U.S. Environmental Protection Agency Industrial Environmental Research       EPA-600/7-77-'117
Office* of Research and Development Laboratory
                Research Triangle Park. North Carolina 27711   October 11 977
        OVERFIRE AIR TECHNOLOGY
        FOR TANGENTIALLY FIRED
        UTILITY BOILERS BURNING
        WESTERN U.S. COAL
        Interagency
        Energy-Environment
        Research and Development
        Program Report

-------
                        RESEARCH  REPORTING SERIES
 Research reports of the Office of Research and Development,  U.S.
 Environmental Protection Agency, have been grouped into seven series.
 These seven broad categories were established to facilitate  further
 development and application of environmental technology.   Elimination
 of traditional grouping was consciously planned to foster technology
 transfer and a maximum  interface in related fields.   The  seven series
 arc:

      1.   Environmental  Health Effects Research
      2.   Environmental  Protection Technology
      3.   Ecological Research
      4.   Environmental  Monitoring
      5.   Socioeconomic  Environmental Studies
      6.   Scientific and  Technical Assessment Reports (STAR)
      7.   Interagency Energy-Environment Research and Development

 This  report has  been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
 RESEARCH AND DEVELOPMENT series.  Reports in this series  result from
 the effort  funded under  the 17-agency Federal Energy/Environment
 Research and Development  Program.  These studies relate to EPA's
 mission  to  protect  the  public health and welfare from adverse effects
 of pollutants  associated  with energy systems.  The goal of the Program
 is to assure the rapid development of domestic energy supplies in an
 environmentally—compatible manner by providing the necessary
 environmental  data  and control technology.  Investigations include
 analyses of  the  transport of energy-related pollutants and their health
 and ecological effects; assessments of,  and development of,  control
 technologies for energy systems; and integrated assessments  of a wide
 range of  energy-related environmental issues.

                           REVIEW NOTICE

This  report has been reviewed by the participating  Federal
Agencies, and approved for publication.  Approval  does  not
signify that the contents necessarily reflect the views  and
policies  of  the Government, nor does mention of trade names
or commercial products  constitute endorsement or recommen-
dation for use.
This document is available to the public through the National  Technical
Information Service, Springfield, Virginia  22161.

-------
                                           EPA-600/7-77-117
                                               October 1977
        OVERFIRE AIR TECHNOLOGY
   FOR TANGENTIALLY FIRED UTILITY
BOILERS BURNING WESTERN U.S. COAL
                             by

                    Richard L. Burrington, John D. Cavers,
                        and Ambrose P. Selker

                         C-E Power Systems
                      Combustion Engineering, Inc.
                        1000 Prospect Hill Road
                      Windsor, Connecticut 06095

                        Contract No. 68-02-1486
                      Program Element No. EHE624A
                    EPA Project Officer David G. Lachapelle

                   Industrial Environmental Research Laboratory
                    Office of Energy, Minerals, and Industry
                     Research Triangle Park, N.C. 27711
                          Prepared for

                   U.S. ENVIRONMENTAL PROTECTION AGENCY
                     Office of Research and Development
                        Washington, D.C. 20460

-------
         FIELD TEST PROGRAM TO  STUDY  STAGED
       COMBUSTION TECHNOLOGY FOR TANGENTIALLY
FIRED UTILITY BOILERS BURNING WESTERN U.S. COAL TYPES
                         BY
                RICHARD L. BURRINGTON
                   JOHN D. CAVERS
                  AMBROSE P. SELKER

                  C-E POWER SYSTEMS
            COMBUSTION ENGINEERING, INC.
             WINDSOR, CONNECTICUT 06095
               CONTRACT NO. 68-02-1486
      EPA PROJECT OFFICER:  DAVID G. LACHAPELLE
             CONTROL SYSTEMS LABORATORY
       NATIONAL ENVIRONMENTAL RESEARCH CENTER
               RESEARCH TRIANGLE PARK
                NORTH CAROLINA 27711
                    PREPARED FOR
        U.S. ENVIRONMENTAL PROTECTION AGENCY
         OFFICE OF RESEARCH AND DEVELOPMENT
               WASHINGTON, D.C. 20460

-------
                                 DISCLAIMER


"This report was prepared by Combustion Engineering,  Inc.  as  an account of
work sponsored by the Office of Research and Development,  U.S.  Environmental
Protection Agency (EPA).   Combustion Engineering,  Inc.  nor any  person  acting
on behalf of Combustion Engineering, Inc.:

     "a.  Makes any warranty or representation,  expressed  or  Implied Including
          the warranties  of fitness for a particular  purpose  or merchantabili-
          ty, with respect to the accuracy, completeness,  or  usefulness of the
          information contained 1n this report,  or that the use of any infor-
          mation, apparatus, method, or process  disclosed  1n  this  report may
          not Infringe privately owned  rights; or

      b.  Assumes any liabilities with  respect to  the use  of, or for damages
          resulting from  the use of, any Information, apparatus, method or
          process disclosed in this report."
                                     11

-------
                                  ABSTRACT


This report presents the findings of a program designed to Investigate and
evaluate the effectiveness of employing overflre air as a method of reducing
NOX emission levels from tangentlally fired boilers burning Western U.S.  coal
types.  This work was performed under the sponsorship of the Office of Re-
search and Development of the Environmental Protection Agency (Contract 68-
02-1486).  The results of this program are compared with the results obtained
under Phase II "Program for Reduction of NOx from Tangentlally Coal Fired
Boilers" (Contract 68-02-1367).

These test programs Investigated the effect that variations In excess air,
unit slagging, load and overflre air had on unit performance and emission lev-
els.  Additionally, the effect of biasing combustion air through various out-
of-service fuel nozzle elevations was also Investigated.  The effect of over-
fire air operation on waterwall corrosion potential was evaluated during thir-
ty (30) day baseline and overflre air corrosion coupon tests.  The results of
the corrosion coupon tests Indicate that overflre air operation for low NOx
optimization will not result 1n significant Increases 1n corrosion coupon de-
gradation.

Overflre air operation and reductions 1n excess air levels were found to be
effective 1n reducing NOX emission levels.  NOX reductions of 20 to 30 percent
were obtained when operating with 15 to 20 percent overflre air.  These reduc-
tions occurred with the boilers operating at a total unit excess air of ap-
proximately 15 to 25 percent as measured at the economizer outlet.  Unit load-
Ing exhibited a minimal effect on NOX emission levels.  Waterwall slag condi-
tions were found to have wide and Inconsistent effects on NOx emission levels.
                                      111

-------
                                  CONTENTS
                                                                       PAGE NO.
 Disclaimer	     11
 Abstract	    111
 List of Figures   	    vll
 List of Data Sheets   	     x1
 Conversion Table  	   xi11
 List of Abbreviations and Symbols  	    xlv
 Acknowledgment	     xv

 Section  I
   Introduction   	      1
   Conclusions
      Normal Operation 	      3
      Biased Firing Operation  	      3
      Overflre Air Operation 	      3
   Recommendations 	      5
   Summary
      Baseline Operation Study 	      6
      Biased Firing Operation Study  	     11
      Overflre A1r Operation Study 	     11
      Boiler Performance 	     22
      Waterwall Corrosion Coupon Evaluation  	     22

Section II - EPA Contract 68-02-1486
   Objectives
      Task I - Unit Selection	     26
      Task II - Test Planning & Fabrication of Test Equipment  ....     26
      Task III - Installation of Instrumentation	     27
      Task IV - Baseline Operation	     27
      Task V - Biased Firing Operation 	     28
      Task VI - Overflre A1r Operation 	     30
      Task VII - Preparation of Test Report and Analysis of Data ...     32
   Discussion
      Task I - Unit Selection	     33
      Task II - Test Planning & Fabrication of Test Equipment  ....     37
      Task III -  Installation of Instrumentation	     37

   Columbia Energy Center,  Unit II
      Tasks IV, V & VI - Test Data Acquisition and Analysis  	     41
      Task IV - Baseline Operation Study	     45
         Load and Excess A1r Variation - Clean Furnace 	     45
         Load and Excess A1r Variation - Moderately Dirty Furnace  . .     46
         Load and Excess A1r Variation - Dirty Furnace 	     47
         Analysis of Results 	     47
      Task V - Biased Firing Study 	     48
         Fuel  Elevations Out of Service Variation  	     48


                                     iv

-------
                              CONTENTS  (Cont.)
                                                                     PAGE NO.
         Analysis of Results	     53
      Task VI - Overfire A1r Operation Study  	     56
         Excess Air and Overfire Air Rate Variation  	     56
         Overfire A1r Register Tilt Variation  	     58
         Load and Furnace Uaterwall Deposit Variation  at Optimum
            Conditions	     59
         Analysis of Results  	     60
      Furnace Performance 	     65
      Waterwall Corrosion Coupon Evaluation 	     71

   Huntington Station, Unit #2
      Tasks IV, V & VI - Test Data Acquisition and Analysis  	     79
      Task IV - Baseline Operation Study	     83
         Load and Excess A1r Variation - Clean Furnace  	     83
         Load and Excess A1r Variation - Moderately Dirty  Furnace  .  .     83
         Load and Excess A1r Variation - Dirty Furnace  	     84
         Analysis of Results  	     85
      Task V - Biased Firing Operation Study  	     89
         Fuel Elevations Out-of-Service Variation 	     89
         Analysis of Results  	     91
      Task VI - Overfire A1r Operation Study  	     95
         Excess Air and Overfire Air Rate Variation 	     95
         Overfire Air T1lt Variation  	     98
         Load and Furnace Waterwall Deposit Variation at Optimum
            Conditions	     99
         Analysis of Results  	     100
      Waterwall Corrosion Coupon Evaluation 	     105

Section III - EPA Contract 68-02-1367
   Alabama Power Company, Barry Station, Unit #2
   Introduction 	     115
   Conclusions
      Normal Operation  	     117
      Overfire Air Operation  	     117
   Objectives
      Task I	     119
      Task II	     119
      Task III	     119
      Task IV	     120
      Task V	     120
      Task VI	     120
      Task VII	     120
      Task VIII	     120
      Task IX	     120
   Discussion
      Task IV & V - Baseline and Biased  Firing Test Programs   ....    122
         Test Data Acquisition and Analysis 	    122
      Task IV - Baseline Test Study	    124
         Load and Excess A1r Variation   .  . 	    124

-------
                              CONTENTS (Cont.)
                                                                      PAGE NO.
         Furnace Wall Deposit Variation 	    131
      Task V - Biased Firing Study	    131
         Fuel Elevations Out-of-Service Variation 	    131
      Task VIII - Unit Optimization Study	    135
         Load and Excess Air Variation  	    135
         Furnace Wall Deposit Variation 	    139
         OFA Location, Rate, and Velocity Variation 	    144
         OFA Tilt Variation 	    148
         Load Variation at Optimum Conditions 	    153
      Furnace Performance 	    157
      Waterwall Corrosion Coupon Evaluation 	    157

Section IV - Application Guidelines
   Introduction 	    170
   Conclusions	    171
   Recommendations
      Existing Steam Generating Units  	    172
      New Steam Generating Units  	    172
   Discussion
      Design and Description of OFA Systems 	    174
      Field Test Program  	    174
      Exploratory Field Test Program - Existing Units 	    175
      Effect on Unit Performance  	    176
      Economic Evaluation 	    177
   Applicability
      Existing Steam Generating Units  	    181
      New Steam Generating Units  	    181

   References	    182
   Appendices
      Appendix A - Wisconsin Power & Light Company
                  Test Data & Results	    183
      Appendix B - Utah Power & Light  Company
                  Test Data & Results	    242
      Appendix C - Alabama Power Company
                  Test Data & Results  	    289
      Appendix D - Compflow
                  Program Description  	    301
                                     vi

-------
                                   FIGURES


FIGURE                                                              PAGE NO.

                                 (Section I)

   1        N09 vs.  Theoretical  Air, Baseline  Study, Maximum Load . .     8
   2       N0« vs.  Theoretical  A1r, Baseline  Study, 1/2 Load  ....     9
   3       N0« vs.  Main Steam Flow, Baseline  Study	    10
   4       CO vs.  Theoretical A1r,  Baseline Study, Maximum Load  . .    12
   5       Carbon  Heat Loss vs. Theoretical A1r,  Baseline Study
              Maximum Load 	    13
   6       Fuel Elevation Out-of-Service vs.  N09, Biased Firing
              Study	f	    14
   7       N09 vs.  Theoretical  Air, Biased  Firing Study, Maximum
             ^Study	    15
   8       N09 vs.  OFA Damper Opening,  Overflre A1r Study	    17
   9       NO, vs.  Theoretical  A1r, Overflre  A1r  Study,
             ^Test Series 1	    18
  10       N02 vs.  T1lt Differential, Overflre A1r  Study  	    19
  11        NO, vs.  Theoretical  A1r, Overflre  A1r  Study,
             *Test Series 2	    20
  12       NO, vs.  Theoretical  A1r, Overflre  A1r  Study,
             ^Test Series 3	    21
  13       Unit Efficiency vs.  Excess A1r,  Maximum  Load   	    23
  14    '   Corrosion Probe Assembly Drawing  	    24


                                (Section II)


  15       Typical  Windbox of Tangential Firing System 	    34
  16       Unit Side Elevation - Columbia  Energy  Center,
              No.  1	    35
  17       Unit Side Elevation - Huntington Station,
              No.  2	    36

                Section  II:  Columbia  Energy Center1, Unit #1

  18       Furnace Waterwall Deposit Pattern, Clean Furnace   ....     43
  19       Furnace Waterwall Deposit Pattern, Moderate Slag
              Furnace	     44
  20       Furnace Waterwall Deposit Pattern, Heavy Slag
              Furnace	     45

-------
                               FIGURES  (Cont.)


FIGURE                                                              PAGE NO.

  21        NCL vs.  Theoretical  Air, Baseline Study	    48
  22        CCTvs. Theoretical A1r, Baseline Study   	    49
  23        Carbon Heat  Loss vs. Theoretical Air, Baseline Study   .  .    50
  24        Unit Efficiency vs.  Excess A1r, Baseline Study   	    52
  25        N02 vs.  Theoretical  A1r, Biased Firing Study	    54
  26        Fuel  Elevation Out-of-Service vs. NO,, Biased Firing
              Study	f	    55
  27        Unit Efficiency vs.  Excess Air, Biased Firing Study ...    57
  28        N02 vs.  Theoretical  A1r, Overfire A1r Study	    61
  29        CO  vs. Theoretical A1r, Overfire A1r Study  	    62
  30        Carbon Heat  Loss vs. Theoretical A1r, Overfire A1r
              Study	    63
  31        N02 vs.  Difference in T1lt, Overfire A1r Study   	    64
  32        Unit  Efficiency vs.  Excess Air, Overfire A1r Study  ...    66
  33        Chordal  Thermocouple Locations  	    67
  34        Elevation vs. Furnace Heat Absorption - Baseline
              Study	    68
  35        Elevation vs. Furnace Heat Absorption - Biased
              Firing Study	    69
  36        Elevation vs. Furnace Heat Absorption - Overfire
             A1r Study	    70
  37        Water-wall Corrosion Probe Locations, Columbia #1  ....    72
  38       Typical  Corrosion Probe Temperature Range 	    73
  39       Gross MW Loading vs. Time - Baseline Corrosion Probe
             Study	    74
 40       Gross MW Loading vs. Time - Overfire Air Corrosion
             Probe Study	    75
 41       As-Fired Ash and Coupon Deposit Analysis, Baseline
             Study	    77
 42       As-Fired Ash and Coupon Deposit Analysis, Overfire
             Air Study	    78

                 Section II:  Huntington Station, Unit #2

 43       Furnace Waterwall  Deposit Pattern - Clean Furnace ....    80
 44       Furnace Waterwall  Deposit Pattern - Moderate Slag
             Furnace	    81
 45       Furnace Waterwall  Deposit Pattern - Heavy Slag
             Furnace	    82
 46       N02 vs. Theoretical Air, Baseline Study 	    86

-------
                               FIGURES  (Cont.)


FIGURE                                                              PAGE NO.

  47       CO vs.  Theoretical  A1r,  Baseline Study   	    87
  48       Carbon  Heat Loss vs.  Theoretical Air, Baseline Study  . .    88
  49       Unit Efficiency vs.  Excess Air, Baseline Study  	    90
  50       N02 vs. Theoretical  A1r, Biased Firing Study	    92
  51       Fuel Elevation Out-of-Serv1ce  vs.  N09, Biased Firing
              Study	f	    93
  52       CO vs.  Theoretical  Air,  Biased Firing Study  	    94
  53       Carbon  Heat Loss vs.  Theoretical Air, Biased Firing
              Study	    96
  54       Unit Efficiency vs.  Excess A1r, Biased Firing Study  ...    97
  55       N02 vs. Theoretical  A1r, Overfire  A1r Study  	   101
  56       CO vs.  Theoretical  A1r,  Overfire A1r Study  	   102
  57       Carbon  Heat Loss vs.  Theoretical A1r, Overfire A1r
              Study	   103
  58       N02 vs. Tilt Differential, Overfire  A1r  Study  	   104
  59       Unit Efficiency vs.  Excess A1r, Overfire A1r Study   ...   106
  60       Waterwall Corrosion Probe Locations, Huntlngton Station,
              No.  2	   107
  61       Typical Corrosion Probe  Temperature  Ranges,  Huntlngton
              Station, No. 2	   108
  62       Gross MW Loading vs. Time -  Baseline Corrosion Probe
              Study	   109
  63       Gross MW Loading vs. Time -  Overfire A1r Corrosion
              Probe Study	   110
  64       As-Fired Ash and Coupon  Deposit Analysis,  Baseline
              Study	   113
  65       As-Fired Ash and Coupon  Deposit Analysis,  Overfire Air
              Study	   114

                    Section III:  Barry Station,  Unit #3

  66       Unit Side Elevation, Barry Station,  No.  2  	   116
  67       Schematic Overfire Air System, Barry Station,  No. 2  ...   121
  68       Gaseous Emissions Test System 	   123
  69       Waterwall Corrosion Probe Locations, Barry Station,
              No.  2	   125
  70       Typical Corrosion Probe Temperature  Range, Barry
              Station, No. 2	   126
  71       NOg vs. Theoretical Air, Baseline Study 	   127
  72       CO vs.  Theoretical  A1r,  Baseline  Study  	   128
  73       Percent Carbon Loss vs.  Theoretical  Air, Baseline
              Study	    129
  74       Unit Efficiency vs. Unit Excess A1r 	    130
  75       Furnace Slag Pattern - Clean Furnace  	    132
  76       Furnace Slag Pattern - Moderate Slag Furnace  	    133
                                     1x

-------
                               FIGURES  (Cont.)


FIGURE                                                             PAGE NO.

  77       Furnace Slag  Pattern - Heavy Slag Furnace   	   134
  78       N02 vs.  Theoretical  Air, Biased Firing Study 	   136
  79       CO vs.  Theoretical Air, Biased Firing Study  	   137
  80       Percent Carbon  Loss  vs. Theoretical Air, Biased
              Firing  Study  	   138
  81        N02 vs.  Theoretical  Air, Overfire A1r Study	   140
  82       CO vs.  Theoretical Air, Overfire Air Study  	   141
  83       Percent Carbon  Loss  vs. Theoretical Air, Overfire
              Air  Study	   142
  84       Unit Efficiency vs.  Excess Air	   143
  85       Furnace  Slag  Pattern - Clean Furnace 	   145
  86       Furnace  Slag  Pattern - Moderate Slag Furnace 	   146
  87       Furnace  Slag  Pattern  - Heavy Slag Furnace   	   147
  88       N02 vs.  Theoretical  Air, Overfire Air Study  	   149
  89        CO vs. Theoretical Air, Overfire Air Study  	   150
  90        Percent  Carbon  Loss  vs. Theoretical Air, Overfire
              Air Study	   151
  91        N02 vs.  Tilt  Differential, Overfire Air Study  	   152
  92        Percent  Carbon  Loss vs. Tilt Differential, Overfire
              Air Study	   154
  93        CO vs. Tilt Differential, Overfire A1r Study 	   155
  94        N02 vs.  Main  Steam Flow	   156
  95        Chordal Thermocouple Locations on Furnace Water-walls . .   158
  96        Average  Centerline Absorption Profile - Test 14  ....   159
  97        Average Centerline Absorption Profile - Test 24  ....   160
  98        Average  Centerline Absorption Profile - Test 33  ....   161
  99        Average Centerline Absorption Profile - All Tests  ...   162
100        Gross MW Loading vs.  Time - Baseline Corrosion Probe
              Study	   164
101        Gross MW Loading vs.  Time - Biased Firing Corrosion
              Probe Study	   165
102        Gross MW Loading vs.  Time - Overfire A1r Corrosion
             Probe Study	   166
103       Ash Analysis	   169

                    Section IV:  Application Guidelines

104       Overfire A1r System Costs  	   178

-------
                                 DATA SHEETS


SHEET                                                                 PAGE NO.

   Al, A2   Baseline Operation Study - Emissions Test  Data,
               Columbia #1   	184, 185
   A3, A4   Biased Firing Operation Study - Emissions  Test Data,
               Columbia #1	186, 187
   AS, A6   Overfire A1r Operation Study - Emissions Test Data,
               Columbia #1	188, 189
   A7, A8   Baseline Operation Study - Test Data,
               Columbia #1	190, 191
  A9, A10   Biased Firing Operation Study - Test  Data,
               Columbia #1	192, 193
All - A13   Overfire A1r Operation Study - Test Data,
               Columbia #1   	  194-196
 A14, A15   Baseline Operation Study - Test Results,
               Columbia #1	197, 198
 A16, A17   Biased Firing Operation Study - Test Results,
               Columbia #1   	199, 200
A18 - A21   Overfire A1r Operation Study - Test Results,
               Columbia #1   	  201-204
A22 - A25   Baseline Operation Study - Waterwall  Absorption
               Rates, KW/m2, Columbia #1	205-208
A26 - A29 .  Biased Firing Operation Study - Waterwall  Absorption
               Rates, KW/m2, Columbia #1	209-212
A30 - A35   Overfire A1r Operation Study - Waterwall  Absorption
               Rates, KW/mz, Columbia #1	213-218
A36 - A41   Baseline Operation Study - Board & Computer Data,
               Columbia #1   	  219-224
A42 - A47   Biased Firing Operation Study - Board & Computer Data,
               Columbia #1   	  225-230
A48 - A56   Overfire Air Operation Study - Board & Computer Data,
               Columbia #1   	  231-239
      A57   Waterwall Corrosion Coupon Data Summary -
               Baseline Test, Columbia #1 	        240
      A58   Waterwall Corrosion Coupon Data Summary -
               Overfire A1r Test, Columbia #1 	        241
   Bl, B2   Baseline Operation Study - Emissions Test Data,
               Huntlngton #2	243, 244
   B3, B4   Biased Firing Operation Study - Emissions Test Data,
               Huntlngton #2	245, 246
   B5, B6   Overfire A1r Operation Study - Emissions Test Data,
               Huntlngton #2	247, 248
   B7, B8   Baseline Operation Study - Test Data,
               Huntlngton #2	249, 250
  B9, BIO   Biased Firing Operation Study - Test Data,
               Huntlngton #2	251, 252


                                      xl

-------
                             DATA SHEETS (Cont.)


SHEET                                                                  PAGE NO.

Bll - B13   Overflre A1r Operation Study - Test Data,
               Huntlngton #2  	 	  253-255
B14 - B17   Baseline Operation Study - Test Results,
               Huntlngton #2  	  256-259
 B18, B19   Biased Firing Operation Study - Test Results,
               Huntlngton #2	260, 261
B20 - B23   Overflre A1r Operation Study - Test Results,
               Huntlngton #2  	  262-265
B24 - B29   Baseline Operation Study - Board & Computer Data,
               Huntlngton #2  	  266-271
B30 - B35   Biased Firing Operation Study - Board & Computer Data,
               Huntlngton #2  	  272-277
B36 - B44   Overflre Air Operation Study - Board & Computer Data,
               Huntlngton #2  	  278-286
      B45   Waterwall  Corrosion Coupon Data Summary -
               Baseline Test,  Huntlngton #2 	        287
      B46   Waterwall  Corrosion Coupon Data Summary -
               Overflre A1r Test,  Huntlngton #2 	        288
       Cl   NOx Test Data Summary  - Baseline Study Before
               Modification, Barry #2 	        290
       C2   NOx Test Data Summary  - Biased Firing Study
               Barry #2	        291
       C3   NOx Test Data Summary  - Baseline Study After
               Modification, Barry #2 	        292
       C4   NOX Test Data Summary  - OFA Location, Rate and
               Velocity Variation,  Barry #2 	        293
       C5   NOx Test Data Summary  - OFA T1lt and Load Variation,
               Barry #2	        294
       C6   Waterwall  Absorption Rates, kg-cal/hr-cm2 -
               Right Wall  Center-line Tube Rates, Barry #2	        295
       C7   Waterwall  Absorption Rates, kg-cal/hr-cm2 -
               Front Wall  Center!1ne Tube Rates, Barry #2  	        296
       C8   Waterwall  Absorption Rates, kg-cal/hr-cm2 -
               Right Wall,  Rear Wall,  Left Wall, Front Wall,
               Barry #2	        297
       C9   Waterwall  Corrosion Coupon Data Summary -
               Baseline Test,  Barry #2  	        298
     CIO   Waterwall  Corrosion Coupon Data Summary -
               Biased  Firing Test,  Barry #2 	        299
     C11    Waterwall  Corrosion Coupon Data Summary -
               Overflre Air Test,  Barry #2  	        300

-------
                       CONVERSION FACTORS
                SI METRIC UNITS TO ENGLISH UNITS
To Convert From
     kg/s
     ng/J
     MJ/s
     ug/J
     kJ/kg
      MPa
     KW/m2
To
103LB/HR
LB/106BTU
106BTU/HR
LB/106BTU
BTU/LB
PSIA
I6BTU/HR-FT2
Multiply By
7.936640
2.326E-3
3.412141
2.326
4.299226E-1
1 .450377E+2
3.16998E-1
                ENGLISH UNITS TO SI METRIC UNITS
To Convert From
   103LB/HR
     PSIA
   LB/106BTU
   LB/106BTU
   106BTU/HR
    BTU/LB
 106BTU/HR-FT2
 To
kg/s
 MPa
ng/0
ug/J
MJ/s
kJ/kc
KW/m2
 Multiply By
1.259979E-01
 6.894757E-3
 4.29922E+2
 4.29922E-1
 2.930711E-1
    2.326
  3.154594
°F = 1.8(°C)+32C
                               X111

-------
                  ABBREVIATIONS AND SYMBOLS
Abbreviations
Definitions
     N0x
     THC
     NA
     X-S
     ww
     MCR
     TA
     EA
     FFZ
     NSPS
Oxides of Nitrogen
Total Hydrocarbons
Not Available
Excess
Waterwal1
Maximum Continuous Rating
Theoretical Air to Fuel Firing Zone
Excess Air
Fuel Firing Zone
New Source Performance Standard
   Symbol s
     N02
     CO
     °2
     S02
     CO,
Nitrogen Dioxide
Carbon Monoxide
Oxygen
Sulfur Dioxide
Carbon Dioxide
                            x1v

-------
                               ACKNOWLEDGMENTS


The authors wtsh to acknowledge the constructive participation of Mr.  D.  G.
Lachapelle, EPA Project Officer, In providing the program direction necessary
for Its successful completion.

The cooperation and active participation of the following companies and,  in
particular, the personnel at the respective plants were essential to success-
fully conducting the various test program phases.

                    1.  Alabama Power Company
                        Barry Station, Unit #2

                    2.  Utah Power and Light Company
                        Huntlngton Station, Unit #2

                    3.  Wisconsin Power and Light Company
                        Columbia Station, Unit #1

The results presented 1n this report represent the effort of many Combustion
Engineering, Inc. personnel whose participation was required for Its success-
ful completion.  In particular the technical contributions made by R. F.  Swope,
R. W. Robinson, E. R. LePage, L. A. Ratte, M. S. Hargrove and K. M. Cerrato
are gratefully acknowledged.
                                      xv

-------
                                  SECTION I

                                INTRODUCTION


The emphasis on Improved quality of the environment has led to  the design of
coal fired steam generators with the capability of using overflre air to re-
duce and control NOX emission levels.  For tangentially fired steam  genera-
tors, the overfire air 1s admitted through registers 1n an extended  wlndbox.

Previous work with coal fired steam generators has demonstrated that overfire
air simulation with tangential firing 1s effective in reducing  NOX emission
levels by as much as 50 percent of uncontrolled values.

Some of this previous work was performed by Combustion Engineering,  Inc. under
an EPA-sponsored two-phase program to Identify, develop and recommend  the most
promising combustion modification techniques for the reduction  of NOx  emis-
sions from tangentially coal fired utility boilers with a minimum Impact on
unit performance.

This two-phase program is briefly described as follows:

     Phase I (performed under EPA Contract 68-02-0264) consisted of  selecting
     a suitable utility boiler to be modified for experimental  studies to
     evaluate NOX emission control.  Phase I also included the preparation of
     preliminary drawings, a detailed preliminary test program, a cost esti-
     mate and detailed schedule of the program phases and a preliminary appli-
     cation economic study Indicating the cost range of a variety of combus-
     tion modification techniques applicable to existing and new boilers  [1]*.

     Phase II (performed under EPA Contract 68-02-1367) consisted of modifying
     and testing the utility boiler selected in Phase  I to evaluate overfire
     air and biased firing as methods for NOX control.  This phase also In-
     cluded:

          1.  The completion of detailed fabrication and erection drawings,

          2.  Installation of analytical test equipment,

          3.  Updating of the preliminary  test program,

          4.  A baseline operation study,

          5.  Analysis and reporting of test results and,
  Numbers in brackets refer to references at end of report.

-------
           6.   The  development of control technology application guidelines for
               existing and new tangentially coal fired utility boilers.

      This  program  was conducted at the Barry Steam Station, Unit #2 of the
      Alabama  Power Company [2].

 The majority  of this previous work has been conducted on units firing Eastern
 or  Midwestern bituminous coals.

 In  recent years, the utilization of Western U.S. coals as an energy source has
 Increased significantly.  The Incentives for their use are the low sulfur con-
 tent conducive to  low SOX emission levels and the large available reserves
 that may be used In Heu of oil and natural gas which are 1n short supply.

 Based on Phase II recommendations to Investigate Western coal  types which were
 becoming a predominate source of fuel  for electric generating  stations, this
 study, EPA Contract 68-02-1486, was contracted by Combustion Engineering,
 Inc.'s, Field Testing and Performance Results Department.

The objective of this program was to Investigate the effectiveness of employ-
 Ing overflre air as a method  of reducing NOX emission levels from tangentially
fired boilers burning Western U.S.  coals.  The effect of reducing NOX emission
levels was evaluated with respect to unit performance, unit efficiency, water-
wall corrosion rates and related gaseous emission levels.

Specifically,  the factors considered in realizing this objective were as fol-
lows:

     1.   The program was conducted  on  two units designed with  overfire air
         registers, the first unit  firing a Western U.S. subbituminous coal
         and the second unit  firing a  Western U.S. bituminous  coal.

     2.   The test program evaluated baseline, biased firing and overfire air
         operation  and consisted of approximately 60 steady state tests per
         unit  and two months  of waterwall corrosion rate studies per unit.

     3.   The effect of NOX control  methods on all gaseous constituents was
         evaluated  during all  tests.   The following constituents were mea-
         sured:  NOX*  SOX, CO,  THC, 02 and particulate samples for unburned
         combustible analysis.

     4.   The effects  of NOX control  methods on steam generator performance
         were  evaluated during  all  tests by obtaining necessary temperatures,
         pressures, flows, etc.,  with  calibrated equipment.

     5.   Based on the results  of this  program, conclusions and recommendations
         were  made  pertaining  to the acceptable application of staged firing
         with  respect to NOX  emission  levels, corrosion rates  and unit opera-
         tion  for each type of  coal  tested.

     6.   The results  of this  program were compared with the results obtained
         under Contract 68-02-1367  for a unit equipped with an overfire air
         system not Included  in the original design.

-------
                                 CONCLUSIONS
NORMAL OPERATION
1.  Under normal unit operation without overfire air,  excess air variation was
    found to have the greatest single effect on NOX emission levels, increas-
    ing NOx with increasing excess air.  An average increase of 6.4 ng/J for
    each one percent change in excess air (EA)  was observed over a normal op-
    erating range of 15 to 25 percent EA for the three units.

2.  Unit loading was found to have a limited effect on NOX and CO emission
    levels and carbon heat loss.

3.  Variations in furnace waterwall deposits had wide and inconsistent effects
    on NOx ^nd CO emission levels and carbon heat loss.
4.  Under normal unit operation, the percent carbon loss in the fly ash and CO
    emission levels increased with decreasing excess air with the increases
    becoming greater below a level of approximately 20 to 25 percent excess
    air.  CO levels in excess of 24 ng/J were considered unacceptable for  the
    purposes of this program.

BIASED FIRING OPERATION

Biased firing was found to be most effective when the top fuel firing eleva-
tion was removed from service.  This mode of operation simulates overfire  air
operation.  However, while biased firing is a potentially effective method of
NOX control, it may necessitate a reduction in unit loading.  Therefore, biased
firing is not considered to be the most desirable method of NOX control.

OVERFIRE AIR OPERATION

1.  NOX reductions of 20 to 30 percent were obtained with 15 to 20 percent
    overfire air when operating at a total unit excess air of approximately  15
    to 25 percent as measured at the economizer outlet.

    This condition would provide an average fuel firing zone stoic hi ometry of
    95 to 105 percent of theoretical air.  Stoichiometries below this range  did
    not result in large enough decreases in NOX levels to justify their use.

2.  When using overfire air as a means of decreasing the theoretical air to  the
    fuel firing zone, the combustible loss and CO emission levels were less  af-
    fected than when operating with low excess air since during overfire air
    operation, acceptable overall excess air levels are maintained.  Reduction
    in operating excess air levels for NOX control is often precluded because
    of the ash properties of the coal being fired.  Further, as coal is an ex-
    tremely complex fuel characterized by wide variations  in properties, even

-------
     between different seams In the same mine area,  excess  air Is  the  only
     means available to the operator to compensate for departures  from the de-
     sign coal.  For the above reasons, the application of  overflre  air rather
     than low excess air firing is recommended on coal  fired  steam generators.

 3.  Furnace performance as indicated by waterwall slag accumulations,  visual
     observations and absorption rates were not affected by overflre air opera-
     tion.

 4.  At Alabama Power Company's Barry Station Unit #2 where the overfire air
     port could not be installed as a windbox extension, test  results  indicated
     that the center!ine of the overfire air port should be kept within 3 me-
     ters of the centerline of the top fuel  elevation.   Distances  greater than
     3 meters did not result in significantly decreased NOX levels.  On new de-
     signs,  and whenever possible on field  modified  units,  it  is preferable to
     introduce the overfire air through a vertical extension of the  windbox
     rather  than through isolated ports displaced above the windbox.  The ef-
     fectiveness of introducing overfire air through an extended windbox is dem-
     onstrated via the tests conducted on Wisconsin  Power & Light, Columbia #1
     and Utah Power & Light, Huntingdon Canyon  #2.   The overfire air compart-
     ments on an extended windbox tilt independently of the remainder  of the
     windbox  to permit adjustments in the "point" of overfire  air  introduction.

 5.   Optimum  overflre air operation was obtained  when the overfire air  registers
     were tilted away from  the  fuel  nozzles.  NOx control was  nearly as effec-
     tive when  the overfire air registers were  tilted with  the fuel  nozzles.
     NOX emission levels Increased when the  overflre air registers and  fuel noz-
     zles were  directed  toward  each other.   At  Alabama  Power Company's  Barry
     Station  Unit #2,  flame stability decreased when the overflre  air  registers
     and fuel  nozzles  were  directed away from each other by more than  20 to 25
     degrees.  This  phenomena was  not observed  at either Wisconsin Power and
     Light Company's  Columbia Energy Center  Unit  #1  or  at Utah Power and Light
     Company's  Huntingdon Station  Unit #2.   With  the overflre  air  tilts fixed in
     a horizontal  position,  acceptable unit  operation was obtained,  however, NO
     levels varied with fuel nozzle position.

6.   The results  of the thirty  day baseline  and overflre air corrosion  coupon
     runs  indicate that the  overflre air operation for  low  NOx optimization did
     not result  in significant  increases  in  corrosion coupon degradation.  Addi-
     tional long-term operation  studies  will  be required to verify these observa-
     tions.

7.  The average  NOX levels  experienced  during  the thirty day  overfire  air stud-
     ies were as  follows:   Barry #2-172  ng/J, Huntington Canyon #2-231  ng/J and
    Columbia #1-294 ng/J.  The  emission  levels for  Columbia #1 reflect operat-
     ing conditions beyond the  control  of the test program.

8.  Variables normally used to  control  normal  boiler operation should  not be con-
    sidered as NOX controls with  coal  firing.  These variables include unit load,
    nozzle tilt, pulverizer fineness,  windbox  dampers  and  total excess air-

9.  Overall  unit efficiency was not  affected by  overflre air  operation.

-------
                               RECOMMENDATIONS


This program was designed to Investigate the effects of the following  process
variables and combustion modifications on NOX emission levels 1n existing  steam
generating units:

                              Process Variables

                         Excess A1r Level
                         Unit Load
                         Furnace Waterwall Deposits

                          Combustion Modifications
                         Biased Firing
                         Overflre A1r Firing

The effects of furnace waterwall deposits could not be adequately documented.
Several Investigations have indicated that furnace waterwall deposits can ef-
fect NOx emission levels.  Therefore, this process variable should be Investi-
gated further.

The effect of fuel nitrogen on NOX formation was not Investigated per se in this
program.  However, as the effect of fuel nitrogen 1s becoming of increasing
concern, its contribution to NOX emission levels in coal fired boilers should
be quantified.

Additionally, the results of the corrosion probe evaluations Indicate that the
coupon weight losses encountered during a thirty day evaluation are small and
consideration should be given to studies of up to one year duration to verify
short term test results.  These studies should Include evaluation of actual
fireside waterwall tube wastage rates as well as corrosion probe wastage" rates.

-------
                                    SUMMARY


 Percent excess air, bulk flame temperature and residence time of the  combustion
 gases all directly affect the formation of oxides of nitrogen (NOX).   The  two
 oxides of nitrogen which are of significance are nitric  oxide (NO)  and nitrogen
 dioxide (NOg).  NO Is the more predominant form and accounts  for 90 to 95  per-
 cent of the total NOX generated 1n a utility boiler.   Once  it enters  the at-
 mosphere NO is converted to N02, which is  more hazardous to human health.  Most
 references In this report to NO? are actually refering to total  nitrogen oxides.
 This method of expressing NOx as N02 Is 1n agreement  with EPA practice.

 While It is not the subject of this report,  it should be noted that NOX gener-
 ated by the combustion of coal  can occur by two mechanisms.   One mechanism Is
 by the oxidation of atmospheric nitrogen (thermal  NOx) while  the other mecha-
 nism Involves the conversion of fuel  bound nitrogen (fuel NOx).   The  formation
 of thermal  NOX 1s known to be dependent on flame temperature, oxygen  concen-
 tration in the combustion zone and residence time at  temperature.

 Several  Investigators  have observed that the formation of fuel NOx  is  responsi-
 ble for a  significant  portion of the total  NOX emitted from the  combustion pro-
 cess [3,4,5,6].  The reaction can take place at a  much lower  flame  temperature
 and has  also been shown to be dependent on the oxygen concentration in the com-
 bustion  zone.   The coals being  fired at Alabama Power Company's  Barry #2 and
 Utah Power  and Light Company's  Huntington  Canyon #2 had  nitrogen analysis  rang-
 ing from 1.1  to 1.3 percent nitrogen by weight.   Wisconsin  Power and  Light Com-
 pany's Columbia #1  had an analysis ranging from 0.6 to 0.8  percent  nitrogen by
 weight.  Preliminary plots of N0£ versus the coal  nitrogen  content  did not show
 any correlation between N02 and coal  nitrogen content.   Any correlation would
 probably have  been masked by the limited range of the nitrogen content of  the
 coals being fired  and  by the variation in  excess air  levels.


 BASELINE OPERATION STUDY

 It  has been well  documented that the formation of NOX is dependent  upon excess
 air and  the oxygen concentration 1n the combustion zone.  The oxygen  concentra-
 tion in  the combustion zone is  directly related to excess air and also to  the
 theoretical  air to the fuel  firing zone (TA).   TA Is  a computational  tool  used
 by  Combustion  Engineering,  Inc.  which accounts for variations 1n position  and
 leakage  in  all  windbox compartment dampers.*  This method allows for  the ac-
 counting of leakage  1n the compartments above the top active  fuel compartment
 and, therefore,  1s a better approximation  of the actual  air (I.e.,  oxygen)
 available for  combustion  1n the fuel  firing  zone than total excess  air (EA).
 Therefore, all  parameters are plotted versus theoretical  air  to  the fuel firing
* See Appendix D.

-------
zone rather than the total excess air.  For the baseline operation  study the
TA Is essentially the same as the total air since no air was  diverted  through
the overflre air registers.

Figure 1 ts a plot of N02* versus TA for the full load baseline tests  at Ala-
bama Power Company's Barry Station Unit #2, Utah Power and Light Company's
Huntlngton Canyon Station Unit #2 and Wisconsin Power and Light Company's Co-
lumbia Energy Center Unit #1.  As shown by this figure, NO? Is proportional
to TA and, therefore, to oxygen concentration in the fuel firing zone  and ex-
cess air.

Figure 2 is a plot of N02 versus TA for the half (1/2) load tests for  all
three units.  As with the full load tests, the half (1/2) load tests also show
increasing N0£ emission levels with Increasing TA.  Comparison of the  full  and
half (1/2) load tests show that at similar theoretical air levels,  the N02
emission levels for the half (1/2) load tests are lower than or equal  to the
NOg levels for the full load tests.  The effect of load is better shown in
Figure 3, where emission levels are plotted versus theoretical air level for
full, three quarter and one half load baseline tests.  This plot shows that in
some, but not all cases, N02 levels tend to increase with unit loading.  It can
be shown that occasionally the opposite trend was observed.

While NOp levels correlated well with TA, attempts to find what effect fuel
nozzle tilt and furnace condition had on NOX formation were not as successful.
Changes in fuel nozzle tilt were found to produce wide and inconsistent varia-
tions in N02 emission levels.

Other investigators have found that increased slagging of the furnace  walls
tends to increase NOX by increasing the furnace outlet temperature and, there-
fore, the bulk flame temperature  £3,5].  Bulk flame temperature Increases  due
to the reduced heat transfer from the hot combustion gases to the water-cooled
furnace wall's.  The amount of reduction in heat transfer may depend greatly up-
on the type of slag on the furnace walls.  The furnace conditions for  the  full
and half (1/2) load tests are indicated on Figures 1 and 2.  Furnace condition
was found to have wide and inconsistent effects on N02 emission levels for the
tests run on the subject boilers.  The results obtained showed that for some
tests an increase in furnace slag resulted in an increase in N02 emission  lev-
els while no effect was observed for other tests.  Furnace condition was'mea-
sured by visual observation of the furnace waterwalls.  Since waterwall absorp-
tion is closely related to furnace condition, an attempt was made to correlate
N02 emission levels with furnace waterwall absorption and therefore with furnace
condition.  This attempt produced no meaningful results.  The lack of correla-
tion between N02 emission levels and furnace condition might be partially at-
tributed to the fact that the visual observation of furnace waterwall  deposits
is very subjective.  Also, the contribution of fuel nitrogen may be dominant  in
the formation of N0¥.
                   A
  In this report, oxides of nitrogen  (NOX) are expressed as  nitrogen dioxide
  (N02) to be consistent with the requirements of the New  Source  Performance
  Standards, Federal Register Vol. 35, No. 247,  Part II, Dated  December  31, 1971

-------
00
                      _..J   .4    -.+_
        110      115      120       125      130      135

          THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

Figure 1:  N09 vs. theoretical air, baseline study, maximum load
                                                                                    140
                                                                              LEGEND

                                                                     OAlabama Power  Co.
                                                                        Barry #2

                                                                     Avil scons In Power  &
                                                                        Light Co.
                                                                        Columbia #1

                                                                     Qutah Power & Light Co.
                                                                        Huntington #2
                                                                                           Furnace Condition
                                                                                         LJClean
                                                                                         [•Moderately Dirty
                                                                                         •Dirty

-------
 CM
O
              115
           125       130       135        140      145       150

          THEORETICAL AIR TO  FUEL FIRING  ZONE, PERCENT

                            LEGEND

OAlabama Power Co., Barry #2                & Clean
QWisconsin Power &  Light Co., Columbia #1   ^Moderately Dirty
£utah Power & Light Co., Huntington #2      ADirty

 Figure 2:  N02 vs.  theoretical air, baseline study,  1/2 load
155

-------
100     110       120      130      140

      THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

     Figure 3:  N02 vs. unit loading, baseline study
                                                                        LEGEND

                                                              © Alabama Power Co.
                                                                 Barry #2

                                                              ^ Wisconsin Power &
                                                                 Light Co.
                                                                 Columbia #1

                                                              (3 Utah Power & Light  Co,
                                                                 Huntington Canyon #2
                                                                 Unit Loading

                                                               OFull
                                                               QThree Quarter
                                                               A One Half

-------
The effect of reducing TA on CO emission levels and carbon heat  loss  1s shown
on Figures 4 and 5 for the full load tests.  Both CO emission  levels  and car-
bon heat loss Increase with decreasing TA.   This trend 1s  a result  of the re-
duced oxygen available for complete combustion.  CO emission levels show no
effect due to furnace condition.  However,  carbon heat loss appears to de-
crease with Increasing furnace waterwall deposits.  This may be  related to the
higher bulk flame temperatures encountered  In a heavily slagged  furnace.

BIASED FIRING OPERATION STUDY

Biased firing Involves the removal of a full firing elevation  from  service with
the dampers being opened so as to admit air through the idle fuel nozzle eleva-
tions.  The effect on NOp emission levels when taking various  fuel  elevations
out of service is shown in Figure 6.  The lowest M>2 levels for  each  unit were
obtained when the top fuel firing elevations were removed  from service  and the
respective compartment air dampers were 100 percent open.   Overflre air opera-
tion is simulated by this method of unit operation.  The trend is for increas-
ing N02 levels as the elevation being removed 1s lower in  the  windbox.  The  in-
crease In N0£ levels can be attributed to the increased oxygen available  in  the
fuel firing zone.

Examination of the units on an individual basis showed a slight  reduction  in
N02 levels when the bottom fuel firing elevation was removed from service.
This reduction in N0£ might be caused by a  cooling of the  hot  combustion gases
by the cooler combustion air, which is being admitted through  the bottom fuel
firing elevation.

N02 is plotted versus TA for the full load  biased firing tests in  Figure 7.
The correlation found for the baseline tests is also evident for the  biased
firing tests, N02 being directly proportional to TA.

CO emission level and carbon heat loss plots for the biased firing  tests  have
not been included.  Preliminary plots of these variables against TA revealed
wide and Inconsistent variations.  This Inconsistency is most  probably due  to
firing with different fuel elevations out of service.

OVERFIRE AIR OPERATION STUDY

The overfire air operation studies were divided Into three separate test series,
each designed to determine an optimum operating condition.  The three test se-
ries were:

     1.  Excess Air and Overflre Air Rate Variation,

     2.  Overflre Air Register Tilt Variation, and

     3.  Load and Furnace Waterwall Deposit Variation at Optimum Conditions

The first of these test series Involved the variation of the overfire air rate
at various excess air levels.  Variation of the overfire air rate  is accom-
plished by changing the overfire air register damper opening.  The maximum over-
fire air rate corresponds to the overfire air register  dampers being 100 percent
open.  With the exception of Alabama Power Co., Barry #2,  the overfire air
                                     11

-------
ro
        o
        o
                         110      115      120       125       130      135

                           THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

                  Figure 4:  CO vs. theoretical  air, baseline study, maximum load
140
               LEGEND


       0Alabama Power Co.
         Barry #2

       Awi scons in Power &
         Light Co.
         Columbia 11

       Qutah Power & Light Co.
         Huntington #2


         Furnace Condition

       QClean
       (•Moderately Dirty
       •Dirty

-------
1.0
0.9

0.8
i-
S 07
<_> «• '
Of.
UJ
°- 0 6
u.u
to


^

: /!





ii


t--.
"^



A








li
v^
"•v












, E!
'"-,
/











k"ir
Mr












C
^^


































r)

M

--


LEGEND

OAlabama Power Co.
Barry #2
^Wisconsin Power &
Light Co.
Columbia #1
Qutah Power & Light Co
Huntington #2

Furnace Condition
Ddean
QiModerately Dirty
• Dirty

     105       110       115       120      125      130      135
               THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT
140
Figure 5:   Carbon  heat  loss  vs.  theoretical air, baseline study, maximum load

-------
to
u_
o


o
        B
CM
CM
1*5

?c
           o
           4J
           O>_
      (O
      CO
        LEGEND


©Alabama Power Company
  Barry #2

Awi scons in Power &
  Light Co.
  Columbia #1

EJUtah Power & Light Co.
  Huntington #2
                   120   140   160   180   200    220    240    260    280    300   320

                                              NOg,  ng/J

                Figure 6:   Fuel elevation out of service vs. N02, biased firing study

-------
 CM
O
      320
           NSPS
      280
      240
200

180


160

140


120
                ~\
                                                     L.
                                                      A
                                                                                E
          90       95        100      105       110      115      120

                           THEORETICAL AIR TO FUEL FIRING ZONE,  PERCENT
                                                                      125
130
                                                                                            LEGEND


                                                                                    O Alabama Power Co.
                                                                                      B=rry #2
         isconsin Power &
       Light Co.
       Columbia #1
                                                                                          Qutah Power & Light Co.
                                                                                            Huntington #2
               Figure 7:   N02 vs.  theoretical  air,  biased firing  study,  maximum  load

-------
 systems were designed to introduce up to 15 percent of the total  combustion
 air  above the top level of fuel nozzles at MCR.  Barry #2 was designed to  in-
 troduce 20 percent of the total air as overfire air.  During normal  boiler
 operation the overfire air dampers are opened just enough to cool  the over-
 fire air registers.

 As the overfire air dampers are opened the N0£ emission levels are found to
 drop for a constant excess air level.  This trend is shown in Figure 8.  Six
 excess air levels have been shown, with the trend being similar for all excess
 air  levels.

 Theoretical air to the fuel firing zone and overfire air damper opening are
 closely related, with TA decreasing as the damper opening increases.  Figure
 9 is a plot of N02 versus TA for the damper variation tests for all  three
 units.  For these tests, as in the baseline and biased firing studies, the
 N02  emission levels are found to increase with increasing TA.  The evidence
 shown in Figures 8 and 9 indicates that NOX is more dependent upon TA rather
 than EA.

 Once the optimum excess air level and overfire air rate had been determined
 for each unit, the second test series were run.  This test series involved a
 variation in tilt of the overfire air registers and fuel nozzles.   The varia-
 tion in tilt refers to how many degrees toward or away from each other the
 fuel  nozzles and overfire air registers are moved.  This variation is calcu-
 lated by taking the difference in degrees that the overfire air registers  are
 angled toward or away from the fuel nozzles, i.e., overfire air register tilt
minus fuel  nozzle tilt.

Tilt variation of the fuel nozzles and overfire air registers is designed  to
move the fuel firing zone both in the furnace and in its position relative to
 the overfire air registers.  Movement of the fuel nozzles and overfire air
registers away from each other accentuates the effect of staged combustion.
Movement of the fuel  nozzles and overfire air registers toward each other  min-
 imizes the effect of staged combustion because the air is being forced down
 into the firing zone.

Figure 10 is a plot of N02 versus the difference in tilt of the fuel nozzles
and overfire air registers.  NOg emission levels are found to be highest when
the overfire air registers and fuel nozzles are angled toward each other and
lowest when they are angled away from each other.  From the standpoint of  NOX
reduction,  the optimum tilt variation would be with the overfire air registers
and fuel  nozzles angled away from each other.  However for ease of boiler  oper-
ation, parallel  operation of the overfire air registers and fuel nozzles would
be best.

Figure 11  shows N02 plotted versus TA for the second series of tests in the
overfire air study.   Again, N02 emission levels are found to be directly pro-
portional  to TA.

 In the final  series of tests for each unit, the effects of load and furnace
waterwall  deposits on NOX formation are examined.  Boiler operation was at the
optimum conditions determined in the previous test series for each unit.   Half,
three-quarter and full load tests were conducted on each unit at clean and
dirty furnace conditions.  Figure 12 is a plot of the N02 emission levels


                                    16

-------
   350
   300
^ 260
c
 CVJ
o
   200
   150
   100
        R5PS
•H-
                                     1O
            0        20       40        60       80       100

              OVERFIRE AIR REGISTER DAMPER OPENING, * OPEN
                                                         LEGEND


                                                OAlabama  Power Co.
                                                  Barry  #2

                                                ^Wisconsin  Power & Light Co.
                                                  Columbia #1

                                                Qutah Power & Light Co.
                                                  Huntington #2

                                                EA-Excess Air at Economizer Outlet
        Figure 8:  NOp vs. OFA damper opening, overfire study

-------
00
            350
                 NSPS
 CM
O
            300
            250
            200
            150
            100
                         ~4
                                                   ^Ef-
                                                                    -E?
        LEGEND


©Alabama Power Co.
  Barry #2
  3/4 Load

^Wisconsin Power & Light Co.
  Columbia #1
  Full Load

Qutah Power & Light Co.
  Huntington #2
  Full Load
                80           90          100         110         120  -
                       THEORETICAL AIR TO  FUEL  FIRING ZONE, PERCENT

                   Figure 9:  NOg vs. theoretical air, overfire air study,
                             Test series 1
                                                                   130

-------
NSPS-
onri
300
280
260

240

r>
C 200
CM
o
180
160
140

6
%










i
0












4



x .t








0



,*•
\"




•


2






N

m



0


-



i
i^_
'"'A
\ *

<


r




-i

'
V
'' • J
•


)








-x
1


2C






,

i
'•v
(,

I








Li.

'••

4










X.
N
0











\
5C




LEGEND

©Alabama Porier Co.
Barry n
^Wisconsin Povev &
Light Co.
Columbia #1
Qutah Power & Light Co
Huntington *2


1
       TOWARD                               AWAY
OFA REGISTER AND FUEL NOZZLE TILT DIFFERENTIAL,  DEGREES

Figure 10:   N02 Vs.  tilt differential,  overfire  air  study

-------
ro
o
NSPS—
300
280
260
240
-a 220
Dt
^ 200
o
180
160
140
120
-"«*



























x'
f
.'








V
X
*







0 X
X«P
)







X




13

0
[•]
/
7*





13

s
-4
/•'





A

<^

^






^
s^^
A
A






-
















                    85          90          95         100         105

                            THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT
110
                   LEGEND


          ©Alabama  Power Co.
             Barry *2

          ^Wisconsin  Power &
             Light Co.
             Columbia #1

          CD Utah  Power & Light Co.
             Huntington #2
                       Figure 11:   NOp vs.  theoretical  air,  overfire air study.
                                   Test series 2

-------
                                                                                     LEGEND
ro
         o>
         c

          A
          CM
?40
230
220
91 n
£ 1 U
190
1 OA
loU
i en
\ OU

nn

















<5>


LJ













•









,
4








A
£


k


7

ft




f
©
IS
E


































rid








































Alabama Power Co.
Barry #2
© Ful 1 Load
Q3/4 Load
^1/2 Load
Utah Power & Light Co.
Huntington #2
A Full Load
k3/4 Load
&1/2 Load
Wisconsin Power & Light Co
Columbia #1
(DFull Load
®3/4 Load
/Ni /? load

Furnace Condition
(~*\\ •;»,»!*•
                 85        90         95        100       105      110

                        THEORETICAL  AIR TO  FUEL FIRING ZONE, PERCENT
CModerately Dirty
•Dirty
                   Figure  12:  NOp vs. theoretical air, overfire air study,
                              Test series 3

-------
 versus TA for each test in this series.  This figure attempts to minimize the
 effect of TA and show the effect of load and furnace condition on NO? emission
 levels.  Both Huntington #2 and Columbia #1 show an increase in NO?, levels as
 unit  load rises from half (1/2) load to full load.  The effect of furnace con-
 dition on these units shows inconsistent variation in the results.  Except for
 one half (1/2) load test, Barry #2 results also indicate an increase in N02
 levels with increasing unit load.

 For the overfire air studies, plots of CO emission levels and carbon heat loss
 versus TA produced the same trend that was established in the baseline opera-
 tion  studies.  The CO levels and carbon heat losses were found to increase with
 decreasing theoretical air levels.

 BOILER PERFORMANCE

 Figure 13 is a plot of unit efficiency versus excess air for the full  load
 tests performed on the subject units.  As can be seen in Figure 13, biased
 firing and overfire air boiler operation did not affect unit efficiency.  In
 a previous section it was shown that N02 emission levels can be reduced through
 the use of overfire air.  Therefore, these results indicate that it may be pos-
 sible to reduce N0£ emission levels without adversely affecting boiler perfor-
 mance or operation.

 In general, unit efficiency is found to decrease with increasing excess air.
 The decrease in unit efficiency with increasing excess air levels can be at-
 tributed to the increasing economizer outlet gas flows and temperatures and
 therefore to increased dry gas losses.

The 2 to 3 percent difference in unit efficiency between Columbia Energy Cen-
 ter, Unit #1  and Barry Station, Unit #2 or Huntington Station, Unit #2 can be
 attributed to higher dry gas losses and moisture in the fuel losses for the
Columbia Energy Center's Unit #1.  These higher losses are due to the type of
coal being fired at Columbia Energy Center, Unit #1.

WATERWALL CORROSION COUPON EVALUATION

Thirty (30) day waterwall corrosion coupon evaluations were performed at the
 baseline and optimum overfire air conditions for each unit.  The purpose of
 these evaluations was to determine what effect low excess air or staged com-
 bustion would have on waterwall tube wastage.

The method used to evaluate corrosive potential, waterwall tube wastage, in a
boiler is by exposing samples of tube material to furnace conditions for fi-
nite periods of time and then measuring the weight losses.  This is accom-
plished by inserting test probes consisting of five (5) coupons each into the
furnace fuel  firing zone and maintaining them at typical waterwall metal tem-
peratures.   Figure 14 depicts the type of probe and coupons used to obtain
such information.  This particular probe utilized air to keep the coupon at
the desired temperature.

Typical  instrumentation to automatically maintain the desired temperature con-
sists of an electronic controller, and a pneumatic controller.  The pneumatic
controller operates as a switching device, using solenoid valves, to regulate
the amount of cooling air going to the probe.  The amount of air is based on a


                                    22

-------
      90
CJ
Q£
O

UJ
H*
O
      89
      88
         10          20          30           40

               a.   Alabama  Power  Cc.,  Barry  #2
90
      89
     83
         10           20           30           40

          b.   Utah  Power  &  Light  Co.,  Huntington
     87
     86
        10          20          30          40

       c.  Wisconsin Prwer & Light Co., Columbia  *1

         EXCESS MR AT ECONOMIZER OUTLET,  PERCENT

        Figure 13:  Unit efficiency vs. excess air
                                                           LEGEND
^Baseline
u Study

3  Biased Firing
  Stud

  Overfire Air
                                23

-------
           AIR

          OUTLET
          OXYGEN SAMPLING
          HISCRT ~~7    -L\L

               /    n
        AIR

        IKLET
Figure 14:   Corrosion Probe Assembly Drawing
                                          24

-------
signal from the electronic controller which 1s tied Into the sensing thermo-
couple at the probe coupon.

At the end of the exposure period the coupons are evaluated for weight loss
and visual evidence of attack.  The average weight losses for the baseline and
overflre air modes of boiler operation are shown In the following tables.   The
results Indicate that waterwall tube wastage Is unaffected by mode of boiler
operation.

                   AVERAGE CORROSION COUPON WEIGHT LOSSES

                                            Baseline             Overflre Air
             Unit                           Operation              Operation

Alabama Power Company                                 9                     ,
Barry Station, Unit #2                    2.6381 mg/cnf         4.4419 mg/cnT

Wisconsin Power & Light Co.                           „                     ?
Columbia Energy Center, Unit #1           8.0770 mg/cm          8.0933 mg/cm

Utah Power & Light Co.                                9                     9
Huntington Station, Unit #2               3.4266 mg/cnT         2.6357 mg/cnT

The weight losses for the Barry Station Unit #2 and the Huntington Station
Unit #2 are within the range of losses which would be expected for the oxida-
tion of carbon steel for a thirty (30) day period.  This premise was verified
by control studies conducted in C-E's Kreisinger Development Laboratory.

The weight losses measured at the Columbia Energy Center Unit #1 are slightly
higher than expected.  One possible reason for the higher losses is that some
of the probes overheated during the thirty (30) day tests.  Another possible
reason for the higher weight losses is that the coal being burned at Columbia
Energy Center's Unit #1 Is a subbltumlnous type coal while Barry Station Unit
#2 and Huntington Station Unit #2 both burn bituminous type coals.  However,
the results for the Columbia Energy Center tests show the weight losses are
equivalent regardless of the mode of boiler operation.
                                     25

-------
                    SECTION II - EPA CONTRACT 68-02-1486

                                 OBJECTIVES


The objective of this program was to investigate the effectiveness of employ-
ing staged combustion as a method of reducing NOv emission levels from tan-
gentially fired boilers burning Western U.S. coals.  Specifically this objec-
tive  is broken down by task as follows:


TASK  I - UNIT SELECTION

The basis for selection of suitable test units follows:

      1.  One unit (Unit "A") firing a Western U.S. subbituminous coal and a
         second unit (Unit "B") firing a Western U.S. bituminous coal.

      2.  Both units were representative of current Combustion Engineering,
         Inc. design employing overfire air registers in an extended windbox
         as a means of NOv emission control.  Neither unit required modifica-
         tions with regard to those features necessary to permit evaluation of
         biased firing and staged combustion.

      3.  The size of the boilers allowed a diverse experimental program and
         permitted scale-up correlation of performance and emissions data to
         that developed under EPA Contract No. 68-02-1367 £2].

     4.  Two utilities willing to participate in the program which included
         absorbing generating losses incurred during the test program.

      5.  A utility which agreed to an outage of approximately one month for
         the installation of waterwall thermocouples on the unit that would
         be firing the Western U.S. subbituminous coal.

TASK  II - TEST PLANNING & FABRICATION OF TEST EQUIPMENT

This task included the preparation of a detailed test program for each unit
designed to investigate the effects of the following process variables and
combustion modifications on NOX, SOX, THC, CO and unburned combustibles.

                            PROCESS VARIABLES

                            Excess Air Level
                            Load
                            Furnace Wall Deposits
                                     26

-------
                          COMBUSTION MODIFICATIONS

                          Biased Firing
                          Overtire Air Firing

The test program provided for documentation of the  effects  of  the  test vari-
ables on the thermal and operational performance of the boilers.   It also
provided for the evaluation of long term and transient operation,  thermal -
efficiency, slagging, fireside corrosion, flame stability and  other process
responses considered essential to the commercially  acceptable  operation of
the boilers.

The following were considered in the test program planning:

     1.  Analytical measurements and sampling techniques.

     2.  Emission measurements which included NO ,  SO , CO, THC and  02.  CO?
         was determined by calculation.

     3.  Necessary analysis of fuel properties relevant to  furnace operation
         and emissions.

     4.  Measurement of process variables.

The test program utilized statistical test design methods and prior  experience
where possible to maximize the information output from each test.

TASK III - INSTALLATION OF INSTRUMENTATION

Task III involved the installation, on each unit, of the analytical  instrumen-
tation required for calculation of C02 and for measurement of flue gas con-
stituents  (NOX, SOX, CO, THC, 02 and unburned carbon).  Also installed was  the
necessary instrumentation required to characterize the effects that combustion
modifications have on unit performance;  i.e., fireside corrosion and heat ab-
sorption.  Instrumentation to determine waterwall absorption rates was in-
stalled only on Unit A.  Instrumentation to determine unit absorption rates
and thermal performance of the reheater, superheater, economizer and air heat-
er sections were installed on both Units A and B.

TASK IV - BASELINE OPERATION - UNITS A & B

Similar but separate test programs were conducted on Units A & B to determine
the effect of unit load, furnace wall deposits and excess air variation on
baseline gaseous emission levels and unit performance.  During this portion of
the test program only a minimum amount of air necessary for cooling was admit-
ted through the overfire air registers.

There were nineteen  (19) tests performed for the combination of conditions in-
dicated in Test Matrix 1.
                                     27

-------
 TEST MATRIX  1

D-l
D-2
D-3
L-l
L-2
L-3
L-l
L-2
L-3
L-l
L-2
L-3
E-l
1

5
8

11
13

17
E-2
2
4
6
9


14
16
18
E-3
3

7
10

12
15

19
TEST CONDITIONS

Percent Excess A1r

Minimum
Normal
Maximum
                                                                         E-l
                                                                         E-2
                                                                         E-3
                                                       Furnace Wall Deposits

                                                       Clean             D-l
                                                       Moderate          D-2
                                                       Heavy             D-3

                                                       Unit Load

                                                       Maximum           L-l
                                                       3/4 Maximum       1-2
                                                       1/2 Maximum       L-3
A baseline operation waterwall corrosion rate test of a four (4) week duration
was conducted after the completion of the baseline emissions test program.
This study was performed at normal operating conditions with maximum load be-
ing carried whenever possible.  The baseline operation corrosion rate test was
conducted on both Units A & B.

TASK V - BIASED FIRING OPERATION - UNITS A & B

A program was conducted to establish the effect of operating with various fuel
elevations out of service and of varying the excess air levels on gaseous emis-
sion levels and unit performance.  Specifically, this portion of the program
established maximum emissions control at full load and throughout the normal
load range without utilizing the overflre registers; however, air was admitted
through the dampers of the Idle fuel nozzle elevations.
                                     28

-------
                         C0nducted on Un1t A at the conditions specified 1n
TEST MATRIX 2
i
B-1
B-2
B-1
B-2
B-3
B-4
B-3
B-4
B-5
B-6
B-5
B-6
E-l
L-l
1
2


3


4
•
L-2
5


6



7

L-3


8


9


10
E-2
L-l
11


12


13


L-2
14



15


16

L-3


17





18
                                                   TEST CONDITIONS

                                                   Firing Elev. Out of Serv.

                                                   Top                  B-1
                                                   Top Middle           B-2
                                                   Top Center           B-3
                                                   Bottom Center        B-4
                                                   Bottom Middle        B-5
                                                   Bottom               B-6

                                                   Unit Load

                                                   Maximum              L-l
                                                   3/4 Maximum          L-2
                                                   1/2 Maximum          L-3

                                                   Percent Excess Air

                                                   Minimum              E-l
                                                   Normal                E-2
                                    29

-------
  For Unit B, there were sixteen (16) tests conducted at the conditions  speci-
  fied in Test Matrix 3.
 TEST MATRIX 3

B-l
B-2
B-l
B-2
B-3
B-2
B-3
B-4
B-3
B-4
B-5
B-4
B-5
E-l
L-l
1


2



3

L-2
4
5



6




L-3


7



8


E-2
L-l
9
10



11



L-2
12


13



14

L-3




15



16
TEST CONDITIONS

Firing Elev. Out of Serv.

Top                  B-l
Top Center           B-2
Center               B-3
Bottom Center        B-4
Bottom               B-5

Unit Load

Maximum              L-l
3/4 Maximum          L-2
1/2 Maximum          L-3

Percent Excess Air

Minimum              E-l
Normal                E-2
TASK VI - OVERFIRE AIR OPERATION - UNITS A & B

The overfire air operation test program was the same for both Units A & B.
The test program, utilizing the overfire air system, investigated the effect
of overfire air admission rates on gaseous emission levels at various unit
loads and operating conditions.  Those conditions which were found to be op-
timum from the standpoint of both effectiveness in reducing NOX emission lev-
els and maintaining safe unit operation were evaluated to determine their ac-
ceptability for long term operation.

The first series of tests in this portion of the program were to determine the
effect on the NOX emission levels and unit performance, when varying the over-
fire air rate with respect to excess air.
                                     30

-------
There were eleven (11) tests conducted at maximum load under the conditions
identified 1n Test Matrix 4.
TEST MATRIX 4

A-1
A-2
A-3
A-4
A-5
E-l
6

7

8
E-2
1
2
3
4
5
E-3

9

10
11
TEST CONDITIONS

Overflre Air Rate

None           A-1
1/4 Maximum    A-2
1/2 Maximum    A-3
3/4 Maximum    A-4
Maximum        A-5

Percent Excess Air
                                                  Minimum
                                                  Normal
                                                  Maximum
               E-l
               E-2
               E-3
Having established the optimum overfire air rate and excess air level, this
condition was used in conducting a series of fuel nozzle and overfire air reg-
ister tilt variation tests.

The objective of this evaluation was to determine the effect of overfire air
register tilt on the NOX emission levels, steam temperatures and furnace wall
deposits.

There were seven (7) tests performed at maximum unit load under the conditions
listed in Test Matrix 5.
TEST MATRIX-5

R-l
R-2
R-3
F-l
12
14

F-2
13
15
17
F-3

16
18
TEST CONDITIONS

Fuel Nozzle Tilt

Maximum Minus
Horizontal
Maximum Plus
                                                                         F-l
                                                                         F-2
                                                                         F-3
                                                  Overfire Air Register Tilt
                                                  Maximum Minus
                                                  Horizontal
                                                  Maximum Plus
                       R-l
                       R-2
                       R-3
The objective of the final series of tests for this test program was to deter-
mine the effect on NOv emission levels and unit performance when operating at
the previously established optimum conditions, while varying unit load and
furnace wall deposits.
                                     31

-------
 There were six (6)  tests  conducted at the conditions Identified In Test Matrix
 6.
 TEST MATRIX 6

L-l
L-2
L-3
OC-1
D-1
19
21
23
D-3
20
22
24
TEST CONDITIONS

Unit Load

Maximum
3/4 Maximum
1/2 Maximum

Furnace Wall Deposits

Clean
Heavy
                                                                          L-l
                                                                          L-2
                                                                          L-3
                                                                          D-1
                                                                          D-3
                                                    Unit Operating Conditions

                                                    Optimum Conditions   OC-1

To determine the effect of long term and transient overfire air operation on
the furnace waterwall wastage rate, a waterwall corrosion study was conducted
for a four (4) week period.  This study was conducted at optimum conditions
for NOX reduction, as determined In the previously outlined test program, with
maximum load being maintained whenever possible.

TASK VII - PREPARATION OF TEST REPORT AND ANALYSIS OF DATA

The test report includes all data obtained during the test program and the
analysis of that data.

Specific areas of analysis and reporting are:

     1.   The reporting of emissions data with respect to modes of operation
         and coal  type.

     2.   The analysis of emission data with respect to Contract 68-02-1367,
         for a unit that is equipped with a modified overfire air system.

     3.   The reporting of emission data with respect to unit performance.

     4.   The reporting of the corrosion probe study with respect to overfire
         air operation and coal  type.

     5.   The analysis, of corrosion probe wastage data with respect to Contract
         68-02-1367.

     6.   The scale-up considerations for design of new overfire air systems
         resulting  from this study and Contract 68-02-1367-

     7.   The possible changes to cost estimates for overfire air systems In
         new and existing boilers if this study indicates previously developed
         cost estimates based on Contract 68-02-1367 should be revised.
                                     32

-------
                                 DISCUSSION


TASK I - UNIT SELECTION

The two units selected for participation 1n this test program were:

                  UNIT A - Wisconsin Power & Light Co.
                           Columbia Energy Center, Unit #1

                  UNIT B - Utah Power & Light Co.
                           Himtlngton Canyon, Unit #2

These units are representative of current Combustion Engineering, Inc.  boiler
design.  Both units Incorporate overfire air registers In an extended windbox
as a means of NOX emission control.  A typical windbox arrangement for  one
corner of a unit Is shown In Figure 15.  The primary air, which conveys the
coal, 1s Introduced through the center portion of the tilting coal nozzles.
Secondary air is Introduced selectively through openings at the periphery of
the coal nozzles and/or through the air nozzles.  Windbox air dampers located
in the fuel and air compartments regulate the distribution of the secondary
air.  The quantity of air flow is controlled by the induced draft and forced
draft fan system [7].

Unit A, Columbia Energy Center, Unit II, 1s a controlled circulation, balanced
draft, radiant, reheat boiler firing pulverized coal through six elevations of
tilting tangential fuel nozzles.  Unit capacity at maximum continuous rating
(NCR) is 479 kg/s (3,800,000 LBS/HR) main steam flow at a superheat outlet
temperature and pressure of 541°C (1005°F) and 18.1 MPa (2620 PSIG), respec-
tively.  The Columbia Energy Center, Unit #1 fires a Montana Rosebud seam sub-
bituminous 'C' coal.  A side elevation of Columbia Energy Center, Unit  #1 is
shown in Figure 16.

Unit B, Huntington Canyon, Unit #2, is also a controlled circulation, balanced
draft, radiant, reheat boiler firing pulverized coal through five elevations
of tilting tangential fuel nozzles.  The unit capacity at the maximum continu-
ous rating (MCR) 1s 382 kg/s (3,036,000 LBS/HR) main steam flow with a  super-
heat outlet temperature and pressure of 541°C (1005°F) and 18.2 MPa (2645
PSIG), respectively.  This unit fires a high Volatile  'B1 bituminous coal sup-
plied from the nearby Peabody Coal Company's Deer Creek Mine.  A side eleva-
tion of Huntington Canyon, Unit #2 is shown in Figure 17.

In both units, superheat outlet temperatures are controlled by spray desuper-
heating.  Reheat outlet temperatures are controlled by fuel nozzle tilt and
spray desuperheatlng.
                                     33

-------
TANGENTIAL FIRING
             SYSTEM
   INCORPORATING
      OVERFIRE AIR
FOR NOx CONTROL
       COAL FIRING
             WINDBOX
  SECONDARY AIR DAMPERS
         SECONDARY AIR
      DAMPER DRIVE UNIT
OVERFIRE AIR
NOZZLES
SIDE IGNITOR
NOZZLE

SECONDARY
AIR NOZZLES
                                                                 NOZZLES
OIL GUN
           Figure 15:  Typical windbox of tangential firing system
                                   34

-------
Figure 16.   Unit side elevation,  Wisconsin Power and  Light  Company,
            Columbia Energy Center No.  1
                                35

-------
Figure 17.   Unit side elevation,  Utah Power  and  Light Company
            Huntington Station No.  2
                             36

-------
TASK II - TEST PLANNING & FABRICATION OF TEST EQUIPMENT

The test program was designed to Investigate the effect of excess  air  level,
unit load, furnace wall deposits, biased firing, and overflre air  operation
with respect to NOx and related gaseous emission levels, furnace waterwall
corrosion and unit performance.  The Instrumentation required to achieve  the
above mentioned goals Included such Items as fabrication of corrosion  probes,
probe control systems, gas temperature and sampling probes, calibration of
thermocouples, analyzers and pressure gauges and the packaging of  equipment
for shipping to the test sites.

At the test sites, flue gas samples for the determination of NOv,  SOX, THC
and CO were obtained from the boiler economizer outlet ducts.  The percent
oxygen In the flue gas entering and leaving the air preheaters was also ob-
tained for the determination of air preheater leakage and unit efficiency.

The type of Instrumentation used in determining the emission concentrations
and the general locations of these instruments are described in the discussion
of Task III - Installation of Instrumentation.  Unit steam and gas-side per-
formance was monitored using calibrated thermocouples, pressure gauges and
manometers as required.  The general locations of these instruments are also
described in the discussion of Task III - Installation of Instrumentation.
Type E chordal thermocouples were Installed In the furnace waterwalls at  Wis-
consin Power and Light Co.'s, Columbia Energy Center, Unit #1.

Coal samples were obtained during each test for later analysis.  Fuel  analysis,
unit emission levels, steam flow rates, absorption rates, gas and air weights
and efficiencies were calculated for each test.  The calculating methods  and
procedures used are listed in the discussion of Task III - Installation of
Instrumentation.

The test program documented and discussed in detail all tools and techniques
regarding analytical measurements and sampling techniques and calculating pro-
cedures used.

TASK III - INSTALLATION OF INSTRUMENTATION

Instrumentation necessary to conduct the baseline, biased firing and overfire
air test programs on the selected units was Installed and calibrated.  This in-
strumentation consisted of the following:

                                                      LOCATION OF MEASUREMENT
MEASUREMENT                INSTRUMENT OR METHOD       OR CALCULATION PROCEDURE

Flue Gas Constituents

Nitrogen Oxides - NO       Chemlluminescence          Economizer Gas Outlet
                           Analyzer

Carbon Monoxide - CO       Infrared Analyzer          Economizer Gas Outlet

Total Hydrocarbons -       Flame lonization
THC                        Analyzer                   Economizer Gas Outlet
                                     37

-------
MEASUREMENT
Flue Gas Constituents
(Cont.)
Oxygen - Og

Sulfur Dioxide - S02
Carbon Dioxide - COy
Unburned Combustibles


Steam and Water Flows
Feedwater
SH Desuperheat Spray
RH Desuperheat Spray
Reheat
Superheat
Air and Gas Flows
Total Flue Gas
Total Air
Overfire Air
Air Heater Leakage
Miscellaneous Flows
Coal
Pressures
Steam and Mater
INSTRUMENT OR METHOD

Paramagnetic Analyzer

Wet Chemistry
Calculated
Cyclone Dust Collee-
tor
ASME Dust Collector


Mercury Manometer
Calculated
Calculated
Calculated
Calculated

Calculated

Calculated
Calculated
Calculated

Coal Scales


Calibrated Gauges
LOCATION OF MEASUREMENT
OR CALCULATION PROCEDURE
Economizer Gas Outlet
and Air Heater Gas In-
let and Outlet
Economizer Gas Outlet
Combustion Calculations
Economizer Gas Outlet -
Unit A
Air Heater Gas Outlet -
Unit B
Feedwater Orifice
Heat and Mass Balance
Heat and Mass Balance
Heat and Mass Balance
Heat and Mass Balance
Heat and Combustion
Calculations
Heat and Combustion
Calculations
Mass Balance
Mass Balance
Coal Feeders - Plant
Instrumentation
Economizer Inlet
Drum
Superheat Outlet
Reheat  Inlet
          38

-------
MEASUREMENT

Pressures (Cont.)
INSTRUMENT OR METHOD
Air and Gas
Plant Instrumenta-
tion
Temperatures

Steam and Water
Calibrated Stainless
Steel Type E Hell and
Type E Button Thermo-
couples
Air and Gas
Miscellaneous

Coal Samples

Mall Deposit Patterns

Waterwall Corrosion
Calibrated  Stainless
Steel  Sheathed Type E
Chordal Thermocouples

Type E Thermocouples
ASTM Procedures

Visual Observation

Corrosion  Probes
LOCATION OF MEASUREMENT
OR CALCULATION PROCEDURE
Reheat Outlet
Superheat Spray Water
Reheat Spray Water
High Pressure Heater
   Shell Side

FD Fan Outlet
AH Air Inlet
AH Air Outlet
Windbox
Furnace
Economizer Outlet
AH Gas Inlet
AH Gas Outlet
ID Fan Inlet
 Economizer  Inlet
 Economtzer  Outlet
 SH  Desuperheat  Inlet
 SH  Desuperheat  Outlet
 Superheat Outlet
 RH  Desuperheat  Inlet
 RH  Desuperheat  Outlet
 Reheat Outlet
 SH  DESH Spray Hater
 RH  DESH. Spray Water
 HP  Heater  Inlet Steam
 HP  Heater  Drain
 HP  Heater  PW Inlet
 HP  Heater  FW Outlet

 Furnace Haterwall  Tubes
 Atr Heater Gas Inlet
 Atr Heater Gas Outlet
 Air Heater Air Inlet
 Air Heater Air Outlet
 Coal Feeders

 Furnace Water-walls

 Front Furnace Waterwall
                                     39

-------
The same Instrumentation and measurements as required In support of the base-
line, biased firing and overflre air test programs on Unit A were utilized on
Unit B, with the exception of the chordal thermocouples installed in the fur-
nace waterwall tubes.

All test measurements were supplemented by monitoring and recording the nor-
mally available plant operating instrumentation.
                                     40

-------
                       COLUMBIA ENERGY CENTER, UNIT #1


TASKS IV, V & VI - TEST DATA ACQUISITION AND ANALYSIS

Wisconsin Power and Light Company's, Columbia Energy Center, Unit No. 1  has two
"hot precipitators", i.e. the electrostatic precipitators are located between
the boiler economizer outlets and the air preheater gas inlets.  The use of the
hot precipitators necessitated the sampling of the flue gas at three locations;
economizer outlet, air preheater gas inlet, and air preheater gas outlet.

Flue gas samples for determination of NOg, CO, 0? and THC emission levels were
obtained from each of the two economizer outlet ducts.  The flue gas samples
were drawn using a twelve (12) point grid in each duct.  The S02 sample  was
drawn from a single point in the left economizer outlet duct using a heated
sample line.  The fly ash sample for carbon loss analysis was also obtained
from a single point in the left economizer outlet duct.

The percent oxygen in the flue gas entering and leaving the two air preheaters
was drawn from an eighteen (18) point grid in each air preheater gas inlet and
outlet duct.  The grids were arranged so as to allow sampling on centroids of
equal area.  The percent oxygen in the flue gas entering and leaving the air
preheaters is required for the determination of the air preheater leakage.  The
percent oxygen at these two points plus the percent oxygen in the flue gas leav-
ing the economizer is used in the calculation of unit efficiency.

Visual observations of the furnace waterwalls were recorded for each test.  How-
ever, visual observations of the furnace waterwalls were hampered due to the in-
sufficient number and location of the observation doors.  Typical wall deposit
patterns taken during clean, moderate and heavy furnace slagging conditions at
full load operation are shown on Figures 18, 19 and 20.  These slag patterns
are typical for all modes of boiler operation.

Chorda! thermocouples were installed in the furnace waterwalls of Columbia
Energy Center, Unit No. 1.  The chordal thermocouples are utilized to determine
the waterwall absorption rates and are therefore useful in monitoring furnace
performance.  The use of the chordal thermocouples is further explained in a
separate subsection, Furnace Performance.

The Coal Feeders at Columbia #1 are pressurized.  As a result, coal samples
were Initially obtained from the conveyor belts feeding the coal bunkers, with
one sample being obtained for each test for later analysis.  The samples could
only be obtained when the bunkers were being filled, which was two to three
times per day.  This sampling method was not considered desirable, as it was
Impossible to know If the coal being fed to the coal bunkers was representative
of the coal being burned during any one test.  Gate valves were installed in
the pipes feeding the coal from the bunkers to the feeders.  With the installa-
tion of the gate valves, samples were obtained from each coal feeder during
                                     41

-------
                  FURNACE WATEPHALL DEPOSIT PATTERN

1 1 2
1 1 2
1 1 2
1 1 1
1 1 1
1 1 1
000
004
505
FRONT
1 1
' «<;
222
3 1 1
1 1 1
M f>
1 1 1
1 3 3
1 3 4
V
RIGHT
SIDE
000
1
1 3 1
2 3 3
1 3 1
1 3 1
1 1 1
1 1 1
J
1 1 1
500
REAR
000
> ' '
2 1 1
1 1 t
1 1 1
1 1 1
1 1 1
J
1 1 1
V
LEFT
SIDE
NO A
FUZZ'
UGH'
UGH'
HED.
HEAV
RUNN
NOTE


                                                               KEY
                                                       :13 MM
                                               LIGHT  13 MM - 25 MM
                                               LIGHT  TO MED. 25 MM
                                               MED. TO HEAVY 50 MM
                                                       •100 MM
50 MM
100 MM
                                               NOTE:  25.4 MM • 1 INCH
  0
  1
  2
'  3

  5
  6
Figure 18:  Furnace waterwall  deposit pattern,  clean  furnace

-------
                  FURNACE WIEFHALL DEPOSIT PATTERN
•
333
3 33
3 3 3
3 3 3
3 3 3
333
443
J 4 4 3
233
FMNT
3 3 3
3 3<;
332
332
332
M
3 3 2
3 3 2
442
V
MIGHT
SIDE


332
222
3 3 3
333
H
3 3 2
442
4-42
332
REAR
333
> 3 3
332
332
333.
333
432
442
V
LEFT
SIDE
NO A1
FUZZ1
LIGH1
LIGH1
MED.
HEAV1
RUNN
NOTE


                                                               KEY
                                                       :13 MM
                                               LIGHT  13 NM - 25 MM
                                               LIGHT TO MED. 25 MM
                                               MED. TO HEAVY 50 MM
                                                       •100 MM
50 MM
100 MM
                                               NOTE:  25.4 MM - 1 INCH
0
1
2
3
4
5
6
Figure 19:  Furnace waterwall  deposit  pattern, moderate slag furnace

-------
                   FURNACE WATERMLL DEPOSIT PATTERN

222
222
3 3 3
3 3 3
T 3 3 3
666
666
666
222
• •<
441*
I* k 2
n 6 6 6r
666
666
•J •
V
000
0
222
555
3 3 3
1 3 3 3 T
666
666
J fc

FRONT RIGHT REAR
SIDE
222
) 2 2
222
622
1333
2 3 3
6 1 1
>f
V
LEFT
SIDE
NO A
FUZZ
UGH'
UGH
MED.
HEAV
RUNN
NOTE
                                                               KEY
                                                       = 13 MM
                                                LIGHT  13 MM - 25 MM
                                                LIGHT  TO MED. 25 MM
                                                MED. TO HEAVY 50 MM
                                                       •100 MM
50 MM
100 MM
                                               NOTE:  25.4 MM • 1 INCH
0
1
2
3
4
5
6
Figure 20:   Furnace waterwall deposit pattern, heavy slag furnace

-------
each test and were blended to form a composite sample for each test.

The test data and results for the tests conducted at Wisconsin Power and Light
Company's, Columbia #1 are tabulated In Appendix A.  Summaries of the emissions
test data for the baseline, biased firing and overflre air operation studies
are tabulated on Sheets A-l through A-6.  During some of the testing 1n March
and May of 1976, CO emission levels were not monitored due to malfunctioning of
the CO analyzer.  These tests are reported as not available, (NA), on the emis-
sions test data summary sheets.  Unit Performance test data for the three
studies are tabulated on Sheets A-7 through A-13.  The calculated unit perfor-
mance test results are tabulated on Sheets A-14 through A-21.  Unit efficiency
1s determined using the Heat Losses Method (ASME Power Test Code, PTC 4.1-1964,
reaffirmed 1973).  Sheets A-22 through A-35 are a tabulation of the average
waterwall absorption rates, as measured at each chordal thermocouple for each
test.  A set of unit board and computer data was obtained for each test and 1s
tabulated on Sheets A-36 through A-56.

All test data and results are reported In SI Metric units, with the exception
of the board and computer data.  The board and computer data 1s reported in the
engineering units provided by plant Instrumentation.

The thirty (30) day waterwall corrosion coupon evaluations were conducted using
a specially designed probe consisting of four individual coupons.  The water-
wall corrosion coupon evaluations are described and discussed under a separate
subsection 1n this report.

TASK IV - BASELINE OPERATION STUDY

Load and Excess Air Variation - Clean Furnace

Tests 1 through 7 were performed to determine the effect of varying excess air
on unit emission levels and performance.  These tests were conducted at three
unit loads with clean furnace conditions.  The slag observed on the furnace
waterwalls ranges from 0 to 25.4 mm (1 in.) 1n thickness.

Initially, maximum and minimum excess oxygen levels of six  (6) percent and
three and one-half (3.5) percent at the economizer outlet were set by Wiscon-
sin Power and Light Co. as acceptable modes of unit operation at full load.
Wisconsin Power and Light later requested that the minimum excess oxygen limit
be raised to four (4) percent.  At reduced loads these limits were slightly
higher.  On a few occasions, excess oxygen values as low as two and one-half
(2.5) percent were experienced, when measured using test Instrumentation.  The
limits set by Wisconsin Power and Light were exceeded on those occasions due
to a discrepancy between plant and test Instrumentation.  The Plant oxygen ala-
lyzer was being used to monitor and control unit operations.  At times the Plant
analyzer was reading approximately one percent (1%) higher than test Instrumen-
tation.

During Initial testing of Columbia, Unit No. 1, mechanical stops on the Induced
draft fans prevented the unit from reaching full load during high excess air
operation tests.  The mechanical stops were changed during a unit outage 1n
June, 1976 enabling the unit to achieve full load during subsequent high excess
air operation tests.
                                     45

-------
 Comparison of NOg emission  levels  with  unit  load shows N02 levels were gener-
 ally higher at half load  than  at full load.  This might be attributed to the
 fact that the excess air  levels are  higher at half load than at full load.

 CO emission levels are  found to be higher at full load unit operation than at
 half load operation.  This  can be  attributed to the fact that at lower loads
 the unit operates at higher excess air  levels.

 The effect of excess  air  level and unit loading on unit efficiency, carbon heat
 loss,  unburned hydrocarbons and sulfur  dioxide emission levels is discussed in
 conjunction with  the other  baseline  tests.
   1
   2
   3
   4
   5
   6
   7
 NO?
 ng/J

322.9
260,
303.
246.
291,
335.
333.8
 CO
ng/J

 4.8
 4.8
 5.4
  NA
 1.5
 1.7
 2.2
                                  X-S Air
20.7
21.8
34.7
35.6
         Theo. Air
         To Firing
         Zone - %
27.
37.
117.8
118.9
131
132.
126.
136.
.4
.5
.7
.2
43.5
141.4
           Unit
           Effic.
86.95
87.49
86.28
87.35
87.94
87.05
87.23
Furnace
Condition

Clean
Clean
Clean
Clean
Clean
Clean
Clean
Load and Excess Air Variation - Moderately Dirty Furnace
Tests 8 through 12 were conducted with a moderately dirty furnace.  The slag
observed on the furnace waterwalls ranged from 25.4 mm (1 in.) to 76.2 mm (3
in.) 1n thickness and was in a plastic state in the thicker areas.  The excess
air levels and unit loads were allowed to vary per the test program.

The N02 emission levels for tests 8 through 12 are shown 1n the following table.
Examination of this table shows only small changes in emission levels for the
full load tests.  This could be due to small changes in excess air levels.  For
the half load tests there is a distinct change in N02 level with a change in ex-
cess air level.  At similar excess air levels, the full load tests have higher
N02 levels than the half load tests.

At similar unit loads, CO emission levels do not show any appreciable change
with changes in excess air levels.  Comparison of full and half load tests show
CO emission levels to be higher at full load.  As with tests 1 through 7, this
difference can be partially attributed to the fact that the boiler operates at
higher excess air levels at half load.
                  N02
                  ng/J
                 295.
                 290.
                 310.
                 270.
                 368.3
          CO
         ng/J

          5.1
          4.9
          5.1
          1.5
          1.9
        X-S Air
         Theo. A1r
         To Firing
         Zone - %
          19,
          23.
          30.
          20.
           116.
           120.
           127.
           117,
          52.5
           145.0
           Unit
           Effic.
           87.04
           86.85
           86.93
           87.26
           86.41
                  Furnace
                  Condition

                  Moderate
                  Moderate
                  Moderate
                  Moderate
                  Moderate
                                     46

-------
Load and Excess A1r Variation - Dirty Furnace

Tests 13 through 19 were conducted with heavy furnace wall deposits.  Furnace
wall deposits ranged from 50.8 mm (2 in.) to 101.6 mm (4 1n.) thick.  The slag
was usually 1n a plastic state and at times built up to 305 mm (12 1n.) to 610
mn (24 1n.) thick on the lower furnace walls.  This buildup was caused by the
slag slowly flowing down the furnace walls.  The excess air levels and unit
loads were varied per the test program.

As shown in the following table, there 1s a correlation between N02 emission
levels and excess air level at half load.  At full load this correlation is
not evident, as the N02 at the low excess air level 1s higher than expected.

As with the earlier baseline tests, the CO levels for the half load tests are
lower than for the full load tests.

        Main
        Steam                                Theo. A1r    Unit
Test    Flow      N02      CO     X-S A1r    To Firing    Efflc.    Furnace
NUO
ng/J
No.     kg/s      ng/J    ng/J       %       Zone - %       %       Condition

 13      432     315.7      NA      17.1       114.3      86.57     Heavy
 14      426     309.5     4.9      22.6       119.7      76.75     Heavy
 15      397     334.3     5.6      32.2       129.0      76.20     Heavy
 16      329     252.9      NA      35.7       132.5      85.56     Heavy
 17      264     294.6     1.2      26.1       122.8      87.65     Heavy
 18      267     347.7     1.3      39.5       134.3      87.15     Heavy
 19      263     369.2     1.4      54.8       144.6      86.23     Heavy

Analysis of Results

The changes in NOg. CO and carbon heat loss versus theoretical air to the fuel
firing zone are shown on Figures 21, 22 and 23.  These parameters are plotted
versus theoretical air to the fuel firing zone rather than the total excess air.
For the baseline operation study the TA Is essentially the same as the total
air.

Figure 21 shows that N02 correlates reasonably well with TA.  Increasing TA re-
sults 1n Increasing N02 emission levels.  This correlation is in agreement with
other research, which has shown that N02 emission levels are proportional to the
concentration of oxygen available for combustion.  Comparison of full load and
half (1/2) load test at similar TA shows that the half (1/2) load tests have
lower N02 levels.  The two three-quarter (3/4) load tests shown on Figure 21 do
not correlate with the full or half (1/2) load tests with respect to TA or unit
load.

With the exception of one supposedly clean test, furnace waterwall deposits ap-
pear to have some effect on NCfc emission levels.  As Figure 21 indicates, those
tests performed with heavier furnace waterwall deposits generally have higher
N02 levels.

While the data plotted 1s not sufficient proof to the above statement, it does
support the argument that NCfe emission levels are affected by furnace waterwall
deposit conditions.


                                    47

-------
                                       Wisconsin Power & Light Co.
                                         Columbia Energy Center
                                       	  Unit #1
00
          360
          340
           320
           300
           280
           260
           240
               ISPS
              110
-a
             ^
                                                     o
                          I
                                                                        O
                                                          150
                 Figure 21
   120                130                140
 THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT
N02 vs. theoretical  air to fuel firing  zone,  baseline study
                                                                    LEGEND
                                                                 Unit Load
8                                                                     Max
                                                                     3/<
                                                                 ^  1/2 Max
                                                                 Furnace Slag
                                                                                              8
                                                                    Clean
                                                                    Moderate
                                                                    Dirty "

-------
                                       Wisconsin Pcwe>" & Light Co.
                                         Columbii Energy Cente.-
                                                 Unit #1
ID
         01
        8
































n














^
X*







,





JM
**





















»













O,
1
-

•

»












m
v^1






















•












o


























o













-,
^
4











,
>

















i cpcwn
LLbtliU
Unit Load
O Max
^> 1/2 Max
Pi iY*r\Af*t* ^1 ^ n

O Clean
(J Moderately Dirty
0 Dirty




             no
   120
130
140
150
                 Figure 22:
 THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

CO vs. theoretical air to fuel  firing zone,  baseline study

-------
in
o
             110
                                       Wisconsin Power & Light Co.
                                         Columbia Energy Center
                                                 Unit #1
0.12
0 11
Oin
• 1 U
h-
B 0.09
QC
UJ
o.
n no
" U.UO
l/>
<:
n A"?
>- 0.07
E!
~ 0.06
to
to
3 0.05
* nn.
£ 0.04
o n ni
co U.Uo
0£
et
0
.02
Oni -
.Ul
n








































3,
kfl
A
-.












8_
',
'











o.













.
W


\
|












k
P






















C)
wy












A
V












<^
\s


























x\
S/












^
V












>
"




















LEGEND
Unit Load
OMax
Do /^ ua v
o/i piax
<>l/2 Max
Furnace Slag

00,
Clean
3 Moderately Dirty
A Dirty
^ u i rty


120
130
140
150
                              THEORETICAL AIR TO FUEL FIRING ZONE,  PERCENT

                           Figure 23:  Carbon heat loss vs. theoretical air,  baseline  study

-------
Figure 22 does not show any variation in CO emission levels with changes  1n
TA.  However, it does show that unit loading has a significant effect on  CO
emission levels.  The CO levels at full load are approximately five (5)  times
the CO levels at half (1/2) load.  It should be noted that the half (1/2) load
tests were performed in May, 1976, while the full load tests were performed in
March, 1976.  Besides changes in tilt, the only other significant change  other
than load was that the fuel and auxiliary nozzle compartment damper settings
were changed.  The fuel nozzle compartment dampers were opened from an average
50% open to 100% open, while the auxiliary nozzle compartment dampers were
closed from approximately 100% open to approximately 50% open.  Whether this
would have any effect on CO emission levels 1s unknown.

The percent carbon heat loss in the fly ash versus theoretical air to the fuel
firing zone is shown in Figure 23.  The carbon heat loss values for tests 13
and 15 have not been plotted on Figure 23, as they were too high to be shown
on this figure.  With the exception of these two tests and the one high test
shown, carbon heat loss appears to be unaffected by variations 1n TA, unit
load and furnace waterwall deposits.

Figure 24 is a plot of unit efficiency versus excess air at the economizer out-
let.  This figure Indicates that unit efficiency is Inversely proportional to
excess air at the economizer outlet.  By examining the full load and half (1/2)
load test separately, the decrease in unit efficiency with Increasing excess air
at the economizer outlet is more apparent.

The S02 emission levels were monitored for each test and are reported on Sheets
Al and A2.  No correlation was evident between SOg emission levels and excess
air, unit loading or furnace waterwall deposits.  It was not possible to con-
trol the S02 emission levels as they are more a function of the sulfur content
of the fuel r.ather than the mode of boiler operation.

Unburned hydrocarbon emission levels were monitored and were found to be at
such low levels as to be unmeasurable.

A thirty (30) day baseline waterwall corrosion coupon test was conducted in
April and May of 1975.  Boiler operation was normal with full load being main-
tained as much as possible.  The waterwall corrosion coupon test is discussed
in the section, Waterwall Corrosion Coupon Evaluation.

TASK V - BIASED FIRING STUDY

Fuel Elevations Out of Service Variation

Eighteen (18) tests were conducted at Columbia Energy Centers', Unit #1 to de-
termine the effect on NO? emission levels when taking various fuel elevations
out of service (biased firing).  These tests were performed at three unit load-
Ings and two excess air levels.

As shown by the data In the following table, the NOg emission levels are  lowest
with the top and/or top middle elevation of fuel nozzles out of service  (Tests
1, 2, 5, 8, 14 and 17).  When comparing tests with similar operating conditions
(Tests 5 vs. 14 or 8 vs. 17), it can be seen that increasing excess air  level
results in increasing N02 emission levels.
                                     51

-------
                 Wisconsin  Power  &  Light Co.
                   Columbia Energy  Center
                           Unit 11
88.00
87.00
86.00
85.00
                     c>
     10
 Figure 24 =
  20
30
40
                                                              LEGEND
                                                          O Max Load
                                                          Q 3/4 Max Load
                                                          <>l/2 Max Load
50
60
       EXCESS AIR, PERCENT
Unit efficiency vs. excess air, baseline study
                            52

-------
CO emission levels appear to be affected only by unit load with the levels be-
ing higher for full and three-quarter load than for half load.  The CO analy-
zer was Inoperative during much of the biased firing testing due to problems
with the analyzer source assembly and excessive electrical noise.

No thirty (30} day waterwall corrosion coupon evaluation was performed follow-
ing the biased firing operation study.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
Main
Steam
Flow
kg/s

 426
 428
 433
 431
 352
 352
 344
 263
 258
 268
 417
 417
 438
 353
 325
 350
 261
 264
                N02
                ng/J
 CO
ng/J
X-S A1r
Theo.
A1r to
Firing
Zone-%
Unit
Effic.
203.9
209.1
249.2
250.3
215.9
260.2
227.3
162.2
245.1
266.8
231.2
297.2
280.4
222.5
231.7
246.4
228.7
316.9
NA
NA
NA
NA
8.0
4.2
44.8
1.4
1.2
1.6
NA
5.4
NA
22.6
NA
NA
1.2
2.1
         20,
         18.
         15.
         19.0
         26.1
         21
         30.
         19.
         34.
         29.
         23.
         24.
         18,
         34.1
         35.8
         41.3
         35.9
         36.6
    .4
    ,4
    ,2
    .7
    .7
    ,7
    .2
    .2
    ,1
    .6
    ,4
108.2
116.6
112.6
116.9
110.0
117.5
125.6
94.4
133.5
128.4
122.7
123.4
115.8
117.9
132.9
135.8
105.8
135.8
86.19
86.54
85.56
86.52
86.76
87.71
86.30
87.17
87.93
87.37
85.73
86.49
86.69
86.92
86.37
86.11
86.62
86.67
Fuel Nozzle
Elevation
Out of
Service

Top
Top Middle
Bottom Center
Bottom
Top
Top Center
Bottom
Top & Top Middle
Top Cen. & Bottom Cen.
Bottom & Bottom Mid.
Top Middle
Top Center
Bottom Center
Top
Bottom Center
Bottom
Top & Top Middle
Bottom & Bottom Mid.
Analysis of Results
    emission levels versus theoretical air to the fuel firing zone are plotted
on Figure 25.  This figure Indicates a trend similar to the baseline study tests,
with Increasing N02 levels for Increasing TA.  No effect due to a variation In
unit load Is evident 1n Figure 25.  The furnace waterwalls were moderately dirty
for most of the biased firing tests and therefore no effect on N0£ levels due to
furnace waterwall deposits was observed.

Figure 26 1s a plot of fuel firing elevation out of service versus N02 emissions
level.  The lowest N02 emissions levels were obtained with the upper fuel firing
elevations removed from service and with the respective compartment dampers 100%
open.  Overflre air operation 1s simulated with this method of unit operation.
The highest N02 levels were obtained when the center fuel firing elevations were
removed from service.  Removal of the bottom fuel firing elevation from service
gives a slight reduction from the higher N02 levels obtained with the center lev-
els removed from service.

CO emission level or carbon heat loss versus TA are not plotted.  Preliminary
plots gave no Indication that TA, unit load or furnace wall deposits had any ef-
fect on CO emission levels or carbon heat losses.
                                     53

-------
o>
306

294

282

270

258

246
g1  234

    222

    210

    198

    186

    174

    162
                          Wisconsin Power & Light Co.
                            Columbia Energy Center
                                    Unit II
    318  ,—
          NSPS
       90
                                  o

                             O

   95    100   105   110   115   120   125   130    135   140
     THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT
                        LEGEND
Fuel Elevation Not In Service                Unit Load
O-A       A-D                        OMax
O - B       O - E                        3 3/4 Max
O - C        0 - F-(Top)                   0 1/2 Max
A&B - Both Elevations Out During  Same Test
       Figure 25:   N02 vs.  TA,  biased firing study
                                54

-------
                                      Wisconsin Power & Light Co.
                                        Columbia Energy Center
                                                Unit #1
TOP
            160
180
200      220
280      300
                                  240      260

                                  . ng/J

Figure 26:  Fuel elevation out of  service  vs. N02,  biased  firing  study
                                                                                                 LEGEND

                                                                                            Unit Load

                                                                                            O  Max
                                                                                            Q  3/4 Max
                                                                                                1/2 Max
                                                                                            Excess A1r

                                                                                            O 15* TO 25%
                                                                                            (fc 25.IX TO 35X
                                                                                            A 35.IX TO 45X

-------
 Figure 27  shows  steam generator efficiency versus percent excess air at the
 economizer outlet.  Although there Is more scatter than In the baseline tests,
 the trend  of decreasing unit efficiency with Increasing excess air 1s still
 evident.   The variation In the fuel elevations firing may have contributed to
 the scatter In the data.

