              P8 • P8tFEEDCI,Jil)*FEED(l,J,3>
              TS • T8»FEED(I,J,l)*FEED(I,,J,4>
            6 ZBTU«ZBTUtFEED
-------
       OUTPTl   OUTPTl.Fa
             FORTRAN V.5A(563)  /KI    6-OCT-77
12139   PAGE 1-3
       SUBPROGRAMS  CALLED

       BTUPLB

       SCALARS  AND  ARRAYS  t  "*•  NO  EXPLICIT  DECLARATION
                                        "X" NOT REFERENCED • "*" SUBSCRIPTED 1
       *TS
        FEED
       *8UMA8H
       •BLANK
       •CUHBTU
        BTU
        HT

       TEMPORARIES

        ,80010
        .80002
        .80006
  1  R
 24 R
 57 R
 64 R
 71*R
 76«R
321 I
326 X
333 I
*H
*K
*P8
•J
*A8H
*CUM«T
•NGRAV
.soon
.80003
.80007
2 R
20 I
25 R
60 I
65 R
72 R
110 I
322 I
327 I
334 X
*CUMPS
•SUMBTU
PERCNT
*FLBTU
*N8IZE
*PER
*KX
.80012
.30004
.00000
3 R
21 R
26«R
61 p
66 \
73 R
111 I
323 I
330 I
335 1
*NCOHP
GBOUND
• ZBTU
•SUMPS
*KJ
*CUMA8H
•SUMTS
.80000
,80005
4 X
22»R
55 R
62 R
67 I
74 R
112 R
324 I
331 I
XBTU
SYMBOL
*CUMTS
•PREWT
*FLS02
• I
,80001
.A0016
5*R
23*R
56 R
63 R
70 R
75 I
325 I
332 R
       LINE NUMBER/OCTAL LOCATION MAP
o
to

00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
0
•
•
•
26
•
116
174
237
331
410
441
152
506
564
613
642
1
0
•
•
•
•
123
201
•
340
413
•
456
515
567
615
643
2
•
•
•
32
71
130
207
246
347
415
•
457
524
572
616
•
3
•
m
•
33
73
135
210
250
356
417
•
460
•
575
621
651
4
•
•
•
35
74
145
217
•
365
•
444
461
540
600
624
654
5
•
•
•
46
75
150
224
•
•
425
445
462
542
6nl
•
656
6
.
•
•
50
76
153
227
306
376
426
446
463
546
603
631
•
7
m
m
m
54
77
161
231
311
401
•
447
465
552
605
632
661
a
•
•
•
56
104
162
233
313
402
434
450
472
556
607
635

9
•
•
23
67
111
165
235
322
405
436
451
477
561
611
•

       OUTPTl  OCTAL PROG 8IZE«I450
        ( NO ERRORS DETECTED ]
                    t 8CALARS/ARRAVSM12 * FORHATS«206 + TEMPS/CON8«22 + COOE.670 + ARG8«216 )   * COMMON*2

-------
OUTPT2  OUTPT2.F8
FORTRAN V.5A(S63> XKI   6-OCT-77
12133   PAGE 1
00001         SUBROUTINE OUTPT2(8YMBOL,N8IZE,NGRAV,NCOMP,L,PSJ,GBOUND)
00002   C A***************************************************************************
00003   C THIS SUBROUTINE PRINTS SUMMARY DATA BY SIZE INCREMENTS FOR EACH UNIT
00004   C
00005   C ARRAY NAMES ARE IDENTIFIED BY THEIR CORRESPONDING FORMAT STATEMENTS
00006   C ft***************************************************************************
00007         DIMENSION 8YHBOL(6,23),8TORE(6),COMP(6),GBOUND(11)                  DIM
00006         COMMON /BLK1/ 8FEED(24,5),8CC{24,5),8MID(24,5),SREF(24,S),          DIM
00009        1              SYLD(24),TYLO(24),EFFICf24),BTUREC(2«),ASHERR(24),    DIM
00010        2              8PLT(24),8INK(24),SMISPL(24),SNRGR(2a),3GRAV(24),     DIM
00011        3              8PE(Z4),81MP(24),SEA(?4)                              DIM
00012         COMMON /BL«/ DI8TRB(24,10)                                         DIM
00013         COMMON /SYS/ G,H
00014         INTEGER G,H
00015         INTEGER P8J
00016         DATA BLANK,BY,COMP /1H ,2H8Y,1H ,1HC,I HO,IHM,JHP,1H /             * DIM *
00017     100 FORMATC21H03IZE, INCHES OR MESH)
00018     101 FORMAT(26H08CREEN ANALYSIS, PERCENT!)
00019     102 FORMAT(3X,4HFEED,37(1H.),9(2X,F5.1,?X)}
00020     103 FORMAT<3X,10HCUEAN COAL,31(IH,),«(2X,FS.l,2X))
00021     104 FORMAT(3X,6HREFUSE,35(1H.),9(2X,F5.1,?X))
00022     105 FORMAT(3X,9HHIODLINGS,32(1H.),9<2X,F5.1,2X))
00023     106 FORMAJU4HOA8H, PERCENT!)
00024     107 FORMAT(25HOPYRITIC SULFUR, PERCENT!)
00025     106 FORMATC23HOTOTAL SULFUR, PERCENT!)
00026     109 FORMATU6HOACTUAL RECOVERY,20(1H.),BH PERCENT,9(2X,F3.1,2X))
00027     110 FORHATC21H THEORETICAL RECOVERY,15(1H.),4X,2HDO,2X,9(2X,F5.1,2X))
00026     lit FORMATION RECOVERY EFFICIENCY,16(1H.),4X,2HDO,2X,9(2X,F5.1,2X))
00029     112 FQRMATUOH ASH ERROR,26(1H.),4X,2HDn,?X,9(2X,F5.1,2X>)
00030     113 FORMAT(16HOFLOAT IN REFUSE,9(IH.),19H PERCENT OF PRODUCT,
00031        1 9(2X,F5.1,2X))
00032     114 FORMATO9H SINK IN CLEAN COAL,6(1H.),9X,2HDO,6X,9(2X,F5.1,2X))
00033     115 FORMAT(25H TOTAL MISPLACED MATERIAL,3(1H.),16H PERCENT OF FEED,
00034        1 9<2X,F5.1,2X))
00035     116 FORMAT(26H NEAR GRAVITY 0.1 MATERIAL,2{1H.),6X,2HDO,8X,9(8X,F5.1,
00036        1 2X))
00037     117 FORMAT(31HOSPECIFIC GRAVITY OF SEPARATION,13(IH,),9{2X,F5,2,2X))
00036     116 FORMAT(35H PROBABLE ERROR, SPECIFIC GRAVITY,U(1H,),9(2X,F5.3,2X))
00039     119 FORMALISM IMPERFECTION, 31 (IH. ) ,9(2X,F5.3,2X) )
00040     120 PORMATU1H ERROR AR£A,33(1H.),9(2X,F5.0,2X))
00041     121 FORMATdSH BTU RECOVERY,23(1H.),4X,8HDO,2X,9(2X,F5.1,2X))
00042     122 FORMAT(1H+,43X,4(2X,6A1,1X))
00043     123 FORMAT(44X,9(4X,A2»3X))
00044     124 FORMAT(44X,9(2X,6A1,1X))
00045     125 FORMAT(3X,aHFEEO,37(lH.),9(lX,F6,2,?X))
00046     126 FORMAT(3X,10HCLEAN COALiSl(IH.),9(1X,F6.2,2X))
00047     127 FORMAT(3X,6HREFUSE,35(1H.),9(1X,F6.?,2X))
00046     126 FORM*T(3X,9HMIDDLING8,32(1H.),9(1X,F6.2,2X))
00049     130 FORMAT(3X,18HFEED (COAL * ROCK),23(1H.),9(2X,F5.1,2X))
00050     131 FORMAT(3X,24HOVERFLOM (REFUSE) STRE»M,17(IH.),9(2X,F5.I,2X))
00051     132 FORMAT(3X,26HUNDERFLOM (PRODUCT) STREAM,15(1M.),9(2X,F5.1,2X))
00052     133 FORMAT(3X,ieHFEED (COAL * ROCK),23(1H.),9(JX,F6.2,2X))
00053     134 PORMAT(3X,24HOV£RFLOH (REFUSE) STREAM,17(1H.),9(1X,F6.2,2X))
00054     135 FORMAT(3X,26HUNDERFLON (PRODUCT) STREAM,15(1H,),9(1X,F6.2,2X))
OOOSS     136 FORMAT(23HOCOAL PRODUCT/COAL FEED,13(IH.),6H PERCENT,
00056        1 9(2X,F5.1,2X))

-------
OUTPT2  OUTPTZ.F4
              FORTRAN V.5A(563)  /KI   6-OCT-77
                                                        12133    PAGE  1-1
OOOS7
00056
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00072
00073
00074
00075
00076
00077
00076
00079
00060
oooet
00062
00063
00064
00065
00066
00067
00066
00069
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
OOlOt
00102
00103
00104
00105
00106
00107
00106
00109
•Oil*

Oltll
00112
137 FORMATC24H COAL IN OVERFLOW STREAM,15(1H.),1X,2HDO,2X,
   i 9(2X,F5.1,2XJ)
138 PORMATC2SH ROCK IN UNOERFLOH STREAM,ia<1H.),1X,2HDO,2X,
   1 9(2X,F5.1,2X))
140 FORMATC3X,12HCRUSHED COAL»29(1H.),9(2X,P5.1,2X))
141 FORMAT(3X,12HCRU8HEO COALr29(lH.),9(lX,P6,2,2X))
ISO PORMAT(3X,24HOVERFLOW (COARSE) STREAM,17(1H.),9(2X,F5.1,2X))
151 FORMAT(3X,23HUNDERFLOW (FINE) STREAM,16(1H.),9(2X,F5.1,2X))
152 FORMAT CSX,24HOVERFLOW (COARSE) STREAM,17(1H.),9(1X,F6.2,2X))
153 FORMAT(3X,23HUNDERFi.OW (FINE) STREAM,16(1H.),9(IX,F6.2,2X))
154 FORMAT(32HOMEIGHT RATIO,  UNDERFLOW TO FEED,4(IH,),8H PERCENT,
   1 9<2X,FS.1,2X))
155 FORMAT(29H BTU RATIO, UNDERFLOW TO FEED,7(1H.),4Xy2HDO,2X,
   i 9tax,F5.1,2X))
156 FORMAT(36H UNDER8IZE MATERIAL IN OVERFLOW STREAM,1H.,IX,2HDO,2X,
   1 9(2X,F5.1,2X)>
157 FORMATC36H OVERSIZE MATERIAL I* UNDERFLOW STREAM,»H,,IX,2HD0.2X,
   1 9(2X,F5.1,2X))
160 FORMAT(3X,6HFEED 1,S5(IH.),9(2X,F5.1,2X))
161 FORMAT(3X,6HFEED 2,35(1H.),9(2X,P5.t,2X))
162 FORMAT(3X,7HPRODUCT,34(1H.),9(2X,F5.1,2X))
163 PORMAT(3X,6HPEED 1,35(1H.),9(1X,F6.2,2X))
164 FORMAT(3X,6HFEED 2,35(1H.),9(1X,F6.2,2X))
165 FORMAT(3X,7HPRODUCT,34(lH,),9(lx,F6,2,2X))
170 FORMATC37H1DISTRIBUTION,  PERCENT TO WASHED COAL)
171 FORMAT(2X,28H(SPECIFIC GRAVITY FRACTION)!)
172 FORMAT(2X|6HFLOAT ,F4.2,32(1H.),9(2x,F5.1,2X))
173 FORMAT(3X,F4.2,1H-,F4.2,32(1H.),9(2X,F5,1,2X))
174 FORMAT(3X,5HSINK ,F4.2,32(1M,),9(2X,F5.
175 FORMAT(30HOBTU PER POUND, MOISTURE FRFEl)
176 FORMAT(3X,4HFEED,37(1H.),9(IX,F6,0,2X))
177 FORHAT(3X,10HCLEAN COAL,31(1H,),9(1X,F6.0,2X))
176 FORMAT(3X,6HREFU8E,35(1H.),9(1X,F6.n,2X))
179 FORMAT(3X,9HMIDDLING8,32(1H.),9(1X,F6.0,2X))
180 FORMAT(3X,12HCRUSHED COAL,29{1H.),9(1X,F6.0,2X))
181 FORMAT(3X,6HPEeD 1,35(1H.),9(1X,F6.o,2X))
182 FORMAT(3X,6HF£ED 2,35(1H.),9(1X,F6.0,2X))
183 FORMAT(3X,7HPRODUCT,34(1H,),9(1X,F6.0,2X))
164 FORMAT(3X,24HOVERFLOW (COARSE) STRE»M,\7(1H.j,9(ix,F6.0,2X))
185 FORMAT(3X,23HUNDERFLOH (FINE) STREAM,i8(1H.),9(IX,F6.0.2X))
166 FORMAT(3X,18HFEED (COAL * ROCK),23(1H.),9(tX,Fb,0,2X))
187 FORMAT(3X,24HOVERFLOW (REFUSE) STREAM,17(1H.),9(1X,F6.0,2X))
188 FORMAT(3X,26HUNDERFLOW (PRODUCT) STREAM,15(1H.),9(lx,F6.0,2X))
190 FORM»T(3X,24HPRODUCT 1 (UPPER STREAM),17(1H,),9(2X,F5,1,2X))
19t FORMAT(3X,24HPROOUCT 2 (LOWER STREAM),17(1H,),9(2X,F5.1,2X))
192 FOHMAT(3X,24HPRODUCT 1 (UPPER STREAM), 17(1H.),9(1X,F6.2,2X))
193 FORMAT(3X,24HPRODUCT 2 (LOWER STREAM),17((H.),9(IX,F6,2,2X))
                           (UPPER STREAM), 17UH.),9(1X,F6.0,2X))
                           (LOWER STREAM),17(1H.),9(1X,F6.0,2X))
  194 FORMAT(3X,24HPRQDUCT 1
  195 FORMAT(3X,24HPPOOUCT 2
  200 FORMAT(1HO,132(1H*)/)
  300 FORMAT(IHO,5X,17HEMPTY  FEED STREAM/)
C DETERMINE LARGEST NONEMPTY  SIZE INCREMENT
      DO 20 Isl.NStZr
      IP «I..»B.41).*»0.<.SI>eED(I,n.LT.l.OlR-2«'tGRAV))  CO  TO  20
      IFTaUEQ.4l).AND.(SREF(I,n.LT.1.01E-2«NGRAV))  00 TO 20

      80 TO 21

-------
       OUTPT2  OUTPT2.F4
                        FORTRAN V.5A(563) /KI   6-OCT-77
12133   PAGE 1-2
ta
00113      20 CONTINUE
00114         WRITE (H.300)
00115         RETURN
00116      21 N8«N8IZE»1
00117         K1«N8TART
00116         K2BN8TARU8
00119         IP (NCOMP.NE.O) K1»NS
00120         00 3 H1.N8
00121         KN8«0
00122         KP«0
00123         00 1 Klli6
00124         IP (8VMBOL(K,n.NE.BLANK) KNB.KNB+1
00125         IP ((KP.EG.O).AND.(SYMBOl(K,I),NE.BLANK)) KPiK
00126         STORE(K)»8YMBOL(K,I)
00127       1 8YMBOU(K,I)mANK
00128         KBLO-KNB/2
00129         IP (KNB.EQ.J) KBLlI
00130         IP (KNB.EQ.5) KBL«0
00131         DO 2 KiliKNB
00132         KA»KBL+K
00133         KB«KP+K«1
00130       2 8VHBOL(KA,n«3TORE(KB)
00135       3 CONTINUE
00136         IP ((NCOHP.EQ.O).ANO.(N8IZE.EQ.D) N8»l
00137       4 IP (K2.0T.N3) K2«N8
00138         WRITE (H.100)
00139         IP C(N8.GT.n.AND.(K2.EQ,N8)) GO TO 5
00140         WRITE (H,122) ((8YHBOL(K,I),KB1,6),IiKJ,KJ)
00141         WRITE (H,123) (BY,I«K1,K2)
00142         WRITE (H,124) C(8YMBOL(K,1+1)(Kil,6),HK1,K2)
00143         GO TO 7
00144       5 IP CM.EO.N8> GO TO 6
00145         WRITE (H.122) C (SYMBOLCK, I) ,K«1,6) , HM ,N3IZE) ,COMP
00146         WRITE (H.123) (BY,I«K1,N8IZE)
00147         WRITE (H,124) ((8YMBOU(K,I*l),Kil,6),I«Kl,N8IZE)
00146         GO TO 7
00149       6 WRITE (H,122) COMP
00150       7 WRITE (H,10l)
00151         IP (LIE.7) GO TO 600
00152         IP (1.CO.11) GO TO 650
00153         IP «l.GE.IZ).AND.
-------
OUTPT2  OUTPT2.Ffl
          FORTRAN V.5AC563) /KI   6-OCT-77
                                                                 12133    PAGE  1-3
00169
00170
00171
00172
00173
00174
00175
00176
°0177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
              HRITE (H,125) (SFEEDU, 3), I«K1,K2)
              HRITE (H,126)  , I»K1 ,K2)
              HRITE (H,108)
              HRITE (H,125) (8FEED(I,4), I«Kl,K2)
              HRITE (H.126) C3CC (1,1) , IlKl ,K2)
              WRITE CH,127) (SREF(I,4) ,!•«!, K2)
              IP (L.EQ.6) WRITE (H,128)  (8FEED(I,2) , I«K1 ,K2)
              WRITE (H,1J1) (8CC(I,2) , I«K1 ,K2)
              WRITE (H.132) (8REF(I,2) , I«K1 ,K2)
WRITE (H,107)
WRITE (H,133) (8FEED(I,3) ,
                                             ,K2)
              WRITE  (H,134)  (3CC (1,3) , I«KJ ,K2)
              WRITE  (H.135)  (8REF(I,3) , I«K1 ,K2)
              WRITE  (H,108)
              WRITE  (H.133)  (SFEEDC I , 0) , UK1 , K2)
              WRITE  (H,134)  (SCC (1,1) , I»Kl ,K2)
              WRITE  (M.155)  (SREF ( I ,4) , I«K1 ,K2)
              WRITE  (H.175)
              WRITE  (H.186)  (8FEEO(1,5) , I«Kl ,K2)

-------
OUTPT2  OUTPT2.PC
                        FORTRAN V.5ACS63)  /KI   6-OCT-T7
12I3S   PACE 1-a
00225         WRITE (Hi 187)
00226         WRITE (Hi 188)
00227         MRITE (Hi 136)
00228         MRITE (Hi 137)
00229         WRITE (H,13B)
00230         60 TO 9
00231   C PRINT SUMMARY DATA
00232     700 MRITE (H,102)
00233         MRITE (H,l«0)
00234         WRITE (H,106)
00235         WRITE (H,102)
00236         WRITE (H|140)
00237         WRITE (H,107)
00238         WRITE (H,125)
00239         WRITE (H,14i)
00240         WRITE (H,108)
00241         WRITE (H,125)
00242         WRITE (H,14i)
00243         WRITE (H,17S)
00244         WRITE (Hi 176)
00245         MRITE (H.180)
00246         00 TO 9
00247   C PRINT SUMMARY DATA
00248     750 WRITE (HilOZ)
00249         MRITE (H,150)
00250         MRITE (H,Hl)
00251         MRITE (H|106)
00252         MRITE (H,102)
00253         MRITE (H,150)
00254         MRITE (H,15i)
0025S         WRITE (H,107)
00256         WRITE (H,125)
00257         WRITE (H,152)
00258         WRITE (H,153)
00259         WRITE (H|108)
00260         WRITE (H,125)
00261         WRITE (H,152)
00262         WRITE (H,153)
00263         WRITE (H,175)
00264         WRITE (H,176)
00265         WRITE (H|184)
00266         WRITE (H,185)
00267         WRITE (Hi 154)
00268         WRITE (Hi 155)
00269   C     MRITE CH,1S6)
00270   C     MRITE (Hi 157)
00271         CO TO 9
00272   C PRINT SUMMARY DATA
00273     800 MRITE (H|160)
00274         WRITE (H,16i)
00275         WRITE (H.162)
00276         WRITE (Hi 106)
00277         WRITE (H,160)
00278         WRITE (H«161)
00279         WRITE (H|162)
00280         WRITE (H|107)
                            (3CC(I»5),I»K1,K2)
                            (SINK(I),I«K1,K2)

                             FOR CRUSHERS
                            (SFEeD(I,2M«Kl,K2)
                            (SCC(If2)|I«Kt,K2)
                            (5CC(I,3),l«Kl,K2)
                            (SCCa,4),I«Kl,K2)

                            (SfEEO(I,5),I»Kl,K2)
                             FOR SCREENS
                            (3FEED(I,2),I«K1,K2)
                            (SCC(I,2),I«KJ,K2)
                            CSREP(I,2),I«K1,KS)

                            (SFEEO(I,3),I»K1,K2)
                            (SCC(I»3),I«KJ,K2)
                            (3REF(I,3),I»K1,K2)

                            (SFEED(X,4),I«Kl,K2)
                            (SCC(I,4),I»K1,K2)
                            (3REF(I,«),I«K1,K2)

                            (3FEED(I,5),I»K1,K2)
                            (3CC(I,5),HKl,K2)
                            (3REF(I,5),I»K1,K2)
                            (BTURCC(I),I«K1,K2)
                            (8FLT(I),I«K1,K2)
                             FOR BLENDERS
                            (3FEED(I,1),I«K1,K2)
                            (SREF(I,1),I«K1,K5)

                            (SFEED(I,2),I«K1,K2)
                            (SCC(I,2),UK1,K2)
                            (3REF(I,2),I«K1,K2)

-------
OUTPT2  OUTPT2.F4
                        FORTRAN V.SA(563) XKI   6-OCT-77
                                    13133   PAGE 1-5
00361
00282
00283
0028a
00285
00286
00287
00288
00269
00290
00291
00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
              HR1TC (H.163)
              WRITE (H,164)
              WRITE (H,165)
              WRITE (H.108)
              WRITE (Hi 163)
              WRITE (H.164)
              WRITE (H,165)
              WRITE (H,175>
              WRITE (H.181)
              WRITE (H,182)
              WRITE (M,183)
              00 TO 9
        C PRINT SUMMARY DATA
          900 WRITE 
-------
OUTPT2  OUTPT2.F4
            FORTRAN V,5A(563) /KI   6-OCT-77
                                        12133   PACE 1-6
SUBPROGRAMS CALLED
8CALARS AND ARRAYS ( "•" NO EXPLICIT DECLARATION . "X" NOT REFERENCED - "#« SUBSCRIPTED 1
•NCQMP
*K1
•KBL
 STORE
• I

TEMPORARIES
 1 I
 6 I
13 I
20«R
37 I
.30021
.80070
.30113
.80073
,30162
.80076
.80167
,80013
,80061
,80150
,80105
.80153
.80155
.80002
,80005
,80053
.80055
.30145
,30042
,80132
,80047
,80031
.80034
.80170
,80172
,80175
1432
1437
1444
1451
1456
1463
1470
1475
1502
1507
1514
1521
1526
1533
1540
1545
1552
1557
1564
1571
1576
1603
1610
1615
1622
1627
*NS
*K
•KNB
*NSIZE
•NORAV
 2
 T
14
26
00
.80022
.80024
.80072
.30027
.80116
,80164
,80010
.80101
.80015
.80104
.80064
.80107
.80156
.80003
.A0016
.30007
.80143
.80146
.80130
.80045
.80135
.80032
.30122
.80124
.80126
.30020
1433
1440
1445
1452
1457
1464
1471
1476
1503
1510
1515
1522
1S27
1534
1541
1546
1553
1560
1565
1572
1577
1604
1611
1616
1623
1630
 P8J
 6BOUND
*HL*NK
*NSTART
*NLIM
 3 I
10*R
IS R
27 I
"I I
.80110
.80112
.30026
.80161
.80075
.80077
.80011
.80060
.80103
.80063
.80152
.30066
.80157
.30050
.80052
.30141
.80056
.80147
.80043
.80133
.30136
.80120
.80035
.80037
.80173
1434
1441
1446
1453
1460
1465
1472
1477
1504
1511
1516
1523
1530
1535
1542
1547
1554
1561
1566
1573
1600
1605
1612
1617
1624
*KB
*KA
*J
 COMP
*K2
 4 I
11 I
16 I
30*R
02 I
.80023
.80071
,80160
.80115
.80163
.30165
.80012
.80014
.80062
.80017
,80106
.80154
.80000
.80004
.80006
.80054
.80144
.80040
.80131
.80046
.30137
.80033
.80123
.80171
.80127
1435
1442
1447
1454
1461
1466
1473
1500
1505
1512
1517
1524
1531
1536
1543
1550 I
1555 I
1562 I
1567
1574
1601
1606
1613
1620
1625
• BY
 SYMBOL
*KP
•L
 5 R
12«R
17 I
36 I
.80111
.80025
,80114
,80074
.80117
.80166
,80100
.80102
,80016
,80151
,80065
.30067
,80001
.80051
.80140
.80142
.80057
.30041
.30044
,80134
.80030
.80121
.80036
,80125
.30174
1436
1443
1450
1455
1462
1467
1474
1501
1506
1513
1520
1525
1532
1537
1544
1551
1556
1563
1570
1575
1602
1607
1614
1621 I
1626 I
LINE NUMBER/OCTAL LOCATION MAP

        0123
00000
00010
00020
00030
00040
00050






0
•
•
•
«
**"""— •

















































-------
OUTPT2  OUTPT2.F4
FORTRAN V.5A(563) XKI   6-OCT-77
13133   PAGE 1-7
00060
00070
oooeo
00090
00100
00110
00120
00130
00140
00150
00160
00170
ooieo
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
•
•
•
•
•
22
51
130
201
407
053
657
1063
1264
1461
1627
2011
2223
2364
2525
2707
•
3200
3422
3577
3761
B
•
•
.
^P
27
55
132
231
012
072
676
1102
1266
1464
1646
2030
•
2367
?544
2726
9102
3203
340}
3616
4000
•
.
•
•
•
30
56
134
247
415
511
715
1121
1305
1506
1651
2047
2224
2406
2547
2705
•
3262
3460
3621
4017
•
•
•
•
•
31
57
137
277
017
533
737
1103
1324
1511
1670
2066
2243
2425
2566
2764
3103
3301
•
3640
4036





33
60
143
300
023
536
742
1162
1343
1514
1707
2071
2262
2430
2605
2767
3122
3320
3461
3657
4041





36
67
153
303
427
555
7M
1165
136?
1543
1726
2110
2?65
2447
2624
3006
3141
3323
3500
3676
4044
•
•
•
•
•
37
100
156
334
031
574
1000
1204
1401
1570
1731
2127
2304
2466
2627
3025
3160
3302
3517
3701
4046





42
106
165
352
433
613
1017
12*3
1420
•
1750
2146
2323
•
2646
3044
3163
3361
3536
3720
4050





44
115
170
402
.
635
1041
1242
1437
1571
1767
2165
2326
2467
2665
3063
3202
3400
3541
3737
•
.
•
•
.
17
46
123
173
403
434
640
1044
1245
1456
1610
2006
2204
2345
2506
2704
.
3221
3403
3560
3756
0051
        OCTAL PROG siZEai0262
 ( NO ERRORS DETECTED }
         SCAIARS/ARRAY8«4? « FORMAT5»1367 » TEMP8/CONS»202 * CODE«4054 t ARGS>2353 )   * COHHON«2012

-------
OUTPT3  OUTPT3.F4
            FORTRAN V.5A(56J) /KI   6-OCT-77
                                        12129   PAGE 1
00001         SUBROUTINE OUTPT3
-------
OUTPT3  OUTPT3.FO
FORTRAN V.5AC563) XKI   6-OCT-77
13129   PAGE 1-1
TEMPORARIES

 ,30000    107 I         ,80001    110 I


LINE NUMBER/OCTAL LOCATION MAP
                         .A0016    111 R
         ,00000    112 i

00000
00010
00020
00030
0

•
15
102
1
0
„
16
104
2

,
17
112
3
.
•
22
115
a
.
•
26
•
5
m
m
30
121
6 7
.
• •
40 ' 50

e
.
13
60

q
—
14
77

OUTPT3  OCTAL PROG size«270   i SCALARS/ARRAYSIIS « FORMATS*?! + TEMPS/CONS*? + cooE«i24 + ARcs«27 )  + COMMON»Z
( NO ERRORS DETECTED ]

-------
OUTPT4  OUTPT4.F4
FORTRAN V.5A(563) /KI   6-OCT-77
12132   PAGE i
00001         SUBROUTINE OUTPT4(8G»L»Dt ,02,03,V5LYLD,VSLBTU,KF,S,FLOW,NUNITS,
00002        i  NFLOHS,N8IZE,NGRAV,S1,82,S3,S4,35,86,BTU)
00003   C*****»*t«**»*****»***•**«**•*•*•#***t******************************************
00004   C
00005   C  THIS SUBROUTINE CALCULATES AND PRINTS SUMMARY DATA FOR ALL
00006   C  UNITS AND FLOHSTREAMS
00007   C
00008   C*******************************************************************************
00009         COMMON STREAM<23,10,4)                                            * DIH *
00010         DIMENSION 86020,26),01(JO),02(30),03(30),L<30),V3LYLD<30),       * DIH *
00011        i  VSLBTUC30),KF<2,25),8C25),FLOHC28),BTU(4)                       * 0IM *
00012         COMMON /SYS/ CiH
00013         INTEGER G,H
00014     100 FORMAT(1H1,50X,22HSUMHARY DATA FOR UNITS)
00015     101 FORMAT<1HO,84X,5HYIELD,8X,12HBTU RECOVERY)
00016     102 FORMATUH ,8X,11HUNIT NUMBER,8X,9HUNIT TYPE,20X,
00017        1       18HDECI8ION VARIABLES,8X,9H(PERCENT),7X,9H(PERCENT))
00018     103 PORMAT(1HO,12X,I2,7X,I2)
00019     104 FORMAT(IH*,62X,F6.3,16X,F5,1,11X,F5.1)
00020     105 FORMATUH*,62X,F6.3)
00021     106 FORMAT(IM*,S4X,F6.S,2X»F6.3,2X»F6,3)
00022     107 FORHATC1H ,8X,11(|H-),8X,9(1H.),20X,1«(1H-),8X,9(1H-),6X,
00023     108 FORMAT(lH>,64X,F5.1fUX*F5.1>
00024     200 FORMATUH1,45X,28HSUHMARY DATA FOR FLOMSTREAMS)
00025     201 PORM*TUHO,64X,8HFLOHRATE,15X,7HPYRTTIC,5X,5HrOTAU
00026     202 FORMATdH ,6X,10HFLOH3TREAM,20X,6HORIGIN,5X,11HDESTINATION,
00027        1       6X,8H(PERCENT»   6X,3HA8H,6X,6MSULFUR,6X,6H3ULFUR,
00028        2       8HLBS S02/)
00029     203 FORHATUH ,8X,6HNUMBER,21X,8HUNIT NO.,5X,8HUNIT NO.,8X,
00030        1       8HOF FEED),3X,9H(PERCENTJ,2X,9H(PERCENT),3X,
00031        2       9H(PERCENT)r2X,7HBTU/LB.»2X»llHMILLION BTU)
00032     204 FOPHAT(lHO,10X,I2,2aX,I2,2X,A2,9X,I2,12X,F5.1,7x,F5.1,6X,
00033        1  F5.2,6X,F5,2,6X,F6,0,SX,P5.2)
00034     205 FORMAT(lHt,14X,6H(FEED))
00035     206 FORMAT(lHtil4X,20H(CLEAN COAL PRODUCT))
00036     207 FORMAT(IH*,14X,19H(HIDOLIN6S PRODUCT))
00037     208 FORMAT(1H+,10X,16H(REFU5E PRODUCT))
00038     209 FORHATdH »6X»10(IH-),19X,8(1H-)»4X,1J(1H«),6X, 8{lH-),
00039        i       3X,9(1H-),2X,9(1H.),3X,9(1H-),?X,7(1H.),2X,11UH-))
00040   C PRINT SUMMARY DATA FOR UNITS
00041         WRITE (HilOO)
00042         HRITE (HilOl)
00043         HRITE (Hil02)
00044         HRITE (H»107)
00045         DO 10 IU»1,NUNITS
00046         HRITE CH.103) IU,LC1U)
00047         IF (L(IU),E0.41) GO TO 10
00048         IF UnU),LE,6) HRITE (H,100) Dl (IU), VSLYLD(IU)»VSLBTU(IU)
00049         IF (L(IU),EQt7) HRITE (H,108) VSLYLD(IU),VSLBTU(IU)
00050         IF ((L(IU).GT.7).AND.U(IU).NE.il)} WRITE (H,105) DKIU)
00051         IF (L(IU).EQ.ll) HRITE (H,J06)  01(IU),D2(IU),D3(IU)
00052      10 CALL VES3ELUUU),3)
00053   C PRINT SUMMARY DATA FOR FLOHSTREAMS
00054         HRITE (H,200)
00055         HRITE CH,201)
00056         WRITE (H>202)

-------
OUTPT4  OUTPT4.F4
                        FORTRAN V.5AC565) /KI   6-OCT-77
                                        12132   PAGE 1-1
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00072
00073
00074
00075
00076
00077
0007B
00079
00060
00061
00062
00063
00064
              WRITE (H.203)
              WRITE (H,209)
              00 30 IF«1»NFLON8
              SUMl«0.
              SUM3»0.
              SUM4BO.
              IG«IF
              CALL EXPANDCSG, STREAM, IG,NSIZE»NGRAV)
              DO 20 I«1,NSIZE
              DO 20 J«1,NGRAV
              SUM1«SUM1+100,*STREAM(I,J,1)«STREAM(I,J,2)
              3UM2«SUM2tlOO.*STREAMCI,J,t)*STREAM(I,J,3)
              SUM3«SUM3*100,*STREAM(I,J,1)»STREAM(I,J,4)
           20 8UM4«SUM4+ST"f:AM
-------
       OUTPTfl  OUTPT4.F4
                        FORTRAN V.5A(563> /Kt   6.0CT-77
13133   PACE |-2
       TEMPORARIES
,30000 346 I
.00000 353 1
.80001 347 I
.80002 350 I
,80003 351 I
LINE NUMBER/OCTAL LOCATION HAP

00000
00010
00030
00030
00000
00050
00060
00070
00080
0
.
•
•
•
•
133
320
357
362
1
0
•
•
»
Q5
151
225
266
37?
2
.
•
•
•
SO
170
226
300
414
3
m
m
•
•
53
•
227
307
•
4
•
•
•
•
56
201
230
314
417
5
m
•
•
•
61
204
231
316

6
—
•
•
•
65
207
233
324

7
—
•
•
•
72
212
237
•

6
m
m
m
9
77
215
241
335

9
m
•
•
•
116
220
250
345

                                                                                                 .A0016
                                                                                                                  352
OUTPT4  OCTAL PROC size«i20o
C NO ERRORS DETECTED 1
                                                         * FORMATSVSIO  *  TEHPS/CONSBIZ  * cooE«426  *  »Rcs»237  i   +
to
to

-------
REDUCE  REDUCE.Ffl       FORTRAN V.SA(563) /KI   6-OCT-77        12130   PAGE 1


00001         SUBROUTINE REDUCECX,Y,N,N8IZE,NGRAV)

00003   C THIS SUBROUTINE REDUCES THE DIMENSIONALITY OF A 3-OIMENSIONAL ARRAY TO       *
OOOOa   C A 1-DIMENSIONAL ARRAY                                                        *

00006         DIMENSION X(23.10,4),Y(920,28)                                    * DIM *
00007         DO I Ul.NSIZE
00008         DO I JlUNORAV
00009         DO i K«l,4                                                        * DIM *
00010         IJK«flO*(I-l)*a*(J»l)+K                                            * DIM *
00011       1 Y(IJK,N)«X(I,J,K)
00012         RETURN
00013         END                                            ;


SUBPROGRAMS CALLED



SCAURS AND ARRAYS  [ "*" NO EXPLICIT DECLARATION • "X" NOT REFERENCED • "0* SUBSCRIPTED )

*N           II        *K           21        *TJK         31         Y           4*R        *J           SI
»NSIZ£       61         X           7*R        *I          10 I        *NGRAV      11 I

TEMPORARIES

 ,80000     12 I         ,80001     13 I         .80002     la I


LINE NUMBER/OCTAL LOCATION HAP
      10       1       2       3       «       5       6       7       8       9
......I[[[
      I
00000 I •       0       •       •       -       •       •       12      16      22
00010 I 23      34      •       60


-------
ROTARY  ROTARY,Ffl
FORTRAN V.5AC563) XKI   6-OCT-77
12130   PAGE 1
00001
00002
00003
00004
oooos
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00026
00029
00030
00031
00032
00033
00034
0003S
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

























              SUBROUTINE ROTARVUENGTH,DIAM,HOLE,SITE,NSIZE,NGRAV,TFEED,CPROD,
             1 FCPROD,RPROD|FRPROO»YLOVSL,BTUVSL,BTU,KBSG)
          ****.**************************•********•**************************•****<
           THIS PROGRAM DETERMINES THE WEIGHT DISTRIBUTION AND COMPOSITION OF THE
           ROTARY BREAKER PRODUCT FOR A  GIVEN FEED.

