United States Industrial Environmental Research EPA-600/7-79-070
Environmental Protection Laboratory February 1979
Agency Research Triangle Park NC 27711
Apitron Electrostatically
Augmented Fabric Filter
Evaluation
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These ni'he broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency'"Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their.health and ecological
effects; assessments of, and development .of, control technologies for energy
systems; and integrated assessments of a wide'range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service,-Springfield, Virginia 22161.
-------
EPA-600/7-79-070
February 1979
Apitron Electrostatically
Augmented Fabric Filter
Evaluation
by
Larry G. Felix and Joseph D. McCain
Southern Research Institute
2000 Ninth Avenue, South
Birmingham, Alabama 35205
Contract No. 68-02-2181
Program Element No. EHE624A
EPA Project Officer: Dale L Harmon
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
TABLE OF CONTENTS
List of Figures iii
List of Tables vi
Abstract
SECTIONS
1 CONCLUSIONS 1
2 INTRODUCTION 2
3 DISCUSSION 8
Description Of The Apitron Filter System .... 8
Total Particulate Collection Results 16
Cascade Impactor Results 16
Ultrafine Particulate Data 34
APPENDIX
Cascade Impactor Run Data 52
Cascade Impactor Run Data—November-December,
1977 Test 53
Cascade Impactor Run Data—June, 1978 Test ... 84
11
-------
List of Figures
FIGURE NO. Page
1 Layout of sampling locations for tests of the
Apitron mobile pilot plant 4
2 Layout of a full scale Apitron unit 6
3 Cutaway view of a trailer mounted, mobile, pilot
plant Apitron unit 9
4 Principle of operation of the Apitron dust collec-
tor 12
5 Apitron dust collector operating cycle 13
6 Average inlet size distribution for the Apitron
mobile unit tests 20
7 Average inlet size distribution for the Apitron
mobile unit tests 21
8 Apitron fractional efficiency with aged Nomex bags,
11/30/77-12/1/77, vs. aerodynamic particle dia-
meter in micrometers 22
9 Apitron fractional efficiency with new Teflon bags,
impactor measurements, 12/2/77, vs. aerodynamic
particle diameter in micrometers 23
10 Apitron fractional efficiency with conditioned
Teflon bags, 12/5/77-12/6/77, vs. aerodynamic
particle diameter in micrometers 24
11 Apitron fractional efficiency as a conventional
fabric filter (Teflon bags), 12/7/77-12/8/77,
vs. aerodynamic particle diameter in micrometers. 25
12 Average inlet size distribution for the full scale
Apitron tests 27
13 Average inlet size distribution for the full scale
Apitron tests 28
14 Fractional efficiency of the full scale Apitron
dust collector vs. aerodynamic particle diameter
in micrometers as determined from cascade impac-
tor data 29
111
-------
List of Figures (Cont'd.)
FIGURE NO. Page
15 Fractional efficiency of a full scale Apitron
unit operating as a conventional fabric filter
vs. aerodynamic particle diameter in micro-
meters. 6/14-15/78 30
16 Fractional efficiency of a full scale Apitron
unit operating as a conventional fabric filter
vs. aerodynamic particle diameter in micro-
meters. 6/15-16/78 31
17 Fractional efficiency of a full scale Apitron
unit operating as a conventional fabric filter
vs. aerodynamic particle diameter in micro-
meters. 6/16-17/78 32
18 Fractional efficiency of the full scale Apitron
unit operating at full ESP power vs. aerody-
namic particle diameter in micrometers 33
19 Apitron fractional efficiencies with aged Nomex
bags, 12/1/77, vs. Stokes particle diameter
in micrometers 35
20 Apitron fractional efficiencies with new Teflon
bags, 12/2/77, vs. Stokes particle diameter in
micrometers 36
21 Apitron fractional efficiencies with conditioned
Teflon bags, 12/5/77, vs. Stokes particle dia-
meter in micrometers 37
22 Apitron fractional efficiencies with conditioned
Teflon bags, 12/6/77, vs. Stokes particle dia-
meter in micrometers 38
23 Apitron fractional efficiencies with conditioned
Teflon bags", operated as a conventional fabric
filter, 12/7/77, vs. Stokes particle diameter
in micrometers 39
24 Apitron fractional efficiencies with conditioned
Teflon bags, operated as a conventional fabric
filter, 12/8/77, vs. Stokes particle diameter
in micrometers 40
25 Fractional efficiency of the full scale Apitron
unit at 25% electrical energization vs. Stokes
particle diameter in micrometers 42
IV
-------
List of Figures (Cont'd.)
FIGURE NO. Page
26 Fractional efficiency of the full scale Apitron
unit operated as a conventional baghouse vs.
Stokes particle diameter in micrometers 43
27 Fractional efficiency of the full scale Apitron
unit operated as a conventional baghouse vs.
Stokes particle diameter in micrometers 44
28 Fractional efficiency of the full scale Apitron
unit operated as a conventional baghouse vs.
Stokes particle diameter in micrometers 45
29 Fractional efficiency of the full scale Apitron
unit at 25% and 50% electrical energization vs.
Stokes particle diameter in micrometers 46
30 Fractional efficiency of the full scale Apitron
unit at full electrical energization vs. Stokes
particle diameter in micrometers 47
31 Full scale Apitron fine particle fractional effi-
ciency at various ESP power levels vs. Stokes
particle diameter in micrometers 49
32a Outlet concentration variations in the 0.5 to 1.5
micrometer size range 50
32b Outlet concentration variations in the 0.01 to 0.2
micrometer size range 51
-------
List of Tables
TABLE NO. Page
1 Specification For Apitron Test Units 10
2a Apitron Mobile Unit Test Conditions 15
2b Apitron Full Scale Pilot Plant Test Conditions ... 15
3 Performance Tests Results For The Mobile Apitron
Pilot Plant 17
4 Performance Test Results For The Full Scale Apitron
Unit 18
VI
-------
EVALUATION OF AN APITRON ELECTROSTATICALLY AUGMENTED
FABRIC FILTER
ABSTRACT
This report presents the results of fractional and overall
mass efficiency tests of two Apitron electrostatically augmented
fabric filter dust collectors. The tests were performed on a
mobile pilot scale system collecting fly ash produced by a pul-
verized coal-fired industrial boiler and on a full scale pilot
plant facility collecting redispersed silica dust.
The first series of tests was conducted in December, 1977
on the mobile device and the second series of tests were con-
ducted in June, 1978 on the full scale pilot plant facility
located at the manufacturer's facilities in Buffalo, New York.
Total particulate concentrations were determined at the
inlet and outlet of both devices. Inlet and outlet emission
rates as a function of particle size were determined from about
0.5 ym to 8 ym on a mass basis using cascade impactors and from
about 0.01 ym to 1.0 ym using electrical mobility and optical
techniques.
VII
-------
SECTION 1
CONCLUSIONS
This evaluation was one of a series of studies being con-
ducted by the Industrial Environmental Research Laboratory of
••''"' - /1
the Environmental Protection Agency to identify and test novel
' , : "> ' '
devices which are capable of high efficiency collection of fine
particulates. The test methods used may not have been consistent
with compliance-type methods, but were state-of-the-art tech-
niques for measuring mass and fractional efficiency and included
standard filtration methods as well as inertial, optical, and
electrical mobility techniques.
The first novel control device tested was a small-scale,
mobile, electrostatically augmented fabric filter system (APITRON).
The collection efficiency, as determined by conventional filter
techniques, when the system was collecting fly ash from a pulver-
ized coal-fired boiler, ranged from 99.90% to 99.94%. The system
pressure drop when operating in a normal mode at a face velocity
of 33 to 35 mm/sec (6.5-6.9 fpm) was approximately 3.0 cm to 3.8 cm
w.c. (1.2-1.5 in. w.c.). Fractional efficiencies in the size range
from about 0.2 \im to 1 ym were approximately 99.85% to 99.94%. The
system energy usage during this first series of tests was 2500
Joules/SCM.
Because of instrument difficulties with the electrical mobility
technique and indications of insufficient conditioning of the bags
used in the mobile unit testing, a second series of tests was
performed. This second test series was performed on a full-scale
pilot plant facility maintained by the manufacturer, American
Precision Industries. During this second series of tests, the
collection efficiency of the system, when collecting redispersed
-------
silica dust at ambient temperatures, ranged from 99.995% to
99.9994%. The system pressure drop when operating in a normal
mode at a face velocity of 29.4 mm/sec (5.8 fpm) was approxi-
mately 9.4 cm w.c. (3.7 in. w.c.). Fractional efficiencies in
the size range from about 0.2 ym to 1.0 ym were approximately
99.90% to 99.999%. The system energy usage during this series
of tests ranged from 1370 Joules/SCM at one-quarter ionizing
power in the ESP section to 3390 Joules/SCM at full ionizing
power. Power off operation required reduced face velocities
and energy requirements to the range of 1500-2300 Joules/SCM.
-------
SECTION 2
INTRODUCTION
This report presents results of tests conducted by Southern
Research Institute (SoRI) to determine the fine particle col^-
lection capabilities of the Apitron electrostatically augmented
fabric filter. The goals of the tests were to determine the
overall mass efficiency and the fractional efficiency of the
system when operating under normal design conditions. Two Api-
tron systems were tested during the program. The first system
was a mobile pilot plant designed to process up to about 7 m3/rnin
(250 acfm) at face velocities up to about 75 mm/sec (15 fpm).
This unit was tested on a slip-stream from a pulverized coal
boiler.
Further tests were conducted on a full scale pilot plant
facility maintained by the manufacturer, American Precision
Industries, which was designed to operate at flow rates of about
283 m3/min (10,000 acfm)., The system in this case collected
redispersed silica dust at ambient temperatures.
Figure 1 is a schematic of the system layout for the first
series of tests. The control device, together with its power
supply, is mounted in the central section of a standard 40 foot
semi-trailer. The rear section of the trailer houses a compressed
air supply for bag and tube cleaning and a blower which provides
the required system draft. The forward section of the trailer
houses an office and control center.
-------
GAS FLOW
INLET ULTRAFINE
SAMPLING PORT
r
i
OUTLET ULTRAFINE
SAMPLING PORT
OUTLET IMPACTOR SAMPLING PORT
OUTLET MASS TRAIN SAMPLING PORT
\
INLETIMPACTOR,
MASS TRAIN*.
SAMPLING PORT
Figure 1. Layout of sampling locations for tests of
the Apitron mobile pilot plant.
-------
The geometry of the test site was such that a long run
of ducting was required to convey the flue gases from the boiler
ducting to the trailer mounted filter unit. This ducting was
insulated but infiltration of ambient air at joints resulted
in a large temperature drop and substantial dilution of flue
gases between the sample take off point and the trailer. Ad-
ditional cooling of the flue gases took place in the Apitron
device proper, in which a trial heat recovery system was being
evaluated by Apitron at the time of these tests. Outlet gas
temperatures were generally about 95°C (160°F). The flue gas
temperature at the sample take off point was approximately 205°C
(400°F). This dropped to about 110°C (230°F) at the actual inlet
of the device.
Two bag materials, Nomex and Teflon, were used during
the tests of the mobile unit. Air flows as measured in the out-
let ducting were about 7 am3/min (250 acfm) . Typical filter
pressure drops were about 3 cm w.c. at these flow rates with
electrostatic augmentation, and 9 cm w.c. without electrostatics.
The specific collection area of the electrostatic portion of
the system was about 8.6 m2/(am3/s) (43 ft2/1000 acfm). Operat-
ing voltages were about 30 kv and current densities were about
535 nA/cm2 (500 yA/ft2).
The tests of the mobile unit took place during the period
between November 29, 1977 and December 9, 1977.
The second series were conducted on a full scale facility
as illustrated in Figure 2. Redispersed silica dust is drawn
into the inlet air duct and enters .the device at the lower right
hand side. After passing through the wire-pipe precipitator
tubes and bag filters it is drawn out through an exit on the
far side of the device. The inlet ducting is 45.7 cm (18 inches)
O.D. and the outlet ducting is 122 cm (48 inches) O.D. The device
-------
FABRIC FILTER BAGS
PRECIPITATION TUBES
PRECIPITATOR DISCHARGE ELECTRODE
CLEANING AIR MANIFOLD
PRECIPITATOR POWER SUPPLY
Figure 2. Layout of a full scale Apitron unit.
-------
operates using ambient air at ambient pressure and temperature
conditions. During this series of tests, the ambient temper-
atures averaged around 22°C (72°F). The bags were constructed
of felted polyester material. Typical system pressure drops
were about 9.1 cm w.c. (3.6 in. w.c.) at a flow rate of 283
am3/roin (10,000 acfm) with electrostatic augmentation to as much
as 25 cm w.c. (10 in. w.c.) at a flow rate of 232 am3/min (8200
acfm) without electrostatics. Operating voltages ranged from
27 kV to 39 kV with current densities varying from 281 nA/cm2
(261 yA/ft2) to 773 nA/cm2 (718 yA/ft2).
The second series of tests took place during the period
between June 12, 1978 and June 19, 1978.
-------
SECTION 3
DISCUSSION
A total of four measurement techniques were used during
the tests. These were: (1) electrical mobility techniques for
determining the concentration and size distribution on a number
basis for particles having diameters from about 0.01 ym to about
0.3 ym, (2) optical techniques to determine concentration and
size distributions for particles with diameters between about
0.3 ym and 2.0 ym, (3) inertial techniques using cascade impac-
tors for determining concentrations and size distributions on a
mass basis over the size range from 0.3 ym and 6.0 ym, and (4)
standard filtration techniques for determining total inlet and
outlet mass loadings.
DESCRIPTION OF THE APITRON FILTER SYSTEM
Figure 3 provides a cutaway view of the first pilot plant
tested. The device is divided into two separate compartments,
which share a common inlet, hopper, and power supply but each
has its own exit duct and flow metering capability. Only one
of the two compartments was used in these tests. Pertinent di-
mensions and operating data for this and the full scale unit
are given in Table 1.
-------
COMPRESSED AIR
MANIFOLD
BAGS
JET PULKE NOZZLE
INSULATOR
TUBE SURFACE
COOLING WATER
MANIFOLD
CORONA WIRE
HOPPER
DUST DISCHARGE
WATER OUTLET
Figure 3. Cutaway view of a trailer mounted, mobile,
pilot plant Apitron unit.
-------
TABLE 1. SPECIFICATIONS FOR APITRON TEST UNITS
Precipitator Tube ID (cm)
Precipitator Tube Length (cm)
Number of tubes per compartment
Number of compartments
Number of bags per tube
Filter area per bag (m2)
Operating voltage full power (kV)
Operating current per compartment
(mA)
SCA (m2/am3/s)
Cleaning Pulse Pressure (kPa)
Cleaning Pulse Duration (ms)
Cleaning Interval (min)
Nominal air flow per compartment
(Am3/s) as tested
Operating Pressure Drop (cm w.g.)
Bag Material
Small Scale
Mobile Unit
12.7
83.8
3
2
4
0.293
30
7.5
8.5
241
50
6
0.118
3.3
Teflon
Felt
(23 oz/sq.yd.)
and
Nomex Felt
(12 oz/sq.yd.)
Full Scale
Pilot Plant
15.2
121.9
72
1
1
2.23
39
325
8.9
552
50
8
4.72
7.1
Dacron
Polyester
Felt
(11 oz/sq.yd.)
10
-------
Incoming air enters the precipitator section from below
with the upper portion of the hopper serving as an inlet plenum
as illustrated in Figure 4. The flow then passes upward, through
the tubes of a set of parallel wire-pipe precipitators in which
the particulate is charged arid much is precipitated. Flow con-
tinues upward, past the .tubes, into and through the bags where
the final filtration takes place. Clean air exits the unit at
an exhaust located in the side of the bag housing section. In
the mobile unit each tube (and associated set of bags) is cleaned
one at a time with a six minute interval between successive
cleanings of any one tube and bag set. In the full scale system,
six bag and tube sets are cleaned at a time. Cleaning is ini-
tiated by an electrical pulse from the control system which opens
a diaphragm valve for several tens of milliseconds. A blow pipe
connected to the valve is then pressurized which results in a
compressed air jet downward from a nozzle directly above and
concentric with the corona wire of the tube being cleaned. The
jet of air flowing downward through the tube entrains and mixes
with a secondary air flow sweeping the tube clean of deposited
dust by the mixture of high velocity air. The secondary air
flow, passing from the outside to the inside of the bags, snaps
the bags inward and dislodges the dust deposits from the bags.
(A 708 am3/min (25,000 acfm) unit would require about 0.8.5 m3/min
(30 scfm) of compressed air at 80 psig.) Vertical height con-
straints in the mobile pilot plant required the use of four short
bags in parallel over each precipitator tube rather than one
longer bag over each tube as is used in full scale systems.
The system operation is illustrated in Figure 5.
In the first series of tests, the first two days of testing
was done with relatively old Nomex bags in use. These bags had
been subjected to sulfuric acid attack during an earlier test
program and were tested only because a new set of Teflon bags
11
-------
BAG HOOKS ABOVE
ROW
CLEANING
COMP. AIR
MANIFOLD
BAG SNAPS
INTO TUBE
SHEET
DIAPHRAGM
PRECIP.
TUBE
ON STREAM
FLOW
CORONA WIRE HOOKS
ON H.V. GRID. SPRING
TENSIONED AND
INSULATED AT TOP
INSULATOR
WALKWAY
g" •*
SPRING
PRECIPITATOR
SECTION
HOPPER
HIGH VOLTAGE
TO GRID
Figure 4. Principle of operation of the Apitron
dust collector.
12
-------
NORMAL
FILTRATION
START END
CLEANING CLEANING
RESUME
FILTRATION
Figure 5. Apitron dust collector operating cycle.
13
-------
which were scheduled to be used were not immediately available.
After two days of testing with the Nomex bags the Teflon bags
arrived and were installed. One day of tests were performed
with the new, unconditioned Teflon material, after which the
bags were run continuously for two more days over a weekend for
conditioning before testing was resumed.
After testing was resumed two days of data were obtained
with electrostatic augmentation at a face velocity of about 35
mm/sec (6.9 fpm), followed by two days of testing without elec-
trostatic augmentation. One of the tests without electrostatic
augmentation was run at a face velocity of 33 mm/sec (6.5 fpm)
and the other at a face velocity of 14 mm/sec (2.7 fpm).
The operating conditions for the Apitron device during the
seven test days are given in Table 2a. As mentioned earlier,
infiltration of ambient air resulted in a marked temperature
drop throughout the ducting from the boiler to the Apitron trailer
This infiltration also resulted in non-negligible dilution of
the stack gases between the inlet and outlet sampling locations.
All efficiencies which are given herein have been corrected to
remove the effect of this dilution.
In the second series of tests, Dacron polyester felt bags
were used for all testing. These bags had been in use for several
months and were considered to be fully seasoned. The first two
days of testing were done at a quarter power ESP condition with
a bag face velocity of about 30 mm/sec (5.8 fpm). This was fol-
lowed by three days of testing during which no electrostatic
augmentation was used. Face velocities during the nonaugmented
tests varied from 24 mm/sec (4.8 fpm) to 27 mm/sec (5.3 fpm).
During the two final days of testing, the effect of electrostatic
augmentation at various power levels was investigated. During
this period the face velocity was kept constant at 29.4 mm/sec
(5.79 fpm).
14
-------
TABLE 2a. APITRON MOBILE UNIT TEST CONDITIONS
ESP conditions
Bag
Date Material
11/30/77 Noraex
12/1/77 Noraex
12/2/77 Teflon3
12/5/77 Teflon
12/6/77 Teflon
12/7/77 Teflon
12/8/77 Teflon
Outlet gas
amVmin
7.31
7.00
8.47
7.42
7.00
6.91
2.92
Outlet
flow temp.
acfm °C
258 74
247 77
299 71
262 74
247 74
244 74
103 54
Bag Face
mm/sec
34.7
33.2
40.2
35.2
33.2
32.8
13.8
TABLE 2b.
Velocity
fpm
6.83
6.53
7.91
6.93
6.53
6.46
2.72
APITRON
Voltage
kv
31
31
30.5
30
29
0
0
FULL SCALE
Current
mA
7.5
7.5
7.5
8.0
8.5
0
0
Specific
raVamVs
8.25
8.60
7.11
8.11
8.60
0
0
collecting area
ft2/1000 acfm
41.9
43.7
36.1
41.2
43.7
0
0
Current
density
nA/cm2
750
750
750
800
850
0
0
Energy
usage
joules/m3
1910
2000
1620
1940
2120
0
0
Apitron
pressure
drop
cm w.c.
5.3
5.3
0.5
3.0
3.8
8.9
3.3
Energy
usage,
air
moving
joules/m3
530
520
50
300
380
868
323
PILOT PLANT TEST CONDITIONS
ESP conditions
Bag
Date Material
6/12-6/14 Dacron
6/14-6/15 Dacron
6/15-6/16 Dacron
6/16-6/17 Dacron
6/17-6/18 Dacron
6/18-6/19 Dacron
Outlet gas
am /min
283 10
243 8
261 9
232 8
283 10
283 10
Outlet
flow temp.
acfm °C
,000 20
,600 24
,200 22
,200 24
,000 24
,000 24
Bag Face
mm/sec
29.4
25.3
27.0
24.1
29.4
29.4
Velocity
fpm
5.79
4.98
5.32
4.75
5.79
5.79
Voltage
kv
27
0
0
0
27-33
39
Current
mA
118
0
0
0
118-190
325
Specific
m2/am3/s
8.91
0
0
0
8.91
8.91
collecting area
ft2/1000 acfm
45.2
0
0
0
45.2
45.2
Current
density
nA/cm2
281
0
0
0
281-432
773
Energy
usage
joules/m3
675
0
0
0
675-1330
2690
Apitron
pressure
drop
cm w.c.
7.1
21.6
22.9
14.6
7.1
7.1
Energy
usage,
air
moving
joules/m3
720
2200
2330
1490
720
720
3New, clean Teflon bags installed overnight of 12/1 - 12/2
-------
The operating conditions of the full scale collector are
given in Table 2b for the tests conducted during June 1978.
TOTAL PARTICULATE COLLECTION RESULTS
The results of the total particulate tests of the mobile
unit are given in Table 3. The measured inlet and outlet concen-
trations are given together with the appropriate dilution correc-
tions, the corrected total particulate collection efficiency,
and the total power usage of the control device. The power
consumption figures do not include the required compressor power
for the cleaning pulses nor any conversion efficiencies for fans,
motors, power supplies, etc. The estimated total energy usage
including losses in the latter items is approximately 40% greater
than the figures given in the table.
Table 4 shows conditions and results of the tests of the
full scale unit. As with the earlier data on energy usage, the
required compressor power for the cleaning pulses and the con-
version efficiencies for fans, motors, power supplies, etc. are
not included.
CASCADE IMPACTOR RESULTS
Inertial sizing of the inlet and outlet particulates was
accomplished using modified Brink impactors and University of
Washington Mark III impactors.
For the mobile unit tests, sampling was done at isokinetic
rates using heated enclosures to contain the impactors and short
stainless steel probes for conveying the samples'from the ducts
to the impactors. In situ operation of the impactors was not
possible because of the small duct dimensions - 20 cm (8 in.)
at the inlet and 15 cm (6 in.) at the outlet. Modified Brink
16
-------
TABLE 3. PERFORMANCE TESTS RESULTS FOR THE MOBILE APITRON PILOT PLANT
Date
Inlet loading,
mg/DNm3
Outlet loading,
mg/DNm3
12/1/77
12/2/77
12/5/77
12/6/77
12/7/77
12/8/77
4600
3940
4580
5580
4960
16150
2170
2060
2150
3230
2950
10.6
4.26
5.54
3.43
2.09
2.33
0.99
1.50
1.20
1.14
Dilution Collection
correction efficiency,
Total energy usage
factor
1.79
1.46
1.60
1.50
%
99.59
99.84
99.902
99.940
joules/am"
2520
1670
2240
2500
hp/1000 acfm
1.60
1.06
1.42
1.58
1.63
1.89
99.905
99.928
868
323
0.55
0.20
-------
TABLE 4. PERFORMANCE TEST RESULTS FOR THE FULL SCALE APITRON UNIT
Inlet loading, Outlet loading,
Collection
efficiency,
Total energy usage
Date
6/12
6/14
6/15
6/16
6/17
6/18
- 6/14
- 6/15
- 6/16
- 6/17
- 6/18
- 6/19
mg/DNm
12800
12600
12800
12400
12800
12800
mg/DNm3
0.172
0.480
0.366
0.126
0.119
0.094
%
99.9987
99.9962
99.9971
99.9990
99.99907
99.99927
joules/am3
1370
2120
2250
1440
1750-2400
3580
hp/1000 acfm
0.87
1.35
1.43
0.91
1.11-1.52
2.27
00
-------
impactors were used for all inlet sampling and University of
Washington impactors were used for outlet sampling. Both types
were used with Apeizon H grease coatings on stainless steel shim
stock impaction substrates.
The average inlet size distribution for the mobile unit
tests is given in Figure 6 on a cumulative percent by weight
basis and in Figure 7 on a cumulative mass loading (concentra-
tion) basis.
Fractional efficiencies are shown on an aerodynamic diam-
eter basis, by day, in Figures 8 through 11. Collection effi-
ciencies in excess of 99% were consistently obtained in the fine
particle size range (-3ym) when either the Teflon or Nomex bags
were used. The efficiency curves for both materials showed effi-
ciency minima near a diameter of 7 pm which may have resulted
from primary or agglomerated particles bleeding through the
fabric of the bags. The efficiencies were higher on the two
days of testing with the ESP section de-energized than during
the tests with power on. The highest efficiencies during the
entire test series were obtained on Dec. 8 when the device was
operated as a conventional baghouse at a low face velocity.