 S02 emission levels were monitored for each test and are reported on data
 sheets A-3 and A-4.

 Unburned hydrocarbon emission levels were monitored and were at such low levels
 as  to  be immeasurable.

 TASK VI -  OVERFIRE AIR OPERATION STUDY

 Excess Air and Overfire Air Rate Variation

 Tests  1 through  11 were conducted to determine the effect on the N0£ emission
 levels and  unit  performance when varying the overflre air rate with respect to
 excess air  level.  For tests 1  through 11, the overfire air registers were held
 at  horizontal tilt while the fuel  nozzle tilts were allowed to vary from a -8
 degrees to  a +8  degrees.  The fuel nozzles were allowed to vary to maintain ac-
 ceptable superheat and reheat temperatures.

 The  following table shows that N0£ emission levels increase with increasing
 theoretical air  to the fuel firing zone.  Except for tests 1 and 2, N02 emis-
 sion levels are  found to correlate well with excess air level.  The N02 levels
 for  tests 1 and 2 are much higher than expected.  No obvious reason for the
 high N02 levels can be found.   However one possible explanation is that the
 furnace wall deposits were considerably different for test 1 and 2.  Examina-
 tion of the waterwall slag patterns for tests 1 and 2 shows that during these
 tests the slag was 50.8 mm (2 in.) to 101.6 mm (4 in.) thick, glassy and run-
 ning down the furnace walls.   For the remaining tests the slag was about 25.4
 mm  (1 in.)  to 101.6 mm (4 In.)  thick and mostly plastic; however, it was not
 glassy or running down the walls as fast.  The problem with the glassy slag 1s
 that it reradlates back to the fire Increasing the bulk flame temperatures.

 Due to the  problems encountered with the CO analyzer the CO levels were only
monitored for tests 1 and 2.   Based on the results of test 1 through 11, the
optimum excess air operating level was found to be the minimum, approximately
 15 percent  at the economizer outlet.  The optimum overfire air rate 1s with the
overfire air dampers 100 percent open.  This mode of operation will allow 15 to
20 percent of the total  combustion air to be Introduced above the top level of
 fuel nozzles depending upon unit load.

        Main
        Steam                                Theo. Air    Unit        OFA
Test    Flow      N02      CO     X-S A1r    To Firing    Effic.    Dampers
No.      kg/s      ng/J    ng/J       %       Zone - %       %       % Open

  1       425     356.1      4.9      23.9       120.9      86.19         0
  2      426     354.9     4.9      23.2       115.7      86.54        25
  3      439     222.8      NA      21.8       109.7      85.56        50
  4      445     203.4      NA      19.7       105.2      86.52        70
  5      444     215.4      NA      20.4       104.6      86.76        95


                                     56

-------
                  Wisconsin Power & Light Co.
                    Columbia Energy Center
                            Unit #1
88.10
87 90
87 70
87 50
87 30
•_ 87 10
z;
UJ
£ 86 90
*
>-
S 86 70.
i— i
o
H*
Li-
ft 86 50
(—
H-l
•ZL
=> og 3Q
86.10








r "











-
a_
<8i

i





>


. R
LU
C^
b




<5



Q

j
r
1

O








(-I
p


i
1

1
LEGEND
Unit Load
O Max
/;\ i ! LJ j/4 Max
V ; O 1/2 Max
i
;
                               I      I
O J . 7U 	
at; ?n .
85 50
10
i
=
; 0
* i 	
20

.
3
• t • i
i i
i • i
L . 1 ...
0 40 5
                      EXCESS AIR, PERCENT
Figure 27:  Unit efficiency vs. excess air, biased firing study
                                57

-------
         Main
         Steam                               Theo. Air    Unit        OFA
         Flow       NO?      CO     X-S Air    To Firing    Effic.    Dampers
NU9
ng/J
         kg/s       ng/J    ng/J       %       Zone - %_      %       % Open

          446      182.7      NA      13.3       110.7      86.71         0
          441      177.9      NA      13.9       101.8      86.30        50
          439      171.4      NA      15.1        99.0      87.17       100
          398      299.2      NA      36.8       128.2      87.97        25
          390      274.7      NA      35.8       118.8      87.37        80
          389      246.5      NA      30.0       111.5      85.73       100

Overfire  Air Register Tilt Variation

Seven (7) tests were conducted to determine the effect of fuel nozzle and over-
fire air  register tilt variation on N0£ emission levels and unit performance.
These tests, 12 through 18, were conducted at the optimum overfire air rate
(dampers  100 percent open) established in tests 1 through 11.  Although tests
1 through 11 indicated an excess air level of approximately 15 percent to be
optimum for low NOx formation, an average excess air level of 24 percent was
maintained for tests 12 through 18.  The higher excess air level was easier to
maintain  from the standpoint of boiler operation and did not result in signifi-
cantly higher NOg levels.

The overfire air registers were varied from a -5 degrees to a +30 degrees,
while the fuel nozzles were varied from a -5 degrees to a +26 degrees.  During
a unit outage in early June, 1976 the fuel nozzle tilt mechanism was modified.
The bottom two fuel firing elevations were prevented from going below a hori-
zontal tilt, but could travel upward to a maximum +26 degrees.  The upper four
fuel firing elevations were allowed to travel from a -10 degrees to a +26 de-
grees.  When the bottom two fuel firing elevations were at horizontal, the upper
four elevations were at a -10 degrees.  As the tilts moved upward, the upper four
fuel firing elevations rose farther and faster, so that at the maximum upward
tilt all  the fuel firing elevations were at a +26 degrees.

For these tests the furnace waterwall  slagging conditions ranged from light to
moderate waterwall deposits.   The slag was in a plastic state in those areas of
the waterwalls where the slag was 25.4 mm (1  in.) or thicker and could be seen
slowly flowing down the lower waterwalls.

The following table shows that N02 emission levels were reduced by movement of
the fuel nozzles and overfire air registers away from each other.  While tests
16 through 18 have higher NOg levels than test 12 through 15 the trends are
similar.  The differences in the N02 levels can be attributed to small varia-
tions in boiler operation on a daily basis and to the location of the fuel
firing zone in the furnace.   For tests 16, 17 and 18 the fuel firing zone was
higher in the furnace than tests 12 through 15.  With the fuel firing zone
higher in the furnace, the waterwall surface area available for cooling of the
flame is greatly reduced.  The loss of cooling of the flame can result in an in-
crease in flame temperature, which can result in an increase in thermal N0£ for-
mation.

Parallel operation of the fuel nozzles and overfire air registers is as effec-
tive as  when they are moved away from each other.  Therefore, for ease of testing
                                    58

-------
and botler operation, parallel tilt conditions were chosen for the mode  of
boiler operation In tests 19 through 24.

CO emission levels are not found to be greatly affected by tilt variation.
The one test with high CO levels could be the result of the maximum upward
fuel nozzle and overflre air register tilts.  At these high tilts, the resi-
dence time of the hot combustion gases 1n the furnace would be reduced.   This
reduction In residence time could affect the oxidation of CO to C02.

       Main                                                  Fuel       OFA
       Steam                            Theo. A1r   Unit     Nozzle    Register
Test   Flow     N02     CO    X-S A1r   To Firing   Efflc.   Tilt      Tilt
No.    kg/s     ng/J   ng/J      %      Zone - %      %      Degrees   Degrees

 12     446    195.5    4.9     23.9      102.8     87.20       -5       -5
 13     444    205.4    1.5     26.9      105.7     86.90        0       -5
 14     443    188.5    3.0     26.9      106.0     87.28       -5         0
 15     425    198.9     NA     18.3      101.5     86.43       +1         0
 16     438    273.7    2.2     24.6      103.9     87.45      +26         0
 17     440    224.6    4.5     26.2      104.7     86.88       +2       -1-30
 18     441    223.4   17.0     23.2      103.1     87.13      +26       +30

Load and Furnace Uaterwall Deposit Variation at Optimum Conditions

Tests 19 through 24 were conducted at the optimum excess air level, overfire
air rate and fuel nozzle and overflre air register tilts determined in tests
1 through 18.  These tests were performed to determine the effect on NOX emis-
sion levels and unit performance at the optimized conditions, while varying
unit load and furnace wall deposits.  The excess air level ranged from a low
of 19 percent at full load to a high of 34 percent at half load.  The overfire
air register dampers were 100 percent open.  The fuel nozzles and overflre  air
registers were essentially parallel for tests 19 through 24.  The tilts ranged
from horizontal tilt to a +10 degree tilt for the overflre air registers and  a
+1 to +12 degree tilt for the fuel nozzles.

The following table shows that NO? formation is affected by furnace waterwall
condition for the three-quarter (5/4) and full toad tests.  Except for tests
23 and 24, NOg emission levels increase with increasing furnace waterwall de-
posits.  N02 emission levels are also affected by unit load, with higher N02
levels at higher loads.

Except for test 19, CO emission levels are unaffected by unit load or furnace
waterwall deposits.  The CO levels for test 19 are considerably higher than
tests 20 through 24.  The higher CO level may be due to the lower excess air
level.

        Main
        Steam                                Theo. A1r
Test    Flow      NOg      CO     X-S Air    To Firing    Efflc.    Furnace
No.
Flow      N02      MJ     A-a Air    ID firing    tine.    i-urnace
kg/s      ng/J    ng/J       %       Zone - %       %       Condition
 19      441     182.8    22.1      19.1        99.7      87.66     Moderate
 20      438     234.8     1.1      25.4        99.3      86.63     Heavy
 21      350     171.8     1.2      30.0        98.6      87.53     Clean


                                     59

-------
         Main
         Steam                               Theo. A1r    Unit
 Test    Flow      N02      CO      X-S Air    To  Firing    Effic.    Furnace
 No.     kg/s      ng/J     ng/J       %       Zone - %       %       Condition

  22      342     220.6      T.I      28.5       103.4      87.39     Moderate
  23      263     161.9      1.2      32.5       106.1      88.47     Clean
  24      259     161.0      1.6      34.2       107.0      87.78     Moderate

 Analysis  of Results

 N02,  CO and carbon heat  loss values versus theoretical air to the fuel firing
 zone  are  shown on  Figures  28, 29 and 30, respectively.  Although only tests 1
 through 11  were conducted  to determine the effect of TA variation all 24 tests
 are shown on Figures  28, 29 and 30.

 Figure  28 shows that  N0£ emission  levels increase with increasing theoretical
 air to  the  fuel firing zone.  Furnace waterwall  deposits and unit load are also
 indicated on Figure 28.  On this boiler, comparison of tests with similar TA's,
 but different waterwall deposits give no indication that furnace waterwall
 slagging  has any effect on  NOg emission levels.  Two half (1/2) load and two
 three-quarter (3/4) load tests were performed for the overfire air operation
 study.  The two half  (1/2)  load tests have the lowest NO? emission levels,
 while the N0£ emission levels for  the three-quarter (3/4) load tests are of
 the same  magnitude as the  full load tests.

 CO  versus theoretical air  to the fuel firing zone is plotted in Figure 29.
 This  figure indicates a possible increase in CO  levels at theoretical air lev-
 els of  approximately  100%  to 105%.  While this Is the expected trend, the data
 plotted in  Figure 29  is insufficient to support  such a trend.  However, carbon
 heat  loss follows a similar trend when plotted versus TA.  Figure 30 is a plot
 of  carbon heat loss for the overfire air study.  For theoretical air levels In
 the range from 100% to 110% carbon heat losses are found to rise rapidly.  This
 is  also an  expected trend and is what previous studies have shown to be true
 for both  carbon heat  loss and CO.

 The second  task in the overfire air study involved the effect of overfire air
 register tilt variation on N02, CO and carbon heat loss.  The N02 emission lev-
 els for these tests are plotted versus the tilt  differential between the fuel
 nozzles and  overfire air registers as shown on Figure 31.  Preliminary plots of
 CO and carbon heat loss versus the difference in tilts yeilded no useful Infor-
 mation and  therefore no plots have been included.  The difference 1n tilts re-
 fers to how many degrees toward or away from each other the fuel nozzles and
 overfire air registers are moved.  This difference is calculated by taking the
 difference  in degrees that the overfire air registers are angled toward or away
 from the fuel nozzles.

 Figure 31  Indicates that the maximum NO? levels  are obtained when the fuel noz-
 zles and overfire air registers are angled toward each other.  With the excep-
 tion of one  test (#17), minimum NO? levels are obtained when the fuel nozzles
 and overfire air registers are angled away from  each other.  Most of these tests
were performed with clean furnace waterwalls, while test 17 had moderately dirty
waterwalls.   The N02 levels for test 17 were higher than expected.  This might
 be attributed to the heavier waterwall deposits  observed for this test.


                                     60

-------
o>
CM
o
       95
                                     WISCONSIN  POWER & LIGHT CO.
                                       COLUMBIA ENERGY CENTER
                                               UNIT #1
OCft
JOU
340
320
onn
JUU
280
260

240
220
200
ion
1 Ou
ifin



NSPS-












"N





O

r
G£)
y











^
/*






O


Cfe 
-------
                                           WISCONSIN POUER & LIGHT CO,

                                             COLUMBIA ENERGY CENTER

                                                     UNIT *1
ot
IS)
•-3


o>
       o
       o
          25
          20
          15
          10













ij
'


\
'
-




rt>H.
QQ

\



[
\
\
\
\







o





*» .

0
mu
D










0s-
<2bO












'^












— — - ~_












	





































^i











































LEGEND
Unit Load

0 Max
D 3/4 Max
/S 1/2 Max
^^
Furnace Slag

Light
O Moderate
0 Heavy




             95
                   100
105
no
115
120
125
130
                                  THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT


                   Figure 29:  CO vs. theoretical  air to fuel  firing zone,  overfire  air  study

-------
                                         WISCONSIN POWER & LIGHT CO.
                                           COLUMBIA ENERGY CENTER
                                                   UNIT #1
O»
b>>
      0.06
      0.05
    s
      0.04
    a
      0.03
      0.02
      0.01
           95
-&
                               •
*
    100
         125
                105         110         115         120

              THEORETICAL AIR TO FUEL FIRING ZONE. PERCENT

Figure 30:  Carbon heat loss vs.  theoretical air,  overfire air study
                                                                                             130
                                                                                   LEGEND

                                                                                Unit  Load

                                                                                O Max
                                                                                   83/4 Max
                                                                                   1/2 Max

                                                                                Furnace Slag
                                                                                Q
                                                                                $
                              Light
                              Moderate
                              Heavy

-------
                                WISCONSIN  POWER & LIGHT  CO.
                                  COLUMBIA ENERGY CENTER
                                          UNIT  #1
CM
320

300

Z80

260

240

220

200

180

160
          NSPS-
             Q
                                      C)
                                                  o
                                                                              O
                              UNIT LOAD
                              O Max
                              All Tests
        30    25    20    15
                             10
10    15    20    25
30
                      TOWARD              DEGREES              AWAY
              DIFFERENCE IN TILT OF OVERFIRE AIR REGISTERS AND FUEL NOZZLES
               Figure 31:  N02 vs. difference in tilt, overfire air study

-------
Figure 32 shows unit efficiency versus excess air at the economizer outlet.
Examination of only the full load tests shows that a decrease 1n unit effi-
ciency Is evident with Increasing excess air at the economizer outlet.  Such
a trend Is in agreement with the baseline tests and with previous studies at
Alabama Power Company's, Barry Station, Unit #2 [2].

SO? emission levels were monitored for each test and are reported on Sheets
A-5 and A-6.  No correlation between S02 emission levels and excess air level,
unit load, or furnace waterwall deposits was apparent.

Unburned hydrocarbons were monitored for all overflre air tests and were at
such low levels as to be immeasurable.

A thirty (30) day waterwall corrosion coupon evaluation was conducted in Janu-
ary and February of 1977.  The. overflre air register dampers were allowed to
modulate between 5% open at half load and 75% to 100% open at full load.  Unit
loading was varied per Wisconsin Power and Light Company's System demands with
full load being maintained as much as possible.  The waterwall corrosion study
1s discussed 1n the section, "Waterwall Corrosion Coupon Evaluation."

FURNACE PERFORMANCE

Furnace performance at Columbia Energy Center, Unit #1 was monitored by the use
of Type "E", chorda1 thermocouples Installed 1n the furnace waterwalls.  A sche-
matic of the thermocouple locations 1s shown 1n Figure 33.  Furnace performance
1s measured by furnace waterwall absorption rates.  Tabulations of the average
waterwall absorption rates, as measured at each chordal thermocouple, are pre-
sented 1n Appendix A on Sheets A22 through A35.

Waterwall temperatures and corresponding absorption rates were found to vary
significantly with furnace waterwall deposit conditions.  For comparison of the
waterwall absorption rates, the full load (MCR) tests for the three different
modes of boiler operation are  shown on Figures 34, 35 and 36.  The average hor-
izontal strip absorption rate  profiles of the front and right side walls for
these tests are plotted versus the distance above or below the firing zone cen-
ter.

The baseline test profiles show very little heat absorption variation from the
hopper slopes to the furnace outlet.  The baseline profiles indicate uniform
heavy slagging In the combustion zone which results in slightly depressed rates
1n that area.  The biased firing test profiles also show very little variation
over the entire furnace height.  The absorption rate profiles for the overfire
air tests show little variation from the firing zone center down to the hopper
slopes.  There Is a peaking effect just above the firing zone center and a dis-
tinct split in the absorption  rate profiles between the upper fuel nozzles and
the furnace outlet.  This split can be traced to a change 1n the fuel and aux-
iliary air damper openings.  Those tests conducted In March, 1976 had fuel air
damper openings of approximately 30 to 50 percent open and auxiliary air damper
openings of approximately 100  percent open.  The fuel and auxiliary air damper
openings were changed following the testing 1n March, 1976.  Those tests per-
formed 1n May and June of 1976 had fuel air damper openings of approximately
100 percent open and auxiliary air damper openings ranging from 30 to 50 per-
cent open.
                                     65

-------
                  WISCONSIN POWER & LIGHT CO.
                    COLUMBIA ENERGY CENTER
                            UNIT #1
88.47
88.27
88.07
87.87
87.67
87.47
87.27
87.07
86.87
86.67
86.47
86 27
86 07
85 87
85.67
XX
LEGEND
Unit Load
O Max
D 3/4 Max
O 1/2 Max

O-
0









)















0

0











0C

0
O


r






u
f
)
&
**2r
0


}





C
Q
^

^




C

\y



]







j




O








e















   12    15    18    21    24    27    30    33    36    39

                      EXCESS AIR, PERCENT

Figure 32:   Unit efficiency vs. excess air, overflre air study
                              66

-------
       Powrn < .. ir.-T i'c.
CCLUMPK
C-E Ponta SY- ![••;
r I f L7> Tf ST I **r. AND
(•tUFOBMll'.'-.E  RESULTS
    307.8
                                                                                               NOTE:AU.ELD«TDMt
                                                                                               AND 01
                                                                                               4N METCRS.
                    FRONT WALL     RIGHT WALL       REAR WALL      LEFT
                     FURNACE  WALL  THERMOCOUPLE   LOCATION
                               FIGURE 33:  CHORDAL THERMOCOUPLE LOCATIONS

-------
       FURNflCE HEflT  RBSORPTION  RRTE  PROFILES
                     HORIZONTflL STRIP  RflTES
                                              WISCONSIN POWER & LIGHT CO.
                                                            COLUMBIA «1
                        Baseline Tests - MCR
 cr
 LJ
 K
 LJ
cr
LJ
LJ
o
in
o
CO
z
I—I
on
HH
u_
LJ
CD

OL
O

LJ
>
O
CO
CE

LJ
O

CE
f-
co
•-H
Q
                           CROWN  - KW/M2

                 Figure 34:  Elevation vs. furnace heat absorption
                                  68

-------
       FURNRCE  HERT RBSORPTION RRTE PROFILES
                     HORIZONTflL STRIP RflTES
                                              WISCONSIN POWER & LIGHT CO.
                                                           COLUMBIA «1
                        Bias Firing Testa - MCR
i/i
QC
UJ
r
QL
UJ
UJ
O

UJ

O
N

CD
UJ
CD
UJ

O
CO
CE

Ltl
O
2
0=
I-
co
I— I
0
        -25
                           CROWN  -  KW/M2

                Figure 35: Elevation vs. furnace heat absorption
                                  69

-------
       FURNflCE  HEflT  flBSORPTION  RflTE PROFILES
                     HORIZONTflL STRIP  RflTES
                                              WISCONSIN POWER fc LIGHT CO.
                                                           COLUMBIfl »1
                        Overfire Air Tests - MCR
5
CL

LJ
LJ
CJ

LJ
•z.
o
N

CD
ce.
i—i
u_

2
O
_l
LU
m

a:
o

tu
>
o
CD
a:

LJ
u
        -25
                           CROWN -  KW/M2


                 Figure 36:  Elevation vs.  furnace heat absorption
                                   70

-------
As mentioned previously, furnace waterwall deposits had a significant effect
on waterwall temperatures and corresponding absorption rates.   Obtaining the
desired slagging conditions proved very difficult and somewhat unpredictable
during the testing at Columbia Energy Center, Unit #1.  One of the biggest dif-
ficulties was in observing the furnace waterwalls to obtain an accurate visual
determination of the furnace waterwall deposits.

WATERWALL CORROSION COUPON EVALUATION

Following completion of the steady state phases of the baseline and overflre
air test programs, thirty (30) day waterwall corrosion coupon evaluations were
performed.  The purpose of these evaluations was to determine whether any mea-
surable changes In coupon weight losses could be obtained for the two modes of
firing under study.

The Individual probes were exposed at five locations on the furnace front wall
as shown on Figure 37.  The coupon temperatures were maintained at the same
levels for each 30 day run and a typical tract of the control temperature range
for each of the twenty coupons 1s shown on Figure 38.

The Individual coupon weights were determined before and after each thirty day
test and the individual coupon and average probe weight losses are shown on
Sheets A57 and A58.  The weight losses are calculated as mg/cm' of coupon sur-
face area.

Figures 39 and 40 show the unit load schedules for each of the 30 day test pe-
riods.

The overflre a1r_portion of the study was conducted as close as possible to the
"optimum" operating conditions determined during the overfire air steady state
tests.

Throughout the overflre air study the overflre air dampers were maintained at
the full open configuration over the range of unit loading shown on Figure 40
with the following exceptions.  From January 22 through January 24, January 27
through January 29 and February 8 through February 17 the OFA dampers were
opened 75%.  Also during a unit start-up on February 25 the dampers were opened
from 0 to 20% and then maintained at 40% open during  February 26 and February
27.

The percent oxygen was monitored daily during each thirty day study at each
probe location and was found to range between 3 and 19 percent 02 during both
the baseline and overflre air studies.

The weight losses calculated for the baseline and overfire air runs were found
to be the same with the average weight losses for all five probes as follows:

                       Baseline         Overflre Air

                     8.0770 mg/cm2      8.0933 mg/cm2

These values are greater than the range of  losses experienced at  Barry  #2,
Huntlngton Canyon #2 and during a control study conducted at C-E's  Kre1singer
Laboratory by a factor of approximately 2 to 1.


                                     71

-------


















r
L













i
J








r

v 	



-------
            Wisconsin Power & Light Co.
               Columbia  Energy Center
            	Unit No. 1
                      TYPICAL COUPON
                        TEMP. RANGE
                       ALL 5 PROBES
                     TEMPERATURE - °F
CONTROL TEMP. - 750 F
(399 C).  TOP COUPON
OF EACH PROBE.
Figure 38.  Typical corrosion probe temperature range
                         73

-------
                                                         WISCONSIN POWER & LIGHT CO.
                                                            COLI*ei» ENERGY CEN1FR
                                                         	UNIT |1	
8
8
                                    m MM \\\m n«ii!inn!i!i!
 I !  "I '•        :I  If "         '!
I.' litiilim !!  W   I itilliiiiiti  It  itlHmli
                                                     CORROSION PROBE CXPOSIFE TIME - DAYS


                                    FIGURE 39:  Gooss MW LO*OIHO vs. TIME . BASCIINC CORROSION PROBC STUDY
                                                                                                                                              AVG.  GROSS
                                                                                                                                              X) DAY PER I CO
                                                                                                                                              421.3 WHR

-------
                                                      WISCONSIN POWER & LIGHT  CO.
                                                         COLUWIA ENERGY CENTER
                                                      	UNIT 11
550
                                                                                                      t!;;:! tru tj: ::::i:::: :::: :it: :_t ;:::
                                                                                                j iWU::: jittti ;|:!!;}::::|:::;j:::;rtn *!
                                                                                                     1/26/77        1/27/77
 450

 400
 350

 300
 850 m
 200  '

 550
8/05/77
g/06/77	g/07/77        2/08/77       g/09/77~       g/10/77       g/11/77       g/lg/77
          8/13/77
                8/14/77
                2/15/77
                                                 CORROSION PROBE EXPOSURE TlfC - DAYS


                             Fiounc 40:  Gnoss  W LO«OINO vs. Tint  .  ovdtrmc «i« CO«»O»ION  PROBI STUDY
                                                                                                                                           AVG.  GROSS MW/H?
                                                                                                                                           30 DAY PERIOD
                                                                                                                                           448.8 W/W

-------
The results Indicate that while there was no change In weight loss between the
baseline and overfire air runs something resulted In the losses being consis-
tently higher than expected based on previously obtained data.

Review of test logs reveals a possible explanation.  During both runs periodic
overheating (up to approximately 540°C) of Individual probes occurred due to
partial slagging of the probe coupons.  This occasionally created a situation
where the coupon containing the control thermocouple would be covered with slag
while the other coupons of a given probe were still clean.  The control thermo-
couple would then reduce air flow to the entire probe causing the clean coupons
to overheat.  This situation was corrected when encountered by switching the
temperature control to a hotter coupon.  The frequency of occurrance was approx-
imately the same for both runs.

Chemical  analysis of the coupon deposits also tends to support this observation
as the fusibility temperatures of the inner deposits on some of the affected
probes were very high.   This coupled with the fused state of the initial depos-
its indicates  possible overheating.   Coal ash and deposit analysis are shown on
Figures 41  and 42.
                                     76

-------
Wisconsin Power & Light Company
Columbia #1
                       C-E Power Systems
                       Field Testing and
                       Performance Results
      WATERWALL   CORROSION   COUPON  DATA   SUMMARY
                       AS FIRED ASH AND COUPON DEPOSIT ANALYSIS
    Sample Location

Ash Fus1b1l1ty-°F
   Initial Deformation Temp.
   Softening Temp.
   Fluid Temp.

Ash Composition-%by Weight
   S102
   2f
   MgO
   Na20
   K20
   TlOo
   P205
BASELINE STUDY

Pulverized Coal
ip. 2130
2170
2290
38.6
17.5
6.7
13.5
3.7
0.4
0.5
0.9
15.2
— _
Probe A
Outer
2000
2080
2270
33.9
14.4
34.8
11.6
3.1
0.1
0.3
0.7
1.0
—
Probe B1
Initial
I.S.2


9.4
4.3
74.8
3.0
0.7
0.1
^0.1
0'.3
4.3
0.4
Probe C
Outer
2010
2080
2270
37.7
14.7
29.4
12.4
3.4
0.2
0.3
0.8
0.9

Probe D
Outer '
2010
2080
2310
41.4
16.4
21.5
14.4
3.4
0.4
0.3
0.9
1.1
—
Probe E
Outer
1960
2010
2140
28.8
10.0
45.3
9.2
2.1
0.3
0.4
0.5
1.7
0.1
Total
                              97.0
99.9
97.4
99.8
99.8
98.4
1.  Outer Sample Not Available
2.  I.S. - Insufficient Sample
           Figure 41:  As-fired ash and coupon deposit analysis, baseline study

-------
Wisconsin Power & Light Company
Columbia #1
                                                              C-E Power Systems
                                                              Field Testing and
                                                              Performance Results
      WATERWALL   CORROSION   COUPON   DATA   SUMMARY
                       AS FIRED ASH AND COUPON DEPOSIT ANALYSIS
    Sample Location

Ash Fus1bil1ty-°F
   Initial Deformation Temp.
   Softening Temp.
   Fluid Temp.

Ash Composition-Boy Weight
   S109
   A1203

   CaO 3
   MgO
   NazO
   T102
OVERFIRE

Pulverized Coal
ip. 2110
2170
2260
41.3
17.2
7.6
13.4
4.0
0.6
0.5
0.8
14.0
AIR STUDY
Probe G1
Initial
I.S.2


6.9
3.6
76.4
3.5
1.0
0.5
0.5
0.3
6.5

Probe H
Outer
1920
1940
2060
20.7
8.3
56.8
6.9
2.0
0.5
0.5
0.5
3.4

Probe I
Outer
1930
1940
2060
20.5
8.1
55.8
6.8
1.8
0.5
0.5
0.5
3.7

Probe J
Outer
I.S.2


12.8
5.3
69.9
4.9
1.3
0.4
0.3
0.3
2.5

Probe K
Outer
1930
1950
2060
21.5
7.9
57.7
6.8
1.8
0.4
0.4
0.4
2.8
Total
                          99.4
99.2
99.6
98.2
97.7
99.7
1.
2.
Outer Sample Not Available
I.S. - Insufficient Sample
    "Figure 42:  As-fired ash and coupon deposit analysis, overfire air study

-------
                         HUNTINGTON STATION, UNIT #2


TASKS IV, V & VI - TEST DATA ACQUISITION AND ANALYSIS

Flue gas samples for determination of N02, CO, 02 and THC emission levels were
obtained at each of the two economizer outlet ducts.  The flue gas samples were
drawn from twelve (12) point grids arranged on centrolds of equal area 1n each
duct.  The SOg sample was drawn from a single point 1n the left economizer out-
let duct using a heated sample line.  The fly ash sample for carbon loss analy-
sis was obtained from a single point 1n the left air preheater flue gas outlet
duct.

Coal samples were obtained from each feeder and blended to form a composite sam-
ple.  Each sample was analyzed by the fuels lab at Combustion Engineering Inc.'s
Krelslnger Development Laboratory.  During some of the testing the Deer Creek
Mine Coal was mixed with coal from Peabody Coal Company's Wllberg Mine and from
Amerdan Coal Company's Church Mine.  The Wllberg and Deer Creek Mines were min-
ing the same coal seam but from opposite sides of the mountain.  The Church coal
was trucked In from a mine 10 to 15 miles south of the plant.  Analysis of the
Church, Wllberg and Deer Creek coals showed that the coals had very similar
characteristics.  Although analysis showed the coals to be very similar, visual
observations of the furnace waterwalls showed a definite-Increase In furnace
waterwall deposits when firing a blended coal.  A blended coal may display prop-
erties more unsatisfactory to unit performance than any of the component coals
fired separately [8].  Typical slag patterns taken during clean, moderate and
heavy slagging conditions at full load operation are shown on Figures 43, 44
and 45.  These slag patterns are typical for all modes of boiler operation.

These coals were not blended for those tests conducted In April, May or July of
1975.  For those tests conducted 1n September, October or December of 1975, the
coals were usually blended.  However, 1t was Impossible to tell on any one day
what percent of each coal was being used.  The Wllberg and Church Mine coals
were always blended with the Deer Creek Mine coal and were never used exclusive-
ly.

Summaries of the emissions test data for the baseline, biased firing and over-
fire air operation studies are tabulated 1n Appendix B on Sheets B-l through
B-6.  Unit performance test data for the three studies are tabulated on Sheets
B-7 through B-13.  The calculated unit performance test results are tabulated
on Sheets B-14 through B-23.  Unit efficiency 1s determined using the Heat
Losses Method (ASME Power Test Code, PTC 4.1-1964, Reaffirmed 1973).  A set of
unit board and computer data was obtained for each test and 1s tabulated on
Sheets B-24 through B-44.

All test data and results are reported In SI Metric Units with the exception of
the board and computer data, which are reported In the engineering units pro-
vided by plant Instrumentation.
                                     79

-------
                                            FURNACE WA1ERWALL DEPOSIT PATTERN
CO

222
220
220
220
020
000
020
000
000
poo


200
0 1 1
000
i r
000
000
J I
000
V
222
0
220
2 1 1
1 1 1
3 1 1
•
1 1 1
1 2 1
J !•
1 1 1
000
FRONT RIGHT REAR
SIDE
000
y k k
1 2 0
330
1 0 0
^
1 0 0
020
J
030
V
LEFT
SIDE
NO A
FUZZ1
LIGH'
UGH'
MED.
HEAV
RUNN
NOTE
                                                                                         KEY
                                                                                = 13 HH
                                                                         LIGHT 13 MM - 25 MM
                                                                         LIGHT TO MED. 25 MM
                                                                         MED. TO HEAVY 50 MM
                                                                                -100 HM
50 MM
100 MM
                                                                         NOTE:   25.k MM - 1 INCH
0
1
2
3
A
5
6
                         Figure 43:  Furnace water-wall deposit pattern,  clean furnace

-------
                                            FURNACE WATERWALJL DEPOSIT PATTERN
00
•
k k *»
k I* 2
A i» 2
A It 1
,1 1 1
3 1 1
1 1 1
220
000
4 A 1»
A A CT
1* A 2
1 1 1
-.1 1 1 p
000
020
j L
220
V
322
2
333
*» 3 3
3 3 3
,2 2 2 r
2 1 1
0 1 1
J k
220
000
FRONT RIGHT REAR
SIDE
000
>• •
k 7. 2
k 2 2
-t k 1 1
1 1 0
1 1 0
220
V
LEFT
SIDE
NO AS
FUZZY
LIGHT
LIGHT
MED.
HEAVY
RUNNI
NOTE :
                                                                                          KEY
                                                                                 :13 MM
                                                                          LIGHT 13 MM - 25 MM
                                                                          LIGHT TO MED. 25 MM
                                                                          MED. TO HEAVY 50 MM
                                                                                 •100 MM
50 MM
100 MM
                                                                          NOTE:   25.A MM = 1 INCH
0
1
2
3
1»
5
6
                          Figure 44:  Furnace waterwall deposit pattern, moderate slag furnace

-------
                                              FURNACE WATERWALL DEPOSIT PATTERN
00
ISi

3 k k
366
2 6 6
266
T 2 6 6 |
266
J 6 6 1 L
000
1* 1* I*
6 6 *C
6 6 1
6 6 1
1 6 1 if
6 1 1
J 2 1 1 L
V
i i i
i
222
3 3 3
2 3 3
| 2 3 3 f
233
J i 1 o L
000
FRONT RIGHT REAR
SIDE
222
J 6 6
6 6 1
6 6 1
1 6 6 1
666
J k k 1
V
LEFT
SIDE
NO A
FUZZ
LIGH
LIGH
MED.
HEAV
RUNN
NOTE
                                                                                            KEY
                                                                                   = 13  MM
                                                                            LIGHT  13 MM -  25  MM
                                                                            LIGHT  TO MED.  25  MM
                                                                            MED. TO HEAVY  50  MM
                                                                                   -100 MM
50 MM
100 MM
                                                                           NOTE:   25.*» MM »  1  INCH
0
1
2
3
If
5
6
                            Figure  45:   Furnace waterwall  deposit pattern, heavy slag furnace

-------
The thirty (30) day waterwall corrosion coupon evaluations were conducted us-
ing a specially designed probe consisting of four Individual coupons.   The wa-
terwall corrosion coupon evaluations are described and discussed under a sep-
arate subsection In this report.

TASK IV - BASELINE OPERATION STUDY

Load and Excess Air Variation - Clean Furnace

Tests 1 through 7 were conducted to determine the effect of varying excess air
on unit emission levels and performance.  These tests were conducted at three
unit loads with clean furnace conditions.' Maximum and minimum excess air lev-
els of 40 percent and 15 percent respectively were considered by Utah Power and
Light Co. as acceptable modes of unit operation at full load.  These limits were
exceeded on a few occasions.

As shown 1n the following table, N02 emission levels Increased with Increased
excess air.  At equivalent levels of theoretical air to the fuel firing zone
(TA), NOz emission levels were higher at full load than at half load.

CO emission levels did not change appreciably with changes in excess air level
or unit loading.  The effect of excess air level and unit loading on unit ef-
ficiency, carbon heat loss and unburned hydrocarbon and sulfur dioxide emission
levels Is discussed In conjunction with the other baseline tests.
        Main
        Steam
        Flow
        kg/s

         376
         380
         377
         380
         298
         204
         203
         202
 N02
 ng/J

248.0
262.8
332.4
357.0
328.0
249.
284.
.2
.3
360.3
 CO
ng/J

 NA*
6.9
7.7
8.2
 NA
4.8
4.8
5.0
              X-S Air
18.
27.
32.
40.
28.
23.
32.
Theo. Air
To Firing
Zone - %

  116.4
  124.8
      1
130
137.8
126.9
122
131
     .9
     .1
                50.0
           150.0
                      Unit
                      Effic.
98.92
90.37
90.16
89.56
90.05
91.05
91.05
90.51
Furnace
Condition

Clean
Clean
Clean
Clean
Clean
Clean
Clean
Clean
Load and Excess A1r Variation - Moderately Dirty Furnace
Tests 8 through 12 were to have been conducted with a moderately slagged fur-
nace.  However, when operating with the Deer Creek Mine Coal, 1t was difficult
to obtain any appreciable amounts of slag on the furnace waterwalls.  As a re-
sult of this, tests 8 through 12 were actually conducted with clean furnace wa-
terwalls.  Excess air levels and unit load were allowed to vary per the test
program.

The NO? levels for Tests 8 through 12, as shown In the following table, are also
found to be proportional to the excess air levels.  Although tests 8 through 12
were conducted with excess air levels, unit loads and furnace wall deposits sim-
ilar to tests 1 through 7, the NOz emission levels are generally lower.  One
* NA - CO values not available due to operational difficulties with CO analyzer.

                                     83

-------
 possible explanation for this  difference  in  NO? emission levels for similar
 tests Is the effect of fuel  nozzle tilt.  The  fuel nozzles had a higher upward
 tnt for tests 1  through 7.  While the  higher  tilts reduce the residence time
 of the hot gases  in the furnace,  they also decrease the furnace water-wall sur-
 face available for cooling.  The  decrease in surface cooling area results in a
 higher flame temperature,  which can cause higher N(>2 emission levels.  The only
 exception to this is Test  #8 which correlates  well with Test #1.  As in Tests 1
 through 7, at similar theoretical  air levels to the fuel firing zone, NOz emis-
 sion levels are again higher for  full load tests than half load tests.

 CO emission levels  again did not  show any appreciable change with changes in
 excess air level  or unit loading.   The  only exception to this is Test #9 which
 when compared to  a  similar test (#2  or  2A) has an unusually high CO level for
 the excess air level  at which  the  unit  was operating.
         Main
         Steam
         Flow
         kg/s

         378
         377
         375
         203
         208
 N02
 ng/J

267.1
258.6
295.3
232.6
318.8
          CO
         ng/J

          6.9
         37.5
           NA
          4.6
          5.0
        X-S Air
          19.5
          29.0
          40.9
          27.4
          48.8
         Theo. Air
         To Firing
         Zone - %

           117.5
           126.3
           137.8
           126.4
           147.6
           Unit
           Effic.
           89.93
           90.10
           89.64
           91.07
           90.75
          Furnace
          Condition

          Clean
          Clean
          Clean
          Clean
          Clean
Load and Excess Air Variation - Dirty Furnace
The test program called for Tests 13 through 19 to be conducted with heavy fur-
nace wall deposits.  As in Tests 8 through 12 it was difficult to obtain any ap-
preciable amount of slag on the furnace wa ten/alls.  However, moderately thick
furnace wall deposits of 12.7 mm (1/2") to 50.8 mm (2") were obtained.  Excess
air and unit load were again varied per the test program.
As shown In the following table Increasing N0£ emission levels are again found
with increasing excess air levels.  Again, for similar TA's, N02 emission levels
for full load are higher than N0£ levels at half load.  There is no other obvi-
ous correlation between N02 emission level and unit loading.

Excess air variation and unit load again showed no obvious effect on CO emission
levels.
        Main
        Steam
        Flow
        kg/s

         377
         375
         375
         298
         204
         206
         205
 N02
 ng/J

213.8
253.7
319.1
          CO
         ng/J
   .2
   ,7
285.
215.
233.0
333.1
10.4
 7.2
 8.3
 4.1
 4.5
  NA
 5.0
        X-S Air
                   15.0
         Theo. Air
         To Firing
         Zone - %
                   20,
                   35.
23.0
25.
28,
                   47.8
113.1
118.1
132
121
124
127.9
146.6
           Unit
           Effic.
90.38
90.34
90.30
90.78
90.74
90.43
90.34
Furnace
Condition

Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
                                     84

-------
Analysis of Results

The changes in NO?, CO and carbon heat loss versus TA are shown on Figures  46,
47 and 48, respectively.  For the baseline operation study the TA is  essen-
tially the same as the total air.

Figure 46 shows that N02 emission levels correlate reasonably well with theo-
retical air to the fuel firing zone.  Increasing TA results In increased NOg
emission levels.  This correlation is In agreement with previous studies which
have shown that N02 emission levels are proportional to the concentration of
oxygen available for combustion.

Based on the data as plotted in Figure 46, it can be concluded that there is
some variation of N02 emission levels with unit load.  As discussed previously
for similar theoretical air levels to the fuel firing zone, NOg emission lev-
els for full load unit operation are higher than NO? levels at half load unit
operation.  N02 emission levels for three-quarter (3/4) load operation are  of
the same order of magnitude as full load N02 levels.

There 1s no distinct variation of N02 emission levels with furnace waterwall
deposits.  The results of those tests performed with moderately dirty furnace
wall deposits have too much scatter to show any correlation between N02 levels
and furnace wall deposits.  This lack of correlation may be partially attrib-
uted to the fact that visual observations of furnace waterwall deposits is
very subjective.  While furnace wall deposits for Tests 13 through 19 were  con-
sidered to be moderately dirty, they may have in fact been very similar to  fur-
nace waterwall conditions for Tests 1 through 12.

With the exception of Test #9, Figure 47 shows that CO emission levels did  not
show any appreciable variation with changes in TA.  As mentioned previously
Test #9 had an. unusually high CO level when considering the furnace slag con-
ditions and the excess air level at which the unit was operating.  Below 120
percent TA, Figure 47 shows a slight rise In CO emission levels.  This rise in
CO levels below 120 percent TA is in agreement with baseline studies at Alabama
Power Company's, Barry Station, Unit #2.  However, the data as presented in
Figure 47 is insufficient to be considered a trend for this study.

Unit loading had no significant effect on CO emission levels.  CO emission  lev-
els for the half load and three-quarter load tests are lower than the CO levels
for full load tests.  However, as the CO levels for all the unit loads are  of
the same order of magnitude, 1t is difficult to distinguish what effects changes
In unit loading have on CO levels.  Any distinction is further hampered by  the
fact that the half load tests are performed at higher excess air levels than
full or three-quarter load tests.  The higher excess air level operation at
lower loads would promote more complete combustion resulting in lower CO levels.
Boilers are operated at higher excess air levels at half load for temperature
control purposes, I.e., to maintain superheat and reheat outlet temperatures
and therefore the maximum and minimum excess air limits were shifted upward for
half load operation.  Furnace waterwall slag conditions are found to have no ef-
fect on CO emission levels.

Figure 48 shows percent carbon loss 1n the fly ash versus percent theoretical
air to the fuel firing zone.  The carbon heat loss results are very similar to
the CO results.  There 1s a general trend of Increasing carbon heat loss with


                                     85

-------
                                         UTAH POWER & LIGHT CO.
                                           HUNTINGTON STATION
                                         	UNIT n
         330
          310
              BPS
oo
Ot
          290
          270
          2SO
          230
             110
              v
                          s>
                                      0
                                        o
                                                O
                                                                  7^
              120              130              140

              THEORETICAL AIR TO  FUEL FIRING ZONE,  PERCENT
                                                                                  150
      LEGEND

Unit Load
OHax
O 3/4 Max
O1/2 Max

Furnace Slag

O clean
• Moderately Dirty
Figure  46:
                             N02 vs.  theoretical  air to fuel  firing zone,  baseline study

-------
                                         UTAH POWER & LIGHT CO.
                                           HUNTINGTON STATION
                                         	UNIT n
CO
•vj
44

40

36

32

28

24

20

16

12
             110              120               130               140              150
                              THEORETICAL AIR TO FUEL FIRING ZONE,  PERCENT
                Figure  47:  CO  vs.  theoretical  air  to fuel firing zone,  baseline study
      LEGEND
Unit Load
OMax
D 3/4 Max
O1/2 Max
Furnace Slag
O Clean
w Moderately Dirty

-------
                                   UTAH POWER &  LIGHT CO.
                                     HUNTINGTON  STATION
                                           UNIT  12
    .60

-------
decreasing TA.  No distinct variation of carbon heat loss with unit loading is
evident with the exception that carbon heat losses for the half load tests are
lower than the carbon heat losses for full load tests.  As with the CO results,
this variation may be related to the fact that the half load tests were run
with higher excess air levels than full load tests.  The higher excess air lev-
els would promote better carbon burnout.  Based on the data as plotted in Fig-
ure 48, carbon heat losses appear to be unaffected by variations in furnace wa-
terwall deposits.

Figure 49 shows unit efficiency versus percent excess air at the economizer
outlet.  When viewed without regard to unit load, the scatter in the data as
plotted in Figure 49 overshadows any obvious trend.  However, when full load
and half load tests are examined separately a decrease in unit efficiency is
found with increasing excess air at the economizer outlet.

No effect on unit efficiency was obvious for changes in furnace waterwall de-
posits for the baseline operation tests.

SO? emission levels were monitored for each test and are reported on Sheets
B-T and B-2.  No correlation was evident between SOg emission levels and ex-
cess air, unit loading or furnace waterwall deposits.  It was not possible to
control the SOg emission level as it Is more a function of the sulfur content
of the fuel rather than the mode of boiler operation.

Unburned hydrocarbon emission levels were monitored and were found to be at
such low levels as to be unmeasurable.

A thirty (30) day waterwall corrosion coupon test was conducted in April and
May of 1975.  The boiler was operated normally with full load being maintained
as much as possible.  The waterwall corrosion coupon test is discussed in the
section "Waterwall Corrosion Coupon Evaluation."

TASK V - BIASED FIRING OPERATION STUDY

Fuel Elevations Out of Service Variation

Tests 1 through 16 were conducted to determine the effect on N0£ emission lev-
els, when taking various fuel elevations out of service (biased firing) at
three different unit loadings and two excess air levels.  The test program
called for half load tests being performed with two adjacent fuel firing ele-
vations out of service.  However, Utah Power and Light Co. would not permit
this mode of operation.  As a result, the half load tests were performed with
only the top fuel firing elevation of the two adjacent elevations out of ser-
vice.
As can be seen in the following table, maximum N0£ emissions control was ob-
tained with the top elevation of fuel nozzles out of service (Tests 1, 4, 7,
9 and 12).

No thirty (30) day waterwall corrosion coupon evaluation was performed follow
ing the biased firing operation study.
                                     89

-------
                           UTAH POWER & LIGHT CO.
                             HUNTINGTON STATION
                                  UNIT #2
o
H4
u.
u_
LU
      91.0
      90.8
      90.6
      90.4
      90.2
      90.0
      89.8
      89.6
                   0
    4
                             0
                 r&
                                                 0
                                                          -4
                                                LEGEND


                                              Unit Load
                  8
         Max
         3/4 Max
         1/2 Max
           14   18
22
42    46
50
                  26    30    34    38

                   EXCESS AIR,  PERCENT

Figure  49:  Unit efficiency vs.  excess air, baseline study

                           90

-------
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
Main
Steam
Flow
kg/s

 375
 371
 368
 297
 295
 299
 218
 214
 375
 370
 369
 295
 299
 299
 203
 210
                   NO
 NU9
 ng/J
168,
223,
243,
191,
203.
263,
178,
263,
208.
227.
255.
214.
283.8
248,
187.
224.3
 CO
ng/J

16.7
 4.8
 9.2
 6.3
 4.4
 4.8
 4.8
 4.1
 5.0
 5.0
 5.2
 5.2
 5.7
 6.4
 4.5
 4.6
           Theo.                Fuel  Nozzle
           Air to    Unit      Elevation
X-S A1r    Firing    Efflc.     Out of
   %       Zone-%      %       Servi ce

  19.8     107.1      89.91      Top
           118.9      90.40      Center
           117.8      89.97      Bottom
            98.5      90.14      Top
           119.3      90.23      Top Center
           119.8      90.97      Bottom Center
           106.5      90.99      Top
           122.8      90.84      Center
           107.6      89.80      Top
           125.3      89.97      Top Center
           126.8      90.13      Bottom Center
           109.1      90.21      Top
           127.0      89.97      Center
           131.0      90.04      Bottom
           124.4      90.77      Top Center
  24.7     124.0      90.58      Bottom Center
21.5
20.9
16.8
19.9
20.8
22
24
26
27
29
29
28
31
25
.6
.4
.3
.4
.3
.3
.0
.7
.1
Analysis of Results
 Figure 50  1s a plot of N02 emission  levels  versus theoretical air to the fuel
 firing zone.  As with the baseline study  tests, this figure shows that increas-
 ing TA results 1n  Increasing N02  emission levels.  As evidenced by the scatter
 in the data, unit  loading does not appear to  have any distinct effect on N02
 emission levels.

 Most of the biased firing tests were performed during the time period when the
 coal being fired was a blend of two  or three  coals.  Furnace water-wall slagging
 conditions for the biased firing  tests ranged from light to moderately dirty
 furnace waterwalls.  As a result  of  the small variation In furnace waterwall
 deposits, no effect on N02 emission  levels  was evident.  Therefore, furnace
 slagging conditions have not been indicated on the biased firing graphs.

 Figure 51 is a plot of fuel firing elevation  out of service versus N0£ emis-
 sions level.  As this figure shows,  the lowest N02 levels were obtained when
 the top fuel firing elevation was removed from service.  This method of unit
 operation most closely simulates  overfire air operation.  The highest N02 emis-
 sion levels were obtained when the center fuel firing elevation was removed
 from service.  Removal of the bottom fuel firing elevation from service showed
 a reduction In N02 levels from the highest  levels obtained when the center fuel
 elevation was removed from service.  These  lower N02 levels may possibly be at-
 tributed to the flow of air under the fuel  firing zone causing a lowering 1n
 bulk flame temperature.

CO emission levels versus theoretical air to  the fuel firing zone are plotted
 1n Figure 52.  No variation 1n CO emission  levels with unit loading or furnace
waterwall deposits is evident.  The  variation In CO emission levels with TA is
not as expected.  Test #1 has an  unusually  high CO emission level.  This can be
partially attributed to the fact  that the dampers for the top fuel firing ele-
vatton were only 10 percent open as opposed to the 100 percent open desired.
                                     91

-------
                                         UTAH POWER & LIGHT CO.
                                           HUNTINGTON STATION
                                         .	  UNIT K
ro
    W


     •
     CXI
         200
         180
         160
 ir
                                                           I

                                                                          G
             100
105         110          115         120         125

      THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT
130
                                                                                                   LEGEND

                                                                                               Unit Load
                                                                                               §
                                                                          Max
                                                                          3/4 Max
                                                                          1/2 Max
                                                                       Fuel Elevation
                                                                       Not 1n Service
              Figure 50:  N02  vs.  theoretical  air to fuel firing  zone, biased firing  study

-------
                                               UTAH POWER & LIGHT CO.
                                                 HUNTINGTON STATION
                                                       UNIT #2
         TOP     A
vo
CO
      UJ
      «/>
      o
      I

      Ul
         BOTTOM  E
                 -9
              •B-
        »
                           •e-
                   160
180
200
280
                               220         240

                              N02 - ng/0

Figure 51:  Fuel elevation out of service vs. N02, biased firing study
                                                               LEGEND

                                                             Unit Load

                                                             OMax
                                                             D 3/4 Max
                                                             O 1/2 Max

                                                             Excess Air
                                                                                                       8
                                                                            Minimum
                                                                            Normal

-------
                                        UTAH POWER & LIGHT CO-
                                          HONTINGTON STATION
                                                UNIT 12
          14
          12
10
          10
      8
            100         105         110         115         120         125

                             THEORETICAL AIR TO FUEL FIRING ZONE. PERCENT

                       Figure 52:   CO vs. theoretical  air, biased  firing study
130
                                                                                                 LEGEND
            Unit Load

              I Max
              13/4  Max
              11/2  Max
            Fuel  Elevation
            Not 1n Service

-------
This fact coupled with the low excess air operation may have contributed to the
high CO level.  While there is a rise in CO level for TA's below 120 percent,
the variation is not pronounced.  Also, Tests #13 and #14 have slightly higher
CO emission levels while operating at the highest TA.

Figure 53 shows that some of those tests (Nos. 3, 4 and 14) with high CO emis-
sion levels also have some of the highest carbon heat loss values regardless of
unit load or TA.  Figure 53 indicates that increasing carbon heat loss 1s pos-
sible with decreasing TA.  This trend is not completely supported by the data
as plotted.  Tests 3, 13 and 14 have higher carbon heat loss values than ex-
pected for the excess air levels at which the unit was operating.  It should be
noted that these tests were run with the center and bottom fuel elevations out
of service.  Plotting of the fuel elevation out of service versus the CO emis-
sion levels did not provide any useful information; therefore, it is not in-
cluded 1n this report.

Figure 54 shows unit efficiency versus percent excess air at the economizer
outlet.  This plot reveals no useful information regarding the effect of excess
air level on unit efficiency.

S02 emission levels were again monitored for each test and are reported on Data
Sheets B-3 and B-4.

Unturned hydrocarbon emission levels monitored were at such low levels as to be
immeasurable.

TASK VI - OVERFIRE AIR OPERATION STUDY

Excess Air and Overfire Air Rate Variation

Tests 1 through 11 were conducted to determine the effect of varying the over-
fire air rate and excess air level on the N02 emission levels and Unit Perfor-
mance.  For these tests the overfire air registers were held at horizontal
while the fuel nozzle tilts were allowed to vary from a -14 degrees to a +17
degrees.  For each group of tests in this series, the variation in tilt was
held to the minimum allowed while maintaining acceptable superheat and reheat
outlet temperatures.  Furnace waterwall deposits were not controlled for these
tests and ranged from light to heavy slagging conditions on the waterwalls.
The overfire air tests were performed during that time period when the coal be-
ing fired was a blend of two to three coals.  There was also some problems at
this time with soot blowers being out of operation.

As shown by the following table, N02 emission levels are found to Increase with
Increasing theoretical air to the fuel firing zone.  This correlation is evi-
dent regardless of the total excess air level the unit is operating at.  Al-
though Tests 1 through 5 were conducted at normal excess air levels, averaging
26.5 percent at the economizer outlet, the N02 emission levels were lower than
for Tests 6 through 8 at minimum excess air levels, averaging 19 percent at the
economizer outlet.  This variation was not as expected.

One possible explanation to this unexpected variation 1s that the tilts for
tests 6 through 8 were at a plus ten (+10) degrees while those tilts for tests
1  through 5 ranged from a plus six (+6) to a minus fourteen (-14) degrees.
While the plus tilts 1n tests 6 through 8 reduced the residence time of the hot

                                     95

-------
                                           UTAH POWER & LIGHT CO.
                                             HUNTINGTON STATION
                                                   UNIT #2
           0.60
           0.50
to
           0.40
           0.30
           0.20
           0.10
                                        iSfS
                                                               e-
                     100
125
130
             105        110          115         120

              THEORETICAL AIR TO FUEL FIRING ZONE,  PERCENT

Figure 53:   Carbon heat loss  vs. theoretical  air, biased  firing study
                     LEGEND

                  Unit Load

                    'Max
                    13/4 Max
                    i1/2 Max

                  Fuel Elevation
                  Not in Service

-------
                        UTAH POWER &  LIGHT  CO.
                          HUNTINGTON  STATION
                        	UNIT  #2
     91.1
     90.9
     90.7
     90.5
^    90.3'
     90.1
     89.9
     89.7
                        o
                                                  o
          16
20          24          28

   PERCENT EXCESS AIR
32
                                              LEGEND

                                             Unit Load

                                               'Max
                                               '3/4  Max
                                                    Max
   Figure 54:  Unit efficiency vs. excess atr, biased firing study
                                 97

-------
 gases in the furnace they also exposed the fire to  less furnace water-wall sur-
 face.  The decrease in furnace waterwall  surface cooling area seen by the fire
 can result in increased flame temperatures with a corresponding increase in
 thermal  NOX formation.  Previous experience has shown minimum total excess air
 gives the minimum N0£ emission levels for any given coal.  One possible expla-
 nation to this difference in N02 emission levels is that the coal being burned
 at this  time was a blend of American-Church Mine, Peabody-Wi 1 berg Mine and Pea-
 body-Deer Creek Mine coals.   The percentages of each coal burned on a daily
 basis was an unknown factor.  The Church  Mine or Wilberg Mine coals were never
 used exclusively.   Although  these coals are of similar individual analysis, in-
 creased  slagging conditions  were experienced when firing a blend of these coals.
 The testing at this time was further aggravated by the necessity from that
 which had been required when burning design coal.  Wall deposits were greater
 at this  time, with running slag being experienced where previously only dry
 slag had existed.

 Although those tests conducted at the normal  excess air operating level re-
 sulted in the lowest NOX values* normal excess  air operation was not considered
 optimum  for NOX control.   Based on the above facts, the optimum excess air op-
 erating  level  was  considered to be the minimum,  approximately 20 percent at the
 economizer outlet.   The optimum overfire  air rate based on the NOJ> emission lev-
 el  results  for Tests 1  through 11  is with the overfire air dampers 100 percent
 open.  This allows  approximately 15 to 20 percent of the total combustion air
 to  be  introduced above  the top level  of fuel  nozzles.

 With  the exception  of Tests  7 and  8,  CO emission levels are not found to vary
 significantly with  changes in TA.   Tests  7 and  8 have the lowest TA of Tests 1
 through  11.   This  could contribute to the high  CO levels monitored.


                                              Theo. Air    Unit        OFA
Test     Flow      N02      CO     X-S Air    To  Firing    Effic.    Dampers
No.      kg/s      ng/J     ng/J       %       Zone - %       %       % Open

  1       369     273.7     4.7      27.0        125.2      89.51         0
  2       372     251.1     4.6      28.2        120.2      90.13        25
  3       372     229.4     4.6      26.2        111.6      89.92        50
  4       370     213.0     4.6      25.5        107.1      89.99        75
  5       370     205.3     4.5      25.2        105.4      90.05       100
  6       372     300.1     4.7      18.5        116.7      90.09         0
  7       372     247.3     36.3      19.2        102.9      89.70        50
  8       370     221.6     49.0      19.2         96.6      90.46       100
  9       369     353.2     4.8      32.1        123.2      89.44        25
 10       368     334.0     4.4      33.8        113.8      89.18        75
 11       370     332.3     4.8      33.8        112.5      89.48       100

Overfire Air T1lt Variation

Tests 12  through 18  were  conducted to determine  the effect of fuel nozzle and
overfire  air register tilt on  NOg  emission levels and unit performance.  These
tests were conducted at the  optimum overfire air rate (dampers 100 percent open)
and excess air level  (approximately 20 percent  excess air at the economizer out-
let) established In  Tests  1  through 11.   The fuel nozzles were varied from a -20
degrees to a +25 degrees,  while the overfire air registers were varied from a

                                      98

-------
 -30 to a +30 degrees.  This variation of the fuel nozzle and overflre air reg-
 ister tilt angles moves the fuel firing zone both 1n the furnace and 1n Its
 effective position relative to the overflre air registers.  Movement of the
 fuel nozzles and overflre air registers away from each other accentuates the
 effect of staged combustion.  Movement of the fuel nozzles and overflre air
 registers toward each other minimizes the effect of staged combustion because
 the air is being forced down Into the firing zone.  For these tests the fur-
 nace slagging conditions were allowed to vary, and ranged from light to moder-
 ate waterwall deposits.

 As shown 1n the following table, minimum N0£ levels were obtained when the fuel
 nozzles and overflre air registers were separated by 20 to 30 degrees (Tests 14
 and 17).  Parallel operation of the fuel nozzles and overflre air registers was
 nearly as effective, when both the fuel nozzle and overfire air registers were
 1n a horizontal position (Test 15) or when both were tilted downward to their
 respective limits (Test 12).  N02 emission levels were highest when the nozzles
 were moved toward each other.  Therefore, the optimum condition was at a tilt
 differential of 20 to 30 degrees away from each other (Tests 14 and 17).  For
 ease of boiler operation the tilt conditions for Test 17 were utilized 1n Tests
 19 through 24.

 With the exception of Tests 12 and 18, CO emission levels appear to be relative-
 ly unaffected by variations in fuel nozzle and overflre air register tilts.   It
 should be noted that for Tests 12 and 18 the TA was less than 100 percent and
 that the fuel nozzles and overflre air registers were essentially operating in
 parallel.  Test 12 was conducted with the fuel and overflre air nozzles at maxi-
 mum minus tilt, while test 18 was conducted with the fuel and overflre air noz-
 zles at maximum plus tilt.  Operation of the boiler with the tilts at the maxi-
 mum plus will reduce the residence time of the gases 1n the furnace and may re-
 sult in higher CO levels due to Insufficient burnout of the CO.


                                        Theo. Air   Unit     Fuel     OFA
                                        To Firing   Effic.   Nozzle   Register
                                        Zone - %    _%	   Tilt-0   Tilt-0

 12     370    223.3   10.4     23.1       99.6     90.11     -20       -30
 13     364    263.4    4.5     25.1      101.1     89.83       0       -30
 14     370    179.8    4.8     22.0       99.2     90.32     -20         0
 15     370    212.1    4.6     25.1      101.1     89.82       0         0
 16     372    283.5    4.4     21.3       98.4     89.90     +25         0
 17     377    186.1    4.9     23.5       99.8     90.01       0       +30
 18     367    252.1   15.8     21.7       98.6     89.51     +25       +30

 Load and Furnace Waterwall Deposit Variation at Optimum Conditions

Tests 19 through 24 were conducted at the optimized conditions of excess air
 level, overftre air rate and fuel nozzle and overflre air register tilt as de-
 termined in Tests 1 through 18.  These tests were run to determine the effect
on NOX emission levels and unit performance at optimum conditions, while vary-
 ing unit load and furnace wall deposits.  These tests were conducted at an aver-
age excess air level of 21 percent, overflre air register dampers 75 to 100 per-
cent open and with the overflre air registers tilted to +30 degrees while the
 fuel nozzles were held at horizontal.


                                    99

-------
 As shown 1n the following table, NO? emission  levels are affected by unit load,
 with higher N02 levels for higher loads.   Furnace waterwall deposits have a
 greater effect on NO? levels at lower loads.   A distinct effect on N02 emis-
 sion level Is evident at half (1/2} load  (Test Nos. 23 and 24), while this d1s.
 tlnctlon 1s considerably less for three-quarter (3/4) load (Tests 21 and 22)
 and is reversed for full load (Tests 19 and 20).  This suggests a possible re-
 lationshlp between furnace waterwall deposits, unit load and N0£ levels.

 Except for Test 23, CO emission levels are unaffected by unit load or furnace
 waterwall deposits.  The CO level and the carbon heat loss for Test 23 are
 high when considering the conditions at which  the boiler was operating.
                   N02
                   ng/J
                  196
                  190
                  161
                  167.8
                  132.0
                  155.3
X-S Air
  18
  19
  19
  21
  22.8
  23.9
Theo. Air
To Firing
Zone - %

   95.8
   97,
   98.
   95.0
   97.3
   99.7
Unit
Efflc.
89.79
89.85
90.41
90.65
90.79
90.76
Furnace
Condition

Clean
Moderate
Clean
Moderate
Clean
Moderate
 Analysis  of Results
The  changes  in  NOg,  CO and  carbon  heat  loss  versus changes In theoretical air
to the  fuel  firing zone are shown  in  Figures 55, 56 and 57, respectively.

Figure  55  shows that there  is  a  definite  trend in N02 emission levels with
changes in TA.   Increasing  TA  results in  increasing N02 emission levels.  Fur-
nace waterwall  deposits and unit load are also indicated on Figure 55.  No cor-
relation between furnace waterwall  deposit variation and N02 emission level is
evident from the data as plotted.   The  effect of unit load on NOg levels shows
lower N02  levels for lower  loads.   As these  low load tests (Tests 21, 22, 23
and  24) also have some of the  lowest  TA's, these should be compared with full
load tests at similar TA's  to  find the  effect of unit load.  A comparison of
Tests 21 and 24 with Tests  14  and  17  or of Tests 22 and 23 with Tests 19 and
20 shows that lower  loads resulted in lower  N02 levels.

CO emission  level  versus theoretical  air  to  the fuel firing zone is plotted in
Figure  56.   Figure 56 indicates  rise  in CO emission levels below TA levels of
104  percent.  Previous studies at  Alabama Power Company's, Barry #2 [2] have
shown that CO levels tend to rise  rapidly in those TA regions where N02 levels
are  falling  rapidly.

As is evident In Figure  57, decreasing  theoretical  air to the fuel  firing zone
results 1n Increasing carbon heat loss  levels.  This trend, while being similar,
is much more apparent than with the CO  emission levels, with carbon heat losses
rising  rapidly  below 104 percent TA.  This trend was also observed at Alabama
Power Company,  Barry Station,  Unit #2 [2].

Figure  58 shows the  effect that variation of fuel nozzle and overfire air reg-
ister tilts has on N02 emission levels.

                                     100

-------
                           UTAH POWER & LIGHT CO.
                             HUNTINGTON STATION
                                   UNIT 12
           100         105         110         115         120        125

                 THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

Figure 55:   N02 vs. theoretical  air to fuel  firing  zone, overflre air  study
                                                                                      LEGEND

                                                                                   Furnace Slag
                                                                                    8
Light
Moderate
Heavy
                                                                                   Unit Load

                                                                                   OMax
                                                                                   U 3/4 Max
                                                                                   <>V2 Max

-------
                                               UTAH POWER & LIGHT CO.
                                                 HUNTINCTON STATION
                                               	UNIT 12
o
ro
      o>
      8
48


44


40


36


32


28
                   95
               100
                                                                                       125
                      105         110         115        120

                THEORETICAL AIR TO FUEL FIRING ZONE.  PERCENT

Figure 56:   CO vs. theoretical  air to fuel  firing zone, overflre air study
                                                                                     LEGEND

                                                                                  Furnace Slag

                                                                                  O Light
                                                                                  (P Medium
                                                                                  • Heavy

                                                                                  Unit Load

                                                                                  Otfax
                                                                                  D 3/4 Max
                                                                                  OV2 Max

-------
                                            UTAH POWER & LIGHT CO.
                                              HUNTINCTON STATION
                                                    UNIT #2
          0.65
u>
    §
    I
    o
    &
    «t
    o
          0.55
          0.45
0.35
          0.25
          0.15
               95          100         105          110         115         120         125

                                 THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

                     Figure 57:  Carbon heat loss  vs.  theoretical  air, overfire air study
                                                                                                        LEGEND

                                                                                                     Furnace Slag
                                                                                           I
   Light
   Moderate
   Heavy
Unit Load

8   Max
^ 3/4 Max
Ol/2 Ma

-------
                              UTAH POWER & LIGHT CO.
                                HUNTINGTON STATION
                                      UNIT #2
340
320
300
280
260
240
220
200
180
160

NSPS-

r






1
^
<
)








)











^









\
c









^"""-x,
)









\
c







1
^-^
)







fr

"\









^x.


f\ 1






"Xw
^*N
(
\
r o







^^.
)

ft 1







\<

C 1







)

n 9
35   30
25    20    15    10    5     0

    TOWARD                 DEGREES                   AWAY
     OFA REGISTER &  FUEL  NOZZLE TILT DIFFERENTIAL, DEGREES

   Figure 58:  N02 vs.  tilt differential,  overflre air  study

-------
Figure 58 shows that as the fuel nozzles and overffre air registers are angled
toward each other, NO? emission levels rise.  Conversely as the nozzles are
moved away from each other, the effect of staged combustion becomes more pro-
nounced, until at 30 degrees away from each other the NOg emission level 1s
186 ng/J for full load unit operation.

Prior experience at Alabama Power Company's, Barry Station, Unit #2 has shown
that flame stability can be a limiting factor as the fuel nozzles and overfire
air registers move substantially away from each other.  Tests, similar to Tests
12 through 18, at the Barry Station, Unit #2 Indicated a probable maximum dif-
ferential of 50 degrees between the fuel nozzles and overfire air registers [2],
Flame instability was not apparent during tilt variation tests at Utah Power
and Light Company's Huntlngton Canyon Station, Unit #2.  The maximum differen-
tial of the fuel nozzles and overfire air registers away from each other for
these tests was only 30 degrees compared to 50 degrees for the Barry tests.

Figure 59 shows unit efficiency versus excess air at the economizer outlet. A
decrease in unit efficiency is evident with increasing excess air at the econ-
omizer outlet.  This trend is in agreement with the baseline and biased firing
tests at Huntington Canyon Station, Unit #2 and previous tests at Barry Station,
Unit #2.

S0£ emission levels were monitored and are reported on Sheets B-5 and B-6.  As
with the other tests there is no apparent correlation between S02 emission lev-
els and excess air, unit load or furnace waterwall deposits.

Unburned hydrocarbons were monitored for all overfire air tests and were at
such low levels as to be unmeasurable.

A thirty (30) day waterwall corrosion coupon test was conducted in November,
1975.  The boiler operated with the overfire dampers 100% open and with full
load being maintained as much as possible.  The overfire air corrosion coupon
test is discussed in the following section, Waterwall Corrosion Coupon Evalua-
tion.

WATERWALL CORROSION COUPON EVALUATION

Following completion of the steady state phases of the baseline and overfire
air test programs, thirty (30) day waterwall corrosion coupon evaluations were
performed.  The purpose of these evaluations was to determine whether any mea-
surable changes in coupon weight losses could be obtained for the modes of
firing under study.

The Individual probes were exposed at five locations on the furnace front wall
as shown on Figure 60.  The coupon temperatures were maintained at the same
levels for each 30 day run and a typical tract of the control temperature range
for each of the twenty coupons is shown on Figure 61.

The Individual coupon weights were determined before and after each thirty day
test and the individual coupon and average probe weight losses are shown on
Sheets B45 and B46.  The weight losses are calculated as mg/cm2 of coupon sur-
face area.

Figures 62 and 63 show the unit load schedules for each of the 30 day test

                                     105

-------
                             UTAH POWER & LIGHT CO.
                               HUNTINGTON STATION
                                     UNIT #2
C_5
UJ
Q.
LiJ
91 8
91 fi
Ql 4
Ql 2
91 0
on o
90 6
90 4

90 2
on n
3U. U
on o
oy .0
QQ C
0:7.0
QQ A
O3 .f
PQ ")
oy . £
89.0 -























4
£•

^
AA
A
A









A

^


A

A








"

i

/
A











'



si
C














1
^

A












2^


















^















A
^

&







LEGEND
Unit Load

A Max
A 3/4 Mai
A 1/2 Ma.





            16    18    20    22    24    26     28     30    32    34

                              EXCESS AIR, PERCENT


        Figure 59:  Unit efficiency vs.  excess air, overflre air study
                                      106

-------


A

c

n
n
a
a
D
a
^^•M


V
1
n 	
u
t OVERFIRE AIR \T
COMPARTMENT |L
2 
54 Rd M 79 ' TM
rl TT fTTIMIMX
• 52.71 (172 11 )
51.41 ri68'8")
bU.8^ (Ib6'9")
                         FRONT WALL
Figure 60.  Waterwall corrosion probe locations, Huntington Station No.  2
                                    107

-------
                              UTAH POWER & LIGHT CO.
                                HUNTINGTON STATION
                                      UNIT #2
                                 TYPICAL COUPON
                                   TEMP. RANGE
                                  ALL 5 PROBES
CONTROL TEMP. 399 C (750F)
TOP COUPON OF EACH PROBE
Figure 61.  Typical corrosion probe temperature ranges, Huntington Station No. 2

-------
                                                                UTAH POWER & LIGHT CO.
                                                                   HUNTINGTON STATION
                                                                	UNIT |g
2

§
                                                                                                                                     AUG.  GROSS MW/HR
                                                                                                                                     30 BAY PERIOD
                                                                                                                                     273 Mrf/HR
              6/03/75
6/04/75
6/06/75
6/07/75
6/08/75
6/09/75
6/10/75
                                                     CORROSION PROBE EXPOSURE  TIME - DAYS
                                   FIGURE 62:   GROSS MM LOADING vs. TIME - BASELINE CORROSION PROBE STUDY

-------
                                                       UTAH POWER & LIGHT CO.
                                                         HUNTINGTON STATION
                                                       	UNIT |g	
450
noo
350
300
250
200
          10/23/75      10/24/7510/25/75      10/26/75      10/P7/75       10/28/75
               10/29/75
10/30/7"5
                                                                                                                                  AV6. GROSS MW/H?  -
                                                                                                                                  30 DAY PERIOD
                                                                                                                                  347 Mrf/HR
               III|IU, rr:: ;::: un; :::- ::j: :.i: :u: ;i;^.;  ,ii^-i.uH/« Ht»
               I75      11/17/75       11/18/75       11/19/75
11/21/75
11/22/75
11/23/75
                                                CORROSION PROBE EXPOSURE TIME  -  DAYS
                             FIGURE 63:  GROSS  MM LOADING vs. TIME - OVERFIRE  AIR CORROSION PROBE STUDY

-------
periods.

The overfire air portion of the study was conducted using the "optimum" oper-
ating conditions determined during the overfire air steady state tests.

Throughout the overfire air study the overfire air dampers were maintained at
the full open configuration over the range of unit loading shown on Figure 63
with the following exceptions.  On November 2, 1975 the overfire air were
closed during unit start-up.  Between November 5 and November 7, 1975 one com-
partment was closed when required to maintain proper windbox pressure.   Novem-
ber 15 to November 16, 1975 one compartment was closed at reduced unit loading
and on November 22 and November 23, 1975 one or both dampers were closed during
low load operation.

The percent oxygen was monitored daily during each thirty day study at each
probe location and was found to range between 7 and 19 percent Q£ during both
the baseline and overfire air studies.

The weight losses calculated for the baseline portion of the test program were
found to be greater than those for the overfire air tests.  The average weight
losses for all five probes were as follows:

                        Baseline         Overfire Air

                      3.4266 mg/cm2      2.6357 mg/cm2

These values are within the range of losses which would be expected for oxida-
tion of carbon steel for a 30 day period.  This premise is verified by control
studies conducted in C-E's Kreisinger Development Laboratory using probes ex-
posed during the biased firing study conducted at Alabama Power Co., Barry #2.
These probes'were cleaned and prepared in an Identical manner to those used for
furnace exposure and placed in a muffle furnace for 30 and 60 day exposures at
399°C with a fresh air exchange.  The test results were as follows:

                   Probe          Wt. Loss mg/cm2 - 30 Days
                  M (30 day)                    4.7999
                  Q (r                         	
Q (30 day)                    4.7741
R (60 day)         5.1571/2 = 2.5785
B (60 day)         8.3493/2 = 4.1746
These results indicate that the test coupons oxidized more rapidly during the
first 30 days exposure with average weight losses decreasing in the second
thirty days.  Based on these results, it appears that the differences in weight
losses observed during the test program are within the ranges to be expected
from oxidation alone.

Chemical analysis of coupon deposits taken during the test program indicate an
enrichment in iron as compared with the "as fired" coal ash analysis with the
greater enrichment occurring during the baseline study.  Also the degree of
Iron enrichment during the overfire air study was not as consistent as was
noted 1n the baseline study.  There is some question as to whether the ash de-
posits accurately represent Inner and outer layers of deposit In some probes.
Despite the uncertainty there was nothing about the compositions or fusibility


                                    111

-------
temperatures which would indicate a change In slagging condition  between the
baseline and overfire air studies.  The as-fired ash and coupon deposit analy-
ses are given on Figures 64 and 65.
                                     112

-------
Utah Power & Light Company
Huntington Canyon, #2
                                        C-E Power Systems
                                        Field Testing and
                                        Performance Results
        WATERWALL  CORROSIO-N   COUPON   DATA   SUMMARY
                         AS FIRED ASH AND COUPON DEPOSIT ANALYSIS
     Sample Location

Ash Fus1bil1ty-°F
   Initial Deformation Temp.
   Softening Temp.
   Fluid Temp.

Ash Composition-%by Weight
   S102
   A1203
   CaO
   MgO
   Na20
   K20
   S03
Total
BASELINE STUDY
Mill Exhauster
2050
2160
2440
49.0
15.5
7.2
9.0
2.0
4.8
1.0
1.0
7.6
Probe #1
1980
2040
2210
21.0
4.5
54.6
9.0
2.1
2.0
0.5
0.3
6.0
Probe #2
I.S.


18.4
6.0
47.9
6.5
1.1
3.2
0.9
0.6
15.4
Probe #3
1980
2160
2270
21.0
4.8
54.8
8.0
1.7
1.9
0.6
0.4
6.8
Probe #4 Probe #5
I.S. 1910
I.S.
2050
18.5 I.S.
7.9
45.6
8.3
1.3
3.3
0.6
0.3
14.1
97.1
100.0
100.0
100.0
99.9
 I.S. - Insufficient Sample

              Figure 64:  As-fired ash & coupon deposit analysis, baseline study

-------
Utah Power & Light Company
Huntington Canyon, #2
                                                                       C-E Power Systems
                                                                       Field Testing and
                                                                       Performance Results
        WATERWALL  CORROSION  COUPON   DATA   SUMMARY
                         AS FIRED ASH AND COUPON DEPOSIT ANALYSIS

                                    OVERFIRE AIR STUDY
     Sample Location

Ash Fusibil1ty-°F
   Initial Deformation Temp.
   Softening Temp.
   Fluid Temp.

Ash Compos it1on-Bby Weight
   Si02
   A12&3
   Fe?03
   CaO
   MgO
   Na0
   K2
                          Mill Exhauster   Probe #1   Probe #2   Probe #3  Probe #4   Probe #5
   SO
                               2130
                               2200
                               2450
                               51.5
                               17.0
                                4.7
                                8.9
                                1.1
                                5.2
                                0.6
                                1.0
                                6.6
2200
2250
2530
1890
1920
2020
56.9
19.2
4.4
9.6
1.1
4.6
0.6
0.6
<0.1
28.7
11.3
32.8
13.9
2.6
2.5
0.4
0.4
4.7
2120
2210
2440
1940
1970
2140
I.S.
55.6
18.3
5.4
9.1
1.0
4.4
0.6
0.6
0.3
29.3
26.8
25.5
9.3
1.6
2.2
0.3
0.9
3.8
23.9
9.2
39.9
11.9
2.3
2.0
0.3
0.5
5.5
Total
                               96.6
97.0
97.1
95.3
99.9
95.5
I.S.  -  Insufficient Sample
            Figure 65:  As-fired ash & coupon deposit analysis, overfire air study

-------
                    SECTION III - EPA CONTRACT 68-02-1367

                ALABAMA POWER COMPANY, BARRY STATION, UNIT #2

                                INTRODUCTION


This program encompassed the work to be performed under the second phase of a
two phase program to identify, develop and recommend the most promising com-
bustion modification techniques for the reduction of NOX emissions from tan-
gentially coal fired utility boilers with a minimum impact on unit performance.

Phase I (performed under EPA Contract 68-02-0264) consisted of selecting a
suitable utility field boiler to be modified for experimental studies to eval-
uate NOX emission control.  Phase I also included the preparation of prelimi-
nary drawings, a detailed preliminary test program, a cost estimate and de-
tailed schedule of the program phases and a preliminary application economic
study indicating the cost range of a variety of combustion modification tech-
niques applicable to existing and new boilers [1].

Phase II consisted of modifying and testing the utility boiler selected in
Phase I to evaluate overfire air and biased firing as methods for NOX control.
This phase also included the completion of detailed fabrication and erection
drawings, installation of analytical test equipment, updating of the prelimi-
nary test prdgram, analysis and reporting of test results and the development
of control technology application guidelines for existing and new tangentially
coal fired utility boilers.

This program was conducted at the Barry Steam Station, Unit No. 2 of the Ala-
bama Power Company.  This unit is a natural circulation, balanced draft design,
firing coal through four elevations of tilting tangential fuel nozzles.  Unit
capacity at maximum continuous rating (MCR) is 113 kg/s main steam flow with a
superheat outlet temperature and pressure of 538°C and 12.9 MPa.  Superheat and
reheat temperatures are controlled by fuel nozzle tilt and spray desuperheatfng
A side elevation of the unit prior to modification is shown on Figure 66.

Throughout this report NOX emission levels are expressed as ng/J N02.
                                     115

-------
Figure 66.   Unit side elevation, Alabama Power Company,  Barry Station No. 2
                                   116

-------
                                 CONCLUSIONS
NORMAL OPERATION
1.  Under normal unit operation, without overfire air, excess air variation was
    found to have the greatest single effect on NOX emission levels,  increasing
    NOX with increasing excess air.  An average increase of 3.34 ng/J for each
    1% change in excess air was observed over the normal operating range.

2.  Unit loading and variation in furnace slag conditions were found  to have
    the least effect on NOX and CO emission levels and the percent carbon in
    the fly ash.

3.  Under normal unit operation, the percent carbon loss in the fly ash and CO
    emission levels increased with decreasing excess air with the increases be-
    coming greater below a level of approximately 20 to 25 percent excess air.
    CO levels in excess of 23.9 ng/J were considered unacceptable for the pur-
    poses of this program.

OVERFIRE AIR OPERATION

1.  NO  reductions of 20 to 30% were obtained with 15 to 20 percent overfire
    air when operating at a total unit excess air of approximately 15 percent
    as measured at the economizer outlet.  This condition would provide an
    average fuel firing zone stoichiometry of 95 to 100 percent of theoretical
    air.  Stoichiometries below this level did not result in large enough de-
    creases in NOX levels to justify their use.  Biased firing, while poten-
    tially as effective, necessitates a reduction in unit loading and is there-
    fore less desirable as a method of NOX control.

2.  When using overfire air as a means of decreasing the theoretical  air (TA)*
    to the fuel firing zone the percent carbon in the fly ash and CO  emission
    levels were less affected than when operating with low excess air.  This is
    due to the ability to maintain acceptable total excess air levels during
    overfire air operation.

3.  Furnace performance as indicated by waterwall slag accumulations, visual ob-
    servations and absorption rates were not significantly affected by overfire
    air operation.

4.  On the test unit, where the overfire air port could not be installed as a
    windbox extension, test results indicated that the centerline of  the over-
    fire air port should be kept within 3 meters of the centerline of the top
    fuel elevation.  Distances greater than 3 meters did not result in decreased
    NOX levels.  Changes in distance less than 3 meters did affect NOX levels to


* See Appendix D.

                                     117

-------
     a  limited  extent with  the  NOX  level  increasing with decreasing distance.

 5.   Optimum overfire air operation was obtained with the test unit when the
     overfire air nozzles were  tilted with the fuel nozzles.  From a standpoint
     of NOX  control,  emission levels increased when the nozzles were directed
     toward  each  other, and  flame stability decreased when they were directed
     away  from  each other by more than 20-250.  With the overfire air tilts
     fixed in a horizontal position, acceptable unit operation was obtained,
     however, NOX levels varied with fuel nozzle position.

 6.   The results  of the 30 day baseline,  biased firing and overfire air corro-
     sion coupon  runs  indicate that the overfire air operation for low NOX op-
     timization did not result in significant increases in corrosion coupon
     degradation.  Additional studies will be required to verify these observa-
     tions over long-term operation.

 7.   Variables  normally used to control normal boiler operation should not be
     considered as NOX controls with coal firing.  These variables include unit
     load, nozzle tilt, pulverizer fineness, windbox dampers and total excess
     air.

8.  Overall  unit efficiency was not significantly affected by overfire air op-
    eration.
                                     118

-------
                                 OBJECTIVES


The objective of program Phase II was to complete the design of the overfire
air system, modify the Barry #2 unit accordingly, perform baseline, biased
firing and optimization tests and based on the results of this program, pre-
pare an application guideline for the NOX control technology generated.

Specifically these objectives are defined as follows:

TASK I

Prepare the design, detailed fabrication and erection drawings necessary for
modification of Barry No. 2 to incorporate an overfire air system.  The system
design provides for:

     a.  Introducing a maximum of 20% of the total combustion air above the
         fuel admission nozzles.

     b.  Overfire air introduction through the top two existing windbox com-
         partments (thereby prohibiting the use of one elevation of fuel noz-
         zles).

     c.  Introduction of hot overfire air only with consideration for air pre-
         heat control.
             •
An updated schedule for Tasks II and IV were also prepared under Task I.

TASK II

Complete the purchasing and fabrication of all equipment necessary for modifi-
cation of the Barry No. 2 unit.

TASK III

Install all necessary instrumentation required to measure flue gas constituents
and characterize the effects of combustion modifications on unit performance.
Specifically the following determinations were made:

     a.  Flue gas constituents:  NOX, SOX, CO, HC, 02

     b.  Unit Performance Effects:

         Fireside Corrosion
         Furnace Heat Absorption
         Sensible Heat Leaving Furnace
         Superheater, Reheater and Air Heater Performance
                                     119

-------
 TASK IV

 Conduct a  baseline test program  to establish the effect of unit load, wall
 slagging and excess air variation on baseline emission levels, thermal perfor-
 mance  and  operating ranges.  A baseline corrosion coupon test of 30 day dura-
 tion was also conducted.

 TASK V

 Conduct a  biased  firing baseline test program to establish the effect on unit
 emission levels while  operating  with various fuel elevations out of service.
 These  tests  were  performed specifically to evaluate the maximum emission con-
 trol at full  load and  throughout the normal load range.  In addition, the de-
 gree of control required to meet and maintain emission standards throughout
 the normal control  range was also evaluated.  A biased firing corrosion coupon
 test of 30 days duration was also conducted.

 TASK VI

 Install  all  equipment  required for modification of the test unit and function-
 ally check equipment to determine that proper operation is obtained.  (See Fig-
 ure 67).

 TASK VII

 Complete final preparations for  conducting the overfire air test program to be
 conducted  in Task VIII  including the following:

     a.  Finish installation of  the furnace waterwall thermocouples.

     b.  Check out  all  necessary test instrumentation for proper installation
         and operation.

     c.  Review test program with EPA project officer and utility company.*

     d.  Perform  a  final inspection of the test unit to assure proper operation.

TASK VIII

Conduct the overfire air test program, analyze the data generated and compare
this data with that obtained during Task V.  The program investigated the ef-
fect of overfire  air location and rate at various unit loadings and evaluated
operating conditions considered  as optimum from the standpoint of NO* control
and unit operation.  The final report was also generated under this Task.

TASK IX

 Prepare a program outlining the  application of the technology developed under
 this study to existing  and new design tangentially coal fired utility boilers.
These application guidelines will be submitted as a separate final report.



* The test program  for  this study was originated during the Phase I study,
  Contract 68-02-0264 and was Included as part of the Phase I report.

                                     120

-------
          F-FUEL AND AIR
          A-AIR
          0-OVERFIRE AIR
Figure  67.  Schematic overflre air system, Barry Station No. 2
                            121

-------
                                 DISCUSSION


Tasks  1,  2  and  3 were  completed essentially as stated in the program Phase II
Objectives.

TASK IV & V - BASELINE AND BIASED FIRING TEST PROGRAMS

Test Data Acquisition  and Analysis

The flue  gas samples for determination of NOX, Og, CO, SOg and HC emission lev-
els were  obtained at each of the two economizer outlet ducts.   The emissions
monitoring  system is shown in Figure 68.

The flue  gas samples were drawn from a twenty-four (24) point grid arranged on
centroids of equal area in each duct with the exception of the S02 sample which
was drawn from a single average point using a heated sample line.  Fly ash sam-
ples for  carbon loss analysis and dust loading were obtained at a single point
in each duct.

The percent QZ leaving the air preheaters was also determined using a twenty-
four (24) point grid arranged in centroids of equal area for the determination
of air preheater leakage and unit efficiency.

The following instrumentation was used in determining the emission concentra-
tions:

     1.  NO:  Chemiluminescence Analyzer
           J\

     2.  02 :  Paramagnetic Analyzer

     3.  CO :  Nondispersive Infrared Analyzer

     4.  HC :  Flame lonization Analyzer

     5.  S02:  Wet Chemistry

     6.  Carbon Loss & Dust Loading:  ASME Particulate Sampling Train

A summary of the NOX emission test data is tabulated on Data Sheets Cl, C2, C3,
C4 and C5.

Unit steam and gas side performance was monitored using calibrated thermocouples,
pressure gauges, transducers and manometers as required.

Coal samples were obtained during each test for later analysis.  The samples
were obtained from each feeder and blended to form a composite sample.  Fuel
analyses, unit steam flow rates, absorption rates, gas and air weights and
                                     122

-------
Figure 68.   Gaseous  emissions  test system
                   123

-------
 efficiencies  were calculated  for each test run.  Unit efficiency was deter-
 mined using the heat losses method  (based on ASME Power Test Code 4.1-1964).
 The  30 day waterwall  corrosion  coupon evaluation was conducted using a spe-
 cially designed probe consisting of four individual coupons.  Individual
 probes were exposed  at five locations on the front furnace wall as shown on
 Figure 69.  A typical  trace of  the  control temperature range for each of the
 twenty coupons is shown on Figure 70.  The control temperature ranges were the
 same for  the  baseline,  biased firing and overfire air studies.

 TASK IV - BASELINE TEST STUDY

 Load and  Excess Air  Variation

 Tests 1 through 7 were  conducted to determine the effect of varying excess air
 at three  unit loads  on  unit emission levels and performance.  These tests were
 conducted with clean  furnace  conditions.

 As shown  in the following table, NOx emission levels increased with increased
 excess  air  but did not  change significantly with changes in unit loading.  An
 average increase  of  3.34 ng/J was noted for each 1% change in excess air over
 the  normal  unit operating range.

          Main
          Steam                                   Theo.  Air     Unit
          Flow       NOg       CO      X-S Air     To Firing     Eff.      WW
          kg/s       ng/J      ng/J        %        Zone - %      _J»	     Slag

  1        61      319.3      7.5       35.5        130.6       88.3     Clean
  2        62      246.0      43.5       17.5        117.1       88.2     Clean
  3        59      362.8      2.5       58.9        151.3       87.6     Clean
  4        88      215.0      11.9       12.6        109.2       89.3     Clean
  5       112      248.6      9.5       22.7        117.9       89.0     Clean
  6       113      181.8      47.3       11.7        107.2       89.1     Clean
  7       112      335.1      10.1       30.8        125.3       89.5     Clean

A maximum excess  air limit of 30.8 and 58.9 percent was obtained at full and
half  load conditions respectively due to ID fan capacities.

Minimum excess  air limits of  20 to 25 percent were determined as those at which
acceptable CO emission  levels could be maintained.  Reduction of N02 emission
levels using excess air reduction was therefore limited to approximately 248.6
ng/J as obtained  during Test  5.

The changes in  NO?, CO, percent carbon loss in the fly ash and unit efficiency
versus theoretical air  to the fuel firing zone are shown on Figures 71, 72, 73
and 74, respectively.  The theoretical air (TA) to the firing zone is used in
this case as It accounts for  variations in position and leakage in the compart-
ment dampers above the  top active fuel compartment and thereby presents a more
accurate determination of the actual air available for combustion in the fuel
firing zone than  does the total excess air.  As seen on Figure 71 for clean
furnace conditions the  N0£ correlates well with TA with little variation due
to unit load.   As shown on Figures 72 and 73 carbon loss in the fly ash and CO
emission  levels  increased with decreased TA levels.  Unit load does not appear
to have a discernable effect.   Figure 74 1s a plot of unit efficiency versus


                                     124

-------
(70'4")  21.44
m










-

V "'- 	 -
"1 20FAELEV.1 	 -~~^~"


r

D


£ FUEL ELEV. A

2 3
Qi FUEL ELEV. B fl
U
\y



P


D
£ FUEL ELEV. C

4 5
_n £ FUEL ELEV. D R
U U
—- -^
— '



»
" Each

p

D
-

-
\/




m






i
/\
D

D
-

-
V V




/\
V
FRONT WALL










                                                           .  Probe Nos. Above
                                                                  (69'-6") 21.18m
                                                                  (6V-9") 18.82m



                                                                  (57'-5") 17.50m
                                                                  (49'-H") 15.22m



                                                                  (45'-7")  13.89m
 Figure 69.   Waterwall  corrosion  probe  locations, Alabama Power Company
              Barry Station  No. 2
                                    125

-------
                                  TYPICAL COUPON
                                    TEMP. RANGE
                                   ALL 5 PROBES
                                 TEMPERATURE - °F
                                                                           0«
CONTROL TEMP. - 750 F(399C],
TOP COUPON OF EACH PROBE
Figure 70:  Typical corrosion probe temperature, range, Barry Station No. 2
                                     126

-------
ro
           380
           360
160' u-.

   100
                                                                                      160
                  110         120         130         140         150

                     THEORETICAL AIR TO FUEL  FIRING  ZONE, PERCENT

Figure 71:   N02 vs.  theoretical  air to fuel  firing zone,  baseline study, Tests 1-14
                                                                                                   LEGEND

                                                                                                Unit Load

                                                                                                OMCR
                                                                                                D 3/4 MCR
                                                                                                   1/2 MCR
                                                                                        Furnace Slag

                                                                                        O Light
                                                                                           Moder
                                                                                           Heavy

-------
ro
Co
131


121


111


101


 91


 81


 71


 61


 51


 41


 31


 21


 11


  1
                100
                             *
                               \
                                                                       160
                                                                                                   LEGEND

                                                                                                Unit Load

                                                                                                OHCR
                                                                                                 D 3/4 MCR
                                                                                                       MCR
                                                                                         Furnace Slag

                                                                                         Ought
                                                                                         9 Moderate
                                                                                         • Heavy
                    110         120        130-        140        150

                      THEORETICAL AIR TO  FUEL FIRING ZONE, PERCENT

Figure 72:   CO vs. theoretical air to  fuel firing zone, baseline study, Tests  1-74

-------
        1.0


        0.9


        0.8
    ^   0.6
        /H •-
    8   0.5
iv   eg   0.4
    o
    o
    QC
0.3


0.2


0.1


  0
            100
                110
120
130
140
150
160
                                                                                                       LEGEND
                                                                                             Unit Load
                                                MCR
                                                3/4 MCR
                                                1/2 MCR
                                                                                                     Furnace Slag
                                                                                                     I
                                                                             Light
                                                                             Moderate
                                                                             Heavy
                           THEORETICAL AIR TO FUEL FIRING ZONE, PERCENT

         Figure  73:  Percent  carbon  loss  vs.  theoretical  air to  fuel  firing zone, baseline  study, Tests  1-14

-------
o   [Z
90

89
8
QC
UJ
Q.
•
O Op
Z UU
Lkl
»—t
O
M*
u.
&
H-
NM
Z P7
3 O/


OC
ot>
OK
















•V














S.O
d^
0














^

O











O
1^ ^
*<2>












O A
£
^^












a

^
^ •













^
>^














^^















*^















»<


























LEGEND
BASELINE TESTS
Unit Load Furnace Slag

QMCR O Light
Q3/4 MCR 3 Moderate
<>l/2 MCR * Heavy
BIASED FIRING TESTS

Unit Load Fuel Elev. Out
of Service
-
(^ Max Poss . ^ Top
A 3/4 MCR tf) Top Ctr.
Q 1/2 MCR £Bot. Ctr.
flBot.

                      10
20
30
40
50
60
                        UNIT EXCESS AIR - ECONOMIZER OUTLET,  PERCENT
                     Figure 74:   Unit efficiency vs.  unit excess air

-------
 unit excess air measured at the economizer outlet.

 During this portion of the test program total hydrocarbon levels (HC) were
 monitored and were found to be present in only trace quantities as shown on
 Data Sheets Cl and C2.  The S02 levels measured are also shown on Data Sheets
 Cl and C2.

 Furnace Wall Deposit Variation

 Tests 8 through 14 were conducted to determine the effect on unit performance
 and emission levels of varying furnace water-wall deposits from a clean condi-
 tion to the maximum possible slagging condition obtainable.  The maximum slag-
 ging condition was obtained after operation in excess of twenty-four hours
 without operating any wall blowers.  During this time period slag deposits of
 up to 102 mm in thickness could be obtained in and above the fuel firing zone.

        Main
        Steam                                 Theo. Air    Unit
 Test    Flow      N02       CO     X-S Air    To Firing    Eff.
 No.     kg/s      ng/J     ng/J       %       Zone - %      %      WW Slag

  8      114     213.5     14.1      21.5       116.9      89.6    1/2 Max Dep
  9      112     178.7    130.2      13.0       108.5      89.6    1/2 Max Dep
 10      112     286.1      1.6      26.0       120.8      89.6    1/2 Max Dep
 11       59     267.0     90.3      32.7       128.0      88.3        Max Dep
 12       57     327.2     66.9      51.2       144.1      87.9        Max Dep
 13      114     247.7     12.4      20.7       115.7      89.2        Max Dep
 14      113     292.6     10.3      24.3       119.2      89.3        Max Dep

As can be seen from Figure 71, furnace slagging did not exhibit a discernable
 effect on NOX emission levels.  As shown in Figures 72 and 73, this condition
was also found to be true for carbon loss in the fly ash and CO emission lev-
 els with the exception of the half load Tests 11 and 12 where CO levels higher
 than those obtained with clean furnace conditions were observed.  The high CO
 levels may have been due to slag buildup at or near the fuel and air nozzles
which could have contributed to poor combustion.  The higher CO levels were
not observed under full load with heavy slag operation.  Figure 74 indicates
 that furnace cleanliness did not exhibit any discernable effect on unit effi-
ciency.

Slag patterns taken during clean, moderate and heavy slagging conditions at
full load operation are shown on Figures 75, 76 and 77.

TASK V - BIASED FIRING STUDY

Fuel Elevations Out of Service Variation

Tests 15 through 24 were conducted to determine the effect on NOX emission lev-
els of taking various fuel elevations out of service (biased firing) at various
unit loadings.  As shown on the following table the maximum NOX emissions con-
trol was obtained with the top elevation of fuel nozzles out of service at max-
imum and 75 percent maximum loading (Tests 20 and 21).  At 50 percent maximum
loading (Test 23) the high excess air levels required to maintain unit steam
temperatures appeared to negate any NOX reductions obtained by biasing the top


                                     131

-------
CO
ro
•xj
in
•n
-j
tu
8
in
Ol
ua
TJ
Ol
?
o
0)
Ol
i
o»

X
y

RIGHT
0
^
>
2
f
3
2
^
v/
FRONT
1
0
2

2
J •
0
LEFT
0
° *\
2

2
2
>J ^
\/
REAR



2

3
2
J ™
0
KEY
NO ASH
FUZZY 4"
RUNNING
TEST
DATE 11/14/
TIME IS:
HU LOAD 1
SB
2

3

4

5
S
73
10
24

-------
                    (O
                     c
                     n>
to
CO
                     tu
                     o
                     


01
                      3
                      a>
                                             RIGHT
                                                                    FRONT
lr i
                                                                                           LEFT
                                                                                                WET
                                                                                                 4
                                                                                                                 REAR
                                                             KEY



                                                   NO ASH

                                                   FUZZY <1/Z'


                                                   LIGHT 1/2" - 1"



                                                   LIGHT TO MEDIUM
                                                   1" - 2"
                                                                                                                                  MEDIUM TO HEAVY
                                                                                                                                  2" - 4"
                                                                                                                                  HEAVY >4"
                                                                                                                                  RUNNING
                                                                                                             TEST f           8
                                                                                                             DATE      11/15/73
                                                                                                             TINE         11:10
                                                                                                             MM LOAD        126

-------
 8

 in

 Di
ua

•a
 Ql
 rt-
 to
 o>
 at
IQ
ai
RIO
2
0
T
0
4
i 3 r
WET

^Z
L
FRONT 1
° r
3

• f
4
WET

.V/.
0
LEFT
•X
/ ^
\ . x

4
WET

A • /•
\/
REAR



4

3
WET

0


.v/.
0
NO ASH
FUZZY <1/2'
LIGHT 1/Z' - T
LIGHT TO MEDIUM
1" - 2"
MEDIUM TO HEAVY
2" - 4' -
HEAVY >4"
RUNNING
TEST
DATE 11/16
TINE 14
HHLOAD
H
1 2 |
3

4

•
31
13
m
:20
125

-------
fuel nozzle elevation, however, the emissions level obtained was below the cur-
rent EPA limit for coal fired units of 301 ng/J.
        Main
        Steam
        Flow
        kg/s

         55
         82
         87
         89
         89
         87
         86
         58
         59
         56
         NO?
         ng/J
        288.0
        272.8
        200.6
        189.2
        189.9
        143.1
           .2
           .5
166.
268.
249.1
306.2
 CO
ng/J

 9.8
 8.9
14.0
11.9
10.6
 8.1
 9.5
 9.1
 7.0
 8.4
                 X-S Air
                   50.1
                Theo. Air
                To Firing
                Zone -  %

                  105.8
                     Unit
                     Eff.
                     .7
                     .1
                     .2
       26.
       21
       22.
       21.8
       24.2
       29.0
       48.0
       47.0
       47.0
          121.
          116.
          117.
          117.
           94.
           97.
          112.
          141.
            87.
            89.
            89.1
 3
.9
                                      141.3
            89.
            88.
            88.8
            89.6
            87.8
            87.9
            87.7
      Fuel  Nozzle
      Elevation
      Out of
      Service

      Bottom
      Bottom
      Bottom
      Bottom Center
      Top Center  •
      Top
      Top
      Top
      Top Center
      Bottom Center
As can be seen from Figure 78, biasing the center two and bottom fuel elevations
did not have a discernable effect on NOX emission levels although the emission
level tended to be higher at reduced unit loadings for given TA levels.

Figures 79 and 80 indicate that with biased firing, low TA levels to the fuel
firing zone were obtained without increasing either CO emission levels or the
carbon loss in the fly ash.  Figure 74 shows that biased firing operation did
not significantly affect unit efficiency.  This condition is due to the ability
to maintain acceptable total unit excess air levels during biased firing oper-
ation.

TASK VIII - UN-IT OPTIMIZATION STUDY

Load and Excess Air Variation (After Modification)

Tests 1 through 7 were performed with unit conditions closely approximating
those of Baseline Tests 1-7 under Program Task IV.  A clean furnace was main-
tained as the excess air was varied at three unit loads.

The effect of these operating conditions emission levels and performance can
be seen in the Table below.
  1
  2
  3
  4
  5
  6
  7
Main
Steam
Flow
kg/s
61
59


NO?
ng/J
221.9
167.4
                            CO
                           ng/J
                          X-S Air
 60
 87
125
122
117
319.8
162,
202.
165.
238.8
  8.4
114.4
 10.
 33.
  8.0
 38.8
  6.6
.6
.4
33.
16.
64.
15.
21.
12.
        25.4
Theo. Air
To Firing
Zone - %

  127.1
  113.4
  155.4
  111.0
  115.3
  107.1
  119.5
                                          Unit
                                          Effic.
88.4
88.8
87.4
89.8
                               89.
                               89,
                       89.5
         WW Slag

         Clean
         Clean
         Clean
         Clean
         Clean
         Clean
         Clean
                                     135

-------
    o>
_,   o
JIU
POO
&7U
970,
t/U
9cn
tOU
oon
tou
91 n
fclU
Inn
90
170
50
130
NSPS-








/f
"*






/
/

I





/
/




•


s
/






A

X








/>

o
471
3/4 MCR Olop Ctr.
^1/2 MCR QBot. Ctr
Q Bottom

           90
100         110         120         130         140
  THEORETICAL AIR TO FUEL FIRING ZONE,  PERCENT
150
         Figure 78:  N02 vs.  theoretical  air to fuel  firing zone,  biased firing study, Tests 15-24

-------
   40
O>
O
O
   30
    20
    10
       90
                                      O
                    LEGEND
                                                                                       Unit Load
          OMax Poss.
          $3/4 NCR
          a 1/2 MCR
                                                                                                      Fuel Nozzles
                                                                                                      Out of Serv.

