EPA-650/2-73-033b
October !973
Environmental Protection Technology Series
mmm
-------
DISCLAIMER
This project has been funded at least in part with Federal funds from
the Environmental Protection Agency under contract number 68-02-0216.
The content of this publication does not necessarily reflect the views or
policies of the U.S. Environmental Protection Agency, nor does mention
of trade names, commercial products, or organizations imply endorsement
by the U.S. Government.
-------
EPA-650/2-73-033b
AERODYNAMIC CONTROL OF NITROGEN
OXIDES AND OTHER POLLUTANTS
FROM FOSSIL FUEL COMBUSTION
VOLUME II. RAW DATA AND EXPERIMENTAL EQUIPMENT
by
D.H. Larson and D.R. Shoffstall
Institute of Gas Technology
IIT Center, 3424 South State Street
Chicago, Illinois 60616
Contract No. 68-02-0216
Program Element No. 1A2014
ROAP No. 21ADG47
EPA Project Officer: David W. Pershing
Control Systems Laboratory
National Environmental Research Center
Research Triangle Park, North Carolina 27711
Prepared for
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20460
October 1973
-------
This report has been reviewed by the Environmental Protection Agency and
approved for publication. Approval does not signify that the contents
necessarily reflect the views and policies of the Agency, nor does
mention of trade names or commercial products constitute endorsement
or recommendation for use.
-------
TABLE OF CONTENTS
Page
INTRODUCTION 1
COLD-MODELING FURNACE SIMULATOR Z
A. Description of the Cold Test Chamber Z
B. Cold-Model Probe Positioner 9
C. Cold-Model Instrumentation, Probes, and
Calibration Methods 13
HOT-MODELING TEST FURNACE FACILITY 30
A. Furnace Test Chamber 30
1. Heat Losses Through Refractory Walls 33
Z. Furnace Surface Area for Heat Transfer 39
3. Internal Water Load Calculations 40
B. High-Temperature Flame-Sampling Probes 56
C. Hot-Modeling Furnace Instrumentation 64
1. NOX-NO Measurements 66
Z. Methane, CO, and COz Measurements 71
3. Oxygen Measurements 73
4. Hydrocarbon Measurements 74
RAW AND REDUCED DATA AND DATA PLOTS 77
A. Intermediate-Flame-Length Ported Baffle Burner 77
1. Burner Design 77
Z. Tracer-Gas Studies 81
3. Cold-Model Velocity Data 8Z
4. Hot-Model Input-Output Data 88
5. In-the-Flame Data Survey Results 100
B. Short-Flame-Length Ported Baffle Burner 1Z4
1. Burner Design 1Z4
Z. Tracer-Gas Studies 15Z
3.. Cold-Model Velocity Data 15Z
4. Hot-Model Input-Output Data 156
5. In-the-Flame Data Survey Results 156
ii
-------
TABLE OF CONTENTS, Cont.
Page
C. Movable-Block Swirl Burner 231
1. Burner Design 231
2. Tracer-Gas Studies 231
3. Cold-Model Velocity Data 241
4. Hot-Model Input-Output Data 307
5. In-the-Flame Data Survey Results 307
D. High-Intensity Flat-Flame Burner 349
1. Burner Design 349
2. Hot-Model Input-Output Data 356
3. In-the-Flame Data Survey Results 356
E. Boiler Burner 370
1. Burner Design 370
2. Hot-Model Input-Output Data 386
3. In-the-Flame Data Survey Results 390
APPENDIX II-A. Computer Program for Reduction
of Velocity Data 410
APPENDIX II-B. Cold-Model Study of an Axial Flow
Burner With an ASTM Flow Nozzle 418
APPENDIX II-C. Investigation of Velocity Measurement
Dependence on Five-Hole Pitot Probe
Orientation 447
APPENDIX II-D. Method of Calculating Swirl Number 450
APPENDIX II-E. Computer Program for Data Transformation
and Plotting Tracer-Gas Mixing Results 454
111
-------
LIST OK FIGURES
Figure No. Page
n-1 Cold-Model Test Facilities 3
II-2 Cold-Model Burner Adapter Plate 4
II-3 Plane of Sample Points About Burner Axis 5
n-4 Sliding Probe Seal 6
II-5 Pulley Arrangement for Sliding Probe Hole Seal 7
II-6 Supply Air Pressure Probe 8
II-7 General Assembly of Probe Positioner 10
II-8 Rotational Motion Accuracy of Cold-Model Probe
Positioner 11
II-9 Axial Probe Rotation General Assembly 12
11-10 Spherical Sensing Head of a Five-Hole Pitot Tube 15
11-11 Conical and Dihedral Angles 15
11-12 Examples of Calibration Curves for K-*, KV, and K
for a Typical Five-Hole, Spherical Head, Pitot Tu\>e 17
11-13 Calibration Assembly for Five-Hole Pitot Tube 18
11-14 Pitot Tube Flow Calibration Nozzle 18
11-15 Pivoting Nozzle Mount 20
11-16 K0 as a Function of Conical Angle for a Five-Hole
Pitot Tube 21
11-17 Kv as a Function of Conical Angle for a Five-Hole
Pitot Probe 22
11-18 Kp as a Function of Conical Angle for a Five-Hole
Pitot Probe 23
11-19 Experimental Apparatus for Transient Calibration 24
11-20 Pressure Measured by Sensor Versus Actual
Pressure as a Function of Pulse Frequency for
the Solid (Plastic) Disk 25
IV
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-21 Pressure Measured by Sensor Versus Actual
Pressure as a Function of Pulse Frequency for
the Perforated Disk 26
11-22 Percentage Change in Amplitude of Pressure
Signal as a Function of Frequency and Actual
Pressure for the Solid Disk 27
11-23 Percentage Change in Amplitude of Pressure
Signal as a Function of Frequency and Actual
Pressure for Perforated Disk 28
11-24 Side View of Main Furnace Showing Steel Structure
and Cooling Zones 31
11-25 Probe Slot-Seal Assembly 32
11-26 Temperature Gradient for Steady Flow of Heat
Through a Furnace Wall 33
11-27 Heat Losses Through Walls as a Function of
Outside Wall Temperatures for a 2800°F Inside
Wall Temperature 35
11-28 Heat Losses From Vertical Walls in Still Air
at 80°F 36
11-29 Heat Losses Through Flue as a Function of Flue
Gas Temperature (Fuel/Air = Stoich. ) 38
n-30 End View of Hot-Model Refractory Construction 39
11-31 Schematic Diagram of Water-Air Cooling Supply
System 42
11-32 Water Load Design 44
11-33 Nomenclature for Radiant Heat Transfer From
Furnace Walls to Internal Cooling Tubes 45
11-34 Heat Transmitted per Unit Area to 2-Inch-Diameter
Tube (T2 = 200°F) From an Enclosure Surrounding
180 Degrees of Tube 48
11-35 Total Heat Transmitted per Tube 49
11-36 Weight Flow of Water as a Function of Heat
Transferred From Tube Walls to Water 50
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-37 Minimum Water Flow per Tube as a Function of
Inside Wall Temperature 52
11-38 Heat Losses Through Walls as a Function of
Outside Wall Temperature 52
11-39 Amount of Heat the Water Load is Required to
Absorb to Maintain Desired Wall Temperature
With Gas Input of 3. 5 Million Btu/hr 53
11-40 Required Number of Cooling Tubes as a Function
of Inside Wall Temperature 53
11-41 Total Water Consumption Required by Cooling Load
as a Function of Inside Wall Temperature 54
11-42 Friction Factor as a Function of Weight Flow for
1-Inch-Diameter Drawn Steel Tubing Containing
Flowing Water at 85°F 57
11-43 System Pressure Drop per Tube as a Function of
Weight Flow of Water 58
11-44 Five-Hole Pitot Tube Probe Head 59
11-45 Gas-Sampling Probe Head 60
H-46 General Probe Holder 61
11-47 Modified Probe Positioner for Hot-Model Sampling 62
11-48 Overall View of Hot-Model Instrumentation 66
11-49 Close-Up View of Infrared Analyzer, Amplifiers,
and Strip Charts for Carbon Monoxide, Carbon
Dioxide, and Methane 67
11-50 Sample Treatment and Flow-Control System 67
11-51 NOX-NO Sampling System 69
11-52 Drying System for Connection to NO, NO2, NOX
Equipment 70
11-53 CH4, CO, and COz Sampling Analysis System 72
11-54 Sampling/Analysis System for Oxygen Analysis 73
11-55 Modified Bulk Water Removal Cold Trap 74
VI
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-56 Block Diagram of Automatic Data Integration
System 76
11-57 Assembly Drawing of Axial-Flow Burner With
Ported Swirl Baffles 78
11-58 Modified Gas Nozzle Construction 80
11-59 Tracer-Gas (Carbon Monoxide) Radial Scan 7. 6 cm
From Burner Block of the Intermediate-Flame -
Length Ported Swirl Baffle Burner 81
11-60 Sampling Probe and Burner Coordinate System 82
11-61 Axial Velocity Profile for the Intermediate Flame
at the Axial Flow Burner Fitted With the Ported
Swirl Baffle (7. 6 cm From Burner Block Face) 86
11-62 Tangential Velocity Profile for the Intermediate
Flame at the Axial Flow Burner Fitted With the
Ported Swirl Baffle (7. 6 cm From Burner Block
Face) 87
H-63 NO Concentrations With Gas Input of 2335 CF/hr
(Original Data) 89
H-64 NO Concentrations With Gas Input of 2626 CF/hr
(Original Data) 90
11-65 NO Concentrations With Gas Input of 2900 CF/hr
(Original Data) 91
11-66 NO Concentrations With Gas Input of 3160 CF/hr
(Original Data) 92
II-67 NO Concentrations With Gas Input of 2335 CF/hr
(Interpolated and Extrapolated Data) 94
II-68 NO Concentrations With Gas Input of 2626 CF/hr
(Interpolated and Extrapolated Data) 95
H-69 NO Concentrations With Gas Input of 2900 CF/hr
(Interpolated and Extrapolated Data) 96
11-70 NO Concentrations With Various Gas Inputs for Two
Preheat Temperatures 97
VII
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-71 NO Concentrations With Varying Gas Inputs for
450°F Preheat Temperature (Expanded NO Scale) 98
11-72 Rate of Change of NO Emissions/100 CF/hr Gas
Input as a Function of Preheat Temperature 99
11-73 NO Concentration at Gas Input of 2147 CF/hr
(Excess Oz Variable and Wall Temperature of
2570°F) 101
11-74 Composite Radial Profiles for NO, CO, CH4, Oz,
and CO2 With Gas Input of 2547 CF/hr 102
11-75 Radial Profile for CH4 With Gas Input of 2547
CF/hr 107
11-76 Radial Profile for CO With Gas Input of 2547
CF/hr 108
H-77 Radial Profile for CO2 With Gas Input of 2547
CF/hr 109
H-78 Radial Profile for O2 With Gas Input of 2547 CF/hr 110
11-79 Radial Profile for NO With Gas Input of 2547 CF/hr 111
11-80 Temperature Profile Across Furnace With Gas
Input of 2546 CF/hr and 5. 0-cm Axial Probe
Position 112
11-81 Composite Radial Profiles for NO, CO, CH4, O2,
and CO2 With Gas Input of 2147 CF/hr 114
H-82 Radial Profile for NO With Gas Input of 2147 CF/hr 115
H-83 Radial Profile for O2 With Gas Input of 2147 CF/hr 116
n-84 Radial Profile for CO2 With Gas Input of 2147 CF/hr 117
H-85 Radial Profile for CO With Gas Input of 2147 CF/hr 118
11-86 Radial Profile for CH4 With Gas Input of 2147 CF/hr 119
11-87 Composite Radial Profiles for NO, CO, CH4, O2,
and CO2 With Gas Input of 2147 CF/hr 121
II-88 Composite Radial Profiles for NO, CO, CH4, O2,
and CO2 With Gas Input of 2147 CF/hr 122
Vlll
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-89 Temperature Profile Across Furnace With Gas
Input of 2147 CF/hr and Axial Positions of
5, 77. 5, and 152. 5 cm 123
n-90 Radial Profile for NO With Gas Input of 2147 CF/hr 125
H-91 Radial Profile for O2 With Gas Input of 2147 CF/hr 126
H-92 Radial Profile for CO With Gas Input of 2147 CF/hr 127
H-93 Radial Profile for CO2 With Gas Input of 2147 CF/hr 128
n-94 Radial Profile for CH4 With Gas Input of 2147 CF/hr 129
H-95 Radial Profile for NO With Gas Input of 2147 CF/hr 130
n-96 Radial Profile for O2 With Gas Input of 2147 CF/hr 131
11-97 Radial Profile for CO2 With Gas Input of 2147 CF/hr 132
H-98 Radial Profile for CO With Gas Input of 2147 CF/hr 133
11-99 Radial Profile for CH4 With Gas Input of 2147 CF/hr 134
11-100 Composite Radial Profiles for NO, CO, CH4, O2,
and CO2 With Gas Input of 2147 CF/hr 137
11-101 Composite Radial Profiles for NO, CO, CH4, O2,
and CO2 With Gas Input of 2147 CF/hr 138
11-102 Comparison of NO Profiles Taken With Stainless-Steel
and Quartz Probes Using Same Burner Operating
Conditions and With Sample Located 77. 5 cm From
Burner Block 139
H-103 Radial Profile for NO With Gas Input of 2147 CF/hr 140
H-104 Radial Profile for O2 With Gas Input of 2147 CF/hr 141
n-105 Radial Profile for CH4 With Gas Input of 2147 CF/hr 142
II-1.06 Radial Profile for CO With Gas Input of 2147 CF/hr 143
II-107 Radial Profile for CO2 With Gas Input of 2147 CF/hr 144
H-108 Radial Profile for NO With Gas Input of 2147 CF/hr 145
H-109 Radial Profile for O2 With Gas Input of 2147 CF/hr 146
IX
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-110 Radial Profile for CH4 With Gas Input of 2147 CF/hr 147
H-lll Radial Profile for CO With Gas Input of Z147 CF/hr 148
11-112 Radial Profile for CO2 With Gas Input of 2147 CF/hr 149
11-113 Radial Concentration Profile of Carbon Monoxide
From the Axial Burner Fitted With the Short-
Flame Ported Swirl Baffle 152
H-114 Axial Velocity Profile for the Axial Burner With
the Short-Flame Ported Swirl Baffle at the 5.1-cm
Axial Position 155
11-115 Tangential Velocity Profile for the Axial Burner
With the Short-Flame Ported Swirl Baffle at the
5.1-cm Axial Position 157
11-116 NO Concentration in the Flue as a Function of
Excess Air (Short-Flame Baffle - Radial Nozzle)
and Preheated Air Temperature; Gas Input, 2593
CF/hr 158
11-117 NO Concentration in the Flue as a Function of
Excess Air (Short-Flame Baffle — Axial Gas Nozzle)
and Preheated Air Temperature; Gas Input, 1769
CF/hr 159
11-118 NO Concentrations in the Flue Gas as a Function of
Excess Air (Short-Flame Baffle — Axial Gas Nozzle)
and Preheated Air Temperature; Gas Input, 2109
CF/hr 159
11-119 NO Concentration in the Flue Gas as a Function of
Excess Air (Short-Flame Baffle — Axial Gas Nozzle)
and Preheated Air Temperature; Gas Input, 2415
CF/hr 160
11-120 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, arid O2 for the Short-Flame Baffle
Using the Axial Nozzle at an Axial Position of
7. 6 cm 1 62
11-121 Radial Composition Profile for Methane (CH^) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7.6 cm 163
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-122 Radial Composition Profile for Carbon Monoxide
(CO) for the Short-Flame Baffle Using the Axial
Nozzle at an Axial Position of 7. 6 cm 164
11-123 Radial Composition Profile for Carbon Dioxide
(CO2) for the Short-Flame Baffle Using the Axial
Nozzle at an Axial Position of 7. 6 cm 165
11-124 Radial Composition Profile for Oxygen (O2) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7.6 cm 166
II-125 Radial Composition Profile for Nitric Oxide (NO)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 7. 6 cm 167
11-126 Axial Temperature Profile From Short-Flame Axial
Nozzle Baffle Burner at a 7. 6-cm Axial Position 169
11-127 Radial Velocity Profile (Axial Component) at an
Axial Position of 7. 6 cm for the Short-Flame Baffle
Using the Axial Nozzle 170
11-128 Radial Velocity Profile (Tangential Component) at an
Axial Position of 7. 6 cm for the Short-Flame Baffle
Using the Axial Nozzle 172
11-129 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, and O2 for the Short-Flame Baffle
Using the Axial Nozzle at an Axial Position of
48. 3 cm 174
11-130 Radial Composition Profile for Methane (CH^ for
the Short-Flame Baffle Using the Axial Nozzle at
an Axial Position of 48. 3 cm 175
11-131 Radial Composition Profile for Carbon Monoxide
(CO) for the Short-Flame Baffle Using the Axial
Nozzle at an Axial Position of 48.3 cm 176
11-132 Radial Composition Profile for Carbon Dioxide (CO2)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 48.3 cm 177
11-133 Radial Composition Profile for Oxygen (O2) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 48.3 cm 178
XI
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-134 Radial Composition Profile for Nitric Oxide (NO)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 48. 3 cm 179
11-135 Axial Temperature Profile From Short-Flame Axial
Nozzle Baffle Burner at a 48. 3-cm Axial Position 181
11-136 Radial Velocity Profile (Axial Component) at an
Axial Position of 48. 3 cm for the Short-Flame
Baffle Using the Axial Nozzle 182
11-137 Radial Velocity Profile (Tangential Component) at
an Axial Position of 48. 3 cm for the Short-Flame
Baffle Using the Axial Nozzle 183
11-138 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, and O2 for the Short-Flame Baffle
Using the Axial Nozzle at an Axial Position of
91.4 cm 185
H-139 Radial Composition Profile for Methane (CH4) for
the Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 91.4 cm 186
11-140 Radial Composition Profile for Carbon Monoxide (CO)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 91. 4 cm 187
11-141 Radial Composition Profile for Carbon Dioxide (CO2)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 91.4 cm 188
11-142 Radial Composition Profile for Oxygen (O2) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 91.4 cm 189
11-143 Radial Composition Profile for Nitric Oxide (NO)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 91.4 cm 190
11-144 Axial Temperature Profile From the Short-Flame
Axial Nozzle Baffle Burner at an Axial Position of
91.4 cm 192
11-145 Radial Velocity Profile (Axial Component) at an
Axial Position of 97. 4 cm for the Short-Flame
Baffle Using the Axial Nozzle 193
XII
-------
LIST OF FIGURES, Cont.
Figure No. Page
IE-146 Radial Velocity Profile (Tangential Component) at
an Axial Position of 97. 4 cm for the Short-Flame
Baffle Using the Axial Nozzle 194
11-147 Axial Gas Composition Profile at a 0. 0-cm Radial
Position for the Short-Flame Baffle Using the
Axial Nozzle 199
11-148 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, and O2 for the Short-Flame Baffle
Using the Axial Nozzle at an Axial Position of
7. 6 cm 200
11-149 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, and O2 for the Short-Flame Baffle
Using the Axial Nozzle at an Axial Position of
37. 7 cm 201
II-150 Composite Plot of Gas Sampling Profiles for CO,
CO2> CH4, NO, and O2 for the Short-Flame Baffle
Using the Axial Nozzle at an Axial Position of
91.4 cm 202
n-151 Radial Composition Profile for Methane (CH4) for
the Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7. 6 cm 203
11-152 Radial Composition Profile for Carbon Monoxide (CO)
for the Short-Flame Baffle Using the Axial Nozzle at
an Axial Position of 7. 6 cm 204
11-153 Radial Composition Profile for Carbon Dioxide (CO2)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 7. 6 cm 205
11-154 Radial Composition Profile for Oxygen (O2) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7. 6 cm 206
11-155 Radial Composition Profile for Nitric Oxide (NO) for
the Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7. 6 cm 207
11-156 Radial Composition Profile for Methane (CH4) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7. 6 cm 208
Xlll
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-157 Radial Composition Profile for Carbon Monoxide
(CO) for the Short-Flame Baffle Using the Axial
Nozzle at an Axial Position of 7. 6 cm 209
11-158 Radial Composition Profile for Carbon Dioxide
(CO2) for the Short-Flame Baffle Using the Axial
Nozzle at an Axial Position of 7. 6 cm 210
11-159 Radial Composition Profile for Oxygen (O2) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7. 6 cm 211
11-160 Radial Composition Profile for Nitric Oxide (NO)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 7. 6 cm 212
11-161 Radial Composition Profile for Methane (CH4) for
the Short-Flame Baffle Using the Axial Nozzle at
an Axial Position of 7. 6 cm 213
11-162 Radial Composition Profile for Carbon Monoxide
(CO) for the Short-Flame Baffle Using the Axial
Nozzle at an Axial Position of 7. 6 cm 214
11-163 Radial Composition Profile for Carbon Dioxide
(CO2) for the Short-Flame Baffle Using the Axial
Nozzle at an Axial Position of 7. 6 cm 215
11-164 Radial Composition Profile for Oxygen (O2) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 7.6 cm 216
11-165 Radial Composition Profile for Nitric Oxide (NO)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 7. 6 cm 217
11-166 Radial Composition Profile for Methane (CH4) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 37. 7 cm 218
11-167 Radial Composition Profile for Carbon Monoxide (CO)
for the Short-Flame Baffle Using the Axial Nozzle at
an Axial Position of 37.7 cm 219
11-168 Radial Composition Profile for Carbon Dioxide (CO2)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 37. 7 cm 220
xiv
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-169 Radial Composition Profile for Oxygen (Oa) for
the Short-Flame Baffle Using the Axial Nozzle at
an Axial Position of 37. 7 cm 221
11-170 Radial Composition Profile for Nitric Oxide (NO) for
the Short-Flame Baffle Using the Axial Nozzle at
an Axial Position of 37. 7 cm 222
11-171 Radial Composition Profile for Methane (CH^ for
the Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 91.4 cm 223
11-172 Radial Composition Profile for Carbon Monoxide (CO)
for the Short-Flame Baffle Using the Axial Nozzle at
an Axial Position of 91.4 cm 224
11-173 Radial Composition Profile for Carbon Dioxide (COj)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 91.4 cm 225
11-174 Radial Composition Profile for Oxygen (O2) for the
Short-Flame Baffle Using the Axial Nozzle at an
Axial Position of 91.4 cm 226
11-175 Radial Composition Profile for Nitric Oxide (NO)
for the Short-Flame Baffle Using the Axial Nozzle
at an Axial Position of 91.4 cm 227
11-176 Cross Section of Hot-Model Burner 232
11-177 Divergent Flow Adapter of Hot-Model Burner 233
n-178 Swirl Vanes of Hot-Model Burner 234
11-179 Swirl Curve of Hot-Model Burner * 235
11-180 Cold-Model Probe-Positioning Coordinate System 236
11-181 Radial Concentration Profile of Carbon Monoxide
From the Movable-Block Burner 2. 59 cm Out From
Burner Tip 237
11-182 Radial Concentration Profile of Carbon Monoxide
From the Movable -Block Burner 6. 12 cm Out From
the Burner Tip 237
11-183 Radial Concentration Profile of Carbon Monoxide
From Movable-Block Burner 12. 70 cm Out From
Burner Tip 238
xv
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-184 Radial Concentration Profile of Carbon Monoxide
From the Movable-Block Burner Set for Inter-
mediate Swirl 16.78 cm From the Burner Tip 238
11-185 Radial Concentration Profile of Carbon Monoxide
From the Swirl Burner 5. 08 cm From Burner Tip 239
11-186 Radial Carbon Monoxide Concentration Profile of
Swirl Burner 50. 8 cm From Burner Tip 239
11-187 Radial Carbon Monoxide Concentration Profile of
Swirl Burner 76. 2 cm From Burner Tip 240
11-188 Radial Carbon Monoxide Concentration Profile of
Swirl Burner 101. 6 cm From Burner Tip 240
11-189 Radial Concentration Profile of Carbon Monoxide
From the Movable-Block Burner Set for Maximum
Swirl 2. 54 cm Out From the Burner Tip 242
11-190 Radial Concentration Profile of Carbon Monoxide
From the Movable-Block Burner Set for Maximum
Swirl 5. 08 cm Out From Burner Tip 242
II-191 Radial Concentration Profile of Carbon Monoxide
From the Movable-Block Burner Set for Maximum
Swirl 7. 62 cm 243
11-192 Radial Concentration Profile of Carbon Monoxide
From the Movable-Block Burner Set for Maximum
Swirl 10.16 cm Out From the Burner Tip 243
11-193 Tracer-Gas Mixing Profiles for the Swirl Burner
Set for Minimum Swirl at the 3. 8-cm Axial Position 244
11-194 Tracer-Gas Mixing Profile Set for Minimum Swirl
at the 7. 6-cm Axial Position 245
II-195 Tracer-Gas Mixing Profile for the Swirl Burner
Set for Minimum Swirl at the 17. 8-cm Axial Position 246
11-196 Tracer-Gas Mixing for the Swirl Burner Set for
Minimum Swirl at the 30. 5-cm Axial Position 247
11-197 Tracer-Gas Mixing Profile for the Swirl Burner Set
for Minimum Swirl at the 63. 5-cm Axial Position 248
xvi
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-198 Tracer-Gas Mixing Profile for the Swirl Burner
(Swirl Number, S = 0.8) at the 2. 5-cm Axial
Position 249
11-199 Tracer-Gas Mixing Profile for the Swirl Burner
(Swirl Number, S = 0. 8) at the 7. 6-cm Axial
Position 250
II-ZOO Radial Velocity Profile of Swirl Burner 5. 08 cm
From Burner Tip 258
11-201 Radial Velocity Profile of Swirl Burner 50. 8 cm
From Burner Tip 258
11-202 Radial Velocity Profile of Swirl Burner 76. 2 cm
From Burner Tip 259
11-203 Radial Velocity Profile of Swirl Burner 101.6 cm
From Burner Tip 259
11-204 Radial Velocity Profile of Movable-Block Burner
Set for Intermediate Swirl 7. 62 cm Out From
Burner Tip 260
11-205 Pressure Signal Response for Various Flow
Directions 260
11-206 Radial Velocity Profile of Movable-Block Burner
Set for Intermediate Swirl 7. 62 cm Out From Burner
Tip. Probe Rotated 270° About y-Axis 262
. 11-207 Radial Velocity Profile of Movable-Block Burner
Set for Intermediate Swirl 7. 62 cm Out From Burner
Tip. Probe Rotated 180° About y-Axis 262
11-208 Radial Velocity Profile of Movable-Block Burner
Set for Intermediate Swirl 7. 62 cm Out From Burner
Tip. Probe Rotated 90° About y-Axis 263
H-209 Radial Velocity Profile of Movable-Block Burner
Set for Maximum Swirl 7. 62 cm Out From Burner
Tip. Probe Rotated 0° About the y-Axis 263
11-210 Radial Velocity Profile of Movable-Block Burner
Set for Maximum Swirl 7. 62 cm Out From Burner
Tip. Probe Rotated 270° About the y-Axis 264
xvn
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-211 Radial Velocity Profile of Movable-Block Burner
Set for Maximum Swirl 7. 62 cm From Burner
Tip. Probe Rotated 90° About the y-Axis 264
11-212 Radial Velocity Profile of Movable-Block Burner
Set for Maximum Swirl 7. 62 cm Out From Burner
Tip. Probe Rotated 90° About y-Axis 265
11-213 Burner and Probe Coordinate Systems 265
11-214 Axial Velocity Profile for Swirl Burner Set for
Minimum Swirl at the 3. 8-cm Axial Position 270
11-215 Tangential Velocity Profile for Swirl Burner Set
for Minimum Swirl at the 3. 8-cm Axial Position 271
11-216 Axial Velocity Profile for Swirl Burner Set at
Minimum Swirl at the 7. 6-cm Axial Position 282
11-217 Tangential Velocity Profile for Swirl Burner Set
for Minimum Swirl at the 7. 6-cm Axial Position 283
11-218 Axial Velocity Profile for the Swirl Burner Set
for Minimum Swirl at the 17. 8-cm Axial Position 284
11-219 Tangential Velocity Profile for the Swirl Burner Set
for Minimum Swirl at the 17. 8-cm Axial Position 285
H-220 Axial Velocity Profile for the Swirl Burner Set for
Minimum Swirl at the 30. 5-cm Axial Position 286
11-221 Tangential Velocity Profile for the Swirl Burner Set
for Minimum Swirl at the 30. 5-cm Axial Position 287
11-222 Axial Velocity Profile for the Swirl Burner Set for
Minimum Swirl at the 63. 5-cm Axial Position 288
11-223 Tangential Velocity Profile for the Swirl Burner Set
for Minimum Swirl at the 63. 5-cm Axial Position 289
11-224 Tangential Velocity Profile for the Swirl Burner at
the 2. 5-cm Axial Position (Swirl Number, S = 0.8) 298
11-225 Axial Velocity Profile for the Swirl Burner at the
2. 5-cm Axial Position (Swirl Number, S = 0. 8) 299
11-226 Axial Velocity Profile for the Swirl Burner at the
7. 6-cm Axial Position (Swirl Number, S = 0. 8) 300
XVT.11
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-227 Tangential Velocity Profile for the Swirl Burner
at the 7. 6-cm Axial Position (Swirl Number,
S = 0. 8) 301
11-228 Axial Velocity Profile for the Swirl Burner at the
17. 8-cm Axial Position (Swirl Number, S = 0.8) 302
11-229 Tangential Velocity Profile for the Swirl Burner
at the 17. 8-cm Axial Position (Swirl Number,
S = 0. 8) 303
11-230 Axial Velocity Profile for the Swirl Burner at the
30. 5-cm Axial Position (Swirl Number, S = 0. 8) 304
11-231 Tangential Velocity Profile for the Swirl Burner at
the 30. 5-cm Axial Position (Swirl Number, S = 0. 8) 305
11-232 Normalized NO Concentration as a Function of
Excess Air (Movable-Block Swirl Burner — Low
Swirl Intensity). Gas Input, 1578 CF/hr 308
11-233 Normalized NO Concentration as a Function of
Excess Air (Movable-Block Swirl Burner — Low
Swirl Intensity). Gas Input, 1976 CF/hr 309
11-234 Normalized NO Concentration as a Function of
Excess Air (Movable-Block Swirl Burner — Low
Swirl Intensity). Gas Input, 2382 CF/hr 310
11-235 Normalized NO Concentration as a Function of
Excess Air (Movable-Block Swirl Burner — 311
Intermediate Swirl Intensity). Gas Input, 1578 CF/hr
11-236 Normalized NO Concentration as a Function of
Excess Air (Movable-Block Swirl Burner —
Intermediate Swirl Intensity). Gas Input, 1976 CF/hr 312
11-237 Normalized NO Concentration as a Function of
Excess Air (Movable-Block Swirl Burner — High
Swirl Intensity). Gas Input, 1578 CF/hr 313
11-238 Normalized NO Concentration as a Function of
Excess Air (Movable-Block Swirl Burner — High
Swirl Intensity). Gas Input, 1976 CF/hr 314
11-239 Scan of Flow Direction at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 316
xix
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-240 Scan of Flow Direction at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 316
11-241 Scan of Flow Direction at the 107-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 316
11-242 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, and O2 at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 319
11-243 Radial Profile for CH4 at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 321
H-244 Radial Profile for CO at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 322
H-245 Radial Profile for CO2 at the 12. 7-cm Axial
Position (Movable-Block Burner — Intermediate
Swirl Intensity) 323
11-246 Radial Profile for NO at the 12. 7-cm Axial
Position (Movable-Block Burner — Intermediate
Swirl Intensity) 324
11-247 Radial Profile for O2 at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 325
11-248 Radial Temperature Profile at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Intensity) 329
11-249 Tangential Velocity Profile at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 330
H-250 Axial Velocity Profile at the 12. 7-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 331
11-251 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, and O2 at the 30. 5-cm Axial Position
(Movable-Block Burner — Intermediate Swirl Intensity) 333
xx
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-252 Radial Profile for CH4 at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 334
11-253 Radial Profile for CO at the 30. 5-cm Axial
Position (Movable-Block Burner — Intermediate
Swirl Intensity) 335
H-254 Radial Profile for CO2 at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 336
11-255 Radial Profile for O2 at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 337
11-256 Radial Profile for CH4 at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 338
11-257 Radial Temperature Profile at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 340
11-258 Axial Velocity Component at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 341
11-259 Tangential Velocity Component at the 30. 5-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 342
11-260 Composite Plot of Gas Sampling Profiles for CO,
CO2, CH4, NO, and O2 at the 107-cm Axial Position
(Movable Block Swirl Burner — Intermediate Swirl
Intensity) 343
11-261 Radial Profile for CO at the 107-cm Axial Position
(Movable-Block Swirl Burner — Intermediate Swirl
Intensity) 344
11-262 Radial Profile for CO2 at the 107-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 345
11-263 Radial Profile for O2 at the 107-cm Axial Position
(Movable-Block Swirl Burner — Intermediate Swirl
Intensity) 346
xxi
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-264 Radial Profile for NO at the 107-cm Axial Position
(Movable-Block Swirl Burner — Intermediate Swirl
Intensity) 347
11-265 Axial Velocity Component at the 107-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 350
11-266 Tangential Velocity Component at the 107-cm Axial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 351
11-267 Axial Gas Composition Profile at the 0. 0-cm Radial
Position (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 354
11-268 Cross-Sectional View of High-Intensity Flat-Flame
Burner 355
11-269 Normalized NO Concentration as a Function of
Excess Air for the Flat-Flame Burner at Three
Gas Inputs 357
11-270 Radial Scan of Temperature for the Flat-Flame
Burner at a Gas Input of 2010 CF/hr and 4.4%
Excess Oxygen in the Flue 360
11-271 Composite Plot of Radial Gas Species Concentration
at a 12. 7-cm Axial Position for a Flat-Flame
Burner Operating at a Gas Input of 2010 CF/hr and
4.4% Excess Oxygen in the Flue 363
11-272 Radial Scan of Carbon Dioxide From a Flat-Flame
Burner at an Axial Position of 12. 7-cm While
Operating at 2010 CF/hr Gas Input and 4.4^. Excess
Oxygen in the Flue _ 365
11-273 Radial Scan of Methane From a Flat-Flame Burner
at an Axial Position of 12. 7-cm While Operating at
at 2010 CF/hr Gas Input and 4.4% Excess Oxygen
in the Flue 366
11-274 Radial Scan of Oxygen From a Flat-Flame Burner
at an Axial Position of 12. 7 cm While Operating at
a 2010 CF/hr Gas Input and 4.4% Excess Oxygen
in the Flue 367
xxn
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-275 Radial Scan of Carbon M.onoxide From a Flat-
Flame Burner at an Axial Position of 12. 7 cm
While Operating at a 2010 CF/hr Gas Input and
4.4% Excess Oxygen in the Flue 368
11-276 Radial Scan of Nitric Oxide From .a Flat-Flame
Burner at an Axial Position of 12. 7 cm While
Operating at a 2010 CF/hr Gas Input and 4.4%
Excess Oxygen in the Flue 369
11-277 Composite Plot of Radial Gas Species Concentration
at a 68. 6 cm Axial Position for a Flat-Flame
Burner Operating at a Gas Input of 2010 CF/hr
and 4.4% Excess Oxygen in the Flue 372
11-278 Radial Scan of Nitric Oxide From a Flat-Flame
Burner at an Axial Position of 68. 6 cm While
Operating at a 2010 CF/hr Gas Input and 4.4%
Excess Oxygen in the Flue 373
11-279 Radial Scan of Oxygen From a Flat-Flame Burner
at an Axial Position of 68. 6 cm While Operating
at a 2010 CF/hr Gas Input and 4.4% Excess
Oxygen in the Flue 374
11-280 Radial Scan of Carbon Dioxide From a Flat-Flame
Burner at an Axial Position of 68. 6 cm While
Operating at a 2010 CF/hr Gas Input and 4.4%
Excess Oxygen in the Flue 375
11-281 . Radial Scan of Carbon Monoxide From a Flat-Flame
Burner at an Axial Position of 68. 6 cm While
Operating at a 2010 CF/hr Gas Input and 4.4%
Excess Oxygen in the Flue 376
11-282 Radial Scan of Methane From a Flat-Flame Burner
at an Axial Position of 68. 6 cm While Operating at
a 2010 CF/hr Gas Input and 4.4% Excess Oxygen
in the Flue 377
11-283 Composite Plot of Radial Gas Species Concentration
at a 104. 1 cm Axial Position for a Flat-Flame
Burner Operating at a Gas Input of 2010 CF/hr and
4.4% Excess Oxygen in the Flue 379
11-284 Radial Scan of Nitric Oxide From a Flat-Flame
Burner at an Axial Position of 104. 1 cm While
Operating at a 2010 CF/hr Gas Input and 4.4%
Excess Oxygen in the Flue 380
XXlll
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-285 Radial Scan of Oxygen From a Flat-Flame Burner
at an Axial Position of 104. 1 cm While Operating
at a 2010 CF/hr Gas Input and 4.4% Excess
Oxygen in the Flue 381
11-286 Radial Scan of Carbon Dioxide From a Flat-Flame
Burner at an Axial Position of 104. 1 cm While
Operating at a 2010 CF/hr Gas Input and 4.4%
Excess Oxygen in the Flue 382
11-287 Radial Scan of Carbon Monoxide From a Flat-
Flame Burner at an Axial Position of 104. 1 cm
While Operating at a 2010 CF/hr Gas Input and
4.4% Excess Oxygen in the Flue 383
11-288 Radial Scan of Methane From a Flat-Flame Burner
at an Axial Position of 104. 1 cm While Operating
at a 2010 CF/hr Gas Input and 4.4% Excess
Oxygen in the Flue 384
11-289 Boiler Burner 385
H-290 Guide Vanes 386
11-291 Normalized NO Concentration as a Function of
Excess Air (Boiler Burner With 30-deg Vane Setting;
Gas Input, 3020 CF/hr) and Combustion Air
Temperature 387
11-292 Normalized NO Concentration as a Function of
Excess Air (Boiler Burner With 40-deg Angle Vane
Setting; Gas Input, 3040 CF/hr) and Combustion
Air Temperature 388
11-293 Normalized NO Concentration as a Function of
Excess Air (Boiler Burner With 60-deg Angle Vane
Setting; Gas Input, 3040 CF/hr) and Combustion
Air Temperature 389
11-294 Composite Radial Scan of Gas Species From a
Boiler Burner With a 60-deg Vane Angle Setting
at an Axial Position of 12. 7 cm While Operating
at a 3040 CF/hr Gas Input, 1. 9% Excess Oxygen,
and a 100°F Preheated Air Temperature 397
11-295 Composite Radial Scan of Gas Species From a
Boiler Burner With a 60-deg Vane Angle Setting
at an Axial Position of 12. 7 cm While Operating at
a 3040 CF/hr Gas Input, 1. 9% Excess Oxygen, and
a 270°F Preheated Air Temperature 398
xxiv
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-296 Radial Scan of Methane From a Boiler Burner With
a 60-deg Vane Angle Setting at an Axial Position
of 12. 7 cm While Operating at a 3040 CF/hr Gas
Input, 1.9% Excess Oxygen, and a 100°F Preheated
Air Temperature 400
11-297 Radial Scan of Methane From a Boiler Burner With
a 60-deg Vane Angle Setting at an Axial Position
of 12.7 cm While Operating at a 3040 CF/hr Gas
Input, 1. 9% Excess Oxygen, and a 270°F Preheated
Air Temperature 401
11-298 Radial Scan of Carbon Monoxide From a Boiler
Burner With a 60-deg Vane Angle Setting at an
Axial Position of 12. 7 cm While Operating at a
3040 CF/hr Gas Input, 1.9% Excess Oxygen, and
a 100°F Preheated Air Temperature 402
11-299 Radial Scan of Carbon Dioxide From a Boiler
Burner With a 60-deg Vane Angle Setting at an
Axial Position of 12.7 cm While Operating at a
3040 CF/hr Gas Input, 1.9% Excess Oxygen, and
a 100°F Preheated Air Temperature 403
11-300 Radial Scan of Oxygen From a Boiler Burner With
a 60-deg Vane Angle Setting at an Axial Position
of 12.7 cm While Operating at a 3040 CF/hr Gas
Input, 1.9% Excess Oxygen, and a 100°F Preheated
Air Temperature 404
11-301 Radial Scan of Nitric Oxide From a Boiler Burner
With a 60-deg Vane Angle Setting at an Axial
Position of 12. 7 cm While Operating at a 3040
CF/hr Gas Input, 1.9% Excess Oxygen, and a 100°F
Preheated Air Temperature 405
11-302 Radial Scan of Carbon Monoxide From a Boiler
Burner With a 60-deg Vane Angle Setting at an
Axial Position of 12. 7 cm While Operating at a
3040 CF/hr Gas Input, 1.9% Excess Oxygen, and
a 270°F Preheated Air Temperature 406
11-303 Radial Scan of Carbon Dioxide From a Boiler
Burner With a 60-deg Vane Angle Setting at an
Axial Position of 12. 7 cm While Operating at a
3040 CF/hr Gas Input, 1.9% Excess Oxygen, and
a 270°F Preheated Air Temperature 407
xxv
-------
LIST OF FIGURES, Cont.
Figure No. Page
11-304 Radial Scan of Oxygen From a Boiler Burner
With a 60-deg Vane Angle Setting at an Axial
Position of 12.7 cm While Operating at a 3040
CF/hr Gas Input, 1.9% Excess Oxygen, and a
270°F Preheated Air Temperature 408
11-305 Radial Scan of Nitric Oxide From a Boiler Burner
With a 60-deg Vane Angle Setting at an Axial
Position of 12. 7 cm While Operating at a 3040
CF/hr Gas Input, 1. 9% Excess Oxygen, and a
270°F Preheated Air Temperature 409
II-B-1 Surface Combustion Axial Burner 418
II-B-2 Combustion Radial-Axial Gas Burner 420
II-B-3 Axial Flow Burner Outside Casing Assembly 423
II-B-4 Tracer-Gas Mixing Profile for the Axial Burner
With the ASTM Flow Nozzle at the 5.1-cm Axial
Position 426
II-B-5 Tracer-Gas Mixing Profile for the Axial Burner
With the ASTM Flow Nozzle at the 25. 4-cm Axial
Position 428
II-B-6 Tracer-Gas Mixing Profile for the Axial Burner
With the ASTM Flow Nozzle at the 45. 7-cm Axial
Position 429
II-B-7 Tracer-Gas Mixing Profile for the Axial Burner
With the ASTM Flow Nozzle at the 66. 0-cm Axial
Position 430
II-B-8 Axial Velocity Profile for the Axial Burner With
the ASTM Flow Nozzle at the 5. 1-cm Axial Position 437
II-B-9 Axial Velocity Profile for the Axial Burner With
the ASTM Flow Nozzle at the 25. 4-cm Axial Position 438
H-B-10 Axial Velocity Profile for the Axial Burner With
the ASTM Flow Nozzle at the 45. 7-cm Axial Position 439
II-B-11 Axial Velocity Profile for the Axial Burner With
the ASTM Flow Nozzle at the 66. 0-cm Axial Position 440
xxvi
-------
LIST OF FIGURES, Cont.
Figure No. Page
II-C-1 Burner and Probe Coordinate Systems 448
II-D-1 Geometric Relations Describing Definition of
Tangential and Radial Velocity 451
xxvn
-------
LIST OF TABLES
Table No. Page
II-1 Required Operating Conditions of Experimental
Furnace 34
II-2 Operating Conditions of Primary Cooling Load
System for Various Furnace Conditions 41
II-3 Values for Constants of Equations II-Z7, 11-28,
and 11-29 at Tmb = 85°F for Water 50
II-4 Parameters for Pressure Drop Equation for
Water at 85°F 55
II-5 Experimental Versus Calculated Best Fit Values
of Calibration Data for the Five-Hole Hemispherical
Head Pitot Probe 65
II-6 Flue Gas Analysis Comparison for Modified and
Unmodified Gas Burner Nozzles 81
II-7 Raw Data Obtained for the Intermediate-Flame-
Length Axial Flow Burner Fitted With the Ported
Swirl Baffle 84
II-8 Reduced Velocity Data for the Intermediate Flame
Length of the Axial Flow Burner Fitted With the
Ported Swirl Baffle 85
II-9 Data Obtained Using Radial Gas Nozzle With 2547
CF/hr Gas Input 104
11-10 Coefficients and Standard Deviations of the
Mathematical Fit for Each Gas 105
11-11 Data Obtained With Stainless-Steel Probe Using
Axial Gas Nozzle and Axial Position of 5. 0 cm 120
11-12 Data Obtained With Stainless-Steel Probe Using
Axial Gas Nozzle and Axial Position of 77.5 cm 135
n-13 Data Obtained With Stainless-Steel Probe Using
Axial Gas Nozzle and Axial Position of 152. 5 cm 136
11-14 Data Obtained With Quartz Probe Using Axial
Gas Nozzle and Axial Position of 5. 0 cm 150
11-15 Data Obtained With Quartz Probe Using Axial
Gas Nozzle and Axial Position of 77. 5 cm 151
11-16 Raw Velocity Data for the Axial Burner With the
Short-Flame Ported Swirl Baffle at the 5.1-cm
Axial Position 153
xxviii
-------
LIST OF TABLES, Cont.
Table No. Page
11-17 Computer Reduced Data for the Axial Burner With
the Short-Flame Ported Swirl Baffle at the 5. 1-
cm Axial Position 154
11-18 Raw (Gas Analysis) Data for Short-Flame Baffle
Burner 168
11-19 Raw (Velocity) Data for Short-Flame Baffle Burner 173
11-20 Raw (Gas Analysis) Data for Short-Flame Baffle
Burner 180
H-21 Raw (Velocity) Data for Short-Flame Baffle Burner 184
11-22 Raw (Gas Analysis) Data for Short-Flame Baffle
Burner 191
11-23 Raw (Velocity) Data for Short-Flame Baffle Burner 195
11-24 Mass Spectrometer Laboratory Analytical Report 196
11-25 Mass Spectrometer Laboratory Analytical Report 197
11-26 Raw (Gas Analysis) Data for Short-Flame Baffle
Burner 228
11-27 Raw (Gas Analysis) Data for Short-Flame Baffle
Burner 229
n-28 Raw (Gas Analysis) Data for Short-Flame Baffle
Burner 230
11-29 Raw and Computed Tracer-Gas Mixing Data for the
Swirl Burner Set for Minimum Swirl at the 3. 8-cm
Axial Position 251
11-30 Raw and Computed Tracer-Gas Mixing Data for the
Swirl Burner (Minimum Swirl) at the 17. 8-cm
Axial Position 252
11-31 Raw and Computed Tracer-Gas Mixing Data for the
Swirl Burner (Minimum Swirl) at the 30. 5-cm Axial
Position 253
11-32 Raw and Computed Tracer-Gas Mixing Data for the
Swirl Burner (Minimum Swirl) at the 63. 5-cm Axial
Position 254
XXIX
-------
LIST OF TABLES, Cont.
Table No.
11-33 Raw and Computed Tracer-Gas Mixing Data for
the Swirl Burner (Maximum Swirl) at the 2. 5-cm
Axial Position 255
11-34 Raw and Computed Tracer-Gas Mixing Data for
the Swirl Burner (Maximum Swirl) at the 7. 6-cm
Axial Position 256
11-35 Column Heading Code 257
11-36 Velocity Sampling Locations Planned for Swirl
Burner 266
H-37 Example of Raw Data Obtained From MDIT Velocity
Probe for the Swirl Burner Set for Minimum Swirl
at the 3. 80-cm Axial Position 267
11-38 Typical Computer Output of Reduced Velocity Data 269
11-39 Raw Data for the Swirl Burner (Minimum Swirl)
at the 7. 6-cm Axial Position 273
11-40 Raw Data for the Swirl Burner (Minimum Swirl) at
the 17. 8-cm Axial Position 274
11-41 Raw Data for the Swirl Burner (Minimum Swirl) at
the 30. 5-cm Axial Position 275
11-42 Raw Data for the Swirl Burner (Minimum Swirl) at
the 63. 5-cm Axial Position 276
11-43 Computer-Reduced Data for Swirl Burner (Minimum
Swirl) at the 7. 6-cm Axial Position 277
11-44 Computer-Reduced Data for Swirl Burner (Minimum
Swirl) at the 17. 8-cm Axial Position 278
11-45 Computer-Reduced Data for Swirl Burner (Minimum
Swirl) at the 30. 5-cm Axial Position 279
11-46 Computer-Reduced Data for Swirl Burner (Minimum
Swirl) at the 63. 5-cm Axial Position 280
n-47 Column Heading Symbols for Tables 11-37 to 11-46 281
11-48 Raw Data for the Swirl Burner (Swirl Number,
S = 0. 8) at the 2. 5-cm Axial Position 290
XXX
-------
LIST OF TABLES, Cont.
Table No. Page
11-49 Raw Data for the Swirl Burner (Swirl Number,
S = 0. 8) at the 7. 6-cm Axial Position 291
11-50 Raw Data for the Swirl Burner (Swirl Number,
S = 0.8) at the 17.8-cm Axial Position 292
11-51 Raw Data for the Swirl Burner (Swirl Number,
S = 0.8) at the 30. 5-cm Axial Position 293
11-52 Computer-Reduced Data for the Swirl Burner
(Swirl Number, S = 0. 8) at the 2. 5-cm Axial
Position 294
11-53 Computer-Reduced Data for the Swirl Burner
(Swirl Number, S = 0. 8) at the 7. 6-cm Axial
Position 295
11-54 Computer-Reduced Data for the Swirl Burner
(Swirl Number, S = 0.8) at the 17. 8-cm Axial
Position 296
11-55 Computer-Reduced Data for the Swirl Burner
(Swirl Number, S = 0.8) at the 30. 5-cm Axial
Position 297
11-56 Time-Averaged Directional Flow Data Obtained at
the 12.7-cm Axial Position (Movable-Block Swirl
Burner — Intermediate Swirl Intensity) 317
11-57 Time-Averaged Directional Flow Data at the 30.5-
cm Axial Position and Obtained Using a Hubbard
Probe (Movable-Block Swirl Baffle — Intermediate
Swirl Intensity) 318
11-58 Time-Averaged Directional Flow Data at the 107-
cm Axial Position and Obtained Using a Hubbard
Probe (Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 318
11-59 Time-Averaged Radial Profile Data Obtained at the
12.7-cm Axial Position (Movable-Block Swirl
Burner — Intermediate Swirl Intensity) 326
11-60 Coefficients and Standard Deviations of the Mathe-
matical Fit for Each Gas 327
11-61 Data Obtained at the 30. 5-cm Axial Position
(Movable-Block Swirl Burner — Intermediate Swirl
Intensity) 339
XXXI
-------
LIST OF TABLES, Cont.
Table No.
H-62 Data Obtained at the 107-cm Axial Position
(Movable-Block Swirl Burner — Intermediate
Swirl Intensity) 348
11-63 Mass Spectrometer Laboratory Analytical Report
(Natural Gas Input) 352
11-64 Mass Spectrometer Laboratory Analytical Report
(Furnace Product Gas) 353
n-65 Input-Output Data for the Flat-Flame Burner 358
11-66 Time-Averaged Directional Flow Data Obtained
Using a Two-Hole Probe at an Axial Position of
12. 7 cm 361
11-67 Time-Averaged Directional Flow Data Obtained
Using a Two-Hole Probe at an Axial Position of
71 cm 361
11-68 Time-Averaged Directional Flow Data Obtained
Using a Two-Hole Probe at an Axial Position of
104 cm 362
11-69 Raw and Reduced Gas Species Data for Radial
Sampling Scans at an Axial Position of 12.7 cm
From a Flat-Flame Burner Operating at a Gas
Input of 2010 CF/hr and 4.4% Excess Oxygen in
the Flue 364
11-70 Raw and Reduced Gas Species Data for Radial
Sampling Scans at an Axial Position of 68. 6 cm
From a Flat-Flame Burner Operating at a Gas
Input of 2010 CF/hr and 4.4% Excess Oxygen in
the Flue 371
11-71 Raw and Reduced Gas Species Data for Radial
Sampling Scans at an Axial Position of 104. 1 cm
From a Flat-Flame Burner Operating at a Gas
Input of 2010 CF/hr and 4.4% Excess Oxygen in
the Flue 378
11-72 Input-Output Data for the Boiler Burner With a
Radial Nozzle (30-deg Vane Angle; Gas Input, 3020
CF/hr; Preheated Air Temperatures of 104°, 285°,
and 550°F Average) 391
XXXll
-------
LIST OF TABLES, Cont.
Table No.
11-73 Input-Output Data for the Boiler Burner With a
Radial Nozzle (40-deg Vane Angle; Gas Input,
3040 CF/hr) 392
n-74 Input-Output Data for the Boiler Burner With a
Radial Nozzle (60-deg Vane Angle; Gas Input, 3040
CF/hr; Air Preheat Temperature, 85°F) 393
11-75 Input-Output Data for the Boiler Burner With a
Radial Nozzle (60-deg Vane Angle; Gas Input, 3040
CF/hr; Air Preheat Temperature, 265°F Average) 394
11-76 Input-Output Data for the Boiler Burner With a
Radial Nozzle (60-deg Vane Angle; Gas Input, 3040
CF/hr; Air Preheat Temperature, 530°F Average) 394
11-77 Raw and Reduced Gas Concentration Radial Scan Data
for the Boiler Burner Operated at a 3040 CF/hr Gas
Input, 1. 9% Excess Oxygen in the Flue, and a
Combustion Air Temperature of 100°F 395
11-78 Raw and Reduced Gas Concentration Radial Scan Data
for the Boiler Burner Operated at a 3040 CF/hr Gas
Input, 1. 9% Excess Oxygen in the Flue, and a
Combustion Air Temperature of 270°F 396
II-B-1 Operating Characteristics of Experimental Axial Flow
Burner 419
II-B-2 Operating Variables and Burner Dimensions for Axial
Flow Burner Using 900°F and 70°F Air 424
II-B-3 Tracer-Gas Mixing Data for the Axial Burner With
the ASTM Flow Nozzle at the 5. 1-cm Axial Position 425
II-B-4 Tracer-Gas Mixing Data for the Axial Burner With
the ASTM Flow Nozzle at the 25. 4-cm Axial Position 431
II-B-5 Tracer-Gas Mixing Data for the Axial Burner With
the ASTM Flow Nozzle at the 45. 7-cm Axial Position 432
II-B-6 Tracer-Gas Mixing Data for the Axial Burner With
the ASTM Flow Nozzle at the 66. 0-cm Axial Position 433
II-B-7 Raw Velocity Data for the Axial Burner With the
ASTM Flow Nozzle at the 5. 1-cm Axial Position 434
XXXlll
-------
LIST OF TABLES, Cont.
Table No. Page
II-B-8 Computer Reduced Data for the Axial Burner With
the ASTM Flow Nozzle at the 5.1-cm Axial
Position 436
II-B-9 Raw Velocity Data for the Axial Burner With the
ASTM Flow Nozzle at the 25.4-cm Axial Position 441
II-B-10 Raw Velocity Data for the Axial Burner With the
ASTM Flow Nozzle at the 45. 7-cm Axial Position 442
II-B-11 Raw Velocity Data for the Axial Burner With the
ASTM Flow Nozzle at the 66. 0-cm Axial Position 443
II-B-lZ Computer Reduced Data for the Axial Burner With
the ASTM Flow Nozzle at the 25.4-cm Axial Position 444
II-B-13 Computer Reduced Data for the Axial Burner With
the ASTM Flow Nozzle at the 45. 7-cm Axial Position 445
II-B-14 Computer Reduced Data for the Axial Burner With
the ASTM Flow Nozzle at the 66. 0-cm Axial Position 446
II-C-1 Velocity Analysis for Various Probe Orientations
Relative to a Fixed Direction of Flow 447
II-D-1 Comparison of Swirl Numbers Calculated for Swirl
Burner With Intermediate Vane Setting and 28 ft/s
Throat Velocity 453
XXXIV
-------
INTRODUCTION
This volume of the final report for EPA Contract No. 68-02-0216
contains all of the raw data and data plots collected during .the program.
This volume also fully describes the experimental facilities. This in-
cludes dimensional descriptions of the hot-modeling furnace, the cold-
modeling furnace simulator, sampling probes, instrumentation, and the
test burners.
A companion publication (Volume I) presents a comparison of burner
performance under varying operating conditions based on an analysis of
the raw data. Volume I also contains specific recommendations for
minimizing NO emissions from the burner types tested as well as for
Jt
areas where further study will be required.
-------
COLD-MODELING FURNACE SIMULATOR
A. Description of the Cold Test Chamber
A cold flow chamber was constructed which provided an aerodynamic
simulation of flow in the hot test furnace. This facility provided a capa-
bility for examining the flow characteristics of each test burner under
ambient temperature conditions. This information was necessary for
determining the most effective sampling locations for the hot furnace test
worK.
The geometry and dimensions of the cold-modeling test facility were
fixed by the dimensions of the available IGT hot-model furnace. This
simplifies the similarity criteria necessary to apply cold-model results
to the hot model. The cold-model facility has a cross-sectional area of
25 square feet (5 feet high and 5 feet wide). General aerodynamic con-
siderations indicate that most of the pertinent flow phenomena should
occur in the first 2-3 feet of the test chamber. However, the facility
is specified as 10 feet long to allow studies to be made of potential down-
stream effects and to ensure that the gas exit stack will not influence
the primary test area.
Figure II-1 shows the overall dimensions of the cold-model test
facility, the type of construction used, and the location of the access
ports for insertion of sampling probes. A lightweight steel framework
was constructed to serve as support for the wall panels and various bur-
ners being tested. The framework is rigid and strong enough to ensure
that the relative positions of the burner, confining walls, and sample
probes remain constant to within 0. 1 inch during testing. The floor of
the cold-model facility was built of 0. 250-inch-thick aluminum, supported
every 24 inches by a steel channel superstructure. This construction
enables the operator to work inside the test chamber without damage to
the facility.
The sidewalls and roof panels of the first 6 feet of the facility were
clear plastic (Plexiglas). The plastic walls provided good visibility where
most of the test work was done. The plastic walls also provide the in-
terior view of the chamber necessary for a photographic study of flow
using tracers (smoke). The last 4 feet of the chamber sidewalls and
-------
Figure II-1. COLD-'MODEL TEST FACILITIES
-------
roof were constructed of 0. 250-inch-thick aluminum sheets. Also, the
position of the aluminum and plastic panels are interchangeable. This
feature provides flexibility in the location of visual studies in the chamber.
An access door placed in one sidewall of the chamber provides,
when closed, a smooth, continuous interior wall surface. The interior
of the cold-model facility does have projections inward from or dis-
tortion of the walls as they would upset the flow patterns and make
analysis more difficult.
The burner end of the chamber is designed so that a variety of bur-
ner types can be installed using a standard-size adapter plate, as shown
in Figure II-2
24 In.
24 in.
2 in. X 2 in. X 1/4 in. ANGLE FRAME
l/4-in. ALUMINUM PLATE
BURNER MOUNTING
HOLES
FLANGE HOLES MATED
WITH HOLES IN FLOW
CHAMBER FRAME
A-81843
Figure II-Z. COLD-MODEL BURNER ADAPTER PLATE
The adapter plate fits and bolts into a 24 by 24 inch hole framed in the
end of the chamber.
-------
The major criterion for design of the sampling probe access holes
was maximum flexibility of probe position. The design selected (Figure
II-1) uses two slots, one in the sidewall and one in the roof, running
parallel to the center line of the test chamber. The sidewall slot enabled
us to position the probe anywhere in a horizontal plane passing through
the burner axis. The roof slot provides the same positional capabilities,
but rotated 90 degrees about the burner axis. Figure II-3 shows the
probe positions obtainable using the slot design. The panels in the model
can be easily changed so that other slot configurations can readily be
developed.
PLANE OF SAMPLE
POINTS
A-8I85I
Figure II-3. PLANE OF SAMPLE POINTS ABOUT BURNER AXIS
The sampling slots are fitted with a sliding spring steel seal designed
to maintain the chamber essentially "air tight" while allowing freedom of
probe movement. Figure II-4 shows a cross-sectional view of the sliding
seal. Grooves 0. 025 inch deep and 0. 5 inch wide are cut in the plastic
-------
2x2x1/4 in. STEEL
SUPERSTRUCTURE
PLEXIGLAS SIDEWALL
STAINLESS STEEL
SPRING STEEL
SLIDE
0.0155-in. SLIDE
0.0250-in. GROOVE
2.00 in.
3/4-in.-DIAMETER
HOLE CUT IN
STRIP 3ft Oin. FROM
ENDS
GUIDING GROOVE
A-81844
Figure II-4. SLIDING PROBE SEAL
edges of the chamber wall adjacent to the sampling slots. They act as
guides to maintain the relative positions of the seal and the probe slot.
A 0. 015-inch-thick strip of stainless steel is stretched across the length
of the test chamber covering the wall slot. The stainless steel strip
seats are flush in the groove, machined into the plastic walls. At either
end of the chamber the metal strip winds around a take-up cylinder
(Figure II-5). These cylinders are constructed so that they apply an
equal and oppositely directed force on the metal strip. The opposite
forces applied to the strip put tension on the metal, which holds it back
against the chamber walls. The tension supplied by each of the cylinders
-------
5.75 in.
3.5in.
STEEL
STRIP
0.015 in.-
3.0 in.
3.0 in.
TORQUE =
3W,in.-lb
1.25 in.
1.0 in.
3/8 in.
BALL- ^
BEARING
INSERTS
1.75 in
STEEL TAKE-UP
.CYLINDER
l/32-in.
PULLEY
CABLE
.1/2 -in.
PIVOTS
1.75 in.
1/2 in.
• 5/8 in. DIAM
WEIGHTS
Figure II-5. PULLEY ARRANGEMENT
FOR SLIDING PROBE HOLE SEAL
is achieved with weights. In this way, as the probe is moved down the
length of the chamber, one cylinder "plays out" a portion of the metal
strip while the other cylinder takes it up, maintaining a constant tension.
The amount of weight necessary to provide the proper tension will be ex-
perimentally determined on the finished unit.
The blower selected to deliver the primary air flow in the test
facility is a North American Model 2344-28-3-20 turbovane blower, which
is capable of delivering 62,000 CF/hr at a pressure of 44 oz/sq in.
This flow capacity was selected to match the amount of combustion air
used by the hot-model furnace operating at its maximum gas input of
4000 CF/hr and 40% excess air. The high-pressure capability of this
-------
fan is necessary to overcome the estimated pressure drop of our vane-
induced swirl generator. The air is cleaned with a North American
Model 14-MGV filter attached to the blower inlet. This filter used oil-
impregnated paper which is capable of removing particles as small as
several microns. The air flow is controlled by a butterfly valve located
between the air filter and the blower inlet. Air flow measurement was
made with calibrated orifices and controlled with "butterfly" valves on
the fan inlets. The air ducts were fitted with a single position probe
access (Figure II-6).
-l/8-in. RIGID TUBING
l/8-in. TUBING COUPLING
l/4-in. NPT
AIR DUCT WALL
A-81846
Figure II-6. SUPPLY AIR PRESSURE PROBE
This hole was used to insert a pressure probe attached to an electronic
manometer capable of measuring high-frequency pressure pulsation. The
air stream was spot-checked after each air flow setting for pulsation.
Any pulsation of the air in the supply system potentially will result in a
pulsation in the test chamber.
-------
B. Cold-Model Probe Positioner
Each of the sampling probes inserted into the burner flow regions,
through the sliding seal, were positioned and held in place by an accurate
positioning device.
Figure II-7 shows the basic design of the device in three views. A
level, supporting bed is formed by three fiber glass H-beams attached to
the frame of the chamber. The H-beams are cross-connected by aluminum
bars 1 inch thick and 3 inches wide (parts A1-A10). The bed was de-
signed to have a deflection less than 0. 001 inch under the weight of the
probe-positioning device. Aluminum and fiber glass are used throughout
the system wherever possible to reduce the weight.
The probe and other equipment are moved (axially) down the furnace
length on two 3-square-inch "box rails" (parts Bl and B2). The box
rails are securely mounted to the supporting bed by setscrews and were
adjusted so that they were both parallel to the chamber axis to within
0. 01 inch. Precision-machined vee-blocks (parts Bl and B2) ride on
the outer edge of each box rail and provide lateral guidance as well as
vertical support to the moving mechanism. A forced lubrication system
is built into each vee-block to provide a constant oil film over all metal-
to-metal contact areas. Mineral oil will be used to ensure a coefficient
of friction, f0, less than 0. 3. The probe is positioned by an Acme
threaded lead screw (not shown) sized to move the probe 0. 1 inch per
rotation. The position is read on a linear scale attached to the outer
box rail; the vernier adjustment is provided by a circular scale on the
lead screw. Using the linear scale for rough-positioning and the vernier
scale for fine-positioning, the probe tip can be placed with an accuracy
of 0. 01 inch. The lead screw is equipped with an electric motor for
rapid, rough probe placement and with a hand crank for final positioning.
About 15.0 inch-pounds of motor torque is required to move the probe
as calculated from the standard static friction equations for parallel
surfaces and for screws with square threads.
The probe's radial movement is accomplished with the same box
rail and vee-block arrangement used for its axial movement (parts Cl,
C2, El, and E2). The probe tip has a full 5-foot movement, allowing
it to completely traverse the chamber's width. Again, the probe is moved
using an Acme threaded lead screw; its position is determined by com-
bining readings from a linear and a circular scale.
-------
3.5 in.
i«— -
V"- r,.o., /
. J5-5 in
* 12-C
/
in. »
/
v \
\
X©
sL ^@
[ ' /
\
SCALE : 0.25 in. = 1.0 in.
Figure H-7. GENERAL ASSEMBLY OF PROBE POSITIONER
10
-------
A planetary turntable (part F, Figure II-7) provides the rotational
motion of the probe tip shown in Figure II-8.
0.312 in.
ACCURACY OF ROTATIONAL
PROBE MOVEMENT 0.25'
PROBE TIP
611 Sin. -
ROTATING PROBE
SUPPORT TABLE
Figure II-8. ROTATIONAL MOTION ACCURACY OF
COLD-MODEL PROBE POSITIONER
The rotational motion is required to null the five-hold, spherical, pitot
tube used for velocity measurements. A circular scale attached around
the periphery of the table is divided into 720 divisions (0. 5 degree per
division); therefore, the probe tip can be positioned with an accuracy of
0. 312 inch.
The bracket that actually holds the probe is attached to the top of
the turntable. (The top view is shown in Figure II-9. ) This bracket
consists of two 2-inch split-bushing pillow blocks (parts Gl and G2) and
a steel adapter (part H). The steel adapter is based to match the out-
side diameter of the probe being used. A separate steel adapter is pro-
vided for each probe and securely clamped around the probe base. Each
adapter has a 2-inch outside diameter which matches the base size of
the split-bushing pillow blocks. To lock a probe in position, the pillow
blocks are opened by removing four bolts and the adapter is snapped into
place. Should it be necessary, the probe can be removed and reinstalled
11
-------
FULL SCALE
Figure II-9. AXIAL PROBE ROTATION GENERAL ASSEMBLY
IZ
-------
eaai]y, while ensuring that the tip will he positioned each time to within
±0.001 inch of its original position. The adapter /pi How block arrange-
ments also allow probe rotation about its axis. Again, this particular
motion is necessary to null the reading of a five-hole spherical pitot tube.
The rotational position of the probe is read on a circular scale (part I)
attached to each steel adapter. The probe is rotated manually and held
in position by a blunt-nose setscrew (part J) in the rear pillow block.
A forced lubrication system is built into each bearing to eliminate binding.
C. Cold-Model Instrumentation, Probes,
and Calibration Methods
Three types of information were obtained from the cold-modeling
facility: flow direction and magnitude as well as mixing rate. Flow
direction and magnitude are measured with a five-hole, spherical head,
pitot tube. Mixing rates were measured by monitoring the rate of tracer-
gas dilution at some sampling point.
When using the five-hole pitot tube, normally, the probe is operated
by rotating the tip until the pressure in two of the five holes is nulled.
The stream velocity and direction is then determined by an established
relationship between the pressure differences in the other holes and the
probe's "yaw" and "pitch" angles. Mr. Wright of BCURA Industrial
Laboratories recently developed a method of determining stream velocity
and direction without the time-consuming job of nulling two probe holes.
(See the 1970 Journal of Physics, Volume 3.) This method only requires
positioning the probe at the point of interest and measuring the pressure
difference between each combination of two holes. This requires four
pressure readings, which can be made with switching valves in about 10
minutes. A computer is then used to solve for five simultaneous equa-
tions. We calibrated our probe using this method.
Very simply stated, BCURA calculated the relationship between the
flow parameters and the pressure distribution over the pitot probe from
potential flow theory. This results in the following equations:
P = p + 1/2 Kpv2 (II-l)
"11, -
13
-------
where p is the pressure at some point 7J on the probe tip surface
(Figure 11-10); p is the free-stream static pressure; p, the fluid density;
8
v, the free-stream velocity; and K , the pressure recovery factor.
They found experimentally that, for sufficiently high velocities
(NR > 4000), K is practically independent of Reynolds number and is
-LVC If
then only a function of the angle 8 . By selecting appropriate reference
axes the angle, 8 , can be expressed in terms of measured angles using
spherical trigonometric relations; BCURA uses the conical, $, and
dihedral, 6, angles shown in Figure 11-11.
By properly choosing certain combinations of recovery factors, ex-
pressions were derived for the angles $ and F> and, hence, the velocity
direction, the magnitude of the velocity, and the static pressure of the
system. The relationships are expressed in the following equations:
Angle or Direction
4
K = [1 - E (po-pT))|2[ E (po - PJ2]1/2}1/2 (H-3)
* n - i ^ TJ = i "
• Velocity
4
K = {pv2[ E (po ~ pJ2l~1/2} (H-4)
v r- _ _ i ff '
• Pressure
K = 2(Po- pj/0v2 (II-5)
P °
Also
tan 6 = -(Pl - p3)/(p2 - p4) (II-6)
The probe to be used is calibrated by inserting it in a circular free-
stream jet containing a potential core representing an adequate cross-
sectional area with a uniform velocity profile. The various pressures
are measured over an appropriate range of chosen reference angles and
flow velocities. The curves for K,, K , and K versus $ are obtained
9 v p
from these data.
14
-------
VELOCITY
VECTOR
A- III1080
Figure H-10. SPHERICAL SENSING HEAD
OF A FIVE-HOLE PITOT TUBE
CONICAL
DIHEDRALN
8
A-II11078
Figure 11-11. CONICAL AND DIHEDRAL ANGLES
15
-------
Once the calibration curves are obtained, the probe is ready for use
in the experimental flow system. The pitot probe is placed at the re-
quired measuring point, and its position and inclination in the flow cham-
ber are recorded. A set of pressure differentials are measured, and the
calibration curves used to obtain the conical, $, and dihedral, 6, angles.
Once the conical and dihedral angles have been determined, values
for K and K can be obtained from the calibration curves. (The com-
v p v
plete process can be carried out on a computer if the equations for the
calibration curves are determined.) Figure 11-12 shows an example of
calibration curves for a spherical probe.
The values of K and K are substituted into Equations II-4 and II-5
v p H
to calculate the velocity, v, and static pressure, p . In calculating the
static pressure, Equation II-5 yields a value for (p0 — p ) whereby —
3
PS - PAT = (P° ~ PAT> ~ (p° ~ PS* (n-7)
and (po — PA^P) is one °f tne measured pressure differentials. Therefore,
PS = (PS - PAT) + PAT (n~8)
The authors of this method found that the maximum error in ty is less
than 0. 33 degree. Comparing the theoretical and actual values, the error
in K is less than 1%. However, practical calibrations are advisable
because large deviations may arise from the influence of the probe stem,
from the size of the holes in the sensing head, and from the constructional
errors of slight misalignment of the holes.
A calibration assembly for the five-hole pitot probe consists of a
source of constant velocity air, a differential pressure range selector
panel, a differential pressure sensor, an electronic manometer, and the
pitot tube to be calibrated. The general assembly is shown in Figure
11-13.
The constant-velocity air stream is generated by a North American
blower with a 740 CF/min capacity at a pressure of 24 oz/sq in. Flex-
ible tubing connects the blower to a 12 x 12 x 16 inch plywood box
(Figure 11-14). A 6-inch-diameter aluminum disk is mounted inside the
box directly in line with the blower inlet. This disk is used to break
up the main air stream entering from the blower. A perforated aluminum
16
-------
1.3
20 40 60 80
CONICAL ANGLE,*
100
1.2
CJ
3
LU
> I.I
1.0
8=45°
**1
I
I
20 40 60 80
CONICAL ANGLE,*
100
20 40 6O 80
CONICAL ANGLE,*
IOO
Figure U-12. EXAMPLES OF CALIBRATION CURVES FOR K$, KV
AND K FOR A TYPICAL FIVE-HOLE, SPHERICAL HEAD, PITOT TUBE
P
A-II11079
-------
AIR
BLOWER
CONSTANT-
VELOCITY
CIRCULAR
AIR STREAM
CONSTANT-VELOCITY
AIR STREAM
PI TOT-
TUBE
p
DIFFERENTIAL
PRESSURE
SELECTOR
PRES-
SURE
SENSOR
ELECTRIC
MANOMETER
RECORDER
A-inneo
Figure 11-13. CALIBRATION ASSEMBLY
FOR FIVE-HOLE PITOT PROBE
FINAL SCREEN
40% OPEN,
16 in.
z
0.5 in.
WOOD SCREEN
BOX
CONVERGING FLOW
NOZZLE
6.75 in.
v PERFORATED
STEEL PLATE
50% OPEN
•HONEYCOMB
FLOW STRAIGHTENER
90% OPEN
A-IIIII84
Figure 11-14. PITOT TUBE FLOW CALIBRATION NOZZLE
18
-------
plate, which uniformly distributes the air in a plane perpendicular to the
direction of flow, follows the disk. The air is then passed through three
layers of 5/8-inch honeycomb to break up any large turbulences. Two
screens are used to break up any remaining turbulences. Mounted at
the outlet of the box is a converging brass flow nozzle with a 3-inch-
diameter outlet. The nozzle is used to produce the desired steady-state
circular air stream.
The five-hole hemispherical pitot tube is mounted with the sensing
head centered in the nozzle. The five holes in the pitot1 s head are con-'
nected to the differential pressure selector, which can be set to monitor
the pressure difference between any two pressure holes or between any
pressure hole and the atmosphere. The differential pressure being mon-
itored is fed to a Barocel pressure transducer. The output from the
transducer is amplified by a CGS electronic manometer and appears as
a permanently recorded voltage on a fast-response Brush hot-wire strip
recorder.
To calibrate the pitot for the factors K^, K , and K discussed
earlier, it must be rotated about the geometrical center of the sensing
head. Since it would have been very cumbersome to rotate the 6-1/2-
foot probes used in this project about their measuring points, we are
holding the probes stationary and rotating the direction of the air stream.
This is accomplished by mounting the air stream nozzle in a stand, which
is simultaneously pivoted about the axes, which are perpendicular and
parallel to the direction of flow. The maximum amount of rotation is
70 degrees in the conical and dihedral angles of the system. A diagram
of the pivotal stand is shown in Figure 11-15.
The values of the conical and dihedral angles are determined by using
the trigonometric relationships for right triangles. Having a fixed coordi-
nate system relative to the rotating air stream nozzle allows us to measure
an angle of rotation relative to each coordinate (fixed) axis. The cosine
of the angle relative to the direction of flow yields the conical angle.
The angle of rotation in the plane perpendicular to the flow yields the
cosine of the dihedral angle. The cosine of the angle of rotation is eval-
uated by taking the ratio of the length of the box along a fixed axis at a
0 degree rotation to its length at an arbitrary rotation.
19
-------
PIVOT BEARING
BAFFLE
BOX
PIVOT BEARING
STATIONARY SUPPORT
FRAME
A-IIIII99
Figure 11-15. PIVOTING NOZZLE MOUNT
Calibration of our probe was carried out for flow velocities of 25
ft/s and 50 ft/s, and conical angles between 0 and 65 degrees. To check
consistency, two sets of data were collected for each velocity. The mean
calibration curves for K^, KV> and K are shown in Figures 11-16,
11-17, and 11-18, respectively, by the solid line. The theoretical values
of these three factors were obtained from potential flow theory for a
sphere having the outer ring of holes situated at a conical angle of 40
degrees, are shown by the dashed lines in Figures 11-16, 11-17, and 11-18.
20
-------
0.9
0.7
e
O 0.5
O
ui
o
z
O.I
THEORETICAL
-ACTUAL
10 20 30 40
CONICAL ANGLE,*
A-I2II248
Figure 11-16. K. AS A FUNCTION OF CONICAL
ANGLE FOR A FIVE-HOLE PITOT PROBE
The agreement between measured data and theory was reasonably good
considering the substantial differences in tip configuration. Part of the
deviation between curves arose because of the small influence of the stem
of the probe and because of the size of the holes in the sensing head.
However, most of the observed differences are believed to result because
the probe is perfectly spherical.
Another factor in calibrating the five-hole pitot probe is that the flow
patterns and mixing eddies change very rapidly in the areas of interest.
Consequently, it is necessary to know the frequency response, amplitude
shift, and maximum frequency of pressure change that can be detected
by the five-hole pitot probe for any interruption of this type of data.
21
-------
1.14
1.12
1.10
1.08
cr
g 1.06
o
If
O 1.04
UJ
1.02
1.00
0.98
ACTUAL,
THEORETICAL
10 20 30
CONICAL ANGLE,*
40
A-I2II252
Figure 11-17. Ky AS A FUNCTION OF CONICAL
ANGLE FOR A FIVE-HOLE PITOT PROBE
22
-------
1.0
o.e
O 0.6
u
2
Ul
(T
0.2
\N
ACTUAL -
. THEORETICAL
10 20 90
CONICAL ANGLE ,
40
A-I2II25S
Figure 11-18. K AS A FUNCTION OF CONICAL
ANGLE FOR A FIVE-HOLE PITOT PROBE
To determine the change in amplitude of the measured pressure
differentials as a function of frequency for the pitot probe, we built a
pulsed air flow device. The experimental apparatus used for this cali-
bration is shown in Figure 11-19.
A disk with a pie-shaped section cut out of it was attached to a
variable-speed motor. A constant air source was positioned below the
disk and the five-hole pitot above the disk. When the disk was rotated
by the motor, it would interrupt the air stream at any desired frequency,
depending upon the motor speed. In this way we created a variable -
frequency pulsed, pressure signal. To achieve different turbulent conditions
and magnitudes, disks were fabricated from solid plastic, perforated plate,
and fine-mesh screen.
23
-------
AIR
JET
REGULATOR
AIR SUPPLY
| DISK |
1
VARIABLE-
SPEED
MOTOR
^ — -/ PROBE
PRESSURE
DIFFEREN-
TIAL
SELECTOR
ELECTRIC
TRANSDUCER
AMPLIFIER
RECORDER
A-I2II249
Figure II-19. EXPERIMENTAL APPARATUS
FOR TRANSIENT CALIBRATION
We found that the electronic differential-pressure sensor alone could
respond to pressure fluctuations as high as 500 Hz, but that the probe
damped out fluctuations above 10 Hz, yielding only the mean velocity.
Graphical representatives of the difference between the actual and
maximum measured pressures as a function of frequency for the Plexiglas
and aluminum perforated plates are shown in Figures 11-20 and 11-21.
A decrease in the amplitude of the pressure as a function of frequency
for the different turbulent systems is observed. To determine the per-
Pmax ~ Pmin
centage change in amplitude, the ratio (—m * mm\
-) versus the actual
max
pressure is plotted in Figures 11-22 and 11-23. Here we can observe
that the fluctuations in the amplitude decrease rapidly with increase in
frequency and degree of turbulence. For the thin gauge screen, which
should most closely reproduce the turbulence to be expected in the cold-
model furnace, the amplitude fluctuations for pressures less than 0. 02
psia cannot be resolved with our equipment.
24
-------
0.10
0.08
o> 0.06
'55
o.
o
3
0.04
0.02
PLASTIC
0.02
0.04 0.06 0.08
0.0 Hz
'0.3 Hz
0.6 Hz
1.0 Hz
1.7 Hz
10 Hz
0.10
0.12
A-I2II259
Figure 11-20. PRESSURE MEASURED BY SENSOR
VERSUS ACTUAL PRESSURE AS A FUNCTION OF
PULSE FREQUENCY FOR THE SOLID (Plastic) DISK
25
-------
O.ll
0.10
0.08
0.06
Q.
O
"o
0.°
0.04
0.02
IT
PERFORATED PLATE
0.04 0.06
pmeosured • Psi
/0.0 Hz
'0.3 Hz
X 0.6 Hz
l.O Hz
1.7 Hz
•10 Hz
0.02 0.04 0.06 0.08 0.10
0.12
A-I2II253
Figure 11-21. PRESSURE MEASURED BY SENSOR
VERSUS ACTUAL PRESSURE AS A FUNCTION OF
PULSE FREQUENCY FOR THE PERFORATED DISK
26
-------
U.ll
0.10
0.08
? 0.06
&
1
c?
0.04
0.02
o
10 Hi
\
V
PLASTIC
1.7 Hz
^
\
1.0 Hz
0.6 Hz
^
\
I
0.3 Hz
I
\s
0.2
0.4
0.6
0.8
1.0 1.1
P -P • /P
rmox rmm/rmox
A-I2II254
Figure 11-22. PERCENTAGE CHANGE IN AMPLITUDE OF
PRESSURE SIGNAL AS A FUNCTION OF FREQUENCY
AND ACTUAL PRESSURE FOR THE SOLID DISK
27
-------
0.12
0.10
0.08
0.06
o
3
O
o
0.04
0.02
10 1
•\1
\
1.7 >
\
ir 1
\
\
\
.0
0.6
»Mz
\
\
\
x
Hz
<
\
\
\
).:
i
\
>HZ
PERFORATED
PLATE
s
0.20
0.40
P - P • / P
rmox rmin' r
0.60
0.80
A-I2II257
Figure 11-23. PERCENTAGE CHANGE IN AMPLITUDE OF
PRESSURE SIGNAL AS A FUNCTION OF FREQUENCY
AND ACTUAL PRESSURE FOR PERFORATED DISK
28
-------
We concluded that measuring flow changes having a frequency above
10 Hz is not practical with our present probe and that only mean velocity
and direction can reliably be extracted from the data.
29
-------
HOT-MODELING TEST FURNACE FACILITY
A. Furnace Test Chamber
The hot-model furnace facility used for this program has a cross-
sectional area of 25 sq ft with a height of 5 feet, width of 5 feet, and
length of 15 feet. The furnace is capable of operating at temperatures
of up to 3000°F with gas inputs up to 3. 5 million Btu/hr. A portion of
this project involved designing three modifications to the basic furnace
which were required to perform the specific tests of this program. These
modifications were —
• Installing cast refractory water-cooled panels to simulate the thermal
loading found in industrial furnaces.
