EPA/600/8-85-029
NTIS PB86-136546
CDM 2.0 -- CLIMATOLOGICAL DISPERSION MODEL *
User's Guide
by
John S. Irwin
Meteorology and Assessment Division
Atmospheric Sciences Research Laboratory
Research Triangle Park, NC 27711
and
Thomas Chico and Joseph Catalano
Aerocomp, Inc.
3303 Harbor Boulevard
Costa Mesa, CA 92626
Contract No. EPA 88-02-3750
Project Officer
D. Bruce Turner
Meteorology and Assessment Division
Atmospheric Sciences Research Laboratory
Research Triangle Park, NC 27711
ATMOSPHERIC SCIENCES RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U. S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NC
-------
DISCLAIMER
This report has been reviewed by the Atmospheric Sciences
Research Laboratory, U. S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the U. S.
Environmental Protection Agency, nor does mention of trade names
or commercial products constitute endorsement or recommendation
for use.
AFFILIATION
Mr. John S. Irwin is a meteorologist in the Meteorology and
Assessment Division, Environmental Protection Agency, Research
Triangle Park, North Carolina. He is on assignment from the
National Oceanic and Atmospheric Administration, U. S. Department
of Commerce. Mr. Joseph A. Catalano is the technical director of
Aerocomp, Inc., Costa Mesa, California and Mr. Chico is a
research meteorologist there.
11
-------
FOREWORD
The Atmospheric Sciences Research Laboratory conducts a
research program in the physical sciences to detect, define, and
quantify the effects of air pollution on urban, regional, and
global atmospheres and the subsequent impact on water quality and
land use. This includes research and development programs
designed to quantify the relationships between emissions of
pollutants from all types of sources and air quality and
atmospheric effects.
The Meteorology and Assessment Division conducts research
programs in environmental meteorology to describe the roles and
interrelationships of atmospheric processes and airborne
pollutants in effective air and land resource management.
Developed air quality simulation models are made available to
dispersion model users in computer-readable form (magnetic tape
media) from NTIS (see preface).
CDM-2.0 is an enhanced version of CDM. The following options
have been added to the original CDM algorithm: 16 or 36
wind-direction sectors, initial dispersion, buoyancy-induced
dispersion, stack downwash, and gradual plume rise. In addition,
the user has a choice of seven dispersion parameter schemes. The
output format has been modified to enhance readability.
Concentration versus stability histograms have been added to an
output option.
Limitations are imposed on the use of the program by the
assumption that pollutants are nonreactive and that one wind
vector and stability class are representative of the area being
modeled. Despite these limitations, CDM-2.0 is a useful long-term
(seasonal or annual) algorithm for estimating nonreactive
pollutant concentrations from point and area sources in a rural
or urban se11 i ng.
A. H. El 1ison
Director
Atmospheric Sciences Research Laboratory
i i i
-------
PREFACE
One area of research within the Meteorology and Assessment
Division is development, evaluation, validation, and application
of models for air quality simulation, photochemistry, and
meteorology. The models must be able to describe air quality and
atmospheric processes affecting the dispersion of airborne
pollutants on scales ranging from local to global. Within the
Division, the Environmental Operations Branch adapts and
evaluates new and existing meteorological dispersion models and
statistical technique models, tailors effective models for
recurring user application, and makes these models available
through EPA's User's Network for Applied Modeling of Air
Pollution (UNAMAP) system.
CDM-2.0 estimates long-term nonreactive pollutant
concentrations using average emission rates from point and area
sources and a joint frequency distribution of wind direction,
wind speed, and stability.
Although attempts are made to thoroughly check computer
programs with a wide variety of input data, errors are
occasionally found. Revisions may be obtained as they are issued
by completing and returning the form on the last page of this
guide.
The first four sections of this document are directed to
managers and project directors who wish to evaluate the
applicability of the model to their needs. Sections 5, 6, and 10
are directed to engineers, meteorologists, and other scientists
who are required to become familiar with the details of the
model. Finally, Sections 7 through 10 are directed to persons
responsible for implementing and executing the program.
i v
-------
Comnents and suggestions regarding this publication should be
d i rected to:
Chief, Environmental Operations Branch
Meteorology and Assessment Division (MD-80)
Environmental Protection Agency
Research Triangle Park, NC 27711.
Technical questions regarding use of the model may be asked
by calling (919) 541-4564. Users within the Federal Government
may call FTS 629-4564. Copies of the user's guide are available
from the National Technical Information Service (NTIS),
Springfield, VA 22161.
The next release of UNAMAP (Version 6) will include the code
for CDM-2.0. Inquiries regarding the purchase of UNAMAP should be
addressed to Computer Products, NTIS, Springfield, VA 22161
(phone number: 703-487-4763).
-------
ABSTRACT
CDM-2.0 (Climatological Dispersion Model - Version 2.0)
determines long-term (seasonal or annual) quasi-stable pollutant
concentrations in rural or urban settings using average emission
rates from point and area sources and a joint frequency
distribution of wind direction, wind speed, and stability. The
model is applicable to flat or gently rolling terrain. The
Gaussian plume hypothesis forms the basis for the calculations;
contributions are obtained assuming the narrow plume hypothesis,
Calder (1971, 1977), and involve an upwind integration over the
area sources. Computations can be made for up to 200 point
sources and 2500 area sources at an unlimited number of receptor
locations. The number of point and area sources can be easily
modified within the code. CDM-2.0 is an enhanced version of COM
including the following options: 16 or 36 wind-direction sectors,
initial plume dispersion, buoyancy-induced dispersion, stack-tip
downwash, and gradual (transitional) plume rise. The user has a
choice of seven dispersion parameter schemes. Also new in this
release is a default option to set input parameters for
regulatory use. Optional output includes point and area
concentration roses and histograms of pollutant concentration by
stabi1ity class.
VI
-------
CONTENTS
Foreword i i i
Preface iv
Abstract vi
Figures ix
Tables x
Symbols and Abbreviations xi
Acknowledgments xiii
Executive Summary 1
1. Introduction 3
2. Data-Requirements Checklist 5
3. Features and Limitations 7
4. Basis for CDM-2.0 10
Gaussian plume origins 10
P1 ume rise 11
Dispersion algorithms 11
5. Technical Description 12
Meteorological parameters 12
Concentration formulas 15
Stack down wash 19
P1 ume rise 20
Dispersion algorithms 24
Calibration of computed concentration ... 27
Grid system and area emissions 27
Other considerations 3.0
6. Example Problem 32
7. Computer Aspects of the Model 38
System flow 38
Structure of CDM-2.0 40
Non-standard features 44
v i i
-------
CONTENTS (continued)
8. Input Data Preparation 45
Record input sequence 45
Intricacies of the data 52
9. Execution of the Model and Sample Test ..... 59
Execution 59
Error messages and remedial action 71
10. Interpretation of Output 76
References ; 94
Appendices 98
A. Default Option 98
B. Detailed Flow Diagrams 100
C. Listing of FORTRAN Source Code 105
v i i
-------
FIGURES
Number Page
1 Illustration of sector integration 18
2 a curves by stability class for the seven vertical
dispersion schemes considered by CDM-2.0 25
3 Test City base map 34
4 Wind rose for Test City 35
5 Stability distribution for Test City 35
6 Concentration versus stability histograms and
concentration roses 36
7 System flow for CDM-2.0 39
8 CDM-2.0 program structure 41
9 CDM-2.0 flow diagram 43
10 Radial and angular skipover 56
11 DELR as a function of maximum range of area source
integration 57
12 Sample job stream for CDM-2.0 59
13 Printed output for the sample test 62
14 Card image output for the sample test 70
15 Annotated Test City map 79
16 Printed output for the example problem 80
B-l Flow diagram for the main routine 101
B-2 Flow diagram for subroutine CLINT 102
B-3 Flow diagram for subroutine CALQ 103
B-4 Flow diagram for subroutine AREA 103
B-5 Flow diagram for subroutine POINT 104
IX
-------
TABLES
Number Page
1 A Comparison of CDM-2.0 to Other Commonly Used
Long-Term Air Quality Models 9
2 Relationship Between Pasquill Stability Classes and
Those Used in CDM-2.0 13
3 NCC STAR Speed Intervals and Central Wind Speeds . . 14
4 Wind Profile Exponents for Two Surface Roughnesses . 14
5 Mixing Height Based on Stability Category 15
6 Increments of Integration 19
7 Constants for Vertical Dispersion Equations Used by
Five Dispersion Schemes 28
8 Constants for the Vertical Dispersion Parameter
Equation Used in the PGCDM Scheme 28
9 Constants for the Vertical Dispersion Parameter
Equation Used in the PGSIG Scheme 29
10 Relationship Between Initial oz and Stack Height . . 30
11 Pollution Source Inventory for Test City 32
12 Computed Concentrations at Selected Sites in
Test City 37
13 Input/Output Units Used by CDM-2.0 40
14 Summary of Record Types for Input Data 45
15 Record Input Sequence for CDM-2.0 46
16 Values of KLOW or KHIGH and Their Corresponding
Dispersion Parameter Schemes 54
17 Input Data for the Sample Test 61
18 CDM-2.0 Error/Warning Messages and Corrective Action 71
19 Input Data for the Example Problem 77
20 Card Image Output for the Example Problem 90
21 Format of Card Image Output 91
A-l Variables Affected by the Default Option 99
-------
SYMBOLS AND ABBREVIATIONS
Dimensions are abbreviated as follows:
m = mass, 1 = length, t = time, K = temperature
a, b, c = constants in dispersion parameter equations
A, B = calibration constants (i.e., intercept and slope,
respect ively)
C = average concentration from area sources (m/1 )
A
3
C = average concentration from point sources (m/1 )
D = stack inside diameter (1)
s
f = stack-tip downwash correction factor
f = fraction of the input area-source height that
e
represents the physical height
A 1
F = buoyancy flux parameter (1 /t )
.>
Fr = Froude number
2
g = acceleration due to gravity (1/t )
G = emission rate of nth point source (m/t)
n
h = physical stack height (1)
h1 = stack height adjusted for Briggs stack-tip
downwash (1)
H = effective stack height (1)
H = input area source height (physical height
a
plus assumed effluent rise with a 5 m/sec
wind speed) (1)
k = index identifying the wind-direction sector
k = wind sector appropriate for nth point source
n
i = index identifying the wind-speed class
L = mixing height (1)
m = index identifying the stability category
n = number of point sources
N = number of wind-direction sectors
p = wind-profile exponent
x i
-------
SYMBOLS AND ABBREVIATIONS (continued)
2
p = atmospheric pressure (m/lt )
P = stability class
2
Q(p,0) = area source emission rate per unit area (m/tl )
q (p) = /Q(p,9)de (m/t)
s = stability parameter (t )
S(p,z;U ,P ) = dispersion function
I m
T1/2 = pollutant half-life (t)
T = ambient air temperature (K)
a
T = stack gas exit temperature (K)
U = wind speed at stack height (1/t)
U^ = representative wind speed (1/t)
V = stack gas exit velocity (1/t)
s
x = distance to final rise (1)
x* = distance at which atmospheric turbulence
begins to dominate entrainment (1)
X, Y = axes of the grid system; X-axis points east and
. Y-axis points north
z = height of receptor above ground level (1)
AH = p 1 ume rise (1)
d9/3z '= vertical potential temperature gradient
of a layer of air (K/l)
6 = angle relative to polar coordinates centered on
receptor (radians)
P = distance from receptor to source (1)
Q = distance from receptor to nth point source (1)
n
a = vertical dispersion parameter (1)
z
CT = buoyancy-induced vertical dispersion (1)
zb
o = effective vertical dispersion (1)
ze
$(k,i,m) = meteorological joint frequency function
xii
-------
ACKNOWLEDGVENTS
The authors wish to express their appreciation to Mr. D.
Bruce Turner, Mr. William B. Petersen, and Mr. Russ Lee for
helpful comments regarding aspects of the work presented here.
Special mention must be made to Mr. Adrian D. Busse and Mr. John
R. Zimmerman, the authors of the original CEM computer code and
user's guide. Portions of this text were excerpted from the CDM,
CDMQC, and PTPLU user's guides.
Support of Aerocomp by the Environmental Protection Agency
Contract Nos. 68-02-3750 and 68-02-4106 is also gratefully
acknowledged.
x i i i
-------
EXECUTIVE SUMMARY
CDM-2.0 (Climatological Dispersion Model - Version* 2.0)
determines long-term (seasonal or annual) pollutant
concentrations in a rural or urban setting using average emission
rates from point and area sources and a joint frequency
distribution of wind direction, wind speed, and stability. The
algorithm is based on Gaussian plume assumptions and is thus
subject to the limitations of nonreactive pollutants and a
homogeneous wind field. Terrain in the modeling region is assumed
to be level or gently rolling. Computations can be made for up to
200 point sources and 2500 area sources at an unlimited number of
receptor locat i ons.
CDM-2.0 is an enhanced version of CDM. The enhancements of
CDM-2.0 give the user added flexibility to tailor technical
features of the model to particular source-receptor
configurations and locales. . The joint-frequency function
describing the meteorology can be specified using either a
16-point or a 36-point compass for the wind sectors. The initial
dispersion for point sources can be computed as either a building
effect (affecting dispersion from sources with stack heights
below 50 m), as a buoyant plume rise effect (described by
Pasquill, 1976), or both. Provision has been made to allow
estimation of the effects of stack downwash on the plume rise
using either of two algorithms -- Briggs (1974) or Bjorklund and
Bowe-rs (1982). The user has the option of choosing among seven
schemes for characterizing vertical dispersion downwind of the
source. Added to the dispersion algorithm used by CDM (Busse and
Zimmerman, 1973) are the following schemes:
0 Briggs-rural (Gifford, 1976),
0 Briggs-urban (Gifford, 1976),
0 Brookhaven National Laboratory (Singer and Smith, 1966),
-------
0 Klug (Vogt, 1977),
0 St. Louis (Vogt, 1977), and
0 PGSIG (Pasquill, 1961 and Gifford, 1960).
*
The former versions of CDM "slipped" the categories to
account for urban effects on the dispersion. The inclusion of the
various dispersion characterizations provides the user with both
urban and rural dispersion schemes. Under user control is the
specific curve to be applied to each of the stability categories
of the input frequency function. The user specifies the initial
dispersion for each stability category for use in the area source
computations. The user specifies the power-law exponent and the
central wind speed values to be employed for each stability
category. Provision is made to model pollutant removal by
physical or chemical processes by a half-life decay that is user
specified. Plume rise for the point sources can be calculated
following the methods of Briggs (1969, 1971, and 1975) or using
the methods of Holland (1953). Provision has been made to allow
estimation of the effects of wind speed variation on the
area-source effective release height as described by Turner and
Novak (1978). The output format has been modified to enhance
readability; concentration versus stability histograms have been
added as an output option. Also new in this release is a default
option to set input parameters for regulatory use.
The source code has been designed so that future enhancements
can be readily implemented. For instance, the number of sources
considered by the model can be modified by a global change within
the code. Also, other dispersion schemes can be added to
subroutine SIGMAZ with little difficulty.
-------
SECTION 1
INTRODUCTION
CDM-2.0 is an enhanced version of CDM (Version 80247)
affording the user increased control of the technical features to
be employed in each modeling analysis. The user now controls the
specification of the wind profile power-law exponents, the
central wind speed values, the dispersion curves, and the mixing
heights to be associated with each stability category. These were
formerly defined by DATA statements in CDM and beyond user
control. The plume rise algorithm has been modified to handle
rise during stable conditions and to consider momentum-dominated
plumes. Stack downwash can be modeled using either of two schemes
Briggs (1974) or Bjorklund and Bowers (1982). Initial
dispersion can be modeled as (1) a building effect, affecting
sources with stack heights below 50 m, (2) as a buoyant
plume-rise effect, as described by Pasquill (1976), or (3) joint
building and buoyant rise effects. The user has the option of
choosing among seven schemes for characterizing vertical
dispersion downwind of the source. The output format has been
modified to enhance readability and the concentration versus
stability histogram has been added as an output option.
CDM-2.0 is applicable to locations with level or gently
rolling terrain. The Gaussian plume hypothesis is the basis for
the model. Pasquill and Meade (1958) first modified the Gaussian
plume equation to estimate long-term average concentrations from
a particular source using a wind direction frequency
distribution. Expanding on Pasquill' and Meade's initial work,
Martin and Tikvart (TRW Systems Group, 1969; Martin and Tikvart,
1968; and Martin, 1971) developed AQDM (Air Quality Display
Model). In their methodology, the frequency of occurrence of
various possible combinations of wind direction, wind speed, and
-------
atmospheric stability are used to obtain long-term average
concentrations from a multiple source grid. Calder (1971, 1977)
formulated a model called CDM (Climatological Dispersion Model)
which eventually superseded AQDM. Although similiar to AQDM in
many respects, CDM has several distinct features. AQDM treats
area sources via a modified virtual point source technique. In
CDM, contributions from area sources are calculated by assuming
the narrow plume hypothesis (Calder, 1971, 1977) and involve an
upwind integration over the area sources. Holland's plume rise
equation (Holland, 1953) is used in AQDM, while in CDM the user
has a choice between Briggs' plume rise (Briggs, 1971) or
Holland's equation. A power-law profile is used in CDM to
extrapolate surface wind speeds to the source height. AQDM and
CDM were two of six air quality dispersion models used to
calculate annual (1969) sulfur dioxide and total suspended
particulate matter for the New York Air Quality Control Region
(Turner et al., 1972). Model-predicted concentrations were
compared statistically with the measured values. The results
indicate that CDM performed better than AQDM (i.e., errors in the
means and maxima were smaller for CDM).
This document is divided into three parts, each directed to a
different reader: managers, dispersion meteorologists, and
computer specialists. The first four sections are aimed at
managers and project directors who wish to evaluate the
applicability of the model to their needs. Sections 5, 6, and 10
are directed toward dispersion meteorologists or engineers who
are required to become familiar with the details of the model.
Finally, Sections 7 through 10 are directed toward persons
responsible for implementing and executing the program. An
example for model execution with the default option is given in
Appendix A; detailed program flow diagrams and a listing of the
FORTRAN source statements are given in Appendices B and C
respect ively.
-------
SECTION 2
DATA-REQUIREMENTS CHECKLIST
CDM-2.0 requires data on user options, grid dimensions,
sources, meteorology, receptors, and model calibration constants.
The user must indicate whether the following options are to be
employed for point source calculations:
0 Initial dispersion and/or buoyancy-induced dispersion,
0 Stack-tip downwash, and
0 Gradual plume rise.
Also to be indicated is whether the stability array data is
divided into 16 or 36 wind-direction sectors. Additionally, there
is a choice of one of seven dispersion schemes. Output options
include area and point source concentration roses and
concentration versus stability histograms at selected receptors.
Information required for each source includes the following:
0 Location (user units),
0 Area-source side length (m)
0 Average emission rate (g/sec) for both pollutants,
0 Daytime and nighttime emission rate ratios,
0 Source height (m) ,
0 Stack diameter (m),
0 Stack gas exit velocity (m/sec),
0 Stack gas temperature (°F, °C, or K), and
0 Decay half-life (hr).
Area-source side length is required for area sources; stack
diameter, exit velocity, and exit temperature are pertinent to
point sources only.
-------
Meteorological data needed for the computations are:
0 Joint frequency function of wind direction, wind speed,
and stability category,
0 Average wind speed (m/sec) representing each of six
wind-speed categories,
0 Mean atmospheric temperature (°C),
0 Mixing heights (m) for each of six stability classes, and
0 Wind-profile exponents for each stability class.
The user has the option of inputting a joint frequency function
based on 16 or 36 wind-direction sectors. The first wind sector
of the joint frequency function must be centered on the wind
»
direction azimuth of 0°.
The location of each receptor must be indicated. If
available, the observed concentration of each pollutant can be
supplied. Also the user has the option of specifying the height
above ground (m) of all the receptors.
Calibration constants based on previous CDM-2.0 runs and on
observed data can be provided and used to obtain adjusted
concentration values.
-------
SECTION 3
FEATURES AND LIMITATIONS
As noted previously, CDM-2.0 is an upgraded version of
program CDM which was released in 1973. CDM-2.0 is a long-term
(seasonal or annual) algorithm for evaluating the effects of
multiple point and area sources in the near-field (within 25 km).
The modeling region should consist of relatively flat terrain.
The model includes the following computation features in common
wi th CDM:
0 Can handle up to 200 point sources and 2500 area sources,
0 Unlimited number of receptors can be considered, and
0 Optional use of Holland's equation (1953) for limiting
p1ume rise.
It should be noted that the number of sources can be modified by
a global change within the code. Optional output features common
to both CDM and CDM-2.0 are point and area concentration roses at
a set of user-specified receptors. The user can reduce output
volume by just listing concentration results and not echoing the
i nput data.
Modeling features added to CDM-2.0 include:
0 Optional initial dispersion, buoyancy-induced dispersion,
stack-tip downwash, and gradual plume rise;
0 Choice of joint frequency function based on 16 or 36 wind
di rect ion sectors;
0 Choice of one of seven dispersion parameter schemes;
0 Optional output of concentration versus stability
histograms at user-specified receptors; and
0 Default option to set input parameters for regulatory use,
The plume rise algorithm has been modified to handle rise during
-------
stable conditions and to consider momentum-dominated plumes.
Its limitations are as follows:
0 Source emissions and meteorology should be uncorrelated,
0 Variation in emission rate between adjacent area
sources is assumed to be negligible,
0 Terrain should be flat to gently rolling, and
0 No consideration of chemical reactions or removal other
than that which can be handled as a simple exponential
decay.
It is assumed that one wind vector and one stability category are
representative at any given time of the area being modeled.
Table 1 compares CDM-2.0 features to those of other long-term
ai r quali ty mode Is.
-------
TABLE 1. A COMPARISON OF CDM-2.0 TO OTHER COMMONLY USED LONG-TERM
AIR QUALITY MODELS.
X - used by model
O - optional
MODEL TYPE
Gaussian
AVERAGING PERIOD
Hour
3-hour
24-hour
Annual
TYPE OF SOURCES
Single stack
Multiple stacks
Area sources
RECEPTORS
Number of
Cartesian coordinates
Cartesian coordinates w/ elevations
Polar coordinates
Polar coordinates w/ elevations
METEOROLOGICAL DATA
RAMMET preprocessor
STAR file5
User specified
POLLUTANT
Non-react i ve
Half-life
PLUME RISE
Stack-tip downwash
Gradual plume rise
Buoyancy- induced dispersion •
TERRAIN ADJUSTMENTS
C
D
M
i
•
0
X
X
X
200
2500
X4
X
X
X
X
O
O
O
O
M
P
T
E
R
X
0
O
O
O
X
250
180
X
X
X
X
X
0
X
0
0
O
O
0
C
R
s
T
E
R
X
X
X
X
X
X
19'
180
X
X
X
X
O
O
O
O
0
V
A
L
L
E
Y
X
O
O
X
50^
SO2
112
X
X
X
X
0
O
O
0
I
s
C
X
O
0
0
O
X
X'
X3
360
X
X
X
X
X
X
O
X6
0
0
0
O
C
D
M
X
X
X
200
2500
X4
X
X
X
X
O
X
(1) Collocated stacks.
(2) Total of 50 point and/or area sources.
(3) Number of sources depends upon several input parameters
(4) Unlimited.
(5) Note the difference in STAR file for VALLEY, ISC, CDM.
(6) Gravitational settling and dry deposition considered.
-------
SECTION 4
BASIS FOR CDM-2.0
This section presents a brief narrative highlighting
important aspects of the modeling approach. A detailed technical
description, including equations, is provided in Section 5.
GAUSSIAN PLUME ORIGINS
CDM-2.0 is based upon the Gaussian plume hypothesis. Gaussian
plume methodology assumes that pollutant concentrations from a
continuously emitted plume are proportional to the emission rate,
and are diluted by the wind at the point of emission at a rate
inversely proportional to the wind speed. It is also assumed that
the pollutant concentrations in the vertical near the source are
closely described by Gaussian or normal distributions. Calder
(1971, 1977) showed that under the special circumstance when
emissions and meteorology can be treated as statistically
independent, i. e., uncorrelated, that the long-term average
concentration values can be estimated using the average emission
va.lues and the joint frequency function of meteorological
conditions. In the methodology, the joint frequency function is
assumed to be piece-wise constant in 22.5° (10°) wind sectors of
a 16-point (36-point) compass. We assume that in practice (and
certainly when large grid areas are used to specify the
area-source emissions), the variations in emission rates between
adjacent area sources can be disregarded. Then under the narrow
plume hypothesis, the equations for computing the long-term
average concentration contributions from the point sources and
the area sources do not involve the crosswind dispersion
parameter, but only the vertical dispersion parameter. The
area-source contributions are determined by an integration over
the upwind area sources. For this integration, an area-source
10
-------
emission rate (over the wind-sector width) is determined at
various distances upwind from each receptor.
PLUME RISE
The user can choose between two methods of estimating plume
rise: Briggs' plume rise (1969, 1971, and 1975) and Holland's
equation (1953). The Briggs formulation treats both
buoyancy-dominated .and momentum-dominated rise. In Holland's
equation, the value of the product of the average wind speed and
the height of plume rise is used. This option permits no
variation of the product with distance from the stack and the
magnitude of the plume rise is at the discretion of the user.
DISPERSION ALGORITHMS
As an option the user can choose one of seven schemes for
characterizing vertical dispersion downwind of the source. These
include the following:
o
o
Briggs-rural (Gifford, 1976),
0 Briggs-urban (Gifford, 1976),
Brookhaven National Laboratory (Singer and Smith, 1966),
0 Klug (Vogt, 1977),
0 St. Louis (Vogt, 1977),
0 PGCDM (Busse and Zimmerman, 1973), and
0 PGSIG (Pasquill, 1961 and Gifford, 1960).
The above algorithms are functions of downwind distance and
atmospheric stability. Dispersion curves and equations for each
of the schemes are presented in the next section.
11
-------
SECTION 5
TECHNICAL DESCRIPTION
This section expands on concepts mentioned briefly in Section
4. The mathematical formulation of the physical processes
simulated by CDM-2.0 are presented here. Equations are shown in
their final form (i.e., without derivations); however, references
are provided for those readers interested in the details.
METEOROLOGICAL PARAMETERS
Joint Frequency Function
The joint frequency function (also known as STability ARray)
is required as input for the model. This function gives the joint
frequency of occurrence of a wind-direction sector, a wind-speed
class, and a stability category index. The user has the option of
providing a joint frequency function based on 16 wind-direction
sectors (each sector is 22.5°) or 36 sectors (each sector is
10°). It is required that the first wind sector be centered on
the wind direction azimuth of 0°. There are 576 entries in the
joint frequency function table for 16 wind-direction sectors
(i.e., 16 wind-direction sectors, 6 wind-speed classes, and 6
stability classes). If the user's joint frequency function is
based on a 36 point wind rose, then there are 1296 entries in the
table.
The relationship between the Pasquill stability classes and
those used in CDM-2.0 is shown in Table 2.
12
-------
TABLE 2. RELATIONSHIP BETWEEN PASQUILL STABILITY CLASSES
AND THOSE USED IN CDM-2.0
Pasqui
A
B
C
D,
D,
E
F
11 stabi li ty
class
day
night
CDM-2.0 stabi 1
index
1
2
3
4
5
6
7 .
ity
The seven classes result from neutral stability being separated
into daytime and nighttime conditions. Although CDM-2.0
recognizes 7 distinct categories, the joint frequency function is
assumed to be comprised of only 6 stability classes. The user
indicates the dispersion curve associated with each of the
stability categories of his joint frequency data via variables
ICP and ICA. These and other input parameters are described in
Sect ion 8.
The user must supply the central wind speed values for a
height of 10 m above ground level for each of the six speed
categories; typically that is the harmonic average wind speed.
Wind speed intervals assumed in the National Climatic Center
(NCC) STAR summaries are shown in Table 3, along with appropriate
central wind speeds.
13
-------
TABLE 3. NCC STAR SPEED INTERVALS AND CENTRAL WIND SPEEDS
Wind speed
class
1
2
3
4
5
6
NCC speed interval
(knots)
0 to 3
4 to 6
7 to 10
11 to 16
17 to 21
> 21
Central wind
speeds (m/sec)
1.50 *
2.46
4.47
6.93
9.61
12.52
* Light winds reported in the first wind speed class are
rounded up to 1.50 m/sec. Operational wind instruments are
designed for durability and also to withstand exposure to
strong, gusty airflow. For these reasons, most wind sensors
have a high starting speed, which can lead to the erroneous
reporting of light winds as calms (Truppi, 1968).
Wind Profile
Wind speed generally increases with height above the surface,
and this increase depends on both surface roughness and
atmospheric stability. A power-law profile of the form
U(z) = Uj^z/10)
(1)
is used by CDM-2.0 to approximate this increase. The wind speed
at a height z above the ground is U(z); U^ is the wind speed
measured at the anemometer height (10 m above the ground); and p
is a function of stability. The user supplies the wind-profile
exponents, p, for each stability class. Suggested wind-profile
exponents are shown in Table 4. For a more detailed discussion of
wind profiles, the reader may refer to Irwin (1979).
TABLE 4. WIND PROFILE EXPONENTS FOR TWO SURFACE ROUGHNESSES
Urban p
Ru r a 1 p
Stabi 1 i ty class
A B C D E F
0.15 0.15 0.20 0.25 0.30 0.30
0.07 0.07 0.10 0.15 0.35 0.55
14
-------
Mixing Height
The magnitude of the mixing height undergoes considerable
diurnal, seasonal, and annual variation. It is impractical to
account for all such variations in detail. Some recognition is
given to changes in .the magnitude of the mixing height by
assigning an appropriate value to each stability category. The
user must choose an appropriate relationship between mixing
height and stability category. One possible parameterization is
given in Table 5.
TABLE 5. MIXING HEIGHTS BASED ON STABILITY CATEGORY
Stabi 1 i ty category
A
B
C
D,day
D, night
E - F
Mixing height, meters
3L/2
L
L
L
(L + L )/2
mi n
L
mi n
In Table 5, L is the climatological mean value of the mixing
height as tabulated by Holzworth (1972) and Lmin is the nocturnal
mixing height.
CONCENTRATION FORMULAS
The average concentration due to area sources, CA, at a
particular receptor is given by
? N 66
C = (N/2H) I [ I q (p) I Z 4>(k,J,,m) S(p,z;U ,P )] dp, (2)
A n k = l k 1=1 m=l 2, m
where,
N
k
Q(p,e)
= number of wind-direction sectors (i.e., 16 or 36),
= index identifying wind-direction sector,
= /Q(p,e)d9 for the k sector,
= emission rate of the area source per unit area,
15
-------
p = distance from the receptor to an infinitesimal
area source,
6 = angle relative to polar coordinates centered on
the receptor,
i - index identifying the wind-speed class,
m = index identifying the stability category,
4>(k,i,m) = joint frequency function,
S(p,z;U ,P ) = dispersion function defined in Eqs. 4 and 5,
i m
z = height of receptor above ground level,
Uj, = representative wind speed,
P = stability category.
m
For point sources, the average concentration due to n point
sources, C , is given by
n 6 6
C = (N/2ir) Z Z Z [4>(k fJL,m) G S(p ,z;U ,P )]/p , (3)
P n = li = lm=l n n n i m n
where
k = wind sector appropriate to the nth point source,
n
G = emission rate of the nth point source,
n
p = distance from the receptor to the nth point source.
n
The dispersion function, S(p,z,;U ,P ), is defined as
S(p,z;U ,P ) = 2/(v/2~iuJ o ) [exp {-(1/2) [ (z-H)/o ] } +
i m i z I z
2 1
exp{-(l/2)[(z+H)/0 1 } exp[-0.6920/(U.T )], (4)
Z J • X. 11 i
if o < 0.8L and as
z
S(p,z;U ,P ) = (1/U L)exp[-0.692p/(UnT )], (5)
8, m I 8. 1/2
if o > 0.8L. New terms in Eqs. 4 and 5 are defined as follows:
fm
z
= vertical dispersion parameter, i.e., the standard deviation
of the pollutant concentration in the vertical plane,
16
-------
H = effective stack height of source distribution, i.e., the
average height of area source emissions in the kth wind
direction sector at radial distance p from the receptor,
L = the mixing height,
T = assumed half-life of pollutant (hr).
The possibility of pollutant removal by physical or chemical
processes is included in the program by the decay expression,
exp[-0.692P/(UjT )]. The total concentration for the averaging
period is the sum of concentrations of the point and area sources
for that averaging period.
Computational procedures for area source contributions differ
among the sector-average models in UNAMAP. For instance, Valley
and ISCLT consider area sources as virtual point sources (Burt,
1977; Bowers et al., 1979). This computational method differs
from the procedure used in CDM-2.0, which is discussed next.
Suppose that receptor R is located within the grid array as
shown in Figure la. The first step in the program is to determine
the distance from the receptor to the farthest corner of the grid
array. This distance, o, is taken as the upper limit of the
M
integral q (p) in Eq. 2.
K
An angular integration, using the trapezoidal rule, is
carried out numerically, as shown in the blow-up in Figure Ib.
This integration determines q (p) at various increments of p , as
k
indicated in Table 6.
17
-------
la.
ib.
k EMISSION
GRID
Figure 1. Illustration of sector integration (modified from Busse
and Zimmerman, 1973).
13
-------
TABLE 6. INCREMENTS OF INTEGRATION
Upwind range (m)
0 <
2500 <
5000 <
C P <
C P <
C p <
2500
5000
PM
Increment *
DELR
2- DELR
4»DELR
• The value of DELR is controlled by the user
(see Section 3).
The integration over p (see Eq. 2) follows next and is also
accomplished using the trapezoidal rule. As shown in Figure 1,
the integration over p extends beyond the boundary of the grid
system but no additional contribution to the concentration occurs
since the source density is zero.
In the case where the receptor lies outside the emission grid
array, the nearest distance, P , to the grid boundary as well as
the maximum distance,P ,
M
is found. The lower limit to the
integral over p is then p and the upper limit isp . Evaluating
m (VI
the integral from p instead of from zero results in reduced
m
computer time.
STACK DOWNWASH
The user has the option of applying either of two stack-tip
downwash algorithms: Briggs1 (1974) or Bjorklund and Bowers'
(1982).
Briggs Stack Downwash
The physical height is modified following Briggs (1974, p.
4). The modified physical stack height, h', is found from
h' =
2[(V3/U) - 1.5]DS
for Vg < 1.5U,
for Vs 2 1-5U,
(6)
where h is the physical stack height (meters), V"s is stack gas
velocity (m/sec), and Ds is inside stack-top diameter (meters).
If the user chooses this downwash algorithm, then h' is used
19
-------
throughout the remainder of the plume height computation.
Bjorklund and Bowers Stack Downwash
The effects of stack-tip downwash can also be simulated by
applying a correction factor to the estimated plume rise.
According to Bjorklund and Bowers (1982) the stack-tip downwash
correction factor, f, is defined by
f =
1
(3V
0
- 3U)/V
s s
for U < V /I.5
~ 3
for V /I.5 < U < V
s s
for U > V
(7)
This correction factor accounts for the effects of downwash in
the lee of stacks during periods when the wind speed at the stack
height is greater than or equal to 0.67 times the stack gas exit
velocity. It is not used (i.e., f = 1) for stacks with Froude
numbers less than 3.0. The Froude number, Fr, is the ratio of the
inertial force to the force of gravity for a given fluid flow.