                                                                                                         I Top
                                                                                                         >Top Ctr.
                                                                                                          Bot. Ctr.
                                                                                                          Bottom
150
                  100         110         120          130         140

                     THEORETICAL AIR TO FUEL FIRING ZONE,  PERCENT

Figure 79:   CO vs. theoretical air to fuel  firing  zone,  biased  firing study, Tests 15-24

-------
» • *
0 6
!§0 5

i— i
— • i/i
U> CO
no o n ^
*** y u. j
O
S^
u
i
o 0 . 1
a:
Ul
a.
n




(2






i












,












O
o
a



•


«





























»










LEGEND
Fuel Nozzles
Unit Load Out of Serv.
QMax. Poss. £ Top
J3/4 MCR OT°P ctr-
1/2 MCR Q Bot. Ctr
O Bottom

 90
100
110
120
130
140
150
                    THEORETICAL  AIR TO  FUEL  FIRING ZONE, PERCENT
Figure 80:   Percent carbon loss  vs.  theoretical  air to  fuel  firing zone, biased firing study,
            Tests 15-24

-------
As witnessed in the previous baseline tests, NOX emission levels increased  with
increased excess air.*

ID fan capacities limited excess air to a maximum of 64.7 and 33.5 percent  at
half and full load conditions respectively.  Acceptable minimum excess air  lim-
its were established at 20-25 percent to control CO emission levels.   Thus, NOX
emission levels could only be reduced to approximately 215 ng/J through excess
air reduction.  The effect of theoretical air to the firing zone on NOX,  CO,
and percent carbon loss in the fly ash (% CL) can be seen in Figures  81,  82 and
83.  Consistent with the original baseline tests, theoretical air to  the firing
zone (TAJ was used for comparison in place of total excess air (EA).   TA is de-
termined by location and means of admission as well as quantity, and  consequent-
ly better defines that air actually available for initial combustion.

Figure 81 indicates a definite increase in NOX emission levels with increasing
TA for clean furnace conditions.  CO emission levels and percent carbon loss in
the fly ash can be seen to increase with decreased TA without overfire air.
Reasonable control of CO and % CL can only be maintained at TA levels above
120%.  No definite relationship can be observed between unit load and CO emis-
sion levels.  Percent CL can be seen to be greater at higher unit loads for
given TA levels.

Changes in steam generator efficiency versus excess air at the economizer out-
let are presented in Figure 84.  Overall, unit efficiency decreases as the ex-
cess air increases.

Hydrocarbon emission levels appeared only in trace quantities for this portion
of the test program.  HC and S02 levels are presented on Data Sheet C3.

Furnace Wall Deposit Variation (After Modification)

The effect of furnace waterwall deposits on unit performance and emission lev-
els was studied in Tests 8 through 14 (Clean Condition - Maximum Slagging Con-
ditions).  The results are shown in the table below.  Dirty conditions were es-
tablished after a minimum of 24 hours of not operating the wall blowers.  De-
posits of up to 102 millimeters in thickness could subsequently be found in
and above the fuel firing zone.

        Main
        Steam                                Theo. Air    Unit
        Flow      NOg      CO     X-S Air    To Firing    Effic.
        kg/s      ng/J    ng/J       %       Zone - %       %       HW Slag

         122     235.3     7.4      17.8       112.3       89.0     1/2 Max
         124     166.9     9.6      12.1       106.9       88.9     1/2 Max
         119     215.4     9.2      26.6       120.5       89.5     1/2 Max
* In general, N02 values were slightly lower after modification for the same
  test conditions.  This resulted from an upgraded firing system installed be-
  tween the sets of tests along with an average percent nitrogen in fuel de-
  crease of 0.15 percent (1.21 to 1.06 percent).  Also, fuel higher heating
  values and furnace outlet temperatures tended to be lower for Tests 1-7 after
  modification.

                                     139

-------
i1
CM
       100
                   no
                       120         130         140         150

                       THEORETICAL  AIR TO FIRING ZONE, PERCENT

Figure 81:   N02  vs.  theoretical air to firing zone, overfire air study,
            load and excess air variation, Tests 1-14
160
                                                                                                  LEGEND

                                                                                           Unit Load   Furnace Slag
                                                                                                           Light
                                                                                                           Moderate
                                                                                                           Heavy
                                                                                            83/4 MCR
                                                                                            1/2 MCR

-------
  115


  105


   95


   85


   75


   65
8  55
    45
    35
    25
    15
        100
                                                                             LEGEND

                                                                     Unit Load   Furnace Slag
                                                                                        8
                                                                       NCR
                                                                       3/4 MCR
                                                                           MCR
O Light
(J Moderate
   Heavy
110         120         130         140         150

      THEORETICAL AIR TO FUEL FIRING ZONE,  PERCENT
                                                                             160
 Figure 82:  CO vs. theoretical  air  to  firing zone, overflre air study,
             load and excess  air variation,  Tests 1-14

-------
ro
        LEGEND

Unit Load   Furnace Slag
                                                                                         O MCR
                                                                                         D 3/4 MCR
                                                                                         OV2 MCR
            O Light
            $ Moderate
            0 Heavy
                              THEORETICAL AIR TO FIRING ZONE,  PERCENT

      Figure  83:   Percent carbon loss vs. theoretical  air to firing  zone,  overfire air study
                   load and excess air variation, Tests 1-14

-------
CO
              91
              90
           u  89
               88
               87
               86
9
                               ©
                                    •J
                                    ©
                                      0
                                                     0
                                                           D
                                                                       ©
                                                                      &•
                                                                           (O
                             10
          20
30
40
50
                                                                                     0
                                                                                      60
                                                                   70
                                         UNIT EXCESS AIR -  ECONOMIZER OUTLET, PERCENT
         Figure 84:  Unit efficiency vs. excess air - economizer outlet, all tests (before & after modification)

-------
         Main
         Steam                               Theo. Air    Unit
         Flow       N02      CO     X-S Air    To Firing    Effic.
         kg/s
NU?      i>u     A-b Mir    10 riring    ETTIC.
ng/J    ng/J       %       Zone -  %       %        W Slag
           68      186.8     8.0      30.9       124.6       89.3       Max
           61      312.9     7.3      63.1       154.0       88.0       Max
          120      195.6     7.1      22.0       116.2       89.0       Max
          118      215.4     7.0      25.9       119.9       89.4       Max

 Figures 81, 82 and 83 reveal no observable effect of furnace cleanliness on NOX
 or CO emission levels along with percent carbon loss in the fly ash.  Again,
 NOX values were generally slightly lower after modification.  Nitrogen in fuel
 decreased  an average of 0.19 percent from 1.23 percent.  Furnace outlet temper-
 atures were somewhat lower for Tests 8 through 14 after modification although
 fuel higher heating values showed no definite change.

 Slag patterns taken during full load operation for clean, moderate and heavy
 slagging furnace  conditions are shown in Figures 85, 86 and 87.

 This set of tests also confirms the results found in Tests 1 through 7, i.e.,
 NOX emission levels increase with increased excess air.  NOX cannot be de-
 creased through excess air reductions below 20 percent excess air while main-
 taining an acceptable CO emission level without overfire air.

 OFA Location, Rate and Velocity Variation

 Tests 15 through 23 were performed to establish the effect of overfire air ad-
 mission on NOX emission levels.  The unit load and excess air remained constant
 for moderately dirty furnace conditions.  Location of air admission to the fur-
 nace was varied.

       Main
       Steam                   Theo. Air   Unit   Mills
Test   Flow     NOz     CO     To Firing   Eff.    In       Adm.      Adm.
No.     kg/s     ng/J   ng/J    Zone - %    _%	   Serv.     Pts.*     Rate

 15     93     178.7    8.6      114.5     90.0    BCD        0-1         0
 16     94     127.3    9.1       96.7     89.8    BCD        0-1       Max
 17     94     127.3    9.9       95.8     89.7    BCD        0-2       Max
 18     96     114.4   14.6       84.8     89.6    BCD    0-1,0-2       Max
 19     94     116.1    11.9       89.3     89.3    BCD    0-1,0-2   1/2 Max
 20     96     161.7    8.8      100.5     90.2    BCD        0-3       Max
 21      95     241.7    7.7      117.4     90.1    ABC        0-1         0
 22     95     164.6    7.8       90.4     89.0    ABC    0-1,0-2       Max
 23     96     168.1     7.7       96.9     89.1    ABC    0-1,0-2   1/2 Max
* OFA Admission Points:
  0-1:  Top overfire air compartment
  0-2:  Bottom overfire air compartment.
  0-3:  Top fuel elevation out of service.
                                     144

-------
                      to
U1
                      S
                      Ol
                      o
                      CD
                      Ol
                      «0
                      TJ
                      o>
                      ft
                      sr
                      n
                      B)
                      Oi
                      8
RIGHT
1
1
3
2
•1 I-
1
FRONT
1
1 1 2
^ j-
2
J k
1
1
LEFT
1
1 3 3
3
_ f
2
J h
1
\/
REAR
1



2
3
2
1
1
           KEY


NO ASH


FUZZY 4*


                                                                                                                               RUNNING
                                                                                                                               TEST   fS
                                                                                                                               DATE   6/19/74
                                                                                                                               TINE   2:00 PN
                                                                                                                               NULOAD130MU

-------
 3
 o>
t»
(O

•o
o>
 §.
 n>
 •?


 m

 VI

 Ol
10
-j

eu
RIGHT

? "
1 3 2
3 33
2

Y '/
\/
FRONT

1 2 1
1243
3 3 3
• **
2
J L
i .1

i
LEFT

i 2 r
1 3 4
3 3 3
2
1 1


S



\/
REAR
3 33



13 31
333
2
1

1
                                                                                                                        KEY





                                                                                                             NO ASH



                                                                                                             FUZZY 4"
                                                                                                              RUNNING
                                                                                                              TEST   18 I 19

                                                                                                              DATE   6/20/74

-------
to
 c
 00
 •vj
 c
 tfl
 Ol
 in
 Ol
 rt-
 sr
 3
 CD
 O>
 I/)
 Ql
 (O
RIGHT
2 1
/ "
1 3 4
2 22
4
1 1 1
\/
FMNT
11 30
11 31
1332
22 33
•
4
1 1 1
1.1 1
LEFT
1 2
^
\
' '\
1 3 2
2333
M r
4
J »•
1 1 2

REAR



12 31
21 33
4
1 1 1
1 1 1
           KEY



NO ASH


FUZZY 4'
                                                                                                           RUNNING
                                                                                                           TEST     »13
                                                                                                           DATE     6/28/74
                                                                                                           TIHE     ":45AN
                                                                                                           m LOAD 126

-------
 As  shown  in  Figure  88,  this set of tests shows a tendency of NOX emission lev-
 els to  decrease  with  decreased theoretical air to the firing zone.  NOX levels
 are generally higher  with ABC mills  (top 3 elevations) in service than with
 BCD mills  (bottom 3 elevations).  Both operating conditions support the premise
 of  reducing  NOX  emission levels by reducing the air input to the fuel firing
 zone and admitting  the  balance of combustion air downstream of that point.  The
 fire is thereby  spread  out over more of the furnace reducing its intensity.
 The above  factors are limited by flame stability which became very lazy in Test
 18.  By using the bottom 3 elevations in place of the top 3 elevations, the dis-
 tance between the overfire air and the firing zone was increased.  (The mean
 firing elevation is also slightly decreased.)  Comparison of Tests 18 and 19
 with Tests 22 and 23  reveals lower NOX levels obtained with increased distance
 between the  overfire  air and the firing zone.  Operation at TA levels below
 95% did not  result  in significant reductions in NOX emission levels.

 CO  emission  levels  remained acceptable for the entire set of tests where the
 total excess  air was  approximately 27 percent as shown on Figure 89.

 OFA admission  location  or rate variation exhibited no significant change in
 percent carbon loss in  the fly ash as shown on Figure 90.

 Unit efficiencies were  not significantly affected by fuel elevations  in service,
 or  by overfire air location and rate variation.  This is explained by the fact
 that essentially constant total excess air levels were maintained during this
 study.

OFA Tilt Variation

Tests 24 through 30, and 33, were conducted at full unit load with excess air
and theoretical air levels to the firing zone of approximately 24 percent and
92 percent, respectively.  With moderate slagging conditions on the waterwalls
the fuel nozzle tilts and OFA tilts were varied.  This essentially moves the
firing zone both in the furnace and in its relative position to the overfire
air.  Fuel nozzle tilts that are maximum minus combined with OFA tilts of maxi-
mum plus increase the distance between the overfire air and the firing zone.
As with previous methods of increasing this distance, the NOX emission levels
are decreased.  Figure 91 shows that as the tilts are moved toward one another
 (fuel nozzle tilts up; OFA tilts down), the OFA-firing zone separation is de-
creased and the NOX levels are increased.
Test
No.
Main
Steam
Flow
kg/s
N02
ng/J
CO X-S Air
ng/J %
Theo. Air
To Firing
Zone - %
Unit
Effic.
%
Fuel
Nozzle
Tilt-0
OFA
Tilts-0
 24     113    169.6    7.7     25.9       94.2      89.6      -5        0
 25     116    145.4    8.3     23.7       92.4      89.3     -23        0
 26     114    183.9    9.7     25.1       93.2      88.9     +19        0
 27     113    172.2    6.7     22.3       91.5      89.3      -5      -30
 28     115    202.1    8.6     20.2       89.6      88.6     +22      -30
 29     116    142.3   15.0     23.7       92.6      89.4     -21      +30
 30     116    169.6    7.9     21.6       90.7      89.0      -4        0
 33     114    166.5    7.5     27.4       94.6      89.0     -22      -22
                                     148

-------
10
ZOU
240
220
200
-a 160
c
CM (go
100
80














. — —

J^






— -~

~^~*









k)^
-^

H*|


	 	






^

-






^










^~~





^
a
^^






-^

---








-^^





/-








-^

^'





^

rr





^
^"







^
y







LEGEND
Adm. Pts.
So-2
QO-3*
Rate
ANo OFA
Al/2 Max. OFA
A Max. OFA
Mills In Serv.
ABC @
BCD [D]
SO 85 90 95 100 105 110 115 120
THEORETICAL AIR TO FIRING ZONE, PERCENT
Figure 88: N02 vs. theoretical air to firing zone, overflre air location,
rate & velocity variation, Tests 15-23

-------
     40
     30
  S  20
Ol
o
     10
       80
85
                 Figure 89:
90
95
100
105
110
115
                   THEORETICAL AIR TO  FIRING ZONE, PERCENT
           CO vs. theoretical  air to firing zone, overfire  air  location,
           rate & velocity  variation, Tests 15-23
120
                                                                                      LEGEND
                                                                                      Adm. Pts.
                                                                                    &0-1
                                                                                    NO-Z
                                                                                    QO-1, 0-2
                                                                                    QO-3
                                                                                        Rate
                                                                                    A No OFA
                                                                                    A1/2 Max. OFA
                                                                                    A Max. OFA
                                                                                    Mills In Serv.
                                                                                    - ABC (§)
                                                                                      BCD ID!

-------
Ol
  0.9


  0.8


  0.7


3 0.6
Gf
5 0.5
to
I/)


I


UJ
£Q2.
0.

  ai


    o
           80
                                                       LOWER  LIMIT OF ACCEPTABLE TA LEVELS
85
                             90
95
100
105
110
115
120
                                                                                     A No OFA
                                                                                     A 1/2 Max. OFA
                                                                                     A Max. OFA

                                                                                        Adm. Pts.
                                                                                                            A  0-1
                                                                                                            bk  0-2
                                                                                                            &  0-1, 0-2
                                                                                                            O  0-3
                                          THEORETICAL AIR TO FIRING ZONE, PERCENT
            Figure 90:   Percent carbon  loss vs. theoretical air to firing zone, overflre air location
                         rate & velocity variation, Tests 15-23

-------
en
ro
    220

    210

    200

5.  190
 *
o" 180

    170

    160

    150

    140
"70    60
                                                                       o
                                                                                     60    70
                            50    40     30     20     10     0     10    20    30    40    50
                             TOWARD EACH OTHER                       AWAY FROM EACH OTHER
                                       OFA TILT AND  FUEL  NOZZLE  TILT  A  f DEGREES
                  Figure 91:  N02 vs.  OFA tilt and fuel nozzle tilt differential, OFA tilt variation
                              Tests 24-33

-------
 When the OFA tilts are maximum minus and the fuel nozzle tilts maximum plus,
 the term overfire air becomes ambiguous.  The actual overflre air is less than
 the reported value, because the air is being forced down into the raised fir-
 ing zone.  A~t this point where the combined fuel nozzle and OFA tilt differen-
 tial is 52 degrees toward each other, the NOX emission level reaches a maximum
 of 202.1 ng/J.

 Percent carbon loss in the fly ash exhibits a definite increase as the fuel
 nozzle tilts and OFA tilts move away from each other.  This can be seen in Fig-
 ure 92.

 CO emission levels also show an increase as the  tilt differential increases,
 yet there is enough total excess air to maintain an acceptable emission level
 as shown 1n Figure 93.

 Flame stability arises as a limiting factor in variation of the tilts.  As the
 tilts move substantially away from each other, the fire becomes unstable and
 pulsing may result.  Test 29 was performed with  a fuel nozzle and OFA tilt dif-
 ferential of 51 degrees away from each other.  NOX emission levels decreased
 to 142.3 ng/J, yet the CO emission levels began  to increase and the fire ap-
 peared less stable.  Maintaining the fuel nozzle tilts and OFA tilts at approx-
 imately equal tilt angles resulted in acceptable flame stability as well as re-
 duced NOX emission levels.

 For all OFA tilt variation tests the NOX emissions level obtained was below
 the EPA limit of 301 ng/J.

 Load Variation at Optimum Conditions

 Tests 30 through 35 were conducted to evaluate unit performance and emission
 levels at optimum operating conditions as determined during Tests 15 through
 29.  Tests were conducted over the unit load range at varying furnace water-
 wall slagging conditions.  The NOX emission level results of this series of
 tests versus unit loading, expressed as main steam flow, are shown on Figure
 94.
        Main
        Steam
        Flow
        kg/s

         116
          87
          57
         114
          86
          57
 N02
 ng/J

169.6
169.1
197.8
166.5
145.2
 CO
ng/J
 7.
 7.
 7.
 7.
156.4
 8.0
 7.6
X-S Air
  21.6
  25.2
  46.9
  27.4
  27.4
  45.9
Theo. Air
To Firing
Zone - %
         Unit
         Effic.
  90
  89
  88
  94
  90
.7
.4
.5
.6
.6
.5
89,
89.
89,
89.
88.
              89.0
UW Slag

Clean
Clean
Clean
Max
Max
Max
This figure illustrates the range of N02 levels obtained both during baseline
(after modification) and optimum unit operations.  Not all the baseline tests
are Included as 1n some cases unit operation was felt to depart excessively
from normal operations.  Low excess air operation can be cited as an example.

The wide range of N02 levels obtained, particularly during the baseline tests
                                     153

-------
in
            16

            15

            14

            13

            12
         o
         u
10

 9

 8

 7
              70     60
                                                                      O
               50    40    30    20    10     0    10    20    30    40    50
               TOWARD EACH OTHER                        AWAY FROM EACH OTHER
                         OFA TILT AND FUEL NOZZLE TILT A, DEGREES
   Figure 92:   CO vs. OFA t1H and fuel nozzle tilt differential,  OFA variation
               Tests 24-33
60    70

-------
Ul
Ul
           0.7
           0.6

         I
         ^0.5
         £0.4
         5
            0.3
            0.2
               70    60
                  50    40    30    20    10     0    10    20    30    40    50
                    TOWARD EACH OTHER                       AWAY FROM EACH OTHER
                              OFA TILT AND FUEL NOZZLE TILT A, DEGREES
Figure 93:  Percent carbon loss  vs.  OFA tilt  and fuel  nozzle tilt differential,
            OFA tilt variation,  Tests  24-33
60    70

-------
en
 330

 310

 290

 270

 250

 230

 210

.190

 170

 150

 130
      50
      50
                   60
70
                                                                                    (20
80
90
100
110
120
                                       STEAM FLOW -  10JKG/HR
                                      75
                           PERCENT OF FULL LOAD  RATING
                                   100
                                                                         LEGEND
                                                                   O Baseline  Tests
                                                                   ^Optimization Tests
            Figure 94:
                            NO-  vs.  main steam  flow, ranges  for normal  & optimum operation

-------
are due to variations in unit operating parameters such as excess air level.
During the optimization tests, total excess air at the unit economizer outlet
was maintained between 20 and 28% at full and 3/4 load and 45 to 47% at 1/2
load and fuel nozzle tilts raised or lowered as required to maintain acceptable
reheat and superheat outlet temperatures.  Also minimum excess air levels were
established on the basis of maintaining acceptable CO emission levels and flame
stability.

Tests 30, 31 and 32 were conducted as a series and no problems were encountered
while changing load with optimum operation.

FURNACE PERFORMANCE

During the test program, furnace performance was monitored by use of chrodal
thermocouples installed in the furnace waterwalls.  A schematic of the thermo-
couple locations is shown in Figure 95 and a tabulation of the absorption rates
obtained is presented on Sheets C6, C7 and C8.  The temperatures and correspond-
ing absorption rates were found to vary significantly with wall slag conditions
making data interpretation difficult.  The method finally arrived at as repre-
senting an accurate indication of furnace performance is as follows:

The front and right side wall centertube profiles were plotted as shown in Fig-
ure 96 and the average of these profiles determined.  It should be noted that
the maximum and minimum profiles shown do not represent individual walls in
every case, i.e., at given furnace elevations the maximum rate shown may switch
from wall to wall.

For comparison of optimum and normal unit operation with respect to furnace
performance, three full load tests with similar furnace slagging conditions,
etc., were selected for comparison.  The average center!ine profiles for these
tests (14, 24, 33) were determined, as shown on Figures 96, 97 and 98, and then
plotted together as shown on Figure 99.  As shown, furnace performance remained
essentially unchanged when furnace slagging effects are taken into account.

It should be noted here that obtaining desired slag conditions proved to be
difficult and somewhat unpredictable during overfire air operation.  This sit-
uation was most pronounced in the firing zone where slag accumulations would
normally shed themselves before appreciable accumulations could be built up.

WATERWALL CORROSION COUPON EVALUATION

Following completion of the steady state phases of the baseline, biased firing
and overfire air test programs, thirty (30) day waterwall corrosion coupon
evaluations were performed.  The purpose of these evaluations was to determine
whether any measurable changes in coupon weight losses could be obtained for
the various firing modes studied.

The individual probes were exposed at five locations on the furnace front wall
as shown on Figure 69.  The coupon temperatures were maintained at the same
levels for each 30 day run and a typical trace of the control temperature range
for each of the twenty coupons is shown on Figure 70.

The individual coupon weights were determined before and after each thirty day
test and the individual coupon and average probe weight losses are shown on


                                     157

-------
g
             -n
             —it
             to
             n>
             vo
             en
             o

             2.
             Ol
             (0
             n
             o
o
o
O)
             o

             (/>

             o




             n>
a*
o
n
                          :
                          ii!
                                      !!
                          23  24 25 26  27 28 29
                          OS'OS'OVOS'OS'OI'O
L=
                               30 31 32 33 34

                               OI'OS'OS'Ol'O



0 2
ir
0 4
«•
0 6
ir
o° 'i \5 5 ^4 15 i6


0 1
•***^ IV
0 3
ir
O 5
11'
0 7
IP

'O'M




f
<^
^x.


— 6 —
35 36 37 38 39 40 41 lot 42 43 5)4 45 46
oooooooooooo
H 4-:"047
48 49 50 51 52 53 54 I « 5fi 4--^ 58 59
000000002? 8 
-------
 36.58
 (120
 33.53
 (110)
 30.48
 (100)
 27.43
 24
      0    24    6    8     10   12   14    16   18   20   22    24   26   28


                   TUBE CROWN ABSORPTION RATE. KG-CAL/HR-CM2
Figure 96:  Average centerllne absorption profile, Test 14
                                 159

-------
      36.58
      (120)
      33.53
      (110)
      30.48
      (100)
     27.
                 m

\<
                                       i:
            I TEST 124
 t Date:  7/29/74
 ! Load:  124 NU          ,
_: Furn. Absorp.: 145.13 10°KG-CAL/HR
-• Total Absorp.: 276.9 lO^KG-CAL/HR
 : TA to Fuel Firing Zone: 94.2 I
_: Toul Excess Air:  25.9 X
              O - Front WW Center Tube Profile
              O - Right WW Center Tube Profile
            - A - Avg. Center Tube Profile - Both Walls
           0    2     4   6     8    10   12    14    16   18    20   22    24    26   28

                         TUBE CROWN ABSORPTION RATE. KG-CAL/HR-CM2
Figure 97:   Average center!1ne  absorption  profile,  Test  24
                                      160

-------
 36.58
 (110)
 33.53
 (110)
           24    6    8    10    12   14   16    18   20   22    24   26   28


                  TUBE CROWN ABSORPTION RATE. KG-CAL/HR-CM2
Figure 98:   Average  centerllne  absorption  profile, Test 33
                                 161

-------
     36.58
     (120)
     33.53
     (UO)
&
V
                  «    6    8    10   12   14    16   18   20   22


                      TUBE CROUN ABSORPTION RATE. KG-CAL/HR-CM2
Figure 99:   Average centerline absorption  profile, All  Tests
                                  162

-------
Sheets C9, CIO and Cll.  The weight losses are calculated as mg/cm2 of coupon
surface area.  Of the sixty coupons exposed, three were damaged during disas-
sembly and were therefore not included in the weight loss determinations.   The
affected coupons were as follows:  Coupon K-l, baseline study, and coupons 2-1
and 2-4, overfire air study.  In addition, five coupons from probes T and N of
the overfire air study resisted disassembly and were therefore weighed as sin-
gle units and average weight losses were determined.

Figures 100, 101 and 102 show the unit load schedules for each of the 30 day
test periods.

The biased firing study was conducted with the top fuel firing elevation out
of service as this operating condition was shown during steady state biased
firing tests to produce the lowest NOX emission level of the biasing modes
studied.  The overfire air study was conducted using an "optimized" operating
mode as determined during the overfire air steady state tests.

Throughout each study the following damper positions were maintained over the
load ranges indicated.

At unit loadings below 56.7 kg/s steam flow, with two elevations of mills in
service, damper positions were maintained as follows:

          Biased Firing Operation         Overfire Air Operation

                                          OFA Dampers        100
                                                             100

          Coal   Auxiliary                Coal         Auxiliary

                                                          100
                                           100
                                                           50
                                            30
                    100   Combustion                       50
                    100 " Air Only                          0
           30                                0
                     50                                     0
           30                                0
                                                            0

From 56.7 to 75.5 kg/s steam flow, with three elevations of mills in service,
the damper positions were as follows:

          Biased Firing Operation         Overfire Air Operation

                                          OFA Dampers        100
                                                             100

          Coal    Auxiliary                Coal          Auxiliary
                          Combustion                      100
          100           " Air Only         100
                                                           50
                                     163

-------
                                                                              AVG. GROSS W/HR .
                                                                              30 OAT PERIOD
                                                                              87.7 MW/HR
                 2/7/74       2/8/74       2/9/74
                   •-     I    •  •     l I    j
2/14/74  I   2/15/74   'AflJ  2/20/74
I "  I     I i    »-         *_^
                             — -i- .J ••   i .. .»; .    ii •   -I-  -: Irr
                             3/8/74   j    3/9/74   |    3/10/74
                                                3/12/74
                          CORROSION PROBE EXPOSURE TINE - DAYS
Figure  TOO:   Gross MW loading vs. time  - baseline  corrosion  probe
                 study
                                        164

-------
                                                                     AV6. GROSS mi
                                                                     HR - 30 MY
                                                                  _ PERIOD
                                                                     M.OtH/HR
                        4-16-74   I   4-17-74   I   4-18-74

                        CORROSION PROBE EXPOSURE TIME - DAYS
Figure 101:   Gross MW  loading vs.  time -  biased firing corrosion  probe
               study
                                      165

-------
                                                                               AVG. GROSS NU/HR •
                                                                               30 DAY PERIOD
                                                                               77.0 NH/HR
       9-11
^•tiTtliiTiTi';.-|tf trt*«|- "i	  .1 	i'   -|- •• •  i

 |    9-12     I    9-13    I    9-14    ]    9-15

             CORROSION PROBE EXPOSURE TIME - DAYS
                                                                16    9-19     9-20
Figure  102:   Gross  MW  loading vs.  time  - overfire  air  corrosion probe
                study
                                         166

-------
           Biased Firing Operation          Overfire Air  Operation
           (Cont.)CCont.)

           Coal   Auxiliary                 Coal          Auxiliary

            20                               30
                      50                                     50
                      50                                     50
            20                               30
                      50                                     50
            20                                0
                      50                                      0

At unit loadings above 75.5 kg/s to the maximum steam flow with the maximum
elevations of mills 1n service, the following damper positions were maintained.*

           Biased Firing Operation          Overfire Air Operation
Coal
Auxiliary

100 Combustion

100

30


30
.
30

Air

50

50
50

50

50
Only









OFA Dampers

Coal

100

30


30

30

100
100
Auxiliary
100

50

50
50

50

50
The percent oxygen was monitored daily during each thirty day study at each
probe location and was found to be essentially the same for the various test
conditions ranging between 16 and 19 percent 03.

The weight losses calculated for the biased and overfire air portion of the
test program were found to be greater than those for the baseline tests.  The
average weight losses for all five probes were as follows:

               Baseline         Biased Firing      Overfire Air

             2.6381 mg/cm2      4.6429 mg/cm2      4.4419 mg/cm

These values are within the range of losses which would be expected for oxida-
tion of carbon steel for a 30 day period.  To verify this premise control


* At no time during the biased firing study was the top elevation coal pulveri-
  zer placed in service.  Maximum unit loading was therefore limited to the max-
  imum with the lower three mills in service.


                                      167

-------
studies were conducted in C-E's Kreisinger Development Laboratory using probes
exposed during the biased firing study.  These probes were cleaned and  pre-
pared in an identical manner to those used for furnace exposure and placed  in
a muffle furnace for 30 and 60 day exposures at 399°C with a fresh air  ex-
change.  The test results were as follows:
                   M
                   Q
                   R
                   B
 Probe        Ht.  Loss mg/cm2 - 30 Days

(30 day)                    4.7999
 30 day)                    4.7741
 60 day)         5.1571/2 = 2.5785
'60 day)         8.3493/2 =4.1746
These results indicate that the test coupons oxidized more rapidly during the
first 30 days exposure with average weight losses decreasing in the second
thirty days.  Based on these results, it appears that the differences in
weight losses observed during the test program are within the ranges to be ex-
pected from oxidation alone.

Chemical analysis of deposits taken during the test program does not, in it-
self, show that molten phase attack has occurred.  The composition of the de-
posits does show some differences, primarily in the iron content as noted on
Figure 103.  The deposit collected during the biased firing and overfire air
tests show 50 and 35 percent iron, respectively, versus 30 percent in the base-
line test.  Higher iron is normally indicative of lower melting temperatures.
However a certain quantity of CaO is necessary to flux the iron if it is to re-
sult in a low melting mixture.  The CaO content is considerably less in the
biased firing and overfire air tests as compared to that of the baseline test.
Accordingly the fusibility temperatures are higher for the biased firing test
and slightly higher for the overfire air tests.  This agrees with observations
made during the tests, i.e., deposits during biased firing were more friable
and easily removed than in the baseline tests with the overfire air tests fall-
ing closer to baseline operation.

For comparison fusibilities and compositions have been given in Figure 39 for
the coal ash as fired.  This points out the selective deposition of certain
constituents in the coal ash, like iron, and also shows that resultant fusibil-
ity temperatures of deposits can be significantly different than the coal ash
as fired.
                                      168

-------
                                              Water-wall   Waterwall
Waterwal 1
Slag
Sample
Baseline

Ash Fusibility
IT
ST
HT
FT
Ash Composition
S102
A12°3
Fe2°3
CaO
MgO
Na'20
K20
Ti02
P2°5
so3

Test

1930
2090
2200
2500

46.2
18.4
29.9
3.9
0.8
0.32
0.61
N.R.
N.R.
0.34

100.4
Coal Ash
(As-F1red)

2150
2410
2500
2620

45.8
30.7
13.9
1.8
1.3
0.4
1.4
0.8
0.5
1.2
97.8
Slag
Sample
Biased
Firing
Test

2060
2170
+2700
+2700

38.4
10.3
50.0
1.0
0.3 -
0.1
0.7
N.R.
N.R.
0.8

101.5
Slag
Sample
Overfire
Air
Test

1930
2090
2250
	

38.5
18.1
35.4
1.8
0.9
0.4
1.9
1.0
N.R.
0.4

98.4
Figure 103:  Ash Analysis
                                   169

-------
                      SECTION IV - APPLICATION GUIDELINES

                                 INTRODUCTION


This section presents the results of Task IX of the Phase II - "Program for Re-
duction of NOX from Tangential Coal Fired Boilers" performed under the sponsor-
ship of the Office of Research and Development of the Environmental Protection
Agency (Contract 68-02-1367).  These results were subsequently updated under
Task VII d of Contract 68-02-1486, "Staged Combustion Technology for Tangen-
tially Fired Utility Boilers Burning Western U.S. Coal Types."  The results
presented are based on field performance tests performed at Alabama Power Com-
pany, Barry #2; Utah Power & Light Company, Huntington Canyon #2; Wisconsin
Power & Light Company, Columbia #1 and current contractor experience.

The utilization of overfire air as an NOX control technique is discussed rela-
tive to the following areas of interest:

1.  Necessary equipment modifications and costs (as of January, 1977) associ-
    ated with applying this technology to existing steam generators.

2.  Specific limitations to the general applications of the technology devel-
    oped.

3.  Emission control and cost effectiveness of applying the developed technol-
    ogy to new steam generator designs.
                                      170

-------
                                  CONCLUSIONS


1.   Prior to Incorporating overfire air as an  NOX control  system on existing
    unit designs, an exploratory test program  must be  performed to determine
    the acceptability of the unit for modification.

2.   The costs of installing an overfire air system on  an existing unit could
    range between 2 to 4 times the cost as included on a new unit design.
    Based on January, 1977 estimates, existing unit modification costs could
    range from 0.24 to 1.8 $/kw, depending on  unit size.

3.   Approximately 40% of the existing coal fired units in the United States are
    of tangential design and could conceivably be modified to incorporate over-
    fire air systems.

4.   Unit size, heat rate and expected life must be considered in deciding
    whether modifications are justified.

5.   Incorporation of an overfire air system will not significantly affect unit
    performance.

6.   A large percentage of the existing tangentially coal fired units in  the
    United States can meet current EPA standards for NOx emission levels.  The
    necessity of applying the overfire air technique for NOx control should
    therefore.be established prior to committing a unit for modification.
                                      171

-------
                                RECOMMENDATIONS
EXISTING STEAM GENERATING UNITS

The applicability of the technology developed in the course of this project
should be qualified by the following conditions:

1.  Any unit under consideration should be subjected to an exploratory test
    program to determine the necessity of modification with respect to appli-
    cable NOX compliance limits.  The minimum test requirements recommended
    for such a study would consist of studying the effect of available process
    variables such as excess air level.  The minimum test data would consist
    of NOX, CO for combustion efficiency and sufficient board or test data to
    identify changes in unit operating characteristics.

2.  A review should be made of the unit and turbine useful life expectancy,
    unit size versus modification costs, and unit heat rate.

NEW STEAM GENERATING UNITS

All tangentially coal fired units since approximately 1970 have included Over-
fire Air (OFA) systems in the original unit design.  The OFA system is there-
fore not considered by Combustion Engineering, Inc. as an additional NOX con-
trol device.
                                      172

-------
                                  DISCUSSION


The effectiveness of overfire air operation in reducing NOX emissions from ex-
isting utility steam generators was evaluated by selecting, modifying, testing
one unit and selecting and testing two additional units designed with OFA sys-
tems.  The effects of OFA system operation on unit performance and emission con-
trol was studied in each of these units.  The modified test unit, Alabama Power
Company's Barry #2, is a natural circulation, balanced draft design, firing coal
through four elevations of tilting tangential fuel nozzles.  Unit capacity at
maximum continuous rating (MCR) is 113 kg/s main steam flow with a superheat
outlet temperature and pressure of 538QC and 12.9 MPa.

The units designed with overfire air systems and burning Western coal types are
described as follows:

Utah Power & Light Company, Huntington Canyon #2 is a controlled circulation,
balanced draft design firing a Western bituminous coal type through five ele-
vations of tilting tangential fuel nozzles.  Unit capacity at maximum continu-
ous rating (MCR) is 382 kg/s main steam flow with a superheat outlet tempera-
ture and pressure of 541°C and 18.2 MPa.

Wisconsin Power & Light Company, Columbia #1 is a controlled circulation, bal-
anced draft design firing a Western subbituminous coal type through six eleva-
tions of tilting tangential fuel nozzles.  Unit capacity at maximum continuous
rating (MCR) is 478 kg/s main steam flow with a superheat outlet temperature
and pressure of 541°C and 18.1 MPa.

Superheat and reheat temperatures for the three units are controlled by fuel
nozzle tilt and spray desuperheating.

In order to evaluate unit performance during these studies, necessary steam, wa-
ter, air and gas temperature and pressure measurements were performed as well as
NOX, CO, 02, THC, S02 and carbon loss determinations to assess emission perfor-
mance.  The test program for the modified unit was conducted in three phases
consisting of baseline and biased firing portions conducted prior to modifica-
tion and baseline and overfire air portions conducted after unit modification.
The effect of the modification on unit performance was found to be insignifi-
cant and the test data summaries for each phase are shown in Appendices A, B
and C.  Similar three phase programs were conducted on the two test units burn-
ing Western coal types evaluating baseline, biased firing and overfire air op-
eration.  Short term comparative corrosion tests were conducted on each unit
over thirty day periods using corrosion coupons, which are made of the same ma-
terial as the waterwalls.  During this evaluation, both normal and OFA operation
was evaluated.  The unit load schedules for the baseline and biased firing and
overfire air evaluations are shown on Figures 39, 40, 62, 63, 100, 101 and 102.
The respective data summaries are shown on Sheets Al through A6; Bl through B6
and Cl through C5.  Corrosion coupon locations are shown on Figures 37, 60 and
69.

                                      173

-------
DESIGN AND DESCRIPTION OF OFA SYSTEMS

The overfire air system as incorporated in tangential  coal  fired furnaces con-
sists of air compartments and registers, ductwork, flow control  dampers and
nozzle tilting mechanisms.  A typical arrangement of this system is shown on
Figure 15.  The overfire air compartments and registers are designed as verti-
cal extensions of the corner windboxes unless, as in the case of some existing
units, modification at that location is not possible due to structural consid-
erations.

In the latter case, as was the situation with the modified test unit, the sep-
arate compartments and registers were installed within three meters of the top
of the existing windbox.  As shown on Figure 67, this arrangement requires ad-
ditional ductwork for supplying air to the OFA system.

Control dampers for regulating the OFA flow rate should be coordinated with the
windbox fuel and auxiliary air compartment dampers to correctly proportion air
flow as required for various operating modes.

An independent OFA register tilt mechanism should also be provided on retrofits
of existing units to permit coordinating these registers with the fuel and air
nozzle tilts.

The overfire air registers and ducts should be sized for 15% of the full load
secondary* air flow using the same register and duct velocities as the windbox.
Each overfire air port consists of two registers above each windbox, usually as
an extension of the windbox.

FIELD TEST PROGRAM

The field performance tests conducted at Barry No. 2 firing Eastern bituminous
coal and at Huntington Canyon No. 2 and Columbia No. 1 firing Western bitumi-
nous coals respectively showed that an overfire air system on a tangential coal
fired furnace can reduce NOx emissions with no detriment to unit operation or
maintenance.  NOX emission reductions of 20 to 30% were obtained with 15 to 20
percent overfire air when operating at a total unit excess air of approximately
15 to 25 percent as measured at the economizer outlet.  This condition provided
an average fuel firing zone stoichiometry of 95 to 105 percent of theoretical
air"The firing zone stoichiometries attainable at given overall excess air
levels did vary somewhat from unit to unit.  Stoichiometries below the 95 per-
cent level did not result in large enough decreases in NOX levels to justify
their use.  Biased firing (removing the top burner elevation from service),
while potentially as effective, necessitated a reduction in unit loading and is
therefore less desirable a method of NOx control.  In essence, this method uses
the uppermost fuel and air compartment as a windbox extension.

When using overfire air as a means of decreasing the theoretical air to the fuel
firing zone the percent carbon in the fly ash and CO emission levels were less
* Secondary air does not include coal pulverizer transport air.


                                      174

-------
affected than when operating with low excess air.*  This  is  due  to  the  ability
to maintain acceptable total excess air levels,  as measured  at the  economizer
outlet, during overfire air operation while the  theoretical  air  to  the  fuel fir-
Ing zone 1s reduced.

Furnace performance as indicated by waterwall slag accumulations, visual  ob-
servations and absorption rates, was not significantly affected  by overfire
air operation.

On existing units where, for structural reasons, an overfire air port might
not be installed as a windbox extension, test results indicate that the center-
line of the overfire air port be kept within three meters of the centerline  of
the top fuel elevation.  Distances greater than three meters did not result  in
decreased NOX levels.  Changes within the three meters limit did affect NOX
levels slightly with the NOX levels increasing as the distance decreased.

The overfire air nozzles should tilt in unison with the fuel nozzles where pos-
sible.  Tilting the overfire air and fuel nozzles towards each other directs
the overfire air into the fuel admission zone thereby negating the original  in-
tent, while tilting the nozzles away from each other may result in decreased
flame stability.  If the overfire air nozzle tilt is fixed in a  horizontal po-
sition NOX levels would probably then vary to a limited extent with fuel noz-
zle position.  In other words, the NOX levels may increase or decrease as the
total Included angle between the fuel and OFA nozzles is decreased or increased
respectively.

The results of the 30 day baseline, biased firing and overfire air corrosion
coupon runs indicate that the overfire air operation for low NOX optimization
did not result in significant increases in corrosion coupon degradation.  The
results of this study are shown on Sheets A57 and A58, B45 and B46 and C9
through Cll.  Potential long term corrosion effects were not evaluated as part
of this program.

EXPLORATORY FIELD TEST PROGRAM - EXISTING UNITS

To determine both the necessity and acceptability of applying the OFA technique
for NOX emissions control on existing tangentially fired units, an evaluation
should be performed prior to committing the unit to modification.

This evaluation should include the study of existing process variables, such
as excess air, as an NOX control method.  If these techniques should prove un-
satisfactory, the program should then be expanded to evaluate the effect of
biased firing on NOX emissions.  This technique consists of removing the top
fuel elevations from service and using the upper air and fuel compartments for
the Introduction of overfire air.  This evaluation should be conducted at the
maximum possible unit loading with one pulverizer out of service and otherwise
normal operation.

During biased firing operation, changes in total excess air required to main-
tain acceptable CO levels,  the amount of carryover from the furnace outlet, and


* A minimum of 20 to 25 percent excess air was generally established for  the
  test units.

                                      175

-------
 furnace slagging tendencies  should  be observed.  Carryover could be visually
 observed,  while Increased  slagging  might be evaluated both visually and in
 terms  pf bottom ash  handling system performance.  Outlet steam temperatures
 and air heater exit  gas  temperatures should also be observed for comparison
 of normal  operation.

 The minimum Instrumentation  necessary for a comprehensive evaluation is as
 follows:
 Unit  Performance

 Superheat  (S.H.) Outlet Temp.

 Reheat  (R.H.) Outlet Temp.

 R.H.  &  S.H. Spray Flows

 Gas Temp.  Lvg. Air Heater  (A.H.)

 Excess  Air Lvg. A.H.

 Furnace Carryover

 Furnace Slagging



 Unit  Gas Side Pressure Drop

 Emissions  Performance

 NOX,  CO &  02


 EFFECT  ON  UNIT PERFORMANCE
Calibrated Board Data*

Calibrated Board Data*

Calibrated Board Data*

Thermocouple Grid in A.H. Outlet Duct

Gas Sampling Grid In A.H. Outlet Duct

Visual Observation

Visual Observation & Ash System Perfor-
   mance, Nozzle Tilt Changes & Desuper-
   heating Sprays

Calibrated Board Readings*



Gas Sampling Grid in A.H. Inlet Duct
The application of OFA as an NOX control device spreads out  the furnace  fire,
which reduces flame intensity and temperature and the initial oxygen  concentra-
tion.  These effects combine to limit the formation of oxides of nitrogen  com-
pounds with the reduced oxygen apparently affecting the formation of  NO  by the
fuel bound nitrogen.

In the case of coal firing, the NOX emissions originate from two sources,  fuel
bound and atmospheric nitrogen, and thus (NO) Total - (N0)e  , N +  (NO)..
                                                                        '2 in air.
Test results from all three units  Indicated  that as  long  as  the total  excess
oxygen  (fuel compartment 02 + OFA  03), as measured at the economizer,  remains
changed from the baseline condition,  unit performance would  remain unaffected.
In some cases, however, a slightly Increased total oxygen may be required to
prevent an  Increase  1n CO and unburned carbon emission levels.  This situation
* If not available, test Instrumentation should be considered.

                                      176

-------
could be simulated with a biased firing test (top fuel  elevation  out of  ser-
vice) conducted during the exploratory program to determine the necessity of
unit modification.  While.this approach will necessitate a reduction in  unit
loading, testing should be conducted at the highest possible loading obtain-
able for comparison to normal unit operation.

Otherwise, overall steam generator performance, including fan power, final
steam temperatures, furnace wall tube temperatures and corrosion, and unit  ef-
ficiency remain essentially unchanged.

The effect on furnace slagging has been found to vary somewhat with coal types
and in particular with blends of various coals.  Therefore, since coal  types
vary widely, the effect of changing firing zone stoichiometries on slagging
tendencies should be evaluated during the exploratory program, again by using
the biased firing technique.  Where evaluating units with spare coal pulveri-
zer capacity, this check should, if at all possible, be made at,  or close,  to
full unit rating, particularly from the standpoint of evaluating  unit slagging
tendencies.  A minimum evaluation period of one week is recommended for study-
ing slagging tendencies.

On some units, the spreading out of the furnace fire might result in some  com-
bustible carryover from the unit furnace to the superheat sections.  The ten-
dency toward this condition can also be evaluated during the exploratory pro-
gram by visual observation and watching for changes in unit performance.

ECONOMIC EVALUATION

The cost of incorporating overfire air systems on existing and new unit designs
was evaluated for steam generating units from 125 to 1000 MW capacity.  The re-
sults of this study are shown on Figure 104.

The cost estimates for the revision of existing units are based on studies per-
formed on units within this size range including the actual costs for modifica-
tion of the Barry 2 unit.  The cost estimates presented for including the  over-
fire air system in new unit designs are based on current experience with these
systems.

The accuracy of the January, 1977 cost estimates is plus or minus ten percent.
Because the overfire air system is included as an integral part of new unit de-
sign, it is not therefore, considered as an optional or additional emissions
control device.  The costs of existing units could be from 0.24 to 1.8 $/kw,
due to variations in existing unit design and construction which might make
modifications more complicated.  These costs may also vary and escalate with
the prevailing economic climate.

The largest four-windbox  (single cell) furnaces manufactured to date have  been
in the 625 MW size range at which point eight-windbox furnaces (generally di-
vided into two cells) have been selected.  Since an eight windbox tangentially
fired furnace has double the firing corners of a four-windbox furnace, the costs
of windboxes and ducts increase significantly.

The resulting increase in the cost of electricity generated is approximately
                                      177

-------
   1.80


   1.50


*  1.20


H-  0.90

o

   0.60


   0.30


   0.00
              EXISTING  UNITS MODIFICATION  COSTS
              4 WINDBOX FURNACES-7    8 WINDBOX FURNACES
            200
                      400         600         800
                            UNIT SIZE, mw
1000
   1.20
   0.90
                  NEW  UNITS INSTALLATION  COSTS
   0.60
 o
 o
           4 WINDBOX FURNACES-7    8 WINDBOX FURNACES
   0.30
   0.00
            200
                      400        600         800
                            UNIT SIZE, mw
                                                        1000
Figure 104:  Overfire Air System Costs - Tangential coal  fired steam
            generators - January, 1977 equipment costs
                               178

-------
0.02| for a typical  new 500 MW plant* costing 600  $/kw using coal costing 1.00
$/105BTU, as illustrated in Table 1.   The overfire air system  increases capi-
tal  costs by 0.2 $/kw, and all other  costs are unchanged.  The mills/kwhr in-
crease is 0.006.

An existing 500 MW plant has overfire air system costs up  to 0.8  $/kw.  Genera-
tion costs for a 600 $/kw plant increase by up to  0.10%  or 0.026  mills/kwhr.  An
existing 500 MW plant which was installed for 300  $/kw and receives coal cost-
ing 0.50 $/106BTU has much lower operating costs than the  previous example.
The cost increase percentage is 0.14%, but the increase  in mills/kwhr remains
unchanged at 0.026,  as shown in the last column of Table 1.

                                                                         $/KW

Coal Handling, Storage, Pulverizing,  Ash Handling                           53
S0;2 Scrubber System                                                        90
Boiler, Air Heaters, Fans, Stack                                           74
Steam Turbine-Generator, Piping, Heaters, Water Treatment,
   Condenser, Cooling Towers                                             110
Structures, Sitework Foundations, Offices, Land, Workshops,
   Controls, Switchgear, Transformers                                      76

                                                               Subtotal  403

Engineering, Construction                                                  53
Contingency                                                                44
Interest During Construction                                             100

                                                               Total     600

The increases in generating costs (mills/kwhr) for typical 100 MW plants  are
approximately double the increases for 500 MW plants.  The increases  for  600
MW plants with divided furnaces are 2535 to 35% higher;  and the increases  for
1000 MW plants are the same as for 500 MW plants.

Transmission and distribution costs are not included in these comparisons.
These examples are only typical; a specific plant has to be  evaluated on  its
particular economic criteria.
* January, 1977 equipment costs for 500 MW Coal Fired Power Plant with Lime-
  stone S02 Scrubbing System.
                                      179

-------
                         TABLE 1.  COST OF ELECTRICITY GENERATED - 500 MW PLANTS
Capital Costs. $/kw

Annual Cap. Cost* $

Annual Fuel Cost, $

Labor & Maint. (e), $

Total Annual Cost (f), $

Electricity Cost (g),
   M1lls/kwhr

Increase, %

Increase* Mills/kwhr
Net Heat Rate 9500 Btu/Kwhr
January, 1977 Equipment Costs
New
Plant
Without
Overfire Air
600.00
54,000,000 (a)
26,000,000 (c)
10,800,000
90,800,000
33.630
—
•»•«
New
Plant
With
Overfire Air
600.20
54,018,000
26,000,000
10,800,000
90,818,000
33.636
0.018
0.006
Recent
Existing
With Added
Overfire Air
600.80
54,072,000
26,000,000
10,800,000
90,872,000
33.656
0.077
0.026
Older
Existing
Without
Overfire Air
300.00
27,000,000 (b)
13,000,000 (d)
10,800,000
50,800,000
18.815
—
__ _
                                                                                                   Older
                                                                                                 Existing
                                                                                                With  Added
                                                                                               Overfire A1r
                                                                                    300.80

                                                                                27,072,000

                                                                                13,000,000

                                                                                10,800,000

                                                                                50,872,000


                                                                                    18.841

                                                                                     0.140

                                                                                     0.026
Based on:
Annual Fixed Charge Rate of 18% X 600 $/kw X 500,000 kw.
18% X 300,$/kw X 500,000 kw.
1.00 $/10j BTU coal cost X 5400 hr/yr X 500,000 kw X 9500 BTU/kwhr.
0.50 $/10° BTU coal cost X 5400 hr/yr X 500,000 kw X 9500 BTU/kwhr.
Labor and maintenance cost of 4.0 mills/kwhr.
5400 hr/yr at 500 MW = 2700 gwhr/yr.
Cost at plant bus bar; transmission and distribution not included.

-------
                                 APPLICABILITY


EXISTING STEAM GENERATING UNITS

In a specific existing plant, the exploratory field test program will  provide
the data to determine whether an overfire air system is needed to meet NOX  lim-
its.  If so, the biased firing tests will show operating effects such  as  com-
bustible loss, corrosion, or furnace slagging.  Favorable results from the
field tests should be followed by an evaluation,.as shown in Table 1,  to  deter-
mine whether modification costs are economically justified.

Economic considerations include plant age and efficiency.  Will the plant con-
tinue to operate long enough to pay off the investment?  The annual capital
cost is inversely proportional to the number of years.  Steam generator size
also has an effect on the relative economics of overfire air system modifica-
tions.  For example, the minimum modification cost is about $120,000,  which is
4.8 $/kw for a 25 MW unit.  With complications, 12 $/kw is possible for a 25
MM unit.

Approximately 40% of the existing coal fired units in the United States are of
tangential design and could conceivably be modified to incorporate overfire air
systems, if the field test and economic evaluation results are favorable.  Since
1949, approximately 320 tangential units have been put into service without
overfire air systems.

NEW STEAM GENERATING UNITS

At the current levels of NOX limits, an overfire air system should be included
as a standard design feature of a new unit.  The technology is proven, and  the
cost is minimal when included in the original design.
                                       181

-------
                                  REFERENCES


1.  Blakeslee, C. E., and A. P- Selker.  Program For Reduction of NOX from Tan-
    gential Coal Fired Boilers - Phase I.  EPA-650/2-73-005.   U.S. Environmen-
    tal Protection Agency, Research Triangle Park, North Carolina, 1973.   190
    pp.

2.  Selker, A. P.  Program For Reduction of NOX From Tangential Coal  Fired
    Boilers - Phase II.  EPA-650/2-73-005-a.  U.S. Environmental  Protection
    Agency, Research Triangle Park, North Carolina, 1977.   133 pp.

3.  Winship, R. D., and P. W. Brodeur.  Controlling NOX Emissions in  Pulverized
    Coal Fired Units.  Engineering Digest, September, 1973.   pp.  31-34.

4.  Haynes, B. S., and N. Y. Kirov.  Nitric Oxide Formation  During the Combus-
    tion of Coal, Combustion and Flame, Volume 23, 1974.  pp.  277-278.

5.  Vatsky, J., and R. P. Weiden.  NOX A Progress Report,  Heat Engineering,
vaiaKjr, u., auu n. r. neiuen.  nux
July/September, 1976.  pp. 125-129.
6.  Graham, J.  Combustion Optimization Electrical  World, June 15, 1976.  pp.
    43-58.

7.  Thimot, G. W., and E. L. Kochey, Sr.  Coal  Firing is Different.  Presented
    at Instrument Society of America Power Division Symposium, Houston, Texas,
    May 19-21, 1975.

8.  Bogot, A., and R. P. Hensel.   Considerations in Blending Coals to Meet S02
    Emission Requirements.  Presented at National Coal  Association/Bituminous
    Coal  Research, Louisville, Kentucky, October 19-21, 1976.
                                      182

-------
          APPENDIX A
      TEST DATA & RESULTS
              FOR
WISCONSIN POWER & LIGHT COMPANY
    COLUMBIA ENERGY CENTER
            UNIT #1

-------
WISCONSIN POWER &  I IGHT Co.
COLUMBIA #1
                                                                                                                             C-E  POWER SYSTEMS
                                                                                                                             FIELD TESTING AND
                                                                                                                             PERFORMANCE RESULTS
                                                     BASELINE  OPERATION  STUDY
                                                               EMISSJONS TEST DATA
TEST NO.

PURPOSE OF  TEST
UNIT LOAD CONDITION
FURNACE CONDITION
EXCESS AIR  CONDITION
DATE
UNIT LOAD
NOZZLE COMPARTMENT ? S ? ? ^ f
DAMPER POSITION - % OPEN p » p o o -
•r -i -i
STEA
EMPE
EMPE
ELEV
OZZL
Nozz


1-F

1-t

1-D
1-C

1-B

1-A

* FLOW
RATURE
RATURC
ATIONS
E TILT
LE TILT
OFA
OFA
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
                IN SERVICE
                                  1976
                                    MM

                                  KO/S
                                    "c
                                    °C

                                   DEC
                                   DEC

                                % OPEN
                                % OPEN
                                i OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                £ OPEN
                                % OPEN
                                % OPEN
                                H OPEN
                                $ OPEN
                                < OPEN
                                H OPEN
EXCESS AIR AT  ECONOMIZER OUTLET
THEO. AIR TO THE FUEL FIRING ZONE

NOX (ADJ. TO 0< Og)
NOX AS N02
302 (Aoj. TO Ot 05}
SOg
CO (ADJ.  TO OjS OB)
CO
HC (ADJ.  TO o# 02 ^
OS AT ECONOMIZER OUTLET
Og AT A.M. INLET
02 AT A.M. OUTLET
COg AT ECONOMIZER OUTLET
COg AT A.H. INLET
COg AT A.H. OUTLCT
CARBON Loss IN FUY  ASM
                                  PPM
                                  NC/J
                                  PPM
                                  NG/J
                                  PPM
                                  NG/J
                                  PPM
±
^
MAX
CLEAN
MlN
3/10
524
441
536
541
ABDEF
0
-4
0
0
100
50
TX>
50
100
50
100
0
100
50
100
50
100
20.7
117.8
650
322.9
1156
799.7
16
4.B
0
3.6
4.3
4.5
15.6
15. n
14.8
0.02
2
MAX
CLEAN
NORM
3/8
524
442
540
542
ABDEF
0
+1
0
0
100
50
100
50
100
50
100
0
100
50
100
50
100
21.8
MB. 9
520
260.2
1138
792.6
16
4.8
0
3.8
4.4
5.1
1^.6
11!. 1
M . 3
^.Ol
3
MAX
CLEAN
MAX
3/15
485
400
543
541
ABDEF
0
-2
0
0
100
50
100
50
100
50
100
0
100
50
100
50
100
34.7
131.4
599
303.7
1003
708.4
18
5.4
0
5.5
5.7
6.8
14.1
n.9
12.9
o.op
456
3/4 MAX 1/2 MAX 1/2 MAX
CLEAN
NORM
3/13
399
334
542
539
ABDEF
0
+17
0
0
55
40
50
45
50
40
50
0
50
40
50
40
50
35.6
n?.5
498
246.3
1119
770.4
NA
NA
0
5.6
5.7
7.6
14.0
13.9
12.2
o . 04
CLEAN
MlN
5/23
324
267
546
522
CDEF
0
+10
0
0
0
85
0
90
0
85
5
90
0
0
0
0
0
27.7
126.7
593
291.2
1362
931.8
5
1.5
0
4.6
4.9
7.2
14.9
14.6
19.5
i.<->.i
CLEAN
NORM
5/S3
323
269
543
521
CDEF
0
-HO
0
0
5
75
5
85
5
80
10
70
10
0
0
0
0
37.5
136.2
653
335.2
1379
985.0
6
1.7
0
5.8
6.0
7.6
13.5
13.3
11.9
1. OP
7
1/2 MAX
CLEAN
MAX
5/23
322
268
548
522
CDEF
0
+9
0
0
10
BO
15
80
10
85
20
85
15
0
0
0
0
43.5
141.4
662
333.8
1230
864.0
7
2.2
0
6.4
6.5
8.1
13.1
13.0
11.6
o./v»
8
MAX
9
MAX
22
— >
MAX
MODERATELY DIRTY
MlN
3/10
514
427
540
541
ABDEF
0
-4
0
0
55
40
60
40
55
35
50
0
50
35
50
35
55
19.4
116.5
596
295.7
1184
817.9
17
5.1
0
3.5
4.0
4.2
15.9
15.4
15.2
o. rt?>
NORM
3/9
515
432
540
541
ABDEF
0
+3
0
0
100
50
100
50
100
50
100
0
100
50
100
50
100
23.7
120.7
578
290.2
1230
859.4
16
4.9
0
4.1
4.5
5.6
15.2
14.8
I.1?. 8
o.oe
MAX
3/10
482
394
540
544
ABDEF
0
-4
0
0
100
50
100
50
100
50
100
0
100
50
100
50
100
30.6
127.5
626
310.6
1171
809.1
17
5.1
0
5.0
5.2
5.6
14.5
14. S
13.9
a. it

-------
Wi SCONS i
COLUMBIA
r1tXO TtaT\Mtt UN 11
PERFORMANCE Rtiu
                                                       BASELINE  OPERATION  STUDY
                                                                 EMISSIONS TEST DATA
TEST NO.

PURPOSE OF  TEST
UNIT LOAD CONDITION
FURNACE CONDITION
EXCESS AIR  CONDITION
DATE
UNIT LOAD

MAIN STEAM  FLOW
SHO TEMPERATURE
RHO TEMPERATURE
FUEL ELEVATIONS IN  SERVICE
OFA NOZZLE TILT
FUEL NOZZLE TILT
 •-&
                                               11
                                                          12
                                                                      13
                                                                                 14
                                                                                             15
                                                                                                         16
                                                                                                                    17
                                                                                                                                18
                                                                                                                                           19



I-F

l-t

1-0

I-C

1-B

I-A

OFA
OFA
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
 EXCESS AIR AT ECONOMIZER OUTLET
 THEO. AIR TO THE  FUEL FIRING ZONE

 NOX  (ADJ. TO at 05}
 NOX  AS NOg
 S02  (ADJ. TO Og Og^
 soe
 co (ADJ. TO nf, ogl
 CO
 HC (ADJ. TO at 02)
 Og AT ECONOMIZER  OUTLET
 0_ AT A.M.  INLET
 of AT A.M. OUTLET
 COg  AT ECONOMIZER OUTLET
 C0p  AT A.M.  INLET
  COg  AT A.M. OUTLET
  CARBON Loss  IN FLY ASH
1976
Mrf
KO/S
°C
°c
DEC
DEO

13. 5
0.19
329
542
540
ABDEF
0
+18
0
55
40
50
45
50
40
50
50
40
50
40
50
35.7
132.5
478
252.9
975
718.5
NA
NA

5.6
6.0
7.4
14.0
13.6
12.3
O.04
1/2 MAX
DIRTY
MIN
5/25
322
264
545
529
ABCD
+7
0
o
0
0
0
0
0
80
0
85
0
75
0
BO
100
26.1
122.8
586
294.6
1250
875.4
4
1 .2
o
4 A
1 *1
4.8
6e
• o
15.1
14. "»
n.o
0.02
1/2 MAX
DIRTY
NORM
5/25
325
267
545
534
ABCD
+6
0
0
0
0
0
0
10
80
15
80
15
80
15
80
100
39.5
134.3
690
347.7
1460
1024.4
4
1 T
0
6.0
6.3
7.7
13.6
13.3
12.0
O.02
1/2 MAX
DIRTY
MAX
5/25
322
263
546
536
ABCD
o
+7
0
0
0
0
0
0
55
70
45
90
50
70
40
85
100
54.8
144.6
733
369.2
1140
8OO. 1
5
1 .4
0
7.5
7.7
9.6
12.2
12.0
10.3
0.02

-------
                         WISCONSIN POWER  4  LIGHT Co.
                         COLUMBIA #1
                                                                                                                           C-E POWER SYSTEMS
                                                                                                                           FIELD  TESTING AND
                                                                                                                           PERFORMANCE RESULTS
                                                                         BIASED  FIRING  OPERATION  STUDY
                                                                                       EMISSIONS TEST DATA
                         TEST NO.

                         PURPOSE OF TEST
                         UNIT LOAD CONDITION
                         EXCESS AIR CONDITION
                         FURNACE CONDITION
                         DATE
                         UNIT LOAD
                         MAIN STEAM FLOW
                         SHO TEMPERATURE
                         RHO TEMPERATURE
                         FUEL ELEVATIONS IN SERVICE
                         OFA NOZZLE TILT
                         FUEL NOZZLE TILT
                              1-F
                         !§
                         o —
                           CO
                         3£
1-E

M3

TIC"

I^B

TTA"
OFA
OFA
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
                                  1976
                                    MW

                                  KS/S
                                    °C
                                    "c

                                   DEC
                                   DEC

                                t OPEN
                                % OPEN
                                f OPEN
                                1, OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                                < OPEN
                                % OPEN
                                % OPEN
                                % OPEN
                         Excess AIR AT ECONOMIZER OUTLET
                         THEO. AIR TO THE FUEL  FIRING  ZONE
NOX (ADJ.  TO Ojf
NOX AS NO
SO  (ADJ.  TO
5
n
-\
B
                                         02)
CO (ADJ.  TO Of 02)
CO
HC (ADJ.  TO at o2)
Og AT ECONOMIZER  OUTLET
02 AT A.M.  INLET
0- AT A.H.  OUTLET
COg AT ECONOMIZER OUTLET
C02 AT A.H. INLET
COg AT A.H. OUTLET
CARBON Loss in FLY ASH
                              PPM
                             NG/J
                              PPM
                             NG/J
                              PPM
                             NG/J
                              PPM
1
MAXIMUM
MINIMUM
>
^ 5/19
505
426
546
550
ABCDE
0
+4
n
0
0
100
45
100
45
100
45
100
45
100
45
100
50
20.4
10B.2
408
2O3.9
115?
802.4
NA
NA
0
3.6
4.0
6.3
15.8
15.4
13.3
o. 02
2
MAXIMUM
MINIMUM
5/19
506
428
546
547
ABCDF
0
-4
O
0
30
100
35
100
30
100
30
100
25
100
35
100
45
18. 4
116.6
413
209.1
1101
776.6
NA
NA
0
3.3
4.0
6.2
16.1
15.4
13.4
'XO?
3 .4 5 6 7
MAXIMUM MAXIMUM 3/4 MAX 3/4 MAX 3/4 MAX
MINIMUM
V14
525
433
543
542
ABDEF
0
-4
0
0
90
50
90
50
90
50
90
95
90
40
80
50
95
15.2
112.6
492
249.2
117O
826.1
NA
NA
0
2.8
3.3
4.7
16.5
16. n
14.7
n.35
MINIMUM
_ MonpRATELY
5/19
506
411
545
548
BCDEF
0
-8
0
0
35
100
35
100
30
100
30
100
30
100
30
100
0
19. n
116.9
504
250.3
NA
NA
NA
NA
0
3.4
4.0
6.1
16.0
15.4
13.5
o.nj?
MINIMUM
5/12
422
^52
545
544
ABCE
0
-2
0
0
0
100
20
100
20
0
15
100
15
100
10
100
100
26.1
110.0
417
215.9
1088
783.6
25
8.0
0
4.4
4.7
6.8
14.9
14.6
12.7
•XO3
MINIMUM
5/12
422
352
543
545
ABCE
0
0
0
0
0
0
20
100
10
100
15
100
15
100
15
100
100
21.7
117.5
507
260.2
1088
778.1
13
4.2
0
•<.8
4.2
5.9
15.3
14.9
13.4
n.o?
MINIMUM
5/16
421
344
546
547
BCDE
0
+13
0
0
0
0
25
100
20
100
15
100
15
90
10
100
100
30.7
125.6
442
227.3
1088
778.6
143
44.8
0
5.0
5.2
6.6
14.3
14.1
12.8
O.O2
_8
1/2 MAX
MINI MUM
5/21
320
263
545
545
A8CD
0
+10
0
0
0
100
0
100
0
85
0
90
0
90
0
90
100
19.7
94.4
326
162.2
1252
865.9
5
1.4
0
3.5
3.7
6.0
15.9
15.7
13.6
O.O7
9
^
1/2 MA"X
MINIMUM
CLEAN
6/27
314
258
544
504
ABEF
0
0
0
0
0
90
0
90
0
100
0
100
0
80
0
BO
80
34.2
133.5
513
245.1
995
662.2
4
1.2
0
5.4
5.6
7.6
14.3
14.1
12.2
O. OS

-------
 COL UMBiA 17
                                                                                                                        F vcuo TKBT«NO  juto
                                              BIASED  FIRING  OPERATION   STUDY
                                                             EMISSIONS TEST DATA
TEST NO.

PURPOSE OF TEST
UNIT LOAD CONDITION
Excess AIR CONDITION
FURNACE CONDITION
DATE
UNIT LOAD
NOZZLE COMPARTMENT ? R ? 1 52 ?
DAMPER POSITION -  OPEN n » p o o -
Z -1 -H
JTEAM FLOW
MPERATURE
MPERATURE
ELEVATIONS
JZZLE TILT
JOZZLE TILT
OFA


I-F

I-E

I-D

I-C

I-B

1-A

OFA
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
                IN SERVICE
EXCESS AIR  AT ECONOMIZER OUTLET
THEO. AIR TO THE FUEL FIRING  ZONE

NOX (ADJ. TO Og 02 ^
NOX AS NOg
sos (ADJ. TO og 051
SOp
CO (ADJ.  TO Og 021
CO
HC (ADJ.  TO Og Ogl
Og AT ECONOMIZER OUTLET
Op AT A.H.  INLET
0| AT A.H.  OUTLET
COp AT ECONOMIZER OUTLET
    AT A.H.  INLET
CO!
CO* AT A.H.
CARBON Loss
            OUTLET
            IN FLY ASM





1976
MM
KG/S
°c
°c

DEC
DEC
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g OPEN
g
: g
PPM
NG/J
PPM
NG/J
PPM
NG/J
PPM
g
g
g
g
g
g
%
JO

1?2 MAX
MINIMUM
/•»
L-L.EAN
5/23
324
268
547
529
CDEF
0
+5
0
O
0
55
0
65
0
55
0
60
0
90
0
100
0
29.2
128.4
525
266.8
1313
929.3
5
1.6
0
4.8
5.2
6.9
14.5
14.2
12.6
0.04
11
J2
_13
J4
J5
!§
r?
15
i/AoiiTinti nc i-iic-i i-i n» Tinkle i n tM-nm/T ^.
MAXIMUM
NORMAL
^
" 5/19
491
417
546
550
ABCDF
0
+5
0
0
0
100
50
100
45
100
40
100
45
100
50
100
50
23.1
122.7
454
231.2
1174
831.0
NA
NA
0
4.0
4.1
6.7
15. 3
15.2
12.8
o.oa
MAXIMUM MAXIMUM 3/4 MAX 3/4 MAX 3/4 MAX
NORMAL

5/10
497
417
547
546
ABCEF
0
-2
0
0
15
100
35
100
30
100
35
100
30
95
30
100
100
24.6
123.4
590
297.2
870
610.3
18
5.4
0
4.2
4.8
6.2
15.2
14.7
13.4
O.O3
NORMAL
htlnt-i
NORMAL
f. _.,..
3/16 5/12
523
438
542
542
ABDEF
0
-4
0
0
95
50
95
50
90
50
95
50
95
100
85
50
95
18.4
115.8
556
260.4
1029
721.9
NA
NA
0
3.3
4.3
5.6
16.1
15.2
13.9
0.03
423
353
545
544
ABCE
0
0
0
0
0
100
30
100
35
0
30
100
25
100
20
100
100
34.1
117.9
443
222.5
1139
796.9
74
22.6
0
5.4
5.7
7.1
14.1
13.8
12.5
0.02
NORMAL

3/13
400
325
543
540
ABDEF
0
0
0
0
55
40
50
45
50
35
50
100
50
40
50
40
50
35.8
132.9
462
231.7
859
599.6
NA
NA
0
5.6
5.7
7.4
13.8
13.8
12.1
0.02
NORMAL

5/16
422
350
546
547
BCDE
0
+10
0
0
0
0
35
100
35
100
40
100
35
100
50
100
100
41.3
135.8
494
246.4
1166
810.7
NA
NA
n
6.2
6.4
8.4
13.4
13.2
11.4
0.02
1/2 MAX
NORMAL
%
5/21
320
261
545
543
ABCD
0
+12
0
0
0
100
0
100
0
90
0
90
0
90
0
70
100
35.9
105.8
462
228.7
1256
865.4
4
1.2
0
5.6
5.8
7.6
13.9
13.7
12.1
0.02
1/2 MAX
NORMAL
CLEAN
5/23
323
264
545
530
CDEF
0
+9
0
0
0
85
0
90
0
80
0
90
0
100
0
100
0
36.6
135.8
629
316.9
1278
897.1
7
2.1
0
5.7
5.9
7.8
13.6
13.4
11.7
0.04

-------
WISCONSIN POVCR  '. LIGHT Co.
COLUMBIA #1
C-E POWER SYSTEMS
FIELD TCSTIIIG AMD
PERFORMANCE RESULTS
                                                            OVERFIRE  AIR  OPERATION  STUDY
                                                                         EMISSIONS TEST DATA
TEST NO.

PURPOSE OF TEST
UNIT LOAD CONDITION
Excess AIR CONDITION
FURNACE CONDITION
DATE
UNIT LOAD

MAIN STEAM FLOW
SHO TEMPERATURE
RHO TEMPERATURE
FUEL ELEVATIONS  IN SERVICE
OFA NOZZLE TILT
FUEL NOZZLE TILT
EXCESS AIR  AT  ECONOMIZER OUTLET
THEO.  AIR TO THE FUEL FIRING ZONE

NOX (ADJ. TO 0* Og)
NOX AS NOg
SO,, (ADJ. TO Of 02)
SOg
CO (ADJ.  TO <*t Op)
CO
HC (AOJ.  TO o< o 1
Os AT ECONOMIZER OUTLET
0. AT A.M.  INLET
o| AT A.M.  OUTLET
COg AT ECONOMIZER OUTLET
CO  AT A.H. INLET
Col AT A.H. OUTLET
CARBON Loss IN TLV  ASH

1
2
3
4
5
6
7
B
9
10



1976
MW
KO/S
°C
•C

DEC
DEO
% OPEN
< OPEN
< OPEN
% OPEN
# OPEN
* OPEN
^ OPEN
f OPEN
£ OPEN
< OPEN
£ OPEN
< OPEN
% OPEN
* OPEN
t OPEN
*
'E if
PPM
NC/J
PPM
NQ/J
PPM
NG/J
PPM
«
*
<

g
1!
*
MAXIMUM
NORMAL
jf
3/17
517
425
542
542
ACDEF
0
-4
0
0
100
V
100
50
100
50
100
50
10O
0
100
50
100
23.9
120.9
718
V56. 1
1190
821.9
16
4.9
0
4.1
4.3
5.3
15.3
15.1
14.2

MAXIMUM MAXIMUM
NORMAL
3/17
512
426
541
541
ACDEF
0
-4
25
25
95
SO
100
50
95
50
100
50
95
0
95
50
95
23.2
115.7
710
354.9
1207
B39.8
16
4.9
0
4.0
5.0
5.4
15.4
14. S
14.2
0.09
NORMAL
3/20
524
439
533
534
ACDEF
0
-8
50
50
85
so
85
50
85
50
80
50
85
0
80
50
85
21.8
109.7
442
222.8
1266
88B.B
NA
NA
0
3.8
4.0
5.3
15.5
15.3
14. 1
1.02
MAXIMUM
NORMAL
^.
3/20
525
445
534
533
ACDEF
0
41
70
70
75
go
75
50
75
50
70
50
70
0
70
50
70
19.7
105.2
409
203.4
1404
171.9
NA
NA
0
3.5
3.9
5.1
15.8
15.4
14.4
n.ni
MAXIMUM MAXIMUM MAXIMUM
NORMAL
	
3/22
526
444
534
538
ACDEF
0
+1
95
95
65
•50
65
50
70
50
60
50
70
0
65
50
70
20.4
104.6
434
215.4
1320
911.8
NA
NA
0
3.6
4.1
5.0
15.7
15.2
14.4
1.12
MINIMUM MINIMUM
3/20 3/20
521
446
543
547
ACDEF
0
+6
0
0
65
50
65
50
65
50
60
50
65
0
60
50
75
13.3
110.7
364
182.7
1203
840.2
NA
NA
0
2,5
3.3
4.5
16.7
16.0
14.9
o.O?
522
441
532
534
ACDEF
0
+8
50
50
55
50
50
50
55
50
50
50
55
0
50
50
70
13.9
101.8
356
177.9
1245
666.5
NA
NA
0
2.6
3.4
5.0
16.6
15.9
14.4
O.O4
MAXIMUM
MINIMUM
3/20
522
439
532
532
ACOEF
0
41
100
100
50
go
50
50
50
50
50
50
50
0
50
50
50
15.1
99.0
344
171.4
1240
861.0
NA
NA
0
2.8
3.5
4.5
16.4
15.8
14.9
o. 03
MAXIMUM
MAXIMUM
3/24
476
398
538
540
ABCEF
0
+2
25
25
100
50
90
50
90
0
95
50
95
50
90
50
100
36.8
128.2
594
299.2
1267
868.3
NA
NA
0
5.7
5.8
7.0
13.9
13.8
IS. 7
(1.0T
MAXIMUM
MAXIMUM
3/24
473
390
539
540
ABCEF
0
41
80
80
80
50
75
50
80
0
80
50
75
50
80
50
90
35.8
118.8
551
274.7
1342
931.8
NA
NA
0
5.6
5.8
7.0
13.8
13.7
12.6
a. os
11
12 .
~~ TILT TORT
MAX IMUM
MAX IMUM
3/24
472
389
534
539
ABCEF
0
+3
100
100
55
50
50
50
50
0
50
45
50
50
50
50
85
30.0
111.5
485
246.5
1329
940.3
NA
NA
0
4.9
5.0
6.1
13.5
14.5
13.5
O.OI
wi in ur H
MAXIMUM
MINI MUM
6/24
524
446
540
547
ABOEF
-5
-5
100
100
25
100
20
100
20
100
20
0
15
100
20
100
100
23-9
102.8
395
195.5
1023
704.7
16
4.9
0
4.1
4.4
5.6
13.9
15.0
13.9
o.os

-------
WISCONSIN POWER £ LIGHT Co.
COLUMBIA #1
                                                                                                                                            C-E POWER SYSTEMS
                                                                                                                                            FIELD TESTINO  »HD
                                                                                                                                            PERFORMANCE RESULTS
                                                             OVERFIRE AIR  OPERATION  STUDY
                                                                         EMISSIONS TEST DATA
TEST NO.

PURPOSE OF TEST
UNIT LOAD CONDITION
EXCESS AIR CONDITION
FURNACE CONDITION
DATE
UNIT LOAD

MAIN STEAM FLOW
SHO TEMPERATURE
RHO TEMPERATURE
FUEL ELEVATIONS  IN SERVICE
OFA NOZZLE TILT
FUEL NOZZLE TILT
                                           13
                                                  14
                                                            15
                                                                       16
                                                                                 17
                                                                                            18
                                                                                                       19
                                                                                                                 20
                                                                                                                           21
                                                                                                                                      22
                                                                                                                                                23
                                                                                                                                                           24
z
LJ
$*
r
1s
h
uo
Kj°-
se
zl
o

—
1-F1

I-L
t-b
rr
l-B
EE
OFA
OFA
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
EXCESS AIR AT ECONOMIZER OUTLET
THEO. AIR TO THE  FUEL FIRING ZONE
(ADJ.  TO Of 02)
NO
NOX AS NOg
soe (ADJ.  TO 
-------
 WISCONSIN POWER & LIGHT Co.
 COLUMBIA f1
                                         BASELINE  OPERATION  STUDY
                                                                                         C-E POWER- SYSTEMS
                                                                                         FIELD TESTING AND
                                                                                         PERFORMANCE RESULTS
 TEST NO.
 DATE
 UNIT  LOAD
 PRESSURES  (GAUGE!
 ECONOMIZER  INLET
 DRUM
 SH OUTLET
 TURBINE: IST STAGE
 RH INLET
 RH OUTLET
 SH SPRAY WATER
 RH SPRAY WATER
 HP HTR's G14G2 STH

 TEMPERATURES
WATER AND STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH PENO Div INLET LINK
SH PEND Div INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LINK
SH PEND SPCO FRONT IN LINK
SH PENO SPCD FRONT IN LINK
SH OUTLET LEADS
SH OUTLET LEADS
RH DESH INLET COMB. LINE
RH RADIANT WALL FRONT  IN HOR
RH RADIANT WALL FRONT  IN HDR
RH PEND SPCD FRONT IN LINKS
RH PCND SPCD FRONT IN LINKS
RH PEND SPCO FRONT IN LINKS
RH PEMO SPCO FRONT IN LINKS
RH OUTLET LEADS
RH OUTLET LEADS
SH SPRAT WATER
RH SPRAY WATER
COLO RH EXT STM TO G1iG2 HTR
FW IN TO HP HTR G1
FV, IN TO HP HTR G2
FW OUT or HP HTR Gl
FW OUT or HP HTR G2
STM DRAIN FROM HP HTR Gl
STH DRAIN TROM HP HTR G2
AIR t GAS
PRi  AIR AH AIR
PR I  AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
PRi  AIR AH AIR
PRi  AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
ECONOMIZER GAS
ECONOMIZER GAS
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET
INLET
INLET
INLET
INLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
TEST DATA

1976
Mrf
KG/S

MPA









•c

L
LC
RC
R
L
R
L
R
L
R
L
R

L
R
L
LC
RC
R
L
R









L
R
L
R
L
R
L
R
L
R
L
R
L
R
J^
3/10
584

411.51

18.664
18.271
16.892
11.2.12
3.654
3.447
18.457
10.052
3.606

247
344
343
NA
350
384
390
414
404
496
482
539
533
319
275
267
309
308
312
303
531
552
173
163
328
207
206
247
247
212
208
9
5
16
15
369
374
361
362
418
431
398
409
122
119
2
3/08
524

430.91

18.781
18.326
16.878
11.321
3.634
3.413
19.809
10.122
3. SOS

247
337
333
NA
345
378
386
421
421
498
490
538
•543
321
292
283
323
320
317
308
531
553
173
182
328
206
205
247
246
211
208
4
3
22
23
354
361
346
349
402
413
383
392
111
119
3
3/15
485

380.51

18.409
18.078
16.872
10.163
3.330
•>.151
19.009
9.908
3.323

243
344
342
NA
348
388
392
417
415
497
490
542
544
316
268
272
306
307
312
301
536
547
171
179
323
203
202
242
242
SOB
205
4
4
20
21
364
369
354
353
409
422
395
401
118
118
4
3/13
399

324.19

17.878
17.582
16.706
8.246
2.641
2.489
18.850
9.542
2.627

230
333
328
NA
332
: 383
383
418
417
507
499
543
542
298
298
297
331
329
NA
319
545
532
159
151
305
192
191
228
229
195
193
2
n
14
33
329
328
323
T20
371
379
355
357
110
106
5
5/23
324

262.45

17.492
17.278
16.699
6.433
2.068
1.896
18.84?
9.329
2.068

219
317
312
317
318
381
382
435
431
518
507
547
546
283
283
282
318
317
318
307
523
522
156
96
288
184
184
219
218
187
187
27
23
37
36
T11
303
303
298
339
141
322
324
117
101
6
5/23
323

264.72

17.499
17.251
16.685
6.440
2.068
1.896
18.871
9.336
2.068

219
321
317
320
326
382
383
434
428
513
501
545
541
280
280
280
312
312
313
304
517
526
154
91
287
184
184
218
219
187
186
27
23
38
?7
302
305
302
301
346
349
••27
331
118
101
7
5/23
322

262.45

17.492
17.264
16.706
6.440
2.068
1.889
18.809
9.329
2.062

219
323
317
321
327
382
383
437
432
521
509
550
547
283
283
285
314
316
316
310
516
529
155
87
291
184
184
218
218
187
186
26
23
36
16
306
309
302
302
346
351
328
333
118
101
8
3/10
514

397.02

18.574
18.202
16.865
10.901
3.571
3.372
18.395
9.991
3.558

247
344
343
NA
352
387
393
414
408
496
482
543
538
321
261
263
304
303
308
300
531
552
173
193
329
206
206
247
246
212
208
10
7
16
14
371
378
353
366
416
432
398
411
123
121
9
3/09
515

405.84

18.630
18.230
16.885
10.956
3.57B
3.385
19.684
10.011
3.572

246
344
341
NA
350
384
391
413
412
497
484
542
538
322
269
267
108
304
309
299
531
551
172
182
327
205
204
246
246
211
?08
7
•S
17
18
166
371
357
159
411
4£7
396
403
117
119
JO
3/10
482

371.19

18.333
18.003
16.80?
10.080
3.302
3.11T
18.31?
9.85?
3.303

243
147
343
NA
351
389
395
413
413
496
484
543
538
3U
279
268
313
312
309
301
541
547
168
179
322
203
202
242
242
207
204
9
7
17
16
369
374
35?
363
413
427
396
406
122
119
                                                            190
                                                                                                                  SHEET A7

-------
WISCONSIN POWER & LIOHT Co.
COLUMBIA |1
                                     BASELINE  OPERATION  STUDY
                                                                               C-E POWER SYSTEMS
                                                                               FIELD TESTING, AND
                                                                               PERFORMANCE RESULTS
TEST NO.
DATE
UNIT LOAD
PRESSURES (GAUGE)
ECONOMIZER INLET
DRUM
SH OUTLET
TURBINE IST STAGE
RH INLCT
RH OUTLET
SH SPRAY WATER
RH SPRAY WATER
HP HTR's G1&G2 STM  IN

TEMPERATURES

WATER AND STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET.
SH PEND Div INLET LINK
SH PCNO Div INLET LINK
SH DESH OUTLET LINK
SH DESK OUTLET LINK
SH PEND SPCD FRONT  IN LINK
SH PEND SPCD FRONT  IN LINK
SH OUTLET LEADS
SH OUTLET LEADS
RH DESK INLET COMB. LINE
RH RADIANT WALL FRONT IN HCR
RH RADIANT WALL FRONT IN HCR
RH PEND SPCD FRONT  IN LINKS
RH PEND SPCD FRONT  IN LINKS
RH PEND SPCD FRONT  IN LINKS
RH PEND SPCD FRONT  IN LINKS
RH OUTLET LEADS
RH OUTLET LEADS
SH SPRAY WATER
RH SPRAY WATER
COLD RH EXT STM TO  GUG2 HTR
FW IN TO HP HTR G1
FW IN TO HP HTR G2
FW OUT OF HP HTR G1
FW OUT OF HP HTR G2
STM DRAIN FROM HP HTR G1
STM DRAIN FROM HP HTR G2
AIR IL GAS
PR i AIR AH AIR
PRi AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
PR i AIR AH AIR
PR i AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
ECONOMIZER GAS
ECONOMIZER GAS
AH GAS INLCT
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET
INLET
INLET
INLET
INLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
TEST DATA

1976
KM
KG/S

WA









«C

L
LC
RC
R
L
R
L
R
L
R
L
R

L
R
L
LC
RC
R
L
R









L
R
L
R
L
R
L
R
L
R
L
R
L
R
J2
5/21
321

238.75

17.347
17.154
16.685
6.295
2.075
1.903
18.354
9.198
2.082

220
331
328
332
332
391
392
413
410
509
494
551
541
283
257
244
306
301
299
285
546
536
156
162
291
186
185
219
219
188
187
22
21
33
33
315
320
313
315
351
357
337
340
120
121
\Z
5/25
321

248.84

17.423
17.196
16.678
6.336
2.068
1.B89
18.312
9.341
2.075

219
338
331
334
344
392
396
427
423
508
499
545
547
282
274
266
309
304
301
293
527
545
155
162
289
184
184
218
218
186
186
28
24
35
34
323
330
317
321
363
370
347
355
119
114
13
3/12
524

402.94

18.623
18.230
16.878
11.114
3.661
3.461
19.595
10.011
3.654

248
348
346
NA
349
391
393
415
413
496
489
544
542
327
256
268
301
304
316
308
544
542
176
184
333
207
206
248
248
213
209
11
9
14
13
377
383
369
372
422
417
406
413
126
119
12
3/09
513

408.74

18.643
18.244
16.899
10.928
3.564
3.365
19.354
10.025
3.551

246
344
344
NA
349
386
393
419
417
494
482
539
539
321
269
266
308
304
307
300
533
548
173
182
327
205
204
245
246
209
207
8
6
14
13
376
382
367
371
425
437
405
416
120
123
.15
3/10
484

371.19

18.312
17.968
16.816
10.087
3.309
a. 137
19.264
9.846
3.310

243
346
342
NA
352
389
393
411
408
499
487
542
537
315
273
261
311
308
304
295
541
547
169
179
322
202
202
242
242
207
204
6
4
17
17
366
373
357
361
412
427
393
405
120
119
1§
3/13
401

322.43

17.906
17,623
16.741
8.267
2.654
2.51?
19.030
9.561
2.641

231
331
327
NA
330
361
382
421
418
507
501
543
542
297
296
297
330
328
327
319
545
536
158
129
306
192
191
329
229
196
193
6
2
29
30
332
331
326
323
372
425
357
359
109
107
V7
5/25
322

246.45

17.430
17.223
16.727
6.274
2.075
1.901
18.278
9.218
2.075

220
327
322
326
330
387
389
4S7
423
512
496
548
542
283
265
249
305
302
295
283
528
531
156
163
290
185
184
218
219
188
187
29
27
34
34
313
322
311
316
350
357
336
343
118
116
!§
5/25
325

245.45

17.423
17.237
16.720
6.343
2.096
1.931
18.085
9.239
2.103

221
337
337
336
341
392
395
425
421
508
494
548
543
283
266
249
304
298
292
281
530
538
156
163
290
186
185
219
220
188
187
29
27
34
33
321
327
317
319
361
368
344
352
119
114
12
5/25
322

244.05

17.409
17.196
16.692
6.157
2.032
1.910
18.182
9.308
2.089

219
343
343
339
348
393
398
427
423
507
496
547
546
283
270
256
306
302
296
287
528
543
156
163
289
186
184
218
219
188
187
29
26
36
35
324
331
318
323
368
376
349
358
121
111
                                                       191
                                                                                                       SHEET A8

-------
WISCONSIN POWER & LIGHT Co.
COLUMBIA 11
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                          BIASED  FIRING  OPERATION  STUDY
TEST DATA
TEST NO.
DATE
UNIT LOAD
nows
FEEDWATER
PRESSURES (GAUGE)
ECONOMIZER INLET
DRUM
SH OUTLET
TURBINC 1ST STAGE
RH INLET
RH OUTLET
SH SPRAT WATER
RH SPRAY WATCR
HP HTR's G1&G3 STM IN
TEMPERATURES
WATER tuo STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH PENO Div INLET LINK
SH PENO Div INLET LINK
SH DESK OUTLET LINK
SH DESK OUTLET LINK
SH PEND SPCD FRONT IN LINK
SH PEND SPCD FRONT IN LINK
SH OUTLET LEADS
SH OUTLET LEADS
RH DESK INLET COMB. LINE
RH RADIANT WALL FRONT IN HOP
RH RADIANT WALL FRONT IN HDR
RH PEND SPCD FRONT IN LINKS
RH PEND SPCD FRONT IN LINKS
RH PEND SPCD FRONT IN LINKS
RH PEND SPCD FRONT IN LINKS
RH OUTLET LEADS
RH OUTLET LEADS
SH SPRAV WATER
RH SPRAY WATER
COLD RH EKT STM TO G1&G2 HTR
FW INTO HP HTR G1
FW INTO HP HTR G2
FW OUT or HP HTR Gl
FW OUT or HP HTO G2
STM DRAIN FROM HP HTR G1
STM DRAIN FROM HP HTR G2
AIR t GAS
PRI AIR AH AIR INLET
PR I A i R AH A i R 1 NL CT
SEC AIR AH AIR INLET
SEC AIR AH AIR INLET
PRI AIR AH AIR OUTLET
PRI AIR AH AIR OUTLET
SEC AIR AH AIR OUTLET
SEC AIR AH AIR OUTLET
ECONOMIZER GAS OUTLET
ECONOMIZER GAS OUTLET
AH GAS INLET
AH GAS INLCT
AH GAS OUTLET
AH GAS OUTLET

1976
MW
KO/S

WA









•c


L
LC
RC
R
L
R
L
R
L
R
L
R

L
R
L
LC
RC
R
L
R










L
R
L
R
L
R
L
R
L
R
L
R
L
R
J_
5/19
505

405.84

18.636
18.S37
16.968
10.948
3.516
3.254
19.891
10.115
3.48S


247
345
340
347
353
384
392
423
420
504
499
543
549
326
292
284
327
324
323
315
534
566
178
184
329
208
207
247
248
213
210

32
32
34
34
369
383
361
371
418
433
396
412
143
147
2
5/19
506

411.51

18.643
18.223
16.913
10.908
3.537
3.268
20.016
10.108
3.509


247
349
339
347
346
386
388
424
422
504
492
549
543
327
277
277
310
312
318
310
543
552
178
185
331
208
207
247
247
213
210

31
31
33
33
369
373
363
363
418
422
397
403
145
142
3
3/14
525

404.33

18.636
18.244
16.865
11.101
3.661
3.454
19.650
10.018
3.647


248
348
347
NA
351
390
397
418
414
492
489
542
544
326
257
268
298
302
316
310
542
542
174
183
333
207
206
248
248
213
210

11
10
15
14
382
?91
375
379
436
446
411
421
137
134
4
5/19
506

404.33

18.588
18.175
16.920
10.894
3.509
3.261
19.774
10.073
3.482


248
351
340
347
349
386
389
418
416
496
502
539
552
326
292
287
318
319
322
316
544
553
179
185
330
BOB
207
247
247
213
211

27
26
30
29
368
368
T61
359
417
421
395
398
142
138
5
5/12
422

348.51

18.043
17.713
16.761
8.791
2.806
2.579
19.429
9.722
2.779


235
332
329
335
336
382
386
432
426
507
499
546
545
305
305
304
334
332
332
325
540
548
171
118
308
197
197
P34
234
202
199

24
23
33
33
340
346
333
336
389
391
367
372
122
123
6
5/12
422

345.11

18.023
17.713
16.789
8.756
2.792
2.692
19.292 .
9.715
2.786


234
331
324
329
333
381
383
427
423
510
501
544
543
302
303
304
335
333
332
326
542
548
169
120
308
197
197
234
235
201
199

21
20
33
34
334
340
329
331
381
383
360
364
120
121
7_
5/16
421

341.71

18.037
17.71?
16.782
8.818
2.799
2.586
19.250
9.742
2.792


234
331
324
333
340
382
389
432
427
506
508
539
553
304
305
305
340
333
333
329
528
566
167
99
309
198
197
234
235
202
199

24
22
31
30
334
342
327
332
379
387
359
368
119
121
a
s/ai
320

236.75

17.306
17.134
16.665
6.295
2.068
1.903
18.306
9.191
2.07"!


220
?30
326
331
332
389
392
410
408
509
497
548
543
284
266
253
309
304
299
287
547
543
156
163
290
184
185
219
219
187
187

24
22
31
29
318
123
316
117
354
354
338
342
123
123
9
6/27
314

255.78

17.471
17.306
16.720
6.460
3. 027
1.855
18.974
9.329
NA


216
338
308
312
312
378
380
436
434
519
514
546
542
278
277
278
306
306
309
299
500
50B
40
82
284
64
179
88
216
47
183

36
31
36
34
i 293
•wo
232
292
284
328
314
320
111
112
                                              192
                                                                                          SHEET A9

-------
 WISCONSIN POWER & LIGHT Co.
 COLUMBIA fl
                                                                                   C-E POWER SVSTEMS
                                                                                   FIELD TESTING AND
                                                                                   PERFORMANCE RESULTS
                                 BIASED  FIRING  OPERATION  STUDY
                                                    TEST DATA
TEST NO.
DATE
UNIT LOAD
PRESSURES [GAUGE)
ECONOMIZER INLET
DRUM
SH OUTLET
TURBINE IST STAGE
RH INLET
RH OUTLET
SH SPRAY WATER
RH SPRAY WATER
HP HTR's G11G2 STH IN

TEMPERATURES

1976
MW
KO/S

MPA









10
5/23
324

260.31

17.458
17.223
16,678
6.433
2.068
1.896
18.761
9.308
2.068
V,
5/19
491

391 . 10

18.506
18.154
16.947
10.480
3.413
3.165
18.816
10.025
3.385
«
5/10
497

383.66

18.464
18.244
16.872
10.597
3.475
3.199
19.347
9,991
3,440
JJ
3/16
523

407.22

18.671
18.857
16.899
11-233
3.661
3.468
19.629
10.039
3.647
If
5/12
423

348.51

18.078
17.768
16.858
8.805
2.813
2.606
19.422
9.763
2.799
_15
3/13
400

320.54

17.892
17.616
16.741
8.225
2.634
2.489
19.036
9.556
2.627
li
5/16
422

345.11

18.064
17.733
16.789
8.811
2.806
2.599
19.236
9.756
2.799
,7
5/21
320

234.23

17.361
17.161
16.692
6.316
2.061
1.896
18.361
9.218
2.068
IS
5/23
323

253.51

17.478
16.858
16.672
6.419
2.068
1.896
18.657
9.301
2.068
WATER ANO STEAM
ECONOMIZER INLET •
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH PEND Oiv INLET  LINK
SH PEND Oiv INLET  LINK
SH DESH OUTLET LINK
SH DESK OUTLET LINK
SH PCND SPCD FRONT IN LINK
SH PCND SPCD FRONT IN LINK
SH OUTLET LEADS
SH OUTLET LEADS
RH DESH INLET COMB. LINE
RH RADIANT WALL FRONT IN HDR
RH RADIANT WALL FRONT IN HDR
RH PEND SPCD FRONT IN LINKS
RH PENO SPCD FRONT IN LINKS
RH PEND SPCD FRONT IN LINKS
RH PENO SPCD FRONT IN LINKS
RH OUTLET LEADS
RH OUTLET LEADS
SH SPRAT WATER
RH SPRAY WATER
COLD RH EXT STH TO G14G2 HTR
FW INTO HP HTR Gl
FW INTO HP HTR G2
FW OUT or HP HTR Gl
FW OUT OF HP HTR G2
STM DRAIN FROM HP  HTR Gl
STH DRAIN FROM HP  HTR G2
Am t GAS
PRi  AIR AH AIR
PR I  AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
PRi  AIR AH AIR
PR I  AIR AH Am
Sec AIR AH AIR
SEC AIR AH AIR
ECONOMIZER GAS
ECONOMIZER GAS
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET
INLET
INLET
INLET
INLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
                             •c

L
LC
RC
R
L
R
L
R
L
R
L
R

L
R
L
LC
RC
R
L
R









220
318
313
316
323
381
385
435
427
517
507
548
547
283
284
284
320
318
316
308
521
537
157
101
290
185
184
219
219
187
186
245
348
342
348
357
387
393
420
416
500
501
538
554
324
287
278
324
320
319
309
533
567
176
182
387
207
206
245
245
211
208
247
352
346
349
357
392
397
413
409
505
491
548
546
328
265
269
308
308
316
307
531
561
179
183
332
208
207
246
247
212
S10
248
346
343
NA
351
386
393
413
411
494
493
537
548
326
264
272
307
308
319
308
529
556
174
184
331
208
207
248
248
212
209
234
337
334
338
341
385
389
432
424
504
497
546
545
304
303
304
331
328
328
321
542
547
169
173
309
198
197
235
235
SOS
200
229
328
324
NA
331
379
384
423
419
504
504
540
547
295
298
298
329
325
326
324
535
544
160
119
306
192
191
229
229
195
193
235
336
332
340
349
183
394
433
425
502
504
536
556
303
304
304
339
332
333
328
524
571
168
93
310
198
197
234
235
201
200
219
334
331
336
341
391
395
409
407
508
501
544
546
283
271
262
315
306
300
289
542
544
155
163
289
185
184
218
218
187
187
220
323
318
322
327
383
387
431
427
510
507
543
548
283
£83
283
318
317
314
307
524
536
155
107
289
184
184
218
219
187
186
L
R
L
R
L
R
L
R
L
R
L
R
L
R
26
22
38
37
300
305
298
299
342
344
321
326
116
118
31
32
34
33
371
381
362
369
419
431
398
410
144
142
27
28
29
29
376
389
167
376
426
437
404
418
137
134
3
.1
18
IB
370
377
361
364
427
434
399
409
129
112
27
26
29
30
347
353
339
342
397
399
376
381
122
123
5
4
29
29
331
334
325
325
378
380
357
361
118
114
24
22
30
29
340
351
332
339
389
403
367
381
124
123
25
24
30
29
327
334
322
327
361
362
347
354
126
127
22
19
41
41
295
296
291
289
348
349
319
322
112
109
                                                         193
                                                                                                            SHEET AID

-------
 WISCONSIN POWER 1 LIGHT Co.
 COLUMBIA tl
                                                                                   C-E POWER SYSTEMS
                                                                                   FIELD TESTING AND
                                                                                   PERFORMANCE RESULTS
                                 OVERFIRE  AIR  OPERATION  STUDY
 TEST  NO.
 DATE
 UNIT LOAD
 PRESSURES
 ECONOMIZER INLET
 DRUM
 SH OUTLET
 TURBINE !ST STAGE
 RH INLET
 RH OUTLET
 SH SPRAT WATER
 RH SPRAY WATER
 HP HTR's G1&G2 STM IN

 TEMPERATURES
AIR & GAS
PRi AIR AH AIR
PRl AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
PRi AIR AH AIR
PRi AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
ECONOMIZER GAS
ECONOMIZER GAS
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET
INLET
INLET
INLET
INLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
TEST DATA

1976
hW
KG/S

MPA









1
3/17
517

398.53

18.581
18.216
16.920
10.908
3.585
3.392
19.588
9.963
3.523
a
3/17
512

4O0.04

18.588
18.188
16.892
10.845
3.572
3.378
19.671
9.950
3.509
3
3/20
524

432.30

18.802
18.354
16.920
11.356
3.640
3.426
20.022
10.163
3.572
4
3/20
525

432.30

18.788
18.319
16.913
11.300
3.654
3.440
19.760
10.129
3.592
5
3/22
586

419.95

18.733
18.299
16.927
11.356
3.675
3.461
18.823
10.136
3.606
6
3/20
5S1

444.27

18.892
18.409
16.913
11.355
3.627
• 3.385
20.319
10.239
3.530
7
a/20
522

437.72

18.850
18.409
16.940
11.300
3.634
3.413
20.105
10.177
3.558
8
3/20
522

434.94

18.830
18.161
16.920
9.915
3.640
3.420
20.016
10.163
3.572
WATER t STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH PEND Oiv INLET LINK
SH PEND Div INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LINK
SH PEND SPCD FRONT  IN LINK
SH PEND SPCO FRONT  IN LINK
SH OUTLET LEADS
SH OUTLET LEADS
RH DCSH INLET COMB. LINE
RH RADIANT WALL FRONT  IN HDR
RH RADIANT WALL FRONT  IN HDR
RH PEND SPCD FRONT  IN LINKS
RH PENO SPCD FRONT  IN LINKS
RH PEND SPCD FRONT  IN LINKS
RH PEND SPCD FRONT  IN LINKS
RH OUTLET LEADS
RH OUTLET LEADS
SH SPRAY WATER
RH SPRAY WATER
COLO RH En STM TO G1&G2 HTR
FW INTO HP HTR G1
FW INTO HP HTR G2
FW OUT or HP HTR G1
FW OUT or HP HTR G2
STM DRAIN FROM HP HTR G1
STM DRAIN FROM HP HTR G2
                              •c

L
LC
RC
R
L
R
L
R
L
R
L
R

L
R
L
LC
RC
R
L
R









247
349
345
351
352
387
392
410
408
494
491
538
546
324
254
264
299
301
310
300
532
553
173
183
329
207
2O6
247
247
211
208
247
349
346
351
352
388
393
414
412
494
486
541
542
323
307
261
296
298
308
299
531
552
173
182
329
206
206
246
246
211
208
241
313
309
316
319
356
363
402
397
484
475
532
534
295
258
249
295
294
291
285
524
544
144
174
326
197
197
239
238
202
19B
241
316
313
321
322
358
366
400
399
485
472
534
534
298
454
248
287
287
287
283
521
545
142
173
327
197
196
238
238
202
197
242
314
313
315
324
358
366
393
388
483
477
530
537
294
247
246
288
289
286
279
523
552
142
177
328
198
197
240
239
202
196
246
331
326
332
339
377
382
433
422
510
497
544
543
323
312
304
339
337
132
326
532
562
172
181
327
206
205
246
246
212
209
239
306
304
308
314
352
359
404
4O1
488
481
528
536
294
264
252
299
296
291
288
518
550
139
173
327
195
194
217
238
202
197
241
308
306
309
318
353
361
4O2
397
484
478
528
536
293
259
247
296
291
289
281
519
545
141
172
328
195
194
238
237
201
196
L
R
L
R
L
R
L
R
L
R
L
R
L
R
3
1
18
17
376
383
367
371
431
438
406
415
122
119
8
2
15
14
381
389
372
377
437
444
406
421
122
120
9
17
13
16
368
378
359
367
421
433
396
410
118
112
16
17
11
16
373
388
365
377
426
443
402
419
119
116
11
14
11
15
366
377
357
367
422
433
397
409
113
113
23
23
26
26
346
357
369
346
399
408
373
387
123
118
14
17
15
17
354
363
347
353
408
418
382
394
115
109
16
18
18
21
359
369
352
359
412
423
387
401
118
112
                                                         194
                                                                                                           SHEET All

-------
WISCONSIN POWER  &  LIGHT Co.
COLUMBIA |1
                                                                                  C-E POWER SYSTEMS
                                                                                  FIELD TESTING AND
                                                                                  PERFORMANCE RESULTS
                                 OVERFIRE  AIR  OPERATION  STUDY
 TEST NO.

