EPA/600/8-85-029
                                     NTIS PB86-136546
CDM 2.0 -- CLIMATOLOGICAL DISPERSION MODEL  *

               User's Guide

                    by
               John S. Irwin
    Meteorology and Assessment Division
 Atmospheric Sciences Research Laboratory
     Research Triangle Park, NC   27711
                    and

     Thomas Chico and Joseph Catalano
              Aerocomp,  Inc.
           3303 Harbor Boulevard
           Costa Mesa, CA  92626

        Contract No. EPA 88-02-3750

              Project Officer
              D. Bruce Turner
    Meteorology and Assessment Division
 Atmospheric Sciences Research Laboratory
     Research Triangle Park, NC   27711
 ATMOSPHERIC SCIENCES RESEARCH LABORATORY
    OFFICE OF RESEARCH AND DEVELOPMENT
   U. S. ENVIRONMENTAL PROTECTION AGENCY
        RESEARCH TRIANGLE PARK, NC

-------
                           DISCLAIMER

    This  report  has  been  reviewed by the Atmospheric Sciences
Research Laboratory, U. S. Environmental Protection  Agency,  and
approved  for  publication.   Approval  does not signify that the
contents necessarily reflect the views and policies of the  U. S.
Environmental  Protection Agency, nor does mention of trade names
or commercial products constitute endorsement  or  recommendation
for use.
                           AFFILIATION

    Mr.  John  S. Irwin is a meteorologist in the Meteorology and
Assessment Division, Environmental  Protection  Agency,  Research
Triangle  Park,  North  Carolina.   He  is on assignment from the
National Oceanic and Atmospheric Administration, U. S. Department
of Commerce.  Mr. Joseph A. Catalano is the technical director of
Aerocomp, Inc.,  Costa  Mesa,  California  and  Mr.  Chico  is  a
research meteorologist there.
                               11

-------
                            FOREWORD

    The  Atmospheric  Sciences  Research  Laboratory  conducts  a
research program in the physical sciences to detect, define,  and
quantify  the  effects  of  air pollution on urban, regional, and
global atmospheres and the subsequent impact on water quality and
land  use.   This  includes  research  and  development  programs
designed  to  quantify  the  relationships  between  emissions of
pollutants  from  all  types  of  sources  and  air  quality  and
atmospheric effects.

    The  Meteorology  and  Assessment  Division conducts research
programs in environmental meteorology to describe the  roles  and
interrelationships   of   atmospheric   processes   and  airborne
pollutants  in  effective  air  and  land  resource   management.
Developed  air  quality  simulation  models are made available to
dispersion model users in computer-readable form  (magnetic  tape
media) from NTIS (see preface).

    CDM-2.0  is an enhanced version of CDM. The following options
have  been  added  to  the  original  CDM  algorithm:  16  or  36
wind-direction   sectors,  initial  dispersion,  buoyancy-induced
dispersion, stack downwash, and gradual plume rise. In  addition,
the  user has a choice of seven dispersion parameter schemes. The
output  format  has  been  modified   to   enhance   readability.
Concentration  versus  stability histograms have been added  to an
output option.

    Limitations are imposed on the use  of  the  program  by  the
assumption  that  pollutants  are  nonreactive  and that one wind
vector and stability class are representative of the  area   being
modeled. Despite these limitations, CDM-2.0 is a useful long-term
(seasonal   or   annual)  algorithm  for  estimating  nonreactive
pollutant concentrations from point and area sources in  a   rural
or urban se11 i ng.
                       A. H. El 1ison
                       Director
                       Atmospheric Sciences Research Laboratory
                               i i i

-------
                             PREFACE

    One  area  of  research within the Meteorology and Assessment
Division is development, evaluation, validation, and  application
of   models  for  air  quality  simulation,  photochemistry,  and
meteorology.  The models must be able to describe air quality and
atmospheric  processes  affecting  the  dispersion  of   airborne
pollutants  on  scales  ranging from local to global.  Within the
Division,  the  Environmental  Operations   Branch   adapts   and
evaluates  new  and existing meteorological dispersion models and
statistical  technique  models,  tailors  effective  models   for
recurring  user  application,  and  makes  these models available
through  EPA's  User's  Network  for  Applied  Modeling  of   Air
Pollution (UNAMAP) system.
    CDM-2.0    estimates    long-term    nonreactive    pollutant
concentrations using average emission rates from point  and  area
sources  and  a  joint  frequency distribution of wind direction,
wind speed, and stability.
    Although attempts  are  made  to  thoroughly  check  computer
programs   with   a  wide  variety  of  input  data,  errors  are
occasionally found.  Revisions may be obtained as they are  issued
by completing and returning the form on the  last  page  of  this
guide.

    The  first  four  sections  of  this document are directed to
managers  and  project  directors  who  wish  to   evaluate   the
applicability of the model to their needs.  Sections 5, 6, and 10
are  directed  to engineers, meteorologists, and other scientists
who are required to become  familiar  with  the  details  of  the
model.   Finally,  Sections  7 through 10 are directed to persons
responsible for implementing and executing the program.
                               i v

-------
    Comnents and suggestions regarding this publication should be
d i rected to:
           Chief, Environmental Operations Branch
           Meteorology and Assessment Division (MD-80)
           Environmental Protection Agency
           Research Triangle Park, NC  27711.

    Technical questions regarding use of the model may  be  asked
by  calling  (919) 541-4564.  Users within the Federal Government
may call FTS 629-4564.  Copies of the user's guide are  available
from   the   National   Technical   Information  Service  (NTIS),
Springfield, VA  22161.

    The next release of UNAMAP (Version 6) will include the  code
for CDM-2.0. Inquiries regarding the purchase of UNAMAP should be
addressed  to  Computer  Products,  NTIS,  Springfield,  VA 22161
(phone number: 703-487-4763).

-------
                            ABSTRACT

    CDM-2.0  (Climatological  Dispersion  Model  -  Version  2.0)
determines  long-term (seasonal or annual) quasi-stable pollutant
concentrations  in rural or urban settings using average  emission
rates   from  point  and  area  sources  and  a  joint  frequency
distribution of wind direction, wind speed,  and  stability.  The
model  is  applicable  to  flat  or  gently  rolling terrain. The
Gaussian plume hypothesis forms the basis for  the  calculations;
contributions  are obtained assuming the narrow plume hypothesis,
Calder (1971, 1977), and involve an upwind integration  over  the
area  sources.  Computations  can  be  made  for  up to 200 point
sources and 2500 area sources at an unlimited number of  receptor
locations.  The  number  of  point and area sources can be easily
modified within the code. CDM-2.0 is an enhanced version  of  COM
including the following options: 16 or 36 wind-direction sectors,
initial  plume dispersion, buoyancy-induced dispersion, stack-tip
downwash, and gradual (transitional) plume rise. The user  has  a
choice  of  seven  dispersion parameter schemes. Also new in this
release  is  a  default  option  to  set  input  parameters   for
regulatory   use.   Optional   output  includes  point  and  area
concentration roses and histograms of pollutant concentration  by
stabi1ity class.
                               VI

-------
                            CONTENTS

Foreword	   i i i
Preface	    iv
Abstract	    vi
Figures	    ix
Tables  	     x
Symbols and Abbreviations	    xi
Acknowledgments	xiii

        Executive Summary 	     1
    1.  Introduction  	     3
    2.  Data-Requirements Checklist  	     5
    3.  Features and Limitations	     7
    4.  Basis for CDM-2.0	    10
             Gaussian plume origins  	    10
             P1 ume rise	    11
             Dispersion  algorithms   	    11
    5.  Technical Description  	    12
             Meteorological parameters   	    12
             Concentration formulas  	    15
             Stack down wash	    19
             P1 ume rise	    20
             Dispersion  algorithms   	    24
             Calibration of computed concentration   ...    27
             Grid system and area  emissions	    27
             Other considerations	    3.0
    6.  Example Problem	    32
    7.  Computer Aspects of the Model	    38
             System  flow	    38
             Structure of CDM-2.0  	    40
             Non-standard features   	    44
                               v i i

-------
                      CONTENTS (continued)

    8.  Input Data Preparation	   45
             Record input sequence  	   45
             Intricacies of the data	   52
    9.  Execution of the Model and Sample Test  .....   59
             Execution	   59
             Error messages and remedial action	   71
   10.  Interpretation of Output	   76

References  ;	   94
Appendices	   98

    A.  Default Option	   98
    B.  Detailed Flow Diagrams	100
    C.  Listing of FORTRAN Source Code	105
                              v i i

-------
                             FIGURES

Number                                                      Page
   1  Illustration of sector integration  	   18
   2  a  curves by stability class for the seven vertical
        dispersion schemes considered by CDM-2.0   	   25
   3  Test City base map	34
   4  Wind rose for Test City	35
   5  Stability distribution for Test City	35
   6  Concentration versus stability histograms and
        concentration roses 	   36
   7  System flow for CDM-2.0	39
   8  CDM-2.0 program structure  	   41
   9  CDM-2.0 flow diagram	43
  10  Radial and angular skipover  	   56
  11  DELR as a function of maximum range of area  source
        integration	57
  12  Sample job stream for CDM-2.0	59
  13  Printed output for the sample test	62
  14  Card image output for the  sample test	70
  15  Annotated Test City map	79
  16  Printed output for the example problem	80
 B-l  Flow diagram for the main  routine	101
 B-2  Flow diagram for subroutine  CLINT	102
 B-3  Flow diagram for subroutine  CALQ	103
 B-4  Flow diagram for subroutine  AREA	103
 B-5  Flow diagram for subroutine  POINT	104
                                IX

-------
                             TABLES

Number                                                      Page
   1  A Comparison of CDM-2.0 to Other Commonly Used
        Long-Term Air Quality Models  	   9
   2  Relationship Between Pasquill Stability Classes and
        Those Used in CDM-2.0	13
   3  NCC STAR Speed Intervals and Central Wind Speeds   .  .   14
   4  Wind Profile Exponents for Two Surface Roughnesses   .   14
   5  Mixing Height Based on Stability Category 	   15
   6  Increments of Integration 	   19
   7  Constants for Vertical Dispersion Equations Used by
        Five Dispersion Schemes 	   28
   8  Constants for the Vertical Dispersion Parameter
        Equation Used in the PGCDM Scheme	28
   9  Constants for the Vertical Dispersion Parameter
        Equation Used in the PGSIG Scheme	29
  10  Relationship Between Initial oz and  Stack Height   .  .   30
  11  Pollution Source Inventory for Test  City	32
  12  Computed Concentrations at Selected  Sites in
        Test City	37
  13  Input/Output Units Used by CDM-2.0	40
  14  Summary of Record Types for Input Data	45
  15  Record Input Sequence  for CDM-2.0 	   46
  16  Values of KLOW or KHIGH and Their Corresponding
        Dispersion Parameter Schemes  	   54
  17  Input Data for the Sample Test	61
  18  CDM-2.0 Error/Warning Messages and Corrective Action    71
  19  Input Data for the Example Problem	77
  20  Card Image Output for  the Example Problem	90
  21  Format of Card Image Output	91
 A-l  Variables Affected by  the Default Option  	   99

-------
                    SYMBOLS AND ABBREVIATIONS

             Dimensions are abbreviated as follows:
         m = mass, 1 = length, t = time, K = temperature

a, b, c      = constants in dispersion parameter equations
A, B         = calibration constants (i.e., intercept and slope,
                 respect ively)
C            = average concentration from area sources (m/1 )
 A
                                                            3
C            = average concentration from point sources (m/1 )
D            = stack inside diameter (1)
 s
f            = stack-tip downwash correction factor
f            = fraction of the input area-source height that
 e
                 represents the physical height
                                         A  1
F            = buoyancy flux parameter (1 /t )
                                                          .>
Fr           = Froude number
                                               2
g            = acceleration due to gravity (1/t )
G            = emission rate of nth point source (m/t)
 n
h            = physical stack height (1)
h1           = stack height adjusted for Briggs stack-tip
                 downwash (1)
H            = effective stack height (1)
H            = input area source height (physical height
 a
                 plus assumed effluent rise with a 5 m/sec
                 wind speed) (1)
k            = index identifying the wind-direction sector
k            = wind sector appropriate for nth point source
 n
i            = index identifying the wind-speed class
L            = mixing height (1)
m            = index identifying the stability category
n            = number of point sources
N            = number of wind-direction sectors
p            = wind-profile exponent
                               x i

-------
               SYMBOLS AND ABBREVIATIONS  (continued)
                                          2
p            = atmospheric pressure  (m/lt  )
P            = stability class
                                                             2
Q(p,0)       = area source emission  rate  per unit  area  (m/tl  )
q  (p)        = /Q(p,9)de (m/t)
s            = stability parameter (t   )
S(p,z;U  ,P  ) = dispersion function
       I  m
T1/2          = pollutant half-life (t)
T            = ambient air temperature  (K)
 a
T            = stack gas exit temperature  (K)
U            = wind speed at stack height  (1/t)
U^           = representative wind speed  (1/t)
V            = stack gas exit velocity  (1/t)
 s
x            = distance to final rise (1)
x*           = distance at which atmospheric turbulence
                 begins to dominate  entrainment  (1)
X, Y         = axes of the grid system; X-axis points east and
               .  Y-axis points north
z            = height of receptor above ground level  (1)
AH           = p 1 ume rise (1)
d9/3z        '= vertical potential temperature gradient
                 of a layer  of air (K/l)
6            = angle relative to polar  coordinates  centered  on
                 receptor (radians)
 P            = distance from receptor to  source  (1)
Q            = distance from receptor to  nth point  source  (1)
 n
a            = vertical dispersion parameter (1)
 z
CT            = buoyancy-induced vertical  dispersion  (1)
 zb
o            = effective vertical dispersion (1)
 ze
 $(k,i,m)     = meteorological joint  frequency function
                              xii

-------
                         ACKNOWLEDGVENTS

    The  authors  wish  to  express  their appreciation to Mr. D.
Bruce Turner, Mr. William B.  Petersen,  and  Mr.  Russ  Lee  for
helpful  comments  regarding  aspects of the work presented here.
Special mention must be made to Mr. Adrian D. Busse and Mr.  John
R.  Zimmerman,  the authors of the original CEM computer code and
user's guide. Portions of this text were excerpted from the  CDM,
CDMQC, and PTPLU user's guides.
    Support  of  Aerocomp  by the Environmental Protection Agency
Contract  Nos.  68-02-3750  and  68-02-4106  is  also  gratefully
acknowledged.
                              x i i i

-------
                        EXECUTIVE SUMMARY

    CDM-2.0  (Climatological  Dispersion  Model  -  Version* 2.0)
determines   long-term    (seasonal    or    annual)    pollutant
concentrations in a rural or urban setting using average emission
rates   from  point  and  area  sources  and  a  joint  frequency
distribution of wind direction, wind speed,  and  stability.  The
algorithm  is  based  on  Gaussian  plume assumptions and is thus
subject to  the  limitations  of  nonreactive  pollutants  and  a
homogeneous wind field. Terrain in the modeling region is assumed
to be level or gently rolling. Computations can be made for up to
200 point sources and 2500 area sources at an unlimited number of
receptor locat i ons.

    CDM-2.0  is  an  enhanced version of CDM. The enhancements of
CDM-2.0 give the  user  added  flexibility  to  tailor  technical
features    of    the   model   to   particular   source-receptor
configurations  and   locales. .  The   joint-frequency   function
describing  the  meteorology  can  be  specified  using  either a
16-point or a 36-point compass for the wind sectors. The  initial
dispersion for point sources can be computed as either a building
effect  (affecting  dispersion  from  sources  with stack heights
below 50  m),  as  a  buoyant  plume  rise  effect  (described  by
Pasquill,  1976),  or  both.  Provision  has  been  made to allow
estimation of the effects of stack downwash  on  the  plume  rise
using  either of two algorithms -- Briggs (1974) or Bjorklund and
Bowe-rs (1982). The user has the option of  choosing  among  seven
schemes  for  characterizing  vertical dispersion downwind of the
source. Added to the dispersion algorithm used by CDM (Busse  and
Zimmerman, 1973) are the following schemes:
     0  Briggs-rural (Gifford, 1976),
     0  Briggs-urban (Gifford, 1976),
     0  Brookhaven National Laboratory (Singer and Smith,  1966),

-------
     0  Klug (Vogt, 1977),
     0  St. Louis (Vogt, 1977), and
     0  PGSIG (Pasquill, 1961 and Gifford, 1960).
                                                  *
    The  former  versions  of  CDM  "slipped"  the  categories to
account for urban effects on the dispersion. The inclusion of the
various dispersion characterizations provides the user with  both
urban  and  rural  dispersion  schemes. Under user control is the
specific curve to be applied to each of the stability  categories
of  the  input frequency function. The user specifies the initial
dispersion for each stability category for use in the area source
computations. The user specifies the power-law exponent  and  the
central  wind  speed  values  to  be  employed for each stability
category.  Provision  is  made  to  model  pollutant  removal  by
physical  or chemical processes by a half-life decay that is user
specified. Plume rise for the point  sources  can  be  calculated
following  the  methods of Briggs (1969, 1971, and 1975) or using
the methods of Holland (1953). Provision has been made  to  allow
estimation  of  the  effects  of  wind  speed  variation  on  the
area-source effective release height as described by  Turner  and
Novak  (1978).  The  output  format  has been modified to enhance
readability; concentration versus stability histograms have  been
added  as an output option. Also new in this release is a default
option to set input parameters for regulatory use.
    The source code has been designed so that future enhancements
can be readily implemented. For instance,  the number  of  sources
considered by the model can be modified by a global change within
the  code.  Also,  other  dispersion  schemes  can  be  added  to
subroutine SIGMAZ with little difficulty.

-------
                            SECTION 1

                          INTRODUCTION

    CDM-2.0  is  an  enhanced  version  of  CDM  (Version  80247)
affording the user increased control of the technical features to
be  employed in each modeling analysis. The user now controls the
specification  of  the  wind  profile  power-law  exponents,  the
central  wind speed values,  the dispersion curves,  and the mixing
heights to be associated with each stability category. These were
formerly defined by  DATA  statements  in  CDM  and  beyond  user
control.  The  plume  rise  algorithm has been modified to handle
rise during stable conditions and to consider  momentum-dominated
plumes. Stack downwash can be modeled using either  of two schemes
     Briggs  (1974)  or  Bjorklund  and  Bowers  (1982).  Initial
dispersion can be modeled as (1)  a  building  effect,  affecting
sources  with  stack  heights  below  50  m,  (2)  as  a  buoyant
plume-rise effect, as described by Pasquill (1976), or (3)  joint
building  and  buoyant  rise  effects. The user has the option of
choosing  among  seven  schemes   for   characterizing   vertical
dispersion  downwind  of  the  source. The output format has been
modified to enhance  readability  and  the  concentration  versus
stability histogram has been added as an output option.

    CDM-2.0  is  applicable  to  locations  with  level or gently
rolling terrain. The Gaussian plume hypothesis is the  basis  for
the  model. Pasquill and Meade (1958) first modified the Gaussian
plume equation to estimate long-term average concentrations  from
a   particular   source   using   a   wind   direction  frequency
distribution. Expanding on Pasquill'  and  Meade's  initial  work,
Martin  and Tikvart (TRW Systems Group, 1969; Martin and Tikvart,
1968; and Martin,  1971)  developed  AQDM  (Air  Quality  Display
Model).  In  their  methodology,  the  frequency of occurrence of
various possible combinations of wind direction, wind speed,  and

-------
atmospheric  stability  are  used  to  obtain  long-term  average
concentrations from a multiple source grid. Calder  (1971,  1977)
formulated  a  model called CDM (Climatological Dispersion Model)
which eventually superseded AQDM. Although similiar  to  AQDM   in
many  respects,  CDM  has  several distinct features. AQDM treats
area sources via a modified virtual point  source  technique.   In
CDM,  contributions  from area sources are calculated by assuming
the narrow plume hypothesis (Calder, 1971, 1977) and  involve   an
upwind  integration  over  the area sources. Holland's plume rise
equation (Holland, 1953) is used  in AQDM, while in CDM  the  user
has  a  choice  between  Briggs'  plume  rise  (Briggs,  1971)  or
Holland's equation.  A  power-law  profile  is  used  in  CDM   to
extrapolate  surface  wind  speeds to the source height. AQDM and
CDM were two  of  six  air  quality  dispersion  models  used   to
calculate  annual  (1969)  sulfur  dioxide  and  total  suspended
particulate matter for the New York Air  Quality  Control  Region
(Turner   et  al.,  1972).  Model-predicted  concentrations  were
compared statistically with  the  measured  values.  The  results
indicate that CDM performed better than AQDM (i.e., errors in the
means and maxima were smaller for CDM).
    This document is divided into three parts, each directed to a
different   reader:   managers,  dispersion  meteorologists,  and
computer specialists.  The  first  four  sections  are  aimed   at
managers   and   project  directors  who  wish  to  evaluate  the
applicability of the model to their needs. Sections 5, 6, and   10
are  directed  toward  dispersion meteorologists or engineers who
are required to become familiar with the details  of  the  model.
Finally,  Sections  7  through  10  are  directed  toward persons
responsible  for  implementing  and  executing  the  program.   An
example  for  model execution with the default option is given  in
Appendix A; detailed program flow diagrams and a listing  of  the
FORTRAN  source  statements  are  given   in  Appendices  B  and C
respect ively.

-------
                            SECTION 2

                   DATA-REQUIREMENTS CHECKLIST

    CDM-2.0 requires  data  on  user  options,  grid  dimensions,
sources, meteorology, receptors, and model calibration constants.
The  user  must  indicate whether the following options are to be
employed for point source calculations:
     0  Initial dispersion and/or buoyancy-induced dispersion,
     0  Stack-tip downwash, and
     0  Gradual plume rise.

Also to be indicated is  whether  the  stability  array  data  is
divided into 16 or 36 wind-direction sectors. Additionally, there
is  a  choice  of one of seven dispersion schemes. Output options
include  area  and   point   source   concentration   roses   and
concentration versus stability histograms at selected receptors.

    Information required for each source  includes the following:

     0  Location (user units),
     0  Area-source side length (m)
     0  Average emission rate (g/sec) for both pollutants,
     0  Daytime and nighttime emission rate ratios,
     0  Source height (m) ,
     0  Stack diameter (m),
     0  Stack gas exit velocity (m/sec),
     0  Stack gas temperature (°F, °C, or K), and
     0  Decay half-life (hr).
Area-source  side  length  is  required   for  area sources; stack
diameter, exit velocity, and exit temperature  are  pertinent  to
point sources only.

-------
    Meteorological data needed for the computations are:

     0  Joint frequency function of wind direction, wind speed,
          and stability category,
     0  Average wind speed (m/sec) representing each of six
          wind-speed categories,
     0  Mean atmospheric temperature (°C),
     0  Mixing heights (m) for each of six stability classes, and
     0  Wind-profile exponents for each stability class.
The  user  has the option of inputting a joint frequency function
based on 16 or 36 wind-direction sectors. The first  wind  sector
of  the  joint  frequency  function  must be centered on the wind
                                                           »
direction azimuth of 0°.
    The  location  of  each  receptor  must  be   indicated.   If
available,  the  observed  concentration of each pollutant can be
supplied. Also the user has the option of specifying  the  height
above ground (m) of all the receptors.

    Calibration  constants  based on previous CDM-2.0 runs and on
observed data  can  be  provided  and  used  to  obtain  adjusted
concentration values.

-------
                            SECTION 3

                    FEATURES AND LIMITATIONS

    As  noted  previously,  CDM-2.0  is  an  upgraded  version of
program CDM which was released in 1973. CDM-2.0  is  a  long-term
(seasonal  or  annual)  algorithm  for  evaluating the effects of
multiple point and area sources in the near-field (within 25 km).
The modeling region should consist of  relatively  flat  terrain.
The  model  includes  the  following computation features in common
wi th CDM:

     0  Can handle up to  200 point sources and 2500 area sources,
     0  Unlimited number  of receptors can be considered, and
     0  Optional use  of Holland's equation (1953) for  limiting
          p1ume rise.

It should be noted that the number of sources can be modified  by
a  global change within the code. Optional output features common
to both CDM and CDM-2.0 are point and area concentration roses at
a set of user-specified receptors. The  user  can  reduce  output
volume  by just listing concentration results and not  echoing the
i nput data.

    Modeling features added to CDM-2.0 include:

     0  Optional initial  dispersion, buoyancy-induced  dispersion,
          stack-tip downwash, and gradual plume rise;
     0  Choice of joint frequency function based on 16 or 36 wind
          di rect ion sectors;
     0  Choice of one of  seven dispersion parameter schemes;
     0  Optional output of concentration versus stability
          histograms  at user-specified receptors; and
     0  Default option  to set  input parameters for regulatory use,

The plume rise algorithm  has been modified to handle rise  during

-------
stable conditions and to consider momentum-dominated plumes.

    Its limitations are as follows:

     0  Source emissions and meteorology should be uncorrelated,
     0  Variation in emission rate between adjacent area
          sources is assumed to be negligible,
     0  Terrain should be flat to gently rolling, and
     0  No consideration of chemical reactions or removal other
          than that which can be handled as a simple exponential
          decay.

It is assumed that one wind vector and one stability category are
representative at any given time of the area being modeled.

    Table 1 compares CDM-2.0 features to those of other long-term
ai r quali ty mode Is.

-------
   TABLE  1.   A COMPARISON OF  CDM-2.0  TO OTHER COMMONLY USED LONG-TERM
                             AIR QUALITY MODELS.


X - used by model
O - optional


MODEL TYPE
Gaussian
AVERAGING PERIOD
Hour
3-hour
24-hour
Annual
TYPE OF SOURCES
Single stack
Multiple stacks
Area sources
RECEPTORS
Number of
Cartesian coordinates
Cartesian coordinates w/ elevations
Polar coordinates
Polar coordinates w/ elevations
METEOROLOGICAL DATA
RAMMET preprocessor
STAR file5
User specified
POLLUTANT
Non-react i ve
Half-life
PLUME RISE
Stack-tip downwash
Gradual plume rise
Buoyancy- induced dispersion •
TERRAIN ADJUSTMENTS
C
D
M
i
•
0

X




X

X
200
2500

X4

X




X
X

X
O

O
O
O


M
P
T
E
R

X

0
O
O
O

X
250


180
X
X
X
X

X

0

X
0

0
O
O
0
C
R
s
T
E
R

X

X
X
X
X

X
19'


180


X
X

X



X
O

O
O
O
0
V
A
L
L
E
Y

X



O
O

X
50^
SO2

112



X


X
X

X
0


O
O
0



I
s
C

X

O
0
0
O

X
X'
X3

360
X
X
X
X

X
X
O

X6
0

0
0

O



C
D
M

X




X

X
200
2500

X4
X





X
X

X
O


X


(1)   Collocated stacks.
(2)   Total  of 50 point  and/or  area  sources.
(3)   Number of sources  depends upon several  input  parameters
(4)   Unlimited.
(5)   Note  the difference  in STAR file  for  VALLEY,  ISC,  CDM.
(6)   Gravitational  settling and dry deposition  considered.

-------
                            SECTION 4

                        BASIS FOR CDM-2.0

    This  section  presents  a   brief   narrative   highlighting
important  aspects of the modeling approach. A detailed technical
description, including equations, is provided in Section 5.

GAUSSIAN PLUME ORIGINS

    CDM-2.0 is based upon the Gaussian plume hypothesis. Gaussian
plume methodology assumes that pollutant  concentrations   from  a
continuously emitted plume are proportional to the emission rate,
and  are  diluted  by the wind at the point of emission at a rate
inversely proportional to the wind speed. It is also assumed that
the pollutant concentrations in the vertical near the source  are
closely  described  by  Gaussian  or normal distributions. Calder
(1971, 1977) showed that  under  the  special  circumstance  when
emissions   and  meteorology  can  be  treated  as  statistically
independent, i. e.,  uncorrelated,  that  the  long-term   average
concentration  values can be estimated using the average emission
va.lues  and  the  joint  frequency  function  of   meteorological
conditions.  In  the methodology, the joint frequency function  is
assumed to be piece-wise constant in 22.5°  (10°) wind sectors   of
a  16-point  (36-point)  compass. We assume that in practice (and
certainly  when  large  grid  areas  are  used  to  specify   the
area-source  emissions), the variations  in  emission rates  between
adjacent area sources can be disregarded. Then under  the  narrow
plume  hypothesis,  the  equations  for  computing  the long-term
average concentration contributions from the  point  sources  and
the   area  sources  do  not  involve  the  crosswind  dispersion
parameter,  but  only  the  vertical  dispersion  parameter.  The
area-source  contributions  are determined  by an integration over
the upwind area sources. For  this  integration,  an  area-source
                                 10

-------
emission  rate  (over  the  wind-sector  width)  is determined at
various distances upwind from each receptor.

PLUME RISE

    The user can choose between two methods of  estimating  plume
rise:  Briggs'  plume  rise  (1969, 1971, and 1975) and Holland's
equation   (1953).   The   Briggs   formulation    treats    both
buoyancy-dominated  .and  momentum-dominated  rise.  In  Holland's
equation, the value of the product of the average wind speed  and
the  height  of  plume  rise  is  used.  This  option  permits no
variation of the product with distance from  the  stack  and  the
magnitude of the plume rise is at the discretion of the user.

DISPERSION ALGORITHMS

    As  an  option  the  user can choose one of seven schemes for
characterizing vertical dispersion downwind of the source.  These
include the following:
     o
     o
        Briggs-rural (Gifford, 1976),
     0  Briggs-urban (Gifford, 1976),
        Brookhaven National Laboratory (Singer and Smith, 1966),
     0  Klug (Vogt, 1977),
     0  St. Louis (Vogt, 1977),
     0  PGCDM (Busse and Zimmerman, 1973), and
     0  PGSIG (Pasquill, 1961 and Gifford, 1960).

The  above  algorithms  are  functions  of  downwind distance and
atmospheric stability. Dispersion curves and equations  for  each
of the schemes are presented in the next section.
                                 11

-------
                            SECTION 5

                      TECHNICAL DESCRIPTION


    This section expands on concepts mentioned briefly in Section
4.  The  mathematical  formulation  of  the  physical   processes
simulated  by  CDM-2.0 are presented here. Equations are shown  in
their final form (i.e., without derivations); however, references
are provided for those readers interested in the details.

METEOROLOGICAL PARAMETERS

Joint Frequency Function

    The joint frequency function (also known as STability  ARray)
is required as input for the model. This function gives the joint
frequency  of occurrence of a wind-direction sector, a wind-speed
class, and a stability category index. The user has the option  of
providing a joint frequency function based on  16  wind-direction
sectors  (each  sector  is  22.5°)  or 36 sectors (each sector  is
10°). It is required that the first wind sector  be  centered   on
the  wind  direction  azimuth of 0°. There are 576 entries in  the
joint frequency function  table  for  16  wind-direction  sectors
(i.e.,  16  wind-direction  sectors,  6 wind-speed classes, and  6
stability classes).  If the user's  joint  frequency  function   is
based on a 36 point wind rose, then there are 1296 entries in  the
table.

    The  relationship  between the Pasquill stability classes  and
those used in CDM-2.0  is shown in Table 2.
                                 12

-------
    TABLE 2.  RELATIONSHIP BETWEEN PASQUILL STABILITY CLASSES
                    AND THOSE USED IN CDM-2.0
Pasqui
A
B
C
D,
D,
E
F
11 stabi li ty
class



day
night


CDM-2.0 stabi 1
index
1
2
3
4
5
6
7 .
ity







The seven classes result from neutral stability  being  separated
into   daytime   and   nighttime   conditions.  Although  CDM-2.0
recognizes 7 distinct categories, the joint frequency function is
assumed to be comprised of only 6  stability  classes.  The  user
indicates  the  dispersion  curve  associated  with  each  of the
stability categories of his joint frequency  data  via  variables
ICP  and  ICA.  These and other input parameters are described in
Sect ion 8.

    The user must supply the central  wind  speed  values  for  a
height  of  10  m  above  ground  level for each of the six speed
categories; typically that is the harmonic  average  wind  speed.
Wind  speed  intervals  assumed  in  the National Climatic Center
(NCC) STAR summaries are shown in Table 3, along with appropriate
central wind speeds.
                                 13

-------
   TABLE 3.  NCC STAR SPEED  INTERVALS AND CENTRAL WIND SPEEDS
Wind speed
class
1
2
3
4
5
6
NCC speed interval
(knots)
0 to 3
4 to 6
7 to 10
11 to 16
17 to 21
> 21
Central wind
speeds (m/sec)
1.50 *
2.46
4.47
6.93
9.61
12.52
*  Light winds reported  in  the  first  wind  speed  class  are
   rounded  up  to 1.50 m/sec.  Operational wind  instruments are
   designed for durability and also  to  withstand  exposure   to
   strong,  gusty airflow.  For these reasons, most wind sensors
   have a high starting speed, which can lead to  the  erroneous
   reporting of light winds as calms (Truppi, 1968).


Wind Profile


    Wind speed generally increases with height above the surface,

and   this   increase  depends  on  both  surface  roughness   and

atmospheric stability. A power-law profile of the form
                        U(z) = Uj^z/10)
(1)
is used by CDM-2.0 to approximate this increase. The  wind  speed

at  a  height  z  above  the ground is U(z); U^ is the wind speed

measured at the anemometer height (10 m above the ground); and  p

is  a  function  of stability. The user supplies the wind-profile

exponents, p, for each stability  class.   Suggested  wind-profile

exponents are shown in Table 4. For a more detailed discussion of

wind profiles, the reader may refer to Irwin (1979).
  TABLE 4.  WIND PROFILE EXPONENTS FOR TWO SURFACE ROUGHNESSES


Urban p
Ru r a 1 p
Stabi 1 i ty class
A B C D E F
0.15 0.15 0.20 0.25 0.30 0.30
0.07 0.07 0.10 0.15 0.35 0.55
                                 14

-------
Mixing Height

    The  magnitude  of  the  mixing height undergoes considerable
diurnal, seasonal, and annual variation.  It  is  impractical   to
account  for  all  such variations in detail. Some recognition  is
given to changes  in .the  magnitude  of  the  mixing  height   by
assigning  an  appropriate  value to each stability category. The
user must  choose  an  appropriate  relationship  between  mixing
height  and  stability category. One possible parameterization  is
given in Table 5.
      TABLE 5.  MIXING HEIGHTS BASED ON STABILITY CATEGORY
Stabi 1 i ty category
A
B
C
D,day
D, night
E - F
Mixing height, meters
3L/2
L
L
L
(L + L )/2
mi n
L
mi n
In Table 5, L is the climatological  mean  value  of  the  mixing
height as tabulated by Holzworth (1972) and Lmin is the nocturnal
mixing height.

CONCENTRATION FORMULAS
    The  average  concentration  due  to  area  sources, CA, at a
particular receptor is given by
             ?  N         66
C  = (N/2H)  I [ I  q (p)  I    Z  4>(k,J,,m) S(p,z;U ,P )] dp,   (2)
 A          n  k = l  k    1=1  m=l                 2,  m
where,
N
k

Q(p,e)
= number of wind-direction sectors (i.e., 16 or 36),
= index identifying wind-direction sector,
= /Q(p,e)d9 for the k sector,
= emission rate of the area source per unit area,
                                 15

-------
p            = distance  from  the  receptor  to  an  infinitesimal
               area source,
6            = angle relative  to  polar  coordinates  centered on
               the receptor,
i            - index identifying  the wind-speed  class,
m            = index identifying  the stability  category,
4>(k,i,m)     = joint frequency  function,
S(p,z;U ,P ) = dispersion  function  defined  in Eqs.  4  and  5,
       i  m
z            = height of receptor above  ground  level,
Uj,           = representative wind  speed,
P            = stability category.
 m
    For point sources,  the average  concentration due  to   n  point
sources, C , is given by
             n    6     6
C  = (N/2ir)  Z    Z     Z   [4>(k  fJL,m) G   S(p  ,z;U ,P )]/p  ,    (3)
 P          n = li = lm=l      n       n     n     i  m     n

where
k  = wind sector appropriate  to  the nth  point source,
 n
G  = emission rate of the  nth  point source,
 n
p  = distance from the  receptor  to  the  nth  point source.
 n
    The dispersion function,  S(p,z,;U ,P ),  is  defined  as

S(p,z;U ,P ) = 2/(v/2~iuJ  o ) [exp {-(1/2) [ (z-H)/o ]   } +
       i  m           i  z  I                   z
                                    2 1
               exp{-(l/2)[(z+H)/0  1  } exp[-0.6920/(U.T   )],   (4)
                                  Z   J            •  X.  11 i

 if o  < 0.8L and as
    z

           S(p,z;U ,P )  =  (1/U  L)exp[-0.692p/(UnT  )],         (5)
                  8,  m        I                 8. 1/2

 if o > 0.8L. New terms  in  Eqs.  4  and 5  are  defined  as  follows:
    fm
    z
    = vertical dispersion  parameter,  i.e.,  the  standard deviation
      of  the pollutant  concentration  in  the vertical  plane,
                                  16

-------
H   = effective stack height of source distribution,  i.e.,  the
      average height of area source emissions  in the  kth wind
      direction sector at radial distance p from the  receptor,
L   = the mixing height,
T   = assumed half-life of pollutant  (hr).

    The  possibility of pollutant removal by physical or chemical
processes is included in the program  by  the  decay  expression,
exp[-0.692P/(UjT  )].  The  total concentration for the averaging
period is the sum of concentrations of the point and  area sources
for that averaging period.
    Computational procedures for area source contributions  differ
among the sector-average models in UNAMAP. For  instance,   Valley
and  ISCLT  consider area sources as  virtual point sources  (Burt,
1977; Bowers et al., 1979).  This  computational  method  differs
from the procedure used in CDM-2.0, which is discussed next.

    Suppose  that  receptor R is located within the grid array as
shown in Figure la. The first step in the program is  to determine
the distance from the receptor to the farthest corner of the grid
array. This distance, o, is taken as  the  upper  limit  of  the
                       M
integral q (p) in Eq. 2.
          K
    An  angular  integration,  using  the  trapezoidal  rule,  is
carried out numerically, as shown in  the blow-up  in  Figure  Ib.
This  integration determines q (p) at various  increments of p , as
                              k
indicated in Table 6.
                                 17

-------
     la.
      ib.
                                           k EMISSION
                                               GRID
Figure 1.  Illustration of sector  integration  (modified from Busse
           and Zimmerman, 1973).
                               13

-------
              TABLE 6.  INCREMENTS OF INTEGRATION
Upwind range (m)
0 <
2500 <
5000 <
C P <
C P <
C p <
2500
5000
PM
Increment *
DELR
2- DELR
4»DELR
         •  The value of DELR  is controlled  by  the  user
            (see Section 3).

The integration over p (see  Eq. 2)  follows  next  and   is   also
accomplished  using  the  trapezoidal rule. As  shown  in Figure  1,
the integration over p extends beyond the boundary  of  the   grid
system but no additional contribution to the concentration occurs
since the source density is zero.