            VARIABLES AND ARRAYS APPEARING IN THE SUBROUTINE CIST
              LENGTH
              DIAH
              HOT
              HOLE
              NFALL
              SIZE(I)
              NSIZE
              NGRAV
              FCOAL
              FROCK
              TFEED(I,J,K)
              FTOT
              FCC
              FRC
              FRR
              FCR
              CPROD(I,J,K)
              FCPROD
              RPROD(I,J,K)
              FRPROD
              8YLDCX)
              8FLTU)
              SINK(I)
     BREAKER LENGTH (FEET)
     BREAKER DIAMETER (FEF.T)
     HEIGHT FROM WHICH MATERIAL IS DROPPED (FEET)
     OPENING SIZE (EITHER 6.0 INCHES OR 8.0 INCHES )
     NUMBER OF TIMES MATERIAL IS DROPPED
     BOUNDARIES OF COAL SIZE INCREMENTS
     NUMBER OF SIZE INCREMENTS
     NUMBER OF GRAVITY INCREMENTS
     COAL FEED FLOW RATE
     ROCK FEED FLOW RATE
     PROPERTIES OF TOTAL FEED STREAM (COAL+ROCK)
     TOTAL FEED STREAM FLOW RATE
     COAL FLOW RATE IN COAL STREAM
     ROCK FLOW RATE IN COAL STREAM
     ROCK FLOH RATE IN ROCK STREAM
     COAL FLOH RATE IN ROCK STREAM
     PROPERTIES OF COAL PRODUCT STREAM
     COAL PRODUCT FLOH RATE
     PROPERTIES OF ROCK PRODUCT STREAM
     ROCK PRODUCT FLOH RATE
     PERCENT OF COAL FEED OF SIZE I REPORTING TO PRODUCT STREAM
     PERCENT OF REFUSE STREAM OF SIZE i COMPOSED OF COAL
     PERCENT OF PRODUCT STREAM OF SIZE I COMPOSED OF ROCK
              INTEGER H
              REAL LENGTH
              DIMENSION CFALL(99),CSELCT(23),RFALL(99),RSELCT(2S),BRATIO<13),
             1 BUS)
              COMMON C<23),CSELC23),R3EL<23),
             2   SMID(23).BR(23,23),RP(23,23),CP(23,83),
             3 COVER(23,10,fl),ROVER(23,lO,«),CUNDRC23,10,4),RUNDR(2S,iO,0)
              DIMENSION CPROO(23,10,4),RPROIH23,10,4),SIZE(23),TFEED<23,10,4)
             l»BTU(4)
              COMMON /BLK1X SFEED{24f5),8CC(24,5),SMD(24,5),SREF(24,5),
             t              SYLD(24),TYLO(24),EFFIC<24),BTUREC<24),A3HERR(24>,
             2              SFLT(24),SINK(24),8MI8PU(24),SNRGR(24),SGRAV{24),
             3              SPE(24),SIMP(24),SEA(?4)
              COMMON /SYS/ CiH
              DATA CFALL X12*,20,12*.08,12*.06,63*.OS/
              DATA RFALL /.005,96*0.O/
              DATA C8ELCT X23M.OX
              DATA RSELCT X23*J.O/
              DATA B /I.Of,8927,.7035,.54,.2952,.1564,.0605,,0572,.0406,.0206,
             1 3*0./
              DATA BRATIO XI .0,.8308,,5882,.4176,.2065,.1041,.0522,.0366, .026,
            -1 .0131,3*0./
              NFALHLENGTH/1.3
              H6T»,75*OIAM
              AI40.0
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM

                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM
                                                          DIM

-------
       ROTARY   ROTARY.F4
             FORTRAN V.5AC563) /KI   6-OCT-77
                                                                12130   PAGE 1-1
to
en
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00072
00073
0007a
00075
00076
00077
00076
00079
00080
00061
00062
00063
00064
00065
00066
00067
00066
00069
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
00101
00102
00103
00104
00105
00106
00107
00106
00109
00110
00111
00112
                     IF(HOLE.GT.7.0)  A«50.
               C  SPLIT  FEED  STREAM INTO COAL STREAM AND ROCK STREAM
                     NS«N8IZE-1
                     NG«NGRAV»1
                     FROCKlO.
                     00 60  Ill,N3IZE
                     ROVER(I»NGRAV,l)»TFEED(I,N6RAV,l)*TFEEDU,NGRAV,2)-TFEEDCI,NG,l)*
   IP (ROVERd, NGRAV, D.LT.O.) ROVER(I,NCRAV, !)«0.
   COVER ( I i NGRAV, 1 ) «TFEEO ( I , NORA V , 1 ) -ROVER ( I , NORA V, 1 )
   FROCK»FROCK+ROVER(I, NGRAV, 1)
   ROVER(I, NGRAV, 2)«1.
   ROVERd, NGRAV, 3)«0,                            >
   ROVERd, NGRAV, a)«0.
   00 60 Jal.NG
   00 60 K»l,4                                                       * DIM *
60 ROVERd, J,K)«0.
   FCOALBl. -FROCK
   DO 70 I«1,NSIZE
   ROVER (I, NGRAV, 1)«ROVER( I, NGRAV, D/FPOCK
   COVER (I, NGRAV,!) •COVER (I, NGRAV, D/FCOAU
   COVCR(IfNGRAV>2)B(TFEED(I,NGRAV,t)*TFEEO(I,NGRAV,2)-ROVER(I,NGRAV,
  1 1)*FROCK)X(COVER(I, NGRAV, 1)*FCOAL)
   COVER (I, NGRAV, 3)«(TFEEO(I,NGRAV,t)*TFEEO(I,NGRAV,3))/(COVER(I,
  1 NGRAV, 1)*FCOAL)
   COVER(I»NGRAV,4)i(TFEED(I,NGRAV,l)*TFEED(I,NGRAV,4))/(COVER(I,
  1 NGRAV, 1)«FCOAL)
   DO 70 Jal,NG
   COVER(I«J,l)«TFEED(I,J,n/FCOAL
   00 70 K«2,a                                                       * DIM *
70 COVER(I,J,K)ITFEED(I,J,K)
COAL AND ROCK STREAM BREAKAGE
   DO 21 I«1,N3IZE
21 SMID(I)»(SIZE(I)tSIZE(I+l))/2,0
   DO 25 I»1,N5
   BR(I,I)nlfO
   LBTtl
   DO 28 II«U,N3IZE
   RATI08»8MID(II)/3HIO(n
   CALL INT3(BRATIO,B,RATIOB,BRK, 10)                                 * DIM *
22 BR(I,II)iBRK
23 BR(I,NSIZE)«0.0
   BR(N8IZE,N9IZE)BO.O
   FCUNDRvO.O
   FRUNDRlO.O
   DO 24 I«1,NSIZE
   DO 24 Jil, NGRAV
   DO 24 Kit, 4                                                       * DIM *
   CUNOR(I,J,K)«0.0
   RUNDR(I,J,K)«0.0
24 CONTINUE
   DO 25 NN>1,NFALL
   FRPRODlO.O
   FCPROD«O.O
   DO 26  I«1,NSIZE
   DO 26 Jll, NGRAV

-------
       ROTARY  ROTARY.P«
                        FORTRAN V.5AC563) XKI   6-OCT-T7
12130   PAGE 1-2
to
O)
00113         00 26 Kit,a                                                       * DIM *
00114         CPROD(I,J,K)»0.0
00115      26 RPROD(I,J,K)«0,0
00116         R8ElCNSIZE)iO.O
00117         C8ei(N8lZE)*0.0
00118         DO 5 1«1»NS
00119         R8Eim«RFAU.(NN)*RSEl.CT(I)
00120         C8EU(I)iCFAU.(NN)*CSElCT(I)
00121         IF(HGT.IE.6,0) GO TO 20
00122         R8EL(I)iR8EL(I)*HGT/6,0
00123         C8EL(I)lC8EL(I)*H6T/6.0
00124      20 LlT+t
00125         00 8 Hil,NSlZE
00126         U«II-1
00127         RP(I,II)«(BR(J,LL)-BR(I,II))*R8EU(I)
00128         CP(I,H)B(BR(I,LL)-BR(I,II))*C3EL(n
00129         DO 8 Jil.NGRAV
00130         RPROO(ri,J,n»ROVER(I,J,l)*RP(I,II)»RPROD(II,J,n
00131         CPROO(II,J,l)BCOVER(I,J,l)*CP(I|in*CPROOcn,J,n
00132         DO 9 Kl2»4                                                        * DIM *
00133         RPROO(II,J,K)lROVER(I,.M)*RP(I,II)*ROVER(I,J,K)*RPROD(II,J,K)
00134       9 CPROO(II,J,K)lCOVER(I,J,l)*CP(I,II)*COVER(I,J,K)*CPROD(n,J,K)
00135       8 CONTINUE
00136         DO 33 Jil,NGRAV
0013T         RPROD(IfJ,l)«ROVERCI,J,U*C1.0-RSEUin»RPRODCI,J,l)
00138      33 CPROD(I,J,l)»COVER(I,J,n*(l,0-CSEL(I))»CPROD(I,J,t)
00139       5 CONTINUE
00140         DO 36 JlliNGRAV
00141         RPROO(N8IZE,J,1)"ROVER(N8IZE,J»1)»RPROO(N3I2E,J,1)
00142      36 CPROD(N3IZE,J,1)«COVER(N8IZE,J»1)+CPROO(N3IZE,J|1)
00143         DO 37 Ill,NSXZE
00144         DO 37 Jut,NCRAV
00145         DO 37 K>2,4                                                       * DIM *
00146         CPROO(I,J,K)«COVERCI,J»n*U.O-CSEL.m)*COVERCI,J,K)+CPRODU,J,K)
00147         RPROO(I/J,K)«ROVER(I,J,n*(1.0-R3EL(n)*ROVER(I,J,K)»RPROD(I,J(K)
00148         IF(RPROD(I,J»U.NE.O.O) GO TO 41
00149         RPROD(X,J,K)*0,0
00150         GO TO 42
00151      41 RPROD(I,J,K)BRPROD(I,J,K)/RPROD(I,J,n
00152      42 IFfCPROD(I,J,l),NE.O.O) GO TO 43
00153         CPROD(I,J,K)«0.0
00154         GO TO 37
00155      43 CPROD(I,J,K)«CPROD(I,J,K)/CPROD(I,J,1)
00156      37 CONTINUE
00157   C  COAL AND ROCK STREAM SCREENING
00158         FCOVERlO.O
00159         FROVERVO.O
00160         DO 1 I«l,N8IZE
00161         8MlD(ni(SIZE(I)*3IZE(I»l))/2.0
00162         FRACH1.0
00163         FRACZil.O
00164         Cl«0.0
00165         C2«0,0
00166         IF(3IZE(I)-HOLE) 2,2,3
00167       3 CU1.0
00168         IF(8IZE(I+1)-HOUE) 11,10,10

-------
ROTARV  ROTARY.pa
                        FORTRAN V.5ACS63) /KI   6-OCT-77
PAGE 1-3
00169
00170
00171
00172
00173
00174
00175
00176
00177
00170
00179
00160
00161
00162
00163
00164
00165
00166
00167
00186
00169
00190
00191
00192
00193
00194
00195
00196
00197
00196
00199
00200
00201
00202
00203
00204
00205
00206
00207
00206
00209
00210
00211
00212
00213
00214
00215
00216
00217
00216
00219
00220
00221
00222
00223
00224
           il  PRACli(SIZEd)-HOLE)/ (SIZE ( D-SIZE r I + U )
              FRACSul.O-FRACt
              SMIDa)»(HOLE+SXZE
              ROVER d»«M)»Cd)*RPRODd,J,l)
              IF (ROVER(I«J>l).LT,l.E-5) ROVERC I, J, 1 )•<>.
              CPRODd»«M>«CPRODd,J,l)-COVERd,.M)
              FCOVER«FCOVERtCOVERd,J/n
              FROV€RnFROVER+ROVER(I,J,l)
              FCPROD«FCPROO+CPROO(I,J,1)
              FRPROO»FRPROD+RPROO(I,J,1)
              DO 4 K«2»4
              COVER(I,J,K)PCPROOd,J,K)
              ROVER(I,J,K)«RPRODd,J,K)
            4 CONTINUE
              IP (FCPROD.EQ.O.) GO TO 51
              DO 50 IIl,N3IZE
              DO 50 J»1,NGRAV
           50 CPRODd,J,l)«CPROOd,J,n/FCPROO
           51 IF (FRPROD.EO.O.) GO TO 53
              DO 52 I»1,N3IZE
              DO 52 J«1,NGRAV
           52 RPRODd,J,l)«RPRODd,J,n/FRPROD
           53 CONTINUE
        C
        c  THE FOLLOWING WRITE STATEMENTS MAY BE REMOVED
        C 100 FORHATC6E20.2)
        C 101 FORMATC 30X* 48H ROCK AND COAL STREAMS RESULTING FROM EACH DROP /,
        C    1 5*,10H COAL OVER ,10X,10H ROCK OVER ,10X,1JH COAL UNDER ,10X,
        C    2 11H ROCK UNDER )
        C     IP (NN.EO.l) WRITE (H,iQl>
        C     WRITE (H,100) FCOVER, PROVER,FCPROD|FRPROD,FCUNOR,FHUNOR
        C  *****************************************************************************
              CALL BLEND(CPROD*CUNDR,CUNDR,FCPROD,FCUNDR,FCUNDR,NSIZE,NGRAV,
             1 XOUMMY,VOUMMY,BTU»0)
              CALL aLEND(RPROD,RUNDR,RUNDR,FRPROD,FRuNDR,FRUNDR,NSIZE,NGRAV,
             1 XDUMMY,YDUMMY,6TU,0)
           25 CONTINUE
              IP (FROVER.EG.O.) GO TO 47
              DO 46 I«I,NSIZE
              DO 46 Jll,NGRAV
           46 ROVERd,J,l)»ROVERd,J,n/FROVER
           47 IP (FCOVER. EG. 0.) GO TO 49
              00 4H I«1,NSIZE
              DO 48 J«1,NORAV
           46 COVER d *.M> /FCOVER
           49 CONTINUE
              PCClFCUNDR*FCOAL
              PRC«FKUNDR*FROCK

-------
       ROTARY  ROTARY,F4
                FORTRAN V.5A(563) XKI   6-OCT-77
                                                                12130   PAGE 1-4
to
00
00225
00226
00227
00226
00229
00230
00231
00232
00233
00234
0023S
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
                     FCR»FCOVER*FCOAL
                     FR»»FROVER*FROCK
                     CALL BLEND(CUNOR,RUNDR,CPROD,FCC»FRC»FCPROD,NSIZE,NGRAV,
                    i XDUMMY,YDUMMY,BTU,0)
                     CALL BLEND(COVER, ROVER, RPROD,FCR,FRB,FRPROD,NSIZE,NGRAV,
                    I XDUMHY,YDUMMY,BTU,0)
               C NORMALIZE WEIGHT FRACTIONS IN EXIT STREAMS
                     SUMUO.
                     SUM2.0.
                     DO BO Iil,NSIZE
                     DO 80 JB1,NGRAV
                     8UMl«SUMltCPROO(I,J,l)
                  60 8UM2«3UM2*RPROD(I,J,1)
                     DO 81 IB1,NSIZE
                     DO 8t Jil,NGRAV
   81 RPROD(I,J,1)«RPROD(I,J,J)/8UM2
      IF (KB8G.EQ.O) RETURN
C************************************************** ********************
C CALCULATE SUMMARY DATA BY SIZE INCREMENTS
C**************** ******************************************************
      NS « NSIZE+1
      DO 280 KM, 5                                                      * DIM *
      8FEED(NS,K)»0,
      8CC(NSfK)BO.
      3REF(N8fK)«0.
  220 8MD(NS*K)iO,
C CALCULATE COMPOSITION OF FLOW STREAMS BY SIZE INCREMENTS
      DO 280 Hl.NSIZE
      DO 230 K«l,5                                                      * DIM *
      8FEEO(I»K)<0.
      SCCU,K)«0.
      8REF(I,K)IO.
  230 8MD(I,K)«0.
      DO 240 J«t,NGRAV
      SFEED(I,l)«SFEEO(I,miOO,*TFEeDU,J,l)
      SCC(I,t)«3CC(I»n»100.*RPROD(I,J,l)
      SREF(I,n»SREF(I,l) + lOO.*CPROD(IiJ,1)
      DO 235 K«2,4                                                      * DIM *
      SFEED(I,K)»SFEED(I,K)tlOO,*TFEED(I,J,1)*TFEED(I,J,K)
      SCC(I,K)«SCC(I»K)*100.*RPROD(I»J,1)*RPROO(I,J,K)
      8ReF(I,K)«3REF(I,K)+100,*CPROD(I,J,l)*CPRQD(I,J,K)
  235 CONTINUE
      SFEEO(I,5)«SFEED(I,5)+100,*TFEEO(I, J, t )*BTUPLB(BTU,
     1 TFEED(I,J,2))
      SCCn,5)«SCC(I,5) + 100.*RPRODU,J,l)*BTUPLB(BTU,
     i RPROD(I,J,2))
      SReF(I,5)iSREF(I,5)»100,*CPROO(I,J,i)*BTUPLB(BTU,
     1 CPROD(I,J,2))
  240 CONTINUE
      BFEED(I,S)iSFEED(I,5)/SFEED(I,l)
      If <8CC(I,1).GT.O.) SCC (I ,5)»SCC (I ,5)/SCC ( I , 1)
      IF (SREF(I,n.GT.O.) SREF ( I,5)«SREF ( I ,5) /3REF (I , 1)
      IF (8REF(I,5).LT.O.) SREF(I,5)«0.
      SFEED (NS, I ) iSFEED (NS, 1 ) +SFEEO (1,1)
      SCC (NS, 1)«8CC (NS, 1 )+SCC (1,1)

-------
ROTARY  ROTARY,Ffl       FORTRAN V.5AC563) /KI   6-OCT-77        12130   PAGE 1-5


00261         3REF
00282         00 280 K»2.4                                                      * DIM *
00263         SFEED(NS,K)iSFEED(NS»K)+9FEEO(I,K)
00284         IF <8FEED(I»U.EQ.O,) GO TO 250
00285         8FEED(I,K)BlOO.*SFEED(I,K)/sFEED(I,t)
00286         GO TO 251
00267     250 8FEEO(I,K)«0.0
00288     251 SCC(NS,K)«SCC(NS,K)*SCC(I,K)
00269         IF C8CC(I,U,EO.O.) GO TO 255
00290         3CC(!,K)B100.*8CC(I,K)/3CC(I,1)
00291         00 TO 256
00292     2SS SCC(I,K)«0.0
00293     256 3REF(N3,K)»3REF(NS,K)+3REF(I,K)
00294         IF (8REF(I,1).EQ.O,) GO TO 260
00295         SREP(I,K)BlOO,*SREF(I,K)/SREF(I,l)              ;
00296         GO TO 280
00297     260 3REF(I,K)iO.O
00298     280 CONTINUE
00299         DO 290 I»1,NSIZE
00300         8FFED(NS,5)*SPEED(N3»5)+SFEEDCl»n*9FEED0.
00332     318 DO 340 I«1,NSIZE
00333         DO 320 J«1,NGRAV
00334         3GRAV(I)»SGRAV(I)tCOVER(I,J,l)
00335         8PE(I)«5PE(I)+RUNOR(I,J,i)
00336         3IMPU)»SIMP
-------
       ROTARY  ROTARY.F4
           FORTRAN V.5AC563) /KI   6-OCT-77
                           12130   PAGE 1-6
       00337     320 8E»(I)«5EA(I)+RPROD(I,J,1)
       00338         IF (SEA(I).EO.O.) GO TO 322
       00339         SFLTd '-100,*SGRAVCI)*RI/SEACI)
       00340         60 TO  424
       00341     322 SFlTU)iO.
       00342     324 IF (SIMPCn.EQ.O.) GO TO 326
       00343         SINK3217«R
+1050»R
SMID
ROVER
8REF
ASHERR
8GRAV
 +105*R
•5047HR
 +550*R
*UOO#R
«1270»R
BR
CUNDR
8YLD
8FLT
SPE
 +134»R
 +7400R
+11JOXR
*1320«R
       SUBPROGRAMS CALLED
       INTS    EXPI    BTUPLB  BLEND
       8CALAR8 AND ARRAYS t "*» NO EXPLICIT DECLARATION - "X" NOT REFERENCED
                                                           "#" SUBSCRIPTED 1
*LL
•TOTALS
TFEED
XYLDVSL
R8ELCT
XBTUVSL
•FROVER
*II
1 I
6 R
155«R
344«R
445 R
452 I
*TOTAL1
*TOTAL4
RPROD
CFALL
*FCOAL
•FRAC2
*J
*A
2 R
7 R
156«R
176MR
373 R
377 R
446 I
453 R
•TOTAL2
•FCOVER
• NC
tPRPROD
*FCC
BRATIO
•NFALL
*FCR
3 R
10 R
157 I
341 R
374 R
4000R
447 I
454 R
*YDUMHY
*K
•FCUNDR
CPROD
*KBSG
CSELCT
*R2
*FROCK
4 R
11 I
160 R
342KR
375 I
415«R
450 R
455 R
                                                                                                       *NS
                                                                                                        RFAUL
                                                                                                        B
                                                                                                       *BRK
                                                                                                       *XDUMMY
                                                                                                       •HOLE
                                                                                                       •FRUNDR
                                                                                                       • DIAM
                                                                                                5 I
                                                                                               12«R
                                                                                              161«R
                                                                                              343 R
                                                                                              376 R
                                                                                              444 R
                                                                                              451 R
                                                                                              456 R

-------
ROTARY  ROTARY,Fa
FORTRAN V.5A(563) /KI   6-OCT-77
12130   PAGE 1-7
•FRAC1
*R1
LENGTH
•NGRAV
TEMPORARIES
,80021
,80026
.80013
,80062
,80001
,80051
,80053
,80057
,80044
,80031
,80036
457 R
464 R
471 R
476 I

503
510
515
522
527
534
541
546
553
560
565
                        •RATIOS
                        *FRC
                        •L
                        *PRR
           460 R
           465 R
           472 I
           477 R
.80022
.80027
,80060
,80016
,80002
.80005
.80007
.80040
,80045
.80032
.80037
504
511
516
523
530
535
542
547
554
561
566
*NSIZE
*HGT
*8UM2
*FCPROD
.80023
.80010
.80014
.80063
.80003
.A0016
.80054
.80041
.80046
.80033
.80020
461 I
466 R
473 R
500 R
505
512
517
524
531
536 >
543
550
555
562 I
567 I
LINE NUMBER/OCTAL LOCATION MAP

        0123
SIZE
*TEMP
*I
• SUM1
.30024
.80011
.80061
.80017
.80050
,80052
.80055
.80042
,80047
.80034
,00000
462«R
467 R
474 I
501 R
506
513
520
525
532
537
514
551
556
563 I
570 1
                                *C2
                                 BTU
                                *C1
                                *NN
463 R
470«R
475 R
502 I
,30025
.80012
.90015
.80000
,80004
,80006
,80056
,80043
.80030
,80035
507
514
521
526
533
540
545
552
557
564
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00260






52
137
227
314
376
443
517
600
74J
1045
1126
1167
1254
1357
•
•
1476
•
1572
1633
1676
2022
2100
0





54
143
m
324
177
444
522
614
743
1046
1130
1172
1266
1366
•
1440
1500
•
1601
1637
1705
•
2102






55
147
242
330
400
450
525
631
752
1062
1136
1200
1275
1370
•
•
»
1533
1615
•
1714
2036
2104






61
150
•
334
404
454
531
632
763
1070
1140
1212
1304
1374
•
1442
1513
1534
*
1644
1723
•
2105





33
•
166
255
337
410
455
535
655
767
1100
1141
1220
1311
1376
•
1445
1516
1535
•
1650
1724
2052
2115





37
100
171
261
315
Oil
465
500
701
773
HOt
114?
1?22
1316
1012
«
1447
1521
1541
•
1651
174U
205«5
2120





42
111
175
270
351
420
504
546
707
774
1115
1143
1224
1324
1414
»
1453
1524
1543
1617
1655
1764
2061
2127





44
121
203
271
353
427
506
550
711
1012
•1
1150
1230
1332
1420
•
1455
1527
1551
1622
1661
2004
2066
2130






126
211
•
363
436
507
562
723
1027
1124
1152
1234
1333
1422
•
1470
.
1564
1623
1665
2005
2073
2134





50
133
•
312
372
442
513
574
736
1035
1125
1157
1244
1345
•
1436
1472
1531
1570
1627
1672
•
2075
2144

-------
       ROTARY  ROTARY,
FORTRAN V.5AC563) /KI   6-OCT-77
12130   PAGE 1*6
00290
00300
00310
00320
00330
00340
00350
2147
2220
•
2271
2315
2365
2417
2156
2225
2255
?2T2
2316
2366
2421
2157
2231
2257
2273
2317
2370
2427
2163
2235
2260
2277
2323
2373
2430
2173
2237
2261
2300
2325
2400
2432
2176
»
2?62
2303
2333
2401
2434
2205
2263
2304
2340
2403
2442
2206
2241
2264
2305
2346
2406
2443
2212
2243
2267
2311
2356
2410
»
2216
2251
2270
2312
2360
2412
2445
       ROTARY  OCTAL PROG SIZEI3367  (  SCALAR8/ARRAYS«502 *  TEMPS/CON8«100  *  COOE«2«60  »  ARGS*105  )
       ( NO ERRORS DETECTED )
                                                                        COMMON«I«OU
60
(O

-------
       SCREEN  SCREN1.F4
                        FORTRAN V.5A(563> /KI   6-OCT-77
                                                        12131   PAGE i
co
co
00001
00002
00003
00004
00005
00006
00007
ooooa
00009
oooto
OOOlt
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00036
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
                     SUBROUTINE  SCREEN(L,SCSZ,SIZE,NglZE.NGRAV,FEED,SOVER.FOVER,
                    1 SUNDER,FUNDER,YLDVSL,BTUVSL,BTU,KBSG)
                 >**********************************************************************<
                  THIS PROGRAM DETERMINES THE HEIGHT DISTRIBUTION AND COMPOSITION OF THE
                  SCREEN OVER AND SCREEN UNDER STREAMS FOR A GIVEN FEED.

                   VARIABLES  AND ARRAYS APPEARING IN THE SUBROUTINE LIST
                     IDRV
                     LEVEL
                     SCSZ
                     SIZECI)
                     NSIZE
                     NGRAV
                     FEED(I,J,K)
                     80VER(I,J,K)
                     FOVER
                     SUNDER(I,J,K)
               INDICATES IF SCREEN IS MET OR DRY
                  IDRY«1 FOR DRY SCREEN
                  IDRY"2 FOR MET SCREEN
               INDICATES IF SCREEN IS AN UPPER OR LOWER SCREEN
                  LEVEL*1 FOR UPPER SCREEN
                  LEVEL»2 FOR LOWER SCREEN
               PROJECTED SCREEN OPENING            ,
               BOUNDARIES OF COAL SIZE INCREMENTS
               NUMBER OF SIZE INCREMENTS
               NUMBER OF GRAVITY INCREMENTS
               PROPERTIES OF FEED STREAM
               PROPERTIES OF OVERFLOW STREAM
               OVERFLOW PRODUCT FLOW RATE
               PROPERTIES OF UNDERFLOW STREAM
FUNDER         UNDERFLOW PRODUCT FLOW RATE
I              DESIGNATES SIZE INCREMENT OF COAL
J              DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL
K              DESIGNATES WEIGHT, ASH, PYRITIC SULPHUR AND TOTAL SULPHUR
               (THE WEIGHT COLUMN CONTAINS THE FRACTION OF THE
               STREAM IN THE ITH SIZE, JTH GRAVITY INCREMENT)
SYLD(I)      • PERCENT OF FEED OF THE ITH SIZE
               REPORTING TO THE UNDERFLOW STREAM
                     COMMON A(9,2,2),C(23),SHID(23),AC(13)
                     DIMENSION S3Z(13),D1(9),D2(9),D3(9),D4(9)
                     DIMENSION SIZE(23),FEED(23,10,4),SUNDFR(23,10,4),BTU(4)
                    1,SOVER(23,10,4)
                     COMMON /BLK1/ 3FEED(24,5),SCC(24,5),SMO(24,5),SREF(2
-------
SCREEN  SCRENl.Fa
FORTRAN V.5A(563) /Kl   6-OCT-77
12131    PAGE 1-1
OOOS7         CALL INT8<8SZ,AC,SCSZ,AA,9)                                       * OIM *
00056         DO 1 I«1,NSIZE
00059         SMID(I)B
-------
       SCREEN  SCRENI.FO
                        FORTRAN V.5A<563> /KI   6-OCT-77
                                        12131   PAGE 1-2
       00113      90 SFLT(I)«SCCCI|1)
       00110         60 TO 60
       00115      55 SlNK
       00116      60 SFLTCN3)«SFLT(N3)»3FLT(n
       00117         8XNK(NS)«SINK(NS)*8INK(J)
       00116      65 CONTINUE
       00119         RETURN
       00130         END
       COMMON BLOCKS

       /.COMM./CtlJT)
       A            + 00R

       /BLKl/(tl430)
       SFEED        tOOIR
       SMD        +J60#B
       BTUREC    *1050*R
       8NRGR     +1210KR
                        sec
                        3REF
                        ASHERR
                        8GRAV
           t!70*R
           +550*R
          +1100*R
          +1270KR
             8VLO
             SFLT
             8PE
                                                            + 73*R
           +740*R
          *1130*R
          »1320*R
                                                AC
             TYLO
             SINK
             SIMP
                                                +122KR
           +770KR
          +1160«R
          +1350WR
             EFFIC
             SMISPL
             SEA
          +1020»R
          »1210«R
          +1400HR
60
en
SUBPROGRAMS CALLED

INT3    SDSIZE  EXP.

8CALAR8 AND ARRAYS  I "»" NO EXPLICIT DECLARATION - "%" NOT REFERENCED - "«* SUBSCRIPTED 1
        oa
        D3
       *FUNDER
        01
        SIZE
       *L
            16MR
            HZ R
            0 62
5
•
•
•
•
3a
64
6
•
•
•
•
36
66
7
m
m
m
m
37
100
8
.
•
•
•
45
102
9
•
•
•
•
53
104

-------
SCREEN  SCREN1.F4
        FORTRAN V,5A(56J)  /K!    6-OCT-77
                                        12131    PACE  1-3
00060
00070
oooeo
00090
00100
00110
00120
        112
        154
        251
        354
        412
        451
        477
114
166
265
573
010
454
us
170
301
402
420
456
116
176
430
463
117
202
310

432
465
206
314

036
066
126
220
320
000
m
070
133
234
326
OQ6
•
473
143
242
335
410
406
475
146
250
336

450
SCREEN  OCTAL PROG size«677  t  SCALARS/ARRAYSHIO  «•  TEMPS/CONSSSI  * CODEBSIO +
{ NO ERRORS DETECTED )
                                                                           COMMON«1567

-------
       3DSIZE  SDSIZl.Ffl
                       FORTRAN V.5A(563)  /KI    6-OCT-77
                                                                12153   PAGE i
co
-I
00001
00002
00003
00000
OOOOS
00006
00007
00008
00009
OOOtO
00011
00012
00013
00014
00015
00016
00017
00016
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
        10
                     SUBROUTINE SDSIZE
               15    CONTINUE
                     DO 21
              DO  20  K«2,4
              SUM(IlK)BSUM(I,K)tlOO.*FLOM(IrJ,l)*PLOH(I,J|K)
           20  CONTINUE
              8UM
-------
03
00
       SDSIZE  SDSIZI.F4
FORTRAN V.5A(563) /KI   6-OCT-77
12153   PAGE 1>1
       LINE NUMBER/OCTAL LOCATION MAP

00000
00010
00020
00030
0

32
120
204
1
0
37
131
•
2

40
137
220
3
13
44
140
•
4
16
54
152
222
5
17
5S
156

6
24
76
170

7
.
77
171

8
25
•
176

9
31
115
202

       8DSIZE  OCTAL PROG SIZE«255   [ SCALARS/ARRAYSal1 » TEMPS/CON3H4  *  CODE»225  t  APGS«J  )
       ( NO ERRORS DETECTED )
       END      USERI BAUGHMAN  (10,110021)          JOB I HAIN1   8EOt  11933    FINIsHEDi  06-OCT-77  13136   PAGESl  94   SVSTEMi  B
       »****»**•»»**»•****»*************************<

-------
       SEP
SEPI.F4 FORTRAN V.5A(563) /KI   6-OCT-77
12133   PAGE 1
09
CO
ooooi
00002
00003
00004
oooos
00006
00007
ooooa
00009
00010
OOOil
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
0002S
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00036
00039
00040
00041
00042
00043
00044
0004S
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C






SUBROUTINE 3eP(PEED,CCiREF, MID, SIZE, GRAV,GBOUND,S6XX,YLDCC,YLDMIO,
1 VLPREr,N3!ZE,NGRAV,LV,NCOMP,YUDV8L,BTUV3L,BTU,KBSG)
***********************************************************************


»***
THIS SUBROUTINE DETERMINES THE HEIGHT DISTRIBUTION AND COMPOSITION OF THE
CLEAN COAL AND THE REFUSE FOR A GIVEN FEED ENTERING A SPECIFIED VESSEL
AT A GIVEN OVERALL SEPARATION GRAVITY

PRINCIPAL ARRAYS AND VARIABLES

FLOW STREAMS
FEfD(I,J,K) PROPERTIES OF THE FEED STREAM
CC(I,J,K) PROPERTIES OF THE CLEAN COAL
REF(I,J,K) PROPERTIES OF THE REFUSE
MlD(I,J,K) PROPERTIES OF THE MIDDLINGS (JIG ONL»)
SIZE(I) BOUNDARIES OF COAL SIZE INCREMENTS
GBOUND(J) BOUNDARIES OF SPECIFIC GRAVITY INCREMENTS
GRAV(J) SPECIFIC GRAVITIES
I DESIGNATES SIZE INCREMENT OF COAL
J DESIGNATES SPECIFIC GRAVITY INCREMENT OF COAL















K DESIGNATES WEIGHT, ASH, PYRITIC SULFUR AND TOTAL SULFUR
(THE HEIGHT COLUMN CONTAINS THE FRACTION OF THE ENTIRE
STREAM IN THE ITH SIZE, JTH GRAVITY INCREMENT)
NSIZE NUMBER OF SIZE INCREMENTS OF COAL
NGRAV NUMBER OF SPECIFIC GRAVITY INCREMENTS OF COAL

GENERAL
R(I1,L) • RATIO OF SEPARATION GRAVITY FOR A GIVEN SIZE DESIGNATION
THE OVERALL SEPARATION GRAVITY
3(11, L) « BOUNDARIES OF SEPARATION CURVE SIZE INCREMENTS
N(L) 9 NUMBER OF SIZES FOR EACH VFSSEL
11 a DESIGNATES SIZE INCREMENT OF SEPARATION CURVE
L • DESIGNATES TYPE OF VESSEL
Lll FOR CONCENTRATING TABLE
H2 FOR DENSE-MEDIUM VESSEL
Ln3 FOR DENSE-MEDIUM CYCLONE
L*4 FOR HYDROCYCLONE
US FOR SINGLE-STAGE BAUM JIG
L»6 AND L»7 FOR 2. STAGE BAUH JIG
L»8 FOR FROTH FLOTATION CELL
8G8P • OVERALL SEPARATION GRAVITY
YIELD • HEIGHT FRACTION OF FEED TO CLEAN COAL
*************************************************** ********************!


A**********************************************************************'

NOTEl THE CURRENT VERSION OF THE SIMULATOR DOES NOT USE THIS SUBROUTINE
FOR FROTH FLOTATION CALCULATIONS (SEE SUBROUTINE FROTH)

•A*********************************************************************!
DIMENSION FEED(23,10,4),CC(23,10i4),RFF(23,10,4),MlD(23,10,«), *
1 SlZE(23).GRAV(10),GBOuND(in,BTU(4) *
COMMON XFEEDOO,10),XCC(10,10),XMIO(10,JO),SCMWT(20),SCMASH(20)*
DIMENSION RC10,8),S(10,8) *
COMMON FACTOR(IO),N(8) *
COMMON /BLK1X 8FEEO(2fl,5) , SCC (2
-------
SEP     SEPl.FO FORTRAN V.5A(563) /KI   6-OCT-77
12133   PAGE t-l
00057        1              8YLD<24),TYLD(24),EFFIC(24),BTUREC(24),ASHERR<24),  * DIM *
00058        2              SFLT(24),SINK(24),SMISPLC24),5NRGR<24),SGRAVC24),   * DIM »
00059        3              SPE(24),3IMP(24),SEA(?4)                            * DIM »
00060         COMMON /BLK2/ DI8TRB(24,10)                                       * DIM *
00061         REAL HID
00062   C **• A CHANGE IN THE SIZE OF N MILL AFFECT THE FOLLOWING CARD          * DIM *
00063         DATA N / 8,6.7,8,8,5,8,2 /
00061   C *** A CHANGE IN THE SIZE OF R MILL AFFECT THE FOLLOWING 8 CARDS       * DIM *
00065         DATA R / .966, .994, .974, .970,1.028, 1 .126,1,212,1.,2*0.,           TABLES
00066        1 .969,.961,.993,1.01,I,031,1.,4*0.,                               DMV
00067        2 .995,.989,.991,.999,1.019,1.0«2,1.,3*0.,                         DMC
00068        3 .810,,642,.861,.956,1.074,1,199,1.16?,!.,2*0.,                   HC
00069        4 .940,.953,1.007,1.061,1,040,1.081,1.302,1.,2*0.,                 JIG-OV
00070        5 1.074,1.094,1.161,1.282,1.262,5*0.,                              JIG-PR
00071        6 .946,.966,1.047,1.134,1.060,1.107,1.336,1.047,2*0.,              JIG-SEC
00072        7 !'.,!,,6*0. /                                                     FF
00073   C **• A CHANCE IN THE SIZE OF S MILL AFFECT THE FOLLOMING 8 CARDS       * DIM *
00074         DATA S / 100.,.25,.093,,046,.0232,.0116,.0058,3*0,,               TABLES
00075        1 100.,.4.,2.,I,,,5,5*0.,                                           DMV
00076        2 100.,.5,.375,.25,.093,.046,4*0.,                                 DMC
00077        3 100,,.185,.093,.046,.0232,.0116,,0058,3*0.,                      HC
00078        4 100,,3.,1,625,.5,.25,.093,.046,3*0.,                             JIG-OV
00079        5 100.,3.,1.625,.3,6*0,,                                           JIG-PR
00060        6 100.,3.,1.625,.5,.25,.093,.046,3*0.,                             JIG-SEC
00061        7 100.,9*0, /                                                      FF
00082         L«LV
00083         SG8P«3GXX
00084         KCOUNT»1
00065         IF (LV.EQ.6) L«5
00086         IF (LV.NE.7) GO TO 100
00067         LuB
00066         SGSPB1.5
00069     100 N3«NSIZE»1
00090         NG«NGRAV*i
00091   C TEST FOR COMPOSITE FEED
00092    1000 IF (NCOMP.NE.O) GO TO 40

00094   C TRANSFORM FROM HEIGHT DISTRIBUTION BASED UPON SIZE INCREMENTS OF FEED*** ****!
00095   C TO HEIGHT DISTRIBUTION BASED UPON SIZE INCREMENTS OF SEPARATION CURVES       *
00096   C A*****************************************************************************
00097         DO 1 Il«l,10                                                      * DIM *
00096         DO 1 J«l,10                                                       • DIM *
00099         XFEED(I1,J>«0.
00100         XCC(I1,J)«0,
00101       1 XHTD(I1,J)*0.
00102         NF«N(L)-l
00103         DO 16 11*1,NF
00104   C FIND SMALLEST SIZE(I) THAT IS GREATER THAN QR EQUAL TO 8(11,L)
00105         DO 2 I«1,N3
00106         IF (SIZECn.GT.Sai,L)) GO TO 2
00107         IMIN«I-1
00108         IF (8IZEU).EQ,S(I1,L)> IHINvI
00109         GO TO 3
00110       2 CONTINUE
00111         IMINBNS
00112       3 IF ((IMIN.EQ.O).AND.(SIZE(l).LE.3(11*1,L))) GO TO IS

-------
SEP     8EP1.F4 FORTRAN V.3A(563) /KI   6-OCT-77
                                                        12133   PACE 1-2
00113
ooii4
00115
00116
00117
00118
00119
00120
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132

00134
00135
00137
00130
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
              IF (IMIN.EQ.NS) GO TO 18
        c FIND LARGEST sized) THAT is LESS THAN OR EQUAL TO suui.u
              DO 4 I«l,NS
              IF (8IZE(I).GT.3CI1+1,L)> GO TO 4
              IMAX-I
              GO TO 3
            4 CONTINUE
            S IF (fIMAX.EQ.N8tl).AND.lFEED(IHIN,)M).C8IZEdHTN*l).S(Il,L))/«(S(IU1,L).SIZE(IMAX.1))/
             2 (8IZE(IMAX).SIZE(IMAX-1))
              IF (NINT.EO.O) GO TO 17
              DO 7 IIll,NINT
            7 XFEEO(Il,J)iXFEED(n,J)+FEED(IJ,J,n
              GO TO 17
        C CASE 2 • LEFT BOUNDARY .IT. S(IUL)
            8 IF (NINT.GT.O) GO TO 9
              XFEEO(Il,J)iFEED(IMINtl,J,l)*(8(Il+t,L).3IZE(IMIN+l))/(SIZF(IMAX).
             1 8IZECIMIN*!))
              GO TO 17
            9 XFEED(Il,J)iFEED(IMIN+l,J,l)+FEED(IMA».l,J,l)*(SCn»l,L)-
             1 6!Ze(IMAX-l»/(SIZE(IMAX)»SIZE(IMAy.1))
              IF (NINT.E0.1) GO TO 17
              00 10 III2.NINT
                                                      ( IMAx«NSIZE*l)
           10 XFEEO(n,J)iXFEEO(Il,J)*FEED(U,J,ll
              GO TO 17
        C CASE 3 - RIGHT BOUNDARY ,GT. SUU1.L}
           11 IF (NINT.GT.O) GO TO 12
              1 SIZE(IMIN))
              GO TO  17
           12 XFeED(Il,J)iFEED(IHlN,j,i)*(SI7EdMTN«j)-S(Il,L))/(SIZE(IMIN*n-
              1 8!ZFClHIN))»FEED(IMAX.2,J,i)
              IF (NINT.EQ.l) GO TO  17
              NJNT'NINT.I
              DO 13
            13 XFEEOdl,J)iXFEED(M,J)fFEEDdJ,J,n
              GO TO  17

-------
SEP     8EPI.F4 FORTRAN V.5A(563) /KI   6-OCT-77
12133   PAGE 1-3
00169
00170
00171
00172
00173
00174
0017S
00176
00177
00176
00179
00180
00161
00162
00163
00164
0016S
00166
00187
00166
00169
00190
00191
00192
00193
00194
00195
00196
00197
00196
00199
00200
00201
00202
00203
00204
00205
00206
00207
00206
00209
00210
00211
00212
00213
00214
00215
0021*
00217
00216
00219
00220
00221
00222
00223
00224
C
C