Briggs (1969) defines the Froude number for stack gas releases as
Fr = V /{g[(T - T )/T ]D }.
s l s a as
(8)
PLUME RISE
The user, has a choice between two methods of estimating plume
rise: Briggs' algorithm (1969, 1971, and 1975) and Holland's
equat ion (1953).
Br iggs Plume Ri se
Neutral-Unstable Momentum Rise-*-
Regardless of the atmospheric stability, neutral-unstable
momentum rise is calculated. The plume rise is calculated from
Briggs1 (1969, p. 59) Eq. 5.2:
AH = 3DSVS/U.
(9)
Briggs (1969) suggests that this equation is most applicable when
20
-------
Vs/U is greater than 4. Since momentum rise OCCUTS quite close
to the point of release, the distance to final rise is set equal
to zero.
Neutral-Unstable Buoyancy Rise—
The value of the Briggs buoyancy flux parameter, F (m4/s3),
is needed for computing the distance to final rise and the plume
rise. The following equation is equivalent to Briggs1 (1975,
p. 63) Eq. 12:
F = (gVsDgAT)/(4Ts), (10)
where AT = TS - Ta, T3 is stack gas temperature (K), and Tfl is
ambient air temperature (K).
For situations where TS ^ Ta, buoyancy is assumed to
dominate. The distance to final rise xf (in kilometers) is
determined from the equivalent of Briggs' (1971, p. 1031) Eq. 7,
and the distance to final rise is assumed to be 3.5x*, where x*
is the distance at which atmospheric turbulence begins to
dominate entrainment. For F less than 55,
x£ = .0.049FV8. (11)
For F equal to or greater than 55,
xf = 0.119F2/'. (12)
The plume rise, AH (in meters), is determined from the
equivalent of the combination of Briggs1 (1971, p. 1031) Eqs. 6
and 7. For F less than 55,
AH = 21.425F3/4/U. (13)
For F equal to or greater than 55,
AH = 38.71FV'/U. (14)
If the neutral-unstable momentum rise (previously calculated
from Eq. 9) is higher than the neutral-unstable buoyancy rise
calculated here, momentum rise applies and the distance to final
rise is set equal to zero.
21
-------
Stability Paramet e r - -
For stable situations, the stability parameter s is
calculated from the equation (Briggs, 1971, p. 1031):
s = g(39/3z)/Ta. (15)
As an approximation, for stability class E (or 6), 36/3z is taken
as 0.02 K/m, and for stability class F (or 7), 39/3z is taken as
0.035 K/m.
Stable Momentum Rise—
When the stack gas temperature is less than the ambient air
temperature, it is assumed that the plume rise is dominated by
momentum. The plume rise is calculated from Briggs1 (1969,
p. 59) Eq. 4.28:
AH = 1.5[(Vs2D2sTa)/(4TsU)]'/3s"1/6. (16)
This is compared with the value for neutral-unstable momentum
rise (Eq. 9) and the lower of the two values is used as the
resulting plume height.
Stable Buoyancy Rise--
For situations where TS £ Ta, buoyancy is assumed to
dominate. The distance to final rise (in kilometers) is
determined by the equivalent of a combination of Briggs' (1975,
p. 96) Eqs. 48 and 59:
xf = 0.0020715Us"'/2 . (17)
The p'lume rise is determined by the equivalent of Briggs'
(1975, p. 96) Eq. 59:
AH = 2.6[F/(U.s)]1/3. (18)
The stable buoyancy rise for calm conditions (Briggs, 1975,
pp. 81-82) is also evaluated:
AH = 4F1XV3/8. (19)
The lower of the two values obtained from Eqs. 18 and 19 is taken
as the plume rise.
22
-------
If the stable momentum rise is higher than the stable
buoyancy rise calculated here, momentum rise applies and the
distance to final rise is set equal to zero.
Gradual Plume Rise--
If the user exercises the gradual plume rise option and the
distance upwind from receptor to source x (in kilometers) is less
than the distance to final rise, the equivalent of Briggs' (1971,
p. 1030) Eq. 2 is used to determine plume rise:
H = (160F1/3h2/3)/U. (20)
This height is used only for buoyancy-dominated conditions;
should it exceed the final rise for the appropriate condition,
the final rise is substituted instead.
Holland's Equation
Alternatively, plume rise can be estimated by Holland's
equation (1953). The user supplies the product of the average
wind speed and the height of plume rise (U«AH)via input variable
SA (see Section 8). Holland's equation forU-AHis as follows:
U'AH = D V (1.5 + 0.00268p [(T - T )/T ]D }, (21)
s s a s a s s
where p is the atmospheric pressure in millibars (the other
variables are defined above). This equation frequently
underestimates plume rise (Turner, 1970 and Johnson et al.,
1976). Holland (1953) suggested that a value between 1.1 and 1.2
times the computed plume rise from Eq. 9 should be used for
unstable conditions and a value between 0.8 and 0.9 times the
computed plume rise should be used for stable conditions. This is
accommodated in CDM-2.0 by adjusting the plume rise as,
AH(final) = (SA/UHl.4 - 0.1-ICP), (22^
where SA is defined above and ICP is an array of values input by
the user to define the dispersion curve to be associated with
each stability category.
23
-------
DISPERSION ALGORITHMS
As noted previously, the concentration formulas are
independent of a but dependent on az, the vertical dispersion
parameter. This results from the assumption in CDM-2.0 (and all
other climatological dispersion models) that there are no
variations of the wind direction frequency function within a
wind-direction sector.
The user has the option of choosing among seven vertical
dispersion parameter schemes; these are:
0 Briggs-rural (Gifford, 1976),
0 Briggs-urban (Gifford, 1976),
0 Brookhaven National Laboratory (Singer and Smith, 1966),
0 Klug (Vogt, 1977),
0 St. Louis (Vogt, 1977),
0 PGCDM (Busse and Zimmerman, 1973), and
0 PGSIG (Pasquill, 1961 and Gifford, 1960).
The a curves for each of the above dispersion algorithms are
z
shown in Figure 2. The Pasquill stability categories have been
used here for convenience. The BNL and St. Louis dispersion
algorithms defined four curves and thus assumed different
turbulence typing methods (Singer and Smith, 1966; Vogt, 1977).
The PGCDM dispersion algorithm was included among the options
since it is the scheme used by CDM, CDM-2.0's predecessor. The
dispersion curves Dl and D2 in the PGSIG scheme represent
adiabatic and subadiabatic neutral conditions, respectively.
Lacking suitable temperature profile data for the lower 100
meters of the atmosphere, day and night may be substituted as
criteria for adiabatic and subadiabatic lapse rates,
respectively. Nighttime is typically defined as one hour prior to
sunset to one hour after sunrise.
The dispersion curves shown in Figure 2 can be approximated
by one of the following equations:
24
-------
DISPERSION SCHEMES CONSIDERED
BY CDM-2.0
Briggs -- rural (Gifford, 1976)
Briggs -- urban (Gifford, 1976)
Brookhaven National Laboratory,
BNL (Singer and Smith, 1966)
Klug (Vogt, 1977)
St. Louis (Vogt, 1977)
PGCDM (Busse and Zimmerman, 1973)
PGSIG (Pasquill, 1961 and Gifford,
1960)
100
10
Iff I -- rurol
tl
O.I
Downwind Distance -- Km.
1000C-
IOO
01
lOOOc-
100
(f(f9< --
A-i
INI
Downwind Distance -- Km.
Downwind Distance -- Km.
Figure 2. az curves by stability class for the seven vertical
dispersion schemes considered by CDM-2.0.
25
-------
1OO
Downwind Distance — Km.
It. lauii
0.1
I I I I I I I I I t I I I Mil I I I I I till
1 1O 1OO
Downwind Distance — Km.
lOOOt-
10
roc DM
I
0.1
10
Downwind Distance — Km.
Downwind Distance -- Km.
Figure 2. (continued)
26
-------
c
o = ap/(l + b p) and (23)
z
b
a = ap , (24)
z
where a, b, and c are constants and P is the downwind distance.
Eq. 23 is used to simulate the Briggs-rural and -urban schemes;
the power-law formula shown in Eq. 24 represents the BNL, Klug,
St. Louis, PGCDM, and PGSIG algorithms. Parameters a, b, and c
are provided in Tables 7, 8, and 9.
CALIBRATION OF COMPUTED CONCENTRATION
If the calibration constants of the linear expression
C' = A + BC, (25)
where
C' = calibrated concentration,
A, B = calibration constants, and
C = computed concentration,
are known, they may be entered into the program and used to
obtain a calibrated concentration. The calibration constants are
determined from regression analysis of observed air quality and
the computed concentrations produced by the model. Thus, at least
one initial run of the model must be made without the calibration
feature. Once the model has been run to obtain computed
concentrations, a regression procedure may be followed using
computed versus observed concentrations. After finding the
desired constants, calibrated concentrations can be obtained on
subsequent operations of the model.
CHID SYSTEM AND AREA EMISSIONS
A rectangular grid array of uniform-sized squares is used to
overlay the region of interest. The main purpose of this grid is
to catalogue the emission inventory by area sources. There is
some flexibility in the size of the grid squares in that the
27
-------
TABLE 7. CONSTANTS FOR VERTICAL DISPERSION EQUATIONS USED BY
FIVE DISPERSION SCHEMES
Diapers Ion
algor I thm
Brlgjs-
rursl
Brlggs-
urban
BNL
Klug
St. Lou Is
Eq Const
23 1
b
e
23 a
9
e
24 I
b
24 I
b
14 I
b
Pasqul 11
0
0
1
0
0
•0
0
0
0
1
0
1
A
.JOOO
.0000
.0000
.2400
.0010
.5000
.4000
.9100
.0170
.3800
.0790
.:ooo
B
0.1200
0.0000
1.0000
0.2400
0.0010
-O.SOOO
0.4000
0.9100
0.0720
1.0210
0.0790
1.2000
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
1.
c
0800
0002
JOOO
2000
0000
0000
3300
8600
0780
8790
1310
0480
Stablli
D.day
0.0800
0.001)
0.1000
0.1400
0.0003
O.iOOO
0.2200
0.7800
0.1400
0.7270
0.9100
0.7020
ty Class
D,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
night
0800
001)
3000
1400
0003
JOOO
2200
7800
1400
7270
9100
7020
E
0.0300
0.0003
1.0000
0.0800
0.001S
O.SOOO
0.0600
0.7100
0.2170
0.8100
1.9300
0.46)0
F
0.0160
0.0003
1.0000
0.0800
0.0015
O.SOOO
0.0800
0.7100
0.2520
O.SOOO
1.9300
0.46SO
TABLE 8. CONSTANTS FOR THE VERTICAL DISPERSION PARAMETER
EQUATION USED IN THE PGCDM SCHEME *
Stab! 1 1 ty
e lass
A
B
C
D, day
0, night
E
F
Distance (m)
• 100 to SOO
a
0.0383
0.1393
0.1120
0.08)6
0.08)6
0.0818
0.0)4)
b
1.2812
0.9467
0.9100
0.86)0
0.86)0
O.S1S)
0.8124
SOO to SOOO
a
0.0002)39
0.04936
0. 1014
0.2)91
0.2)91
0.2)27
0.2017
b
2.0888
1.1137
0.9280
0.8869
0.8869
0.6341
0.6020
SOOO to SOOOO
ft
0.2S39F.-3
0.4936E-I
0.11)4
0.7368
0.7368
1.2969
1.S763
b
2.0R8S
1 . 1 137
0.9109
0.5642
O.S642
0.4421
0.3606
Constants are to be used In conjunction with Eq. 21.
28
-------
TABLE 9. CONSTANTS FOR THE VERTICAL DISPERSION PARAMETER
EQUATION USED IN THE PGSIG SCHEME *
Stability Di
class
A
0.1
0.15
0.2
0.25
0.3
0.4
B
0.2
C
D, day
D, night
0.3
1
3
10
E
0.1
0.3
1
2
4
10
20
F
0.2
0.7
1
2
3
7
15
30
stance
(km)
< 0.1
- 0.15
- 0.2
- 0.25
- 0.3
- 0.4
- 0.5
> 0.5
< 0.2
- 0.4
> 0.4
< 0.3
- 1
- 3
- 10
- 30
> 30
< 0.1
- 0.3
- 1
- 2
- 4
- 10
- 20
- 40
> 40
< 0.2
- 0.7
- 1
- 2
- 3
- 7
- 15
- 30
- 60
> 60
Cons
a
122.80
158.08
170.22
179.52
217.41
258.89
346.75
453.85
90.673
98.483
109.300
61.141
33.504
34.459
32.093
32.093
33.504
36.650
44.053
24.260
23.331
21.628
21.628
22.534
24.703
26.970
35.420
47.618
15.209
14.457
13.953
13.953
14.823
16.187
17.836
22.651
27.074
34.219
tants
b
0.9447
1.0542
1.0932
1.1262
1.2644
. 1.4094
1.7283
2.1166
0.93198
0.98332
1.09710
0.91465
0.8098
0.86974
0.81066
0.64403
0.60486
0.56589
0.51179
0.83660
0.81956
0.75660
0.63077
0.57154
0.50527
0.46713
0.37615
0.29592
0.81558
0.78407
0.68465
0.63227
0.54503
0.46490
0.41507
0.32681
0.27436
0.21716
* Constants are to be used in conjunction with Eq. 24
29
-------
computer program accepts information on emissions from squares
whose sides have lengths which are integer multiples of the
length of the side of the basic square. Thus, if the basic square
has a length s, emission information for a larger square whose
side has a length, say 4s, is accepted by the model and
distributed uniformly into 16 basic squares.
The origin of the overlay grid is located in the lower
left-hand corner of the array with the X-axis pointing toward the
east and the Y-axis pointing toward the north. With respect to
the map coordinates of the region, the origin of the grid array
is to be located at some suitably chosen point in the lower
left-hand section of the region under consideration. The length
of the side of a square is expressed in meters. However, the map
coordinates can be expressed in any suitable units, say,
thousands of feet or kilometers. The magnitude of the length of a
square depends on how many squares are needed in the emission
inventory of a region. For example, CDM-2.0 is dimensioned at
present to handle 2500 area sources (and 200 point sources);
thus, the grid square dimension must be chosen such that the
limiting criteria of 2500 area sources is not exceeded.
Computation can be performed for any number of receptor points.
OTHER CONSIDERATIONS
Initial Dispers ion
The value of initial a for point sources due to building
effects is modeled as a function of the height above ground of
the stack, h. Table 10 summarizes the relationship between
initial az and stack height.
TABLE 10. RELATIONSHIP BETWEEN INITIAL o_ AND STACK HEIGHT
Stack height,
0 < h <
20 < h <
50 < h
h (m)
20
50
Initial a
z
30
50 - h
0
(m)
30
-------
For area sources, initial values of az which account for building
effects are user defined for each stability class.
Buoyancy-Induced Dispersion
For strongly buoyant plumes, entrainment as the plume ascends
through the ambient air contributes to vertical spread. Pasquill
(1976) suggests that this induced dispersion, azb , can be
approximated by the plume rise divided by 3.5. The effective
dispersion can then be determined by adding variances:
2 2 1/2
o = (a + a ) , (26)
ze zb z
where a,_ is the effective dispersion, and a, is the dispersion
Z & Z
due to ambient turbulence levels.
Effluent Rise for Area Sources
CDM-2.0 can consider changes in effective height with wind
speed for area sources. The input area source height, HQ, is
£L
assumed to be the average physical height of the area source plus
the effluent rise with a wind speed of 5 m/sec. The user
specifies the fraction, fe, of the input height that represents
the physical height, h. This fraction is the same for all area
sources in the inventory. The relationship among H , f , and h is
a G
as follows:
h = f H . (27)
e a
If fe = 1, there is no rise and the input height is the effective
height for all wind speeds. For any wind speed, U, the rise is
assumed to be inversely proportional to U and is determined by
AH = (5/UMH - h); (28)
a
the effective height is then
H = h + AH. (29)
31
-------
SECTION 6
EXAMPLE PROBLEM
In this section, a hypothetical problem is provided to
illustrate the use of CDM-2.0 and the type of information it
provides. Details concerning input and output for this example
are discussed in Section 10.
Figure 3 shows the city limits of Test City along with the
locations of sampling sites and major point sources of pollution.
Minor point sources and area sources were cataloged and gridded.
The emission grid is shown in Figure 3. The area and point source
inventory is summarized in Table 11; all necessary source
information is contained there.
TABLE 11. POLLUTION SOURCE INVENTORY FOR TEST CITY.
Loca
(km)
568.5
584.2
577.0
574.1
562.5
567.5
572.5
577.5
582.5
562.5
567.5
577.5
t ion
Y
(tan)
4403.4
4391.6
4401.1
4401.5
4402.5
4402.5
4402.5
4402.5
4402.5
4397.5
4392.5
4397.5
Emission rate
Width
(km)
--
--
—
—
5
5
5
5
5
5
10
5
SO2 v
(g/l)
1365.00
1580.36
221.76
110.25
1.37
1.26
5.25
1.47
1.20
2.62
32.66
5.46
Part
(g/s)
527.63
789.60
34.13
54.08
1.68
1.79
3.99
13.13
1.58
1.47
21.11
3.99
Stack parameters
height Dia Speed
150 0.0 0.0
90 8.7 15.2
30 0.7 17.8
23 1.4 15.2
0
0
10
o
o
10
15
10
I§C?
0
149
515
260
--
--
--
--
--
--
--
-_
(cont inued)
32
-------
TABLE 11. (continued)
Loca
X
(km)
582.5
562.5.
577.5
582.5
562.5
567.5
572.5
577.5
582.5
t ion
Y
(km)
4397.5
4392.5
4392.5
4392.5
4387.5
4387.5
4387.5
4387.5
4387.5
Emission rate
Width
(km)
5
5
5
5
5
5
5
5
5
SO 2
(g/s)
6.62
2.63
7.88
5.25
2.73
2.42
5.36
5.57
2.84
Part
(g/s)
5.78
1.16
5.15
3.68
1.37
1.89
4.10
3.89
1.47
Stack parame
height Dia Speed
(ml (m) (m/s)
10
10
20
10
0
10
10
10
10
ters
T§c?
--
--
--
--
--
—
--
--
--
The meteorology for Test City and its environs is summarized
in Figures 4 and 5. The wind rose indicates that north winds
predominate, occurring almost 14% of the time. However, there is
a secondary peak from the east-southeast. The stability
distribution for Test City (Figure 5) shows the predominance of
neutral conditions throughout the year.
Computed concentrations at the sampling sites shown in Figure
3 are listed in Table 12. Note that CDM-2.0 provides area and
point source contributions. In this example, the point sources
exhibit the greatest impact on the receptors.
Optional output from CDM-2.0 includes point and area
concentration roses and histograms of concentration by stability
class. Figure 6 illustrates the type of information available
from CDM-2.0, except that CDM-2.0 provides the information in the
form of tables. As mentioned earlier, neutral conditions dominate
and this is confirmed in the concentration versus stability
histograms. As noted from the concentration roses,
north-northwest, north-northeast, northeast, and south-southeast
winds account for over 70% of the total concentration (at this
particular receptor), which corresponds to the directions of the
four point sources.
33
-------
4410 i—
4405
4400
0)
a!
E
o
4395
4390
4385
10
13
14
15
8
11
16
n
12
17 A
>TU
560 565 570 575 580 585 590
kilometers
city limits
A point source
• sampling site/receptor
© sampling site/receptor (Figure 6 pertains to this receptor)
Figure 3. Test City base map (modified from Brubaker et al., 1977).
34
-------
w-
......... »" o i to 11 20 ii
l~~| I "j ' I
WIND SPEED CLASS (Mf>») PREQUENCY(%)
Figure 4. Wind rose for Test City.
«0
I"
W
X
Ik
1O
Figure 5. Stability distribution for Test City.
35
-------
SULFUR DIOXIDE
10 H
8 -
I 6
c 4
OJ *
o
o
o 2
stability category
PARTICULATES
« 10
^
"3?
8 -
c
-------
Both input stream and abridged output listing for this
problem are provided in Section 10.
TABLE 12. COMPUTED CONCENTRATIONS AT SELECTED SITES IN TEST CITY.
Loca
X
(km)
570.0
573.9
572.4
579.0
583.0
562.0
566.1
572.5
577.5
576.0
t ion
Concent
Y
(km)
4393
4388
4402
4394
4399
4395
4400
4396
4397
4403
.2
.9
.2
.0
.2
.7
.0
.7
.5
.0
Area sources
SO2
5.4
4.6
4.9
5.4
4.5
2.7
4.2
6.0
5.5
4.4
Part
3.8
3.4
4.3
4.3
4.9
1.9
3.1
4.3
4.4
4.8
Poi
rat i
ions
(yg/m3)
nt sources
SO2
14
9
39
15
11
6
12
17
34
27
.3
.5
.5
.3
.3
.2
.5
.5
.2
.8
Par
5.
3.
13.
4.
3.
2.
4.
6.
7.
6.
t
5
6
0
4
0
2
1
3
6
2
Total
SO 2
20.
14.
44.
20.
15.
8.
16.
23.
39.
32.
3
1
4
7
8
9
7
5
8
3
Part
9.3
7.0
17.3
8.7
7.9
4.0
7.3
10.6
12.0
11.0
37
-------
SECTION 7
COMPUTER ASPECTS OF THE MODEL
This section discusses CDM-2.0 from a software design and
programming perspective, and is intended to give the reader a
general knowledge of the computational system, rather than a
detailed description of each subroutine. The overall structure of
the program, a brief description of each subroutine, and the
general processing flow are given here. Also provided is the
overall system flow, the input/output media, data flow, and
alternative processing.
SYSTEM FLOW
An overview of the system will be beneficial to the reader.
Figure 7 illustrates the input and output media as well as data
flow for CDM-2.0. Input data requirements are contained in either
one or two files depending on the user assignment of variable IRD
(see Section 8). Output is in two forms: printed output and card
image output, usually going to a disk file. Card-image records
containing the calculated concentrations at each receptor are
written for use in computer programs that analyze information
produced by CDM-2.0. As discussed in Section 5, a regression
program must be applied to obtain calibration constants.
Additionally, the disk file output can be used with user-supplied
plot routines to obtain isopleth plots of concentration.
In addition to the records containing the concentrations from
area and point sources, further output may be produced if the
NROSE option is used (see Section 8). If NROSE is specified as
greater than zero, additional records are written. Concentration
versus stability histograms and concentration roses for both
pollutants and both source types are provided.
38
-------
Instead of punched
cards, a disk file
could be the output
medium.
Control Data
Record types
1-3
Card-image
output for
statistics
and Plotting
Control Data
Record types
4. - 18
Regression
Routine
Calibration
Constants
Plotting
Routines
IsoPleth maps
Histograms
Lashed line indicates alternative Processing
Figure 7. System flow for CDM-2.0
39
-------
The input/output (I/O) units used by CDM-2.0 are sunmarized
in Table 13.
TABLE 13. INPUT/OUTPUT UNITS USED BY CDM-2.0
FORTRAN
uni t
5
IRD*
IWR*
IPU*
I/O unit
Disk
Disk
Printer or disk
Disk or magnetic
tape
Mode
input
input
output
output
Contents
Program control and input
data (record types 1-3;
Program control and input
data (record types 4-18)
Output listing
Concentration data
* See Section 8.
STRUCTURE OF CDM-2.0
CDM-2.0 consists of a main routine and nine subroutines as
shown in Figure 8. Program control data, meteorological data, and
source information are read by subroutine CLINT. The main routine
reads receptor data until an end-of-file is encountered and then
execution is terminated. With the exception of one warning
message generated by CALQ, all output is performed by the main
routine or by subroutine CLINT. Brief descriptions of the main
program and subroutines follow.
CDM-2.0 — The main program first calls subroutine CLINT to read
all the input data except the receptor information
which is subsequently read by the main program. It
directs the concentration calculations by calling
subroutines CALQ, AREA, and POINT. It is also
responsible for printing and writing concentration
results to a file.
CLINT -- This subroutine is called by the main routine to read
program control data, meteorological data, and source
information. It also echoes input according to user
specification. It calls subroutine VIRTX.
40
-------
I 1
siuul
vmn ^
IIGHAI
11 an at *att\*
•on Ihm onc«
Figure 8. CDM-2.0 program structure
-------
CALQ — Called by the main program, subroutine CALQ computes
the area source vector for each direction sector. The
area source vector contains emission rates for two
pollutants and release heights at various upwind
distances.
AREA — This subroutine is called by the main routine to
calculate concentrations due to area sources. It calls
subroutine SIGMAZ.
POINT — Subroutine POINT is called by the main routine to
calculate concentrations due to point sources. It calls
subroutines VIRTX, STDW, and SIGMAZ.
DFAULT -- This second level subroutine sets some of the
user-defined options; see Appendix A for further
discussion. It is called by subroutine CLINT if the
user turns on the default option.
PLRISE -- Called by subroutine POINT, this module calculates
plume rise according to the methods of Briggs (1969,
1971, and 1975).
VIRTX — This second level subroutine is called by CLINT and
POINT; it computes the virtual distance applicable to
the user-specified initial dispersion. VIRTX calls
SIGMAZ to estimate vertical dispersion.
STDW — This subroutine is called by POINT to estimate stack
downwash.
SIGMAZ -- This subroutine is called by AREA, POINT, and VIRTX to
calculate the vertical dispersion parameter. The user
can choose among seven different schemes.
Figure 9 is an abbreviated flow diagram of CDM-2.0 showing
its major loops and relationships among the subroutines and the
main routine. A set of program flow charts is provided in
Appendix B.
42
-------
CDM-2.0
•CLINT (read and echo input data)
SIGMAZ
VIRTX
I
DFAULT
•Loop over receptors
Loop over wind direction sectors
CALQ (calculate area source vector)
AREA
Loop over stability class
Loop over wind speed class
SIGMAZ
POINT
•Calculate concentrations
due to area sources
Loop over point sources
'Loop over stability class
.VIRTX
I
SIGMAZ
Loop over wind speed class
PLRISE
STDW
SIGMAZ
Calculate concentrations
due to point sources
Write Concentration results
EXIT
Figure 9. CDM-2.0 flow diagram.
43
-------
NON-STANDARD FEATURES
The PARAMETER statement, which is used in the main program,
is not an ANSI FORTRAN statement, and hence may not be available
in the user's FORTRAN compiler. As PARAMETER allows constants to
be referenced by symbolic names, it facilitates the updating of
programs in which the only changes between compilations are in
the values of certain constants. In CDM-2.0, the PARAMETER
statement initializes the following variables:
NPTS - number of point sources,
NQLIM - number of upwind integration steps allowed,
NASE - number of east-west area-source grid squares,
NASN - number of north-south area-source grid squares,
which in turn are used to dimension several arrays. If the user's
compiler does not support the PARAMETER statement, the variables
NPTS, NQLIM, NASE, and NASN must be hardcoded. The best way to do
this is to perform global changes using a text editor.
44
-------
SECTION 8
INPUT DATA PREPARATION
RECORD INPUT SEQUENCE
There are 18 record types read by GDM-2.0. Six of these are
free format input, eight are fixed format, three are of
user-specified format, and one is a blank record. While the free
format is easy to use, care should be taken to ensure that every.
variable is given a value in the correct order. Also each
variable should be separated by a conma and should conform to the
variable name type (integer or real). Table 14 lists the record
types and input associated with each record. A brief description
of each input variable is given in Table 15 with the appropriate
units. Under the "Format" column of Table 15, FF represents free
format and US indicates user-specified format.
TABLE 14. SUMMARY OF RECORD TYPES FOR INPUT DATA.
Record
type
Descr iption
Format
type
Input
uni t
Calling
subrout ine
1 HEADNG - run title
2 NSO2,PNAME
3 ARCS,PROS,IRDN.NL1ST,IRD,
HVR,IPU,CA,CB
4 N1636,NP50,NPDH,NSTDW,NGRAD,
FAC, RCEPTZ, KEL V IN, NDEF
5 ELOW,ICA
6 KHIGH,ICP
7 DELR,RAT,CY,XG,YG,TOA,TXX
8 DINT,YD,YN,SZA,GB
9 UE
10 U
11 H
12 FMETEO
13 F
14 FSOORC
15 X,Y,TX,S1,S2,SH,D,VS,T,SA
IS Blank Sentinel Card (End of
source input)
17 FRECPT
18 RX,RY,KPX(9),KPX(10)TNROSE
Fixed
Fixed
Fixed
5
5
CLINT
CLINT
CLINT
Free
Free
Free
Fixed
Fixed
Free
Free
Free
Fixed
FMETEO
Fixed
FSOURC
__
Fixed
FRECPT
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
MAIN
MAIN
45
-------
TABLE 15. RECORD INPUT SEQUENCE FOR CDM-2.0
Record type,
Variable Column Format
Variable description (units)
Record type 1
HEADNG 1-80
Record type 2
NSO2
PNAME
Record type 3
ARCS
PROS
I RUN
NLIST
IRD
IWR
IPU
CA
CB
1- 1
5-12
1- 8
9-16
17-21
22-26
20A4 80-character description or
title of model run
II Pollutant number for SO2
= 0, SO2 not considered
= 1, pollutant 1 is SO2
= 2, pollutant 2 is SO2
2A4 Names of two pollutants to be
modeled (e.g., SO2, TSP)
2A4 Alphanumeric area rose output
ident i ficat ion
2A4 Alphanumeric point rose output
ident i ficat ion
15 User-defined run identification
15 Control for printed output
> 0, echo set-up information,
meteorology, and list
concentration results
= 0, echo set-up information,
meteorology, source, and
list concentration results
< 0, list concentration
results only
27-31 15
32-36 15
FORTRAN logical unit number -
read
FORTRAN logical unit number -
pr int
37-41 15 FORTRAN logical unit number -
punch
42-59 2F9.0 Intercepts of calibration for
both pollutants (ug/m3)
60-77 2F9.0 Slopes of calibration for both
pol lutants
(cont i nued)
46
-------
TABLE 15 (continued)
Record type,
Var iable
Column Format Variable description (units)
Record type 4
N1636
NP50
FF
FF
NPDH
FF
NSTDW
FF
NGRAD
FAC
RCEPTZ
KELVIN
FF
FF
FF
FF
NDEF
FF
Number of wind directions used
in the meteorological joint
frequency function (16 or 36)
Initial dispersion option
< 0, no action taken on point
~ . sources with release
heights below 50 m
> 0, initially dispersed as
described in Section 5
Buoyancy-induced dispersion
option
< 0, no action taken
> 0, include buoyancy-induced
dispersion effects
(Pasquill, 1976) in point
source dispersion
Stack downwash option
< 0, Bjorklund, Bowers (1982)
stack downwash used
= 0, no action taken
> 0, Briggs (1974) stack
downwash considered
Gradual plume rise .option
= 0, no action taken
> 0, gradual plume rise used
Effluent rise for area sources
See Section 5 for description.
Height above ground of all
receptors (meters)
Units flag for stack gas
temperature
< 0, °F
= 0, °C
> 0, K
Default option
= 0, no action taken
> 0, implement default option
(see Appendix A)
(cont i nued)
-------
TABLE 15 (continued)
Record type,
Var iable
Column Format Variable description (units)
Record type 5
KLOW
ICA
Record type 6
KHIGH
ICP
Record type 7
. DELR
RAT
CV
XG
YG
TOA
TXX
Record type 8
DINT
1- 6
7-12
13-18
19-24
25-30
31-36
37-42
1- 6
FF
FF
FF
FF
F6.0
F6.0'
F6.0
F6.0
F6.0
F6.0
F6.0
F6.0
Dispersion parameter scheme
for area sources
Array of six values defining
dispersion curves (as defined
by KLOW) to be used for the six
stability categories summarized
in the joint frequency function
Dispersion parameter scheme
for point sources
Array of six values defining
dispersion curves (as defined by
KHIGH) to be used for the six
stability categories summarized
in the joint frequency function
Radial increment (meters)
Length of basic emission grid
square (user units)
Conversion factor (m/user units)
CV-RAT = emission grid interval
in meters
East-west map coordinate of
the southwest corner of the
emission grid array (user units)
North-south map coordinate of
the southwest corner of the
emission grid array (user units)
Mean atmospheric temperature (°C)
Width of the basic emission
grid square (meters)
Number of intervals used to
integrate over a 22.5° or 10'
sector. Maximum value is 20;
minimum is 2.
(cont i nued)
48
-------
TABLE 15 (continued)
Record type,
Var iable
Column Format Variable description (units)
YD
YN
SZA
GB
Record type 9
UE
Record type 10
U
Record type 11
HL
Record type 12
FMETEO
7-12 F6.0 Ratio of the daytime emission
rate to the average 24-hour
emission rate
13-18 F6.0 Ratio of the nighttime
emission rate to the average
24-hour emission rate
19-54 6F6.0 Initial az for area sources
(me t e r s)
55-66 2F6.0 Decay half-life for the two
pollutants (hours)
FF Array of six values defining
wind profile exponents to be
associated with the six sta-
bility categories summarized
in the joint frequency func-
t ion
FF Array of six values defining
wind speeds at 10 m to be
associated with the six wind
speed categories summarized in
the joint frequency function
(m/sec)
FF Array of six values defining
mixing heights to be associated
with the six stability cate-
gories summarized in the joint
frequency function (meters)
1-64 16A4 Format statement, including
beginning and ending paren-
thesis, for the meteorological
joint frequency function. User
note: CDM format was (7X.6F7.0)
(cont i nued)
49
-------
TABLE 15 (continued)
Record type,
Var iable
Column
Format Variable description (units)
Record type 13*
Record type
FSOURC
14
1-64
Record type
X
Y
TX
SI
S2
SH
D
VS
T
15t
US
16A4
US
US
US
us
us
us
us
us
us
Meteorological joint frequency
funet ion;
i = index for stability class
j = index for wind speed class
k = index for wind direction
Format statement, including
beginning and ending paren-
thesis, for the source inven-
tory. User note: CDM format
was (F6.0,2F7.0,2F8.0,F7.0,
F5.0,2F7.0,F5.0)
East-west coordinate of source
(user units)
North-south coordinate of
source (user units)
Width of area source (meters).
Leave blank for point sources.
Emission rate of pollutant 1
(g/sec)
Emission rate of pollutant 2
(g/sec)
Source height (meters)
Stack diameter (meters).
Leave blank for area sources.
Exit velocity (m/sec).
Leave blank for area sources.
Stack gas temperature. Leave
blank for area sources. User
selected units (see record
type 4).
(cont inued)
50
-------
TABLE 15 (continued)
Record type,
Var iable
Column Format Variable description (units)
SA
Record type 16
Record type 17
FRECPT 1-64
Record type 18]
RX
RY
KPX9
KPX10
NROSE
US
16A4
US
US
US
US
US
Plume rise option
< 0, Briggs plume rise
> 0, Holland's equation. Enter
product of plume rise and
wind speed (m2/sec)
This is a blank record which
follows the source data. It is
used to test for the end of
the source data and must not
be left out.
Format statement, including
beginning and ending paren-
thesis, for the receptors.
User note: CDM format was
(2F8.0,14X,I4,3X,I4,15)
East-west coordinate of the
receptor (user units)
North-south coordinate of the
receptor (user units)
Observed concentration of
pollutant 1 at the receptor,
if known (ug/m3)
Observed concentration of
pollutant 2 at the receptor,
i f known (ug/m3)
Option for pollutant concen-
tration roses
> 0, print concentration roses
< 0, no concentration roses
FF = free format; US = user-specified format
* If N1636 = 16 there are 96 records of this type; if N1636 = 36
there are 216 records of this type.
t There are as many of this record type as there are sources.
] There are as many of this record type as there are receptors.