    In the case where the receptor lies outside the emission  grid
array,  the nearest distance, P , to the grid boundary as well  as
the maximum distance,P  ,
                       M
is   found.   The  lower  limit  to  the
integral  over p is then p   and the upper  limit  isp   . Evaluating
                          m                         (VI
the integral from p  instead of  from  zero  results   in   reduced
                   m
computer time.

STACK DOWNWASH

    The  user  has the option of applying  either of  two stack-tip
downwash algorithms: Briggs1  (1974)  or   Bjorklund   and   Bowers'
(1982).

Briggs Stack Downwash

    The  physical  height   is modified following Briggs (1974,  p.
4). The modified physical stack height, h',  is  found  from
           h' =
                       2[(V3/U) - 1.5]DS
               for Vg  < 1.5U,
                                          for Vs 2  1-5U,
                                   (6)
where h is the physical stack height (meters), V"s   is   stack   gas
velocity  (m/sec),  and Ds is inside stack-top diameter  (meters).
If the user chooses this downwash  algorithm,  then  h'   is   used
                                 19

-------
 throughout  the  remainder  of  the  plume  height  computation.

 Bjorklund and Bowers  Stack Downwash

    The  effects   of   stack-tip  downwash  can  also  be simulated by
 applying  a  correction   factor   to   the   estimated  plume  rise.
 According   to   Bjorklund  and  Bowers  (1982)  the  stack-tip downwash
 correction  factor,  f,  is  defined by
         f =
1

(3V
0
  - 3U)/V
s        s
for U < V /I.5
      ~  3
for V /I.5 < U < V
     s            s
for U > V
(7)
This correction  factor accounts  for  the  effects   of   downwash   in
the  lee of  stacks  during  periods when  the wind  speed  at  the  stack
height  is  greater  than or  equal to  0.67  times  the  stack  gas exit
velocity.  It  is  not  used  (i.e.,  f  =  1)   for   stacks   with Froude
numbers less  than  3.0. The  Froude  number, Fr,  is  the  ratio of  the
inertial   force  to   the  force of  gravity for a given fluid  flow.
Briggs (1969) defines the Froude number  for  stack gas releases  as
                  Fr = V /{g[(T  - T  )/T  ]D  }.
                        s l     s    a   as
                                                (8)
PLUME RISE
    The user, has a choice between  two methods of estimating  plume
rise: Briggs' algorithm (1969,  1971,  and  1975)  and  Holland's
equat ion (1953).

Br iggs Plume Ri se

Neutral-Unstable Momentum Rise-*-
    Regardless  of  the  atmospheric  stability, neutral-unstable
momentum rise is calculated.  The  plume rise is  calculated   from
Briggs1 (1969, p. 59) Eq.  5.2:
                          AH = 3DSVS/U.
                                                (9)
Briggs (1969) suggests that this equation is most applicable when
                                 20

-------
Vs/U  is  greater than 4.  Since momentum rise OCCUTS quite  close
to the point of release, the distance to final rise  is set   equal
to zero.

Neutral-Unstable Buoyancy Rise—
    The  value  of the Briggs buoyancy flux parameter, F  (m4/s3),
is needed for computing the distance to final rise and the   plume
rise.   The  following  equation  is equivalent to Briggs1  (1975,
p. 63) Eq. 12:

                      F = (gVsDgAT)/(4Ts),                    (10)

where AT = TS - Ta,  T3 is stack gas temperature (K),  and  Tfl   is
ambient air temperature (K).
    For   situations   where  TS ^ Ta,  buoyancy  is  assumed   to
dominate.  The distance to  final  rise  xf   (in  kilometers)   is
determined  from the equivalent of Briggs' (1971, p. 1031) Eq.  7,
and the distance to final rise  is assumed to  be 3.5x*,  where   x*
is  the  distance  at  which  atmospheric  turbulence  begins   to
dominate entrainment.  For F less than 55,

                          x£ = .0.049FV8.                      (11)

For F equal to or greater than  55,

                          xf =  0.119F2/'.                      (12)
    The plume rise,   AH  (in  meters),  is  determined  from  the
equivalent  of  the combination of Briggs1 (1971, p. 1031) Eqs.  6
and 7.  For F less than 55,
                        AH = 21.425F3/4/U.                     (13)

For F equal to or greater than  55,

                        AH = 38.71FV'/U.                      (14)
    If the neutral-unstable momentum rise (previously  calculated
from  Eq.  9)  is  higher than  the neutral-unstable  buoyancy rise
calculated here, momentum rise  applies and the distance to   final
rise  is set equal to zero.
                                 21

-------
Stability Paramet e r - -
    For   stable   situations,    the   stability   parameter   s   is
calculated from the equation  (Briggs,  1971,  p.  1031):

                        s = g(39/3z)/Ta.                      (15)

As an approximation, for stability  class E  (or  6),  36/3z is  taken
as 0.02 K/m, and for stability  class F (or  7),  39/3z  is  taken   as
0.035 K/m.

Stable Momentum Rise—
    When  the  stack gas temperature is  less  than the  ambient  air
temperature, it is assumed  that  the plume rise   is  dominated   by
momentum.   The  plume  rise   is  calculated   from  Briggs1  (1969,
p. 59) Eq. 4.28:

                AH = 1.5[(Vs2D2sTa)/(4TsU)]'/3s"1/6.              (16)

    This  is compared with the  value for  neutral-unstable momentum
rise  (Eq. 9) and the lower  of  the   two  values   is  used  as  the
resulting plume height.

Stable Buoyancy Rise--
    For   situations   where  TS  £  Ta,   buoyancy   is   assumed   to
dominate.   The  distance   to   final   rise   (in   kilometers)   is
determined  by  the equivalent  of a combination  of  Briggs'  (1975,
p. 96) Eqs. 48 and 59:

                       xf = 0.0020715Us"'/2 .                   (17)

    The p'lume rise is determined  by  the  equivalent   of  Briggs'
(1975, p. 96) Eq. 59:

                       AH = 2.6[F/(U.s)]1/3.                    (18)

    The  stable  buoyancy rise  for  calm  conditions  (Briggs,  1975,
pp. 81-82) is also evaluated:

                         AH =  4F1XV3/8.                       (19)
The lower of the two values obtained from Eqs.  18 and  19 is  taken
as the plume rise.

                                  22

-------
    If the  stable  momentum  rise  is  higher  than   the  stable
buoyancy  rise  calculated  here,  momentum  rise applies and  the
distance to final rise is set equal to zero.

Gradual Plume Rise--
    If the user exercises the gradual plume rise option  and   the
distance upwind from receptor to source x (in kilometers) is  less
than the distance to final rise, the equivalent of Briggs' (1971,
p. 1030) Eq. 2 is used to determine plume rise:

                        H = (160F1/3h2/3)/U.                    (20)

This  height  is  used  only  for  buoyancy-dominated  conditions;
should it exceed the final rise  for  the  appropriate  condition,
the final rise is substituted instead.
Holland's Equation

    Alternatively,  plume  rise  can  be  estimated  by Holland's
equation (1953). The user supplies the  product  of  the  average
wind  speed and the height of plume rise (U«AH)via input variable
SA (see Section 8). Holland's equation forU-AHis as follows:
        U'AH = D V  (1.5 + 0.00268p [(T  - T )/T ]D  },        (21)
                 s s               a   s    a   s  s
where p  is the atmospheric  pressure  in  millibars   (the  other
variables   are   defined   above).   This   equation  frequently
underestimates plume rise  (Turner,  1970  and  Johnson  et   al.,
1976).  Holland (1953) suggested that a value between  1.1 and  1.2
times the computed plume rise from  Eq.  9  should  be  used   for
unstable  conditions  and  a  value between 0.8 and 0.9 times  the
computed plume rise should be used for stable conditions. This  is
accommodated in CDM-2.0 by adjusting the plume rise as,

               AH(final) = (SA/UHl.4 - 0.1-ICP),             (22^
where SA  is defined  above and  ICP  is  an  array  of values  input by
the  user  to define  the  dispersion  curve  to  be  associated  with
each  stability  category.
                                 23

-------
DISPERSION ALGORITHMS

    As   noted   previously,   the   concentration  formulas  are
independent of a  but dependent on az,  the  vertical  dispersion
parameter.  This  results from the assumption in CDM-2.0 (and all
other  climatological  dispersion  models)  that  there  are   no
variations  of  the  wind  direction  frequency function within a
wind-direction sector.

    The user has the option  of  choosing  among  seven  vertical
dispersion parameter schemes; these are:

     0  Briggs-rural (Gifford, 1976),
     0  Briggs-urban (Gifford, 1976),
     0  Brookhaven National Laboratory (Singer and Smith, 1966),
     0  Klug (Vogt, 1977),
     0  St. Louis (Vogt, 1977),
     0  PGCDM (Busse and Zimmerman, 1973), and
     0  PGSIG (Pasquill, 1961 and Gifford, 1960).
The  a   curves  for  each of the above dispersion algorithms are
      z
shown  in Figure 2. The Pasquill stability  categories  have  been
used   here  for  convenience.  The  BNL  and St. Louis dispersion
algorithms  defined  four  curves  and  thus  assumed   different
turbulence  typing  methods (Singer and Smith, 1966; Vogt, 1977).
The PGCDM dispersion algorithm was  included  among  the  options
since  it  is  the scheme used by CDM, CDM-2.0's predecessor. The
dispersion curves  Dl  and  D2  in  the  PGSIG  scheme  represent
adiabatic  and  subadiabatic  neutral  conditions,  respectively.
Lacking suitable temperature  profile  data  for  the  lower  100
meters  of  the  atmosphere,  day and night may be substituted as
criteria   for   adiabatic   and   subadiabatic   lapse    rates,
respectively. Nighttime  is typically defined as one hour prior to
sunset to one hour after sunrise.

    The  dispersion  curves shown in Figure 2 can be approximated
by one of the following  equations:
                                 24

-------
 DISPERSION SCHEMES  CONSIDERED
           BY CDM-2.0
Briggs -- rural  (Gifford,  1976)
Briggs -- urban  (Gifford,  1976)
Brookhaven National  Laboratory,
  BNL (Singer and Smith,  1966)
Klug (Vogt, 1977)
St. Louis (Vogt,  1977)
PGCDM (Busse and  Zimmerman,  1973)
PGSIG (Pasquill,  1961 and Gifford,
  1960)
100
 10
                 Iff I -- rurol
                                         tl	
                                         O.I
                                               Downwind Distance -- Km.
  1000C-
   IOO
     01
                                       lOOOc-
                                        100
                  (f(f9< --
                                                 A-i
                                                       INI
         Downwind Distance -- Km.
         Downwind Distance -- Km.
  Figure 2.   az  curves  by stability class for  the  seven  vertical
                   dispersion  schemes  considered  by CDM-2.0.
                                   25

-------
                                  1OO
         Downwind Distance — Km.
                                                            It. lauii
                                             0.1
                                                   I I I I I I I I    I  t I I I Mil    I  I I I I till



                                                        1           1O         1OO
Downwind Distance —  Km.
lOOOt-
                                             10
              roc DM
      	I
   0.1
                                                                   10
          Downwind Distance —  Km.
                                                     Downwind Distance --  Km.
                         Figure  2.    (continued)
                                        26

-------
                                     c
                     o  = ap/(l + b p)   and                  (23)
                      z

                                   b
                            a  = ap  ,                        (24)
                             z

where a, b, and c are constants and  P is the  downwind  distance.
Eq. 23 is used to  simulate the  Briggs-rural and -urban schemes;
the power-law  formula shown in Eq.  24  represents the BNL, Klug,
St. Louis,  PGCDM, and PGSIG  algorithms.  Parameters a, b, and c
are provided in Tables 7, 8, and 9.

CALIBRATION OF COMPUTED CONCENTRATION

    If the calibration constants of  the linear expression

                          C' = A + BC,                       (25)

where

C'   = calibrated concentration,
A, B = calibration constants, and
C    = computed concentration,

are known, they may be entered  into  the  program  and  used  to
obtain  a calibrated concentration. The calibration constants are
determined from regression analysis  of observed air  quality  and
the computed concentrations produced by the model. Thus, at least
one initial run of the model must be made without the calibration
feature.   Once  the  model  has  been  run  to  obtain  computed
concentrations, a regression  procedure  may  be  followed  using
computed   versus  observed  concentrations.  After  finding  the
desired constants, calibrated concentrations can be  obtained  on
subsequent operations of the model.

CHID SYSTEM AND AREA EMISSIONS

    A  rectangular grid array of uniform-sized squares  is used to
overlay the region of interest. The main purpose of this grid  is
to  catalogue  the  emission  inventory by area sources. There is
some flexibility in the size of the  grid  squares  in  that  the
                                 27

-------
TABLE  7.   CONSTANTS FOR VERTICAL DISPERSION  EQUATIONS USED  BY
                     FIVE DISPERSION SCHEMES
Diapers Ion
algor I thm
Brlgjs-
rursl

Brlggs-
urban

BNL

Klug

St. Lou Is

Eq Const
23 1
b
e
23 a
9
e
24 I
b
24 I
b
14 I
b
Pasqul 11

0
0
1
0
0
•0
0
0
0
1
0
1
A
.JOOO
.0000
.0000
.2400
.0010
.5000
.4000
.9100
.0170
.3800
.0790
.:ooo
B
0.1200
0.0000
1.0000
0.2400
0.0010
-O.SOOO
0.4000
0.9100
0.0720
1.0210
0.0790
1.2000

0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
1.
c
0800
0002
JOOO
2000
0000
0000
3300
8600
0780
8790
1310
0480
Stablli
D.day
0.0800
0.001)
0.1000
0.1400
0.0003
O.iOOO
0.2200
0.7800
0.1400
0.7270
0.9100
0.7020
ty Class
D,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
night
0800
001)
3000
1400
0003
JOOO
2200
7800
1400
7270
9100
7020
E
0.0300
0.0003
1.0000
0.0800
0.001S
O.SOOO
0.0600
0.7100
0.2170
0.8100
1.9300
0.46)0
F
0.0160
0.0003
1.0000
0.0800
0.0015
O.SOOO
0.0800
0.7100
0.2520
O.SOOO
1.9300
0.46SO
  TABLE  8.   CONSTANTS FOR THE VERTICAL DISPERSION PARAMETER
                 EQUATION USED IN THE PGCDM  SCHEME *
Stab! 1 1 ty
e lass
A
B
C
D, day
0, night
E
F
Distance (m)
• 100 to SOO
a
0.0383
0.1393
0.1120
0.08)6
0.08)6
0.0818
0.0)4)
b
1.2812
0.9467
0.9100
0.86)0
0.86)0
O.S1S)
0.8124
SOO to SOOO
a
0.0002)39
0.04936
0. 1014
0.2)91
0.2)91
0.2)27
0.2017
b
2.0888
1.1137
0.9280
0.8869
0.8869
0.6341
0.6020
SOOO to SOOOO
ft
0.2S39F.-3
0.4936E-I
0.11)4
0.7368
0.7368
1.2969
1.S763
b
2.0R8S
1 . 1 137
0.9109
0.5642
O.S642
0.4421
0.3606
    Constants are to be used In conjunction with Eq. 21.
                                28

-------
   TABLE 9.  CONSTANTS FOR THE VERTICAL DISPERSION PARAMETER
                  EQUATION USED IN THE PGSIG SCHEME *
Stability Di
class
A
0.1
0.15
0.2
0.25
0.3
0.4

B
0.2

C
D, day
D, night
0.3
1
3
10

E
0.1
0.3
1
2
4
10
20

F
0.2
0.7
1
2
3
7
15
30

stance
(km)
< 0.1
- 0.15
- 0.2
- 0.25
- 0.3
- 0.4
- 0.5
> 0.5
< 0.2
- 0.4
> 0.4


< 0.3
- 1
- 3
- 10
- 30
> 30
< 0.1
- 0.3
- 1
- 2
- 4
- 10
- 20
- 40
> 40
< 0.2
- 0.7
- 1
- 2
- 3
- 7
- 15
- 30
- 60
> 60
Cons
a
122.80
158.08
170.22
179.52
217.41
258.89
346.75
453.85
90.673
98.483
109.300
61.141
33.504
34.459
32.093
32.093
33.504
36.650
44.053
24.260
23.331
21.628
21.628
22.534
24.703
26.970
35.420
47.618
15.209
14.457
13.953
13.953
14.823
16.187
17.836
22.651
27.074
34.219
tants
b
0.9447
1.0542
1.0932
1.1262
1.2644
. 1.4094
1.7283
2.1166
0.93198
0.98332
1.09710
0.91465
0.8098
0.86974
0.81066
0.64403
0.60486
0.56589
0.51179
0.83660
0.81956
0.75660
0.63077
0.57154
0.50527
0.46713
0.37615
0.29592
0.81558
0.78407
0.68465
0.63227
0.54503
0.46490
0.41507
0.32681
0.27436
0.21716
*  Constants are to be used in conjunction with Eq. 24
                              29

-------
computer  program  accepts   information on emissions  from  squares
whose sides have lengths  which  are   integer  multiples   of   the
length of the side of the basic square. Thus,  if the  basic square
has  a  length  s, emission  information for a  larger  square whose
side has  a  length,  say  4s,  is  accepted   by  the  model   and
distributed uniformly into 16 basic squares.

    The  origin  of  the  overlay  grid  is  located  in the lower
left-hand corner of the array with the X-axis  pointing toward  the
east and the Y-axis pointing toward the north.  With  respect   to
the  map  coordinates of the region, the origin of the grid array
is to be located at some  suitably  chosen  point  in  the  lower
left-hand  section  of the region under consideration. The length
of the side of a square is expressed in meters. However, the  map
coordinates   can  be  expressed  in  any  suitable   units,  say,
thousands of feet or kilometers. The magnitude of the length of a
square depends on how many squares are  needed  in  the  emission
inventory  of  a  region.  For example, CDM-2.0 is dimensioned  at
present to handle 2500 area  sources  (and  200  point  sources);
thus,  the  grid  square  dimension  must be chosen such that  the
limiting  criteria  of  2500  area  sources  is   not   exceeded.
Computation can be performed for any number of receptor points.
OTHER CONSIDERATIONS
Initial Dispers ion

    The  value  of  initial  a   for point sources due to building
effects is modeled as a function of the height  above  ground   of
the  stack,  h.  Table  10  summarizes  the  relationship between
initial az and stack height.

  TABLE 10.  RELATIONSHIP BETWEEN INITIAL o_ AND STACK HEIGHT
Stack height,

0 < h <
20 < h <
50 < h
h (m)

20
50

Initial a
z
30
50 - h
0
(m)




                                 30

-------
For area sources, initial values of az which account for building
effects are user defined for each stability class.

Buoyancy-Induced Dispersion

    For strongly buoyant plumes, entrainment as the plume ascends
through  the ambient air contributes to vertical spread. Pasquill
(1976)  suggests  that  this  induced  dispersion, azb  ,  can  be
approximated  by  the  plume  rise  divided by 3.5. The effective
dispersion can then be determined by adding variances:

                               2     2 1/2
                       o   = (a   + a )  ,                    (26)
                        ze     zb    z

where a,_ is the effective dispersion, and a, is  the  dispersion
       Z &                                   Z
due to ambient turbulence levels.

Effluent Rise for Area Sources

    CDM-2.0  can  consider  changes in effective height with wind
speed for area sources. The input  area  source  height,  HQ,  is
                                                           £L
assumed to be the average physical height of the area source plus
the  effluent  rise  with  a  wind  speed  of  5  m/sec. The user
specifies the fraction, fe, of the input height  that  represents
the  physical  height,  h. This fraction is the same for all area
sources in the inventory. The relationship among H , f  , and h is
                                                  a   G
as follows:

                            h = f H .                        (27)
                                 e a
If fe = 1, there is no rise and the input height is the effective
height for all wind speeds. For any wind speed, U,  the  rise  is
assumed to be inversely proportional to U and is determined by

                       AH = (5/UMH  - h);                    (28)
                                   a
the effective height  is then
                           H = h + AH.                       (29)
                                 31

-------
                           SECTION 6
                        EXAMPLE PROBLEM
    In this  section,  a  hypothetical  problem  is  provided   to
illustrate  the  use  of  CDM-2.0  and the type of information  it
provides. Details concerning input and output  for  this  example
are discussed in Section 10.
    Figure  3  shows  the city limits of Test City along with the
locations of sampling sites and major point sources of pollution.
Minor point sources and area sources were cataloged and  gridded.
The emission grid is shown  in Figure 3. The area and point source
inventory  is  summarized   in  Table  11;  all  necessary  source
information is contained there.
      TABLE 11.  POLLUTION SOURCE INVENTORY FOR TEST CITY.
Loca
(km)
568.5
584.2
577.0
574.1
562.5
567.5
572.5
577.5
582.5
562.5
567.5
577.5
t ion
Y
(tan)
4403.4
4391.6
4401.1
4401.5
4402.5
4402.5
4402.5
4402.5
4402.5
4397.5
4392.5
4397.5
Emission rate
Width
(km)
--
--
—
—
5
5
5
5
5
5
10
5
SO2 v
(g/l)
1365.00
1580.36
221.76
110.25
1.37
1.26
5.25
1.47
1.20
2.62
32.66
5.46
Part
(g/s)
527.63
789.60
34.13
54.08
1.68
1.79
3.99
13.13
1.58
1.47
21.11
3.99
Stack parameters
height Dia Speed
150 0.0 0.0
90 8.7 15.2
30 0.7 17.8
23 1.4 15.2
0
0
10
o
o
10
15
10
I§C?
0
149
515
260
--
--
--
--
--
--
--
-_
                           (cont inued)
                                 32

-------
                     TABLE 11.  (continued)
Loca
X
(km)
582.5
562.5.
577.5
582.5
562.5
567.5
572.5
577.5
582.5
t ion
Y
(km)
4397.5
4392.5
4392.5
4392.5
4387.5
4387.5
4387.5
4387.5
4387.5
Emission rate
Width
(km)
5
5
5
5
5
5
5
5
5
SO 2
(g/s)
6.62
2.63
7.88
5.25
2.73
2.42
5.36
5.57
2.84
Part
(g/s)
5.78
1.16
5.15
3.68
1.37
1.89
4.10
3.89
1.47
Stack parame
height Dia Speed
(ml (m) (m/s)
10
10
20
10
0
10
10
10
10
ters
T§c?
--
--
--
--
--
—
--
--
--
    The meteorology for Test City and its environs is  summarized
in  Figures  4  and  5.  The wind rose indicates that north winds
predominate, occurring almost 14% of the time. However, there  is
a   secondary   peak   from  the  east-southeast.  The  stability
distribution for Test City (Figure 5) shows the  predominance  of
neutral conditions throughout the year.

    Computed concentrations at the sampling sites shown in Figure
3  are  listed  in  Table 12. Note that  CDM-2.0 provides area and
point source contributions. In this example,  the  point  sources
exhibit the greatest impact on the receptors.

    Optional   output   from  CDM-2.0  includes  point  and  area
concentration roses and histograms of concentration by  stability
class.  Figure  6  illustrates  the type of information available
from CDM-2.0, except that CDM-2.0 provides the information in the
form of tables. As mentioned earlier, neutral  conditions dominate
and this is  confirmed  in  the  concentration  versus  stability
histograms.    As    noted    from   the   concentration   roses,
north-northwest, north-northeast, northeast, and  south-southeast
winds  account  for  over 70% of the total concentration (at this
particular receptor), which corresponds  to the directions of  the
four point sources.

                                 33

-------
  4410 i—
  4405
  4400
0)

a!
E
o
  4395
  4390
  4385
10
13
                        14
                      15
                                             8
11
16
                                                            n
                                           12
17 A
                                           >TU
     560        565         570         575         580        585        590



                                 kilometers



              	 city limits


                 A point source


                 • sampling site/receptor


                 © sampling site/receptor (Figure 6 pertains to this receptor)
   Figure 3.  Test  City base map (modified  from Brubaker  et al.,  1977).
                                       34

-------
      w-
                     ......... »"   o    i    to   11  20    ii
                         l~~|   I "j ' I



              WIND SPEED CLASS (Mf>»)         PREQUENCY(%)
         Figure 4.  Wind  rose for  Test City.
         «0
        I"
        W
        X
        Ik

         1O
Figure 5.   Stability distribution for  Test City.
                            35

-------
                           SULFUR DIOXIDE
  10  H
   8  -
 I 6
 c 4
 OJ *
 o

 o
 o  2
             stability category
                              PARTICULATES
«  10
^

"3?
   8  -

c

-------
    Both  input  stream  and  abridged  output  listing  for this
problem are provided in Section 10.

TABLE 12. COMPUTED CONCENTRATIONS AT SELECTED SITES IN TEST CITY.
Loca
X
(km)
570.0
573.9
572.4
579.0
583.0
562.0
566.1
572.5
577.5
576.0
t ion
Concent

Y
(km)
4393
4388
4402
4394
4399
4395
4400
4396
4397
4403
.2
.9
.2
.0
.2
.7
.0
.7
.5
.0
Area sources
SO2
5.4
4.6
4.9
5.4
4.5
2.7
4.2
6.0
5.5
4.4
Part
3.8
3.4
4.3
4.3
4.9
1.9
3.1
4.3
4.4
4.8
Poi
rat i
ions
(yg/m3)
nt sources
SO2
14
9
39
15
11
6
12
17
34
27
.3
.5
.5
.3
.3
.2
.5
.5
.2
.8
Par
5.
3.
13.
4.
3.
2.
4.
6.
7.
6.
t
5
6
0
4
0
2
1
3
6
2
Total
SO 2
20.
14.
44.
20.
15.
8.
16.
23.
39.
32.
3
1
4
7
8
9
7
5
8
3
Part
9.3
7.0
17.3
8.7
7.9
4.0
7.3
10.6
12.0
11.0
                                 37

-------
                            SECTION 7

                  COMPUTER ASPECTS OF THE MODEL

    This section discusses CDM-2.0 from  a  software  design  and
programming  perspective,  and  is  intended to give the reader a
general knowledge of the  computational  system,  rather  than  a
detailed description of each subroutine. The overall structure of
the  program,  a  brief  description  of each subroutine, and the
general processing flow are given  here.  Also  provided  is  the
overall  system  flow,  the  input/output  media,  data flow, and
alternative processing.

SYSTEM FLOW

    An overview of the system will be beneficial to  the  reader.
Figure  7  illustrates the input and output media as well as data
flow for CDM-2.0. Input data requirements are contained in either
one or two files depending on the user assignment of variable IRD
(see Section 8). Output is in two forms: printed output and  card
image  output,  usually  going to a disk file. Card-image records
containing the calculated concentrations  at  each  receptor  are
written  for  use  in  computer programs that analyze information
produced by CDM-2.0. As discussed  in  Section  5,  a  regression
program   must   be  applied  to  obtain  calibration  constants.
Additionally, the disk file output can be used with user-supplied
plot routines to obtain isopleth plots of concentration.

    In addition to the records containing the concentrations from
area and point sources, further output may  be  produced  if  the
NROSE  option  is  used (see Section 8). If NROSE is specified as
greater than zero, additional records are written.  Concentration
versus  stability  histograms  and  concentration  roses for both
pollutants and both source types are provided.
                                 38

-------
Instead of punched
cards,  a disk file
could be the output
medium.
                      Control Data
                      Record types
                         1-3
 Card-image
 output for
 statistics
and Plotting
                             Control Data
                             Record types
                                4. - 18
          Regression
           Routine
          Calibration
           Constants
                Plotting
                Routines
              IsoPleth maps
               Histograms
         Lashed line  indicates alternative Processing
            Figure  7.  System  flow  for CDM-2.0
                               39

-------
    The input/output (I/O) units used by CDM-2.0  are  sunmarized
in Table 13.

         TABLE 13.   INPUT/OUTPUT UNITS USED BY CDM-2.0
FORTRAN
uni t
5
IRD*
IWR*
IPU*
I/O unit
Disk
Disk
Printer or disk
Disk or magnetic
tape
Mode
input
input
output
output
Contents
Program control and input
data (record types 1-3;
Program control and input
data (record types 4-18)
Output listing
Concentration data
 *  See Section 8.

STRUCTURE OF CDM-2.0
    CDM-2.0  consists  of  a main routine and nine subroutines as
shown in Figure 8. Program control data, meteorological data, and
source information are read by subroutine CLINT. The main routine
reads receptor data until an end-of-file is encountered and  then
execution  is  terminated.  With  the  exception  of  one warning
message generated by CALQ, all output is performed  by  the  main
routine  or  by  subroutine CLINT. Brief descriptions of the main
program and subroutines follow.

CDM-2.0 — The main program first calls subroutine CLINT to  read
          all  the  input  data  except  the receptor information
          which is subsequently read  by  the  main  program.  It
          directs   the  concentration  calculations  by  calling
          subroutines  CALQ,  AREA,  and  POINT.   It   is   also
          responsible  for  printing  and  writing  concentration
          results to a file.

CLINT  -- This subroutine is called by the main routine  to  read
          program  control  data, meteorological data, and source
          information. It also echoes  input  according  to  user
          specification.  It calls subroutine VIRTX.
                                  40

-------
I           1
    siuul
                                  vmn ^
                                  IIGHAI
                                 11 an at *att\*
                                   •on Ihm onc«
                  Figure  8.   CDM-2.0  program structure

-------
CALQ   — Called  by  the  main program, subroutine CALQ computes
          the area source vector for each direction  sector.  The
          area  source  vector  contains  emission  rates  for two
          pollutants  and  release  heights  at  various   upwind
          distances.

AREA   — This  subroutine  is  called  by  the  main  routine  to
          calculate concentrations due to area sources. It  calls
          subroutine SIGMAZ.
POINT  — Subroutine  POINT   is  called  by  the  main routine  to
          calculate concentrations due to point sources. It calls
          subroutines VIRTX, STDW, and SIGMAZ.

DFAULT -- This  second  level  subroutine  sets   some   of   the
          user-defined   options;  see  Appendix  A  for   further
          discussion. It is called by  subroutine  CLINT   if  the
          user turns on the default option.

PLRISE -- Called  by  subroutine  POINT,  this  module calculates
          plume rise according to the methods  of  Briggs  (1969,
          1971, and 1975).

VIRTX  — This  second  level  subroutine  is called by CLINT and
          POINT;  it computes  the virtual distance  applicable   to
          the  user-specified  initial  dispersion.  VIRTX calls
          SIGMAZ  to estimate  vertical dispersion.

STDW   — This subroutine is  called by POINT  to  estimate  stack
          downwash.

SIGMAZ -- This  subroutine is called by AREA, POINT, and VIRTX  to
          calculate the vertical dispersion parameter.  The  user
          can choose among seven different schemes.

    Figure  9  is  an abbreviated flow diagram of CDM-2.0  showing
its major loops and relationships among the subroutines  and  the
main  routine.  A set  of  program  flow  charts   is provided  in
Appendix B.
                                 42

-------
CDM-2.0
                    •CLINT (read  and  echo  input  data)


                                         	 SIGMAZ
VIRTX
  I	
                                 DFAULT
            •Loop  over  receptors

             Loop over  wind  direction  sectors

                     CALQ (calculate area source vector)

            	AREA

                              Loop over stability class

                              Loop over wind speed class

                        	SIGMAZ
                     POINT
                                  •Calculate  concentrations
                                     due to area  sources
                              Loop over  point  sources

                             'Loop over stability class
                                  .VIRTX
                                     I	
                                         	 SIGMAZ
                              Loop over wind speed  class

                             	PLRISE

                             	STDW

                             	SIGMAZ
                                   Calculate  concentrations
                                     due to point  sources
                       Write Concentration  results
   EXIT
                    Figure 9.   CDM-2.0 flow diagram.
                               43

-------
NON-STANDARD FEATURES

    The PARAMETER statement, which is used in the  main  program,
is  not an ANSI FORTRAN statement, and hence may not be available
in the user's FORTRAN compiler. As PARAMETER allows constants   to
be  referenced  by symbolic names, it facilitates  the updating  of
programs in which the only changes between  compilations  are   in
the  values  of  certain  constants.  In  CDM-2.0,  the PARAMETER
statement  initializes the following variables:

     NPTS  - number of point sources,
     NQLIM - number of upwind  integration steps allowed,
     NASE  - number of east-west area-source grid  squares,
     NASN  - number of north-south area-source grid squares,

which  in turn are used to dimension several arrays. If the user's
compiler does not support the  PARAMETER statement, the  variables
NPTS, NQLIM, NASE, and NASN must be hardcoded. The best way  to  do
this is to perform global changes using a text editor.
                                 44

-------
                             SECTION 8
                      INPUT DATA PREPARATION
RECORD INPUT SEQUENCE

    There  are   18  record  types  read by GDM-2.0. Six of these are
free  format   input,   eight   are  fixed  format,  three  are   of
user-specified   format,  and  one  is  a blank record. While the free
format is easy  to use,  care  should  be taken to ensure that  every.
variable  is   given  a  value  in  the  correct  order. Also each
variable should  be  separated by  a conma and should conform to the
variable name  type  (integer  or  real). Table 14 lists  the  record
types  and input associated  with each record.  A brief description
of each  input  variable is  given  in  Table 15 with the  appropriate
units.  Under  the "Format" column of Table 15, FF represents free
format and US  indicates  user-specified format.

         TABLE  14.   SUMMARY OF RECORD TYPES FOR INPUT DATA.
 Record
  type
Descr iption
Format
 type
Input
 uni t
 Calling
subrout ine
    1      HEADNG  -  run  title
    2      NSO2,PNAME
    3      ARCS,PROS,IRDN.NL1ST,IRD,
          HVR,IPU,CA,CB
    4      N1636,NP50,NPDH,NSTDW,NGRAD,
          FAC, RCEPTZ, KEL V IN, NDEF
    5      ELOW,ICA
    6      KHIGH,ICP
    7      DELR,RAT,CY,XG,YG,TOA,TXX
    8      DINT,YD,YN,SZA,GB
    9      UE
   10      U
   11      H
   12      FMETEO
   13      F
   14      FSOORC
   15      X,Y,TX,S1,S2,SH,D,VS,T,SA
   IS      Blank Sentinel Card  (End of
          source  input)
   17      FRECPT
   18      RX,RY,KPX(9),KPX(10)TNROSE
                              Fixed
                              Fixed

                              Fixed
           5
           5
         CLINT
         CLINT

         CLINT
Free
Free
Free
Fixed
Fixed
Free
Free
Free
Fixed
FMETEO
Fixed
FSOURC
__
Fixed
FRECPT
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
IRD
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
CLINT
MAIN
MAIN
                                  45

-------
           TABLE 15.  RECORD INPUT SEQUENCE FOR CDM-2.0
Record type,
  Variable      Column    Format
                   Variable  description (units)
Record type 1
  HEADNG         1-80
Record type 2
  NSO2
  PNAME
Record type 3
  ARCS
  PROS


  I RUN

  NLIST
  IRD


  IWR


  IPU


  CA


  CB
 1- 1
 5-12



 1- 8


 9-16


17-21

22-26
          20A4      80-character  description or
                   title  of  model  run
II       Pollutant number for SO2
         = 0,  SO2  not considered
         = 1,  pollutant 1 is SO2
         = 2,  pollutant 2 is SO2

2A4      Names of  two pollutants to be
         modeled (e.g., SO2, TSP)
2A4      Alphanumeric area rose output
         ident i ficat ion

2A4      Alphanumeric point rose output
         ident i ficat ion

15       User-defined run identification

15       Control for printed output
         > 0, echo set-up information,
              meteorology, and list
              concentration results
         = 0, echo set-up information,
              meteorology, source, and
              list concentration results
         < 0, list concentration
              results only
27-31     15


32-36     15
         FORTRAN logical unit number -
         read

         FORTRAN logical unit number -
         pr int
37-41     15       FORTRAN logical unit number -
                   punch

42-59     2F9.0    Intercepts of calibration for
                   both pollutants (ug/m3)

60-77     2F9.0    Slopes of calibration for both
                   pol lutants

            (cont i nued)
                                  46

-------
                       TABLE 15  (continued)
Record type,
  Var iable
Column    Format   Variable description (units)
Record type 4
  N1636
  NP50
          FF
          FF
  NPDH
          FF
  NSTDW
          FF
  NGRAD



  FAC


  RCEPTZ


  KELVIN
          FF



          FF


          FF


          FF
  NDEF
          FF
Number of wind directions used
in the meteorological joint
frequency function (16 or 36)

Initial dispersion option
< 0, no action taken on point
~  .  sources with release
     heights below 50 m
> 0, initially dispersed as
     described in Section 5

Buoyancy-induced dispersion
option
< 0, no action taken
> 0, include buoyancy-induced
     dispersion effects
     (Pasquill, 1976) in point
     source dispersion

Stack downwash option
< 0, Bjorklund, Bowers (1982)
     stack downwash used
= 0, no action taken
> 0, Briggs (1974) stack
     downwash considered

Gradual plume rise .option
= 0, no action taken
> 0, gradual plume rise used

Effluent rise for area sources
See Section 5 for description.

Height above ground of all
receptors (meters)

Units flag for stack gas
temperature
< 0, °F
= 0, °C
> 0,  K

Default option
= 0, no action taken
> 0, implement default option
     (see Appendix A)
                            (cont i nued)

-------
                       TABLE 15  (continued)
Record type,
  Var iable
Column    Format   Variable description (units)
Record type 5
  KLOW
  ICA
Record type 6
  KHIGH
  ICP
Record type 7
 . DELR

  RAT
  CV



  XG



  YG



  TOA

  TXX
Record type 8
  DINT
 1- 6

 7-12


13-18



19-24



25-30



31-36

37-42



 1- 6
          FF


          FF
          FF


          FF
F6.0

F6.0'


F6.0



F6.0



F6.0



F6.0

F6.0



F6.0
         Dispersion parameter scheme
         for area sources

         Array of six values defining
         dispersion curves (as defined
         by KLOW) to be used for the six
         stability categories summarized
         in the joint frequency function

         Dispersion parameter scheme
         for point sources

         Array of six values defining
         dispersion curves (as defined by
         KHIGH) to be used for the six
         stability categories summarized
         in the joint frequency function
Radial increment (meters)

Length of basic emission grid
square (user units)

Conversion factor (m/user units)
CV-RAT = emission grid interval
         in meters

East-west map coordinate of
the southwest corner of the
emission grid array (user units)

North-south map coordinate of
the southwest corner of the
emission grid array (user units)

Mean atmospheric temperature (°C)

Width of the basic emission
grid square (meters)
Number of intervals used to
integrate over a 22.5° or 10'
sector. Maximum value is 20;
minimum is 2.
                            (cont i nued)

                                  48

-------
                       TABLE 15  (continued)
Record type,
  Var iable
Column    Format   Variable description (units)
  YD



  YN



  SZA


  GB
Record type 9
  UE
Record type 10
  U
Record type 11
  HL
Record type 12
  FMETEO
 7-12     F6.0     Ratio of the daytime emission
                   rate to the average 24-hour
                   emission rate

13-18     F6.0     Ratio of the nighttime
                   emission rate to the average
                   24-hour emission rate

19-54     6F6.0    Initial az for area sources
                   (me t e r s)

55-66     2F6.0    Decay half-life for the two
                   pollutants (hours)
          FF       Array of six values defining
                   wind profile exponents to be
                   associated with the six sta-
                   bility categories summarized
                   in the joint frequency func-
                   t ion
          FF       Array of six values defining
                   wind speeds at 10 m to be
                   associated with the six wind
                   speed categories summarized in
                   the joint frequency function
                   (m/sec)
          FF       Array of six values defining
                   mixing heights to be associated
                   with the six stability cate-
                   gories summarized in the joint
                   frequency function (meters)
 1-64     16A4     Format statement, including
                   beginning and ending paren-
                   thesis, for the meteorological
                   joint  frequency function.  User
                   note: CDM format was (7X.6F7.0)

            (cont i nued)
                                  49

-------
                       TABLE 15  (continued)
Record type,
  Var iable
                Column
Format   Variable description (units)
Record type 13*
Record type
  FSOURC
            14
                 1-64
Record type
  X
  Y


  TX


  SI


  S2


  SH

  D


  VS


  T
            15t
                          US
16A4
US

US

US

us

us

us

us

us

us
                                   Meteorological joint frequency
                                   funet ion;
                                   i  = index for stability class
                                   j  = index for wind speed class
                                   k  = index for wind direction
Format statement, including
beginning and ending paren-
thesis, for the source inven-
tory.  User note:  CDM format
was (F6.0,2F7.0,2F8.0,F7.0,
F5.0,2F7.0,F5.0)
East-west coordinate of source
(user units)

North-south coordinate of
source (user units)

Width of area source (meters).
Leave blank for point sources.