C
C
C







C












C
C
C
C







C








          CASE 4 - LEFT BOUNDARY .IT, 8CI1»L> AND RIGHT BOUNDARY ,GT. 3(11*1,1)
                                                     (IMIN«0 AND IMAX«NSIZE»1)
           14 IP (NINT.CT.l) GO TO 15
              XFEEDCIl,J)iFeED
           21  FF>Y1*XFEED(I1»J)
              XI6RAV(J)/(R(II,7)*3GSP)
           22  XHID(I1|J)»(1,-Y(X,7,IX))*FF
          I********************************		
          TRANSFORM  FROH  HEIGHT DISTRIBUTION BASED UPON SIZE INCREMENTS OF SEPARATION
          CURVES TO  HEIGHT  DISTRIBUTION  BASED UPON SIZE INCREMENTS OF  CLEAN  COAL
           23
              DO  24  111,23
              DO  24  Jal,tO
              cc(i.j,n«o.
                          DIM  *
                          DIM  *
           24  REF(I,J,1)«0.
              DO  32  I«l,N8IZE
        C  FIND SMALLEST  8(11, L)  THAT  IS  GREATER  THAN  OR  EQUAL  TO SIZE(I)
              DO  25  Il«l,NL
              IF  (8(U,L).GT.8IZE(I))  GO TO  25
              IMlNHl-1
              IF  (8(I1,L).EQ.3IZE(I))  IMIN«ll
              GO  TO  26
           25  CONTINUE
              INlNnNL
           26  IF  CUMIN, EQ.O). AND. CSU,L).LE.3IZE(I»1)M  GO  TO 32

-------
SEP
        SEP1.F4 PORTRAN V.5A(563) /KI   6-OCT.77
                                                12133    PAGE  1-4
00225
00226
00227
0022S
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253
00254
002SS
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
              IF (IMIN.EQ.NL)  GO TO II
        c FIND LARGEST scn»u THAT is LESS THAN OR EQUAL TO SIZECI+U
              DO 27 Ilil.NL
              IF (SCIUU.GT.SIZECItin  GO TO 27
              IHAX'Il
              00 TO 26
           27 CONTINUE
              IM*X«NL+1
           28 IF (UMAX. EQ.NL+1). AND. -S*CF1«XCCCIMIN,J)/XFEED(IMIN,J) +
             1 F2*XCC(IMAX-l,J)/XPEEDUMAX-i»J»
     1 F2*XMID(IMAX-1,J)/XFEEDUMAX-1,J))
      IF (NINT.EO.O)  GO TO 31
      DO 30 II«1,NINT
      IJ«IMIN*II
      P3«(8CIJtl,L)-S(IJ,U)/(SIZEU*l>-8IZEUn
      CC(I,J,1)«CCU,J,1)*FEEDU,J,1)*F3*XCCUJ,J)/XFEEDUJ,J)
      MID(I,J, 1)"MIDU,J,1)+FEEDU,J,1)»F3*XMID(IJ,J)/XFEEO(IJ,J)
   30 CONTINUE
   31 CONTINUE
   32 CONTINUE
      GO TO 44
     **********
C COMPOSITE SEPARATION
C
   40 NL«NCL>
      DO 420 1*1,23
      DO 420 J«l,10
  420 MIO(I,J,1)«0.
      DO 41 Jil,NGRAV
      X«GRAV(J)/SGSP
   41 CC(1,J,1)*Y(X,L,NL)*FEED(1,J,1)
      IF (LV.NE.6) GO TO 44
C SPECIAL PROVISION FOR 2-STAGE BAUM JIG
   42 DO 43 J*1,NGRAV
      X1«GRAV(J)/(R(5,6)*SGSP)
      FF«Y(X1,6,?)*FEED(1,J,1)
      X2«GRAV(J)/(R(8,7)*SGSP)
      MID(1,J,1)«(1.-Y(X2,7,8))*FF
   43 CONTINUE
                                                                                  DIM
                                                                                  DIM

-------
SEP
SEPI.F4 FORTRAN V,5A(S63) /KI   6-OCT.77
                                                        12133   PAGE 1-5
00261
00282
00263
00264
00265
00266
00267
00266
00289
00290
00291
00292
00293
00294
0029S
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00326
00329
00330
00331
00332
00333
00334
00335
00336
        C **•«***••***.********»**********»********•••******»****•****•*****••»***»»**»*•
        C CALCULATE DISTRIBUTION DATA, ASM AND SULFUR CONCENTRATIONS, YIELD,           *
        C SEPARATION fiRAVITYi PROBABLE ERROR AND IMPERFECTION                          «
        C ****•.•.*»**»****•.•****************»*****•** ************************************
           44 SUMHO.
              SUM2«0.
              SUM3-0.
              DO 49 HI,N3IZE
              00 45 J«1,NCRAV
              REP(I«J»1)»FEED(I,J,1)-CC(I,J,I)-HIO(I,J,1)
              IP 
-------
SEP
        8EP1.F4 FORTRAN V.5A(563) /KI   6-OCT-77
                                                12133   PAGE 1-6
00337
00338
00339
00340
00341
00342
00343
00344
              IF(AB3C8GXX-SGRAV(N3)).LE. 0.003) 60 TO 454
              IF ((KCUUNT.EU. 20). ••>:.•. (L.?u.d)) J3 TJ -l'j-1
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
      KCOUNT • KCOUNT *i
      00 TO 1000
c NORMALIZE HEIGHT FRACTIONS IN EXIT STREAMS
  QS4 DO 46 IU,N3IZE
      DO 46 J«1,NGRAV
      cc(i,j,n«cc(i»J,n/8UMi
      REF(I,J,1)«REF(I,J,D/SUM2
      IF (8UM3.EQ.O.) GO TO 46
      MIO(I,J,1)»HIDU,J,1)/SUH3
   46 CONTINUE
C  DEBUG STATEMENTS
      WRITE(6,999) KCOUNT,SGXX,5GSP,3GRAV(NS)
999   FORMAT(1HO,5X,IKCOUNT« >,I2,SX,ISGXXX,F5.3,5X
     l,'8G8P«',F5.3,SX,t3GRAV(NS)|i,F5.J)
      IF (KB8G.EO.O) RETURN
C ***<
C CALCULATE SUMMARY DATA BY SIZE INCREMENTS
C
      CALL SOSIZE(FEED,3FEED,BTU,NSIZE,NGRAV)
      CALL 8DSIZE(CC.SCC,BTU»NSIZE,NGRAV)
      CALL SDSIZE(R£F,SREF,BTU,NSlzE,NGRAv)
      CALL 8D3IZE(MIO,SMIO,BTU,N8IZE,NGRAV)
      DO 49Q  I»1,NSIZE
      3YLD(I)«100.*3UMl*8CC{I,l)/SFEED(I,t)
  490 CONTINUE
      SYLD(N3)»100.*YLDCC
C CALCULATE THEORETICAL RECOVERY, WEIGHT EFFICIENCY, BTU RECOVERY AND
C ASH ERROR
      DO 51 Ill,NSIZE
      8CMHT{1)«0.
      SCMASH(1)IO.
      DO 500  J*2,NG
      JHJ-1
      3CMMT(J)»0.
      8CMA8H(J)iO.
      DO SO K»1,J1
      8CMHT(J)iSCMHT(J)fl.Et4*FEED(I,K,l)/3FEED(I,l)
   50 8CMA8H(J)«SCMASH(J)+100.*FEED(I,K,l)*FEEO(I,K,2)
      SCHA8H(J)«1.E+«*8CMASH(J)/(SCMWT(J)*SFEEO(I,U)
      IF (8CMASH(J).LT.SCMASH(J.l))  SCMA3H(J)BSCMA8H(J-l)
  500 CONTINUE
      TYLD(I)«VINTRP(SCMASH,SCMWT,SCC(I,2l,NG)
      IF {TYLD(I).GT.O.) EFFIC(I)«tOO.*SYLO(I)/TYLD(I)
      BTUREC(I)«100.*YLDCC*SCC(Iil)*3CC(1,5)/(SPEED(I,IjtSFEED(1,5))
      A3HERR(I)lSCC(I,2)-YINTRP(SCMHT,8CMA8H,SYLD(I),NG)
   51 CONTINUE
      3CHHT(l)«0.
      8CHA8H(1)«0.
      DO 520  J«2,NG
      J1«J-1
      SCMMT(J)«0.
      SCMA8H(J)BO.
      DO 5? K*1,J1
                                                                                * DEBUG *
                                                                                * DEBUG *
                                                                                * DEBUG *
                                                                                * DEBUG «

-------
SEP     SEPI.F4 FORTRAN V.5AC563) /KI   6.OCT.77
                                                         12133   PACE  1-7
00393
00394
00395
00396
00397
00398
00399
00000
00001
00402
00003
00004
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00022
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00047
00448
              00 52 I«1,NSIZE
              3CMHT(J)BSCMWT(J)+100.*FCEO(I,K,n
           52 3CMA8M{J)pSCMA8H(I»K,2)
              $CHASH(J)ilOO.*SCHASH(J)/$CHMT(J)
              If (8CMA8H(J),LT.3CM*SH(J-1J)  SCMA3H( J )«SCMASH< J-l )
          520 CONTINUE
              TYLD(N8)iYlNTRP(3CMASH,SCMnT,5CC(N3,2),NG)
              IP (TYLD(NS).GT.O.) EFFIC(NS)alOO.*SYLD(NS)/TYLD(NS)
              eTtlREC(N3)BlOO.«YLDCC*3CCCNS,l)*SCCfNS,S)/,NG)
        C CALCULATE FLOAT IN REFUSE,  SINK IN CLEAN COAL,  TOTAL MISPLACED
        c MATERIAL AND NEAR GRAVITY o.to MATERIAL
           S3 00 57 Iil,N3IZE
              SG1«SGRAV(I)-0.1
              3G2«8GRAV(I)
              3GS»3GRAVCn»0.1
              SFLT(plO.
              SINK(I)«0.
              8MI3PL(I)»0.
              3NRGR(I)«0.
              DO 56 J«1,NGRAV
              IF (3G2.GT.G80UND(J)) GO TO 54
              SMlSPL(I)"SMI3PL(I)*l.E+«*SUHi*CC(I,J,l)/SFEEO(I,n
              GO TO 56
           54 IF (8G2.LT.GBOUND(Jtl))  GO TO 55
              SFLT(I)lSFLTmtl.E+4*REF(!,J,l}/$REF(I,l)
              SMT3PL(I)«SMI$PL(I)*t.E*4*3UM2*ReF(T,J,l)/3FEED(I,l)
              GO TO 56
           55 F«(SG2>GBOUND(J))/(GBOUND(J+1)-GBOUND(J))
              SFLT(I)l3FLT(I)+l.E+4*F*REF(I,J,l)/SREF(I,l)
              3INK(I)i3INK(n*l.E+0*(l..F)*CC(I,J,n/SCC(I,n
              3MI3PL(I)«3MI3PL(I)»l.E+fl*(F*SUM2*RFF(I,J,n+(l,-F)*SUMl*
             1 CC(I,J,m/SFEED(I,l)
           56 CONTINUE
              DO 57 Jll,NGRAV
              IF ((SGl.GT.OBOUND(J*n).OR.(SG3.LT.OBOUND(J)))  GO TO 57
              FBI.
              IF ((3Gl.GE,GBOUNO(J)).AND.(SG5.LE.GBoUND(J+n))
             1 F«(8G3-3GU/(GBOUND(J*l)-GBOUNO(J))
              IF ((3Gl.LT.GBOUND(J».AND.(SG3lLE.GBOUNO(Jtl)))
             1 F«(8G3-GBOUND(J))/(GBOUNO(J*1)-GBOHND(J))
              IF ((SG1(GE*GBOUND(J)).AND.(SG3.GT.GBOUND(J«1)))
             1 FB(GBOUND(J+1)-3G1)/(GBOUNOCJ*1)-GBOIIND(J»
              8NRGR(I)«SNRGRCI)+l.E+0*F*FEED(I,J,1)/3FEEDU,t)
           57 CONTINUE

              8Gl«8GRAV(N3)-0.1
              869l8GRAV(NS)
              3G3l8GRAV(N3)t0.1
              SFLT(N8)IO.
              8INK(N8)»0.
              SMI3PL(N3)»0.
              3NRGR(N3)«0.
              DO 63 J«1,NGRAV

-------
SEP
SEPI.F4 FORTRAN V.5A(563) XKI   6-OCT.77
12133   PAGE 1-6
00449         IP (8G2.GT.GBOUND(J)> GO TO 59
00450         00 SB Ill,N3IZE
00451         8INK(N8)«5INK(NS)+100,*CCCI,J,n
00452      58 8Ml8Pl(N8)«SMISPL(NS)tlOO,*8UMl*CCCT,J,l)
00453         60 TO 63
00454      59 IF  GO TO 61
00455         DO 60 Iil,N3lZE
00456         8FLT(N8)iSFLT(N8)*100,*REF(I,J,l>
00457      60 8MlSPL(N8)«3MI3PL(NSH100.*SUM2*REIrU,J,n
00458         00 TO 63
00459      61 F«(SG2-GBOUND(J))/(GBOUND(J+1)-GBOUND(J))
00460         DO 68 Iil,N3IZE
00461         8FLT(N8)«SFLT(NS)»tOO.«F«REF(I.J.n
00462         S1NK(NS)=SIMK(MS)*100.«(1.-F)*CC(I,J/1>
00463      62 8Ml8PL(N3)«SHI8PL(NS)+100.*(Fi8UM2*REF(I,J,l)»(l..F)*8UMl*
00464        1 CC9,2
00492         3UHl*8UMU2.*YlNTRP(GRAV,FACTOR,GBOUND(nt(K»n*Dxl,NGRAV)*DXl/3,
00493      68 8UM2«8UM2+2.«YINTRP(GRAV,FACTOl',8GR*V(I)»(K-|)«DX2,NGR»V)*DX2/3.
00494      69 8CA(I)l5.*(100.*(SGRAV(I).GBOUND(in-SUMltSUH2)
00495         BTUV8L«BTUREC(NS)
00496         YLOV8L«3YLO(N3)
00497         RETURN
00498         END
 COMMON  BLOCKS

 /,COMM./(tS46)
 XFEED        +0*R
                XCC
                           *ia«#R
   t310«R
8CMWT
3CMASH
                                                                                                   tSOO*R

-------
SEP
        SEP1.F4 rORTRAN V,5A(563) /KI   6-OCT-77
                                                        12133   PAGE 1-9
FACTOR
           *524*R
/BLK1/CM430)
SPEED        tO#R       8CC
SYLD       »740*R       TYLD
SPIT      +1130NR       SINK
SPE       +13200R       SIMP

/BLK2/C+360)
OISTRB       +0#B
+536*1
                                   »170*R
                                   »770*R
                                  *1350*R
SHIP
EFF
SMI
SFA
 +3bO«R
*1020*R
+1210»R
+ 1
-------
SEP
8EPI.F4 FORTRAN V.5A(563) /KI   6-OCT-77
12|33   PAGE 1-10
LINE NUMBER/OCTAL LOCATION MAP

00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
ootoo
00110
00120
00130
00140
ooiso
00160
00170
ooieo
00190
00200
00210
00220
00230
00240
00250
00260
00270
00260
00290
00300
00310
00320
00330
00340
00350
00360
00370
00360
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
0









70
105
162
222
272
373
•
550
•
710
746
1000
1051
1122
1172
1233
•
1476
1525
1614
1631
1763
2056
2140
2225
2273
«
2352
2400
2454
2526
2606
2646
2711
3015
3126
3153
3242
•
3434
3522
1
0









111
164
225
•
375
474
S51
627
713
753
1007
1054
1134
1173
1242
1367
1501
1587
•
1647
1777
2065
?147
?234
2274
23S7
?354
2401
2457
2530
2614
»647
2722
3025
3131
3155
3244
3350
3441
3541
2








47
73
121
166
241
300
400
477
•
632
•
•
1012
1055
1135
1175
1251
•
1504
1534
m
1662
2013
2072
2161
2241
•
•
2356
2406
2465
2531
•
2650
2733
3027
3133
3165
3255
•
3446
3543
3








50
•
125
177
•
304
«13
502
601
643
»
756
1020
1062
1137
1200
1255
1415
•
1550
•
1670
2022
2102
2172
2251
2275
•
2360
2410
2473
2535
2624
2651
2734
•
3135
3177
3265
3370
3450
3560
4








1



44


505
604
644
•
761
1030
1067
1141
1214
1261
1417
•
.
m
1676
2026
2105
2175
2253
2301
2344
2365
2412
2503
2537
•
2652
2744
30«7
3137
3200
•
-
3457
3577
5








53
•
131
202
250
330
4]4
520
6A6
662
716
764
•
1100
115P
•
1?76
1421
•
1553
1616
1704
2030
2111
?177
2?S5
2303
•
2367
2413
2512
2547
•
2654
2755
•
Stun
3?05
3310
3«in
316?
3615
6








57
_
134
205
•
331
416
•
610
665
722
770
•
»
•
1217
1314
1424
1505
1555
1617
1722
2040
2114
2207
•
2312
.
-
2415
2515
2564
2633
2661
2767
3067
3141
3207
3313
3412
3471
3620
7








il
75
144
215
252
•
•
521
613
667
723
771
•
1104
1155
1223
1315
1437
1510
1564
1620
1734
2044
2115
2213
2257
2321
•»
•
2427
2516
2571
2637
2672
*
•
3142
3217
3317
3425
3476
*
a








63
too
147
217
256
m
443
523
626
672
725
773
.
1107
1160
•
1330
1455
1513
1573
1621
1746
2047
2117
2216
2264
2323
2346
2373
2441
2517
2575
2642
2703
3011
3107
3143
3231
3326
•
3503
3622
4








65
101
161
220
264
371
444
•
•
675
737
775
1046
1117
1170
1225
1343
1474
1514
1602
1625
1747
2052
2130
2221
2270
2332
2350
2377
2450
2524
2600
2644
2704
3013
3121
3147
3232
3330
3430
3505


-------
3EP     OCTAL PROG 8IZEi«S«S  I 8CALARS/ARRAYS-336 * FORMATS*!? » TEMPS/CONS"!II  + CODE«36«3 t A»G3B21«  1   +  COMMON»255b
t NO ERRORS DETECTED 1

-------
SPLIT   SPLITI.F4
FORTRAN V,5A(563) /KI   6-OCT-77
12131    PAGE 1
00001
00002
00003
00004
00005
OOOOb
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00016
00019
00020
00021
00022
00023
00024
0002S
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
1
1
C ****<
C THIS
C DIST
C
c f REI
c ****
i
i
i
2
3





1




C ****
C CALC
C ***«


2




10




              SUBROUTINE SPLIT(FEED,PRODI,PROD2,BTU,YLD1,YLD2,D1,NSIZE,NGRAV,
               YLDVSL,BTUV8L«KBSG)
               *O*******Ot*****************************»***************************i
          THIS SUBROUTINE CAUSES A FLOHSTREAM (FEED) TO BE SPLIT INTO TWO
          DISTINCT FLOHSTREAMS (PRODI AND PROD2) HAVING THE SAME COMPOSITIONS

            REPRESENTS THE FRACTION OF FEED GOING INTO PRODI
              ***********M**************************A*******************************!
              DIMENSION PEED(23,10,4),PROD1(23,10,4),PROD2(23,10,4),BTU(,          DIM
                            SYLD(24),TYLO(24),EFFIC<2<»),BTURECC24),ASHERRC24),    DIM
                            3FLT(2a),SINK(2a),SMI3PL(24),5NRGR(2«),SGRAV(24),     DIM
                            SPE(24),8IMP(24),SEA(24)                              DIM
              DO 1 I>1,NSIZE                                     ;
              DO 1 J*i,NGRAV
              DO 1 Kit,4                                                        * DIM *
              PRODKI,J,K)»FEED(I,JfK)
              PROD8(I,J,K)BFEED(I,J,K)
            1 CONTINUE
              F«.01*01
              YLOt«F
              YLD2«1.-F
              IF  (KB8G.EO.O) RETURN
              *******************o*********»i^**********************************»»*****
          CALCULATE SUMMARY DATA  BY  SIZE  INCREMENTS                                    *
          A*****************************************************************************
              NS»N8IZE*1
              00  2 K«l,5                                                        * DIM *
              SFEEO(NS,K)«0.
              CALL SDSIZE(FEED,SFEED,BTU,NSIZE,NGRAV)
              DO  to I«1,N3
              DO  10 K»l,5                                                       * DIM *
              3CC(NS,K)iSFEED(NS,K)
            10 SREF(N3,K)»SFEED(N5,K)
              YLDVSL'Dl
              BTUVaL«100.*SCC(NS,5)/SFEEO(NS,5)
              RETURN
              END
 COMMON  BLOCKS

 /BLKl/(+1430)
 SFEED        +0#R
 TYLD        *770l»R
 SINK       tll60*R
 SIMP       »1350*R
 3CC         +170«R        SMlD       +360#R       SREF       +550«R       3YLD       +740«H
 EFFIC      *io2o*R        BTUREC    *IOSO*R       ASHERR    *UOO*R       SFLT      +ii30«R
 SMISPL     »1210*R        3NRGR     «1240»R       SGRAV     *1270»R       3PE       «1320»R
 SEA        +14000R
 SUBPROGRAMS  CALLED

 3DSIZE

-------
       SPLIT   SPLIT1.FO
FORTRAN V.SACS63) /KI   6-OCT-77
12131    PAGE 1-1
       8CALAR3 AND ARRAYS  t "** NO EXPLICIT DECLARATION - "X" HOT REFERENCED -  "#» SUBSCRIPTED 1
•YLD1
*KBSG
BTU
*NBRAV
TEMPORARIES
.80000
,80005
t R
6 I
I30R
20 I

22 I
27 I
*NS
*BTUV3L
PROD2
PRODI

.80001
.A0016
2 I
7 R
14«R
21*R

23 I
SO R
FEFD
*J
*I

.30002
3*R
10 I
15 I

24 I
• K
*Dt
*F

.80003
4
11
16

25
I
R
R

I
*YLOVSL
•NSIZE
*YLD2

.80004
5
12
17

2b
R
I
R

I
en
(3
       LINE NUMBER/OCTAL LOCATION HAP

00000
00010
00020
00030
0
•
.
101
123
1
0
•
104
129
2
V
•
105
131
3
•
•
110
132
4
•
31

137
5
•
35
•
150
6

41
•
152
7
•
42
112
•
8
•
56
115
157
9
•
7a
116

       SPLIT   OCTAL PROG SIZE«2«0  t SCAURS/ARRAYS^! * TEMPS/CONSal3 t CODCB176 t ARG8«6 1  t COMMON.1430
       ( NO ERRORS DETECTED ]

-------
       VESSEL   VESSEL.
                        FORTRAN V.5AC563) /KI   6-OCT-77
18132   PAGE 1
01
CO
00001         SUBROUTINE VESSEL(L,N)
00002   C
00003   c THIS SUBROUTINE PRINTS THE NAME OF EACH COAL WASHING UNIT
00004   C *******************************************************»»,!
OOOOS         COMMON /SYS/ G.H
00006         INTEGER G,H
00007     100 FORMAT(lHti42X.21H(CONCENTRATING TABLE))
00006     101 FORMATUH*,42X,21H(DENSE-MEDIUM VESSEL))
00009     102 FORMAT(iHt.42X,22H(DEN8E-MEDIUM CYCLONE))
00010     103 FORMAT(1H+,42X»14H(HYDROCYCLONE))
00011     104 FORMAT(lHt,42X,l7H(FROTH FLOTATION))
00012     105 FORMAT(1H*,42X«10H(BAUM JIG))
00013     106 FORMAT(1H+,42X,16H(ROTARY BREAKER))
00014     107 FORMATClH*,«ax,31H(PRIMARY MULTIPLE ROLL CRUSHER))
00015     108 FORMAT(1H*,42X,30H(PRIMARY GYRATORY/JAW CRUSHER))
00016     109 FORMATClHt»42X,29H(PRIMARY SINGLE ROLL CRUSHER))   >
00017     110 FORMAT(lHt,42X»2TH(PRIMARY CAGE HILL CRUSHER))
00018     111 FOHMAT(lHt,42X,33H(SECONDARY MULTIPLE ROLL CRUSHER))
00019     112 FORMAT(lHt,42X,32H(SECONDARY GYRATORY/JAM CRUSHER))
00020     113 FORMAT(1H+,42X,31H(SECONDARY SINGLE ROLL CRUSHER))
00021     114 FORMAT(1H+,42X,29H(SECONDARY CAGE MILL CRUSHER))
00022     115 FORMAT(lHt,42X,18H(DRY UPPER SCREEN))
00023     116 FORMAT(lHt,42X,18H(DRY LOWER SCREEN))
00024     117 FORMATUH+,42X,18H(HET UPPER SCREEN))
00025     118 FORMAT(IH»,42X,1BH(HET LOWER SCREEN))
00026     119 FORMAT(lMi,42X,16H(STREAM BLENDER))
00027     130 FORMAT(1H+,42X,1TH(STREAM SPLITTER))
00028     121 FORMATUHt,42X,i8H(2»5TAGE BAUH JIG))
00029     200 FORMATUH0.57X,19HCONCENTRATING TABLE/)
00030     201 FORMAT(1HO,57X,19HDENSE-MEDIUM VESSEL/)
00031     202 FORMATUHO,57X|20MDENSE-MEDIUM CYCLONE/)
00032     203 FORM*T(1HO»61X,12HHYOROCYCLONE/)
00033     204 FORMAT(1HO,59X,15HFROTH FLOTATION/)
00034     205 FORMAT(lHOt63X,6HBAUM JIG/)
00035     206 FORMAT(1HO»60X,14HROTARY BREAKER/)
00036     207 FORMAT(1HO*52X,29HPRIMARY MULTIPLE ROLL CRUSHER/)
00037     208 FORMAT(lHOr53X»28HPRIMARY GYRATORY/JAW CRUSHER/)
00038     209 FORM*T(1HO,S3X|27HPRIHARY SINGLE ROLL CRUSHER/)
00039     210 FORMAT(1HO,54X,2SHPRIMARY CAGE MILL CRUSHER/)
00040     211 FORMAT(1HO,51X,31HSECONDARY MULTIPLE ROLL CRUSHER/)
00041     212 FORMAT(1HO,52X,JOH8ECONDARY GYRATORY/JAN CRUSHER/)
00042     213 FORHAT(1HOI52X,29H8ECONDARV SINGLE ROLL CRUSHER/)
00043     214 FORMAT(1HO,53X,27H3ECONOARY CAGE MILL CRUSHER/)
00044     215 FORMAT(1HO,59X,16HDRY UPPER SCREEN/)
00045     216 FORMAT(!HO«59X,16HORY COMER SCREEN/)
00046     217 FORMATUHO,59X,16HWET UPPER SCREEN/)
00047     218 FORMAT(1HO,59X,16HHET LOWER SCREEN/)
00048     219 FORMAT(1HO,60X,14HSTREAM BLENDER/)
00049     220 FORHAT(1HO,60X,15HSTREAM SPLITTER/)
00050     221 FORMAT(1HO,59X,16H2«STAGE BAUM JIG/)
00051     300 FORMAT(lHt,24X,21H(CONCENTRATING TABLF))
00052     301 FORMAT(lHt,24X,21H(DENSE-MEDIU" VESSEL))
00053     302 FORMAT(1H+,24X,22H(DENSE-MEDIUM CYCLONE))
00054     303 FORMAT(|Ht,24X,14H(HYDROCYCLONE))
OOOSS     304 FORMAT(lHt,24X,17H(FROTH FLOTATION))
00056     305 FORMAT(1H+,24X,10H(BAUM JIG))

-------
VESSEL  VESSEL.Ffl       FORTRAN V.5A(563) /KI   6-OCT-77        1ZI32   PAGE 1-1


00057     306 FORMAT(lHt,24X,16H(ROTARY BREAKER))
00058     307 FORMATUHt,24X.31H(PRIMARY MULTIPLE ROLL CRUSHER))
00059     306 FORM.AT(1H+,24X,30HARY MULTIPLE ROLL CRUSHER))
00063     312 FORMAT(lH+,24Xi32H(SECONDARY GYRATORY/JAM CRUSHER))
00064     313 FORMAT(IH+,24X,3IH(SECONDARY SINGLE ROLL CRUSHER))
00065     314 FORMAT(IH+»24X,29H(SECONDARY CAGE MILL CRUSHER))
00066     315 FORMATUH*,24X,18H(DRY UPPER SCREEN))
00067     316 FORMAT(IH+,24X,16H(DRY LOWER SCREEN))
00068     317 FORMAT(1H+,24X»16H(WET UPPER SCREEN)}
00069     316 FORMAT(IH*,24X,18HCWET LOWER SCREEN))
00070     319 FORMATUH*,24X,16H(STREAM BLENDER))
00071     320 FORMAT(1H*»24X.17HCSTREAM SPLITTER))
00072     321 FORMATC1H+,24X,18H(2-STAG£ BAUM JIG))
00073         L1«L
00074         IF «L.GE.U).AND.(L.LT.20)) LHL-3
00075         IF «L.GE.21).ANO.(L.LT.25)) L««L-4
00076         IF (L.EQ.41) CU21
00077         IF (L.EU.St) Ll»22
00078         IF (N.EQ.2) CO TO 23
00079         IF (N.EQ.3) 00 TO 50
00060         60 TO (1,2.3,4,5,6,7,8,9, 10,11,12,13,14,15,16,17,18,19,20,21,22),
00061        1 Ll
00082       1 WRITE (H,tOO)
00083         RETURN
00084       2 WRITE (H,101)
00065         RETURN
00066       3 WRITE (H,102)
00087         RETURN
00068       4 WRITE (H,103)
00089         RETURN
00090       5 WRITE (H,lo!>)
00091         RETURN
00092       6 WRITE (H,121)
00093         RETURN
00094       7 WRITE (H,104)
00095         RETURN
00096       6 WRITE (H,J06)
00097         RETURN
00098       9 WRITE (H.107)
00099         RETURN
00100      10 WRITE (H,108)
00101         RETURN
00102      11 WRITE (H,109)
00103         RETURN
00104      12 WRITE (H,110)
ooios         RETURN
00106      13 NRITE (H,lll)
00107         RETURN
00108      14 WRITE (H,112)
00109         RETURN
00110      15 WRITE (H,113)
00111         RETURN
00112      16 WRITE (H.114)

-------
       VESSEL   VESSEL.F«
                        FORTRAN V.5AC563) XKI   6-OCT«77
12132   PAGE 1-2
en
tn
00113         RETURN
00114      17 WRITE CH.U5)
00115         RETURN
00116      18 HRITE (H.116)
00117         RETURN
00118      19 HRITE (H.117)
00119         RETURN
00120      20 HRITE (H,118)
00121         RETURN
00122      21 HRITE (H.119)
00123         RETURN
00124      22 MRITC (H,120)
00125         RETURN
00126      23 60 TO (24,25,26,27,28,29,30,31,32,33,3«,35,36,37,38,39,40,41,42,
00127        1 43,44,45),LI
00126      24 NRITE (H,200)
00129         RETURN
00130      25 HRTTE (H.201)
00131         RETURN
00132      26 WRITE (H,202)
00133         RETURN
00134      27 WRITE (H,203)
00135         RETURN
00136      28 WRITE (H,205)
00137         RETURN
00138      29 WRITE CH,221)
00139         RETURN
00140      30 WRITE (H,204)
00141         RETURN
00142      31 WRITE (H,206)
00143         RETURN
00144      32 WRITE  (H,207)
00145         RETURN
00146      33 WRITE  (H,208)
00147         RETURN
00148      34 WRITE  (H,209)
00149         RETURN
00150      35 WRITE  (H.210)
ooisi         RETURN
00152      36 WRITE  (H,211)
00153         RETURN
00154      37 WRITE  (H,212)
00155         RETURN
00156      38 WRITE  (H,213)
00157         RETURN
00158      39 WRITE  (H,214)
00159         RETURN
00160      40 WRITE  (H,215)
00161         RETURN
 00162      41  WRITE  (H,2tb)
00163         RETURN
00164      42  WRITE  (H,217)
 00165         RETURN
00166      43  WRITE  (H,218)
 00167          RETURN
 00168       44  WRITE  (H,219)

-------
       VESSEL  VESSEL.
                        FORTRAN V.5AC563) /KI   6-OCT-77
                                                                                     1-3
CJI
a>
ooi69         RETURN
00170      45 WRITE (H.220)
00171         RETURN
00172      50 GO TO (51,52,53,54,55,56,57,58,5",h(1»M,63,63,64,65,
00173        1        66,67,68,69,70,71,72),LI
00174      51 WRTTF (M,300)
00175         RETURN
00176      52 HRITF. (H,301)
00177         RETURN
00178      53 WRITE (H.302)
00179         RETURN
00160      54 HRTTE (H,303)
00181         RETURN
00182      55 WRITE (M.305)
00183         RETURN
00184      56 WRITE (11,321)
00185         RETURN
00186      57 WRITE (H,304)
00187         RETURN
00188      58 WRITF (H,306)
00189         RETURN
00190      59 HRITE (H,307)
00191         RETURN
00192      60 WRITE (H,30U)
00193         RETURN
00194      61 HRITE (H,309)
00195         RETURN
00196      62 HRITE CM,310)
00197         RETURN
00198      63 HRITE (H,311)
00199         RETURN
00200      64 HRITE (H,312)
00201         RETURN
00202      65 WRITE (M.313)
00203         RETURN
00204      66 HRITE (H,314)
00205         RETURN
00206      67 HRITE (H,315)
00207         RETURN
00208      68 WRITE (H,316)
00209         RETURN
00210      69 HRITE (M,3t7)
00211         RETURN
00212      70 WRITE (H.31B)
00213         RETURN
00214      71 WRITF (H,319)
00215         RETURN
00216      72 WRITE (H,320)
00217         RETURN
00218         END
       COMMON  BLOCKS

       XSYS/(*2>
       G             tO  I
                                      *1  I

-------
VESSEL  VESSEL.Fo
                       FORTRAN V,SA(563) /Kl   6-OCT-77
i2i32   PAGE 1-4
SUBPROGRAMS CALLED
8CALARS AND ARRAYS I "** NO EXPLICIT DECLARATION . "X" NOT REFERENCED • "*" SUBSCRIPTED )

*N           II        *L1          21        *L           31

TEMPORARIES

 .A0016    747 R                                               >


LINE NUMBER/OCTAL LOCATION MAP

00000
00010
00020
00030
00040
00050
00060
00070
00060
00090
00100
00110
00120
00130
00140
00150
00160
00170
ooiao
00190
00200
00210
0 1
0







36
110 113
134 137
160 163
204 207
256 261
302 305
326 331
352 355
376 401
450 453
474 477
520 523
544 547
2 3







5
70 73
11« 117
140 143
164 167
210 213
262 265
306 311
332 335
356 361
402 »
454 457
500 503
524 527
550 553
4







6
74
120
144
170
214
266
312
336
362
434
460
504
530
554
5







11
77
1?3
117
173
217
271
315
341
365
417
463
507
533
557
6







22
too
124
150
174
220
272
316
342
366
440
464
510
534
560
7







26
103
127
153
177
•
275
321
345
371
443
467
513
537
•
8







32
104
130
154
200
252
276
322
346
372
unit
470
514
540
563
9







34
107
133
157
203
255
301
325
351
375
147
473
517
543

VESSEL  OCTAL PROG 8IZE«2351
I NO ERRORS DETECTED )
                               (  8CALARS/ARRAYS«3  *  FORMATS«743 + TEMPS/CONSm * CODE«566 + ARG8«614 1
                                         COMMON»2

-------
               Y.F<»    FORTRAN V.5A(56J) /KI   h-OCT.77
                                                                PAGE i
en
oo
00001
00002
00003
OOOOU
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
0001S
00016
00017
oooie
00019
00020
00021
00022
00023
00024
00025
00026
00027
00020
00029
00030
00031
00032
00033
00031
00035
00036
00037
00036
00039
00040
00041
00042
00043
00044
0004S
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
      FUNCTION Y(X,LiIU
C
C THIS FUNCTION EVALUATES A POINT ON THE DISTRIBUTION CURVE
C FOR A GIVEN VESSEL (L) AND GIVEN SIZE (Tl)
C USING IAGRANGIAN INTERPOLATION
C ****************************************************************
      DIMENSION XDATA(20»10,8),YPATA(20,10,8),
     t XTA91(20),XTAB2(20>,XTAB3(20),XTAB«C?0),XTAB5(20),XTAB6(20)
       XTAR7(20),XTAfl8(20),XTAB9(20),XTAB10(20),
       XOMVK20),XDHV2(20),XDM.V3(20),XPMVa(?0),XDMV5(20),XDMV6(20),
       XDMV7<20),XDMV8<20),XDMV9(20),XOMV1,XJOV3(20),XJOVfl<20),
       XJ37(20),Xj88(20),XJS9(20),XJS10(2n)
      DIMENSION YTAB1{20),YTAB2(20),YTAB3C20),YTAB4(20),YTAB5(20),
       YTAB6(20),YTAB7<20),YTAB8<20),YTAB9MC«C20),YDMCSC20),YDMC6(20),
       YOHC7(20),YDMCBC20),YDMC9(20),YDMC10C20),
       YMC1(20),YH.C2<20),YHC3(20>,YHC4(20),YHC5(20),YHC6(20),
       YHC7(20),YHC8(20),YHC9(20>,YMC10(2i»,
       YFF1(20),YFF2(30)»YFF3(20),YFF4(20),YFF5(20),YFF6(20),
       YrF7<20)»YFF8(20),YFF9<20),YFF10(2iO,
       YJOV1(20),YJOV2(20),YJOV3<20),YJOV4(?0),YJOV5(20),YJOV6(20),
       YJOV7(20),YJOV8(20),YJOV9(20),YJOV10(20),
       YJP1(20)»YJP2(20),YJP3(20),YJP4(20),YJP5(20),YJP6(20),
       YjP7(20),YJP8C20),YJP9(20)|YJPiO(20),
       YJSK20)»YJS2(20),YJS3(20)>YJS4(2Q),YJSS(20),YJS6(20).
       YJ57(20),YJS8(20),YJS9(20),YJS10(20)
      DIMENSION XUSEOC20),  YUSED(20)
      EQUIVALENCE (XTAB1 (1),XDATA(1
                                                                                      >*»*•«•»»
                                                                                              *
                                                                                              *
                                                                                              *
                    2
                    3

                    5
                    0
                    7
                    8
                    9
                    *
                    A
                    B
                    C
                    D
                    E
                    F
2
3
4
5
6
7
8
9
*
A
B
C
D
E
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
(XTAB2
(XTAB3
(XTABU
(XTAB5
(XTAB6
(XTAB7
(XTAB8
(XTAB9
(XTAB1
(XDHV1
(XDMV2
(XOMV3
(XDNV4
(XDMV5
(XDMV6
                                        (D.XOATAd
                                        (t)rXDATA(l
                                        (1),XOATA(1
                                        CDfXOATAU
                                        (l).XOATA(l
                                        (l).XOATA(l
                                        (DtXDATAd
                                        (1),XDATA(1
                                       '(l).XDATA(l
                                        (D.XDATAd
                                        (D.XDATAd
                                        (UtXDATAU
                                        (1),XOATA(1
                                        (D.XDATAd
                                        (l),XDATAd
                                ,1 ,1)),(YTABI d),YOATA(l
                                ,2 ,1)),(YTAB2 (1),YDATA(I
                                ,3 ,I)),(YTAB3 d),YOATA(l
                                ,0 ,1)),(YTABa d),YQATA(l
                                ,5 ,t)),(YTAB5 (1),VDATA(1
                                ,6 , 1)),(YTAB«> (l),YOATA(t
                                ,7 ,1)),(YTAB7 (1)»YDATA(1
                                ,8 ,1)),(YTAB8 d),YDATAd
                                .9 ,1)),(YTAB9 (1),YOATA(1
                                ,10,1)),(YTAB10(I)>YOATA(1
                                ,1 ,2)),(YOMVt d),YOATA(l
                                ,2 ,?)),(YDMV2 d),YOATA(l
                                ,3 ,?)1,(YOMV3 (1),YOATA(1
                                »« ,?))»(YOMV4 (1),YOATA(1
                                ,5 ,?)),(YDMVS (l),YOATA(l
                                16 ,2)),(YDMV6 (1),YOATA(1
0),