51
-------
INTRICACIES OF THE DATA
Most of the input data are straightforward and typical of the
kind of information required for Gaussian models. However, there
are some input variables which require additional explanation to
ensure proper value assignment. .
Record Type 2
CDM-2.0 calculates concentrations for two pollutants in a
single execution. Therefore, the user is asked to input two
pollutant names, two sets of calibration constants, and two
emission rates, one for each of the two pollutants modeled. In
this record, the user is asked to provi.de two names for the
pollutants. These two names, which are each four characters in
length, are subsequently used in the output as labels. It is
important that the order used in this record for array variable
PNAME is followed for array variables CA and CB in record type 3
and variables 51 and S2 in record type 15.
Variable NSO2 informs the program which of the pollutants if
any is S02. Within the program, SO2 requires special processing
depending on the options exercised. If NSO2 = 0, then the program
assumes that SO2 will not be run. If NSO2 = 1, then pollutant 1
is assumed to be SO.; if NSO2 = 2, then pollutant 2 is assumed to
be SO2.
Record Type 3
AROS and PROS are alphanumeric arrays to identify the output
record for the area and point concentration roses. In defining
these two arrays it is important to keep in mind that area and
point concentration roses are provided for both pollutants. AROS
and PROS might be input as follows:
AROS(l) = A PI PROS(l) = P PI
AROS(2) = A P2 PROS(2) = P P2
The first two characters refer to the source type (i.e., A for
area and P for point) and the last two characters refer to
52
-------
pollutant (i.e., PI for pollutant 1 and P2 for pollutant 2).
If the calibration feature of CDM-2.0 is not used, the value
of the intercept (CA) and slope (CB) should be specified as 0 and
1, respectively. This results in the calibrated concentration
identical to the computed value. Note that CA and CB are two
entry arrays for the two pollutants being modeled.
Record Type 4
For point sources, CDM-2.0 allows user selection of both
initial dispersion due to building effects and buoyancy-induced
dispersion. The user should verify that simultaneous selection of
these options is appropriate for the particular modeling
s i tuat i on.
Variable NDEF is the default option switch. This feature is
designed as a convenience to the user with the aim of avoiding
inadvertent errors in setting the options. By exercising the
default option, several features are automatically set thus
overriding other user-input selections. Specifics of the default
option are summarized in Appendix A.
Record Types 5 and 6
The user-specified dispersion parameter scheme for area and
point sources is indicated through variables KLOW and KHIGH,
respectively. Table 16 lists the dispersion algorithm and its
corresponding value of KLOW or KHIGH.
53
-------
TABLE 16. VALUES OF KLOW OR KHIGH AND THEIR CORRESPONDING
DISPERSION PARAMETER SCHEMES
KLOW or KHIGH
Dispersion parameter scheme
1
2
3
4
5
6
7
Briggs-rural (Gifford, 1976)
Briggs-urban (Gifford, 1976)
BNL (Singer and Smith, 1966)
Klug (Vogt, 1977)
St. Louis (Vogt, 1977)
PGCDM (Busse and Zimmerman, 1973)
PGSIG (Pasquill, 1961 and Gifford, 1960)
Although CDM-2.0 recognizes seven distinct stability
categories, the meteorological joint frequency function is
assumed to be comprised of only six classes. The specification of
the values for arrays ICA and ICP is, in part, a function of the
manner in which the joint frequency function is formulated, and
these arrays are a function of the dispersion parameter scheme
selected. In the original CDM, the PGCDM dispersion parameter
scheme was employed. The urban effects were modeled by "slipping"
the curves, i.e. using a curve other than that which would
ordinarily be used in a rural situation. With the enhancements
incorporated in CDM-2.0, one can select either to accommodate
urban effects as was done in CDM or, one can select either the
Briggs-urban or the St. Louis schemes. An example should clarify
the i r use.
Assume we have specified KLOW and KHIGH to be 7 (PGSIG
scheme). Suppose NCC's Day-Night STAR program is used to generate
the joint frequency function; this summary includes the following
stability categories: A, B, C, D-day, D-night, and nighttime
stable (i.e., a combination of Pasquill classes E and F). Array
variables ICP and ICA would be defined as 1, 2, 3, 4, 5, and 6
for modeling a rural situation. If one wanted to account for
urban effects by "slipping" the categories, as was done by CDM,
then ICP would be 1, 2, 3, 5, 5, 5, and ICA would be 1, 1, 2, 3,
5, 5. However, if the joint frequency function is formulated
54
-------
using categories A, B, C, D, E, and F, then ICP and ICA are input
as: 1, 2, 3, 5, 6, and 7 for a rural situation. Mixing height is
not affected by array variables ICP and ICA since it is linked to
the six stability categories summarized in the joint frequency
func t i on.
Record Type 7
A potential error in the area source integration algorithm is
radial skipover (Brubaker et al., 1977); radial skipover is
illustrated in Figure lOa. In this instance, the area source size
is smaller than the sampling interval, n DELR, where n = 1, 2, or
4 (see Section 5). It is easy to see that radial skipover can be
minimized by keeping DELR small. However, not only is CPU time
increased with decreasing DELR but also CDM-2.0 is limited
presently to 100 radial arcs. Thus the use of smaller DELR may
result in the termination of the radial integration due to array
size restrictions before the far edge of the emission grid is
reached with the corresponding omission of a significant'part of
the total area source contribution. Figure 11 gives the maximum
range attainable as a function of DELR; it should be used in
defining an appropriate DELR for the user's modeling range.
The easiest way to explain the emission grid is by a
practical example. Suppose that an emission inventory exists with
the smallest emission square 5000 feet on a side and all
coordinates are given in terms of feet. In this instance, the
basic emission grid square is 5000 feet on a side and thus RAT is
5000. CV is 0.3048 (i.e., 1 ft = 0.3048 m); TXX is 1524 (i.e.,
5000 ft = 1524 m); and XG, YG, are in feet. Also, all source and
receptor coordinates are expressed in feet (map coordinates).
Record Type 8
Another source of error in the area source integration is
angular skipover. As shown in Figure lOb, the area source is
skipped over by the sampling points. Obviously, the potential for
angular skipover is reduced if the area source inventory is
55
-------
A. Radial Skipover
n-DELR
sampling
points
DINT=4
Receptor
B. Angular Skipover
sampling
points
DINT=1
Receptor
Figure 10.
Radial and angular skipover
Brubaker et al-, 1977).
(mod i f i ed f rom
58
-------
1000
E
I
cr
_i
LJJ
Q
100
10
I 1 1 1 L
10
100
MAXIMUM RANGE - km
Figure 11. DELR as a function of maximum range of area source
integration (modified from Brubaker et al.f 1977).
57
-------
described using large (say 5 km or larger) grid squares. For a
detailed inventory employing area-source squares with side
lengths of 1 km, Brubaker et al. (1977) suggests using DINT = 10
with a wind direction sector of 22.5° to reduce the likelihood of
angular skipover. DINT = 4 is probably sufficient with a 10°
wind-direction sector (i.e., N1636 = 36).
Record Type 11
HL is an array variable containing six values which define
mixing heights (in meters) associated with the six stability
categories summarized in the joint frequency function. The user
must decide on an appropriate relationship between mixing height
and stability category. One possible scheme is shown in Table 5.
Dispersion from sources with effective release heights above
the mixing height is not assumed to reach the receptors. If the
mixing height is set to zero for a particular stability, then no
contributions from any of the sources would occur (during that
particular stability). If the user believes that unlimited mixing
is the appropriate condition for a particular stability, then the
mixing height (for that stability category) should be specified
as a very large value (say 9999. m).
58
-------
SECTION 9
EXECUTION OF THE MODEL AND SAMPLE TEST
EXECUTION
CDM-2.0 produces an error-free compile on IBM MVS and UNIVAC
EXEC 8 computers with comparable execution results. A sample job
stream is presented below.
UNIT t » OUTPUT
CONCENTRATION DATA
UNIT* « PRINTER
EXECUTE CDM-2.0
JOB CARD
• Onit number provided by user via input variable, IWR.
t Dnit number provided by user via input variable, IPO.
S Onit number provided by user via input variable, IBD.
Figure 12. Sample job stream for CDM-2.0
59
-------
A job stream for a UNIVAC EXEC 8 system might have the
following form:
@RUN,R/R JOB- ID, ETC
@ASG,A MODELS* LOAD.
QASG,A CONG.
©USE 8,CONC.
@XQT MODELS* LOAD. CDM2
(input records shown in Table 17)
The following is a sample job stream for a typical IBM system
under OS or MVS.
//JOBID JOB ( PRO J.ACCT, OTHER) ,CLASS=A,TIME=1
//XCDM2 EXEC PGM=CDM2 ,TIME=( , 10 )
//STEPLIB DD DSN=USER. MODELS. LOAD, D I SP=SHR
//FT08F001 DD DSN=USER.CONC.DATA,DISP=SHR
//FT06F001 DD SYSOUT=A
//FT05F001 DD *
(input records shown in Table 17)
/*
Sample test data for model verification are given in Table
17; Figures 13 and 14 provide the output for the sample test.
Users may verify the proper execution of the program by comparing
their results with those given in the figures.
60
-------
TABLE 17. INPXJT DATA FOR THE SAMPLE TEST
Record
SAMPLE TEST OF OM-2.0
1 SO2PABT
A P1A P2P PIP P299999 0 5 8 3 0.0 0.0 1.0
18, 1,0, 0,0,1.,!)., 0,0
8,1,1,2,1,4,4
8,1,2,3,4,4,4
2SO. 5. 1000. S. 9. 1.25 9000.
4. 1. 1. 30. 30. 30. 30. 30. 30. 3.999999
.10, .15, .20,. 25, .25, .30
1.5,2.45872,4.4704,8.92912,9.81136,12.51712
1200., 800,, 800., 800., 479., 150.
(7X.8P7.0)
48 blank card Images
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500. 000000. 000000. 000000. OOQOOO. 00000
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
32 blank card Images
( F6 . 0 , F7 . 0 , F7 . 0 , F8 . 0 , F8 . 0 , F7 . 0 , F5 . 0 , F7 . 0 , P7 . 0 , F9 . 0 )
9.0 9.0 10000. 4000. 4000. 20.
9.0 15.0 5000. 1000. 1000. 20.
10.0 15.0 5000. 1000. 1000. 20.
19.0 19.0 9000. 1000. 1000. 20.
19.0 10.0 9000. 1000. 1000. 20.
15.0 5.0 5000. 1000. 1000. 20.
12.5 12.5 0. 1000. 1000. 20. 1.0 5.0 20.0 0.0
1 blank card image to indicate end of source records
(F8.2,P8.2,I4,I4,IS)
9.0 9.0 00 0
9.0 10.0 000
9.0 15.0 000
5.0 20.0 000
10.0 5.0 0 fl 0
10.0 10.0 000
10.0 15.0 000
10.0 20.0 000
15.0 5.0 00 0
15.0 10.0 000
15.0 15.0 000
15.0 20.0 000
20.0 5.0 00 0
20.0 10.0 0 0 0
20.0 19.0 000
20.0 20.0 001
Racord
type
1
2
1.0 3
4
5
8
7
8
9
10
11
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13 .
14
IS
15
15
15
15
15
IS
16
17
18
18
18
18
18
18
13
18
18
13
18
18
18
13
18
13
61
-------
CLIMATOLOGICAL DISPERSION MOIiBL - VERSION 1.0
CODE VERSION
RUN mtt
TEST OP CTW-1.0 DEFAULT OPTION
cn
to
TECHNICAL OPTIONSi
NUMBER OP WIND DIRECTIONS USED IN METEOROLOGICAL JOINT
FREQUENCY FUNCTION (N161«) !•
DISPERSION PARAMETER SCHEME FOB AREA SOURCES (BLOW) 1 BRIOGB-URBAH, OIPFORD (Itie)
DISPERSION PARAMETER SCHEME POR POINT SOURCES (KHIGH) 1 BRIOGS-imBAN, QIPPORD (I9tt)
EFFLUENT RISE FOR AREA SOURCES (PAC) I.OOOOOOB«00
HEIGHT ABOVE QftOUND OP ALL RECEPTORS (RCEPTZ) 0.0000008*00 M
CALIBRATION CONSTANTS -- SOI
INTERCEPT OP CALIBRATION 0.0000008*0* MICROORAMS/CU. METER
SLOPE OP CALIBRATION 1.6000008*00 DIMENSIOHI.ES8
CALIBRATION CONSTANTS -- PAAT
INTERCEPT OP CALIBRATION 0.8000008*00 MICROGRAMS/CU. METER
SLOPE OP CALIBRATION I.OOOOOOB«00 DIMKH8IOHLB88
INITIAL DISPERSION OPTION (NPtO) 0
BUOYANCY INDUCED DISPERSION OPTION (NPDtl) 1
STACK DOWNWASH OPTION (NSTDW) I
GRADUAL PLUME RISE OPTION (NGRAO) 0
DEFAULT OPTION (NDEP) I
PRINT OPTIONSi
CONTROL FOR PRINTED OUTPUT •
FORTRAN LOGICAL UNIT NUMBER (READ) t
FORTRAN LOGICAL UNIT NUMBER (PRINTER) •
FORTRAN LOGICAL UNIT NUMBER (PUNCH) I
OPERATING PARAMETERSi
X-MINIMUM OP AREA EMISSION INVENTORY MAP OHIO (XO) .0000008*00 USER UNITS
Y-MINIMUM OP AREA EMISSION INVENTORY MAP GRID (Yd) .0000008*00 USER UNITS
WIDTH OP A BASIC EMISSION GRID BQUARB (RAT) .0000008*00 USER UNITS
OHIO CONVERSION FACTOR (CV) .0000008*0} M/USEH UNITS
WIDTH OP A BASIC EMISSION GRID SQUARE (TXX) .OOOOOOE*01 M
NUMBER OP 8UBSECTORS CONSIDERED FOR EACH SECTOR (DINT) .... .0000006*00 DIMENSIONLE88
ANGULAR WIDTH OP A SUB3ECTOR (TIIETA) .12(0008*00 DEO
INITIAL RADIAL INCREMENT (DELR) .4000008*01 M
MISCELLANEOUS METEOROLOGICAL DATAi
AMBIENT AIR TEMPERATURE (TOA) I.1141008*01 K
MIXING HEIGHTS BY STABILITY CLASS (IIL) I
STABILITY CLASSi .1000008*01 M
.OOOOOOB»01 M
.0000008*01 M
.OOOOOOE*01 M
.MOOOOEtOl M
.iOOOOOB*Ot M
Figure 13. Printed output for the sample test
-------
CLIMATOLOQICAL DISPERSION MODEL - VERSION t.O
CODE VERSION ItlSl
BUM »8999
TEST OF aW-J.O DEFAULT OPTION
MISCELLANEOUS METEOROLOGICAL DATA (CONTINUED)i
CENTRAL WIND SPEED OF TIIB SIX MIND SPEED CLASSES (U)i
WIND SPEED CLASSi
EXPONENTIAL OF TIIB VERTICAL WIND PROFILB (UB)i
STABILITY CLASSi
tOOOOOHtOI M/8EC
,4il710E»00 M/8EC
470400E»00 M/SEC
,«1BIIOB»00 M/SEC
,lllltOE»00 M/BEC
M/SEC
.OOOOOOE-OI
.SOOOOOE-OI
.OOOOOOB-OI
.400000B-OI
.tOOOOOB-OI
.eoooooB-oi
DIMEN8IONLE8B
DIMKNSIONLESS
DIMEM8IONLE38
DIMENSIONLESS
DIMEN8IONLESS
DIMENSIONLESS
cn
CJ
SOURCE DATAi
POLLUTANTS TO BB MODELED
DECAY IIALF-LIPB FOR SOI (OB(D)
DECAY IIALP-LIFE FOR PART (OB<1))
DAYTIME EMISSION WEIGHT FACTOR (YD)
NiairrriME EMISSION wBiairr FACTOR (YN) ..
INITIAL 8IQMA-Z FOR AREA SOURCES <8ZA)|
STABILITY CLASSt
80J 4 PART
.OOOOOOE'OO ICR
.l«»»90E»Oi in
.OOQOOOEtOO DIMENSIONLESS
.OOOOOOEtOO DIMENSIONLESS
.OOOOQOB»OI M
.OOOOOOEiOl U
.000000E*OI M
.OOOOOOE*OI M
.OOOOOOEtOI M
.OOOOOOB«OI M
DISPERSION CURVE USED FOR EACH STABILITY CLASS
STABILITY
CLASS
1
t
}
4
6
POINT
SOURCES
A
B
C
Dl
Dl
B
AREA
SOURCES
A
B
C
Dl
DI
B
Figure 13. (continued).
-------
0>
TEST OP CDM-J.O DEFAULT OPTION
STABILITY CLASS I
HIND DIHECTION SECTOR
H I
HUB 1
HE 1
EWE I
B 4
B88 I
SB I
83H I
8 •
8SW 10
aw it
WSW II
W II
WHW 14
NW IS
HNW 18
CLIMATOLOQICAL DISPERSION MODEL - VERSION 1.0
OOOB VERSION ISlil
RUN »»«»»
HETEOROLOQICAL JOINT FREQUENCY FUNCTION
I
0.000000
0.000000
o.oopooo
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
A.000000
B.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
.000000
0.000000
WIND
1
0.000000
0.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
SPEED CLASS
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
o.oooooq
o.oooood
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
000000
000000
000000
000000
000000
000000
000000
0.000000
0.000000
000000
000000
000000
000000
000000
000000
0.000000
COMPUTED MEAN SPEED • 0.00 M/BEC
STABILITY CLASS 1
WIND DIRECTION
N
HUE
NE
ENB
B
ESB
SB
8SB
S
asw
aw
WSW
w
WHW
NW
NNW
WIND SPEED CLASS
SECTOR
10
11
It
11
14
IS
16
1
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
a
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
O.OOOOQO
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
}
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
COMPUTED MEAN SPEED
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
« 0.00
ft
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
M/BEC
•
o.aooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Figure 13. (continued).
-------
CD
cn
TEST OP CCM-1.0 DEFAULT OPTION
CLIMATOLOQICAL DISPERSION MODEL - VERSION l.»
CODE VERSION 15)11
RUN 88»»8
METEOROLOGICAL JOINT FREQUENCY FUNCTION
STABILITY CLASS 1
WIND DIRECTION
N
HNB
NB
ENB
B
ESB
SB
8SB
8
saw
aw
wsw
w
WNW
NW
NNW
STABILITY CLASS 4
WIND DIRECTION
SECTOR
10
II
II
II
14
14
ia
SECTOR
I
o.oooooa
o.oooooo
e.oooooo
a.oooooo
o.oooooa
a.oooooo
o.eooooa
a.oooooo
o.oooooo
o.oooooa
e.oooooo
o.oooooo
o.oooooo
0.000000
0.000000
a.eooooo
o.oooooo
a.oooooo
o.oooooo
a.oooooo
o.oooooo
0.000000
a.oooooo
a.oooooa
a.oooooo
a.oooooo
o.oooooo
a.oooooo
o.oooooe
o.oooooo
a.oooooo
e.oooooa
WIND
a
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
SPEED CLASS
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
•.000000
a.eooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
e.oooooo
0.000000
a.oooooo
0.000000
a.oooooo
o.oooooa
.oooooo
.oooooo
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
COMPUTED MEAN 8PBED
e.oo U/BEC
WIND SPEED CLASS
N
HNB
NB
ENB
B
BSE
8E
S3E
8
saw
aw
wsw
w
WNW
HW
NNW
o.ooi5oo
o.oaisoo
o.oaiioo
e. oeisoo
o.oei5oo
0.06)600
0.061500
0.061500
O.OBliOO
10 0.0*1500
II 0.011600
11 0.061500
11 0.061500
14 0.061500
It 0.061500
16 0.061500
a.oooooo .oooooo
0.000000 .000000
a.oooooa .oooooo
0.000000 .000000
0.000000 .000000
0.000000 .000000
0.000000 .000000
0.000000 .000000
o.oooooo o.oooooa
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
a.oooooo o.oooooo
0.000000 0.000000
0.000000 0.000000
e. oooooo o.oooooo
COMPUTED MEAN
0.000000
0.000000
0.000000
a.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
SPEED - l.iO
a.oooooa
0.000000
a.oooooa
e.oooooa
0.000000
0.000000
e. oooooo (
0.000000 (
0.000000 (
o.oooooa (
0.000000 1
0.000000
0.000000
0.000000
0.000000
0.000000
M/8EC
.000000
.000000
.eooooo
.oooooo
.eooooo
.000000
). OOOOOO
1.000000
). OOOOOO
). OOOOOO
1.000000
.000000
.000000
.000000
.000000
.000000
Figure 13. (continued).
-------
TEST OF COM-1.0 DEFAULT OPTION
STABILITY CLASS ft
WIND DIRECTION SECTOR
H
HNE
HE
EHE
E
ese
SE
SSE
3
asw 10
aw it
WSW 1»
W II
WNW II
NW 14
NHW 16
CLIMATOUMICAL DISPERSION MODEL - VERSION I.a
CODE VERSION 14181
RUN 8B880
METEOROLOGICAL JOINT FREQUENCY FUNCTION
WIND SPEED CLASS
0.000000
0.000000
A. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
t. 000000 (
0.000000 I
0.000000 (
1.000000
0.000000
0.000000
0.000000
ft. 000000
0.000000 I
0.000000 1
0.000000 1
0.000000
0.000000 I
0.000000 1
0.000000 (
0.000000
1.000000
>. 000000
1. 000000
.000000
.000000
.000000
.000000
.000000
). 000000
J. 000000
1.000000
1.000000
). 000000
). 000000
1.000000
). 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
1.000000
1.000000
a. oooooo
1.000000
D. OOOOOO
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
COMPUTED MEAN SPEED • 0.00 M/BEC
STABILITY CLASS 8
WIND DIRECTION
M
NNE
NE
ENE
e
ESE
SE
SSE
S
SSW
SW
wsw
W
WNW
NW
HNW
SECTOR
1
1
1
i
4
6
t
1
9
10
II
11
11
II
IS
16
1
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
1
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
WIND
}
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
COMPUTED MEAN
SPEED CLASS
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
SPEED « 0.00
1
•.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
U/8EC
•
•.oooooo
•.oooooo
•.oooooo
•.oooooo
t. oooooo
0.000000
0.000000
•.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Figure 13. (continued).
-------
CLIMATOUX1ICAL DISPERSION MODEL - VERSION 1.0
CODE VEIiaiOH ISIS*
AUH 1II09
TEST OP CCM-1.0 DEFAULT OPTION
AREA AND POINT BOURCB INVENTORY
X MAP
OOOBDINATE
Y MAP
COORDINATE
t.oo s.oo
s.oo it.oo
10.00 14.00
IS.00 . IS.00
IS.00 10.00
IS.00 S.OO
II.SO II.SO
• AREA SOURCES.
WIDTH OP
ORID SQUARE
(M)
10000.
sooo.
sooo.
sooo.
sooo.
sooo.
0.
EMISSION HATE
SOI PART
(Q/SEC) (O/BEC)
4000.0*
1000.00
1000.00
1000.00
1000.00
1000.00
1000.01
4000.00
1000.00
1000.00
1000.00
1000.00
1000.00
1000.00
BOURCB
iiEinirr
(U)
10.00
10.00
10.00
10.00
10.00
10.00
10.00
STACK
STACK EXIT
DIAU SPEED
(U) (M/BEC)
0.00
0.00
0.00
0.00
0.00
0.00
1.00
,00
.00
00
.00
00
.00
.00
STACK
OAS
TEMP
(DEO C)
0.
0.
0.
0.
0.
0.
10.
OPTIONAL
PLUMB RIBB
COEFFICIENT
(M**i/8EC)
0.00
0.00
0.00
00
0.00
0.00
0.00
I POINT SOURCES.
O>
-4
Figure 13. (continued).
-------
TEST OP CDM-1.0 DEFAULT OPTION
X OOORD
ft.00
ft.00
4.00
ft.00
10.00
10.00
10.00
10.00
IS.00
It.00
It.00
li.OO
10.00
10.00
10.00
CLIMATOUXIICAL DISPERSION MODEL - VEHSIOH 1.0
CODE VERSION liltl
RUN ttttl
CONCENTRATIONS (MICROOHAMS/CU. MBTER)
COORD
1.00
10.00
li.OO
10.00
ft. 00
10.00
It. 00
10.00
ft. 00
10.00
li.OO
20.00
i.OO
10.00
It. 00
AREA SOURCES
soi PART
Hi.
in.
ill.
lit.
lit.
til.
ill.
in.
in.
til.
til.
in.
lit.
lit.
lit.
in.
in.
ill.
161.
111.
ilO.
ilO.
111.
111.
ilO.
ilO.
111.
161.
111.
111.
POIH1
30]
1.
11.
11.
1.
It.
it.
41.
11.
11.
SI.
tl.
11.
1.
It.
11.
r SOURCES
PART
10. ft
ia.o
14.0
10.
It.
it.
il.
It.
It.
41.
&l.
It.
10.
II.
It.
80]
til.
lil.
ttl.
111.
ttl.
tit.
tti.
iftl.
141.
itt.
tti.
lil.
111.
til.
ttl.
UlAi.-----
1 PAHT
tit.
tit.
lit.
Hi.
lit.
Itl.
111.
lit.
lit.
111.
111.
tit.
Hi.
111.
lit.
- -CALIBRATED- -
801 PAHT
HI.
lil.
161.
141.
111.
fttft.
Sift.
til.
Itl.
itft.
tit.
J41.
111.
1(1.
141.
lift.
lit.
lift.
lift.
tit.
an.
in.
lit.
lit.
in.
in.
lit.
lift.
n>.
in.
--OBSERVED---
8O1 PAST
en
oo
Figure 13. (continued).
-------
TEST OP CTM-1.0 DEFAULT OPTION
CLIMATOLOdlCAL DISPERSION MODEL - VERSION 1.0
CODE VERSION ISIS)
HUH 9S9IS
OONCEMTHATIOHB (MICHOQHAM3/CU. UBTER)
X COORD Y OOORD
10.00 10.00
AREA SOURCES
SOI PART
POINT SOURCES
301 PART
---TOTAL
SOI PART
--CALIBRATED--
SOI PART
---OBSERVED---
8O1 PART
1)1.S 114.1 I.I 10.ft 141.1 1TI.O 141.1 ITft.O 0 0
>••.•••••«•••••••••»• AVEHAQB CONCENTRATIONS BY STABILITY •••••••••••••••••«••••••••••••••• ••
TYPB Of
POLLUTANT SOURCE
I ( 801) AREA
I ( 801) POINT
1 (PART) AREA
1 (PART) POINT
1
0.0
0.0
0.0
0.0
---STABILITY CATEGORY-
114
l.t
».0
0.*
0.0
•-• III.*
».0 l.»
0.0 114.1
1.0 10. 1
1
•••
0.0
•••
•-•
•
•-•
1.0
O.I)
0.0
••• AREA ROSES (UICROORAM3/CU. UETEB) ••••••••••••••••••••••••••••••••••••••••••
POLLUTANT N HUE NB ENB B B8B SB 8SB 8 BBW 8W W3W W WNW NW NNW
I 4 « 4 4 4 4 4 4 II 41 41 41 II I 4 4
1 4 4 4 4 4 4 4 4 II II IT II )* 4 4 4
POINT BOSKS (UICaOORAMa/CU. METER) ••» •••• •••••
POLLUTANT N NNE NE ENE B E3B SB SflB 8 88W SW WSW W WNW NW NNW
I 0000000000100000
1 0000000000 II 00000
.......««••••....•»••••••»•«.••««..««•«.««••••»•«••••«»«••»•«•••»•••••••••«••••••••••••••»»•••••«•••••••••••
Ptgure 13. (continued).
-------
A
P
A
P
A
A
A
A
P
P
P
P
PI
PI
P2
P2
PI
PI
P2
P2
PI
PI
P2
P2
5.00
5.00
5.00
5.00
10.00
10.00
10.00
10.00
15.00
15.00
15.00
15.00
20.00
20.00
20.00
0.0
0.0
0.0
0.0
4
29
4
32
0
0
0
0
5.00999991
10.00999991
15.00999991
20.00999991
5.00999991
10.00999991
15.00999991
20.00999991
5.00999991
10.00999991
15.00999991
20.00999991
5.00999991
10.00999991
15.00999991
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.2
444
45 48 45
444
51 57 51
000
080
000
0 11 0
236
343
343
236
343
543
543
343
343
543
543
343
236
343
344
235.
7.
264.
10.
4
29
4
32
0
0
0
0
264
374
374'
264
374
580
580
374
374
580
580
374
264
374
374
9
9
5
5
4
4
4
4
0
0
0
0
8
12
12
8
12
53
53
12
12
53
53
12
8
12
12
0.0
0.0
0.0
0.0
4
4
4
4
0
0
0
0
10
15
15
10
15
58
58
15
15
58
58
15
10
15
15
244
355
355
244
355
596
596
355
355
596
596
355
244
355
355
0.0
0.0
0.0
0.0
4
4
4
4
0
0
0
0
275 244
389 355
389 355
275 244
389 355
638 596
638 244
389 355
389 355
638 596
638 596
389 355
275 244
389 355
389 355
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
275 0
389 0
389 0
275 0
389 0
638 0
275 0
389 0
389 0
638 0
638 0
389 0
275 0
389 0
389 0
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 14. Card Image output for the sample test.
-------
EHROR MESSAGES AND REMEDIAL ACTION
CDM-2.0 can generate nine error messages and two warning
messages. An error message results in program termination while a
warning message allows execution to continue. Table 18 lists each
message, along with its description and suggested corrective
act ion.
TABLE 18. CDM-2.0 ERROR/WARNING MESSAGES AND CORRECTIVE ACTION
MESSAGE (1):
DESCRIPTION:
ACTION:
MESSAGE (1):
DESCRIPTION:
ACTION:
MESSAGE (1)
DESCRIPTION:
*** VALID VALUES FOR NSO2 ARE 0, 1, OR 2.
*** USER INPUT NSO2 = nnnn
.*** EXECUTION TERMINATED.
NSO2 must be set to 0, 1, or 2. Any other value
will result in program termination.
Modify input stream so that NSO2 is equal to 0, 1
or 2 and resubmit the job.
**» VALID VALUES FOR N1636 ARE 16 OR 36.
*** USER INPUT N1636 = nnnn
*** EXECUTION TERMINATED.
The meteorological joint frequency function can
only consist of 16 or 36 wind-direction sectors.
The user tried to input a value different from 16
or 36.
Modify the input stream so that N1636 is equal to
16 or 36 and make sure that the number of wind
direction sectors in the joint frequency function
agrees with the value given by N1636.
*** VALID VALUES FOR FAC RANGE FROM 0 TO 1.
*** USER INPUT FAC = xxx.xx
••* EXECUTION TERMINATED.
FAC must be between 0 and 1, inclusive. The user
tried to input a value outside that range.
(cont inued)
71
-------
TABLE 18 (continued)
ACTION:
Modify input stream so that FAC is between 0 and 1,
inclusive.
MESSAGE (1):
DESCRIPTION:
ACTION:
MESSAGE (1):
DESCRIPTION:
ACTION:
MESSAGE (1):
DESCRIPTION:
ACTION:
MESSAGE (1):
**» VALID VALUES OF KLOW RANGE FROM 1 TO 7.
*** USER TRIED TO INPUT KLOW = nnnn
**« EXECUTION TERMINATED.
KLOW must be between 1 and 7, inclusive. The user
tried to input a value outside that range.
Modify input stream so that KLOW is between 1 and
7, inclusive.
«** VALID VALUES FOR ICA RANGE FROM 1 TO 7.
*** USER TRIED TO INPUT ICA(i) = nnnn
*** EXECUTION TERMINATED.
Values in the array ICA must be between 1 and 7,
inclusive. The user tried to input a value outside
.>
that range.
Modify input stream so that al1 the values in
the array ICA are between 1 and 7, inclusive.
*** VALID VALUES FOR KHIGH RANGE FROM 1 TO 7.
*** USER INPUT KHIGH = nnnn
*** EXECUTION TERMINATED.
KHIGH must be between 1 and 7, inclusive. The user
tried to input a value outside that range.
Modify input stream so that KHIGH is between 1 and
7, inclusive.
*** VALID VALUES FOR ICP RANGE FROM 1 TO 7.
*** USER INPUT ICP(i) = nnnn
*** EXECUTION TERMINATED.
(cont i nued)
72
-------
TABLE 18 (continued)
DESCRIPTION:
ACTION:
MESSAGE (1):
DESCRIPTION:
ACTION:
MESSAGE (1):
DESCRIPTION:
ACTION:
Values in the array ICP must be between 1 and 7,
inclusive. The user tried to input a value outside
that range.
Modify input stream so that all the values in
the array ICP are between 1 and 7, inclusive.
*** THE PRODUCT OF RAT AND CV MUST EQUAL TXX.
*** THE VALUES PROVIDED BY THE USER DO NOT CONFORM
TO THIS RELATIONSHIP.
»** EXECUTION TERMINATED.
The quantities RAT, CV, and TXX are related by the
following equation: TXX = RAT-CV. However the
user-supplied quantities do not relate in the
prescribed manner.
Modify input stream so that the quantities meet the
above-mentioned relationship.
*** VALID VALUES FOR DINT RANGE FROM 2 TO 20.
•*• USER INPUT DINT = xxx.x
*** EXECUTION TERMINATED.
DINT must be between 2 and 20, inclusive. The user
tried to input a value outside that range.
Modify input stream so that DINT is between 2 and
20, inclus ive.
MESSAGE (2): NOTE:
AREA SOURCE WITH X COORD xxxxxxx.xx AND Y
COORD yyyyyyy.yy VIOLATES AREA SOURCE ARRAY
LIMITS. AREA SOURCES MUST LIE ENTIRELY
WITHIN A xxxxxxxx.xx BY xxxxxxxx.xx METER
SQUARE WITH SOUTHWEST CORNER AT THE USER-
DEFINED ORIGIN (XG,YG). THIS SOURCE WILL
NOT BE INCLUDED IN THIS CALCULATION.
(cont i nued)
73
-------
TABLE 18 (continued)
DESCRIPTION:
ACTION:
The area source emission grid may not be larger
than 50 grid squares in either the x or the y
direction, this limit being determined by the
dimensions of various arrays defined within the
computer program. This limit, together with the
user-specified size of a basic grid square (TXX),
imposes a limit to the total size of the emission
grid. A test is made to see that each area source
falls within the boundaries of the grid. It was
determined the area source mentioned in the warning
message lies partially or wholly outside the grid
boundaries. As indicated in the message, the
calculation proceeds but the area source in
violation is omitted from the inventory.
Adjust the location of the origin (XG,YG) or the
size of the basic emission grid square (TXX) such
that al1 area sources are within the boundaries
of the grid. Alternatively, the dimensions could be
appropriately increased to accommodate the area
source inventory.
MESSAGE (2): WARNING: MORE THAN 100 ARCS ARE REQUIRED FOR
CALCULATION OF AREA CONTRIBUTION. AREA
SOURCES BEYOND xxx.x KM ARE NOT INCLUDED
IN THIS CALCULATION.
DESCRIPTION: As discussed in Section 5, the area source
algorithm evaluates the average emission rate on a
series of arcs centered on the receptor of
interest. No more than 100 arcs are used, this
limit, together with the user-supplied radial
integration step, DELR, imposes an upper limit to
the distance to which the area source calculations
(continued)
74
-------
TABLE 18 (continued)
are taken. If there are area sources beyond this
range, they are not included in the calculations.
