EPA-650/2-73-033b
October  !973
Environmental  Protection  Technology  Series



                                                             mmm

-------
                             DISCLAIMER

    This project has been funded at least in part with Federal funds from
the Environmental Protection Agency under contract number  68-02-0216.
The content of this publication does not necessarily reflect the views or
policies of the U.S.  Environmental Protection Agency, nor does mention
of trade names, commercial products, or organizations imply endorsement
by the  U.S. Government.

-------
                                   EPA-650/2-73-033b
AERODYNAMIC  CONTROL  OF NITROGEN
    OXIDES  AND  OTHER POLLUTANTS
    FROM FOSSIL FUEL COMBUSTION
   VOLUME II.  RAW DATA AND  EXPERIMENTAL  EQUIPMENT
                        by

               D.H. Larson and D.R. Shoffstall

                Institute of Gas Technology
              IIT Center, 3424 South State Street
                 Chicago, Illinois 60616
                 Contract No. 68-02-0216
                Program Element No. 1A2014
                 ROAP No. 21ADG47
            EPA Project Officer: David W. Pershing

                Control Systems Laboratory
            National Environmental Research Center
          Research Triangle Park, North Carolina 27711
                     Prepared for

           OFFICE OF RESEARCH AND DEVELOPMENT
          U.S. ENVIRONMENTAL PROTECTION AGENCY
                WASHINGTON, D.C. 20460

                     October 1973

-------
This report has been reviewed by the Environmental Protection Agency and




approved for publication.  Approval does not signify that the contents




necessarily reflect the views and policies of the Agency, nor does




mention of trade names or commercial products constitute endorsement




or recommendation for use.

-------
                        TABLE OF CONTENTS
                                                                   Page
INTRODUCTION                                                       1
COLD-MODELING  FURNACE SIMULATOR                             Z
A.   Description  of the Cold Test  Chamber                            Z
B.   Cold-Model  Probe Positioner                                      9
C.   Cold-Model  Instrumentation,  Probes,  and
     Calibration Methods                                             13
HOT-MODELING TEST  FURNACE FACILITY                         30
A.   Furnace Test  Chamber                                          30
     1.  Heat Losses  Through Refractory Walls                       33
     Z.  Furnace Surface Area  for Heat Transfer                     39
     3.  Internal Water  Load Calculations                             40
B.   High-Temperature Flame-Sampling  Probes                       56
C.   Hot-Modeling Furnace Instrumentation                            64
     1.  NOX-NO Measurements                                       66
     Z.  Methane, CO, and COz Measurements                        71
     3.  Oxygen Measurements                                        73
     4.  Hydrocarbon  Measurements                                   74
RAW AND REDUCED  DATA AND  DATA PLOTS                       77
A.   Intermediate-Flame-Length Ported Baffle  Burner                 77
     1.  Burner Design                                               77
     Z.  Tracer-Gas Studies                                          81
     3.  Cold-Model Velocity Data                                    8Z
    4.  Hot-Model Input-Output Data                                 88
     5.  In-the-Flame  Data Survey Results                          100
B.   Short-Flame-Length Ported Baffle  Burner                      1Z4
     1.  Burner Design                                             1Z4
     Z.  Tracer-Gas Studies                                        15Z
     3..  Cold-Model Velocity Data                                  15Z
    4.  Hot-Model Input-Output Data                               156
     5.  In-the-Flame  Data Survey Results                          156
                                  ii

-------
                    TABLE OF CONTENTS,  Cont.
                                                                   Page
C.   Movable-Block Swirl Burner                                    231
     1.   Burner Design                                             231
     2.   Tracer-Gas Studies                                         231
     3.   Cold-Model Velocity Data                                   241
     4.   Hot-Model  Input-Output Data                                307
     5.   In-the-Flame  Data Survey  Results                          307
D.   High-Intensity Flat-Flame Burner                              349
     1.   Burner Design                                             349
     2.   Hot-Model  Input-Output Data                                356
     3.   In-the-Flame  Data Survey  Results                          356
E.   Boiler  Burner                                                  370
     1.   Burner Design                                             370
     2.   Hot-Model  Input-Output Data                                386
     3.   In-the-Flame  Data Survey  Results                          390
APPENDIX  II-A.   Computer  Program for Reduction
                   of  Velocity Data                                  410
APPENDIX  II-B.   Cold-Model  Study  of  an Axial  Flow
                   Burner With an  ASTM  Flow Nozzle               418
APPENDIX  II-C.   Investigation of Velocity Measurement
                   Dependence  on Five-Hole Pitot Probe
                   Orientation                                       447
APPENDIX  II-D.   Method of Calculating Swirl Number              450
APPENDIX  II-E.   Computer  Program for Data Transformation
                   and Plotting Tracer-Gas Mixing Results          454
                                  111

-------
                          LIST OK FIGURES

Figure No.                                                         Page

  n-1        Cold-Model Test Facilities                              3

  II-2        Cold-Model Burner Adapter Plate                       4

  II-3        Plane  of Sample Points About Burner Axis              5

  n-4        Sliding Probe Seal                                      6

  II-5        Pulley Arrangement for Sliding  Probe  Hole Seal        7

  II-6        Supply Air Pressure  Probe                             8

  II-7        General Assembly of Probe Positioner                 10

  II-8        Rotational  Motion Accuracy of Cold-Model Probe
              Positioner                                             11

  II-9        Axial Probe  Rotation General Assembly                12

  11-10       Spherical Sensing Head of a  Five-Hole Pitot Tube     15

  11-11       Conical and Dihedral Angles                           15

  11-12       Examples of Calibration Curves  for  K-*, KV,  and K
              for a Typical Five-Hole,  Spherical Head, Pitot  Tu\>e  17

  11-13       Calibration Assembly for  Five-Hole  Pitot Tube        18

  11-14       Pitot Tube Flow Calibration  Nozzle                    18

  11-15       Pivoting Nozzle  Mount                                 20

  11-16       K0 as a Function  of  Conical Angle for  a Five-Hole
              Pitot Tube                                             21

  11-17       Kv as  a Function of Conical Angle for a Five-Hole
              Pitot Probe                                            22

  11-18       Kp as  a Function of Conical Angle for a Five-Hole
              Pitot Probe                                            23

  11-19       Experimental  Apparatus for Transient  Calibration     24

  11-20       Pressure  Measured by Sensor Versus  Actual
              Pressure  as  a Function of Pulse Frequency  for
              the Solid  (Plastic) Disk                                25
                                   IV

-------
                      LIST OF FIGURES,  Cont.

Figure No.                                                         Page

  11-21       Pressure  Measured by Sensor Versus Actual
              Pressure  as  a  Function of Pulse Frequency for
              the  Perforated  Disk                                   26

  11-22       Percentage Change in Amplitude of Pressure
              Signal  as  a  Function of Frequency and  Actual
              Pressure  for the Solid Disk                           27

  11-23       Percentage Change in Amplitude of Pressure
              Signal  as  a  Function of Frequency and  Actual
              Pressure  for Perforated Disk                         28

  11-24       Side View of Main  Furnace Showing  Steel Structure
              and Cooling Zones                                     31

  11-25       Probe  Slot-Seal Assembly                             32

  11-26       Temperature Gradient for Steady Flow  of Heat
              Through a Furnace  Wall                              33

  11-27       Heat Losses  Through  Walls  as a Function of
              Outside Wall Temperatures for a 2800°F  Inside
              Wall Temperature                                     35

  11-28       Heat Losses  From Vertical Walls in Still Air
              at  80°F                                               36

  11-29       Heat Losses  Through  Flue as a Function of Flue
              Gas Temperature  (Fuel/Air  = Stoich. )                 38

  n-30       End View  of  Hot-Model Refractory Construction        39

  11-31       Schematic Diagram  of Water-Air Cooling Supply
              System                                               42

  11-32       Water  Load Design                                    44

  11-33       Nomenclature for Radiant Heat Transfer From
              Furnace Walls  to Internal Cooling Tubes               45

  11-34       Heat Transmitted per Unit Area to 2-Inch-Diameter
              Tube (T2 = 200°F) From an  Enclosure Surrounding
              180 Degrees  of  Tube                                  48

  11-35       Total Heat Transmitted per  Tube                      49

  11-36       Weight Flow  of  Water as  a Function  of Heat
              Transferred From  Tube Walls to Water               50

-------
                       LIST OF FIGURES,  Cont.

Figure No.                                                           Page

  11-37       Minimum Water Flow per Tube  as  a Function of
              Inside Wall Temperature                                52

  11-38       Heat  Losses Through Walls  as  a Function of
              Outside  Wall  Temperature                              52

  11-39       Amount  of Heat the Water Load is  Required to
              Absorb to Maintain Desired  Wall Temperature
              With  Gas Input of  3. 5  Million  Btu/hr                   53

  11-40       Required Number of Cooling Tubes as a Function
              of Inside Wall Temperature                             53

  11-41       Total Water Consumption Required  by Cooling Load
              as a  Function  of Inside Wall Temperature              54

  11-42       Friction Factor  as  a  Function  of Weight Flow for
              1-Inch-Diameter Drawn Steel Tubing  Containing
              Flowing  Water  at 85°F                                  57

  11-43       System Pressure Drop per Tube  as a Function of
              Weight  Flow of Water                                   58

  11-44       Five-Hole Pitot Tube Probe  Head                      59

  11-45       Gas-Sampling Probe Head                              60

  H-46       General  Probe  Holder                                   61

  11-47       Modified  Probe Positioner for  Hot-Model Sampling      62

  11-48       Overall View of Hot-Model Instrumentation             66

  11-49       Close-Up View of Infrared Analyzer,  Amplifiers,
              and Strip Charts for Carbon Monoxide,  Carbon
              Dioxide,   and Methane                                   67

  11-50       Sample Treatment  and Flow-Control System            67

  11-51       NOX-NO Sampling System                               69

  11-52       Drying System  for Connection  to  NO, NO2, NOX
              Equipment                                              70

  11-53       CH4,  CO,  and COz  Sampling Analysis System           72

  11-54       Sampling/Analysis  System for  Oxygen Analysis          73

  11-55       Modified  Bulk  Water Removal  Cold Trap                74
                                   VI

-------
                       LIST OF FIGURES,  Cont.

Figure No.                                                          Page

  11-56       Block  Diagram of Automatic Data Integration
              System                                                 76

  11-57       Assembly  Drawing  of Axial-Flow Burner With
              Ported Swirl Baffles                                    78

  11-58       Modified Gas Nozzle  Construction                      80

  11-59       Tracer-Gas  (Carbon Monoxide) Radial Scan  7. 6 cm
              From  Burner  Block of  the Intermediate-Flame -
              Length Ported Swirl Baffle Burner                     81

  11-60       Sampling Probe  and Burner  Coordinate System         82

  11-61       Axial Velocity Profile for the  Intermediate Flame
              at the  Axial Flow Burner  Fitted  With the  Ported
              Swirl Baffle (7. 6 cm From Burner Block  Face)        86

  11-62       Tangential Velocity Profile for the Intermediate
              Flame  at the Axial Flow Burner  Fitted With the
              Ported Swirl Baffle  (7.  6  cm From Burner Block
              Face)                                                   87

  H-63       NO Concentrations  With Gas Input of 2335 CF/hr
              (Original Data)                                         89

  H-64       NO Concentrations  With Gas Input of 2626 CF/hr
              (Original Data)                                         90

  11-65       NO Concentrations  With Gas Input of 2900 CF/hr
              (Original Data)                                         91

  11-66       NO Concentrations  With Gas Input of 3160 CF/hr
              (Original Data)                                         92

  II-67       NO Concentrations  With Gas Input of 2335 CF/hr
              (Interpolated and Extrapolated  Data)                    94

  II-68       NO Concentrations  With Gas Input of 2626 CF/hr
              (Interpolated and Extrapolated  Data)                    95

  H-69       NO Concentrations  With Gas Input of 2900 CF/hr
              (Interpolated and Extrapolated  Data)                    96

  11-70       NO Concentrations  With Various  Gas Inputs  for Two
              Preheat Temperatures                                  97
                                   VII

-------
                      LIST  OF FIGURES, Cont.

Figure No.                                                         Page

  11-71       NO Concentrations  With Varying  Gas Inputs  for
              450°F Preheat Temperature (Expanded NO Scale)       98

  11-72       Rate of Change of  NO Emissions/100 CF/hr Gas
              Input as  a Function of Preheat Temperature            99

  11-73       NO Concentration  at  Gas Input of 2147  CF/hr
              (Excess Oz  Variable  and Wall Temperature of
              2570°F)                                               101

  11-74       Composite Radial  Profiles  for NO, CO,  CH4,  Oz,
              and CO2  With Gas  Input of 2547 CF/hr                102

  11-75       Radial  Profile for  CH4 With Gas  Input of 2547
              CF/hr                                                 107

  11-76       Radial  Profile for  CO With Gas Input  of 2547
              CF/hr                                                 108

  H-77       Radial  Profile for  CO2 With Gas  Input of 2547
              CF/hr                                                 109

  H-78       Radial  Profile for  O2 With Gas Input of 2547 CF/hr   110

  11-79       Radial  Profile for NO With Gas Input of 2547 CF/hr      111

  11-80       Temperature Profile  Across  Furnace With Gas
              Input of 2546  CF/hr  and 5. 0-cm  Axial  Probe
              Position                                               112

  11-81       Composite Radial  Profiles  for NO, CO,  CH4, O2,
              and CO2  With Gas  Input of 2147 CF/hr                114

  H-82       Radial  Profile for  NO With Gas Input  of 2147 CF/hr   115

  H-83       Radial  Profile for  O2 With Gas Input of 2147 CF/hr    116

  n-84       Radial  Profile for  CO2 With Gas  Input of 2147 CF/hr  117

  H-85       Radial  Profile for  CO With Gas Input  of 2147 CF/hr   118

  11-86       Radial  Profile for  CH4 With Gas  Input of 2147 CF/hr  119

  11-87       Composite Radial  Profiles  for NO, CO,  CH4,  O2,
              and CO2  With Gas  Input of 2147 CF/hr                121

  II-88       Composite Radial  Profiles  for NO, CO,  CH4,  O2,
              and CO2  With Gas  Input of 2147 CF/hr                122
                                  Vlll

-------
                      LIST OF FIGURES,  Cont.

Figure No.                                                         Page

  11-89       Temperature Profile Across Furnace With Gas
              Input of 2147 CF/hr  and  Axial  Positions of
              5,  77. 5, and 152. 5 cm                                123

  n-90       Radial  Profile for  NO With Gas Input  of 2147 CF/hr   125

  H-91       Radial  Profile for  O2 With Gas Input  of 2147 CF/hr   126

  H-92       Radial  Profile for CO With Gas Input of 2147 CF/hr     127

  H-93       Radial  Profile for CO2 With Gas Input of 2147  CF/hr     128

  n-94       Radial  Profile for  CH4 With Gas Input of 2147 CF/hr    129

  H-95       Radial Profile for NO  With Gas  Input of 2147  CF/hr     130

  n-96       Radial Profile for O2 With Gas Input of 2147 CF/hr       131

  11-97       Radial Profile for CO2 With Gas  Input of 2147  CF/hr     132

  H-98       Radial Profile for CO With Gas Input of 2147 CF/hr      133

  11-99       Radial  Profile for CH4 With Gas Input of 2147  CF/hr     134

  11-100      Composite  Radial  Profiles for NO,  CO, CH4,  O2,
              and CO2 With Gas  Input  of 2147  CF/hr                 137

  11-101       Composite  Radial  Profiles for NO,  CO, CH4,  O2,
              and CO2 With Gas  Input  of  2147 CF/hr                138

  11-102       Comparison of NO  Profiles Taken With Stainless-Steel
              and Quartz Probes Using Same Burner Operating
              Conditions  and With Sample  Located 77. 5  cm From
              Burner  Block                                          139

  H-103       Radial  Profile for  NO With Gas Input  of 2147 CF/hr   140

  H-104       Radial  Profile for O2 With Gas Input of 2147 CF/hr      141

  n-105       Radial Profile for CH4 With Gas  Input of  2147  CF/hr     142

  II-1.06      Radial  Profile for  CO With Gas Input of 2147 CF/hr   143

  II-107       Radial  Profile for CO2 With Gas Input of 2147 CF/hr    144

  H-108       Radial Profile for NO With Gas Input of 2147 CF/hr     145

  H-109      Radial  Profile for O2 With Gas Input of 2147  CF/hr     146
                                  IX

-------
                       LIST OF FIGURES,  Cont.

Figure No.                                                           Page

  11-110      Radial Profile for  CH4 With Gas Input of 2147 CF/hr    147

  H-lll      Radial Profile for CO With Gas Input  of  Z147 CF/hr   148

  11-112      Radial Profile for CO2 With Gas  Input of 2147 CF/hr  149

  11-113      Radial Concentration  Profile of Carbon Monoxide
              From the Axial  Burner Fitted With  the Short-
              Flame Ported Swirl Baffle                             152

  H-114      Axial Velocity Profile for the  Axial Burner  With
              the Short-Flame Ported Swirl  Baffle at the  5.1-cm
              Axial Position                                         155

  11-115      Tangential Velocity Profile for the  Axial  Burner
              With the Short-Flame Ported Swirl Baffle at the
              5.1-cm Axial Position                                 157

  11-116      NO Concentration in the Flue  as  a  Function of
              Excess  Air (Short-Flame  Baffle - Radial Nozzle)
              and Preheated Air  Temperature;  Gas Input,  2593
              CF/hr                                                 158

  11-117      NO Concentration in the Flue  as  a  Function of
              Excess  Air (Short-Flame  Baffle — Axial Gas Nozzle)
              and Preheated Air  Temperature;  Gas Input,  1769
              CF/hr                                                 159

  11-118      NO Concentrations  in the  Flue  Gas  as a  Function  of
              Excess  Air (Short-Flame  Baffle — Axial Gas Nozzle)
              and Preheated Air  Temperature;  Gas Input,  2109
              CF/hr                                                 159

  11-119      NO Concentration in the Flue  Gas as a Function of
              Excess  Air (Short-Flame  Baffle — Axial Gas Nozzle)
              and Preheated Air  Temperature;  Gas Input,  2415
              CF/hr                                                 160

  11-120      Composite Plot of Gas  Sampling Profiles  for CO,
              CO2,  CH4, NO,  arid O2 for the Short-Flame Baffle
              Using the Axial  Nozzle at an Axial Position of
              7. 6 cm                                                1 62

  11-121      Radial Composition Profile for Methane (CH^) for  the
              Short-Flame Baffle Using  the  Axial  Nozzle at an
              Axial Position of 7.6 cm                               163

-------
                       LIST OF FIGURES,  Cont.

Figure  No.                                                           Page

   11-122       Radial Composition Profile for Carbon Monoxide
               (CO) for the Short-Flame  Baffle  Using the Axial
               Nozzle at an Axial Position  of 7. 6 cm                 164

   11-123       Radial Composition Profile for Carbon Dioxide
               (CO2)  for  the Short-Flame Baffle Using the Axial
               Nozzle at an Axial Position  of 7. 6 cm                 165

   11-124       Radial Composition Profile for Oxygen (O2) for the
               Short-Flame Baffle Using  the  Axial Nozzle  at  an
               Axial  Position of 7.6 cm                               166

   II-125       Radial Composition Profile for Nitric Oxide  (NO)
               for  the  Short-Flame Baffle Using the Axial Nozzle
               at an  Axial Position of 7.  6  cm                         167

   11-126       Axial  Temperature Profile From Short-Flame  Axial
               Nozzle Baffle Burner at a 7. 6-cm Axial Position      169

   11-127       Radial Velocity Profile (Axial Component)  at an
               Axial  Position of 7. 6 cm for  the Short-Flame  Baffle
               Using the Axial  Nozzle                                 170

   11-128       Radial Velocity Profile (Tangential Component)  at  an
               Axial  Position of 7. 6 cm for  the Short-Flame  Baffle
               Using the Axial  Nozzle                                 172

   11-129       Composite Plot of Gas  Sampling  Profiles  for  CO,
               CO2,  CH4, NO,  and O2 for the Short-Flame  Baffle
               Using the Axial  Nozzle at  an  Axial  Position  of
               48. 3 cm                                                174

   11-130       Radial Composition Profile for Methane (CH^  for
               the  Short-Flame Baffle Using  the  Axial Nozzle  at
               an  Axial Position  of 48. 3  cm                           175

   11-131       Radial Composition Profile for Carbon Monoxide
               (CO) for the Short-Flame  Baffle  Using the Axial
               Nozzle at an Axial Position  of 48.3  cm                176

   11-132       Radial Composition Profile for Carbon Dioxide  (CO2)
               for  the  Short-Flame Baffle Using  the Axial Nozzle
               at an  Axial Position of 48.3 cm                        177

   11-133       Radial Composition Profile for Oxygen (O2) for the
               Short-Flame Baffle Using  the  Axial Nozzle  at  an
               Axial  Position of 48.3  cm                              178
                                    XI

-------
                       LIST OF FIGURES,  Cont.

Figure  No.                                                           Page

   11-134       Radial Composition Profile for Nitric Oxide  (NO)
               for  the  Short-Flame Baffle Using the Axial Nozzle
               at an Axial Position of 48. 3  cm                        179

   11-135       Axial Temperature Profile From Short-Flame Axial
               Nozzle  Baffle Burner at a 48. 3-cm Axial Position     181

   11-136       Radial Velocity Profile (Axial Component)  at  an
               Axial Position of 48. 3  cm for the  Short-Flame
               Baffle Using the Axial  Nozzle                          182

   11-137       Radial Velocity Profile (Tangential Component) at
               an  Axial Position  of 48. 3  cm for the Short-Flame
               Baffle Using the Axial  Nozzle                          183

   11-138       Composite Plot of Gas  Sampling  Profiles  for CO,
               CO2, CH4, NO,  and O2 for the Short-Flame  Baffle
               Using the Axial  Nozzle at an Axial Position  of
               91.4 cm                                                185

   H-139       Radial Composition Profile for Methane (CH4)  for
               the  Short-Flame Baffle Using the Axial Nozzle at  an
               Axial Position of 91.4  cm                              186

   11-140       Radial Composition Profile for Carbon Monoxide (CO)
               for  the  Short-Flame Baffle Using the Axial Nozzle
               at an Axial Position of 91. 4  cm                        187

   11-141       Radial Composition Profile for Carbon Dioxide (CO2)
               for  the  Short-Flame Baffle Using the Axial Nozzle
               at an Axial Position of 91.4  cm                        188

   11-142       Radial Composition Profile for Oxygen (O2) for the
               Short-Flame Baffle Using  the Axial Nozzle at  an
               Axial Position of 91.4  cm                              189

   11-143       Radial Composition Profile for Nitric Oxide  (NO)
               for  the  Short-Flame Baffle Using the Axial Nozzle
               at an Axial Position of 91.4  cm                        190

   11-144       Axial Temperature Profile From the  Short-Flame
               Axial Nozzle  Baffle Burner at an Axial Position of
               91.4 cm                                                192

   11-145       Radial Velocity Profile (Axial Component)  at an
               Axial Position of 97. 4  cm for the  Short-Flame
               Baffle Using the Axial  Nozzle                          193
                                    XII

-------
                       LIST  OF FIGURES,  Cont.

Figure  No.                                                            Page

  IE-146       Radial Velocity Profile (Tangential Component)  at
               an Axial Position of 97. 4  cm  for  the  Short-Flame
               Baffle  Using the Axial Nozzle                           194

  11-147       Axial Gas  Composition Profile at  a 0. 0-cm Radial
               Position for the  Short-Flame  Baffle Using the
               Axial Nozzle                                            199

  11-148       Composite  Plot of Gas  Sampling Profiles  for  CO,
               CO2, CH4,  NO,  and O2 for the Short-Flame Baffle
               Using the Axial  Nozzle at an  Axial Position of
               7. 6 cm                                                 200

  11-149       Composite  Plot of Gas  Sampling Profiles  for  CO,
               CO2, CH4,  NO,  and O2 for the Short-Flame Baffle
               Using the Axial  Nozzle at an  Axial Position of
               37. 7 cm                                                201

  II-150       Composite  Plot of Gas  Sampling Profiles  for  CO,
               CO2> CH4,  NO,  and O2 for the Short-Flame Baffle
               Using the Axial  Nozzle at an  Axial Position of
               91.4 cm                                                202

  n-151       Radial Composition Profile for Methane (CH4) for
               the  Short-Flame Baffle Using  the  Axial Nozzle  at an
               Axial Position of 7. 6 cm                               203

  11-152       Radial Composition Profile for Carbon Monoxide (CO)
               for  the  Short-Flame Baffle Using  the  Axial Nozzle  at
               an Axial Position of 7. 6  cm                            204

  11-153       Radial Composition Profile for Carbon Dioxide  (CO2)
               for  the  Short-Flame Baffle Using  the  Axial Nozzle
               at  an Axial Position of 7. 6 cm                         205

  11-154       Radial Composition Profile for Oxygen (O2) for  the
               Short-Flame Baffle Using  the  Axial Nozzle at an
               Axial Position of 7. 6 cm                               206

  11-155       Radial Composition Profile for Nitric  Oxide (NO)  for
               the  Short-Flame Baffle Using  the  Axial Nozzle  at an
               Axial Position of 7. 6 cm                               207

  11-156       Radial Composition Profile for Methane (CH4) for the
               Short-Flame Baffle Using  the  Axial Nozzle at an
               Axial Position of 7. 6 cm                               208
                                    Xlll

-------
                       LIST OF FIGURES, Cont.

Figure  No.                                                            Page

  11-157       Radial Composition Profile for Carbon Monoxide
               (CO) for the Short-Flame  Baffle  Using the Axial
               Nozzle at an Axial Position of 7. 6 cm                 209

  11-158       Radial Composition Profile for Carbon Dioxide
               (CO2)  for  the Short-Flame  Baffle Using the Axial
               Nozzle at an Axial Position of 7. 6 cm                 210

  11-159       Radial Composition Profile for Oxygen (O2) for the
               Short-Flame Baffle Using  the  Axial Nozzle  at an
               Axial  Position of 7. 6 cm                               211

  11-160       Radial Composition Profile for Nitric Oxide  (NO)
               for  the Short-Flame Baffle Using the  Axial Nozzle
               at an  Axial Position of 7.  6 cm                         212

  11-161       Radial Composition Profile for Methane  (CH4) for
               the  Short-Flame Baffle Using  the Axial Nozzle at
               an  Axial Position of 7. 6 cm                            213

  11-162       Radial Composition Profile for Carbon Monoxide
               (CO) for the Short-Flame  Baffle  Using the Axial
               Nozzle at an Axial Position of 7. 6 cm                 214

  11-163       Radial Composition Profile for Carbon Dioxide
               (CO2)  for  the Short-Flame  Baffle Using the Axial
               Nozzle at an Axial Position of 7. 6 cm                 215

  11-164       Radial Composition Profile for Oxygen (O2) for the
               Short-Flame Baffle Using  the  Axial Nozzle  at an
               Axial  Position of 7.6 cm                               216

  11-165       Radial Composition Profile for Nitric Oxide  (NO)
               for  the Short-Flame Baffle Using the  Axial Nozzle
               at an  Axial Position of 7.  6 cm                         217

  11-166       Radial Composition Profile for Methane  (CH4) for  the
               Short-Flame Baffle Using  the  Axial Nozzle  at an
               Axial  Position of 37. 7  cm                              218

  11-167       Radial Composition Profile for Carbon Monoxide (CO)
               for  the Short-Flame Baffle Using the  Axial Nozzle at
               an  Axial Position of 37.7  cm                           219

  11-168       Radial Composition Profile for Carbon Dioxide (CO2)
               for  the Short-Flame Baffle Using the  Axial Nozzle
               at an  Axial Position of 37. 7 cm                        220
                                    xiv

-------
                       LIST OF FIGURES,  Cont.

Figure  No.                                                            Page

  11-169      Radial  Composition  Profile for Oxygen (Oa) for
              the Short-Flame  Baffle Using the Axial Nozzle  at
              an Axial Position of 37. 7 cm                          221

  11-170      Radial  Composition  Profile for Nitric Oxide  (NO) for
              the Short-Flame  Baffle Using the Axial Nozzle  at
              an Axial Position of 37. 7 cm                          222
  11-171      Radial  Composition Profile for Methane (CH^ for
              the Short-Flame  Baffle Using the Axial Nozzle  at  an
              Axial Position of 91.4  cm                              223

  11-172      Radial  Composition Profile for Carbon Monoxide (CO)
              for the Short-Flame  Baffle Using the Axial Nozzle  at
              an Axial  Position of  91.4 cm                          224

  11-173      Radial  Composition Profile for Carbon Dioxide  (COj)
              for the Short-Flame  Baffle Using the Axial Nozzle
              at an Axial Position  of 91.4  cm                        225

  11-174      Radial  Composition Profile for Oxygen (O2) for  the
              Short-Flame  Baffle Using the Axial Nozzle  at an
              Axial Position of 91.4  cm                              226

  11-175      Radial  Composition Profile for Nitric Oxide  (NO)
              for the Short-Flame  Baffle Using the Axial Nozzle
              at an Axial Position  of 91.4  cm                        227

  11-176      Cross Section of Hot-Model Burner                    232

  11-177      Divergent Flow Adapter of Hot-Model Burner          233

  n-178      Swirl Vanes of Hot-Model Burner                      234

  11-179      Swirl Curve of Hot-Model Burner                *     235

  11-180      Cold-Model Probe-Positioning Coordinate  System       236

  11-181      Radial  Concentration  Profile  of Carbon Monoxide
              From  the Movable-Block Burner  2. 59 cm Out  From
              Burner Tip                                             237

  11-182      Radial  Concentration  Profile  of Carbon Monoxide
              From  the Movable -Block Burner  6. 12 cm Out  From
              the Burner Tip                                         237

  11-183      Radial  Concentration  Profile  of Carbon Monoxide
              From  Movable-Block Burner 12.  70 cm Out From
              Burner Tip                                             238
                                   xv

-------
                      LIST OF FIGURES,  Cont.

Figure No.                                                         Page

  11-184      Radial Concentration Profile of Carbon Monoxide
              From the Movable-Block  Burner Set for Inter-
              mediate Swirl  16.78 cm From the Burner Tip        238

  11-185      Radial Concentration Profile of Carbon Monoxide
              From the Swirl  Burner 5. 08  cm From Burner Tip    239

  11-186      Radial Carbon Monoxide Concentration Profile of
              Swirl Burner 50. 8 cm From  Burner Tip              239

  11-187      Radial Carbon Monoxide Concentration Profile of
              Swirl Burner 76. 2 cm From  Burner Tip              240

  11-188      Radial Carbon Monoxide Concentration Profile of
              Swirl Burner 101. 6 cm From Burner  Tip             240

  11-189      Radial Concentration Profile of Carbon Monoxide
              From the Movable-Block  Burner Set for Maximum
              Swirl 2. 54  cm Out  From the  Burner  Tip             242

  11-190      Radial Concentration Profile of Carbon Monoxide
              From the Movable-Block  Burner Set for Maximum
              Swirl 5. 08  cm Out  From Burner  Tip                 242

  II-191      Radial Concentration Profile of Carbon Monoxide
              From the Movable-Block  Burner Set for Maximum
              Swirl 7. 62  cm                                        243

  11-192      Radial Concentration Profile of Carbon Monoxide
              From the Movable-Block  Burner Set for Maximum
              Swirl 10.16 cm  Out From the Burner  Tip            243

  11-193      Tracer-Gas Mixing  Profiles  for the Swirl  Burner
              Set for  Minimum Swirl at the  3. 8-cm  Axial Position  244

  11-194      Tracer-Gas Mixing  Profile  Set for Minimum  Swirl
              at the  7. 6-cm Axial Position                          245

  II-195      Tracer-Gas Mixing  Profile  for the Swirl  Burner
              Set for  Minimum Swirl at the  17. 8-cm Axial  Position 246

  11-196      Tracer-Gas Mixing  for the  Swirl  Burner Set  for
              Minimum Swirl at the  30. 5-cm Axial Position        247

  11-197      Tracer-Gas Mixing  Profile  for the Swirl  Burner Set
              for Minimum Swirl  at  the 63. 5-cm Axial Position     248
                                  xvi

-------
                       LIST OF FIGURES, Cont.

Figure  No.                                                           Page

  11-198      Tracer-Gas  Mixing Profile for the Swirl Burner
              (Swirl Number,  S = 0.8) at the 2. 5-cm Axial
              Position                                               249

  11-199      Tracer-Gas  Mixing Profile for the Swirl Burner
              (Swirl Number,  S = 0. 8) at the 7. 6-cm Axial
              Position                                               250

  II-ZOO      Radial Velocity  Profile of Swirl Burner 5. 08  cm
              From Burner  Tip                                     258

  11-201      Radial Velocity  Profile of Swirl Burner 50. 8  cm
              From Burner  Tip                                     258

  11-202      Radial Velocity  Profile of Swirl Burner 76. 2  cm
              From Burner  Tip                                     259

  11-203      Radial Velocity  Profile of Swirl Burner 101.6 cm
              From Burner  Tip                                     259

  11-204      Radial Velocity  Profile of Movable-Block Burner
              Set for Intermediate Swirl  7. 62 cm  Out From
              Burner Tip                                            260

  11-205      Pressure Signal Response for Various  Flow
              Directions                                             260

  11-206      Radial Velocity  Profile of Movable-Block Burner
              Set for Intermediate Swirl  7. 62 cm  Out From Burner
              Tip.  Probe Rotated 270°  About y-Axis                 262

 . 11-207      Radial Velocity  Profile of Movable-Block Burner
              Set for Intermediate Swirl  7. 62 cm  Out From Burner
              Tip.   Probe Rotated  180° About y-Axis               262

  11-208      Radial Velocity  Profile of Movable-Block Burner
              Set for Intermediate Swirl  7. 62 cm  Out From Burner
              Tip.   Probe Rotated  90°  About y-Axis                 263

  H-209      Radial Velocity  Profile of Movable-Block Burner
              Set for Maximum Swirl  7. 62 cm Out From Burner
              Tip.   Probe Rotated  0° About the y-Axis              263

  11-210      Radial Velocity  Profile of Movable-Block Burner
              Set for Maximum Swirl  7. 62 cm Out From Burner
              Tip.   Probe Rotated  270° About the  y-Axis            264
                                   xvn

-------
                       LIST  OF  FIGURES,  Cont.

Figure  No.                                                          Page

   11-211       Radial Velocity Profile of Movable-Block  Burner
               Set  for  Maximum Swirl 7. 62  cm From Burner
               Tip.   Probe Rotated  90°  About the y-Axis             264

   11-212       Radial Velocity Profile of Movable-Block  Burner
               Set  for  Maximum Swirl 7. 62  cm Out From Burner
               Tip.   Probe Rotated  90°  About y-Axis                 265

   11-213       Burner  and Probe Coordinate  Systems                 265

   11-214       Axial Velocity Profile for Swirl Burner Set for
               Minimum Swirl at the 3.  8-cm Axial  Position          270

   11-215       Tangential Velocity Profile for Swirl Burner Set
               for  Minimum  Swirl at the 3. 8-cm Axial Position      271

   11-216       Axial Velocity Profile for Swirl Burner Set at
               Minimum Swirl at the 7.  6-cm Axial  Position          282

   11-217       Tangential Velocity Profile for Swirl Burner Set
               for  Minimum  Swirl at the 7. 6-cm Axial Position      283

   11-218       Axial Velocity Profile for the  Swirl Burner Set
               for  Minimum  Swirl at the 17.  8-cm Axial  Position    284

   11-219       Tangential Velocity Profile for the Swirl Burner Set
               for  Minimum  Swirl at the 17.  8-cm Axial  Position    285

   H-220       Axial Velocity Profile for the  Swirl Burner Set for
               Minimum Swirl at the 30. 5-cm  Axial Position         286

   11-221       Tangential Velocity Profile for the Swirl Burner Set
               for  Minimum  Swirl at the 30.  5-cm Axial  Position    287

   11-222       Axial Velocity Profile for the  Swirl Burner Set for
               Minimum Swirl at the 63. 5-cm  Axial Position         288

   11-223       Tangential Velocity Profile for the Swirl Burner Set
               for  Minimum  Swirl at the 63.  5-cm Axial  Position    289

   11-224       Tangential Velocity Profile for the Swirl Burner at
               the  2. 5-cm Axial Position (Swirl Number,  S =  0.8)   298

   11-225       Axial Velocity Profile for the  Swirl Burner at the
               2. 5-cm Axial Position (Swirl Number,  S =  0. 8)       299

   11-226       Axial Velocity Profile for the  Swirl Burner at the
               7. 6-cm Axial Position (Swirl Number,  S =  0. 8)       300
                                  XVT.11

-------
                       LIST OF FIGURES, Cont.

Figure  No.                                                          Page

  11-227      Tangential Velocity  Profile for the Swirl  Burner
              at the 7. 6-cm Axial Position  (Swirl Number,
              S =  0. 8)                                              301

  11-228      Axial Velocity Profile for the Swirl Burner at the
              17. 8-cm Axial  Position  (Swirl Number, S = 0.8)      302

  11-229      Tangential Velocity  Profile for the Swirl  Burner
              at the 17. 8-cm Axial Position (Swirl Number,
              S =  0. 8)                                              303

  11-230      Axial Velocity Profile for the Swirl Burner at the
              30. 5-cm Axial  Position  (Swirl Number, S  =  0. 8)      304

  11-231      Tangential Velocity  Profile for the Swirl  Burner at
              the  30. 5-cm  Axial  Position  (Swirl  Number, S =  0. 8)   305

  11-232      Normalized NO Concentration  as a Function  of
              Excess Air (Movable-Block Swirl Burner  — Low
              Swirl Intensity).  Gas Input,   1578  CF/hr              308

  11-233      Normalized NO Concentration  as a Function  of
              Excess Air (Movable-Block Swirl Burner  — Low
              Swirl Intensity).  Gas Input,   1976  CF/hr              309

  11-234      Normalized NO Concentration  as a Function  of
              Excess Air (Movable-Block Swirl Burner  — Low
              Swirl Intensity).  Gas Input,   2382  CF/hr              310

  11-235      Normalized NO Concentration  as a Function  of
              Excess Air (Movable-Block Swirl Burner  —           311
              Intermediate  Swirl  Intensity).   Gas Input,  1578  CF/hr

  11-236      Normalized NO Concentration  as a Function  of
              Excess Air (Movable-Block Swirl Burner  —
              Intermediate Swirl Intensity).   Gas Input,   1976 CF/hr  312

  11-237      Normalized NO Concentration  as a Function  of
              Excess Air (Movable-Block Swirl Burner  — High
              Swirl Intensity).  Gas Input,   1578  CF/hr              313

  11-238      Normalized NO Concentration  as a Function  of
              Excess Air (Movable-Block Swirl Burner  — High
              Swirl Intensity).  Gas Input,   1976  CF/hr              314

  11-239      Scan of  Flow Direction at the  12. 7-cm Axial
              Position (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                        316
                                   xix

-------
                       LIST OF FIGURES,  Cont.