0),

0),





0),





),

0),

0),





0),





.1
,2
,3
.4
,5
,6
,7
,8
,9
,10
,1
,2
,3
,4
,5
,6
































1 )
1 )
1 )
1 )
1 )
D)
D)
1))
m
»«))
,2))
»2) )
,2))
»2) )
,2))
,2))
TABLES
TABLES
DMV
OMV
OMC
OMC
HC
HC
FF
FF
JIG-OV
JIG-nv
JIG-PR
JIG-PR
JIG-SEC
JIG-StC
TABLES
TABLES
PMV
DMV
OMC
OMC
HC
HC
FF
FF
JIG-OV
JIG-OV
JIG-PR
JIG-PR
JIG-SEC
JIG-SEC

















-------
        Y.F4    FORTRAN V.SAC563) /KI   6-OCT-77
12134   PAGE 1-1
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00070
00071
00073
00073
00074
00075
00076
00077
00078
00079
00060
00061
00062
00063
00064
00065
00066
00067
00066
00069
00090
00091
00092
00093
00094
00095
00096
00097
00096
00099
00100
OOiOl
00102
00103
00104
00105
00106
00107
00106
00109
00110
00111
00112
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
(XDMV7
(XOMV8
(XDMV9
d), XDATAd
(1), XDATAd
(1), XDATAd
«DMV10(n»XOATAd
(XDMC1
CXDMC2
(XDHC3
(XDHC4
CXDMC5
(XDHC6
(XDMC7
(XDHC8
(XDMC9
d), XDATAd
(1), XDATAd
d), XDATAd
(l),XOATAd
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
d), XDATAd
(XDHClO(l), XDATAd
(XHC1
(XHC2
(XHC3
(XHC4
(XHC5
(XHC6
(XHC7
(XHC8
(XHC9
(XHC10
(XJOV1
(XJOV2
(XJOV3
(XJOV4
(XJOV5
(XJOV6
(XJOV7
(xjove
(XJOV9
d),XDATA(l
(1), XDATAd
(1),XOATA(1
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
d), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(XJOVlOd), XDATAd
(XJPt
(XJP2
(XJP3
(XJP4
(XJP5
(XJP6
(XJP7
(XJP8
(XJP9
(XJP10
(XJ81
(XJ32
(XJ83
(XJ84
(XJS5
(XJ36
(XJ37
(XJ86
(XJS9
(XJ810
(XFFt
(XFF2
(1), XDATAd
(1), XDATAd
(l),XOATAd
(l),XOATAd
(1), XDATAd
(t), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(1), XDATAd
(t), XDATAd
(l),XOATAd
(1), XDATAd
d), XDATAd
(1), XDATAd
,
,
i
i
i
i
i
,
i
i
i
i

i
i
,
,
,
i
7
8
9
,2))
,?))
,?))
10,2))
1
2
3
u
5
6
7
8
9
,3))
,3))
» ^) )
,3) )
,3))
,3))
,3))
,
,
,
,
,
,
,
,
,
,
,
,3)),

10,3))
1
2
3
a
s
,6
,
7
,8
,
,
,
,
,
,
,
9
,4))
,«))
,
,S) )
t
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,5)),
,•5))
,5))
,
,
,?)),
,S)>
,5))
10, •*))
1
2
3
a
,5
,6
,
,
,
i
,
,
,
,
,
,
,
,
,
,
,
,
7
8
9
,6))
,«»
,6))
,*))
,6))
,6))
,<>))
,M>
,<>n
10,6))
1
2
3
4
5
6
7
8
9
,7))
,7))
,7))
,7))
,7))
,7))
,7))
,7))
,7))
10,7))
1
2
,*))
,»))
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
>
,
,
,
,
,
,
,
(YDMV7
(YDMV8
(YDMV9
d),YDATA(l
d),YOATA(l
(1),YDATA(1
(YDMV10(1),YDATA(1
(YDMC1
(YDHC2
(YDMC3
(YDHC4
(VDMC5
(YDMC6
(VDMC7
(YDMC6
(YDMC9
d),VDATA(l
(l)fVDATA(l
d),VDATA(l
(1),YDATA(1
d),YDATA(l
(1),YDATA(1
(1),YDATA(1
(1),YOATA(1
(D.VDATAd
(YDMC10(1),YDATA(1
(YHC1
(YHC2
(YHC3
(YHC4
(YHC5
(YHC6
(YHC7
(YHC6
(YHC9
(YHC10
(YJDV1
(YJOV2
(YJOV3
(YJOV4
(YJOVS
(YJOV6
(YJOV7
(YJOV8
(YJOV9
(1),TDATA(1
d),YDATA(l
(1),YDATA(1
(1),YDATA(1
d),YDATA(1
(l),YDATAd
(1),YDATA(1
(DfYDATAd
d),YDATA(l
(1),YDATA(1
d),YDATA(l
d),YDATA(l
d),YDATA(l
(1),YDATA(1
d),YDATA(l
(1),YDATA(1
(l).YDATA(l
(1),YDATA(1
d),YDATA(l
(YJOVIOd)rYDATA(l
(YJP1
(YJP2
(YJP3
(YJP4
(YJP5
(YJP6
(YJP7
(YJP8
(YJP9
(YJPin
(YJ31
(YJ82
(YJ83
(YJ84
(YJ35
(YJ86
(YJ37
(YJ38
(YJ89
(YJ810
(YFFl
(YFF2
d),YDATA(l
d),YDATA(l
d),YDATA(l
d),YDATA(l
(I),YDATA(1
d),YDATA(l
d),YDATA(l
d),YDATA(l
))
,<»))
,6))
, h) )
,6))
,6))
,6))
,6))
,6))
10,6))
1
2
3
a
5
6
7
,8
t
t
9
9
9
,7)1
.7))
.7))
,7))
.7))
,7))
,7))
,7))
.7))
10,7))
1
2
,8))
,8))

-------
        Y.FQ    FORTRAN V.5AC563) /Kl   6-OCT.77
                                           12I3U   PAGE 1-2
00113
00110
00115
OOU6
00117
00118
00119
00120
00121
00123
00120
00125
00126
00127
00126
00120
00130
00131
00132
00133
00134
0013S
00136
00137
00136
00130
00110
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00156
00159
00160
00161
00162
00163
00164
00165
00166
00167
00166
 EQUIVALENCE (XFFS  (1)
 EUUIVALtNCF. 
L  1,«Jf,1.«Bt|I.VWW»1.
DATA  XOHV7  /  20*0.  /
DATA  XDHV8  /  20*0.  /
DATA  XDMV9  /  20*0.  /
DATA  XDMV10 /  20*0.  /
I l.JJ,i.u^r,i,W3',\.ura,i.i«e,
 DATA XDHC6 /  .775,.8,.835,.85,
1 1.035,1.045,1.05,1.06,1.09,1.

-------
        Y.F4    FORTRAN  V.5AC563)  /KI    6-OCT.77
                                          12134   PAGE  1-3
00169
00170
00171
00172
00173
00174
0017S
00176
00177
00178
00179
ooieo
00181
00182
00183
ooisa
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
 DATA XDHC7 / .823, .904,. 943, .949, ,954, .961, .968, .9647, .98, 1 ..
1 r.02, 1.023, 1,03, 1.039, 1.061, 1,082, 1,124, I. 218, 1.36, I. 361  /
 DATA XDHC8 / 20*0. /
 DATA XOMC9 / 20*0. /
 DATA XDMC10 /20*0, /
 DATA XHC1 / .7, . 74, . 788, . 827,. 859, ,«8,, 91, .923, ,942,1. ,1.02,
1 I'.OSa, 1.134, 1.165, 1.206, 1.28, 1.J65, 1.08, 1.58, 1,7  /
 DATA XHC2 / .6, ,7, .79, ,86, .8<»5, ,<»45,1. ,1.035. 1.077, 1.105, 1.152,
1 t'.193, 1.343, 1.282, 1,388, 1.56, 1.66, 1.708, 1.799, 1,8  /
 DATA XHCS / .45, .525, .575, .635, .695, ."17, .917, .97,1. ,1.057, 1.083,
1 t'.109, 1.175,1. 233, 1.285, 1.33, 1,425, 1.575, 1.75, 1.9  /
 DATA XHC4 / .3, .38, .48, .576, .618, .699, .8, .891 , .94, 1 ., 1 .074, 1 . 101 ,
1 i. 153, 1.198, 1.28, 1.322, 1,36, 1.794, 2. 32, 2,33  /
 DATA XHCS / .325, .425, .517, .62, .75, .79,. 844, .883, .901,1., 1.109,
1 l'.2S, 1.242, 1.275, 1. 305, 1. 332, 1.35, 1,402, 1.575, 1,9  /
 DATA XHC6 I .47, . 511, . 562, .704,. 793, ,«21,. 844, .881, .909,1, ,1.041,
1 I'.OT, 1.118, 1.263, 1.3, 1.343, 1.38, 1.511, 1.6, 1.7  /
 DATA XHC7 / .5, .625, .85, .865, .875, .BBS, 1. , 1 .02, 1 .035, I .055, 1 .08,
1 I'.l, 1.155, 1.18, 1.195, 1.215, 1.25, 1.315, 1.375, 1,376  /
 DATA XHC8 / .685, .728, .772, .82, .861 , I . , 1 .034, 1 .059, 1 . 1 , I . 167,
1 l'.212, 1.255, 1.299, 1.343,1.388,1.433, 1.476, 1.52, 1.521, 1.522  /
 DATA XHC9 / 20*0. /
 DATA XHC10 / 20*0. /
 DATA XFFt / .1,. 2, .3, .4, .5, .6, .7, .8, .9, l.o, 1.1, 1,2, 1.3, 1.4, 1,5,
1 1.6,1.7,1.8,1.9,2.0 /
 DATA XFF2 / .1,. 2, .3, .4, .5, .6, .7, .8, .9, l.o, 1.1, 1.2, 1.3, 1.4, 1.5,
1 1.6,1.7,1.6,1.9,2,0 /
 DATA XFF3 / 20*0. /
           / 20*0. /
           / 20*0. /
           / 20*0. /
           / 20*0. /
 DATA XFF8 / 20*0. /
 DATA XFF9 / 20*0. /
 DATA XFF10 / 20*0. t
 OAJA XJOVl / .697, . 903, , 907,. 915, ,9«,. 972,1. ,1.035, 1.054, 1.057,
 1 1.062,1.07,1.08,1.095,1.1,1.107,1.108,1.109,1.1,1.101  /
 DATA XJOV2 / .868, .895, .903, .946, .957, .9635, .9709,1. ,1.0247,
 1 r,OJ09, 1.038, 1.046, 1.066, 1,085, 1.097, 1.1 08, 1.168, 1.232, 1.233,
2 1.234 /
 DATA XJOV3 / .8, .827, .851, .882, .893, .899, ,957,1, ,1.0547, 1,1004,
 1 1'. 1059, 1.1 14, 1.1274, 1.1386, 1.157, 1.265, 1.445, 1.74, 1.741, 1.742 /
 DATA XJOV4 / .74, .763, .785, .811, .835, .8504, .9377,1. ,1,0882,
 1 T.096, 1.109, 1,145, 1,188, 1.232, 1.306, 1.418, 1.553, 1.7,1. 701, 1.702/
 DATA XJOV5 / .662, .716, .76, .794, ,82, .846, .861, .9188,1. ,1.063,
 1 1'.1315, 1.1555, 1.1716, 1.202, 1.246, 1.31, 1.366, 1.496, 1.708, 2.  /
 DATA XJOV6 / .708, .73, .748, ,768, .762, .804, .858, ,902,1. ,1,042,
 1 1.059,1.084,1.114,1,1512,1.364,1.4328,1.492,1.602,1.756,1.9 /
 DATA XJOV7 I .566, .612, .644, .682, .72, .74, .78, ,863,1. ,1.046, 1.064,
 1 T.094, 1.146, 1.242, 1.338, 1.49, 1.678, 2. ,2. 001, 2. 002  /
 DATA XJOV8 I .764, .612, .636, .855, .87, .882, .8940, .9384,1. ,1.022,
 1 T.OS7, 1.1026,1. 166, 1.208, 1.235, 1,262, 1.29, 1.378, 1.722, 2. /
 DATA XJOV9 / 20*0, /
 DATA XJOVIO /  20*0. /
 DATA XJP1 / .777, .795, .807, .824, .834, .846, .866, .904, .93, .956,1.,
 I 1.046,1.1,1.145,1,196,1.294,1.429,1.566,1.715,1,9  /
DATA XFF4
DATA XFF5
DATA XFF6
DATA XFF7
DMC-COHP
OHC-COHP
DMC-8
DMC-9
DMC-10
HC-1
HC-1
HC-2
HC«2
HC-3
HC-3
HC-4
HC-4
HC-5
HC-5
HC-6
HC-6
HC-7
HC-7
HOCOMP
HC-COMP
HC-9
HC«10
FF«1
FF«1
FF.2
FF-2
FF-3
FF.4
FF«5
FF-6
PF-7
FF.8
FF-9
FF«10
JOV-1
JOV-1
JOV-2
JOV.2
JOV-2
JOV.3
JOV.3
JOV-fl
JOV.4
JOV.5
JOV-5
JOV-6
JOV-6
JOV-7
JOV«7
JOV-COMP
JOV-COMP
JOV-9
JOV-10
JP-1
JP-t

-------
OS
to
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
0024S
00246
00247
00248
00249
002SO
00251
00252
00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
                    • •••—--»»»»w«»»r»B«"~r"«T^»"*   w •»*™»"*»»«"«™^«r"»**™«»r»«iv»'p» w
                     DATA XJS9 / 20*0. /
                     DATA XJ310 / 20*0. /
                     DATA YTAB1 / 1.,.993,,987,.978,.96,.94,.92,.9,.8,,69,.5,.3,.08,
                    1 .06,.043,.033,.026,.023,.011,0, /
                     DATA YTAB2 t 1.,.997,.993,.987,.977,.963,.948,.9,,8,.675,.5,.3,
                    1 .24,.16,.099,.06,.01,.026,.018,0, /
                     DATA YTAB3 / 1.,.997,.994,.981,,96,.98,.88,,635,.5,,279,.148,,1,
                    1 .068,.046,.025,.018,4*0. /
                     DATA YTAB4 / l.i.993,.991,.983,.972,.962,,939,.887,.817,.5,.246,
                    1 .195,.145,.103,.073,.04,.015,3*0. /
                     DATA YTAB5 / 1.,.994,.987,.968,.932,.9,.8,.5,.2,.135,.099,.066,
                    1 ,052,.04,.026,.021,«*.02 /
                     DATA YTAB6 / 1.,.977,,9«1,.908,.862,,«23,.758,.5,.42,.375,.3,
                    1 .237,.!,.06,.06,.04,.03,3*.02 /
                     DATA YTAB7 / 1.,.998,,992,.961,.969,.9«7,.919,.9,,8,.5,.4,.
                    1 .292,.243,.219,.177,4*.12 /
                     DATA YTA86 / 1.,.996,.994,.982,.97,.952,.9,.88,.83,.5,.3,.2
                    1 .2,.106,.08,.068,.06,.046,2*.022 /
                     DATA YTAB9 / 20*0. /
.4,.339,
JP-2
JP-2
JP-3
JP-3
JP-4
JP-4
JP-COMP
JP-COMP
JP-6
JP-7
JP-8
JP-9
JP-10
J8-1
J5-1
J8-2
J8-2
J8-3
J8-3
J8-4
JS-4
JS-5
J8-5
J8-6
J8-6
J8-7
J8-7
J3-COHP
J8-COMP
J8-9
J8-10
TAB-I
TAfl.l
TAB-2
TAB-2
TAB-5
TAB-3
TAB-4
TAB«fl
TAB-5
TAB-5
TAB-6
TAB-6
TAB-7
TAB.7
TAB-COMP
TAB-COMP
TAB-9
TAB-10
DHV«1
DMV-1
DMV-2
DHV-2
OHV-3
OMV«S
OMV-«

-------
               Y.F4    FORTRAN V.5A(563) XKI   6-OCT-77
                                                         12l3«   PAGE 1-5
o»
CO
00281
00262
00263
00264
0026S
00286
00267
00266
00269
00290
00291
00292
00293
00294
00295
00296
00297
00296
00299
00300
00301
00302
00303
00304
00305
00306
00307
00306
00309
00310
00311
00312
00313
00314
0031S
00316
00317
00316
00319
00320
00321
00322
00323
00324
00325
00326
00327
00326
00329
00330
00331
00332
00333
00334
0033S
00336
1 .013,.007,,001,6*0. X
 DATA YDMV5 X 1., .997, .991, .975, ,956, .931, .699, .88, .69, .5, .3,
1 .208,.16,.12,.071,.04,.02,.006,.002,0.  X
 DATA YDMV6 X 1.,.997,.991,.98,.941,.9,.735,.5,.267,.18,.12,.05,
i .021,.007,,003,5*0. X
 DATA YDMV7 X 20*0. X
 DATA YOMV6 X 20*0. X
 DATA YDHV9 X 20*0. X
 DATA YDHV10 X 20*0. X
 DATA YDMC1 X 1.,.997,,99,.983,.976,.964,.5,.089,.054,.04,,03,
1 .02,.012,.006,.002,5*0. X
 DATA YDMC2 X 1.,.997,.991,.985,.978,.97,.952,.75,.5,.167,.09,.04,
I .029,.019..006,.002,4*0. X
 DATA YDMC3 X I.,.992,.967,.982,.973,,«»68,.937,.612,.5,,266,,056,
I .044,.034,.02,.01,.005,4*0. X                   >
 DATA YDMC4 X I.,.999,,996,,996,.986,.979,.921,.763,.5,.303,.113,
I .086,.062,.041,.024,.01,.006,3*0.  /
 DATA YDMC5 X 1.,.997,.994,.986,.969,.951,.928,.900,.660,,70,.5,
1 .200,.156,,!,.073,.05,.029,.016,.006,0,  /
 DATA YDMC6 X 1.,.996,.988,.983,.958,.937,.917,.668,.831,,684,,5,
1 .243,.17,.133,.069,,055,.036,,014,2*0.  X
 DATA YDMC7 X 1.,.992,,965,,98,.975,.964,.96,.95,.75,.5,,85,
I .197,.14,.I,.06,.04,.02,.01,2*0. X
 DATA VDHC6 X 20*0. X
 DATA YDMC9 X 30*0. X
 DATA YDMC10 X 20*0. X
 DATA YHC1 X 1.,.991,.965,.93,.89,.657,.793,.758,.702,.5,.44,
1 .339,.153,.109,.074,.034,.017,.007,.003,0.  X
 DATA YHC2 X 1.,.962,,908,,835,.768,.646,.5,.4,.298,.247,.175,
 1 .115,.07,.046,.029,.012,.004,3*0.  /
 DATA YHC3 X 1.,,981,.965,,939,.905,.791,.678,.595,.5,.332,.277,
 I ,221,.145,.095,.067,.053,.035,.017,.003,0.  X
 DATA YHC4 X 1.,.969,.968,.941,.925,,8«1,.806,.713,.64,.5,,326,
1 .279,.2,.14,.063,.041,.03,.011,2*0.  /
 DATA YHCS X 1,, ,995, .983, ,954, ,8«6, .858, .814, .769, .735, ,5, .297,
 1 .094,.076,.049,,033,.024,.02,.017,.012,0,  X
 DATA YHC6 X 1,,,999,.994,.954,.91,.«91,.873,.636,.793,.5,.381,
 1 .313,.246,,121,.093,.069,.053,.021,.009,0.  X
 DATA YHC7 X 1.,.985,.69,.676,.863,.644,,5,.44,.4,.361,.321,,295,
 I .23,.205,.193,.179,,157,,123,2*.!  X
 DATA YHC6 X .936,.903,.863,.812,.761,.5,.433,.396,.353,.304,.273,
 1 .244,.216,.169,.163,.142,.126,3*.116  /
 DATA  YHC9 X 20*0.  X
      YHC10 X 20*0. X
      YFF1 X 20*0.6 X
             20*0.8 X
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
                          YFP2 /
                          YFFS / 20*0. X
                          YFF4 / 20*0. X
                          YFFS / 20*0. X
                          YFF6 / 20*0. X
                          YPF7 / 20*0. /
                          YFFS X 20*0. X
                          YPF9 X 20*0, X
                          YFF10 X 20*0. X
                          YJOV1 X 1.,. 997, ,987, .979, .88, .699, .5, .223, .06, .064, .047,
                    1  .032, .019, .006, .003, 5*0. X
DMV-4
DMV-5
DMV-5
OMV-COMP
DMV-COHP
DMV-7
OMV-6
OMV-9
DMV-10
OMC-l
OMC-t
OMC-2
DMC-2
OMC.J
DHC-3
OMC-fl
DMC*4
OHC-9
OMC-5
DMC-6
DHC-6
DMC-COMP
DMC-COMP
DHC-8
OMC-9
OMC-10
HC-1
HC-l
HC-2
HC-2
HC-3
HC-3
HC««
HC«4
HC-5
HC-5
HC-6
HC-6
HC-7
HC-7
HC-COHP
HC-COMP
HC-9
HC-10
FF-1
FF-2
FF-3
ffmH
FF«5
FP-6
FF-7
FF-8
FF.9
FF-10
JOV-1
JOV-1

-------
        v.ra
   FORTRAN V,5A(563) /KI   6-OCT-T7
)2i3o   PAGE 1-6
00337
0033fl
00339
00340
00341
00302
00343
00344
00305
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
 DATA YJOV2 / 1.,.998,.99,.007,.869,.810,.75,.5,,3,.25,.201,.169,  JOV-2
1 .129,.097,.083,.075,,035,J*0. /                                  J0v.J
 DATA YJOVJ / I.,.997,.991,.977,.967,,055,.699,.5,.299,.131,.113,  jov-1
1 ,093,.075,.065,.057,.030,.015,3*0. /                             jov.J
 DATA YJOV4 / 1.,.997,.989,.971,.945,."22,.681,.5,.275,.255,.229,  JQV-0
i .197,,169,,145,,115,,086,,061,3*.00 /                            JOV-0
 DATA YJOVS / 1.,.995,,9ttSf.97,,952,.931,.899,.733,.5,.366,.255,   JOV-5
1 ,?17,.194,,loB,.142,,110,,0«8,.062,.028,0. /                     JOV-5
 DATA YJOV6 / 1.,.996,.99,.98,.969,.937,.80,.739,.5,,J97,.369,     JOV-6
i .337,.297,.25,.119,.089,,060,.038,.018,,01 /                     JOV-b
 DATA VJOV7 / l.,.998,.99,.975,.908,.9?5,.8T3,.702,.5,.422,,4,     JOV-7
I .376,.343,.298,.267,.229,,J93,3..103 /                           JQV-7
 DATA YJOV8 / 1.,.997,.989,.98,.968,.953,.937,.76,.5,.015,.333,    JOV-CO"P
1 .850,.14,.118,.!,.086,.076,.056,.032,.02 /                       JOV-eO"P
 DATA YJOV9 / 20*0. /                                              JOV-9
 DATA YJOV10 X 20*0. /                                             JOV-10
 DATA YJPI / >.».'95,.988,.97,.955,.932,,829,.693,,621,.57,.5,     JP«1
1 .437,.38,.345,.316,.273,.233,.198,.11.8,.132 /                    JP-l
 DATA YJP2 / 1.,.999,,993,.98,,962,.839,,747,.694,,5,.465,,433,    JP-2
1 .4,.362,.309,.243,.109,0*.068 /                                  jp.g
 DATA YJP3 / 1.,.998,,993,.982,,969,.907,.713,.5,.482,.458,.433,   JP-3
1 ,396,.36,.306,,232,5*.12 /                                       JR.3
 DATA YJP4 / 1.,.996,,989,.976,.949,.921,.9,.705,.5,.48,.455,.43,  JP-0
1 .398,.362,.338,.253,4*.IBS /                                     jp.«
 DATA YJP5 / 1...993,,988,,97,,84,.7,,56,.5,,449,.416,.391,.335,   JP-COMP
1 .293,.247,6*.128 /                                               JP-COMP
 DATA YJP6 / 20*0. /                                               jp.6
 DATA YJP7 / 20*0. /                                               jp.7
 DATA YJP8 / 20*0. /                                               JR.a
 DATA YJP9 / 20*0. /                                               JP-9
 DATA YJPIO I 20*0. /                                              JP-10
 DATA YJS1 / 1.,.993,.981,,970,,967,.9S1,.935,.919,.799,.5,.2,     JS-1
1 .039,.033,.02,.009,5*0. /                                        Js«l
 DATA YJS2 / 1.,.996,.977,.964,.941,,911,.864,.852,.642,.5,.304,   JS-2
1 .874,,241,,176,.109,,067,4*0, /                                  JS.2
 DATA YJS3 / 1,,.999,.991,.983,,958,.779,.5,.279,.121,.106,,092,   JS.3
i ,079,.069,.039,.021,5*.01 /                                      js.3
 DATA YJ84 / t,,.996,.985,.919,.86,.7,.5,.392,.363,.321,.281,      JS-0
1 ,252,.218,.199,,138,.094,0*.055 /                                JS.0
 DATA YJ35 / 1.,.997,.993,.985,,973,.957,.935,,916,.899,.66,,5,    JS-5
1 .423,.313,.283,.252,,214,.191,,|a9,,109,.063  /                   JS-5
 DATA YJ86 / 1.,.995,.988,.98,.969,.759,.5,.4,.341,.291,.241,      JS.6
1 .195,.15,.117,.095,.08,4*.075 /                                  J5.6
 DATA YJS7 / 1.,.995,.985,.947,.897,.865,.825,.641,.5,.009,,«05,   JS-7
1 .363,.321,.285,.248,5*.16 /                                      j$.7
 DATA YJ88 / 1.,,997,,992,,982,,969,.954,,735,,5,,404,,277,,237,   J8-COMP
1 .201,,175,.15,.108,.062,4*.02 /                                  J3-COMP
 DATA YJS9 / 20*0. /                                               Js«9
 DATA YJS10 / 20*0. /                                              JS-10
 IF (X.6T.XOATA(1,Z1,L)) CO TO 1
 YaVOATA(l,tl,L)
 RETURN
 IF (X.LT.XOATA(20,I1,U) GO TO 2
 V«VD*TA(20,I!,L)
 RETURN
 DO 3 HI,20

-------
               Y.F4    FORTRAN V.5A(563) /KI   6-OCT-77
                                                        12134   PAGE 1-7
       00393          XUBED
en
XTABI
XTAB5
XTAB10
XDHVS
XDMVIO
XOHCS
XDMC10
XHC5
XHC10
XJOV5
XJOV10
XJP5
XJP10
XJS5
XJSiO
XFF5
XFFtO
YTABi
YTAB5
YTAB10
YOMV5
YOMViO
YDMC5
YDMC10
YHC5
YHC10
YJOV5
YJOVIO
YJP5
YJP10
YJ8S
YJ810
YFF5
YFF10
1«R
121*R
265«R
43t«R
S7SHR
7ai*R
1105*R
1251«R
»415«R
1561«R
17250R
207 J«R
2235IKR
24010R
25«5*R
27U#R
30S5*R
3101KR
3221IHR
336S«R
J33t«R
J675*R
0041KR
fl205*R
4351«R
4315CR
466 1*R
5025*R
9171KR
5J350R
5501*R
S«45«R
6011#R
61S50R
XDATA
XTAB6
XDMV1
XDHV6
XOMCi
XDHC6
XHC1
XHC6
XJOV1
XJOV6
XJPl
XJP6
XJS1
XJS6
XFF1
XFF6
YDATA
YTAB6
YOMVl
YDHV6
YDHCt
YDMC6
YHC1
YHC6
YJOV1
YJOV6
YJP1
YJP6
YJ81
YJ86
YFF1
YFF6
1*R
145«R
3U*R
45S«R
621*R
765*R
U31KR
1275DR
144i«R
1605*R
1751KR
211S«R
2261«R
2425«R
2S71MR
2735KR
3101«R
32t5«R
34U«R
3555 *R
372i«R
406SIHR
a23i«R
4375«R
45«1*R
0705KR
50«1#R
S21S«R
S3M0R
5525*R
S67i«R
6035«R
XTAB2
XTAB7
XDMV2
XDMV7
XDMC2
XDMC7
XHC2
XHCT
XJOV2
XJOV7
XJP2
XJP7
XJ32
XJ87
XFF2
XFF7
YTAB2
YTAB7
YDMV2
YDMV7
YDHC2
YDMC7
YHC2
YHC7
YJOV2
YJOV7
YJP2
YJP7
YJS2
YJ87
YFF2
YFF7
25«R
171«R
335*R
501*R
64SHR
1011MR
H55KR
1J21KR
1
-------
               Y.F 1












i <












I •












) (












i












r »












» <












9













-------
        Y.F4    FORTRAN V.5A(563) /KI   6-OCT.77
                                               12134   PAGE  !-<»
00120
00130
ooiao
00150
00160
00170
ooieo
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
 00360
 00390
37
46
                        47
                57
                                        70
20
72
                                                                26
                                                                        27
 V       OCTAL PROG 8IZE«63T3
 ( NO ERRORS DETECTED ]
                      t 8CALARS/ARRAYS«62S5 » TEMP8/CON3»7 + CODE»102 + ARGS-5

-------
       YINTRP  YINTRP.F«
FORTRAN V.5AC563) /Kt   6-OCT-77
iat3S   PAGfc 1
o>
oo
00001
00002
00003
ooooa
00005
00006
00007
ooooe
00009
00010
ooott
00012
00013
00014
0001S
00016
00017
00016
00019
00020
00021
00022
00023
00020
00025
00026
00027
00026
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00046
00049
OOOSO
00051
00052
00053
00054
00055
00056

C
C
C
C
C



C



C



C



C


C







C

C

C
C
C


C
C
C
C











                     FUNCTION YINTJ?P(XPTS,YPTS,X,N)
                     I*****************************
                 LAGRANGIAN INTERPOLATION ROUTINE

                 THE X-VALUE5 MUST BE MONOTONICALLY NONDECREASING
                     p************************* i
                     DIMENSION XPTS(N),YPTS(H)
                     IF (X.GT.XPTS(l)) 60 TO 1
                 X VALUf TOO LOW - 3ET Y EQUAL TO YPT3(1)
                     YINTRP«YPT3(1)
                     RETURN
                   1 IF (X.LT.XPTS(N)) GO TO 2
                 X VALUE TOO HIGH - SET Y EQUAL TO VPTS(N)
                     VINTRPBYPT3(N)
                     RETURN
                   2 IF (X.GT.XPT5(2)) 60 TO 3
                 LINEAR INTERPOLATION BETWEEN FIRST 2 POINTS
                     YINTf»P«YPT8(l)*«YPTSn))/(XPTS(2).XPTScn)
                     RETURN
                   3 IF (X.LT.XPTS(ND) GO TO 4
                 LINEAR INTERPOLATION BETWEEN LAST 2 POINTS
                     YlNTRP»YPTS(Nnt(X-XPT3(Nl))*(YPTS(N).YPT3(Nl))/(XPTS(N)«XPT8(Nl))
                     RETURN
                 FIND INTERVAL CONTAINING x   (X WILL BE BETWEEN XPTSCK) AND
                   4 DO 5 I«J,N1
                     IF (X.GT.XPTS(IJ) GO TO 5
                     GO TO 6
                   5 CONTINUE
                     VlNTRPMl.E+36
                     RETURN
                 TEST FOR INVERSE INTERPOLATION
                   6 IF (X.GE.10.) GO TO 60
                 TEST FOR DISTINCT X-VALUES
                     IF «XPT3(K.n.LT.XPTS(K)).AND.(XPTS(K»l).LT.XPTS(K+2))) GO TO 7
                     A*********************************************
                 LINEAR INTERPOLATION THROUGH XPTS(K) AND XPTSCK+D
                  »*
                  60
                     RETURN
                    »****•*<
                 LAGRANGE INTERPOLATION THROUGH XPTS(K-n, XPTS(K), XPTS(Ktl) AND
                 XPTS(K»2)
                  »*******)
                   7 Y8UM«0.
                     DO 9 I»KI,K2
                     XNUN»1.
                     XOENOHll.
                     DO 8 J«K1,K2
                     IF (I.EQ.J) GO TO 6
                     XNUH«XNUM*(X-XPTS(J))
                     XDeNOM«XOENOH* (XPTS ( I } «XPTS ( J) )
                   6 CONTINUE

-------
      YINTRP   YINTRP.F4
                        FORTRAN  V.5AC563)  /Kl    6-OCT-77
                                        12135   PAGE 1-1
      00057         YSUM»YSUMt(XNUM/XDENOM)*YPTS(I)
      00056       9 CONTINUE
      00059         YlNTRPtYSUM
      00060   C TEST FOR HONOTONICXTY OF  Y-VAtU£S
      00061         IF  C(YPT8
      00070         RETURN
      00071         END
       SUBPROGRAMS  CALLED

       AHAX1.   AHIN1.

       SCALARS AND  ARRAYS  t •*"  NO EXPLICIT  DECLARATION  .  "*•  NOT  REFERENCED
                                                                        •*"  SUBSCRIPTED  J
O>
CO
*N1
• VSUM
*X

TEMPORARIES

 ,10000
 .80001
 .A0004
                    1 I
                    6 R
                   13 R
                   17 I
                   24 I
                   31 R
• N
•XOENOM
• I
 .10001
 .80002
 .A0005
 2 I
 7 R
14 I
20 I
25 I
32 R
*YINTRP
• XNUM
 XPT3
 .10002
 .A0016
 .A0006
 3 R
10 R
15«R
21 I
26 R
33 R
• Kl
*J
*K2
 .10003
 .A0002
 4 I
U I
16 I
22 I
27 R
*K
 YPT3
 .30000
 .A0003
 5 I
12«R
23 I
30 R
       LINE NUMBER/OCTAL LOCATION MAP

ooooo
00010
00020
00030
00040
00050
00060
00070
0
•
•
66
134
154
210
•
•
1
0
31
67
136
172
212
292
316
2
•
34
•
140
•
213
•

3
•
35
74
•
•
217
265

4
•
•
116
141
•
222
*

5
•
42
•
•
•
227
277

6

46
117
144
173
23S
•

7
•
47
123
•
174
237
•

8
22
m
130
•
177
24S
300

<»
25
S3
133
•
202
2SO
307

       YINTRP  OCTAL PROS SIZEB402
       ( NO ERRORS DETECTED ]
                             t SCALAR8/ARRAY8H6 + TEMPS/CONSil7  +  CODEI327  4  ARGS«lb  )

-------
                                                                   170
7.4  Instructions for Data Preparation
In order to simulate the performance of a given plant configuration the user
must provide the following information:

       1.   The number of units in the plant.

       2.   The number of fLowstreams in the plant.

       3.   The number of size increments in the feed stream.

       4.   The number of specific gravity increments in the feed stream.

       5.   The level of information (degree of detail) to be provided by
           the simulator.

       6.   The maximum number of iterations  (trial-and-error calculations)
           for a plant that contains one or more retreatment streams.

       7.   The manner with which the washability calculations will be
            carried out (by size increments or composite).

       8.   The level of information to be printed in each washer unit summary.

       9.  For each major plant component (unit), the type of unit and the
           appropriate unit  settings ("decision  variables").

      10.   The origin and destination of each fLowstream.

      11.   The boundaries of the size increments for the feed stream.

      12.   The weight percent of coal within each size increment.

      13.   The boundaries of the specific gravity increments for the feed
            stream.                                                  I

      14.   Parameters for  calculating the BTU content of the coal.

      15.   The specific gravity analysis for the feed stream (i. e., the
            distribution  of weight, ash, pyritic  sulfur and total sulfur).

-------
                                                                   171
Some of these items can be provided by single numerical values.  For others,
arrays  of data will be required.

Instructions for preparing the input data on punched cards are given below.
Standard FORTRAN formats are shown for each card or set of cards.

(See the sample plant configuration and sample set of input data presented
elsewhere in this report.)

Note;   All I-field entries are right-adjusted

        All A-field entries are left-adjusted

-------
                                                                     172
I.    TITLE CARD   (Format:  20A4)
       Title Card  -
may contain any desired descriptive information.
(This card must be present even if blank).
H.  PROGRAM PARAMETERS   (Format:  2613)

      NUNITS, NFLOWS, NSIZE, NGRAV, IOUT,  ICMAX, NCOMP, PSJ

    where

        NUNITS     is the number of units in the plant configuration.

        NFLOWS    is the number of flowstrearns in the plant configuration
                     (cannot exceed 20).

        NSIZE      is the number of size increments for  the feed
                     (cannot exceed 23).

        NGRAV      is the number of specific gravity increments for the
                     feed (cannot exceed 10).

        IOUT        designates the output level.

                     IOUT =  0 (blank) causes the printing of the specific
                               gravity analysis  of the feed stream and an
                               overall plant summary.

                     IOUT =  1  causes the printing of the specific gravity
                               analyses of the feed and product streams,
                               summary data for each unit and an overall
                               plant summary.

                     IOUT =  2  causes the printing of the specific gravity
                               analyses of all flowstr earns,  summary data for
                               each unit and an overall plant summary.

        ICMAX      is the maximum number of iterations for a plant
                     configuration containing retreatment streams.
                     (Automatically set equal to 50 if left blank.)

        NCOMP      indicates how the  separations will be  determined

                     NCOMP =   0 (blank) causes each separation to be
                                  computed by size increments using a
                                  different separation for  each size increment.

-------
                                               173
NCOMP = 1 causes the entire separation to be
          computed using a single separation curve.

-------
                                                                   174
HI. UNIT DESIGNATIONS  (Format:  13, 2X, F5. 3,  2X, F5.3, 2X, F5. 3)

      L(I),  Dl(I), D2(I), D3(I)  (one card per unit)

    where L(I) designates the type of the ith unit

        L = 1:   Concentrating Table
        L = 2:   Dense-Medium Vessel
        L = 3:   Dense-Medium Cyclone
        L = 4:   Hydrocyclone
        L = 5:   Single-Stage Baum Jig
        L = 6:   2-Stage Baum Jig
        L = 7:   Froth Flotation Cell

        L = 11:  Rotary Breaker
        L = 12:  Primary Multiple Roll Crusher
        L = 13:  Primary Gyratory/Jaw Crusher
        L = 14:  Primary Single Roll Crusher
        L = 15:  Primary Cage Mill Crusher
        L = 16:  Secondary Multiple Roll Crusher
        L = 17:  Secondary Gyratory/Jaw Crusher
        L = 18:  Secondary Single Roll Crusher
        L = 19:  Secondary Cage Mill Crusher

        L = 21:  Dry Upper Screen (or Single Dry Screen)
        L = 22:  Dry Lower Screen
        L = 23:  Wet Upper Screen (or Single Wet Screen)
        L = 24:  Wet Lower Screen

        L = 41:  Stream Blender

        L = 51:  Stream Splitter

    Dl(I)  - D3(I) represent the decision variables  for the respective units
    as follows:

        Washers:            Dl  =  Specific gravity of separation
                             D2  =  Blank
                             D3  =  Blank

        Rotary Breaker:      Dl  =  Length (feet)
                             D2  =  Diameter (feet)
                             D3  =  Screen size (inches)
                                   (D3 should be assigned a value of
                                   either  6 or 8 inches)

-------
                                                                   175
      Crushers:             Dl = Crusher setting (inches)
                            D2 = Blank
                            D3 = Blank

      Screens:              Dl = Screen  size (inches)
                            D2 = Blank
                            D3 = Blank

      Splitter:               Dl = Percent feed diverted to overflow stream
                            D2 = Blank
                            D3 = Blank

      Blender:              Dl = Blank
                            D2 = Blank
                            D3 = Blank

Note:  The units must be specified in the same order that the calculations
       will be carried out.

All units •will have one input stream and two output streams, with the following
exceptions
               'S
1.   2-Stage Baum Jig (L =  6)
      One input stream, three  output streams

2.   Crushers (L = 12, 13,  14,  15, 16,  17,  18, or 19)
      One input stream, one output stream

3.   Stream Blender (L = 41)
      Two  input streams,  one  output stream

-------
                                                                      176
IV. FLOWSTREAM DESIGNATIONS  (Format:  213,  2X, Al)

       KF(1,J), KF(2,J), S(J)    (One card per flowstream)

    where

         KF(1, J)              designates the index (I) of the unit from which the
                              jth flowstream. originates.
                              (0 indicates feed into the plant).

         KF(2, J)              designates the index (I) of the unit which is the
                              destination of the jth flowstream.
                              (0 indicates a product leaving the plant).