Emission rate of pollutant 1
(g/sec)

Emission rate of pollutant 2
(g/sec)

Source height (meters)

Stack diameter (meters).
Leave blank for area sources.

Exit velocity (m/sec).
Leave blank for area sources.

Stack gas temperature.  Leave
blank for area sources.  User
selected units (see  record
type 4).
                            (cont inued)
                                  50

-------
                       TABLE 15  (continued)
Record type,
  Var iable
Column    Format   Variable description (units)
  SA
Record type 16
Record type 17
  FRECPT         1-64
Record type 18]
  RX
  RY
  KPX9
  KPX10
  NROSE
          US
          16A4
          US


          US


          US



          US



          US
Plume rise option
< 0, Briggs plume rise
> 0, Holland's equation. Enter
     product of plume rise and
     wind speed (m2/sec)
                                   This is a blank record which
                                   follows the source data. It is
                                   used to test for the end of
                                   the source data and must not
                                   be left out.
Format statement, including
beginning and ending paren-
thesis, for the receptors.
User note: CDM format was
(2F8.0,14X,I4,3X,I4,15)
East-west coordinate of the
receptor (user units)

North-south coordinate of the
receptor (user units)

Observed concentration of
pollutant 1 at the receptor,
if known (ug/m3)

Observed concentration of
pollutant 2 at the receptor,
i f known (ug/m3)

Option for pollutant concen-
tration roses
> 0, print concentration roses
< 0, no concentration roses
   FF = free format;  US = user-specified format

*  If N1636 = 16 there are 96 records of this type; if N1636 = 36
   there are 216 records of this type.

t  There are as many of this record type as there are sources.

]  There are as many of this record type as there are receptors.

                                  51

-------
INTRICACIES OF THE DATA

    Most of the input data are straightforward and  typical of  the
kind of information required for Gaussian models. However,   there
are  some input variables which require additional  explanation  to
ensure proper value assignment. .

Record Type 2

    CDM-2.0 calculates concentrations for  two  pollutants   in  a
single  execution.  Therefore,  the  user  is  asked to  input  two
pollutant names, two  sets  of  calibration  constants,  and   two
emission  rates,  one  for each of the two pollutants modeled.  In
this record, the user is asked  to  provi.de  two  names  for   the
pollutants.  These  two  names, which are each four characters  in
length, are subsequently used  in the  output  as  labels.  It   is
important  that  the order used in this record for  array variable
PNAME  is followed for array variables CA and CB in  record  type  3
and variables 51 and S2  in record type 15.

    Variable  NSO2 informs the program which of the pollutants  if
any is S02. Within the program, SO2 requires  special  processing
depending on the options exercised. If NSO2 = 0,  then the  program
assumes  that  SO2 will  not be run. If NSO2 = 1,  then pollutant 1
is assumed to be SO.; if NSO2  = 2, then pollutant 2 is assumed  to
be SO2.
Record Type 3
    AROS and PROS are alphanumeric arrays to identify the  output
record  for  the  area and point concentration roses. In defining
these  two arrays it is important to keep in mind  that   area   and
point  concentration roses are provided for both  pollutants. AROS
and PROS might be input  as follows:

             AROS(l) = A PI          PROS(l) = P  PI
             AROS(2) = A P2          PROS(2) = P  P2

The first two characters refer to the source type   (i.e.,  A   for
area   and  P  for  point)  and  the  last two characters refer  to

                                 52

-------
pollutant (i.e., PI for pollutant 1 and P2 for pollutant 2).

    If the calibration feature of CDM-2.0 is not used, the  value
of the intercept (CA) and slope (CB) should be specified as 0 and
1,  respectively.  This  results  in the calibrated concentration
identical to the computed value. Note that  CA  and  CB  are  two
entry arrays for the two pollutants being modeled.

Record Type 4
    For  point  sources,  CDM-2.0  allows  user selection of both
initial dispersion due to building effects  and  buoyancy-induced
dispersion. The user should verify that simultaneous selection of
these   options   is  appropriate  for  the  particular  modeling
s i tuat i on.
    Variable NDEF is the default option switch. This  feature  is
designed  as  a  convenience to the user with the aim of avoiding
inadvertent errors in setting  the  options.  By  exercising  the
default  option,  several  features  are  automatically  set thus
overriding other user-input selections. Specifics of the  default
option are summarized in Appendix A.
Record Types 5 and 6

    The  user-specified  dispersion parameter scheme for area and
point sources is indicated  through  variables  KLOW  and  KHIGH,
respectively.  Table  16  lists  the dispersion algorithm and its
corresponding value of KLOW or KHIGH.
                                 53

-------
   TABLE 16.  VALUES OF KLOW OR KHIGH AND THEIR CORRESPONDING
                       DISPERSION PARAMETER SCHEMES
  KLOW or KHIGH
Dispersion parameter scheme
        1
        2
        3
        4
        5
        6
        7
Briggs-rural (Gifford, 1976)
Briggs-urban (Gifford, 1976)
BNL (Singer and Smith, 1966)
Klug (Vogt, 1977)
St. Louis (Vogt, 1977)
PGCDM (Busse and Zimmerman, 1973)
PGSIG (Pasquill, 1961 and Gifford, 1960)
    Although  CDM-2.0   recognizes   seven   distinct   stability
categories,   the  meteorological  joint  frequency  function   is
assumed to be comprised of only six classes. The specification  of
the values for arrays ICA and ICP is, in part, a function of  the
manner  in  which the joint frequency function is formulated, and
these arrays are a function of the  dispersion  parameter  scheme
selected.  In  the  original  CDM, the PGCDM dispersion parameter
scheme was employed. The urban effects were modeled by "slipping"
the curves, i.e. using  a  curve  other  than  that  which  would
ordinarily  be  used  in a rural situation. With the enhancements
incorporated in CDM-2.0, one can  select  either  to  accommodate
urban  effects  as  was done in CDM or, one can select either the
Briggs-urban or the St. Louis schemes. An example should  clarify
the i r use.

    Assume  we  have  specified  KLOW  and  KHIGH  to be 7 (PGSIG
scheme). Suppose NCC's Day-Night STAR program is used to generate
the joint  frequency function; this summary  includes the following
stability  categories: A, B,  C,  D-day,  D-night,  and  nighttime
stable  (i.e.,  a combination of Pasquill classes E and F). Array
variables  ICP and ICA would be defined as 1, 2, 3, 4,  5,  and   6
for  modeling  a  rural  situation.  If one wanted to account for
urban effects by "slipping" the categories, as was done  by  CDM,
then  ICP  would be 1, 2, 3, 5, 5, 5, and ICA would be 1, 1, 2,  3,
5, 5. However, if the  joint  frequency  function  is  formulated
                                 54

-------
using categories A, B, C, D, E, and F, then ICP and ICA are  input
as:  1, 2, 3, 5, 6, and 7 for a rural situation. Mixing height  is
not affected by array variables ICP and ICA since it is linked  to
the six stability categories summarized in  the  joint  frequency
func t i on.
Record Type 7
    A potential error in the area source integration algorithm  is
radial  skipover  (Brubaker  et  al.,  1977);  radial skipover  is
illustrated in Figure lOa. In this instance, the area source size
is smaller than the sampling interval, n DELR, where n = 1, 2,  or
4 (see Section 5). It is easy to see that radial skipover can   be
minimized  by  keeping  DELR small. However, not only is CPU time
increased with  decreasing  DELR  but  also  CDM-2.0  is  limited
presently  to  100  radial arcs. Thus the use of smaller DELR may
result in the termination of the radial  integration due to  array
size  restrictions  before  the  far edge of the emission grid  is
reached with the corresponding omission  of a significant'part   of
the  total  area source contribution. Figure 11 gives the maximum
range attainable as a function of DELR;  it  should  be  used   in
defining an appropriate DELR for the user's modeling range.

    The  easiest  way  to  explain  the  emission  grid  is  by a
practical example. Suppose that an emission  inventory exists with
the smallest  emission  square  5000  feet  on  a  side  and  all
coordinates  are  given  in  terms of feet.  In this instance, the
basic emission grid square is 5000 feet  on a side and thus RAT  is
5000. CV is 0.3048 (i.e., 1 ft = 0.3048  m); TXX  is  1524  (i.e.,
5000  ft = 1524 m); and XG, YG, are in feet. Also, all source and
receptor coordinates are expressed in feet  (map coordinates).

Record Type 8
    Another source of error in the  area source  integration   is
angular  skipover.  As  shown  in  Figure lOb, the area source  is
skipped over by the sampling points. Obviously, the potential for
angular skipover  is reduced  if  the  area   source   inventory   is
                                  55

-------
      A. Radial  Skipover
                  n-DELR
                                              sampling
                                                points
                                               DINT=4
                                     Receptor
      B. Angular Skipover
                                               sampling
                                                points
                                               DINT=1
                                      Receptor
Figure  10.
Radial  and angular  skipover
Brubaker  et al-,  1977).
(mod i f i ed  f rom
                            58

-------
    1000
E

I

cr
_i
LJJ
Q
100
      10
                              I  1 1  1 L
                                      10
                                                             100
                              MAXIMUM RANGE - km
     Figure 11. DELR as a  function  of maximum range  of  area source

                integration  (modified from Brubaker  et  al.f 1977).
                                   57

-------
described  using  large  (say 5 km or larger) grid squares. For  a
detailed  inventory  employing  area-source  squares  with    side
lengths  of 1 km, Brubaker et al. (1977) suggests using DINT  =  10
with a wind direction sector of 22.5° to reduce  the  likelihood  of
angular skipover. DINT = 4 is  probably  sufficient  with  a  10°
wind-direction sector (i.e., N1636 = 36).

Record Type 11

    HL  is  an  array variable containing six values which define
mixing heights (in meters)  associated  with  the  six  stability
categories  summarized  in the joint frequency function. The  user
must decide on an appropriate relationship between mixing  height
and stability category. One possible scheme  is shown in Table 5.

    Dispersion  from sources with effective  release  heights above
the mixing height is not assumed to  reach the receptors.   If  the
mixing  height is set to zero for a  particular stability,  then  no
contributions from any of the sources would  occur   (during   that
particular stability). If the user believes  that unlimited mixing
is the appropriate condition for a particular stability, then the
mixing  height  (for that stability  category) should be specified
as a very large value (say 9999. m).
                                  58

-------
                               SECTION 9


               EXECUTION  OF THE MODEL AND  SAMPLE TEST


EXECUTION


    CDM-2.0 produces an error-free compile on IBM MVS and   UNIVAC

EXEC   8 computers with  comparable execution results. A sample job

stream is presented below.
                     UNIT t » OUTPUT
                       CONCENTRATION DATA
                  UNIT* « PRINTER
                EXECUTE CDM-2.0
            JOB CARD
       •  Onit number provided by user via  input variable,  IWR.
       t  Dnit number provided by user via  input variable,  IPO.
       S  Onit number provided by user via  input variable,  IBD.
         Figure  12.  Sample job  stream  for  CDM-2.0
                                     59

-------
    A job stream for a  UNIVAC  EXEC  8  system  might  have  the
following form:
     @RUN,R/R JOB- ID, ETC
     @ASG,A MODELS* LOAD.
     QASG,A CONG.
     ©USE 8,CONC.
     @XQT MODELS* LOAD. CDM2
     (input records shown in Table 17)
    The following is a sample job stream for a typical IBM system
under OS or MVS.

     //JOBID    JOB  ( PRO J.ACCT, OTHER) ,CLASS=A,TIME=1
     //XCDM2    EXEC PGM=CDM2 ,TIME=( , 10 )
     //STEPLIB  DD   DSN=USER. MODELS. LOAD, D I SP=SHR
     //FT08F001 DD   DSN=USER.CONC.DATA,DISP=SHR
     //FT06F001 DD   SYSOUT=A
     //FT05F001 DD   *
     (input records shown in Table 17)
     /*
    Sample  test  data  for model verification are given in Table
17; Figures 13 and 14 provide the output  for  the  sample  test.
Users may verify the proper execution of the program by comparing
their results with those given in the figures.
                                 60

-------
TABLE 17.  INPXJT DATA FOR THE SAMPLE TEST
Record
SAMPLE TEST OF OM-2.0
1 SO2PABT
A P1A P2P PIP P299999 0 5 8 3 0.0 0.0 1.0
18, 1,0, 0,0,1.,!)., 0,0
8,1,1,2,1,4,4
8,1,2,3,4,4,4
2SO. 5. 1000. S. 9. 1.25 9000.
4. 1. 1. 30. 30. 30. 30. 30. 30. 3.999999
.10, .15, .20,. 25, .25, .30
1.5,2.45872,4.4704,8.92912,9.81136,12.51712
1200., 800,, 800., 800., 479., 150.
(7X.8P7.0)
48 blank card Images
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500. 000000. 000000. 000000. OOQOOO. 00000
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.082500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
0.062500.000000.000000.000000.000000.00000
32 blank card Images
( F6 . 0 , F7 . 0 , F7 . 0 , F8 . 0 , F8 . 0 , F7 . 0 , F5 . 0 , F7 . 0 , P7 . 0 , F9 . 0 )
9.0 9.0 10000. 4000. 4000. 20.
9.0 15.0 5000. 1000. 1000. 20.
10.0 15.0 5000. 1000. 1000. 20.
19.0 19.0 9000. 1000. 1000. 20.
19.0 10.0 9000. 1000. 1000. 20.
15.0 5.0 5000. 1000. 1000. 20.
12.5 12.5 0. 1000. 1000. 20. 1.0 5.0 20.0 0.0
1 blank card image to indicate end of source records
(F8.2,P8.2,I4,I4,IS)
9.0 9.0 00 0
9.0 10.0 000
9.0 15.0 000
5.0 20.0 000
10.0 5.0 0 fl 0
10.0 10.0 000
10.0 15.0 000
10.0 20.0 000
15.0 5.0 00 0
15.0 10.0 000
15.0 15.0 000
15.0 20.0 000
20.0 5.0 00 0
20.0 10.0 0 0 0
20.0 19.0 000
20.0 20.0 001
Racord
type
1
2
1.0 3
4
5
8
7
8
9
10
11
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13 .
14
IS
15
15
15
15
15
IS
16
17
18
18
18
18
18
18
13
18
18
13
18
18
18
13
18
13
               61

-------
                                                     CLIMATOLOGICAL DISPERSION MOIiBL - VERSION 1.0
                                                                   CODE VERSION
                                                                        RUN mtt
                    TEST OP CTW-1.0 DEFAULT OPTION
cn
to
TECHNICAL OPTIONSi

    NUMBER OP WIND DIRECTIONS USED IN METEOROLOGICAL JOINT
      FREQUENCY FUNCTION (N161«)  	   !•
    DISPERSION PARAMETER SCHEME FOB AREA SOURCES (BLOW) 	    1            BRIOGB-URBAH,  OIPFORD (Itie)
    DISPERSION PARAMETER SCHEME POR POINT SOURCES (KHIGH) 	    1            BRIOGS-imBAN,  QIPPORD (I9tt)
    EFFLUENT RISE FOR AREA SOURCES (PAC) 	    I.OOOOOOB«00
    HEIGHT ABOVE QftOUND OP ALL RECEPTORS (RCEPTZ) 	    0.0000008*00 M
    CALIBRATION CONSTANTS --   SOI
        INTERCEPT OP CALIBRATION  	    0.0000008*0* MICROORAMS/CU. METER
        SLOPE OP CALIBRATION  	    1.6000008*00 DIMENSIOHI.ES8
    CALIBRATION CONSTANTS --  PAAT
        INTERCEPT OP CALIBRATION  	    0.8000008*00 MICROGRAMS/CU. METER
        SLOPE OP CALIBRATION  	    I.OOOOOOB«00 DIMKH8IOHLB88
        INITIAL DISPERSION OPTION  (NPtO) 	    0
        BUOYANCY INDUCED DISPERSION OPTION (NPDtl) 	    1
        STACK DOWNWASH OPTION (NSTDW) 	    I
        GRADUAL PLUME RISE OPTION  (NGRAO) 	    0
        DEFAULT OPTION (NDEP) 	    I


PRINT OPTIONSi

    CONTROL FOR PRINTED OUTPUT 	    •
    FORTRAN LOGICAL UNIT NUMBER (READ)  	    t
    FORTRAN LOGICAL UNIT NUMBER (PRINTER) 	    •
    FORTRAN LOGICAL UNIT NUMBER (PUNCH) 	    I


OPERATING PARAMETERSi

    X-MINIMUM OP AREA EMISSION INVENTORY MAP OHIO (XO) 	     .0000008*00 USER UNITS
    Y-MINIMUM OP AREA EMISSION INVENTORY MAP GRID (Yd) 	     .0000008*00 USER UNITS
    WIDTH OP A BASIC EMISSION GRID BQUARB (RAT) 	     .0000008*00 USER UNITS
    OHIO CONVERSION FACTOR (CV) 	     .0000008*0} M/USEH UNITS
    WIDTH OP A BASIC EMISSION GRID SQUARE (TXX) 	     .OOOOOOE*01 M
    NUMBER OP 8UBSECTORS CONSIDERED FOR EACH SECTOR (DINT) ....     .0000006*00 DIMENSIONLE88
    ANGULAR WIDTH OP A SUB3ECTOR  (TIIETA) 	     .12(0008*00 DEO
    INITIAL RADIAL INCREMENT  (DELR) 	     .4000008*01 M


MISCELLANEOUS METEOROLOGICAL  DATAi

    AMBIENT AIR TEMPERATURE (TOA)  	    I.1141008*01 K
    MIXING HEIGHTS BY STABILITY CLASS (IIL) I
       STABILITY CLASSi        	     .1000008*01 M
                                                                   .OOOOOOB»01 M
                                                                   .0000008*01 M
                                                                   .OOOOOOE*01 M
                                                                   .MOOOOEtOl M
                                                                   .iOOOOOB*Ot M
                                   Figure   13.    Printed  output   for  the  sample  test

-------
                                                            CLIMATOLOQICAL DISPERSION MODEL - VERSION t.O
                                                                          CODE VERSION ItlSl
                                                                               BUM »8999
                           TEST OF aW-J.O DEFAULT OPTION
                           MISCELLANEOUS METEOROLOGICAL DATA  (CONTINUED)i

                               CENTRAL WIND SPEED OF  TIIB SIX  MIND  SPEED CLASSES (U)i
                                   WIND SPEED CLASSi
                               EXPONENTIAL OF TIIB VERTICAL WIND PROFILB  (UB)i
                                   STABILITY CLASSi
                                                                    tOOOOOHtOI  M/8EC
                                                                   ,4il710E»00  M/8EC
                                                                    470400E»00  M/SEC
                                                                   ,«1BIIOB»00  M/SEC
                                                                   ,lllltOE»00  M/BEC
                                                                               M/SEC
                                                                   .OOOOOOE-OI
                                                                   .SOOOOOE-OI
                                                                   .OOOOOOB-OI
                                                                   .400000B-OI
                                                                   .tOOOOOB-OI
                                                                   .eoooooB-oi
                                             DIMEN8IONLE8B
                                             DIMKNSIONLESS
                                             DIMEM8IONLE38
                                             DIMENSIONLESS
                                             DIMEN8IONLESS
                                             DIMENSIONLESS
cn
CJ
SOURCE DATAi

    POLLUTANTS  TO BB MODELED  	
    DECAY IIALF-LIPB FOR  SOI (OB(D)  	
    DECAY IIALP-LIFE FOR  PART  (OB<1))  	
    DAYTIME EMISSION WEIGHT FACTOR (YD)  	
    NiairrriME EMISSION wBiairr FACTOR  (YN)  ..
    INITIAL 8IQMA-Z FOR  AREA  SOURCES  <8ZA)|
        STABILITY CLASSt
                                 80J 4 PART
                                 .OOOOOOE'OO ICR
                                 .l«»»90E»Oi in
                                 .OOQOOOEtOO DIMENSIONLESS
                                 .OOOOOOEtOO DIMENSIONLESS

                                 .OOOOQOB»OI M
                                 .OOOOOOEiOl U
                                 .000000E*OI M
                                 .OOOOOOE*OI M
                                 .OOOOOOEtOI M
                                 .OOOOOOB«OI M
                           DISPERSION CURVE USED FOR EACH STABILITY CLASS
                              STABILITY
                                CLASS
                                  1
                                  t
                                  }
                                  4
                                  6
                    POINT
                   SOURCES
                      A
                      B
                      C
                     Dl
                     Dl
                      B
 AREA
SOURCES
   A
   B
   C
  Dl
  DI
   B
                                                            Figure  13.    (continued).

-------
0>
                 TEST OP CDM-J.O DEFAULT OPTION
                 STABILITY CLASS I

                     HIND DIHECTION    SECTOR

                         H                I
                         HUB              1
                         HE               1
                         EWE              I
                         B                4
                         B88              I
                         SB               I
                         83H              I
                         8                •
                         8SW             10
                         aw              it
                         WSW             II
                         W               II
                         WHW             14
                         NW              IS
                         HNW             18
                                                  CLIMATOLOQICAL DISPERSION MODEL - VERSION 1.0
                                                                OOOB VERSION  ISlil
                                                                     RUN »»«»»
                                                      HETEOROLOQICAL JOINT  FREQUENCY FUNCTION
    I

0.000000
0.000000
o.oopooo
 .000000
 .000000
 .000000
 .000000
 .000000
 .000000
 .000000
 .000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
A.000000
B.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
 .000000
             0.000000
WIND
1
0.000000
0.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
SPEED CLASS
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
o.oooooq
o.oooood
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
  000000
  000000
  000000
  000000
  000000
  000000
  000000
0.000000
0.000000
  000000
  000000
  000000
  000000
  000000
  000000
                                                                                                                   0.000000
                                                                      COMPUTED MEAN SPEED •  0.00 M/BEC
STABILITY CLASS 1
WIND DIRECTION
N
HUE
NE
ENB
B
ESB
SB
8SB
S
asw
aw
WSW
w
WHW
NW
NNW
WIND SPEED CLASS
SECTOR









10
11
It
11
14
IS
16
1
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
a
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
O.OOOOQO
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
}
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
COMPUTED MEAN SPEED
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
« 0.00
ft
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
M/BEC
•
o.aooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

                                                           Figure  13.   (continued).

-------
CD
cn
                TEST OP CCM-1.0  DEFAULT OPTION
                                                 CLIMATOLOQICAL DISPERSION MODEL - VERSION l.»
                                                               CODE VERSION  15)11
                                                                    RUN  88»»8
                                                     METEOROLOGICAL JOINT FREQUENCY FUNCTION
                STABILITY CLASS  1

                    WIND DIRECTION

                        N
                        HNB
                        NB
                        ENB
                        B
                        ESB
                        SB
                        8SB
                        8
                        saw
                        aw
                        wsw
                        w
                        WNW
                        NW
                        NNW
                STABILITY CLASS  4

                    WIND DIRECTION
SECTOR
  10
  II
  II
  II
  14
  14
  ia
                                     SECTOR
    I

o.oooooa
o.oooooo
e.oooooo
a.oooooo
o.oooooa
a.oooooo
o.eooooa
a.oooooo
o.oooooo
o.oooooa
e.oooooo
o.oooooo
o.oooooo
0.000000
0.000000
a.eooooo
o.oooooo
a.oooooo
o.oooooo
a.oooooo
o.oooooo
0.000000
a.oooooo
a.oooooa
a.oooooo
a.oooooo
o.oooooo
a.oooooo
o.oooooe
o.oooooo
a.oooooo
e.oooooa
WIND
a
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
SPEED CLASS
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
•.000000
a.eooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
e.oooooo
0.000000
a.oooooo
0.000000
a.oooooo
o.oooooa
.oooooo
.oooooo
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
                                                                      COMPUTED MEAN 8PBED
                                                       e.oo U/BEC
                                                                              WIND SPEED CLASS
N
HNB
NB
ENB
B
BSE
8E
S3E
8
saw
aw
wsw
w
WNW
HW
NNW

o.ooi5oo
o.oaisoo
o.oaiioo
e. oeisoo
o.oei5oo
0.06)600
0.061500
0.061500
O.OBliOO
10 0.0*1500
II 0.011600
11 0.061500
11 0.061500
14 0.061500
It 0.061500
16 0.061500

a.oooooo .oooooo
0.000000 .000000
a.oooooa .oooooo
0.000000 .000000
0.000000 .000000
0.000000 .000000
0.000000 .000000
0.000000 .000000
o.oooooo o.oooooa
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
a.oooooo o.oooooo
0.000000 0.000000
0.000000 0.000000
e. oooooo o.oooooo
COMPUTED MEAN
0.000000
0.000000
0.000000
a.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
SPEED - l.iO
a.oooooa
0.000000
a.oooooa
e.oooooa
0.000000
0.000000
e. oooooo (
0.000000 (
0.000000 (
o.oooooa (
0.000000 1
0.000000
0.000000
0.000000
0.000000
0.000000
M/8EC
.000000
.000000
.eooooo
.oooooo
.eooooo
.000000
). OOOOOO
1.000000
). OOOOOO
). OOOOOO
1.000000
.000000
.000000
.000000
.000000
.000000

                                                           Figure  13.    (continued).

-------
TEST OF COM-1.0 DEFAULT OPTION
STABILITY CLASS ft

    WIND DIRECTION    SECTOR

       H
       HNE
       HE
       EHE
       E
       ese
       SE
       SSE
       3
       asw            10
       aw             it
       WSW            1»
       W              II
       WNW            II
       NW             14
       NHW            16
                               CLIMATOUMICAL DISPERSION MODEL - VERSION I.a
                                            CODE VERSION 14181
                                                 RUN 8B880
                                   METEOROLOGICAL JOINT  FREQUENCY FUNCTION
                                                           WIND SPEED CLASS
0.000000
0.000000
A. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
t. 000000 (
0.000000 I
0.000000 (
1.000000
0.000000
0.000000
0.000000
ft. 000000
0.000000 I
0.000000 1
0.000000 1
0.000000
0.000000 I
0.000000 1
0.000000 (
0.000000
1.000000
>. 000000
1. 000000
.000000
.000000
.000000
.000000
.000000
). 000000
J. 000000
1.000000
1.000000
). 000000
). 000000
1.000000
). 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
1.000000
1.000000
a. oooooo
1.000000
D. OOOOOO
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
                                                   COMPUTED MEAN SPEED •   0.00 M/BEC
STABILITY CLASS 8
WIND DIRECTION
M
NNE
NE
ENE
e
ESE
SE
SSE
S
SSW
SW
wsw
W
WNW
NW
HNW

SECTOR
1
1
1
i
4
6
t
1
9
10
II
11
11
II
IS
16

1
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

1
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
WIND
}
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
COMPUTED MEAN
SPEED CLASS
4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
SPEED « 0.00

1
•.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
U/8EC

•
•.oooooo
•.oooooo
•.oooooo
•.oooooo
t. oooooo
0.000000
0.000000
•.oooooo
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

                                       Figure  13.   (continued).

-------
                                                CLIMATOUX1ICAL DISPERSION MODEL - VERSION 1.0
                                                             CODE VEIiaiOH ISIS*
                                                                  AUH 1II09
               TEST OP CCM-1.0 DEFAULT OPTION
                                                        AREA AND POINT BOURCB INVENTORY
                 X MAP
               OOOBDINATE
  Y MAP
COORDINATE
                   t.oo          s.oo
                   s.oo         it.oo
                  10.00         14.00
                  IS.00     .    IS.00
                  IS.00         10.00
                  IS.00          S.OO
                  II.SO         II.SO

                        • AREA  SOURCES.
 WIDTH OP
ORID SQUARE
    (M)

  10000.
   sooo.
   sooo.
   sooo.
   sooo.
   sooo.
      0.
	EMISSION HATE	
   SOI         PART
 (Q/SEC)      (O/BEC)
                           4000.0*
                           1000.00
                           1000.00
                           1000.00
                           1000.00
                           1000.00
                           1000.01
             4000.00
             1000.00
             1000.00
             1000.00
             1000.00
             1000.00
             1000.00
BOURCB
iiEinirr
  (U)

 10.00
 10.00
 10.00
 10.00
 10.00
 10.00
 10.00
         STACK
STACK    EXIT
DIAU     SPEED
 (U)    (M/BEC)
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 1.00
,00
.00
 00
.00
 00
.00
.00
       STACK
        OAS
       TEMP
       (DEO C)
 0.
 0.
 0.
 0.
 0.
 0.
10.
  OPTIONAL
 PLUMB RIBB
COEFFICIENT
 (M**i/8EC)

     0.00
     0.00
     0.00
       00
     0.00
     0.00
     0.00
                    I  POINT SOURCES.
O>
-4
                                                            Figure  13.    (continued).

-------
             TEST OP CDM-1.0 DEFAULT OPTION
             X OOORD
               ft.00
               ft.00
               4.00
               ft.00
               10.00
               10.00
               10.00
               10.00
               IS.00
               It.00
               It.00
               li.OO
               10.00
               10.00
               10.00
                                            CLIMATOUXIICAL DISPERSION MODEL - VEHSIOH 1.0
                                                         CODE VERSION liltl
                                                             RUN ttttl
                                                CONCENTRATIONS  (MICROOHAMS/CU. MBTER)

COORD
1.00
10.00
li.OO
10.00
ft. 00
10.00
It. 00
10.00
ft. 00
10.00
li.OO
20.00
i.OO
10.00
It. 00
AREA SOURCES
soi PART
Hi.
in.
ill.
lit.
lit.
til.
ill.
in.
in.
til.
til.
in.
lit.
lit.
lit.
in.
in.
ill.
161.
111.
ilO.
ilO.
111.
111.
ilO.
ilO.
111.
161.
111.
111.
POIH1
30]
1.
11.
11.
1.
It.
it.
41.
11.
11.
SI.
tl.
11.
1.
It.
11.
r SOURCES
PART
10. ft
ia.o
14.0
10.
It.
it.
il.
It.
It.
41.
&l.
It.
10.
II.
It.
80]
til.
lil.
ttl.
111.
ttl.
tit.
tti.
iftl.
141.
itt.
tti.
lil.
111.
til.
ttl.
UlAi.-----
1 PAHT
tit.
tit.
lit.
Hi.
lit.
Itl.
111.
lit.
lit.
111.
111.
tit.
Hi.
111.
lit.
- -CALIBRATED- -
801 PAHT
HI.
lil.
161.
141.
111.
fttft.
Sift.
til.
Itl.
itft.
tit.
J41.
111.
1(1.
141.
lift.
lit.
lift.
lift.
tit.
an.
in.
lit.
lit.
in.
in.
lit.
lift.
n>.
in.
                                                                                                            --OBSERVED---
                                                                                                            8O1     PAST
en
oo
                                                        Figure  13.   (continued).

-------
TEST OP CTM-1.0 DEFAULT OPTION
                                 CLIMATOLOdlCAL DISPERSION MODEL - VERSION 1.0
                                               CODE VERSION ISIS)
                                                    HUH  9S9IS
                                      OONCEMTHATIOHB  (MICHOQHAM3/CU. UBTER)
X COORD   Y OOORD

  10.00     10.00
                      AREA  SOURCES
                      SOI     PART
                    POINT  SOURCES
                      301     PART
---TOTAL	
 SOI      PART
--CALIBRATED--
  SOI     PART
           ---OBSERVED---
             8O1     PART
 1)1.S    114.1        I.I     10.ft      141.1     1TI.O      141.1    ITft.O          0        0


>••.•••••«•••••••••»• AVEHAQB CONCENTRATIONS  BY STABILITY •••••••••••••••••«•••••••••••••••	••
            TYPB Of
POLLUTANT   SOURCE

 I (  801)    AREA

 I (  801)    POINT


 1 (PART)    AREA

 1 (PART)    POINT
                                                  1

                                                 0.0

                                                 0.0


                                                 0.0

                                                 0.0
                                                         ---STABILITY CATEGORY-
                                                          114
                                     l.t

                                     ».0


                                     0.*

                                     0.0
    •-•   III.*

    ».0     l.»


    0.0   114.1

    1.0    10. 1
  1

 •••

 0.0


 •••

 •-•
 •

•-•

1.0


O.I)

0.0
                                      ••• AREA ROSES (UICROORAM3/CU. UETEB) ••••••••••••••••••••••••••••••••••••••••••
      POLLUTANT      N   HUE    NB   ENB     B   B8B    SB   8SB    8   BBW    8W   W3W     W   WNW    NW   NNW

          I          4     «      4     4     4     4     4     4    II     41    41    41    II     I     4     4

          1          4     4      4     4     4     4     4     4    II     II    IT    II    )*     4     4     4
                                         POINT BOSKS (UICaOORAMa/CU. METER) ••»	••••	•••••
      POLLUTANT      N   NNE    NE   ENE     B   E3B    SB   SflB     8   88W    SW   WSW     W   WNW    NW   NNW

          I          0000000000100000

          1          0000000000    II     00000
 .......««••••....•»••••••»•«.••««..««•«.««••••»•«••••«»«••»•«•••»•••••••••«••••••••••••••»»•••••«•••••••••••
                                             Ptgure  13.    (continued).

-------















A
P
A
P
A
A
A
A
P
P
P
P















PI
PI
P2
P2
PI
PI
P2
P2
PI
PI
P2
P2
5.00
5.00
5.00
5.00
10.00
10.00
10.00
10.00
15.00
15.00
15.00
15.00
20.00
20.00
20.00
0.0
0.0
0.0
0.0
4
29
4
32
0
0
0
0
5.00999991
10.00999991
15.00999991
20.00999991
5.00999991
10.00999991
15.00999991
20.00999991
5.00999991
10.00999991
15.00999991
20.00999991
5.00999991
10.00999991
15.00999991
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.2
444
45 48 45
444
51 57 51
000
080
000
0 11 0
236
343
343
236
343
543
543
343
343
543
543
343
236
343
344
235.
7.
264.
10.
4
29
4
32
0
0
0
0
264
374
374'
264
374
580
580
374
374
580
580
374
264
374
374
9
9
5
5
4
4
4
4
0
0
0
0
8
12
12
8
12
53
53
12
12
53
53
12
8
12
12
0.0
0.0
0.0
0.0
4
4
4
4
0
0
0
0
10
15
15
10
15
58
58
15
15
58
58
15
10
15
15












244
355
355
244
355
596
596
355
355
596
596
355
244
355
355
0.0
0.0
0.0
0.0
4
4
4
4
0
0
0
0
275 244
389 355
389 355
275 244
389 355
638 596
638 244
389 355
389 355
638 596
638 596
389 355
275 244
389 355
389 355
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
275 0
389 0
389 0
275 0
389 0
638 0
275 0
389 0
389 0
638 0
638 0
389 0
275 0
389 0
389 0
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0












Figure 14.  Card Image  output  for  the  sample  test.

-------
EHROR MESSAGES AND REMEDIAL ACTION

    CDM-2.0  can  generate   nine  error messages and  two warning
messages. An error message results in program  termination while  a
warning message allows execution to continue.  Table  18  lists  each
message, along with   its  description  and  suggested   corrective
act ion.

TABLE 18.  CDM-2.0 ERROR/WARNING MESSAGES AND  CORRECTIVE ACTION
MESSAGE (1):


DESCRIPTION:

ACTION:


MESSAGE (1):


DESCRIPTION:
ACTION:
MESSAGE (1)
DESCRIPTION:
 *** VALID  VALUES  FOR NSO2  ARE  0,  1,  OR 2.
 *** USER  INPUT NSO2 =  nnnn
.*** EXECUTION TERMINATED.
 NSO2 must  be set  to 0,  1,  or 2.   Any other  value
 will result  in program termination.
 Modify  input stream so that NSO2  is  equal  to  0,  1
 or 2 and  resubmit  the  job.

 **» VALID  VALUES  FOR N1636 ARE 16 OR 36.
 *** USER  INPUT N1636 = nnnn
 *** EXECUTION TERMINATED.
 The meteorological joint  frequency  function can
 only consist of  16 or  36 wind-direction sectors.
 The user  tried to  input  a  value  different  from 16
 or 36.
 Modify  the input  stream so that  N1636 is  equal to
 16 or 36  and make  sure that  the  number of  wind
 direction  sectors  in the  joint frequency  function
 agrees  with  the  value  given by N1636.

 *** VALID  VALUES  FOR FAC RANGE FROM 0 TO  1.
 *** USER  INPUT FAC = xxx.xx
 ••* EXECUTION TERMINATED.
 FAC must  be  between 0  and  1,  inclusive.  The  user
 tried to  input a  value outside that  range.
             (cont inued)
                                 71

-------
                      TABLE 18  (continued)
ACTION:
Modify input stream so that FAC  is between 0 and  1,
inclusive.
MESSAGE (1):


DESCRIPTION:

ACTION:


MESSAGE (1):


DESCRIPTION:


ACTION:


MESSAGE (1):


DESCRIPTION:

ACTION:


MESSAGE (1):
**» VALID VALUES OF KLOW RANGE FROM 1 TO 7.
*** USER TRIED TO INPUT KLOW = nnnn
**« EXECUTION TERMINATED.
KLOW must be between 1 and 7, inclusive.   The  user
tried to input a value outside that range.
Modify input stream so that KLOW  is between  1  and
7, inclusive.

«** VALID VALUES FOR ICA RANGE FROM 1 TO 7.
*** USER TRIED TO INPUT ICA(i) =  nnnn
*** EXECUTION TERMINATED.
Values in the array ICA must be between 1  and  7,
inclusive.  The user tried to input a value  outside
                                                .>
that range.
Modify input stream so that al1 the values  in
the array ICA are between 1 and 7, inclusive.

*** VALID VALUES FOR KHIGH RANGE  FROM 1 TO 7.
*** USER INPUT KHIGH = nnnn
*** EXECUTION TERMINATED.
KHIGH must be between 1 and 7, inclusive.  The  user
tried to input a value outside that range.
Modify input stream so that KHIGH is between 1  and
7, inclusive.