ACTION: Guidance on choosing DELR to avoid this problem is
provided in Figure 11. The integration step, DELR,
should be modified such that all area sources are
included in the calculation. Alternatively, the
user could increase the number of integration steps
allowed.
(1) Error message — execution terminated.
(2) Warning message — execution continues.
75
-------
SECTION 10
INTERPRETATION OF OUTPUT
»
The input stream and output listing of the example problem in
Section 6 are presented here. The reader is referred to the
earlier section for the physical description of the problem.
Intricacies of the input data are discussed here and the output
listing is annotated for ease of interpretation.
Table 19 lists the input data for the example problem. Note
that the PGCDM dispersion scheme (KLOW = KHIGH = 6) was chosen
for this example. Arrays ICP and ICA were so defined to simulate
the more unstable conditions of the urban atmosphere. As shown in
Figure 15, RAT (the basic emission grid square in user units) is
5 km; thus TXX = 5000 m and CV = 1000. The coordinates of the
southwest corner of the emission grid (XG, YG) is also given in
Figure 15. As indicated in Table 19, receptors are combined into
two groups: those in which NROSE < 0 and those in which
NROSE > 0. Output volume is reduced in this manner.
The printed output of CDM-2.0 consists of four parts: set-up
information, meteorology, source inventory, and concentration
results. The set-up information, meteorology, and source
inventory are optionally provided (see variable NLIST of record
type 5 in Table 15). Abridged output from the example problem is
given in Figure 16; output in card image form is shown in Table
20. The format of the card image output is given in Table 21 for
ease of interpretation.
76
-------
TABLE 19. INPCT DATA FOR THE EXAMPLE PROBLEM.
Record
AQCM TEST CITY
1 SO2PABT
A P1A
16 1 11
8,1,1,
8,1,2,
100.
10.
0.1,0.
1.3,2.
1300. ,
P2P PIP P2 100 0
001 0 00
2,3,4,4
3,4,4,4
3
3. 1000. 362.34387.3 13
1. 1. 30.
13,0.2,0.23,0.23,0.3
43372,4.4704,6.92912,
1000. ,1000. ,1000. ,330
30. 30
9.61138,
.,100.
8 3
. 3000.
30.
12.51712
0.0
30. 30.
0.0 1.0
999999999999
(9X,8F9.0)
18 blank card images
.000300 .000300
.0 .0
.0 .000300
.000300 .0
.000900 .000300
.000900 .0
.000900 .000300
.0 .0
.0 .0
.0 .0
.0 .0
.000900 .0
.0 .000500
.000300 .0
.0 .0
.0 .0
.000300 .0
.0 .000300
.0 .0
.000900 .000900
.001300 .002300
.0 .003700
.001400 .003200
.0 .002800
.0 .000900
.0 .001800
.0 .001300
.000300 .001400
.0 .001400
.000300 .000300
.0 .000900
.0 .001400
.0 .001080
.0 .000340
.0 .000340
.0 .002220
.0 .003360
.0 .001680
.0 .000840
.0 .001080
.0 .000300
.0 .000840
.0 .001080
.0 .000340
.0 .002460
.0 .002220
.0 .001380
.0 .001680
.0 .000720
.0 .000360
.0
.0
.0
.0
.000300
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.003200
.000900
.000900
.004600
.004100
.004600
.002800
.000900
.000900
.000900
.000900
.000900
.000900
.000900
.000300
.001400
.031360
.008040
.006360
.006360
.008880
.006060
.013020
.010300
.008880
.003230
.001080
.003230
.007740
.009420
.014640
.018000
.021040
.003360
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.000300
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.022980
.009420
.008880
.006360
.008280
.030420
.024600
.014640
.013000
.003230
.0
.000300
.004140
.006660
.009660
.019620
.013320
.006280
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.002220
.001680
.000300
.000300
.003300
.006660
.003060
.001680
.001330
.0
.0
.0
.0
.001080
.001680
.001380
.001480
.001120
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.000840
.000840
.000300
.0
.0 .
.0
.0
.0
.0
.0
.0
.0
.0
.0
Record
type
1
2
1.0 3
4
3
6
7
a
9
10
11
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
. 13
13
13
13
13
(eont i nued)
77
-------
TABLE 19. (continued)
Record
.0 .000360 .004240 .005920 .000200 .0
.0 .001480 .004240 .004240 .000200 .0
.0 .002240 .003920 .003520 .002200 .000360
.0 .001120 .004040 .020230 .004440 .000360
.0 .000560 .008680 .016400 .002040 .000200
.0 .000720 .007000 .009760 .001120 .0
.0 .000200 .003920 .012000 .000920 .0
.0 .000380 .003320 .003320 .0
.0 .000720 .000720 .0 .0
.0 .000380 .003320 .000200 .0
.0 .001640 .005160 .002760 .0
.0
.0
.0
.0
.0 .001480 .008230 .004440 .000720 .0
.0 .000920 .009780 .006440 .001120 .0
.0 .001120 .012000 .013080 .000920 .0
.003100 .012400 .021200 .0 .0
.000300 .002800 .004600 .0 .0
.000900 .005100 .002300 .0 .0
.003200 .007300 .004100 .0 .0
.010600 .016100 .005500 .0 .0
.003300 .016100 .012400 .0 .0
.001400 .006900 .004600 .0 .0
.000900 .003100 .003100 .0 .0
.002300 .004600 .002300 .0 .0
.003100 .006500 .0 .0 .0
.000900 .003700 .0 .0 .0
.001300 .003700 .0 .0 .0
.001300 .006300 .000300 .0 .0
.003300 .012000 .003700 .0 .0
.008800 .011100 .003700 .0 .0
.003200 .011300 .006900 .0 .0
(F8 . 0 , 2F7 . 0 , 2F8 . 0 , F7 . 0 , F5 . 0 , 2F7 . 0 , F5 . 0 )
S68.S 4403.4 1363.00 327.63 ISO.
584.2 4391.6 1380.36 739.6 90. 3.
377.0 4401.1 221.78 34.13 30.
374.1 4401.3 110.23 34.08 23. 1.
362.3 4402.5 3000. 1.37 1.63
567.5 4402.3 3000. 1.28 1.79
372.5 4402.5 3000. 3.23 3.99 10.
377.3 4402.3 5000. 1.47 13.13
382.3 4402.3 3000. 1.2 1.58
362.5 4397.5 5000. 2.62 1.47 10.
567.5 4392.5 10000. 32.66 21.11 IS.
577.5 4397.5 5000. 5.46 3.99 10.
582.5 4397.5 5000. 6.62 5.78 10.
562.5 4392.5 SOOO. 2.63 1.16 10.
577.3 4392.5 5000. 7.38 5.15 20.
582.3 4392.5 5000. 5.25 3.63 10.
362.5 4387.5 5000. 2.73 1.37
567. 5 4387.5 5000. . 2.42 1.39 10.
S72.5 4387.5 5000. 5.36 4.10 10.
577.5 4387.5 5000. 5.37 3.39 10.
532.5 4387.3 SOOO. 2.34 1.47 10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0001
7 15.2 149.
7 17.3 513.
4 15.2 280.
To reduce length
of output listing,
receptors should be
combined into two
groups - those in
which NROSE £ 0
and those in
which NROSE > 0.
1 blank card image to indicate end of source records
(2F3.2.14X, 14, 3X, 14,15)
570.0 4393.2 12 3
573.9 4338.9 14 11 I
572.4 4402.2 50 2*8 1
579.0 4394.0 20 3 1
583.0 4399.2 16 7 '
562.0 4395.7 10 6 1
566.1 4400.0 18 10 1
572.5 4396.7 9 1
577.5 4397.5 1
576.0 4403.0 1
NROSE 1 0
NROSE > 0
Record
type
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
15
IS
IS
IS
15
IS
IS
IS
13
IS
IS
15
• 15
15
IS
15
IS
15
IS
IS
IS
16
17
13
13
13
13
13
13
L3
id
13
13
78
-------
4410
44O5
44OO
us
w
05
ffl
o
4395
4390
10
13
14
•IXG.YG)
4385
15
11
16
1 5 km-
_r
12
S60 565 570 575 580 585
590
kilometers
Figure 15. Annotated Test City map (modified from
Brubaker et al., 1977) .
79
-------
CLIMATOLOGICAL DISPERSION MftOEL - VERSION
cone VERSION ISJBT
RUN 100
1.0
SET-UP INFORMATJON
AQDM TEST CITV
Run title
CO
o
TECHNICAL OPTIOHSi
NUMBER OP WIMD DIRECTIONS USED IN METEOROLOGICAL JOINT
DISPEHSmSYpKETER saiLtt'poa'ABEA'soilRCEs'iiiLOwi' '.'.'.'.'.'.I '• POCTW, BUSBB * ZIHWERMAM (mi)
DISPERSION PAHAMETER SCHEME COR POINT SOURCES (KHICUlk I POCDM, BU38B & ZIMVffiHMAN (1811)
EFFLUENT RISE FOR AREA SOURCES (PAC) I'SSSSS'S'SS ..
HEIGHT ABOVE GROUND OF ALL RECEPTORS (RCBPTZ) 0.0000006*00 M
CALI|NTeRCEPT°OpTCALIBRATIONa «.OOOOOOB»00 MICBOOHAM3/CU. METER
SLOPE OP CALIBRATION ! l.OOOOOOB.OO DIMKNSIONLKSS
°OPTCM!IBRAT?OMT O.OOOOOOB.OO MicHoaaA*ia/cu. MHTEH
SLOPE OF CALIBRATION I.OOOOOOE»00 DIMEHSIONLE8S
INITIAL DISPERSION OPTION (NP&o) ... i c;fntlja nf initial dispersion.
BUOVANCY INDUCED DISPERSION OPTION (HPDIl) 0 Status OJ initial. uioyv,0i. .
STACK DOIVNIVASii OPTION (NSTDW) o buoyancy-induced dispersion,
^a!a?T!?!!.!!!^?!.::::::::::::::::::::: 2 and stack do^ash options.
PRINT OPTIONS. NLIST
CONTROL FOR PRINTED OUTPUT ^»-o Since NLIST = 0, set-up information
FORTRAN LOGICAL UNIT NUMBER (READ) » . , , ~ ,tanJ FJnntifin Uhcn
FORTRAN LOGICAL UNIT NUMBER (PRINTER) • ia echoed for verification, unen
FORTRAN LOGICAL UNIT NUMBER (PUNCH) • NLIST < 0, this page and following
page are not printed.
OPERATING PARAMETERSi
X-MINUUM OP AREA EMISSION INVENTORY MAP OHIO (XO) 6.«lftOOOH«01 USER UNITS
Y-MINIMUM OP AHEA EMISSION INVENTORY MAP OHIO (Yd) .lilftOOE'Ol USBR UNITS
WIDTH OP A BASIC EMISSION GRID SQUARE (RAT) .OOOOOOE*00 USER UNITS
GRID CONVERSION FACTOR
-------
CLIMATOljOOICAL DISPERSION MODEL
CODE VERSION »SJ8T
RUH 100
AQDM TEST CITY- Hun title included on every page of
MISCELLANEOUS METEOROLOGICAL DATA (OOHTIHUED)i
CENTRAL WIND SPEED Of TUB SIX MIND SPEED CLASSES (U)|
EXPONENTIAL OF THE VERTICAL WIND PROFILE (UB)|
SOURCE DATAi
INITIAL 3IO.U-Z FOR AREA 8OUHCE3 (SZA)l
DISPERSION CUHVE USED FOR EACH STABILTY CLASS
STABILITY POINT AREA
CLASS SOURCES SOURCES
1 A A
2 B A
1 C B
4 Dl C
5 Dl Dl
6 Dl Dl
SET-UP INFORMATION (continued)
- VERSION 1.0
Hating
. 400000H»Oe M/SEC
.44IJJOE»00 H/SEC
.4104008*00 M/SEC
.81B110E»00 M/SEC
.«IIJ80E»00 M/SEC
.lilTI*B»OI M/BEC
.OOOOOOE-01 DIMENSIONLBSS
.iOOOOOE-01 DIUENBIOMLESa
.flOOOOOB-OI DIUEN8IONLES8
. tOOOOOB-01 DIMHN8IONLE8S
.400000E-OI DIMENSIONLBSS
.OOOOOOE-01 DIMENSIONLE88
SOI & PAAT
.8t8t»OE«Oft HH
.tmtoE'Oft im
.OOOOOOE'OO DIMEM8IONLESS
.0000006*00 DIMENSIONLE88
.OOOOOOE»OI M
.OOOOOOE»OI M
.OOOOOOE»01 M
.OOOOOOB«OI M
.OOOOOOE»Ot M
,OOOOOOE«OI M
Figure 16. (continued).
-------
CLIMATOUMICAL DISPERSION M3OEL - VERSION 1.0
COOK VEHSION I&16T
Uhen NLIST < 0, the RUN
AQCM TEST CITY meteorological Joint
frequency function is
not printed. METEOROLOGICAL JOINT
STABILITY CLASS 1
WIND DIRECTION
H
NNB
NE
ENE
e
ESB
SB
8SB
3
88W
8W
WSW
W
WNW
HW
NHW
METEOROLOGY
100
Output is abridged. The
meteorological joint
FREQUENCY JUNCTION frequency function is
missing for stability
WIND SPEED CLASS olasses 2, 3
SECTOR
10
II
It
11
14
IS
It
I
.000000
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
a
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
*
0.000000
0.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
COMPUTED MEAN
STABILITY CLASS •
WIND DIRECTION
N
NNB
NE
ENB
E
ESE
SE
SSE
a
8SW
SW
wsw
W
WNW
NW
NHW
Average uind speed for
4
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
SPEED " 0.00
ft
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
M/8EC
, 4, and 5.
6
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
WIND SPEED CLASS
SECTOR
1
a
3
4
S
a
i
i
9
10
11
11
11
14
IS
16
stabi lity
1
O.OOSIOO
0.000600
o.oootoo
0.001100
o.oioaoo
0. 005500
0.001400
0.000900
0.001100
O.OOSIOO
0.000800
0.001800
O.OOIBOO
o.oossoo
0.008800
0.001100
class 6.-
1
0.011400
0.001100
O.OOSIOO
0.001800
0.016100
0.016100
0.006900
O.OOSIOO
0.004600
o.ooasoo
0.001700
0.001100
o.ooasoo
0.011000
O.OIIIOO
O.OlltOO
r COMF
1
0.011100
0.004601
0.001100
0.004100
o.oossoo
0.011400
0. 004600
O.OOSIOO
0.001100
0.000000
0.000000
0.000000
o.ooosoo
0.001100
0.001100
0.006900
4
0.000000
0.000000
0.000000
0.000000
* 0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
UTED MEAN SPEED - t.Sl
t
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
M/8EC
6
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Figure 16. (continued).
-------
00
co
EMISSION INVENTORY
AQJM TEST CITY
CLIMATOLOQICAL DISPERSION MODEL - VERSION l.A
CODE VERSION 8S28T
RUN 100
AREA AND POINT SOURCE INVENTORY
WIDTH OP EMISSION
X MAP
COORDINATE
S68
S84
S11
S14
581
567
571
S17
S82
S62
SSI
S11
581
581
S11
581
581
587
S72
S11
581
.40
.20
.00
.10
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
. so
.so
.so
. so
11
Y MAP OHIO SQUARE
COORDINATE
4401.40
4191.80
4401.10
4401. SO
4401. SO
4402. SO
4402. SO
4402. SO
4402. SO
4197. SO
4191. SO
4197. SO
4197. SO
4191. SO
4192. SO
4191. SO
4181. SO
4181. SO
4181.50
4187. SO
4187.50
AREA SOURCES.
(Ml
0.
0.
0.
0.
SOOO.
SOOO.
SOOO.
SOOO.
SOOO.
sooo.
10000.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
4 POINT
SO2
(Q/8EC)
1188.00
1810.18
221.18
110. IS
.IT
.18
.IS
.41
.20
.82
1 .88
.46
.82
.81
.88
.IS
.71
.11
.18
.51
.84
SOURCES.
RATE
PART
(Q/8EC)
SIT. 81
T89.80
14.11
S4.08
.88
.19
.98
1 .11
.61
.41
1.11
.89
.18
.18
.IS
.88
.11
.89
.10
.89
.41
SOURCE
IIBIOJIT
(U)
ISO
90
10
11
0
0
10
0
0
10
IS
10
10
10
10
10
0
10
10
10
10
.80
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
Total number of area
and point
sources
STACK
DIAM
(Ml
0.00
8.10
O.TO
1.40
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Since
STACK
EXIT
SPEED
(M/BEC)
0.00
IS. 20
IT. 80
IS. 20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NLIST =
inventory is
verification .
STACK
OAS
TEMP
(DEO C)
0.
149.
SIS.
280.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.0
0.0
OPTIONAL
PLUMB RISE
COEFFICIENT
(M«*2/SEC)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
.00
.00
.00
.00
.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0, the aource
echoed for
Uhen NLIST t 0,
this information ia not
printed.
Figure 16. (continued).
-------
CONCENTRATION RESULTS
Receptors in uhich
NKOSE = 0.
AQOM TEST CITY
CLIMATOLOQICAL DISPERSION MODEL - VERSION 1.0
OOOB VERSION I&26T
AUH 100
CONCENTRATIONS (MICaOORAMS/CU. METER)
X COORD V COORD
4TO.OO
ill. 90
ill. 40
STB. 00
ill. 00
41*1.20
4111.00
4401.20
4194.00
4189.20
AREA
302
i.4
4.8
4.9
i.4
4.1
SOURCES
PART
POINT SOURCES
SOI PART
14.1
9.1
19.1
IS.l
11.1
4.1
1.4
11.0
4.4
1.0
TOTAL
SOI PART
10.1
14.1
44.4
20. f
li.O
1.1
1.0
lt.1
1.1
--CALIBRATED--
801 PART
10.1
14.1
44.4
10. f
l&.l
t.l
1.0
11.1
1.1
1.9
--OBSERVED---
SOI PART
11
14
BO
10
19
g
II
It
9
1
00
CDM-2.0 provides separate
point and area source
contributions.
"Total" and "calibrated"
concentrations are identical
since slope and intercept
input as J and 0, respectively.
Note In order to reduce length of output listing,
receptors should be combined into two groups
on input: those in which NROSE s 0 and those
in which iVROSL' > 0.
Figure 16. (continued)
-------
00
en
AQTM TEST CITY
AREA
X COORD Y OOORD SOI
ill. 00 4JS5.TO 1.1
CLIMATOLOQICAI. DISPERSION MODEL - VERSION
CODK VERSION I&101
RUN 100
CONCENTRATIONS (MICHOORAMS/CU. MBTER)
PART SOI fAHT SOI PART
1.0 O.I 1.1 1.0 4.0
1.0
CONCENTRATION RESULTS (continued)
--CALIBRATED-- OBSERVED
SOI PART 8O1 PART
1.0 4.0 10 0
POLLUTANT SOURCE iii4io NROSE > 0 for thia
i ( sot) AREA «.o o.e o.i a.i 0.4 i.o receptor, thus
concentration versus
\ ( SOI) POINT 0.0 O.I 0.4 1.1 I.I 1.1 . ,.,., , . .
stability histogram
and concentration
1 (PART) AREA 0.0 0.6 0.0 O.I 0.} 1.4 ...
roaea provided.
1 (PART) POINT 0.0 ._ 0.0 O.I 1.0 0.1 0.1
POLLUTANT N NNE
1 0 0
1 00
POLLUTANT N NNE
1 0 0
1 00
NE ENB H BSE SB 88B ft 88W
0 0 1 1 0 0 0 0
00100000
NE ENB B E3E SB 88B 8 88W
11100000
1 1 1 0 0 0 0 0
8W WSW W WNW NW NNW
00 0 0 0 0
000000
••••••••«•••••»••••••*••••••••••»»•••••»••
SW WSW W WNW NW NNW
000000
000000
Figure 16. (continued).
-------
CLIMATOLOdlCAL DISPERSION MODEL - VERSION 1.0
CODE VEHSioN^i&iei CONCENTRATION RESULTS (continued)
AQOM TEST CITY
AREA SOURCES
X OOORD V COORD SOI PART
8B8.10 4400.00 4.1 1.1
CONCENTRATIONS (MICROORAM3/CU. METBH)
SOI PART SOI PART BO1 PART 8O1 PART
11. B 4.1 II. I 1.1 II. 1 1.1 II 10
POLLUTANT
1 ( 801)
1 ( BO!)
1 (PART)
oo
en i (PART)
POLLUTANT N NNB HE
1 000
1 000
SOURCE I 1 1 4 » •
AREA 0.0~ 0.0 0.1 O.ft O.I 1.1
POINT 0.0 0.1 1.0 4.1 I.I 1.1
AREA 0.0 0.0 O.I 0.1 0.< 1.1
POINT 0.0 O.I 0.4 I.I 1.1 O.I
BNB B ESB SB 83B 8 BSW 8W WSW W WNW NW NNW
OIIOOOOOOOIOO
1110000000000
POLLUTANT N NNE HE ENB B ESB SB 83B 8 83W BW WSW W WNW NW NNW
| 0040110000000000
a 0010110000000000
Figure 16. (continued).
-------
CO
-I
CLIMATOUXIICAL DI8PEH3IOH MOOHL - VERSION 1.0
W B H fl 1 fMI ft & 1 fl f
RUN 100 CONCENTRATION RESULTS (continued)
AQTM TEST CITV
OONCENTBATIONB (MICROORAM3/CU. METER)
AREA SOURCES POINT SOURCES TOTAL --CALIBRATED-- ---OBSERVED---
X COORD Y COORD 8O1 PART SOI PART 8OI PART BO1 PART SOI PART
411.40 410).TO t.O 4.1 IT.I (.1 II.I 10.0 11.A 10.« 0 9
••••*••••••••»••«•••••••*••••••••»*•••••« AVERAGE CONCENTRATIONS BY STABILITY ••••«•••••••••••••••••••••••••••••••••
TYPB OP
POLLUTANT SOURCE
---STABILITY CATEGORY
1 1 4 »
1
I ( 801) AREA 0.0 0.0 0.1 0.0 1.1 1.0
I ( 801) POINT 0.0 0.0 0.0 0.0 1.1 1.1
1 (PART) AREA 0.0 0.0 O.I 0.0 0.0 1.0
1 (PART) POINT 0.0 0.0 0.4 1.1 1.1 0.4
••••••••••••••••••••••••••••••••••••••••ft*
POLLUTANT
1
1
N NNB NE ENB
1000
0000
(UICROORAMS/CU. METER)
B E3B SB 8SB S 88W
I I 0 0 0 0
I I 0 0 0 0
>••••••••«••••«••••••••••••••»•••••
8W WSW W WNW NW NNW
000010
000000
••«••••••••••••••••••••••••«••••••••••••• POINT ROSES (MICROOHAM3/CU. METER) •••••••••••••••••••«••••••••••••••••••••••
POLLUTANT
1
1
N NNE NB ENB
0140
0110
B BSB 6B 88B
oioo
0100
8 88W SW WSW
aooo
0000
W WNW NW NNW
ooot
0004
..,.....»....«......•.«.••«•««•««.•«««•••»•«••••••••••••»•««•••••••«•»•••••«••«••••«••••«••••»•••••••••••••••••••••••••
Figure 16. (continued).
-------
AQDM TEST CITY
CLIMATOUX1ICAL DISPERSION MODEL - VERSION 1.0
CODE VEHaiOM^saei
CONCENTRATIONS (MICROOAAM3/OJ. METER)
CONCENTRATION RESULTS (continued)
X COORD Y COORD
ill. 10 Oil. SO
AREA SOURCES
SO) PART
POINT SOURCES
801 PART
TOTAL
SOI PART
6.8
4.4
14.1
1.1
l».l
11.0
--CALIBRATED--
801 PART
---OBSERVED---
SOI PART
Ji.l
11.0
>••••••••••»••••••••••«••••••••*•••• AVERAGE CONCENTRATIONS UY STABILITY ••••••••••••••»••••••••*••»••••••••••••••
TYPE OP
POLLUTANT SOURCE
I ( SOI) AREA
I ( SOI) POINT
1
0.0
0.0
---STABILITY CATEOORY-
114
0.0
0.1
O.I
I.I
O.I
14. 1
ft
1.1
0.1
6
J.I
1.1
oo
1 (PART) AREA 0.0 0.0 O.I O.I 1.0 1.1
1 (PART) POINT 0.0 O.I 0.4 l.S 1.1 1.4
•••••••••••••••«••••»••••••»•••••»••«•*••• AREA ROSES (MICROQAAMS/CU. MBTBR) ••••••••«
POLLUTANT
1
1
H HNB
10
10
NB
0
0
ENB
O
0
E8B
I
0
SB
O
0
88B
O
0
8
O
0
8SW
O
0
BW
O
0
WSW
O
0
W WNW
OI
00
NW KHW
IO
10
POINT ROSES (MICROORAMS/CU. METER) •
•••••••^•••••••••••••••••••••••••t*«»*»*
POLLUTANT
1
1
N NNB
26 0
40
NE
0
0
ENB
0
0
B ESB SB
001
001
88B
0
0
8SW
0
0
8W
0
0
WSW
0
0
W
0
0
WNW
4
1
NW NNW
10
10
»«•••••»••••••»»«»•••*••••*••••
>••••»•••«••*••••••••»••«»•••••••»
Figure 16. (continued).
-------
oo
to
Cl
AQCM TB8T CITY
X COORD Y COORD SOI PART
il6.00 4401.00 4.4 4.1
POLLUTANT
1 ( 801)
1 ( 801)
1 (PART)
1 (PART)
POLLUTANT N NHB NE
1 000
1 000
POLLUTANT N NNB NB
1 000
1 000
.IMATOLOQICAL DISPERSION MOflEL - VERSION 1.
CODE VERSION 15141
RUN 100
CONCENTRATIONS (MICHOORAMS/CU. METER)
SOI PART SOI PART
1T.I 0.1 11.1 11.0
**** AVBRAOB CONCENTRATIONS BY STABILITY •
SOURCE 1114
AREA 0.0 0.0 0.1 O.T
POINT 0.0 O.I 1.4 11. 1
AREA 0.0 0.0 O.I O.T
POINT 0.0 0.0 O.T !.•
***** AREA ROSES (MICHOOHAMS/CU. MBTER) **
ENB B BSB SB 88B 8 SSW
0010000
1 1 1 0 0 0 0
**** POINT HOSES (MICHUGHAM9/CU. MiiTttt) *•
BNE B BSB SB 88B 8 SSW
0 0 0 1 11 0 0
0001100
0
CONCENTRATION RESULTS (continued)
SOa PAHT 8O1 PART
11. S 11. • 0 0
» *
1.0 1.8
0.4 4.1
1.0 1.0
l.i O.T
fr
8W WSW W WNW NW NNW
000000
000000
BW WSW W WNW NW NNW
104000
001000
Figure 16. (continued).
-------
TABLE 20. CARD IMAGE OUTPUT FOR THE EXAMPLE PROBLEM.
Card image output
A
P
A
P
A
A
A
A
P
P
P
P
A
P
A
P
A
A
A
A
P
P
P
P
570
573
572
579
583
562
PI
PI
P2
P2
PI
PI
P2
P2
PI
PI
P2
P2
•
576
PI
PI
P2
P2
PI
PI
P2
P2
PI
PI
P2
P2
.00
.90
.40
.00
.00
.00
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
.00
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
4393
4388
4402
4394
4399
4395
0.
0.
0.
0.
0
0
0
0
0
0
0
0
4403
0.
0.
0.
0.
0
0
0
0
0
0
0
0
.20
.90
.20
.00
.20
.70
0
1
0
0
0
0
0
0
3
0
1
0
.00
0
1
0
0
0
0
0
0
0
1
0
0
1001
100!
1001
1001
1001
1001
0.1
0.4
0.0
0.2
0
0
0
0
2
0
1
0
*
100!
0.1
2.4
0.1
0.7
0
0
1
0
0
0
0
0
5
5
5
5
5
3
0.2
2.7
0.1
1.0
1
0
1
0
1
0
1
0
4
0.7
12.6
0.7
2.9
0
0
1
0
0
4
0
2
4
3
4
4
5
2
1
0
0
0
0
0
0
0
5
1
0
1
0
0
0
0
o-
15
10
39
15
11
6
0.4
1.8
0.3
0.7
0
0
0
0
0
0
0
0
28
1.0
8.4
1.0
1.9
0
0
0
0
2
0
1
0
5 20
4 14
13 44
4 21
3 16
2 9
2.0
1.2
1.4
0.2
0
0
0
0
0
0
0
0
•
6 32
2.6
4.3
3.0
0.7
0
0
0
0
21
0
3
0
9 20 9 12 8
7 14 7 14 11
17 44 17 50 26
9 21 9 20 8
8 16 8 16 7
4 9 4 10 6
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
11 32 11 0 0
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
Record
type
1
1
1
1
1
1
2
3
4
5
6
6
7
7
8
8
9
9
1
2
3
4
5
6
6
7
7
8
8
9
9
-------
TABLE 21. FORMAT OF CARD IMAGE OUTPUT.
Record type,
Variable Column
Format Variable description (units)
Record type 1
RX 1-10
RY
I RUN
KPX(l)
KPX(2)
KPX(3)
KPX(4)
KPX(8)
KPX(9)
KPX(IO)
11-20
21-25
26
27-30
31-34
35-38
39-42
55-58
59-62
63-66
F10.2
F10.2
15
14
14
14
14
KPX(5)
KPX(6)
KPX(7)
43-45
46-50
51-54
14
14
14
14
X map coordinate of receptor
(user units)
Y map coordinate of receptor
(user units)
Run identification number
Card identifier
Concentration contribution
from area sources for the
first pollutant (ug/m3)
Concentration contribution
from area sources for the
second pollutant (ug/m3)
Concentration contribution
from point sources for the
first pollutant (ug/m3)
Concentration contribution
from point sources for the
second pollutant (ug/m3)
Total concentration for the
first pollutant (ug/m3)
Total concentration for the
second pollutant (ug/m3)
Calibrated total concentration
for the first pollutant
(ug/m3)
Calibrated total concentration
for the second pollutant
(ug/m3)
14
14
(cont i nued)
Observed concentration for the
first pollutant (ug/m3)
Observed concentration for the
second pollutant (ug/m3)
91
-------
TABLE 21 (continued)
Record type,
Var iable
Column Format Variable description (units)
Record type 2*
ARCS 1- 4
APAR 5-46
KPX(37) 47-54
KPX(38) 55-62
Record type 3*
PROS 1- 4
PPAR 5-46
KPX(37) 47-54
KPX(38) 55-62
Record type 4*
Record type 5*
A4 Identifier indicating area
source contribution for the
first pollutant
6F7.1 Area source contribution by
stability class for the first
pollutant (ug/m3)
18 X map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
18 Y map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
A4 Identifier indicating point
source contribution for the
first pollutant
6F7.1 Point source contribution by
stability class for the first
pollutant (ug/m3)
18 X map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
18 Y map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
Same as record type 2 for the
second pol lutant
Same as record type 3 for the
second pollutant
(cont inued)
92
-------
TABLE 21 (continued)
Record type,
Var iable
Column
Format Variable description (units)
Record type 6*t
ARCS
KPX
1- 4
5-44
RX
RY
Record type 7*t
Record type 8*t
PROS
KPX
45-52
53-60
1- 4
5-44
RX
RY
Record type 9*t
45-52
53-60
A4
815
18
18
A4
815
18
18
Identifier indicating area
source contribution for the
first pollutant
Area source contribution by
wind direction starting at
north and rotating clockwise
(ug/m3)
X map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
Y map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
Same as record type 6 for the
second pollutant
Identifier indicating point
source contribution for the
first pollutant
Point source contribution by
wind direction starting at
north and rotating clockwise
(ug/m3)
X map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
Y map coordinate of receptor
multiplied by 100 to remove
decimals (user uni-ts)
Same as record type 8 for the
second pol lutant
* Records written only if NROSE > 0.
t If N1636 = 16 there are two records of this type;
if N1636 = 36 there are four records of this type.
93
-------
REFERENCES
Bjorklund, J. R. and J. F. Bowers. 1982. User's Instructions for
the SHORTZ and LONGZ Computer Programs, Vols. I and II.
EPA-903/9-82-004A and B (NTIS Accession Numbers PB83-146 092
and PB83-146 100). U. S. Environmental Protection Agency,
Middle Atlantic Region III, Philadelphia, PA.
Bowers, J. F., J. R. Bjorklund, and C. S. Cheney. 1979.
Industrial Source Complex (ISC) Dispersion Model User's Guide.
EPA-450/4-79-030, U. S. Environmental Protection Agency,
Research Triangle Park, NC 27711. 360 pp.
Briggs, G. A. 1969. Plume Rise, USAEC Critical Review Series.
TID-25075, National Technical Information Service, U. S.
Department of Commerce, Springfield, VA 22161. 81 pp.
Briggs, G. A. 1971. Some Recent Analyses of Plume Rise
Observation. In: Proceedings of the Second International Clean
Air Congress, H. M. Englund and W. T. Berry (eds.), Academic
Press, New York. pp. 1029-1032.
Briggs, G. A. 1974. Diffusion Estimation for Small Emissions. In:
ERL, ARL USAEC Report ATDL-106. U. S. Atomic Energy
Commission, Oak Ridge, TN. 59 pp.
Briggs, G. A. 1975. Plume rise predictions. In: Lectures on Air
Pollution and Environmental Impact Analysis, D. A. Haugen
(ed.), Amer. Meteor. Soc., Boston, MA. pp. 59-111.
Brubaker, K. L., P. Brown, and R. R. Cirillo. 1977. Addendum to
User's Guide for Climatological Dispersion Model.
EPA-450/3-77-015, U. S. Environmental Protection Agency,
Research Triangle Park, NC 27711. 134 pp.
94
-------
3urt, E. W. 1977. Valley Model User's Guide. EPA-450/2-77-018,
U. S. Environmental Protection Agency, Research Triangle Park,
NC 27711. 112 pp.
Busse, A. D. and J. R. Zimmerman. 1973. User's Guide for the
Cl imatological Dispersion Model. EPA-R4-73-024, U. S.
Environmental Protection Agency, Research Triangle Park, NC
27711. 132 pp.
Calder, K. L. 1971. A Climatological Model for Multiple Source
Urban Air Pollution. In: Proceedings of the Second Meeting of
the Expert Panel on Air Pollution Modeling. NATO, Committee on
the Challenges of Modern Society (CCMS). Paris, France, July
26-27. 33 pp.
Calder, K. L. 1977. Multiple-source plume models of urban air
pollution - their general structure. Atmos. Environ. 11:
403-414.
Gifford, F. A., Jr. 1960. Atmospheric dispersion calculations
using the generalized Gaussian plume model. Nucl. Saf. 2:
56-59.
Gifford, F. A., Jr. 1976. Turbulent diffusion typing schemes -- A
review. Nucl. Saf. 17: 68-86.
Hanna, S. R., G. A. Briggs, and R. P. Hosker, Jr. 1982. Handbook
on Atmospheric Diffusion. DOE/TIC-11223, National Technical
Information Service, U. S. Department of Commerce,
Springfield, VA 22161. 102 pp.
Holland, J. Z. 1953. A Meteorological Survey of the Oak Ridge
Area. Atomic Energy Comm., Report ORO-99, Washington, DC. 584
pp.
Holzworth, G. C. 1972. Mixing Heights, Wind Speeds, and Potential
for Urban Air Pollution Throughout the Contiguous United
States. Office of Air Programs Publication No. AP-101. U. S.
Environmental Protection Agency, Research Triangle Park, NC.
118 pp.