• Installing a quick-change burner-mounting bracket.
• Installing a sliding seal device for inserting the probes into the
furnace while preventing air leakage.
Figure 11-24 shows general construction and dimensions of one of the
cast refractory water-cooled panels.
Figure 11-25 shows the water-cooled sliding seal installed in the
south furnace wall.
The program's objectives required that the furnace operate with a
maximum wall temperature of 2800°F, with a 3. 5 million Btu/hr input,
and that the wall temperature be lowered to approximately 1800°F using
water loads. In addition, the furnace was to be fired from one end,
whereas originally it was fired through the sidewall, simulating an in-
dustrial boiler system. To make these modifications, we prepared a
complete heat balance on the system and selected the new wall materials
and type of construction from the results. The finished furnace was
completely made of cast refractory, except for the hearth, which was
built of firebrick. The brick hearth gives the required flexibility to in-
stall water-cooled loads in the firing path, if necessary.
30
-------
FIRING PORT END
LO
r
COOLING
ZONE
COOLING
ZONE
2
COOLING
ZONE
3
COOLING
ZONE
4
COOLING
ZONE
5
REGENERATORS
X
Figure 11-24. SIDE VIEW OF MAIN FURNACE SHOWING
STEEL STRUCTURE AND COOLING ZONES
-------
OJ
CSJ
SLIDING WATER-
COOLED SEAL
ROUND PROBE
HOLE, 1/2 in. TO 2-1/2 in,
TO FIT PROBE
I in.
WATER-COOLING
CHANNEL
WATER-COOLING
CHANNEL
REFRACTORY
FURNACE
WALLS
\ GROUND
\STEEL
/SURFACE
A-IZII262
Figure n-25. PROBE SLOT-SEAL ASSEMBLY
-------
1. Heat Losses Through Refractory Walls
The heat losses through the furnace walls are one of the most sig-
nificant losses which determine the operating temperature of the furnace
for a fixed gas input. The available gas and air supply to the furnace
dictated a maximum energy input of 3. 5 million Btu/hr. Figure 11-26 illus-
trates the thermal conditions which must exist for steady operation.
TFI T"w
FLUE
TEMPERATURE
S,
^ WALL
^ THICKNESS
THERMAL
GRADIENT
-^-^RC
TEMPERATURE OF
OUTSIDE AIR
A-IIIII90
Figure 11-26. TEMPERATURE GRADIENT FOR STEADY
FLOW OF HEAT THROUGH A FURNACE WALL
The inside temperature of the wall drops steadily in the direction of its
outer surface, where it exceeds the temperature of the surrounding air.
The heat loss for a given expanse of wall and for a given furnace tem-
perature becomes less if the wall is made thicker, if the thermal con-
ductivity of the refractory is lowered, or if the outer surface of the
furnace is of such a character that does not readily give up its heat to
the surrounding media. These relationships are mathematically expressed
by the following equations:
RC
qw =
qw =
k(T - T )
w ow
(II-9)
(n-io)
33
-------
where —
q = heat transmitted, Btu/hr-sq ft
k = thermal conductivity of wall materials, Btu-in. /hr-°F-sq ft
S = thickness of walls, in.
C = coefficient of radiant and convective heat loss, Btu/hr-sq ft-°F
T = inside wall temperature, °F
T = outside wall temperature, °F
ow
T = temperature of surrounding air, °F
Equations II-9 and 11-10 are fundamental to heat transfer calculations
for any furnace and were applied here for this program's furnace require-
ments. The unknown quantities in Equations II-9 and 11-10 are qw and
T . Our particular requirements for proper furnace operations fixed
the values for the other variables (Table II-1).
Table II-1. REQUIRED OPERATING CONDITIONS
OF EXPERIMENTAL FURNACE
Maximum Natural Gas Input: 3.5 X 106 Btu/hr
Maximum Inside Wall Temperature, T : 2800°F
Average Surrounding Air Temperature, * T : 80°F
Thermal Conductivity of Refractories, k: 7. 37 Btu-in. /hr-°F-sq ft
Thickness"^ of Walls, S: 9.0 in.
The inside air of the building which houses the furnace is controlled
by ventilating and heating units at a temperature of 80°F.
f
These values were based on the existing dimensions of the furnace
and refractories currently being used in the roof, which were not
structurally modified for the project.
Obtaining a value for qw involves calculating the heat losses from
Equations II-9 and 11-10 for various assumed outside wall temperatures,
and then comparing each to determine the outside wall temperature at
which q^ equals q,,^. Substituting the values for k and S shown in
D K.U
Table II-1 into Equation II-9 yields —
= qw = -^- (T - T ) = 0.82(2800 - T ) (II-H)
^W 9 w ow' x ow' '
34
-------
Figure 11-27 shows values of q for assumed outside wall temperatures
that range between 0° and 1100°F. The heat loss varies from 1400 to
2300 Btu/hr-sq ft over this temperature range.
I
13
o
(E
I
in
UJ
in
to
3
UJ
I
0
^
^
^^x
^
^
"^
\
^
^
0 100 200 JOO 400 500 600 700 800 900 1000 1100
TOW,OUTSIDE SURFACE TEMPERATURE ,°F
Figure 11-27. HEAT LOSSES THROUGH WALLS AS A
FUNCTION OF OUTSIDE WALL TEMPERATURES FOR
A 2800°F INSIDE WALL TEMPERATURE
Calculating qD ~ from Equation 11-10 is somewhat more difficult be-
K.(_/
cause C varies with the temperature of the outside wall, with its hori-
zontal or vertical location, and with the physical condition of the surface.
Although this coefficient is not a true coefficient of heat transfer, it
accounts for the heat lost by both radiation and convection. For approxi-
mate calculations, the heat loss coefficient, C, can be determined from
Equation 11-12 and then substituted into Equation 11-10.
(11-12)
C = 1.6 + 0. 006 T
ow
For a more rigorous solution, we used Equation 11-13 to account for the
heat losses from radiation and convection separately from all vertical
walls in still air.
- 0 155
~ '
T + 460
/ ow .
1 Too *
T + 460
/ O V
( 100 '
+ 0. 28 (T - T )
v ow o'
5/4
(II-13)
35
-------
Figure II-Z8 again shows qRC as a function of the assumed outside
wall temperatures, T , over the temperature range of 0°-1000°F. A
sufficiently accurate estimate of the heat losses caused by radiation and
convection from the furnace hearth can be obtained by dividing qR(-. by
2. 0.
o
*46
100
°)1
/
/
W
8
f/
T
7\
i
/
/
/
0 100 200 300 400 5OO 6OO 700 800 900 1000
TO,.OUTSIDE WALL SURFACE TEMPERATURE ,'F
Figure 11-28. HEAT LOSSES FROM
VERTICAL WALLS IN STILL AIR AT 80°F
By comparing Figures 11-27 and 11-28 and knowing that
q we found that for the sidewalls and roof —
q-»r = qr, = qnr- *= 185° Btu/hr-sq ft
MW MB HRC
when T = 535°F
ow
For the furnace hearth —
q«r = qn = qD^ =* 175° Btu/hr-sq ft
VV i5 rx v>
when T = 700°F
ow
^B
36
-------
The values of qw obtained for the sidewalls and hearth can be compared
with the wall losses that can be tolerated for the available fixed gas input.
These are obtained from the generalized overall heat balance on the fur-
nace. Total heat losses through the walls can be calculated from Equation
11-14, which is simply the conservation of energy.
QW = QI - QF - QS - QM
where —
Q = total heat input, Btu/hr
Q_ = heat lost with flue products, Btu/hr
QS = heat lost to any furnace load, Btu/hr
Q,, = miscellaneous heat losses like radiation through openings,
etc. , Btu/hr
Since QW> Qj, QF » Qg, QM> we assumed that Qg = QM = 0.
Therefore -
QW = QI - QF
-------
6/73
8933
BOO
700
o
5 600
o
u.
O 500
UJ 400
i/)
300
200
f7
1000 1400 1800 2200 2600 3000
FLUE EXIT TEMPERATURE ,°F
Figure 11-29. HEAT LOSSES THROUGH FLUE AS A FUNCTION
OF FLUE GAS TEMPERATURE (Fuel/Air = Stoich. )
When the total allowable wall losses, Q are divided by the furnace
surface area, we obtain the allowable wall losses per square foot, q' .
The furnace-wall surface area, calculated in the following section, is
455 sq ft. Therefore -
Q
W
W = 790^000 =
Btu/hr.sq ft
(II-16)
If we choose a refractory wall with the proper thickness and a refractory
material with the proper thermal conductivity, k, then the allowable wall
losses, q'w» should approximately equal the calculated wall losses, q .
In our case these are reasonably close:
qw = 1850 Btu/hr-sq ft
W
= 1845 Btu/hr-sq ft
38
-------
2. Furnace Surface Area for Heat Transfer
The basic inside furnace dimensions (Figure 11-30) are 5 x 5 x 15
feet long, with 9-inch-thick walls. Obviously, the area of the hot face
is smaller than that of the cold (outside) surface; therefore, the true
heat-transmitting surface lies somewhere between the inside and outside
surface areas. Generally, the true heat-transmitting surface is assumed
to be halfway between the inner and outer edges. Therefore —
9-° '"•
9.0 in.-
9.0 in.
9.5 in.-—
4-1111198
Figure 11-30. END VIEW OF HOT-MODEL
REFRACTORY CONSTRUCTION
39
-------
A = (L + 9)(H + 9) (II-17)
s
Ae = (W + 9)(H + 9) (11-18)
Ah = (W + 9)(L + 9) (U-19)
Ar = Ah = (W + 9)(L + 9) (U-ZO)
A. . , = 2A + 2A + 2A, (11-21)
total s e h v '
where —
A = area of sidewalls, sq ft
S
A = area of endwalls, sq ft
A, , A = area of hearth and roof, sq ft
Substituting the furnace's inside dimensions into Equations 11-17 to 11-21
.yields —
A = 90. 5 sq ft
S
A = 32. 0 sq ft
A, = A = 90. 5 sq ft
n r ^
A. . , = 426 sq ft
total M
3. Internal Water Load Calculations
Two types of wall cooling systems were used in the experimental
furnace: The primary cooling control was provided by water tubes posi-
tioned in the refractory, and additional control could be obtained, when
necessary, by inserting tubes directly into the combustion chamber.
The design calculations for the buried water load tubes indicated
that 30 tubes were required in each wall with the tubes having a 1. 0-inch
outside diameter and a 12-gauge Type-304 stainless steel wall. The tubes
contained flowing air during periods when the maximum refractory face
temperature of 2800°F was necessary. When it became necessary to
lower wall temperature to a minimum of 2400°F, water was substituted
for the air. Table II-2 summarizes the flow and temperature conditions
of the cooling system. The calculations leading to these values are not
presented because the methods of calculation are widely published in most
heat-transfer texts.
40
-------
Table II-2. OPERATING CONDITIONS OF PRIMARY COOLING
LOAD SYSTEM FOR VARIOUS FURNACE CONDITIONS
General (Fixed) Conditions
Tube Diameter, inches 1. 0
Tube Wall Thickness, inches 0. 109
Number Tubes Per Wall 30
At Refractory Face Temperature of 2800°F
Cooling Media Air
Tube Wall Temperature, °F 1260 (Average)
Air Flow Per Tube, SCF/hr 750
Total Air Flow, SCF/hr* 66, 000
Outlet Air Temperature, °F 850
Pressure Drop Per Tube, psia 0. 1
Air Supply Fan 100,000 CF/hr at 1.5 psig
At Refractory Face Temperature of 2400°F
Cooling Media Water
Tube Wall Temperature, °F 200
Water Flow Per Tube, Ib/hr 550
Total Water Flow, Ib/hr* 50, 000
Water Outlet Temperature, °F 135
Water Pump Design 150 gpm at 60 psig
#
Ceiling not cooled.
Figure 11-31 shows a schematic diagram of the cooling tube system
piping. Air is supplied from a conventional high-pressure blower equipped
with a butterfly valve and filter on the inlet. The air is piped to a 6-
inch-diameter manifold to which the inlet of each cooling tube is connected.
The air is metered with a standard orifice plate at the inlet to the man-
ifold. The manifold is constructed of Schedule 40 steel pipe, and the
air duct is Schedule 10 PVC plastic pipe. The heated air from each
cooling tube is piped to an outlet manifold of Schedule 40 steel pipe.
One end of the pipe terminates outside and serves as the vent for waste
air. The vent end of the outlet manifold is equipped with a 6-inch-
diameter blind plate that must be shut off when cooling with water. Water
41
-------
AIR FLOW MEASURING
ORIFICE METER WITH
BLIND PLATE WHILE
USING WATER
WATER-AIR
MANIFOLD
6 in. SCH 10
AIR DUCT
FLOW CONTROL VALVE
AND AIR FILTER
ON INLET
/ /
PARALLEL CONNECTED
COOLING TUBES AND
CONTROL VALVES INLET
JNLET
.OUTLET
VENT TO ATMOSPHERE
WITH SHUTOFF VALVE
100-psig
COMPRESSED
AIR
40-psig CITY
MAKEUP WATER
HEAT EXCHANGER-
PUMP ISOLATION
VALVE
SCH 40
2-in.-DIA
WATER PIPE
HEAT
EXCHANGER
ISOLATION
VALVE
SYSTEM
.DRAIN
VALVE
WATER PUMP
60 psig
I50gol/min
t
HIGH PRESSURE
BLOWER, 100,000 SCF/hr
AT 1.5 psig
RIVER WATER
SUPPLY AT 125 psig
A-I2II26I
Figure 11-31. SCHEMATIC DIAGRAM OF WATER-AIR COOLING SUPPLY SYSTEM
-------
is supplied by a 60-psig pump capable of delivering 150 gallons per minute.
Water is continuously recirculated through a heat exchanger. The heat
exchanger is cooled by river water supplied by our pilot plant system at
125 psig. The water is piped to the cooling tubes through the same man-
ifolds used for air. Therefore, to switch between air and water requires
a somewhat complex valve arrangement. First, the air blower is isolated
from the manifold by inserting a blind plate in place of the orifice plate
and then closing the atmospheric vent. The water pump is started and
the manifolds flooded by opening both isolation valves. When changing
from water to air, the isolation valves are closed off and the water blown
out of the system through the drain valve by the 100-psig compressed
air. Whenever the water system is started up, it must be charged with
makeup city water. The makeup water inlet is upstream of the heat ex-
changer and of a higher pressure than the heat exchanger inlet line.
Therefore, the makeup water can be added while the high-pressure circu-
lating pump is operating.
The "bayonet" type of cooling tube inserted directly into the combus-
tion chamber was designed, in addition to the "buried" cooling tubes, for —
1. Lowering average wall temperature below 2400°F, if needed, which
cannot be accomplished by the buried tubes.
2. Providing spot cooling in very high heat-release areas where the
buried loads might not be effective enough to provide isothermal
conditions.
The "bayonet" probes absorb heat by radiation and convection, thus cool-
ing the refractories. The probe design we selected is shown in Figure
11-32. This design is both effective and relatively inexpensive to fabricate.
The effective area for heat transfer of a single probe is —
. 2L7TD L7TD , .
A = -^- = -jj- (11-22)
where —
L = insertion depth into furnace, ft
D = diameter of tube, in.
A = effective area for heat transfer, sq ft
43
-------
HOSC CONNECTIONS
A
2
(LENG
FURN
5
It
TH IN
ACE)
I
-
v_
-
-i
3^, THERMOCOUPLE
^ WELL FOR
WATER OUTLET
TEMPERATURE
._Hn 00. 2O-GAUGE
STEEL TUBING
;
TIGHT- RADIUS
— — LJAIODIhJ Qrurt
Figure 11-32. WATER LOAD DESIGN
To simplify the following calculations, we must convert the dimensions
of the double-tube probe into "equivalent" single-tube dimensions. The
equivalent area of the single-tube probe, A^, is —
7TD_L
"2^
Since A = A..,, by design, then —
D = 2D = (2)(1. 0 in.) =2.0 in.
and the equivalent area for heat transfer is —
= ft
(11-23)
(U-24)
24
24
where L = 5 feet for the full insertion of the probe into the furnace
enclosure.
Heat is transferred to the tube walls by radiation and convection and
then to the water in the tubes by convection. The mathematical equation
for heat transferred from the furnace walls to the tube surface (Figure
U-33) is -
Q
TRC
(11-25)
44
-------
REFRACTORY WALL
TEMP,TW
FLUE TEMP.
REFRACTORY WALL TEMP,
Tw ;6 S 0.8
.;/,\ COOLING
'/A WATER
IN
COOLING WATER OUT
WATER SINK
COOLING ROD.f 3 6.0
A-1111163
Figure 11-33. NOMENCLATURE FOR RADIANT HEAT TRANSFER
FROM FURNACE WALLS TO INTERNAL COOLING TUBES
where —
Q^,^- = heat transmitted to tubes by radiation and convection,
TRC Btu/hr
A = effective heat transfer area of the tube or tubes, sq ft
F = shape factor, dimensionless
3.
F = emissivity factor, dimensionless
a = Stefan-Boltzmann constant, 0.1714 X 10~8 Btu/hr-°R4-sq ft
TI = temperature of furnace walls, °R
Tz - temperature of tube walls, °R
The heat transfer from the tube walls to the water by convection is
mathematically determined by Equation 11-26.
Q
TC
(11-26)
45
-------
where —
Q_r = heat transmitted to water, Btu/hr
h = convective heat transfer coefficient, Btu/sq ft-°F-hr
A1 = surface area of tube walls, sq ft
Ta = temperature of tube walls, °F
T , = mean temperature of water, °F
The convective heat transfer coefficient is determined by the empirical
equation of Sieder and Tate.
.14 /2\l/3 /N \ 1/3 /N \ 1/3 TT
k mb ~ r^ (L) (NPr>mb (NRe>mb U
where the only variables are the mass flow of water in a tube and the
temperature rise tolerable in the tubes, and —
D = tube diameter, ft
k = thermal conductivity of water at T , , Btu/sq ft-°F-hr
H - viscosity of water, Ibf/s-sq ft (s, at tube surface; mb, average)
L = length of tube, ft
U = velocity of water in tubes, ft/s
N_ = Prandtl number
Np = Reynolds number
where —
CM
Npr = -£- (H-28)
and
and
C = heat capacity of water at T ,, Btu/lbm-°F
p = density, Ibm/cu ft
46
-------
The solution to this problem is similar to that for finding the steady-
state wall temperature without water cooling. Q^,.,^ and QT(~ are solved
simultaneously in terms of the variables; the operating conditions are
found by comparing the results, where QTRr equals QTf
To solve Q^,-,-,, let FA equal 0.5. This value was determined from
1 K.U A
curves published in Engineering Heat Transfer by Hsu for 2-inch-diameter
tubular cooling pipes, which are spaced 0. 5-4. 0 feet apart along one wall
and receive the heat transferred from a surrounding enclosure.
F^ the emissivity factor for a relatively small receiver area (com-
pared with the radiating surface which is positioned approximately hemis-
pherically around the receiver), is given by Equation 11-30.
Ff - € € (11-30)
€ r e v '
where —
€ = emissivity of receiver tubes
€ = emissivity of radiating furnace walls (assumed to equal 1. 0)
Substituting the values of Fi and Tz into Equation 11-25 and assuming
a maximum tube wall temperature (Ta) of 200°F to prevent the water from
boiling, yields Figure 11-34, which shows heat transferred by radiation
per unit area (q ) as a function of the tube emissivity and of the temper-
s
ature of the furnace walls or radiating surface. Multiplying these data
by the area yields Figure 11-35.
QT(- is solved by first solving for h from Equations 11-27, 11-28,
and 11-29. Values for the equations' constants at the mean water tem-
perature, T , , are given in Table II-3. The mean water temperature
is given by Equation 11-31:
T . = 1/2(T. . . + T .. .) (U-31)
mb inlet outlet' v '
We chose a temperature rise of 30°F with an average inlet temperature
of 70°F; therefore -
= 1/2(70 + 100) = 85°F
47
-------
o
o
o
o
UJ
H
i
V)
z
Or
I-
UJ
i
0.2
0.3 0.4 0.5 0.6 0.7
TUBE EMISSIVITY,eT
0.6 0.9
1.0
A-IIIII92
Figure 11-34. HEAT TRANSMITTED PER UNIT AREA TO
2-INCH-DIAMETER TUBE (T2 = 200°F) FROM AN
ENCLOSURE SURROUNDING 180 DEGREES OF TUBE
48
-------
CD
O
O
O
Q
Id
90
80
70
60
50
< 40
a:
UJ
30
20
10
AENCLOSURE >> ATUBE
ENCLOSURE
TUBE = '-3I
r L0
" /
<*.*/
0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
TUBE EMISSIVITY,6T
A-IIIII9I
Figure 11-35. TOTAL HEAT TRANSMITTED PER TUBE
49
-------
Table II-3. VALUES FOR CONSTANTS OF EQUATIONS
11-27, 11-28, AND 11-29 AT T , = 85°F FOR WATER
mt>
mb
= 1. 5 X 10'" Ibf/s-sq ft
k = 0.356 Btu/sq ft-°F-hr
C = 0. 998 Btu/lbm-°F
P
p = 62. 1 Ibm/cu ft
= °'55 X 10"5
200°F
A1 = 77DL = 2. 61 sq ft
ft
To simplify the results we expressed the velocity of the water in
terms of the weight flow, Equation 11-32.
W W
U =
(11-32)
pA ~ 1220
where W = weight flow, Ib/hr.
Using Equations 11-26 to 11-29 and the values in Table II-3, solved
for QT~, as a function of the weight flow of water yields Figure 11-36.
CD
O
UJ
03
9 I05
UJ
X
10'
10
WEIGHT FLOW,Ib/hr
Figure 11-36. WEIGHT FLOW OF WATER AS A FUNCTION
OF HEAT TRANSFERRED FROM TUBE WALLS TO WATER
50
-------
It is now possible to determine, from Figures 11-35 and 11-36, the water
flow necessary to maintain a 200°F tube surface temperature as a function
of the desired furnace wall temperature and the tube's emissivity. Figure
11-37, compiled from Figures 11-35 and 11-36, shows the minimum amount
of water necessary for any desired furnace wall temperature assuming a
tube emissivity equal to 0. 8.
The last remaining step of these design calculations is to determine
the number of tubes necessary to remove enough heat from the furnace
to maintain any desired wall temperature. This is done by recalculating
the heat losses through the wall, QW, for wall temperatures other than
2800°F. These calculations are shown in Figure 11-38. The procedure
is now the same as that described earlier for heat losses at a 2800°F
inside wall temperature. The data in Figures 11-29 and 11-38 are com-
pared to determine the heat loss per square foot of wall (qw) which, when
multiplied by the area of the walls, yields their total heat loss as a
function of the wall temperature. Substitute Qw into Equation 11-14, where
Q~ now becomes the heat absorbed by the cooling tubes.
Figure 11-39 shows Q~, the amount of heat which must be removed
by the water loads to hold a desired wall temperature, with a gas input
of 3. 5 million Btu/hr. We can now use Figures 11-35 and 11-39 to de-
termine the number of water tubes necessary to hold a desired wall tem-
perature. The heat load is determined from Figure 11-39 for the desired
temperature and divided by the heat sink capacity of a single tube as
shown in Figure 11-35. This yields the required number of cooling tubes,
Figure 11-40.
It is now possible to calculate from Figure 11-37 the total amount
of cooling water required by the system as a function of the inside wall
temperature. Figure 11-41 was plotted by multiplying the water required
per tube by the total number of tubes required at various wall temper-
atures. From this information we learned that a larger water pump was
necessary at the test site if wall temperatures lower than 1960°F are
required: Our earlier system is only capable of delivering 1200 gph
(~10,000 Ib/hr) at 100 psig.
51
-------
MO
100
100
I5OO 1700 1900 2100 2300 2500
WALL TEMPERATURE.'F
Figure 11-37. MINIMUM WATER FLOW PER TUBE AS
A FUNCTION OF INSIDE WALL TEMPERATURE
1600
1400
_ 2200
CD
I
X
o
o
IT
I
CO
V)
o
<
u
I
*
o
1000
800
400
200
0 100 200 300 400 500 600 700 800 900 1000 1100
OUTSIDE SURFACE TEMPERATURE ,°F
A-IIIII95
Figure 11-38. HEAT LOSSES THROUGH WALLS AS A
FUNCTION OF OUTSIDE WALL TEMPERATURE
52
-------
2800
2600
.c
£ 2400
0
8 2200
-------
IO.UUU
15,000
14,000
13,000
i.
.c
£ 12.000
0
^ 1 1,000
5
2 10,000
-------
The pressure drop through each probe was also considered in deter-
mining what pump pressure was required as a function of the desired
inside wall temperature. The pressure drop through any tube can be
mathematically determined by Equation 11-33:
AP = fLpU2/288 Dg (11-33)
where —
AP = pressure drop, psig
f = friction coefficient
L = tube length, ft
p = fluid density, Ibm/cu ft
U = fluid velocity, ft/s
D - tube diameter, ft
g = acceleration of gravity (32. 17 ft/sq s)
The velocity is expressed in terms of weight flow, assuming that the
density of the fluid is 62. 1 Ibm/cu ft.
u2 = 8. 6 x icr7 w2 (n-34)
where W = weight flow, Ib/hr.
The values of the parameters in Equations 11-33 and 11-34 for the
tube design and water that has a mean temperature of 85°F are given in
Table II-4 (except for the friction factor, f).
Table II-4. PARAMETERS FOR PRESSURE
DROP EQUATION FOR WATER AT 85°F
Tube Length, L = 10 ft
Tube Diameter, D = 8. 34 X 10'2 ft
Fluid Density, p - 62. 1 Ibm/cu ft
Fluid Viscosity, M = 0. 56 X 10~3 Ibm/ft-s
Substituting Equation 11-34 and the values from Table II-4 into Equation
11-33 yields -
AP = (6.4 X 10'6) W2f (H-35)
The friction factor, f, is a function of the Reynolds number —
NRe =
55
-------
where M = absolute fluid viscosity, Ibm/ft-s. Therefore, the friction
factor is a function of U or ultimately of weight flow. To solve for the
pressure drop, we converted R. J.S. Pigott's data for Reynolds number
versus friction factor to weight flow versus friction factor. This con-
version is shown in Figure 11-42. Solving Equation 11-35, using the num-
bers in Figure 11-42, yields the pressure drop per tube as a function of
weight flow (Figure 11-43).
B. High-Temperature Flame-Sampling Probes
One of the major tasks of this program was to map the profiles of
temperature, chemical species, and flow magnitude and direction in the
flame of each burner type. Modified designs of the International Flame
Research Foundation were used to construct probes which would enable
this type of data collection.
We constructed both a multidirectional impact tube (MBIT) and a gas
sampling probe. Assembly drawings for these probes are shown in
Figures 11-44 and 11-45. The MBIT probe (Figure 11-44) has a hemis-
pherical sensing head, which has passed the calibration standards of the
International Flame Research Foundation. The tip construction and our
calibration methods were described earlier in this report.
The 8-inch-long probe tip is 0. 312 inch in diameter and constructed
of Type-316 stainless steel. Each of the five tip holes is connected to
thin-walled tubes, which pass through the probe body and are connected
to the pressure differential measuring equipment. The probe tip is also
water-cooled so that it can be used in the hot furnace environment.
Water is brought into the tip through a 1/8-inch-diameter stainless-steel
tube and returns along the walls of the outer tube and into the 1-1/2-
inch-diameter collection chamber. The water leaves the collection chamber
through a 3 / 8-inch-diameter tube. This type of water-cooling design
keeps the cooling tubes as large as possible and, hence, pressure drop
as small as possible. This is consistent with the physical size require-
ments of the tip.
56
-------
10s
o
^ I04
H
I
Ld
10'
0.01 0.02 0.03 0.04
FRICTION FACTOR.f
0.05
0.06
0.07
A-iimae
Figure 11-42. FRICTION FACTOR AS A FUNCTION OF
WEIGHT FLOW FOR 1-INCH-DIAMETER DRAWN STEEL
TUBING CONTAINING FLOWING WATER AT 85°F
57
-------
00
I05
10"
O
r
o
10"
10*
10'
PRESSURE DROP.psig
Figure 11-43. SYSTEM PRESSURE DROP PER TUBE
AS A FUNCTION OF WEIGHT FLOW OF WATER
-------
COLLAR, 1.50-in. OD
8 in.-
6ft
I-in. TUBING
4-32139
Figure 11-44. FIVE-HOLE PITOT TUBE PROBE HEAD
The gas-sampling probe (Figure 11-45) is constructed similarly to
the five-hole pitot probe, except that the tip has only a single center
hole, and it is slightly longer. Both of the probes are designed to be
inserted into a water-cooled "general probe holder, " which will allow the
insertion of the probe tips into the hot model up to a depth of 5 feet.
The general probe holder (Figure 11-46) is a series of concentric tubes,
with a center tube large enough to hold the water-collection chamber of
both probe tips and the outer tubes carrying the water for cooling. The
2-1/2-inch-diameter holder is large in comparison to the probe tip. Its
large size is necessary to maintain a reasonable water pressure drop of
about 50 psig.
The probe positioner, described earlier in this report, supports the
probes with two pillow blocks which allow the probes to rotate. Aluminum
bushings are inserted into the blocks so that various sized probes can be
used. The original bushing was made for the cold-model probe which
had an outside diameter of 1. 00 inch; therefore, a new bushing was needed
to adapt the positioner to the 1. 75-inch diameter of the probes used for
hot-model testing.
59
-------
WATER
COOLING
INLET
12 in.
AINLESS STEEL TUBING «==j
rPE-304;5/32-in.OD;O.I36-in. ID
*
Figure 11-45. GAS-SAMPLING PROBE HEAD
A-32160
-------
-0.0625 in.
THICK •
2.50in.x|| go
2.00 in. x 16 go
1.75 in.x Mgo
Figure 11-46. GENERAL PROBE HOLDER
-------
To facilitate the accurate rotation of both probes and to be able to
return them to their original position, within 1/2 degree, we mounted an
angular vernier scale to the rear of the adapter bushing (Figure 11-47).
Additional modifications included a probe support, which was added at the
front of the probe positioner (Figure 11-47) because of the heavier probes
used for hot-model work.
Figure 11-47. MODIFIED PROBE POSITIONER
FOR HOT-MODEL SAMPLING
The hot-probe hemispherical head, multidirectional impact tube
(MDIT) was calibrated using the techniques outlined earlier in this report
for the cold-model probe. Flow conditions of 17 ft/s and a Reynolds
number, NR , of 25, 000 were used for calibrating the hot hemispherical
probe. The data were reduced by means of a computer program similar
to one used by the International Flame Research Foundation. The fol-
lowing series of pressure differentials were used as data input to the
calibration program:
62
-------
= po - pa (II- 37)
ct
AP,3 = p, _ p3 (11-38)
AP24 - p2 - P4 (H-39)
AP03 = PO - P3 (11-40)
APM = po - p4 (H-41)
Then the following pressure differentials are calculated using the input
values given above:
Apoi = Ap03 - AP13 (H-42)
A p02 = A Po4 - A P24 (H-43)
To simplify the equations for the pressure recovery factors, A P , the
folio-wing identities are used:
PT = APol + Ap02 + Ap03 + AP04 (11-44)
PR = SQRT C(Ap01)2 + (Ap02)2 + (Ap03)2 + (AP04)2] (11-45)
The MBIT is calibrated for the three recovery coefficients, K», K ,
and K . These coefficients are dependent on the conical angle, $, and
are only slightly dependent on the magnitude of the velocity, V, and on
the dihedral angle, 6. The angles, $ and 6, are defined as spherical
coordinates. (See Figure 11-11.)
In the free jet used for the calibration —
Pc - P. = 0
S A
where —
Pc = static
O
P. = atmospheric
j\
Therefore at * = 0°
QA
(AP) at * = 0° = P(dynamic) = 1/2 PV2 (11-46)
For each pair of values of $ and 6, P and P_ were calculated from the
pressure differences with the aid of Equations 11-44 and 11-45; K^, K
and K were calculated with the aid of Equations 11-47, 11-48, and 11-49.
63
-------
= SORT (1 - PT/2PR) (H-47)
(APo- A)$ = 0
K = - = - ^ - (11-48)
D
R*, 6
(^PoJ* 6
K - . ' , (I
~
Using the method of least squares, the constants A., B., C, and D of
the following equations were calculated:
5 (n-50)
KV = BO -f B2 *2 + B4 *4 (n
K = 1 + C[exp(-D*2) - 1] (H- 52)
The following equations represent the line of best fit for the calibration
results of the hemispherical (8 mm, 40 degree) MBIT:
$ = 0.7706 K^ + 0.2724 K^3 - 0.0598 K$5 (H-53)
KV = 0.7377 - 0.1588 $2 + 0.1292 $4 (11-54)
K =1+4.37 [exp(- 0.405 $E) - 1 ] (H-55)
Table II- 5 shows the measured and the calculated (by the line of the
best fit method) values of $, KV, and K . The agreement is 1/2% for
all values, which is considered very good for this type of system.
C. Hot-Modeling Furnace Instrumentation
Figure 11-48 is an overall view of the hot-model instrumentation pack-
age. The instruments are mounted in two separate but interconnected
dust-tight metal cabinets. The cabinet on the left contains the analyzer
sections of four Beckman infrared units used to measure CO, COz, CH4,
and nitric oxide (NO). The three valves mounted at the top of the cab-
inet are used to direct the sample gas to the desired cell while providing
a nitrogen-gas mixture to the unused cells.
64
-------
Table II-5. EXPERIMENTAL VERSUS CALCULATED BEST FIT
VALUES OF CALIBRATION DATA FOR THE FIVE-HOLE
HEMISPHERICAL HEAD PITOT PROBE
KIT
IT *-^
Measured
0°05'
10°00'
20°00'
30°00'
35°00'
40°00'
45°00'
50°00'
55°00'
60°00'
Calculated
0°06'
10°04'
20°07'
30°14'
34°Z1'
39°50'
45°11'
50°H'
54°57'
59°54'
Measured
0. 74160
0. 73254
0. 71342
0. 70411
0. 69720
0. 69367
0. 69751
0. 68226
0. 69903
0. 72176
Calculated
0. 73722
0. 73300
0. 72028
0. 70389
0. 69645
0. 69101
0. 68893
0. 69172
0. 70111
0. 71898
Measured
1. 00000
0.95686
0. 80200
0. 55046
0. 39522
0. 19607
0. 01541
Calculated
0. 99999
0. 94643
0. 78961
0. 54080
0. 38710
0. 21724
0. 03399
-0.17142 -0.15976
-0.35147 -0.36112
-0.54699 -0.56721
The cabinet shown in the right side of Figure 11-48 contains the
amplifier and strip-chart recorder for each infrared analyzer, an oxygen
analyzer, an NO (NO + NO2) analyzer, and the sample flow-control system
X. '
for all of the measuring equipment. The amplifiers and recorders for
CO, COa, and CH4 are mounted in the upper portion of the cabinet. Each
recorder is mounted directly above its amplifier section (Figure 11-49),
thus allowing the operator to easily compare the meter reading with the
strip-chart record while calibrating an instrument. The readings on the
strip recorder and meter should both correspond on a 0-100 scale.
The sample calibration flow-control system is located in the lower
portion of the control cabinet (Figure 11-50) together with the NO amplifier
and strip recorder. The flow controls for each gas being analyzed are
grouped vertically and consist of a rotameter with an integral needle
valve, a shutoff valve for the sample, a valve for each calibration gas,
and a valve for the "zero" gas (pure nitrogen). The rotameters used
for nitrogen oxides sampling are specially constructed: All of the sur-
faces that contact the sample are either made of Type-316 stainless steel
or of Teflon.
65
-------
Figure H-48. OVERALL VIEW OF
HOT-MODEL INSTRUMENTATION
In the lower center of the control panel, two filter chambers dry and
remove particulate matter from the sample before it enters the analyzer.
The sample for nitrogen oxides analysis is drawn separately, and the
moisture is removed in a separate chamber (not shown) mounted on the
side of the cabinet. The drying agent for the nitrogen oxides sample is
a 3-angstrom molecular sieve which does not scrub the nitric oxide
from the sample.
1. NO -NO Measurements
X-
Nitric oxide and nitrogen dioxide (NO2) concentrations were de-
termined on a continuous basis using a nondispersive infrared analyzer
for NO followed by an electrochemical cell instrument for NO . NOz was
Jv
determined by difference in some cases. Evacuated flask grab samples
were obtained periodically for wet-chemical spot-checks using the ASTM
1607-D (PDA) method for analysis.
66
-------
Figure 11-49. CLOSE-UP VIEW OF INFRARED ANALYZER,
AMPLIFIERS, AND STRIP CHARTS FOR CARBON
MONOXIDE, CARBON DIOXIDE, AND METHANE
Figure 11-50. SAMPLE TREATMENT AND FLOW-CONTROL SYSTEM
67
-------
Instruments were calibrated using both a permeation tube having a
controlled known release of NO and certified prepared cylinder gases
X
containing known quantities of NO and NO2. Figure 11-51 shows the sam-
ple handling and conditioning system. All components of the sampling
system were carefully designed to minimize loss of NO in the system
X.
through reaction or adsorption. NO2 is extremely reactive with almost
all materials. Below are the three basic criteria for designing a sampling
system for NO (NO and NO2):
• The sample system should be kept as short and compact as possible.
This minimizes the amount of system wall area available for reaction
with NO2 and adsorption of NO.
• All materials of construction should be glass, Teflon, or Type-316
stainless steel only. These materials are least reactive with NO2.
• Condensate traps with minimum gas-liquid contact should be used.
NO2 reacts readily with water to form nitric acid; therefore, the
water vapor in the sample must not condense in an uncontrolled
place such as the tubing.
The sample gas is drawn from the furnace through a special quartz
probe (sections on sample probes) by a Dia-Pump Model 08-800-73 all
stainless steel and Teflon pump delivering approximately 0.4 CF/min.
(This sample delivery rate is dictated by the requirements of the measur-
ing instruments. ) The sample is immediately passed through a stainless
steel large-particle filter. Both the pump and filter are kept above 50°C
to prevent condensation of the water vapor inherent to combustion products.
Next the sample passes through a water trap (Figure 11-52) to remove
any water that otherwise might condense later in the sampling system.
The sample then passes through a Whitney No. IGS4-A shutoff valve and
No. IRS4-A flow control valve, both of stainless steel with Teflon seats
and packing. An in-line flowmeter. (rotameter) ensures an accurate
measure of flow.
Once the sample has left the rotameter, it enters a Beckman Model
315A infrared NO analyzer. The electrical output of the analyzer is fed
to a continuous strip recorder. The Beckman Model 315A uses a
"nondestructive" method of analysis involving a simple optical system to
measure the amount of infrared energy absorbed by the gas component
of interest. Consequently, the sample leaves the analyzer in the same
68
-------
ATMOSPHERIC
VENT
ROTOMETER
0-0.5 CF/min
(ALL SS 316)
ROTOMETER
0-0.5 CF/min
(ALL SS3I6)
WHITTAKER
NOx
MONITOR
S02 SCRUBBER
SS3I6
PARTICLE
FILTER
WATER
TRAP
BECKMAN
315 A
NO*ANALYZER
FLOW
CONTROL
VALVES
BLEED VALVE
BYPASS
PROBE
CONSTANT-TEMPERATURE
WATER BATH
NOX PERMEATION
TUBE
PURE N2
(2000 psig)
A-81848
Figure 11-51.
NO .-NO SAMPLING SYSTEM
x
-------
GROUND-GLASS
CONNECTION
SAMPLE
OUT '
GROUND-GLASS
CONNECTION
-25° TO +I000F
^^^ THERMOMETER
2 .
5
— z —
\
t>
X
C^
N
/
-^
DRY ICE /ALCOHOL
COLD BATH
I
-*•
1
w /
—
--
•-
•-
1
^J
^-
~^
_s
^^
-^
N
\
— GL
-*
— • —
ASS-GLASS SEAL
SAMPLE
' IN
1 ^
-7
-T^^
J
LOW-TEMPERATURf
TUBING PUMP
TEFLON -COATED
CONDENSING TUBES
_—- COLLECTION CHAMBER
(2-in.lDxl2-in. HEIGHT
A-81852
Figure 11-52. DRYING SYSTEM FOR CONNECTION
TO NO, NO2, NO EQUIPMENT
70
-------
condition as it entered. The sample can be passed on for further use
because it is not altered by the NO analyzer. In our system the sample
is then passed through another rotameter to regulate the flow necessary
for the NO analyzer. In this case, flow is regulated by bleeding off
X
part of the sample because the flow from the NO analyzer is larger than
required by the NO analyzer. NO is determined by a Whittaker Model
X X.
NX-110 cell, which is unaffected by nitrogen, oxygen, water vapor, hy-
drocarbons, carbon monoxide, and carbon dioxide. The analyzer operates
on the principle of a fuel cell: NO is adsorbed in a special sensing
electrode to form activated species capable of undergoing electroxidation.
The resulting electrical current is directly proportional to the partial
pressure of NO in the gas mixture. All interconnecting tubes in the
X.
system are Teflon with stainless steel end fittings.
Calibration of the NO -NO instruments is done with both compressed
X.
gas samples containing a known concentration of NO and NOg and a per-
meation tube. The permeation tube is filled with an appropriate material
giving off NO2. The NO2 passes through the FEP Teflon walls of the
tube at a known rate, which, when a flow of gas passes over the tube,
produces a known concentration of NOa in the stream. The permeation
rate is a function of tube temperature. Experience shows that the tube
temperature must be constant to within ±2% accuracy. The permeation
tube is used as the primary standard, with the compressed gas gauged
against the tube.
2. Methane, CO, and COz Measurements
Nondispersive infrared analyzers are used for CO, COz, and CH^.
measurements. These analyzers do not affect the sample gas and can
be operated in series. They are calibrated by using certified gases with
known concentrations of the species being determined. Figure 11-53 is
a schematic diagram of the system. The infrared analyzers require a
completely dry sample. Therefore, the sample is first passed through
a water trap and a calcium sulfate drying tube. A small in-line filter
is placed immediately after the drying tube to trap particles of calcium
sulfate that may be carried over by the gas stream.
71
-------
ATMOSPHERIC
VENT
FLOWMETER
0-0.5 CF/min
TO OXYGEN
SYSTEM
i!
METHANE
ANALYZER
BECKMAN
315 A
ll
II
C02
ANALYZER
BECKMAN
315 A
jj
CO
ANALYZER
BECKMAN
315 A
\
V
FLOWMETERING
VALVES..-— — _
/>IV>
rv *•» ^/C»l v
• y-viv
,\
1
I
I
METERING
VALVE
IA-CYLINDER
N2
(2000 psig)
PURGE GAS-0.5 CF/min
IM
TO 02 ANALYZER
C02MIX CO MIX CH4MIX
(20OO psig)
N2
(2000 psig)
DRYING COLUMN
WATER TRAP
PUMP
PROBE
A-81850
Figure 11-53. CH4, CO, AND CO2 SAMPLING ANALYSIS SYSTEM
-------
3. Oxygen Measurement
A portion of the "conditioned" sample gas is diverted from the infrared
analyzers to a Beckman Model 742 oxygen analyzer, shown in Figure 11-54.
ATMOSPHERIC
VENT
FLOWMETER
(0-1.0 CF/min)
(WITH FLOW CONTROL VALVE)
BECKMAN
MODEL 742
OXYGEN
ANALYZER
POLYETHYLENE
TUBING J
MODEL 2550
STIP RECORDER
CONDITIONED GAS
SAMPLE
IA-CYLINDER IA-CYLINDER
PURE N2 02-N2 MIXTURE
(2000 psig) (2000 psig)
IA-CYLINDER
(2000 piig)
&-8I849
Figure 11-54. SAMPLING/ANALYSIS
SYSTEM FOR OXYGEN ANALYSIS
The analyzer consists of an amplifier unit coupled with a polarographic
oxygen sensor. The sensor contains a silver anode and gold cathode
that are protected from the gaseous sample by a. thin membrane of Teflon.
An aqueous KC1 solution is retained in the sensor by the membrane and
serves as an electrolytic agent. As Teflon is permeable to gases, oxygen
will diffuse from the sample to the cathode with the following oxidation-
reduction reactions:
Cathode Reaction O2 + 2H2O + 4e ~* 4OH
Anode Reaction 4Ag + 4C1 - 4AgCl + 4e
With an applied potential between the anode and cathode, oxygen is reduced
at the cathode, causing a current to flow. The magnitude of the current
is proportional to the partial pressure of oxygen present in the sample.
73
-------
4. Hydrocarbon Measurements
Gas chromatography was used for a complete hydrocarbon analysis
of Ci to CIQ. This chromatograph is equipped with a long capillary col-
umn internally coated with adsorbent, which gives the required resolution.
As this chromatograph could not be moved to the test site, evacuated
flask grab samples were used.
During flue gas sampling tests we found that the bulk water removal
system was inadequate for a full day's run. After about 4 hours of
sampling, the desiccant cylinder had absorbed its maximum capacity of
water and had to be replaced. We designed and built a new bulk water
removal system (Figure 11-55) which operated together with our original
unit.
STAINLESS-STEEL
THERMOMETER ~~
SAMPLE
PUMPO
TEFLON TUBING
ICE-FILLED
AREA
2-qi GLASS
COLLECTION FLASK
TEFLON TEE-FITTING
SAMPLE FROM PROBE
TEFLON BULKHEAD FITTINGS
REMOVAL TOP
TEFLON TUBE COIL
HEAT EXCHANGER
OUTER METAL
CASE
FOAM INSULATION
GLASS SEAL CAP
LEVEL GAGE
DRAIN VALVE
A-IOII076
Figure 11-55. MODIFIED BULK WATER REMOVAL COLD TRAP
A 25-foot coil of Teflon tubing with a 0. 25-inch outer diameter was wound
around a 10-inch-diameter plastic cylinder; a 1-liter removable flask
was attached at the bottom end. The coil and flask are placed in an in-
sulated container of ice where the gases are cooled to 40°F. The con-
densed water flows down the Teflon coil and is trapped in the collection
flask.
74
-------
A data integration system was also installed.
The integrator receives a fluctuating signal from either the NDIR gas
analyzers or the COS electronic manometer measuring velocity. The
integrator then computes a mean value of the concentration or velocity
being measured and provides a digital display of this value. This inte-
grator is coupled between the output of the Datametrics 1014A electric
manometer and the Brush recorder. The d-c voltage output from the
electric manometer is summed up by the voltage integrator and is dis-
played by the recorder as a voltage sum versus time. The manometer
puts out a 10-volt signal for full-scale readings independent of the range
switch setting. Thus to calibrate the integrator a 10-volt signal is applied
and the time to reach sums between 0 and 80 volts is determined. To
calculate the voltage of an unknown signal, the ratio is taken between the
time intervals required for the unknown and the 10-volt signals to reach
a given sum. This ratio is multiplied by 10 to give the voltage. The
voltage can be transformed directly into a pressure differential by knowing
the range switch setting of the electric manometer. Velocity measure-
ments can be made with the experimental arrangement down to 1 ft/s,
with preliminary measurements indicating a 2% error in reproducibility.
The results from the electronic integrator (Figure 11-56) were com-
pared with integrating the direct readout of the manometer by a graphical
technique. The agreement between methods was within 1/2%.
For the case where the magnitude of fluctuations in the signal is
about as large as that of the average signal, it may be impossible to
get a constant time-averaged signal to the accuracy desired. If the time
base operational amplifier No. 1 should approach saturation before suf-
ficient stability has been reached by the time-averaged signal, a signal
light tells the operator to close the switch to operational amplifier No. 3.
This operational amplifier works in a sample-and-hold mode. Therefore,
when the switch is closed, it takes the voltage at the output of the divider
and holds that value on the digital voltmeter or recorder allowing the
operator to record the value, reset the system, and start the next
integration.
75
-------
INTEGRATOR-
TIME BASE
INTEGRATOR -
TRANSIENT
SIGNAL
COMPARATOR
DIVIDER
DIGITAL
VOLTMETER
SAMPLE
AND
HOLD
A-92-788
Figure 11-56. BLOCK DIAGRAM OF AUTOMATIC DATA INTEGRATION SYSTEM
-------
RAW AND REDUCED DATA AND DATA PLOTS
Five experimental burners were studied during this program. The
raw data for each of these burners for both hot and cold tests are pre-
sented in the following sections. A complete description of each burner
is also given. The analysis of these data together with recommendations
for reducing NO emissions are presented in Volume I, a companion
publication.
A. Intermediate-Flame-Length Ported Baffle Burner
1. Burner Design
The outside steel air housing used for the axial flow burner with the
ported swirl baffle is identical to that used for the ASTM flow nozzle
described later. However, the inside diameter was reduced to 11-1/4
in. by adding a 3. 625-in. -thick insulating brick liner. The liner was
coated with a thin layer of Babcock & Wilcox K-2800 castable insulating
refractory to reduce the surface porosity of the brick liner and prevent
air from bypassing the ported swirl baffle as shown in Figure 11-57.
The length and shape of the flame is determined by the design of
the baffle inserted into the burner housing. We have three baffle de-
signs, generally described as producing a long, intermediate, and short
flame available for study. The dimensions for each baffle are shown in
Figure 11-57. The baffle consists of a cylinder of refractory with a
central gas nozzle and a number of air ports around the gas nozzle for
the combustion air. The length of the flame is varied by changing the
angle of the air holes to the burner axis and the thickness of the baffle.
The shortest flame is produced by the baffle having a swirl intensity of
about 0. 4.
The burner block or entrance port geometry in the furnace wall
differs for each baffle. The short flame diverges faster than the long
flame and therefore requires a larger divergency of the burner block.
The shape and dimensions of each burner block are shown in Figure 11-57.
77
-------
oo
GAS NOZZLE
ll-l/4-in.-OO
BAFFLE
SEAL BETWEEN
GAS NOZZLE 8 BAFFLE
AND BAFFLE 8 BODY WITH
R 81 3000 OR EQUAL
A-I03-I462
NO SCALE
BAFFLE
a. LONG FLAME
b. SHORT FLAME
c. INTER. FLAME
AIR PRESSURE FOR
40,000 SCF/hr at 850 °F
3.25 in. we
18 in. we
14 in. we
ii.ii
A
1-1/4 in.
3/4 in.
1 in.
"B"
6 in.
5 in.
8 in.
"c"
2-3/8 in.
2-3/8 in.
3-7/8 in.
"D"
13 in.
16-1/2 in.
13 in.
Figure 11-57. ASSEMBLY DRAWING OF AXIAL-FLOW BURNER WITH PORTED SWIRL BAFFLES
-------
The central burner tube (Figure 11-58) of the inter mediate-flame
ported swirl baffle was also tested in a modified form to provide radial
rather than axial entrance of the natural gas. Radial entrance of the gas
into the air stream is a common technique used to increase the mixing
rate between gas and air; this shortens the flame. Shortening the flame
was necessary because the original burner design did not provide com-
plete combustion before the gases entered the furnace flue. Figure 11-58
shows the details of how the burner tube was modified to provide radial
gas entrance. The central nozzle was constructed of Type-316 stainless
steel machined to an outside diameter of 1.125 in. with an inside diam-
eter of 1 in. The end of the tube was capped, and six equally spaced
holes were drilled in the sidewall 1/2 in. back from the tip. Each hole
was drilled 7/32 in. in diameter without burrs; this provided a gas vel-
ocity of 530 ft/s at a 3000 CF/hr input. The gas nozzle was then pushed
through the refractory baffle until the tip protruded 2 in. beyond the baffle.
During initial tests, we found that the rotational orientation of the
nozzle noticeably changed the flame length. The nozzle was positioned
for the shortest flame. This occurs when the gas nozzle holes approxi-
mately line up with the air holes in the baffle.
Table II-6 compares the flue gas analyses for the modified and un-
modified burner nozzles while operating at 2 million Btu/hr with stoichio-
metric quantities of air. These data were collected using ambient air
for combustion at 100°F.
With the unmodified burner nozzle, we found both oxygen and methane
in the flue. The oxygen concentration was very high for the fuel/air
ratio. In addition, the concentrations of each of the flue components
fluctuated with time between the concentrations shown in Table II-6.
When the burner was modified, fluctuations in concentration also
disappeared and the COz and Oz concentrations more reasonably agreed
with calculated amounts. In addition, no methane (unburned hydrocarbons)
was detected.
79
-------
SCH 40-NOMINAL PIPE SIZE ,"A"
C DIMENSION
PIPE THREAD
SIZE^'B"
oo
0 BAFFLE
LONG FLAME
SHORT FLAME
INTER FLAME
X
m /
III
III
II
II
A
1/2
3/4
B
1
1/2
3/4
"c"
in
1 OK +0.00
1 "-0.02
n 7* +0.00
U '3-0.02
• o +0.00
10 -0.02
->
1
T
1
D
5
4
5-1/2
5ft Oin.
E
7/32
7/32
7/32
1
— DO FIRST
\
J -»
,
t
"D"
U— 1/2 in.
1
1
X
ss
u
u
\x
SILVER SOLDER
"* s END CAP
^PORT DIAM,"E"
/ SIX EQUALLY
^ ~\X SPACED GAS PORTS
><\.
\\
y
. JJ
A-92-86O
Figure 11-58. MODIFIED GAS NOZZLE CONSTRUCTION
-------
Table II-6. FLUE GAS ANALYSIS COMPARISON FOR
MODIFIED AND UNMODIFIED GAS BURNER NOZZLES
Gas Input, 106 Btu/hr
Air/Fuel Ratio
Air Temperature, °F
Flue Analysis
Carbon Monoxide, ppm
Carbon Dioxide, %
Methane, ppm
Nitrogen Oxides, ppm*
Oxygen, %
Modified
2. 0
10
100
30
10. 5
1. 0
Unmodified
2. 0
10
100
60-100
7-9. 8
1300-1800
330-410
3. 5-7
2. Tracer-Gas Studies
The tracer-gas mixing study for the axial burner with the intermediate-
flame ported swirl baffle is presented in Figure 11-59.
g
\-
s*
UJ
o
1250
IOOO
750
500
250
-30 -20 -10 0 10
RADIAL POSITION,cm
20
30
A-82-791
Figure 11-59. TRACER-GAS (Carbon Monoxide) RADIAL SCAN
7. 6 cm FROM BURNER BLOCK OF THE INTERMEDIATE-
FLAME-LENGTH PORTED SWIRL BAFFLE BURNER
81
-------
This scan, taken at an axial position of 7. 6 cm from the burner block,
shows the radial concentration readings are very near to ambient, thus
indicating that mixing would be complete at this position. We conclude
that the major mixing phenomena for the axial burner with ported swirl
for an intermediate flame are occurring in the burner block, which is an
area into which we cannot probe with our equipment. The scope of this
project included only areas outside the burner block and in the "combus-
tion chamber. "
3. Cold-Model Velocity Data
Point-by-point velocity profile data were collected for the axial bur-
ner with the intermediate-flame ported swirl baffle by using a multi-
directional impact tube (MBIT). The geometry used in data collection
and reduction is shown in Figure 11-60.
Y-Z PLANE
DIHEDRAL
X-Y PLANE
Z CONICAL
PROBE ROTATION
9
POSITIVE
PROBE ROTATION
PROBE COORDINATE SYSTEM
BURNER COORDINATE SYSTEM
A-32200
Figure 11-60. SAMPLING PROBE AND BURNER COORDINATE SYSTEM
82
-------
The raw data, obtained from the axial flow burner fitted with the
ported swirl baffle, are shown in Table II-7. The rotation angle of the
probe in the x-z plane is represented by 8. AP is the axial position of
the probe in centimeters, and RP is its radial position in centimeters.
PB is the atmospheric pressure in millimeters of mercury, and P is
xy
the pressure differential between pressure holes, x and y, expressed in
terms of time. The pressure differentials are expressed in terms of
time because of the integration method used to collect the data. The
pressure differentials we are measuring are constantly changing since we
are dealing with a turbulent system.
We electronically sum the instantaneous values for a preset amount
of time to determine the mean value of these transient pressure differ-
entials. This total equals the product of the average instantaneous pres-
.sure differential and the time interval needed to reach it. Therefore,
measuring the time interval needed to reach this sum by a transient
pressure differential makes it possible to determine the mean value of
the pressure differential. These experimentally determined mean pres-
sure differentials yield the velocity (magnitude and direction) of the air
stream by means of the techniques outlined earlier in this report. The
raw pressure data are translated into velocities using a computer program
written especially for this purpose, as shown in Appendix II-A.
The reduced velocity data for the intermediate-flame ported swirl
burner are given in Table II-8. The direction of the velocity is defined
by FI, the conical angle measured about the x-axis, and by A, the
dihedral angle measured from the positive y-axis in the y-z plane. The
magnitude of the velocity in ft/s is given by V, p is the density of the
air in slugs/ft-sq in. , and VX, VY, and VZ are the velocity components
in ft/s. Both VT, the tangential velocity, and VR, the radial velocity,
are expressed in ft/s. PST is the static pressure in psig.
The graphic representations of the axial velocity, VX, and of the
tangential velocity, VT, as shown in Figures 11-61 and 11-62, respectively,
are displayed by means of a computer plotting routine. These computer
graphs allow a quick visual check on the quality of the data being col-
lected and on whether more data are necessary to describe a profile.
83
-------
Table II-7. RAW DATA OBTAINED FOR THE INTERMEDIATE-FLAME-LENGTH
AXIAL FLOW BURNER FITTED WITH THE PORTED SWIRL BAFFLE
oo
CALIBXATION COEFFICIENTS FOR FORWARD FLOW
41 = 0.770590 A2 - 0.272353 A3 = -0.059818
RO = 0.737720 82 = -0.15b821 84 •= 0.129246
C - 4.464660 0 = 0.394812
AXIAL BURNER WITH PORTED SWIRL FOR INTERMEDIATE FLAME - COLD MODEL
TOTAL DATA INPUT
THETA
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
loO.
180.
ico.
180.
1UO.
mo.
160.
lao.
1HO.
lao.
180.
0.
0.
0.
0.
0.
0.
0.
0.
u.
0 •
0.
0.
3.
u •
0 .
0.
AP
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
/.&
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
RP
25.0
20.0
19.0
18.0
17. C
16.0
15.0
14.0
13.0
12.0
12. C
11 .0
10.0
9.0
8.0
7.0
6.C
5.0
4.C
3.C
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.C
-10.0
-11.0
-12.0
-13.0
- 14.0
-15.0
- 16.0
-17.0
-18.0
-19.0
-20. C
-25.0
P13
5960.00
5340.00
-10660. CO
-552.00
-347.00
-332.00
-411.00
-621.00
-1102.00
-266.00
-2640.00
-6760.00
12370.00
4210.00
5230.00
4430.00
5440.00
-2150.00
-2400.00
-2410.00
-2560.00
-3270.00
-2900-00
-4710.00
-5530.00
-5980.00
-6380.00
-8140.00
-1003.00
-735.00
-600.00
-492.00
-434.00
-406.00
-436.00
-419.00
-589.00
-1160.00
79200.00
1390.00
2200.00
6640.00
-54500.00
201600.00
P03
3260.00
2720.00
8330.00
-2890.00
-6440.00
695.00
650.00
591.00
664.00
685.00
626.00
1060.00
I 100.00
1370.00
1530.00
2090.00
2680.00
2950.00
2200.00
1950.00
1790.00
1950.00
1600.00
1380.00
1650.00
1580.00
1500.00
1750.00
-2510.00
-2330.00
-1540.00
-1670.00
-1910.00
-3340.00
14700.00
1890.00
1480.00
681.00
631.00
793.00
1660.00
3370.00
4820.00
4510.00
P24
2680.00
1940.00
1030.00
295.00
152.00
86.00
107.00
1 16.00
144.00
165.00
136.00
233.00
262. OC
366.00
493. OC
820.00
1330.00
2850.00
3010.00
2560.00
1830.00
1880.00
1610.00
1260.00
1280.00
1130.00
1 160.00
1 130.00
-9170.00
-13400.00
1190.00
-732.00
-502.00
-402.00
-298.00
-243.00
-219.00
-243.00
-317.00
-469.00
-1004.00
-2920.00
13000.00
3400.00
P04
3170.00
2590.00
1760. OC
530.00
277.00
162.00
172.00
195.00
249.00
332.00
273.00
410.00
539.00
733.00
1070.00
154C.OO
2030.00
2450. CO
1960.00
1800.00
1480.00 .
1530.00
1410.00
1200.00
1270.00
1360.00
1350. CO
1420.00
11500.00
34900.00
-6860.00
-2980.00
-2040.00
-1510.00
-1116.00
-898.00
-756.00
-766.00
-1330.00
-1500.00
-2270.00
-62400.00
5280.00
3790.00
POA
88.40
69.00
72. 10
72.00
74.00
69.40
77.40
80.60
84.60
98.00
61. 70
1C 3. 00
98.50
IC4.0C
103.00
115.00
104.00
86.80
84.80
83.30
84.50
B2.30
102.00
95.00
88.50
87.20
87.00
90.00
107.00
106-00
89.30
103.00
100.00
94.80
107.00
82.50
67.30
74.80
71.40
71.30
74.50
75.30
76.70
73.80
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760
760
760
760
760,
760
760
760
760
760
760
760
760
760
760
760
7oO
760
76C
76C
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
-------
Table H-8. REDUCED VELOCITY DATA FOR THE INTERMEDIATE FLAME
LENGTH OF THE AXIAL FLOW BURNER FITTED WITH THE-PORTED SWIRL BAFFLE
oo
4P
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
rtP
25.0
20.0
19.0
ia.o
17.0
16.0
15. C
14.0
13.0
12.0
11 .0
10. C
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-'..0
-5.0
-6.0
-7.0
-8.0
-9.0
-10.0
-11.0
-12.0
-13. C
-14.0
-15.0
-lo.O
-17.0
-18.0
-19.0
-20. 0
-25.0
FI
23.5
26.7
43.0
46. 1
44.8
42.6
36.7
37.9
36.8
44 .4
41 .0
45.6
45.2
45.0
40.6
32.8
160.9
165.3
165. 1
164.8
165.4
164. I
163.7
162.8
158.7
159.6
157.3
43.7
44.3
64.9
40.3
37.6
35.3
33.1
30.9
32.4
29.6
25.8
30.8
37.9
20-4
7. '2
19.6
OELTA
114.2
109.9
84.4
61.8
66. 3
75.4
75.4
79.4
82.5
87.0
88.0
91.2
94. 9
95. 3
100.4
103. /
322.9
321.4
316. 7
305.5
299.8
299.0
284.9
283.0
280.7
2S0.3
277.9
353.7
356.8
26.7
326.0
319. 1
314. 7
304.3
300. 1
290.3
281.8
269. 7
251.3
245.4
246.2
76.5
90.9
RHO
0.0000159
C. 0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0.0000159
O.C000159
O.OOC0159
0.0000159
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
6.39
7. 10
7.91
15.53
21.43
28.36
26.20
24.84
22.09
22. 16
16.97
15.87
13.42
11.82
9.31
7.74
9.26
10.03
10.40
10.78
10.25
1 1.02
11.38
10.63
10.58
10.73
10. 10
7.98
9.35
12.00
12.69
14.42
15.83
17.42
19.43
19.22
18.97
17.16
13.53
8.96
6.42
5.84
6.02
VX
5.86
6.34
5.78
10.77
15.21
20.86
20.98
19.58
17. 19
15.83
12.79
11 .Ob
9.45
8.35
7.07
6.50
-8.75
-9. 70
-10.05
-10.41
-9.92
-10.60
-10.92
-10. 16
-9.86
-10.06
-9.32
5.76
6.68
5.07
9.68
11.42
12.91
14.59
16.65
16.22
16.49
15.45
11.62
7.07
6.01
5.80
5.67
VY
-1 .04
-1.09
0.52
5.27
6.06
4.82
3.95
2.80
1. 79
0. 79
0.38
-0.24
-0.82
-0.78
-1.10
-0.99
2.41
1 .97
1.94
1 .64
1.28
1.45
0.82
0.70
0. 71
0.66
0.53
5.48
6.53
9.71
6.82
6.67
6.44
5.37
5.01
3.59
1.92
-0.02
-2.21
-2.28
-0.90
0.17
-0.03
VZ
2.33
3.00
5.38
9.87
13.83
18.60
15. 18
15.02
13.75
15.49
11.13
11.35
9.49
8.33
5.96
4.08
-1.82
-1.57
-1.83
-2.29
-2.23
-2.62
-3.08
-3.05
-3.77
-3.67
-3.84
-0.60
-0.35
4.89
-4.58
-5.76
-6.50
-7.86
-8.65
-9.67
-9. 17
-7.47
-6.56
-5.01
-2.05
0.71
2.02
VT
2.53
3. 14
5.06
10.25
13.80
17.61
14.67
14.07
12.55
13.18
9.54
8.96
7.25
6.06
4.43
3.25
2.67
2.26
2.21
1.96
1. 16
0.00
- 1.31
-2.03
-2.73
-3.C4
-3.28
-3.51
-4.48
-4.79
-6.67
-7.60
-8.22
-8.80
-9.43
-9.75
-9.0C
-7.28
.-6.69
-5.23
-2.22
-0.73
-2.01
VR
0.33
0.60
1.89
4.50
6. 13
7.70
5.55
5.96
5.92
8.17
5.74
6.97
6^17
5.77
4.13
2.66
1.4C
1.12
1.49
2.02
2.30
3.00
2.91
2.38
2.69
2. 14
2.0/
4.26
4.76
9.76
4.78
4.46
4.02
3.63
3.31
3.37
2.59
1.67
1.78
1.72
0.33
0.03
0.21
PST
0.010854
0.013949
0.013539
0.013626
0.013088
0.013337
0.010861
0.010738
0.010585
0.011771
0.009099
0.009932
0.009384
0.009478
0.008385
0.009205
0.010737
0.010847
0.011004
0.010784
0.011105
0.008769
0.009430
0.010312
0.010557
0.010547
0.010293
0.009117
0.009204
0.011865
0.009249
0.009303
0.009584
0.008075
0.010338
0.013185
0.011518
0.012188
0.012989
0.012968
0.012758
0.012512
0.013049
T
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760.
76C.
760.
76C.
76C.
760.
760.
76C.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
-------
RP VS. VX
20.99
20.36
19. 74
19.11
18.48
17.86
17.25
16.61
15.96
15. 36
14.73
14.10
13.<>8
12.85
12.23
11.60
10.98
10.35
9.72
9.10
6.47
7.85
7.22
6.60
5.97
5.34
4.72
4.09
1.47
2.84
2.22
1.59
0.96
0.34
-0.28
-0.90
-1.53
-2.15
-2. 78
-3.41
-4.03
-4.66
. -5.28
'5.91
-6.5-.
-7.16
-7.79
-8.41
-9.04
-9.66
-10.29
-10.9?
7.60
^
X X-_X X'X
-25.000 -20.000 -15.000 -10.000
-5.000
5.000
15.000
20.000
Figure 11-61. AXIAL VELOCITY PROFILE FOR THE INTERMEDIATE
FLAME AT THE AXIAL FLOW BURNER FITTED WITH THE
PORTED SWIRL BAFFLE (7. 6 cm From Burner Block Face)
86
-------
YS. VT
17.61
17.07
16.54
16.00
15.4h
14.93
14.3<)
13.85
13.1?
12. ;n
12.2*
11.71
11.17
10.64
10. 10
9.56
").03
8.49
7.95
7.42
6.K8
6.34
5.81
5.27
4.73
4.20
3.66
3.12
2.59
2.05
1.51
0.98
0.44
-0.09
-0.62
7.60
.77
-3.31
-3.b4
-4.38
-4.12
-5.45
-5.99
-6.53
-7.06
-7.60
-8.14
-8.67
-9.21
-9.75
-25.000 -20.000 -15.000 -10.000
-5.000
0.000
5.000
15.000
25.000
Figure II-62. TANGENTIAL VELOCITY PROFILE FOR THE
INTERMEDIATE FLAME AT THE AXIAL FLOW BURNER
FITTED WITH THE PORTED SWIRL BAFFLE
(7. 6 cm From Burner Block Face)
87
-------
Figure 11-61 shows the axial velocity at an axial position of 7. 6 cm
from the burner wall. Note that there is no central peak representing
the output from the gas nozzle. In fact, the velocity data in the central
region of the burner block at radial positions of ± 5 cm show reverse
flow. Forward velocity peaks do occur at radial positions of ± 14 cm
with magnitudes of 19.5 and 16.2 ft/s. Figure 11-62 shows a tangential
velocity of —9.75 ft/s at a radial position of —14 cm and 17.6 ft/s at 15
cm. We did not take velocity profiles beyond the 7. 6-cm axial position
because primary mixing is completed, as indicated by Figure 11-59. A
swirl number for the axial burner with the intermediate-flame ported
swirl baffle was calculated using the data in Table II-8. The value of
swirl intensity was 0. 17.
4. Hot-Model Input-Output Data
The burner with a radial gas nozzle was operated at four gas inputs
between 2335 CF/hr and 3160 CF/hr, with amounts of excess air between
5% and 20%, and at three different preheated air temperatures. Gener-
ally, we found that the amount of nitric oxide, NO, increased with in-
creasing excess air between 5% and 12%, then decreased with additional
excess air. Figure 11-63 shows this expected effect at a gas input of
2335 CF/hr. The peak concentration of NO always occurred between
about 1. 25 and 2. 25% oxygen in the flue. The peak NO formation increased
significantly when preheated air was used, and the location of the peak
shifted slightly. This same typical behavior was observed for gas inputs
at 2626 CF/hr, 2900 CF/hr, and 3160 CF/hr, as shown by Figures 11-64,
11-65, and 11-66.
Examination of the data in Figures 11-63 through 11-66 shows that our
method of controlling the preheat temperature allowed variations from
450°F to 570°F as the gas input was changed. Therefore, a direct com-
parison of the NO emissions from these curves is not possible. We re-
plotted the information for various excess oxygen levels as a function of
the preheat temperature and reconstructed % Oz vs. NO concentration
curves by interpolation at preheat temperatures of 450°F and 245°F. Data
for a 100°F preheat level were experimentally obtained at all gas inputs
and are also plotted in these figures. In addition, we extrapolated our
data and plotted a 700°F preheat temperature curve (also shown in the
88
-------
800
PREHEAT TEMPERATURE.'F
100
NOTE: DATA OBTAINED USING AXIAL
BURNER, INTERMEDIATE BAFFLE
AND RADIAL NOZZLE.
3 4
02 IN FLUE
A-112-1080
Figure 11-63. NO CONCENTRATIONS WITH GAS INPUT
OF 2335 CF/hr (Original Data)
89
-------
800
700
600
E
Q.
Q.
O 500
z
O
X
O
O
(E
400
300
200
100
PREHEAT
TEMPERATURE, °F
O 530
A 285
D 100
NOTE: DATA OBTAINED
USING AXIAL
\ BURNER, INTER-
\ MEDIATE BAFFLE
AND RADIAL
NOZZLE.
234
% 02 IN FLUE
A-112-1077
Figure 11-64. NO CONCENTRATIONS WITH GAS INPUT
OF 2626 CF/hr (Original Data)
90
-------
800
700
600
E
a.
a.
Q 500
ui
o
X
o
o
tr
H
Z
400
300
200
100
PREHEAT
TEMPERATURE, *F
O 475
A 280
D 100
NOTE: DATA OBTAINED
USING AXIAL
BURNER, INTER-
MEDIATE BAFFLE
AND RADIAL
NOZZLE.
I
I
I
234
% 02 IN FLUE
A-112 -1078
Figure 11-65. NO CONCENTRATIONS WITH GAS INPUT
OF 2900 CF/hr (Original Data)
91
-------
800
700
600
o.
Q.
5 500
z
UJ
o
. X
o
o
-------
figures). However, we have no experimental data to support the accuracy
of this extrapolation. Figures 11-66 through 11-70 show these interpolated
data, which are used for later analysis.
Working with the interpolated and actual NO curves, we found that
X
the formation of NO (as measured in the flue) is nearly linear with gas
input, as shown in Figure 11-70, for two preheat temperatures. We also
see from these data that the level of preheat temperature changes the
magnitude of NO emissions but not the linear relationship with the gas
input. Closer examination shows that the linearity of the curves improves
with increasing amounts of excess oxygen (excess air for combustion).
Figure 11-71 shows these same data for a 450°F preheat temperature on
an expended NO scale, where the change in linearity is more apparent.
From these data, we determined that the average increase in NO emis-
sions is 24% over the range of Z335-3100 CF/hr of natural gas input or
15.6 ppm per 1000 CF/hr change of gas input. We also found the rate
at which NO emissions increase with increasing gas input is greater with
higher preheat temperatures. At the 100°F preheat level, the rate of
increase of NO emissions is only 4. 0 ppm per 100 CF/hr change compared
with 15. 6 ppm per 100 CF/hr change at a 450°F preheat. The rate of
increase of NO emission with increasing gas input at a 700°F preheat
temperature should be compared with other preheat data with caution
because of its extrapolated nature. Interestingly, the rate of increase is
about 36 ppm per 100 CF/hr of gas input. Plotting the rate at which NO
emissions change with changing gas input as a function of preheat temper-
ature (Figure II-72) shows that the preheat temperature can change sub-
stantially between, 70°F and 250°F without changing the NO rate as a
function of gas input.
A limited amount of input-output testing was done for the intermediate-
flame baffle with the axial gas nozzle. Gas inputs above 2147 CF/hr
resulted in unburned gas in the flue; flue analysis was not possible under
these conditions. However, using this maximum gas input resulted in
the following comparison with radial gas nozzle operation.
a. The longer, less intense flame resulting from the burner with an
axial gas nozzle produces substantially less nitric oxide.
b. Preheated air has a lesser effect of NO formation with the axial
gas nozzle.
93
-------
1000
9OO
800
E
a
a.
15 600
tr
H
Z
UJ
o
g 500
O
o
x
O 400
O
CC
300
200
IOO
\
\
PREHEAT
TEMPERATURE,
•F
O 700
A 450
D 245
V 100
\
\
NOTE: DATA
OBTAINED
USING INTER-
MEDIATE
BAFFLE AND|
MODIFIED
RADIAL
NOZZLE.
234
% 02 IN FLUE
A-II2-I072
Figure II-67. NO CONCENTRATIONS WITH GAS INPUT
OF 2335 CF/hr (Interpolated and Extrapolated Data)
94
-------
1100
1000 -
PREHEAT
TEMPERATURE,
•F
O 700
A 450
D 245
V 100
DATA OBTAINED
USING INTER-
MEDIATE BAFFLE
AND MODIFIED
RADIAL NOZZLE.
100
234
% 02 IN FLUE
A-II2-I073
Figure 11-68. NO CONCENTRATIONS WITH GAS INPUT
OF 2626 CF/hr (Interpolated and Extrapolated Data)
95
-------
ItOO
IOOO
900
BOO
E
Q.
Q.
700
UJ
Q 600
X
o
o
tr
t 500
400
300
200
100
\
\
\
\
\
PREHEAT
TEMPERATURE,
•F
O 700
A 450
D 245
V 100
\
\>
NOTE: DATA OBTAINED USING
INTERMEDIATE BAFFLE
AND MODIFIED RADIAL
NOZZLE.
234
% 02 IN FLUE
A-II2-I074
Figure 11-69. ' NO CONCENTRATIONS WITH GAS INPUT
OF Z900 CF/hr (Interpolated and Extrapolated Data)
96
-------
.1100
1000
900
800
o.
a
700
UJ
9 600
x
O
500
400
300
200
100
450*F PREHEATED AIR
O 1/2% EXCESS OXYGEN
A 1%
D 2%
V 3%
O 4%
IQO'F PREHEATED AIR
• 1/2% EXCESS OXYGEN
A 1%
• 2%
T 3%
• 4%
NOTE: DATA OBTAINED USING
INTERMEDIATE BAFFLE
AND MODIFIED RADIAL
NOZZLE.
2300 2400 2500 2600 2700 2800 2900
NATURAL GAS INPUT, CF/hr
3000
3100
A-112-1076
Figure 11-70. NO CONCENTRATIONS WITH VARIOUS GAS
INPUTS FOR TWO PREHEAT TEMPERATURES
-------
E
Q.
0.
UJ
o
X
o
o
o:
850
800
750
700
650
600
550
500
450
400
EXCESS OXYGEN
o
A
D
1/2
1.0
2.0
3.0
4.0
NOTE: DATA OBTAINED USING INTERMEDIATE
BAFFLE AND MODIFIED RADIAL
NOZZLE.
2300 2400 2500 2600 2700 2800
NATURAL GAS INPUT, CF/hr
2900
3000
3100
A-112-1075
Figure 11-71. NO CONCENTRATIONS WITH VARYING GAS
INPUTS FOR 450°F PREHEAT TEMPERATURE
(Expanded NO Scale)
98
-------
UJ
(T
UJ
Q.
2
UJ
UJ
UJ
a:
a.
800
700
600
500
400
300
200
100
10 15 20 25 30
RATE OF CHANGE OF NO EMISSION,
ppm/100 CF/h change of gas input
35
40
A-II2-I07I
11-12. RATE OF CHANGE OF NO EMISSIONS/100 CF/hr
GAS INPUT AS A FUNCTION OF PREHEAT TEMPERATURE
99
-------
c. The peak NO formation occurs at higher levels of excess air.
Figure 11-73 shows the input-output test results for the intermediate
baffle and axial gas nozzle. Inxreasing the preheated air temperature
from 100° to 570°F increased the NO emissions a maximum of 130 ppm.
With the radial nozzle, the NO increased about 450 ppm for the same
increase in preheat temperature of 470°F. (The increase in NO for the
radial nozzle was interpolated from the data of Figures 11-67 and 11-70.)
In addition, the peak NO emissions occur with about 5. 5% oxygen in the
flue compared with 1.5-1.7% oxygen for the radial gas nozzle.
5. In-the-Flame Data Survey Results
As part of this program, we radially map the concentrations of CO,
COz, CH4, O2, and NO, the temperature, and the gas velocity. This
information is obtained to gain insight into the mechanism and location
of NO formation for different flame conditions and as the input to an NO
modeling program, also sponsored by EPA with Ultra Systems, Inc.
We completed gas species and temperature mapping for the intermediate-
flame baffle burner with both the axial and radial gas nozzles. These
maps were obtained while operating the burner at conditions producing the
maximum amount of NO as determined from the input-output tests.
Profiles were first run on the burner using the radial gas nozzle.
This nozzle was designed and installed to provide a shorter flame. The
original axial gas nozzle produced a flame that was longer than the fur-
nace with a gas input above 2175 CF/hr. The radial nozzle allows oper-
ation above 3100 CF/hr of gas. However, our initial survey of combustion
species showed that combustion was essentially complete in the burner
block. Figure 11-74 shows a composite of the gas sampling profiles taken
at an axial position 5 cm from the burner block face. (Five centimeters
is the closest the probe can be positioned to the block. ) The burner was
operating at a 2547 CF/hr gas input, 10% excess air, and 510°F preheated
air. These data show (curve M) that methane concentration was only
about 0.5%. The carbon monoxide (curve C) varied between 400 ppm at
the center line to a peak of 2000 ppm at a 13. 2-cm radial position.
(The total width of the burner block opening is 42 cm. ) Oxygen (curve O)
varied from 1. 52% at the center line to a minimum of 0. 66% at a 8. 8-
100
-------
400
E
Q.
O.
300
UJ
o
X 200
O
o
cc
100
PREHEAT
TEMPERATURE,
°F
O
A
D
570
270
100
NOTE: DATA OBTAINED USING AXIAL BURNER,
INTERMEDIATE BAFFLE AND AXIAL
NOZZLE.
I
%
4
IN FLUE
A-II2-I069
Figure 11-13. NO CONCENTRATION AT GAS INPUT OF 2147 CF/hr
(Excess O2 Variable and Wall Temperature of 2570°F)
-------
4XIAL Bli^NES - IMEa'EDIilJ 84FFLE
,L,2.CC2.CC.CH4 4P« 5.Or
NOZZLE - STAINLESS =>-.OfcE CCI ?,72
§
&
O
z,
W I
g o
o o
o
o
o
ffi
O
13.200
3C.6CC
RADIAL POSITION, cm
Figure 11-74. COMPOSITE RADIAL PROFILES FOR NO, CO, CH4, O2,
AND C02 WITH GAS INPUT OF 2547 CF/hr
(Intermediate Flame Baffle With Radial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 510°F, 10% Acce-se Air, and Stainless-Steel Probe)
-------
cm radial position. Nitric oxide (curve N) varied from 500 ppm at the
center line to a minimum of 340 ppm at a 15-cm radial position. Carbon
dioxide (curve D) varied from about 10% at the center line to 9.8% at a
13-cm radial position.
The increase in the concentrations of COz, NO, and Oz beyond a 17. 6-
cm radial position is believed to be caused by recirculated combustion
products moving back toward the burner along the walls. At a 44-cm
radial position, the measured concentration of NO was 660 ppm, whereas
the flue contained 742 ppm. However, 44 cm is only one-half the dis-
tance between the burner center line and furnace sidewall. We would
expect the measured NO concentration to increase at positions beyond 44
cm, attaining approximately the NO concentration of the flue at the wall.
The curves of Figure 11-74 were plotted on a single 0-11% (approx) scale
because of a computer limitation. The following legend applies to this
figure and some of the others (computer print-outs) that follow:
AP — axial position
RP — radial position
The actual data were collected on a range of concentrations which
provided greater resolution. The raw data are shown in Tables II-9
and 11-10 and are shown plotted on the enlarged scale in Figures 11-75
to 11-79.
Figure 11-80 shows the temperature profile across the furnace at the
5. 0-cm axial probe position. The data support our conclusion of essen-
tially complete combustion in the burner block. The temperature was
essentially constant across the half width of the block (21 cm).
Considering that combustion was essentially complete in the burner
block, further profiles at axial positions greater than 5 cm were con-
sidered unnecessary. Test work continued by reinstalling the axial flow
gas nozzle and lowering the gas input until combustion was completed in
the furnace. This occurred at a gas input of 2147 CF/hr, which was
maintained for all remaining work with this particular gas nozzle. Data
for radial profiles of gas species and temperature were again measured
in the furnace.
103
-------
Table II-9. DATA OBTAINED USING RADIAL GAS NOZZLE WITH 2547 CF/hr GAS INPUT
(Intermediate Baffle, Axial Burner, Radial Nozzle, and Stainless-Steel Probe)
INPUT GAS 2547
OUTPUT ANALYSIS
NITKOGEN OXIDE
CARBON DlliXIDE
CARBON MONOXIDE
77
84
13
AX
.20
.40
.10
TRACER GAS STUDIES
IAL BURNER - INTERMEDI
WALL TEMPERA
PERCENT ON
PERCENT ON
PERCENT ON
TURE
RANGE
RANGE
RANGE
2680
I.
It
3,
OF
ATE
741
1 1
0.