         S(J)                  is the symbol for a stream leaving a unit
                              (blank)   indicates a feed stream entering the Ith unit
                              C        indicates a clean  coal  stream leaving the
                                          Ith unit
                              M        indicates a middlings stream leaving
                                          the Ith. unit (2-stage jig)
                              R        indicates a refuse stream leaving the
                                          Ith unit

                              U        indicates an upper (overflow) stream
                                          leaving the Ith unit (screens or splitter)
                              L        indicates a lower (underflow) stream
                                          leaving the Ith unit (screens or splitter)

                              For those units that have only one exit stream (e. g.
                              crushers, .blender), a stream symbol is not required
                              (leave blank).

-------
                                                                   177
V.  SIZE BOUNDARIES  (Format: 8(6A1, 4X))

      SYMBOL(l),  SYMBOL(2).	,SYMBOL(NSIZE + 1)

        where   SYMBOL(l)  = the lower size boundary for the first
                               size increment, in inches or mesh size.

                 SYMBOL(2)  = the upper size boundary for the first
                               size increment (inches or mesh).

                 SYMBOL(3)  = the upper size boundary for the second
                               size increment (inches or mesh).
                 SYMBOL(NSIZE+1)  =
the upper size boundary for the last
size increment (inches or mesh).
    Note;   the values begin in columns 1,  11, 21,	,  71.  Two or three
           data cards may be required, since there can be as  many as 24
           size boundaries.

    Additional Notes: the size boundaries are actually read as  characters
                     and converted internally to numerical quantities.
                     Fractional quantities must be written as  fractions
                     (not decimals), with a slash between the numerator
                     and denominator.  Mixed quantities (whole number
                     and fraction) must have a  dash (actually, a minus
                     sign)  separating the whole number from the fraction.
                     Thus the quantity 1-5/8 would appear as

                                       1-5/8
                     Blank spaces cannot appear within the number.

-------
                                                                    178
VI. WEIGHT DISTRIBUTION (Format:  13(lX, F5.3))

      WT(1),  WT(2),	, WT(NSIZE)

        where   WT(1)  = the weight percent of the entire feed stream in
                          the first size increment.

                 WT(2)  = the weight percent of the entire feed stream in
                          the second size increment.
                 WT(NSIZE)  = the weight percent of the entire feed stream
                               in the last size increment.

    Note;  The sum of these values should equal 100.

-------
                                                                      179
VII. SPECIFIC GRAVITY BOUNDARIES (Format: 13(1X,  F5.3))

       GBOUND(l), GBOUND(2).	,GBOUND(NGRAV+1)

          where GBOUND(l)  = the lower specific gravity boundary for the
                               first specific gravity increment.

                GBOUND(2)  = the upper specific gravity boundary for the
                               first specific gravity increment.

                GBOUND(3)  = the upper specific gravity boundary for the
                               second specific gravity increment.
                GJBOUND(NGRAV+1)  = the upper specific gravity boundary
                                       for the last specific gravity increment.

-------
                                                                     180
VIII.  BTU  CONTENT (Format:  8(F7. 5, 3X))

       BTU1, BTU2, BTU3,  BTU4

       where the above parameters are used to calculate the BTU content
       of the coal (in BTU/lb) using the formula

                             '  BTU2  - BTU3*ASH + BTU4* ASH**2
            BTU/lb = Max  t
                               BTU1

       and ASH represents percent ash.

-------
                                                                      181
IX.  SPECIFIC GRAVITY ANALYSIS OF FEED STREAM (Format: 8(F7. 5,  3X))

       FEED(I, J, 1), FEEDd. J.  2), FEED(I. J, 3), FEED(I, J, 4)

         where   FEED(I,  J, 1) =   the weight percent for the Ith size
                                     increment,  Jth specific gravity incre-
                                     ment. (Within each size increment, the
                                     sum of these values for all J should
                                     equal 100.)

                  FEED(I,  J, 2) =   the percent ash for the Ith size increment,
                                     Jth specific gravity increment.

                  FEED(I,  J, 3) =   the percent pyritic sulfur for the Ith size
                                     increment, Jth specific gravity increment.

                  FEED(I,  J, 4) =   the percent total sulfur for the Ith size
                                     increment, Jth specific gravity increment.

     Notes:
         1.   The numerical values begin in columns 1, 11, 21, and 31.
              There will be a total of

                      NSIZE x NGRAV

              cards (maximum number:  23 x 10  =  230).

         2.   When arranging these cards  in the proper order, note that the J
              subscripts must increase more rapidly than the I subscripts.
              In other words, the  specific  gravity data are nested within the
              size  data.

-------
                                                                    182
7. 5  Sample Problem




      The detailed solution of a sample problem involving a realistic plant




configuration is presented below.  A schematic flowchart of the plant




configuration is shown on the next page.  Note that the plant contains 3




washers,  2 crushers,  2 screens and a blender.  The feed to the plant is




crushed and separated into 3 size fractions  -- coarse, intermediate and




fine.  Each size fraction is treated by a different type of washer,  as indicated




in the flowchart.




      Notice that the units are numbered on the flowchart.   The unit numbers




increase in the direction of flow.  The actual calculations are carried out




in this order,  so that the feed to a given unit is always known when the




performance of that unit is simulated.  This is essential for proper use of




the  simulator.




      The flowstreams are also numbered,  although the order of the flowstream




numbers is immaterial.   The flowstream numbers are each preceded by




the  letter "F",  in order to avoid confusion with the unit numbers on the




flowchart.  (Note, however, that the F's are not a part of the actual flowstream




numbers that are read into the computer. )

-------
                                     Clean
                                      Coal  I  F6
                                        1
Feed
Unit 1
     2
     3
     4
     5
     6
     7
     8
             Rotary Breaker
             Dry Upper Screen
             2-Stage Baum Jig
             Secondary Single Roll Crusher
             Blender
             Dry Upper Screen
             Concentrating Table
             Froth Flotation Cell
              Clean
               Coal
  V
Refuse
                                                                    Clean
                                                                     Coal
                                                      Refuse

               Fig. 8.  Schematic flowchart for sample preparation plant
                                                                                               00

-------
                                                                   184
7. 5. 1  Data Preparation




      The input data corresponding to the given flowchart are shown on




the next several pages, as they would be placed on punched cards.  The




data set has been prepared in accordance with the instructions presented




in Appendix 7. 4.  Note, in particular,  the manner  in which information





is specified for each unit and each flowstream, and for the coal feed.

-------
____ GX28-7327-6U/M050"
IBM FORTRAN Coding Form Printed in U.S.A
"°0"" SAMP££ P£o6L£M - iNf>u~r DfiTft
"<*•"•"» g. s. GOTTFRIED "•" % h7
INiUuCTIONl
G..FHIC
-UNO.














»01 1 °' ij
CAJO (LECIIO NUfc&t-
ITATtMENI
NUMIEI
s$i
5
ik
PL
1

Z I
J
1 ' C^
!3j
21
I



7

j
1
3

«
1
3
3
3
i/
4
6i
^
7
7
i j i « >

' Pt
L i!
Z2jL
. 0

ff

o

. VS"
> . 1 2
1
5

!A3aa
1 * $A

I
0 R
2 'f.

3 U
S L
0 C

0 R
e
,
I

7 (J
8 L
0 C
0 K
v




T
81



•







K
7
51



























|
! i

I i









6 - I 9 10 1

1

4F




ItfJZ
n
2)

1




























1 11 1* 1
E
i

airjiitf
' i;
a*iQ






I
1 • :
i I

















Vi A/U!M(fi[€e
I ! 1
i I '





rrn






















FORTRAN STATEMENT
|

1























1 ; i '(























AiL'PiHJC
i




"I

















UA jy

' i •





















UM JI





'


















, I

1
























fll

1




j












































%









1




:











K " .X .'' ...•.'.'.•.•.-.•>• '____ • . 1 . .. .. .4 .' 1- . 	 	 '. •- -1 •• . •• ' • 	 -1 « 	 	
IDENTIFICATION
UOUCNCI
!

E








1
, 1
1
1 1











. j



















'< '• •'• " -J ~i R.
00
en

-------
IBM
FORTHAN Coding Form
                                                                                 GX2B-7327-6U MOW
                                                                                     Printed in USA
ffOGUM
PtOQKAMMP

I
a.


1
0


Ij
i
f
z
i

1
0
s
1
1
5

lj
Z
1
c
2


STMtMIN!
NUMUI


9
8*
ft





91, ft
1 • 2
Q
1
I
flf)
;7
t
0
.3
1 , 3
. 1

t
1
9




1
6., 7
V.3
,3
I
•
t
3!
u
/




4















. 2.
0,9
3,3



2














1











i 1 !






















Zj









•

S". 0
/

,5
^£
• 60

^
5





.5/
315
,^
J

i S
,A
1 3
Ji

*/

z
S
S
t
V

\





• 70
._2^
7


.58^













,..,.,
• *
w«

• -




FORTRAN STATEMENT















z
I








3
• 7



































I . .







•




i

1
0





.



i

i
3

/.


\








—




. —





















,






















V












i

to




















2











• •























LI





m



-



i
i— . -^ -

t








6


0







— -




'

























_














-•








f.

}









iiii













—

\









L_


J





i_.















i i





-





















z V
'• •**




2

r





,





_L_






















































i i
1








^

jr




























,













I













i











iDENTIflCATION
StOUt NCI











I







































f




























































                                                                                                                                                          ••.-•-• ol form* p«r pad m«> . ••, i|

-------
__ _ _ GX28-7327-6 U/M 050' '
IBffl FORTRAN Coding Form Printed in U.S.A.
PtOCtAM
MOOUMMfl
DAT!
PUNCHING
INDUCTIONS
G»*fMlC
PUNCH














«* * o. y
C j
0
"7 . 3
7-9

I

;tw
1 ,7
3 1 .
1 (r
11^

7j
if'
0
8 . 0
7- V

Z.3
1, ?

31 .
Z) .


!
1

1
6
9
7 . 2

t
3 . Z
1 .9
• /
•iS.f
Y0-

f











j 1







\ \ '










yp9
9- 7
u.z

3*/,Z
«/Z. 5
rzi.z
zl V
IB
9. 6
/5. 9

33.. io
YZ . o
*Z. 9
Z,. 2
4. t
q , z
IS. V
23. y'
3Z .7
HI . o
St. Z
z.z
1

























I


1









1







-









.ZS"
. zz
. Z 7

. 3 if
. 52
,;33
.;
-------
00
OD
IBM
WOGIAW
nOOUMMN
FORTRAN Coding

Mtl
njNCh
Form
ING


..,
t< Itf M











i
7
fi

2

1
1
V
1
5
g
Z
1
1
1
I
z
5
s

?
1
i
—
MAHMINI
NUMll •
j?L T





Q
4
\
9





£
,5*
d-iff

ir.jr



^
I
5
• 6
.
9
'0

, S








0 .





0
0
Q
0
0





5.
I
] t

'.'


























' ;
















,











.iLi

1 f" jj

3Z-.7
V -o

i, ?
«f,a
Ca

2V- 4















M ) , 9
ff"3 . f>
21.0
?l , 0
Zl ,0
Z±±A
Zl . 0
Zl .0
Z 1 . 0






21 . 0















































1




















ijra
.17

.20 ;
,37

• 17
. *!*





I1?*
.23
. 3J

. 5"^
, 77

. 23
,33
.33

. 33
.33

.33
.33





























,,£0
.63

•^






.47
1 . 01
« O y
.40

. 63
.65-
,_£#.
' 79
• ?^
. 9^
. t7
• kJ.
.67
. £_7
,A7


. £ 7
. ^7








GX2&-7327-6U/M050"
Printed in USA
....._^ /^
rnmimrsOTf

FORTRAN STATEMENT








-









































































































































































































































1




1








































1 1 •
1 :





XI



••"



ON

















































j



























                                                                                                                                                                                                                                                        ) Ol IOfm« ,»• , , i may »«rv t j- • ,

-------
                                                                   189
7. 5. 2  Computer Output





      The output generated by the computer is shown on the following pages.




The first four pages (pp.  190-193) contain the input data.  (These pages are




printed out in order to identify each problem. ) The simulated plant




performance is summarized at the end of the printout, on pp. 234-235.




This information is of primary importance.  In addition, the simulator




provides an optional summary of each individual unit (pp. 194-203), and an




optional detailed analysis of each flowstream  (pp.  204-233).  These optional




tables will not be printed unless they are specifically requested (IOUT = 1





or  IOUT = 2).

-------
                           COAL   PREPARATION   PLANT   SIMULATOR
                           SAMPLE PLANT CONFIGURATION NUMBER  1     (ALPHEU8  BAUM  JIG  DATA)
CD
O
UNIT NUMBER
t
2
3
4
5
6
r
e
FLOMSTREAM NUMBER
I (FEED)
2 (REFUSE PRODUCT)
3
4
5
6 (CLEAN COAL PRODUCT)
7
6 (REFUSE PRODUCT)
9
10
il
12
13 (CLEAN COAL PRODUCT)
UNIT TYPE
11 (ROTARY BREAKER)
21 (DRY UPPER SCREEN)
6 (2-STAGE BAUM JIG)
18 (SECONDARY SINGLE ROLL CRUSHER)
41 (STREAM BLENDER)
21 (DRY UPPER SCREEN)
1 (CONCENTRATING TABLE)
7 (FROTH FLOTATION)
ORIGIN . UNIT NUMBER
0
1 R
1 C
2 U
2 L
3 C
3 M
3 R
a
5
6 U
6 L
7 C
• DECISION VARIABLES
22.000 5.000 6,000
1.000
1.450
0.125

0.023
1.500

DESTINATION * UNIT NUMBER
1
0
2
3
5
0
4
0
5
6
7
6
0

-------
         14  (REFUSE PRODUCT)               7  R                                0
         15  (CLEAN COAL PRODUCT)           0  C                                0
         16  (REFUSE PRODUCT)               R  R                                0
NUNXTSl  B        NFLOMSt 16        NSIZE*  «        NGRAV*  0        XOUT*  2        ICMAXi SO        NCOMPB  0

-------
                                                 SPECIFIC GRAVITV ANALYSIS OF FEED
         SIZE FRACTION AND HEIGHT
        18 BV 12                 9.0 PERCENT
        12 BV 6
26.1 PERCENT
         b BY
26.9 PERCENT

".2
15.4
23.6
32.7
41.0
82.2
PYR1T1C
SULFUR
0.06
0.09
0,03
0.13
0.10
0.16
0.17
0.32
0.14
0.12
0.19
0,26
0.23
0.25
0.54
0.26
0.14
0.25
0.22
0.27
0.30
0.36
0.52
0.33
0.14
0.19
0.19
0.29
0.36
0.39
0.66
0.44
0.12
0.12
0.23
0.30
0.39
0.51
0.76
0.65
0.09
0.14
0.27
0.30
0.37
0.54
0.77
0.96
TOTAL
SULFUR
0.58
0.55
0.46
0.51
0.35
0.44
0.45
0.32
0.55
0.45
0.55
0.66
0.54
0.55
0.70
0.27
0.56
0.62
0.63
0.62
0.63
0.73
0.73
0.35
0,60
0,70
0.77
0.62
0.65
1.67
1.64
0.45
0.59
0.60
0.63
0.64
0.63
1.00
1.07
0.65
0.59
0.60
0.63
0.61
0.67
0.80
0,97
1.01
BTU/LB

14644.
14383.
13629.
1259Q.
11025.
9966.
8417.
4000.
14627.
14334.
13566.
12376.
10748.
9379.
7651,
4000.
14709,
14334,
13519,
12459,
10878.
9525.
8173.
4000.
14709.
14334.
13535,
12508.
11056.
9721.
6254.
4000.
14741,
14350.
13600.
12590.
11221.
9770.
6417.
4000.
14741.
14350.
13600.
1259Q.
11221.
9770.
8417,
4000.
                                                                       CUMULATIVE, PERCENT
                                                                WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                            SULFUR  SULFUR
 19.7
 30.6
 32.9
 44,2
 46,3
 46.2
 49,0
100,0

 16,7
 31.0
 36.3
 41.6
 45.7
 47,6
 49,0
100.0

 23.3
 44.3
 51.6
 59.5
 6«.2
 66,6
 66.3
100,0

 26,8
 47,8
 55,7
 63.1
 67.0
 69.3
 71.1
100.0

 31.6
 53.4
 60.6
 67.4
 70,6
 72.5
 74.2
100.0

 40.8
 61.4
 68,2
 74,3
 77,2
 79.0
 80,5
100.0
 2.8
 3.4
 3.7
 6.7
 7.5
 8.4
 9.0
47.5

 2.9
 3.7
 «.<>
 6.1
 6.0
 9.1
10,0
47.2

 2.4
 3.5
 4.4
 5.9
 7.«
 8,4
 »,2
32.4

 2.4
 3.
 a
 *«
 5,
 6.
 7,
 8,
30.0

 2.2
 3.2
 3.9
 5,1
 5.9
 6.6
 7.4
26.7

 2,2
 3,0
 3,
 «.
 5.
 5.
 6.
21.
0,08
0.08
0.08
0,09
0.09
0,10
0,10
0.21

0.14
0.13
0.14
0,15
0.16
0.17
0,17
0,22

0,14
0,19
0.20
0.21
0.21
0.22
0.23
0,26

0,14
0,16
0.17
0,16
0.19
0.20
0.21
0.26

0,12
0,12
0,13
0,15
0,16
0,17
0,16
0.30

0.09
0,11
0,12
0,14
0.15
0,16
0,17
0,33
0.58
0,57
0,56
0.55
0.54
0,54
0,53
0.42

0.55
0.50
0,51
0.53
0.53
0.53
0.54
0.40

0,58
0,60
0.60
0,61
0,61
0,61
0,61
0,53

0,60
0,64
0.66
0,66
0,66
0.69
0,72
0,64

0,59
tt,59
0.60
0.60
0,60
0.61
0.62
0,63

0,59
0.59
0,60
0,60
0,60
0,61
0,61
0,69
14644,
14550,
14500,
14013,
13877,
13724.
13637,
 8722.

14627,
14492.
14357.
14105.
13804,
13609.
13463,
 8642.

14709,
14531,
14366,
14132.
13694.
13736.
13596.
10555,

14709,
14544.
14399.
14176,
13997.
13655,
13713,
10909.

14741,
14581.
14465,
14276,
14136.
14023.
13695.
11345.

14741.
14610,
14509,
14352.
14234,
14133,
14026.
12073,

-------
        28 BY 46
                          2.3 PERCENT
        as BY o
                          3.4 PERCENT
       COMPOSITE
                        100.0 PERCENT
«o
05
FLOAT
1.30.
.35.
.40-
.50.
.60-
.70-
SINK
FLOAT
1.30-
1.35.
1.40.
1.50.
1.60.
1.70-
SINK
FLOAT
1.30.
1.35.
1.40-
1.50.
1.60.
1,70-
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
45.5
16.8
5.8
5.1
2.5
1.6
1.2
19.5
50.0
20.0
5.0
5.0
2.0
2.0
1.0
15.0
24.7
18.2
6.3
7.0
3.8
2.2
l.«
36. a
1.8
«.
8.
15.
24.
33.
"1.
63.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
3.7
5.3
9.8
16.1
25.6
33.4
42.3
82.0
0.12
0.16
0.23
0.31
0.43
0,54
0.77
0,98
0.33
0.33
0.33
0.33
0.33
0.33
0.33
*.33
0.14
0.18
0.21
0.26
0.29
0.35
0.58
0,36
0.59
0.60
0.63
0.65
0,64
0,79
0.88
0,98
0,67
0,67
0,67
0,67
0,67
0,67
0.67
0.67
0.59
0.59
0,64
0,62
0.59
0.85
0,99
0.38
14807,
14399.
13649.
12574.
11090.
9623.
8270,
4000.
11677.
11677.
11677.
11677.
11677,
11677.
11677.
11677,
1449Q.
14241.
13509.
12469.
10931.
9653.
8201.
4108.
45,5
64.3
'70.1
75.2
77.7
79.3
60.5
100,0
50.0
70.0
75.0
60.0
62,0
84.0
65.0
100.0
24.7
42.9
49,1
56,2
60,0
62.1
63.6
100.0
1.8
2.5
3,1
3,9
4,6
5.2
5.7
20.8
21.0
21,0
21,0
21.0
21.0
21.0
21.0
21.0
3,7
4.4
5.1
6,5
7.7
8.6
9,3
35.8
0.12
0,14
0,15
0.16
0,17
0,17
0.16
0,34
0,33
0,33
0,33
0,33
0.33
0.33
0.33
0,33
0.14
0.16
0.17
0,18
0.18
0,19
0,20
0,26
0,59
0,59
0.60
0,60
0,60
0,60
0.61
0.68
0.67
0.67
0.67
0.67
0,67
0,67
0,67
0.67
0,59
0.59
0.60
0.60
0,60
0.61
0.62
0,53
14607,
14687,
14602.
14464,
14355,
14260,
14171,
12187,
11677,
11677,
11677,
11677,
11677,
11677,
11677.
11677.
14490,
14384,
14273.
14047.
13649.
13704.
13576.
10129.
FLOH8TREAM SUMMARY



FLOHRATE • 100.0 PERCENT OF FEED


BTU CONTENT • 10129. BTU/LB


803 CONTENT •  1.04 IBS S02/M1LLION BTU
                                             ASH  •  35.8  PERCENT
PYRITIC SULFUR •  .26 PERCENT
TOTAL SULFUR •  ,53 PERCENT

-------
                                     SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER  1
                                                            ROTARY BREAKER
                      LENGTH • 28,00 FEET
    DIAMETER •  5.00 FEET
                 SIZE OF OPENING • 6.00 INCHES
SIZE* INCHES OR MESri
16
BY
12
                                                        BY
                                                         6
 6
BY
 2
 2
BY
 i
  1
 BY
3/e
3/6
 BY
 26
SCREEN ANALYSIS, PERCENTl
  FEED (COAL * ROCK)....'.	    9.0     26.1     26.9     17.0      6.2      9.0
  OVERFION (REFUSE) STREAM	   21.3     75.7      0.0      0.0      0.0      0.0
  UNDERFLOW (PRODUCT) STREAM...............    0.0      0.0     36.3     27,6     13.6      9,9

ASH, PERCENT!
  FEED (COAL + ROCK)	   17.5     47.2     32.a     30.0     26.7     21,3
  OVERFLOW (REFUSE) STREAM...	   90.3     92.5      0.0      0.0      0.0      0.0
  UNDERFLOW (PRODUCT) STREAM	    0.0      0.0     26.7     24.7     22.0     16.6

PYRITIC SULFUR, PERCENT!
  FEED (COAL t ROCK)	   0.21     0.22     0,26     0.26     0.30     0.33
  OVERFLOW (REFUSE) STREAM.,..	   0.0?     0.03     0.00     0.00     0,00     0.00
  UNDERFLOW (PRODUCT) STREAM..	   0.00     0.00     0.26     0.30     0.32     0,34

TOTAL SULFUR, PERCENTl
  FEED (COAL + ROCK)	   0.02     0.40     0.53     0.64     0.63     0.69
  OVERFLOW (REFUSE) STREAM	,	   0,05     0.06     0.00     0.00     0.00     0,00
  UNDERFLOW (PRODUCT) STREAM	   0.00     0.00     0.56     0.64     0.65     0,71

BTU PER POUND, MOISTURE FREE!
  FEED (COAL * ROCK)	  6722.    6642.   1055S.   10909.   11345.   12073.
  OVERFLOW (REFUSE) STREAM	  4512.    4663.       0.       0.       0,       0.
  UNDERFLOW (PRODUCT) STREAM	     0.       0.   10692.   11146.   11546.   12360.

COAL PRODUCT/COAL FEED............. PERCENT    0.0      0.0    100.0    100.0    100.0    100,0
COAL IN OVERFLOW STREAM.,	 DO      6.2      6.3      0.0      0.0      0.0      0,0
ROCK IN UNDERFLOW STREAM	 DO      0.0      0.0     21.4     17.3     14.8      9,6
26
BY
46
                                                      2.3
                                                      0.0
                                                      5.4
                                                     20.6
                                                      0.0
                                                     15.1
                                                     0.34
                                                     0,00
                                                     0.35
                                                     0,66
                                                     0,00
                                                     0,72


                                                   12167.
                                                       0.
                                                   12632.

                                                    100.0
                                                      0,0
                                                      6.3
46
BY
 0
                                             3.4
                                             0.0
                                             4.9
                                            21.0
                                             0.0
                                            16.7
                                            0.33
                                            0,00
                                            0,34
                                            0,67
                                            0,00
                                            0.69
                                          11677.
                                              0.
                                          12053.

                                           100.0
                                             0.0
                                             2.5
                                                                                                                      COM?
                                           100.0
                                           100,0
                                           100,0
                                            35,6
                                            92.9
                                            24.3
                                            0.26
                                            0,03
                                            0.30


                                            0.53
                                            0,06
                                            0.62


                                          10129,
                                           0627.
                                          11273.

                                            96,2
                                             T,6
                                            16.5

-------
                                            SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER  2
                                                                  DRY UPPER SCREEN
                                                           SIZE OF OPENING • 1,00 INCHES
      SIZE, INCHES OR MESH
                                                6
                                               BY
                                                2
                      2
                     BY
                      i
•>>«••........   0,5*      o.ou
  OVERFLOW  (COARSE) STREAM	   0.56      0.60
  UNDERFLOW  (FINE) STREAM.	   0.00      0.00

BTU PER  POUND, MpISTURE FREE I
  FEED,............ . •«»»»«>•>• . ... ..... ....  10692,    11146,
  OVERFLOW  (CQAR8E) STREAM	  10692.    11148.
  UNDERFLOW (FINE) STREAM.......	      0.        0.

 WEIGHT  RATIO,  UNDERFLOW TO  FEED....  PERCENT     0.0       0.0
 BTU RATIO,  UNDERFLOW  TO FEED	     DO      0.0       0.0
                1
               BY
              3/8
                                                                       13.8
                                                                        1.7
                                                                       38.5
                                                                       22.0
                                                                       22.0
                                                                       22.0
                                                                       0.32
                                                                       0.32
                                                                       0.32
                             0.65
                             0.65
                             0.65
                                                                     115(16.
                                                                     11546.
                                                                     11546.

                                                                       91.8
                                                                       91.8
3/8
 BY
 28
                                       9.9
                                       0.0
                                      30.2
                                      16.8
                                      16.8
                                      16.8
                                      0.34
                                      0.34
                                      0.34
                       0.71
                       0.71
                       0.71
                                    12360.
                                    12360.
                                    12360.

                                      99.8
                                      99.8
28
BY
48
                                 5.4
                                 0.0
                                16.4
                                15.1
                                15.1
                                15.1
                                0.35
                                0.35
                                0.35
         0.72
         0,72
         0.72
                              12632,
                              12632,
                              12632.

                               100.0
                               100.0
48
BY
 0
                   4.9
                   0,0
                  15,0
                  18,7
                  18,7
                  18.7
                  0.34
                  0.34
                  0.34
        0.69
        0,69
        0.69
                12053.
                12053.
                12053.

                 100,0
                 100,0
                                                                                                     COMP
                100.0
                100,0
                100.0
                 24.3
                 26.9
                 18.8
        0.30
        0.29
        0.33


        0.62
        0,59
        0,69


      11273,
      10894,
      12045,

        32,9
        35.2
            KCOUNTl  3
                     SGXX»1.450
SG3P«1.517
S6RAV(NS)«1.450

-------
                                             SUMMARY  Or  THE  PERFORMANCE CHARACTERISTICS OF UNIT NUMBER  5
                                                                   2-STAGE BAUM JIG
                                                        SPECIFIC  GRAVITY OF SEPARATION • 1,45
CO
o>
SIZE. INCHES OR MESH


SCREEN ANALYSIS, PERCENT!




ASH, PERCENT I




PYRITIC SULFUR, PERCENT*




TOTAL SULFUR, PERCENT |




BTU PER POUND, MOISTURE FREEl


REFUSE. •••••>«•••«•.»..>>(>•••««>>•<>«>••
MIDDLINGS. •«•«.«...........»•<>»«.>>>••«<
ACTUAL RECOVERY 	 , 	 	 PERCENT





SINK IN CLEAN COAL. 	 DO
TOTAL MISPLACED MATERIAL... PERCENT OF FEED
NEAR GRAVITY O.t MATERIAL.. DO




6
BY
2

57.1
52.7
63.6
62.5

28.7
5.1
61.3
as.o

0.28
0.18
0.02
0.36

0.56
0.5«
0.52
0.56

10692.
14275.
5779.
8168.
53.0
56.1
93.9
70.7
0.5
5.7
1.9
«.3
25.8
1.43
.050
.127
29.
2
BY
1

«1.1
15.2
35.2
36.2

24.7
6.3
60.2
50.2

0.30
0.17
o.sa
0.48

0.60
0.62
0.68
0.70

HUB.
11077.
5527.
7090.
63.2
66.8
94.6
79,8
0.8
7.0
«.o
4.1
13.9
1.49
.084
.171
53.
1
BV
3/8

1.7
2.0
1.2
1.3

22.0
6.8
60.8
50.8

0.32
0.17
0.70
0.60

0.65
0.60
0,79
0.76

11546.
13993.
5280.
6868.
69.7
73.7
94.5
84.4
1.1
7.5
3.9
4.1
9.8
1.54
.102
.187
76.
3/8
BY
28

0.0
0.0
0.0
0.0

16.8
7.8
52.3
44,6

0.34
0.19
0.95
0.80

0.71
0.62
1.07
0.98

12360.
13832.
6570.
7837.
76.6
83.1
92.2
85.7
2.1
15.7
4,4
«.2
5.9
1.63
.227
,363
140.
28
BY
48

0.0
0.0
0.0
0.0

15.1
10.0
46.1
51.2

0,35
0.25
0.94
1.09

0,72
0,66
1.11
1.19

12632,
13469,
7580.
6757.
87.4
90.5
96.6
93.2
1.6
56.3
«.5
4,6
3.7
2.01
.325
.320
195.
48
BY
0

0.0
0,0
0.0
0.0

18,7
18.4
21.0
20.7

0.34
0.32
0.48
0.52

0.69
0.67
0,81
0.84

12053.
12096.
11673.
11724.
88,7
89,1
99,5
89,1
0.0
55.6
«,1
«.2
3.4
2.01
.325
.320
195.
COMP



100,0
100.0
100.0
100.0

26.9
5.7
60.9
46.9

0.29
0,17
0,47
0,40

0.59
0.60
0.58
0,61

10894,
14179,
5685.
7762.
57.4
61.4
93,5
74.8
0.7
10.2
0.8
3.7
12.4
1.52
.063
.140
50.

-------
      DISTRIBUTION* PERCENT TO WASHED  COAL

       (SPECIFIC GRAVITY FRACTION)|
LOAT
.30-
.35-

,50*
.60"
.70-
SINK
•30, •*,•«.»•£•>•*.•«.>««>.,..««,.»«




leo;:;:;;;;:;:;::::;:::::::;;::;;::

100.
94.
78.
39.
3.
1.
0.
0.
0
a
j
g
1
1
0
99.
98.
93.
64.
32.
14.
4.
1.
7
1
1
0
0
7
0
0
99.4
98.3
95.0
76.1
48.5
26.0
11.4
3.3
97
95
90
79
61
46
33
11
,«
,3
,3
,1
,9
.5
.8
.6
98,9
98.0
96.7
93.2
86,6
78,5
69,7
36.2
•98.9
98,0
96,7
93,2
86,6
78,5
69,7
36,2
99,8
95,9
85,1
50.0
15.7

2,0
0.4
to
-3

-------
to
00
                                            SUMMARY  OF  THE  PERFORMANCE  CHARACTERISTICS  OF UNIT  NUMBER  4




                                                            SECONDARY  SINGLE  ROLL  CRUSHER




                                                            CRUSHER  SETTING  •  .13 INCHES
SIZE, INCHES OR MESH
SCREEN ANALYSIS, PERCENT

ASH, PERCENT 1

PYRITIC SULFUR, PERCENTi

TOTAL SULFUR, PERCENT!

BTU PER POUNDi MOISTURE FREEI

6
BY
2









2
BY
1
36.2
0.0
50.2
0.0
0.48
0,00
0.70
0.00

0.
1
BY
3/8
1.3
0.0
50.8
0.0
0.60
0.00
0.76
0.00
6888.
0.
3/8
BY
28
0.0
5,9
44.6
47.0
0.80
0,40
0.98
0.61
7837.
7759.
28
BY
48
0.0
84.1
51.2
46.9
1.09
0.40
1.19
0.61
6757.
7762.
48
BY
0
0.0
10.0
20,7
46,9
0.52
0,40
0.84
0.61
11724.
7760.
COMP
100,0
100,0
46,9
46,9
0,40
0.40
0.61
0.61
7762,
7762,

-------
                                            SUMMARY OP THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER  5
                                                                   STREAM BLENDER
       SIZE,  INCHES OR MESH
to
cp
                                                1
                                               BY
                                              3/6
3/6
 BY
 28
28
BY
48
48
BY
 0
COMP
SCREEN ANALYSIS, PERCENT!
  FEED 1	   38.?     30.2      16.4      15.0     100.0
  FEED 2	..,.,	    0.0      5.9      84.1      10.0     100.0
  PRODUCT	   29.0     24.2      33.1      13.7     100.0

ASH, PERCENT I                                                    ,
  FEED 1...................i...............   22.0     16.6      15.1      16.7      18.8
  FEED 2	,.,.,...,.,.	    0.0     47.0      46.9      46.9      46.9
  PRODUCT........	   22.0     18.6      35.1      23.8      25.8

PYRITIC SULFUR, PERCENT!
  FEED 1	   0.3?     0.34      0.35      0.34      0.33
  FEED 2...........	,	   0.00     0.40      0.40      0.40      0,40
  PRODUCT..	   0.3?     0.34      0.38      0.35      0,35

TOTAL SULFUR, PERCENT!
  FEED  1..,.	   0.65     0.71      0.72      0.69      0.69
  FEED 2.................	   0.00     0.61      0.61      0.61      0.61
  PRODUCT.	   0,65     0.70      0.65      0.68      0.67

BTU PER POUND,  MOISTURE  FREE!
  FEED  1,	  11546.    12360.    12632.   12053.   12045.
  FEED  2..	,	  15100.     7759.    7762.    7760.    7762,
  PRODUCT.	  11546.    12066.    95|1.   11225.   10954.

-------
                                            SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER  6
                                                                  DRY UPPER SCREEN
                                                           SIZE OF OPENING •  .02 INCHES
       SIZE* INCHES OR MESH
to
o
o
                                                1
                                               BY
                                              J/8
                    3/8
                     BY
                     28
               28
               BY
               48
08
BY
 0
COMP
SCREEN ANALYSIS, PERCENTl
  FEED.....	   29.0     24.2     33.1     13.7    100.0
  OVERFLOW (COARSE) STREAM..	   32.5     27.1     31.3      9.1    100.0
  UNDERFUOH (FINE) STREAM.	    0.0      0.0     18.0     52.0    100.0

ASH, PERCENTl
  FEED..	   22.0     16.6     3S.1     23.8     25.8
  OVERFLOW (COARSE) STREAM	   22.0     18.6     35.1     23.8     25.3
  UNDERFLOW (FINE) STREAM	    0.0      0.0     35.1     23.8     29.2

PYRXTIC SULFUR, PERCENT!
  FEED	   0.3?     0.34     0.38     0.35     0.35
  OVERFLOW (COARSE) STREAM..	   0.32     0.34     0.38     0.35     0.35
  UNDERFLOW (FINE) STREAM......	   0.00     0.00     0.36     0.35     0.37

TOTAL SULFUR, PERCENT]
  FEED.	   0,6*     0.70     0.65     0.66     0.67
  OVERFLOW (COARSE) STREAM.,..	   0.65     0.70     0.65     0.66     0.67
  UNDERFLOW (FINE) STREAM	   0.00     0.00     0.65     0.66     0.66

BTU PER POUND, MOISTURE FREEl
  FEED	 11546.   12066.    9511.   11225.   10954,
  OVERFLOW (COARSE) STREAM....	 11546.   12066.    9511.   11225.   11021.
  UNDERFLOW (FINE) STREAM	     0.       0.    9511.   11225.   10402.

WEIGHT RATIO, UNDERFLOW TO FEED.... PERCENT    o.o      o.o     15.6     40.6     10.7
BTU RATIO, UNDERFLOW TO FEED.......    DO      0.0      0.0     15.6     40,6     10.2
            KCOUNTl  2
                    SGXXH.SOO
SGSPll.466
SGRAV(N3)«1,499

-------
                                            SUMMARY  OF  THE  PERFORMANCE  CHARACTERISTICS  OF  UNIT  NUMBER   7
                                                                CONCENTRATING  TABLE
                                                       SPECIFIC  GRAVITY  OF  SEPARATION  e  1.50
M
o
SIZE, INCHES OR MESH


SCREEN ANALYSIS, PERCENTl



ASH, PERCENTl



PYRITIC SULFUR, PERCENTl



TOTAL SULFUR, PERCENTl



BTU PER POUND, MOISTURE FREEl








FLOAT IN REFUSE......... PERCENT OF PRODUCT
SINK IN CLEAN COAL. 	 DO
TOTAL MISPLACED MATERIAL... PERCENT OF FEED
NEAR GRAVITY o.i MATERIAL.. DO


IMPERr ECT IQNtt(t.t.tlV|l.ti9t(tBt(C(fl|iift9i

i
BY
3/6

32.5
34.9
26.9

22. o
5.1
52.7

0.32
0.15
0.62

0.65
0.59
0.76

11546.
14263.
6564.
64.6
67."
95. B
79.8
0."
11.3
3.5
6.3
15.9
1.47
.061
.130
36.
3/6
BY
26

27.1
30.2
22.3

16.6
5.2
46.1

0.34
0.15
0,74

0.70
0.60
0.92

12066.
14256.
7593.
67,1
70,9
94.6
79.3
0.6
14.4
4.0
7.4
16.5
1.47
.065
.139
41.
26
BY
46

31.3
23.2
} 4J.6

35.1
11. 9
53.7

0.38
0.21
0.53

0.65
0.62
0.66

9511.
13167.
6578.
44.5
56.5
76.6
61.6
4.1
16.7
14.7
15.8
21.3
1.53
.134
.253
93.
46
BY
0

9.1
11.7
5.2

23.8
19.6
38.1

0.35
0.31
0.50

0.66
0.66
0.73

11225.
11913.
6884.
77,3
82,9
93.3
62.0
1.2
23.6
4,9
9.1
4.6
1.73
,244
.332
152.
COMP



100.0
100.0
100.0

25.3
8.4
50.9

0.35
0.18
0.60

0.67
0.61
0.76

11021.
13731.
6927.
60.2
66.6
90.0
75,0
1.5
13.6
15.4
10.2
17.1
1.49
.104
.206
76.

-------
DISTRIBUTION* PERCENT TO HASHED COAL
 (SPECIFIC GRAVITY FRACTION)|
 FLOAT
  1.30«
  1.35.
  1.40<
  1.50-
  1.60«
  1.70-
  SINK
.30
.35
.40
.50
.60
.70
.60
.60


	 ' ' 	 	 	 	 	 88.3





96.9
95.6
67.7
57.2
20.1
4.6
2.3
0.2
93 5
69.0
81.0
66.4
45.6
27.9
15.4
3.1
96.9
95.6
93.8
90.1
80.3
65.1
47.3
16.2
97.9
95.3
96.6
63.5
36.3
20.2
1 1.2
2.6

-------
                                           SUMMARY OF THE PERFORMANCE CHARACTERISTICS OF UNIT NUMBER  8
                                                                 FROTH FLOTATION
      SIZE. INCHES OR MESH
8
CO
                                               28
                                               BY
                                               48
48
BY
 0
COMP
SCREEN ANALYSIS, PERCENTi

                       "'"***""""***"   <*®'°     '2<0    100.0
             *'*'''*''"'"""*"""""'   '5-«8     64(2    100.0
            .,.,.,.,,,,..,,,.,,,	   64.t     35.9    100.0

ASH, PERCENTi

             1"*"'""	   35<1     23'8    '"•*
                        '•••"	   ll'5     l8'2     15'8
                                     	   52.«     37.0     46.9

PYRITIC SULFUR, PERCENTi
  FEED..........             	   o.Jfl     0.35     0.37
  CLEAN COAL....;.;.:...,...!	   0.21     0.30     0^7
  REFU8E	   0.51     0.48     0.50

TOTAL SULFUR, PERCENT!
  FEED.................,..,.,,,,.	,.   0.65     0.68     0.66
  CLEAN COAL....;.;.:...;...:.:.:	::.:.   0:*i     0 ^     o  *«
  REFUSE	   o.6R     0.72     0.70

BTU PER POUND,  MOISTURE FREEl
  FEED...	..,.,	,	  9511.   11225.   10402.
  CLEAN COAL....,.,	,...	 13229.   12141.   12531.
  REFUSE.	  6779.    9073.    7603.