Figure  No.                                                          Page

   11-240      Scan of  Flow Direction  at  the  30. 5-cm Axial
              Position  (Movable-Block Swirl Burner  — Intermediate
              Swirl  Intensity)                                        316

   11-241      Scan of  Flow Direction  at  the  107-cm  Axial
              Position (Movable-Block Swirl Burner — Intermediate
              Swirl  Intensity)                                        316

   11-242      Composite  Plot  of  Gas Sampling Profiles for CO,
              CO2, CH4,  NO,  and O2  at  the  12. 7-cm Axial
              Position  (Movable-Block Swirl Burner  — Intermediate
              Swirl  Intensity)                                        319

   11-243      Radial Profile for  CH4 at the 12. 7-cm Axial
              Position  (Movable-Block Swirl Burner  — Intermediate
              Swirl  Intensity)                                        321

   H-244      Radial Profile for  CO at the  12. 7-cm  Axial
              Position  (Movable-Block Swirl Burner  — Intermediate
              Swirl  Intensity)                                        322

   H-245      Radial Profile for  CO2 at the 12. 7-cm Axial
              Position  (Movable-Block Burner — Intermediate
              Swirl  Intensity)                                        323

   11-246      Radial Profile for  NO at the  12. 7-cm  Axial
              Position  (Movable-Block Burner — Intermediate
              Swirl  Intensity)                                        324

   11-247      Radial Profile for  O2  at the  12. 7-cm Axial
              Position  (Movable-Block Swirl Burner — Intermediate
              Swirl  Intensity)                                        325

   11-248      Radial Temperature Profile at the 12.  7-cm  Axial
              Position  (Movable-Block Swirl Burner  — Intermediate
              Intensity)                                              329

   11-249      Tangential  Velocity Profile at the 12. 7-cm  Axial
              Position  (Movable-Block Swirl Burner  — Intermediate
              Swirl  Intensity)                                        330

   H-250      Axial  Velocity Profile at the  12. 7-cm  Axial
              Position  (Movable-Block Swirl Burner — Intermediate
              Swirl  Intensity)                                        331

   11-251      Composite  Plot  of  Gas Sampling Profiles for CO,
              CO2, CH4,  NO,  and O2  at  the 30. 5-cm Axial Position
              (Movable-Block Burner — Intermediate Swirl Intensity)  333
                                   xx

-------
                       LIST  OF  FIGURES,  Cont.

Figure No.                                                            Page

  11-252      Radial  Profile for  CH4 at the 30. 5-cm  Axial
              Position  (Movable-Block  Swirl Burner — Intermediate
              Swirl Intensity)                                        334

  11-253      Radial  Profile for  CO  at  the  30. 5-cm Axial
              Position  (Movable-Block Burner — Intermediate
              Swirl Intensity)                                        335

  H-254      Radial  Profile for  CO2 at the 30. 5-cm  Axial
              Position  (Movable-Block  Swirl Burner — Intermediate
              Swirl Intensity)                                        336

  11-255      Radial  Profile for  O2 at  the  30. 5-cm Axial
              Position  (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                        337

  11-256      Radial  Profile for  CH4 at the 30. 5-cm  Axial
              Position  (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                        338

  11-257      Radial  Temperature  Profile at the 30. 5-cm Axial
              Position  (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                        340

  11-258      Axial Velocity Component at the 30.  5-cm  Axial
              Position  (Movable-Block  Swirl Burner — Intermediate
              Swirl Intensity)                                        341

  11-259      Tangential  Velocity Component at the 30. 5-cm  Axial
              Position (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                        342

  11-260      Composite  Plot of  Gas Sampling Profiles for CO,
              CO2,  CH4,  NO, and  O2 at the 107-cm Axial Position
              (Movable Block Swirl Burner  —  Intermediate Swirl
              Intensity)                                               343

  11-261      Radial  Profile for  CO  at  the  107-cm Axial Position
              (Movable-Block Swirl Burner  —  Intermediate Swirl
              Intensity)                                               344

  11-262      Radial  Profile for  CO2 at the 107-cm Axial
              Position  (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                        345

  11-263      Radial  Profile for  O2 at  the  107-cm Axial Position
              (Movable-Block Swirl Burner  —  Intermediate Swirl
              Intensity)                                               346
                                   xxi

-------
                       LIST OF FIGURES,  Cont.

Figure No.                                                          Page

  11-264      Radial Profile for NO at  the  107-cm  Axial Position
              (Movable-Block Swirl Burner — Intermediate Swirl
              Intensity)                                             347

  11-265      Axial Velocity Component at the  107-cm Axial
              Position (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                       350

  11-266      Tangential Velocity Component at the 107-cm Axial
              Position (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                       351

  11-267      Axial Gas  Composition Profile at the 0. 0-cm Radial
              Position (Movable-Block Swirl Burner — Intermediate
              Swirl Intensity)                                       354

  11-268      Cross-Sectional  View of High-Intensity Flat-Flame
              Burner                                                355

  11-269      Normalized NO Concentration as  a  Function  of
              Excess  Air for the Flat-Flame Burner  at  Three
              Gas  Inputs                                            357

  11-270      Radial Scan  of Temperature  for  the Flat-Flame
              Burner  at  a  Gas Input of 2010 CF/hr and  4.4%
              Excess  Oxygen in  the Flue                            360

  11-271      Composite Plot of Radial Gas  Species Concentration
              at a 12. 7-cm Axial Position for a  Flat-Flame
              Burner  Operating at a Gas Input  of 2010 CF/hr  and
              4.4% Excess Oxygen in the  Flue                     363

  11-272      Radial Scan  of Carbon Dioxide From  a  Flat-Flame
              Burner  at  an Axial Position  of 12. 7-cm While
              Operating at 2010  CF/hr  Gas Input and 4.4^. Excess
              Oxygen  in  the  Flue                                  _ 365

  11-273      Radial Scan  of Methane From  a  Flat-Flame  Burner
              at an Axial Position of 12. 7-cm While Operating at
              at 2010  CF/hr Gas Input  and 4.4%  Excess Oxygen
              in the Flue                                           366

  11-274      Radial Scan  of Oxygen From a  Flat-Flame Burner
              at an Axial Position of 12. 7 cm While Operating at
              a 2010  CF/hr  Gas Input and 4.4%  Excess  Oxygen
              in the Flue                                           367
                                  xxn

-------
                      LIST  OF  FIGURES,  Cont.

Figure No.                                                          Page

  11-275      Radial Scan of Carbon M.onoxide  From a Flat-
              Flame Burner at  an Axial Position  of  12. 7 cm
              While Operating at  a  2010 CF/hr Gas  Input and
              4.4% Excess Oxygen in the  Flue                     368

  11-276      Radial Scan of Nitric Oxide From .a Flat-Flame
              Burner  at  an  Axial  Position  of 12. 7 cm  While
              Operating at a 2010 CF/hr Gas Input and 4.4%
              Excess  Oxygen in the Flue                            369

  11-277      Composite  Plot of Radial Gas Species  Concentration
              at a 68. 6 cm Axial Position  for  a Flat-Flame
              Burner  Operating  at a Gas Input of 2010 CF/hr
              and 4.4% Excess  Oxygen in  the  Flue                 372

  11-278      Radial Scan of Nitric Oxide From a Flat-Flame
              Burner  at  an  Axial  Position  of 68. 6 cm  While
              Operating at a 2010 CF/hr Gas Input and 4.4%
              Excess  Oxygen in the Flue                            373

  11-279      Radial Scan of Oxygen From a Flat-Flame Burner
              at an Axial Position of  68. 6  cm  While Operating
              at a 2010 CF/hr Gas Input and 4.4% Excess
              Oxygen  in  the Flue                                    374

  11-280      Radial Scan of Carbon Dioxide From a Flat-Flame
              Burner  at  an  Axial  Position  of 68. 6 cm  While
              Operating at a 2010 CF/hr Gas Input and 4.4%
              Excess  Oxygen in the Flue                            375

  11-281   .   Radial Scan of Carbon Monoxide  From a Flat-Flame
              Burner  at  an  Axial  Position  of 68. 6 cm  While
              Operating at a 2010 CF/hr Gas Input and 4.4%
              Excess  Oxygen in the Flue                            376

  11-282      Radial Scan of Methane  From a  Flat-Flame Burner
              at an Axial Position of  68. 6  cm  While Operating at
              a 2010 CF/hr Gas Input and  4.4%  Excess  Oxygen
              in the Flue                                           377

  11-283      Composite  Plot of Radial Gas Species  Concentration
              at a 104. 1  cm Axial Position for a  Flat-Flame
              Burner  Operating  at a Gas Input of  2010 CF/hr and
              4.4% Excess  Oxygen  in  the Flue                      379

  11-284      Radial Scan of Nitric Oxide From a Flat-Flame
              Burner  at  an  Axial  Position  of 104. 1 cm While
              Operating at a 2010 CF/hr Gas Input and 4.4%
              Excess  Oxygen in the Flue                            380
                                  XXlll

-------
                      LIST  OF  FIGURES,  Cont.

Figure No.                                                          Page

  11-285      Radial Scan of Oxygen From a Flat-Flame Burner
              at an Axial Position of  104. 1 cm While Operating
              at a 2010 CF/hr Gas Input and 4.4%  Excess
              Oxygen in  the Flue                                    381

  11-286      Radial Scan of Carbon Dioxide From a Flat-Flame
              Burner at  an  Axial  Position  of 104. 1  cm  While
              Operating at a 2010  CF/hr Gas  Input  and 4.4%
              Excess Oxygen in the Flue                            382

  11-287      Radial Scan of Carbon Monoxide  From a Flat-
              Flame Burner at  an Axial Position of  104. 1  cm
              While  Operating at  a 2010 CF/hr Gas Input and
              4.4% Excess  Oxygen in the Flue                      383

  11-288      Radial Scan of Methane  From a  Flat-Flame Burner
              at an Axial Position of  104. 1 cm While Operating
              at a 2010 CF/hr Gas Input and 4.4%  Excess
              Oxygen in  the Flue                                    384

  11-289      Boiler Burner                                        385

  H-290      Guide  Vanes                                          386

  11-291      Normalized NO  Concentration as  a Function of
              Excess Air (Boiler  Burner With  30-deg Vane Setting;
              Gas  Input,  3020 CF/hr) and  Combustion Air
              Temperature                                          387

  11-292      Normalized NO Concentration as  a Function of
              Excess Air (Boiler  Burner With  40-deg Angle  Vane
              Setting; Gas Input,  3040  CF/hr)  and Combustion
              Air  Temperature                                      388

  11-293      Normalized NO  Concentration as  a Function of
              Excess Air (Boiler  Burner With  60-deg Angle  Vane
              Setting; Gas Input,  3040  CF/hr)  and Combustion
              Air  Temperature                                      389

  11-294      Composite  Radial  Scan of Gas Species  From a
              Boiler Burner With a 60-deg Vane Angle  Setting
              at an Axial Position of  12. 7  cm  While Operating
              at a 3040 CF/hr Gas Input,  1. 9%  Excess Oxygen,
              and  a  100°F Preheated Air Temperature               397

  11-295      Composite  Radial  Scan of Gas Species  From a
              Boiler Burner With a 60-deg Vane Angle  Setting
              at an Axial Position of  12. 7  cm  While Operating at
              a 3040  CF/hr Gas Input,  1. 9% Excess Oxygen, and
              a 270°F Preheated Air Temperature                   398

                                 xxiv

-------
                      LIST  OF  FIGURES,  Cont.

Figure No.                                                          Page

  11-296      Radial Scan of Methane From a  Boiler  Burner With
              a 60-deg  Vane Angle Setting at  an Axial Position
              of 12. 7 cm While Operating at a 3040 CF/hr Gas
              Input,  1.9%  Excess Oxygen,  and a 100°F Preheated
              Air Temperature                                      400

  11-297      Radial Scan of Methane From a  Boiler  Burner With
              a 60-deg  Vane Angle Setting at  an Axial Position
              of 12.7 cm While Operating at a 3040 CF/hr Gas
              Input,  1. 9%  Excess Oxygen, and a 270°F Preheated
              Air Temperature                                      401

  11-298      Radial Scan of Carbon Monoxide  From  a Boiler
              Burner With a 60-deg  Vane Angle  Setting at an
              Axial Position of  12. 7 cm While Operating  at a
              3040 CF/hr Gas  Input,  1.9%  Excess  Oxygen,  and
              a 100°F Preheated Air Temperature                  402

  11-299      Radial Scan of Carbon Dioxide From  a  Boiler
              Burner With a 60-deg  Vane Angle  Setting at an
              Axial Position of  12.7 cm While Operating  at a
              3040 CF/hr Gas  Input,  1.9%  Excess  Oxygen, and
              a 100°F Preheated Air Temperature                  403

  11-300      Radial Scan of Oxygen From a Boiler Burner With
              a 60-deg  Vane Angle Setting at  an Axial Position
              of 12.7 cm While Operating at a 3040 CF/hr Gas
              Input,  1.9%  Excess Oxygen, and a 100°F Preheated
              Air Temperature                                      404

  11-301      Radial Scan of Nitric  Oxide From  a Boiler  Burner
              With a  60-deg Vane Angle Setting  at an Axial
              Position of 12. 7  cm While Operating  at a 3040
              CF/hr Gas Input,  1.9% Excess  Oxygen, and a 100°F
              Preheated Air Temperature                           405

  11-302      Radial Scan of Carbon Monoxide  From  a Boiler
              Burner With a 60-deg  Vane Angle  Setting at an
              Axial Position of  12. 7 cm While Operating  at a
              3040 CF/hr Gas  Input,  1.9%  Excess  Oxygen,  and
              a 270°F Preheated Air Temperature                  406

  11-303      Radial Scan of Carbon Dioxide From  a  Boiler
              Burner With a 60-deg  Vane Angle  Setting at an
              Axial Position of  12. 7 cm While Operating  at a
              3040 CF/hr Gas  Input,  1.9%  Excess  Oxygen, and
              a 270°F Preheated Air Temperature                  407
                                  xxv

-------
                       LIST OF FIGURES,  Cont.

Figure No.                                                          Page

  11-304      Radial Scan  of Oxygen From a Boiler Burner
              With  a  60-deg Vane Angle Setting at  an Axial
              Position of 12.7 cm While Operating  at a 3040
              CF/hr Gas Input,  1.9%  Excess  Oxygen,  and a
              270°F Preheated Air  Temperature                     408

  11-305      Radial Scan  of Nitric Oxide  From a Boiler  Burner
              With  a  60-deg Vane Angle Setting at  an Axial
              Position of 12. 7 cm While Operating  at a 3040
              CF/hr Gas Input,  1. 9%  Excess  Oxygen,  and a
              270°F Preheated Air  Temperature                     409

  II-B-1      Surface  Combustion Axial Burner                      418

  II-B-2      Combustion Radial-Axial Gas Burner                   420


  II-B-3      Axial Flow Burner  Outside  Casing Assembly          423

  II-B-4      Tracer-Gas  Mixing Profile  for the  Axial Burner
              With  the ASTM Flow Nozzle at the 5.1-cm  Axial
              Position                                               426

  II-B-5      Tracer-Gas  Mixing Profile  for the  Axial Burner
              With  the ASTM Flow Nozzle at the 25. 4-cm Axial
              Position                                               428

  II-B-6      Tracer-Gas  Mixing Profile  for the  Axial Burner
              With  the ASTM Flow Nozzle at the 45. 7-cm Axial
              Position                                               429

  II-B-7      Tracer-Gas  Mixing Profile  for the  Axial Burner
              With  the ASTM Flow Nozzle at the 66. 0-cm Axial
              Position                                               430

  II-B-8      Axial Velocity Profile for  the  Axial Burner  With
              the ASTM  Flow Nozzle at  the  5. 1-cm Axial Position   437

  II-B-9      Axial Velocity Profile for  the  Axial Burner  With
              the ASTM  Flow Nozzle at  the  25. 4-cm Axial Position  438

  H-B-10     Axial Velocity Profile for  the  Axial Burner  With
              the ASTM Flow Nozzle at the  45. 7-cm  Axial Position    439

  II-B-11     Axial Velocity Profile for  the  Axial Burner  With
              the ASTM  Flow Nozzle at the 66. 0-cm Axial Position   440
                                  xxvi

-------
                       LIST OF FIGURES,  Cont.

Figure No.                                                          Page

  II-C-1      Burner and Probe Coordinate Systems                 448

  II-D-1      Geometric Relations Describing  Definition of
              Tangential and  Radial  Velocity                         451
                                  xxvn

-------
                           LIST OF TABLES

Table No.                                                           Page

  II-1       Required Operating  Conditions of Experimental
             Furnace                                                  34

  II-2       Operating Conditions of Primary  Cooling  Load
             System for  Various Furnace Conditions                  41

  II-3       Values for Constants  of  Equations II-Z7, 11-28,
             and 11-29 at  Tmb = 85°F  for  Water                      50

  II-4       Parameters for Pressure Drop Equation for
             Water at 85°F                                           55

  II-5       Experimental Versus  Calculated  Best Fit Values
             of  Calibration  Data  for  the  Five-Hole Hemispherical
             Head Pitot Probe                                        65

  II-6       Flue Gas Analysis Comparison for  Modified and
             Unmodified  Gas Burner Nozzles                          81

  II-7       Raw Data Obtained for the Intermediate-Flame-
             Length Axial Flow Burner Fitted With the Ported
             Swirl Baffle                                              84

  II-8       Reduced  Velocity  Data for the Intermediate Flame
             Length of the Axial Flow Burner Fitted With the
             Ported Swirl Baffle                                      85

  II-9       Data Obtained  Using  Radial Gas  Nozzle With  2547
             CF/hr  Gas  Input                                        104

  11-10      Coefficients and Standard Deviations of the
             Mathematical Fit  for  Each Gas                         105

  11-11      Data Obtained  With  Stainless-Steel Probe  Using
             Axial Gas Nozzle and Axial Position of 5. 0  cm         120

  11-12      Data Obtained  With  Stainless-Steel Probe  Using
             Axial Gas Nozzle and Axial Position of 77.5  cm        135

  n-13      Data Obtained  With  Stainless-Steel Probe  Using
             Axial Gas Nozzle and Axial Position of 152. 5 cm       136

  11-14      Data Obtained  With  Quartz Probe Using Axial
             Gas Nozzle  and Axial Position of 5. 0  cm               150

  11-15      Data Obtained  With  Quartz Probe Using Axial
             Gas Nozzle  and Axial Position of 77. 5 cm              151

  11-16      Raw Velocity Data for the Axial Burner  With the
             Short-Flame Ported Swirl Baffle  at the 5.1-cm
             Axial Position                                          153

                                xxviii

-------
                       LIST OF TABLES, Cont.

Table No.                                                          Page

  11-17      Computer Reduced Data for the  Axial Burner  With
             the Short-Flame  Ported Swirl Baffle  at  the  5. 1-
             cm Axial Position                                      154

  11-18      Raw  (Gas Analysis) Data for Short-Flame Baffle
             Burner                                                 168

  11-19      Raw  (Velocity) Data for Short-Flame Baffle  Burner     173

  11-20      Raw  (Gas Analysis) Data for Short-Flame Baffle
             Burner                                                 180

  H-21      Raw  (Velocity) Data for Short-Flame Baffle  Burner     184

  11-22      Raw  (Gas Analysis) Data for Short-Flame Baffle
             Burner                                                 191

  11-23      Raw  (Velocity) Data for Short-Flame Baffle  Burner     195

  11-24      Mass  Spectrometer  Laboratory Analytical Report       196

  11-25      Mass  Spectrometer  Laboratory Analytical Report       197

  11-26      Raw  (Gas Analysis) Data for Short-Flame Baffle
             Burner                                                 228

  11-27      Raw  (Gas Analysis) Data for Short-Flame Baffle
             Burner                                                 229

  n-28      Raw  (Gas Analysis) Data for Short-Flame Baffle
             Burner                                                 230

  11-29      Raw  and Computed Tracer-Gas  Mixing Data for the
             Swirl  Burner  Set for Minimum Swirl at the  3. 8-cm
             Axial  Position                                         251

  11-30      Raw  and Computed Tracer-Gas  Mixing Data for the
             Swirl  Burner  (Minimum Swirl)  at  the  17. 8-cm
             Axial  Position                                         252

  11-31      Raw  and Computed Tracer-Gas  Mixing Data for the
             Swirl  Burner  (Minimum Swirl)  at  the  30. 5-cm  Axial
             Position                                                253

  11-32      Raw  and Computed Tracer-Gas  Mixing Data for the
             Swirl  Burner  (Minimum Swirl)  at  the  63. 5-cm  Axial
             Position                                                254
                                 XXIX

-------
                   LIST OF TABLES,  Cont.

Table No.

  11-33      Raw and Computed Tracer-Gas Mixing Data  for
             the  Swirl Burner  (Maximum  Swirl) at the 2.  5-cm
             Axial Position                                          255

  11-34      Raw and Computed Tracer-Gas Mixing Data  for
             the  Swirl Burner  (Maximum  Swirl) at the 7.  6-cm
             Axial Position                                          256

  11-35      Column Heading Code                                   257

  11-36      Velocity Sampling Locations  Planned for Swirl
             Burner                                                  266

  H-37      Example of Raw Data Obtained From MDIT Velocity
             Probe for  the  Swirl  Burner Set for Minimum Swirl
             at the 3. 80-cm Axial Position                          267

  11-38      Typical Computer Output of Reduced Velocity Data      269

  11-39      Raw Data for the  Swirl Burner (Minimum Swirl)
             at the 7. 6-cm Axial  Position                           273

  11-40      Raw Data for the  Swirl Burner (Minimum Swirl) at
             the  17. 8-cm Axial Position                             274

  11-41      Raw Data for the  Swirl Burner (Minimum Swirl) at
             the  30. 5-cm Axial Position                             275

  11-42      Raw Data for the  Swirl Burner (Minimum Swirl) at
             the  63. 5-cm Axial Position                             276

  11-43      Computer-Reduced Data for Swirl Burner (Minimum
             Swirl) at the  7. 6-cm  Axial Position                     277

  11-44      Computer-Reduced Data for Swirl Burner (Minimum
             Swirl) at the  17. 8-cm Axial  Position                    278

  11-45      Computer-Reduced Data for Swirl Burner (Minimum
             Swirl) at the  30. 5-cm Axial  Position                    279

  11-46      Computer-Reduced Data for Swirl Burner (Minimum
             Swirl) at the  63. 5-cm Axial  Position                    280

  n-47      Column  Heading Symbols for Tables  11-37 to 11-46      281

  11-48      Raw Data for the  Swirl Burner (Swirl Number,
             S  =  0. 8) at the 2. 5-cm Axial Position                   290
                                  XXX

-------
                       LIST  OF  TABLES,  Cont.

Table No.                                                            Page

  11-49      Raw Data for the Swirl Burner (Swirl Number,
             S = 0. 8) at the 7. 6-cm Axial Position                  291

  11-50      Raw Data for the Swirl Burner (Swirl Number,
             S = 0.8) at the 17.8-cm Axial  Position                 292

  11-51      Raw Data for the Swirl Burner (Swirl Number,
             S = 0.8) at the 30. 5-cm Axial  Position                 293

  11-52      Computer-Reduced Data for  the Swirl Burner
             (Swirl Number, S =  0. 8)  at  the 2. 5-cm Axial
             Position                                                294

  11-53      Computer-Reduced Data for  the Swirl Burner
             (Swirl Number, S =  0. 8)  at  the 7. 6-cm Axial
             Position                                                295

  11-54      Computer-Reduced Data for  the Swirl Burner
             (Swirl Number, S =  0.8)  at  the 17. 8-cm Axial
             Position                                                296

  11-55      Computer-Reduced Data for  the Swirl Burner
             (Swirl Number, S =  0.8)  at  the 30. 5-cm Axial
             Position                                                297

  11-56      Time-Averaged Directional Flow  Data Obtained  at
             the 12.7-cm Axial Position (Movable-Block Swirl
             Burner — Intermediate Swirl Intensity)                  317

  11-57      Time-Averaged Directional Flow  Data at the  30.5-
             cm Axial Position and Obtained Using a Hubbard
             Probe (Movable-Block Swirl Baffle — Intermediate
             Swirl Intensity)                                         318

  11-58      Time-Averaged Directional Flow  Data at the  107-
             cm Axial Position and Obtained Using a Hubbard
             Probe (Movable-Block Swirl Burner — Intermediate
             Swirl Intensity)                                         318

  11-59      Time-Averaged Radial Profile  Data  Obtained  at  the
             12.7-cm Axial  Position (Movable-Block  Swirl
             Burner — Intermediate Swirl Intensity)                  326

  11-60      Coefficients and Standard Deviations  of the Mathe-
             matical Fit for Each Gas                               327

  11-61      Data  Obtained  at  the  30. 5-cm Axial Position
             (Movable-Block Swirl Burner — Intermediate Swirl
             Intensity)                                               339
                                  XXXI

-------
                       LIST OF TABLES,  Cont.

Table No.
  H-62      Data Obtained at the  107-cm Axial Position
             (Movable-Block  Swirl Burner — Intermediate
             Swirl  Intensity)                                         348

  11-63      Mass  Spectrometer Laboratory Analytical  Report
             (Natural Gas Input)                                     352

  11-64      Mass  Spectrometer Laboratory Analytical  Report
             (Furnace Product  Gas)                                  353

  n-65      Input-Output Data  for the Flat-Flame Burner           358

  11-66      Time-Averaged  Directional Flow  Data Obtained
             Using a Two-Hole Probe at an Axial Position of
             12. 7 cm                                               361

  11-67      Time-Averaged  Directional Flow  Data Obtained
             Using a Two-Hole Probe at an Axial Position of
             71  cm                                                 361

  11-68      Time-Averaged  Directional Flow  Data Obtained
             Using a Two-Hole Probe at an Axial Position of
             104 cm                                                362

  11-69      Raw and Reduced  Gas Species Data  for Radial
             Sampling Scans  at an Axial  Position of 12.7  cm
             From a Flat-Flame Burner Operating at  a Gas
             Input  of 2010 CF/hr and 4.4%  Excess Oxygen in
             the  Flue                                               364

  11-70      Raw and Reduced  Gas Species Data  for Radial
             Sampling Scans  at an Axial  Position of 68. 6  cm
             From a Flat-Flame Burner Operating at  a Gas
             Input  of 2010 CF/hr and 4.4%  Excess Oxygen in
             the  Flue                                               371

  11-71      Raw and Reduced  Gas Species Data  for Radial
             Sampling Scans  at an Axial  Position of 104. 1 cm
             From a Flat-Flame Burner Operating at  a Gas
             Input  of 2010 CF/hr and 4.4%  Excess  Oxygen in
             the  Flue                                               378

  11-72      Input-Output Data  for the Boiler  Burner With a
             Radial Nozzle (30-deg Vane Angle; Gas Input, 3020
             CF/hr;  Preheated Air Temperatures  of 104°, 285°,
             and 550°F Average)                                     391
                                 XXXll

-------
                      LIST  OF  TABLES,  Cont.

Table No.

  11-73      Input-Output Data for  the Boiler  Burner With  a
             Radial Nozzle (40-deg Vane Angle;  Gas  Input,
             3040 CF/hr)                                             392

  n-74      Input-Output Data for  the Boiler  Burner With  a
             Radial Nozzle (60-deg Vane Angle;  Gas  Input,  3040
             CF/hr; Air Preheat Temperature,  85°F)                393

  11-75      Input-Output Data for  the Boiler  Burner With  a
             Radial Nozzle (60-deg Vane Angle;  Gas  Input,  3040
             CF/hr; Air Preheat Temperature,  265°F Average)       394

  11-76      Input-Output Data for  the Boiler  Burner With  a
             Radial Nozzle (60-deg Vane Angle;  Gas  Input,  3040
             CF/hr; Air Preheat Temperature,  530°F Average)       394

  11-77      Raw  and  Reduced Gas Concentration Radial Scan Data
             for the Boiler Burner Operated at  a  3040 CF/hr Gas
             Input,  1.  9% Excess Oxygen in the  Flue, and a
             Combustion Air  Temperature  of  100°F                   395

  11-78      Raw  and  Reduced Gas Concentration Radial Scan Data
             for the Boiler Burner Operated at  a  3040 CF/hr Gas
             Input,  1.  9%  Excess Oxygen in the  Flue, and  a
             Combustion Air  Temperature  of 270°F                   396

 II-B-1      Operating Characteristics  of  Experimental Axial  Flow
             Burner                                                  419

 II-B-2      Operating Variables and Burner Dimensions for Axial
             Flow  Burner  Using 900°F  and 70°F Air                  424

 II-B-3      Tracer-Gas  Mixing Data for  the  Axial Burner With
             the ASTM Flow Nozzle at the 5.  1-cm Axial Position    425

 II-B-4      Tracer-Gas  Mixing Data for  the  Axial Burner With
             the ASTM Flow Nozzle at the 25. 4-cm  Axial Position   431

 II-B-5      Tracer-Gas  Mixing Data for  the  Axial Burner With
             the ASTM Flow Nozzle at the 45. 7-cm  Axial Position   432

 II-B-6      Tracer-Gas  Mixing Data for  the  Axial Burner With
             the ASTM Flow Nozzle at the 66. 0-cm  Axial Position   433

 II-B-7      Raw  Velocity Data  for the  Axial  Burner With  the
             ASTM  Flow Nozzle at the  5. 1-cm Axial Position        434
                                 XXXlll

-------
                       LIST OF TABLES,  Cont.

Table No.                                                            Page

 II-B-8      Computer Reduced Data  for the Axial  Burner With
             the  ASTM Flow Nozzle  at the 5.1-cm Axial
             Position                                                436

 II-B-9      Raw Velocity Data for the Axial Burner With the
             ASTM  Flow  Nozzle at the 25.4-cm Axial Position      441

 II-B-10     Raw Velocity Data for the Axial Burner With the
             ASTM  Flow  Nozzle at the 45. 7-cm Axial Position      442

 II-B-11     Raw Velocity Data for the Axial Burner With the
             ASTM  Flow  Nozzle at the 66. 0-cm Axial Position      443

 II-B-lZ     Computer Reduced Data  for the Axial  Burner With
             the  ASTM Flow Nozzle  at the 25.4-cm Axial Position  444

 II-B-13     Computer Reduced Data  for the Axial  Burner With
             the  ASTM Flow Nozzle  at the 45. 7-cm Axial Position  445

 II-B-14     Computer Reduced Data  for the Axial  Burner With
             the  ASTM Flow Nozzle  at the 66. 0-cm Axial Position  446

 II-C-1      Velocity Analysis for Various Probe Orientations
             Relative to  a Fixed Direction of Flow                  447

 II-D-1      Comparison  of Swirl  Numbers Calculated for Swirl
             Burner With Intermediate Vane Setting and 28 ft/s
             Throat  Velocity                                         453
                                  XXXIV

-------
                            INTRODUCTION
    This  volume  of  the  final report for EPA Contract No.  68-02-0216
contains all  of the raw data and data plots collected during .the program.
This volume also fully describes the experimental facilities.   This in-
cludes  dimensional  descriptions  of  the  hot-modeling furnace,  the  cold-
modeling  furnace simulator,  sampling probes,  instrumentation, and the
test burners.
    A companion publication  (Volume I) presents  a  comparison of burner
performance under  varying operating conditions based on an analysis  of
the raw data.   Volume I also contains  specific  recommendations  for
minimizing NO   emissions from the burner types tested as well as for
              Jt
areas  where further study will be  required.

-------
               COLD-MODELING FURNACE SIMULATOR
A.   Description of the Cold Test  Chamber
     A cold flow chamber was constructed which provided an aerodynamic
simulation of flow in the hot test  furnace.   This facility provided a capa-
bility for examining the flow characteristics  of each test burner under
ambient temperature  conditions.   This information was necessary for
determining  the  most  effective  sampling  locations for the hot furnace test
worK.
     The geometry and dimensions of the cold-modeling test  facility were
fixed by the dimensions of  the  available  IGT hot-model furnace.    This
simplifies  the similarity criteria necessary to apply cold-model  results
to the hot  model.   The  cold-model facility has a cross-sectional area of
25  square  feet  (5  feet high and  5  feet wide).   General aerodynamic con-
siderations indicate that most of the  pertinent  flow phenomena should
occur in the  first 2-3 feet  of the  test chamber.   However,  the facility
is specified  as  10 feet long to  allow  studies  to be  made of  potential down-
stream effects  and to  ensure that the gas exit stack will not  influence
the primary test area.
     Figure II-1  shows the  overall dimensions  of the  cold-model  test
facility,  the type of construction used, and  the location of the access
ports for insertion of  sampling  probes.   A  lightweight steel framework
was constructed to serve as  support  for  the  wall panels and various bur-
ners being tested.  The framework is rigid and strong enough to  ensure
that the  relative positions of the burner, confining walls, and  sample
probes  remain  constant  to  within 0. 1  inch during testing.  The floor of
the cold-model  facility was built of  0. 250-inch-thick  aluminum,  supported
every 24 inches by a  steel channel superstructure.   This construction
enables the operator to  work inside  the  test  chamber without damage to
the facility.
     The sidewalls and roof panels of  the first 6 feet of  the facility were
clear plastic  (Plexiglas).   The  plastic walls  provided good visibility where
most of the  test work was  done.  The plastic  walls  also  provide the in-
terior  view of the chamber necessary for a photographic  study of flow
using tracers (smoke).  The  last 4 feet  of the chamber  sidewalls  and

-------
Figure II-1.   COLD-'MODEL TEST FACILITIES

-------
roof were constructed  of  0. 250-inch-thick aluminum  sheets.   Also,  the
position of the  aluminum  and plastic  panels are interchangeable.   This
feature provides  flexibility in the location of visual studies in the chamber.
    An access  door placed  in  one sidewall of the chamber provides,
when  closed, a  smooth,  continuous interior wall surface.  The interior
of the cold-model facility does  have projections inward from or dis-
tortion of the walls as they would upset the flow patterns  and make
analysis more difficult.
    The burner  end of the chamber  is  designed so that a  variety  of  bur-
ner types  can be installed using a standard-size adapter plate, as shown
in Figure  II-2
                           24 In.
 24 in.
                                                  2 in. X 2 in. X 1/4 in. ANGLE FRAME
                                                  l/4-in. ALUMINUM PLATE
                                                  BURNER MOUNTING
                                                       HOLES
             FLANGE HOLES MATED
             WITH HOLES IN FLOW
             CHAMBER FRAME
                                          A-81843
       Figure  II-Z.   COLD-MODEL  BURNER ADAPTER  PLATE
The adapter plate fits  and bolts  into a  24 by 24  inch  hole framed in the
end  of the  chamber.

-------
     The major criterion for  design of the  sampling probe access  holes
was maximum flexibility of probe position.   The  design selected (Figure
II-1)  uses two slots,  one  in the  sidewall and one in the roof,  running
parallel to the  center line  of the test chamber.   The sidewall slot enabled
us  to position the probe anywhere  in  a horizontal plane  passing  through
the burner axis.   The  roof slot provides the same  positional capabilities,
but rotated 90 degrees  about the burner axis.   Figure  II-3 shows the
probe positions obtainable using the slot design.  The panels in the model
can be  easily changed  so  that other slot configurations  can readily be
developed.
                    PLANE OF SAMPLE
                        POINTS
                                                               A-8I85I
  Figure II-3.   PLANE OF SAMPLE  POINTS ABOUT  BURNER AXIS
    The sampling slots  are fitted with a sliding  spring steel seal designed
to maintain the  chamber essentially "air tight" while  allowing freedom of
probe  movement.   Figure II-4  shows  a cross-sectional view  of the sliding
seal.   Grooves  0. 025  inch deep and 0. 5 inch wide are cut  in the plastic

-------
          2x2x1/4 in. STEEL
          SUPERSTRUCTURE
                                                   PLEXIGLAS SIDEWALL
                                                   STAINLESS STEEL
                                                    SPRING STEEL
                                                      SLIDE
                                                    0.0155-in. SLIDE
                                                    0.0250-in. GROOVE
                                                                    2.00 in.
                                                   3/4-in.-DIAMETER
                                                   HOLE CUT  IN
                                                   STRIP 3ft Oin. FROM
                                                   ENDS
                                                GUIDING GROOVE
                                                                   A-81844
                  Figure II-4.   SLIDING PROBE SEAL
edges  of  the  chamber wall adjacent to  the  sampling slots.   They act as
guides to maintain the relative  positions  of the  seal  and the probe  slot.
A  0. 015-inch-thick strip of stainless  steel is  stretched across  the  length
of the test  chamber covering  the wall slot.   The  stainless  steel  strip
seats are flush  in  the  groove, machined  into the plastic walls.    At either
end of the  chamber the metal strip winds around  a take-up cylinder
(Figure II-5).   These cylinders  are  constructed so that they apply  an
equal and oppositely  directed  force on  the  metal strip.   The  opposite
forces applied to the  strip put tension  on the  metal,   which holds it back
against the  chamber  walls.   The tension supplied by  each  of  the  cylinders

-------
  5.75 in.
             3.5in.
                  STEEL
                  STRIP
  0.015 in.-
3.0 in.
                                      3.0 in.
                             TORQUE =
                             3W,in.-lb
             1.25 in.
                  1.0 in.
                   3/8 in.
                           BALL- ^
                           BEARING
                             INSERTS

                             1.75 in
                                                      STEEL TAKE-UP
                                                     .CYLINDER
                                                      l/32-in.
                                                      PULLEY
                                                      CABLE
                         .1/2 -in.
                         PIVOTS
                                            1.75 in.
                                                         1/2 in.
                                                                   • 5/8 in. DIAM
                                                               WEIGHTS
                 Figure II-5.   PULLEY  ARRANGEMENT
                   FOR SLIDING PROBE HOLE SEAL
is achieved with weights.  In  this  way,  as the probe is moved down the
length of the  chamber,  one cylinder "plays  out"  a portion  of  the  metal
strip while  the other  cylinder  takes  it  up,  maintaining  a constant tension.
The amount  of weight necessary  to provide  the  proper  tension will be  ex-
perimentally determined on the finished unit.
     The  blower selected to deliver the  primary  air  flow in the test
facility is  a North  American  Model 2344-28-3-20 turbovane blower, which
is capable  of delivering  62,000 CF/hr  at a  pressure of 44  oz/sq in.
This flow capacity  was  selected  to  match  the  amount of combustion air
used by the  hot-model furnace  operating at  its maximum gas  input of
4000 CF/hr  and 40%  excess air.   The  high-pressure  capability  of this

-------
fan is necessary to overcome the estimated pressure  drop of our  vane-
induced  swirl generator.   The air is cleaned with  a  North American
Model 14-MGV filter attached to the blower inlet.  This filter used  oil-
impregnated paper  which is capable  of  removing  particles  as  small  as
several  microns.   The  air  flow  is controlled by  a  butterfly valve  located
between  the air filter and  the blower inlet.   Air  flow measurement  was
made with  calibrated orifices and controlled with "butterfly" valves  on
the fan inlets.   The  air  ducts  were  fitted with  a  single position  probe
access  (Figure II-6).
                             -l/8-in. RIGID TUBING
                                  l/8-in. TUBING COUPLING
           l/4-in. NPT
                                                        AIR DUCT WALL
                                                            A-81846
            Figure II-6.   SUPPLY AIR PRESSURE PROBE
This hole  was used to  insert  a  pressure probe attached to an electronic
manometer capable  of measuring  high-frequency pressure pulsation.   The
air stream was  spot-checked  after each air  flow setting  for  pulsation.
Any pulsation  of the air  in the  supply  system  potentially will result  in  a
pulsation in the  test chamber.