There is some uncertainty in the significance of the differences
among the results for the various test conditions with the Teflon
bags because the bags were being tested immediately after in-
stallation and for a few days thereafter. The efficiency of
the device showed a constant improvement with each day of testing
after the new bags were installed. Thus, the efficiencies which
were obtained during the last two days of testing with the ESP
de-energized may have been equaled or exceeded had it been ener-
gized. Previous testing by the manufacturer had shown higher
efficiencies with electrostatic augmentation than without, for
tests at fixed face velocities.
19
-------
i__
r^
o:
LJ
0.
u
M
i
h-
<
_l
a
33 • 33 -
qq qc: •
^ri^
93.8:
r^n r~ •
99 & 5-
99 1
98"
^•^k^
35-;
90^
80^
70 i
GOi
50^
401
30 i
30]
loi
cr :
^j .
si
1-
-
0.5^
0— ^
«ET
o.6±H
n.n-i -
M
M
L
r •
• ^
'• »
! »
- o
r o
- »
™ ^
a
®
»
»
= » *
; ••
1 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1 1
lo-1 10° lo1
PARTICLE DIAMETER (MICROMETERS)
Figure 6. Average inlet size distribution for the Apitron
mobile unit tests. Cumulative percent (by weight
basis) vs. aerodynamic particle diameter in
micrometers.
20
-------
10
103
ID
M
a
§
101.
LJ
M
10
'1
^lO1
M
a
a
,cn
LJ
M
i<
10
-« » 1 I I I M |
H 1 1 I I I I I |
10° 101
PARTICLE DIAMETER (MICROMETERS)
Figure 7. Average inlet size distribution for the Apitron
mobile unit tests. Cumulative mass loading in
mg/ACM vs. aerodynamic particle diameter in
micrometers.
21
-------
M
101-
icrS
10
a
e> ,
s o-
o
a>
°j>.
FACE VELOCITY, mm/sec
O34.7
^33.2
B 8888888
-! 8 8 1 Hfr-fr
99*9
i99.99
^
10"1 10^ 101
PARTICLE DIAMETER (MICROMETERS)
Figure 8. Apitron fractional efficiency with aged Nomex
bags, 11/30/77-12/1/77, vs. aerodynamic
particle diameter in micrometers.
22
-------
101-
1CT1: :
10'
10
*
::90.0
'in-'1
1
i i i i n H
H—i i i i 11
H
h-
° 99 • 9 C3
99.99
ic
PARTICLE DIAN€TER (MICROMETERS)
Figure 9. Apitron fractional efficiency with new Teflon
bags, impactor measurements, 12/2/77, vs.
aerodynamic particle diameter in micrometers.
23
-------
t
10
ri
10
r3.
"90*0
on
I
10
ri
FACE VELOCITY, mm/sec
O 32.8
® 33.2
H 8—8 8 8 H M
10°
-J 1 8 U H
M
"99.99
101
K99-999
PARTICLE DIAiVETER (MICROMETERS)
Figure 10. Apitron fractional efficiency with conditioned
Teflon bags, 12/5/77-12/6/77, vs. aerodynamic
particle diameter in micrometers.
24
-------
H
10
1-2--
10
r3.
FACE VELOCITY, mm/sec
O32.8
0.0
v o; o
::-30.0
* SB-PS
H
10
ri
I I II I I
10°
-\ 1 1 I I I I
33.9Q
-:33.33
101
.33.333
PARTICLE DIAEJER
Figure '11. Apitron fractionalefficiency as a conventional
fabric filter (Teflon bags), ,1 2/7/77-1 2/8/77,
vs. aerodynamic particle diameter in micrometers.
25
-------
During the tests of the full scale unit, as in the earlier
mobile unit test, inertial sizing of the inlet and outlet par-
ticulate was accomplished using modified Brink and University
of Washington Mark III, (U of W), impactors. Tn situ sampling
was possible at the outlet, but due to the small size of the
inlet ducting, all inlet sampling was done with a short extrac-
tive probe and nozzle. Isokinetic sampling could not be main-
tained at the inlet because at the impactor flow rates used (1.7
1pm, 0.06 acfm), a nozzle opening less than 1 mm would have been
required to sample isokinetically. At the outlet, the impactors
were operated at a higher than normal flow rate (42.5 1pm, 1.5-
1.6 acfm) and the samples were taken over 24-48 hour periods.
These samples were not taken isokinetically because large enough
sampling nozzles were not available. All impactor data have
been corrected, by particle size, to account for the effects
of non-isokinetic sampling.
In order to be able to sample at high flow rates at the
outlet, stages 6 and 7 of the U of W impactors were removed and
a spacer of the appropriate length was inserted. The high outlet
flow rates were required in order to collect weighable quantities
of dust in the time available for each test. Even so, one to
two day sampling times were required. Inlet sampling was done
in one port with 3 point traverses. Outlet sampling was done
in 2 ports, at 90° to each other. Three point traverses were
used there as well.
Figure 12 shows the corrected average inlet size distri-
bution on a cumulative percent by weight basis and Figure 13
shows corresponding .data on a cumulative mass loading basis.
Figures 14 through 18 show fractional efficiencies on an aero-
dynamic size basis for the tests conducted on the full scale
unit. The data obtained during this test series shows the ex-
pected increased emissions for operation as a conventional fabric
filter.
26
-------
33*33
oo a
tJZJ.o
33 0.5
33
38
35l
F
LJ
Q_
LJ
BO
70
BO
50
lir
0.5U
0.01
H 1—I I M I H
^ 1—i i i i i H
10'1 10° 101
PARTICLE DIAMETER (MICROMETERS)
Figure 12. Average inlet size distribution for the full scale
Apitron tests. Cumulative percent (by weight
basis) vs. aerodynamic particle diameter in
micrometers.
27
-------
IDS:
103::
a i°*
UCftr
10
1-1.
•4—H—I I II I H-
—i—i—i i M i M
icr1 10° lo1
PARTICLE DIAMETER (MICROMETERS)
Figure 13. Average inlet size distribution for the full scale
Apitron tests. Cumulative mass loading in
mg/ACM vs. aerodynamic particle diameter in
micrometers.
28
-------
10°::
1CT3:
10
,-4.
T 90.0
:99.0
±93.9 H
H
H 1 1 I I I I I |
H 1—i i i M 11 99
::99.99
10'1 10° 101
PARTICLE DIAMETER (MICROMETERS)
Figure 14. Fractional efficiency of the full scale Apitron
dust collector vs. aerodynamic particle diameter
in micrometers as determined from cascade
impactor data. ESP operating at 25% of
nominal maximum power.
29
-------
10°::
icr1-:
10
r4.
1
::99.0
±99,9
• I
H 1 1 MINI 1 1 1 I I I I 11 93
H
: r 33,. 39
:r 99.993
1CT1 10° 101
PARTICLE DIAMETER (MICROMETERS)
Figure 15. Fractional efficiency of a full scale Apitron
unit operating as a conventional fabric filter
vs. aerodynamic particle diameter in micro-
meters. 6/14—15/78
30
-------
H
Q.
10°,:
icr1*
1CT2: :
1CT3: r
T90.0
r33-0
lull
H 1 1 Mill
H ' 1 Mill) 99.9999
"99.999
icr1 10° lo1
PARTICLE DIAMETER (MICROMETERS)
Figure 16. Fractional efficiency of a full scale Apitron
unit operating as a conventional fabric filter
vs. aerodynamic particle diameter in micro-
meters. 6/15-16/78
31
-------
ID?::
ID'2: :
1CT3: :
10'
a a
:r99.0
"99.9
1—i—i i i i i ij 99.9999
LJ
U
M
U.
b.
U
-99.99
-:99.999
1CT1 10° lO1'
PARTICLE DIAhCTER (MICROMETERS)
Figure 17. Fractional efficiency of a full scale Apitron
unit operating as a conventional fabric filter
vs. aerodynamic particle diameter in micro-
meters. 6/16-17/78
32
-------
10°::
icrH
ID'2: :
1CT3- r
10
-4
'•...,.•'
H—i—i Mini
T90.0
-99.0
H 1 1 I I I I I
•" 99- 99
::99•999
10'1 10° 101
PARTICLE DIAMETER (MICROMETERS)
Figure 18. Fractional efficiency of the full scale Apitron
unit operating at full ESP power vs. aero-
dynamic particle diameter in micrometers.
99.9999
33
-------
Complete data from all cascade impactor runs for both test
series are given in the appendix.
ULTRAFINE PARTICULATE DATA
The SoRI ultrafine sampling system was used in conjunction
with a Thermosystems Model 3030 Electrical Aerosol Analyzer (EAA)
for determining particle concentrations and size distribution
data over the size range from 0.01 ym to 0.3 ym. A Climet opti-
cal particle counter (Model 208) was also used with the system
for determining concentrations and size distributions over the
size range from approximately 0.3 ym to 2 ym.
Fractional efficiencies determined with this system for
the mobile Apitron unit are shown in Figures 19 through 24 to-
gether with efficiencies determined with the cascade impactors.
In these figures the impactor results are shown on a Stokes diam-
eter basis because the Stokes diameters better represent the
particle size parameters on which the EAA and optical counter
operate.
The EAA results for 12/5 through 12/8 are probably invalid.
Although the EAA appeared to be functioning normally during this
period the mismatch in the data obtained with it and those ob-
tained with the optical counter and impactors indicate otherwise.
Disassembly of the EAA upon return to SoRI revealed a broken
corona discharge wire in the aerosol charging section. The
standard checkout procedures for the instrument performed during
the tests and after return to the laboratory did not indicate
any malfunction in spite of the broken wire. Usually such an
occurance will be revealed by these instrument checks. From
the appearance of the fractional efficiency curves the breakage
is believed to have occurred over the weekend of 12/3 to 12/5
and the ultrafine results shown for tests on and after 12/5 should,
as mentioned before, be disregarded.
34
-------
10
r3.
AEAA
IMP
::90.0
i i i mil i—i i i mil i i i i mi
icr1
PARTICLE DIAKCTER (MICRDMLILHb)
Figure 19. Apitron fractional efficiencies with aged
Nomex bags, 12/1/77, vs. Stokes particle
diameter in micrometers.
•°u
M
fe
-99.9
"'39»99
.99.999
35
-------
IDS:
ID"1: r
10
3
rfc A EAA
(D OPC
I IMP
H—H-M-H*
To.o
1
1
•w-
c i s n w
30*0
ID"61 10'1 10^ 101
PARTICLE DIAS^ETER (MICRDMETER5)
.99.999
Figure 20. Apitron fractional efficiencies with new
Teflon bags, 12/2/77, vs. Stokes particle
diameter in micrometers.
36
-------
J.LT-:
^ f^^^L
1 t. ^^^
H
ICT1.
•
10"*;
-m-3
CA J*A q
• «
: A A ;
A A
• i
• •• *•
> •
• A EAA "
\ ®OPC ;
r $ IMP
> •
, •
1 1 — I I I 1 1 14 1 1 I I I 1 1 14 1 1 1 1 I 1 It-
r U«U
:9C).0
e
O
j—
•99.99
_ QQ.QQQ
10"5 10"1 ±CP 101
PARTICLE DIAMETER (MICROMETERS)
Figure 21. Apitron fractional efficiencies with conditioned
Teflon bags, 12/5/77, vs. Stokes particle
diameter in micrometers.
37
-------
ID1::
lOP,:
10
r3.
EAA
OPC
IMP
10-
10
"1
rO.O
rSOaO
101
PARTICLE DIAMETER (MICRDMETEFS)
Figure 22. Apitron fractional efficiencies with conditioned
Teflon bags, 12/6/77, vs. Stokes particle
diameter in micrometers.
* V
u
H
fe
h-
s
38
-------
101,:
icrH
10"5T:
10'
EAA
OPC
IMP
orO.O
-90.0
-\—i linn
.-99,9
1—1111 ni| i—MM nij
10"5 10"1 10° 101
PARTICLE DIAMETER (MICROMETERS)
Figure 23. Apitron fractional efficiencies with conditioned
Teflon bags, operated as a conventional fabric
filter, 12/7/77, vs. Stokes particle diameter in
. micrometers.
39
-------
rA A
IDS:
10'1: :
10
r3.
A
AEAA
1 IMP
-90.0
10'
i i i nnj i—i i Mini 1—i i \ Hi>t 99.999
10
rl
Iflp
99.0Q
::99.9
-99.99
101
PARTICLE DIAMETER (MICROMETERS)
Figure 24. Apitron fractional efficiencies with conditioned
Teflon bags, operated as a conventional fabric
filter, 12/8/77, vs. Stokes particle diameter in
micrometers.
40
-------
The same System utilized in the November-December, 1977
test was used in a simplified form for the full scale unit test-
ing. The simplifications were possible because the flue gas
was ambient air at ambient conditions. Therefore, no heated
probes were used, and other than dilution, no special handling
of the sample stream was required. No dilution was required
for outlet sampling at this location.
The redispersed silica dust was found to contain essentially
no particles smaller than about 0.1 to 0.2 ym. Therefore, the
ambient urban aersol was monitored without dilution upstream
of the redispersed dust injection point and this urban aerosol
was used to compute efficiencies in the 0.01 to 0.1 pm size
range.
Figures 25-30 show the results of tests of the full scale
unit with respect to efficiency from measurements made with the
EAA, Climet, and cascade impactors. Again the impactor data
are shown on a Stokes diameter basis. Figure 25 shows efficiency
measurements made during 57 hours of 1/4 power operation on 6/12-
6/14, 1978. The next 3 figures, Figures 26 through 28 show daily
averages of efficiency measurements made for 3 successive days
without electrostatic augmentation.
Measurements made on 6/14-15 and 6/15-16 with no augmenta-
tion show almost identical behavior with efficiencies well below
that seen for power on operation. However, Figure 28 shows re-
sults which are typical of power on operation albeit at a lower
face velocity. This behavior is unexplained. Continued testing
by Apitron personnel during power off operation prior to and
subsequent to the SRI testing consistently showed much lower
efficiencies in power off than in power on operation. Test-
ing with electrostatic augmentation at higher ESP power levels
than those used on the 12th through the 14th took place on
41
-------
101-
I
10°:
10'1-
ID'2-
•
icr3;
•
«
•
in-4-
" <
»
;
•»
1
'-."I :
» 0
• :
6/12-14 1° TJ ;
1/4 POWER I 0 rl | ;
J| Jfl i .
£ EAA
o OPC :
j IMP ;
29.4 mm/sec FACE VELOCITY
r99.0
• ^Jtj Q I «J
• ^ F^J * »-J / %
: U
: M
• 99* 99 LJ
~ 99*999
-QO QQQQ
10
5
ic
1
101
PARTICLE DIAMETER (MICROMETERS)
Figure 26. Fractional efficiency of the full scale Apitron
unit at 25% electrical energization vs. Stokes
particle diameter in micrometers.
42
-------
10°::
icrH
icr5-:
1CT3: :
10
6/14-15
NO POWER
EAA
o OPC
IMP
25.3 mm/sec FACE VELOCITY
H—i i i mil 1—i MIIII
~\
icrB icr1
PARTICLE DIAMET
T90.0
t:
:r99,,99
<—i i i HIM 99.9999
10° 101"
(MICROMETERS)
Figure 26. Fractional efficiency of the full scale Apitron
unit operated as a conventional baghouse vs.
Stokes particle diameter in micrometers.
43
-------
101-
10P:
10*:
io-s-
10'3-
•
10'4-
1C
A
A
»
:
^IIIl
• 6/15-16 0
'. NO POWER °°
O
A EAA
; O OPC
\ IMP
27.0 mm/sec FACE VELOCITY
rs 10'1 icf
.".
B »^ •
I *»
•
1C
-30.0
:33.0
:33.3 Q
: M
b.
fa
i_
r^
• ^Q« 33 LJ
1
-33.333
- 33 » 3333
?
PARTICLE DIAMETER (MICROMETERS)
Figure 27. Fractional efficiency of the full scale Apitron
unit operated as a conventional baghouse vs.
Stokes particle diameter in micrometers.
44
-------
ID'2::
ID"3' :
10
,-4.
-93.0
-93.9
6/16-17
NO POWER
A EAA
O OPC
§ IMP
24.1 mm/sec FACE VELOCITY
B
a
O
• •
"s
i i i inn 1—i i 11 ni{ 1—i i 11 nil 93.3333
• ~ 99«99 LJ
•;' 99.999
10
PARTICLE DIAMETER (MICROMETERS)
Figure 28. Fractional efficiency of the full scale Apitron
unit operated as a conventional baghouse vs.
Stokes particle diameter in micrometers.
45
-------
IDS:
10°::
10
1-2--
10
•
o
or 0.0
EAA OPC
6/17-18 1/4 POWER O a
6/18 1/2 POWER 0 A
29.4 mm/sec FACE VELOCITY
::3D.O
::99.Q
-3.r
ICT5
PARTICLE DIAMET
i i i
1 — i i i IIH| 39 . 399
•:99•99
10° 101"
(MICROMETERS)
Figure 29. Fractional efficiency of the full scale Apitron
unit at 25% and 50% electrical energization vs.
Stokes particle diameter in micrometers.
46
-------
10°::
ID"1::
ID"8.:
ID'3, :
6/18-19
FULL POWER
& EAA
+ O OPC
£ IMP
29.4 mm/sec FACE VELOCITY
T30oO
:r33.0
• i
fc
•' 33.
-33.333
10"4H 1—i i i mil 1—i i i mil 1—i i 11 nil 39.9333
1 10° 101
PARTICLE DIAMETER (MICROMETERS)
Figure 30. Fractional efficiency of the full scale Apitron
unit at full electrical energization vs. Stokes
particle diameter in micrometers.
47
-------
June 18/19. These results showed similar ultrafine efficien-
cies but somewhat higher efficiencies for larger particles
than the data from June 12/14.
Examination of Figures 25 through 30 reveals that, within
the scatter of the data, there are no significant differences
in collection efficiencies between tests with and without electro-
static augmentation for sizes smaller than about 0.5 ym to 1.0
ym. On the other hand, for diameters in the 1 ym to 10 ym size
range the efficiencies with electrostatic augmentation are signi-
ficantly higher. Particle penetrations in these size ranges
were reduced approximately 6 fold at 25% of nominal maximum ESP
power and 10 fold at 100% of nominal maximum ESP power.
Figure 31 summarizes efficiency information obtained with
the EAA for ESP power on operation as determined with the ultra-
fine system. There appears to be no great change in efficiency
as a function of power level over the range tested. Thus, the
energy usage during these tests may have been in excess of that
required to obtain the measured performance in the ultrafine
size range.
Particle concentrations in both the ultrafine (dia. - 0.1
ym) and fine particle (0.1 ^ dia - 3 ym) size ranges showed large
concentration swings related to bag cleaning. Figures 32a and
32b show sample traces of the output signals from an optical
particle counter and condensation nuclei counter sampling the
outlet of the full scale system. Approximately seventy percent
of the particles in the 0.5 to 1.5 ym size range appear to be
emitted in "cleaning puffs".
48
-------
0.0
90.0
f 99.0
o
z
LLJ
O
O
o
<
-------
o
z
LU
CJ
z
o
o
LU
i
J L
18
i i i i r i i
16
14
12
10 8
TIME, minutes
Figure 32a. Outlet concentration variations in the 0.5 to
1.5 micrometer size range. Concentration spikes
are the result of bag cleaning.
50
-------
1 I I I I I I I I I
I I I I I I I I
<
cc
o
8
LU
LU
DC
I I I I I
18
16
14
12
10 8
TIME, minutes
Figure 32b. Outlet concentration variations in the 0.01 to
0.2 micrometer size range. Major increases
follow the cleaning of bags.
51
-------
APPENDIX
CASCADE IMPACTOR RUN DATA
This appendix is divided into two parts. Part 1 contains inlet
and outlet cascade impactor run data for the November-December,
1977 test. Part 2 contains the corresponding data from the
June, 1978 test.
52
-------
PART 1
CASCADE IMPACTOR RUN DATA
November-December, 1977 Test
53
-------
AVCI-1 12-1-77 1539 - 1639
IMPACTOR FLOWP.ATE B 0.027 ACFM
IMPACTQR PRESSURE nROP = 0.3IN. OF HG
ASSUMED PARTICLE DENSITY a 2.27 GM/CU.CM.
GAS COMPOSITION (PERCENT) C02 « 11.07
CALC. MASS LOADING a 7'.'561E»01 GR/ACF
IHPACTOR STAGE
STAGE INOE* NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. CGR/ACP) SMALLER THAN DSO
CUM, (GR/DNCF) SMALLER THAN DSO
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGO (MG/DNCM)
DN/OLOGO (NO. PARTICLE8/DHCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER - A
IMPACTOR TEMPERATURE a 310.0 F a isu.u c SAMPLING DURATION • 30.00 MIN
STACK TEMPERATURE = 310.0 F = 154.a c
STACK PRESSURE a 28.72 IN. OF HG MAX'. PARTICLE DIAMETER » 300.0 MICROMETERS
CO
0.00
GR/DNCF
SI
2
a'.06
S2
3
2,65
N2 B 73.81 02 a 7.38
1.8206Ei03 MG/ACM
S3 31 85
056
1.66 0.90 0,32
S.9<| 2.«7 O.«l
so
1
7.26
13.35 lf.35 8.42
9.63E + 02 B'.1BE + 02 6.07E*02 2.84E*02 1.786*02 6.56Et01
67.79 40.41 20.10 10.59 4'.63 2'.4U
1.23E+03 7'.36E*02 3.66E*02 1.93E+02 8.43E + 01 4.44E+01
2.03E + 03 l'.21E + 03 6.01E + 02 3.17E + 02 1.S8E + 02 7.28E + 01
5.39E°01 3'.22E=01 r.60E«01 8.43E-02 3.69£o02 !.94E=02
8,e5E°01 5'.28E = 01 2,62E«01 1.38E=01 6'.05E°02 3.18Ee02
4.67E*01 5'.43E*00 3,2BE*00 2.106 + 00 1.22E*00 3.39E°01
5.96E + 02 3'.24Et03 3.2&E*03 1.39E + 03 6'.74E*02 1.47Ef02
4.93E*06 l'.70E*10 7,8JE*10 1.276*11 3.11E*11 7.89E»11
H20 o 7.7fl
2,9889E*OS M8/ONCM
FILTER
7
r.oi
7'.28E*01
2.28E=01
2°.a2E*02
1.7te*13
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 11.00 6'.18 tt.06 2.55 l'.«l 0.50
SEC. MEAN DIA. (MICROMETERS) 7.o5E*oi s'.2aE*oo S.OOE*OO 3.22E*oo t.90E*oo 8.76e°oi
DH/DLOGO (MG/PNCM) 5.97E*02 3'.26E*03 3.32E*03 1.11E + 03 6.95E + 02 1.57E + 02
DN/DLOGn (NO. PARTICLES/DNCMJ 3.25E + 06 I.HE + IO 5.06E+10 S.IOE + IO 1.93E + H 11.466*11
3.83E=01
2.42E*02
8.216*12
NORMAL (ENGINEERING STANDARD) CONDITIONS APE 21 PEG C AND 760MH HG.
SQUARE ROOTS OF PSI BY STAGE 0.322 0'.322 0.370 0.3(10 0.345 0.31U 8.314
HOLE DIAMETERS RY STAGE (CENTIMETERS) 0.3630 0'.2«84 0,1722 0.1353 0.0925 0.0560 0.0560
-------
AVCI.2 12-1-77 1737 • 18S7
IMPACTC1R FLOHRATE n 0.027 ACFM
IMPACTOR PRESSURE DROP = O.JTN. OF HC
ASSUMED PARTICLE DENSITY a 2'.27 GM/CU.CM'..
6*8. COMPOSITION fPERCENT) CO? « It]
C4LC. MASS LOADING c 7.5262E.01 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MG/ACH) SMALLER THAN 050
CUM. (MG/oNCM) SMALLER THAN oso
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/oNcF) SMALLE" THAN DSO
GEO. MEAN OIA. (MICROMETERS)
DM/OLOGD (MG/DNCM)
DN/DLOGD (NO. PARTICLE9/ONCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • B
IMPACTOR TEMPERATURE a 310.0 F a is«.« c SAMPLING DURATION • 30,00
STACK TEMPERATURE » Jio.o F a ua.a c
STACK PRESSURE s 29.72 IN. OF HG MAX. PARTICLE DIAMETER o JOO.O MICROMETERS
07 CO s 0.00
l'.2356E + 00 GR/ONCF
SO SI 32
1 2 3
7.22 «'.03 2.68
25.99 6'.26 a.73
N2 « 73.81 02 • 7.38
1.7222E+03 HG/ACM
S3 Sa S?
156
1.75 0.89 0,39
2.08 l.2« 0.52
1.73E + 03 «'.53E + 02 3,«1F*02 1.50E*02 8.94C + 01 3.75E + 01
38'.82 22'.80 10. Tfl S'.aS 2'.27 fl'.9«
6.69E + 02 3'.93E*02 t.85E*02 9.36E + 01 3.91E + OJ J,63E*01
1.10E + OJ 6'.U5E + 0? 3.04E402 1.5UE + 02 6.42E + 01 2,67Et01
2.92E-01 r.72E-01 6.08E.02 0.096-02 1.71E-02 7.10E-83
a.60E-01 2'.82E-01 1.J3E-01 6.71E-02 2.80E-02 1.17E.02
fl.fc3E + 01 5'.3<»E + 00 3.29E*00 2.17E*00 1.2SE*00 5.86E-01
1.07E + 03 t'.79Ei03 1.93E + 03 8.12E + 02 3.0«e + 02 J,Q3E + 03
8.92E*06 9'.59E*09 a.57E»!0 6'.72E+10 J.31E + 11 (I.IlEfll
H20 • 7'.7«
Z,827«E»OS H6/BNCM
FILTER
7
0'.37
2.67E+01
2.7JE-01
5.68E+12
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 10.9« fc',13 0.10 2.70 l.«0 0.6fl
GEO. MEAN OIA. (MICROMETERS) 7.03E + 01 8'.19E*00 5.01E + 80 3.33E*00 l'.9aE*00 9,
-------
AVCI-3 12-2-77 1100 - 1130
IMPACTOR FLOWRATE a 0,029 ACFM
IMPACTOR PRESSURE DROP a O.UIN. OF HG
ASSUMED PARTICLE DENSITY « 2'.27 GM/CU.CM'.