 DATE
 UNIT LOAD
 PRESSURES
 ECONOMIZER INLET
 DRUM
 SH OUTLET
 TURBINE IST STAGE
 RH  INLET
 RH OUTLET
 SH SPRAY WATER
 RH SPRAY WATER
 HP HTR's G1&G2 STM IN

 TEMPERATURES

 WATER t STEAM
 ECONOMIZER INLET
 ECONOMIZER OUTLET
 ECONOMIZER OUTLET
 ECONOMIZER OUTLET
 ECONOMIZER OUTLET
 SH PEND Div INLET LINK
 SH PEND Div INLET LINK
 SH DESK OUTLET LINK
 SH DESK OUTLET LINK
 SH PEND SPCD FRONT IN LINK
 SH PEND SPCD FRONT IN LINK
 SH OUTLET LEADS
 SH OUTLET LEADS
 RH DESH INLET COMB.  LINE
 RH RADIANT WALL FRONT IN HDR
 RH RADIANT WALL FRONT IN HDR
 RH PEND SPCD FRONT IN LINKS
 RH PEND SPCD FRONT IN LINKS
 RH PEND SPCD FRONT IN LINKS
 RH PENO SPCD FRONT IN LINKS
 RH OUTLET LEADS
 RH OUTLET LEADS
 SH SPRAT WATER
 RH SPRAY WATER
 COLO RH EXT STH TO G14G2 HTR
 FW INTO HP HTR G1
 FW INTO HP HTR G2
 FW OUT OF HP HTR G1
 FW OUT OF HP HTR G2
 STM DRAIN FROM HP HTR Gl
 STM DRAIN FROM HP HTR G2
TEST DATA
2
1976 3/24
MW 476
KG/S
380.51
MPA
18.354
18.030
16.864
9.977
3.282
3.103
18.864
9.825
3.820
12
3/24
473

372.83

18.264
17.933
16.816
9.777
3.227
3.048
18.699
9.832
3.165
11
3/24
472

366.53

18.237
17.892
16.795
9.728
3.234
3.048
18.374
9.805
3.172
J2
6/24
524

426.88

18.788
18.347
16.892
11.383
3.661
3.427
20.133
10.336
3.716
n
6/24
525

421.34

18.747
18.374
16.947
1 1 . 362
3.661
3.440
19.960
10.329
3.716
If
6/24
523

424. 1 1

18.712
18.381
16.947
11.369
3.627
3.406
20.091
10.349
3.709
_15
3/24
511

401.43

18.547
18.161
15.877
10.825
3.558
3.372
19.616
10.018
3.496
-16_
6/30
526

415.79

18.726
18.333
16.891
11.411
3.661
3.440
19.754
10.315
NA
AIR t GAS
PRi AIR AH AIR
PRI AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
PRI AIR AH AIR
PRI AIR AH AIR
SEC AIR AH AIR
SEC AIR AH AIR
ECONOMIZER GAS
ECONOMIZER GAS
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET
INLET
INLET
INLET
INLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
OUTLET
                °C

L
LC
RC
R
L
R
L
R
L
R
L
R

L
L
L
LC
RC
R
L
R









236
327
324
327
332
368
376
397
398
489
479
539
537
292
246
242
283
287
232
275
535
544
142
171
318
193
193
233
233
198
194
237
326
324
328
331
368
377
399
399
488
478
539
539
287
240
237
284
284
281
269
536
544
142
171
317
193
193
234
233
197
193
235
323
319
327
326
369
373
402
392
483
471
535
532
285
226
224
272
271
278
262
526
551
139
169
316
192
192
S33
233
197
192
243
340
342
346
352
385
391
429
420
507
490
542
539
325
281
290
331
327
326
319
532
562
71
186
328
57
205
95
244
98
209
244
345
345
349
354
388
394
435
427
514
498
548
548
334
287
282
IBS.
321
324
316
529
563
69
186
336
57
204
95
244
98
209
244
341
342
343
351
387
389
429
419
507
499
544
545
329
301
291
331
326
326
323
538
554
74
185
331
59
204
95
243
97
208
239
315
315
319
323
363
368
394
391
482
475
531
534
292
229
233
273
277
283
274
520
551
143
172
327
196
195
238
237
201
195
244
342
346
346
345
388
389
422
419
510
498
552
545
333
298
237
326
329
331
320
543
547
79
186
335
39
205
85
244
43
210
L
R
L
R
L
R
L
R
L
R
L
R
L
R
12
14
16
14
367
375
358
364
423
431
399
408
120
112
10
14
11
14
371
378
362
367
427
432
403
411
121
114
10
15
10
14
371
382
364
371
426
435
402
412
121
115
29
26
31
30
357
369
339
341
398
421
386
397
133
131
31
29
32
32
362
376
322
332
403
428
390
4O4
137
137
27
26
29
28
341
364
346
341
402
399
384
393
131
132
15
14
11
16
367
380
361
369
424
435
399
411
120
120
28
25
29
28
353
362
314
349
397
407
387
393
128
125
                                                        195
                                                                                                          SHEET A12

-------
WISCONSIN POWER & LIGHT Co.
COLUMBIA #1
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                              OVERFIRE AIR  OPERATION  STUDY
 TC5T NO.

 DATE
 UNIT LOAD

 FLOWS
 FEEOVATER

 PRESSURES
 ECONOMIZER INLET
 DRUM
 SH OUTLET
 TURBINE 1si STAGE
 RH INLET
 RH OUTLET
 SH SPRAT WATER
 RH SPRAY WATER
 HP HTR's G11G2 STM IN

 TEWERATURES
TEST DATA
V7
1976 6/25
MW 524
KG/S
41O.12
18.678
19.333
16.940
11.328
3.627
3.420
19.112
10.315
3.716
U!
6/30
526

418.56
18.740
18.388
16.906
11.473
3.661
3.399
19.822
10.370
NA
J9
6/29
524

418.56
18.726
18.340
16.906
11.411
3.661
3.427
19.884
10.343
NA
20
6/E5
521

412.90
18.795
18.374
16.954
11.287
3.627
3.413
19.767
10.308
NA
£1
6/26
419

341.71
18.037
17.809
16.816
8.825
2.792
2.614
19.671
9.881
NA
22
6/25
422

322.43
17.982
17.706
16.802
8.749
3.565
2.646
18.864
9.791
NA
23
6/27
316

262.45
17.526
17.306
16.685
6.578
2.055
1.917
19.133
9.343
NA
24
6/29
322

244.06
17.437
17.258
16.678
6.502
2.075
1.938
18.561
9.377
NA
                            •c
WATER i STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH PEND Div INLET LINK
SH PENO Div INLET LINK
SH DESK OUTLET LINK
SH DESH OUTLET LINK
SH PENO SPCD FRONT IN LINK
SH PENO SPCO FRONT IN LINK
SH OUTLET LEADS
SH OUTLET LEADS
RH DESH INLET COMB. LINE
RH RADIANT WALL FRONT IN HDR
RH RADIANT WALL FRONT IN HDR
RH PEND SPCD FRONT IN LINKS
RH PEND SPCD FRONT IN LINKS
RH PENO SPCD FRONT IN LINKS
RH PEND SPCD FRONT IN LINKS
RH OUTLET LEADS
RH OUTLET LEADS
SH SPRAY WATER
RH SPRAY WATER
COLD RH EXT STM TO G1&G2 HTR
FW INTO HP HTR G1
FW INTO HP HTR G2
FW OUT or HP HTR Gl
FW OUT or HP HTR G2
STM DRAIN FROM HP HTR Gl
STH DRAIN FROM HP HTR G2
AIR i GAS
PHI AIR AH AIR INLET
PRI AIR AH AIR INLET
SEC AIR AH AIR INLET
Sec AIR AH AIR INLCT
PRI AIR AH AIR OUTLET
PRI AIR AH AIR OUTLET
Sec AIR AH AIR OUTLET
SEC AIR AH AIR OUTLET
ECONOMIZER GAS OUTLET
ECONOMIZER GAS OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET

L
LC
RC
R
L
R
L
R
L
R
L
R

L
R
L
LC
RC
R
L
R










L
R
L
R
L
R
I
R
L
R
L
R
L
R
243
346
345
347
354
388
393
422
415
502
503
542
553
330
291
283
322
322
326
315
531
563
72
185
333
43
204
94
244
92
209

33
28
33
31
351
372
319
304
398
424
393
402
133
133
244
343
347
348
343
338
389
422
418
509
498
551
545
331
304
300
329
333
334
322
546
538
80
186
334
39
205
86
244
43
209

27
24
28
27
348
353
308
340
401
406
376
385
126
124
245
343
343
343
348
388
391
424
421
506
497
548
545
331
294
294
323
324
330
321
538
557
79
136
334
46
205
86
244
51
209

26
23
28
27
358
368
318
354
398
411
389
398
128
128
243
345
344
349
351
391
394
425
422
504
494
551
546
331
283
274
314
314
319
309
532
552
63
184
333
42
204
94
243
96
208

35
32
36
34
368
379
316
361
418
430
395
407
136
142
231
326
327
329
332
333
386
431
428
508
506
545
548
304
304
305
329
328
332
325
530
554
55
132
309
43
192
94
230
47
197

36
35
37
36
322
334
271
323
376
373
351
358
118
123
232
337
338
342
346
391
394
426
422
506
496
550
546
308
289
276
329
316
313
306
538
553
51
174
312
42
194
94
232
96
197

36
34
37
36
323
356
261
346
393
387
368
379
127
137
216
306
306
303
308
380
379
427
443
509
511
537
538
274
289
272
301
296
292
294
503
496
32
78
278
64
180
88
216
44
183

36
32
36
36
287
292
221
230
337
324
309
313
100
106
218
323
320
323
326
384
387
423
418
512
508
546
547
284
282
284
312
309
313
304
526
541
43
159
289
48
182
66
217
72
184

31
28
33
32
296
312
247
304
354
341
327
332
103
114
                                                     196
                                                                                                   SHEET A13

-------
WISCONSIN POWER 4. LIGHT Co.
COLUMBIA  /i
C-E POUCH SvftTKMa
FltLD TtSTlHO fcNO

PERFORMMiCE RtSUUt
                                                                  BASaiNE   OPERATION    STUDY
TEST NO.

DATE
UNIT LOAD

FLWS
FEEOVATER  (MEASURED)
SH SPRAY (PLANT FLOW NOZZLE)
MAIN STEAM (CALCULATED)
TURB. LEAK.  (Tuna. HT. BAL.)
HP HTR. EXT.  (HEAT BAL.!
RH SPRAY (PLANT FLOW NOZZLE)
RH STEAM (CALCULATED)

UNIT ABSORPTION
ECONOMIZER
FURNACE
DRUM - SH DESH
SH DESH - SH OUTLET
REHEATED
TOTAL

UNIT EFFICIENCY
DRY GAS Loss
MOISTURE  IN FUEL  Loss
MOISTURE  in AIR Loss
RADIATION Loss
ASH PIT Loss
HEAT IN FLY ASH Loss
PYRITE REJECTION  Loss
CARBON Loss
ELECTROSTATIC PRECIP. Loss
TOTAL LOSSES
ErnciENCY

HEAT INPUT
HCAT INPUT FROM FUEL

EXCESS AIR
 ELECTROSTATIC PRECIP.
 AIR HEATER INLET
 AIR HEATER OUTLET
TEST RESULTS

1976
MM
KO/S

:ZLE)

>AL.)
I
:ZLE)

MJ/3






%








333


MJ/S

.LET*


1
3/10
524

412
30
441
7
36
17
416

224
362
261
164
274
13O4

4.55
7.55
0.11
0.17
0.37
0.04
0.01
0.02
0.23
13.05
66.95

1500
20.7
25.1
26.7
2
3/08
524

431
11
442
7
38
12
410

212
401
253
165
253
1284

4.29
7.21
0.10
0.1B
0.36
0.03
0.01
0.03
0.30
12.51
87.49

1468
21.8
25.8
33.1
3
3/15
465

381
19
400
6
32
14
375

212
341
230
164
244
1191

4.99
7.42
0.1S
0.19
0.36
0.03
0.01
0.02
0.58
13.72
86.28

1380
34.7
36.5
47.0
4
3/13
399

324
9
334
5
25
1
304

170
327
189
122
167
975

4.16
7.03
0.10
O.S3
0.37
0.03
0.01
0.04
0.69
12.65
67.35

1116
35.6
36.8
55.8
5
5/23
324

262
4
267
4
18
0
244

125
293
146
96
132
793

3.72
7.13
0.09
0.28
0.32
0.02
0.01
0.03
0.45
12.06
87.94

902
27.7
30.0
51.6
6
5/83
383

265
4
269
4
18
0
246

135
286
145
97
134
797

3.93
7.57
0.09 .
0.26
0.32
0.02
0.01
0.02
0.69
12.95
87.05

916
37.5
39.3
55.8
7
5/23
322

262
6
266
4
18
0
246

135
282
147
101
131
797

4.10
7.15
0.10
0.28
0.31
O.OS
0.01
0.02
0.78
12.77
87.23

914
43.2
44.2
61.9
8
3/10
514

397
30
427
6
35
19
404

219
349
254
181
277
1279

4.48
7.48
0.10
O.18
0.36
0.03
0.01
0.02
O.27
12.96
87.04

1469
19.4
23.5
24.9
9
3/09
515

406
SB
432
6
36
17
407

221
359
252
181
271
1284

4.69
7.41
0.11
0.18
0.36
0.03
0.01
0.02
0.35
13.15
86.85

1478
23.7
26.9
35.9
12
3/10
482

371
23
394
6
31
12
369

215
325
238
154
239
1171

4.75
7.49
0.11
0.19
0.37
0.03
0.01
0.11
0.54
13.61
86.93

1347
30.6
32.7
35.7
_n
5/21
321

237
26
263
4
17
6
248

134
243
162
117
164
820

4.16
7.24
0.10
0.27
0.39
0.02
0.01
0.01
0.54
12.74
87.26

940
20.4
21.0
37.6
!i
5/25
321

249
16
265
4
17
2
246

153
244
159
104
147
806

5.07
7.28
0.12
0.28
0.39
O.OS
O.O1
0.02
0.39
13.59
86.41

933
52.5
55.9
81.5
JI3
3/12
524

403
29
432
7
35
21
411

224
348
260
183
285
1301

4.80
7.55
0.11
0.17
0.37
0.03
0.01
0.30
0.08
13.43
86.57

1503
17.1
10.5
30.2
14
3/09
513

409
18
426
6
35
17
401

225
360
249
165
266
1266

4.97
7.29
0.12
0.18
0.35
0.03
0.01
0.01
0.19
13.15
86.85

USB
22.6
27.5
3?. 4
J5
3/10
484

371
26
397
6
31
14
374

813
327
235
164
249
1169

4.84
7.49
0.11
0.19
0.37
0.03
0.01
0.19
0.56
13.80
86.20

1379
32.8
35.0
40.1
J6
3/13
401

322
7
329
5
25
1
300

164
326
192
111
167
962

4.55
7.57
0.11
0.23
0.37
0.03
0.01
0.04
1.55
14.44
85.56

11?.)
35.7
39.1
M.n
V7
5/25
322

246
17
264
4
17
5
247

133
259
159
106
153
809

4.09
7.19
0.10
0.28
0.39
0.02
0.01
O.OS
0.26
12.35
87.65

923
26.1
29.2
45.3
!§
5/25
325

846
20
267
4
17
4
250

148
243
163
109
157
820

4.42
7.16
0.10
0.27
0.40
0.02
0.01
0.02
0.45
12.85
87.15

941
39.5
42.3
52.7
19
5/25
322

244
19
263
4
17
3
245

157
232
160
107
151
807

5.00
7.23
0.12
0.28
0.39
0.02
O.O1
0.02
0.71
13.77
86.23

936
54.8
57.1
83.2

-------
WISCONSIN POWER S LIGHT Co.
COLUMBIA II
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                                        BASELINE   OPERATION   STUDY
TEST RESULTS
TEST NO.
DATE 1976
UNIT LOAD MW
PRODUCTS OF COMBUSTION >Ma/J
1
3/10
524

ELECTROSTATIC PRECIPITATOR INLET
DRY PRODUCTS
WET PRODUCTS
AIR HEATER INLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
AIR HEATER OUTLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
GAS AND AIR FLOWS KG/S
GAS ENTERING PRECIPITATOR
GAS ENTERING AIR HEATER
GAS LEAVING AIR HEATER
AIR ENTERING AIR HEATER
AIR LEAVING AIR HEATER
AIR HEATER LEAKAGE
AIR HEATER PERFORMANCE
AIR HEATER LEAKAGE %
GAS SIDE EFFICIENCY 
-------
WISCONSIN POWER £ LIGHT Co.
COLUMBIA /I
C-E POVER SYSTEMS
FIELD TESTING AMD
PCRFORMAHCE RESULTS
                                                           BIASED   FIRING    OPERATION   STUDY
TEST NO.

DATE
UNIT LOAD

FLOWS
FEEOWATER (MEASURED^
SH SPRAV (PLANT FLOW NOZZLE)
MAIN STEAH (CALCULATED)
TURB. LEAK.  (Time. HEAT BAL.)
HP HTR. EXT.  (HEAT BALANCED
RH SPRAY (PLANT FLOW NOZZLE)
RH STEAM (CALCULATED)

UNIT ABSORPTION
ECONOMIZER
FURNACE
DRUM - SH DESH
SH OESH . SH OUTLET
REHEATER
TOTAL

UNIT EFFICIENCY
DRY GAS Loss
MOISTURE  IN FUEL  Loss
MOISTURE  IN AIR Loss
RADIATION Loss
ASH PIT Loss
HEAT  IN FLY ASM Loss
PYRITE REJECTION  Loss
CARBON Loss
ELECTROSTATIC PRECIP. Loss
TOTAL Losses
EFFICIENCY

HEAT  INPUT
HEAT  INPUT FROM FUEL

EXCESS AIR
ELECTROSTATIC PRECIP.
AIR HEATER IMLCT
AIR HEATER OUTLET
TEST RESULTS

1976
MM
KQ/3

ZLE)

BAL.)
CE>
ZLE)

MJ/s






*







ISS


MJ/s

IUCT


1
5/19 .
505

406
81
426
6
35
13
398

222
356
244
182
248
1252
5.33
7.24
0.13
0.18
0.37
0.03
0.01
0.02
0.50
13.81
86.19

1453
80.4
83.2
42.3
2
5/19
506

412
17
428
6
35
16
404

224
363
248
180
263
1272
5.31
7.29
0.12
0.18
0.35
0.03
0.01
0.03
0.15
13.46
86.54

1470
18.4
23.2
41.3
3
3/14
525

404
29
433
7
35
21
412

228
347
264
181
284
1304
5.31
7.55
0.12
0.17
0.36
0.04
0.01
0.35
0.53
14.44
85.56

1524
15.2
18.4
28.4
4
5/19
506

404
26
431
7
34
12
408

282
354
245
192
24B
1862
5.20
7.25
O.12
0.18
0.34
0.03
0.01
0.02
0.34
13.48
86.52

1459
19.0
23.2
40.4
5
5/12
422

349
4
352
5
2B
2
381

178
345
187
134
176
1081
4.63
7.86
0.11
0.82
0.37
0.08
0.01
0.03
0.60
13.24
86.76

1177
26.1
28.4
47.1
6 .
5/12
422

345
7
352
5
27
1
321

168
351
193
133
177
1082
4.85
7.88
0.10
0.88
0.37
0.02
0.01
0.02
0.48
13.29
86.71

1179
21.7
24.5
38.4
7
5/16
481

342
3
344
5
27
1
314

174
340
196
117
173
1001
4.54
7.72
0.11
0.23
0.36
0.02
0.01
0.02
0.70
13.70
86.30

1160
30.7
32.3
45.1
B
s/ai
380

237
87
863
4
16
4
247

132
245
160
180
160
817
4.38
7.23
0.10
0.27
0.39
0.02
0.01
0.01
0.42
12.83
87.17

937
19.7
21.1
39.5
9
6/27
314

256
3
258
4
18
0
236

119
292
142
90
180
763
3.84
7.11
0.09
0.29
0.35
0.02
0.01
0.02
0.30
12.03
B7.97

867
34.2
35.9
56.1
JO
5/23
324

260
7
268
4
18
0
245

127
287
148
102
135
799
4.16
7.17
0.10
0.88
0.33
0.03
0.01
0.04
0.52
12.63
87.37

915
29.2
38.4
48.2
JJ
5/19
491

391
26
417
6
32
13
392

227
335
242
185
250
1239
5.45
7.30
0.13
0.17
0.35
0.03
0.01
0.02
0.82
14.27
85.73

1445
23.1
S3. 9
46.2
J2
5/10
497

384
33
417
6
30
18
399

887
319
850
190
869
1856
5.82
7.36
0.12
0.18
0.35-
0.03
0.01
0.03
0.21
13.51
B6.49

1452
24.6
29.2
41.3
13
3/16
523

407
31
438
7
35
18
415

223
366
249
191
279
1308
4.86
7.63
0.11
0.17
0.36
0.03
0.01
0.03
0.10
13.31
86.69

1509
IB. 4
25.4
35. 8
11
5/12
423

349
5
353
5
27
2
323

190
333
195
131
179
1027
4.73
7.01
0.11
0.22
0.3B
0.02
0.01
0.02
0.57
13.08
86.92

1182
34.1
36.7
50.4
js
3/13
400

321
4
325
5
85
1
296

161
329
183
112
163
949
4.76
7.29
0.11
0.24
0.36
0.03
0.01
0.08
0.81
T3.63
86.37

1099
35.8
36.7
54. B
J6
5/16
428

345
5
350
5
86
1
380

190
328
201
122
178
1020
5.23
7.13
0.12
0.22
0.35
0.02
0.01
0.02
0.78
13.89
86.11

1185
41.3
43.2
65.8
J7
5/21
380

234
27
261
4
16
3
844

148
832
157
128
158
806
5.03
7.16
0.12
0.28
0.40
0.03
0.01
0.08
0.38
13. 3B
86.68

929
35.9
37.6
56.0
11
5/23
323

854
11
264
4
18
0
242

130
273
147
104
134
788
3.89
7.33
0.09
O.ffl
0.33
0.08
0.01
0.04
1.14
13.33
86.67

909
36.6
38.4
58.8

-------
WisconsiN POWER t LIOMT Co.
COLUMBIA ill
C-F! POWCR SYSTEMS
F I ELD Ten I JJG AND
PERFORMANCE RESULTS
                                                    BIASED    FIRING   OPERATION   STUDY
                                                                     TEST RESULTS
TEST MO.
                                                                                           10
                                                                                                 11
                                                                                                        12
                                                                                                               13
                                                                                                                      14
                                                                                                                            15
                                                                                                                                   16
                                                                                                                                          17
                                                                                                                                                18
DATE 1976
UNIT LOAD tV
PRODUCTS OF COMBUSTION WJ
ELECTROSTATIC PRECIPITATOR INLET
DRY PRODUCTS
WET PRODUCTS
AIR HCATCR INLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
AIR HEATER OUTLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
GAS AND AIR FLOWS KG/S
GAS ENTERING PRECIPITATOR
GAS ENTERING Am HEATER
GAS LEAVING AIR HEATER
AIR ENTERING AIR HEATER
AIR LEAVING AIR HEATER
AIR HEATER LEAKAGE
AIR HEATER PERFORMANCE
AIR HEATER LEAKAGE ""•
GAS SIDE EFFICIENCY ^
GAS DROP C
AIR RISE C
TEMPERATURE HEAD C
FUEL ANALYSIS
CARBON
HYDROGEN
NITROGEN *•
OXYGEN
SULFUR ~:'
MOISTURE
Hs« '
HHV ' ' ' " <-•
5/1 'I
505


405
437

443
453
414
446

?86
191
475
509

635
64B
740
658
568
92

13.9
66.0
227
319
352

51.4
3.4
_7
12.5
.5
24.7
7.7

i/in
5^6


404
436

444
450
419
458

38?
390
478
512

641
664
753
662
573
80

13.2
66.3
236
314
749

51.0
3.4
.7
12.2
.6
25.0
7.1

3/14
525


393
425

407
412
403
436

374
379
436
469

648
664
715
628
578
51

7.6
67.6
254
347
384

41.8
3.4
.7
12.3
.7
24.< 1
P. 7

5/19
506


398
431

435
440
411
444

380
385
466
500

629
648
730
642
562
82

12.5
66.4
226
315
350

51.2
3.4
.8
12.5
.7
P4.7
7.7

5/12
422


437
471

4B2
489
445
478

420
425
508
542

554
563
638
576
500
75

13.2
69.9
219
287
321

52.4
3.7
.8
11.6
.6
23.9
7.0

5/12
422


420
455

449
455
429
465

403
409
475
511

536
548
602
536
482
54

10.0
70.6
216
282
313

50.3
3.8
.7
11.7
.6
25.9
7.O
1 Q'1^7
5/16
421


451
485

475
481
455
491

431
439
497
533

563
570
618
558
509
48

8.7
70.6
218
284
317

50.1
3.7
.7
11.8
.5
25.3
7.1

5/21
320


400
433

441
446
404
437

382
387
463
497

406
409
466
418
363
57

13.6
65.9
187
271
293

50.4
3.4
.7
12.5
.6
25.4
7.0

6/27
314


429
462

473
479
435
468

411
416
497
531

401
406
460
415
361
54

13.4
69.4
178
239
265

48.5
3.3
.6
13.6
.5
25.9
7.6

5/23
324


440
473

474
480
451
484

422
428
502
536

433
443
490
439
392
47

10.8
68.6
180
247
271

50.1
3.5
.7
11. 6
1.0
23.9
<3.S

5/19
491


421
454

476
482
423
456

403
408
496
530

656
659
766
697
590
107

16.2
66.2
227
317
353

51.*
3.6
.7
11. C
.£
24.2
7.^

5/10
497


422
455

442
448
436
470

403
408
476
509

661
682
739
650
592
57

8.5
69.4
249
329
367

50.5
3.4
.7
12.2
.6
25.1
7.5

3/16
523


402
435

420
425
424
458

383
388
461
495

656
691
747
641
585
56

8.1
71.0
259
333
372

48.8
3.3
.7
12.2
.7
25.6
8.7

5/12
423


451
484

477
483
460
492

433
439
504
537

572
582
635
571
519
53

9. 1
70.9
230
296
331

51.2
3.5
.7
12.1
.9
23.5
8. 1

3/13
400


455
489

496
503
458
492

438
443
516
551

537
541
606
553
487
65

12.0
69.4
214
284
317

50.2
3.5
.8
11.8
.7
24.7
8.3

5/16
422


471
504

526
533
477
510

453
459
550
584

597
604
692
632
544
88

14.4
68.9
220
292
328

51.0
3.5
.7
12.1
.6
24.4
7.7

5/21
320


450
483

490
497
455
488

432
438
514
548

449
453
509
462
407
56

12.1
66.2
195
279
303

49.7
3.4
.8
11.8
.8
24.6
8.9

5/23
323


461
496

508
515
467
502

444
450
534
567

451
456
515
468
409
59

13.0
71.0
183
236
265

48.9
3.6
.6
11.5
1.0
25.8
B. 6


-------
WISCONSIN POWER £ LIGHT Co.
COLUMBIA l\
                                                                                                               C-E POVCH SYSTCMS
                                                                                                               FIELD TCSTIHO AND
                                                                                                               PERFORMANCE RESULTS
                                                          OVERFIRE    AIR   OPERATION    STUNT
TEST NO.
DATE
UNIT LOAD
1976
  MW

KQ/S
FLOW
FEEDWATEB (MEASURED)
SH SPRAY (PLANT FLOW NOZZLE)
MAIN STEAM (CALCULATED)
TURBINE LEAKAGE (TURBINE HEAT BALANCE)
HP HTR. EXTRACTION  (HEAT BALANCE)
RH SPRAY (PLANT FLOW NOZZLE)
RH STEAM (CALCULATED)

UNIT ABSORPTION                  MJ/3
ECONOMIZER
FURNACE
DRUM . SH DESH
SH DESH - SH OUTLET
REHEATER
TOTAL

UNIT EFFICIENCY                     %
DRY GAS Loss
MOISTURE  IN FUEL Loss
MOISTURE  IN AIR Loss
RADIATION Loss
ASH PIT Loss
HEAT  IN Fur ASH Loss
PVRITE REJECTION Loss
CARBON Loss
ELECTROSTATIC PRECIPITATOR  Loss
TOTAL LOSSES
Err ICIENCV

HEAT  INPUT                       MJ/s
HEAT  INPUT FROM FUEL

EXCESS AIR                          H
ELECTROSTATIC PRECIPITATOR  INLET
AIR HEATER INLET
AIR HEATER OUTLET
TEST RESULTS
J^
3/17
517
399
26
425
6
34
20
404
227
341
246
185
281
1280
4.69
7.94
0.11
0.18
0.36
0.03
0.01
0.01
0.79
14.12
85.88
1490
23.9
25.4
33.3
2
3/17
512
400
26
426
6
34
20
405
230
340
247
183
285
1286
4.86
7.61
0.11
0.18
0.36
0.03
0.01
0.02
0.07
13.25
86.75
1482
23.2
30.8
34.2
3
3/20
524
432
7
439
7
38
14
409
160
467
246
156
287
1315
4.54
7.46
0.11
0.17
0.36
0.03
0.01
0.02
0.80
13.50
86.50
1520
21.8
23.2
33.3
4_
3/20
525
432
12
445
7
37
15
416
167
459
255
163
294
1338
4.55
7.36
0.11
0.17
0.36
0.03
0.01
0.01
0.60
13.20
86.80
1541
19.7
22. 5
31.6
5
3/22
526
420
24
444
7
36
15
416
159
449
257
180
298
1342
4.36
T.SB
0.10
0.17
0.36
0.03
0.01
0.02
0.51
12.84
87.16
1540
20.4
23.9
30.8
6
3/20
521
444
2
446
7
38
3
404
2OO
432
236
175
227
1269
4.05
7.39
0.09
0.18
0.35
0.02
0.01
0.03
0.25
12.37
87.63
1448
13.3
18.4
26.9
7
3/20
522
438
3
441
7
39
12
407
151
485
245
150
278
1310
4.20
7.34
0.10
0.17
0.36
0.03
0.01
0.04
0.32
12.57
87.43
1498
13.9
19.0
30.8
a
3/20
522
435
4
439
7
38
13
407
151
479
241
153
284
1309
4.08
7.32
0.10
0.17
0.36
0.03
0.01
0.03
0.33
12.43
87.57
1495
15.1
19.7
26.9
9
3/24
476
381
17
398
6
31
13
374
178
387
225
159
272
1221
5.09
7.37
0.12
0.19
0.35
0.03
0.01
0.01
0.96
14.13
85.87
1422
36.8
37.7
49.4
_10
3/24
473
373
17
390
6
31
14
367
174
380
223
155
264
1196
5.23
7.29
0.12
0.19
0.36
0.03
0.01
0.02
0.80
14.05
85.95
1392
35.8
37.6
49.3
JJ_
3/24
472
367
22
389
6
30
16
368
165
383
225
154
264
1191
5.02
7.34
0.12
0.19
0.33
0.02
0.01
0.01
0.90
13.94
86.06
1384
. 30.0
30.8
40.4
_12
6/24
524
427
19
446
6
35
11
415
237
376
258
187
261
1319
4.61
7.07
0.11
0.17
0.35
0.02
0.01
0.02
0.44
12.80
87.20
1513
23.9
26.1
35.8

-------
WISCONSIN POWER
COLUMBIA «i
                  LIGHT Co.
C-E POWER  SYSTEMS
FIELD TESTING »NO
PERFORMANCE RESULTS
                                                           OVERFIRE   AIR   OPERATION    STUDY
TEST NO.

DATE                             1976
UNIT LOAD                          Mil

FLOWS                            KB/S
FEEDVATER (MEASURED!
SH SPRAY  (PLANT  FLOW NOZZLE!
MAIN STEAM (CALCULATED)
TURBINE LEAKAGE  (TURBINE HEAT BALANCE)
HP HTR. EXTRACTION  (HEAT BALANCE)
RH SPRAY  (PLANT  FLOW NOZZLE)
RH STEAM  (CALCULATED!

UNIT ABSORPTION                   MJ/s
ECONOMIZER
FURNACE
DRUM - SH DESK
SH DESH - SH OUTLET
REHEATER
TOTAL

UNIT EFFICIENCY                      %
DRY GAS Loss
MOISTURE  IN FUEL Loss
MOISTURE  IN AIR  Loss
RADIATION Loss
ASH PIT Loss
HEAT IN FLY ASH  Loss
PYRITE REJECTION Loss
CARBON Loss
ELECTROSTATIC PRECIPITATOR Loss
TOTAL LOSSES
EFFICIENCY

HEAT INPUT                       MJ/s
HEAT INPUT FROM  FUEL

EXCESS AIR                          %
ELECTROSTATIC  PRECIPITATOR INLET
AIR HEATER INLET
AIR HEATER OUTLET
TEST RESULTS
12
6/24
525
421
SS
444
7
35
16
41 B
243
360
265
195
263
1326
4.80
7.05
0.11
0.17
0.35
0.03
0.01
0.02
0.56
13.10
86.90
1526
26.9
28.5
41.4
If
6/24
523
424
19
443
7
35
8
408
233
375
253
196
243
1300
4.62
7.03
0.11
0.17
0.35
0.02
0.01
0.02
0.39
12.72
87.28
1489
26.9
27.7
38.6
-15
3/25
511
401
23
425
6
34
18
402
159
428
245
171
284
1286
4.74
7.38
0.11
0.18
0.37
0.03
0.01
0.01
0,74
13.57
86.43
1488
18.3
20.4
30.8
Jj>
6/30
526
416
23
438
7
34
12
409
227
368
253
203
243
1295
4.42
7.12
0.10
0.16
0.35
0.02
0.01
0.06
O.S9
12.55
87.45
1481
24.6
26.1
36.8
17
6/25
524
410
30
440
7
34
14
413
237
353
260
213
257
1320
4.66
7.48
0.11
0.17
0.36
0.03
0.01
0.05
0.25
13.12
86.88
1519
26.2
28.5
40.5
_18
6/30
526
419
23
441
7
35
10
409
233
366
254
204
233
1289
4.26
7.18
0.10
0.18
n.35
0.02
0.01
0.05
0.72
12.87
87.13
1479
23.2
24.7
37.7
15
6/29
524
419
22
441
7
35
12
412
228
371
256
199
249
1302
4.21
7.12
0.10
0.17
0.34
0.02
0.01
0.03
0.34
12.34
87.66
1485
19.1
19.8
30.9
20
6/85
521
413
25
438
7
34
17
414
240
354
261
202
263
1320
4.75
7.27
0.11
0.17
0.35
0.02
0.01
0.03
0.66
13.37
86.63
1524
25.4
27.7
39.5
£1
6/26
419
342
9
350
5
27
0
318
173
346
194
141
173
1027
4.22
6.92
0.10
0.22
0.37
0.02
0.01
0.02
0.59
12.47
87.53
1173
30.0
32.4
48.3
IE
6/25
422
322
20
342
5
25
5
316
186
302
202
152
202
1044
4.43
6.97
0.10
0.22
0.34
0.02
0.01
0.02
0.50
12.61
87.39
1195
28.5
30.1
42.4
23
6/27
316
262
1
263
4
19
0
240
115
306
144
82
- 123
770
3.25
6.91
0.08
0.29
0.35
0.02
0.01
0.03
0.59
11.53
88.47
870
32.5
35.1
51.6
24
5/29
328
244
15
259
4
17
0
238
189
261
148
114
133
785
3.73
6.94
0.09
0.28
0.36
0.02
0.01
0.02
0.77
12.82
87.78
894
34.2
34.2
50.5

-------
WISCONSIN POWER
COLUMBIA it
              * LIGHT CO.
                                                                                                                               C-E. POWER STSTEMS
                                                                                                                               FIELD TESTING AND
                                                                                                                               PERFORMANCE RESULTS
                                                   OVERF1RE   AIR   OPERflTKJN   STUDY
TEST RESULTS
TEST NO.
DATE i 975
UNIT LOAD t/u
PRODUCTS OF COM3USTION JUS/J
ELECTROSTATIC PRECIPITATOR INLET
DRY PRODUCTS
WET PRODUCTS
AIR HEATER INLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
AIR HEATER OUTLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
GAS AND AIR FLOWS KG/S
GAS ENTERING PRECIPITATOR
GAS ENTERING AIR HEATER
GAS LEAVING AIR HEATER
Am ENTERING AIR HEATER
AIR LEAVING AIR HEATER
AIR HEATER LEAKAGE
AIR HEATER PERFORMANCE
AIR HEATER LEAKAGE %
GAS SIDE EFFICIENCY %
GAS DROP c
AIR RISE C
TEMPERATURE HEAD c
FUEL ANALYSIS
CARBON %
HYDROGEN %
NITROGEN £
OXYGEN %
SULFUR %
MOISTURE %
ASH *
HHV KJ/KO
1
3/17
517


413
448

420
425
417
452

394
400
443
478

668
673
712
633
596
39

5.6
71.9
267
339
379

47.30
3.20
0.70
11.80
0.70
27.90
8.40
19050
2
3/17
512


414
447

406
411
438
472

395
400
449
483

662
700
716
609
593
16

2.3
72.4
278
346
382

48.80
3.30
0.70
IS. 10
0.60
25.80
B.70
19492
3
3/20
524


412
446

427
433
417
450

394
400
450
483

678
684
734
65B
608
50

7.4
72.3
264
333
372

50.30
3.50
0.80
12.00
0.60
24.80
8.00
20050
4
3/20
525


400
433

412
417
409
442

382
387
438
471

667
681
726
642
596
45

6.7
72.2
263
341
378

49.80
4.40
0.80
11.80
0.70
24.90
8.60
20097
5
3/22
526


401
434

406
411
412
445

384
389
434
467

668
685
719
633
599
34

5.0
73.1
268
333
373

50.00
3.50
0.80
11. BO
0.70
24.10
9.10
20306
6
3/20
521


383
416

393
398
399
432

365
370
427
460

602
626
666
576
536
40

6.4
71.7
237
313
337

50.20
3.50
0.80
12.00
0.60
25.20
7.70
20120
7
3/20
522


384
416

403
409
400
433

366
370
438
471

623
649
706
613
554
57

8.8
72.1
250
318
354

49.80
3.40
0.70
12.00
0.80
24.90
8.40
19980
8
3/20
522


387
419

398
397
401
434

369
374
424
457

626
649
683
594
559
34

5.4
73.1
256
321
357

49.70
3.40
0.60
12.00
0.90
24.90
8.50
20004
9
3/24
476


461
494

480
486
463
497

442
448
501
535

702
707
761
691
637
54

7.7
72.0
262
331
371

50. 4O
3.50
0.80
13.10
0.70
24.00
7.50
20004
JO
3/24
473


453
486

473
479
459
492

436
441
496
530

676
665
738
667
614
53

7.7
71.4
264
337
377

50.20
3.50
0.80
11.90
0.90
23.90
8.80
20283
,,
3/24
472


443
476

455
461
445
478

424
429
476
510

659
662
706
638
594
44

6.6
71.7
265
339
377

58.30
3.60
0.80
13.60
0.50
24.00
5.20
20515
!§
6/24
524


412
444

425
430
419
451

394
399
450
488

678
688
729
650
604
47

7.0
70.0
235
297
344

51.50
3.60
0.80
12.70
0.50
23.80
7.10
2O864

-------
WISCONSIN POWER X LIGHT Co.
COLUMBIA fl
C-E POWER SYSTEMS
TitLD TESTING  «IID
PERFORMANCE RESULTS
                                                   OVERFIRE  AIR   OPERATION   STUDY
                                                                  TEST RESULTS
TEST NO.
DATE
UNIT LOAD
PRODUCTS Or COSBUSTION
ELECTROSTATIC PRECIPITATOR
Our PRODUCTS
WET PRODUCTS
Am HEATER INLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
AIR HEATER OUTLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
GAS AND AIR aOWS
GAS ENTER i no PRCCIPITATOR
GAS ENTER i NO AIR HEATER
GAS LEAVING AIR HEATER
AIR ENTERING AIR HEATER
AIR LEAVING AIR HEATER
AIR HEATER LEAKAOE
AIR HEATER PERFORMANCE
AIR HEATER LEAKAGE
GAS SIDE EFFICIENCY
GAS DROP
AIR RISE
TEMPERATURE HEAD
FUEL ANALYSIS
CARBON
HYDROGEN
NlTROOEN
OXYGEN
SULFUR
MOISTURE
ASH
HHV

1976
MW
WJ
INLET












KG/S







%

C
C
C

i
a
%

%
f
•t
Kj/KG
13
6/24
525


409
441

431
436
414
446

391
396
454
4B6

673
680
748
6G5
604
62

9.0
68.8
234
286
348

49.90
3.40
0.60
13.80
0.40
24.60
7.3O
20562
14
6/24
523


412
444

428
433
415
446

394
399
448
481

661
664
716
645
594
52

7.7
69.5
233
299
343

50.10
3.40
0.60
13.80
0.50
24.20
7.40
20492
15
3/S5
511


404
437

421
426
411
444

387
392
445
478

650
661
711
634
583
50

7.8
70.9
260
336
374

50.20
3.50
0.70
11.90
0.90
23.50
9.30
19911
16
6/30
526


411
443

426
432
415
448

393
398
449
482

656
663
714
640
589
51

7.6
71.0
239
291
344

50.80
3.50
0.80
12.70
0.50
24.70
7.10
2O678
17
6/25
524


413
442

432
437
420
454

394
400
458
492

671
690
747
664
608
57

8.4
70.1
239
272
348

47.80
3.30
0.70
13.70
0.50
25.70
8.60
19399
18
6/30
526


391
423

412
418
395
428

373
378
435
468

626
633
692
618
559
59

9.3
70.0
230
884
336

48.90
3.40
0.80
14.10
0.50
25.60
6.70
S0515
19
6/29
524


380
412

396
401
382
414

362
366
416
448

612
615
665
595
544
50

8.3
70.4
240
297
349

49.40
3.40
0.70
14.40
0.40
25.10
6.60
2O562
20
6/25
521


409
442

428
434
416
449

391
396
453
487

674
684
742
661
604
58

8.3
69.4
237
292
349

49.40
3.40
0.60
13.80
0.40
25.30
7.10
2OI20
11
6/26
419


440
472

473
479
448
480

422
427
499
538

554
563
684
562
501
61

10.8
70.9
208
249
301

51 .90
3.60
0.60
18.90
0.60
22.90
7.50
20585
22
6/25
422


417
449

436
442
422
454

398
403
460
498

536
542
588
528
482
46

8.5
69.3
216
266
319

50.40
3.50
0.70
14.60
0.70
23.90
6.20
S0655
23
6/87
316


481
454

454
459
429
462

403
408
479
513

395
402
446
399
355
44

11.1
73.0
183
207
858

49.30
3.40
0.60
14.30
0.40
25.10
6.90
SO515
24
5/29
322


433
466

465
471
433
466

415
480
484
517

417
417
462
481
375
45

11 .0
71.5
195
232
280

49.80
3.40
0.70
13.60
0.70
24.10
8.30
SOSB3

-------
               Wfacon*In Power s Llghc Co.

               Columbia t\
                                                      BASELINE    OPERATION    STUDY
C-t Povt«r %y

F\«^d TemtX

Performance
                                                             WTERWALL ABSORPTION RATES. kW/nT
s
m
-I
TF3T
T/C * 1
2
2
4
5
6
7
d
9
10
11
12
12
14
15
lu
IT
IS
19
20
21
22
23
24
23
2o
27
28
29
30
31
32
23
34
35
36
37
38
39
40
41
42
A ^
f 3
44
4t>
1
':.<>
U.D
0.0
IB. 73
2.10
0.0
15.17
IB. 02
16.24
110.7s
91.37
22.49
5 o.OO
95.22
15.29
8.28
61.39
44.10
73.24
50. 4b
5.71
131. 7J
lib. 94
76.05
60.53
53.24
40.53
0.0
97.72
36.69
91.33
65.78
64.87
64. 37
28.56
44.2o
87.09
b9.82
44.26
71. b7
64.35
71. -jl
I t a «_ (.
1 J O *U *?
69.23
•n.an
2
45. jj
O.U
lOo. 11
191. jo
an. jt
n.o
110.44
19. 17
z. T^
120. >J
45. j6
78. lo
»1. Id
80. J:>
47. da
8 2 . U y
30./-.
92. J,;
93. 7d
74. Uu
56. 30
113. 74
121. 7d
79., 0
I0tt.o2
26. JJ
70. jt
O.U
33.3-,
51. of
93. *J
126. Jo
111. Ji
116. oJ
86. uf
7o. *j
2b.2t
14B.31
29. t-t
91. jj
113. -f/
100. jy;
M5. J<
l"i>. ^J
J
2 1. J(j
0.0
.1.0
d. J J
j5.9B
J.J
4. J3
 .31
')2. 7 a
L Jo . -t,l
j>. +0
I ) .ilj
o).06
111 .05
//.ol
MJ.U
t
3').UJ
:J .0
').0
Ud.4V
32. 7o
0 .U
d2.d
J £ • C }
I 72. J J
1 .J.jl
5
32.32
0.0
0.0
5i.78
29.62
0.0
3.39
75.31
65.29
75.31
63.47
56.19
50.74
0.0
87.20
34.49
157.51
126.46
110.94
109.11
64.42
0.0
161.28
257.88
141.19
Io4.93
159.45
0.0
122.76
150.16
192. 14
150.16
140. 11
130.07
101.76
185.24
15d.77
198.00
127.77
14o.90
It4.lu
M.il
i »g j i;
1 f * • £. 3
i >2. m
ZOO. 2 3
b
23.26
0.0
0.0
59.41
31.33
0.0
3.54
85.24
80.68
80.68
70.65
55.19
56.09
0.0
86.20
33.50
154.67
119.06
101.71
97.15
56.14
0.0
155.71
261.42
135.62
152.97
126.48
0.0
114.45
147.32
200.25
155.54
146.41
127.23
9B.OI
166.39
145.89
105. 14
128.55
145. d9
141.33
O.U
i c /. •a f.
1 7U • J *r
172.77
I7d.25
7
32.03
0.0
0.0
73.78
27.53
0.0
0.0
94.16
75.01
82.30
57.71
53.16
45.90
0.0
97.86
27.90
161.77
116.12
103.33
93.29
59.57
0.0
162.80
263.95
138.15
155.50
140.89
0.0
106.94
138.90
198.22
123.37
137.07
116.98
95.07
159.39
130.17
156.05
124.69
132.91
135.64
0.0
1 £7 Q2
i. *f f * v£
lt.4.35
169.S3
8
2.90
0.0
0.0
22.42
13. U7
0.0
150.68
28.01
33.06
107.40
97.90
41.70
60.67
63.29
106.24
16.14
66.80
58.06
64.62
56.60
11.90
132.05
58.29
94.05
72.15
89.67
80.91
0.0
77.96
52.45
118.14
94.03
93.30
74.31
40.10
78.47
107.69
8o.50
74.09
109.15
89.42
133.91
1 1 sl \ **
L 1 v • L?
76.79
99.43
9
120.87
0.0
52.43
166.53
6.40
0.0
140.97
62.63
8.59
100.05
90.91
69.01
58.08
53.53
33.49
96.32
41.64
85.36
89.02
48.91
8.53
124.69
146.61
100.03
106.42
116.47
75.07
0.0
100.73
64.23
97.99
50.57
73.34
62.40
30.63
44.53
58.17
68.19
81.88
85.53
99.22
70.93
fl 1 ?O
O L • £ 7
122.38
115.99
10
0.0
0.0
0.0
28.88
102.61
0.0
83.43
31.81
31.81
101.91
96.43
43.57
59*03
109'. 21
5.23
20.09
63.54
61.71
72.65
60.81
14.76
130.24
45.41
94.62
75.45
0.0
83.67
0.0
75.26
58.85
128.21
B3.47
84.38
68.87
36.16
58.28
89.28
84.72
46.46
106.63
85.63
116.68
1 H7 ft
-------
Wisconsin Power £ Light Co.
Columbia fl
                                          BASELINE   OPERATION    STUDY
C-E Power Systems
Field Testing and
Performance Results
                                                WATERWALL ABSORPTION RATES, kW/m
                                                                                10
                                                                                        11
                                                                                               12
                                                                                                      13
                                                                                                                     IS
1/C ft
47
43
49
50
51
b2
53
54
55
56
47
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
73
79
80
31
82
d3
84
85
uo
87
88

OO
Cb.24
37. 40
66.12
146.44
114.96
111.30
54.20
V0.73
103.32
0.0
0.0
1-3. 2J>
86.82
31.44
27.83
190.17
44.17
77.37
70.50
25.11
41.38
U.O
0.0
150.91
97.93
96.11
86. Oo
Z&.77
0.0
60.32
0.0
71.25
35.79
56.08
120.36
11-. 57
95.30
7t.li
70. 9d
b2.d4
99. 20
8 7. •*!>
14?*?"
oo . V O
S4.I.-
I'M. JJ
119. J^
Iu8. t i
UO. tJ
117. j-J
79. o7
27. 3j
43. J't
0.0
il. J
lid. i-J
84.42
46.0^
9. to
31. J4
101.33
140. 2 j
98. dJ
92.32
142.01
0.0
0.0
103.41
110. JU
123.24
142.4o
58. ft)
0.0
36. H 1. J\
i 7.O4
133.31
1,1.^
y<:.ul
I0o.:jl
03 tt'j
3J» 16
4 f . 3 J
J.O
.1.0
loJ.02
J4.t 3
33.46
3o.5
L J i • i J

J J. I*;
3V. 17
OJ.72
».d .32
lJ.41
Ho. 3d
23. U7
33 .4o
J3. 94
21. 1-t
0.0
U.O
70.03
33.72
3.23
0.0
17.37
60.68
36.71
131.49
102.27
113.03
0.0
0.0
102.3o
n. ->3
L3d.d4
123.37
103. 76
J .0
31.23
0.0
37.53
47.62
->1.52
o 4 . 7 1
07. d ?
133. ol
11 J. ltd
7 1 . ') t
I- 7.0*
63 .'Jf
111 . 1 J
.? I • *? J
1 j ,1 . 3 )
47.10
131.78
ii9.ua
37.05
15d.03
4'j.30
165.33
93.20
45. dU
110.55
0.0
36. H4
39.55
30.52
78.96
57. 1U
103.16
90.81
7.84
94.50
107.29
123.29
0.0
o.n
0.0
135.71
134.09
171.31
118.36
0.0
140.11
152.39
125.50
44.45
207.12
22«.49
152.38
132.29
0.0
150.95
120.82
130.34
12'J.o^
1 1 3. £i>
1 3 1 . S !•
3B.77
134.43
Ii7 .17
48.42
146.81
90.38
149.72
84.91
83.08
104. 9b
0.0
50.33
47.60
35.84
81.59
58.82
98. 02
76.12
8.61
86.20
99.88
118.15
0.0
0.0
0.0
123.74
179.44
159.36
110.05
0.0
135.45
149.15
117.19
116.27
197.00
229. 61
147.72
123.98
0.0
156.34
129.8o
144.47
LJ2.it>

1 3'.- 2f
123.26
128.74
43.99
134.91
117.56
147.70
07.44
118.47
100.21
0.0
48.31
47.40
32.03
HI. 39
55.89
92.34
63.17
7.57
86.90
89.64
105.16
0.0
0.0
0.0
113.49
169.19
145.46
98.88
0.0
130.63
142.55
107.85
106.02
173.08
166.69
144.76
121.95
0.0
148.83
121.44
150.66
120.00
1 12.31)
L 3d .Do
67.31
81.90
92.85
81.90
143.31
112.63
119.20
62.25
87.79
108.97
0.0
0.0
165.29
92.23
38.13
77.45
138.09
57.03
82.56
21.13
34.09
47.14
0.0
0.0
133.51
65.58
107.20
99.17
32.88
0.0
69.21
0.0
83.07
45.18
73.36
120.11
13^.11
107.69
82.12
104.54
104.54
10J. 19
91.39
133.04
LI > . 93
72.16
80.37
96.81
100.16
135.76
36.36
131.19
65.46
24.66
19.30
0.0
0.0
137.31
72.47
17.39
14.73
69.01
115.57
101.87
37.11
38.92
59.83
0.0
0.0
92.72
50.78
129.26
127.43
32.64
0.0
86.12
0.0
87.03
51.48
39.09
126.63
103.79
105.62
78.23
41.23
78.55
1O8.68
105. Oi
7 *,.
-------
             Wfccon*In
             Columbia ft
                        X Light Co.
                                                 BASELINE   OPERATION    STUDY
                                                        UATERWALL ABSORPTION RATES. kW/nt
                                                                                                          Performance
8
TFST
T/C « 91
92
93
94
95
96
9?
93
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
1
115.39
120.3 7
148.27
144.62
0.0
202.02
82.23
104.33
72.00
81.61
1<.1.29
135.13
0.0
109.47
157.00
0.0
170.11
0.0
46.72
0.0
45.1)1
71.47
05. 45
55.17
111.15
99. do
2
11)5. J-.
103. lo
138.11
37.70
O.I)
75.24
102. jj
106.43
1:1.11
118.3;
108. dj
V.5J
^0.3 1
0.0
!•»-.. 65
0.0
•J4.16
0.0
->0.0b
lOd. It]
«t.lf
t V.04
u>l.,J9
JJ ,OU
4
115.47
114.37
120.44
13U.30
0.0
•14.92
I4f.2b
67.70
71.17
u6.07
l
-------
Wisconsin Power & Light Co.
Columbia i\
                                            BASELINE    OPERATION    STUDY
                                                                    C-E rower Systems
                                                                    Field Testing and
                                                                    Performance Results
                                                   WATERUALL ABSORPTION RATES. kW/m
 TFfT

 T/C *
              10
                     17
                                    14
1
2
3
4
5
6
7
8
9
in
11
12
13
14
15
16
17
Id
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33
39
40
41
42
43
44
.05
47.96
20.55
159.44
155.79
52.14
47.76
4!>=oO
3
109. 2j
0.0
133.-»i
l4t>.^J
i:-n. j'
0.0
j.o
o.o
1^^. u4
, j.o>;
J.O
)3. 72
JJ.,)3
'tt. d3
J J . 3 2
OJ. 46
33.4 -j
31.23
J.O
2t.21
u3.09
40.83
114.17
10J.4G
jj.73
3o.7 1
0.0
ii4.65
190.96
103.16
121). 69
J.O
0.0
32.13
42.22
132.40
IJj.O*
104.37
4l) .40
7:>.dO
uJ.Ol
dj.24
d3.33
J7.1S(
lU.J.Jt
10J.a7
J.O
JJ .43
LCI-j .. BO
TfST

T/C *
                                                                 17
                                                                        1 J
46
47
4d
49
50
51
52
53
54
5s
So
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7«
79
80
81
82
63
84
85
86
87
88
8V
•JO
31.69
54. di)
04. 3t
25.44
19.02
114.80
17.4V
bl.33
97.27
20.33
0.0
0.0
65.60
30.03
tj.66
73.52
106.37
67.69
JU.61
123.54
111.85
108.20
0.0
0.0
101.90
81.45
147.93
109,. 21
109.94
0.0
112.86
0.0
61.04
108.47
213.44
217.31
144.83
119.99
124.37
44.71
119.08
bC.il
iu.78
V8.63
131.53
L09..W
135. ^t
116.0,,
89. j)
153. 2d
121. s2
87. J3
55. ul
112.14
123. ij
0.0
UI.J2
128.o2
aa.tj
36. Ot
47. dJ
76. yl
b4.1o
152.04
26.20
67. d3
70.34
0.0
0.0
0.0
52.31
74.35
122.72
73.44
0.0
161.32
65.44
123.47
145.3V
85. ii
145. {4
120.22
3C>.4!>
o.o
111. JO
114.71
114. it
71. J-
1 35.<2»
as. rt
d.>.4l
oi.tl
10J.33
d.n
117.46
42.31
uO.92
ti .11
it. 60
40.03
0.0
120.20
UJ.25
dj.jl
*0.33
t9.41
f j.dO
30. J2
130.14
27.78
«7.65
rj.38
d.o
0.0
0.0
49.38
72.32
117.03
6^.77
0.0
132.40
jo.o9
IOL.35
10d.65
dO. 77
126.41
101. rs
n.n
0.0
yr.«o
112.20
io3. or
o-t. ?8
ll-t.03
j ». 10
o9.43
J4.94
100.4?
oi.35
117.54
40.20
71.96
46.52
79. 2S
d3.64
0.0
123.05
1J0.35
31.06
41.37
49.52
73.91
50.4J
125.20
30.44
56.14
62 .M
o.«
O.t
0.*
46.91
66.0*
101.62
55. IS
0.0
lOj.12
yo.81
41.42
39.60
79.97
124.70
100.04
67.22
0.0
45.89
108.67
102 .2«
!>7.6
66.70
96.44
11.22
0.0
58.99
109.11
0.0
112.62
0.0
34.36
0.0
76.80
127.47
78.54
111.95
105.93
92.16
17
79.3*
58.40
127.71
71.14
0.0
75.04
97. it
0.0
105.20
77. 3.1
0.0
43. to
0.0
34.10
53.46
0.0
91.05
0.0
79. 3.1
0.0
66. I)f3
0.0
10T. OB
I31.lt)
96.89
108.34
18
J2. 78
io. Jd
lit. r 7
74.13
0.0
7+.B9
100. <.a
0.0
101.35
74.49
0.0
47.08
0.0
28.36
46.44
0.0
74.62
0.0
do. 42
0.0
65.33
0.0
97.70
86.24
43.00
104.68
19
d4.72
58.32
112.10
80.17
0.0
76.82
92.37
0.0
86.86
63.53
103.67
32. UO
0.0
23.48
40.90
0.0
69.69
0.0
81.06
0.0
62. JO
».o
96.9ft
83.62
74.92
79.34

-------
Wisconsin Power t Light Co.
Columbia /I
                                               BIASED    FIRING    OPERATION   STUDY
                                                           WATEftWAlL ABSORPTION RATES. kW/m*
                                                                                                                    C-t pQvmr ^y%t.m»
                                                                                                                    Fln\d Tailing and
                                                                                                                    Performance Kesu\ta
8
TFfT
T/C i 1
Z
i
4
b
S
7
a
9
in
11
12
13
14
15
16
17
la
19
zo
21
22
24
2<>
25
26
27
28
29
30
31
32
33
34
35
3b
37
38
39
40
ll
42
•i J
44
45
1
74. 10
0.1
U.'j
95.10
ill. 4 7
C.O
0.0
96.20
77.94
HI. 73
75.20
45.15
82.50
49.69
107.06
104.34
ob. 10
111.05
76.04
72.39
50.90
0.0
111.70
148.24
08.80
100.74
91.61
44.23
64.03
93.23
90.41
96. SB
84.10
95.97
133.42
93.55
82. bO
127.34
59.80
B4.*2
120.03
70.7 j
<44. 7d
lit). Jl
118. bJ
i
I2t.jj
0.0
52. /I
233. .>->
121. of
O.U
125. 3i
l3l.3i
3l.v»7
138.3')
70. li
J* • to
45. d»
97. J?
91. 34
lol. il
70.u3
57. ij
41. i +
al.2a
85.2J
0.0
149. at
251.01
so. ^r
1 11 . 7V
91. UJ
IJD.Ou
UU.J-.
9u . aa
°1. fJ
J6. V3. ;?
111. id
119. •i^.
85. 72
U6.J7
74. II
56. jj
60. 1 *
55. -> j
\.jl. n
1411. j.
Itb. I L
1
7.17
).<>
).'!
ia.70
112.26
•).U
2 o. u 7
JJ. 14
•i^. It
Jd.oO
Jd.oU
VI. 43
72.^7
t-f.9a
30.39
lt.2d
du.dO
-»j.79
J1.24
j-> .J I
l'J.u2
Is7. Od
J3.B7
11V.7B
/U.f2
47.o(j
it. 67
11J.77
1U6. 73
Ml. 25
l'J2. lo
LLG.oO
ou • 64
TO. 22
ja. j i
72. JO
t)u.0i
11. 1. )2
>/ .77
1 J j.22
j7 . 17
I.I i. .11
/^.od
73 . 'J (
u ;. . i
t
,1i> . 7 J
J .0
> J.t-1
I .7.07
J6. 72
•1.0
u9. t j
12*.-)0
&Z.35
3>. 1>)
^t.27
53.^3
34.19
39.02
12.29
lil. 72
54 .0 J
jrt.4b
47.73
^1.37
63.02
).0
147.25
110.72
•0.97
1 H.03
139 ,9i
111.93
127.37
9a.j3
JV.bO
Jt.ll/
lOj.94
12b.l1l
127. 
-------
                Wisconsin Power S Light Co.
                Co.lumbla t\
                                                 BIASED    FIRING    OPERATION    STUDY
                                                              WATERWALL ABSORPTION RATES.  kW/re
C-E Power Systems
Field Testing and
Performance Results
                TEST

                T/C «
to
o
u>
5

46
47
48
f9
50
51
52
53
54
55
5ii
57
3d
55
60
61
62
63
64
65
66
67
68
69
70
71
12
73
74
75
7o
71
T 9
la
79
80
Bl
82
93
64
Bj
36
87

??,
1
71.00
88.39
J3.d7
105.74
162. 04
144.o9
179.3b
57.06
65.26
105.42
0.0
169.98
194.61
94.19
SO. 72
83.41
108.07
74.29
91.63
48.71
67.83
146.36
0.0
0.0
73.36
87.04
149.15
106.22
52.40
0.0
93.23
d2.27
• Q t Q
OO • 7 7
H4.02
78.03
128.26
96.29
104.51
102.03
129.49
10J.91
104. U3
7 b. 3^

2
o2.u t
il.ji
c)9. > ^
t>6. -' J
113.26
202. i f
170.0-.
79. jj
77. jl
39. od
3.0
12H. ,1 j
143. aj
102. 1/
u4.0*
93.2*
99. Ji
53. II
95. uJ
BB.Vl
97. »J
!5b.dJ
0.0
0.0
I27.o2
94. f t
I 70. 23
120.32
34.ol
0.0
114. Vi
94. >i

72*.J-»
106.42
94.2 -t
103. tt
UV.JJ
142. y7
1 >5.2J
) I . d .1
72. Jj

3
r>.*2
111. .12
lu'.oO
J/.J 3
U3.3 y
Jo.^lp
Ut.-tO
lJj.2?
o2. J v
lid. Ob
O..J
u.o.
I »>.70
Jo .o-V
jd.uO
Jl. Jti
7 4 . i) 'J
43.15
-» d . 5 9
Ijl.ud
-3.10
jt .O4
71. 2d
0.0
111.51
Jl .30
1 J 7. 8 j
lid. d2
Ji.94
0.0
7o.oO
0.0
Jj.bu
JO. J 7
lit). 70
12 J . 1 1
12'). 75
•1*1 .iVy
/•*•:> /
1J J. id
llj. 7u
1 I » . > ')

-t

1 •» b . 4 V

7
102.56
169.23
156.45
124. 4d
153.44
29.54
43.09
19.70
135.17
IJ7. 91
0.0
53.37
53.37
34.32
86.43
59.08
92. U2
78.21
66.37
97.37
127.51
126.60
0.0
0.0
0.0
149.51
210.64
180.55
127.60
0.0
150.24
168.50
141 11
L 1 L . I 1
116.45
152.43
206. 2o
154.26
151.52
0.0
129. Ob
164.60
16B.31
141.84

d
54.93
ti-V .98
70.40
34.93
13d. 63
82.03
103.01
96.54
56.54
121.27
0.0
142.24
129.45
103.88
54.08
54.99
90.52
54.99
60. 82
40.55
84.19
67. 7B
0.0
0.0
0.0
76.11
105.30
97.09
153.70
U.O
91.45
84.16
01 45
O L . ^ t
62.29
116.51
llf.68
62.74
92.78
0.0
89.54
77.68
73.1i
74.O4
iJloo
9
111.70
130.04
137.35
103.56
108.81
112.46
123.42
86.91
53.22
93.29
0.0
89.69
96.06
63.25
35.44
37.25
0.0
131.09
111.00
51.78
102.82
0.0
0.0
0.0
0.0
45.55
69.18
93.80
69.18
0.0
164.86
58.10
RT i a
J 1 . L O
32.73
220.88
233.64
136.95
162.52
0.0
154.70
156.52
lea. 39
1 31. d7
1O2. 6b
10
53.17
150.76
145.28
45.91
153.76
49.32
162.41
88.46
36.65
107.62
0.0
35.71
42.04
29.41
63.25
45.08
75.09
55.97
10.23
76.96
83.35
98.86
0.0
0.0
0.0
134.59
180.24
178.41
119.98
0.0
158.17
160.00
43.29
226.06
257.01
153.09
125.70
0.0
159.89
129.76
141.63
127. O2
121. ±>4
11
59.74
81.62
87.71
95.01
156.19
137.93
158.62
50.33
63.68
90.44
0.0
134.57
177.16
104.12
84.23
81.79
96.40
72.06
87.87
44.69
62. 88
133.48
0.0
0.0
69.92
82.09
133.23
110.09
52.92
0.0
84.01
81.58
fLQ A?
O » *^C
45.15
84.04
130.31
101.08
104.73
101.08
118.15
103.54
109.63
75.54
6S.8.2
12
141.17
62.65
74.51
70.86
41.42
123.49
150.89
86.96
99.74
82.39
0.0
117.74
143.31
84.86
29.56
35.89
72.27
67.71
92.35
145.25
46.70
136.12
0.0
0.0
135.26
88.68
108.77
80.46
18.78
0.0
76.60
0.0
32^05
55.05
225.66
69.62
184.65
167.32
71.77
71.77
99.15
136.60
149. 38
13
0.0
76.85
88.71
128.90
113.96
113.96
113.04
79.26
78.35
124.92
0.0
0.0
129.22
63.49
66.41
61.85
111.14
57.30
95.61
128.42
14.79
72.72
0.0
0.0
154.04
45.45
128.47
119.34
42.73
0.0
60.71
0.0
on 7 7
ou • • f
58.89
70.14
166.93
134.97
166.93
90.22
133.47
158.12
126.16
113.37
122. SI
14
41.76
155.76
142.97
126.54
167.35
141.79
111.65
27.95
46.93
123.52
0.0
120.22
141.23
103.78
68.43
48.42
164.30
79.38
126.86
37.52
123.18
121.36
0.0
0.0
0.0
183.52
83.09
111.40
89.48
0.0
168.73
193.37
57^39
72.32
262.92
198.28
164.53
0.0
149.37
182.23
194.08
147.54
129.SB
15
31.71
48.60
67.09
33.52
13.63
107.88
20.71
40.49
89.62
24.28
0.0
0.0
88.08
38.94
6.32
99.30
151.35
89.26
47.36
130.34
114.81
112.99
0.0
0.0
0.0
91.16
161.55
148.70
107.60
0.0
131.16
0.0
moo
.70
93.72
230.95
206.36
154.36
127.87
0.0
47.09
115.45
51.63
Z15. 45
103.50

-------
                Wlicons In power & Light Co.                                                                                      C.E VoMr sv»««m»
                Columbia t\                                                                                                   F\e\a Tutlng «nd
                                                                                                                           Performance Results
                                                  BIASED    FIRING    OPERATION    STUDY

                                                               MM-ERWM.L ABSOHrnOM HATES. kW/m2
               Te«T           I       2       1       4       5       6       7       B       9      10      11      12      13      14      15

               T/C »   91  115.46   121.j,  lav.79  12J.37   146.13  152.52  132.43   112.14  120.68  135.93   108.70  108.87   82.00  146.35  109.71
                       92   93.54   IDS.ji.  107.Oi  UU.9*   134.26  l<<7.05  140.65   133.14  123.42  124.97   84.33   87.87  122.18  137.22  103.32
u>
S
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
Ho
99.94
78.94
0.0
129. Od
211.12
118.10
100.53
126.43
0.0
143.39
0.0
BB.BO
97.00
O.O
35.09
0.0
112.45
0.0
87.91
H4.31
103.27
63.44
59.21
08.91
114.03
87. ij
n.o
133. in
64. Jd
125.19
1)3. J 7
135. uj
141. /a
HI. jy
0.0
113. 3f
107. 71
O.i)
t)9. 3 J
:> .0
lll.Vi
0.0
90. U
77. /U
105. U
(. 1 . t'J
52. -JJ
90. ,!V
Ij2. 7 1
a i . 3 3
<> .1)
127.06
43 .19
47.31
3J.4u
UJ.t4
111.94
HJ.Oi
o.o
JJ.97
I2:>.b7
U.O
>4. 36
J .U
JO. 30
U.O
tt. ittl
7 4 .3 j
J y .28
J 1 . jl
d7.20
110.70
14u.47
122. 72
0.0
127.17
-si .1 *
121 .6d
12). 03
134.67
78.24
12d.90
o.n
102.61
143.4 1
U.O
119.31
1) .0
7S.37
0.4
jl.42
jJ.ul
ltd. 3 7
3d. «2
>2.7J
11G.3'
139.74
111.43
0.0
162.22
148.52
0.0
96.36
145.13
130.86
103.66
0.0
86.11
113.05
0.0

o!o
69.76
0.0
123.86
0.0
62.62
143.30
151. d8
97. 73
138.83
129.69
0.0
174.09
167.68
0.0
101.84
159.73
145.49
123.70
0.0
99.90
128. OB
0.0
116.81
0.0
84.35
0.0
123. d6
0.0
56.24
149.69
10B.U5
106. B6
134.26
130.61
0.0
100.12
174.99
0.0
194.96
150.60
87.04
121.19
0.0
83.60
95.51
0.0
82.35
0.0
36.13
0.0
57.25
0.0
158.46
162.47
116.26
104.12
77.47
54.72
0.0
105.12
86.92
0.0
86.89
95.51
0.0
92.28
0.0
77.86
97.29
0.0
100.42
0.0
92.93
0.0
103.83
0.0
ad. 72
67.23
51.30
53.36
127.08
103.33
0.0
128.35
71.80
0,0
61.73
178.94
143.74
0.0
0.0
65.54
0.0
0.0
0.0
0.0
55.07
84.52
60.87
0.0
0.0
157.04
126.39
92.38
145.98
103.06
0.0
78.74
101.60
0.0
153.60
178.65
151.68
36.59
0.0
21.68
35.97
0.0
34.72
0.0
23.14
0.0
104.33
0.0
59.62
179.56
124.28
120.41
91.65
74.62
0.0
114.67
140.78
118.62
101.06
118.13
121.80
98.21
0.0
82.34
92.36
0.0
82.34
0.0
88.29
0.0
115.21
89.39
96.18
64.58
56.10
63.68
149.06
79.66
0.0
143.50
66.72
76.81
72.04
108.88
133.86
91.22
0.0
114.40
124.41
0.0
123.16
0.0
84.86
0.0
107.80
106.94
170.65
101.57
56.28
106.13
155.97
101.17
0.0
133.06
103.76
170.47
75.29
88.39
95.10
126.65
0.0
99.72
147.28
0.0
170.38
0.0
61.67
0.0
36.33
78.24
38.90
146.84
127.07
107.56
133.57
124.43
0.0
137.82
124.10
0.0
96.59
107.00
104.62
81.24
0.0
59.94
86.88
0.0
83.12
0.0
93.73
0.0
116.79
0.0
67.40
128.00
120.14
104.34
124.32
145.32
0.0
169.61
132.17
0.0
67.27
55.80
47.09
10.74
0.0
51.73
74.28
0.0
71.78
0.0
44.37
0.0
49.17
0.0
66.36
106.87
as. 33
82.32

-------
                    Wisconsin Power & Light Co.
                    Columbia 11
                                                      BIASED    FIRING    OPERATION     STUDY
                                                                                          C-E Power Systems
                                                                                          Field Testing and
                                                                                          Performance Results
                                                                  UATERUAIL ABSORPTION RATES. kW/m*
                   TEST

                   T/C *
16
       17
  to
  5
  o>
.-»
1
2
3
4
5
6
7
U
9
10
11
12
13
14
Ib
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39.
40
41
42
43
4
11.04
0.0
0.0
55.0o
45.99
3l.U
65.11
6b.rf/
38.74
0.0
45.lt
71.30
110.73
72.40
74.^3
48. To
89.73
0.0
0.0
134.94
72. S3
98.1)7
0.0
0.0
51. 4a
•79.oo
103.34
90.61
92.43
5U.72
124.34
84. .>*
78. 2o
104.71
34. uJ
66. tl
79.17
0.0
M5.0 }
t r. ^d
1 1 '. . <: u
2j.i3
0.0
0.0
4/.JO
21.06
0.0
0 .0
J/.49
72.04
92.04
4a.60
36.o4
34.84
0.0
87.01
J9.49
124.61
V7.65
dJ.OS
JO. 31
t J.73
993.17
1>7.16
295 .56
134.29
148.90
133.77
0.0
126.32
190.96
213.34
Iul.j2
1*2.39
132.30
104.00
171.06
loO.lO
201. la
134.94
1^4.62
l-*4.9d
•J.O
lu^ . J<«
n «; . •. i
i . < . r i
                              TFFT

                              T/C *
                                           16
                                                  17
46
47
48
49
50
51
52
53
54
55
56
57
5t)
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
7b
76
77
78
79
ao
81
82
83
84
85
Bo
37
8tl
B-J

129.05
1 JO. *3
in !»-o A
35. Oi
75. Y3
66. dj
47. 7 j
134. 13
69. 3.5
93.9o
51.17
54. di)
40.30
0.0
12B.ol
125.8o
88.43
49.01
52.33
91.30
59.60
55. *7
46. Ut
79.70
61.4e»
0.0
0.0
0.0
76. Id
100.81
89.83
36.22
0.0
90.61
76.93
76. 9J
58. 72
108. Jo
108. 3u
80.03
33.7.2
O.I)
82.31
08* \jy
02.^7
03. 14
a o . d I
~r 'i _ j /
:M).15
Ud.uO
123.99
31.06
lul.16
46.31
ljO.25
dtf.17
43.60
100.03
0.0
39.03
43.55
32.71
62.95
44.79
7S.70
53.86
12.55
66.64
76.67
94.00
0.0
0.0
0.0
1^1.51
16o.2S
I7o.29
U3.33
0.0
144.10
192.39
124.09
3
1 j j _ .* 1
TEST
T/C « 91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
16
11B. 43
125.74
136.70
146.44
0.0
104.70
171.04
0.0
178.85
109.51
70.63
•129.12
0.0
53.95
75.67
0.0
49.78
0.0
3F.25
0.0
53.01
0.0
131.37
141.17
82.79
, 96.51
17
109. td
116.78
43. *2
49.39
0.0
99.71
87.91
0.0
90.61
95.59
117.91
86. 0*
0.0
64.7a
86.69
0.0
87.31
0.0
89.34
0.0
113.46
0.0
87.87
68.23
54.10
55.71
18
127.42
124.u8
141.12
06.30
0.0
79.35
101.30
0.0
162.44
Id2.01
157.77
35.77
0.0
17. T8
38. «9
0.0
35.15
0.0
22.85
0.0
39.4J
0.0
59.33
157.37
125.81
113.72

-------
              HI icon*In Power 5 Light Co.
              Columbl. /I
C-E Povnr Vy»««w
Flald luting and
Perfonune* tasulu
                                                OVERFIRE    AIR   OPERATION    STUDY
              Tf ST

              T/C j
to
o>

1
2
i
4
5
6
7
3
•i
in
n
12
12
14
15
la
17
18
19
20

21
22
23
24
25
2a
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
45
44
45
1
72.87
0.0
114.87
141.30
62.90
0.0
115.78
94. 90
29.43
24.93
dl.26
20.46
87.65
77.ol
130.51
6.33
K^.31
43. US
89.41
69.33

28.47
148.83
19.33
138.78
50.26
0.0
59.30
0.0
19.35
55.51
108.43
111.17
91.08
142.23
101.12
oJ.12
77.71
95.05
110.58
7J.13
91.40
107.1)4
57.93
dl.bd
110.29
?
70.2.J
II. 0
129. 9J
41.19
92. U
(l.'J
115. J2
V2.Vd
29. jy
29. oy
•33.2 +
H.12
91. 7u
•*5.tl
142.24
10.22
64* J.!
32. l-i
93. J2
74. OJ

38. (47
L!>6.oO
26. JJ
146. do
56. 1)
88. tl
52.13
O.U
23.0V
59.^3
103.72
115. y.)
97. oJ
139.0+
95.20
o4. J.)
30. ol
9 6. •» +
Lit. 70
72. 11
•>3.22
Db.oi
36.33
) > . lJ
Ml. JJ
3
0.0
0.'.)
O.II
100. 11
'to. 00
()« '1
0.0
0.0
0.14
J7. 33
2.dJ
j7 .32
6d.26
3t .34
122.04
10 3 . !>Q
7V. 12
2 7.31
70. yi
7J.21

51. 73
122 .09
179 .ol
li 7.02
63. +9
0.0
O.U
0.0
2»6. H
102 .6')
I') 7. 26
134.0^
109.09
IU.22
77.U
u j . i 3
32 .Oil
1 • J . u 7
ua .0 2
12V.+J
Ha. 10
JJ. 19
1+3. Jl
1 J J . J •>
JJ.2 4
•t
7. 7t
0 .0
11.22
77.27
J3. 1<)
!).4.33
lib. Ill
120.94
Id4.fl4
191.23
7

-------
Wisconsin Power & Light Co.
Columbia II
                                       OVERFIRE    AIR   OPERATION     STUDY
                                                 WATERWALL ABSORPTION RATES, kW/ni
C-E Power Systems
Field Testing and
Performance Results
                                                                                      11
                                                                                             12
                                                                                                    13
                                                                                                                   15
T/C
40
47
48
4')
50
il
52
53
54
55
56
57
515
54
60
61
62
63
64
63
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
93
84
85
86
S7
d8
B'l
qi»
•jl.o2
70.94
110.3 i
67.09
39. *y
31. 3o
90.19
38.57
61.3M
93.23
0.0
0.0
141.30
73. 7b
13.34
78.53
dl.2o
32.14
104.09
145.12
112.24
52.03
0.0
0.0
175.29
52.08
129. bo
97.68
52.13
0.0
80.13
0.0
90.17
57.33
90.4V
134.42
85.01
135.24
102.27
66.00
112.73
lll.bl
IO1.77
d U • 7 7
i i . il t
114. 22
59. -.7
0.0
O.'J
ISS.dO
50. 7i
132. 23
UI4.2J
146. Jo
n.o
81.61
0.0
<)•*.£>)
63. af
a9.13
159. 7u
«4. 2o
137.04
104. 4j
7'l. il
111.37
112.2*
I0o . j-r
3 I. a J
Jo.oZ
Jl .-ft
J'J.J i
117. >;
J2.24
n. LI
j j . j j
-i. 77
Q.'J
ij .LJ
22.06
J.I
U..)
111.')')
bl.fO
30.41
77. iii
1J2. 3d
12J.30
1 •> ,i4
1JJ.J1
122.04
133. /'t
O.U
0.0
14.1. 3d
11 J.u9
Idu.'JO
lit .69
134.53
a.o
r-».^9
0.0
fJ.d7
it*, ri
Iju.d^
iOa .00
2 J.Jb
JO. 22
3 1 . a 9
J.O
tu. r^
o3. Id
J2.24
i -» • 2 U
I L.-.Z
// .3.
1 ) » . 9 1
117. •);
•»7. ?o
122. 2*
U j « J-t
•>.O
13.0-1
20. Jj
13.25
U.I)
O.'l
I La. 'Jt
3d. 12
i->.H
7f ,4»
120. Ju
1 09 . 40
110.71
129.42
117.34
l j-t.31;
O.I)
0.0
143.40
63. 7j
1 43 . 90
133.03
83. «0
0.0
u3.i)/
0.0
uU.07
J3.3d
. f 0 . 2 1
71.12
36.30
63. >9
26. JJ
r-j.03
33.97
73. 2o
^0.3-)
li . > j
u3.u >
ot.13
112.20
l'J5.9l>
57.43
134.71
0.0
0.
-------
Wisconsin Po»v«r
Columbia /I
C-E Povrar Sy»xwm»
Field T««t\ng Mid
Performance Reiu\ti
                                 OVERFIRE    AIR    OPERATION    STUDY
                                           WATERUftLL ABSORPTION RATES, kW/m
17 ST
t/C * 91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
ins
109
110
111
112
113
114
lib
1 16
1
129. 7o
12o.ll
155.33
142.53
0.0
117.79
76.62
319. dd
32.8O
98.70
91.72
153.72
0.0
106.80
134.34
0.0
141.85
0.0
59.19
0.0
54.76
62.10
o4.6,2
34.O2
62.53
111. 49
2
12'J.OJ
122. 61
145. tj
129.63
II. 0
116.12
67. il
in/«.d»
do.vtj
100. li
90. 3f
143.42
0.0
93.33
165.91
0.0
171.13
O.'J
uO. -jj
n.u
53. JJ
O2.t>o
o4« / J
5 1 . 3 f
t>4. o j
Ho.^j.
3
33.77
« I .0 I
0.')
Jo .31
<).<)
1 i 'J . 3 (J
iO. '-i'l
j-i.il
J 3.0 J
131.3.;
im. 71
3<: .09
0.0
i. U 1
33.34
•J.'i
o4 . u 2
J.O
t J.d 7
0.0
-la .3^
7 y • I 7
* y .^5
1 3 J . j 4
llJ .d5
11^. 12
<•
jO.lt,
-»j .0«d
H. 0
Jl.23
O.D
101. id
07.23
2d 7.03
J) .0 j
129.5o
116.17
37.13
0 .0
If. 14
lOV.lo
o.n
Li!J . 3 J
U.U
03. J J
0.1)
23 .Jj
y 1 . i')
6 1 .V 1
12-t.O i
L Lit .(Id
I 1 1) . 3 0
5
3.0
57.12
93.60
dl.73
0.0
112.73
46.06
n.o
63.19
149.33
109.46
76.98
0.0
60.69
105.80
0.0
113.32
0 . n
58. 70
0.0
33.37
107.21
128. ¥2

LU.03
113.69
6
144.35
133.39
43.99
178.12
0.0
149.82
153.38
70.02
113.93
158.07
127.33
139.32
0.0
119.30
138.69
n.o
144.94
0.0
58.36
0.0
103.14
106. 04
135.85
149.86
1 Ij6.bc,
116.03
7
47.62
55.81
0.0
123. 3*
0.0
127.90 -
144.25
93.14
99.32
144.38
122.77
76.08
0.0
36.63
01.71
0.0
99.89
0.0
43.34
0.0
7d.49
90.40
lU9.3u
143.47
122. 17
110.55
t)
37.19
31.77
0.0
94.57
0.0
99.10
112.71
53.00
86.97
143.91
117.74
70.75
0.0
23.85
57.59
0.0
58.22
0.0
43.31
0.0
56. 13
77.15
94.28
ltt.82
140.57
121.06
9
7.30
52.07
83.05
112.27
0.0
90.16
135.77
141.32
109.15
155.15
81.53
27.23
0.0
11.78
91.68
17.31
97.95
0.0
47.11
0.0
27.37
68.28
145.69
83.49
79. 7U
35.75
10
0.0
41.24
79.45
89.49
0.0
91.99
136.70
145.00
119.23
117.74
84.31
25.41
0.0
16174
71.04
0.0
61.64
0.0
50.74
0.0
26.50
69.22
132.01
80.31
77.01
60.31
11
51.80
50.59
94.34
97.99
0.0
101.38
133.62
151.65
142.63
106.14
86.71
0.0
0.0
0.0
44.94
0.0
29.13
0.0
54.33
0.0
33.98
59.16
124.37
67.21
75.76
55.44
12
174.77
162.36
198.12
168.20
0.0
163.05
113.65
223.36
196.36
236.20
171.09
0.0
0.0
100.10
0.0
0.0
0.0
0.0
74.12
126.52
66.18
107.30
0.0
159.64
95.84
122.18
13
160.85
145.33
175.45
169.98
0.0
146.23
122.39
222.78
194.32
253.81
179.44
0.0
0.0
159.98
0.0
0.0
0.0
0.0
68.44
121.57
72.17
103.25
0.0
147.18
92.69
122.50
14
180.73
181.64
206.26
157.00
0.0
151.51
97.53
111.28
202.33
226.32
173.77
0.0
0.0
109.20
0.0
0.0
0.0
0.0
70.07
91.23
54.66
99.40
0.0
190.79
89.76
114.99
15
27.82
14.43
0.0
66.84
0.0
51.23
113.20
538.57
66.50
76.85
83.57
19.90 i
0.0
66.12
23.00
119.37
54.85
0.0
104.86
0.0
94.02
104.13
79.27
86.90
75.36
106.08

-------
Wisconsin Power & Light Co.
Columbia II
C-E Power System*
Field Testing and
Performance Results
               OVERFIRE   AIR    OPERATION     STUDY
                                 AlSBUfTIOM PATEI,
TEST

T/C »

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2f>
Z-i
30
31
32
33
;-4
35
it
?7
3d
39
41!
41
42
41
44
45
16
0.0
0.0
0.0
0.0
64.11
0.0
78.70
0.0
19.89
20.79
88.92
92.57
77.05
77.05
43.27
0.0
U.O
46. 00
79.71
85.18
97.97
0.0
145.51
0.0
0.0
129. Vd
I o3.!>9
0.0
152. uQ
151.69
o.n
62.21
72.24
72.24
72.24
U2.82
172.08
10*. *9
ltf.13
V3.i5
9- .81
17'J.33
1M4.28
22^.26
1*3.37
17
0.0
0.0
ol. J7
0.0
•y7.i>
0.0
107.3d
0.0
22. Ui
42. 2u
45.40
63. 3 J
63. J 7
67.0.:
14. td
n.u
151. Jl
Iul.o2
no. iu
100. la
53.43
154. tj
142. il<
n.o
O.J
34.32
V5.iid
n.o
1511. 11
176. a
222. 2a
ti'l.^i
od. ^1
152.^3
•jtl.-i-t
47.u«l
122. Jj
1?5. 20
143. I-J
122.0,.
I'U.JJ
Ij4. ti
215.2-.
106. Jd
91. i^
' 13
0.0
0.0
0.0
0.0
03 .32
0.0
30. JO
o.o
17.49
23.75
41.82
8*. 21
30.08
7V. 17
'•9.00
0.0
0.0
•»•*. 46
>12.73
U2.o2
J0.y4
0.0
179. 3u
II. J
0.0
119.30
1)0.50
'J .0
154.27
171.13
0.0
o-i. Jl
(lZ .TV
J7.D5
dd.03
1-.-..1U
l7t . 1 7
HT. d2
l3>. <2
a-,.o»
vi. ou
172. J5
1 jy. ^s
<^21. Jfl
^Ol.dt
19
0.0
0.0
60.27
0.0
109.56
0.0
138.79
0.0
30.48
70.47
43.16
d3.24
51.34
86.90
13.40
0.0
0.0
159.88
154.40
3l.2»
71.3')
0.0
13d. 01
0.0
O.O
Ui}.~>'<
177.20
O.D
33.37
I6o.0 >
,1.0
7-,, 78
136.4 7
153.32
148. 73
163.67
54.13
146.32
t j.8b
loo .11
164.13
ls-«.5-t
175.83
lo5.Ud
1J2. 12
20
0.0
0.0
72.09
0.0
97.65
0.0
124.14
0.0
25.93
43.12
44.94
65.87
60.40
55.85
17.79
0.0
0.0
99.55
134.26
107.77
54.85
106.30
105.99
0.0
0.0
129.74
173.56
0.0
87.51
•115.82
0.0
71.08
70. 17
123.87
114.00
52.26
96.95
79. bO
125.27
120.70
106.08
135.31
144.32
132.88
i»o«23
21
0.0
0.0
0.0
0.0
41.54
0.0
58.80
0.0
98.26
71.80
11.32
38.16
75.45
0.0
3.66
0.0
0.0
39.04
90. 94
106.46
70.87
16.68
122.06
0.0
0.0
130.29
160.42
0.0
115.48
145.62
0.0
143.80
158.41
39.85
33.32
143.24
79.32
26.67
124.06
129.54
130.45
0.0
129.90
128.98
125.33
22
0.0
0.0
0.0
0.0
65.40
0.0
83.64
0.0
13.08
32.97
40.21
62.92
29.37
0.0
3.91
0.0
0.0
101.22
108.53
84.79
79.32
224.50
151.54
0.0
0.0
45.79
0.0
0.0
116.65
151.35
0.0
67.37
116.65
129.44
98.39
67.73
29.64
41.38
27.84
118.84
116.10
0.0
115.55
73.57
94.55
£3
0.0
0.0
0.0
0.0
55.97
0.0
73.27
0.0
112.82
86.35
25.55
52.65
90.00
0.0
17.58
0.0
0.0
53.60
105.55
121.08
85.47
31.09
13o.72
0.0
0.0
144.94
173.06
0.0
130.16
160.29
0.0
158.47
173.07
54.46
43.10
157.95
94.03
41.25
13d .78
14-.. 25
143.17
0.0
144.66
143.74
llJ.09
24
0.0
0.0
10.69
0.0
78.34
0.0
96.59
0.0
27.85
45.90
53.16
75.92
42.28
0.0
14.55
0.0
0.0
114.29
121.59
97.86
92.38
237.56
164.63
0.0
0.0
98.88
0.0
0.0
129.77
164 ,4o
o.n
80.47
129.77
142.55
111.50
80.87
42.68
54.47
40.87
131.99
1^.25
o.n
128.74
80.75
107. 74
                                  216
                                                                  SHEET A33

-------
Wisconsin Power S Light Co.
Columbia II
C-E Power Systems
Field Testing and
Performance Results
TFST
T/C •
OVERFIRE AIR OPERATION
STUDY
MTtmttll AISMPTIOH RATES, kU/«2

46
47
48
49
5(1
51
52
53
54
55
5o
57
58
59
60
61
62
65
t4
o5
66
67
68
69
70.
71
72
7J
74
75
76
77
7U
79
80
HI
82
rfj
8t
65
H6
117
lid

167. d3
163.49
155. tl

18
161.71
17u.51
193.64
167.19
155.89
Io6.85
Id2.36
113.88
129.41
lid. 45
0.0
7t«44
do. 30
60.76
•Jo .51
30.06
0.0
!<)•». 73
dl.90
jO.62
111.95
0.0
0.0
0.0
14il.44
U7.52
2id. 77
242.41
17* .ju
J.O
ldd.46
ft. J4
199 .40
93.34
278. d6
m. 47
131.27
22o.l2
191.30
21.-. 77
19 a .2n
110.57
1 J0.*0
loo. 14

19
141.16.
156.68
158.51
138.42
140.83
140.83
109.77
110.69
152.70
137.17
0.0
107.73
124.17
83.07
34.10
43.16
0.0
Jo.03
75.94
27.70
55. Jl
0.0
O.O
0.0
o3.14
40.7.,
SO.* 7
36. do
62.30
o.o
146.93
o2.9 J
64.75
79.34
260.23
242.04
209.27
Jo .90
130.60
103.07
191.35
207. 7»
17-J.90
l5J. Ill
155.44
20
111.87
131.06
169.40
158.45
181.84
96.92
177.27
45.88
46.78
138.03
O.O
105.87
138.75
97.65
36.77
37.68
54.94
59.49
165.39
27.65
53.03
0.0
0.0
0.0
117.87
157.13
141.61
114.21
144.35
0.0
96.64
UJ2.12
111.08
77.41
64.10
191.90
134.40
103.34
130.75
59.85
110.9o
138.56
163.01
177.ol
57.70
21
79.68
97.02
120.76
110.71
94.91
91.26
97.65
60.26
74.84
73.93
0.0
75.20
63.82
43.35
22.85
15.72
0.0
113.79
90.96
22.63
23.73
O.c
0.0
0.0
0.0
36.41
66.39
106.61
127.55
o.n
137.40
5l.6t
46.19
20.05
197.99
214.40
144.15
127.71
0.0
150.90
134.46
150.90
118.94
SB. 30
94.00
22
78. 13
95.46
1 1 1 . 90
101.86
53.27
45. 10
46.01
54. Id
95.19
44.20
0.0
73.60
B4.5'3
52. 60
20.41
30.27
108. 5t
71.12
62.01
12.32
40.20
0.0
0.0
0.0
o.o
30.35
63.91
75. 7o
66.70
0.0
144.90
44.04
47.36
77.40
130.71
54.99
145.33
7b.o7
0.0
133.82
142.95
1*6.60
102.77
77.21
71.47
„
94.43
111.78
135.52
125.48
109.72
10o.07
112.40
75.05
89.64
Ud.7;
0.0
8V. 69
83.30
J7.79
37.25
30.03
0.0
I2d.35
105.52
37.29
3d. 19
0.0
J.O
o.o
0.0
50.99
dl.03
181.45
142.20
0.0
152.UL
6t>. 28
60.82
34.5:
212.68
229.08
158.80
!<.<;.•.->
0.0
165.65
149.22
Io5.o5
13J.70
103. So
lOd.61
24
"> 1 . 3 I
103. 65
125.09
115.04
66.48
58.29
59.20
67.:-?
108.43
57.56
0.0
bo.55
97.50
65.56
33.24
43. IB
121.56
84.12
75.01
26.11
53.21
0.0
0.0
n.O
0.0
43.35
70.99
8H.85
99. BO
a.o
158.07
57.71
60.44
90.il
143.86
td.12
158. *7
vL.e2
'j.n
147. ri
156.1'.
159.79
115. 96
90.4(i
64.71'
                                             217
                                                                                        SHEET A34

-------
Wisconsin Power 6 Light Co.
Columbia fl
C-E Power Systems
Field Testing and
Performance Results
                OVERFIRE    AIR   OPERATION     STUDY
                          UATEB»IL ABSORPTION KATES. kW/B
TFST
T/C •
             16
                    17
                            ia
                                   it
                                           20
                                                  21
                                                         22
                                                                 23
                                                                        24
91
92
Oi
04
vv
>16
97
98
..>
lol.2u
nto
O.U
103. *(
o.u
O.U
n.u
n.o
64. /J
76. cJ
lOI'.lj
loO.oV
".u
186.31
I"i-.u2
116.73
1V7.J6
173.23
lVu.03
iaa.09
U.U
4v.3C
101.2/
411.46
194. o7
2U7.UO
1V4.55
U.O
U.O
Uo .40
'>.0
U.U
u.n
U.:l
4U .02
1U1. J-5
<5.3/
17-1.^9
O.U
Jll.b 5
i n, us
131. ID
136.46
I8u.4fe
191.93
171.87
O.Q
60.82
139. 7i
1 4 1 . 
-------
         POWER t LIGHT Co.
  COLUMB
C-E POWER SYSTEMS
FIELD TESTING »NO
PERFORMANCE; RESULTS
                                   BASELINE  OPERATION  STUDY
BOARD & COWVTER DATA



«C

C
C
C
c
c
c
c
c
c
c


c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
•B


c
c
c
c
c
c
c
c
c
c
TEST NO.
DATE 1976
TIME
LOAD MW
FLOWS - lO^B/HR
FEEDWATER
SUPERHEAT SPRAY L
SUPERHEAT SPRAY R
REHEAT SPRAY L
REHEAT SPRAY R
BFP TURB. EXTR. STH. FLOW 1-A
BFP TUHB. EXTR. STH. FLOW 1-B
BFP Time. MN. STH. FLOW COMBINED
HOT AIR TO BURNERS L WINDBOX
HOT AIR TO BURNERS R WINDBOX
PRESSURES
STEAM & WATER - PSIG
FEEDWATER TO ECON.
BOILER DRUH
TURBINE THROTTLE
TURBINE IST STAGE
HP HTR. 1-G1 & 1-G2 STCAH IN.
AIR & GAS - IN HgO
FD FAN 1-A DISCHARGE
FD FAH 1-B DISCHARGE
AIR HTR. 1-A AIR IN.
AIR HTR. 1-B AIR IN.
AIR HTR. 1-A AIR OUT.
AIR HTR. 1-B AIR OUT.
FURN. RIGHT WINDBOX
FURH. LEFT WINDBOX
RT. WDBX TO FURN. DIFF. P
LEFT WDBX TO FURN. DIFF. P
FURNACE
PHI. SH GAS OUT.
REHEATER GAS OUT.
ECON. GAS IN.
ECON. GAS OUT.
AIR HTR. 1-A GAS IN.
AIR HTR. 1-B GAS IN.
AIR HTR. 1-A GAS OUT.
AIR HTR. 1-B GAS OUT.
IDF 1-A DISCH.
IDF 1-B DISCH.
PAF 1-A DISCH. HOB.
PAF 1-B DISCH. HOR.
PRI . HOT AIR DUCT
TEWERATURES
AIR & GAS - °F
1-A FD FAN DISCH.
1-B FD FAN DISCH.
1-A AH AIR IN.
1-B AH AIR IN.
1-A AH AIR OUT.
1-B AH AIR OUT.
1-A AH GAS IN.
1-B AH GAS IN.
1-A AH GAS OUT.
1-B AH GAS OUT.
1
3/10
09:45
524

3170
107
130
57
75
0
0
7.4
1626
1585


2735
2682
2399
1666
539

5.67
9.13
7.72
7.24
3.68
3.50
2.22
2.25
3.22
4.03
-.51
-.83
-.66
-2.58
-6.46
-8.62
-8.56
-15.5
-14.2
-.51
-.46
32.92
32.67
30


51
60
77
78
696
712
760
759
272
27S
2
3/OB
14:00
524

3338
24
64
39
60
0
0
7.8
1606
1560


2751
2691
2400
1682
536

5.63
8.68
7.50
6.86
3.51
3.50
2.12
2.20
3.18
3.90
-.50
-.73
-.61
-2.34
-6.34
-8.25
-8.43

-14!o
-.55
— 48
32.87
32.77
30


41
52
83
88
668
686
730
732
258
265
3
3/15
15:35
483

2996
74
80
50
59
0
0
7.0
1612
1593


2698
2654
2406
1520
492

5.87
9.61
8.21
7.61
3.93
3.93
2.49
2.47
3.65
4.13
-.60
-.64
-.56
-2.49
-6.42
-8.87
-8.65
-15.6
-14.6
-.48
-.47
32.64
32.58
30


46
57
82
87
684
702
750
751
265
267
4
3/13
10:00
399

2412
6
68
10
0
0
0
7.4
1298
1284


2620
2586
2399
1242
391

4.35
6.79
5.84
5.46
3.04
2.95
2.28
2.34
3.16
3.82
-.39
-.53
-.19
-1.79
-4.49
-6.36
-6.24
-11.2
-10.2
-1.07
-2.15
32.47
32.29
30


41
50
107
112
627
630
682
676
253
246
5
5/23
12:35
324

1974
0
35
0
0
44
34
15.0
864
919


2566
2538
2406
987
310

8.70
7.76
7.29
6.74
5.66
5.56
4.97
4.97
6.19
6.68
-.66
-51
-.78
-1.20
-2.70
-3.99
-4.13
-6.76
-6.41
-.77
-.88
31.56
32.28
30

77
f f
83
102
105
565
576
612
608
241
242
6
5/23
14:30
323

1987
0
34
0
0
44
34
15.1
950
1023


2568
2541
2405
987
310

9.35
8.23
7.73
7.08
5.67
5.51
5.04
5.07
6.21
6.79
-.54
-.50
-.77
-1.29
-3.00
-4.12
-4.25
-7.30
-6.98
-.66
-.76
31.54
32.23
30

•J-T

84
104
107
57?
584
622
516
240
7
5/23
16:20
322

1967
3
42
0
0
44
34
14.9
1017
1088


2573
2544
2403
985
309

9.77
8.59
7.98
7.32
5.85
5.71
5.04
5.04
6.20
6.72
-.57
-.53
-.84
-1.35
-3.15
-4.54
-4.63
-7.94
-7.?4
-.60
-.69
31.64
32.30
30

7fi
*o
85
103
105
576
589
624
620
243
239
8
3/10
14:00
-14

3085
1 74
K-i
69
81
0
0
7.5
1548
1506


2722
2668
2400
1618
527

5.43
8.59
7.18
6.74
3.49
3.34
2.16
2.20
3.17
3.93
-.47
-.67
-.60
-2.54
-6.04
-8.15
-8.12
-1-5.7
-13.1
-.51
-.50
32.76
32.56
30

qe
D-J
65
75
78
698
718
763
763
274
275
9
3/09
10:00
515

3134
34
110
60
77
0
0
7.3
1630
1581


2734
2679
2403
1634
529

5.82
9.41
8.01
7.43
3.74
3.83
2.41
2.38
3.40
3.98
-.48
-.72
-.55
-2.45
-6.39
-8.89
-8.37
-15.4
-14,1
-.52
-.45
32.74
32.64
30

46

58
76
80
689
703
753
753
265
274
12
3/10
16:30
482

2866
76
107
39
59 -
0
0
6.3
1555
1516


2636
2637
1446
15O1
488

5.47
8.66
7.30
6.80
3.54
3.38
2.22
2.28
?.14
3.89
-.44
-.79
-.62
-2.54
-6.00
-8.00
-8.00
-14.6
-13.3
-.54
-.49
32.89
32.55
30

SP
PC
61
77
80
693
712
757
759
270
270
* C - COMPUTER DATA;  B - BOARD DATA; NA - NOT AVAILABLE.
                                                   219
                                                                                              SHEET A36