-------
B.   Cold-Model Probe  Positioner
     Each of the sampling probes inserted into the burner flow regions,
through the sliding  seal,  were positioned and held in place by  an  accurate
positioning  device.
     Figure  II-7 shows the basic design of the device in three views.  A
level, supporting bed is  formed by three fiber  glass  H-beams attached to
the frame of  the  chamber.   The H-beams are cross-connected by aluminum
bars  1  inch thick and 3  inches wide (parts A1-A10).   The bed was  de-
signed to have  a  deflection less  than 0. 001 inch under  the weight  of the
probe-positioning device.   Aluminum and fiber  glass are used  throughout
the system  wherever possible  to reduce the weight.
     The probe  and  other  equipment  are  moved  (axially) down the furnace
length on two 3-square-inch "box rails" (parts  Bl and  B2).   The  box
rails are securely mounted to the  supporting bed by  setscrews and  were
adjusted so that they were both parallel to the  chamber axis to within
0. 01 inch.  Precision-machined vee-blocks (parts Bl and B2) ride on
the outer edge  of each box rail and provide lateral  guidance  as well as
vertical support to  the moving mechanism.  A  forced lubrication system
is built into each vee-block to provide  a  constant oil film over  all metal-
to-metal  contact areas.   Mineral oil will  be used to ensure a  coefficient
of friction,  f0,  less than 0. 3.  The probe  is positioned by an  Acme
threaded  lead screw (not  shown) sized to move the probe 0. 1  inch per
rotation.  The  position  is  read on a linear scale attached to the outer
box  rail;  the  vernier adjustment is  provided by a circular scale on  the
lead screw.   Using  the linear scale for rough-positioning and the  vernier
scale for fine-positioning,  the probe tip can be placed  with  an accuracy
of 0. 01 inch.    The  lead screw is equipped with  an electric  motor for
rapid,  rough  probe  placement  and with a hand crank for  final positioning.
About  15.0  inch-pounds of motor  torque is required to  move the probe
as calculated  from  the  standard  static friction equations for parallel
surfaces  and  for  screws with  square threads.
     The probe's radial  movement is accomplished with the same box
rail  and vee-block arrangement used for  its axial movement  (parts  Cl,
C2,  El,  and  E2).   The probe tip has  a full 5-foot movement,  allowing
it to completely traverse the  chamber's width.   Again,  the  probe  is moved
using an  Acme  threaded lead  screw; its position  is  determined by com-
bining  readings  from a  linear  and a circular scale.

-------

3.5 in.
i«— 	 - 	

V"- r,.o., /
	 . J5-5 in
* 	 12-C


/

in. 	 »
/
v \
\
X©
sL ^@
[ ' /
\
                                                                                                         SCALE : 0.25 in. = 1.0 in.
Figure H-7.   GENERAL ASSEMBLY OF  PROBE  POSITIONER






                                   10

-------
    A planetary turntable (part F,  Figure II-7)  provides the rotational
motion of  the  probe tip shown in Figure II-8.
                                                            0.312 in.
                         ACCURACY OF ROTATIONAL
                          PROBE MOVEMENT 0.25'
                                                         PROBE TIP
                                  611 Sin. -
          ROTATING PROBE
          SUPPORT TABLE
         Figure II-8.   ROTATIONAL MOTION ACCURACY OF
                  COLD-MODEL PROBE POSITIONER
The rotational  motion is required  to  null the five-hold,  spherical,  pitot
tube used  for  velocity measurements.   A  circular  scale attached around
the periphery  of the  table  is  divided  into 720  divisions  (0. 5  degree per
division);  therefore, the  probe tip can be positioned with an accuracy  of
0. 312  inch.
     The bracket that actually holds the probe  is attached to the top of
the turntable.    (The  top view is shown in Figure II-9. )   This bracket
consists of two 2-inch  split-bushing pillow  blocks  (parts Gl  and G2) and
a steel adapter (part H).   The  steel  adapter is  based to  match the out-
side diameter of the probe being used.  A separate  steel adapter is  pro-
vided  for  each probe and securely  clamped  around the probe base.  Each
adapter has a 2-inch outside  diameter which matches the  base  size of
the split-bushing pillow blocks.    To lock a  probe  in position,  the pillow
blocks are opened  by removing  four bolts  and the adapter is snapped into
place.  Should it be  necessary,  the probe can be  removed and reinstalled
                                     11

-------
                                                                                    FULL SCALE
Figure II-9.   AXIAL PROBE ROTATION GENERAL ASSEMBLY




                               IZ

-------
eaai]y,  while ensuring  that the tip  will he  positioned  each time to within
±0.001  inch of its  original position.   The  adapter /pi How block arrange-
ments also allow probe  rotation about its axis.   Again,  this particular
motion  is  necessary to null the reading of a five-hole spherical pitot tube.
The rotational position of the  probe is read  on  a circular scale (part I)
attached to each  steel adapter.   The probe is rotated manually and  held
in position by a blunt-nose setscrew (part  J) in  the rear pillow block.
A  forced lubrication system is built into each bearing to eliminate binding.
C.   Cold-Model Instrumentation, Probes,
     and Calibration Methods
     Three  types  of information were obtained from the cold-modeling
facility: flow direction  and magnitude  as  well as mixing  rate.   Flow
direction and magnitude are measured with a five-hole,  spherical head,
pitot tube.   Mixing rates were measured by monitoring  the rate  of  tracer-
gas  dilution at  some  sampling  point.
     When  using  the five-hole pitot  tube,  normally,  the probe is operated
by  rotating the tip  until the pressure  in  two of  the  five  holes  is  nulled.
The stream velocity and direction  is then  determined  by an established
relationship between the pressure differences in the other holes and the
probe's  "yaw" and  "pitch"  angles.   Mr.  Wright  of  BCURA Industrial
Laboratories recently  developed a  method  of determining stream velocity
and  direction without  the time-consuming job of  nulling two probe holes.
(See the 1970 Journal  of Physics,  Volume  3.)   This method only requires
positioning the probe  at the point of interest and measuring the pressure
difference  between  each combination of two holes.   This  requires four
pressure readings,  which can be made with  switching valves  in about 10
minutes.   A computer  is then  used to solve for five  simultaneous equa-
tions.   We calibrated  our probe  using this  method.
     Very  simply stated,  BCURA calculated the  relationship between the
flow parameters  and the pressure  distribution over the pitot probe from
potential flow theory.   This results in the  following equations:
                         P  = p  +  1/2 Kpv2                     (II-l)
                    "11, -
                                    13

-------
where p   is the pressure at some point  7J on the probe tip surface
(Figure 11-10); p   is  the  free-stream static pressure; p,  the  fluid density;
                8
v, the free-stream velocity;  and  K ,  the pressure recovery factor.
     They found experimentally  that, for  sufficiently high velocities
(NR   > 4000),  K   is  practically  independent  of Reynolds  number and is
  -LVC           If
then only a function of the  angle  8 .   By selecting appropriate  reference
axes  the angle, 8  ,  can be  expressed in terms  of measured angles using
spherical trigonometric relations; BCURA uses the conical, $,  and
dihedral,  6, angles shown in Figure  11-11.
     By properly choosing  certain combinations of recovery factors,  ex-
pressions were derived for  the angles $ and  F> and,  hence, the velocity
direction,  the  magnitude  of  the velocity,  and  the  static  pressure  of the
system.   The  relationships  are expressed  in  the  following equations:
    Angle  or Direction
                      4
        K  =  [1 -   E   (po-pT))|2[  E  (po - PJ2]1/2}1/2       (H-3)
          *         n -  i         ^     TJ =  i       "
•   Velocity
                                 4
                    K  =  {pv2[  E   (po ~  pJ2l~1/2}                (H-4)
                     v     r-   _ _ i        ff                           '

•   Pressure
                          K  = 2(Po- pj/0v2                      (II-5)
                            P           °
Also
                      tan 6 = -(Pl - p3)/(p2 - p4)                   (II-6)

    The probe  to be  used is calibrated  by inserting  it in a circular free-
stream jet  containing a potential core representing an adequate cross-
sectional  area with a uniform velocity profile.   The  various pressures
are measured over an appropriate  range of chosen reference  angles and
flow velocities.  The curves for  K,,  K ,   and  K  versus $ are  obtained
                                   9   v        p
from  these  data.
                                   14

-------
       VELOCITY

       VECTOR
                              A- III1080
    Figure  H-10.   SPHERICAL SENSING HEAD
         OF  A FIVE-HOLE  PITOT TUBE
    CONICAL
                            DIHEDRALN
                               8
                                    A-II11078

Figure  11-11.   CONICAL AND DIHEDRAL ANGLES
                         15

-------
    Once the calibration  curves are obtained, the probe  is  ready for  use
in the experimental  flow  system.   The pitot  probe is  placed at the  re-
quired measuring point,  and its position  and inclination in the  flow  cham-
ber are  recorded.   A set of pressure differentials are measured, and the
calibration  curves used to obtain the conical,  $,  and  dihedral,  6,  angles.
    Once the conical and dihedral angles have been determined,  values
for K and K   can  be obtained from the  calibration curves.   (The com-
      v       p                                                 v
plete  process can be carried out on a computer if the equations for the
calibration  curves are determined.)  Figure  11-12 shows  an example of
calibration  curves for a spherical probe.
    The  values of K  and K   are  substituted into  Equations II-4 and II-5
                     v      p                       H
to calculate  the velocity,  v,  and static pressure,  p .   In calculating the
static pressure,  Equation II-5 yields a value for (p0 — p  ) whereby  —
                                                         3
                  PS - PAT  =  (P° ~ PAT> ~ (p° ~ PS*               (n-7)
and (po — PA^P)  is one °f  tne  measured pressure  differentials.  Therefore,

                        PS = (PS -  PAT) + PAT                    (n~8)
The  authors of  this  method found that  the maximum error in ty is less
than  0. 33 degree.   Comparing  the  theoretical and actual  values, the error
in K  is less than 1%.  However,  practical  calibrations  are advisable
because  large  deviations may  arise  from the influence of the probe  stem,
from  the size  of  the holes in  the sensing head,  and from the  constructional
errors of slight misalignment  of the holes.
    A calibration assembly for the five-hole  pitot probe  consists  of a
source of constant velocity  air,  a differential pressure range  selector
panel, a differential pressure  sensor,  an electronic manometer, and the
pitot  tube to be calibrated.   The general assembly is  shown in Figure
11-13.
    The  constant-velocity air  stream is generated by  a North American
blower with  a  740 CF/min capacity  at a pressure of  24 oz/sq  in.   Flex-
ible  tubing  connects  the blower to a 12 x 12  x 16 inch plywood box
(Figure  11-14).   A 6-inch-diameter aluminum  disk is  mounted inside the
box directly in  line  with the blower inlet.  This  disk  is  used to break
up the main air stream entering  from the blower.  A perforated  aluminum

                                   16

-------
                           1.3
20   40   60   80
 CONICAL ANGLE,*
                   100
                           1.2
                         CJ
                         3
                         LU
                         >  I.I
                           1.0
                                  8=45°
                                **1
                                   I
                                                  I
20   40   60    80
 CONICAL ANGLE,*
100
20   40   6O    80
 CONICAL ANGLE,*
IOO
  Figure  U-12.   EXAMPLES  OF CALIBRATION CURVES FOR K$,  KV
AND K  FOR  A TYPICAL FIVE-HOLE,  SPHERICAL  HEAD,  PITOT TUBE
       P
                                                                                   A-II11079

-------

AIR
BLOWER



CONSTANT-
VELOCITY
CIRCULAR
AIR STREAM
                      CONSTANT-VELOCITY
                      AIR STREAM
             PI TOT-
             TUBE
p
DIFFERENTIAL
PRESSURE
SELECTOR




PRES-
SURE
SENSOR



ELECTRIC
MANOMETER



RECORDER

                                                   A-inneo
          Figure  11-13.   CALIBRATION ASSEMBLY
               FOR FIVE-HOLE  PITOT PROBE
                                       FINAL SCREEN
                                        40% OPEN,
                                16 in.
                                             z
                                           0.5 in.
                                                          WOOD SCREEN
                                                              BOX
                                                             CONVERGING FLOW
                                                                 NOZZLE
                                                          6.75 in.
v PERFORATED
 STEEL PLATE
  50% OPEN
                                      •HONEYCOMB
                                    FLOW STRAIGHTENER
                                       90% OPEN
                                                         A-IIIII84
Figure 11-14.   PITOT  TUBE FLOW CALIBRATION NOZZLE

                                 18

-------
plate,  which uniformly distributes the air in a plane perpendicular  to  the
direction of flow,  follows  the  disk.   The  air is then passed through three
layers of 5/8-inch  honeycomb to break up any  large turbulences.  Two
screens  are used to break up any remaining turbulences.   Mounted at
the outlet of the box  is  a  converging brass  flow nozzle  with a 3-inch-
diameter outlet.  The nozzle is used to produce  the desired steady-state
circular air stream.
    The five-hole  hemispherical pitot tube is mounted with the  sensing
head  centered  in the  nozzle.   The five holes in the pitot1 s  head are con-'
nected to the differential pressure selector, which can  be  set to monitor
the pressure  difference  between any two  pressure holes  or between any
pressure hole  and the atmosphere.   The differential pressure being mon-
itored is fed  to a  Barocel  pressure  transducer.   The output from the
transducer  is amplified  by a CGS  electronic manometer  and appears  as
a permanently  recorded voltage on a fast-response  Brush  hot-wire  strip
recorder.
    To calibrate the  pitot for the  factors  K^,  K ,  and  K   discussed
earlier,  it  must be rotated about the geometrical center of the   sensing
head.  Since  it would have been very cumbersome to rotate the 6-1/2-
foot probes used in this project about their  measuring points,  we are
holding the  probes  stationary and rotating the  direction  of  the air stream.
This  is  accomplished  by mounting the air stream nozzle in a stand,  which
is simultaneously pivoted about  the axes,  which are perpendicular and
parallel  to  the  direction of flow.  The  maximum amount of rotation is
70  degrees  in  the  conical  and dihedral  angles  of  the system.   A diagram
of the pivotal stand is shown in Figure 11-15.
    The values of the conical and dihedral  angles are determined by  using
the trigonometric relationships for  right  triangles.  Having a fixed  coordi-
nate system relative  to  the  rotating  air stream nozzle allows us to measure
an  angle of rotation relative  to  each  coordinate (fixed) axis.  The  cosine
of the angle relative  to  the  direction of flow yields  the  conical  angle.
The angle  of  rotation  in the plane perpendicular to  the  flow yields the
cosine of the dihedral angle.  The  cosine of the  angle of rotation is  eval-
uated by taking the ratio of the length  of  the box  along  a fixed  axis at a
0 degree rotation to its  length  at an  arbitrary  rotation.

                                   19

-------
                                              PIVOT BEARING
   BAFFLE
    BOX
                                                          PIVOT BEARING
                                              STATIONARY SUPPORT
                                                   FRAME
                                                                A-IIIII99
              Figure 11-15.  PIVOTING NOZZLE MOUNT
    Calibration of our probe was carried  out  for flow  velocities of 25
ft/s and 50 ft/s,  and conical angles between 0 and 65  degrees.   To check
consistency, two  sets of  data were collected for  each velocity.   The  mean
calibration  curves for  K^,  KV>  and K  are shown  in Figures 11-16,
11-17,  and 11-18,  respectively,  by the solid line.   The theoretical  values
of these three factors  were obtained  from potential flow theory  for a
sphere  having  the  outer  ring of  holes  situated at a conical angle of 40
degrees,  are shown by the dashed  lines in Figures 11-16,  11-17, and 11-18.
                                   20

-------
                      0.9
                      0.7
                   e
                   O  0.5
                   O
                   ui
                   o
                   z
                      O.I
THEORETICAL


                                           -ACTUAL
                               10      20      30     40
                               CONICAL ANGLE,*
                                              A-I2II248
           Figure 11-16.   K. AS  A FUNCTION OF CONICAL
              ANGLE FOR  A FIVE-HOLE PITOT  PROBE
The  agreement between measured data and theory was reasonably  good
considering the substantial  differences  in tip configuration.   Part of the
deviation between curves  arose because of the  small influence of the stem
of the probe and  because of the size of the holes in the  sensing head.
However,  most of the observed differences  are believed  to result  because
the probe  is perfectly spherical.
    Another factor  in calibrating the five-hole  pitot probe  is  that the flow
patterns and mixing eddies change  very rapidly in the  areas  of interest.
Consequently,  it is necessary to  know  the  frequency response,  amplitude
shift,  and maximum frequency  of pressure change that can be detected
by the five-hole pitot probe for any interruption of  this type  of data.
                                   21

-------
       1.14
       1.12
       1.10
       1.08
   cr

   g   1.06
   o

   If
   O   1.04
   UJ
       1.02
       1.00
      0.98
                      ACTUAL,
                                 THEORETICAL
                   10       20       30

                   CONICAL ANGLE,*
40
                                      A-I2II252
Figure 11-17.   Ky AS  A FUNCTION OF CONICAL


   ANGLE  FOR A FIVE-HOLE PITOT  PROBE
                         22

-------
                     1.0
                     o.e
                  O  0.6
                  u
                  2
                  Ul
                  (T
                     0.2
                                   \N
                               ACTUAL -
                                        . THEORETICAL
                              10      20      90
                                CONICAL ANGLE , 
                                                    40
                                                     A-I2II25S
           Figure  11-18.   K  AS  A FUNCTION OF CONICAL
              ANGLE  FOR A  FIVE-HOLE  PITOT PROBE
     To determine  the  change  in  amplitude  of the measured pressure
differentials as a  function of frequency  for the  pitot probe,  we  built a
pulsed air flow device.   The  experimental apparatus used for this cali-
bration is shown  in Figure 11-19.
     A disk with a  pie-shaped section cut out of it was attached to a
variable-speed  motor.   A constant air  source was  positioned below the
disk and  the five-hole pitot  above the disk.   When  the disk  was  rotated
by the motor, it would interrupt the air stream at any  desired frequency,
depending upon the motor speed.   In  this way we created a variable -
frequency pulsed, pressure signal.   To  achieve  different  turbulent conditions
and  magnitudes, disks  were fabricated  from  solid plastic, perforated plate,
and  fine-mesh  screen.
                                    23

-------
AIR
JET


REGULATOR



AIR SUPPLY

| 	 DISK |


1
VARIABLE-
SPEED
MOTOR

^ — -/ PROBE
PRESSURE
DIFFEREN-
TIAL
SELECTOR




ELECTRIC
TRANSDUCER




AMPLIFIER

RECORDER
                                                     A-I2II249
             Figure II-19.   EXPERIMENTAL APPARATUS
                   FOR  TRANSIENT CALIBRATION
    We found that the electronic  differential-pressure sensor alone could
respond to pressure fluctuations as high as  500 Hz,  but that the probe
damped out fluctuations above  10 Hz, yielding only the mean velocity.
    Graphical  representatives  of  the difference between  the  actual and
maximum measured pressures  as  a  function of frequency for the Plexiglas
and aluminum  perforated plates are  shown in Figures 11-20  and 11-21.
A  decrease in the amplitude of the pressure  as a function of frequency
for the different turbulent  systems is observed.  To determine  the per-
                                        Pmax ~ Pmin
centage change  in  amplitude,  the  ratio  (—m  *	mm\
-) versus  the  actual
                                              max
pressure  is plotted in Figures 11-22 and 11-23.   Here we  can  observe
that the fluctuations  in the  amplitude  decrease rapidly with increase  in
frequency and degree of turbulence.   For  the thin gauge  screen, which
should most closely  reproduce the turbulence to be expected in  the cold-
model furnace, the amplitude fluctuations  for pressures less  than 0. 02
psia cannot be resolved with  our equipment.
                                   24

-------
     0.10
    0.08
o>  0.06
'55
o.
 o
 3
    0.04
    0.02
                   PLASTIC
0.02
                          0.04       0.06       0.08
                                                          0.0 Hz
                                           '0.3 Hz
                                                              0.6 Hz
                                                              1.0 Hz
                                                              1.7 Hz
                                                             10 Hz
0.10
0.12
                                                                A-I2II259
       Figure 11-20.   PRESSURE MEASURED BY SENSOR

        VERSUS  ACTUAL PRESSURE AS A FUNCTION OF

       PULSE FREQUENCY FOR THE SOLID (Plastic) DISK
                                  25

-------
     O.ll


     0.10
     0.08
     0.06
Q.
 O

 "o

0.°
     0.04
     0.02
       IT
PERFORATED PLATE
                            0.04      0.06

                              pmeosured • Psi
                                               /0.0 Hz
                                                                '0.3 Hz
                                                               X 0.6 Hz
                                                                l.O Hz

                                                                1.7 Hz
                                                   •10 Hz
0.02      0.04       0.06       0.08       0.10
                                                         0.12
                                                            A-I2II253
       Figure 11-21.   PRESSURE  MEASURED BY SENSOR
       VERSUS  ACTUAL PRESSURE AS A FUNCTION  OF
      PULSE FREQUENCY  FOR  THE  PERFORATED DISK
                                    26

-------
U.ll
0.10
0.08
? 0.06
&
1
c?
0.04
0.02
o
10 Hi




\





V

PLASTIC




1.7 Hz









^
\
1.0 Hz





0.6 Hz



^
\




I

0.3 Hz



I
\s
              0.2
0.4
0.6
0.8
1.0   1.1
                         P   -P •  /P
                         rmox rmm/rmox
                                                   A-I2II254
Figure 11-22.   PERCENTAGE CHANGE IN AMPLITUDE OF
 PRESSURE SIGNAL AS A FUNCTION  OF  FREQUENCY
    AND ACTUAL PRESSURE  FOR THE SOLID  DISK
                             27

-------
            0.12
            0.10
            0.08
            0.06
         o
         3
         O
         o
            0.04
            0.02
10 1





•\1




\
1.7 >




\
ir 1




\
\
\
.0





0.6
»Mz




\
\
\
x
Hz
<




\
\
\
).:




i
\
>HZ
PERFORATED
PLATE




s
0.20
                                    0.40


                              P   - P  • / P
                              rmox rmin' r
0.60
0.80
                                                          A-I2II257
Figure 11-23.   PERCENTAGE  CHANGE IN AMPLITUDE OF

   PRESSURE SIGNAL  AS  A FUNCTION  OF FREQUENCY

    AND ACTUAL PRESSURE  FOR  PERFORATED  DISK
                                 28

-------
    We concluded that measuring flow changes having a frequency  above
10 Hz  is not practical with our present probe  and that only mean velocity
and direction  can reliably  be  extracted from the data.
                                   29

-------
             HOT-MODELING TEST FURNACE FACILITY
A.   Furnace  Test Chamber
     The hot-model furnace facility used for this  program has  a  cross-
sectional area of 25 sq ft with a height of 5 feet,  width of  5 feet,  and
length of 15 feet.   The furnace  is  capable of  operating  at temperatures
of up to 3000°F  with gas  inputs  up to  3. 5 million Btu/hr.   A portion of
this  project involved designing  three modifications  to  the basic furnace
which were required to perform the specific tests  of  this program.   These
modifications  were —
•    Installing cast  refractory water-cooled panels to  simulate  the  thermal
     loading found in industrial  furnaces.
•    Installing a  quick-change burner-mounting bracket.
•    Installing a  sliding seal device  for inserting  the probes  into  the
     furnace while  preventing air  leakage.
     Figure 11-24 shows general construction and  dimensions of one of the
cast refractory water-cooled panels.
     Figure 11-25 shows the water-cooled sliding  seal  installed in the
south furnace wall.
     The program's objectives required that the furnace operate  with  a
maximum  wall temperature of 2800°F,  with a  3. 5 million Btu/hr input,
and  that the wall temperature be lowered  to approximately  1800°F using
water loads.  In addition, the furnace  was to  be fired from one  end,
whereas originally  it was  fired through the  sidewall,  simulating  an in-
dustrial boiler system.   To make these modifications, we  prepared a
complete heat balance  on the system and  selected the new  wall materials
and  type of construction from the  results.   The  finished furnace was
completely made of cast  refractory, except for the  hearth,  which  was
built of  firebrick.   The brick hearth gives the required flexibility to  in-
stall water-cooled loads in the  firing path,  if  necessary.
                                   30

-------
           FIRING PORT END
LO
           r
COOLING
ZONE
COOLING
ZONE
  2
COOLING
 ZONE
  3
COOLING
 ZONE
  4
COOLING
 ZONE
   5
                                                                                                                                REGENERATORS
                                                                X
                                  Figure 11-24.    SIDE VIEW  OF  MAIN FURNACE  SHOWING
                                           STEEL STRUCTURE AND COOLING  ZONES

-------
OJ
CSJ
                        SLIDING WATER-
                        COOLED SEAL
                    ROUND PROBE
                    HOLE, 1/2 in. TO 2-1/2 in,
                    TO FIT PROBE
                                      I in.
                            WATER-COOLING
                            CHANNEL
                                                          WATER-COOLING
                                                          CHANNEL
REFRACTORY
FURNACE
WALLS
\ GROUND
 \STEEL
 /SURFACE
                                                                               A-IZII262
                              Figure  n-25.   PROBE  SLOT-SEAL ASSEMBLY

-------
     1.   Heat Losses Through Refractory Walls
     The heat losses through  the  furnace  walls are one  of the most sig-
nificant  losses  which determine  the  operating temperature  of  the  furnace
for a fixed gas input.   The available  gas  and air supply to the furnace
dictated a maximum energy input of 3. 5  million  Btu/hr.  Figure 11-26 illus-
trates the thermal  conditions which  must exist for steady operation.
                 TFI     T"w
                FLUE
            TEMPERATURE
                                 S,
                            ^   WALL
                            ^ THICKNESS
                                             THERMAL
                                             GRADIENT
                 -^-^RC
                                                 TEMPERATURE OF
                                                 OUTSIDE AIR
                                          A-IIIII90

       Figure 11-26.  TEMPERATURE  GRADIENT FOR  STEADY
            FLOW OF HEAT  THROUGH A FURNACE WALL
The  inside  temperature  of the wall drops  steadily in the direction of its
outer surface, where it exceeds  the temperature of the surrounding air.
The  heat loss  for a given expanse  of wall and for  a given furnace  tem-
perature becomes less  if the wall is made thicker,  if  the  thermal  con-
ductivity of the refractory is lowered,  or if  the  outer  surface of the
furnace is of such  a character that does not readily give  up its  heat to
the surrounding media.    These relationships  are mathematically expressed
by the following  equations:
                        RC
qw =
 qw  =
                                    k(T  -  T  )
                                       w     ow
                                                                    (II-9)
                                                                    (n-io)
                                   33

-------
where —
    q   =  heat  transmitted,  Btu/hr-sq  ft
    k   =  thermal conductivity of wall materials, Btu-in. /hr-°F-sq ft
    S   =  thickness  of walls,  in.
    C   =  coefficient of radiant and convective heat loss,  Btu/hr-sq ft-°F
    T   =  inside wall temperature,   °F
    T   =  outside wall temperature, °F
      ow
     T   =  temperature  of  surrounding air,  °F

     Equations  II-9 and 11-10  are fundamental to heat transfer calculations
for any furnace  and  were  applied here for this program's  furnace require-
ments.   The unknown quantities in Equations II-9  and 11-10 are qw and
T   .  Our particular requirements  for  proper furnace  operations fixed
the values for the other variables (Table  II-1).
           Table II-1.   REQUIRED OPERATING CONDITIONS
                   OF EXPERIMENTAL FURNACE
            Maximum  Natural Gas Input:  3.5 X  106  Btu/hr
           Maximum Inside Wall Temperature, T  :  2800°F
          Average Surrounding Air Temperature, * T :  80°F
 Thermal  Conductivity  of  Refractories,  k:   7. 37 Btu-in. /hr-°F-sq ft
                   Thickness"^ of Walls,  S:  9.0  in.
   The  inside air of the building which houses  the  furnace is controlled
   by ventilating and heating units at a temperature of 80°F.
f
   These  values were  based on  the existing dimensions  of the  furnace
   and refractories currently being used  in the  roof,  which were not
   structurally  modified for the  project.
    Obtaining a value  for  qw involves  calculating the heat losses from
Equations II-9 and 11-10 for various assumed outside  wall temperatures,
and then  comparing each to determine  the  outside wall temperature  at
which q^  equals q,,^.    Substituting  the values  for  k and S  shown in
        D          K.U
Table II-1 into  Equation II-9 yields —

              = qw  =  -^- (T   - T   ) =  0.82(2800 - T   )        (II-H)
                 ^W      9     w     ow'        x         ow'             '
                                    34

-------
Figure  11-27  shows  values of q   for  assumed outside wall temperatures
that range between  0° and 1100°F.  The heat  loss  varies from 1400 to
2300  Btu/hr-sq  ft over  this  temperature  range.
                   I
                   13
                   o
                   (E
                   I
                   in
                   UJ
                   in
                   to
                   3
                   UJ
                   I










0











^










^











^^x










^










^











"^










\






















^










^







                        0 100 200 JOO 400 500 600 700 800 900 1000 1100
                          TOW,OUTSIDE SURFACE TEMPERATURE ,°F
         Figure 11-27.   HEAT  LOSSES THROUGH  WALLS AS  A
        FUNCTION OF OUTSIDE  WALL TEMPERATURES  FOR
               A 2800°F  INSIDE WALL TEMPERATURE
     Calculating  qD ~  from Equation 11-10 is somewhat more difficult be-
                  K.(_/
cause  C varies  with  the  temperature of the outside wall, with  its hori-
zontal or vertical location,  and with  the  physical condition of the surface.
Although  this  coefficient  is  not a true coefficient  of heat transfer,  it
accounts  for  the heat lost by both radiation and  convection.   For approxi-
mate calculations,  the heat loss  coefficient,  C,  can be  determined  from
Equation  11-12 and then substituted into  Equation 11-10.
                                                                      (11-12)
C  =  1.6 +  0. 006 T
                                             ow
For a more rigorous solution,  we  used Equation  11-13  to  account for the
heat losses  from  radiation  and convection separately from all vertical
walls in  still  air.
                       -  0 155
                       ~   '
         T    +  460
        /  ow	.
        1    Too   *
 T  + 460
/ O	V
(   100    '
                          + 0. 28  (T   - T )
                                  v  ow     o'
                                             5/4
                                                                     (II-13)
                                     35

-------
     Figure II-Z8 again  shows qRC  as a function of the assumed outside
wall temperatures,  T   ,  over  the  temperature range  of  0°-1000°F.   A
sufficiently accurate estimate of  the  heat  losses caused by radiation and
convection  from  the  furnace hearth can be obtained by dividing qR(-. by
2. 0.
o
*46
100
°)1
/
/
W
8
f/
T
7\
i



/




/
/





                        0 100 200 300 400 5OO 6OO 700 800 900 1000
                       TO,.OUTSIDE WALL SURFACE TEMPERATURE ,'F
                  Figure 11-28.   HEAT LOSSES FROM
               VERTICAL WALLS  IN STILL AIR AT 80°F
     By  comparing Figures  11-27 and 11-28 and knowing  that
 q     we found  that for  the  sidewalls and roof  —
                   q-»r  =  qr,  =  qnr- *=  185° Btu/hr-sq ft
                   MW    MB    HRC
                            when T    = 535°F
                                    ow
 For  the furnace hearth —
                   q«r  =  qn  =  qD^ =* 175° Btu/hr-sq ft
                    VV     i5     rx v>
                            when T    = 700°F
                                    ow
                                                     ^B
                                     36

-------
The  values  of  qw obtained for the sidewalls and hearth can  be  compared
with the wall losses that  can be tolerated  for the available fixed  gas input.
These  are obtained  from  the  generalized overall heat balance on  the  fur-
nace.   Total heat losses  through  the  walls  can  be calculated from Equation
11-14,  which is simply the conservation of energy.

                      QW = QI -  QF  - QS - QM                   
where  —
    Q    =  total heat input, Btu/hr
    Q_  =  heat lost with flue  products, Btu/hr
    QS  =  heat lost to any furnace load, Btu/hr
    Q,,  =  miscellaneous heat losses  like  radiation through openings,
           etc. ,  Btu/hr
Since QW> Qj,  QF  » Qg, QM>  we assumed that Qg =  QM = 0.
Therefore -

                            QW = QI  - QF                        
-------
6/73
                                                                     8933
                      BOO
                      700
                    o
                    5 600
                    o
                    u.
                    O 500
                    UJ 400
                    i/)
                      300
                      200
                                       f7
                       1000   1400   1800  2200   2600   3000

                            FLUE EXIT TEMPERATURE ,°F
   Figure  11-29.   HEAT  LOSSES THROUGH  FLUE  AS A FUNCTION
         OF  FLUE  GAS  TEMPERATURE (Fuel/Air =  Stoich. )


     When  the total allowable wall  losses,  Q    are divided by the furnace

surface  area, we  obtain  the  allowable  wall losses per  square foot,  q'  .

The  furnace-wall  surface area,  calculated in the following section,  is

455  sq ft.   Therefore -
                      Q
                 W
W = 790^000 =
                                             Btu/hr.sq ft
(II-16)
If  we choose a refractory wall with  the proper thickness and a refractory

material with  the  proper thermal conductivity,  k,  then the allowable wall

losses,  q'w»  should  approximately equal  the  calculated wall  losses,  q  .

In our case  these  are reasonably close:


                        qw =  1850 Btu/hr-sq  ft
                          W
                             =  1845 Btu/hr-sq ft
                                    38

-------
     2.   Furnace  Surface Area for Heat Transfer
     The basic inside furnace  dimensions  (Figure  11-30) are  5  x 5 x 15
feet long,  with 9-inch-thick walls.  Obviously,  the area of the hot face
is smaller  than that of the cold (outside)  surface; therefore,  the true
heat-transmitting  surface lies somewhere between the  inside  and outside
surface areas.   Generally, the  true  heat-transmitting  surface is assumed
to be halfway between the inner and  outer edges.  Therefore —
                                                    9-° '"•
     9.0 in.-
                                                                 9.0 in.
                                            9.5 in.-—
                                                           4-1111198
              Figure  11-30.   END VIEW OF HOT-MODEL
                    REFRACTORY CONSTRUCTION
                                    39

-------
                          A   =  (L + 9)(H + 9)                     (II-17)
                           s
                          Ae  =  (W + 9)(H + 9)                     (11-18)
                          Ah  =  (W + 9)(L + 9)                     (U-19)
                       Ar = Ah =  (W + 9)(L + 9)                  (U-ZO)
                       A. .  ,  =  2A   +  2A  +  2A,                   (11-21)
                        total       s      e      h                  v     '
where —
     A       = area of sidewalls,  sq ft
      S
     A       = area of endwalls,  sq ft
     A, ,  A  = area of hearth and roof,  sq ft
Substituting  the furnace's inside  dimensions into  Equations 11-17 to  11-21
.yields —
                            A  = 90. 5 sq  ft
                              S
                            A  = 32. 0 sq  ft
                         A,  = A  = 90. 5 sq ft
                           n      r         ^
                           A. .  , = 426 sq  ft
                            total        M
     3.   Internal  Water  Load Calculations
     Two  types  of wall cooling  systems were used  in the experimental
furnace:   The primary cooling  control was provided  by water tubes posi-
tioned in the refractory,  and additional  control  could be obtained,  when
necessary, by inserting  tubes directly into the combustion chamber.
     The design calculations  for the buried water load  tubes  indicated
that 30 tubes were required  in each wall  with the  tubes  having  a 1. 0-inch
outside diameter  and a  12-gauge Type-304 stainless  steel wall.   The tubes
contained  flowing air during  periods when the maximum  refractory  face
temperature of 2800°F was necessary.  When it  became necessary  to
lower wall temperature  to a  minimum of  2400°F,  water  was substituted
for the air.   Table  II-2 summarizes  the flow and  temperature  conditions
of the cooling system.   The  calculations leading to these values are not
presented because the methods  of calculation are  widely published in most
heat-transfer texts.

                                   40

-------
    Table II-2.   OPERATING CONDITIONS OF PRIMARY COOLING
         LOAD SYSTEM FOR  VARIOUS  FURNACE  CONDITIONS
General  (Fixed)  Conditions
    Tube Diameter,  inches                              1. 0
    Tube Wall Thickness,  inches                        0. 109
    Number Tubes Per Wall                             30
At Refractory Face Temperature of 2800°F
    Cooling Media                                        Air
    Tube Wall Temperature,  °F                    1260  (Average)
    Air  Flow Per Tube, SCF/hr                         750
    Total Air Flow,  SCF/hr*                          66, 000
    Outlet Air Temperature,  °F                          850
    Pressure Drop Per Tube, psia                       0. 1
    Air  Supply Fan                           100,000  CF/hr at  1.5  psig
At Refractory Face Temperature of 2400°F
    Cooling Media                                      Water
    Tube Wall Temperature,  °F                          200
    Water Flow  Per Tube,  Ib/hr                         550
    Total Water Flow,  Ib/hr*                          50, 000
    Water Outlet Temperature,  °F                        135
    Water Pump  Design                         150 gpm at 60  psig
#
   Ceiling  not cooled.