GAS COMPOSITION (PERCENT) C02 e
CALC. MASS LOADING e 7'.T002E = 01 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN D50
CUM. (MG/AC*) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN D50
CUM. (GR/ACF) SMALLER THAN D50
CUM. (QR/DNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER ° A
IMPACTOR TEMPERATURE a 300.0 F a iaa.9 c SAMPLING DURATION a 30,00
STACK TEMPERATURE a 300.0 F a |
-------
AVCI.U 12-2-77 1510 • 1S10
IMPACTOR FLOKRATE s 0.029 ACFM
IMPACTOR PRESSURE nROP = O.UIN. OF HG
ASSUMED PARTICLE DENSITY « z'.n GM/ru.cM'.
GAS COMPOSITION (PERCENT) C02 B 10.35
CALC. MASS LOADING = i'.2732E + oo GR/ACF
IMPACTOR STAGE
STAGE INDEX DUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/D"CF) SM4LLE« THAN 050
GEO, MEAN DIA. CMJCROMETERS)
OM/DLOGD (MG/DNCM)
DN/DLOGO (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCAOE IMPACTOR NUMBER • 8
IMPACTOR TEMPERATURE = 300.0 F = its.9 c SAMPLING DURATION B 30,00
STACK TEMPERATURE = 300.0 F s IU6.9 C
STACK PRESSURE e 28.99 IN. OF HG MAX. PARTICLE niAMBTER » 300.0 MICROMETERS
N2 = 75.17 02 o 8.39
2.9136E+03 MG/ACM
S3
1
1.68
S.03
SI
5
0.85
1.11
S3
6
0,37
0,17
CO c 0.00
2.0239E+00 GR/DNCF
SO SI S2
1 2 3
6.91 3'.87 2.57
19.38 10'.33 6.59
3.20E+OS 6'.69E + 02 1.276+02 1.966 + 02
30.97 16'.5? 7.31 3'.08 1.10
9.02E + 02 l'.81E + 02 2.136 + 02 8.96E+01 3.22E + 01 1.30E + 01
1.13E + 03 7'.65E + 02 3.396 + 02 1.126 + 02 5.126 + 01 2.07E + 01
3.91E-01 2'.10E-01 9,316-02 3.926-02 1.116-02 5.TOE-03
6.27E-01 3.306-01 1.486-01 6.226»02 2.24E-02 9.05E-03
1.56E + 01 5'.1BE + 00 3.166 + 00 2.08E + 00 1.206+00 5.616-01
1.95E + 03 2'.61E + 03 2.116 + 03 1.066 + 03 3.10E + 02 8.31E+01
1.73E + 07 T.606+10 6.15E+10 9.92E + 10 1.52E + 11 3,976 + 11
0.«5
H20 a 6.83
MG/DNCM
FILTER
7
0'.J2
2'.07E + 01
2.61E-01
6'.88E + OI
3.27E+12
DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 10.51 5.89 3.9« 2.59 i.Jfl 0.61
GEO. MEAN DIA. (MICROMETERS) 6.89E+oi 7'.87E»oo a.sis+oo 3.i9E+fto i.87E+oo 9,osE-oi
DM/DLOGn (MG/DNCM) 1.96E + 03 2'.66E»03 2,a«E + 03 1.08E + 03 3.20F + 02 8.89E + 01
DN/DLOGD (NO. PARTKLES/DNCM) 1.1«6 + 07 r.O«E*10 1,176 + 10 6.31E+10 9.11E + 10 2.29E + 11
1.326*01
6.88E+01
1.63E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG,
SQUARE ROOTS OF PSI BY STAGE 0.32? 0'.322 0,362 0.353 0.357 0,353 0.353
HOLE OlAMETfRS RY STAGE (CF.NT IMfTpRS) 0.3616 0.2U72 0.1759 0.1367 O.OR98 0.0567 0.0567
-------
AVCI-5 12-2-77 1702 - 1732
IMPACTOR FLOWR4TE a 0,029 ACFM
IMPACT"" PRESSURE DROP «= O.OIN. OF HG
ASSUMED PARTICLE DENSITY B a'.a? GM/CU.CM'.
GAS COMPOSITION fPERCENT) C02 «• ic',23
CALC. MASS LOADING a 8.8910E..01 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/ONCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/oNcF) SMALLER THAN oso
CEO. MEAN OIA. (MICROMETERS)
DM/DLOGD (M6/DNCM)
DN/DLOGD (NO. PARTICLES/ONCM)
INLET SAMPLE MODIFIEP BRINK CASCADE IMPACTOR NUMBER - A
IMPACTOR TEMPERATURE * 300.0 F B toe.9 c SAMPLING DURATION » 10.00 MIN
STACK TEMPERATURE a 300.0 f a 106.9 C
STACK PRESSURE = 28.99 IN, OF HG MAX. PARTICLE DIAMETER a 300.0 MICROMETERS
N2 a 75.07 02 • 8.39
2.0306E+03 MG/ACM
CO s 0.00
T.0133E + 00 GR/ONCF
SO SI 32
1 2 3
6.98 3'.90 2.55
25.63 lO'.lU 8.11
1.66E + 03 6'.57E + 02 S.2SE+08
08'.69 28.39 12.15
9.91E+02 5'.78E + 08 2.07E+08 9.61E + 01 S.10E+01 1.181 + 01
1.57E + 03 9'.18E + 02 3.93E + 02 l.SSE + 02 0.99E+01 1.88E + 01
0.33E-01 2'.S2E = 01 1.08E°01 o'.20Eo02 1.37E = 02 9,16E«03
6.88E°01 O'.OIE'O] 1.72E-01 6.68E.62 2,18E°0? 8,31E>03
0.58E + 01 S'.22E + 00 3.15E + 00 8.01E + 00 1.17E + 00 5,166 = 01
1.02E + 03 2'.60E + 03 2.8UE + 03 1.17E + 03 3.89E + 02 6,952 + 01
8.93Et06 l'.50E + 10 7.606+10 1.21E + 11 8.03E + 11 0.25E + 11
S3
0
1.59
3.71
2.00E+0
'.72
S4
5
0.86
1.59
2 1.03E+02
l'.5«'
85
6
0.31
0.08
. 3.11
0'.58
H20 • . 6.83
3.2301E+01 M8/DNCM
FILTER
7
\
0'.29
1.88E+01
6.20E+01
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050-(MICROMETERS) 10.57 5.93 3.90 2.05 1.36 0.52
GEO. MEAN DIA. (MICROMETERS) 6.91E + 01 7'.92E + 00 0.81E + 00 3.09E+00 1.82E + 00 e.OOEoOl
DH/DLOGD (MG/DNCM) 1.02E + 03 2'.62E + 03 2.87E + 03 l'.19E+03 0.016 + 02 7.00E + 01
DN/OLOGD (NO. PARTICLES/DNCM) 5.88E+06 .T.01E+10 0.90E+10 7.73E+10 1.26E+11 2.00E+11
3.67E-01
6.20E+01
2'.8ie»12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG.
SQUARE ROOTS Of PSI 6Y STAGE 0.322 0'.322 0.570 O.SflO 0'.3«5 0,310 O.S10
HOLE DIAMETERS pY STAGE (CENTIMETERS) 0.3630 0'.2080 0.1722 0.1353 0.0925 0,0560 0,0960
-------
AVCI.6 12-5-77 1200 - 1?30
IMPACTOR FLOWRATE e 0.024 ACFM
IMPACTOR PRESSURE HRDP = o.aiw. OF HG
ASSUMED PARTICLE DENSITY = 2'.27 GM/CU.CM'.
CAS COMPOSITION (PERCENT) C02 = P.30
CALC. MASS LOADING B 1.16U6E+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM, (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/oNcF) SMALLER THAN oso
GEO. MEAN OIA. (MILOMETERS)
OM/OLOGO (MG/ONCM)
DN/DLOGO (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • A
IMPACTOR TEMPERATURE a 285.o F a iuo.6 c SAMPLING DURATION » 30.00
STACK TEMPERATURE s 2S5.0 F « lflfl.6 C
STACK PRESSURE c 28.75 IN. OF HG MAX. PARTICLE OIAMgTER • JOO.O MICROMETERS
CO a O'.OO
T.83J9E + 00 GR/ONCF
SO 31
1 2
7.65 «'.2B
38.88 4'.97
3.03E + 03 3.87E + 02
27. 6(1 18.62
N2 B 7fl.85 02 • 6.83
2.66U9E+03 MG/ACM
32
3
2.80
5. 65
S3
a
1.75
2.31
84
5
0.96
1.44
35
6
0,35
0,36
B.17
f.21
3. 88
7.42E+02 0.96E«02 2.18E+02 l.OJE+02 3.21Ct01 l.«SE*01
1.17E + 03 7'.81E*02 3,a3E»02 1.63E + 02 5.06E*01 2,Z6E*Ol
3.2«E-01 2'.17E-01 9.51E-02 «.52E«02 1.40E-02 6.27f.03
5.11E-01 3'.ttlE-01 l.SOE'Ol 7.11E-02 2.I1E-02 Q.87E.OJ
«.79f + 01 g'.72E*00 3,«6E*00 2.21E + 00 1.29E + 00 5.77E.OI
1.90E^03 l'.53EtO^ 2.38E + 03 8.8JE + 02 «.28E*02 6.39E + 01
6.90E»OP «. 836*10 6'.85E4lO 1.66E»11 2.79E»11
H20 • 7.0U
4.1966E+03 MB/DNCM
CILTER
T
0'.Z9
2.26E+01
2'.fl6E.01
T'.50E + 01
fl'.22E»12
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 11.58 6.50 4.27 2.69 1.50 0,58
GEO. MEAN DIA. (MICROMETERS) 7.23E + 01 8'.68E + 00 5.27E + 00 3.30E*00 2.01E*00 9.31E-01
OM/DLOGO (MG/DNCM) 1.90E + 03 l'.55E + 03 2.«1E*03 6.9BE»02 a.OOE*02 6.80E + 01
Nn. PARTICLES/DMCM1
-------
AyCI.7 13.5-77 1(114 - 1141
IMPACTOR FLOWRATE a o,02« ACFM
IMPACTOR PRESSURE nROP o 0.2IN. OF HG
ASSUMED PARTICLE DENSITY a 2'.27 GM/CU.CM.
GAS COMPOSITION (PERCENT) C02 B
CALC. MA3S LOADING • 2.0787E+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT of MASS SMALLER THAN DSO
CUM. (MG/ACM) SMALLER THAN DSO
CUM. (MG/DNCM) SMALLE" THAN DSO
CUM, (GR/ACF) SMALLER THAN 030
CUM. (QR/DNCF) SMALLER THAN DSO
GEO. MEAN OIA. (MICROMETERS)
DM/DLOGO (MG/DNCM)
DN/DLOGD (NO. PARTICLE3/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOH NUMBER ° e
IMPACTOR TEMPERATURE » 285,o P « iao.6 c SAMPLING DURATION = so.oo MIN
STACK TEMPERATURE » 285.o f a 140.6 c
STACK PRESSURE o 28.75 IN. OF HG MAX. PARTICLE DIAMETER » JOO.O MICROMETERS
9.30 CO B 0'. 00
3'.273S£ + 00 GR/DNCP
N2 a 70,83 03
4.7569E+03 MG/ACM
8.65
7
75
5
81'.
1
1
4
7
4
3
2
SO
1
.59
.34
.84E+03
99
.05E+03
.65E+03
,57E=Ol
.20E°Oi
.77E+01
.66E+03
.B4E+07
4
6
4
15.
7
1
3
5
5
1
8
•
•
•
SI
2
24
27
86E*02
50
•
•
•
•
•
0
•
37E+02
16E+03
22E=01
07E=01
67E+00
92E+03
88E+09
S3
3
2.82
7.69
5.96E*02
7.54
3.59E«a2
5.65E*02
1.37EP01
a.47E=01
3.46E+00
3,38Ei03
6,a8E«10
1
4
J
2.
1
2
5
9
2
1
1
S3
4
.85
.50
,49E*fll
88
,37E»02
.16E*02
,98E=02
.42E-02
.28E+00
.90E4.03
.34E+11
84
5
0.94 0
1.86 0
1.44E»OS 4
0'.95 0'.
4.53E«Ot 1
7.14E+01 8
1.98£008 7
3.12E-02 1
1.32E+00 6
4.93E+02 1
1.81E+11 4
85
6
.41
.57
,48E*01
36
.785^01
,7ie«oi
,53Eo01
.19E-OJ
,2SE°Oi
,2SE«02
,26E*ll
H20 « T.Ofl
FILTER
7
O.J5
2'.71E*OJ
2.93EB01
9',02E»01
AERODYNAMIC DIAMETERS A«E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 11.49 6'.44 4.11 2.80 1.48 0,68
GEO. MEAN DIA. (MICROMETERS) ?.?ie+oi e'.60Etoo 5.27E«oo S.SOE+OO 2.o5E«oo i.ooe+oo
DM/DLOGD (MG/DNCM) 3.66E + OJ l'.94E + 03 3.42E + 03 1.93E + 03 5.08E»02 1,31E*02
DN/DLOGD (NO. PARTICLES/DNCM) 1.87E+07 5.81E+09 4.46E+10 8.60E+10 l.lSE+11 2.49E+11
4.T9E°01
9*.02E«01
1.56E+12
NORMAL (ENGINEERING STANDARD) CONDITIONS APE 21 DEC C AND 760MM HG.
SQUARE ROOTS OF PSI BY STAGE 0.322 0.322 0.362 0.353 0.357 0,353 0,353
HOLE DIAMETERS BY STAGE (CENTIMETERS) 0.3616 0'.2472 0.1759 0.1367 0,0898 0,0567 0,8567
-------
AVCI-6 12-6-77 1055 - 1125
IMPACTOR FLOWRATE = 0,026 ACFM
IMPACTOR PRESSURE nROP = 0.3IN. (IF HG
ASSUMED PARTICLE DENSITY = 2'.27 GM/CU.CM'.
GAS COMPOSITION (PERCENT) CO? c
CALC. MASS LOADING * 1.97U6E+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MQ/ACM) SMALLER THAN 050
CUM. (MG/DNcM) SMALLER THAN D50
CUM, (6R/ACF) SMALLER THAN DSO
CUM. (GR'oNcF) SMALLER THAN oso
GEO. MEAN DIA. (MICROMETERS)
OM/DLOGD (MG/DNC")
DN/DLOGD (NO. PARTICLES/DNCM)
INLFT SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • A
IMPACTOR TEMPERATURE o 205.0 F » i6
0.00
7.56
S2
5
2,69
7,20
N2 B 78.00 02
«.5186E+03 MG/ACM
83 SI S5
156
1.66 0.92 0.33
3.«9 1.18 0.52
5.65E+03 6'.27E + 02 5.28Et02 2.53E+02 8.5«E»01 3,76E»01
2T.51 12'.80 S.«T 1.96 0.77 0.25
9.72E+02 5'.79E + 02 2.17E + 02 8.86E + 01 S.50E»01 i.UE + 01
1.55E + 03 9'.21E + 02 3.9ttE*02 1.«1E + 02 5.57E + 01 1.81E + 01
U.25E-01 2'.53E-01 l.OBE-01 3.87E-02 1.53E-02 «.9TE-03
6.77E-01 a.OSE-01 1.72E-01 6.17E-02 Z.aOE-02 7.91E.03
U.70E + 01 5'.51E + 00 3.33E*00 2.13E + 00 1.2aE*80 S.09E-01
3.51E + 03 2'.«8E+03 2.86E*03 1.2aE + 03 S.20E + 02 8,«7E*01
6.50E+10 1.08E+11 l.«2E+ll
H20 B 5.06
7,|959Et03 MG/ONCM
FILTER
T
0.25
2.J3E-01
6.01E+01
a,OOE*i2
AERODYNAMIC DIAMETFRS A»E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 11.17 6'.27 a.12 2.5o i.a« 0,55
GEO. MEAN OIA. (MICROMETERS) 7,10E + 01 8'.37E + 00 5.08E + 00 3.27E*00 1.93E + 00 8,91E«01
OM/DLOGD (MG/ONCM) 3.51E + 03 2'.50E + 03 2,89£*03 1.26E + 03 3.jaE + 02 9.05E»01
DN/nLOGD (NO. PAPTICLES/ONCH) 1.P7E + 07 8'.15E + 00 «.21E»10 6.89E*tO 8.86E + 10 J.U5E + 11
1.90E«Ot
6'.01E»01
T.93EM2
NORMAL (ENGINEERING STANDARD) CONniTIONS ARE 21 OEG C AND 760MM HG,
SQUARE ROOTS nF PSI BY STAGE 0.322 0.322 0,37o 0.3(10 0.3«5 0,31« 0,310
HOLE DIAMfTERS BY STAGE (CENTIMETERS) (1.J630 0.2«8« 0.1722 0.1353 0.0925 0,0560 0.0560
-------
AVCI.9 12-6-77 IJll • 1311
IMPACTOR FLONRATE B 0,026 ACFM
IMPACTOR PRESSURE DROP a 0.31". OF HG
ASSUMED PARTICLE DFNSITY & 2'.27 GM/CU.CM.
GAS COMPOSITION fPERCENT) C02 B
CALC. MASS LOADING a 1.0805E*00 6R/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS {MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN DSO
CUM. (MG/oNcM) SMALLER THAN DSO
CUM, CGR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLE" THAN 050
6EO. MEAN DIA. {MICROMETERS)
DM/DLOGD (MG/DNCMJ
DN/DLOGD (NO'. PA"TICLE8/DNCM)
INLET SAMPLE MODIFIED PRINK CASCADE IMPACTOR NUMBER - B
IMPACTOR TEMPERATURE = 295,o r a 106.1 c SAMPLING DURATION B so.oo
STACK TEMPERATURE a 295.0 F B 106.1 C
STACK PRESSURE o 28.33 IN, Of HG MAX. PARTICLE DIAMETER a JOO.O MICROMETERS
N2 a 78.00 02 B 7.S6
2,«725E*03 MG/ACM
32
3
2. 72
6.00
S3
0
1.78
3.17
SO
3
0.91
r.«t
35
6
0,19
0.03
9.OS CO a 0.00
1.7207E*00 GR/DNCF
SO 81
1 2
T.33 fl',09
37.31 5.25
2.70E+03 3*.80E + 02
31.02 21.76
7,77g*02 5'.38E*02 2,07E*02 1,03E*02 3.91E«01 1,932*01
1.20E*03 8'.57E*02 3,90E*02 1.60G*02 6.226*01 S,11E*01
3.39E°01 2'.3SE = 01 1.08E = 01 0.5lEo02 1.71E»02 S.SOEoOJ
0.69E + 01 5'.07E*00 3,306*00 2.SOE + 00 1.87E*00 5,97E«01
1.68E + 03 1.50E + 03 2.62E + 03 l'.20E*03 3.08E*02 8,38E + 01
1.37E + 07 7'.70E*09 5.9JE + 10 9.82E + 10 1.03E*11 S080E*11
Ifl'.OO
a. 17
1.086*02 S,lie*01
l'.58 0'.T9
H20 B 5.06
3.937
-------
AVCI-10 12-6-77 1500 - 15SO
IMPACTOR FLOWRATE a 0.026 ACFM
IMPACTOR PRESSURE DROP = 0.3IN. OF HG
ASSUMED PARTICLE DENSITY = 2'.27 GM/CU.CM'.
GAS COMPOSITION {PERCENT) C02 e 9.U§
CALC. MASS LOADING t 1.3770E+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNcM) SMALLE" THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN DSO
GEO. MEAN OIA. (MICROMETERS)
OM/DLOSO (MG/DNCM)
DN/DLOGD (NO. PARTJCLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBE" «• »
IMPACTOR TEMPERATURE e 2'5.0 F a 1*16.1 C SAMPLING DURATION • 50,00 MIN
STACK TEMPERATURE = 295.0 F a i«6.i c
STACK PRESSURE c 28.JJ IN. OF HG MAX. PARTICLE DIAMETER • JOO.O MICROMSTCR8
N2 B 78.00
02
7.5h
3.1509E+03 MG/ACM
83
«
I."
3.68
31
5
0.92
1.70
85
6
0.33
0,33
CO a 0.00
2'.1928E + 00 GR/OMCF
SO SI 32
1 2 3
7.3<> «'.13 2.70
as.26 7.41 7,38
3.51E+03 S'.S8E + 02 5.36E+Q2 2.67E+02
30.12 19.39 8.70 3.37 O'.9t
9.U9E+02 6.11E+02 2,7«E+02 1.06E+02 2.87E+01 1.37C+01
1.51E+03 *'.TSl*Oi «,37E+08 1.69E + 02 U.58E + 01 2.18E + 01
U.15E-01 2>7E-01 1.20E-01 1.65E-02 1.26E-02 5.98E.OJ
6.hOE-01 a'. 25E-01 1.91C-01 7.10E-02 2.00E-02 9.33E.03
4.71Et01 5.32E+On 3.JUE+00 2.13E+00 1.24E+00 5.51E-01
2.18E + 03 2'.13E + 03 2,90Et03 l.IlE + OS a.681 + 02 5,ttOE + 01
1.76E+07 1.07E+10 6.57E+10 1.1UE+11 2.05E+11 2,721+11
0.«3
H20 • 5.06
5.0179E+03 MG/DNCM
FILTER
7
0.30
2.18E+01
2.33E-01
7'.2aE»01
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 11.1' 6.28 «.13 2.60 l.aa 0,55
GEO. MEAN DIA. (MICROMETERS) 7.11E + 01 8'.38E + 00 5.09E + 00 3.27E + 00 1.93E + 00 B.93E-01
DM/DLOGD (MG/DNCM) 2.18E + 03 2'.15E + 03 2.98E + 03 1.33E»03 a.82E + 02 5.77C*01
DN/OLOGD (NO. PARTICLES/DNCM) 1.16E + 07 6'.96E + 09 1.25E + 10 7.25EtlO 1.27E»11
1.91E.01
2', 3 IE* 12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG.
SQUARE ROOTS Of PSI BY STARE O.J22 0.322 0.370 0.300 0.3«5 0,31« 0,3l«
HOLE niA"F.TERS BY STAGE (CENTIMETERS) 0.3630 0.2
-------
AVCI-13 12.7-77 1316 - 13«6
IMPACTOR FLOWRATE o 0.026 ACFM
IMPACTOR PRESSURE DROP s 0.3IN. OF HG
ASSUMEH PARTICLE OEMSITY c 2'.27 GM/CU.CM.
GAB COMPOSITION (PERCENT) C02 B 9.07
CALC'. MASS LOADING o 7.8609E-01 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM, PERCENT OF MASS SMALLER THAN 090
CUM. (MG/ACM) SMALLER THAN D30
CUM. (HG/DNCM) SMALLER THAN D30
CUM. (GR/ACF) SMALLER THAN 050
CUH. (GR/oNcF) SMALLE" THAN DSO
SEC. MEAN OIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER •> A
IMPACTOR TEMPERATURE B 295.0 F a 106.1 c SAMPLING DURATION a so.oo MIN
STACK TEMPERATURE e 2«.0 F a 106.1 C
STACK PRESSURE c 28,93 IN. OF HG MAX. PARTICLE DIAMETER B JOO.O MICROMETERS
SO
1
7.32
26.33
N2 B 77.62
1.
SS
a
1.67
2.«1
7989E»03
0.
0.
MG/
so
5
91
81
02 B
ACM
SS
6
O.SS
0,23
CO B o.OO Ng B 77.62 02 B 7.57
GR/DNCF
SI 32
2 3
«'.09 2,67
fl'.97 5,11
1.80E*03 S'.06E + 02 3.56E+02
30'. 09 22.12 9.01 3'. 01
6.20E*02 3'.98E + 02 1.69E+02
9.66E+02 6'.20E«02 2.6«E«02 9.55E + 01 3'.90E + 01 ?.30E<-01
2.71E-01 r.7ae»oi 7.39E.02 2.68E»02 1,10E»02 6.03E.03
4.22E°01 2.71E-01 l.lSEoQl 0.17E=02 1.71Eo02 1,01E=OS
U.69E*01 g.OTEtOO 3.31E*00 2.11E*00 1.23E»00 9.07e«01
1.11E + OJ l'.37Et03 1.93E^03 6.22E*02 2.11E«02 3.62E + 01
9.31E*06 7.05Et09 0,09E«10 7.3SE+10 9.616*10 1.86EM1
5.65E401 l,60E*Ol
l'.S9 0',82
?.51E*01
H20 a S.so
2.8017E*03 MG/ONCM
FILTER
7
o'.ss
8'.JOE + 01
7'.6fle»01
5'. 1
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 11.08 6.22 0.09 2.57 1.03 0,93
CEO. MEAN DIA. (MICROMETERS) 7,oeE+oi e'.3iE->oo 5.005*00 3.aoE*oo i.92E*oo B.SSE»OI
DM/DLOGD (MQ/DNCM) 1,10E*03 l'.38E + 03 1.95E + OJ 8.37E*02 2.21E»02 5,86E*01
DN/DLOGD (NO. PARTICLES/DNCM) 6.10E+06 0.61E+09 2.91E»10 0.68E+10 5.98E*10 1.06E+11
3.88E«01
7.60E*01
2'.«9E»12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AMD 760MM HG.