*** VALID VALUES FOR ICP RANGE FROM 1 TO 7.
*** USER INPUT ICP(i) = nnnn
*** EXECUTION TERMINATED.
             (cont i nued)
                                 72

-------
                      TABLE 18  (continued)
DESCRIPTION:
ACTION:
MESSAGE (1):
DESCRIPTION:
ACTION:


MESSAGE (1):


DESCRIPTION:

ACTION:
Values in the array ICP must be between 1 and 7,
inclusive.  The user tried to input a value outside
that range.
Modify input stream so that all the values  in
the array ICP are between 1 and 7, inclusive.

*** THE PRODUCT OF RAT AND CV MUST EQUAL TXX.
*** THE VALUES PROVIDED BY THE USER DO NOT CONFORM
    TO THIS RELATIONSHIP.
»** EXECUTION TERMINATED.
The quantities RAT, CV, and TXX are related by  the
following equation:  TXX = RAT-CV.  However the
user-supplied quantities do not relate in the
prescribed manner.
Modify input stream so that the quantities meet  the
above-mentioned relationship.

*** VALID VALUES FOR DINT RANGE FROM 2 TO 20.
•*• USER INPUT DINT = xxx.x
*** EXECUTION TERMINATED.
DINT must be between 2 and 20, inclusive.  The  user
tried to input a value outside that range.
Modify input stream so that DINT  is between 2 and
20, inclus ive.
MESSAGE (2):  NOTE:
       AREA SOURCE WITH X COORD xxxxxxx.xx AND Y
       COORD yyyyyyy.yy VIOLATES AREA SOURCE ARRAY
       LIMITS.  AREA SOURCES MUST LIE ENTIRELY
       WITHIN A xxxxxxxx.xx BY xxxxxxxx.xx METER
       SQUARE WITH SOUTHWEST CORNER AT THE USER-
       DEFINED ORIGIN (XG,YG).  THIS SOURCE WILL
       NOT BE INCLUDED IN THIS CALCULATION.
             (cont i nued)
                                 73

-------
                      TABLE 18  (continued)
DESCRIPTION:
ACTION:
The area source emission grid may not be larger
than 50 grid squares in either the x or the y
direction, this limit being determined by the
dimensions of various arrays defined within the
computer program.  This limit, together with the
user-specified size of a basic grid square (TXX),
imposes a limit to the total size of the emission
grid.  A test is made to see that each area source
falls within the boundaries of the grid.  It was
determined the area source mentioned in the warning
message lies partially or wholly outside the grid
boundaries.  As indicated in the message, the
calculation proceeds but the area source in
violation is omitted from the inventory.
Adjust the location of the origin (XG,YG) or the
size of the basic emission grid square (TXX) such
that al1 area sources are within the boundaries
of the grid. Alternatively, the dimensions could be
appropriately increased to accommodate the area
source inventory.
MESSAGE (2):  WARNING:  MORE THAN 100 ARCS ARE REQUIRED  FOR
                        CALCULATION OF AREA CONTRIBUTION.  AREA
                        SOURCES BEYOND xxx.x KM ARE NOT  INCLUDED
                        IN THIS CALCULATION.
DESCRIPTION:  As discussed in Section 5,  the area  source
              algorithm evaluates the average emission rate  on a
              series of arcs centered on  the receptor of
              interest.  No more than 100 arcs are used,  this
              limit, together with the user-supplied  radial
              integration step, DELR, imposes an upper limit  to
              the distance to which  the area source calculations
                           (continued)
                                  74

-------
                      TABLE 18  (continued)
              are taken.  If there are area sources beyond this
              range, they are not included in the calculations.
ACTION:       Guidance on choosing DELR to avoid this problem  is
              provided in Figure 11.  The integration step, DELR,
              should be modified such that all area sources are
              included in the calculation. Alternatively,  the
              user could increase the number of integration steps
              allowed.

(1)  Error message — execution terminated.
(2)  Warning message — execution continues.
                                 75

-------
                           SECTION 10

                    INTERPRETATION OF OUTPUT
                                                              »

    The input stream and output listing of the example problem in
Section  6  are  presented  here.   The  reader is referred to the
earlier section for the  physical   description  of  the  problem.
Intricacies  of  the input data are discussed here and the output
listing is annotated for ease of interpretation.

    Table 19 lists the input data  for the example  problem.  Note
that  the  PGCDM  dispersion scheme (KLOW = KHIGH = 6) was chosen
for this example. Arrays ICP and ICA were so defined to  simulate
the more unstable conditions of the urban atmosphere. As shown in
Figure  15, RAT (the basic emission grid square in user units) is
5 km;  thus TXX = 5000 m and CV = 1000.  The  coordinates  of  the
southwest  corner  of the emission grid (XG, YG)  is also given in
Figure 15. As indicated in Table 19, receptors are combined   into
two   groups:  those  in  which  NROSE < 0  and  those  in  which
NROSE > 0. Output volume is reduced in this manner.
    The printed output of CDM-2.0  consists of four parts:  set-up
information,  meteorology,  source  inventory,  and concentration
results.  The  set-up  information,   meteorology,   and   source
inventory  are  optionally provided (see variable NLIST of record
type 5 in Table 15). Abridged output from the example problem  is
given  in  Figure 16; output in card image form is shown in Table
20. The format of the card image output is given in Table 21  for
ease of interpretation.
                                 76

-------
TABLE 19.  INPCT DATA FOR THE EXAMPLE PROBLEM.
Record
AQCM TEST CITY
1 SO2PABT
A P1A
16 1 11
8,1,1,
8,1,2,
100.
10.
0.1,0.
1.3,2.
1300. ,
P2P PIP P2 100 0
001 0 00
2,3,4,4
3,4,4,4
3



3. 1000. 362.34387.3 13
1. 1. 30.
13,0.2,0.23,0.23,0.3
43372,4.4704,6.92912,
1000. ,1000. ,1000. ,330
30. 30

9.61138,
.,100.
8 3



. 3000.
30.

12.51712

0.0




30. 30.



0.0 1.0




999999999999



(9X,8F9.0)
18 blank card images


















































.000300 .000300
.0 .0
.0 .000300
.000300 .0
.000900 .000300
.000900 .0
.000900 .000300
.0 .0
.0 .0
.0 .0
.0 .0
.000900 .0
.0 .000500
.000300 .0
.0 .0
.0 .0
.000300 .0
.0 .000300
.0 .0
.000900 .000900
.001300 .002300
.0 .003700
.001400 .003200
.0 .002800
.0 .000900
.0 .001800
.0 .001300
.000300 .001400
.0 .001400
.000300 .000300
.0 .000900
.0 .001400
.0 .001080
.0 .000340
.0 .000340
.0 .002220
.0 .003360
.0 .001680
.0 .000840
.0 .001080
.0 .000300
.0 .000840
.0 .001080
.0 .000340
.0 .002460
.0 .002220
.0 .001380
.0 .001680
.0 .000720
.0 .000360
.0
.0
.0
.0
.000300
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.003200
.000900
.000900
.004600
.004100
.004600
.002800
.000900
.000900
.000900
.000900
.000900
.000900
.000900
.000300
.001400
.031360
.008040
.006360
.006360
.008880
.006060
.013020
.010300
.008880
.003230
.001080
.003230
.007740
.009420
.014640
.018000
.021040
.003360
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.000300
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.022980
.009420
.008880
.006360
.008280
.030420
.024600
.014640
.013000
.003230
.0
.000300
.004140
.006660
.009660
.019620
.013320
.006280
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.002220
.001680
.000300
.000300
.003300
.006660
.003060
.001680
.001330
.0
.0
.0
.0
.001080
.001680
.001380
.001480
.001120
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.000840
.000840
.000300
.0
.0 .
.0
.0
.0
.0
.0
.0
.0
.0
.0
Record
type
1
2
1.0 3
4
3
6
7
a
9
10
11
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
. 13
13
13
13
13
                 (eont i nued)
                        77

-------
TABLE 19.   (continued)
Record

.0 .000360 .004240 .005920 .000200 .0
.0 .001480 .004240 .004240 .000200 .0
.0 .002240 .003920 .003520 .002200 .000360
.0 .001120 .004040 .020230 .004440 .000360
.0 .000560 .008680 .016400 .002040 .000200
.0 .000720 .007000 .009760 .001120 .0
.0 .000200 .003920 .012000 .000920 .0
.0 .000380 .003320 .003320 .0
.0 .000720 .000720 .0 .0
.0 .000380 .003320 .000200 .0
.0 .001640 .005160 .002760 .0
.0
.0
.0
.0
.0 .001480 .008230 .004440 .000720 .0
.0 .000920 .009780 .006440 .001120 .0
.0 .001120 .012000 .013080 .000920 .0
.003100 .012400 .021200 .0 .0
.000300 .002800 .004600 .0 .0
.000900 .005100 .002300 .0 .0
.003200 .007300 .004100 .0 .0
.010600 .016100 .005500 .0 .0
.003300 .016100 .012400 .0 .0
.001400 .006900 .004600 .0 .0
.000900 .003100 .003100 .0 .0
.002300 .004600 .002300 .0 .0
.003100 .006500 .0 .0 .0
.000900 .003700 .0 .0 .0
.001300 .003700 .0 .0 .0
.001300 .006300 .000300 .0 .0
.003300 .012000 .003700 .0 .0
.008800 .011100 .003700 .0 .0
.003200 .011300 .006900 .0 .0
(F8 . 0 , 2F7 . 0 , 2F8 . 0 , F7 . 0 , F5 . 0 , 2F7 . 0 , F5 . 0 )
S68.S 4403.4 1363.00 327.63 ISO.
584.2 4391.6 1380.36 739.6 90. 3.
377.0 4401.1 221.78 34.13 30.
374.1 4401.3 110.23 34.08 23. 1.
362.3 4402.5 3000. 1.37 1.63
567.5 4402.3 3000. 1.28 1.79
372.5 4402.5 3000. 3.23 3.99 10.
377.3 4402.3 5000. 1.47 13.13
382.3 4402.3 3000. 1.2 1.58
362.5 4397.5 5000. 2.62 1.47 10.
567.5 4392.5 10000. 32.66 21.11 IS.
577.5 4397.5 5000. 5.46 3.99 10.
582.5 4397.5 5000. 6.62 5.78 10.
562.5 4392.5 SOOO. 2.63 1.16 10.
577.3 4392.5 5000. 7.38 5.15 20.
582.3 4392.5 5000. 5.25 3.63 10.
362.5 4387.5 5000. 2.73 1.37
567. 5 4387.5 5000. . 2.42 1.39 10.
S72.5 4387.5 5000. 5.36 4.10 10.
577.5 4387.5 5000. 5.37 3.39 10.
532.5 4387.3 SOOO. 2.34 1.47 10.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

.0001
7 15.2 149.
7 17.3 513.
4 15.2 280.





To reduce length
of output listing,
receptors should be
combined into two

groups - those in
which NROSE £ 0
and those in
which NROSE > 0.

1 blank card image to indicate end of source records
(2F3.2.14X, 14, 3X, 14,15)
570.0 4393.2 12 3
573.9 4338.9 14 11 I
572.4 4402.2 50 2*8 1
579.0 4394.0 20 3 1
583.0 4399.2 16 7 '
562.0 4395.7 10 6 1
566.1 4400.0 18 10 1
572.5 4396.7 9 1
577.5 4397.5 1
576.0 4403.0 1


NROSE 1 0




NROSE > 0



Record
type
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
15
IS
IS
IS
15
IS
IS
IS
13
IS
IS
15
• 15
15
IS
15
IS
15
IS
IS
IS
16
17
13
13
13
13
13
13
L3
id
13
13
              78

-------
   4410
  44O5
   44OO
us
w

05


ffl



o
  4395
  4390
10
             13
            14
                     •IXG.YG)
   4385
15
           11
16
                                                             1 5 km-

                                                               _r
           12
      S60         565         570         575         580        585
                                                            590
                                   kilometers
           Figure  15.  Annotated Test City  map (modified from

                        Brubaker et  al.,  1977) .
                                      79

-------
                                                  CLIMATOLOGICAL DISPERSION MftOEL  - VERSION
                                                               cone VERSION ISJBT
                                                                   RUN   100
                                                                                          1.0
                                                                                           SET-UP INFORMATJON
                  AQDM TEST CITV
                   Run  title
CO
o
TECHNICAL OPTIOHSi

    NUMBER OP WIMD DIRECTIONS USED IN METEOROLOGICAL JOINT

    DISPEHSmSYpKETER saiLtt'poa'ABEA'soilRCEs'iiiLOwi' '.'.'.'.'.'.I   '•           POCTW,  BUSBB * ZIHWERMAM (mi)
    DISPERSION PAHAMETER SCHEME COR POINT SOURCES (KHICUlk  	    I           POCDM,  BU38B & ZIMVffiHMAN (1811)
    EFFLUENT RISE FOR AREA SOURCES (PAC) 	    I'SSSSS'S'SS ..
    HEIGHT ABOVE GROUND OF ALL RECEPTORS (RCBPTZ) 	    0.0000006*00 M

    CALI|NTeRCEPT°OpTCALIBRATIONa	    «.OOOOOOB»00 MICBOOHAM3/CU. METER
        SLOPE OP CALIBRATION !	    l.OOOOOOB.OO DIMKNSIONLKSS

                °OPTCM!IBRAT?OMT	    O.OOOOOOB.OO MicHoaaA*ia/cu. MHTEH
        SLOPE OF CALIBRATION 	    I.OOOOOOE»00 DIMEHSIONLE8S
        INITIAL DISPERSION OPTION (NP&o) ...		    i   c;fntlja nf initial dispersion.
        BUOVANCY  INDUCED DISPERSION OPTION (HPDIl) 	    0   Status OJ  initial. uioyv,0i.   .
        STACK DOIVNIVASii OPTION (NSTDW)  	    o   buoyancy-induced dispersion,

                  ^a!a?T!?!!.!!!^?!.:::::::::::::::::::::    2   and  stack  do^ash  options.


PRINT OPTIONS.                                          NLIST

    CONTROL FOR PRINTED OUTPUT 	^»-o        Since NLIST = 0,  set-up information
    FORTRAN LOGICAL UNIT NUMBER (READ)  	    »         .     ,    ,  ~    ,tanJ FJnntifin    Uhcn
    FORTRAN LOGICAL UNIT NUMBER (PRINTER)  	    •        ia  echoed for verification,   unen
    FORTRAN LOGICAL UNIT NUMBER (PUNCH)  	    •        NLIST <  0, this  page  and following

                                                                        page are not  printed.
OPERATING  PARAMETERSi

    X-MINUUM OP  AREA EMISSION INVENTORY MAP OHIO (XO) 	    6.«lftOOOH«01 USER UNITS
    Y-MINIMUM OP  AHEA EMISSION INVENTORY MAP OHIO (Yd) 	     .lilftOOE'Ol USBR UNITS
    WIDTH  OP A BASIC EMISSION GRID SQUARE  (RAT)  	     .OOOOOOE*00 USER UNITS
    GRID CONVERSION FACTOR  
-------

CLIMATOljOOICAL DISPERSION MODEL
CODE VERSION »SJ8T
RUH 100
AQDM TEST CITY- 	 Hun title included on every page of
MISCELLANEOUS METEOROLOGICAL DATA (OOHTIHUED)i
CENTRAL WIND SPEED Of TUB SIX MIND SPEED CLASSES (U)|





EXPONENTIAL OF THE VERTICAL WIND PROFILE (UB)|





SOURCE DATAi




INITIAL 3IO.U-Z FOR AREA 8OUHCE3 (SZA)l





DISPERSION CUHVE USED FOR EACH STABILTY CLASS
STABILITY POINT AREA
CLASS SOURCES SOURCES
1 A A
2 B A
1 C B
4 Dl C
5 Dl Dl
6 Dl Dl
SET-UP INFORMATION (continued)
- VERSION 1.0
Hating
. 400000H»Oe M/SEC
.44IJJOE»00 H/SEC
.4104008*00 M/SEC
.81B110E»00 M/SEC
.«IIJ80E»00 M/SEC
.lilTI*B»OI M/BEC
.OOOOOOE-01 DIMENSIONLBSS
.iOOOOOE-01 DIUENBIOMLESa
.flOOOOOB-OI DIUEN8IONLES8
. tOOOOOB-01 DIMHN8IONLE8S
.400000E-OI DIMENSIONLBSS
.OOOOOOE-01 DIMENSIONLE88
SOI & PAAT
.8t8t»OE«Oft HH
.tmtoE'Oft im
.OOOOOOE'OO DIMEM8IONLESS
.0000006*00 DIMENSIONLE88
.OOOOOOE»OI M
.OOOOOOE»OI M
.OOOOOOE»01 M
.OOOOOOB«OI M
.OOOOOOE»Ot M
,OOOOOOE«OI M

Figure 16.  (continued).

-------
CLIMATOUMICAL DISPERSION M3OEL - VERSION 1.0
COOK VEHSION I&16T
Uhen NLIST < 0, the RUN
AQCM TEST CITY meteorological Joint
frequency function is
not printed. METEOROLOGICAL JOINT

STABILITY CLASS 1
WIND DIRECTION
H
NNB
NE
ENE
e
ESB
SB
8SB
3
88W
8W
WSW
W
WNW
HW
NHW



METEOROLOGY
100
Output is abridged. The
meteorological joint
FREQUENCY JUNCTION frequency function is
missing for stability
WIND SPEED CLASS olasses 2, 3
SECTOR









10
II
It
11
14
IS
It
I
.000000
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
a
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
*
0.000000
0.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
COMPUTED MEAN
STABILITY CLASS •
WIND DIRECTION
N
NNB
NE
ENB
E
ESE
SE
SSE
a
8SW
SW
wsw
W
WNW
NW
NHW
Average uind speed for
4
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
SPEED " 0.00
ft
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
M/8EC
, 4, and 5.
6
.000000
.000000
.000000
.000000
.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

WIND SPEED CLASS
SECTOR
1
a
3
4
S
a
i
i
9
10
11
11
11
14
IS
16
stabi lity
1
O.OOSIOO
0.000600
o.oootoo
0.001100
o.oioaoo
0. 005500
0.001400
0.000900
0.001100
O.OOSIOO
0.000800
0.001800
O.OOIBOO
o.oossoo
0.008800
0.001100
class 6.-
1
0.011400
0.001100
O.OOSIOO
0.001800
0.016100
0.016100
0.006900
O.OOSIOO
0.004600
o.ooasoo
0.001700
0.001100
o.ooasoo
0.011000
O.OIIIOO
O.OlltOO
r COMF

1
0.011100
0.004601
0.001100
0.004100
o.oossoo
0.011400
0. 004600
O.OOSIOO
0.001100
0.000000
0.000000
0.000000
o.ooosoo
0.001100
0.001100
0.006900
4
0.000000
0.000000
0.000000
0.000000
* 0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
UTED MEAN SPEED - t.Sl
t
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
M/8EC
6
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

Figure 16.  (continued).

-------
00
co
EMISSION INVENTORY
AQJM TEST CITY



CLIMATOLOQICAL DISPERSION MODEL - VERSION l.A
CODE VERSION 8S28T
RUN 100
AREA AND POINT SOURCE INVENTORY


WIDTH OP 	 EMISSION
X MAP
COORDINATE
S68
S84
S11
S14
581
567
571
S17
S82
S62
SSI
S11
581
581
S11
581
581
587
S72
S11
581

.40
.20
.00
.10
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
.so
. so
.so
.so
. so
11
Y MAP OHIO SQUARE
COORDINATE
4401.40
4191.80
4401.10
4401. SO
4401. SO
4402. SO
4402. SO
4402. SO
4402. SO
4197. SO
4191. SO
4197. SO
4197. SO
4191. SO
4192. SO
4191. SO
4181. SO
4181. SO
4181.50
4187. SO
4187.50
AREA SOURCES.
(Ml
0.
0.
0.
0.
SOOO.
SOOO.
SOOO.
SOOO.
SOOO.
sooo.
10000.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
sooo.
4 POINT
SO2
(Q/8EC)
1188.00
1810.18
221.18
110. IS
.IT
.18
.IS
.41
.20
.82
1 .88
.46
.82
.81
.88
.IS
.71
.11
.18
.51
.84
SOURCES.

RATE 	
PART
(Q/8EC)
SIT. 81
T89.80
14.11
S4.08
.88
.19
.98
1 .11
.61
.41
1.11
.89
.18
.18
.IS
.88
.11
.89
.10
.89
.41



SOURCE
IIBIOJIT
(U)
ISO
90
10
11
0
0
10
0
0
10
IS
10
10
10
10
10
0
10
10
10
10

.80
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

Total number of area


and point
sources

STACK
DIAM
(Ml
0.00
8.10
O.TO
1.40
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Since
STACK
EXIT
SPEED
(M/BEC)
0.00
IS. 20
IT. 80
IS. 20
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NLIST =
inventory is
verification .
STACK
OAS
TEMP
(DEO C)
0.
149.
SIS.
280.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.0
0.0

OPTIONAL
PLUMB RISE
COEFFICIENT
(M«*2/SEC)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
.00
.00
.00
.00
.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0, the aource
echoed for

Uhen NLIST t 0,
this information ia not


printed.
                                    Figure 16.  (continued).

-------
                                                                                              CONCENTRATION RESULTS
             Receptors  in uhich
             NKOSE = 0.
             AQOM TEST CITY
                                           CLIMATOLOQICAL DISPERSION MODEL - VERSION 1.0
                                                      OOOB VERSION I&26T
                                                          AUH  100
                                              CONCENTRATIONS (MICaOORAMS/CU.  METER)
            X COORD   V COORD
             4TO.OO
             ill. 90
             ill. 40
             STB. 00
             ill. 00
41*1.20
4111.00
4401.20
4194.00
4189.20
AREA
 302

 i.4
 4.8
 4.9
 i.4
 4.1
               SOURCES
                  PART
POINT  SOURCES
  SOI     PART
 14.1
  9.1
 19.1
 IS.l
 11.1
 4.1
 1.4
11.0
 4.4
 1.0
         	TOTAL	
          SOI    PART
10.1
14.1
44.4
20. f
li.O
 1.1
 1.0
lt.1
 1.1
                 --CALIBRATED--
                  801    PART
10.1
14.1
44.4
10. f
l&.l
 t.l
 1.0
11.1
 1.1
 1.9
                           --OBSERVED---
                            SOI     PART
11
14
BO
10
19
 g
II
It
 9
 1
00
                                 CDM-2.0 provides separate
                                 point  and area  source
                                 contributions.
                                            "Total" and  "calibrated"
                                            concentrations  are identical
                                            since  slope and intercept
                                            input  as J and  0,  respectively.
           Note  In order to reduce length of output  listing,
                  receptors should be combined into two  groups
                  on input: those  in which NROSE s 0 and those
                  in which iVROSL'  > 0.
                                                  Figure  16.    (continued)

-------
00
en
AQTM TEST CITY
AREA
X COORD Y OOORD SOI
ill. 00 4JS5.TO 1.1
CLIMATOLOQICAI. DISPERSION MODEL - VERSION
CODK VERSION I&101
RUN 100
CONCENTRATIONS (MICHOORAMS/CU. MBTER)
PART SOI fAHT SOI PART
1.0 O.I 1.1 1.0 4.0
1.0
CONCENTRATION RESULTS (continued)
--CALIBRATED-- 	 OBSERVED 	
SOI PART 8O1 PART
1.0 4.0 10 0

POLLUTANT SOURCE iii4io NROSE > 0 for thia
i ( sot) AREA «.o o.e o.i a.i 0.4 i.o receptor, thus
concentration versus
\ ( SOI) POINT 0.0 O.I 0.4 1.1 I.I 1.1 . ,.,., , . .
stability histogram
and concentration
1 (PART) AREA 0.0 0.6 0.0 O.I 0.} 1.4 ...
roaea provided.
1 (PART) POINT 0.0 ._ 0.0 O.I 1.0 0.1 0.1
POLLUTANT N NNE
1 0 0
1 00
POLLUTANT N NNE
1 0 0
1 00

NE ENB H BSE SB 88B ft 88W
0 0 1 1 0 0 0 0
00100000
NE ENB B E3E SB 88B 8 88W
11100000
1 1 1 0 0 0 0 0

8W WSW W WNW NW NNW
00 0 0 0 0
000000
••••••••«•••••»••••••*••••••••••»»•••••»••
SW WSW W WNW NW NNW
000000
000000

Figure 16.  (continued).

-------
CLIMATOLOdlCAL DISPERSION MODEL - VERSION 1.0
CODE VEHSioN^i&iei CONCENTRATION RESULTS (continued)
AQOM TEST CITY
AREA SOURCES
X OOORD V COORD SOI PART
8B8.10 4400.00 4.1 1.1
CONCENTRATIONS (MICROORAM3/CU. METBH)
SOI PART SOI PART BO1 PART 8O1 PART
11. B 4.1 II. I 1.1 II. 1 1.1 II 10

POLLUTANT
1 ( 801)
1 ( BO!)
1 (PART)
oo
en i (PART)
POLLUTANT N NNB HE
1 000
1 000
SOURCE I 1 1 4 » •
AREA 0.0~ 0.0 0.1 O.ft O.I 1.1
POINT 0.0 0.1 1.0 4.1 I.I 1.1
AREA 0.0 0.0 O.I 0.1 0.< 1.1
POINT 0.0 O.I 0.4 I.I 1.1 O.I
BNB B ESB SB 83B 8 BSW 8W WSW W WNW NW NNW
OIIOOOOOOOIOO
1110000000000
POLLUTANT N NNE HE ENB B ESB SB 83B 8 83W BW WSW W WNW NW NNW
| 0040110000000000
a 0010110000000000

Figure 16.  (continued).

-------
CO
-I
                                                CLIMATOUXIICAL DI8PEH3IOH MOOHL -  VERSION  1.0
                                                                  W B H fl 1 fMI ft & 1 fl f
                                                                  RUN   100                    CONCENTRATION  RESULTS  (continued)
               AQTM TEST CITV
                                                    OONCENTBATIONB (MICROORAM3/CU. METER)
                                    AREA  SOURCES      POINT  SOURCES     	TOTAL	      --CALIBRATED--      ---OBSERVED---
               X COORD   Y COORD      8O1     PART        SOI     PART        8OI      PART        BO1     PART        SOI      PART
                411.40   410).TO      t.O      4.1        IT.I      (.1       II.I      10.0       11.A     10.«          0         9

               ••••*••••••••»••«•••••••*••••••••»*•••••«  AVERAGE CONCENTRATIONS BY STABILITY ••••«•••••••••••••••••••••••••••••••••
                                                   TYPB OP
                                        POLLUTANT  SOURCE
                                    ---STABILITY CATEGORY	
                                     1       1        4       »
                                                                1
                                         I (  801)    AREA       0.0     0.0     0.1      0.0     1.1     1.0
                                         I (  801)    POINT      0.0     0.0     0.0      0.0     1.1     1.1

                                         1 (PART)    AREA       0.0     0.0     O.I      0.0     0.0     1.0
                                         1 (PART)    POINT      0.0     0.0     0.4      1.1     1.1     0.4
               ••••••••••••••••••••••••••••••••••••••••ft*
                     POLLUTANT
                         1
                         1
N   NNB    NE   ENB
1000
0000
         (UICROORAMS/CU. METER)

B   E3B    SB   8SB     S   88W
I     I     0      0     0     0
I     I     0      0     0     0
    >••••••••«••••«••••••••••••••»•••••

8W   WSW     W  WNW   NW  NNW
 000010
 000000
               ••«••••••••••••••••••••••••«•••••••••••••  POINT ROSES (MICROOHAM3/CU.  METER)  •••••••••••••••••••«••••••••••••••••••••••
                     POLLUTANT
                         1
                         1
N   NNE    NB   ENB
0140
0110
                       B   BSB    6B   88B
                       oioo
                       0100
                       8   88W    SW   WSW
                       aooo
                       0000
             W   WNW   NW  NNW
             ooot
             0004
               ..,.....»....«......•.«.••«•««•««.•«««•••»•«••••••••••••»•««•••••••«•»•••••«••«••••«••••«••••»•••••••••••••••••••••••••
                                                         Figure  16.    (continued).

-------
               AQDM TEST CITY
                                                 CLIMATOUX1ICAL DISPERSION MODEL -  VERSION  1.0
                                                             CODE VEHaiOM^saei
                                                     CONCENTRATIONS (MICROOAAM3/OJ.  METER)
                                                            CONCENTRATION RESULTS (continued)
               X COORD   Y COORD

                ill. 10   Oil. SO
                                     AREA  SOURCES
                                     SO)     PART
                    POINT  SOURCES
                      801     PART
                             	TOTAL	
                              SOI     PART
                                      6.8
            4.4
                     14.1
                               1.1
                                        l».l
                                                 11.0
                                          --CALIBRATED--
                                            801     PART
                                                      ---OBSERVED---
                                                        SOI     PART
                                                            Ji.l
                                                                     11.0
                    >••••••••••»••••••••••«••••••••*••••  AVERAGE CONCENTRATIONS UY STABILITY  ••••••••••••••»••••••••*••»••••••••••••••
           TYPE OP
POLLUTANT   SOURCE

 I (  SOI)    AREA

 I (  SOI)    POINT
                                                                 1

                                                               0.0

                                                               0.0
                                                                       ---STABILITY CATEOORY-
                                                                        114
                                    0.0

                                    0.1
                                 O.I

                                 I.I
                                    O.I

                                   14. 1
                                     ft

                                    1.1

                                    0.1
                                  6

                                 J.I

                                 1.1
oo
                                         1 (PART)    AREA      0.0     0.0     O.I      O.I      1.0     1.1

                                         1 (PART)    POINT      0.0     O.I     0.4      l.S      1.1     1.4
               •••••••••••••••«••••»••••••»•••••»••«•*•••  AREA ROSES (MICROQAAMS/CU.  MBTBR)  ••••••••«
                     POLLUTANT

                         1

                         1
 H   HNB

 10

 10
NB

 0

 0
ENB

  O

  0
    E8B

      I

      0
SB

 O

 0
                                  88B

                                    O

                                    0
8

O

0
8SW

  O

  0
BW

 O

 0
WSW

  O

  0
W   WNW

OI

00
NW   KHW

 IO

 10
                                                        POINT ROSES (MICROORAMS/CU.  METER)  •
                                                                                           •••••••^•••••••••••••••••••••••••t*«»*»*
                     POLLUTANT

                         1

                         1
 N   NNB

26     0

 40
NE

 0

 0
ENB

  0

  0
B   ESB    SB

001

001
     88B

       0

       0
                                             8SW

                                               0

                                               0
           8W

            0

            0
            WSW

              0

              0
             W

             0

             0
            WNW

              4

              1
           NW   NNW

            10

            10
                                                             »«•••••»••••••»»«»•••*••••*••••
                                                                                                  >••••»•••«••*••••••••»••«»•••••••»
                                                        Figure  16.    (continued).

-------










oo
to







Cl
AQCM TB8T CITY

X COORD Y COORD SOI PART
il6.00 4401.00 4.4 4.1

POLLUTANT
1 ( 801)
1 ( 801)
1 (PART)
1 (PART)
POLLUTANT N NHB NE
1 000
1 000
POLLUTANT N NNB NB
1 000
1 000

.IMATOLOQICAL DISPERSION MOflEL - VERSION 1.
CODE VERSION 15141
RUN 100

CONCENTRATIONS (MICHOORAMS/CU. METER)
SOI PART SOI PART
1T.I 0.1 11.1 11.0
**** AVBRAOB CONCENTRATIONS BY STABILITY •
SOURCE 1114
AREA 0.0 0.0 0.1 O.T
POINT 0.0 O.I 1.4 11. 1
AREA 0.0 0.0 O.I O.T
POINT 0.0 0.0 O.T !.•
***** AREA ROSES (MICHOOHAMS/CU. MBTER) **
ENB B BSB SB 88B 8 SSW
0010000
1 1 1 0 0 0 0
**** POINT HOSES (MICHUGHAM9/CU. MiiTttt) *•
BNE B BSB SB 88B 8 SSW
0 0 0 1 11 0 0
0001100

0
CONCENTRATION RESULTS (continued)


SOa PAHT 8O1 PART
11. S 11. • 0 0

» *
1.0 1.8
0.4 4.1
1.0 1.0
l.i O.T
fr
8W WSW W WNW NW NNW
000000
000000
BW WSW W WNW NW NNW
104000
001000

Figure 16.  (continued).

-------
TABLE 20.   CARD IMAGE OUTPUT FOR THE EXAMPLE PROBLEM.
Card image output






A
P
A
P
A
A
A
A
P
P
P
P


A
P
A
P
A
A
A
A
P
P
P
P
570
573
572
579
583
562
PI
PI
P2
P2
PI
PI
P2
P2
PI
PI
P2
P2
•
576
PI
PI
P2
P2
PI
PI
P2
P2
PI
PI
P2
P2
.00
.90
.40
.00
.00
.00
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0

.00
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
4393
4388
4402
4394
4399
4395
0.
0.
0.
0.
0
0
0
0
0
0
0
0

4403
0.
0.
0.
0.
0
0
0
0
0
0
0
0
.20
.90
.20
.00
.20
.70
0
1
0
0
0
0
0
0
3
0
1
0

.00
0
1
0
0
0
0
0
0
0
1
0
0
1001
100!
1001
1001
1001
1001
0.1
0.4
0.0
0.2
0
0
0
0
2
0
1
0
*
100!
0.1
2.4
0.1
0.7
0
0
1
0
0
0
0
0
5
5
5
5
5
3
0.2
2.7
0.1
1.0
1
0
1
0
1
0
1
0

4
0.7
12.6
0.7
2.9
0
0
1
0
0
4
0
2
4
3
4
4
5
2




1
0
0
0
0
0
0
0

5




1
0
1
0
0
0
0
o-
15
10
39
15
11
6
0.4
1.8
0.3
0.7
0
0
0
0
0
0
0
0

28
1.0
8.4
1.0
1.9
0
0
0
0
2
0
1
0
5 20
4 14
13 44
4 21
3 16
2 9
2.0
1.2
1.4
0.2
0
0
0
0
0
0
0
0
•
6 32
2.6
4.3
3.0
0.7
0
0
0
0
21
0
3
0
9 20 9 12 8
7 14 7 14 11
17 44 17 50 26
9 21 9 20 8
8 16 8 16 7
4 9 4 10 6
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570
56200 439570

11 32 11 0 0
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
57600 440300
Record
type
1
1
1
1
1
1
2
3
4
5
6
6
7
7
8
8
9
9

1
2
3
4
5
6
6
7
7
8
8
9
9

-------
             TABLE 21.  FORMAT OF CARD IMAGE OUTPUT.
Record type,
  Variable      Column
          Format   Variable description (units)
Record type 1
  RX             1-10
  RY
  I RUN
  KPX(l)
  KPX(2)
  KPX(3)
  KPX(4)
  KPX(8)



  KPX(9)


  KPX(IO)
11-20


21-25

 26

27-30



31-34



35-38



39-42
55-58



59-62


63-66
F10.2


F10.2


15



14



14



14



14
KPX(5)
KPX(6)
KPX(7)
43-45
46-50
51-54
14
14
14
14
X map coordinate of receptor
(user units)

Y map coordinate of receptor
(user units)

Run identification number

Card identifier

Concentration contribution
from area sources for the
first pollutant (ug/m3)

Concentration contribution
from area sources for the
second pollutant (ug/m3)

Concentration contribution
from point sources for the
first pollutant (ug/m3)

Concentration contribution
from point sources for the
second pollutant (ug/m3)

Total concentration for the
first pollutant (ug/m3)

Total concentration for the
second pollutant (ug/m3)

Calibrated total concentration
for the first pollutant
(ug/m3)

Calibrated total concentration
for the second pollutant
(ug/m3)
14


14


 (cont i nued)
Observed concentration for the
first pollutant (ug/m3)

Observed concentration for the
second pollutant (ug/m3)
                                 91

-------
                      TABLE 21  (continued)
Record type,
  Var iable
Column    Format   Variable description (units)
Record type 2*
  ARCS           1- 4
  APAR           5-46
  KPX(37)       47-54
  KPX(38)       55-62
Record type 3*
  PROS           1- 4
  PPAR           5-46
  KPX(37)       47-54
  KPX(38)       55-62
Record type 4*
Record type 5*
          A4       Identifier indicating area
                   source contribution for the
                   first pollutant

          6F7.1    Area source contribution by
                   stability class for the first
                   pollutant (ug/m3)

          18       X map coordinate of receptor
                   multiplied by 100 to remove
                   decimals (user units)

          18       Y map coordinate of receptor
                   multiplied by 100 to remove
                   decimals (user units)
          A4       Identifier indicating point
                   source contribution for the
                   first pollutant

          6F7.1    Point source contribution by
                   stability class for the first
                   pollutant (ug/m3)

          18       X map coordinate of receptor
                   multiplied by 100 to remove
                   decimals (user units)

          18       Y map coordinate of receptor
                   multiplied by 100 to remove
                   decimals (user units)
                   Same as record type 2 for  the
                   second pol lutant


                   Same as record type 3 for  the
                   second pollutant

           (cont inued)
                                  92

-------
                      TABLE 21  (continued)
Record type,
  Var iable
Column
Format   Variable description (units)
Record type 6*t
  ARCS
  KPX
 1- 4
 5-44
  RX
  RY
Record type 7*t
Record type 8*t
  PROS
  KPX
45-52
53-60
 1- 4
 5-44
  RX
  RY
Record type 9*t
45-52
53-60
A4
815
18
18
A4
815
18
18
Identifier indicating area
source contribution for the
first pollutant

Area source contribution by
wind direction starting at
north and rotating clockwise
(ug/m3)

X map coordinate of receptor
multiplied by 100 to remove
decimals (user units)

Y map coordinate of receptor
multiplied by 100 to remove
decimals (user units)
                                   Same as record type 6 for  the
                                   second pollutant
Identifier indicating point
source contribution for the
first pollutant

Point source contribution by
wind direction starting at
north and rotating clockwise
(ug/m3)

X map coordinate of receptor
multiplied by 100 to remove
decimals (user units)

Y map coordinate of receptor
multiplied by 100 to remove
decimals (user uni-ts)
                                   Same as record type 8 for the
                                   second pol lutant
*  Records written only if NROSE > 0.

t  If N1636 = 16 there are two records of this type;
   if N1636 = 36 there are four records of this type.
                                  93

-------
                           REFERENCES

Bjorklund,  J. R. and J. F. Bowers. 1982. User's Instructions for
   the SHORTZ and  LONGZ  Computer  Programs,  Vols.  I  and  II.
   EPA-903/9-82-004A  and  B (NTIS Accession Numbers PB83-146 092
   and PB83-146 100).  U.  S.  Environmental  Protection  Agency,
   Middle Atlantic Region III, Philadelphia, PA.
Bowers,   J. F.,   J. R.   Bjorklund,  and  C. S.  Cheney.  1979.
   Industrial Source Complex (ISC) Dispersion Model User's Guide.
   EPA-450/4-79-030,  U.  S.  Environmental  Protection   Agency,
   Research Triangle Park, NC 27711. 360 pp.
Briggs,  G. A.  1969.  Plume  Rise, USAEC Critical Review Series.
   TID-25075,  National  Technical  Information  Service,  U.  S.
   Department of Commerce, Springfield, VA 22161. 81 pp.