    Figure  11-31  shows a schematic diagram of  the  cooling  tube  system
piping.   Air is supplied from a  conventional high-pressure blower equipped
with a butterfly  valve and  filter  on the  inlet.  The air is piped  to a 6-
inch-diameter manifold to  which the inlet of  each  cooling  tube is connected.
The air  is  metered with a standard orifice plate at  the  inlet to  the  man-
ifold.   The manifold is constructed  of Schedule  40 steel pipe, and the
air duct  is  Schedule  10 PVC  plastic pipe.   The  heated air from  each
cooling tube is piped to an  outlet manifold of Schedule 40 steel pipe.
One end  of the pipe terminates outside  and serves as  the vent for waste
air.   The  vent end of  the  outlet manifold is  equipped with a 6-inch-
diameter blind plate  that must be  shut  off when  cooling  with water.   Water

                                   41

-------
AIR FLOW MEASURING
ORIFICE METER WITH
BLIND PLATE WHILE
USING WATER
                                           WATER-AIR
                                           MANIFOLD
      6 in. SCH 10
      AIR DUCT
  FLOW CONTROL VALVE
  AND AIR  FILTER
  ON INLET
                                               /       /
                              PARALLEL CONNECTED
                              COOLING  TUBES AND
                              CONTROL VALVES INLET

                                 	JNLET
                                                                   .OUTLET
         VENT TO ATMOSPHERE
         WITH  SHUTOFF VALVE

         100-psig
         COMPRESSED
         AIR
                           40-psig CITY
                           MAKEUP WATER
HEAT EXCHANGER-
PUMP ISOLATION
VALVE
                                   SCH 40
                                   2-in.-DIA 	
                                   WATER PIPE
                                  HEAT
                                  EXCHANGER
                                                                 ISOLATION
                                                                 VALVE
                                                             SYSTEM
                                                             .DRAIN
                                                             VALVE
                                                             WATER PUMP
                                                             60 psig
                                                             I50gol/min
                                                          t
               HIGH PRESSURE
               BLOWER, 100,000 SCF/hr
               AT 1.5 psig
                               RIVER WATER
                               SUPPLY  AT 125 psig
                                                                   A-I2II26I
Figure 11-31.   SCHEMATIC  DIAGRAM OF WATER-AIR  COOLING SUPPLY SYSTEM

-------
is supplied by a 60-psig pump capable  of delivering 150  gallons per  minute.
Water is  continuously  recirculated through  a  heat  exchanger.   The heat
exchanger is  cooled  by river water  supplied by  our pilot plant system at
125 psig.    The water  is piped to the cooling tubes through the same  man-
ifolds used for air.   Therefore,  to  switch  between air and water  requires
a somewhat complex valve  arrangement.   First,  the air  blower is isolated
from  the  manifold by inserting  a blind  plate in place of the orifice plate
and then  closing the  atmospheric vent.   The  water pump is started and
the  manifolds  flooded by opening  both isolation valves.   When  changing
from  water to air,  the isolation valves are closed off and  the  water blown
out  of the system  through  the drain  valve  by the 100-psig compressed
air.   Whenever the water  system is started up, it must  be charged  with
makeup city water.  The makeup water inlet is  upstream of the heat ex-
changer and of a  higher pressure  than  the  heat  exchanger inlet line.
Therefore,  the makeup water can be added while the high-pressure circu-
lating pump is  operating.
    The  "bayonet" type of cooling tube  inserted directly  into the  combus-
tion chamber  was  designed,  in  addition to the "buried" cooling tubes, for —
1.  Lowering  average  wall temperature below 2400°F,  if needed,  which
    cannot  be  accomplished  by  the buried  tubes.
2.  Providing  spot cooling  in very high heat-release areas where the
    buried  loads might not be effective enough to  provide isothermal
    conditions.
The "bayonet" probes  absorb heat by radiation and convection, thus cool-
ing  the  refractories.   The  probe design we selected is shown  in Figure
11-32.   This design is both effective and relatively inexpensive to fabricate.
    The  effective area  for  heat  transfer of a  single probe  is —
                            .    2L7TD   L7TD                        ,     .
                           A = -^- = -jj-                        (11-22)

where —
    L =  insertion  depth into furnace, ft
    D =  diameter  of tube,   in.
    A =  effective area  for  heat  transfer,  sq  ft
                                   43

-------
HOSC CONNECTIONS
A
2

(LENG
FURN
5

It

TH IN
ACE)
I


-
v_

-
-i
3^, THERMOCOUPLE
^ WELL FOR
WATER OUTLET
TEMPERATURE
._Hn 00. 2O-GAUGE
STEEL TUBING
;
TIGHT- RADIUS
— — LJAIODIhJ Qrurt
                 Figure 11-32.   WATER LOAD  DESIGN
     To simplify the following  calculations, we  must convert the dimensions
of the double-tube probe  into "equivalent" single-tube dimensions.   The
equivalent area of the single-tube probe,  A^,  is —
                                     7TD_L
                                     "2^
Since A =  A..,,  by design,  then —
                   D   = 2D = (2)(1. 0  in.) =2.0 in.
and the equivalent area  for heat  transfer  is —
                                            =           ft
                                 (11-23)
                                 (U-24)
                         24
24
where L =  5  feet for the full  insertion of the probe  into  the furnace
enclosure.
    Heat  is transferred to  the tube  walls by radiation and convection  and
then to the  water in the tubes by  convection.   The mathematical equation
for heat transferred from the  furnace walls to the tube surface  (Figure
U-33)  is -
                      Q
                        TRC
                                (11-25)
                                   44

-------
                          REFRACTORY WALL
                             TEMP,TW
                                          FLUE TEMP.
                                             REFRACTORY WALL TEMP,
                                                 Tw ;6 S 0.8
                            .;/,\   COOLING
                            '/A    WATER
                                    IN
                                  COOLING WATER OUT
                              WATER SINK
                              COOLING ROD.f 3 6.0
                                                             A-1111163
  Figure  11-33.   NOMENCLATURE FOR  RADIANT HEAT  TRANSFER
      FROM FURNACE WALLS TO INTERNAL COOLING  TUBES

where —

     Q^,^-  =  heat transmitted  to  tubes  by radiation and  convection,
      TRC    Btu/hr

     A      =  effective  heat  transfer  area of the tube  or  tubes,  sq ft

     F      =  shape factor,  dimensionless
      3.

     F      =  emissivity factor, dimensionless

     a      =  Stefan-Boltzmann constant,  0.1714 X 10~8  Btu/hr-°R4-sq  ft

     TI      =  temperature of furnace  walls,  °R

     Tz      -  temperature of tube walls,  °R

     The heat  transfer  from the  tube  walls to the water  by convection is

mathematically determined  by  Equation 11-26.
                          Q
                           TC
(11-26)
                                    45

-------
where —

     Q_r = heat transmitted to  water,  Btu/hr


     h    = convective  heat  transfer  coefficient,  Btu/sq ft-°F-hr


     A1    = surface  area of tube walls,  sq ft

     Ta    = temperature of tube walls,  °F

     T  ,  = mean  temperature of water,  °F

The  convective heat transfer coefficient is  determined by the empirical
equation of Sieder and  Tate.
                           .14 /2\l/3  /N   \    1/3 /N   \    1/3 TT
            k mb ~   r^     (L)    (NPr>mb   (NRe>mb   U
where the only variables are the mass flow of water in  a tube and the

temperature rise tolerable  in the tubes,  and —

    D    =  tube  diameter,  ft

    k    =  thermal conductivity of  water at T  , ,  Btu/sq ft-°F-hr

    H    -  viscosity of water,  Ibf/s-sq ft  (s, at tube surface; mb, average)

    L    =  length of tube,  ft

    U    =  velocity of water in tubes,  ft/s

    N_   =  Prandtl  number

    Np   =  Reynolds number


where —

                                      CM
                              Npr  =  -£-                         (H-28)

and
and
    C  = heat capacity of water  at T  ,,  Btu/lbm-°F

    p  = density,  Ibm/cu ft
                                    46

-------
The solution to this problem is  similar to that  for  finding the steady-
state wall temperature without water cooling.   Q^,.,^ and QT(~  are solved
simultaneously  in terms of the variables; the  operating conditions  are
found by  comparing the  results, where QTRr equals QTf
     To solve Q^,-,-,, let FA  equal  0.5.   This value was determined from
                1 K.U       A
curves  published  in Engineering Heat Transfer by Hsu for 2-inch-diameter
tubular cooling  pipes,  which  are spaced  0. 5-4. 0 feet apart  along one wall
and receive  the heat transferred from  a  surrounding enclosure.
     F^  the  emissivity factor for a relatively small receiver area  (com-
pared with the  radiating surface which  is positioned approximately  hemis-
pherically around the  receiver), is  given by Equation 11-30.
                               Ff -  €  €                             (11-30)
                                 €    r  e                            v     '
where —
     €   =  emissivity of receiver tubes
     €   =  emissivity of radiating furnace walls (assumed to equal 1. 0)

    Substituting  the  values  of  Fi  and Tz into Equation 11-25 and assuming
a maximum  tube wall  temperature (Ta) of 200°F  to  prevent the  water from
boiling, yields Figure 11-34,  which shows heat transferred  by radiation
per unit area (q  ) as a  function of the tube emissivity and  of the temper-
                 s
ature of the  furnace walls  or  radiating surface.   Multiplying  these  data
by the area  yields  Figure 11-35.
    QT(-  is  solved by first  solving for h from Equations 11-27,  11-28,
and 11-29.  Values for  the  equations'  constants at the  mean water tem-
perature,   T   , ,  are given  in  Table II-3.    The mean water temperature
is given by Equation 11-31:
                      T  .  =  1/2(T. .  . + T  .. .)                 (U-31)
                       mb         inlet     outlet'                 v    '
We chose  a  temperature  rise  of  30°F with  an average  inlet temperature
of 70°F; therefore -
                           = 1/2(70 +  100)  =  85°F
                                   47

-------
      o
      o
      o

      o
      UJ
      H


      i
      V)
      z

      Or
      I-
      UJ
      i
                     0.2
0.3   0.4   0.5   0.6  0.7


 TUBE EMISSIVITY,eT
0.6   0.9
1.0
                                                       A-IIIII92
Figure 11-34.   HEAT  TRANSMITTED PER  UNIT  AREA TO

     2-INCH-DIAMETER  TUBE (T2  =  200°F) FROM AN

   ENCLOSURE SURROUNDING  180 DEGREES OF TUBE
                                48

-------
CD

O

O

O


Q

Id
          90
          80
          70
          60
          50
      <   40
      a:
      UJ
          30
          20
          10
                  AENCLOSURE >> ATUBE
                   ENCLOSURE


                   TUBE = '-3I
                             r L0
                                                        " /
                                                       <*.*/
            0    O.I   0.2   0.3    0.4   0.5   0.6   0.7    0.8   0.9   1.0


                              TUBE EMISSIVITY,6T
                                                                  A-IIIII9I
Figure  11-35.    TOTAL HEAT  TRANSMITTED  PER  TUBE
                                    49

-------
       Table II-3.   VALUES FOR  CONSTANTS OF EQUATIONS
         11-27, 11-28, AND 11-29 AT T  ,  =  85°F FOR WATER
                                      mt>
                       mb
                           = 1. 5  X 10'" Ibf/s-sq ft
k =  0.356 Btu/sq  ft-°F-hr


  C  = 0. 998 Btu/lbm-°F
   P

    p = 62. 1  Ibm/cu  ft


      =  °'55 X  10"5
                       200°F

                         A1 = 77DL =  2. 61  sq  ft
                                                      ft
     To simplify the results we expressed the  velocity  of  the water in

terms of the weight flow,  Equation 11-32.


                                  W     W
                             U =
                                              (11-32)
                                  pA  ~  1220


where W = weight flow,  Ib/hr.


    Using Equations  11-26 to 11-29 and  the values  in Table II-3,  solved

for QT~,  as  a function of  the  weight flow of water  yields  Figure 11-36.
                   CD

                   O
                   UJ
                   03


                   9 I05
                   UJ
                   X
                       10'
                                                      10
                                WEIGHT FLOW,Ib/hr
     Figure 11-36.   WEIGHT FLOW  OF  WATER AS A  FUNCTION
     OF  HEAT  TRANSFERRED FROM TUBE WALLS TO WATER
                                    50

-------
It is  now possible to determine,  from Figures 11-35  and 11-36,  the  water
flow necessary to maintain a 200°F  tube  surface  temperature  as a function
of the desired furnace wall temperature and the  tube's emissivity.  Figure
11-37,  compiled  from Figures 11-35  and  11-36,  shows the minimum amount
of water necessary for any desired  furnace  wall  temperature  assuming  a
tube emissivity equal to 0. 8.
    The last remaining step  of these design calculations is  to determine
the number  of tubes necessary to remove enough heat from the furnace
to maintain  any  desired wall  temperature.   This  is done by recalculating
the heat losses through the wall, QW, for wall temperatures  other  than
2800°F.   These  calculations  are  shown in Figure 11-38.   The  procedure
is now the  same  as  that described  earlier for  heat losses  at  a 2800°F
inside wall temperature.   The  data  in Figures 11-29  and 11-38 are com-
pared  to determine the heat  loss per square  foot of wall (qw) which,  when
multiplied  by the area of the walls,  yields  their  total heat loss as a
function of  the wall temperature.  Substitute  Qw  into Equation 11-14,  where
Q~  now becomes  the heat  absorbed by the cooling tubes.
    Figure 11-39  shows Q~,  the amount  of heat which must  be removed
by the water loads  to hold a  desired wall temperature,  with a gas input
of 3. 5 million Btu/hr.  We  can now use  Figures 11-35 and 11-39 to de-
termine  the  number  of water tubes necessary  to  hold a  desired wall tem-
perature.   The heat load is  determined  from  Figure  11-39 for the desired
temperature and divided by the heat sink capacity of  a single  tube as
shown in Figure 11-35.   This yields the required number  of cooling tubes,
Figure 11-40.
    It is  now possible to calculate  from  Figure 11-37  the  total amount
of cooling  water required  by  the  system  as  a  function of the inside  wall
temperature.  Figure 11-41 was plotted by multiplying the water required
per tube by  the total  number of tubes required at various wall  temper-
atures.  From this information  we learned that a larger water pump  was
necessary  at the  test site  if wall temperatures lower  than  1960°F are
required:  Our  earlier system  is only capable  of delivering 1200  gph
(~10,000 Ib/hr) at 100 psig.
                                   51

-------
                  MO
                  100
                  100
                    I5OO    1700   1900    2100   2300   2500


                            WALL TEMPERATURE.'F
Figure  11-37.   MINIMUM WATER FLOW  PER  TUBE  AS

    A FUNCTION  OF INSIDE WALL  TEMPERATURE
         1600




         1400
      _  2200
      CD
I

X
o

o
IT
I
      CO
      V)
      o
      <
      u
      I

       *
      o
   1000




    800
          400
          200
             0  100 200 300  400 500 600  700  800 900  1000 1100


                     OUTSIDE SURFACE TEMPERATURE ,°F


                                                          A-IIIII95




 Figure  11-38.    HEAT  LOSSES  THROUGH WALLS AS A

    FUNCTION  OF OUTSIDE WALL TEMPERATURE

                                52

-------
2800
2600
.c
£ 2400
0
8 2200

-------
IO.UUU
15,000
14,000
13,000
i.
.c
£ 12.000
0
^ 1 1,000
5
2 10,000

-------
     The pressure drop through  each probe was also considered in  deter-
mining  what pump pressure was  required as a function of the desired
inside wall temperature.   The pressure  drop through any tube  can be
mathematically determined by Equation 11-33:
                          AP  =  fLpU2/288 Dg                       (11-33)
where —
     AP =  pressure  drop,  psig
     f    =  friction coefficient
     L   =  tube length,  ft
     p   =  fluid density, Ibm/cu ft
     U   =  fluid velocity,  ft/s
     D   -  tube diameter,  ft
     g   =  acceleration of  gravity  (32. 17  ft/sq  s)
     The velocity  is  expressed in  terms of weight flow, assuming that the
density of the fluid is  62.  1  Ibm/cu  ft.
                          u2 = 8. 6 x icr7 w2                       (n-34)
where W = weight flow, Ib/hr.
     The values of the parameters in Equations  11-33 and  11-34  for  the
tube design and water that has a  mean temperature of 85°F  are given in
Table II-4 (except for the  friction factor, f).
              Table II-4.   PARAMETERS FOR  PRESSURE
               DROP  EQUATION  FOR  WATER AT 85°F
                        Tube  Length,  L = 10 ft
                  Tube Diameter,  D =  8. 34 X  10'2 ft
                   Fluid Density,  p  -  62. 1 Ibm/cu ft
               Fluid  Viscosity,  M =  0. 56  X 10~3 Ibm/ft-s
Substituting Equation 11-34  and the values from  Table II-4 into  Equation
11-33 yields -
                        AP =  (6.4  X  10'6) W2f                      (H-35)
The friction factor,  f,  is  a function of the Reynolds  number —

                               NRe =

                                   55

-------
where M = absolute fluid viscosity,  Ibm/ft-s.   Therefore, the friction
factor is  a function of U  or ultimately  of  weight flow.   To  solve for the
pressure  drop,  we converted R. J.S.  Pigott's  data for Reynolds number
versus  friction  factor  to weight  flow  versus friction factor.   This  con-
version is shown in Figure 11-42.   Solving Equation 11-35,  using the num-
bers  in Figure  11-42,  yields the pressure  drop per tube  as  a function  of
weight flow (Figure 11-43).
B.   High-Temperature  Flame-Sampling Probes
    One of the  major  tasks  of this program was to  map the profiles of
temperature,  chemical species,  and flow magnitude  and direction in the
flame of each burner type.   Modified designs  of the International Flame
Research Foundation were used  to  construct probes  which would enable
this  type  of data  collection.
    We constructed both a  multidirectional impact tube  (MBIT)  and a gas
sampling  probe.   Assembly drawings for these probes  are shown in
Figures 11-44 and 11-45.  The MBIT  probe (Figure 11-44)  has a hemis-
pherical sensing head,  which has passed  the  calibration standards  of the
International  Flame Research Foundation.   The  tip construction and our
calibration methods were described earlier in this  report.
    The 8-inch-long probe  tip is 0. 312 inch in diameter and constructed
of Type-316 stainless  steel.  Each of the  five  tip holes is connected to
thin-walled tubes,  which pass  through the  probe body  and are connected
to the pressure  differential measuring equipment.   The  probe tip is also
water-cooled  so that it can be used in  the  hot  furnace  environment.
Water is  brought into  the tip through a 1/8-inch-diameter stainless-steel
tube and returns  along  the  walls  of the outer  tube and  into  the  1-1/2-
inch-diameter collection chamber.  The water  leaves the  collection chamber
through a  3 / 8-inch-diameter tube.  This  type  of water-cooling design
keeps the  cooling  tubes as  large  as possible  and,  hence,  pressure  drop
as small  as possible.   This is consistent  with the physical  size require-
ments of  the  tip.
                                   56

-------
   10s
o

^  I04
H
I

Ld
   10'
             0.01      0.02      0.03      0.04

                            FRICTION  FACTOR.f
0.05
0.06
0.07
                                                             A-iimae
 Figure 11-42.   FRICTION FACTOR AS A FUNCTION OF
 WEIGHT  FLOW  FOR  1-INCH-DIAMETER  DRAWN STEEL
     TUBING  CONTAINING FLOWING WATER  AT 85°F
                                57

-------
00
               I05
               10"
            O
            r
            o
                 10"
10*
10'
                                                         PRESSURE DROP.psig
                               Figure 11-43.   SYSTEM PRESSURE  DROP PER TUBE

                                 AS A  FUNCTION OF WEIGHT  FLOW OF WATER

-------
                                   COLLAR, 1.50-in. OD
                       8 in.-
                                                                 6ft
                                                         I-in. TUBING
                                                              4-32139
        Figure 11-44.   FIVE-HOLE PITOT  TUBE PROBE  HEAD
    The gas-sampling probe  (Figure  11-45) is constructed similarly to
the five-hole  pitot probe,  except that the tip has only a single center
hole,  and  it is slightly longer.   Both of the  probes are designed to  be
inserted into  a water-cooled  "general probe holder, "  which will  allow the
insertion of the probe tips  into  the hot model up to a depth of 5  feet.
The  general probe holder  (Figure 11-46) is a  series  of concentric tubes,
with a  center  tube large enough to hold the water-collection chamber of
both probe  tips and the outer  tubes  carrying the water for cooling.   The
2-1/2-inch-diameter holder is large in comparison  to the probe  tip.   Its
large size  is  necessary to  maintain a reasonable water pressure drop of
about 50 psig.
    The probe positioner,   described  earlier  in  this report, supports  the
probes  with two pillow blocks which allow  the probes to  rotate.   Aluminum
bushings are  inserted into  the blocks so that  various  sized  probes can be
used.   The original  bushing was made  for  the cold-model probe which
had an  outside diameter of 1. 00 inch; therefore, a  new bushing  was needed
to adapt the positioner to  the  1. 75-inch diameter of the probes used  for
hot-model testing.
                                   59

-------
WATER
COOLING
INLET
                                 12 in.
AINLESS STEEL TUBING 	 «==j
rPE-304;5/32-in.OD;O.I36-in. ID

*





                         Figure  11-45.   GAS-SAMPLING PROBE HEAD
                                                                                              A-32160

-------
-0.0625 in.
  THICK •
2.50in.x|| go
    2.00 in. x 16 go
        1.75 in.x Mgo
                    Figure 11-46.    GENERAL PROBE HOLDER

-------
    To facilitate the accurate rotation of both probes and to be able to
return them to  their original position, within 1/2 degree, we mounted an
angular vernier scale to the rear of the adapter bushing (Figure 11-47).
Additional modifications included a probe support,  which was added at the
front  of the  probe  positioner  (Figure  11-47) because of the heavier probes
used for hot-model work.
            Figure 11-47.   MODIFIED PROBE POSITIONER
                     FOR HOT-MODEL  SAMPLING
    The hot-probe hemispherical head,  multidirectional impact tube
(MDIT) was  calibrated using the techniques outlined earlier in this report
for the cold-model probe.   Flow conditions of 17 ft/s and a Reynolds
number, NR ,  of 25, 000 were used for calibrating the hot hemispherical
probe.   The data were  reduced by means  of a computer program  similar
to one used  by the International Flame  Research  Foundation.   The fol-
lowing series of pressure  differentials were used as  data input to the
calibration program:
                                   62

-------
                                  = po - pa                         (II- 37)
                                           ct
                            AP,3 = p, _ p3                         (11-38)
                            AP24 - p2 - P4                         (H-39)
                            AP03 = PO - P3                         (11-40)
                            APM = po - p4                         (H-41)
Then the following  pressure  differentials  are calculated using the input
values given  above:
                          Apoi =  Ap03 - AP13                      (H-42)
                          A p02 =  A Po4 - A P24                      (H-43)
To  simplify the  equations for the pressure  recovery  factors,  A P , the
folio-wing identities  are used:
                   PT = APol  +  Ap02 +  Ap03 + AP04               (11-44)
          PR = SQRT C(Ap01)2 + (Ap02)2 +  (Ap03)2 +  (AP04)2]      (11-45)

The MBIT  is calibrated for the three recovery coefficients,  K»,  K ,
and K .   These coefficients  are dependent  on  the  conical  angle,  $,  and
are  only  slightly dependent on  the  magnitude of the velocity, V,  and on
the  dihedral angle,   6.   The  angles,  $ and  6,  are defined  as spherical
coordinates.   (See  Figure 11-11.)
     In the  free jet  used  for  the  calibration —
                              Pc - P.  =  0
                               S     A
where —
    Pc =  static
      O
    P. =  atmospheric
      j\
Therefore at * =  0°
                   QA
               (AP) at * =  0° =  P(dynamic)  =  1/2 PV2           (11-46)
For  each pair of values  of  $ and 6,  P   and  P_ were calculated from the
pressure differences  with the aid of  Equations 11-44 and 11-45; K^,  K
and  K  were calculated with the  aid  of  Equations 11-47,  11-48,  and 11-49.
                                   63

-------
                          = SORT  (1 -  PT/2PR)                  (H-47)

                               (APo- A)$ =  0
                         K   = - = - ^ -                   (11-48)
                                    D
                                    R*, 6
                                (^PoJ*  6
                          K  -       .  '  ,                      (I
                              ~
Using  the method of least squares, the constants A.,  B.,  C, and D of
the following  equations were calculated:
                                                 5                 (n-50)
                       KV = BO  -f  B2 *2 + B4  *4                  (n

                      K   = 1 + C[exp(-D*2) - 1]                (H- 52)

The  following equations represent  the  line of best fit for the calibration
results of the hemispherical (8 mm,  40 degree) MBIT:
              $ =  0.7706 K^ + 0.2724 K^3 - 0.0598  K$5         (H-53)

                KV =  0.7377 - 0.1588 $2 + 0.1292 $4            (11-54)

                 K   =1+4.37  [exp(- 0.405 $E) - 1 ]             (H-55)

     Table II- 5  shows the measured  and  the  calculated (by the line  of  the
best fit method) values of $,  KV,  and K .  The  agreement is  1/2% for
all values,  which is considered  very good for this  type  of  system.
C.   Hot-Modeling  Furnace  Instrumentation
     Figure 11-48 is an overall view  of the  hot-model instrumentation pack-
age.    The instruments are mounted  in two separate but interconnected
dust-tight  metal cabinets.   The  cabinet  on  the  left  contains  the  analyzer
sections of four Beckman  infrared units  used  to measure CO, COz, CH4,
and  nitric oxide (NO).   The three  valves mounted at  the  top of  the  cab-
inet  are used to direct the sample gas to the  desired cell while providing
a nitrogen-gas  mixture to the  unused  cells.
                                   64

-------
   Table II-5.   EXPERIMENTAL VERSUS  CALCULATED BEST FIT
       VALUES OF CALIBRATION DATA FOR THE  FIVE-HOLE
                HEMISPHERICAL HEAD  PITOT PROBE
                                                        KIT
                                   IT                    *-^
Measured
0°05'
10°00'
20°00'
30°00'
35°00'
40°00'
45°00'
50°00'
55°00'
60°00'
Calculated
0°06'
10°04'
20°07'
30°14'
34°Z1'
39°50'
45°11'
50°H'
54°57'
59°54'
Measured
0. 74160
0. 73254
0. 71342
0. 70411
0. 69720
0. 69367
0. 69751
0. 68226
0. 69903
0. 72176
Calculated
0. 73722
0. 73300
0. 72028
0. 70389
0. 69645
0. 69101
0. 68893
0. 69172
0. 70111
0. 71898
Measured
1. 00000
0.95686
0. 80200
0. 55046
0. 39522
0. 19607
0. 01541
Calculated
0. 99999
0. 94643
0. 78961
0. 54080
0. 38710
0. 21724
0. 03399
                                                -0.17142   -0.15976
                                                -0.35147   -0.36112
                                                -0.54699   -0.56721
    The cabinet shown in the right side of Figure 11-48 contains  the
amplifier and strip-chart recorder  for  each infrared  analyzer,  an oxygen
analyzer, an  NO  (NO + NO2) analyzer,  and the  sample  flow-control system
                X.    '
for all  of the measuring equipment.   The  amplifiers  and recorders for
CO,  COa,  and CH4  are  mounted in  the  upper portion  of the  cabinet.    Each
recorder is mounted directly above its  amplifier  section  (Figure  11-49),
thus allowing  the  operator to easily compare the  meter reading with  the
strip-chart  record while calibrating an  instrument.   The  readings on  the
strip  recorder  and  meter should both correspond on  a  0-100 scale.
    The sample calibration flow-control system is  located in the lower
portion of the  control cabinet (Figure 11-50) together  with the NO  amplifier
and strip recorder.   The flow  controls for each  gas  being analyzed are
grouped vertically and consist of a rotameter with  an integral needle
valve,  a shutoff valve for  the sample,  a valve  for  each calibration gas,
and a valve for the "zero"  gas  (pure nitrogen).   The rotameters used
for nitrogen oxides  sampling  are specially  constructed:   All of the sur-
faces  that contact the sample are either made  of Type-316 stainless  steel
or of Teflon.
                                   65

-------
                  Figure H-48.   OVERALL VIEW OF
                  HOT-MODEL INSTRUMENTATION
    In the lower  center of the control panel,  two filter chambers  dry and
remove particulate matter from  the  sample before it enters the  analyzer.
The  sample for nitrogen oxides analysis is drawn  separately,  and the
moisture  is removed  in a  separate  chamber (not shown) mounted on the
side of the  cabinet.   The drying agent for the nitrogen oxides sample is
a 3-angstrom molecular sieve which does  not scrub  the nitric oxide
from the  sample.
     1.  NO -NO  Measurements
           X-
    Nitric oxide  and  nitrogen dioxide (NO2) concentrations were  de-
termined  on a continuous  basis using a nondispersive infrared analyzer
for NO followed by an electrochemical cell instrument for NO .   NOz was
                                                              Jv
determined  by difference in some cases.   Evacuated flask grab  samples
were obtained periodically for wet-chemical spot-checks using the ASTM
1607-D (PDA) method for analysis.
                                   66

-------
    Figure 11-49.   CLOSE-UP VIEW OF INFRARED ANALYZER,
         AMPLIFIERS,  AND STRIP CHARTS  FOR CARBON
          MONOXIDE,  CARBON DIOXIDE, AND METHANE
Figure 11-50.   SAMPLE TREATMENT AND  FLOW-CONTROL SYSTEM
                                 67

-------
    Instruments were  calibrated using both a permeation tube having a
controlled known release  of  NO   and certified prepared cylinder  gases
                               X
containing known quantities of NO and NO2.   Figure 11-51 shows  the  sam-
ple handling and  conditioning system.  All  components  of the  sampling
system were  carefully designed to minimize loss of NO  in the system
                                                        X.
through reaction  or adsorption.   NO2 is  extremely  reactive  with  almost
all materials.    Below are the three basic criteria  for  designing  a sampling
system for NO  (NO and  NO2):
•   The sample system  should be kept as short and  compact  as  possible.
    This  minimizes  the  amount of system wall area  available for reaction
    with NO2 and adsorption  of NO.
•   All materials of construction should be  glass,  Teflon,  or Type-316
    stainless steel  only.   These  materials  are least reactive  with NO2.
•   Condensate traps with minimum gas-liquid contact  should  be  used.
    NO2 reacts readily with water to form nitric acid;  therefore, the
    water vapor  in the sample must not condense in an uncontrolled
    place  such as the  tubing.
    The sample gas is drawn from the furnace through a special quartz
probe  (sections on sample probes) by  a Dia-Pump Model 08-800-73 all
stainless  steel  and  Teflon pump delivering  approximately 0.4  CF/min.
(This sample delivery  rate is dictated by the requirements  of the measur-
ing instruments. )  The sample is  immediately passed through a  stainless
steel  large-particle filter.   Both  the  pump  and filter are kept above 50°C
to prevent condensation of the water vapor  inherent to  combustion products.
    Next  the  sample passes  through a water  trap (Figure 11-52)  to remove
any water that  otherwise  might condense  later in the sampling system.
The  sample  then passes  through a Whitney  No. IGS4-A  shutoff valve and
No. IRS4-A  flow control  valve, both of stainless  steel  with  Teflon seats
and packing.   An in-line  flowmeter. (rotameter) ensures an  accurate
measure of flow.
    Once  the sample has left  the rotameter,  it enters  a Beckman Model
315A  infrared  NO analyzer.   The  electrical output  of the  analyzer is  fed
to a continuous strip  recorder.   The Beckman  Model 315A  uses  a
"nondestructive" method of analysis  involving a simple  optical system to
measure the amount of infrared energy absorbed  by the gas component
of interest.   Consequently, the sample leaves the analyzer  in the same

                                   68

-------
ATMOSPHERIC
    VENT
ROTOMETER
0-0.5 CF/min
(ALL SS 316)
ROTOMETER
0-0.5 CF/min
(ALL SS3I6)
              WHITTAKER
                NOx
              MONITOR
                S02 SCRUBBER
                                                                              SS3I6
                                                                              PARTICLE
                                                                              FILTER
WATER
TRAP
            BECKMAN
             315 A
          NO*ANALYZER
                                                         FLOW
                                                         CONTROL
                                                         VALVES
                          BLEED VALVE
                           BYPASS
                                               PROBE
                                                     CONSTANT-TEMPERATURE
                                                     WATER BATH
                                                           NOX PERMEATION
                                                               TUBE
                                                                                       PURE N2
                                                                                      (2000 psig)
                                                                                              A-81848
                              Figure 11-51.
              NO .-NO SAMPLING SYSTEM
                 x

-------
GROUND-GLASS
CONNECTION
  SAMPLE
   OUT  '
 GROUND-GLASS
 CONNECTION
-25° TO +I000F
^^^ THERMOMETER
	 2 	 .
5
— z —
\
t>
X
C^
N
/
-^

DRY ICE /ALCOHOL
COLD BATH
I
-*•

1




w /
—
--



•-
•-

1
^J
^-
~^
_s

^^
-^

N
\

	
— GL
-*


— • —

ASS-GLASS SEAL
SAMPLE
' IN
1 ^

-7
-T^^
J
LOW-TEMPERATURf
TUBING PUMP
TEFLON -COATED
CONDENSING TUBES
_—- COLLECTION CHAMBER
(2-in.lDxl2-in. HEIGHT
                                                            A-81852
       Figure 11-52.   DRYING SYSTEM FOR CONNECTION
                 TO NO,  NO2,  NO   EQUIPMENT
                                70

-------
condition as it  entered.   The  sample can  be  passed on  for further use
because  it is not altered by the NO analyzer.  In our system the sample
is then passed  through another rotameter  to  regulate the flow necessary
for the NO  analyzer.   In this case, flow is regulated by bleeding off
           X
part of the sample  because the flow from the NO analyzer is larger than
required by the NO   analyzer.   NO  is determined  by a Whittaker Model
                   X                X.
NX-110  cell,  which is unaffected by nitrogen, oxygen,  water vapor,  hy-
drocarbons,  carbon monoxide,  and carbon dioxide.  The analyzer operates
on the principle of  a  fuel  cell:  NO  is adsorbed  in a special sensing
electrode to form activated species  capable  of undergoing electroxidation.
The  resulting electrical  current is directly proportional to the partial
pressure of NO  in the  gas mixture.   All interconnecting tubes in the
                X.
system are Teflon with  stainless steel  end fittings.
    Calibration  of the NO -NO instruments is done  with both compressed
                          X.
gas samples containing a known concentration of  NO and NOg and a per-
meation  tube.   The permeation tube is  filled with an appropriate  material
giving off NO2.    The  NO2  passes through the FEP Teflon walls  of the
tube at a known rate,  which,  when a flow of gas  passes over the tube,
produces a known concentration of NOa in the stream.   The  permeation
rate is a function of  tube  temperature.    Experience shows  that  the tube
temperature must be  constant to  within ±2%  accuracy.   The permeation
tube is used as  the primary  standard,  with  the compressed  gas gauged
against the tube.
    2.   Methane, CO, and COz Measurements
    Nondispersive infrared analyzers are  used  for CO,  COz,  and  CH^.
measurements.    These analyzers do not  affect  the sample gas and can
be operated  in  series.   They are calibrated  by using  certified gases with
known concentrations  of  the species  being determined.   Figure 11-53  is
a schematic diagram  of  the system.  The infrared analyzers require  a
completely  dry  sample.   Therefore, the  sample is first passed through
a water  trap and a  calcium sulfate drying tube.    A  small in-line  filter
is placed immediately after the  drying  tube  to trap  particles of calcium
sulfate that may be carried over by the gas  stream.
                                   71

-------
ATMOSPHERIC
   VENT
                                                            FLOWMETER
                                                            0-0.5 CF/min
                                                            TO OXYGEN
                                                              SYSTEM


i!
METHANE
ANALYZER
BECKMAN
315 A


ll
II
C02
ANALYZER
BECKMAN
315 A


jj
CO
ANALYZER
BECKMAN
315 A
\

V
FLOWMETERING
VALVES..-— — _
/>IV>
rv *•» ^/C»l v
• y-viv
,\

                   1
I
I
                  METERING
                   VALVE
            IA-CYLINDER
                N2
            (2000 psig)
                             PURGE GAS-0.5 CF/min
IM
                      TO 02 ANALYZER
                                                                            C02MIX  CO MIX CH4MIX
                                                                                  (20OO psig)
                                       N2
                                  (2000 psig)
                                DRYING COLUMN

                                      WATER TRAP

                                           PUMP


                                        PROBE
                                                                                                 A-81850
                 Figure  11-53.   CH4,  CO,  AND CO2 SAMPLING ANALYSIS  SYSTEM

-------
     3.  Oxygen  Measurement
     A portion of the "conditioned"  sample  gas is diverted  from  the  infrared
analyzers to  a Beckman  Model 742 oxygen analyzer,  shown in Figure 11-54.
  ATMOSPHERIC
     VENT
   FLOWMETER
   (0-1.0 CF/min)
(WITH FLOW CONTROL VALVE)
              BECKMAN
             MODEL 742
              OXYGEN
              ANALYZER

                                              POLYETHYLENE
                                                TUBING J
             MODEL 2550
            STIP RECORDER
                                  CONDITIONED GAS
                                     SAMPLE
                                         IA-CYLINDER IA-CYLINDER
                                           PURE N2  02-N2 MIXTURE
                                         (2000 psig)  (2000 psig)
                         IA-CYLINDER
                         (2000 piig)
                                                          &-8I849
                  Figure 11-54.   SAMPLING/ANALYSIS
                    SYSTEM FOR OXYGEN ANALYSIS
The analyzer  consists of an  amplifier unit coupled with  a polarographic
oxygen sensor.   The sensor  contains a  silver  anode and gold cathode
that are protected from the gaseous sample by a. thin  membrane  of  Teflon.
An aqueous  KC1  solution  is retained in the sensor by  the  membrane and
serves as an  electrolytic agent.   As Teflon is permeable to gases,  oxygen
will diffuse  from the sample  to the  cathode with the following oxidation-
reduction  reactions:
              Cathode Reaction   O2 +  2H2O  + 4e ~* 4OH
              Anode Reaction     4Ag  + 4C1  - 4AgCl  +  4e
With  an applied potential between the anode and  cathode,  oxygen is reduced
at the cathode,  causing a current to flow.   The  magnitude of the current
is proportional to  the partial pressure  of  oxygen present in the sample.
                                     73