SQUARE ROOTS Of PSI "V STAGE 0.322 fl'.S22 0.370 0.300 0.305 O.S10 0.310
HOLE DIAMETERS BY STAGE (CfNTIMfTERS) 0.3630 O'.208fl 0,1722 0.1353 0.0925 0,0560 0,0560
-------
AVCI-1U (2.7.77 155« • 162U
IMPACTOR FLOWRATE B O.P26 ACFM
IMPACTOR PRESSURE DROP = O.JIM, of HG
ASSUMED PARTICLE DENSITY B 2'.27 GM/CU.CM'.
GAS COMPOSITION (PERCENT) C02 e
CALC. MASS LOADING * tt.9898E.01 GR/ACF
IMPACTOR STAGE
STAGE TNOE* NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGF
CUM, PERCENT OF MASS SMALLER THAN 050
CUM. (MQ/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN D50
CUM. (GR/ACF) SMALLER THAN DSO
CUM, (QR/oNcF) SMALLF" THAN oso
GEO. MEAN DIA. (MICROMETERS)
OM/OLOGD (MG/DNCMJ
ON/DLOGD (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • B
IMPACTOR TEMPERATURE a 295.0 F B 146.1 C SAMPLING DURATION B 18,06 MIN
STACK TEMPERATURE * 295.0 F * i46.i c
STACK PRESSURE * 28.93 IN. OF HG MAX. PARTICLE DIAMETER « 300.0 MICROMETERS
9.47 COs 0.00
T'.7T16E-01 GR/DNCF
SO SI S2
I 2 3
7.32 4.08 2.72
13.85 S'.B4 4,31
N2 a 77,62 02 « 7.57
1.141BE+03 MS/ACM
83 Sa 89
456
1.78 O.'l 0,39
1.73 0.86 0,31
9.77E + 02 2'.71E + 02 3.04Eto2 1.226*02 6.06E + 01 2,19E*01
45'.OB 29.86 ls',77 5.91 2'.50 l'.27
5.15E + 02 3'.«1E + 02 1,«6E*02 6.75E + 01 2,85E*01 i,45E*01
8.02Etn2 5'.31E + 02 2.27E»02 1.05E + 02 4.44E + 01 2.262*01
2.25E-01 1.09E-01 6.37E-OJ 2.95E-02 1.25E.02 6.S3E-OS
3.50E-01 3.32E-01 9.92E-02 4.S9E>02 1.94E-02 9.66E-OJ
4.69E + 01 S.il?E*00 3.33E*00 J.20E + 00 1.27E + 80 5.98E-01
6.06E*02 1.07E+OJ 1.72C*03 6.62E+02 2.07E+02 6.05E+01
«.95E*06 5.51E+00 3.91E*10 5.20E+10 8.S2E+10 2.38E+11
H20 • 5.34
FILTER
T
0.32
2.J6E+01
2'.7»Eo01
7.80E+01
2'.91E»12
AERODYNAMIC DIAMETERS A*E CALCULATED HERE ACCORDING TO. THE TASK GROUP ON LUNG DYNAMICS DEFINITION
R50 (MICROMETERS) 11.08 6.21 U.15 2.74 1.42 0,65
GEO, MEAN DIA. (MICROMETERS) 7.0BE + 01 S'.SOE + OO 5.08E»00 3.J7E + 00 1.97E + 00 9.60E-01
DM/DLOGD (MG/DNCM) 6.06E + 02 1.08E*03 1.74E + 03 6.73E*02 2.UE + 02 6,42E*01
DN/DLOGn (NO. PARTICLES/OHCM) 3.27E*06 J.60E*09 2.53E+10 3.35E+10 5.31E+10 1,38E*11
7'.50E»01
i.aeE+i2
NORMAL (EklGINEF.RIflG STANDARD) CONDITIONS ARF 21 DEG C AND 760MM HG.
SQUARE ROOTS OF PSI BY STAGE 0.322 0'.J2? 0.362 0.353 0.357 0,353 0.353
HOLE DIAMETERS B* STAGE (CENTIMETERS) 0.3616 0'.2«72 0.1759 0.1367 0.0698 0.0567 0.0567
-------
AVCI-15 12.7.77 1734 • 180
-------
AVCI.J6 12.8.77 11?7 - 1157
IMPACTOR FLOWRATE B 0.03" ACFM
IMPACTOR PRESSURE DROP = O.ltN. OF HG
ASSUMED PARTICLE DENSITY * 2'.27 GM/CU.CH.
GAS COMPOSITION (PERCENT) C02 o
CALC. MASS LOATING = 9.629BE.01 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNcM) SMALLER THAN 030
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN D50
GEO. MEAN OIA. (MICROMETERS)
DM/OLOGD (MG/DNCM)
DN/DLOGD (NO. PARTKLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • B
IMPACTOR TFMPERATURE 8 JlO.O F B 134.4 C SAMPLING DURATION a 56,00
STACK TEMPERATURE B 310.0 F B 154.4 c
STACK PRESSURE B 28.76 IN. OF HG MAX. PARTICLE DIAMETER o 300.0 MICROMETERS
N2 » 76.46 02 » 9.85
2.2036E*03 MG/ACM
S3 SO 83
a 5 6
1.66 0.84 0.36
2.10 0.93 0,28
7.51 CO • 0.00
1.5S25E+00 GR/DNCF
SO .SI 32
1 2 3
6.86 3.82 2,54
40.24 6.82 5.40
2.55E+03 4'.31E + 02 3,Q2E*02 1.3JE»02 6.01E + 01 1,77E*01
28'. 3S 16.20 6'.59 2.83 1.16 0.66
6,25E^02 3'.57e>02 1.4SE + 02 6.28E + 01 2.5SE + 01 l,ttSE»01
1.01E + 03 5'.76Et02 2.S4E + 02 1.01E + 02 4.HE + 01 2.34E + 01
2.73E-01 r.56E-01 6,J4E«02 2.74E-02 1.11E-02 6.34E«03
4.40E-01 2.52E"01 1.02E-01 4.4JE-02 1.80E-02 l,02EoO?
4.54E + 01 5'.12E + 00 3.12E*00 2.05E*00 i.l8E»00 5,a9E-01
1.3SE>03 1.70E + 03 1.92e«03 7.17E + 02 2.03E + 02 6.16
S,5386E*03 MG/ONCM
FILTER
T
0,17
2.S4E+01
7',78E»01
3.998*12
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 10,40 5.82 3,89 a.56 1.32 0,60
GEO, MEAN DIA. (MICROMETERS) 6.86E*01 7.78E+00 4.76E+00 3.15E+00 1.84E»00 8,908-01
DM/DLOGD (MG/DNCM) • 1.55E+03 T.71E+OS 1.95E+03 7.30E»02 2.10E*02 5,142*01
ON/OLOGD (NO. PARTICLES/DNCM) 9.21E+06 6.95E+OQ 3.45E+10 4.4aE«10 6.43E+10 1.392*11
a.tiE-oi
7',78E*01
1,96E*12
pgORMAL (FwGINFERlNG STANDARD) CONDITIONS ARE 21 OEG C AND 76QMM HG.
SQUARE ROOTS OF PSI BY STAGE 0.32? 0.322 0.362 0.353 0.357 0,353 0,353
HOLE DTAMETfRS BY STAGE (CF.NT I METE"»S) 0,3616 0'.2472 0,1759 0.1367 0.0898 0.0567 0.0567
-------
AVCI.17 12-8.77 1033 • 1503
IMPACTOR-FLOWRATE » o.oso ACFM
IMPACTOR PRESSURE DROP ° O.UIN. OF HC
ASSUMED PARTICLE DENSITY ». z'.zi GM/CU.CM.
GAS COMPOSITION (PERCENT) CO? a
CALC. MASS LOADING a T.1040E-01 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO-(MICROMETERS)
MASS (MILLIGRAMS)
MG/ONCM/8TAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN D50
CUM. (MG/DNcM) SMALLER THAN DSO
CUM. CGR/ACF) SMALLER THAN DSO
CUM. (GR/DNcF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DL06D (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • A
IMPACTOH TEMPERATURE a 310.0 F • iso.o c SAMPLING DURATION • 30,09 MIN
STACK TEMPERATURE « 110.0 F • 154.4 c
STACK PRESSURE B 28.76 IN. OF HG MAX. PARTICLE DIAMETER • 300.0 MICROMETERS
7.51 CO • 0.00
l'.1453E + 00 GR/ONCF
80 SI 82
1 2 3
6.90 3.85 2.51
27.48 6'.OS 4.33
N2 * 76.06 02 • 9.85
1.6256E+03 MG/ACM
S3 SO 85
a 5 6
l'.S7 O'.SS 0.30
1.90 0.83 0,26
1.74E*03 S'.83E+02 2.87E+02 1.20E+02 5.2SE+01 l,6«E*Ol
33'.67 19.07 B',13 J'.SS f.Sfl O'.VZ
5tfl7E»02 3.10E»6e 1.32E+02 5.7TE*01 2.S1E«01 l.«9E+Ol
8.62E+02 S'.OOE+02 3.13E+02 9.30E+01 fl.05E»01 2.00E+91
2.39E-01 i'.35E>01 5.T6E-02 2.52E-02 1.10E-02 6.516-03
3.86E-01 2'. 18E-01 9.32E-02 fl.06E.02 l.rTE-02 1.09E.02
«.55E*01 5'. 16EfOO 3.11S+00 1.98E*00 l.HE+00 5.05E-01
1.06E+03 1.9ie*03 1.55E*03 5.85E»02 1.98E*02 3.64E+01
9.48E406 9'.2SE*09 1.32E + 10 6.29E+10 1.08E*11 2.38E*11
H20 • 6. IS
2.6208E*03 MB/ONCM
0.36
2'.aoE»01
2.12E-01
T.99E401
7.05E*12
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 10.96 5'.87 3,88 2,«2 1.34 0.31
GEO. MEAN DIA. (MICROMETERS) 6.ssE>oi 7'.83E*oo O,TSE»OO 3,osE»oo i.80E«oo §.25E.oi
OM/DLOGD (MG/DNCM) 1.06E+03 l'.52E*03 1.57E + 03 5.96E+02 2.04E + 02 3,91EtOl
DN/DLOGD (NO. PARTICLES/DNCM) 6.25E + 06 6'.06E»0<) 2.79E+10 4.0oEtlO 6.68E + 10 1.33E + H
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
SQUARE ROOTS Of PSI BY STAGE 0.322 0'.322 0.370 0.340 6.345 0,114 0.314
HOLE DIAMETERS BY STAGE (CENTIMETERS) 0.3630 0/.2484 0.1722 0.13S3 0.0925 0,0360 0.0560
3.S9E.OI
7.«9E*01
3.J9E+12
-------
AVCI.|R 12.8.77 1600 - 1630
IMPACTOR FLOWRATE s 0.030 ACFM
IMPACTOP PRESSURE r>ROP = O.UlN. OF HG
ASSUMED PARTICLE DENSITY s 2'.27 GM/CU.CM'.
GAS COMPOSITION (PERCENT) C02 «
CALC. MASS LOADING a 7.2I55E.01 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM, (GR/oNcF) SMALLER THAN oso
GEO. MFAN nu. (MICROMETERS)
DM/DLOGO (MG/DNCM)
DN/DLOGO (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER - 8
IMPACTOR TEMPERATURE « 310.0 r » isi.u c SAMPLING DURATION « Jotoo
STACK TEMPERATURF. • sio.o f - isa.a c
STACK PRESSURE a 26.76 IN. OF HG MAX. PARTICLE DIAMETER • 300.0 MICROMETERS
7. 51 CO » 0.00
l'.163SE + 00 GR/DNCF
SI
2
J.82
3.89
N2 B 76.06 02 • 9.85
1.6512E*03 "G/ACM
32
3
2.5U
fl. 72
33
1
1.66
1.83
S4
5
0.84
0.76
35
6
0,36
0,29
7'.68
3.33
T.52
0.8J
so
1
6.86
30.24
1.91E+03
28.la 18.89
U.65E+02 3.12E*02 1.27E+02 5.«9E»01 Z.51E+01 1.37E+01
7.09E+02 5'.03E + 02 ?,OaE + 02 8.86E + 01 0.05E + 01 2.21E + 01
2.03E-01 1.36E-01 5.S4E-02 2.00E-02 1.10E-02 6.00E-03
3.27E-01 2'.20E-01 8.935-02 3.87E-02 1.776-02 9.68E-03
U.54E+01 5.12E+00 3.12E+00 2.05E+00 1.18E+00 5.09E-01
1.17E + 03 9'.70E + 02 1.68E + 03 6.2SE*02 1.63E + 02 4,972 + 01
1.05E + 07 6'.07E + 09 1.6TE + 10 6.07E»10 8.33E»10 2.53E + 11
H20 • 6.16
MO/DNCM
FILTER
7
0.35
2.21E»01
2'.5flE-01
7',J5E + 01
3.78E+12
DIAMF.TF.RS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 10. HO 5'.82 3.89 2.56 1.32 0,60
GEO. MEAN OIA. (MICROMETERS) 6.86E+oi T'.TSE+OO «.76c+oo S.ISE+OO i.soe+oo 8,90E-oi
OM/OLOGD (MG/ONCM) 1.ITE + 03 9'.77e»02 1.70E + 03 6.J68*02 1.68E*02 5.5ZE»01
ON/DLOGD (NO. PAPTICLES/DNCM) 6.92F+06 3.96E+09 3.02E+10 3.87E+10 S.lSEtlO {,««E*11
U.23E-01
7.33E«01
r.ese+12
NORMAL (FNGINEERlNG STANDARD) CONOITIn«JS APE 21 OEG C AND 760MM HG.
•SQUARE ROOTS OF PS! BY STAGE , 0.322 0.322 0.362 0.353 0.357 0.353 0,353
HOLE DIAMETERS BY STAGE (CENTIMETERS) 0.3616 0.2fl72 0.1T59 0.1367 0.0898 0,0567 0,0567
-------
AVCO.J 11.30-77 1502 « 1702
IMPACTOR FLO*R*TE a 0.636 ACFM
IMPA'cTnR PRESSURE DROP = Z. UN. OF HG
ASSUMED PARTICLE DFNSITV o a'.ar GM/CU.CM,
GAS COMPOSITION (PERCENT) C02 i
CALC. MASS LOADING D 1.3209E.02 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (MILLIGRAMS)
MG/D3CM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MG/ACM) SMALLER THAN oso
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN DSO
CUM. (GR/oNcF) SMALLER THAN DSO
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO. PARTICLE8/ONCM)
OUTLET SAMPLE U. OF *. MARK III SOURCE TEST IMPACTOR NO. o D
IMPACTOR TEMPERATURE a 170.0 F « 76.7 C SAMPLING DURATION D 180,00 MIN
STACK TEMPERATURE = 170.0 F o 76.T c
STACK PRESSURE a 29.05 IN. OF HG MAX. PARTICLE DIAMETER » 50.0 MICROMETERS
6.72 CO « 0.00
l'.6844E-02 GR/DNCF
SI 32 . S3 84
1 2 3 8
7'.10 7.08 3.19 1.88
33'.73 13.38 13.40 3.22
N2 • 73.97 02
3.0226E+0! MG/ACM
85
5
0.66
0.97
86
6
0.59
0,31
' 15.37
87
7
0.18
0.16
1.99E«01 7,90E*00 7.91e»00 1.90E*00 S.7aE»01 1.8SE«>01 9.7aEo02
08.37 27.89 7.38 2.a5 0.96 0,88 0.83
i'.a6E«01 8.fl3B+00 Z.JSE + OO 7.016 = 01 2.90E°01 l,«5Eo01 6.87Eo02
1.86E+01 1.07E+01 2.eaE»00 9,uaEo01 3.70E»01 1.83E°01 8.76E«02
6.39e°03 3,68Eo03 9.7«E=OU 3.24^=00 1.27E=04 6.34E-OS 3.00Eo05
8.13E-OJ 4.70E»03 1.2«E=03 4.13Eo04 1.62E=04 8.086=05 3.8SEo03
t.88E*01 7.07E+00 a.7a£*00 2.02E+00 9.17E-01 S,07Eo01 g.SOEoOl
2.336*01 2.22E + 03 2.30E + 01 4.78e + 00 2.00e*00 8.186 = 01 Z.llEoOi
H20 a 3.94
J.8545E+01 MG/DNCM
FILTER
8
0.13
8.76E°02
2.9ie«01
2.95E*06 5.30Et09 1.82E + 08 8.90E«08 2.18E + 09 3.27E*0<> 1.465*10 2.79E*11
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 10.74 10.66 4.83 1.97 1.04 0.64 0.25
GEO. MEAN OIA. (MICROMETERS) 2.84E+01 1007E*01 7.19E+00 3.09E+00 l.aje*00 8.12Eofll S.^SCoOl l.VOEoei
DM/DLOGD (MQ/DNCM) 2.3SE*01 2.23E*03 Z.31E + 01 4,8SE*00 2.06E*00 8.71E=01 2,36E = 01 2.91E<>01
DN/DLOGD (NO. PA"TIcLES/DNCM) i.95E*06 3,a8E+09 1.19E+08 3,iaE*08 1.33E+09 3,11E»09 7.29E»09 t.06E*ll
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG.
SQUARE ROOTS 0^ PSI BY STAGE 0.144 0.330 0.371 0.319 0.321 0.389 0.354
HOLE DIAMETERS BY STAGE (CENTIMETERS) 1.8237 0.5743 0.2512 0.0793 0.0495 0.0330 0.0229
-------
11.10.77 1502 - 1702
IMPACTOR FLOWRATE 8 0.656 ACFM
IMPACTOP PRESSURE DROP a 2.1IN. OF HG
ASSUMED PARTICLE DENSITY = 2'.27 GM/CU.CM'.
OUTLET SAMPLE U. OF W. MARK III SOURCE TEST IMPACTOR NO. • 0
IMPACTOR TEMPERATURE • i70.o F » 76.7 c SAMPLING DURATION • 120,00 M
STACK TEMPERATURE o 170.0 F » 76.7 c
STACK PRESSURE o 29.05 IN. OF HG MAX. PARTICLE DIAMETER »
SI
1
7.10
13'.73
GAS COMPOSITION (PERCENT) C02 s 6.72
CALC'. MASS LOADING e 1.3209E-02 GH/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACP) SMALLE" THAN D50
CUM. (GR/RNCF) SMALLE" THAN D50
CEO. MEAN OIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO'. PARTICLES/ONCM)
N2 » 71,97 02 » 15.17
3.0226E*01 MG/ACM
S4
4
1.28
3.22
85
5
0.66
0.97
36
6
0,39
0,11
87
7
0.14
0.16
CO a 0.00
l'.6844E-02 GR/DNCF
32 S3
2 1
7.Oil 1,19
13.38 13.40 3.22 0.97 0,11 0.16 0.15
1.99E+01 7.90E+00 7.91S+00 1.90E+00 5.74E-01 1.656=01 9.74E-02 8.76E-02
as.17 27.89 7.38 2,45 0.96 0.48 0.23
f.46E*01 8.43E+00 2.23E*00 T.fllE-Ol 2.906-01 l.flSe-Ol 6.87E.02
1.86E+01 1.07E+01 2.84E+00 9.44E-01 3.70E-01 1.85E»01 8.76E.02
6.39E-03 3.68E.03 9,74E>04 1.24E-04 1.27E«04 6.1«Eo05 3.00E-OS
fl.lSE-03 4.70E-03 1.24E.01 «.13E-0« 1.62E-04 8.08E-05 3.83E.05
1.88E+01 7.07E»00 4.7«E+00 2.02E*00 9.17E-01 5.07E-01 2.30E-01 9.57E-02
?.15E*01 J.22E+03 2.30E+01 a.76E+00 2.00E«6o 8.18E-01 2.1ie»01 2.91Eo01
2.95E+06 5.30E+09 1.82E*08 4.90Et08 2.18Ef09 5.27E«09 1.46E+10 2.79E+11
so.o MICROMETERS
H20 a 1°,94
1.83aSE*Ol MG/ONCM
FILTER
AERODYNAMIC OIAMETFRS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNS DYNAMICS DEFINITION
D50 (MICROMETERS) 10.74 10.66 4.85 'l,97 1.04 0,64 0,23
SEO, MEAN OIA. (MICROMETERS) 2.8"E+01 1.07E+01 7.19E+00 3.09E+00 l.flJE+00 8.12E-01 3.9SE-01 l,TflE«01
DM/DLOGD (MG/DNCM) 2.S5E+01 2.23E+OJ 2.Jie+01 4.83E+00 2.06E*00 8.71E.01 2.J6C.01 2.91E-01
ON/DLOGn (Np. PA"TICLES/DNCMJ I.95E + 06 1.48E + 09 1.19E*08 1.14E*08 1.15E»09 3.11E + 09 7.29E*09 1.06SM1
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 "EG C AND 760MM HG.
SQUARE ROOTS OF PSI BY STAGE 0.144 0.330 0.371 0,319 0.321 0,389 0,354
HOLE DlAMETERS BY STAGE (CENTIMETERS) 1.8217 0.574! 0.2512 0.0791 0.0495 0.0330 0,0229
-------
AVCO-2 12-01-77 1502 • 1800
IMPACTOR FLOWRATE B 0,615 ACFM
IMPACTOR PRESSURE DROP = 2.0IN. OF HG
ASSUMED PARTICLE DENSITY = 2'.27 GM/CU.CM.
GAS COMPOSITION (PERCENTJ C02
CALC. MASS LOADING e 8.9610E.03 GR/ACF
IMPACTOR STAGE
8TAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/D8CM/ST&GE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN 050
GEO, MEAN DIA. (MICROMETERS)
OM/DLOGO (MG/DNCM)
DN/OLOGD (NO. PARTICLE8/ONCM)
OUTLET SAMPLE U. OF M. MARK III SOURCE TEST IMPACTOR HO, a A
IMPACTOR TEMPERATURE * 170.0 F n 76.7 c .SAMPLING DURATION B IBO.OO MIN
STACK TEMPERATURE * 170.0 F B 76.7 c
STACK PRESSURE B 28.52 IN. OF HG MAX. PARTICLE DIAMETER » 50.0 MICROMETERS
a 4.30
7
25
6 '.70
31
1
.20
.47
CO
r.l6B3E-(
32
2
7.19
14.28
a o'. 00
)2 GR/DNCF
S3
3
3.21
17.09
84
4
1.12
5.10
N2 B 76.08
2.0506E+01
35
5
0.70
1.27
02
MG/ACM
36
6
0.38
0.57
B 12.92
H20
2.67J5E*01
37
7
0.16
0.27
FILTER
8
0.21
1.06E+01 5.94E+00 '
60.37 38.15 11.56
2.12E+00 5.29e°01 2.38E-01 1.12E.01 8.93E-02
3,62 1.64 0,75 0.33
7.88E+00 2.37E+00 7.42E-01 3.37E°01 1.54E-01 6,BSE.02
1.61E + 01 1.02E + 01 3.0<»E + 00 9.68Eo01 4.39E»01 2,01E = 01 8.93E-02
9.U1E-03 3.a2Ei>03 1.04E»03 3.2iea04 l,47e°04 6,74E»05 2.99E = 09
7.05E°03 4.46Ea03 i.35E°03 4.23E°04 1.92E-04 8.78E=05 3.90EbOS
1.90E+01 7.19E*00 4.BOE+00 1.90E*00 8.86E-01 5.19Eo01 2.46Eo01 1.12E°01
1.26E»01 8.71E+OS 2.03E+01 4,64E«00 2.60E+00 9,09E«01 2.89E.01 2.97E°01
J.55E+06 1.97E+10 l,50E*Ofl 5,73E*OB 3.156*09 5,47E*09 1.63E»10 1.80E+11
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
OSO (MICROMETERS) 10.90 10.68 tt.89 1.73 1,10 0,63 0.28
GEO, MEAN OlA. (MICROMETERS) 2'.87E + 01 1.09E + 01 7.29E + 00 2,91E*00 1.38E*00 8,31E = 01 «.ZOE = 01 1.99E = 01
DM/DLOGD (MG/DNCM) J.26E+01 8.76E+03 2.01E+01 0.72E+00 2.69E+00 9.67E-01 3.23Eo01 2.97E-01
DN/DLOGD (NO. PARTICLE8/DNCM) 1.02E+06 l.SOE+10 1.01E+08 3.65E+08 1.94Et09 J.22E+09 8.38E+09 7.16C*10
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND T60MM HG.
SQUARE ROOTS OF PSI BY STAGE 0.1«0 0.330 0.371 0.27) 0.308 0,373 0.3«9
HOLE DIAMETERS BY STAGE (CENTIMETERS) 1.8237 0.5768 0.2501 O.OflOB 0.052U 0,0333 0.02«5
-------
AVCO-2 12-01-77 1502 - 1800
IMPACTOR FLOWRATE c 0.615 ACFM
IMPACTOR PRESSURE nRnp = 2.oiN. of HG
ASSUMED PARTICLE DENSITY f 2'.27 GM/CU.CM'.
OUTLET SAMPLE U. OF W. HARK III SOURCE TEST IMPACTOR NO, - A
TEMPERATURE s 170.0 F o 76.7 c SAMPLING DURATION a iso.oo WIN
STACK TEMPERATURE » 170.0 F • 76.7 c
STACK PRESSURE E 28.52 IN. OF HG MAX. PARTICLE DIAMETER B 50.0 MICROMETERS
GAS COMPOSITION (PERCENT) C02 B 6.70
CALC'. MASS LOADING a 8.96IOE-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
D50 (MICROMETERS)
1
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/ONCM) SMALLER TH*N oso
CUM. (GR/ACF) SMALLER THAN oso
CUM. (GR/ONCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
ON/OLOGD (NO. PARTICLES/DNCM)
SO
a
1.12
5.10
N2 E 76.08
2.0506E+01
S5
5
0.70
1.27
02
MG/ACM
36
6
0,38
0.57
« 12.'