Briggs,   G. A.   1971.   Some  Recent  Analyses  of  Plume  Rise
   Observation. In: Proceedings of the Second International Clean
   Air Congress, H. M. Englund and W. T. Berry   (eds.),  Academic
   Press, New York. pp. 1029-1032.

Briggs, G. A. 1974. Diffusion Estimation for Small Emissions. In:
   ERL,   ARL   USAEC   Report  ATDL-106.  U.  S.  Atomic  Energy
   Commission, Oak Ridge, TN. 59 pp.
Briggs, G. A. 1975. Plume rise predictions.  In:  Lectures  on  Air
   Pollution  and  Environmental   Impact  Analysis,  D. A. Haugen
   (ed.), Amer. Meteor. Soc., Boston, MA. pp. 59-111.

Brubaker, K. L., P. Brown, and R. R. Cirillo. 1977.  Addendum  to
   User's    Guide    for    Climatological   Dispersion   Model.
   EPA-450/3-77-015,  U. S.  Environmental   Protection   Agency,
   Research Triangle Park, NC 27711. 134 pp.
                                 94

-------
3urt,  E. W.  1977.  Valley Model User's Guide. EPA-450/2-77-018,
   U. S. Environmental Protection Agency, Research Triangle Park,
   NC 27711. 112 pp.

Busse, A. D. and J. R. Zimmerman.  1973.  User's  Guide  for  the
   Cl imatological    Dispersion   Model.   EPA-R4-73-024,   U. S.
   Environmental Protection Agency, Research  Triangle  Park,  NC
   27711. 132 pp.
Calder,  K. L.  1971.  A Climatological Model  for Multiple Source
   Urban Air Pollution. In: Proceedings of the Second Meeting  of
   the Expert Panel on Air Pollution Modeling. NATO, Committee on
   the  Challenges  of Modern Society (CCMS). Paris, France, July
   26-27. 33 pp.

Calder, K. L. 1977. Multiple-source plume  models  of  urban  air
   pollution  -  their  general  structure.  Atmos.  Environ. 11:
   403-414.
Gifford, F. A., Jr.  1960.  Atmospheric  dispersion  calculations
   using  the  generalized  Gaussian  plume  model. Nucl. Saf. 2:
   56-59.

Gifford, F. A., Jr. 1976. Turbulent diffusion  typing schemes -- A
   review. Nucl. Saf. 17: 68-86.
Hanna, S. R., G. A. Briggs, and R. P. Hosker, Jr. 1982.  Handbook
   on  Atmospheric  Diffusion.  DOE/TIC-11223, National Technical
   Information   Service,   U.   S.   Department   of   Commerce,
   Springfield, VA 22161. 102 pp.
Holland,  J. Z.  1953.  A  Meteorological Survey of the Oak Ridge
   Area. Atomic Energy Comm., Report ORO-99, Washington, DC.  584
   pp.
Holzworth, G. C. 1972. Mixing Heights, Wind Speeds, and Potential
   for  Urban  Air  Pollution  Throughout  the  Contiguous United
   States. Office of Air Programs Publication No. AP-101.  U.  S.
   Environmental  Protection  Agency, Research Triangle Park, NC.
   118 pp.

                                 95

-------
Irwin, J. S. 1979. A theoretical variation of  the  wind  profile
   law exponent as a function of surface roughness and stability.
   Atmos. Environ. 13: 191-194.

Johnson,  W. B.,  R. C. Sklarew, and D. B. Turner. 1976. Urban Air
   Quality Simulation Modeling. In: Air Pollution, Part I —  Air
   Pollutants,   Their  Transformation  and Transport, A. C. Stern
   (ed.), Academic Press, New York and London, pp. 503-562.

Martin, D. O. and J. A.  Tikvart.  1968.  A  General  Atmospheric
   Diffusion  Model  for Estimating the Effects of Air Quality of
   One or More Sources. APCA  Paper  68-148,  presented  at  61st
   Annual APCA Meeting, St. Paul, Minnesota, June 1968.

Martin,  D. 0.  1971. An urban diffusion model for estimating long
   term average values of air quality. J. Air Poll. Contr. Assoc.
   21: 16-19.

Pasquill, F. and P. J.  Meade.  1958.  A  study  of  the  average
   distribution of pollution around Staythorpe. Int. J. Air Poll.
   1: 60-70.
Pasquill,  F. 1961. The estimation of the dispersion of windborne
   material. Meteorol. Mag. 90: 33-49.
Pasquill, F. 1976. Atmospheric Dispersion Parameters in  Gaussian
   Plume  Modeling.  Part II. Possible Requirements for Change in
   the  Turner  Workbook   Values.   EPA-600/4-76-030b,   U.   S.
   Environmental  Protection  Agency,  Research Triangle Park, NC
   27711. 44 pp.
Singer, I. A. and M. E. Smith. 1966.  Atmospheric  dispersion  at
   Brookhaven  National Laboratory. Int. J. Air Water Pollut. 10:
   125-135.
Truppi, L. E. 1968. Bias introduced by anemometer starting speeds
   in climato logical wind rose  summaries.  Mon.  Wea.  Rev.  96:
   325-327.
                                 96

-------
Turner, D. B. 1970. Workbook of Atmospheric Dispersion Estimates.
   Office    of    Air    Programs    Publication    No.    AP-26
   (NTIS-PB-191-482).   U.  S.  Environmental  Protection  Agency,
   Research Triangle Park, NC 27711. 84 pp.

Turner,  D. B.,  J. R.  Zimmerman,  and  A. D.  Busse.  1972.  An
   evaluation of some climatological dispersion models. Presented
   at 3rd Meeting of the NATO/CGVB Panel on Modeling.

Turner, D. B. and J. H. Novak. 1978. User's Guide for  RAM.  Vol.
   I.  Algorithm  Description  and  Use. EPA-600/8-78-016a, U. S.
   Environmental Protection Agency, Research Triangle  Park,  NC.
   60 pp.
                                                                •
TRW   Systems   Group.   1969.   Air   Quality   Display   Model.
   NTIS-PB-189-194, National Technical Information Service, U. S.
   Department of Commerce, Springfield, VA 22161.

Vogt, K. J. 1977. Empirical  investigation  of  the  diffusion  of
   waste  air  plumes   in  the atmosphere. Nuclear Technology 34:
   43-57.
                                 97

-------
                           APPENDIX A

                         DEFAULT OPTION

    The default option is provided as a convenience to  the  user
to  help  avoid  inadvertent  errors  in  setting the appropriate
options. Exercising the default option (i.e., NDEF = 1) overrides
other user-input selections and results in the following.

(1)  Stack downwash according to Briggs (1974) is used.
                             *
(2)  Briggs1 plume rise (1969, 1971, and 1975) is used.
(3)  Buoyancy-induced dispersion is exercised. For distances less
     than the distance to final rise, the gradual plume  rise   is
     used to determine the buoyancy-induced dispersion only.

(4)  Final plume rise is used.
(5)  To calculate vertical dispersion, the Briggs-urban scheme  is
     selected.
(6)  The  joint  frequency function is assumed to be comprised  of
     the following six classes: A,  B,  C,  D-day,  D-night,  and
     nighttime stable.
(7)  Initial  oz   values  for  area sources are 30 meters  for all
     stabi1i ty classes.

(8)  Wind profile exponents are set to .15,  .15,  .20,  .25,  .25,
     and  .30 for stabilities A, B, C, D-day, D-night, and stable
     cases respectively.
(9)  Calibration intercepts and  slopes  are  set  to  0   and   1,
     respect ively.
(10) A  pollutant  half-life  of 4 hours for SO2  is assumed and  a
     half-life near infinity  is assumed for all other pollutants.
                                 98

-------
    Default values for all the affected variables are  provided  in
Table A-l. For all other  input variables not shown  in  Table   A-l,
CDM-2.0 assumes the values provided by the user.

      TABLE A-l.  VARIABLES AFFECTED BY THE DEFAULT OPTION
Record
type
3

4


5

6

8

9
10
Var iable
CA
CB
NP50
NPDH
NSTDW
KLOW
ICA
KHIGH
ICP
SZA
GB
UE
SA
Default values
0.0, 0.0
1.0, 1.0
-1
1
1
2
1, 2, 3, 4, 5, 6
2
1, 2, 3, 4, 5, 6
30., 30., 30., 30., 30., 30.
4.0 (for SO2), 999999. (for all others)
.15, .15, .20, .25, .25, .30
-1
                                 99

-------
                           APPENDIX B
                     DETAILED FLOW DIAGRAMS

    Detailed  flow  diagrams  for  the  main program and the  four
primary subroutines (i.e., CLINT, CALQ, AREA, and POINT) follow.
                                 100

-------
Oeteralne the Mulnui
ind •Iniom dtstincei
Iron the receptor to the
million grid bounoirlei


                Rettomer, receptor
                ii outstoe ealiilon
                grid U>und«riei
                    16 • 2
                                                               IPSSO
                                                             (IPS • t or
                                                            point sources)
Figure B-l.   Flow diagram  for  the  main  routine.

-------
 .	<     Altio7
(  tntir    J	»/  ««cord   /
V	x   /  lypn l-t /
O
to
                           /•"*     /
                          / Btcord    /
                          / Typtl l-ll/
                        0*flM
                        lur*. ttctor
                             rst ind
                        polluuni h«ir-)irc
                                                                                      Modify lourt* coord-
                                                                                      tiwcti, dlnnilani,
                                                                                      • ml Million r«U ta
                                                                                      (.anfarm la COM-2.0
                                          Figure  B-2.    Flow diagram for  subroutine  CLINT.

-------
o
CO
                         / loop over  \ <
                          lector intervi^_^_
                         .  counter
                         \ LL • l.«TC
                                                                             loop over
                                                                            wind speed
                                                                             cltit
                                                                              IU • 1.6
         Figure  B-3
Plow  diagram for  subroutine
CALQ.
Figure B-4.
Flow diagram
AREA.
for  subrout ine

-------


Brlggi
pluM
rU.
( ileturn  A
Figure B-5.   Flow diagram for  subroutine POINT.

-------
                           APPENDIX C
                 LISTING OF FORTRAN SOURCE CODE

    The source code  listing  of  CDM-2.0  follows.  The  program
consists of a main module and nine subroutines.
                                 105

-------
c
c
c
c
c
c
c
c •
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c •
c
c
c
c
c
c
c
c •
c
c
c
c
c
c
c
C  DFAULT
c
c
c
c
c
c
c
c
c
c •  •  •
c
c
c
c
c
c
c
c
c
c
c
c
c
    PROGRAM ABSTRACT
CDM-2.0 CLIMATOLOGICAL DISPERSION !VEDEL VERSION  2.0  (BATCH)  CEM00010

           CDM-2.0   (VERSION 85293)                         CDM00020

                                                             OHO 0030

                                                             CEM00040

                                                             CDM00050

                                                             CDM00060

                                                             CDM00070

                                                             CXM00080

                                                             CDM00090

CDM-2.0 DETERMINES LONG-TERM (SEASONAL OR ANNUAL) QUASI-     CDM00100

STABLE POLLUTANT CONCENTRATIONS IN A RURAL OR URBAN SETTING  CDM00110

USING AVERAGE EMISSION RATES PROM POINT AND AREA SOURCES AND CCM00120

A JOINT FREQUENCY DISTRIBUTION OF WIND DIRECTION, WIND SPEED.CDM00130

AND STABILITY.  TEE GAUSSIAN PLUME HYPOTHESIS FORMS THE BASISCDM00140

FOR THE CALCULATIONS.  CONTRIBUTIONS ARE CALCULATED ASSUMING CDM001SO

THE NARROW PLUME HYPOTHESIS, CALDER (1971, 1977), AND INVOLVECDMO0160

AN UPWIND INTEGRATION OVER THE AREA SOURCES.  COMPUTATIONS   CDM00170

CAN BE MADE FOR UP TO 200 POINT SOURCES AND 2SOO AREA SOURCESCDMO0130

AT AN UNLIMITED NUMBER OF RECEPTOR LOCATIONS.  THE NUMBER OF CCM00190

POINT AND AREA SOURCES CAN BE EASILY MODIFIED WITHIN THE CODECDM00200

CDM-2.0 IS AN ENHANCED VERSION OF CDM INCLUDING THE FOLLOWINGCDM00210

OPTIONS:  IS OR 36 WIND DIRECTION. SECOTRS, INITIAL PLUME     CDM00220

DISPERSION, BUOYANCY-INDUCED DISPERSION, STACK DOWNWASH, AND CCM00230

GRADUAL PLUME RISE.  THE USER HAS A CHOICE OF SEVEN DISPERSIOCDM00240

PARAMETER SCHEMES.  OPTIONAL OUTPUT INCLUDES POINT AND AREA  CDM00250

CONCENTRATION HOSES AND HISTOGRAMS OF POLLUTANT CONCENTRATIONCCM00280

BY.STABILITY CLASS.                                          CDM00270

                                                             CDM00280

                                                             CDM0029Q

REFERENCES                                                   ODM00300
                                                             CDM00310

IRWIN, J. 3., T. CHICO, AND J. A. CATALANO.  1983.  CDM-2.0 -CDM00320

CLIMATOLOGICAL DISPERSION MODEL VERSION 2.0.  EPA-	/ -	-__CDM00330

U. 3. ENVIRONMENTAL PROTECTION AGENCY, RESEARCH TRIANGLE PARKCTM00340

NC.      PP.                                                 CDM00330

     ~"~~                                                     CDM00360

                                                             CDM00370

STRUCTURE AND MODULE SUMMARY                                 CDM00380
                                                             CDM00390

                   CDM-2.0                                   CDM00400

                       |	                CDM00410

                       ||               CDM00420
     I
   CLINT
           CALQ
r
        VIRTX

          I

          I
        3IGMAZ
        AREA
                   3IGMAZ
     POINT

       I
                                                           I
     CDM00430

     CDM00440
     CDM004SO
                 VIBTX
                             SIGMAZ
PLRISE
                                                     STDW
     THE SUBROUTINE ORDER IN THE LISTING IS AS FOLLOWS:   CLINT,
     DFAULT,  CALQ,  AREA,
     BLOCK DATA.
                     POINT,  PLRISE, STDW, VIRTX,  SIGMAZ, AND
     INPUT/OUTPUT INFORMATION
     FORTRAN

      UNIT
       9
            DATA  SET
                           (RECORD
      IRD-


      IWR"

      IPU"
        INPUT
        1-3)

        INPUT
        4-13)

OUTPUT LISTING

CONCENTRATION DATA
  I/O UNIT


  DISK
SIGMACDM00460

     CDM00470

     CDM00480

     CDM00490

     CDMOOSOO

     CDMOOS10

     CDMOOS20

     CDMOOS30

     CDM00540

     CDMOOSSO

     CEM00560

     CDMOOS70

     CDMOOS80

     CDMOOS90

     CDMOOSOO

     CDM00610

     CDM00620

     CDM00630

     CDM00640
 C
 C
 c
 c
                CONTROL

                  TYPES

                CONTROL INPUT (RECORD       DISK

                  TYPES

                                            PRINTER OR DISK

                                            DISK OR MAGNETIC TAPECDM006SO
                                                                 CTM00660
                                                                 CDM00670
                                                                 CDM00680

                                                                 CDM00690

PARAMETER (NPTS=200,NQLIM=100,SASE=50,NASN=50)                    CDM00700

DIMENSION DX(4),DY(4),A(4),KPX(38),TCON(2),CCON(2),FR£CPT(16)    CDM00710

    THE PARAMETER STATEMENT PERMITS STORAGE ASSIGNMENT           CDMU0720

     ACCORDING TO THE NEEDS OF EACH PROBLEM.  IF THE USER'S      COVI00730

     FORTRAN COMPILER DOES MOT SUPPORT PARAMETER, THE DESIRED    CDM00740

     NUMBER OF NPTS,  NQLIM, NASE, AND NASN WILL HAVE TO BE       CDM007SO
     •  SEE RECORD TYPE 3 BELOW.
                                       106

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
     HARDCODED.  THE BEST WAY TO DO THIS  IS THROUGH GLOBAL       CEM00760
     CHANGES WITH AN EDITOR.                                     CDM00770
COMMON /Cl/ K,MX,MN,F(6,6,36),OBAR(6),U(6),RI,RJ,INC(4),DELR     CDM00780
            UE(6),YD,YN,TMN,DINT,YCON,TA(4),IPG,XG,YG, IRD        CEM00790
            IRUN,CAt2),C8(2),TK(36),AROS(2),PROS(2),TANG         CDM00800
COMMON
COMMON
COMMON
COMMON
COMMON
          /C2/
          /C3/
          /C4/
                  DECAYU) , ICA( 6 ) , ICP( 6 ) ,HL(6) ,HX(6),GB(2) ,NQ, IVER, IWR CDM00810
          /CS/ Q(NQLIM,4),GA(2),IAD(4,5),IAS,TDA.TDB,TDC,IPU
          /C6/ ICHK
   COMMON /QCOM/ N.DR,IX,IY,TT(36,21),KTC,IXX,IYY,RAD,TD,
  •              Z(NASE,NASN,3)
   COMMON /ACOM/ PI,SZA(8),ABAR(2).AROSEl36,2),XS(6)
   COMMON /PCOVU PH(NPTS),PR(NPTS),PS(NPTS,4),PX(NPTS),PY(NPTS),
  •              WA(36),WB(36),PHOSE(36,2),CV,IPS,RAT,PBAR(2),TOA,
  •              VS1(NPTS),T1(NPTS),D1(NPTS),FRN(NPTS),BFLUX(NPTS)
   COMMON /SET/ N1636,DELTA,TTAN.NP50,NPDH,NGRAD,NSTDW,KLOW,KHIGH,
  •             PPAR(2,S),APAR(2,6),WHA(6),FAC,RCEPTZ,KELVIN,NDEF
   COMMON /TITLE/ HEADNG(20),PNAME(2),D16(32),D36(72),DISP(8,7),
  •               TTITL£(3)

       FORM OF INPUT TO CDM-2.0 (BATCH)
   VARIABLE
   NAME   COLMN
              FRMT
                             DESCRIPTION
RECORD TYPE 1 • • • RDN TITLE • • •
   HEADNG 1-80  20A4
                             DESCRIPTION OH TITLE OF MODEL RUN.
RECORD TYPE 2 • • • POLLUTANTS • • •
   NSO2
              II
                                               CDM00820
                                               CDM00830
                                               CDM00840
                                               CDM00850
                                               CDM00860
                                               CDM00870
                                               CEM00880
                                               CDM00890
                                               CDM00900
                                               CDM00910
                                               CDM00920
                                               CDM00930
                                               CEM00940
                                               CDM009SO
                                               CDM00960
                                               CDM00970
                                               CDM00980
                                               CDM00990
                                               CDM01000
                                               CDM01010
                                               CDM01020
                                               CDM01030
                                               CEM0104Q
                                               CDM01050
                                               CDM01060
                                               CCM01070
                                               CDM01080
                                               CDM01090
   PNAME  3-12   2A4
       TYPE 3 • • • PARAMETERS • •
ARCS
PROS
IRUN
NLIST
          1-3
          9-16
         17-21
         22-26
             2A4
             2A4
             15
             IS
AAAA
AAAA
XXXXX
XXXXX
   IRD
   IWR
   IPU
   CA
   CS
      27-31
      32-36
      37-41
      42-59
      60-77
             IS
             IS
             IS
            2F9,
            2F9.
XXXXX
XXXXX
XXXXX
xxxxxx.xx
xxxxxx.xx
POLLUTANT NUMBER FOR SO2
  - 0, SO2 NOT CONSIDERED IN RUN
  =» 1, POLLUTANT 1 IS SO2
  - 2, POLLUTANT 2 IS SO2
NAMES OF TWO POLLUTANTS TO BE MODELECDMO1100
                                    CDM01110
   •                                CDM01120
                                    CDMOU30
ALPHA AREA ROSE OUTPUT ID           CDM01140
ALPHA POINT ROSE OUTPUT ID          CDM011SO
USER DEFINED RUN ID NUMBER          CDM01160
CONTROL FOR PRINTED OUTPUT          CDM01170
IF NLIST  > 0 ECHO SETUP INFO * METECCDM01180
             LIST CONC. RESULTS     CDM01190
IF NLIST = 0 ECHO SETUP INFO * METEOCDMO1200
             ECHO SOURCE INFO INPUT CDM01210
             LIST CONC. RESULTS     CDMOmO
IF NLIST < 0 LIST ONLY CONC. RESULTSCDMO1230
FORTRAN LOGICAL UNIT NUMBER
FORTRAN LOGICAL UNIT NUMBER
FORTRAN LOGICAL UNIT NUMBER
INTERCEPT OF CALIBRATION
SLOPE OF CALIBRATION
RECORD TYPE 4 • • • PARAMETERS • • •
   N1636  (FREE FORMAT)
   NPSO   (FREE FORMAT)
                             NUMBER OF WIND DIRECTIONS USED
                             METEOROLOGICAL JOINT FREQUENCY
                             FUNCTION (EITHER IS OR 36).
                             INITIAL DISPERSION OPTION
                                < OR = 0, NO ACTION TAKEN ON
                                 SOURCES WITH RELEASE HEIGHTS
                                 BELOW SO M.
                                > 0, INITIALLY DISPERSE AS
(READ)   CDM01240
(PRINTERCDM01250
(PUNCH)  CDM01260
        CDM01270
        CDMU1280
        CDM01290
        CDM01300
        CDM0131U
   IN   CDMOU20
        CDMU133U
        CDMU1340
        CDM013SO
        CDM01360
   POINTCDM01370
        CDM01380
        CDM01390
        CDM01400
   NPDH   (FREE FORMAT)
                                 DESCRIBED IN CDM-2.0 USER'S GUIDCDM01410
                                                                 CDM01420
                             BUOYANCY -INDUCED DISPERSION OPTION  CDM01430
                                < OR = 0, NO ACTION TAKEN         CDM01440
                                > U, INCLUDE BUOYANCY  INDUCED     CDMU1450
                                 DISPERSION EFFECTS,  PASQU1LL    CDMOl4bO
                                 (1976), IN POINT SOURCE DISPER- CDM0147U
                                 SION AND SET PLUME AT FINAL     CDM01480
                                 EFFECTIVE HEIGHT FOR ALL        CDM01490
                                 DISTANCES.                      CDM01SOU
                                       107

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
   NSTDW  (FREE FOHMAT)
   NGRAD  (FREE FORMAT)



   FAC    (FREE FORMAT)

   RCEPTZ (FREE FORMAT)


   KELVIN (FREE FORMAT)




   NDEF   (FREE FORMAT)



RECORD TYPE 5 • • • PARAMETERS

   KLOW   (FREE FORMAT)




   ICA    (FREE FORMAT)
RECORD TYPE 6 • • • PARAMETERS

   KHIGH  (FREE FORMAT)
   ICP
 (FREE FORMAT)
RECORD TYPE 7 •
   DELR
   RAT

   CV

   XG

   YG

   TOA
   TXX
 1-6
 7-12

13-18

19-24

25-30

31-36
37-42
RECORD TYPE 8 •

   DINT    1-6
                       HEIGHT (M)  ABOVE G2OUND OF ALL
                       RECEPTORS

                       ONITS FLAG FOR STACK TEMPERATURE
                         < 0, DEGREES F
                         » 0, DEGREES C
                         > 0, DEGREES KELVIN

                       DEFAULT OPTION
                        < OR = 0,  NO ACTION TAKEN
                        > 0, IMPLEMENT DEFAULT OPTION
    PARAMETERS

F6.0 XXXXX.
F6.0 XXX.XX

FS.O XXXX.X

F6.0 XXX.XX

FS.O XXX.XX

FS.O XXX.XX
FS.O XXXXX.

• • PARAMETERS

FS.O XXXXX.
   YD     7-12  FS.O XXX.XX

   YN     U-18  FS.O XXX.XX
                                     CDM01510
 STACK DOWNWASH OPTION               CDMO1520
   <  0,  BJORKLUND AND BOWERS (1982)   CDM01530
        STACK DOWNWASH CONSIDERED    CDM01540
   3  0,  NO ACTION TAKEN              CDM01550
   >  0,  BRIGGS (1973) STACK DOWNWASH CDM0156U
        CONSIDERED                   CDM01570
                                     CDM01580
 GRADUAL PLUME RISE OPTION           CDM01S90
   <  OR = 0,  NO ACTION TAKEN         CDM01600
   > 0,  GRADUAL PLUME RISE CONSIDEREDCDMOISIO
                                     CDM01S20
 EFFLUENT RISE FOR AREA SOURCES      CDM01630
                                     CDM01640
                                     CDM01650
                                     CDM01860
                                     CDM01670
                                     CDM01880
                                     CDM01690
                                     CDM01700
                                     CDM01710
                                     CDM01720
                                     CDM01730
                                     CDM01740
                                     CDM01750
                                     CDM01760
• • •            .                    CDM01770
                                     CDM01730
 DISPERSION PARAMETER SCHEME FOR AREACDM01790
 SOURCES.  SEE COMMENTS ON KTYPE IN   CEM01800
 SUBROUTINE SIGMAZ.  THE CDM-2.0 USERCDM01810
 GUIDE ALSO DESCRIBES THIS PARAMETER.CDMO1820
                                     CEM01330
 ARRAY OP SIX (S) VALUES DEFINING    CDM01840
 DISPERSION CURVES (AS DEFINED BY    CDM018SO
 KLOW) TO BE USED FOR THE SIX        CDM01860
 STABILITY CATEGORIES SUMMARIZED IN   CDM01870
 THE  JOINT FREQUENCY FUNCTION.        CDM01880
                                     CDM01890
• • •                                CDM01900
                                     CDM0191Q
 DISPERSION PARAMETER SCHEME FOR POINCDM01920
 SOURCES.  SEE COMMENTS-ON KTYPE IN   CDM01930
 SUBROUTINE SIGMAZ.  THE CDM-2.0 USERCDM01940
 GUIDE ALSO DESCRIBES THIS PARAMETER.CDMO1950
                                     CDM01960
 ARRAY OF SIX (S) VALUES DEFINING    CDMO1970
 DISPERSION CURVES (AS DEFINED BY    CDMO1980
 KHIGH)  TO BE USED FOR THE SIX       CDM01990
 STABILITY CATEGORIES SUMMARIZED IN   CDM02000
 THE  JOINT FREQUENCY FUNCTION.        CCM02010
                                     CDM02020
• • •                                CDM02030
                                     CDM02040
 RADIAL INCREMENT (M)                CDM02050
 LENGTH OF A BASIC EMISSION GRID     CDM02060
 SQUARE IN USER UNITS                CDM02070
 CONVERSION FACTOR,                  CDM02080
 CV • RAT = EMISSION GRID INTERVAL (MCDM02090
 X MAP COORD. OF THE SW CORNER OF THECDM02100
 EMISSION GRID ARRAY                 CDMO2110
 Y MAP COORD. OF THE SW CORNER OF THECDM02120
 EMISSION GRID ARRAY                 CDM02UO
 MEAN ATMOSPHERIC TEMPERATURE (DEC OCDM02140
 WIDTH OF BASIC EMISSION SQUARE (M)   CDM02150
                                     CDMO2160
• • •                                CDM02170
                                     CDM02180
 NUMBER OF SEGMENTS DESIRED IN DELTA CDM02190
 DEGREE SECTORS.  RANGES FROM 2 TO 20CDM02200
 INCLUSIVE.                          CDM02210
 RATIO OF THE DAYTIME EMISSION RATE   CDM0222U
 TO THE AVERAGE 24-HOUR EMISSION RATECDM02230
 RATIO OF THE NIGHTTIME EMISSION RATECDM02240
 TO THE AVERAGE 24-HOUR EMISSION RATECDMO2250
                                          108

-------
C     SZA   19-54 SF6.0 XXX.XX     INITIAL SIGMA-Z FOR AREA SOURCES (M)CDM022SO
C     GB    55-66 2F6.0 XXXXX.     DECAY HALF-LIFE (HR) FOR THE TWO    CDM02i70
C                                  POLLUTANTS                          CEM02230
C                                                                      CDM02290
C  RECORD TYPE 9 • • • WIND PROFILE EXPONENTS • • •                    CDM023QO
C                                                                      CDM02310
C     OE     (FREE FORMAT)         ARRAY OF SIX (8) VALUES DEFINING WINCDM02320
C          '                        PROFILE EXPONENTS TO BE ASSOCIATED  CDM02330
C                                  WITH THE SIX STABILITY CATEGORIES   CDM02340
C                                  SUMMARIZED IN THE JOINT FREQUENCY   CDM02350
C                                  FUNCTION.                           CDM02360
C                                                                      CDM02370
C  RECORD TYPE 10 • • • WIND SPEEDS • • •                              CDM02380
C                                                                      CDM02390
C     U      (FREE FORMAT)         ARRAY OP SIX (6) VALUES DEFINING WINCDM02400
C                                  SPEEDS (M/SEC) TO BE ASSOCIATED WITHCDM02410
C                                  THE SIX WIND SPEED CATEGORIES SUMWARCDMO2420
C                                  IZED IN THE JOINT FREQUENCY FUNCTIONCDM02430
C                                  TYPICALLY THE HARMONIC AVERAGE WIND CDM02440
C                                  SPEED IS USED.                      CDM02450
C                                                                      CT3M02460
C  RECORD TYPE 11 • • • MIXING HEIGHTS • • •                           CTM02470
C                                                                      CDM02480
C     HL     (FREE FORMAT)         ARRAY OP SIX (6) VALUES DEFINING    CDM02490
C                                  MIXING HEIGHTS TO BE ASSOCIATED WITHCDM02500
C                                  THE SIX STABILITY CATEGORIES SUMMAR-CDM02510
C                                  IZED IN THE JOINT FREQUENCY FUNCTIONCDM02S20
C                                                                      CDM02530
C  RECORD TYPE 12 • • • FORMAT STATEMENT • • •                         CDM02540
C                                                                      CDM02S50
C     FMETEO 1-84  16A4            FORMAT STATEMENT, INCLUDING BEGINNINCDM02560
C                                  AND ENDING PARENTHESIS, FOR THE     CDM02S70
C                                  METEOROLOGICAL JOINT FREQUENCY      CDM02580
C                                  FUNCTION.  OLD COM FORMAT WAS,      CDM02590
C                                  (9X.6F9.0)                          CDM02600
C                                                                      CEM02810
C  RECORD TYPE 13 • • • JOINT FREQUENCY FUNCTION                       CDM02820
C                                                                      CDM02630
C     F      (SEE CARD TYPE 12)     F(I,J,K)     (PERCENT)             CEM02640
C                                                                      CDM02650
C  RECORD TYPE 14 • • • FORMAT STATEMENT • • •                         CDM02660
C                                                                      CDM02670
C     FSOURC 1-64  16A4            FORMAT STATEMENT, INCLUDING BEGINNINCDM02680
C                                  AND ENDING PARENTHESIS, FOR THE     CDM02690
C                                  SOURCE INVENTORY.  OLD CDM FORMAT WACDM02700
C                                  (P«.0I2F7.0,2F8.0,F7.0,F5.0,2F7.0,  CDM02710
C                                  F5.0)                               CDM02720
C                                                                      CBM02730
C  RECORD TYPE IS ••• SOURCE  INVENTORY (VARIABLE NUMBER OF RECORDS) •-•CDM02740
C                                                                      CDM02750
C     X     (SEE RECORD TYPE  14)   X MAP COORD OP SOURCE (RE USER GUIDECDM02760
C     Y              "             Y MAP COORD OF SOURCE (RE USER GUIDECDM02770
C     TX             "             WIDTH OF AREA SOURCE.  ENTER ZERO ORCDM02780
C                                  LEAVE BLANK FOR POINT SOURCES.      CDM02790
C     SI             "             EMISSION RATE OF POLLUTANT 1 (G/SEOCDM02800
C     S2             -             EMISSION RATE OF POLLUTANT 2 (G/SEOCDMU2810
C     SH             "             SOURCE HEIGHT (M)                   CDM02820
CD              "             STACK DIAMETER (M).  LEAVE BLANK FORCDM0283U
C                                  AREA SOURCES.                       CDM02840
C     VS             "             EXIT VELOCITY (M/SEC).  LEAVE BLANK CDM02850
C                                  FOR AREA SOURCES.                   CDM02860
C     T              "             STACK GAS TEMPERATURE (C).  LEAVE   CDM02870
C                                  BLANK FOR AREA SOURCES.             CDM02880
C     SA             "             PLUME RISE OPTION,                  CDM02890
C                                    < OR = 0, BRIGGS PLUME RISE       CDM02900
C                                    > 0, ENTER PRODUCT OF PLUME RISE  CDM02910
C                                      AND WIND SPEED (M"2/SEC)       CDM02920
C                                                                      CDM02930
C  RECORD TYPE 16 • • • BLANK SENTINEL CARD • • •                      CDM02940
C                                                                      CDM02950
C  RECORD TYPE 17 • • • FORMAT STATEMENT • • •                         CDM02960
C                                                                      CDM02970
C     FRECPT 1-64  16A4            FORMAT STATEMENT, INCLUDING BEGINNINCDM02980
C                                  AND ENDING PARENTHESIS, FOR THE     CDM02990
C                                  RECEPTOR CARDS.  OLD CDM FORMAT WAS,CDM03000


                                     109

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
RECORD TYPE 18
                        (2F8.2,14X,I4,3X,I4,I5)

           RECEPTOR CARDS (VARIABLE NUMBER OF RECORDS)
   RX
   RY
   KPX9

   KPX10

   NROSE
  (SEE RECORD TYPE 17)
                X MAP COORD. OF THE RECEPTOR
                Y MAP COORD. OF THE RECEPTOR
                OBSERVED CONC. OF POLLUTANT 1
                RECEPTOR, IF KNOWN
                OBSERVED CONC. OF POLLUTANT 2
                RECEPTOR, IF KNOWN
                OPTION FOR POLLUTANT CONC. ROSES
                   > 0, PRINT CONCENTRATION ROSES
                   < OR a 0,
      CDM03010
      CDM03020
      CDM03030
      CDM03040
      CDM03050
      CDM03060
AT THECDM03070
      CEM03080
AT THECDM03090
      CDM03100
      CDM03110
      CDM03120
      CALL CLINTUCOND)
   10
   IF (ICOND .EQ. 0) GO TO 20
      WRITE(IWR.IO)
      FORMATCO"" EXECUTION TERMINATED.
      GO TO 820
20 DELO2 » DELTA/2.0

       READ RECORD TYPE 17.

   R£AD(IHD,30) FRECPT
30 FORMAT(16A4)

       INITIALIZE CONCENTRATION ARRAYS
                            0.0
                            0.0
   ICHK
                                     NO CONCENTRATION ROSES CDM03130
                                                            CDM03140
                                                            CDM03150
                                                            CDM03160
                                                            CDM03170
                                                            CTM03180
                                                            CDM03190
                                                            CDM03200
                                                            CDM03210
                                                            CDM03220
                                                            CDM03230
                                                            CDM03240
                                                            CDM032SO
                                                            CDM03260
                                                            CDM03270
                                                            CDM03280
                                                            CDM03290
                                                            CDM03300
                                                            CDM03310
                                                            CDM03320
                                                            CDM03330
                                                            CDM03340
                                                            CDM03350
                                                            CDM03360
                                                            CDM03370
                                                            CDM03380
                                                            CDM03390
                                                            CDM03400
                                                            CDM03410
                                                            CDM03420
                                                            CDM03430
                                                            CDM03440
                                                            CDM03450
                                                            CDM03460
                                                            CDM03470
                                                            CDM03480
                                                            CDM03490
                                                            CDMU3500
                                                            CDM03510
                                                            CDM03520
                                                            CDM03S30
                                                            CDM03540
                                                            CDM03550
= 0                                                         CDM03S60
                                                            CDM03570
ICHK IS USED IN CALQ TO CONTROL THE PRINTING OF THE         CDM0358U
 WARNING MESSAGE ABOUT EXCEEDING 100 ARCS.  WE SET ICHK     CDM03S9U
 TO ZERO WHENEVER WE READ IN A NEW RECEPTOR.  A             CDM03600
 WARNING MESSAGE IS PRINTED ONLY WHEN NEEDED AND ONLY
 WHEN ICHK = 0.  WHEN THE MESSAGE IS PRINTED, ICHK IS
 SET TO THE VALUE OF 1 IN CALQ.  IN THIS MANNER, WE
 PRINT THE WARNING ONLY ONCE PER RECEPTOR EVEN IF
 MORE THAN 100 ARCS IS CALLED FOR IN MORE THAN ONE
 SECTOR.
40 DO 80 1*1,2
      DO SO IDUM"1,6
         PPAR( I , IDUM)
         APAR(I.IDUM)
50    CONTINUE
      ABAR(I)=0.
      PBAR(I)aO.
      DO 55 K=1,N1636
         AROSE(K,I)=0
         PROSE(K,I)=0
55    CONTINUE
SO CONTINUE
       READ RECORD TYPE 18 (RECEPTOR INFORMATION).
        AT END OF FILE STOP EXECUTION.

   READ(IRD,FRECPT,END=620)RX,RY,KPX(9),KPX(10),NROSE
       RX:
       RY:
       KPX19):

       KPX(IO);

       NROSE:
X MAP COORD. OP THE RECEPTOR
Y MAP COORD. OF THE RECEPTOR
OBSERVED CONC. OF POLLUTANT 1 AT THE RECEPTOR, IF
  KNOWN
OBSERVED CONC. OF POLLUTANT 2 AT THE RECEPTOR, IF
  KNOWN
OPTION FOR POLLUTANT CONCENTRATION ROSES
       CONVERT COORDINATES TO EMISSION GRID UNITS
   RI=(RX-XG)/RAT*O.S
   RJ=(RY-YG)/RAT+0.5
   IF(NROSE.GE.l) GO TO  110
   IPG=IPG*1
       START NEW PAGE  IF LINE COUNT GE 50
   IFUPG.LT.44) GO TO 110
   IPG=0
                                                    CDMU3610
                                                    CDM03620
                                                    CDM03630
                                                    CDM03640
                                                    CDM03650
                                                    CDM03660
                                                    CDM03670
                                                    CDM03680
                                                    CDM03690
                                                    CDM03700
                                                    CDMU3710
                                                    CDM03720
                                                    CDMU3730
                                                    CDM03740
                                                    CDM03750
                                          110

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
      WRITE(IWR,70)IYER,IRUN.HEADNG
   70 FORMAT('1',35X,'CLIMATOLCCICAL DISPERSION MODEL - VERSION 2
     •        IX,48X,'CODE VERSION ',!!,/
     •        1X,53X,'RUN ' ,IS,//,
     •        1X.20A4,//)
      WRITE( WR.30)
   80 FORMAT(IX,39X,'CONCENTRATIONS (MICROGRAMS/CU. METER)',//)
      WRITE(nVR,90)  PNAME(1),PNAME(2),PNAME(1),PNAME(2),PNAME(1),
     •              PNAME(2),PNAME(1)>PNAME(2),PNAME(1),PNAME(2)
   90 FORMAT (IX, 2 2X,'AREA  SOURCES      POINT  SOURCES

     •       IX,'X COORD   Y COORD1 , SX,S(A4, 5X.A4.7X),/)

          INITIALIZE SECTOR DIRECTION
           S:  PROGRESSES 1 THROUGH MlS36 CONTROLLING SECTOR DIRECTION
  110
      IP(IAS.LT.l) GO TO 340

          THERE ARE AREA SOURCES TO EVALUATE.
           DETERMINE MAXIMUM AND MINIMUM DISTANCES PROM THE RECEPTOR
           TO THE EMISSION GRID BOUNDARIES.