-------
     4.   Hydrocarbon Measurements
     Gas  chromatography  was  used for a  complete  hydrocarbon analysis
of Ci to  CIQ.   This  chromatograph is  equipped with  a  long capillary col-
umn internally coated with adsorbent,  which  gives  the required resolution.
As this  chromatograph could not be  moved to the test site,  evacuated
flask grab samples were  used.
     During  flue gas  sampling tests  we  found  that the bulk water removal
system was inadequate for a full  day's run.   After about  4  hours of
sampling, the  desiccant cylinder had absorbed its  maximum capacity  of
water  and had to  be  replaced.   We  designed  and built  a  new bulk water
removal  system  (Figure  11-55) which operated together with our  original
unit.
                 STAINLESS-STEEL
                 THERMOMETER ~~
               SAMPLE
               PUMPO
                 TEFLON TUBING
                ICE-FILLED
                AREA
              2-qi GLASS
              COLLECTION FLASK
                                   TEFLON TEE-FITTING
         SAMPLE FROM PROBE
TEFLON BULKHEAD FITTINGS
                                                REMOVAL TOP
                                                TEFLON TUBE COIL
                                                HEAT EXCHANGER
         OUTER METAL
         CASE
         FOAM INSULATION
          GLASS SEAL CAP

         LEVEL GAGE

          DRAIN VALVE
                                              A-IOII076

   Figure  11-55.   MODIFIED  BULK  WATER  REMOVAL  COLD  TRAP
A  25-foot coil of Teflon tubing with  a  0. 25-inch  outer diameter was wound
around a  10-inch-diameter  plastic cylinder;  a 1-liter  removable flask
was attached  at the bottom end.   The  coil  and flask are placed in an in-
sulated container  of  ice  where  the  gases  are cooled to  40°F.    The  con-
densed water  flows down the  Teflon  coil and is  trapped in the  collection
flask.
                                     74

-------
    A data integration system was also installed.
    The integrator receives a fluctuating  signal from either the  NDIR gas
analyzers  or  the  COS  electronic manometer measuring velocity.   The
integrator  then computes a mean value of the concentration or velocity
being measured and provides a digital  display of this value.  This  inte-
grator is coupled  between the output of the  Datametrics  1014A electric
manometer and the Brush recorder.   The d-c  voltage  output  from  the
electric  manometer  is summed up  by the  voltage  integrator and  is  dis-
played by  the  recorder as a  voltage  sum  versus time.    The manometer
puts out a 10-volt signal for  full-scale readings  independent of the  range
switch setting.   Thus  to  calibrate the integrator a 10-volt signal is applied
and the  time  to reach sums between 0 and  80 volts is  determined.   To
calculate the  voltage  of  an unknown  signal,  the  ratio is taken between the
time  intervals required  for the unknown and the  10-volt  signals  to  reach
a given  sum.   This ratio is  multiplied by 10 to  give the  voltage.   The
voltage can be transformed directly into  a pressure  differential  by  knowing
the range  switch  setting  of the electric manometer.  Velocity measure-
ments can be  made  with  the  experimental arrangement down to  1 ft/s,
with preliminary  measurements  indicating a 2% error  in  reproducibility.
    The results  from  the electronic  integrator  (Figure 11-56)  were  com-
pared  with integrating the direct readout of  the  manometer  by a graphical
technique.   The  agreement between  methods was within 1/2%.
    For the  case  where  the magnitude of  fluctuations in  the signal  is
about as large as  that of the average signal, it may be  impossible  to
get a constant time-averaged signal to the accuracy  desired.   If the  time
base  operational amplifier No.  1 should approach saturation before  suf-
ficient stability has  been reached by the time-averaged signal, a signal
light  tells  the operator to close the switch  to operational amplifier  No.  3.
This  operational amplifier works in a sample-and-hold mode.  Therefore,
when  the switch  is closed, it  takes  the  voltage  at the output of the  divider
and holds that value on  the digital  voltmeter or recorder allowing  the
operator to record the  value,  reset the system,  and start the next
integration.
                                   75

-------
INTEGRATOR-
 TIME BASE
INTEGRATOR -
 TRANSIENT
  SIGNAL
COMPARATOR
                                DIVIDER
  DIGITAL
VOLTMETER
                                                                              SAMPLE
                                                                                AND
                                                                                HOLD
                                                                       A-92-788
Figure 11-56.  BLOCK DIAGRAM  OF AUTOMATIC DATA INTEGRATION SYSTEM

-------
            RAW  AND REDUCED DATA AND DATA PLOTS
     Five experimental burners were  studied during  this program.   The
raw data for  each of these burners for both hot and cold  tests are  pre-
sented in the following  sections.   A complete  description  of each burner
is also given.   The  analysis  of these  data  together  with recommendations
for reducing NO  emissions are presented  in Volume I, a companion
publication.
A.   Intermediate-Flame-Length Ported Baffle  Burner
     1.   Burner Design
     The outside  steel air  housing  used for  the  axial flow  burner with the
ported swirl baffle is identical to  that used for the  ASTM flow nozzle
described later.   However, the  inside diameter was  reduced to 11-1/4
in.  by adding a 3. 625-in. -thick insulating brick liner.   The liner was
coated with a thin layer of Babcock & Wilcox K-2800 castable insulating
refractory to reduce the surface porosity of the brick liner  and prevent
air from bypassing the  ported swirl baffle  as  shown in Figure  11-57.
     The length  and shape  of the flame  is determined by the design  of
the baffle inserted into  the burner housing.   We have three  baffle de-
signs, generally described as  producing a long, intermediate,  and short
flame  available for study.   The dimensions  for each baffle are  shown in
Figure  11-57.  The baffle  consists of a cylinder of refractory with a
central gas nozzle and  a  number of air  ports  around the gas nozzle for
the combustion  air.   The  length of the flame is varied by changing  the
angle of the  air holes  to  the burner axis and the thickness of the baffle.
The shortest flame is produced by the  baffle having a swirl intensity of
about 0. 4.
     The burner block or  entrance  port geometry in the  furnace wall
differs  for each baffle.   The  short flame diverges  faster  than  the long
flame  and therefore  requires  a larger divergency  of the burner block.
The shape and dimensions of  each burner block are shown in  Figure 11-57.
                                   77

-------
oo
                           GAS NOZZLE
                                                  ll-l/4-in.-OO
                                                  BAFFLE
SEAL BETWEEN
GAS NOZZLE 8 BAFFLE
AND BAFFLE 8 BODY WITH
R 81 3000 OR EQUAL
                                                                                        A-I03-I462

                                                                                        NO SCALE
BAFFLE
a. LONG FLAME
b. SHORT FLAME
c. INTER. FLAME
AIR PRESSURE FOR
40,000 SCF/hr at 850 °F
3.25 in. we
18 in. we
14 in. we
ii.ii
A
1-1/4 in.
3/4 in.
1 in.
"B"
6 in.
5 in.
8 in.
"c"
2-3/8 in.
2-3/8 in.
3-7/8 in.
"D"
13 in.
16-1/2 in.
13 in.
    Figure  11-57.   ASSEMBLY  DRAWING OF AXIAL-FLOW BURNER  WITH PORTED SWIRL  BAFFLES

-------
     The central burner  tube  (Figure 11-58) of the inter mediate-flame
ported  swirl baffle was  also  tested  in a modified form to provide  radial
rather  than axial entrance of the natural gas.   Radial entrance of the gas
into the air  stream  is a common technique used to increase the mixing
rate between  gas and air; this  shortens the flame.   Shortening  the flame
was necessary  because the original  burner design  did  not provide  com-
plete combustion before  the  gases entered  the furnace flue.   Figure 11-58
shows the  details  of how the  burner  tube was modified to provide  radial
gas  entrance.   The  central nozzle was constructed of  Type-316  stainless
steel machined to an outside  diameter  of 1.125  in.  with an inside diam-
eter of 1 in.   The end of the tube  was  capped,  and six equally  spaced
holes were drilled in the sidewall 1/2  in.  back  from the tip.   Each hole
was drilled 7/32 in.  in  diameter without burrs; this provided a  gas  vel-
ocity of 530 ft/s at  a 3000 CF/hr input.   The  gas nozzle was then pushed
through the refractory baffle  until the tip protruded  2  in. beyond the baffle.
     During initial tests,   we found that the  rotational orientation  of the
nozzle  noticeably changed the flame  length.   The  nozzle was  positioned
for the shortest flame.   This occurs when the gas  nozzle  holes  approxi-
mately  line up  with  the  air holes in  the baffle.
     Table  II-6  compares the  flue gas analyses for the modified  and  un-
modified burner nozzles  while operating at 2 million Btu/hr with stoichio-
metric  quantities of air.   These data were collected using  ambient air
for combustion at 100°F.
     With the unmodified burner  nozzle,  we found both oxygen and  methane
in the flue.   The  oxygen concentration was very high for the  fuel/air
ratio.   In  addition,  the  concentrations  of each  of the flue components
fluctuated  with  time  between  the concentrations  shown  in Table II-6.
     When  the burner was  modified,  fluctuations in concentration also
disappeared and the  COz and  Oz concentrations more reasonably  agreed
with calculated amounts.   In  addition,  no methane  (unburned hydrocarbons)
was detected.
                                    79

-------
      SCH 40-NOMINAL PIPE SIZE ,"A"
                                              C  DIMENSION
PIPE THREAD
SIZE^'B"










oo
0 BAFFLE
LONG FLAME
SHORT FLAME
INTER FLAME

X
m /







III
III


II
II








A

1/2
3/4
B
1
1/2
3/4














"c"
in
1 OK +0.00
1 "-0.02
n 7* +0.00
U '3-0.02
• o +0.00
10 -0.02
->
1
T




1






D
5
4
5-1/2









5ft Oin.




E
7/32
7/32
7/32



1













— 	 DO FIRST
\

J -»


,
t
"D"


U— 1/2 in.
1
1






X
ss

u
u
\x
SILVER SOLDER
"* 	 s END CAP



^PORT DIAM,"E"
	 / SIX EQUALLY
^ 	 ~\X SPACED GAS PORTS
><\.
\\
y

. JJ
                                                                     A-92-86O
Figure 11-58.   MODIFIED GAS  NOZZLE  CONSTRUCTION

-------
        Table II-6.   FLUE  GAS  ANALYSIS COMPARISON FOR
        MODIFIED AND UNMODIFIED GAS BURNER NOZZLES
          Gas Input,  106  Btu/hr
          Air/Fuel Ratio
          Air Temperature,  °F
          Flue Analysis
           Carbon Monoxide,  ppm
           Carbon Dioxide, %
           Methane,  ppm
           Nitrogen  Oxides,  ppm*
           Oxygen,  %
                              Modified
                                 2. 0
                                  10
                                 100
                                  30
                                10. 5
                                 1. 0
Unmodified
   2. 0
    10
   100
  60-100
  7-9. 8
1300-1800
  330-410
  3. 5-7
    2.  Tracer-Gas  Studies

    The tracer-gas mixing study for the axial burner with the  intermediate-
flame ported swirl baffle  is presented in Figure  11-59.
    g
    \-
    s*
    UJ
    o
1250
IOOO
750
500
         250
            -30      -20      -10        0        10
                              RADIAL POSITION,cm
                                                 20
               30
                                                              A-82-791
    Figure 11-59.   TRACER-GAS (Carbon  Monoxide) RADIAL SCAN
      7. 6 cm  FROM  BURNER BLOCK OF  THE INTERMEDIATE-
         FLAME-LENGTH  PORTED SWIRL BAFFLE BURNER
                                  81

-------
This  scan,  taken at an axial  position of 7. 6 cm from the burner block,
shows the radial concentration  readings  are very near  to ambient,  thus
indicating that mixing  would be complete at  this position.  We conclude
that the  major mixing phenomena for the axial burner with ported  swirl
for an intermediate flame are occurring in the burner  block,  which is an
area  into which  we cannot probe with  our  equipment.   The scope  of this
project included  only areas outside the burner  block  and in the  "combus-
tion chamber. "
    3.   Cold-Model Velocity  Data
    Point-by-point velocity profile data were collected  for the axial bur-
ner with the intermediate-flame ported swirl baffle by  using  a multi-
directional  impact tube (MBIT).   The  geometry used  in data  collection
and reduction is  shown in Figure 11-60.
                                      Y-Z  PLANE
                             DIHEDRAL
                   X-Y PLANE
               Z     CONICAL
                  PROBE ROTATION
                        9
                                                    POSITIVE
                                                    PROBE ROTATION
                                             PROBE COORDINATE SYSTEM
   BURNER COORDINATE SYSTEM
                                                          A-32200
 Figure 11-60.   SAMPLING PROBE AND BURNER COORDINATE SYSTEM
                                  82

-------
     The raw data,  obtained from the  axial flow burner fitted with the
ported  swirl  baffle,  are  shown in Table  II-7.  The rotation angle  of the
probe  in the  x-z plane is represented by 8.   AP is the axial position  of
the probe  in  centimeters, and  RP is its radial  position in  centimeters.
PB is the  atmospheric pressure  in  millimeters  of mercury,  and P   is
                                                                    xy
the pressure differential between pressure holes,  x and y,  expressed in
terms of time.   The pressure  differentials  are  expressed in terms  of
time  because of the integration method used to  collect the  data.   The
pressure  differentials we  are  measuring are constantly changing since  we
are  dealing with  a  turbulent system.
     We electronically sum the  instantaneous  values for a preset amount
of time to determine the mean value of these transient pressure differ-
entials.   This total equals the  product of the average  instantaneous  pres-
.sure  differential  and the time interval  needed to reach it.   Therefore,
measuring the time  interval needed  to  reach this  sum by a transient
pressure  differential makes it  possible to determine the mean value  of
the pressure differential.   These experimentally determined mean pres-
sure  differentials yield  the velocity  (magnitude and  direction) of the air
stream by means of  the  techniques  outlined earlier in this  report.   The
raw pressure data  are translated into velocities using a computer program
written especially for this  purpose,  as  shown in Appendix II-A.
     The reduced velocity  data  for the intermediate-flame ported swirl
burner  are given in Table  II-8.  The  direction  of the  velocity is defined
by FI,  the  conical  angle measured about the x-axis, and by A,  the
dihedral angle measured from  the positive y-axis  in the y-z plane.   The
magnitude  of the  velocity  in ft/s  is  given by V, p is  the  density of  the
air in slugs/ft-sq in. ,  and VX, VY, and  VZ are  the  velocity components
in ft/s.   Both VT,  the  tangential velocity, and  VR, the  radial  velocity,
are  expressed in ft/s.   PST is the  static pressure  in  psig.
     The graphic  representations  of  the axial velocity,  VX,  and of the
tangential  velocity,  VT,   as  shown in Figures 11-61  and 11-62,  respectively,
are  displayed by  means  of a computer plotting routine.   These computer
graphs  allow a quick visual check on the  quality of the data being col-
lected and on whether more data are necessary to describe a profile.
                                    83

-------
                 Table  II-7.   RAW  DATA OBTAINED  FOR THE INTERMEDIATE-FLAME-LENGTH
                        AXIAL  FLOW  BURNER FITTED  WITH  THE  PORTED SWIRL  BAFFLE
oo
                CALIBXATION COEFFICIENTS FOR FORWARD FLOW
                41  =   0.770590   A2  -   0.272353   A3  =  -0.059818
                RO  =   0.737720   82  =  -0.15b821   84  •=   0.129246
                C   -   4.464660   0   =   0.394812
                                  AXIAL BURNER WITH  PORTED SWIRL FOR INTERMEDIATE FLAME  -  COLD MODEL
                TOTAL DATA INPUT
THETA
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
loO.
180.
ico.
180.
1UO.
mo.
160.
lao.
1HO.
lao.
180.
0.
0.
0.
0.
0.
0.
0.
0.
u.
0 •
0.
0.
3.
u •
0 .
0.
AP
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
/.&
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
RP
25.0
20.0
19.0
18.0
17. C
16.0
15.0
14.0
13.0
12.0
12. C
11 .0
10.0
9.0
8.0
7.0
6.C
5.0
4.C
3.C
2.0
1.0
0.0
-1.0
-2.0
-3.0
-4.0
-5.0
-6.0
-7.0
-8.0
-9.C
-10.0
-11.0
-12.0
-13.0
- 14.0
-15.0
- 16.0
-17.0
-18.0
-19.0
-20. C
-25.0
P13
5960.00
5340.00
-10660. CO
-552.00
-347.00
-332.00
-411.00
-621.00
-1102.00
-266.00
-2640.00
-6760.00
12370.00
4210.00
5230.00
4430.00
5440.00
-2150.00
-2400.00
-2410.00
-2560.00
-3270.00
-2900-00
-4710.00
-5530.00
-5980.00
-6380.00
-8140.00
-1003.00
-735.00
-600.00
-492.00
-434.00
-406.00
-436.00
-419.00
-589.00
-1160.00
79200.00
1390.00
2200.00
6640.00
-54500.00
201600.00
P03
3260.00
2720.00
8330.00
-2890.00
-6440.00
695.00
650.00
591.00
664.00
685.00
626.00
1060.00
I 100.00
1370.00
1530.00
2090.00
2680.00
2950.00
2200.00
1950.00
1790.00
1950.00
1600.00
1380.00
1650.00
1580.00
1500.00
1750.00
-2510.00
-2330.00
-1540.00
-1670.00
-1910.00
-3340.00
14700.00
1890.00
1480.00
681.00
631.00
793.00
1660.00
3370.00
4820.00
4510.00
P24
2680.00
1940.00
1030.00
295.00
152.00
86.00
107.00
1 16.00
144.00
165.00
136.00
233.00
262. OC
366.00
493. OC
820.00
1330.00
2850.00
3010.00
2560.00
1830.00
1880.00
1610.00
1260.00
1280.00
1130.00
1 160.00
1 130.00
-9170.00
-13400.00
1190.00
-732.00
-502.00
-402.00
-298.00
-243.00
-219.00
-243.00
-317.00
-469.00
-1004.00
-2920.00
13000.00
3400.00
P04
3170.00
2590.00
1760. OC
530.00
277.00
162.00
172.00
195.00
249.00
332.00
273.00
410.00
539.00
733.00
1070.00
154C.OO
2030.00
2450. CO
1960.00
1800.00
1480.00 .
1530.00
1410.00
1200.00
1270.00
1360.00
1350. CO
1420.00
11500.00
34900.00
-6860.00
-2980.00
-2040.00
-1510.00
-1116.00
-898.00
-756.00
-766.00
-1330.00
-1500.00
-2270.00
-62400.00
5280.00
3790.00
POA
88.40
69.00
72. 10
72.00
74.00
69.40
77.40
80.60
84.60
98.00
61. 70
1C 3. 00
98.50
IC4.0C
103.00
115.00
104.00
86.80
84.80
83.30
84.50
B2.30
102.00
95.00
88.50
87.20
87.00
90.00
107.00
106-00
89.30
103.00
100.00
94.80
107.00
82.50
67.30
74.80
71.40
71.30
74.50
75.30
76.70
73.80
T
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760
760
760
760
760,
760
760
760
760
760
760
760
760
760
760
760
7oO
760
76C
76C
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760
760

-------
                Table H-8.   REDUCED VELOCITY DATA FOR THE  INTERMEDIATE FLAME
          LENGTH OF  THE AXIAL  FLOW BURNER  FITTED WITH THE-PORTED SWIRL  BAFFLE
oo
4P
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
rtP
25.0
20.0
19.0
ia.o
17.0
16.0
15. C
14.0
13.0
12.0
11 .0
10. C
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
-1.0
-2.0
-3.0
-'..0
-5.0
-6.0
-7.0
-8.0
-9.0
-10.0
-11.0
-12.0
-13. C
-14.0
-15.0
-lo.O
-17.0
-18.0
-19.0
-20. 0
-25.0
FI
23.5
26.7
43.0
46. 1
44.8
42.6
36.7
37.9
36.8
44 .4
41 .0
45.6
45.2
45.0
40.6
32.8
160.9
165.3
165. 1
164.8
165.4
164. I
163.7
162.8
158.7
159.6
157.3
43.7
44.3
64.9
40.3
37.6
35.3
33.1
30.9
32.4
29.6
25.8
30.8
37.9
20-4
7. '2
19.6
OELTA
114.2
109.9
84.4
61.8
66. 3
75.4
75.4
79.4
82.5
87.0
88.0
91.2
94. 9
95. 3
100.4
103. /
322.9
321.4
316. 7
305.5
299.8
299.0
284.9
283.0
280.7
2S0.3
277.9
353.7
356.8
26.7
326.0
319. 1
314. 7
304.3
300. 1
290.3
281.8
269. 7
251.3
245.4
246.2
76.5
90.9
RHO
0.0000159
C. 0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0.0000159
O.C000159
O.OOC0159
0.0000159
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
O.C000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
6.39
7. 10
7.91
15.53
21.43
28.36
26.20
24.84
22.09
22. 16
16.97
15.87
13.42
11.82
9.31
7.74
9.26
10.03
10.40
10.78
10.25
1 1.02
11.38
10.63
10.58
10.73
10. 10
7.98
9.35
12.00
12.69
14.42
15.83
17.42
19.43
19.22
18.97
17.16
13.53
8.96
6.42
5.84
6.02
VX
5.86
6.34
5.78
10.77
15.21
20.86
20.98
19.58
17. 19
15.83
12.79
11 .Ob
9.45
8.35
7.07
6.50
-8.75
-9. 70
-10.05
-10.41
-9.92
-10.60
-10.92
-10. 16
-9.86
-10.06
-9.32
5.76
6.68
5.07
9.68
11.42
12.91
14.59
16.65
16.22
16.49
15.45
11.62
7.07
6.01
5.80
5.67
VY
-1 .04
-1.09
0.52
5.27
6.06
4.82
3.95
2.80
1. 79
0. 79
0.38
-0.24
-0.82
-0.78
-1.10
-0.99
2.41
1 .97
1.94
1 .64
1.28
1.45
0.82
0.70
0. 71
0.66
0.53
5.48
6.53
9.71
6.82
6.67
6.44
5.37
5.01
3.59
1.92
-0.02
-2.21
-2.28
-0.90
0.17
-0.03
VZ
2.33
3.00
5.38
9.87
13.83
18.60
15. 18
15.02
13.75
15.49
11.13
11.35
9.49
8.33
5.96
4.08
-1.82
-1.57
-1.83
-2.29
-2.23
-2.62
-3.08
-3.05
-3.77
-3.67
-3.84
-0.60
-0.35
4.89
-4.58
-5.76
-6.50
-7.86
-8.65
-9.67
-9. 17
-7.47
-6.56
-5.01
-2.05
0.71
2.02
VT
2.53
3. 14
5.06
10.25
13.80
17.61
14.67
14.07
12.55
13.18
9.54
8.96
7.25
6.06
4.43
3.25
2.67
2.26
2.21
1.96
1. 16
0.00
- 1.31
-2.03
-2.73
-3.C4
-3.28
-3.51
-4.48
-4.79
-6.67
-7.60
-8.22
-8.80
-9.43
-9.75
-9.0C
-7.28
.-6.69
-5.23
-2.22
-0.73
-2.01
VR
0.33
0.60
1.89
4.50
6. 13
7.70
5.55
5.96
5.92
8.17
5.74
6.97
6^17
5.77
4.13
2.66
1.4C
1.12
1.49
2.02
2.30
3.00
2.91
2.38
2.69
2. 14
2.0/
4.26
4.76
9.76
4.78
4.46
4.02
3.63
3.31
3.37
2.59
1.67
1.78
1.72
0.33
0.03
0.21
PST
0.010854
0.013949
0.013539
0.013626
0.013088
0.013337
0.010861
0.010738
0.010585
0.011771
0.009099
0.009932
0.009384
0.009478
0.008385
0.009205
0.010737
0.010847
0.011004
0.010784
0.011105
0.008769
0.009430
0.010312
0.010557
0.010547
0.010293
0.009117
0.009204
0.011865
0.009249
0.009303
0.009584
0.008075
0.010338
0.013185
0.011518
0.012188
0.012989
0.012968
0.012758
0.012512
0.013049
T
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
2C.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
20.
PB
760.
76C.
760.
76C.
76C.
760.
760.
76C.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.

-------
RP VS. VX
   20.99
   20.36
   19. 74
   19.11
   18.48
   17.86
   17.25
   16.61
   15.96
   15. 36
   14.73
   14.10
   13.<>8
   12.85
   12.23
   11.60
   10.98
   10.35
    9.72
    9.10
    6.47
    7.85
    7.22
    6.60
    5.97
    5.34
    4.72
    4.09
    1.47
    2.84
    2.22
    1.59
    0.96
    0.34
   -0.28
   -0.90
   -1.53
   -2.15
   -2. 78
   -3.41
   -4.03
   -4.66
 .  -5.28
   '5.91
   -6.5-.
   -7.16
   -7.79
   -8.41
   -9.04
   -9.66
  -10.29
  -10.9?
               7.60
  ^
X   X-_X	X'X
   -25.000   -20.000   -15.000   -10.000
                                       -5.000
                                                         5.000
                                                                         15.000
                                                                                  20.000
Figure 11-61.    AXIAL VELOCITY  PROFILE  FOR  THE  INTERMEDIATE
     FLAME  AT  THE  AXIAL FLOW  BURNER FITTED  WITH  THE
     PORTED SWIRL  BAFFLE  (7. 6 cm  From Burner  Block  Face)
                                               86

-------
YS.  VT
17.61
17.07
16.54
16.00
15.4h
14.93
14.3<)
13.85
13.1?
12. ;n
12.2*
11.71
11.17
10.64
10. 10
 9.56
 ").03
 8.49
 7.95
 7.42
 6.K8
 6.34
 5.81
 5.27
 4.73
 4.20
 3.66
 3.12
 2.59
 2.05
 1.51
 0.98
 0.44
-0.09
-0.62
            7.60
  .77
-3.31
-3.b4
-4.38
-4.12
-5.45
-5.99
-6.53
-7.06
-7.60
-8.14
-8.67
-9.21
-9.75
 -25.000  -20.000   -15.000   -10.000
                                    -5.000
                                              0.000
                                                      5.000
                                                                       15.000
                                                                                        25.000
  Figure II-62.    TANGENTIAL VELOCITY  PROFILE  FOR THE
    INTERMEDIATE  FLAME  AT  THE  AXIAL FLOW  BURNER
             FITTED  WITH  THE  PORTED  SWIRL  BAFFLE
                    (7. 6  cm From  Burner   Block Face)
                                            87

-------
     Figure 11-61  shows the axial velocity at an  axial position of  7. 6 cm
from the burner wall.  Note  that there is no central peak  representing
the output from the  gas  nozzle.   In fact, the velocity data  in the central
region of the burner  block  at radial positions  of ± 5 cm show reverse
flow.  Forward velocity peaks do  occur at  radial positions of ± 14 cm
with magnitudes  of 19.5 and  16.2  ft/s.  Figure  11-62  shows  a tangential
velocity  of —9.75  ft/s  at a  radial position of —14 cm and 17.6 ft/s at 15
cm.   We did not  take velocity profiles beyond the 7. 6-cm  axial position
because  primary  mixing is  completed,  as indicated  by Figure 11-59.   A
swirl number for  the axial  burner  with the intermediate-flame ported
swirl baffle  was calculated  using the data in  Table II-8.   The value  of
swirl intensity was 0. 17.
    4.   Hot-Model Input-Output  Data
    The  burner with  a  radial gas  nozzle was operated at four gas inputs
between  2335 CF/hr and 3160 CF/hr,  with  amounts  of excess air between
5% and  20%, and  at  three  different preheated air temperatures.   Gener-
ally,  we found that the amount  of  nitric oxide,  NO,  increased with in-
creasing excess air between  5% and 12%, then  decreased with additional
excess air.   Figure 11-63  shows this expected effect at a gas input of
2335  CF/hr.   The peak  concentration  of NO always  occurred between
about 1.  25 and 2. 25% oxygen in the flue.   The  peak NO formation increased
significantly when  preheated air  was used,  and the location of the peak
shifted slightly.   This same typical behavior  was  observed for gas inputs
at 2626  CF/hr, 2900 CF/hr,  and 3160  CF/hr,  as shown by Figures  11-64,
11-65,  and 11-66.
    Examination of the data in  Figures 11-63  through 11-66  shows that our
method of controlling the preheat temperature allowed variations  from
450°F to 570°F  as the gas input  was changed.   Therefore,  a  direct com-
parison  of the NO emissions  from  these curves  is not possible.    We re-
plotted the information for  various  excess oxygen levels as a function of
the preheat temperature and reconstructed %  Oz vs.  NO concentration
curves by  interpolation at preheat  temperatures  of 450°F and 245°F.   Data
for a 100°F  preheat level were experimentally obtained  at all gas inputs
and are  also plotted in these  figures.   In addition, we extrapolated our
data and plotted a 700°F preheat temperature curve  (also shown in the

                                   88

-------
800
                                                PREHEAT TEMPERATURE.'F
100
        NOTE:  DATA OBTAINED  USING  AXIAL
              BURNER, INTERMEDIATE BAFFLE
              AND RADIAL NOZZLE.
                                    3          4

                                 02 IN FLUE
                                                            A-112-1080
     Figure 11-63.   NO CONCENTRATIONS WITH  GAS  INPUT
                 OF  2335 CF/hr (Original Data)
                                 89

-------
   800
   700
   600
E
Q.
Q.
O  500
z
O
X
O
O
(E
   400
   300
   200
   100
             PREHEAT
         TEMPERATURE, °F

             O  530

             A  285

             D  100
    NOTE: DATA OBTAINED
          USING  AXIAL
\         BURNER, INTER-
 \        MEDIATE BAFFLE
          AND RADIAL
          NOZZLE.
                            234

                                 % 02 IN FLUE
                                                               A-112-1077
      Figure  11-64.   NO CONCENTRATIONS WITH GAS INPUT
                   OF  2626 CF/hr  (Original Data)
                                   90

-------
   800
   700
   600
E
a.
a.
Q  500
ui
o
X
o
o
tr
H
Z
   400
   300
   200
    100
                             PREHEAT
                         TEMPERATURE, *F

                              O  475

                              A  280

                              D  100
                        NOTE:  DATA  OBTAINED
                              USING  AXIAL
                              BURNER, INTER-
                              MEDIATE  BAFFLE
                              AND RADIAL
                              NOZZLE.
I
I
I
                             234

                                %  02  IN  FLUE
                                                               A-112 -1078
      Figure 11-65.   NO  CONCENTRATIONS  WITH  GAS  INPUT
                   OF 2900 CF/hr (Original  Data)
                                   91

-------
    800
    700
    600
 o.
 Q.
 5  500
 z

 UJ
 o
. X
 o
 o
 
-------
figures).   However,  we  have no experimental  data  to  support the  accuracy
of this  extrapolation.   Figures  11-66 through 11-70  show these interpolated
data, which  are used for later  analysis.
     Working with the interpolated  and  actual NO   curves,  we found that
                                                X
the formation of NO (as measured in the flue) is nearly linear with gas
input,  as shown in  Figure 11-70,  for two preheat temperatures.   We also
see  from these data that the level of preheat temperature changes  the
magnitude of NO emissions  but not the linear  relationship with the gas
input.   Closer  examination shows  that the linearity of the curves  improves
with increasing amounts of excess oxygen (excess  air  for  combustion).
Figure  11-71 shows  these same data for a 450°F preheat  temperature on
an expended NO scale,  where the  change in linearity is more apparent.
From these  data, we determined that  the average  increase in NO emis-
sions is 24% over the range of  Z335-3100 CF/hr of natural gas input or
15.6 ppm per  1000  CF/hr change  of gas  input.  We also found the  rate
at which NO emissions  increase with increasing gas input is greater with
higher preheat  temperatures.  At  the  100°F preheat level,  the rate of
increase of NO emissions  is only  4. 0  ppm  per 100 CF/hr  change compared
with 15. 6 ppm  per  100  CF/hr change  at a 450°F preheat.   The  rate of
increase of NO emission with increasing  gas  input  at  a 700°F preheat
temperature  should  be compared with  other preheat data with caution
because  of its extrapolated nature.   Interestingly,  the rate of increase is
about 36 ppm per 100 CF/hr of gas input.   Plotting the rate  at which  NO
emissions  change with changing  gas  input as a  function of preheat  temper-
ature (Figure II-72)  shows that the preheat temperature can  change sub-
stantially between, 70°F  and  250°F  without changing  the NO  rate as  a
function  of gas  input.
    A  limited amount of input-output testing was done for the intermediate-
flame baffle  with  the  axial gas  nozzle.   Gas inputs above  2147 CF/hr
resulted in  unburned gas in  the  flue; flue analysis  was not  possible under
these conditions.  However,  using this maximum gas  input resulted in
the following  comparison with radial gas  nozzle operation.
a.  The longer, less intense flame resulting  from  the burner with an
    axial gas nozzle produces substantially less nitric oxide.
b.  Preheated air has a lesser  effect  of  NO formation with the  axial
    gas nozzle.
                                   93

-------
   1000
   9OO
   800
E
a
a.
15  600
tr
H
Z
UJ
o
g  500
O
o
x
O  400
O
CC
   300
   200
    IOO
                                   \

                                      \
    PREHEAT
  TEMPERATURE,
      •F

      O  700
      A  450

      D  245
      V  100
                                        \
                                              \
NOTE: DATA
      OBTAINED
      USING INTER-
      MEDIATE
      BAFFLE AND|
      MODIFIED
      RADIAL
      NOZZLE.
                        234

                           % 02  IN  FLUE
                                                    A-II2-I072
   Figure II-67.   NO CONCENTRATIONS  WITH GAS INPUT
     OF 2335  CF/hr  (Interpolated  and Extrapolated Data)
                               94

-------
     1100
    1000 -
                                                 PREHEAT
                                               TEMPERATURE,
                                                    •F
                                                   O  700
                                                   A  450
                                                   D  245
                                                   V  100
                                               DATA OBTAINED
                                               USING INTER-
                                               MEDIATE BAFFLE
                                               AND MODIFIED
                                               RADIAL NOZZLE.
     100
                         234

                           % 02  IN FLUE
                                                   A-II2-I073
Figure  11-68.   NO CONCENTRATIONS WITH GAS  INPUT
   OF  2626 CF/hr (Interpolated and  Extrapolated Data)
                              95

-------
    ItOO
   IOOO
   900
   BOO
 E
 Q.
 Q.
   700
 UJ
 Q 600
 X
 o

 o
 tr
 t 500
   400
   300
   200
    100
                          \
                            \
                              \
                                  \
                                    \
            PREHEAT
          TEMPERATURE,
               •F	

              O  700
              A  450
              D  245

              V  100
                                      \
      \>
NOTE:  DATA OBTAINED USING
      INTERMEDIATE BAFFLE
      AND MODIFIED RADIAL
      NOZZLE.
                        234

                          %  02  IN FLUE
                                                 A-II2-I074
Figure  11-69. '  NO CONCENTRATIONS WITH GAS INPUT
   OF  Z900 CF/hr (Interpolated  and Extrapolated Data)
                              96

-------
   .1100
   1000
   900
   800
o.
a
   700
UJ
9  600
x
O
   500
   400
   300
   200
   100
450*F PREHEATED AIR

 O   1/2% EXCESS OXYGEN
 A   1%
 D   2%
 V   3%
 O   4%
IQO'F  PREHEATED AIR

 •  1/2% EXCESS OXYGEN
 A  1%
 •  2%
 T  3%
 •  4%
NOTE:  DATA OBTAINED  USING
      INTERMEDIATE BAFFLE
      AND MODIFIED RADIAL
      NOZZLE.
     2300     2400    2500    2600     2700    2800     2900
                           NATURAL  GAS  INPUT,  CF/hr
                                        3000
                      3100
                                                                  A-112-1076
      Figure  11-70.   NO CONCENTRATIONS  WITH VARIOUS GAS
            INPUTS FOR  TWO  PREHEAT TEMPERATURES

-------
E
Q.
0.
UJ
o
X
o

o
o:
   850
   800
   750
   700
   650
600
   550
   500
   450
   400
                                  EXCESS OXYGEN
o
A
D
                                     1/2
                                     1.0
                                     2.0
                                     3.0

                                     4.0
                                 NOTE: DATA OBTAINED USING  INTERMEDIATE
                                       BAFFLE  AND MODIFIED RADIAL
                                       NOZZLE.
     2300    2400     2500    2600     2700     2800

                          NATURAL GAS INPUT,  CF/hr
                                                     2900
                           3000
3100
                                                                  A-112-1075
      Figure 11-71.   NO  CONCENTRATIONS  WITH VARYING GAS
            INPUTS FOR 450°F PREHEAT  TEMPERATURE
                          (Expanded NO Scale)
                                     98

-------
UJ
(T
UJ
Q.