COMBUSTION BURNERS PROGRAM 2
BAFFLE - RACIAL NOZZLE - STAINLESS PROBE OCT 2,72
.86
.06
005
PREHEAT TEMPERATURE
PPM OXYGEN
PERCENT
PERCENT
510
l._73 PERCENT
ME THANE
O.CC PERCENT ON RANGE 3,
0.00 PERCENT
EXPERIMENTAL RESULTS
NITROGEN UXIDE -NO
AP
5.0C
5.00
5.00
5.0C
5.0C
5.00
5.0C
5.00
5. 00
5.00
5.0C
5.00
5.00
5.00
RP
C.OO
2.00
4.0C
6.0C
8. 00
12.00
16.00
20. OC
24.00
28. OC
32. OC
36. OC
4C.OC
44.00
RANGE
1
1
1
1
1
I
1
1
1
1
1
I
1
1
X
54.50
53.90
51.60
47.90
44.20
4C.90
38.50
57.50
66.00
67.40
67.50
68.20
68.70
70.20
Y
502. I
496.0
472.7
435.8
399.3
367.2
344. 1
532.7
621.2
636. 1
637. 1
644.6
649.9
665.9
CXYGEN
02
1.52
1. 19
0.89
0.68
0.67
0.63
1.04
1.42
1 .60
1 .64
1.59
1.73
1 .66
1.58
CARBON D
RANGE X
1 80.
1 80.
I 81.
1 79.
1 78.
1 77.
1 78.
I 82.
1 83.
1 83.
1 84.
1 83.
1 84.
1 84.
IOXIOE-C02
20
10
60
20
30
80
30
60
00
50
50
50
30
30
Y
10.15
10.13
10.45
9.94
9.75
9.65
9.75
10.66
10.75
10.86
11.08
10.86
11.03
11.03
CARBON MONOXIDE -CO
RANGE
1
1
1
1
1
1
1
2
3
3
3
3
3
3
X
17. 2C
26. 3C
34.70
44.10
49. 5C
50. 9C
38.00
19.00
44.20
30.90
29. 7C
28.50
27. 3C
27. 1C
Y
C.481
C.796
1.126
1.541
1.801
1.870
1.266
C.317
C.C19
C.C13
C.C12
C.C12
C . C 1 1
C.C11
KE THANE - CH4
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
c.cc
C.OO
C.OO
C.OO
C.OO
c.co
c.co
o.co
C.OO
c.cc
c.co
c.oc
C.OO
c.co
Y
o.oc
o.oc
o.oc
o.oc
0.00
0.00
O.CC
o.oc
0.00
o.oc
o.oc
o.oc
0.00
0.00
-------
Table 11-10. COEFFICIENTS AND STANDARD DEVIATIONS
OF THE MATHEMATICAL FIT FOR EACH GAS.
TRACEP CIS STUDIES OF COBUSTIDN BURNERS PROGRAM 2
NO-RANGE 1
NO-RANGE
C02 RANGE
CO? RANGE
CO? RANGE
CO RANGE
CO RANGE
CO RANGE
X
o.oco
28. CCO
55. OCC
77.5CC
100. OCC
3
X
c.occ
26. CCC
51 .CCC
76.CCC
ICC. OCO
1
X
o.or.o
*1.200
67. OCC
87. OCC
ICO. CCC
2
X
O.OCO
33.0C«C(?l«x»..»C(N»ll»X«»N
Cl 1 l« -C.C38SC39
Cl ?)= I.9C8231?
Cl 31= O.CCCSI38
• COEFFlCltNTS.Y*C(ll»C(2l«x...«CIN»ll«x»«N
Cl 11- C.C6CU62
Cl 21* C.C*Cc635
Cl 31- C.CC1C623
COEFFICIENTS,Y*Ctl)«C(2l«X»..»CIN»I)«X»«N
Cl 11= C. 0066310
"CT 21 = C.C3C81E6 " ~
Cl 31* C.CCC1873
COEFFICI£NTS,Y*C(ll«CI?l«X....C(N»ll»X«»N
Cl ?)• O.C033220
Cl 31= O.CCCC165
CO£FFlClENTs(Y=Clll»Cl2)«x»..«ClN»l>»x»«N
Cl 11 = 0.007*353
Cl 21= O.C22>;3t7
Cl 31= C.CC026S6
COEFFIOIENTStY=Clll»C(2l«X»..»C(N»ll«X»»N
Cl 11- C.C0177E3
Cl 21= O.C156220
Cl 31= O.CCCO11
COEFFICI EN IS. Y=CI1I»C (?)•»•.. »CIN»ll»x»»K
Cl !)• C.COCC***
Cl 21= O.CCC3955
Cl 3)= O.CCCCC1C
-------
Table 11-10, Cont. COEFFICIENTS AND STANDARD
DEVIATIONS OF THE MATHEMATICAL FIT FOR EACH GAS
TRACER GAS STUDIES OF COMBUSTION BuRNE-lS P30GRAK
Cn<. RANGE 1
X
c.ccc
39. ICC
66.0CC
85.2CC
1CO.CCC
Ci-<- RANGE 2
X
c.occ
32. SCO
58. SCO
81.0CC
10C.CCC
C«<- RANGE 3
X
C.CCC
28.CCC
s'i.occ
78.0CC
1CC.CCC
OBSERVED Y
C.COO
5.000
10. COO
15.000
20.000
OBSERVED Y
0.000
2.500
5.000
7.5CO
10.COC
nBStRvEO Y
C.COO
1.250
2.500
1.75C
5. COO
CC^PUTEO Y
O.C6<-
'•. 701
1C. 181
15.2«.0
19.792
CO-PUIEC Y
0.012
2. ".(,7
5.007
' 7.53«.
9.178
CC"'UTEO 1
C.^.C',
1 .2*C
2. SCC
1.75-)
**.3-T.
STANOARC DEVIATION UN Y
STANCARD OEVIATlUN ON Y
0.03837
STANCARC OEVIATinN C.N
0.01073
COEFFICIENTS1Y'CI1I»C(2)«X«..»CIN»|I««»»\
C< 11= O.C8'3171
C( 21= O.C673895
Cl 3)< O.CC12<)68
COEFFICIENTS.Y.CI t >«ct2i»«»..»cis.i >•«••».
C( 11= O.CI2251S
C( ?)= C.C63«)*fc9
C( 3>= C.C003571
COEFFIC1ENIS1Y=C(1I«CI2)»»«..»CIN»1I«X«»K
C I 11= O.CCMIle
Cl 21= C.C«19?61
C( 31= C.CCCC797
-------
AXIAL BUHNER - INTERMEDIATE BAFFLE - RADIAL NOZZLE - STAINLESS PRObE OCT 2,72
KP VS CH4 AP= 5.CC
-------
«L BuasEtt - INTEREECUTE BtFFLE - KaCUL NOZZLE - STAINLESS PROBE OCT 3.72
o
00
W
Q
HH
X
o
2
O
PQ
0
RADIAL POSITION, cm '
Figure U-76. RADIAL, PROFILE FOR CO WITH GAS INPUT OF 2547 CF/hr
(Intermediate-Flame Baffle With Radial Gas Nozzle at an Axial Position of 5.0 cm,
Preheat Temperature of 510°F, 10% Excess Air, and Stainless-Steel Probe)
-------
w
Q
K-I
X
O
I-H
Q
U
-------
z
W
o
X
o
«P VS 02,
1.7300
1.7CB*
1.6869
1.6653
1.6*37
1.6222
1.6006
1.5790
_4X 11L_BUKNER
S.CC
bflFFlE - HaClVl NOZZLE - STAINLESS-PROBE Ot. I 2 , 7_2
1.5359
1.5143
1.428C
1.3633
l.341fl
1.3202
1.2986
1.2771
1.2555
1.2339
1.1908
1.1692
1.1476
1.1261
1.1C45
1.C821
1.C614
1.0398
I.C182
C.9567
C.9751
C.T531)
0.9J20
C.910*
0.688°
0.8C73
r.7tli
0. 759<.
C. 737S
0.7163
? . t 7 > 1
.-•.630C
c.ccc
I 7.f,CO
RADIAL POSITION, cm
Figure n-78. RADIAL PROFILE FOR O2 WITH GAS INPUT OF 2547 CF/hr
(Intermediate Flame Baffle With Radial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 510°F, 10% Excess Air, and Stainless-Steel Probe)
-------
NU.
lCa»ECIM£ BIFFlf - atrl«L SCZ11E - SHINIES!
i.C ' 2.72
«»• 5.:c
W
a
X
o
u
3
H
C.59.M
(,•>}. 15
ft*C.73
634.42
6/B.ll
621.80
615.49
609.18
6C2.S7
583.93
577.62
571.31
•>65.CC
558.69
552.38
5*6.07
539.75
533.44
52C.82
514.51
508.20
501.US
495.58
489.27
4d2.95
476.64
470.33
464.02
457.71
451.40
445.09
438.76
432.47
426.15
419.84
413.53
407.22
400.91
39*.6C
388.29
3B1.98
175.66
369.35
363.0*
356.73
350.42
344.11
O.OCC
IT.600
22.0CO
30.8CC
JS.2CO
44.000
RADIAL POSITION, cm
Figure 11-79. RADIAL PROFILE FOR NO WITH GAS INPUT OF 2547 CF/hr
(Inter mediate-Flame Baffle With Radial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 510°F, 10% Excess Air, and Stainless-Steel Probe)
-------
3K)0
3000
2900
ui
CC
IT
I
2800
tx»
27OO
26OO
2500
NOTE: DATA OBTAINED USING AXIAL
BURNER, INTERMEDIATE BAFFLE
AND RADIAL NOZZLE.
12 16 20 24 28 32 36 40
RADIAL POSITION, cm
44
48
52
6O
A-II2-IOM
Figure 11-80. TEMPERATURE PROFILE ACROSS FURNACE WITH
GAS INPUT OF 2546 CF/hr AND 5. 0-cm AXIAL PROBE POSITION
-------
Figure 11-81 shows a composite plot of CO, CO2, CH4, NO, and O2.
The methane concentration (curve M) was 10.63% at the burner center
line, decreasing to about 0.25% at a 19-cm radial position. A very ap-
proximate integration under the methane curve showed that the average
concentration was about 6%. Consequently, about 35% of the combustion
can be assumed complete. Significant concentrations of Oz, COz, NO,
and CO at the center line of the burner where the methane reading indi-
cates essentially no combustion is occurring are probably caused by dif-
fusion. The nitric oxide concentration (curve N) was 133 ppm at the
center line, decreasing to 30 ppm at a 13-cm radial position and again
increasing in a probable recirculation zone beyond 19 cm. Oxygen (curve
O) was 3.46% at the center line, increasing to 13.55% near the perimeter
of the burner-block opening. Nitric oxide (curve N) increased to only
77% of the 255 ppm of NO measured in the flue. However, measurements
again were not taken out to the furnace wall. Data plots with greater
resolution are given in Figures 11-82 to 11-86 and the raw data in Table
11-11.
Data were taken at three axial positions for the axial gas nozzle.
Figure 11-87 shows composite chemical species profiles at a 77. 5-cm
axial position; Figure 11-88 shows these same profiles for a 152. 5-cm
axial position. We found that essentially all the CKi (curve M) is con-
sumed at 77. 5 cm, leaving only CO (curve C) for further combustion.
Nitric oxide (curve N) was essentially constant across the width of the
burner; oxygen (curve O) was 4. 76% at the center line, decreasing to
about 3. 9% at the 12. 6-cm radial position. The oxygen at the center
line increased from 4.76 to 5.10% between the 77. 5-cm and 152. 5-cm
axial positions while lower amounts were measured at all radial positions
other than the center line. Concurrently, CO and CH4 decreased as ex-
pected while NO increased slightly in the postflame region. In addition,
recirculation was barely evident at the outer radial positions.
Figure 11-89 shows the temperature profile across the furnace at
axial positions of 5. 0, 77. 5, and 152. 5 cm for the axial gas nozzle,
12. 5% of 570°F preheated excess air. The rapid rise in temperature
between 0 and 3 cm for the 5-cm axial position confirms the high methane
concentration found at the center line (Figure 11-86). The rapid decrease
113
-------
Figure 11-81 shows a composite plot of CO, CO2, CH4, NO, and O2.
The methane concentration (curve M) was 10.63% at the burner center
line, decreasing to about 0.25% at a 19-cm radial position. A very ap-
proximate integration under the methane curve showed that the average
concentration was about 6%. Consequently, about 35% of the combustion
can be assumed complete. Significant concentrations of Oz, COz, NO,
and CO at the center line of the burner where the methane reading indi-
cates essentially no combustion is occurring are probably caused by dif-
fusion. The nitric oxide concentration (curve N) was 133 ppm at the
center line, decreasing to 30 ppm at a 13-cm radial position and again
increasing in a probable recirculation zone beyond 19 cm. Oxygen (curve
O) was 3.46% at the center line, increasing to 13.55% near the perimeter
of the burner-block opening. Nitric oxide (curve N) increased to only
77% of the 255 ppm of NO measured in the flue. However, measurements
again were not taken out to the furnace wall. Data plots with greater
resolution are given in Figures 11-82 to 11-86 and the raw data in Table
11-11.
Data were taken at three axial positions for the axial gas nozzle.
Figure 11-87 shows composite chemical species profiles at a 77. 5-cm
axial position; Figure 11-88 shows these same profiles for a 152. 5-cm
axial position. We found that essentially all the CKi (curve M) is con-
sumed at 77. 5 cm, leaving only CO (curve C) for further combustion.
Nitric oxide (curve N) was essentially constant across the width of the
burner; oxygen (curve O) was 4. 76% at the center line, decreasing to
about 3. 9% at the 12. 6-cm radial position. The oxygen at the center
line increased from 4.76 to 5.10% between the 77. 5-cm and 152. 5-cm
axial positions while lower amounts were measured at all radial positions
other than the center line. Concurrently, CO and CH4 decreased as ex-
pected while NO increased slightly in the postflame region. In addition,
recirculation was barely evident at the outer radial positions.
Figure 11-89 shows the temperature profile across the furnace at
axial positions of 5. 0, 77. 5, and 152. 5 cm for the axial gas nozzle,
12. 5% of 570°F preheated excess air. The rapid rise in temperature
between 0 and 3 cm for the 5-cm axial position confirms the high methane
concentration found at the center line (Figure 11-86). The rapid decrease
113
-------
AX1IV 80'NEK - IMERXEDUTE BSFFLE - STAINLESS PSOBE - SEPT. 29.1972
53
O
w
u
§
£
(X
a
*O -.
1
g
^*^
|
(M
O
U
o"
u
<5
o
«
tj
ffi
u
13.55
13.26
13.02
12.75
12.^9
- — T5 — 5-5—
1 1.96
I 1.69
1 1.43
10. B9
10.36
10.10
9.83
9.57
9.3C
9.03
6.77
8. 50
8.24
7.97
7. 71
7. 18
6.91
6.64
6.38
6. U
5.65
5.5«
5.32
5.05
4 . 79
4.52
4.25
3.99
3.72
3.46
3. 19
i.93
2.66
2.39
?. 13
1.S6
1.60
1.33
1.07
C.80
C.54
0.27
0.00
c.ccc
3.7CC 6.4CC 1.6CC 12.300 16.000
25.6CC 2B.6CC 12.000
RADIAL POSITION, cm
Figure 11-81. COMPOSITE RADIAL PROFILES FOR NO, CO, CH4, O2,
AND C02 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Radial Gas Nozzle at an Axial Position of 5.0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
E
PL
PL.
w"
P
t-H
X
o
u
> /s -.-c.
li9.oC
137.23
11*.kfc
179.52
1 76.95
I 7*. 3B
171.61
169.25
166.66
16*. 1 1
Itl.5*
156.97
146.40
153.°3
il.26
48.69
46. 12
43.56
36.*2
35.35
13.26
10.71
128.I*
125.57
123.OC
12C.43
117.67
1 15.3C
1 12.73
110. It
107.59
1D5.02
102.*5
99.86
97.31
9*. 7*
^2. 18
89.61
ii7.C*
9* .* 7
el.9C
76. 76
7*. 19
71.62
69.C5
66.49
63.92
61.35
58.76
. axial P.L-t\E" -
l.CC
I 1IC KOFFLC - StAlNLCSS
- Sc". 23.1972
3.2CC 6.4CC 9.600 12.600 16.000 19.200 22.*CC 25.6CO 26.800 32.000
RADIAL POSITION, cm
Figure 11-82. RADIAL PROFILE FOR NO WITH GAS INPUT OF 2147 CF/hr
(Inter mediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
O
>
X
O
4M41. BUHNER - IMTERKECUTE B4F-FIE - ST4INCEii P'OBE - SEPT. 29,1972
RADIAL POSITION, cm
Figure 11-83. RADIAL PROFILE FOR O2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
- IME4.»ECUIE aAtFLE-- STMMLSSS P^OHC - SEPI. 29.1972
w
Q
HH
X
o
u
3.600 12.800 16.000 14.200 22.4CC 25.6CO 28.800 32.000
RADIAL POSITION, cm
Figure 11-84. RADIAL PROFILE FOR CO2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5.0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
O
2
00
o
»XIAL BUSKER
5.~c'c "
•* sTtmess POOBE - SEPT. 29,197;
6674
7958
724?
6527
5811
5095
4379
3664
2946
2232
1517
0601
OC85
9369
8654
79J8
7222
6506
5791
5C75
4359
3644
2928
2212
1496
0781
OCb5
9349
8633
7918
7202
6486
5771
5055
4339
3623
29CS
2192
1476
0761
CC45
9.6CC 12.800 16.000 I9.2CO 22.4CC 25.tf.r ?H.8CO 32.0CO
RADIAL POSITION, cm
Figure 11-85. RADIAL PROFILE FOR CO WITH GAS INPUT OF 2147 CF/hr
(Inter mediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
AXIAL OL"
-------
Table II-11. DATA OBTAINED WITH STAIN LESS-STEEL PROBE
USING AXIAL GAS NOZZLE AND AXIAL POSITION OF 5. 0 cm
[SJ
O
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
AXIAL BURNER - INTERMEDIATE BAFFLE - STAINLESS PROBE - SEPT. 29,197?
INPUT GAS 2147
WALL TEMPERATURE 2570
PREHEAT TEMPERATURE
570
IJUTPUT ANALYSIS
NITROGEN OXIDE 29.10 PERCENT GN RANGE I, 255.52 PPM
CArtOON DIOXIDE 82.50 PtRCENT ON RANGE 1, 10.64 PERCENT
CARBGW MONOXIDE 11.60 PERCENT ON RANGE 3, 0.004 PERCENT
OXYGEN 2.63 PERCENT
C.CO PERCENT ON RANGE 3,
0.00 PERCENT
EXPERIMENTAL RESULTS
NITROGEN OXI
AP
5.0C
5.0C
5.0C
5.CC
5.0C
5.0C
5.0C
5.0C
•i.OC
RP
0.00
4.00
8.00
12.00
16.00
20. OC
24.00
2H.OO
32.00
RANGE
1
1
1
1
1
1
1
1
1
X
15.00
12.20
7.80
7.10
6.90
14.60
20. 70
21.10
21.90
DE -NC
Y
128.5
104.1
66.4
60.4
58. 7
125.0
179.0
182.6
189.7
CXYGEN
02
3.56
5.15
7.91
11.92
13.55
8.16
4.7C
4.48
4.65
CARBON DIOXIDE-C02
RANGE X
1 52.80
1 55.50
I 54.10
1 47.00
1 39.10
1 60.50
I 75.00
1 76.30
1 75.40
Y
5.17
5.59
5.37
4.31
3.27
6.41
9.08
9.34
9.16
CARBON MONOXIDE -co
RANGE X
1 81. 4C
1 69. 6C
I 47. 1C
1 16. OC
2 9.00
2 3.80
3 12.10
3 10.90
3 11. 6C
Y
3.654
2.SC5
1.683
C.443
C.147
C.C62
C.CC4
C.004
C.C04
METHANE - CM4
RANGE X
1 68.30
1 41.90
1 15.5C
3 5.30
3 1.40
3 1.50
3 1.60
3 2.0C
3 1.80
Y
10.73
5. 18
1.44
0.22
0.06
0.06
0.07
0.08
0.07
-------
z,
o
u
p.
Ou
I
O
§8
o
o
(M
o
K
0
/S Mr,,
8.57
e. 71
c.i2
8.44
e.27
8.C9
7.97
7.74
7,57
7. 39
7.22
' 7.04
6.66
6.69
ft. 51
6. 34
6. 16
5.99
5.61
5.64
5.46
5.2")
5.11
4.94
4.76
4.59
4.41
4.24
4.C6
3.89
3.71
3.53
3.36
3.18
3.01
2. 83
2.66
2. 48
2.31
2. 13
1.96
1.76
1.61
1.43
1.26
1.08
0.91
C773
0.56
0.38
0.20
0.03
1M4L BO'lJfca - IMER'ECIME 6»FFlE -' StalUlESS PROBE - SEPT. 29,1972
:2..C.T?iCi:,CM4. 4P- 77.50
-C C C C-
\
o.ccc
4.2CC
25.200
29.4CC
33.6CO
37.800
RADIAL POSITION, cm
Figure 11-87. COMPOSITE RADIAL PROFILES FOR NO, CO, CH4, O2
AND CO2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77.5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
o
I— I
H
<
a!
w
u
s
a
a
I
o
!
f-\
Figure 11-88. COMPOSITE RADIAL PROFILES FOR NO, CO, CH
AND CO2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate Flame Baffle With Axial Gas Nozzle at an Axial Position of 152 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
2900
2800 —
O
NOTE: DATA OBTAINED USING AXIAL
BURNER, INTERMEDIATE BAFFLE
AND AXIAL NOZZLE.
2300
2200
2100
2000
1900
\
AXIAL POSITION, cm
152.5
77.5
5
I I I I I I
I I
I I
12 16 20 24 26 32 36 40
RADIAL POSITION, cm
44 48 52 56 60
A-II2-I070
Figure 11-89. TEMPERATURE PROFILE ACROSS FURNACE WITH
GAS INPUT OF 2147 CF/hr AND AXIAL POSITIONS OF 5, 77.5, AND
152.5 cm (Excess O2 of 2.9%, Wall Temperature of
2570°F, and Preheat of 570°F)
123
-------
in temperature between 3 and 14 cm reflects the completeness of com-
bustion toward the perimeter of the burner block. The second temper-
ature peak at 21 cm (the outer edge of the burner-block opening) and the
gas concentration profiles of Figure 11-86 suggest the presence of hot
recirculated flue products.
Data plots with greater resolution are given in Figures 11-90 to 11-99
and the raw data appear in Tables 11-12 and 11-13.
In-the-flame measurements of gas species were made using both
stainless-steel and quartz-lined fast-quench sampling probes. We con-
cluded from a comparison of the data that either probe was suitable for
measuring NO. However, we found an unexplainable change in oxygen
concentration with sampling time using the quartz probe. Therefore,
further measurements were made using the stainless-steel type.
Figures 11-100 and 11-101 show the gas sampling data collected with
the quartz probe from the intermediate-flame baffle burner (axial gas
nozzle) at axial positions of 5. 0 cm and 77. 5 cm, respectively. In
Figure 11-102, these data for nitric oxide are compared with the data
taken with a stainless-steel probe (Figures 11-81 and 11-87). The two
sets of data agree to within 17 ppm or about 10%. A portion of this
difference is caused by an error in resetting the furnace, which was shut
down between runs. The data also show that neither of the probes meas-
ured consistently higher or lower than the other. Figures 11-103 to 11-112
show the data of Figures 11-100 and 11-101 with greater resolution.
Tables 11-14 and 11-15 show the raw data.
B. Short-Flame-Length Ported Baffle Burner
1. Burner Design
The test burner used for this study was identical to that used for
the intermediate-flame-length one except for the angle of the ports in the
baffle. (See Figure 11-57. ) This burner was also studied with both the
axial and radial gas nozzles. (See Figure 11-58. )
124
-------
ro
I
(X
W*
P
n
X
o
o
2
H
s VS NO,
196.20
135.26
183.38
182.44
"161.49 "
180.55
179.61
I7B.67
177.73
_1^76.79
175.B5~
174.90
173.9t
173.02
172.OS
LM.H
1 70. 2C"
169.26
168.31
167.37
166.43
165.49
164.55
163.61
162.67
161.72
160.78
159.64
158.90
157.96
157.0?
156.08
155. U
154. 19
153.25
152.31
il.37
iC.43
47. tr.
'.5.7?
44. 79
43.0-
i4i.:i
140.C7
139. 13
1 3d. 19
BAFFLE - sraim.css PROBE - SEPT. 29, 197;
— -
C.4CC 12.6CC le.fOO /M.CCC ?5.?C-; ?".4CC 13.6CC )7.aCC
RADIAL POSITION, cm
Figure 11-90. RADIAL PROFILE FOR NO WITH GAS INPUT OF 2147 CF/hr
(Intermediate Flame Baffle With Axial Gas Nozzle at an Axial Position of 77. 5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
T2.
.7tOC
.7427
. (C82
.6910
.6737
.6392
.6220
.6C47
.5875
.5702
.5529
.5357
.5184
.5C12
.4667
.4322
AXIAL PLRNfcK - IMERKFPIATE RAfFLE - STAINLESS P'fOBE - iFPI. 21,1172
77.5C
^O
Vs**"*
^
£
W
0
^
k^
0
.3976
.3BC4
.3631
.3459
.3286
.3114
!2769
.2596
.2424
.2251
.2C78
.1906
.1733
.1561
.1388
.1216
.1043
.0871
.0698
.0525
.0353
.CISC
.CCCU
1.9835
1.9663
).949C
J.9318
J.9145
3.8973
3.8800
O.OCC
\
4.200
8.40C 12.600 16.800 21.000 25.20C 29.40C 33.6CO
RADIAL POSITION, cm
Figure 11-91. RADIAL PROFILE FOR O2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77. 5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
Rf> VS. CO
O*IAL BURNER - IDTERrEPKTE BtffLE -_§J^1NL£SS PROBE j^ SJTPT, 29.I9T2
4P- 77.50
w
Q
Pi
o
o
u
2.0323
1.9672
1.9021
1.6695
1.6370
1 .' 7 719
i.739~3
1.7067
I.6742
1 .6416
I.6091
1.5765
1.5114
1.4766
1.4463
1.4137
1.3611
1.3486
1.3160
1.2635
I.2509
1.2105
1.1656
1.1532
I.1207
1.0681
1.0555
1.023C
0.9904
0.9253
0.6927
0.61:02
C.di76
0.7951
t.7299
0.6974
0.5917
0.5346
0.5C2C
0.4695
C.4369
RADIAL POSITION, cm
Figure 11-92. RADIAL PROFILE FOR CO WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77.5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
00
W
Q
»-i
X
o
2
I
2
O
n
o
* ^S CC2
i.9tai
B.9386
H.9C91
6.8796
9.?501
8.B2C6
B.7911
P.7tlfr
0.7322
6.7C27
6.6732
B.6437
b.6I42
H.5B47
fl.5552
6.5257
d.<.<163
H.
-------
txui BURNER - JMERFEEIMe ,etf HE - STAINLESS PRUEE - SEP_T. ?9.iq??
ro
It.POO
17.BCC
RADIAL POSITION, cm
Figure II-94. RADIAL PROFILE FOR CH4 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77. 5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
OO
o
I
04
w"
Q
O
u
H
i—i
2
1 /b -10.
1-19. /2
1 18.93
11H.14
1-J7.35
r'6.56
I TS.77
144.
IJ3.4C
14?.61
111.81
111.C2
190.73
189.44
IBB.65
1H7.86
1H7.C7
Id6.2fl
165.49
184.70
IB3.91
183.12
1«2.33
tdl.S'.
180.75
171.96
179.17
1 '8.37
177.i8
176.79
176.00
175.21
17*. <,?
173.6)
172.84
172.05
171.26
170.47
169.68
168.89
168.10
167.31
166.52
165.72
164.93
164.14
1
-------
«
-------
tNJ
s
I-H
§
o
CQ
O
P.4FFLE - SfMNLSSS PfCeF - SEPT. 21.\<>12
O.OOC
12.000
16.000
28.0CC
32.CCO
T
J6.0CO
40.000
RADIAL POSITION, cm
Figure 11-97. RADIAL PROFILE FOR CO2 WITH GAS INPUT OF Z147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 152 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Stainless-Steel Probe)
-------
w
Q
i—i
X
o
2
O
2
2
o
CQ
U
S. CO
".5 1C
4276
4C42
38CB
3575
3341
3107
2873
2639
2406
21_72_
.1938
, 1704
, 147C
.1237
, ICC3
,C769
.C535
.0301
.OC68
.9834
.9600
.9366
.9132
.8699
,8665
,e«31
.8197
, 796<.
, 7MC
.7456
.7262
,7C2>:
.6795
.6561
.6327
.tC93
,ses9
.5626
.5392
,5158
.
-------
axUL 8l-< - INtE^VECIaTE BAFFLE - SHINLbSS PPOB6 - SEPT. 29.1S72
:> VS O4 a?.15J.5C
P. 1 IPC
r-.l I-.7
O.U35
i;. i 113
OilCT
r-.lC6e
C. 1C46
0.1C24
0. 1CC1
0.0912
n.caio
n.C667
O.C845
O.C623
o.ceoo
0.077H
0.0756
t$ . 0.073<.
^ O.C711
O.C639
W* 0.0667
O.C6
-------
Table H-12. DATA OBTAINED WITH STAIN LESS-STEEL PROBE
USING AXIAL GAS NOZZLE AND AXIAL POSITION OF 77.5 cm
uo
(Jl
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
AXIAL BURNER - INTERMEDIATE BAFFLE - STAINLESS PROBE - SEPT. 29tl972
IMPUT GAS 2147
hALL TEMPERATURE 2570
PREHEAT TEMPERATURE
570
OUTPUT ANALYSIS
NIT*UGCN OXIDE 29.10 PERCENT UN RANGE 1,
CARKUN DIOXIDE 82.50 PERCENT ON RANGE 1,
CARBON MON1JX1DF 11.60 PERCENT ON RANGE 3(
3,
255.52 PPM
10.64 PERCFNT
0.004 PERCENT
0.00 PERCENT
OXYGEN 2.63 PERCENT
SULTS
NITROGEN OXIDE -NC
*A.\GE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
I
X
17.10
16.70
16.90
16. 2C
16.40
16. 80
16. 10
17.30
18.70
18.00
17. 3C
17.00
17.50
17.90
19.30
19. 70
20. 30
21.50
21.40
Y
147.0
143.4
145.2
139.0
140.8
144.3
1 38. 1
148.7
161.1
154.9
148.7
146. 1
150. 5
154.0
166.5
170.0
175.4
186.2
185.3
CXY&EN
02
4.76
4.45
4.24
4. 36
3.89
3.90
3.88
4.22
3.99
4.22
4.50
4.29
4.53
4.23
4.42
4.21
4.21
4.32
4.45
CARBON CIOXIOE-C02
RANGE
I
1
I
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
I
X
70.30
73.30
68.80
68. 3C
68.40
67.40
67.80
68.70
66.50
66.70
67.10
67.40
67.00
68.30
70.60
71.70
73.00
74.20
74.40
Y
8.17
8.75
7.88
7.79
7.81
7.62
7. 70
7.86
7.46
7.50
7.57
7.62
7.55
7.79
8.22
8.43
8.69
B.92
8.96
CARBON MONOXICE -CO
RANGE
2
2
2
1
1
1
1
1
1
I
1
I
1
1
1
1
1
1
1
X
63. 6C
7c.re~
80.80
43. 7C
46. 1C
49. 4C
55. 3C
53. 3C
54. SC-
SI. 80
54. 9C
51. 1C
49.10
41.20
43. OC
36. 9C
30.50
21.40
15.80
Y
1. 174
l.?n
1.549
1.522
1.635
I. 796
2. 097
1.993
2.C55
1.916
2.C76
1. 881
1.781
1.4C8
1.490
1.219
C.956
C.621
C.436
ft THANE - CH4
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
1.30
1'.60
1.5C
1.9C
3.6C
3.4C
4.CC
3.CC
2.8C
3.6C
2. 80
2.6C
2.40
"T. 10
2.20
1.70
1.3C
C.7C
C.60
Y
0.05
C.OT
0.06
0.08
C. 1 5
0.14
C.17
0. 13
0. 12
0.16
C.12
0.11
0.10
0.13
0.09
C.07
C.05
0.03
0.02
-------
Table 11-13. DATA OBTAINED WITH STAINLESS STEEL PROBE
USING AXIAL GAS NOZZLE AND AXIAL POSITION OF 152.5 cm
OJ
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
AXIAL BURNER - INTERMEDIATE BAFFLE - STAINLESS PROBE - SEPT. 29,1972
INPUT GAS 2147 WALL TEMPERATURE 2570
OUTPUT ANALYSIS
NITROGEN OXIDE 29.1C PERCENT ON RANGE 1,
CARBON DIOXIDE 82.50 PERCENT ON RANGE It
CARBON MONOXIDE U.6C PERCENT ON RANGE 3t
PREHEAT TEMPERATURE
570
255.52 PPM
10.64 PERCENT
0.004 PERCENT
OXYGEN 2.63 PERCENT
METHANE
C.CO
PERCENT
ON RANGE 3, 0.
.00 PERCENT
EXPERIMENTAL RESULTS
152
152
152
152
l-)2
152
152
152
152
AP
.50
.50
.5C
.5C
.50
.50
.5C
.50
.50
C
5
1C
15
20
25
3C
35
40
RP
.00
.00
.CO
.00
.00
.00
.00
.00
.00
NI TRU
RANGE
1
1
I
1
1
1
1
1
1
GEN OXI
X
18. 7C
18. 5C
19. 10
2C.80
2C. 70
21. 10
21. 8C
22 .40
23.00
OE -NO
Y
161.1
159. 3
164.7
179.9
179. C
182.6
188.8
194.3
199.7
CXYGEN
C2
5.10
4.53
4.02
3.75
3.37
3.03
2.95
2.84
2.80
CARBON DIOX
RANGE X
1 74.40
1 76.00
1 75.90
1 76.00
-1 76.80
I 76.90
1 76.80
1 77.00
1 77.70
IDE-C02
Y
8.96
9.28
9.26
9.28
9.45
9.47
9.45
9.49
9.63
CARBON MONOX
RANGE X
2 15. 6C
2 23.20
2 34. 9C
2 50.60
2 67.30
2 74. 2C
2 76.00
2 76.40
2 70. 7C
ICE -CO
Y
C.258
C.391
C.604
0.907
1.253
1.402
1.442
1.450
1.326
METHANE - CH4
RANGE X
3
3
3
3
3
3
3
3
3
C.OO
C.CO
C.OO
C.CO
C.CO
c.oc
0.00
c.oc
2.70
0.00
C.OO
0.00
0.00
0.00
0.00
0.00
d.oo"
0.11
-------
aKHJL BURNER IMEHKECltTE BtFFlE CUtTI PR06C. SEPt. 'Zl, H7?'
. -4P." 5.0C
o
tH
H
UJ
u
0
§
o
E
I
O
I
-------
OJ
OO
o
H
-------
170
O STAINLESS-STEEL PROBE
A QUARTZ PROBE
I I I I
3.0
6.0
9.0
12.0 15.0 18.0
RADIAL POSITION , cm
21.0
24.0
27.0 30.0
A-II2-IO67
33.0
Figure II-10Z. COMPARISON OF NO PROFILES TAKEN WITH STAIN LESS-STEEL
AND QUARTZ PROBES USING SAME BURNER OPERATING CONDITIONS
AND WITH SAMPLE LOCATED 77. 5 cm FROM BURNER BLOCK
-------
£
n
w
Q
O
U
»II»L BUKNSR 1\TER»ECI»TE BifFLf CU»«U PBOBE. SfPI. 29.1972
•i.ccc i?.one is.coo le.ccr 2i.ccc 2*.ccr ?7.ccc jc.ccc
RADIAL POSITION, cm
Figure 11-103. RADIAL PROFILE FOR NO WITH GAS INPUT OF 2141 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5.0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
W
O
X
o
/S 02.
12.40
12.22
12.03
1 1.85
11.66
1 l.4b
11.29
11.11
IC.T2
10. '4
10.55
10.37
10.16
ic. or,
9.61
9.07
8.69
8. '0
8.52
6.33
H. 15
7.96
7.78
7.59
7.41
7.22
7.04
6.85
6.67
6.46
6. 3C
6.11
5.93
5.74
5.56
5.37
5.19
5.00
4.62
4.63
4.45
4.2A
4.08
3.89
3.71
3.52
3.34
3. 15
2.97
4HIAL
5.CC
B4FFU CuaOTZ Paoac. SEPT. 29.1972
3.000 6.COO 9.000 12.000 15.000 18.000 21.000
2T.OOO
30.000
-RADIAL POSITION, cm
Figure II-104. RADIAL PROFILE FOR O2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
AXIAL _BMINER IMERKeclATE BAFFLE
5. CO" ------
PHQ6E. SEPT. 29.1972
§
ro
H
W
s
"5719-
8.96
8.T3
B.50
8.27
8.04
7.61
7.58
7.35
7.12
6.89
6.66
6.43
6.?C
5.97
5.7*
5.51
5.28
5.05
4.82
4is7
3.91
3.68
3.45
3.22
2.99
2.76
2.53
2.3C
2.07
1.84
1.61
1.38
1.15
C.92
C.69
0.23
o.cc
3.TCC 6.0CC 9.COO 12.000 15.000 Ib.CCC 21.CCC 24.CC.C ?7.CCC 30.000
RADIAL POSITION, cm
Figure 11-105. RADIAL PROFILE FOR CH4 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5.0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
OJ
*.000
27.000
O.OOC J.OCO 6.000 4.000 12.COO 15.000 16.000 21.0CC
RADIAL POSITION, cm
Figure 11-106. RADIAL PROFILE FOR CO WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5. 0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
. AXIAL ^Blil>SER_I^IE«l«UAtt BAFFLE CUAHIi PROBE. SEPT.. 29. 1972
9.74
9.61
906
9.23
_____
^5.
o**
W
a
§
Q
Z
0
«
fyt
*i<
^j
u
9.10
8.97
a'. 12
8.59
8.46
"~B7TT
6.21
8.08
7.95
7.83
7.70
r~; 57
7.44
7.32
7.19
7.06
6.9}
6.81
6.68
6.55
6.30
IS. 17
6. (14
5.92
5.79
5.66
si41 •
5.26 \.
5.15 \
5.02
4.90
4. (7
4.64
4.51
4.39
4.26
4.13
4.CC
3.68
3.75
3.62
3.49
3.37
3.24
c.ocr. j.ccc (..ooc ;.ocs 12.000 is.cso le.ccc 2i.ccc ?<..ccc 'ZT.OCC so.ceo
RADIAL POSITION, cm
Figure 11-107. RADIAL PROFILE FOR CO2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 5.0 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
«XI»L BuHNfcK IME4»edafF BAFFLE _CU*RIZ CJIOBC.. i.EP.1 .
«P~« 77.50 " " .........
, 1972
(Jl
0.000
7.200
10.800
ia.ooo
21.600
25.200
28.600
J2.4CO
36.OOO
RADIAL POSITION, cm
Figure 11-108. RADIAL PROFILE FOR NO WITH GAS INPUT OF Z147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77.5 cm.
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
4«Ul .ROOMER IMERfECHTf BAFfLE CU»RU PROBE, SEPT. 29.1972
4.3900
4.3680
^x.
•h
w
o .
X
0
b.2802
k.2S82
.2363
.21*3
.192*
.1(04
. 1*8*
.1265
.10*5
.0825
.0606
.0386
'.0167 ~ '
.9947
.9727
.9508
.92B8 /
.9069 f
.88*9
.8629
.8*10
.8190
3.7971
3.7751
3.7531
3.7312
3.7092
3.6873
3.6653
3.6*33
3.621*
3.5994
3.5775
3.5555
.5335
.5116
.4896
.4676
.4457
.4237
.4CI8
.3798
.3578
.3359
.3139
3.2920
3.2700
C.CCC
1C.BOO
14.400
18.000
21.400
2J.2CC
26.8CC
J2.4CO
RADIAL POSITION, cm
Figure 11-109. RADIAL PROFILE FOR O2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77.5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
AIIAL 5U3\t»
P.SfFLE CUARI2 PRllHE. SCOT. 29,1972
o
0s*
•t
w
§
ffi
H
W
^
ttf> ii CH4 »P. 7,7. 5C
1.2J4)
C.25C7
(-.2*70
0.24)3
C.2317
0.236C
C.2)2)
."..22B7
C.225T
0.221)
0.2177
0.2140
D.2IO)
0.2C66
0.2OO
C. 1956
C. 1920
C. 188)
0. 1846
0.1810
C.1773
C.1736
0.170C
0.166)
0.1626
0.1590
0.155) •
0.1516 ' i
0.1480 • 1
0.144) 1 |
0.1406 1 |
0.1)70 1
0.1))) 1
0.1296 1
0.1259 1
0.122) 1
C.1186 I
0.1113 \
0.1076 I
0.1C39' "T~
0.1C03 \
0.0966 I
0.0929 \
0.0893 \ I
0.0856 \ i
0.0819 \
0.078) \ '
0.0746 \ /
0.0709 \/
0.067) *
0.000 3.6CO 7.200 10.800 14.400 18.000 21.60C 2S.2CC
RADIAL POSITION, cm
28.SCO
12.*CO
36.000
Figure 11-110. RADIAL PROFILE FOR CH4 WITH GAS INPUT OF 2147 CF/hr
(Intermediate -Flame Baffle With Axial Gas Nozzle at an Axial Position of 77.5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
i\tt»*tei»tE
00
»v
2
)
2
2
}
2
2
}
2
i
,
1
«
Q
Sc
O
J^
O
2
O
CQ
63
U
«S. C3
.3061
.78**
.2618
.2393
.21*9
. T9 * 2
.1717
.1*92
.1266
.10*1
.CE16
.059C
.C36-)
.01*0
, 4*6*
.92 39
,8701)
.8563
.8337
.oil?
.7681
.7661
.7*36
. 7211
.6986
.676^
.6535
. 6 » I C
.6C8*
.563*
.5*C8
.*733
.4507
.*C57
.3831
.3361
. 3155
. 2". jC
.27C5
.2*71
.225*
.2C29
.180*
. 1578
«P- 77.bC
CUA°TJ PROBE. SEPT. 2«.
o.occ.
io.«cr
le.coo
/1.6CC
25.2CC
RADIAL POSITION, cm
Figure 11-111. RADIAL PROFILE FOR CO WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77. 5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
/s c;v
HI4L HI, -Tito l\fi««TI»I = f.f
as* 71. iC
"'.l"!72
w
Q
8
Q
O
CQ
O
i.etll
8.6CH7
I1. »» 9C
nli
<.7P
8.2650
5. K.3S
C.I 2)6
8. 1C33
->.CcSl
8.0427
0.0225
7.9821
7.9619
7.92H
7.9C12
7.661C
7.8tOB
7.lj<.06
7.620'.
7.6C02
7.7799
7.7597
7.7395
C.OCT 3.6CC 7.200 in.BCC U.tOO 18.000 21.6CC 25.2CC 28.CCC 32.4CC 36.0CO
RADIAL POSITION, cm
Figure n-112. RADIAL PROFILE FOR CO2 WITH GAS INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position of 77.5 cm,
Preheat Temperature of 570°F, 10% Excess Air, and Quartz Probe)
-------
Table H-14. DATA OBTAINED WITH QUARTZ PROBE
USING AXIAL GAS NOZZLE AND AXIAL POSITION OF 5.0 cm
Ul
o
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
AXIAL BURNER INTERMEDIATE BAFFLE QUARTZ PROBE. SEPT. 29.1972
INPUT GAS 2i<.7 V.ALL TEMPERATURE 2560 PREHEAT TEMPERATURE 570
UUT->UT ANALYSIS
M1IROGEN OXIDE 27. BO PERCCNT ON RANGF 1,
CARBON DIOXIDE 8C.9C PERCENT ON RANGE 1.
CARdON MQ-JUXIDE 19.30 PERCENT ON RANGE 3,
METHANE C.CO PERCENT ON RANGE 0,
243.52 PPM
10.30 PERCENT
0.008 PERCENT
0.00 PERCENT
OXYGEN 2.98 PERCENT
EXPERIMENTAL RESULTS
NITROGEN OXIDE -NO
AP RP RANGE X Y
5.00 C.OO 1 18.50 159.3
5.0C
5.0C
•i.OC
3.0C
5.0C
5.0C
D.OC
5.00
5.0C
5.00
5.00
5.00
5.00
5.00
5.00
2.0C
4.00
6.0C
8.00
1C. 00
12.00
14.00
16. CO
18.CC
2C.OO
22.00
24.00
26.00
28. OC
30.00
1 18.60
1 18.70
I 16.50
I 13.40
1 1C. 10
1 9.20
I 7.40
1 6.40
1 6.60
1 6.20
1 6.90
1 13.60
I 16.60
1 16.80
1 16.40
160.2
161.1
141.7
114.5
86.0
78.3
63.0
54.5
56.2
52.8
58.7
118.0
142.5
14.4 .3.
140.8
CXYGEN CARBON C10XID6-C02
02 RANGE X Y
2.97 I 54.30 5.40
3. 15
3.27
3.75
5.51
7.41
9. 16
9.90
11.15
12. 1C
12.40
10.90
5.51
4.50
4.10
3.80
1
1
1
1
I
1
1
1
1
i
1
1
1
_!
1
51 .90
52.90
54.70
57.40
57.60
55.10
49.60
44.40
40.80
38.80
49.00
68.90
76.00
78.20
77.30
5.03
5.18
5.46
5.89
5.92
5.52
4.69
3.96
3.48
3.23
4.60
7.90
9.28
9.73
9.55
CARBON MONOXIDE -co
RANGE X Y
1 81.70 3.674
1
1
1
I
I
1
2
2
2
2
3
3
3
3
3
76.60
76.80
73.40
60. 6C
48.90
33. OC
37. OC
16.60
8.9C
5.9C
61. 3C
12. 7C
6.90
6.20
6.50
3.340
3.353
3. 138
2.384
1.771
1.C56
C.643
C.275
C. 145
C.096
C.028
C.CC5
C.002
C.CC2
C.002
METHANE - CH4
RANGE X Y
1 66. 8C 10.37
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
72.20
7C.80
59. 10
32. 2C
19. 7C
22.00
4.30
1.00
1.00
1.00
. C.CO
0.00
O.CO
C.OO
C.OO
11.71
11. 35
8.59
3.59
1.91
0.96
0.18
0.04
0.04
0.04
0.00
0.00
0.00
0.00
0.00
-------
Table 11-15. DATA OBTAINED WITH QUARTZ PROBE USING
AXIAL GAS NOZZLE AND AXIAL POSITION OF 77. 5 cm
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
AXIAL BURNER INTERMEDIATE BAFFLE QUARTZ PROBE, SEPT. 29,1972
INPUT GAS 2147
OUTPUT ANALYSIS
NI TROGEN OXIDE
CARdON DIOXIDE
CARdON MONOXIDE
WALL TEMPERATURE 2560
27.80 PERCENT ON RANGE 1. 243
80.90 PERCENT ON «ANGE 1, 10
19.30 PERCENT CN RANGE 3, 0.
KFTHANE C.OO
(EXPERIMENTAL RESULTS
PERCENT
ON RANGE 0, 0
NITROGEN OXIDE -NO
AP
77.50
77. 50
77.50
77.50
77.50
77. 50
77.50
77. 5C
77. 5C
77.50
77.50
7 7.50
77.50
77.50
77.50
77.50
77.50
77.50
77.50
RP
0.00
?.oo
4.0C
ft. 00
8.00
1C. 00
12.00
14. OC
16.00
18.00
2C.OC
22.00
24.00
26.00
28.00
30.00
32.00
34.00
36.00
RANGE
1
I
1
1
I
I
1
1
1
1
1
1
X
15.40
15. 7C
14.80
16. 7C
16. 3C
18.00
17. 7C
16.30
16. 50
16.60
18.20
17. 8C
19.00
19.80
21.20
21.70
23.90
24.00
27.60
Y
132.0
134.6
126.7
143.4
139.9
154.9
152.3
139.9
141.7
142.5
156.7
153.1
163.8
170. 9
183.5
187.9
207.8
2C8. 7
241.6.
OXYGEN
02
3.90
3.96
3.39
3.91
3.88
4.39
3.40
3.40
3.27
3.44
3.41
3.29
3.44
3.51
3.47
3.70
3.84
3.78
4.04
PREHEAT TEMPERATURE 570
.52 PPM OXYGEN 2.98 PERCENT
.30 PERCENT
008 PERCENT
.00 PERCENT
CARBON DIOXIDE-CO?
RANGE
1
1
1
1
1
1
I
I
1
1
I
1
1
1
1
1
1
1
I
X
73.40
72.30
72.70
70.60
70. 70
68.00
69. 30
69.00
68.60
68.60
68.30
68.20
68.80
69.20
69.60
70.50
71.20
71.20
72.10
Y
8.77
8.55
8.63
8.22
8.24
7.73
7.98
7.92
7.85
7.85
7.79
7.77
7.88
7.96
8.03
8.20
8.34
8.34
8.51
CARBON MONOXICE -CO
RANGE
2
2
2
2
2
I
1
I
I
1
I
1
1
1
1
1
1
1
1
X
62. 8C
77. 2C
86. OC
72. 4C
92.30
42. 9C
51.20
50. 7C
58. 8C
59. 2C
59.10
55.20
53. 9C
55.40
53. 3C
45. 3C
44. 3C
36. 9C
35. 9C
Y
1.157
1.468
1.667
1.363
1.813
1.485
1. 806
1.860
2.285
2.306
2.301
2.C92
P.C24
2. 102
1.993
1.597
1.550
1.219
1.177
METHANt - CH4
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
3.4C
1 . 5'0 '
3. 60
2. 30
2.6C
3.2C
4.80
4. 70
4.80
5.4C
5.9C
5.6C
5.00
4.2C
3.20
2.3C
2.20
1.9C
1.8C
Y
C. 14
C . 06
C. 15
0.1C
C.ll
C.13
0.2C
0.20
C.20
0.23
0.25
0.24
0.21
C.13
0.13
C. 1C
0.09
C.08
0.07
-------
2. Tracer-Gas Studies
The tracer-gas mixing study for the axial burner with the short-flame
ported swirl baffle is presented in Figure 11-113. This scan, taken at
an axial position of 5. 1 cm, shows that the radial concentration readings
are very near to ambient, thus indicating that mixing would be complete
at this position. We conclude that the major mixing phenomena are oc-
curring in the burner block, which is an area into which we cannot probe
with our equipment. The scope of the project included only areas outside
the burner block and in the "combustion chamber. "
Z 500
o
I— Af\r\
< *uu
£E
i_ "*nn
zE 30°
LJ Q.
0°- 200
8 100
O
o
•
.1 ....
'V i
1
; ! i
' ! i i •: ' :
. i 1 i : . :
. , .... .(. .... ...
' i ! i i : '
:.;!!'.:
i i
t
, j .
.. .,
|
• ' ; ! -
i
i
i
i
•
t
1
!
.: ..
I
i
!
"I
"! "
'
,
-30 -20 -10 0 10
RADIAL POSITION, cm
20
30
A-62-534
Figure H-113. RADIAL CONCENTRATION PROFILE OF
CARBON MONOXIDE FROM THE AXIAL BURNER FITTED
WITH THE SHORT-FLAME PORTED SWIRL BAFFLE
[Air Velocity, 55 ft/s; Gas Velocity (air), 270 ft/s;
1000:1 Air/CO Ratio in Gas Stream]
3. Cold-Model Velocity Data
The raw pressure data for the axial burner, fitted with the short-
flame ported swirl baffle, are given in Table 11-16; the reduced profile
data are listed in Table 11-17. Figure 11-114 shows the axial velocity
at an axial position 5. 1 cm from the burner wall. Note that there is no
central peak representing the output from the gas nozzle. In fact, the
velocity data in the central region of the burner block at radial positions
of ±12 cm show reverse flow. Forward velocity peaks do occur at radial
positions of ±18 cm with magnitudes of 32.7 and 21.7 ft/s. Figure 11-115
152
-------
Table 11-16. RAW VELOCITY DATA FOR THE AXIAL BURNER WITH THE
SHORT-FLAME PORTED SWIRL BAFFLE AT THE 5.1-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMbUSTIO'4 BURNERS
CALIBRATION CUE FF 1 C I E.4 T S FOR FORWARD FLOW
Al = 0.770590 A2 = 0.272353 A3 = -0.059818
QO = 0.7^7720 B2 = -0.158821 84 = 0.129246
C = 4.464660 D = 0.394812
AXIAL BURNER «'ITH BLOOM BAFFLE FOR SHURT FLAMt - COLO MODEL
TOTAL DATA INPUT
THETA
0.
0.
0.
a.
0.
0.
1UO.
100.
180.
180.
ieo.
ICO.
1BO.
180.
1 bu.
0.
0.
0.
0.
0.
0.
AP
b. I
5. 1
5. 1
5. 1
5. 1
5.1
5. I
5. I
5. 1
5. I
5. I
5.1
5.1
5. 1
5. 1
5.1
5.1
5.1
5. 1
5. 1
5.1
RP
-30.0
-25.0
-23.0
-21.0
-18.0
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
3.0
6.0
9.0
12.0
15.0
18.0
21.0
23.0
25.0
30.0
P13
21200.00
-4430.00
848.00
107.00
1340.00
-1300.00
1840.00
644.00
1400.00
1860.00
24700.00
15600.00
-5120.00
-1290.00
-1700.00
456.00
1080.00
328.00
3980.00
3280.00
5120.00
P03
5500.00
23000.00
2440.00
88. 10
141.00
613.00
I 140.00
807.00
388.00
336.00
318.00
363.00
578.00
1310.00
3100.00
518.00
272.00
686.00
12300.00
3100.00
3500.00
P24
5280.00
19200.00
-535.00
-44.20
-32.30
-104.00
574.00
363.00
230.00
322.00
1280.00
7160.00
-402.00
-297.00
-468.00
153.00
72.80
88.40
551.00
1530.00
2440.00
P04
4490.00
7380.00
-2030.00
.-95.00
-69.80
-151.00
602.00
365.00
295.00
284.00
313.00
470.00
5300.00
-709.00
-760.00
387.00
142.00
172.00
1390.00
3200.00
3900.00
POA"
79.00
79.00
88.00
56.80
77.80
ircroo
156.00
138.00
114.00
117.00
104.00
" " 106.00" ~
136.00
' 172.00
175.00
I4o;oo~
104.00
TzrroTj
85.00
79700"
77.00
r~"
20.
20.
20.
20.
20.
T7J7
20.
20.
20.
20.
20.
-2TT.
20.
20.
20.
20.
20.
"20.
20.
20."
20.
PB
760.
760.
760.
760.
760.
7~5C".
760.
760.
760.
760.
760.
T60.
760.
760.
760.
7*0.
760.
— r& a;
760.
" 760.
760.
-------
Table 11-17. COMPUTER REDUCED DATA FOR THE AXIAL BURNER WITH
THE SHORT-FLAME PORTED SWIRL BAFFLE AT THE 5.1-cm AXIAL POSITION
AXIAL BURNER WITH BLOOM BAFFLE FOR SHORT FLAME - COLO MODEL
,.-.
AP
5.
5.
•3.
•3.
5.
5.
5.
•3.
5.
5.
5.
5.
5.
5.
•>.
5.
5.
5.
i.
5.1
•>.
RP
-30.0
-25.0
-23.0
-21.0
- 18.0
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
3.0
6.0
9.0
L 12.0
15.0
18.0
L 21.0
23.0
25.0
L 30.0
F I
14.6
18.5
50.4
41.4
43.4
55.3
155.0
148.6
154.6
165.0
176.6
175.6
163.6
143.0
131.3
55.2
44.0
55.9
62.6
45.6
33. 1
DELTA
103. V
12.9
237.7
247.5
268.6
274.5
252.6
240.5
260.6
260.1
266.9
245. 3
85.5
77.0
74.6
108. 5
93.8
105.0
97.8
115.0
115.4
RHO
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
5.35
5.30
12.05
40.98
45.07
26.02
12.94
16. 16
20.40
21.65
23.27
20.93
18.25
15.91
12.46
21.01
30.20
26.80
10.93
6.92
6.03
VX
5.17
5.02
7 .66
30.72
32.70
14.78
-11.73
-13.80
-18.44
-20.92
-23.23
-20.87
-17.52
-12.71
-P. 24
11.98
21.71
15.02
5.02
4.83
5.05
VY
-0.32
1.63
-4.96
-10.3-i
-0.74
1.70
-1 .62
-4. 13
-1.41
-0.95
-O.Of
-0.66
0.40
2. 14
2.48
-5.49
-1.41
-5.77
-1.33
-2.09
-1.41
Ml
1.31
0. 37
-7.86
-25.06
" -.31.00
-21.34
-5.21
-7.32
-8.60
-5.49
-1.36
-1.45
5.11
9.32
9.01
16.37
20.95
21.44
9.61
4.48
2.97
VT
-1.35
-1.67
-8.97
-26.51
-29.95
-19.21
-5.35
-7.95
-8.09
-5.08
0.00
1.58
4.97
8.30
8.42
15.50
20.25
20.89"
8.92
4iB4
3.27
VR
0.06
0. 11
2.41
5.68
8.04
9V55 "
1.06
2.74
3.25
2.30'
1.36
0770
1.23
3.75
4.06
7.59
5.55
7.50
3.82
r.Di —
0.36
P-ST' ~
0.012203
0.012221
0.011343
0.015021
0.011108
0;0~OBB35 ~
0.005378
0.006C57
0.006383
0.005086
0.005141
0". 005 795
0.004927
0.005047
0.005729
0.008304 '
0.008909
0.015526
0.012174
'OVOTZ4-01
0.012597
20.
20."
20.
20.
20.
20.
20.
20.
20.
"20 '.- '
20.
zu.
20.
20.
20.
-2TJ7—
20.
20.
20.
~zo;
20.
PB
760.
760.
760.
760.
760.
"T60.
760.
760.
760.
760\
760.
76O.
760.
/6~0.
760.
760.
760.
760.
760.
T60.
760.
-------
&XI&L BURNER WITH BLOUH BAFFLE FOR SHORT FLAME - COLO MODEL
•
' VS. VX
32.71
31 .61
10.52
29.4?
28.32
27.22
26. 13
25.03
2 3". 9 3
22. b4
20.04
t •} . 5 5
Id. 43
17.35
16.26
15. 16
14.06
12.96
11.87
10.77
8.58
7.48
6.38
5.29
4. 19
3.09
1 .99
0.90
-0. 19
-1.29
-2.38
-3.48
-4.58
-5.67
-6.77
-7.M7
-8. 96
-10. Oo
- 1 1.16
-12.26
-13.35
-14.45
-15.55
-16.64
- t 7.74
-18.84
-19.93
-21.03
"- 22 . 1 3
-23.23
-30.000 -24.000 -IB.000 -12.000
-6.000 -0.000 6.000
RADIAE POSITION, cm
12.000
18.000
24.000
30.000
Figure 11-114. AXIAL VELOCITY PROFILE FOR THE AXIAL BURNER WITH THE
SHORT-FLAME PORTED SWIRL BAFFLE AT THE 5.1-cm AXIAL POSITION
-------
shows a tangential velocity of 29. 9 ft/s radially at —18 cm and ZO. 9 ft/s
and +18 cm. The reason for the antisymmetrical velocity arises because
the baffle is rotated in such a way that more output is directed into the
negative y-region of the probing plane than into the positive y-region.
We-did not take velocity profiles beyond the 5. 1-cm axial position because
primary mixing is completed, as indicated by Figure 11-112 and by our
earlier discussion. A swirl number for the axial burner with the short-
flame ported swirl baffle was calculated using the data in Table 11-17.
The value of swirl intensity was 0.43.
4. Hot-Model Input-Output Data
The burner with a radial gas nozzle (short flame) was operated at a
gas input of 2593 CF/hr, •with amounts of excess air between 5 and 20%
and at three different preheated air temperatures. Figure 11-116 shows
the input-output data for the radial gas nozzle at a 2593 CF/hr gas input
as a function of excess air and preheat temperature. The peak concen-
tration of NO can be seen to shift toward higher excess air levels as the
preheated air temperature increases.
Input-output tests were conducted for the short-flame baffle with the
axial gas nozzle (long flame) at three gas inputs between 1769 CF/hr and
2415 CF/hr, with amounts of excess air between 5% and 20% and at three
different preheats. Figures 11-117, 11-118, and 11-119 show these input-
output test results. Increasing the preheated air temperature from 100°
to 550°F results in a nonlinear increase in the amount of NO emissions
at a given level of excess air. The nature of these emission curves is
in sharp contrast to the "bell-shaped" characteristics displayed by the
radial gas nozzle. Note also that the emission curves taken at ambient
conditions suggest that the amount of NO formed is relatively independent
of the excess air level above 2. 5% oxygen in the flue.
5. In-the-Flame Data Survey Results
As part of this program, we again radially mapped the concentrations
of CO, CO2, CH4, O2, and NO; the temperature; and the gas velocity.
This information is obtained to gain insight into the mechanism and loca-
tion of NO formation for different flame conditions.
156
-------
01
KP
'.
£
. .
>•
t^
U
s
.w
'*"
VS. VT
20.90
19.90
18.91
17.91
16.91
li.91
14.92
13.92
12 . 92
11.93
10.93
9.93
8.93
7.94
6". 94
5.94
4.95
3.95
2.95
1.95
0.96
-0.03
-1.03
-2.02
-3.02
-4.02
-5.02
-6.01
-7.01
-8.01
-9.00
-10.00
-11.00
-12.00
-12.99
-13.99
-14.99
-15.98
-16198
-17.98
-18.98
-19.97
-20.97
-21.97
-22~.96
-23.96
-24.96
-25.96
-26.95
-27.95
-28T9-S"
-29.94
»P=
5.10
-SURNEft WITH BLOOM BAFFl/E FOR SHUBT FLAME -COLD MODEL
:30.000 -24.000 -18.000 -12.000 -6.000 -0.000
~~ RADlAL'-POSITI
-------
800
700
600
Q.
«: 500
LJ
o
400
300
200
00
3 4
02 IN FLUE,%
A-122-1229
Figure 11-116. NO CONCENTRATION IN THE FLUE AS A FUNCTION
OF EXCESS AIR (Short-Flame Baffle - Radial Nozzle) AND
PREHEATED AIR TEMPERATURE; GAS INPUT, 2593 CF/hr
158
-------
300
E
Q.
a.
u.
z
O
200
100
50
600° F PREHEAT
2 3
02 IN FLUE , %
5.5
A-I22-I230
Figure 11-117. NO CONCENTRATION IN THE FLUE AS A FUNCTION
OF EXCESS AIR (Short-Flame Baffle - Axial Gas Nozzle) AND
PREHEATED AIR TEMPERATURE; GAS INPUT, 1769 CF/hr
400
E
Q.
O.
UJ
ID
O
300
200
100
50
2 3
02 IN FLUE,%
5.5
A-122-1231
Figure 11-118. NO CONCENTRATIONS IN THE FLUE GAS AS A
FUNCTION OF EXCESS AIR (Short-Flame Baffle - Axial Gas Nozzle)
AND PREHEATED AIR TEMPERATURE; GAS INPUT, 2109 CF/hr
159
-------
450
400
E
Q.
Q.
UJ
G! 300
200
100
485°F PREHEAT
230°F PREHEAT
90*F PREHEAT
02 IN FLUE,%
A-122-1232
Figure 11-119. NO CONCENTRATION IN THE FLUE GAS AS A
FUNCTION OF EXCESS AIR (Short-Flame Baffle - Axial Gas Nozzle)
AND PREHEATED AIR TEMPERATURE; GAS INPUT, Z415 CF/hr
We first completed gas species, temperature, and velocity mapping
for the short-flame baffle burner with the axial gas nozzle. The maps
•were obtained while operating the burner at conditions of intermediate-
level NO production as determined from the input-output data tests.
Additional gas species mapping was performed while operating the burner
at conditions producing the maximum amount of NO.
Profiles were first run by scanning the radial axis with the gas-
sampling probe moving at a constant velocity (approximately 1.5 cm/s),
with the gas species concentrations being displayed by a high-speed rec-
ord. These scanning traverses were made at 30-cm intervals from the
burner wall. These data were then inspected from the degree of primary
and secondary combustion as well as the NO concentration and its varia-
tion with radial position. From these analyses, we determined that a
point-by-point time-averaged measurement of the gas species, temperature,
and velocity would be taken at axial positions of 7. 6 cm, 45. 7 cm, and
90 cm.
160
-------
The profiles were first run on the axial burner with the short-flame
ported baffle with the input conditions set at 2190 CF/hr gas input, with
a 315°F preheat temperature and 3% excess oxygen. Figure 11-120 shows
a composite of the gas-sampling profiles taken at an axial position of 7. 6
cm from the burner block face. These curves show (curve M) that
methane concentration was in excess of 20% on the axis of the burner
(0. 0 cm). The carbon monoxide (curve C) varied between 4 and 6% in
the region of the burner block (from +21 cm to —21 cm) to a minimum
of 300 ppm near the sidewalls of the furnace. Oxygen (curve O) varied
from 1.2% on the center line to a maximum of 13. 1% at a 24-cm radial
position to a recirculation value of 4. 1%. Nitric oxide (curve N) had a
maximum of 215 ppm at the center line and a minimum of 69 ppm at a
radial position of 21 cm. Carbon dioxide (curve D) varied from about
3% at the center line to 10% in the recirculation zone.
The curves of Figure 11-120 were plotted on a single 0-24% scale
because of computer limitations. The following legend applies to this
figure and some of the others (computer print-outs) that follow:
AP = axial position
RP = radial position
The actual data were collected on a range of concentrations which
provided greater resolution of the measuring equipment as shown in
Figures 11-121 to 11-125. The raw data are given in Table 11-18.
Figure 11-126 shows the temperature profile across the furnace at
the 7. 6-cm axial probe position. These data support the gas concentra-
tion analysis in that the "cold" region (temperatures below the 2475°F
ambient) of the flame front corresponds to positions of high oxygen (21
cm and —21 cm) and methane (3 cm) concentrations, with the hot regions
(temperatures above 2475°F ambient) (15 cm and —15 cm) appearing on
the shear (high-mixing) area between these high oxygen and methane
concentrations.
Figure 11-127 displays the axial component of velocity as a function
of radial position at a 7. 6-cm axial probe position. There are peaks in
the forward velocity at —18 cm, 6 cm, and 21 cm. By comparing these
peaks with the temperature and gas concentration analysis, we can con-
clude that very good agreement exists about the position of the high
161
-------
/S NU,
2 4.'30
23.34
22.R7
22.31
•M.ll
4XUL tfuRNE* SiiU'U STAINLESS SHEPHERD'S PROBE, NOV.3,1972
H-M—H-
8-
p,'
a
o
o
o
27
O o
H £
^C
CM o^*1
H '
2 Q
W M
u
20"
8U.
M
O
*
^J«
K
U
20.48
2C.OI
19.53
19.06
1 8 ."SB
It). 10
17.63
17.15
16.67
1 6'.' 20
15.72
1 S . 2 •)
14.77
13!e2
13.34
12.86
11.91
11.43
in. ll,
IC.4U
in. Oi
H.SH
.9.10
7.02
7.15
(. . (, 7
b'72
j!2«.
4.21
3.C1
2.^n
1 . '.' l
1 .43
C.4o
o.ro
u D
-oO.OCf-
-48.600 -37.20& -2S.SOO -14.400
-3.000
a. 400
19.800
31.211: '.2.600
c c
S4.000
RADIAL POSITION, cm
Figure 11-120. COMPOSITE PLOT OF GAS SAMPLING PROFILES
FOR CO, CO2, CH4, NO, AND O2 FOR THE SHORT-FLAME BAFFLE
USING THE AXIAL NOZZLE AT AN AXIAL POSITION OF 7. 6 cm.
GAS INPUT, 2190 CF/hr; EXCESS OXYGEN, 3. 0%; PREHEATED AIR, 315°F
162
-------
VS CH4
AXIAL BURNER SHORT STAINLESS SHEPHERD'S PRUrtE, NOV.3,1972
AP° 7.60
_.. . *=«=-»—!
^5.
W
ETHA
^
^
23.82 •
23.34
22. b7
22.39
21.91
20.96
20.49
2U.01
19.53
19.06
.1-8.10
17.63
17.15
16.67
16.20
15.72
' 15.25
14.77
14.29
13.82
l'3.34
12.86
12.39
11.91
ll.4«,
10.96
10.48
10.01
9.53
9.05
8.58
8.10
7.62
7'. 1 5
6.67
6.20
5.2',
4. 77
3.01
3.34
0. )l>
0.4C
a.oo —
9
.*_c •_*_•'
- 60.nor
-^•i.HOO -14.400 -3.000 8.400 19.800 31.200 42.6CO
54.000
RADIAL POSITION, cm
Figure 11-121. RADIAL COMPOSITION PROFILE FOR METHANE
(CH4) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
163
-------
AXIAL ttuavER SHim STAINLESS SHEPHERD'S PROuC, NOV.3. 197?
VS. CP AP« 7.60
, . m_f.
\&
w
Q
R
o
z
i
z
o
9
K
-------
AXIAL BURNER SHJRI STAINLESS SHEPHERD'S PRUBE. NOV.3il972
AP- /.60
0
s^
m
w
1
Q
Z
o
a
<
0
8.01
7.86
'. T.7?
7.i>;
7. in
7.13
ft. 98
A.D3
.. 6'. 69
6.14
6.31
b. 10
5.30
• 1.05
4.36
5.21
4. 77
4.33
4.18
51
1.44
3.30
3. IS
j.on
\/
-6C.(10ri -48.600 -37.200 -25.800 -14.4CO
-3.000 8.400 19.800 31.200 42.600
54.000
RADIAL POSITION, cm
Figure 11-123. RADIAL COMPOSITION PROFILE FOR CARBON
DIOXIDE (CO2) FOR THE SHORT-FLAME BAFFLE USING
THE AXIAL NOZZLE AT AN AXIAL POSITION OF 7.6 cm.
GAS INPUT, 2190 CF/hr; EXCESS OXYGEN, 3.0%;
PREHEATED AIR, 315°F
165
-------
.
-------
•IM /b Ill,
213.14
203.68
/OC.B1
ITT.94
I li.Ob
1«9.34
JIIO.T*
177.68
169.28
6166.42
153.?1
O* 160.AH
D. )>7.q?
AXI&L BlMNEK SHIIRr STAINLESS SHEPHMD'S f«U8E, NOV.)i1972
7.60
w
Q
.«•
O
u
IS?.08
146.3?
14J.41
140.6?
U/.7S
114.09
126.29
120.4fc
UT.69
114.02
III.96
10-*. 09
1.16.23)
IJ1.36 I
ion.49
H9.0)
S6. 16
H3.30
'4. FO
71.63
OS.)?
-".H.6CO -17.700
. 800 -U.400
-3.000
8.400
19.600
31.200
RADIAL POSITION, cm
Figure 11-125. RADIAL COMPOSITION PROFILE FOR NITRIC
OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 7. 6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
167
-------
Table 11-18. RAW (Gas Analysis) DATA FOR SHORT-FLAME BAFFLE BURNER
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
'AXTAL' BURNETT SHOKT-STA1NCE5S~SHFPHERD» S' PKOBT, ~NOV737T9T2~
INPUTGAS2190WALL TfcMPfcRATURE 2524
OUTPUT ANALYSIS
,MI TROGEN"~OTrD"E2T780~P~ERCENT ON RA"NGE~1»
CARBON DIUXIDE 81.00 PERCENT ON RANGE 1,
TTA-RBtrcr MUTO X TOE £74Tr"FE RC EWf "ON R A N"G"E~ 3 ~,
METHANE 0.00 PERCENT ON RANGE 0,
PREHEAT TEMPERATURE
315
10.32 PERCENT
o;ffo~r PERCENT
0.00 PERCENT
ZT9T PERCENT"
EXPERIMENTAL RESULTS
AP
7.60
7.60
1 . 6U
7.60
7.60
7.60
~ -7760"
7.60
' .60
7.60
7.60
7T60"-""
7.60
7.60
7.60
' 77~6~0""
7.60
~7V6~0
7.60
r .60
7.60
^.60
7.60
~7.60
7.60
RP
-60.00
-54.00
-4B .OO
-42.00
-3~6.OO~
-30.00
-24.00
-2 L .00
-18.00
-12.00
-9YOO'
-6.00
-3.00
0.00
"3YOO~"
6.00
9.00
12.00
1 5.00
18.00
2T. 00
24.00
3D 700
36.00
I .60 42 .00
7.60 48.00
"7760 5"4YOO ~
NITROGEN OX
RANGE X
1 — T8Y30"
I 18.60
1 1 1 . fU
1 17.70
" 1 IB". 50
I 17.70
~ ' 1" "17750"
I 18.60
1 10. IO
1 9.90
~I T478'0"
1 15.50
i — 1-7-50
1 23.40
1 23.00
1 24.70
r~23."6"0~
1 22.80
" I 23.10
1 22.00
1 19.30
1 13.40
I 11.20
1 20.20
I 19.90
1 19.50
1 19.90
IDE "-NO
Y
157.6
160.2
152 . 3
152.3
"159.3
152.3
150.5
160.2
91.2
84.3
1 2'6 . 7
132.9
" 150.5
203.3
199. 7
215.1
205.1
197.9
200.6
190.6
166.5
114.5
68Y9
95.5
" TT4.5
171.8
168.2
171.8
173.6
02
3.4~2" '"
3.56
3 . IO
3.01
3". 37'
3.09
3.23
9.92
8.34
0.64
" 0.34
0.49
1 .44
1.17
IY33" "
1.11
0.76
0.81
4.37
13.10
4.06
4.04
4.05
4.27
" 4.06
CAR
RANI
T
i
i
i
i
i
i
i
r
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
T
BON OIOXI
GE X
80 . W
80.50
81 . 2U
81.00
" 80.20
80.70
' 80". 60
80.50
58 . 70
62.40
~ 74760 —
65.00
59'. 10"
49.10
42.70
38.50
"35.60'
36.00
3 9'." 20
48.10
62.50
69.50
" 4"8.50 '
46.50
— T874TT-
78.10
77.70
77.40
78700
Y
"TO". 30"
10.22
IO . 36
10.32
10. IT
10.26
'10.24"
10.22
6.10
6.73
9.0"0"
7.19
"6717"""
4.61
3.73
3.20
2.85
2.90
3.28
4.47
6.75
8.01
4.53'
4.24
" 97TB"
9.71
9.63
9.57
— C"ARB"dM~TOflOXT
RANGE X
3
3
3
3
3
3
2
1"
1
1
1
1
1
1 "
1
1
1
1
1
3
3
3
3
3
TOYOO
9.40
10.3O
10.90
IOY50
11.40
-rrTTo -
13.00
25. 10
18.70
4~8 . 00
107.20
il4Y4"0 ~
115.20
105.10
100.60
95.30'
96.70
"Wr70"
108.00
103.60
55.60
77VO"
10.10
'" 9T4TT"
8.60
10.10
9.40
9Y70
DE -CO METHANE - CH4
Y RANGE X Y
0700A
0.003
U. UO4
0.004
0. 004
0.004
0.004
0.005
O.010
0.312
T7T2T
5.553
6". 147
6.215
5.385
5.033
AY 633
4. 737
4.964
5.618
5.267
2.113
O."003
0.004
OTW3
0.003
0.004
0.003
0.003
3 0.00
3 1.20
3 1.20
3 2.80
3 3.00
3 3.50
3 3.00
3 3.20
3 3.60
3 4.30
3 8.70
3 46.80
2 65". 00
I 87.40
1 108.80
1 113.00
1 112.60
I 113.10
1 101.40
1 53.90
3 22.90
"' 3 rrro
3 1.20
3" " 1720
3 0.00
3 0. 50
3 0.00
0.00
0.05
O.O5
0.12
~07T3
0.15
0. 13
0.13
0.15
0.18
0.37
2.14
-"57167"
15.88
22.76
24.25
24.11
24.29
20.25
7.48
1.00
0"70"6
0.05
~0.05
0.00
0.02
0.00
00
-------
29
28
27
26
CM
uj
cr
ID
fe
'25
24
Q_
2
UJ
23
22
21 -
20
I
I
I I
65 55 35 15 5 0-5 -15
RADIAL POSITION,cm
-35
A-I22-I233
Figure II-1Z6. AXIAL TEMPERATURE PROFILE FROM SHORT-
FLAME AXIAL NOZZLE BAFFLE BURNER AT A 7. 6-cm AXIAL
POSITION. GAS INPUT, 2190 CF/hr; EXCESS OXYGEN,
3.3%; PREHEAT TEMPERATURE, 310°F
169
-------
H
HH
u
s
u
l/S. VX
52.02
il.06
50.10
49.14
48.19
45. 31
44,36
"•P'52 .
3R.C.1
16.60
)2.B6
30.^S
28.07
27.11
26.16
25.20
24.24
?2.33
21.37
19.45
18.4 )
17.54
lh.5S
15.67
14.66
11.71
12.75
IU.HJ
0.92
7.96
7.00
0.04
5.09
4.13
3.17
AXIAL BURNEK KITH SHORT FLAME BAFFLE - GAS 2109CFH - 290F PREHEAT - 3 EXCCSS 02
7.60
-27.000 -21.1'OU -lh.200 -10.800
10.800
J7.ODO
RADIAL POSITION, cm
Figure 11-127. RADIAL VELOCITY PROFILE (Axial Component)
AT AN AXIAL POSITION OF 7.6 cm FOR THE SHORT-FLAME
BAFFLE USING THE AXIAL NOZZLE. GAS INPUT, Z190 CF/hr;
EXCESS OXYGEN, 3.3%; PREHEATED AIR, 310°F
170
-------
concentrations of oxygen and methane. Figure II-1Z8 shows the tangential
velocity component. The raw data are shown in Table II-19.
Figure 11-129 shows a composite plot of CO, CO2f CH4, NO, and
Oz at an axial position of 48. 3 cm. The methane concentration has de-
creased from above 23 to 2% on the burner center. In contrast, the
CO is still maintaining readings of 6% in the region of the burner block.
The COz concentration (curve D) maintains a relatively constant value of
10% except in the burner block region. The nitric oxide concentration
(curve N) was 116 ppm at the center line and increases to 170 ppm near
the sidewall as the radial position is charged in a positive direction.
Oxygen (curve O) was 0. 26% at the center line and increases to about
4. 5% near the perimeter of the burner block opening. Data plots with
greater resolution are given in Figures 11-130 to 11-134 and the raw data
in Table 11-20.
Figure 11-135 shows the temperature profile at the axial position
48. 3 cm. The "cold" spots have disappeared and the high-temperature
regions have shifted their peaks to radial positions of 9 cm and —21 cm.
Figure 11-136 displays the axial component of velocity as a function
of radial position at 48. 3 cm. It is interesting that the shapes of the
axial velocity curve and the temperature profile curve are very similar.
The peak velocities occur at radial positions of 21 cm and —12 cm in
sharp contrast to the position of the temperature peaks. The tangential
velocity, shown in Figure 11-137, has decreased 60% from its value at
the 7. 6-cm axial positions. It is also showing a large scattering of data
points on the negative side of the burner center line. The raw data are
presented in Table H-21.
The composite plot of the gas species concentrations for an axial
position of 91 cm is displayed in Figure 11-138. There is only a trace
of methane present at this axial position. The oxygen (O curve) still
shows a higher concentration on the left of the burner center line (positive
radial position) than the right, with a 50% decrease in average value in
the region of the burner block. The carbon dioxide (curve D) and the
nitric oxide (curve N) have reached relatively constant values of 10% and
150 ppm, respectively. The carbon monoxide (curve C) has a peak value
of 1. 9% on the axis of the burner and drops to 400 ppm near the sidewalls.
171
-------
H
U
3
(1XIAL RURNtH *1TH SHURT FlAMf bAFTLE - U«S 21U9CFH - i'H)f fREHfAT - 3 tXCtSb 02
- 16.46
• 17.32
-27. OOP -Xl.hOC
-I6.PCP -10.800
-5.<.00 -0.000
10.800
16.21'P
7I.60P
2 ;.
RADIAL POSITION, cm
Figure 11-128. RADIAL VELOCITY PROFILE (Tangential
Component) AT AN AXIAL POSITION OF 7. 6 cm FOR THE
SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.3%; PREHEATED AIR, 310°F
172
-------
Table 11-19. RAW (Velocity) DATA FOR SHORT-FLAME BAFFLE BURNER
AERODYNAMIC MODELING OF COMBUSTION BURNERS
CALIBRATION-COEFFICIENTS FOR FORWARD FLOW
Al = 0.770590 A2 = 0.272353 A3 = -0.059818
BO =
C =
U.r3ff2U
4.464660
TOTAL~DATA INPUT
B2 =-O.158821
D = 0.394812
B4 =
0.129Z46
AXIAL BURNER WITH SHORT FLAME BAFFLE - GAS 2109CFH - 290F PREHEAT - 3 EXCESS 02
I HE I A
0.
0.
0.
" 0V •
0.
u .
0.
0.
0.
0.
u.
0.
— o .
0.
u.
0.
u .
0.
AP
7.6
7.6
7.6
1 . t>
7.6
7~. 6
7.6
7.6
7.6
1 . 6
7.6
"7.6
7.6
7.6
7.6
1 . 6
7.6
RP
-27.0
-24.0 ""
-21.0
-18.0
-15.0
- 12. O
-9.0
'-6.0
-3.0
0.0
3.0
6. U
9.0
12.0
15.0
18.0
21.0
24. 0
27.0
P13
-6.04
-1.24
-2.84
11.53
5.47
3.54
-4.00
-1.48
-2.48
-5.74
-11.34
-B.03
-5. 72
-4.81
-7.45
-42. as
-49.38
-2O. O2
-16.25
P03
-0.24
-0 . T4
16.45
5.64
-1.14
-2.09
-O.B2
0.28
"0.67
0.64
O.51
-0.80
-0'.64
-2.69
-9.42
4.25
-O.23
-0.32
P24
0.
-0.
14.
" -27;
-15.
-6.
-0.
-or
i.
— 6";
4.
-2.
-3.
2!
27.
24.
2.
-0.
07
72
72
67
1 I
96
44
69
19
52
16
28
23
52
24
39
39
P04
-0.
-0.
23.
-9.
-6.
-2.
0.
0.
4.
0.
4.
-0.
-0.
-0.
17.
41.
-0.
-0.
15
37
46
61
13
32
01
04"
66
31
88
or
14
78
16
90
29
HI
59
POA
-1.34
-0.06
22.20
18.02
-10.82
-17.14
-17.85
-15.89
-14.60
-n.6ir
-5.23
-5.44
-8.48
-10.21
-10.85
-2.90
31.76
-O.41
-0.40
T
2375.
2154.
2167.
2882.
2856.
2361.
2232.
2128.
2076.
2076.
21O2.
2258.
Z47B.