-------
 WISCONSIN POWER & LIGHT Co.
 COLUMBIA f\
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                    BASELINE OPERATION STUDY
                                             BOARD & COMPUTER DATA



*c

c
c
c
c
c
c
c
c
c
c


c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
•B


c
c
c
c
c
c
c
c
c
c
TEST NO.
DATE 1976
TIME
LOAD MW
FLOWS - 10\B/HR
FEEDWATER
SUPERHEAT SPRAY L
SUPERHEAT SPRAY R
REHEAT SPRAY L
REHEAT SPRAY R
BFP TURB. EXTR. STH. FLOW 1-A
BFP TURB. EXTR. STH. FLOW 1-B
BFP TURB. MN. STH. FLOW COMBINED
HOT AIR TO BURNERS L WINDBOX
HOT AIR TO BURNERS R WINOBOX
PRESSURES
STEAM I WATER - PSIG
FEEDWATER TO ECON.
BOILER DRUM
TURBINE THROTTLE
TURBINE IST STABE
HP HTR. 1-G1 & T-G2 STEAM IN.
AIR 4 GAS - IN HgO
FD FAN 1-A DISCHARGE
FD FAN 1-B DISCHARGE
AIR HTR. 1-A AIR IN.
AIR HTR. 1-B AIR IN.
AIR HTR. 1-A AIR OUT.
AIR HTR. 1-B AIR OUT.
FURN. RIGHT WINDBOX
FURN. LEFT WINDBOX
RT. WDBX TO FUHN. DIFF. P
LEFT WDBX TO FURN. DIFF. P
FURNACE
PHI. SH GAS OUT.
REHEATER GAS OUT.
ECON. GAS IN.
ECON. GAS OUT.
A i R HTR . 1 -A GAS 1 N .
AIR HTR. 1-B GAS IN.
AIR HTR. 1-A GAS OUT.
AIR HTR. 1-B GAS OUT.
IDF 1-A DISCH.
IDF 1-B DISCH.
PAF 1-A DISCH. HDR.
PAF 1-B DISCH. HDR.
PR I . HOT AIR DUCT
TEMPERATURES
AIR 4 GAS - °F
1-A FD FAN DISCH.
1-B FD FAN DISCH.
1-A AH AIR IN.
1-B AH AIR IN.
1-A AH AIR OUT.
1-B AH AIR OUT.
1-A AH GAS IN.
1-B AH GAS IN.
1-A AH GAS OUT.
1-B AH GAS OUT.
11
5/21
05:00
321

1734
91
117
14
30
39
70
7.6
790
810


2547
2521
2403
966
313

6.45
5.71
5.36
4.88
4.04
3.65
3.62
3,57
4.81
5.17
-.48
-.55
-.73
-1.29
-2.48
-3.52
-3.74
-6.29
-5.90
-.94
-.91
31.66
32.72
30


72
83
96
100
590
608
641
637
247
259
12
5/25
13:00
321

1824
55
74
0
15
39
71
6.3
1190
1241


2556
2529
2405
969
311

11.58
10.01
9.08
8.25
6.43
6.31
5.40
6.12
6.54
6.96
-.61
-.58
-.94
-1.52
-3.72
-5.11
-5.20
-9.15
-8.52
-.39
-.45
31.66
32.52
30


77
82
99
102
604
627
655
657
244
241
13
3/12
06:00
525

3115
113
120
81
83
0
0
7.6
1567
1504


2726
2675
2397
1649
539

5.29
8.69
7.28
6.71
3.38
3.43
2.10
2.11
3.13
3.92
-.41
-.82
-.84
-2.43
-6.39
-8.74
-8.09
-15.0
-13.5
-.49
-.41
32.85
32.77
30


56
68
71
74
710
724
774
776
276
276
14
3/9
14:00
512

3179
61
79
58
76
0
0
7.6
1622
1575


2683
2676
2402
1623
526

5.79
9.24
7.96
7.41
3.62
3.80
2.32
2.35
3.23
3.94
-.68
-.77
-.70
-2.42
-6.49
-8.75
-8.34
-15.4
-14.3
-.43
-.69
32.64
32.44
30


50
58
70
73
705
725
771
775
270
270
15
3/10
18:50
484

2859
102
106
44
67
0
0
6.8
1602
1558


2686
2639
2397
1503
490

5.60
9.00
7.47
6.96
3.57
3.45
2.20
2.21
3.17
3.93
-.53
-.61
-.47
-2.58
-6.12
-8.24
-8.18
-14.9
-13.6
-.49
-.43
32.81
32.63
30


49
58
78
82
688
710
753
757
267
268
16
3/13
13:30
4OO

2444
0
54
10
0
0
0
7.6
1302
1283


2625
2589
2404
1245
393

4.25
6.71
5.84
5.33
2.93
2.87
2.30
2.37
3.16
3.88
-.40
-.54
-.29
-1.75
-4.39
-6.41
-6.18
-11.3
-10.3
-.94
-.93
32.69
32.29
30


46
55
102
107
631
634
685
680
253
249
V7
5/25
18:20
322

1820
56
82
10
29
44
34
14.1
896
900


2559
2532
2408
958
312

8.64
7.85
7.30
6.64
5.57
5.51
5.00
4.94
5.79
6.46
-.55
-.62
-.90
-1.23
-2.65
-3.84
-3.90
-6.74
-6.23
-.62
-.62
31.63
32.53
30


81
92
100
102
591
612
637
640
E44
252
J8
5/25
16:30
325

1818
65
96
8
27
42
52
11.2
1046
1099


2558
2531
2407
969
316

10.46
9.32
8.54
7.85
6.31
6.22
5.47
5.49
6.56
7.03
-.61
-.63
-.93
-1.36
-3.23
-4.69
-4.75
-8.13
-7.35
-.45
-.44
31.74
32.77
30


80
89
98
100
603
62O
652
653
245
245
19
5/25
14:35
322

1810
66
84
4
23
39
71
B.3
1210
1259


2558
2532
2403
968
313

11.89
10.21
9.17
8.41
6.47
6.42
5.37
5.45
6.58
7.00
-.61
-.69
-1.02
-1.54
-3.83
-5.30
-5.50
-9.50
-8.72
-.32
-.38
31.76
32.64
30


79
85
101
105
607
629
6OO
/ 661
/ 245
' 243
* C - COMPUTER DATAJ 8 - BOARD DATA; NA - NOT AVAILABLE.
                                                     220
                                                                                                SHEET A37

-------
VISCONSIN POWER & LIGHT Co.
COLUMBIA t\
C-E POWER  SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                    BASELINE  OPERATION STUDY
                                            BOARD £. COMPUTER DATA
    TEST NO.
                                                                                                     10


•c


c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
DATE
TIME
LOAD
TEMPERATURES
AIR t GAS - *F
ECON. N GAS OUT.
ECOM. S GAS OUT.
1-A PA FAN DISCH. Hon.
1-B PA FAN DISCH. HDR.
1-A AH PR 1. AIR OUT.
1-B AH PRI. AIR OUT.
STEAM 4 WATER - *F
BOILER ECON. l«
DOWNCOHCR 1
DOWNCOMER S
DOWN CO HER 3
DOWNCOMER 4
DOWNCOHER 5
BLR. SH ATMP 1-A STH. IN.
BLR. SH ATMP 1-B STH. IN.
BLR. S SH HOR. OUT.
BLR. N SH HOR. OUT.
TURBINE THROTTLE
BLR. S RH ATM5 STH. OUT. A
BLR. N RH ATM* STH. OUT. B
BLR. S RH HDR. OUT. A
BLR. N RH HDR. OUT. B
HP HTR. 1-G1 £ 1-G2 EXTR. STM.
HP HTR. 1-F1 FW OUT.
HP HTR. 1-F2 FW OUT.
HP HTH. 1-G1 FW OUT.
HP HTR. 1-G2 FW OUT.
HP HTR. 1-G1 DRAIN
HP HTR. 1-G2 DRAIN
PULVERIZER OATA
PLV 1-A BOWL LOWER P
PLV 1-B BOWL LOWER P
PUV 1-C BOWL LOWER P
PLV 1-D BOWL LOWER P
PLV 1-E BOWL LOWER P
PLV 1-F BOWL LOWER P
PLV 1-A BOWL Dirr. P
PLV 1-B BOWL Dirr. P
PLV 1-C BOWL Dirr. P
PLV -D BOWL DIFF. P
PLV -E BOWL DIFF. P
PLV -F BOWL DIFF. P
PLV -A COAL AIR OUT. P
PLV -B COAL AIR OUT. P
PLV -C COAL AIR OUT. P
PLV -D COAL AIR OUT. P
PLV -E COAL AIR OUT. P
PLV -F COAL AIR OUT. P
PLV -A PRI. AIR IN. FLOW
PLV -B PRI. AIR IN. FLOW
PLV -C PRI. AIR IN. FLOW
PLV -D PRI. AIR IN. FLOW
PLV -E PRI. AIR IN. FLOW
PLV -F PRI. Am IN. FLOW
PLV 1-A COAL AIR DISCH. TEMP.
1976

M
































IN. H-0
IN. HgO
IN. HTO
IN. H?0
IN. (CO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. HfO
IN. H?0
IN. H§0
0-iasf
0-125*
0-123$
0-125*
0-125*
0-125*
°F
3/10
09:45
524


788
802
60
95
708
689

480
677
678
679
682
680
851
856
1008
1001
1002
478
479
991
1015
618
411
410
479
479
415
382

21.36
22.68
.23
22.89
22.16
22. B1
7.61
7.80
.06
7.95
7.12
7.17
9. 84
11.36
-.13
10.80
11.58
10.26
126.1
127.8
37.2
125.2
127.8
125.2
144
3/08
14:00
524


750
758
52
95
681
669

477
675
676
677
681
679
830
829
1002
1011
1000
480
480
989
1015
620
407
407
476
476
412
377

21.52
22.37
.13
23.09
22.19
21.51
7.67
7.74
.00
8.00
7.10
7.32
10.17
11.15
-.35
10.99
11.56
10.67
125.1
128.3
0.0
125.4
127.7
125.1
139
3/15
15:35
483


780
792
55
69
697
686

471
675
677
677
676
676
838
846
1006
1011
1006
471
471
1000
1012
610
404
403
470
469
406
374

20.23
21.29
.21
22.04
21.44
19.83
7.14
7.41
.03
7.72
6.99
6.93
9.41
10.71
-.19
10.45
11.17
9.55
125.8
128.6
0.0
126.0
127.9
125.0
142
3/13
10:00
399


710
728
53
64
639
620

448
673
674
674
676
676
850
827
1014
1012
1009
589
588
1019
992
581
387
386
449
449
387
357

18.51
19.49
.19
19.64
19.84
17.78
6.66
6.79
.02
6.82
6.46
6.21
8.43
9.74
-.22
9.34
10.26
8.58
125.7
128.4
0.0
125.6
128.5
125.3
144
5/23
12:35
324


638
548
86
•NA
579
574

424
666
668
669
673
670
844
813
1008
1001
1001
550
550
966
963
543
366
366
424
424
366
335

-.27
-1.18
19.31
19.36
19.74
18.15
.45
.20
6.39
6.46
6.18
6.05
-1.11
-1.23
9.32
9.23
9.64
8.83
0.0
30.8
131.2
126.2
126.3
126.2
87
5/23
14:30
323


651
557
85
NA
586
577

424
666
668
669
673
670
837
813
1003
996
999
547
546
957
964
538
366
365
423
423
366
335

-.28
-1.17
19.16
19.34
19.39
18.06
.45
.20
6.41
6.44
6.20
6.13
-.96
-1.15
9.35
9.33
9.89
9.03
o.o
30.2
131.4
125.9
129.2
125.3
88
5/23
16:20
322


655
556
84
NA
588
579

424
666
868
669
673
670
839
822
1009
1008
1006
554
553
952
966
547
366
355
423
423
366
335

-.15
-1.10
19.21
19.38
19.58
18.52
.45
.20
6.38
6.46
6.14
6.21
-.95
-1.16
9.25
9.19
9.63
8.93
0.0
29.7
131.4
126.3
129.4
124.0
88
3/10
14:00
514


794
c •*
66
1'"'4
712
694

477
676
678
678
682
679
860
855
1009
999
1003
478
479
990
1014
620
410
410
477
477
415
381

20.90
22.38
.25
22.54
21.89
20.28
7.53
7.74
.06
7.66
7.02
7.08
9.68
11.24
-.13
10.61
11.29
9.68
125.9
128.4
45.9
124.9
127.9
124.5
142
3/09
10:00
515


775
791
56
I "5
701
686

477
674
676
676
680
678
848
848
1006
1003
1002
476
477
989
1020
619
408
407
475
475
411
376

21.39
22.51
.23
22.87
22.25
21.10
7.67
7.77
.05
7.98
7.13
7.21
10.06
11.37
-.23
10.85
11.66
10.41
125.6
128.6
46.9
125.3
127.9
124.7
141
3/10
16:30
482


782
796
62
101-
707
690

468
674
676
676
680
677
865
858
1009
1003
1004
472
471
1008
1006
607
4O4
403
469
469
406
376

20.25
21.69
.25
21.78
21.34
19.39
7.12
7.47
.07
7.58
6.88
6.83
9.32
10.89
-.14
10.78
10.03
9.44
125.3
128.4
47.3
124.8
127.9
125.4
143
* C  - COMPUTER DATA; B - BOARD DATA, NA - NOT AVAILABLE.
                                                    221
                                                                                                SHEET A38

-------
 WISCONSIN POWER & LIOHT Co.
 COLUMBIA #1
C-E POWER  SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                     BASELINE OPERATION  STUDY
                                             BMUD t COMPUTER DATA
    TEST NO.
                                                                II      15      25.     22.
     21      21


•C


C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
r.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D»TE
TIME
LOAD
TEMPERATURES
AIR i G»s - °F
ECON. N GAS OUT.
ECON. S GAS OUT.
1-A PA FAN.DISCH. HDR,
1-B PA TAN DISCH. HDR.
1-A AH PRI. AIR OUT.
1-B AH PRI. AIR OUT.
STEAM I WATCR - *F
BOILER E ON. IN.
DOWNCOME 1
DOWNCOME 2
DOWNCOME 3
DOWNCOME 4
DOWNCOMER 5
BLR. SH ATMP 1-A STM. IN.
BLR. SH ATMP 1-B STM. IN.
BLR. S SH HDR. OUT.
BLR. N SH HDR. OUT.
TURBINE THROTTLE
BLR. S RH ATMP STM. OUT. A
BLR, N RH ATMP STH. OUT. B
BLR. S RH HOR. OUT. A
BLR. N RH HDR. OUT. B
HP HTR. 1-G1 4 1-62 EXTR. STM
HP HTR. 1-F1 FW OUT.
HP HTR. 1-F2 FW OUT.
HP HTR. 1-G1 FW OUT.
HP HTH. 1-G2 FW OUT.
HP HTR. 1-G1 DRAIN
HP HTR. 1-G2 DRAIN
PULVERIZER DATA
PLV 1-A BOWL LOWER P
PLV 1-B TOWL LOWER P
PLV 1-C BOWL LOWER P
PLV 1-D BOWL LOWER P
PLV 1-E BOWL LOWER P
PLV 1-F BOWL LOWER P
PLV 1-A BOWL DIFF. P
PLV 1-B BOWL DIFF. P
PLV 1-C BOWL DIFF. P
PLV 1-D BOWL DIFF. P
PLV 1-E BOWL DIFF. P
PLV 1-F BOWL DIFF. P
PLV 1-A COAL AIR OUT. P
PLV 1-B COAL AIR OUT. P
PLV 1-C COAL AIR OUT. P
PLV 1-D COAL AIR OUT. P
PLV 1-E COAL AIR OUT. P
PLV 1-F COAL AIR OUT. P
PLV 1-A PRI. AIR IN. FLOW
PLV 1-B PRI. AIR IN. FLOW
PLV 1-C PRI. AIR IN. FLOW
PLV 1-C PRI. AIR IN. FLOW
PLV 1-E PRI. AIR IN. FLOW
PLV 1-F PRI. AIR IN. FLOW
PLV 1-A COAL AIR DISCH. TEMP.
1976

MW




























IN. HO
IN. H*0
IN. HJTO
IN. H*0
IN. H?0
IN. HfO
IN. HtO
IN. ICO
IN. HXP
IN. HtO
IN. H,0
IN. \CO
IN. HtO
IN. HtO
IN. K;0
m. H!O
IN. HTO
IN. HgO
0-125*
0-125*
0-125*
0-125*
0-125*
0-125*
•F
5/21
05:00
321
662
648
78
•NA
605
604
425
666
667
668
667
667
917
878
1011
997
1003
427
425
1005
994
548
368
369
424
424
367
338
18.56
21.00
19.96
19.53
-.89
-1.16
6.37
6.53
6.68
6.69
.12
.06
8.21
10.04
9.66
9.14
1.13
1.37
126.8
128.8
130.8
126.0
0.0
O.O
144
5/65
13:00
321
693
479
88
NA
616
610
424
666
668
668
672
670
882
862
1005
1005
1003
454
429
970
986
544
366
366
424
424
366
337
18.42
20.41
19.60
19.45
0.0
-1.10
6.36
6.57
6.46
6.54
.01
.06
8.23
10.28
9.42
9.18
.05
-1.26
126.8
129.3
131.2
125.6
0.0
0.0
143
3/ia
06:00
525
817
817
66
104
723
710
478
676
678
678
682
680
860
862
1013
1010
1007
479
482
1019
1012
628
412
412
479
479
415
379
21.65
23.23
.24
23.44
21.88
18.87
7.75
8.12
.06
8.21
7.15
6.65
9.80
11.55
-.13
10.96
11.15
9.04
125.6
128.5
33.1
125.2
127.5
125.6
143
3/9
14:00
512
794
806
59
106
718
706
476
674
676
679
680
678
841
842
1007
10O5
1004
476
477
990
1015
619
409
408
476
477
413
380
20.97
22.35
.24
22.50
21.89
20.47
7.60
7.73
.07
7.77
7.04
7.07
9.90
11.16
-.17
10.64
11.24
10.15
125.4
128.7
59.5
125.2
128.0
124.8
141
3/10
18:50
484
780
788
58
93
702
688
469
674
676
676
680
678
864
853
1011
1002
1005
472
470
1006
1007
608
404
403
469
469
406
373
20.25
21.56
.23
21.84
21.30
19.48
7.25
7.44
.07
7.56
6.91
6.82
9.21
10.73
-.14
10.22
10.94
9.34
126.2
128.4
42.4
125.4
127.8
124.7
143
S/J3
13:30
400
707
726
58
75
645
624
448
673
674
674
679
676
842
847
1010
1012
1008
588
587
1015
994
580
387
386
449
449
387
357
18.64
19.17
.19
19.78
19.91
17.68
6.65
6.72
.25
6.82
6.42
6.12
8.45
9.56
-.23
9.42
10.28
8.54
125.8
128.5
0.0
125.6
127.8
124.7
144
5/25
18:20'
322
663
416
90
NA
602
604
424
666
668
668
673
670
892
857
1010
998
1003
427
425
974
975
546
367
366
424
424
366
337
18.21
20.33
19.18
19.44
-.01
-1.22
6.32
6.58
6.32
6.48
.02
.06
8.07
10.37
9.12
9.17
.05
-1.47
127.1
128.9
130.0
125.4
0.0
0.0
142
5/25
16:30
325
687
448
90
NA
614
610
426
666
668
668
673
669
904
865
1010
1000
1002
427
426
976
982
546
368
367
424
425
367
338
18.43
20.93
12.62
19.56
0.0
-1.24
6.34
6.79
6.56
6.55
.02
.06
7.95
10.49
9.37
9.11
.06
-1.26
127.3
129.3
131.7
125.6
0.0
3.6
142
5/25
14:35
322
702
461
90
NA
619
612
425
664
668
668
673
670
891
871
1006
1003
1003
428
427
972
984
545
367
366
424
424
366
337
18.39
20.78
19.52
19.44
0.0
-1.23
6.39
6.73
6.47
6.55
.03
.06
8.15
10.43
9.41
9.26
.05
-1.19
126.1
129.6
131.0
125.8
0.0
0.0
142
* C - COMPUTER DATA; B - BOARD DATAJ' NA - NOT AVAILABLE.
                                                    222
                                                                                                 SHEET A39

-------
WISCONSIN POWER t LIGHT Co.
COLUMBIA #1
C-E POVCR SYSTEMS
FIELD TESTino AND
PERFORMANCE RESULTS
                                   BASELINE  OPERATION  STUDY
                                           BOARD & COMPUTER DATA



•C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

•B
B
B
B

B
B
8
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
TEST NO,
DATE 1976
TIME
LOAD MM
PULVERIZER DATA
PLV 1-B COAL AIR DISCH. TEMP. V
PLV 1-C COAL AIR DISCH. TEMP. "F
PLV 1-D COAL AIR DISCH. TEMP. 'F
PLV 1-E COAL AIR DISCH. TEMP. 'F
PLV 1-F COAL AIR DISCH. TEMP « °F
PLV 1-A FEEDER COAL FLOW 'lOie/HR
PLV 1-B FEEDER COAL FLOW 10±.B/HR
PLV 1-C FEEDER COAL FLOW 103.B/HR
PLV 1-D FEEDER COAL FLOW 10iB/HR
PLV 1-E FEEDER COAL FLOW 1olB/MR
PLV 1-F FEEDER COAL FLOW 10T.B/HR
PLV 1-A MILL AMPS
PLV 1-B MILL AMPS
PLV 1-C MILL AMPS
PLV 1-D MILL AMPS
PLV 1-E MILL AMPS
PLV 1-F MILL AMPS
FAN DAMPER POSITION - % OPEN
1-A FD FAN INLET VANE
1-B FD FAN INLET VANE
1-A PA FAN INLET VANE
1-B PA FAN INLET VANE
SPRAY VALVE POSITION - % OPEN
1-A SH SPRAY VALVE
1-B SH SPRAY VALVE
1-A RH SPRAY VALVE
1-B RH SPRAY VALVE
MISCELLANEOUS
BURNER TILT + DEGREES
Aux. AIR DAMPERS ~ jf OPEN
1-A FUEL/AIR DAMPERS # OPEN
1-B FUEL/AIR DAMPERS $ OPEN
1-C FUEL/AIR DAMPERS % OPEN
1-D FUEL/AIR DAMPERS % OPEN
1-E FUEL/AIR DAMPERS % OPEN
1-F FUEL/AIR DAMPERS % OPEN
1-A PRI. AIR FAN AMPS
1-B PRI. AIR FAN AMPS
1-A ID FAN AMPS
1-B ID FAN AMPS
1-A FD FAN AMPS
1-B FD FAN AMPS
1-A ID FAN RPM
1-B ID FAN RPM
1-A BLR. CIRC. WTR. PUMP AMPS
1-B BLR. CIRC. WTR. PUMP AMPS
1-C BLR. CIRC. WTR. PUMP AMPS
1-D BLR. CIRC. WTF. PUMP AMPS
N DRUM LEVEL + NORM. HO LEVEL IN.
S DRUM LEVEL + NORM. H&D LEVEL IN.
FLUE GAS COMBUSTIBLES £
FLUE GAS OXYOEN *>
BARONHCTRIC PRESS. IN. HGA
i
3/10
09:45
524

146
55
147
141
145
116
117
0
114
116
116
73
72
0
74
75
75

72
71
30
25

100
92
47
65

-3°
100
51
52
0
51
51
51
170
180
500
430
201
198
460
490
71
76
70
72
-.72
-3.05
.062
3.8
29.76
2
3/08
14:00
524

142
79
144
138
141
116
112
0
113
115
116
74
71
0
73
76
74

70
70
29
24

25
13

43

0°
98
50
49
2
52
52
52
175
184
500
420
208
193
4BO
490
73
76
72
73
-.70
-2.87
.064
3.9
30.08
3
3/15
15:35
483

145
89
146
141
144
105
106
0
105
106
104
70
70
0
71
72
71

73
71
28
24

36
24
41
41

-3°
100
45
45
0
46
45
45
171
181
500
430
210
197
480
460
75
79
73
75
-.57
-2.01
.067
4.8
30.07
jl
3/13
1O:00
399

146
43
146
143
145
87
88
0
87
88
86
64
65
0
66
65
65

63
62
28
23

23
17
0
0

+15°
56
31
34
0
35
34
33
173
185
380
320
187
177
430
430
79
81
78
80
-.67
-1.58
.064
5.3
30.08
5
5/23
12:35
324

121
144
141
138
141
0
0
87
88
88
86
0
0
65
65
67
65

58
57
32
26

11
6
0
0

+6°
13
0
0
87
84
80
76
165
175
280
300
167
157
320
315
83
95
80
85
-.79
-2.02
.063
5.1
30.05
6
5/23
14:30
323

114
144
144
138
142
0
0
87
88
88
86
0
0
67
65
67
66

62
60
32
26

B
5
0
0

+6"
21
0
0
68
85
82
78
168
178
300
320
175
162
340
345
83
83
79
83
-.63
-2.26
.065
5.7
30.03
7
5/23
16:20
322

110
144
142
138
142
0
0
87
69
88
87
0
0
66
65
66
65

64
62
32
26

10
20
0
0

46°
25
0
0
90
83
64
80
168
178
310
320
179
166
354
354
81
64
78
83
-.35
-1.70
.063
6.0
30.02
B
3/10
14:00
514

145
57
147
141
144
114
115
0
112
114
113
73
71
0
73
75
74

70
69
30
25

100
1OO
64
61

-3°
79
50
50
0
50
50
50
171
181
480
410
198
138
480
468
74
77
72
74
-.68
-3.28
.068
3.9
29.81
9
3/09
10:00
515

143
69
146
139
142
114
111
0
112
114
115
74
70
0
75
75
75

73
71
30
25

45
32
50
70

0°
100
50
49
0
50
50
50
173
180
500
430
210
198
480
500
72
75
71
72
-.78
-2.92
.060
4.0
29.66
.1°
3/10
16:30
482

146
55
146
142
144
106
107
0
104
106
105
70
70
0
70
73
71

70
70
X
25

85
69
31
41

-3°
84
45
46
0
46
46
46
170
180
470
400
200
190
480
460
73
76
71
73
-.64
-2.95
.068
5.0
29.87
* C - COMPUTER DATA; B - BOARO DATA;  NA - NOT AVAILABLE.
                                                 223
                                                                                          SHEET A40

-------
 WISCONSIN POWER & LIGHT Co.
 COLUMBIA fl
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                    BASELINE  OPERATION  STUDY
                                             BOARD t COMPUTER DATA


*c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

•e
B
B
B

B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
TEST NO.
DATE
TIME
LOAD
PULVERIZER DATA
PLV 1-B COAL AIR DISCH. TEMP.
PLV 1-C COAL AIR DISCH. TEMP.
PLV 1-D COAL AIR DISCH. TEMP.
PLV 1-E COAL AIR DISCH. TEMP.
PLV 1-F COAL AIR DISCH. TEMP. _
PLV 1-A FEEDER COAL FLOW 10g
PLV 1-B FEEDER COAL FLOW lot
PLV 1-C FEEDER COAL Flow ICC
PLV 1-D FEEDER COAL FLOW ICC
PLV 1-E FEEDER COAL FLOW 10,
PLV 1-F FEEDER COAL FLOW 10J
PLV 1-A MILL
PLV 1-B MILL
PLV 1-C MILL
PLV 1-D MILL
PLV 1-E MILU
PLV 1-F MILL
FAN DAMPER POSITION - % OPEN
1-A FD FAN INLET VANE
1-B FD FAN INLET VANE
1-A PA FAN INLET VANE
1-B PA FAN INLET VANE
SPRAY VALVE POSITION - % OPEN
1-A SH SPRAY VALVE
1-B SH SPRAT VALVE
1-A RH SPRAT VALVC
1-B RH SPRAT VALVE
MISCELLANEOUS

1976
MM

•F
•F
•F
"F
•F
LB/HR
LB/HR
LB/HR
LB/HR
LB/HR
LB/HR
AMPS
AMPS
AMPS
AMPS
AMPS
AMPS











BURNER TILT +• DEGREES
Aux. AIR DAMPERS $
1-A FUEL/AIR DAMPERS f
1-B FUEL/AIR DAMPERS f
1-C FUEL/AIR DAMPERS %
1-D FUEL/AIR DAMPERS *
1-E FUEL/AIR DAMPERS f
1-F FUEI/AIR DAMPERS %
1-A PR i. AIR FAN
1-B PRI. AIR FAN
1-A ID FAN
1-B ID FAN
1-A FD FAN
1-B FD FAN
1-A ID FAN
1-B ID FAN
1-A BLR. CIRC. WTR. PUMP
1-B BLR. CIRC. WTR. PUMP
1-C BLR. CIRC. WTR, PUMP
1-D BLR. CIRC. WTR. PUMP
N DRUM LEVEL + NORM. HO LEVEL
S DRUM LEVEL 7 NORM. HJJO LE VEL
FLUE GAS COMBUSTIBLES
FLUE GAS OXYGEN
BARONMETRIC PRESS. IN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
AMPS
AMPS
AMPS
AMPS
AMPS
AMPS
RPM
RPM
AMPS
AMPS
AMPS
AMPS
IN.
IN.
%
a
. HGA
11
5/21
05:00
381

145
145
143
94
104
66
88
88
88
0
0
64
65
66
66
0
0

52
51
31
26

41
45
19
15

46'
0
79
82
87
82
0
0
170
178
270
300
158
149
300
300
80
83
79
83
-.64
-2.56
.063
4.2
30.08
12
5/25
13:00
321

151
144
142
79
134
88
90
89
90
0
0
64
65
67
66
0
0

69
67
31
25

26
25
8
5

+3°
29
83
86
92
88
0
0
165
175
340
350
189
175
393
393
79
83
77
79
-.56
-2.13
.067
7.0
29.98
13
3/12
06:00
525

145
50
147
141
144
119
120
0
117
112
112
77
74
0
76
76
71

71
70
30
25

52
30
100
100

-3°
95
54
54
0
54
50
44
170
180
480
410
199
1B7
480
480
73
76
72
74
-.64
-1.60
.065
3.5
29.01
14
3/9
14:00
512

144
68
146
140
143
112
109
0
110
112
112
75
71
0
75
75
76

72
71
30
25

30
23
49
68

0'
100
49
47
0
50
50
50
170
180
500
430
205
190
480
490
70
75
70
72
-.69
-2.54
.064
4.1
29.56
.15
3/10
18:50
484

145
53
147
141
144
107
109
0
105
107
106
69
70
0
70
73
71

70
70
29
24

53
41
36
50

-3°
90
45
46
0
46
46
46
170
180
480
410
200
190
48O
480
73
76
71
73
-.65
-3.03
.066
5.0
29.94
16
3/13
13:30
400

146
44
145
142
146
86
88
0
87
87
86
65
65
0
66
66
65

64
63
29
24

22
12
0
0

+17°
57
31
33
0
35
33
32
171
185
380
320
187
171
430
430
79
81
76
80
-.55
-1.15
.065
5.3
30.00
J7
5/25
18:20
322

151
143
142
82
110
86
88
88
89
0
0
65
65
67
66
0
0

59
58
31
26

26
28
17
12

+4°
0
81
84
89
85
0
0
165
175
290"
310
165
155
316
326
82
83
78
82
-.77
-1.40
.066
4.6
29.91
_18
5/85
16:30
325

154
144
142
80
114
88
90
90
91
0
0
65
65
67
66
0
0

65
64
31
26

32
41
18
12

+3°
18
85
87
83
87
0
0
165
175
310
320
180
165
360
360
80
83
78
80
-.67
-1.79
.068
5.9
29.92
J9
5/25
14:35
322

153
144
142
80
122
88
90
90
91
0
0
65
66
68
67
0
0

69
68
31
26

32
27
14
9

+4°
31
85
87
93
89
0
0
165
175
350
340
189
178
400
400
79
80
76
78
-.54
-2.25
.066
7.0
29.95
* C - COMPUTER DATA; B - BOARD DATA;  NA - Not AVAILABLE.
                                                  224
                                                                                              SHEET A41

-------
 WISCONSIN POWER 4 LIGHT Co.
 COLUMBIA |1
C-E POUER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                BIASED FIRING  OPERATION STUDY
                                           BOARD L COMPUTER DATA



•c

c
c
c
c
c
c
c
c
c
c


c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
*e


c
c
c
c
c
c
c
c
c
c
TEST NO.
DATE 1976
TIME
LOAD KM
FLOWS 103LB/HR
FEEDWATER
SUPERHEAT SPRAY L
SUPERHEAT SPRAV R
REHEAT SPRAY L
REHEAT SPRAY R
BFP TURB. EXTR. STM. FLOW 1-A
BFP TURB. EXTR. STH. FLOW 1-8
BFP TURB. MN. STM. FLOW COMBINED
HOT AIR TO BURNERS L WINDBOX
HOT AIR TO BURNERS R WINDBOX
PRESSURES
STEAM i WATER . PSIG
FEEDWATER TO E.CON.
BOILER DRUM
TURBINE THROTTLE
TURBINE IST STAGE
HP HTR. 1-61 4 1-G2 STEAM IN.
AIR & GAS - IN H00
FD FAN 1-A DISCHARGE
FD FAN 1-B DISCHARGE
AIR HTR. 1-A Am IN.
Am HTR. 1-5 AIR IN.
AIR HTR. 1-A AIR OUT.
AIR HTR. 1-B AIR OUT.
FURN. RIGHT WINDBOX
FURN. LETT WINDBOX
RT. WD3X TO FURN. DIFF. P
LEFT WDBX TO FURN. DIFF. P
FURNACE- *
PRI. SH GAS OUT.
REHEATER GAS OUT.
ECOH. GAS IN.
ECON. GAS OUT,
AIR HTR. 1-A GAS IN.
AIR HTR. 1-B GAS IN.
AIR HTR. 1-A GAS OUT.
AIR HTR. 1-B GAS OUT.
IDF 1-A DISCH.
IDF 1-B DISCH.
PAF 1-A DISCH. HOH.
PAF 1-B DISCH. HDR.
PRI. HOT AIR DUCT
TEMPERATURES
AIR & GAS - °F
-A FD FAN Di SCH.
-B FD FAN DISCH.
-A AH AIR IN.
-B AH AIR IN.
-A AH AIR OUT.
-B AH AIR OUT.
-A AH GAS IN.
-B AH GAS IN.
-A AH GAS OUT.
1-B AH GAS OUT.
1
5/19
16:15
505

3176
80
83
38
62
43
68
8.47
1481
1555


2732
2674
2403
1618
519

14.07
13.15
11.14
10.26
7.02
7.02
5.33
5.46
6.50
7.01
-0.26
-0.43
-0.9B
-2.13
-5.73
-7.96
-7.73
-14.1
-12.9
-0.09
-0.02
32.26
33.43
30


84
91
98
102
688
722
744
758
291
293
2
5/19
13:50
506

3200
66
68
54
74
43
69
8.49
1382
1472


2731
2678
2403
1620
520

13.28
11.98
10.45
9.51
6.65
6.64
5.20
5.31
6.53
6.94
-0.64
-0.57
-1.13
-2.16
-5.61
-7.74
-7.54
-13.6
-12.4
-0.16
-0.12
32.44
33.44
30


81
88
97
101
588
702
744
744
290
288
3
3/12
07:15
524

3111
122
108
81
83
0
0
7.69
1516
1466


2728
2676
2396
1649
539

5.36
8.67
7.32
6.75
3.44
3.46
2.39
2.42
3.20
4.00
-0.43
-0.73
-0.69
-2.45
-6.18
-8.49
-8.10
-14.9
-13.6
-0.56
-0.47
32.91
32.68
30


58
68
73
76
720
738
784
789
280
283
f
5/19
11:00
506

3111
113
95
35
59
42
69
8.13
1384
1473


2720
2670
2402
1623
518

13.11
11.61
10.40
9.43
6.61
6.74
5.30
5.41
6.53
6.90
-0.70
-0.47
-1.05
-2.15
-5.67
-7.97
-7.44
-13.5
-12.2
-0.21
-0.19
32.31
33.23
30


75
80
89
92
681
692
737
733
282
280
5_
5/12
1J:00
422

2666
0
29
10
6
0
0
8.80
1247
1300


2649
2607
2400
1319
416

11.67
10.05
9.30
8.45
6.24
6.28
5.21
5.24
6.54
7.00
-0.49
-0.50
-0.87
-1.71
-4.19
-6.14
-5.67
-10.3
-9.3
-0.56
-0.52
31.89
32.75
30

7n
/u
79
96
67
639
651
695
688
249
256
5
5/12
09:20
422

2634
0
57
9
0
0
0
8.87
1169
1226


2643
2604
2400
1322
414

10.86
9.49
8.71
7.93
6.02
6.17
5.23
5.29
6.55
7.01
-0.42
-0.53
-0.86
-1.62
-3.84
-5.81
-5.42
-9.7
-9.0
-0.79
-0.74
31.93
32.75
30

Cfl
D*»
76
95
102
629
641
680
371
246
254
7
5/1 S
09:30
421

2624
0
22
10
0
42
72
8.70
1285
1342


2645
2605
2399
1321
415

11.98
10.04
9.33
8.56
6.35
6.22
5.17
5.21
6.54
6.99
-0.52
-0.56
-0.91
-1.82
-4.31
-5.91
-5.04
-10.5
-9.7
-0.35
-0.34
31.90
32. B7
30

7-3
1 J
80
91
95
627
648
679
682
250
251
a
5/21
03:10
320

1727
90
121
9
24
39
68
7.12
819
826


2546
2519
2400
951
312

5.00
4.39
3.82
3.26
2.35
2.27
1.95
1.93
2.02
3.52
-0.20
-0.59
-0.81
-1.32
-2.58
-3.52
-3.76
-6.3
-6.0
-0.86
-0.84
31.59
32.77
30

75
87
92
95
594
612
642
641
252
261
9
6/27
09:40
314

1979
0
20
'0
2
34
89
0.00
1006
951


2564
2531
2407
966
301

6.96
5.75
5.30
4.55
3.43
3.36
2.94
2.80
2.12
3.58
-0.54
-0.73
-0.86
-1.23
-2.68
-3.83
-3.96
-6.4
-6.3
-0.41
-0.40
31.64
32.79
30

87
93
99
101
549
566
591
599
226
238
* C - COMPUTER DATA; B - BOARD DATAJ NA - NOT AVAILABLE.
                                                  225
                                                                                               SHEET A42

-------
 WISCONSIN POWER S LIGHT Co.
 COLUMBIA fl
                                                                C-E POWER SYSTEMS
                                                                FIELD  TESTING AND
                                                                PERFORMANCE RESULTS
                                    BIASED  FIRING  OPERATION  STUDY
                                                  BOARD t COMPUTER DATA
     TEST NO.

     DATE
     TIME
     LOAD
1976
    FLOWS - 103LB/H3
    FEEOVATER
    SUPERHEAT SPRAT L
    SUPERHEAT SPRAT R
    REHEAT SPRAT L
    REHEAT SPRAT R
    BFP TURB. EXTR. STM. FLOW 1-A
    BFP TURB. EXTR. STM. FLOW 1-B
    BFP TURB. MN. STM. FLOW COMBINED
    HOT AIR TO BURNERS L WIHOBOX
    HOT AIR TO BURNERS R WINDBOX

    PRESSURES

    STEAM t WATER - PSIG
    FEEOWATER TO ECON.
    BOILER DRUM
    TURBINE THROTTLE
    TURBINE IST STAGE
    HP HTR. 1-G1  & 1 -G2 STEAM IN.

    AIR i Gts - IN HpO
    FD FAN 1-A DISCHARGE
    FD FAN 1-6 DISCHARGE
    AIR HTR.  1-A AIR  IN.
    AIR HTR.  1-B AIR  IN.
    AIR HTR.  1-A AIR OUT.
    AIR HTR.  1-B AIR OUT.
    FURN.  RIGHT WINDBOX
    FURN.  LEFT WINDBOX
    RT. VJOBX  TO FURN. Dirr. P
    LEFT WD3X TO FURN. Dirr. P
    FURNACC
    PR I. SH GAS OUT.
    REMEATER  GAS OUT.
    ECON.  GAS IN.
    ECON.  GAS OUT.
    AIR HTR.  1-A GAS IN.
    AIR HTR.  1-B GAS IN.
    AIR HTR.  1-A GAS OUT.
    AIR HTR.  1-B GAS OUT.
    IDF 1-A DISCH.
    IDF 1-B DISCH.
    PAF 1-A DISCH. HDR.
    PAF 1-B DISCH. HDR.
    PR i. HOT  AIR DUCT

    TEMPERATURES
    AIR i GAS - *F
    1-A FD FAN DISCH.
    1-B FD FAN DISCH.
    1-A AH AIR IN.
    1-B AH AIR IN.
    1-A AH AIR OUT.
    1-B AH AIR OUT.
    1-A AH GAS IN.
    1-B AH GAS IN.
    1-A AH GAS OUT.
    1-B AH GAS OUT.
\0
5/23
11:05
324
1940
12
46
0
0
44
34
14.70
902
913
2565
2539
2402
984
310
7.35
6.46
5.99
5.57
4.41
4.32
3.82
3.72
4.55
5.38
-0.63
-0.48
-0.74
-1.22
-2.78
-3.97
-4.12
-6.9
-6.4
-0.85
-0.90
31.50
32.33
30
74
80
104
108
564
580
611
608
240
242
_n
5/19
18:35
491
3005
107
101
40
64
42
67
8.08
1502
1583
2711
2660
2400
1559
505
14.17
13.30
11.27
10.49
7.18
7.19
5.53
5.59
6.56
7.01
-0.23
-0.25
-0.82
-2.03
-5.68
-7.98
-7.77
-14.3
-13.0
-0.00
-0.06
32.32
33.37
30
84
91
98
102
690
718
748
753
292
291
J2
5/10
09:50
497
2972
125
140
66
80
0
0
7.65
1514
1554
2701
2652
2400
1574
513
13.78
12.75
11.12
10.86
7.13
7.20
5.64
5.70
6.54
6.97
-0.03
-0.18
-0.68
-2.10
-5.78
-8.36
-7.99
-14.5
-13.1
-0.13
-0.03
33.17
34.33
30
76
81
88
91
702
731
762
453
276
281
_13
3/16
10:OO
522
3139
135
111
70
75
0
0
7.51
1576
1552
2734
2687
2395
1672
537
5.47
8.78
7.58
7.04
3.52
3.38
2.35
2.14
3.0B
3.73
-0.44
-0.62
-0.48
-2.56
-6.22
-8.91
-8.89
-15.5
-14.0
-0.78
-0.92
32.87
32.78
30
40
47
82
85
698
715
763
767
272
270
_H
5/12
13:45
422
2660
0
39
11
8
0
0
8.93
1411
1869
2648
2608
2408
1323
261
12.75
11.24
10.11
9.11
6.47
6.50
5.22
5.27
6.54
7.01
-0.60
-0.56
-1.03
-1.88
-4.82
-6.89
-6.50
-11.6
-10.6
-0.26
-0.22
31.94
32.84
30
76
84
91
94
651
665
710
703
253
257
-!§
3/13
15:30
400
2458
0
34
10
0
0
0
7.61
1290
1287
2623
2587
2402
1238
391
4.26
6.66
5.78
5.36
2.90
2.88
2.17
2.23
3.16
3.86
-0.51
-0.64
-0.36
-1.81
-4.47
-6.49
-6.24
-11.3
-10.1
-1.01
-0.97
32.47
32.29
30
47
56
99
105
631
639
684
684
251
252
J6
5/16
11:45
422
2634
9
32
10
0
42
73
8.95
1472
1533
2647
2608
2406
1326
416
13.09
11.96
10.29
9.60
6.63
6.49
4.98
5.12
6.54
7.01
-0.57
-0.54
-0.96
-2.05
-5.13
-7.12
-7.20
-12.6
-11.6
-0.12
-0.09
31.89
32.86
30
73
80
90
93
637
663
694
702
254
254
_17
5/21
01:15
320
1720
92
122
5
22
39
70
7.53
967
979
2544
2520
2405
953
311
7.95
6.67
6.21
5.50
4.20
4.12
3.56
3.51
4.15
5.17
-0.52
-0.59
-0.84
-1.49
-3.00
-4.13
-4.37
-7.5
-6.9
-0.73
-0.69
31.76
32.73
30
77
87
91
94
606
630
656
658
253
261
_I8
5/23
09:10
323
1909
36
48
0
0
44
34
14.99
993
1027
2563
2540
2405
983
308
9.52
8.33
7.62
7.04
5.58
5.51
4.98
4.96
6.15
6.63
-0.35
-0.49
-0.74
-1.29
-2.90
-4.22
-4.37
-7.6
-7.1
-0.7B
-0.85
31.37
32.26
30
68
78
112
116
552
561
605
596
236
233
'  C  -  COMPUTER DATA; B - BOARD DATA;  NA - NOT  AVAILABLE.
                                                         226
                                                                                                            SHEET A4.1

-------
WISCONSIN POWER & LIGHT Co.
COLUMBIA |1
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                BIASED FIRING  OPERATION  STUDY
                                           BOARD t COMPUTER DATA



«c


c
c
c
c
c
C'

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
TEST NO.
DATE
TIME
LOAD
TEMPERATURES
AIR & GAS - °F
ECON. N GAS OUT.
ECON. S GAS OUT.
1-A PA FAN DISCH. HDD.
1-B PA FAN DISCH. HDR.
1-A AH PRI. AIR OUT.
1-B AH PRI. AIR OUT.
STEAM & WATER - °F
BOILER ECON. IN.
DOWNCOHER 1
DOWNCOMER S
DOWNCOHER 3
DOWNCOMER 4
DOWNCOMER 5
BLR. SH ATMP 1-A STM. IN.
BLR. SH ATMP 1-B STM. IN.
BLR. S SH HDR. OUT.
BLR. N SH HDR. OUT.
TURBINE THROTTLE
BLR. S RH ATMP STM. OUT. A
BLR. N RH ATMP STM. OUT. B
BLR. S RH HDR. OUT. A
BLR. N RH HDR. OUT. 8
HP HTR. 1-G1 & 1-G2 EXTR. STM
HP HTH. 1-F1 FW OUT.
HP HTR. -F2 FW OUT.
HP HTR. -G1 FW OUT.
HP HTR. -G2 FW OUT.
HP HTR. -G1 DRAIN
HP HTR. -G2 DRAIN
PULVERIZER DATA
PLV 1-A BOWL LOWER P
PLV 1-B BOWL LOWER P
PLV -C BOWL LOWER P
PLV -D BOWL LOWER P
PLV -E BOWL LOWER P
PLV -F BOWL LOWER P
PLV -A BOWL Dirr. P
PLV -B BOWL Dirr. P
PLV -C Bowl Dirr. P
PLV -D BOWL Dirr. P
PLV -E BOWL Dirr. P
PLV -F BOWL Dirr. P
PLV -A COAL AIR OUT. P
PLV -B COAL AIR OUT. P
PLV -C COAL AIR OUT. P
PLV 1-D COAL AIR OUT. P
PLV 1-E COAL AIR OUT. P
PLV 1-F COAL AIR OUT. P
PLV 1-A PRI. AIR IN. FLOW
PLV 1-B PRI. AIR IN. FLOW
PLV 1-C PRI. AIR IN. FLOW
PLV 1-D PRI. AIR IN. FLOW
PLV 1-E PRI. AIR IN. FLOW
PLV 1-F PRI. AIR IN. FLOW
PLV 1-A COAL AIR DISCH. TEMP.

1976

MW
























.







IN. HO
IN. H,0
IN. H|0
IN. HO
IN. H|0
IN. H20
IN. HaO
IN. H20
IN. HjjO
IN. H-0
IN. H|O
IN. HgO
IN. HgO
IN. HgO
IN. H~0
IN. HgO
IN. HgO
IN. HeO
0-125?!
0-125*
0-1 25*
0-125*
1-125*
0-125*
"F
J.
5/19
16:15
505


797
770
95
NA
698
70S

474
674
676
'676
680
678
836
840
998
1012
1002
476
473
982
1026
616
408
405
472
473
411
378

20.6
24.0
21.6
23.0
22.3
-1.5
6.90
7.88
7.15
7.66
6.92
0.06
9.30
11.97
10.51
10.98
10.83
-1.64
127
129
129
126
129
0
143
2
5/19
13:50
506


777
768
93
NA
700
694

474
674
676
677
680
678
832
832
1012
997
1000
475
474
1002
1011
618
408
405
472
473
412
379

20.7
23.8
21.9
23.0
-1.1
19.5
6.94
7.79
7.29
7.80
0.12
6.73
9.45
11.86
10.66
11.02
-1.25
9.31
127
128
130
125
0
124
143
3
3/12
07:15
524


836
823
68
104
732
724

478
676
678
678
682
680
856
873
1008
1014
1008
479
482
1014
1015
628
412
412
479
479
415
378

21.7
23.4
0.2
23.6
21.9
18.9
7.79
8.11
0.04
8.09
7.04
6.64
10.13
11.69
-0.13
11.15
11.32
9.08
125
128
38
126
128
125
143
4
5/19
11:00
506


770
758
85
NA
693
683

474
674
676
676
680
678
835
849
996
1016
1001
476
473
1000
1017
617
408
406
472
473
412
376

-0.4
23.6
22.3
23.0
22.2
20.1
0.44
7.68
7.18
7.73
6.94
6.93
-1.24
11.74
10.86
11. 05
10.88
9.70
0
129
129
126
130
125
88
5
5/12
11:00
422


716
685
80
NA
650
643

451
671
672
673
677
674
821
808
1005
1003
1003
574
527
997
1002
580
389
388
451
451
391
358

21.0
24.2
23.4
-0.2
22.3
-0.1
7.23
8.25
7.74
-0.00
7.17
-0.02
6.05
11.79
11.22
0.06
10.77
0.11
127
129
131
0
126
0
143
6
5/12
09:2O
422


706
674
74
NA
639
634

452
670
672
672
677
674
834
813
1005
1001
1001
586
585
1003
1004
579
389
368
450
451
391
356

21.0
23.7
23.7
-0.2
22.3
-0.1
7.22
8.00
7.85
-0.02
7.10
-0.03
6.05
11.51
11.32
0.06
10.80
0.11
127
128
130
0
126
0
143
7
5/16
09:30
421


722
596
82
NA
637
636

451
670
672
673
677
674
829
836
995
1017
1002
588
587
974
1023
580
389
388
450
451
390
358

-0.4
23.8
23.0
23.4
21.8
0.1
0.44
7.86
7.65
7.72
6.93
0.00
-1.37
11.89
11.19
11.28
10.71
0.03
0
129
129
125
126
0
87
8
5/21
03:10
320


661
655
80
NA
608
608

425
666
667
667
672
669
917
873
1006
999
1002
427
426
998
992
547
368
367
424
424
367
338

18.5
20.0
19.7
19.6
-1.0
-1.4
6.34
6.46
6.62
6.68
0.19
0.06
8.20
10.04
9.58
9.15
-1.17
-I.3B
127
128
131
126
0
0
143
9
6/27
09:40
314


610
•NA
101
NA
561
563

417
666
667
663
418
668
833
823
999
999
NA
540
539
924
932
533
NA
356
NA
416
NA
332

17.0
20.7
0.1
X.3
18.1
16.8
5.89
6.64
0.02
0.05
5.97
5.78
7.41
10.38
0.17
30.20
8.72
8.38
123
127
51
31
126
130
146
* C - COMPUTER DATA; B - BOARD DATA;  NA   NOT AVAILABLE.
                                                 227
                                                                                              SHEET A44

-------
WISCONSIN POWER & LIGHT Co.
COLUMB tA
C-E POWER SYSTEMS
FIELD TtsriNo AND
PERFORMANCE RESULTS
                                BIASED FIRING  OPERATION  STUDY
                                           BOARD i COMH1TER DATA



•c


c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
TEST NO.
DATE
TIME
LOAD
TENPERATURES
AIR £ GAS - °F
ECON. N GAS OUT.
ECON. S GAS OUT.
1-A PA FAN DISCH. HDR.
1-B PA FAN DISCH. HDR.
1-A AH PRI. AIR OUT.
1-B AH PRI. AIR OUT.
STEAM 4 WATER - *F
BOILER ECON. IN.
Do UN COMER 1
DOWNCOMER 2
DOWNCOMER' 3
DOVHCOMER 4
DOWNCOMER 5
BLR. SH ATM3 1-A STM. IN.
BLR. SH ATW 1-B STM. IN.
BLR. S SH HOR. OUT.
BLR. N SH HOR. OUT.
TURBINE THROTTLE
BLR. S RH ATMP STM. OUT. A
BLR. N RH ATM1 STM. OUT. B
BLR. S RH HDD. OUT. A
BLR. N RH HDR. OUT. 8
HP HTR. 1-GI & 1-G2 EXTR. STM
HP HTR. 1-F1 FW OUT.
HP HTR. 1-F2 FW OUT.
HP HTR. 1-GI FW OUT.
HP HTR. 1-G2 FW OUT.
HP HTR. 1-GI DRAIN
HP HTR. 1-G2 DRAIN
PULVERIZER DATA
PLV 1-A BOWL LOWER P
PLV 1-B BOWL LOWER P
PLV 1-C BOWL LOWER P
PLV 1-D BOWL LOWER P
PLV 1-E BOWL LOWER P
PLV 1-F BOWL LOWER P
PLV 1-A BOWL Dir . P
PLV 1-B BOWL DIF . P
PLV 1-C BOWL DIF . P
PLV 1-D BOWL Di . P
PLV 1-E BOWL Di . P
PLV 1-F BOWL Di . P
PLV 1-A COAL Ai OUT. P
PLV 1-8 COAL Ai OUT. P
PLV 1-C COAL Ai OUT. P
PLV 1-D COAL AIR OUT. P
PLV -E COAL AIR OUT. P
PLV -F COAL AIR OUT. P
PLV -A PRI. AIR In. FLOW
PLV -B PRI. AIR IN. FLOW
PLV -C PRI. AIR IN. FLOW
PLV -D PRI. AIR IN. FLOW
PLV -E PRI. AIR IN. FLOW
PLV -F PRI. AIR IN. FLOW
PLV -A COAL AIR DISCH. TEMP.

1976

MW
































IN. Hj>0
IN. HTO
IN. H|0
IN. Hfo
IN. HO
IN. HgO
IN. HgO
IN. HgO
IN. H-0
IN. HgO
IN. HgO
IN. HO
IN. HJSO
IN. H-0
IN. HgO
IN. HgO
IN. H-0
IN. HgO
0-125*
0-125*
0-125*
0-1 25*
0-125*
1-125*
•F
JO
5/23
11:05
324


642
557
83
•NA
578
574

424
665
668
669
673
670
850
821
1006
1005
1005
552
551
963
978
546
366
366
424
424
366
335

-0.3
-1.3
19.4
19.3
19.7
18.1
0.44
0.20
6.34
6.47
6.16
6.14
-1.15
-1.28
9.46
9.34
9.75
9.07
0
31
131
126
129
124
84
11
5/19
18:35
491


791
701
94
NA
702
697

471
673
675
676
679
677
844
851
992
1018
1001
472
470
983
1027
612
405
404
469
470
409
376

20.6
24.0
21.5
22.7
22.0
-1.4
6.83
7.74
7.12
7.60
6.84
O.O6
9.36
12.00
10.50
10.91
10.93
-1.40
127
129
130
125
129
0
143
J2
5/10
09:50
497


803
788
86
NA
713
713

473
673
674
675
679
676
865
863
1011
1O05
1005
472
471
982
1021
618
407
406
472
472
410
376

21.5
25.3
23.9
-0.3
23.5
22.4
7.28
8.30
7.82
0.29
7.34
7.38
8.99
12.55
11.70
-0.70
11.51
10.90
127
129
130
49
126
126
146
_13
3/16
1O:00
522


803
810
53
61
710
699

480
678
680
680
684
681
846
868
999
1019
1004
481
482
989
1030
624
413
412
480
480
416
384

21.4
-0.0
24.4
23.6
22.7
21.2
7.54
0.01
8.43
8.06
7.25
7.30
9.86
0.43
11.27
11.43
11.80
10.60
126
42
131
125
128
126
145
14
5/12
13:45
422


737
631
86
NA
661
653

452
671
672
673
677
675
828
819
1004
1005
1000
578
500
999
1004
580
389
38S
451
451
391
360

20.7
24.0
23.2
-0.2
22.0
-0.1
7.11
8.18
7.72
0.02
7.16
-0.01
6.12
11.68
11.09
0.06
10.57
0.11
127
128
130
0
126
0
144
J5
3/13
15:30
400


715
722
58
80
641
627

447
672
674
674
678
676
827
837
1003
1021
1009
588
587
998
1012
580
386
386
448
448
387
359

18.3
18.9
0.2
19.8
19.8
17.6
6.58
6.67
0.02
6.84
6.44
6.18
8.37
9.55
-0.23
9.45
10.29
8.52
125
128
0
125
128
125
144
_16
5/16
11:45
422


748
612
82
NA
649
648

451
670
672
673
677
674
828
845
990
1022
999
588
587
969
1037
577
389
388
450
451
391
358

-0.5
24.0
23.0
23.6
21.9
0.1
0.44
7.97
7.73
7.82
6.94
0.00
-1.41
11.85
11.14
11.34
10.66
0.09
0
129
131
125
126
0
88
17
5/21
01:15
320


676
673
82
NA
619
620

424
665
667
668
672
669
915
870
1004
1006
1003
427
427
995
995
545
367
366
424
423
366
337

18.3
20.6
19.5
19.7
-1.1
-1.3
6.31
6.61
6.53
6.72
0.17
0.06
8.17
10.13
9.48
9.23
-1.35
-1.54
127
129
132
126
0
0
143
18
5/23
09:10
323


653
538
78
NA
567
556

424
665
667
668
673
670
855
827
1003
1008
1003
552
551
973
980
545
367
365
423
424
366
334

-0.3
-1.5
19.8
19.3
19.9
18.2
0.44
0.21
6.47
6.48
6.21
6.12
-1.16
-1.35
9.78
9.36
9.85
8.98
0
32
131
126
130
124
79
 C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE-.
                                                  228
                                                                                              SHEET

-------
WISCONSIN POWER & LIGHT Co.
COLUMBIA 11
C-E POWER SYSTEMS
FIELD TESTINC AND
PERFORMANCE RESULTS
                                 BIASED  FIRING  OPERATION  STUDY
                                           BOARD t COMPUTER DATA


•C

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

"B
B
B
B

8
B
B
B

B
B
B
B
B
B
B
B
B
B
B
B
6
B
B
e
B
B
8
B
C
C
C
C
C
TEST NO.
DATE 1976
TIME
LOAD MW
PULVERIZER DATA
PLV 1-6 COAL AIR DISCH. TEMP. °F
PLV UC COAL AIR DISCH. TEMP. °F
PLV 1-D COAL AIR DISCH. TEMP. T
PLV 1-E COAL AIR DISCH. TEMP. V
PLV 1-F COAL AIR DISCH. TEMP. , °F
PLV 1-A FEEDER COAL FLOW 10,LB/HR
PLV 1-B FEEDER COAL FLOW 10,LB/HR
PLV -C FEEDER COAL FLOW lOILBAff
PLV -D FEEDER COAL FLOW lOILB/HR
PLV -E FEEDER COAL FLOW lois/HR
PLV -F FEEDER COAL FLOW 1CTLB/H?
PLV -A MILL AWS
PLV -B MILL AMPS
PLV -C MILL AMPS
PLV -D MILL AMPS
PLV -E MILL AMPS
PLV 1-F MILL AMPS
FAN DAMPER POSITION - % OPEN
1-A FD FAN INLET VANE
1-B FO FAN INLET VANE
1-A PA FAN INLET VANE
1-B PA FAN INLCT VANC
SPRAY VALVE POSITION - % OPEN
1-A SH SPRAT VALVE
1-B SH SPRAT VALVE
1-A RH SPRAY VALVE
1-B RH SPRAT VALVE
MISCELLANEOUS
BURNER TILT + DEGREES
Aux. AIR DAMPERS ~ f OPEN
1-A FUEL/AIR DAMPERS % OPEN
1-B FUCL/AIR DAMPERS % OPEN
1-C FUEL/AIR DAMPERS * OPEN
1-D FUEL/AIR DAMPERS i OPEN
1-E FUEL/AIR DAMPCRS % OPEN
1-F FUEL/AIR DAMPERS t OPEN
1-A PRI. AIR FAN AMPS
1-B PRI. AIR FAN AMPS
1-A ID FAN AMPS
1-B ID FAN AMPS
1-A FD FAN AWS
1-B FO FAN AWS
1-A ID FAN RPM
1-B ID FAN RPM
1-A BLR. CIRC. WTH. PUMP AMPS
1-B BLR. CIBC. WTR. PUMP AMPS
l-C BLR. CIRC. WTR. PUHP AMPS
1-D BLR. CIRC. WTR. PUMP AWS
N DRUM LEVEL + NORM. HgO LEVEL IN.
S DRUM LCVEL + NORM. HgO LEVEL IN.
FLUE GAS COMBUSTIBLES %
FLUE GAS OXYOEN *
BARONMCTRIC PRESS. IN. HGA
1
5/19
16:15
505

144
145
142
138
159
115
116
116
116
116
0
70
74
73
75
75
0

78
77
36
31

29
21
46
34

0°
39
100
100
100
100
100
100
173
183
460
410
218
198
465
495
74
78
73
74
-0.73
-3.26
0.063
3.3
29.76
2
5/19
13:50
506

144
145
143
128
142
115
116
166
116
0
116
71
74
73
75
0
76

75
74
36
31

24
13
55
50

-4*
29
100
100
100
100
100
100
173
184
460
390
205
180
480
488
75
79
73
76
-0.42
-0.27
0.067
2.6
29.83
3
3/12
07:15
524

145
49
146
142
145
120
120
0
118
112
113
76
75
0
78
76
73

71
70
30
25

55
27
100
100

-3°
66
54
55
100
55
50
44
170
180
480
400
197
183
480
480
73
76
71
74
-0.64
-2.38
0.062
3.5
28.95
4
5/19
11:00
506

143
144
142
138
142
0
116
116
116
116
116
0
72
72
75
75
75

74
72
35
30

40
24
43
32

-9°
31
100
100
100
100
100
100
175
185
460
390
205
183
477
488
75
79
75
78
-0.80
-1.40
0.066
3.4
29.97
5
5/12
11:00
422

144
146
107
139
118
116
119
117
0
117
0
72
75
71
0
78
0

70
68
30
24

11
8
2
1

-4*
21
100
100
100
0
100
100
166
173
370
330
193
180
418
423
80
81
76
80
-0.48
-1.45
0.062
3.9
30.04
6
5/12
09:20
422

143
146
106
140
117
113
115
115
0
114
0
70
74
72
0
76
0

67
65
29
23

17
12
1
0

+1"
17
100
100
37
100
1OO
0
165
173
350
300
180
161
390
397
80
32
78
81
-0.82
-2.83
0.065
3.6
30.09
7
5/16
09:30
421

144
146
142
139
78
0
117
117
117
117
0
0
74
73
75
78
0

71
70
31
25

22
0
0
0

+11*
25
100
100
100
100
100
0
165
175
390
320
195
181
435
438
80
83
78
80
-0.76
-2.43
0.062
4.1
29.54
8
5/21
03:10
320

141
145
143
100
110
65
87
87
88
0
0
63
65
66
65
0
0

53
51
32
26

40
46
13
10

+6°
0
7B
81
86
81
100
100
168
175
260
300
158
145
298
305
80
83
78
81
-0.79
-2.56
0.060
4.0
30.01
9
6/27
09:40
314

153
*NA
T17
142
145
83
85
NA
NA
64
82
64
66
NA
NA
66
66

59
62
28
28

8
12
0
0

+6°
0
77
77
100
100
75
75
160
195
300
280
169
150
330
NA
83
87
NA
84
-0.69
-2.57
0.055
5.1
30.10
* C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.
                                                  229
                                                                                             SHEET A46

-------
WISCONSIN POWER & LIGHT Co.
COLUMBIA fl
C-E POWER SYSTEMS
FIELD TESTING AND
          RESULTS
                               BIASED  FIRING OPERATION STUDY
                                          BOARD t COUNTER DATA



*c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

,B
B
B
B

B
B
B
B

B
B
6
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
TEST NO.
DATE
TIME
LOAD
PULVERIZER DATA
PLV 1-B COAL AIR DISCH. TEMP.
PLV 1-C COAL AIR DISCH. TEMP.
PLV 1-D COAL AIR DISCH. TEMP.
PLV 1-E COAL AID DISCH. TEMP.
PLV 1-F COAL AIR DISCH. TEMP.
PLV 1-A FEEDER COAL FLOW 101;
PLV 1-B FEEDER COAL FLOW 10"
PLV 1-C FEEDER COAL FLOW 10^
PLV -D FEEDER COAL FLOW 10^
PLV -E FEEDER COAL FLOW 10):
PLV -F FEEDER COAL FLOW ion
PLV -A MILL
PLV -B MILL
PLV -C MILL
PLV -D MILL
PLV -E MILL
PLV -F MILL
FAN DAMPER POSITION - % OPEN
1-A FD FAN INLET VANE
1-B FD FAN INLET VANE
1-A PA FAN INLET VANE
l-B PA FAN INLET VANE
SPRAY VALVE POSITION - * OPEN
1-A SH SPRAY VALVE
1-B SH SPRAY VALVE
1-A RH SPRAY VALVE
1-B RH SPRAY VALVE
MISCELLANEOUS
BURNER TILT + DEC
Aux. AIR DAMPERS f
-A FUEL/AIR DAMPERS %
-B FUEL/AIR DAMPERS f
-C FUEL/AIR DAMPERS %
-D FUEL/AIR DAMPERS f
-E FUEL/AIR DAMPERS t
1-F FUEL/AIR DAMPERS %
1-A PRI. AIR FAN
1-B PRI. AIR FAN
1-A ID FAN
1-B ID FAN
1-A FD FAN
1-B FD FAN
1-A ID FAN
1-B ID FAN
1-A BLR. CIRC. WTR. PUMP
1-B BLR. CIRC. WTR. PUMP
1-C BLR. CIRC. WTR. PUMP
1-D BLR. CIRC. WTR. PUMP
N DRUM LEVEL + NORM. HgO LEVEL
S DRUM LEVEL 7 NORM. HO LEVEL
FLUE GAS COMBUSTIBLES
FLUE GAS OXYGEN
BARONMETRIC PRESS. IN

1976

Mrf

•F
•F
'F
•F
•F
LB/HR
LB/HR
LB/HR
LB/HR
LB/HR
LB/HR
AMPS
AMPS
AMDS
AMPS
AMPS
AMPS











SEES
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
AMPS
AMPS
AMPS
AMPS
AMPS
AMPS
RPM
RPM
AMPS
AKPS
AMPS
AMPS
IN.
IN.
«{
<
HGA
10
5/23
11:05
324

130
144
141
138
142
•NA
NA
87
88
88
86
0
0
67
65
67
66

57
56
31
25

14
e
0
0

+5°
0
0
0
87
83
81
78
169
179
280
310
166
155
320
323
83
84
79
84
-0.51
-2.3E
0.064
4.4
30.10
11
5/19
18:35
491

143
145
143
138
141
106
108
107
108
107
0
68
72
72
74
75
0

79
77
36
31

50
33
48
34

+2"
40
100
100
100
100
100
100
173
183
500
420
225
198
488
496
73
77
73
74
-0.76
-3.22
0.064
3.5
29.73
J2
5/10
09:50
497

152
150
91
152
162
114
116
114
0
114
112
73
73
73
0
75
70

77
76
37
32

68
57
81
58

-4°
34
100
100
100
100
100
1OO
175
185
490
420
213
196
482
500
73
77
72
73
-0.75
-3.12
0.061
3.8
29.66
J3
3/16
10:00
522

83
149
147
143
146
116
0
114
116
116
115
72
0
74
75
75
75

70
70
28
24

65
28
61
62

-3°
81
51
100
51
54
52
51
171
185
500
430
204
197
480
490
75
76
71
75
-0.68
-2. 88
0.062
4.3
29.82
14
5/12
13:45
422

144
147
110
139
121
117
118
118
0
117
0
71
75
73
0
78
0

74
73
30
25

15
3
4
3

-3°
30
100
100
100
0
100
100
165
170
410
340
203
187
445
457
79
80
75
79
-0.54
-1.33
0.062
4.9
29.91
15
3/13
15:30
400

146
45
147
142
145
86
87
0
86
87
85
65
65
0
67
67
67

64
63
29
24

23
6
0
0

+1°
50
32
33
100
34
33
33
175
182
390
320
187
175
430
430
80
82
78
79
-0.61
-1.48
0.065
5.5
29.99
16
5/16
11:45
"422

144
146
143
139
78
0
117
117
118
118
0
n
75
74
75
77
0

75
74
31
26

23
4
0
0

+6°
39
100
100
100
100
100
0
166
175
443
367
210
195
463
478
79
81
75
77
-0.47
-3.26
0.062
5.1
29.55
17
5/21
01:15
320

144
145
143
111
118
85
87
86
87
0
0
63
67
66
66
0
0

60
59
32
26

39
47
15
10

+9"
0
76
81
84
80
0
0
165
175
300
310
171
158
345
340
79
82
77
80
-0.53
-2.5J
0.059
5.B
29.92
1§
5/23
09:10
323

152
143
138
138
141
0
0
88
89
89
70
0
0
66
66
66
65

61
60
31
25

15
12
0
0

+6°
0
0
0
89
84
82
79
168
178
300
310
175
165
338
345
81
84
78
83
-0.62
-2.22
0.065
6.0
30.14
C - COMPUTER DATA; B - BOARD DATA;  NA - Not AVAILABLE.
                                                 230
                                                                                            SHEET A4

-------
 WISCONSIN POWER * LIGHT Co.
 COLUMBIA |1
                                                        C-E POWER SYSTEMS
                                                        FIELD TESTING AND
                                                        PERFORMANCE RESULTS
                                OVERFIRE  AIR OPERATION  STUDY
    TEST NO.
           BOARD t COMPUTER DATA

          I        2        3
    DATE
    TIME
»C  LOAD
1976

  Mrf
    FLOWS  - IQ^B/HR
C
C
C
C
C
C
C
C
C
C


C
C
C
C
C

C
C
C
. C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
*B


C
C
C
C
C
C
C
C
C
C
FEEDWATER
SUPERHEAT' SPRAY L
SUPERHEAT SPRAY R
REHEAT SPRAY L
REHEAT SPRAY R
BFP TURB. EXTR. STM. FLOW 1-A
8FP TURB. EXTR. STM. FLOW 1-B
BFP TURB. MN. STM. FLOW COMBINED
HOT AIR TO BURNERS L WINDBOX
HOT AIR TO BURNERS R WINDBOX
PRESSURES
STEAM & WATER - PSIG
FEEDWATER TO CCON.
BOILER DRUM
TURBINE THROTTLE
TURBINC IST STAGE
HP HTR. 1-G1 i 1-G2 STEAH IN.
AIR I GAS - IN H&>
FD FAN 1-A DISCHARGE
FD FAN 1-B DISCHARGE
AIR HTR. 1-A AIR IN.
AIR HTR. 1-B AIR IN.
AIR HTR. 1-A AIR OUT.
AIR HTR. 1-B AIR OUT.
FURN. RIGHT WINDBOX
FURN. LEFT WINDBOX
RT. WDBX TO FURN. DIFF. P
LEFT.WDBX TO FURN. DIFF. P
FURNACE
PRI. SH GAS OUT.
REHEATER GAS OUT.
ECON. GAS IN.
ECON. GAS OUT.
AIR HTR. 1-A GAS IN.
AIR HTR. 1-B GAS IK.
A I R HTR . 1 -A GAS OUT .
AIR HTR. 1-B GAS OUT.
IDF 1-A DISCHARGE
IDF 1-B DISCHARGE
PAF 1-A DISCHARGE HDR.
PAF 1-B DISCHARGE HDR.
PRI. HOT AIR DUCT
TEMPERATURES
AIR & GAS - °F
1-A FD FAN DISCHARGE
-8 FD FAN DISCHARGE
-A AH AIR IN.
-B AH AIR IN.
-A AH AIR OUT.
-B AH AIR OUT.
-A AH GAS IN.
-B AH GAS IN.
-A AH GAS OUT.
-B AH GAS OUT.
3/17
09:30
517
3083
101
109
78
82
0
0
7.6
1606
1557
2723
2673
2400
1624
529
5.56
9.16
7.75
7.19
3.60
3.38
2.22
2.20
3.39
3.96
-0.53
-0.63
-0.56
-2.48
-6.45
-8.93
-8.60
-15.5
-14.1
-0.5B
-0.62
32.95
32.74
30
44
52
75
78
712
734
778
783
274
275
3/17
10:45
512
3084
102
105
78
82
0
O
7.5
1604
1556
2722
2672
2402
1616
527
5.54
9.13
7.77
7.18
3.64
3.46
2.25
2.25
3.43
4.02
-0.49
-0.70
-0.63
-2.49
-6.46
-8.92
-8.60
-15.6
-14.0
-0.58
-0.63
32.93
32.80
30
45
53
75
78
714
736
780
785
274
275
3/20
16:50
524
3367
14
43
42
66
0
0
8.2
1609
1576
2750
2689
2397
1677
537
6.04
10.20
8.41
7.82
4.00
3.92
2.42
2.52
3.16
3.92
-0.18
-0.50
-0.31
-2.04
-5.84
-7.96
-7.74
-14.6
-13.1
-0.04
-0.04
33.42
33.40
30
72
81
86
88
696
721
758
768
281
280
3/20
19:45
525
3331
56
42
48
70
0
0
8.2
15E4
1535
2750
2689
2399
1682
540
5.77
9.63
8.10
7.62
3.80
3.73
2.47
2.50
3.18
3.99
-0.27
-0.57
-0.47
-2.32
-5.94
-8.13
-7.94
-14.6
-13.3
-0.23
-0.20
33.24
33.18
30
67
76
82
84
707
739
769
785
282
286
3/22
17:00
526
3233
95
94
50
72
0
0
8.0
1582
1539
2741
2687
2398
1580
541
5.38
8.91
7.50
6.93
3.39
3.40
2.27
2.25
3.23
3.87
-0.48
-0.72
-0.64
-2.45
-6.11
-8.72
-8.19
-15.4
-13.9
-0.44
-0.39
33.00
32.87
30
59
67
79
82
691
72O
757
762
272
275
3/20
10:05
521
3480
0
12
10
15
0
0
8.5
1486
1474
2766
2699
24O1
1689
526
5.20
8.54
7.07
6.56
3.36
3.37
2.10
2.14
3.18
4.01
-0.39
-0.70
-0.42
-2.02
-5.38
-7.67
-7.08
-13.0
-11.9
-0.09
0.11
33.48
33.32
30
77
83
93
96
553
673
709
714
266
269
3/20
12:00
522
3372
0
25
35
59
0
0
8.4
1480
1472
2754
2692
2403
1680
536
5.42
8.84
7.23
6.63
3.43
3.34
2.12
2.12
3.13
3.90
-0.56
-0.65
-0.58
-2.20
-5.64
-7.68
-7.38
-13.6
-12.2
-0.10
-0.08
33.53
33.42
30
75
82
90
93
673
696
730
738
874
272
3/20
14:30
522
3388
0
'31
39
63
0
0
8.2
1486
1470
2756
2692
2399
1682
536
5.32
8.69
7.21
6.57
3.38
3.36
2.16
2.21
3.18
3.96
-0.60
-0.81
-O.61
-2.24
-5.58
-7.64
-7.42
-13.6
-12.4
-0.11
-O.07
33.44
33.44
30
77
85
93
94
681
705
738
746
279
278
* C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.
                                                   231
                                                                                               SHEET A48

-------
 WISCONSIN POWER I LIGHT Co.
 COLUMBIA It
                                                        C-E POWER SYSTEMS
                                                        FIELD TEST mo AND
                                                        PERFORMANCE: RESULTS
                                 OVERFIRE  AIR  OPERATION  STUDY
    TEST NO.
                                           BOARD & COMPUTER DATA

                                         9        10       11
                                                                   12
                                                                           13
                                                                                    14
                                                                                             15
                                                                                                     16
    DATE
    TIME
•C  LOAD
1976

  MW
    FLOWS - IQ^B/HB
C
C
C
C
C
C
C
C
C
C


C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
•B


C
C
C
C
C
C
C
C
C
C
FEEDWATER
SUPERHEAT SPRAY L
SUPERHEAT SPRAY R
REHEAT SPRAY L
REHEAT SPRAY R
BFP TURB. EXTR. STM. FLOW
BFP TURB. EXTR. STM. FLOW





1-A
1-6
BFP TURB. MM. STH. FLOW COMBINED
HOT AIR TO BURNERS L WINDBOX
HOT AIR TO BURNERS R WINDBOX
PRESSURES
STEAM, & WATER - PSIG
FEEDWATER TO CCON.
BOILER DRUM
TURBINE THROTTLE
TURBINE IST STAGE
HP HTR. 1-G1 & 1-G2 STEAM
AIR £ GAS - IN HpO
FD FAN 1-A DISCHARGE
FD FAN 1-B DISCHARGE
AIR HTR. 1-A AIR IN.
AIR HTR. 1-B AIR IN.
A I R HTR . 1 -A A i R OUT .
AIR HTR. 1-B AIR OUT.
FURN. RIGHT WINDBOX
FURH. LEFT WINDBOX
RT. WDBX TO FURN. DIFF. P
LEFT WDBX TO FUHN. DIFF. P
FURNACE
PHI. SH GAS OUT.
REHEATED GAS OUT.
ECON. GAS IN.
ECON. GAS OUT.
AIR HTR. 1-A GAS IN.
AIR HTR. 1-B GAS IN.
AIR HTR. 1-A GAS OUT.
AIR HTR. 1-B GAS OUT.
IDF 1-A DISCHARGE
IDF 1-B DISCHARGE
PAF 1-A DISCH. HDR.
PAF 1-B DISCH. HDR.
PRI. HOT AIR DUCT
TEMPERATURES
AIR & GAS - °F
1-A FD FAN DISCH.
1-B FD FAN DISCH.
1-A AH AIR IN.
1-B AH AIR IN.
1-A AH AIR OUT.
1-B AH AIR OUT.
1-A AH GAS IN.
1-B AH GAS IN.
1-A AH GAS OUT.
1-B AH GAS OUT.






IN.





































3/24
00:45
473
2912
56
79
45
61
0
0
6.6
166B
1614
2691
2644
2405
1496
485
6.24
11.72
8.94
B.41
4.44
4.53
3.14
3.06
3.67
4.24
-0.14
-0.3B
-0.25
-1.99
-6.00
-8.30
-7.70
-14.8
-13.2
-0.16
0.05
32.92
32.92
30
66
75
60
83
693
716
758
760
272
272
3/24
02:20
473
2834
59
78
46
62
0
0
6.4
1658
1613
2684
2637
2401
1465
478
6.08
10.30
8.54
7.93
4.11
4.13
2.68
2.57
3.16
3.92
-0.23
-0.27
-0.16
-2.00
-5.90
-8.39
-7.82
-14.8
-13.4
-0.28
-0.12
33.00
32.86
30
62
71
77
80
698
720
764
767
273
270
3/24
04:00
472
2800
84
91
57
70
0
0
6.1
1543
1510
2675
S631
2400
1456
480
5.58
9.30
7.70
7.11
3.57
3.61
2.39
2.39
3.20
4.00
-0.44
-0.76
-0.59
-2.36
-5.76
-7.88
-7.26
-14.0
-12.6
-0.36
-0.21
32.86
32.77
30
60
70
76
79
701
725
764
768
273
274
6/24
12:00
524
3297
70
79
28
63
43
77
8.1
1767
1663
2746
2691
2401
1680
538
14.98
13.58
11.51
10.42
7.05
7.05
5.41
5.40
5.47
6.13
-0.53
-0.68
-1.18
-2.23
-6.52
-8.55
-8.39
-15.2
-14.2
0.29
0.36
32.61
33.95
30
78
87
91
92
665
692
720
736
265
271
6/24
13:20
525
3289
82
94
50
77
43
76
8.0
1774
1668
2745
2691
2402
1679
538
15.15
13.55
11.59
10.54
7.01
7.00
5.33
5.29
5.43
6.13
-0.61
-0.71
-1.25
-2.36
-6.64
-8.82
-8.68
-15.5
-14.7
0.21
0.28
32.60
33.88
30
80
90
92
94
670
702
725
744
270
275
6/24
09:45
523
3327
70
78
10
50
43
76
8.1
1785
1683
2744
2686
2402
1679
531
15.12
13.71
11.63
10.56
7.03
6.98
5.37
5.31
5.45
6.09
-0.43
-0.65
-1.11
-2.31
-6.51
-8.86
-8.71
-15.5
-14.6
0.26
0.32
32.50
33.75
30
75
83
87
88
658
681
714
723
260
265
3/25
10:15
510
3079
97
98
67
76
0
0
7.6
1477
1454
2720
2670
2394
1614
522
5.37
8.52
7.53
6. IS
3.59
3.58
2.39
2.43
3.14
3.94
-0.45
-0.67
-0.54
-2.27
-5.76
-7.72
-7.39
-14.0
-12.7
-0.35
-0.29
33.22
33.09
30
59
70
79
82
695
'22
758
764
272
283
6/30
09:50
526
3255
85
95
33
60
43
B9
8.0
1739
1637
2751
2698
2405
1687
535
14.75
13.35
11.45
10.34
7.13
7.01
5.38
5.38
5.46
6.13
-0.43
-0.64
-1.08
-2.23
-6.21
-8.48
-8.47
-14.6
-13.9
0.07
0.04
32.82
33.49
30
75
79
86
87
663
677
722
725
260
264
  C - COMPUTER DATA; B - BOARD DATA; NA . NOT AVAILABLE.
                                                   232
                                                                                                SHEET

-------
 WISCONSIN POWER A LIGHT Co.
 COLUMBIA |1
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                OVERFIRE AIR  OPERATION  STUDY
    TEST NO.
                                           BOARD 1 COMPUTER DATA

                                          17       18       19
                                                                   20
                                                                            21
                                                                                     22
                                                                                             23
    DATE
    TIME
«C   LOAD
                                1976
    riOWS - 103LB/HR
C
C
C
C
C
C
C
C
C
C


C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
«B


C
C
C
C
C
C
C
C
C
C
FEEDVATER
SUPERHEAT. SPRAY L
SUPERHEAT SPRAY R
REHEAT SPRAY L
REHEAT SPRAY R
8FP TURB. EXTH. STM. FLOW 1-A
BFP TURB. EXTR. STM. FLOW 1-B
BFP TURB. MN. STM. FLOW COMBINED
HOT AIR TO BURNERS L WINDBOX
HOT AIR TO BURNERS R WINDBOX
PRESSURES
STEAM & WATER - PSIG
FEEDWATER TO ECON.
BOILER DRUM
TURBINE THROTTLE
TURBINE IST STAGE
HP HTR. 1-G1 I 1-G2 STEAM IN.
AIR & GAS - IN HaP
FD FAN 1-A DISCHARGE
FD FAN 1-B DISCHARGE
AIR HTR. 1-A AIR IN.
AIR HTR. 1-B AIR IN.
AIR HTR. 1-A AIR OUT.
AIR HTR. 1-B AIR OUT.
FURN. RIGHT WINDBOX
FURN. LEFT WINOBOX
RT. WDBX TO FURN. DIFF. P
LEFT WDBX fo FURN. DIFF. P
FURNACE
Pni. SH GAS OUT.
REHEATER GAS OUT.
ECON. GAS IN.
ECON. GAS OUT.
AIR HTR. 1-A GAS IN.
AIR HTR. 1-B GAS IN.
AIR HTR. 1-A GAS OUT.
AIR HTR. 1-B GAS OUT.
IDF 1-A DISCHARGE
IDF 1-B DISCHARGE
PAF 1-A DISCH. HDR.
PAF 1-B DISCH. HOR.
PRI . HOT AIR DUCT
TEMPERATURES
AIR & GAS - °F
1-A FD FAN DISCH.
1-B FD FAN DISCH.
1-A AH AIR IN.
1-B AH AIR IN.
1-A AH AIR OUT.
1-B AH AIR OUT.
1-A AH GAS IN.
1-B AH GAS IN.
1-A AH GAS OUT.
1-B AH GAS OUT.
6/25
11:15
524
3262
138
103
40
68
43
76
a. 3
1793
1674
2739
2E8B
2411
1671
534
15.24
13.82
11.76
10.71
7.09
6.95
5.41
5.40
5.46
6.44
-0.52
-0.74
-1.24
-2.43
-6.68
-8.79
-8.83
-15.6
-14.6
0.18
0.11
32.63
33.78
30
81
86
93
93
667
695
724
737
270
273
6/30
08:35
526
3284
80
100
23
53
43
89
8.1
1777
1649
2751
2699
2406
1697
535
14.86
13.27
11.26
10.39
7.12
6.91
5.33
5.35
5.41
6.02
-O.47
-0.60
-1.03
-2.21
-6.18
-8.50
-8.51
-14.7
-14.2
0.11
0.06
32.79
33.77
30
74
78
84
85
651
657
711
712
255
255
6/29
08:50
523
3262
88
89
40
58
43
89
8.3
1611
1529
2751
2696
2403
1685
535
14.19
12.57
11.02
9.89
6.91
6.76
5.30
5.36
5.43
6.07
-0.54
-0.67
-1.12
-2.24
-5.83
-7.78
-7.83
-13.8
-13.2
-0.01
0.06
32.77
34.16
30
73
81
85
87
665
690
725
732
259
270
6/25
14:45
517
3203
101
100
53
78
42
74
7.8
1704
1607
2745
2694
2416
1644
499
14.69
13.36
11.30
10.09
6.90
6.82
5.36
5.29
5.45
6.17
-0.54
-0.92
-1.38
-2.33
-6.32
-8.52
-8.50
-14.8
-14.2
0.09
0.13
32.74
33.89
30
87
91
99
101
680
708
734
750
277
282
6/26
10:30
419
2651
35
34
0
2
43
81
8.6
1453
1365
2652
2607
2405
1305
411
12.78
11.02
9.78
8.71
6.34
6.42
5.41
5.39
5.44
6.15
-0.52
-0.70
-1.03
-1.70
-4.43
-6.28
-6.14
-10.6
-9.9
-0.26
n.04
31.73
32.61
30
8B
93
100
103
606
627
654
663
244
262
6/25
16:S5
422
2517
77
80
0
37
39
72
6.3
1346
1241
2638
2598
2404
1291
416
10.97
9.26
8.35
7.23
5.28
5.32
4.28
4.00
4.03
5.12
-0.53
-0.77
-1.13
-1.80
-4.44
-6.09
-6.26
-10.7
-10.2
-0.23
-0.16
32.50
33.76
30
B9
95
102
104
634
661
687
702
259
275
6/27
11:35
316
2062
0
2
0
3
34
89
0.0
1006
944
2571
2533
2408
984
306
6.36
4.99
4.66
3.95
2.86
2.76
2.33
2.26
1.35
3.00
-0.51
-0.71
-0.90
-1.26
-2.71
-3.81
-3.99
-6.29
-6.19
-0.32
-0.32
31.75
32.64
30
89
94
102
104
535
555
580
584
see
233
6/29
01:30
322
1891
56
61 '
0
3
39
89
7.1
1022
952
2559
2527
2405
975
309
6.51
5.26
4.80
4.09
2.27
2.87
2.42
2.42
1.56
3.10
-0.54
-n.64
-0.85
-1.32
-2.77
-3.87
-4.02
-6.53
-6.46
-0.50
-0.49
31.84
32.98
30
83
90
96
97
568
592
614
629
226
241
  C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.
                                                   233
                                                                                                SHEET A50

-------
  WISCONSIN POWER £ LIGHT Co.
  COLUMBIA #1
C-E POWER SYSTEMS
FIELD TESTiNO AND
PERFORMANCE RESULTS
                                OVERFIRE  AIR OPERATION  STUDY
    TEST NO.
                                          BOARD i COMPUTER DATA

                                         1        2       3


*c


c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
DATE
TIME
LOAD
TEMPERATURES
AIR i GAS - "F
ECON. N G»s OUT.
ECON. S GAS OUT.
1-A PA TAN DISCM. Hon.
1-B PA TAN DISCH. Hon.
1-A AH PRI. AIR OUT.
1-B AH PRI. AIR OUT.
STEAM & WATER - °F
BOILER ECON. IN.
DOWNCOMER 1
OOWNCOMER 2
DOWNCOMER 3
DOWNCOMER 4
DOWNCOMER 5
BLR. SH ATM3 1-A STH. IN.
BLR. SH ATHP 1-B STM. In.
BLR. S SH HDR. OUT.
BLR. N SH HDR. OUT.
TURBINE THROTTLE
BLR. S RH ATMP STM. OUT. A
BLR. N RH ATW STH. OUT. B
BLR. S RH HDD. OUT. A
BLR. N RH HDR. OUT. B
HP HTR. 1-G1 t 1-G2 EXTR. STM
HP HTR . 1 -F1 FV OUT.
HP HTR. 1-F2 FW OUT.
HP HTH. 1-G1 FW OUT.
HP HTR. 1-G2 FW OUT.
HP HTR. 1-G1 DRAIN
HP HTR. 1-G2 DRAIN
PULVERIZER DATA
PLV 1-A BOWL LOWER
PLV 1 -B BOWL LOWER
PLV 1-C BOWL LOWER
PLV 1-D BOWL LOWER
PLV 1-E BOWL LOWER
PLV 1-F BOWL LOWER
PLV 1-A BOWL DIFF.
PLV 1-B BOWL DIFF.
PLV 1-C BOWL DIFF.
PLV 1-D BOWL DIFF.
PLV 1-E BOWL DIFF.
PLV 1-F Bowu DIFF. P
PLV 1-A COAL AIR OUT. P
PLV 1-B COAL AIR OUT. P
PLV 1-C COAL AIR OUT. P
PLV 1-D COAL AIR OUT. P
PLV 1-E COAL AIR OUT. P
PLV 1-F COAL AIR OUT. P
PLV 1-A PRI. AIR IN. FLOW
PLV 1-B PRI. AIR IN. FLOW
PLV 1-C PRI. AIR IN. FLOW
PLV 1-D PRI. AIR IN. FLOW
PLV 1-E PRI. AIR IN. FLOW
PLV 1-F PRI. AIR IN. FLOW
PLV 1-A COAL AIR DISCH. TEMP.
1976

VU
























t







IN. HgO
IN. HgO
IN. HO
IN, H50
IN. £0
IN. HgO
IN. H|O
IN. HgO
IN. HgO
IN. HgO
IN. HO
IN. HgO
IN. HgO
IN. HgO
IN. tCO
IN. fGO
IN. HoO
IN. H20
0-1E5*
0-125*
0-125*
0-125*
0-125*
0-125*
°F
3/17
09:30
517


810
813
56
72
725
717

477
676
679
679
682
680
845
847
•NA
NA
1003
478
4BO
991
1019
623
411
411
478
478
414
382

21.4
-0.03
24.4
23.3-
22.5
21.0
7.50
0.01
8.40
7.99
7.24
7.19
9.71
0.40
11.24
11.34
11.66
10.33
126
42
131
125
128
124
144
3/17
10:45
512


812
815
57
72
727
718

477
676
678
679
682
680
845
849
NA
NA
1004
478
480
992
1022
622
411
410
477
477
413
380

21.2
-0.03
24.1
23.5
22.5
20.8
7.37
0.01
8.35
3.03
7.22
7.14
9.83
0.40
10.97
11.26
11.59
10.28
126
42
130
125
127
124
144
3/20
16:50
524


800
790
84
95
707
702

478
678
680
680
684
681
811
830
NA
NA
1005
482
482
991
1017
624
412
412
480
479
416
384

21.6
0.03
23.0
23.9
22.4
21.2
7.29
0.02
7.89
8.05
6.97
6.98
10.40
0.43
10.94
11.55
11.90
10.44
126
41
131
126
128
125
145
3/20
19:45
525


817
790
79
90
717
720

480
678
680
680
684
681
819
843
NA
NA
1006
482
481
991
1020
625
412
412
480
480
416
382

21.6
0.02
23.1
23.0
22.7
21.2
7.44
0.02
8.06
8.19
7.11
7.07
10.19
0.45
11.00
11.49
12.08
10.59
126
42
130
126
128
125
145
3/22
17:OO
526


796
796
70
85
704
696

480
678
679
680
684
681
838
846
NA
NA
1005
482
482
997
1025
626
413
413
481
481
417
382

21.0
0.02
24.6
23.2
22.0
22.2
7.35
0.02
8.59
8.06
7.07
6.94
10.43
0.40
11.34
11.00
11.45
9.86
126
43
131
125
128
125
145
3/20
10:05
521


748
749
88
108
661
656

476
679
681
681
685
683
796
808
NA
NA
996
602
521
989
1026
613
410
410
477
477
414
380

21.1
0.04
22.1
23.1
21.8
20.9
7.24
0.02
7.74
7.79
6.84
6.91
9.97
0.43
10.22
11.15
11.42
10.08
125
43
131
126
129
125
145
3/20
12:00
522


774
766
88
98
682
677

478
679
680
681
684
682
810
823
NA
NA
1006
483
482
988
1022
623
412
411
479
479
416
384

21.2
0.04
22.2
23.1
22.0
20.7
7.24
0.02
7.86
7.90
6.96
6.92
10.32
0.43
10.37
11.14
11.60
10.24
126
42
131
125
128
125
145
3/20
14:30
522


777
770
90
102
690
686

478
679
680
680
683
682
809
820
1009
1018
1008
482
482
993
1023
626
411
411
479
479
416
384

21.2
0.04
22.1
23.1
21.9
20.4
7.31
0.02
7.75
7.93
6.98
6.88
10.34
0.42
10.34
11.06
11.54
10.23
125
42
131
126
128
126
145
* C - COMPUTER DATA; B - BOARO DATA:  NA - NOT AVAILABLE.
                                                  234
                                                                                              SHEET A51

-------
WISCONSIN POWER £ LIGHT Co.
COLUMBIA /I
C-E POWER SYSTEMS
FIELD TESTiNO AND
PERFORMANCE RESULTS
                               OVERFIRE AIR  OPERATION  STUDY
                                          BOARD & COMPUTER DATA


•c


c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
TEST NO.
DATE
TIME
LOAD
TEMPERATURES
Am 4 GAS - V
ECON. N GAS OUT.
ECON. S GAS OUT.
1-A PA FAN DISCH. HDR.
1-B PA FAN DISCH. HDR.
1-A AH PRI. AIR OUT.
1-B AH PRI. AIR OUT.
STEAM t WATER - *F
BOILER ECON. IN.
DOWNCOMCR 1
DOWNCOMER 2
DOWNCOMER 3
DOWNCOMER 4
DOWNCOMCR 5
BLR. SH ATMP 1-A STM. IN.
BLR. SH ATMP 1-B STM. IN.
BLR. S SH HDR. OUT.
BLR. N SH HDR. OUT.
TURBINE THROTTLE
BLR. S RH ATMP STM. OUT. A
BLR. N RH ATMP STM. OUT. B
BLR. S RH HDR. OUT. A
BLR. N RH HDR. OUT. B
HP HTR. 1-G1 4. 1-G2 EXTR. STM
HP HTR. 1-F1 FW OUT.
HP HTR. 1-F2 FW OUT.
HP HTR. 1-G1 FW OUT.
HP HTR. 1-G2 FW OUT.
HP HTR. 1-G1 DRAIN
HP HTR. -1-G2 DRAIN
PULVERIZER DATA
PLV 1-A BOWL LOWER P
PLV 1-B BOWL LOWER P
PLV 1-C BOWL LOWER P
PLV 1-D BOWL LOWER P
PLV -E BOWL LOWER P
PLV -F BOWL LOWER P
PLV -A BOWL DIFF. P
PLV -B BOWL DIFF. P
PLV -C BOWL DIFF. P
PLV -D BOWL DIFF. P
PLV -E BOWL DIFF. P
PLV 1-F BOWL DIFF. P
PLV 1-A COAL AIR OUT. P
PLV 1-B COAL AIR OUT. P
PLV 1-C COAL AIR OUT. P
PLV 1-D COAL AIR OUT. P
PLV 1-E COAL AIR OUT. P
PLV 1-F COAL AIR OUT. P
PLV 1-A PHI. AIR IN. FLOW
PLV 1-B PRI. AIR IN. FLOW
PLV 1-C PRI. AIR IN. FLOW
PLV 1-D PRI. AIR IN. FLOW
PLV 1-E PRI. AIR IN. FLOW
PLV 1-F PBI. AIR IN. FLOW
PLV 1-A COAL AIR DISCH. TEMP.
1976

MW
























.







IN. HaO
IN. HaO
IN. HaO
IN. H.O
IN. HKO
IN. H|O
IN. H-0
IN. H|0
IN. HgO
IN. HO
IN. H|0
IN. HaO
IN. HaO
IN. HaO
IN. HaO
IN. HgO
IN. HaO
IN. HgO
0-125*
0-125*
0-125*
0-125*
0-125*
0-125*
9
3/24
00:45
473


788
800
77
102
705
693

470
675
677
677
681
678
838
834
1006
1010
1003
471
470
1006
1008
606
404
403
468
469
406
374

20.1
24.0
22.0
0.30
21.0
18.7
6.85
7.73
7.59
0.05
6.75
6.39
9.92
12.64
10.48
0.22
11.10
9.20
126
130
132
0
127
125
144
JO
3/24
02:20
473


787
807
72
92
712
698

467
673
675
676
680
678
841
839
1004
1007
1004
467
466
1004
1010
605
402
401
467
467
404
372

20.0
23.3
22.3
0.30
21.0
18.8
6.85
7.59
7.67
0.05
6.73
6.36
9.78
12.18
10.50
0.21
11.06
9.24
126
130
131
0
128
125
144
3/24
04:00
472


785
800
72
92
713
705

468
672
674
676
680
677
849
851
1003
1009
1004
466
467
993
1017
604
402
402
467
467
404
372

• 19.7
22.7
22.2
0.30
20.8
18.5
6.87
7.45
7.74
0.05
6.76
6.40
9.43
11.70
10.16
0.21
10.72
8.92
126
130
131
0
128
125
143
6/24
12:00
524


750
744
90
*NA
678
680

467
675
677
677
682
679
830
847
996
993
991
481
478
973
1022
615
129
400
208
466
120
374

20.7
23.9
0.09
22.3
21.3
21.4
6.93
7.84
0.0
7.33
7.16
7.13
9.40
11.93
0.05
10.97
10.7)
10.52
124
125
131
123
127
128
148
6/24
13:20
525


756
748
91
NA
684
638

467
675
677
677
681
678
849
850
1013
1010
1006
479
478
969
1021
629
132
4OO
208
467
120
376

20.7
23.8
0.09
22.2
21.9
21.4
6.91
7.77
0.02
7.34
7.10
7.14
9.46
11.86
0.04
10.81
10.62
10.36
123
124
38
123
127
128
149
6/24
09:45
523


74O
744
85
NA
671
668

465
676
677
677
681
678
824
843
1004
1003
1000
486
481
992
1014
616
1 25
399
208
466
119
373

20.6
23.6
0.09
22.1
21.9
21.3
6.84
7.72
0.01
7.23
7.10
7.09
9.50
11.82
0.06
10.74
10.58
10.41
124
124
0
123
127
127
147
3/25
10:15
510


795
743
70
95
707
705

478
674
676
678
681
683
840
846
1002
1013
1004
476
477
989
1032
621
409
408
476
476
412
376

20.6
23.1
22.9
0.20
21.5
20.1
7.17
7.90
7.97
0.05
6.96
6.87
10.12
11.67
4.90
0.21
11.20
9.80
126
130
130
0
128
125
143
J6
6/30
09:50
526


738
745
86
NA
676
665

467
676
677
677
681
679
845
836
1010
998
NA
481
479
1003
1000
623
428
400
191
467
100
407

20.4
24.6
0.09
21.7
22.8
21.2
6.79
7.91
0.0
7.16
7.43
6.93
9.36
12.49
0.0
10.51
11.10
10.47
123
128
0
123
126
128
147
* C - COMPUTER DATA,- B - BOARD DATA; NA - NOT AVAILABLE.
                                                 235
                                                                                             SHEET A52

-------
 WISCONSIN Pouta S. LIGHT Co.
 COLUMBIA fl
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                               OVERFIRE  AIR OPERATION STUDY
                                          BOARD & COMPUTER DATA
    TEST NO.
                                         17
                                                 18
                                                         19
                                                                  SO
                                                                          21
                                                                                   22
                                                                                           23
                                                                                                    24


*c


c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
DATE
TIME
LOAD
TEMPERATURES
AIR & GAS - T
ECON. N GAS OUT.
ECON. S GAS OUT.
1-A PA FAN DISCH. HDR.
1-B PA FAN DISCH. HDR.
1-A AH PRI. AIR OUT.
1-B AH PRI. AIR OUT.
STEAM & WATER - °F
BOILER ECON. IN.
DOWNCOMER 1
DOWHCOMER 2
DOWNCOMER 3
DOWNCOMER 4
DOWHCOMCR 5
BLR. SH ATMP 1-A STM. IN.
BLR. SH ATMP 1-B STM. IN.
BLR. S SH HDR. OUT.
BLR. N SH HDR. OUT.
TURBINE THROTTLE
BLR. S RH ATMP STH. OUT. A
BLR. N RH ATMP STM. OUT. B
BLR. S RH HDR. OUT. A
BLR. N RH HDR. OUT. B
HP HTR. 1-G1 i 1-G2 EXTH. STM
HP HTR. 1-F1 FW OUT.
HP HTR. 1-F2 FW OUT.
HP HTR. 1-G1 FW OUT.
HP HTR. 1-G2 FW OUT.
HP HTR. 1-G1 DRAIN
HP HTR. 1-G2 DRAIN
PULVERIZER DATA
PLV 1-A BOWL LOWER P
PLV 1-B BOWL LOWER P
PLV 1-C BOWL LOWER P
PLV 1-D BOWL LOWER P
PLV 1-E BOWL LOWER P
PLV 1-F BOWL LOWER P
PLV -A BOWL DIFF. P
PLV -B BOWL DIFF. P
PLV -C BOWL DIFF. P
PLV -D BOWL DIFF. P
PLV -E BOWL Dirr. P
PLV -F BOWL DIFF. P
PLV -A COAL AIR OUT. P
PLV -B COAL AIR OUT. P
PLV -C COAL AIR OUT. P
PLV -D COAL AIR OUT. P
PLV -E COAL AIR OUT. P
PLV -F COAL AIR OUT. P
PLV 1-A PRI. AIR IN. FLOW
PLV 1-B PRI. AIR IN. FLOW
PLV 1-C PRI. AIR IN. FLOW
PLV 1-D PRI. AIR IN. FLOW
PLV 1-E PRI. AIR IN. FLOW
PLV 1-F PRI. AIR IN. FLOW
PLV 1-A COAL AIR DISCH. TEMP.
1976

Mrf
























.