2
UJ
UJ

UJ
a:
a.
   800
   700
   600
   500
   400
   300
   200
   100
                       10       15       20       25       30


                        RATE OF CHANGE OF NO  EMISSION,

                         ppm/100 CF/h change  of  gas  input
35
40
                                                                 A-II2-I07I
          11-12.   RATE OF CHANGE OF NO EMISSIONS/100 CF/hr

     GAS  INPUT AS A FUNCTION OF PREHEAT  TEMPERATURE
                                    99

-------
c.  The peak NO formation occurs at higher levels  of excess air.
    Figure 11-73  shows the input-output  test results  for  the  intermediate
baffle  and axial gas  nozzle.   Inxreasing  the  preheated air temperature
from  100° to  570°F increased the NO emissions  a maximum of 130 ppm.
With the  radial nozzle, the NO increased about 450  ppm  for  the same
increase  in preheat temperature of 470°F.   (The  increase in NO for  the
radial  nozzle  was  interpolated from  the  data of Figures  11-67  and  11-70.)
In addition, the peak NO  emissions occur with about 5. 5%  oxygen in the
flue  compared with 1.5-1.7%  oxygen for  the radial  gas nozzle.
    5.   In-the-Flame  Data Survey Results
    As part of this program,   we radially map the concentrations  of  CO,
COz,  CH4,  O2,  and NO,  the temperature, and the gas velocity.  This
information is obtained to gain insight into  the mechanism and location
of NO  formation for different flame  conditions and as  the input to an NO
modeling program,  also sponsored by EPA with Ultra Systems,  Inc.
    We  completed gas species and temperature mapping  for the intermediate-
flame  baffle burner with both the axial and radial gas nozzles.  These
maps were obtained  while  operating  the  burner at conditions  producing  the
maximum  amount of NO as determined from the  input-output tests.
    Profiles were first run on the burner using the  radial gas nozzle.
This nozzle was designed  and installed to provide a  shorter flame.   The
original axial gas  nozzle  produced a  flame  that was  longer than the fur-
nace with  a gas  input  above 2175 CF/hr.  The radial nozzle allows oper-
ation above 3100  CF/hr  of gas.   However,  our initial survey of combustion
species  showed that  combustion was  essentially complete in the  burner
block.    Figure  11-74  shows a  composite  of  the  gas sampling  profiles taken
at an axial position  5  cm  from the burner block  face.   (Five  centimeters
is the  closest the  probe can be positioned to the  block. )   The burner was
operating at a 2547  CF/hr gas input,  10% excess air,  and 510°F  preheated
air.   These data show (curve  M) that methane  concentration  was only
about  0.5%.  The carbon  monoxide  (curve C)  varied between 400  ppm  at
the center  line  to  a  peak of 2000 ppm at a 13. 2-cm radial position.
(The total width  of the burner block opening is 42 cm. )   Oxygen (curve O)
varied from 1. 52% at the center  line  to a minimum of 0. 66% at a 8. 8-
                                  100

-------
   400
E
Q.
O.
300
UJ
o
X  200
O

o
cc
    100
             PREHEAT

           TEMPERATURE,
                °F
O

A

D
570

270

100
                                               NOTE: DATA  OBTAINED USING AXIAL BURNER,
                                                     INTERMEDIATE BAFFLE AND AXIAL
                                                     NOZZLE.
                                                                            I
                                        %
                                                 4


                                           IN FLUE
                                                                           A-II2-I069
         Figure 11-13.   NO CONCENTRATION AT GAS INPUT  OF  2147 CF/hr

                 (Excess O2 Variable and  Wall Temperature of 2570°F)

-------
                        4XIAL Bli^NES - IMEa'EDIilJ 84FFLE

                 ,L,2.CC2.CC.CH4   4P«  5.Or
                                                       NOZZLE - STAINLESS =>-.OfcE   CCI ?,72
    §
        &
        O
        z,
    W   I

    g   o
    o   o
    o
        o
        o
        ffi
        O
                                    13.200
                                                               3C.6CC
                                     RADIAL POSITION,  cm


      Figure 11-74.   COMPOSITE RADIAL PROFILES  FOR  NO,  CO,  CH4,  O2,

                      AND C02  WITH  GAS INPUT  OF 2547 CF/hr

(Intermediate Flame Baffle  With  Radial  Gas Nozzle at  an Axial  Position of 5. 0 cm,

    Preheat  Temperature  of 510°F,   10%  Acce-se  Air,  and Stainless-Steel  Probe)

-------
cm radial  position.  Nitric oxide (curve N)  varied from  500  ppm  at  the
center line to  a  minimum  of  340 ppm at  a 15-cm radial position.   Carbon
dioxide  (curve  D) varied from about 10%  at the center line to  9.8%  at a
13-cm radial position.
     The increase  in the concentrations of COz,  NO, and Oz beyond  a  17. 6-
cm radial  position is believed to be caused by recirculated  combustion
products moving back  toward the burner  along  the  walls.  At a 44-cm
radial position,  the  measured concentration of  NO  was 660 ppm, whereas
the flue  contained  742 ppm.   However, 44  cm  is  only one-half the dis-
tance between  the  burner center line and furnace  sidewall.   We would
expect the measured NO concentration to increase  at positions beyond 44
cm,  attaining  approximately the NO concentration of  the  flue at the wall.
The  curves of Figure  11-74 were plotted  on a single  0-11%  (approx)  scale
because  of a  computer  limitation.   The  following  legend  applies to this
figure and some of the others (computer  print-outs) that follow:
    AP —  axial position
    RP —  radial position
     The actual data  were  collected on a  range  of concentrations which
provided greater resolution.  The raw data are shown in Tables II-9
and 11-10 and  are  shown plotted on the enlarged  scale in Figures  11-75
to 11-79.
    Figure 11-80 shows the temperature profile across the furnace at the
5. 0-cm axial probe  position.   The  data  support our conclusion of essen-
tially complete combustion  in the burner  block.  The  temperature  was
essentially constant  across the  half width  of  the block (21 cm).
    Considering  that combustion was  essentially complete in  the burner
block, further profiles  at  axial positions  greater than 5 cm were  con-
sidered unnecessary.   Test work continued by  reinstalling the  axial  flow
gas nozzle  and lowering the gas input until combustion was  completed in
the furnace.   This occurred at a gas  input of  2147 CF/hr, which was
maintained  for all  remaining  work with this particular  gas nozzle.    Data
for radial  profiles of gas  species and temperature were  again  measured
in the furnace.
                                   103

-------
  Table II-9.   DATA OBTAINED USING RADIAL  GAS NOZZLE WITH 2547  CF/hr GAS INPUT
         (Intermediate  Baffle,  Axial Burner,  Radial Nozzle,  and  Stainless-Steel  Probe)


INPUT GAS 2547
OUTPUT ANALYSIS
NITKOGEN OXIDE
CARBON DlliXIDE
CARBON MONOXIDE

77
84
13
AX
.20
.40
.10
TRACER GAS STUDIES
IAL BURNER - INTERMEDI
WALL TEMPERA
PERCENT ON
PERCENT ON
PERCENT ON
TURE
RANGE
RANGE
RANGE
2680
I.
It
3,
OF
ATE
741
1 1
0.
COMBUSTION BURNERS PROGRAM 2
BAFFLE - RACIAL NOZZLE - STAINLESS PROBE OCT 2,72
.86
.06
005
PREHEAT TEMPERATURE
PPM OXYGEN
PERCENT
PERCENT
	 510
l._73 PERCENT
ME THANE
O.CC PERCENT ON RANGE  3,
0.00 PERCENT
EXPERIMENTAL RESULTS
NITROGEN UXIDE -NO
AP
5.0C
5.00
5.00
5.0C
5.0C
5.00
5.0C
5.00
5. 00
5.00
5.0C
5.00
5.00
5.00
RP
C.OO
2.00
4.0C
6.0C
8. 00
12.00
16.00
20. OC
24.00
28. OC
32. OC
36. OC
4C.OC
44.00
RANGE
1
1
1
1
1
I
1
1
1
1
1
I
1
1
X
54.50
53.90
51.60
47.90
44.20
4C.90
38.50
57.50
66.00
67.40
67.50
68.20
68.70
70.20
Y
502. I
496.0
472.7
435.8
399.3
367.2
344. 1
532.7
621.2
636. 1
637. 1
644.6
649.9
665.9
CXYGEN
02
1.52
1. 19
0.89
0.68
0.67
0.63
1.04
1.42
1 .60
1 .64
1.59
1.73
1 .66
1.58
CARBON D
RANGE X
1 80.
1 80.
I 81.
1 79.
1 78.
1 77.
1 78.
I 82.
1 83.
1 83.
1 84.
1 83.
1 84.
1 84.
IOXIOE-C02

20
10
60
20
30
80
30
60
00
50
50
50
30
30
Y
10.15
10.13
10.45
9.94
9.75
9.65
9.75
10.66
10.75
10.86
11.08
10.86
11.03
11.03
CARBON MONOXIDE -CO
RANGE
1
1
1
1
1
1
1
2
3
3
3
3
3
3
X
17. 2C
26. 3C
34.70
44.10
49. 5C
50. 9C
38.00
19.00
44.20
30.90
29. 7C
28.50
27. 3C
27. 1C
Y
C.481
C.796
1.126
1.541
1.801
1.870
1.266
C.317
C.C19
C.C13
C.C12
C.C12
C . C 1 1
C.C11
KE THANE - CH4
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
c.cc
C.OO
C.OO
C.OO
C.OO
c.co
c.co
o.co
C.OO
c.cc
c.co
c.oc
C.OO
c.co
Y
o.oc
o.oc
o.oc
o.oc
0.00
0.00
O.CC
o.oc
0.00
o.oc
o.oc
o.oc
0.00
0.00

-------
       Table  11-10.    COEFFICIENTS AND STANDARD  DEVIATIONS
             OF  THE MATHEMATICAL  FIT  FOR  EACH GAS.
                  TRACEP CIS STUDIES OF COBUSTIDN BURNERS  PROGRAM 2
NO-RANGE 1

NO-RANGE
C02 RANGE
CO? RANGE
CO? RANGE
CO RANGE

CO RANGE
CO RANGE

X
o.oco
28. CCO
55. OCC
77.5CC
100. OCC
3
X
c.occ
26. CCC
51 .CCC
76.CCC
ICC. OCO
1
X
o.or.o
*1.200
67. OCC
87. OCC
ICO. CCC
2
X
O.OCO
33.0C«C(?l«x»..»C(N»ll»X«»N
Cl 1 l« -C.C38SC39
Cl ?)= I.9C8231?
Cl 31= O.CCCSI38
• COEFFlCltNTS.Y*C(ll»C(2l«x...«CIN»ll«x»«N
Cl 11- C.C6CU62
Cl 21* C.C*Cc635
Cl 31- C.CC1C623
COEFFICIENTS,Y*Ctl)«C(2l«X»..»CIN»I)«X»«N
Cl 11= C. 0066310
"CT 21 = C.C3C81E6 " ~ 	 	
Cl 31* C.CCC1873
COEFFICI£NTS,Y*C(ll«CI?l«X....C(N»ll»X«»N
Cl ?)• O.C033220
Cl 31= O.CCCC165
CO£FFlClENTs(Y=Clll»Cl2)«x»..«ClN»l>»x»«N
Cl 11 = 0.007*353
Cl 21= O.C22>;3t7
Cl 31= C.CC026S6
COEFFIOIENTStY=Clll»C(2l«X»..»C(N»ll«X»»N
Cl 11- C.C0177E3
Cl 21= O.C156220
Cl 31= O.CCCO11
COEFFICI EN IS. Y=CI1I»C (?)•»•.. »CIN»ll»x»»K
Cl !)• C.COCC***
Cl 21= O.CCC3955
Cl 3)= O.CCCCC1C


-------
               Table  11-10,   Cont.    COEFFICIENTS AND  STANDARD
         DEVIATIONS  OF  THE MATHEMATICAL FIT FOR  EACH GAS
                        TRACER GAS STUDIES  OF  COMBUSTION BuRNE-lS  P30GRAK
Cn<. RANGE  1
X
c.ccc
39. ICC
66.0CC
85.2CC
1CO.CCC
Ci-<- RANGE 2
X
c.occ
32. SCO
58. SCO
	 81.0CC
10C.CCC
C«<- RANGE 3
X
C.CCC
28.CCC
s'i.occ
78.0CC
1CC.CCC
OBSERVED Y
C.COO
5.000
10. COO
15.000
20.000

OBSERVED Y
0.000
2.500
5.000
7.5CO
10.COC

nBStRvEO Y
C.COO
1.250
2.500
1.75C
5. COO
CC^PUTEO Y
O.C6<-
'•. 701
1C. 181
15.2«.0
19.792

CO-PUIEC Y
0.012
2. ".(,7
5.007
' 7.53«.
9.178

CC"'UTEO 1
C.^.C',
1 .2*C
2. SCC
1.75-)
**.3-T.
                                             STANOARC DEVIATION UN Y
                                             STANCARD OEVIATlUN  ON Y
                                                  0.03837
                                             STANCARC OEVIATinN  C.N
                                                  0.01073
                                                                       COEFFICIENTS1Y'CI1I»C(2)«X«..»CIN»|I««»»\
                                                                        C<  11=  O.C8'3171
                                                                        C(  21=  O.C673895
                                                                        Cl  3)<  O.CC12<)68
COEFFICIENTS.Y.CI t >«ct2i»«»..»cis.i >•«••».
 C(  11=  O.CI2251S
 C(  ?)=  C.C63«)*fc9
 C(  3>=  C.C003571                   	
COEFFIC1ENIS1Y=C(1I«CI2)»»«..»CIN»1I«X«»K
 C I  11=  O.CCMIle
 Cl  21=  C.C«19?61
 C(  31=  C.CCCC797

-------
                     AXIAL  BUHNER - INTERMEDIATE BAFFLE - RADIAL  NOZZLE - STAINLESS PRObE    OCT  2,72
   KP VS CH4    AP=  5.CC

-------
                               «L BuasEtt - INTEREECUTE BtFFLE - KaCUL NOZZLE - STAINLESS PROBE  OCT 3.72
o
00
           W
           Q
           HH
           X
           o
           2
           O
           PQ
           0
                                               RADIAL POSITION,  cm '


                 Figure U-76.   RADIAL, PROFILE FOR CO WITH GAS INPUT OF  2547 CF/hr
             (Intermediate-Flame  Baffle  With Radial Gas  Nozzle at an Axial Position of  5.0 cm,
                 Preheat Temperature  of 510°F,  10% Excess  Air,   and Stainless-Steel Probe)

-------
   w
   Q
   K-I
   X
   O
   I-H
   Q
  U
       


-------
     z
     W
     o
     X
     o
           «P VS 02,
            1.7300
            1.7CB*
            1.6869
            1.6653
          	1.6*37
            1.6222
            1.6006
            1.5790
                         _4X 11L_BUKNER
                        S.CC
                                               bflFFlE - HaClVl NOZZLE - STAINLESS-PROBE	 Ot. I  2 , 7_2 	
            1.5359
            1.5143
             1.428C
             1.3633
             l.341fl
             1.3202
             1.2986
             1.2771
             1.2555
             1.2339
1.1908
1.1692
1.1476
1.1261
1.1C45
1.C821
1.C614
1.0398
I.C182
C.9567
C.9751
C.T531)
0.9J20
C.910*
0.688°
0.8C73
            r.7tli
            0. 759<.
            C. 737S
            0.7163

            ? . t 7 > 1

            .-•.630C
               c.ccc
                                              I 7.f,CO
                                          RADIAL POSITION,  cm

    Figure  n-78.   RADIAL  PROFILE  FOR O2 WITH GAS  INPUT  OF  2547  CF/hr
(Intermediate Flame Baffle  With Radial Gas  Nozzle  at an  Axial  Position  of  5. 0  cm,
     Preheat  Temperature  of 510°F,   10%  Excess  Air,  and Stainless-Steel  Probe)

-------
           NU.
                                    lCa»ECIM£ BIFFlf - atrl«L SCZ11E  - SHINIES!
                                                                               i.C '  2.72
                «»•  5.:c
  W
  a
  X
  o
  u
  3
  H
        C.59.M
        (,•>}. 15

        ft*C.73
        634.42
        6/B.ll
        621.80
        615.49
        609.18
        6C2.S7
583.93
577.62
571.31
•>65.CC
558.69
552.38
5*6.07
539.75
533.44

52C.82
514.51
508.20
501.US
495.58
489.27
4d2.95
476.64
470.33
464.02
457.71
451.40
445.09
438.76
432.47
426.15
419.84
413.53
407.22
400.91
39*.6C
388.29
3B1.98
175.66
369.35
363.0*
356.73
350.42
344.11
           O.OCC
                                           IT.600
                                                   22.0CO
                                                                   30.8CC
                                                                           JS.2CO
                                                                                          44.000
                                    RADIAL POSITION,  cm
    Figure  11-79.    RADIAL PROFILE  FOR  NO  WITH  GAS INPUT  OF 2547  CF/hr
(Inter mediate-Flame  Baffle  With  Radial  Gas  Nozzle at an Axial Position  of  5. 0 cm,
     Preheat  Temperature  of 510°F,  10%  Excess Air,  and  Stainless-Steel Probe)

-------
                    3K)0
                    3000
                    2900
                 ui
                 CC
                 IT

                 I
                    2800
tx»
                    27OO
                    26OO
                    2500
NOTE: DATA  OBTAINED USING AXIAL
      BURNER,  INTERMEDIATE BAFFLE
      AND RADIAL NOZZLE.
                                       12    16    20   24   28   32   36   40

                                                      RADIAL POSITION, cm
                                                    44
48
52
6O
                                                                                          A-II2-IOM
                      Figure 11-80.   TEMPERATURE PROFILE  ACROSS FURNACE WITH
                      GAS INPUT OF  2546 CF/hr  AND 5. 0-cm  AXIAL  PROBE POSITION

-------
    Figure 11-81  shows a  composite plot of  CO,  CO2, CH4,  NO,  and O2.
The methane  concentration (curve  M) was 10.63% at the burner  center
line,  decreasing to about 0.25% at a 19-cm  radial position.   A very ap-
proximate integration under the  methane  curve  showed  that the average
concentration was  about  6%.   Consequently,  about 35% of the combustion
can be  assumed complete.   Significant  concentrations of Oz,  COz, NO,
and CO at the center line  of the burner where  the methane  reading  indi-
cates essentially  no combustion  is  occurring are probably caused by dif-
fusion.   The  nitric oxide concentration (curve N) was 133 ppm at the
center line,  decreasing to  30 ppm  at a  13-cm  radial position and again
increasing in a probable recirculation zone beyond  19 cm.   Oxygen  (curve
O)  was  3.46% at the center line,  increasing to 13.55%  near the perimeter
of the burner-block  opening.   Nitric  oxide (curve N) increased to only
77% of the 255 ppm of NO measured in the  flue.  However,  measurements
again were not taken out  to the  furnace  wall.   Data plots  with greater
resolution are given in Figures  11-82 to 11-86 and the raw data  in Table
11-11.
    Data  were taken at three axial positions  for  the  axial gas nozzle.
Figure  11-87  shows composite  chemical  species profiles at a 77. 5-cm
axial position; Figure  11-88  shows  these same profiles  for a  152. 5-cm
axial position.  We found  that essentially all the CKi (curve  M)  is con-
sumed at 77.  5 cm, leaving  only CO (curve C)  for further combustion.
Nitric oxide (curve N) was essentially constant across  the width  of the
burner; oxygen (curve  O) was  4. 76%  at  the  center line, decreasing  to
about 3. 9% at the 12. 6-cm  radial  position.   The oxygen  at the  center
line increased from 4.76 to 5.10% between  the  77. 5-cm  and 152. 5-cm
axial positions while lower amounts were measured  at  all radial positions
other than the center line.   Concurrently, CO  and CH4 decreased as ex-
pected while NO increased  slightly in the postflame  region.   In addition,
recirculation  was barely evident at the  outer radial positions.
    Figure 11-89  shows the  temperature profile across  the  furnace at
axial positions of 5. 0, 77. 5, and  152. 5  cm  for the axial gas nozzle,
12. 5% of 570°F preheated  excess air.    The  rapid rise  in  temperature
between  0 and 3 cm for  the 5-cm  axial  position  confirms  the high methane
concentration found at  the  center line (Figure 11-86).   The  rapid decrease
                                   113

-------
    Figure 11-81  shows a  composite plot of  CO,  CO2, CH4,  NO,  and O2.
The methane  concentration (curve  M) was 10.63% at the burner  center
line,  decreasing to about 0.25% at a 19-cm  radial position.   A very ap-
proximate integration under the  methane  curve  showed  that the average
concentration was  about  6%.   Consequently,  about 35% of the combustion
can be  assumed complete.   Significant  concentrations of Oz,  COz, NO,
and CO at the center line  of the burner where  the methane  reading  indi-
cates essentially  no combustion  is  occurring are probably caused by dif-
fusion.   The  nitric oxide concentration (curve N) was 133 ppm at the
center line,  decreasing to  30 ppm  at a  13-cm  radial position and again
increasing in a probable recirculation zone beyond  19 cm.   Oxygen  (curve
O)  was  3.46% at the center line,  increasing to 13.55%  near the perimeter
of the burner-block  opening.   Nitric  oxide (curve N) increased to only
77% of the 255 ppm of NO measured in the  flue.  However,  measurements
again were not taken out  to the  furnace  wall.   Data plots  with greater
resolution are given in Figures  11-82 to 11-86 and the raw data  in Table
11-11.
    Data  were taken at three axial positions  for  the  axial gas nozzle.
Figure  11-87  shows composite  chemical  species profiles at a 77. 5-cm
axial position; Figure  11-88  shows  these same profiles  for a  152. 5-cm
axial position.  We found  that essentially all the CKi (curve  M)  is con-
sumed at 77.  5 cm, leaving  only CO (curve C)  for further combustion.
Nitric oxide (curve N) was essentially constant across  the width  of the
burner; oxygen (curve  O) was  4. 76%  at  the  center line, decreasing  to
about 3. 9% at the 12. 6-cm  radial  position.   The oxygen  at the  center
line increased from 4.76 to 5.10% between  the  77. 5-cm  and 152. 5-cm
axial positions while lower amounts were measured  at  all radial positions
other than the center line.   Concurrently, CO  and CH4 decreased as ex-
pected while NO increased  slightly in the postflame  region.   In addition,
recirculation  was barely evident at the  outer radial positions.
    Figure 11-89  shows the  temperature profile across  the  furnace at
axial positions of 5. 0, 77. 5, and  152. 5  cm  for the axial gas nozzle,
12. 5% of 570°F preheated  excess air.    The  rapid rise  in  temperature
between  0 and 3 cm for  the 5-cm  axial  position  confirms  the high methane
concentration found at  the  center line (Figure 11-86).   The  rapid decrease
                                   113

-------
                          AX1IV 80'NEK - IMERXEDUTE BSFFLE - STAINLESS PSOBE - SEPT.  29.1972
     53
     O
    w
    u
    §





£
(X
a

*O -.

1
g







^*^
|

(M
O
U

o"
u

<5
o
«
tj
ffi
u
13.55
13.26
13.02
12.75
12.^9
- — T5 — 5-5—
1 1.96
I 1.69
1 1.43
10. B9
10.36
10.10
9.83
9.57
9.3C
9.03
6.77
8. 50
8.24
7.97
7. 71
7. 18
6.91
6.64
6.38
6. U
5.65
5.5«
5.32
5.05
4 . 79
4.52
4.25
3.99
3.72
3.46
3. 19
i.93
2.66
2.39
?. 13
1.S6
1.60
1.33
1.07
C.80
C.54
0.27
0.00
                 c.ccc
                        3.7CC    6.4CC   1.6CC   12.300   16.000
                                                                       25.6CC   2B.6CC   12.000
                                       RADIAL POSITION,  cm
      Figure 11-81.   COMPOSITE  RADIAL  PROFILES FOR NO,  CO,  CH4,  O2,

                      AND C02 WITH GAS INPUT OF  2147  CF/hr

(Intermediate-Flame Baffle  With Radial  Gas Nozzle  at an  Axial Position of 5.0 cm,

    Preheat  Temperature  of 570°F,  10% Excess Air,  and Stainless-Steel Probe)

-------
    E
    PL
    PL.
    w"
    P
    t-H
    X
    o
    u
>  /s -.-c.
 li9.oC
 137.23
 11*.kfc

 179.52
 1 76.95
 I 7*. 3B
 171.61
 169.25
 166.66
 16*. 1 1
 Itl.5*
 156.97
 146.40
 153.°3
  il.26
  48.69
  46. 12
  43.56

  36.*2
  35.35
  13.26
  10.71
 128.I*
 125.57
 123.OC
 12C.43
 117.67
 1 15.3C
 1 12.73
 110. It
 107.59
 1D5.02
 102.*5
  99.86
  97.31
  9*. 7*
  ^2. 18
  89.61
  ii7.C*
  9* .* 7
  el.9C

  76. 76
  7*. 19
  71.62
  69.C5
  66.49
  63.92
  61.35
  58.76
                      .  axial P.L-t\E"  -
                      l.CC
                                           I 1IC KOFFLC - StAlNLCSS
                                                                  - Sc". 23.1972
                      3.2CC    6.4CC    9.600    12.600    16.000   19.200   22.*CC   25.6CO    26.800    32.000
                                        RADIAL  POSITION,  cm
   Figure  11-82.    RADIAL  PROFILE  FOR NO WITH  GAS  INPUT  OF  2147  CF/hr
(Inter mediate-Flame Baffle  With Axial Gas  Nozzle at an  Axial  Position  of 5. 0  cm,
    Preheat Temperature  of  570°F,  10%  Excess  Air,  and Stainless-Steel Probe)

-------
   O
   >
   X
   O
                     4M41. BUHNER - IMTERKECUTE B4F-FIE - ST4INCEii P'OBE - SEPT. 29,1972
                                    RADIAL  POSITION,  cm
   Figure  11-83.   RADIAL PROFILE  FOR O2 WITH  GAS INPUT  OF 2147  CF/hr
(Intermediate-Flame Baffle  With Axial  Gas Nozzle at  an Axial Position of 5. 0  cm,
   Preheat Temperature  of 570°F,  10% Excess Air,  and Stainless-Steel Probe)

-------
                                - IME4.»ECUIE aAtFLE-- STMMLSSS P^OHC - SEPI. 29.1972
      w
      Q
      HH
      X
      o
      u
                                  3.600   12.800   16.000   14.200   22.4CC   25.6CO   28.800   32.000
                                      RADIAL POSITION,  cm

  Figure 11-84.   RADIAL PROFILE  FOR  CO2 WITH GAS INPUT  OF 2147 CF/hr
(Intermediate-Flame Baffle  With  Axial  Gas  Nozzle at an  Axial Position of  5.0 cm,
   Preheat Temperature of 570°F,  10% Excess  Air,  and Stainless-Steel  Probe)

-------
                         O
                         2
00
                         o
                                              »XIAL BUSKER
                                            5.~c'c    "
                                                                         •* sTtmess POOBE - SEPT. 29,197;
6674
7958
724?
6527
5811
5095
4379
3664
2946
2232
1517
0601
OC85
9369
8654
79J8
7222
6506
5791
5C75
4359
3644
2928
2212
1496
0781
OCb5
9349
8633
7918
7202
6486
5771
5055
4339
3623
29CS
2192
1476
0761
CC45
                                                           9.6CC   12.800    16.000   I9.2CO    22.4CC   25.tf.r   ?H.8CO    32.0CO
                                                               RADIAL POSITION,  cm
                   Figure 11-85.    RADIAL  PROFILE FOR  CO  WITH  GAS  INPUT  OF  2147 CF/hr
                (Inter mediate-Flame  Baffle With Axial Gas  Nozzle  at an Axial  Position  of 5. 0 cm,
                    Preheat Temperature  of  570°F,   10%  Excess Air,  and Stainless-Steel Probe)

-------
                         AXIAL OL"
-------
                       Table  II-11.    DATA OBTAINED WITH STAIN LESS-STEEL PROBE
                        USING AXIAL  GAS NOZZLE  AND AXIAL POSITION OF  5. 0  cm
[SJ
O
                                TRACER  GAS  STUDIES  OF  COMBUSTION  BURNERS  PROGRAM  2
                          AXIAL  BURNER  -  INTERMEDIATE  BAFFLE  -  STAINLESS PROBE - SEPT. 29,197?
       INPUT GAS  2147
WALL TEMPERATURE   2570
PREHEAT TEMPERATURE
                                                                             570
       IJUTPUT ANALYSIS
       NITROGEN OXIDE   29.10 PERCENT  GN  RANGE  I,   255.52  PPM
       CArtOON DIOXIDE   82.50 PtRCENT  ON  RANGE  1,    10.64  PERCENT
       CARBGW MONOXIDE 11.60 PERCENT  ON  RANGE  3,    0.004  PERCENT
                                       OXYGEN   2.63 PERCENT
                        C.CO PERCENT  ON  RANGE  3,
                        0.00 PERCENT
       EXPERIMENTAL RESULTS
NITROGEN OXI
AP
5.0C
5.0C
5.0C
5.CC
5.0C
5.0C
5.0C
5.0C
•i.OC
RP
0.00
4.00
8.00
12.00
16.00
20. OC
24.00
2H.OO
32.00
RANGE
1
1
1
1
1
1
1
1
1
X
15.00
12.20
7.80
7.10
6.90
14.60
20. 70
21.10
21.90
DE -NC
Y
128.5
104.1
66.4
60.4
58. 7
125.0
179.0
182.6
189.7
CXYGEN
02
3.56
5.15
7.91
11.92
13.55
8.16
4.7C
4.48
4.65
CARBON DIOXIDE-C02
RANGE X
1 52.80
1 55.50
I 54.10
1 47.00
1 39.10
1 60.50
I 75.00
1 76.30
1 75.40
Y
5.17
5.59
5.37
4.31
3.27
6.41
9.08
9.34
9.16
CARBON MONOXIDE -co
RANGE X
1 81. 4C
1 69. 6C
I 47. 1C
1 16. OC
2 9.00
2 3.80
3 12.10
3 10.90
3 11. 6C
Y
3.654
2.SC5
1.683
C.443
C.147
C.C62
C.CC4
C.004
C.C04
METHANE - CM4
RANGE X
1 68.30
1 41.90
1 15.5C
3 5.30
3 1.40
3 1.50
3 1.60
3 2.0C
3 1.80
Y
10.73
5. 18
1.44
0.22
0.06
0.06
0.07
0.08
0.07

-------
    z,
    o
    u
        p.
        Ou
         I
        O
    §8
        o
        o
         (M
        o
        K
        0
 /S Mr,,
 8.57
 e. 71
 c.i2
 8.44
 e.27
 8.C9
 7.97
 7.74
 7,57
 7. 39
 7.22
 ' 7.04
 6.66
 6.69
 ft. 51
 6. 34
 6. 16
 5.99
 5.61
 5.64
 5.46
 5.2")
 5.11
 4.94
 4.76
 4.59
 4.41
 4.24
 4.C6
 3.89
 3.71
 3.53
 3.36
 3.18
 3.01
 2. 83
 2.66
 2. 48
 2.31
 2. 13
 1.96
 1.76
 1.61
 1.43
 1.26
 1.08
	0.91
 C773
 0.56
 0.38
 0.20
 0.03
                             1M4L BO'lJfca  - IMER'ECIME 6»FFlE -' StalUlESS PROBE - SEPT. 29,1972
                     :2..C.T?iCi:,CM4.  4P- 77.50
                                                      -C	C	C	C-
                                \
                  o.ccc
                          4.2CC
                                                                25.200
                                                                        29.4CC
                                                                               33.6CO
                                                                                       37.800
                                              RADIAL POSITION,  cm
       Figure  11-87.   COMPOSITE  RADIAL  PROFILES  FOR NO,  CO,   CH4,  O2
                         AND  CO2 WITH GAS INPUT  OF  2147 CF/hr
(Intermediate-Flame  Baffle With  Axial Gas  Nozzle at an  Axial Position of 77.5  cm,
     Preheat Temperature  of  570°F,  10%  Excess  Air,  and  Stainless-Steel  Probe)

-------
o
I— I
H
<
a!
w
u
     s
     a
     a
     I
     o
     !
f-\   
      Figure 11-88.    COMPOSITE RADIAL PROFILES  FOR NO,   CO,   CH
                        AND CO2  WITH  GAS  INPUT  OF  2147 CF/hr
(Intermediate  Flame Baffle  With Axial  Gas Nozzle at  an Axial Position of  152  cm,
    Preheat Temperature  of 570°F,   10%  Excess  Air,   and Stainless-Steel Probe)

-------
   2900
   2800 —
                                                                          O
                                        NOTE: DATA  OBTAINED USING AXIAL
                                              BURNER, INTERMEDIATE BAFFLE
                                              AND AXIAL  NOZZLE.
   2300
   2200
   2100
  2000
   1900
\
AXIAL POSITION, cm
     152.5

      77.5

       5
            I    I     I    I     I    I
            I	I
       I	I
                     12   16   20  24   26  32   36  40
                                 RADIAL POSITION, cm
                    44  48   52  56  60
                                                            A-II2-I070
 Figure  11-89.   TEMPERATURE PROFILE ACROSS  FURNACE WITH
GAS INPUT OF 2147  CF/hr AND AXIAL POSITIONS OF  5,  77.5,  AND
         152.5  cm  (Excess  O2 of  2.9%,  Wall Temperature  of
                     2570°F,  and Preheat of 570°F)
                                    123

-------
in temperature between  3  and 14 cm reflects the completeness of com-
bustion toward the perimeter of the  burner block.   The second temper-
ature peak  at  21  cm  (the outer edge  of the burner-block opening)  and the
gas  concentration profiles  of Figure 11-86 suggest the presence of hot
recirculated flue  products.
     Data plots  with greater  resolution are  given  in  Figures 11-90  to  11-99
and  the  raw data appear in  Tables  11-12  and  11-13.
     In-the-flame  measurements  of gas  species  were  made  using both
stainless-steel and  quartz-lined  fast-quench sampling probes.   We con-
cluded from a comparison of the data that  either probe was suitable for
measuring NO.  However, we found an unexplainable change  in oxygen
concentration with sampling  time using the  quartz probe.   Therefore,
further measurements were  made using the stainless-steel type.
     Figures 11-100  and 11-101 show the gas sampling data  collected with
the quartz probe  from the intermediate-flame baffle burner (axial gas
nozzle) at axial positions of 5. 0 cm and  77. 5 cm,  respectively.   In
Figure 11-102,  these  data  for nitric  oxide are compared with  the data
taken with a stainless-steel  probe (Figures 11-81  and 11-87).   The two
sets of data agree to within 17 ppm or about 10%.   A portion of  this
difference is  caused by an error in  resetting the furnace,  which  was shut
down between  runs.   The  data also show that neither  of the probes  meas-
ured  consistently higher or  lower than  the  other.   Figures 11-103  to 11-112
show the data  of  Figures 11-100  and 11-101  with greater resolution.
Tables 11-14 and  11-15 show the  raw  data.
B.   Short-Flame-Length Ported  Baffle  Burner
     1.   Burner Design
     The  test burner used  for this study was  identical to that  used for
the intermediate-flame-length one except  for  the  angle  of the  ports in the
baffle.   (See  Figure 11-57. )   This burner was also studied with both the
axial and radial gas nozzles.  (See Figure  11-58. )
                                  124

-------
ro
I
(X

W*
P
n
X
o
o
2
H
s  VS NO,
 196.20
 135.26

 183.38
 182.44
"161.49 "
 180.55
 179.61
 I7B.67
 177.73
_1^76.79
 175.B5~
 174.90
 173.9t
 173.02
 172.OS
 LM.H
 1 70. 2C"
 169.26
 168.31
 167.37
 166.43
 165.49
 164.55
 163.61
 162.67
 161.72
 160.78
 159.64
 158.90
 157.96
 157.0?
 156.08
 155. U
 154. 19
 153.25
 152.31
  il.37
  iC.43
                                47. tr.