ST
7
0.16
0.27
CO = 0.00
1.1683E-02 GR/ONCF
SI S2 S3
1 2 3
7.20 7.19 3.2)
25.a? H.28 IT. 09 5.10 1.2T 0.57 0.27 0.21
1.06E + OI 5'.9«E*00 7.11E+00 2.12E»00 5.29E-01 2.38E-01 l.t2Eo01 8.95E-02
60.37 38.15 11.56 3.62 1.64 0.75 0.33
1.JUE + 01 7.82ftOO 2.37E4-00 T.02E-01 3.J7E-01 1.50E-01 6.85E-02
1.61E»01 1.02E+01 3.09E»00 9.68E-01 «.39E-01 2.01E-01 8.93E.02
5.U1E-03 3.02E-03 l.OUE-OS 3.2UE-04 l.dTE-Oa 6.TflE-05 2.99E.05
T.05E-03 U.U6E-03 1.3SE-03 0.23E-04 1.92E-OU 8.78E-OS 3.90C.05
1.90Ef01 7.19E+00 U.80E+OQ 1.90E+00 8.86E-01 5.19E-01 2.166-01 1.12E-01
1.26E+01 8.71E+03 2.05E*01 «.6UE*00 2.60E+00 9,09E»01 2.89E-01 2.97E-01
1.55E+06 1.97E+10 1.5«F+08 5.73E+08 3.15E+09 5,a7E*09 1.63E*10 1.80E*ll
H20 B «'.JO
2.6735E+01 MG/DNCM
FILTER
8
DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 10.90 10.88 U.89 1.73 1.10 0,63 0.28
GEO. MEAN DIA. (MICROMETERS) 2.87E*01 1.09E+01 7.29E+00 2.91E+00 1.38E+00 8.31E-01 0.206.01 1.99E«01
DM/DLOGP (MG/DNCM) 1.26E+01 8.76E»03 2.0«E+01 «.72E+00 a.69EtOO 9.67E-01 3.23E-01 2.97E-01
DN/DLOGD (NO. PARTTCLES/DNCM) 1.02E+06 1.30E+10 t.niE+08 3.65E+08 1.9aE+n9 3.22E+09 B.32E+09 7.16E*10
NORMAL (FWGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
SQUARE ROOTS OF PSI HY STAGE 0.1UU 0.3JO 0.371 0.271 0.308 0.373 0.309
HOLE DIAMETERS RY STAGE (CENTIMETERS) 1.8237 0.576B 0.2501 0.0808 0.052« O.OJ33 0.02«5
-------
AVC0.4 ]2-0?»77 1111 - 1436
IMPACTOR FLOWRATE B 0,810 ACFM
IMPACTOR PRESSURE PROP = 3.SIN. OF HG
ASSUMED PARTICLE DENSITY « 2'.27 GM/CU.CM.
GAS COMPOSITION (PERCENT) C02 •
CALC. MASS LOADING B 1.7076E-OS GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/8TAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM, (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN 050
GEO, MEAN ou. (MICROMETERS)
DM/DLOGD (MQ/DNCMJ
DN/DLOGD (NO. PA»TICLE8/ONCM)
OUTLET SAMPLE U. OF W. MARK III SOURCE TEST IMPACTOR NO, o A
IMPACTOR TEMPERATURE a 160.0 F « 71.1 c SAMPLING DURATION a iso.oo MI
STACK TEMPERATURE » 160.8 F a 71.1 c
STACK PRESSURE s 28.91 IN. OF HG MAX. PARTICLE DIAMETER B SO'.O MICROMETERS
7.68
81
1
6'. 22
9.67
2.95E+00 T.eiEeOl 6.74E°01 2.59E°OI 9.S7E-02 5.80E=02 4.02E°02 T.KlEoOS
40.09 24.25 10,59 5,34 3.aa 2,26 1.45
i'.S7E*00 9.48E°01 4.14E-01 2.09E=01 1.342-01 S.84E»02 5.66Eo02
1.9BE+00 1.20E+00 5.22E°01 2.63E°01 1.70E°01 1,12E°01 7.14E=02
6'.85E = 04 4.14E=04 1,81E»04 9,12E»03 5.87E=05 3.86E-05 2'.07E = 05
8'.64go04 5.23E-04 2.28E-04 1.15E°04 7,«1E=05 4.8BE-05 3.12E = 03
1.76E + 01 6.22EiOO ".15E + 00 1.63E»00 7'.58E»01 4.33E-01 1,93E = 01 8.a3E=02
3.26E + 00 1,1«E + OJ 1.92E + 00 5,63E°01 a.50Eo01 2.07E°01 9.55Eo02 2.37E<>01
5.00E*05 U.OOE+09 2.26£*07 1.09E+08 8.79E+08 2,15Et09 I.IIC+IO 3,33E*11
2.
6
2
CO B
1551E-03
S2
2
.21
.55
0
'.00
GR/ONCF
2
2
•
0
83
3
77
20
34
li
0.96
0,85
N2 B 75.82
3.9076E*00
85
5 ,
0.60
0.31
02
MS/AC*
86
6
0.31
0,19
» 12,48
87
7
0.12
0.1J
4'.9S17
FILTER
e
0.23
H20 a fl'.OE
e+oo MG/DNCM
AEROOYNAMIC DIAMETERS A«E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 9'.42 9.41 «.22 1.49 0.94 0,52 0.22
GEO. MEAN DIA. (MICROMETERS) 2.66E+01 9.42EtOO 6.30E400 2.51E+00 1.19E400 7,01E>01 3.39E°01 1.96E°01
DM/OLOGD (MG/DNCM) 3.27E + 00 1.15E + 03 1.94E + 00 5.73E»01 O.T2E"01 8.24E-01 1.08E = ei 2'.S7E»Ol
DN/DLOGD (NO. PARTICLES/DNCM) 3.30E+05 2,6SE»09 1.48e+fl7 6.93E*07 5.39E»08 1.24E*09 5.3ie+09
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG.
SQUARE ROOTS OF PSI B^ STAGE 0.144 0.330 0.371 0.271 0.308 0.373 0.349
HOLE DIAMETERS 8" STAGE (CENTIMETERS) 1.8237 0.5768 0.2501 0.0806 0.0524 0,0333 0.0245
-------
AvCD-6 12.02-77 1550 - 1850
IMPACTOR FLOWPATE B O.PII ACFM
IMPACTOR PRESSURE. DROP = 3.6IN. OF HG
ASSUMED PARTICLE DENSITY s 2'.27 GM/CU.C^
GAS COMPOSITION (PERCENT) C02
CALC. MASS LOADING B 1.9a5SE-03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/ONCM) SMALLER THAN DSO
CUM. (GR/ACF) SMALLER THAN DSO
CUM. (GR/DNCF) SMALLER THAN DSO
GEO. HFAN DIA. (MICROMETERS)
DM/DLOGO (MG/DNCM)
DN/DLORD (NO. PiRTICLES/DNCM)
OUTLET SAMPLE U. OF W. MARK III SOURCE TEST IMPACTOR NO, • 0
IMPACTOR TEMPERATURE = iho.o F E 71.1 c SAMPLING DURATION a IBO.OO MIN
STACK TEMPERATURE B ito'.o F = 71.1 c
STACK PRESSURE a 28.91 IN. OF HG MAX. PARTICLE DIAMETER " 50.0 MICROMETERS
H20 B a'. 02
S.6180E+00 MG/DNCM
FILTER
8
7.68
SI
1
6.21
10.13
CO
2'.a551E-(
82
2
6.16
2.82
a 0'. 00
)3 GR/DNCF
S3
3
2.78
J.a2
sa
a
1.11
1.02
N2 B 75.82
a.asiaE+oo
85
5
0.57
O.as
02
MG/ACM
36
6
0.32
0,26
• 12. as
S7
7
0.10
0.15
3.08E+00 8.57E-01 1.0«E+00 J.ilE
a5'.l« 29.88 11.38 5.85
0.22
1.38E-01 7.99E-02 a.OaE.02 6.66E-02
S.ao 1.98 1.19
J.01E+00 1.35fi + 00 S.07E.01 2.60E>01 1.S1E-01 8.80E-02 5.J8E.O?
?.5aE + no l.h8E + 00 6.UOE.01 3.29E>01 1.91E-01 1.11E-01 6.66E.02
B.76E-OU 5.81E>Oa 2.21E-OU l.iaf-OU fc.61E-05 3,8«E.OS J.llE.05
1.11E-03 7.3aE.Oa 2.79E.oa l.a«E>Oa 8.3SE.03 a.BSE-OS 2.91E.OS
1.76E+01 6.18E+00 a.iaE»00 1.76E+00 7.92E-01 «,28E»01 1.83E.01 7.28E»02
j'.aOEtOO 2,U1E*02 J.01E + 00 7.79E>01 U.71C-01 3.30E-01 8.91EoOJ 2.21E«01
S.23E+C5 8.58E*08 3.58E+07 1.21E+08 7.97E»08 S,S3E»09 1.25E+10 a.8JE»ll
DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 9.«0 9.32 U.2" 1.72 0.90 O.Sa 0.19
GEO. MEAN DIA. (MICROMETERS) 2.66E+01 9.36E+00 6.2'E+OO 2.70E*00 1.2«E*00 6.93E-01 3.22E-01 1.37E-01
nH/DLOGO (MG/ONCM) J.IIE+OO 2.«2E+02 3.03£;oo 7.92E-01 a.89E-01 5.56E-01 1.016.01 2.J1E-01
DN/DLOGO (NO. PARTICLES/DNCMI ?.U6E*05 5.6«E+08 2.33E+07 7.71E+07 U.68E+08 2,0«E»09 5.75E+09 1.6aC*ll
NORMAL (ENGINEERING STANDARD) CONDITIONS »RF 21 DEO c AND 760MM HG.
SQUARE ROOTS OF PSI B" STAGE ft.fa 0.330 0.371 0.319 0.321 0.389 O.J5«
HOLE DIAMFTERS qv STAGE (CENTIMETERS) 1.B237 0.57UJ 0.2512 0.0793 0.0«95 0,0330 0.0229
-------
AVC0.7 12-05-77 )256 > 15«B
tMPACTOB FLOWRATF a 0.707 ACFM
IMPACTOR PRESSURE DROP s 2.6IN. OF HC
ASSUMED PARTICLE DENSITY • 2'.2? GM/CU.CM.
OUTLET SAMPLE U. OF W. MARK III SOURCE TEST IMPACTOR NO, » A
IMPACTOR TEMPERATURE a 1*5.0 F a 73.9 c SAMPLING DURATION a iso.ee MIN
STACK TEMPEHATURE « ifcS.o f o 73.9 c
STACK PRESSURE c 28.67 IN. OF HG «AX. PARTICLE DIAMETER o 50.0 MICROMETERS
SI
1
6.69
7.65
CAS COMPOSITION (PERCENT) C02 » 6.70
CALC. MASS LOADING n 1.7895E»03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
M6/DSCM/STAGE
CUM, PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN DSO
CUM, (MG/ONCM) SMALLER THAN OBO
CUM, (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN D50
CEO, MEAN DIA. (MICROMETERS)
OM/DLOOD (MQ/DNCM)
DN/DLOGD (NO. PARTICLES/DNCMJ
N2 B 75.60 02 o 13.40
4.o95oE+oo MG/ACM
S4
4
1.04
0.82
SS
5
0.65
0.19
36
6
0.35
0.06
87
7
0.14
0.03
CO a 0.00
2.3025E=o3 GR/ONCF
S2 S3
2 3
6.66 2.98
2.70 3.10 0.82 0.19 0.06 0.09 0.18
2.73E*00 9.65E=01 1.116+00 2.91E«01 6.86E=02 2.23E°02 1.94E=02 6.282-02
48.17 29.85 8.61 3.29 1.96 1.S6 1,19
1.22E + 00 3.61E»Oi l.JSEoOl 8.13E-02 6.39E»02 a.88e=02
1.S7E + 00 a.6«E=01 1.73E<>01 l.OSEaOl 8.23E>02 . 6.28E-02
8.62E°0 a.SO
5.2689E+00 NO/DNCM
FILTER
8
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO TME TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 10.13 10,12 1.54 1.61 1.02 0,37 0,29
GEO. MEAN DIA. (MICROMETERS) 2.76E + 01 1.01E*01 6.78E + 00 2.70E + 00 1,28E»00 7,eSE = 01 5.78E = 01
DM/DLOGD (MG/ONCM) S.13EfOO l.fl2E+03 3.18E+00 6.06E.01 S.47E-01 8,83E=02 3,fl3E=02 2.09E-01
ON/DLOGD (NO. PARTIcLES/DNCMJ 2.84Et05 2.62E + 09 1.96E + 07 6.26E + 07 3.15E + 08 3.79E + 08 1.92E*09 7.17E + 10
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG,
SQUARE ROOTS OF PSI BY STAGE o'.lUQ 0.330 0,371 0.271 0.308 0.373 0,509
HOLE OIAMETERS 0Y STAGE (CENTIMETERS) 1.8237 0,9768 0.2501 0,0888 0.0524 0.0333 0.0245
-------
AVCO-7 12-05-77 1256 - 15U8
IMPACTOR FLOWRATF : 0,707 ACFM
IMPACTOR PRESSURE DROP = 2.6IN. OF HG
ASSUMFH PARTICLE DENSITY = 2'.27 GM/CU.C"
CAS COMPOSITION (PERCENT) C02
CALC. MASS LOADING e 1.7895E.03 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/D9CM/STAGE
CUM, PERCENT OF MASS SMALLER THAN D50
CUM. (MO/ACM) SMALLER THAN D50
CUM. (MG/ONCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM, (GR/DNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
OM/DLOGD (MG/DNCM)
DN/DLOGD (NO. PARTlcLES/DNCM)
OUTLET SAMPLE U. OF w. MARK III SOURCE TEST IMPACTOR NQ. • A
IMPACTOR TEMPERATURE a i65.o F = 73.9 c SAMPLING DURATION « iso.oo MIN
STACK TEMPERATURE a i^s.o F a 73.9 c
STACK PRESSURE » 28.67 IN. OF HG MAX. PARTICLE DIAMETER •>
« 6.70
N2 a 75.60 02
a.o950E*oo MG/ACM
SI
1
6'.69
7.65
34
4
1.04
0,82
85
5
0.65
0.19
36
6
0,33
0,06
37
T
0,14
0,03
0.18
CO o 0.00
2'.3025E»03 GR/ONCF
82 S3
2 3
6.68 2.98
2.70 3.10
2.73E+00 9.65E-01 l.m + 00 2.91E-01 6.86E-02 2.?3£-02 1.94E-02 6.28E-02
48.17 29.85 8.81 3.29 1.98 1,36 1,19
1.97E+00 1.22E+00 3.61E-01 1.35E-01 8.13E-02 6.39E-02 4.88E-02
2.54E+00 1.97E»Ofl 4.64E-01 1,73E=01 1.05E-01 8.23E-02 6.28E-02
8.62E-04 5.34Eo04 1.38E.04 5.88E-05 3.55E-05 2.79E-05 2.13E-09
f.lie-03 6.87E-04 2.03E.04 7.56E-OS 4.57E-05 3.39E-05 2.75E-05
1.83E+01 6.69E+00 U.06E+00 1.76E+00 B.19E-01 4,74E»01 2.19E-01 9.75E«02
3.13E + 00 1.41E + 03 J.16E + 00 6.3SE-01 3.39E-01 8.35E.02 4.84E-02 2.09E<>01
(J.30E + 05 3.98E + 09 2.99E + Q7 9.84E + 07 5.13E + 08 6,91E*08 3.88E + 09 l,89Etll
so'.o MICROMETERS
H20 a 4.30
5.Z689E*00 MO/DNCM
FILTER
8
DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 10.13 10.12 1.51 1.61 1.02 O.S7 0.23
GEO, MEAN DIA. (MICROMETERS) 2.76E+01 1.01E*01 6.78E+00 2.70E+00 1.28E+00 7.63E-01 J.78E.01 1.77E-01
OM/DLOGD (MG/DNCM) 3.13E*00 1,«2E+03 3.18E+00 6.46E-01 3,a7E-01 8.83E-02 3.43E«02 2.09E-01
DN/DLOGD (NO. PARTICLES/DNCM) ?.8«E+05 2.62F+09 1.96E+07 6.26E+07 3.15E*Ofl 3.79E+08 1,92E*09 7,17E»IO
NORMAL (fNGINEERING STANDARD) CONDITIONS APE 21 DEG C AND 760*H HG,
80UARE ROOTS OF PSt BY STAGE rt.lttU 0,330 0.371 0.271 0.308 0.373 0,349
HOLE DTAMfTERs (jv STAGE (CENT 1METFRS) 1.8237 0.5768 0.2501 0.0808 0.0524 0,0333 0.02«5
-------
AVCO-9 12=06-77 1122 • 1822
IMPACTOR FLOWRATE a o,696 ACFM
IMPACTOP PRESSURE DROP B 2.5IN. HF HG
ASSUMED PARTICLE DENSITY = 2.27 GM/CU.CM.
OUTLET SAMPLE U. OF w. MARK III SOURCE TEST IMPACTOR NO, •> A
IMPACTOR TEMPERATURE a 165.0 F B 73.9 C SAMPLING DURATION a 420.00 MIN
STACK TEMPERATURE » I65.o F o rs.9 c
STACK PRESSURE B 88.2B IN, OF H6 MAX. PARTICLE DIAMETER « 50.0 MICROMETERS
31
1
6.702 1.89E = 02 9,70E>03 7.10E°OS
3,«7E°Ott 1,60E>00 3.alE°05 l.USE»05 6.3«e«06 J.25E=06 2.J8Eo06
a.53E°0« 2.09Ed04 a.45E-05 1.86E-05 8.27E=06 a02«E=B6 3.10E=06
1.8UE+01 6.74C«00 4.50E+00 1.771*00 6.296=01 4.78E-01 2.212=01 9,84E°6i
1.82E+00 8.18Et02 1.07^*00 1,29E°01 1.166=01 3.42E°02 6.49E°03 2.362=02
J.U8E+05 2.J5E»09 9,93E*06 l.V5E*OT 1.7Se*08 2,64E«08 5.086*08 2.091*10
H20 0 4.40
2.6218E+00
FILTER
8
9,23E=03 2.60E=03 7.JOE"03
0,37 0,87
DIAMETERS A*E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 10.21 10.19 4.57 1.62 1.03 0,98 0.25
GEO. MEAN DIA. (MICROMETERS) 2.77E*01 1.02E+01 6.8Je+00 2.72E+00 1,29E+00 7,69E>01 3.81E=01 1.79E=01
DM/DLOGD (MG/DNCH) 1.83E + 00 8.23E + 02 1.08E»00 1.31F. = 01 1.20E°01 3,662 = 02 7.28E=03 2,36E°02
DN/DLOGD (NO. PARTICLE8/DNCM) 1.64E«05 1.U8E+09 6,49E»06 1.24E*07 1.07E*08 l,3a£»06 2.51E»08 ?,89E*09
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HO,
SQUARE ROOTS OF PSI BV STAGE 0.14U 0.330 0.371 0.271 0.308 0,373 0,349
HOLE DIAMETERS BV STAGE (CENTIMETERS) 1.8237 0.5768 0,2501 0,0808 0.0524 0.0333 O.OZ45
-------
AVCO-9 12.06-77 H22 - 1822
IMPACTOR FLOWRATE « 0.6"* ACFM
IMPACT™ PRESSURE DROP = 2.SIN. OF HC
ASSUMED PARTICLE DENSITY = 2'.27 GM/CU.C*'.
GAS COMPOSITION (PERCENT) C02
CALC. MASS LOADING B 8.77U2E-OU GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (MILLIGRAMS)
MG/OSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN DSO
CUM. (MG/nNCM) SMALLER THAN DSO
CUM. CGR/ACM SMALLER THAN DSO
CUM. (GR/DNCF) SMALLER THAN DSO
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGn (MQ/DNCM)
DN/DLOGD (NO. PARTICLES/DNCM)
OUTLET SAMPLE u. OF w. MARK m SOURCE TEST IMPACTOR NO, • A
IMPACTOR TEMPERATURE = tts.o F s TJ.<> c SAMPLING DURATION • «2o.oo MIN
STACK TEMPERATURE = 165.0 F o 71.0 C
STACK PRESSURE s 28.2B IN. OF MG MAX. PARTICLE DIAMETER a 50.0 MICROMETERS
N2 > 75.52 02 B 13,38
2.00T6F+00 MG/ACM
8 6.69 CO B 0.00
l'.l«57E-03 GR/ONCF
SI S2 S3 SO 35 36 87
1 2 3 « 5 6 7
6.7(1 6,73 3,00 1,01 0.65 0.35 O.ld
10.05 3.50 2.38 0.38 0.13 0.06 0.03
1.59E+00 5.58E.01 3.76E-01 S.92E°02 2.37E-02 9.23E-OS 2.60E.03 T.IOE'OS
39.53 18.23 3.88 1.62 0.72 0.37 0.2T
7.9UE-01 3.66E-01 T.79E-02 3.2fcE-02 1.U5E-02 7,a3E-03 5,a«E-03
1.0«E+00 U.78E-01 1.02E-01 a.26E-02 1.89E.02 9.70E-03 T.lOEoOS
3.U7E-Ott 1.60E-04 3.41E«05 1.«3E.05 6.3Ue=Ofc 3,25E»06 2.36E-06
U.53E-OU 2.09E.Ofl 1.(l5C-05 1.86E = 05 8.27E«06
-------
l 12-07-77 105U o 1756
IMPACTOR FLOWRATE B 1.020 ACF1
IMPACTOR PRESSURE DROP = 5.5IN. Of HG
ASSUMEH PARTICLE DENSITY « 2'.27 GM/CU.CM.
OUTLET SAMPLE u. QF w. MARK in SOURCE TEST IMPACTOR NO. o A
IMPACTOR TEMPERATURE a 165.0 f » 73.9 C SAMPLING DURATION * 422.00 WIN
STACK TEMPERATURE a 165.8 F a 73.9 c
STACK PRESSURE B 28.88 IN. OF HC MAX. PARTICLE DIAMETER o 30.0 MICROMETERS
GAS COMPOSITION (PERCENT) CO? o 6.76
CALC. MASS LOADING a 6.2791E.OU GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/ST»GE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN D50
CUM. (GR/ACF) SMALLER THAN oso
CUM. (GR/DNCF) SMALLER THAN 050
GEO. MEAN D1A. (MICROMETERS)
DM/DLOGD (MQ/DNCM)
ON/DLOGO (NO. PARTlcLES/DNCM)
CO
o'. 00
N2 9 76.31 02 = 13.52
1.4S69E«00 MS/ACM
H20 P J.40
1.81B3E*00 P.6/DNCM
81
1
5.57
11.46
1.19E*00
34.37
U.97E-01
6'.29E = 01
2.17E=04
2.75E-00
1.67E+01
i.23E*00
3.26E*05
5
3
4
12
1
2
7
9
5
5
2
82
2
.56
.88
.03Eo01
.02
.79E-01
.26E-01
,80E=05
.87E-05
.56E+00
.89E+02
.88E+09
2
1
1
2
3
4
1
1
3
5
8
33
3
.OT
.T«
,81E=01
.07
,50E=02
.46E=02
,55E=05
.96E-05
,ne»oo
.14E.01
.50E+06
84
4
0.85
0.28
2.88E°02
0.88
1.27Eo02
1.61Eo02
3.33Eo06
7.03E°06
1.05E*00
6.21E-02
1.71E»07
S5
3
0.32
0.06
6.26E°03
0.34
7'.76E°03
9.81E-05
3.39Eo06
4.29Eo06
6.67E°01
2.97E=02
8,02E*07
0.
0.
2.
0.
6.
1.
2.
3.
3,
6.
1.
36
6
26
02
03E°03
43
13E°03
78E°03
69E°06
40Eo06
68E«01
63E=03
12E+08
0.
0.
1.
o.
s.
4.
2.
2.
1.
2.
3.
87
7
09
01
OZEo03
37
J3E°03
7TEo03
S4E°06
96E=06
SOEaOl
13E=03
S3E+08
PILTER
a
0.07
6.7TE=OJ
6.13E«02
2.89E°oe
8,12e»10
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) B.«« 8.12 3.77 1.33 0.83 0.44 0.17
GEO. MEAN DIA. (MICROMETERS) 2.32Et01 8.43E+00 3.6UE + 00 Z.?«E*00 1.05E»00 6.0SE<>01 2.788 = 01 1.19E=01
DM/DLOGD (MG/ONC*) 1.25E*00 5.92E«02 S.19E<>01 6,SOE = 02 1.10Eo02 7.38Eo03 2.05E=OS 2.2SE»02
DN/OLOGD (NO. PARTICLES/DNCM) 1.49E+05 1.89E+09 5.3«E*06 1,08E»07 5.10E+07 6.29E»07 2.S2E*08 !,33E«10
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
SQUARE ROOTS Of P3T BY STAGE 0.100 0.330 0.371 0,271 0.308 0,373 0.309
HOLE DIAMETERS H* STAGE (CENTIMETERS) t.8237 0.5768 0.2501 0.0808 0.032« 0,0333 0.02«5
-------
AVCO-11 12-07.77 1051 - 1756
IMPACTOR FLOWRATF. c J.820 ACFM
IMPACTOR PRESSURE PROP = 5.5IN. OF HC,
ASSUMED PARTICLE DENSITY s 2'.27 GM/CU.CM.