2673.
2400.
2062.
2478.
PB
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
76O.
760.
-------
AKIM. HlMNEK SHUKI bUlMESS SHCPHCRD'S PKOBE. NOV.j.117?
4f
£
a
a
O
o
o
27
Op
[-4 2
\^
S^-
H '
^ ^*
, , o
W u
2 *
Ou
u .
o
•J
ffi
u
1 JS «UiU?iCll2iC« ".P. 30
13. OB ' 0
12.62
12.57
12.31
12.05
1 1.80
IT; w — -- - - -
1 1.29
(1.03
ic. 77
10.52
10.26 ') 1.^
10:00 - ^~tr • o^
9.75 . — 0 JMX.
•J.«i or ^D
T.23 \
I;?? . \
8.06 -\
U.21 \
7.T5 \
7.64 \
I:*! \
6.13 0
6.67 \
6.11 ^O-O 0'
6.16 C — C-C— C-C.
5.10 /
5.n<. /
|'|j' /
*!62 /
*.36 ^.if~*n I
^*^ \ /
J.'" .1-^"" ° n \ /
3. 34 \ /
3. OB il C C
?.B2 \;
2.S7 Y
2.31 A
2. 05 /\ ,*—***
1. SO C U M M'
1.54 ^^- t '1 N N^^^ / \ /
1.03 / \ / N «/
•0.7T • • / i-"
0.51 XC M^\
0.26 n r^ c «^ i)— o— o — D-IJ"
o.oo c c C c c^*?"r " n-*^
CO = C
O2 = O
NO = N
CO2 = D
CH4 = M
/
0~0
\
y°
D~0—0
U
D
*D D.
X°'^
(J 0 0
\). o-^
N N ——N
N-«—H-V
M-
< , , I ( I , I I I ,
-60.OCR -48.000 -16.000 -24.000 -12.000 -0.000 12.000 24.000 36.000 40.000 '60.000
RADIAL POSITION, cm
Figure 11-129. COMPOSITE PLOT OF GAS SAMPLING PROFILES
FOR CO, CO2, CH4, NO, AND O2 FOR THE SHORT-FLAME BAFFLE
USING THE AXIAL NOZZLE AT AN AXIAL POSITION OF 48. 3 cm.
GAS INPUT, Z190 CF/hr; EXCESS OXYGEN, 3. 0%; PREHEATED AIR, 315°F
174
-------
*"*.
'-•
fex.
b
*
w
j£
3T-.
H
W
3
A (
i
. " i
(
•c
r
r
•T
r
i
c
r
l.
C
1
C
r
M CH4
>. 10b8
'.0247
.9405
.8984
.8142
.7721
.7300
.6879
T5'4"S8~~
.6037
.5616
.5195
.4775
.4354
.3933
.3512
.3091
.2670
.2249
.Iti28
.1407
.0986
.0565
.0144
.9723
.9302
.88CI
.8461
.8040
.7619
.7198
.6777
.6356
15935
.5514
.5093
.4672
.4251
73630' '
.3409
.29A8
-2561J
.2147
. 1 726
rriTOS""
.0864
.0463
.0042
AXI4L UO
-------
/S. f.ll
6. 12
ft.00
0.117
5.75
5.63
5.5T
5.26
AXUl BUHNER SMURT ST41.-LESS SHEPHERD'S PRJBE. NOV.3,1172
48.30
^0
w
p
R
§
o
*j5>
j2
O
•PQ
rt
U
5*14
5.02
4.40
4.53
4.2R
4. lo
3.12
. 3.71
3.A7
3.55
3.43
'3.30
J.1H
3.Q6
2.04
2.8?
2.6-)
2.57
2~.)i
2.20
2.06
.'(6
.84
. 71
.5^
.35
.21
. in
0.98
O.H6
0.74
0.61
0.37
0. 12
0.00
/\
*
-to.orr
-12.000
-0.1100
12.000 24.00C K, .Or'H '.11.000
60.000
RADIAL POSITION, cm
Figure 11-131. RADIAL COMPOSITION PROFILE FOR CARBON
MONOXIDE (CO) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 48.3 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
176
-------
'J SHURI ST4INLESS SHfPHERU'S P^UBEi NOV. 3. 19 F2
,IP VS C32
13.03
12.95
12.81
12.68
12.55
12.M
12.28
12. 14
12.01
II. bU
11.71,
11.61
11.48
11.34
11.21
11.07
10.'14
^N 10.HI
10.67
1,8. 30
w
Q
R
o
Q
O-'.
(Q
U
10.41
10.27
1 0. -14
10.00
9.87
9. f4
9.34
9.20
-------
u
o
X
o
AXIAL I'.UHNt-l SHJKT SIMNLEiS S>
•j.31
5.09
4.76
,31
,20
09
, "IB
,'a'r
.76
.42
.31
.20
,0-J
,ya
,67
;-\
*
2.76
2.31
2.20
2.C<)
LIB
1.87
\'.b*.
i.'ji
1.47
I. )l
1.20
I .09
0. Ill
O.O.I
0.7h
C.53
n. ii
o
* * ^* "«
-••,
-------
ill-
-
E
a
a
W
Q
3
O
u
2
H
2
/S -4.1,
1 72. 7/.
1/1.*?
1 70.07
loB.72
166.03
164.69
103.3*
162.00
160.65
\'>1. 31
137.96
I «.•&?-•
155.27
153.93
lii.-iB
1 *9* d9
1*6.55
I*5i86
1**.5I
1*3.17
1*1. B2
140. *8
139. 13
137.79
136.**
135.10
I >3. 1'j
112.41
1 11. Ob
128. 37
127.03
125.68
124.34
122.19
121.65
120. 10
116. )6
1 17.61
116.26
1 14.92
113.57
112.23
110.86
100. !>*
108.19
106.85
105.50
1U*. 16
AXMl BIMNI « SHORT SI4INLE5S SHTPHCRO'S PRrillE, NOV.3il'»72
*'J. tO
/-\
-60.onn
-36.ooo -24.000 -i?.nnn
-0.000 IZ.'OOO 24.000 36.0TO "*8'.000 60';OTJO
RADIAL POSITION, cm
Figure 11-134. RADIAL COMPOSITION PROFILE FOR NITRIC
OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 48. 3 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
179
-------
Table 11-20. RAW (Gas Analysis) DATA FOR SHORT-FLAME BAFFLE BURNER
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
BTJKNER SHORT'STAI NteSS~S«ePHERD^S PR0BET NXJVT3rr972 ~
1NPUT GflS 2190
WALL TEMPERATURE
PREHEAT TEMPERATURE
310
OUTPUT ANALYSIS
-NITROGEN OXIDE - 2TT 20-PERCENT ON RANGE-IT -18r.50-pPM- ----- OXYGEN — 3rr2-PERCENT
CARBON DIOXIDE 81.90 PERCENT ON RANGE 1, 10.51 PERCENT"
METHANE
0- "
1 114.70
1
1
— 1
1
-t~
1
2
2
"I
1
— 3—
3
3
3
3
3
3
1 IH. 1U
114.80
103TW- -
91.50
66 .10
38.80
33.30
14.00
83.90
42.40
17.90
6.70
^ • 90
5.00
4* 50
5.10
4.20
U.UUJ
0.001
U • \J\Jf.
0.003
0.008
0. 147
0.286
0.592
3.064
2. 996
6.038
6. 240
6.172
A • 1 2 2
6. 181
5.417
4.355
1.301
0 • 5 74
0.231
3.823
1.462
0. 007
0.002
0. 002
0.002
0 . 00 1
0.002
0 . 001
lE"THftN£- -
tANGE X
3" 0.00
3 1.20
3. 30
3 1.60
3 0. 80
3 0.00
3 2.10
3 4. OO
3 11.10
3 19.30
3 18.90
3 40.00
3 45.50
3 47.00
3 41.10
3 33.80
3 22.80
3 6. 10
3 1 • 40
3 3.00
3 2. 30
3 0.30
3 0. 00
3 0.00
3 0. 00
3 0.00
3 1.30
3 0.00
3 0 • 00
CH4— '
Y
0.00
0.05
0. 14
0.07
0. 03
0.00
- '0.09
0.09
.19
0.47
O-r»4
0.82
1 . 80
2.07
2.15
1.86
1.51
1.00
o!26
0 • 06
0.13
0. 10
0.01
0.00
0.00
0. 00
0.00
OTO5-
0.00
0 • 00
00
o
-------
28
27
u.
o
CM
O
•»
UJ
Qjj 26
<
DC
UJ
0.
UJ
25
24
I
65 55
35 15 5 0 -5
RADIAL POSITION,cm
-15
-35
A-I22-IZ54
Figure 11-135. AXIAL TEMPERATURE PROFILE FROM SHORT-
FLAME AXIAL NOZZLE BAFFLE BURNER AT A 48. 3-cm
AXIAL POSITION. GAS INPUT, 2190 CF/hr; EXCESS
OXYGEN, 3.3%; PREHEAT TEMPERATURE, 310°F
Data plots of gas composition for an axial position of 91 cm are given
in Figures 11-139 to 11-143 with greater resolution. The raw data are
shown in Table 11-22.
The temperature profile for a 91-cm axial position is shown in
Figure 11-144. The flame front is still fairly well defined, with a peak
temperature of Z800°F at the burner center line decreasing to 2500°F
out near the walls.
The axial component of velocity data is shown in Figure II-145 for
an axial position of 97.4 cm. Unlike the temperature profile, the axial
velocity profile has maintained the same quantitative shape that it dis-
played at the 48. 3-cm axial position. The velocity peaks occur at —9
181
-------
I.Xf.t.SS 0?
«l TH SHIJO 1 fLiME BaPFI E - (,AS XIU'ICFH - ^'I()F l-Kllir-AI
*
r*
H
I-H
u
3
W
^
15.39
14.37
13.36
12.34
1 1.32
10. 30
9.28
H.26
7.24
6.22
5,20
4. in
3.16
l!l2
0. 10
-0.91
-1.93
-2.95
-3. 17
-6.01
.77.03
-9.P6
-10.08
-11. 10
-12.12
.-L.3. 14
-.15.18
-16.20
-<.2.000 -J3.600 .-25.200 -16.800
-8.400
O.noo
8.400
16.800
25.200
33.600
'.2.000
RADIAL POSITION, cm
Figure 11-136. RADIAL VELOCITY PROFILE (Axial Component)
AT AN AXIAL POSITION OF 48. 3 cm FOR THE SHORT-FLAME
BAFFLE USING THE AXIAL NOZZLE. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 310°F
182
-------
AXIAL blJHNER 1,1 IH SHOKI FIAHF. B4FFLL - GAS ?10<>CFH - 290F CKtHFAl - 3 tXCf'.S (V
HP VS. VT AP = 48.30
__..
"V^
VH
,* .
r^
H
I-H
U
3
W
^
P . 1 -7
8.89
8.58
U. i'B
7.97
7.67
7.36
7.05
6.75
6.44
6. 14
5.83
5.53
5.22
4.00
3.69
3.39
3.08
2.78
2.47
2.17
I.H6
1.25
0.90
0.64
0.03
-0.27
-0.5/
-0.88
-I. 1C
-1.70
-2. 10
-2.71
-3.01
-3.32
-3.63
-3.93
-4.24
-4.85
.-5. 15
-5.46
-5.76
-6.07
\
\
\
\
\
'-42.000 -33.600 -25.200 -16.800 -8.400 0.000
8.400 16.800 25.200 33.600
42.000
RADIAL POSITION, cm
Figure 11-137. RADIAL VELOCITY PROFILE (Tangential Component)
AT AN AXIAL POSITION OF 48.3 cm FOR THE SHORT-FLAME
BAFFLE USING THE AXIAL NOZZLE. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 290°F
183
-------
Table 11-21. RAW (Velocity)" DATA FOR SHORT-FLAME BAFFLE BURNER
AERODYNAMIC "MODELING OF COMBUSTION BURNERS
00
CALrBRATION'COEFFICIENTS "FOR FORWARD FUDVT ~
Al = 0.770590 A2 = 0.272353 A3 = -0.059816
BO =
C =
TOTAL
THfc 1 A
0.
0.
0.
~ 0.
0.
u.
0.
u.
0.
—a.
0.
u .
0.
• 'o.
0.
OT
0.
U.
0.
0".
0.
0.
0.
0.
0.
ISO'.'
L80.
-IWr
180.
ISO.
130.
0. f 3 1120 BZ =
4.464660 D =
•• -0.158821 B4 = 0.129246
0.394812
AXIAL BURNER
DATA INPUT
AP
48.3
48.3
48.3
"48". 3
48.3
4B. 3
48.3
fS7J'
48.3
— (J.
760.
760.
760.
r&s.
760.
760.
760.
T6XJ7"
760.
76"0.
760.
76O.
760.
760.
760.
760.
760.
760.
760.
-------
AXIAL BUKNtR SHUKT STAINLESS SltEPHEKR'S PRUBe. NOV.3. 1972
UP VS NI),L)?,C02,CU,CH4 AP« VI.40
10.28 -U—0—D—0—D>^
10.08 D . ,D-0— vr . D-D—D—Ov.
~
6
a
a
0
o
o
*~7 *""*
°6
Jj.^
r . |
'Z n*
W cj
U „
O (j
\J
O
E.
9. -88 D
9.66
9.48
•).28
9.07
8.67
8.47
8.27
8.07
7.86
7.66
7.26
7.06
6.86
6.66
till
iiii
^> . 04
4.84
*!4*
4.?4
KC3
3.43
3.23
2.83
2.62
2.02
1 .82
1.62
1. 01
o.ei
0.61
0.41
0.21
^»p- U -U'' ^tT U— D-O^
D^
0— — D-s. ^s'®'**^
^^^-o**1^^ ^**N*-
. _
CO = C
02 = O
NO = N
CO2 = D
CH4 = M
/(J U\
/ \
/
/
//*
u • /
•u UN^ /
\ s*\ °
XA_,V /
ir-o — ix o
OV /
x y
u\ ^^ ^-^u
y NX /* N >^ \" ^ ~^ /^^ "N ^^ '
— " '4 • s J^— i"Ji"%J~~> .'J N "•• N C 0 ^r C^ N~C"~* N^^N — N *" N**"^
/ ° \
,c' \
^c'c \
^c^ c\
r r r*£ M M/ M-/ M— M-^ tr ^-M— M — M-M — M — M— ^-f.-- r r_
N - N
C _ C
-2'J.SCO -14.400 -3.000 H.40U 19.800 Jl.200 42.600 ')4.000
RADIAL POSITION, cm
Figure 11-138. COMPOSITE PLOT OF GAS SAMPLING PROFILES
FOR CO, CO2, CH4, NO, AND O2 FOR THE SHORT-FLAME
BAFFLE USING THE AXIAL NOZZLE AT AN AXIAL POSITION
OF 91.4 cm. GAS INPUT, Z190 CF/hr; EXCESS OXYGEN, 3.0%;
PREHEATED AIR, 290°F
185
-------
1
tsS.
•*
.mt
w
z
2
JE
H
f^\
H
* 9
O.VJ92
0. U69
n.'i345
0.1322
0.1299
0. 1276
:<>. 1253
0. 1229
"071206"
0.1183
, 0. 1160
• 0.1137
0.1114
0. 1090
0'. 1067 r
. 0. 1044
0.1021
0.099B
0.0975
0.0951
'6.0928
0.0905
0.0882
0.0859
3.0835
0.0812
0.0789
0.0766
0.0743
C.0720
'1.0696
0.0673
11.0650
0.0627 •
0.0604 \
n.osei \
ft. 0557 v.
•U.0534 \ /
0.0511 •
0.048"
• U.0465
0.0442
0.04IH
0.0372
'.1.CJ4T
•J.0326
C.0302
U.027T
0.0256
.1.0233
0.0210
AXIAL BUHNER SHUKT STAINLESS SHEPHERD'S PHOHEi NOV. 3( 1972
\
\
\
\
\
/
./ •
\
\
\
* *
\
+ •
\
\
\
\
\
\
\
\
\
X
-t.C.000 -48.600 -37.700 -25.SOO -14.400 -3.000 a.400 19.800 31.200 42.600 54.000
RADIAL POSITION, cm
Figure 11-139. RADIAL COMPOSITION PROFILE FOR METHANE
(CH4) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 91.4 cm. GAS INPUT. 2190
CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315dF
186
-------
AXIAL (llMNf."* SHIIkl STAINLESS SHEPHWS PKilHt. NOV.3i1172
KV
'
'
-
"
^s.
W
Q
hH
X
0
2
(
Z '
o ;
3:
-------
axial BURNER SHORI STilNLESS SHEPHERD'S PRDBEt NOV.3.1972
91.40
^N.
w
Q
g
O
8
z
0
cq
05
-------
HUXNEK ilUHT SfMNLESS bHEPHtRD'S PKDBE, NOV.3, 1072
\3^-
*
Z
W
0
X
o
O.P VS 02,
5.2100
..5.1331 _
5.0563
4.1025
4.8257
4.7488
4.6720 .
" 4.5951
4.5182
4.4414
4. 3645
4.267*
4.210U
4. 1339
4.0571
3.9U02
J.9033
3.8265
J. '496
1.6727
3.5959
• 3.5190
3.4422
1. 3653
. 3.2884
3.2116
3.1347
3.0578
,2.9810
2.9041
2.8273
2.7504
2.6735
2.5967
2.5198
2.4429
2.. 366 1 .
2.2892
2.2124
2.1355
2.0586
.9818
.9049
.1)280
.7512
.6743
.5975
.5206
. .4437
.3669
.2900
1P= 91.40
-60.000
-48.AOO -37.200 -25.800 -14.400
-3.000 8.400 19.600
3I.2CO 42.600
54.000
RADIAL POSITION, cm
Figure H-142. RADIAL COMPOSITION PROFILE FOR OXYGEN
(O2) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 91.4 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
189
-------
HP VS NOi
4XUL BURNER SHORI STAINLESS SHEPHERD'S PROBEt NOV.3,1972
91.40
6.
rt!
W
9
X
o
u
2
H
g
' 158/67
158.31
157.94
157. 5B
157.22
'T56.49
156. 12
155.76
155.39
155.03
154.67
154.30
133.94
153.57
153.21
1 (52.48
1 -j 't . 1 2
151.75
1^1 .39
151.03
15(1.66
1 iP.30
149.93
14-1.57
149. 2C
!4b.H4
146.48
146.11
147. 15
147. 38
'.7.02
. 46.66
46.21
45.93
45.56
45. iO
144.63
144.47
144.11
14 J. 74
143.
-------
Table 11-22. RAW (Gas Analysis) DATA FOR SHORT-FLAME BAFFLE BURNER
TRA.CER GAS STUDIES.,OF_i.QMRy5JJffiL_&URNER.S__PROQBA>j
INPUT GAS 2190
OUTPUT ANALYSIS
AXIAL BURNER SHORT
WALL TEMPERATURE
STAINLESS SHEPHERD'S PROBE, NOV.
2483
PREHEAT
TEMPERATURE
.3,1972
315
NITROGEN OXIDE 22.20 PERCENT ON RANGE I, 192.50 PPM OXYGEN 3.38 PERCENT
CARBON Q10XIQE „ 79.30__PJRC_ENT ON RANGE 1, _ _ 9_..96_ PE.RCENT
CARBON MONOXIDE 8.70 PERCENT ON RANGE 3, 0.003 PERCENT
MllHANE ._ .0.00. PERCENT ON.RANGE 0, 0_,_0.0_ PJRCEMt ....
EXPERIMENTAL RESULTS
AP RP
91.40 -60.00
91.40 -54.00
91.40 -48.00
91.40 -42.00
91.40 -36.00
91.40 -33.00
91.40 -30.00
91.40 -27.00
91.40 -24.00
91.40 -21.00
91.40 -18.00
91.40 -15.00
91.40 -12.00
91.40 -9.00
91.40 -6.00
91.40 -3.00
91.40 0.00
9L,40 3.00
91.40 6.00
-9.U4Q- __._3_.0_0__
91.40 12.00
91.40 15.00
91.40 18.00
9 1 . AO 2.1.. 0_0
91.40 24.00
91,40 30.OO
91.40 36.00
91.40 42.00
91.40 48.00
9L..4JD 5.4.00 „_
NITROGEN OXIDE -NO
RANGE X Y
1
1
1
1
1
_ 1. .
1
I _
1
1
1
1
I
1...
1
1
1
1
1
_ 1
1
1
1
. -J. _
1
1
1
1
1
-_!..
16.50
16.50
16.40
16.40
16.50
16.60
16.90
_! 7.2.0
18. 10
17.50
17.30
.17.90.
18. 10
_18.20
17.90
18.20
18.40
18.00
17.90
.1.7.6.0 .
17.90
17.50
17.60
.11..60..
17.40
L7^_40
17.00
17.90
18.50
18.20
141.7
141.7
140.8
140.8
141.7
14.2.5 _..
145.2
147.8
155.8
150.5
148.7
154.0
155.8
156.7
154.0
156.7
158.5
154.9
154.0
151.4 _
154.0
150.5
151.4
. 151.4 ..
149.6
149.6
146.1
154.0
159.3
156.7
OXYGEN CARBON DIOXIDE-C02
02 RANGE X Y
3.58
3.69
3.58
3.57
3.28
.. .3. .34
3.05
3.01
2.78
2.81
2.78
,2.65.
2.46
2.07
1.89
1.50
1.29
U_i4
1.84
..L.35.
2.05
2. 18
2.75
1. .41
4.02
.4.45.
5.19
5.?1
4.85
4.59
I 78.70
1 79.60
1 79.20
1 78.90
I 79.20
. 1 79.7Q
1 79.60
1 .79.60
1 80.50
1 80.80
1 80.50
1 80.50
1 80.60
.. _ I 79,90
1 79.60
I 79.40
1 79.50
1 79,10
I 79.40
1..J.9..5J)
1 78.90
1 79.20
1 78.80
1. 77.^50
1 77.40
L 76.90
1 75.50
1 76.50
1 75.60
1 78.60
9.84
10.03
9.94
9.88
9.94
10.05
10.03
10.03
10.22
10.28
10.22
10.22
10.24
10. .09
10.03
9.98
10.00
9.92
9.98
. 10.. 00. _
9.88
9.94
9.86
9.59
9.57
9.47
9.18
9.39
9.20
9. 82
CARBON MONOXIDE -CO
RANGE X Y
3 11.50
3 12.70
3 19.70
3 31.60
3 74.30
2 8.50
2 12.10
2 .L2.70
2 11.10
2 19.70
2 30.90
2 30.20
2 48.50
2 77.20
2 84.30
1 47.80
1 52.20
L_43.60
1 44.30
1 4.1.. ZO.
1 36.70
? 82.70
2 74.50
2 24.20
0.004
0.005
0.008
0.013
0.035
0.139
0.199
0.226
0.182
0.329
0.530
0.517
0.866
1.468
1.628
1.717
1.936
L.J1.06
1.550
__1._408 . .
1.211
1.591
1.409
a. 408
2 14.90 0.246
7 1.70 0.057
3 34.50
3 70.BO
3 12.60
3 10.00
0.014
O.OOB
0.005
0.004
METHANE - CH4
RANGE X Y
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1.40
1.10
1.50
1.60
2.30
2.10
2.60
2.30
2.50
2.30
2.50
1.90
0.06
0.05
0.06
0.07
0.10
0.09
0.11
OjJ5_
0.10
0.10
0.10
0.08
2.30 0.10
2.8Q aa*_ ...
2.90 0.12
2.30 0.10
3 3.20
3 2.40
3 2.40
3_ 2^.00
3 2.10
3 2.OO
3
3
3
3
3
^
3
3
1.90
1.90
1.00
0.50
0.70
0.40
0.40
0.70
0.13
0.10
0.10
_CL..OB_
0.09
o.oa
O.OB
O.OB
0.04
0.02
0.03
0.07
0.02
0-.Q3_ _
-------
26.5
28
N
o
uT
a:
tr
UJ
a.
UJ
27
26
25
24.5
65 55
35 15 5 0 -5
RADIAL POSITION,cm
-15
-35
A-122-1233
Figure 11-144. AXIAL TEMPERATURE PROFILE FROM THE
SHORT-FLAME AXIAL NOZZLE BAFFLE BURNER AT AN AXIAL
POSITION OF 91.4 cm. GAS INPUT, 2190 CF/hr; EXCESS
OXYGEN, 3.3%; PREHEAT TEMPERATURE, 310°F
cm and 18 cm as compared with —12 cm and +20 cm at the 48. 3-cm
axial position. Figure 11-146 shows the tangential velocity at the 9V. 4-cm
axial position. The raw numerical velocity data are given in Table 11-23.
An examination of a gas sample from the center line of the burner
at a 7. 6-cm axial position was made to determine if higher hydrocarbons
were being formed during the combustion process. Table 11-24 lists the
chemical components of the natural gas being used in the burner. Table
11-25 lists the gas species analysis on the burner center line as deter-
mined by the mass spectrograph. We conclude that the only hydrocarbons
which were formed in the combustion process were 0. 4°/- ethylene and
0. 5% acetylene.
192
-------
HP
-
•^
^^
VH
,
^H .
H
U
3
W
"^
vs. vx
.30.69
To. 31
29.94
29.56
29. IB
28.80
J8..42
28.04
J7.66
27.28
26.90
26.52
26. 14
25.77
25.39
25.01
24.63
24.25
23.87
23.49
23.11
.22.73
22. J5
21.97
2K22
20. b4
20.46
20.08
19.70
19. 32
1 8 . '14
18.56
18. IB
17. RO
17.05
16.67
16.29
15.11
15.53
15.15
14. 77
14. 39
AXIAL BURNER WITH SHORT FLAME BAFFLE - GAS 2109CFH - 290F PREHEAT - 3 EXCESS 02
AP = 97.40
14.C1
13.25
12. Hf
12.50
1?. 12
1 1. 74
.. 000
-43.2GU -32.4yr> -21.600 -10. BOO
-0.000
10.801
21.600
'.3.200
V, .O'lO
RADIAL POSITION, cm
Figure 11-145. RADIAL VELOCITY PROFILE (Axial Component)
AT AN AXIAL POSITION OF 97.4 cm FOR THE SHORT-FLAME
BAFFLE USING THE AXIAL NOZZLE. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 290°F
193
-------
AXIAL ilURNt-* t.MH SHU«I KAMI BAFKt - C,AS <>I09CF>I - ?90F PBr.MEAT - 3 KCLSS 02
•
-------
Table II-Z3. RAW (Velocity) DATA FOR SHORT-FLAME BAFFLE BURNER
Ul
CAL1BX;
Al =
BU =
C =
TOTAL I
1HEIA
0.
0.
0.
u •
0.
0.
0.
0.
0.
0.
0.
0.
0.
o!
0 •
0.
(1
0.
0.
Q
0.
0.
rrnrj-coFFTTCTFNTs~
0.770590 A2 =
u. rj i rto B2 = -
4.464660 D =
JATA" TN
AP
97. A
- "9T.4—
97. A
9T.^f
97.4
•*/•"•
97.4
97.4
97.4
97.4
97.4
97.4
97.4
' 9T7"4~
97.4
97." 4
97.4
9 I , *>
97.4
07 4
97.4
.- Q7- 4.
97.4
97 4
97.4
97.4
AXIAL
PUT"
RP
42.0
48.0
54.0
-54.0
-48.0
— **2 . u
-36.0
-30.0
-24.0
-18.0
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
3.0
O • \J
9.0
i ? n
15.0
i A n
21.0
24 0
27.0
30i 0
36.0
"A-ER
t-UK HURW
0.272353
•D. 15BUZ1
0.394812
ODYWAirrt^H
ARD-FTOW
A3 = -
B4 =
BURNER WITH SHORT
P13
-4.
-5.
-1.
-4.
-5.
-<£•
-5.
-5.
-2.
-0.
0.
3.
1.
- 2~.
-5.
-4'.
-6.
57
07
41
23
53
*?u
91
62
42
60
81
00
77
69
49
00
68
i . 1 1
-19.77
? 1 hf\
-20.20
— ?ft ° l
-18.
-17
-13.
-11*
-8.
02
27
72
74
61
ODELING Of COMBUSTION BURNERS
0.059818
0. 129246
FLAME BAFFLE - GAS 2109CFH - 290F PREHEAT - 3 EXCESS 02
P03
-0.62
-0.67
1.49
0.22
0.30
U.4 1
0.52
1.02
3.04
5.11
7.04
8.52
9.38
8.00
5.91
4. DO
0.87
™0. 29
-0.89
i 01
-2.09
n no
-0.32
-0 75
-1.38
-0*63
-1.13
P24
-1.27
-1.89
-0.15
O.Ob
0.02
O.U 1
0.25
0.60
1.42
0.94
-2.79
-2.52
-5.27
-5.71
-8.58
-9.00
-10.29
« O3
-7.78
f\ (t"\
-5.66
4 24
-5.06
— tf Oft
-4.97
-4,23
-3.10
P04
-0.31
0
1
.05
.22
' 0.59
0.71
U
0
1
3
4
4
6
5
3
-0
-1
-3
~1
-0
0.
2
3h
4
2
1
1
0
. 51*
.70
.39
.01
.80
.71
.08
.02
.13
.04
.12
.03
.38
an
.30
7O
.40
75
.74
^45
.47
POA
-1.84
-1.35
0.77
0.12
0.12
U. 1U
-0.07
0.22
1.30
4.21
4.53
6.14
5.77
4.32
1.60
LiS
0.98
.12
1.25
0 01
3.81
5. ^o
6.10
3 71
3.02
2.15
0.03
T
2504.
2504.
2504.
2500.
2530.
IbUU.
2655.
2730.
2790.
2803.
2803.
2790.
2764.
2751.
2745.
27«»3.
2745.
Z T38«
2699.
? f^7"\
2608.
^C f. ft
2543.
2 54-3
2530.
2504
2504.
PB
760.
760.
760.
76O.
760.
f bU.
760.
760.
760.
760.
760.
760.
760.
760.
760.
/t>u.
760.
oo*
760.
7/.O
760.
7* n
760.
760
760.
760*
760.
-------
Table 11-24. MASS SPECTROMETER LABORATORY
ANALYTICAL REPORT
Material 8933 Natural Gas from Pilot Plant
Requested hy •
Date _JLL/i/lL
3238
C.vhon Mnnniirfp
Hyrtroyen
Water Vnpor
Helium
Methane
Ethane
Propane
Hexanes
Calc. H. V., Bin SCF
C.ilc. sp yr.(Ait 1.000)
Uol
'
' °8
3.93
0. 95
0. 03
Ethylene
Pfooylene
He«enes
Methyl
•fPropadiene
Vinyl
Benzene
Toluene
Elhyl Benzene
Styrene
Indene
Napthalcnc
Air Content
Approved by
Mol %
100. 0
196
-------
Table 11-25. MASS SPECTROMETER LABORATORY
ANALYTICAL REPORT
Material 8933 Sample #2 11 /I 6/72
Requested by .^__
Date _ii£i!£LL
M. S. Run No.
Carhon Mannnidp
Carlion Dioxide
Hydrogen
Water Vapor
Methane
Ethane
n-t
Isoliutanc
H. V., Bin SCF
sp ijr (Air 1.000)
Uol
2- 7
0.5
' 2
Ethylene
Cyclopenladiene
Methyl
Vinyl Acetylene
Benzene
Xylenes
Ethyl
Styrene
Inriene
Napthalene
TOTAL
Mol \
0. 4
'
100-°
197
-------
We decided to do an in-depth profile of the gas concentrations along
the center line of the burners because of the interesting variation of the
nitric oxide concentration along the center line of the burner. (It had a
maximum value near the burner block, dipped sharply at a 48. 3-cm axial
position, and recovered its initial value at a 91-cm axial position.) The
profile is presented in Figure 11-147. The decrease in NO concentration
corresponds to an increase in oxygen which leads one to believe that a
dilution process takes place which could be caused by interval recirculation.
To investigate this theory, further velocity data were taken at the
axial position of 48. 3 cm measuring reverse flow. These data are plotted
in Figure 11-136 as X. It can be seen that they are the same magnitude
as the forward velocity and thus cannot in our opinion be neglected from
a velocity magnitude argument.
Figure 11-147 was used to make an estimate of the flame length by
assuming a symmetrical flame (which as a result of the gas concentration,
temperature, and velocity profile data is a very questionable assumption
for this burner). However, we are defining flame length as that axial
position where the concentration of methane, averaged across the furnace
width, is less than 1.0%. For this profile, the end of the flame occurs
at an axial position of approximately 70 cm.
Additional gas concentration profiles were taken with the same com-
bustion conditions except the preheated air temperature was increased to
515°F. Figures 11-148, 11-149, and 11-150 show the composite of chem-
ical species profiles at axial positions of 7.6, 37.7, and 91.4 cm,
respectively.
These data show that increased preheated air temperature increased
both NO formation and mixing at the outer edges of the visible flame
envelope. NO increased approximately 40 ppm at the burner center line
X
while the oxygen concentration at the flame edges decreased about 1. 0°/o
as air temperature was increased from Z90° to 515°F. Data plots with
greater resolution are given in Figures 11-151 to 11-175 and the raw data
appear in Tables II-Z6, 11-27, and 11-28.
198
-------
vD
%
28
26
24
22
20
18
16
14
12
10
8
CO, INO,
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
28C
260
24C
22C
200
180
160
140
120
100
80
60
40
20
0 I 0
14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
10
30
50
130
150
70 90 110
AXIAL POSITION,cm
A-I22-I236
Figure 11-147. AXIAL GAS COMPOSITION PROFILE AT A 0. 0-cm RADIAL
POSITION FOR THE SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE.
GAS INPUT, 2190 CF/hr; EXCESS OXYGEN, 3% ; PREHEATED AIR, 290°F
170 180
-------
-
g
>-l
a
(X
o
o
o
2~"
26
H2
r) o
Pk ^s.
H •
"8
\J
§8
u ~
(M
O
•J
DC
U
VS NO,I)2,CD2
24.33
23.85
23.38
22.90
21.95
21.47
TOT'tt
20.52
20.04
19.56
19.08
IB. 61
18. IT
17.65
17.18
16.70
16.22
15.75
15.27
14. 79
14.31
13.84
13.36
12.86
12.41
11.93
11.45
10..47
1C. 50 P— I
10.02
9.07
8.59
6.11
7.64
7. 16
h.68
6.20
5.73
5.25
4.7;
4.30
3.82
3.34
2.87 1) l
2.39 -j 1
1.91
1.43
0.96
0.4B
0.00 C 1
AXIAL BURNEh SHORT FLAME - SHEPHERD'S STAINLESS PROBE, NOV. 13.'72
Cf)2,CD,CH4 AP= 7.60
M.
I) U 0
C C C
C——M M C C
-60.000 -/.B.OOO -36.000 -24.000 -12.000
-0.000
12.000
24.000
36.000
46.000
60.000
RADIAL POSITION, cm
Figure 11-148. COMPOSITE PLOT OF GAS SAMPLING
PROFILES FOR CO, CO2, CH4, NO, AND O2 FOR THE
SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE AT
AN AXIAL POSITION OF 7.6 cm. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 515°F
200
-------
4XI4L BIHNtX -SHIJRI H.td'f. bAFFI.E - SHEI'HFKD'S PKUBt:. NI~>V. Mt'72
,
9.?7
9.06
8.B4
9.62
ea.'.i
8'. 1 9
CU 7.9H
&• 7. 76
o '•"
O '• n
O '•'?
,7 ^H (-'10
A | 6 . f. R
On "•'•7
HH K t,.?.;
/u "u
\ M_M_M /
c\ / \ r
\ / \ /N-
"-N-N-t^ / \N---0 \
/ \;—N^-N\°/ \
' ° \
' N ». I H
z o '•-1'6
w u j-j*
Z O «i 10
O U 5-8"
(J 3.67
,5 3.45 ^0"^ U
O''l.24 ,1 U 0
3.02
i 2.80
-(.0.000 -'iR.OOO -J6.0CO -2'.. 000 -12.000 -0.000 12.000 24.000 36.000 48.000 60.000
RADIAL POSITION, cm
Figure 11-149. COMPOSITE PLOT OF GAS SAMPLING
PROFILES FOR CO, COE, CH4, NO, AND O2 FOR THE
SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE AT
AN AXIAL POSITION OF 37.7 cm. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 515°F
201
-------
Ac
/X /Xcv
c-cy ^u-o-^ / c
/ ^ \c
M^C-C-^P^» — «-M— P-P— K-M— M-" M-M— M->1 — M^C^ C~C
— ^r-v' » — M — """-i C C C C C
-2<..000 -12.000 -0.000 12. nor; 24.000 16.000 <.fl.OOO 60.000
RADIAL POSITION, cm
Figure 11-150. COMPOSITE PLOT OF GAS SAMPLING
PROFILES FOR CO, CO2, CH4, NO, AND O2 FOR THE
SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE AT
AN AXIAL POSITION OF 91.4 cm. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 515°F
202
-------
CH
-------
(f
^
'
w
Q
%
O
z
i
^
o
n
*
o
vs. cu
6.20
6.08
5.96
5.H3
5.71
5.59
- 9.«T
5. )5
5.23
5. 10
4.98
<..B6
<..62
<.!38
1.25
».0t
3.89
3. 77
3.65
3.53
3.<.0
J.28
3. 16
3.0<.
2.')2
2. BO
2.67
?.55
2! il
2.C7
.95
.82
.70
AXIAL BURNER INTERMEDIATE BAFFLE - BLUNT QUARTZ PROBf, NOV. 7,
7.ftO
72
.58
. 34
.22
. 10
0.97
0.85
73
0.61
0.<.9
0. 37
0.2<.
0. 12
0
-jo.oor -2*.err -IH.OCO -12.000 -6.000 -o.ooo 6.000 12.000 IB.OOO 2*.oco
RADIAL POSITION, cm
30.000
Figure 11-152. RADIAL COMPOSITION PROFILE FOR CARBON
MONOXIDE (CO) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
204
-------
K» VS C02
9.66
6XUL DUXNtR INURKDI AM HAfHE - BLUM OUA»TZ PROBE. IDV. 7,
7.60
7i'
^5.
w-
Q
»-H
r^
O
1— 1
Q
2
o
1*
-------
KP
..
t5.
YGEN.
X
O
i/S 02,
10.99
10.78
10.57
10.36
10.16
9.95
9.53
9.32
9. 11
8.90
8.70
8.2B
8.07
7.86
7.65
' 7.23
7.01
6.82
6.M
6.40
6. 1,9
5.98
5.77
5.57
5.36
5.15
<..9<.
'..52
A. 31
<.. 11
3.90
3.69
3.27
3.06
2.85
AXIAL BURNER INTERMEDIATE BAFFLE - HLUNT guARTZ PRUBE, NOV. 7,
7.60
' 72
?.?3
2.0?
1.81
l.bC
1.39
1. IB
O.TB
0.77
0.56.
0.35
-30.000 -74.CPO -IR.OrO
-12.0TO -6.000 -O.OOC 6.000 12.000
RADIAL POSITION, cm
18.000
30.000
Figure 11-154. RADIAL COMPOSITION PROFILE FOR OXYGEN (O2)
FOR THE SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE
AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
206
-------
KP
s
a
a
»
W
9
X
o
o
5
L,
fc*
g
VS 10,
214.23
21 1.32
208.40
205.49
23?. 57
199.66
I >6.74
1 )3.R3
190.91
188.00
135.08
102.17
171.25
I fh.34
173.42
I /0.51
Ih7.59
1 64 . 6.7
161.76
158.64
155.93
153.01
150. JO
147. IB
144.27
141.35
13B.44
135.52
132.61
129.69
1'26.78
123.66
120.95
116.03
115.12
112.20
A09.29
106.37
103.46
100.54
•17.63
94.71
91.80
88.68
85.97
83.05
00.14
77.22
74.31
71 . 39
68.48
65.56
AXI4L UUKNER INIERMEUIflTfc BAFFLf - 8LUN1 UUARTZ PROREi NOV
1P= 7.60
. 7,'72
-jo.oon -/4.000 -18.000 -12.000
6.000
12.000
18.000
24.000
30.000
RADIAL POSITION, cm
Figure 11-155. RADIAL COMPOSITION PROFILE FOR NITRIC
OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
207
-------
7S CH4
Z4.77
/4.2B
23.80
23.31
22.8?
22.34
?.t.8S
21.37
20.88
SX14L BUHNEI' lNtt»«EDIATt H4FFLE BLUNI StilNLESS PRUKE , NOV. 7,'72
f.60
. 71
7.77
-30.000 -24.000 -IS.OfT'i -12.000 -6.000 -0.000 6.000 1?.000 18.000 24.000
RADIAL POSITION, cm
30.000
Figure 11-156. RADIAL COMPOSITION PROFILE FOR
METHANE (CH4) FOR THE SHORT-FLAME BAFFLE USING
AN AXIAL POSITION OF 7.6 cm. GAS INPUT, 2190 CF/hr;
EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
208
-------
AXIAL BURNER INTCrfMEDIMC BAFFLE BLUNT STAINLESS PRIJBEt NOV. 7,
•tp
^.
w"
Q
*H
X
i
0
^
£
0
fl
ftj
u'
1/5. CO AP = '.60
6. 16
6.04
5.91
5.79
5.67
5.55
5.31
5.19
5.07
4.95
4.83
1.7J
4.47
<.. 35
4. 10
3.9B
3.UA
3. 74
3.62
3.50
3.38
3.261
5.1".
3.02
2.90
2.78
2.66
2.54
2.42
2.29
2.17
2.05
1.93
. BT '
.69
.57
.45
.33
1.21
1.09
0.97
0.85
0.73
0.61
0.48
0.36
0.24
0. 12
0.00 • « • •
• -30..000 -24.000 -iB.ono -12.000
-6.000
-o.ooo
A.ooo
12.000
18.000 24.000 30.000
RADIAL POSITION, cm
Figure 11-157. RADIAL COMPOSITION PROFILE FOR CARBON
MONOXIDE (CO) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 7. 6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
209
-------
VS C02
• 9.93
9.80
9.67
9.54
9.41
9.27
AXIAL HURNER I NT fc RMEOI ATE RAFFLE BLUNT STAINLESS PKORF.. NOV.
AP" 7.60
7, ' 72
9.01
o
fe~~
.
OXIDE
Q
.RBON
<;
U
R.8R
8.75
8.62
8.49
B.-J6
8.23
8. 10
7.97
7.84
7.71
T.5B
7.45
7.32
7.19
7.06
6.93
' 6.00
6.67
6.54
6.41
6.28
6.15
5.U9
5.76
5.e>3
5.50
5.37
5.24
5. 11
4.T8
4.H5
4. 72
4,5*
4 .
-------
0
fe^
•
w
o
X
o
VS 02
12.29
12.05
11.82
11. D8
1 1.34
11.11
10.87
10. h3
10.40
10. 16
9.69
9.45
9.22
6.98
8.74
fl.51
B.27
6.03
7.RO
7.S(,
7. J2
6.05
6.61
0.3H
5.91
5.67
5.20
4.96
4.01
3.78
3.54
3.30
3.07
2.83
2.59
2.36
2. 12
1 .89
1.65
1.1H
0.94
0. 70
0.47
0.23
4XIAL BURNER IML4MIUUU HAKPLt BLUNT SUIMESS MBDI'E, NOV. I,
.1,0
t
-JO.OOn -24.000 -IB.000 -12.000 -(..000 -0.000 6.000
i?.ono
19.000
7'..000
30.000
RADIAL POSITION, cm
Figure 11-159. RADIAL COMPOSITION PROFILE FOR OXYGEN
(O2) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 3I5°F
211
-------
a' vS NO,
201.53
1 (H.73
195.93
193.13
TI0.33
AXIAL BURNER INTF.RMEDIATE BAFFLE BLUNT STAINLESS PRORE, NOV. 7,
7.60
•72
fi
a
a
W
9
X
o
^
H
2
IH1.94
179. 14
176.34
173.54
1 70.74
167.9*
165. 14
162.34
1S9.1)'.
156.74
[•>3.95
I'i 1 . 1 5
148.35
145.55
142. 7S
1 39.95
1 37. 15
134.35
131.55
128. 75
125.96
123.16
120.36
117.56
114. 76
1 11.96
ID9. 16
106.36
113.56
ion. 76
95. 17
»2.3'7
.19.57
H6.77
B3.97
<11. 17
fB. 37
/!>.57
72.77
f>9.97
67.1R
64. 3H
SI .58
58.78
-30.001'
-24.000 -IB.COO -12.000
-6.000
-0.010
6.000
12.000
1B.OCO
24.000
30.000
RADIAL POSITION, cm
Figure 11-160. RADIAL COMPOSITION PROFILE FOR NITRIC
OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 315°F
21Z
-------
W
V5 CH4
24. (3
23.85
22.90
21.95
21.47_
20 •~9XJ
20.52
20.04
19.56
19.08
18.61
17.65
17.18
16.22
15.75
1 5. 27
13.84
13.36
12.88
12.41
11.93
1 1.45
10.90
10.50
10.02
9.07
11.59
0. II
7.64
7. 16
6.6'B
6.21
5.73
5.25
4.77
4.30
• 3.'8 2
3.'34
2.87
2.39
1.91
1.44
"DT'JB"
0.48
0.00
«
-------
RUHNtR
FL4ME - SHF "HERD1 S ^l
CBDHF , NOV. I), '72
W
Q.
><
i
1
ex!
3
\/S. CO
6. II
5.99
5.67
•>.75
5.63
5.M
5.16
<..UO
<.!56
<>. nn
3. I?
3.60
1.36
3.2".
3. 12
3.00
2.89
2.52
2.28
2. 16
2.ll<.
.0?
.80
.i.rt
. 32
.20
I .01)
0. H4
0. /?
0. S P
0.4?
0.3b
O.I?
o.or
7.60
.a. •_«.« — •
•
'.n.oco -in.OOi' -
-------
AXIAL DUUNI M. SHllHI Fl«Mf - SltgPHEKU'
1.1,0
,1 AIHUST. I'KOIII , -IIJV. I 1, ' 12
wo^
b
.»
u
9
X
o
HH
s
^
o
cq
rf
^
^
8.21
8. 14
1 .11
7.84
7.61
'7."54
7.39
7.23
7.08
6.93
6.78
6.63
• h.48
6.33
6. 1 7
6.02
5.H7
5'.57
5.42
S.27
5.12
4.16
"4 . 81
4.51
4.36
4.21
4.06
3.75
3.60
3.45
3.30
3.15
3.00
2.B5
2.6")
-60.000 -4«.ono -16.00(1 -24.000 -12.000
-0.000
I?.000
24.000
36.000
48.000
60.000
RADIAL POSITION, cm
Figure 11-163. RADIAL COMPOSITION PROFILE FOR CARBON
' DIOXIDE (CO2) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 515°F
215
-------
BURNER SH.IRI FLflME - SHEPHERD'S STAINLESS PRORF. NOV. 13. '72
;RP
o
6^
OXYGEN,
VS 02
10.02
" 9 .' 8 3
9.64
9.45
9.25
4.06
8.87
~B.6R~
8.49
8.30
8.10
7.91
7.72
7.53
7.34
7.15
6.95
6.76
6.57
6.38
6. 10
6.00
5.01
5.61
5.42
5.23
5.04
4.U5
4.66
4.46
4.27
4. OR
3.B9
3.70
3.51
3.32
3. 12
2.43
2.74
2.S5
2.36
2. 1 I
1.-57
1.78
1.59
l.'.O
1.21
1.02
O.tt2
0.63
n.',4
7.60
-6P.000 -413.C'V) -th.OOO -24.000 -12.000
12.000
24.000
36.000
4f.000
RADIAL POSITION, cm
Figure 11-164. RADIAL COMPOSITION PROFILE FOR OXYGEN
(O2) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 7. 6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 515°F
216
-------
RP
e
a
a-
•
W
Q
^
0
o
2
H
g
VS NO,
278.78
275.70
272.61
269.53
266. *5
263.36
260.28
J57.2T)
2i*. 11
251.03
2*7.95
2**.R7
2*1. 7fl
218.70
i 15.62
232.53
229. *5
226.37
223.28
220.20
217.12
21*. 03
210.95
207.87
20*. 79
201.70 "
198.62
195.5*
112. *5
189.37
186.29
183.20
180. 12
177.0*
173.96
170.87
167. 79
16*. 71
lhl.62
118.5*
155. *6
152. 37
1*9.29
1*6.21
1*3. 12
1*0.0*
136.96
1)3.81!
UO.7'1
1 2 7 . V 1
12*. 63
121.5*
AXIAL BURNER SHiMT FL4"E - SHEPHERD'S SfaiNLtSS PROBE, NOV.
4P- 7.60
'72
' \ .'—'
\.'
-60.000 -*8.0nO -36.000 -2*.000 -12.000
-0.000
12.000
2*.000
36.000
".8.000
60.000
RADIAL POSITION, cm
Figure 11-165. RADIAL COMPOSITION PROFILE FOR NITRIC
OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 7.6 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 515°F
217
-------
HP
^0
^
.'
w
2
hS
ffi
h
W
^
VS CH4
i.4101
'.3629
'.3158
.2686
.2214
>.1742
'.1271
'70799
'.0327
.9855
.9384
.8440
.7968
.7025
.6551
.hOBl
..5610
.5138
.4666
. }72J
.3251
.2779
.2307
. 1836
. 1364
.0892
.0420
T.9949
1.0477
2.9005
1.8031
1.D062
3.7590
1.7118
1.6646
5.6175
J.5231
3.4759
1.42HP
1.3816
). )144
1.28f2
-.2401
.1457
4X14L
37.70
-5HUR1
E B4FFLE - SHEPMtkO'S PRUBE, NOV. 13,'72
- A
/
0.0514
1.0042
-60.00(1 -4H.OCO -lh.000 -24.000 -12.000
-0.000 12.000 24.000 36.0(10
48.000 fcO.OOO
RADIAL POSITION, cm
Figure 11-166. RADIAL COMPOSITION PROFILE FOR METHANE
(CH4) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 37.7 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 50Z°F
-------
HUUNCH -SMUKT FL4MF BAFFLE - SHEPHERD'S PROBE, NOV. 13, '72
«p vs. co
6.21-
P = 37.70
w
Q
g
0
Z
O
o
01
96
84
5.72
60
48
35
5.23
5.11
4.99
4.87
4.75
4-/6J
4.50'
4. 38
. 14
.02
.90
.77
.65
,53
.41
.29
.17
.04
,92
,80
.68.
,56
.44
.31
.19
.07
.95
.83
.71 •
,58
,46
, 34
.22
, 10
,8 '
,85
.73
.61
,49
.37
.24
, 12
.00
-60.000
-48.000 -J6.000 -24.000 -12.000 -0.000 12.000 24.000 36.000
RADIAL POSITION, cm
48.000 60.000
Figure 11-167. RADIAL COMPOSITION PROFILE FOR CARBON
MONOXIDE (CO) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 37.7 cm. GAS
INPUT, 2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 502°F
219
-------
fc5-
w
Q
M
^
o
HH
G
Z
O
ffl
K
. io
•j.llh
AXIAL BURNER -SHLMI FLAHE BAFFLE - SHEPHERD'S PROBE. NOV. 13»'72
AP = 37.70
*
\ •
V
-hO.PO'l
-16.000 -?<,.00n
-0.000 1^.00')
36.0CU <.M.Cf>()
00.000
RADIAL POSITION, cm
Figure 11-168. RADIAL COMPOSITION PROFILE FOR CARBON
DIOXIDE (CO2) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 37. 7 cm. GAS INPUT,
Z190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 502°F
220
-------
'45
4. 1637
4.072')
3.9022
3.8006,
3.7098
1.6190
J.5282
>.4375
3.3467
3.2559
3.1651
2.9835
2.8927
2.8020
2.7112
2.6204"
2.5296
2.3480
2.2573
2.1665
2.0757
.8033
.7125
.6210
'.5110
.4402
.25H6
.1678
.0771
0.9663
0.8955
0.8047
0.7139
0.6231
3.5324
0.4416
0.3508
0.2600
-60.000 -48.000 -36.000 -24.000 -12.000 -0.000 12.000 24.000 36.000 48.000
60.000
RADIAL POSITION, cm
Figure 11-169. RADIAL COMPOSITION PROFILE FOR OXYGEN
(02) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 37.7 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 502°F
221
-------
AXIAL BURNER -SHORT FLAME BAFFLE - SHEPHERD'S PKUBS. NOV. 13.'72
f VS NO, «P« 37.70
268.52 *
265.96
263.44
260.91
253.29
250.75
t. IB.06
6
a
a
W.
Q
><
O
u
H
g
212.98
210.45
227.91
225.37
222.81
2/C.29
21 7. /6
215.22
212.68
210. 14
207.60
205.06
202.53
199.99
1 >7.45
1-12.37
189lfl3
167.30
104.76
1H2.22
1 79. 6b
177. 14
I 74.60
1/2.07
169.53
166.99
161. )l
(•J9.3B
lr-6.84
1>)4. 30
.1-1 1.76
149.22
146.68
1 4 4 .' 1 5
141.61
139.07
r*
•^s
-4R.OOO -36.0(10 -24.000 -12.000 -0.000 12.000 24.000 36.000 4B.OOO 60.000
RADIAL POSITION, cm
Figure 11-170. RADIAL COMPOSITION PROFILE FOR NITRIC
OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 37.7 cm. GAS INPUT,
21.90 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 502°F
222
-------
Q
fe^
w
£•4
ETHA
3
1
<" VS CH4
0.2030
0. 1991
0. 1952
0. 1913
0.1874
0.1835
0. 1796
0."i'757"
0.1716
0. 1679
0. 1640
0. 1601
n.i562
' OM523
0.14B4
n. 1445
0. 1406
0.1367
0. 1328
" 0". 12"B9~
0. 1250
n . L 2 I 1
0. 1 172
0.1133
0. 1094
' 0.1055
0.1016
0.0978
0.0939
0.0900
0.0861
"070822
0.0783
C.0744
..0.0705
0.0666
0.0627
' 0.0588
0.0549
0.0510
0.0471
0.0432
0.0 3') 3
0.0354
0.0315
0.0276
0.0237
0.0198
0.0159
"0.0120
0.0081
0.0042
4XIAL HUKNfiK SHIJKI FLftMfc - SHEPHERD'S SIAINLF.SS PRUUF-. NOV.14, '7,?
91.1,0
-60.000 -48.000 -36.000 -2"..000 -I?.000
-0.000
12.000
24.000
36.000
48.000
60.000
RADIAL POSITION, cm
Figure 11-171. RADIAL COMPOSITION PROFILE FOR METHANE
(CH4) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 91.4 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 502°F
223
-------
AXIAL HURNEK S"UK I FLAKE - SHEPHERD'S STAINLESS PROHE, NOV.l*,'f2
RP VS. CD AP« 01.*0
1.759*
'1.7250
1.6906
1.6562
1.6218
1.5875
1.5187
l.*B*3
l.*500
I. 4156
I .3012
1.3*68
i.3125
1.2781
1.2*37
1.2013
1.17*9
1.1*06
J5 1.0718
(J 1.017*
Z 1.0011
Q O.lbUI
S 0.9UJ
«4 O.P494
,_ 0.6656
* 0 . 8 .U 2
O n.7068
CQ n.762*
Qj 0.7280
••J 0.6937
^ 0.6r>93
O 0.62*'>
n.5218
n.*87*
O.MB6
n. 38*3
0. 3*99
0.3155
0.281 1
J.2*6fl
0.212*
0.1780
fl. 1*36
r. 1093
0.07*9
n.0061 • - • —
-o0.oor -*H.onu -ii.ncn .-/"..ono -12.noo -n.ooo 12.0011 f-.ona 16.000 *«.ron (,n.oon
RADIAL POSITION, cm
Figure H-172. RADIAL COMPOSITION PROFILE FOR CARBON
MONOXIDE (CO) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 91.4 cm. GAS INPUT,
Z190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 50Z°F
224
-------
AXIAL hUKNEK SHIMl I L A«t - SHE MltliRIl'S M A ML I S i> PRIIIII:, NUV.14.M2
-60.000 -4R.OOO -36.000 -24.000 -12.000
-0.000
12.000
24.000 36.000 48.000 60.000
RADIAL POSITION, cm
Figure 11-173. RADIAL COMPOSITION PROFILE FOR CARBON
DIOXIDE (CO2) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL NOZZLE AT AN AXIAL POSITION OF 91.4 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 485°F
225
-------
HP VS 02,
3.6100
3.5531 *
AXIAL HURNEH SHURI FLAME - SHEPHERD'S STAINLESS PROHE, NOV.14,-72
AP= 91.40
w
o
X
o
3.4418
J. 3RS7
3.3296
3.2735
3.2175
1.1614
3.0492
2.9931
2.9371
> . l\f I
2.3761
2.2060
2.1520
2.03T8
.9837
.8716
. 7594
.7033
.4 7TT
. 3669
. 310P
.'/ •>', 7
. 19B6
. 0 H (. •)
n.'
n.'
R.nodi
P. 7"ill()
-60.000 -46.000 -36.000 -^4.000 -12.000 -0.000 12.000
30.000
fi.000
60.000
RADIAL POSITION, cm
Figure 11-174. RADIAL COMPOSITION PROFILE FOR OXYGEN
(O2) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 91.4 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 485°F
226
-------
tn
E
P
•
w
p
>— i
X
0
u
1— 1
oi
H
g"
AXIAL
1 VS NO, AP= 91.40
266.66
265.21
2C.3.75
262.30
260.84
259.39
217.94
255.03
253.57
252.12
250.66
249.21
?46.30
244. B5
243.39
241.94
240.49
719.03
237.50
236.1?
234.67
233.22
231.76
no.ii • » •-•
22B.85 \
227.40 \
225.94 \ •
224.49 \
223.04 \
220.13 \
218.67 \
217.22 \
215.77 \
214.31 \
212.86 - \
211.40 \
209.95 »^^_ «^
208.50
207.04
205.59
202.68
201.22
199.77
118.32
116.86
195.41
1 (3.95
192.50
SHORT FLAME - SHEPHERD'S SIAINLI.-SS PRObE, NOV.14.-72
-60.000 -48.000 -36.000 -24.000 -12.000 -0.000 12.000 24.000
36.000
48.000
60.000
RADIAL POSITION, cm
Figure 11-175. RADIAL COMPOSITION PROFILE FOR NITRIC
OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
NOZZLE AT AN AXIAL POSITION OF 91.4 cm. GAS INPUT,
2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR,
485^
227
-------
Table U.-26. RAW (Gas Analysis) DATA FOR SHORT-FLAME BAFFLE BURNER
TRACER GAS STUDIES OF XOHBUSTTON "BURNERS "PTOGTTRW"2
AXIAL BURNER SHORT FLAME - SHEPHERD'S STAINLESS PROBE, NOV. 13,'72
WALL TEMPERATURE 2570
INPUT GAS 2190
UUIfUl ANALYSIS
NITROGEN OXIDE 36.50 PERCENT ON RANGE 1,
~C~A"RBON~DTUXTDE ST.ZXT PERCENT ON~RANGE T,~
CARBON MONOXIDE 5.30 PERCENT ON RANGE 3,
HFTHANE 0700~PERCENT ON RANGED 0,"
PREHEAT TEMPERATURE
515
324.99 PPM
~ T073"6~PER"CENT"
0.002 PERCENT
OTOO"PERCENT"
OXYGEN 2.87 PERCENT
bXKEK IM
AP
7.60
~T.60'
7.60
1 . 6U
7.60
TT50~
7.60
7760"
7.60
1 .60
7.60
7.60
~7."60
7.60
r.60
7.60
77YCT
7.60
7.6TJ"
7.60
7.60
7.60
7.60"
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
IENIAL KtbU
1
RT> 1
-60.00
-=54-700 -
-48.00
-<»z.uu
36.00
-33.00
-30.00
-27.00
-24.00
-zi .00
-18.00
~=T5~.'OD
-12.00
~9.ao
-6.00
-3.00
0.00
3TOO
6.00
9.00
12.00
15.00
18.00
21.00
24.00
27.00
30.00
36.00
42.00
48.00
54.00
60.00
Lib
NIT;
RAN
1
1
1
1
1
1
1
L
1
1
1
~T
1
~ T
1
1
1
~T
1
"1
1
I
1
1
1
1
1
1
1
1
1
1
ROGEN OXIDE -NO
GE"""X " Y
25.80 225.1
25.10" 218.7
25.30 220.6
25. 50
25.50
25.60"
25.70
— 25 . ff(T
22.70
Z0.60
18.60
"20720
18.30
" "22.80
23.90
25. 80
23.30
— 2ZTOTJ "
22.20
2?/70
22.70
22.60
19.50
14.20
16.40
29.50
30.00
31.60
31.10
31.40
31.40
30.80
ZZZ.4
222.4
"223.3
224.2
225.1
197.0
1 78. 1
160.2
"174.5
157.6
"197.9"
207.8
225. 1
202.4
~190."6
192.5
" 1 9'7~. 0
197.0
196. 1
168.2
121.5
140.8
259.2
263.8
278.7
274.1
276.9
276.9
271.3
OXYGEN CARI
02 RAN(
2.90 1
2.88
2.84
Z .91
2.95
"2.88
2.95
" 2". 9 9
3.37
4.92
3.00
0 . 43
0.25
~ 0.46
0.75
1.08
1.31
" " 1.39
1.20
0.89
0.48
1.35
3.13
8.02
10.02
3.49
3.43
3.36
3.40
3.41
3.20
3.33
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
" T
1
1
1
1
1
" I
1
1
1
1
1
1
1
1
30N DIOX
;E -x"
80.80
80.90
81.00
B 1 .ZO
81.00
" 80.50"
81.30
8 1 . 40
75.40
74.00
74.50
65.30
55.10
""4 8. "70 '
43.70
38. 70
35.00
3^.20"
38.10
49.30
63.70
73.30
74.30
62.90
56.80
80.10
79.90
80.80
81.00
80.40
79.80
80. ?0
IDE-C02 CARB
Y R'SNG
10.28 3
10.30
10.32
1O. 36
10.32
roTzz
10.39
10.41
9.16
B.BB
8.98
"7i24
5.52
" 4756 ~
3.86
3.22
2.78
" 2".6~9"~ "
3.15
6.96
8.75
8.94
6.82
5.79
10.13
10.09
10.28
10.32
10.19
10.07
10.15
3
3
3
3
3
3
3
3
2
I
~r
i
i
ON MONO>
E__x_._
10.00
"8.90
7.80
0.40
8.10
~~ 8.20~
8.20
"~8.90
92.30
13.20
49.30
1TO700
112.60
1T4TOO"~
109.80
1 101.30
1 96.60
~1 95T20"
1 100.50
~T~TO 67915"
1 104.40
1
1
2
3
3
3
3
3
3
3
3
80.50
49.70
2~5~;?0
18.00
10.40
11.10
11.10
10.50
10.80
9.90
10.20
(IDE -CO METHANE - CH4
Y RffNGl X ~Y~ "
0.004 3 0.00 0.00
0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.045
0.217
1.791
5.781 "
5.996
~6.T13
5.764
5.087
4.730
4.625
5.026
5.529
5.330
3.594
1.811
0.346
0.007
0.004
0.004
0.004
0.004
0.004
0.004
0.004
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
3 0.4O
3 1.70
1 14.50
1 59.10
~l T¥7BO~
1 106.10
1 112.70
1 112.40
1 112.40
1 113.20
1 103.70
1 49.50
3 18.00
3 2.00
3 0.90
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
3 0.00
0.00
0.00
o.oo
0.00
OTOU
0.00
0.00
0.00
0.02
0.07
8.59
T37W
21.83
24. 15
24.04
24.04
24.33
21.01
6.59
0.78
0.08
0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
tSJ
oo
-------
Table 11-27. RAW (Gas Analysis) DATA FOR SHORT-FLAME BAFFLE BURNER
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRW ~2
AXIAL BURNER -SHORT FLAME BAFFLE - SHEPHERD'S PROBE, NOV. 13,«72
INPUT GAS 2190
WALL TEMPERATURE 2584
PREHEAT TEMPERATURE
502
UU T KUI ANALYi15
NITROGEN OXIDE 35.20 PERCENT ON RANGE It
CARBON DIOXIDE- 82.40 PERCENT ON RANGE 1,
CARBON MONOXIDE 5.50 PERCENT ON RANGE 3,
METHANE 0.00 PERCENT ON RANGE 0,
312.65 PPM
10.62 PERCENT
0.002 PERCENT
0.00 PERCENT
OXYGEN 2.90 PERCENT
bXPbKIMb
AP
37.70
37.70
37.70
37.70
37.70
37.70
37.70
37.70
3 7 . iv
37.70
37T70
37.70
37.70 '
37.70
37.70
37.70
-3~r; 70-
37.70
"37T70
37.70
3 / . 1 U
37.70
" 3TT7(r~
37.70
3T.70—
37.70
37.70
"37Y70"
37.70
NTAL KbbUL
N
RP 1,
-60.00
-54.00
-48.00
— ** 2 » 00
-36.00
-30". 00
-27.00
-24". 00
-21.00
- 1B.UU
-15.00
-12/00
-9.00
-6.00
-3.00
U. UU
3.00
" fr.OO
9.00
"I?. 00-
15.00
LU . UU
21.00
' 2V. OQ- ~
27.00
-~30VOO-
36.00
42.00
48.00
- 54-roo"
60.00
ITI
UNI
1
1
1
I
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
ROGEN OXIDE -NO
3E X Y
30.40 267.5
26/00 227.0
25.40 221.5
2*» . ou
23.70
22.70
22. 10
21.30
20.20
19. 30
18.90
18.60
18.00
16.60
16.20
16. UU
17.50
19.90
20.30
21.70
22.40
i 3. UU
25.70
26. ra
27.00
29.00
28.60
29.30
30.50
29.80
i I1* . £
206.0
197.0
191.5
184.4
174.5
166. '5
162.9
160.2
154.9
142.5
139.0
!*»<• . 3
150.5
171.8
175.4
187.9
194.3
. 1 7
6.98
• 7.94 --
8. 11
-8.92
9.32
V. "»5
9.28
' "9.61
10.11
—1 0 . 15- -
10.11
10.28
10.22
10.05"
9.69
3 13. IU
3 14.20
i 20 • 00
3 59.30
2 12. 2U
2 22.10
2 46V30
2 90.20
i 5 / ,<:u
I 89.80
1 103.60
1 108.50
~ T— ITS. 10
1 114.50
i i 13. uu
1 101.80
-I" ~B1.60
1 79.50
I "51T8O
1 30.10
1 14. iu
I 3.00
- r - -3 .TO
3 17.10
3 8. -00
3 4.00
3 5.20
3 5.10
—3 5.20
3 5.10
o ;TJD^
0.005
0. 008
0.027
0.200
0.371
0.822
1.764
2. 1 vs
4.233
5V267
5.658
6". 206—
6. 156
e>« u^v
5.126
3T6-68- —
3.528
1V9T6 ~
0.941
U. 3U4
0.078
07086
0.007
0/003
0.001
U.OU2
0.002
0.002"
0.002
METHANE - CH4
RANGE" JC "- -Y
3 0.00 0.00
3
3
3
3
3
—3^
3
3
3
3
— - 3-
3
3
3
3-
3
3
3
3
3 -
3
J
3
3
3
U. UU
0.20
0. 70
0.40
0. 80
1.10
irso
6.00
S>. 80
21.40
35.40
36.00
~5-OTOO~
52.20
5u. «»0
35.50
-2XJ750"
17.30
~rr. so~
5.20
t. 3U
0.00
--avoo-
0.00
— OTBtT
0.00
0.00
0.80
0.50
0.70
u.uu
0.01
0 • 03
0.02
0.03
0.05
-- 0.^)6
0.25
0.93
TT58
1.61
2V79
2.41
2.31
1.59
0.75
0.51
0.22
U. IU
0.00
0.00
" 0.03
0.00
0.00
0.03
OV02
0.03
ro
-------
Table 11-28. RAW (Gas Analysis) DATA FOR SHORT-FLAME BAFFLE BURNER
TRACER GAS STUDIES Of COMBUSTION BURNERS PROGRAM 2
AXIAL BURNER SHORT FLAME - SHEPHERD'S STAINLESS PROBE, NOV.
'72
INPUT GAS 2190
HALL TEMPERATURE2619
PREHEAT TEMPERATURE
485
OUTPUT ANALYSIS
JQIROGJNJDXJpE 35.00 PERCENT ON RANGE_ljL
CARBON DIOXIDE 81/90 PERCENT ON"RANGE I,"
CARBON MONOXIDE 7.60 PERCENT ON RANGE 3,
METHA'NE" "" o.oo PERCENT ON RANGE o,"
310.75 J|PM
" 10.51 PERCENT
0.003 .PERCENT
0.00 PERCENT
OXYGEN 2.92 PERCENT
EXPERIMENTAL RESULTS
NITROGEN OXIDE -NO
AP
91. 40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91 .40
91.40
91.40
91.40
91.40
91.40
91.40
91 .40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
91.40
RP RANGE X
-60.00 1 26.40
-54.00
-48.00
-42.00
-36.00
-30.00
-27.00
-24.00
-21.00
-18.00
-15.00
-12.00
-9.00
-6.00
-3.00
0.00
3.00
6.00
9.00
12.00
15.00
18.00
21.00
24.00
27.00
30.00
36.00
42.00
48.00
54.00
60.00
1
1
1
1
1
1
1
I
1
1
l"
1
1
1
1
1
1
1
1
1
1
1
1
24.20
24.20
23.80
24.00
23.30
23.30
23.20
22.80
22.90
23.60
24.00
24.80
25.30
26.30
26.40
26.80
26.70
26.60
26.50
25.90
26.00
25.20
25.80
22.60
22.20
25.20
26.00
27.80
28.30
30.30
Y
230.6
210.5
210.5
206.9
208.7
'202.4
202.4
201.5
197.9
198.8
205.1
208.7
216.0
220.6
229.7
230.6
234.3
233.4
232.4
231.5
226.0
227.0
219.6
225.1
196. 1
192.5
219.6
227.0
243.5
248. 1
266.6
OXYGEN
02
3.55
3.61
3.49
3.37
3.36
3.20
3.05
2.78
2.60
2.35
2.07
1.67
1.34
1.12
0.91
0.88
0.78
0.75
1. 14
1.44
1.71
1.97
2.73
3.11
3.22
3. 19
3.45
3.41
3.44
3.28
3.22
CARBON DIOXIDE-C02
RANGE X
1 81.10
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
80.90
81.20
81.40
81.90
81.70
82.00
82.30
82.80
82.30
83.40
83.50
83.30
82.80
83.10
82.80
82.90
83.80
83.30
82.60
82.90
82.50
82.10
81.40
81.30
80.70
80.50
81.80
81.20
81.50
81.20
Y
10.34
10.30
10.36
10.41
10.51
10.47
10.54
10.60
10.71
10.60
10.84
10.86
10.82
10.71
10.77
10.71
10.73
10.93
10.82
10.66
10.73
10.64
10.56
10.41
10.39
10.26
10.22
10.49
10.36
10.43
10.36
CARBON MONOXIDE -co
RANGE X
3 19.10
3
3
3
3
3
2
"2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
20.00
21.20
32.00
54.20
96.70
7.30
12.20
19. 10
29.90 •
43.80
53.10
70.00
78.80
88.50
89.40
90.00
89.90
80.00
69.10
55.50
46.40
29.20
17.10
13.10
7.50
71.50
46.50
15.20
14.80
15.10
Y
0.007
0.008
0.008
0.013
0.024
0.047
0.119
0.200
0.319
0.511
0.773
0.958
1.311
1.504
1.724
1.745
1.759
1.757
1.531
1.291
1.006
0.824
0.498
0.2B4
0.216
0.122
0.033
0.020
0.006
0.006
0.006
METHANE - CH4
RANGE X
3 0.00
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0.00
0.70
3.20
2.50
3.40
2.50
2.20
3.00
3.60
3.40
3.80
3.90
4.20
4.20
4.30
3.90
4.00
4.70
3.80
3.90
3.10
3.30
2.40
2.20
2.90
2.00
2.30
1. 10
0.50
1.50
Y
0.00
0.00
0.03
0.13
0.10
0.14
0.10
0.09
0.13
0.15
0.14
0.16
0. 16
0. 18
0.18
0.18
0.16
0.17
0.20
0.16
0.16
0.13
0.14
0.10
0.09
0.12
0.08
0.10
0.05
0.02
0.06
ro
OJ
o
-------
C. Movable Block Swirl Burner
1. Burner Design
The movable block burner is constructed so that the ratio of the
axial and radial velocities can be varied. (See a cross-sectional view
in Figure 11-176.) The outlet of the burner was designed so that divergent
sections of different angles could be interchanged (Figure 11-177).
Swirl vanes, located in the rear air chamber (Figure 11-178), will
produce varying degrees of swirl intensity of the air stream by adjusting
the vane positions. The movable vanes are attached to a circular rotat-
ing ring. The fuel nozzle is located down the center of the burner and is
retractable to allow for variation of the port mixing. The diameter of
the gas nozzle is easily varied by substituting a new center pipe and
swirl-guide section. This provides an easy means for changing the air/
fuel velocity ratio. Figure 11-179 shows an approximate measure of
swirl intensity as a function of vane setting E.
2. Tracer-Gas Studies
We made radial scans of tracer-gas concentration to determine the
exact areas where point-by-point sampling should be undertaken. Figure
11-180 shows the coordinate system used to define the probe position in
the cold-model unit.
Data were gathered by moving the tracer-gas sampling probe radially
across the chamber at a constant velocity, at several fixed axial positions,
which corresponds to the axis of the burner. These scans were limited
to distances on the Y-axis of +30 cm from the X-axis.
Figures 11-181, 11-182, 11-183, and 11-184 show gas concentration
profiles for the intermediate swirl intensity on the burner axis at 2. 5,
6.12, 12.7, and 16.8 cm from the burner. Comparing Figure 11-181
with later velocity data, we found that the width of the central concen-
tration peak increased significantly with increasing swirl intensity.
Figure 11-183 shows that at 16.78 cm from the burner wall the tracer
gas is completely mixed and its concentration uniform across the cham-
ber width; however, for the case of minimum swirl, the tracer gas was
not completely mixed until it reached a point 101. 62 cm from the burner
wall.
231
-------
CONNECTING FLANGE
SWIRL GENERATOR
BLOCKS
COMBUSTION *
AIR
A-23-290
Figure 11-176. CROSS SECTION OF HOT-MODEL BURNER
-------
_ ___ _ __ _____ _l
• — ™~" *"~™ '"" ™ H
0-35° MAXIMUM
A-81855
Figure 11-177. DIVERGENT FLOW ADAPTER
OF HOT-MODEL BURNER
Z33
-------
A-23-291
Figure 11-178. SWIRL VANES OF HOT-MODEL BURNER
234
-------
o
X
_l
u.
| 3
h-
LU
2
O
2
o: 2
O
z
THEORETICAL CURVE
0.2 0.4 0.6
ADJUSTMENT, E/E--
0.8
1.0
A-61856
Figure 11-179. SWIRL CURVE OF HOT-MODEL BURNER
235
-------
BURNER
J
10 ft
-40 in.
2?
Y/A
/AREA OF FLOW ^ 30cm
/MEASUREMENTS'
I
2
x
BURNER AXIS-x
PROBE'
1
COLD-MODEL FURNACE
5ft
PROBE POSITIONER CAPABLE OF x- AND
y-DIRECTION TRAVERSE ; PROBE
HORIZONTAL TO BURNER AXIS
A-32162
Figure 11-180. COLD-MODEL PROBE-POSITIONING COORDINATE SYSTEM
-------
z
o
o
o
o
1250
IOOO
750
500
250
-30 -20 -10 0 10
RADIAL POSITION,cm
20
A-32206
Figure 11-181. RADIAL CONCENTRATION PROFILE OF
CARBON MONOXIDE FROM THE MOVABLE-BLOCK BURNER
2.59 cm OUT FROM BURNER TIP [Air Velocity 28 ft/s;
Gas Velocity (Air) 110 ft/s; 1000:1 Air/CO Ratio in
Gas Stream], INTERMEDIATE SWIRL
UJ
o
o
o
o
750
250
\
-30 -20 -10 0 10
RADIAL POSITION,cm
20
30
A-32207
Figure H-182. RADIAL CONCENTRATION PROFILE OF
CARBON MONOXIDE FROM THE MOVABLE-BLOCK BURNER
6.12 cm OUT FROM THE BURNER TIP [Air Velocity 28 ft/s;
Gas Velocity (Air) 110 ft/s; 1000:1 Air/CO Ratio
in Gas Stream], INTERMEDIATE SWIRL
237
-------
g
-------
1250-1
-21 -18 -15 -12 -9 -6
8 2SO
-3 0 +3 +6 +9
RADIAL POSITION,cm
1
+12 +15 +18 4-21
A-32163
Figure 11-185. RADIAL CONCENTRATION PROFILE OF
CARBON MONOXIDE FROM THE SWIRL BURNER 5. 08 cm
FROM BURNER TIP [Air Velocity 28 ft/s; Gas Velocity (Air)
110 ft/s; 1000:1 Air /CO Ratio in Gas Stream]
O
U
3UU —
400 —
3OO
ZOO
too
*
M
>l
ny*i
1
8
^f\J
-1
5
vV«
-1
2
_
9
-i
.<-/
1
^
3 (
1
i
i
„!
~TS
;
i
!
i
3 +
«p*»
3
!
1
• • r •
I
H-K
i
1
1
+6
F,
1
+ <
~M
)
K«<
1-1
2
"
+
5
1
+ 1
8
1
+ 21
RADIAL POSITION,cm
A-32164
Figure H-186. RADIAL CARBON MONOXIDE CONCENTRATION
PROFILE OF SWIRL BURNER 50. 8 cm FROM BURNER TIP
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s;
1000:1 Air/CO Ratio in Gas Stream]
239
-------
sou -
E
g 400 -
O 300 —
8 200 -
O ,nn
O 100 —
4
— -
- -
•N"
>l
---
'•••*
-
~S^
8
- —
WBW
-1
"
•**
5
"
-1
.—
2
_
-
—
*
9
--
-i
—
»
;
**
$
*j
(
W*"
D
^
...
1
+
v^
3
*•*
1
+(
VM
5
1
+ <
J
—
1
+ 1
—
2
— -
'
+ 1
-
5
j
+ 1
8
1
+ 2
RADIAL POSITION,cm
A-32165
Figure 11-187. RADIAL CARBON MONOXIDE CONCENTRATION
PROFILE OF SWIRL BURNER 76.2 cm FROM BURNER TIP
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/si
SET FOR MINIMUM SWIRL.
e
Q.
Q.
z
o
z
o
o
o
500 -i
400 -
300 -
200 ~
100 -
u \ 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-21 -18 -15 -12 -9 -6 -3 0 +3 +6 +9 +12 +15 +18 +21
RADIAL POSITION,cm
A-32166
Fig;ure 11-188. RADIAL CARBON MONOXIDE CONCENTRATION
PROFILE OF SWIRL BURNER 101.6 cm FROM BURNER TIP
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s].
SET FOR MINIMUM SWIRL.
240
-------
Figures 11-189, 11-190, II-19^ and 11-192 show gas concentration
profiles at maximum swirl. Ayain we found that, as a function of swirl
intensity, the central peak of the tracer gas concentration in the burner
region decreases its amplitude and increases its width as the swirl in-
creases and the turbulence of the air stream increases, accompanied by
a stronger recirculation in the burner region as the swirl increases.
As; a result of the continuous tracer-gas scans, we undertook point-
by-point tracer-gas samples. Radial profiles were mapped at 3. 8, 7. 6,
17.8, 30.5, and 63.5 cm for both tne minimum swirl and intermediate swirl
(swirl intensity = 0.8). The data plots are shown in Figures 11-193 to
11-199. The raw numerical data are given in Tables 11-29 to 11-34.
Table 11-35 shows the column heading code.
3. Cold-Model Velocity Para
Velocity scans were taken jy. the cold model much like the tracer-
gas scans. A continuous radial scan was made at several axial positions
for minimum, intermediate, and maximum swirl. These scans for min-
imum swirl are shown in Figures 11-200 to 11-203.
Figure 11-204 shows the radial velocity profile for the swirl burner
set for an intermediate swirl intensity with the probe tip positioned toward
the burner, 7. 62 cm from the burner tip. Comparing Figures 11-200 and
11-204, note the large difference in the structure of the velocity profile
between the minimum and intermediate swirl intensities. The continuous-
scan data obtained in Figure 11-204 are sufficient to determine the radial
areas of interest for planning the point-by-point survey. However, they
are insufficient for determining the general direction of flow, which is
also needed for the detailed survey. We discussed earlier that the rota-
tional orientation of the probe must be such that the direction of the flow
vector is within ±60 degrees of the axis of the probe (Figure 11-205) so
that accurate data can be obtained. Where negative velocities are ob-
served in Figure 11-204, the direction of the flow cannot be determined
from :he radial scan alone. It is necessary to obtain the radial scan
with four different rotational orientations, each exactly 90 degrees apart.
The proper direction (rotational orientation) of the probe for the point-by-
point measurements is the direction of the probe during the continuous
scan for which the velocity is found to be the highest.
241
-------
I l;-50
^ 1000
o:
^E ^50
o
o
o
o
!>00
;>so
-30 -20 -10 0 10
RADIAL POSITION,cm
-NJ-
20
30
A-32214
Figm-e 11-189. RADIAL CONCENTRATION PROFILE OF CARBON
MCNOXIDE FROM THE MOVABLE-BLOCK BURNER SET FOR
MAXIMUM SWIRL 2. 54 cm OUT FROM THE BURNER TIP
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s;
1000:1 Air/CO Ratio in Gas Stream]
£. ->VU
O
H- 400
<
tt
l-c 200
Zn
8s 2:00
2
8 100
o
(J
- 1*
-3
0
f
V
;o
-
.
0
>
^
/
0
Is*
s
-
N
V
I
-
0
^
>0
^--
30
RADIAL POSITION,cm
A-32215
Figure 11-190. RADIAL CONCENTRATION PROFILE OF CARBON
MONOXIDE FROM THE MOVABLE-BLOCK BURNER SET FOR
MAXIMUM SWIRL 5. 08 cm OUT FROM BURNER TIP
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s;
1000:1 Air/CO Ratio in Gas Stream]
242
-------
z
o
tr
\-
o
o
o
o
-30
-20
-10 0 10
RADIAL POSITION,cm
A-32216
Figure 11-191. RADIAL CONCENTRATION PROFILE OF CARBON
MONOXIDE FROM THE MOVABLE-BLOCK BURNER SET FOR
MAXIMUM SWIRL 7. 62 cm OUT FROM THE BURNER TIP
[Air Velocity 28 ft/a; Gas Velocity (Air) 110 ft/s;
1000:2 Air/CO Ratio in Gas Stream!