95
-------
Irwin, J. S. 1979. A theoretical variation of the wind profile
law exponent as a function of surface roughness and stability.
Atmos. Environ. 13: 191-194.
Johnson, W. B., R. C. Sklarew, and D. B. Turner. 1976. Urban Air
Quality Simulation Modeling. In: Air Pollution, Part I — Air
Pollutants, Their Transformation and Transport, A. C. Stern
(ed.), Academic Press, New York and London, pp. 503-562.
Martin, D. O. and J. A. Tikvart. 1968. A General Atmospheric
Diffusion Model for Estimating the Effects of Air Quality of
One or More Sources. APCA Paper 68-148, presented at 61st
Annual APCA Meeting, St. Paul, Minnesota, June 1968.
Martin, D. 0. 1971. An urban diffusion model for estimating long
term average values of air quality. J. Air Poll. Contr. Assoc.
21: 16-19.
Pasquill, F. and P. J. Meade. 1958. A study of the average
distribution of pollution around Staythorpe. Int. J. Air Poll.
1: 60-70.
Pasquill, F. 1961. The estimation of the dispersion of windborne
material. Meteorol. Mag. 90: 33-49.
Pasquill, F. 1976. Atmospheric Dispersion Parameters in Gaussian
Plume Modeling. Part II. Possible Requirements for Change in
the Turner Workbook Values. EPA-600/4-76-030b, U. S.
Environmental Protection Agency, Research Triangle Park, NC
27711. 44 pp.
Singer, I. A. and M. E. Smith. 1966. Atmospheric dispersion at
Brookhaven National Laboratory. Int. J. Air Water Pollut. 10:
125-135.
Truppi, L. E. 1968. Bias introduced by anemometer starting speeds
in climato logical wind rose summaries. Mon. Wea. Rev. 96:
325-327.
96
-------
Turner, D. B. 1970. Workbook of Atmospheric Dispersion Estimates.
Office of Air Programs Publication No. AP-26
(NTIS-PB-191-482). U. S. Environmental Protection Agency,
Research Triangle Park, NC 27711. 84 pp.
Turner, D. B., J. R. Zimmerman, and A. D. Busse. 1972. An
evaluation of some climatological dispersion models. Presented
at 3rd Meeting of the NATO/CGVB Panel on Modeling.
Turner, D. B. and J. H. Novak. 1978. User's Guide for RAM. Vol.
I. Algorithm Description and Use. EPA-600/8-78-016a, U. S.
Environmental Protection Agency, Research Triangle Park, NC.
60 pp.
•
TRW Systems Group. 1969. Air Quality Display Model.
NTIS-PB-189-194, National Technical Information Service, U. S.
Department of Commerce, Springfield, VA 22161.
Vogt, K. J. 1977. Empirical investigation of the diffusion of
waste air plumes in the atmosphere. Nuclear Technology 34:
43-57.
97
-------
APPENDIX A
DEFAULT OPTION
The default option is provided as a convenience to the user
to help avoid inadvertent errors in setting the appropriate
options. Exercising the default option (i.e., NDEF = 1) overrides
other user-input selections and results in the following.
(1) Stack downwash according to Briggs (1974) is used.
*
(2) Briggs1 plume rise (1969, 1971, and 1975) is used.
(3) Buoyancy-induced dispersion is exercised. For distances less
than the distance to final rise, the gradual plume rise is
used to determine the buoyancy-induced dispersion only.
(4) Final plume rise is used.
(5) To calculate vertical dispersion, the Briggs-urban scheme is
selected.
(6) The joint frequency function is assumed to be comprised of
the following six classes: A, B, C, D-day, D-night, and
nighttime stable.
(7) Initial oz values for area sources are 30 meters for all
stabi1i ty classes.
(8) Wind profile exponents are set to .15, .15, .20, .25, .25,
and .30 for stabilities A, B, C, D-day, D-night, and stable
cases respectively.
(9) Calibration intercepts and slopes are set to 0 and 1,
respect ively.
(10) A pollutant half-life of 4 hours for SO2 is assumed and a
half-life near infinity is assumed for all other pollutants.
98
-------
Default values for all the affected variables are provided in
Table A-l. For all other input variables not shown in Table A-l,
CDM-2.0 assumes the values provided by the user.
TABLE A-l. VARIABLES AFFECTED BY THE DEFAULT OPTION
Record
type
3
4
5
6
8
9
10
Var iable
CA
CB
NP50
NPDH
NSTDW
KLOW
ICA
KHIGH
ICP
SZA
GB
UE
SA
Default values
0.0, 0.0
1.0, 1.0
-1
1
1
2
1, 2, 3, 4, 5, 6
2
1, 2, 3, 4, 5, 6
30., 30., 30., 30., 30., 30.
4.0 (for SO2), 999999. (for all others)
.15, .15, .20, .25, .25, .30
-1
99
-------
APPENDIX B
DETAILED FLOW DIAGRAMS
Detailed flow diagrams for the main program and the four
primary subroutines (i.e., CLINT, CALQ, AREA, and POINT) follow.
100
-------
Oeteralne the Mulnui
ind •Iniom dtstincei
Iron the receptor to the
million grid bounoirlei
Rettomer, receptor
ii outstoe ealiilon
grid U>und«riei
16 • 2
IPSSO
(IPS • t or
point sources)
Figure B-l. Flow diagram for the main routine.
-------
. < Altio7
( tntir J »/ ««cord /
V x / lypn l-t /
O
to
/•"* /
/ Btcord /
/ Typtl l-ll/
0*flM
lur*. ttctor
rst ind
polluuni h«ir-)irc
Modify lourt* coord-
tiwcti, dlnnilani,
• ml Million r«U ta
(.anfarm la COM-2.0
Figure B-2. Flow diagram for subroutine CLINT.
-------
o
CO
/ loop over \ <
lector intervi^_^_
. counter
\ LL • l.«TC
loop over
wind speed
cltit
IU • 1.6
Figure B-3
Plow diagram for subroutine
CALQ.
Figure B-4.
Flow diagram
AREA.
for subrout ine
-------
Brlggi
pluM
rU.
( ileturn A
Figure B-5. Flow diagram for subroutine POINT.
-------
APPENDIX C
LISTING OF FORTRAN SOURCE CODE
The source code listing of CDM-2.0 follows. The program
consists of a main module and nine subroutines.
105
-------
c
c
c
c
c
c
c
c •
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c •
c
c
c
c
c
c
c
c •
c
c
c
c
c
c
c
C DFAULT
c
c
c
c
c
c
c
c
c
c • • •
c
c
c
c
c
c
c
c
c
c
c
c
c
PROGRAM ABSTRACT
CDM-2.0 CLIMATOLOGICAL DISPERSION !VEDEL VERSION 2.0 (BATCH) CEM00010
CDM-2.0 (VERSION 85293) CDM00020
OHO 0030
CEM00040
CDM00050
CDM00060
CDM00070
CXM00080
CDM00090
CDM-2.0 DETERMINES LONG-TERM (SEASONAL OR ANNUAL) QUASI- CDM00100
STABLE POLLUTANT CONCENTRATIONS IN A RURAL OR URBAN SETTING CDM00110
USING AVERAGE EMISSION RATES PROM POINT AND AREA SOURCES AND CCM00120
A JOINT FREQUENCY DISTRIBUTION OF WIND DIRECTION, WIND SPEED.CDM00130
AND STABILITY. TEE GAUSSIAN PLUME HYPOTHESIS FORMS THE BASISCDM00140
FOR THE CALCULATIONS. CONTRIBUTIONS ARE CALCULATED ASSUMING CDM001SO
THE NARROW PLUME HYPOTHESIS, CALDER (1971, 1977), AND INVOLVECDMO0160
AN UPWIND INTEGRATION OVER THE AREA SOURCES. COMPUTATIONS CDM00170
CAN BE MADE FOR UP TO 200 POINT SOURCES AND 2SOO AREA SOURCESCDMO0130
AT AN UNLIMITED NUMBER OF RECEPTOR LOCATIONS. THE NUMBER OF CCM00190
POINT AND AREA SOURCES CAN BE EASILY MODIFIED WITHIN THE CODECDM00200
CDM-2.0 IS AN ENHANCED VERSION OF CDM INCLUDING THE FOLLOWINGCDM00210
OPTIONS: IS OR 36 WIND DIRECTION. SECOTRS, INITIAL PLUME CDM00220
DISPERSION, BUOYANCY-INDUCED DISPERSION, STACK DOWNWASH, AND CCM00230
GRADUAL PLUME RISE. THE USER HAS A CHOICE OF SEVEN DISPERSIOCDM00240
PARAMETER SCHEMES. OPTIONAL OUTPUT INCLUDES POINT AND AREA CDM00250
CONCENTRATION HOSES AND HISTOGRAMS OF POLLUTANT CONCENTRATIONCCM00280
BY.STABILITY CLASS. CDM00270
CDM00280
CDM0029Q
REFERENCES ODM00300
CDM00310
IRWIN, J. 3., T. CHICO, AND J. A. CATALANO. 1983. CDM-2.0 -CDM00320
CLIMATOLOGICAL DISPERSION MODEL VERSION 2.0. EPA- / - -__CDM00330
U. 3. ENVIRONMENTAL PROTECTION AGENCY, RESEARCH TRIANGLE PARKCTM00340
NC. PP. CDM00330
~"~~ CDM00360
CDM00370
STRUCTURE AND MODULE SUMMARY CDM00380
CDM00390
CDM-2.0 CDM00400
| CDM00410
|| CDM00420
I
CLINT
CALQ
r
VIRTX
I
I
3IGMAZ
AREA
3IGMAZ
POINT
I
I
CDM00430
CDM00440
CDM004SO
VIBTX
SIGMAZ
PLRISE
STDW
THE SUBROUTINE ORDER IN THE LISTING IS AS FOLLOWS: CLINT,
DFAULT, CALQ, AREA,
BLOCK DATA.
POINT, PLRISE, STDW, VIRTX, SIGMAZ, AND
INPUT/OUTPUT INFORMATION
FORTRAN
UNIT
9
DATA SET
(RECORD
IRD-
IWR"
IPU"
INPUT
1-3)
INPUT
4-13)
OUTPUT LISTING
CONCENTRATION DATA
I/O UNIT
DISK
SIGMACDM00460
CDM00470
CDM00480
CDM00490
CDMOOSOO
CDMOOS10
CDMOOS20
CDMOOS30
CDM00540
CDMOOSSO
CEM00560
CDMOOS70
CDMOOS80
CDMOOS90
CDMOOSOO
CDM00610
CDM00620
CDM00630
CDM00640
C
C
c
c
CONTROL
TYPES
CONTROL INPUT (RECORD DISK
TYPES
PRINTER OR DISK
DISK OR MAGNETIC TAPECDM006SO
CTM00660
CDM00670
CDM00680
CDM00690
PARAMETER (NPTS=200,NQLIM=100,SASE=50,NASN=50) CDM00700
DIMENSION DX(4),DY(4),A(4),KPX(38),TCON(2),CCON(2),FR£CPT(16) CDM00710
THE PARAMETER STATEMENT PERMITS STORAGE ASSIGNMENT CDMU0720
ACCORDING TO THE NEEDS OF EACH PROBLEM. IF THE USER'S COVI00730
FORTRAN COMPILER DOES MOT SUPPORT PARAMETER, THE DESIRED CDM00740
NUMBER OF NPTS, NQLIM, NASE, AND NASN WILL HAVE TO BE CDM007SO
• SEE RECORD TYPE 3 BELOW.
106
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
HARDCODED. THE BEST WAY TO DO THIS IS THROUGH GLOBAL CEM00760
CHANGES WITH AN EDITOR. CDM00770
COMMON /Cl/ K,MX,MN,F(6,6,36),OBAR(6),U(6),RI,RJ,INC(4),DELR CDM00780
UE(6),YD,YN,TMN,DINT,YCON,TA(4),IPG,XG,YG, IRD CEM00790
IRUN,CAt2),C8(2),TK(36),AROS(2),PROS(2),TANG CDM00800
COMMON
COMMON
COMMON
COMMON
COMMON
/C2/
/C3/
/C4/
DECAYU) , ICA( 6 ) , ICP( 6 ) ,HL(6) ,HX(6),GB(2) ,NQ, IVER, IWR CDM00810
/CS/ Q(NQLIM,4),GA(2),IAD(4,5),IAS,TDA.TDB,TDC,IPU
/C6/ ICHK
COMMON /QCOM/ N.DR,IX,IY,TT(36,21),KTC,IXX,IYY,RAD,TD,
• Z(NASE,NASN,3)
COMMON /ACOM/ PI,SZA(8),ABAR(2).AROSEl36,2),XS(6)
COMMON /PCOVU PH(NPTS),PR(NPTS),PS(NPTS,4),PX(NPTS),PY(NPTS),
• WA(36),WB(36),PHOSE(36,2),CV,IPS,RAT,PBAR(2),TOA,
• VS1(NPTS),T1(NPTS),D1(NPTS),FRN(NPTS),BFLUX(NPTS)
COMMON /SET/ N1636,DELTA,TTAN.NP50,NPDH,NGRAD,NSTDW,KLOW,KHIGH,
• PPAR(2,S),APAR(2,6),WHA(6),FAC,RCEPTZ,KELVIN,NDEF
COMMON /TITLE/ HEADNG(20),PNAME(2),D16(32),D36(72),DISP(8,7),
• TTITL£(3)
FORM OF INPUT TO CDM-2.0 (BATCH)
VARIABLE
NAME COLMN
FRMT
DESCRIPTION
RECORD TYPE 1 • • • RDN TITLE • • •
HEADNG 1-80 20A4
DESCRIPTION OH TITLE OF MODEL RUN.
RECORD TYPE 2 • • • POLLUTANTS • • •
NSO2
II
CDM00820
CDM00830
CDM00840
CDM00850
CDM00860
CDM00870
CEM00880
CDM00890
CDM00900
CDM00910
CDM00920
CDM00930
CEM00940
CDM009SO
CDM00960
CDM00970
CDM00980
CDM00990
CDM01000
CDM01010
CDM01020
CDM01030
CEM0104Q
CDM01050
CDM01060
CCM01070
CDM01080
CDM01090
PNAME 3-12 2A4
TYPE 3 • • • PARAMETERS • •
ARCS
PROS
IRUN
NLIST
1-3
9-16
17-21
22-26
2A4
2A4
15
IS
AAAA
AAAA
XXXXX
XXXXX
IRD
IWR
IPU
CA
CS
27-31
32-36
37-41
42-59
60-77
IS
IS
IS
2F9,
2F9.
XXXXX
XXXXX
XXXXX
xxxxxx.xx
xxxxxx.xx
POLLUTANT NUMBER FOR SO2
- 0, SO2 NOT CONSIDERED IN RUN
=» 1, POLLUTANT 1 IS SO2
- 2, POLLUTANT 2 IS SO2
NAMES OF TWO POLLUTANTS TO BE MODELECDMO1100
CDM01110
• CDM01120
CDMOU30
ALPHA AREA ROSE OUTPUT ID CDM01140
ALPHA POINT ROSE OUTPUT ID CDM011SO
USER DEFINED RUN ID NUMBER CDM01160
CONTROL FOR PRINTED OUTPUT CDM01170
IF NLIST > 0 ECHO SETUP INFO * METECCDM01180
LIST CONC. RESULTS CDM01190
IF NLIST = 0 ECHO SETUP INFO * METEOCDMO1200
ECHO SOURCE INFO INPUT CDM01210
LIST CONC. RESULTS CDMOmO
IF NLIST < 0 LIST ONLY CONC. RESULTSCDMO1230
FORTRAN LOGICAL UNIT NUMBER
FORTRAN LOGICAL UNIT NUMBER
FORTRAN LOGICAL UNIT NUMBER
INTERCEPT OF CALIBRATION
SLOPE OF CALIBRATION
RECORD TYPE 4 • • • PARAMETERS • • •
N1636 (FREE FORMAT)
NPSO (FREE FORMAT)
NUMBER OF WIND DIRECTIONS USED
METEOROLOGICAL JOINT FREQUENCY
FUNCTION (EITHER IS OR 36).
INITIAL DISPERSION OPTION
< OR = 0, NO ACTION TAKEN ON
SOURCES WITH RELEASE HEIGHTS
BELOW SO M.
> 0, INITIALLY DISPERSE AS
(READ) CDM01240
(PRINTERCDM01250
(PUNCH) CDM01260
CDM01270
CDMU1280
CDM01290
CDM01300
CDM0131U
IN CDMOU20
CDMU133U
CDMU1340
CDM013SO
CDM01360
POINTCDM01370
CDM01380
CDM01390
CDM01400
NPDH (FREE FORMAT)
DESCRIBED IN CDM-2.0 USER'S GUIDCDM01410
CDM01420
BUOYANCY -INDUCED DISPERSION OPTION CDM01430
< OR = 0, NO ACTION TAKEN CDM01440
> U, INCLUDE BUOYANCY INDUCED CDMU1450
DISPERSION EFFECTS, PASQU1LL CDMOl4bO
(1976), IN POINT SOURCE DISPER- CDM0147U
SION AND SET PLUME AT FINAL CDM01480
EFFECTIVE HEIGHT FOR ALL CDM01490
DISTANCES. CDM01SOU
107
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
NSTDW (FREE FOHMAT)
NGRAD (FREE FORMAT)
FAC (FREE FORMAT)
RCEPTZ (FREE FORMAT)
KELVIN (FREE FORMAT)
NDEF (FREE FORMAT)
RECORD TYPE 5 • • • PARAMETERS
KLOW (FREE FORMAT)
ICA (FREE FORMAT)
RECORD TYPE 6 • • • PARAMETERS
KHIGH (FREE FORMAT)
ICP
(FREE FORMAT)
RECORD TYPE 7 •
DELR
RAT
CV
XG
YG
TOA
TXX
1-6
7-12
13-18
19-24
25-30
31-36
37-42
RECORD TYPE 8 •
DINT 1-6
HEIGHT (M) ABOVE G2OUND OF ALL
RECEPTORS
ONITS FLAG FOR STACK TEMPERATURE
< 0, DEGREES F
» 0, DEGREES C
> 0, DEGREES KELVIN
DEFAULT OPTION
< OR = 0, NO ACTION TAKEN
> 0, IMPLEMENT DEFAULT OPTION
PARAMETERS
F6.0 XXXXX.
F6.0 XXX.XX
FS.O XXXX.X
F6.0 XXX.XX
FS.O XXX.XX
FS.O XXX.XX
FS.O XXXXX.
• • PARAMETERS
FS.O XXXXX.
YD 7-12 FS.O XXX.XX
YN U-18 FS.O XXX.XX
CDM01510
STACK DOWNWASH OPTION CDMO1520
< 0, BJORKLUND AND BOWERS (1982) CDM01530
STACK DOWNWASH CONSIDERED CDM01540
3 0, NO ACTION TAKEN CDM01550
> 0, BRIGGS (1973) STACK DOWNWASH CDM0156U
CONSIDERED CDM01570
CDM01580
GRADUAL PLUME RISE OPTION CDM01S90
< OR = 0, NO ACTION TAKEN CDM01600
> 0, GRADUAL PLUME RISE CONSIDEREDCDMOISIO
CDM01S20
EFFLUENT RISE FOR AREA SOURCES CDM01630
CDM01640
CDM01650
CDM01860
CDM01670
CDM01880
CDM01690
CDM01700
CDM01710
CDM01720
CDM01730
CDM01740
CDM01750
CDM01760
• • • . CDM01770
CDM01730
DISPERSION PARAMETER SCHEME FOR AREACDM01790
SOURCES. SEE COMMENTS ON KTYPE IN CEM01800
SUBROUTINE SIGMAZ. THE CDM-2.0 USERCDM01810
GUIDE ALSO DESCRIBES THIS PARAMETER.CDMO1820
CEM01330
ARRAY OP SIX (S) VALUES DEFINING CDM01840
DISPERSION CURVES (AS DEFINED BY CDM018SO
KLOW) TO BE USED FOR THE SIX CDM01860
STABILITY CATEGORIES SUMMARIZED IN CDM01870
THE JOINT FREQUENCY FUNCTION. CDM01880
CDM01890
• • • CDM01900
CDM0191Q
DISPERSION PARAMETER SCHEME FOR POINCDM01920
SOURCES. SEE COMMENTS-ON KTYPE IN CDM01930
SUBROUTINE SIGMAZ. THE CDM-2.0 USERCDM01940
GUIDE ALSO DESCRIBES THIS PARAMETER.CDMO1950
CDM01960
ARRAY OF SIX (S) VALUES DEFINING CDMO1970
DISPERSION CURVES (AS DEFINED BY CDMO1980
KHIGH) TO BE USED FOR THE SIX CDM01990
STABILITY CATEGORIES SUMMARIZED IN CDM02000
THE JOINT FREQUENCY FUNCTION. CCM02010
CDM02020
• • • CDM02030
CDM02040
RADIAL INCREMENT (M) CDM02050
LENGTH OF A BASIC EMISSION GRID CDM02060
SQUARE IN USER UNITS CDM02070
CONVERSION FACTOR, CDM02080
CV • RAT = EMISSION GRID INTERVAL (MCDM02090
X MAP COORD. OF THE SW CORNER OF THECDM02100
EMISSION GRID ARRAY CDMO2110
Y MAP COORD. OF THE SW CORNER OF THECDM02120
EMISSION GRID ARRAY CDM02UO
MEAN ATMOSPHERIC TEMPERATURE (DEC OCDM02140
WIDTH OF BASIC EMISSION SQUARE (M) CDM02150
CDMO2160
• • • CDM02170
CDM02180
NUMBER OF SEGMENTS DESIRED IN DELTA CDM02190
DEGREE SECTORS. RANGES FROM 2 TO 20CDM02200
INCLUSIVE. CDM02210
RATIO OF THE DAYTIME EMISSION RATE CDM0222U
TO THE AVERAGE 24-HOUR EMISSION RATECDM02230
RATIO OF THE NIGHTTIME EMISSION RATECDM02240
TO THE AVERAGE 24-HOUR EMISSION RATECDMO2250
108
-------
C SZA 19-54 SF6.0 XXX.XX INITIAL SIGMA-Z FOR AREA SOURCES (M)CDM022SO
C GB 55-66 2F6.0 XXXXX. DECAY HALF-LIFE (HR) FOR THE TWO CDM02i70
C POLLUTANTS CEM02230
C CDM02290
C RECORD TYPE 9 • • • WIND PROFILE EXPONENTS • • • CDM023QO
C CDM02310
C OE (FREE FORMAT) ARRAY OF SIX (8) VALUES DEFINING WINCDM02320
C ' PROFILE EXPONENTS TO BE ASSOCIATED CDM02330
C WITH THE SIX STABILITY CATEGORIES CDM02340
C SUMMARIZED IN THE JOINT FREQUENCY CDM02350
C FUNCTION. CDM02360
C CDM02370
C RECORD TYPE 10 • • • WIND SPEEDS • • • CDM02380
C CDM02390
C U (FREE FORMAT) ARRAY OP SIX (6) VALUES DEFINING WINCDM02400
C SPEEDS (M/SEC) TO BE ASSOCIATED WITHCDM02410
C THE SIX WIND SPEED CATEGORIES SUMWARCDMO2420
C IZED IN THE JOINT FREQUENCY FUNCTIONCDM02430
C TYPICALLY THE HARMONIC AVERAGE WIND CDM02440
C SPEED IS USED. CDM02450
C CT3M02460
C RECORD TYPE 11 • • • MIXING HEIGHTS • • • CTM02470
C CDM02480
C HL (FREE FORMAT) ARRAY OP SIX (6) VALUES DEFINING CDM02490
C MIXING HEIGHTS TO BE ASSOCIATED WITHCDM02500
C THE SIX STABILITY CATEGORIES SUMMAR-CDM02510
C IZED IN THE JOINT FREQUENCY FUNCTIONCDM02S20
C CDM02530
C RECORD TYPE 12 • • • FORMAT STATEMENT • • • CDM02540
C CDM02S50
C FMETEO 1-84 16A4 FORMAT STATEMENT, INCLUDING BEGINNINCDM02560
C AND ENDING PARENTHESIS, FOR THE CDM02S70
C METEOROLOGICAL JOINT FREQUENCY CDM02580
C FUNCTION. OLD COM FORMAT WAS, CDM02590
C (9X.6F9.0) CDM02600
C CEM02810
C RECORD TYPE 13 • • • JOINT FREQUENCY FUNCTION CDM02820
C CDM02630
C F (SEE CARD TYPE 12) F(I,J,K) (PERCENT) CEM02640
C CDM02650
C RECORD TYPE 14 • • • FORMAT STATEMENT • • • CDM02660
C CDM02670
C FSOURC 1-64 16A4 FORMAT STATEMENT, INCLUDING BEGINNINCDM02680
C AND ENDING PARENTHESIS, FOR THE CDM02690
C SOURCE INVENTORY. OLD CDM FORMAT WACDM02700
C (P«.0I2F7.0,2F8.0,F7.0,F5.0,2F7.0, CDM02710
C F5.0) CDM02720
C CBM02730
C RECORD TYPE IS ••• SOURCE INVENTORY (VARIABLE NUMBER OF RECORDS) •-•CDM02740
C CDM02750
C X (SEE RECORD TYPE 14) X MAP COORD OP SOURCE (RE USER GUIDECDM02760
C Y " Y MAP COORD OF SOURCE (RE USER GUIDECDM02770
C TX " WIDTH OF AREA SOURCE. ENTER ZERO ORCDM02780
C LEAVE BLANK FOR POINT SOURCES. CDM02790
C SI " EMISSION RATE OF POLLUTANT 1 (G/SEOCDM02800
C S2 - EMISSION RATE OF POLLUTANT 2 (G/SEOCDMU2810
C SH " SOURCE HEIGHT (M) CDM02820
CD " STACK DIAMETER (M). LEAVE BLANK FORCDM0283U
C AREA SOURCES. CDM02840
C VS " EXIT VELOCITY (M/SEC). LEAVE BLANK CDM02850
C FOR AREA SOURCES. CDM02860
C T " STACK GAS TEMPERATURE (C). LEAVE CDM02870
C BLANK FOR AREA SOURCES. CDM02880
C SA " PLUME RISE OPTION, CDM02890
C < OR = 0, BRIGGS PLUME RISE CDM02900
C > 0, ENTER PRODUCT OF PLUME RISE CDM02910
C AND WIND SPEED (M"2/SEC) CDM02920
C CDM02930
C RECORD TYPE 16 • • • BLANK SENTINEL CARD • • • CDM02940
C CDM02950
C RECORD TYPE 17 • • • FORMAT STATEMENT • • • CDM02960
C CDM02970
C FRECPT 1-64 16A4 FORMAT STATEMENT, INCLUDING BEGINNINCDM02980
C AND ENDING PARENTHESIS, FOR THE CDM02990
C RECEPTOR CARDS. OLD CDM FORMAT WAS,CDM03000
109
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
RECORD TYPE 18
(2F8.2,14X,I4,3X,I4,I5)
RECEPTOR CARDS (VARIABLE NUMBER OF RECORDS)
RX
RY
KPX9
KPX10
NROSE
(SEE RECORD TYPE 17)
X MAP COORD. OF THE RECEPTOR
Y MAP COORD. OF THE RECEPTOR
OBSERVED CONC. OF POLLUTANT 1
RECEPTOR, IF KNOWN
OBSERVED CONC. OF POLLUTANT 2
RECEPTOR, IF KNOWN
OPTION FOR POLLUTANT CONC. ROSES
> 0, PRINT CONCENTRATION ROSES
< OR a 0,
CDM03010
CDM03020
CDM03030
CDM03040
CDM03050
CDM03060
AT THECDM03070
CEM03080
AT THECDM03090
CDM03100
CDM03110
CDM03120
CALL CLINTUCOND)
10
IF (ICOND .EQ. 0) GO TO 20
WRITE(IWR.IO)
FORMATCO"" EXECUTION TERMINATED.
GO TO 820
20 DELO2 » DELTA/2.0
READ RECORD TYPE 17.
R£AD(IHD,30) FRECPT
30 FORMAT(16A4)
INITIALIZE CONCENTRATION ARRAYS
0.0
0.0
ICHK
NO CONCENTRATION ROSES CDM03130
CDM03140
CDM03150
CDM03160
CDM03170
CTM03180
CDM03190
CDM03200
CDM03210
CDM03220
CDM03230
CDM03240
CDM032SO
CDM03260
CDM03270
CDM03280
CDM03290
CDM03300
CDM03310
CDM03320
CDM03330
CDM03340
CDM03350
CDM03360
CDM03370
CDM03380
CDM03390
CDM03400
CDM03410
CDM03420
CDM03430
CDM03440
CDM03450
CDM03460
CDM03470
CDM03480
CDM03490
CDMU3500
CDM03510
CDM03520
CDM03S30
CDM03540
CDM03550
= 0 CDM03S60
CDM03570
ICHK IS USED IN CALQ TO CONTROL THE PRINTING OF THE CDM0358U
WARNING MESSAGE ABOUT EXCEEDING 100 ARCS. WE SET ICHK CDM03S9U
TO ZERO WHENEVER WE READ IN A NEW RECEPTOR. A CDM03600
WARNING MESSAGE IS PRINTED ONLY WHEN NEEDED AND ONLY
WHEN ICHK = 0. WHEN THE MESSAGE IS PRINTED, ICHK IS
SET TO THE VALUE OF 1 IN CALQ. IN THIS MANNER, WE
PRINT THE WARNING ONLY ONCE PER RECEPTOR EVEN IF
MORE THAN 100 ARCS IS CALLED FOR IN MORE THAN ONE
SECTOR.
40 DO 80 1*1,2
DO SO IDUM"1,6
PPAR( I , IDUM)
APAR(I.IDUM)
50 CONTINUE
ABAR(I)=0.
PBAR(I)aO.
DO 55 K=1,N1636
AROSE(K,I)=0
PROSE(K,I)=0
55 CONTINUE
SO CONTINUE
READ RECORD TYPE 18 (RECEPTOR INFORMATION).
AT END OF FILE STOP EXECUTION.
READ(IRD,FRECPT,END=620)RX,RY,KPX(9),KPX(10),NROSE
RX:
RY:
KPX19):
KPX(IO);
NROSE:
X MAP COORD. OP THE RECEPTOR
Y MAP COORD. OF THE RECEPTOR
OBSERVED CONC. OF POLLUTANT 1 AT THE RECEPTOR, IF
KNOWN
OBSERVED CONC. OF POLLUTANT 2 AT THE RECEPTOR, IF
KNOWN
OPTION FOR POLLUTANT CONCENTRATION ROSES
CONVERT COORDINATES TO EMISSION GRID UNITS
RI=(RX-XG)/RAT*O.S
RJ=(RY-YG)/RAT+0.5
IF(NROSE.GE.l) GO TO 110
IPG=IPG*1
START NEW PAGE IF LINE COUNT GE 50
IFUPG.LT.44) GO TO 110
IPG=0
CDMU3610
CDM03620
CDM03630
CDM03640
CDM03650
CDM03660
CDM03670
CDM03680
CDM03690
CDM03700
CDMU3710
CDM03720
CDMU3730
CDM03740
CDM03750
110
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
WRITE(IWR,70)IYER,IRUN.HEADNG
70 FORMAT('1',35X,'CLIMATOLCCICAL DISPERSION MODEL - VERSION 2
• IX,48X,'CODE VERSION ',!!,/
• 1X,53X,'RUN ' ,IS,//,
• 1X.20A4,//)
WRITE( WR.30)
80 FORMAT(IX,39X,'CONCENTRATIONS (MICROGRAMS/CU. METER)',//)
WRITE(nVR,90) PNAME(1),PNAME(2),PNAME(1),PNAME(2),PNAME(1),
• PNAME(2),PNAME(1)>PNAME(2),PNAME(1),PNAME(2)
90 FORMAT (IX, 2 2X,'AREA SOURCES POINT SOURCES
• IX,'X COORD Y COORD1 , SX,S(A4, 5X.A4.7X),/)
INITIALIZE SECTOR DIRECTION
S: PROGRESSES 1 THROUGH MlS36 CONTROLLING SECTOR DIRECTION
110
IP(IAS.LT.l) GO TO 340
THERE ARE AREA SOURCES TO EVALUATE.
DETERMINE MAXIMUM AND MINIMUM DISTANCES PROM THE RECEPTOR
TO THE EMISSION GRID BOUNDARIES.
DX(1)-(IX-0.5)-RI
C
C
C
c
c
c
c
c
c
c
c
c
c
CSM037SO
,/ CTM03770
CDM03780
CDM03790
CDM03800
CDM03810
CDM03820
CEM03830
CDM03840
TOTAL',G3rt038SO
COM03360
CDM03870
CDM03830
CEM0389Q
CDM03900
CDM03910
CDM03920
CDM03930
I? THERE ARE NO AREA SOURCES TO EVALUATE GO TO 340 AND CHECK CDM03940
FOR POINT SOURCES CDM03950
CDM03960
CDM03970
CDM03980
CDM03990
CDM04000
CDM04Q10
CDM04020
CDM04030
CDM04040
CDM04030
CDM04080
CDM04070
CDM04080
CDM04090
CDM04100
CDM04110
CDM04120
CDM04130
CLM04140
CDM04130
CDM041SO
CDM04170
CDM04130
CEM04190
CDM04200
CTM04210
CCM04220
CEM04230
IP THE RECEP'Kat is OUTSIDE THE EMISSION GRID BOUNDARIES THEN 0104240
GO TO 120 CDM042SO
CDM04260
CDM04270
CDM042SO
CDM04290
SET FLAG (IB) TO REMEMBER RECEPTOR IS WITHIN GRID BOUNDARIES CDM04300
CDMU4310
COM04320
CDM04330
CDM04340
CDM04330
SET FLAG (IB) TO REMEMBER RECEPTOR IS OUTSIDE GRID BOUNDARIESCDM04360
CDM04370
DX(4)"DX(1)
DYU)»(nr-0.5)-RJ
i )
. 5
-DYU )
. 5
TX*(DX(1)«DX(1)+OY(
TN=TX
IP(TM.GT.TX) TX=TM
IP(TM.LT.TN) TN=*TM
TM=«(DX( 2 ) «DX( 2 )+DY'. 3)-DY( 3 )) "0. 5
IP(TM.GT.TX) TX=TM
IP(TM.LT.TN) TN-TM
TM»(DX( 1)-DX( 1)+DY( 3)-0Y( 3 )) "0 . 3
IP(TM.GT.TX) TX»TM
IP(TM.LT.TN) TN=»TM
IP(RI*0.5.LT.IX.OR.RI-0.5.GT.IXX) GOTO 120
IF(RJ+0.5.LT.IY.OR.RJ-0.5.GT.IYr) GOTO 120
18=1
MN=»1
GO TO 330
120 IB=2
DETERMINE MINIMUM DISTANCE FROM RECEPTOR TO AREA SOURCES
TMN=TN/DR
130
140
TNI=400.
DO 240 1=1,4
IF(DX(I))130,150,190
IF(DY(I).EQ.O.) GO TO 140
TA(t)=ATAN(DY(I)/DX(I))•RAD+180.
GO TO 230
TA(I)=130.
CDM04380
CDM04390
COM04400
COM04410
CDM04420
CDM04430
CDM04440
CDM044SO
CDM04460
CDM04470
CDM0443Q
COM04490
CDM04SOO
111
-------
GO TO 230
ISO IFIDY(1))160,170,180
ISO TA(I)=270.