IN. HO
IN. H?0
IN. my
IN. (CO
IN. H50
IN. HO
IN. H|0
IN. HpO
IN. HO
IN. HpO
IN. HJ3
IN. H?0
IN. H|O
IN. HpO
IN. HgO
IN. HpO
IN. H90
IN. H|0
0-125J&
0-1 2Sf
0-125j{
0-125j<
0-125jf
0-125JS
6/25
11:15
524


750
*NA
96
NA
682
678

467
675
676
676
680
678
840
866
992
1012
1000
479
478
976
10S1
620
177
400
208
466
122
374

20.3
24.1
0.09
22.0
21.4
20.7
6.83
7.84
0.02
7.30
7.04
7.03
9.23
12.06
0.03
10.72
10.34
9.89
124
126
45
123
126
127
146
6/30
08:35
526


733
743
84
NA
664
651

467
675
677
677
681
678
842
833
1011
1001
NA
482
481
1004
996
621
138
400
191
467
102
433

20.4
24.4
0.09
21.7
22.8
21.1
6.76
7.84
0.01
7.09
7.40
6.91
9.37
12.28
0.05
10.53
10.98
10.38
124
128
0
123
126
128
146
6/29
08:50
523


747
748
83
NA
678
672

468
676
678
678
683
680
840
842
1007
1006
NA
481
480
993
1013
623
NA
400
191
467
198
347

20.2
24.9
0.09
21.6
22.5
20.5
6.80
8.05
0.03
7.12
7.41
6.87
9.12
12.51
0.09
10.54
10.93
9.99
124
128
0
124
126
128
152
6/25
14:45
517


756
NA
101
NA
694
694

466
675
677
676
680
678
849
854
1005
1007
969
477
477
977
1008
609
199
395
208
460
142
370

19.8
24.9
0.10
21.5
20.7
19.4
6.75
8.13
0.02
7.28
6.90
6.63
8.85
12.33
0.07
10,15
9.82
9.11
124
128
73
123
126
128
150
6/26
10:30
419


684
NA
102
NA
617
620

444
670
672
672
676
674
825
831
999
1010
681
585
585
974
1011
579
271
379
207
443
104
355

19.7
23.9
0.11
21.6
21.3
-1.3
6.35
7.71
0.01
7.14
7.00
0.06
8.96
11.88
0.11
10.41
10.36
-1.33
124
127
74
123
126
0
140
6/25
16:25
422


704
NA
102
NA
651
660

446
671
672
672
676
673
858
859
1005
1006
913
457
455
986
1012
583
206
381
208
444
137
357

18.0
22.1
0.10
19.4
18.9
17.5
6.26
7.09
0.02
6.63
6.35
6.08
7.84
10.98
0.09
9.12
8.96
8.12
127
127
81
123
126
127
150
6/27
11:35
316


601
NA
102
NA
549
548

417
665
666
667
667
675
667
824
790
982
NA
484
527
924
894
5S7
189
356
195
417
113
332

16.8
20.8
0.11
30.3
18.5
16.6
5.80
6.68
0.03
0.05
6.27
5.65
7.49
10.39
0.16
30.17
8.99
7.99
123
127
64
31
126
127
143
6/29
01:30
322


625
631
93
NA
581
582

421
668
669
669
673
670
855
855
1005
1009
NA
549
548
969
988
543
83
359
192
420
189
299

17.5
21.6
0.09
17.9
18.8
-1.3
6.06
6.87
0.04
6.02
6.29
0.06
7.82
10.90
0.18
8.51
9.10
-1.22
124
128
36
123
126
0
152
* C - COMPUTER DATA; B - BOARD DATA; NA  - NOT AVAILABLE.
                                                  236
                                                                                              SHEET
                                                                                                   A53

-------
 WISCONSIN POWER & LIGHT Co.
 COLUMBIA II
                                                 C-E POWER SYSTEMS
                                                 FIELD TESTING AND
                                                 PERFORMANCE RESULTS
                                   OVERFIRE  AIR  OPERATION  STUDY
     TEST NO.
  BOARD t COMPUTER DATA

1         2        3

•C

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
DATE 1976
TIME
LOAD w
PULVERIZER DATA
PLV 1-B COAL ATR DISCH. TEMP. °F
PLV 1-C COAL AIR DISCH. TEMP. °F
PLV 1-D COAL AIR DISCH. TEMP. °F
PLV 1-E COAL AIR DISCH. TEMP. °F
PLV 1-F COAL AIR DISCH. TEMP. CF
PLV 1-A FEEDER COAL FLOW 10T.B/HR
PLV 1-B FEEDER COAL FLOW 103LB/HR
PLV 1-C FEEDER COAL FLOW 10|LB/HR
PLV l.D FEEDER COAL FLOW 10iB/HR
PLV 1-E FEEDER COAL FLOW 10J.B/HR
PLV 1-F FEEDER COAL FLOW lO^B/HR
PLV 1-A MILL AMPS
PLV 1-B MILL AMPS
PLV 1-C MILL AMPS
PLV 1-D MILL . AMPS
PLV 1-E MILL AMPS
PLV 1-F MILL AMPS
3/17
09:30
517

82
150
148
143
146
114
0
107
115
116
116
71
0
74
73
75
74
3/17
10:45
512

87
148
148
142
146
114
0
106
116
116
116
71
0
74
73
75
75
3/20
16:50
524

93
149
148
142
146
116
0
108
117
116
116
73
0
74
76
78
76
3/20
19:45
525

93
149
149
142
146
117
0
109
118
118
117
73
0
73
75
77
77
3/22
17:00
526

88
142
147
142
146
114
0
113
115
114
115
72
0
78
75
75
76
3/20
10:05
521

91
150
145
142
146
115
0
107
116
116
115
72
0
74
76
77
77
3/20
12:00
522

92-
149
145
142
146
115
0
107
115
116
115
72
0
75
76
76
77
3/20
14:30
522

93
149
14S
142
147
114
0
107
116
116
115
72
0
74
75
75
75
    FAN DAMPER POSITION - % OPEN

•8  1-A FD FAN INLET  VANE
 B  1-B FD FAN INLET  VANE
 B  1-A PA FAN INLET  VANE
 B  1-B PA FAN INLET  VANE

    SPRAY VALVE POSITION - f OPEN

 B  1-A SH SPRAY VALVE
 B  1-B SH SPRAY VALVE
 B  1-A RH SPRAY VALVE
 B  1-8 RH SPRAY VALVE

    MISCELLANEOUS
 71
 70
 28
 24
 45
 27
 80
 90
71
70
28
24
37
25
84
96
75
74
33
29
22
 0
49
35
74
73
32
28
21
 5
56
40
72
71
30
26
62
30
60
43
73
72
34
30
72
72
34
30
         17
          0
         28
         41
73
72
34
30
         12
          0
         33
         46
B
5
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
BURNER TILT
Aux. AIR DAMPERS
-A FUEL/AIR DAMPERS
B FUEL/AIR DAMPERS
-C FUEL/AIR DAMPERS
-D FUEL/AIR DAMPERS
-E FUEL/AIR DAMPERS
-F FUEL/A |R DAMPERS
-A PHI . AIR FAN
-B PRI. AIR FAN
1-A ID FAN
1-B ID FAN
1-A FD FAN
1-B FD FAN
1-A ID FAN
1-B ID FAN
1-A BLR, CIRC. WTR. PUMP
1-B BLR. CIRC. WTR. PUMP
1-C BLR. CIRC. WTR. PUMP
1-D BLR. CIRC. WTR. PUMP
N DRUM LEVEL + NORM, HgO
S DRUM LEVEL ~ NORM, H_0
FLUE GAS COMBUSTIBLES
FLUE GAS OXYGEN
BARONMETRIC PRESS.
+ DEGREES
% OPEN
% OPEN
% OPEN
% OPEN
% OPEN
% OPEN
% OPEN
AMPS
AMPS
AMPS
AMPS
AMPS
AMPS
RPM
RPM
AMPS
AMPS
AMPS
AMPS
LEVEL IN,
LEVEL IN.
IN. HGA
-3°
100
50
0
47
53
51
51
172
t83
500
430
208
195
485
495
74
77
72
74
-0.69
-2.25
0.065
4.0
30.04
-3°
100
50
0
46
53
51
51
172
183
500
430
207
195
485
495
74
77
72
74
-0.62
-2.27
0,066
3.9
29.99
+r
81
51
0
47
54
52
51
170
182
500
430
203
193
490
500
76
78
74
74
-0.69
-2.22
0.061
4.0
28.80
+3'
69
53
0
48
55
53
52
170
181
500
420
200
190
490
500
76
78
72
74
-0.53
-2.75
0.061
3.9
28.89
0°
68
50
0
51
53
51
51
171
182
490
420
202
190
480
495
75
78
73
74
-0.68
-2.97
0.063
4.0
30.29
+5°
77
50
0
45
52
50
50
170
180
470
400
195
183
480
490
80
80
76
78
-0.48
-2.28
0.063
3.6
28.64
+5.
66
50
0
46
53
51
50
170
182
460
400
194
184
483
490
77
79
75
76
-0.58
-2.61
0.064
3.4
28.72
-1°
58
50
0
46
53
51
50
169
181
470
400
192
182
480
490
77
79
74
76
-0.44
-2.64
0.064
3.6
28.72
 • C - COMPUTER DATAJ B - BOARD DATAJ NA - NOT  AVAILABLE.
                                                       237
                                                                                                      SHEET A54

-------
                             OVERFIRE  AIR  OPERATION STUDY
                                       BOARD t COMPUTER DATA



»c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

•B
B
B
B

B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
c
c
TEST NO.
DATE 1 976
TIME
LOAD MM
PULVERIZER DATA
PLV -B COM. AIR DISCH. TEMP. °F
PLV -C COAL AIR DISCH. TEMP. °F
PLV -D COAL AIR DISCH. TEMP. °F
PLV -E COAL AIR DISCH. TEMP. *F
PLV -F COAL AIR DISCH. TEMP. "F
PLV -A FEEDER COAL FLOW lofLB/HR
PLV 1-B FEEDER COAL FLOW 103.8/W
PLV 1-C FEEDER COAL FLOW 10rLB/HR
PLV 1 -0 FEEDER COAL FLOW 103.8/HR
PLV 1-E FEEDER COAL FLOW lOZLB/HR
PLV 1-F FEEDER COAL FLOW ICrLB/HJ?
PLV 1-A MILL AMPS
PLV 1-B MILL AMPS
PLV 1-C MILL AMPS
PLV 1-D MILL AMPS
PLV 1-E MILL AMPS
PLV 1-F MILL AMPS
FAN DAMPER POSITION - % OPEN
1-A FD FAN INLET VANE
1-B FD FAN INLET VANE
1-A PA FAN INLET VANE
1-B PA FAN INLET VANE
SPRAY VALVE POSITION - % OPEN
1-A SH SPRAT VALVE
1-B SH SPRAY VALVE
1-A RH SPRAY VALVE
1-B RH SPRAY VALVE
MISCELLANEOUS
BURNER TILT + DEGREES
Aux. AIR DAMPERS % OPEN
1-A FUEL/AIR DAMPERS % OPEN
1-B FUEL/AIR DAMPERS % OPEN
1-C FUEL/AIR DAMPERS f OPEN
1-D FUEL/AIR DAMPERS f OPEN
1-E FUEL/AIR DAMPERS % OPEN
1-F FUEL/AIR DAMPERS % OPEN
1-A PRI. AIR FAN AMPS
1-B PRI. AIR FAN AMPS
1-A ID FAN AMPS
1-B ID FAN AMPS
1-A FD FAN AMPS
1-B FD FAN AMPS
1-A ID FAN RPM
1-B 10 FAN RPM
1-A BLR. CIRC. WTR. PUMP AMPS
1-B BLR. CIRC. WTR. PUMP AMPS
1-C BLR. CIRC. WTR. PUMP AMPS
1-D BLR. CIRC. WTR. PUMP AMPS
N DRUM LEVEL + NORM. HO LEVEL IN.
S DRUM LEVEL + NORM. HgO LEVEL IN.
FLUE GAS COMBUSTIBLES %
FLUE GAS OXYGEN %
BARONMETRIC PRESS. IN. HGA
9
3/24
00:45
473

146
149
155
142
146
102
105
102
0
104
103
66
72
72
0
71
73

76
76
30
26

44
32
39
41

0'
41
42
44
43
0
44
43
167
180
500
430
211
198
493
499
76
78
73
75
-0.72
-2.24
0.060
4.7
29.53
10
3/24
02:20
473

144
148
152
141
146
101
105
102
0
104
102
67
72
71
0
70
71

75
75
30
25

46
31
37
44

0*
90
42
43
42
0
43
43
170
130
500
430
210
195
494
498
76
78
72
74
-0.49
-1.96
0.060
5.1
29.49
11
3/24
04:00
472

143
148
149
140
144
102
105
103
0
104
102
66
72
71
0
69
71

73
73
30
25

70
39
46
54

0"
66
42
44
43
0
45
44
170
180
480
410
203
188
490
495
75
78
73
74
-0.66
-2.50
0.057
4.6
29.43
12
6/24
12:00
524

154
0
147
142
149
118
119
0
118
118
117
72
74
0
72
75
74

80
83
31
30

25
61
47
34

+r
100
100
0
100
100
100
100
165
200
510
470
226
202
»NA
NA
74
80
73
75
-0.35
-2.60
0.056
3.2
29.5S
13
6/24
13:20
525

155
0
148
143
149
118
120
0 '
118
118
118
73
74
0
72
75
75

81
83
31
30

29
62
65
47

+7°
26
100
100
0
100
100
100
165
200
520
480
228
205
NA
NA
73
80
73
74
-0.54
.2.45
0.055
3.9
29.45
14
6/24
09:45
523

153
0
146
143
148
118
119
0
118
117
116
71
74
0
72
74
74

80
83
30
30

25
62
36
25

+3'
25
100
100
0
100
100
100
165
202
520
480
229
205
NA
NA
75
81
75
76
.0.74
-1.83
0.054
3.7
29.59
15
3/25
10:15
510

142
148
86
140
144
110
114
111
0
112
112
73
73
73
0
75
76

72
70
29
25

34
26
63
74

0°
60
47
49
49
0
49
49
162
182
460
400
200
185
487
492
76
78
72
74
-O.48
-2.64
0.063
3.6
29.81
16
6/30
09:50
526

156
0
145
156
148
117
118
0
117
115
117
71
73
0
72
73
74

77
80
30
30

28
35
41
39

+3°
25
100
100
0
100
100
100
165
205
490
450
224
204
490
NA
77
82
75
78
-0.35
-0.70
0.056
4.3
29.85
* C - COMPUTER DATA; B - BOARD DATA; NA - NOT AVAILABLE.
                                            238
                                                                                     SHEET ASS

-------
 WISCONSIN POWER & LIGHT Co.
 COLUMBIA fl
C-E POWER SYSTEMS
FIELD TESTiMO AND
PERFORMANCE RESULTS
                              OVERFIRE AIR  OPERATION  STUDY
                                          BOARD t COMPUTER DATA



•C

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

•B
B
B
B

B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
C
C
C
C
TEST NO.
DATE 1976
TIME
LOAD Mil
PULVERIZER DATA
. PLV 1-B COAL AIR DISCH. TEMP. °F
PLV 1-C GOAL AIR DISCH. TEMP. *F
PLV 1-D COAL AIR DISCH. TEMP. °F
PLV 1-E COAL AIR DISCH. TEMP. °F
PLV 1-F COAL AIR DISCH. TEMP. °F
PLV 1-A FEEDER COAL FLOW 1CMLB/HR
PLV 1-B FEEDER COAL FLOW 10XLB/HR
PLV 1-C FEEDER COAL FLOW 103.B/HR
PLV 1-0 FEEDER COAL FLOW lois/HR
• PLV 1-E FEEDER COAL FLOW 10fLB/HR
PLV 1-F FEEDER COAL FLOW 10T.B/HR
PLV 1-A MILL AMPS
PLV 1-B MILL AMPS
PLV 1-C MILL AMPS
PLV 1-0 MILL- AMPS
PLV 1-E MILL AMPS
PLV 1-F MILL AMPS
FAN DAMPER POSITION - f OPEN
1.A FD FAN INLET VANE
1-B FD FAN INLET VANE
1-A PA FAN INLET VANE
1-B PA FAN INLET VANE
SPRAY VALVE POSITION - 
BARONHETRIC PRESS. IN. HGA
17
6/25
11:15
524

153
0
146
142
147
117
118
0
117
117
116
73
75
0
73
75
76

80
63
31
30

89
59
53
41

+8"
26
100
100
0
100
100
ion
165
SOO
520
470
165
200
•NA
NA
74
79
73
74
-0.77
-2.99
0.056
3.4
29.65
IS
6/30
08:35
526

154
0
144
154
143
118
119
0
118
115
117
71
73
0
74
71
75

78
81
30
29

28
35
36
30

+3°
25
100
100
0
too
100
100
165
203
500
450
225
205
490
NA
77
82
74
80
-0.87
-0.89
0.056
4.4
29.86
19
6/29
08:50
523

158
0
150
159
150
113
116
0
114
114
113
70
74
0
73
70
73

76
79
30
29

28
33
48
40

+6'
19
100
100
0
100
100
100
165
200
470
420
214
193
480
NA
75
80
73
75
-0.44
-2.19
0.055
3.5
29.75
20
6/25
14:45
517

156
0
150
142
150
115
116
0
115
114
114
72
76
0
72
76
75

81
83
31
31

49
50
69
50

+6°
23
100
100
0
100
100
103
165
200
510
470
222
200
500
NA
75
80
73
76
-0.72
-1.40
0.056
4.3
29.65
SI
5/?fi
10:30
419

147
o-
141
143
114
116
117
0
115
115
0
74
75
0
74
75
0

73
76
28
SB

19
15
0
0

+6°
14
100
100
0
100
100
0
155
190
390
340
200
180
450
NA
78
84
78
81
-0.52
-1.39
0.055
4.6
29.89
22
6/25
16:25
422

161
0
151
142
152
90
92
0
•91
92
90
53
69
0
68
68
69

70
73
33
33

29
33
25
17

+3°
3
94
92
o
89
89
90
165
200
380
340
185
170
450
NA
75
82
75
78
-0.53
-1.30
0.055
4.3
29.63
23
6/27
11:35
316

150
0
111
147
142
84
86
0
0
66
64
64
67
0
0
66
57

59
62
28
28

0
0
n
0

+ 11*
0
80
80
0
0
77
77
160
195
300
280
165
150
330
NA
83
87
0
85
-0.59
-2.03
0.033
5.8
30.12
24
6/29
01:30
322

156
•0
148
158
111
83
86
0
84
84
0
63
67
0
64
65
0

58
61
28
27

26
26
0
0

+8°
0
77
77
0
74
75
0
155
195
290
260
165
147
325
NA
80
85
77
84
-0.56
-1.42
0.048
4.7
29.76
* C - COMPUTER DATA; B - BOARD DATA;  NA - NOT AVAILABLE.
                                                239
                                                                                            SHEET A56

-------
 Wisconsin Power & Light Company
 Columbia #1
C-E Power Systems
Field Testing and
Performance Results
             WATERWALL  CORROSION  COUPON

                        DATA  SUMMARY
                         WEIGHT LOSS EVALUATION
BASELINE TEST

Probe
Loc.
1




2




3




4




5





Probe Coupon
No. No.
A 11
12

13
14
B 11
12

13
14
C 11
12

13
14
D 11
12

13
14
E 11
12

13
14

Initial Wt.
9
192.4714
189.2624

187.7834
189.5986
191.8667
193.0534

192.4719
187.2771
189.6148
192.3205

194.2087
195.2487
181.0037
196.4728

192.6319
189.7795
191.8554
194.4597

191.4211
196.5282

Final Wt.
g
191.6956
188.5251

187.3753
189.1607
191.3217
192.5138

192.1794
187.0411
189.1926
191.8693

193.8685
194.9058
180.7035
196.1221

192.3687
189.5630
191.4543
193.9813

191.0273
196.2131

Ht. Loss
g
.7758
.7373

.4081
.3479
.5450
.5396

.2925
.2360
.4222
.4512

.3402
.3429
.3002
.3407

.2632
.2165
.4011
.4784

.3938
.3151
Wt. Loss/
Coupon
mg/cm2
15.3814
14.6180

8.0912
6.8976
10.8054
10.6983

5.7992
4.6790
8.3707
8.9457

6.7450
6.7985
5.9519
6.7549

5.2183
4.2924
7.9524
9.4850

7.8077
6.2473
Avg. Wt. Loss/
Probe
mg/cm2


11.2471




7.9955




7.7150




5.5544




7.8731


Avg. Wt. Loss/Test 8.0770 mg/cm
                                240
                                                               A57

-------
Wisconsin Power & Light Company
Columbia #1
C-E Power Systems
Field Testing and
Performance Results
             WATERWALL  CORROSION COUPON

                         DATA SUMMARY
                         WEIGHT LOSS EVALUATION
OVERFIRE AIR TEST
Probe Probe Coupon
Loc. No. No.
1 G 11
12
13
14
2 H 11
12
13
14
3 i n
12
13
14
4 J 11
12
13
14
5 K 11
12
13
14
Initial Wt.
g
194.9117
190.1947
196.6078
196.0734
186.5016
190.5570
195.0431
191.5820
192.8761
197.6064
194.6839
194.3763
189.5101
191.3316
189.2178
188.7732
193.0880
187.8881
186.7728
189.5299
Final Wt.
9
194.5574
189.8822
196.2830
195.3612
186.0373
190.0113
194.5049
191.1243
192.2601
197.1149
194.3220
193.9799
189.1223
190.9150
188.8155
188.5163
192.7809
187.5455
186.5222
189.3049
Wt. Loss
g
.3543
.3125
.3248
.7121
.4643
.5457
.5382
.4577
.6160
.4915
.3619
.3964
.3878
.4166
.4023
.2569
.3071
.3426
.2506
.2250
Wt. Loss/
Coupon
mg/cm2
7.0245
6.1957
6.4396
14.1182
9.2053
10.8191
10.6704
9.0744
12.2129
9.7445
7.1751
7.8591
7.6886
8.2596
7.9760
5.0933
6.0886
6.7924
4.9684
4.4609
Avg. Wt. Loss/
Probe
mg/cm2

8.4445


9.9423


9.2479


7.2544


5.5776

Avg. Wt. Loss/Test 8.0933 mg/cm2
                                241
                                                          SHEET A58

-------
        APPENDIX B
    TEST DATA & RESULTS
            FOR
UTAH POWER & LIGHT COMPANY
 HUNTIN6TON CANYON STATION
          UNIT #2

-------
                                                                            BASELINE  OPERATION  STUDY
                                                                                      EMISSIONS TEST DATA
                             TEST NO.

                             PURPOSE OF TEST
                             UNIT LOAD CONDITION
                             FURNACE CONDITION

                             DATE
                             UNIT LOAD

                             MAIN STEAM FLOW
                             SHO TEMPERATURE
                             RHO TEMPERATURE
                             FUEL ELEVATIONS IN SERVICE
                             OFA "NOZZLE TILT
                             FUEL NOZZLE TILT
                                       OFA
                                       OFA
                                       AUX
                                       FUEL
                                       AUX
                                       FUEL
                                       AUX
                                       FUEL
                                       AUX
                                       FUEL
                                       AUX
                                       FUEL
                                       AUX
     •J.

     TT

     jT

     •T

     T
I
a>
EXCESS AIR AT ECONOMIZER OUTLET
THEO. AIR TO THE FUEL TIRING ZONE

NO  (ADJ. TO Og Oj
NO* AS NO        2
SO* (Aoj.^TO 0* Oj
SO2             2
or (ADJ. T
CO
HC (ADJ. to Of 0 )
0  AT ECONOMIZER OUTLET
Og AT A.H. OUTLET
CD  AT ECONOMIZER OUTLET
COp AT A.H. OUTLET
CARBON Loss  IN FLYASH
                                           0.)
                                            2



1975
Mtf
KG/S
C
C

DEC
DEQ













f
$
PPM
NG/J
PPM
NG/J
PPM
NG/J
PPM
<£
<£
jg
f
$
1
MAX
CLEAN
5/7
489
376
5'»l
538
ALL 5
0
+14
0
0
45
100
50
100
45
100
50
100
50
100
100
18.9
116.4
476
fMB.O
NA
0
NA
0
0
3.4
4.5
15.4
14.4
<\52
2
MAX
CLEAN
5/5
427
380
541
547
ALL 5
0
+11
0
0
45
100
50
100
45
100
50
100
50
100
100
27.4
124.8
533
PR?, 8
388
266.3
23
6.T
0
4.6
•S.8
14.1
13.1
0.3^
2A
MAX
CLEAN
5/7
428
377
534
537
ALL 5
0
+13
0
0
45
100
45
100
45
100
50
100
50
100
100
32.9
130.1
670
^r>. 4
396
2'3.2
25
7.7
0
S.3
6.4
13.5
12.6
0.22
_3 4
~^~~~~ EXCESS AIR
MAX 3/4 MAX
CLEAN
5/7
428
380
536
537
ALL 5
0
+15
0
0
45
100
45
100
45
100
45
100
50
100
100
40.9
137.8
718
357.0
374
259,1
27
B.2
0
6.2
7.3
12. B
11.9
0.31
CLEAN
10/10
360
298
547
548
ALL 5
0
0
0
0
15
100
10
100
5
100
0
100
0
100
100
28.9
126.9
662
328.0
436
300. 1
NA
o
0
4.8
7.3
14.0
11.8
O. 1?
5
VAR 1 AT 1 ON
1/2 MAX
CLEAN
7/16
259
204
546
529
ABCD
0
+18
0
0
0
100
0
100
0
100
0
100
0
0
35
23.7
122.9
505
249.2
376
256.2
16
4.8
0
4.1
6.1
14.7
13.0
0.23
6
1/2 MAX
CLEAN
7/15
260
203
543
538
ABCD
0
+11
0
0
0
100
0
100
0
100
0
100
0
0
0
32.1
131.1
573
284.3
36 T
2?O.S
16
4.8
0
5.2
6.2
13.6
12.8
">.30
7
1/2 MAX
CLEAN
7/16
258
202
544
537
ABCD
0
+6
0
0
0
100
0
100
0
100
0
100
0
.0
0
50,0
150.0
734
360.3
326
222.8
17
5.0
0
7.1
8.6
12.1
10.8
0.12
_§
MAX
CLEAN
5/5
430
378
541
543
ALL 5
0
+8
0
0
30
100
40
100
20
100
35
100
40
100
100
19.5
117.5
535
267.1
364
£52.5
23
6.9
0
3.5
5.4
15.1
13.4
0.68

Sh
MAX
CLEAN
4/30
428
377
534
537
ALL 5
0
-3
0
0
40
100
45
100
35
100
35
100
40
100
100
89.0
126.3
522
256.6
837
163.4
124
37.5
0
4.8
6.1
14.2
13.0
0.29

-------
UTAH POWER  AND LIGHT COMPANY
HUNTINGTON  CANYON #2
                                                                                                               C-E  POWER SYSTEMS
                                                                                                               FICLD TESTINO AND
                                                                                                               PERFORMANCE RESULTS
                                                BASELINE OPERATION  STUDY
                                                         EMISSIONS TEST DATA
TEST NO.

PURPOSE OF TEST
UNIT LOAD CONDITION
FURNACE CONDITION
DATE
UNIT LOAD

MAIN STEAM FLOW
SHO TEMPERATURE
RHO TEMPERATURE
FUEL ELEVATIONS IN SERVICE
OFA NOZZLE TILT
FUEL NOZZLE; TILT

J
i-
£§
^
o t~
o —
U Q
fd ""
ia
o



IT

IT

~r

—


OFA
OFA
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
FUEL
AUX
EXCESS AIR  AT ECONOMIZER  OUTLET
THEO.  AIR TO THE FUEL FIRING  ZONE

NO  (ADJ. TO vt, o )
NO* AS NO        A
SO* .(Aoj.2To Of 0.)
SO?             *
CO^Aoj. TO OjTOj
               Z
CO
HC
0
   (ADJ.  TO Og 0 )
   »T ECONOMIZER OUTLET
Og AT A.M.  OUTLET
C0_ »T ECONOMIZER OUTLET
C(Yf »T A.H. OUTLET
CfcROON LOS& 1H FLVA9M



1975
MM
KG/S
C
C

DEC
DEC













%
4
PPM
NG/J
PPM
NG/J
PPM
NG/J
PPM
%
*
.6
5.O
15.1
n.9
n. n't

3/4 MAX
\ca »Tn v f\i
rr
1/2 MAX

5/9 10/9 7/22
433
375
539
540
ALL 5
0
+1
0
0
45
100
50
100
35
100
50
100
50
100
100
35.5
132.6
644
319.1
155
245.2
27
8.3
0
5.6
6.6
13.4
12.5
". in
361
298
548
545
ALL 5
0
0
0
0
15
100
15
100
5
100
10
20
20
100
100
23.0
121.3
592
285.2
405
281.1
14
4.1
O
4.0
5.9
14.7
!•>. 1
n. op
258
204
541
528
ACDE
0
+12
0
0
0
100
0
0
0
100
0
100
0
100
0
25.2
124.3
438
215.7
446
106.1
15
4.5
0
4.3
6.0
14.5
1.-M
n. pi
1§
1/2 MAX

7/21
260
206
541
536
ACDE
0
+13
0
0
0
100
0
0
0
100
0
100
0
100
0
28.9
127.9
470
233.0
448
109.0
NA
r\
0
4.8
6.9
14.0
1S. 1
O.SG
J9
1/2 MAX
^
7/21
258
205
542
536
ACDE
0
+13
0
0
0
100
0
0
0
100
0
100
0
100
0
47.8
146.6
669
333.1
474
328.2
16
5.0
0
6.9
8.1
12.2
11. i
O. 1 7

-------
                                                                     BIASED  FIRING  OPERATION  STUDY
                                                                                    EMISSIONS TEST DATA
X
                           TEST NO.

                           PURPOSE OF TEST
                           UNIT LOAD CONDITION
                           Excess AIR CONDITION
                           FURNACE CONDITION
                           DATE
                           UNIT LOAD

                           MAIN STEAM FLOW
                           SHO TEMPERATURE
                           RHO TEMPERATURE
                           FUEL ELEVATIONS IN SERVICE
                           OFA NOZZLE TILT
                           FUEL NOZZLE TILT
                                    1975
                                      MW

                                    KG/S
                                      C
                                      c

                                     DEG
                                     DEQ
                            r
                            Is
          OFA
          OFA
          AUX
          FUEL
          AUX
          FUEL
          AUX
          FUEL
          AUX
          FUEL
          AUX
          FUEL
          AUX
EXCESS AID AT CCONOMIZER OUTLET
THEO. AIR TO THE  FUCL FIRING Zone

NO  (ADJ. TO O* 0.1
NO^ AS NO        2
SOj (ADJ.^TO 05? oj
SO?             2
or (ADJ. TO of oj
co            2
HC (ADJ. TO Of 0)
0? AT ECONOMIZER  OUTLET
Og AT A.H. OUTLET
CO- AT ECONOMIZER OUTLET
COg AT A.H. OUTLET
CARBON Loss IN FLYASH
 PPM
NO/J
 PPM
NG/J
 PPM
NG/J
 PPM
   %
   a
   *

< 	
CLEAN
9/17
430
375
518
516
BCOE
0
46
0
0
20
10
30
100
10
100
25
100
20
100
100
1'l.R
107.1
W
168,4
41R
P87.5
56
1fi.7
O
3.6
5.7
15. 1
11.2
0.26
2
	 MAXIMUM 	
MODERATE
9/18
426
371
525
511
ABDE
0
-6
0
0
30
100
40
100
10
0
25
100
25
100
100
B1.5
118.1
I'll
PP^.7
ir,8
P'l7. R
16
4.8
n
1.8
4. 4
14. '1
14.1
o.25
_3
4
in nc rnrt r
5
'1 fl/ATt AklC 1 hi
VMn 1 M 1 1 \jn vr r utu tut VM i i \xiij 1 11
	 > < 	 3/4 MAXIMUM
CLEAN
9/20
434
368
534
541
ABCD
0
-13
0
0
50
100
50
100
45
100
50
100
50
20
20
20.9
11 7 . B
..,qn
24M
187
267.1
10
5.2
o
T.7
5.7
15.0
1 1.2
n.55
CLEAN MODERATE
12/13
356
297
544
539
BCDE
0
+18
0
0
10
100
0
100
0
100
0
100
0
100
100
16.8
•18. 5
367
191.5
257
186.4
20
6.1
0
1.1
5.6
15.1
11. 1
0.61
10/11
351
295
536
537
ACDE
0
-10
0
0
0
100
25
100
5
100
0
100
0
100
100
19.9
11 0 . 1
404
20.1.6
175
262.9
14
4.4
n
3.6
5.8
15.2
11.2
0.20
6

CLEAN
10/12
360
299
543
546
ABCE
0
-9
0
0
5
100
0
100
0
100
0
100
0
100
100
20.8
119.8
530
263.4
ISQ
248.2
16
•1.8
0
1.7
5.5
14.9
1^.4
0.22
7
1/2
CLEAN
10/12
257
218
542
534
BCOE
0
+6
0
0
5
100
0
100
5
100
0
100
0
100
100
22.6
1 Ob . ' >
Ifll
178.4
1
-------
UTAH POWER  AND LIGHT COMPANY
HUNTINOTON  CANYON #2
                                                                           C-E POWER SYSTEMS
                                                                           FIELD TESTING AND
                                                                           PERFORMANCE RESULTS
                                           BIASED FIRING  OPERATION  STUDY
TEST NO.

PURPOSE OF TEST
UNIT LOAD CONDITION
EXCESS AIR CONDITION
FURNACE CONDITION
DATE
UNIT LOAD

MAIN STEAM FLOW
SHO TEMPERATURE
RHO TEMPERATURE
FUEL ELEVATIONS  IN SERVICE
OFA NOZZLE TILT
FUEL NOZZLE TILT
           OFA
           OFA
           AUX
           FUEL
           AUX
           FUEL
           AUX
           FUEL
           AUX
           FUEL
           AUX
           FUEL
           AUX
EXCESS AIR AT ECONOMIZER OUTLET
THEO. AIR TO THE FUEL FIRING ZONE

NO   (ADJ. TO Of 0 )
NO"*  AS NO
so;!  (ADJ. TO og oj
so
CO^AoJ. TO 0* 0 )
CO              2
HC (ADJ. TO Of 0 )
0- AT ECONOMIZER OUTLET
Og AT A.H. OUTLET
CO   AT ECONOMIZER OUTLET
CO?  AT A.H. OUTLET
 CA.BBON Loss  IN FLYASH
1975
  MW

KG/S
   C
   C

 DEC
 Pro
 PPM
NG/J
 PPM
NO/J
 PPM
NG/J
 PPM

   I
EMISSIONS TEST DATA
9
< 	
CLEAN
9/17
429
375
516
•525
BCDE
0
+20
0
0
35
20
50
100
15
100
20
100
35
100
100
P6.3
107.6
421
208.1
408
2B0.8
17
5.0
ry

6. 1
14.4
13.0
0.28
12
- MAXIMUM 	


CLEAN MODERATE
9/18
428
370
536
537
ACDE
0
+8
0
0
25
100
35
25
15
100
40
100
40
100
100
27.4
125.3
462
227.3
382
261.1
17
5.0
0
4.6
6.9
14.4
12.4
0.24
9/18
429
369
533
541
ABCE
0
+2
0
0
30
100
40
100
20
100
40
5
40
100
100
?9.3
126.8
513
255.9
389
269.9
17
5.2
0
4.9
S.2
14.0
13.7
o.lB

< 	 3/4 MAXIMUM 	 >
MODERATE CLEAN
10/11
351
295
537
538
BCDE
0
+7
0
0
10
100
5
100
5
100
5
100
5
100
100
29.3
109.1
421
214.2
406
286.9
17
5.2
0
4.9
6.3
14.0
12.7
n.ze
12/13
356
299
543
541
ABDE
0
+9
0
0
5
100
10
100
0
100
0
100
10
100
100
28.0
127.0
549
283.8
291
209.5
18
5.7
o
4.7
7.0
13.9
11.9
0.38
CLEAN
12/13
357
299
544
541
ABCD
0
-8
0
0
0
100
5
100
0
100
5
100
10
100
100
31.7
131.0
502
248.4
252
173.7
21
6.4
0
5.2
7.1
13.7
12.0
0.41
JJ5
!§
1/2 MAXIMUM
CLEAN
7/23
256
203
543
533
ACDE
0
+12
0
0
0
100
- 0
~100
0
100
0
100
0
100
100
25.1
124.4
382
187.2
429
292.2
15
4.5
0
4.3
6.1
14.4
12.9
0. 12
CLEAN
7/24
259
210
542
535
ABCE
0
+11
0
0
0
100
0
100
0
100
0
100
0
100
100
24.7
124.0
453
224.3
443
305.1
15
4.6
0
4.3
5.9
14.4
13.0
0.20

-------
                                                     OVERF1RE  AIR  OPERATION  STUDY
                                                                   EMISSIONS TEST DATA
TEST NO.
PURPOSE  OF TEST
UNIT LOAD CONDITION
EXCESS AIR CONDITION
FURNACE  CONDITION
DATE
UNIT LOAD

MAIN STEAM FLOW
SHO TEMPERATURE
RHO TEMPERATURE
FUEL ELEVATIONS  IN SERVICE
OFA NOZZUE TILT
FUEL NOZZLE  TILT
           OFA
           OFA
           AUX
           FUEL
           AUX
           FUEL
      	,  AUX
      ~C~|  FUEL
           AUX
       TT|  FUEL
      	  AUX
       T]  FUEL
           AUX
 EXCESS  AIR AT ECONOMIZER OUTLET
 THEO. AIR TO THE FUEL FIRING ZONE

 NO  (ADJ. TO Of 0.)
 NO* AS  NO,       d
 sol (ADJ."So o* oj
 so;             2
 COT(ADJ. TO Of 0_)
 CO             2
 HC (ADJ. TO on o2)
 0  AT ECONOMIZER OUTLET
 Oj: AT A.M. OUTLET
 CO- AT  ECONOMIZER OUTLET
 CO? AT  A.H. OUTLET
 CARBON  Loss IN FLYASH
                                                                                                                              10
                                                                                                                                        11
                                                                                                                                                 12



1975
MW
KQ/S
C
C

DEC
DEC













^
<
PPM
NG/J
PPM
NG/J
PPM
NO/J
PPM
%

%
%
%



HEAVY
9/17
428
369
532
539
ALL 5
0
+6
0
0
20
100
35
100
15
100
35
100
20
100
100
27.0
125.2
543
273.7
170
259.6
15
4.7
0
4.6
6.8
14.2
12.3
0.20



HEAVY
9/26
430
372
529
539
ALL 5
0
-10
25
25
25
100
40
100
20
100
30
100
40
100
100
28.2
120.3
513
PS1.1
452
308.2
1C;
4.6
0
4.7
5. 1
14.2
13.8
O.H

HEAVY
9/26
430
372
530
538
ALL 5
0
-10
50
50
20
100
30
100
10
100
20
100
30
100
100
26.2
111.6
462
223.4
370
255.8
15
4.6
0
1.5
5.3
14.3
13.5
n.2
361
247.6
15
4.4
0
5.4
7.8
13.5
11.4
0.27


	
MODERATE
10/1
430
370
535
540
ALL 5
0
+13
100
100
15
100
20
100
5
100
20
100
25
100
100
33.8
112.5
673
332.3
421
Pfl9.
-------
                   UTAH POWER AND LIGHT COMPANY
                   HUNTINOTON CANYON #2
                                                                                                                                    C-E POWER STSTEMS
                                                                                                                                    FIELD TESTino  AND
                                                                                                                                    PERFORMANCE  RESULTS
                                                                         OVERFIRE  AIR OPERATION  STUDY
                                                                                       EMISSIONS TEST DATA
                    TEST NO.
                                                               13
                                                                         14
                                                                                  15
                                                                                            16
                                                                                                     17
                                                                                                              IB
                                                                                                                        19
                                                                                                                                 20
                                                                                                                                          21
                                                                                                                                                   22
                                                                                                                                                            23
                                                                                                                                                                      24
2
oo
PURPOSE OF TEST
UNIT LOAD CONDITION
EXCESS AIR CONDITION
FURNACE CONDITION
DATE
UNIT LOAD

MAIN STEAM FLOW
SHO TEMPERATURE
RHO TEMPERATURE
FUEL ELEVATIONS  IN SERVICE
OFA NOTTLE TILT
FUEL NOZZLE TILT
                              OFA
                              OFA
                              AUX
                              FUEL
                              AUX
                          ~BJ  FUEL
                              AUX
                           C]  FUEL
                              AUX
                              FUEL
                              AUX
                              FUEL
                              AUX
                    EXCESS AIR AT ECONOMIZER OUTLET
                    THEO.  AIR TO THE FUEL FIRINO ZONE

                    N0v (ADJ. TO Of 0 )
                    NO* AS NO-
         -
    (ADJ. TO
                                   oa)
                    C02(ADJ.  TO Oj< 0 )
                    CO             S
                    HC (ADJ.  TO o#~o~)
                    0- AT ECONOMIZER OUTLET
                    OJ: AT A.M. OUTLET
                    Co  AT ECONOMIZER OUTLET
                    CO? AT A.H.  OUTLET
                    CARBON Loss IN FLYASH

^ 	



MODERATE MODERATE
1975
MW
KO/S
C
C

DEO
DEC













$
*
PPM
NG/J
PPM
NO/J
PPM
NG/J
PPM
rf
I
I*
%
I
10/4
434
364
543
547
ALL 5
-30
0
100
100
15
100
0
100
0
100
5
100
0
100
100
85.1
101.1
533
263.4
450
309.4
15
4.5
O
4.3
5.7
11.4
13.1
O.S1
10/5
422
370
520
525
ALL 5
0
-20
100
100
0
100
0
100
0
100
0
100
0
100
100
22.0
99.2
366
179.8
397
271.1
16
4.8
0
3.9
4.9
14.9
14. 0
o.:v>



HEAVY MODERATE MODERATE MODERATE ' CLEAN MODERATE
10/4
429
370
531
543
ALL 5
0
0
100
100
20
100
0
100
5
100
5
100
0
100
100
25.1
101.1
422
212.1
404
281.9
15
4.6
0
4.3
5.2
14.5
13.8
n.28
10/3
427
372
529
533
ALL 5
0
+25
100
100
15
100
5
100
5
100
0
100
0
100
100
21.3
98.4
569
283.5
386
267.5
15
4.4
0
3.8
5.1
14.9
13.7
O.S6
10/3
424
377
519
515
ALL 5
+30
0
100
100
15
100
0
100
5
100
0
100
0
100
100
23.5
99.8
375
186.1
432
298.3
16
4.9
0
4.1
5.4
14.6
13.5
O.22
10/3
429
367
535
539
ALL 5
-1-30
+25
100
100
15
100
5
100
5
100
0
100
0
100
100
21.7
98.6
49B
S52.1
349
245.9
51
15. 8
0
3.8
5.1
14.9
13.8
0.63
10/6
417
374
522
538
ALL 5
+30
0
100
100
15
100
0
100
0
100
0
100
0
100
100
18.5
95.8
392
196,5
347
241.8
19
5.8
0
3.4
5.3
15.2
13.5
o. 40
10/B
426
377
521
527
ALL 5
+30
0
100
100
15
100
0
100
5
100
5
100
0
100
100
19.6
97.1
382
190.8
364
252.1
19
5.8
0
3.5
5.6
15.1
13.3
•">. 43
i i nun vr H urtnn i i un •
3/4 MAX 3/4 MAX
CLEAN MODERATE
10/9
356
299
531
527
ALL 5
+30
0
100
100
15
100
0
100
5
100
0
100
0
100
100
19.3
98.1
329
161.3
403
275.2
19
5.7
0
3.5
6.1
15.3
13. 0
o.so
10/9
358
299
538
537
ABCE
+30
0
100
100
15
100
0
100
5
100
0
0
0
100
100
21.5
95.0
337
167.8
358
247.8
21
6.3
0
3.8
5.8
14.8
13.1
o.ss
1/2 MAX 1/2 MAX
CLEAN MODERATE
10/12
253
218
525
510
BCDE
+30
0
80
80
10
0
0
100
5
100
0
100
0
100
100
22.8
97.3
266
132.0
403
278.4
63
19.0
0
4.0
5.5
14.7
13.3
0.47
10/5
265
217
542
526
ACOE
+30
0
75
75
10
100
0
0
0
100
0
100
0
100
100
23.9
99.7
310
155.3
447
311.1
15
4.5
0
4.1
5.7
14.6
13. a
o.ss

-------
UTAH POWER t LIGHT COMPANY
HUNTINCTON CANYON fS
C-E POWER SYSTEMS
FICLO TESTING AND
PERFORMANCE RESULTS
                                BASELINE   OPERATION   STUDY
                                               TEST DATA
TEST NO.
DATE
UNIT LOAD

1975
MM
1
5/7
429
2
5/5
427
2A
5/7
428
3
5/7
426
4
10/10
360
5
7/16
259
6
7/15
260
7
7/16
258
8
5/5
430
9
4/30
428
FLOWS KG/SEC
FEEDWATER
IST STAGE STEAM
PRESSURES
ECONOMIZER INLET
DRUM
SH OUTLET
TURBINE IST STAGE
RH INLET
RH OUTLET
SH SPRAY WATER
HP HTR FW INLET
HP HTR STM INLET
TEMPERATURES
WATER AND STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET'
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH OESH INLET LINK
SH DESH INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LINK
SH Div PANEL OUTLET LINK
SH Div PANEL OUTLET LINK


WA









°C


L
LC
RC
R
R
L
L
R
L
R
SH PENO SPCO FRONT INLET LINK L
SH PENO SPCD FRONT INLET LINK C
SH PENO SPCO FRONT INLET Li
SH OUTLET
SH OUTLET
RH DESH INLET
RH DESH INLET .
RH RADIANT WALL INLET
RH RADIANT WALL INLET
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH OUTLET
RH OUTLET
RH OUTLET
HP HEATER STM INLET
HP HEATER DRAIN
HP HEATER FW IN
HP HEATER FW OUT
SH DESH SPRAY WATER
SH DESH SPRAY WATER
RH DESH SPRAY WATER
AIR AND GAS
AH AIR INLET
AH AIR INLET
AH AIR OUTLET
AH AIR OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET
NK R
L
R
L
R
L
R
L
LC
RC
R
L
R
COMB.
L
R
L
R
L
R
L
R
L
R
375
372

19.305
18.857
17.168
12.838
3.820
3.585
18.657
19.519
3.792


247
325
328
325
326
396
395
395
394
.426
435
482
489
494
526
536
322
323
321
322
360
368
353
355
542
NA
539
321
216
209
248
125
127
127
37
42
273
268
328
332
122
118
375
372

19.160
18.802
17.058
12.810
3.799
3.564
18.5ia
19.471
3.78B


248
333
336
332
334
402
397
390
396
439
438
493
493
4B6
540
541
324
324
321
321
365
374
355
363
550
NA
548
324
216
209
248
126
125
121
39
42
274
268
336
337
126
119
377
374

19.319
18.871
17.154
12.866
3.806
3.564
18.692
19.588
3.735


246
333
337
333
335
400
402
401
398
436
441
493
494
490
533
535
324
325
324
324
359
366
349
357
547
NA
538
324
216
209
247
127
128
113
36
39
273
265
341
341
122
122
377
373

19.305
18.857
17.175
12.845
3.799
3.564
18.506
19.546
3.758


246
339
342
337
339
403
408
403
400
437
441
493
493
491
536
535
326
326
324
326
359
366
351
357
546
NA
538
326
216
209
248
128
131
112
36
39
275
268
347
347
122
123
295
282

18.285
18.037
16.961
9.735
3.034
2.889
17.940
18.623
3.061


238
329
331
328
331
408
407
403
400
440
435
502
501
499
547
546
317
318
309
312
347
360
349
345
547
550
550
317
206
202
238
144
145
147
42
41
267
271
326
332
122
125
201
186

17.216
17.023
16.458
6.426
2.041
1.972
17.547
17.478
2.041


218
301
303
301
299
394
397
391
388
438
434
514
518
502
549
541
288
293
287
293
340
350
336
339
534
525
533
291
188
186
218
144
144
103
42
41
243
245
282
289
109
107
198
186

17.099
16.913
16.361
6.419
2.048
1.972
17.444
17.395
2.04S


218
308
309
305
307
399
404
391
388
436
433
509
506
498
548
537
287
292
286
292
339
347
337
345
544
532
538
290
189
166
219
146
146
104
39
39
248
248
291
294
111
104
195
185

17.161
17.016
16.465
6.384
2.03
-------
 UTAH POWER & LIGHT COMPANY
 HUNTINGTON CANYON IS
C-E POWER  SYSTEMS
FIELD TESTiNO AND
PERFORMANCE RESULTS
                                     BASELINE    OPERATION    STUDY
 TEST  NO.

 DATE
 UNIT  LOAD

 FLOWS
 FEEDWATER
 1ST STAGE STEAM

 PRESSURES
 ECONOMIZER INLET
 DRUM
 SH OUTLET
 TURBINE IST STAGE
 RH INLET
 RH OUTLET
 SH SPRAY WATER
 HP HTR FW INLET
 HP HTR STM INLET

 TEMPERATURES

WATER AND STEAM
 ECONOMIZER INLET
 ECONOMIZER OUTLET
 ECONOMIZER OUTLET'
 ECONOMIZER OUTLET
 ECONOMIZER OUTLET
 SH DESH INLET LINK
 SH DESH INLET LINK
 SH DESH OUTLET LINK
 SH DESH OUTLET LINK
 SH Div PANEL OUTLET LINK
 SH Div PANEL OUTLET LINK
 SH PEND SPCD FRONT  INLET LINK
 SH PEND SPCD FRONT  INLET LINK
 SH PEND SPCD FRONT  INLET LINK
 SH OUTLET
SH OUTLET
RH DESH INLET
RH DESH INLET
RH RADIANT WALL INLET
RH RADIANT WALL INLET
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH OUTLET
RH OUTLET
RH OUTLET
HP HEATER STM INLET
HP HEATER DRAIN
HP HEATER FW IN
HP HEATER FW OUT
SH DESH SPRAY WATER
SH DESH SPRAY WATER
RH DESH SPRAY WATER

AIR AND GAS
AH AIR INLET
AH AIR INLET
AH AIR OUTLGT
AH AIR OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET


1975
W
KG/SEC


MPA









•c

L
LC
RC
R
R
L
L
R
L
R
INK L
INK C
INK R
L
R
L
R
L
R
K L
K LC
K RC
K R
L
R
COMB.




L
R

L
R
L
R
L
R
L
R

JO
5/1
428

344
370

19.181
18.768
17.044
12.776
3.778
3.551
18.478
19.498
3.771

252
342
343
342
347
403
402
399
401
449
441
501
498
490
546
544
326
327
325
326
363
376
362
370
542
NA
548
325
216
209
253
138
138
118
39
43
277
273
349
351
127
126

JJ
7/17
256

198
186

17.106
16.940
16.382
6.371
2.034
1.965
17.437
17.382
2.034

217
304
304
303
303
39B
401
391
388
438
436
508
509
503
545
541
287
292
286
292
340
352
341
346
537
535
538
291
188
186
219
145
145
108
42
41
246
248
28B
292
111
108
TEST
J2
7/18
259

198
190

14.582
14.417
13.720
6.550
2.041
1.979
14.934
14.844
2.055

218
317
319
317
316
409
412
386
382
435
433
504
505
498
544
541
303
312
302
312
346
361
353
353
534
534
536
308
188
186
219
144
144
108
46
44
248
246
298
•vs
117
106
DATA
J2
5/9
433

377
373

19.271
18.850
17.175
12.852
3.840
3.627
18.692
19.560
3.847

248
331
339
339
329
398
399
396
400
433
433
488
489
486
532
532
326
326
311
313
344
351
342
350
544
NA
539
325
217
210
249
128
125
165
37
43
263
258
331
337
128
122

J4
5/9
433

375
374

19.285
18.871
17.237
12.866
3.847
3.627
18.657
19.588
3.820

247
340
345
342
341
399
401
399
401
434
436
493
494
487
537
536
327
328
311
313
344
349
341
347
542
NA
539
327
217
210
248
125
123
163
38
44
274
271
339
341
129
122

15
5/9
433

373
374

19.298
18.878
17.175
12.866
3.826
3.606
18.712
19.616
3.854

247
348
356
351
357
408
409
408
403
439
441
494
493
491
541
538
330
331
309
314
351
354
343
348
545
NA
542
329
217
210
248
129
127
170
38
41
271
263
346
351
129
125

J6
10/9
361

297
280

18.368
18.078
16.961
9.694
3.047
2.923
17.830
18.692
3^075

238
327
329
325
32B
408
407
407
404
446
440
SOB
501
496
551
544
317
322
299
304
340
347
342
339
546
543
546
318
206
202
238
144
139
157
47
42
263
270
327
331
122
121

J7
7/22
258

204
189

17.299
17.078
16.527
6.468
2.027
1.965
17.526
17.575
2.034

217
302
304
303
299
396
399
397
398
440
438
506
508
NA
545
537
284
289
283
289
337
344
332
333
542
525
538
288
186
185
216
141
137
107
39
40
247
247
288
292
117
110

18
7/21
260

204
190

17.050
16.844
16.265
6.536
2.027
1.965
17.375
17.313
2.034

217
304
306
304
304
399
399
396
393
440
435
509
507
NA
545
536
286
291
284
291
336
343
333
339
542
528
538
269
188
185
218
143
143
102
39
38
247
•249
290
296
115
111

J9
7/21
258

198
188

17.030
16.844
16.272
6.467
2.027
1.958
17.375
17.285
2.034

217
317
319
317
316
409
412
396
393
439
434
505
503
NA
547
537
286
292
285
292
336
343
333
338
540
531
537
290
188
186
218
144
144
104
39
42
250
248
298
302
116
109
                                                         250
                                                                                                              SHEET

-------
UTAH POWER J LIGHT COMPANY
HUNTINGTON CANYON K
C-E POWER SYSTEMS
FIELD TESTING AHO
PERFORMANCE RESULTS
                          BIASED     FIRING    OPERATION    STUDY
                                                  TEST DATA
TEST NO.

DATE
UNIT LOAD

FLOWS
FEEDWATER
IST STAGE STEAM

PRESSIRES
ECONOMIZER INLET
DRUM
SH OUTLET
TURBINE IST STAGE
RH INLET
RH OUTLET
SH SPRAY WATER
HP HTR FW INLET
HP HTR STM INLET

TEWERATURES
J_
1975 9/17
MW 430
KG/SEC
375
359
MPA
19.154
18.712
17.044
12.438
3.771
3.613
18,512
19.554
3.806
2
9/18
426

370
'59

19.133
18.636
16.940
13.397
3.764
3.592
18.450
19.512
3.792
3
9/20
434

369
359

19.098
13.616
16.913
12.417
3.778
3.613
NA
19.305
3.820
4
12/13
356

297
288

18.381
18.071
16.961
9.935
3.047
2.882
17.975
18.630
3.040
5
10/11
351

295
280

18.381
18.085
16.940
9.611
2.985
2.903
17.975
18.643
3.034
6
10/12
360

299
288

18.278
17.975
16.961
9.956
3.068
2.937
17.893
18.636
3.116
7
10/12
257

218
180

17.588
17.451
16.892
6.743
2.137
2.068
17.561
17.926
2.144
8
10/5
270

207
200

17.588
17.430
16.844
6.922
2.227
2.151
NA
17.933
2.248
                               °c
WATER AHO STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH DESH INLET LINK
SH DESH INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LINK
SH Div PANEL  OUTLET LINK
SH Div PANEL  OUTLET LINK
SH PENO SPCD  FRONT  INLET LINK
SH PEND SPCD  FRONT  INLET LINK
SH PEND SPCD  FRONT  INLET LINK
SH OUTLET
SH OUTLET
RH DESH INLET
RH OESH'lNHET
RH RADIANT WALL INLET
RH RADIANT WALL INLET
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH OUTLET
RH OUTLET
RH OUTLET
HP HEATER STM INLET
HP HEATER DRAIN
HP HEATER FW  IN
HP HEATER FW  OUT
SH DESH SPRAY WATER
SH DESH SPRAY WATER
RH DESH SPRAY WATER

L
LC
RC
R
R
L
L
R
L
R
: L
: C
: R
L
R
L
R
L
R
L
LC
RC
R
L
R
COMB.




L
p

249
329
333
331
333
402
398
402
397
432
422
479
476
468
521
517
315
314
313
314
351
363
348
349
530
542
538
314
217
211
250
133
134
134
248
330
333
331
333
401
399
400
399
432
423
488
484
473
529
521
319
318
317
318
356
366
348
344
543
538
542
318
217
212
249
139
140
141
249
332
336
333
333
402
403
401
403
442
427
502
493
477
543
525
327
326
314
316
359
374
344
341
551
531
543
327
217
211
251
131
132
166
238
314
315
313
318
393
397
393
397
438
444
508
515
507
546
543
315
317
314
317
353
368
356
354
552
527
541
316
205
202
238
126
126
142
237
319
322
319
323
403
399
403
399
438
433
495
496
489
536
536
306
309
301
306
337
350
342
336
531
543
539
308
206
201
237
123
124
157
238
319
321
318
321
398
396
398
396
438
433
508
501
502
544
540
314
316
309
312
349
364
752
346
544
547
546
316
207
202
239
124
125
156
219
302
304
301
306
398
395
398
395
438
434
506
507
505
540
543
286
291
284
292
329
348
337
333
526
542
536
289
189
187
220
117
117
116
221
312
313
312
313
405
404
390
387
435
424
509
505
492
547
539
288
NA
287
294
336
350
335
3S9
546
543
548
292
192
188
222
147
147
117
AIR AND GAS
AH AIR INLET
AH AIR INLET
AH AIR OUTLET
AH AIR OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET
1
u
R
L
p
L
R
L
R
37
37
279
278
348
351
132
124
37
39
277
275
347
349
132
122
37
41
280
277
349
349
133
116
43
43
261
268
314
322
120
120
42
rr
265
271
311
326
125
127
46
43
261
265
319
322
121
115
49
47
244
249
291
293
117
111
48
46
248
253
299
301
121
119
                                                    251
                                                                                                    SHEET B9

-------
 UTAH POWER  t LIGHT COMPANY
 HUNTINGTON  CANTON #2
                                                             C-E POWER SYSTEMS
                                                             FIELD TESTING AND
                                                             PERFORMANCE RESULTS
                           BIASED     FIRING    OPERATION   STUDY
 TEST NO.

 DATE
 UNIT LOAD

 FLOWS
 FEEOWATER
 IST  STAGE STEAM

 PRESSURES
 ECONOMIZER INLET
 DRUM
 SH OUTLET
 TURBINE IST STAGE
 RH  INLET
 RH OUTLET
 SH SPRAY WATER
 HP HTR FW INLET
 HP HTR STM INLET

 TEMPERATURES
TEST DATA

1975
MW
KG/SEC


HP*









9
9/17
429

375
357

19.174
18.657
16.989
12.397
3.771
3.59S
18.457
19.581
3.799
10
9/18
428

370
360

19.154
18.671
17.023
12.486
3.778
3.613
18.416
19.609
3.806
21
9/18
429

369
359

19.098
18.657
16.961
12.438
3.778
3.613
18.485
19.526
3.806
\Z
10/11
351

295
277

18.381
18.050
16.927
9.577
2.978
2.896
17.699
18.726
3.013
12
12/13
356

299
288

18.368
18.064
16.858
9.942
3.040
2.896
18.023
18.761
3.040
_14
12/13
356

299
285

18.416
18.037
16.906
9.908
3.040
2.875
17.975
18.685
3.040
25
7/23
256

201
186

17.264
17.058
16.534
6.467
2.006
1.944
17.588
17.520
2.013
26
7/24
259

204
190

17.299
17.113
16.575
6.640
2.048
1.986
17.637
17.602
2.041
°C
WATER AND STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH DESH INLET LINK
SH DESH INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LINK
SH Div PANEL OUTLET LINK
SH Div PANEL OUTLET LINK
SH PEND SPCO FRONT  INLET LINK
SH PEND SPCO FRONT  INLET LINK
SH PEND SPCD FRONT  INLET LINK
SH OUTLET
SH OUTLET
RH DESH INLET
RH DESH INLET
RH RADIANT WALL INLET
RH RADIANT WALL INLET
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH OUTLET
RH OUTLET
RH OUTLET
HP HEATER STM INLET
HP HEATER DRAIN
HP HEATER FW IN
HP HEATER FW OUT
SH DESH SPRAY WATER
SH DESH SPRAY WATER
RH DESH SPRAY WATER

AIR AND GAS
AH AIR INLET
AH AIR INLCT
AH AIR OUTLET
AH AIR OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET

L
LC
RC
R
R
L
L
R
L
R
i L
i C
: R
L
R
L
R
L
R
L
LC
RC
R
L
R
COMB.




L
R

248
331
336
334
335
403
399
403
399
431
423
477
474
466
518
513
311
311
309
311
343
357
341
339
518
532
530
311
217
211
249
134
134
152
248
334
337
334
337
405
402
404
402
437
429
494
494
488
537
535
327
NA
312
314
346
360
346
342
533
541
539
327
217
211
251
133
134
165
249
336
339
336
339
407
405
406
404
438
431
494
488
479
537
529
327
NA
310
314
348
358
343
340
542
539
542
326
217
211
250
152
152
166
236
322
326
3SS
325
404
402
404
402
438
435
494
496
491
537
536
307
309
306
309
342
354
346
340
534
541
539
308
206
201
237
127
127
145
237
318
318
316
323
397
399
396
399
436
445
503
505
511
542
544
312
314
311
314
350
359
352
355
547
534
540
313
205
201
238
131
131
147
238
319
319
320
324
398
399
397
398
442
442
512
506
505
547
542
313
316
310
314
358
364
350
352
549
532
540
314
205
201
23S
140
138
156
217
304
307
305
303
400
401
398
396
441
438
504
510
499
545
542
287
291
286
291
329
346
338
337
532
533
538
289
187
185
21 B
143
143
104
217
304
306
303
304
399
402
393
390
437
437
501
504
502
543
541
286
291
284
291
334
351
339
345
536
NA
537
289
188
185
218
143
143
104
L
R
L
R
L
R
L
R
36
37
279
278
350
353
132
125
37
39
277
276
344
351
132
124
37
38
280
278
351
355
132
124
43
41
263
268
322
328
123
119
43
42
262
271
320
326
124
121
43
42
262
269
315
329
122
121
40
39
247
249
286
292
119
113
40
40
248
248
290
294
122
112
                                                     252
                                                                                                     SHEET BIO

-------
UTAH POWER  t LIGHT COMPANY
HUNTINGTON  CANYON IS
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                           OVERFIRE    AIR   OPERATION    STUDY
TEST NO.

DATE
UNIT LOAD

FLOWS
FEEOWATER
IST STAGE STEAM

PRESSURES
ECONOMIZER INLET
DRUM
SH OUTLET •
TURBINE IST STAGE
RH INLET
RH OUTLET
SH SPRAY WATER
HP HTR FW INLET
HP HTR STM INLET

TEMPERATURES


1975
MW
KO/SEC


MP»










_]_
9/17
428

369
358

19.126
18.657
16.975
12.452
3.765
3.606
18.471
19.478
3.799
TEST
S
9/26
430

372
364

19.167
18.685
17.009
12.569
3.771
3.613
18.388
19.809
3.799
DATA
3
9/26
430

372
364

19.195
18.726
17.023
12.569
3.785
3.613
16.388
19.733
3.806

£
9/26
430

370
362

19.188
18.692
17.009
12.528
3.792
3.627
18.388
19.588
3.827

5_
9/26
431

370
364

19.236
18.726
17.037
12.590
3.806
3.627
18.388
19.657
3.827

6
10/1
430

372
362

19.209
18.678
16.961
12.535
3.771
3.592
18.388
19.540
3.785

7
10/1
429

372
252

19.147
18.685
17.009
12.535
3.771
3.613
18.388
19.650
3.799

8
10/1
428

370
360

19.133
18.643
16.969
12.500
3.765
3.599
18.368
19.560
3.799
                               °C
WATER AND STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH DESH INLET LINK
SH DESH INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LINK
SH Div PANEL  OUTLET LFNK
SH Div PANEL  OUTLET LINK
SH PEND SPCD  FRONT  INLET LINK
SH PEND SPCD  FRONT  INLET LINK
SH PENO SPCD  FRONT  INLET LINK
SH OUTLET
SH OUTLET
RH DESH INLET
RH DESH INJ.ET
RH RADIANT WALL INLET
RH RADIANT WALL INLET
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH OUTLET
RH OUTLET
RH OUTLET
HP HEATER STM INLET
HP HEATER DRAIN
HP HEATER rw IN
HP HEATER FW OUT
SH DESH SPRAY WATER
SH DESH SPRAY WATER
RH DESH SPRAY WATER

AIR AMO GAS
AH AIR INLET
AH AIR INLET
AH AIR OUTLET
AH AIR OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET

L
LC
RC
R
R
L
L
R
L
R
L
C
R
L
R
L
R
L
R
L
LC
RC
R
L
R
COMB.




L
R

249
336
339
336
339
406
404
406
403
437
429
492
489
480
534
529
324
323
316
316
351
363
346
344
539
539
540
323
217
211
250
136
137
166
248
334
337
334
338
407
402
406
401
438
429
490
482
479
531
527
322
NA
314
315
350
357
347
352
533
'544
538
321
216
211
249
130
131
166
248
334
337
334
337
406
403
405
402
438
429
491
•185
476
534
526
322
NA
314
314
348
359
348
349
536
539
538
322
216
211
249
131
132
166
249
333
337
334
336
404
402
403
402
440
430
496
490
481
538
529
326
326
311
312
346
361
347
347
534
539
539
325
217
211
250
132
132
166
249
335
339
337
336
404
403
404
403
439
432
493
488
477
537
527
324
323
311
312
347
360
345
342
538
534
539
324
217
211
250
132
132
166
248
330
334
332
334
404
4OO
404
400
440
430
496
489
480
537
530
326
NA
324
324
359
368
359
357
54?
550
548
325
216
211
249
132
133
132
248
?30
334
331
333
403
401
4O3
400
436
429
491
483
475
533
523
321
NA
319
319
354
362
354
152
543
539
542
321
216
211
249
132
133
132
248
331
335
333
334
405
402
404
402
438
431
491
486
476
534
526
322
323
321
322
358
364
156
151
546
541
545
322
216
211
249
132
133
132
1
L
P
L
R
L
R
L
R
37
36
281
279
351
356
133
125
13
44
282
276
337
348
138
122
32
43
283
276
338
348
138
122
32
43
281
273
338
346
137
120
32
43
282
274
340
146
138
121
43
30
272
285
339
349
126
129
43
31
272
284
339
348
126
129
43
30
274
284
341
?47
125
131
                                                     253
                                                                                                  SHEET B11

-------
 UTAH POWER & LIGHT COMPANY
 HUNTINGTON CANYON f2
C-E POWER SYSTEMS
FIELD TESTING  AND
PERFORMANCE RESULTS
                             OVERFIRE     AIR    OPERATION    STUDY
 TEST NO.

 DATE
 UNIT LOAD

 FLOWS
 FEEDVATER
 IST  STAGE STEAM

 PRESSURES
 ECONOMIZER INLET
 DRUM
 SH OUTLET•
 TURBINE IST STAGE
 RH  INLET
 RH OUTLET
 SH SPRAY WATER
 HP HTR FW INLET
 HP HTR STM INLET

 TEMPERATURES
TEST DATA

1975
MW
CG/SEC


MPA









9
9/27
428

369
365

19.195
18.726
16.975
12.604
3.771
3.599
18.388
19.664
3.799
JO
10/1
429

369
362

19.147
18.685
16.989
12.535
3.751
3.627
18.388
19.595
3.758
JM
10/1
430

370
362

19.147
18.678
17.003
12.521
3.758
3.585
18.388
19.560
3.765
.12
10/5
487

370
360

19.078
18.685
16.989
12.500
3.751
3.599
18.388
19.588
3.806
11
10/4
434

364
360

19.119
18.650
16.996
12.500
3.778
3.606
18.388
19.595
3.827
If.
10/5
422

370
359

19.119
18.678
16.947
12.466
3.751
3.585
18.388
.19.595
3.792
-15
10/4
429

370
362

19.092
18.657
16.996
12.535
3.771
3.606
18.388
19.526
3.799
.16
10/3
427

372
360

19.119
18.630
16.989
12.486
3.771
3.599
18.388
19.547
3.799
                               °c
WATER AND STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH DESH INLET LINK
SH DESH INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LINK
SH Div PANEL  OUTLET  LINK
SH Div PANEL  OUTLET  LINK
SH PENO SPCO  FRONT  INLET LINK
SH PEND SPCO  FRONT  INLET LINK
SH PEND SPCD  FRONT  INLET LINK
SH OUTLET
SH OUTLET
RH DESH INLET
RH DESH INLET
RH RADIANT WALL INLET
RH RADIANT WALL INLET
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH OUTLET
RH OUTLET
RH OUTLET
HP HEATER STM INLET
HP HEATER DRAIN
HP HEATER FW  IN
HP HEATER FW  OUT
SH DESH SPRAY WATER
SH DESH SPRAY WATER
RH DESH SPRAY WATER

AIR AND GAS
AH AIR INLET
AH AIR INLET
AH AIR OUTLET
AH AIR OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET

L
LC
RC
R
R
L
L
R
L
R
: L
: C
; R
L
R
L
R
L
R
L
LC
RC
R
L
R
COMB.




L
R

248
341
342
338
343
406
404
406
403
436
428
489
484
479
531
525
321
NA
319
319
351
359
347
346
539
540
539
320
216
210
249
131
132
124
248
341
344
342
342
409
407
409
407
438
436
489
492
483
537
533
326
NA
324
325
354
364
352
349
541
539
543
325
216
210
249
131
132
130
248
341
344
342
342
409
40B
409
408
441
437
489
493
482
537
533
326
NA
324
325
354
365
354
348
541
539
543
325
216
210
249
132
132
131
248
333
334
330
332
400
401
399
401
432
428
487
482
479
529
523
319
NA
317
318
355
362
349
345
548
532
540
318
216
211
249
138
138
136
249
333
337
335
338
408
402
407
402
446
436
503
500
489
546
539
333
NA
320
321
352
365
357
352
541
554
550
332
217
211
250
137
138
166
248
328
332
329
329
398
398
398
398
432
425
485
500
489
526
514
315
NA
313
314
350
362
343
337
534
516
529
314
216
209
248
143
143
147
248
331
333
331
333
401
399
401
398
438
429
494
491
480
534
527
323
NA
322
322
354
367
355
353
541
545
544
323
216
211
249
141
141
164
248
329
335
333
332
402
398
402
398
435
430
484
492
481
528
530
322
NA
314
315
348
355
348
341
528
538
538
322
216
211
249
151
147
166
L
R
L
R
L
R
L
R
34
39
280
276
342
352
135
124
41
31
277
284
351
354
128
131
41
31
278
285
350
355
129
132
39
34
277
281
343
348
131
131
39
33
277
284
343
352
130
130
41
35
274
279
341
346
129
122
40
34
275
281
342
348
131
131
35
. 34
274
281
343
346
129
128
                                                      254
                                                                                                     SHEET B12

-------
UTAH POWER & LIGHT COMPANY
HUNTINOTON CANYON fS
C-E POWER SYSTEMS
FIELD TESTING »HD
PERrORMANCE RESULTS
                       OVERFIRE    AIR    OPERATION   STUDY
TEST NO.

DATE
UNIT LOAD

FLOWS
FEEDWATER
IST STAGE STEAM

PRESSURES
ECONOMIZER INLET
DRUM
SH OUTLET •
TURBINE IST STAGE
RH INLET
RH OUTLET
SH SPRAY WATER
HP HTR FW INLET
HP HTR STM INLET

TEMPERATURES

17
'975 10/3
MW 424
KO/SEC
377
362
MPA
19.092
18.650
16.968
12.521
3.778
3.613
18.388
19.526
3.799
TEST DATA
JI8
10/3
429

367
362

19.099
18.643
16.996
12.500
3.778
3.599
18.388
19.547
3.820

_19
10/6
417

374
359

19.105
18.733
16.996
12.486
3.751
3.599
18.388
19.547
3.799

20
10/8
426

377
360

19.188
18.761
16.996
12.500
3.765
3.599
18.388
19.560
3.799

21
10/9
356

299
282

18.381
18.099
16.996
9.770
3.034
2.896
18.009
18.712
3.075

22
10/9
358

299
282

18.45n
18.092
16.927
9.756
3.054
2.965
18.044
18.747
3.075

23
10/12
253

218
193

17.623
17.416
16.927
6.640
2.213
2.096
17.568
17.933
2.213

24
10/5
265

216
199

17.561
17.389
16.727
6.847
2.199
S.082
17.533
17.899
2.213
                               °C
WATER AND STEAM
ECONOMIZER INLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
ECONOMIZER OUTLET
SH DESH INLET LINK
SH DESH INLET LINK
SH DESH OUTLET LINK
SH DESH OUTLET LiNK
SH Dlv PANEL OUTLET LINK
SH Div PANEL OUTLET LINK
SH PENO SPCD FRONT INLET LINK
SH PEND SPCD FRONT INLET LINK
SH PENO SPCO FRONT INLET LINK
SH OUTLET
SH OUTLET
RH DESH INLET
RH DESH INJ.ET
RH RADIANT WALL INLET
RH RADIANT WALL INLET
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH RADIANT WALL OUTLET LINK
RH OUTLET
RH OUTLET
RH OUTLET
HP HEATER STM  INLET
HP HEATER DRAIN
HP HEATER FVI IN
HP HEATER FW OUT
SH DESH SPRAY WATER
SH DESH SPRAY WATER
RH DESH SPRAY WATER

AIR AND GAS
AH AIR INLET
AH AIR INLET
AH AIR OUTLET
AH Am OUTLET
AH GAS INLET
AH GAS INLET
AH GAS OUTLET
AH GAS OUTLET

L
LC
RC
R
R
L
L
R
L
R
L
C
R
L
R
L
R
L
R
L
LC
RC
R
L
R
COMB.




L
R

248
328
332
329
331
399
397
399
397
434
424
482
481
468
522
516
313
NA
301
302
334
346
332
331
514
516
518
312
216
210
249
137
137
164
249
332
336
333
334
403
401
403
401
438
432
493
491
486
536
534
327
NA
312
314
351
358
347
343
539
538
541
327
217
211
250
143
141
165
247
327
328
326
328
396
396
396
395
429
423
486
484
473
526
518
316
316
314
316
352
362
346
343
541
536
536
316
215
209
248
133
133
144
248
326
329
326
329
397
396
397
394
432
423
487
464
471
595
517
315
314
313
314
348
361
344
344
527
526
528
314
216
210
249
135
1?6
131
237
316
318
314
317
396
396
395
395
436
428
496
498
486
534
528
303
306
T02
305
339
359
341
336
529
526
•529
304
2"6
202
238
126
127
135
237
322
326
321
323
402
403
402
403
444
436
499
499
486
542
533
308
313
301
304
342
357
339
337
542
531
539
310
206
2O2
238
134
1?4
157
218
299
TOO
297
301
392
391
391
391
429
423
497
493
484
528
522
271
277
270
277
313
327
31?
311
511
509
511
274
189
186
219
119
121
118
220
305
307
305
306
396
397
396
392
441
426
513
515
490
549
536
286
292
284
292
T29
342
326
324
529
522
530
289
191
187
221
144
145
122
L
p
L
R
L
R
L
R
40
34
274
280
340
345
129
128
39
34
276
281
346
348
129
128
39
34
273
278
337
346
129
128
41
36
273
278
337
346
129
127
42
42
262
267
317
322
123
123
47
43
261
268
325
328
121
121
49
49
242
247
288
290
117
116
48
44
244
251
296
298
121
116
                                                    255
                                                                                                   SHEET 813

-------
UTAH POWER & LIOHT COMPANY
HUNTINGTON CANVON *2
C-E POWER SYSTEMS
FIELD  TESTING AND
PERFORMANCE RESULTS
                                                       BASELINE   OPERATION    STUDY
TEST NO.

DATE                                        1975
UNIT LOAD                                     Mw

FLOWS                                       KO/S
FEEDWATER (MEASURED^
AUXILIARY STEAM  . SH (PLANT INSTRUMENTATION!
SH SPRAY  (HEAT BALANCED
MAIN STEAM (CALCULATED^
Tuna INC LEAKAGE  (TURBINE HEAT BALANCED
HP HTR. EXTRACTION (HEAT BALANCED
RH SPRAY  (HEAT BALANCED
RH STEAM  (CALCULATED^

UNIT ABSORPTION                              MJ/s
ECONOMIZER
FURNACE
DRUM - SH OESH
SH DESH - SH OUTLET
REHEATER
TOTAL

UNIT EFFICIENCY                                 %
DRY GAS Loss
MOISTURE  IN FUEL Loss
MOISTURE  IN AIR Loss
RADIATION Loss
ASM PIT Loss
HEAT IN FLY ASH Loss
PYRITE REJECTION Loss
CARBON Loss
TOTAL Losses
EFFICIENCY

HEAT INPUT                                  MJ/s
HEAT INPUT FROM FUEL

EXCESS AIR                                     <
AIR HEATER INLET
Am HEATER OUTLET
TEST RESULTS
1
5/7
489
375
0.4
1
376
7
32
0
337
153
371
142
196
172
1035
3.55
5.35
0.11
0.19
0.34
0.02
0.01
0.52
10.08
B9.92
1152
18.9
26.7
2
5/5
427
375
0.4
5
380
7
32
1
343
171
353
149
212
182
1068
3.71
4.89
0.11
0.18
0.34
0.02
Q.01
0.37
9.63
90.37
1182
27.4
37.2
2A
5/7
428
377
0.4
0
377
7
30
0
339
177
352
153
190
170
1041
3.96
4.99
0.12
0.18
0.32
0.02
0.01
0.82
9.84
90.16
1155
32.9
42.8
3
5/7
428
377
0.4
3
380
7
31
0
342
189
340
163
190
170
1051
4.27
5.13
0.13
0.18
0.36
0.03
0.01
0.31
10.44
89.56
1173
40.9
52.1
4
10/10
360
295
0.4
4
298
6
23
2
272
141
294
126
153
149
862
4.12
4.99
0.13
0.22
0.33
0.02
0.01
0.12
9.95
90.05
958
28.9
52.1
5
7/16
S59
201
0.4
3
204
4
13
0
186
82
241
71
112
99
605
3.07
4.94
0.09
0.31
0.29
0.01
0.01
0.23
8.95
91.05
665
23.7
40.0
6
7/15
260
198
0.4
5
203
4
13
0
186
87
232
76
109
103
608
3.18
4.78
0.10
0.31
0.30
0.01
0.01
0.30
8.99
91.05
668
32.1
40.9
7
7/16
258
195
1.1
a
203
4
13
0
185
100
214
83
108
102
607
3.70
4.92
0.11
0.31
0.30
0.01
0.01
0.12
9.49
90.51
671
50.0
67.9
8
5/5
430
375
0.4
3
378
7
33
5
342
162
361
150
205
184
1063
3.70
- 5.04
0.11
0.18
0.33
0.02
0.01
0.68
10.07
89.93
1182
19.5
33.7
9
4/30
428
377
0.4
0
377
7
35
0
335
160
363
150
191
168
1038
3.90
5.06
0.12
0.19
0.32
0.02
0.01
0.29
9.90
90.10
1146
29.0
40.1

-------
UTAH POWER  '.  LIGHT COMPANY
HUNTIMGTON  CANYON f2
                                                                                         t-E POVKK SYSTCW9
                                                                                         FIELD TEST mo AND
                                                                                          PERFORMANCE RESULTS
                                                       BASELINE    OPERATION   STUDY
                                                                       TEST RESULTS
TEST NO.

DATE
UNIT LOAD

FLOWS
FEEDWATER (MEASURED^
AUXILIARY STEAM - SH  (PLANT  INSTRUMENTATION)
SH  SPRAY (HEAT BALANCE)
MAIN STEAM (CALCULATED)
TURBINE LEAKAGE (TURBINE  HEAT BALANCED
HP  HTR. EXTRACTION (HEAT  BALANCE)
RH  SPRAY (HEAT BALANCE)
RH  STEAM (CALCULATED)

 UNIT ABSORPTION
 ECONOMIZER
 FURNACE
 DRUM - SH  DESH
 SH DESH -  SH OUTLET
 REHEATER
 TOTAL

 UNIT EFFICIENCY
 DRY GAS Loss
 MOISTURE IN FUEL Loss
 MOISTURE IN AIR Loss
 RADIATION Loss
  ASH PIT Loss
  HEAT  IN FLY ASH Loss
  PYRITE REJECTION Loss
  CARBON Loss
  TOTAL  LOSSES
  EFTicIENCY

  HEAT INPUT
  HEAT INPUT  TROM FUEL

  EXCESS AIR
  AIR HEATER  INLET
  AIR HEATER  OUTLET
1975
  MW
MJ/s
 MJ/s
.10
5/1
428
374
0.4
2
375

7
36
0
333
188
328
156
199
172
1042
4.37
5.09
0.13
0.18
0.33
0.02
0.01
0.23
10.36
89.64
1163
40.9
55.4
JJ_
7/17
256
198
0.4
5
203

4
13
0
186
84
236
74
110
102
606
3.05
4.93
0.09
0.31
0.29
0.01
0.01
0.24
8.93
91.07
666
27.4
36.4
^2
7/18
259
198
0.4
9
208

4
13
0
190
99
236
81
106
96
619
3.50
4.88
0.11
0.31
0.30
0.01
O.O1
0.13
9.25
90.75
682
48.8
61.3
_K3
5/9
433
377
0.4
0
377
7
f
32
5
343
174
351
149
191
184
1049
3.53
4.90
0.11
0.18
0.34
0.02
0.01
0.53
9.62
90.38
1161
15.0
25.9
I*
5/9
433
375
0.4
0
375
7
31
6
342
193
331
150
191
183
1049
3.63
4.87
0.11
0.18
0.34
0.02
0.01
0.50
9.66
90.34
1161
20.2
30.5
JJ5
5/9
433
374
0.4
2
375
7
31
7
345
225
297
167
184
187
1059
3.94
4.93
0.12
0.18
0.34
0.02
0.01
0.15
9.70
90.30
1172
35.5
44.8
!§
10/9
361
297
0.4
1
298
6
23
0
269
137
301
127
148
151
864
3.53
4.93
0.11
0.22
0.32
0.01
0.01
0.09
9.22
90.78
951
23.0
38.2
V7
7/22
258
204
0.4
0
204
4
14
0
186
86
243
74
102
101
606
3.35
4.95
0.10
0.31
0.31
0.01
0.01
0.21
9.26
90.74
668
25.2
39.1
J_8
7/21
260
204
0.4
206

14
0
188
87
243
76
104
104
613
3.60
4.96
0.11
0.31
0.32
0.01
0.01
0.26
9.57
90.43
678
28.9
47.8
JjJ
7/21
258
198
0.4
205
4

13
0
187
100
221
84
105
103
613
3.85
4.85
0.12
0.31
0.33
O.02
0.01
0.17
9.66
90.34
678
47.8
61.4

-------
                    UTAH POWER 4 LIOHT COMPANY
                    HUNTINGTON CANYON *8
                                                                                                                                     C-E POWER SYSTEMS
                                                                                                                                     FIELD TESTING »ND
                                                                                                                                     PERFOBMANCE RESULTS
                                                                           BASELINE  OPERATION    STUDY
CD
0>
TEST NO.

DATE
UNIT LOAD

PRODUCTS OF COMBUSTION

AIR HEATER  INLET
DAY AIR!
WET AIR
DRY PRODUCTS
WET PRODUCTS

AIR HEATER OUTLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS

GAS AND AIR FLOWS
GAS ENTERiNQ AIR HEATER
GAS LEAVING AIR HEATER
AIR ENTERING AIR HEATER
AIR LEAVING AIR HEATER
AIR HEATER LEAKAGE

AIR HEATER PERFORMANCE
AIR HEATER LEAKAGE
GAS SIDE EFFICIENCY
GAS DROP
AIR RISC
TEMPERATURE HEAD

FUEL ANALYSIS
CARBON
HYDROGEN
NITROGEN
OXYGEN
SULFUR
MOISTURE
ASH
HHV
                                                               X(G/J
                                                               KG/S
                                                                  °C
                                                                  °C
                                                                  °c
Kj/KG
TEST RESULTS
1
5/7
429
425
432
405
414
335
399
440
468
508
539
498
467
31
6.0
70.8
806
831
291
63.30
4.90
0.90
12.10
0.50
8.40
9.90
25144
2
5/5
437
438
445
413
419
319
406
450
477
526
564
526
486
36
7.2
70.4
208
231
296
65.50
5.10
1.20
9.30
0.70
7.30
10.90
27889
8A
5/7
428
458
466
434
439
321
427
471
498
538
575
538
501
37
6.9
70.6
214
831
303
67.30
5.30
0.80
9.50
0.50
7.70
8.90
88517
3
5/7
428
489
497
460
466
321
453
502
530
579
622
583
540
43
7.4
70.7
219
234
309
61.20
4.80
0.80
9.90
0.50
8.10
14.70
25726
4
10/10
360
487
496
420
426
381
413
500
528
434
506
475
402
72
16.7
67.1
193
228
288
65.30
5.10
1.30
9.40
0.50
8.10
10.30
27679
5
7/16
259
442
450
397
404
316
391
456
483
286
321
299
264
35
12.2
69.5
170
203
244
66.80
5.20
1.10
11.60
0.50
8.70
6.10
28424
6
7/15
260
452
460
431
437
321
424
465
491
309
328
307
288
19
6.2
71.5
181
208
253
68.30
5.30
1.30
9.70
0.50
6.70
8.20
28866
7
7/16
258
533
542
484
489
317
476
546
574
346
385
363
324
39
11.2
71.3
185
207
260
66.30
5.10
1.20
10.60
0.50
8.80
7.50
28168
B
5/5
430
430
438
391
397
322
385
443
470
500
555
517
462
55
11.0
69.0
204
233
296
66.30
5.30
0.90
10.10
0.50
7.10
9.80
27912
9
4/30
428
447
454
418
426
319
412
461
488
518
560
521
480
41
8.0
69.9
211
232
301
64.80
5.00
0.90
12.40
0.50
8.20
8.20
27075

-------
UTAH POWER A LroHT COMPANY
HUNTINGTON CANYON 0S.
                                                                                         C-E POWER SY&TEHS
                                                                                         FIELD TCSTIHQ AND
                                                                                          PERFORMANCE RESULTS
                                                      BASELINE    OPERATION    STUDY
                                                                      TEST RESULTS
TEST NO.

DATE
UN IT LOAD

PRODUCTS OF COMBUSTION

AIR HEATER IHUCT
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS

AIR HEATER OUTLET
DRV AIR
WET AIR
DRV PRODUCTS
WET PRODUCTS

GAS AND AIR FLOWS
GAS ENTERING AIR HCATCR
 GAS LEAVING AIR HEATER
 AIR ENTERING AIR HEATER
 AIR LEAVING AIR HEATER
 AIR HEATER LEAKAGE

 AIR HEATER PERFORMANCE
 AIR HEATER LEAKAGE
 GAS SIDE  frr icicricv
 GAS DROP
 AIR RISC
 TEMPERATURE HEAD

 FUEL ANALYSIS
 CARBON
 HYDROGEN
 NlTROCEN
 OXYGEN
 SULFUR
 MOISTURE
 ASH
 HHV
 1975
  W

X6/J
 KG/S
Kj/K
JO
5/1
428
499
508
460
466
321
453
512
540
573
62B
590
535
55
9.6
70.1
216
03-1
109
65.60
ri.20
^.90
10.61
0.40
8.00
9.30
27633
11
7/17
256
432
44O
411
417
317
404
446
473
295
315
293
273
19
6.6
70.9
176
206
249
66.50
5.10
1.30
10.60
0.50
9.00
7.00
28238
J2
7/18
259
516
525
464
489
320
476
529
557
352
380
358
330
28
7.9
72.2
184
202
255
67.30
S.30
1.20
9.50
0.50
7.70
8.50
28633
J3
5/9
433
401
407
372
380
318
366
414
440
470
511
473
432
41
8.7
68.8
202
221
293
64.20
4.90
1.10
10.30
0.50
7.50
11.50
27051
J4
5/9
433
415
422
389
396
318
382
429
454
489
528
490
451
39
7.9
69.7
208
231
299
64.80
4.90
1.20
10.10
0.50
7. BO
10.70
27331
J5
5/9
433
464
472
442
448
320
434
478
505
556
592
553
518
35
6.4
71.9
222
228
309
63.80
4.90
1.00
10.20
0.80
7.60
11.70
26865
16
10/9
361
446
454
404
410
323
397
459
486
415
462
431
384
48
11.4
70.3
200
ess
284
57.70
5.20
1.20
•1.40
0.50
8.40
7.60
28447
17
7/22
258
443
450
405
412
318
398
456
483
292
323
300
27O
30
10.3
67.9
170
207
250
66.80
5.10
1.30
10.80
0.50
9.00
6. 5O
28214
J8
7/21
260
473
481
420
426
320
413
486
513
306
348
326
285
42
13.6
67.3
171
209
254
67.50
5.30
1.30
9.70
0.50
8.00
7.70
28633
J9
7/21
258
520
529
484
489
322
476
533
561
350
380
359
329
30
8.6
70.1
182
209
260
67.00
5.20
1.20
9.50
0.50
7.00
9.60
28214

-------
UTAH POWER & LIGHT COMPANY
HUNTINGTON CANYON *2
C-t POWER SYSTEMS
FitLD  TESTING AND
PERFORMANCE RESULTS
                                                         BIASED   FIRING    OPERATION    STUDY
                                                                              TEST RESULTS
TEST HO.

DATE
UNIT LOAD

FLCWS
TetDwATER (MEASURED^
AUXILIARY STEAM  - SH (PLANT INSTRUMENTATION^
SH SPRAY (HEAT BALANCED
MAIN STEAM (CALCULATED)
TURBINE LEAKAGE  (TURBINE HEAT BALANCE 1
HP HTR. EXTRACTION (HEAT BALANCE!
RH SPRAY ('HEAT BALANCE)
RH STEAM (CALCULATED)

UNIT ABSORPTION
ECONOMIZER
FURNACE
DRUM - SH DESH
SH DESH . SH OUTLET
REHEATER
TOTAL

UNIT EFFICIENCY
DRY GAS Loss
MOISTURE IN FUCL Loss
MOISTURE IN AIR  Loss
RADIATION Loss
ASH PIT Loss
HEAT IN FLY ASH  Loss
PYRITE REJECTION Loss
CARBON Loss
TOTAL LOSSES
EFFICIENCY

HEAT INPUT
HEAT INPUT FROM  FUEL

EXCESS AIR
AIR HEATCR INLET
AIR HEATER OUTLET

1975
MW
KO/S

i)






MJ/S






*










MJ/s
*

Jl
9/17
430

375
0.4
0
375
7
32
1
336

164
360
150
173
177
1023

4.13
5.01
0.13
0.19
0.35
0.02
0.01
0.26
10.09
89.91
1138
19.8
36.4
2
9/18
426

370
0.4
1
371
7
30
0
334

163
357
149
177
175
1020

3.71
4.99
0.11
0.19
0.32
0.02
0.01
0.25
9.60
90.40
1128
21.5
26.2
3
9/20
434

T69
0.4
0
368
7
32
4
334

166
350
152
180
178
1025

3.85
5.00
0.12
0.19
0.31
0.02
0.01
0.55
10.03
89.97
1140
20.9
36.4
4
18/13
356

297
0.3
0
297
6
23
0
268

114
323
107
161
13B
843

3.63
4.90
0.11
0.23
0.36
0.02
0.01
0.61
9.86
90.14
935
16.8
35.4
5
10/11
351

295
0.4
0
295
6
23
1
268

126
310
117
144
144
841

3.97
4.91
0.12
0.23
0.32
0.01
0.01
0.20
9.77
90.23
932
19.9
37.3
6
10/12
360

299
0.4
0
299
6
23
1
271

124
318
111
157
147
857

3.26
4.89
0.10
0.22
0.32
0.01
0.01
0.22
9.03
90.97
942
20.8
34.2
7
10/12
257

218
0.4
0
218
5
15
0
199

90
2S6
79
112
109
646

2.97
4.83
0.09
0.29
0.34
0.01
0.01
0.46
9.01
90.99
710
22.6
37.3
8
10/5
270

207
0.4
B
214
4
14
0
196

93
233
83
120
112
641

3.34
4.85
0.10
0.30
0.32
0.01
0.01
0.22
9.16
90, B4
706
24.4
38.1
9
9/17
429

375
0.4
0
375
7
32
0
336

170
355
152
165
171
1014

4.28
4.96
0.13
0.19
0.34
0.02
0.01
0.28
10.20
89.80
1129
26.3
40.0
U>
9/10
428

370
0.4
0
370
7
32
5
336

172
347
155
180
178
1031

4.35
4.76
0.13
0.19
0.33
0.02
0.01
0.24
10.03
89.97
1147
27.4
47.4
jM
9/18
429

369
0.4
0
369
7
31
6
336

175
340
159
172
182
1028

3.98
5.07
0.12
0.19
0.32
0.02
0.01
0.18
9.87
90.13
1141
29.3
31.7
J2
10/11
351

295
0.4
0
295
6
23
0
266

132
305
119
141
141
839

3.79
5.06
0.12
0.23
0.34
0.01
0.01
0.22
9.79
90.21
930
29.3
41.9
12
12/13
356

299
0.3
0
299
6
24
0
270

124
319
114
157
142
855

4.06
4.89
0.13
0.22
0.32
0.01
0.01
0.38
10.03
89.97
950
28.0
48.7
14
12/13
356

299
0.3
0
299
6
24
1
270

125
316
113
158
142
854

3.89-
4.99
0.12
0.22
0.31
0.02
0.01
0.41
9.96
90.04
948
31.7
49.9
15
7/23
256

201
0.4
2
203
4
13
0
185

87
237
76
103
101
604

3.47
4.86
0.11
0.31
0.33
0.02
0.01
0.12
9.23
90.77
665
25.1
39.5
J6
7/24
259

204
0.4
6
210
4
14
0
192

88
241
77
117
106
629

3.52
4.93
0.11
0.30
0.32
0.02
0.01
0.20
9.42
90.58
694
24.7
38.1

-------
                                                        BIASED   FIRING    OPERATION    STUDY
                                                                             TEST RESULTS
TtST NO.

DATE
UNIT LOAD

PRODUCTS OF CCTBUSTION

AIR HEATER  INLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS

AIR HEATER  OUTLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS

GAS AND AIR FLOWS
GAS ENTER INC AIR HEATER
GAS LEAVINQ AIR HEATER
 AIR ENTERING AIR HEATCR
 AIR LEAVING AIR HEATER
 AIR HEATER LEAKAGE

 AIR HEATER PERFORMANCE
 AIR HEATER LEAKAGE
 GAS SIDE ErrICIENCY
 GAS DROP
 AIR RISE
 TEMPERATURE  HEAD

 FUEL ANALYSIS
 CARBON
 HYDROGEN
 NITROGEN
 OXYGEN
 SULFUR
 MOISTURE
 ASH
 HHV
10
               \Z
                                            .16
1975 9/17
MW 430
436
444
396
422
383
390
449
477
KG/S
480
542
505
444
61
% 12.7
% 67.3
°C 211
°C 242
•C 313
* 66.80
% 5.20
< 1.20
* 9.70
i 0.50
< 8.OO
* 8.60
KJ/KO 28307
9/18
426
406
413
404
430
391
398
419
445

485
502
466
449
17
3.6
70.5
218
238
309
67.50
5.30
1.30
9.70
n. 40
7.40
8.40
28470
9/20
434
436
443
399
425
386
393
449
476

485
542
505
448
57
11.9
69.5
215
240
310
65.90
5.10
1.20
10.00
0.40
8.10
9.30
27786
12/13
356
457
464
406
432
394
401
468
495

404
463
434
375
60
14.7
68.2
188
222
275
70.30
5.40
1.00
5.70
0.50
6.50
10.60
2B656
10/11
351
446
454
404
429
390
396
460
487

400
454
423
369
54
13.4
65.4
182
228
279
68.00
5.20
1.40
10.80
0.50
6.90
7.20
281 45
10/12
360
431
438
401
427
388
395
444
470

402
443
413
372
41
10.2
71.0
196
218
276
67.80
5.30
1.20
9.60
0.50
7.60
B.OO
28680
10/12
257
434
442
402
427
388
395
448
475

304
337
314
280
34
11.1
70.3
172
199
244
66.50
5.10
1.30
10.60
0.50
8.30
7,70
28214
10/5
270
441
448
410
436
397
403
454
480

307
339
316
285
32
10.2
68.4
173
204
253
67.00
5.20
1.30
9.70
0.50
7.80
8.50
28470
9/17
429
446
454
416
442
403
409
460
487

499
549
512
462
50
10.1
67.9
214
243
316
66.80
5.10
1.30
10.60
0.50
8.00
7.70
28168
9/10
428
467
475
418
444
404
411
482
508

508
582
545
471
74
14.5
67.2
208
239
310
65.30
4.80
1.20
10.70
O.-IO
7.40
10.20
27447
9/18
429
425
432
430
457
418
425
438
465

522
531
494
484
9
1.7
70.9
224
242
316
67.60
5.30
1.40
9.80
0.40
8.00
7.50
28424
10/11
351
466
474
438
465
425
432
480
507

433
472
441
402
39
9.0
69.8
198
223
283
67.20
5.20
1.30
10.00
0.40
8.10
7.80
27656
12/13
356
498
506
441
467
429
436
510
538

444
511
481
414
67
15.0
67.8
190
224
281
71.80
5.50
1.30
5.80
0.50
7.10
8.00
29517
12/13
356
479
487
433
460
421
428
491
519

436
492
462
406
56
12.8
68.5
191
223
279
66.10
5.20
1.20
9.50
0.40
8.10
9.50
28075
7/23
256
442
450
409
435
397
403
455
482

290
320
299
268
31
10.7
66.5
166
208
249
66.30
5.20
1.40
9.40
0.50
7.40
9.80
28447
7/24
259
443
450
413
439
400
407
' 456
482

304
335
312
282
30
9.9
66.6
168
208
252
67.20
5.30
1.20
9.60
0.50
7.40
8.80
28517

-------
UTAH POWER i LIGHT COMPANY
HUNTINOTON CANYON 12
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                                 OVERFIRE     AIR    OPERATION      STUDY
TEST NO.

DATE
UNIT LOAD

FLOWS
FEEDWATEK  (MEASURED)
AUXILIARY  STEAM - SH  (PLANT INSTRUMENTATION^
SH SPRAY (HEAT BALANCED
MAIN STEAM (CALCULATED^
TURBINE LEAKAGE (TURBINE HEAT BALANCED
HP HTR. EXTRACTION (HEAT PALANCE^
RH SPRAY (HEAT BALANCED
RH STEAM (C»LCUL»TCD^

UNIT ABSORPTION
ECONOMIZER
FURNACE
DRUM . SH  DF.SH
SH DESH -  SH OUTLET
REHEATER
TOTAL

UNIT EFFICIENCY
DRY GAS LOSS
MOISTURE IN FUEL Loss
MOISTURE IN AIR Loss
RADIATION  Loss
ASH PIT Loss
HEAT IN FLY ASH Loss
PYRITE REJECTION Loss
CARBON Loss
TOTAL LOSSES
Err ICIENCY

HEAT INPUT
HEAT INPUT TRON FUEL

EXCESS AIR
AIR HEATER INLET
AIR HEATER OUTLET
TEST RESULTS

1975
Mrf
KO/S








MJ/S






t










MJ/S

*


J^
9/17
488

369
0.4
0
3G9
7
31
3
333

174
341
157
173
175
1020

4.52
5.07
0.14
0.19
0.34
0.03
0.01
0.20
10.49
89.51

1140

27.0
46.8
2
9/26
430

372
0.4
1
372
7
32
3
336

173
348
158
174
178
1030

3.96
5.10
0.12
0.19
0.33
0.02
0.01
0.14
9.87
90.13

1143

26.2
31.8
3
9/26
430

372
0.4
0
372
7
32
3
336

173
347
158
174
177
1029

4.07
5.11
0.12
0.19
0.33
0.02
0.01
0.24
10.08
89.92

1145

26.2
32.9
4
9/26
430

370
0.4
0
370
7
32
5
336

171
346
154
179
179
1029

4.06
4.96
0.12
0.19
0.34
0.03
0.01
0.30
10.01
89.99

1143

25.5
35.6
5
9/26
431

370
0.4
0
370
7
32
5
335

174
343
156
175
178
1026

3.97
5.03
0.12
0.19
0.33
0.02
0.01
0.28
9.95
90.05

1139

25.2
32.6
6
10/1
430

372
0.4
0
372
7
31
0
333

165
356
153
181
174
1029

3.91
5.09
0.12
0.19
0.33
0.02
0.01
0.24
9.91
90.09

1142

18.5
29.3
7
10/1
429

372
0.4
0
372
7
32
0
334

166
356
153
177
174
1025

3.94
5.11
0.12
0.19
0.32
0.02
0.01
0.59
10.30
89.70

1143

19.2
30.1
B
10/1
428

370
0.4
0
370
7
31
1
332

167
352
156
174
174
1023

3.63
5.03
0.11
0.19
0.32
0.02
0.01
0.24
9.54
90.46

1130

19.2
27.8
9
9/27
428

369
0.4
0
369
7
31
0
331

185
330
158
169
172
1014

4.58
5.08
0.14
0.19
0.32
0.02
0.01
0.22
10.56
89.44

1133

32.1
48.3
TO
10/1
429

369
0.4
0
368
7
32
0
330

168
328
163
169
166
1015

4.86
4.96
0.15
0.19
0.35
0.03
0.01
0.27
10.82
89.18

1138

33.8
57.8
r^
10/1
430

370
0.4
0
370
7
32
0
331

189
329
165
169
167
1019

4.64
5.04
0.14
0.19
0.32
0.02
0.01
0.16
10.52
89.48

1140

33.8
49.5
J2
10/5
427

370
0.4
0
370
7
31
0
332

164
354
149
177
174
1018

4.03
4.95
0.12
0.19
0.32
0.02
0.01
0.25
9.89
90.11

1130

23.1
29.2

-------
UTAH POWER & LIGHT COMPANY
HUNTINGTON CANYON fS
C-E POVICR SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                                 OVERFIRE    AIR    OPERATION      STUDY
TEST NO.