      DX(1)-(IX-0.5)-RI
C
C
C
c
c
c
c
c
c
c

c
c
c
                                                             CSM037SO
                                                           ,/ CTM03770
                                                             CDM03780
                                                             CDM03790
                                                             CDM03800
                                                             CDM03810
                                                             CDM03820
                                                             CEM03830
                                                             CDM03840
                                                      TOTAL',G3rt038SO
                                                             COM03360
                                                             CDM03870
                                                             CDM03830
                                                             CEM0389Q
                                                             CDM03900
                                                             CDM03910
                                                             CDM03920
                                                             CDM03930
I? THERE ARE NO AREA SOURCES TO EVALUATE GO TO 340 AND CHECK CDM03940
 FOR POINT SOURCES                                           CDM03950
                                                             CDM03960
                                                             CDM03970
                                                             CDM03980
                                                             CDM03990
                                                             CDM04000
                                                             CDM04Q10
                                                             CDM04020
                                                             CDM04030
                                                             CDM04040
                                                             CDM04030
                                                             CDM04080
                                                             CDM04070
                                                             CDM04080
                                                             CDM04090
                                                             CDM04100
                                                             CDM04110
                                                             CDM04120
                                                             CDM04130
                                                             CLM04140
                                                             CDM04130
                                                             CDM041SO
                                                             CDM04170
                                                             CDM04130
                                                             CEM04190
                                                             CDM04200
                                                             CTM04210
                                                             CCM04220
                                                             CEM04230
IP THE RECEP'Kat is OUTSIDE THE EMISSION GRID BOUNDARIES THEN 0104240
   GO TO 120                                                 CDM042SO
                                                             CDM04260
                                                             CDM04270
                                                             CDM042SO
                                                             CDM04290
SET FLAG (IB) TO REMEMBER RECEPTOR IS WITHIN GRID BOUNDARIES CDM04300
                                                             CDMU4310
                                                             COM04320
                                                             CDM04330
                                                             CDM04340
                                                             CDM04330
SET FLAG (IB) TO REMEMBER RECEPTOR IS OUTSIDE GRID BOUNDARIESCDM04360
                                                             CDM04370
      DX(4)"DX(1)
      DYU)»(nr-0.5)-RJ
                               i )
                                      . 5
                           -DYU )
                                      . 5
TX*(DX(1)«DX(1)+OY(
TN=TX

IP(TM.GT.TX) TX=TM
IP(TM.LT.TN) TN=*TM
TM=«(DX( 2 ) «DX( 2 )+DY'. 3)-DY( 3 )) "0. 5
IP(TM.GT.TX) TX=TM
IP(TM.LT.TN) TN-TM
TM»(DX( 1)-DX( 1)+DY( 3)-0Y( 3 )) "0 . 3
IP(TM.GT.TX) TX»TM
IP(TM.LT.TN) TN=»TM
      IP(RI*0.5.LT.IX.OR.RI-0.5.GT.IXX) GOTO 120
      IF(RJ+0.5.LT.IY.OR.RJ-0.5.GT.IYr) GOTO 120
      18=1
      MN=»1
      GO TO 330
  120 IB=2
          DETERMINE MINIMUM DISTANCE FROM RECEPTOR TO AREA SOURCES
      TMN=TN/DR
  130
   140
      TNI=400.
      DO  240  1=1,4
          IF(DX(I))130,150,190
          IF(DY(I).EQ.O.) GO TO  140
          TA(t)=ATAN(DY(I)/DX(I))•RAD+180.
          GO TO  230
          TA(I)=130.
                                                             CDM04380
                                                             CDM04390
                                                             COM04400
                                                             COM04410
                                                             CDM04420
                                                             CDM04430
                                                             CDM04440
                                                             CDM044SO
                                                             CDM04460
                                                             CDM04470
                                                             CDM0443Q
                                                             COM04490
                                                             CDM04SOO
                                      111

-------
         GO TO 230
  ISO    IFIDY(1))160,170,180
  ISO    TA(I)=270.
         GO TO 230
  170    TA(I)-0.
         GO TO 230
  180    TA(I)=90.
         GO TO 230
  190    IP(DY(I))200,210,220
  200    TA(I)»ATAN(DY(I)/DX(I))«SAD*360.
         GO TO 230
  210    TA(I)»380.
         GO TO 230
  220    TA(I)»ATAN(DY(I)/DX(I))«HAD
  230    IP(TA(I).GT.TXI) TX1=TA(I)
         IF(TAU).LT.TNI) TNI»TAlI)
  240 CONTINUE
      TDIP=TXI-TNI
  2SO DO 2SO 1=1,4
  280    A(I)*TA(I)
      IP(TDIP.GT.180.) GO TO 290
      TM=90.-TK(K)
      IP(TM.LT.O.) TM=TM+360.
  270 IP(TM.GE.TN-DELO2) GO TO 280
      I?(TM.GZ.DELO2) GO TO 340
      TM=1M*360.
  280 IF(TM-
-------
c
c
c
c
c
c
c
c
c
c
    DO 360 1=1,2
       AROSE(K,I)»0.
       PROSE(K,I)aO.
360 CONTINUE

        IF NO AKEA SOURCES, CHECK POINT SOURCES

    IF(IAS.LT.l) 00 TO 340

        BRANCH TO 330 OB 230 DEPENDS ON WHETHER RECEPTOR INSIDE (IB=
         OR ODTSIDE (IB=2) AREA SOURCE

    GO TO (330,250), IB

        PRINT AND STORE RESULTS

370 DO 330 1=1,2
       TCON( I )*PBAR( I )f ABAR( I )
       CCON( I )=CA( I )-K3( I ) «TCON( I )
380 CONTINUE
        TOON: TOTAL CONCENTRATION
        CCON: CALIBRATED CONCENTRATION
    IPCNROSE .LT. 1) GO TO 390
    WRITEC IWR, 70 ) IYER, IRUN.HEADNG
    WRITEC IWR, 80)
    WRITE(nvR,90) PNAME(1),PNAME(2),PNAMEU),PNAME(2),PNAME(1),
   •              PNAME(2),PNAME(1),PNAMEC2),PNAMEU),PNAME(2)
390 WRITEC IWR, 400 )RX,aY,ABAR,PBAR,TCON,CCON,KPX( 9 ),KPXUO)
400 FORMAT ( IX, 2 ( P7 . 2 , 3X) , 4(P8 . 1 , 3X.P8 . 1 , 3X) , 2X, 2 ( I 4 , 5X) )
        ABAR: CONTRIBUTION PROM AREA SOURCES
        PBAR: CONTRIBUTION FROM POINT SOURCES
        KPX:  CABS mTl'PUT VECTOR
    KPX(1)=>ABAR<1)+0.3
    KPX(2)=>ABAB(2)+0.3
    EPX(3)-PBAR(1)*0.5
    KPXC4)aPBAR(2)*0.5
    KPX(S)=TCON(1)+O.S
    8KX(8)=TCON(2)+0.5
    KP3C(7)«CCON(1)+0.5
    KPX(8)=CCON(2)+0.5
    WRITEC IPU, 410 )RX,RY,IRUN,(KPX(L),Lal., 10)
410 PORMATC1X,2P10.2,IS,'I',10I4)
    IF(NROSE.LT.l) GO TO 40
        WRITE OUT PARTIAL CONCENTRATIONS ESTIMATED FOR
         EACH STABILITY CATEGORY (LIST SEPARATELY THE
         CONTRIBUTIONS FROM POINT AND AREA SOURCES).

    WRITE (rWR, 430)
430 PORMATC//, IX, 41( '•'),' AVERAGE CONCENTRATIONS BY STABILITY ',
                                          STABILITY CATEGORY1

                               SOURCE' , 8( SX, I 2) / )
      WRITE( IWR, 440 ) ( IDUM, IDUM= 1 , 8 )
  440 PORMATUX,3aX,'TYPE OP
              . -------------- .,/,
     •        IX, 2 6X,' POLLUTANT
      KPX137)=RX»100.
      KPX(38)=Rr«100.
      DO 470  JDCM*1,2
         WRITE( IWR, 4SO) JDCM,PNAME( JDUM) , (APAR( JDUM, IDUM) , IDUM= 1 , 6 )
         WRITEC IPU.4SS) ARCS ( JDUM ),(APAR( JDUM, IDUM), IDUM=1 , 6 ) ,KPX( 37 ) ,
     •                  KPXU8)
  4SO    FORMAT (IX, 2 8X, 12,' ( ' ,A4, < ) ' , 4X, ' AREA ' , IX, 6( 2X.F6 . 1 ) , / )
  433    FORMAT(1X,A4,SP7.1,2I8)
         WRITEt IWR.460) JDUM, PNAME( JDUM) , (PPAR( JDUM, IDUM) , IDUM=1,S)
         WRITEC IPU, 433) PROSC JDUM) , (PPARC JDUM, IDUM) , IDUM=1 , S ) ,KPX( 37 ) ,
     •                  KPXC38)
  460    FORMAT(1X,26X,I2,' C ,A4, ')', 4X, ' POINT* , IX, 6( 2X, F6 . 1 ),//)
  470 CONTINUE
      [BUM  >  9
      IFCN1636.EQ.36)  IBUM =• 12
      WRITEC IWR, 480)
  480 FORMATC/, IX. 42C '•'),' AREA ROSES  (MICROGRAMS/OJ. METER)  ',
     •        42('"),//)
      IF (N1636 .EQ. 16) WRITEC IWR, 490 ) (DISC I ) , 1 = 1 , 2-N1636 , 2 )
 CTM05260
 CEM052TO
 CCMOS230
 CDMOS290
 CDM05300
 CDM05310
 CDM05320
 CDMOS330
 CDMOS340
 CDMOS3SO
 CDMOS360
1CDM05370
 CDM03380
 CDMOS390
 CDMOS400
 CEM05410
 COM03420
 CDM03430
 CDMOS440
 CDMOS430
 CDMOS460
 CEM03470
 CCMOS480
 CEM05490
 CDMOS500
 CDM03S10
 CTM05520
 CTMOSS30
 CDMOSS40
 CEM05550
 CEM05580
 CTMOS370
 CDM03380
 CZM03390
 COMOS600
 CDMOS610
 CDMOS620
 CDMOS630
 CCMOSS40
 CDMOS630
 CDM05660
 CDMOS670
 CCM05680
 CTMOS690
 CDMOS700
 CEMOSno
 CDM03720
 CDMOS730
 CDMOS740
 CDM03730
 CEM057SO
 CDMOS770
 CDMOS780
 CDM05790
 CDM03800
 CDMOS810
 CDM03320
 CDMOS330
 CDM03340
 CXMOS830
 CDMOS360
 CDM05870
 CDM05880
 CCMOS890
 CDMOS90Q
 CDMOS910
 CDMOS920
 CDM05930
 CEM05940
 CDM05930
 CCM05960
 CDM05970
 CEM05980
 CZMOS990
 CLM06000
                                       113

-------
c
c
c
  490 FORMATdX.SX, 'POLLOTANT' ,5X,4(A4,A4,3X,A4,1X.A4,4X)/)
      IP (N1S36 .EQ.  36)  WRITE(lYtt,500)(ISECTR,ISECTO+18, ISECTR=1,18)
  500 FORMAT (IX,'POLLUTANT',3X,18(I 2,'*' ,I 2,IX)/)
      DO 550 J»l,2
         DO 510 I=1,N1S36
            KPX(I)=ABOSE(I,J)+0.5
  310    CONTINUE
         IJ a 0
  520    IJ a IJ * 1
         ISTART = (IJ-1)"IBUM + 1
         IPIN « (IJ-D'IBUM + IBUM
         WRITB(IPU,560) ABOS(J),(KPX(I),IaISTART,IPIN),KPX(37),KPXU8)
         IPUPIN.LT.N1S36) GO TO 520
         I? (N1836 .EQ. 18)  WHITE(IWR,530)J,(KPX(I),1=1,N1636)
  530    FOHMAT(1X,10X.I1,SX,18I8,/)
         I? (N1838 .EQ. 36)  WRITE(IWR,540)J,(KPX(I),I»l.N1636/2),
     •                                    (KPX(I),I*N1838/2+l,N1636)
  S40    FORMAT(1X,4X,I1,SX,13IS,/,1X,11X,18IS,/)
  550 CONTINUE
  590 FORMATUX,A4,8IS,2I8)
      WRITE(rWR,570)
  570 FORMATS/,IX,41('•'),'  POINT ROSES (MICROGRAMS/CU. METER) ',
     •       42C"),//)
      IP (N1S38 .EQ. 16)  WRITE(IWR,490)(D16(I),I=1,2VU636,2)
      IP (N1836 .EQ. 38)  WRITE(IWR,500)(ISECTR,ISECTR+1S, ISECTR=l,13)
      DO 600 L=l,2
         DO 530 K=-1,N1838
            KPX(K)=-PB03E(K,L)+0.5
  530    CONTINUE
         IJ a 0
  590    IJ » IJ * 1
         ISTABT » (IJ-1)«IBUM * 1
         IPIN * (IJ-l)«IBUM * IBUM
         WRIT2(IPO,560) PaO3(L),(KPX(I),IaISTART,I7IN),KPX(37),KPXt33)
         IP(I?IN.LT.N1S36) GO TO 590
         IP (N1S38 .EQ. 18)  WRITE(IWR,530)L,(KPX(I),I=1,N1S36)
         IP (N1838 .EQ. 36)  WRITE( IWR,540)L,(KPX(I),1 = 1.N1636/2),
     •                                    (KPX(I),I»N1636/2fl,N1636)
  800 CONTINUE
      WRITEdWR, S10)
  810 POBMATdX, 119C"1 ))
      IPG » 70

          GO BAOC AND READ NEXT RECEPTOR

      GO TO 40
  820 STOP
      END
C

C
      SUBROUTINE CLINT(ICOND)
               SUBROUTINE CLINT  (VEH3ION 35293), PART OP CDM-2.0.
      PARAMETER (NPT3=>200 ,NQLIM=«100 ,NASE=50 ,NASN=50 )
      DIMENSION FMETEO(16),PSOURC(16),DUM(6),CDRYE(7),PCURVE(6),
                AOIRVE(6)
             /Cl/ K,MX,MN,P(6,S,38),OBAH(S),0(6),RI,RJ,INC(4),DELR
             /C2/ UE(8),n),YN,TMN,DINT,TfCON,TA(4),IPG,XG,TO,IRD
             /C3/ IRUN,CA(2),CB(2),TK(36),AROS(2),PKOS(2),TANG
             /C4/ DECAY(2),ICA(6),ICP(6),HL(6),HX(S),G8(2),NQ,IYER,IVfR
             /C3/ Q(NQLIM,4),GA(2),IAD(4,S),IAS,TDA,TDB,TDC,IPU
      COMMON
      COMMON
      COMMON
      COMMON
      CCMVCN
      COTOfON
             /QCOM/ N,DR,IX,IY,TT(38,21),JCrC,IXX,IYY,RAD,TD,
     •              Z(NASE;NASN,3)
      COMVDN /ACOM/ PI,SZA(6),ABAR(2),AROSE(36,2),XS(6)
      COMVON /PCOM/ PH(NPTS).PR(NPTS),PS(NPTS,4),PX(NPTS).PY(NPTS),
                    WA( 36),W8(36),PSOSE(36,2),CV,IPS,HAT,P8AR(2),TOA,
     •              VSl(NPTS) .TKNPTS) ,D1(NPTS) .FRN(NPTS) .BFLUX(NPTS)
      COMMON /SET/ N1636,DELTA,TTAN,NP50fNPDH,NSTEW,NGRAD,lCLOW,KHIGH,
     •             PPAR(2,6),APAR(2,8),WHA(6),FAC,HCEPTZ,KELVIN,NDEF
      COMMON /.TITLE/ HEADNG( 20 ) ,PNAME( 2 ) ,D16( 32 ) ,D36( 72 ) ,DISP( 8 , 7 ) ,
     •               TTITLE(3)
      DATA CURVE /'  A ','   B ','  C  ',' Dl ','  02  ','   E  ','   F  ' /
      ICOND = 0
CDMO 6010
CDM06020
CCM06030
CDM06040
CEM060SO
CDM06080
CEM06070
CXM06030
CDM06090
CDM06100
CEM06110
CDM06120
CCM06130
CDM06140
CCM06150
CCM06160
CEM06170
CCM06130
CIM06190
CDM06200
CCM06210
CDM06220
CCM06230
CCM06240
CDVI062SO
CCM06260
CEM06270
CCM06280
CCM06290
COM06300
CTM08310
CDM06320
CCM06330
CEM06340
CLM063SO
CCM06360
CEM06370
CCM06330
CXM06390
CDM06400
CDM06410
CEM06420
CTM06430
CCM06440
CEM06450
CDM06460
CEM06470
CZMQ6480
CDVI06490
CCM06SOO
'CDM06510
CEM0652Q
CDM06530
CXM06540
CCM06550
CCM06560
CDM0657Q
CXM0658Q
CCM06S9Q
CCM066QO
CDM06610
CCM06620
CCM06630
CCM06640
CDM06650
CDM06660
CDM0667Q
CDM06680
CDM06690
CDM06700
CCM06710
CEM06720
CDM06730
CDM06740
CDM06750
                                       114

-------
c
c

c

c
c
c

c
c






c
c
c

c
c
c
c
c
c
c
c
c

c
c
c

c
c
c
c
c
c
c
c
c
c










c
c
c

c
c
c
c
BEAD RECORD TYPE 1

R£AD(5,S) HEADNG
HEADNG: DESCRIPTION OK TITLE OF MODEL RUN
9 FORMAT(20A4)

READ RECORD TYPE 2

R£AD(5,10) NSO2.PNAME
NSO2: POLLUTANT SOURCE NUMBER FOR SO2
PNAME: NAMES OF TWO POLLUTANTS TO BE MODELED
10 FORMAT ( I 1.3X.2A4)
IF KNSO2 .EQ. 0) .OR. (NSO2 .£Q. 1) .OR. (NSO2 .EQ. 2}) GO TO
WR1TE(8,13) NSO2
15 POBMATCO"" VALID VALUES FOR NSO2 ARE 0, 1, OR 2.',/,
• • ••• USER INPUT NS02 » ',14)
ICOND » 1

READ RECORD TYPE 3

20 R£AD(5,25)AROS,PROS,IRUN,NLIST,IRD,IWR,IPU,CA,CB
AROS: ALPHA AREA ROSE OUTPUT ID
PROS: ALPHA POINT ROSE OUTPUT ID
I RUN: USER DEFINED RUN ID NUMBER
NLIST: CONTROL FOE PRINTED mri'fUT
IRD: FORTRAN LOGICAL UNIT NUMBER (READ)
IWRs FORTRAN LOGICAL UNIT NUMBER (PRINTER)
IPU: FORTRAN LOGICAL UNIT NUMBER (PUNCH)
CA: INTERCEPT OF CALIBRATION
C3: SLOPS OF CALIBRATION
23 PORMAT(4A4,SI3,4P9.0)

ggAn RECORD TYPE 4

READdRD,') N1S38,NP50,NPDH,NSTDW,NGRAD,FAC,RCSPTZ,KELVIN,XDEF
CDM067SO
CEM06770
CDMOS730
CEM06790
CSMO 6300
CTM06810
CDM06320
CTM06830
CDM06340
CEM083SO
CDM06360
CDM06870
20COM06880
CDM06890
COM06900
CDM06910
CDM06920
CDM06930
CEM06940
CDM069SO
CDM06960
CDM06970
CEM08980
CDM06990
CDM07000
CDM07010
CEM07020
CDM07030
CDM07040
CEM07QSO
CCM07080
CDM07070
CDM07080
CDM07090
CZM07100
N1S38: NUMBER OF WIND DIRECTIONS USED IN METEOROLOGICAL JOINCDM07110
FREQUENCY FUNCTION.
NP50: INITIAL DISPERSION OPTION
NPDH: BUOYANCY -INDUCED DISPERSION OPTION
NSTDW: STACK DOWNWASH OPTION
NGRAD: GRADUAL PLUME RISE OPTION
PAC: EFFLUENT RISE OF AREA SOURCES
RCF.PT2; HEIGHT (M) ABOVE GHOUND OF ALL RECEPTORS
KELVIN: UNITS FLAG FOR STACK TEMPERATURE
NDEPt DEFAULT OPTION
I? ((N1938 .EQ. IS) .OR. (N1838 .EQ. 36)) GO TO 40
WRITE(IWR,30) K1838
30 POHMATCO"- VALID VALUES FOR N1838 ARE 18 OR 38.',/
• ' ••• USER INPUT N183S »',I4)
ICOND * 1
40 IP ((PAC .GE. 0.) .AND. (FAC .LE. 1.)) GO TO 80
WRITEUWR.SO) FAC
50 FORMATCO"- VALID VALUES FOR PAC RANGE FROM 0 TO I.',/
• ' •" USER INPUT FAC =',P6.2)
ICOND * 1

READ RECORD TYPE 5

80 READdRD,*) KLOW, ICA
KLOW: DISPERSION PARAMETER SCHEME FOR AREA SOURCES
ICA: ARRAY OP SIX (8) VALUES DEFINING DISPERSION CURVES
(AS DEFINED BY KLOW) TO BE USED FOR THE SIX
STABILITY CATEGORIES SUMMARIZED IN THE JOINT
CCM07120
CDM07130
CCM0714Q
CDM07150
CDM07150
CDM071TO
CEM07180
CDM07190
CDM07200
CDM07210
CDM07220
CDM07230
CDM07240
CDM07230
CDM07280
CDM07270
CDM07280
CDM07290
CDM073QO
CDM07310
CDM07320
CDMU7330
CDM07340
CDM07350
CDM07360
CDM07370
CDM07380
                 FREQUENCY FUNCTION.                                CDM07390
   IP (((KLOW .GE. 1).AND.(KLOW .LE. 7)).OR.(NDEF .GT. 0)) GO TO 30 CDM07400
   WRITE(IWR.70) KLOW                                               CDM07410
70 FORMATCO*" VALID VALUES FOR KLOW RANGE FROM 1 TO 7.',/         CDM07420
  •       '  ••• USER INPUT KLOW =',I4)                              CDM07430
   ICOND * I                                                        CDM07440
80 DO 100  I  = 1,8                                                   CDM07450
      IF (((ICA(I).GE.1).AND.(ICA(I).LE.7)).OR.(NDEP.GT.O)) GOTO 10CDM07460
      WRITE(IWR,90) I.ICA(I)                                        CDM07470
90    FORMATCO*" VALID VALUES FOR ICA RANGE FROM 1 TO 7.',/       CDM07480
  •          '  •" USER INPUT ICAC.Il,') a',14)                    CDM07490
      ICOND = I                                                     CDM07500

                                    115

-------
100 CONTINUE
C
C READ RECORD TYPE S
C
READdRD,*) KHIGH, ICP
C KHIGH: DISPERSION PARAMETER SCHEME FOR POINT SOURCES
CDM07S10
CDM07520
CDM07530
CDM07540
CEM07550
CDM07S60
C ICP: ARRAY OF SIX (S) VALUES DEFINING THE DISPERSION CURVECCM07570
C . (AS DEFINED BY KHIGH) TO BE USED FOR THE S IX
C STABILITY CATEGORIES SUMMARIZED IN THE JOINT
C FREQUENCY FUNCTION.
IF (((KHIGH. GE.l). AND. (KHIGH. LE. 7)). OR. (NDEF.GT.O)) GOTO 120
WRITE(rWR, 110) KHIGH
110 FORMATCO"" VALID VALUES FOR KHIGH RANGE FROM 1 TO I.',/
• ' •••USER INPUT KHIGH «',I4)
ICOND > 1
120 DO 140 I > 1,8
IF (((ICP(I).GZ.1).AND.(ICP(I).L2.T)).OR.(NDEF.GT.O)) GOTO
WRITE (rWR, 130) I.ICPU)
130 POHMATCO-" VALID VALUES FOR ICP RANGE FROM 1 TO 7.',/
• i ••• gsEa INPUT. ICPC ,11,') »',I4)
ICOND * 1
140 CONTINUE
IF (ICOND .ME. 0) GO TO 310
C
C INITIALIZE ARRAY SOURCE AND WIND DIRECTION ARRAYS
C
DO 130 I*1,NASE
DO ISO Jal.NASN
C EFFECTIVE STACK HEIGHT MUST BE GE 1 .
Z(I,J,3)sl.
DO ISO K»l,2
Z(I,J,K)=0.
150 CONTINUE
TJt(l)=0.
DELTA = 22. S
IP(N1838.EQ.38) DELTA « 10.0
RDELTA .* DELTA/RAD
TTAN » TAN (RDELTA/ 2.0)
DO ISO I="2,N1838
TK(I)»TK(I-1)+OELTA
180 CONTINUE
C
C READ RECORD TYPE 7
C
READ( IRD,170)DELR,RAT,CV,XG,YG,TOA,TXX
C DELS: RADIAL INCREMENT (M)
C RAT: WIDTH OF A BASIC EMISSION GRID SQUARE (USER UNITS)
C CV: CONVERSION FACTOR, CV'RAT = EMISSION GRID INTERVAL
C XG: X MAP COORD. OF THE SW CORNER OF THE EMISSION GRID
C ARRAY
C YG: Y MAP COORD. OF THE SW CORNER OF THE EMISSION GRID
C ARRAY
C TOA: MEAN ATMOSPHERIC TEMPERATURE (DEC C)
C TXX: WIDTH OP BASIC EMISSION GRID SQUARE (M)
170 FORMATU2P6.0)
IF (TXX -EQ. 0) GO TO 175
CHK = ABSU.O - (RAT-CV/TXX) )
IF (CHK .LE. 0.01) GO TO 185
175 WRITEUWR.iaO)
180 FORMATCO"- THE PRODUCT OP RAT AND CV MUST EQUAL TXX. ' ,/
• . ... THE VALUES PROVIDED BY THE USER DO NOT CONFORM TO
• 'THIS RELATIONSHIP.')
ICOND = 1
GO TO 810
C
C COMPUTE MAXIMUM LENGTH (M) OP SIDE OF EMISSION
C GRID SQUARE MATRIX ( THE 'Z ARRAY')
C
185 TXXTE = NASETXX
TXXTN = NASN'TXX
C
C READ RECORD TYPE 8
C
READ( IRD, 170 JOINT, YD, YN.SZA.GB
C DINT: NUMBER OF SEGMENTS DESIRED IN DELTA DEGREE SECTORS
CDM07530
CDM07590
CDM07SOO
CDM07S10
CDM07S20
CDM07830
CDM07840
CDM07850
CDM07S60
14CEM07S70
CDM07880
CDM07690
CDM07700
CDM07710
CDM07720
CDM07730
CDM07740
CDM07750
CDM07780
CDM07770
CDM07780
CDM07790
CDM07800
CCM07310
CDM07320
CTM07330
CDM07340
CDM073SO
CDM07880
CDM07370
CDM07880
CDM07890
CDM07900
CDM07910
CDM07920
CDM07930
CDM07940
CDM079SO
CDM07960
CDM07970
(M)CDM07980
CDM07990
CDM08000
CDM08010
CDM08020
CDM08030
COM08040
CDM08050
CDM08060
CDM08070
CDM08080
CDM08090
CDM08100
1 .CDMOailO
CDM08120
CDM08130
CDM08140
CDM081SO
CDM081SO
CDM08170
CDM08130
CDM08190
CDM08200
CDM08210
CDM08220
CDM08230
CDM08240
. CDM08250
116

-------
c
c
c
c
c
c
c
c
c
  190
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
200
               RANGES FROM 2 TO 20 INCLUSIVE.
     YD:      RATIO OF THE DAYTIME EMISSION RATE TO THE AVERAGE
               24-HOUR EMISSION RATE
     YN:      RATIO OF THE NIGHTTIME EMISSION RATE TO THE AVERAGE
               24-HOUR EMISSION RATE
     SZA(N):  INITIAL SIGMA-Z FOR AREA SOURCES (M)
               N = STABILITY CLASS
     GB(N):   DECAY HALF-LIFE (HR) FOR THE TWO POLLUTANTS
               N « POLLUTANT NUMBER
 IF UDINT.GE.2.).AND.(DINT.LE.20.)) GO TO 200
 WRITEdWR,190) DINT
 FORMATCO-"* VALID VALUES FOR DINT RANGE FROM 2 TO 20.',/
•       '  ••• USER INPUT DINT » '.F5.1)
 ICOND »  1
 GO TO 310

     READ RECORD TYPE 9

 READ(IRD,«)  (UE(I),I»1,6)
     UE(I):   ARRAY OF SIX (S) VALUES DEFINING WIND PROFILE
               EXPONENTS TO BE ASSOCIATED WITH THE SIX STABILITY
               CATEGORIES SUMMARIZED IN THE JOINT FREQUENCY
               FUNCTION.  I = STABILITY CLASS

     READ RECORD TYPE 10

 READdRD,*)  (U(I),I = l,6)
                  SUMMARIZED IN THE JOINT FREQUENCY FUNCTION.
                  TYPICALLY THE HARMONIC AVERAGE WIND SPEED IS USED.
        READ RECORD TYPE 11
 READURD,
     HL(I)
              )
CDM08550
CDM08560
CDM08S70
CDM08530
CDM08590
CDM08600
210
C
C
C
C
C
C
C
  220
            (HL(I),I=1,S)
             ARRAY OF SIX (S) VALUES DEFINING MIXING HEIGHTS (M) CDM08610
              TO BE ASSOCIATED WITH THE SIX STABILITY CATEGORIES CDM08620
              SUMMARIZED IN THE JOINT FREQUENCY FUNCTION.        GDM08630
              I " STABILITY CLASS                                CDM08640
                                                                 CDM086SO
    READ RECORD TYPE 12                                          CDM08660
                                                                 CDM08670
                                                                 CDM08680
                                                                 CDM08690
                                                                 CDM08700
    READ RECORD TYPE 13                                          CDM08710
                                                                 CDM03720
                                                                 CDM08730
                                                                 CDM08740
      READ(IRD,FMETEO)(Fd,J,K),J=l,S)                           CDM08750
          Pd.J.K): JOINT FREQUENCY FUNCTION...                  CDM08760
                    I = STABILITY CLASS                          CDM08770
                    J = WIND SPEED CLASS
                    K » WIND DIRECTION
      DO 220 JJ=1,6
         UBAR(I) = UBAR(I) + U(JJ)•?(I,JJ,K)
         DUMd) * DUMd) * Fd.JJ.K)
CONTINUE
      READdRD,210) FMETEO
      FORMAT (16A4)
      DO 220 1=1,6
         DO 220 K=1,N1636
C
c
c
C
C
C
                                                                  CDM08780
                                                                  CDM08790
                                                                  CDMU8800
                                                                  CDM08810
                                                                  CDM0882U
                                                                  CDM08830
                                                                  CDM08840
                                                                  CDM08850
                                                                  CDM08860
 IF (NDEF.GT.O)  CALL DFAULT(NSO2,CA,CB,NPSO,NPDH,NSTDW,NGRAD,KLOW,CDMO»870
        IF NDEF > 0, THEN SET DEFAULT VALUES.
  230
  240
C
C
c
                               ICA.KHIGH,ICP,SZA,GB,UE)

        COMPUTE AVERAGE WIND SPEED FOR EACH DIRECTION SECTOR

    DO 240 11*1,6
       IF(DUMdI).NE.O. ) GO TO 230
          UBAR(II)=0.
       GO TO 240
          UBAR(II)
    CONTINUE
                  UBAR(11)/DUM(11)
        DEFINE AMBIENT TEMPERATURE, SECTOR INTEGRATION PARAMETERS,
         AND POLLUTANT HALF-LIFE.
CDM08880
CDM08890
CDM08900
CDM08910
CDM08920
CDM08930
CDM08940
CDM0895U
CDM08960
CDM08970
CDM08980
CDM08990
CDM09000
                                       117

-------
c
c
c
    TOA=TOA+273.1S
    DR=DELR/(CY*RAT)
    ffTC=DINT>l.
    THETA=DELTA/DINT
    TANG = 90.0 - DELTA/2.0
    00 2SO I=l,N1636
       B=TK(I)/RAD
       WB(I)=SIN(B)
       WA(I)=C03(B)
       DO 250 J=1,KTC
          X»TANG-TK(I)*(J-l)•THETA
          IF(X.LT.O.) X=X*360.
          TTd,J)=X/RAD
250 CONTINUE
        DEFINE HALF LIFE FOR P 1 AND  P 2
    GA(1)=GB(1)«3600./O.S93
    GA(2)=GB(2)*3600./O.S93

        DEFINE INITIAL 31 OKAS

    DO 270 JA=n,8
       JB=ICA(JA)
       WHA(JA) » FAC * (5.0/UUA))«U.O-FAC)
       HX(JA)=0.3-HL(JA)
       SA=SZA(JA)
       IF(SA.GT.O.) GO TO 280
       3=0.
       GO TO 270
280    r-AT.T. VIRTX(KLCW,NPDH,JB,0.0,SA,S)
270
C
C
c
c
c
c
        EVALUATE PRINTER OOKTBOL OPTION

    IF(NLIST.LT.O) GO TO 810

        ECHO SETUP INFORMATION AND METEOROLOGICAL INPUT

    WRITE(rWR,280)IYER,IRUN.HEADNG
280 PORMATCl1 , 35X, 'CLIMATOLOGICAL DISPERSION MODEL - VERSION 2.0',/
   •        1X.48X,'CODE VERSION ',I3,/
   •        lX.S3Xt'RUN ',IS,//,
   •        1X.20A4,/)
    WRITE(IWR.290)N1S38
290 FOHMATUX,'TECHNICAL OPTIONS:1 ,/
   •       IX,'     NUMBER OF WIND DIRECTIONS USED IN METEOROLOGICAL
   •          'JOINT',/,
   •       IX,'     .  FREQUENCY FUNCTION (N1838) ',30('.'),I 5)
    WRITEdWR, 300 )KLOW,(DlSPd,SLOW), I = 1,3),
   •              KHIGH,(DI3P(I,KHIGH), I =» 1.3)
300 FORMAT(LX,1     DISPERSION PARAMETER SCHEME FOR AREA SOURCES  ',
   •          '(SLOW)  ',7('.'),I5,12X,8A4/
   •       IX,'     DISPERSION PARAMETER SCHEME FOR POINT SOURCES  ',
   •          '(KHIGH) ',SC.'),I5,12X,8A4)
    WRITEdWR. 310 )PAC
310 FORMATUX,'     EFFLUENT RISE FOR AREA SOURCES (FAC) ',22('.'),
   •          43C.1PE0.2.6)
    WRITEIIWR.320) RCEPTZ
320 FORMATUX,'     HEIGHT ABOVE GROUND OF ALL RECEPTORS (RCEPTZ)  ',
   •          13('.'),4X,1PE12.8,'  M')
    WRITEdWR, 330) PNAME( 1) ,CA( 1) ,CB( 1)
    WRITEdWR, 330) PNAME( 2 ) ,CA( 2) ,CB( 2 )
330 FORMATUX,'     CALIBRATION CONSTANTS -- ',A4,/,
   •       IX'.SX,'INTERCEPT OF CALIBRATION  ' , 30( ' . ' ) , 4X, 1PE12. 8 ,
   •          '  MICROGRAMS/CU. METER',/
   •       IX,8X,'SLOPE OP CALIBRATION ',34('.'),4X,1PE12.8,
   •          '  DIMENSIONLESS')
    WRITEdWR, 340 )NP50,NPDH,NSTDW,NGRAD,NDEP
   340 FORMAT(IX,
              IX,
      •
              IX,
              IX,
              IX.
               7
      WRITEdWR,360)  NLIST
INITIAL DISPERSION OPTION (NPSO) ' , 28(' . ' ) , I 5 , / ,
BUOYANCY INDUCED DISPERSION OPTION (NPDH)  ',

STACK'DOWNWASH OPTION (NSTDW) •,29(•.•),3x,i2,/,
GRADUAL PLUME RISE OPTION (NGRAD) ',25('.'),3X,I 2
DEFAULT OPTION (NDEF) ' ,37('.'),3X,I 2,/)
 CCM09010
 CDM09020
 CEM09030
 CDM09040
 CCM09050
 CDM09060
 CDM09070
 CCM09080
 CDM09090
 CDM09100
 CDM09UO
 CDM09120
 CCM09130
 CDM09140
 CEM0915Q
 CDM09180
 CDM09170
 CEM09130
 CDM09190
 CDM09200
 CEM09210
 CCM09220
 CDM09230
 CEM09240
 CDM092SO
 OM09280
 CCM09270
 CCM09280
 CEM09290
 CZM09300
 CDM09310
 CTM09320
 CCM09330
 CCM09340
 CDM093SO
 CEM09360
 CCM09370
 CZM09380
 CDM09390
 CEM09400
 CDM09410
 CTM09420
 CDM09430
 CCM09440
 CEM09450
'CEM09460
 CDM09470
 CEM09480
 CDM09490
 CDM09SOO
 CDM09S10
 CTM09520
 CCM09S30
 CDM09S40
 CDM095SO
 CTM09560
 O3M09570
 CEM09580
 CDM09S90
 CEM09600
 CDM09610
 CCM09620
 CDM09630
 CEM09640
 CCM09S50
 CEM09660
 CDM09670
 CEM09630
 CDM09690
 CEM09700
 CDM09710
 CDVI09720
,CDM09730
 CDM09740
 (3M09750
                                       118