                                '.5.7?
                                44. 79
                                43.0-
                               i4i.:i
                               140.C7
                               139. 13
                               1 3d. 19
                                                                  BAFFLE - sraim.css PROBE - SEPT. 29, 197;
                                                                        —     -
                                                  C.4CC   12.6CC    le.fOO    /M.CCC    ?5.?C-;   ?".4CC   13.6CC   )7.aCC
                                                              RADIAL POSITION,  cm
                   Figure 11-90.   RADIAL  PROFILE  FOR NO WITH GAS  INPUT  OF  2147  CF/hr
               (Intermediate Flame Baffle  With  Axial Gas Nozzle  at an Axial  Position of  77. 5  cm,
                    Preheat  Temperature  of  570°F,  10%  Excess  Air,  and Stainless-Steel Probe)

-------
                 T2.
               .7tOC
               .7427

               . (C82
               .6910
               .6737

               .6392
               .6220
               .6C47
               .5875
               .5702
               .5529
               .5357
               .5184
               .5C12

               .4667

               .4322
                          AXIAL PLRNfcK - IMERKFPIATE RAfFLE - STAINLESS P'fOBE - iFPI. 21,1172
                        77.5C



^O
Vs**"*
^
£
W
0
^
k^
0
















.3976
.3BC4
.3631
.3459
.3286
.3114
!2769
.2596
.2424
.2251
.2C78
.1906
.1733
.1561
.1388
.1216
.1043
.0871
.0698
.0525
.0353
.CISC
.CCCU
1.9835
1.9663
).949C
J.9318
J.9145
3.8973
3.8800
                 O.OCC
                                                                \
                        4.200
                               8.40C   12.600    16.800   21.000   25.20C   29.40C   33.6CO

                                           RADIAL POSITION,  cm
    Figure  11-91.   RADIAL  PROFILE  FOR O2  WITH GAS INPUT OF  2147 CF/hr
(Intermediate-Flame  Baffle  With  Axial Gas Nozzle at  an Axial  Position of  77. 5  cm,
     Preheat Temperature  of 570°F,  10%  Excess Air,   and Stainless-Steel  Probe)

-------
                   Rf> VS. CO
                                  O*IAL BURNER - IDTERrEPKTE BtffLE -_§J^1NL£SS PROBE j^ SJTPT, 29.I9T2
                            4P- 77.50
             w
             Q
             Pi
             o
             o
             u
                    2.0323

                    1.9672
                    1.9021
                    1.6695
                    1.6370

                    1 .' 7 719
                    i.739~3
                    1.7067
                    I.6742
                    1 .6416
                    I.6091
                    1.5765
1.5114
1.4766
1.4463
1.4137
1.3611
1.3486
1.3160
1.2635
I.2509
1.2105
1.1656
1.1532
I.1207
1.0681
1.0555
1.023C
0.9904

0.9253
0.6927
0.61:02
C.di76
0.7951

t.7299
0.6974
                    0.5917

                    0.5346
                    0.5C2C
                    0.4695
                    C.4369
                                                 RADIAL  POSITION,  cm
   Figure  11-92.    RADIAL PROFILE  FOR  CO  WITH  GAS  INPUT OF 2147 CF/hr
(Intermediate-Flame Baffle  With  Axial Gas  Nozzle  at an Axial  Position of  77.5  cm,
     Preheat  Temperature  of 570°F,   10%  Excess  Air,  and  Stainless-Steel Probe)

-------
00
W
Q
»-i
X
o
2
I
2
O
n
                          o
* ^S CC2
 i.9tai
 B.9386
 H.9C91
 6.8796
 9.?501
 8.B2C6
 B.7911
 P.7tlfr
 0.7322
 6.7C27
 6.6732
 B.6437
 b.6I42
 H.5B47
 fl.5552
 6.5257
 d.<.<163
 H.
-------
                           	txui BURNER - JMERFEEIMe ,etf HE - STAINLESS PRUEE - SEP_T. ?9.iq??	
ro
                                                           It.POO
                                                                                             17.BCC
                                                       RADIAL POSITION,  cm

                 Figure  II-94.   RADIAL PROFILE FOR  CH4 WITH  GAS INPUT OF 2147 CF/hr
              (Intermediate-Flame Baffle  With Axial Gas Nozzle at an  Axial Position  of 77. 5  cm,
                  Preheat Temperature  of 570°F,  10% Excess  Air,  and Stainless-Steel  Probe)

-------
OO
o
                         I
                         04
                         w"
                         Q
O
u

H
i—i
2
1 /b -10.
 1-19. /2
 1 18.93
 11H.14
 1-J7.35
 r'6.56
 I TS.77
 144.
 IJ3.4C
 14?.61
 111.81
 111.C2
 190.73
 189.44
 IBB.65
 1H7.86
 1H7.C7
 Id6.2fl
 165.49
 184.70
 IB3.91
 183.12
 1«2.33
 tdl.S'.
 180.75
 171.96
 179.17
 1 '8.37
 177.i8
 176.79
 176.00
 175.21
 17*. <,?
 173.6)
 172.84
 172.05
 171.26
 170.47
 169.68
 168.89
 168.10
 167.31
 166.52
 165.72
 164.93
 164.14
1
-------
                      «
-------
tNJ
                  s
                  I-H
                  §
                  o
                  CQ
                  O
                                                      P.4FFLE  - SfMNLSSS PfCeF - SEPT. 21.\<>12
                          O.OOC
                                              12.000
                                                    16.000
                                                                         28.0CC
                                                                                32.CCO
                                                                                          T
                                                                                      J6.0CO
                                                                                             40.000
                                                    RADIAL  POSITION,  cm

                Figure 11-97.   RADIAL  PROFILE FOR  CO2 WITH GAS INPUT OF  Z147  CF/hr
             (Intermediate-Flame Baffle With  Axial Gas Nozzle  at  an Axial Position  of  152  cm,
                 Preheat Temperature  of 570°F,  10% Excess Air,  and  Stainless-Steel Probe)

-------
      w
      Q
      i—i
      X
      o
      2
      O
      2
      2
      o
      CQ
      U
 S. CO
 ".5 1C
 4276
 4C42
 38CB
 3575
 3341
 3107
 2873
 2639
 2406
 21_72_
.1938
, 1704
, 147C
.1237
, ICC3
,C769
.C535
.0301
.OC68
.9834
.9600
.9366
.9132
.8699
,8665
,e«31
.8197
, 796<.
, 7MC
.7456
.7262
,7C2>:
.6795
.6561
.6327
.tC93
,ses9
.5626
.5392
,5158
.
-------
                           axUL 8l-< - INtE^VECIaTE BAFFLE - SHINLbSS PPOB6 - SEPT.  29.1S72
            :> VS O4   a?.15J.5C
             P. 1 IPC
             r-.l I-.7
             O.U35
             i;. i 113
             OilCT
             r-.lC6e
             C. 1C46
             0.1C24
             0. 1CC1
             0.0912
             n.caio
             n.C667
             O.C845
             O.C623
             o.ceoo
             0.077H
             0.0756
      t$  .   0.073<.
      ^     O.C711
             O.C639
        W*     0.0667
             O.C6
-------
                       Table H-12.   DATA OBTAINED WITH STAIN LESS-STEEL PROBE
                        USING  AXIAL GAS NOZZLE AND AXIAL POSITION OF 77.5 cm
uo
(Jl
                                TRACER  GAS  STUDIES  OF  COMBUSTION  BURNERS  PROGRAM  2
                          AXIAL  BURNER  -  INTERMEDIATE  BAFFLE  -  STAINLESS PROBE - SEPT. 29tl972
       IMPUT GAS  2147
hALL TEMPERATURE   2570
PREHEAT  TEMPERATURE
                                                                             570
       OUTPUT  ANALYSIS
       NIT*UGCN OXIDE   29.10 PERCENT  UN  RANGE  1,
       CARKUN  DIOXIDE   82.50 PERCENT  ON  RANGE  1,
       CARBON  MON1JX1DF 11.60 PERCENT  ON  RANGE  3(
                                              3,
                      255.52  PPM
                       10.64  PERCFNT
                       0.004  PERCENT
                        0.00  PERCENT
           OXYGEN  2.63  PERCENT
SULTS


NITROGEN OXIDE -NC
*A.\GE
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
I
X
17.10
16.70
16.90
16. 2C
16.40
16. 80
16. 10
17.30
18.70
18.00
17. 3C
17.00
17.50
17.90
19.30
19. 70
20. 30
21.50
21.40
Y
147.0
143.4
145.2
139.0
140.8
144.3
1 38. 1
148.7
161.1
154.9
148.7
146. 1
150. 5
154.0
166.5
170.0
175.4
186.2
185.3

CXY&EN
02
4.76
4.45
4.24
4. 36
3.89
3.90
3.88
4.22
3.99
4.22
4.50
4.29
4.53
4.23
4.42
4.21
4.21
4.32
4.45



CARBON CIOXIOE-C02
RANGE
I
1
I
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
I
X
70.30
73.30
68.80
68. 3C
68.40
67.40
67.80
68.70
66.50
66.70
67.10
67.40
67.00
68.30
70.60
71.70
73.00
74.20
74.40
Y
8.17
8.75
7.88
7.79
7.81
7.62
7. 70
7.86
7.46
7.50
7.57
7.62
7.55
7.79
8.22
8.43
8.69
B.92
8.96



CARBON MONOXICE -CO
RANGE
2
2
2
1
1
1
1
1
1
I
1
I
1
1
1
1
1
1
1
X
63. 6C
7c.re~
80.80
43. 7C
46. 1C
49. 4C
55. 3C
53. 3C
54. SC-
SI. 80
54. 9C
51. 1C
49.10
41.20
43. OC
36. 9C
30.50
21.40
15.80
Y
1. 174
l.?n
1.549
1.522
1.635
I. 796
2. 097
1.993
2.C55
1.916
2.C76
1. 881
1.781
1.4C8
1.490
1.219
C.956
C.621
C.436



ft THANE - CH4
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
1.30
1'.60
1.5C
1.9C
3.6C
3.4C
4.CC
3.CC
2.8C
3.6C
2. 80
2.6C
2.40
"T. 10
2.20
1.70
1.3C
C.7C
C.60
Y
0.05
C.OT
0.06
0.08
C. 1 5
0.14
C.17
0. 13
0. 12
0.16
C.12
0.11
0.10
0.13
0.09
C.07
C.05
0.03
0.02

-------
                       Table 11-13.   DATA OBTAINED WITH STAINLESS  STEEL PROBE
                       USING AXIAL GAS  NOZZLE AND AXIAL  POSITION OF  152.5  cm
OJ
                                TRACER  GAS  STUDIES  OF  COMBUSTION  BURNERS  PROGRAM  2
                          AXIAL BURNER  -  INTERMEDIATE  BAFFLE  -  STAINLESS PROBE - SEPT. 29,1972
       INPUT GAS  2147      WALL TEMPERATURE   2570
       OUTPUT ANALYSIS
       NITROGEN OXIDE  29.1C PERCENT ON RANGE  1,
       CARBON DIOXIDE  82.50 PERCENT ON RANGE  It
       CARBON MONOXIDE U.6C PERCENT ON RANGE  3t
      PREHEAT  TEMPERATURE
           570
255.52 PPM
 10.64 PERCENT
 0.004 PERCENT
OXYGEN  2.63 PERCENT
METHANE
C.CO
PERCENT
ON RANGE 3, 0.
.00 PERCENT



EXPERIMENTAL RESULTS


152
152
152
152
l-)2
152
152
152
152

AP
.50
.50
.5C
.5C
.50
.50
.5C
.50
.50


C
5
1C
15
20
25
3C
35
40

RP
.00
.00
.CO
.00
.00
.00
.00
.00
.00
NI TRU
RANGE
1
1
I
1
1
1
1
1
1
GEN OXI
X
18. 7C
18. 5C
19. 10
2C.80
2C. 70
21. 10
21. 8C
22 .40
23.00
OE -NO
Y
161.1
159. 3
164.7
179.9
179. C
182.6
188.8
194.3
199.7
CXYGEN
C2
5.10
4.53
4.02
3.75
3.37
3.03
2.95
2.84
2.80
CARBON DIOX
RANGE X
1 74.40
1 76.00
1 75.90
1 76.00
-1 76.80
I 76.90
1 76.80
1 77.00
1 77.70
IDE-C02
Y
8.96
9.28
9.26
9.28
9.45
9.47
9.45
9.49
9.63
CARBON MONOX
RANGE X
2 15. 6C
2 23.20
2 34. 9C
2 50.60
2 67.30
2 74. 2C
2 76.00
2 76.40
2 70. 7C
ICE -CO
Y
C.258
C.391
C.604
0.907
1.253
1.402
1.442
1.450
1.326
                                                                                                   METHANE - CH4
                                                                                                   RANGE  X
3
3
3
3
3
3
3
3
3
C.OO
C.CO
C.OO
C.CO
C.CO
c.oc
0.00
c.oc
2.70
0.00
C.OO
0.00
0.00
0.00
0.00
0.00
d.oo"
0.11

-------
                                         aKHJL BURNER IMEHKECltTE BtFFlE CUtTI PR06C. SEPt. 'Zl, H7?'

                                            . -4P."  5.0C
                   o
                   tH
                   H
UJ
u
0

§
o
                       E
                        I

                       O
                        I
                        
-------
OJ
OO













o
H

-------
170
                                          O STAINLESS-STEEL  PROBE

                                          A QUARTZ PROBE
                                      I         I        I         I
           3.0
6.0
9.0
12.0     15.0     18.0
  RADIAL  POSITION , cm
21.0
24.0
27.0     30.0

     A-II2-IO67
33.0
      Figure II-10Z.   COMPARISON OF NO PROFILES TAKEN WITH STAIN LESS-STEEL
           AND QUARTZ PROBES  USING SAME  BURNER OPERATING CONDITIONS
               AND WITH SAMPLE LOCATED 77. 5 cm FROM BURNER BLOCK

-------
      £
      n
      w
      Q

      O
      U
                      »II»L BUKNSR 1\TER»ECI»TE BifFLf CU»«U PBOBE. SfPI. 29.1972
                                  •i.ccc   i?.one   is.coo   le.ccr    2i.ccc   2*.ccr   ?7.ccc   jc.ccc
                                RADIAL POSITION,  cm

  Figure  11-103.    RADIAL  PROFILE FOR NO  WITH GAS INPUT  OF 2141 CF/hr
(Intermediate-Flame Baffle  With Axial  Gas Nozzle  at  an Axial Position of 5.0 cm,
        Preheat Temperature of 570°F,  10%  Excess Air,  and Quartz Probe)

-------
      W
      O

      X
      o
              /S 02.
              12.40
              12.22
              12.03
              1 1.85
              11.66
              1 l.4b
              11.29
              11.11
              IC.T2
              10. '4
              10.55
              10.37
              10.16
              ic. or,

              9.61
9.07
8.69
8. '0
8.52
6.33
H. 15
7.96
7.78
7.59
7.41
7.22
7.04
6.85
6.67
6.46
6. 3C
6.11
5.93
5.74
5.56
5.37
5.19
5.00
4.62
4.63
4.45
4.2A
4.08
3.89
3.71
3.52
3.34
3. 15
2.97
                          4HIAL
                        5.CC
                                              B4FFU CuaOTZ Paoac. SEPT. 29.1972
                        3.000    6.COO    9.000   12.000    15.000    18.000   21.000
                                                                                     2T.OOO
                                                                                             30.000
                                          -RADIAL POSITION,  cm
   Figure II-104.   RADIAL  PROFILE FOR  O2 WITH GAS INPUT OF  2147 CF/hr
(Intermediate-Flame  Baffle  With Axial  Gas Nozzle  at an Axial Position of  5.  0 cm,
         Preheat Temperature of  570°F,  10% Excess Air,  and Quartz  Probe)

-------
                                        AXIAL _BMINER IMERKeclATE BAFFLE
                                       5. CO"       ------
                                                                       PHQ6E. SEPT.  29.1972
                    §
ro
H
W
s
        "5719-
         8.96
         8.T3
         B.50
         8.27
         8.04
         7.61
         7.58
         7.35
         7.12
         6.89
         6.66
         6.43
         6.?C
         5.97
         5.7*
         5.51
         5.28
         5.05
         4.82

         4is7
                             3.91
                             3.68
                             3.45
                             3.22
                             2.99
                             2.76
                             2.53
                             2.3C
                             2.07
                             1.84
                             1.61
                             1.38
                             1.15
                             C.92
                             C.69
                             0.23
                             o.cc
                                      3.TCC    6.0CC    9.COO   12.000    15.000    Ib.CCC   21.CCC    24.CC.C   ?7.CCC   30.000
                                                         RADIAL  POSITION,  cm
                  Figure 11-105.   RADIAL PROFILE  FOR CH4 WITH  GAS  INPUT OF  2147  CF/hr
               (Intermediate-Flame  Baffle With  Axial Gas Nozzle  at  an Axial  Position  of 5.0  cm,
                         Preheat Temperature  of  570°F,   10%   Excess Air,  and Quartz Probe)

-------
OJ
                                                                             *.000
                                                                                   27.000
                         O.OOC    J.OCO   6.000    4.000   12.COO   15.000   16.000  21.0CC

                                              RADIAL POSITION,  cm

                Figure 11-106.   RADIAL  PROFILE  FOR CO  WITH GAS  INPUT  OF  2147  CF/hr
              (Intermediate-Flame Baffle With Axial Gas Nozzle at an Axial Position  of  5. 0 cm,
                      Preheat Temperature  of  570°F,   10%  Excess Air,  and Quartz Probe)

-------
               	 .    AXIAL ^Blil>SER_I^IE«l«UAtt BAFFLE CUAHIi PROBE. SEPT.. 29. 1972
9.74
9.61
906
9.23





_____







^5.
o**

W
a
§
Q

Z
0
«
fyt
*i<
^j
u












9.10
8.97
a'. 12
8.59
8.46
"~B7TT
6.21
8.08
7.95
7.83
7.70
r~; 57
7.44
7.32
7.19
7.06
6.9}
6.81
6.68
6.55
6.30
IS. 17
6. (14
5.92
5.79
5.66
si41 •
5.26 \.
5.15 \
5.02
4.90
4. (7
4.64
4.51
4.39
4.26
4.13
4.CC
3.68
3.75
3.62
3.49
3.37
3.24
             c.ocr.   j.ccc   (..ooc   ;.ocs   12.000   is.cso   le.ccc   2i.ccc   ?<..ccc  'ZT.OCC   so.ceo

                                  RADIAL  POSITION,  cm


  Figure 11-107.   RADIAL  PROFILE FOR  CO2 WITH GAS  INPUT OF  2147 CF/hr
(Intermediate-Flame  Baffle  With  Axial  Gas  Nozzle at  an Axial Position of  5.0 cm,
         Preheat  Temperature  of  570°F,  10%  Excess Air,   and Quartz  Probe)

-------
                                     «XI»L BuHNfcK IME4»edafF BAFFLE _CU*RIZ CJIOBC.. i.EP.1 .
                                «P~« 77.50            "        "  .........
                                                                           , 1972
(Jl
                            0.000
                                          7.200
                                                10.800
                                                              ia.ooo
                                                                     21.600
                                                                            25.200
                                                                                   28.600
                                                                                          J2.4CO
                                                                                                 36.OOO
                                                 RADIAL POSITION,  cm

                 Figure 11-108.    RADIAL  PROFILE  FOR  NO WITH  GAS INPUT OF Z147 CF/hr
              (Intermediate-Flame  Baffle With Axial Gas  Nozzle  at  an Axial Position of  77.5  cm.
                       Preheat Temperature  of 570°F,  10%  Excess  Air,  and  Quartz Probe)

-------
                     4«Ul .ROOMER IMERfECHTf BAFfLE CU»RU PROBE, SEPT. 29.1972
         4.3900
         4.3680












^x.

•h

w
o .

X
0


















b.2802
k.2S82
.2363
.21*3
.192*
.1(04
. 1*8*
.1265
.10*5
.0825
.0606
.0386
'.0167 ~ '
.9947
.9727
.9508
.92B8 /
.9069 f
.88*9
.8629
.8*10
.8190
3.7971
3.7751
3.7531
3.7312
3.7092
3.6873
3.6653
3.6*33
3.621*
3.5994
3.5775
3.5555
.5335
.5116
.4896
.4676
.4457
.4237
.4CI8
.3798
.3578
.3359
.3139
3.2920
3.2700
            C.CCC
                                 1C.BOO
                                        14.400
                                              18.000
                                                     21.400
                                                            2J.2CC
                                                                   26.8CC
                                                                          J2.4CO
                                   RADIAL POSITION,  cm

   Figure  11-109.   RADIAL PROFILE  FOR O2 WITH GAS  INPUT OF  2147  CF/hr
(Intermediate-Flame Baffle With Axial  Gas Nozzle at  an Axial Position of  77.5 cm,
         Preheat  Temperature  of 570°F,  10%  Excess Air,  and Quartz  Probe)

-------
                      AIIAL 5U3\t»
                                        P.SfFLE CUARI2 PRllHE. SCOT. 29,1972




















o
0s*

•t
w
§
ffi
H
W

^

















ttf> ii CH4 »P. 7,7. 5C
1.2J4)
C.25C7
(-.2*70
0.24)3
C.2317
0.236C
C.2)2)
."..22B7
C.225T
0.221)
0.2177
0.2140
D.2IO)
0.2C66
0.2OO
C. 1956
C. 1920
C. 188)
0. 1846
0.1810
C.1773
C.1736
0.170C
0.166)
0.1626
0.1590
0.155) •
0.1516 ' i
0.1480 • 1
0.144) 1 |
0.1406 1 |
0.1)70 1
0.1))) 1
0.1296 1
0.1259 1
0.122) 1
C.1186 I
0.1113 \
0.1076 I
0.1C39' "T~
0.1C03 \
0.0966 I
0.0929 \
0.0893 \ I
0.0856 \ i
0.0819 \
0.078) \ '
0.0746 \ /
0.0709 \/
0.067) *
             0.000    3.6CO    7.200   10.800   14.400   18.000  21.60C   2S.2CC

                                    RADIAL  POSITION,  cm
                                                                   28.SCO
                                                                          12.*CO
                                                                                 36.000
   Figure  11-110.   RADIAL  PROFILE FOR CH4 WITH  GAS INPUT OF  2147  CF/hr
(Intermediate -Flame Baffle  With  Axial  Gas  Nozzle at an  Axial  Position of  77.5  cm,
         Preheat Temperature of  570°F,  10% Excess  Air,  and  Quartz Probe)

-------
                                        i\tt»*tei»tE
00
»v
2
)
2
2
}
2
2
}
2
i

,

1
«
Q
Sc
O
J^
O
2
O
CQ
63
U












«S. C3
.3061
.78**
.2618
.2393
.21*9
. T9 * 2
.1717
.1*92
.1266
.10*1
.CE16
.059C
.C36-)
.01*0
, 4*6*
.92 39
,8701)
.8563
.8337
.oil?
.7681
.7661
.7*36
. 7211
.6986
.676^
.6535
. 6 » I C
.6C8*
.563*
.5*C8
.*733
.4507
.*C57
.3831
.3361
. 3155
. 2". jC
.27C5
.2*71
.225*
.2C29
.180*
. 1578
                           «P- 77.bC
                                                      CUA°TJ PROBE. SEPT. 2«.
                       o.occ.
                                          io.«cr
                                                        le.coo
                                                               /1.6CC
                                                                     25.2CC
                                                RADIAL  POSITION,  cm

                 Figure 11-111.   RADIAL PROFILE  FOR  CO WITH GAS INPUT OF  2147  CF/hr
              (Intermediate-Flame  Baffle With Axial Gas  Nozzle  at an Axial Position  of 77. 5  cm,
                      Preheat  Temperature of  570°F,  10% Excess  Air,  and Quartz Probe)

-------
                /s c;v
                            HI4L HI, -Tito l\fi««TI»I =  f.f
                      as*  71. iC
                                                                      "'.l"!72
         w
         Q
         8
         Q
         O
         CQ
         O
               i.etll


               8.6CH7
               I1. »» 9C
                 nli
                 <.7P
8.2650
5. K.3S
C.I 2)6
8. 1C33
->.CcSl

8.0427
0.0225
               7.9821
               7.9619

               7.92H
               7.9C12
               7.661C
               7.8tOB
               7.lj<.06
               7.620'.
               7.6C02
               7.7799
               7.7597
               7.7395
                  C.OCT     3.6CC    7.200   in.BCC   U.tOO    18.000   21.6CC   25.2CC    28.CCC   32.4CC   36.0CO

                                      RADIAL POSITION,  cm

   Figure n-112.   RADIAL PROFILE FOR  CO2  WITH  GAS  INPUT  OF  2147  CF/hr
(Intermediate-Flame  Baffle With Axial  Gas  Nozzle  at an Axial  Position  of 77.5 cm,
          Preheat Temperature  of  570°F,  10%  Excess  Air,  and  Quartz Probe)

-------
                             Table  H-14.   DATA OBTAINED WITH QUARTZ PROBE
                        USING AXIAL GAS  NOZZLE AND AXIAL POSITION OF  5.0 cm
Ul
o
                                TRACER GAS STUDIES OF COMBUSTION BURNERS  PROGRAM  2
                          AXIAL BURNER INTERMEDIATE BAFFLE QUARTZ PROBE. SEPT.  29.1972
INPUT GAS 2i<.7 V.ALL TEMPERATURE 2560 PREHEAT TEMPERATURE 570
UUT->UT ANALYSIS
M1IROGEN OXIDE 27. BO PERCCNT ON RANGF 1,
CARBON DIOXIDE 8C.9C PERCENT ON RANGE 1.
CARdON MQ-JUXIDE 19.30 PERCENT ON RANGE 3,
METHANE C.CO PERCENT ON RANGE 0,

243.52 PPM
10.30 PERCENT
0.008 PERCENT
0.00 PERCENT

OXYGEN 2.98 PERCENT



EXPERIMENTAL RESULTS
NITROGEN OXIDE -NO
AP RP RANGE X Y
5.00 C.OO 1 18.50 159.3
5.0C
5.0C
•i.OC
3.0C
5.0C
5.0C
D.OC
5.00
5.0C
5.00
5.00
5.00
5.00
5.00
5.00
2.0C
4.00
6.0C
8.00
1C. 00
12.00
14.00
16. CO
18.CC
2C.OO
22.00
24.00
26.00
28. OC
30.00
1 18.60
1 18.70
I 16.50
I 13.40
1 1C. 10
1 9.20
I 7.40
1 6.40
1 6.60
1 6.20
1 6.90
1 13.60
I 16.60
1 16.80
1 16.40
160.2
161.1
141.7
114.5
86.0
78.3
63.0
54.5
56.2
52.8
58.7
118.0
142.5
14.4 .3.
140.8
CXYGEN CARBON C10XID6-C02
02 RANGE X Y
2.97 I 54.30 5.40
3. 15
3.27
3.75
5.51
7.41
9. 16
9.90
11.15
12. 1C
12.40
10.90
5.51
4.50
4.10 	
3.80
1
1
1
1
I
1
1
1
1
i
1
1
1
_!
1
51 .90
52.90
54.70
57.40
57.60
55.10
49.60
44.40
40.80
38.80
49.00
68.90
76.00
78.20
77.30
5.03
5.18
5.46
5.89
5.92
5.52
4.69
3.96
3.48
3.23
4.60
7.90
9.28
9.73
9.55
CARBON MONOXIDE -co
RANGE X Y
1 81.70 3.674
1
1
1
I
I
1
2
2
2
2
3
3
3
3
3
76.60
76.80
73.40
60. 6C
48.90
33. OC
37. OC
16.60
8.9C
5.9C
61. 3C
12. 7C
6.90
6.20
6.50
3.340
3.353
3. 138
2.384
1.771
1.C56
C.643
C.275
C. 145
C.096
C.028
C.CC5
C.002
C.CC2
C.002
METHANE - CH4
RANGE X Y
1 66. 8C 10.37
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
72.20
7C.80
59. 10
32. 2C
19. 7C
22.00
4.30
1.00
1.00
1.00
. C.CO
0.00
O.CO
C.OO
C.OO
11.71
11. 35
8.59
3.59
1.91
0.96
0.18
0.04
0.04
0.04
0.00
0.00
0.00
0.00
0.00

-------
 Table 11-15.   DATA OBTAINED WITH QUARTZ  PROBE USING
  AXIAL  GAS NOZZLE AND AXIAL POSITION OF 77. 5 cm
      TRACER  GAS  STUDIES OF COMBUSTION BURNERS   PROGRAM  2
AXIAL BURNER  INTERMEDIATE BAFFLE QUARTZ PROBE,  SEPT.  29,1972
INPUT GAS 2147
OUTPUT ANALYSIS
NI TROGEN OXIDE
CARdON DIOXIDE
CARdON MONOXIDE
WALL TEMPERATURE 2560
27.80 PERCENT ON RANGE 1. 243
80.90 PERCENT ON «ANGE 1, 10
19.30 PERCENT CN RANGE 3, 0.
KFTHANE C.OO
(EXPERIMENTAL RESULTS
PERCENT
ON RANGE 0, 0
NITROGEN OXIDE -NO
AP
77.50
77. 50
77.50
77.50
77.50
77. 50
77.50
77. 5C
77. 5C
77.50
77.50
7 7.50
77.50
77.50
77.50
77.50
77.50
77.50
77.50
RP
0.00
?.oo
4.0C
ft. 00
8.00
1C. 00
12.00
14. OC
16.00
18.00
2C.OC
22.00
24.00
26.00
28.00
30.00
32.00
34.00
36.00
RANGE
1
I
1
1
I
I
1
1
1







1
1
1
X
15.40
15. 7C
14.80
16. 7C
16. 3C
18.00
17. 7C
16.30
16. 50
16.60
18.20
17. 8C
19.00
19.80
21.20
21.70
23.90
24.00
27.60
Y
132.0
134.6
126.7
143.4
139.9
154.9
152.3
139.9
141.7
142.5
156.7
153.1
163.8
170. 9
183.5
187.9
207.8
2C8. 7
241.6.
OXYGEN
02
3.90
3.96
3.39
3.91
3.88
4.39
3.40
3.40
3.27
3.44
3.41
3.29
3.44
3.51
3.47
3.70
3.84
3.78
4.04
PREHEAT TEMPERATURE 570
.52 PPM OXYGEN 2.98 PERCENT
.30 PERCENT
008 PERCENT
.00 PERCENT
CARBON DIOXIDE-CO?
RANGE
1
1
1
1
1
1
I
I
1
1
I
1
1
1
1
1
1
1
I
X
73.40
72.30
72.70
70.60
70. 70
68.00
69. 30
69.00
68.60
68.60
68.30
68.20
68.80
69.20
69.60
70.50
71.20
71.20
72.10
Y
8.77
8.55
8.63
8.22
8.24
7.73
7.98
7.92
7.85
7.85
7.79
7.77
7.88
7.96
8.03
8.20
8.34
8.34
8.51
CARBON MONOXICE -CO
RANGE
2
2
2
2
2
I
1
I
I
1
I
1
1
1
1
1
1
1
1
X
62. 8C
77. 2C
86. OC
72. 4C
92.30
42. 9C
51.20
50. 7C
58. 8C
59. 2C
59.10
55.20
53. 9C
55.40
53. 3C
45. 3C
44. 3C
36. 9C
35. 9C
Y
1.157
1.468
1.667
1.363
1.813
1.485
1. 806
1.860
2.285
2.306
2.301
2.C92
P.C24
2. 102
1.993
1.597
1.550
1.219
1.177
METHANt - CH4
RANGE
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
X
3.4C
1 . 5'0 '
3. 60
2. 30
2.6C
3.2C
4.80
4. 70
4.80
5.4C
5.9C
5.6C
5.00
4.2C
3.20
2.3C
2.20
1.9C
1.8C
Y
C. 14
C . 06
C. 15
0.1C
C.ll
C.13
0.2C
0.20
C.20
0.23
0.25
0.24
0.21
C.13
0.13
C. 1C
0.09
C.08
0.07

-------
    2.   Tracer-Gas Studies
    The tracer-gas mixing study for the axial burner with the short-flame
ported  swirl baffle  is presented in Figure 11-113.   This  scan,  taken at
an axial position  of 5. 1  cm,  shows  that the radial concentration readings
are very near to ambient,  thus  indicating that mixing would be  complete
at this  position.   We conclude that the major  mixing phenomena are oc-
curring  in the burner block,  which is an area into which we cannot probe
with our  equipment.   The scope of the project included only areas outside
the burner block  and  in  the "combustion chamber. "
Z 500
o
I— Af\r\
< *uu
£E
i_ "*nn
zE 30°
LJ Q.
0°- 200
8 100
O
o
•

.1 ....

'V i
1
; ! i
' ! i i •: ' :
. i 1 i : . :
. , .... .(. .... ...
' i ! i i : '
:.;!!'.:
i i
t

, j .
.. .,
|
• ' ; ! -
i

i

i
i











•

t
1
!
.: ..
I
i
!
"I
"! "



'




,
















            -30       -20      -10        0        10
                                RADIAL POSITION, cm
20
30
                                                              A-62-534
       Figure H-113.   RADIAL CONCENTRATION PROFILE OF
      CARBON  MONOXIDE FROM THE AXIAL BURNER  FITTED
         WITH THE SHORT-FLAME PORTED  SWIRL BAFFLE
          [Air  Velocity,  55 ft/s; Gas Velocity (air),  270  ft/s;
                 1000:1 Air/CO Ratio  in  Gas Stream]
     3.   Cold-Model Velocity Data
     The raw pressure data  for the axial  burner, fitted with the short-
flame ported  swirl  baffle,  are given in Table 11-16; the reduced profile
data are  listed  in Table 11-17.   Figure 11-114 shows the  axial  velocity
at an axial position 5. 1  cm  from the burner wall.   Note that  there is  no
central peak representing  the output from the gas nozzle.  In fact,  the
velocity data in  the central  region  of the burner block at radial positions
of ±12  cm show reverse  flow.   Forward velocity peaks do occur  at radial
positions of ±18 cm with magnitudes of 32.7 and 21.7 ft/s.  Figure 11-115
                                   152

-------
           Table 11-16.   RAW VELOCITY DATA FOR  THE  AXIAL  BURNER WITH  THE
          SHORT-FLAME  PORTED SWIRL  BAFFLE AT  THE 5.1-cm AXIAL  POSITION
                              AERODYNAMIC MODELING OF COMbUSTIO'4 BURNERS
CALIBRATION CUE FF 1 C I E.4 T S FOR FORWARD FLOW
Al =   0.770590   A2 =   0.272353   A3 =  -0.059818
QO =   0.7^7720   B2 =  -0.158821   84 =   0.129246
C  =   4.464660   D  =   0.394812
                    AXIAL BURNER «'ITH BLOOM BAFFLE FOR SHURT FLAMt - COLO MODEL
TOTAL DATA INPUT
THETA
0.
0.
0.
a.
0.
0.
1UO.
100.
180.
180.
ieo.
ICO.
1BO.
180.
1 bu.
0.
0.
0.
0.
0.
0.
AP
b. I
5. 1
5. 1
5. 1
5. 1
5.1
5. I
5. I
5. 1
5. I
5. I
5.1
5.1
5. 1
5. 1
5.1
5.1
5.1
5. 1
5. 1
5.1
RP
-30.0
-25.0
-23.0
-21.0
-18.0
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
3.0
6.0
9.0
12.0
15.0
18.0
21.0
23.0
25.0
30.0
                              P13
                           21200.00
                           -4430.00
                             848.00
                             107.00
                            1340.00
                           -1300.00
                            1840.00
                             644.00
                            1400.00
                            1860.00
                           24700.00
                           15600.00
                           -5120.00
                           -1290.00
                           -1700.00
                             456.00
                            1080.00
                             328.00
                            3980.00
                            3280.00
                            5120.00
   P03
 5500.00
23000.00
 2440.00
   88. 10
  141.00
  613.00
 I 140.00
  807.00
  388.00
  336.00
  318.00
  363.00
  578.00
 1310.00
 3100.00
  518.00
  272.00
  686.00
12300.00
 3100.00
 3500.00
   P24
 5280.00
19200.00
 -535.00
  -44.20
  -32.30
 -104.00
  574.00
  363.00
  230.00
  322.00
 1280.00
 7160.00
 -402.00
 -297.00
 -468.00
  153.00
   72.80
   88.40
  551.00
 1530.00
 2440.00
   P04
 4490.00
 7380.00
-2030.00
 .-95.00
  -69.80
 -151.00
  602.00
  365.00
  295.00
  284.00
  313.00
  470.00
 5300.00
 -709.00
 -760.00
  387.00
  142.00
  172.00
 1390.00
 3200.00
 3900.00
POA"
79.00
79.00
88.00
56.80
77.80
ircroo
156.00
138.00
114.00
117.00
104.00
" " 106.00" ~
136.00
' 172.00
175.00
I4o;oo~
104.00
TzrroTj 	
85.00
79700"
77.00
r~"
20.
20.
20.
20.
20.
T7J7
20.
20.
20.
20.
20.
-2TT.
20.
20.
20.
20.
20.
"20.
20.
20."
20.
PB
760.
760.
760.
760.
760.
7~5C".
760.
760.
760.
760.
760.
	 T60.
760.
760.
760.
	 7*0.
760.
— r& a;
760.
" 760.
760.

-------
   Table  11-17.   COMPUTER REDUCED DATA FOR THE AXIAL BURNER WITH
THE SHORT-FLAME PORTED SWIRL BAFFLE AT  THE  5.1-cm AXIAL POSITION
          AXIAL BURNER  WITH BLOOM BAFFLE FOR  SHORT FLAME - COLO  MODEL
                                                                                            ,.-.
AP
5.
5.
•3.
•3.
5.
5.
5.
•3.
5.
5.
5.
5.
5.
5.
•>.
5.
5.
5.
i.
5.1
•>.
RP
-30.0
-25.0
-23.0
-21.0
- 18.0
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
3.0
6.0
9.0
L 12.0
15.0
18.0
L 21.0
23.0
25.0
L 30.0
F I
14.6
18.5
50.4
41.4
43.4
55.3
155.0
148.6
154.6
165.0
176.6
175.6
163.6
143.0
131.3
55.2
44.0
55.9
62.6
45.6
33. 1
DELTA
103. V
12.9
237.7
247.5
268.6
274.5
252.6
240.5
260.6
260.1
266.9
245. 3
85.5
77.0
74.6
108. 5
93.8
105.0
97.8
115.0
115.4
RHO
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
0.0000159
V
5.35
5.30
12.05
40.98
45.07
26.02
12.94
16. 16
20.40
21.65
23.27
20.93
18.25
15.91
12.46
21.01
30.20
26.80
10.93
6.92
6.03
VX
5.17
5.02
7 .66
30.72
32.70
14.78
-11.73
-13.80
-18.44
-20.92
-23.23
-20.87
-17.52
-12.71
-P. 24
11.98
21.71
15.02
5.02
4.83
5.05
VY
-0.32
1.63
-4.96
-10.3-i
-0.74
1.70
-1 .62
-4. 13
-1.41
-0.95
-O.Of
-0.66
0.40
2. 14
2.48
-5.49
-1.41
-5.77
-1.33
-2.09
-1.41
Ml
1.31
0. 37
-7.86
-25.06
" -.31.00
-21.34
-5.21
-7.32
-8.60
-5.49
-1.36
-1.45
5.11
9.32
9.01
16.37
20.95
21.44
9.61
4.48
2.97
VT
-1.35
-1.67
-8.97
-26.51
-29.95
-19.21
-5.35
-7.95
-8.09
-5.08
0.00
1.58
4.97
8.30
8.42
15.50
20.25
20.89"
8.92
4iB4
3.27
VR
0.06
0. 11
2.41
5.68
8.04
9V55 "
1.06
2.74
3.25
2.30'
1.36
0770
1.23
3.75
4.06
7.59
5.55
7.50
3.82
r.Di —
0.36
P-ST' ~ 	
0.012203
0.012221
0.011343
0.015021
0.011108
0;0~OBB35 ~
0.005378
0.006C57
0.006383
0.005086
0.005141
0". 005 795
0.004927
0.005047
0.005729
0.008304 '
0.008909
0.015526
0.012174
'OVOTZ4-01 	
0.012597

20.
20."
20.
20.
20.
20.
20.
20.
20.
"20 '.- '
20.
zu.
20.
20.
20.
-2TJ7—
20.
20.
20.
~zo;
20.
PB
760.
760.
760.
760.
760.
"T60.
760.
760.
760.
760\
760.
76O.
760.
/6~0.
760.
760.
760.
760.
760.
T60.
760.