GO TO 230
170 TA(I)-0.
GO TO 230
180 TA(I)=90.
GO TO 230
190 IP(DY(I))200,210,220
200 TA(I)»ATAN(DY(I)/DX(I))«SAD*360.
GO TO 230
210 TA(I)»380.
GO TO 230
220 TA(I)»ATAN(DY(I)/DX(I))«HAD
230 IP(TA(I).GT.TXI) TX1=TA(I)
IF(TAU).LT.TNI) TNI»TAlI)
240 CONTINUE
TDIP=TXI-TNI
2SO DO 2SO 1=1,4
280 A(I)*TA(I)
IP(TDIP.GT.180.) GO TO 290
TM=90.-TK(K)
IP(TM.LT.O.) TM=TM+360.
270 IP(TM.GE.TN-DELO2) GO TO 280
I?(TM.GZ.DELO2) GO TO 340
TM=1M*360.
280 IF(TM-
-------
c
c
c
c
c
c
c
c
c
c
DO 360 1=1,2
AROSE(K,I)»0.
PROSE(K,I)aO.
360 CONTINUE
IF NO AKEA SOURCES, CHECK POINT SOURCES
IF(IAS.LT.l) 00 TO 340
BRANCH TO 330 OB 230 DEPENDS ON WHETHER RECEPTOR INSIDE (IB=
OR ODTSIDE (IB=2) AREA SOURCE
GO TO (330,250), IB
PRINT AND STORE RESULTS
370 DO 330 1=1,2
TCON( I )*PBAR( I )f ABAR( I )
CCON( I )=CA( I )-K3( I ) «TCON( I )
380 CONTINUE
TOON: TOTAL CONCENTRATION
CCON: CALIBRATED CONCENTRATION
IPCNROSE .LT. 1) GO TO 390
WRITEC IWR, 70 ) IYER, IRUN.HEADNG
WRITEC IWR, 80)
WRITE(nvR,90) PNAME(1),PNAME(2),PNAMEU),PNAME(2),PNAME(1),
• PNAME(2),PNAME(1),PNAMEC2),PNAMEU),PNAME(2)
390 WRITEC IWR, 400 )RX,aY,ABAR,PBAR,TCON,CCON,KPX( 9 ),KPXUO)
400 FORMAT ( IX, 2 ( P7 . 2 , 3X) , 4(P8 . 1 , 3X.P8 . 1 , 3X) , 2X, 2 ( I 4 , 5X) )
ABAR: CONTRIBUTION PROM AREA SOURCES
PBAR: CONTRIBUTION FROM POINT SOURCES
KPX: CABS mTl'PUT VECTOR
KPX(1)=>ABAR<1)+0.3
KPX(2)=>ABAB(2)+0.3
EPX(3)-PBAR(1)*0.5
KPXC4)aPBAR(2)*0.5
KPX(S)=TCON(1)+O.S
8KX(8)=TCON(2)+0.5
KP3C(7)«CCON(1)+0.5
KPX(8)=CCON(2)+0.5
WRITEC IPU, 410 )RX,RY,IRUN,(KPX(L),Lal., 10)
410 PORMATC1X,2P10.2,IS,'I',10I4)
IF(NROSE.LT.l) GO TO 40
WRITE OUT PARTIAL CONCENTRATIONS ESTIMATED FOR
EACH STABILITY CATEGORY (LIST SEPARATELY THE
CONTRIBUTIONS FROM POINT AND AREA SOURCES).
WRITE (rWR, 430)
430 PORMATC//, IX, 41( '•'),' AVERAGE CONCENTRATIONS BY STABILITY ',
STABILITY CATEGORY1
SOURCE' , 8( SX, I 2) / )
WRITE( IWR, 440 ) ( IDUM, IDUM= 1 , 8 )
440 PORMATUX,3aX,'TYPE OP
. -------------- .,/,
• IX, 2 6X,' POLLUTANT
KPX137)=RX»100.
KPX(38)=Rr«100.
DO 470 JDCM*1,2
WRITE( IWR, 4SO) JDCM,PNAME( JDUM) , (APAR( JDUM, IDUM) , IDUM= 1 , 6 )
WRITEC IPU.4SS) ARCS ( JDUM ),(APAR( JDUM, IDUM), IDUM=1 , 6 ) ,KPX( 37 ) ,
• KPXU8)
4SO FORMAT (IX, 2 8X, 12,' ( ' ,A4, < ) ' , 4X, ' AREA ' , IX, 6( 2X.F6 . 1 ) , / )
433 FORMAT(1X,A4,SP7.1,2I8)
WRITEt IWR.460) JDUM, PNAME( JDUM) , (PPAR( JDUM, IDUM) , IDUM=1,S)
WRITEC IPU, 433) PROSC JDUM) , (PPARC JDUM, IDUM) , IDUM=1 , S ) ,KPX( 37 ) ,
• KPXC38)
460 FORMAT(1X,26X,I2,' C ,A4, ')', 4X, ' POINT* , IX, 6( 2X, F6 . 1 ),//)
470 CONTINUE
[BUM > 9
IFCN1636.EQ.36) IBUM =• 12
WRITEC IWR, 480)
480 FORMATC/, IX. 42C '•'),' AREA ROSES (MICROGRAMS/OJ. METER) ',
• 42('"),//)
IF (N1636 .EQ. 16) WRITEC IWR, 490 ) (DISC I ) , 1 = 1 , 2-N1636 , 2 )
CTM05260
CEM052TO
CCMOS230
CDMOS290
CDM05300
CDM05310
CDM05320
CDMOS330
CDMOS340
CDMOS3SO
CDMOS360
1CDM05370
CDM03380
CDMOS390
CDMOS400
CEM05410
COM03420
CDM03430
CDMOS440
CDMOS430
CDMOS460
CEM03470
CCMOS480
CEM05490
CDMOS500
CDM03S10
CTM05520
CTMOSS30
CDMOSS40
CEM05550
CEM05580
CTMOS370
CDM03380
CZM03390
COMOS600
CDMOS610
CDMOS620
CDMOS630
CCMOSS40
CDMOS630
CDM05660
CDMOS670
CCM05680
CTMOS690
CDMOS700
CEMOSno
CDM03720
CDMOS730
CDMOS740
CDM03730
CEM057SO
CDMOS770
CDMOS780
CDM05790
CDM03800
CDMOS810
CDM03320
CDMOS330
CDM03340
CXMOS830
CDMOS360
CDM05870
CDM05880
CCMOS890
CDMOS90Q
CDMOS910
CDMOS920
CDM05930
CEM05940
CDM05930
CCM05960
CDM05970
CEM05980
CZMOS990
CLM06000
113
-------
c
c
c
490 FORMATdX.SX, 'POLLOTANT' ,5X,4(A4,A4,3X,A4,1X.A4,4X)/)
IP (N1S36 .EQ. 36) WRITE(lYtt,500)(ISECTR,ISECTO+18, ISECTR=1,18)
500 FORMAT (IX,'POLLUTANT',3X,18(I 2,'*' ,I 2,IX)/)
DO 550 J»l,2
DO 510 I=1,N1S36
KPX(I)=ABOSE(I,J)+0.5
310 CONTINUE
IJ a 0
520 IJ a IJ * 1
ISTART = (IJ-1)"IBUM + 1
IPIN « (IJ-D'IBUM + IBUM
WRITB(IPU,560) ABOS(J),(KPX(I),IaISTART,IPIN),KPX(37),KPXU8)
IPUPIN.LT.N1S36) GO TO 520
I? (N1836 .EQ. 18) WHITE(IWR,530)J,(KPX(I),1=1,N1636)
530 FOHMAT(1X,10X.I1,SX,18I8,/)
I? (N1838 .EQ. 36) WRITE(IWR,540)J,(KPX(I),I»l.N1636/2),
• (KPX(I),I*N1838/2+l,N1636)
S40 FORMAT(1X,4X,I1,SX,13IS,/,1X,11X,18IS,/)
550 CONTINUE
590 FORMATUX,A4,8IS,2I8)
WRITE(rWR,570)
570 FORMATS/,IX,41('•'),' POINT ROSES (MICROGRAMS/CU. METER) ',
• 42C"),//)
IP (N1S38 .EQ. 16) WRITE(IWR,490)(D16(I),I=1,2VU636,2)
IP (N1836 .EQ. 38) WRITE(IWR,500)(ISECTR,ISECTR+1S, ISECTR=l,13)
DO 600 L=l,2
DO 530 K=-1,N1838
KPX(K)=-PB03E(K,L)+0.5
530 CONTINUE
IJ a 0
590 IJ » IJ * 1
ISTABT » (IJ-1)«IBUM * 1
IPIN * (IJ-l)«IBUM * IBUM
WRIT2(IPO,560) PaO3(L),(KPX(I),IaISTART,I7IN),KPX(37),KPXt33)
IP(I?IN.LT.N1S36) GO TO 590
IP (N1S38 .EQ. 18) WRITE(IWR,530)L,(KPX(I),I=1,N1S36)
IP (N1838 .EQ. 36) WRITE( IWR,540)L,(KPX(I),1 = 1.N1636/2),
• (KPX(I),I»N1636/2fl,N1636)
800 CONTINUE
WRITEdWR, S10)
810 POBMATdX, 119C"1 ))
IPG » 70
GO BAOC AND READ NEXT RECEPTOR
GO TO 40
820 STOP
END
C
C
SUBROUTINE CLINT(ICOND)
SUBROUTINE CLINT (VEH3ION 35293), PART OP CDM-2.0.
PARAMETER (NPT3=>200 ,NQLIM=«100 ,NASE=50 ,NASN=50 )
DIMENSION FMETEO(16),PSOURC(16),DUM(6),CDRYE(7),PCURVE(6),
AOIRVE(6)
/Cl/ K,MX,MN,P(6,S,38),OBAH(S),0(6),RI,RJ,INC(4),DELR
/C2/ UE(8),n),YN,TMN,DINT,TfCON,TA(4),IPG,XG,TO,IRD
/C3/ IRUN,CA(2),CB(2),TK(36),AROS(2),PKOS(2),TANG
/C4/ DECAY(2),ICA(6),ICP(6),HL(6),HX(S),G8(2),NQ,IYER,IVfR
/C3/ Q(NQLIM,4),GA(2),IAD(4,S),IAS,TDA,TDB,TDC,IPU
COMMON
COMMON
COMMON
COMMON
CCMVCN
COTOfON
/QCOM/ N,DR,IX,IY,TT(38,21),JCrC,IXX,IYY,RAD,TD,
• Z(NASE;NASN,3)
COMVDN /ACOM/ PI,SZA(6),ABAR(2),AROSE(36,2),XS(6)
COMVON /PCOM/ PH(NPTS).PR(NPTS),PS(NPTS,4),PX(NPTS).PY(NPTS),
WA( 36),W8(36),PSOSE(36,2),CV,IPS,HAT,P8AR(2),TOA,
• VSl(NPTS) .TKNPTS) ,D1(NPTS) .FRN(NPTS) .BFLUX(NPTS)
COMMON /SET/ N1636,DELTA,TTAN,NP50fNPDH,NSTEW,NGRAD,lCLOW,KHIGH,
• PPAR(2,6),APAR(2,8),WHA(6),FAC,HCEPTZ,KELVIN,NDEF
COMMON /.TITLE/ HEADNG( 20 ) ,PNAME( 2 ) ,D16( 32 ) ,D36( 72 ) ,DISP( 8 , 7 ) ,
• TTITLE(3)
DATA CURVE /' A ',' B ',' C ',' Dl ',' 02 ',' E ',' F ' /
ICOND = 0
CDMO 6010
CDM06020
CCM06030
CDM06040
CEM060SO
CDM06080
CEM06070
CXM06030
CDM06090
CDM06100
CEM06110
CDM06120
CCM06130
CDM06140
CCM06150
CCM06160
CEM06170
CCM06130
CIM06190
CDM06200
CCM06210
CDM06220
CCM06230
CCM06240
CDVI062SO
CCM06260
CEM06270
CCM06280
CCM06290
COM06300
CTM08310
CDM06320
CCM06330
CEM06340
CLM063SO
CCM06360
CEM06370
CCM06330
CXM06390
CDM06400
CDM06410
CEM06420
CTM06430
CCM06440
CEM06450
CDM06460
CEM06470
CZMQ6480
CDVI06490
CCM06SOO
'CDM06510
CEM0652Q
CDM06530
CXM06540
CCM06550
CCM06560
CDM0657Q
CXM0658Q
CCM06S9Q
CCM066QO
CDM06610
CCM06620
CCM06630
CCM06640
CDM06650
CDM06660
CDM0667Q
CDM06680
CDM06690
CDM06700
CCM06710
CEM06720
CDM06730
CDM06740
CDM06750
114
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
BEAD RECORD TYPE 1
R£AD(5,S) HEADNG
HEADNG: DESCRIPTION OK TITLE OF MODEL RUN
9 FORMAT(20A4)
READ RECORD TYPE 2
R£AD(5,10) NSO2.PNAME
NSO2: POLLUTANT SOURCE NUMBER FOR SO2
PNAME: NAMES OF TWO POLLUTANTS TO BE MODELED
10 FORMAT ( I 1.3X.2A4)
IF KNSO2 .EQ. 0) .OR. (NSO2 .£Q. 1) .OR. (NSO2 .EQ. 2}) GO TO
WR1TE(8,13) NSO2
15 POBMATCO"" VALID VALUES FOR NSO2 ARE 0, 1, OR 2.',/,
• • ••• USER INPUT NS02 » ',14)
ICOND » 1
READ RECORD TYPE 3
20 R£AD(5,25)AROS,PROS,IRUN,NLIST,IRD,IWR,IPU,CA,CB
AROS: ALPHA AREA ROSE OUTPUT ID
PROS: ALPHA POINT ROSE OUTPUT ID
I RUN: USER DEFINED RUN ID NUMBER
NLIST: CONTROL FOE PRINTED mri'fUT
IRD: FORTRAN LOGICAL UNIT NUMBER (READ)
IWRs FORTRAN LOGICAL UNIT NUMBER (PRINTER)
IPU: FORTRAN LOGICAL UNIT NUMBER (PUNCH)
CA: INTERCEPT OF CALIBRATION
C3: SLOPS OF CALIBRATION
23 PORMAT(4A4,SI3,4P9.0)
ggAn RECORD TYPE 4
READdRD,') N1S38,NP50,NPDH,NSTDW,NGRAD,FAC,RCSPTZ,KELVIN,XDEF
CDM067SO
CEM06770
CDMOS730
CEM06790
CSMO 6300
CTM06810
CDM06320
CTM06830
CDM06340
CEM083SO
CDM06360
CDM06870
20COM06880
CDM06890
COM06900
CDM06910
CDM06920
CDM06930
CEM06940
CDM069SO
CDM06960
CDM06970
CEM08980
CDM06990
CDM07000
CDM07010
CEM07020
CDM07030
CDM07040
CEM07QSO
CCM07080
CDM07070
CDM07080
CDM07090
CZM07100
N1S38: NUMBER OF WIND DIRECTIONS USED IN METEOROLOGICAL JOINCDM07110
FREQUENCY FUNCTION.
NP50: INITIAL DISPERSION OPTION
NPDH: BUOYANCY -INDUCED DISPERSION OPTION
NSTDW: STACK DOWNWASH OPTION
NGRAD: GRADUAL PLUME RISE OPTION
PAC: EFFLUENT RISE OF AREA SOURCES
RCF.PT2; HEIGHT (M) ABOVE GHOUND OF ALL RECEPTORS
KELVIN: UNITS FLAG FOR STACK TEMPERATURE
NDEPt DEFAULT OPTION
I? ((N1938 .EQ. IS) .OR. (N1838 .EQ. 36)) GO TO 40
WRITE(IWR,30) K1838
30 POHMATCO"- VALID VALUES FOR N1838 ARE 18 OR 38.',/
• ' ••• USER INPUT N183S »',I4)
ICOND * 1
40 IP ((PAC .GE. 0.) .AND. (FAC .LE. 1.)) GO TO 80
WRITEUWR.SO) FAC
50 FORMATCO"- VALID VALUES FOR PAC RANGE FROM 0 TO I.',/
• ' •" USER INPUT FAC =',P6.2)
ICOND * 1
READ RECORD TYPE 5
80 READdRD,*) KLOW, ICA
KLOW: DISPERSION PARAMETER SCHEME FOR AREA SOURCES
ICA: ARRAY OP SIX (8) VALUES DEFINING DISPERSION CURVES
(AS DEFINED BY KLOW) TO BE USED FOR THE SIX
STABILITY CATEGORIES SUMMARIZED IN THE JOINT
CCM07120
CDM07130
CCM0714Q
CDM07150
CDM07150
CDM071TO
CEM07180
CDM07190
CDM07200
CDM07210
CDM07220
CDM07230
CDM07240
CDM07230
CDM07280
CDM07270
CDM07280
CDM07290
CDM073QO
CDM07310
CDM07320
CDMU7330
CDM07340
CDM07350
CDM07360
CDM07370
CDM07380
FREQUENCY FUNCTION. CDM07390
IP (((KLOW .GE. 1).AND.(KLOW .LE. 7)).OR.(NDEF .GT. 0)) GO TO 30 CDM07400
WRITE(IWR.70) KLOW CDM07410
70 FORMATCO*" VALID VALUES FOR KLOW RANGE FROM 1 TO 7.',/ CDM07420
• ' ••• USER INPUT KLOW =',I4) CDM07430
ICOND * I CDM07440
80 DO 100 I = 1,8 CDM07450
IF (((ICA(I).GE.1).AND.(ICA(I).LE.7)).OR.(NDEP.GT.O)) GOTO 10CDM07460
WRITE(IWR,90) I.ICA(I) CDM07470
90 FORMATCO*" VALID VALUES FOR ICA RANGE FROM 1 TO 7.',/ CDM07480
• ' •" USER INPUT ICAC.Il,') a',14) CDM07490
ICOND = I CDM07500
115
-------
100 CONTINUE
C
C READ RECORD TYPE S
C
READdRD,*) KHIGH, ICP
C KHIGH: DISPERSION PARAMETER SCHEME FOR POINT SOURCES
CDM07S10
CDM07520
CDM07530
CDM07540
CEM07550
CDM07S60
C ICP: ARRAY OF SIX (S) VALUES DEFINING THE DISPERSION CURVECCM07570
C . (AS DEFINED BY KHIGH) TO BE USED FOR THE S IX
C STABILITY CATEGORIES SUMMARIZED IN THE JOINT
C FREQUENCY FUNCTION.
IF (((KHIGH. GE.l). AND. (KHIGH. LE. 7)). OR. (NDEF.GT.O)) GOTO 120
WRITE(rWR, 110) KHIGH
110 FORMATCO"" VALID VALUES FOR KHIGH RANGE FROM 1 TO I.',/
• ' •••USER INPUT KHIGH «',I4)
ICOND > 1
120 DO 140 I > 1,8
IF (((ICP(I).GZ.1).AND.(ICP(I).L2.T)).OR.(NDEF.GT.O)) GOTO
WRITE (rWR, 130) I.ICPU)
130 POHMATCO-" VALID VALUES FOR ICP RANGE FROM 1 TO 7.',/
• i ••• gsEa INPUT. ICPC ,11,') »',I4)
ICOND * 1
140 CONTINUE
IF (ICOND .ME. 0) GO TO 310
C
C INITIALIZE ARRAY SOURCE AND WIND DIRECTION ARRAYS
C
DO 130 I*1,NASE
DO ISO Jal.NASN
C EFFECTIVE STACK HEIGHT MUST BE GE 1 .
Z(I,J,3)sl.
DO ISO K»l,2
Z(I,J,K)=0.
150 CONTINUE
TJt(l)=0.
DELTA = 22. S
IP(N1838.EQ.38) DELTA « 10.0
RDELTA .* DELTA/RAD
TTAN » TAN (RDELTA/ 2.0)
DO ISO I="2,N1838
TK(I)»TK(I-1)+OELTA
180 CONTINUE
C
C READ RECORD TYPE 7
C
READ( IRD,170)DELR,RAT,CV,XG,YG,TOA,TXX
C DELS: RADIAL INCREMENT (M)
C RAT: WIDTH OF A BASIC EMISSION GRID SQUARE (USER UNITS)
C CV: CONVERSION FACTOR, CV'RAT = EMISSION GRID INTERVAL
C XG: X MAP COORD. OF THE SW CORNER OF THE EMISSION GRID
C ARRAY
C YG: Y MAP COORD. OF THE SW CORNER OF THE EMISSION GRID
C ARRAY
C TOA: MEAN ATMOSPHERIC TEMPERATURE (DEC C)
C TXX: WIDTH OP BASIC EMISSION GRID SQUARE (M)
170 FORMATU2P6.0)
IF (TXX -EQ. 0) GO TO 175
CHK = ABSU.O - (RAT-CV/TXX) )
IF (CHK .LE. 0.01) GO TO 185
175 WRITEUWR.iaO)
180 FORMATCO"- THE PRODUCT OP RAT AND CV MUST EQUAL TXX. ' ,/
• . ... THE VALUES PROVIDED BY THE USER DO NOT CONFORM TO
• 'THIS RELATIONSHIP.')
ICOND = 1
GO TO 810
C
C COMPUTE MAXIMUM LENGTH (M) OP SIDE OF EMISSION
C GRID SQUARE MATRIX ( THE 'Z ARRAY')
C
185 TXXTE = NASETXX
TXXTN = NASN'TXX
C
C READ RECORD TYPE 8
C
READ( IRD, 170 JOINT, YD, YN.SZA.GB
C DINT: NUMBER OF SEGMENTS DESIRED IN DELTA DEGREE SECTORS
CDM07530
CDM07590
CDM07SOO
CDM07S10
CDM07S20
CDM07830
CDM07840
CDM07850
CDM07S60
14CEM07S70
CDM07880
CDM07690
CDM07700
CDM07710
CDM07720
CDM07730
CDM07740
CDM07750
CDM07780
CDM07770
CDM07780
CDM07790
CDM07800
CCM07310
CDM07320
CTM07330
CDM07340
CDM073SO
CDM07880
CDM07370
CDM07880
CDM07890
CDM07900
CDM07910
CDM07920
CDM07930
CDM07940
CDM079SO
CDM07960
CDM07970
(M)CDM07980
CDM07990
CDM08000
CDM08010
CDM08020
CDM08030
COM08040
CDM08050
CDM08060
CDM08070
CDM08080
CDM08090
CDM08100
1 .CDMOailO
CDM08120
CDM08130
CDM08140
CDM081SO
CDM081SO
CDM08170
CDM08130
CDM08190
CDM08200
CDM08210
CDM08220
CDM08230
CDM08240
. CDM08250
116
-------
c
c
c
c
c
c
c
c
c
190
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
200
RANGES FROM 2 TO 20 INCLUSIVE.
YD: RATIO OF THE DAYTIME EMISSION RATE TO THE AVERAGE
24-HOUR EMISSION RATE
YN: RATIO OF THE NIGHTTIME EMISSION RATE TO THE AVERAGE
24-HOUR EMISSION RATE
SZA(N): INITIAL SIGMA-Z FOR AREA SOURCES (M)
N = STABILITY CLASS
GB(N): DECAY HALF-LIFE (HR) FOR THE TWO POLLUTANTS
N « POLLUTANT NUMBER
IF UDINT.GE.2.).AND.(DINT.LE.20.)) GO TO 200
WRITEdWR,190) DINT
FORMATCO-"* VALID VALUES FOR DINT RANGE FROM 2 TO 20.',/
• ' ••• USER INPUT DINT » '.F5.1)
ICOND » 1
GO TO 310
READ RECORD TYPE 9
READ(IRD,«) (UE(I),I»1,6)
UE(I): ARRAY OF SIX (S) VALUES DEFINING WIND PROFILE
EXPONENTS TO BE ASSOCIATED WITH THE SIX STABILITY
CATEGORIES SUMMARIZED IN THE JOINT FREQUENCY
FUNCTION. I = STABILITY CLASS
READ RECORD TYPE 10
READdRD,*) (U(I),I = l,6)
SUMMARIZED IN THE JOINT FREQUENCY FUNCTION.
TYPICALLY THE HARMONIC AVERAGE WIND SPEED IS USED.
READ RECORD TYPE 11
READURD,
HL(I)
)
CDM08550
CDM08560
CDM08S70
CDM08530
CDM08590
CDM08600
210
C
C
C
C
C
C
C
220
(HL(I),I=1,S)
ARRAY OF SIX (S) VALUES DEFINING MIXING HEIGHTS (M) CDM08610
TO BE ASSOCIATED WITH THE SIX STABILITY CATEGORIES CDM08620
SUMMARIZED IN THE JOINT FREQUENCY FUNCTION. GDM08630
I " STABILITY CLASS CDM08640
CDM086SO
READ RECORD TYPE 12 CDM08660
CDM08670
CDM08680
CDM08690
CDM08700
READ RECORD TYPE 13 CDM08710
CDM03720
CDM08730
CDM08740
READ(IRD,FMETEO)(Fd,J,K),J=l,S) CDM08750
Pd.J.K): JOINT FREQUENCY FUNCTION... CDM08760
I = STABILITY CLASS CDM08770
J = WIND SPEED CLASS
K » WIND DIRECTION
DO 220 JJ=1,6
UBAR(I) = UBAR(I) + U(JJ)•?(I,JJ,K)
DUMd) * DUMd) * Fd.JJ.K)
CONTINUE
READdRD,210) FMETEO
FORMAT (16A4)
DO 220 1=1,6
DO 220 K=1,N1636
C
c
c
C
C
C
CDM08780
CDM08790
CDMU8800
CDM08810
CDM0882U
CDM08830
CDM08840
CDM08850
CDM08860
IF (NDEF.GT.O) CALL DFAULT(NSO2,CA,CB,NPSO,NPDH,NSTDW,NGRAD,KLOW,CDMO»870
IF NDEF > 0, THEN SET DEFAULT VALUES.
230
240
C
C
c
ICA.KHIGH,ICP,SZA,GB,UE)
COMPUTE AVERAGE WIND SPEED FOR EACH DIRECTION SECTOR
DO 240 11*1,6
IF(DUMdI).NE.O. ) GO TO 230
UBAR(II)=0.
GO TO 240
UBAR(II)
CONTINUE
UBAR(11)/DUM(11)
DEFINE AMBIENT TEMPERATURE, SECTOR INTEGRATION PARAMETERS,
AND POLLUTANT HALF-LIFE.
CDM08880
CDM08890
CDM08900
CDM08910
CDM08920
CDM08930
CDM08940
CDM0895U
CDM08960
CDM08970
CDM08980
CDM08990
CDM09000
117
-------
c
c
c
TOA=TOA+273.1S
DR=DELR/(CY*RAT)
ffTC=DINT>l.
THETA=DELTA/DINT
TANG = 90.0 - DELTA/2.0
00 2SO I=l,N1636
B=TK(I)/RAD
WB(I)=SIN(B)
WA(I)=C03(B)
DO 250 J=1,KTC
X»TANG-TK(I)*(J-l)•THETA
IF(X.LT.O.) X=X*360.
TTd,J)=X/RAD
250 CONTINUE
DEFINE HALF LIFE FOR P 1 AND P 2
GA(1)=GB(1)«3600./O.S93
GA(2)=GB(2)*3600./O.S93
DEFINE INITIAL 31 OKAS
DO 270 JA=n,8
JB=ICA(JA)
WHA(JA) » FAC * (5.0/UUA))«U.O-FAC)
HX(JA)=0.3-HL(JA)
SA=SZA(JA)
IF(SA.GT.O.) GO TO 280
3=0.
GO TO 270
280 r-AT.T. VIRTX(KLCW,NPDH,JB,0.0,SA,S)
270
C
C
c
c
c
c
EVALUATE PRINTER OOKTBOL OPTION
IF(NLIST.LT.O) GO TO 810
ECHO SETUP INFORMATION AND METEOROLOGICAL INPUT
WRITE(rWR,280)IYER,IRUN.HEADNG
280 PORMATCl1 , 35X, 'CLIMATOLOGICAL DISPERSION MODEL - VERSION 2.0',/
• 1X.48X,'CODE VERSION ',I3,/
• lX.S3Xt'RUN ',IS,//,
• 1X.20A4,/)
WRITE(IWR.290)N1S38
290 FOHMATUX,'TECHNICAL OPTIONS:1 ,/
• IX,' NUMBER OF WIND DIRECTIONS USED IN METEOROLOGICAL
• 'JOINT',/,
• IX,' . FREQUENCY FUNCTION (N1838) ',30('.'),I 5)
WRITEdWR, 300 )KLOW,(DlSPd,SLOW), I = 1,3),
• KHIGH,(DI3P(I,KHIGH), I =» 1.3)
300 FORMAT(LX,1 DISPERSION PARAMETER SCHEME FOR AREA SOURCES ',
• '(SLOW) ',7('.'),I5,12X,8A4/
• IX,' DISPERSION PARAMETER SCHEME FOR POINT SOURCES ',
• '(KHIGH) ',SC.'),I5,12X,8A4)
WRITEdWR. 310 )PAC
310 FORMATUX,' EFFLUENT RISE FOR AREA SOURCES (FAC) ',22('.'),
• 43C.1PE0.2.6)
WRITEIIWR.320) RCEPTZ
320 FORMATUX,' HEIGHT ABOVE GROUND OF ALL RECEPTORS (RCEPTZ) ',
• 13('.'),4X,1PE12.8,' M')
WRITEdWR, 330) PNAME( 1) ,CA( 1) ,CB( 1)
WRITEdWR, 330) PNAME( 2 ) ,CA( 2) ,CB( 2 )
330 FORMATUX,' CALIBRATION CONSTANTS -- ',A4,/,
• IX'.SX,'INTERCEPT OF CALIBRATION ' , 30( ' . ' ) , 4X, 1PE12. 8 ,
• ' MICROGRAMS/CU. METER',/
• IX,8X,'SLOPE OP CALIBRATION ',34('.'),4X,1PE12.8,
• ' DIMENSIONLESS')
WRITEdWR, 340 )NP50,NPDH,NSTDW,NGRAD,NDEP
340 FORMAT(IX,
IX,
•
IX,
IX,
IX.