ACTUAL RECOVERY.,.,.,....,	 PERCENT   42.a     70.1     56.8
BTU RECOVERY	    DO     58.«>     75.9     68.4

-------
                                SPECIFIC GRAVITY ANALYSIS OF FLOH8TREAM NUMBER  i


                          ORIGIN . UNIT NUMBER   0            DESTINATION • UNIT NUMBER
  SIZE FRACTION AND HEIGHT
16 BY 12
                          9.0 PERCENT
 \Z BY 6
                             PERCENT
  b BY 2
                        26.9 PERCENT
  2 BY 1
                        17.0 PERCENT
  1 BY 3/8
                         B.2 PERCENT
3/8 BY 26
                         5,0 PERCENT
SPECIFIC
GRAVITY
HEIGHT
DIRECT*
ASH
PERCENT
PYRITIC
SULFUR
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
1.60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
1,60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
t
•
•
•
•
•
•
t
f
•
•
•
t
•
•
•
•
t

•
t
t
0
t
0
t
•
ft
•
t
•
•
•

•
•
•
•
ft
ft
ft
ft
ft
ft
ft
30
35
40
50
60
70
60
60
30
35
40
SO
60
70
80
80
30
35
40
SO
60
70
80
80
30
35
40
50
60
70
60
80
30
35
40
50
60
70
80
80
30
35
40
50
60
19
11
2
11
2
1
0
51
16
14
5
5
4
2
1
51
23
21
7
7
it
2
1
31
26
21
8
7
3
2
1
28
31
21
7
6
3
1
1
25
40
20
6
6
2
.7
,0
.3
.3
.1
.9
.8
.0
.7
.3
.3
.3
.1
.1
.2
.0
.3
.0
.3
.'
.7
.4
.7
.7
.8
.0
.0
.«
.9
.3
,8
.9
.6
.9
.2
.8
.2
.9
.7
.6
.8
.7
.8
.1
.9
2.
4.
7.
15.
25.
31.
«1.
84.
2.
«.
9.
16.
26.
35.
45.
62.
2.
«.
9.
J6.
25.
31.
«.
«2.
2.
«.
9.
15.
2«.
33.
42.
82.
2.
«.
9.
15.
23.
32.
«1.
«2.
2.
«.
9.
15.
23.
8
4
8
0
0
5
0
6
9
7
4
7
7
1
7
9
4
7
7
2
9
2
5
2
4
7
6
9
8
0
0
9
2
6
2
4
8
7
0
2
2
6
2
4
6
0.
0.
o.
o.
0.
o,
o.
0.
0.
0.
0.
o.
o.
o.
o.
o.
0.
o.
o.
o.
o.
o.
o.
o.
0.
o.
o,
o.
o,
o.
o.
o.
06
09
03
13
10
18
17
32
14
12
19
26
23
25
54
26
14
25
22
27
30
38
52
33
14
19
19
29
36
39
66
44
0.12
o.
o.
o.
o.
o.
o.
o.
0.
o.
o.
o.
o.
12
23
30
39
51
78
65
09
14
27
30
37
TOTAL
BTU/LB
SULFUR
0.
0,
0.
0.
0.
0.
0,
0.
0.
0,
0,
0.
0.
0.
0.
0.
56
55
46
51
35
44
45
32
55
45
55
68
54
55
70
27
0,56
0.
0,
0.
0.
0.
0,
0,
0.
0.
o,
0.
0.
1.
1.
0.
0.
0.
0.
o.
0.
1.
1.
0.
0.
0,
0.
o.
o.
62
63
62
63
73
73
35
60
70
77
62
65
67
64
45
59
60
63
64
63
00
07
65
59
60
63
61
67
14644.
14383.
13829.
12590.
11025.
9966.
8417.
4000.
14627.
14334.
13566.
12378.
10748.
9379.
7651.
4000,
14709.
14334.
13519.
12459,
10878.
9525,
8173.
4000.
14709.
14334.
13535.
12506.
11058.
9721.
8254.
4000.
1474J.
14350.
13600.
12590.
11221.
9770.
6417.
4000.
14741.
14350.
13600.
12590.
11221.
                                                                                               CUMULATIVE* PERCENT
                                                                                        HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                                                    SULFUR  SULFUR
 19.7
 30.6
 32.9
 44.2
 46.J
 46.2
 49,0
100.0

 16.7
 31,0
 36,3
 41,6
 45.7
 47,8
 49,0
100.0

 23,3
 44,
 51,
 59,
 64.
 66.
 68.
100.0

 26.8
 47,8
 55,7
 63.1
 67.0
 69.3
 71.1
100,0

 31.6
 53,4
 60,6
 67.4
 70,6
 72.5
 74,2
100,0

 40,8
 61,4
 68,2
 74.3
 77,2
 2.8
 3.4
 3.7
 6,7
 7.5
 8.4
 9,0
47,5

 2,9
 3,7
 4,6
 6.1
 8,0

io!o
47,2

 2.4
 3,5
 4.4
 5,9
 7.4
  .4
  •


  •
 7.
 ».
30.0

 2.2
 3.2
 3.9
 5.1
 5.9
 6.6
 7,«
26.7

 2.2
 3.0
 3.6
 «.*
 5.3
0,06
0.06
0.08
0.09
0.09
0.10
0.10
0.21

0,14
0,13
0,14
0.15
0,16
0,17
0,17
0,22

0,14
0,19
0,20
0,21
0,21
0,22
0.23
0,26

0.14
0.16
0.17
0.16
0,19
0,20
0,21
0,28

0,12
0,12
0.13
0.15
0.16
0,17
0,18
0,30

0,09
0.11
0,12
0,14
0,15
0.56
0,57
0,56
0,55
0,54
0.54
0.53
0.42

0,55
0,50
0.51
0.53
0,53
0,53
0.54
0,40

0.58
0,60
0,60
0,61
0.61
0,61
0,61
0.53

0,60
0.64
0.66
0.66
0.66
0,69
0.72
0,64

0,59
0.59
0,60
0.60
0,60
0.61
0,62
0,63

0.59
0.59
0,60
0.60
0,60
14644,
14550,
14500,
14013.
13877.
13724,
13637,
 6722.

14627.
14492,
14357,
14105,
13804.
13609,
13463.
 6642,

14709,
14531,
14366,
14132,
13694,
13736.
13596,
10555,

14709,
14544,
14399,
14176,
13997,
13655.
13713,
10909,

14741.
14561,
14465,
14276,
14136.
14023,
13895,
11345,

14741,
14610,
14509,
14352,
14234,

-------
        28  BY  48
        48  BY  0
       COMPOSITE
to
o
01
1.60-
1.70-
SINK
2,3 PERCENT FLOAT
1.30-
1.35.
1.40-
1.50-
1.60-
1.70-
SINK
3.4 PERCENT FLOAT
.30-
.35.
.40-
.50-
.60-
.70-
SINK
loo.o PERCENT FLOAT
.30.
.35-
.40-
.50-
.60.
,70-
SINK
.70
.60
,80
.30
.35
,40
.50
.60
.70
.80
,80
.30
.35
,40
.50
.60
.70
.80
.80
.30
,35
.40
.50
.60
.70
.80
.80
1.8
1.5
19.5
15.5
18.8
5.8
5.1
2.5
1.6
1.2
19.5
50.0
20.0
5.0
5.0
2.0
2.0
1.0
15.0
24.7
18,2
6,3
7,0
3,8
2.2
1,"
36,4
32.7
41,0
82.2
1.8
«.3
8.9
15.5
24.6
33.6
41.9
83.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
3.7
5.3
9.8
16.1
25.6
33.4
42.3
82.0
0.54
0.77
0.90
0.12
0.18
0.23
0.31
0.43
0.54
0.77
0,98
0.33
0.33
0.33
> 0.33
0.33
0.33
0.33
0.33
0.14
0.18
0.21
0.26
0.29
0.35
0.58
0.36
0,80
0.97
1.01
0.59
0.60
0.63
0.65
0.64
0.79
0.88
0.98
0.67
0,67
0,67
0,67
0,67
0.67
0.67
0.67
0,59
0.59
0,64
0,62
0,59
0,85
0,99
0.38
9770.
8417.
4000,
14607,
14399.
13649.
12574.
1109Q.
9623.
8270,
4000.
11677.
11677.
11677.
11677.
11677.
11677.
11677.
11677.
14490.
1424J.
13509.
12469.
10931.
9653.
8201.
4108.
79,0
80.5
'100,0
45.5
64,3
70,1
75.2
77.7
79,3
80,5
100,0
50.0
70,0
7f.O
80,0
82,0
84,0
85.0
100.0
24,7
42.9
«9.J
56,2
60,0
62,1
63,6
100,0
5.
6,
21,
1,
2,
3.1
3,9
4.6
5.2
5,7
20.8
21,0
21.0
21.0
21.0
21.0
21.0
21.0
21,0
3.7
4.4
5.1
6.5
7.7
8,6
«,3
35,8
0,16
0,17
0.33
0.12
0.14
0,15
0,16
0.17
0,17
0,18
0.34
0.33
0,33
0.33
0.33
0.33
0,33
0.33
0,33
0,14
0.16
0.17
0,18
0,18
0.19
0.20
0.26
0.61
0,61
0,69
0.59
0.59
0.60
0.60
0.60
0.60
0,61
0,68
0.67
0.67
0.67
0,67
0.67
0.67
0,67
0,67
0,59
0.59
0,60
0.60
0.60
0.61
0,62
0,53
10133.
14026.
12073,
14807.
14687,
14602,
14464,
14355.
14260,
14171.
12187,
11677,
11677,
11677,
11677,
11677,
11677,
11677,
11677,
14490,
14384,
14273,
14047,
13849.
13704.
13578.
10129,
       FtOHSTREAM SUMMARY
       FLOHRATE •  loo.o PERCENT OF FEED


       BTU CONTENT • 10129. BTU/LB


       802 CONTENT •   1.04 LBS S02/MILLION BTU
ASH * 35.« PERCENT
PYRITIC SULFUR »  ,26 PERCENT
TOTAL SULFUR •  ,53 PERCENT

-------
                                SPECIFIC GRAVITY ANALYSIS OF FLOWSTREAM NUMBER  2
                          ORIGIN - UNIT NUMBER   1  R
                                      DESTINATION - UNIT NUMBER   0
  SIZE FRACTION AND WEIGHT
 te BY 12
 24.3 PERCENT
 12 BY 6
 T5.7 PERCENT
COMPOSITE
100.0 PERCENT
FLOHSTREAM SUMMARY
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30-
1.35.
1.40.
1.50.
1,60.
1.70.
SINK
FLOAT
.30-
.35.
.40.
.50.
.60-
.70-
SINK
FLOAT
.30-
.35.
.40.
.50-
.60*
.70-
SINK
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
2.1
1.2
0.2
1.2
0.2
0.2
0.1
9«,7
2.5
1.9
0.7
1.0
0.5
0.3
0.2
93.0
2.4
1.7
0.6
1.0
0.4
0.3
0.1
93.4
2.8
4.4
7.8
15.4
25.0
31.5
41.0
99.J
2.9
4.6
9.2
16.2
26.5
34.3
44,i)
98.7
2.9
4.6
*.o
15.9
26.3
33.7
44.1
98.8
0.08
0.09
0.03
0.13
0.10
0.18
0.17
0.02
0.12
0.11
0.17
0.21
0.21
0.23
0.48
0.02
0.11
0.11
0.16
0.19
0.20
0.22
0.43
0.02
SULFUR
0.58
0.55
0.46
0.51
0.35
0.44
0.45
0.02
0.56
0.47
0.54
0.61
0.51
0.53
0,66
0,02
0.56
0.48
0.53
0.58
0,49
0.51
0.62
0,02
BTU/LB

14640.
14383.
13829.
12590.
11025.
9966.
8417.
4000.
14632.
14343.
13598.
12462.
10786.
9506.
7781.
4000.
14634,
14350,
13625,
12501,
10821.
9603.
7907,
4000.
                                                                        CUMULATIVE, PERCENT
                                                                 WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                             SULFUR  SULFUR
  2,1
  3,3
  3.6
  4,»
  5,0
  5,2
  5.3
100,0

  2.5
  4,4
  5,1
  6,0
  6,5
  6,8
  7.0
100,0

  2,4
  4,1
                                                                                           6,2
                                                                                           6.4
                                                                                           6,6
                                                                                          100,0
 2,8
 3,4
 3,7
 6,7
 7.5
 8,4
 9.0
94,3

 2.9
 3,6
 4,4
 6.2
 7.8
 9.0
 9,8
92.5

 2.9
 3.6
 4.2
 6,3
 7.8
 8,9
 9,6
92.9
0,08
0,06
0.06
0.09
0.09
0.10
0,10
0.02

0.12
0,12
0,13
0,14
0.15
0,15
0,16
0.03

0,11
0.11
0,12
0,13
0.13
0,14
0.14
0,03
0.56
0,57
0,56
0,55
0,54
0,54
0,53
0,05

0,56
0.52
0,52
0,54
0,53
0,53
0.54
0,06

0,56
0.53
0,53
0,54
0,54
0,53
0,54
0,06
14644,
14550.
14500.
14013.
13877.
13724,
13637.
 4512.

14632.
14506,
14388,
14082.
13621,
13636.
13504,
 4663.

14634,
14514.
14409,
14068,
13833,
13654,
13531,
 4627,
FLOHRATE •  16,8 PERCENT OF FEED     ASH • 92,9 PERCENT     PYRITIC SULFUR «   ,03  PERCENT      TOTAL  SULFUR  •   ,06 PERCENT

BTU CONTENT •  4627. BTU/LB

S02 CONTENT *  0.24 LBS S02/MILLION BTU

-------
                                        SPECIFIC  GRAVITY ANALYSIS OF FLOWSTREAM NUMBER  3
                                 ORIGIN • UNIT  NUMBER
                                      DESTINATION • UNIT NUMBER
         SIZE FRACTION AND HEIGHT
         6 BY 2
36.3 PERCENT
         2 BY 1
27.6 PERCENT
8
          I  BY  3/6
13.8 PERCENT
        3/6 BY 2B
 9.9 PERCENT
         28 BY 48
 5.4 PERCENT
         46 BY 0
 4.9 PERCENT
SPECIFIC
GRAVITY
DIRECT, PERCENT
HEIGHT ASH PYRITIC TOTAL
SULFUR
FLOAT 1.30
1.30*1.35
1.35- .40
1.40-
1.50-
1.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40>
1.50.
1.60.
1.70.
SINK
FLOAT
.30.
.35-
.40-
.50-
.60-
,70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.70.
SINK
FLOAT
.30.
.35.
.40.
.50*
.60-
,70-
SINK
FLOAT
1.30-
1.35-
1.40.
1,50.
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
,40
.50
,60
.70
.80
.80
.30
.35
.40
.50
.60
a«.2
20.7
7.1
6.6
4.9
2.6
1.7
30.1
27.1
21.6
7.9
8.6
4.7
2.6
1.8
25.8
30.5
22.6
7.7
8.2
4.2
2.4
1.8
22.6
36.2
22.9
7.8
8.0
«.2
2.4
1.8
16.8
40.3
22.4
7,4
7.4
3.8
2.2
1.7
14.8
49.5
20,6
5.5
5.4
2.3
2.6
«.7
«.«
16.2
26.1
34,2
43.2
73.6 t
2.5
4.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
".6
'.3
15.8
25.1
33.4
42.2
68.6
2.3
4.6
'.3
15.8
25.0
33.4
«2.2
61.4
2.1
«.s
9.2
15.7
25.0
33.5
42.2
61.0
17.9
17.8
18.2
19.8
22.1
0,13
0.21
0.20
0.25
0.27
0.32
0.51
0.46
0.14
0.17
0.19
0.26
0.30
0.33
0,59
0.60
0.13
0,14
0.21
0.27
0,32
0.39
0,67
0,78
0.11
0.15
0.23
0.27
0.32
o.ui
0,67
l.H
0.12
0.16
0.22
0.26
0,34
0.44
0.69
1.32
0.30
0.30
0.31
0.32
0.34
BTU/LB
SULFUR
0.57
0.57
0.60
0.62
0.59
0.65
0.71
0.46
0.58
0.62
0.69
0.62
0.60
1.14
1.36
0.62
0.58
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.59
0.59
0,63
0,62
0.61
0.66
1.03
1.17
0.59
0.60
0,64
0,63
0.62
0.87
1.01
1,34
0.66
0.66
0.66
0.66
0,66
14682.
14337.
13544.
12462,
10646.
9521.
6051.
4000.
14685.
14337.
13551.
12484.
10931.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14716.
14345.
13580.
12527.
11024.
9657.
8229,
5099,
14756.
14363.
13599,
12534.
11026.
9638.
8224.
5163.
12179.
12201.
12139.
11878.
11506.
                                                                        CUMULATIVE, PERCENT
                                                                 HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                             SULFUR  SULFUR
24.2
44,9
52,1
60,7
65.6
68.3
69,9
100,0
27,1
48.7
56,5
65.1
69,7
72.4
74,2
100,0
30.5
53.1
60.6
66,9
73,2
75,6
77,4
100.0
36.2
59,0
66,8
74.8
79,0
81,4
63,2
100,0
40,3
62.7
70,1
77,5
81.3
63,5
85,2
100,0
49,5
70,1
75,6
61,0
83,3
2,6
3.5
4.4
6,0
7.5
6.6
9.4
26.7
2.5
3.5
«,3
5.9
7.2
6.2
'.0
24.7
2.4
3.3
4.1
5.5
6,6
7.5
8,3
22,0
2.3
3.2
3.'
5.2
6.3
7.1
7.8
16.6
2.1
3,0
3,6
«.8
5.7
6,5
7.2
15.1
17,9
17,9
17, «>
16,0
16.1
 0.13
 0,17
 0.17
 0.18
 0.19
 0,19
 0,20
 0.28

 0.14
 0,15
 0.16
 0.17
 0.18
 0.18
 0.19
 0,30

 0,13
 0.13
 0.1U
 0.16
 0.17
 0,17
 0,18
 0,32

 0.11
 0,12
 0,14
 0.15
 0,16
 0,17
 0,18
 0,34

 0.12
0.13
 0.14
 0,16
0,16
0,17
0.18
0,35

0.30
0.30
0,30
0,30
0,30
 0.57
 0.57
 0.58
 0,58
 0.58
 0,59
 0.59
 0,56

 0,58
 0,60
 0.61
 0.61
 0.61
 0.63
 0,65
 0,64

 0.58
 0,58
 0,59
 0.59
 0,59
 0.60
 0,61
 0,65

 0,59
 0.59
 0,59
 0.60
 0.60
 0,60
 0.61
 0,71

 0.59
0,59
0,59
 0,60
0,60
0,61
0,61
0.72

0,66
0,66
0,66
0,66
0,66
 14662,
 14523.
 14369.
 14115,
 13869.
 13703.
 13567,
 10692,

 14665.
 14531.
 14394,
 14143,
 13929,
 13771,
 13633.
 11146,

 14712,
 14556,
 14433.
 14207.
 14023.
 13863.
 13751,
 11546,

 14718,
 14573.
 14457,
 14250,
 14061,
 13949,
 13627,
 12360,

 14756,
14616,
14506.
 14320,
14167,
14045.
13932.
12632,

12179.
12165,
12162,
 12162.
12144,

-------
COMPOSITE
100.0 PERCENT
PIOWSTREAH SUMMARY
1.60-1. TO
1,70*1.60
SINK 1.60
FLOAT
1.30-
1.35-
i.oo-
1.50-
1.60-
1.70-
SINK
.30
.35
.10
.50
.60
.70
.60
.60
2.0
1.1
13.6
29. 2
21.5
T.«
8.3
1.5
2.5
l.T
20.9
23.5
26.0
20.6
3.6
5.3
'.8
16.1
25.o
33. «
«2.3
69.3
0.36
O.U3
0.58
0,10
o.ie
0,21
0,86
0.29
0.35
0.56
0.62
0.70
0.75
0.69
0.59
0.59
0.6
-------
                                       SPECIFIC  GRAVITY  ANALYSIS OF FLOH8TREAH NUMBER  4


                                 ORIGIN . UNIT NUMBER    2   U         DESTINATION • UNIT NUMBER   3
         SIZE FRACTION AND HEIGHT
         6 BY 2
                                57. 1 PERCENT
         2 BY 1
 41.1  PERCENT
1
          1 BY 3/8
  1.7  PERCENT
        COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30-
1.35.
1.40.
1.50*
1.60.
1.70-
SINK
FLOAT
.30.
.35.
.40.
.50.
.60.
,70.
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.70-
8INK
FLOAT
1.30>
1.35.
1.40-
1.50.
1.60-
1.70.
SINK
.30
.35"
.40
.50
.60
.70
.80
.SO
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.80
.60
24.2
20.7
7.1
8.6
4.9
2.6
1.7
30.1
27.1
21.6
7.<»
8.6
4.7
2.6
1.8
25.8
30.5
22.6
7.7
8.2
«.2
2.4
1.8
22,6
25.5
21.1
7.4
8.6
4.8
2.6
1.7
26.2
2.6
«.7
9.5
16.2
26.1
34.2
«3.2
73.6
2.5
4.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.6
2.6
4.7
".5
16.1
25.9
34.0
«.l
72.2
0.13
0.21
0.20
0.25
0.27
*.32
0.51
0.46
0.14
0.17
0.19
0.26
0.30
0.33
0.59
0,60
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.78
0.13
0.19
0,20
0.25
0,28
0.33
0.54
0,52
BTU/LB
SULFUR
0.57
0.57
0,60
0.62
0.59
0,65
0.71
0.48
0.58
0.62
0.69
0.62
0,60
1.14
1.36
0.62
0.56
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.56
0,59
0,64
0,62
0.59
0.86
0.99
0,54
14682,
14337.
13544.
12462.
10646.
9521.
8051.
1000.
14685.
14337.
13551.
12464,
10931,
9616,
8101,
400Q,
14712.
14345.
13562.
12526.
11016.
9650.
6222,
4000,
14664.
14337.
13546.
12472.
10663.
9563.
6077.
4000,
                                                                         CUMULATIVE,  PERCENT
                                                                 WEIGHT  ASH   PYRITIC  TOTAL   BTU/LB
                                                                              SULFUR   SULFUR
24,2
44,9
52.1
60,7
65.6
66,3
69,9
100.0
27.1
46.7
56.5
65.1
69.7
72.4
74,2
100,0
30,5
53.1
60,8
66,9
73.2
75.6

ioo|o
25.5
46,6
54,1
62.7
67,5
70.1
71,6
100,0
2.6
3,5
4.4
6,0
7.5
8.6
9.4
28,7
2.5
3.5
4.3
5.9
7.2
8,2
9.0
24,7
2,4
3,3

5!5
6,6
7,5
8.3
22,0
2,6
3.5
4.3
6,0
7.4
8.4
9.2
26.9
                                            0.13
                                            0,17
                                            0.17
                                            0.18
                                            0.19
                                            0.19
                                            0.20
                                            0.28

                                            0,14
                                            0,15
                                            0.16
                                            0,17
                                            0,16
                                            0,18
                                            0.19
                                            0,30

                                            0,13
                                           0,13
                                           0,14
                                           0,16
                                           0,17
                                           0,17
                                           0,16
                                           0,32

                                           0,13
                                           0,16
                                           0,17
                                           0,16
                                           0.16
                                           0,19
                                           0,20
                                           0,29
                 0,57
                 0,57
                 0.56
                 0,56
                 0,58
                 0,59
                 0.59
                 0,56

                 0.56
                 0,60
                 0,61
                 0,61
                 0,61
                 0,63
                 0,65
                 0,64

                 0,58
                 0.56
                 0.59
                 0.59
                 0.59
                0,60
                0.61
                0,65

                0.56
                0,56
                0,59
                0,60
                0,60
                0,61
                0.61
                0,59
 10662.
 14523.
 14389,
 14115,
 13869,
 13703.
 13567.
 10692,

 14665.
 14531,
 14394.
 14143.
 13929,
 13771,
 13633,
 11148.

 14712,
 14556,
 14433.
 14207,
 14023,
 13663.
 13751,
 11546,

 14664.
 14527.
 14392.
14128,
13696,
13735,
13596,
10694,
        FLOHSTREAM  SUMMARY
        FLOWRATE  •   55.6  PERCENT  OF  FEED

        BTU  CONTENT  •  10694.  BTU/LB

        602  CONTENT  •   1.09 LBS SOS/MILLION  BTU
             ASH • 26.9 PERCENT
PYRITIC SULFUR •  .29 PERCENT
TOTAL SULFUR •   ,59 PERCENT

-------
                                        SPECIFIC  GRAVITY  ANALYSIS OP FLOH8TREAM NUMBER  5
                                  ORIGIN  •  UNIT  NUMBER    2  I
                         DESTINATION - UNIT NUMBER   5
         SIZE FRACTION AND  HEIGHT
          I BY 3/6
       3/8 BY 26
CO
t-«
o
         ze  BY  46
        46 BY  0
       COMPOSITE
HT
SPECTFIC
GRAVITY
HEIGHT
DIRECT* PERCENT
ASH PYRITIC TOTAL
SULFUR
38.5 PERCENT







30.2 PERCENT







16.4 PERCENT







15.0 PERCENT







100.0 PERCENT







FLOAT
.30.
.35.
.40-
.50-
.60-
.70-
SINK
FLOAT
.30-
.35-
.40*
.SO-
.60-
.70-
SINK
FLOAT
.30-
.35-
.40-
.50.
.60-
,70.
SINK
FLOAT
1.30-
1.35.
1.40-
1.50-
1.60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.30
.35
.40
.so
.60
.70
.60
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
.60
.70
.60
.60
.30
.35
.40
.50
,60
.70
,70-1.60
SINK 1.60
30.5
22,6
7.7
6.2
1.2
2.4
1.8
22.6
36.2
32,9
7.8
8,0
4.2
2.4
1.6
16.8
40.3
22.4
7.4
7.«
3.8
2.2
1.7
14.6
49,5
20.6
5.5
5.4
2.3
2.0
1.1
13.6
36.7
Z2.3
7.3
7.6
3.6
2.3
1.7
18,2
2.4
4.6
9.3
15.8
25.1
33.4
42.2
68.8
2.3
4.6
'.3
15.8
25.0
33.4
42.2
61.4
2.1
4.5
'.2
15.7
25.0
33.5
42.2
61.0
17.9
17.6
18.2
19.8
22.1
23.3
26.4
20.6
5.5
6.4
10.3
16.2
24.8
32.1
40.6
60.3
0,13
0,14
0,21
0,27
0.32
0.39
0,67
0,78
0.11
0.15
0.23
0.27
0.32
0.41
0.67
1.14
0.12
0.16
0.22
0.26
0.34
0,44
0.69
1.32
0,30
0.30
0,31
0.32
0.34
0.36
0.43
0.58
0,15
0.17
0.23
0.26
0.32
0.40
0.65
0,93
SULFUR
0.56
0.56
0.63
0.63
0.60
0.90
1,04
0,79
0.59
0,59
0.63
0,62
0,61
0.66
1.03
1.17
0.59
0.60
0.64
0,63
0,62
0.67
1.01
1.34
0,66
0,66
0.66
0,66
0,66
0,70
0.75
0.89
0.60
0.60
0.64
0.63
0.61
0,66
1.00
0.96
BTU/L6

14712.
14345.
13562.
12526.
11016.
9650.
8222,
4000,
14716,
14345,
13580.
12527.
11024.
9657.
6229.
5099.
14756.
14363.
13599.
12534.
11026,
9636,
6224,
5163,
12179.
12201.
12139.
11676.
11506.
11297,
10604,
11715.
14209.
14052.
13424.
12459.
11064.
9867.
6464.
5320.
                                                           CUMULATIVE,  PERCENT
                                                    HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                SULFUR   SULFUR
                                                     30,5
                                                     53.1
                                                     60,8
                                                     68,9
                                                     73.2
                                                     75.6
                                                     77.«
                                                    100.0

                                                     36,2
                                                     59.0
                                                     66,8
                                                     74.8
                                                     79.0
                                                     81.«
                                                     83.2
                                                    100,0

                                                     40.3
                                                     62.7
                                                     70,1
                                                     77.5
                                                     81,3
                                                     63,5
                                                     85,2
                                                    100,0

                                                     49,5
                                                     70,1
                                                     75,6
                                                     61.0
                                                     83.3
                                                     85.3
                                                     66.4
                                                    100.0

                                                     36.7
                                                     59.0
                                                     66,3
                                                     73,9
                                                     77.8
                                                     80,1
                                                     61,8
                                                    100,0
                                     2.4
                                     3.3
                                     4,1
                                     5,5
                                     6.6
                                     7,5
                                     6.3
                                    22,0

                                     2.3
                                     3.2
                                     3,9
                                     5,2
                                     6,3
                                     7,1
                                     7.8
                                    16.8

                                     2,1
                                     3,0
                                     3,6
                                     4,8
                                     5,7
                                     6,5
                                     7.2
                                    15.1

                                    17.9
                                    17,9
                                    17.9
                                    18.0
                                    18.1
                                    16,3
                                    18,4
                                    18.7

                                     5.5
                                     5.
                                     6.
                                     7
                                     ' «
                                     8.
                                     8.
                                     g
                                     T f
                                    18.
        0.13
        0.13
        0,14
        0,16
        0.17
        0,17
        0,18
        0,32

        0,11
        0,12
        0.14
        0.15
        0,16
        0,17
        0.18
        0,34

        0.12
        0,13
        0.14
        0,16
        0,16
        0,17
        0,16
        0,35

        0.30
        0,30
        0.30
        0,30
        0.30
        0,30
        0,30
        0,34

        0.15
        0,16
        0,17
        0.16
        0,19
        0,19
        0,20
        0.33*
0,58
0.58
0,59
0,59
0,59
0,60
0,61
0,65

0,59
0,59
0,59
0,60
0,60
0,60
0,61
0,71

0,59
0,59
0,59
0,60
0,60
0,61
0,61
0,72

0.66
0,66
0.66
0,66
0,66
0,66
0,66
0,69

0,60
0.60
0,60
0,61
0.61
0,61
0,62
0,69
14712,
14556,
14433.
14207,
14023,
13663,
13751.
11546,

14716.
14573,
14457,
14250.
14081,
13949,
13627,
12360,

14756,
14616.
14508,
14320,
14167,
14045,
13932,
12632,

12179,
12165.
12162.
12162.
12144,
12123,
12106,
12053.

14209,
14150,
14069,
139Q4,
13764.
13651.
13545.
12045.
        FLOH8TREAM  SUMMARY
        FLOHRATE •  27.4 PERCENT OF FEED
ASH • U,6 PERCENT
PYRITIC SULFUR •  .33 PERCENT
TOTAL SULFUR •  ,69 PERCENT

-------
BTU CONTENT • U0«6. BTU/LB



802 CONTENT •  1.14 L.B3 SOZ/MIU.ION  BTU

-------
                                       SPECIFIC GRAVITY  ANALYSIS  OF  FLOW8TREAM  NUMBER   6
                                 ORIGIN . UNIT NUMBF.R    3   C
                         DESTINATION - UNIT NUMBER   0
         SIZE FRACTION AND HEIGHT
         6 BY 2
         2 BY I
to
H*
CO
         1 BY 3/8
       COMPOSITE
HT
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
52.7 PERCENT







«5. 2 PERCENT







2.0 PERCENT







100.0 PERCENT







FLOAT
1.30.
1.35-
1.40*
1.50-
1.60-
1.70-
SINK
FLOAT
1.30-
1.35-
1.40-
1.50-
1,60-
.30
.35
.40
.50
.60
.70
.BO
.60
.30
.35
.40
.50
.60
.TO
1.70-1. BO
SINK 1.80
FLOAT 1.30
1.30-1.35
1.35-
1.40.
1.50-
1.60.
1.70-
SINK
FLOAT
.30-
.35.
.40-
.50-
.60-
.70-
SINK
,«0
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
45.7
36. <>
10.6
6.4
0.«
0.1
0.0
0.0
42.8
33.5
11.6
8.7
2.4
0.6
0.1
0.4
43.5
31.
10.
8.
2.
0.
0.
1.
44.3
35.2
11.0
7.5
1.3
0.3
0.1
0.2
2.6
4.7
'.5
16.2
26.1
34.2
43.2
73.6
2.5
4.7
9.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.6
«.7
9.5
16.1
25.6
33.7
42.7
69.7
0.13
0,21
0.20
0.25
0.27
0.32
0.51
0.46
0.14
0,17
0.19
0.26
0,30
0,33
0,59
0,60
0.13
0.14
0.21
0.27
0.32
0,39
0,67
0,78
0.13
0,19
0,20
0.25
0,29
0.33
0.59
0.62
SULFUR
0,57
0,57
0.60
0.62
0.59
0.65
0.71
0,48
0.58
0.62
0.69
0,62
0,60
1.14
1.36
0.62
0.58
0.58
0.63
0,63
0.60
0,90
1.04
0.79
0.58
0.59
0.64
0.62
0,60
1.07
1,30
0.64
BTU/LB

14682.
14337.
13544.
12462.
10846.
9521.
8051.
4000.
14685.
14337.
13551.
12484.
10931.
9616.
8101,
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14664.
14337.
13548,
12475.
10923.
9612.
6137.
4026.
                                                           CUMULATIVE,  PERCENT
                                                    WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                SULFUR   SULFUR
                                                     45.7
                                                     82,6
                                                     93.2
                                                     99,6
                                                     99,9
                                                    100,0
                                                    100.0
                                                    100.0

                                                     42,8
                                                     76.3
                                                     67,8
                                                     96.5
                                                     98,9
                                                     99,5
                                                     99,6
                                                    100,0

                                                     43.5
                                                     75.4
                                                     65.9
                                                     94,8
                                                     97.7
                                                     98.6
                                                     98.9
                                                    100.0

                                                     44.3
                                                     79.6
                                                     90.6
                                                     98.1
                                                     99,4
                                                     99,7
                                                     99,8
                                                    100,0
                                     2.6
                                     3.5
                                     4.2
                                     5,0
                                     5.0
                                     5.1
                                     5.1
                                     5.1

                                     2.5
                                     3.5
                                     4.3
                                     5.3
                                     5.8
                                     6,0
                                     6,0
                                     6.3

                                     2,4
                                     3,3
                                     4.1
                                     5,2
                                     5,8
                                     6,0
                                     6,1
                                     6,6

                                     2,6
                                     3.5
                                     4,2
                                     5.1
                                     5.4
                                     5.5
                                     5,5
                                     5.7
         0.13
         0,17
         0.17
         0,18
         0.18
         0.18
         0,18
         0,16

         0,14
         0.15
         0.16
         0,17
         0.17
         0.17
         0.17
         0.17

         0,13
         0,13
         0.14
         0,15
         0,16
         0,16
         0,16
         0,17

         0,13
         0.16
         0,16
         0,17
         0.17
         0,17
         0,17
         0.17
0,57
0,57
0.58
0.58
0,58
0,56
0.58
0.56

0.58
0.60
0,61
0,61
0,61
0,62
0,62
0,62

0,56
0,56
0,59
0,59
0,59
0,60
0,60
0,60

0.56
0,58
0,59
0,59
0,59
0,60
0,60
0,60
14682,
14526,
14416.
14291,
14278,
14275,
14275.
14275,

14665,
14532.
14402,
14230,
14151,
14123,
14116,
14077,

14712.
14557.
14436,
14256,
14161.
14119,
14102.
13993,

14664,
14530,
14411,
14263.
14219.
14203,
14200,
14179,
       FLOWSTREAM SUMMARY
       FLOWRATE  •   32,1  PERCENT  OF  fEEO

       BTU CONTENT  •  14179.  BTU/LB

       802 CONTENT  •   0.84 LBS S02/MILLION  BTU
ASH •  5.7 PERCENT
PYRITIC SULFUR •  .17 PERCENT
TOTAL SULFUR •  ,60 PERCENT

-------
                                       SPECIFIC GRAVITV ANALYSIS  OF  FUOHSTREAM NUMBER  7


                                 ORIGIN - UNIT NUMBER   3  M          DESTINATION  - UNIT NUMBER   4
         SIZE  FRACTION AND HEIGHT
         6  BY  2
62.5 PERCENT
         2 BY 1
 36.2  PERCENT
to
H*
CO
          1 BY 3/8
  1.3 PERCENT
        COMPOSITE
100.0 PERCENT
        FLOHSTREAM  SUMMARY
SPECIFIC
GRAVITY
HEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
FLOAT
.30-
.35.
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30.
1.35.
1.40>
1.50.
1.60.
1.70-
SINK
FLOAT
1.30.
1.35.
1,40-
1.50-
1.60.
1.70-
SINK
FLOAT
.30-
.35.
.40.
.50-
.60.
1.70>
SINK
.30
.35
.40
.50
.60
.70
.60
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.80
0.5
3.2
6.0
19.1
15.3
7.1
3.9
40,9
0.2
2.0
2.4
12.7
12.6
7.0
5.5
56.5
0.6
2.4
2.3
10.6
10.8
7.7
6.2
59.4
0.4
2.8
4.6
16.7
14.3
7.4
4.5
49.3
2.6
4.7
'.5
16.2
26.1
34.2
43.2
73.6
2.5
4.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
9.3
15.8
25.1
33.4
42.2
68.8
2.6
4.7
'.5
16.1
25.9
34.0
43.1
72.0
0.13
0.21
0.20
0.25
0.27
0.32
d.si
0.46
0,14
0.17
0.19
0.26
0.30
0.33
0.59
0.60
0.13
0.14
0,21
0.27
0.32
0,39
0,67
0,78
0.13
0.20
0.20
0.25
0,28
0.33
0.55
0.53
BTU/LB
SULFUR
0.57
0.57
0.60
0.62
0.5<»
0.65
0.71
0,48
0.58
0.62
0.69
0,62
0,60
1.14
1.36
0.62
0.58
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.58
0.59
0.62
0.62
0.59
0.84
1.00
0,54
14682.
14337.
13544.
12462,
10846.
9521.
8051.
4000.
14685.
14337.
13551.
12fl«4.
109J1.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14683.
14337.
13546.
12469,
10875.
9560.
8077,
4001.
                                                                        CUMULATIVE, PERCENT
                                                                 HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                             SULFUR  SULFUR
                                            0,13
                                            0,20
                                            0,20
                                            0.23
                                            0,24
                                            0.25
                                            0,27
                                            0,36

                                            0.14
                                            0.17
                                            0.18
                                            0,24
                                            0.26
                                           0,28
                                           0,32
                                           0,48

                                           0.13
                                           0.14
                                           0,17
                                           0.24
                                           0.27
                                           0,30
                                           0,35
                                           0,60

                                           0,13
                                           0.19
                                           0.20
                                           0,23
                                           0,25
                                           0,26
                                           0,29
                                           0.40
0.5
3.7
9.7
28.8
44.1
51.1
55.1
100,0
0,2
2,2
4,7
17,4
30.0
38.0
43.5
100.0
0.6
3.0
5.3
15.9
26.7
34.4
40,6
100,0
0.4
3.2
7,8
24.5
38.8
46.2
50,7
100,0
2.6
4,4
7.6
13.3
17.7
20.0
21.7
45,0
2,5
4,5
7.1
13,7
18,7
21,8
24.5
50.2
2.4
4.2
6,4
12.7
17,7
21.2
24.4
50,8
2.6
4.4
7.5
13.4
18.0
20.6
22,6
46,9
0,57
0,57
0.59
0.61
0.60
0,61
0,61
0.56
0.58
0,62
0,65
0,63
0,61
0,72
0,80
0,70
0,58
0,58
0,60
0,62
0,61
0,67
0,73
0,76
0.58
o.Sa
0,60
0,61
0,60
0,64
0,67
0,61
14682,
14385,
13868,
12936,
12211,
11839,
11568,
8168.
14685.
14372,
13941,
12S74,
12057,
11546.
11111.
7090,
14712.
14418,
14050,
13033,
12217.
11641,
11119,
6888.
14683,
14382,
13885,
12921.
12168,
11750,
11422,
7762,
        FLOHRATE  •    9.0  PERCENT  OF  FEED
        BTU  CONTENT  •  7762.  BTU/LB
        802  CONTENT  •  1.57 LBS 302/MILLION  BTU
             ASH • 46,9 PERCENT
PYRITIC SULFUR •  ,40  PERCENT
TOTAL SULFUR •  ,61  PERCENT

-------
                                SPECIFIC GRAVITY ANALYSIS OF FLON8TREAM NUMBER  6
                          ORIGIN • UNIT NUMBER   3  R
                                      DESTINATION - UNIT NUMBER   0
  SIZE FRACTION AND HEIGHT
  6 BY 2
 63.6 PERCENT
  2 BY 1
 35.2 PERCENT
  1 BY 3/8
  1.2 PERCENT
COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PVRITIC TOTAL
8UIFUR
FLOAT
1.30.
1.3S-
1.40.
1.50.
1.60.
1.70-
SINK
FLOAT
.30.
.35.
.40.
.50.
,60.
.70-
SINK
FLOAT
1.30-
.35.
,40-
.50-
.60-
.70-
SINK
FLOAT
.30.
.35.
.40.
.50.
.60.
.70-
SINK
.30
.35
.10
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
0.0
2. 1
1.7
6.4
6.9
4.5
3.3
75.0
0.3
0.6
0.9
5.6
6.1
5.0
4.2
77.3
0.6
0.5
0.6
3.7
4.7
4.7
4.7
80.6
0.1
1.6
1.4
6.1
6.6
4.7
3.7
75.9
2.6
«.7
".5
16.2
26,1
34.2
43.2
73.6
2.5
u.7
'.5
16.0
25.6
33.6
42.9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.5
«.7
'.5
16.1
25.9
34.0
43.1
72.2
0.13
0.21
0.20
0.25
0,27
0.32
0.51
0.46
0.14
0.17
0,19
0.26
0.30
0.33
0.59
0.60
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.78
0.13
0.20
0.20
0.25
0.28
0.33
0.54
0,52
SULFUR
0.57
0.57
0.60
0.62
0.59
0.65
0.71
0.48
0.58
0.62
0.69
0.62
0.60
1.14
1,36
0,62
0.58
0,58
0.63
0.63
0.60
0.90
1,04
0,79
0,58
0.58
0.62
0.62
0.59
0.84
0.98
0.54
BTU/LB

14682.
14337.
13544.
12462.
10846.
9521.
8051.
4000.
1468$.
14337.
13551.
12480.
10931.
9616.
8101.
4000.
14712.
14345.
13582,
12526,
11016.
9650.
8222.
4000.
14687,
14337,
13546,
12470,
10875,
9559.
8075.
4000.
                                                                        CUMULATIVE, PERCENT
                                                                 HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                             SULFUR  SULFUR
                               0.0
                               2.1
                               3.8
                              10,2
                              17.1
                              21.6
                              25,0
                             100,0

                               0.3
                               0,9
                               1.7
                               7.4
                              13.4
                              18.4
                              22.7
                             100.0

                               0.6
                               1.1
                               1.7
                               5.4
                              10.1
                              14,8
                              19,4
                             100.0

                               0.1
                               1.7
                               3.0
                               M
                              15.7
                              20.4
                              24.1
                             100.0
   2.6
   4.7
   6,8
  12.7
  18,1
  21.5
  24,4
  61,3

   2.5
   4.1
   6.8
  13.9
  I'.t
  23.1
  26.8
  60.2

   2.4
   3.4
   5.4
  12.5
  18,3
  23,1
  27.7
  60.8

   2.5
   4.6
   6.8
  13.0
  18,4
  22.0
  25.2
  60.9
0.13
0.21
0.21
0.23
0.25
0.26
0,29
0,42

0,14
0,16
0,18
0,24
0,26
0,28
0,34
0,54

0.13
0.13
0,16
0,23
0,27
0,31
0,40
0,70

0.13
0,20
0,20
0.23
0.25
0.27
0.31
0,47
0,57
0,57
0,59
0,60
0,60
0,61
0.62
0,52

0,58
0,61
0.65
0,63
0.61
0.75
0,87
0,68

0,58
0,58
0.60
0,62
0,61
0,70
0,78
0,79

0.58
0,58
0,60
0.61
0.60
0,66
0.71
0,58
14682.
14337.
13988.
13030.
12145.
11596.
11121.
 5779,

14685.
14439,
13994,
12841,
11979,
11338,
10734,
 5527,

14712,
14545,
14221.
13067.
12109,
11333,
10588,
 5280.