O
H
O
(J
O
O
3UU
400
300
200
inn
-
-i
-
f
,
-
"
-*,
_
./x/
-30 -20 -10 0 10
RADIAL POSITION,cm
20
30
A-32217
Figure 11-192. RADIAL CONCENTRATION PROFILE OF CARBON
MONOXIDE FROM THE MOVABLE-BLOCK BURNER SET FOR
MAXIMUM SWIRL 10.16 cm OUT FROM THE BURNER TIP
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s;
1000:1 Air/CO Ratio in Gas Stream]
243
-------
RP VS.
776
---- T&T
7*6
731
716
701
68ft
MOVEA8LE BLUCK HU1NER SET FOR MINIMUM SHlRL - CUIO MODEL (CO TRACER GAS)
Cll AP= 3.80
67l
656.
641.
625.
610.
595.
580.
565.
t>50.
535.
520.
505.
E 475.
'£ '•60.
8 384.
1- 369.
5 354.
U 339.
Z 32^.
y»::
U 279.
264.
249.
234.
219.
204.
189.
174.
159.
143.
126.
1 13.
9d.
83.
6B.
53.
18.
23.
-30.COO -?4.000 -IB.000 -17.000 -6.000 -0.000 r..OOO
RADIAL. POSITION, rm
17.000
Figure 11-193. TRACER-GAS MIXING PROFILES
FOR THE SWIRL BURNER SET FOR MINIMUM
SWIRL AT THE 3. 8-cm AXIAL POSITION
244
-------
E
129.
116.
103.
90.
77.
.6.4..
51.
38.
25.
12.
/\X1AI. I'tlSI'l ION: V.(,
KflvEAoLH BLOCK DINNER SEI fOR MINIMUM SKIRL - CULO MdOEL (CU TRACER GAS)
J.f VS. C) Af> = 7.60
675.
662.
649.
636.
623.
610.
597.
571.
558.
545.
532.
519.
506.
493.
4HO.
467.
454.
°- 44 t .
X *«•
O 415.
P 402.
< 309.
« 376.
7. 363.
U 350.
U 337.
O 32«-
O 311.
Q 298.
U 285.
272.
259.
246.
233.
...220. .
207.
• 194.
181.
168.
155.
-30.000 -24.000 -16.000 -12.000
-6.000 -0.000
RADIAL POSITION, en
12.000
Figure II-194. TRACER-GAS MIXING PROFILE SET FOR
MINIMUM SWIRL AT THE 7. 6-cm AXIAL POSITION
245
-------
MOVEABLE SLOCK HUR.NEB SET FOR MINIMUM SWIRL - COLO MODEL ICQ TRACER G»SI
lP_Vi. Jill . . 4P i. 17.BO
330.4H ,•
324.50
318.52
312.53
106.55
10Q.57
294.59
288.60
282.62
276.64
270.66
Z&4.A7
258.69
252.71
246.72
240.74
234.76
228.7B
222.79
| 216.81
o. 210.83
z- 204.85
O
198.86
<: 186.90
* 180.91
Z 174.93
U 168.95
U 162.97
O -15.6 ..9 8
U 151.00
O 145.02
U 139.04
133.05
127.07
121.09
115.10
109.12
103.14
17.16
51.17
85. 19
79.21
73.23
67.24
01.26
•>S.2B
49.30
31
AXIAL POSITION: 17.8 cm
-lO.'aO:' -/4.0CO -l«.0"-0 -I?.HOC
-'>.ono -'i.fMjo
RADIAI. I'OSI I ION. cm
Figure 11-195. TRACER-GAS MIXING PROFILE
FOR THE SWIRL BURNER SET FOR MINIMUM
SWIRL AT THE 17. 8-cm AXIAL POSITION
246
-------
MOVEAbLE BLOCK BURNER SE I FOR
. KP._VS..CC .. AP=. 30.50
157.13
152.7*
150.54
148.35
L4(L.-L5 . _ _ .
143.46
141.76
139.57
137.37
135.18
Xl^SJ ......
130.79
128.60
126.40
124.21
122.01
._ ._113.B2
117.62
. g 115.43
£ ll3-23
. 111.04
Z 108.84
_S__lOJ>..6j
|~ 104.46
.a 102.26
I- 100.07
97.87
95.66
93.48 ._ _.
91.29
89.09
86.90
84.70
82.51
an.31
SMIRL - CULO MODEL ICO TRACER GASI
*
AXIAL POSITION: 30.5 cm
Z
u
u
_2_
o
u
o
u
.-30.000 -74.000 -18.000 -I?.000 -6.COO -0.000 6.000
UADIAI. IJOSITION. cm
18.000
30.000
Figure 11-196. TRACER-GAS MIXING FOR THE SWIRL BURNER
SET FOR MINIMUM SWIRL AT THE 30. 5-cm AXIAL POSITION
247
-------
\f.
VS. CO
79.32
78.90
78.47
78.05
77.63
~~76. 79
76.37
75.95
75.53
75.11
.__!*.. 6.9
74.26
73.84
. 73.42
73.00
72.58
. 7J...L6
MOVEABIE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MODEL ICO TRACER GAS)
AP- 63.50
. Z
--8-
/
/
'
\>
AXIAL POSITION: 63.5 cm
71.3?
70.89
70.47
.
2 70.05
69.21
68.79
66.37
67.95
67.53
66.68
O 66.26
U 65.84
65.00
.64.56
64.16
63.74
63.31
62.69
62.47
-. .62*05
61.63
61.21
60.79
60.37
59.95
.59.52.
59.10
58.68
56.26
57.84
,
\
, .\
\.
"-JO.'lcn -24.000 -18.000 -12.00C -6.000 -0.000 6.000 12.000
RADIAL POSITION, cm
18.0CO
Figure 11-197. TRACER-GAS MIXING PROFILE
FOR THE SWIRL BURNER SET FOR MINIMUM
SWIRL AT THE 63. 5-cm AXIAL POSITION
248
-------
BlIILK no-.lt I SCI FDK' IMCKPlDIAIC S.I'<1 - ClILI. MMOEl It I IHtOS GASI
A
-30.000 -?».000 -18.000 -12.000 -6.000 -0.000 6.000
RADIAL POSITION, cm
12.000
2
-------
BLOCK BURNER SET FOR INTERMEDIATE SWIRL - COLO MODEL (CO TRACER GASI
I?.?.1 OOP -24.000 -18.000 -12.000 ^6_.0_0_0 ;0. 000 6.000
RADIAL POSITION, cm
12.000
18.000
24.000
30.000
Figure 11-199. TRACER-GAS MIXING PROFILE
FOR THE SWIRL BURNER (Swirl Number, S = 0. 8)
AT THE 7. 6-cm AXIAL POSITION
250
-------
Table II-29. RAW AND COMPUTED TRACER-GAS MIXING
DATA FOR THE SWIRL BURNER SET FOR MINIMUM
SWIRL AT THE 3. 8-cm AXIAL POSITION
. TRACER GAS STUDIES OF COMBUSTION BURNERS
MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLO MODFL (CO TRACER GAS)
Y OBSERVED. Y COMPUTED DIFFERENCE
0.00
125.00
250.00
375.00
500.00
0.44
124. ?6
249. 14
377. 18
498.95
0.44457
-0.73118
-0.85674
2.18748
-1.04412
SD Y= 0.19159E 01
COEFFICIENTS FOR Y= C ( 1 ) + C ( 2 ) *X+ . . . + C ( N+ 1 ) * X**N
C( l) = 0.4445
C( 2)= 395.5515
C( 3)= 102.9597
EXPERIMENTAL RESULTS
AP
3.80
3.30
3.80
3.30
3.80
i.ac
3.30
3.80
J.80
3.80
3.80
3.80
3.80
3.80
3.80
3.30
3.80
3.30
3.80
3.80
3.80
3.flO
3.80
3.dO
3.80
3.80
3.80
3.bO
3.30
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
RP
3C.CO
25.00
20.00
15.00
14.00
13.00
12.00
11.00
1C. 00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
I. 00
0.00
-1.00
-2. CO
-3.00
-4. CO
-5.00
-6.00
-7.00
-a. co
-9.00
-10.00
-11.00
-12.00
-13.00
-14.00
-15.00
-20.00
-25.00
-30.00
X( V)
0. 162
0.160
0. 158
0. 158
0. 157
0. 155
0.155
0.151
0.144
0.117
0.087
0.047
O.C22
0.020
0.021
0.025
0.126
1.220
1.430
1.110
0.052
0.023
0.024
0.024
0.027
0.033
0.063
0.098
0. 128
0.144
0. 156
0.157
0. 156
0.157
0. 157
0.155
0. 155
CO
67.22
66.36
65.51
65.51
65.08
64.22
64.22
62.52
59.53
48. 13
35.63
19.26
9. 19
8.39
8.79
10.39
51.91
636.26
776.62
566.36
21.29
9.59
9.99
9.99
11.19
13.60
25.77
40.19
52.76
59.53
64.65
65.08
64. 65
65.08
65.08
64.22
64.22
251
-------
Table 11-30. RAW AND COMPUTED TRACER-GAS MIXING
DATA FOR THE SWIRL BURNER (Minimum Swirl)
AT THE 17. 8-cm AXIAL POSITION
TRACER GAS STUDIES OF COMBUSTION BURNERS
MOVEABLE BLOCK BURNER SET FOR MINIMUM SwIRL - COLD MODEL (CO TRACER GAS)
Y OBSERVED
n.oo
125.00
250.00
375.00
500.00
SO Y = 0. 191
Y COMPUTED
0.44
124.26
249. 14
377. 18
498. 95
59E 01
DIFFERENCE
0.44457
-0.73118
-0.85674
2.18748
-1.04412
COEFFICIENTS FOR
C< 11= 0.4445
C( 2)= 395.5515
C( 3) = 102.9597
Y= C(
(2)*X+...+C (N+l )*X**N
EXPERIMENTAL RE
AP
17.80
17.80
17.80
17.80
17.80
17.80
17.00
17.80
17.80
17.30
17.80
17.80.
17.80
1 7 .dO
17.00
17.80
17.80
17.80
17.80
17.80
17.80
17.80
17.80
17.80
17.80
17.60
17.30
17.80
17.80
17.80
17. BO
17.80
17. dO
17.80
17.80
17.80
17.80
RP
30.00
25.00
2C.OO
15.00
14.00
13.00
12.00
11.00
10.00
9.00
8. CO
7.00
6. CO
5.00
4.00
3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00
-4. 00
-5.00
-6.00
-7. CO
-8.00
-9. CO
-10.00
-11.00
-12.00
-13.00
-14. CO
-15. CO
-20.00
-25.00
-30.00
SULTS
X(V)
0.153
0.153
0.153
0.141
0.147
0.121
0. 122
0.119
0.115
0. 105
0.093
0.089
0.083
0.09C
0. 105
0.16C
0.333
0.57C
0.705
0.585
0 . 2 56
0.092
0.082
0.062
O.C70
0.08C
0.080
0.09?
0. 109
0.110
0.112*
0.12b
0.122
0. 145
C. 152
0. 156
0. 154
CO
63.37
63.37
63.37
b8.26
60.81
49.81
50.23
43.97
47.29
43. 11
38. 12
36.46
33.98
36.37
43. 11
66.36
143.58
259.36
330.48
267.07
100.45
37.70
33.57
25.36
28.63
32.74
32.74
3 f.70
44.78
45.20
46.03
51.49
50.23
59.96
62.94
64.65
63.80
25Z
-------
Table 11-31. RAW AND COMPUTED TRACER -GAS
MIXING DATA FOR THE SWIRL BURNER (Minimum
Swirl) AT THE 30. 5-cm AXIAL POSITION
TRACER GAS STUDIES OF COMBUSTION
MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MOOFL (CO TRACER GAS)
Y OBSERVED Y COMPUTED DIFFERENCE
0.00
125.00
250.00
375.00
500.00
0.44
124.26
249. 14
377. 18
498.95
0.44457
-0.73118
-0.85674
2.18748
-1.04412
SD Y= 0.19159E 01
COEFFICIENTS FOR Y= C ( 1 ) +C(2 ) *X+...+C(N+1)*X**N
C( 1)= 0.4445
C( 21= 395.5515
C( 3)= 102.9597
EXPERIMENTAL RESULTS
AP
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
30.50
J0.50
30.50
30.50
30.50
30.50
30.50
RP
30.00
25.00
20.00
15.00
14.00
13.00
12.00
11.00
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00
-4.00
-5.00
-6. CO
-7.00
-0.00
-9.00
-1C. CO
-1 1.00
-12.00
-13. CO
-14.00
-15.00
-2C.OO
-25.00
-30.00
X(V)
0.150
0. 148
C.152
C. 138
0. 129
0.132
0.125
0.121
0. 117
C.12C
C. 122
0. 130
0. 141
0. 185
C.204
0.290
C.362
0.357
0.3 50
0.335
0.247
0.204
0.158
0. llfi
0. 119
0.111
0. 110
0.118
0.116
0. 124
0.129 .
0.130
0. 132
C. 130
0.14C
0. 150
0. 154
CO
62.09
61.24
62.94
56.99
53. 18
54.45
51.49
49.81
48. 13
49.39
50.23
53.60
53.26
77.14
85.42
123.61
157.12
154.77
151.50
144.50
104.42
85.42
65.51
48.55
48.97
45.61
45.20
4H.55
47. 71
51.07
53.18
53.60
54.45
53.60
57.83
62.09
63.80
253
-------
Table H-32. RAW AND COMPUTED TRACER-GAS
MIXING DATA FOR THE SWIRL BURNER (Minimum
Swirl) AT THE 63. 5-cm AXIAL POSITION
TRACER GAS STUDIES OF COMBUSTION BURNERS
MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - ClILD MODEL (CO TRACEK GAS)
Y OBSERVED Y COMPUTED DIFFERENCE
o.oc
125.00
250.00
375.00
500.00
0.44
124.26
249. 14
377.18
498.95
0.44457
-0.73118
-0.85674
2.18748
-1.04412
SD Y= 0.19159E 01
COEFFICIENTS FOR Y= C(1)+C12)*X+..,+C(N+1)*X**N
C( l)= 0.4445
C( 21= 395.5515
C( 3) = 102.9597
EXPERIMENTAL RESULTS
AP
63.50
63.50
63.50
63.50
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
63.
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
RP
30.
25.
20.
15.
14.
13.
12.
11.
1C.
9.
8.
7.
6.
5.
4.
3.
2.
I.
C.
-1.
-2.
-3.
-4.
-5.
-6.
-7.
-8.
-9.
-10.
-11.
-12.
-13.
-14.
-15.
-20.
-25.
-30.
00
CO
00
00
00
00
00
00
CO
00
00
00
00
00
00
00
00
CO
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
X
0.
C.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
C.
C.
C.
C.
0.
0.
C.
C.
0.
C.
C.
0.
0.
0.
0.
0.
4
0.
0.
0.
0.
0.
0.
0.
(V)
150
141
145
158
151
17C
155
155
155
168
160
169
160
169
179
160
173
17C
188
186
170
190
185
181
175
165
154
154
169
150
149
160
140
145
145
142
150
CO
62.
58.
59,
65.
62
70
64
64
64
69
66
70
66
70
74
74
71
70
78
77
70
79
77
75
72
68
63
63
70
62
61
66
57
59
59
58
62
*
•
*
•
•
•
•
•
•
•
•
«
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
09
26
96
51
52
66
22
22
22
80
36
23
36
23
54
97
95
66
44
57
66
31
14
41
81
51
80
80
23
09
66
36
83
96
96
68
C9
254
-------
Table 11-33. RAW AND COMPUTED TRACER-GAS
MIXING DATA FOR THE SWIRL BURNER (Maximum
Swirl) AT THE 2. 5-cm AXIAL POSITION
TRACER G^S STUDIES OF COMBUSTION BURNERS
MOVEABLE BLOCK BURNER SET FOR MAXIMUM SWIRL - COLD MODEL (CO TRACER
Y OBSERVED Y COMPUTED DIFFERENCE
0.00
125.00
250.00
375.00
500.00
C.44
124.26
249. 14
377.18
498.95
0.44457
-0.73118
-0.85674
2.18748
-1.04412
SD Y= 0.19159E 01
COEFFICIENTS FOR Y= C(1)+C«2)*X+...+C(N+l)*X**N
C( l)= 0.4445
C( 2)= 395.5515
C( 3)^ 102.9597
EXPERIMENTAL RESULTS
AP
2.
2.
2.
2.
2.
?.
2.
2.
2.
?..
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
?.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
RP
-30
-25
-20
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
I
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
20
25
30
.00
.00
.00
.CO
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.CO
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
X
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
1.
1.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
c.
0.
0.
0.
0.
0.
( V)
181
180
176
174
16fl
160
153
155
130
106
102
124
177
242
320
450
650
230
560
260
750
480
344
240
157
116
130
155
160
170
171
173
173
177
180
199
195
CO
75
74
73
72
69
66
63
64
53
43
41
51
73
102
137
199
301
642
882
662
355
214
148
101
65
47
53
64
66
70
71
71
71
73
74
83
81
.41
.97
.25
.38
.80
.36
.37
.22
.60
.52
.86
.07
.68
. 19
.56
.29
.05
.74
.44
.29
.02
.03
.69
.30
.08
.71
.60
.22
.36
.66
.09
.95
.95
.68
.97
.23
.49
255
-------
Table 11-34. RAW AND COMPUTED TRACER-GAS
MIXING DATA FOR THE SWIRL BURNER (Maximum
Swirl) AT THE 7. 6-cm AXIAL POSITION
TRACER GAS STUDIES OF COMBUSTION BURNFRS
MOVEABLE BLOCK BURNER SET FOR MAXIMUM SWIKL - COLD MODfcL I CO TRACER I.AS)
Y OBSERVED Y COMPUTED DIFFERENCE
0.00
125.00
250.00
375.00
500.00
0.44
124.26
249. 14
377. 18
498.95
0.44457
-0.73118
-0.85674
2. 18748
-1.04412
SO Y= 0. 19159E 01
COEFFICIENTS FOR Y= C(1)*C(2)*X+...+C(N+l)*X**N
C( 1)= 0.4445
C( 2)= 395.5515
C( 3)= 102.9597
EXPERIMENTAL RESULTS
AP
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.t>0
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
7.60
RP
-30.00
-25.00
-20.00
-15.00
-14.00
-13.00
-12.00
-11.00
-1C. 00
-9.00
-8.00
-7.00
-6.00
-5.00
-4.00
- 3.00
-2.00
-I. CO
O.CO
I. 00
2.00
3.00
4. CO
5. no
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
20.00
25.00
30.00
X( V)
0.174
0. 173
0. 172
0.165
0.160
0. 150
0. 150
0. 150
0. 160
0. 163
0.185
0.200
0.250
0.31C
0.400
0.510
0.730
0.860
I .000
0.970
0.925
0.760
0.630
0.43b
0.309
C.220
0. 180
0. 160
0. 180
C. 1.97
0. IflG
C. 180
0.180
C. 168
0. 170
0. 165
0. 170
CO
72. 3b
71.95
71.52
68.51
66. 36
62.09
62.09
62.09
66. 36
67.65
77.14
H3.67
105.76
132.95
175. 13
228.95
344.06
416.76
498.95
481.00
454.42
360.53
290.50
191.99
132.50
92.44
74.97
66.36
74.97
82. 36
77.57
74.97
74.97
69.80
70.66
68.5J.
70.66
256
-------
Table 11-35. COLUMN HEADING CODE
AP = axial probe position, cm
CO = carbon monoxide concentration, ppm
C(l), C(2), etc. = coefficients of fitted calibration
Difference = Y , , — Y . , ., ppm
observed calculated
RP = radial probe position, cm
SD = standard deviation of Y-computed
X(v) = experimentally measured lime-averaged voltage, V
Y-computed = carbon monoxide concentration from fitted calibration, ppm
Y-observed = carbon monoxide concentration from calibration curve, ppm
257
-------
iio-
^ 88 -
> 66-
g4«-
UJ 22 -
i
• • ! • •
'. I . ' . .
i
1 i !'"'.'.' j
A
\ i i i i 1 i
!l -18 -15 -12 -9 -6 -3 0
- - •
\^^^^t.
i i i i i i i
+ 3 +6 +9 +12 +15 +18 +21
RADIAL POSITION,cm
Figure 11-200. RADIAL VELOCITY PROFILE OF SWIRL
BURNER 5. 08 cm FROM BURNER TIP [Air Velocity
28 ft/s; Gas Velocity (Air) 110 ft/a]
110 -i
-21 -18 -15 -12
I I I I
+12 +15 +18 +21
RADIAL POSITION,cm
Figure 11-201. RADIAL VELOCITY PROFILE OF SWIRL
BURNER 50. 8 cm FROM BURNER TIP [Air Velocity
28 ft/s; Gas Velocity (Air) 110 ft/si
258
-------
no -i
-21 -18 -15 -12
I I T I I
49 +12 +15 +18 +21
RADIAL POSITION ,cm
Figure 11-202. RADIAL VELOCITY PROFILE OF SWIRL
BURNER 76.2 cm FROM BURNER TIP [Air Velocity 28 ft/s;
Gas Velocity (Air) 110 ft/s]. SET FOR MINIMUM SWIRL.
no -
$ 88 -
>-" 66 -
K
O 44 —
UJ 22 H
—
•Mnr-T''-
1 1
-21 -18
T^'T
I
-15
•r ir"p»
1
-12
1
-9
11 • -
1
-6
r»
i
-3
!'l
\
I
0
1 1
+ 3 +6
(
+ 9
I
+12
*
-------
-20
-10 0 10
RADIAL POSITION,cm
20
90
A-32202
Figure 11-204. RADIAL VELOCITY PROFILE OF MOVABLE-BLOCK
BURNER SET FOR INTERMEDIATE SWIRL 7. 62 cm OUT FROM
BURNER TIP. PROBE ROTATED AT AN ANGLE OF 0°
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s]
DIRECTION OF
FLOW RESULTING
IN POSITIVE
PRESSURE SIGNAL
ATMOSPHERE
DIRECTION OF
FLOW RESULTING
IN NEGATIVE
PRESSURE SIGNAL
DIFFERENTIAL
PRESSURE
TRANSDUCER
A-32199
Figure 11-205. PRESSURE SIGNAL RESPONSE
FOR VARIOUS FLOW DIRECTIONS
260
-------
Figures 11-204, 11-206, 11-207, and 11-208 show the radial velocity
profiles for the swirl burner set for the intermediate swirl intensity at
7. 62 cm from the burner tip for the four rotational orientations. (/cro
degrees corresponds to the probe pointed toward the burner. ) Similar
profiles were run at various distances from the burner from 1. 0 to 30
inches.
Figures 11-209, 11-210, 11-211, and 11-212 show velocity profiles for
the maximum swirl intensity obtainable with our burner.
Considering all of the velocity- and tracer-gas-concentration scans
as a function of both axial position and level of swirl intensity, the fol-
lowing point-by-point survey was undertaken as shown in Table 11-36.
We collected the point-by-point profile data for the swirl burner by
using a multidirectional impact pitot tube (MDIT). The coordinate system
used in data collection and reduction is shown in Figure 11-213.
A typical set of raw data obtained from the MDIT is shown in Table
11-37 for the burner set at minimum swirl and at a 3. 8-cm axial position.
The probe is rotated through angle 6 in the x-n plane; AP is the axial
position of the probe in centimeters and RP is its radial position in centi-
meters. The temperature, T, is measured in degrees centigrade at the
points where the data are collected. PB is the atmospheric pressure in
millimeters of mercury, and P is the pressure differential between
pressure holes x and y expressed in terms of time because of the inte-
gration method used in collecting the data. The pressure differentials
we measured were constantly changing, since we were dealing with a
turbulent system. To determine the mean value of these transient pres-
sure differentials, the instantaneous values are electronically summed up
for a preset amount of time. This total equals the product of the average
instantaneous pressure differential and the time interval needed to reach
it. Therefore, by measuring the time interval needed to reach this sum
by a transient pressure differential, it is possible to experimentally de-
termine the mean value of the pressure differential. These yield the
velocity (magnitude and direction) of the air stream, using the techniques
outlined earlier in this report. The computer program which performs
this calculation is shown in Appendix A.
261
-------
-20
-10 0 10
RADIAL POSITION,cm
20
30
A-32203
Figure H-206. RADIAL VELOCITY PROFILE OF MOVABLE-BLOCK
BURNER SET FOR INTERMEDIATE SWIRL 7. 62 cm OUT FROM
BURNER TIP. PROBE ROTATED 270° ABOUT y-AXIS
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s]
-30
-20
-10 0 10
RADIAL POSITION,cm
30
A-32204
Figure 11-207. RADIAL VELOCITY PROFILE OF MOVABLE-
BLOCK BURNER SET FOR INTERMEDIATE SWIRL 7. 62 cm
OUT FROM BURNER TIP. PROBE ROTATED 180° ABOUT
y-AXIS [Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s]
262
-------
-30
-20
-10 0 10
RADIAL POSITION ,cm
30
A-32205
Figure II-Z08. RADIAL VELOCITY PROFILE OF MOVABLE-
BLOCK BURNER SET FOR INTERMEDIATE SWIRL 7. 62 cm
OUT FROM BURNER TIP. PROBE ROTATED 90° ABOUT
y-AXIS [Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s]
-30
-20
-10 0 10
RADIAL POSITION,cm
20
30
A-32210
Figure 11-209. RADIAL VELOCITY PROFILE OF MOVABLE-
BLOCK BURNER SET FOR MAXIMUM SWIRL 7. 62 cm OUT
FROM BURNER TIP. PROBE ROTATED 0° ABOUT THE y-AXIS
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/s]
263
-------
-30
-10 0 10
RADIAL POSITION,cm
20
30
A- 32211
Figure II-Z10. RADIAL VELOCITY PROFILE OF MOVABLE-
BLOCK BURNER SET FOR MAXIMUM SWIRL 7.62 cm OUT
FROM BURNER TIP. PROBE ROTATED 270° ABOUT THE
y-AXIS [Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/si
-30
-20
-10 0 10
RADIAL POSITION,cm
A-32212
Figure 11-211. RADIAL VELOCITY PROFILE OF MOVABLE-
BLOCK BURNER SET FOR MAXIMUM SWIRL 7. 62 cm FROM
BURNER TIP. PROBE ROTATED 90° ABOUT THE y-AXIS
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/si
264
-------
-30
-20
-10 0 10
RADIAL POSITION,cm
20
A-32213
Figure 11-21Z. RADIAL VELOCITY PROFILE OF MOVABLE-
BLOCK BURNER SET FOR MAXIMUM SWIRL 7.62 cm OUT
FROM BURNER TIP. PROBE ROTATED 90° ABOUT y-AXIS
[Air Velocity 28 ft/s; Gas Velocity (Air) 110 ft/si
POSITIVE
PROBE ROTATION
PROBE COORDINATE SYSTEM
BURNER COORDINATE SYSTEM
Figure 11-213. BURNER AND PROBE
COORDINATE SYSTEMS
265
-------
Table 11-36. VELOCITY SAMPLING LOCATIONS
PLANNED FOR SWIRL BURNER
Swirl Intensity
Minimum
(8=0)
Intermediate
(s ~ 0. 8)
Maximum
Radial Positions, cm
+ 1.5 to -1.5
+ 1. 5 to +6. 0
-1.5 to -6. 0
+ 6. 0 to +30. 0
-6. 0 to -30. 0
+ 6. 0 to -6. 0
+6. 0 to +30. 0
-6. 0 to -30. 0
in 0. 5-cm intervals
in 1.0-cm intervals
in 1. 0-cm intervals
in 10. 0-cm intervals
in 10. 0-cm intervals
in 1. 0-cm intervals
in 10. 0-cm intervals
in 10. 0-cm intervals
+ 10. 0 to —6. 0 in 1. 0-cm intervals
+ 10.0 to +30.0 in 10. 0-cm intervals
—6.0 to —30.0 in 10. 0-cm intervals
-30.0 to +30.0 in 10. 0-cm intervals
+ 10.0 to -10.0 in 1.0-cm intervals
+ 10.0 to +30.0 in 5. 0-cm intervals
-10. 0 to —30. 0 in 5. 0-cm intervals
+ 10.0 to —10.0 in 0. 5-cm intervals
+ 10.0 to +30.0 in 1.0-cm intervals
-10.0 to -30.0 in 1.0-cm intervals
+ 10.0 to —10.0 in 1.0-cm intervals
+ 10.0 to +30.0 in 10. 0-cm intervals
—10.0 to —30. 0 in 10. 0-cm intervals
Plans for run based on results at
16. 78-cm axial position
+5. 0 to —5. 0 in 1. 0-cm intervals
+5.0 to +15.0 in 0. 5-cm intervals
—5.0 to —15.0 in 0. 5-cm intervals
+ 15.0 to +30.0 in 5. 0-cm intervals
—15. 0 to —30. 0 in 5. 0-cm intervals
Same as for 2. 54-cm axial position
+ 10.0 to -10.0 in 1.0-cm intervals
+ 10.0 to +30.0 in 5. 0-cm intervals
-10.0 to -30.0 in 5. 0-cm intervals
Axial
Position,
cm
5.08
50.8
76. Z
101.6
2.54
7.62
16.78
30.48
2.54
7. 62
10. 16
266
-------
M
^1
Table 11-37. EXAMPLE OF RAW DATA OBTAINED FROM MDIT VELOCITY PROBE "FOR
THE SWIRL BURNER SET FOR MINIMUM SWIRL AT THE 3. 80-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTIUN
CALIBRATION COEFFICIENTS FOR FOrUARD FLOW
Al = 0.770590" A2 = " 0.272353 A3 = -0.059818
uO = 0.737720 B2 = -0.158821 R4 = C. 129246
C = 4.464660 0 = 0.304812
MOVEABLE BLOCK BURNER SET FOR MINIMUM SKIRL - COLO "UDEL
TOTAL DATA INPUT
THETA
0.
0.
0.
0.
" "0."
0.
0.
0.
0.
0.
0.
0 .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
or
0.
0.
AP
3.8
3.8
3.8
3.8
~ T. 8 -
3.6
3.8
3.8
3.0
3.8
- 3.8'
3.8
3.8
3.8
3.8
3.8
3.8
3.9
3.8
3.8
3.8
3.8
' 3.8
3.8
3.8
3.8
3.8
3.8
- 3-. 8
3.8
3.8
3.8
3.8
3.8
3; 8"
3.8
3.R
RP
-30.0
-25.0
-20.0
- 15.0
-14/0
- 13.0
-12.0
- 11.0
- 10. 0
-9.0
-8.C
-7.0
-6.0
-5.0
-4.C
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10. 0
11. 0
12.0
13.0
14.0
15.0
'20.0
25.0
30.0
P13
3830.00
3090. CO
3120.00
3370.00
3130.00
3800. 00
4260.00
4900. OC
8860.00
5110. OC
398.00
252.00
920.00
13000.00
-930.00
-773.00
-2130.00
32. 70
-222.00
-30.80
-3960.00
7960.00
15160.00
-2260.00
-1844.00
-652.00
-23-5.00
-343.00
-5020.00
3700.00
5620.00
12660.00
15400. 0.0
31900.00
" 4~6~5 00.0-0 '
57000.00
28700.00
P03
-3930.00
-39HO.no
-36RO.OO
-4120.00
-3380.00
-3930.00
-3830.00
-3620.00
-2910.00
-2900.00
1005.00
126.00
134.00
207.00
196.00
196.00
207.00
19.20
16.50
187.00
215.00
199.00
201.00
198.00
189.00
185.00
420.00
-1240.00
-4570.00
6700.00
10920.00
13700.00
24900.00
19000.00
29200.00
23800.00
24200. OC
P24
-3600.00
-44CO.OO
-3820.00
-36HO.OO
-3830.00
-4030. OC
-371C.OO
-3100.00
-1760. OC
-657.00
-240. CO
-66. 10
-71 .40
-66. 30
-BO. 80
-100. CO
-133.00
-51 .60
-11P.3.00
-•72.60
4 19.00
199. OC
127. OC
8'. .80
68.60
62.60
70. 10
195.0C
1300.00
4600.00
23500.00
9000. OC
19700.00
26000.00
23500.00
17400. QC
1810C.OC
P04
-3850.00
-3800.00
-3590.00
-4120. CO
-3670.00
-3660.00
-252C.OO
-2470.00
-1850.00
-162C.OO
-428.00
-202. CC
-204. CO
-227. CC
-550. CO
-186C.CO
1064.00
37.50
16.00
37.90
163.00
140.00
114.00
99.60
88. 6C
79.00
100.00
390.00
4160.00
19400.00
-17000.00
79900.00
75900.00
100800.00
31300. UC
21000. OC
19100.00
POA
4 1C-. CO
4i- /.OC
450.0?
43 ).00
41-3.00
DCO.OO
7^6. CC
698.00
llfiC.CO
i i < c . c r
ot.-n.cc
l^.CC
1 34. CO
:3o.cc
I f 7.00
17/.00
184. OC
20.30
I I . 90
30. 60
1SU.OC
163. 0"
190. CC
2C3.0C
178. CC
163. OC
2C?.00
•J45.0C
•353.00
422.00
410. CO
400.00
403.00
370.00
36-3.00
3V3.00
Sfcr.LT
r
?c.
2C.
zc.
20.
20.
2C.
20.
20.
20.
20.
2C.
2vj.
20.
2P.
2C.
2:;.
20.
2C.
20.
2ci.
20.
20.
2C.
?C.
?n .
20.
20.
2'J.
20.
20.
2C.
?0.
20.
2f.
20.
20.
2T.
F-b
7oC
7o(
/.•>.:
7r^C
7oC
76C
7r>C
7bO
76C
TLr
IL':
VoC
/oC
'ft.f
7cC
7oC
?!,0
'CC
760
7t;C
7nC
JLC
70L
7oC
7(>0
76C
7oO
7 ol~
7oO
7 o 0
760
7o'.
7r,T
?n'J
7f,:
/OC
/'.:
-------
A typical set of reduced velocity data calculated from Table 11-37
is given in Table 11-38. The direction of the velocity is defined by FI,
the conical angle measured about the x-axis, and by delta, the dihedral
angle measured from the positive y-axis in the y-z plane. The magnitude
of the velocity is given by V in ft/s. p is the density of the air in slugs/
ft-sq in. The components of the velocity, VX, VY, and VZ, are given
in ft/s. The tangential velocity, VT, and the radial velocity, VR, are
both expressed in ft/s. PST is the static pressure in psig.
A computer plotting subroutine is used to graphically represent the
axial velocity, VX, and the tangential velocity, VT, shown in Figures
11-214 and H-215.
Data were collected for the swirl burner with the probe facing both
toward and away from the burner for all radial positions between ±15
cm of the burner axis. We found that in some sampling locations, vel-
ocities were measured for both forward and reverse positions of the probe.
Since during a given time interval the velocity vector cannot point in two
directions simultaneously, a procedure had to be developed to determine
which of the measured velocities was real and which was fictitious.
The most quantitative method for doing this would be to calibrate the
multidirectional impact tube for reverse flow (probe pointed in the same
direction as on jet). This would allow a comparison of the velocities
measured with the probe going into and away from the air stream. The
major shortcoming of this technique was that all velocities which were
calculated using the recovery coefficients determined by the reverse flow
calibration procedure were imaginary. However, the following general
qualitative results concerning the velocity vector arise from the attempted
reverse flow calibration: Using the forward flow calibration coefficients
on the data collected with the probe pointed in the same direction as the
air jet, we determined real-valued velocities whose magnitudes were 4-5
times less than the actual velocity and in a direction opposite to that of
the uniform air jet. Additional qualitative information concerning the
direction of flow was also obtained with wool tufts. Using these qualita-
tive types of information, we found that for the movable-block burner,
the minimum swirl setting showed no reverse flow, while the intermediate
swirl setting showed reverse flow in the center of the burner region.
268
-------
Table 11-38. TYPICAL COMPUTER OUTPUT"OF REDUCED VELOCITY DATA
MUVEftttLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLO MODEL
RESULTS
AP
3.8
3.8
3.8
3.8
3.8
3.8
3.8
J.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
3.8
RP
-30.0
-25.0
-20.0
-15.0
-14.0
-13.0
-12.0
-11. 0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
20.0
25.0
30.0
FI
82.0
82.7
82.5
81.4
82.3
83.0
85.1
84.6
82.9
71.9
61.6
31.7
29.9
31.9
24.0
20. 1
15.8
10.6
0.8
14.6
5.4
11.3
16.7
24. 1
27.8
27.2
33.0
50.5
70.9
62.2
71.7
59.1
58.9
52.4
27.2
23.4
25.2
DELTA
226.7
215.0
219.2
222.4
219.2
223.3
228.9
237.6
258.7
260.4
2 3 8. "9
255.3
265.5
269. 7
274.9
277.3
273,7
212.3
349.4
341.6
83.9
91.4
90". 4
87.8
87.8
84.5
73.6
60. 3
"75.4
141. 1
166.5
125.4
141.9
129. 1
116.8
106.9
122.2
RHO
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
~~0.000'0"159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
~~ 0.6600159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
6". 6000" 159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
8.62
9.01
9.17
8.62
9.33
8.75
9.35
9.26
9.71
10.20
17.65
35.25
35. 16
34.01
34.30
33.33
31.27
83.63
106.95
73.03
29.92
30.38
31.71
33.32
35.12
37.10
33.36
19.09
7.81
4.82
4. 13
3.29
2.33
2.53
2.08
2.46
2.42
vx
1.19
1.14
1.19
1.28
1.23
1 .06
0.79
0.86
1.19
3.16
8.3H
29.98
30.47
28.87
31.33
31.29
30.08
82.19
106.94
70.65
29.78
29.79
30.37
30.40
31 .06
32.99
27.97
12.12
?.55
2.24
1.29
1 .69
1.20
1.54
1 .85
2.25
2.19
VY
-5.84
-7.31
-7.04
-6.29
-7. 16
-6.32
-6. 12
-4.93
-1.87
-1.60
-8.02
-4.70
-1.35
-0.09
1.20
1.47
0.55
-13.07
1 .47
17.53
0.29
-0. 14
-0.07
0.51
0.60
1.62
5. 11
7.26
1.85
-3.31
-3.81
-I .64
-1.57
-1.27
-0.42
-0.28
-C.55
VI
-6.22
-5.13
-5.75
-5.76
-5.85
-5.96
-7.02
-7.79
-9.45
-9.56
-13.30
-17.93
-17.50
-17.97
-13.90
-11.38
-8. 50
-8.20
-0.27
-5.81
2.82
5.9b
9. 1 1
13.63
16.38
16.88
17.45
12. PI
7. 14
2.67
0.91
2.30
1.23
1.56
0.84
0.93
C.87
VT
-b.32
-5.75
-5. 18
-4.36
-3.34
-2.42
-2.40
-2.98
-5.93
-1 I .66
-17.57
-16.49
-16.24
-12.65
-10.41
-7.00
-12.58
C.OO
13. 10
2.79
5. 77
6.76
12.91
15.54
16.34
17.37
13.11
4.97
3.T7
2.b3
2.54
1.62
1.91
0.94
0.97
1.C.3
VK
5.74
6.b4
7.47
7.33
8.27
B.02
B.9 )
8.90
9. 16
7.67
10.26
5.90
6.01
7.6o
5.44
4.83
4.04
9.01
1.50
13.02
0.5C
1 .46
2.49
4.40
5. 19
4. 56
5.36
6.7J
5.46
2.34
2.72
1.24
0.62
0.6^
C.09
C.C6
PSF
0. 003264
0.003?t, 7
0.0031 79
O.C030J2
O.C03l'.9
C.C02ou5
U.OO?4oO
0.0024 31
O.OC 1-165
C.C01 7/0
0.002o V5
0.000175
0.001019
-O.OOC314
-0.001021
-O.C01M9
-G.CC142C
-O.C051 13
-0.00i;575
-O.GG5770
-C. 001^62
-0.00l4ri4
-O.C01660
-C.C01329
-0.000410
-O.COC771
0. 0001-57
O.C02324
O.C022 70
0.00i"<45
0.002'o4
C.CC2496
0.002454
C.002:.61
O.CC2726
1
20.
20.
20.
20.
20.
/O.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
ZO.
20.
20.
iQ.
2C.
20.
20.
i 0.
if..
i-'".
i'C.
76"
7f>::
76?
7c '
76T
76-.'
760
760
76 C
76"
76-.'1
76''
76T
7bC
76C
76--
761'.
760
76(.
760
76T
7t>
76;
76''
Ih i
76J'
-------
nOVKABLE BLUCK BUHNER SH FOR MINIMUM SHIHl - CULU HOUEL
i.eo
-^
—
^
1-
VELOC1
106.
f04.
102.
100.
96.
16.
94.
'12.
vo.
88.
H6.
04 .
ai.
tv .
/ 1 .
/S .
n.
M.
69.
67.
65.
0 1.
61 .
19.
16.
14 .
48.
46.
44 .
42.
40.
38.
16.
14.
52.
29.
27.
25 .
21.
21.
19.
i r.
15.
11.
1 1.
9.
7.
^ .
2.
n .
94
86
78
70
62
53
45
57 "" "
29
21
15
05
9!
BB
aO AXIAL POSITION: 3.H cm
7?
64
56
48
40
52
25
I1)
07
99
VI
fll
(5
67
58
50
42
34
26
1 &
10
02
95
B5
7;
69
61
33
45 '
37
28
20
12
04
96
88 ,
-30.JJOO -24.000 -IB.OOP
-6_.000 -0.000 6.000 12.000
HADIAL POSITION, cm
IB.000
24.000 jo.noo
Figure 11-214. AXIAL VELOCITY PROFILE FOR SWIRL BURNER
SET FOR MINIMUM SWIRL AT THE 3. 8-cm AXIAL POSITION
270
-------
MOVE4BLE BLOCK BUHNCR iCI FUR KIN1HUM ShlRL - C.IJLU HDOEL
3. BO
u
>
-30.000 -?«.000 -1H.OOO -12.000
6.000
17.000
RADIAL POSITION, cm
Figure 11-215. TANGENTIAL VELOCITY PROFILE
FOR SWIRL BURNER SET FOR MINIMUM SWIRL AT
THE 3. 8-cm AXIAL POSITION
271
-------
For the case of minimum swirl, the raw pressure input data are
given in Table 11-37 and Tables 11-39 to 11-42. The reduced profile data
are listed in Table 11-38 and Tables 11-43 to 11-46. Table 11-47 shows
the column heading symbols for these tables. Figure 11-214 shows the
axial velocity for minimum swirl at an axial position of 3. 8 cm. The
central peak occurs in the region of the gas nozzle, while the velocities
reach a plateau at 30 ft/s in the region of the throat of the burner.
Figure 11-216 shows the tangential velocity as a function of the burner's
radial position. The maximum magnitude of the tangential velocity is
approximately 18 ft/s, while preliminary work on the axial burner with
the variable mixing rate axial flow burner nozzle indicates a maximum
tangential velocity of only 5 ft/s. Figures 11-216 and 11-217 show the
axial and tangential velocity profiles at an axial position of 7. 6 cm:
There is little change in the structure of the curves from those at 3. 8
cm. The axial velocity profile at 17.8 cm is illustrated in Figure 11-218.
The constant axial velocity plateau no longer appears the region of the
burner, and the velocities decrease as a function of radial position.
Figure 11-219 shows that the peaks of the tangential velocity profile are
opening toward the outside walls of the cold model and that the magnitude
of the velocity has decreased by a factor of 2 from its value at the 7. 8-
cm axial position. The axial velocity in Figure 11-220 lost the identity
of the gas nozzle, and there is a systematic decrease in the velocity
from the axis of the burner. Figure 11-221 shows that the peaks of the
tangential velocity are continuing to open and that its magnitude is still
decreasing. In Figures 11-222 and 11-223 at an axial position of 63. 5
cm, the tangential velocity component has disappeared and the axial vel-
ocity is about one-sixth its initial magnitude at the burner.
The numerical raw data for the movable-block burner, set for
intermediate swirl (swirl number, S = 0. 8), are included in Tables 11-48
to 11-51. The computer reduced form of the data, giving both the mag-
nitude and direction of the velocity as functions of the axial and radial
positions, is presented in Tables 11-52 to 11-55. The graphical repre-
sentations of these data, Figures 11-224 to 11-231, are discussed below.
272
-------
Table 11-39.
RAW DATA FO& THE SWIRL BURNER (Minimum "Swirl)
AT THE 7. 6-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNERS
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
-JTTT = — OT777J59K5 — zrr^ — ovrmsi --- /f 3~s
BO = 0.737720 B2 = -0.158821 84 =
C = 4.464660 D = 0. 394812
0.129246
MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MODEL
DATA INPUT
THETA
0.
0.
0.
0.
- ~o~
0.
0.
0.
0.
0.
" ~ 0 .
0.
0.
0.
0.
0.
"TT.- '
0.
0.
0.
0.
0.
CT.~
0.
0.
0.
0.
0.
TJ.
0.
0.
0.
0.
0.
TJ.
AP
7.6
7.6
7.6
7.6
r:6~
7.6
7.6
7.6
7.6
7.6
TV S
7.6
7.6
7.6
7.6
7.6
7T6
7.6
7.6
7.6
7.6
7.6
"'776
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
771
RP
30.0
25.0
20.0
15.0
IZT7TJ
13.0
12.0
11. 0
10.0
9.0
ETO '•
7.0
6.0
5.0
4.0
3.0
~ ' 7TQ-- —
b.o
-2.0
-3.0
-4.0
-5.0
•~--b~Q-- '
-7.0
-8.0
-9.0
-10.0
-11.0
-12.0
-13.0
-14.0
-15.0
-20.0
-25.0
-3CF7T)
P13
62800.00
68800.00
34800.00
16600.00
•~TT56~0'.W"
8220.00
7700.00
-2590.00
-765.00
-390.00
~ -JOT-TOTT-
-514.00
-2900.00
2590.00
1339.00
1656.00
' "6TZTOO -
-113.60
309.00
-896.00
-880.00
-7450.00
~ 9J0700"
309.00
340.00
956.00
10600.00
-11980.00
-~9T4"070TT
-31400.00
155000.00
79600.00
32600.00
35900.00
39BOCT.00
P03
18700.00
24000.00
23500.00
15600.00
--T230B.OO
18000.00
33600.00
-8530.00
-2380.00
13900.00
530.00'
243.00
204.00
204.00
201.00
221.00
260.00
17.80
135.00
237.00
216.00
188.00
163.00
182.00
280.00
1870.00
-17000.00
-12800.00
~-l~9"300.00 "
-26000.00
-125400.00
214800.00
27000.00
27000.00
" " 23500.00
P24
19100.00
11700.00
10500.00
22900.00
14150.00
20500.00
2950.00
1010.00
299.00
203.00
"107.00
79.50
77.20
100.00
139.00
217.00
910.00
2700.00
-131.00
-106.00
-88.50
-77. OC
-75.50
-77.00
-127.00
-375.00
-880.00
-4920.00
-12960.00
-16100.00
25200.00
23000.00
19700.00
21700.00
19000.00
P04
20900.00
20500.00
28300. OC
30800.00
19000.00
51000.00
3100C.OO
2750.00
698. CO
245.00
147.00
100.00
99.00
113.60
129.00
148.00
166.00
16. 10
437. OC
-720. CC
-490.00
-303. OC
-282.00
-308.00
-341 .00
-628.00
-1220.00
-3050.00
-5820.00
39700.00
73400.00
-89600.00
25700.00
55000.00
34300.00
PCA
339. CO
3b6.CC
354.00
383. OC
375.00
418. OC
444. CC
583. CC
3C3.0C
344. CC
22o. OC
195.00
164.00
2C1.CC
138.00
196.00
162.00
12.40
142. OC
225. CC
?1C.OC
191. OC
195. OC
250.00
445. OC
1C1C.OO
780.00
539.00
51C.OO
473.00
433.00
44o.OO
415.00
40C.OO
390. OC
T
20.
20.
20.
2C.
20.
2C.
20.
2C.
2C.
2C.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
2C.
2T, .
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
2C.
2C.
Pb
760,
760,
760
760
760,
760
760,
760,
760
76C,
76C,
700
760,
76C
76C
760
760
760
760
760
760
7oC
760
760
760
760
760
760
760
760
760
760
760
760
760
-------
Table 11-40.
RAW DATA FOR THE SWIRL, BURNER (Minimum Swirl)
AT THE 17. 8-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNEKS
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
hi -= — - -OVTTWJO "S7~ 0.272353 A~3~~ =0". 0598T8
BO = 0.737720 62 = -0.158821 B4 = 0.129246
C = 4.464660 D = 0.394812
MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MODEL
TOTAL DATA INPUT
THETA
0.
0.
0.
0.
• ar
0.
0.
0.
0.
0.
" or
0.
0.
0.
0.
0.
0."
0.
0.
0.
0.
0.
ov
0.
0.
0.
0.
0.
. .. g_
0.
0.
0.
b.
0.
" "0".
0.
0.
AP
17.8
17.8
17.8
17.8
n~. 8""
17.8
17.8
17.8
17.8
17.8
1 7. -3-
17.8
17.8
17.8
17.8
17.8
— 17; a —
17.8
17.8
17.8
17.8
17.8
17V8 '
17.8
17.8
17.8
17.8
17.8
• — rrre"
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
RP
-30.0
-25.0
-20.0
-15.0
'-~i*r.~o —
-13.0
-12.0
-11.0
-10.0
-9.0
~-8TO " —
-7.0
-6.0
-5.0
-4.0
-3.0
""Tro
-1.0
0.0
1 .0
2.0
3.0
--4. 0"'
5.0
6.0
7.0
8.0
9.0
i over
11.0
12.0
13.0
14.0
15.0
20. c'""
25.0
30.0
P13
-60500.00
-56500.00
63600.00
111400.00
-~34~8Tjo~ro'cr " '
-54800.00
2490.00
11020.00
4420.00
3140.00
I470TTJ-0
1140.00
7800.00
3670.00
2520.00
587.00
TfflTOO
101.00
-287.00
129.40
-433.00
543.00
'2300TOO -
2940.00
2170.00
1800.00
1100.00
-1820.00
2T40T7J5""
-2560.00
12300.00
5240.00
999999999.50
999999999.50
32800.00
20000.00
31500.00
P03
8900.00
36600.00
52300.00
-27400.00
"' 48600.00
19800.00
-5650.00
6710.00
2800.00
2090.00
788.00
888.00
652.00
517.00
368.00
283.00
97.00
41.30
37.20
39.70
239.00
260.00
348.00
414.00
540.00
700.00
824.00
1620.00
2650700
-10520.00
11000.00
-5600.00
98400.00
-188000.00
"" "I'ZOOOYOO
33000.00
20800.00
P24
9640.00
34600.00
-97400.00
-94400.00
-4910.00
-3300.00
-1120.00
-1240. OC
-895.00
-497.00
-312.00
-213.00
-193.00
-220.00
-176.00
-162.00
-189.00
-1160.00
399.00
3680.00
1 104.00
-169.00
-181.00
-200.00
-171.00
-312.00
-504. OC
540.00
-690.00
848.00
-3740.00
11090.00
-8400.00
-30600.00
"22900.00
22700.00
24000.00
P04
9450.00
29960.00
37400.00
-341C.OC
-48800. OC
-5800.00
-1830.00
-3720.00
-1570.00
-1040.00
-2000.00
- 1026.00
-866.00
-855.00
-1150.00
231C.CC
141.00
54.80
35. CO
42.80
174.00
698.00
-2390.00
-122C.OO
-956.00
-1115. OC
-127C.OO
563. OC
-1650. OC
154C.OO
-4680.00
1090C.OC
-6000.00
-6000.00
45000.00
72600.00
18000.00
H-OA
399. OC
4C5.0C
401 .00
450. OC
483.00
558.00
185C.CO
57C.OO
488.00
466.00
483.00
423.00
312.00
315. OC
251.00
163.00
129.00
37.00
26. OC
38.00
133.00
195.00
26-J.OO
295.00
346.00
410. OC
439.00
381. OC
544.00
bll.OC
520.00
553. CO
44C.CO
^r-j.co
410.00
4C2.00
395. OC
T
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
P9
760,
76C,
76C,
760.
760,
•76U,
7bC,
76C,
760,
7bO,
7oO,
7hO
760
76C,
760
760,
760
760
760
760
760,
760
7bO
760
760
760
760
760
76C
760
760
760
760
760
760
760
760
-------
Table 11-41.
RAW DATA FOR THE SWIRL BURNER (Minimum Swirl)
AT THE 30. 5-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNERS
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
XT' = - •OT7T059T3 A7~s OT772"353O = -0.059818
HO = 0.737720 B2 = -0.158821 B4 = 0.129246
C = 4.464660 D = 0.394812
MOVEABLE BLOCK BURNER SET FOR MINIMUM S*IRL - COLD MODEL
TOTAL DATA INPUT
1HETA
0.
0.
0.
0.
" 0."
0.
0.
0.
0.
0.
(NJ • • 0.
-J 0.
01 0.
0.
0.
0.
o:
0.
0.
0.
0.
0.
~o:
0.
0.
0.
0.
0.
~ ~~o;
0.
0.
0.
0.
0.
- • -TjT.
0.
AP
30.5
30.5
30.5
30.5
3TK 5 —
30.5
30.5
30.5
30.5
30.5
30V5 '
30.5
30.5
30.5
30.5
30.5
3Tj;-5~
30.5
30.5
30.5
30.5
30.5
— 3'or? -
30.5
30.5
30.5
30.5
30.5
— TO : r "
30.5
30.5
30.5
30.5
30.5
3T57T~
30.5
RP
-30.0
-25.0
-20.0
-15.0
•-TT.-0 ~
-13.0
-12.0
-10.0
-9.0
-8.0
. -_.7-0 • -
-6.0
-5.0
-4.0
-3.0
-2.0
-rro
0.0
1.0
2.0
3.0
4.0
•~5V(r~
6.0
7.0
8.0
9.0
10. 0
"-1TVO
12.0
13.0
14.0
15.0
20.0
"2T70" "~
30.0
P13
3420.00
3340.00
3280.00
2790.00
2-4-5 o.tro--'
2340.00
2040.00
1820.00
832.00
1304.00
100"OTOO~
732.00
491.00
376.00
402.00
244.00
" --55«roa'~"
-3180.00
-362.00
-3000.00
-468.00
-860.00
"~-92~OVOO "
1620.00
1270.00
4660.00
2500.00
999999999. 50
99999"99~9~97TO
5040.00
4620.00
4790.00
4720.00
3240.00
3240. ffO"
3470.00
P03
-4180.00
-4420.00
-4680.00
-4910.00
-11310.00
-7420.00
-9000.00
4240.00
3480.00
1482.00
1057.00
290.00
252.00
214.00
192.00
134.00
141.00
129.00
194.00
285.00
404.00
434.00
394.00
615.00
1010.00
1400.00
1850.00
3660.00
6400.00
53000.00
-18840.00
-9980.00
-8640.00
-6080.00
-4420.00
-5480.00
P24
-4420.00
-4060.00
-3480.00
-2340.00
-212C.OO
-1160.00
-726.00
-694.00
-552.00
-352.00
-351.00
-326.00
-403.00
-274.00
-P71.CO
-526.00
-525.00
•2396.00
-278.00
-1 10.00
3220.00
930.00
730.00
700.00
717.00
740. OC
950.00
2040.00
1060.00
2630.00
3720.00
.2520.00
2220. CO
-5680.00
-5040.00
-5000.00
P04
-4200.00
-3900.00
-2260.00
-2390.00
-2250. OC
-2220.00
-178C.CO
-2380.00
-197C.OC
-2940.00
-6920.00
1980.00
858.00
880.00
296.00
192.00
152.00
123.00
184. UO
225.00
338. OC
342.00
179. CO
466.00
648.00
820.00
1 188. CO
1570.00
4310.00
4300.00
5800. OC
7710.00
-10440. CO
-3870.00
-4720.00
-4920.00
POA
4CO.OO
44C.OC
512.00
49C.OO
674.00
521.00
536.00
49o.OO
53J.OO
430.00
381.00
2P1.00
245.00
140.00
1 1?..OC
91.60
7d.2C
99.00
80.60
146.20
2Ch.OO
229.00
332.00
4oO.OC
351.00
305.00
380.00
364.00
422.00
436.00
512. OC
497.00
484.00
452.00
427.00
430. OC
T
20.'
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
PtJ
76C,
760,
760
760,
760,
/GO
7oC,
f60,
76C
760
760
760
7oO
/60
760
760
760
760
760
70n
760
7oC
7oO
760
7C.O
760
760
7oO
760
760
760
760
/60
760
7hO
760
-------
Table II-4Z.
RAW DATA FOR THE SWIRL BURNER (Minimum Swirl)
AT 63. 5-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNERS
CAL1BRATION COEFFICIENTS FOR FORWARD^ FLOW
AT" = 0.77059BS~2~~SOT?TZT53A3~~=-0.059818
BO = 0.737720 82 = -0.158821 B4 = 0.129246
C = 4.464660 D = 0.394812
MUVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MODEL
TUTAL DATA INPUT
THETA
0.
0.
0.
0.
0.
0.
0.
0.
0.
0":
0.
0.
0.
0.
0.
ov
0.
0.
0.
0.
0.
ov
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
' "TT7"
0.
0.
AP
63.5
63.5
63.5
63.5
'63.5
63.5
63.5
63.5
63.5
63.5
63T5 ~
63.5
63.5
63.5
63.5
63.5
61V5
63.5
63.5
63.5
63.5
63. 5
~" "63.5"
63.5
63.5
63.5
63.5
63.5
'63.5
63.5
63.5
63.5
63.5
63.5
63. 5
63.5
63.5
RP
-30.0
-25.0
-20.0
- 15.0
'-14. 0 •"
-13.0
-12.0
-11. 0
-10. 0
-9.0
~"-8. 0 ~
-7.0
-6.0
-5.0
-4.0
-3.0
-1.0
0.0
1.0
2.0
3.0
5.0
6.0
7.0
8.0
9.0
10.0
11. C
12.0
13.0
14.0
15.0
25.0
30.0
P13
4370.00
2450.00
3400.00
1680.00
Ib86. 00
980.00
1054.00
880.00
1204.00
950.00
T28-OVOO
1020.00
1280.00
1580.00
1200.00
1220.00
3940.00
19550.00
19550.00
-4500.00
-2900.00
-2280.00
-45'8~0. OB '
-2560.00
-1600.00
-2050.00
-1350.00
-2280.00
-920. CO
-4500.00
-1070.00
-980.00
-1740.00
-2470.00
-4100.00
-7180.00
-20200.00
P03
10960.00
5720.00
2450.00
980.00
"905.00
1020.00
630.00
500.00
465.00
730.00
738.00
383.00
478.00
542.00
560.00
430.00
670.00
530.00
530.00
632.00
1000.00
905.00
880.00
950.00
1170.00
800.00
1740.00
3940.00
2100:00
3370.00
3840.00
4880.00
5200.00
4820.00
" "11300.00
18800.00
21000.00
P24
-7520.00
-4060.00
-3980.00
-2120.00
-1870.00
-2330.00
-1570.00
-1180.00
-1500.00
-1590.00
-1720.00
-1790.00
-3720.00
-1880.00
-2040.00
-2060.00
-6040. OC
-3650.00
-6070.00
-2600.00
-3040.00
-2880.00
5200.00
15600.00
999999999.50
9160.00
9470.00
-4330.00
11060.00
4030.00
3580.00
10400.00
5350.00
3750.00
" ""~214"0.00
4020.00
5940.00
PC4
-36000.00
-15200.00
-19760.00
12640.00
4700.00
5390.00
2440.00
2640.00
1890.00
1500.00
1536.00
1840.00
900.00
780.00
620.00
710.00
650.00
560.00
738.00
552.00
690.00
790.00
660.00
820.00
766.00
1630.00
980.00
1414.00
1040.00
1480.00
1120. OC
3340.00
2420.00
3150.00
4.480.00
4530.00
3980.00
POA
460.00
437.00
428.00
365.00
374.00
348.00
295.00
260.00
329.00
302.00
282.00
299.00
235.00
249.00
246.00
218.00
213.00
247.00
232.00
248.00
216.00
277.00
255.00
277.00
270.00
305.00
274.00
403.00
355.00
290.00
364.00
345.00
362.00
374.00
388.00
404.00
403.00
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
2C.
?0.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760
760
760
760
760
76C
760
76C
760
760
7hC
76C
760
760
760
760
760
760
760
76C
760
760
7i>0
760
760
760
760
760
760
760
760
760
760
760
760
760
760
-------
Table 11-43. COMPUTER-REDUCED DATA FOR SWIRL BURNER
(Minimum Swirl) AT THE 7. 6-cm AXIAL POSITION
MUVcAHLE BLOCK BURNER SET FLW MINIMUM SV.IRL - COLO MODEL
RESULTS
AP
7.6
7.6
7.6
7.6
"7.6
7.6
7.6
7.6
7.6
7.6
7". 6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6"~
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
"7.6
KH
30.0
25.0
20.0
15. C
14 . C"
13.0
12. C
1 1.0
10.0
9.0
8."C"
7.0
6.0
5.0
4.0
3.0
2.6
0.0
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.0
-10.0
-1 1.0
-12.0
-13.0
-14.0
-15.0
-20.0
-25.0
'-30.0"
FI
19.3
35.5
48.9
30.9
3"T71
60.2
74.2
5B.9
56.4
31.3
30V4" "
26.6
27.3
23.0
17.1
11.5
4" . 8"
1 .6
14.6
23.2
24.8
27.9
2a.3
31.5
38.0
60.6
70. 1
80. I
77.2
42.9
73. ti
76.6
29.7
42.1
3~3 . 6"
DELTA
106.9
99.6
106. 7
144.0
T40~T
158. 1
1 10.9
63.6
68.6
62.5
70.4
31.2
88.4
92.2
95.9
97.4
35.6
2.4
247.0
276. 7
275.7
270.5
265. 3
256.0
249.5
248. 5
265.2
292.3
323.6
297. 1
99.2
106. 1
121.1
121.1
1 1 5.5
RHO
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
"O';0"0"0"0"159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
" OV0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0". 0000159"
V
2.66
2.59
2.65
2.51
2.91
2.87
5.78
8.29
14.98
20.65
28.13
33.26
33.31
31.29
30. 10
28.92
30.44
105.59
34.49
30.60
32.48
33.34
33.68
32.02
24.08
13.53
9.32
6.38
4.75
2.89
1.85
2.45
2.19
2.07
2.25
vx
2.53
2.11
1.74
2.15
2.43
1.42
1.57
4.28
8.28
17.62
24.24
29.67
29.57
2fl.8C
28.76
28.34
30.33
105.55
33.36
28. 12
29.47
29.44
29.65
27.30
18.97
6.62
3.16
1 .09
1.04
2.12
0.51
0.56
1.90
1.53
1.87
VY
-0.25
-0.25
-0.57
-1 .04
-1.24
-2.31
-1.99
2.58
4.54
4.96
4.78
2.29
0.40
-0.47
-0.91
-0.75
2.11
2.98
-3.41
1.41
1 .36
0. 16
-1.29
-4.04
-5. 19
-4.30
-0.72
2. 39
3.73
0.90
-0.28
-0.66
-0.56
-0.72
-0.53
VZ
0.85
1.48
1.91
0.75
1.01
0.92
5.20
6.61
1 1.62
9.54
13.45
14.64
15.32
12.22
8.82
5.72
1.51
0.12
-8.05
-11.97
-13.59
-15.64
-15.93
-16.23
-13.90
-10.96
-8.74
-5.62
-2.75
-1.75
1.76
2.29
0.93
1. 19
1.13
vr
0.88
1.47
1.63
1.23
1.50
1.74
2.27
4.66
8.21
9.56
12.45
13. 16
12.81
10.27
7.65
5.13
2.46
O.CO
-6. 19
-8. 16
-10.25
-12.17
-13.20
-13.93
-11.91
-6.53
-3.76
- .53
- .55
- .73
-0.84
- .01
- .06
-1.34
-1.23
VK
0.07
0.32
0.80
0.37
0.53
1.78
5.08
5.35
9.34
4.92
6.96
7.23
8.41
6.63
4.48
2.65
o.ec
2.99
6. 17
8.87
9.03
9.62
9.01
9.26
8.65
9.82
7.92
6. 1C
4.37
0.94
1.57
2. 16
0.23
0.36
0.20
PST
0.002844
0.002732
0.002775
0.002532
0.002583
0.002'382
O.C02516
0.001967
0. 002o97
0.001 1 30
0.001014
-0.000512
-0.00009fl
-O.C00766
-O.OOOH78
-0.001 182
-O.C01227
-O.C09515
-0.001476
-0.001005
-0.001040
-0.000163
-o.ooc2n
-0.000139
O.OOOH77
0. 00ld40
0.001 344
0.002272
O.C02153
0.002064
O.OC22V4
0.002248
0.002340
0.002445
0.002495
r
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
Pd
760
760
76C
760
76'->
76C
760
760
760
760
760
76C
7bO
760
760
760
761.'
76C
76C
76C
760
76C
760
760
760
760
760
760
760
760
760
76C
76C
760
76C
-------
Table H-44. COMPUTER-REDUCED DATA FOR SWIRL BURNER
(Minimum Swirl) AT THE 17. 8-cm AXIAL POSITION
MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLO MODEL
RESULTS
00
DELTA
80.9
58.5
213.1
229. 7
278.0
273. 4
245. 7
263. 5
258.5
261.0
"258". 6
259.4
268.5
266. 5
266.0
254. 5
236.0
184.9
35. 7
177.9
21.4
252.7
2 65". 5
266. 1
265.4
260. 1
245.3
73.4
255.3
71.6
253. 0
154.7
269.9
269.9
124.9
138.6
127.3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0".
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
" 0.
0.
0.
0.
0.
0.
"0.
0.
0.
0.
0.
0.
0.
0.
0.
4HO
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
OMOT5~9~~~
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0~000l59
0000159
0000159
0000159
OC00159
0000159
'0000159'
0000159
0000159
0000159
0000159
0000159
0000159
0000159
0000159
V
4.23
2.36
2.10
6.95
4.07
4.45
9.56
7.27
8.67
11.32
i"6:3S '
18.55
20. 13
19.54
23.07
26.15
41.31
59. 16
71.37
63.87
31.27
27.76
2 3". 7 1
21.61
21.72
16.09
12.76
13.99
9.68"
8.72
4.60
6.59
4.25
4.92
1.93
2.07
2.61
VX
4.05
2.27
2.01
0.96
3. 48
2.86
2.55
5.47
5.66
7.71
" 14:37
15.09
17.35
17.16
21.01
24.43
40.92
58.86
71.33
63.71
31.14
26.36
22.00
19.65
lfl.92
13.86
10.35
12.98
6.77
5.66
2.24
1.75
1.09
O.R5
1.44
1.08
2.51
VY
0. 19
0.33
-0.5C
-4.45
0. 29
C.20
-3.78
-0.53
-1. 30
-1.29
-1 .63
-1 .90
-0.25
-0. 55
-0.66
-2.48
-3. 15
-5.91
1 .86
-4.5C
2.60
-2.58
-0.69
-0.60
-0.83
-1 .39
-3. 1 1
1.43
-1 .74
2.08
-1.17
-5.74
-O.CO
-0.00
-0.73
-1.32
-0.44
VZ
1.20
0.55
-0.33
-5.25
-2.09
-3.40
-8.40
-4. 76
-6.43
-8. 19
-7.69
-10.60
-10.21
-9.32
-9.50
-b.99
-4.69
-0.51
1. 33
0. 15
1.01
-8.31
-8.81
-8.96
-10.62
-8.05
-6.79
4.99
-6.69
6.30
-3.85
2.71
-4.11
-4.R4
1.05
1. 17
0.58
VT
-1.20
-0.63
-0.58
-0.80
-1.67
-1. 78
- 1.69
-2. 76
-2.36
-3.53
-4.99
-5.20
-5.07
-4.28
-4.23
-3.76
-3.56
-2.88
O.CO
2.80
2. 18
3.95
4.31
4.70
5.47
4.53
3.94
4. 07
3.33
3.09
1.41
1.25
O.S4
0. 71
1.00
1.15
0.72
VR
0.21
0.^12
0. 15
6.84
1.29
2.9C
9.06
3.91
5.90
7.50
6.08
9.44
8.86
8.30
8.53
8.54
4.39
5. 19
2.29
3.52
1.74
7.75
7. 71
7.65
9. 14
6. 79
6.34
3.23
6.06
5.87
3.76
6.23
4.02
4.79
0.79
1.34
0.12
PST
0.002334
0.002381
0.002413
6.002746
0.001962
0.001781
O.C01385
0.001645
0.002064
0.002139
0.000792
0.001301
0.001439
0.001340
O.OOC975
0.001 158
-0.005529
-0.000858
-0.002739
-0.006372
-0.000300
-0.000027
O.C00289
O.C00767
0.000733
0.001259
0.001 764
0.001403
0.001792
0.002002
0. 001036
0.0021 78
0.002399
0.002210
0.002385
0.002455
0.002434
T
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
2C.
20.
20.
20.
ZO.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
P5
760
760
760
760
760
760
76C
760
760
760
760
760
760
760
760
760
760
760
76C
760
760
76C
760
760
760
760
76C
760
760
760
760
76C
760
760
760
760
760
-------
Table 11-45. COMPUTER-REDUCED DATA FOR SWIRL BURNER
(Minimum Swirl) AT THE 30. 5-cm AXIAL POSITION
MQVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLO MODEL
RESULTS
AP
30.5 -
30.5 -
30.5 -
30.5 -
30.5 -
30.5 -
30.5 -
30.5 -
30.5
30.5
30.5"
30.5
30.5
30.5
30.5
30.5
"30.~5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
KP
30.0
25.0
20.0
15.0
14.0
13.0
12.0
10. 0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
'- 1 . 0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
20.0
25.0
30.0
FI
82.3
82.3
84.9
82. 1
80.5
71.3
63. 3
47.7
54.4
35.0
31.4
15.3
13.1
15.1
11.2
a. 7
5. 1
l.C
7.3
lb.9
3.2
/. 1
8.4
12. 1
22.2
23. 1
29.8
16.2
44. 1
60.4
68.9
76.9
82.8
83.5
81.9
81.7
DELTA
217.7
219.4
223.3
230.0
229. 1
243.6
250.4
249. I
236.4
254.8
250.6
245.9
230.6
233.9
236.0
204.6
2 2 6. "4
306.9
307. 5
272.0
8.2
42. 7
51.5
113.3
1 19.4
99.0
110. a
89.9
89.9
117.5
128.8
117.7
115. 1
209.7
212. 7
214. 7
WHO
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
"0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
8.63
8.61
9.55
9.28
8.77
9. 11
10.28
9.97
12.09
14.97
15.75
22.01
22.92
25. 18
29.71
32.98
35.52
38.44
35.81
36.73
24.38
22. 14
27.37
16.33
12.78
11.51
9.46
8.24
6.00
5.41
5.69
6. 87
8.84
8.31
8.52
7.98
VX
1 .15
1.14
0.84
1.26
1.44
2.91
4.60
6. 70
7.02
12.26
13.43
21.22
22.32
24.31
29.15
32.60
35.38
38.43
35.51
34.74
24. 13
21.97
27.07
15.96
11.83
10.59
a. 21
7.91
4.31
2.66
2.04
1.55
1. 10
0.92
1.19
1. 14
VY
-6.76
-6.59
-6.92
-5.90
-5.66
-3.B3
-3.08
-2.63
-5.44
-2.23
-2.72
-2. 36
-3.29
-3.87
-3.23
-4.53
-2. 19
0.43
2.79
0.43
3.45
2. 03
2.50
-1.36
-2.38
-0.70
-1.67
0.00
0.00
-2.17
-3.33
-3.11
-3.73
-7. 17
-7.10
-6.48
VZ
-5.23
-5.42
-6.52
-7.04
-6.54
-7.73
-8.65
-6.90
-8.20
-8.29
-7.75
-5.31
-4.01
-5.31
-4.79
-2. 10
-2.31
-0.58
-3.63
-11.91
0.50
1.88
3. 16
3. 16
4.22
4.46
4.39
2.30
4.17
4.17
4. 14
5.92
7.94
-4.09
-4.56
-4.50
vr
-1.12
-0.93
-0.55
-0.62
-0.66
-1.23
-1.77
-2. 10
-2.02
-3.01
-2.88
-3.39
-2.99
-2.86
-2.56
-1.96
-1.09
0.00
I. 12
2.23
1.96
1.99
2.98
2.32
2.36
2.36
2. 15
1.72
1.45
1.C2
0.85
0.70
0.54
0.60
0.97
1.11
VR
8.48
8.49
9.49
9.17
8.62
8.54
9.01
7.08
9.63
8.04
7.69
4.72
4.25
5.91
5.17
4.59
3.00
0.73
4.44
11.7C
2.88
1.91
2.71
2.54
4.22
3.84
4. 18
1.52
3.91
4.59
5.25
6.66
8.75
d.24
8.3B
7.81
PST
0.002-J23
0.003107
O.C03066
0.003015
0.002320
0.002570
0.002425
0.002024
0.002227
0.001-587
0.001537
0.0001 13
0.000203
0.002568
0.001 /52
O.OOlb 16
0.002&38
-0.001846
0.001 15a
-0.0020C4
0.000199
0.000487
-0.002778
0.000175
0.001828
0.001718
0.002169
0.002227
0.002302
0.002374
0.002158
0.002450
O.C02962
0.003014
0.003147
0.003021
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
Pb
760
760
76C
760
760
760
760
760
760
76C
760
760
760
760
760
76C
760
760
760
760
76C
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
-------
Table H-46. COMPUTER-REDUCED DATA FOR SWIRL BURNER
(Minimum Swirl) AT THE 63. 5-cm AXIAL POSITION
MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MODEL
RESULTS
AP
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
6T.T-
63.5
63.5
63.5
63.5
63.5
N 63.5
§ 63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
63.5
"63.5
63.5
63.5
RP
-30.0
-25.0
-20.0
-15.0
- 1 4~. 0"
-13.0
-12.0
-11.0
-1C.O
-9.0
^8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6. 0
7.0
8.0
9.0
~ 10.0
11.0
12.0
13.0
14.0
15.0
"20.0
25.0
30.0
F I
53.3
53.3
25.9
18.7
15.4
24.3
14.4
15.6
13.3
14.3
10.9
15.3
7.7
5.8
8.0
6.2
3.4
1.7
4. 1
3.7
6. I
4.6
3. 1
3.6
5.8
14.5
8.5
11.5
"12". 1
8.8
13.9
24.0
16.7
19.7
"3976
24.8
18.7
DELTA
210. 1
211.1
220.5
218. 3
220. V
202.8
213.8
216.7
218.7
210.8
216.6
209.6
198.9
220.0
210.4
210.6
213.1
259.4
252.7
300.0
316.3
321.6
41.3
9.3
0.0
12.6
3. I
332.2
4.7
48. 1
16.6
5. 3
18.0
33. 3
6 2". 4"
60.7
73.6
RHO
0.0000159
0.0000159
0.0000159
0.0000159
"0.0000159" '
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
"o.oooors'g
0.0000159
0.0000159
0.0000159
0.0000159
O.OOOOL59
6.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
" 0'. 6000159
0.0000159
0.0000159
0.0000lb9
0.0000159
0.0000159
~ 0^0000159""
0.0000159
0.0000159
V
4. 12
5.47
6.42
10.49
11.32
10. 15
13.55
15.04
15.98
13.48
13.52
17.23
16.58
16.85
17.37
18. 16
16.52
18.55
17.38
18.39
16.05
15.92
15.59
14.92
15. 10
14.31
13.40
1 I. 18
13.70
9.50
12.11
10.66
9.06
8.00
6.37
5.12
5.04
VX
2.45
3.27
5.78
9.94
10.91
9.24
13.12
14.48
15.55
13.05
13.27
16.61
16.43
16.76
17.20
18.05
16.49
18.55
17.33
18.35
15.95
15.87
15.57
14.89
15.02
13.85
13.25
10.95
13.40
9.39
11.75
9.73
8.68
7.53
4.90
4.64
4.77
VY
-2.86
-3.76
-2.13
-2.63
-2.29
-3.85
-2.81
-3.25
-2.87
-2.86
-2.06
-3.96
-2.11
-1.32
-2.09
-1.71
-0.03
-0. 10
-0.37
0.59
1.24
1 .00
0.64
0.94
1.52
3.50
1.96
1.98
2.87
0.97
2.79
4.33
2.48
. 2.25
1.88
1.05
0.45
VZ
-1.66
-2.26-
-1.82
-2.09
-1.94
-1.62
-1.89
-2.42
-2.30
-1.71
-1.54
-2.25
-0.72
-I. 11
-1.22
-1.01
-0.54
-0.54
-1.20
-1.03
-I. 19
-0.79
0.56
0. 15
0.00
0.78
0.27
-1.04
0.23
1.08
0.83
0.40
0.80
1.48
3.60
1.87
1.55
VT
-1.C9
-1.23
-1.52
-1.92
-1 .88
-1.72
-2.00
-2. 13
-2.03
-1.61
-1 .40
-1.69
-1.27
-1.04
-0.98
-0.78
-0.46
-0.25
0.00
0.28
0.48
0.64
0.64
0.73
1 .04
1.40
.27
.27
.70
.08
. Jb
.81
.54
.48
1.44
1.39
1.31
VR
3.12
4.21
2.35
2.76
2.35
3.81
2.7 i
3.45
3.06
2.92
2. 16
4.23
1.63
1.37
2.21
1.82
O.bh
C.4B
1.2o
1.1-3
1.65
1.11
0.56
0.6C
1.11
3.3C
1.51
1 .84
2. 3 i
0.97
2.32
3.95
2. 10
2.2fj
3.80
1.63
0.94
PST
O.C021 70
0.002512
0.002075
0.001970
0.001 728
0.002248
0.002023
. O.C02202 '
0.001 1 38
0.001)57
O.C021 14
0.001210
O.C02052
0.001718
0.001633
0.001926
O.C02443
0.001232
0.001P43
C. 001281
0.002530
0. 001543
O.OC191B
0.001779
0. 001d47
0.001766
O.G02203
0.001^08
0.001 123
0.002(^1
0.001645
0.002207
0.002149
0.002214
0.002451
0.0022&3
0.002266
r
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
• 20.
2C.
20.
20.
20.
20.
20.
20.
20.
?0.
20.
20.
PB
760
76>"
760
760
760
76C
76C
76C
76C
76C
76C
760
7bC
76C
76P
76C
760
760
760
760
76'J
76C
760
760
760
76C
76C
760
760
76C
760
760
760
76C
76C
760
760
-------
Table 11-47. COLUMN HEADING SYMBOLS
FOR TABLES 11-37 TO 11-46.
AP = axia' probe position, cm
delta = dihe-lral angle, deg
FI = conical angle, deg
P , = differential pressure across probe holes a and b, psig
ct D
PB = atmospheric pressure, mmHg
PST = static pressure, psig
rho = density of flowing gases
RP = radial probe position, cm
T = temperature of flowing gases, °C
theta = probe rotation, deg
V = absolute velocity, ft/s
VR =» radial velocity, ft/s
VT = tangential velocity, ft/s
VX = velocity in x-direction, ft/s
VY = velocity in y-direction, ft/s
VZ = velocity in z-direction, ft/s
Z81
-------
HP VS.
105.
103.
101.
99.
IT.
05,
93.
"~ or.
89.
07.
84.
62.
80.
78",
lt>:
'4,
72.
70.
68.
66.
64.
62.
60.
58.
56.
_. «'
C 47,
>•" 45.
\- 43.
O 4"f,
U 37.
> 35.
13.
31.
29".
27.
25.
23.
21.
• 19.
' 16.
14,
12.
10.
. V*
.56
.50
. 44
,38
.32
,26
,20
."14
.08
.02
.96
.90
.84
.78
.72
,6h
.60
.54
.48
.36
.30
.24
.19
.13
.0"?
,01
.95
.89
,83
.77
,65
.59
.53
.47
,41
.35
.29
.23
.17
. 11
.05
MOVEAHLE BLOCK BIMNEB SET FOR MINIMUM SwIRL - COLD MODEL
7.60
99
13
88
82
76
70
,64
58
-to.ooo -24.000 -in.ooo -12.000 -6.000 -o.ooo f>.oo«
RADIAL POSITION, rni
12.000 18.000 ,"..000
10.001)
Figure 11-216. AXIAL VELOCITY PROFILE FOR SWIRL BURNER
SET FOR MINIMUM SWIRL AT THE 7. 6-cm AXIAL POSITION
282
-------
IP VS. VI
13. 16
.' 12.63
: 12.10
11.57
11.04
10.51
9.98
' 9.4<
8.91
8.38
7.85
7.32
6.79
5T75'"
5.73
5.19
4.66
4.13
3.60
2.54
2.01
1.48
0.94
0.41
-TT.TT-
_ -0.64
Q -1.17
U -1.70
> -2.23
-2.76
"--"3Y30 '
-3.83
-4.36
-4.B9
-5.42
-5.95
" '~-"6.'*"B '
-7.01
-7.55
-B.OB
-8.61
-9. 14
-9.47
-10.20
-10.7)
-11.26
-11.80
-12.31
-12.86
-11.39
-13.9?
BI.UCK BU4NER Stl FOB
- COI.U "ODFL
AXIAL POSITION: 7.6 cm
u
-30.000 -24.000 -13.000 -12.000 -6.000 -0.000 6.000
RADIAL POSITION, cm
24.000
30.000
Figure 11-211. TANGENTIAL VELOCITY PROFILE FOR SWIRL
BURNER SET FOR MINIMUM SWIRL AT THE 7. 6-cm AXIAL POSITION
283
-------
HOVE ABL!: HLUCK BIHNES SCI FOR
17.80
SNIXL - CIILD HOUEL
AXIAL POSITION: 17.8 cm
-30.000 -24.000 -18.000 -12.000
RADIAL POSITION, cm
Figure 11-218. AXIAL VELOCITY PROFILE FOR THE SWIRL BURNER
SET FOR MINIMUM SWIRL AT THE 17. 8-cm AXIAL POSITION
284
-------
- CIJLl) MODfl
-30.000 -?«.OOQ -16.000 -J^Z.OOO -6.000 -0.000 6.000 12.000 18.000 2
-------
HP VS
38
37"
36
36
35
34
34
33"
32
31
31
30
29
"2~8"
29
21
26
25
25
" 24
23
22
22
„ 21
- 20
w 20
>•" 19
t 18
U 17
S "
U 16
. VX
.44
.70
.96
. 21
.49
.75
ilL
.28
.54
.80
.07
.33
.59
.86
.12
.38
.64
.91
.J7
.43"
. 70
.96
.22
.48
.75
01
27
54
80
06
32
MOVE4RLE HLOC« BURNER SCt FUR HINIHUM
30.50
- COLO XOOEL
AXIAL 1'OSITION: 30.5 cm
...