-------
380 FORMAT('OPRINT OPTIONS:',/                                       CDM09760
   •       IX,'     CONTROL FOR PRINTED OUTPUT ', 32 ('.'), 15)          CEM09770
    WRITEdWR, 370) IRD.IWR.IPU                                       CDM09780
370 FORMATdX,'     FORTRAN LOGICAL UNIT NUMBER (READ) ', 24 ('.'), 15/  CDM09790
   •  IX,'     FORTRAN LOGICAL UNIT NUMBER (PRINTER)  ',21('.'),I5/    CEM09800
   •  IX,'     FORTRAN LOGICAL UNIT NUMBER (PUNCH) ',23('.'),I a/)     CDM09810
    WRITEdWR, 380 )XG                                                 CDM09820
380 FORMATdX,'OPERATING PARAMETERS:',/                              CDM09830
   •       IX,1     X-MINIMUM OF AREA EMISSION INVENTORY MAP GRID1,   CDM09840
   •          '  (XG) 1,8('.'),4X,1PE12.8,' USER UNITS')              CDM09850
    WRITEdWR, 390 )YG,RAT                                             CDM09880
390 FORMATdX,1     Y-MINIMUM OF AREA EMISSION INVENTORY MAP GRID',   CDM09870
   •          '  (YG) I,8C.'),4X,1PE12.6,1 USER UNITS',/             CEM09880
   •       IX,1     WIDTH OF A BASIC EMISSION GRID SQUARE (RAT) ',    CDM09890
   •          ISC.'),4X,1PE12.8,' USER UNITS')                      CDM09900
    WRITEdWR, 400)CY,TXX                                             CDM09910
400 FORMATdX,'     GRID CONVERSION FACTOR (CV) ',31('.'),            CDM09920
   •          4X.1PE12.8,' M/USER UNITS'/,                           CDM09930
   •       IX,'     WIDTH OF A BASIC EMISSION GRID SQUARE (TXX) ',    CCM09940
   •          ISC .' ),4X,1PE12.8, ' M')                               CEM09950
    WRITEdWR, 410 )DINT                                               CDM099SO
410 FORMATdX,1     NUMBER OF SUBSECTORS CONSIDERED FOR EACH SECT',   CDM09970
   •          'OR (DINT) ' ,4C.'),4X,1PE12.8,' DIMENS IONLESS')       CDM09980
    WRITEdWR, 420 )THETA,DELR                                         CDM09990
420 FORMATdX,'     ANGULAR WIDTH OF A SUBSECTOR (THETA) ',22('.'),   CEM10000
   •          4X.1PE12.S,' DEC',/                                    CDM10010
   •       IX,1     INITIAL RADIAL INCREMENT (DELR)  ',27('.'),        CDM10020
   •          4X, 1PE12.8,' M'/)                                      CDM10030
    WRITEdWR, 430 )TOA                                                CZM1Q04Q
430 FORMATdX,'MISCELLANEOUS METEOROLOGICAL DATA:',/                 CDM100SO
   •       IX,'     AMBIENT AIR TEMPERATURE (TOA)  ',29('.'),          CDM10080
   •          4X.1PE12.8,' K')                                       CDM10070
    WRITEdWR, 440)d,HLd),I»l,S)                                    CDM10080
4-40 FORMATdX,'     MIXING HEIGHTS BY STABILITY CLASS  (HL):',/        CDM10090
   •       '         STABILITY CLASS:',18,IX,33<'.'),4X,1PE12.8,' M',/O2W10100
   •       3(1X,27X,I2,1X,33('.'),4X,1PE12.S,' M1,/))                CDM10110
    WRITEdWR, 280)1 VER, IRUN.HEADNG                                   CDM10120
    WRITEdWR,430)                                                   CDM10130
4SO FORMATdX,'MISCELLANEOUS METEOROLOGICAL DATA  (CONTINUED):',//,   CDM10140
   •       IX,'     CENTRAL WIND SPEED OP THE SIX WIND SPEED CLAS',   CCM101SO
   •          'SE3 (U):')                                            CCM10160
    WRITEdWR, 480) (1,0(1) ,1-1, B)                                     CDM10170
480 FORMATdX, '         WIND SPEED CLASS:  ', 12 , IX, 33 ('.'),           CDM10180
   •          4X.1PE1J.8,' M/SEC',/                                  CDM10190
   •     S(1X,27X, I2,1X,33C.'),4X,1P212.8,' M/SEC',/))              CCM10200
    WRITEdWR, 470) (I,UE(I),T"l,8)                                    CDM10210
470 FORMATdX,'     EXPONENTIAL OF THE VERTICAL WIND PROFILE (UE):'/  CDM10220
   •       IX,'         STABILITY CLASS:   ' , I 2 , IX, 33C . '),           CDM10230
   •          4X.1PE12.8,' DIMENSIONLESS'/                           CTM10240
   •     S(1X,2TO,I2,1X,33C.'),4X,1PE12.8,' DIMENSIONLESS'/)//)     CCM10250
    WRITEdWR, 480 )PNAME(1),PNAME( 2)              '                   CDM102SO
480 FORMATdX,'SOURCE DATA:',//,                                     CCM10270
   •       IX,'     POLLUTANTS TO  BE MODELED ',34C.'),4X.A4,' <5c ',A4)COM10280
    WRITEdWR, 490 )PNAMEd),GB(l),PNAME( 2 ) ,GB( 2)                      CDM10290
490 PORMATdX,1     DECAY HALF-LIFE FOR ',A4,' (GB(D) '^SC.'),     CDM10300
   •          4X.1PE12.8,' HR',/                                     CDM10310
   •       IX,'     DECAY HALF-LIFE FOR ',A4,' (GB(2)) ',2S('.'),     CDM10320
   •          4X.1PE12.6,' HR')                                      CDM10330
    WRITEdWR. 500)YD, YN                                              CDM10340
500 FORMATdX,'     DAYTIME EMISSION WEIGHT FACTOR (YD)  ',23C.'),    CEM10350
   •          4X.1PE12.8,' DIMENSIONLESS'/                           CDM10360
   •       IX,1     NIGHTTIME EMISSION WEIGHT FACTOR (YN) '21('.'),   CDM10370
   •          4X.1PE12.8,' DIMENSIONLESS')                           CDM10380
    WRITEdWR, 510)                                                   CDM10390
510 FORMATdX,'     INITIAL SIGMA-Z FOR AREA SOURCES (SZA):')         CDM10400
    WRITEdWR, 520)d,SZA(I),Ial,8)                                   CDM10410
520 PORMATdX,'         STABILITY  CLASS:   ', 12, IX, 33 ('.'),           CCM10420
   •          4X.1PE12.8,' M',/                                      CDM10430
   •     S(1X,27X,I2,1X,33C . ' ) , 4X, 1PE12. S, ' M' ,/))                   CDM10440
    DO 530 I  a 1,8                                                   CDM104SO
       IDUM » ICP(I)                                                 CDM10460
       JDUM » ICAd)                                                 CDM10470
       PCURVE(I) » CURVEdDUM)                                       CDM10480
       ACURVE(I) = CURVE(JDUM)                                       CDM10490
530 CONTINUE                                                         CDM10SOO
                                      119

-------
C
c
c
c
c
c
c
c
c
    WRITE( IWR,540) ( I , PCURVEt I ) , ACCRVE( I ) ,  I = 1.6)
540 FORMAT (IX, 'DISPERSION CJRVE USED FOR ^ACH STABILTY CLASS',/,
   •           4X, 'STABILITY        POIOT          AREA1./,
   •           4X,'   CLASS         SOURCES        SOURCES',/,
   •       8(7X, I2,12X,A4fllX,A4,/))
    DO S10 1=1,6
       IP((N1838.EQ.1S) .ANT). ( ( 1/2 )«2.EQ. 1 ) ) GO TO 560
       WRITE( IWR, 280 ) IYER, IHDN.HEADNG
       WRITEd-WR, 550)
350    FORMAT ( IX. 33X. 'METEOROLOGICAL JOINT FREQUENCT FUNCTION',//)
560    WEITE(IWR,570)I
870    POHMAT(1X, 'STABILITY CLASS' ,12, 47X, 'WIND SPEED CLASS ',//
   •          IX, 4X, 'WIND DIRECTION    SECTOR',
   •          11X, ' 1 ' , 12X, ' 2 ' , 12X, ' 3 ' , 12X, ' 4 ' , 122, ' 5 ' , 122C, ' 9 ' , / )
       DO S90 Kal,N183S
          IF(N1638 .EQ. 36)
   •         WRITS(rWR,3aO)D38(2«K-l),D38(2"S),K,(?(I,J,K),J»l,6)
          I?(N1638 .EQ. 18)
   •         WRITE(IWR,580)D16(2«K-1),D18(2-K),K, (F( I , J ,K) , J=l , 8 )
580          FORMAT(lX,rX, 2A4.9X, I2,9X,8(F3.S,5Z))
590    CONTINUE
       WRITS ( IWR, 800 )UBAR( I )
800    FOBMAT(/,1X,55X, 'OOMPTJTED MEAN  SPEED a '.F5.2,' M/SEC',2(/)
810 CONTINUE

        READ RECORD TYPE 14

    READ(I5D,210) FSOURC
    CQN1 * FLOAT(N1836)/(2.0"3. 14159)
    CON2 » CONl'PI

        READ SOURCE INPUT DATA (I.E.,  RECORD TYPE  IS)

820 READ< I3D,FSOURC)X,7,TX,S1,32,SH,D,YS,T,SA
             X MAP COORDINATE OF  SOURCE
             7 MAP COORDINATE OF  SOURCE
             WIDTH OF AREA SOURCES
             EMISSION RATE OP POLLUTANT 1 (G/SEC)
             EMISSION RATE OF POLLUTANT 2 (G/SEC)
             SOURCE HEIGHT (M)
             STACK DIAMETER  (M)
             EXIT VELOCITY (M/S)
             STACK GAS TEMPERATURE (DEC F, C, OR K)
             PLUMB RISE OPTION
    IF (NDEF .GT. 0) SA « 0.0
    XS3 » X
    YSS « Y

        TEST END OF SOURCE DATA (BLANK CARD)

    IF(31*S2.L2.0.)  GO TO 790

        EVALUATE PRINTER CONTROL OPTION

    IF(NLIST.NE.O) GO TO 380

        grnn SOURCE INPUT DATA

    IF(IPG.LT.44) GO TO 680
                                                         SOURCE
c
c
c
820
C
C
c
c
c
c
c
c
c
c

REA

READUH
X;
Y:
TX:
31:
32:
3H:
0:
V3:
T:
3A:
      WRITE( IWR, 280 ) IYER, IHUN.HEADNG
      WRITEUWR, 630)
  630 FORMAT (IX, 4 2X, 'AREA AND POINT SOURCE INVENTORY1,//
     •       IX, 34X, 'STACK     STACK      OPTIONAL',/,
     •       1X.27X, 'WIDTH OF     ---- EMISSION RATE ----
     •       'STACK    EXIT       GAS      PLUME RISE' )
      WRITE ( IWR, 640 ) PNAME( 1 ) , PNAME( 2 )
  840 FORMAT( IX, '  X MAP        Y MAP      GRID SQUARE' , SX.A4. 9X,A4,
     •       'HEIGHT    DIAM     SPEED     TEMP     COEFFICIENT')
      I « 1
      IF (KELVIN .EQ. 0) I = 2
      IF (KELVIN .GT. 0) I » 3
      WRITEUWR, 650) TTITLE( I )
  650 FORMAT( IX, 'COORDINATE   COORDINATE       (M)        (G/SEC)',
     •       '      (G/SEC)      (M)      (M)    (M/SEC)    (DEG',A4,
   CDM10510
   CEM10520
   CDM10530
   CEM10540
   CEM10550
   CEM10560
   CDM10S70
   CDM10530
   CDM10S30
   CDM10600
   CDM10610
   CDMI0820
   CDM10630
   CDM10640
   CDM10650
   CDM10660
   CDM10870
   CDM10630
   CDM10890
   CDM10700
   CCM10710
   CEM10720
)   CDM10730
   CDM10740
   CDM10750
   CDM10760
   OW10770
   CDM10730
   CDM10790
   CCM10800
   CDM10810
   CDM10820
   CDM10830
   CDM10840
   CDM108SO
   CDM10860
   CDM10870
   CDMioaao
   CDM10890
   CDM10900
   CDM10910
   CDM10920
   CDM10930
   CDM10940
   CDM109SO
   OM10960
   CDM10970
   CEM10980
   CDM10990
   CEM11000
   C0M11010
   CDM11020
   CDM11030
   CDM11040
   COM11050
   CDM11060
   CDM11070
   CDM11080
   CDM11090
   CDM11100
   CDM11110
   CDM11120
   CCM11130
   OCM11140
 1 .CDM1U50
   CEM111SO
   CEM11170
SX.CCM11130
   CDM11190
   CDM11200
   CDM11210
   CEM11220
   CDM11230
   CDM11240
   CDM11250
                                       120

-------
     •       '    (M-»t/3EC)',/)
  880 IPGaIPG+1
      WRITE(IWR,S70)X,Y,TX,31,32,SH,D,VS,T,SA
  870 FORMAT(LX,1X,F7.2,SX,F7.2,7X,F6.0,SX,F8.2,5X,F8.2,4X,F6.2,
     •       4X,F5.2,4X,F5.2,5X,F5.1,7X,FS.2)
C         EFFECTIVE STACK HEIGHT MOST BE GE  1.
  880 IP(SH.LT.l.) SH=1.
C
          IP POINT SOURCE THEN GO TO 750
c
c
c
c
c
c
      IP(TX.LE.O.) GO TO 750

          SOURCE 13 AREA TYPE.  MODIFY SOURCE COORDINATES, DIMENSIONS,
           AND EMISSION RATE TO CONFORM TO CDM-2.0 REQUIREMENTS.

      B«TX'0.3/CY
      WaTX/TXX
C
C
c
      B=31/3
      D-S2/S
          BECA0SE OP THE METHOD OF  INTEGRATION, AREA SOURCES ARE
           DIVIDED BY TWO AT THIS POINT FOR MORE EFFICIENT  EXECUTION
           OF SUBROUTINE AREA.
      B=B"0-.5
      D=D"O.S
      X=(X-XG)/RAT+1.
      Y»(Y-YG)/RAT»1.
      IP(W.GT.l.) GO TO 690
      N»Y
      GO TO 700
  890 S=W»O.S
      L*(Y-S)+0.35
      M=(K+W)-0.43
c
c
c
c
  700 CONTINUE
c
c
c
          IP SOURCE DIMENSIONS ARE OUTSIDE CCM-2.0 LIMITS THEN  PRINT
           FRTtfTH MESSAGE AND READ NEXT SOURCE

       IP  (M.GT.HASE.OR.N.GT.NASN) GO TO  710
       IP  (M.LE.O.OR.N.LE.O) GO TO 710
       IF  (L.GT.NASN.OR.K.GT.NASE) GO TO  710
       IP  (L.LE.O.OR.K.LE.O) GO TO 710
       IF  (M.LT.K) GO TO 710
       IP  (N.LT.L) GO TO 710
      GO TO 730
          PRINT ERROR MESSAGE FOR THIS AREA SOURCE
  710 WRITE(IWR,720) X3S,YSS,TXXTE,TXXTN
  720  FORMAT*'0',7X,'NOTE:  AREA SOURCE  WITH X COORD  '.F10.2,
     •  ' AND Y COORD '.P10.2,1, VIOLATES',/,15X,
     •  'AREA SOURCE ARRAY LIMITS.  AREA SOURCES MUST  LIE ENTIRELY  ',
     •  'WITHIN A ',P11.2,' BY  ',Fll.2,/,1SX,
     •  'METER SQUARE WITH SOUTHWEST CORNER AT THE U3ER-DEPINED ',
     •  'ORIGIN (XG,YG).  THIS'./.ISX,
     •  'SOURCE  WILL NOT BE INCLUDED  IN THIS CALCULATION.1,/)
      GO TO 320

          STORE AREA SOURCE INFORMATION

  730 DO  740  I»K,M
         DO 740 J-L.N
c
c
c
            Z(I,J,2)=D
  740       Z(I,J,3)=SH
       IF(M.GT.IXX)  IXX=M
       IP(N.GT.IYY)  IYY»N

           INCREMENT AREA SOURCE COUNTER
CDVU1280
CDM11270
CCM11280
CCM11290
CEM11300
CDM11310
CTM11320
CEM11330
CDM11340
CEM11350
COM11380
CDM11370
CT&Q1330
CDM11390
CDM11400
CDM11410
CEM11420
CCM11430
CCM11440
CDM11430
CEM11460
CDM11470
CTM114aO
CCM11490
CEM115QO
CDM11SIO
CEM11520
CDM11S30
CDM11540
03411550
OW11360
CEM11370
CTM11530
CDM11S90
cnvnisoo
CCM11810
CEM11820
CDM11830
CCM11840
CDM11830
CDM118SO
CDM11S70
GCM11830
CDM11890
CDM117QO
GDM11710
CEM11720
CDM11730
CLM11740
CDM11750
CDM11760
CCM11770
CDM11730
CEM11790
CEM11300
CEM11310
CDM1182D
CDM11830
CZM11340
CDM118SO
CDM11860
CEM11370
CDMiiaao
CDM11390
CDM11900
CDM11910
CDM11920
CDM11930
CDM11940
CEM119SO
CEW11960
CCM11970
CDM11980
CDM11990
CEM12000
                                       121

-------
•>
c
c
c

c
c
c
730
C
C
c











755

780





C
C
c

c
c
c
790
C
c
c



c
c
c

aoo
310

C
C
rAS=IAS+l

GO BACK AND READ NEST SOURCE

GO TO 620

INCREMENT POINT SOURCE COUNTER

IPSaIPS+1

STORE POINT SOURCE INFORMATION

PX( IPS )»(X-XG) /RAT>0 . 5
PY( IPS )-(Y-YG) /RAT+0 . 5
PS(IP3,1)=S1»CON2
PS(IPS,2)=32-CON2
PS(IPS,3)=S1"CON1
PS(IPS,4)=S2*CON1
PH(IPS)=SH
PR(IPS)=SA
IP(KELVIN.GE.O) GO TO 755
Ta(T-32.0)"(5./9.)+273.16
GO TO 780
IF(KELVIN.GT.O) GO TO 760
T=T*273. 18
IF(D .LE. 0.) D » 0.01
VS1(IPS)»VS
TKIPS) = T
Dl(IPS) * D
FRN( IPS)aV3*V3*TQA/(9.a0818»D"(T-TOA) )
BFLUX(IPS) » (9.80818 «VS«D«D«(T- TOA))/(4. • T)

GO BACK AND READ NEST SOURCE

GO TO 820

PREPARE TO RETURN TO MAIN
)
IPO70

COMPUTE NE CORNER OF NE GRID SQUARE

TDA-0.5-TD
TDBalSX+O.SVTD
TDCMYY+0.3+TD

PRINT NUMBER OF POINT AND AREA SOURCES

WRITE( IWR, 800) IAS, IPS
FORMAT( 'O'.IIO,' AREA SOURCES. ',110,' POINT SOURCES .')
RETURN
END


CDM1 2010
CDM12020
CDM12030
CDM12Q40
CDM12050
CDM120SO
CDM12070
CDM12080
CDM12090
CDM12100
CDM12110
CDM12120
CDM12130
CDM12140
CDM121SO
CDM12160
CDM12170
CCM1213Q
CDM12190
CDM12200
CDM12210
CDM12220
CDM12230
CDM12240
CDM12250
CDM12260
CDM12270
CDM12280
CDM12290
CDM12300
CDM12310
CDM12320
03*112330
CDMI2340
CDM123SO
CDM12360
CZM12370
CDM12380
CDM12390
CDM12400
CDM12410
CDM12420
COM12430
CDM12440
CDM12450
CDM124SO
CDM12470
CDM12430
CDM12490
CDM12SOO
CDM12S10
CDM12S20
CDM12S30
CDM12SSO
SUBROUTINE DFAULT(N3O2,CA,C3,NP30 ,NPDH,NSTDW,NGRAD,KLOW, ICA,KHIGHCDM12560
1
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
• ICP,32U,GB,UE)
SUBROUTINE DFAULT (VERSION 85293), PART OF CDM-2.0.

PARAMETER LIST:
INPUT: NSO2 - POLLUTANT NUMBER FOR SO2
OUTPUT: CA - INTERCEPT OF CALIBRATION
CB • SLOPE OP CALIBRATION
NP50 - INITIAL DISPERSION OPTION
NPDH - BUOYANCY- INDUCED DISPERSION OPTION
NSTDW - STACK DOWIWASH OPTION
NGRAD -GRADUAL PLUME RISE OPTION
CDM12S70
CDM12S80
CDM12590
CDM12800
CDM12810
CDM12820
CDM12630
CDM12640
CDM1265Q
CDM12660
CDM12670
KLOW - DISPERSION PARAMETER SCHEME FOR AREA SOURCESCDM1 2 6 3 0
ICA - ARRAY OF SIX VALUES DEFINING DISPERSION
CURVES (AS DEFINED BY KLOW) TO BE USED
THE SIX STABILITY CATEGORIES SUMMARIZED
THE JOINT FREQUENCY FUNCTION
CDM12690
FOR CDM12700
IN CDM12710
CDM12720
KHIGH - DISPERSION PARAMETER SCHEME FOR POINT SOURCECDM1 2 7 3 0
ICP - ARRAY OF SIX VALUES DEFINING DISPERSION
CURVES (AS DEFINED BY KHIGH) TO BE USED
CDM12740
FORCDM12750
122

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c




c
c
c




c
c
c







c
c
c






c
c
c












c


c
c

THE SIX STABILITY CATEGORIES SUMMARIZED IN
THE JOINT FREQUENCY FUNCTION
SZA - INITIAL SIGMA-Z FOR AREA SOURCES (METERS)
CDM12TSO
CEM12770
CDM12780
GB - DECAY HALF-LIFE (HRS) FOR THE TWO POLLUTANTSCEM1 2 7 9 0
UE - ARRAY OF SIX VALUES DEFINING WIND PROFILE
EXPONENTS TO BE ASSOCIATED WITH THE SIX
STABILITY CATEGORIES SUMMARIZED IN THE
JOINT FREQUENCY FUNCTION.

CALLING ROUTINE:
CLINT

DESCRIPTION:
THIS SUBROUTINE SETS PARAMETERS ACCORDING TO REGULATORY
GUIDANCE ESTABLISHED IN "GUIDELINE ON AIR QUALITY MODELS."
THIS MODULE WAS ADDED TO THE CODE AS A CONVENIENCE FOR THE
USER TO HELP AVOID INADVERTANT ERRORS IN SETTING THE
APPROPRIATE OPTIONS FOR REGULATORY USES.

DIMENS ION CA( 2 ) , CB( 2 ) , ICA( S ) , IO>( S ) , SZA( 8 ) ,GB( 2 } ,UE( 6 )

SET CALIBRATION CONSTANTS

DO 10 t - 1,2
CA(I) * 0.0
cam » i.o
10 CONTINUE

SET PROGRAM CONTROL PARAMETERS

NP30 » 0
NPDH • 1
NSTDW » 1
NGRAD * 0

SET DISPERSION SCHEME, DISPERSION CURVES, AND INITIAL 3IGMAS

SLOW • 2
KBIGH a 2
DO 50 I = 1,8
ICA(I) a I
ICP(I) = I
3ZAU) a 30.
20 CONTINUE

SET WIND PROFILE EXPONENTS

UE(1) » .IS
UB(2) » .IS
UE(3) • .20
UE(4) a .23
UE(S) a .23
OE(3) > .30

SET POLLUTANT HALF- LI HE

I? ((NS02 .EQ. 1) .OR. (NS02 .EQ. 2)) GO TO 30
GBU) a 999999.
GB(2) * 999999.
GO TO 999
30 CONTINUE
IF (NS02 .EQ. 2) GO TO 40
GB(1) • 4.0
GB(2) a 999999.
GO TO 999
40 CONTINUE
GB(1) a 999999.
GB(2) a 4.0

999 RETURN
END


SUBROUTINE CALQ
CDM12800
OM12810
CDM12820
CDMI2330
CCM12340
CDM12830
CDM123SO
CDMI2370
CDM12880
CDM12890
CEM12900
CDM12910
CDM12920
CCM12930
CDMI2940
CDM12950
CTM12960
CDM12970
CDM129aO
CDM12990
CDM13000
CDM13010
CDMI3020
CDM13030
CDM13040
COM130SO
OM13080
CCM13070
OM13080
CDM13090
CZM13100
CDM13110
CCM13120
CDM13130
CDM13140
CDM131SO
CDM131SO
CDM13170
CDMI3iaO
CDM13190
CDM13200
CDM13210
CDM13220
CDM13230
CCM13240
CDM13250
CTM13280
CDM1327Q
CDM13280
CDM13290
CDM13300
CDM13310
COM13320
CDM13330
CDM13340
CDM13330
CDM13380
CDM13370
CDM13330
CDM13390
CDM13400
CDM13410
CDM13420
CDM13430
CDM13440
CDM13430
CDM13460
CDM13470
'CDM1 3430
CDM13490
CDM13SOO
123

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
            SUBROUTINE CALQ   (VERSION 8S293), PART OF CDM-2.0.     CDM13S10
   PARAMETER (NPTS=200 ,.HQLIM*100 ,NASE=50 ,NASN=50 )                    CEM13520
   DIMENSION C(3)                                                    CDM13530
   COMMON /Cl/  K, MX, MN, 5(8,8,36) ,UBAR(6) ,U(S) ,RI,RJ, INCU) ,DELR     CEM13540
   COMMON /C2/  UE(6),YD,YN,TMN,DINT,YCON,TA(4),IPG,XG,YG, IRD        CDM13350
   COMMON /C3/  IKON, CA(2), CB(2), TK(38), AHDS(2) ,PROS(2) , TANG         CEM135SO
   COMMON /C4/  DECAY(2),ICA(8),ICP(S),HL(S),HX(6),GB(2),NQ,IVER1IWR CDM13570
   COMMON /CS/  Q(NQLIM,4),GA(2),IAD(4,5),IAS,TDA,TDB,TDC,IPU
   CDMVDN /C8/  ICHX
   COMMON /QCQM/ N.DR, IX,IY, 17(38,21 ),Krc,izs,iYY, RAD, TD,
  •             Z(NASE,NASN,3)
   COMMON /3ET/ N1638 ,DELTA,TTAN,NP30 ,NPDH,NSTDW,NGRAD,KLOW,KHIGH,
  •             PPAR(2,8),APAR(2,8),WHA(S),FAC,RCEPTZ,KELVIN,NDEF
       CALCULATE SECTOR AREA SOURCE VECTOR Q(NQ,I)
N
I
              INDEX OF RADIAL ARC
              li. P 1 EMISSION RATE
              2:  P 2 EMISSION RATE
              3:  AREA STACK HEIGHT
       INITIALIZE ARC COUNTER
   NQ=0
   20
                                                                  CH.113 530
                                                                  CDM13590
                                                                  CDM13800
                                                                  CDM13810
                                                                  COM13820
                                                                  CDMI3S30
                                                                  CDM13840
                                                                  CDM13850
                                                                  CXMU860
                                                                  CDM13870
                                                                  CDM13880
                                                                  CDM13690
                                                                  CDM13700
                                                                  CDM13710
                                                                  CDM13720
                                                                  CDM13730
                                                                  CDM13740
                                                                  CDM13750
                                                                  CDM13760
                                                                  CDM13770
                                                                  CCM13780
                                                                  COMI3790
                                                                  CEM13800
                                                                  CTM13810
                                                                  CDM13820
     THE NUMBER OF ARCS EXCEEDS THE LIMIT SET BY CDM-2.0 PRINT ERRCTM13830
      MESSAGE AND RETURN TO MAIN                                  CEM13340
                                                                  cam. 33 so
 NQ * HQLIM - 1                                                   CEM13860
 IF(ICHK.EQ.l)  GO TO 330                                          CDM13370
 ICHK » 1                                                         CDM13830
 Q(NQ+1,4)  * (N-1)«DELR                                           CDM13890
 miS » Q(NQ+1,4J/1000.0                                          CDM13900
     PRINT  WARNING MESSAGE                                        OML3910
 WRITE(IWR,20)  NQLIM.XDIS                                         COM13920
 FORMAT!'0',9X,'WARNINGi  MORE THAN1,14,'ARCS ARE REQUIRED FOR ', CDM13930
•  'CALCULATION OF AREA CONTRIBUTION.',/,203C,'AREA SOURCES BEYOND'CDM13940
       INCREMENT ARC COUNTER

10 NQ=NQ+1
                   •
       I? TEE NUMBER OF ARCS EVALUATED IS LESS THAN THE LIMIT SET
        37 CZM-2.0 (NQLIM) GO TO 30

   IP(NQ.LT.NQLIM) GO TO 30
  •   IX.FS.l.'KM ARE NOT INCLUDED IN THIS CALCULATION.'
   GO TO 340

       THE NUMBER OF ARCS IS WITHIN THE LIMITS SET BY CDM-2.0,
   30
   40
   DO 40 I«l,3
      q1)
   DO 290 LLa
   T=TT(K,LL)
   Tl3RI+R"COS(T)
   TJ=RJ*R«SIN(T)

       IF RADIAL ARC OUTSIDE OUTSIDE AREA EMISSION GRID GO TO 290
        DETERMINE WHICH AREA SOURCE THE POINT FALLS ON.  IP ON THE
        LINE TWO ARE AVERAGED.  IP ON AN INTERSECTION, FOUR ARE
        AVERAGED.

   IF(TI.LT.TDA.OR.Tl.GT.TDB) GO TO 290
   IF(TJ.LT.TDA.OR.TJ.GT.TDC) GO TO 290
                                                          CDM139SO
                                                          CDM13960
                                                          CDM13970
                                                          CEM13980
                                                          COM13990
                                                          CDMI4000
                                                          CDM14010
                                                          CDM14020
                                                          CDM14030
                                                          CDM14040
                                                          CDM140SO
                                                          CDM14060
                                                          CDM14070
                                                          CDM14080
                                                          CDM14090
                                                          CEM14100
                                                          CDM14110
                                                          CDM14120
                                                          CDM14130
                                                          CDM14140
                                                          CDM14150
                                                          CDM14160
                                                          CDM14170
                                                          CDM14180
                                                          CDM14190
                                                          CTM14200
                                                          CDM14210
                                                          CDM14220
                                                          CDM14230
                                                          CDM14240
                                                          CDMI42SO
                                       124

-------
c
c
c
DETERMINE WHICH AREA SOORCZ THE POINT FALLS ON
      17(1. LT.l) 1=1
      IP(J.LT.l) J=l
      D=TI-I
      IP(ABS(D-0.5).LE.TD) GO TO SO
      I?(D-O.S)90,30,130
   50 D»TJ-J
      IP(ABS(D-O.S).LE.TD) 00 TO 90
      IP(D-O.S)70,60,80
   SO IA-1
      JA-5
      00 TO 170
   70 IA»2
      JA=3
      GO TO 170
   80 IA=2
      JA-4
      GO TO 170
   90 D-TJ-J
      IP(ABS(D-0.5).LE.TD) GO TO 100
      IP(D-0. 3)110,100, 120
  100 IA-3
      JA=2
      GO TO 170
  110 IA=»3
      GO TO 170
  120 IA=«3
      JA=4
      GO TO 170
  130 D«TJ-J
      I?(ABS(D-0.3).L2.TD) GO TO  140
      IP(D-0. 5)130,140, 180
  140 IA=4
      JA=2
      GO TO 170
  130 IA=-4
      JA-3
      GO TO 170
  180 IA«4
      JA'4
  170 GtaO.
      IP(I.EQ.IXX)  IA=3
      DO 130 LZ>1,3
  130    C(LD)=»0.
      DO 200 IK=1,4
         DO 190 L'1,2
  190       C(L)*C(L)+Z(IV,JV,L)
         IP(Z(IV,JV,3).L£.0.1) GO TO 200
         C(3)=C(3)*2(IV,JV,3)
  200 CONTINDE
      C(2)»C(2)/4.
      IP(C2*.GT.0.5) GO TO  210
      GO TO 220
  210 C(3)=C(3)/CN
  220 IP(R.GT.O.) 00 TO 240
      DO 230 LA=>1,3
  230    Q(NQ,LA)=C(LA)
      GO TO 320
  240 IP(LL.NE.l.AND.LL.NE.in>C) GO TO 280
C         TRAPEZOIDAL  INTEGRATION APPLIED
      DO 230 LB=1,2
  250    C(LB)=C(LB)aO.S
  260 DO 270 LC=1,2
  270    Q(SQ,LC)=<3(NQ,LC)*C(LC)
CDM142SO
CDM14270
CDM14230
CDMI4290
CEM14300
CDM14310
CDM14320
CLM14330
CDM14340
CDM14330
CZM1436Q
CEM14370
CDM14380
COM14390
CZM14400
CXM14410
CEM14420
CTM14430
CDM14440
CDMI44SO
CDMI4460
CDM14470
CDM14480
CEMI4490
CUVa45QO
CEM14S10
CDM14S20
aaa.4530
CDM14540
CCM14330
CCM14560
GEM14S70
CDM14530
CDM14S90
CDM14600
CTM14810
CDM14820
CDM14630
CTM14640
CCM14850
CDMI4880
CDM14870
CDM14880
CEM14690
CZM14700
CDM14710
CEM14720
CDM14730
OM14740
CQM14730
CDM14780
CBM14770
CDM14730
CEM14790
CDM14800
CDM14810
CDM14820
CDM14330
CDM14840
CDM14850
CDM14860
COM14870
CDM14380
CDM14890
CDM14900
CZM14910
CCM14920
CDM14930
CDM14940
CDM149SO
CDM14960
CDM14970
CDM14980
CDM14990
CDM1SOOO
                                       125

-------
c
c
c
    IF(C(1)+C(2).LE.O.) GO TO 290
    Q(NQ,3)=Q(NQ,3)+C(3)
280 HN=HN+1.
290 CONTINUE

        COMPUTE AVERAGE EMISSION RATE OVER THE ARC

    DO 300 LD»1,2
300    Q(NQ,LD)=q(NQ,LD)/DINT
    IF(HN.GT.O.S) GO TO 310
      GO TO 320
  310 Q(NQ,3)*Q(NQ.,3)/HN
  320
c
c
c
c
C
C»
C

C
c
c
c
c
        I? NEST ARC IS WITHIN AREA GRID, GO TO 10 AND INCREMENT ARC
         COUNTER

    IF(N.LE.MXn) GO TO 10
330 Q(NQ+1,4)3(N-1)«DELR
340 RETURN
    END

••«*••*•••««••••••••*••«•••«•••«*•**••••••*••*«••*«*•*••*•**•••***•«•
c
c
c
c
c
c
c
c
c
c
c
      SUBROUTINE AREA
              SUBROUTINE AREA
                                (VERSION 85293), PART OP CDM-2.0.
          TH13 SUBROUTINE CALCULATES THE SECTOR CONCENTRATION FROM THE
           AREA SOURCE VECTOR  (Q) .

      PARAMETER (NPTS»200 ,NQHM=»100 ,NASE=»50 ,NASN=50 )
      DIMENSION C(2)
      COMVCN /Cl/ K,MX,MN,F(8,8,38),UBAR(8),U(8),ai,RJ,INC(4),DELR
      COMMON /C2/ UE(S),YD,YJ»,TMN, DINT, TOON, TA( 4 ) , IPG,XG, YG, IRD
      COMVCN /C3/ IRUN,CA(2),C8(2),TK(36)tAR03(2),PROS(2),TANG
      COMMON /C4/ DECAy(2),ICA(6),ICP(S),HL(8)IHX(6),GB(2),NQ,IVER, IWR
      COMMON /C3/ q(NQLIM,4),GA{2),IAD(4,5),IAS,TDA,TDB,TDC,IPU
      COMMON /ACOM/ PI ,S2A( 8 ) ,ABAR( 2 ) ,AROSE( 38 , 2 ) ,XS( 8 )
      COMMON /SET/ N1838 , DELTA, TTAN.NP SO ,NPDH,NSTDW,NGRAD,KLCW,KHIGH,
     •             PPAR(2,S),APAR(2,8),WHA(8),FAC,RCEPTZ,K£LYIN,NGR£G
        LOOP OVER STABILITY CLASS

    DO 170 13=1,8
        IS: CONTROLS STABILITY CLASS
    IFUS.EQ.S) Y=YN
    lOICA(IS)

        LOOP OVER WIND SPEED CLASS

    DO 170 IU>1,8
        IU: CONTOLS WIND SPEED CLASS
         I? FREQUENCY IS ZERO, SKIP
    IP(P(IS,IU,K).LE.O.) GO TO 170

        INITIALIZATION
      C(2)»0.
      IR'l
   10
   20
    DVLR^DVLRI
    DVLRI=Q(IR+1,4)-R
    QQQ * 0.1«Q(IR, 3)-FAC
    IF(QQQ.LT.O.l) QQQ = 0.1
    PQQQ =» UE(IS)
    WZ a QQQ--PQQQ
    WS=0(IU)-WZ
    DO 20 JA=1,2
       DF=WS-GA(JA)
       DECAY(JA)=EXP(R/DF)
    RXS=R*XS(13)
CEM15010
CDM15020
CIM15030
CDM15040
CDM1SOSO
CDM1S060
CDM15070
CDM1S080
CDM1S090
CDM1S100
CEM15110
CDM1S120
CDM13130
CDM15140
CDM1S150
CEM151SO
CDM15170
CDM1S130
CDVQS190
CDM1S200
CDM1S210
CDM13220
CDM1S230
'CDM15240
CDM132SO
CCM15260
CEM15270
CDM1S230
CDM15290
CDM1330Q
CDM13310
CDM13320
CDM13330
CDM1S340
CDM1S3SO
CDM15360
CDM1S370
CDM13380
CDM13390
CCM15400
CDM13410
CDM1S420
CEM15430
CDM1S440
CDM134SO
CCM15480
CDM1S470
CDM15480
CDM1S490
CDM15500
CDM1S510
CDM13S20
CDM1SS30
CDM15540
CEM15550
CCM15560
CDM1S570
CDM15530
CDM1SS90
CCM1S600
CDM1SS10
CDM13620
CDM1S630
CDM13840
CDM15S50
CDM1S660
CDM15670
CDM1SS80
CDM1S690
CDM15700
CDM15710
CDM15720
CDM15730
CDM15740
CDM15750
                                       126

-------
c
c
c
c
c
c
c
c
c
C
C
c
   30
   40
                                                                 CDM15780
                                                                 CCM15770
                                                                 CDM15780
                                                                 CEM15790
                                                                 CDM15800
                                                                 C3M15310
                                                                 CDM1S820
                                                                 CCM15830
                                                                 CDM1S340
                                                                 CDM1S3SO
                                                                 CCM1S380
                                                                 CEM1S370
                                                                 CDM15880
                                                                 COM1S890
                                                                 CDMIS900
                                                                 CDM1S910
                                                                 CDM1S920
                                                                 CEM15930
                                                                 CEM1S940
                                                                 CDM13950
                                                                 CDM1S960
                                                                 CDMIS970
    LID HAS BEEN REACHED; COMPUTE CONCENTRATION USING A BOX MODELC0M15980
                                                                 CEM15.990
    IR                                                           CEM1SOOO
    IRI;4)                                                       CCM16010
DVLR=DVLRI                                                       COM1S020
CALL SIGMAZtKLOW.NPDH.IC.RXS.O.O.SZ)

IFOZ.LE.O.) 00 TO 140

    IF THE VERTICAL DISPERSION PARAMETER IS GREATER THAN OR
     EQUAL TO 0.3 X MIXING HEIGHT COMPUTE CONCENTRATION USING
     A BOX MODEL

IF(SZ.GE.HXCIS)) GO TO 30

    LID HAS NOT BEEN HP-Aram; COMPUTE CONCENTRATION BY GAUSSIAN
     FORMULA.