14687,
14357,
13991,
12977.
12095.
11512.
10988.
 5685,
FLOHSTREAM SUMMARY
FLOHRATE •  14,8 PERCENT OF FEED

BTU CONTENT •  5685. BTU/LB

802 CONTENT •  2.03 CBS 802/HILLION BTU
             ASH • 60.9 PERCENT
PYRITIC SULFUR •  ,47 PERCENT
TOTAL SULFUR «  .58 PERCENT

-------
                                       SPECIFIC GRAVITY ANALYSIS OF FLOWSTREAM NUMBER   9


                                 ORIGIN •  UNIT NUMBER   4            DESTINATION • UNIT NUMBER    5
        SIZE FRACTION AND WEIGHT
      3/8 By 28
        26  BY  08
to
H*
en
        40 BY 0
       COMPOSITE
.1
25.9
34.0
43.1
72.0
2.6
«.7
'.5
16.1
25.9
34.0
«3.1
72.0
2.6
«.7
'.5
16.1
25.9
34.0
".I
72.0
2.6
4.7
«.5
16.1
25.9
34.0
«3.1
72.0
0.13
0.20
0.20
0.25
0.28
0,33
0.55
0.53
0.13
0.20
0.20
0.25
0.28
0.33
0.55
0.53
0.13
0.20
0.20
0.25
0.28
0.33
0.55
0.53
0.13
0.20
0.20
0.25
0.28
0.33
0.55
0.53
BTU/LB
SULFUR
0,58
0.59
0,62
0.62
0.59
0.84
1.00
0.54
0.58
0,59
0.62
0.62
0.59
0.84
1.00
0.54
0.58
0.59
0.62
0.62
0,59
0,84
1.00
0.54
0.57
0.58
0.62
0.62
0.59
0,84
1.00
0.54
14683.
14337.
13546.
12469.
10876.
9561.
8077.
4000.
14683.
14337.
13546,
12469.
10875.
9560.
8077.
4000.
14679.
14337.
13546.
12469.
10876.
9561.
8078.
4000.
14683.
10337.
13546.
12469,
10876.
9561.
8078.
4000,
       FLOH8TREAM SUMMARY
       CUMULATIVE, PERCENT
HEIGHT ASH  PYRITIC TOTAL  BTU/LB
            SULFUR  SULFUR
              0,13
              0,19
              0,20
              0.23
              0.25
              0.26
              0.29
              0.40

              0.13
              0.19
              0.20
              0.23
              0.25
              0.26
              0.29
              0.40

              0.13
              0,19
              0,20
              0.23
              0.25
              0.26
              0,29
             0,40

             0.13
             0.19
             0.20
             0.23
             0.25
             0.26
             0.29
             0.40
0,4
3.2
7.8
24.5
38.7
46.1
50.7
100.0
0.4
3.2
7.8
24.5
38,8
46.2
50.7
100.0
0.4
3.2
7.8
2«.5
38,7
46,1
50,7
100.0
2.6
4.4
7,5
13.4
18,0
20.6
22.6
47.0
2.6
4.4
7,5
13.4
18.0
20.5
22.6
46.9
2.6
4.4
7.5
13.4
18,0
20,6
22.6
46,9
                                                                                                  0,4
                                                                                                  3.2
                                                                                                  7.8
                                                                                                 24.5
                                                                                                 38,8
                                                                                                 46.2
                                                                                                 50.7
                                                                                                100.0
 8.6
 4.4
 7.5
13.4
18.0
20.5
22.6
46.9
0,58
0.58
0,60
0,61
0.60
0.64
0.68
0,61
0,58
0,58
0,60
0.61
0.60
0,64
0.67
0,61
0.58
0,58
0.60
0,61
0,60
0,64
0,68
0,61
0.57
0,58
0.60
0.61
0,60
0,64
0,67
0,61
14683,
14382.
13885,
12921.
12168.
11750,
11421,
7759,
14683,
14382,
13885,
12921.
12168,
11750,
11422,
7762.
14679,
14381,
13885,
12921,
12168,
11750,
11421,
7760,
14683,
14382,
13885,
12921,
12168,
11751,
11422,
7762.
       FLOHRATE •   9.0 PERCENT OF FEED     ASH * 46.9 PERCENT     PYRITIC SULFUR •  .40 PERCENT      TOTAL  SULFUR  •   ,61  PERCENT

       BTU CONTENT •  7762. BTU/LB

       802 CONTENT a  1.57 IBS 302/MILLION BTU

-------
                                SPECIFIC GRAVITV ANALYSIS OF FLOHSTREAH NUMBER 10
                          ORIGIN • UNIT NUMBER   5
                                                            DESTINATION • UNIT NUMBER   t
SIZE FRACTION AND WEIGHT
  I BY 3/6
                         29,0 PERCENT
3/8 BY 26
                         24.2 PERCENT
 26 BY 48
                         33.1 PERCENT
 46 BY 0
                         13.7 PERCENT
COMPOSITE
                        100.0 PERCENT
SPECIFIC
GRAVITY
FLOAT i.3o
.30-1.35
.35- .40
.40- .50
.50- .60
.60- .70
1.70- .60
SINK 1.80
FLOAT i.so
1.30-
.35-
.40.
.50.
.60*
.70-
SINK
FLOAT
1.30-
1.35.
1.40-
1.50.
1.60*
1.70.
SINK
FLOAT
.30-
.35.
.40-
,50.
.60.
.70.
SINK
FLOAT
.30-
.35.
.40.
.50.
.60*
.70-
SINK
.35
.40
.50
,60
.70
.60
.80
.30
.35

!so
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.10
.50
.60
.70
.80
.60
HEIGHT
30.5
22.6
7.7
6.2
1.2
2.1
1.6
22.6
34.0
21.7
7.6
6.5
4.6
2.7
1.'
16.6
15.3
10,1
5.7
13.2
10.4
5.5
3.5
36,5
40.7
17.4
5.3
7.1
4.4
3.0
1.7
20,0
27.7
17.5
6.7
9,8
6.4
3.6

25>
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR SULFUR
2.«
4.6
'.3
15.8
25.1
33.4
12.2
68.8
2.3
1.6
'.3
15.6
25.2
33.5
«2.3
63.0
2.1
1.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
2«.3
26.0
31.2
13.5
5.5
6.4
10.2
16.2
25.4
33.1
41.6
65.8
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.78
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0.17
0.21
0,26
0,29
0.34
0.57
0.65
0.30
0.30
0.29
0.29
0.30
0.34
0.46
0.55
0.15
0.17
0,22
0.27
0.30
0.36
0.60
0,74
0.58
0.56
0.63
0.63
0.60
0.90
1.04
0,79
0.59
0.59
0.63
0.62
0.61
0.86
1.03
1,07
0.59
0.59
0.63
0.62
0.59
0,65
1.00
0,66
0,66
0,65
0,65
0.64
0.62
0.77
0.67
0.74
0.60
0.60
0.63
0,62
0,60
0,65
1.00
0.77
BTU/LB
JU712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997.
9641.
6206.
4826.
14755.
14358.
13572.
12482.
10896,
9572.
8103.
4000.
12183.
12262.
12361.
12116.
11H2.
10526.
9516.
6012.
11211.
14063,
13445.
12463.
10961,
9711.
8293.
4570,
                                                                                                CUMULATIVE, PERCENT
                                                                                         HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                                                     SULFUR  SULFUR
                                                                                        30,5
                                                                                        53,1
                                                                                        60.8
                                                                                        68,9
                                                                                        73.2
                                                                                        75,6
                                                                                        77.4
                                                                                        100.0

                                                                                        34,0
                                                                                        55.7
                                                                                        63.3
                                                                                        71.8
                                                                                        76,6
                                                                                        7*,3
                                                                                        81.2
                                                                                        100.0

                                                                                        15.3
                                                                                        25.3
                                                                                        31.0
                                                                                        44,2
                                                                                        54,6
                                                                                        60.1
                                                                                        63,5
                                                                                        100,0

                                                                                        40,7
                                                                                        58.1
                                                                                        63.4
                                                                                        70,6
                                                                                        75,3
                                                                                        78.3
                                                                                        60.0
                                                                                        100.0

                                                                                        27.7
                                                                                        45.2
                                                                                        51.9
                                                                                        61.7
                                                                                        66.1
                                                                                        71.7
                                                                                        71.1
                                                                                        100,0
                                     2,1
                                     3.3
                                     «.l
                                     5.5
                                     6.6
                                     7,5
                                     8.3
                                    22.0

                                     2.3
                                     3.2
                                     4.0
                                     5.4
                                     6,6
                                     7.5
                                     6,4
                                    16,6

                                     2.1
                                     3.1
                                     «.2
                                     7.8
                                    11.2
                                    13,3
                                    14,9
                                    35,1

                                    17,9
                                    17,7
                                    17.7
                                    17.7
                                    16,1
                                    16,5
                                    16,8
                                    23.8

                                     5.5
                                     5.8
                                     6,4
                                     7,'
                                     9.6
                                    10,7
                                    11.7
                                    25.7
         0.13
         0.13
         0.14
         0,16
         0,17
         0,17
         0,18
         0,32

         0.11
         0.13
         0,14
         0,15
         0,16
         0,17
         0,16
         0,34

         0.12
         0.14
         0,15
         0,16
         0,20
         0.22
         0.23
         0.36

         0.30
         0,30
         0,29
         0,29
         0.29
         0,30
         0,30
         0.35

         0.15
         0,16
         0.17
         0.16
         0,19
         0,20
         0.22
         0,35
0.56
0,58
0,59
0.59
0.59
0,60
0,61
0,65

0,59
0,59
0.59
0,60
0,60
0,61
0,62
0,70

0,59
0,59
0,60
0,60
0,60
0.62
0.64
0.65

0.66
0.66
0,66
0,69
0.65
0,66
0,66
0,66

0,60
0,60
0,60
0,61
0,61
0,62
0,63
0,67
14712,
14556.
14433,
14207,
14023,
13683.
13751,
11546,

14716,
14573,
14453,
14223,
14023,
13673,
13737.
12066,

14755,
14597,
14409,
13834.
13276,
12936,
12675,
 9511,

12163,
12207,
12220,
12209,
12146,
12084.
12028,
11225,

14211,
14154,
14Q63,
13606,
13540,
13349.
13166,
10954,
FLOHSTREAM SUMMARY
FLONRATE •  36.4 PERCENT OF FEED
                                   ASH • 25.6 PERCENT
PYRITIC SULFUR •  .35 PERCENT
TOTAL SULFUR •  ,67 PERCENT

-------
BTU CONTENT • 10954. BTU/IB
802 CONTENT I  1.22 IBS 802/MIUION BTU

-------
                                        SPECIFIC  GRAVITY  ANALYSIS OF FLOH8TREAM NUMBER 11
                                  ORIGIN  -  UNIT  NUMBER
                         6  U
                                      DESTINATION - UNIT NUMBER
          SIZE  FRACTION  AND  HEIGHT
          1  BV  5/8
 32.5 PERCENT
        3/8  BV  26
 27.1 PERCENT
(O
i-»
00
         26  BY  46
 31.3 PERCENT
         46  BV  0
  9,1 PERCENT
       COMPOSITE
100.0 PERCENT
                SPECIFIC            DIRECT, PERCENT
                GRAVITY    HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                       SULFUR  SULFUR
                                    CUMULATIVE,  PERCENT
                             WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                         SULFUR   SULFUR
FLOAT
.30-
.35-
,40-
,50-
,60-
.70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
.70-
SINK
FLOAT
1.30.
1.35-
1,40-
1.50-
1.60-
1,70-
SINK
FLOAT
1.30.
1.35.
1.40-
1.50.
1.60.
1.70.
SINK
FLOAT
1.30-
1.35.
1.40.
1.50.
1.60.
1.70-
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.10
.50
.60
.70
.•0
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.«0
.50
.60
.70
.80
.80
30.5
22.6
7.7
8.2
4.2
2,«
1.8
22.6
34.0
21.7
7.6
8.5
4.8
2.7
1,"
18.8
15.3
10.1
5,7
13.2
10.4
5.5
3.5
36.5
40.7
17,4
5.3
7.«
4,4
3.0
1.7
20.0
27.6
17.9
6.8
9,8
6.3
3.5
2."
25.7
2.4
4,6
'.3
15.8
25.1
33.4
42.2
68.8
2.3
4.6
'.3
15.8
25.2
33.5
42.3
63.0
2.1
«.6
9.4
16. t
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.3
26.0
34.2
43.5
4.4
5.6
9.9
16.1
25.4
33.3
42.0
66.5
0.13
0.14
0.21
0.27
0.32
0.39
0.67
0.76
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0.17
0.21
0.26
0,29
0.34
0,57
0.65
0.30
0.30
0,29
0.29
0.30
0.34
0.46
0.55
0.14
0.16
0.22
0.26
0.30
0.37
0.61
0.75
0.58
0.58
0.63
0,63
0.60
0.90
1.04
0.79
0.59
0.59
0.63
0.62
0.61
0.66
1.03
1.07
0.59
0.59
0.63
0,62
0.59
0.65
1.00
0.66
0.66
0.65
0.65
0,64
0.62
0,77
0.87
0.74
0.59
0.59
0.63
0.62
0,60
0.86
1.01
0,79
14712.
14345.
13582.
12526.
11016,
9650.
6222.
4000.
14718.
14345.
13579.
12520.
10997.
9641.
6206.
4626.
14755.
14358.
13572.
12462.
10696.
9572.
6103.
4000.
12163.
12262.
12361.
12116.
11142.
10526.
9518.
8012.
14381.
14162.
13492.
12476.
10959.
9660,
6253.
4449.
30.5
53.1
60,6
66,9
73.2
75,6
77.4
100,0
34.0
55,7
63,3
71.8
76,6
79.3
61.2
100.0
15.3
25.3
31,0
44.2
54.6
60.1
63.5
100,0
40,7
56.1
63,4
70.8
T5.3
76.3
60,0
100,0
27.6
45,6
52.4
62.2
66.5
72.0
74.3
100,0
2,4
3.3
4.1
5.5
6,6
7.5
8.3
22.0
2.3
3.2
4,0
5.4
6,6
7,5
8.4
18,6
2.1
3.1
4.2
7.8
11.2
13.3
14.9
35.1
17.9
17.7
17.7
17.7
18.1
16.5
18,6
23.6
4.4
4.9
5.6
7.2
6.9
10.1
11.1
25,3
0.13
0,13
0.14
0,16
0,17
0,17
0,18
0.32
0,11
0.13
0.14
0,15
0.16
0.17
0.16
0,34
0.12
0.14
0.15
0.18
0,20
0,22
0.23
0,36
0.30
0,30
0,29
0.29
0,29
0.30
0,30
0.35
0.14
0,15
0,16
0,18
0,19
0,20
0.21
0,35
0,56
0.56
0.59
0.59
0,59
0,60
0,61
0,65
0,59
0,59
0.59
0.60
0.60
0,61
0.62
0,70
0,59
0.59
0,60
0.60
0,60
0.62
0.64
0,65
0.66
0,66
0,66
0,65
0.65
0.66
0.66
0,66
0,59
0,59
0.60
0,60
0,60
0,61
0.63
0,67
14712,
14556,
14433.
14207,
14023,
13663,
13751,
11546,
14718,
14573.
14453.
14223,
14023,
13673,
13737,
12066.
14755,
14597,
14409,
13834,
13276,
12936.
12675.
9511,
12183.
12207.
12220.
12209,
12146.
12064,
12026,
11225,
14381,
14295,
14190,
13921,
13646,
13454,
13290,
11021,
       FLOH8TREAM  SUMMARY
        FLOHRATE  •   32,5  PERCENT OF FEED
             ASH • 25,3 PERCENT
PYRITIC SULFUR •  .35 PERCENT
TOTAL SULFUR •  .67 PERCENT

-------
       BTU  CONTENT  •  11021.  BTU/lB


       303  CONTENT  •   1.21  IBS 302/MIUION BTU
to
H*
CO

-------
                                       SPECIFIC GRAVITY ANALYSIS OF FLOHSTREAM NUMBER 12
                                 ORIGIN . UNIT NUMBER   6  I
                                      DESTINATION - UNIT NUMBER   8
         SIZE FRACTION AND HEIGHT
        26 BV 46
 46.0 PERCENT
        48 BY 0
 52.0 PERCENT
to
g
       COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30-
1.35-
1.40-
1.50-
1.60-
1.70.
SINK
FLOAT
.30-
.35.
,40.
.50.
.60.
.70-
SINK
FLOAT
1.30.
1.35.
1.40-
1,50.
1.60.
1.70.
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.80
.80
15.3
10.1
5.7
13.2
10.4
5.5
3.5
36.5
40.7
17.4
5.3
7.«
4.4
3.0
1.7
20.0
28.5
13.9
5.5
10.2
7.3
«.2
2.<>
27.9
2.1
4.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.5
28.0
34.2
43.5
13.8
12.9
13.1
16.9
25.3
31.7
39.9
60.3
0.12
0.17
0.21
0.26
0,29
0.34
0.57
0.65
0.30
0.30
0.29
0.29
0.30
0.34
0.48
0.55
0.25
0.25
0.25
0.27
0.29
0.34
0,54
0.61
SULFUR
0.59
0.59
0.63
0.62
0.59
0,85
1.00
0.66
0.66
0,65
0.65
0.64
0.62
0,77
0.67
0.74
0.64
0.63
0,64
0.63
0.60
0.62
0.95
0.69
BTU/LB

14755.
14356.
13572.
12482.
10696.
9572.
8103.
4000.
12183.
12262.
12361.
12116.
11142.
10528.
9518.
6012.
12646.
12992.
12963.
1234(1.
1097*1.
9929.
8601.
5494.
                                                                        CUMULATIVE, PERCENT
                                                                 WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                             SULFUR  SULFUR
                              15.3
                              25.3
                              31,0
                              44,2
                              54.6
                              60.1
                              63.5
                             100.0

                              40.7
                              56.1
                              63.4
                              70.8
                              75,3
                              76,3
                              60.0
                             100.0

                              28.5
                              42.1
                              47.8
                              58.0
                              65.3
                              69,5
                              72.1
                             100,0
   2.1
   3.1
   4.2
   7.6
  11.2
  13.3
  14,9
  35,1

  17.9
  17.7
  17.7
  17,7
  18.1
  18.5
  18,8
  23.6

  13.6
  13.5
  13.5
  14,1
  15,3
  16.3
  17,2
  29.2
0.12
0,14
0,15
0.18
0,20
0.22
0.23
0.38

0.30
0.30
0.29
0.29
0,29
0.30
0.30
0.35

0.25
0,25
0.25
0.25
0.26
0,26
0.27
0.37
0,59
0,59
0,60
0,60
0,60
0,62
0,64
0,65

0,66
0,66
0,66
0,65
0,65
0.66
0.66
0,66

0.64
0,64
0,64
0,64
0,63
0,64
0.65
0,66
14755.
14597.
14409,
13834.
13276.
12938.
12675,
 9511,

12183,
12207,
12220.
12209,
12146.
12084,
12028.
11225,

12846.
12894,
12902.
12804,
12600,
12436,
12302.
10402,
       FLOMSTREAH SUMMARY
       FLOWRATE »   3,9 PERCENT OF FEED

       BTU CONTENT • 10402. BTU/LB

       S02 CONTENT a  1.26 IBS S02/MILUON BTU
             ASH • 29.2 PERCENT
PYRITIC SULFUR •  .37 PERCENT
TOTAL SULFUR •  .66 PERCENT

-------
                                       SPECIFIC  GRAVITY  ANALYSIS OF FLOHSTREAM NUMBER 13



                                ORIGIN • UNIT NUMBER    7   C          DESTINATION • UNIT NUMBER   "0
        SIZE FRACTION AND WEIGHT
        1 BY 3/6
3«.<» PERCENT
      3/8 BY 26
30.2 PERCENT
to
to
        26 BY  48
 23.2  PERCENT
        ae BY o
 11.7  PERCENT
       COMPOSITE
100.0  PERCENT
               SPECIFIC             DIRECT,  PERCENT
               GRAVITY     WEIGHT  ASH   PYRITIC  TOTAL  BTU/LB
                                       SULFUR  SULFUR
                                     CUMULATIVE,  PERCENT
                              WEIGHT  ASH   PYRITIC TOTAL   BTU/LB
                                          SULFUR   SULFUR
FLOAT i.»o
.30.
.35-
,ao.
.50-
.60.
.70.
SINK
FLOAT
.30-
.35-
.40-
.50-
.60.
.70-
SINK
FLOAT
.30.
.35.
.40-
.50-
.60.
.70.
SINK
FLOAT
.30.
.35-
.40-
.50-
.60.
.70.
SINK
FLOAT
.30-
.35-
.40-
.50-
,60-
.70.
SINK
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
47,0
34.1
10.5
7.3
1.1
0.1
0.1
0.0
50.1
30.9
0.9
7.3
l.«
0.2
0.1
0.1
32. t
20.1
10.3
19.7
10.6
3.4
1.2
2.5
51.0
21.5
6.4
8.7
".6
2.5
1.1
4.2
44,9
28.4
9,8
10.3
3.8
1.2
0.4
1.1
2.4
4.6
'.3
15.8
25.1
33.4
«2.2
68,8
2.3
«.6
".3
15.8
25.2
33.5
«2.3
63.0
2.1
«.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16,8
18.3
2«.3
28.0
3«.2
43.5
4.4
5.8
9.9
K>.2
25.4
32.4
40.4
58.2
0.13
0.14
0.21
0.27
0.32
0.39
0.67
'0,78
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0,17
0.21
0.26
0.29
0.34
0.57
0,65
0.30
0.30
0,29
0,29
0.30
0.34
0,48
0.55
0.14
0.16
0.22
0,27
0,29
0.35
0.55
0.61
0,58
0.58
0.63
0.63
0,60
0.90
1.04
0.79
0.59
0.59
0,63
0.62
0.61
0.86
1.03
1,07
0.59
0.59
0.63
0.62
0.59
0.85
1.00
0.66
0,66
0.65
0.65
0,64
0.62
0,77
0,87
0,74
0,59
0,59
0.63
0.62
0,60
0.83
0.97
0.70
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997,
9641,
8208,
4826,
14755.
14358,
I357a,
12482.
10896,
9572.
8103.
4000.
12183.
12262.
12361,
12116,
11142,
10528,
9518,
8012,
14384.
14162.
13485.
12465.
10954.
9819.
8513.
5815.
47,0
81.0
91,5
98.8
99,9
99,9
100,0
100,0
50.1
81.0
91.0
98.2
99.7
99,9
99,9
100.0
32.1
52.2
62,5
82.2
92.9
'6.3
97.5
100.0
51,0
72.5
79.0
87,6
92.2
94.8
95.8
100.0
44,9
73.4
83,2
93.5
97.3
98.5
98.9
100.0
2,«
3.3
4.0
4.9
5.1
5.1
5,1
5.1
2.3
3.2
3.9
4,8
5.1
5.1
5.1
5.2
2.1
3.1
4.1
7.0
',«
10.0
10.4
11.'
17.9
17.8
17.7
17,7
18.1
18.3
18.5
I'. 6
4,4
4,9
5,5
6.7
7.4
7.7
7."
8.4
0,13
0.13
0,14
0,15
0,15
0.15
0,15
0,15
0.11
0.12
0,14
0.15
0.15
0.15
0.15
0,15
0,12
0,14
0,15
0,18
0,19
0,19
0,20
0,21
0.30
0.30
0.29
0.29
0,29
0.30
0,30
0,31
0.14
0.15
0.16
0,17
0,17
0,18
0.18
0,18
0.58
0.58
0.59
0,59
0,59
0.59
0,59
0.59
0.59
0,59
0,59
0,59
0,59
0,59
0,60
0.60
0.59
0,59
0.60
0,60
0.60
0,61
0,61
0.62
0.66
0.66
0,66
0.65
0,65
0.66
0,66
0,66
0.59
0,59
0,60
0.60
0,60
0.60
0.61
0.61
14712.
14557,
14446,
14304,
14269.
14266,
14263,
14263,
14718,
14575.
14467,
14323.
14275.
14266.
14262.
14256.
14755,
14602.
14432.
13965.
13613.
13469.
13403,
13167,
12183,
12207,
12219,
12209,
12156,
12112,
12083,
11913,
14384.
14298,
14202.
14010.
13891.
13842,
13819,
13731,
       FLOWSTREAM SUMMARY
       FLOWRATE •  19,5 PERCENT OF FEED
             ASH  •   A,4  PERCENT
PYRITIC SULFUR •  ,18  PERCENT
TOTAL SULFUR •  ,61  PERCENT

-------
       BTU CONTENT  •  13731.  BTU/IB


       $02 CONTENT  •   0.66 IBS  S02/MIUION BTU
to
to
CO

-------
                                       SPECIFIC  GRAVITY ANALYSIS OF FLOH8TREAM NUMBER  14


                                 ORIGIN - UNIT NUMBER    7  R         DESTINATION - UNIT NUMBER    0'
         SIZE FRACTION AND WEIGHT
         1 BY 3/8
28.9 PERCENT
       1/8 BY 38
22.3 PERCENT
to
to
cs
        28 BY 48
 43.6  PERCENT
         46  BY  0
  5.2 PERCENT
        COMPOSITE
100.0 PERCENT
SPECIFIC
GRAVITY
FLOAT 1.30
.30-1.35
.35-1.40
.40.1.50
,50>1
.60.1
1.70-1
SINK 1
FLOAT i
1.30-1
1.35-1
1.40-1
1.50-1
1.60-1
1.70-1
SINK 1
FLOAT i
1.30-1
1.35.1
1.40-1
1.50-1
1.60-1
1.70-1
SINK 1
FLOAT i
.30-1
.35.1
.40.1
,50-1
.60-1
.70-1
SINK 1
FLOAT i
.30.1
.35-1
.40-1
.50-1
.60-1
.70-1
SINK 1
.60
.70
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL BTU/LB
SULFUR SULFUR
0,5 2.4 0.13 0,58 14712,
1.6 4.6 0.14 0.58 14345.
2.5 9.3 0.21 0.63 13582.
*.B 15.8 0.27 0.63 12526.
10
6
5
63
1
2
2
11
11
7
5
56
1
2
1
a
10
7
5
63
5
3
1
3
3
4
4
73
1
2
2
9
10
7
5
62
.0
,7
.0
,9
,1
18
,<}
,1
,6
,9
,8
,9
18
,0
,9
|0
,2
1
,3
7
,6
4
5
2
>8
16
.0
8
,5
1
3
iO
,1
0
2
8
25
33
42
68
2
4
9
15
25
33
42
63
2
.1
.4
.2
.8
.3
.6
.3
.8
.2

\3
.0
.1
4.6
9
16
25
33
42
70
17
17
16
18
24
28
34
43
5
5
9
16
25
33
42
66
.4
.1
.8
.9
.9
.3
.9
,4
.6
.3
.3
.0
.2
.5
.3
.7
,6
.0
,4
,5
,2
,8
0.32
0.39
0,67
0;.78
0.11
0.15
0.23
0.27
0.31
0,40
0,65
1.04
0.12
0.17
0.21
0.26
0.29
0.34
0.57
0.65
0.30
0.30
0,29
0,29
0,30
0.34
0,48
0,55
0,15
0.17
0.22
0.26
0,30
0.37
0.61
0.76
0.60
0.90
1.04
0.79
0.59
0.59
0,63
0,62
0.61
0.86
1.03
1.07
0.59
0.59
0.63
0.62
0.59
0.85
1.00
0.66
0.66
0.65
0.65
0.64
0.62
0.77
0.87
0.74
0.60
0.60
0.63
0.62
0.60
0.86
1.01
0.79
11016.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997.
9641.
8208.
4826.
14755.
14356.
13572.
1248{.
10896.
957J,
8103,
4000,
12183.
12262.
12361.
12116,
11142.
10528.
9518.
8012.
14230.
14175.
13537.
12500.
10961.
964«.
8220.
4413.
                                                                         CUMULATIVE,  PERCENT
                                                                  HEIGHT  ASH  PYRITIC TOTAL  BTU/LB
                                                                              SULFUR   SULFUR
0.5
2.1
0.6
1U.U
24.4
31.1
36.1
100.0
1.1
3.9
6.7
17.9
29. a
37.3
43.1
100.0
1.8
3.8
5.T
13.7
23.9
31.0
36.3
100.0
5.6
9.0
10.5
13,7
17.6
22.2
26,2
100,0
1.5
3.6
5.9
14.8
24.9
32.0
37,2
100,0
2.4
4.1
7.0
13.0
17.9
21.3
24.2
52.7
2.3
4.0
6.3
12.2
17.3
20.7
23.6
46.1
2.1
3.«
5.4
11.6
17.6
21.4
24.5
53.7
17.9
17,7
17.6
IT. 8
19,2
21,0
23,1
38.1
5,3
5.5
T.I
12.5
IT, 7
21.2
24.1
50,9
                                            0,13
                                            0,14
                                            0,18
                                            0,24
                                            0.27
                                            0,30
                                            0.35
                                            0,62

                                            0.11
                                            0,14
                                            0,18
                                            0,23
                                            0,26
                                            0.29
                                            0.34
                                            0.7U

                                            0.12
                                            0.14
                                            0.17
                                            0,22
                                            0.25
                                            0,27
                                            0,31
                                            0.53

                                           0.30
                                           0,30
                                           0,29
                                           0,29
                                           0,30
                                           0.31
                                           0,33
                                           0,50

                                           0,15
                                           0,16
                                           0,18
                                           0.23
                                           0,26
                                           0.28
                                           0.33
                                           0,60
 0.58
 0.58
 0.61
 0.62
 0.61
 0.67
 0,72
 0,76

 0,59
 0.59
 0,61
 0.61
 0.61
 0.66
 0.71
 0.92

 0.59
 0,59
 0.60
 0,61
 0.60
 0.66
 0,71
 0,68

 0.66
 0.66
 0.66
 0.65
 0,65
 0.67
 0,70
 0.73

 0,60
 0.60
 0,61
 0,62
 0.61
0,67
0,71
0,76
                       14712,
                       10435,
                       13965.
                       12986,
                       12179.
                       11635.
                       11161.
                        6584,

                       14718,
                       14451.
                       14081,
                       13108.
                       12277,
                       11721,
                       11250,
                       7593,

                       14755,
                       14546,
                       14215.
                       13205,
                       12224,
                       11615,
                       11105,
                       6578.

                       12183,
                       12213,
                       12233,
                       12206,
                       11973,
                       11672,
                       11342.
                       8884,

                      14230.
                      14198.
                      13940,
                      13070,
                      12216,
                      11651,
                      11167,
                       6927,
        FLOW8TRCAM SUMMARY
        FLOHRATE •  12.9 PERCENT OF FEED
             ASH • 50,9 PERCENT
PYRITIC SULFUR •  ,60 PERCENT
TOTAL SULFUR •  ,76 PERCENT

-------
        BTU CONTENT •  *987. BTUA.B


        302 CONTENT •  2,19 188 802/M1LUON BTU
to
to

-------
                                       SPECIFIC GRAVITY ANALYSIS OF FLOHSTREAH  NUMBER  15


                                 ORIGIN . UNIT NUMBER   6  C         DESTINATION  -  UNIT  NUMBER   0
SIZE FRACTION AND HEIGHT
        26  BY  46
                       55. 6 PERCENT
        ao  BY  o
                       64.2  PERCENT
to
to
en
       COMPOSITE
                       100.0  PERCENT
       FLOHSTREAM SUMMARY
SPECIFIC
GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
'LOAT
.30.
.35.
.40.
,50-
.60-
.70-
SINK
FLOAT
1.30-
1.35.
1,40>
1.50.
1.60-
1.70-
SINK
FLOAT
.30-
.35-
.40-
.50.
.60.
,70.
SINK
,30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.60
.30
.35
.40
.50
.60
.70
.60
.80
2T.1
23.0
12.0
21.7
10,7
2.9
0.9
1.6
57.2
23.9
7.6
7.1
2.7
0.9
0.3
0.5
46.4
23.5
'.2
12.3
5.6
1.6
0.5
0.9
2.1
4.6
9.4

2518
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.3
28.0
34.2
43.5
14.6
12.9
13.3
16.9
25.3
31.9
40.0
60.7
0.12
0.17
0.21
0.26
0,29
0,34
0.57
0.65
0.30
0.30
0,29
0,29
0.30
0.34
0.46
0.55
0,26
0.25
0.25
0.27
0.29
0.34
0.54
0.61
BTU/LB
SULFUR
0.59
0.59
0.63
0.62
0,59
0.65
1.00
0,66
0.66
0.65
0.65
0.64
0.62
0.77
0.87
0.74
0.64
0.63
0.64
0,63
0,60
0.82
0.96
0.69
14755.
14356.
13572.
12462.
10696.
9572.
6103.
4000.
12183.
12262.
12361.
12116.
11142.
10526.
9518.
8012.
12722.
12995.
12931.
12347.
10972.
9907.
8583.
5437.
                                                                                                        CUMULATIVE, PERCENT
                                                                                                 WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                                                             SULFUR  SULFUR
27.1
50.1
62.2
63.6
94.6
97,5
98,4
100.0
57.2
61.0
66,6
«5.7
96.4
99.2
99.5
100.0
46.4
70.0
79.1
'1.5
97.0
96.6
99.1
100.0
2.1
3.2
4.4
7.4
9,5
10,2
10,5
11.5
17,9
17,8
17.7
17.7
17.9
16,0
18.0
18,2
14.6
»4.0
13.9
14.3
1S.O
15.2
15.4
15.8
                                            0,12
                                            0.14
                                            0.15
                                            0.18
                                            0,19
                                            0,20
                                            0.20
                                            0,21

                                            0,30
                                            0,30
                                            0,29
                                            0,29
                                            0.29
                                            0.30
                                            0.30
                                           0,30

                                           0.26
                                           0.26
                                           0,26
                                           0.26
                                           0,26
                                           0,26
                                           0,26
                                           0,27
                 0,59
                 0.59
                 0.60
                 0.60
                 0.60
                 0.61
                 0.61
                 0.61

                 0,66
                 0,66
                 0.66
                 0.65
                 0.65
                 0.65
                 0.66
                 0.66

                 0,64
                0.64
                0.64
                0,64
                0.64
                0.64
                0,64
                0.64
 14755,
 14573.
 14379,
 13668,
 13548.
 13432.
 13362,
 13229,

 12(63,
 12206.
 12220,
 12212.
 12163.
 12169.
 12162.
 12141.