11.17
10.43
9.69
8.95
8.22
_
6.74
6.01
5.27
4.53
3.79
3.06
2. 32 "
1.58
0.85
RADIAL. POSITION, en
Figure 11-220. AXIAL VELOCITY PROFILE FOR THE SWIRL BURNER
SET FOR MINIMUM SWIRL AT THE 30. 5-cm AXIAL POSITION
286
-------
HP VS. VT
2.99
MOVEABLE BLOCK BURNER SET FUR MINIMUM SKIRL - COLO MODEL
30.50
-6.000 -O.UCO o.OOO
RADIAL POSITION, .'in
12.000
1U.OOO
Figure 11-221. TANGENTIAL VELOCITY PROFILE FOR THE SWIRL
BURNER SET FOR MINIMUM SWIRL AT THE 30. 5-cm AXIAL POSITION
287
-------
M11VE4BLE BLOCK BURNER SET FOR MINIMUM SKIRL - CULO MODEL
AP> 63.50
AXIAL POSITION: 63.5 cm
-30.000 -M.OOO -1(1.01)0 -12.000
-6.000
-0.000
6.001'
1^.000
1H.OOU
,"..000
JO.000
RADIAL PO.SI'l ION.
Figure 11-222. AXIAL VELOCITY PROFILE FOR THE SWIRL BURNER
SET FOR MINIMUM SWIRL AT THE 63. 5-cm AXIAL POSITION
288
-------
SUI1L - CULO KOOU
-30.000 -;<..ooo -ie_.£0o _-12.000 -6.000 -o.ooo
RADIAL POSITION, cm
2^.000
30.000
Figure n-223. TANGENTIAL VELOCITY PROFILE FOR THE SWIRL
BURNER SET FOR MINIMUM SWIRL AT THE 63. 5-cm AXIAL POSITION
289
-------
Table 11-48. RAW DATA FOR THE SWIRL'BURNER
(Swirl Number, S = 0. 8) AT THE 2. 5-cm AXIAL POSITION
AERODYNAMIC MODELING Of COMBUSTION BURNERS
ro
^
O
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
AI =
BO =
C =
TOTAL
THETA
45.
45.
45.
45.
45.
45.
45.
45.
45.
0.
" 0.
46.
44 .
58.
43.
44.
16.
0.
0.
0.
315.
315.
315.
315.
315.
315.
315.
315.
315.
315.
315.
315.
315.
315.
315.
315.
0.770590 A2 = 0.
0.737720 B2 = -0.
4.464660 D = 0.
MOVEABLE
DATA INPUT
AP RP
2.5 -30.0
2.5 -25.0
2.5 -20.0
2.5 - 15.0
2.5 -14. C
2.5 -13.0
2.5 -12.0
2.5 -11.0
2.5 - 10.0
2.5 -9.0
"2". 5 " -8.~0
2.5 -7.0
2.5 -6.0
2.5 -5.0
2.5 -4.0
2.5 -3.0
2^5 " -2.0
2.5 -1.0
2.5 0.0
2.5 1.0
2.5 2.0
2.5 3.0
2.5 4.0"
2.5 5.0
2.5 6.0
2.5 7.0
2.5 8.0
2.5 9.0
2.5 10.0
2.5 11.0
2.5 13.0
2.5 14.0
2.5 15.0
2.5 20.0
2.5 25.0
2.5 30.0
272353 A3
158821 B4
394812
= -0.059818
0.129246
BLOCK BURNER SET FOR INTERMEDIATE SHIRL
P13
744.00
750.00
1 140.00
736.00
724.00
648.00
440.00
705.00
1 12.00
1039.00
"~ 52. "40 ~
30.60
422.00
-4960.00
-1170.00
-3330.00
85". 00 "
19.20
503.00
-41.00
-560.00
1380.00
860 . 00
910.00
1020.00
-4000.00
-87.00
-18.30
-20.00
-80.60
580.00
805.00
725.00
2690.00
3750.00
347*0.00
P03
8300.00
-71500.00
16600.00
999999999.50
-89600.00
11750.00
-64000.00
6600.00
445.00
-846.00
140.20
18.00
60.00
146.00
1500.00
3330.00
504.00
18.30
21.00
-210.00
-500.00
3480.00
1620.00
1040.00
520.00
160.00
68.50
246.00
-40.80
-118.00
1750.00
3650.00
5090.00
41600.00
86200.00
-30600.00
P24
-3340.00
-1730.00
-1055.00
-504.00
-476.00
-355.00
-501.00
-612.00
-1080.00
-200.00
-42. 10
293.00
-82.60
1820.00
-380.00
-209.00
-192.00
-197.00
376.00
208.00
193.00
357.00
850.00
1730.00
1230.00
161 .00
81.00
-199.00
" -132.00
-268.00
-7350.00
-34000.00
91500.00
22600.00
23400.00
34500.00
- COLD MODEL
P04
-6880.00
-2400.00
-1450.00
-712.00
-636.00
-698.00
-950.00
7800.00
672.00
-372.00
-99.00
31.50
126.00
188.00
-2280.00
-1080.00
-2000.00
29.30
20.40
72.80
344.00
712.00
1500.00
2100.00
926.00
126.00
39. 10
33.80
100.80
675.00
8900.00
77000.00
20200.00
22000.00
37500.00
94500.00
POA
HOb.OO
965.00
15700.00
-238.00
-130.80
-127.00
-92.20
-IC5.20
-59.20
-180.00
-267.00
30.70
120.00
-214.00
-85.20
-60.00
-65.60
34.50
20.50
370.00
-98.00
-96.40
-79.80
-78.00
-79.20
-132.00
64.40
29.00
28 7.00
-1376.00
-2780.00
1520.00
804.00
432.00
410.00
407.00
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760
760
760
760,
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
7bO
760
760
-------
Table 11-49. RAW DATA FOR ~THE SWIRL BURNER
(Swirl Number, S = 0.8) AT THE 7. 6-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BUHNERS
CAUBRAJIJ3N COEFFICIENTS FOR FORWARD FLOW
Al = " ~0". 7705~90 A2" = 0.272353 A3 = -0.059818
BO = 0.737720 82 = -0.158821 84 = 0.129246
C = 4.464660 C = 0.394812
MOVEABLE BLOCK BURNER SET FOR INTERMEDIATE SWIRL - COLD MODEL
lUFAL DATA INPUT
THETA
45.
45.
0.
0.
0.
65.
40.
30.
33.
40.
35.
183.
180.
180.
ISO.
0.
0.
0.
0.
0.
0.
180.
180.
180.
130.
0.
315.
315.
315.
315.
515.
315.
315.
31?.
315.
315.
315.
AP
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
RP
-30.0
-25.0
-20.0
-15.0
-14.0
-13.0
-12.0
-11.0
-10.0
-9.C
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10. 0
11. C
12.0
13.0
14. C
15.0
20.0
25.0
30.0
P13
999999999.50
700.00
2240.00
620.00
341.00
-84700.00
66200.00
77.30
83.50
186.00
87.00
640.00
1600.00
11200.00
999999999.50
290.00
258.00
380.00
-470.00
-244.00
-395.00
-1000.00
-418.00
-244.00
-310.00
1830.00
615.00
2228.00
-198.00
-74. 70
-128.00
-58. 90
-77, 30
-123.00
-870.00
-3800.00
-11260.00
P03
999999999.50
3530.00
-2402.00
-252.00
-1 1220.00
250.00
187.00
-2360.00
97.70
130.00
226.00
835.00
636.00
665.00
960.00
517.00
261.00
140.00
208.00
2790.00
-438.00
1096.00
773.00
3380.00
-4800.00
-3000.00
1010.00
322.00
325.00
-1314.00
-186.00
-122.00
-134.00
-174.00
-635.00
-3990.00
-6570.00
P24
-2780.00
-1460.00
-1C46.0C
-404.00
-306.00
575.00
-599.00
-229.00
-364.00
1843.00
-407.00
26-J2C.OO
770.00
937.00
. I 700.00
-13d?). 00
-1176.00
2 B 30. CO
770.00
495.00
2410.00
- 1200.00
-432.00
-256.00
-190. CC
-4630.00
635.00
772.00
-448.00
-201.00
-132.00
-232.00
-421.00
-2040.00
1 160.00
1420. CO
2420.00
P04
-7920. OC
-3720. OC
-1092.00
-50o.OC
-423.00
446.00
419.00
550.00
250. CC
230.00
323. OC
1220.00
576.00
562.00
680.00
1600.00
450.00
160.00
165.00
388.00
455.00
1370. OC
740.00
-8990.00
-512.00
-2990. CO
617.00
353.00
290.00
372.00
503.00
554.00
720.00
81C.OO
1560.00
2740.00
4780. OC
PCA
".60.00
7 b (.' . C P
-blC.0'0
- i e £ . c o
- 149. CC
-H5.0C
-493.00
-1 730. OC
68C.CC
982. 00
1 4 fc fi . ij C
-54C.OO
925CO.OO
f. 9.J.OC
6Gi .OC
-7^0.00
2132.00
350. GC
32C.OC
1 2 h 7 . C 11
-427.00
-72fc.OO
-677.0C
- 5 O G . 0 0
- 1C6.CC)
-/r)2.0C
-^Ci'i . CO
- 4 7 0 . C C
900. OC
4P4.CO
-35)6.00
-34 7. CO
-267. 0^
-2 rt 7. 00
-loOO.OG
77^.03
T
2:".
2'.
2C.
2C.
??.
2^ .
20.
20.
20.
20.
2C.
20.
2C.
2'i.
20.
20.
2~.
20.
20.
20.
20.
20.
20.
20.
?P.
2-:..
2'j.
20.
20.
20.
2C.
20.
20.
2C.
2T.
20.
jr.
7 a '
7.- _•
7L-T
7.1."
7r>:
7o"
7 .T I"'
7o •>
760
/t>C
7o.
7 or
/e.~
7o"
7sO
7 ,; !~
! t; I1
7.-).;
7sr
/D-^
/; .•>
TO'.'
7 r» i
7 o .'•
•»•, "
7i->~
/it
fo"
7oO
t •., :
70C
7 r. .".
73;
7v .
7 .» x
'-, -
23.
-------
Table 11-50. RAW DATA FOR THE SWIRL" BURNER'
(Swirl Number, S = 0.8) AT THE 17. 8-cm AXIAL POSITION
AErtOOYNAMIC MODELIMG OF .COMBUSTION BURNERS
ro
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
41 "= 0~.77~0590 ~A2 = 0.272353 A3 = -0.059818
HO = 0.737720 82 = -0.158821 B4 = 0.129246
C = 4.464660 D = 0.394812
MOVEABLE BLOCK BURNER SET FOR INTERMEDIATE SWIRL - COLO MODEL
tOTAL DATA INPUT
THETA
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
180.
130.
180.
180.
180".
130.
180.
180.
180.
180.
160.
180.
180.
180.
180.
180.
315.
315.
315. '
3 I'S.
315.
315.
315.
315.
315.
AP
17.8
17.8
17.8
17.8
17.8 "
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
RP
-30.0
-25.0
-20.0
-15.0
"- 14.0
-13.0
-12.0
-11.0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.C
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
20".0
25.0
30.0
P13
68400.00
-141600.00
4720.00
975.00
1255.00
218.00
324.00
431.00
638.00
5060.00
-950.00
-1000.00
69700.00
40flO. 00
2820.00
2650.00
3580.00
7260.00
9300.00
9660.00
9999J9999. 60
-9600.00
-8570.00
-39600.00
58800.00
-1830.00
-1510.00
-7440.00
5920.00
5590.00
-600.00
-283.00
-205.00
-193/00
-574.00
1 1500.00
5280.00
P03
-19600.00
-13700.00
-25000.00
5900.00
3838.00
340.00
334.00
272.00
330.00
441 .CO
795.00
2000.00
2130.00
2000.00
1450.00
1300.00
1135.00
980.00
898.00
840.00
830.00
477.00
570.00
2530.00
2480.00
2300.00
31400.00
3060.00
314.00
330.00
303.00
452.00
850.00
4320.00
-3090.00
8640.00
I 1400.00
P24
15300.00
-4260.00
-1440.00
-601.00
-759.00
-164.00
-139. CC
-127.00
-1 I 7. (1C
-115.00
-150.00
-1 76.00
3000.00
1 180.00
960.00
70S. 00
638.00
832.00
1030.00
IROC.OO
14000.00
-1680.00
-12oO.OO
-3190. 00
-656.00
-157C.OO
-1 120.00
-2630,00
7200.00
-828.00
-438.00
-296.00
-312.00
-237.00
7370.00
3830. CO
7990.00
P04
-17500.00
-5450.00
-2250.00
-1395.00
-1738.00
-485.00
-400. OC
-384.00
-340.00
-332.00
-257. OC
-363. CO
214C.OO
2810.00
1670.00
1210.00
910.00
735. CC
817.00
810.00
994. CO
1510.00
2280.00
4000.00
4410. CO
6570.00
13110.00
17660.00
9400. OC
500.00
432.00
434.00
537.00
581 .OC
1050.00
4570.00
11 18C.CC
r'OA
453.00
4C2.0.T
o42.00
CCO. 00
759.00
764.00
700.00
OC.7.0C
630. OP
lo40.CC
-3700. CO
-1 1CO.CC
-439. CO
--566.00
-840.00
-6<.2.0C
- icvs.on
-2080.00
12ft40.UO
12bPO.OO
6 7fcC. 00
-5C2C.OO
-49'»0. OC
470.00
57-..00
553.00.
•> 14 . no
•377.00
H35.00
348.0,-?
2 1- i.OO
243.00
240. CO
26C.CC
4&O.OC
464.00
4T>6.CC'
r
7 J
'2C
.20
20
2C
20
20
2P
20
2C
2C
70
20
2?
70
2C
20
7C
20
20
2C
20
20
?.'J
20
2C
2C
2?
20
20
20
20
20
2C
2C
70
2C
7oO.
IC.Q.
760.
/oC.
/GO.
76P. '
/oO.
7bO.
760.
7oO.
760.
7-j.-.
7 o ':•.
7r>0.
7nC.
7&0. '
7oO.
rti'j.:
76C. '
76C.
-------
Table 11-51. RAW DATA FOR THE SWIRL BURNER"
(Swirl Number, S = 0..8) AT THE 30. 5-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNERS
CALIBRATION COEFFICIENTS FOR FORWARD FLUW
Al" = "0." 7 705 90 A2 = 0.272353 A3 = -C.059818
bO = 0.737720 B2 = -0.158821 84 = 0.129246
C = 4.464660 0 = 0.394812
MOVEABLE BLOCK BURNER SET FOR INTERMEDIATE S«'IKL - COLO MOLJtL
TOTAL DATA INPUT
FHETA
0.
0.
0.
0.
0.
0.
0.
180.
100.
180.
180.
180.
180.
180.
180.
180.
180.
180.
180.
0.
0.
3.
0.
0.
0.
0.
0.
AP
30.5
30.5
30.6
30.5
30.5
30.5
30.5
30.5
30.5
30.5
3C.5
30.5
30.5
30.5
30.5
30. 5
30.5
30.5
30.5
30.5
30.5
30.5
30.5"
30.5
30.5
30.5
30.5
RP
-30.0
-25.0
-20.0
-18.0
-16.0
- 14.0
-12.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0
-10.0
14.0
16.0
18.0
20.0
22.0
24.0
25.0
30.0
P13
29000.00
21500.00
2890.00
470.00
403.00
555.00
576.00
-3550.00
-3400.00
-4670.00
-3580.00
-5060.00
-10150.00
-11780.00
-14320.00
-14080.00
-34500.00
-10950.00
-7260.00
33700.00
-1820.00
-630.00
-485.00
-487.00
-592.00
-950.00
-1510.00
P03
2800.00
105300.00
-5220.00
516.00
640.00
-4200.00
1432.00
2650.00
2450.00
2680.00
2104.00
1875.00
183C.OO
1680.00
1930.00
2030.00
2370.00
2320.00
5500.00
1870.00
2410.00
8900.00
-5080.00
-2030.00
-2040.00
-1675.00
-3630.00
P24
-2960.00
-8240.00
-3420.00
-336.00
-286.00
- J05.00
-210.00
20200.00
12400.00
7420.00
22400.00
9150. OU
3280.00
2430.00
2140.00
1970.00
2300.00
2350.00
416C.OC
61C.OO
390.00
268. CC
2R3.0C
342. OC
453.00
526.00
1650.00
P04
-8850. CC
1 7400.00
-4190.00
-609.00
-729.00
-4300.00
-368.00
4120. OC
3200.00
5570.00
2720.00
2050. OQ
2090. OC
1940.00
1920.00
2090.00
265C.OO
2580.00
4000. CC
1230. OC
54C.OC
445.00
441 .00
328.00
720.00
324.00
3000.00
PC A
752.00
'< H L' . 0 1
41-7.0C
4 5 '-J . 0 'J
479. OC
49 >.CG
J3J.OO
171.00
365. OC
^>75.00
564.00
•sco.or;
11 5.00
467.00
Vt5.CC
62}. OC
676.00
756.00
800C.CC
64i).OD
622.00
330.00
}3C. 00
->t>? .0?
59o.O'J
542. OC
i?0.0<>
T
20.
2U.
2'.:.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
2C.
2C.
?C.
20.
2C.
2C.
20.
2C.
2C.
2C.
P:-.
I:.."
7iL'
IbC
7o.T
7 tO
7^0
7bC
760
76C
?6C
760
7 of.
70r
70v'
?'.'-
thC
T6C.
760
ft.:.'
7o"
7of
If.r
760
7t..r
7o )
7(>.'
760
-------
RESULTS
Table II-5Z. COMPUTER REDUCED DATA FOR THE "SWIRL, BURNER'
(Swirl Number, S = 0. 8) AT THE 2. 5-cm AXIAL POSITION
MOVEABLE ULUCK BURNER SET FOR INTERMEDIATE SWIRL - COLD MQOCL
AP
2.5
2.5
2.5
2.5
?T5~
2.5
2.5
2.5
2.5
2.5
2T5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5~
2.5
2.5
2.5
2.5
2.5
2.5
2.5
RP
-30.0
-25.0
-20.0
-15.0
~I~4~. 0 '
-13.0
-12.0
-11.0
- 10.0
-9.0
~~-~8TO~"
-7.0
-6.0
-5.0
-4.0
-3.0
' - 2 . 0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
io;o
1 1.0
13.0
14.0
15.0
20.0
25.0
30.0
M
68. 1
63.2
46.4
41.2
41.3
31.6
48.3
30. 1
63. 8
71.0
57.3
48. I
35.0
62.7
19.5
7.2
56.8
16.9
0.8
25.4
23.6
16.8
34.0
39.5
36.2
32.4
38.6
49. 1
63.3
74.4
71.8
75.1
75.2
71.2
70.9
75.5
DELTA
175.0
186.0
205.4
214.3
216.4
213.0
197.2
174.0
159.3
259. 1
231.2
104. 7
93.0
B8.0
65.9
72.4
194.9
1H5.5
126. 7
11.1
43.4
136. 7
182.9
211.4
248.4
270.9
280.0
293. 6
318.5
322. 1
205.4
197.2
194.6
189.9
186.9
186. 7
RHO
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0. 0000159
0.0000159
0.0000159
0.0000159
V
11. 10
12. 19
10.67
14.50
15.05
15.19
16.34
13.62
25.77
20.60
43.78
81.49
52.73
33.21
15.61
18.54
31.52
82.09
92.61
47.75
19.51
13.38
10.04
9.66
14.68
33.05
61.26
81.46
58.79
30.42
10.77
9. 74
10.75
5.84
5.05
5.80
VX
4.12
5.49
7.35
10.90
11 .30
12.92
10. B7
11 .7«
11.34
6.67
23.59
54.41
43.16
15.20
14.71
ie.40
17.25
78.52
92.60
43.1 1
17.87
12.80
8.32
7.45
11.83
27.88
47.34
53.24
26.35
8.14
3.36
2.49
2.74
1.87
1.65
1 .45
VY
-10.27
-10.83
-6.98
-7.89
-7.90
-6.69
-1 1 .65
-6.79
-21 .64
-3.68
-23. 10
-15. 4J
-1.62
1.00
2.12
0. 70
-25.48
-23. Hb
-0.82
20. 13
5.66
-2.82
-5.61
-4.75
-3.19
0.28
6.69
24.75
39.38
23.14
-9.24
-9.00
-10.06
-5.45
-4.74
-5. 58
VZ
0.89
-1.14
-3.32
-5.39
-5.39
-4.34
-3.60
0.71
8.17
-19.14
-28.75
58.67
. 30.21
29.50
4.76
. 2.21
-6.78
-2. 32
I . 10
3.96
5.37
2.66
-0.28
-3.91
-8.08
-17.73
-37.67
-56.46
-34.79
-17.99
-4.39
-2. 79
-2.63
-0.95
-0.57
-0.65
VT
-10.09
-10.68
-7.06
-9.45
-9.81
-7.92
-11.88
-6. 77
-20.61
-15.14
-33.14
-56. 46
-29.04
-21.18
-5.09
-2.31
-12.23
- 19.05
o.nc
1 J.20
6.85
3. 76
5.17
5.69
8.31
I 7.30
37.12
58.68
47.03
22.69
8.d3
7.GI
8.79
5. 19
4.59
5. 3S
•J*
2. 1C
2. 1 1
1 .02
l". 3c.
1.54
0.94
2.77
C.B i
i c . 5 r.
12.27
16. 13
22.44
3.47
20.56
1.12
0.24
13. 36
L4. ->4
1.37
15. 70
3.74
o . 9 •:.
2. la
2.35
2.54
3.91
9.?7
ie.c /
23.44
13.5-1
5.16
5.2 7
5.55
1 .91
1 . 32
1. 72
PST
0.002242
0.002'-49
o.oni i2~i
-0.0021oO
-O.CCr> 113
-O.IOol /5
-C . Oi;c3dO
-O.OC9I C5
-0. C14C 74
-0.0019 i5
O.OC3345
-0.01 7r>'J4
-C.0129<«6
-O.C13230
-0. 012756
-O.C1 71 )7
-0.009727
-O.C1 7C'»C
-O.C2C377
-0.009416
-O.C076^8
-C.OC94 )B
-O.C12.-:t.6
-0. Ol2Bol
-0.013^4
-0. 01 5 J.S3
-0.013270.
-c.cuvcn
0.00 3T. 3 8
n.r 01 ?/k
0.000140
C.0013LO
O.OC21.M
O.OC25J6
0. CC2oT6
0.0027^9
I
'/(i.
20.
20.
2C.
20.
20.
2 o.
20.
20.
20.
2T.
z C •
20.
iO.
20.
Z'"i .
21).
2^:.
'/ C. .
20.
20.
2;:.
21 .
20.
20.
20.
20.
20.
2:?.
2V.
2?.
?0.
20.
2J.
20.
20.
I'r.
It, '..
If, .
7t '.
76 '.
,'6.' ..
t(,( .
7^,- .
'6 '.
76. .
7hi .
76-':..
76" .
/t>- .
761 .''
76::.
7 f . r. .
76 -.•
!hr .
It,. .
76''.
/6 '.
/6i .
76'..
76'1. •
76 -.
70T .
76-^.
76: .
76' .
li>'.~ .
t6-'.,.
76C .1
tb-' .
n. :.;
76^.
tb'-.\
-------
•USIH.TS
Table II-53. COMPUTER-REDUCED DATA FOR THE SWIRL, BURNER
(Swirl Number, S = 0. 8) AT THE 7. 6-cm AXIAL POSITION
MOVEABLE BLOCK BURNER SET FOR INTERMEDIATE SWIRL - COLD KOOEL
AC
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
RP
-30.0
-25.0
-20.0
-15.0
-14.0
-13.0
-12.0
-11. 0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10. 0
11. 0
12.0
I'l.O
14.0
15.0
20.0
25.0
30.0
FI
3.6
55.5
82.3
81.2
75.7
80.9
31.2
57.8
35.5
42.9
49.4
162.1
166.7
171.0
1 73.8
39.7
18.5
4.9
4.9
23.0
46.0
168.6
165.9
154.4
140.6
82.7
30.5
38. 1
50.8
57.2
78.2
67.2
69.3
69.8
48.0
24.4
24.4
DELTA
269.9
179.5
244.9
236.9
228.0
89.8
90. 1
181.5
134.0
109.2
157.4
181. 7
244.2
265.2
270.4
191. 8
192.3
172. 3
30.7
26.2
9.3
39.8
44.0
43.6
58.4
201 .5
213.9
266. 1
284.2
297.5
299.0
317.0
324.0
333.6
8.6
40.9
62.0
*HQ
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.OOC0159
0.0000159
0.0000159
0.0000159
O.OOC0159
0.0000159
0.0000159
0.0000159
O.OOC0159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
4.75
10.91
12.53
28.77
20.37
23.39
28.37
36.69
33.81
29.83
29.64
12.12
15.18
15.96
14.31
15.63
21.83
33.07
32.22
21.39
17.59
15.69
22.27
22.57
20.41
10.96
13.10
21.71
31.39
36.34
31. 15
33.98
29.33
23.95
11.36
7.11
5.62
VX
"4.74
«.l 7
1 .66
4.39
5.02
3.68
24.24
19". 52
27.51
21.83
19.25
-11.53
-14.78
-15.76
-14.23
12.02
20.69
32.94
32. 10
19. 6U
12.21
-15.38
-21.60
-20.37
-15.77
1 .37
11.28
17.06
19.84
19.66
6.35
13.12
10.33
8.25
7.59
6.47
5.12
VY
-0.00
-9.00
-5.25
-15.52
-13.18
O.C4
-0.03
-31.06.
-13.0o
-6.69
-20. bO
-3.72
-l.bO. •
-0.20
0.00
-9.79
-6. 78
-2.82
2.3'J
7.51
12.49
2.37
3.B9
7.04
6. 7o
-10.11
-5.52
-0.90
5. V8
14. 13
14. cO
22.14
22.22
20. 16
8.. 16
2.22
1.09
VZ
^0.29
0.'06
-11.25
-23.82
-14.69
23.09
14.73
-0.83
14.12
19.20
8.64
-0. 11
. --3. 13
-2.46
-1.52
-2.05
-1.48
0.37
1.42
3.70
2.04
1.98
3.76
6.71
1 1.04
-3.99
-3.71
-13.39
-23.58
-27.09
-?6.66
-21.35
-16.11
-9.96
1.27
1 .92
2.05
vr
-0.29
-8.23
-4.13
-8.29
-B.38
-6.07
-13.75
-20.90
-17.27
-15.98
-15.07
-3.51
—-3.33
-2.41
-1.49
-4.28
-4.2fi
-2.38
0.00
2.47
3. 11
2.75
4.d9
7.67
8.97
1.25
5.60
11.18
17. 79
20.62
9.53
18.24
15.64
.13.19
7.78
2.91
2.30
V*
0.00
3.65
11.71
27.20
17. 8H
22.26
5.20
22. 9 j
9.37
12.57
16.75
1.23
C.99
0.5 /
0.30
9.C1
5.46
1.5t,
2. 7b
C.OC
12.26
I.AC
2.33
5.71
9.33
10. 8C
3.25
7.42
16. 5o
/2. 3t>
28.96
25.4*
?2.55
1H.21
3.29
0.40
0.2:>
PST
0.002149
0. ^02091
0.000651
0.004302
-0.0(>06e 77
-o.coei jo
C. 007003
-O.OG4S24
-0.005440
0.0005 78
-O.C02736
-0. 001652
-0.000ft'.2
0.000012
-0. 001o81
-0. 002>.43
-O.C(15'7o3
-0.003(!,->7
-O.OOlf-72
-C. 002235
-I). 003170
-0. 004 ?77
-0.004327
-0. fil GC 4 I
-0.002449
-0.0052 >2
-C.iIP'j 7<;9
-O.C06L44
-O.C05207
-C.0015 12
-O.T01438
-0.0024 74
*C. CO 12 --11
C. 000/67
O.OOT.51
0. 002C:>4
T
ir .
21.
20.
2;..
20.
2C.
2">.
?~ ,
23.
/• 0 .
£.">.
2C .
f1 o .
20.
2".
il (' .
20.
; o .
«v .
2'T.
20.
20.
20.
20.
20.
2i' .
20.
2 ?.
t C .
2°.
20.
20.
20.
20.
20.
20.
20.
*> >
i'6l
7f-r
76.'
7l>:~.
It-.
7 Or.
7t,"
7.V
7t>
tt> :
76 •'
76 '
7o"
7o
760
'o1'
/fi '
!<_..
?o~.
7 V
7(.''
7t>'
76C
7r,>'
H,<^
76 '
76 '
7o ••
76;
7'jT
7ftC
7t>-i
76f:
7t> .'
7t>;;
760
7 fi ,;
-------
RESULTS
Table 11-54. COMPUTER-REDUCED DATA FOR THE SWIRL BURNER
(Swirl Number, S = 0.8) AT THE 17. 8-cm AXIAL POSITION
HOVEABLE BLOCK BURNER SET FOR INTERMEDIATE SWIRL - COLO MODEL
At>
17.8
17.8
17.8
17.8
7.8
7.8
7.8
7.8
7.8
7.8
17.8
17.8
17.8
17.8
1 7.8
17.8
17.8
17.8
17.8
17.8
17.8
17.8
i /.a
17.8
17.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
17.8
17.8
1 7.8
RP
-30.0
-25.0
-20.0
-15.0
-14.0
-13.0
-12.0
-11. 0
-10. 0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
20.0
25.0
30.0
FI
82.5
77.2
70.9
61.9
58. 1
45. 1
39.7
34.0
36. 1
36.5
47.7
46.6
166.6
138.4
146.2
145.0
151.3
164.7
167.2
173.5
176.5
167.7
167. 1
171.6
155.9
164.0
155.6
165. 1
33.6
50. 1
52.0
54.6
55.7
59.6
48. I
18.7
41.9
DELTA
257.3
271.7
253.0
23B.3
238.8
233.0
246. 7
253.5
259.6
268.6
278.9
279. -i
267.5
253.8
251.1
255.0
259.8
263.4
263.6
25?. 4
269.4
80.0
B1.6
B5.3
90.6
49.3
53.4
70.5
232. 7
269.0
276.3
281.5
287.2
288.3
303.2
240.6
191.2
RHO
0.0000159
0.0000159
0.0000139
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
3.46
4.81
7.49
11.50
9.87
21.89
22.80
24.64
24.77
24.69
21.53
19. 15
8.57
8.38
9.59
10.68
11.80
13. 12
13.25
13.93
14.09
17.38
16.09
8.74
12.76
10.95
10.24
8.01
19.60
22.58
26.69
27.95
27.05
27.00
12.99
4.68
3.76
VX
0.45
1.05
2.43
5.41
5.21
15.45
17.53
20.40
20.00
19.85
14.49
13.14
-8.40
-6.27
-7.97
-8.76
-10.36
-12.66
-12.92
-13.04
-14.07
-16.98
-15.69
-C.64
-1 1 .65
-10.52
-9.33
-7.74
16.31
14.47
16.40
16.17
15. 2C
13.65
8.67
4.43
2.70
VY
-0.75
0. 14
-2.06
-5.32
-4.33
-9.32
-5. 74
-3.90
-2.63
-0. 33
2.43
2.41
-0.07
-1 . i'.
-1.71
-1.58
-0.99
-0. 39
-0.32
-o.?a
-0.00
0.63
0.52
0. 10
-0.05
1 .96
2.52
C.68
-6.58
-0.29
2.34
4.56
6.63
7.34
5.30
-0.73
-2.46
VZ
-3.35
-4.69
-6.77
-8.63
-7.17
-12.39
-13.39
-13.25
-14.33
-14.68
-15.73
-13.71
-1.69
-5.34
-5.04
-5.91
-5.06
-3.41
-2.91
-1.04
-0.84
3.64
3.54
1.27
5.20
2.29
3.40
1.94
-8.65
-17.33
-20.9J
-22.34
-21 .37
-22. 10
-8.0.9
-1.30
-0.49
VT
-0. 74
-1.41
-2.35
-4. 16
-3.68
-9. 12
-9. 18
-9. il
-8.11
-a. 28
-0.02
-4.84
-1.45
-1.07
-1.69
-1.43
-1.14
-0.69
O.OC
0.69
0. 74
2.26
2.51
1.13
3.13
2.43
2.V7
I.d2
7.00
7.95
7.79
10.48
10.54
10.31
6.86
1.46
2.21
Vrt
3.35
4.47
6.6::
9.25
7.53
12.54
1 1.32
1 0 . 2 'J
11.5V
12. 1 J
14.7'.
1 3 . C 3
C.8o
S. 1"
5.03
5.93
5.53
1.37
2.92
1 .41
0.3-}
2. It
2.53
0.59
4. 13
1 .77
3.00
0.95
8.31
15.4^
1 0.63
20.24
19.73
2 c . a c.'
6.81
0. 31>
1.10
P b T
C.C02 106
O.C02338
0. fiul 1o5
0.001 TU7
O.COU-71
C.COl Io4
0. Ofi 04 60
-c.ooor>d9
-C.C0052S
-o. <.'oi:46
-C.t -00.' 07
-0. 000-301
-C.C02 7 76
-o.ooiyi5
-0. uCl-. 79
-O.COl'isl
-0. OTluOO
- 0 . C C I o / 3
-0.001332
-O.C014 J2
-0. --01 WS
-0. *:(U < J4
-C.r.02075
0. .IClvttO
O.COUHOt
O.OOC747
C.OOl >29
C.OC1247
-O.COOa33
-O.C011o2
-C. 001762
-C.OPlr. 19
-C.COC84«,
-0. OCC74H
C.CC1 1 J5
O.OUl V9
O.C'02 1 75
r
20.
20.
20 .
20.
20.
20.
1J.
/ ).
20.
20.
(^ \i •
20.
2'J.
?0.
JO.
20.
20.
?•"•.
^ ij .
2C.
20.
J J .
20.
20.
2V.
20.
20 .
2C.
2C.
20.
'i> J.
i -.' .
21. .
?? .
20.
c. -1.
20.
PM
tlj :
7u-
ft-.:.
76:'
7ovl
7(-.''
7'-~
7nl'
7^ '
7t,~
7o I
7(. .
7o '•
7t-.'
7o.'
7t. .
7t r
7n'.
7o.i
7(S^
7h '
Jh 1
76::
76^
7 00
7rv.,
7 Li 1
7f.'i
760
7oU
7e>;;
7h"
7(>.
7r>i-
7 6 •' '
70
/ *•! 0
-------
RESULTS
Table H-55. COMPUTER-REDUCED DATA FOR THE SWIRL BURNER
(Swirl Number, S = 0. 8) AT THE 30. 5-cm AXIAL POSITION
MOVEABLE BLOCK BURNCR SET FOR INTERMEDIATE SWIRL - COLD MODEL
vO
-vl
AP
30.5
30.5
30. b
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
RP
-30.0
-25.0
-20.0
-18.0
-16.0
-14.0
-12.0
12.0
10.0
e.o
6.0
4.0
2.0
0.0
-2.0
-4.0
-6.0
-8.0
-10. 0
14.0
16.0
18.0
20.0
22.0
24.0
25.0
30.0
F I
25.0
34.1
80.2
46.6
47.7
53.6
62.3
165.3
167.0
160.2
169.3
172.6
168.4
166.0
164.9
161.6
160.2
160. 9
162.3
41.6
33.3
43.0
3=3.7
42.3
44.2
51.7
51.2
DELTA
264.1
249.0
220. 1
234.4
234.6
241.2
249.2
350.0
344.6
327.8
350.9
331.0
287.9
281.6
278.5
277.9
273.8
282. 1
299.8
91.0
77.9
68.2
59. I
54.9
52.5
61.0
42.4
RHO
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.OOC0159
0.0000159
V
6.90
4.05
8.40
15.62
16.26
17.79
17.82
8.57
9.00
7.99
9.58
9.96
9.43
9.69
9. 19
8.89
8.02
8.33
6.29
10.80
13.90
16.47
16.51
15.16
13.25
11.64
7.40
VX.
6.25
3.36
1.4?
10.72
10.93
10.55
8.26
-8.29
-8.77
-7.52
-9.41
-9.87
-9.23
-9.40
-8.87
-8.45
-7.55
-7.88
-6.00
8.07
11.61
12.02
12.69
11.21
9.46
7.20
4 .63
VY
-0.29
-0.81
-6.32
-6.61
-6.96
-6.89
-5.59
2. 13
1.94
2.28
1.74
I. 12
0.5C
0.47
0.35
0.38
0. 18
0.56
0.94
-0.12
1.60
4. 17
5.32
5.86
5.62
4.4?
4.25
VL
-2.90
-2.12
-5.34
-9.24
-9.81
-12.55
-14.77
-0.37
-0.53
-1.43
-0.27
-0.62
-1.80
-2.29
-2.3o
-2.75
-2.71
-2.65
-1.65
7.17
7.47
10.45
9.12
8.35
7.34
7.99
3.89
V.T
-2.64
-I. 75
-0.92
-5.52
-5. 18
-4.58
-3. 18
1 .80
• 1 .65
1.59
1.28
0.91
0.57
O.CO
-0.56
-1.02
-1.30
-1.64
-I. 36
3.29
4.76
6.00
6.53
6.34
5.60
4.96
3.57
VS
1.2-5
1 .<-5
8.23
9.9 >
10.86
13. 5b
15.46
1 .2C
1.15
2. 17
1.22
0.9C
1 .PC
2.34
2.3?
2.57
2.3fc
2.16
1.32
6.37
5.97
9.51
8.30
e.or
7 . 2 'J
7.67
4.51
I'iT
0.001047
O.C01 » 78
0.002624
0.002146
O.OC21 12
O.C02731
G.o02739
0.002 1.18
0. f102098
C.C01299
().t:0l051
C.001 193
0. 00 12^.6
O.CC1342
0. JCUC7
O.C01C47
0.001042
O.OOCH48
-0.000141
o.ocrif>2
C.OOC.H97
0.001'.C2
0. GO 13 58
C. 0014 16
. 0 . C ;> 1 5 5 8
O.C02T 55
(J. C01176
T
20.
?0.
2C.
20.
20.
20.
i?..
20.
2C.
2C.
2C.
20.
?C.
2C.
20.
20.
20.
2C.
2T.
20.
2C.
2C'.
2C1.
20.
2.1.
2H.
2C.
nit j
Ib".
7h-:. !
llj.-: . ':
70i>. ,
7f,,;. ,
76C. •
7r,r>.
76". ,
-------
RP VS. VT
58.69
MOVE4BLE BLOCK BURNER SET FOR INTERMEDIATE SWIRL - COLD MODEL
.50
-30.000 -2*.000 -16.000 -12.000
-6.000 -0.000 6.000
RADIAL POSITION, cm
12.000
Figure U-Z24. TANGENTIAL VELOCITY PROFILE FOR THE SWIRL
BURNER AT THE 2. 5-cm AXIAL POSITION (Swirl Number, S = 0. 8)
298
-------
MOVEABLE BLUCK BURNER SET FOR INTERMEDIATE SUIRL - COLD MODEL
AP. 2.SO
A
•J \
-30.000 -24.000 -10.000 -12.000 -6.000 -0.000 6.000
RADIAL POSITION, cm
Figure 11-225. AXIAL VELOCITY PROFILE FOR THE SWIRL BURNER
AT THE 2. 5-cm AXIAL POSITION (Swirl Number, S = 0. 8)
299
-------
MOVEABLE BLUCK buRNER SET FOR INTERMEDIATE SUIHL - COLD MODEL
AP» K60
•N
-7.69
-8.76
-9.83
-10.90
-11.97
-U.U*
-U.ll
-IS.IB
-16.25
-17.32
-18.39
-20.i2
-21.59
-30.000 -24.000 -18.000 -12.000
-6.000 -0.000
6.000 12.000 18.000 24.000 30.000
RADIAL POSITION, cm
Figure 11-226. AXIAL VELOCITY PROFILE FOR THE SWIRL BURNER
AT THE 7. 6-cm AXIAL POSITION (Swirl Number, S = 0. 8)
300
-------
HP VS. VT
20.S)
20.01
MOVEABIE BLOCK BURNER SET FOR INTERMEDIATE SWIRL - COLO MODEL
7.60
-30.000 -24.000 -18.000 -12.000 -6.000 -0.000 6.000 12.000 18.000 24.000
RADIAL POSITION, cm
30.000
Figure 11-221. TANGENTIAL VELOCITY PROFILE FOR THE SWIRL
BURNER AT THE 7. 6-cm AXIAL POSITION (Swirl Number, S = 0. 8)
301
-------
KOVEABLE
17.BO
BLOCK BURNER SET FOR INTERMEDIATE SWIRL - CULO MODEL
-30.000 -?<>.000 -IB.000 -12.000 -6.000 -0.000 (,.000 12.000 18.000 74.000 30.000
RADIAL POSITION, mi
Figure II-2Z8. AXIAL VELOCITY PROFILE FOR THE SWIRL
BURNER AT THE 17. 8-cm AXIAL POSITION (Swirl Number, S = 0.8)
302
-------
MOVE4BLE HLOCK BURNER SET FOR INTERMEDIATE SHUL - COLO MODEL
17.80
-30.000 -24.000 -18.000 -12.000 -6.000 -0.000
RyfrJfAL' POSITION, cm
12.000
18.000
24.000
30.000
Figure H-229. TANGENTIAL VELOCITY PROFILE FOR THE SWIRL
BURNER AT THE 17. 8-cm AXIAL POSITION (Swirl Number, S = 0.8)
303
-------
HOVfcABlE BLUIK BURNER SET FOR INTERMEDIATE SWIRL - COLO MODEL
iP- 30.50
-10.000 -2*.000 -18.000 -12.000 -6.000 -0.000 6.000 12.000
RADIAL POSITION, cm
Figure 11-230. AXIAL VELOCITY PROFILE FOR THE SWIRL
BURNER AT THE 30. 5-cm AXIAL POSITION (Swirl Number, S = 0.8)
304
-------
lt BIOC< BUHNER ibl F(it I NT EKHtO III i- SWIHL - CL'LI) «IIUU
VS. VI 4P- 30.50
6. 30
6.07
5.U3
5. 56
•5. 12
2.99
2. 7-,
2.52
2.2B
2.04
1.81
1.57
1.33
1.10
0.86
« 0.62
5 0.39
. 0.15
£ -O.OB
5 •°-31
o -0-55
J -0.79
" - -02
26
50
73
97
-2.21
-2.44
-2.68
-2.92
-3.15
-3.39
-3.63
-3.86
-4.10
-4.34
-4.57
-4.61
-5.05
"-*'. 28
-5.52
-30.000 -24.000 -18.000 -12.000 -6.000 -0.000 6.000
RADIAL POSITION, cm
12.000
IB.000
24.000
30.000
Figure 11-231. TANGENTIAL VELOCITY PROFILE FOR THE SWIRL
BURNER AT THE 30. 5-cm AXIAL POSITION (Swirl Number, S = 0. 8)
305
-------
Figure 11-224 represents the tangential velocity profile at an axial
position of 2. 5 cm. The graph is murh I.he same as that obtained in
the minimum swirl case, with one exception: The maximum magnitude
of the velocity has increased by a factor of 3-1/2. There has, however,
been a radical change in the shape of the axial profile, which can be seen
by comparing Figure 11-225 with Figure 11-214. Two new peaks have ap-
peared and are shown in Figure 11-225. In the case of minimum swirl
there was a constant velocity near 30 ft/s in the throat of the burner,
while for intermediate swirl this region has a range of velocities from
8 to 56 ft/s. Comparing Tables 11-40 and 11-43, we see that the magni-
tude and the size of the region occupied by negative static pressure is
greater for intermediate than for minimum swirl.
Although qualitative investigations indicate a narrow region of reverse
flow in the throat of the burner occurring between the outside and central
velocity peaks in the axial profile, it was impossible to make any quan-
titative measurements at the 2. 5-cm axial position because of the 3-inch
shepherd's-crook-shaped probe head. Thus, all data points for the 2. 5-cm
axial position are presented as representing forward flow.
Figure 11-226 shows that, at an axial position of 7. 6 cm, the axial
velocity in the center peak has decreased by a factor of 3 from its value
at 2. 5 cm, while the outside peaks have decreased by only a factor of 2.
There is recirculation on both sides of the central peak; these data points
are represented by X rather than by an asterisk, and are shown with a
negative velocity. Figure 11-227 presents the tangential velocity. (Note
that the reverse flow stream has no tangential velocity. ) At an axial
position of 17.8 cm, the central peak at axial velocity has disappeared
and the entire burner region has reverse flow, as shown in Figure 11-228.
Figure 11-229 shows that the forward tangential velocity has a magnitude
of about one-half that of the forward axial velocity. Figures 11-230 and
11-231 present the axial and tangential velocity profiles at an axial posi-
tion of 30. 5 cm. The same general observations made for the profiles
at 17.8 cm still persist with the addition of an expanding recirculation
region.
306
-------
4. Hot-Model Input-Output Data
The swirl burner was operated at three different swirl intensities
for the input-output tests, with two gas nozzle positions for each swirl
intensity. For the first gas nozzle position, the nozzle tip was located
even with the inside edge of the burner wall (hot face) while in the second
position the nozzle tip was withdrawn into the burner block, 6 inches
from the hot face wall. (For the remainder of this report, these posi-
tions will be referred to as the "exit position" and "throat position, "
' respectively.) The input-output tests were conducted at gas inputs of
•1578 CF/hr, 1976 CF/hr, and 2382 CF/hr, with between 10 and 80% of
excess air. Figures 11-232 through 11-238 show the input-output test re-
sults. The nitric oxide (NO) concentrations were normalized by dividing
the weight of the flue products at the stoichiometric mixture of fuel and
air into the measured concentration of NO, and multiplying this ratio by
the weight of the flue products for the input conditions under which the
measurements were taken.
Based on an analysis of the input-output data from the movable block
swirl burner, we determined the following:
• The maximum measured NO concentration occurred at the lowest
levels of gas input and swirl intensity.
• At excess oxygen levels below 6%, generally more NO was formed
when the gas nozzle was in the throat position than when it was in
the exit position. Insufficient data are available to evaluate the
relative effect of burner nozzle position when operating with more
than 6% excess oxygen.
• Increasing gas input (and consequently gas velocity) always reduced
the normalized concentration of NO independent of swirl intensity and
percent excess air, when the burner was in the throat position.
However, when the nozzle was in the exit position, changing gas
input had little or no effect on the normalized NO concentration.
This was observed for intermediate and high swirl intensity. Insuf-
ficient data were obtainable for the case of low swirl intensity.
5. In-the-Flame Data Survey Results
Again, as part of this program, we mapped the concentrations of
CO, CO2, CH4, Oz, and NO; the temperature; and the gas velocity in
the flame. This information is obtained to gain insight into the mech-
anism and location of NO formation for different flame conditions and
' for use as input data to an NO computer modeling program, sponsored
by EPA with Ultrasystems, Inc. The maps were obtained while operating
the burner at conditions of intermediate swirl intensity and with the gas
nozzle in the throat position. This was determined by the input-output
tests to produce the maximum level of NO.
307
-------
250
230
o.
a.
<-T 210
o
UJ
N
a:
O 190
170
150
O THROAT
V EXIT
7 8
02 IN FLUE,%
10
A-23-292
Figure 11-232. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
Low Swirl Intensity). GAS INPUT, 1578 CF/hr
308
-------
170
150
130
no
Q.
Q.
0
S 90
N
oc.
o
Z 70
50
30
I 0
123456
02 INFLUE,%
Figure 11-233. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
Low Swirl Intensity). GAS INPUT, 1976 CF/hr
A-23-296
309
-------
2 3
02 IN FLUE,%
A-23-295
Figure 11-234. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
Low Swirl Intensity). GAS INPUT, 2382 CF/hr
310
-------
190
O THROAT
EXIT
170
O
z
O
UJ
M
QC
O
150
130
no
90
02 IN FLUE,%
A-23-294
Figure H-235. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
Intermediate Swirl Intensity). GAS INPUT, 1578 CF/hr
311
-------
170 r
150
130
110
o.
O.
S 90
N
or
o
2 70
50
30
0
O THROAT
V EXIT
02!N FLUE,%
Figure 11-236. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
Intermediate Swirl Intensity). GAS INPUT, 1976 CF/hr
A-23-297
312
-------
190
170
ISO
130
s
N
110
(T
O
90
70
50
30
O THROAT
V EXIT
345671
02 IN FLUE,%
Figure II-Z37. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
High Swirl Intensity). GAS INPUT, 1578 CF/hr
A-23-298
313
-------
130
no
90
o.
Q.
Q
Ul
N 70
cc
o
50
30
10
OTHROAT
V EXIT
02 IN FLUE,%
A-23-293
Figure 11-238. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
High Swirl Intensity). GAS INPUT, 1976 CF/hr
314
-------
Profiles were first obtained by scanning radially at several axial
positions. The gas sampling probe was moved at a constant velocity
(approximately 1.5 cm/s), with the gas species concentrations continu-
ously measured and displayed on a high-speed strip recorder. These
scanning traverses were made at 30-cm axial intervals from the burner
wall and the data inspected for the degree of primary and secondary
combustion, as well as for the NO concentration and its variation with
radial position. From these analyses, we determined that a point-by-point
time-averaged measurement of the gas species, temperature, and vel-
ocity should be taken at axial positions of 1Z. 7, 30.5, and 107 cm to
obtain the maximum amount of information with the minimum amount of
detailed surveys.
To determine the direction of flow in the flame front, continuous
radial scans were made at axial positions of 12.7, 30.5, and 107 cm
using the two-hole cylindrical Hubbard Probe. These scans are shown
in Figures 11-239, 11-240, and 11-241. A positive reading indicates flow
moving away from the burner wall and a negative number indicates flow
moving toward the burner wall. Although the Hubbard Probe scans give
a qualitative illustration of the flow patterns, more quantitative informa-
tion is required to determine the orientation for the five-hole pitot tube
to measure velocities. Therefore, detailed point-by-point profiles were
later taken at the appropriate axial position with the pressure differential
integrated at each sample point. Table 11-56 lists the data for the radial
profile taken at the 12. 7-cm axial position. Flow reversal occurs in six
distinct radial regions, as exhibited by the negative time-averaged pres-
sure differentials. The data obtained for the 30. 5-cm and 107-cm axial
positions are given in Tables 11-57 and 11-58.
The time-averaged gas species profiles were run on the swirl bur-
ner set for intermediate swirl intensity with a gas input of 2008 CF/hr,
with the gas nozzle in the throat position, and with 3. 6% excess oxygen.
Figure 11-242 shows a composite of the gas-sampling profiles taken at
an axial position of 12. 7 cm from the burner block face. These curves
show that methane concentration (curve M) was in excess of 42% on the
axis of the burner (0. 0 cm). The carbon monoxide (curve C) varied
between 0.4 and 2.4% in the region of the burner block (from +7 cm to
—7 cm) to a minimum of 200 ppm near the sidewalls of the furnace.
315
-------
1 1 1 _i 1 . 1 , 1 1 I I 1 1 1 J I
Forward
Flow
Figure II-Z39. SCAN OF FLOW DIRECTION AT THE 12.7-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
Forward
Flow
Radial Position
Figure 11-240. SCAN OF FLOW DIRECTION AT THE 30. 5-cm
AXIAL POSITION (Movable-Block Swirl Burner — Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
Forward^
Flow
Radial Position
Figure 11-241. SCAN OF FLOW DIRECTION AT THE 107-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3. 6% ; NOZZLE IN THROAT POSITION
316
-------
Table 11-56. TIME-AVERAGED DIRECTIONAL FLOW DATA OBTAINED
AT THE 12. 7-cm AXIAL POSITION (Movable-Block Swirl Burner -
Intermediate Swirl Intensity). GAS INPUT, 2008 CF/hr;
3. 6% EXCESS OXYGEN; NOZZLE IN THROAT POSITION
Time- Time- Time-
RP* cm Averaged AP RP,* cm Averaged AP RP,' cm Averaged Ap
20
17
15
14
11
10
9
8
7
-1. 31
-1. 11
0. 00
+ 6. 87
+202. 0
+204. 8
+40. 6
-0. 1
-5. 76
6
5
4
3
2
1
0
-1
-2
-7.59
-7.5
-6. 3
+ 0. 06
+ 7. 22
+ 12. 37
+ 12. 76
-4.51
-19. 31
-3
-A
-5
-6
-7
-8
-9
-10
-13
-26. 37
-20. 93
-7. 39
+29. 87
+ 148. 3
+282.7
+213. 0
+ 91- 56
-2. 28
Radial Position
-------
Table 11-57. TIME-AVERAGED DIRECTIONAL FLOW DATA
AT THE 30. 5-cm AXIAL POSITION AND OBTAINED USING A
HUBBARD PROBE (Movable-Block Swirl Baffle - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
Time- ^ Time- i( Time-
RP* cm Averaged AP RP/ cm Averaged A P RP/ cm Averaged A P
-13
-10
-7
-4
-3
-2
+55. 86
+ 59.82
+31. 52
+4. 77
+ 1. 58
-0. 94
-1
2
5
6
7
8
-2. 09
-3. 38
-1.48
-0.88
-0. 08
+ 1. 86
11
14
17
20
23
26
29
+ 17.21
+42. 63
+ 33. 37
+ 8.59
I 1. 08
-0. 53
-0.77
Radial Position
Table 11-58. TIME-AVERAGED DIRECTIONAL FLOW DATA
AT THE 107-cm AXIAL POSITION AND OBTAINED USING A
HUBBARD PROBE (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
Time- Time- Time-
RP,* cm Average^ AP RP* cm Averaged A P RP,* cm Averaged AP
-13
-10
-7
-$
-1
2
5
+ 0. 28
+7. 52
+9.27
+ 9. 17
+ 7.43
+4. 71
•1-3. 12
8
11
14
17
20
23
26
+2. 21
+ 2. 06
+ 3.27
+ 5. 27
+ 7. 62
112. 36
l 13. 64
29
32
35
40
45
50
+ 13.76
+ 11. 69
+ 10. 05
+ 3. 92
-0. 32
-0. 68
Radial Position
318
-------
MUVE4BLE BLOCK SKIRL BURNER - INTERNED! »H SWIRL - SIGNLESS SHEPHERD'S CRUDE
E-i
2
U
RP
a
(X
PH
O
O
O
•—I
1
1
g
Q
^SK
|
N
Q
F -\
^
*
o
U
<3
o
U
VS NOiO?>C02.CO.CH4 »P = 12.70
50.04 ,"""MS
49.06 M \
48.08 N M
47.10 / \
46.12 / M
45.14 / \
44.16 /M \
43.17 /
42.19 M 1
41.21 /
40.23 / 1
19.25 / 1
38.27 /
37.29 / 1
16.31 / M
15.32 H
34.34 1
13.36 /
12.38 /
11.40 M
30.42 /
29.44 /
26.46 /
27.47 /
26.49 H
25.51 /
24.53 /
23.55 /
22.57 /
21 .59 M
20.61 1
19.62 1
18.64 1
17.66 I
16.68 U I
15.70 A
14.72 / U /
13. (4 0 \ I
!2.76 / \|
11.77 / \M
10.79 -U-OD-D-Q. / /
9.81 D / U
A"
0
\
8.83 \0 /\
7.85 V /\ H
6.67 A. / °\ l\ 1
5.89 /H / \ '\
4.91 1 \ \ ° \°
3.92 0 \ * ,0-0*00-0^ / ^i
2.94 / U^/^DC-C-CC-C DO-D-00-0-OD-Q-D>. /
1.96-U — U-O-0 / -C 0-00-O—OU-O-OO OC^^-D
0.00 C-HM-C-CC— C*C-N-N N-N^NC
CO = C
02 = O
NO = N
C02 = D
CH4 = M
-15.000 -9.000 -3.000 3.000 9,000 15.000 21.000 27.000
RADIAL POSITION, cm
Figure 11-242. COMPOSITE PLOT OF GAS SAMPLING
PROFILES FOR CO, CO2, CH4, NO, AND O2 AT THE 12. 7-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS
OXYGEN, X 6%; NOZZLE IN THROAT POSITION
319
-------
Oxygen (curve O) varied from 1. 6% at +4 cm to a maximum of 17. 1%
at a 12-cm radial position and to a recirculation value of 3. 1% . Nitric
oxide (curve N) had a maximum of 129 ppm at a radial position of 9 cm
and a minimum of 0. 0 ppm (no instrument reading) at a radial position
of 12 cm. Carbon dioxide (curve D) varied from about 0. 84% at a radial
position of 12 cm to 10. 5% in the recirculation zone.
The curves of Figure 11-242 were plotted on a single 0-50% scale
because of computer limitations. The following legend applies to this
figure and some of the others (computer print-outs) that follow:
AP = axial position
RP = radial position
The actual data were collected over a range of concentrations that
provided greater resolution of the measuring equipment. Plots of these
data are given in Figures 11-243 to n-247. The raw and reduced data from
which these plots were made are presented in Table 11-59. Table 11-60
shows the coefficients and standard deviation of the mathematical fit for
each gas.
Figure 11-248 shows the temperature profile across the furnace at
the 12. 7-cm axial probe position. These data support the gas concen-
tration analysis in that the "cold" region (temperatures below the 2453°F
ambient) of the flame front corresponds to positions of high oxygen (12
cm and —7 cm) and methane (35 cm) concentrations, with the "hot" regions
(temperatures above 2426°F ambient and positions of 11 cm and —4 cm)
appearing at the point where the stoichiometric mixture between oxygen
and methane is achieved.
Figure 11-249 displays the tangential component of velocity as a
function of radial position at a 12. 7-cm axial probe position. Peaks
occur in the forward velocity at —8 cm, 3 cm, and 13 cm. By compar-
ing these peaks with the temperature and gas concentration analysis, we
conclude that good agreement exists with the positions of the high con-
centrations of oxygen and methane. Figure 11-250 shows the axial velocity
component.
320
-------
RP
o
^
^
W
-------
RP VS. CO
2.9659
2.9078
2.8497
. 7916
.7335
.6754
.6173
.5593
.5011
2.44io
2.3849
.1768
.2007
.2105
. I'j24
XOVE48LE
12.70
BLOCK SWIKL BUKNEO - [NICBMEDIAIC SW1HL - St&INLESS iHcPHERD'S PROBE
w
p
o
2
o
ffl
3
u
.'1200
.Uhl'f
. 8U1B
. I '. 'i 7
.6U'6
.6295
.5/14
.5133
.<,55?
.3971
. 3) 10
.2800
.2?2fl
. 1646
. 1065
.0484
0.9903
0.9322
0.8741
0.8160
U.7579
0.6998
0.6417
0.5836
0.5255
U.4674
0.40T3
0.3512
U.2931
0.2350
0.1769
0.1187
0.0606
0.0025
A
«
-15.000 -9.000 -J.OOO 3.000 9.000 15.000 21.000 27.000
RADIAL POSITION, cm
Figure 11-244. RADIAL PROFILE FOR CO AT THE 12. 7-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3. 6% ; NOZZLE IN THROAT POSITION
322
-------
KP
^^-
w*
Q
H
rS
0
P
2;
O
«
-------
Kf
a
a
(X
W
P
K
o
u
^H
rf
H
M
£
^S
1 11
128
126
123
121
118
1 15
1 13
1 10
108
105
102
11)0
17
•15
12
•in
S7
04
82
/9
77
12
66
hi
*>*)
541
4ft
(, J
41
18
16
13
10
28
25
23
20
17
15
12
10
7
5
2
-0
MO,
. 31
.73
. 16
. 5P
.00
.43
.85
.28
.70
. 1 3
.55
.96
.40
.83
.25
. 6U
. 10
.'I'l
.37
.BO
.22
.65
.07
.92
.35
.77
.20
.62
.04
.47
.H9
.32
. 74
. 17
.59
.02
. 44
.87
.29
.72
.14
.56
.99
.41
.84
.26
.69
. 11
.54
.03
miVt»BLE tllULK SWIRL BlIKNIK - I NT CH MF 01 41 ^
i2.;o
Sill PUT MO'
-15.000
-9.000
3.000
9.000
15.000
21.000
39.000
RADIAL POSITION, cm
Figure 11-246. RADIAL PROFILE FOR NO AT THE 12. 7-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
-------
MUVE«BLE bLOCK SWIRL BUHNEK - lNItKM£niAU- SHIHl - STAINLESS SHtPMEKD'i CHIJRE
KM
tS^
OXYGEN,
tfS U2, 4P' 12.70
17.10
16.79 «
16.48
16. 17
IS. 86
15.55
15.24
14.93
14.62
14.31
n
\
\
\
14.00 •
13.69
13. 3b
1 J.07
12.76 •
12.45
12. 14
1 I.B3
I I. 52
11.21
10.90
10.59
10. 2H
9.97
9.66
•1.35
9.04 *
8.73
6.11
7. BO
7.49
7. IB
6.87
6.56
6.25
5.94
5.63
5. 12
5.01
4. 10
4.39
4
4.08 •
3.77 I
3.46 I
3.15 /
2.b4 /
2.53 •
2.22 /
1.91 • •
1.60 \ •'
1.29 ^
-15.000 -9.000 -3.
3.000
9.000
15.000
21.000
27.000
RADIAL POSITION, cm
Figure 11-247. RADIAL PROFILE FOR O2 AT THE 1Z. 7-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3. 6% ; NOZZLE IN THROAT POSITION
325
-------
Table 11-59. TIME-AVERAGED RADIAL PROFILE
OBTAINED AT THE 12. 7-cm AXIAL POSITION
TRACER CAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
MUvEABLE BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - STAINLESS SHEPHERD'S PRUNE
INPUT GAS 2008
.ALL TEMPERATURE 2453
PREHEAT TEMPERATURE
OUTPUT
ANALYSI S
Nl 1KUGCN UXIOE
CAKOUN
CAABJN
ME tMANE
DIOXIDE
HONUXIOE
56.70 PERCENT
79.30 PERCE'IT
10.40 PERCEMT
0.00 PERCENT
UN RANGE
0:t RANGE
U.-. RANGE
ON RANGE
3. Ill .09 PPM
1, 9.96 PERCENT
3. 0.004 PERCENT
0. 0.00 PERCENT
OXYGEN 3.60 PERCENT
EXPERIMENTAL RESULTS
i\ IRUGEN JX10E -NU
AP
12. 10
12.70
12.70
12.70
12. 7C
12.70
12.70
12.70
12. 70
12.70
12. 10
12.70
12. '0
12.70
12. 7C
12.70
12. 70
12.70
12.70
12.70
12.70
12.70
12. 7J
12.70
12.70
12.70
12.70
12.70
12. 70
12.70
12.70
12.70
12.70
12.7C
12. 70
12.70
12. 70
RP
-15.00
-14.00
-1 i.OO
-12.00
-1 1.00
-1C. 00
-9.00
-rt. 00
-t.OO
-o.OO
-5.00
-4.00
-3.00
-i .00
-1 .00
0.00
; .00
2.00
3.00
4.00
3.00
o.OO
I.CO
R.OO
9.00
10.00
1 1 .00
12.00
13.00
14.00
15.00
2C.OO
23 . CO
30.00
33.00
40.00
45.00
KASGE X
3 34.30
3 31.20
3 31.60
3 30.80
3 2-1.20
3 21.50
3 1 9. 10
3 3.60
3 C.OO
3 6.40
3 36. 70
3 4o.OO
3 52.60
3 55. OC
3 56.20
3 66. 7C
3 00.70
3 55. oC
3 ol .4C
3 63. 4C
3 02.80
3 63. 9C
3 03.30
3 03. 1C
3 65.70
3 5/.4C
l 1 /.20
3 0.00
3 0. 7C
3 0.60
3 i J.ao
3 30.90
3 34.70
3 35.00
3 23.90
3 IS. 30
3 20.70
Y
06.4
60.3
61.1
59.6
56.4
41.4
36.7
6.8
-0.0
12.2
J1.2
89.6
102.6
107.6
1 14. I
131.3
1 19. 1
108. e
120.5
124.6
123.4
125.6
129.6
128.0
129.2
112.5
33.0
-0.0
1.2
12.5
38.1
59.7
67.2
67.8
46.0
35. 1
39.o
OXYGEN CARBON OIOXIOE-C02 CARBON MUNOxlOE -CO
02 RANGE X
2.06
1 .29
1 .52
1 .87
2.44
4. 14
9.08
13.90
16.80
15.20
9.60
6. 79
5.66
4.00
2.90
2. 17
1.94
83.30
84.70
84.00
83.00
82.70
77.00
60.10
40.30
19.20
21.80
36.00
42.10
43.70
45.40
43.00
40.40
39.10
1.83 1 35.60
.61 1 37.40
.50 I 37.00
.68 1 33.70
.58 I 37.70
.74 35.60
.93 38.20
2.60 38.10
4.70 36.30
12.80 21.70
17.10 14.10
15.90 28.00
11.00 ' 50.10
4.65 75.50
2.41 61.90
3.34 79.50
2.66 81.90
3.66 79.20
3.12 1 80.10
3.09 1 80.10
Y RANGE X
10.82 3 13.40
11.12 3 69.50
10.97 3 61.10
10.75 3 51.20
10.69 3 37.30
9.49 3 46.40
6.34 2 1.30
3.42 3 66.80
1.23 2 10.50
1.45 2 38.70
2.90
3.65
3.86
4.09
3.77
3.43
3.27
2.85
3.06
3.02
2.63
3.10
2.85
3.16
3.15
2.93
I .44
0.84
2.03
53.80
67.30
65.00
70.60
66. 70
63.30
61.00
54. 6C
58.00
57.90
52.90
59.30
57.30
60. 4C
60.50
58.00
29.30
3.90
49. 4C
4.76 3 45.70
9.18 3 61.40
10.51 3 27.40
10.00 3 9.40
10.51 3 14.20
9.94 3 6.20
10.13 3 7.00
10.13 3 6.50
Y
0.005
0.032
0.02o
0.022
0.016
C.020
O.C22
0.031
0.1 72
O.o75
2. OH
J.767
2.033
2.965
2.M2
2.535
; . 4 06
2.060
2.241
2.236
1.972
2.312
2.203
2.372
2.378
2.241
0.910
f. 100
C.022
O.C20
0.023
0.011
C.003
0.005
0.002
0.002
0.002
HE IMA-\E - CH4
3ANGE X
3
3
3
3
J
3
3
3
3
3
1
I
1
1
I
1
1
I
1
I
1
1
1
I
1
1
1
j
3
3
3
3
3
3
3
3
3
C.90
0.3C
0.20
r.5C
0. 70
i.OO
1.20
3.40
22. 5C
73.40
73.60
1C4.00
120.00
132.00
142. OC
156.00
160.00
lofl.OO
170.00
172.00
172.00
172.00
1 70.00
168.00
164.00
144.00
36.00
26. OC
6.-JO
2. 70
0. 90
0.00
O.OU
0.00
O.OU
0.00
0.00
Y
0.04
0.01
0.01
0.02
0.0)
O.Co
0.03
0. 1-.
0.90
3.51
12.12
21.12
2o.8-
31 .57
35. o&
42. 15
44.06
48.00
49.02
50.04
30.04
30. 04
49.0.:
48.00
-o.OI
36.6o
7.92
1. 14
0.29
c-. 11
0.04
o.oc
o.oc
C.OO
0.00
0.00
o.oc
-------
Table II-60. COEFFICIENTS AND STAND'ARD DEVIATIONS'
OF THE MATHEMATICAL FIT FOR EACH GAS
TRACER GAS STUDIES OF COMBUSTION BURNERS PRUGRAM 2
NO-RANGE 1
NJ-RANGE "3
C(J2 RANGE 1
C02 RANGE !
CO? RANGE i
Cd RANGE 1
CU RAMGE 2
CO RANGE 3
<
c.ooo
26.000
55.000
77.500
100.000
X
0.000
26.000
51.000
76.000
100.000
X
0.000
41.200
67.000
87.000
100. OCO
X
0.000
33.000
59.000
32. OCO
100.000
X
0.000
32.000
58.000
81.000
100.000
X
0.000
37.000
65.000
83.000
100.000
t
0.000
29. 100
55.000
79.000
100.000
X
0.000
29.100
55.000
79.000
100.000
OBSERVED Y
0.000
250.000
500.000
750.000
1000.000
03SERVED Y
C.OOO
50.000
100.000
150.000
200.000
OBSERVED Y
0.000
3.750
7.500
1 1.300
15.000
OBSERVED Y
0.000
1.250
2.500
i. 730
M.OOO
OBSERVED Y
O.OOC
0. 125
0.250
0.375
0.500
OBSERVED Y
0.000
1.250
2.500
3.750
5.000
UBSE»X»
C( 11= 1.1720BC3
C( 21= 8.2232437
C( 31= 0.0177582
COEFFICI£NTS.Y=C(1I
Ct 11= -0.0368039
C( 21= 1.9082312
C( 31= 0.000'Jlje
COEFFICIENTS,Y=C(1>'C(2I«X«..«CIN»I)«X««,J
C( 11= 0.0607462
C( 21= 0.040t>835
C( 31= 0.0010623
COEFFICIENTS.Y=C( 1I
C( 11= O.OC86310
C( 2>» 0.030S9PB
Ct 31= C.0001673
COEFFICIENTS.Y=C(1I»C(2I»X«..»C(N»1I»X«»-;
C( 11= 0.0005971
Cl 21= 0.0031220
Cl 31= 0.0000165
COEFFICIENTS,Y=C(l>»C(2)«x»..«C(N»l)»x«
Cl 11= O.OC7<,353
C( 21= O.C223367
Cl 31= 0.0002066
COEFFICIr:NTS,Y=C< ll
Cl 11= O.C017783
C( 21= 0.0l5d220
Cl 31= O.OOOC411
COEf;FlClE.NIS,Y=C(ll«CI2)ex»..»CIN»ll
Cl 11= O.OOOP444
C( 21= 0.0003955
Cl 31= 0.0000010
-------
Table 11-60, Cont. COEFFICIENTS AND STANDARD DEVLATIONS-
OF THE MATHEMATICAL FIT FOR EACH GAS
TRACER CAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
00
CHI,
CK<. RANGE I
CH4 RANGE i
X
0.000
39. 100
66.000
85.200
100.000
X
0.000
32.500
5B.800
81.000
100.000
X
c.ooo
28.000
5<-.000
78.000
100.000
OBSERVED Y
0.000
5.000
10.000
15.000
20.000
OBSERVED r
0.000
2.500
5.000
7.500
10.000
OBSERVED V
0.000
1.250
2.500
3.750
5.000
COMPUTED Y
0.084
<>.701
10. 181
IS. 240
19.792
COMPUTED V
0.012
2.467
5.007
7.53*
9.978
COMPUTED y
0.004
I. 240
2.500
3.759
4.994
STANDARD DEVIATION UN
0.33885
STANDARD DEVIATION
0.03837
ON
STANDARD DEVIATION ON
0.01073
COEFFICIENTS, Y=C(1 I »CIZ)»X»..«CIN»1 I «X««-4
Cl 11= 0.0843171
Cl 21= 0.0673895
Cl 31= 0.0012968
COEFFICIENTS,Y=Clll»C(2>»X«..»CIN«ll«*««\
Cl 11 = 0.0122515
Cl 21= 0.0o3?469
Cl 31= C.0003571
COEFFICIENTS. Y = CIU*C(2l»x»..»CIN« I I •<•
Cl 11° 0.0041916
Cl 21= 0.0419261
Cl 31= 0.0000797
-------
14
12
840
RADIAL POSITION,cm
-4
-8
-12
A-23-301
Figure II-Z48. RADIAL TEMPERATURE PROFILE AT THE
12. 7-cm AXIAL POSITION (Movable-Block Swirl Burner -
Intermediate Intensity). GAS INPUT, 2008 CF/hr; EXCESS
OXYGEN; 3.6%, NOZZLE IN THROAT POSITION
329
-------
HP VS. VI
45.34
43.73
42. 13
40.52
38.91
37.31
35.70
34.09
12.41
30.ee
29.26
27.67
26.06
24.46
12.70
MUVE4BLE BLOCK SHIRL HIIRNEB - INTERMtDUIt SwIBL -
2000 LtM 3.6 I.XCISS
W
_^J
VH
."
r^
H
H^
8
k_^
W
^
19.64
18.03
16.43
14.82
13.21
1 1.61
10.00
8.40
6.79
1.17
0. 36
-1.25
-2.64
-4.44
-6.05
- 7.66
-9.26
-10.67
-12.46
-14.06
- 15.69
-1 1.21
-16.90
-20.51
-22.11
-23.72
-25.33
-26.93
-28.54
-30. 14
-31.75
-33.36
-34.96
-36.57
-16.000 -14.400 -10.800
-3.600 0.000 3.600 7.200 10.600 14.400 16.000
RADIAL POSITION, cm
Figure 11-249. TANGENTIAL VELOCITY PROFILE AT THE
12.7-cm AXIAL POSITION (Movable-Block Swirl Burner -
Intermediate Swirl Intensity). GAS INPUT, 2000 CF/hr; EXCESS
OXYGEN, 3.6%; NOZZLE IN THROAT POSITION
330
-------
UP JS. v< «"= 12.70
77.07
72.88
10.11
6b. 70
66.60
64.51
60.3?
4. OS
MOVE4BL6 BLOCK SWIRL BURNER - INTF.RMfcnj A t E
- GAS 2000 CFH 3.6 fcxCESS U?
co
"""•^
ij
*
r*
H
U
0
»-4
w
41.5R
41.49
J9.40
H. 30
J5.21
J3. 12
31.02
20.93
26.84
24.75
22.65
18.47
16.37
14.28
12. 19
10. 10
a.OO
5.91
1.B2
1.72
-0.36
-2.45
-4.54
-6.64
-B.73
-10.82
-12.92
-15.01
-17.10
-19. 19
-21.29
-73.38
-25.47
-27.57
-29.60
-IB.OOn -14.400 -10.600
-7.200
-J.oOO 0.000 3.600 7.200 10.8nO 14.400 18.000
RADIAL POSITION, cm
Figure II-250. AXIAL VELOCITY PROFILE AT THE 12. 7-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2000 CF/hr; EXCESS OXYGEN,
3. 6% ; NOZZLE IN THROAT POSITION
•J31
-------
Figure 11-251 shows a composite plot of the CO, CO2, CH4, NO, and
Oz at an axial position of 30. 5 cm. The maximum methane concentration
has decreased from more than 50 to 8. 2%. In contrast, the CO has in-
creased from 2 to 5°& in the burner block region. The nitric oxide con-
centration ranges in values from a maximum of 103 ppm to a minimum
of 32 ppm. The oxygen readings show that the peak concentrations of
air are now at —12 cm and 26 cm, as compared with the previous posi-
tions of —8 cm and 13 cm at an axial position of 12.7 cm. Data plots
with greater resolution are given in Figures 11-252 to 11-256. Raw data
appear in Table 11-61.
Figure 11-257 shows the temperature profile at the 30. 5-cm axial
position. The central "cold" spot has moved to 10 cm, accompanied by
a 600°F temperature increase, and the outside cold spots have disappeared.
The "hot" regions are now at —7 cm and 21 cm, which corresponds nicely
with the points where the stoichiometric mixture of CH4 and Oz are achieved
(—7 cm and 20 cm).
Figure 11-258 displays the axial component of velocity as a function
of radial position at 30. 5 cm. Interestingly, the central portion of the
flame front (—2 cm to 7 cm) displays reverse flow. The magnitude of
the peak axial velocity has decreased 40% from its value at the 12. 7-cm
axial position. The tangential velocity, shown in Figure 11-259, displays
a uniform peak of magnitude 18. 6 ft/s about the 20-cm radial position.
The composite plot of the gas species concentrations for an axial
position of 107 cm is given in Figure 11-260. There is no trace of
methane at this axial position. The oxygen (O curve) shows an average
value of 1% in the region of the burner block, with a linear increase to
5. 3% near the sidewall of the furnace. The nitric oxide (curve N) has
an average value of 36 ppm in the burner block region, with a gradual
decrease to 21.5 ppm near the furnace sidewall. The CO concentration
(curve C) has a. peak value of 2. 8% near the axis of the burner and drops
to 4200 ppm near the sidewalls.
The data plot of Figure 11-260 is shown with greater resolution in
Figures 11-261 to 11-264. The raw data from which these plots were
made are given in Table 11-62.
332
-------
HOVEABLE BLOCK SWIRL BUHNER - INTERMEDIATE SWIRL - STAINLESS SMIPHERD-S
RP VS NU,OP.CU?,CO,CH4 ftp. 30.50
g
0,
a
o
0
0
1
1
jrO
0*
H
.OH
> . 7 1
i.16 I) \
..07 / \
.79 / \
.60 / \
.-.2 / \
.^ U \
.05 0
.'68 \
A \
'.» \
.13 \
f b
.SB
. '•O
• I \
.03
.lit
.66
.".B C
.29
.11 ,
.92 /
•"• /
.55 H M
.37 N -N^/
.19 H'^~N H
.00 n
^U
\
\
\
No
\
°^
V0
C
c
c /
c /
/H
C M /
/
/
/
MM
y
\ /
\ /
\ /
\ /
u/
U H
V0 _^-N
^N~T>~0
__N -N ^0
0
N 0
X N—'N
N -NN-N
. oo'cT^
5^"\
-18.00U -11.700 -5.400
7.200 13.500 19.800 26.100 32.
-------
HI' VS CH4
8.17
8.01
(.85
7.69
7.53
7.37
f.21
T.05
6.H9
6. M
o.'/'j
6.09
1. '11
b. //
5.61
5.1?
.96
.80
. J2
. 16
.00
3.84
3.68
i. 36
3.20
3.04
2.8H
2. J2
2.<.0
MUVE'BLE BLOCK SWIRL BUHNER - INTeRMEDItIt SWIRL - STAINLESS SMtPHbRU'S PROBF
1P= 30.50
w
z
X
H
i. it,
1.60
1.21)
1.12
0.96
0.80
0.64
0.4B
0. 32
0. 16
0.00
7.200 13.500 19.800 26.100 32.400 36.700 45.000
RADIAL POSITION, cm
Figure 11-252. RADIAL PROFILE FOR CH4 AT THE 30. 5-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
334
-------
MUVEHBLE BLOCK SH1RL HUKNEK - I NT ERMEDI41 f iwlll - SIGNLESS SHtPHEKD'S PKDhfc
RP VS. CO «P- 30.50
5. JO /• ~^
5.19 „. \
5.09 • «N
.99 / «,
.88
.78
.68
.57
.47
.3h
.26
.16
.05
3.95
3. /4
w
Q
I-H
X
o
z,
0
2
£H
O
CQ
51
U
I. 13
3. 12
3.01
2.91
2.81
2.70
2.60
2.49
2.39
2.?9
?. 18
2.08
1.98
1.87
1.77
1 .66
1.56
1.31)
1.25
1.14
1.04
0.94
O.B3
0.73
0.63
0.52
0.42
0.31
0.21
0. 11
0.00
-11.700 -5.*00 0.900 7.200 13.500 19.800 26.100 32.400 38.700 45.000
RADIAL POSITION, cm
Figure 11-253. RADIAL PROFILE FOR CO AT THE 30. 5-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3. 6% • NOZZLE IN THROAT POSITION
335
-------
\SN
* ,%
Q
|
M
P
2
0
n
pr*|
|3]
u
Hf VS C02
9.3101
1.3113
9.2325
9.1537
9.0K9
8.1161
8.1173
B.B3B5
8.7597
8.6601
8.6021
a. 5233
8.4445
8.3657
6.2669
U.2080
6.1212
8.0504
'.1M6
7.8128
7.8140
1. 7J52
7.6564
1.5776
7.4200
7.26?4
7. 18)6
/. 1048
7.0
-------
MGVE4BLE KLUCK SWIRL BURNER - INTERNED! Alt SKIRL - STAINLESS SHhPHERD'i ('KOBE
4P» 30.50
«
\
0.900 7.200 13.500 19.800 26.100 32.400 18.700 45.000
RADIAL POSITION, cm
Figure 11-255. RADIAL PROFILE FOR O2 AT THE 30. 5-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, ZOOS CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
-------
> vs vo,
103.46
101.94
100.41
•»B.ee
T5.82
92.76
11.23
HB. IB
06. 65
05. 12
H1.59
1)2.06
UO.S3
/9.0I
11.<,a
MMVE4BLE BLUCK SWIRL BUHNER - INI EBXEOI41 E SWIRl - ilMMLESS iHrPHERD'i CRflnE
30.50
£
OXIDE,
U
2
H
I-H
Z
n. s9
M. 36
66.30
66. 73
65.25
63.72
62.19
60.66
59.13
•>7.60
56.06
51.02
51.49
49.96
4B.43
46.90
45.37
43.85
42.32
40. 79
19.26
17.73
16.20
34.67
33.15
31.62
30.09
26.56
27.03
25.50
-16.000 -11.700 -5.400 0.100 1.200 13.500 19.600 26.100 32.400 36.700 -.5.000
RADIAL POSITION, cm
Figure 11-256. RADIAL PROFILE FOR CH4 AT THE 30. 5-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
338
-------
Table H-61. DATA OBTAINED AT THE 30. 5-cm AXIAL POSITION
(Movable-Block Swirl Burner — Intermediate Swirl Intensity). GAS
INPUT, 2008 CF/hr; EXCESS AIR, 3.6%; NOZZLE IN THROAT POSITION
UJ
UJ
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
MOVEABLE BLUCK SWIRt BURNER - INTERMEDIATE SWIRL - STAINLESS SHEPHERD'S PROBE
I<^UT GAS 2008
OUTPUT ANALYSIS
WALL TEHPERA'URE 2453
PREHEAT TEMPERATURE
JlHUtEN OXIDE 56.70 PERCENT ON RANGE 3. 111.09 PPH OXYGEN 3
CAK30N OIUXIOE 70.30 PERCENT ON RANGE 1, 9.96 PERCENT
CA*IJU< MUMJXIuE 1U.40 PERCENT UN rfANGE 3i 0.004 PERCENT
•"llMAMt 0.00 PERCENT UN RANGE 0, 0.00 PERCENT
tXr-tRIMENTAL REiULTS
NITROGEN OXIDE -NO OXYGEN CARBON OIOXIOE-C02
AP
30.50
3T.50
in. io
(0.50
30.50
30.50
JO. 50
30.50
3C.5U
30.50
30.50
3U.5G
3C. 50
3C. 50
Jo. 50
11. .5U
30.50
3J.50
3L'.5U
30.50
3f'.5C
30.50
)(. ' . 50
3U.50
30.50
RP
- IB. 00
-15.00
-12.00
-9.00
-6.00
-J.OO
-.J.OO
-1.00
0.00
.J.OO
•j.OO
0.00
7.00
a. oo
9.00
12.00
14.00
17.00
2i;.oo
?3.00
26.00
3C.OO
35.00
40.00
45.00
RANGE X
3 22.
3 19.
3 13.
3 1 3.
3 19.
3 21.
3 28.
3 30.
3 31.
3 33.
3 37.
3 40.
3 33.
3 46.
3 52.
3 50.
3 4S.
3 28.
3 Ib.
3 16.
3 24.
3 30.
3 34.
3 31.
3 33.