7
WRITEdWR,360) NLIST
INITIAL DISPERSION OPTION (NPSO) ' , 28(' . ' ) , I 5 , / ,
BUOYANCY INDUCED DISPERSION OPTION (NPDH) ',
STACK'DOWNWASH OPTION (NSTDW) •,29(•.•),3x,i2,/,
GRADUAL PLUME RISE OPTION (NGRAD) ',25('.'),3X,I 2
DEFAULT OPTION (NDEF) ' ,37('.'),3X,I 2,/)
CCM09010
CDM09020
CEM09030
CDM09040
CCM09050
CDM09060
CDM09070
CCM09080
CDM09090
CDM09100
CDM09UO
CDM09120
CCM09130
CDM09140
CEM0915Q
CDM09180
CDM09170
CEM09130
CDM09190
CDM09200
CEM09210
CCM09220
CDM09230
CEM09240
CDM092SO
OM09280
CCM09270
CCM09280
CEM09290
CZM09300
CDM09310
CTM09320
CCM09330
CCM09340
CDM093SO
CEM09360
CCM09370
CZM09380
CDM09390
CEM09400
CDM09410
CTM09420
CDM09430
CCM09440
CEM09450
'CEM09460
CDM09470
CEM09480
CDM09490
CDM09SOO
CDM09S10
CTM09520
CCM09S30
CDM09S40
CDM095SO
CTM09560
O3M09570
CEM09580
CDM09S90
CEM09600
CDM09610
CCM09620
CDM09630
CEM09640
CCM09S50
CEM09660
CDM09670
CEM09630
CDM09690
CEM09700
CDM09710
CDVI09720
,CDM09730
CDM09740
(3M09750
118
-------
380 FORMAT('OPRINT OPTIONS:',/ CDM09760
• IX,' CONTROL FOR PRINTED OUTPUT ', 32 ('.'), 15) CEM09770
WRITEdWR, 370) IRD.IWR.IPU CDM09780
370 FORMATdX,' FORTRAN LOGICAL UNIT NUMBER (READ) ', 24 ('.'), 15/ CDM09790
• IX,' FORTRAN LOGICAL UNIT NUMBER (PRINTER) ',21('.'),I5/ CEM09800
• IX,' FORTRAN LOGICAL UNIT NUMBER (PUNCH) ',23('.'),I a/) CDM09810
WRITEdWR, 380 )XG CDM09820
380 FORMATdX,'OPERATING PARAMETERS:',/ CDM09830
• IX,1 X-MINIMUM OF AREA EMISSION INVENTORY MAP GRID1, CDM09840
• ' (XG) 1,8('.'),4X,1PE12.8,' USER UNITS') CDM09850
WRITEdWR, 390 )YG,RAT CDM09880
390 FORMATdX,1 Y-MINIMUM OF AREA EMISSION INVENTORY MAP GRID', CDM09870
• ' (YG) I,8C.'),4X,1PE12.6,1 USER UNITS',/ CEM09880
• IX,1 WIDTH OF A BASIC EMISSION GRID SQUARE (RAT) ', CDM09890
• ISC.'),4X,1PE12.8,' USER UNITS') CDM09900
WRITEdWR, 400)CY,TXX CDM09910
400 FORMATdX,' GRID CONVERSION FACTOR (CV) ',31('.'), CDM09920
• 4X.1PE12.8,' M/USER UNITS'/, CDM09930
• IX,' WIDTH OF A BASIC EMISSION GRID SQUARE (TXX) ', CCM09940
• ISC .' ),4X,1PE12.8, ' M') CEM09950
WRITEdWR, 410 )DINT CDM099SO
410 FORMATdX,1 NUMBER OF SUBSECTORS CONSIDERED FOR EACH SECT', CDM09970
• 'OR (DINT) ' ,4C.'),4X,1PE12.8,' DIMENS IONLESS') CDM09980
WRITEdWR, 420 )THETA,DELR CDM09990
420 FORMATdX,' ANGULAR WIDTH OF A SUBSECTOR (THETA) ',22('.'), CEM10000
• 4X.1PE12.S,' DEC',/ CDM10010
• IX,1 INITIAL RADIAL INCREMENT (DELR) ',27('.'), CDM10020
• 4X, 1PE12.8,' M'/) CDM10030
WRITEdWR, 430 )TOA CZM1Q04Q
430 FORMATdX,'MISCELLANEOUS METEOROLOGICAL DATA:',/ CDM100SO
• IX,' AMBIENT AIR TEMPERATURE (TOA) ',29('.'), CDM10080
• 4X.1PE12.8,' K') CDM10070
WRITEdWR, 440)d,HLd),I»l,S) CDM10080
4-40 FORMATdX,' MIXING HEIGHTS BY STABILITY CLASS (HL):',/ CDM10090
• ' STABILITY CLASS:',18,IX,33<'.'),4X,1PE12.8,' M',/O2W10100
• 3(1X,27X,I2,1X,33('.'),4X,1PE12.S,' M1,/)) CDM10110
WRITEdWR, 280)1 VER, IRUN.HEADNG CDM10120
WRITEdWR,430) CDM10130
4SO FORMATdX,'MISCELLANEOUS METEOROLOGICAL DATA (CONTINUED):',//, CDM10140
• IX,' CENTRAL WIND SPEED OP THE SIX WIND SPEED CLAS', CCM101SO
• 'SE3 (U):') CCM10160
WRITEdWR, 480) (1,0(1) ,1-1, B) CDM10170
480 FORMATdX, ' WIND SPEED CLASS: ', 12 , IX, 33 ('.'), CDM10180
• 4X.1PE1J.8,' M/SEC',/ CDM10190
• S(1X,27X, I2,1X,33C.'),4X,1P212.8,' M/SEC',/)) CCM10200
WRITEdWR, 470) (I,UE(I),T"l,8) CDM10210
470 FORMATdX,' EXPONENTIAL OF THE VERTICAL WIND PROFILE (UE):'/ CDM10220
• IX,' STABILITY CLASS: ' , I 2 , IX, 33C . '), CDM10230
• 4X.1PE12.8,' DIMENSIONLESS'/ CTM10240
• S(1X,2TO,I2,1X,33C.'),4X,1PE12.8,' DIMENSIONLESS'/)//) CCM10250
WRITEdWR, 480 )PNAME(1),PNAME( 2) ' CDM102SO
480 FORMATdX,'SOURCE DATA:',//, CCM10270
• IX,' POLLUTANTS TO BE MODELED ',34C.'),4X.A4,' <5c ',A4)COM10280
WRITEdWR, 490 )PNAMEd),GB(l),PNAME( 2 ) ,GB( 2) CDM10290
490 PORMATdX,1 DECAY HALF-LIFE FOR ',A4,' (GB(D) '^SC.'), CDM10300
• 4X.1PE12.8,' HR',/ CDM10310
• IX,' DECAY HALF-LIFE FOR ',A4,' (GB(2)) ',2S('.'), CDM10320
• 4X.1PE12.6,' HR') CDM10330
WRITEdWR. 500)YD, YN CDM10340
500 FORMATdX,' DAYTIME EMISSION WEIGHT FACTOR (YD) ',23C.'), CEM10350
• 4X.1PE12.8,' DIMENSIONLESS'/ CDM10360
• IX,1 NIGHTTIME EMISSION WEIGHT FACTOR (YN) '21('.'), CDM10370
• 4X.1PE12.8,' DIMENSIONLESS') CDM10380
WRITEdWR, 510) CDM10390
510 FORMATdX,' INITIAL SIGMA-Z FOR AREA SOURCES (SZA):') CDM10400
WRITEdWR, 520)d,SZA(I),Ial,8) CDM10410
520 PORMATdX,' STABILITY CLASS: ', 12, IX, 33 ('.'), CCM10420
• 4X.1PE12.8,' M',/ CDM10430
• S(1X,27X,I2,1X,33C . ' ) , 4X, 1PE12. S, ' M' ,/)) CDM10440
DO 530 I a 1,8 CDM104SO
IDUM » ICP(I) CDM10460
JDUM » ICAd) CDM10470
PCURVE(I) » CURVEdDUM) CDM10480
ACURVE(I) = CURVE(JDUM) CDM10490
530 CONTINUE CDM10SOO
119
-------
C
c
c
c
c
c
c
c
c
WRITE( IWR,540) ( I , PCURVEt I ) , ACCRVE( I ) , I = 1.6)
540 FORMAT (IX, 'DISPERSION CJRVE USED FOR ^ACH STABILTY CLASS',/,
• 4X, 'STABILITY POIOT AREA1./,
• 4X,' CLASS SOURCES SOURCES',/,
• 8(7X, I2,12X,A4fllX,A4,/))
DO S10 1=1,6
IP((N1838.EQ.1S) .ANT). ( ( 1/2 )«2.EQ. 1 ) ) GO TO 560
WRITE( IWR, 280 ) IYER, IHDN.HEADNG
WRITEd-WR, 550)
350 FORMAT ( IX. 33X. 'METEOROLOGICAL JOINT FREQUENCT FUNCTION',//)
560 WEITE(IWR,570)I
870 POHMAT(1X, 'STABILITY CLASS' ,12, 47X, 'WIND SPEED CLASS ',//
• IX, 4X, 'WIND DIRECTION SECTOR',
• 11X, ' 1 ' , 12X, ' 2 ' , 12X, ' 3 ' , 12X, ' 4 ' , 122, ' 5 ' , 122C, ' 9 ' , / )
DO S90 Kal,N183S
IF(N1638 .EQ. 36)
• WRITS(rWR,3aO)D38(2«K-l),D38(2"S),K,(?(I,J,K),J»l,6)
I?(N1638 .EQ. 18)
• WRITE(IWR,580)D16(2«K-1),D18(2-K),K, (F( I , J ,K) , J=l , 8 )
580 FORMAT(lX,rX, 2A4.9X, I2,9X,8(F3.S,5Z))
590 CONTINUE
WRITS ( IWR, 800 )UBAR( I )
800 FOBMAT(/,1X,55X, 'OOMPTJTED MEAN SPEED a '.F5.2,' M/SEC',2(/)
810 CONTINUE
READ RECORD TYPE 14
READ(I5D,210) FSOURC
CQN1 * FLOAT(N1836)/(2.0"3. 14159)
CON2 » CONl'PI
READ SOURCE INPUT DATA (I.E., RECORD TYPE IS)
820 READ< I3D,FSOURC)X,7,TX,S1,32,SH,D,YS,T,SA
X MAP COORDINATE OF SOURCE
7 MAP COORDINATE OF SOURCE
WIDTH OF AREA SOURCES
EMISSION RATE OP POLLUTANT 1 (G/SEC)
EMISSION RATE OF POLLUTANT 2 (G/SEC)
SOURCE HEIGHT (M)
STACK DIAMETER (M)
EXIT VELOCITY (M/S)
STACK GAS TEMPERATURE (DEC F, C, OR K)
PLUMB RISE OPTION
IF (NDEF .GT. 0) SA « 0.0
XS3 » X
YSS « Y
TEST END OF SOURCE DATA (BLANK CARD)
IF(31*S2.L2.0.) GO TO 790
EVALUATE PRINTER CONTROL OPTION
IF(NLIST.NE.O) GO TO 380
grnn SOURCE INPUT DATA
IF(IPG.LT.44) GO TO 680
SOURCE
c
c
c
820
C
C
c
c
c
c
c
c
c
c
REA
READUH
X;
Y:
TX:
31:
32:
3H:
0:
V3:
T:
3A:
WRITE( IWR, 280 ) IYER, IHUN.HEADNG
WRITEUWR, 630)
630 FORMAT (IX, 4 2X, 'AREA AND POINT SOURCE INVENTORY1,//
• IX, 34X, 'STACK STACK OPTIONAL',/,
• 1X.27X, 'WIDTH OF ---- EMISSION RATE ----
• 'STACK EXIT GAS PLUME RISE' )
WRITE ( IWR, 640 ) PNAME( 1 ) , PNAME( 2 )
840 FORMAT( IX, ' X MAP Y MAP GRID SQUARE' , SX.A4. 9X,A4,
• 'HEIGHT DIAM SPEED TEMP COEFFICIENT')
I « 1
IF (KELVIN .EQ. 0) I = 2
IF (KELVIN .GT. 0) I » 3
WRITEUWR, 650) TTITLE( I )
650 FORMAT( IX, 'COORDINATE COORDINATE (M) (G/SEC)',
• ' (G/SEC) (M) (M) (M/SEC) (DEG',A4,
CDM10510
CEM10520
CDM10530
CEM10540
CEM10550
CEM10560
CDM10S70
CDM10530
CDM10S30
CDM10600
CDM10610
CDMI0820
CDM10630
CDM10640
CDM10650
CDM10660
CDM10870
CDM10630
CDM10890
CDM10700
CCM10710
CEM10720
) CDM10730
CDM10740
CDM10750
CDM10760
OW10770
CDM10730
CDM10790
CCM10800
CDM10810
CDM10820
CDM10830
CDM10840
CDM108SO
CDM10860
CDM10870
CDMioaao
CDM10890
CDM10900
CDM10910
CDM10920
CDM10930
CDM10940
CDM109SO
OM10960
CDM10970
CEM10980
CDM10990
CEM11000
C0M11010
CDM11020
CDM11030
CDM11040
COM11050
CDM11060
CDM11070
CDM11080
CDM11090
CDM11100
CDM11110
CDM11120
CCM11130
OCM11140
1 .CDM1U50
CEM111SO
CEM11170
SX.CCM11130
CDM11190
CDM11200
CDM11210
CEM11220
CDM11230
CDM11240
CDM11250
120
-------
• ' (M-»t/3EC)',/)
880 IPGaIPG+1
WRITE(IWR,S70)X,Y,TX,31,32,SH,D,VS,T,SA
870 FORMAT(LX,1X,F7.2,SX,F7.2,7X,F6.0,SX,F8.2,5X,F8.2,4X,F6.2,
• 4X,F5.2,4X,F5.2,5X,F5.1,7X,FS.2)
C EFFECTIVE STACK HEIGHT MOST BE GE 1.
880 IP(SH.LT.l.) SH=1.
C
IP POINT SOURCE THEN GO TO 750
c
c
c
c
c
c
IP(TX.LE.O.) GO TO 750
SOURCE 13 AREA TYPE. MODIFY SOURCE COORDINATES, DIMENSIONS,
AND EMISSION RATE TO CONFORM TO CDM-2.0 REQUIREMENTS.
B«TX'0.3/CY
WaTX/TXX
C
C
c
B=31/3
D-S2/S
BECA0SE OP THE METHOD OF INTEGRATION, AREA SOURCES ARE
DIVIDED BY TWO AT THIS POINT FOR MORE EFFICIENT EXECUTION
OF SUBROUTINE AREA.
B=B"0-.5
D=D"O.S
X=(X-XG)/RAT+1.
Y»(Y-YG)/RAT»1.
IP(W.GT.l.) GO TO 690
N»Y
GO TO 700
890 S=W»O.S
L*(Y-S)+0.35
M=(K+W)-0.43
c
c
c
c
700 CONTINUE
c
c
c
IP SOURCE DIMENSIONS ARE OUTSIDE CCM-2.0 LIMITS THEN PRINT
FRTtfTH MESSAGE AND READ NEXT SOURCE
IP (M.GT.HASE.OR.N.GT.NASN) GO TO 710
IP (M.LE.O.OR.N.LE.O) GO TO 710
IF (L.GT.NASN.OR.K.GT.NASE) GO TO 710
IP (L.LE.O.OR.K.LE.O) GO TO 710
IF (M.LT.K) GO TO 710
IP (N.LT.L) GO TO 710
GO TO 730
PRINT ERROR MESSAGE FOR THIS AREA SOURCE
710 WRITE(IWR,720) X3S,YSS,TXXTE,TXXTN
720 FORMAT*'0',7X,'NOTE: AREA SOURCE WITH X COORD '.F10.2,
• ' AND Y COORD '.P10.2,1, VIOLATES',/,15X,
• 'AREA SOURCE ARRAY LIMITS. AREA SOURCES MUST LIE ENTIRELY ',
• 'WITHIN A ',P11.2,' BY ',Fll.2,/,1SX,
• 'METER SQUARE WITH SOUTHWEST CORNER AT THE U3ER-DEPINED ',
• 'ORIGIN (XG,YG). THIS'./.ISX,
• 'SOURCE WILL NOT BE INCLUDED IN THIS CALCULATION.1,/)
GO TO 320
STORE AREA SOURCE INFORMATION
730 DO 740 I»K,M
DO 740 J-L.N
c
c
c
Z(I,J,2)=D
740 Z(I,J,3)=SH
IF(M.GT.IXX) IXX=M
IP(N.GT.IYY) IYY»N
INCREMENT AREA SOURCE COUNTER
CDVU1280
CDM11270
CCM11280
CCM11290
CEM11300
CDM11310
CTM11320
CEM11330
CDM11340
CEM11350
COM11380
CDM11370
CT&Q1330
CDM11390
CDM11400
CDM11410
CEM11420
CCM11430
CCM11440
CDM11430
CEM11460
CDM11470
CTM114aO
CCM11490
CEM115QO
CDM11SIO
CEM11520
CDM11S30
CDM11540
03411550
OW11360
CEM11370
CTM11530
CDM11S90
cnvnisoo
CCM11810
CEM11820
CDM11830
CCM11840
CDM11830
CDM118SO
CDM11S70
GCM11830
CDM11890
CDM117QO
GDM11710
CEM11720
CDM11730
CLM11740
CDM11750
CDM11760
CCM11770
CDM11730
CEM11790
CEM11300
CEM11310
CDM1182D
CDM11830
CZM11340
CDM118SO
CDM11860
CEM11370
CDMiiaao
CDM11390
CDM11900
CDM11910
CDM11920
CDM11930
CDM11940
CEM119SO
CEW11960
CCM11970
CDM11980
CDM11990
CEM12000
121
-------
•>
c
c
c
c
c
c
730
C
C
c
755
780
C
C
c
c
c
c
790
C
c
c
c
c
c
aoo
310
C
C
rAS=IAS+l
GO BACK AND READ NEST SOURCE
GO TO 620
INCREMENT POINT SOURCE COUNTER
IPSaIPS+1
STORE POINT SOURCE INFORMATION
PX( IPS )»(X-XG) /RAT>0 . 5
PY( IPS )-(Y-YG) /RAT+0 . 5
PS(IP3,1)=S1»CON2
PS(IPS,2)=32-CON2
PS(IPS,3)=S1"CON1
PS(IPS,4)=S2*CON1
PH(IPS)=SH
PR(IPS)=SA
IP(KELVIN.GE.O) GO TO 755
Ta(T-32.0)"(5./9.)+273.16
GO TO 780
IF(KELVIN.GT.O) GO TO 760
T=T*273. 18
IF(D .LE. 0.) D » 0.01
VS1(IPS)»VS
TKIPS) = T
Dl(IPS) * D
FRN( IPS)aV3*V3*TQA/(9.a0818»D"(T-TOA) )
BFLUX(IPS) » (9.80818 «VS«D«D«(T- TOA))/(4. • T)
GO BACK AND READ NEST SOURCE
GO TO 820
PREPARE TO RETURN TO MAIN
)
IPO70
COMPUTE NE CORNER OF NE GRID SQUARE
TDA-0.5-TD
TDBalSX+O.SVTD
TDCMYY+0.3+TD
PRINT NUMBER OF POINT AND AREA SOURCES
WRITE( IWR, 800) IAS, IPS
FORMAT( 'O'.IIO,' AREA SOURCES. ',110,' POINT SOURCES .')
RETURN
END
CDM1 2010
CDM12020
CDM12030
CDM12Q40
CDM12050
CDM120SO
CDM12070
CDM12080
CDM12090
CDM12100
CDM12110
CDM12120
CDM12130
CDM12140
CDM121SO
CDM12160
CDM12170
CCM1213Q
CDM12190
CDM12200
CDM12210
CDM12220
CDM12230
CDM12240
CDM12250
CDM12260
CDM12270
CDM12280
CDM12290
CDM12300
CDM12310
CDM12320
03*112330
CDMI2340
CDM123SO
CDM12360
CZM12370
CDM12380
CDM12390
CDM12400
CDM12410
CDM12420
COM12430
CDM12440
CDM12450
CDM124SO
CDM12470
CDM12430
CDM12490
CDM12SOO
CDM12S10
CDM12S20
CDM12S30
CDM12SSO
SUBROUTINE DFAULT(N3O2,CA,C3,NP30 ,NPDH,NSTDW,NGRAD,KLOW, ICA,KHIGHCDM12560
1
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
• ICP,32U,GB,UE)
SUBROUTINE DFAULT (VERSION 85293), PART OF CDM-2.0.
PARAMETER LIST:
INPUT: NSO2 - POLLUTANT NUMBER FOR SO2
OUTPUT: CA - INTERCEPT OF CALIBRATION
CB • SLOPE OP CALIBRATION
NP50 - INITIAL DISPERSION OPTION
NPDH - BUOYANCY- INDUCED DISPERSION OPTION
NSTDW - STACK DOWIWASH OPTION
NGRAD -GRADUAL PLUME RISE OPTION
CDM12S70
CDM12S80
CDM12590
CDM12800
CDM12810
CDM12820
CDM12630
CDM12640
CDM1265Q
CDM12660
CDM12670
KLOW - DISPERSION PARAMETER SCHEME FOR AREA SOURCESCDM1 2 6 3 0
ICA - ARRAY OF SIX VALUES DEFINING DISPERSION
CURVES (AS DEFINED BY KLOW) TO BE USED
THE SIX STABILITY CATEGORIES SUMMARIZED
THE JOINT FREQUENCY FUNCTION
CDM12690
FOR CDM12700
IN CDM12710
CDM12720
KHIGH - DISPERSION PARAMETER SCHEME FOR POINT SOURCECDM1 2 7 3 0
ICP - ARRAY OF SIX VALUES DEFINING DISPERSION
CURVES (AS DEFINED BY KHIGH) TO BE USED
CDM12740
FORCDM12750
122
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
THE SIX STABILITY CATEGORIES SUMMARIZED IN
THE JOINT FREQUENCY FUNCTION
SZA - INITIAL SIGMA-Z FOR AREA SOURCES (METERS)
CDM12TSO
CEM12770
CDM12780
GB - DECAY HALF-LIFE (HRS) FOR THE TWO POLLUTANTSCEM1 2 7 9 0
UE - ARRAY OF SIX VALUES DEFINING WIND PROFILE
EXPONENTS TO BE ASSOCIATED WITH THE SIX
STABILITY CATEGORIES SUMMARIZED IN THE
JOINT FREQUENCY FUNCTION.
CALLING ROUTINE:
CLINT
DESCRIPTION:
THIS SUBROUTINE SETS PARAMETERS ACCORDING TO REGULATORY
GUIDANCE ESTABLISHED IN "GUIDELINE ON AIR QUALITY MODELS."
THIS MODULE WAS ADDED TO THE CODE AS A CONVENIENCE FOR THE
USER TO HELP AVOID INADVERTANT ERRORS IN SETTING THE
APPROPRIATE OPTIONS FOR REGULATORY USES.
DIMENS ION CA( 2 ) , CB( 2 ) , ICA( S ) , IO>( S ) , SZA( 8 ) ,GB( 2 } ,UE( 6 )
SET CALIBRATION CONSTANTS
DO 10 t - 1,2
CA(I) * 0.0
cam » i.o
10 CONTINUE
SET PROGRAM CONTROL PARAMETERS
NP30 » 0
NPDH • 1
NSTDW » 1
NGRAD * 0
SET DISPERSION SCHEME, DISPERSION CURVES, AND INITIAL 3IGMAS
SLOW • 2
KBIGH a 2
DO 50 I = 1,8
ICA(I) a I
ICP(I) = I
3ZAU) a 30.
20 CONTINUE
SET WIND PROFILE EXPONENTS
UE(1) » .IS
UB(2) » .IS
UE(3) • .20
UE(4) a .23
UE(S) a .23
OE(3) > .30
SET POLLUTANT HALF- LI HE
I? ((NS02 .EQ. 1) .OR. (NS02 .EQ. 2)) GO TO 30
GBU) a 999999.
GB(2) * 999999.
GO TO 999
30 CONTINUE
IF (NS02 .EQ. 2) GO TO 40
GB(1) • 4.0
GB(2) a 999999.
GO TO 999
40 CONTINUE
GB(1) a 999999.
GB(2) a 4.0
999 RETURN
END
SUBROUTINE CALQ
CDM12800
OM12810
CDM12820
CDMI2330
CCM12340
CDM12830
CDM123SO
CDMI2370
CDM12880
CDM12890
CEM12900
CDM12910
CDM12920
CCM12930
CDMI2940
CDM12950
CTM12960
CDM12970
CDM129aO
CDM12990
CDM13000
CDM13010
CDMI3020
CDM13030
CDM13040
COM130SO
OM13080
CCM13070
OM13080
CDM13090
CZM13100
CDM13110
CCM13120
CDM13130
CDM13140
CDM131SO
CDM131SO
CDM13170
CDMI3iaO
CDM13190
CDM13200
CDM13210
CDM13220
CDM13230
CCM13240
CDM13250
CTM13280
CDM1327Q
CDM13280
CDM13290
CDM13300
CDM13310
COM13320
CDM13330
CDM13340
CDM13330
CDM13380
CDM13370
CDM13330
CDM13390
CDM13400
CDM13410
CDM13420
CDM13430
CDM13440
CDM13430
CDM13460
CDM13470
'CDM1 3430
CDM13490
CDM13SOO
123
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINE CALQ (VERSION 8S293), PART OF CDM-2.0. CDM13S10
PARAMETER (NPTS=200 ,.HQLIM*100 ,NASE=50 ,NASN=50 ) CEM13520
DIMENSION C(3) CDM13530
COMMON /Cl/ K, MX, MN, 5(8,8,36) ,UBAR(6) ,U(S) ,RI,RJ, INCU) ,DELR CEM13540
COMMON /C2/ UE(6),YD,YN,TMN,DINT,YCON,TA(4),IPG,XG,YG, IRD CDM13350
COMMON /C3/ IKON, CA(2), CB(2), TK(38), AHDS(2) ,PROS(2) , TANG CEM135SO
COMMON /C4/ DECAY(2),ICA(8),ICP(S),HL(S),HX(6),GB(2),NQ,IVER1IWR CDM13570
COMMON /CS/ Q(NQLIM,4),GA(2),IAD(4,5),IAS,TDA,TDB,TDC,IPU
CDMVDN /C8/ ICHX
COMMON /QCQM/ N.DR, IX,IY, 17(38,21 ),Krc,izs,iYY, RAD, TD,
• Z(NASE,NASN,3)
COMMON /3ET/ N1638 ,DELTA,TTAN,NP30 ,NPDH,NSTDW,NGRAD,KLOW,KHIGH,
• PPAR(2,8),APAR(2,8),WHA(S),FAC,RCEPTZ,KELVIN,NDEF
CALCULATE SECTOR AREA SOURCE VECTOR Q(NQ,I)
N
I
INDEX OF RADIAL ARC
li. P 1 EMISSION RATE
2: P 2 EMISSION RATE
3: AREA STACK HEIGHT
INITIALIZE ARC COUNTER
NQ=0
20
CH.113 530
CDM13590
CDM13800
CDM13810
COM13820
CDMI3S30
CDM13840
CDM13850
CXMU860
CDM13870
CDM13880
CDM13690
CDM13700
CDM13710
CDM13720
CDM13730
CDM13740
CDM13750
CDM13760
CDM13770
CCM13780
COMI3790
CEM13800
CTM13810
CDM13820
THE NUMBER OF ARCS EXCEEDS THE LIMIT SET BY CDM-2.0 PRINT ERRCTM13830
MESSAGE AND RETURN TO MAIN CEM13340
cam. 33 so
NQ * HQLIM - 1 CEM13860
IF(ICHK.EQ.l) GO TO 330 CDM13370
ICHK » 1 CDM13830
Q(NQ+1,4) * (N-1)«DELR CDM13890
miS » Q(NQ+1,4J/1000.0 CDM13900
PRINT WARNING MESSAGE OML3910
WRITE(IWR,20) NQLIM.XDIS COM13920
FORMAT!'0',9X,'WARNINGi MORE THAN1,14,'ARCS ARE REQUIRED FOR ', CDM13930
• 'CALCULATION OF AREA CONTRIBUTION.',/,203C,'AREA SOURCES BEYOND'CDM13940
INCREMENT ARC COUNTER
10 NQ=NQ+1
•
I? TEE NUMBER OF ARCS EVALUATED IS LESS THAN THE LIMIT SET
37 CZM-2.0 (NQLIM) GO TO 30
IP(NQ.LT.NQLIM) GO TO 30
• IX.FS.l.'KM ARE NOT INCLUDED IN THIS CALCULATION.'
GO TO 340
THE NUMBER OF ARCS IS WITHIN THE LIMITS SET BY CDM-2.0,
30
40
DO 40 I«l,3
q1)
DO 290 LLa
T=TT(K,LL)
Tl3RI+R"COS(T)
TJ=RJ*R«SIN(T)
IF RADIAL ARC OUTSIDE OUTSIDE AREA EMISSION GRID GO TO 290
DETERMINE WHICH AREA SOURCE THE POINT FALLS ON. IP ON THE
LINE TWO ARE AVERAGED. IP ON AN INTERSECTION, FOUR ARE
AVERAGED.
IF(TI.LT.TDA.OR.Tl.GT.TDB) GO TO 290
IF(TJ.LT.TDA.OR.TJ.GT.TDC) GO TO 290
CDM139SO
CDM13960
CDM13970
CEM13980
COM13990
CDMI4000
CDM14010
CDM14020
CDM14030
CDM14040
CDM140SO
CDM14060
CDM14070
CDM14080
CDM14090
CEM14100
CDM14110
CDM14120
CDM14130
CDM14140
CDM14150
CDM14160
CDM14170
CDM14180
CDM14190
CTM14200
CDM14210
CDM14220
CDM14230
CDM14240
CDMI42SO
124
-------
c
c
c
DETERMINE WHICH AREA SOORCZ THE POINT FALLS ON
17(1. LT.l) 1=1
IP(J.LT.l) J=l
D=TI-I
IP(ABS(D-0.5).LE.TD) GO TO SO
I?(D-O.S)90,30,130
50 D»TJ-J
IP(ABS(D-O.S).LE.TD) 00 TO 90
IP(D-O.S)70,60,80
SO IA-1
JA-5
00 TO 170
70 IA»2
JA=3
GO TO 170
80 IA=2
JA-4
GO TO 170
90 D-TJ-J
IP(ABS(D-0.5).LE.TD) GO TO 100
IP(D-0. 3)110,100, 120
100 IA-3
JA=2
GO TO 170
110 IA=»3
GO TO 170
120 IA=«3
JA=4
GO TO 170
130 D«TJ-J
I?(ABS(D-0.3).L2.TD) GO TO 140
IP(D-0. 5)130,140, 180
140 IA=4
JA=2
GO TO 170
130 IA=-4
JA-3
GO TO 170
180 IA«4
JA'4
170 GtaO.
IP(I.EQ.IXX) IA=3
DO 130 LZ>1,3
130 C(LD)=»0.
DO 200 IK=1,4
DO 190 L'1,2
190 C(L)*C(L)+Z(IV,JV,L)
IP(Z(IV,JV,3).L£.0.1) GO TO 200
C(3)=C(3)*2(IV,JV,3)
200 CONTINDE
C(2)»C(2)/4.
IP(C2*.GT.0.5) GO TO 210
GO TO 220
210 C(3)=C(3)/CN
220 IP(R.GT.O.) 00 TO 240
DO 230 LA=>1,3
230 Q(NQ,LA)=C(LA)
GO TO 320
240 IP(LL.NE.l.AND.LL.NE.in>C) GO TO 280
C TRAPEZOIDAL INTEGRATION APPLIED
DO 230 LB=1,2
250 C(LB)=C(LB)aO.S
260 DO 270 LC=1,2
270 Q(SQ,LC)=<3(NQ,LC)*C(LC)
CDM142SO
CDM14270
CDM14230
CDMI4290
CEM14300
CDM14310
CDM14320
CLM14330
CDM14340
CDM14330
CZM1436Q
CEM14370
CDM14380
COM14390
CZM14400
CXM14410
CEM14420
CTM14430
CDM14440
CDMI44SO
CDMI4460
CDM14470
CDM14480
CEMI4490
CUVa45QO
CEM14S10
CDM14S20
aaa.4530
CDM14540
CCM14330
CCM14560
GEM14S70
CDM14530
CDM14S90
CDM14600
CTM14810
CDM14820
CDM14630
CTM14640
CCM14850
CDMI4880
CDM14870
CDM14880
CEM14690
CZM14700
CDM14710
CEM14720
CDM14730
OM14740
CQM14730
CDM14780
CBM14770
CDM14730
CEM14790
CDM14800
CDM14810
CDM14820
CDM14330
CDM14840
CDM14850
CDM14860
COM14870
CDM14380
CDM14890
CDM14900
CZM14910
CCM14920
CDM14930
CDM14940
CDM149SO
CDM14960
CDM14970
CDM14980
CDM14990
CDM1SOOO
125
-------
c
c
c
IF(C(1)+C(2).LE.O.) GO TO 290
Q(NQ,3)=Q(NQ,3)+C(3)
280 HN=HN+1.
290 CONTINUE
COMPUTE AVERAGE EMISSION RATE OVER THE ARC
DO 300 LD»1,2
300 Q(NQ,LD)=q(NQ,LD)/DINT
IF(HN.GT.O.S) GO TO 310
GO TO 320
310 Q(NQ,3)*Q(NQ.,3)/HN
320
c
c
c
c
C
C»
C
C
c
c
c
c
I? NEST ARC IS WITHIN AREA GRID, GO TO 10 AND INCREMENT ARC
COUNTER
IF(N.LE.MXn) GO TO 10
330 Q(NQ+1,4)3(N-1)«DELR
340 RETURN
END
••«*••*•••««••••••••*••«•••«•••«*•**••••••*••*«••*«*•*••*•**•••***•«•
c
c
c
c
c
c
c
c
c
c
c
SUBROUTINE AREA
SUBROUTINE AREA
(VERSION 85293), PART OP CDM-2.0.
TH13 SUBROUTINE CALCULATES THE SECTOR CONCENTRATION FROM THE
AREA SOURCE VECTOR (Q) .
PARAMETER (NPTS»200 ,NQHM=»100 ,NASE=»50 ,NASN=50 )
DIMENSION C(2)
COMVCN /Cl/ K,MX,MN,F(8,8,38),UBAR(8),U(8),ai,RJ,INC(4),DELR
COMMON /C2/ UE(S),YD,YJ»,TMN, DINT, TOON, TA( 4 ) , IPG,XG, YG, IRD
COMVCN /C3/ IRUN,CA(2),C8(2),TK(36)tAR03(2),PROS(2),TANG
COMMON /C4/ DECAy(2),ICA(6),ICP(S),HL(8)IHX(6),GB(2),NQ,IVER, IWR
COMMON /C3/ q(NQLIM,4),GA{2),IAD(4,5),IAS,TDA,TDB,TDC,IPU
COMMON /ACOM/ PI ,S2A( 8 ) ,ABAR( 2 ) ,AROSE( 38 , 2 ) ,XS( 8 )
COMMON /SET/ N1838 , DELTA, TTAN.NP SO ,NPDH,NSTDW,NGRAD,KLCW,KHIGH,
• PPAR(2,S),APAR(2,8),WHA(8),FAC,RCEPTZ,K£LYIN,NGR£G
LOOP OVER STABILITY CLASS
DO 170 13=1,8
IS: CONTROLS STABILITY CLASS
IFUS.EQ.S) Y=YN
lOICA(IS)
LOOP OVER WIND SPEED CLASS
DO 170 IU>1,8
IU: CONTOLS WIND SPEED CLASS
I? FREQUENCY IS ZERO, SKIP
IP(P(IS,IU,K).LE.O.) GO TO 170
INITIALIZATION
C(2)»0.
IR'l
10
20
DVLR^DVLRI
DVLRI=Q(IR+1,4)-R
QQQ * 0.1«Q(IR, 3)-FAC
IF(QQQ.LT.O.l) QQQ = 0.1
PQQQ =» UE(IS)
WZ a QQQ--PQQQ
WS=0(IU)-WZ
DO 20 JA=1,2
DF=WS-GA(JA)
DECAY(JA)=EXP(R/DF)
RXS=R*XS(13)
CEM15010
CDM15020
CIM15030
CDM15040
CDM1SOSO
CDM1S060
CDM15070
CDM1S080
CDM1S090
CDM1S100
CEM15110
CDM1S120
CDM13130
CDM15140
CDM1S150
CEM151SO
CDM15170
CDM1S130
CDVQS190
CDM1S200
CDM1S210
CDM13220
CDM1S230
'CDM15240
CDM132SO
CCM15260
CEM15270
CDM1S230
CDM15290
CDM1330Q
CDM13310
CDM13320
CDM13330
CDM1S340
CDM1S3SO
CDM15360
CDM1S370
CDM13380
CDM13390
CCM15400
CDM13410
CDM1S420
CEM15430
CDM1S440
CDM134SO
CCM15480
CDM1S470
CDM15480
CDM1S490
CDM15500
CDM1S510
CDM13S20
CDM1SS30
CDM15540
CEM15550
CCM15560
CDM1S570
CDM15530
CDM1SS90
CCM1S600
CDM1SS10
CDM13620
CDM1S630
CDM13840
CDM15S50
CDM1S660
CDM15670
CDM1SS80
CDM1S690
CDM15700
CDM15710
CDM15720
CDM15730
CDM15740
CDM15750
126
-------
c
c
c
c
c
c
c
c
c
C
C
c
30
40
CDM15780
CCM15770
CDM15780
CEM15790
CDM15800
C3M15310
CDM1S820
CCM15830
CDM1S340
CDM1S3SO
CCM1S380
CEM1S370
CDM15880
COM1S890
CDMIS900
CDM1S910
CDM1S920
CEM15930
CEM1S940
CDM13950
CDM1S960
CDMIS970
LID HAS BEEN REACHED; COMPUTE CONCENTRATION USING A BOX MODELC0M15980
CEM15.990
IR CEM1SOOO
IRI;4) CCM16010
DVLR=DVLRI COM1S020
CALL SIGMAZtKLOW.NPDH.IC.RXS.O.O.SZ)
IFOZ.LE.O.) 00 TO 140
IF THE VERTICAL DISPERSION PARAMETER IS GREATER THAN OR
EQUAL TO 0.3 X MIXING HEIGHT COMPUTE CONCENTRATION USING
A BOX MODEL
IF(SZ.GE.HXCIS)) GO TO 30
LID HAS NOT BEEN HP-Aram; COMPUTE CONCENTRATION BY GAUSSIAN
FORMULA.
SIS! » Q(IR,3)«WHA(IU) * RCEPTZ
STK2 » Q(IR,3)«NHA(IU) - RCEPTZ
SB1 » -O.S»STS1"STK1/(SZ«SZ)
SB2 • -O.S»ST£2«STK2/(SZ«SZ)
SWW » 0.5« IRI + 1
C LOOPS TO RHO(MAX)
IF(IRI.LZ.NQ) GO TO 40
GO TO ISO
100 IPUR.EQ.l.OH. rR.EQ.NQ) GO TO 120
C
C LID HAS NOT BEEN REACHED
C TRAPEZOIDAL INTEGRATION APPLIED
C
DO 110 JI*1,2
110 GUI )=C( JI ) + (Q( IR.JI )-S"(DVLR+OVLRI ) ) /DECAY ( JI )
GO TO 140
C TRAPEZOIDAL INTEGRATION APPLIED
120 DO 130 JK=l,2
130 C(JK)«C(JK)+(Q(IR,JK)-S«DVLR)/DECAY(JK)
140 IR=»IR+1
C LOOPS TO RHO(MAX)
IF(IR.LE.NQ) GO TO 10
C
C STORE CONCENTRATION ACCORDING TO WIND DIRECTION SECTOR
C
ISO X»Y*YCON"P(IS,IU,K)
DO 160 JL*1,2
ABOSE ( K, JL ) =ABOSE ( K , JL ) *C( JL ) «X
APAR(JL.IS) = APAR(JL.IS) * C(JL)»X
180 ABAR(JL)>ABAR(JL)H:UL)*X
170 CONTINUE
RETURN
END
C
cnvasoao
COM16040
cnvasoso
CDM18060
OM18070
OWIS080
CDM1S090
CDM16100
CCM18UO
CDM16120
CEM18130
CDMI6140
CEM16130
CCM161SO
CDM18170
CDM16180
CDM1S190
CEM16200
CDM18210
CDM16220
COM18230
CDM1 32 40
CDM162SO
CDM1S280
CDM18270
CDM1S230
CDM18290
CDM18300
CDM18310
CDM16320
GDM16330
CDM16340
CDM183SO
CDM16380
CDM1S370
CDM16380
CDM18390
CDM18400
CDM18410
CCM16420
CDM16430
CDM16440
COM16430
CDM1S460
CDM16470
CDM16480
CDM1S490
127
-------
c
c
c
c
c
SUBROUTINE POINT
SUBROUTINE POINT
(VERSION 85293), PART OF CDM-2.0.