DATE
UNIT LOAD

FLOWS
FEEDVATER  (MEASURED)
AUXILIARY  STEAM - SH (PLANT  INSTRUMENTATION)
SH SPRAY  (HEAT BALANCE)
MAIN STEAM (CALCULATED)
TURBINE LEAKAGE (TURBINE  HEAT BALANCE)
HP HTR. EXTRACTION (HEAT  BALANCE)
RH SPRAY (HEAT BALANCE)
RH STEAM (CALCULATED)

UNIT ABSORPTION
ECONOMIZER
FURNACE
DRUM - SH DESH
SH DESH - SH OUTLET
REHEATER
TOTAL

 UNIT EFFICIENCY
 DRY GAS Loss
 MOISTURE  In FUEL  Loss
 MOISTURE  IN A.IH Loss
 RADIATION Loss
 ASH PIT Loss
 HEAT IN FLY ASH Loss
 PYHITE REJCCTION  Loss
 CARBON Lose
 TOTAL  LOSSES
 HEAT INPUT
 HEAT INPUT FROM TUEL

 EXCESS AIR
 AIR HEATER IMLCT
 AIR HEATER OUTLET


1975
MW
X.Q/S








MJ/s






*









MJ/s




U
10/4
434

364
0.4
0
364
7
30
4
331

169
339
155
182
176
1022
4.21
5.10
0.13
0.19
0.32
0.02
0.01
0.21
10.17
89.83

1137
25.1
36.7

14
10/5
422

370
0.4
0
370
7
32
1
332

158
361
145
145
166
1005
3.74
4.97
0.11
0.19
0.33
0.02
O.oi
o.?o
9.68
00.32

1113
22.0
29.9
TEST
J_5
10/4
42S

370
0.4
0
370
7
31
0
332

163
356
148
181
172
1019
4.18
5.05
0.13
0.19
0.33
0.02
0.01
0.28
10.18
B9.82

1135
25.1
31.8
RESULTS
2S
10/3
427

372
0.4
0
372
7
32
3
336

166
356
148
180
173
1023
4.13
5.05
0.13
0.19
0.32
0.02
0.01
0.26
10.10
B9.90

1138
21.3
31.4

V7
10/3
424

377
0.4
0
377
7
32
5
342

161
367
147
176
175
1026
4.06
5.05
0.12
0.19
0.32
0.02
0.01
0.22
9.99
90.01

1140
23.5
33.6

11
10/3
429

367
0.4
0
367
7
31
5
334

166
348
151
181
178
1023
4.09
5.12
0.13
0.19
0.32
0.02
0.01
0.63
10.49
89.51

1143
21.7
31.6

12
10/6
417

374
0.4
0
374
7
31
0
335

155
369
142
183
177
1025
4.09
5.05
0.13
0.19
0.32
0.02
0.01
0.40
10.21
89.79

1 1 42
18.5
32.8

20
10/8
426

377
0.4
0
377
7
32
0
338

157
370
143
184
170
1024
4.02
5.04
0.12
0.19
0.32
0.02
0.01
o.43
10.15
B 1.85

1140
19.6
35.1

HI
10/9
356

299
0.4
0
299
6
23
0
270

119
323
109
151
140
642
3.71
4.98
0.11
0.23
0.33
0.02
0.01
0.20
9.59
90.41

931
19.3
39.6

22
10/9
358

299
0.4
0
299
6
23
2
272

130
311
180
144
147
853
3.50
4.95
0.11
0.22
0.32
0.02
0.01
0.22
9.35
90.65

941
21.5
37.4

23
10/12
253

218
0.4
0
218
5
15
0
199

87
261
73
108
107
634
3.02
4.95
0.09
0.30
0.34
0.01
0.01
0.47
9.21
90.79

698
22.8
34.8

24
10/5
265

216
0.4
1
217
3
15
0
197

91
251
78
114
105
638
3.32
4.95
0.10
0.30
0.32
0.01
0.01
0.22
9.24
90.76

703
23.9
36.7

-------
UTAH POWER t LIGHT COMPANY
HUNTING-TON CANYON #2
C-E  POWER SYSTEMS
FIELD TESTING  AND
PERFORMANCE RESULTS
                                                OVERFIRE    AIR    OPERATION     STUDY
                                                                      TEST RESULTS
TEST NO.

DATE
UNIT LOAD

PRODUCTS OF COMBUSTION

Am HEATER INLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS

AIR HEATER OUTLET
DRY Am
WET AIR
DRY PRODUCTS
WET PRODUCTS

GAS AND AIR FLOWS
GAS ENTERING AIR HEATER
GAS LEAVING AIR HEATER
AIR ENTERING AIR HEATER
AIR LEAVING AIR HEATER
AIR HEATER LEAKAGE

AIR HEATER PERFORMANCE
AIR HEATER LEAKAGE
GAS SIDE EFFICIENCY
GAS DROP
AIR RISE
TEMPERATURE HEAD

FUEL ANALYSIS
CARBON
HYDROGEN
NITROGEN
OXYGEN
SULFUR
MOISTURE
ASH
HHV

1975
MW
Ma/J








KO/S





%
%
"C
°c
"C
%
%
%
I
f,

t
Kj/KG
J_
9/17
428

479
487
427
454
414
481
492
519

517
592
555
480
75
14.5
67.2
212
243
316
65.40
5.10
1.10
9.40
0.50
7.40
11 .10
27214
2
9/26
430

417
424
419
446
406
412
430
457

509
522
484
471
13
2.6
69.1
210
241
304
63.70
4.90
1.30
10.20
0.50
9.40
10.00
27121
3
9/26
430

427
434
418
445
406
412
440
466

509
534
497
472
25
4.9
68.5
209
241
306
65.90
5.20
1.20
9.50
0.40
8.30
9.50
27889
4
9/26
430

433
440
415
441
401
408
447
473

504
541
504
466
37
7.4
68.3
208
239
304
63.90
4.80
1.20
9.70
0.40
8.30
11.70
26842
5
9/26
431

421
428
411
437
397
404
434
461

498
525
488
460
27
5.5
68.7
210
241
306
65.10
5.00
1.30
10.40
0.40
8.70
9.10
27586
6
10/1
430

416
423
394
420
381
387
428
455

479
520
483
442
40
8.4
68.2
210
242
309
66.20
5.20
1.20
9.50
0.50
8.30
9.10
27982
7
10/1
429

422
429
399
425
386
393
434
461

486
527
490
449
41
8.5
68.2
209
241
307
67.20
5.30
1.30
9.60
0.40
7.80
8.50
28098
8
10/1
428

411
417
396
421
383
389
423
450

476
508
472
440
32
6.7
70.5
216
242
307
67.50
5.30
1.20
9.70
0.40
8.00
7.90
28540
_9
9/27
428

477
485
437
464
424
432
490
517

526
586
549
489
60
11.4
66.9
208
241
311
66.80
5.20
1.10
9.70
0.50
8.50
8.20
281 91
12
10/1
429

503
511
439
466
426
434
516
543

530
618
582
494
88
16.7
65.8
208
245
316
63.90
4.90
1.20
9.00
0.40
7.80
12.80
27121
^1
10/1
430

478
486
440
467
427
434
490
518

532
590
553
495
58
10.9
67.2
213
246
317
67.00
5.20
1.30
9.70
0.50
8.40
7.90
28447
12
10/5
427

412
419
406
432
392
399
426
452

488
510
473
451
22
4.6
68.2
210
242
309
66.60
5.10
1.30
10.60
0.50
7.70
8.20
28098

-------
UTAH POWER t LIGHT COMPANY
HUNTINOTON CANYON |3
C-E POWER
FIELD TESTiNO AND
PERFORMANCE RESULTS
                                                OVERFIRE    AIR    OPERATION      STUDY
TEST NO,
PRODUCTS OF COKBUSTIOH

AIR HEATER  INLET
DRY AIR
WET AIR
DRY PRODUCTS
WET PRODUCTS
 AIR HEATER OUTLET
 DRY AIR
 WET AIR
 DRY PRODUCTS
 WET PRODUCTS

 GAS AND AIR FLOWS
 GAS ENTERING  AIR ME:AT ER
 GAS LEAVING AIR HEATER
 AIR ENTERING  AIR HEATER
 AIR LEAVING AIR HEATER
 AIR HEATER LEAKAGE

 A|R HEATER PERFORMANCE
 AIR HEATER LEAKAGE
 GAS SIDE EFFICIENCY
 GAS DROP
 AIR RISC
 TEMPERATURE HEAD

 FUEL  ANALYSIS
 CARBON
 HYDROGEN
 NITROGEN
 OXYGCM
 SULFUR
 Mo i sruRt:
 ASH
 HHV


1975
MW
/Mb/J








KQ/S





*
%
°c
°c
°c
r-
f
r
?•
>'

•'••
• !/*<-.

22
10/4
434
437
444
418
439
400
4O7
450
-177

499
T42
505
462
43
a.c
67.7
211
213
311
R7.20
0.30
1.40
'1.60
O.SO
h . GO
7.40
Pfjin

11
10/5
422
412
419
400
426
487
393
435
451

474
502
466
438
28
6.0
61. 7
213
230
306
64 . 90
S.OT
1.30
in. 10
o.r)0
8.10
'1.90
27563
TEST
15
10/4
429
427
434
419
446
406
412
441
468

506
531
493
468
25
4.9
68.0
210
241
308
5",. 90
5.10
1.10
10.50
O.50
7.50
9.40
27400
RESULTS
26
10/3
4S7
424
431
404
430
391
398
436
463

489
527
490
453
38
7.7
67.-)
209
243
•310
5fl.40
r>.40
1.20
'.80
0.40
7.50
7.30
2R84r'

J7
10/3
424
428
436
409
435
396
403
441
468

496
534
497
459
38
7.6
67. q
207
239
305
66.90
•i.P.0
1.20
0.70
0.50
8.40
8.10
28284

J_8
10/3
429
429
433
410
437
397
4O3
443
470

499
537
499
461
38
7.0
68.2
P12
242
310
67.20
5.20
1.20
10.80
O.'iO
8.00
7.10
27703

12
10/6
417
430
437
396
422
383
390
442
469

482
536
499
445
54
11.?.
66.7
204
239
305
67.40
5.30
1.20
9.70
0,50
7,50
8.40
28284

20
10/8
426
435
442
398
424
385
391
448
475

483
541
504
446
58
12.0
67.3
204
237
303
 . 30
1 . 40
'.70
Vi'1
7.60
!:.30
28377

23
10/12
253
432
440
406
433
394
401
445
472

3CE
330
307
280
27
9.0
69.5
167
196
240
67.2i
5.13
1 .'>''
U.Oo
0.-10
8.30
7.91
28424

24
10/5
265
442
449
414
440
4O1
408
455
482

309
339
316
287
30
9.5
68.5
172
202
251
67.30
5.30
1.30
9.70
0.40
7.60
8.40
28284

-------
 UTAH POWER »NO  LIGHT COMPANY
 HUNTINGTON CANYON fS
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                            BASELINE OPERATION  STUDY
                                                     BOARD AND COMPUTER DATA
    TEST NO.

    DATE
    TIME
 C*  LOAD

    FLOWS
 C  FEEDWATER
 B*  MAIN STEAM
 C  SUPERHEAT SPRAY  L
 C  SUPERHEAT SPRAY  R
 C  REHEAT SPRAY
 C  EXT. STM. TO STM. AH 2-1
 C  EXT. STH. TO STM. AH 2-2
 C  Aux. STM. TO STM. AH 2-1
 C  Aux. STM. TO STM. AH 2-2
 C  Aux. STEAM TO STAE
 B  AIR FLOW TO BOILER

    PRESSURES

    STEAM & WATER
 C  FEEDWATER TO ECON.
 C  BOILER DRUM
 C  TURBINE THROTTLE
 C  TURBINE 1ST STAGE
 C  RH INLET, LEFT
 C  RH INLET, RIGHT
 C RH INLET, AVG.
 C  RH OUTLET
 C  HP HTR. 2-7 STEAM IN

    AIR i GAS
 B   FD FAN 2-1 DISCHARGE  R
 B FD FAN 2-2 DISCHARGE  L
 B   FD FAN DISCHARGE  Avo.
 C  AH 2-1  AIR DIFF.  PRESS.  R
 C   AH 2-2 AIR DIFF.  PRESS.  L
 C  AH AIR DIFF.  PRESS. Avo.
 B  UINDBOX PRESSURE  R
 B WIHDBOX PRESSURE  L
 B  WINOBOX PRESSURE  AVG.
 B  FURNACE DRAFT
 C  SH DRAFT DIFF.
 C  ECON.  DRAFT DIFF.
 8  AH 2-1  GAS OUT PRESS.  R
B  AH 2-2 GAS OUT PRESS.  L
 B  AH GAS OUT PRESSURE   Avo.
B   ID FAN 2-1 INLET  PRESS.  R
B   ID FAN  2-2 INLET  PRESS.  L
B   ID FAN  INLET  PRESSURE   AVG.

*  C = COMPUTER  DATA;  B = BOARD DATA

1975

KM
TO^B/HR











PSIG









"HgO

















1
5/7
09:25
429

2913
3050
0
0
0
58.9
58.9
0
0
3.1
3240

2825
2737
2449
1841
572
576
574
533
550
8.4
8.6
8.5
3.5
3.6
3.6
3.2
3.3
3.3
-0.5
1.80
2.28
-12.7
-11.5
-12.1
-15.6
-13.5
-14.6
2
5/5
17:23
427

2945
3000
0
0
0
SB. 9
SB. 9
0
0
3.1
3350

2810
2719
2441
1834
568
572
570
529
548
9.6
9.6
9.6
3.7
3.9
3.8
3.5
3.6
3.6
-0.6
2.10
2.52
-13.3
-12.6
-13.0
-16.6
-15.0
-15.8
2A
5/7
16:50
428

2910
3050
0
0
0
58.9
SB. 9
0
0
3.1
3510

2B25
2740
2452
1841
570
574
572
530
550
11.6
11.6
11.6
4.1
4.2
4.2
5.5
5.5
5.5
-0.5
2.12
2.78
-15.0
-13.5
-14.2
-18.4
-16.1
-17.3
3
5/7
14:15
428

2912
3000
0
0
0
58.9
58.9
0
0
3.1
3820

2825
2737
2450
1841
570
574
572
530
548
12.9
12.9
12.9
4.6
4.8
4.7
5.7
5.7
5.7
-0.5
2.43
3.06
-15+
-15+
-15+
-20.0
-17.7
-18.9
4
10/10
03:30
360

2249
2350
14.1
12.0
7.1
58.8
58.8
1.2
1.2
3.1
2720

2689
2615
2406
1435
465
469
467
429
382
8.2
8.2
B.2
2.7
3.1
2.9
4.1
4.1
4.1
-1.0
1.6
1.98
-10.4
-11.2
-10.8
-13.1
-11.1
-12.1
5
7/16
11:30
259

1535
1525
10.2
1.4
0
13.3
13.25
0
0
3.0
1700

2532
2485
2385
939
311
314
313
278
412
4.0
3.9
4.0
1.19
1.37
1.28
2.2
2.2
2.2
NA
0.32
0.65
-5.6
-5.1
-5.4
-6.8
-5.4
-6.1
6
7/15
15:05
260

1520
1520
23.2
13.5
0
9.3
9.2
0
0
3.0
1750

2515
2473
2374
938
313
314
314
279
412
4.5
4.5
4.5
1.26
1.45
1.36
2.5
2.5
2.5
-0.6
0.46
0.67
-5.4
-5.1
-5.3
-7.1
-5.7
-6.4
7
7/16
15:45
258

1503
1502
31.5
21.9
0
18.5
1B.5
0
0
3.0
2200

2523
2481
2384
935
311
312
312
278
412
6.6
6.6
6.6
1.77
1.88
1.83
3.9
3.9
3.9
-0.4
0.64
1.05
-6.8
-6.2
-6.5
-8.0
-7.2
-7.6
8
5/5
13:40
430

2900
3040
0
0
16.5
58.9
58.9
0
0
3.1
3140

2818
2724
2445
1841
574
578
576
534
553
9.6
9.6
9.6
3.5
3.6
3.6
4.5
4.5
4.5
-0.6
1.82
2.23
-12.5
-11.4
-12.0
-15.6
-13.5
-14.6
9
4/30
15:07
428

2898
3000
0
0
0
58.9
58.9
0
0
3.0
3380

2811
2723
2435
1832
569
573
571
528
548
9.9
9.9
9.9
3.8
3.9
3.9
4.3
4.3
4.3
-0.4
1.96
2.47
-13.0
-12.0
-12.5
-16.3
-14.8
-15.6
                                                              266
                                                                                                                  SHEET!B24

-------
UTAH POWER  AND LIGHT COMPANY
HUNTIHCTON  CANYON #2
C-E POWCR SYSTEMS
F|<-10  TeSTING AND
PERFORMANCE RESULTS
                                            BASELINE  OPERATION  STUDY
   TEST NO.

   DATE
   TIME
C" LOAD

   FLOWS
C  FEEOVATER
8* MAIN STEAH
C  SUPERHEAT SPRAY  L
C  SUPERHEAT SPRAY  R
C  REHEAT  SPRAY
C  EXT. STM. TO STH. AH'2-1
C  EXT. STH. TO STM. AH 2-2
C  Aux. STM. TO STH. AH 2-1
C  Aux. STM. TO STH. AH 2-2
C  Aux. STEAM  TO STAE
B  AIR FLOW TO BOILER

   PRESSURES

   STEAM AND WATCR
C  FEEDVATER TO ECON.
C  BOILER  DRUM
C  TURBINE THROTTLE
C  TURBINE IST STAGE
C  RH INLET, LEFT
C  RH INLET, RIGHT
C  RH INLET, Avc.
C  RH OUTLET     .  •
C  HP HTR. 2-7 STEAM IN

   AIR AND GAS
B  FD FAN  2-1  DISCHARGE  R
B  FD FAN  2-2  DISCHARGE  L
B  FO FAN  DISCHARGE AVG.
C  AH 2-1  AIR  DIFF. PRESS.  R
C  AH 2-2  AIR  DIFF. PRESS.  L
C  AH AIR  DIFF. PRESS.  AVG.
B  WINDBOX PRESSURE  R
B  WINOBOX PRESSURE  L
B  WINDBOX PRESSURE Avc.
B  FURNACE DRAFT
C  SH DRAFT DIFF.
C  ECON. DRAFT DIFF.
B  AH 2-1  GAS  OUT PRESS.  R
B  AH 2-2  GAS  OUT PRESS.  L
B  AH GAS  OUT  PRESSURE   AVG.
B  ID FAN  2-1  INLET PRESS.  R
B  ID FAN  2-2  INLET PRESS.  L
B  ID FAN  INLET PRESSURE   AVG.

*   C  » COHPUTER DATA;  B = BOARD DATA
BOARD AND

1975

(•W
103LB/m











PSIG









"H20

















10
5/1
17:50
428

2995
3050
0
0
0
58.9
58.9
0
0
3.0
3720

2812
2725
2438
1834
568
571
570
528
546
12.0
12.0
12.0
4.4
4.6
4.5
4.8
4.8
4.8
-0.5
2.28
2.95
-15+
-15+
-15+
-18.9
-17.5
-18.2
11
7/17
11:15
256

1517
1504
20.7
13.0
0
14.2
14.3
0
0
3.0
1700

2513
2472
2374
931
310
311
311
278
409
3.8
3.7
3.8
1.21
1.38
1.30
1.8
1.8
1.B
-O.V
0.38
0.75
-5.2
-4.8
-5.0
-6.8
-5.4
-6.1
COMPUTER DATA
J2
7/18
10:00
259

1482
1503
33.0
25.6
0
19.1
19.3
0
0
3.0
2100

2143
2108
1978
952
313
314
314
280
412
6.4
6.4
6.4
1.73
1.83
1.78
3.9
3.9
3.9
-0.5
0.5
1.04
-6.5
-5.8
-6.2
-8.2
-6.5
-7.4
22
5/9
15:30
433

2930
3038
0
0
27.5
58.9
58.9
0
0
3.0
2980

2828
2738
2453
1846
579
583
581
539
556
8.2
8.2
8.2
3.1
3.3
3.2
3.6
3.6
3.6
-0.5
1.54
2.0
-12.0
-10.9
-11.5
-14.6
-12.5
-13.6
If
5/9
10:15
433

2915
3012
0
0
31.0
58.9
58.9
0
0
3.0
3120

2826
2738
2456
1845
577
581
579
538
556
9.0
9.0
9.0
3.4
3.5
3.5
3.7
3.7
3.7
-0.6
1.64
2.27
-13.1
-12.1
-12.6
-16.1
-13.6
-14.9
V5
5/9
18:15
433

2905
3012
0
0
27.3
58.9
58.9
0
0
3.0
3620

2826
2737
2454
1845
575
579
577
536
554
11.5
11.6
11.6
4.2
4.4
4.3
5.0
5.0
5.0
-0.6
2.19
2.90
-15+
-15+
-15+
-18.8
-16.0
-17.4
16
lO/'f
03:O->
-61

2258
2350
4.4
1.2
22.7
58.8
58.8
1.2
1.2
3.1
2720

2699
2623
2417
1430
466
468
467
429
385
B.8
B.5
B.5
2.6
3.0
2.8
4.6
4.6
4.6
-1.0
1.45
1.89
-10.3
-10.1
-10.2
-12.1
-11.0
-11.6
17
,/32
11:15
258

1571
1508
0
0
0
7.2
7.3
0
0
3.0
1660

2537
2492
2363
932
310
311
311
278
412
3.4
3.4
3.4
1.18
1.37
1.28
1.5
1.5
1.5
-0.4
0.39
0.59
-5.2
-4.5
-4.9
-6.4
-5.1
-5.8
IS
7/21
16:30
260

1573
1532
9.8
2.5
0
8.4
8.5
0
0
3.0
1710

2504
2458
2359
931
311
315
313
279
409
3.2
3.2
3.2
1.22
1.42
1.32
1.7
1.7
1.7
-0.6
0.38
0.84
-5.6
-5.0
-5.3
-6.9
-5.5
-6.2
19
7/21
14:00
258

1529
1505
26.3
19.2
0
12.0
12.1
0
0
3.0
2020

2501
2458
2362
926
3O9
311
310
277
412
5.6
5.2
5.4
1.60
1.75
1.68
2.8
2.8
2.8
-0.6
0.67
0.94
-6.5
-5.9
-6.2
-B.I
-6.4
-7.3
                                                            2S7
                                                                                                               SHEET BS5

-------
UTAH POWER AND LIGHT COMPANY
HUNTINGTON CANYON |2
                                                              C-E POWER  SYSTEMS
                                                              FIELD TESTING AND
                                                              PERF-ORMANCE RESULTS
   TEST NO.

   DATE
   TIME
   LOAD

   TEMPERATURES

   AIR AND GAS
   AH 2-1 AIR  IN
   AH 2-2 AIR  IN
   AH Avo. AIR IN
                                            BASELINE  OPERATION  STUDY


                                                    BOARD AND COMPUTER DATA
                                                  1       2      2A      3       4
  1975

    MM
   AH 2-1  AIR OUT
   AH 2-2  AIR OUT
   AH Avo.  AIR OUT
   AH 2-1  GAS  IN
   AH 2-2  GAS  IN
   AH Avo.  GAS IN
   AH 2-1  GAS OUT
C  AH 2-2  GAS OUT (1)
C  AH Avc.  GAS OUT
   STEAM AND WATER
C  FW IN TEMP. TO ECON.
C  ECON. OUT Avs.
C  BOILER DOWNCOMER
C  SH DESH INLET  L
C  SH DESH INLET  R
C  SH DESH INLET Avo.
C  SH DESH OUTLET  L
C  SH DESH OUTLET  R
C  SH DESH OUTLET Avc.
C  SH OUTLET
C  THROTTLE STEAM
C  RH TURBINE  L
C  RH TURBINE  R
C  RH TURBINE Avc.
C  RH BOILER  L
C  RH BOILER  R
C  RH BOILER Avc.
C  RH OUTLET
C  HP HTR. 2-7 STEAM  IN
C  HP HTR. 2-7 FW  IN
C  HP HTR. 2-7 DRAIN
C  Aux.  STEAH TEMP.

   FAN DAMPER POSITION
B  FD FANS
B  ID FANS

   SPRAY VALVE POSITION
B  SH SPRAY
B  RH SPRAY

C = COMPUTER DATA;  B = BOARD DATA
(1) TC READING OPEN
•t OPEN
  OPEN
5/7
19:25
429
99
87
94
499
526
512
693
700
697
253
NA
253
484
575
678
739
739
739
744
742
743
982
971
613
614
614
611
609
610
1003
611
413
423
545
68
62
0
0
5/5
17:23
427
96
88
92
504
528
516
700
706
703
257
NA
257
484
579
678
741
751
746
747
748
748
982
976
617
617
617
610
607
609
1000
616
413
422
549
70
63
0
0
5/7
16:50
428
97
87
92
503
533
518
714
722
718
257
NA
257
484
586
679
748
748
74B
753
752
753
988
978
618
618
618
616
614
615
1002
616
413
423
558
75
65
0
0
5/7
14:15
428
94
88
91
504
534
519
718
733
726
260
NA
260
484
592
679
759
753
756
759
757
758
991
980
620
620
620
617
616
617
1002
620
413
423
562
80
72
0
0
10/10
03:30
360
106
106
106
510
520
515
680
675
678
365
268
266
465
551
672
757
763
760
753
757
755
1010
999
601
606
603
584
582
583
1021
602
400
406
550
65
58
11
0
7/16
11:30
259
104
103
104
466
470
468
589
583
586
245
NA
245
428
493
666
738
736
737
730
734
732
1008
999
552
562
557
550
558
554
981
558
368
372
567
46
38
11
0
7/15
15:05
260
106
110
108
471
478
475
599
592
596
244
NA
244
428
499
664
750
746
748
741
735
738
1003
995
550
560
555
547
556
552
992
555
369
372
556
48
40
23
0
7/16
15:45
258
102
98
100
466
480
473
614
612
613
240
NA
240
428
508
665
767
759
763
734
740
737
1006
996
551
560
556
549
556
553
992
•556
368
371
578
56
46
31
0
5/5
13:40
430
96
88
92
506
530
518
700
708
704
256
NA
256
485
576
678
743
750
747
748
748
748
991
980
623
622
623
604
594
599
1003
620
413
423
552
68
61
0
21
4/30
15:07
428
96
89
93
505
528
516
704
710
707
258
NA
258
484
581
677
743
748
746
748
751
750
986
975
616
617
617
615
612
614
1002
616
412
422
556
7?
62
n
0
                                                              268
                                                                                                               SHEET

-------
UTAH POWCR ANO LIUHT COMPANY
HOHTINOTON CANYON fS
C-f Dowro SrsTEMS
FIELD  TESTING «HD
PCBrORMANCE RESULTS
                                           BASELINE  OPERATION  STUDY
                                                    BOARD AND COMPUTER DATA
   TEST NO.

   DATE
   TIME
C  LOAD

   TEMPERATURES

   AIR AND GAS
C  AH 2-1 AIR IN
C  AH 2-2 Am IN
C  AH AVG. AIR IN
C  AH 2-1 AIR OUT
C  AH 2-2 AIR OUT
C  AH AVG. AIR OUT
C  AH 2-1 GAS IN
C  AH 2-2 GAS IN
C  AH Avc. GAS IN
C  AH 2-1 GAS OUT
C  AH 2-2 GAS OUT (1)
C  AH AVG. GAS OUT

   STEAM AND WATER
C  FW IN TEMP. TO ECON.
C  ECON. OUT AVG.
C  BOILER DOWNCOMER
C  SH DESH INLET  I
C  SH DESH INLET  R
C  SH DESH INLET AVG.
C  SH DESH OUTLET  L
C  SH DESH OUTLET  R
C  SH DESH OUTLET Avtf.
C  SH OUTLET
C  THROTTLE STEAM
C  RH TURBINE  L
C  RH TURBINE  R
C  RH TURBINE Avo.
C  RH BOILER  L
C  RH BOILER  R
C  RH BOILER AVG.
C  RH OUTLET
C  HP HTR. 2-7 STEAM  IN
C  HP HTR. 2-7 FW IN
C  HP HTR. 2-7 DRAIN
C  Aux. STEAM TEMP.

   FAN DAMPER POSITION
B  FD FANS
8  ID FANS

   SPRAY VALVE POSITION
B  SH SPRAY
B  RH SPRAY

C = COMPUTER DATA;  B =  BOARD DATA
(l) TC READ INC OPEN
10
1975 5/1
17:50
MM 426
"F
93
89
91
506
531
518
719
717
718
260
NA
260
•F
464
591
679
749
754
752
754
758
756
992
982
621
622
622
618
617
618
1000
618
412
422
563
% OPEN
78
69
f OPEN
0
0
11
7/17
11:15
256

104
112
108
470
473
472
596
586
591
246
NA
246

428
495
664
747
744
746
730
734
732
1006
996
551
561
556
548
556
552
1001
556
368
371
567

45
39

SS
0
J2
7/18
10:00
259

104
105
105
465
480
473
617
611
614
237
NA
237

429
503
642
763
758
761
724
729
727
1005
998
581
600
591
574
591
583
1001
585
369
369
606

56
46

35
0
12
5/9
15:30
433

96
88
92
510
532
521
699
704
702
257
NA
257

485
575
678
744
745
745
750
750
750
985
974
619
619
619
576
570
573
1O03
618
414
424
548

66
59

0
30
_U
5/9
10:15
433

97
86
92
508
533
520
703
709
706
257
NA
257

485
579
679
746
746
747
751
752
752
991
981
623
624
624
573
572
573
1002
621
414
424
556

70
63

0
35
15
5/3
18:'5
433

92
87
89
= 14
53S
526
728
722
725
£62
NA
262

485
593
679
76^
76'
762
765
76S
-757
397
987
625
628
628
•:'."> i
582
587
1004
626
414
-12-5
564

76
67

0
30
'C
i •;•':-
03:00
361

109
1:2
11^
505
'14
= 11
677
679
678
262
260
261

465
548
57?
7RC
767
762
761
767
7^4
1014
1004
605
610
618
55?
"45
= 4 u
1018
6^5
j^n
406
563

63
55

o
26
V7
7/22
11:15
256

104
112
108
470
476
473
533
537
598
S44
NA
244

426
494
665
7 " '
7 "9
742
745
747
7
-------
 UTAH POWER AND LIGHT COMPANY
 HUNTINGTON CANYON iS
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                         BASELINE OPERATION  STUDY
                                                BOARD AND COMPUTER DATA



c

c
c
c
c
c
c
c
c
c
c
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B

B
C
C
C
C
C
C
C
C
C
C
B
B
B
TEST NO.
DATE
TIME
LOAD
HILL DATA
MILL 2-1
MILL 2-2
MILL 2-3
MILL 2-4
MILL 2-5
COAL AIR TEMP. MILL 2-1
COAL AIR TEMP. MILL 2-2
COAL AIR TEMP. MILL 2-3
COAL AIR TEMP. MILL 2-4
COAL AIR TEMP. MILL 2-5
MILL 2-1 EXH. DISCHARGE
MILL 2-2 EXH. DISCHARGE
MILL 2-3 EXH. DISCHARGE
MILL 2-4 EXH. DISCHARGE
MILL 2-5 EXH. DISCHARGE
MILL 2-1 SUCTION
MILL 2-2 SUCTION
MILL 2-3 SUCTION
MILL 2-4 SUCTION
MILL 2-5 SUCTION
MILL 2-1 COAL FLOW
MILL 2-2 COAL FLOW
MILL 2-3 COAL FLOW
MILL 2-4 COAL FLOW
MILL 2-5 COAL FLOW
MILL 2-1 FEEDER SPEED (l)
MILL 2-2 FEEDER SPEED
MILL 2-3 FEEDER SPEED
MILL 2-4 FEEDER SPEED
MILL 2-5 FEEDER SPEED
BURNER TILT
POSITION LF
POSITION LR
POSITION RF
POSITION RR
MISCELLANEOUS
DRUM LEVEL, IN. t NORM. H_0 LEVEL
FD FAN 2-1 *
FD FAN 2-2
ID FAN 2-1
ID FAN 2-2
FLUE GAS SO IN STACK
FLUE GAS COMBUSTIBLES L
FLUE GAS COMBUSTIBLES R
FLUE GAS 0 L
FLUE GAS 
-------
UTAH POWER AND LIGHT COMPANY
HgMTiNGTON CANYON 12
                                                C-E POWER SYSTEMS
                                                FIELD TESTING *NO
                                                PEBTOBMANCE RESULTS
  TEST NO.
                                        BASELINE  OPERATION  STUDY
   BOARD AND COMPUTER DATA

10     11      IS      13
                                                                        14
                                                                               15
                                                                                      16
                                                                                                    18
J = COMPUTER DATA;  B * BOARD D»TA
(I) FEEDER SPEED IN £ OF CONTROL SIGNAL.
                                                                                                           19
DATE
TIME
C LOAD
MILL DATA
C MILL 2-1
C MILL 2-2
C MILL 2-3
C MILL 2-4
C MILL 2-5
C COAL AIR TEMP. MILL 2-1
C COAL AIR TEMP. MILL 2-2
C COAL AIR TEMP. MILL 2-3
C COAL AIR TEMP. MILL 2-4
C COAL AIR TEMP. MILL 2-5
B MILL 2-1 EXH. DISCHARGE
B MILL 2-2 EXH. DISCHARGE
B MILL 2-3 EXH. DISCHARGE
B MILL 2-4 EXH. DISCHARGE
B MILL 2-5 EXH. DISCHARGE
B MILL 2-1 SUCTION
B MILL 2-2 SUCTION
B MILL 2-3 SUCTION
B MILL 2-4 SUCTION
B MILL 2-5 SUCTION
3 MILL 2-1 COAL FLOW
B MILL 2-2 COAL FLOW
B MILL 2-3 COAL FLOW
3 MILL 2-4 COAL FLOW
5 MILL 2-5 COAL FLOW
B MILL 2-1 FEEDER SPEED (1)
3 MILL 2-2 FEEDER SPEED
6 MILL 2-3 FEEDER SPEED
3 MILL 2-4 FEEDER SPEED
B MILL 2-5 FEEDER SPEED
BURNER TILT
B POSITION LF
B POSITION LR
B POSITION RF
B POSITION RR
MISCELLANEOUS
3 DRUM LEVEL, IN. - NORM. HpO LEVEL
C FD FAN 2-1
C FD FAN 2-2
C ID FAN 2-1
C ID FAN 2-2
C FLUE GAS S00 IN STACK
C FLUE GAS COMBUSTIBLES L
C FLUE GAS COMBUSTIBLES R
C FLUE GAS 0 L
C FLUE GAS Ot R
C FLUE GAS Or Ava.
3 AMBIENT TE&P.
8 AMBIENT REL. HUMIDITY
B BAROMETRIC PRESSURE
1975
MW

AMPS
AMPS
AMPS
AMPS
AMPS
°F
"F
•F
"F
"F
"HO
"HTO
"hPO
"H?0
"H?0
"hTO
"H?0
"kTO
"}fQ
"hfo
10\B/fe
10^LB/HR
lOiB/tfi
10 LB/HR
103LB/H?
*

f
%
%
- DEGREES



AMPS
AMPS
AMPS
AMPS
PPM
%
t
i
%
°F
"Ho
5/1
17:50
428

91
89
91
91
91
149
147
147
147
150
8.5
7.6
7.8
7.9
8.0
-1.6
-1.7
-1.6
-1.8
-1.6
64
65
63
64
65
74
78
78
78
79
NA
NA
NA
NA


0
252
230
424
417
NA
0
0
6.32
4.73
5.53
50
50
23.77
7/17
11:15
256

79
80
81
82
0
146
146
148
145
86
5.9
6.4
7.8
6.5
0
-2.2
-2.3
-2.2
-2.5
0
44
44
46
45
0
50
54
57
53
0
6
9
8
7


-1
172
171
307
306
NA
0
0
3.14
3.51
3.33
70
67
23.88
7/18
10:00
259

81
76
84
80
0
147
147
149
146
87
5.7
9.5
10.1
7
0
-2.1
-2.0
-1.7
-2.1
0
44
44
50
53
0
52
53
61
64
0
3
5
5
3


-1
189
184
328
326
NA
0
0
5.74
6.73
6.24
78
33
23.92
5/9
15:30
433

91
96
90
88
89
149
148
148
147
149
8.3
8.0
7.0
7.1
7.6
-1.9
-1.6
-2.0
-2.0
-2.0
66
62
61
62
63
75
75
74
75
75
3
5
5
3


0
216
205
374
372
501
0
0
3.80
1.8B
2.84
63
43
23.91
5/9
10:15
433

91
95
89
89
90
149
148
148
147
150
8.1
8.0
7.2
7.4
7.3
-1.8
-1.6
-1.9
-2.0
-2.0
66
62
62
62
62
76
75
74
75
74
8
10
10
8


0
224
210
385
387
255
0
0
4.88
3.17
4.03
61
44
23.91
5/3
18:15
433

92
96
89
89
90
149
147
147
147
150
8.2
8.3
7.4
7.2
7.6
-1.8
-1.5
-1.9
-1.9
-1.9
65
62
61
62
63
76
75
74
75
75
2
3
4
2


0
248
227
423
417
328
0
7.36
4.4?
5.89
60
42
23.0
10/9
X':00
361

NA
NA
',!A
riA
NA
149
148
147
78
149
7.4
6.5
6.9
0
7.0
-1.9
-1.8
-1 .7
0
-1.9
64
70
68
0
70
74
82
80
0
83
0
1
0
0


0
?">!
?17
35 E
356
NA
. 10
2.55
-2
66
23.98
7/22
11:15
258

90
0
78
80
82
147
86
148
146
149
5.8
0
7.3
6.5
6.9
-2.2
0
-2.2
-2.4
-2.3
47
0
43
49
50
54
0
53
59
60
11
12
12
12


-1
171
170
307
307
;.i
0
0
2.77
3.71
82
41
23.95
7/21
16:30
260

fO
a
81
81
83
147
85
149
146
149
5.6
0
7.4
6.9
6.8
-2.3
0
-2.2
-2.4
-2.3
46
~
48
49
50
53
0
58
59
60
13
14
16
14


-1
174
172
?13
312
::*
0
0
3!96
3.57
79
36
23.95
7/21
14:00
258

80
0
81
82
83
147
86
148
146
148
5.9
0
7.5
6.8
7.0
-2.2
0
-2.1
-2.3
-2.2
44
0
48
50
52
52
,71
59
60
62
12
14
14
14


-1
166
182
324
324
•;A
0
0
5.21
6.10
5.66
80
41
23.96
                                                       271
                                                                                                     SHEET B29

-------
 UTAH POWER AND LIGHT COMPANY
 HUNTiNOTON CANYON |2
                                          C-E POWER SYSTEMS
                                          FIELD TESTING  AND
                                          PERFORMANCE RESULTS
                          BIASED  FIRING OPERATION  STUDY
    TEST NO.


c

c
B
C
C
C
C
C
C
c
c
B


C
C
C
C
C
c
c
c
c

B
B
B
C
C
c
B
B
B
B
C
C
B
B
B
B
B
B
DATE
TIME
LOAD
FLOWS
FEEDWATER
MAIN STEAM
SUPERHEAT SPRAY L
SUPERHEAT SPRAY R
REHEAT SPRAY
EXT. STH. TO STM. AH 2-1
EXT. STM. 'TO STM. AH 2-2
Aux. STM. TO STM. AH 2-1
Aux. STH. TO STM. AH 2-2
Aux. STM. TO SJAE
AIR FLOW TO BOILER
PRESSURES
STEAM AND WATER
FEEDWATER TO ECONOMIZER
BOILER DRUM
TURBINE THROTTLE
TURBINE IST STAGE
RH INLET, LEFT
RH INLET, RIGHT
RH INLET, AVERAGE
RH OUTLET
HP HTH. 2-7 STM. IN
AIR AND GAS
FD FAN DISCHARGE R
FD FAN DISCHARGE L
FD FAN DISCHARGE Avc.
AH 2-1 AIR DIFF. PRESS. R
AH 2-2 AIR Dirr. PRESS. L
AH AIR DIFF. PRESS. Avo.
WINDBOX PRESS. R
WINDBOX PRESS. L
WINDBOX PRESS. Avc.
FURNACE DRAFT
SH DRAFT DIFF.
ECON. DRAFT DIFF.
AH 2-1 GAS OUT PRESS. R
AH 2-2 GAS OUT PRESS. L
AH GAS OUT PRESS. AVG.
ID FAN 2-1 INLET PRESS. R
ID FAN 2-2 INLET PRESS. L
ID FAN INLET PRESS. AVG.
 BOARD t COMPUTER DATA

        1      2

1975

 MW
                                      PSIG
                                      "H20
9/18
17:00
430
2945
3050
0
0
0
58.8
58.8
0
0
3.0
3200
2808
2713
2434
1820
571
575
573
535
358
9.5
9.5
9.5
3.4
3.9
3.7
4.0
4.0
4.0
-0.6
1.91
2.37
-12.7
-11.3
-12.2
-15.4
-12.6
-14,0
9/18
17:25
426
2889
3030
0
0
0
58.8
58.8
0
0
3.0
3210
2814
2708
2411
1814
568
573
571
532
361
9.6
9.6
9.6
3.4
3.9
3.7
3.9
3.9
3.9
-0.6
1.93
2.37
-12.6
-11.5
-12.1
-15.6
-12.6
-14.1
9/20
13:15
431
2871
2975
0
0
21.3
58.8
58.8
0
0
3.0
3260
2798
2703
2417
1816
572
576
574
532
360
8.6
8.5
8.6
3.5
4.0
3.7
3.3
3.3
3.3
-1.1
1.93
2.50
-13.7
-12.5
-13.1
-16.8
-13.1
-15.0
12/13
14:00
356
2291
2350
0
0
0
31.0
36.2
0
0
2.0
2510
2717
2625
2420
1444
462
465
464
422
382
7.1
7.0
7.0
2.5
2.9
2.7
3.5
3.5
3.5
-1
1.2
2.21
-10.1
-9.1
-9.6
-12.6
-10.1
-11.4
io/n
16:30
351
2261
2350
0
0
0
14.4
14.2
0
0
2.9
2410
2691
2624
2422
NA
NA
NA
NA
420
383
6.3
6.3
6.3
2.3
2.6
2.4
2.8
2.8
2.S
-1
1.05
1.65
-10.2
-9.4
-9.8
-11.8
-10.1
-11.0
10/12
15:00
360
2336
2400
0
0
0
25.3
25.3
0
0
3.0
2650
2694
2615
2406
NA
NA
NA
NA
436
374
8.4
8.4
8.4
2.5
3.0
2.8
4.4
4.4
4.4
-1
1.33
1.83
-10.5
-9.8
-10.2
-12.2
-10.5
-11.4
10/12
10:00
257
1648
1600
0
0
0
25.4
25.5
0
0
3.0
1750
2592
2536
2416
NA
NA
NA
NA
294
406
2.8
2.8
2.8
1.4
1.6
1.5
0.6
0.3
0.5
-1
0.45
0.92
-6.6
-6.1
-6.4
-7.6
-6.6
-7.1
10/5
21:30
271
1603
1650
29.0
25.6
0
58.8
58.8
0
0
3.0
1850
2591
2535
2420
1009
339
340
340
306
409
4.0
4.0
4.0
1.4
1.6
1.5
1.5
1.5
1.5
-1
0.54
1.05
-6.9
-6.9
-6.9
-7.8
-7.1
-7.5
C = COMPUTER DATA;  B » BOARD DATA
                                              272
                                                                                       SHEET B30

-------
UTAH POWER AND LIGHT COMPANY
HUNTtNGTON CANYON #2
                                       C-E POWER SYSTEMS
                                       FIELD TESTING AND
                                       PERFORMANCE RESULTS
                           BIASED  FIRING OPERATION  STODY
    TEST NO.


c

c
B
C
c
c
c
c
c
c
c
B


C
c
c
c
c
c
c
c
c

B
B
B
C
C
C
B
B
B
B
C
C
B
B
B
B
B
B
DATE
TIME
LOAD
FLOWS
TEEDVATER
MAIN STEAM
SUPERHEAT SPRAY L
SUPERHEAT SPRAY R
REHEAT SPRAY
EXT. STM. TO STH. AH 2-1
EXT. STM. -TO STH. AH 2-2
Aux. STM. TO STM. AH 2-1
Aux. STM. TO STH. AH 2-2
Aux. STM. TO SJAE
AIR FLOW TO BOILER
PRESSURES
STEAM AND WATER
FEEDVATER TO ECONOMIZER
BOILER DRUM
TURBINE THROTTLE
TURBINE !ST STAGE
RH INLET, LEFT
RH INLET, .RIGHT
RH INLET, AVERAGE
RH OUTLET
HP HTH. 2-7 STH. In
AIR AND GAS.
FD FAN DISCHARGE R
FD FAN DISCHARGE L
FD FAN DISCHARGE A vs.
AH 2-1 AIR DIFF. PRESS. R
AH 2-2 AIR DIFF. PRESS. L
AH AIR DIFF. PRESS. AVG.
WINDBOX PRESS. R
WINOBOX PRESS. L
WINDBOX PRESS. Avc.
FURNACE DRAFT
SH DRAFT DIFF.
ECON. DRAFT DIFF.
AH 2-1 GAS OUT PRESS. R
AH 2-2 GAS OUT PRESS. L
AH GAS OUT PRESS. Avc.
ID FAN 2-1 INLET PRESS. R
ID FAN 2-2 INLET PRESS. L
ID FAN INLET PRESS. Ava.
BOARD t COMPUTER DATA

      9     10     11
                                                                12
                                                                       13
                                                                                    15
1975 9/19
14:35
MW 427
2938
3050
0
0
0
58.8
58.8
0
0
3.0
3400
PSIG
2826
2718
2420
1824
571
576
574
533
359
"H-O
Z 9.9
9.9
9.9
3.6
4.2
3.9
4.0
4.0
4.0
-O.B
2.11
2.55
-13.9
-12.6
-13.3
-16.8
-13.8
-15.3
9/18
09:45
429
2897
3000
0
0
26.2
58.8
58.8
0
0
3.0
3480

2813
2721
2414
1829
575
579
577
535
359

10.4
10.4
10.4
3.8
4.3
4.0
3.9
3.9
3.9
-O.B
2.06
2.72
-14.5
-13.1
-13.8
-17.8
-14.3
-16.0
9/18
14:10
430
2882
3000
0
0
30.5
58.8
58.8
0
0
3.0
3430

2805
2722
2417
1823
574
579
577
535
360

10.4
10.4
10.4
3.8
4.3
4.1
4.0
4.0
4.0
-0.4
2.11
2.72
-13.95
-12.0
-13.3
-17.2
-13.7
-15.4
10/11
14:45
351
2273
2360
0
0
0
58.8
58.8
0
0
2.9
2610

2668
2622
2397
NA
NA
NA
NA
420
383

8.2
8.2
8.2
2.6
3.0
2.8
4.0
4.0
4.0
-1
1.25
1.B4
-11.1
-10.4
-10.8
-12.9
-11.2
-12.1
12/13
1 2 : 00
356
2321
2367
0
0
0
44.6
44.2
0
0
2.0
2730

2739
2612
2434
1438
460
463
462
426
381

7.8
7.5
7.6
2.94
3.38
3.16
4.2
4.2
4.2
-1.1
1.48
2.48
-11.6
-10.5
-11.0
-14.3
-11.5
-12.9
12/13
10:15
357
2302
2350
0
0
2.7
43.9
43.8
0
0
2.0
2360

2738
2625
2425
1441
460
463
462
425
381

8.0
8.0
8.0
3.02
3.51
3.26
4.2
4.2
4.2
-1.0
1.38
2.55
-12.1
-11.3
-11.7
-14.9
-12.2
-13.6
7/23
10:40
256
1557
1500
4.7
0
0
6.3
6.2
0
0
3.0
1700

2536
2489
2392
927
307
308
308
274
412

3.1
3.1
3.1
.3
.4
.4
.2
.2
.2
-0.5
0.40
0.77
-5.6
-5.1
-5.4
-6.7
-5.4
-6.1
7/24
09: =,5
259
1584
1500
19.2
9.1
0
9.3
9.3
0
0
3.0
1700

2544
2495
2397
939
312
314
313
280
406

3.1
3.0
3.1
.2
.4
.3
.1
.1
.1
-0.5
0.48
0.61
-5.7
-5.1
-5.4
-7.1
-5.6
-5.9
C = COMPUTER DATAJ  B - BOARD DATA
                                              273
                                                                                    SHEET B31

-------
 UTAH POWER AND LIOHT COMPANY
 HUNTINGTON CANYON IS
C-E POWER SYSTEMS
FIELD TESTINO »NO
PERFORMANCE RESULTS
                            BIASED FIRING  OPERATION  STUDY
    TEST NO.


c


c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

B
B

B
B
DATE
TIME
LOAD
TEMPERATURES
AIR AND GAS
AH 2-1 AIR IN
AH 2-2 AIR IN
Avo. AIR IN
AH 2-1 AIR OUT
AH 2-2 AIR OUT
Avc. AIR OUT
AH 2-1 GAS IN
AH 2-2 GAS IN
Avo. GAS IN
AH 2-1 GAS OUT
AH 2-2 GAS OUT (1 )
Avo. GAS OUT
STEAM AND WATER
FW IN TEMP. TO ECON.
ECON. OUT Avc.
BOILER DOWNCOHER
SH DESH INLET L
SH DESH INLET R
SH DESH INLET Avo
SH DESH OUTLET L
SH DESH OUTLET R
SH DESH OUTLET Avo
SH OUTLET
THROTTLE STEAM
RH TURBINE L
RH TURBINE R
RH TURBINE Ave
RH BOILER L
RH BOILER R
RH BOILER Avo
RH OUTLET
HP HTR 2-7 STM. IN
HP HTR 2-7 FW IN
HP HTR. 2-7 DRAIN
Aux. STEAM TEMP.
FAN DAMPER POSITION
FO FANS
ID FANS
SPRAY VALVE POSITION
SH SPRAY
RH SPRAY
                                        BOARD & COMPUTER DATA
                                       1975

                                        MM
                                        *F
                                    % OPEN



                                    % OPEN
9/18
7:00
430
106
99
103
520
540
530
715
716
716
266
278
272
484
571
678
744
756
750
751
759
755
967
955
599
599
599
595
595
595
993
601
416
424
514
72
62
0
0
9/18
17:25
426
106
100
103
515
537
526
705
706
706
264
277
271
484
570
678
744
754
748
749
752
751
976
964
607
607
607
604
603
604
1008
606
415
423
508
71
62
0
1
9/20
13:15
431
105
98
102
516
542
529
707
718
713
265
278
272
485
571
677
750
753
752
757
755
756
995
981
621
622
622
596
585
591
1014
623
415
424
518
70
65
0
24
12/13
14:00
356
105
104
104
498
502
500
657
626
642
255
258
256
463
534
673
733
733
733
737
737
737
1005
998
598
601
600
NA
NA
NA
1001
599
398
403
571
60
53
0
0
10/11
16:30
351
109
108
108
511
515
513
664
664
664
264
267
266
462
542
	
749
753
751
750
758
754
994
985
NA
NA
NA
575
578
577
994
589
398
404
545
60
52
0
9
10/12
15:00
360
112
113
112
499
507
503
660
660
660
258
261
260
466
543
672
744
745
745
744
749
747
1006
996
NA
NA
NA
592
593
593
1017
602
400
407
546
64
55
0
8
10/12
10:00
257
117
118
118
472
474
473
598
597
598
249
252
251
430
501
667
738
746
742
744
750
747
1006
994
NA
NA
NA
543
554
550
1000
552
372
376
552
46
41
0
0
10/5
21:30
271
114
117
116
481
482
482
614
616
615
254
253
254
436
508
669
751
759
755
729
736
732
1006
999
554
566
560
551
561
556
1018
561
372
380
533
48
43
30
0
C <= COMPUTER DATA;  B
(1) TC READING OPEN
                     BOARD DATA
                                               274
                                                                                          SHEET B32

-------
UTAH POWER AND  LIGHT COMPANY
HUNTINOTON CANYON 12
                                            C-E POWER SYSTEMS
                                            FIELD TESTING  AND
                                            PERFORMANCE RESULTS
                             BIASED  FIRING  OPERATION  STUDY
                                         BOARD I COMPUTER DATA
    TEST NO.
    DATE
    TIME
C   LOAD
    TEMPERATURES

C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
AIR AND GAS
AH 2-1 AIR IN
AH 2-2 AIR IN
AVG. AIR IN
AH 2-1 AIR OUT
AH 2-2 AIR OUT
AVG. AIR OUT
AH 2-1 GAS IN
AH 2-2 GAS IN
Ava. GAS IN
AH 2-1 GAS OUT
AH 2-2 GAS OUT (1 )
Ava. GAS OUT
STEAM AND WATER
FW IN TEMP. TO ECON.
ECON. OUT Avo.
BOILER OOWNCOMER
SH DESH INLET L
SH DESH INLET R
SH DESH INLET Avo
SH DESH OUTLET L
SH DESH OUTLET R
SH DESH OUTLET AVG
SH OUTLET
THROTTLE STEAM
RH TURBINE L
RH TURBINE R
RH TURBINE AVG
RH BOILER L
RH BOILER R
RH BOILER AVG
RH OUTLET
HP HTR 2-7 STM. IN
HP HTR 2-7 FW IN
HP HTR 2-7 DRAIN
Aux. STEAM TEMP.
  1975

   MW




   °F
    FAN  DAMPER POSITION
B   FD FANS
B   10 FANS

    SPRAY VALVE POSITION
B   SH SPRAY
B   RH SPRAY
                                      % OPEN
t OPEN
C - COMPUTER DATA;  B
(1) TC READING OPEN
                      BOARD DATA
                                                             11
                                                                    12
                                                                           13
                                                                                  14
                                                                                         15
                                                                                                16
»/19
1:35
427
105
105
105
520
542
531
719
719
719
268
278
273
484
574
678
744
754
749
751
759
755
964
955
599
600
600
596
596
596
995
600
415
423
512
74
63
0
0
9/18
09:45
429
103
99
101
516
537
527
710
707
709
267
276
272
486
575
679
745
751
761
753
760
757
992
980
622
622
622
588
575
582
998
619
415
423
521
75
65
0
3D
9/18
14:10
430
104
98
101
520
542
531
717
717
717
267
279
273
485
576
678
755
765
760
761
765
763
990
981
623
623
623
572
556
569
1007
621
415
424
525
74
65
0
34
10/11
14:45
351
110
110
110
504
513
509
661
662
662
260
265
263
462
544
671
752
754
753
753
759
756
995
988
NA
NA
NA
584
588
586
1005
591
398
404
554
66
57
0
0
12/13
12:00
356
100
103
102
498
504
501
671
671
671
254
260
257
463
539
674
743
740
742
746
744
745
1000
995
596
601
598
573
582
578
1000
591
397
403
571
64
56
0
0
i?/n
10:15
357
103
104
104
499
505
5O2
673
639
656
257
259
258
463
540
674
743
740
742
744
743
744
1008
998
596
602
599
590
581
586
1005
598
398
403
565
65
58
O
3
"/ - ''
1^:40
256
102
108
105
474
477
476
602
594
598
248
NA
248
425
494
665
745
745
745
742
747
745
1006
998
552
560
549
549
556
553
1000
555
367
370
573
46
40
5
0
7/24
09:55
259
104
104
104
472
478
475
599
589
594
246
NA
246
428
496
665
750
751
751
735
741
738
1002
995
549
558
554
547
555
551
1000
554
368
371
569
46
40
16
0
                                                 275
                                                                                           SHEET B33

-------
 UT»H POWER AND LIGHT COMPANY
 HUNTINGTON CANYON f2
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                             BIASED FIRING  OPERATION  STUDY
    TEST NO.
                                        BOARD I COMPUTER DATA


c

c
c
c
c
c
c
c
c
c
c
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B

B
C
C
C
C
B
B
C
C
C
C
C
B
B
B
DATE
TIME
LOAD
MILL DATA
MILL 2-1
MILL 2-2
MILL 2-3
MILL 2-4
MILL 2-5
COAL AIR TEMP. MILL 2-1
COAL AIR TEMP. MILL 2-2
COAL AIR TEMP. MILL 2-3
COAL AIR TEMP. MILL 2-4
COAL AIR TEMP. MILL 2-5
MILL 2-1 EXH. DISCHARGE
MILL 2-2 EXH. DISCHARGE
MILL 2-3 EXH. DISCHARGE
MILL 2-4 EXH. DISCHARGE
MILL 2-5 EXH. DISCHARGE
MILL 2-1 SUCTION
MILL 2-2 SUCTION
MILL 2-3 SUCTION
MILL 2-4 SUCTION
MILL 2-5 SUCTION
MILL 2-1 COAL FLOW
MILL 2-2 COAL FLOW
MILL 2-3 COAL FLOW
MILL 2-4 COAL FLOW
MILL 2-5 COAL FLOW
MILL 2-1 FEEDER SPEED (l)
MILL 2-2 FEEDER SPEED
MILL 2-3 FEEDER SPEED
MILL 2-4 FEEDER SPEED
MILL 2-5 FEEDER SPEED
BURNER TILT
POSITION LF
POSITION LR
POSITION RF
POSITION RR
Ml SCELLANEOUS
DRUM LEVEL, IN. - NORM. H.O LEVEL
FD FAN 2-1 d
FD FAN 2-2
ID FAN 2-1
ID FAN 2-2
FLUE GAS SO. IN STACK
FLUE GAS NCr IN STACK
FLUE GAS COMBUSTIBLES L
FLUE GAS COMBUSTIBLES R
FLUE GAS (L L
FLUE GAS 0? R
FLUE GAS 0? Ava.
AMBIENT TEMP.
AMBIENT REL. HUMIDITY
BAROMETRIC PRESSURE
1975

MM

AMPS
AMPS
AMPS
AMPS
AMPS
•F
•F
"F
°F
°F
"H-0
"H?0
"HTO
"tfo
"HfO
"HIO
"H?0
"H£°
"«o
o "fa
10fLB/HR
IO£LB/HR
10ILB/HJ
lOILB/HR
10T.B/H?
%
*
%
%
%
- DEGREES






AMPS
AMPS
AMPS
AMPS
PPM
PPM
%
%
%

%
•F
%
"Ho
9/18
17:00
430

NA
NA
NA
NA
NA
154
148
147
148
149
5.5
7.4
8.4
10.1
8.4
-3.2
-1.6
-1.5
-1.4
-1.6
0
80
79
79
80
26
95
94
94
94

+6
+8
+6
46

-1
209
230
380
388
NA
NA
0.06
0
3.33
2.49
2.91
72
24
23.76
9/18
17:25
426

NA
NA
NA
NA
NA
148
154
146
148
148
8.2
7.6
5.5
10.5
8.5
-1.5
-1.7
-2.7
-1.4
-1.6
85
81
0
79
80
95
96
NA
95
94

-3
-1
-4
-3

-1
209
231
380
389
NA
NA
0.05
0
2.85
3.41
3.3
65
28
23.61
9/20
13:15
431

NA
NA
NA
NA
NA
148
148
147
148
147
7.1
7.1
8.0
10.0
NA
-1.5
-1.4
-1.4
-1.4
NA
86
84
82
82
0
96
96
94
95
NA

-8
-4
-7
-6

0.0
208
228
385
393
NA
NA
0.06
0
2.16
4.00
3.08
71
21
24.20
12/13
14:00
356

60.3
93.0
87.4
88.0
87.6
157
149
149
148
151
4.5
7.1
7.0
7.5
7.4
-2.9
-1.8
-1.7
-1.8
-1.9
0
68
62
61
62
24
82
80
80
80

+17
+17
+13
+18

-0.5
342
349
342
348
NA
NA
0.17
0
2.27
2.70
2.48
31
82
23.30
10/11
16:30
351

NA
NA
NA
NA
NA
149
148
88
147
150
7.9
NA
7.3
7.5
7.5
-1.8
NA
-1.8
-2.0
-1.7
71
0
68
66
67
82
NA
80
80
80

-10
-7
-9
-9

-1
NA
NA
345
348
NA
400
0.07
0
3.11
2.58
2.85
62
20
23.65
10/12
15:00
360

NA
NA
NA
NA
NA
148
148
148
97
150
7.5
6.5
7.4
NA
6.8
-1.9
-1.8
-1.6
NA
-1.6
72
70
69
0
70
S3
83
82
NA
84

-10
-6
-11
-9

-1
NA
NA
350
352
NA
NA
0.09
0
2.85
2.89
2.87
54
45
23.58
10/12
10:00
257

NA
NA
NA
NA
NA
75
146
146
145
149
NA
6.6
6.2
6.5
6.2
NA
-2.4
-2.4
-2.4
-2.3
0
51
50
50
51
NA
62
60
60
60

+6
+6
+5
+6

-1
NA
NA
312
312
NA
400
0.1
0
3.97
3.02
3.50
53
47
23.66
10/5
21:30
271

NA
NA
NA
NA
NA
148
112
147
145
149
7.0
6.5
NA
6.5
6.5
-2.3
-2.3
NA
-2.4
-2.4
55
50
0
48
50
64
60
NA
58
60

-8
-5
-8
-8

0
NA
NA
171
181
28
380
0.08
0
3.08
3.85
3.47
56
37
23.96
C = COMPUTER DATA;  B = BOARD DATA
(1) FEEDER  SPEED IN % or CONTROL SIGNAL
                                               276
                                                                                         SHEET B34

-------
UTAH POWER AND LIGHT  COMPANY
HUNTINOTOH CANYON IS
                                                                                     C-E POWER SYSTEMS
                                                                                     FIELD TESTING AND
                                                                                     PERFORMANCE RESULTS
                              BIASED  FIRING  OPERATION  STUDY
    TEST NO.
    DATE
    TIME
C   LOAD
    MILL DATA
C
C
C
C
C
C
C
C
C
C
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
MILL
MILL
MILL
MILL
MILL
COAL
COAL
COAL
COAL
COAL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
MILL
2-1
2-2
2-3
2-4
2-5
AIR
AIR
AIR
AIR
AIR
2-1
2-2
2-3
2-4
2-5
2-1
2-2
2-3
2-4
2-5
2-1
2-2
2-3
2-4
2-5
2-1
2-2
2-3
2-4
2-5





TEMP. MILL 2-1
TEMP. MILL 2-2
TEMP. MILL 2-3
TEMP. MILL 2-4
TEMP. MILL 2-5
EXH. DISCHARGE
EXH. DISCHARGE
EXH. DISCHARGE
EXN. DISCHARGE
EXH. DISCHARGE
SUCTION
SUCTION
SUCTION
SUCTION
SUCTION
COAL FLOW
COAL FLOW
COAL FLOW
COAL FLOW
COAL FLOW
FEEDER SPEED (1)
FEEDER SPEED
FEEDER SPEED
FEEDER SPEED
FEEDER SPEED
                                           BOARD t COMPUTER DATA

                                                 9      10      11
                   3 NORM. H20 LEVEL
    BURNER TILT
B   POSITION LF
B   POSITION LR
8   POSITION RF
B   POSITION RR

    MISCELLANEOUS
B   DRUM LEVEL,  IN.
C   FD FAN 2-1
C   FD FAN 2-2
C   ID FAN 2.1
C   ID FAN 2-2
B   FLUE GAS SO
B   FLUE SAS NO  ...	
C   FLUE GAS COMBUSTIBLES  L
C   FLUE GAS COMBUSTIBLES  R
C   FLUE GAS 0  L
C   FLUE GAS 0? R
C   FLUE GAS CC Avo.
B   AMBIENT TEMP.
B   AMBIENT REL. HUMIDITY
B   BAROMETRIC PRESSURE

C = COMPUTER DATA;  B = BOARD DATA
(1) FEEDER SPEED IN % or CONTROL SIGNAL
                IN STACK
                IN STACK
                                                                      12
                                                                              13
                                                                                     14
                                                                                            15
                                                                                                    16
1975

MM
AMPS
AMPS
AMPS
AMPS
AMPS
•F
°F
"F
°F
•F
"HO
"H?0
"HrO
"HfO
nnQ
"H?0
"HfO
"H?O
"VrO
3 "*&
102.B/HR
10i.B/HR
lOiB/HR
lOrtB/HR
10T.B/HR
a
f
£
£
%
'• DEGREES





AMPS
AMPS
AMPS
AMPS
PPM
PPM

nf
%

J
°F

"Ho
9/19
14:35
427
NA
NA
NA
NA
NA
117
148
146
147
148
5.5
7.5
8.2
10.0
8.5
-3.1
-1.6
-1.4
-1.4
-1.5
0
84
83
82
81
26
100
99
96
90

+16
+17
+15
+18
-1
NA
NA
212
236
W
NA
0.08
0
4.09
3.76
3.92
79
27
23.80
9/18
09:45
429
NA
NA
NA
NA
NA
148
148
147
147
147
8.1
5.5
8.4
10.3
B.6
-1.5
-3.0
-1.4
-1.4
-1.6
79
0
79
78
79
90
NA
94
94
94

+9
+10
+9
+9
-1.1
NA
NA
216
241
NA
NA
0.11
0
4.74
3.83
4.29
67
38
23.83
9/18
14:10
430
NA
NA
NA
NA
NA
149
148
147
147
149
8.5
7.5
6.2
8.0
B.5
-1.6
-1.7
-1.5
-3.0
-1.6
84
80
79
0
80
94
94
94
NA
94

+2
+4
+2
+2
-1
NA
NA
215
239
NA
NA
0.07
0
4.09
4.01
4.05
74
27
23.83
10/11
14:45
351
NA
NA
NA
NA
NA
156
149
149
147
150
NA
5.8
7.3
7.4
7.3
NA
-3.2
-1.5
-1.7
-1.5
0
76
76
74
75
NA
91
90
91
89

+5
+6
+5
+6
-1
NA
NA
348
352
NA
396
0.05
0
3.77
3,87
3.82
68
20
23.66
12/13
12:00
356
94.8
91.4
64.7
86.7
85.5
150
160
148
147
150
8.0
7.5
5.0
7.2
7.3
-1.7
-1.8
-2.8
-1.8
-1.9
75
64
0
58
59
79
79
NA
7B
78

+7
+10
+7
+9
-0.5
358
364
358
364
NA
NA
0.16
0
3.52
4.6
4.06
31
81
23.33
12/13
10:15
357
95.6
91.8
86.5
86.8
61.9
150
149
148
148
147
6.1
7.5
7.1
7.5
4.1
-1.6
-1.8
-1.7
-1.8
-2.9
75
65
58
59
0
78
78
76
76
NA

-8
-6
-9
-8
-0.5
358
366
357
366
NA
NA
0.16
0
3.06
5.16
4.11
30
85
23.38
7/23
10: 4C
256
79.6

77.6
79.8
85.3
148
NA
148
146
148
5.5
NA
7.2
6.5
7.0
-2.3
NA
-2.3
-2.5
-2.3
43
0
40
47
56
49
NA
49
58
68

+11
+12
+13
+13
-1
171
171
311
310
NA
NA
0.1
0
3.54
4.10
3.85
87
28
24.00
7/24
09:55
259
81.0
76.4
60.0
NA
B4.5
147
NA
148
88
149
5.5
6.1
7.6
NA
7.1
-2.2
-2.6
-2.2
NA
-2.3
48
35
45
0
55
56
42
55
NA
67

+10
+12
+13
+11
-0.5
171
170
312
310
NA
NA
0.09
0
3.28
3.90
3.59
79
36
24.05
                                                  277
                                                                                                SHEET B35

-------
 UTAH POWER AND LIGHT COMPANY
 HUNTinoTON CANYON IS
                                                    C-E POWEB SYSTEMS
                                                    FIELD  TESTING AND
                                                    PERFORMANCE RESULTS
                                OVERFIRE  AIR OPERATION  STUDY
                                            BOARD AND COMPUTER DATA
   TEST NO.

   DATE
   TIME
 C LOAD

   FLOWS
 C FEEDWATEB
 B MAIN STEAM
 C SUPERHEAT SPRAY L
 C SUPERHEAT SPRAY R
 C REHEAT SPRAY
 C EXT. STM. TO STM. AH 2-1
 C EXT. STM. TO STM. AH 2-2
 C Aux. STM. TO STM. AH 2-1
 C Aux. STM. TO STM. AH 2-2
 C Aux. STM. TO SJAE
 B AIR FLOW TO BOILER

   PRESSURES
   STEAM & "WATER
 C FEEOWATER TO ECON.
 C BOILER DRUM
 C TURBINE THROTTLE
 C TURBINE 1ST STAGE
 C RH INLET LEFT
 C RH INLET RIGHT
 C RH INLET AVG.
 C RH OUTLET
 C HP HTR. 2-7 STM.  IN

  PRESSURES
  AIR i GAS
    1975
      MW
103LB/HR
    PS IS
    "H20
B FD FAN DISCHARGE R
B FD FAN DISCHARGE L
B FD FAN DISCHARGE Avs.
C AH 2-1  AIR  DIFF. PRESS. R
C AH 2-2 AIR  DlFF. PRESS. L
C AH AIR DIFF. PRESS. Avc.
B WINDBOX PRESS. R
BWINDBOX PRESS. L
B WINDBOX PRESS. AVG.
8 FURNACE DRAFT
C SH DRAFT DIFF.
C ECON.  DRAFT DIFF.
B AH 2-1  GAS  OUT. PRESS. R
B AH 2-2 GAS  OUT. PRESS. L
B AH GAS  OUT. PRESS. AVG.
B ID FAH  2-1  INLET PRESS. R
B ID FAN  2-2  INLET PRESS. L
B ID FAN  INLET PRESS. AVG.
9/17
10:20
428
2676
3000
0
0
9.1
12.2
12.2
0
0
3.0
3460
2806
2716
2409
1826
572
575
574
531
360
10.3
10.3
10.3
3.80
4.34
4.07
4.0
4.0
4.0
-0.68
1.95
2.66
-14.5
-12.8
-13.6
-17.3
-14.0
-15.6
9/26
09:40
430
2893
3040
0
0
7.8
58.9
58.9
0
0
3.0
3380
2815
2720
2422
1828
573
578
575
535
359
9.5
9.5
9.5
3.73
4.21
3.97
3.5
3.5
3.5
-1.0
2.19
2.53
-15.0
-13.0
-14.0
-18.5
-14.0
-16.2
9/26
11:30
430
2900
3038
0
0
7.2
58.8
58.8
0
0
3.0
3380
2820
2721
2420
1828
573
578
575
534
360
9.5
9.5
9.5
3.70
4.19
3.94
3.4
3.4
3.4
-1.1
2.01
2.69
-15.0
-12.9
-14.0
-19.0
-14.0
-16.5
9/86
15:30
430
2895
3025
0
0
28.2
58.8
58.8
0
0
3.0
3380
2816
2720
2420
1828
575
579
577
536
360
10.0
10.0
10.0
3.70
4.21
3.96
3.3
3.3
3.3
-1.0
1.91
2.75
-15.0
-13.0
-14.0
-18.5
-14.0
-16.2
9/26
17:15
431
2901
3050
0
0
22.4
58.8
58.8
0
0
3.0
3380
2821
2725
2427
1833
577
581
579
538
359
10.0
10.0
10.0
3.70
4.22
3.96
3.3
3.3
3.3
-1.1
2.13
2.81
-15.0
-12.6
-13.9
-16.5
-14.0
-16.2
10/1
18:00
430
2893
3038
0
0
0
53.8
58.8
0
0
3.0
3060
2814
2717
2418
1826
572
575
574
532
360
9.5
9.5
9.5
3.25
3.65
3.45
4.5
4.5
4.5
-1.0
1.81
2.24
-12.5
-13.5
-13.0
-15.0
-15.0
-15.0
10/1
19:30
428
2910
3040
0
0
0
58.8
58.8
0
0
3.0
3130
2815
2716
2416
1825
571
575
573
533
359
9.S
9.2
9.2
3.28
3.70
3.49
3.7
3.7
3.7
-1.0
1.91
2.49
-12.8
-13.8
-13.3
-15.0
-15.1
-15.0
10/1
21:00
428
2903
3040
0
0
0
58.6
56.6
0
0
3.0
3150
2811
2715
2413
1824
571
575
573
532
362
8.8
8.8
8.8
3.30
3.72
3.51
3.2
3.2
3.2
-1.0
1.95
2.44
-12.9
-13.7
-13.3
-15.0
-15.1
-15.0
      BOARD DATA
      COMPUTER DATA
                                                    278
                                                                                                 SHEET 836

-------
UTAH POWER AND LIGHT COMPANY
HUNTINOTON CANYON fs
                                                                     C-E POWER SYSTEHS
                                                                     FIELD TESTING AND
                                                                     PERFORMANCE RESULTS
                              OVERFIRE  AIR OPERATION  STUDY
                                           BOARD AND COMPUTER DATA
  TEST HO.

  DATE
  TIME
C LOAD

  FLOWS
C FEEDWATER
B MAIN STEAM
C SUPERHEAT SPRAY L
C SUPERHEAT SPRAY R
C REHEAT SPRAY
C EXT. STM. TO  STM. AH 2-1
C EXT. STM. TO  STM. AH 2-2
C Aux. STM. TO  STM. AH 2-1
C Aux. STM. TO  STM. AH 2-2
C Aux. STM. TO  SJAE
B AIR FLOW TO BOILER

  PRESSURES
  STE"AM & "PATER
C FEEDWATER TO  ECon.
C BOILER DRUM
C TURBINE THROTTLE
C TURBINE 1sT STAGE
C RH INLET LEFT
C RH INLET RIGHT
C RH INLET AVG.
C RH OUTLET
C HP HTR. 2-7 STM.  IN

  PRESSURES
  All; A GAS
B FD FAN DISCHARGE R
B FD FAN DISCHARGE L
B FD FAN DISCHARGE AVG.
C AH 2-1 AIR DIFF. PRESS. R
C AH 2-2 AIR DIFF. PRESS. L
C AH AIR DIFF.  PRESS. Avc.
B WINDBOX PRESS.  R
B WINOBOX PRESS.
B WINOBOX PRESS.
B FURNACE DRAFT
C SH DRAFT DIFF.
C ECON. DRAFT DIFF.
B AH 2-1 GAS OUT. PRESS. R
B AH 2-2 GAS OUT. PRESS. L
B AH GAS OUT. PRESS. AVG.
B ID FAN 2-1 INLET PRESS. R
B ID FAN 2-2 INLET PRESS. L
B ID FAN INLET  PRESS. AVG.
L
AVG.
                                       10
                                              11
                                                      12
                                                             13
                                                                     14
                                                                            15
                                                                                   16
1975

Mrf
10\B/HR











PSIG









"H20


















9/27
13:30
426

2885
3033
0
0
0
58.8
58.8
0
0
3.0
3770

2810
2703
2423
1812
567
571
569
531
366

11.0
11.0
11.0
4.42
5.02
4.72
3.5
3.5
3.5
-1.0
2.54
3.16
-15.0
-15.0
-15.0
-21.5
-17. f
-19.5
9/27
12:00
429

2881
3050
0
0
0
58.9
58.9
0
0
3.1
3710

2318
2716
2417
1827
569
573
571
530
362

11.8
11.8
11.8
4.41
4.84
4.62
4.3
4.3
4.3
-1.0
2.26
3.08
-15.0
-15.0
-15.0
-19.1
-19.1
-19.1
9/27
14:00
429

2891
3050
0
0
0
58.8
58.8
0
0
3.0
3730

2818
2719
2420
1828
570
573
572
531
359

11.8
11.8
11.8
4.40
4. 64
4.62
4.5
4.5
4.5
-1.0
2.36
3.11
-15.0
-15.0
-15.0
-19.0
-19.0
-19.0
10/5
13:45
427

2909
3000
0
0
0
58.8
58.8
0
0
3.0
3130

2813
2719
2415
1829
573
577
575
533
360

9.3
9.3
9.3
3.37
3.81
3.59
3.5
3.5
3.5
-1.0
1.82
2.44
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
10/4
16:00
434

2B53
3000
0
0
'17.3
58.8
58.8
0
0
3.0
3250

2814
2718
2420
1829
576
579
578
536
359

9.8
9.8
9.8
3.56
3.98
3.77
3.8
3.8
3.8
-1.2
1.95
2.51
-14.3
-14.3
-14.3
-16.9
-15.4
-16.2
10/5
12:00
422

2889
3000
0
0
0
58.8
58.8
0
0
3.0
3140

2807
2705
2411
1806
565
569
567
528
362

9.2
9.2
9.2
3.33
3.73
3.53
3.4
3.4
3.4
-1.0
1.73
2.31
-13.5
-13.4
-13.4
-15.6
-14.5
-15.0
10/4
14:15
429

2882
3000
0
0
0
58.8
58.8
0
0
3.0
3200

2812
2713
2417
1623
572
575
574
533
361

9.1
9.1
9.1
3.42
3.90
3.66
3.5
3.5
3.5
-1.0
1.84
2.41
-13.6
-13.6
-13.6
-16.0
-14.8
-15.4
10/3
18:30
427

2904
3050
0
0
7.9
58.8
58.8
0
0
3.0
3190

2808
2713
2415
1824
573
577
575
534
360

9.5
9.5
9.5
3.44
3.90
3.67
3.5
3.5
3.5
-1.0
1.82
2.39
-13.5
-13.4
-13.4
-16.0
-14.5
-15.2
      BOARD DATA
      COMPUTER DATA
                                                   279
                                                                                               SHEET B37

-------
 UTAH POWER AND LIGHT COMPANY
 HUNTINGTON CANTON 02
                                                  C-E POWER SYSTEMS
                                                  FIELD TESTING AND
                                                  PERFORMANCE RESULTS
                                OVERFIRE  AIR  OPERATION  STUDY
                                            BOARD AND COMPUTER DATA
   TEST NO.

   DATE
   TIME
 C LOAD

   FLOWS
 C FEEOWATER
 B MAIN STEAM
 C SUPERHEAT SPRAY L
 C SUPERHEAT SPRAY R
 C REHEAT SPRAY
 C EXT.  STM. TO STM. AH 2-1
 C EXT.  STM. TO STM. AH 2-2
 C Aux.  STM. TO STM. AH 2-1
 C Aux.  STM. TO STM. AH 2-2
 C Aux.  STM. TO SJAE
 B AIR  FLOW TO BOILER

   PRESSURES
   STEAM tTJATER
 C FEEDWATEH TO ECON.
 C BOILER DRUM
 C TURBINE THROTTLE
 C TURBINE 1ST STAGE
 C RH INLET LEFT
 C RH INLET RIGHT
 C RH INLET Avo.
 C RH OUTLET
 C HP HTR. 2-7 STM. IN

   PRESSURES
   AIR i GAS

 B FD FAN DISCHARGE R
 B FD FAN DISCHARGE L
 B FD FAN DISCHARGE Avs.
 C AH 2-1 AIR DIFF. PRESS. R
 C AH 2-2 AIR DIFF. PRESS. L
 C AH AIR DIFF. PRESS.  Avc.
 B WINDBOX PRESS.  R
 B WINDBOX PRESS.  L
 B WINDBOX PRESS.  AVG.
 B FURNACE DRAFT
 C  SH DRAFT OIFF.
 C  ECON. DRAFT DIFF.
B AH 2-1 GAS OUT.  PRESS. R
B AH 2-2 GAS OUT.  PRESS. L
B AH GAS OUT.  PRESS. AVG.
B  ID FAN 2-1  INLET PRESS. R
B  ID FAN 2-2 INLET PRESS. L
B  ID FAN INLET PRESS.  AVG.

  B = BOARD  DATA
  C * COMPUTER DATA
    1975
      MW
10\B/HS
    PSIG
                                                 17
                                                         18
                                                                19
                                                                        20
                                                                               21
                                                                                       22
                                                                                               S3
                                                                                                      24
10/3
22:30
423
2926
3100
0
0
22.9
58.8
58.8
0
0
3.0
3180
2813
2715
2418
1826
574
578
576
535
357
9.0
8.9
9.0
3.35
3.79
3.57
3.1
3.1
3.1
-1.2
1.93
2.45
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
10/3
20:30
430
2885
3038
0
0
18.7
58.8
58.8
0
0
3.0
3240
2806
2711
2413
1824
574
579
576
535
350
9.4
9.4
9.4
3.44
3.88
3.66
3.5
3.5
3.5
-1.2
2.00
2.61
-13.8
-13.8
-13.8
-16.0
-15.0
-15.5
10/6
19:00
417
2900
3050
0
0
0
58.8
58.8
0
0
3.0
3100
2813
2715
2415
1824
572
576
574
524
359
8.8
8.8
8.8
3.23
3.64
3.44
3.3
3.3
3.3
-1.0
1.85
2.43
-13.3
-12.8
-13.0
-15.5
-14.0
-14.8
10/8
10:30
426
290B
3050
0
0
0
58.8
58.8
0
0
3.2
3110
2816
2720
2419
1829
571
575
573
532
363
8.5
8.5
8.5
3.30
3.72
3.51
3.0
3.0
3.0
-1.0
1.77
2.45
-13.8
-13.2
-13.5
-15.5
-14.0
-14.8
10/10
01:45
356
2333
2400
0
0
0
58.8
58.8
0
0
3.0
2460
2705
2628
2416
1442
464
468
460
428
380
4.8
4.6
4.7
2.21
2.58
2.40
1.0
1.0
1.0
-1.0
1.13
1.71
-10.6
-9.8
-10.2
-11.6
-10.6
-11.1
10/9
01:15
358
2307
2400
0
0
4.5
58.8
58.8
0
0
3.1
2640
2701
2631
2420
1438
465
469
467
429
384
6.8
6.6
6.7
2.50
2.87
2.68
S.5
2.5
2.5
-1.0
1.33
1.80
-10.0
-10.0
-10.0
-11.6
-10.5
-11.2
10/12
08:15
253
1665
1650
0
0
0
28.2
28.5
0
0
3.0
1800
2592
2537
2416
NA
NA
NA
NA
293
404
2.5
2.5
2.5
1.36
1.52
1.44
0
0
0
-1.0
0.53
0.98
-6.8
-6.0
-6.4
-7.5
-6.8
-7.2
10/5
18:45
266
1657
1650
0
0
0
58.8
58.8
0
0
3.0
1810
2593
2532
2414
1008
334
336
335
301
408
2.5
2.5
2.5
1.38
1.57
1.48
0
0
0
-1.0
0.60
0.88
-6.8
-6.6
-6.7
-8.0
-7.6
-7.8
                                                    280
                                                                                                 SHEET B38

-------
UTAH POWER  AND LIGHT COMPANY
HUNTINGTON  CANYON JS
                                                                                      C-E POWER SYSTEMS
                                                                                      FIELD TESTING AND
                                                                                      PERrORMANCt RESULTS
                              OVERFIRE  AIR  OPERATION  STUDY
                                          BOARD AND COMPUTER DATA
  TEST NO.

  DATE
  TIME
C LOAD

  FLOWS
C FEEOWATCR
B MAIN STEAM
C SUPERHEAT  SPRAY L
C SUPERHEAT  SPRAY R
C REHEAT SPRAY
C EXT. STM.  TO  STH. AH 2-1
C EXT. STM.  TO  STM. AH 2-2
C Aux. STM.  TO  STM. AH 2-1
C Aux. STM.  TO  STM. AH 2-2
C Aux. STM.  TO  SJAE
B AIR FLOW TO BOILER

  PRESSURES
  STEAM t WATER
C FEEDWATER  TO  ECON.
C BOILER DRUM
C TURBINE THROTTLE
C TURBINE 1sT STAGE
C RH INLET LEFT
C RH INLET RIGHT
C RH INLET AVG.
C RH OUTLET
C HP HTR. 2-7 STM.  IN

  PRESSURES
        GAS
                L
                AVG.
B FD FAN DISCHARGE R
B FD FAN DISCHARGE: L
B FD FAN DISCHARGE Avo.
C AH 2-1 AIR DIFF. PRESS. R
C AH 2-2 AIR DIFF. PRESS. L
C AH AIR DIFF.  PRESS. AVG.
B WINOBOX PRESS. R
B WINDBOX PRESS.
B WINDBOX PRESS.
B FURNACE DRAFT
C SH DRAFT DIFF.
C ECON. DRAFT DIFF.
B AH S-1 GAS OUT. PRESS. R
B AH 2-2 GAS OUT. PRESS. L
B AH GAS OUT. PRESS. Avo.
B ID FAN 2-1 INLET PRESS, R
B ID FAN 2-2 INLET PRESS. L
B ID FAN INLET  PRESS. AVG.
                                                       10
                                                              11
                                                                      12
                                                                              13
                                                                                             15
                                                                                                    16
1975

MM
103LB/HR











PSIG









"H20


















9/27
13:30
428

2885
3033
0
0
0
58.8
58.8
0
0
3.0
3770

2810
2703
2423
1812
567
571
569
531
366

11.0
11.0
11.0
4.42
5.02
4.72
3.5
3.5
3.5
-1.0
2.54
3.16
-15.0
-15.0
-15.0
-21.5
-17.5
-19.5
9/27
12:00
429

2881
3050
0
0
0
58.9
58.9
0
0
3.1
3710

2818
2716
2417
1827
569
573
571
530
362

11.8
11.8
11.8
4.41
4.84
4.62
4.3
4.3
4.3
-1.0
2.26
3. OB
-15.0
-15.0
-15.0
-19.1
-19.1
-19.1
9/27
14:00
429

2891
3050
0
0
0
58.8
58.8
0
0
3.0
3730

2818
2719
2420
1828
570
573
572
531
359

11.8
11.8
11.8
4.40
4.84
4.62
4.5
4.5
4.5
-1.0
2.36
3.11
-15.0
-15.0
-15.0
-19.0
-19.0
-19.O
10/5
13:45
427

2909
3000
0
0
0
58.8
58.8
0
0
3.0
3130

2813
2719
2415
1829
573
577
575
533
360

9.3
9.3
9.3
3.37
3.81
3.59
3.5
3.5
3.5
-1.0
1.82
2.44
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
10/4
16:00
434

2853
3000
0
0
17.3
58.8
58.6
0
0
3.0
3250

2614
2718
2420
1B29
576
579
578
536
359

9.8
9.8
9.8
3.56
3.98
3.77
3.8
3.8
3.8
-1.2
1.95
2.51
-14.3
-14.3
-14.3
-16.9
-15.4
-16.2
10/5
12:00
422

2889
3000
0
0
0
58.8
58.8
0
0
3.0
3140

2607
2705
2411
1806
565
569
567
528
362

9.2
9.2
9.2
3.33
3.73
3.53
3.4
3.4
3.4
-1.0
1.73
2.31
-13.5
-13.4
-13.4
-15.6
-14.5
-15.0
10/4
14:15
429

2862
3000
0
0
0
58.8
58.8
0
0
3.0
3200

2812
2713
2417
1823
572
575
574
533
361

9.1
9.1
9.1
3.42
3.90
3.66
3.5
3.5
3.5
-1.0
1.84
2.41
-13.6
-13.6
-13.6
-16.0
-14.8
-15.4
n/2
18:30
427

2904
3050
0
0
7.9
58. B
58.6
0
0
3.0
3190

2808
2713
2415
1624
573
577
575
534
360

9.5
9.5
9.5
3.44
3.90
3.67
3.5
3.5
3.5
-1.0
1.82
2.39
-13.5
-13.4
-13.4
-16.0
-14.5
-15.2
      BOARD  DATA
      COMPUTER DATA
                                                   279
                                                                                               SHEET B37

-------
 UTAH POWER AND LIGHT COMPANY
 HUNTINGTON CANYON |2
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                OVERFIRE  AIR OPERATION  STUDY
   TEST NO.

   DATE
   TIME
 C LOAD

   FLOWS
 C FEEDWATER
 B MAIN STEAM
 C SUPERHEAT SPRAY L
 C SUPERHEAT SPRAY R
 C REHEAT SPRAY
 C EXT.  STM. TO STM. AH 2-1
 C EXT.  STM. TO STM. AH 2-2
 C Aux.  STM. TO STM. AH 2-1
 C Aux.  STM. TO STM. AH 2-2
 C Aux.  STM. TO SJAE
 B AIR  FLOW TO BOILER

   PRESSURES
   STEAM ATJATER
 C FEEDWATER TO ECON.
 C BOILER DRUM
 C TURBINE THROTTLE
 C TURBINE IST STAGE
 C RH INLET LEFT
 C RH INLET RIGHT
 C RH INLET AVG.
 C RH OUTLET
 C HP HTR.  2-7 STM.  IN

   PRESSURES
   Alft 4 GAS

 B FD FAN DISCHARGE  R
 B FD FAN DISCHARGE  L
 5 FD FAN DISCHARGE  AVG.
 C  AH 2-1 AIR  DIFF.  PRESS. R
 C  AH 2-2 AIR  DIFF.  PRESS. L
 C  AH AIR DIFF.  PRESS. AVG.
 B WINDBOX  PRESS. R
 B WINDBOX  PRESS. L
 B WINDBOX  PRESS. AVG.
6 FURNACE  DRAFT
C SH DRAFT DIFF.
C ECON. ORAFT DIFF.
B AH 2-1 GAS  OUT. PRESS. R
B AH 2-2 GAS  OUT.  PRESS. L
B AH GAS OUT.  PRESS. AVG.
B  ID FAN 2-1  INLET  PRESS. R
B  ID FAN 2-2  INLET  PRESS. L
B  ID FAN INLET  PRESS. AVG.

  B a BOARD DATA
  C = COMPUTER  DATA
BOARD AND COMPUTER

1975

MW
.B/ffi










PSIG









"HgO


















J7
10/3
22:30
423
2926
3100
0
0
22.9
58.8
58.8
0
0
3.0
3180

2813
2715
2418
1826
574
578
576
535
357

9.0
8.9
9.0
3.35
3.79
3.57
3.1
3.1
3.1
-1.2
1.93
2.45
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
!§
10/3
20:30
430
2885
3038
0
0
18.7
58.8
58.8
0
0
3.0
3240

2606
2711
2413
1824
574
579
576
535
360

9.4
9.4
9.4
3.44
3.88
3.66
3.5
3.5
3.5
-1.2
2.00
2.61
-13.8
-13.8
-13.8
-16.0
-15.0
-15.5
DATA
1*
10/6
19:00
417
2900
3050
0
0
0
58.8
58.8
0
0
3.0
3100

2813
2715
2415
1824
572
576
574
524
359

8.8
8.8
8.8
3.23
3.64
3.44
3.3
3.3
3.3
-1.0
1.85
2.43
-13.3
-12.8
-13.0
-15.5
-14.0
-14.6

20
10/8
10:30
426
2908
3050
0
0
0
58.8
58.8
0
0
3.8
3110

2816
2720
2419
1829
571
575
573
532
363

8.5
8.5
8.5
3.30
3.72
3.51
3.0
3.0
3.0
-1.0
1.77
2.45
-13.8
-13.2
-13.5
-15.5
-14.0
-14.8

21
10/10
01:45
356
2333
2400
0
0
0
58.8
58.6
0
0
3.0
2460

2705
2628
2416
1442
464
468
460
428
380

4.8
4.6
4.7
2.21
2.58
2.40
1.0
1.0
1.0
-1.0
1.13
1.71
-10.6
-9.8
-10.2
-11.6
-10.6
-11.1

22
10/9
01:15
358
2307
2400
0
0
4.5
58.8
58.8
0
0
3.1
2640

2701
2631
2420
1438
465
469
467
429
384

6.8
6.6
6.7
2.50
2.87
2.66
S.5
2.5
2.5
-1.0
1.33
1.80
-10.0
-10.0
-10.0
-11.8
-10.5
-11.2

23
10/12
06:15
253
1665
1650
0
0
0
28.2
28.5
0
0
3.0
1800

2592
2537
2416
NA
NA
NA
NA
293
404

2.5
2.5
2.5
1.36
1.52
1.44
0
0
0
-1.0
0.53
0.98
-6.8
-6.0
-6.4
-7.5
-6.8
-7.2

24
10/5
18:45
266
1657
1650
0
0
0
58.8
58.8
0
0
3.0
1810

2593
2532
2414
1008
334
336
335
301
408

2.5
2.5
2.5
1.38
1.57
1.48
0
0
0
-1.0
0.60
0.88
-6.8
-6.6
-6.7
-8.0
-7.6
-7.8
                                                    280
                                                                                                SHEET B38

-------
UTAH POWER  AND LIGHT COMPANY
HUNTINSTON  CANYON f£
                                             C-E POWER SYSTEMS
                                             FIELD TESTING AND
                                             PERFORMANCE RESULTS
                              OYERFIRE  AIR  OPERATION  STUDY
                                           BOARD AND COMPUTER DATA
  TEST NO.

  DATE
  TIME
C LOAD

  FLOWS
C FEEDWATER
B MAIN STEAM
C SUPERHEAT SPRAY L
C SUPERHEAT SPRAY R
C REHEAT SPRAY
C EXT. STH. TO  STM. AH 2-1
C EXT. STH. TO  STM. AH 2-2
C Aux. STH. TO  STH. AH 2-1
C Aux. STH. TO  STH. AH 2-2
C Aux. STH. TO  SJAE
B AIR FLOW TO BOILER

  PRESSURES
  StEAH fgATER
C FEEDWATER TO  ECON.
C BOILER DRUM
C TURBINE THROTTLE
C TURBINE 1ST STAGE
C RH INLET LEFT
C RH INLET RIGHT
C RH INLET Avs.
C RH OUTLET
C HP HTR. 2-7 STM. IN

  PRESSURES
PSIG
               10
                      11
                              12
                                     13
                                                    15
                                                            16
1975 9/27
13:30
MW 428
10\B/B3
2685
3033
0
0
0
58.8
58.8
0
0
3.0
3770
9/27
12:00
429

2681
3050
0
0
0
58.9
58.9
0
0
3.1
3710
9/27
14:00
429

2891
3050
0
0
0
58.8
58.8
0
0
3.0
3730
10/5
13:45
427

2909
3000
0
0
0
58.8
58.8
0
0
3.0
3130
10/4
16:00
434

2853
3000
0
0
17.3
58. B
56.8
0
0
3.0
3250
10/5
12:00
422

2B89
3000
0
0
0
58.8
58.8
0
0
3.0
3140
10/4
14:15
429

2882
3000
0
0
0
58.8
58.8
0
0
3.0
3200
10/3
18:30
427

2904
3050
0
0
7.9
56. B
58. 8
0
0
3.0
3190
2810
2703
2423
1812
567
571
569
531
386
2818
2716
2417
1627
569
573
571
530
362
2818
2719
2420
1828
570
573
572
531
359
2813
2719
2415
1829
573
577
575
533
360
2814
2718
2420
1829
576
579
578
536
359
2807
2705
2411
1806
565
569
567
528
362
2812
2713
2417
1823
572
575
574
533
361
2308
2713
2415
1824
573
577
575
534
360
B FD FAN DISCHARGE R
B FD FAN DISCHARGE L
B FD FAN DISCHARGE Avs.
C AH 2-1 AIR  DIFF. PRESS. R
C AH 2-2 AIR  DIFF. PRESS. L
C AH AIR DIFF.  PRESS. Avo.
B WINOBOX PRESS. R
B WINDBOX PRESS. L
B WINOBOX PRESS. Ava.
B FURNACE DRAFT
C SH DRAFT DIFF.
C ECON.  DRAFT DIFF.
B AH 2-1 GAS  OUT. PRESS. R
B AH 2-2 GAS  OUT. PRESS. L
B AH GAS OUT. PRESS. Avo.
B ID FAN 2-1  INLET PRESS. R
B ID FAN 2-2  INLET PRESS. L
B ID FAN INLET  PRESS. AVG.
11.0
11.0
11.0
4.42
5.02
4.72
3.5
3.5
3.5
-1.0
2.54
3.16
-15.0
-15.0
-15.0
-21.5
-17.5
-19.5
11.8
11.8
11.8
4.41
4.84
4.62
4.3
4.3
4.3
-1.0
2.26
3.08
-15.0
-15.0
-15.0
-19.1
-19.1
-19.1
11.8
11.8
11.8
4.40
4.84
4.62
4.5
4.5
4.5
-1.0
2.36
3.11
-15.0
-15.0
-15.0
-19.0
-19.0
-19.0
9.3
9.3
9.3
3.37
3.81
3.59
3.5
3.5
3.5
-1.0
1.82
2.44
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
9.8
9.8
9.8
3.56
3.98
3.77
3.8
3.8
3.8
-1.2
1.95
2.51
-14.3
-14.3
-14.3
-16.9
-15.4
-16.2
9.2
9.2
9.2
3.33
3.73
3.53
3.4
3.4
3.4
-1.0
1.73
2.31
-13.5
-13.4
-13.4
-15.6
-14.5
-15.0
9.1
9.1
9.1
3.42
3.90
3.66
3.5
3.5
3.5
-1.0
1.84
2.41
-13.6
-13.6
-13.6
-16.0
-14.8
-15.4
9.5
9.5
9.5
3.44
3.90
3.67
3.5
3.5
3.5
-1.0
1.82
2.39
-13.5
-13.4
-13.4
-16.0
-14.5
-15.2
      BOARD DATA
      COMPUTER DATA
                                                   279
                                                                                               SHEET B37

-------
 UTAH POWER  AND LIGHT COMPANY
 HUNTING-TON  CANYON Je
                                               C-E POWER SYSTEMS
                                               FIELD  TESTiNO AND
                                               PERFORMANCE RESULTS
                                OVERFIRE  AIR OPERATION STUDY
   TEST NO.

   DATE
   TIME
 C LOAD

   FLOWS
 C FEEDWATCR
 B MAIN STEAM
 C SUPERHEAT SPRAY L
 C SUPERHEAT SPRAY R
 C REHEAT SPRAY
 C EXT.  STM. TO STH. AH 2-1
 C EXT.  STM. TO STM. AH 2-2
 C Aux.  STM. TO STM. AH 2-1
 C Aux.  STM. TO STM. AH 2-2
 C Aux.  STH. TO SJAE
 B AIR  FLOW TO BOILER

   PRESSURES
   STEAH t "WATER
 C FEEDWATER TO EeoN.
 C BOILER DRUM
 C TURBINE THROTTLE
 C TURBINE IST STAGE
 C RH INLET LEFT
 C RH INLET RIGHT
 C RH INLET AVG.
 C RH OUTLET
 C HP HTR. 2-7 STM. IH

   PRESSURES
   AIR i GAS
   BOARD AND COMPUTER DATA

        17      18      19

1975

  MW
PSIG
                                         "HgO
B FD FAN DISCHARGE  R
B FD FAN DISCHARGE  L
B FD FAN DISCHARGE  AVG.
C AH 2-1 AIR Dirr.  PRESS. R
C AH 2-2 AIR DIFF.  PRESS. L
C AH AIR DIFF.  PRESS. AVG.
B WINDBOX PRESS.  R
B WINDBOX PRESS.  L
B WINDBOX PRESS.  AVG.
B FURNACE DRAFT
C SH DRAFT DIFF.
C ECON. DRAFT DIFF.
B AH 2-1 GAS OUT. PRESS. R
B AH 2-2 GAS OUT. PRESS. L
B AH GAS OUT. PRESS. AVG.
B ID FAN 2-1 INLET  PRESS. R
B ID FAN 2-2 INLET  PRESS. L
B ID FAN INLET  PRESS. AVG.
                                                                        20
                                                                               21
                                                                                       22
                                                                                               23
                                                                                                      24
10/3
22:30
423
2926
3100
0
0
22.9
58.8
58.8
0
0
3.0
3180
2813
2715
2418
182E
574
578
576
535
357
9.0
8.9
9.0
3.35
3.79
3.57
3.1
3.1
3.1
-1.2
1.93
2.45
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
10/3
20:30
430
2885
3038
0
0
18.7
58.8
58.8
0
0
3.0
3240
2806
2711
2413
1824
574
579
576
535
360
9.4
9.4
9.4
3.44
3.88
3.66
3.5
3.5
3.5
-1.2
2.00
2.61
-13.8
-13.8
-13.8
-16.0
-15.0
-15.5
10/6
19:00
417
2900
3050
0
0
0
58.8
58.8
0
0
3.0
3100
2813
2715
2415
1824
572
576
574
524
359
8.8
8.8
a. 8
3.23
3.64
3.44
3.3
3.3
3.3
-1.0
1.85
2.43
-13.3
-12.8
-13.0
-15.5
-14.0
-14.8
10/8
10:30
426
2908
3050
0
0
0
58.8
58.8
0
0
3.2
3110
2816
2720
2419
1829
571
575
573
532
363
8.5
8.5
8.5
3.30
3.72
3.51
3.0
3.0
3.0
-1.0
1.77
2.45
-13.B
-13.2
-13.5
-15.5
-14.0
-14.8
10/10
01:45
356
2333
2400
0
0
0
58.8
58.8
0
0
3.0
2460
2705
2628
2416
1442
464
46B
460
428
380
4.8
4.6
4.7
2.21
2.58
2.40
1.0
1.0
1.0
-1.0
1.13
1.71
-10.6
-9.8
-10.2
-11.6
-10.6
-11.1
10/9
01:15
358
2307
2400
0
0
4.5
58.8
58.8
0
0
3.1
2640
2701
2631
2420
1438
465
469
467
429
384
6.8
6.6
6.7
2.50
2.87
2.68
2.5
2.5
2.5
-1.0
1.33
1.80
-10.0
-10.0
-10.0
-11.8
-10.5
-11.2
10/12
08:15
253
1665
1650
0
0
0
28.2
28.5
0
0
3.0
1800
2592
2537
2416
NA
NA
NA
NA
293
404
2.5
2.5
2.5
1.36
1.52
1.44
0
0
0
-1.0
0.53
0.98
-6.8
-6.0
-6.4
-7.5
-6.8
-7.2
10/5
18:45
266
1657
1650
0
0
0
58.8
58.8
0
0
3.0
1810
2593
2532
2414
1008
334
336
335
301
408
2.5
2.5
2.5
1.38
1.57
1.48
0
0
0
-1.0
0.60
0.88
-6.8
-6.6
-6.7
-8.0
-7.6
-7.8
      BOARD DATA
      COMPUTER  DATA
                                                    280
                                                                                                 SHEET B38

-------
UTAH POWER AND LIOHT COMPANY
HUNTINQTON CANYON iS
                                                                                      C-E POWER SYSTEMS
                                                                                      FIELD  TESTING AND
                                                                                      PERFORMANCE RESULTS
                              OVERFIRE  AIR  OPERATION  STUDY
                                           BOARD AND COMPUTER DATA
  TEST NO.

  DATE
  TIME
C LOAD

  FLOWS
C FEEDUATER
B MAIN STEAM
C SUPERHEAT SPRAY L
C SUPERHEAT SPRAY R
C REHEAT SPRAY
C EXT. STH. TO  STM. AH 2-1
C EXT. STM. TO  STM. AH 2-2
C Aux. STM. TO  STH. AH 2-1
C Aux. STM. TO  STM. AH 2-2
C Aux. STM. TO  SJAE
B AIR FLOW TO BOILER

  PRESSURES
  STEAM & "MATER
C FEEDVATER TO  ECON.
C BOILER DRUM
C TURBINE THROTTLE
C TURBINE 1st STAGE
C RH INLET LETT
C RH INLET RIGHT
C RH INLET Ava.
C RH OUTLET
C HP HTR. 2-7 STM. IN

  PRESSURES
  AIR & GAS.
                L
                Ava.
B FD FAN DISCHARGE R
B FD FAN DISCHARGE L
B FD FAN DISCHARGE AVG.
C AH 2-1 AIR DIFF. PRESS. R
C AH 2-2 AIR Dirr. PRESS. L
C AH AIR DIFF.  PRESS. AVG.
B WINDBOX PRESS. R
B WINDBOX PRESS.
B WINOBOX PRESS.
B FURNACE DRAFT
C SH DRAFT DIFF.
C ECON. DRAFT Dirr.
B AH 2-1 GAS OUT. PRESS. R
B AH 2-2 GAS OUT. PRESS. L
B AH GAS OUT. PRESS. AVG.
B 10 FAN 2-1 INLET PRESS. R
B ID FAN 2-2 INLET PRESS. L
B ID FAN INLET  PRESS. AVG.