50
70
40
30
40
40
BO
20
90
ao
60
50
30
00
90
60
80
90
20
40
60
OC
00
30
2C
Y
43. 3
37.9
25.6
25.5
37.3
41.2
55.6
5D.4
61. 7
65.5
73.0
78. 7
74.3
B9.6
103.4
98.8
95.2
55.8
34.9
31.5
47.4
5U.O
65.8
60.5
04.3
02 RA
4
5
5
4
2
0
0
0
0
0
0
0
0
0
1
0
1
2
3
5
5
5
5
4
4
.23
. lo
.26
. 14
.12
.98
.74
.62
.52
.46
. 44
.42
. 44
.54
.25
.78
. 18
.46
.93
.40
. IB
.32
.33
.94
.b7
GE «
76.50
72.40
70.60
71.20
70.30
66.30
6<..90
64.00
62.90
62.30
54. 10
63.30
63.10
6J.2C
63.20
63.00
63. 10
66.20
6B.30
73.20
73.00
72.10
72.80
74.00
74.50
Y
9.39
8.57
8.26
B.34
8.17
7.42
7.17
7.01
o.B2
6.71
5.37
6.89
6.85
6.87
6.87
6.84
6.87
7.40
7.79
8.73
8.69
8.51
8.65
e.83
a. la
.60 PERCENT
CARBON MONOXIUE -CO
RANGE X
3
2
2
2
2
I
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
3
3
3
100.20
11.20
31.40
81.40
111.80
93. 10
97.70
100.90
103.30
104.00
92.30
101.10
100.20
99. 10
97.10
92.60
92.00
74.30
53.20
27.30
10.30
2.50
17.40
8.30
6.50
Y
R.050
0. 184
0.539
1.562
.003
4.919
4. 767
4.435
4.391
3. 194
I .986
0.833
0.272
0.066
0.007
0.003
0.002
WE IHA'.E - LM4
KA-iGE X
3
3
3
3
)
3
)
3
2
2
{
(l
t
2
/
L
2
2
3
3
3
3
3
3
3
C.BL
.'.50
1 1 .30
1 3.60
41 .60
6 9 . 1C
od.4C
90. dC
14. 2C
5-.3C
of. 3C
69.00
69.00
i'0.50
86. 1C
7B.90
71.00
65. 3C
26.40
U . 40
3.40
0. 7C
O.OC
O.OC
0.00
Y
d.13
0. 1C
C.-.6
0.5^
1 .93
3.2o
3.24
4.40
C.99
4.53
•j.^j
o. 12
6. 12
0.29
6. lo
7.2E,
6.44
5.71
1.25
C.3o
0.14
0.03
c.oc
0.00
O.CJ
-------
30 27
15
9 30
RADIAL POSITION,cm
-3
-9
-15
A-23-299
Figure 11-257. RADIAL TEMPERATURE PROFILE AT THE
30. 5-cm AXIAL POSITION (Movable-Block Swirl Burner -
Intermediate Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS
OXYGEN, 3.6%; NOZZLE IN THROAT POSITION
340
-------
HP
0)
£
.*
r^
H
M
U
0
HH
w
^
VS. VX
47. C7
45.99
44.90
43.81
42. 73
41.64
40.56
39.47
J8.3B
17. JO
36.21
15.12
14.04
12.95
u .H7
10. 7B
.• H . <> 1
i^'j's
/3. IH
22.09
21.00
19.92
1U.B3
17. n
16.66
14.49
13.40
12.31
11.23
10. 14
9.06
7.97
6.BB
b.80
4. M
3.62
1.45
0.37
-0. 71
-1.80
-2.BB
-3.97
-5.06
-6. 14
-7.23
-fl.31
AP» 30.50
MOVE4BLE BLOCK S«IHL BURMEH - 1 NTERHED1411 SHIKL - G4S 2000 CFH 3.6 fxCESS 02
\
-13.000
-8.700
-4.400
-0.100
4.200
B.500
12.BOO
17.100
25.700
30.000
RADIAL POSITION, cm
Figure 11-258. AXIAL VELOCITY COMPONENT AT THE 30. 5-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2000 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION.
341
-------
MUVE4BLE BLOCK SliIRL BURNER - INIEKMEOIA1E SWIRL - C4i 2000 CFH 3.6 FXCCSS 1,2
/S. VI
16.56
17.99
17.41
16.27
15. 70
15.13
13.18
to
4->
H
U
0
W
^
12.84
12.26
1 l.6'l
11.12
lO.1)1!
•I.'IB
•I.4U
u.e t
fl./l,
1 .111
7. 1 1
5.40
1.613
3. 11
l.'lb
Lit
0.82
0.25
-0.31
-O.B9
-1.46
-2.03
-2.60
-3. 18
-3.75
-4.32
-4.89
-5.46
' -6.04
-6.61
-7. 18
-7.75
-8.33
-U.90
-9.47
-10.04
-10.62
-13.00C
-8.700 -4.400 -0.100 4.200 8.500 12.BOO 17.100
-------
MOVE4BLE BLOCK SWIKl 8URNCR - INTEKMfDItlC SWIRL - SHUNLESS SHLPHtKU'S PHimf
fS NO,0*,C02,CU.CH4 APM07.00
10.14 u—
9.94 U^^ >^D\ ^X"° — D"
I'll ^U —0 _o D^^^O^ ""U^
\ /" -^ /
•). 1
0.
t
&
o
o
0
f— 1
1
,-
8
H
^f
(yj
T VP
[H ^N
^y*
w i
§8
U .
o
u
rvl
O
•k
ffi
U
B. f4
B. 15
7^75
7.S1)
'/. 35
7.16
6.96
6. It,
6.56
6. 36
6. 16
5.96
5.77
5.57
5.37
5. 17
4.97
4.77
4.57
4.37
4. IB
1. 78
).5B
3.38
3. IB
2.98
2.79
2.59
2. )9
2.19
.99
. 79
.59
.39
.20
. 00
O.BO
0.60
0.40
0.20
0.00
CO =
02 =
NO =
CO2 =
CH4 =
C
O
N
D
M
N N N N N
-M H M—M M H H M M H M M M M-
-11.200 -4.400
9.200 16.000 22.800 29.600 16.400 43.200 50.000
RADIAL POSITION, cm
Figure 11-260. COMPOSITE PLOT OF GAS SAMPLING
PROFILES FOR CO, CO2, CH4, NO, AND O2 AT THE 107-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
-------
KOVEABLt BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - STAINLESS SMEPMEKO'S CHUHE
P VS. CO 1PM07.00
2.B452 •
2.7903
2.7353
2.6U04
2.6254
2.5704
2.«
2.*
?.?407
t .IH57
/.1307
.9109
.8009
.6910
.JO I?
. 3063
. Ot)6<.
.0315
.9765
^ O.BI 16
{J 0.7567
0.7017
0.6467
0.5918
0.5368
0.3719
0.3170
0.2620
0.2070
0.1521
0.0971
0.0421
-18.000 -11.200
-4.400 2.400 9.200 16.000 22.BOO 29.600 16.400 43.200 50.000
RADIAL POSITION, cm
Figure 11-261. RADIAL PROFILE FOR CO AT THE 107-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
-------
BLUCK SWIRL BUHNER - INTEHMFOIAU swim - staiNiess
-4.400 2.400 9.200 16.000 22.800 29.600 36.400 43.200 50.000
RADIAL POSITION, cm
Figure 11-262. RADIAL PROFILE FOR CO2 AT THE 107-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
345
-------
MOVEABLE BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - SIA1NLESS iHCPHEKO'S P""*
^ 2.398H
Q 2.3094
2.1306
.041?
,6B35
,5047
.0576
0.9662
0.6788
0.7000
-18.000 -11.200
-4.400 2.400 9.200 16.000 22.800 29.600 36.400 43.200 50.000
RADIAL POSITION, cm
Figure 11-263. RADIAL PROFILE FOR O2 AT THE 107-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3. 6% ; NO7./LE IN THROAT POSITION
346
-------
Rp vj NH,
Mi)VE«BLE HLUCK SWIRL HUKNtR - 1 NT tKWEUI 41F. SWIKL - SIAItLESS iHLPMbRO'i PKOrtE
APMO/.OO
a
ft-
CX
tf
R
o
u
2
H
75. 10
74.42
73. 7b
(3.OB
71.73
/I .06
10. 3b
1.0. 71
09.U3
67.69
67.01
66. 14
c.5.67
64.32
03.64
62.97
62.30
61.62
60.28
^9.60
S8.2S
'..6.21
O'j.56
'j2.B6
•jO.84
•)0. 17
48.82
47.47
46.80
46. 13
45.45
44. 78
44.11
43.43
42.76
42.08
41.41
-4.400 2.400 9.200 16.000 22.600 29.600 36.400 43.200 50.000
RADIAL POSITION, cm
Figure 11-264. RADIAL PROFILE FOR NO AT THE 107-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
3. 6%; NOZZLE IN THROAT POSITION
347
-------
Table II-62. DATA OBTAINED AT THE 107-cm, AXIAL POSITION
(Movable-Block Swirl Burner — Intermediate Swirl Intensity). GAS INPUT,
2008 CF/hr; EXCESS AIR, 3.6%; NOZZLE IN THROAT POSITION
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
MLWEABLE DLOCK buIRL BURNER - INTERMEDIATE SKIRL - STAINLESS SHtPMERO'S P«OBE
UJ
*•
00
INKuT GAS 2008
OUTPUT ANALYSIS
i 1 IKUL.EN JXIOE
CA-*bD'4 DI u< 1 OE
LAtirttlN MONOXIDE
HIMHANE
WALL TEMPERATURE
56. 70 PERCENT
79.30 PERCENT
10.40 PERCENT
0.00 PERCENT
0»l RANGE
ON RANGE
ON RANGE
ON RANGE
245J
3. Ill
1, 9
3, 0.
0, 0
PREHEAT TEMPERATURE 0
.09 PPM
.96 PERCENT
004 PERCENT
.00 PERCENT
OXYGE'l 3.oO PERCENT
EXPERIMENTAL RESULTS
•Jl IROGEN OXIDE -NO
AP RP
11' 1 . 00 - lo1 . 00
107.00 - 15.00
107.00 -12.00
ir.7.00 -9.00
inf. 00 -t..OO
107.00 -3.00
1C J. 00 0.00
107.00 i.oo
1L-7.0C f.OO
1C 7. 00 9.00
IOf.00 12.00
lOf.OG 15.00
1(17.00 la.oo
107.00 21.00
107.00 24.00
107.00 J7.00
107.00 3U.OO
107.00 35.00
1C7.00 4C.OO
1G/.00 45.00
lo r .00 ->u. 00
KAMGE X
3 39.00
3 36.70
3 35.90
3 35. 8C
3 32. 5C
3 38.40
3 35.80
3 32.50
3 32.30
3 37.80
3 32.80
3 35.90
3 35.00
3 34.80
3 33. 3C
3 31.00
3 29.90
3 28. OC
i 26.10
3 23.20
3 21.50
V
75. 7
71.2
h9.6
69.4
o2 . 9
74.5
69.4
62.9
62.5
73. 3
63.5
69.6
69.0
67.4
64.5
61.1
57.8
54. 1
50.3
44. 1
41.4
OXYGEN
02
1.44
1.31
1 .00
0.95
0. 70
0.96
0.84
0.71
O.a&
0.9C
0.96
1 .OC
1 . 16
1 . 3C
1 .30
1.63
2.26
3.53
4.49
4.56
5.26
CARBON OIOXIOE-C02 CARBON MONOxloE -CO
RANGE X
1 80.10
1 79.10
1 77.90
1 77.80
75.80
77.10
77.10
76.30
76.50
77.80
77.50
78.50
78.70
78.50
79.30
19.00
79.60
76.70
74.00
1 72.90
I 72.10
Y RANGE X
10.13 2 61 .60
9.92 2 77.60
9.67
9.65
9.24
9.51
9.51
9.34
9.39
9.65
9.59
9.80
9.84
9.80
9.96
51. 10
53.60
68. 6C
57.50
59.40
66.60
62.00
56.60
55.60
51.20
45.00
39.00
32.70
9.90 2 42.70
10.03 2 45.00
9.43 2 18.30
8.88 2 8.60
8.67 3 98.70
8.51 3 86.80
Y
1.132
1.477
1 .881
2.00
-------
The temperature profile for a 107-cm axial position maintains a
constant value of 2550° ± ZO°F across the width of the furnace.
The axial component of velocity is shown in Figure 11-265. The
peaks occur at —4 cm and +40 cm, with recirculation appearing at 45 cm.
Figure 11-266 shows the tangential velocity at the 107-cm axial position.
We examined a gas sample from the center line of the burner at a
12. 7-cm axial position to determine if higher hydrocarbons were being
formed during the combustion process. Table 11-63 lists the chemical
components of the natural gas being used. Table 11-64 lists the gas species
analysis on the burner center line as determined by a mass spectrograph.
The hydrocarbons formed in the combustion process were 0.4% ethylene,
0.2% propylene, and 0.4% acetylene.
To get an indication of the axial variation of the chemical species,
an in-depth profile of the gas concentrations along the center line of the
burner was made. The profile is presented in Figure 11-267. The NO
profile shows similar characteristics to that of the short-flame baffle
burner; that is, it has its maximum value on the burner wall, reaches
a minimum at an axial position of about 40 cm, and then asymptotically
approaches a constant value which is less than the average concentration
of NO measured in the flue.
By finding the point where the stoichiometric fuel/air ratio is achieved,
it is possible to make a prediction of the flame length along the axis of
the burner. In this case, it occurs near an axial position of 84 cm.
D. High-Intensity Flat-Flame Burner
1. Burner Design
The flat-flame high-intensity burner (cross-sectional view in Figure
11-268) is constructed so that the fuel and air have a high swirl intensity
and are then allowed to rapidly expand along the burner block walls.
This arrangement causes combustion to occur in a thin layer over the
burner-block surface. This flame has the visible appearance of being
flat.
349
-------
00
~v.
4"*
,
^
H
U
0
^
w
^
' VS. VX
17.72
17.23
16.75
16.27
15.78
15.30
14.82
14.34
13.85
13.37
12.89
12.40
11.92
1 1.44
10.95
10.47
9.->0
9.02
8.54
8.U6
7.09
6.61
6.12
5.64
•>. 16
4.67
4.19
3.71
3.22
2. 74
2.26
1.78
1.29
0.81
0.33
-0.15
-0.63
-I. 11
-1.60
-2.08
-2.56
-3.05
-3.53
-4.01
-4.49
-4.98
-5.46
-5.94
-6.43
-6.91
HOVEABLE BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - GAS 2000 CFH 3.6 EXCESS 02
1P-I07.00
\
\
\
-20.000 -13.000 -6.000 1.000 8.000 15.000 22.000 29.000 36.000 43.000
RADIAL POSITION, cm
Figure 11-265. AXIAL VELOCITY COMPONENT AT THE 107-cm
AXIAL POSITION (Movable-Block Swirl Burner - Intermediate
Swirl Intensity). GAS INPUT, 2000 CF/hr; EXCESS OXYGEN,
3.6%; NOZZLE IN THROAT POSITION
350
-------
«p
to
4-*
KJ
H
HH
u
0
-1
W
VS. VT
5.24
5. 11
4.84
4.71
4.5U
4.45
4.31
4. IB
4.05
1.T2
J. 79
3.65
J.52
). 12
2. 06
2.7J
2.46
2.20
2.06
1. -)3
l.flO
1.67
1.53
1.40
1.77
1.14
1.00
O.B7
0. '4
0.61
0.48
0.34
0.21
0.08
-0.04
-0.18
-0.31
-0.44
-0.57
-0.71
-0.84
-0.97
-1.10
-1.24
-1.37
-1.50
HOVE4BLE BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - G4S 2000 CFH 3.6 EXCESS 0?
4PM07.00
-20.000 -13.000 -6.000 1.000 8.000 15.000 22.000 29.000 36.000 43.000
RADIAL POSITION, cm
Figure II-Z66. TANGENTIAL VELOCITY COMPONENT AT THE
107-cm AXIAL POSITION (Movable-Block Swirl Burner -
Intermediate Swirl Intensity). GAS INPUT, 2000 CF/hr;
EXCESS OXYGEN, 3.6%; NOZZLE IN THROAT POSITION
-------
Table 11-63. MASS SPECTROMETER LABORATORY
ANALYTICAL REPORT (Natural Gas Input)
Mntennl 8933 Natural Gas Input
Requested by
I/"/73
U
-------
Table 11-64. MASS SPECTROMETER LABORATORY
ANALYTICAL REPORT (Furnace Product Gas)
8933 Furnace Product Gas
M.ilenal Hadial Position — 0 cm Axial Position — I'l in. Qi1tp
1/11/73
Carbon Dioxide
Hydrogen
Argon
W.iler Vapor
Helium
Methane
EtlMne
i-Biit.ine
C:ilc. H. V., Bin SCF
C.llc. S|) (|r (Air 1.000)
2. 8
3 8
4 0
0. 6
3554
Nitrogen
Ciirhon Monox.de
Nitroyei' + CO
Uol X
51. 7
3.2
Ethylene
Propylene
Butenes
Mol %
0. 4
0.2
1,3-Buladiene
Methyl
+Propadiene
Vinyl
Benzene
Xylenes
Ethyl Benzene
Styrene
Indene
Napthalene
TOTAL
Air Content
Approved by ________
'
353
-------
OJ
U1
CH4>
%
42
39
36
33
30
27
24
21
18
15
12
9
6
3
0
CO,
%
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
co2,
%,
14
13
12
II
10
9
8
7
6
5
4
3
2
1
0
°2'
%
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
60 -
50 -
40
0 10
30
50 70 90 110
AXIAL POSITION.cm
Figure 11-267. AXIAL GAS COMPOSITION PROFILE AT THE 0. 0-cm RADIAL POSITION
(Movable-Block Swirl Burner — Intermediate Swirl Intensity). GAS INPUT,
2008 CF/hr; EXCESS OXYGEN, 3.6%; NOZZLE IN THROAT POSITION
-------
DIA.-8HOLES EQUALLY SPACED
STRADDLE t's AS SHOWN
PIPE PLUG WHEN
PILOT IS NOT USED
I BOLT a NUT
TACK WELD HEAD TO FCE.fc
A-53-788
Figure II-Z68. CROSS-SECTIONAL VIEW OF
HIGH-INTENSITY FLAT-FLAME BURNER
-------
2. Hot-Model Input-Output Data
The flat-flame burner was operated at three different gas inputs, all
over a range of fuel/air ratios expressed as percentage of oxygen in the
flue. No changes were made in the burner nozzle position or the swirl
vanes in the burner housing as these were fixed by design. The input-
output tests were conducted at gas inputs of 1670, 2010, and 2394 CF/hr,
with between 1. 0 and 7. 0% oxygen in the flue by volume. Figure 11-269
shows the results of these runs. The nitric oxide (NO) concentrations
were normalized by dividing the weight of the flue products at the stoi-
chiometric mixture of fuel and air into the measured concentration of NO
and multiplying this ratio by the weight of the flue products for the input
conditions at which the measurements were taken. The input-output data
for the other gas species (O2, COz, and CO) are shown in Table 11-65.
Based on the analysis of the input-output results we concluded that —
1. From 1. 0 to about 3. 75% excess oxygen in the flue, the gas input
rate made little difference in the amount of NO formed so long as
the flame had a visible appearance of being flat. Spot-check runs
for NO in the flue gases at gas inputs below 1670 CF/hr (where the
flame lost its flat appearance) showed differences as gas input was
changed. However, the flame was very lazy and concentration read-
ings erratic. Definite measurements could not be made, only gross
differences observed. Consequently, measurements at gas inputs
below 1670 CF/hr were not pursued further.
2. The amount of NO formed with more than 3. 75% oxygen in the flue
did change significantly with changes in the gas input. We observed
that the shape and appearance of the flame also changed as the flue
oxygen increased beyond 3.75%. The flame withdrew into the burner
block and appeared as though combustion was completed before the
gases could expand around the curvature of the burner block and form
the characteristic flat appearance.
3 The NO concentration at all gas inputs and excess air levels tested
was considerably lower for the flat-flame burner than any other
"commercial type" burner tested. We postulate that the NO was
relatively low because the flame tightly adhered to the burner block,
which is a good heat sink. The heat-sink effect of the block lowered
flame temperature and hence lowers NO formation.
3. In-the-Flame Survey Results
Again, as part of this program, we mapped the concentrations of
CO, COz, CH4, Oz, and NO; the temperature; and the gas velocity in
the flame.
356
-------
no
o. 90
a
o"
z
S 70
N
O 50
Z
30
O 2394
A 2010
O 1670
% 02 IN FLUE
A-83-iaeo
Figure 11-269. NORMALIZED NO CONCENTRATION AS A FUNCTION
OF EXCESS AIR FOR THE FLAT-FLAME BURNER AT THREE GAS INPUTS
357
-------
Table 11-65". INPUT-OUTPUT DATA FOR THE FLAT-FLAME BURNER
„ Flue Analysis ,., .. ,
Gas z Normalized
Run No. Input, CF/hr NO, ppm O2> % CO2, % CO, ppm NO, ppm
1 2394 48 2.31 10.7 2.3 53
2 2394 39 0.63 11.5 7.6 41
3 2394 65 4.53 9.0 0.7 80
4 2394 71 4.13 9.2 0.3 86
5 2394 72 3.62 9.7 0.6 85
6 2394 65 2.86 10.2 0.7 73
7 2394 56 2.36 10.5 1.2 62
8 2394 42 1.21 11.2 44.5 45
9 2010 50 6.53 7.9 0.1 69
10 2010 58 6.13 8.2 1.3 78
11 2010 73 5.49 8.7 1.2 95
12 2010 78 4.66' 9.1 0.6 97
w 13 2010 77 3.68 9.8 0.5 91
ui 14 2010 53 2.37 10.5 4.8 59
00 15 2010 42 1.30 11.2 46.6 45
17 1670 58 2.82 10. 1 3.6 66
18 1670 51 1.26 10.9 26.8 55
19 1670 85 4.49 9.1 1.2 105
20 1670 79 5.80 8.5 1.3 105
21 1670 70 6.48 8. 1 0. 8 96
22 1670 51 7.24 7.6 0.9 73
23 1670 40 7.84 7.2 0.3 60
24 1670 75 3.77 9.6 2.9 89
-------
Both because gas input had little effect on the NO formed and the
NO concentrations were relatively low, we ran only one set of conditions
at a gas input of Z010 CF/hr and 4.4% oxygen in the flue. We also sus-
pected that most of the flow patterns of interest occurred near the burner
block because of the visible appearance of the flame. A radial scan of,
temperature at axial positions of 12, 69, and 130 cm substantiated that
combustion is nearly complete very near the burner-block hot face
(Figure II-Z70). At only 12 cm from the block, the temperature across
the furnace width was already nearly uniform. The maximum deviation
from the mean was only ±40°F.
Flow direction was also looked at with a two-hole Hubbard Probe.
Table 11-66 shows a radial flow direction scan at 1Z. 7 cm axially from
the burner hot face. Flow was found to be up the furnace [toward the
burner as indicated by the negative (—) AP readings] except at extreme
radial positions of beyond ±30 cm. Farther out into the furnace, the
flow direction was always away from the burner as shown in Tables 11-67
and 11-68 by positive (+) AP readings. The data of Tables 11-67 and
11-68 were taken at axial positions of 71 cm and 104 cm, respectively.
This initial work was followed by detailed in-the-flame scans for
gas species at 1Z. 7 cm, 68. 6 cm, and 104. 1 cm from the burner block.
A composite of the results is shown in Figure II-Z71 for NO, Oz, COz,
CO, and CH4 at an axial position of only 1Z. 7 cm. Interestingly, at an
axial position relatively close to the burner, the methane concentration
is already less than 1/4% with only small variations in concentration as
a function of radial position. This is another indication of how fast and
near the burner that combustion is completed. Because of the scale re-
quired to plot all of the species concentrations on the same graph, a great
deal of resolution is lost. However, the data were collected in such a
way as to obtain the required finer resolution as shown by the raw data
given in Table 11-69 and plotted in Figures 11-272, 11-273, 11-274, 11-275,
and 11-276.
Radial scans of species concentration were also taken farther down
the furnace length at 68. 6 cm and 104. 1 cm. However, these were of
only minor interest since combustion was complete and the concentration
from one axial position to the next changed very little. The raw and
359
-------
27
CVJ
g
X 26
LJ
tr
2 25
UJ
Q.
UJ
24
WALL TEMPERATURE 2510 °F
O AXIAL POSITION, 130cm
A AXIAL POSITION, 69 cm
D AXIAL POSITION, 12cm
I I
55 35 15 5 0 -5 -15
RADIAL POSITION, cm
-35
-55
A-83-I2I9
Figure 11-270. RADIAL SCAN OF TEMPERATURE FOR THE
FLAT-FLAME BURNER AT A GAS INPUT OF 2010 CF/hr
AND 4. 4% EXCESS OXYGEN IN THE FLUE
360
-------
Table 11-66. TIME-AVERAGED DIRECTIONAL FLOW DATA OBTAINED USING
A TWO-HOLE PROBE AT AN AXIAL POSITION OF 12. 7 cm
(Flat-Flame Burner; 2010 CF/hr, Gas Input; 4.4% Excess Oxygen)
Time Avg, Time Avg, Time Avg,
RP, cm A P RP, cm A P RP, cm A P
50 2.173 15 -2.456 -20 -1.434
45 1.879 10 -2.644 -25 0.294
40 0.970 5 -3.082 -30 1.542
35 -0.206 0 -3.158 -35 2.532
30 -0.764 -5 -3.067 -40 1.701
25 -1.521 -10 -2.812 -45 1.306
20 -2.207 -15 -2.226
Table 11-67. TIME-AVERAGED DIRECTIONAL FLOW DATA OBTAINED USING
A TWO-HOLE PROBE AT AN AXIAL POSITION OF 71 cm
(Flat-Flame Burner; 2010 CF/hr, Gas Input; 4.4% Excess Oxygen)
RP, cm
45
40
35
30
25
20
15
Time Avg,
AP
0. 880
0. 849
1. 097
1. 071
1. 150
1. 089
1. 043
RP, cm
10
5
0
-5
-10
-15
-20
Time Avg,
AP
0. 994
0. 973
1. 020
0. 907
0. 853
0. 765
0. 819
RP, cm
-25
-30
-35
^0
-45
Time Avg,
AP
0. 763
0. 659
0. 645
0. 518
0. 329
-------
Table 11-68. TIME-AVERAGED DIRECTIONAL FLOW DATA OBTAINED USING
A TWO-HOLE PROBE AT AN AXIAL POSITION OF 104 cm
(Flat-Flame Burner; 2010 CF/hr, Gas Input, 4.4% Excess Oxygen)
RP, cm
45
40
35
30
25
20
15
Time Avg,
A P
0.398
0.223
0. 302
0. 318
0. 164
0.285
0. 293
RP, cm
10
5
0
-5
-10
-15
-20
Time Avg,
AP
0. 234
0.269
0. 259
0. 295
0. 323
0. 375
0. 375
RP, cm
-25
-30
-35
-40
-45
-50
Time Avg,
A P
0. 395
0.421
0.465
0. 509
0. 581
0. 633
-------
FLAT FLAHE BURNER - STAINLESS SHEPHERD,S PROBE
RP VS NO,02,C02,CO.CH4 AP> 12.70
10.52 D~v_
10.31 ^0 0— .
10.11 ^0 x-D~\
9.90 °^ / "^
9.69 \ D' \
9.49 ^0 / ^a
9.28 0^ \
"9". 08' ~ ~ ' \
8.87
8.66
8.46
8.25
8.04
' " 7'.84 " " •" "~ • •
7.63
7.43
7.22
7.01
6. 81
6.60
6.39
6.19
5.98
5.78
5-'5J _ /
5.36 /
5.16 /
4.95 /
4.74 0
4.54 /
,*-33 . /
4.13 /
3.92 0
3.71 /
3.51 /
3.30 /
3.10 C C /
2.89 / \ ' 1
2.68 / \ 0
2.48 C' \ /
2.27 / \
2.06 C C C C C /
1.66 \ 1
1.65 y
1.45 A
1.24 0 \
1.03 / \
0.83 N — N — N ~^— -^^. ^--u y\ — N — N —
0.41 M^^"b^^ " " ~~ V
0.00 XC C
1-D D 0 »-^
S
V ^
^•D 0
A
\
\
°\ ^-°
\ ^-u
\ ^-°
NJ u-*^
^1 N N N N N N N N N
C C C- — ~^"C C- C
t_6.0._09e_ .-48,000. . r36.000 724.000. ._^U-..O.PP___lP_.p_Op_ 12.000
Figure 11-271. COMPOSITE PLOT OF RADIAL GAS SPECIES
CONCENTRATION AT A 12. 7-cm AXIAL POSITION FOR A
FLAT-FLAME BURNER OPERATING AT A GAS INPUT OF
2010 CF/hr AND 4.4% EXCESS OXYGEN IN THE FLUE
363
-------
Table 11-69. RAW AND REDUCED GAS SPECIES DATA FOR RADIAL SAMPLING SCANS
AT AN AXIAL POSITION OF 12.7 cm FROM A FLAT-FLAME BURNER OPERATING
AT A GAS INPUT OF 2010 CF/hr AND 4.4% EXCESS OXYGEN IN THE FLUE
TRACER GAS STUDIES OF COMBUSTION BURNERS
FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
PROGRAM
INPUT GAS 2010
WALL TEMPERATURE 2480
PREHEAT TEMPERATURE
OUTPUT ANALYSIS
NITROGEN OXIDE 45.50 PERCENT ON RANGE 3, 88.67 PPM
CARBON DIOXIDE 75.70 PERCENT ON RANGE**, 177.73 PERCENT
CARBON MONOXIDE 1.60 PERCENT ON RANGE 3, 0.000 PERCENT
METHANE 0.00 PERCENT ON RANGE 0, 0.00 PERCENT
OXYGEN 4.40 PERCENT
EXPERIMENTAL" RESULTS
NITROGEN OXI
AP
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12/70
12.70
12.70
12.70
12.70
12.70
RP
-60.00
-54.00
-48.00
-42.00"
-36.00
-30.00
-24.00
-18.00
-12.00
- 6~. 00
0.00
6.00
12.00
18.00
24.00
"30.00""
36.00
42.00
48.00
54.00
60.00
RANGE
3
3
3
"3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
39.80
40.70
40. 10
36.70
35.80
36.50
33.80
33.30
37.60
41.90
40.70
38.50
41.10
41.10
41.10
38.50
40.70
41.80
42.20
47.30
46.60
DE -NO
Y
77.3
79. I
77.9
71.2
69.4
70.8
65.5
64.5
73.0
81.5
79.1
74.7
79.9
79.9
79.9
74.7
79.1
81.3
82.1
92.2
90.8
OXYGEN
02
0.56
0.50
0.55
0.57
0.70
0.65
0.79
1.29
2.78
3.90
V 83
5.80
6.59
6.05
5.00
4.05
3.52
3.56
3.80
3.92
4. 19
CARBON DIOXIDE-C02
RANGE
1
1
1
" 1
1
1
1
1
1
"1
1
1
I
1
1
i
i
i
i
i
i
X
81.90
81.10
80.70
80.10
78.70
77.00
76.20
78.20
80. 10
78.50
76.60
74.20
72.00
71.90
73.30
75.40
76. 70
77.00
76.80
76.90
76.00
Y
10.51
10.34
10.26
1 0 . 1"3
9.84
9.49
9.32
9.73
10.13
9.80
9.41
8.92
8.49
8.47
8.75
9.16
9.43
9.49
9.45
9.47
9.28
CARBON
RANGE
1 53
52
53
54
63
73
72
54
10
64
8
5
6
98
12
24
26
13
4
0
74
MONOX
X
.30
.80
.20
.80
.30
.00
.20
.10
.00
.10
.60
.70
.90
.30
.90
.80
.50
.60
.70
.70
.00
IDE -CO
Y
1.993
1 .967
1.988
2.071
2.535
3.113
3.064
2.034
0.263
0.029
0.003
0.002
0.002
0.048
0.212
0.419
0.449
0.224
0.077
0.012
0.034
METHANE
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
IE - CH4
X
8.40
5.70
5.20
5.10
5.90
6.20
6. 80
6.90
3.80
3.50
4.30
3.10
2.60
6. 10
4.80
5.40
4.60
4.00
2.80
3.60
4.70
Y
0.36
0.24
0.22
0.22
0.25
0.26
0.29
0.29
0. 16
0.15
0.18
0. 13
0. 11
0.26
0.20
0.23
0. 19
0.17
0.12
0.15
0.20
-------
L-
• w
Q
X
o
n
.£
o
m
<
u
RP VS C02
10.5185
10.4785
10.4385
10.3985
10.3585
10.3185
10.2784
10.2384 '
10. 1984
10.1584
10.1184
10.0784
10.0384
9.9983
9.95B3
9.9183
9.8783
9.8383
9.7983
9.7583
9.7182
9.6782
9.6382
9.5982
9.5582
9.5182
9.4782
9.4381
9.3981
9.3581
9.3181
9.2781
9.2381
•5.1981
9.1580
9.1180
9.0780
9.0380
8.9980
8.9580
8.91BO
8.8779
8.8379
8.7979 "
8.7579
8.7179
8.6779
8.6379
8.597B
8.5578
8.5178
8.4778
FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
AP- 12.70
-60.000 7_*8.ppp -J6.000 .^2*_-OOp -12.000 rPiPP.? 12.000 _ 24.000 36.000 48.000 60.000
RADIAL POSITION, cm
Figure 11-272. RADIAL SCAN OF CARBON DIOXIDE FROM A
FLAT-FLAME BURNER AT AN AXIAL POSITION OF 12. 7 cm
WHILE OPERATING AT A 2010 CF/hr GAS INPUT AND
4.4% EXCESS OXYGEN IN THE FLUE
365
-------
^
u
z
<
H
u
7,
RP VS CH4
0.3620
0.35M
0.3523
0.3474
0.3425
0.3J77
0.3328
0.3279
0.3231
0.3182
0.3133
0.3085
0.3036
0.2987
0.2938
0.2890
0.28*1
0.2792
0.27*4
0.2695
0.2646
0.2598
0.2549
0.2500
0.2452
0.2403
0.2354
0.2306
0.2257
0.2208
0.2160
0.2111
0.2062
0.2014
0.1965
0.1916
0.1868
0.1819
0.1770
0.1722
0.1673
0.1624
0.1575
0.1527
O.I4T8
0.1429
0.1381
0.1332
0.128)
• 0.1235
0.1186
0.1137
FLAT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
12.70
-60.000 -48.000 -36.000 -24.0OO -12.000 -0.000 12.000
RADIAL POSITION, cm
24.000
46-.oot>
Figure 11-273. RADIAL SCAN OF METHANE FROM A
FLAT-FLAME BURNER AT AN AXIAL POSITION OF 12. 7 cm
WHILE OPERATING AT A 2010 CF/hr GAS INPUT AND
4.4% EXCESS OXYGEN IN THE FLUE
366
-------
RP
f
^
Z
u
0
X
0
VS 02.
6.59
6.47
6.35
6.23
6.11
5.99
5.87
5/75
5.63
5.52
5.40
5.28
5. 16
5.04
4.92
4.80
4.68
4.56
4.44
4.32
4.20
4.08
3.96
3.84
3.72
3.60
3.49
3.37
3.25
3.13
3.01
2.89
2.77
2.65
2.53
2.41
2.29
2.17
2.05
.93
.81
.69
.57
.46
.34
.22
.10
0.98
0.86
0.74
0.62
0.50
FLM FLAME BURNER - STAINLESS SHEPHERD,S PROBE
AP- 12.70
-60.000 -48.000 -36.000 -24.000 __li2._000 -0.000 12.000 2*.000 36.000 48.000 60.000
RADIAL POSITION, em
Figure 11-274. RADIAL SCAN OF OXYGEN FROM A FLAT-FLAME
BURNER AT AN AXIAL POSITION OF 12.7 cm WHILE OPERATING
AT A 2010 CF/hr GAS INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
367
-------
-
\,°
u
Q
H
o
§
2
Z
O
0
a.
^
u
RP VS. CO
1.1136
3.0526
2.9116
2.9305
2.8695
2.8085
2.7475
2.6865
2.6255
2.5645
?.5035
2.4425
2.3815
2.3205
2.2595
2. 1985
2.1375
2.0765
2.0155
1.9545
1.8935
1.8325
1.7715
1.7105
1.6495
1.5884
1.5274
1.4664
.4054
.3444
.2834
.2224
.1614
. 1004
.0394
0.9784
0.9174
U.8564
0.7954
0.7344
0.6734
0.6124
0.5514
0.4904
0.4294
0.3684
0.3074
0.2464
0.1853
0.1243
0.0633
0.0023
FLAT FLAME BURNER - STAINLESS SHEPHERD,s PROBE
12.70
-60.000 -48.000 -36.000 -24.000 ~-TZ.OOO~' -O.OOD '12.000'
RADIAL POSITION, em
2V.000
36.000-
Figure H-275. RADIAL SCAN OF CARBON MONOXIDE
FROM A FLAT-FLAME BURNER AT AN AXIAL POSITION
OF 12.7 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
368
-------
RP
£
£
_
u
Q
8
NITRIC
VS NO,
92.27
91.72
91.16
90.63
90.09
89. 5*.
39.00
88. ",6
87.91
87.37
86.82
86.28
85. 74
85.19
84.65
84.10
83.56
.03.02
82.47
dl.93
81.38
80.8".
80.30
79.75
79.21
re. 66
78.12
77.58
'7.03
16.49
75.9*
75.1.0
74.86
74.31
73.77
73.22
72.68
'2.14
71.59
71.05
70.50
69.96
69.42
68.87
68.33
67.78
67.24
66.69
66.15
65.61
65.06
64.52
FLAT FLAME BURNER - STAINLESS SHEPHERD.s PROBE
12.70
\/
-48.000 -36.000 -24.000 -IZ.OOO -0.000 12.000 24.000 36.000 48.DOO 60.000
RADIAL POSITION, em
Figure 11-276. RADIAL SCAN OF NITRIC OXIDE FROM
A FLAT-FLAME BURNER AT AN AXIAL POSITION OF
12.7 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
369
-------
reduced data for an axial position of 68. 6 cm are shown in Table 11-70
and plotted as a composite graph in Figure 11-277. Plots of each species
with a greater resolution than in Figure 11-277 are shown in Figures
11-278, 11-279, 11-280, 11-281, and 11-282 for NO, O2, CO2, CO, and CH4.
The raw and reduced data for an axial position of 104. 1 cm is shown in
Table 11-71 and plotted as a composite in Figure 11-283. Again plots of
each species at greater resolution are given in Figures 11-284, 11-285,
11-286, H-287, and 11-288.
E. Boiler Burner
1. Burner Design
The experimental burner used for these tests was a sealed-down
(momentum) version of a typical vane-register boiler burner (Figure
11-289). This design was selected because it generates the same type of
swirl pattern and intensity as a large number of full-scale types from
different major manufacturers. This type of vane arrangement is also
readily mathematically modeled to describe the swirl intensity. The bur-
ner consists of eight air-guide vanes through which the air passes in
parallel to the vane major area surfaces (Figure 11-290). The vanes can
be adjusted 90 degrees on their own axis from a full closed position to
full open. At the full open position, the air stream is directed radially
to the burner axis. By adjusting the angle of the vanes, the amount or
intensity of swirl is changed. Gas is injected through a. central tube
located at the hot face of the burner block hole and on the axis of the
burner. The end of the gas nozzle has a hemispherical head with eight
gas ports drilled at a 45-degree angle to the burner axis. In this way
the gas is injected slightly radially to the axis of the burner. The hole
diameters in the end of the gas nozzle are 0.25 inch in diameter. The
exit gas velocity is dependent on volumetric flow of gas. The design
capacity of the burner is 4000 CF/hr for a gas velocity per nozzle of
about 107 ft/s.
370
-------
Table 11-70. RAW AND REDUCED GAS SPECIES DATA FOR RADIAL SAMPLING SCANS
AT AN AXIAL POSITION OF 68. 6 cm FROM A FLAT-FLAME BURNER OPERATING
AT A GAS INPUT OF 2010 CF/hr AND 4.4% EXCESS OXYGEN IN THE FLUE
TRACER GAS STUDIES OF COMBUSTION BURNERS
FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
PROGRAM 2
INPUT GAS 2010
WALL TEMPERATURE 2*80
PREHEAT TEMPERATURE
OUTPUT ANALYSIS
NITROGEN OXIDE 45.50 PERCENT ON RANGE
88.67 PPM
OXYGEN 4.40 PERCENT
CARBON DIOXIDE 75.70 PERCENT ON RANGE**.
CARBON MONOXIDE 1.60 PERCENT ON RANGE 3,
METHANE ' 0.00 PERCENT ON RANGE 0,
177.73 PERCENT
0.000 PERCENT
0.00 PERCENT
uo
EXPERIMENTAL RESULTS
NITROGEN OXIDE -NO
AP
68.60
""68.60"
68.60
68.60
68.60
68.60
68.60
68.60
68.60
68.60
68.60
68.60
68.60
RP RANGE X
-60.00 3 54.80
-50.00
-40.00
-30.00
-20.00
-10.00
0.00
10.00
20.00
30.00
40.00
50.00
60.00
3
3
3
3
3
3
3
3
3
3
3
3
50.80
59.00
56. 10
54.50
48.70
49.40
47.90
44.40
43.90
42.70
39.10
36.30
Y
107.2
99.2
115.7
109.8
106.6
95.0
96.4
93.4
86.4
85.4
83.1
75.9
70.4
OXYGEN CARBON DIOXIOE-C02
02 RANGE X
0.69 1 84.80
0.77
1.08
1.65
1.40
2.28
3.08
3.81
4.84
4.92
5.08
5.23
6.01
1
1
1
1
1
1
1
1
1
1
1
85.50
84.70
86.20
85.90
83.30
80.90
78.90
76.00
75.40
75.10
74.00
72.00
Y
11.15
if. 3d
11.12
11.46
11.39
10.82
10.30
9.88
9.28
9.16
9.10
8.88
8.49
CARBON MONOXIDE -CO
RANGE X
2 13.70
2
2
3
3
3
3
3
3
3
3
3
3
9.20
1.60
104.30
76.10
52.70
9.70
0.60
1.20
0.50
1.40
2.60
1.10
Y
0.226
0.150
0.027
0.052
0.036
0.023
0.003
0.000
0.000
0.000
0.000
0.001
0.000
METHANE - CH4
RANGE X
3 6.00
3 5.60
3 6.40
3
3
3
3
3
3
3
3
3
3
6.20
5.40
5.00
4.70
4.40
3.80
4.10
4.70
3.80
4.50
Y
0.25
0.24
0.27
0.26
0.23
0.21
0.20
0.19
0.16
0.17
0.20
0.16
0.19
-------
RP VS NO
11. *6
FLAT FLAME BURNER - STAINLESS SHEPHERD, S PROBE
, 02, CO?, CO, CH* »P- 66.60
11.2*
11.01
10.79
10.56
10.3*
10.11
9.89
9.66
9.**
9.21
8.99
8.76
8.32
8.09
7.87
7.6*
7.«2
6.97
6.7*
6.52
6.29
6.07
"57!i*~
5.62
*.72
-*r*
-------
FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
AP> 66.60
L _-36.00.0 -Zt.OOO -12.000 -0.000 U.OOO 2*.rOOO 36.00.0 ._*8..QOO..
RADIAL POSITION, cm
Figure 11-278. RADIAL SCAN OF NITRIC OXIDE FROM A
FLAT-FLAME BURNER AT AN AXIAL POSITION OF 68. 6 cm
WHILE OPERATING AT A 2010 CF/hr GAS INPUT
AND 4.4% EXCESS OXYGEN IN THE FLUE
373
-------
FLIT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
IP- 68.60
-60.000 -48.000 -36.000 -24.000
-0.000
12.000
24.000
36.000
48.000
60.000
RADIAL POSITION, cm
Figure H-279. RADIAL SCAN OF OXYGEN FROM A
FLAT-FLAME BURNER AT AN AXIAL POSITION OF 68. 6 cm
WHILE OPERATING AT A 2010 CF/hr GAS INPUT
AND 4.4% EXCESS OXYGEN IN THE FLUE
374
-------
FLAT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
AP- 68.60
<
O
-60.000 -'.8.000 _JO6.PQO -H.OOO iii-OOQ -0.000 IJiPOO ?«.OOQ
RADIAL POSITION, cm
Figure II-Z80. RADIAL SCAN OF CARBON DIOXIDE FROM
A FLAT-FLAME BURNER AT AN AXIAL POSITION OF
68.6 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
375
-------
FLAT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
68.60
-60.000 -48.000 -36.000 -2*.OOP -12.000
-0.000
12.000
46.000
RADIAL POSITION, cm
Figure II-Z81. RADIAL SCAN OF CARBON MONOXIDE
FROM A FLAT-FLAME BURNER AT AN AXIAL POSITION
OF 68.6 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
376
-------
FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
66.60
-60.000 -48.000 -36.000 -2*.000 -12.000
12.000
2*.000
36.000 48.000 60.000
RADIAL POSITION, cm
Figure 11-282. RADIAL SCAN OF METHANE FROM A
FLAT-FLAME BURNER AT AN AXIAL POSITION OF
68.6 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
377
-------
Table 11-71. RAW AND REDUCED GAS SPECIES DATA FOR RADIAL SAMPLING SCANS
AT AN AXIAL POSITION OF 104.1 cm FROM A FLAT-FLAME BURNER OPERATING
AT A GAS INPUT OF 2010 CF/hr AND 4.4% EXCESS OXYGEN IN THE FLUE
TRACER GAS STUDIES Of COMBUSTION BURNERS
FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
PROGRAM 2
INPUT GAS 2010
HALL TEMPERATURE 2480
PREHEAT TEMPERATURE
OUTPUT ANALYSIS
NITROGEN OXIDE 45.50 PERCENT ON RANGE 3,
CARBON DIOXIDE 75.70 PERCENT ON RANGE**,
CARBON MQNPXIDE__ JL.60 PERCENT ON_RANG_E__3,
METHANE" " o.bo"PERCENT"ON RANGE o.
88^67 PPM
177.73 PERCENT
0.000 PERCENT
0.00 PERCENT
OXYGEN 4.40 PERCENT
EXPERIMENTAL RESULTS
NITROGEN OXI
AP
104.10
104.10
104.10
104.10
104.10
104.10
104.10
104.10
104.10
104.10
104.10
104.10
104.10
RP
-60.00
-so'.bb
-40.00
-30.00
-20.00
-10.00
0.00
10.00
20.00
30.00
40.00
50.00
60.00
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
X
39.40
3 8. "80
37.40
37.40
37.70
35.10
34.00
33.20
33.90
33.60
30.50
31.40
29.50
DE -NO
Y
76.5
75.3
72.6
72.6
73.2
68.0
65.8
64.3
65.7
65.1
59.0
60.7
57.0
OXYGEN
02
1.62
1.57
1.82
1.92
2.34
2.82
3.07
3.60
4.37
4.80 .
5.09
5.38
5.88
CARBON OIOXIDE-C02
RANGE X
1 84.40
1
1
I
1
1
1
1
1
1
1
I
84.50
83.90
83.60
83.20
80.10
79.80
79.30
77.50
76.00
74.60
~?3.90
72.10
Y
11.06
11.08
10.95
10.88
10.79
10.13
10.07
9.96
9.59
9.28
9.04
8.86
8.51
CARBON MONOXIDE -CO
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
X
39.50
35.80
19.50
12.50
11.80
7.00
3.50
2.70
1.70
0.60
0.50
~1.70
2.00
Y
0.017
0.015
0.008
0.005
0.004
0.002
0.001
0.001 "
0.000
0.000
0.000
0.000
0.000
METHANE - CH4
RANGE
3
3
3
3
3
3
3
3
3
3
3
— r
3
X
6.20
5.30
5.20
4.90
5.50
4.60
4.10
4. 50
4.90
4.20
4.00
"4.10
3.40
Y
0.26
0.22
0.22
0.21
0.23
0.19
0.17
0.19
0.21
0.18
0.17
0.20
0.14
-J
00
-------
FLAT FIANE BURNER - STAINLESS SHEPHERD.S PROBE
RP VS NO,02,C02.CO.CH4 AP'104.10
10.87 '~"*-"o D- ~
10.65
10.43
10.21
10.00
_ 9,16 _ ___
9.35 ^ D__
9.13 -D.
8.91
8.69
8.48
B.26
8.04
7.B2
7.61
7.39
7.17
6.95
6.74
6.52
6.30
6.09
5.87 . _ _
5.65
5.43
i.22 ^
5.00 Q"
4.7B _--u''"
4.56 . . ^S^
4.35 ^°
4.13 ^
3.91 S
3.69 0'
3.48 X'
3.26 .... .^
3.04 .0
2.83 ^-°^
2.61 ^^
2.39 ^-°
2.17 ^ —
.30
.09
O.B7 N^^^
0.43
-D.
\1-^
M
-48.000 -36.000 -24.000 -12.000 -0.000 I2-*OOP _.2*.,0p.0_ 36.000. 48._000
60.000
Figure U-283. COMPOSITE PLOT OF RADIAL GAS SPECIES
CONCENTRATION AT A 104.1 cm AXIAL, POSITION FOR
A FLAT-FLAME BURNER OPERATING AT A GAS INPUT OF
Z010 CF/hr AND 4.4% EXCESS OXYGEN IN THE FLUE
379
-------
FLAT FLAKE BURNER - STAINLESS SHEPHERD.s PROBE
104.10
E
£
u
Q
71.
71.21
70.82
70.44
70.06
69.68
69.29
68.91
68.53
68.15
67.76
67.38
67.00
66.62
66.23
65.85
65.47
65.08
64.70
64.32
63.94
63.55
63.17
62.79
62.41
62.02
61.64
61.26
60.88
60.49
"60.11
59.73
59.35
58.96
58.58
58_.20
57.81
57.43
57.05
-60. pop -48.000 -36.000 -24.000 -12.000 I
-------
RP VS 02.
FLAT FLAME BURNER • STAINLESS SHEPHERD.S PROBE
•P-104.10
V*
2.3.306
2.2*61
2.1616
2.0771
1.4925
1.9080
-.JU.8ii5_
._ -60.000 -*B.OOO -36.000 -2*.OOP -12.000 -0.000 12.000 .2*jpOO_ i6»000. »8.000 60.000 .
RADUL POSITION, em
X
Figure 11-285. RADIAL SCAN OF OXYGEN FROM A
FLAT-FLAME BURNER AT AN AXIAL POSITION OF
104.1 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
381
-------
HP vs co2
FLAT FUME BURNER - STAINLESS SHEPHERD. S PROBE
*p»io4.io
u
Q
0)36
4832
4)24
8826
8322
7814
7)15
6812
6)04
9803
5102
4748
4245
3741
3288
2785
.7751
.7247
.6744
.6240
.5737
.5234
.4730
.4227
.3723
.3220
.2716
.2213
.1710
.1206
.0703
.0194
_8.4646
8.9193"
8.8689
8.8186
8.7682
8.7174
8.6676
8.6172*
8.5669
8.5165
..-.60.000 -*8.000 -36.000 -2*.OOP -12.000 -0.000 12.000
RADIAL POSITION, em
36.000
48.000
60.000
Figure H-286. RADIAL SCAN OF CARBON DIOXIDE FROM
A FLAT-FLAME BURNER AT AN AXIAL POSITION OF
104.1 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
382
-------
o
D
a.
u
fUT FltME BURNER - STAINLESS SHEPHERD.S PROBE
RP VS. CO 4PM04.IO
0.01728 _»_v
.6.01694
0.01661
0.01627
0.0159*
0.01561
Oj.01127
0.01*94
0.01460
0.01*27
0.0139*
0.01360
0.0.1327
0.01293
0.01260
0.01227
0.01193
0.01160
0.01126
0.01093
0.01060
0.01026
0.00993
0.00959
0.00926
O.OOB93 "
0.00859
0.00826
0.00792
0.00759
0.00726
0.00692
0.00649
0.00625
0.00592
0.00559
0.00525 .
0.00492
0.00458
0.00425
0.00392
0.00358
0.00325 _
0.00291
0.00256
0.00225
0.00191
0.00158
0.00124
0.0009*1
0.00058
0.00024
.^6Q.,.QfiO__. -48.000 _-.3J>.tOOO
. -12.000 :0i00p_ LI-'OOp 24_.000 _36..0.00. 48..0.00
RADIAL POSITION, cm.
60.000
Figure 11-287. RADIAL SCAN OF CARBON MONOXIDE
FROM A FLAT-FLAME BURNER AT AN AXIAL POSITION
OF 104.1 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
383
-------
RP VS CH*
FLAT FLAME BURNER - SIMNIESS SHEPHERD. S PROBE
AP'10*.10
u
i
;60^000 -*6.000 -36.000 -24.000 -12.000 -0.000
12.000
2*.OOP
16.000
*B.OOO
60.000
RADIAL POSITION, em
Figure II-Z88. RADIAL SCAN OF METHANE FROM A
FLAT-FLAME BURNER AT AN AXIAL POSITION OF
104.1 cm WHILE OPERATING AT A 2010 CF/hr GAS
INPUT AND 4.4% EXCESS OXYGEN IN THE FLUE
384
-------
^.ADJUSTABLE
VANE
A-83-II99
Figure 11-289. BOILER BURNER
385
-------
A-53-787
Figure 11-290. GUIDE VANES
2. Hot-Model Input-Output Data
The boiler burner was operated at only one gas input during these
tests. The characteristic stability of the burner occurred at 75% of rated
input or 3020 CF/hr of natural gas. Gas inputs of less than 3000 CF/hr
prevented good control of excess air level and fuel oxygen concentrations
below 5^. Burning more than 3020 CF/hr resulted in excessively long
flames and instability of the flame pattern. This occurred because the
gas velocity from the nozzles was high enough to push through the swirl-
ing air stream. Drilling larger ports in the gas nozzle to lower velocity
was not possible because of the overall nozzle diameter. A new burner
design with a large gas nozzle is needed to give greater flexibility to the
gas input.
Figures 11-291, 11-292, and 11-293 show the results of the input-output
tests as a function of combustion air temperature and amount of excess
air (excess oxygen in the flue) for three different vane angles. Changing
the combustion air temperature had about the same effect for the boiler
burner as other burners studied, particularly the intermediate baffle
burner. Increasing air temperature increased the amount of NO and shifted
the location of the peak NO to higher amounts of excess air. Changing
the vane angle (changing the swirl intensity) also had an effect on the NO
formed. Increasing the vane angle, which increases the swirl intensity,
386
-------
500
E 400
a.
o.
o
z
N
2
01
O
300
200
100
550 °F PREHEAT
285°FPREHEAT
2 3
% 02 IN FLUE
5 6
A-63-934
Figure 11-291. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Boiler Burner With 30-deg Vane
Setting; Gas Input, 3020 CF/hr) AND COMBUSTION AIR TEMPERATURE
387
-------
750
700
600
E
ex
Q.
o"
o
UJ
N
OC
O
500
400
300
200
100
530°F PREHEAT
265°F PREHEAT
85°F PREHEAT
2 3
% 02 IN FLUE
5 6
A-63-933
Figure H-Z92. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Boiler Burner With 40-deg Angle Vane
Setting; Gas Input, 3040 CF/hr) AND COMBUSTION AIR TEMPERATURE
388
-------
700
600
E
9- 500
o.
O
M 400
(T
O
Z
300
200
150
530°F PREHEAT
265°F PREHEAT
85°F PREHEAT
2 3
% 02 IN FLUE
4 6
A-63-932
Figure 11-293. NORMALIZED NO CONCENTRATION AS A
FUNCTION OF EXCESS AIR (Boiler Burner With 60-deg Angle Vane
Setting; Gas Input 3040 CF/hr) AND COMBUSTION AIR TEMPERATURE
389
-------
generally increased the amount of NO formed. However, the magnitude
of the change in NO varied with the preheat temperature of the air and
the total amount the vanes were open. The greatest increase in NO oc-
curred, for any change in vane angle, at the higher air temperatures.
At near ambient air temperatures, changing the vane angle had relatively
little effect on the amount of NO observed in the flue. The amount the
vanes were open prior to any vane change also affected the magnitude of
change of NO. At a preheat temperature of about 530°F, increasing the
vane angle from 30 to 40 degrees increased NO from 425 to 630 ppm at
a 2% concentration of oxygen in the flue. This is an increase of 205
ppm. However, increasing the vane angle from 40 to 60 degrees at the
same level of air preheat temperature only increased the NO from 630
to 650 ppm or 20 ppm. The same was true for lower preheated air
temperatures, but the changes were of a smaller amount.
Tables 11-72 to 11-76 show the raw and reduced data for Figures
H-291, 11-292, and 11-293.
3. In-the-Flame Survey Results
Again, as part of this program, we mapped the species concentration
in the flame for CO, COz, CH4, Oj, and NO. Profiles were obtained at
the same gas input (3040 CF/hr) as the input-output data for 20% excess
air and at two combustion air temperatures of 100° and 270°F. Higher
air temperatures produced flame temperatures excessive for the sampling
probes. Tables 11-77 and 11-78 show the raw and reduced data for air
temperatures of 100° and 270°F. Figures 11-294 and 11-295 show a com-
posite plot of the raw data of Tables 11-77 and 11-78. While the input-
output data showed a great similarity to the baffle burners run earlier,
the detailed profiles are similar to the flat-flame data. That is, most
of the methane is burned very near the burner at an axial position of
12. 7 cm. The effect of increasing preheat temperature can also be seen
both on the nitric oxide and carbon monoxide levels while it is not clear
for methane. When the air temperature is increased from 100° to 270°F,
the NO increases and the CO concentration decreases significantly. This
effect is caused by the increased air velocity associated with a higher
volumetric flow at higher temperatures increasing the gas-air mixing
rate. While the effect of increased air temperature cannot be seen on
390
-------
Table 11-72.
INPUT-OUTPUT DATA FOR THE BOILER BURNER WITH A RADIAL NOZZLE
(30-deg Vane Angle; Gas Input, 3020 CF/hr;
Preheated Air Temperatures of 104°, 285°, and 550°F Average)
Preheat
Run No. Temperature, °F
1 104
2 104
3 104
4 104
5 104
6 104
7 104
8 104
9 104
10 104
11 300
12 310
13 300
14 270
15 320
16 280
17 315
18 310
19 540
20 525
21 510
22 550
23 590
24 550
25 620
Flue Analysis
NO, ppm
155
126
139
171
135
138
153
159
162
160
252
275
241
192
262
211
257
260
379
354
314
378
368
361
375
02, %
2.43
5. 08
3. 89
0. 30
3.41
2.39
1.47
0. 52
0. 82
1. 17
0. 55
2. 05
3. 32
4. 68
0. 78
3.91
1. 04
2.46
2. 63
3.48
4.49
1.49
0. 74
3. 83
0.35
CO2, %
10. 6
9.0
9.7
11.6
9. 97
10. 7
11.3
11.9
11. 6
11.4
11. 6
10. 8
9. 95
9.2
11.9
9. 9
11.3
10. 7
10.5
10.2
9.6
11.2
11.5
9.8
11.7
CO, ppm
45
30
33
8300
25
27
45
225
82
52
195
37
26
20
100
58
67
31
40
32
28
57
90
35
12
Normalized
NO, ppm
172
161
166
174
157
153
164
163
168
170
259
281
278
240
272
252
270
289
424
414
386
404
381
430
383
-------
Table 11-73. INPUT-OUTPUT DATA FOR THE BOILER BURNER
WITH A RADIAL NOZZLE (40-deg Vane Angle; Gas Input, 3040 CF/hr)
Run No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Temperature, °F NO, ppm
85
85
88
85
85
85
85
85
85
85
85
85
87
87
245
260
275
250
265
240
250
260
245
265
290
260
270
525
500
575
550
500
470
590
550
510
475
212
179
159
174
191
207
147
186
179
187
186
188
227
208
232
244
269
257
291
296
289
325
307
328
312
324
345
482
564
561
607
520
449
439
591
547
469
O2( %
1.88
2.78
4.24
2.81
2.33
1.29
0.44
4. 64
2.61
1. 68
0. 70
0.52
1.32
3.57
4.46
3.62
2.70
3.35
2.36
1.40
0. 70
1.89
3. 56
2.30
1. 00
4.08
. 1.82
1.22
3.09
1.70
2.78
3.73
4.61
0. 60
2.12
2. 90
4. 19
C02, %
10.9
10.3
9.6
10. 4
10.7
11.2
10.7
9.1
10.4
11.0
11.4
11.2
11.3
11. 1
9. 3
9.8
10.4
10.0
10. 6
11.2
11.7
11.0
9.9
10.6
11.4
9.6
10.9
11.2
10.3
11.2
10. 6
10.2
9.5
11. 1
10.7
10. 5
9.8
CO, ppm NO, ppm
45
50
20
25
30
55
16.0 X 10'
30
45
65
25
11. 1 X 10'
75
50
35
25
25
20
35
55
200
35
40
52
145
27
65
105
50
65
51
40
30
800
60
57
46
231
202
194
197
211
220
151
232
200
202
193
193
242
244
287
289
302
298
322
316
298
353
359
362
328
392
374
511
646
606
686
614
557
452
647
621
570
B-83-1218
392
-------
U)
Table 11-74. INPUT-OUTPUT DATA FOR THE BOILER BURNER WITH A RADIAL
NOZZLE (60-deg Vane Angle; Gas Input, 3040 CF/hr; Air Preheat Temperature, 85°F)
Preheat
Run No. Temperature, °F
1 85
2 85
3 85
4 85
5 85
6 85
7 85
8 85
9 85
10 85
Flue Analysis
NO, ppm
218
232
217
210
217
184
204
218
229
204
02, %
2. 14
3.51
1.39
1. 69
2.56
0. 59
2. 85
2.91
0. 75
0.26
C02f %
10.6
10.2
11.2
10.9
10. 3
11.6
10.4
10.1
11.4
11.3
CO, ppm
35
25
50
40
30
370
25
25
115
130
Normalized
NO, ppm
240
271
231
227
242
192
231
247
240
212
-------
Table 11-75. INPUT-OUTPUT DATA FOR THE BOILER BURNER WITH A RADIAL
NOZZLE (60-deg Vane Angle; Gas Input, 3040 CF/hr; Air Preheat Temperature, 265°F Average)
_ , , Flue Analysis .. .. ,
Preheat ......-_ T~r~~~- Normalized
Run No. Temperature, °F NO, ppm Oz, % COz, % CO, ppm NO, ppm
1 235 262 3.55 10.0 20 308
2 245 296 2.87 10.3 25 334
3 260 318 1.97 10.9 35 347
4 270 325 1.29 11.3 55 346
5 285 270 0.70 11.7 155 284
6 310 244 0.32 11.5 3800 322
7 300 318 1.06 11.3 70 317
Table H-76. INPUT-OUTPUT DATA FOR THE BOILER BURNER WITH A RADIAL
NOZZLE (60-deg Vane Angle; Gas Input, 3040 CF/hr; Air Preheat Temperature, 530°F Average)
T-. , . Flue Analysis .T .. ,
Preheat ' Normalized
Run No. Temperature, °F NO, ppm Oz, % CO2> % CO, ppm NO, ppm
1 560 507 1.21 11.1 70 537
2 575 424 0.58 11.5 215 443
3 555 575 1.74 10.9 50 621
4 530 598 2.24 10.6 35 658
5 515 571 2.77 10. 3 30 579
6 490 522 3.49 9.8 25 611
7 480 498 3.63 9.7 20 588
-------
Table II-77. RAW AND REDUCED GAS CONCENTRATION RADIAL SCAN
DATA FOR THE BOILER BURNER OPERATED AT A 3040 CF/hr GAS INPUT, 1.9%
EXCESS OXYGEN IN THE FLUE, AND A COMBUSTION AIR TEMPERATURE OF 100°F
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
BOILER BURNER - RADIAL GAS NOZZLE - BLUNT STAINLESS PROBE
Ul
INPUT GAS 3039
OUTPUT ANALYSTS
WALL TEMPERATURE 2534
PREHEAT TEMPERATURE
NITROGEN OXIDE 32.00 PERCENT ON RANGE 1, 282.52 PPM OXYGEN
CARBON DIOXIDE 83.70 PERCENT ON RANGE 1, 10.90 PERCENT
CARBON MONOXIDE 18.00 PERCENT ON RANGE 3, 0.007 PERCENT
METHANE 0.00 PERCENT ON RANGE 0, 0.00 PERCENT
EXPERIMENTAL- RESULTS _.._.. - -..-
NITROGEN OXIOE -NO OXYGEN CARBON OIOXIOE-C02
AP
12.70
12.70
12.70
-12V70
12.70
12.70
12.70
12.70
12.70
12770
12.70
12. TO
12.70
12.70
12.70
12. 70
12.70
RP RANGE X
-12.00
-9.00
-6.00
-3YOO-
0.00
3.00
6.00
9.00
12.00
15.00 '
18.00
21.00
24.00
27.00
30.00
15.
15.
15.
15.
15.
15.
15.
14.
14.
13.
13.
16.
17.
13.
12.
33.00 1 13.
36.00 I 20.
30
10
60
50
40
80
80
90
70
20
60
10
90
90
90
9CJ
10
Y
131.1
129.4
133.7
132.9
132.0
135.5
135.5
127.6
125.9
11 2. "8
116.3
138.1
154.0
118.9
110.2
" "T18.9 '
173.6
02 RANGE X
3.06
2.47
2.15
2V1T
2.14
2.06
1.65
1.73
1.87
2«"^5~
2.38
1.47
0.82
0.21
0.19
0. IB
0.41
1
1
1
1"
1
1
1
1
I
r~
i
i
i
i
i
T
1
79.50
81.50
82.10
-82.10
81.50
81.90
82.30
81.60
81.00
79;70
80.20
82.00
.81.50
76.40
69.90
63.50
76.30
Y
10.00
10.43
10.56
ID ;56-
10.43
10.51
10.60
10.45
10.32
tO'.OS"
10.15
10.54
10.43
9.36
8.09
6.92
9.34
1.92 PERCENT
CARBON MONOXIDE -CO
RANGE X
2
2
2
-2-
2
2
2
2
2
"2
2
2
I
_. . . _ j
I
4.60
7.00
9.00
-tr.oo
13.00
24.00
34.00
59.00
42.00
' 38. OO
42.00
56.00
49.00
78.00
104.00
1 IIO.OU
I
78.00
Y
0.075
0.114
0.147
0.197
0.214
0.405
0.587
1.078
0.738
' 0.662
0.738
1.016
1.776
3.431
5.298
6.283
3.431
METHANE - CH4
RANGE X Y
3 0.70 0.03
3 0.80 0.03
3 0.40 0.02
-3 - arOT- 0.03
3 0.60 0.02
3 0.60 0.02
3 0.60 0.02
r OJT90 0.04
3 1.40 0.06
—T—r.?o—o.t>6
3 1.40 0.06
3 1.70 0.07
3 3.00 0.13
-3 - 4-TlO 0.17
3 5.20 0.22
3 TT6t> OT32
3 5.10 0.22
-------
Table 11-78. RAW AND REDUCED GAS CONCENTRATION RADIAL SCAN DATA
FOR THE BOILER BURNER OPERATED AT A 3040 CF/hr GAS INPUT. 1. 9%
EXCESS OXYGEN IN THE FLUE, AND A COMBUSTION AIR TEMPERATURE OF 270°F
TRACER GAS STUDIES OF COMBUSTION BURNERS PROGRAM 2
BOILER BURNER - RADIAL GAS NOZZLE - BLUNT STAINLESS PROBE
INPUT GAS 3039
OUTPUT ANALYSIS
NITROGEN OXIDE
CARBON DIOXIDE
CARBON MONOXIDE
METHANE
WALL TEMPERATURE 253*
32.00 PERCENT ON RANGE
83.70 PERCENT ON RANGE
18.00 PERCENT ON RANGE
0.00 PERCENT ON RANGE
PREHEAT TEMPERATURE
270
EXPERIMENTAL RESULTS
AP
12.70
12.70
12.70
t2.7O
12.70
12.70
12.70
12.70
12.70
12-. 70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
12.70
RP
60.00
55.00
50.00
45.00
40.00
35.00
30.00
27.00
24.00
-21.00
18.00
15.00
12.00
9.00
6.00
-3.00
0.00
-3.00
-6.00
-9.00
-12.00
NITROGEN
RANGE X
1 31.
29.
29.
OXIDE -NO
Y
30.
29.
28.
18.
15.
18.
21.
24.
23.
25.
25.
28.
28.
27.
25.
24.
23.
22.
20
50
50
10
70
00
80
80
90
10
20
30
10
80
50
70
60
SO
80
80
60
275.0
259.2
259.2
264.8
261.0
245.3
162.0
135.5
162.9
182.6
210.5
202.4
218.7
225.1
249.9
251.8
241.6
222.4
216.0
206.9
196.1
1. 282
1. 10
3, 0.
Ot 0
OXYGEN
02
4.68
5.01
4.78
4.7J --
4.75
3.81
0.30
0.23
0.23
0;2r
1.03
1.30
0.84
0.45
0.43
0.4-8"
0.57
1. 01 -
1.17
r.5t>
2.14
.52 PPM
.90 PERCENT
007 PERCENT
.00 PERCENT
OXYGEN
CARBON DIOXIDE-C02
RANGE X
1 76.10
I 74.40
I 75.80
-I 75.90
1 76.40
I 78.10
1 73.90
I 70.80
1 75.90
1 T9.30
1 82.10
1 81.40
1 82.30
1 82.70
1 84.00
- - 1 84.00
1 84. SO
1 84.40
1 84.00
1 83.80
1 82.30
Y
9.30
8.96
9.24
9.26
9.36
9.71
8.86
8.26
9.26
9.96
10.56
10.41
10.60
10.69
10.97
ro.rr
11.08
11.06
10.97
10.93
10.60
1.92 PERCENT
CARBON MONOXIDE -CO
RANGE X
3 11.00
3 10.00
3 8.00
3 8.00
3 8.00
2 19.00
1 86.00
1 99.80
82.00
66.00
28.00
64.00
83.00
39.00
31.00
-' 2 63.00
2 51.00
2 27.00
2 21.00
2 15.00
2 5.00
Y
0.004
0.004
0.003
0.003
0.003
0.317
3.967
4.972
3.694
2.691
0.860
1.183
1.598
1.310
0.976
1 . 1 62
0.915
0.458
0.352
0.248
0.081
METHANE - CH4
RANGE
3
3
3
3-
3
3
3
3
3
3
3
3
3
3
3
... y. _
3
3
3
~3^
3
X
0.00
0.00
0.00
0.00
0.00
0.00
2.60
3.30
2.70
2.-10
1.20
1.20
I. 10
1.10
1.50
1.60
1.20
0.50
0.60
tr.so
0.10
Y
0.00
0.00
0.00
0.00
0.00
0.00
0.11
0.14
0.11
0.09
0.05
0.05
0.05
0.05
0.06
0.07
0.05
0.02
0.02
0.02
0.00
-------
BOILER BURNER - RADIAL CAS NOZZLE - BLUNT STAINLESS PROBE
RP VS NOi02iC02iCOiCH4 AP- 12.70
II.08 ^.0—O^L
E 10.87 ^0—0-^ 0 0^
g; 10.65 0 ^-D— 0\ ^°\
10.43 . XD^ \
U 10.21 \
9 10.00 o
§ '•" \ ,o-
• ° • 9-. 36 ..-...- \
3 9-35
3 9.13
H
8.91
'• 8.69
'• a'.it
I 8.04
.82
.61
.39
.17
.96
.74
.30
.09
.87
.63
.43
\
Si
a-
5.
o-
I; .»
o.
.00
.78
.57
.33
.13
.91
.70
§• :S
>, 2.83
X 2.61
0 2.39
tf- 2-18
1.96
U ' 1.74
Q 1.52
2 l'°9
3 0.87
Z, 0.66
O1 n.«4
K
0.22 C
0.00 M M n N K-
-12.000 -4.800 -2.400 9.600 16.800 24.000 31.200 38.400 4S.600 52.800 60.000
RADIAL POSITION, cm
Figure II-294. COMPOSITE RADIAL SCAN OF GAS SPECIES
FROM A BOILER BURNER WITH A 60-deg VANE ANGLE SETTING
AT AN AXIAL POSITION OF 12.7 cm WHILE OPERATING AT A
3040 CF/hr GAS INPUT, 1.9% EXCESS OXYGEN, AND
A 100°F PREHEATED AIR TEMPERATURE
397
-------
RP
I
U
a
S '
o
a
i-
z
\.' •
u
3
I
5-
.
X
o
si
u '
Q
X
0
5 •
z
0 -
a
5-
u
VS NO
10.60
10.40
10.19
9.98.
9.77
9.57
9.36
9.15
8.94
8.74
8.5)
8.32
8. 11
7.91
7.70
7.49
7.28
7.08
6.87
6.66
6.45
6.25
6.04
5.83
5.62
5.42
5.21
5.00
4.79
4.59
4.38
4.17
3.96
3.76
3.55
3.34
J.13
2.9)
2.72
2.51
2.30
2.10
1.89
1.68
1.47
1.27
1.06
0.85
0.64
0.44
0.2)
0.02
.02
0
U,
N
H
BOUER BURNER - RACIAL GAS NOZZLE - BLUNT STAINLESS PROBE
C02.CO.CH* »f>. 12.70
—D—"^ ""^"
-12.000
-7.200
-2.400
2.400
7.200
12.000
16.800
21.600
26.400
31.200
56.000
RADIAL POSITION, em
Figure II-Z95. COMPOSITE RADIAL SCAN OF GAS SPECIES
FROM A BOILER BURNER WITH A 60-deg VAN ANGLE
SETTING AT AN AXIAL POSITION OF 12.7 cm WHILE
OPERATING AT A 3040 CF/hr GAS INPUT, 1.9% EXCESS
OXYGEN, AND A 270°F PREHEATED AIR TEMPERATURE
398
-------
the composite plots (Figures 11-294 and 11-295), it is clearly seen in
Figures 11-296 and 11-297, which have greater resolution. As air temper-
ature and hence volumetric flow and mixing rate increase, the average
methane concentration decreases at an axial position of 12. 7 cm. Gas
species scans with greater resolution are shown in Figures 11-298 to
11-301 for a 100°F air temperature and in Figures 11-302 to 11-305 for a
2700°F air temperature.
399
-------
BOILER BURNER - RADIAL CAS NOZZLE - BLUNT STAINLESS PROBE
RP VS CH* »P- 12.70
0.327*
0.321*
0.315*
0.309*
0.303*
0.297*
0.291*
0.285*
0.279*
0.273*
0.2673
0.2613
0.2553
0.2*93
0.2*33
0.2373
0.2313
0.2253
0.2193
0.2133
. 0.2073
0.2012
' 0.1952
0.1892
0.1832
• 0.17T2
0.1712
0.1652
0.1592
. 0.1532
0.1*72
• 0.1*12
0.1351
• 0.1291
I 0.1231
0.1171
. 0.1111
0.1051
0.0991
0.0931
0.0871
0.0811
0.0751
0.0690
0.0630
0.0570
O.OSIO
0.0*50
0.0390
0.0330
0.0270
0.0210
-12.000 -7.200 -2.*00 2.*00 1.200 12.000 16.800 21.600 26.»00 31.200 36.000
RADIAL POSITION, cm
Figure H-296. RADIAL SCAN OF METHANE FROM A
BOILER BURNER WITH A 60-deg VANE ANGLE SETTING
AT AN AXIAL POSITION OF 12. 7 cm WHILE OPERATING AT A
3040 CF/hr GAS INPUT, 1.9% EXCESS OXYGEN, AND
A 100°F PREHEATED AIR TEMPERATURE
400
-------
. _ .
<*
a
w
z
H
3
RP VS CH*
0.1*3*
' 'O.IWT
0.1380
0.1352
0.1325
0.1298
0.1270
'V. 17*3
0.1216
0.1168
0.1161
0.113*
0.1107
0.1079
0.1052
0.1025
0.0497
0.0970
0.09*3
- 0.0915
o.oaee
0.0861
0.083*
. ' 0.0806
0.0779
' 0.0752
0.072*
0.0697
0.0670
0.06*2
, 0.0615
f 0.0586
0.0561
| 0.0533
0.0506
0.0*79
0.0*S1
0.0*2*
0.0397
0.0370
0.03*2
0.0315
0.0288
0.0260
0.0233
0.0206
0.0178
0.0151
0.012*
" ' OT009T
0.0069
0.00*2
BOILED BURNER - RADIAL G»4 NOZUE - BLUNT STAI11ESS PROBE
12.TO
-12.000 -4.800 2.»00 1.600 16^*00 2*.OOP II.200 36.400 O.600 52.800 60.000
RADIAL, POSITION, cm
Figure II-Z97, RADIAL SCAN OF METHANE FROM A BOILER
BURNER WITH A 60-deg VANE ANGLE SETTING AT AN
AXIAL POSITION OF 12.7 cm WHILE OPERATING AT A
3040 CF/hr GAS INPUT, 1. 9% EXCESS OXYGEN,
AND A 270°F PREHEATED AIR TEMPERATURE
401
-------
RP
—
^t
a
a .
o
o
2
z
o
a .
5 .
u •
VS. CO
6.28
6io*
5.92
5.80
5.67
5.55
' 3.4J-
5.31
5.19
5.07
*!s2
4.70
4.58
4.46
4.34
4.21
4.09
3.97
3.85
3.73
3.61
3.48
3.36
3^12
3.00
2.88
2.75
2.51
2.39
2.27
2.14
2.02
.90
.78
.66
.5*
.41
.29
.17
.05
0.93
o.ei
0.6B
0.56
0.44
0.32
0.20
0.08
BOILER BUHNER - RAOUL C»S NOZZU - SLUM! STAINLESS PROSE
12.70
-12.000 -7.200 -2.*00 2.400 2-'t0- >2-000 _ 16.800 21.600 26.400 11.200 36.000
RADIAL POSITION, cm
Figure H-298. RADIAL SCAN OF CARBON MONOXIDE
FROM A BOILER BURNER WITH A 60-deg VANE ANGLE
SETTING AT AN AXIAL POSITION OF 12. 7 cm WHILE
OPERATING AT A 3040 CF/hr GAS INPUT, 1. 9% EXCESS
OXYGEN, AND A 100°F PREHEATED AIR TEMPERATURE
402
-------
»P- 12.70
BOILER BURNER - RiDIAL 0»S NOZZLE - BLUNT STAINLESS PROBE
u
o
0278
.9557
.8836
.811$
TJ<>5
6674
5943
.5232
4511
3790
.3069
.2348
1627
0906
0165
.9464
.8743
.8022
.7301
.6580
.i860
.5139
.44(8
.3697
.2976
.2254
.1534
0813
.0092
.9371
.8650
.7929
.7208
.6487
.5766
.S045
.4325
3604
2883
2162
1441
0T20
9999
9278
-7.200 -2.400 2.400 7.200 12.000 J^6_.800
RADIAL POSITION, cm
21.600
26.400
31.200
36.000
Figure 11-299. RADIAL SCAN OF CARBON DIOXIDE
FROM A BOILER BURNER WITH A 60-deg VANE ANGLE
SETTING AT AN AXIAL POSITION OF 12. 7 cm WHILE
OPERATING AT A 3040 CF/hr GAS INPUT, 1.9% EXCESS
OXYGEN, AND A 100°F PREHEATED AIR TEMPERATURE
403
-------
RP
~
.
'§'
o
X
O ' .
c
r
C
C
c
c
c
c
c
c
c
c
0
c
c
VS 02.
3.0600
J.-OOT5"
2.9471
2.8906
2.8341
2.7776
2.7212
2:6647
2.6082
2.5518
2.49S3
2.4388
2.3824
2.2694
2.2129
2. 1565
2.1000
2.0435
.9871
.9306
.8741
.8176
.7612
.7047
.6482
.5918
.5353
.4788
.4224
.3659
.3094
.2529
.1965
.1400
.0835
.0271
.9706
.914)
.8576
.8012
.7447
.6882
.6318
.5753
.5168
.4624
.4059
.3494
.2929
.2365
.1800
i AP* 12.70
BOILER BURNER - RADIAL CIS NOZZLE - BLUNT STAINLESS PROBE
-12.000
-7.200
-2.400
£__ T.400 12.000
RADIAL POSITION, cm
16.800
21.600
26.400
31.200
36.000
Figure 11-300. RADIAL SCAN OF OXYGEN FROM A BOILER
BURNER WITH A 60-deg VANE ANGLE SETTING AT AN AXIAL
POSITION OF 12.7 cm WHILE OPERATING AT A 3040 CF/hr GAS
INPUT, 1.9% EXCESS OXYGEN, AND A 100°F PREHEATED
AIR TEMPERATURE
404
-------
BUILEH BUHNER - K»UI«I CAS nniu.1 - BIUNI SKINLESS PROBE
DP vs NO,
in.65
172.41
171.17
169.92
168.68
167.44
166.19
I64-.9S
163.70
162.46
161.22
IS9.97
158.73
157.01
1S6.24
155.00
153.76
152.51
151.27
150.02
I 48.78
147.S4
1*6.29
I4S.OS
143.61
142.S6
141.32
140.07
138.83
1 17.S9
1)6.34
• in.10
113.86
112.61
131.17
I 10.13
128.88
127.64
126.39
12*.IS
123.91
122.66
121.42
120.18
118.93
117.69
116.45
115.20
113.96
Itr.Tl
111.47
110.23
»(•• 12.70
-12.000
-7.200
-2.400
2.401
7.200
12.000
16.BOO
21.600
26.400
11.200
36.000
RADIAL POSITION, cm
Figure 11-301. RADIAL SCAN OF NITRIC OXIDE FROM
A BOILER BURNER WITH A 60-deg VANE ANGLE SETTING
AT AN AXIAL POSITION OF 12.7 cm WHILE OPERATING
AT A 3040 CF/hr GAS INPUT, 1. 9% EXCESS OXYGEN,
AND A 100°F PREHEATED AIR TEMPERATURE
405
-------
S*
-
Q
Q
Z
O
2
CO
3
RP VS. CU
.9725
.8750
.7776
.6802
.5827
4.4853
4.3879
4.2904
4.1930
4.0956
3.99U1
1.9007
1.8033
3.7058
1.6084
1.5110
1.4135
1.3161
3.2186
1.1212
1.0238
2.9263
2.8289
2.7315
2.6340
• 2.5366
2.4392
1 2.3417
2.2443
2.1469
<".0494
I.9J20
1.8545
1.7571
1.6597
1.5622
1.4648
1.3674
1.2699
1.1725
1.0751
0.9776
0.8802
0.7828
0.6853
0.5879
0.4905
0.3930
0.2956
0.19BI ,
0.1007 •
0.003}
-12.000
BOILER BURNER - RADIAL GAS NOZZLE - BLUNT STAINLESS PROBE
AP- 12.70
-4.800 2.400 9.600 16.800 24.000 31.200 38.400 4$.600 52.800
RADIAL POSITION, em
Figure 11-302. RADIAL SCAN OF CARBON MONOXIDE
FROM A BOILER BURNER WITH A 60-deg VANE ANGLE
SETTING AT AN AXIAL POSITION OF 12.7 cm WHILE
OPERATING AT A 3040 CF/hr GAS INPUT, 1.9% EXCESS
OXYGEN, AND A 270°F PREHEATED AIR TEMPERATURE
406
-------
• -
I'
u
a
§
S
z
a
«?
u
RP VS C02
11.0839
11.0287
10.9734
10.9182
10.8629
10.8077
10.7524
10.6972
10.6419
10.5867
10.5314
10.4762
10.4209
10.3657
10.3105
10.2552
10.2000
10.1447
10.0895
•- 10.0142
' 9.9790
• 9.9217
9.8685
• 9.8112
9. 7580
' 9.7027
' <».6475
9.5922
9.5370
1.4817
1.4265
' 9.1712
1.3160
9.2608
1.2055
9.1503
9.0950
9.0J98
8.9845
8.9293
8.8740
8.8188
8.7635
8.7083
6.6530
8.5978
8.5425
8.4873
8.4320
8.3768
8.3215
8.2663
BOILER BURNER - RADIAL
12.70
GAS NUtllE - BlUHt SIAItLESS PROBE
-12.000
-4.800
2.400
9.600
16.*00
24.000
31.200
38.400
45.600
$2.800
60.000
RADIAL POSITION, cm
Figure 11-303. RADIAL SCAN OF CARBON DIOXIDE
FROM A BOILER BURNER WITH A 60-deg VANE ANGLE
SETTING AT AN AXIAL POSITION OF 12.7 cm WHILE
OPERATING AT A 3040 CF/hr GAS INPUT, 1.9% EXCESS
OXYGEN, AND A 270°F PREHEATED AIR TEMPERATURE
407
-------
^
**
*
s
o
>•
g
RP VS 02,
5.0100
*!s225
4.7288
4.5414
4.4476
4.15)9
4.2602
4.1665
4.0727
1.9790
3.6853
J.7916
3.6976
3.6041
1.510*
3.4167
3.3229
3.229}
3.1355
• 3.0418
2.9460
> 2.8543
2.7606
- 2.6669
2.5731
2.4794
2.3857
2.2920
2.1982
2.10*5
2.0108
1.9171
1.6233
.7296
.6359
.5422
.4464
.3547
.2610
.167)
.0735
0.9798
0.8661
0.7924
0.6966
0.6049
0.5112
0.4JTS
0.3237
0.2300
BOILER BURNER - RADIAL CAS NOIZLE - BLUNT SIAlNLESS PROBE
12.70
-12.000
-4.600
2.400
9.600
**.000
11.200 38.400 45.600 52.800
60.000
RADIAL POSITION, cm
Figure 11-304. RADIAL SCAN OF OXYGEN FROM A
BOILER BURNER WITH A 60-deg VANE ANGLE SETTING
AT AN AXIAL POSITION OF 12.7 cm WHILE OPERATING
AT A 3040 CF/hr GAS INPUT, 1. 9% EXCESS OXYGEN,
AND A 270°F PREHEATED AIR TEMPERATURE
408
-------
BURNER - RADIAL CIS NOZZLE - BLUNT STAINLESS PROBE
g
p.