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
THIS SUBROUTINE CALCULATES THE SECTOR CONCENTRATION FROM
POINT SOURCES.
PARAMETER (NPTS=»200,NQLIM=100,NASE=SO,NASN=50)
DIMENSION 3(2)
COMMON /Cl/ K,MX,MN,?(8,8,38),UBAR(8),U(8),RI,RJfINC(4),DELa
COMMON /C2/ UE(8),YD,YN,TMN,DINT,YCON,TA(4),IPG,XG,YG,IRD
COMMON /C3/ lRCN,CA(2),CB(2)fTX(38),AROS(2),PROS(2),TANG
COMMON /C4/ DECAY(2),ICA(S),ICP(8),HL(S),HX(8),GB(2),NQ,IVER,IWR
COMMON /C3/ Q0.1)-*UE(IS)
I?(SZI.L2.0.) GO TO 40
CALL VIRTX(!OIIGH,NPCH,IC,0.0,S2I,XS)
GO TO SO
40 X3=-0.
30 DIST=XP+X3
BEGIN LOOP OVER WIND SPEED CLASS
DO 180 IU*1,6
IU: CONTOLS WIND SPEED CLASS
IP FREQUENCY IS ZERO, SKIP
IF(F(I3,IU,K).LE.O.) GO TO 180
DO 80 JA=-l,2
DP=WS-GA(JA)
80 DECAY(JA)=EXP(XP/DP)
IP PR(IP) IS LESS THAN OR EQUAL TO ZERO COMPUTE PLUME RISE
ACCORDING TO BRIGGS.
IP(PR(IP).LE.O.) GO TO 70
HOLLANDS EQN.
CDM15510
CDM18520
CDM18530
CDM1S540
CDM1S550
CDMIS5SO
CDM1S570
CDM1S530
CDMIS590
CDMIS600
CDM18610
CDM18620
CDMISS30
CDM18640
CDM1S650
CDM186SO
CDMISS70
CDM15S30
CEM1S690
CDM1S700
CDM18710
CDM1S720
CDM1S730
CDMIS740
CDM18750
CDM1S7SO
CDM1S770
CDM1S730
CDM18790
CDM18800
CDMlSaiO
cransaso
CCM1S830
CDM1S840
COM1S330
CDM18360
CDM1S370
OW1S330
CDM18390
CDM1S900
CDM1S910
CDM1S920
CDMIS930
CDM18940
CDM1S950
CTMI6960
CDM1S970
CDM1S980
CDM1S990
CDM17000
CDM17010
CDM17020
CDM17030
CDM17040
CDM170SO
CDM17060
OJM17070
CDM17080
CDM17090
CCM17100
CDM17110
CDM17120
CDM17130
CDM17140
CDM17150
CDM17160
CDM17170
CDM17180
CDM17190
CDM17200
CDM17210
CDM17220
CDM17230
CDM17240
CDM172SO
128
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
DH=PR(IP)/WS
CALCULATE PLUME RISE
IK = 1C
IF(IK.GT.4) IK a IK - 1
DH=DH-( 1.4-0.1 -IK)
HP a PH(IP)
DHM » DH
CALCULATE STACK DOWNWASH EFFECTS
CALL STDW(NSTDW,YS1(IP),D1(IP),FRN(IP),WS,HP,DHM)
UHIIH a HP * riHM
GO TO 120
CALCULATE BRIGGS PLUME RISE (1969, 1971, AND 197S)
70 KST » 1C
CALCULATE PLUME RISE AND DISTANCE TO FINAL RISE.
CALL PLRISE(VS1( IP) ,T1( IP) ,D1( IP) ,BFLUX( IP) ,TOA,WS .KST.DISTF ,DH)
HP a PH(IP)
nHM m DH
CALCULATE STACK DOWNWASH EFFECTS
CALL STDW(NSTDW,VS1(IP),D1(IP),FRN(IP),WS,HP,DHM)
PH11H a HP + DHM
CONSIDER GRADUAL PLUME RISE IF RECEPTOR DOWNWIND DISTANCE IS
LESS THAN THE DISTANCE TO FINAL RISE
IF (DIST .GE. DISTF) GO TO 120
CONSIDER GRADUAL PLOME RISE IF THE GRADUAL PLUME RISE OPTION
CDM17260
CDM17270
CDM17280
CDM17290
CDM17300
CDM1 7310
CDM17320
CDM17330
CDM17340
CDM17350
CDM17380
CDM17370
CDM17330
CDM17390
CDM17400
CDM17410
CDM17420
CDM17430
CDM17440
CDM17450
CDM17460
CDM17470
CEM17480
CDM17490
CDM17500
CDM17S10
CDM17320
CDM17S30
IS TURNED ON AND/OR THE BUOYANCY- INDUCED DISPERSION OPTION ISCDM17S40
TURNED ON
I? ((NGRAD .LZ. 0) .AND. (NPDH .LZ. 0)) GO TO 120
CALCULATE GRADUAL PLUME RISE
GDELH a (ISO. • BFLUX( IP) "0. 333333 • DI3T*"0. 666687 )/WS
IF (GDELH .LT. DHM) DHM a GDELH
MODIFY THE FINAL EFFECTIVE HEIGHT ONLY IF THE GRADUAL PLUME
RISE OPTION IS TURNED ON
IF (NGRAD .GT. 0) PHDH a HP * DHM
120 CONTINUE
<-ra-g TO SEE IF PLUME IS ABOVE UNSTABLE OR NEUTRAL MIXING DEPTH
I7(IC.LE.5) THEN
IF(PHDH.GT.HL(IS) ) GO TO ISO
END IF
CALL 3IGMAZ(KHIGH,NPDH,IC,DIST,DHM,SZ)
HHH1=»PHDH+RCEPTZ
HH21 a HHHl'HHHl
HHH 2 a PHDH - RCEPTZ
HH22 a HHH2-HHH2
PHDHapHDH'PHDH
FOR UNSTABLE AND NEUTRAL CONDITIONS (A - D2 ) SEE
IF THE VERTICAL DISPERSION PARAMETER IS GREATER THAN OR
EQUAL TO 0.8 X MIXING HEIGHT, COMPUTE CONCENTRATION BY A
BOX MODEL
IPUC.LE.3) THEN
IP(SZ.GE.HXUS)) GO TO 130
END IF
LID HAS NOT BEEN REACHED; COMPUTE CONCENTRATION BY GAUSSIAN
FORMULA.
B=-0 . 5«( PHDH/ ( SZ-SZ) )
IF(ABS(B) .GT.SO. ) GO TO ISO
WWaWS*XP"SZ
S( 1 )aPS( IP, 1 )/WW
3(2)aPS(IP,2)/WW
Bl a -O.S»HH21/(SZ'SZ)
82 a -0.5«HH22/(SZ«SZ)
CDM175SO
CDM1756Q
CDM17370
CTM17S80
CDM17390
CDM17600
CDM1751Q
CDM17820
CDM17S3Q
CDM1764Q
CDM17S50
CDM17880
CDM17670
CDM17830
CDM17690
CDM17700
CDM17710
CDM17720
CDM17730
CDM17740
CDM17750
CDM17780
0*117770
CDM17780
CDM17790
CDM17300
CDM17810
CDM17320
CDM17830
CDM17340
CDM173SO
CDM17360
CDM17870
CDM17380
CDM17890
CDM17900
CDM17910
CDM17920
CDM17930
CDM17940
CDM179SO
CDM17960
CDM17970
CDM17980
CDM17990
CDM18000
129
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
C'
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
WW a 0.5«(EXP(B1) * EXP(B2))
3(1) BS ( 1 ) *VIW
S(2)aS(2)»WW
GO TO 140
LID HAS BEEN REACHED, COMPUTE CONCENTRATION BY A BOX MODEL.
130 WW=WS"XP-HL(I3)
S(1) = PS(IP,3)/W
S(2)=PS(IP,4)/W
STORE CONCENTRATION ACCORDING TO WIND DIRECTION SECTOR
140 BsY»YCON«F(I3,IU,K)
DO 130 JB=1,2
X=SUB)«B/DECAY(JB)
PROSE ( K , JB ) apBOSE ( K , JB ) +X
PPARUB.IS) = PPARUB.IS) + X
150 PBARUB)=PBARUB)+X
180 CONTINUE
170 CONTINUE
INCREMENT POINT SOURCE COUNTER
t
130 IP^IP*!
LOOP UNTIL ALL POINT SOURCES EVALUATED
IF(IP.LE.IP3) GO TO 10
RETURN
END
SUBROUTINE PLRISE(VS ,TS ,D,F,T, U, KST, DISTF , DELH)
SUBROUTINE PLRISE (VERSION 35293), PART OF CDM-2.0.
PARAMETER LIST:
INPUT: VS - STAGS GAS VELOCITY (M/SEC)
TS - STAGS GAS TEMPERATURE (KELVIN)
D - STAGS INSIDE DIAMETER (METERS)
P - BUOYANCY FLUX (M"»4/SEC«3 )
T - AMBIENT AIR TEMPERATURE (KELVIN)
U - WIND SPEED AT STAGS HEIGHT (M/SEC)
KST - STABILITY CLASS
OUTPUT: DISTF - DISTANCE TO FINAL RISE (METERS)
DELH - PLUME RISE (METERS)
CALLING ROUTINE:
POINT
DESCRIPTION:
THIS SUBROUTINE CALCULATES PLUME RISE ACCORDING TO METHODS
BRIGGS (1969, 1971, AND 1975)
G a 9.80616
CALCULATE UNSTABLE-NEUTRAL MOMENTUM RISE REGARDLESS OF
STABILITY
DELHM a J.O • VS • D/U
IF (KST .GT. 5) GO TO 100
PLUME RISE FOR UNSTABLE-NEUTRAL CONDITIONS
IF (TS .LT. T) GO TO 200
IF (F .GE. 55.) GO TO 50
COMBINATION OF BRIGGS' (1971) EQS. 647 , PAGE 1031, FOR F °
DELH a (21.425 • P"-0.75)/U
IF (DELHM .GT. DELH) GO TO 200
DISTF * 49. • F"0.62S
GO TO 999
COMBIMATION OF BRIGGS1 (1971) EQS. 847, PAGE 1031, FOR F *-
50 DELH = (38.71 « F--0.8J/U
IF (DELHM .GT. DELH) GO TO 200
CDM13010
CDM18020
CDMI3030
CDM13040
CDM18050
CDM13080
CDM18070
CDM18080
CDM13090
CDM1S100
CDM13110
CDM13120
CDVQ.3130
CDM18140
CDM131SO
CDM131SO
CCM18170
CDM18130
CDM13190
CDM13200
CDM13210
CDM13220
CDM13230
CDM18240
CDM132SO
CDM18280
CDM13270
CEM18230
CDM13290
CDM13300
CDM13310
CDM13320
CDM18340
CDM13330
CDM13360
CDMJ.3370
CDM13380
CDM18390
CDM134QO
CCM13410
CDM13420
CDM18430
CDM13440
CDM134SO
CDM13460
CDM18470
CDM18480
CDM18490
CDM18SOO
CDM13S10
CDM13520
BYCDM18530
CDM18540
CDM13S50
CDM13S60
CDM13S70
CDM13530
CDM13S90
CDM13600
CDM18610
CDM13620
CDM18630
CDM18640
CDM13650
CDM13660
CDM18670
55CDM13630
CDM13690
CCM13700
CDM18710
CDM18720
5CDM13730
COM18740
CDM18750
130
-------
c
c
c
c
c
DIST? = 119. • F"0.4
GO TO 999
PLDME RISE FOR STABLE CONDITIONS
100 DTHDZ = 0.02
IF (KST .CT. 6) DTHDZ = 0.035
S = G • DTHDZ/T
CALCULATE STABLE MOMENTUM RISE (BRIGGS1 (1969) EQ. 4.28,
PAGE 59)
CDM18760
CDM18770
CDM18780
CDM13790
CDM13800
CDM13810
CDM13820
CDM18830
CDM13840
CDM18850
DHA = 1.5 • (VS-YS • D«D • T/(4. • TS • 0) ) "0 . 333333/S*"0 . 166667CDM13860
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c-
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IF (DHA .LT. DELBM) DELHM a DHA
IF (TS .LT. T) GO TO 200
CALCULATE STABLE BUOYANCY RISE (WITH WIND)
DELH a 2.S • (F/(U • S) ) "0 . 333333
CALCULATE STABLE BUOYANCY RISE (CALM)
DELHC a 4.0 • F"0.25 / S»«0.375
IF (DELHC .LT. DELH) DELH = DELHC
IF (DELHM .CT. DELH) GO TO 200
DISTF a 2.0715 • U/SQRT(S)
GO TO 999
CASE WHERE MOMENTUM RISE DOMINATES OR IS GREATER THAN
BUOYANCY RISE
200 DELH « DELHM
DISTF a 0.0
999 RETURN
END
SUBROUTINE STDW(NSTDW,VS,D,FR,U,H.DELH)
SUBROUTINE STDW (VERSION 85293), PART OF CDM-2.0.
PARAMETER LIST:
INPUT: NSTDW - STACK DOWNWASH OPTION
VS - STACK GAS EXIT VELOCITY (M/SEC)
0 - STACK INSIDE DIAMETER (METERS)
FR - FROUDE NUMBER
U - WIND SPEED AT STACK HEIGHT (M/SEC)
I/O: H - MODIFIED PHYSICAL STACK HEIGHT (METERS)
DELH - MODIFIED PLUME RISE (METERS)
CALLING ROUTINE:
POINT
DESCRIPTION:
THIS SUBROUTINE CALCULATES STACK DOWNWASH EFFECTS.
IF NSTDW < 0, THEN STACK DOWNWASH CALCULATED ACCORD tNG
BJORKLUND AND BOWERS (1982).
IF NSTDW = 0, THEN STACK DOWNWASH NOT CONSIDERED.
IF NSTDW > 0, THEN STACK DOWNWASH CALCULATED ACCORD tNG
BRIGGS (1973).
IF (NSTDW) 100,999,200
CALCULATE STACK DOWNWASH ACCORDING TO BJORKLUND AND
BOWERS (1982)
100 IF (FR .LT. J.O) GO TO 110
F = (3.'VS - 3.'U)/VS
IF (F .GT. 1.0) F a 1.0
IF (F .LT. 0.0) F a 0.0
GO TO 120
110 CONTINUE
F = 1.0
120 CONTINUE
DELH = F • DELH
GO TO 999
CALCULATE STACK DOWNWASH ACCORDING TO BRIGGS (1973)
200 IF (VS/U .GE. 1.5) GO TO 210
CDM13870
CDM13880
CDM13890
CDM18900
CDM13910
CDM18920
QDM18930
CDM13940
CDM18950
CDM13960
CDM18970
CDM18980
CDM18990
CDM19000
CDM19010
CDM19Q20
CDM19030
CDM19Q40
CDM19050
CDM19060
CDM19080
CCM19090
CDM19100
CDM19110
CCM19120
CDM19130
CCM19140
CDM19150
CDM191SO
CDM19170
CDM19180
CDM19190
CDM19200
CDM19210
CDM19220
CDM19230
CDM19240
CDM192SO
TO CDM19260
CDM19270
CDM19280
TO CDM19290
CDM19300
CDM19310
CDM19320
CDM19330
CDM19340
CDM19350
CDM193SO
CDM19370
CDM19380
CDM19390
CDM19400
CDM19410
CDM19420
CDM19430
CDM19440
CDM19450
CDM19460
CDM19470
CDM19480
CDM19490
CDM19500
131
-------
c
c
C«
*
c
c
c
c
c
c
c
c
c*
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
210
999
10
20
30
40
SO
80
70
80
444
HaH*2«D« (VS/U - 1.5)
IF (H .LT. 0.0) H = 0.0
CONTINUE
RETURN
END
SUBROUTINE V1RTX(KTYPE,KEY,KST,DH,GSZ,EX)
SUBROUTINE VIRTX (VERSION 85293), PART OF CDM-2.0.
THIS SUBROUTINE COMPUTES THE VIRTUAL DISTANCE,
IN METERS, USING SUBROUTINE SIGMAZ.
THE ROUTINE IS BASICALLY A NEWTON RELAXATION SCHEME
XMAX a 100.0*1000.0
IF(KTY?S.NE.4) GO TO 10
IF(KST.LE.4) GO TO 10
IF(GSZ.LT.SO.O) GO TO 10
GO TO 70
CONTINUE
X a l.Q
CALL SIGMAZ(XTYPE,KEY,KST,X,DH,SZ)
IF(SZ.GT.GSZ) GO TO 30
I?(X.GT.XMAX) GO TO 30
X a 2.0"X
GO TO 20
IF(X.LE.l.O) GO TO 70
IP(X.GE.XMAX.AND.SZ.LT.GSZ) GO TO 80
X * 0.3-X
STEP a 0.23'X
CALL 3IGMAZ(XT??S,KZY,SST,X,DH,SZ)
IF(SZ.GT.GSZ) GO TO 50
X a X * STEP
GO TO 40
IP( STEP. LT. 0.40) GO TO 70
X a X - STEP
STEP a 0.23'STEP
GO TO 40
EX a XMAX.
GO TO 30
EX a X
RETURN
END
SUBROUTINE SIGMAZ(KTYPE,iOiY, INKST.X.DH.SZ)
SUBROUTINE SIGMAZ (VERSION 85293), PART OP CDM-2.0.
IN THIS SUBROUTINE WE COMPUTE THE VERTICAL DISPERSION USING
TWO BASIC FORMS. THE BASIC FORMS USED TO COMPUTE 3Z ARE AS
FOLLOWS:
FORM ONE. (BRIGGS, RURAL AND URBAN)
SZ a A«X/(1+B-X)— C
FORM TWO. (BNL, KLUG, ST. LOUIS, PGCDM, AND PGSIG)
SZ « A«X«B
THE 7 VERTICAL DISPERSION SCHEMES ARE AS FOLLOWS:
1 a BRIGGS-RURAL, GIFFORD (1978)
2 a BRIGGS-URBAN, GIFFORD (1978)
3 a BNL, SINGER AND SMITH (1966)
4 a KLUG, VOGT (1977)
5 a ST. LOUIS, VOGT (1977)
6 a PGCDM, BUSSE It ZIMMERMAN (1973)
7 -a PGSIG, PASQUILL (1961) AND GIFFORD (1960)
TO ADD A DISPERSION SCHEME THE FOLLOWING MODIFICATIONS MUST
BE MADE TO THE CDM-2.0 SOURCE CODE:
CDM19510
CDM1 9520
CDM19S30
CDM19540
CDM195SO
CDM19560
CDM19S70
•CDM1 9530
CDM19590
CDM19600
CDM19610
CDM19620
CDM19830
CDM19640
CCM19650
CDM19660
CDM19870
CDM19630
CDM19690
CDM19700
CDM19710
CDM19720
CDM19730
CDM19740
CDM19750
CDM19780
CDM19770
CDM19730
CDM19790
CDM19800
CDM19810
CM19820
CDM19830
CDM19840
CDM19850
CDM19860
CDM19870
CDM19880
O3VG9890
CDM19900
CDM19910
CDM19920
CDM19930
CEM19940
CDM199SO
CDM19960
•CDM19970
CDM19980
CDM19990
CDM20000
CDM20010
CDM20020
CDM20030
CDM20040
CDM20050
CDM20060
CDM20070
CDM20080
CDM20090
CDM20100
CDM20110
CDM20120
CDM20130
CDM20140
CDM201SO
CDM20160
CDM20170
CDM20130
CDM20190
CDM20200
CDM20210
mf^TA*) n? ** n
m\f*JVl\& U £ M U
CDM20230
CDM20240
CDM20250
132
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
IN SUBROUTINE SIGMAZ,
(1) ADD STATEMENT LABEL TO COMPUTED GO TO
(2) INSERT THE FOLLOWING JUST BEFORE STATEMENT 190
- GO TO 190
- CODE FOR DISPERSION SCHEME
IN BLOCS DATA,
(1) MODIFY DIMENSIONS OF ARRAY DISP(3, )
(2) ADD DISPERSION SCHEME DESCRIPTION TO DATA STATEMENT
OF ARRAY DISP. MAKE SURE THE DESCRIPTION DOES NOT
gri 'V y i i 32 CHARACTERS .
IN SUBROUTINE CLINT,
(1) MODIFY ERROR rafrsr OF KLOW AFTER RECORD TYPE 5 IS
R2AD
(2) MODIFY UPPER RANGE LIMIT OF FORMAT STATEMENT 70.
(3) MODIFY ERROR CHECK OF KHIGH AFTER RECORD TYPE 6 IS
READ
(4) MODIFY UPPER RANGE LIMIT OF FORMAT STATEMENT 110.
CDM20260
CDM20270
CDM20230
CDM20290
CDM20300
CDM20310
CDM20320
CDM20330
CDM20340
CDM203SO
CDM20360
CDM20370
CDM20380
CDM20390
CZM20400
QDM20410
CXM20420
CDM20430
CEM20440
CDM20450
CTM20460
/**»« n AT n
CDM20480
DIMENSION A(7,3)IB(7,S),C(7,S),G(7,8),XCAT(9,7),AA(10,7),BB(10,7)CDM20490
DATA A/
0.2000,
0.2400,
0.1200, 0.0800, 0.0800, 0.0600, 0.0300, 0.0160,
0.2400, 0.2000, 0.1400, 0.1400, 0.0800, 0.0800,
0.4000, 0.4000, 4.3300, 0.2200, 0.2200, 0.0800, 0.0600,
0.0170, 0.0720, 0.0760, 0.1400, 0.1400, 0.2170, 0.2620,
CDM20SOO
CDM20510
CDM20S20
CSM20530
CEM20S40
CDM205SO
CDM20360
CCM20570
CEM2Q380
CEM20S90
.CDM20600
5000 CDM20610
CEM20620
CDM20630
CDM20640
CDM20850
CDM20660
CEM20670
CDM20680
OO.CDM20690
00,CDM20700
OO.CDM20710
OO.CLM20720
00,CDM20730
OO.CDM20740
20/CDM20750
DATA AA /453.83,348.73,238.89,217.41,179.52,170.22,158.08,122.80,CDM20760
1
DATA
1
I
I
DATA
a/
c/
0
0
0
0
1
1
1
.0790,
.0000,
.0010,
.9100,
.3800,
.2000,
.0000,
1 -0.5000,
0.0790,
0.0000,
0.0010,
0.9100,
1.0210,
1.2000,
1.0000,
-0.5000
0.1310
0.0002
0.0000
0.3800
0.3790
1.0460
0.3000
, o.
, 0.
, o.
, o.
, o.
, o.
, o.
, 1.0000, 0
9100, 0.9100, 1.9300,
0013, 0.0015, 0.0003,
0003, 0.0003, 0.0013,
7800, 0.7800, 0.7100,
7270, 0.7270, 0.6100,
7020, 0.7020, 0.4630,
5000, 0.5000, 1.0000,
.5000, 0.5000, 0.
5000,
1.9300/
0.0003,
0.0015,
0.7100,
0.5000,
0.4650/
1.
0
0000
.5
00
21«0.0/
DATA
1
1
1
1
1
DATA
1
I
1
1
1
G/2
2
0
2
2
1
.
•
«
*
•
•
SCAT
539E-4,
S39E-4,
0383,0.
0888,1.
0888,1.
2812,0.
/ 0.50
0.40
0.00
0.00
30.00
40.00
60.00
0.04936
0.04938
1393,0.
1137,0.
1137,0.
9467,0.
, 0.40,
, 0.20,
, 0.00,
, o.oo,
,10.00,
,20.00,
,30.00,
,0.1154
,0.1014
1120,0.
9109,0.
9260,0.
9100,0.
0.30,
0.00,
0.00,
0.00,
3.00,
10.00,
15.00,
,0.7388,0.7388,1.2969
,0.2591,0.2591,0.2527
0858
5642
6869
3650
0.23
0.00
0.00
0.00
1.00
4.00
7.00
,0.0856,0.0813,0.
,0.5642,0.4421,0.
,0.6889,0.6341,0.
,0.3630,0.3155,0.
,1.5783,
,0.2017,
0545,
3606,
8020,
3124/
, 0.20, 0.15, 0.10, 0.
, 0.00, 0.00, 0.00, 0.
, 0.00, 0.00, 0.00, 0.
, 0.00, 0.00, 0.00, 0.
, 0.30, 0.00, 0.00, 0.
, 2.00, 1.00, 0.30, 0.
, 3.00, 2.00, 1.00, 0.
00,
00,
00,
00,
00,
10,
70,
0
0
0
0
0
0
0
.0
.0
.0
.0
.0
.0
.2
0.0,0.0,
109.30,98.483,90.873,0.0,0.0,0.0,0.0,0.0,0.0,
81.141,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
33.504,0.0,0.0,0.0,0.0,0.0,0.0.0.0,0.0,0.0,
0.0,
CDM20770
CXM20780
CDM20790
CDM20800
• 44.053,38.85,33.504,32.093,32.093,34.459,0.0,0.0,0.0,0.00*120810
• 47.818,33.42,26.97,24.703,22.534,21.628,21.628,23.331, CDM20820
• 24.26,0.0, CDM20830
• 34.219,27.074,22.651,17.336,16.137,14.323,13.953,13.953,CDM20840
• 14.437.1S.209/ CDM208SO
DATA BB /2.1168,1.7283,1.4094,1.2844,1.1262,1.0932,1.0542,0.9447.CDM20860
• 0.0,0.0, CDM20870
• 1.0971,0.98332,0.93198,0.0,0.0,0.0,0.0,0.0,0.0,0.0, CDM20880
• 0.91469,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, CDM20890
• 0.3098,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, CDM20900
• 0.51179,0.56389,0.60486,0.84403,0.81066,0.86974,0.0,0.0.CDM20910
CDM20920
0.57134,0.63077,0.7566, CDM20930
CXM20940
0.4649,0.54503,0.63227, CDM209SO
CDM20960
CDM20970
CDM20980
0.0,0.0,
0.29592,0.37615,0.46713,0.50327,
0.31936,0.3368,0.0,
0.21718,0.27436,0.32881,0.41507,
0.88465,0.78407,0.81553/
KST = INKST
IF(K3T.GT.7)
KST
CDM20990
CDM21000
133
-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
GO TO(20,20,30r40,40,50,70),inTPE
BRIGGS RURAL AND URBAN, GIFFORD (1976)
20 21 » AtKST.ffnrPE)
22 « B(KST,KTYPE)
23 » C X/1000.
AHHAY3 ARE DESIGNED FOR DISTANCE IN KILOMETERS
DO 80 ID » 1,9
17 (X .GE. XCATUD.KST)) GO TO 90
30 O3NTINUE
ID - 10
90 SZ » AA(ID,KST) • X •• BB(ID,KST)
I? (SZ .GT. 3000.) SZ a 5000.
X » X • 1000.
CONVERT BAQC TO MKTKR3
190 IP(KEY.LE.O) GO TO 200
SZ * S<3RT( SZ-SZ * (DH-DH)/(3.S-3.S))
200 RETDRN
END
BLOCK DATA
BLOCS DATA (VERSION 85293), PART OP CDM-2.0.
PARAMETER (NPTS*200 ,NQLIM=»100 ,NASE=50 ,NASN=50 )
COMVDN /Cl/ K,MX,MN,P(S,S,36),OBAR(6),D(6),RI,RJ,INC(4),DELR
COMflON /C3/ OE(8),YD,W,TMN,DINT,YCON,TA(4),IPG,XG,YG,IRD
CONMDN /C3/ IRON, CA( 2 ) ,CB( 2) ,TK( 38 ) ,ABOS( 2 ) ,PROS( 2 ) , TANG
CCftMDN /C4/ DECAY(2),ICA(6),ICP(S),HL(6),HX(6),GB<2),NQ,IVER, IWR
ODMVCN /C3/ q(NQLIM,4),GA(2),IAD(4,S),IAS,TDA,TDB,TDC,IPO
COMMON /QCCM/ N.DR.IX, IY,TT( 36,21 ) ,KTC, IXX, IYY, RAD, TD,
• 2(NASE,NASN,3)
COMVCN /ACOM/ PI,SZA(S),ABAR(2),AROSE(36,2),XS(S)
0»»CN /PCOM/ PH(NPTS),PR(NPTS),PS(NPTS,4),PX(NPTS),PY(NPTS),
• WA(36),WB(36) ,PSOSE( 36 , 2 ) ,CV, I PS ,RAT,PBAR( 2 ) ,TOA,
• VSKNPTS) .Tl(NPTS) .Dl(NPTS) , FRN(NPTS ) , BFLUXCNPTS )
CCMVIDN /SET/ N1S36, DELTA, TTAN.NP50 ,NPDH,MSTDW,NGRAD.KLOW,KHIGH,
• PPAR(2, 6) ,APAR( 2,6) ,WHA(S) ,FAC,HCEPTZ, KELVIN,. VDEF
COMMON /TITLE/ HEADNGl 20 ) .PNAMEt 2 ) ,D16( 32 ) ,D36( 72 ) ,DISP( 8 , 7 ) ,
COM2 1010
COM2 1020
COM2 1030
CDM21Q40
CDM210SO
CDM21060
CDM21070
CDM21080
CDM21090
CDM21100
CDM21110
CDM21120
CDM21130
CDM21140
CDM21130
CDM21160
CDM21170
CDM21130
CDM21190
CDM21200
CDM21210
CDM21220
CDM21230
COM21240
CDM21230
CDM21260
CDM21270
CDM21280
CDM21290
CDM21300
CDM21310
CDM21320
CDM21330
CDM21340
CDM213SO
CDM21360
CDM21370
CDM21380
CDM21390
CDM21400
CQM21410
CDM21420
CDM21430
COM2 1440
CEM21450
CEM21460
C0M21470
CDM21480
CDM21490
CEM21500
CDM21S10
CCM21520
CDM21S30
CDM21S40
CDM21S50
CDM21560
mg • ^jin i e i n
CCMZ 1 3 i U
CDM21380
CDM21S90
CDM21600
CDM2 1610
CDM21S20
CDM21630
CDM21640
CDM21650
COM21660
CDM21670
CDM21680
CDM21690
CDM21700
CEM2 1710
CDM21720
CDM2 1730
CDM21740
CDM21750
134
-------
• TTITLZCJ) CDM217SO
DATA YCON/0.1Z7/ OM21770
DATA INC,IPG,IPS,IX,IY/1,2,4,4,70,0,1,1/ CEM21780
DATA IXX,m,IAS/l,l,0/,TD/0.1E-3/ CEM21790
DATA RAD, PI/57. 2953, 0.797385/ O3M21300
DATA IAD/0, 0,1, 1,0, 1,0, 1,4-0, 4»1,0,1,1,0/ CCM21810
DATA IVE3/35293/ CEM21320
DATA D16/' M
• ' Z
• ' 3
• ' W
DATA D38/'000-
• '040-
• '080-
• '120-
• '160-
• '200-
• '240-
• '280-
• '320-
DATA DI3P/'BRIG
• 'BRIG
• 'BNL,
• 'SLOG
• '3T.
• 'PCCD
• 'PGSt
010
QSO
090
130
iro
210
2SO
290
330
•GS-R
•GS-0
1 SIN
', VO
'LOCI
'M, 3
'G, P
1 NNE
' ESE
'• SSW
' WW
'010-
'050-
'090-
'130-
'170-
•210-
'250-
'290-
'330-
t
t
1
I
t
t
1
I
,'020
,'060
,'100
,'140
,'130
, '220
,'260
,'300
,'340
,'ORAL' , ', GI
, 'HBAK',' , GI
,'GES ','AND
,'GT (','1977
,'3, V'.'OGT
,'U3SE' ,'42
.'ASQO'.'ILL,
' HE
' SE
' SW
' NW
'020-
'060-
'100-
'140-
'180-
'220-
'280-
'300-
'340-
i
>
• i
,
>
i
»
,'030
,'070
,'110
, 'ISO
,'190
,'230
,'270
, '310
, '350
, 'FFOR' , 'D (1
,'P70R'f 'D (1
,'SMIT1 , 'H (1
i \ it
i I >
,'(197','7)
,'IMWE' ,'HMAN
, 'GI7T' , 'ORD(
1 ENE
1 SSE
' WSW
' NNW
'030-
'070-
'110-
'150-
'190-
•230-
'270-
'310-
'350-
,'976)
,'976)
,'966)
f
t
t
1
, ' (19
,'1961
t
t
f
f
'040
'080
•120
'160
•200
'240
•230
'320
'360
.CCM21330
.CDM21340
.O3VI213SO
/CDM21360
.O3V121370
.CDM21380
.CTM21390
.CCM21900
.CEM21310
.CDM21920
.CCM21930
,O)M21940
/CCM21950
,' 'CCM21960
,' 'CTM21970
,' 'CCM21980
'CTM21990
,' 'CCM22000
,'73) 'CCM22010
,' ,60)'CEM22020
DATA TTITLE/' P) ',' C) ',' K) '/ CTM22030
END CXM22040
135
-------
Date
Chief, Environmental Operations Branch
Meteorology and Assessment Division (MD-80)
U. S. Environmental Protection Agency
Research Triangle Park, NC 27711
I would like to receive future revisions to the "CDM-2.0 User's
Guide."
Name
Organizat ion
Address
City
State Zip Code
Phone (Optional) ( )
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverie before completing)
1. REPORT NO.
EPA/600/8-85-029
3. RECIPIENT'S ACCESSION NO.
i. TITLE AND SUBTITLE
COM 2.0
CLIMATOLOGICAL DISPERSION MODEL
User's Guide
5. REPORT DATE
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
J. S. Irwin*, T. Chico** and J. Catalano**
». PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
*ASRL, RTF, NC 27711
**Aerocomp, Inc., .3303 Harbor Boulevard
Costa Mesa, CA 92626
10. PROGRAM ELEMENT NO.
CDTA1D/04-0275 (FY-86)
11. CONTRACT/GRANT NO.
EPA 68-02 3750
12. SPONSORING AGENCY NAME AND ADDRESS
Atmospheric Sciences Research Laboratory - RTP,
Office of Research and Development
U. S. Environmental Protection Agency
Research Triangle Park, NC 27711
NC
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/600/09
15. SUPPLEMENTARY NOTES
16. ABSTRACT
CDM-2.0 (£limatological JDispersion Model - Version 2.0) determines long-
term (seasonal or annual) quasi-stable pollutant concentrations in rural or
urban settings using average emission rates from point and area sources and a
joint frequency distribution of wind direction, wind speed, and stability. The
Gaussian plume hypothesis forms the basis for the calculations. Contributions
are calculated assuming the narrow plume hypothesis, Calder (1971, 1977), and
involve an upwind integration over the area sources. Computations can be made
for up to 200 point sources and 2500 area sources at an unlimited number of
receptor locations. The number of point and area souces can be easily modified
within the code. CDM-2.0 is an enhanced version of COM Including the following
options: 16 or 36 wind-direction sectors, initial plume dispersion, buoyancy-
induced dispersion, stack-tip downwash, and gradual (transitional) plume rise.
The user has a choice of seven dispersion parameter schemes. Optional output
includes point and area concentration roses and histograms of pollutant concen-
tration by stability class.
KEY WORDS ANO DOCUMENT ANALYSIS
DESCRIPTORS
b.lOENTIFIERS/OPEN ENDED TERMS
c. COSATi Field/Croup
•>8. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS f This Report)
ITNrT.AS.STFTF.D
21. NO. OF PAGES
20. SECURITY CLASS (This page)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (R«*. 4-77) pnevioui EDITION 11 OBSOLETE
------- |