 12722,
 12614.
 12627,
 12762,
 12660.
 12616.
 12596.
12531,
       FLOWRATE •   2.2 PERCENT OF FEED

       BTU CONTENT • 12531. BTU/LB

       802 CONTENT •  1.02 LB3 SOS/MILLION BTU
                                    ASH • 15.8 PERCENT
PYRITIC SULFUR •  .27 PERCENT
TOTAL SULFUR •  ,64  PERCENT

-------
                                SPECIFIC GRAVITY ANALYSIS OF FLOH8TREAM NUMBER 16
                          ORIGIN • UNIT NUMBER   6  R
                                      DESTINATION •  UNIT  NUMBER    0
  SIZE FRACTION AND HEIGHT
 26 BY 46
 60.1  PERCENT
 46 BY 0
 35.9 PERCENT
COMPOSITE
100.0 PERCENT
                SPECIFIC             DIRECT,  PERCENT
                GRAVITY    WEIGHT ASH  PYRITIC  TOTAL   BTU/LB
                                       SULFUR  SULFUR
       CUMULATIVE,  PERCENT
HEIGHT ASH  PYRITIC TOTAL  BTU/LB
            SULFUR   SULFUR
FLOAT
.30.
.35-
.40-
.50-
,60.
.70-
SINK
FLOAT
.30.
.35.
,40-
.50.
,60.
1,70-
3INK
FLOAT
.30.
.35-
.40-
,50-
.60-
,70-
3 INK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.80
6,6
0.6
1.0
7.0
10.1
7.4
5.3
63.1
2,0
2.2
0,0
8.1
8.6
8.0
5.2
65.8
4.9
1.2
0,6
7."
9.6
7.6
5.3
65.4
2.1
«.6
9,«
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
24.3
28.0
J«.2
43.5
4.4
13.4
«.4
16.«
25.3
31.7
39.9
60.3
0,12
0,17
0.21
0,26
0.29
0.34
0.57
0.65
0.30
0.30
0,29
0.29
0,30
0,34
0,48
0,55
0.14
0.26
0.21
0.27
0.29
0.34
0.54
0.61
0.59
0,59
0,63
0.62
0.59
0.65
1.00
0,66
0.66
0,65
0,65
0.64
0,62
0,77
0,87
0,74
0.60
0.63
0.63
0.63
0.60
0.82
0.95
0.69
14755.
14358.
13572.
12482.
10696.
9578.
8103.
4000.
12183.
12262.
12361.
12116.
11142.
10526.
9518.
6012.
14363.
12920.
13572.
12338.
1097*.
9935.
6604.
5496.
6.6
7.1
8.1
15.1
25.2
32.6
37,9
100.0
1.0
«.2
«.*
12.3
21.0
29,0
34.2
100,0
4.9
6.1
6.7
ifl.l
23.7
31.3
36.6
100.0
2.1
2.3
3.2
9.1
15.8
19,9
23.1
52.4
17.9
17,6
17.6
18.1
20.6
22.7
24.4
37.0
4.4
6.1
6,«
11.9
17.3
20,8
23.6
46.9
0,12
0.12
0,13
0.19
0.23
0.25
0,30
0.11
0,30
0,30
0,30
0.29
0,30
0.31
0.34
0,48
0.14
0,16
0,17
0,22
0.25
0.27
0,31
0,50
0.59
0.59
0.99
0.60
0,60
0,66
0.71
0,66
0,66
0,66
0,66
0,65
0,64
0.67
0,70
0.72
0.60
0.60
0.61
0,62
0.61
0,66
0.70
0,70
14755,
14723.
14561,
13611,
12524,
11854,
11327,
6779,
12163.
12225.
12225,
12153,
11737,
11402,
11117,
9073.
14363,
14104,
14053,
13154.
12274,
11704,
11257,
7603.
FLONSTREAM SUMMARY



FLOHRATE •   1,7 PERCENT OF FEED     ASH • 46.9 PERCENT     PYRITIC SULFUR •  ,50 PERCENT     TOTAL SULFUR •  ,70 PERCENT


BTU CONTENT •  7603. BTU/LB


302 CONTENT •  1.83 UBS 802/MILLION BTU

-------
                      SPECIFIC GRAVITY ANALYSIS  OF CUEAN  COAL PRODUCT FROM UNIT NUMBER  1
  SIZE  FRACTION AND HEIGHT
  6  BY
  2 BY t
  1 BY J/8
COMPOSITE
HT
SPECIFIC
GRAVITY
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL
SULFUR
52.7 PERCENT







45.2 PERCENT







2.0 PERCENT







100.0 PERCENT







FLOAT .30
.30. .35
.35- .40
.40. .50
,50. ,60
.60- .70
.70- .80
SINK .80
FLOAT 1.30
.30.1.35
.35.
.40*
.50-
.60-
.70.
SINK
FLOAT
.30-
.35.
.40*
.50.
.60.
,70.
SINK
FLOAT
.30-
.35-
.40.
,50.
.60.
.70.
SINK
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
«5.7
36.9
10.6
6.4
0,1
0.1
0.0
0.0
42.8
33.5
11.6
8.7
2.4
0.6
0.1
0.4
43.5
31.9
10.5
8.9
2.9
0.9
0.3
1.1
44.3
35.2
11.0
7.5
1.3
0,3
0,1
0,2
2.6
4.7
9.5
16.2
26.1
34.2
43.2
73.6
2.5
4.7
9.5
16.0
25 6
33.6
42.9
70.0
2.4
4.6
9.3
15.8
25.1
33.4
42.2
68.8
2.6

9|S
16.1
25.6
33.7
42.7
69.7
0.13
0.21
0.20
0,25
0,27
0.32
0.51
0.46
0.14
0.17
0.19
0.26
0.30
0.33
0.59
0.60
0.13
0,14
0.21
0.27
0.32
0.39
0.67
0,78
0.13
0.19
0.20
0.25
0.29
0.33
0.59
0.62
BTU/LB
SULFUR
0.57
0.57
0.60
0.62
0.59
0,65
0.71
0.48
0.58
0.62
0.69
0.62
0.60
1.14
1.36
0.62
0.58
0,58
0.63
0.63
0.60
0.90
1.04
0.79
0.58
0.59
0.64
0.62
0.60
1.07
I.JO
0.64
14682.
14337.
13514.
12462,
10846.
9521.
8051.
1000.
11685.
11337.
13551.
12484.
10931.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
4000.
14684.
H337.
13548.
12475.
10923.
9612.
8137.
4026.
                                                            CUMULATIVE, PERCENT
                                                     HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                 SULFUR  SULFUR
                                                      45.7
                                                      82.6
                                                      93.2
                                                      99.6
                                                      99.9
                                                     100.0
                                                     100.0
                                                     100.0

                                                      42.8
                                                      76.3
                                                      67.8
                                                      '6.5
                                                      98.9
                                                      99.5
                                                      99.6
                                                     100.0

                                                      43.5
                                                      75.4
                                                      85.9
                                                      94.8
                                                      97.7
                                                     98.6
                                                     98.9
                                                    100.0

                                                     44.3
                                                     79.6
                                                     90.6
                                                     98,1
                                                     99.4
                                                     99.7
                                                     99.8
                                                    100.0
                                      2.6
                                      3.5
                                      4.2
                                      5.0
                                      5.0
                                      5.1
                                      5.1
                                      5.1

                                      2.5
                                      3.5
                                      4.3
                                      5.3
                                      5.8
                                      6.0
                                      6.0
                                      6.3

                                      2.4
                                      3.3
                                      4.1
                                      5,2
                                      5.8
                                      6.0
                                      6,1
                                     6.8

                                     2.6
                                     3.5
                                     4.2
                                     5.1
                                     5.4
                                     5.5
                                     5.5
                                     5.7
          0,13
          0.17
          0.17
          0,18
          0,18
          0,18
          0,18
          0,18

          0.14
          0.15
          0.16
          0,17
          0.17
          0,17
          0,17
          0,17

          0.13
          0.13
          0,14
          0,15
          0.16
          0.16
          0.16
          0,17

          0.13
         0.16
         0.16
         0.17
         0,17
         0,17
         0,17
         0.17
 0,57
 0,57
 0,58
 0.58
 0.58
 0,58
 0.58
 0.58

 0.58
 0,60
 0.61
 0.61
 0.61
 0.62
 0.62
 0.62

 0.58
 0.58
 0,59
 0.59
 0.59
 0.60
 0,60
 0,60

 0,58
 0,58
 0,59
 0,59
 0,59
0,60
0,60
0.60
 14682.
 14528,
 144(6,
 14291.
 14278.
 14275.
 14275.
 14275.

 14685,
 14532,
 11102,
 14230.
 14151,
 14123,
 11116,
 14077,

 14712.
 14557,
 14438,
 14258,
 14161,
 14119,
 14102,
 13993,

 14684,
 11530.
 11411.
 14263.
 14219,
 10*03,
14200,
14179,
FLOHSTREAM SUMMARY
FLOHRATE •  32.1 PERCENT OF FEED

BTU CONTENT • 14179. BTU/LB

802 CONTENT •  0.84 LBS S02/MILLION BTU
ASH •  5.7 PERCENT
PYRITIC SULFUR •  .17 PERCENT
TOTAL SULFUR •   .60  PERCENT

-------
                      SPECIFIC GRAVITY ANALYSIS OF CLEAN COAL PRODUCT FROM UNIT NUMBER  7
  SIZE FRACTION AND HEIGHT
  1 BY 3/8
 34.9 PERCENT
3/8 BY 26
 50.2 PERCENT
 28 BY 48
 23.2 PERCENT
 48 BY 0
 11.7 PERCENT
COMPOSITE
100.0 PERCENT
                SPECIFIC            DIRECT,  PERCENT
                GRAVITY    HEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                       SULFUR  SULFUR
                                    CUMULATIVE,  PERCENT
                             HEIGHT  ASH   PYRITIC  TOTAL   BTU/LB
                                         SULFUR   SULFUR
FLOAT
1.30-
1.35-
1.40-
1.50.
1.60.
1.70-
SINK
FLOAT
.30-
.35.
.40-
.50.
.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40.
1,50.
1.60.
1.70-
SINK
FLOAT
.30*
.35.
.40-
.50.
.60*
,70-
8INK
FLOAT
.30-
.35.
.40.
.50-
.60.
.70.
SINK
.so
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.10
.50
.60
.TO
.80
.80
.30
.35
.40
.50
,60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
47,0
34.1
10.5
T.3
1.1
0.1
0.1
0.0
50.1
30.9
9.9
T.3
1."
0.2
0.1
0.1
32.1
20.1
10.3
I'.T
10.6
3.1
1.2
2.5
51.0
21.5
6.4
8.7
4.6
2.5
1.1
«.2
44.9
28.4
9.8
10.3
3.8
1.2
0.4
1.1
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.3
4.6
«.3
15.8
25.2
33.5
«2.3
63.0
2.1
".6
9. a
16.1
25.8
33.9
42.9
TO. 3
IT. 9
IT. 4
16.8
1«.3
24.3
28.0
34.2
43.5
4. a
5.8
9.9
16.2
25.4
32.4
40.4
58,2
0.13
0.14
0.21
0.2T
0.32
0.39
0.67
O.T8
0.11
0.15
0.23
0.27
0.31
0.40
0.65
1.04
0.12
0.17
0.21
0.26
0.29
0.34
0.57
0.65
0.30
0.30
0.29
0.29
0.30
0,34
0.48
0.55
0.14
0.16
0.22
0.27
0,29
0,35
0.55
0,61
0,58
0.58
0.63
0.63
0.60
0.90
1,04
0.79
0.59
0,59
0,63
0,62
0,61
0.86
1.03
1.07
0,59
0.59
0.63
0.62
0,59
0.85
1,00
0,66
0.66
0.65
0.65
0,64
0.62
0.7T
0,87
0.74
0.59
0.59
0.63
0,62
0,60
0,83
0,97
0,70
14712.
14345,
13582,
12526.
1101*.
9650.
8222.
4000.
14718.
14345.
13579.
12520.
10997,
9641.
8208.
4826.
14755.
14318.
13572.
12482.
10896,
9572,
8103.
4000.
12183.
12262.
12361.
12116.
11142.
10528,
9518.
8012.
14384.
14162.
13485.
12465.
10954.
9819.
8513.
5815.
47,0
81,0
91,5
98,8
99,9
99.9
100.0
100.0
50.1
81.0
91.0
98.2
99,7
99.9
99,9
100.0
32.1
52.2
62.5
82.2
92.9
«6.3
97,5
100.0
51.0
TZ.5
79,0
87,6
«2.2
94,8
95.8
100.0
44.9
T3.4
83,2
'3,5
«T,3
98.5
98,9
100,0
2,«
.3
.0
.9
,1
.1
.1
.1
.3
.2
,'
.8
,1
,1
.1
.2
.1
.1
.1
7.0
«,1
10,0
10.4
11. «
17,9
17,6
17,7
IT. 7
18,1
18.3
18,5
19,6
4,4
4,9
5.5
6,7
T.«
T,T
T,9
8,4
0.13
0,13
0.14
0.15
0.15
0.15
0,15
0.15
0.11
0.12
0.14
0.15
0.15
0.15
0.15
0,15
0.12
0,14
0,15
0,18
0,19
0,19
0.20
0.21
0.30
0,30
0,29
0.29
0.29
0,30
0.30
0.31
0,14
0,15
0,16
0,17
0,17
0.16
0.16
0,16
0,56
0,56
0,59
0,59
0,59
0.59
0.59
0,59
0,59
0,59
0,59
0,59
0,59
0,59
0,60
0.60
0,59
0,59
0.60
0,60
0,60
0,61
0.61
0,62
0,66
0.66
0,66
0,65
0.65
0,66
0.66
0.66
0.59
0,59
0,60
0,60
0.60
0,60
0,61
0,61
14712.
14557.
14446.
14304,
14269,
14266,
14263,
14263,
14718.
14575.
14467.
14323.
142TS.
14266,
14262,
14256.
14755,
14602.
14432.
13965,
13613,
13469,
13403,
13167,
12163.
12207.
12219.
12209.
12156,
12112,
12083,
11913,
14364,
14296,
14202,
14010.
13891.
13842,
13619,
13731,
FLOHSTREAM SUMMARY
FLOHRATE •  19,5 PEP-CENT OF FEED

BTU CONTENT • 13731. BTU/LB

S02 CONTENT •  0.86 LBS S02/MILLION BTU
             ASH •  8.4 PERCENT
PYRITIC SULFUR •  .18 PERCENT
TOTAL SULFUR •  ,61  PERCENT

-------
                      SPECIFIC GRAVITY ANALYSIS  OF  CLEAN COAL PRODUCT FROM UNIT NUMBER  6
  SIZE FRACTION AND WEIGHT
 28 BY 46
 48 BY 0
COMPOSITE
SPECIFIC
HT GRAVITY
WEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
35.6 PERCENT







64.2 PERCENT







100.0 PERCENT







FLOAT i
.30.1
.35>1
.40.1
.50.1
.60.1
.70.1
SINK 1
FLOAT i
1.30-1
1.35.1
1.40.1
1.50.1
1.60.1
1.70-1
SINK 1
FLOAT i
.30-1
.35.1
.40.1
.50.1
.60.1
.70-1
SINK 1
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.80
.80
27
23
12
21
10
2
0
1
57
23
7
7
2
0
0
0
46
23
9
12
5
1
0
0
.1
.0
.0
.7
,7
,9
,9
.6
,2
,9
,6
.1
,7
,9
.3
.5
.4
,5
.2
.3
.6
.6
,5
,9
2
n
9
16
25
33
42
70
17
17,
16
18
24
28,
34,
43,
14,
12.
13,
16,
35,
31.
40,
60,
,1
,6
,a
,1
.8
,9
,9
,3
0
0
0
0
0
0
0
0
.
.
.
.
.
.
.
•
12
17
21
26
29
34
57
65
^0,30




0
2
5
6
9
3
9
3
9
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.
.
.
.
.
,
.
.
.
.
.
.
.
.
,
30
29
29
30
34
46
55
26
25
25
27
29
34
54
61
SULFUR
0.59
0.59
0.63
0,62
0.59
0.65
1.00
0.66
0.66
0.65
0,65
0.64
0.62
0.77
0.67
0.74
0.64
0.63
0.64
0.63
0.60
0.62
0,96
0,69
BTU/LB

14755.
14358,
13572.
12462.
10896,
9572.
6103.
4000.
121*3.
12262.
12361.
12116,
11142.
10528.
9518.
8012.
12722.
12995.
12931.
12347.
10972.
9907.
8583.
5437.
                                                            CUMULATIVE,  PERCENT
                                                     WEIGHT  ASH   PYRITIC TOTAL   BTU/LB
                                                                 SULFUR   SULFUR
                                                     ZM
                                                     50.1
                                                     62.2
                                                     $3.8
                                                     9fl,6
                                                     97.5
                                                     98.4
                                                     100,0

                                                     57,2
                                                     61.0
                                                     68.6
                                                     95,7
                                                     98.4
                                                     99,2
                                                     99,5
                                                    100.0

                                                     46.4
                                                     70.0
                                                     79.1
                                                     91.5
                                                     97.0
                                                     96.6
                                                     99.1
                                                    100.0
                                                                                                  2.1
                                                                                                  3.Z
                                                                                                  4.4
                                     10.2
                                     10.5
                                     U.5

                                     17,9
                                     17.8
                                     17,7
                                     17,7
                                     17.9
                                     18.0
                                     18,0
                                     18,2

                                     14,6
                                     14.0
                                     13.9
                                     14.3
                                     15.0
                                     15.2
                                    15,4
                                    15,8
          0.12
          0,14
          0.15
          0.16
          0.19
          0,20
          0,20
          0.2}

          0,30
          0,30
          0.29
          0,29
          0,29
          0,30
          0,30
          0,30

          0,26
          0,26
          0,26
          0.26
          0,26
          0,26
         0,26
         0.27
 0.59
 0,59
 0,60
 0.60
 0,60
 0,61
 0,61
 0.61

 0,66
 0,66
 0,66
 0,65
 0,65
 0,65
 0,66
 0,66

 0,64
 0.64
 0.64
 0.64
0,64
0,64
0,6«
0,64
 14755,
 14573,
 14379,
 13886.
 1)546.
 13432.
 13362.
 13229.

 12163.
 12206,
 12220,
 12212.
 12163.
 12169.
 12162.
 12141,

 12722.
 126)4,
 12627.
 12762.
 12660.
12616,
12596,
12531,
FLOW8TREAM SUMMARY
FLOWRATE •   2.2 PERCENT  OF FEED

BTU CONTENT •  12531.  BTU/LB

802 CONTENT *   1.02 UBS SOS/MILLION  BTU
ASH • 15.8 PERCENT
PYRITIC SULFUR •  .27 PERCENT
TOTAL SULFUR »  ,6
-------
                             SPECIFIC GRAVITV ANALYSIS OF REFUSE PRODUCT FROM UNIT NUMBER   1
         SIZE FRACTION AND HEIGHT
        IS BY 12
        12 BV 6
       COMPOSITE
to
co
o
HT
SPECIFIC
6RAVITV
HEIGHT
DIRECT, PERCENT
ASH PYRITIC TOTAL
SULFUR
24.3 PERCENT







T5.T PERCENT







100.0 PERCENT







FLOAT
1.30*
1,35-
1.40-
1,50-
1.60.
1.70-
SINK
FLOAT
.30.
.33.
.40-
.50-
.60.
1.70*
SINK
FLOAT
.30-
.35-
.40-
.SO*
.60-
.70-
SINK
.30
.35
.40
.50
.60
.70
.80
.80
.30
.35
.40
.50
.60
.70
.60
.80
.30
.35
.40
.50
.60
.70
,80
.80
2.1
1.2
0.2
1.2
0.2
0.2
0.1
94.7
2,5
1.9
0.7
1,0
0.5
0.3
0.2
93.0
2.4
1.7
0.6
1.0
0.4
0.3
0.1
93.4
2.8
4.4
7.S
15.4
25.0
31.5
41.0
99.1
2.9
«.6
9.2
16.2
26.5
34.3
44.9
'«.T
2.9
«,6
«.o
»5.9
26.3
33.7
44.1
98.8
0.08
0.09
0.03
0,13
0.10
0.18
0.17
0.02
0.12
0.11
0.17
0.21
0.21
0.23
0.48
0,02
0.11
0,11
0.16
0,19
0.20
0,22
0.43
0.02
SULFUR
0.58
0,55
0,46
0.51
0.35
0.44
0,45
0.02
0.56
0.47
0.54
0,61
0.51
0.53
0.66
0.02
0.56
0.48
0.53
0.58
0.49
0.51
0.62
0.02
BTU/LB

14644.
14383.
13829.
1259Q,
11025.
9966.
8417.
4000,
14632,
14343.
13598.
12462.
10786.
9506,
7781.
4000.
14634.
14350,
13625.
12501.
10821.
«603.
7907.
4000,
                                                           CUMULATIVE, PERCENT
                                                    WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                SULFUR  SULFUR
                                                      2.1
                                                       ,3
                                                       ,6
                                                       .8
                                                       ,0
                                                       .2
                                                       .3
                                                       ,5
                                                       ,«
                                                       .1
                                                       .0
                                                       .3
                                                       .8
                                                      7.0
                                                    100.0

                                                      2.4
                                                      4.1
                                                      4.7
                                                      5.7
                                                      6.2
                                                      6.4
                                                      6.6
                                                    100,0
                                     2,8
                                     3,a
                                     3.7
                                     6.7
                                     7.3
                                     8.4
                                     ".0
                                                                                                 10  .0   94.3
                                     2.9
                                     3.6
                                     4,4
                                     6.2
                                     7.8
                                     9,0
                                     9,8
                                    92.5

                                     2.9
                                     3.6
                                     «.*
                                     6.3
                                     7.8
                                     8.9
                                     9.6
                                    92.9
         0.08
         0,08
         0.08
         0,09
         0.09
         0,10
         0.10
         0,02

         0,12
         0,12
         0,13
         0,14
         0.15
         0,15
         0.16
         0.03

         0.11
         0,11
         0.12
         0,13
         0,13
         0,14
         0,14
         0.03
0.58
0.57
0,56
0.55
0,54
0.54
0.53
0,05

0,56
0,52
0.52
0.54
0.53
0,53
0,54
0,06

0,56
0.53
0.53
0,54
0,54
0.53
0.54
0.06
14644,
14550.
14500.
14013.
13877,
13724.
13637,
 4512,

14632.
14506.
14368.
14082,
13621,
13636,
13504,
 4663.

14634.
14514.
14409,
14066.
13633.
13654.
13531.
 4627.
       FLOHSTREAM SUMMARY
       FLOHRATE •  16.8 PERCENT OF FEED

       BTU CONTENT •  4627. BTU/LB

       80S CONTENT •  0.24 LB8 302/MILLION  BTU
ASH • 92.9 PERCENT
PYRITIC SULFUR •  .03 PERCENT
TOTAL SULFUR •  ,06 PERCENT

-------
                              SPECIFIC  GRAVITY ANALYSIS OF REFUSE PRODUCT FROM UNIT  NUMBER   3
         SIZE FRACTION AND WCI8HT
         6 BY 2
         2 BY 1
         1 BY 5/8
to
GO
       COMPOSITE
HT

63*6 PERCENT







35. 2 PERCENT







1.2 PERCENT







100.0 PERCENT







SPECIFIC
GRAVITY

FI.OAT
1.30-
1.35.
1.40-
1,50-
1,60-
1,70-
SINK
FLOAT
.30-
.35-
.40.
.50.
.60-
,70-
SINK
FLOAT
1.30.
1.35.
1.40.
1.50.
1.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40-
1.50.
1.60.
1.70-
SINK
.30
.35
.40
.50
,60
.70
,80
.80
.30
.35
.40
.50
.60
.TO
.80
.80
.30
.35
.40
.50
.60
.70
,80
.80
.30
.35
.10
.50
.60
.70
.80
.80
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL

0.0
2.1
1.7
6.4
6.9
4.5
3.3
75,0
0.3
0.6
0,9
5.6
6.1
5.0
«.?
77.3
0.6
0.5
0.6
3.7
«.7
«,7
«.7
80.6
0.1
1.6
1.4
6.1
6.6
4,7
3.7
75.9

2.6
4.7
9.5
16.2
26.1
34.2
«3.2
73.6
2.5
4.7
9.5
16.0
25.6
33.6
42,9
70.0
2.4
4.6
'.3
15.8
25.1
33.4
42.2
68.8
2.5
«.7
9.5
16.1
25.9
34,0
«3.1
72.2
SULFUR
0.13
0.21
0,20
0.25
0.27
0,32
0,51
0,46
> 0,14
0.17
0.19
0.26
0,30
0.33
0,59
0.60
0.13
0.14
0.21
0.27
0.32
0.39
0,67
0.78
0.13
0.20
0.20
0.25
0.28
0.33
0.54
0.52
BTU/LB
SULFUR
0,57
0,57
0.60
0.62
0.59
0.65
0,71
0.48
0.58
0.62
0.69
0.62
0.60
1.14
1.36
0.62
0.58
0.58
0.63
0.63
0.60
0.90
1.04
0.79
0.58
0.58
0.62
0,62
0.59
0.84
0.98
0.54
14682.
14337.
13544.
12462.
10646.
9521.
8051.
4000.
14685.
14337.
13551.
12484.
10931.
9616.
8101.
4000.
14712.
14345.
13582.
12526.
11016.
9650.
8222.
1000,
14687.
14337.
1S5«6.
12470.
10875.
9559.
8075.
4000.
                                                            CUMULATIVE* PERCENT
                                                     WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                 SULFUR  SULFUR
   0,0
   2.1
   3.8
  10.2
  17,1
  21.6
  25,0
 100,0

   0.3
   0.9
   1,7
   7.4
  13.4
  18,4
  22.7
 100.0

   0,6
   1.1
   1.7

  loll

  19^4
100,0

  0.1
  1.7
  3.0

 1S|7
 20.4
 24.1
100.0
                                                             2.6
                                                             «,7
                                                             6.8
                                                            12.7
                                                            18.1
                                                            21.5
                                                            24.4
                                                            61.3

                                                             2.5
                                                             4.1
                                                             6.8
                                                            13.9
                                                            1»,«
                                                            23.1
                                                            26.8
                                                            60.2

                                                             2.4
                                                             3.4
                                                             5.4
                                                            12.5
                                                            18.3
                                                            23.1
                                                            27,7
                                                            60,8

                                                            2.5
                                                            4,6
                                                            6.8
                                                            13.0
                                                            18.4
                                                           22.0
                                                           25.2
                                                           60,9
                                            0,13
                                            0,21
                                            0,21
                                            0.23
                                            0.25
                                            0,26
                                            0,29
                                            0.42

                                            0,14
                                            0,16
                                            0,18
                                            0.24
                                            0.26
                                            0.28
                                            0.34
                                            0.54

                                            0,13
                                            0.13
                                            0.16
                                            0.23
                                            0,27
                                            0.31
                                            0.40
                                            0.70

                                            0.13
                                            0.20
                                           0.20
                                           0.23
                                           0,25
                                           0.27
                                           0.31
                                           0,47
                 0,57
                 0,57
                 0,59
                 0.60
                 0,60
                 0,61
                 0.62
                 0,52

                 0,58
                 0,61
                 0,65
                 0,63
                 0.61
                 0.75
                 0.87
                 0,68

                 0.58
                 0.58
                 0,60
                 0,62
                 0.61
                 0,70
                 0,78
                 0,79

                 0,58
                 0,58
                 0,60
                 0,61
                 0.60
                0,66
                0,71
                0,58
 14682,
 14337.
 13988,
 13030.
 12145,
 11596,
 11121,
  5779,

 14685,
 14439,
 13994,
 12841,
 11979,
 11338.
 10734,
 5527.

 14712,
 14545.
 14221.
 13067.
 12109.
 11333.
 10588,
 5280,

 14687,
 14357.
 1S99J,
 12977,
12095,
11512,
10988.
 5685,
       FLOH8TREAM SUMMARY
       FLOHRATE  •   14.8  PERCENT  OF  FEED
       BTU CONTENT  •  5685.  BTU/LB
       802 CONTENT  •  2.03 LBS 802/MILLION  BTU
ASH • 60.9 PERCENT
PYRITIC SULFUR •  ,47 PERCENT
TOTAL SULFUR •  ,58 PERCENT

-------
                             SPECIFIC GRAVITY ANALYSIS OF REFUSE PRODUCT FROM UNIT NUMBER  7
         SIZE FRACTION AND WEIGHT
         1 BY 3/8
   SPECIFIC             DIRECT,  PERCENT
   GRAVITY     HEIGHT  ASH   PVRITIC  TOTAL   BTU/LB
                          SULFUR  SULFUR
                                    CUMULATIVE,  PERCENT
                             WEIGHT  ASH   PVRITIC TOTAL   BTU/LB
                                         SULFUR   SULFUR
       3/6 BY 28
        26 BY 08
(O
CO
(O
        as BY o
       COMPOSITE
26.9 PERCENT







22.3 PERCENT







43.6 PERCENT







5.2 PERCENT







100.0 PERCENT







FLOAT
,30-
.35-
.40-
.50-
.60'
.70-
SINK
FLOAT
1.30-
1.35.
1.40-
1.50.
1.60-
1.70-
SINK
FLOAT
.30-
.35-
,40-
,50-
.60-
.70-
SINK
FLOAT
,30-
.35.
.40-
.50-
.60-
,70-
SINK
FLOAT
.30-
.35-
.40-
.50-
.60-
,70-
.30
.35
.10
.50
.60
.70
.60
,60
.30
.35
.10
.50
.60
.70
.60
.60
.30
.35
.10
.50
.60
.70
.80
.60
.30
.35
.10
.50
.60
.70
.»o
.80
.30
.35
.10
.50
.60
.70
.80
SINK 1.60
0.5
1.6
2.5
9.8
10.0
6.7
5.0
63.9
I.I
2.8
2."
11. 1
11.6
7.'
5.8
56.9
1.8
2.0
1."
8.0
10.2
7.1
5,3
63,7
,6
.4
.5
.2
.»
.6
1.0
73.8
1.5
2.1
2.3
«.o
10.1
7.0
5.2
62.6
2.4
1.6
9.3
15.8
25.1
33.1
12.2
66.6
2.3
1.6
'.3
15.8
25.2
33.5
12.3
63.0
2.1
«.6
9.4
16.1
25.8
33.9
12.9
70.3
17.9
17.4
16.6
18.3
21.3
28.0
31.2
13.5
5.3
5.7
'.6
16.0
25.1
33.5
12.2
66,8
0.13
0.11
0.21
0.27
0.32
0.39
0.67
0,78
0.11
0.15
0.23
0.27
0.31
0.10
0.65
1.01
0.12
0,17
0,21
0,26
0,29
0.31
0.57
0.65
0.30
0,30
0.29
0.29
0.30
0.31
0.18
0.55
0,15
0,17
0.22
0,26
0,30
0,37
0.61
0.76
0.58
0.58
0.63
0,63
0.60
0.90
1.01
0,79
0,59
0,59
0,63
0,62
0.61
0.66
1.03
1.07
0.59
0,59
0,63
0.62
0,59
0.85
1,00
0.66
0.66
0.65
0.65
0.64
0.62
0.77
0.87
0.74
0.60
0.60
0.63
0.62
0.60
0.66
1.01
0,79
11712,
11315.
13562.
12526.
11016.
9690,
8222.
1000.
14716.
14345.
13579.
12520.
10997.
9*41.
8206.
4826.
14755.
H356.
13572.
12182.
10896,
9572.
8103.
1000.
12163.
12262.
12361.
12116.
11112,
10528.
9518.
8012.
11230.
14175.
13537.
12500.
10961.
9644.
8220.
4413.
0.5
2.1
«.6
14.4
24,4
31.1
36.1
100.0
1.1
3.9
6.7
17.9
29.4
37.3
13.1
100.0
1.8
3.8
5.7
13.7
23.9
31.0
36.3
100,0
5.6
'.0
10,5
13.7
IT. 6
22.2
26.2
100,0
1.5
3.6
5.9
H.8
2«,9
32.0
37.2
100,0
2.1
1.1
7,0
13.0
17,9
21.3
21,2
52.7
2.3
1.0
6.3
12.2
1^.3
20.7
23.6
16.1
2.1
3.1
5.1
11.6
17.6
21.1
21,5
53.7
17.'
17.7
17.6
17.8
19.2
21.0
23.1
38.1
5,3
5.5
7,1
12.5
17.7
21.2
21.1
50.9
0.13
0.14
0.18
0,24
0,27
0,30
0,35
0,62
0,11
0,11
0,16
0,23
0.26
0.29
0.31
0,71
0.12
0,14
0.17
0,22
0,25
0,27
0,31
0,53
0.30
0,30
0.29
0,29
0,30
0.31
0,33
0,50
0.15
0.16
0,18
0,23
0,26
0,28
0.33
0.60
0.58
0.58
0.61
0.62
0,61
0,67
0.72
0,76
0.59
0.59
0.61
0.61
0.61
0.66
0.71
0.92
0.59
0.59
0,60
0,61
0.60
0.66
0.71
0,68
0.66
0.66
0.6*
0,65
0.65
0,67
0,70
0,73
0,60
0.60
0.61
0,62
0,61
0,67
0,71
0.76
14712.
14435.
13965.
12986,
12179,
11635,
11161.
6564,
14716,
14451,
14081.
13108.
12277.
11721.
11250,
7593.
14755.
1454*.
14215.
13205.
12224,
11*15.
11105.
6576,
12163.
12213,
12233.
12206,
11973,
11*72,
11342,
8884.
14230,
14196.
13940,
13070,
1221*.
11651.
11167,
6927.
       FLOMSTREAM SUMMARY
       FLONRATE  •   12.9  PERCENT  OF  FEED

       BTU CONTENT  •  6927.  BTU/LB

       S02 CONTENT  •  2,19 LB8 902/HILLION  BTU
ASH • SO.9 PERCENT
PYRITIC SULFUR •  ,60 PERCENT
TOTAL SULFUR •  ,7* PERCENT

-------
                             SPECIFIC GRAVITY  ANALYSIS  OF REFUSE PRODUCT FROM UNIT NUMBER  8
         SIZE FRACTION AND WEIGHT
        28 BY 46
 64.1 PERCENT
        46 BY 0
 35.9 PERCENT
       COMPOSITE
100.0 PERCENT
to
oo
CO
SPECIFIC
GRAVITY
DIRECT, PERCENT
WEIGHT ASH PYRITIC TOTAL
SULFUR
FLOAT
1.30.
1.35.
1,40-
1.50-
1.60.
1.70.
SINK
FLOAT
1.30.
1.35.
1.40.
1.50.
1.60.
1,70-
SINK
FLOAT
1.30.
1.35.
1.40.
1.50.
1.60.
1.70-
SINK
.30
.35
.40
.50
.60
.70
.60
.80
.30
.35
,40
.50
.60
.70
.60
.80
.30
.35
.00
.50
.60
.70
.80
.80
6.6
0,6
1.0
7.0
10. 1
7.4
5.3
62.1
2.0
2.2
0.0
6,1
8,6
6.0
5.2
65.6
4.9
1.2
0.6

9J6
7.6
5.3
63.4
2.1
4.6
9.4
16.1
25.8
33.9
42.9
70.3
17.9
17.4
16.8
18.3
2«.3
28.0
34.2
43.5
4.4
13. «

16|9
25.3
31.7
39,9
60.3
0.12
0.17
0,21
0,26
0,29
0,34
0,57
0.65
0.30
0,30
0,29
0.29
0,30
0.34
0.48
0.55
0.14
0,26
0.21
0,27
0,29
0.34
0.54
0.61
BTU/LB
SULFUR
0,59
0.59
0.63
0.62
0.59
0,85
1. 00
0.66
0.66
0.65
0,65
0.64
0,62
0,77
0,87
0,74
0.60
0.63
0.63
0.63
0,60
0,82
0.95
0.69
14755.
14356,
13573,
12463.
10896.
9572.
6103.
4000.
12183.
12262,
12361.
12116.
11142.
10528.
9516.
6012,
14363.
12920.
13573.
12336.
10976.
9935.
8604.
5496,
                                                                         CUMULATIVE, PERCENT
                                                                  WEIGHT ASH  PYRITIC TOTAL  BTU/LB
                                                                              SULFUR  SULFUR
                                                                                                   6.6
                                                                                                   M
                                                                                                   8.1
                                                                                                  15.1
                                                                                                  25.2
                                                                                                  32.6
                                                                                                  37.9
                                                                                                 100,0
                                                                          2,1
                                                                          2,3
                                                                          3,2
                                                                          9.1
                                                                         15,8
                                                                         19,9
                                                                         23.1
                                                                         52.4
2.0
«,2
1.2
12.3
21,0
29,0
34.2
100,0
4.9
6.1
6.7
1".'
23.7
31.1
36.6
100.0
17.9
17,6
17,6
16,1
20.6
22,7
24,4
37,0
4.4
6.1
6.4
11.9
17.3
20,6
23.6
46.9
                                            0,12
                                            0.12
                                            0,13
                                            0.19
                                            0,23
                                            0.25
                                            0.30
                                            0.51

                                            0.30
                                            0,30
                                            0.30
                                            0,29
                                            0,30
                                            0.31
                                            0.34
                                            0,46

                                            0.1U
                                            0.16
                                            0,17
                                            0.22
                                           0,25
                                           0,27
                                           0.31
                                           0,50
                 0,59
                 0,59
                 0,59
                 0.60
                 0,60
                 0.66
                 0,71
                 0.66

                 0,66
                 0,66
                 0,66
                 0.65
                 0.64
                 0.67
                 0,70
                 0,72

                 0,60
                 0,60
                 0.61
                 0,62
                0.61
                0.66
                0.70
                0,70
 14755,
 1472),
 14581,
 13611,
 12524.
 11854.
 11327.
  6779,

 12163.
 12225.
 12225.
 12153.
 11737.
 11402.
 11117.
 9073.

 14363,
 14104.
 14053.
 13154,
12274,
11704.
11257.
 7603.
       FLOWSTREAM SUMMARY
       FLOWRATE •   1.7 PERCENT OF FEED

       BTU CONTENT •  7603. BTU/LB

       302 CONTENT *  1,63 LB8 302/MILLION BTU
             ASH • 46,9 PERCENT
PYRITIC SULFUR •  .50 PERCENT
TOTAL SULFUR •   .70  PERCENT

-------
                                          SUMMARY DATA FOR UNITS
                                                                            YIELD        BTU RECOVERY
UNIT NUMBER        UNIT TYPE                    DECISION VARIABLES        (PERCENT)       (PERCENT)
•••••••••••        •••••••••                    ••••••••••••••••••        mmmmmmmmm      ••••••••••••
     1       11 (ROTARY BREAKER)              22.000   5.000   6.000
     2       21 (DRV UPPER SCREEN)                     1.000
     3        6 (2-STAGE BAUM JIG)                     1.450                 57.«            74.S
     4       16 (SECONDARY SINOLE ROLL CRUSHER)        0.12S
     S       41 (STREAM BLENDER)
     6       91 (DRY UPPER SCREEN)                     0.023
     7        1 (CONCENTRATING TABLE)                  1.500                 60.2            75,0
     6        7 (FROTH FLOTATION)                                            56.6            66.0

-------
SUMMARY DATA FOR FLOW3TREAM3
FUOH3TREAM ORIGIN
NUMBER UNIT NO.
1 (FEED)
2 (REFUSE PRODUCT)
3
4
5
6 (CLEAN COAL PRODUCT)
7
8 (REFUSE PRODUCT)
9
10
11
CO
00 , a
01 1«
13 (CLEAN COAL PRODUCT)
14 (REFUSE PRODUCT)
15 (CLEAN COAL PRODUCT)
tb (REFUSE PRODUCT)
0
1
1
2
2
3
3
3

-------
                                 TECHNICAL REPORT DATA
                          (Phase read Instructions on the rererse before completing)
 1. REPORT NO.
  FE-9000-1 (EPA-600/7-78-211)
                            2.
                                                        3. RECIPIENT'S ACCESSION NO.
 4. TITLE AND SUBTITLE
 Computer Simulation of Coal Preparation Plants
            5. REPORT DATE
             November 1978
                                                        6. PERFORMING ORGANIZATION CODE
 7. AOTHOR(S)
 Byron S. Gottfried
                                                        8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Pittsburgh
Pittsburgh,  Pennsylvania  15261
             10. PROGRAM ELEMENT NO.

             EHE623A
            11. CONTRACT/GRANT NO.
            EPA Literagency Agreement
             DXE  685 AK
 12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC  27711
             13. TYPE OF REPORT AND PERIOD COVERED
             Final; 12/74 - 8/77	
            14. SPONSORING AGENCY CODE
              EPA/600/13
 15. SUPPLEMENTARY NOTES JERL-RTP project officer: D.A.Kirchgessner, MD-61, 919/541-
 2851. DoE project officer: R.E.Hucko, Div. of Solid FuelTMining and Preparation,
 Pittsburgh PA 15213.
  . ABSTRACT
           Tne rep0rt describes a comprehensive computer program which allows the
user to simulate a wide range of coal preparation plant configurations and modes of
operation. The program was designed to maximize the yield of clean coal while mini-
mizing the impurities. The configuration, mode of operation, and coal feed can be
varied to provide solutions to a wide range of problems. The program is written in
modular form using standard features of FORTRAN IV language.
 7.
                              KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
                                           b.lDENTIFIERS/OPEN ENDED TERMS
                         c. COS AT I Field/Group
Pollution
Coal Preparation
  ompnterized Simulation
FORTRAN
Pollution Control
Stationary Sources
13B
081
14B, 09B
 8. DISTRIBUTION STATEMENT
 Unlimited
                                           19. SECURITY CLASS (ThisReport)
                                           Unclassified
                         21. NO. OF PAGES
                               240
20. SECURITY CLASS (This page/
Unclassified
                         22. PRICE
                                                                          $9.50
EPA Form 2220-1 (9-73)
                                         236
    VS. GOVERNMENT PRINTING OFFICE: 19TO-«M92/ «7S

-------