  B = BOARD DATA
  C «• COMPUTER  DATA
                                                       10
                                                               11
                                                                      12
                                                                              13
                                                                                     14
                                                                                             15
                                                                                                    IS
1975
1
Mrf
io\B/m











PSIG









"H20


















9/27
13:30
428

2885
3033
0
0
0
58.8
56,8
0
0
3.0
3770

2810
2703
2423
1B12
567
571
569
531
366

11.0
11.0
11.0
4.42
5.02
4.72
3.5
3.5
3.5
-1.0
2.54
3.16
-15.0
-15.0
-15.0
-21.5
-17.5
-19.5
9/27
12:00
429

2881
3050
0
0
0
58.9
58.9
0
0
3.1
3710

2818
2716
2417
1827
569
573
571
530
362

11.8
11.8
11.8
4.41
4.84
4.62
4.3
4.3
4.3
-1.0
2.26
3.08
-15.0
-15.0
-15.0
-19.1
-19.1
-19.1
9/27
14:00
429

2891
3050
0
0
0
58.8
58.8
0
0
3.0
3730

2818
2719
2420
1828
570
573
572
531
359

11.8
11.8
11.8
4.40
4.84
4.62
4.5
4.5
4.5
-1.0
2.36
3.11
.15.0
-15.0
-15.0
-19.0
-19.0
-19.0
10/5
13:45
427

2909
3000
0
0
0
58.8
58.8
0
0
3.0
3130

2813
2719
2415
1829
573
577
575
533
360

9.3
9.3
9.3
3.37
3. 81
3.59
3.5
3.5
3.5
-1.0
1.82
2.44
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
10/4
16:00
434

2853
3000
0
0
17.3
58.8
58.8
0
0
3.0
3250

2814
2718
2420
1829
576
579
578
536
359

9.8
9.8
9.8
3.56
3.98
3.77
3.8
3.8
3.8
-1.2
1.95
2.51
-14.3
-14.3
-14.3
-16.9
-15.4
-16.2
10/5
1S:00
422

2889
3000
0
0
0
58.8
58.8
0
0
3.0
3140

2807
2705
2411
1806
565
569
567
528
362

9.2
9.2
9.2
3.33
3.73
3.53
3.4
3.4
3.4
-1.0
1.73
2.31
-13.5
-13.4
-13.4
-15.6
-14.5
-15.0
):/;
14:15
429

2882
3000
0
0
0
58.8
58.8
0
0
3.0
3200

2812
2713
2417
1823
572
575
574
533
361

9.1
9.1
9.1
3.42
3.90
3.66
3.5
3.5
3.5
-1.0
1.84
2.41
-13.6
-13.6
-13.6
-16.0
-14.8
-15.4
10/3
18:30
427

2904
3050
0
0
7.9
58.8
58.8
0
0
3.0
3190

2808
2713
2415
1824
573
577
575
534
360

9.5
9.5
9.5
3.44
3.90
3.67
3.5
3.5
3.5
-1.0
1.82
2.39
-13.5
-13.4
-13.4
-16.0
-14.5
-15.2
                                                   279
                                                                                               SHEET B37

-------
 UTAH POWER AND LIGHT COMPANY
 HUNTINGTON CANYON K
C-E POWER  SYSTEMS
FIELD TCSTING AND
PERFORMANCE RESULTS
                                OVERFIRE  AIR  OPERATION STUDY
   TEST NO.

   DATE
   TIME
 C LOAD

   FLOWS
 B MAIN  STEAM
 C SUPERHEAT SPRAY L
 C SUPERHEAT SPRAY R
 C REHEAT SPRAY
 C EXT.  STH. TO STH. AH 2-1
 C EXT.  STH. TO STH. AH 2-2
 C Aux.  STM. TO STM. AH 2-1
 C Aux.  STM. TO STM. AH 2-2
 C Aux.  STM. TO SJAE
 B AIR FLOW TO BOILER

   PRESSURES
   STEAM t WATER
 C FEEOWATCR TO ECON.
 C BOILER DRUM
 C TURBINE THROTTLE
 C TURBINE IST STAGE
 C RH INLET LEFT
 C RH INLET RIGHT
 C RH INLET Avc.
 C RH OUTLET
 C HP HTR. 2-7 STM. IN

   PRESSURES
   A if) i GAS

B FD FAN DISCHARGE R
B FD FAN DISCHARGE L
B FD FAN DISCHARGE Avc.
C AH 2-1 AIR Dirr. PRESS. R
C AH 2-2 AIR Dirr. PRESS. L
C AH AIR DIFF.  PRESS. Avc.
B WINDBOX PRESS.  R
B WINDBOX PRESS.  L
B WINDBOX PRESS.  Avc.
B FURNACE DRAFT
C SH DRAFT Dirr.
C ECON.  DRAFT DIFF.
B AH 2-1 GAS OUT.  PRESS. R
B AH 2-2 GAS OUT.  PRESS. L
8 AH GAS OUT.  PRESS. AVG.
B  ID FAN 2-1  INLET PRESS. R
B  ID FAN 2-2 INLET PRESS. L
B  ID FAN INLET  PRESS. Avo.
BOARD AND COMPUTER

1975

MW
.B/HR










PSIG









"HgO


















J7
10/3
22:30
423
2926
3100
0
0
22.9
58.8
58.8
0
0
3.0
3180

2813
2715
2418
1826
574
578
576
535
357

9.0
8.9
9.0
3.35
3.79
3.57
3.1
3.1
3.1
-1.2
1.93
2.45
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
Jfl
10/3
20:30
430
2885
3038
0
0
18.7
58.8
58.8
0
0
3.0
3240

2806
2711
2413
1824
574
579
576
535
360

9.4
9.4
9.4
3.44
3.88
3.66
3.5
3.5
3.5
-1.2
2. 00
2.61
-13.8
-13.8
-13.8
-16.0
-15.0
-15.5
DATA
15
10/6
19:00
417
2900
3050
0
0
0
58.8
58.8
0
0
3.0
3100

2813
2715
2415
1824
572
576
574
524
359

8.8
8.8
8.8
3.23
3.64
3.44
3.3
3.3
3.3
-1.0
1.85
2.43
-13.3
-12.8
-13.0
-15.5
-14.0
-14.8

20
10/8
10:30
426
2908
3050
0
0
0
58.8
58.8
0
0
3.2
3110

2816
2720
2419
1829
57T
575
573
532
363

8.5
8.5
8.5
3.30
3.72
3.51
3.0
3.0
3.0
-1.0
1.77
2.45
-13.8
-13.2
-13.5
-15.5
-14.0
-14.8

21
10/10
01:45
356
2333
2400
0
0
0
58.8
58.8
0
0
3.0
2460

2705
2628
2416
1442
464
468
460
428
380

4.8
4.6
4.7
2.21
2.58
2.40
1.0
1.0
1.0
-1.0
1.13
1.71
-10.6
-9.8
-10.2
-11.6
-10.6
-11.1

22
10/9
01:15
358
2307
2400
0
0
4.5
58.8
58.8
0
0
3.1
2640

2701
2631
2420
1438
465
469
467
429
384

6.8
6.6
6.7
2.50
2.87
2.68
2.5
2.5
2.5
-1.0
1.33
1.80
-10.0
-10.0
-10.0
-11.8
-10.5
-11.2

23
10/12
08:15
253
1665
1650
0
0
0
28.2
28.5
0
0
3.0
1800

2592
2537
2416
NA
NA
NA
NA
293
404

2.5
2.5
2.5
1.36
1.52
1.44
0
0
0
-1.0
0.53
0.98
-6.8
-6.0
-6.4
-7.5
-6.8
-7.2

24
10/5
18:45
266
1657
1650
0
0
0
58.8
58.8
0
0
3.0
1810

2593
2532
2414
1008
334
336
335
301
408

2.5
2.5
2.5
1.38
1.57
1.48
0
0
0
-1.0
0.60
0.88
-6.8
-6.6
-6.7
-8.0
-7.6
-7.8
      BOARD DATA
      COMPUTER DATA
                                                    280
                                                                                                 SHEET B38

-------
UTAH POWER AND  LIGHT COMPANY
HUNTINGTOH CANYON 12
                                                  C-E POWER SYSTEMS
                                                  FIELD TESTING AND
                                                  PERFORMANCE RESULTS
                              OVERFIRE  AIR  OPERATION STUDY
                                           BOARD AND COMPUTER DATA
  TEST NO.

  DATE
  TIME
C LOAD

  FLOWS
C FEEOWATER
B MAIN STEAM
C SUPERHEAT SPRAY  L
C SUPERHEAT SPRAY  R
C REHEAT SPRAY
C EXT. STM. TO STM. AH 2-1
C EXT. STM. TO STM. AH 2-2
C Aux. STM. TO STM. AH 2-1
C Aux. STM. TO STM. AH 2-2
C Aux. STM. TO SJAE
B AIR FLOW TO BOILER

  PRESSURES
  STEAM I WATER
C FEEOWATER TO ECON.
C BOILER DRUM
C TURBINE THROTTLE
C TURBINE IST STAGE
C RH INLET LEFT
C RH INLET RIGHT
C RH INLET Avc.
C RH OUTLET
C HP HTR. 2-7 STM.  IN

  PRESSURES
  AIR & GAS.

B FD FAN DISCHARGE R
B FD FAN DISCHARGE L
B FD FAN DISCHARGE AVG.
C AH 2-1 AIR DIFF. PRESS. R
C AH 2-2 AIR DIFF. PRESS. L
C AH AIR DIFF. PRESS. AVG.
B WINDBOX PRESS. R
B WINDBOX PRESS. I
B WINDBOX PRESS. Avc.
B FURNACE DRAFT
C SH DRAFT DIFF.
C ECON. DRAFT DIFF.
B AH 2-1 GAS OUT.  PRESS. R
B AH 2-2 GAS OUT.  PRESS. L
B AH GAS OUT. PRESS. Avo.
B ID FAN 2-1 INLET PRESS. R
B ID FAN 2-2 INLET PRESS. L
B ID FAN INLET PRESS. AVG.

  B = BOARD DATA
  C = COMPUTER DATA
    1975
      MW
10
I\B/I
     'H?
    PSIG
    "H20
                   10
                          11
                                  12
                                         13
                                                 14
                                                        15
                                                                16
9/27
13:30
428
2885
3033
0
0
0
58.8
58,8
0
0
3.0
3770
2810
2703
2423
1812
567
571
569
531
366
11.0
11.0
11.0
4.42
5.02
4.72
3.5
3.5
3.5
-1.0
2.54
3.16
-15.0
-15.0
-15.0
-21.5
-17.5
-19.5
9/27
12:00
429
2681
3050
0
0
0
58.9
58.9
0
0
3.1
3710
2818
2716
2417
1827
569
573
571
530
362
11.8
11.8
11.8
4.41
4.84
4.62
4.3
4.3
4.3
-1.0
2.26
3.08
-15.0
-15.0
-15.0
-19.1
-19.1
-19.1
9/27
14:00
429
2891
3050
0
0
0
58.8
58.8
0
0
3.0
3730
2818
2719
2420
1828
570
573
572
531
359
11.8
11.8
11.8
4.40
4.84
4.62
4.5
4.5
4.5
-1.0
2.36
3.11
-15.0
-15.0
-15.0
-19.0
-19.0
-19.0
10/5
13:45
427
2909
3000
0
0
0
58.8
58.8
0
0
3.0
3130
2813
2719
2415
1829
573
577
575
533
360
9.3
9.3
9.3
3.37
3.81
3.59
3.5
3.5
3.5
-1.0
1.82
2.44
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
10/4
16:00
434
2853
3000
0
0
17.3
5B.8
58.8
0
0
3.0
3250
2814
2718
2420
1829
576
579
578
536
359
9.8
9.8
9.8
3.56
3.98
3.77
3.8
3.8
3.8
-1.2
1.95
2.51
-14.3
-14.3
-14.3
-16.9
-15.4
-16.2
10/5
12:00
422
2889
3000
0
0
0
58.8
58.8
0
0
3.0
3140
2807
2705
241 1
1806
565
569
567.
528
352
9.2
9.2
9.2
3.33
3.73
3.53
3.4
3.4
3.4
-1.0
1.73
2.31
-13.5
-13.4
-13.4
-15.6
-14.5
-15.0
10/4
14:15
429
2882
3000
0
0
0
58.8
58.8
0
0
3.0
3200
2812
2713
2417
1823
572
575
574
533
361
9.1
9.1
9.1
3.42
3.90
3.66
3.5
3.5
3.5
-1.0
1.84
2.41
-13.6
-13.6
-13.6
-16.0
-14.8
-15.4
10/3
18:30
427
2904
3O50
0
0
7.9
58.8
58.8
0
0
3.0
3190
2808
2713
2415
1824
573
577
575
534
360
9.5
9.5
9.5
3.44
3.90
3.67
3.5
3.5
3.5
-1.0
1.82
2.39
-13.5
-13.4
-13.4
-16.0
-14.5
-15.2
                                                   279
                                                                                                SHEET 637

-------
 UTAH POWER AND LIGHT COMPANY
 HUNTINGTON CANYON /2
C-E POWER  SYSTEMS
FIELD TESTiNO AND
PERFORMANCE RESULTS
                                OVERFIRE  AIR  OPERATION  STUDY
                                            BOARD AND  COMPUTER DATA
   TEST NO.

   DATE
   TIME
 C LOAD

   FLOWS
 C FEEDWATCR
 B MAIN STEAM
 C SUPERHEAT SPRAY L
 C SUPERHEAT SPRAY R
 C REHEAT SPRAY
 C EXT.  STM. TO STM. AH 2-1
 C EXT.  STM. TO STM. AH 2-2
 C Aux.  STM. TO STM. AH 2-1
 C Aux.  STM. TO STM. AH 2-2
 C Aux.  STM. TO SJAE
 8 AIR  FLOW TO BOILER

   PRESSURES
   STEAKt &"WATER
 C FEEDWATER TO ECON.
 C BOILER DRUM
 C TURBINE THROTTLE
 C TURBINE 1ST STAOE
 C RH INLET LEFT
 C RH INLET RIQHT
 C RH INLET AVG.
 C RH OUTLET
 C HP HTR. 2-7 STM. IN

   PRESSURES
   A|H t GAS

 B  FD FAN DISCHARGE R
 B  FD FAN DISCHARGE L
 B  FD FAN DISCHARGE Ava.
 C  AH 2-1 AIR DIFF. PRESS. R
 C  AH 2-2 AIR DIFF. PRESS. L
 C  AH AIR DIFF. PRESS.  AVG.
 B WINDBOX PRESS.  R
 B WINDBOX PRESS.  L
 B WINDBOX PRESS.  AVG.
 B FURNACE DRAFT
 C SH DRAFT DIFF.
 C ECON. DRAFT Dirr.
B AH 2-1 GAS OUT.  PRESS. R
 B AH 2-2 GAS OUT.  PRESS. L
B AH GAS OUT.  PRESS. AVG.
B  ID FAN 2-1  INLET PRESS. R
B  ID FAN 2-2 INLET PRESS. L
B  ID FAN INLET PRESS.  AVG.
r?
1975 10/3
22:30
MW 423
2926
3100
0
0
22.9
58.8
58.8
0
0
3.0
3180
PSIG
2813
2715
2418
1826
574
578
576
535
357
9.0
8.9
9.0
3.35
3.79
3.57
3.1
3.1
3.1
-1.2
1.93
2.45
-13.5
-13.5
-13.5
-15.8
-14.8
-15.3
JS
10/3
20:30
430
2885
3038
0
0
18.7
58.8
58.8
0
0
3.0
3240

2806
2711
2413
1824
574
579
576
535
360
9.4
9.4
9.4
3.44
3.88
3.66
3.5
3.5
3.5
-1.2
2.00
2.61
-13.8
-13.8
-13.8
-16.0
-15.0
-15.5
15
10/6
19:00
417
2900
3050
0
0
0
58.8
58.8
0
0
3.0
3100

2813
2715
2415
1824
572
576
574
524
359
8.8
8.8
8.8
3.23
3.64
3.44
3.3
3.3
3.3
-1.0
1.85
2.43
-13.3
-12.8
-13.0
-15.5
-14.0
-14.8
20
10/8
10:30
426
"2908
3050
0
0
0
58.8
58.8
0
0
3.2
3110

2816
2720
2419
1829
571
575
573
532
363
8.5
8.5
8.5
3.30
3.72
3.51
3.0
3.0
3.0
-1.0
1.77
2.45
-13.8
-13.2
-13.5
-15.5
-14.0
-14.8
«
10/10
01:45
356
2333
2400
0
0
0
58.8
58.8
0
0
3.0
2460

2705
2628
2416
1442
464
468
460
428
380
4.8
4.6
4.7
2.21
2.58
2.40
1.0
1.0
1.0
-1.0
1.13
1.71
-10.6
-9.8
-10.2
-11.6
-10.6
-11.1
22
10/9
01:15
358
2307
2400
0
0
4.5
58.8
58.8
0
0
3.1
2640

2701
2631
2420
1438
465
469
467
429
384
6.8
6.6
6.7
2.50
2.87
2.68
2.5
2.5
S.5
-1.0
1.33
1.80
-10.0
-10.0
-10.0
-11.8
-10.5
-11.2
23
10/12
08:15
253
1665
1650
0
0
0
28.2
28.5
0
0
3.0
1800

2592
2537
2416
NA
NA
NA
NA
293
404
2.5
2.5
2.5
1.36
1.52
1.44
0
0
0
-1.0
0.53
0.98
-6.8
-6.0
-6.4
-7.5
-6.8
-7.2
24
10/5
18:45
266
1657
1650
0
0
0
58.8
58.8
0
0
3.0
1810

2593
2532
2414
1008
334
336
335
301
408
2.5
2.5
2.5
1.38
1.57
1.48
0
0
0
-1.0
0.60
0.88
-6.8
-6.6
-6.7
-8.0
-7.6
-7.8
      BOARD DATA
      COMPUTER DATA
                                                    280
                                                                                                 SHEET B38

-------
UTAH POWER AND LIOHT COMPANY
HUNTING-TON CANYON |2
                                                C-E POWER SYSTEMS
                                                FIELD TESTING  AND
                                                PERFORMANCE  RESULTS
                               OVERFIRE  AIR  OPERATION  STUDY
  TEST NO.

  DATE
  TIME
C LOAD
     BOARD AND COMPUTER DATA

           1       2       3
  TEMPERATURES
  AIR S GAS
C AH 2-1 AIR IN  TEMP.
C AH 2-2 AIR IN  TEMP.
C AH AIR IN TEMP. Avo.
C AH 2-1 AIR OUT TEMP.
C AH 2-2 AIR OUT TEMP.
C AH AIR OUT TEMP, Avo.
C AH 2-1 GAS IN  TEMP.
C AH 2-2 GAS IN  TEMP.
C AH GAS IN TEMP. Avs.
C AH 2-1 GAS OUT TEMP.
C AH 2-2 GAS OUT TEMP.*
C AH GAS OUT TEMP. AVG.
  TEMPERATURES
  STEAM & WATER
C FW IN TEMP.  TO ECON.
C ECON. OUT.  Avc.
C BOILER DOVNCOMER
C SH DESH INLET L
C SH DESH INLET R
C SH DESH INLET Avo.
C SH DESH OUTLET L
C SH DESH OUTLET R
C SH DESH OUTLET AVB.
C SH OUTLET  .
C THROTTLE STEAM
C RH TURBINE  L
C RH TURBINE  R
C RH TURBINE  AVG.
C RH BOILER L
C RH BOILER R
C RH BOILER AVG.
C RH OUTLET
C HP HTR. 2-7 STH.  IN
C HP HTR. 2-7 FW IN
C HP HTR.  2-7  DRAIN
C Aux.  STEAM  TEMP.

  FAN DAMPER  POSITION
B FD FANS
B ID FANS

  SPRAY VALVE POSITION
B SH SPRAY
B RH SPRAY
  1975
f OPEN
  OPEN
1/17
):20
428
103
98
100
521
544
532
722
722
722
268
279
274
4B4
576
678
752
759
756
758
764
761
987
976
616
617
616
601
595
598
995
615
415
423
528
75
67
0
15
9/26
09:40
430
108
94
101
513
546
530
714
701
708
261
286
274
485
577
678
749
763
756
754
764
759
983
971
613
613
613
598
592
595
1004
611
415
423
528
73
66
0
14
9/26
11:30
430
108
94
101
513
548
530
715
703
709
261
287
274
485
577
678
751
759
755
756
763
760
983
973
613
614
614
600
595
598
1002
612
415
423
529
74
65
0
13
9/26
15:30
430
109
91
100
511
545
528
710
703
706
261
286
274
486
574
678
749
757
753
755
759
757
989
979
619
620
619
576
562
569
994
619
416
424
530
74
66
0
28
9/26
17:15
431
109
91
100
512
547
530
711
708
710
261
288
274
486
575
679
750
756
753
757
759
758
987
974
616
616
616
581
569
575
1002
614
416
424
530
74
66
0
25
10/1
18:00
430
96
110
103
534
534
534
716
707
712
282
264
273
485
570
678
745
755
750
751
760
756
991
980
619
619
619
615
614
614
1020
618
415
424
531
70
60
0
0
10/1
19:30
428
96
109
102
532
535
534
714
707
710
280
265
272
484
570
678
747
756
752
753
758
756
980
971
612
613
612
608
608
608
1011
612
415
424
530
70
63
0
0
10/1
21:00
428
95
109
102
533
536
534
713
709
711
279
265
272
485
571
678
749
760
754
755
761
758
982
974
615
615
615
611
610
610
1014
613
416
424
531
70
62
0
0
      BOARD DATA
      COMPUTER  DATA
      TC READING OPEN
                                                   281
                                                                                              SHEET B39

-------
 UTAH POWER  AND LIGHT COMPANY
 HUNTINGTON  CANYON fS
                                                 C-E  POWER SYSTEMS
                                                 FIELD TESTING AND
                                                 PERFORMANCE RESULTS
                                OVERFIRE  AIR  OPERATION STUDY
   TEST NO.

   DATE
   TIME
 C LOAD

   TEMPERATURES
   AIR  t GAS
 C AH 2-1 AIR  IN TEMP.
 C AH 2-2 AIR  IN TEMP.
 C AH AIR IN TEMP. Avo.
 C AH 2-1 AIR OUT TEMP.
 C AH 2-2 AIR OUT TEMP.
 C AH AIR OUT TEMP. Avs.
 C AH 2-1 GAS  IN TEMP.
 C AH 2-2 GAS  IN TEMP.
 C AH GAS IN TEMP. Ava.
 C AH 2-1 GAS OUT TEMP.
 C AH 2-2 GAS OUT TEMP.*
 C AH GAS OUT TEMP. Avc.

   TEMPERATURES
C FW  IN TEMP. TO ECON.
C ECON. OUT. Avc.
C BOILER DOVNCOMER
C SH DESH INLET L
C SH DESH INLET R
C SH DESH INLET Ava.
C SH DESH OUTLET L
C SH DESH OUTLET R
C SH DESH OUTLET AVG.
C SH OUTLET
C THROTTLE STEAM
C RH TURBINE L
C RH TURBINE R
C RH TURBINE Avs.
C RH BOILER L
C RH BOILER R
C RH BOILER Ava.
C RH OUTLET
C HP HTR.  2-7 STM.  IN
C HP HTR.  2-7 FW IN
C HP HTR.  2-7 DRAIN
C Aux. STEAM TEMP.

  FAN DAMPER POSITION
8 FD FANS"
B ID FANS

  SPRAY VALVE POSITION
B SH SPRAY!
B RH SPRAY
     BOARD AND COMPUTER DATA

           9      10     Jl

  1975

    MW


    •F
                                                                       12
                                                                               13
                                                                                       14
                                                                                              15
                                                                                                      16
% OPEN
  OPEN
9/27
13:30
426
105
9B
102
512
543
528
724
713
718
266
282
274
485
584
678
751
758
754
757
761
759
983
973
613
614
614
609
609
609
1012
613
413
423
525
80
74
0
0
9/27
12:00
429
96
104
100
530
545
538
728
733
730
281
270
276
484
586
678
758
762
760
765
769
767
994
980
620
620
620
616
616
616
1012
621
415
423
542
79
71
0
0
9/27
14:00
429
96
105
100
531
545
538
729
731
730
282
271
276
484
587
678
759
762
760
766
770
768
993
982
621
621
621
618
616
617
1011
620
415
423
545
80
71
0
0
10/5
13:45
427
101
103
102
527
540
534
715
714
714
276
274
275
484
571
678
748
748
748
753
753
753
977
967
609
609
609
605
604
604
1006
608
415
424
525
72
63
0
0
10/4
16:00
434
100
103 '
102
531
541
536
724
716
720
277
273
275
486
574
678
748
761
754
754
765
760
1006
997
634
635
634
612
603
608
1026
635
416
424
577
73
65
0
23
10/5
12:00
422
101
104
102
524
536
530
710
709
710
274
273
274
484
568
677
742
742
742
748
749
748
969
960
602
603
602
600
599
600
991
602
414
423
518
71
62
0
0
10/4
14:15
429
100
104
102
526
538
532
714
709
712
275
272
274
485
571
678
744
751
748
750
756
753
988
977
617
618
618
611
610
610
1017
616
415
424
530
72
64
0
3
10/3
18:30
427
99
104
102
526
535
530
711
714
712
275
270
272
485
570
678
740
751
746
747
757
752
978
968
611
611
611
596
588
592
995
609
415
423
526
72
64
0
15
      BOARD DAT*
      COMPUTER  DATA
      TC READING OPEN
                                                    282
                                                                                                 SHEET B40

-------
UTAH POWER  AND LIGHT COMPANY
HUNTINGTON  CANYON JZ
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                               OVERFIRE  AIR  OPERATION  STUDY
                                           BOARD AND COMPUTER DATA
  TEST NO.

  DATE
  TIME
C LOAD

  TEMPERATURES
  AIR & GAS
C AH 2-1 AIR IN TEMP.
C AH 2-2 AIR IN TEMP.
C AH AIR IN TEMP. AVG.
C AH 2-1 AIR OUT TEMP.
C AH 2-2 AIR OUT TEMP.
C AH AIR OUT TEMP. AVG.
C AH 2-1 GAS IN TEMP.
C AH 2-2 GAS IN TEMP.
C AH GAS IN TEMP. AVG.
C AH 2-1 GAS OUT TEMP.
C AH 2-2 GAS OUT TEMP.*
C AH GAS OUT TEMP. AVG.

  TEMPERATURES
  STEAM & WATER
C FW IN TEMP.  TO ECON.
C ECON. OUT. AVG.
C BOILER DOWHCOHER
C SH DESH INLET L
C SH DESH INLET R
C SH DESH INLET AVG.
C SH DESH OUTLET L
C SH DESH OUTLET R
C SH DESH OUTLET AVG.
C SH OUTLET
C THROTTLE STEAM
C RH TURBINE L
C RH TURBINE R
C RH TURBINE AVG.
C RH BOILER L
C RH BOILER R
C RH BOILER AVG.
C RH OUTLET
C HP HTR. 2-7  STM.  IN
C HP HTR. 2-7  FW  IN
C HP HTR. 2-7  DRAIN
C Aux.  STEAM TEMP.

  FAN DAMPER POSITION
B FD FANS
B ID FANS
  SPRAY VALVE POSITION
B SH SPRAY'
B RH SPRAY
V7
175 10/3
22:30
MW 423
98
104
101
524
534
529
708
708
708
274
271
272
•F
484
569
678
739
752
746
746
750
748
961
951
597
597
597
555
544
550
965
594
415
423
511
»EN
70
63
PEN
0
25
J8
10/3
20:30
430
97
103
100
527
538
532
715
721
718
275
272
274

486
573
678
747
759
753
753
758
756
989
981
622
623
622
595
581
588
1007
620
416
424
533
70
62
0
22
J9
10/6
19:00
417
102
104
103
524
534
529
710
702
706
273
272
272

484
567
678
744
742
743
744
747
746
961
958
602
603
602
599
599
599
987
603
415
424
518
70
60
0
0
20
10/8
10:30
426
97
103
100
522
532
527
710
702
706
272
271
272

484
568
678
739
743
741
744
748
746
972
960
603
603
603
601
599
600
991
602
415
423
513
68
60
0
0
SI
10/10
01:45
356
109
108
108
504
511
508
659
655
657
262
266
264

464
539
672
738
742
740
743
744
744
983
976
579
585
582
577
579
578
983
580
399
405
530
57
53
0
0
22
10/9
01:15
358
110
112
111
505
510
508
672
673
672
262
259
260

464
545
673
751
757
754
758
756
757
995
989
591
596
594
576
573
574
1002
591
400
405
552
61
55
0
12
23
10/12
08:15
253
116
118
117
468
470
469
592
591
592
248
250
249

430
498
668
730
733
732
734
737
736
973
963
NA
NA
NA
519
529
524
954
529
371
375
519
46
41
0
0
24
10/5
18:45
266
115
117
116
476
476
476
608
607
608
252
254
253

434
504
668
740
741
740
741
746
744
1005
996
550
562
556
547
557
552
988
556
374
377
535
46
41
7
0
      BOARD DATA
      COMPUTER  DATA
      TC READING  OPEN
                                                   283
                                                                                              SHEET B41

-------
  UTAH POWER AND LIGHT COMPANY
  HUNT INGTON CANYON 12
C-E POWER SYSTEMS
FIELD TESTING  AND
PERFORMANCE RESULTS
                                 OVERFIRE  AIR  OPERATION  STUDY
                                            BOARD AND COMPUTER DATA
   TEST NO.

   DATE
   TINE
 C LOAD

   HILL DATA
 C MILL 2-1
 C MILL 2-2
 C MILL 2-3
 C MILL 2-4
 C MILL 2-5
 C COAL AIR TEMP. MILL 2-1
 C COAL AIR TEMP. MILL 2-2
 C COAL AIR TEMP. MILL 2-3
 C COAL AIR TEMP. MILL 2*4
 C COAL AIR TEMP. MILL 2-5
 B MILL 2-1 EXM. DISCH.
 B MILL 2-2 EXH. DISCH.
 B MILL 2-3 EXH. DISCH.
 B MILL 2-4 EXH. DISCH.
 B MILL 2-5 EXH. DISCH.
 B MILL 2-1 SUCTION
 B MILL 2-2 SUCTION
 B MILL 2-3 SUCTION
 B MILL 2-4 SUCTION
 B MILL  2-5 SUCTION
 B MILL  2-1 COAL FLOW
 B MILL  2-2 COAL FLOW
 B MILL  2-3 COAL FLOW
 B MILL 2-4 COAL FLOW
 B MILL 2-5 COAL FLOW
 B MILL 2-1 FEEDER SPEED    •
 8 MILL 2-2 FEEDER SPEED
 B MILL 2-3 FEEDER SPEED
 B MILL 2-4 FEEDER SPEED
 B MILL 2-5 FEEDER SPEED
  BURNER TILT
B POSITION LF
B POSITION LR
8 POSITION RF
B POSITION RR

  MISCELLANEOUS
B DRUM LEVEL "  - NORM. H00 LEVEL
C FD FAN 2-1           *
C FD FAN 2-2
C ID FAN 2-1
C ID FAN 2-2
B FLUE GAS SO  IN STACK
B FLUE GAS NO  IN STACK
C FLUE GAS COMBUSTIBLES L
C FLUE GAS COMBUSTIBLES R
C FLUE GAS 0- L
C FLUE GAS C? R
C FLUE GAS Or Avc.
B AMBIENT TEMP.
B AMBIENT REL.  HUMIDITY
B BAROMETRIC PRESS.

  B = BOARD DATA
  C = COMPUTER  DATA
  *   FEEDER SPEED  IN % or CONTROL Slant
























10?
10,
1°Q
10,
10 ,






1975

MW
AMPS
AMPS
AMPS
AMPS
AMPS
•F
"F
•F
•F
"F
till Q
"H?0
"(Co
"H?0
"HrO
"tro
"(CO
"H?0
"ICO
nH?0
LB/HR
LB/HR
IB/HR
LB/HR
LB/HR
%
%
%
%
%
_1
9/17
10:20
426
NA
NA
NA
NA
NA
148
148
147
146
148
7.0
7.0
8.0
9.0
8.0
-1.8
-2.0
-1.8
-1.7
-2.0
66
64
63
63
63
75
76
75
75
75
2_
9/26
09:40
430
NA
NA
NA
NA
NA
149
150
148
148
149
6.0
6.4
7.0
8.7
7.2
-1.7
-1.9
-1.8
-1.7
-2.0
67
65
63
64
65
76
76
75
77
77
3
9/26
11:30
430
NA
NA
NA
NA
NA
148
150
147
148
149
6.2
6.5
7.0
8.3
7.3
-1.8
-1.9
-1.9
-1.7
-2.1
68
66
63
63
64
78
77
75
77
76
4
9/26
15:30
430
NA
NA
NA
NA
NA
149
150
147
148
149
6.0
6.5
7.0
8.8
7.9
-1.8
-2.0
-1.9
-1.8
-2.0
69
66
64
64
64
79
78
76
77
77
5
9/26
17:15
431
NA
NA
NA
NA
NA
149
150
147
148
149
6.0
6.5
7.0
8.5
7.5
-1.8
-2.0
-1.9
-1.7
-2.0
68
66
64
64
65
78
77
76
78
77
6
10/1
18:00
430
NA
NA
NA
NA
NA
150
150
149
146
148
7.4
6.8
7.0
7.0
7.4
-2.0
-2.0
-1.8
-2.0
-1.8
69
66
65
64
66
79
79
78
78
78
7
10/1
19:30
428
NA
NA
NA
NA
NA
150
150
149
146
148
7.1
7.1
7.0
7.0
7.0
-2.0
-2.0
-1.9
-2.1
-1.9
67
64
63
63
64
77
76
76
76
77
8
10/1
21:00
428
NA
NA
NA
NA
NA
149
149
147
146
149
7.3
6.7
7.0
7.0
7.4
-2.0
-1.9
-1.9
-2.1
-2.0
69
66
65
64
66
79
79
77
78
78
' DEGREES
























AMPS
AMPS
AMPS
AMPS
PPM
PPM
%
%
%
f
%
•F
*
"Ho
+6
+7
45
46
-1
216
240
397
405
NA
NA
0.11
0.0
4.13
4.06
4.10
73
43
23.86
-11
-9
-10
-10
0
215
235
389
424
NA
627
0.11
0.0
4.52
3.62
4.07
67
29
23.97
-11
.9
-12
-10
0
214
235
385
419
NA
NA
0.10
0.0
4.16
3.86
4.01
74
25
23.96
-14
-12
-14
-14
0
214
235
385
419
NA
515
0.06
0.0
4.05
3.77
3.91
74
20
23.93
-14
-10
-15
-13
0
214
235
385
416
NA
580
0.06
0.0
3.71
4.19
3.95
70
24
23.92
+9
+10
+7
+9
0
208
229
400
373
60
400
0.06
0.0
2.96
2.54
2.75
64
28
24.05
+9
4-10
48
410
0
SOB
228
404
376
60
408
0.08
0.0
2.31
2.49
2.40
57
33
24.05
+10
+10
+8
+11
0
207
226
400
374
70
400
0.08
0.0
2.24
3.64
2.94
54
35
24.07
                                                     284
                                                                                                   SHEET B42

-------
UTAH POWER AND LIOMT COMPANY
HUNTINGTON CANYON  |2
                                                                                C-E POWER SYSTEMS
                                                                                FIELD TESTING AND
                                                                                PERFORMANCE RESULTS
                               OVERFIRE  AIR OPERATION STUDY
  TEST NO.

  DATE
  TIME
C LOAD
  MILL

C MILL
C MILL
C MILL
C MILL
C COAL
C COAL
C COAL
C COAL
C COAL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
B MILL
DATA
2-
2-2
2-3
2-4
2-5
AIR TEMP
AIR TEMP
AIR TEMP
AIR TEMP
AIR TEMP
2-1 EXH.
2-2 EXH.
2-3 EXH.
2-4 EXH.
2-5 EXH.
2-1 SUCTION
2-2 SUCTION
2-3 SUCTION
2-4 SUCTION
2-5 SUCTION
2-1 COAL FLOW
2-2 COAL FLOW
2-3 COAL FLOW
2-4 COAL FLOW
2-5 COAL FLOW
2-1 FEEDER SPEED
2-2 FEEDER SPEED
2-3 FEEDER SPEED
2-4 FEEDER SPEED
2-5 FEEDER SPEED
 MILL 2-1
 MILL 2-2
 MILL 2-3
 MILL 2-4
 MILL 2-5
DtSCH.
DlSCH.
DlSCH.
DlSCH.
DlSCH.
  BURNER TILT
B POSITION LF
B POSITION LR
B POSITION RF
B POSITION RR

  MlSCELLANEOUS|
B DRUM LEVEL " -
C FO FAN 2-1
C FD FAN 2-2
C ID FAN 2-1
C ID FAN 2-2
B FLUE GAS SO,
          NORM.  HgO LEVEL
        IN STACK
o ri,i/b w«» ^v. I n wi*»vf*
B FLUE GAS NO  IN STACK
C FLUE GAS COMBUSTIBLES L
C FLUE GAS COMBUSTIBLES R
C FLUE GAS 0  L
C FLUE GAS 0? R
C FLUE GAS di AVG.
B AMBIENT TEHP.
B AMBIENT REL. HUMIDITY
B BAROMETRIC PRESS.
  B - BOARD DATA
  C = COMPUTER DATA
  •   FEEDER SPEED IN  % or CONTROL SIGNAL
BOARD AND COMPUTER























2

1°^
10,
10"
10J






1975

Mrf
AMPS
AMPS
AMPS
AMPS
AMPS
°F
°F
°F
°F
"F
"H.O
"H?0
"H^O
"H?0
"HfO
"HfO
"H?0
"HfO
"(TO
"HfO
1B/HR
LB/H?
.LB/HR
LB/HR
LB/HR
$
%
i

%
9
9/27
13:30
428
NA
NA
NA
NA
NA
148
149
147
141
148
5.8
7.0
7.0
8.5
7.5
-1.9
-2.0
-1.8
-1.7
-2.0
60
66
64
64
66
69
.79
77
78
78
JO
9/27
12:00
429
NA
NA
NA
NA
NA
149
149
147
146
148
7.2
6.9
7.0
6.9
7.2
-1.9
-1.8
-1.7
-2.0
-1.9
69
67
65
64
66
79
79
77
77
78
DATA
11
9/27
14:00
429
NA
NA
NA
NA
NA
149
150
148
146
149
7.2
6.8
7.0
7.0
7.5
-1.9
-1.8
-1.8
-2.0
-1.9
68
66
64
63
65
78
78
76
78
78

J2
10/5
13:45
427
NA
NA
NA
NA
NA
148
148
147
145
149
8.0
6.7
7.3
7.3
7.0
-1.9
-2.0
-1.9
-2.2
-2.0
72
65
60
60
61
83
78
73
74
75

13
10/4
16:00
434
NA
NA
NA
NA
NA
150
149
146
145
149
6.6
6.8
7.3
7.0
7.1
-2.1
-1.9
-1.8
-2.0
-2.0
60
67
66
65
67
69
79
79
79
79

J4
10/5
12:00
422
11A
NA
NA
NA
NA
148
148
147
145
148
8.0
7.0
7.0
7.1
7.3
-2.0
-2.0
-2.1
-2.2
-2.1
71
65
60
60
61
83
77
72
71
73

15
10/4
14:15
429
NA
NA
NA
NA
NA
150
150
146
145
149
6.9
7.0
7.1
7.0
7.4
-2.1
-2.0
-1.9
-2.1
-2.0
60
67
66
65
67
69
80
78
78
79

16
11/3
18:30
427
NA
NA
NA
NA
NA
148
150
147
145
149
7.5
6.9
7.4
7.0
7.1
-2.0
-1.9
-1.8
-2.1
-2.0
67
64
63
62
64
77
76
75
77
77
DECREES
























AMPS
AMPS
AMPS
AMPS
PPM
PPM
f

4
t

*f
f
"Ho
+10
+10
+9
+11
0
230
255
435
461
107
400
0.07
0.0
5.12
5.35
5.24
77
20
23.97
+16
+17
+15
+18
0
231
258
475
419
50
408
0.11
0.0
5.51
5.75
5.63
64
38
24.20
+12
+12
+11
+13
0
230
256
477
419
50
400
0.06
0.0
5.20
6.06
5.63
70
30
24.18
-20
-19
-S3
-19
0
207
228
392
385
30
370
0.06
0.0
2.67
4.14
3.40
75
28
24.03
-1
+1
0
0
0
210
233
400
390
40
360
0.07
0.0
3.27
3.50
3.38
73
24
24.00
-23
-19
-23
-20
0
207
228
390
383
10
360
0.11
0.0
2.72
4.10
3.41
72
31
24.05
-1
+1
0
0
0
208
230
396
387
40
358
0.09
0.0
3.45
3.41
3.43
75
26
24.03
+21
+24
+20
+23
0
210
232
398
388
63
373
0.08
0.0
3.41
3.53
3.47
62
22
24.03
                                                    285
                                                                                                SHEET B43

-------
 UTAH POWER  AND LIGHT COMPANY
 HUNTINGTON  CANYON f2
                                                                                         C-E  POWER SYSTEMS
                                                                                         FIELD TESTING AND
                                                                                         PERFORMANCE RESULTS
                                OYERFIRE  AIR  OPERATION  STUDY
   TEST NO.

   DATE
   TIME
 C LOAD
   MILL
 C WILL
 C MILL
 C MILL
 C MILL
 C MILL
 C COAL
 C COAL
 C COAL
 C COAL
 C COAL
 B MILL
 B MILL
 B MILL
 B MILL
 B MILL
 B MILL
 B MILL
 B MILL
 B MILL
 B MILL
 B MILL
 B  MILL
 B  MILL
 B  MILL
 B  MILL
 B  MILL
 B  MILL
B  MILL
B  MILL
B  MILL
                  MILL 2-1
                  MILL 2-2
                  MILL 2-3
                  MILL 2-4
 DATA

 2-2
 2-3
 2-4
 2-5
 AIR TEMP
 AIR TEMP
 AIR TEMP
 AIR TEMP
 AIR TEMP. MILL 2-5
 2-1 EXH. DISCH.
 2-2 EXH. DISCH.
 2-3 EXH. DISCH.
 2-4 EXH. DISCH.
 2-5 EXH. DISCH.
 2-1 SUCTION
 2-2 SUCTION
 2-3 SUCTION
 2-4 SUCTION
 2-5 SUCTION
 2-1 COAL FLOW
 2-2 COAL FLOW
 2-3 COAL FLOW
 2-4 COAL FLOW
 2-5 COAL FLOW
2-1 FEEDER SPEED *
2-2 FEEDER SPEED
2-3 FEEDER SPEED
2-4 FEEDER SPEED
2-5 FEEDER SPEED
                                            BOARD AND COMPUTER DATA
                            LEVEL
   BURNER TILT
B  POSITION LF
B  POSITION LR
B  POSITION RF
B  POSITION RR

   HISCELLANEOUS
B  DRUM LEVEL IN. - NORM. H90
C  FD FAN 2-1
C  FD FAN 2-2
C  ID FAN 2-1
C  ID FAN 2-2
B  FLUE GAS SO  IN STACK
8  FLUE GAS NO  IN STACK
C  FLUE G«s COMBUSTIBLES L
C  FLUE GAS COMBUSTIBLES R
C  FLUE GAS 0_ L
C  FLUE GAS K R
C  FLUE GAS 0? AVG.
B  AMBIENT TEMP.
B  AMBIENT REL. HUMIDITY
B  BAROMETRIC PRESS.
  B = BOARD DATA
  C = COMPUTER  DATA
  *   FEEDER SPEED  IN % or CONTROL SIGNAL

1975

Mrt
AMPS
AMPS
AMPS
AMPS
AMPS
°F
°F
°F
°F
°F
"H.O
"(CO
"(CO
"nO
"HfO
"HfO
"H|O
"H!O
"H^O
"iro
10J.B/&?
10ILB/HR
10fLB/HR
10iB/HR
loas/m
*
X
*
%

DEGREES





AMPS
AMPS
AMPS
AMPS
PPM
PPM
*
%
%
I
%
°F
%
"Ho
r?
10/3
22:30
423
NA
NA
NA
NA
NA
148
150
146
145
149
7.3
7.1
7.0
7.0
7.0
-2.1
-2.0
-1.9
-2.1
-2.0
67
65
64
63
65
77
76
75
76
77

0
+1
-2
0
0
207
228
392
385
73
365
0.09
0.0
3.75
3.29
3.52
52
33
24.06
1$.
10/3
30:30
430
NA
NA
NA
NA
NA
149
150
147
145
149
7.5
6.9
7.1
7.0
7.3
-2.0
-2.0
-1.8
-2.1
-1.9
69
67
65
65
66
79
79
78
78
78

+21
+24
+20
+23
0
210
232
395
387
BO
373
0.08
0.0
2.96
3.51
3.24
56
28
24.03
.I9.
10/6
19:00
417
NA
NA
NA
NA
NA
148
148
147
146
149
7.5
6.5
7.3
7.5
7.0
-2.0
-2.0
-1.9
-2.1
-2.1
70
67
66
66
66
80
80
79
79
79

0
+1
0
0
0
204
226
391
385
40
373
0.09
0.0
2.70
3.63
3.16
64
28
23.77
20
10/8
10:30
426
NA
NA
NA
NA
NA
146
148
147
146
148
7.4
6.5
7.0
7.0
7.0
-2.0
-2.0
-2.0
-2.1
-2.0
66
66
64
64
64
77
76
76
75
75

0
+2
0
0
0
208
229
391
387
80
400
0.10
0.0
3.50
3.21
3.36
44
48
23.90
11
10/10
01:45
356
NA
NA
NA
NA
NA
148
147
147
145
145
6.5
6.0
6.5
7.0
6.6
-2.2
-2.3
-2.1
-2.3
-2.3
55
45
56
56
58
63
54
67
68
68

0
+1
-2
0
0
186
199
348
350
NA
400
0.10
0.0
3.11
3.14
3.12
40
55
23.96
22
10/9
01:15
358
NA
NA
NA
NA
NA
149
148
147
91
149
7.5
6.4
7.3
NA
7.0
-2.0
-1.9
-1.8
NA
-1.9
65
69
68
NA
69
74
82
81
NA
81

0
+1
0
0
0
195
211
354
352
183
400
0.10
0.0
2.79
3.73
3.26
34
67
23.98
23
10/12
08:15
253
NA
NA
NA
NA
NA
78
146
146
145
149
NA
6.1
6.3
6.5
6.1
NA
-2.4
-2.4
-2.5
-2.4
NA
52
50
49
50
NA
61
59
59
60

+1
+1
0
0
0
NA
NA
313
313
NA
400
0.10
0.0
3.07
3.50
3.28
49
54
23.66
24
10/5
18:45
266
NA
NA
NA
NA
NA
148
146
94
145
149
6.6
NA
6.5
6.5
6.3
-2.4
NA
-2.3
-2.4
-2.3
55
NA
49
49
50
64
NA
58
59
60

0
0
0
0
0
168
177
322
316
40
368
0.08
0.0
3.63
4.07
3.85
64
27
23.96
                                                    286
                                                                                                  SHEET B44

-------
Utah Power & Light Company                                  C-E Power Systems
Huntington Canyon #2                                      Field Testing and
                                                    Performance Results


             WATERWALL  CORROSION  COUPON


                        DATA  SUMMARY




                        WEIGHT LOSS EVALUATION
BASELINE TEST
Probe Probe Coupon
Loc. No. No.
1 3 1
2

3
4
2 I 1
2

3
4
•
3 4 1
2

3
4
4 X 1
2

3
4
5 Z 1
2

3
4
Initial Wt.
9
192.6190
193.4064

192.9291
193.5940
198.8883
201.0329

198.0410
195.5068
192.7191
194.8814

193.0414
191.3704
191.5552
192.4223

193.2662
193.4873
193.6625
191.0583

192.9096
192.5761
Final Wt.
g
192.2669
193.0755

192.7393
193.5159
198.6551
200.8816

197.9497
195.4417
192.5353
194.6926

192.9217
191.2839
191.3449
192.2041

193.1064
193.3807
193.3771
190.8201

192.7892
192.5329
Wt. Loss
9
.3521
.3309

.1898
.0781
.2332
.1513

.0913
.0651
.1838
.1888

.1197
.0865
.2103
.2182

.1598
.1066
.2854
.2382

.1204
.0432
Wt. Loss/
Coupon
mg/cmz
6.9809
6.5605

3.7630
1.5484
4.6235
2.9997

1.8101
1 .2907
3.6441
3.7432

2.3732
1.7150
4.1695
4.3261

3.1683
2.1135
5.6584
4.7226

2.3871
.8565
Avg. Wt. Loss/
Probe
mg/cmz


4.7132




2.6810




2.8689




3.4444




3.4062


Avg. Wt. Loss/Test 3.4266 mg/cm2
                                287                         SHEET B45

-------
 Utah Power & Light Company                                 C-E Power Systems
 Huntington Canyon #2                                      Field Testing and
                                                    Performance Results


              WATERWALL  CORROSION  COUPON


                         DATA  SUMMARY



                         WEIGHT LOSS EVALUATION
OVERFIRE AIR TEST
Probe Probe Coupon
Loc. No. No.
1 1 1
2
3
4
2 5 1
2
3
4
3 V 1
2
3
4
4 U 1
2
3
4
5 L 1
2
3
4
Initial Wt.
a
191.9684
192.4812
192.9861
191.5205
193.4934
193.3895
193.2459
192.2109
193.8941
192.2687
193.1048
194.6248
192.0607
191.8937
191.6559
192.3558
202.3430
200.5759
202.4755
197.4743
Final Wt.
a
191.8866
192.3816
192.9142
191.4367
193.3406
193.1540
193.0711
192.0909
193.7867
192.1525
193.0082
194.5362
191.9105
191.7479
191.5016
192.1947
202.1440
200.4172
202.3190
197.3718
Wt. Loss
q
.0818
.0996
.0719
.0838
.1528
.2355
.1748
.1200
.1074
.1162
.0966
.0886
.1502
.1458
.1542
.1611
.1990
.1587
.1565
.1025
Wt. Loss/
Coupon
nig/an^
1.6218
1.9747
1 .4255
1.6614
3.0294
4.6691
3.4656
2.3791
2.1293
2.3038
1.9152
1 .7589
2.9818
2.8945
3.0613
3.1982
3.9506
3.1506
3.1069
2.0349
Avg. Wt. Loss/
Probe
mg/cm2

1 .6709


3.3858


2.0268


3.0340


3.0608

Avg. Wt. Loss/Test 2.6357 mg/cm2
                                 288                         SHEET B46

-------
     APPENDIX  C
 TEST DATA & RESULTS
         FOR
ALABAMA POWER COMPANY
    BARRY STATION
       UNIT #2

-------
ALABIMA POWER COMPANY
BARRY |2
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
                                                       NOX TEST DATA SUMMARY

                                                     BASELINE  STUDY BEFORE  MODIFICATION
TEST NO.
                                                                                                        10
                                                                                                               11
                                                                                                                       12
                                                                                                                              13
                                                                                                                                      14
PURPOSE or TEST

DATE
LOAD
MAIN STEAM FLOW
4 	 CLEAN FURNACE 	




EXCESS AIR ECON. OUTLET
THEO. AIR TO FUEL
FlRINQ ZOME
FUEL ELEVATIONS IN SERVICE
FUEL NOZZLE TILT


1973
MM
KQ/S

rf

DEO
•- /\ AUX
wo ~"~
p P
S tO 2 "
4 £ 6. ^>


u E
rf 5 "
a V
V FUEL
AUX
3" FUEL
< AUX/AUX
I FUEL

AUX
3" FUEL
/ AUX
SHO TEMPERATURE
RHO TEMPERATURE
UNIT EFFICIENCY
GAS Wr. ENT. A.M.
N0x
S
CO2
CO
HC
CXRBON Loss IN FLYASH




•c
•c
KQ/S
PPM-0* 0
NO/3
PPM-0* 0.
NO/3
PPM-0* 0
NO/3
PPM-0* 0
?! AH in
!( AH OUT
— - *
•* 	
11/30
£6
61
35.5
130.6
ABC
+3
20
30
20
30
20/20
30
20
0
0
529
488
88.3
97.8
631
319.3
2298
1617.0
24
7.5
0.144
5.6
7.3
0.29
1/2 LOAD —
11/30
65
62
17.5
117.1
ABC
+7
0
30
0
30
20/10
30
10
0
n
498
446
88.2
100.0
489
246.0
2318
1622.7
142
43.5
0.160
3.2
5.6
0.97
	 fc-
11/30
67
59
58.9
151.3
ABC
+3
50
30
50
30
50/50
30
50
0
0
548
517
87.6
114.4
718
362.8
1644
1156.3
8
24.8
0.0
7.9
9.1
0.17
3/4
1/18/74
93
88
12.6
109,2
ABC
+B
30
20
60
20
80/80
20
50
0
0
500
499
89.3
107.2
429
214.0
1635
1139.1
39
11.9
0.0
2.4
5.1
0.9G
•« 	
11/14
124
112
22.7
117.9
ALL
+3
60
20
100
SO
100/100
20
100
20
100
539
514
89.0
153.9
494
248.6
1641
1150.0
31
9.6
0.509
4.0
6.2
0.48

11/26
123
113
11.7
107.2
ALL
0
100
30
100
30
100/100
30
100
30
100
539
524
89.1
160.6
357
181.8
1434
1016.1
153
47.3
0.0
2.3
4.6
0.57
AV.LOO «IH
	 fr.
	 FULL
11/28
123
112
30.8
125.3
ALL
0
100
100
100/100
30
100
v\
JO
100
538
524
89.5
164.4
664
335.1
1455
1021.8
33
10.1
0.0
5.0
6.9
0.20
v«n i « 1 1 \m •
4— MOD.
LOAD 	
11/15
126
114
21.5
116.9
ALL
48
60
100
100/100
30
100
in
oU
100
548
533
89.6
157.5
421
P13.5
1171
825.9
46
14.1
0.61
3.8
5.3
0.16
DIRTY FURN

11/19
122
112
13.0
108.5
ALL
-22
100
100
100/100
30
100
on
Jv
533
510
89.6
139.4
361
178.6
2052
1414.4
432
130.2
0.128
2.5
4.6
0.27
. 	 „
	 *
11/19
124
112
26.0
120.8
ALL
-22
too
100
30
100/100
30
100
TO
O"J
100
544
531
89.6
156.9
set
286.1
2179
1493.0
5
1.6
1.54
4.4
6.6
0.05

•*• 1/2
12/5
66
59
32.7
128.0
ABC
0
20
•an
JU
20
30
20/20
30
20
0
518
476
88.3
89.7
2348
1629.2
298
90.3
0.0
5.3
7.0
0.58
DIRTY FURNACE p.
LOAD-*.
12/4
74
57
51.2
144.1
ABC
0
50
•an
JU
50
50/50
30
50
0
548
508
87.9
1O2.5
658
327.2
2164
1496.8
220
66.9
0.0
7.2
8.6
0.20
-•-FULL
11/16
125
114
20.7
115.7
ALL
-22
100
100
100/100
30
100
100
539
522
89.2
154.4
499
247.7
1917
1322.7
41
12.4
0.513
3.7
6.0
0.17
LOAD — *•
11/16
125
113
24.3
119.2
ALL
-22
100
TO
^J
100
30
100/100
30
100
30
100
543
529
89.3
157.5
586
292. 6
1370
951.8
34
10.3
0.397
4.2
6.4
0.10

-------
ALABAMA POWER COMPANY
BARKY Is
                                                                                   C-E POWER SYSTEMS
                                                                                   FIELD TESTINB AND
                                                                                   PERFORMANCE RESULTS
                                               NOXTEST  DATA SUMMARY

                                                       BIASED FIRING  STUDY
TEST NO.
PURPOSE or TEST

DATE
LOAD

MAIN STEAM FLOW
EXCESS AIR ECON. OUT
THEO. AIR TO FUEL FIRING
FUEL ELEVATIONS IN SERVICE
FUEL NOZZLE TILT
                                  DEO
/\
"A"

"B"
_^<|
"C"

"0"
V
AUX
FUEL
AUX
FUEL
AUX/AUX
FUEL
AUX
FUEL
AUX
SHO TEMPERATURE
RHO TEMPERATURE
UNIT ErriciENCv
GAS WT. ENTERING AH
NO
NO£
SO?
so?
CO2
CO
HC


CARBON Loss IN FLYASH
      'C
      •C


    KG/S
PPM-0* 0
    NO/3
PPM-0* 0
    ua/5
PPM-0* 0
    NO/5
PPM-0* 0
  % AH IB
 % All OUT
.15
1/2
•/ c
1/19/74
66
55
50.1
105.8
ABC
-9
50
20
50
20
50/50
20
50
100
100
546
496
87. 9
94.7
594
268. 0
1721
1161.0
33
9.B
0.0
7.1
B.5
0.32
J6J7_18Jj)202J[2223
	 D 1 A^tTr\ r »n i iirv * r-i n-i r-i rn s*i IT nr «»i-r»i» i ft- A i n fNAttnr*n0 xw^fti
24

•>3f •»
1/18/74
96
82
26.7
121.7
ABC
0
50
20
50
20
50/50
20
50
100
100
539
506
89. 3
119.4
543
272.8
1682
1175.6
29
8.9
0.0
4.5
7.2
0.34
12/3/73
100
87
81.1
116.5
ABC
-15
50
30
50
30
50/50
30
50
100
100
529
501
69.1
1S1.9
397
200.6
2422
1704.6
46
14.0
0.0
3.7
6.1
0.46
12/4/73 12/5/73
103
89
22.2
117.5
ABD
-15
50
30
50
30
50/100
100
50
30
50
543
520
89.3
126.4
373
189.2
2553
1799.9
38
11.9
0.012
3.9
5.8
0.37
99
89
21.8
117.2
ACD
-10
50
30
100
100
50/50
30
50
30
50
523
486
08.9
118.9
387
189.9
2292
1562. B
35
10.6
0.012
3.8
6.3
0.42
18/6/73
102
87
24.2
94.7
BCD
-5
100
100
50
30
50/50
30
50
30
50
544
515
88.8
125.3
285
143.1
2277
1591.0
27
8.1
0.0
4.3
7.3
0.25
w •*
1/18/74
94
86
29.0
97.3
BCD
+10
100
100
50
20
50/50
20
•50
20
50
512
469
89.6
120. B
331
166.2
1566
1093.4
31
9.5
0.0
4.8
8.4
0.30
1/19/74
64
58
48.0
112.5
BCD
0
100
100
50
20
50/50
20
50
20
50
501
448
87.8
100.0
520
268.5
1861
1335.9
29
9.1
0.0
6.9
8.4
0.20
1/19/74
64
59
47.0
141.4
ACD
0
50
20
100
100
50/50
20
50
20
50
507
454
87.9
100.3
4B5
249.1
2245
1602.7
22
7.0
0.0
6.B
8.6
0.11
1/19/74
66
56
47.0
141.3
ABD
-15
50
20
50
20
50/100
100
50
20
50
544
513
87.7
98.9
609
306.2
1807
1263.0
28
8.4
0.0
6.8
6.9
0.21

-------
ALABAMA POWER COMPANY
BARRY |2
   NOXTEST  DATA SUMMARY

BASELINE STUDY AFTER MODIFICATION
C-E POWER SYSTEMS
FIELD TESTING AND
PERFORMANCE RESULTS
TEST NO.
                                                                                                        10
                                                                                                                11

PURPOSE or TEST
DATE
LOAD
MAIN STEAM FLOW




EXCESS AIR ECON. OUTLET
THEO. AIR TO FUEL
FIRINO ZONE


MW
KG/SEC
I
i
•FUEL £LEV. IN SERVICE
OFA NOZZLE TILT
FUEL NOZZLE TILT
c
t
.§ 7

g — gj
W TT
rfncw. >
siti c
5
O "C
X.
SHO TEMPERATURE
RHO TEMPERATURE
UNIT EFFICIENCY


~1 OFA
~ OFA
^ AUX
" FUEL
AUX
I" FUEL
<. AUX/AUX
* FUEL
AUX
11 FUEL
S AUX



GAS Wr. ENT. AIR HTR.
HO.
NO*

sf
CO2
CO
HC

Of









CXRBON Loss IN FLY ASH
DEC
DEC










•c
"C
*
KG/SEC
PPM-0* 0,,
NG/3
PPM-Oi 0
uo/3
ppM-og o.
NO/3
PPM-0* 0
/AH IS
AH -OUT
*


6/85/74
68
61
33.5
187.1
ABC
0
3
0
0
80
30
80
30
80/20
30
80
0
0
492
435
88.4
93
444
881.9
3678
856.0
88
8.4
0.0
5.4
7.4
0.89
EXCESS AIR VARIATION
1/8 LOAD 	 •» 3/4
6/25/74
68
59
16.0
113.4
ABC
0
6
0
0
0
30
0
30
10/10
30
10
0
0
468
402
88.8
75
335
167.4
3621
252.0
376
114.4
0.0
3.0
5.5
0.83
6/85/74
64
60
64.7
155.4
ABC
0
-14
0
0
50
30
50
30
50/50
30
50
0
0
536
499
87.4
115
640
319.8
8611
181.7
35
10.6
0.0
8.4
9.7
1.06
6/27/74
92
87
15.5
111.0
ABC
0
2
0
0
30
80
60
80
80/80
20
50
0
0
504
466
89.8
111
327
163.4
8634
183.3
110
33.4
0.0
8.9
5.5
0.11
CLEAN TURN


6/19/74
131
185
21.0
115.3
ALL
0
-13
0
0
80
30
100
30
100/100
30
1OO
30
100
528
488
88.4
165
404
202.1
2251
156.7
86
8.0
0.0
3.7
7.4
0.75



6/27/74
127
188
18.4
107.1
ALL
0
-3
0
0
100
30
100
30
100/100
30
100
30
100
584
487
89.2
152
330
165.3
2677
186.3
127
38.7
0.0
2.4
5.8
0.51



6/87/74
185
117
85.4
119.5
ALL
0
-22
0
0
100
35
100
35
100/100
35
100
35
100
518
480
89.5
155
477
838.8
2707
188.4
22
6.6
0.0
4.3
7.0
0.74
-_ FA VAD
^r" LA VPK,
i A*n

6/80/74
130
188
17.8
118.3
ALL
0
-81
0
0
80
30
100
30
100/100
30
100
30
100
526
486
89.0
157
470
235.3
1941
135.1
24
7.4
0.0
3.2
6.8
0.22
kjrus
- HUU.

6/80/74
189
184
18.1
106.9
ALL
0
-17
0
0
80
30
100
30
100/100
30
100
30
100
528
483
88.9
151
334
167.0
2488
178.7
97
89.6
0.0
8.3
6.2
0.48
IMOTV fc^_
UIKI T-^

6/88/74
185
119
26.6
120.5
ALL
0
-16
0
0
100
30
100
30
100/100
30
100
30
100
524
480
89.5
162
431
215.4
8500
174.0
84
7.2
0.0
4.5
7.5
0.61
~~
__
—
4 	 EA VflK. - DIRTY FURN.
«• 1/2 LOAD-* -4- MAX
6/26/74
65
68
30.9
124.6
ABC
0
-16
0
0
20
30
20
30
/
80/80
30
20
0
0
507
457
89.3
101
373
186. 8
8558
178.0
26
8.0
0.0
5.0
7.6
0.17
6/86/74
68
61
63.1
154.0
ABC
0
-16
0
0
50
30
50
30
50/50
30
50
0
0
531
498
88.0
116
686
318.9
8461
171.3
84
7.3
0.0
8.2
10.8
0.05
6/88/74
126
120
28.0
116.8
ALL
0
-6
0
0
100
30
100
30
100/100
30
100
30
100
524
496
89.0
160
391
195.6
2564
178.4
83
7.1
0.0
3.9
7.3
0.36
1 f
LOAD-*-
6/28/74
125
118
25.9
119.9
ALL
0
-6
0
0
100
30
100
30
100/100
30
100
30
100
589
499
89.4
168
431
815.4
8689
183.0
83
7.0
0.0
4.4
7.2
0.25

-------
 ALABAMA POWER COMPANY
 BARRY 12
                                             NOX TEST  DATA  SUMMARY

                                    OFA LOCATION, RATE AND VELOCITY  VARIATION
C-E POWER SYSTEMS
FIELD TESTING .AND
PERFORMANCE RESULTS
. TEST NO.
 PURPOSE or  TEST

 DATE
 LOAD

 MAIN STEAM  FLOW
 EXCESS AIR  ECON. OUT
 THEO. AIR TO FUEL FIRING ZONE
 FUEL ELEVATIONS IN SERVICE
 OFA NOZZLE  TILT
 FUEL NOZZLE TILT

                                                                                                               23

w
"A"

"B"
i^^f\
"C"

"0"
XT'
OFA
OFA
FUEL
AUX
FUEL
AUX/AUX
FUEL
AUX
FUEL
AUX
 SHO TEMPERATURE
 RHO TEMPERATURE
 UNIT EFFICIENCY
 GAS WT.  ENT. AH
 NO
 NO*
 SO*
 50°
 CO2
 CO
 HC
 CARBON Loss IN FLY ASH

7/10/74
MM
KG/SEC
%
$

DEO
DEO











"C
"C '
£
KG/SEC
PPM-0* 0.
NG/3
PPM-Og 0
uo/3
PPM-0* 0
NO/3
PPM-0* 0
f AH I ft
% AH OUT
%
97
93
28.5
114.5
BCD
0
-5
0
0
0
0
50
30
50/50
30
50
30
50
518
457
90.0
127
345
178.7
1892
ni.6
28
8.6
0.0
4.7
6.5
0.51
7/10/74
9B
94
27.1
96.7
BCD
0
-5
100
0
0
0
50
30
50/50
30
50
30
50
510
452
• 89.8
124
254
127.3
1973
137.3
30
9.1
O.O
4.6
6.5
0.59
7/10/74
100
94
25.6
95.8
BCD
0
-5
0
100
0
0
50
30
50/50
30
50
30
50
514
457
89.7
123
254
127.3
2092
145.6
32
9.9
0.0
1.H
6.1
O.63
7/12/74
too
96
26.6
84.8
BCD
0
-4
too
100
0
0
50
30
50/50
30
50
30
50
524
476
89.6
129
229
114.4
2391
166.8
48
14.6
0.0
4.5
6.3
0.54

7/11/74
100
94
24.8
89.3
BCD
0
.4
50
50
0
0
50
30
50/50
30
50
30
50
521
486
89.3
130
232
116.1
2684
186.8
39
11.9
0.0
4.3
6.1
0.32
7/11/74
100
96
25.4
100.5
BCD
0
-4
0
0
100
0
50
30
50/50
30
50
30
50
524
479
90.2
130
323
161.7
1821
126.8
29
8.8
0.0
4.3
6.1
0.49
7/12/74
102
95
25.4
117.4
ABC
0
-4
0
0
100
too
50
30
50/50
30
50
0
0
532
498
90.1
132
483
P4t.7
1814
126.2
25
7.7
0.0
4.3
6.1
0.46
7/12/74
102
95
27.9
90.4
ABC
0
-4
too
too
too
100
50
30
50/50
30
50
0
0
524
491
89.0
137
329
164.6
2259
157.2
26
7.8
0.0
4.7
6.5
0.54
	 »•
7/12/74
102
96
28.1
96.9
ABC
0
-4
50
50
50
50
50
30
50/50
30
50
0
0
521
485
89.1
137
336
168.1
2417
168.2
25
7.7
0.0
4.7
6.7
0.60

-------
              ALABAMA POWER COMPANY

              BARRY JS
                                                              NOJEST  DATA SUMMARY


                                                              OFA TILT AND LOAD VARIATION
C-E POWER SYSTEMS

FIELD TESTING AND

PERFORMANCE RESULTS
X
n
8
TEST NO.

PURPOSE or TEST
DATE
LOAD
MAIN STEAM FLOW
Excess AIR ECON.






84
•4 	

85
— OFA t

86
FUEL NOZZLE
87
28
29
TILT VARIATION 	 b






OUT

MM
KG/S
%
THCO. AIR TO FUEL FIRING ZONE %
FUEL ELEVATIONS
OFA NOZZLE TILT
FUEL NOZZLE TILT
r

U| X *
f- —
5 — z ~
^§85 ^

ui D
M 3!
Kl ^
82

SHO TEMPERATURE
RHO TEMPERATURE
UNIT EFFICIENCY
GAS Wr. ENTERING
NO
NO*
so*
so!
CO8
CO
HC

o|
N SERVICE


	 1 OFA
1 OFA
^~ AUX
'A1*! FUEL
1 AUX
"5"! FUEL
>^ AUX/AUX
'CT FUEL
AUX
•b" FUEL
^S AUX



AH









CARBON Loss IN FLY ASH

DEC
DEO











•c
•c
f
KG/S
PPM-0^ 0
NG/3
ppM-o* o-

PPM-Og 0,
NG/3
PPM-Og 0
% AM in
% AH OUT

7/29/74
124
113
25.9
94.2
ALL
0
-5
100
100
100
100
50
30
50/50
30
50
30
50
538
532
89.6
152
339
169.6
2450
170.5
25
7.7
0.0
4.4
5.9
0.37
7/39/74
124
116
23.7
92.4
ALL
n
-23
100
100
100
100
50
30
50/50
30
50
30
50
521
508
89.3
157
290
14-5.5
2920
203.3
27
8.3
0.0
4.1
6.0
0.37
7/89/74
124
114
25.1
93.2
ALL
0
+19
100
100
100
100
50
30
50/50
30
50
30
50
524
527
88.9
163
368
183.9
3310
230.4
32
9.7
0.0
4.3
6.2
0.40
7/29/74
125
113
22.3
94.5
ALL
-30
-5
100
100
too
100
50
x30
50/50
30
50
30
50
527
533
89.3
155
344
172.2
3160
219.9
22
6.7
0.0
3.9
6.0
0.29
7/29/74
125
115
20.2
89.6
ALL
-30
+22
100
100
100
100
50
30
50/50
30
50
30
50
524
535
88.6
163
404
202.1
3370
234.5
28
8.6
0.0
3.6
5.8
0.29


7/29/74
124
116
23.7
92.6
ALL
+30
-21
100
100
100
100
50
30
50/50
30
50
30
50
521
505
89.4
151
285
142.4
3240
2S5.5
49
15.0
0.0
4.1
6.4
0.49
30

MAX
7/30/74
125
116
21.6
90.7
ALL
0
-4
100
100
100
100
50
30
50/50
30
50
30
50
538
536
89.0
159
339
169.6
1680
116.9
26
8.0
0.0
3.8
5.3
0.61
31
38

3/4 1/2
7/31/74
97
87
85.2
89.4
ABC
-12
-16
100
100
100
100
50
30
50/50
30
50
0
0
525
514
89.1
127
338
169.1
1730
120.5
26
8.0
0.0
4.3
5.7
0.39
7/31/74
65
57
46.9
88.5
AB
0
-5
100
100
100
100
50
30
50/0
0
0
0
0
535
514
89.2
95
396
197.8
1740
121.1
24
7.4
0.0
6.8
8.2
0.32
33
OPTIMUM
MAX
7/31/74
122
114
27.4
94.6
ALL
-22
-22
100
100
100
100
50
30
50/50
30
50
30
50
521
521
89.0
162
333
166.5
2430
169.2
25
7.5
0.0
4.6
6.3
0.24
34
/•/Mir*

7/31/74
95
86
27.4
90.6
ABC
-22
-22
100
100
100
100
50
30
50/50
30
50
0
0
506
493
88. 2
131
291
145.2
2490
173.3
26
8.0
0.0
4.6
6.8
0.33
35

I/*
8/1/74
64
57
45.9
88.5
AB
-10
-15
100
100
100
100
50
30
50/50
0
0
0
0
512
493
89.0
91
313
156.4
2420
166.2
25
7.6
0.0
6.7
8.4
0.15

-------
   ALABAMA POWER Co.
   BARRY #2
      C-E POWER SYSTEMS
      FIELD TESTING AND
      PERFORMANCE RESULTS
N>
\0
Ul
                      WATERWALL   ABSORPTION   RATES,  KG-CAL/HR

                                   RIGHT WALL  CENTERLIME  TUBE  RATES
-CM2
r>
ON
TC #
ELEVATION
TEST 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
1
11 8' -6"
2.02
2. 35
1.33
3.01
3.78
4.41
3.73
4.59
6.26
5.14
4.16
4.15
4.95
4.44
4.12
5.25
6.47
3.61
4.39
3.14
4.00
3.49
2.67
4.76
3.00
4.61
4.22
7.16
5.42
7.55
7.07
5.21
7.27
7.52
6.60
3
107 '-6"
3.56
3.64
2.85
5.36
7.19
7.30
5.04
8.28
9.96
5.66
4.95
5.46
6.53
4.96
5.17
5.77
7.26
4.91
5.44
5.23
5.31
5.32
5.00
5.28
5.08
6.71
6.32
8.22
7.80
9.14
7.60
6.00
7.53
7.52
5.81
5
96 '-6"
7.49
8.63
5.18
12.23
10.90
13.66
10.06
11.45
14.99
12.27
6.26
6.51
13.14
11.30
9.66
8.15
9.90
9.92
10.19
10.24
12.45
11.40
11.87
12.68
10.63
14.66
8.43
11.93
8.32
9.93
8.65
7.05
7.80
8.84
6.60
7
85 '-6"
8.81
12.07
7.02
1.25
10.90
1.83
1.19
8.54
15.52
7.51
6.79
6.51
9.96
9.97
.37
2.38
3.33
.16
2.32
.64
.49
1.46
.91
9.24
6.66
13.07
10.02
14.04
9.91
8.08
6.80
6.00
7.80
8.05
6.33
9
74' -6"
10.93
13.13
8.08
2.76
22.55
3.37
2.18
21.78
23.46
6.45
6.53
5.98
13.94
17.66
3.34
7.62
6.99
13.37
4.65
4.18
2.71
2.46
2.67
7.92
6.13
19.69
15.85
17.22
11.24
3.87
7.07
5.47
7.27
8.05
6.33
19
69' -6"
9.07
9.95
7.55
14.88
7.46
16.04
7.67
5.11
15.52
10.15
4.43
5.72
17.38
14.74
7.80
10.26
10.96
13.37
9.40
2.63
2.20
1.96
1.90
3.98
2.48
2.80
10.81
11.66
9.91
6.23
11.56
8.90
11.24
9.37
8.18
22 44 47
64' -7" 59' -7" 54' -9"
1.28
.86
.83
5.10
6.93
7.83
8.73 12.18
4.06
6.26
9.36
6.00
5.72
15.00
15.01
13.36
12.38
13.61
10.45
5.17
12.1
12.98
11.93
11.87
8.18
11.95
12.80
11.34
12.72
12.03
9.14
7.07
4.42
14.15
11.22
7.92
57
49' -11"
8.54
6.51
9.65
13.29
18.85
20.81
27.78
10.13
8.63
24.18
11.56
11.53
25.05
24.00
3.34
3.42
3.84
18.67
14.43
20.58
15.10
15.11
15.32
23.80
32.55
15.45
18.76
13.25
27.63
4.65
18.98
14.73
24.47
15.47
10.56
60
45 '-7"
4.08
5.99
9.93
7.73
20.96
14.45
11.38
13.04
12.34
6.98
6.53
7.56
10.76
15.28
10.71
8.68
10.70
17.34
9.92
18.20
10.33
9.81
10.02
12.68
20.43
10.15
15.05
11.93
17.33
7.02
16.07
12.87
14.95
13.35
17.45
62
35 '-7"
3.30
3.12
4.13
4.31
12.49
10.21
14.56
, 15.70
15.26
12.80
6.53
7.83
12.61
12.62
10.98
9.47
12.55
8.07
10.45
9.72
4.53
3.24
3.70
7.92
13.01
4.35
12.40
7.43
17.86
8.34
9.98
7.05
16.54
14.14
7.92
64
25 '-7"

__ _
_ »
	
_«
__ <_
— _-
—-_
___
__-.
___
•_•
___
-__
	
	
	
—
—
—
—
	
—
	
—
—
	
—
	
	
	
	
—
—
—

-------
                    EF CO,
                                                                 C-F. POWER Sv STEMS
                                                                 FIELD TESTING AND
                                                                 PFPFORMANCE RESULTS
ro
\o
V)
m
                    WATERWALL   ABSORPTION   RATES,  KG-CAL/HR-CM2
                               FRONT  WALL  CENTERLINE  TUBE  RATES
TC *
ELEVATION
TEST 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
2
107 '-6"
6.44
6.78
5.18
10.11
11.16
12.33
9.26
10.92
13.67
11.48
5.21
5.46
12.88
10.77
8.07
7.62
8.05
8.07
9.13
8.66
10.33
10.34
10.02
10.56
10.10
12.27
9.22
9.54
9.91
9.66
7.86
6.00
8.85
8.31
7.12
4
96 '-6"
7.49
8.89
4.92
11.96
9.57
12.60
8.47
7.48
9.96
4.61
4.95
5.72
6.26
4.96
5.17
5.77
6.99
5.17
4.91
9.98
11.39
10.07
7.64
B.18
B.24
10.68
7.64
9.81
8.06
9.66
8.12
5.21
7.00
6.99
5.81
6
85 '-6"
11.99
14.72
7.55
7.46
10.37
18.69
12.44
10.66
10.48
15.98
6.79
6.77
7.84
8.39
14.16
10.79
12.29
14.16
12.84
11.30
17.22
18.29
16.91
9.51
6.66
19.96
14.26
12.99
11.24
13.38
11.56
8.10
7.00
6.99
5.54
8
74' -6"
18.08
16.31
8.08
24.67
24.92
27.14
10.85
22.31
25.83
14.92
6.53
6.25
11.56
11.56
11.77
15.83
14.41
11.25
6.22
22.69
21.98
15.90
19.02
15.07
15.66
19.96
8.16
12.19
10.18
25.81
8.12
6.26
18.66
10.96
7.39
13
69 '-6"
10.93
11.01
8.61
9.84
10.10
12.86
6.35
16.76
14.20
7.24
4.95
5.46
6.79
5.48
2.57
4.46
5.68
7.28
8.86
9.98
8.48
4.80
13.46
6.34
10.10
7.51
7.11
9.54
10.44
13.90
7.60
5.21
6.48
5.68
3.20
38 51
59' -7" 49' -11"
	 10.13
8.89
13.11
14.62
19.11
20.28
23.56
7.22
7.05
5.40
7.85
8.88
7.58
12.36
2.32
2.92
4.63
10.19
9.66
9.19
3.23
2.21
2.40
16.40
19.64
12.80
8.69
6.11
18.92
8.61
7.33
5.21
21.57
22.08
7.92
61
35 '-7"
3.04
2.88
4.66
4.05
12.75
13.39
18.55
15.70
17.38
15.72
6.26
8.09
14.47
14.74
18.13
15.83
16.26
9.92
10.98
16.07
5.58
4.80
5.00
12.95
20.43
5.40
14.26
8.75
20.77
8. 87
11.56
7.84
19.98
14.94
8.18
63
25 '-7"
2.52
2.36
1.33
3.01
7.46
4.67
9.53
9.60
7.84
5.66
6.26
7.56
5.21
5.22
6.22
7.62
9.37
6.49
5.44
4.97
3.48
2.45
2.67
5.02
9.57
4.35
3.44
6.90
9.38
7.55
8.12
5.73
12.56
10.43
7.65

-------
             ALABAMA POWER Co.
             BARRY #2
                                              C-E  POWER SYSTEMS
                                              FIELD TESTING AND
                                              PERFORMANCE RESULTS
                          WATERWALL    ABSORPTION     RATES,   KG-CAL/HR-
ro
                              RIGHT WALL
                          HORIZONTAL AVERAGE
                              TUBE RATES
CO
TC #
ELEVATION
TEST 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
17-21
69' -8"
8.65
9.53
7.97
13.51
5.67
14.40
7.84
3.66
7.38
8.20
4.84
5.62
10.18
8.34
9.70
11.70
13.77
7.31
6.96
2.89
2.76
2.52
3.19
12.22
9.63
10.54
10.81
12.94
11.34
9.52
7.71
6.32
10.08
8.21
7.65
42-46
59' -7"
9.54
9.16
9.27
11.84
9.98
15.11
11.96
7.63
10.05
16.31
5.09
5.46
14.34
15.34
11.38
10.93
10.44
12.77
4.61
9.52
10.14
9.36
10.16
12.22
14.00
12.21
12.40
14.44
16.07
10.66
10.38
7.98
17.06
14.67
10.76
55-59
49' -11"
8.28
5.82
9.58
7.90
10.64
16.75
18.26
7.10
6.53
15.28
9.18
9.16
15.70
17.92
9.41
12.13
11.95
16.73
8.72
13.62
13.51
13.43
13.64
8.55
22.35
10.25
14.70
12.81
20.06
4.48
17.84
14.02
18.21
13.35
10.12
    REAR .WALL
HORIZONTAL AVERAGE
   TUBE RATES

     23-29
     59'-7"

       5.78
       4.97
       4.79
       6.01
      12.22
       8.07
       8.21
       9.22
      14.01
      12.13
       9.10
       8.74
      13.94
      14.06
      10.62
                                                         10.46
                                                         10.44
                                                           .07
                                                           .52
                                                           .42
                                                           .51
                                                          6.28
                                                          6.04
                                                          9.74
                                                          9.61
                                                           .53
                                                           ,14
                                                          9.21
                                                         12.18
                                                         12.01
                                                         10.85
                                                          8.53
                                                         10.44
                                                          9.11
                                                          9.05
       6.
       7.
       6.
       5.
       7.
       8.
    LEFT WALL
HORIZONTAL AVERAGE
    TUBE RATES

     30-34
     59'-7"

      11.67
      12.23
      10.72
      10.20
      17.10
      14.53
       9.04
      14.12
      14.83
      19.48
       4.79
       6.19
      16.06
      16.81
      18.29

      18.37
      16.47
      14.48
       7.50
       7.77
      13.72
      14.85
      15.54
      15.86
      14.16
      14.45
      13.52
      17.60
      12.72
      11.47
       8.85
       9.02
      10.66
       9.27
       9.50
    FRONT WALL
HORIZONTAL AVERAGE
    TUBE RATES
10-16
69' -6"
11.94
12.34
8.56
13.20
16.33
17.01
10.90
13.80
16.45
14.92
6.35
5.72
12.93
13.91
10.77
12.74
13.17
10.81
9.70
10.92
15.85
13.48
19.17
11.89
12.04
14.22
9.88
13.52
12.30
14.00
7.33
5.21
8.33
8.10
7.75
35-41
59 '-7"
10.31
11.11
8.85
15.68
17.34
17.41
16.12
20.10
18.43
18.98
7.59
6.38
17.64
18.09
15.70
16.45
16.88
17.16
14.43
16.25
18.76
17.66
17.12
16.08
16.76
13.95
10.03
14.80
16.76
16.51
16.78
14.51
16.05
13.79
9.20
48-54
49' -11"
8.24
6.92
11.87
9.39
18.73
12.26
17.13
20.73
17.94
13.86
7.76
8.75
13.27
13.66
8.54
9.09
10.35
16.12
9.54
9.16
8.42
7.74
12.28
9.18
13.81
10.17
8.88
7.26
17.63
10.51
9.14
8.11
16.05
16.57
9.42

-------
 Alabama Power Company
 Barry #2
        C-E Power Systems
        Field Testing and
        Performance Results
                          WATERWALL    CORROSION   COUPON
                                     DATA   SUMMARY
                                    WEIGHT LOSS EVALUATION
                  Coupon
                    No.

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4
Avg. Wt. Loss/Test  2.6381 MG/CM*
BASELINE TEST
Initial Wt.
GR.
199.2937
201.3871
198.3883
195.8045
199.1977
199.6807
202.8649
202.3445
199.0122
202 .2508
201 .9826
199.6584
202.5778
200.8579
202.7075
197.7676
199.5913
197.4684
194.9513
202.0694
Final Wt.
GR.
199.1341
201.2135
198.2384
195.6946
199.0534
199.5009
202.7226
202.2442
198.8632
202.1171
201 .8976
199.5954
202.5080
200.7484
202.5924
197.6750
197.2730
194.7783
201.9251
Wt. Loss
GR.
.1596
.1736
.1499
.1099
.1443
.1798
.1423
.1003
.1490
.1337
.0850
.0630
.0698
.1095
.1151
.0926
.1954
.1730
.1443
Wt.  Loss/
 Coupon
 HG/CM*

 3.1643
 3.4418
 2.9719
 2.1789

 2.8609
 3.5647
 2.8213
 1.9885
 2.9541
 2.6507
 1.6852
 1.249
   3838
   1769
   282
 1.8359
 3.874
 3.4299
 2.8609
Avg. Wt. Loss/
   Probe
   MG/Cir
   2.9392
   2.8088
   2.13475
   1.91965
   3.38826
                                            298
                SHEET  C9

-------
Alabama  Power Company
Barry #2
                                                                C-E Power Systems
                                                                Field Testing and
                                                                Performance Results
Probe
 No.

  B
                       WATERWALL   CORROSION    COUPON
                                   DATA    SUMMARY
                  Coupon
                    No.

                     1
                     2
                     3
                     4
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4
                                    WEIGHT LOSS EVALUATION
BIASED FIRING TEST
Initial Wt.
GR.
197.9531
202.1660
198.3393
200.5603
199.3158
196.2751
202.8709
200.2327
198.8940
199.8790
196.0683
199.3342
199.5078
198.7039
198.3125
200.8838
197.9655
202.9412
199.1306
198.2205
Final Wt.
GR.
197.6484
201.8659
198.0383
200.2799
199.1437
196.0480
202.5541
200 .0655
198.7626
199.6842
195.8721
199.1690
199.3628
198.4853
198.1121
200.6771
197.7001
202.5809
198.7976
198.0234
Wt. Loss
GR.
.3047
.3001
.3010
.2804
.1721
.2271
.3168
.1672
.1314
.1948
.1962
.1652
.1450
.2186
.2004
.2067
.2654
.3603
.3330
.1971
Wt.  Loss/
 Coupon
 MG/CET

 6.0411
 5.9499
 5.9678
 5.5593

 3.4121
 4.5026
 6.2810
 3.3150

 2.6051
 3.8622
 3.8899
 3.2753
                                                           ,8748
                                                           ,3341
                                                           .9732
                                                           ,0981

                                                           .2619
                                                           ,1435
                                                           .6022
Avg. Wt. Loss/
   Probe
   MG/crr
                                                                        5.8795
                                                                        4.3777
                                                                        3.4081
               3.8201
                5.7289
                                                          3.9078
Avg.  Wt. Loss/Test  4.6429 MG/CtT
                                          299
                                                                      SHEET CIO

-------
 Alabama Power Company
 Barry #2
        C-E Power Systems
        Field Testing  and
        Performance Results
                      WATERWALL   CORROSION   COUPON

                                  DATA   SUMMARY
                  Coupon
                    No.

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4

                     1
                     2
                     3
                     4
                                    WEIGHT LOSS EVALUATION
OVERFIRE AIR TEST
Initial Wt.
GR.
200.7678
196.0684
199.6433
197.8187
200.7026
593.7075
199.1897
199.4476
199.3119
199.0463
202.8354
201.2249
397.4898
191.8528
192.7875
Final Wt.
GR.
200.5465
195.8121
199.3849
197.6419
199.1437
593.2000
198.9156
199.1351
198.9858
198.7404
202.6125
200.9784
397.2000
191.6484
192.5909
Wt. Loss
GR.
.2213
.2563
.2584
.1768
.2802
.5075
.2741
.3125
.3261
.3059
.2234
.2465
.2898
.2044
.1966
Wt.  Loss/
 Coupon
 HG/ChT

 4.3876
 5.0815
 5.1235
 3.5053

 5.5554
 3.3540
 3.3540
 3.3540

 5.4344
 6.1958
 6.4654
 6.0649
   4292
   8872
   8729
 2.8729
 4.0525
 3.8979
Avg. Wt. Loss/
    Probe
   MG/CfT
   4.5244
   3.9044
   6.0401
   3.7656
   3.9752
Avg. Wt. Loss/Test  4.4419 HG/CM2
                                          300
            SHEET  Cll

-------
         APPENDIX D
          COMPFLOW
WINDBOX COMPARTMENT AIR FLOW
DISTRIBUTION COMPUTER PROGRAM

-------
                            APPENDIX D
                        COMPFLOW -  WINDBOX
        COMPARTMENT AIR FLOW DISTRIBUTION COMPUTER PROGRAM

 INTRODUCTION

 A description  of COMPAIR,  a computer program which calculates the wind-
 box assembly air flow  distribution, was presented in Reference 1.  The
 program has been subsequently  found to be deficient; the approach taken
 in the calculation of  the  compartment loss coefficient resulted in op-
 erational  difficulties  in  certain  cases.  The program was revised to
 eliminate  this  problem.

 The revised program, COMPFLOW,  is  described herein.  The basic assump-
 tions  and  limitations  of the calculation method are outlined and dis-
 cussed.  Program runs  for  two  tests conducted at Barry #2 are included.

 ANALYSIS

 Consideration will  be  initially focused on those cases where the air
 flow to each compartment is supplied solely by the windbox.

                                Assumptions:

                                1.   Constant total pressure at compart-
                                    ment inlet plane, i.e., PT  = const.
                                                             'x

                                2.   Constant density, i.e., R(I) = R =
                                    const.

                                3.   Constant static pressure at nozzle
                                    exit plane, i.e., P   = const.
                                                        y

                                4.   Fully turbulent flow, i.e., Head
                                    Loss a# (Velocity) .
Utilizing these assumptions, it follows that
2 * [^X "
- K(I)
                                    2
                                       - const.
         Where K(I  = loss coef. for Compartment "I"
               Q(I  = volume rate of flow for Compartment "I"
               A(I  = nozzle exit area of Compartment "I"
                               302

-------
Equation (1)  yields
      Q(I)     A(I)/v/K(T)
     M     =   M
     1=1      1=1
By definition
         " =
                                                                  (2)
Using Equations (1)  and (3),  we have
          PT    PT  (I)        PT
     2 * C TX "  Ty     ] = 2  *[ TX -
                                             nm  2
                                       y]  -  [SUl]  =  [K(I) - 1]
                                             Hu;
In order to arrive at a relation for K(I), the windbox  compartment total
pressure loss will be set equal  to the sum of its component  losses,  i.e.,
2 *
          PT    PT (I)
            X "  Ty   ] = [KD(I)  +
                                           Kgo(I)  + Kf(I)]  *
       .  Where B(I) = inlet flow area of Compartment "I"
Assumption (5):  The values listed below, which allow for no interaction,
                 adequately represent the compartment total  pressure loss.
                                         COMMENT
                                  Typical t£ = 45
      LOSS
Miter bend, K^ (I)
90° bend, Kg0(I)
Friction, Kf(I)
Nozzle, KN(I)
Damper, KD(!)
Using the above values, Equations (4) and (5) yield
                                      2
VALUE
0.3
1.2
0.1
0
Figure 1
                                            ; Kf = f{j
                                  f » 0.02,  j-
                                          -  1; Assume C  = 1
                                  Assumed to include inlet loss
                                                                  REFERENCE
                                                                      2
                                                                      2
                                                                      2
                                                                      3
                                                                      4
                                                                   (6)
                                  303

-------
 For coal fired units the mill  air must  be  taken  into account.  Using
 Equation (2) for the secondary air flow, it  follows that


                         * Wl + X(I)  * W2
                                           	(7)

 Wl + WZ              Wl  + W2

      where W(I)  =  mass  rate of  flow  to Compartment  "I"
            Wl    =  total  windbox air  to corner
            W2    =  total  mill  air to  corner
            X(I)  =  fraction of mill air to Compartment "I"

 Figure  1  and Equations  (6) and  (7) constitute the basis of COMPFLOW.

 Note that if some  other  source  of air were available to the windbox as-
 sembly, Equation (7)  would yield the flow distribution with adjustments
 in the  definitions of W2  and  X(I).

 Note also that if  there  is no corner to corner biasing of compartment
 dampers,  Equation  (7) may, to a very good approximation, be regarded
 on a furnace/elevation basis.

 PROGRAM DESCRIPTION

 A  description of the  program  input is as follows:

 Input

 Fuel and  Air Compartment  Geometry

 Number of Compartments
 Width of  Compartments
 Height of Individual  Compartments
 Number of Dampers per Compartment
 Nozzle Exit Area per  Compartment

 Test Data

 Percent Excess Air
 Total Air Flow
 Compartment Damper Positions
 Fuel Elevations in Service

 Typical program outputs for Alabama Power Co., Barry #2, tests  5  and  20,
 are shown  on Figure 2.  These runs represent both normal and  overfire
 air operation.  A definition  of the output is shown on Figure 3.

 DISCUSSION

 A.  Development of the Method

The method presented herein,  of calculating the windbox assembly  flow

                                304

-------
distribution, is the result of what is obviously a greatly simplified
treatment; numerous assumptions were made in the development of the
method.  The validity of each of these assumptions will  now be  examined.

Assumption (1):  Constant total pressure at the compartment inlet plane.

                 Air issuing from a duct branches to each of the wind-
                 box assemblies; the fluid is moving at a low velocity
                 relative to that at the nozzle exit.  It would be
                 reasonable to assume that the total pressure loss be-
                 tween the supply duct exit and the compartment inlet
                 plane is a negligible fraction of the velocity head
                 at the nozzle exit.  It is all the more realistic to
                 assume, as is the case herein, that the total  pressure
                 distribution in the supply duct and the consequent
                 losses along individual streamlines, are such that the
                 total pressure is uniform at the compartment inlet
                 plane.

Assumption (2):  Constant density fluid within the windbox assembly.

                 The reasoning for this assumption is analagous to that
                 set forth in (1); note that while isothermal flow is
                 not implied between the supply duct and the compartment
                 inlet, it is assumed within the windbox assembly.

Assumption (3):  Constant static pressure at the nozzle exit plane.

                 The static pressure of the jets issuing from the wind-
                 box nozzles is equal to the local furnace pressure.
                 The variation in furnace pressure throughout this re-
                 gion should be negligibly small.

Assumption (4):  Fully turbulent flow.

                 This is a valid assumption for the vast majority of
                 cases; unit Reynolds numbers(based on nozzle exit
                 velocity) greater than 10  per foot are typical even
                 for small opening of compartment dampers.
Assumption (5)
The compartment loss coefficient for existing configura-
tions are adequately represented by the formulations
presented herein (i.e. Figure 1 and Equation (6)).

Curves of K versus damper position, as calculated from
Figure 1 and Equation (6), are shown in Figure 4 for
compartment outlet/inlet area ratios (i.e. A(I)/B(I) of
0.534, 0.322 and 0.136; these values cover the range of
our existing compartments.  Results obtained from the
cold-flow model tests of Reference 5, at area ratios
of 0.322 and 0.136, are also shown in this figure; the
                                  305

-------
                  test results are seen  to  be  in excellent agreement
                  with the predicted values.   These test results indicate
                  that nozzle tilt,  flow rate,  firing angle, the presence
                  of turning vanes and probably compartment inlet inter-
                  action,  are secondary  influences on compartment pressure
                  loss and consequently  on  compartment flow rate.  These
                  results  justify  the omission  of these factors in the
                  development of the method presented herein.

 B.   Previous Calculations

 In  the previous  method  of calculating the  windbox assembly flow distri-
 bution (Reference 1),  the compartment loss coefficient was determined from
 the equation
                                2
      K(I)    KO + KD(I)


           where  KD(!) was specified as  herein  KO evaluated from test
           values of  the total secondary air flow and windbox/furnace AP.
           Highly closed damper  positions result in a very large value of
           Kp,  as is  seen  in  Figure  1, and  a small error in this parameter
           will result in  a  large  variation in  KO.  Program runs with all
           compartment dampers at  or near the full open position yielded
           values of  KO consistent with  the value presented herein, i.e.,

               @ 100% open,  Kn»0.1, K =  K/100%
                                                        2
               from  Equation  (6), K/100%«* 1 + 1.7 *
                                               2
               for existing  geometries, 0<[]  < 0.29
               therefore, with KO ^ K/100%, 1 < KO <1.5

Program runs with one or more compartment dampers highly closed would
sometimes yield values of KO outside this range; in rare cases this
would result in operational difficulties.

REFERENCES

1.  N. D. Brown, "COMPAIR, Burner-Compartment Air-Flow Distribution Com-
                 puter Program," Project No. 121029, September, 1971.

2.               "Flow of Fluids Through Valves, Fittings, and Pipe,"
                 Crane Co., Technical Paper No. 409, May, 1942.

3.  R. V. Giles, "Fluid Mechanics and Hydraulics," Schaum Publishing Co.,
                 1962.

4.  P. S. Dickey & H. L. Coplan, "A Study of Damper Characteristics,"
                 Trans, of the ASME, February, 1942.
                               306

-------
5.  N.  D. Brown,  "VMndbox Compartment Flow Tests,"  Test  Report 72-6
                 Project No.  412003.  March 2,  1972.
                                 307

-------
                  DAMPER LOSS COEFFICIENT
                            VS.
                          POSITION
_ 2(P  - P
                                                  % Open = (6/90) x 100
          (Q/Ar

PT1 = Total Pressure @ "1"

PT2 = Total Pressure @ "2"
R   = Fluid Density
Q   = Volume Pate of Flnw
A   = Flow Area
                                                                (J)
                                                                 i
                                                    -if-
                                                              *7??

                                                               1 Blade
                                                               2 Blades
                                                               3 Blades
            20
                           40          60
                      DAMPER POSITION  - % OPEN

                                 308
                                                80
100

-------
          AIR  FLOW DISTRIBUTION TO WINDBOX COMPARTMENTS
               ALABAMA POWER AND LIGHT CO., BARRY #2
                       EPA '73 -  '74 TESTS
 FLOW  DISTRIBUTION  FOR TEST NO. 5
 PER CENT EXCESS AIR 22.7
 COMPART-
 MENT
 (NO.)

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
FIRING


Yes

Yes


Yes

Yes
AREA WT. FLOW
(% OF TOTAL)
     .44
     .55
   18.03
    6.55
     .44
     .44
     .55
   18.03
    6.55
    9.44
9.
6.
9.
9.
6.
Firing  Fuel Compartment Total Air Flow  (%)
Air Flow Above Burner Zone  (%) - 3.9
Air Flow to Burner Zone (%  of Theor. Air) !
 DAMPERS
 (% OPEN)

    60
    20
   100
    20
   100
   100
    20
   100
    20
   100

= 33.55

117.91
ACTUAL FLOW
(% OF TOTAL)

     7.8
    8.39
   16.37
    8.39
    8.64
    8.64
    8.39
   16.37
    8.39
    3.64
FLOW DISTRIBUTION  FOR TEST NO. 20

PERCENT EXCESS AIR 24.2
COMPART-
MENT
(NO.)

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
FIRING
Yes


Yes

Yes
AREA WT. FLOW
(% OF TOTAL)

    9.44
    6.55
   18.03
    6.55
    9.44
    9.44
    6.55
   18.03
    6.55
    9.44
              DAMPERS
              (% OPEN)

                100
                100
                 50
                 30
                 50
                 50
                 30
                 50
                 30
                 50
Firing Fuel Compartment Total Air Flow (%) = 30.82
Air Flow Above Burner Zone (%) = 23.73
Air Flow to Burner Zone (% of Theor. Air) = 94.72
              ACTUAL  FLOW
              (% OF TOTAL)

                  9.42
                  6.85
                 14.93
                 10.27
                  7.68
                  7.68
                 10.27
                 14.93
                 10.27
                  7.68
                                   309

-------
                              COMPFLOW

                       Definition of Output

 1.  The  "AREA WT. FLOW" is the ratio of the compartment free area to
    the  total free area of the corner; as such it is a realistic
    approximation of the actual compartment (secondary) flow only when
    all  compartment dampers are full open.

 2.  The  comparment "ACTUAL FLOW" is the ratio of the compartment mass
    flow rate (including mill air if applicable) to the total mass flow
    to the corner (see ANALYSIS, equation (7)).

 3.  The  "FIRING FUEL COMPARTMENT TOTAL AIR FLOW" is the ratio of the
    total mass flow rate to firing fuel compartments (including mill air
    if applicable) to the total mass flow to the corner.

4.  The  "AIR FLOW ABOVE BURNER ZONE" is defined as the percentage of the
    total mass flow rate supplied above the uppermost firing fuel com-
    partment, less 50% of the flow to the compartment immediately above
    it.

5.  % Theoretical  Air = (1-  * Air Ab?)g Burner Zone)(100 + % Excess Air)
    to Burner Zone.
                               310

-------
                   COMPARTMENT LOSS COEFFICIENT
                               VS.
                         DAMPER POSITION
    2(s
            2
 TX = Total Pressure @ "x"

 sy = Static Pressure 9 "y"
R   = Fluid Density
Q   = Volume Rate of Flow
A   = Nozzle Exit Area
     — - 0 534 - Nozzle Exit Area
     B   v-™1* - compart. Inlet Area
 25
 20
 15
 10
                                                    K= 1  + (1.6+KD)  x
LEGEND
SYMBOL
O
D
A/B
0.322
0.136
                20
40
60
80
100
                     DAMPER  POSITION  - %  OPEN
                                    311

-------
                                TECHNICAL REPORT DATA
                         (Please read iHttrueiioiis on the reverse before completing)
1. REPORT NO.
 EPA-600/7-77-117
                                                        . RECIPIENT'S ACCESSION NO.
4. T.TLE AND SUBTITLE Overfire Air Technology for Tangen-
tially Fired Utility Boilers Burning Western U.S. Coal
                                                        REPORT DATE
                                                       October 1977
                                                        PERFORMING ORGANIZATION CODE
7.AUTHOR.S) Richard L  Burrington, John D. Cavers,
and Ambrose P.  Selker
                                                       8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
C-E Power Systems
Combustion Engineering, Inc.
1000 Prospect Hill Road
Windsor. Connecticut 06095	
                                                       10. PROGRAM ELEMENT NO.
                                                       EHE624A
                                                       11. CONTRACT/GRANT NO.

                                                       68-02-1486
12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
                                                       13. TYPE OF REPORT AND PERIOD COVERED
                                                       Final; 6/74-3/77	
                                                       14. SPONSORING AGENCY CODE
                                                         EPA/600/13
is. SUPPLEMENTARY NOTES !ERL_RTp project officer for this report is David G. Lachapelle,
Mail Drop 65, 919/541-2236.
&•
 is. ABSTRACT Tne report gives results of an in yes tigation and evaluation of the effective-
 ness of overfire air in reducing NOx emissions from tangentially fired boilers burning
 Western U.S. coal. Results are compared with those  obtained during phase n,  'Pro-
 gram for Reduction of NOx from Tangentially Coal Fired Boilers,' EPA contract 68-
 02-1367.  Both programs investigated the effect that variations in excess air, unit slag-
 ging, load, and overfire air had on unit performance and emissions. The effect of
(biasing combustion air through various out-of-service fuel nozzle elevations was also
(investigated. The effect of overfire air operation on waterwall corrosion potential was
 evaluated during 30-day baseline and overfire air corrosion coupon tests. Overfire
 air operation for low NOx optimization did not significantly increase corrosion coupon
 degradation. Overfire air operation and reductions  in excess air levels were effective
 in reducing NOx emissions. NOx reductions of 20-30% were obtained when operating
 with 15-20% overfire air. These reductions occurred with the boilers operating at a
 total unit excess air of about 15-25%% measured at the economizer outlet. Unit loading
 exhibited a minimal effect on NOx emissions.  Waterwall slag  conditions had wide and
 inconsistent effects on NOx emission levels.
17.
                              KEY WORDS AND DOCUMENT ANALYSIS
                 DESCRIPTORS
                                           b.lDENTIFIERS/OPEN ENDED TERMS
                                                                      COSATI Flold/GtOUp
 ,ir Pollution
 fitrogen Oxides
 lombustion Control
Boilers
Utilities
                                           Air Pollution Control
                                           Stationary Sources
                                           NOx Reduction
                                           Tangential Firing
                                           Combustion Modification
                                           Overfire Air
13B
07B
21B
21D
13A
 8. DISTRIBUTION STATEMfcNT

 Unlimited
                                           19. SECURITY CLASS (Tint Keport)
                                           Unclassified
21. NO. OF PAGES
      327
                                           20. SECURITY CLASS (Thispage)
                                           Unclassified
                                                                    22. PRICE
EPA Form 2220-1 (9-73)
                                          312

-------