GAS COMPOSITION (PERCENT) CO? :
CALC. MASS LOADING = 6.27'af-Od GR/ACF
IMPACTOR STAGE
STAGE INOEK NIJMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/OSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN D50
CUM. (GR/RNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGO (MG/DNCM)
DN/DLOGD (NO. PARTICLES/ONCMJ
OUTLET SAMPLE U. OF a. MARK III SOURCE TEST IMPACTOR NO, - *
IMPACTOR TEMPERATURE c i65.o f a 73.9 c SAMPLING DURATION • (122.00 MIN
STACK TEMPERATURF. «= ibS.o F B 73.9 c
STACK PRESSURE o 28,88 IN. OF HG MAX. PARTICLE DIAMETER « 50.0 MICROMETERS
N2 a 76.31 02 • IS.52
l.«369E+00 M6/ACM
6.76 CO » 0.00
7.9H59E-0* GR/DMCP
SI 32 . S3 SU 85 36 37
1231567
5.57 5.56 2.07 0.85 0.52 0.26 0.09
11.at 3.88 1.7fl 0.28 0.06 0.02 0.01
I.19E*00 «.03E-01 1.81E-01 2.88E-02 6.26E-03 2.03E«03 1.02E-OS 6.77E=OJ
3«.57 12.12 2.a7 0.88 0.5U 0.«3 0.37
U.97E-01 1.79E.01 S.S1F..02 1.27E.02 7.76E-03 6.15E-03 5.35E-OJ
6.29E-01 2.26E-01 a.«8E-02 1.61E-02 9.81E-03 7.78E-03 6.77E-OS
2.17E-01 7.80E-05 1.55E-05 5.55E«06 3.39E-06 2.69E-06 2.3«eo06
2.75E°OU 9.B7E = 05 1.96E.05 7.0SE»06 a.29E = 06 3.
-------
AVC0.13 12.08=77 1142 - 1808
IMPACTOP FLOWRATE B 0,515 ACFM
IMPACTOR PRESSURE DROP a 0.6IN. OF HG
ASSUMED PARTICLE DENSITY a 2'.27 GM/CU.CM
GAS COMPOSITION {PERCENT) C02 i
CALC. MASS LOADING a 9.04B4E-04 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MG/ACM) SMALLER THAN DSO
CUM. (MG/DNCM) SMALLER THAN oso
CUM. (GR/Acp) SMALLER THAN oso
CUM. (GR/DNCF) SMALLER THAN 050
GEO. MEAN DJA. (MICROMETERS)
OM/DLOGD (MG/DNCM)
DN/OLOGD (NO. PARTICLES/DNCM)
OUTLET SAMPLE u. OF w. MARK in SOURCE TEST IHPKTOR NO, = A
IMPACTOR TEMPERATURE « iso.o r a 54.4 c SAMPLING DURATION n 375.00 HIM
STACK TEMPERATURE = 130.0 F B 54.4 C
8TACK PRESSURE » 29.30 IN. OF HG MAX. PARTICLE DIAMETER B so.O MICROMETERS
3.84 CO B o.OO
l'.0722E=03 GR/DNCP
N2 B 76.78 02 • 15.36
2.0706E*00 HG/ACM
H20 a 4.02
2,a536E*00 H6/DNCM
SI
1
9.91
4.50
1.60E+00
34.71
7.19E«>01
8.52E-01
3.14E°04
3.72E=04
2.23E+01
2.28E*00
i.T4e»o3
9
1
3
19
4
4
1
2
9
5
4
S2
2
.89
,04
.70E.01
.62
.06E-01
,B1E=01
.77E.04
.10E-04
.90E+00
.46E+02
.73E+06
4
1
S
4
8
1
3
4
6
1
3
S3
3
.44
.06
.77E-01
.25
,80E=02
,04E»01
,85E=05
.56E-05
.63E+00
.08E+00
. 13E + 06
34
4
1.58
0.19
6.73E°02
1.51
3.12Eo02
5.70E«02
1.37E-05
1.62E=05
2.65E»00
1.90E»01
6.79E+06
1.
0.
1.
1.
2.
2.
9.
1.
1.
3.
2.
35
5
01
03
14E-02
04
16Eo02
SeEo02
4JE-06
m°05
26E+00
65E-02
47E+07
36
6
0.58
0.01
4,04Eo03
0.88
1.62E°02
2.15E-02
7,9UE=06
9.41E=06
7,64E»01
1.70E°02
3.20E+07
o'.
0.
1.
0.
»'.
2'.
7.
8.
I,
«.
5.
87
7
27
00
35E=03
82
70E-02
02E-02
ASEP06
S2E»06
96E«01
04E>03
49E+07
FILTER
a
0.06
2.02E=02
!',9iE»0!
6.71E«02
8.15E+09
AERODYNAMIC DIAMETERS A»E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUN6 DYNAMICS DEFINITION
DSO (MICROMETERS) 14.97 14.95 6.74 2.42 1.56 0,92 0.45
GEO. MEAN DIA. (MICROMETERS) 3.36E*oi I.SOE+OI I.OOE+OI a.o«E+oo i.94E*oo i.i9E*oo *,«ieooi i.iyeoei
DM/DLOGD (MG/DNCM) 2.28E»00 5.47E+02 l.09E»00 l.SJFoOl S.9BE-02 1.76Ee02 fl.SieoOJ 6.T18002
DN/DLOGO (NO. PARTICLES/DNCM) 1.15E+05 3.12E+08 2.06E+06 4.J9E+06 1.56E+07 1.97E*07 J,14E*07 «,05E»09
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM MS.
SQUARE ROOTS OF PSI BY STAGE 0.144 0,330 0,371 0.271 0.308 0.373 0.349
HOLE DIAMETERS BY STAGE (CENTIMETERS) l'.8237 0.5768 0.2501 0.0808 0.0524 0,0333 0.0245
-------
AVCO-13 12-08.77 1142 - IBflfl
IMPACTOR FLOWR4TE s 0.315 ACFM
IMPACTOR PRESSURE DROP = o.6iN. OF HG
ASSUMED PARTICLE DENSITY e 2'.27 GM/CU.CM.
GAS COMPOSITION (PERCENT) C02 B
CALC. MASS LOADING e 9.04B4E.04 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMRF.R
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DSCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM, (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM, (6R/ONCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGO (MG/DNCM)
DN/DLOGD (NO. PARTICLES/DNCM)
OUTLET SAMPLE U. OF w. MARK III SOURCE TEST IMPACTOR NO. . A
IMPACTOR TEMPERATURE • i3o,o r u 54.4 c SAMPLING DURATION B 373,00 MIN
STACK TEMPERATURE = 130.0 F s 54.4 c
STACK PRESSURE B 29.30 IN, OF HG MAX. PARTICLE DIAMETER B 50.0 MICROMETERS
H20 a fl',02
3.84
81
1
9.91
4.50
C.60E + 00
14.71
CO B
r.073Zr-03
S2
2
9.H9
1.04
3.70E-01
1<».62
o'.oo
SR/DNCF
S3
3
4.44
1.06
3.77E-01
1.25
N2
S4
4
1.58
0.19
6.73E-02
1.51
a 76,78
2.0706E+00
SS
5
1.01
0.03
l.iae-Oe
1.04
02
MG/ACM
36
6
0,58
0,01
4.04£o03
0,88
B 15,36 H
2,fl536Et
87 FILTER
7 8
0.27
0.00 0.06
l.J5E=03 2008E»02
0.62
7'.19E = 01 U.06E-01 e.eOE«02 3,i2E°02 2.16E°02 1,82E»02 1.70E.02
R.52E°01 4.81E.01 l.OUE-01 3.70E-02 2.56E-02 2.15E=02 2.02E-02
J.14E»0« 1.77E-04 3.B5E-05 1.S7E-OS 9,«SE=06 7,9«E-06 7,«3Eo06
3.72E-04 2.10EoOII a.56E = 05 1,62E<>05 1,12E>05 01 5.B5E = 02 1.70E°02 O.oaEoO]
)4Ea03 6.71E«Oa
1.74E*05 4.73E+08 3.13E+06 6.79E*06 2.47E+07 3.20E+07 3.49E+07 8.1SE*09
DIAMETERS A*E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) la.'7 la.95 6.74 2,82 1,56 0,92 0.45
6EO. MEAN DIA. (MICROMETERS) 3.36E*01 l.SOEtOl 1.90E+01 4.04E+00 1.94E+00 1,19E*00 6.41E.01 S.J7E«01
CM/DLOGD (MG/DNCM) 2.26E*00 5.47E+02 l.O'E+OO 1.51E-01 5.98E-02 1.76E-02 4.33E.03 6.71E-02
5N/DLOSD (NO- PiRTTCLES/ONCM) 1.15E+05 3.12E+08 2.06E+06 4.59E+06 1.S6E+07 1.97E+07 S,iaE+07 fl,63E»09
MORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
SQUARE ROOTS OF PSI BY STAGE 0.144 0.330 0.371 0.271 0.306 0,373 0.349
HOLE DIAMETERS BY STAGE (CENTIMETERS) 1.8237 0.5768 0.2501 0,0808 0,052a 0,0333 0.0245
-------
PART 2
CASCADE IMPACTOR RUN DATA
June, 1978 Test
84
-------
APIT-i uRu'K (r,un b/!3/7fi
T"PACTCJP FLPt"R»TF s 0.060 ACFM
PRESSl'fF npnp = I.?IM, nF HG
PARTICLE PFMSITY = 2.6? G«/CU.tM'.
GAS CPMposITIOM (PEPCENT1 C02 = 0.00
CALC. MASS LEAPING = u.63i iE+flfl GR/ACF
TMPACTOR STAGE
STAGE INDEX MUMPER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MOPIFIFD RRINK CASCADE I«PACTOR DUMBER • G
SAMPLING RURATTON » 50.00
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. CMG/ACM) SMALLER THAN 050
CUM. (MG/f)NCM) SMALLE" THAN 050
CLIM. (GR/ACF) SMALLE" THAN 050
CUM. (GR/nWcF) SMALLFR THAN D5P
GEP. MF.AN niA. (MICROMETERS)
(NO.
SAMPLE
IMPACTOR TEMPERATURE = us.o r - 7.2 c
STACK TF.MPFRATURF = (15.0 f = 7.2 c
STACK PRESSURE = 28.97 IN. OF HG MAX. PARTICLE
CO = O.dO N2 o 79.20 02 = 19.80
U.60U9E+00 GR/DNCF 1.0596E+OU MG/ACM
SO SI S2 S3 S« 35
1 2 3 a 5 6
3.96 2'.20 1.50 0.92 0.16 n.17
«51.66 30.55 27.73 15.16 10.00 2,«T
8.81E+03 5.96E+02 5,«1E+02 3.02Et02 1.9SE+02
16.38 10.73 5.59 2.73 0.88
1.7«Ef03 T.ldEtOJ 5.<'3E*02 2.90E + 02 9.3«E*01
1.73E + 0! l'.13E + 03 5.90E + 02 2.88E*02 9.29E + 01 (i.U7E»01
7.59E-01 (l'.97E»01 2.59E = 01 1.27E-01 (I.08E-02 1.96F-02
7.51E-01 1'.91E = 01 2,58E»01 1.26E-01 U.06E-02 1.95E-02
1.26E + 01 2'.95EfOO 1.82E + 00 1.17E*00 6.50F-01 2.82t-01
8.77E + 03 2'.31E*03 3.22E + 03 1.11E + 03 6.56E + 02 1.12E + 02
3.21E + 09 6'.63E + 10 3,'lE + ll 6.aiE*ll 1.71E + 12 3.66E»12
uo.o MICROMETERS
H20 « I'.OO
1.0537E*0«
FILTER
2.29
«'.«7E*01
1.22E-01
1.18E+02
5.99E*1J
PTAHFTEWS APE CALCUl.ATEn HF»E ACCORDING TO THE TASK GRDUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS' 6.U5 3'.61 2.«7 1.53 0.79 0.52
GEO, MF»N DJA. (MICROMETERS) 2.0aE*01 fl'.BJE + OO 2.99E + 00 1.9«EtOO 1.10E + 00 5,0«E»01
DM./DLOGD (MG/DNCM) fi.«OE + 03 2.37E + 03 3.27E + 03 l.««E + 03 6.H«E»02 1.23E + 02
^0. PAHTTCLtS/nNCMl 1.97E + 09 U'.OIE + IO ?.3«F + 11 J.77E + 11 9.83Ftll 1,83E*12
2'.27E.OI
PKAL (E'«Gt"FF.«Ir.:p ST
SNUAPE POnTs pF PSI BY STAGE
HOLE OlAMF.TfWS PY STAGE (CENTIMETFRS)
OEG C AND 760MM HG.
0.32? 0.32? n.37n 0.3«0 0.3«5 0,31« 0 . 3 1 U
0.3616 0.2(17? 0.1759 0.1367 0.0898 0.0567 0.0567
-------
AP1I.2 BRINK 10*10 6/13/78
IMPACTOR FLOWRATE e 0,060 »CFM ,
IMPACTOR PRESSURE DROP e 0.2IN. OF HG
ASSUMED PARTICLE DENSITY a 2'.62 GM/CU.CM.
GAS COMPOSITION (PERCENT) C02 c 0.00
CALC'. MASS LOADING a 6.3114EtOO OR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
030 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM, (M5/DNCM) 8MALLE" THAN DSO
CUM. (GR/ACF) SMALLER THAN oso
CUM. (GR/DNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
DM/OLOGD (MG/DNCM)
DN/OLOGD (NO. PARTlCLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER «• G
IMPACTOR TEMPERATURE o so.o r « 10.0 c SAMPLING DURATION a 6.00 KIN
STACK TEMPERATURE B 50.0 F a 10.0 c
STACK PRESSURE B 28.97 IN. OF HG MAX. PARTICLE DIAMETER
CO o Q'.OO
6'.3579E*00 GR/DNCP
SO
1
3.97
129, Sa
12.02
31
2
2'. 21
6'. 79
6'.69E*02
7'.40
32
3
1.30
5.33
5.251
3'. 78
N2 a 79.20
83
4
fl'.9Z
2.98
02 » 19.80
MG/ACM
34 8S
56
0.86 0.17
1.T6 0.30
2.86E*02 1.73E+02 U, 932*01
i.eo o'.to o.26
1.7«E*OJ l'.07E*03 5,06E»02 2.60E*02 0.73E + 01 S,B3E*Ol
1,7«E*03 l'.07E + 03 5.«9E»02 2.6tE«02 8.7?E«01 3,B4E«01
7.9BE°01 4'.67E°01 2.39eo01 l.UEoOl 3.B2Eo02 1.6TE.OJ
7.62E-01 4.69E-01 2.40E°01 l.UEoOl 3.B3e«02 1.68Eo08
1,26E*01 2'.96EtOO ).8ae*00 T.17E + 00 6.52E-01 2,82Eo01
1.27E»0« 2.63E+OJ 3.12e*03 1.3SE+03 5.83E*02 l.lSe*02
a.63E«09 7'.J7E»10 3.76E*H 6.06E + 11 l.S3E«12 3,716 + 13
ao.o MICROMETERS
H20 n 1.00
1.4503E+04 MG/DNCM
P1LTER
7
0.39
3.84E*01
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 6.48 3'.63 2.48 1.33 0.79 0,32
GEO. MEAN OIA. (MICROMETERS) 2.05E»01 u'.85E + 00 l.OOE + 00 1.95E + 00 1.10E + 00 5.06E=01
DM/DLOGO (MG/DNCM) 1.28E + 00 2'.66E + 03 3.17C + 03 1.3BE*03 6.07E + 02 1.26E + 02
DN/DLOGD (NO. PARTICLE8/DNCM) 2.84E + 09 4'.46E*10 2.2SE*11 3.56E+11 8.65E»11 1.866*12
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 PEG C AND 760MM HG.
SQUARE ROOTS Of PS! BY STAGE 0.322 0.322 0.370 0.340 0.345 0.314 0.314
HOLE DIAMETERS BY STAGE (CENTIMETERS) 0.3616 0.2472 0,1759 0.1367 0,0898 0,0367 0.0367
-------
APII-J BRT'J* 1'1UO 6/11/78
TMpACTOR FLpwuATE = 0.060 ACFM
PPFSSURE DROP = 0.2IN. nF HG
O PARTICLE DF.NSITY = 2'.62 GM/CU.C".
GAS COMPOSITION (PERCENT) en? a o.oo
CAI.C. MA3S LOiOING = 8. HJfeE4.no GR/ACF
IMPACTOP STAGE
STAGE INDEX NIIMRER
D50 (MICROMETERS>
MASS (MILLIGRAMS)
MG/DNCM/STAGE ,
CUM. PERCENT nr MASS SMALLER THAN DSO
CUM, (MG/ACM) SMALLER THAN DSC
CUM. (MG/DNCM) SMALLER THAN D50
C'JM. CGR/ACF) SMALLER THANI 050
CUM. (GR/nNCF) SM4LLEP THAN D50
GED. MFAN niA.
PM/OLOGP
DN/OL060
IHLFT SAMPLE MODIFIED RRINK CASCADE IMP&CTOR NUMBER - G
IMPACTOR TEMPERATURE = 65.0 F = IB.J c SAMPLING DURATION a 6.00
STACK TFMPERATURF = 65.n F e i«,3 c
STACK PRESSURE = 2<». 1 7 IN. OF HG MAX. PARTICLE DIAMETER o
CO a 0.00
N2 a 70.60
B 19.90
8.2882F+00 GR/DNCF l.S567E+0« MG/ACM
u
167
1
11.
SO
1
.02
."3
27
SI
2
2'.2«
s'.au
)a B'.UbEtO
6.82
32
3
1.52
6,«1
2 6,«2E+(
3.«3
S3
U
0."3
3.33
12 3.3flE + (
1.67
$u
5
O.ttT
2.03
)2 2.03Ef02
0'.60
S5
6
0,17
0,61
6.11
0'.27
2.09E+03 T.27E+03 6.37E+02 3.10E+02 1.11E+02 5,10E*Ol
2.1UE+03 T.29E+03 6.50E*P2 3.17E+02 1.13E+02 5,21E*Ol
9.I5E-01 5.S3E-01 2.78E-01 1.35E-01 a.8«E»02 2.23E.02
9.31E-01 5'.6SE-01 2.8UE-01 1.38E-01 a.95E»02 2.28E-02
1.27E+01 3.00E*00 1.8UE+00 1.19E+00 6.58E"Ol 2,8«E«01
1.69E+0« 3.52E+03 3.82E+03 1.56E*03 6.82E+02 1.U2E+02
6.03E+09 9.00E+10 a.«5E*ll 6.80E+11 1.75E+12 U.SOE+12
oo.o MICROMETERS
M20 = 0.50
1.8966E+OU MG/ONCM
FILTER
7
0.52
5.21E401
1,22E=01
1.73E+02
6.88E+13
AERODYNAMIC DIAMETERS A"E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 6.55 3'.67 2.51 1.55 0.80 0,32
GEO. MEAN OIA. (MICROMETERS) 2.06E + 01 0'.90E + flO 3.03E + 00 1.97E + 00 1.11E*00 5.10E-01
DM/DLOr,n tMG/ONCKl 1.69E + OU 3'.36E + 03 3.88E + 03 1.60Et03 7.12E + 02 1.56E*02
BN/DLOS!) t^n'. PiOTTCLtS'"fJC.M1 3.70Et09 5.«UE+in ?.66E*)1 3.99E*11 9.83E+11
2.29E»01
1.73E+02
2.70E*|3
(ENGIMEFRI.'.'1; STANOABO) CONnlTIONS ARE 21 OEG C AMD 760MM HG,
SOUARF pnnTs rif PSt "V STAGE n.J?2 0.322 0.37o 0.3UO 0.3«5 0,3lfl . 0.31fl
HOLE DTAMFTfBS XY STitF (CENTIHETE»S) 0.3616 0.2U72 0.1759 0.1367 0.0898 0.0567 0.0567
-------
APII = tl RRINK loan 6/11/78
IMPACTPR FLOWRATE o 0.060 ACFM
IMPACTOR PRESSURE DRIP B 0.2IN. OF HG
ASSUMED PARTICLE DENSITY o 2'.62 GM/CU.CM.
GA8 COMPOSITION (PERCENT) C02 B o'.OO
CALC. MASS LOADING a 7.««1«E+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 {MICROMETERS)
MASS (MILLIGRAMS)
MG/ONCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN DSO
CUM. (MG/DNCM) SMALLER THAN DSO
CUM. CQR/ACF) SMALLER THAN DSO
CUM. (GR/r>NcF) SMALLER THAN DSO
GEO. MEAN DIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO. PARTICLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER = G
IMPACTOR TEMPERATURE B 65.o r c i8.j c SAMPLING DURATION , 6.00
STACK TEMPERATURE •> 6S.o F = ie.3 c
STACK PRESSURE a 29.IT IN. OF HG MAX. PARTICLE DIAMETER a
CO B O'.OO
7'.6015E + 00 GR/DNCF
so
1
0.02
1S3.20
SI
2
2'.2«
8.56
•62
3
1.32
5.93
N2 « 79.60 02 o 19.90
1.7028E+04 MG/ACM
S3 SO 65
« 5 6
0.93 0.87 0.17
3.12 1.76 0,59
8'.58E + 02 5.90E+02 3.1SE+02 l'.76E + 02 5.91E+01
6.81 3'.UO 1.60 0.59 0.25
2.00E+03 l'.16E + 03 3.79E + 02 2.736 + 02 l.OOE+02 fl.22E + Ol
2.00E + 03 1.19E + 03 5.916 + 02 2.79E + 02 1.036 + 02 (I.31E + 01
8.7«E»01 5'.07E = 01 2.53E-01 1.19E»01 «.37E»02 1.80Eo02
8.93E°01 5.18E°Oi 2.58E«01 1.22E»01 a.47Ee02 1.88E«02
1.27E + 01 3'.OOE + 00 l.eOE + OO 1.19E + 00 6.38E=01 2,8«EoOJ
l,5«E + Oa 3'.37E + 03 S.5SE+03 1.86E + 03 5.92E + 02 1.37E+02
5.51E + 09 9.13E + 10 «.12E + 11 6'.38E+11 1.51E + 12 fl.35E+'12
ll'.TS
ao.O MICROMETERS
H20 a O'.SO
1.7395EiO
-------
APII-5 RRI^K loan
TMPACTOR FLnwRATF = 0.060 ACF"
IMPACTOR PRESSURE DROP = 0.2IM. OF HG
AssuMEn PARTICLE DENSITY = a'.h? GM/CU.CM
GAS COMPOSITION (PERCENT) co?
CALC. MASS LOADING s 7.««96E*00 GH/ACF
IMPACTOR STAGE
STAGE I^OE* NUMBER
D5« {MICROMETERS'
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MG/ACM) SMALLER THAN DSO
CUM. (MG/DNCM) SMALLE" THAN 050
CUM. (GR/ACF) SMALLE" THAN D50
CUM. (GR/DNCF) SMALLE" THAN DSO
GEO. MEAN DIA.
DM/OLOGO
DN/DLOGO (NO. PARTICLES/ONCM5
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • G
IMP4CTDR TEMptPATURf : fcn.O F s \5.b C SAMPLING DURATION = 6.00
STACK TEMPERATURE = (.n.n F s 15.6 c
STACK PRESSURE s 29.17 IN, OF HG
0.00 CO s 0.00
7.575aE+00 GR/DNCF
SO SI 32
1 2 3
1.00 2'.23 1.51
152.37 8.8a 6.U8
MAX. PARTICLE DIAMETE" =
N2 a 79.20 02 o 19.80
i,7o«7E+oa MG/ACM
S3 Sa S5
a 5 6
0.92 O.a7 0,17
3.19 1.8U 0,62
1.52E+OU R.82E+02 6.06E+02 J.18E+02 1.8UE+02 6.18E+01
12.32 7.25 3.50 1.67 0'.61 0'.25
2.10E + OJ t'.23E + 03 5.97EtO? 2.8«E*02 1.0aE*02 U,S2E*01
2.1«E + 03 1.25E + 03 6.07E*02 2.89E + 02 1.06E + 02 ((.S^E + Ol
9.1BE-01 5'.39E = 01 2.61E-01 l'.2aE»01 fl.5«E-02 1.89E-02
9.33E-01 5>8E-ni 2.65E-01 1.26E-01 U.62E-02 1.92E-02
1.26E+0) 2.9RE+00 1.83E+00 1.18E+00 6.56E-01 2.B«E-Ol
1.52E+04 3.U7E+OJ 3.84E+03 1.U9E+01 6.16E+0? l.UUE+02
5.5 2.19 l.5u 0.80 0.32
GEO. MEAN DIA. (MICROMETERS) 2.05E+01 a.88E+00 3.02E*00 1.96E+00 1.11E*00 5.08E-01
DM/DLORD (MG/DNC^) 1.52E+OU 3.50E+03 3.90E+OJ 1.52E+03 6,a2E+02 1,58E»02
DN/OLOGH (NO. BAPTICLES/DNCH) 3.36E+09 5.76E+10 2.71E+11 3.86E+11 B.98E+11 2.29E+I2
J.29E.01
l.«6E»02
NORMAL (ENGINFFIIKiG STANDARD) CnNDITIONS ARE 21 DEC C AND 760MM HG.
.SUUARF ROOTS nF PST HY STAGE 0.322 0'.322 0.370 n.3ufl 0.3«5 0,31" 0.3ia
HOLE DlAMfTEPS RY RT4GE (CENTIMETERS) 0.3616 O'.2fl72 0.1759 0.1367 0.0898 0.0567 0.0567
-------
APII.fc BRINK 10(10 6/15/T8
IMPACTOP FLtlk-RATE s 0.060 ACFM
IMPACTOP PRESSURE DROP = 0.2IN. Of HG
ASSUMED PARTICLE DENSITY = 2.62 GM/CU.CM.