*
u
a
o
2
H
5
ftP VS NO.
•'• 275.0*
272.31
269.57
266.8*
'26*. 10
261.37
258-; 67
255.90
253.16
250.*)
2*7.69
2**. 96
- 2*2.22
2)9. *9
236.75
23*. 02
231.28
228.55
225.81
223.08
220.)*
217.61
21*. 87
212.1*
' 209. *0
206.67
20). 9)
201.20
198. *6
195.7)
' 192.99
190.26
187.52
18*. 78
182.05
179.31
176.58
ir).e*
171.11
168.37
165.6*
162.90
. 160.17
157.*)
' 15*. 70
151.96
1*9.23
1*6. *9
1*1.02
138.29
1)5.55
i2.ro
--12.
-------
APPENDIX II-A. Computer Program for
Reduction Velocity t?ata
The following computer program was written to transform the raw
pressure difference data from the hot- and cold-model five-hole pitot
probe into axial and tangential velocity profiles.
410
-------
Table II-A-1
// JOB
0001 2801 ?603
OOUl ?603 0001 2M10.101
LUG DRIVE
0000
0001
0002
CART SPEC
0001
2801
2603
CART AVAIL
0001
2801
2603
PHY DRIVE
0000
0001
COO?
V? MIO ACTUAL 16K CONFIG 16K
// FOR
»L 1ST ALL
*0,'JE WORD INTEGERS
'EXTENDED PRECISION
*IUCS(CARD,1403 PR I N I IrR , D I SK )
C MARCH 24,1972
C Al,A?f A3,HO,B2,B4,C,l)t ARC CALlGRATItN COE FF I C I KiT S
C THtTA ANuLC THRU WHICH THE PROBE IS ROTATED ABOUT THE Y AXIS
C AP AXIAL POSITION, RP RADIAL POSITION, T TEMP IN OFGRCCS C
C PB IS ATMOSPHERIC PRESS IN MM UF HG , FI COMICAL AJGLh, Ot-LTA IS
C VT IANGF.-ITIAL VELOCITY, VR RADIAL VELOCITY
DIMENSION XI(20C) ,Y1(200) ,Y2(200) , KARKI200)
DIMENSION MAi) Al,A2,A3,bO,b2 ,B4 ,C ,D
f> FURMAT (8F10.0)
BUI INDEX=1
C IPAGE -CU..STANT FUR SKIPPING TO NEW PftGb UN INPUT PR|.\TOUl
lOPGf: = b2
C IOPGL" -CONSTANT FOV< SKIPPING TO NCVv PAGC UN OUTPUT
1C = 0
READ!INPUT,912)ID
4 READ (2,6) THETA,AP,KP,PM,P03,P24 ,P04 ,POA,T ,PB
RP =-l
1006
1006
1007
100«
CALL EXIT
WRIT: ( mui ,TIS) ID
dRI TE( IOUT, 919)
1C = 0
iMn= INDEX- i
DO 1008 1=1, NO
IF( IC-IOP&E ) 1007,
WRI TE( IUUT,917)
1C = 0
KKiTci iuur,9ni
READ! 1 ' I ) AP,RP,F I ,DFL f A , RHO , V , VX , V Y , VZ , V T , VR , PS T , T , PH
WRITE(5,92C) APtRP,FI,DFLTA,RHii,V,VX,VY,V?,VT,VR,PST,T,PH
1C = IC+1
CUNTI.MUE
WRITE! IOUT, 903) ID.APST
CALL PTSE91 XI, Yl , MARK, NO)
WRI TC( IOUT,TO^) IO.APST
CALL PTSE9(Xl,Y2,MARK2,NO)
GO TO ROl
411
-------
Table II-A-2
IF( r,DEX-l)5CO,lCTG,100?
•300 WRITCI loui rni )
CALL HXI r
1000 v.UITbl IUUI , -M3IAI ,A2,.Vi,hG,i>2,tt'»,C,l)
ldRITF( ll.iljl ,9U) ID
WRITfcl ini)If»15)
1002 IF{ IC-IPAGU 1003, 1003, IOCK
loo* hRiTbi IULT,'?-rjELU
12 RHU = «O.OC2<,58*Ph/760.*273./(?73.*T) )/( I2.*12
FIS=FI*Fl
XKV=( (Fl
VT=V*SIN(FI I
VX=V*COS(FI )
VY = VT*COS(Oi:LTA)
412
-------
Table II-A-3
IF (THFTA) 20,^1,20
THETA=THErA*0.017<«533
VXP=VX
VZP=VZ
THETA)*VXP*bIN!THr FA)
A=ABS!VX/V)
FI =ATAN(DKN/A)
IF (VX) 5C.51.51
•JO FI = 3. 1415 )-FI
•>l A=ABS(VZ/(V*SIN!FI ) ) )
DE-N^SORTI l.-(A*A) )
DELTA = ATAN(A/OEM
IF (VZ) 52,53,53
52 IF
-------
Table II-A-4
FORMAT! 15H ERROR IN LOGIC I
911
"T12
913 FORMAT! 1H1, 30X.42HAERUDYNAMIC MODELING OF COMBUSTION BUK'.ERS //
142H CALIBRATION COEFFICIENTS FOR FORWARD FLOW /
25H Al = F11.6.3X, 4HA2 = Fl 1 .6, 3X.4HA3 =
35H BO = F11.6.3X, 4H62 = F 1 I . 6 , 3X ,4HB4 =
45H C = F11.6.3X, 4HD = Fll.6)
014 FTJRMATr/2CX,40A2/17>l TOTAL DATA INPUT )
•115 FORMATI/6H THETA,4Xi 2HAP, 5x, 2riRP,12x,
124, 13X, 3HP04, 13X, 3HPOA , 7X, 1HT, 6X.2HPB)
916 FORMATI1H , F 5 . 0 , 2F 7 . 1 , 5 ( 2 < , F 1 4 . 2 ) , F 8 . C , F7 . 0 )
917 FORMAT! 1HI)
TIB FORMAT! 1H1, 20X.40A2/ 8H RESULTS/)
919 FORMATC/ 5H AP.5X, 2HRP, 6X, 2HF I , 4X , 5HDELT A ,
Fll.6/
Fll.6/
3HP13, 13X, 3HP03,13X.3HP
5X,
11HV, 7X, 2HVX, 7X.2HVY, 7X.2HVZ, 7X.2HVT, 7X.2HV3,
21HT.5X, 2HPB)
920 FORMAT! F6.1,F7.1,2F8.1,F12.7,6F9.2,Fil.6,F8.0,F6.0)
END
VARIABLE ALLOCATIONS
3HRHO, 10X,
6X, 'iHPSI,9X,
XKR =025C-0007 Y1IR =C4B4-025F
BOIR =0718 B2IS = C71b
APIR =072A RPR =0720
POA(R =073C U-< =073K
V(R =074E VX(* =0/61
"STIR =0760 APSTIR =0/63
FISIR =0772 XKVU =3775
DENIR =0784 X2H =0797
IF1LEII =0951 INPUTII 1=0952
1C! I =0957 NO! I 1 = 095b
ir.RGFERENCED STATEMENTS
901 40 105 90?
STATEMENT ALLOCATIONS
5 =099A 6 =C9')D 901 = 09A4 12
911 =OAIO 912 =OA1A 913 =OA10 914
801 =OB3C 4 =OB52 805 =0077 803
1002 =OC3D 1004 =OC43 1015 = CC55 1016
14 =0027 16 =002F 17 =OOJ6 Ib
5-j =OE4C 54 =OE54 53 = OE5C 16
809 =CF43
Y2 R
b4 R
P13 R
Pb R
VY ft
P01 R
XKPIR
ROI R
luUTI I
1 ( I
= C9A9
= CA7A
= 0678
= CC5B
= OD3C
= OE6l
)=07CC-04B7 AKR )=C70F A2
)=071E C(R 1=07^1 1)
1=0730 POJI3 )=C733 f?.',
1=0742 FKR )=U7',5 OELM
)=C754 V/IK )=C757 VT
1=0766 r>02(R 1=0769 PR
1=0778 vX^(-t)=v":773 7ZP
)=07«A MARr.lt )=CH60-0799 MAsK,'
1=0953 KUE^II }=C<)i'i I°-GE
1=0959
40 =C9b6 )C3 =09C'J 134 =09uo 9C
915 =OA8A T16 =CAriO 117 =CAUC 9
1006 =OB9/ 1007 =CBA3 10CP =OBLP H(
1003 =CC5R 70 =CCC.H 71 =OCE7 K
15 =0042 12 =OD4S 20 =ODCO 5(
57 =OE69 21 =CE6!} hOh =OEFJ 3(
K )=-;/!? A-J IK i=;:/i-j
K 1 = '7 '4 Ti.;' T.\ ( k ) =.• 7 ,. 1
•< ) =C7 i(j m* ( < ) =" 73 )
•^ I = '.) 7 4 f- >. H ' I 3 1 - 7 4 n
-( ) =C7-ji '/•<(•< ) ='.! /o j
R ) ='C7 o\. XT I .-( ) -r /oc
^ )=T77(- A I •"' )-'7r. 1
1 1 ='.'"l>?-f-rtM I ,.( 1 ) -'. 9-j'..
1 I =v.9 >5 I- .V,f- I I 1 =1 ;:j6
:•: =>:'7cL -K)) =.;irr M: =
L ^ = c. :\ 'j r -j 1 1 - A ^ C j 2 ;; =
:*. =(Cii ;co -cci-' I;TO =
J =Cull 13 =>r!lt. 11
: =C:i6 51 =:.E1C ')2 -
^7 =CFrc bf. -:Fii) 811
FEATURES SUPPORTEu
Oxl£ WORD INTEGERS
EXTENDED PRECISION
IOCS
CALLED
PTSE9
EOVR
SOF
SUBPROGRAMS
ESQRT EABS
CARDZ SRED
EATAN
cSIN
SCOMP
ECCS
SFIU
EEXP
SIOAI
EAOL)
SI OF
ESUB
SUBSC
EDI V
SNK
r S 1 :•
b J •< r •-•
£ST.:<
CONSTANTS
100000000E 01=095C
OCOOOOOOOE 00-0966
27300COOOE 03=097A
572957700E 02=0989
.980000000E 00=095F
,157079630E 01=096£
.12000COOOE 02=0070
.90COCOOOOC 02=0?8C
.5COOOOOOOE 00=0962
.471238900E 01=C971
.20COOOOCOC Ol =
.6283180COC Cl='
.24560COCn£-C2 =
. 174VJ30COc-Cl -'. ?F. 3
31'
76
1 5
-------
Table II-A-5
// PO
*l)Mt; r
I c,b'i( XI'Ll! I , YPLDT
I'RiJGKAKMEK - LOT Tit. T'lC7Yf.K|
UIMENSI'J.'i Xi'L'T ( 7 > , YPLDI I?) »VAKK (?)
DIMENSION L ( ir>Tl )
DIME'-iSlm L MM 101 ) , I = 1 ,NO
L(1)=l
XLINE = 1CO.O
YL IME = 'il.C
LINEX = NUMBER CT POINTS
LINEY = NLMBfc« 'IF POINTS
LINEX = XLINE +1.0
LINEY = YLINE+1.0
JO)
- MAY 1T71
NUMiFK f;F
IMC WHICH X
IMC UHICH Y
POINTS=COI
AXIS is Diviar-i)
AXIS is
hH
TO
PLl'TTEO IS GREATER THAfJ ALI.MMEn
1 10)
PLOTTED
PLCTfEO
ON
ON
AXIS
AXIS
ARRANGE THE Y-VALbES IN DESCENDING ORDER
LIM = NO-1
INT = 1
DO <. I = 1,L1M
II =1+1
IF(YPLOT( II 1-YPLUTI I ) ) A , <,, 2
TEMPI = YPLOTI I 1)
TEMP2 = XPLOTI I 1)
1T3 = L( I 1)
YPLOT l)=YPLOr(I)
XPLOT )=XPLl)T ( I )
LI I 1) L I )
MARK! =MARK ( I )
YPLOT = TEMPI
XPLOT = TEMP?
L( I )= T3
MARKl )=IT4
INT =1
CONTINUE
IF( INT -1)6,6,5
LIM=INT
GO TO 1
OY= STEP SIZE FOK Y-AXIS
DY =(YPLOT( l)-YPLOT(NO) 1/YLINE
POWK = 10COO.C
DO 50 LD=1,<3
IF(DY-POWK)
-------
Table II-A-6
on i.i r>i
4 \ ?Qw-i = P(),.«*'j. H;
Ih (UY-P')V.1^) bC,42,'«
A? IPKM = LU
GO Tf) r)l
30 CO-NT MUE
IPR'*U = 0
51 CONTINUE
FIND THE RA\GE CT X fti\ll) THE STEP SIZE FCft X-AXIS, DX
XMAX = XPLOT ( I )
DO 3C I=2,-\ll
|F( XMAX-XPLOTI I I )27, 10,30
27 XMAX= XPLLT ( I )
30 CONTINUE
XMIM = XPLOT(l)
DO ^.C 1=2, NO
1F( XM1N-XPLUT( I > lAC.'.O, 13
}9 XKIN = XPL()T ( I )
40 CONTINUE
DX = I XMAX-XI/INI/XLlNE
PLOT X,Y
1 = 1
Y = YPL11T t I )
90 DO 7 J=1,LINEX
7 LINEU)= IBLK
10 IF(YPLOTIl)- Y + C.5 *ABS(I)Y) ) 1A, 11 , 1 1
11 J = (XPLOTI I )-X^IN)/DX *1.5
128 LINE( J) = MARK! I )
1 = 1 + 1
IF ( I-NO) 10,10, 14
14 GU TOI 61,61,61 ,64,64,66,66,60,69) , IPRNT
61 WRITE ( IULT.911 ) Y.UME
GO TO 20
64 YPRMT = Y+0.005
WRITE (IOUT.912) YPRnT.LlNE
GO TO 20
66 YPRNT = Y+0. 00005
WRITE (IOUT.913) YPRNT, LINE
913 FORMATtlH ,F8.4,2X,101A1)
GO TO 20
68 YPRNT = Y+O.OCOC05
WRITE (IOUT.914) YPRNT.LINE
GO TO 20
69 WRI TE ( 1001,915) Y,LI ME
20 Y = Y-DY
IH I-NO)9C,90,91
91 CONTINUE
K = 0
DO 21 1=1,11
XP( I )= XMIN + DX*K
21 K=K+1C
IFIXPI 11 1-10000. 170,74, 74
74 IF(XP( 11 1-1. E7) 72,71,71
72 DELX=0.5
.DO 81 1=1,11
1F(XP( I ) 176,81,77
76 XP( I )=XP( I 1-HELX
416
-------
Table II-A-7
'.j'l f'l '.! I
17 X a ( 1 > = X i>( I M I : F L X
ol CO.Mll Jl;E
rtRITti i.ini,:;i
GO Tli 19
n v.w. i rt i mui , -IM XP
GO 10 9-)
70 IHXPI 11 1-0.01) 71 , 7S,
DO 02 1=1,11
IF< XP( I 1 ) 7B,H2,fl3
70 XPI I ) = XP ( I 1-PfcLX
GU II J R2
33 XPI I )=XP( I ) *OCLX
H2 CuNTINUE
KRl IE! IDU1,')02)XP
GO TlJ 99
99 CUNT INUE
L IM = 'JO
201 INT=l
00 96 I = 1 ,L If
J=L ( I )
IF (J-I 197,96,97
97 TEMP 1 = YPLOT ( I 1
TEMP2 = XPLOT ( 1 1
I )
IT3 = L
YPLOTlI
XPLOTII
L( I 1 = LIJ)
YPLOIIJ
XPLOTU
LIJ) =
= YPLUT(J)
= XPLUT(J)
= TEMPI
= TEMP2
T3
INT=I
96 CONTINUE
IF( INT-1)205,20S,202
202 LIM=1NT
GO TO 201
205 RETURN
902 FORMATI/2H , 11 ( 9X , 1H ' )/2H ,111=10.3)
911 FORMATtlH ,F9.0,2X, KHA1)
912 FORMATI1H ,FH.2,2X,101Al)
914 FORMAM1H , F 8 . 5 , 2 X , 1 0 1 A 1 )
915 FORM.ATIE1C.2 ,1X, 10UI 1
916 FORMAT(/2H ,11 I9X,IM' 1/7H .11E10.2)
917 FORMATI/2H , I I (9X, IH')/2H .11FIO.S)
918 FURMATI/2H , 11 I9X,IH')/2H .11F10.0)
END
417
-------
APPENDIX II-B. Cold-Model Studies of an Axial
Flow Burner With an'ASTM Flow Nozzle*
Burner Design
Axial flow burners are typically used on high-temperature, large-
scale applications such as steel mill soaking pits and slab heaters and
large car bottom and rotary hearth furnaces, where burner inputs are
in the 5-30 million Btu/hr range. Numerous individual designs of axial
flow burners are in use. Surface Combustion has two designs. The first
was used over a 15-20 year period (1950 to 1965) and installed on about
1200 soaking pits in the United States (Figure II-B-1).
FLOW NOZZLE
AIR-DISTRIBUTION
SCREEN
GAS
-BURNER BLOCK
AIR
A-I2M256
Figure II-B-1. SURFACE COMBUSTION AXIAL BURNER DESIGN
The major design feature is the use of an ASME flow nozzle contour for
air discharge at the air-gas mixing point. This not only provides con-
trol over velocity and velocity distribution of the mixing point, but also
precision air metering for burner-input control. An axial flow gas nozzle
is located at the flow nozzle throat for long-flame applications. An even
longer flame can be obtained if the gas nozzle is positioned at a point of
lower velocity differential.
This burner had a flame longer than our experimental furnace.
Therefore, it was not studied in hot-modeling conditions.
418
-------
Flame length must usually be tailored for heating-chamber dimensions,
and this is accomplished by using additional gas nozzles. Nozzle patterns
are usually 1, 2, or 4. Additional flame-length control can be achieved
by introducing swirl into the gas nozzles. With multiple nozzles, 2 or 4,
swirls can be in opposite directions.
The second burner design is being used on installations built since
the 1963-1964 period and uses the same air-side design contours including
the flow nozzle. The major improvement is in the gas nozzle system,
which incorporates both radial and axial gas mixing for flame-length con-
trol. This gas mixing system can be installed on existing old-style
burners (Figure II-B-2).
The experimental burner is designed to simulate both of the above
burner designs through the use of removable inserts. The gas input of
the experimental burner is limited by our furnace to 3. 5 million Btu/hr.
Therefore, it has to be scaled down from the 30 million Btu/hr input of
a full-sized burner using velocity scaling techniques. Velocity scaling
is the most widely used technique of burner equipment manufacturers.
The basic operating characteristics of the experimental burner are given
in Table II-B-1 and represent the conditions found in a full-sized com-
mercial burner.
Table II-B-1. OPERATING CHARACTERISTICS OF
EXPERIMENTAL AXIAL FLOW BURNER
Gas Input (Maximum) 4000 CF/hr
Air Input at 10% Excess Air 44,000 CF/hr (STP)
Air Preheat Temperature 800°-900°F
Air Duct Velocity at 900°F 30 ft/s
.Air Housing Velocity at 900°F 30 ft/s
Air Velocity at Throat 160 ft/s
Burner Block Velocity at 900°F 40 ft/s
Gas Nozzle Velocity at 60°F
(Maximum Flame Length) 160 ft/s
Based on the above design information, the following scaled-down
burner dimensions were calculated.
419
-------
RADIAL GAS
AXIAL GAS
A-I2II258
Figure II-B-2. COMBINATION RADIAL-AXIAL GAS BURNER
420
-------
1. Air Mousing Diameter
Air at 44, 000 CF/hr (STP), raised to a 900°F preheat temperature
while maintaining a 30 ft/s chamber velocity, requires a housing diam-
eter of 14 inches as determined from Equation II-B-1.
D2 = 4Q(T2/Ti)/V7T(3600) (II-B-1)
where —
D = diameter, ft
Q = air flow at STP, CF/hr
T2 = preheat temperature, °R = 1360
TI = temperature at STP, °R = 520
V = velocity, ft/s (30 ft/s)
2. Surface Combustion Flow Nozzle Diameter
Air again at 44, 000 CF/hr (STP), raised to 900°F preheat tempera-
ture while maintaining a 160 ft/s velocity, requires a nozzle diameter of
6 inches using Equation II-B-1. The pressure drop through the nozzle
was calculated at 2.4 inches of water per velocity head using the following
relationships:
Pressure drop, h , in feet of fluid flowing is given by Equation
H-B-2:
v 2g '
To express h in feet of water column, it is corrected for the density
difference between water and the flowing fluid, air, where —
V2 = velocity, ft/s at STP
g = gravity constant, 32. 17 ft-lb/lb,.s2
p (water) = 62.4 Ib/cu ft
p(air) = 0. 0763 Ib/CF
Therefore,
V2 Pair
hv(feet of water) = j— ( ) (II-B-3)
°c water
421
-------
3. Surface Combustion Gas Noy.zle Diameter
For longest flame operation the velocity of the gas should equal the
velocity of the air or be 160 ft/s. Again using Equation II-B-1 and as-
suming TI = Tz, the nozzle diameter was calculated at 1. 12 inches. The
pressure drop in the nozzle will be 5. 0 inches of water using Equation
II-B-3.
4. Axial Flow Burner Operation for Cold Flow Studies
The burner designed for use on the hot furnace (Figure II-B-3) will
also be used on the cold model with adjustments made to the volumetric
flow to scale mixing for the lower air temperature (70°F) in the cold
model. We decided that momentum flux scaling would be better than
either Reynolds number or velocity scaling for obtaining the data required
from the cold model for this program. To scale from the hot burner
(900°F preheated air) to the cold burner (70°F air), momentum flux is
held constant according to Equation II-B-4.
"nV = "cV
-------
tSJ
OO
CK
ATE
\ i
c
-------
Table II-B-Z. OPERATING VARIABLES AND BURNER DIMENSIONS
FOR AXIAL FLOW BURNER USING 900°F AND 70°F AIR
Air Temperature
900°F 70°F
Gas Nozzle Input, SCF/hr 4,000 6,4ZO
Air Input, SCF/hr 44, 000 70, 500
Air Duct Velocity, ft/s 30 <30
Nozzle Diameter, inches 6 6
Nozzle Pressure Drop, in. HzO 2.4 2.4
Gas Nozzle Diameter, inches 1-1/8 1-3/4
Gas Nozzle Pressure Drop, in. HaO 5 3. 6
In both the hot and cold test work, a pressure-drop screen was used
in the burner to distribute flow evenly across the burner housing diam-
eter. These screens are designed for a 3. 0 inches of water column pres-
sure drop. For the hot operation, this is a screen having about 13%
open area.
Tracer-Gas Mixing Studies
Table II-B-3 and Figure II-B-4 show the raw data input, the reduced
data, and a graphical presentation of the data for the axial flow burner
fitted with the ASTM flow nozzle at a 5. 1-cm axial sampling position.
The following is an explanation of the headings listed in Table II-B-3:
Y-observed is a carbon monoxide value on the calibration curve for a
given value of x; Y-computed is the value of Y-calculated from a poly-
nomial fit of the calibration curve for the same value of x; difference
is the numerical difference between Y-observed and Y-computed; SD is
the standard deviation of Y-computed. The coefficients of the fitted
calibration curve are listed next as C(l), C(2)...C(N). Under experi-
mental results we list AP, the axial position of the data point in centi-
meters; RP, the radial position of the data point in centimeters; X(V),
the experimentally time-averaged voltage corresponding to the unknown
concentration; and CO, the value of the carbon monoxide concentration in
parts per million (ppm). Figure II-B-4 shows the graphical output of
Table II-B-3. The carbon monoxide concentration above the ambient level
of approximately 70 ppm occurs between ±2 cm from the axis of the bur-
ner; in the throat of the burner the concentration falls to 8 ppm. Figure
424
-------
Table H-B-3. TRACER-GAS MIXING DATA FOR
THE AXIAL BURNER WITH THE ASTM FLOW
NOZZLE AT THE 5. 1-cm AXIAL POSITION
TRACER GAS STUDIES OF COMBUSTION BURNERS
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLD MODEL (CO TRACER GAS)
Y OBSERVED Y COMPUTED
0.00 0.44
125.00 124.26
250.00 249.14
37S.OO 377.18
500.00 498.95
SD Y= "0.19159E 01
DIFFERENCE
0.44457
-0.73118
-0.85674
2.18748
-1.04412
COEFFICIENTS FOR Y= C( I I»C<2)*X*. ,
C( 1)= 0.4445
C( 2)= 395.5515
C( 3) = 102.9597
iXPERIMENTAL RESULTS
AP
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5. 10
5. 10
5.10
5.10
5.10
5. 10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5.10
5. 10
5.10
5.10
5.10
5.10
5 . IT)'
5.10
5.10
5.10
5.10
5.10
•srnr™
KP
-25.00
-20.00
-15.00
-14.00
-13.00
-12.00
-10.00
-9.00
-8.00
-7.00
-6.00
-5.00
-4.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
20.00
ZB'.'OTJ"'
X(V)
0.172
0.170
0.172
0.171
0.171
0.171
0. 171
0.171
0.169
0.080
0.030
0.020
0.019
0.018
0.645
1.410
1.600
1.720
0.690
0.021
0.019
0.020
0.021
0.021
0.065
0.146
0.169
0.172
0.172
0.172
0.172
0.172
0.171
0.172
CO
71.52
70.66
71.52
71.09
71.09
71.09
71.09
71.09
70.23
32.74
12.40
8.39
7.99
7.59
298.40
762.86
896.90
985.38
322.39
8.79
7.99
8.39
8.79
8.79
26.59
60.38
70.23
71.52
71.52
71.52
71.52
71.52
71.09
71.52
.+C(N+1)*X**N
425
-------
HP VS. CO
~7.
H 449.
£ «•»•
3 *10.
Z 391.
0 371.
352.
8 »*.
314.
295.
276.
256.
237.
218.
199.
IBOi'
160.
141.
122.
103.
84.
65V *-
45.
26.
7.
AXIAL BURNER WITH SURFACE COMBUSTION
5.10
NOZZLE - COLO MODEL (CO TRACER GAS)
U
"-257000 -20.000 -15.000 -10.000
-5.000 0.000 5.000
RADIAL POSITION, cm
10.000
Figure H-B-4. TRACER-GAS MIXING PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 5. 1-cm AXIAL POSITION
-------
II-B-5 shows the tracer-gas studies made at an axial position of 25.4 cm.
We found that there is little difference in the qualitative structure of the
concentration profile: Only the magnitude of the carbon monoxide concen-
tration at the center of the peak has decreased. The tracer- gas profile
taken at an axial position of 45. 7 cm is shown in Figure II-B-6. The
concentration in the peak is one-half the concentration measured at 5. 1 cm,
and the width of the peak has increased by 2 cm. Figure II-B-7 shows
the tracer-gas data gathered at an axial position of 66. 0 cm. The peak
concentration has again decreased, accompanied by an increase in the
width of the peak. The difference between the ambient carbon monoxide
concentration and the concentration in the throat of the burner is now 20
ppm, compared with 62 ppm at an axial position of 5. 1 cm. A profile
taken at an axial position of 86. 7 cm showed that the central peak has
vanished; therefore, we considered the mixing complete and did not run
full profiles beyond this point. Data taken at axial positions farther from
the burner only showed experimental fluctuations about the ambient con-
centration. The raw and computed data for the axial burner fitted with
the ASTM flow nozzle are presented in Tables n-B-4 to II-B-6.
Cold-Model Velocity Data for the Axial Burner
Point-by-point velocity profile data were collected for the axial bur-
ner, fitted with the ASTM flow nozzle, by using a multidirectional impact
tube (MBIT). A typical set of raw data obtained from the axial flow bur-
ner fitted with the ASTM nozzle is shown in Table II-B-7. The rotational
angle of the probe in the x-z plane is represented by 6. AP is the axial
position of the probe in centimeters, and RP is its radial position in
centimeters. PB is the atmospheric pressure in millimeters of mercury
and P is the pressure differential between pressure holes, x and y,
xy
expressed in terms of time. The pressure differentials are expressed
in terms of time because of the integration method used to collect the
data. The pressure differentials we are attempting to measure are con-
stantly changing since we are dealing with a turbulent system. To deter-
mine the mean value of these transient pressure differentials, we elec-
tronically integrate. These experimentally determined mean pressure
differentials yield the velocity (magnitude and direction) of the air stream
by means of the techniques outlined earlier in this report.
427
-------
ts)
oo
vs. co
839. '
823.
807.
791.
77*.
758.
742".
726.
710.
69*.
678.
661.
6*5.
629.
613.
597.
581.
565.
5*8.
532.
516.
500.
*8*.
*68.
*S2.
*35.
*19.
*03.
387.
371.
355.
33B.
322.
306.
290.
27*.
258.
2*2.
225.
209.
193.
177.
161.
1*5.
129.
112.
96.
80.
~W~
*8.
32.
16.
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLD HOOEL (CO TRACER GAS)
AP= 25.*0
• -• • •
*
\ ^9<
V. .>* •
~25TOW ~ -2T3.000 -15.000 -10.000
-5.000 0.000 5.000
RADIflL POSITION, cm
10.000 "
Figure U-B-5. TRACER-GAS MIXING PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 25.4-cm AXIAL POSITION
-------
RP VS. CO
4BV.OO
472.29
463.57
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL tco TRACER CAS)
AP« 45.70
E
&
2
O
p
a.
z
u
u
z
o
u
o
u
437.42
428.71
419.99
411.27
402.56
393.84
385.12
376.41
367.69
358.97
350.26
341.54
332.82
324.11
315.39
306. 67
297.96
289.24
200.53
271.81
263.09
254.38
245.66
236.94
228.23
219.51
210.79
202.08
193.36
184.64
175.93
167.21
158.49
149.78
141.06
132.35
123.63
114.91
106.20
97.48
88.76
80.05
71.33
"S276T
53.90
45.18
36.46
-20.500 -IS.000 -10.000
-5.000 0.000 5.000
RADIAL POSITION, cm
10.000 15.000
Figure II-B-6. TRACER-GAS MIXING PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 45. 7-cm AXIAL POSITION
-------
RP
VS. CO
269.66
265.36
261.06
256.75
252.45
248.1%
243.85
239.5*
235.24
230.94
226.64
222.33
218.03
213.73
209.43
205.12
200.82
1-J6.42
112.22
187.91
183.61
179.31
175.01
170.70
166.40
162.10
157.80
153.49
149.19
144.89
140.59
136.28
111.98
127.68
123.38
119.07
114.77
110.47
106.17
101.86
97.56
93.26
88.96
84.65
80.35
76.05
71.75
67.44
' CTVIV -
56.84
54.54
50.23
AXIAL BURNER KITH SURFACE COMBUSTION NOZZLE - COLO MODEL ICO TRACER GAS)
AP- 14.00
-Z5.00TJ -20.000 -15.000 -10.000 -5.000 0.000
RADIAL POSITION, cm
5.000
10.000 •- ir.ooo
Figure II-B-7. TRACER-GAS MIXING PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 66. 0-cm AXIAL POSITION
-------
Table II-B-4. TRACER-GAS MIXING DATA FOR
THE AXIAL BURNER WITH THE ASTM FLOW
NOZZLE AT THE 25.4-cm AXIAL POSITION
TRACER GAS STUDIES OF COMBUSTION BURNERS
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLD MODEL (CO TRACER GAS)
Y OBSERVED Y COMPUTED
0.00
125.00
?50.00
375.00
500.00
SO Y =
0.44
124.26
249.14
377.18
498.95
0.19159E 01
DIFFERENCE
0.44457
-0.73118
-0.85674
2.18748
-1.04412
COEFFICIENTS FOR Y= C(I) *C(2»*X*.
C( 11= 0.4445
C( 2)= 395.5515
CC 3>= 102.9597
EXPERIMENTAL RESULTS
AP
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
?5.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
25.40
Z5.4T)
RP
-25.00
-20.00
-15.00
-14.00
-13.00
-12.00
-10.00
-9.00
-8.00
-7.00
-6.00
-5.00
-4.00
-3.00
-2.00
-1.00
0.00
1. 00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
20.00
25.00
X(V)
0.171
0.165
0.163
0.157
0.145
0.133
0.120
0.102
0.091
0.077
0.067
0.058
0.070
0.206
0.748
1.290
1.520
1.300
0.590
0.141
0.042
0.039
O.C54
0.065
0.084
0.097
0.108
0.127
0.147
0.162
0.165
0.170
0.171
0.170
cu
71.09
68.51
67.65
65.08
59.96
54.87
49.39
41.R6
37.29
31.51
27.40
23.73
28.63
86.29
353.92
682.04
839.56
688.66
269.66
58.26
17.23
16.02
22.10
26.59
34.39
39.78
44.36
52.34
60.81
67.22
68.51
70.66
71.09
70.66
.+C(N*l)*X**N
431
-------
Table II-B-5. TRACER-GAS MIXING DATA FOR
THE AXIAL BURNER WITH THE ASTM FLOW
NOZZLE AT THE 45. 7-cm AXIAL POSITION
TKACEK GAS STUDIES OF COMBUSTION BURNERS
AXIAL BURNER WITH SURFACfc COMBUSTION NOZZLE - COLO MODEL ICO TRACER GAS)
Y OBSERVED Y COMPUTED DIFFERENCE
0.00
125.00
250.00
375.00
500.00
0.44
124.26
249.14
377.18
498.95
0.44457
-0.73118
-0.85674
2.18748
-1.04412
SD Y= 0.19159E 01
COEFFICIENTS FOK Y= C( I ) +C(2)*X+...*C(N*1)*X**N
C« 1)= 0.4445
C( 2)= 395.5515
C( 3)= 102.9597
EXPERIMENTAL RESULTS
AP
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
45.70
415.70'
RP
-25.00
-20.00
-15.00
-14.00
-13.00
-12.00
-10.00
-9.00
-8.00
-7.00
-6.00
-5.00
-4.00
-3.00
-2.00
-I. 00
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
20.00
25.00
XIV)
0.169
0.155
O.l3b
0.135
0.130
0.125
0.125
0.109
0.105
0.104
0.118
0.145
0.232
0.359
0.600
0.835
0.970
0.780
0.538
0.282
0.149
0.109
0.090
0.089
0.095
0.108
0.102
0.110
0.131
0.137
0.149
0.153
0.170
0.169
CO
70.23
64.22
56.99
55.72
53.60
51.49
51.49
44.78
43.11
42.69
48.55
59.96
97.75
155.71
274.84
402.51
481.00
371.61
243.05
120.17
61.66
44.78
36.87
36.46
38.95
44.36
41.86
45.20
54.02
56.56
61.66
63.37
70.66
70.23
432
-------
Table II-B-6. TRACER-GAS MIXING DATA FOR
THE AXIAL BURNER WITH THE ASTM FLOW
NOZZLE AT THE 66. 0-cm AXIAL POSITION
TRACER GAS STUDIES OF COMBUSTION BURNERS ...... .
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL (CO TRACER CASI
Y UbSfcRVED Y CUMPUTED OIFFERENCt
o.ob
125.00
P50.00
!37'3.00
500.00
0.44
124.26
249.14
377.18
498.95
0.44457
-0.73118
-0.85674
2.16748
-1.04412
SO Y= 0.19159E 01
COEFFICIENT F0« Y= C ( 1 ) *C ( 2 ) *X+ . . . *C ( N+ 1 ) *X**N
C« l)= 0.4445
C( 2>= 395.5515
C( 3) = 102.9597
EXPERIMENTAL RESULTS
AP
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00"
66.00
66.00
66.00
66.00
66.00
66.66"
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
66.00
RP
-25.00
-20.00
-15.00
-14.00
-13.00
-12.00
-10.00
-9.00
-8. CO
-7.00
-6.00
-5.00
-4.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00
6. "00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
20.00
25.00
X(V)
0. 166
0.149
0.142
0.137
0.136
0.136
0.131
0.135
0. 138
0.150
0.159
0.210
0.303
0.378
0.525
0.580
0.590
0.500
0.383
0.303
0.189
0.170
0.141
0.124
0.122
0.125
0.125
0.133
0.145
0.156
0.155
0.164
0.175
0.182
CO
69.80
61.66
58.68
56.56
56.14
56.14
54.02
55.72
56.99
62.09
65.94
88.05
129.74
164.67
236.48
264.50
269.66
223.96
167.04
129.74
78.88
70.66
58.26
51.07
50.23
51.49
51.49
54.87
59.96
64.65
64.22
68.08
72.81
75.84
433
-------
Table U-B-7. RAW VELOCITY DATA FOR THE AXIAL BURNER WITH
THE ASTM FLOW NOZZLE AT THE 5. 1-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNERS
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
Al - 0.770590 A2 = 0.272353 A3 = -0.059818
BO = 0.737720
C = 4.4o4660
82 = -0.158821 84
JD_= 0._3?48L2
0. 1292*6
4XJ_AL_BJJRN_iR_WI TH_SUR_FACE .COMBUSTION NQZZLE_- CQL.D MQDEL__
TJTAL DATA INPUT
THETA
. o.
0.
0.
6.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
AP
5. 1
5. 1
5. I
5.1
5.1
5.1
5.1
5.1
5.1
5. I
5.1
5.1
5. 1
5.1
5.1
5.1
5. 1
5.1
5.1
5.1
5^1
5.1
5.
5.
5.
5.
.5. .
5.
5.
5.1
RP
-25.0
-20.0
- 1.5 . 0
-14.0
-13.0
-12.0
-Jl.O
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
1.0
4.0
5.0
6.0
7-0
8.0
9.0
10.0
25.0
20.0
15.0
P13
28000.00
25600.00
20000. OC
17900.00
15100.00
14000.00
J2400.00
10400.00
6120.00
-1200.00
-320.00
-417.00
-4420.00
4720.00
1880.00
1550.00
534.00
-672.00
2730.00
4670.00
-3540.00
-2668.00
-11120.00
11720.00
439.00
301.00
2380.00
-294000.00
16400.00
10000.00
8200.00
P03
32800.00
69400.00
97000.00
-70000.00
-87000.00
-118000.00
.-204000. .00
-43400.00
107000.00
-3240.00
4770.00
212.00
162.00
155.00
15.4.00..
153.00
113.00
162.00
116.00
136.00
167.00
152.00
156.00
141.00
274.00
38880.00
-18400.00
-77200.00
-76400.00
-66000.00
P24
55000.00
84000.00
999999999.50
-12100C.OO
-120000.00
-58900
-56800
-16800
-17100
-2750
-2530
300
730
. ._ 59.2
488
544
1180
930
1600
51.2
-2308
1090
392
358
1860
-23620
-24000
-63000
-53200
-92000
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
P04
43200.00
180400.00
-152400.00
-41000.00
-43000.00
-57200.00
-48000.00
-26600.00
-18700.00
-6800.00
448.00
152.00
139.00
144.00
142.00
136.00
114.00
135.00
113.00
150.00
134.00
172.00
147.00
162.00
143.00
374.00
49000.00
-52000.00
-68800.00
-52000.00
-32800.00
PDA
420.
440.
455.
480.
455.
501.
475.
504.
492.
486.
200.
94.
88.
86.
88.
86.
41.
78.
70.
90.
76.
87.
85.
87.
76.
179.
445.
386.
442.
414.
380.
00
00
00
00
00
00
00
00
00
00
00
00
80
00
00
80
20
00
40
20
40
20
60
20
80
00
00
00
00
00
00
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
-------
A typical set of reduced velocity data is given in Table II-B-8. The
direction of the velocity is defined by FI, the conical angle measured
about the x-axis, and by A, the dihedral angle measured from the posi-
tive y-axis in the y-z plane. The magnitude of the velocity in ft/s is
given by V; RHO is the density of the air in slugs/ft-sq in. ; and VX,
VY, and VZ are the velocity components in ft/s. Both VT, the tangen-
tial velocity, and VR, the radial velocity, are expressed in ft/s. PST
is the static pressure in psig.
Figure II-B-8 shows the axial velocity at an axial position of 5. 1 cm.
The central peak occurs in the region of the throat of the burner.
Figure II-B-9 shows the axial velocity profile at an axial position of
25.4 cm. The most noticeable structural change in the curve from the
profile at 5. 1 cm is the increase in radial length of the shear region
between the combustion air and surrounding recirculation region radially
from 4 to 6 cm. Figure II-B-10 presents the axial velocity profile at
45. 7 cm. The central peak and the constant-velocity plateau have blended
together with the shear layer to give a smooth bell-shaped velocity dis-
tribution. The structure of the axial velocity profile at 66. 0 cm, shown
in Figure II-B-11, is very similar to the profile at 45.7 cm. The max-
imum velocity at the peak is 31. 5 ft/s, a slight decrease from the 39. 0
ft/s measured at an axial position of 5. 1 cm.
The raw pressure data for the case of the axial burner fitted with
the ASTM nozzle are given in Tables II-B-9 to II-B-11. The reduced
profile data are listed in Tables II-B-lZ to II-B-14.
Initial runs on the hot furnace with the axial burner fitted with the
ASTM nozzle showed that the flame was longer than the furnace. Con-
sequently, further work was not undertaken.
435
-------
Table II-B-8. COMPUTER REDUCED DATA FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 5. 1-cm AXIAL POSITION
RESULJ.S
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
AP
. ..5..1 ._-.
5.1 -
. . 5 .1. . -
5.1 -
5.1 -
5. 1 -
5.1
5. 1
5.1
5-1
5.1
5.1
S- 1
5.1
5.1
5.1
5.1
5.1
5- 1
5.1
5.1
5.1
5-1
RP
20.0
15^.0. _
14.0
i 3.n
12.0
10.0
-8.0
-7.0
-6.0
-4.0
-2.0
- 1 _n
0.0
2.0
3^.0
4.0
5-O
6.0
7-O
8.0
9_n
10.0
25-O
20.0
i 5-n
Fl DELTA
27.3 153.0
62.9
. .-7-3^.4
82.2
AI .n
77.7
76.6
_ . -7.6..J3
48.0
lfc.2
8.7
_ 3.1
3.7
3. h
2.7
2.3
1. 1
1 .7
6.3
h.R
16.1
fcB- 7
77.4
77.9
77.2
79-5
163.0
179.9
188.4
1 H7. 1
193.3
192.3
RHO
0-OOOO159
0.0000159
0.0000159
n.oooni 59
V
1.84
1.64
2...Q6
3.02
3- 10
0.0000159 2.99
D-OOOO159 3-10
211.7 0.0000159
_19_9^_6 0 . QQOQ.1 5 9
336.4 0.0000159
352.7 0.0000159
54.2
98.7
10 7.. 4.
107.4
1 35. 5
29.6
_ioa^a.
108.9
81. .7
310.8
R4.4
91.9
129. 1
170.8
1 R5. 7
274.6
1 94. 5
190.6
1H5-O
0.0000159
0.3000159
0.0000159
.__ O.Ofl 0015.9
0.0000159
n.oonoi 59
0.0000159
O-OOOO159
0.0000159
_Q.OO00159
0.0000159
O-OOOOI59
0.0000159
0.0000159
0.0000159
O.OOOO159
0.0000159
O.OOOO159
0.0000159
n.oonoi 5<»
3.71
4.15
7.50
20.72
31.91
33.67
33.89
33.^68
33.87
37.97
35.60
39.04
35.20
34.62
33.32
34.35
32.29
32.74
21.17
fe. 19
2.94
2.HH
3.53
4.0O
VX
J..63 .
0.74
0.5B
0.40
0.4R
0.63
0.85
L.O.O.-
5.01
19.89
31.54
_31..59
33.86
. -J3.63
33.80
37.89
35.56
JO..Q2.
35.17
34.56
33.31
34.34
32.09
_ -.12. 5.1.
20.33
2.24
0.64
0.60
0.77
0.72
VY
. -0..75
-1.39
. -1.38 .. .
-2.96
-3.04
-2.84
.. -:2.96
-3.07
. -.3.80..
5. 11
5.75
2.82
..0.23
-0.22
-0.55
-0.67
-1 .73
1.46
_ -0.33_ . .
-0.45
0.2.8
0.41
0.09
-0.12
-2.48
-5.82
-5.74
0.23
-2.73
-3.38
-3.91
VZ
0.42
o.ao_
-0.43
-0.38
-0.67
.-0.64..
-1.90
-1.36
-2.23
-0.72
3.92
_.2.30
1.42
1,76
2.13
1.70
0.83
0.97
1.34
1.99
-0.48
1.01
3.59
3.04
0.94
-0.57
-2.86
-0.71
-0.63
-0.34
VT
--0.8A
-1.30
-1.30
-1.05
-1.14
-1.33
.. -L.2B
-1.52
. - 1 ..61
-4.55
-5.67
-4.79
-1.43
-1.83 ..
-2.20
-2.30
0.00
J..Q2
1.41
2.00
0.63
1.02
3.58
3.91
5.80
3.26
1.15
2.04
2.28
L.BB
VR PST
0.08 0.002316
0.65 0.002242
1.49 0.002192
2.80 0.002149
2.84 0.002263
T PB
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
2.60 0.002048 20. 760.
_ 2 J4_ Q «Jttfl2163. 20. 760.
3.27 0.002083 20. 760.
.. 3jjb9 0.002162 20. 760.
3.23 0.002053 20. 760.
1.20 0.001962 20. 760.
0.62 0.002656
.. Q...L6 0_t_0.0.2ft9.5
0.07 0.002287
0 » LJ 0_, 0.0.2 L6_L
0.37 0.002234
0.75 0.012402
1.68 0.002521
0.13 0.001813
0.14 0.001037
0.19 0.003350
0.01 0.002414
0.03 0.002075
0.34 0.003126
0.34 0.004448
1.07 0.002402
4.75 0.002487
2.63 0.002628
1.95 0.002304
2.57 0.002494
3.45 0.002754
20. 760.
20. 7607
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. T60.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
-------
AXIAL BURNER WITH SURFACE COMBUSTIOM 'NOZZLE - COLO MODEL
OJ
39.03
1H.77
37.51
36.00
.35.2.4,
34.49
32.97
47-71
31.46
.30.70 _ . _. .„.._._ ...
29.94
28.43
27.67 . ....._.
26.91
26.16
25. 4C
24 . 64
23.88
23.1_3_
22.37
21.61 . ...
20.85
70. in
19.34
18.58 .
^ 17.83
C 17.07
.- 16.31
(_ 1 S.SS _
5 14.80
O 14. .04 . ...
J 13.2U
™ 12.57
11.77
1 1 .ni
10.25
9.50
B.74
.. 7.98 _ ...
7.22
b.47
5.71
• A
/\ .
/ \
" . / \ *
/ N--.
/ '• i
1
— . —
— -
«
_
r: n::;:;.::::_:::___
4.19
2.68
1 .07
-25.000 -20.000 -15.000 -10.000
-5.000
0.000
5.000
10.000
15.000
20.000
25.000
RADIAL POSITION, cm
Figure II-B-8. AXIAL VELOCITY PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 5. 1-cm AXIAL POSITION
-------
ftp
AXIAL BURNER MIIH SURFACE COMBUSTION NOZZLE - COLO MODEL
_AR= 25.^0 __ „ . . __ - _. .. ' .
OJ
00
-25.000 -20.000 -15.000 -10.000
-5.000
0.000
5.000
10.000
IS.000
20.000
25.000
RADLAL POSITION, cm
Figure II-B-9. AXIAL VELOCITY PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 25.4-cm AXIAL POSITION
-------
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
¥.& .
33.S
-25.000 -20.000- -15.000 -10.000 -5.000
0.000
5.000
10.000
15.000
20.000 25.000
RADIAL POSITION, cm
Figure II-B-10. AXIAL VELOCITY PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 45. 7-cm AXIAL POSITION
-------
AXIAL BURNER wirH SURFACE COMBUSTION NOZZLE - COLO MODEL
4*.
^
o
VS.._W __AR?-6.6...0C
31.46
30.35
_29.£0 _.
29.24
26.69.
28.13
?7.SR
27.02
26.46
25.91
25.35
24.80
24.
7.02
6^46.
S.91
J^15_
4.60
4.?4
x
3.69
J.li
-25.000 -20.000 -IS.000 -10.000
-5.000
0.000
5.000
10.000
15.000
20.000
25.000
RADIAL POSITION, em
Figure II-B-11. AXIAL VELOCITY PROFILE FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 66. 0-cm AXIAL POSITION
-------
Table II-B-9. RAW VELOCITY DATA FOR THE AXIAL BURNER WITH
THE ASTM FLOW NOZZLE AT THE 25.4-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNERS '
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
Al = 0.770590 A2 = 0.272353 A3 = -0.059818
BO =
C =
TOTAL
IHETA
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o«
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.737720 B2 =
4.464660 D -
AXIAI
DATA INPUT
AP
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
25.4
HP
25.0
20.0
15.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.0
-10. 0
-15.0
-20.0
-25.0
-11. 0
-12.0
-13.0
-0.158821 B4 - 0.129246
0.394812
L_ BURNER WITH
P13
-41500.00
-215200.00
374800.00
1830.00
1120.00
-677.00
-553.00
-421.00
-510.00
-B47.00
-1920.00
-3300.00
-970.00
-756.00
-628.00
1050.00
5760.00
-36200.00
4200.00
980.00
556.00
594.00
680.00
1720.00
-53000.00
-42400.00
-48000.00
2440.00
7200.00
10600.00
.SJJRFACJE COMBUSTION NOZZLE _- COLO
P03
12300.00
11800.00
11600.00
16100.00
4080.00
1480.00
534.00
324.00
218.00
174.00
165.00
160.00
181.00
147.00
, 134.00 .
139.00
174.00
163.00
162.00
173.00
207.00
294.00
473.00
874.00
11400.00
11100.00
11100.00
2780.00
3160.00
5380.00
P24
12100.00
13800.00
11400.00
-20700.00
-69300.00
3340.00
3020.00
-6800.00
25240.00
1560.00
770.00
563.00
648.00
624.00
610.00
1002.00
-4540.00
4740.00
1280.00
604.00
660.00
876.00
1164.00
1350.00
19400.00
11400.00
98400.00
29600.00
3200.00
6500.00
MO.DEL
P04
12300.00
12600.00
12700.00
11300.00
1860.00
620.00
355.00
231.00
186.00
156.00
153.00
146.00
148.00
122.00
122.00
139.00
176.00
164.00
159.00
178.00
227.00
336.00
557.00
980.00
11600.00
11000.00
10600.00
3490.00
4350.00
5900.00
POA
351.00
355.00
353.00
336.00
299.00
214.00
152.00
125.00
83.70
84.60
83.00
84.00
88.00
72.00
74.00
83.00
85.20
84.80
87.20
106.00
127.00
166.00
218.00
270.00
343.00
338.00
342.00
330.00
335.00
340.00
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
-------
Table II-B-10. RAW VELOCITY DATA FOR THE AXIAL BURNER WITH
THE ASTM FLOW NOZZLE AT THE 45. 7-cm AXIAL POSITION
AERODYNAMIC MODELING OF COMBUSTION BURNERS
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
Al = 0.770590 A2 = 0.272353 A3 * -0.059818
HO =
C =
0.737720 B2
4. 464660 D
= -0.158821 84 = 0.129246
0.394812
AXIAL BURNER WITH SURFAC
TOTAL DATA INPUT
THETA
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
6.
0.
0.
0.
0.
. ..0., .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
AP
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7 ..
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
RP
25.0
20.0
15.0
14.0
13.0
12.0
11.0
10. 0
. r.fi._
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.0
-10.0
-11.0
-12.0
-13.0
-14.0
-15.0
-20.0
-25.0
P13
-20000.00
-25000.00
-20000.00
-13900.00
-12700.00
-4880.00
-2580.00
-1220.00
-8.Q4_..00_ ..
-633.00
-630.00
-58i.OO
-552.00
-664.00
-840.00
-1000.00
-1150.00
-900.00
-4380.00
7300.00
3680.00
1380.00
1140.00
1070.00
930.00
798.00
1080.00
1190.00
1680.00
2130.00
4290.00
5190.00
IBOOO.OO
-52800.00
-17300.00
6 COMBUSIIO_N_.NOZZ_LE -. CCIL.D. MODEL _ __ _.
P03
_Zl_
-------
Table II-B-11. RAW VELOCITY DATA FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 66. 0-cm AXIAL POSITION
UJ
AERODYNAMIC MODELING OF
COMBUSTION BURNERS
CALIBRATION COEFFICIENTS FOR FORWARD FLOW
Al = 0.770590 A2 = 0.272353 A3 = -0.059818
BO = 0.737720 B2 = -0
C = 4.464660 0=0
.158821 B4 =
.394812
0.129246
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
TOTAL DATA INPUT
THETA
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.. o.
0.
0.
0.
0.
0.
0.
0.
0.
.. cu...
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
AH
66.0
66.0
66.0
66.0
66.0
66.0
66.0
.66.0
66.0
66.0
66.0
66.0
66.0
.66.0
66.0
66.0
66.0
_66_.-0_
66.0
66~.0
66.0
66.0
66.0
66.0
_66«-Q_
66.0
66.0
66.0
66.0
66.0
66.0
66.0
66. O
RP
20.0
15.0
14.0
13.0
12.0
11.0
10.0
9^0.
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-UO
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.0
-10.0
-11.0
-12.0
-13.0
-14.0
-15.0
-20.0
-25.0
P13
-22300.00
-14900.00
-4090.00
-4o"ib.o"b
-2250.00
-2350.00
-1780.00
-1140.00
-980.00
-738.00
-828.00
-740.00
-65B.OO
-582.00
-726.00
-970.00
-1120.00
-1650.00
-2620.00
21190.00
3600.00
1240.00
1090.00
1280.00
1170.00
1330.00
1300.00
1660.00
1380.00
1740.00
2000.00
3280.00
3440.00
20400.00
194400.00
P03
6570.00
11200.00
8440.00
5580.00
4410.00
4160.00
2100.00
1960.00
1270.00
960.00
593.00
496.00
419.00
324.00
277.00
228.00
210.00
199.00
183.00
183.00
..2J)5,_Q.O _
205.00
240.00
241.00
323.00
391.00
428.00
558.00
648.00
980.00
1350.00
1700.00
1910.00
10600.00
13500.00
P24
10600.00
12000.00
11800.00
11160.00
200000.00
35800.00
15600.00
9600.00
6800.00
2620.00
2620.00
1840.00
1010.00
1090.00
980.00
816.00
720.00
636.00
680.00
682.00
. 67.4 ._00
825.00
894.00
1190.00
1090.00
1440.00
1680.00
2110.00
2990.00
2500.00
2590.00
4830.00
6800.00
9380.00
12000.00
P04
6760.00
16400.00
5900.00
3180.00
2620.00
2370.00
1460.00
900.00
692.00
559.00
415.00
349.00
292.00
244.00
209.00
179.00
176.00
168.00
168.00
167.00
181.00
208.00
246.00
261.00
325.00
379.00
447.00
589.00
777.00
1030.00
1400.00
1960.00
2480.00
6520.00
13800.00
POA
356.00
457.00
344.00
330.00
316.00
323.00
290.00
256.00
232.00
208.00
201.00
184.00
152.00
135.00
118.00
108.00
107.00
93.80
92.10
99.00
104.00
115.00
133.00
139.00
160.00
182.00
198.00
220.00
261.00
259.00
277.00
304.00
309.00
341.00
345.00
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
__20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
76O.
-------
Table n-B-12. COMPUTER REDUCED DATA FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 25. 4-cm AXIAL POSITION
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
8JE.iUJ.LS
AP
25.4
25.4
25^4
25.4
25-4
25.4
25.4
25.4
25.4.
25.4
25.4
2-J.4
23.. 4
25.4
25. 4_
25.4
25.4
25.4
25.4
_Z5..4_
25.4
25.4
25.4
25,4
25.4
25.4
25.4
25.4
25.4
RP
25.0
20.0
15.0
10.0
9.O
8.0
6.0
4.0
3.0
2.0
-L^Q
0.0
_. -.L..D
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.O
-10.0
-15.0
-20.0
-25.0
-11.0
-12.0
-13.0
FI
17.6
15.3
19.0
63.1
43.3
11.2
6.0
2.4
2. 7
3.3
3.0
J..6.
2.2
O.fe
0.5
4.5
fc.R
8.9
13.1
13.8
10.3
16.6
3.2
20.7
24.8
17.1
DELTA RHO
73.7 0.0000159
86.3 0.0000159
91.7 3.0Q00159
185.0 0.0000159
Ifl0.9 0.0000159
11.4 0.0000159
10.4 0.0000159
356.4 0.0000159
L..l._ O.OQ.OQ15-9. .
28.4 0.0000159
68.1 0.0000159
80.3 0.0000159
56.2 0.0000159
50.4 0.0000159
_. 43...S . ,_D. .000.0.15.9
133.6 0.0000159
231.7 0.0000159
82.5 0.0000159
106^.9 O..JO.Q.a0.15_9. ._
121.6 0.0000159
13a. 8 . 0_. .0,00.0.15.9
145.8 0.0000159
149.7 O.OO00159
128.1 0.0000159
69.8 0.0000159
74.9 0.0000159
26.0 0.0000159
175.2 0.0000159
113.9 0.0000159
121.5 0.0000159
V
3.73
3.62
3.51
6.83
9.38
16.63
.22.46
28.31
~33.65
33.37
33.61
33.J.5 ...
36.83
_J37.8l
34.96
32.27
33.22
_ 3.2^8
30.37
26.32 ._
21.62
16.41
12.19
3.91
4.16
6.83
6. 19
4.89
VX
3.55
3.49
3.08
6.81
16.31
22^28
28. 15
.31.55
33.62
33.33
33.55
33,09
36.78
37.73
34.93
32.26
33.22
_32.._97
30.28
^6.33
21.36
15.98
11.84
.J..81
3.74
4.15
6.39
5.62
4.67
VY
0.31
0.06
-0..03 .
-6.07
-h.44
3. 18
2.83
2.96
2.2.0
1.27
0.59
0.33
1.09
l.2o
1.68 .
-0.95
-0.22
0.04
-0...26 .
-1.25
. -2. 4 3 .
-2.78
-3.23
-1.80
0^23 ..
0.29
0.21
-2.41
-1.05
-0.75
VZ
1.08
0.95
. 1.16.
-0.53
-0. 10
0.64
-0.18
0.04
0.69
1.49
1.96
U63. .
1.52
. ..1..73.
1.00
-0.28
0.32
0 ..8.5 _
2.02
.2, .04.
1.88
1.88
2.29
0^65
1.08
0.10
0.19
2.37
1.22
VT
1.07
0.90
1*. 19 ~
2.26
2.74
. 2 ,_«>_
2.71
2.07
1.39
1.48
1.59
1.08
0.00
-1.26
-1.23
-0.36
-0.32
-2.26
-2...21
-3.00
-3.12
-2.47
-0.66
-1.04
-0.23
-1.82
-1.85
-1.23
VR
0.34
0.31
0^53
5.97
6.03
1.73
U.22_
1.21
~oT38~~
0.60
1.19
1.64
PST
0.002699
0.002669
0.002693
0.003177
0.003210
0.002527
0*_OQ2549
0.001588
~0700266V
0.002987
0.002738
0.002451
1.98 0.002877
. 2.05 Q..OQ1952
0.62 0.002114
0.03 0.003223
0.02
O.JL2_
0.75
1.27
1.50
2.06
1.55
0.20
0.39
0,01
1.59
1.82
0.74
0.002779
0.002599
0.001985
0.002261
0.002343
0.002550
0.002566
0.002744
0.002795
0.002728
0.002682
0.002717
0.002721
T PB
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20j_ 760 »
20. 760.
20. _ 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
-------
Table H-B-13. COMPUTER REDUCED DATA FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 45. 7-cm AXIAL POSITION
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
RESULJ.S
AP
45.7
45.7
45.7
45.7
45.7
45.7
4b.7.
45.7
45.7
45.7
45.7
45.7
..45^7 _
45.7
45^7_
45.7
45.7
45.7
45. 7_
45.7
_45^7_.
45.7
45.7
4r>.7
45,7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
45.7
RP
25.0
20.0
J.5-.0
14.0
11.0
12.0
11.0
10.0
9.0 .
8.0
7.0
6.0
__.5^0.. .
4.0
.. _.3.0. .
2.0
1 .0
0.0
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.0
-10.0
-11.0
-12.0
-13.0
-14.0
-15.0
-20.0
-25.0
Fl
17. 1
15.3
16.3
10.2
5.3
8.0
10.5
11.9
11.3 .
10.4
7.5
5.8
3.6
_. .3_..l...
2.8
?.5
2.9
2.1
2.4
2.1
2.4
3.2
3.6
4.. 6
6.6
5.7
7.6
6.9
12.6
a. i
8.7
8.5
11.9
Ik. 2
DELTA
67.8
70.4
63.4
48.7
1 6.6
11.5
355-9
15.8
_ 4.. 2 .
13.5
14.8
14.9
_ —13.. 0_.._
27.0
_. 34.^-7
45.5
50. 1
45.6
79.0
97.1
104.4
127.7
131.5
134.9
142.6
151.8
1 57-5
152.7
159.?
142.3
13R.6
140.4
124.5
75.2
58.2
RHO
0.0000159
0.0000159
_a*-QO.QO-15_9,
0.0000159
O.OOO0159
0.0000159
0.0000159
0.0000159
.£....0.0.00159
0.0000159
0.0000159
0.0000159
_a..QaOQ.15_9_
0.0000159
..0^.00.0015.9. _
0.0000159
0.0000159
0.0000159
0.000.0 15 9_
0.0000159
-0..-OflJD.015.9_
0.0000159
0.0000159
0.0000159
O..JHH).OL5_9
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.OO00159
V
4.74
4.83
5. 16
5.79
7.27
B.J6.
12.21
. . 15. .17
18.23
21.09
26.51
... .2_7_^25
30.47
_J.CL.J7.4_
31.74
32.57
33.62
33.96
33.24
. 32^18.
31.42
28.85
27.46
24.32
20.75
lfl.75
15.92
13.71
9.89
8.87
7.98
5.14
3.75
4.37
VX
4.53
4.66
4.55
5.08
5.77
7.20
.J..6J. .
11.95
14.8.7
17.93
20.91
26.37
. .2.7.1.4
30.41
... -30.. 6 9
31.70
32.54
33.58
-.33.94
33.21
... 3.2..J6. .
31.39
28.81
27.41
24.. 24
20.61
18 j. Jib
15.78
13.61
9.65
8.78
7.88
5.09
3.66
4.20
VY
0.52
0.42
. 0...5S ._.
0.60
0.51
0.99
1 .60 _
2.42
. .2.98
3.23
2.66
2.62
2,35 '
1.73
1 . 3.8.
1.11
0.94
1.19
0.23
-0. 17
-5.30
-O.B1
-1.06
-1.25
-1.55
-2.13
-_U.75
-1.88
-1.54
-1.71
-0.94
-0.93
-0.43
0.19
0.64
VZ
- lj.29_
1.20
1.19
0.68
0.15
0.20
-0 ..1 1
0.68
0.22
0.77
0.70
0.70
0.54
0.88
. . 0.95 .
1.14
1. 12
1.22
U23
1.42
. .l...i=>..
1.04
1.20
1.25
1*18_
1.14
0.72
0.96
0.58
1.32
0.82
0.77
0.63
0.75
1.04
VT
1.22
1.08
0.99
0.78
0.51
0.89
. 1 . 2.6. .
1.81
2..09
2.28
2.09
2.13
_. i.ja.7 _
1.57
1.29.
1.04
0.64
0.00
-0.63
-1.02
.-1.07.
-1.19
-1.43
-1.58
-2.01
-1.68
-1.80
-1.47
-1.64
-1.12
-1.08
-0.69
-0.69
-1.06
VR
0.68
0.67
0.88
0.46
0.16
0.48
0..9J
1.74
2-13_
2.41
1.80
1.67
1^52.
1.15
1.07
1.20
1.32
1.70
Ls.07
1.01
0.61
0.57
0.73
0.78
0.91
1.34
0.86
1.10
0.74
1.40
0.56
0.54
0.32
0.33
0.57
PST
0.002680
0.002661
0.002771
0.002787
0.002780
0.002755
0.002713
0.002479
0.002482
0.002459
0.002506
0.001179
_0_._OP2079.
0.001912
0.001769
0.001920
0.002128
0.002185
0.003067
0.003048
0.001513
0.001972
0.002011
0.001582
0.002398
0.002421
0.002079
0.002233
0.002227
0.002644
0.002740
0.002634
0.002749
0.002830
0.002856
T PB
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760..
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
-------
Table II-B-14. COMPUTER REDUCED DATA FOR THE AXIAL BURNER
WITH THE ASTM FLOW NOZZLE AT THE 66. 0-cm AXIAL POSITION
AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
KFS.ULT.S...
AP
66..Q
66.0
h^.n
66.0
fcfi.O
66.0
66. O
66.0
66.0
66.0
hh.n
66.0
66.0
66.0
66-0
66.0
AA.O
66.0
66-O
66.0
66-0
66.0
hfc.O
66.0
f>6.n
66.0
Ah.n
66.0
AA _n
66.0
mA-n
66.0
ACi.n
66.0
AA.fl
RP
75.0
20.0
1 S-Q
14.0
1 3-O
12.0
11.0
10.0
9.0
8.0
7-0
6.0
-5^Jb
4.0
1.0
2.0
1 -O
0.0
-2.0
-3.0
-4.0
-S-O
-6.0
-?.n
-8.0
-10.0
- 1 1 -fl
-12.0
-1 1.0
-14.0
-i 5.0
-20.0
-75-O
fl
11.5
24.3
17-1
10. 1
11.7
10.7
8.9
.9.6
8^4
9.2
6. 1
6.0
6.6
5.7
4^.3
3.5
3. A
3.5
3.3
3.0
3.4
3.8
4.4
3.8
S.7
5.0
S-4
5.7
7-h
10.0
1 3.7
9.5
1 O. 1
15.3
1 9-Q
DELTA RHO
64. S O-0000159
51.1 0.0000159
19.1 O.OOOO159
19.7 0.0000159
n.h O.OO00159
3.7 0.0000159
fa. 5 0.0000159
6.7 0.0000159
J,2 0,0000159
15.7 0.0000159
17.5 0.0000159
21.9 0.0000159
43.0 0.0000159
28.0 0.0000159
36,5 0.0000159
49.9 0.0000159
S7.? o.nnonis9
68.9 0.0000159
7S.4 O.OOOO159
91.8 0.0000159
10O.6 0.0000)59
123.6 0.0000159
179. \ 0.00001 59
132.9 0.0000159
137.9 0.0000159
137.2 0.0000159
I/.?.? O.O000159
141.8 0.0000159
ISI.? 0-O0001S9
145.1 0.0000159
K.7.3 0-00001S9
145.8 0.0000159
1S3.1 O.OOOO159
114.6 0.0000159
93-5 O-OOOD1S9
V
5. 15
4.10
6. 16
7.38
8.94
9.07
11.52
13.79
15.8?
17.70
20.41
22.10
. _Zi. J3. .
-26.45
2B.03
30.04
30.53
30.97
31.51
31.24
29_.3.0
28.17
75.7?
25.61
Z2..A5.
20.28
18.93
16.50
14. 65
11.96
9.97
8.93
8.2O
4.14
3.33
VX
5.04
3.73
5.89
7.27
8.75
8.91
11.38
13.59
L5..6.5
17.46
20.30
21.97
. .23 .i7
26.32
_2J^95
29.99
30.47
30.91
3L..46
31.20
29.44
28. 11
25.64
25.55
-2.1.96
20.20
18.84
16.41
14.52
11.77
9.70
8.80
8.07
3.99
3.13
VY
0.44_
1.05
L.J1
1.22
1.87
1 .69
. L.13L-
2. 30
2.30
2.74
2.09
2. Ib
2. .29
2.34
1^72
1.20
1 .04
0.69
0.45
-0.05
.-0..33
-1.04
-1.27
-1.16
-1.36
-1.31
-L..4_3
-1.28
-1.76
-1.71
-1.H1
-1.22
-1.29
-0.45
-0.06
VZ
0.92
1.31
0.59
0.44
0.02
0.11
0.20
0.27
0.33
0.77
0.66
0.87
._. 1.49.
1.25
1.27
.43
.62
.79
.76
.67
. _ .. J. ..7.6
.56
.55
.25
1.46
1.21
I.J.Q. .
1.01
0.81
1. 19
1.40
0.83
0.65
0.99
1.13
VT
0.90
0.94
1.07
0.99
1.25
1.17
1..30
1.53
1..57
1.69
1.53
1.61
1,49
1.36
1^09
0.81
0.44
0.00
-0.46
-0.82
-1.07
-1.26
-1.39
-1.37
-1.44
-1.47
-1.36
-1.51
-1.49
-1.46
-1.15
-1.13
-0.81
-0.82
VR
0.48
1.40
I.A&.
0.83
1.32
1.22
1.24
1.73
.l.Jl
2.28
1.56
1.77
. _. 2^9
2.27
1.83
1.68
1.87
1.92
1..7&.
1.45
1.44
1.39
1.45
1.01
1.30
1.06
1.04
0.90
1.21
1.46
1.76
0.91
0.89
0.73
0.78
PST
0.002556
0.002051
0.002592
0.002489
0.002511
0.002419
0.002368
0.002390
0.002308
0.002334
0.001627
0.001518
0.002073
0.001792
0.002117
0.001942
0.001796
0.002869
0.002788
0.002172
0.002546
0.002257
0.002162
0.001873
0.002312
0.002158
0.002144
0.002327
0.002100
0.002708
0.002821
0.002620
0.002665
0.002754
0.002770
T PB
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
20. 760.
-------
APPENDIX II-C. Investigation of Velocity Measurement
Dependence on Five-Hole Pitot Probe Orientation
We completed an investigation to determine if the experimentally
determined velocities depend on the orientation of the multidirectional
impact tube's (MDIT) sensing head of the probe, relative to the air jet.
The MDIT's sensing head or probe tip was placed at a position in the
swirl burner's air stream, where we already knew that the direction of
flow was at an approximate angle of 45 degrees to the axis of the burner.
This position was 1 inch from the burner wall and 3 inches out, radially,
from the burner axis. We collected data at this point in the test cham-
ber with the probe rotated 0, 45, and 90 degrees relative to the burner
axis, with 45 degrees being the approximate known direction of flow.
Since the MDIT probe head can measure the velocity and direction of a
stream so long as the stream approaches it from a direction less than
±60 degrees from the probe head axis, the values of velocity and flow
direction obtained at the three rotational probe positions should be the
same.
Table II-C-1 shows the results of these measurements. The error
introduced by the position of the MDIT head relative to the direction of
flow is about ±5%.
Table II-C-1. VELOCITY ANALYSIS FOR VARIOUS PROBE
ORIENTATIONS RELATIVE TO A FIXED DIRECTION OF FLOW
Rotational Orientation, degrees
Velocity, V, ft/s
Conical Angle,
-------
Y-Z PLANE
DIHEDRAL
X-Y PLANE
CONICAL
PROBE ROTATION
9
BURNER COORDINATE SYSTEM
POSITIVE
PROBE ROTATION
PROBE COORDINATE SYSTEM
A-32200
Figure II-C-1. BURNER AND PROBE COORDINATE SYSTEMS
Figure II-C-1. Therefore, the raw data must be related to the burner's
coordinate system before any analysis is made. For a rotational orien-
tation of the probe other than zero degrees, the raw data are translated
from the probe to the burner coordinate system by the transformation
Equations II-C-1, II-C-Z, II-C-3, and II-C-4.
V = V ' cos 9 - V ' sin 6
XX Z
V = V ' cos 8 + V ' sin 6 = V sin 6 sin V
Z Z X
V
$ (conical angle) = cos"1 -^-
V (dihedral angle) = sin
-i
V sin
(II-C-1)
(II-C-2)
(II-C-3)
(II-C-4)
448
-------
where —
V , V = velocities relative to the burner coordinate system,
X z ft/s
V ', V ' = velocities relative to the probe head coordinate system,
x z ft/s
449
-------
APPENDIX II- D. Method of Calculating Swirl Number
In swirling free jets or flames both the axial flux of the angular
momentum, G , and of the linear momentum, G , are conserved. G
S X S
and G are expressed by Equations II-D-1 and II-D-2:
•X
G = J1"2 V pV ZTTrdr + JroPZ7Trdr (II-D-1)
jC r i x. .x Q
G = fr2 V r2pV ZTTdr (n-D-2)
s J n t r x v '
where V , V , V , and P are the axial, tangential, and radial compo-
x t r
nents of the velocity and static pressure in a jet enclosed by an annular
disk of outer radius, r2, and inner radius, n. Since both of these
momentum fluxes are characteristics of the aerodynamic behavior of the
jet, a nondimensional characteristic based on these quantities is used as
a criterion of swirl intensity, defined as —
s =
To define V , the tangential velocity, in terms of the quantities
measured by the multidirectional impact tube, the geometrical scheme
shown in Figure II-D-1 was used. The angle $ corresponds to the meas-
ured conical angle, x is the distance of the sensing head from the burner
wall, and ro is the radius of the burner. From geometrical arguments,
which can be directly deduced from Figure II-D-1, the tangential velocity
is shown to be —
.*. . Vr0 sin $ cos $ ,_, _ ..
V = V sin 4> sin + X2 sin2 $
The radial velocity equals —
Vr° Sin
V = V sin $ cos
-------
BA¥r088r
A- 32201
Figure II-D-1. GEOMETRIC RELATIONS DESCRIBING
DEFINITION OF TANGENTIAL AND RADIAL VELOCITY
451
-------
In a paper published by Beer and Leuckel, ! the swirl number, S, is
calculated from the input velocity distribution in the awirl generator rather
than from the velocity distribution in the jet. Thus, the static pressure
term is omitted and a good approximation of the swirl number is —
S' - (II-D-6)
where
G ' = 277 fr* P(V ')2 rdr (II-D-7)
x J n v x ' v '
and V ' represents the axial velocity in the swirl generator. Using this
?c
approximation, they derived the following general relationship for the
swirl number, S', of flow through a cylindrical or annular duct attached
to a movable -block swirler:
s' = a TJT Cl ~ (TT)2] (n-D-8)
The dimensionless coefficient, CT , can be interpreted as the ratio of the
average tangential and radial velocity components at the swirler exit. /3
is the channel width in the axial direction, R is the radius of the throat
of the burner, and R, is the inner radius of the air duct at the throat of
the burner. The values for these parameters used in the movable -block-
type swirl generator are shown in Figure 11-178 of the text. For the
movable-block swirler the coefficient as a function of the swirler adjust-
ment £/£m, where £ is the angle of adjustment of the swirler (0 < £ <
£m), is shown in Figure 11-178.
Table II-D-1 compares the swirl numbers for our burner and oper-
ating conditions as calculated from experimental data, from the semi-
empirical equations of Beer and Leuckel, ' and from the values obtained
by the International Flame Research Foundation and published in IFRF
Document No. G01/9/18. The agreement between the three sources is
quite good.
452
-------
Table II-D-1. COMPARISON OF SWIRL NUMBERS
CALCULATED FOR SWIRL BURNER WITH INTERMEDIATE
VANE SETTING AND 28 ft/s THROAT VELOCITY
Method Swirl Number, S
IGT Experimental 0. 82
Beer and Leuckel 0.78
IFRF Measured* 0. 79
References Cited
1. Beer, J. M. and Leuckel, W., "Turbulent Flames in Rotating Flow
Systems. " Paper No. F-NAFTC-7 presented at the North American
Fuel Technology Conference, Ottawa, Canada, May 31-June 3, 1970.
2. Thring, M. W. , "Study of Burners With Air Vortex, " Riv. Combust.
24, 53-59 (1970) February (Italian text with English summary).
Corrected for small-dimensional differences between IFRF and IGT
burners.
453
-------
APPENDIX II-E. Computer Program for Data Transformation
and Plotting Tracer-Gas Mixing Results
454
-------
Table II-E-1
// JOB T
LUG DRIVE
0000
CARI SPEC
OCC1
CART AVAIL
0001
2H01
2603
PHY DRIVE
0000
0001
0002
V? M10 ACTUAL 16K CONFIG 16K
// FOR
*ONE WORD (INTEGERS
"•EXTENDED PRECISION
*LIST SOURCE PROGRAM
SUBROUTINE CUF1HIC,X,Y,N,M)
C MARCH 28,1972
C N = ORDER OF FI T
C M = NUMBER OF DATA PUINTS
C C = COEFFICIENTS
C X = INDEPENDENT VARIABLE
C Y = DEPENDENT VARIABLE Y=C<1)*C(2)*X+...+C(N+1)*X**N
DIMENSION C(10),X(100»,Y(100),AUO,10)
[OUT = 5
DO 155 1 = 1,1C
C(I)=0.0
155 CONTINUE
L = '\*1
IF(L-in)157,Ib7,1^6
156 CALL CXIT
I'3 7 CONTINUE
LL = N + 2
DO C J=1,L
DO 0 K=l,LL
8 A ( J , K ) = C . 0
DO 12 I = I , M
DO 11 J=l,L
DO 10 K = l ,L
10 A(J,K) = MJ,K)+ X( I )**{ J + K-2)
11 A(J,LL)= A«.I,LL)+X( I )**( J-l )*Y( I )
12 CONTINUE
A(1,1)=M
A( 1,LL)=0.0
DO 1 1A 1 = 1,1'
IK A« li LL)=A( 1 ,LL )*Y( I )
00 13 I=1,L
C( I ) = A( I ,LL )
13 CONTINUE
I = C
105 I = 1+1
106 J = I
DD = A(I,J)
IF(M 1 ,J ) ) 120, 107, 120
107 IF( J-L ) ICo, 15C, ICi)
ICO K = I
109 IF( AIK + 1,J) ) 111, 110,111
1 10 K = K*l
IFI.I-L ) 10s', ISO, Ifl'J
111 Ud 121 J = I , L
455
-------
Table II-E-Z
121 A(K,J) = A
-------
Table II-E-3
MARCH 28,1972
DIMENSION MARM200)
DIMENSION XI200),CON(200),ID(40)
DIMENSION CF(10),XCF(100) ,YCF(I 00)
DATA ISTAR/1*'/
CALL OVERFLIIOVFL)
CALL OVCHKIIDVCK)
CONTINUE
INPUT=2
IOUT=5
READ!INPUT,902)ID
WRITE(IUUT.905)ID
INDEX=0
XCFI1)=O.C
YCF( 1 )=0.0
XCF(2)=.29l
YCF(2) = 12i>.
XCFI3)=.5b
YCF(3)=25C.
XCF(4)=.79
XCF(5)=1.
YCFI51=500.
N = M-3
CALL COFIH(CF,XCF,YCF,N,M)
WRITE(IOUT.904)
1 RCADIINPUT,900) AP,RP,V
IF!AP)500,20,2
2 INDEX=INOtX+l
IF( INDEX-20C)3,3,bOO
3 MARK! INDEX) = ISIAR
X(INDEX)= RP
CON( INDEX) =CF(1)+CF(2)*V + CF(3
WRITE! I OUT,901)AP,RP,V,CON(INDEX)
APST=AP
GO TO 1
20 WRITEfIOUT.903)ID
WRI TE( IOUT,909)APST
CALL PTSE9IX,CON,MARK,INDEX)
CALL OVERFLtIOVFL)
GO T0(201,202,202),IOVFL
201 WRITE(IOUT.908)
202 CALL DVCHKlIDVCK)
GO TO (201,203),IDVCK
203 CONTINUE
GO TO 5
500 CALL FXIT
•)00 FORMAT
>01 FORMAT
002 FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FND
IOF8.3)
F6.2,F8.2,F9.3,F9.2)
ACA2)
1HI,/?CX,/«CA2)
/' EXPERIMENTAL RCSULTS'/5H AP , 5X,2HRP,7X,4HX(V),5X,?HCO)
lHl,?t)X, ' TRACE< GAS STUDIES OF COMBUSTION BURNERS ' /20X40A2 )
' OVERFLOW OR DIVISION ftY ZERO')
I OH "P VS. CO ,3X,3H4P = F6.2)
457
------- |