SIS! » Q(IR,3)«WHA(IU) * RCEPTZ
STK2 » Q(IR,3)«NHA(IU) - RCEPTZ
SB1 » -O.S»STS1"STK1/(SZ«SZ)
SB2 • -O.S»ST£2«STK2/(SZ«SZ)
SWW » 0.5« IRI + 1
C LOOPS TO RHO(MAX)
IF(IRI.LZ.NQ) GO TO 40
GO TO ISO
100 IPUR.EQ.l.OH. rR.EQ.NQ) GO TO 120
C
C LID HAS NOT BEEN REACHED
C TRAPEZOIDAL INTEGRATION APPLIED
C
DO 110 JI*1,2
110 GUI )=C( JI ) + (Q( IR.JI )-S"(DVLR+OVLRI ) ) /DECAY ( JI )
GO TO 140
C TRAPEZOIDAL INTEGRATION APPLIED
120 DO 130 JK=l,2
130 C(JK)«C(JK)+(Q(IR,JK)-S«DVLR)/DECAY(JK)
140 IR=»IR+1
C LOOPS TO RHO(MAX)
IF(IR.LE.NQ) GO TO 10
C
C STORE CONCENTRATION ACCORDING TO WIND DIRECTION SECTOR
C
ISO X»Y*YCON"P(IS,IU,K)
DO 160 JL*1,2
ABOSE ( K, JL ) =ABOSE ( K , JL ) *C( JL ) «X
APAR(JL.IS) = APAR(JL.IS) * C(JL)»X
180 ABAR(JL)>ABAR(JL)H:UL)*X
170 CONTINUE
RETURN
END
C
cnvasoao
COM16040
cnvasoso
CDM18060
OM18070
OWIS080
CDM1S090
CDM16100
CCM18UO
CDM16120
CEM18130
CDMI6140
CEM16130
CCM161SO
CDM18170
CDM16180
CDM1S190
CEM16200
CDM18210
CDM16220
COM18230
CDM1 32 40
CDM162SO
CDM1S280
CDM18270
CDM1S230
CDM18290
CDM18300
CDM18310
CDM16320
GDM16330
CDM16340
CDM183SO
CDM16380
CDM1S370
CDM16380
CDM18390
CDM18400
CDM18410
CCM16420
CDM16430
CDM16440
COM16430
CDM1S460
CDM16470
CDM16480
CDM1S490
                                       127

-------
c
c
c
c
c
   SUBROUTINE POINT
         SUBROUTINE POINT
(VERSION 85293),  PART OF CDM-2.0.
C
C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
       THIS SUBROUTINE CALCULATES THE SECTOR CONCENTRATION FROM
        POINT SOURCES.

   PARAMETER (NPTS=»200,NQLIM=100,NASE=SO,NASN=50)
   DIMENSION 3(2)
   COMMON /Cl/ K,MX,MN,?(8,8,38),UBAR(8),U(8),RI,RJfINC(4),DELa
   COMMON /C2/ UE(8),YD,YN,TMN,DINT,YCON,TA(4),IPG,XG,YG,IRD
   COMMON /C3/ lRCN,CA(2),CB(2)fTX(38),AROS(2),PROS(2),TANG
   COMMON /C4/ DECAY(2),ICA(S),ICP(8),HL(S),HX(8),GB(2),NQ,IVER,IWR
   COMMON /C3/ Q0.1)-*UE(IS)
   I?(SZI.L2.0.) GO TO 40
   CALL VIRTX(!OIIGH,NPCH,IC,0.0,S2I,XS)
   GO TO SO
40 X3=-0.
30 DIST=XP+X3

       BEGIN LOOP OVER WIND SPEED CLASS

   DO 180 IU*1,6
       IU: CONTOLS WIND SPEED CLASS
        IP FREQUENCY IS ZERO, SKIP
   IF(F(I3,IU,K).LE.O.) GO TO 180
   DO 80 JA=-l,2
      DP=WS-GA(JA)
80    DECAY(JA)=EXP(XP/DP)

       IP PR(IP) IS LESS THAN OR EQUAL TO ZERO COMPUTE PLUME RISE
        ACCORDING TO BRIGGS.

   IP(PR(IP).LE.O.) GO TO 70

       HOLLANDS EQN.
CDM15510
CDM18520
CDM18530
CDM1S540
CDM1S550
CDMIS5SO
CDM1S570
CDM1S530
CDMIS590
CDMIS600
CDM18610
CDM18620
CDMISS30
CDM18640
CDM1S650
CDM186SO
CDMISS70
CDM15S30
CEM1S690
CDM1S700
CDM18710
CDM1S720
CDM1S730
CDMIS740
CDM18750
CDM1S7SO
CDM1S770
CDM1S730
CDM18790
CDM18800
CDMlSaiO
cransaso
CCM1S830
CDM1S840
COM1S330
CDM18360
CDM1S370
OW1S330
CDM18390
CDM1S900
CDM1S910
CDM1S920
CDMIS930
CDM18940
CDM1S950
CTMI6960
CDM1S970
CDM1S980
CDM1S990
CDM17000
CDM17010
CDM17020
CDM17030
CDM17040
CDM170SO
CDM17060
OJM17070
CDM17080
CDM17090
CCM17100
CDM17110
CDM17120
CDM17130
CDM17140
CDM17150
CDM17160
CDM17170
CDM17180
CDM17190
CDM17200
CDM17210
CDM17220
CDM17230
CDM17240
CDM172SO
                                       128

-------
c

c





c
c



c
c
c

c



c


c
c

c
c
c

c
c
c


c
c

c

c
c
c



c

c





c
c
c
c
c
c



c
c
c
c








DH=PR(IP)/WS
CALCULATE PLUME RISE
IK = 1C
IF(IK.GT.4) IK a IK - 1
DH=DH-( 1.4-0.1 -IK)
HP a PH(IP)
DHM » DH
CALCULATE STACK DOWNWASH EFFECTS

CALL STDW(NSTDW,YS1(IP),D1(IP),FRN(IP),WS,HP,DHM)
UHIIH a HP * riHM
GO TO 120

CALCULATE BRIGGS PLUME RISE (1969, 1971, AND 197S)

70 KST » 1C
CALCULATE PLUME RISE AND DISTANCE TO FINAL RISE.
CALL PLRISE(VS1( IP) ,T1( IP) ,D1( IP) ,BFLUX( IP) ,TOA,WS .KST.DISTF ,DH)
HP a PH(IP)
nHM m DH
CALCULATE STACK DOWNWASH EFFECTS
CALL STDW(NSTDW,VS1(IP),D1(IP),FRN(IP),WS,HP,DHM)
PH11H a HP + DHM
CONSIDER GRADUAL PLUME RISE IF RECEPTOR DOWNWIND DISTANCE IS
LESS THAN THE DISTANCE TO FINAL RISE
IF (DIST .GE. DISTF) GO TO 120
CONSIDER GRADUAL PLOME RISE IF THE GRADUAL PLUME RISE OPTION
CDM17260
CDM17270
CDM17280
CDM17290
CDM17300
CDM1 7310
CDM17320
CDM17330
CDM17340
CDM17350
CDM17380
CDM17370
CDM17330
CDM17390
CDM17400
CDM17410
CDM17420
CDM17430
CDM17440
CDM17450
CDM17460
CDM17470
CEM17480
CDM17490
CDM17500
CDM17S10
CDM17320
CDM17S30
IS TURNED ON AND/OR THE BUOYANCY- INDUCED DISPERSION OPTION ISCDM17S40
TURNED ON
I? ((NGRAD .LZ. 0) .AND. (NPDH .LZ. 0)) GO TO 120

CALCULATE GRADUAL PLUME RISE

GDELH a (ISO. • BFLUX( IP) "0. 333333 • DI3T*"0. 666687 )/WS
IF (GDELH .LT. DHM) DHM a GDELH
MODIFY THE FINAL EFFECTIVE HEIGHT ONLY IF THE GRADUAL PLUME
RISE OPTION IS TURNED ON
IF (NGRAD .GT. 0) PHDH a HP * DHM

120 CONTINUE

<-ra-g TO SEE IF PLUME IS ABOVE UNSTABLE OR NEUTRAL MIXING DEPTH

I7(IC.LE.5) THEN
IF(PHDH.GT.HL(IS) ) GO TO ISO
END IF

CALL 3IGMAZ(KHIGH,NPDH,IC,DIST,DHM,SZ)

HHH1=»PHDH+RCEPTZ
HH21 a HHHl'HHHl
HHH 2 a PHDH - RCEPTZ
HH22 a HHH2-HHH2
PHDHapHDH'PHDH

FOR UNSTABLE AND NEUTRAL CONDITIONS (A - D2 ) SEE
IF THE VERTICAL DISPERSION PARAMETER IS GREATER THAN OR
EQUAL TO 0.8 X MIXING HEIGHT, COMPUTE CONCENTRATION BY A
BOX MODEL

IPUC.LE.3) THEN
IP(SZ.GE.HXUS)) GO TO 130
END IF

LID HAS NOT BEEN REACHED; COMPUTE CONCENTRATION BY GAUSSIAN
FORMULA.

B=-0 . 5«( PHDH/ ( SZ-SZ) )
IF(ABS(B) .GT.SO. ) GO TO ISO
WWaWS*XP"SZ
S( 1 )aPS( IP, 1 )/WW
3(2)aPS(IP,2)/WW
Bl a -O.S»HH21/(SZ'SZ)
82 a -0.5«HH22/(SZ«SZ)
CDM175SO
CDM1756Q
CDM17370
CTM17S80
CDM17390
CDM17600
CDM1751Q
CDM17820
CDM17S3Q
CDM1764Q
CDM17S50
CDM17880
CDM17670
CDM17830
CDM17690
CDM17700
CDM17710
CDM17720
CDM17730
CDM17740
CDM17750
CDM17780
0*117770
CDM17780
CDM17790
CDM17300
CDM17810
CDM17320
CDM17830
CDM17340
CDM173SO
CDM17360
CDM17870
CDM17380
CDM17890
CDM17900
CDM17910
CDM17920
CDM17930
CDM17940
CDM179SO
CDM17960
CDM17970
CDM17980
CDM17990
CDM18000
129

-------




c
c
c



c
c
c








c
c
c

c
c
c



c
C'
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c


c
c
c


c




c


WW a 0.5«(EXP(B1) * EXP(B2))
3(1) BS ( 1 ) *VIW
S(2)aS(2)»WW
GO TO 140

LID HAS BEEN REACHED, COMPUTE CONCENTRATION BY A BOX MODEL.

130 WW=WS"XP-HL(I3)
S(1) = PS(IP,3)/W
S(2)=PS(IP,4)/W

STORE CONCENTRATION ACCORDING TO WIND DIRECTION SECTOR

140 BsY»YCON«F(I3,IU,K)
DO 130 JB=1,2
X=SUB)«B/DECAY(JB)
PROSE ( K , JB ) apBOSE ( K , JB ) +X
PPARUB.IS) = PPARUB.IS) + X
150 PBARUB)=PBARUB)+X
180 CONTINUE
170 CONTINUE

INCREMENT POINT SOURCE COUNTER
t
130 IP^IP*!

LOOP UNTIL ALL POINT SOURCES EVALUATED

IF(IP.LE.IP3) GO TO 10
RETURN
END


SUBROUTINE PLRISE(VS ,TS ,D,F,T, U, KST, DISTF , DELH)
SUBROUTINE PLRISE (VERSION 35293), PART OF CDM-2.0.

PARAMETER LIST:
INPUT: VS - STAGS GAS VELOCITY (M/SEC)
TS - STAGS GAS TEMPERATURE (KELVIN)
D - STAGS INSIDE DIAMETER (METERS)
P - BUOYANCY FLUX (M"»4/SEC«3 )
T - AMBIENT AIR TEMPERATURE (KELVIN)
U - WIND SPEED AT STAGS HEIGHT (M/SEC)
KST - STABILITY CLASS
OUTPUT: DISTF - DISTANCE TO FINAL RISE (METERS)
DELH - PLUME RISE (METERS)

CALLING ROUTINE:
POINT

DESCRIPTION:
THIS SUBROUTINE CALCULATES PLUME RISE ACCORDING TO METHODS
BRIGGS (1969, 1971, AND 1975)

G a 9.80616

CALCULATE UNSTABLE-NEUTRAL MOMENTUM RISE REGARDLESS OF
STABILITY

DELHM a J.O • VS • D/U
IF (KST .GT. 5) GO TO 100

PLUME RISE FOR UNSTABLE-NEUTRAL CONDITIONS

IF (TS .LT. T) GO TO 200
IF (F .GE. 55.) GO TO 50
COMBINATION OF BRIGGS' (1971) EQS. 647 , PAGE 1031, FOR F °
DELH a (21.425 • P"-0.75)/U
IF (DELHM .GT. DELH) GO TO 200
DISTF * 49. • F"0.62S
GO TO 999
COMBIMATION OF BRIGGS1 (1971) EQS. 847, PAGE 1031, FOR F *-
50 DELH = (38.71 « F--0.8J/U
IF (DELHM .GT. DELH) GO TO 200
CDM13010
CDM18020
CDMI3030
CDM13040
CDM18050
CDM13080
CDM18070
CDM18080
CDM13090
CDM1S100
CDM13110
CDM13120
CDVQ.3130
CDM18140
CDM131SO
CDM131SO
CCM18170
CDM18130
CDM13190
CDM13200
CDM13210
CDM13220
CDM13230
CDM18240
CDM132SO
CDM18280
CDM13270
CEM18230
CDM13290
CDM13300
CDM13310
CDM13320
CDM18340
CDM13330
CDM13360
CDMJ.3370
CDM13380
CDM18390
CDM134QO
CCM13410
CDM13420
CDM18430
CDM13440
CDM134SO
CDM13460
CDM18470
CDM18480
CDM18490
CDM18SOO
CDM13S10
CDM13520
BYCDM18530
CDM18540
CDM13S50
CDM13S60
CDM13S70
CDM13530
CDM13S90
CDM13600
CDM18610
CDM13620
CDM18630
CDM18640
CDM13650
CDM13660
CDM18670
55CDM13630
CDM13690
CCM13700
CDM18710
CDM18720
5CDM13730
COM18740
CDM18750
130

-------


c
c
c



c
c
DIST? = 119. • F"0.4
GO TO 999

PLDME RISE FOR STABLE CONDITIONS

100 DTHDZ = 0.02
IF (KST .CT. 6) DTHDZ = 0.035
S = G • DTHDZ/T
CALCULATE STABLE MOMENTUM RISE (BRIGGS1 (1969) EQ. 4.28,
PAGE 59)
CDM18760
CDM18770
CDM18780
CDM13790
CDM13800
CDM13810
CDM13820
CDM18830
CDM13840
CDM18850
DHA = 1.5 • (VS-YS • D«D • T/(4. • TS • 0) ) "0 . 333333/S*"0 . 166667CDM13860


C

C





C
C
C
c


c


c
c

c
c
c
c
c
c
c
c
c
c
c-
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c










c
c
c

IF (DHA .LT. DELBM) DELHM a DHA
IF (TS .LT. T) GO TO 200
CALCULATE STABLE BUOYANCY RISE (WITH WIND)
DELH a 2.S • (F/(U • S) ) "0 . 333333
CALCULATE STABLE BUOYANCY RISE (CALM)
DELHC a 4.0 • F"0.25 / S»«0.375
IF (DELHC .LT. DELH) DELH = DELHC
IF (DELHM .CT. DELH) GO TO 200
DISTF a 2.0715 • U/SQRT(S)
GO TO 999

CASE WHERE MOMENTUM RISE DOMINATES OR IS GREATER THAN
BUOYANCY RISE

200 DELH « DELHM
DISTF a 0.0

999 RETURN
END


SUBROUTINE STDW(NSTDW,VS,D,FR,U,H.DELH)
SUBROUTINE STDW (VERSION 85293), PART OF CDM-2.0.

PARAMETER LIST:
INPUT: NSTDW - STACK DOWNWASH OPTION
VS - STACK GAS EXIT VELOCITY (M/SEC)
0 - STACK INSIDE DIAMETER (METERS)
FR - FROUDE NUMBER
U - WIND SPEED AT STACK HEIGHT (M/SEC)
I/O: H - MODIFIED PHYSICAL STACK HEIGHT (METERS)
DELH - MODIFIED PLUME RISE (METERS)

CALLING ROUTINE:
POINT

DESCRIPTION:
THIS SUBROUTINE CALCULATES STACK DOWNWASH EFFECTS.
IF NSTDW < 0, THEN STACK DOWNWASH CALCULATED ACCORD tNG
BJORKLUND AND BOWERS (1982).
IF NSTDW = 0, THEN STACK DOWNWASH NOT CONSIDERED.
IF NSTDW > 0, THEN STACK DOWNWASH CALCULATED ACCORD tNG
BRIGGS (1973).

IF (NSTDW) 100,999,200

CALCULATE STACK DOWNWASH ACCORDING TO BJORKLUND AND
BOWERS (1982)

100 IF (FR .LT. J.O) GO TO 110
F = (3.'VS - 3.'U)/VS
IF (F .GT. 1.0) F a 1.0
IF (F .LT. 0.0) F a 0.0
GO TO 120
110 CONTINUE
F = 1.0
120 CONTINUE
DELH = F • DELH
GO TO 999

CALCULATE STACK DOWNWASH ACCORDING TO BRIGGS (1973)

200 IF (VS/U .GE. 1.5) GO TO 210
CDM13870
CDM13880
CDM13890
CDM18900
CDM13910
CDM18920
QDM18930
CDM13940
CDM18950
CDM13960
CDM18970
CDM18980
CDM18990
CDM19000
CDM19010
CDM19Q20
CDM19030
CDM19Q40
CDM19050
CDM19060
CDM19080
CCM19090
CDM19100
CDM19110
CCM19120
CDM19130
CCM19140
CDM19150
CDM191SO
CDM19170
CDM19180
CDM19190
CDM19200
CDM19210
CDM19220
CDM19230
CDM19240
CDM192SO
TO CDM19260
CDM19270
CDM19280
TO CDM19290
CDM19300
CDM19310
CDM19320
CDM19330
CDM19340
CDM19350
CDM193SO
CDM19370
CDM19380
CDM19390
CDM19400
CDM19410
CDM19420
CDM19430
CDM19440
CDM19450
CDM19460
CDM19470
CDM19480
CDM19490
CDM19500
131

-------



c


c
C«
*
c

c
c
c
c
c
c





























c
c*
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c


210

999
















10

20




30



40



SO



80

70
80


444



























HaH*2«D« (VS/U - 1.5)
IF (H .LT. 0.0) H = 0.0
CONTINUE

RETURN
END



SUBROUTINE V1RTX(KTYPE,KEY,KST,DH,GSZ,EX)
SUBROUTINE VIRTX (VERSION 85293), PART OF CDM-2.0.

THIS SUBROUTINE COMPUTES THE VIRTUAL DISTANCE,
IN METERS, USING SUBROUTINE SIGMAZ.
THE ROUTINE IS BASICALLY A NEWTON RELAXATION SCHEME

XMAX a 100.0*1000.0
IF(KTY?S.NE.4) GO TO 10
IF(KST.LE.4) GO TO 10
IF(GSZ.LT.SO.O) GO TO 10
GO TO 70
CONTINUE
X a l.Q
CALL SIGMAZ(XTYPE,KEY,KST,X,DH,SZ)
IF(SZ.GT.GSZ) GO TO 30
I?(X.GT.XMAX) GO TO 30
X a 2.0"X
GO TO 20
IF(X.LE.l.O) GO TO 70
IP(X.GE.XMAX.AND.SZ.LT.GSZ) GO TO 80
X * 0.3-X
STEP a 0.23'X
CALL 3IGMAZ(XT??S,KZY,SST,X,DH,SZ)
IF(SZ.GT.GSZ) GO TO 50
X a X * STEP
GO TO 40
IP( STEP. LT. 0.40) GO TO 70
X a X - STEP
STEP a 0.23'STEP
GO TO 40
EX a XMAX.
GO TO 30
EX a X
RETURN
END


SUBROUTINE SIGMAZ(KTYPE,iOiY, INKST.X.DH.SZ)
SUBROUTINE SIGMAZ (VERSION 85293), PART OP CDM-2.0.

IN THIS SUBROUTINE WE COMPUTE THE VERTICAL DISPERSION USING
TWO BASIC FORMS. THE BASIC FORMS USED TO COMPUTE 3Z ARE AS
FOLLOWS:

FORM ONE. (BRIGGS, RURAL AND URBAN)
SZ a A«X/(1+B-X)— C

FORM TWO. (BNL, KLUG, ST. LOUIS, PGCDM, AND PGSIG)
SZ « A«X«B

THE 7 VERTICAL DISPERSION SCHEMES ARE AS FOLLOWS:

1 a BRIGGS-RURAL, GIFFORD (1978)
2 a BRIGGS-URBAN, GIFFORD (1978)
3 a BNL, SINGER AND SMITH (1966)
4 a KLUG, VOGT (1977)
5 a ST. LOUIS, VOGT (1977)
6 a PGCDM, BUSSE It ZIMMERMAN (1973)
7 -a PGSIG, PASQUILL (1961) AND GIFFORD (1960)



TO ADD A DISPERSION SCHEME THE FOLLOWING MODIFICATIONS MUST
BE MADE TO THE CDM-2.0 SOURCE CODE:
CDM19510
CDM1 9520
CDM19S30
CDM19540
CDM195SO
CDM19560
CDM19S70
•CDM1 9530
CDM19590
CDM19600
CDM19610
CDM19620
CDM19830
CDM19640
CCM19650
CDM19660
CDM19870
CDM19630
CDM19690
CDM19700
CDM19710
CDM19720
CDM19730
CDM19740
CDM19750
CDM19780
CDM19770
CDM19730
CDM19790
CDM19800
CDM19810
CM19820
CDM19830
CDM19840
CDM19850
CDM19860
CDM19870
CDM19880
O3VG9890
CDM19900
CDM19910
CDM19920
CDM19930
CEM19940
CDM199SO
CDM19960
•CDM19970
CDM19980
CDM19990
CDM20000
CDM20010
CDM20020
CDM20030
CDM20040
CDM20050
CDM20060
CDM20070
CDM20080
CDM20090
CDM20100
CDM20110
CDM20120
CDM20130
CDM20140
CDM201SO
CDM20160
CDM20170
CDM20130
CDM20190
CDM20200
CDM20210
mf^TA*) n? ** n
m\f*JVl\& U £ M U
CDM20230
CDM20240
CDM20250
132

-------
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

IN SUBROUTINE SIGMAZ,
(1) ADD STATEMENT LABEL TO COMPUTED GO TO
(2) INSERT THE FOLLOWING JUST BEFORE STATEMENT 190
- GO TO 190
- CODE FOR DISPERSION SCHEME

IN BLOCS DATA,
(1) MODIFY DIMENSIONS OF ARRAY DISP(3, )
(2) ADD DISPERSION SCHEME DESCRIPTION TO DATA STATEMENT
OF ARRAY DISP. MAKE SURE THE DESCRIPTION DOES NOT
gri 'V y i i 32 CHARACTERS .

IN SUBROUTINE CLINT,
(1) MODIFY ERROR rafrsr OF KLOW AFTER RECORD TYPE 5 IS
R2AD
(2) MODIFY UPPER RANGE LIMIT OF FORMAT STATEMENT 70.
(3) MODIFY ERROR CHECK OF KHIGH AFTER RECORD TYPE 6 IS
READ
(4) MODIFY UPPER RANGE LIMIT OF FORMAT STATEMENT 110.



CDM20260
CDM20270
CDM20230
CDM20290
CDM20300
CDM20310
CDM20320
CDM20330
CDM20340
CDM203SO
CDM20360
CDM20370
CDM20380
CDM20390
CZM20400
QDM20410
CXM20420
CDM20430
CEM20440
CDM20450
CTM20460
/**»« n AT n
CDM20480
 DIMENSION A(7,3)IB(7,S),C(7,S),G(7,8),XCAT(9,7),AA(10,7),BB(10,7)CDM20490
 DATA A/
        0.2000,
        0.2400,
0.1200,  0.0800,  0.0800,  0.0600,  0.0300,  0.0160,
                 0.2400,  0.2000,  0.1400,  0.1400,  0.0800,  0.0800,
         0.4000,  0.4000,  4.3300,  0.2200,  0.2200,  0.0800,  0.0600,
         0.0170,  0.0720,  0.0760,  0.1400,  0.1400,  0.2170,  0.2620,
                                                                 CDM20SOO
                                                                 CDM20510
                                                                 CDM20S20
                                                                 CSM20530
                                                                 CEM20S40
                                                                 CDM205SO
                                                                 CDM20360
                                                                 CCM20570
                                                                 CEM2Q380
                                                                 CEM20S90
                                                                .CDM20600
                                                            5000 CDM20610
                                                                 CEM20620
                                                                 CDM20630
                                                                 CDM20640
                                                                 CDM20850
                                                                 CDM20660
                                                                 CEM20670
                                                                 CDM20680
                                                              OO.CDM20690
                                                              00,CDM20700
                                                              OO.CDM20710
                                                              OO.CLM20720
                                                              00,CDM20730
                                                              OO.CDM20740
                                                              20/CDM20750
DATA AA /453.83,348.73,238.89,217.41,179.52,170.22,158.08,122.80,CDM20760
1
DATA
1
I
I
DATA
a/

c/
0
0
0
0
1
1
1
.0790,
.0000,
.0010,
.9100,
.3800,
.2000,
.0000,
1 -0.5000,
0.0790,
0.0000,
0.0010,
0.9100,
1.0210,
1.2000,
1.0000,
-0.5000
0.1310
0.0002
0.0000
0.3800
0.3790
1.0460
0.3000
, o.
, 0.
, o.
, o.
, o.
, o.
, o.
, 1.0000, 0
9100, 0.9100, 1.9300,
0013, 0.0015, 0.0003,
0003, 0.0003, 0.0013,
7800, 0.7800, 0.7100,
7270, 0.7270, 0.6100,
7020, 0.7020, 0.4630,
5000, 0.5000, 1.0000,
.5000, 0.5000, 0.
5000,
1.9300/
0.0003,
0.0015,
0.7100,
0.5000,
0.4650/
1.
0
0000
.5
00
21«0.0/
DATA
1
1
1
1
1
DATA
1

I
1
1
1
G/2
2
0
2
2
1
.
•
«
*
•
•
SCAT












539E-4,
S39E-4,
0383,0.
0888,1.
0888,1.
2812,0.
/ 0.50
0.40
0.00
0.00
30.00
40.00
60.00
0.04936
0.04938
1393,0.
1137,0.
1137,0.
9467,0.
, 0.40,
, 0.20,
, 0.00,
, o.oo,
,10.00,
,20.00,
,30.00,
,0.1154
,0.1014
1120,0.
9109,0.
9260,0.
9100,0.
0.30,
0.00,
0.00,
0.00,
3.00,
10.00,
15.00,
,0.7388,0.7388,1.2969
,0.2591,0.2591,0.2527
0858
5642
6869
3650
0.23
0.00
0.00
0.00
1.00
4.00
7.00
,0.0856,0.0813,0.
,0.5642,0.4421,0.
,0.6889,0.6341,0.
,0.3630,0.3155,0.
,1.5783,
,0.2017,
0545,
3606,
8020,
3124/
, 0.20, 0.15, 0.10, 0.
, 0.00, 0.00, 0.00, 0.
, 0.00, 0.00, 0.00, 0.
, 0.00, 0.00, 0.00, 0.
, 0.30, 0.00, 0.00, 0.
, 2.00, 1.00, 0.30, 0.
, 3.00, 2.00, 1.00, 0.




00,
00,
00,
00,
00,
10,
70,




0
0
0
0
0
0
0




.0
.0
.0
.0
.0
.0
.2
            0.0,0.0,
          109.30,98.483,90.873,0.0,0.0,0.0,0.0,0.0,0.0,
          81.141,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
          33.504,0.0,0.0,0.0,0.0,0.0,0.0.0.0,0.0,0.0,
                                                      0.0,
                                                 CDM20770
                                                 CXM20780
                                                 CDM20790
                                                 CDM20800
•         44.053,38.85,33.504,32.093,32.093,34.459,0.0,0.0,0.0,0.00*120810
•         47.818,33.42,26.97,24.703,22.534,21.628,21.628,23.331,  CDM20820
•           24.26,0.0,                                            CDM20830
•         34.219,27.074,22.651,17.336,16.137,14.323,13.953,13.953,CDM20840
•           14.437.1S.209/                                        CDM208SO
 DATA BB /2.1168,1.7283,1.4094,1.2844,1.1262,1.0932,1.0542,0.9447.CDM20860
•           0.0,0.0,                                               CDM20870
•         1.0971,0.98332,0.93198,0.0,0.0,0.0,0.0,0.0,0.0,0.0,      CDM20880
•         0.91469,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,             CDM20890
•         0.3098,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,             CDM20900
•         0.51179,0.56389,0.60486,0.84403,0.81066,0.86974,0.0,0.0.CDM20910
                                                                  CDM20920
                                          0.57134,0.63077,0.7566, CDM20930
                                                                  CXM20940
                                          0.4649,0.54503,0.63227, CDM209SO
                                                                  CDM20960
                                                                  CDM20970
                                                                  CDM20980
           0.0,0.0,
         0.29592,0.37615,0.46713,0.50327,
           0.31936,0.3368,0.0,
         0.21718,0.27436,0.32881,0.41507,
           0.88465,0.78407,0.81553/
KST = INKST
IF(K3T.GT.7)
              KST
                                                 CDM20990
                                                 CDM21000
                                  133

-------

c
c
c





c
c
c






c
c
c




c
c
c









c
c
c

c







c
c




c
c

c















GO TO(20,20,30r40,40,50,70),inTPE

BRIGGS RURAL AND URBAN, GIFFORD (1976)

20 21 » AtKST.ffnrPE)
22 « B(KST,KTYPE)
23 » C X/1000.
AHHAY3 ARE DESIGNED FOR DISTANCE IN KILOMETERS
DO 80 ID » 1,9
17 (X .GE. XCATUD.KST)) GO TO 90
30 O3NTINUE
ID - 10
90 SZ » AA(ID,KST) • X •• BB(ID,KST)
I? (SZ .GT. 3000.) SZ a 5000.
X » X • 1000.
CONVERT BAQC TO MKTKR3

190 IP(KEY.LE.O) GO TO 200
SZ * S<3RT( SZ-SZ * (DH-DH)/(3.S-3.S))
200 RETDRN
END


BLOCK DATA
BLOCS DATA (VERSION 85293), PART OP CDM-2.0.
PARAMETER (NPTS*200 ,NQLIM=»100 ,NASE=50 ,NASN=50 )
COMVDN /Cl/ K,MX,MN,P(S,S,36),OBAR(6),D(6),RI,RJ,INC(4),DELR
COMflON /C3/ OE(8),YD,W,TMN,DINT,YCON,TA(4),IPG,XG,YG,IRD
CONMDN /C3/ IRON, CA( 2 ) ,CB( 2) ,TK( 38 ) ,ABOS( 2 ) ,PROS( 2 ) , TANG
CCftMDN /C4/ DECAY(2),ICA(6),ICP(S),HL(6),HX(6),GB<2),NQ,IVER, IWR
ODMVCN /C3/ q(NQLIM,4),GA(2),IAD(4,S),IAS,TDA,TDB,TDC,IPO
COMMON /QCCM/ N.DR.IX, IY,TT( 36,21 ) ,KTC, IXX, IYY, RAD, TD,
• 2(NASE,NASN,3)
COMVCN /ACOM/ PI,SZA(S),ABAR(2),AROSE(36,2),XS(S)
0»»CN /PCOM/ PH(NPTS),PR(NPTS),PS(NPTS,4),PX(NPTS),PY(NPTS),
• WA(36),WB(36) ,PSOSE( 36 , 2 ) ,CV, I PS ,RAT,PBAR( 2 ) ,TOA,
• VSKNPTS) .Tl(NPTS) .Dl(NPTS) , FRN(NPTS ) , BFLUXCNPTS )
CCMVIDN /SET/ N1S36, DELTA, TTAN.NP50 ,NPDH,MSTDW,NGRAD.KLOW,KHIGH,
• PPAR(2, 6) ,APAR( 2,6) ,WHA(S) ,FAC,HCEPTZ, KELVIN,. VDEF
COMMON /TITLE/ HEADNGl 20 ) .PNAMEt 2 ) ,D16( 32 ) ,D36( 72 ) ,DISP( 8 , 7 ) ,
COM2 1010
COM2 1020
COM2 1030
CDM21Q40
CDM210SO
CDM21060
CDM21070
CDM21080
CDM21090
CDM21100
CDM21110
CDM21120
CDM21130
CDM21140
CDM21130
CDM21160
CDM21170
CDM21130
CDM21190
CDM21200
CDM21210
CDM21220
CDM21230
COM21240
CDM21230
CDM21260
CDM21270
CDM21280
CDM21290
CDM21300
CDM21310
CDM21320
CDM21330
CDM21340
CDM213SO
CDM21360
CDM21370
CDM21380
CDM21390
CDM21400
CQM21410
CDM21420
CDM21430
COM2 1440
CEM21450
CEM21460
C0M21470
CDM21480
CDM21490
CEM21500
CDM21S10
CCM21520
CDM21S30
CDM21S40
CDM21S50
CDM21560
mg • ^jin i e i n
CCMZ 1 3 i U
CDM21380
CDM21S90
CDM21600
CDM2 1610
CDM21S20
CDM21630
CDM21640
CDM21650
COM21660
CDM21670
CDM21680
CDM21690
CDM21700
CEM2 1710
CDM21720
CDM2 1730
CDM21740
CDM21750
134

-------
• TTITLZCJ) CDM217SO
DATA YCON/0.1Z7/ OM21770
DATA INC,IPG,IPS,IX,IY/1,2,4,4,70,0,1,1/ CEM21780
DATA IXX,m,IAS/l,l,0/,TD/0.1E-3/ CEM21790
DATA RAD, PI/57. 2953, 0.797385/ O3M21300
DATA IAD/0, 0,1, 1,0, 1,0, 1,4-0, 4»1,0,1,1,0/ CCM21810
DATA IVE3/35293/ CEM21320
DATA D16/' M
• ' Z
• ' 3
• ' W
DATA D38/'000-
• '040-
• '080-
• '120-
• '160-
• '200-
• '240-
• '280-
• '320-
DATA DI3P/'BRIG
• 'BRIG
• 'BNL,
• 'SLOG
• '3T.
• 'PCCD
• 'PGSt
























010
QSO
090
130
iro
210
2SO
290
330













•GS-R
•GS-0
1 SIN
', VO
'LOCI
'M, 3
'G, P
1 NNE
' ESE
'• SSW
' WW
'010-
'050-
'090-
'130-
'170-
•210-
'250-
'290-
'330-
t
t
1
I
t
t
1
I
,'020
,'060
,'100
,'140
,'130
, '220
,'260
,'300
,'340
,'ORAL' , ', GI
, 'HBAK',' , GI
,'GES ','AND
,'GT (','1977
,'3, V'.'OGT
,'U3SE' ,'42
.'ASQO'.'ILL,
' HE
' SE
' SW
' NW
'020-
'060-
'100-
'140-
'180-
'220-
'280-
'300-
'340-
i
>
• i
,
>
i
»
,'030
,'070
,'110
, 'ISO
,'190
,'230
,'270
, '310
, '350
, 'FFOR' , 'D (1
,'P70R'f 'D (1
,'SMIT1 , 'H (1
i \ it
i I >
,'(197','7)
,'IMWE' ,'HMAN
, 'GI7T' , 'ORD(
1 ENE
1 SSE
' WSW
' NNW
'030-
'070-
'110-
'150-
'190-
•230-
'270-
'310-
'350-













,'976)
,'976)
,'966)
f
t
t
1
, ' (19
,'1961
t
t
f
f
'040
'080
•120
'160
•200
'240
•230
'320
'360
.CCM21330
.CDM21340
.O3VI213SO
/CDM21360
.O3V121370
.CDM21380
.CTM21390
.CCM21900
.CEM21310
.CDM21920
.CCM21930
,O)M21940
/CCM21950
,' 'CCM21960
,' 'CTM21970
,' 'CCM21980
'CTM21990
,' 'CCM22000
,'73) 'CCM22010
,' ,60)'CEM22020
DATA TTITLE/' P) ',' C) ',' K) '/ CTM22030
END CXM22040
135

-------
                                             Date
Chief, Environmental Operations Branch
Meteorology and Assessment Division (MD-80)
U. S. Environmental Protection Agency
Research Triangle Park, NC  27711
   I would like to receive future revisions to the "CDM-2.0 User's
Guide."
Name

Organizat ion
Address

City
State	Zip Code

Phone (Optional)  (	)

-------
                                   TECHNICAL REPORT DATA
                            (Please read Instructions on the reverie before completing)
1. REPORT NO.
 EPA/600/8-85-029
             3. RECIPIENT'S ACCESSION NO.
 i. TITLE AND SUBTITLE
        COM 2.0
        CLIMATOLOGICAL DISPERSION MODEL
        User's Guide
             5. REPORT DATE
             6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)

        J.  S.  Irwin*, T. Chico** and  J.  Catalano**
             ». PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
        *ASRL,  RTF, NC 27711
       **Aerocomp, Inc., .3303  Harbor  Boulevard
         Costa  Mesa, CA  92626
             10. PROGRAM ELEMENT NO.

                   CDTA1D/04-0275 (FY-86)
             11. CONTRACT/GRANT NO.

                   EPA 68-02 3750
12. SPONSORING AGENCY NAME AND ADDRESS
        Atmospheric Sciences Research  Laboratory - RTP,
        Office of Research and Development
        U.  S.  Environmental Protection Agency
        Research Triangle Park, NC   27711	
           NC
13. TYPE OF REPORT AND PERIOD COVERED
	Final	
             14. SPONSORING AGENCY CODE
                    EPA/600/09
15. SUPPLEMENTARY NOTES
16. ABSTRACT
       CDM-2.0   (£limatological JDispersion Model  -  Version  2.0)  determines long-
       term  (seasonal or annual)  quasi-stable pollutant concentrations in rural  or
       urban settings using average  emission rates from point  and  area sources and  a
       joint frequency distribution  of  wind direction, wind speed, and stability.   The
       Gaussian plume hypothesis  forms  the basis for the calculations.  Contributions
       are calculated assuming the narrow plume hypothesis, Calder (1971, 1977), and
       involve  an upwind integration  over the area sources.   Computations can be made
       for up to 200 point sources and  2500 area sources at an unlimited number  of
       receptor locations.  The number  of point and area souces can be easily modified
       within the code.  CDM-2.0  is  an  enhanced version of COM Including the following
       options:   16 or 36 wind-direction  sectors, initial plume dispersion, buoyancy-
       induced  dispersion, stack-tip  downwash, and gradual (transitional) plume  rise.
       The user has a choice of seven dispersion parameter schemes.  Optional output
       includes point and area concentration roses and histograms  of pollutant concen-
       tration  by stability class.
                                KEY WORDS ANO DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.lOENTIFIERS/OPEN ENDED TERMS
                           c. COSATi Field/Croup
•>8. DISTRIBUTION STATEMENT


      RELEASE TO  PUBLIC
19. SECURITY CLASS f This Report)

             ITNrT.AS.STFTF.D
                                                                          21. NO. OF PAGES
20. SECURITY CLASS (This page)
             UNCLASSIFIED
                           22. PRICE
EPA Form 2220-1 (R«*. 4-77)    pnevioui EDITION 11 OBSOLETE

-------