6A8 COMPOSITION (PERCENT) C02 « 0.00
CALC. MASS LOADING a a.BJZlE+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN DSO
CUM. (MG/ACM) SMALLER THAN DSO
CUM. (MG/DNcM) SMALLER THAN DSO
CUM. (GR/ACF) SMALLER THAN DSO
C"M. (GR/DNCF) SMALLE" THAN 050
GEO. MgAN nu. (MICROMETERS)
DM/DLOGD (MQ/DNCM)
ON/DLOGD (NO. PARTicLES/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER = c
IMPACTOR TEMPERATURE 3 70.0 r a n,\ c SAMPLING DURATION * 4,00 MIN
STACK TEMPERATURE = TO.O F o 21.1 c
STACK PRESSURE f 29.17 IN. OF HG MAX. PARTICLE DIAMETER
N2 » 79.60 02 o 19.95
1.1057E+04 MG/ACM
S3 SO S5
4 S 6
0.93 O'.OT 0,17
1.83 1.-05 0.29
CO B 0.00
H.9706E+00 GR/DNCF
SO Si 32
1 2 3
«.03 2'.2U 1.52
101.76 4'.33 3.27
1.03E+04 4.37E+02 3.30£«02 1.8SE+02 1.06E*02 2.9SE+01
9'.7? 5.88 2'.98 l'.36 fl'.OS O'.l7
1.08E+03 6'.SOE*02 3.306*02 l.SOE+02 4.71E»01 1.66E + 01
1.11E+03 6.69Ef02 3.39E«02 1.5aE+02 a.8«E+01 1.92E+01
U.70E-01 ?'.8flE"01 l.ttUEoOl 6.56E»02 2.06E°02 8,14Eo03
«.83E=01 2'.92E°01 1,«8E°01 6.75E°02 2.12E-02 8.36Eo03
1.27E+01 3.01E«00 1.S5E+00 1.19E+00 6.60E=01 2.8SE«01
1.03E+0« T.72E+03 1.96E+03 8.63E+02 3.55E+02 6,78Et01
3.67E+09 a>OE+10 2.26Efll 3.72E+11 9.00E*1I 2.10E+12
ttO.O MICROMETERS
H20 o 0.25
1.137«E*0« MG/DNCM
FILTER
7
0.19
l'.92E*01
1.22E>01
fc'.37E + 01
2.33E»1S
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) 6.58 3.68 2.51 1.95 0.80 0.33
GEO. MEAN DIA. (MICROMETERS) 2.06E*01 «.92E+00 3.0«E*00 1.98E+00 1.12E*00 5,11E>01
DM/DLOGD (MG/DNCM) l,03E + Oa l'.73E*03 1.99E + 03 8.83E + 02 3.70E*02 7,aaE + Ol
DN/DLOGD (NO. PARTICLE8/DNCM) ?.25Ef09 2'.78E*10 1.35E+M 2.1BE + 11 5.06E + 11 1.06B + 12
2.50Eo01
6'.37E«01
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
SQUARE ROOTS OF PSI BY STAGE 0.322 0.322 0.370 0.3UO 0.345 O.Slfl 0,31«
HOLE DIAMETERS BY STAGE (CENTIMETERS) 0.3616 0'.2«73 0.1759 0.1367 0.0898 0.0567 0.056T
-------
APIT.7 BRINK m«0 6/15/78
iMpACTOR FLOWRATE s o.o&o ACFM
IMPACTOR PRESSURE .DROP a fl.?IN. OF HP,
ASSUMED "ARTICLE DFNSITY = 2'.62 GM/CU.Cw'.
GAS COMPOSITION (PERCENT) . C02 i 0.00
CALC. MASS LOADING - u.SSUTE+OO GR/ACF
IMPACTOP STAGE
STAGE INDEX
050
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM, (MG/ACM) SMALLER THAN D50
CUM. (MG/nNCM) SMALLE" THAN DSO
CUM. (G&/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLE" THAN 050
GEO. MEAN DIA. (MICROMETERS!
DM/DLOGD (MG/ONCM)
ON/OLOGD (NO. PARTICLES/ONCM)
INLF.T SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER • G
IMPACTOR TEMPERATURE = 70,0 F = 21.1 c SAMPLING DURATION o t>,oo KIN
STACK TEMPERATURE = 70.0 f = 21.1 c
STACK PRESSURE = 29.17 IN. OF HG MAX. PARTICLE DIAMETER »
CO = 0.00
1.685JE+00 GR/ONCF
SO SI 32
1 2 5
4.03 2'.2tt 1.52
95.67 S'.ei 3.55
N2 B 79.60
i.o«23E+oa
S3 Sit
(15
0.93 0.«7
1.78 1.17
02
19. 95
S5
6
0.17
0.30
9.65E+03 3.8UE+02 3.36E+02 1.8QE+02 1.18E+02 3.03E+01
9'.96 6.37 3.2« 1.56 O.U6 fl',18
1.0flE + 03 6'.61E*02 3,S7E*02 1.63E + 02 U.81E + 01 1.86E + 01
1.07E + 03 6'.83E + 02 3,«7E + 02 1.6PE + 02 a'.9«E*01 1.92E*01
«.5«£-01 2'.90E-01 l.«7E-01 7.12E-02 2.10E»02 8,iae-03
0.67E-01 2.<»9E»01 1.52E-01 7.32E-02 2.16E»02 8.38E-.03
1.27E + 01 3'.01E + 00 1.85E*00 1.19E + 00 6.60E-01 2.85E-01
9.69E+03 1.51E+03 2.00E+03 8.39E+02 3,96E*02 7.01E+01
3.15E + 09 a'.05E + ln 2,30Etll 3.62E + 11 l.OOE + 12 2.21E + 12
uo.o MICROMETERS
H20 o 0.25
1.0722E»0<|
FILTER
7
O'. 19
1.22E-01
6'.3rE»01
2'.5SE+t3
AERODYNAMIC niAMFTERS ARE CALCULATEn HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 6.58 3'.68 2,51 1.55 0.80 0,33
GEO. MEAN OIA, (MICROMETERS) 2.06E + 01 tt'.92E + 00 3,0«E*00 1.98E + 00 1.12E*00 5,11E»01
DM/DLOGD (MG/DNCM) 9.72E + 03 -j'.SSE + OS 2,03E*03 8.59E + 02 a,13E*02 7.70E + 01
DN/DLPGD (Nf). PARTtcLES/ONCM) 2.11E + 09 2'.U5E + |n 1.38E*11 2.12E + 11 5.6«E + 11 1,10E*12
2.30E>01
6.37E+01
l.OOE+13
NORMAL (ENGIMEERING STANDARD) CONDITIONS APE 21 DEC C AND 760MM HG.
SQUARE ROOTS pF PSI BY STAGE 0.122 0.322 0.370 0.540 0,3«5 0.3I« 0.310
HOLE niAMETE»S RY STAGE (CENTIMETERS) 0.3616 0.2«72 0.1759 0.1367 0.0898 0,0567 0,0567
-------
APII-B BRINK 1040 6/15/78
IMPACTOR FLOWRATE « 0.060 ACFM
IMPACTOR PRESSURE DROP e 0.2IN. OF HG
ASSUMED PARTICLE DENSITY c Z'.bZ GM/CU.CM'.
GAS COMPOSITION (PERCENT) CO? «
CALC. MASS LOADING a U.1505E»00 SR/ACP
IMPACTOR ST»GE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/8TAGE
CUM, PERCENT OF MASS SMALLER THAN 050
CUM, (MG/ACM) SMALLER THAN 050
CUM, (MG/D^CM) SMALLE" THAN 050
CUM, (GR/ACF) SMALLER THAN 050
CUM, (OR/D^CF) 8MALLE" THAN 050
6£0. MgAN DIA. (MICROMETERS)
DH/DLOGD (MG/DNCM)
DN/OLOGD (NO. PARTICLE8/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER « c
IMPACTOR TEMPERATURE a 70,0 F = 21.1 c SAMPLING DURATION > 6,00 MIN
STACK TEMPERATURE « 70.0 F > 21.1 c
STACK PRESSURE « 29.17 IN. OF HG MAX'. PARTICLE DIAMETER n 40.0 MICROMETER8
0.00
CO a 0.00
GR/DNCF
31 82
21
8'.24 1.32
3'.71 3,10
N2 n 79.80 02 o 19.95
9,a977E+o3 MG/ACM
sj sa ss
4 S 6
0.9J o.«T 0,17
1.05 1.10 0,32
SO
1
4.03
87,36
8.82E + OS J'.7UE*02 S.13E+02 1.0flE*02 1.11E*02 3,8SE*01
9'.77 5.94 2'.74 J.67 o'.3« 0.21
9.28E + 02 5'.64E*02 2.60E*02 l.S9E»02 S. 106*01 l,9fce*0l
9.55E + 02 3'.80E«02 2,67E«02 1.63E*02 S.25E*01 8,022*01
4.06E-01 2'.46E»01 1.14E-01 6.94E-02 2.23E<>02 8,37E=03
4.17E-01 2.5Ue=01 l,17E°Oi 7.14Ea02 2.29E=02 8,eSEo03
1.27E+01 3.0JE+00 1.8SE+00 1.19E+00 6.60E-01 2.83E-01
8.83E+03 1.4TE+03 l.B6E*03 U.86E*08 3.72E+02 7.48E+01
3.15E+09 3.94EtlO 2.1«E+11 2.10E»11 9.43E+11 2.36E+12
H20 • 0.25
9.7700E*03 M6/ONCM
FILTER
7
o'.ze
200?E*01
1.22E°01
6'.70E»01
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 6.3S 3.68 2.51 l.SS 0.80 0,33
GEO. MEAN DIA. (MICROMETERS) 2.06E + 01 0°.92E + QO 3,04EfOO 1.96E + 00 1.12E + 00 S.llEoOl
DM/DLOGD (MG/DNCM) 8.88E+03 l'.49Et03 1.89E + OJ 4.97E + 02 3.88E + 02 8.21E + 01
DN/DLOGD (NO. PARTicLES'ONCH) 1.93E+09 2.38E+10 1.88E+11 1.23E+11 5.31E+11 1.17E+18
2.30Eo01
l'.05E*l3
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEC C AND 760MM HG.
SQUARE ROOTS OF PSI R* STAGE 0.322 0.322 0,370 0.3UO 0,343 0,314 B.314
HOLE DIAMETERS BY STAGE (CENTIMETERS) 0,3616 0.2472 0,1759 0,1367 0.0898 0,0567 0,0567
-------
APTI-9 BRINK lOUfl b/16/78
IMPACTOR FLOWRATE = 0.060 ACFM
IMPACTOR PRESSURE r>ROP s 0,21*. (IF HG
ASSUMED PARTICLE PFNSITY = 2.62 GM/CU.CM'.
GAS COMPOSITION (PERCENT) C02 » 0.00
CALC. MASS LOADING = 3.8770E+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX DUMBER
D50 (MICROMETERS?
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF M»SS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN oso
CUM, (MG/r>NcM) SMALLER TH*N D50
CUM. (GR/ACF) SMALLER THAN 090
CUM. (GR/pNcF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
OM/OLOGD (MG/ONCM)
(NO. PARTICLES/DNCM5
INLET SAMPLE nonmEn BRINK CASCADE IHPACTOR NUMBER - c
IMPACTOR TEMPERATURE s ?o.o f s 21,1 c SAMPLING DURATION = 6.00 MIN
STACK TEMPERATURE e 70.0 F a 21.1 C
STACK PRESSURE = 29.17 IN. OF HG MAX. PARTICLE DIAMETER a
uo.o MICROMETERS
N2 « 7<9.80 02
8.8718E+03 MG/ACM
19.95
S3
a
0.9J
1.03
34
5
35
CO s 0.00
3.9881E+00 GR/DNCF
SO SI S2
1 2 3
«.03 2.2U 1,52
81.75 3'.39 2,71
8.25E + 03 3'.U2E + 02 2.73E + 02
9'.61 5.86 2.86 1.28
B.52E*02 5'.20E + 02 2.54E + 02 l.HIE + OZ 3.2«F + 01 1.28E + 01
8.77E*02 5'.35E+02 2.61E + 02 1.17E + 02 3.3SE+01 l,31E*Ol
3.73E-01 2'.27E«01 1.11E"01 «.97E = 02 1.41E-02 5:.57E»03
3.83E-01 2'.3«E = 01 t.l
-------
APII-10 BRINK 10*10 6/16/78
IMPACTOR FLOWRATE o 0,060 ACFM
IMPACTOR PRESSURE DROP = 0.2IN. OF HG
ASSUMED PARTICLE DENSITY » 2'.62 GM/CU.CM.
GAS COMPOSITION (PERCENT) C02 a 0.00
CALC. MASS LOADING a J."»550E»00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
030 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM, PERCENT OF MASS SMALLER THAN DSO
CUM, (MO/ACM) SMALLER THAN DSO
CUM, (MG/DNCM) 8MALLE" THAN DSO
CUM, (GR/ACF) SMALLER THAN DSO
CUM, (cR/oNcF) SMALLE" ™*N DSO
GEOi MEAN DIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD fNO. PARTICLE8/DNCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER = G
IMPACTOR TEMPERATURE « 70,0 F o 21.1 c SAMPLING DURATION • 6.00 MIN
STACK TEMPERATURE o 70.0 F a 21.1 C
STACK PRESSURE s 29.17 IN, OF HG MAX'. PARTICLE DIAMETER o ao.O MICROMETERS
CO B 0.00
U.068UE+00 GR/DNCF
N2 s 79.80 02 o 19.95
9.0503E*03 MO/ACM
SO
1
«.03
83.82
SI
2
2.2fl
S'.JJ
82
J
1,52
2.54
S3
fl
0.93
1.57
3D
5
0.«7
0.85
0'.38
35
6
0.17
0.22
2.22e*01
O'.lfl
3'.3bE»02 2.56E»02
'.15 5.5« 2.79 1.30
8.282*02 5.01C*02 2,32E»02 1.186*02 3.«3E*01 1,3BS»01
8.52E*02 5.16E*02 Z,99E«02 1.ZJE*02 3.53E«01 1.3lE»Ol
3.62E-01 2'.19E = 01 1.10E=01 5.1«£o02 1.30E-02 3, 572=03
3.72E=01 2'.25E-01 1.13E-01 5.29Eo02 1.3«Eo02 9.73Eo03
1.27E + 01 J'.OIE + OO 1.83E + 00 1.19E»00 fc.60e = 01 ?,83E-=01
8.fl9E+03 1.32e*03 1.32E*03 6,«6E+02 2.8?E*02 3.18E+01
3.02E+09 3.50E+10 1.76E*11 2.79E+11 7.29E+1J 1.62E«12
H20 n 0.88
MG/ONCM
FILTER
7
0.11
1.?SE»1S
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 6.58 3.68 2.Si 1.35 0.80 0.13
GEO. MEAN OIA. (MICROMETERS) 2.06EtOi a'.92E»oo 3,o«e+oo i.98E+oo I.IZE+OO S.UE=OI
DM/DLOGD (MG/ONCM) 8.52E+03 1.33E+03 1.55E*03 6.61E»02 3.00E+02 3.655*01
DN/DLOGP fNO. PABTICLES/DNCM) 1.85E*09 2'.1«E+10 1.05E*11 1.632 + 11 fl.lOE+11 8,868*11
2,30Eo01
a.36g*01
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG.
SOUARE ROOTS OF PSI BY STAGE 0.322 0'.322 0,370 0.3(10 0.3
-------
APII-ll BRI^K man 6/16/78
IMPACTOH FLPWRATE s ft.060 ACFM
IMPACTC1R PRESSURE PROP = 0.2IN. OF HG
ASSUME" PARTICLE DENSITY = j'.6? GM/CU.CM'.
GAS COMPOSITION (PERCENT) C02 = ft.00
CALC. MASS LEADING s 3.«980E+00 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAQE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM, (MG/ACM) SMALLER THAN DSO
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN 050
CEO. MEAN DIA. (MJCPOMETERS)
DM/DLOGD (MG/DNCM)
DN/DLOGD (NO. PARTTCLE3/ONCM)
INLET SAMPLE MODIFIED BRINK CASCADE IMPACTOR NUMBER - o
IMPACTOR TEMPERATURE = 70.0 F c 21.1 c SAMPLING DURATION « 6.no MIN
STACK TEMPERATURE = TO.O F = 21.1 c
STACK PRESSURE = 29.17 IN. OF HG MAX. PARTICLE DIAMETER a
02 B J9.95
S3
It
0.93
1.37
Stt
5
0.«7
0.90
35
6
0.17
0.22
CO o 0.00 N2 B 79.80
3.5983E+00 GR/DNCF
SO SI 82
1 2 3
4.03 2'.2U 1.52
73.01 3'.28 2.67
7.37E+03 3.31E+02 2.69E+02 1.38E*02 9.08E+01 8.22E+01
10.53 6'.51 3.21 1.56 fl'.«5 O'.IB
B.U3E+02 5'.21E*02 2.59E+02 1.25E + 02 3.63E*01 1.U7E + 01
8.67E + 02 5'.36E»02 2.66E + 02 1.28Et02 3.73E»01 1.51E + 01
3.68E=01 2.2BE-01 1.13E=01 5,««E-02 1.59E-02 6,«3E«03
3.79E-01 2'.S4E"01 1.166-01 5.60E-02 1.63E-02 6.61E-03
1.27E + 01 3'.01E*00 I.eSEtOO 1.19E + 00 6.60E-01 2.85E-01
7,39Et03 l'.30E + OI 1.60E + OJ 6,U6Et02 3.01E*02 5.1«E*01
2.63E + 09 3>8E + 1« 1.8SE+11 2.79E+U 7.71E+11 1.62E+12
«o.o MICROMETERS
H20 a 0.25
FILTER
7
0.15
1.22E°01
5.03E»01
1.99E+13
AERODYNAMIC DIAMETERS ARE CALCULATED HERF. ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 6.58 3'.68 2.51 1.55 0.80 0.33
GEO. MEAN DIA. (MICROMETERS) 2.06E*01
-------
APII-12 BRINK jnuo 6/17/78
IMPACTOR FLOWR*TE = o.o<>o ACFM
IMPACTOR PRESSURE (iROP = 0.2IN. OF HG
ASSUMED PARTICLE OF.NSITY a 2'.6? GM/CU.CH'.
CAS COMPOSITION (PERCENT) C0? f
CALC. MASS LOADING a 0.601«E*00 6R/ACF
IMPACTOR STAGE
STAGE INDFX NUMBER
oso (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/DNCF) SMALLER THAN 050
GEO. MEAN OIA. (MICROMETERS)
OM/DLOGD
DN/OLOGD (NO.
INLET SAMPLE MODIFIED 9RINK CASCADE IMPACTOR NUMBER » C
IMPACTOR TEMPERATURE = 7b.o F = 21.1 c ' SAMPLING DURATION . 4.00 MIN
STACK TEMPERATURf s 76.0 F s 21.1 C
STACK PRESSURE = 29.17 IN. OF HG MAX. PARTICLE DIAMETER o OO.O MICROMETERS
0.00
CO = o.OO
GR/DNCF
81 S2
2 3
2'.2fl 1.52
03 l'.80E*03 2.02E + 03 7.26E + 02 2.91E»02 3,70E»Ol
3.09E+09 0.81E+10 2.12E+11 3.13EM1 7,37E*11 1.18E»12
N20 a 6'.J5
1.0832E*OU M6/DNCM
FILTER
7
O'.IO
i.
1.22E°01
DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNQ DYNAMICS DEFINITION
050 (MICROMETERS) 6.58 3'.68 2,51 1.55 0.80 0,33
GEO. MFAN DIA. (MICROMETERS) 2.06E + 01 0'.92E + 00 3.00E + 00 1.98E*00 1.12E + 00 S.llEoOl
DM/OLOGD (MG/DNCH) 9.83Ef03 l'.81E + 03 2,05E»03 7.03E + 02 S.OSE + 02 0,lie«01
DN/DLOGD (NO. PARTICLES/DNCM) 2.10E + 09 2'.91E*10 l.J'E + 11 l.BaE + 11 0.15C + 11 S.86E+11
2.30E°01
3'.]5E«01
5.26E«1Z
NORMAL (EwGINEE"ING STANDARD) CONOITIC1NS ARE ?\ DEC C AND 760MM HG,
SQUARE ROOTS OF PSI BY STAGE 0.322 0.322 0.370 0.300 0.305 0.310 0.310
HOLE DIAMETERS RY STAGE (CENTIMETERS) 0.3616 0.2072 0.1759 0.1367 0.0898 0.0567 O.OS6.T
-------
APII-13 RPINK inun 6/17/78
IMPACTOR FLCIWRATF i 0.060 ACfM
IMPACTOR PRESSURE DROP a O.?IM. OF HG
ASSUMED PARTICLE DENSITY s z'.tz GM/CU.CM'.
GAS COMPOSITION (PERCENT) COS r
CALC. MASS LOADING s «.902 2.72E+01 l,01E»Ol
4.84E-02 1.16E-02 4,29E»03
fl.98E»02 1.19E-02 tt.UlE.03
1.19E+00 6.60E»01 2,85E=01
7.02E+02 2.91E+02 3.97E+01
J.03E+11 7.37E>11 1.25E+12
H20 n fl',25
FILTER
7
O'.tO
!'022E<>01
3'.S5E«01
AEROOVNA"IC OIAyETFRS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 6.58 3'.68 2.51 1.55 0.80 0,33
GEO. MEAN DIA. (MICROMETERS) 2.06E+01 U.92E+00 3.0KE+00 1.98E+00 1.J2E+00 3,11E»01
DM/DLOGD (MG/DNCM) 1.06E + Ofl l'.83E + 03 1.99E + 05 7.19E + 02 3.03E + 02 U.36E*Ol
DN/DLOGD (NO. PARTICLES/ONC^) 2.ME + 09 P.9UE + 10 1.35E + 11 1.78E + 11 1.15E + 11 6.23E + 11
2.JOE.01
J.JSE»01
5.26E+12
(ENGINEERING STANDARD) CONDITIONS APE ?1 DEG C AND 760MM HG,
SQUARE HOOTS OF PS! B¥ STAGE 0.322 0.322 0.370 n.3afl 0.315 0.3ia O.Jlfl
HOLE DItMETERS B* STAGE (CENTIMETERS) 0.361ft 0.2«72 0.1759 0.1367 0.0898 0.0567 0,0567
-------
APIOo| U. OF W. A 6/12«l«/78
IMPACTOR FLOWR4TE s 1.630 ACFM
IMPACTOR PRESSURE DROP s «.9IN. OF HG
ASSUMED PARTICLE OENSITY = 2'.62 GM/CU.CM'.
CA8 COMPOSITION (PERCENT) C02 = 0.00
CALC. MASS LOADING o 7'.«"20Eo05 GR/ACF
IMPACTOP STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS {MILLIGRAMS)
MG/ONCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MS/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLE" THAN 050
CUM, (GR/ACF) SMALLE" THAN D50
CUM. (GR/DNCF) SMALLE" THAN 050
GEO. MEAN OIA. (MICROMETERS)
DM/OLOGD
DN/DLOGD (NO.
IMPACTOR TEMPERATURE a 85.0 F a 29.fl C
STACK TEMPERATURE » 85.o f « 29.a c
STACK PRESSURE u 28.72 IN. OF HG MAX. PARTICLE DIAMETER
SAMPLING DURATION B ,2880 MIN
?o.o MICROMETERS
CO
S2
2
90
13
N2 B 79.20
J.7144E
83
3
l.Tfl
1.33
02
°oi MG/ACM
sa
a
0.59
0.86
» 19.80
35
5
0.30
0.39
H20 B
1.8559E-01 MG.
FILTER
6
1'.37
B 0.00
05 GR/ONCF
si
i
3'. 90
IS'.Sl
f.2SE=01 2.53E»02 1.25E»02 7.00Eo03 fl,80E=OS
32'.82 19.09 12.37 8.60 6.01
5.63E-02 3.27E-02 2.12E-02 1.47Ee02 1.03E°02
6'.09E-02 3.54E=02 2'.30E = 02 1.60E"02 l,12Ei02
2.05 9.27E°06 6.44E°06 4,30E<06
2'.66E°05 1.55E°05 1.00E = 05 6'.98Eo06 4.88Ec.06
B'.88E + 00 3.94E + 00 2.62E*00 I'.OIE + OO «.20E«FOl
T.77E-01 3.71E*01 3.52E-02 1.49E-02 1.68E-02
1.84E+05 4.11E+08 1.43E»06 l.oaE*07 1,60E*06
f.OO
1.18E-0?
2.16Eo01
3.71E»02
2.70E+01*
AERODYNAMIC DIAMETERS A»E CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 6.a« 6,fl3 2.87 1.00 0,55
GEO. MEAN DIA. (MICROMETERS) l.aaE + oi 6.aSE+oo «'.3oE+oo i'.70E*oo 7,««E»oi
DM/DLOGD (MG/DNCM) l'.78E»01 3.74E + 01 3.56E-02 1.53E«02 1,83E»02
DN/DLOGO (NO. PARTICLES/DNCM) l'.13E*05 2.68E + 08 8.58E*05 5.99E»06 8,S8E»07
1.90Ba01
J.71Eo02
NORMAL (ENGINEERING STANDARDl CONDITIONS ARE 21 DEG C AND 760MH HG.
SQUARE ROOTS Of PSI BY STAGE O'.IOU 0.330 0.371 0.271 0.308
HOLE DIAMETERS P" STAGE (CENTIMETERS) 1.8237 0.5768 0.2501 0.0808 0.0520
-------
APlo-3 U. Of w. D fe/l3-ia/7R
IMPACTOR FLPWR4TF B 1.510 ACFM
IMPACTOP PRESSURE PROP = &.6IN. nf-' HG
ASSUMED PARTICLE DENSITY = 2'.fa2 GM/CU.CM'.
GAS COMPOSITION (PERCENT) C02 =
CALC. "ASS LOADING = 1.1299E-Oil 6R/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSO (MICROMETERS)
MASS (HILLIG»AMS>
MG/DNCM/STAGE
CUM. PERCENT nr MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/pNCM) SMALLER THAN 050
CUM. (GR/ACF) SHALLE" THAN 050
CUM. (Gf'nNcF) SMALLE" THAN 050
GEO. MEAN OIA. (MICROMETERS!
OM/DLOGD (MG/ONCM)
DN/DLOGD (NO. PARTJCLES/DNCH}
IMPACTOR TEMPERATURE = 50.0 F = 10.0 c
STACK TEMPERATURE a 50.0 F = 10.0 C
STACK PRESSURE c 28.72 IN. OF HG MAX. PARTICLE DIAMETER =
SAMPLING DURATION s 1867
0.00 CO o 0.00
1.1««5E-P« GR/DNCF
SI
1
W2 s 79.20 02 = 19.80
2.5855E»01 MG/ACM
32 83 Sa S5
2 3 a 5
a'.Ol 3.98 1.79 0.70 0,28
13.83 2.88 1.66 0.72 0,58
.l'.75E = 01 3.65E-02 2.11E-02 9.1«E-03 7.36E-03
32'.99 19.Oa 11.00 7.51 U.70
8.53E-02 «,92E-02 2.8ilE-02 1.9UE-02 1.22E.02
8'.6a£ = 02 a.99E-02 2.8BE»02 1.97E-02 1.23E.02
3'.73E-05 2.15E-05 1.2<1E-05 8.a8E-06 5.31E-06
3'.78E = 05 2.18E-05 1.26E-OS 8.59E-06 5.38E-06
8'.96E + 00 3.99E + 00 2.67E + 00 1.12E + 00 a.a«E«01
2.51E-01 1002£+01 6.06E-02 2.26E-02 1.8UE-02
2.55E+05 1.17E+08 2.S3E+06 1.17E+07 1.53E+08
20.0 MICROMETERS
H2D B I'.OO
2.6189E-01 MG/ONCM
FILTER
6
0.97
l'.23E-02
1.98E-01
U.09E-02
C DIA"FTF.RS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
DSO (MICROMETERS) b'.SU 6.09 2.9« 1.18 0,51
GEO. MEAN OIA. (MICROMETERS) I'.aSE + Ol 6.51E*00 a.37E + 00 l.BTE + OO 7.77E-01
OM/DLOGD (MG/ONCM) 2.53E-01 1.03E+01 6.13E-02 2.31E-02 2.01E-02
DN/DLOGO (NO. PAPTICLES/ONCM) 1.57F+05 7.13E+07 l.aiE*06 6.79E+06 8.18E+07
3.61E«01
U.09E°0?
NORMAL (ENGINEERIMR STANOARD) CHNDITlnNS ARE 21 DEG C AND 760MM HG.
SQUARE ROOTS flF PSI ^ STAGE O.t«« 0.130 O.J71 0.319 0.321
HOLE DTAMETEPS RY STAGE (CfMTI METfRS) . 1.82J7 0.57U1 0.2512 0.0793 0.0«95
-------
APIO-u U. OF w. A 6/1U-15/78
IMPACTOR FLOHRATE n i.63o ACFM
IMPACTOR PRESSURE DROP - 1.51*. OF HC
ASSUMED PARTICLE DENSITY « z'.bZ GH/CU.CM.
GAS COMPOSITION (PERCENT) COS *
CALC. MASS LOADING a 2.«56flEoO
-------
APIO-5 U. Of w. n 6/11-15/7B
TMPACTOR FLdWRATE z 0.760 ACFU
IMPACTOP PRESSURE rROP s 6.2IN. OF HG
ASSUMED PARTICLE DENSITY = 2'.62 GK/CU.
GAS COMPOSITION (PERCENT) C02 = 0.00
CALC. MASS LOADING s 6.62HE-OU GR/ACF
IMPACTOR STAGE
STAGE INDE* NUMBER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/ONCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM, (ME/ACM) SMALLER THAN DSO
CUM. (MG/DNcx) SMALLER THAN oso
CUM. (GR/ACF) SMALLER THAN D50
CUM. (GR/DNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
OM/DLOGD
DN/DLOGD (NO.
IMPACTOP TEMPERATURE s 60.0 F = 15.6 c
STACK TEMPERATURE = 1,0.0 F = 15.4 c
STACK PRESSURE s 28.2<) IN, OF HG MAX. PARTICLE DIAMETER
SAMPLING DURATION s
1270
CO = 0.00
6.9073E-0« GR/DNCF
31
1
5.73
32.76
T.25E + 00
20'.89
N2 o 79.60 02
l.SISlEtOO MG/ACM
19.90
S2
2
5.68
J.71
3U
a
l.OS
1.09
35
5
0,«a
O,a3
11.93
2.13
1.09
S3 .
3
2.57
2.97
1.15F-01
fl.76
3.16E-01 1.81E-01 7.21E-02 3.22E=02 1.65E=02
3.30E-01 1.89E-01 7.52E-02 3.36E-02 1.72E.02
1.386-0/1 7.90E-05 3.15E-05 1.«1E-05 7.19E»06
l'.aaE»Ofl 8.20E-05 3.29E-05 1.17E-05 7.31E-06
1.07E*01 5.71E+00 3.82F+00 1.63E+00 6,71E»01
2'.30E + 00 5.99E*01 3.29E.01 1.05E-01 «.«3E=0?
1.37E+06 1.56E+08 «.30E*06 1.7BE+07 1.07E+08
20.0 MICROMETERS
H20 s fl.50
1.5806E+00 MS/ONCM
FILTER
6
o.as
1.72E-02
J.10E-01
S'.71EoOa
l'.flOE*09
AERODYNAMIC OUMETfRS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 9'.32 9.25 tt.2| 1.71 0.77
GEO. MEAN DIA. (MICROMETERS) l'.7flE + 01 9.29E + 00 6.2flE + 00 2.6BE + 00 1.15E + 00
DM/OLOGD (MG/DNCM) 2'.11E + 00 «.01E + 01 3.32E-01 1.06E-01 U.72E.02
DN/DLOGD (NO. PARTjcLES/PNCMl B.U2E+05 9.56E+07 2.61E+06 I.05E*07 5.98E+07
s'.uae.oi
5'.71E»oe
6,78E»08
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 OEG C AND 760MM HG.
SQUARE BOOTS OF PST P.Y STAGE O'.iua 0.130 0.371 0.319 0,321
HOLt DIAMETERS BY STAGE (CENTIMETERS) 1.8237 0.57(13 0.2512 0.0793 0.0(195
-------
APIO-6 U. OF W. D 6/15-16/78
IMPACTPR FLOWBiTF s 1.510 ACFM
IMPACTOR PRESSURE DROP s 6.UN. OF MG
ASSUMED PARTICLE DENSITY = 2'.62 GM/CU.CM'.
CAS COMPOSITION (PERCENT) C02 « 0.00
CALC. MASS LOADING = 3.U71E-04 OR/ACF
JMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MS/ONCM/STAGE
CUM, PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/oNcM) SMALLER THAN DSO
CUM. (GR/ACF) SMALLER THAN 050
CUM, (GR/DNCF) SMALLER THAN 050
GEO. MEAN DIA. (MICROMETERS)
OM/DLOGD (MG/ONCM)
DN/DL06D (NO. PARTICLES/ONCM)
IMPACTOR TEMPERATURE s 65,o F e ie.s c
STACK TEMPERATURE • 65.o F s is.3 c
STACK PRESSURE = 28.Ill) IN, OF HG MAX. PARTICLE DIAMETER «
SAMPLING DURATION o 1343
CO a o.OO
3'.3288E-04 GR/DNCF
SI 82
1 2
02 l,35e«02 9,66Eo03
6'.38E°05 3,47E°OS 1.35E-05 3.63E=06 2,36E°06
6'.68E°05 3.6«E'05 l.«lEo05 5.906=06 ?,472=06
9.00E+00 U.OUE+00 2.69EtOO l.lSE+00 4.48Eo01
8'.78E = 01 1,93E*01 l.flbE-Ol 4.63E-02 1.96E-OJ
8.77E»05 2.16E*08 5.45E+06 2,33E*07 1,60E»08
2o'.o MICROMETERS
H20 a 0,50
7.6174E-OJ MO/ONCM
FILTER
6
0,31
a.OOEoOl
1.8BEo02
1.71E«09
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 6'.61 6,56 2.97 1.20 0,52
GEO. MEAN DIA. (MICROMETERS) f.«6E+01 6,59E+00 4.42E+00 1.89E+00 7,86Ec01
DM/DLOGn (MG/DNCM) 8'.83E«01 1.97E + 01 1.48E»01 4.75E-02 2,16E"02
r»N/DLOGD (NO. PARTICLES/DMCMI 5'.38E + 05 1,31E + 08 3.29E*06 l.S5E*07 8,fl7E + 07
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG,
SQUARE ROOTS OF PSI BY STAGE O'.14<| 0.330 0.371 0.319 0,321
HOLE DIAMETERS BY STAGE (CENTIMETERS) T.8237 0.5743 0.2512 0.0793 0,0495
-------
APIO-7 U. C1F w. A 6/15-16/7B
IMPACTDR FLOWRATE = 1.630 ACFM
IMPACTOR PRESSURE DROP = 4.6IN. Of HG
ASSUMED PARTICLE DENSITY c z'.bz GM/CU.CM'.
CAS COMPOSITION (PERCENT) CO? B 0.00
CALC. MASS LOADING s 3.063RE-04 GH/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
DSD (MICROMETERS)
MASS (MILLIGRAMS)
MG/ONCH/STAGE
CUM. PERCENT OP MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM, (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/pNcF) SMALLER THAN 050
GEO. MEAN OIA. (MICROMETERS)
DM/DLOGD (MG/DNCM)
(NO. PARTJCLES/DNCM)
IHPACTOR TEMPERATURE a 65.0 F B m.j c
STACK TEMPERATURE o 65.o F a. 18.3 c
STACK PRESSURE e 28,UU IN. OF HG MAX. PARTICLE DIAMETER a
SAMPLING DURATION a 1343 »IN
CO a O'.OO
3'.2100E-0« GR/DNCF
SI 32
1 2
5'.90 3.B9
33'.26 a.99
N2 B 79.60 02 a 19.90
7.0UOE-01 MG/ACM
S3 3a 39
345
1.T2 0.58 0,31
3.02 1.3« 0.46
5.62E-01 8.«3E«02 5.10E=02 2.26E-02 7,772-03
23.17 11.99 S.Oa 1.96 0,90
l'.65E = 01 8.aOE = 02 3.53E«02 1.37E-02 6.295.03
1.72E-01 8.B1E-02 3.70E-02 l.««Eo02 6,396-03
7'.19E = 03 3.67E-05 1.S4E-05 5.99E-06 2.73E-06
7'.53E-05 3.B5E-05 r.62E-03 6.28E-06 2.88E-06
8.83E + 00 3.90E + 00 2'.39E + 00 l.OOE + 00 a,23E°01
7'.92E«01 1.2SE + 02 l.««E»01 4.82E-02 2.77E-02
1.51E + 09 6.03E + 06 J.a8£ + 07 2,67Ei08
20.0 MICROMETERS
H20 a 0.30
7.34576-01 H6/DNCH
FILTER
6
0'.39
6',39E-03
2'.19So08
t'.38E + 0«
AERODYNAMIC DIAMF.TERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 6.S6 6.S5 2.84 0.99 0,53
GEO. MEAN OIA. (MICROMETERS) l'.4UE + 01 6.36EtOO 4.25E*00 1.68E + 00 7,406-01
OM/OLOGD (MG/DNCM1 7'.96E-01 1.24E + 02 1.46E-01 4.966-02 3.046-02
DN/DLOGD tun. PAPTTCLES/DNCM) 5'.1
-------
APIO-fl U. OF w'. A 6/16-17/Tft
IMPACTOP FLOWRATE = i.6so ACFM
IMPACTOR PRESSURE DROP » «.BIN. OF «G
ASSUMED PARTICLE DENSITY B 2'.62 GM/CU.CM'.
GAS COMPOSITION (PERCENT) C02 «
CALC. MASS LOADING a 6.«760E.05 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER THAN D50
CUM. (MG/DNCM) SMALLER THAN 050
CUM. (GR/ACF) SMALLER THAN 050
CUM. (GR/PNCF) SMALLER THAN oso
GEO. MEAN OIA. (MICROMETERS)
DM/DLOGD (MQ/ONCM)
DN/DLOGD (NO. PAHTICLES/DNCM)
IMPACTOR TEMPERATURE a 70.0 F B 21.1 c
STACK TEMPERATURE B 70.0 F > 21.1 c
SAMPLING DURATION t 1326 MIN
STACK PRESSURE • 28.56 IN. OF HG
0.00 CO B 0.00 *
6'.80flOE-05 GR/DNCF
MAX. PARTICLE DIAMETER »
« 79.80' 02 o 19.95
i.uei9E°oi MG/ACM
SI S2 S3 8« S5
12345
3'.91 3.91 1.73 0.59 0.51
6.TO 0.87 0.56 0.27 0,17
l'.13E = 01 l.«9E=02 9.6lEo03 «.63E»OS 2.92E=OS
26.13 16.S« 10.36 7.39 5.51
S'.87E-02 2.fl5E-02 1.5flE = 02 1.09E-02 8,17E = 03
«.07E=02 2.S7E-02 1.61E-02 1.15E-02 B.SBEoOS
1.64E-OS 1.07E-05 6.71E-06 fl.78E»06 3.37E-06
l'.78E = 05 1.13E = 05 7.0SE = 06 5.03E«06 3.75EQ06
8'.8SE + 00 3.91E + 00 2.60E + 00 1.01E + 00 fl.a5E«01
T.62E-01 2.17E+01 2.72E»02 9.B6E-03 1.03E-02
1.71E+05 2.65E+OB 1.1JE»06 7.0«E^06 9,91E«07
20.0 MICROMETERS
M20 B
i.5S7pE«.oi
FILTER
0.50
8.98EQOJ
2',83E«02
2'.06E«0«
AERODVNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
D50 (MICROMETERS) 6'.39 6.38 2.85 1.00 0,55
GEO. MEAN DIA. (MICROMETERS) I'.auEtoi 6.3BE+oo «.26E*oo f.69e*oo 7,«iE=oi
RM/DLOGD (MG/DNCM) l'.63E = 01 2,19E*01 2.75E-02 1.02E-02 1,13E»02
DN/RLOGD C"fl. PARTjcLES/DNCM) 1.05E + 05 1.61E + 08 6.77E*05 «.05E»06 5.32E + 07
3.90Ea01
9'.21E«OB
NORMAL (ENGINEERING STANDARD) CONDITIONS ARE 21 DEG C AND 760MM HG.
SQUARE ROOTS OF PSI BY STAGE fl'.iau 0.330 0.371 0.27J 0.309
HOLE DIAMETERS RY STAGE (CENTIMETERS) l'.8237 0.5768 0.2501 0.0608 O.OS20
-------
APln.Q U. HF W. D 6/16-17/7B
TMPACTOR FLOWRATE = 1.510 4CFM
IMPACTOR PRESSURE DROP = 6.5IN. OF HG
ASSUMED PARTICLE DENSITY a 2'.b2 CM/CU.Cn'.
GAS COMPOSITION (PERCENT) CO? = 0.00
CALC. ''ASS LOADING s 6.2«3lE-05 GR/ACF
IMPACTOR STAGE
STAGE INDEX NUMBER
050 (MICROMETERS)
MASS (MILLIGRAMS)
MG/ONCM/STAGE
CUM. PERCENT OF MASS SMALLER THAN oso
CUM. (MG/ACM) SMALLER THAN 050
CUM. (MG/DNCM) SMALLER THAN oso
CUM. (GR/ACF) SMALLER THAN D50
CUM. (GR/nNcF) SMALLER THAN 050
GEO. MEAN DIA. [MICROMETERS)
DM/DLOGD (MQ/DNCM)
DN/DLOGD (NO. PARTICLES/DNCM)
IWPACTOR TEMPERATURE = 70.0 F B 21.1 c
STACK TEMPERATURE « 70.0 F a 21.1 C
STACK PRESSURE « 28.56 IN. OF HG MAX. PARTICLE DIAMETER
SAMPLING DURATION * 1326
CO * O'.OO
6.S592E-05 GR/ONCF
SI S2
1 2
a.07 a,on
5.91 0.78
N2 = 79.RO 02 a 19.95
1.0266E-01 HG/ACM
S3 S« 35
3 a S
1.81 0.71 0.28
o.ae o.23 0.27
1.10E»01 l.aSE-02 8.8QE=03 a.26E-03 5.00E-05
2?'.ou i7.«i 11. IB e.60 5.si
3.8fcE»02 ?.«9E»02 1.6UE-02 1.23E»02 7,58E=03
a'.06E"02 2,<>1E-02 1.72E-02 1.30E-02 7.97E-03
r.fc9E-05 1.09E-05 7.17E-06 5.«OE=06 3.3ie-06
1.77E-05 1.1«E"05 7.53E-06 5.&7E-06 S,«8E»06
<»'.02E + ftn «.05E + 00 2.7JE + 00 l.l«EtOO U.«8F.-Ol
l'.58E"01 O.OUE + 00 2.56E-02 1.05E-02 1.25E-02
T.57E+05 a,fl5E+07 9.U8E+05 5.22E+Ob 1.01E*08
20.0 MICROMETERS
H20 « 0.25
1.5010E-01 MG/DNCM
FILTER
6
O'.flJ
7-.97E.OJ
2'.OOEaOI
2.«5E*09
AERODYNAMIC DIAMETERS ARF CALCULATED HERF ACCnHOING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 6'.6« 6.59 2.98 1.20 0.52
GEO. MEAN OIA. (MICROMETERS) r.«7E+oi 6.«>iE+oo «.«SE+OO I.BQE+OO 7.88E-oi
DM/DLORD (MG/DNCM) 1.59E-01 «.08E*00 2.59E-02 1.08E-02 1.37E-02
ON/PLOC-D CNn. PAHTTCLES/DNCM) 9.65E»OU 2.69E + 07 5.67E + 05 3.0«E + 06 5.35E + 07
1.66E.01
2'.65E-02
l'.OaEt09
NORMAL (ENGINEERl'Ifi STANDARD) CONDITIONS APE ?1 DEG C AND 760MM HG,
SQUARE ROOTS OF PSI BY STAGE 0.10U 0.330 0.371 0.319 0.321
HOLE DIAMETERS BY STAGE (CENTIMETERS) 1.8237 0.57U3 0.2512 0.0793 0.0«95
-------
APIO-10 U. OF W. 0 6/18-19/78
IMPACTOR FLOI*RATE s i.sio ACFM
IMPACTOR PRESSURE DROP = h.SIN. OF HG
ASSUMED PARTICLE DENSITY a 2'.62 GM/CU.CM'.
SAS' COMPOSITION (PERCENT) C02 e o'.OO
CALC. MA8S LOADING a 9.2oi MG/
84
4
0.71
0.32
02 B 1'
ACM
85
5
0,28
0.03
DN/DLOGn (NO. PARTICLES/DNCM)
l'.65E»01 2.00E-02 l',09E=02 5.91E«>OS 7,95E = OJ
25.69 16.68 11.76 9.09 5,59
5'.<13E-02 3.53E=02 2.49E-02 1.92E-02 1.16E-02
5.69E-02 3.70E-02 2.61E-02 2.0lE=02 1.22E=02
2'.37E-05 1.50E-05 1.09E-05 8,aOE-06 5.0»E«06
2'.
-------
APIO-ll U. OF w. 4 6/18-19/78
IMPACTDP PLowRATE = 1.630 ACFM
IMPACTOR PRESSURE PROP s «.HTN. OF HG
ASSUMED PARTICLE DENSITY 3 Z.bZ GM/CU.CM.
GAS COMPOSITION (PERCENT) C02 =
CALC. MASS LOADING a 9'.075oE.OS GR/ACF
IMPACTOP STAGE
STAGE INDEX NUMBER
D50 (MICROMETERS)
MASS (MILLIGRAMS)
MG/DNCM/ST»GE
CUM. PERCENT OF MASS SMALLER THAN 050
CUM. (MG/ACM) SMALLER T«AN D50
CUM. (MG/oNcM) SMALLER THAN oso
CUM. (GR/ACF) SMALLE" THAN DSO
CUM. (GR/DNcF) SMALLE" THAN oso
GEO. MEAN OlA. (MICROMETERS)
DM/DLOBD (MG/ONCM)
DN/DLOGD (NO. PARTKLES/DNCM1
IMPACTOR TEMPERATURE = TO.O F = z\.\ c
STACK TEMPERATURE = TO.O F c 21.1 c
STACK PRESSURE = 28,feU IN. OF HG MAX. PARTICLE DIAMETER o
SAMPLING DURATION o 1440 HIM
0.00 CO s 0.00
<»'.5032E-05 GR/ONCF
SI
1
5.92
lO'.Ol
N2 o 79.84 02 • 19.96
2.0767E-01 MG/ACM
32 33 34 35
2345
3.91 1.73 0,59 0.31
0.89 0.48 0.31 0,25
l'.71E»01 1.52E-02 8.21E-03 5.30E*03 4,28E*03
21.24 14,24 10,46 8,03 6,06
U.41E-02 2.96E-02 2.17E-02 1.67E-02 1.26E.02
4.62E»02 3.10E-02 2.28E-02 1.T5E-02 1.32E-02
l'.<»3E-05 1.29E.OS 9.50E-06 7.28E-06 5.50E«06
2.02E-05 1.35E-05 9.9ttE>06 7.63E-06 3.76E-06
8.85E+00 3.91E*00 2.60E+00 1.01E+00 4.24E-01
2'.42E»01 2.22E + 01 2.3?E=02 1.13E-02 1.51E-02
2.54E+05 2.70E+08 9.62E+05 8.05E»06 l,45e+08
20.0 MICROMETERS
H20 B 0.20
?.!7U7E=01 MG/ONCM
FILTER
6
0.77
1.32E-02
2.16E>01
«',J8E»02
1,15E*09
AERODYNAMIC DIAMETERS ARE CALCULATED HERE ACCORDING TO THE TASK GROUP ON LUNG DYNAMICS DEFINITION
050 (MICROMETERS) 6'.39 6.J8 2.85 1.00 0,55
GEO. MEAN DIA. (MICROMETERS) T.44E+01 6.38E+00 4.26E+00 1.69E*00 T.41E.01
DM/DLOGD (MG/DNCM) 2'.43E-Ol 2.24E + 01 2.35E-02 1.16E-02 1.66E-02
DN/DLOGO (NO. PARTICLES/DNCM) l'.56F + 05 1.6UEt08 5.78E + 05 4.63E + 06 7.79E + 07
3.90E«01
4.38E-02
1.41Et09
FORMAL (ENGINEERING STANDARD) cnNDITIONS ARE 21 DEG C AMD 760MW HG.
SQUARE ROnTS OF PSt BY STAGE O.iua 0.330 0.371 0.271 0,308
HOLE DIAM£TERS RY STAGE (CENT I METFRS) 1.8237 0.57fc8 0.2501 0.0808 0,0524
-------
TECHNICAL REPORT DATA
(Please read Inunctions on the reverse before completing)
1. REPORT NO.
EPA-600/7-79-070
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Apitron Electrostatically Augmented Fabric Filter
Evaluation
6. REPORT DATE
February 1979
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Larry G. Felix and Joseph D. McCain
8. PERFORMING ORGANIZATION REPORT NO.
SORI-EAS-79-140F (#20)
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Southern Research Institute
2000 Ninth Avenue, South
Birmingham, Alabama 35205
10. PROGRAM ELEMENT NO.
EHE624A
11. CONTRACT/GRANT NO.
68-02-2181
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final: 11/77 - 10/78
14. SPONSORING AGENCY CODE
EPA/600/13
15. SUPPLEMENTARY NOTES jERL-RTP project officer is Dale L. Harmon, MD-61, 919/541-
2925.
16. ABSTRACT
The report gives results of fractional and overall mass efficiency tests of
two Apitron electrostatically augmented fabric filter dust collectors. The tests were
performed on a mobile pilot-scale system collecting flyash produced by a
pulverized-coal-fired industrial boiler and on a full-scale pilot plant collecting
redispersed silica dust. Total particulate concentrations were determined at the
inlet and outlet of both devices. Inlet and outlet emission rates, as a function of
particle size, were determined from about 0. 5 to 8 micrometers on a mass basis
using cascade impactors , and from about 0. 01 to 1. 0 micrometers using electrical
mobility and optical techniques. Total mass efficiency for the mobile system was
99. 90-99. 94%; fractional efficiencies for the 0. 2-1 micrometer particle size range
were 99. 85-99. 94%. Total mass efficiency for the full-scale pilot system was
99.995-99.9994%; fractional efficiencies in the 0.2-1 micrometer size range were
99.90-99.999%.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COS AT I Field/Group
Pollution
Dust
Aerosols
Filtration
Fabrics
Electrostatics
Fly Ash
Silicon Dioxide
Pollution Control
Stationary Sources
Apitron Filter
Particulate
Fabric Filters
Silica Dust
13B
11G
07D
11E
20C
2 IB
07B
3. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (This Report/
Unclassified
21. NO. OF PAGES
115
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
108
------- |