-------
                        &XI&L BURNER WITH BLOUH  BAFFLE  FOR SHORT FLAME - COLO MODEL
•
















' VS. VX
32.71
31 .61
10.52
29.4?
28.32
27.22
26. 13
25.03
2 3". 9 3
22. b4
20.04
t •} . 5 5
Id. 43
17.35
16.26
15. 16
14.06
12.96
11.87
10.77
8.58
7.48
6.38
5.29
4. 19
3.09
1 .99
0.90
-0. 19
-1.29
-2.38
-3.48
-4.58
-5.67
-6.77
-7.M7
-8. 96
-10. Oo
- 1 1.16
-12.26
-13.35
-14.45
-15.55
-16.64
- t 7.74
-18.84
-19.93
-21.03
"- 22 . 1 3
-23.23
         -30.000   -24.000   -IB.000   -12.000
                                             -6.000    -0.000     6.000

                                               RADIAE POSITION, cm
                                                                       12.000
                                                                               18.000
                                                                                        24.000
                                                                                                30.000
Figure 11-114.    AXIAL VELOCITY  PROFILE FOR  THE  AXIAL BURNER WITH THE
    SHORT-FLAME PORTED SWIRL  BAFFLE  AT  THE  5.1-cm AXIAL  POSITION

-------
shows a tangential velocity of 29. 9 ft/s  radially at —18 cm and  ZO. 9 ft/s
and +18 cm.   The reason for the  antisymmetrical velocity arises because
the baffle is rotated in such  a way that  more  output  is directed into  the
negative y-region of the probing plane than into the  positive y-region.
We-did not  take velocity  profiles beyond the 5. 1-cm  axial position because
primary mixing  is completed, as indicated by Figure 11-112 and by our
earlier discussion.   A swirl  number for the axial burner with the short-
flame  ported  swirl baffle was calculated using  the data in Table 11-17.
The  value of  swirl intensity was  0.43.
    4.   Hot-Model Input-Output  Data
    The burner  with a radial gas  nozzle (short flame) was operated  at a
gas input of 2593 CF/hr,  •with amounts  of excess  air between 5  and  20%
and at three different  preheated air temperatures.   Figure 11-116 shows
the input-output  data for  the  radial gas nozzle  at a 2593  CF/hr gas  input
as a  function of excess air and  preheat  temperature.   The peak concen-
tration of NO  can be  seen to shift  toward higher excess  air levels as the
preheated air  temperature increases.
    Input-output tests  were conducted for  the  short-flame baffle  with the
axial  gas nozzle (long  flame) at three  gas inputs between 1769 CF/hr and
2415  CF/hr,  with amounts  of excess air between 5%  and 20%  and at three
different preheats.  Figures  11-117, 11-118,  and 11-119 show  these input-
output test  results.   Increasing  the  preheated  air  temperature from  100°
to 550°F results in  a  nonlinear increase in the amount of NO  emissions
at a given level of excess air.   The nature of these  emission  curves is
in sharp contrast to the "bell-shaped" characteristics displayed by the
radial gas nozzle.   Note  also that  the emission curves taken at  ambient
conditions  suggest that the  amount  of NO formed is  relatively independent
of the excess  air level above 2. 5%  oxygen in  the  flue.
    5.   In-the-Flame  Data Survey  Results
    As part of this program,  we again  radially mapped the concentrations
of CO,  CO2,  CH4,  O2,  and NO;  the  temperature; and  the gas velocity.
This  information is obtained  to gain insight into the mechanism and  loca-
tion  of NO  formation  for  different flame conditions.
                                   156

-------
01
KP


























'.
£
. .
>•
t^
U
s
.w
'*"

















VS. VT
20.90
19.90
18.91
17.91
16.91
li.91
14.92
13.92
12 . 92
11.93
10.93
9.93
8.93
7.94
6". 94
5.94
4.95
3.95
2.95
1.95
0.96
-0.03
-1.03
-2.02
-3.02
-4.02
-5.02
-6.01
-7.01
-8.01
-9.00
-10.00
-11.00
-12.00
-12.99
-13.99
-14.99
-15.98
-16198
-17.98
-18.98
-19.97
-20.97
-21.97
-22~.96
-23.96
-24.96
-25.96
-26.95
-27.95
-28T9-S"
-29.94
                                »P=
                                    5.10
                                            -SURNEft  WITH BLOOM BAFFl/E FOR SHUBT  FLAME -COLD MODEL
                         :30.000  -24.000   -18.000   -12.000    -6.000    -0.000

                                   ~~             	RADlAL'-POSITI
-------
       800
       700
       600
     Q.
     «: 500
     LJ
    o
       400
       300
       200
        00
                                          3          4
                                      02 IN FLUE,%
                                                         A-122-1229
Figure 11-116.  NO CONCENTRATION IN THE  FLUE AS A FUNCTION
     OF EXCESS AIR  (Short-Flame  Baffle -  Radial  Nozzle)  AND
     PREHEATED AIR TEMPERATURE; GAS  INPUT, 2593 CF/hr
                                  158

-------
      300
   E
   Q.
   a.
   u.
   z
   O
      200
       100
       50
                                                  600° F PREHEAT
                              2          3

                                02 IN FLUE , %
 5.5
                                                     A-I22-I230
Figure 11-117.  NO CONCENTRATION IN THE  FLUE AS  A FUNCTION
   OF EXCESS AIR  (Short-Flame Baffle - Axial Gas Nozzle) AND
     PREHEATED AIR  TEMPERATURE; GAS INPUT, 1769 CF/hr
     400
  E
  Q.
  O.

  UJ
  ID
  O
     300
     200
      100
       50
                             2          3

                              02 IN FLUE,%
5.5
                                                      A-122-1231
  Figure  11-118.  NO CONCENTRATIONS  IN THE FLUE GAS  AS A
FUNCTION OF  EXCESS AIR (Short-Flame Baffle - Axial Gas  Nozzle)
  AND PREHEATED AIR TEMPERATURE; GAS INPUT,  2109 CF/hr
                                 159

-------
   450

   400
E
Q.
Q.
UJ
G!  300
        200
        100
                                                    485°F PREHEAT
                                                    230°F PREHEAT
                                              90*F PREHEAT
                                 02 IN FLUE,%
                                                        A-122-1232
   Figure  11-119.   NO  CONCENTRATION  IN THE FLUE GAS AS  A
 FUNCTION  OF  EXCESS AIR (Short-Flame Baffle - Axial Gas  Nozzle)
  AND  PREHEATED AIR TEMPERATURE; GAS INPUT,  Z415 CF/hr
    We first completed gas  species,  temperature,  and velocity mapping
for the  short-flame baffle  burner with the axial gas nozzle.   The maps
•were  obtained while operating the  burner at conditions of intermediate-
level  NO production as  determined from the input-output data tests.
Additional  gas species mapping was performed while operating the burner
at conditions producing  the maximum amount of NO.
    Profiles were first run  by scanning the radial axis with the gas-
sampling probe moving  at  a constant velocity  (approximately 1.5  cm/s),
with the gas  species concentrations  being  displayed  by a high-speed  rec-
ord.   These  scanning traverses were made  at  30-cm  intervals  from the
burner  wall.   These data were then inspected from the degree  of primary
and secondary combustion  as well as the NO concentration and  its varia-
tion with radial  position.   From these  analyses,  we determined that a
point-by-point time-averaged measurement  of the  gas  species,  temperature,
and velocity would be taken  at  axial positions  of  7. 6 cm,  45. 7  cm,  and
90 cm.
                                  160

-------
     The profiles were first  run on the axial  burner with the short-flame
ported baffle  with  the  input  conditions set at  2190 CF/hr gas input,  with
a  315°F  preheat temperature and 3%  excess oxygen.   Figure 11-120 shows
a  composite of the gas-sampling profiles taken at an axial position of 7. 6
cm from the  burner block face.  These curves show (curve M)  that
methane concentration was in excess  of 20%  on the  axis  of  the burner
(0. 0 cm).   The  carbon monoxide (curve C) varied between 4 and 6%  in
the region of the burner block  (from  +21 cm to —21 cm)  to  a minimum
of 300 ppm near the  sidewalls  of the furnace.  Oxygen (curve O) varied
from 1.2%  on the  center line to a  maximum of 13. 1%  at a 24-cm  radial
position  to  a  recirculation value of 4. 1%.  Nitric oxide (curve  N) had a
maximum of  215 ppm  at the center line and a  minimum  of  69 ppm at a
radial position  of  21  cm.  Carbon dioxide (curve D) varied  from about
3% at the  center line  to 10% in the recirculation  zone.
     The curves  of Figure  11-120 were plotted on  a single 0-24%  scale
because  of  computer  limitations.   The  following legend applies  to this
figure and some of the others (computer print-outs) that  follow:
     AP = axial position
     RP = radial position
     The actual data  were  collected on a  range  of  concentrations which
provided greater resolution  of the  measuring equipment  as shown in
Figures  11-121  to 11-125.   The  raw data  are  given  in Table 11-18.
     Figure  11-126  shows the temperature profile across the furnace at
the 7. 6-cm axial probe position.   These data  support  the gas  concentra-
tion analysis  in  that the  "cold"  region (temperatures below the  2475°F
ambient) of the flame  front  corresponds to positions of high oxygen (21
cm and —21 cm) and methane (3 cm)  concentrations, with the hot regions
(temperatures above 2475°F  ambient)  (15 cm  and  —15 cm) appearing on
the shear (high-mixing) area between these high oxygen and methane
concentrations.
     Figure  11-127  displays the axial component of velocity as a  function
of radial position at a 7. 6-cm axial probe position.   There are peaks in
the forward velocity at —18  cm,  6 cm,   and 21  cm.  By  comparing these
peaks with the temperature  and gas concentration  analysis,  we  can con-
clude that  very good agreement exists about the position  of  the high
                                   161

-------
  /S NU,
  2 4.'30

  23.34
  22.R7
  22.31
  •M.ll
4XUL tfuRNE* SiiU'U STAINLESS SHEPHERD'S PROBE, NOV.3,1972

                                   H-M—H-


8-
p,'
a
o
o
o
27
O o
H £
^C
CM o^*1
H '
2 Q
W M
u
20"
8U.
M
O
*
^J«
K
U







20.48
2C.OI
19.53
19.06
1 8 ."SB
It). 10
17.63
17.15
16.67
1 6'.' 20
15.72
1 S . 2 •)
14.77
13!e2
13.34
12.86
11.91
11.43
in. ll,
IC.4U
in. Oi
H.SH
.9.10
7.02
7.15
(. . (, 7
b'72
j!2«.
4.21
3.C1
2.^n
1 . '.' l
1 .43
C.4o
o.ro
                                                                                   u	D
   -oO.OCf-
           -48.600   -37.20&   -2S.SOO  -14.400
                                           -3.000
                                                    a. 400
                                                           19.800
                                                                   31.211:   '.2.600
                                                                                   c	c
                                                                                   S4.000
                               RADIAL POSITION,  cm
   Figure  11-120.   COMPOSITE PLOT OF  GAS  SAMPLING  PROFILES
 FOR  CO,  CO2,   CH4,  NO,  AND O2 FOR THE SHORT-FLAME  BAFFLE
   USING THE AXIAL NOZZLE AT AN  AXIAL  POSITION  OF 7. 6 cm.
GAS INPUT,  2190 CF/hr;  EXCESS OXYGEN,  3. 0%; PREHEATED AIR, 315°F
                                         162

-------
VS CH4
     AXIAL BURNER SHORT STAINLESS SHEPHERD'S PRUrtE, NOV.3,1972
AP°  7.60
                _..   .        	      *=«=-»—!















^5.

W
ETHA
^
^













23.82 •
23.34
22. b7
22.39
21.91
20.96
20.49
2U.01
19.53
19.06
.1-8.10
17.63
17.15
16.67
16.20
15.72
' 15.25
14.77
14.29
13.82
l'3.34
12.86
12.39
11.91
ll.4«,
10.96
10.48
10.01
9.53
9.05
8.58
8.10
7.62
7'. 1 5
6.67
6.20
5.2',
4. 77
3.01
3.34

0. )l>
0.4C
a.oo  —
                                     9
                        .*_c	•_*_•'
- 60.nor
                       -^•i.HOO   -14.400   -3.000     8.400    19.800   31.200    42.6CO
                                                                             54.000
                           RADIAL POSITION,  cm
 Figure  11-121.   RADIAL COMPOSITION PROFILE  FOR  METHANE
   (CH4) FOR THE SHORT-FLAME  BAFFLE USING THE AXIAL
   NOZZLE  AT AN AXIAL POSITION OF 7.6 cm.   GAS INPUT,
  2190  CF/hr;  EXCESS OXYGEN,  3.0%; PREHEATED  AIR,  315°F
                                     163

-------
             AXIAL ttuavER SHim STAINLESS SHEPHERD'S PROuC, NOV.3. 197?
VS. CP  AP«  7.60




, . m_f. 	






\&
w
Q
R
o
z
i
z
o
9
K

-------
           AXIAL BURNER SHJRI STAINLESS SHEPHERD'S PRUBE. NOV.3il972
      AP-  /.60
0
s^
m
w
1
Q
Z
o
a
<
0


8.01
7.86
'. T.7?
7.i>;
7. in
7.13
ft. 98
A.D3
.. 6'. 69
6.14
6.31
b. 10
5.30
• 1.05
4.36
5.21
4. 77
4.33
4.18
  51
1.44
3.30
3. IS
j.on
                                            \/
-6C.(10ri  -48.600  -37.200  -25.800   -14.4CO
                                      -3.000    8.400   19.800   31.200   42.600
                                                                            54.000
                            RADIAL POSITION, cm
   Figure  11-123.   RADIAL  COMPOSITION PROFILE  FOR  CARBON
      DIOXIDE  (CO2) FOR THE SHORT-FLAME BAFFLE USING
     THE  AXIAL NOZZLE AT AN AXIAL  POSITION OF  7.6  cm.
         GAS INPUT,  2190  CF/hr; EXCESS  OXYGEN,  3.0%;
                         PREHEATED  AIR,   315°F
                                      165

-------
.
-------
  •IM /b Ill,
    213.14
    203.68
    /OC.B1
    ITT.94
    I li.Ob

    1«9.34
    JIIO.T*
    177.68
    169.28
    6166.42
    153.?1
 O* 160.AH
 D. )>7.q?
                  AXI&L BlMNEK SHIIRr STAINLESS SHEPHMD'S f«U8E, NOV.)i1972
                 7.60
 w
 Q
.«•
 O
 u
IS?.08

146.3?
14J.41
140.6?
U/.7S
114.09
    126.29

    120.4fc
    UT.69
    114.02
    III.96
    10-*. 09
    1.16.23)
    IJ1.36 I
    ion.49
     H9.0)
     S6. 16
     H3.30
     '4. FO
     71.63
     OS.)?
              -".H.6CO   -17.700
                                 . 800   -U.400
                                                -3.000
                                                         8.400
                                                                 19.600
                                                                         31.200
                                  RADIAL POSITION, cm
        Figure  11-125.   RADIAL COMPOSITION  PROFILE  FOR NITRIC
         OXIDE (NO)  FOR  THE SHORT-FLAME BAFFLE USING  THE
    AXIAL NOZZLE AT AN  AXIAL POSITION OF 7. 6  cm.   GAS INPUT,
       2190 CF/hr; EXCESS OXYGEN,  3.0%;  PREHEATED AIR,   315°F
                                             167

-------
                Table 11-18.    RAW  (Gas  Analysis) DATA FOR  SHORT-FLAME  BAFFLE  BURNER
                                     TRACER GAS STUDIES OF COMBUSTION BURNERS  PROGRAM  2
                              'AXTAL' BURNETT SHOKT-STA1NCE5S~SHFPHERD» S' PKOBT, ~NOV737T9T2~
 INPUTGAS2190WALL TfcMPfcRATURE   2524
 OUTPUT ANALYSIS           	
 ,MI TROGEN"~OTrD"E2T780~P~ERCENT ON  RA"NGE~1»
 CARBON DIUXIDE  81.00 PERCENT ON  RANGE  1,
TTA-RBtrcr MUTO X TOE	£74Tr"FE RC EWf "ON  R A N"G"E~ 3 ~,
 METHANE          0.00 PERCENT ON  RANGE  0,
                                                              PREHEAT  TEMPERATURE
                                                                                    315
                                                         10.32  PERCENT
                                                         o;ffo~r PERCENT
                                                         0.00  PERCENT
                                                                                 ZT9T PERCENT"
EXPERIMENTAL RESULTS
AP
7.60
7.60
1 . 6U
7.60
7.60
7.60
~ -7760"
7.60
' .60
7.60
7.60
7T60"-""
7.60
7.60
7.60
' 77~6~0""
7.60
~7V6~0
7.60
r .60
7.60
^.60
7.60
~7.60
7.60
RP
-60.00
-54.00
-4B .OO
-42.00
-3~6.OO~
-30.00
-24.00
-2 L .00
-18.00
-12.00
-9YOO'
-6.00
-3.00
0.00
"3YOO~"
6.00
9.00
12.00
1 5.00
18.00
2T. 00
24.00
3D 700
36.00
I .60 42 .00
7.60 48.00
"7760 	 5"4YOO ~
NITROGEN OX
RANGE X
1 — T8Y30"
I 18.60
1 1 1 . fU
1 17.70
" 1 IB". 50
I 17.70
~ ' 1" "17750"
I 18.60
1 10. IO
1 9.90
~I 	 T478'0"
1 15.50
i — 1-7-50
1 23.40
1 23.00
1 24.70
r~23."6"0~
1 22.80
" I 23.10
1 22.00
1 19.30
1 13.40
I 11.20
1 20.20
I 19.90
1 19.50
1 19.90
IDE "-NO
Y
157.6
160.2
152 . 3
152.3
"159.3
152.3
150.5
160.2
91.2
84.3
1 2'6 . 7
132.9
" 150.5
203.3
199. 7
215.1
205.1
197.9
200.6
190.6
166.5
114.5
68Y9
95.5
" TT4.5
171.8
168.2
171.8
173.6

02
3.4~2" '"
3.56
3 . IO
3.01
	 3". 37'
3.09
3.23
9.92
8.34
0.64
" 0.34
0.49
1 .44
1.17
IY33" "
1.11
0.76
0.81
4.37
13.10
4.06
4.04
4.05
4.27
" 4.06

CAR
RANI
T
i
i
i
i
i
i
i
	 r
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
T
BON OIOXI
GE X
80 . W
80.50
81 . 2U
81.00
" 80.20
80.70
' 80". 60
80.50
58 . 70
62.40
~ 74760 —
65.00
59'. 10"
49.10
42.70
38.50
"35.60'
36.00
3 9'." 20
48.10
62.50
69.50
" 4"8.50 '
46.50
— T874TT-
78.10
77.70
77.40
78700

Y
"TO". 30"
10.22
IO . 36
10.32
10. IT
10.26
'10.24"
10.22
6.10
6.73
	 9.0"0"
7.19
"6717"""
4.61
3.73
3.20
2.85
2.90
3.28
4.47
6.75
8.01
4.53'
4.24
" 97TB"
9.71
9.63
9.57
— C"ARB"dM~TOflOXT
RANGE X
3
3
3
3
3
3
2
	 1"
1
	 1
1
1
1
1 "
1
1
1
1
1
3
3
3
3
3
TOYOO
9.40
10.3O
10.90
IOY50
11.40
-rrTTo -
13.00
25. 10
18.70
4~8 . 00
107.20
il4Y4"0 ~
115.20
105.10
100.60
95.30'
96.70
"Wr70"
108.00
103.60
55.60
77VO"
10.10
'" 9T4TT"
8.60
10.10
9.40
9Y70



DE -CO METHANE - CH4
Y RANGE X Y
0700A
0.003
U. UO4
0.004
0. 004
0.004
0.004
0.005
O.010
0.312
T7T2T
5.553
6". 147
6.215
5.385
5.033
AY 633
4. 737
4.964
5.618
5.267
2.113
O."003
0.004
OTW3
0.003
0.004
0.003
0.003
3 0.00
3 1.20
3 1.20
3 2.80
3 3.00
3 3.50
3 3.00
3 3.20
3 3.60
3 4.30
3 8.70
3 46.80
2 65". 00
I 87.40
1 108.80
1 113.00
1 112.60
I 113.10
1 101.40
1 53.90
3 22.90
"' 3 rrro
3 1.20
3" " 1720
3 0.00
3 0. 50
3 0.00
0.00
0.05
O.O5
0.12
~07T3
0.15
0. 13
0.13
0.15
0.18
0.37
2.14
-"57167"
15.88
22.76
24.25
24.11
24.29
20.25
7.48
1.00
0"70"6
0.05
~0.05
0.00
0.02
0.00
00

-------
          29
          28
          27
          26
       CM
        uj
        cr
        ID
        fe
         '25
          24
        Q_
        2
        UJ
          23
          22
          21 -
          20
I
I
I	I
            65  55      35      15   5 0-5  -15
                        RADIAL POSITION,cm
                                   -35
                                                   A-I22-I233

Figure II-1Z6.  AXIAL TEMPERATURE  PROFILE FROM SHORT-
FLAME AXIAL NOZZLE BAFFLE BURNER AT A 7. 6-cm AXIAL
    POSITION.   GAS INPUT,  2190 CF/hr; EXCESS OXYGEN,
            3.3%; PREHEAT  TEMPERATURE,  310°F
                               169

-------
H
HH
u
s
u
       l/S. VX
       52.02
       il.06
       50.10
       49.14
       48.19
       45. 31
       44,36
       "•P'52 .

       3R.C.1

       16.60



       )2.B6

       30.^S
28.07
27.11
26.16
25.20
24.24

?2.33
21.37

19.45
18.4 )
17.54
lh.5S
15.67
14.66
11.71
12.75

IU.HJ

 0.92
 7.96
 7.00
 0.04
 5.09
 4.13
 3.17
                    AXIAL BURNEK KITH SHORT FLAME BAFFLE -  GAS 2109CFH - 290F PREHEAT - 3  EXCCSS 02
                  7.60
       -27.000  -21.1'OU   -lh.200   -10.800
                                                                  10.800
                                                                                          J7.ODO
                                  RADIAL POSITION,  cm
        Figure 11-127.   RADIAL VELOCITY PROFILE  (Axial Component)
         AT  AN AXIAL  POSITION  OF  7.6  cm FOR  THE SHORT-FLAME
       BAFFLE USING  THE AXIAL NOZZLE.    GAS INPUT,  Z190  CF/hr;
                 EXCESS OXYGEN,   3.3%; PREHEATED AIR,   310°F
                                               170

-------
concentrations of oxygen  and methane.   Figure II-1Z8 shows  the  tangential
velocity component.   The  raw data are  shown in Table II-19.
     Figure 11-129  shows  a composite plot of CO,  CO2f CH4,  NO, and
Oz at an axial position of 48. 3 cm.   The  methane concentration  has  de-
creased from above  23 to 2%  on the burner  center.   In  contrast, the
CO is still maintaining readings of 6%  in the region of the burner block.
The  COz concentration  (curve  D) maintains a relatively constant  value of
10%  except in the  burner  block  region.   The nitric  oxide concentration
(curve N)  was 116 ppm at the center line and increases  to 170 ppm  near
the sidewall as the radial position is charged in  a positive direction.
Oxygen (curve O) was 0. 26% at the  center line and  increases to about
4. 5% near  the perimeter of the burner  block opening.   Data plots  with
greater resolution  are  given in Figures  11-130 to 11-134 and  the  raw data
in Table 11-20.
     Figure 11-135  shows  the temperature profile  at  the axial position
48. 3  cm.   The "cold"  spots have  disappeared and the high-temperature
regions have  shifted their peaks to radial positions  of 9  cm  and  —21  cm.
     Figure 11-136  displays  the axial component of velocity as a  function
of radial position at 48. 3  cm.   It is interesting that the  shapes   of the
axial velocity curve  and the temperature profile curve  are very  similar.
The  peak velocities occur at radial positions of 21 cm and —12 cm in
sharp  contrast to the position  of the temperature peaks.   The tangential
velocity,  shown in Figure 11-137,  has  decreased  60%  from its value at
the 7. 6-cm axial positions.  It is  also  showing a  large  scattering of data
points on the  negative side of  the  burner center line.   The raw  data are
presented  in Table H-21.
     The composite plot of the gas species  concentrations  for  an  axial
position  of 91  cm  is  displayed in Figure 11-138.   There  is only  a trace
of methane present at this  axial position.   The oxygen (O curve) still
shows a higher concentration on the left  of the burner  center line (positive
radial position) than the right,  with  a  50% decrease in  average  value in
the region of  the burner  block.  The carbon dioxide  (curve D) and the
nitric  oxide (curve N) have reached  relatively constant values of 10% and
150 ppm,  respectively.   The carbon monoxide (curve  C)  has  a peak  value
of 1. 9% on the axis  of the burner and drops to  400 ppm near the sidewalls.
                                   171

-------
H
U
3
                  (1XIAL RURNtH *1TH SHURT FlAMf bAFTLE - U«S 21U9CFH - i'H)f fREHfAT - 3 tXCtSb 02
     - 16.46
     • 17.32
      -27. OOP   -Xl.hOC
                     -I6.PCP   -10.800
                                     -5.<.00   -0.000
                                                           10.800
                                                                   16.21'P
                                                                          7I.60P
                                                                                  2 ;.
                             RADIAL POSITION, cm
           Figure  11-128.   RADIAL VELOCITY PROFILE  (Tangential
           Component) AT AN  AXIAL  POSITION  OF 7. 6  cm FOR THE
     SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE.  GAS INPUT,
        2190 CF/hr;  EXCESS OXYGEN,  3.3%; PREHEATED  AIR,  310°F
                                          172

-------
          Table  11-19.   RAW  (Velocity)  DATA  FOR  SHORT-FLAME BAFFLE BURNER
                              AERODYNAMIC  MODELING  OF  COMBUSTION  BURNERS
CALIBRATION-COEFFICIENTS FOR FORWARD FLOW	
Al =   0.770590   A2 =   0.272353   A3 =  -0.059818
BO =
C  =
U.r3ff2U
4.464660
TOTAL~DATA INPUT
B2 =-O.158821
D  =   0.394812
                                    B4 =
                                           0.129Z46
                   AXIAL BURNER WITH SHORT  FLAME BAFFLE  - GAS  2109CFH -  290F  PREHEAT  -  3   EXCESS  02
I HE I A
0.
0.
0.
" 0V •
0.
u .
0.
0.
0.
0.
u.
0.
— o .
0.
u.
0.
u .
0.
AP
7.6
7.6
7.6
1 . t>
7.6
7~. 6
7.6
7.6
7.6
1 . 6
7.6
"7.6
7.6
7.6
7.6
1 . 6
7.6
RP
-27.0
-24.0 ""
-21.0
-18.0
-15.0
- 12. O
-9.0
'-6.0
-3.0
0.0
3.0
6. U
9.0
12.0
15.0
18.0
21.0
24. 0
27.0
P13
-6.04
-1.24
-2.84
11.53
5.47
3.54
-4.00
-1.48
-2.48
-5.74
-11.34
-B.03
-5. 72
-4.81
-7.45
-42. as
-49.38
-2O. O2
-16.25
P03
-0.24
-0 . T4
16.45
5.64
-1.14
-2.09
-O.B2
0.28
"0.67
0.64
O.51
-0.80
-0'.64
-2.69
-9.42
4.25
-O.23
-0.32
P24
0.
-0.
14.
" -27;
-15.
-6.
-0.
-or
i.
	 — 6";
4.
-2.
-3.
2!
27.
24.
2.
-0.
07
72
72 	
67
1 I
96
44 	
69
19
52
16
28
23
52
24
39
39
P04
-0.
-0.
23.
-9.
-6.
-2.
0.
0.
4.
0.
4.
-0.
-0.
-0.
17.
41.
-0.
-0.
15
37
46
61
13
32
01
04"
66
31
88
or
14
78
16
90
29
HI
59
POA
-1.34
-0.06
22.20
18.02
-10.82
-17.14
-17.85
-15.89
-14.60
-n.6ir
-5.23
-5.44
-8.48
-10.21
-10.85
-2.90
31.76
-O.41
-0.40
T
2375.
2154.
2167.
2882.
2856.
2361.
2232.
2128.
2076.
2076.
21O2.
2258.
Z47B.
2673.
2400.
2062.
2478.
PB
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
760.
76O.
760.

-------
               AKIM. HlMNEK SHUKI bUlMESS SHCPHCRD'S PKOBE. NOV.j.117?
4f












£
a
a
O
o
o
27
Op
[-4 2
\^
S^-
H '
^ ^*
, , o
W u
2 *
Ou
u .
o
•J
ffi
u







1 JS «UiU?iCll2iC« ".P. 30
13. OB ' 0
12.62
12.57
12.31
12.05
1 1.80
IT; w — 	 -- - - -
1 1.29
(1.03
ic. 77
10.52
10.26 ') 	 1.^
10:00 	 - ^~tr • o^
9.75 . — 0 JMX.
•J.«i or ^D
T.23 \
I;?? . \
8.06 -\
U.21 \
7.T5 \
7.64 \
I:*! \
6.13 0
6.67 \
6.11 ^O-O 	 0'
6.16 C — C-C— C-C.
5.10 /
5.n<. /

|'|j' /
*!62 /
*.36 ^.if~*n I
^*^ \ /
J.'" .1-^"" ° n \ /
3. 34 \ /
3. OB il C C
?.B2 \;
2.S7 Y
2.31 A
2. 05 /\ ,*—***
1. SO C U M M'
1.54 ^^- t 	 '1 	 N 	 N^^^ / \ /
1.03 / \ / N 	 «/
•0.7T • • / i-"
0.51 XC M^\
0.26 n 	 r^ c «^ i)— o— o — D-IJ"
o.oo c c C c c^*?"r " n-*^
                                                             CO   =   C
                                                               O2  =   O
                                                             NO   =   N
                                                             CO2  =   D
                                                             CH4  =   M
                                                 /
                                                  0~0
                                                    \
                                                           y°
D~0—0
                                                U
                                               D
                                                                     *D	D.
                                                                          X°'^
                                                             (J        0	0
                                                              \).	o-^
                                                                         N	N ——N
                                                         N-«—H-V
                                                      M-
        <        ,       ,       I       (       I        ,       I       I       I        ,
    -60.OCR   -48.000  -16.000   -24.000   -12.000    -0.000   12.000   24.000   36.000    40.000  '60.000
                            RADIAL POSITION, cm
   Figure 11-129.   COMPOSITE  PLOT  OF GAS SAMPLING PROFILES
  FOR CO,  CO2,  CH4,  NO,  AND O2 FOR THE  SHORT-FLAME BAFFLE
  USING THE  AXIAL  NOZZLE AT AN AXIAL POSITION  OF  48. 3  cm.
GAS INPUT,  Z190 CF/hr; EXCESS OXYGEN, 3. 0%; PREHEATED AIR,  315°F
                                       174

-------
*"*.








'-•




fex.
b
*
w
j£
3T-.
H
W
3
A (
i
. " i
(
•c
r
r

•T
r

i



c
r

l.
C

1
C
r
M CH4
>. 10b8
'.0247
.9405
.8984
.8142
.7721
.7300
.6879
T5'4"S8~~
.6037
.5616
.5195
.4775
.4354
.3933
.3512
.3091
.2670
.2249
.Iti28
.1407
.0986
.0565
.0144
.9723
.9302
.88CI
.8461
.8040
.7619
.7198
.6777
.6356
15935
.5514
.5093
.4672
.4251
73630' '
.3409
.29A8
-2561J
.2147
. 1 726
rriTOS""
.0864
.0463
.0042
              AXI4L UO
-------
/S. f.ll

 6. 12
 ft.00
 0.117
 5.75
 5.63
 5.5T

 5.26
            AXUl BUHNER SMURT ST41.-LESS SHEPHERD'S PRJBE. NOV.3,1172
          48.30


^0
w
p
R
§
o
*j5>

j2
O
•PQ
rt

U












5*14
5.02
4.40
4.53
4.2R
4. lo
3.12
. 3.71
3.A7
3.55
3.43
'3.30
J.1H
3.Q6
2.04
2.8?
2.6-)
2.57
2~.)i
2.20
2.06
.'(6
.84
. 71
.5^
.35
.21
. in
0.98
O.H6
0.74
 0.61
 0.37
 0. 12
 0.00
                                /\
                            *
 -to.orr
                               -12.000
                                        -0.1100
                                                12.000   24.00C   K, .Or'H   '.11.000
                                                                               60.000
                          RADIAL POSITION, cm
   Figure 11-131.   RADIAL  COMPOSITION PROFILE  FOR  CARBON
  MONOXIDE (CO) FOR THE SHORT-FLAME BAFFLE USING THE
AXIAL  NOZZLE AT  AN AXIAL POSITION OF 48.3 cm.    GAS INPUT,
   2190  CF/hr;  EXCESS OXYGEN,  3.0%;  PREHEATED AIR,  315°F
                                       176

-------
                          'J SHURI ST4INLESS SHfPHERU'S P^UBEi  NOV. 3. 19 F2
 ,IP  VS C32
    13.03
    12.95
    12.81
    12.68
    12.55
    12.M
    12.28
    12. 14
    12.01
    II. bU
    11.71,
    11.61
    11.48
    11.34
    11.21
    11.07
    10.'14
^N  10.HI
    10.67
              1,8. 30
w
Q
R
o
Q

O-'.
(Q
U
10.41
10.27
1 0. -14
10.00
 9.87
 9. f4
 9.34
 9.20
 
-------
u
o
X
o
                AXIAL I'.UHNt-l SHJKT SIMNLEiS S>
    •j.31

    5.09


    4.76
     ,31
     ,20
     09
     , "IB
     ,'a'r
     .76
.42
.31
.20
,0-J
,ya
,67
                                                               ;-\
                                                                 *
    2.76
    2.31
    2.20
    2.C<)
    LIB
    1.87

    \'.b*.
    i.'ji
    1.47
    I. )l
    1.20
    I .09
    0. Ill
    O.O.I
    0.7h

    C.53

    n. ii
                                                o
                                            * * ^* "«
            -••,
-------
ill-





	





-


E
a
a
W
Q
3
O
u
2
H
2



















/S -4.1,
1 72. 7/.
1/1.*?
1 70.07
loB.72
166.03
164.69
103.3*
162.00
160.65
\'>1. 31
137.96
I «.•&?-•
155.27
153.93
lii.-iB
1 *9* d9
1*6.55
I*5i86
1**.5I
1*3.17
1*1. B2
140. *8
139. 13
137.79
136.**
135.10
I >3. 1'j
112.41
1 11. Ob
128. 37
127.03
125.68
124.34
122.19
121.65
120. 10
116. )6
1 17.61
116.26
1 14.92
113.57
112.23
110.86
100. !>*
108.19
106.85
105.50
1U*. 16
           AXMl BIMNI « SHORT SI4INLE5S SHTPHCRO'S PRrillE, NOV.3il'»72
         *'J. tO
                                                          /-\
 -60.onn
              -36.ooo  -24.000   -i?.nnn
                                   -0.000   IZ.'OOO   24.000   36.0TO  "*8'.000  60';OTJO
                        RADIAL POSITION,  cm
  Figure 11-134.   RADIAL  COMPOSITION  PROFILE FOR NITRIC
OXIDE  (NO)  FOR THE SHORT-FLAME  BAFFLE USING THE AXIAL
  NOZZLE AT AN AXIAL POSITION OF 48. 3 cm.   GAS  INPUT,
  2190 CF/hr; EXCESS  OXYGEN, 3.0%; PREHEATED  AIR,  315°F
                                 179

-------
                Table  11-20.   RAW (Gas Analysis) DATA  FOR  SHORT-FLAME BAFFLE BURNER
                                     TRACER GAS  STUDIES  OF  COMBUSTION BURNERS  PROGRAM  2
                                     BTJKNER SHORT'STAI NteSS~S«ePHERD^S PR0BET NXJVT3rr972 ~
           1NPUT GflS	2190
                                WALL  TEMPERATURE
PREHEAT TEMPERATURE
310
           OUTPUT ANALYSIS
          -NITROGEN OXIDE - 2TT 20-PERCENT ON RANGE-IT -18r.50-pPM- ----- OXYGEN — 3rr2-PERCENT
           CARBON DIOXIDE  81.90 PERCENT ON RANGE  1,    10.51  PERCENT"
           METHANE
                            0- "
1 114.70
1
1
— 1
1
-t~
1
2
2
"I
1
— 3—
3
3
3
3
3
3
1 IH. 1U
114.80
103TW- -
91.50
66 .10
38.80
33.30
14.00
83.90
42.40
17.90
6.70
^ • 90
5.00
4* 50
5.10
4.20
U.UUJ
0.001
U • \J\Jf.
0.003
0.008
0. 147
0.286
0.592
3.064
2. 996
6.038
6. 240
6.172
A • 1 2 2
6. 181
5.417
4.355
1.301
0 • 5 74
0.231
3.823
1.462
0. 007
0.002
0. 002
0.002
0 . 00 1
0.002
0 . 001

lE"THftN£- -
tANGE X
3" 0.00
3 1.20
3. 30
3 1.60
3 0. 80
3 0.00
3 2.10
3 4. OO
3 11.10
3 19.30
3 18.90
3 40.00
3 45.50
3 47.00
3 41.10
3 33.80
3 22.80
3 6. 10
3 1 • 40
3 3.00
3 2. 30
3 0.30
3 0. 00
3 0.00
3 0. 00
3 0.00
3 1.30
3 0.00
3 0 • 00
CH4— '
Y
0.00
0.05
0. 14
0.07
0. 03
0.00
- '0.09
0.09
.19
0.47
	 O-r»4
0.82
1 . 80
2.07
2.15
1.86
1.51
1.00
o!26
0 • 06
0.13
0. 10
0.01
0.00
0.00
0. 00
0.00
	 OTO5-
0.00
0 • 00
00
o

-------
         28
         27
       u.
      o
      CM
       O
       •»
       UJ
       Qjj 26

       <
       DC
       UJ
       0.
      UJ
         25
         24
                    I
            65   55
35          15    5  0 -5
   RADIAL POSITION,cm
-15
-35
                                                          A-I22-IZ54
   Figure 11-135.  AXIAL TEMPERATURE PROFILE FROM SHORT-
      FLAME  AXIAL NOZZLE BAFFLE BURNER  AT  A 48. 3-cm
        AXIAL POSITION.   GAS INPUT,  2190 CF/hr; EXCESS
          OXYGEN,  3.3%;  PREHEAT TEMPERATURE,  310°F

Data  plots of  gas  composition for an axial position of 91 cm are  given
in Figures 11-139  to 11-143 with  greater resolution.   The  raw data  are
shown in Table  11-22.

    The temperature profile  for  a 91-cm axial position  is  shown  in

Figure  11-144.   The flame  front  is  still fairly well  defined,  with  a  peak
temperature of Z800°F  at the  burner  center line decreasing to  2500°F
out near the walls.

    The axial component of velocity data is  shown in  Figure II-145  for
an axial position of  97.4 cm.   Unlike the temperature profile,  the  axial

velocity profile  has  maintained the  same quantitative shape  that it dis-
played  at the  48. 3-cm  axial position.   The  velocity peaks  occur  at  —9
                                   181

-------
                                                                     I.Xf.t.SS 0?
                       «l TH SHIJO 1  fLiME BaPFI E - (,AS XIU'ICFH -  ^'I()F l-Kllir-AI
*
r*
H
I-H
u
3
W
^


















15.39
14.37
13.36
12.34
1 1.32
10. 30
9.28
H.26
7.24
6.22
5,20
4. in
3.16
l!l2
0. 10
-0.91
-1.93
-2.95
-3. 17
-6.01
.77.03
-9.P6
-10.08
-11. 10
-12.12
.-L.3. 14
-.15.18
-16.20
-<.2.000   -J3.600  .-25.200   -16.800
                                -8.400
                                         O.noo
                                                 8.400
                                                        16.800
                                                                25.200
                                                                        33.600
                                                                                '.2.000
                          RADIAL POSITION, cm
  Figure 11-136.   RADIAL VELOCITY  PROFILE  (Axial  Component)
  AT  AN AXIAL POSITION  OF 48. 3  cm FOR THE SHORT-FLAME
  BAFFLE  USING THE AXIAL NOZZLE.   GAS  INPUT,   2190  CF/hr;
           EXCESS OXYGEN,   3.0%; PREHEATED  AIR,  310°F
                                       182

-------
               AXIAL blJHNER 1,1 IH SHOKI  FIAHF. B4FFLL  - GAS ?10<>CFH - 290F CKtHFAl  - 3 tXCf'.S (V
HP VS. VT  AP = 48.30






__..








"V^
VH

,* .
r^
H
I-H
U
3
W
^

















P . 1 -7
8.89
8.58
U. i'B
7.97
7.67
7.36
7.05
6.75
6.44
6. 14
5.83
5.53
5.22
4.00
3.69
3.39
3.08
2.78
2.47
2.17
I.H6
1.25
0.90
0.64
0.03
-0.27
-0.5/
-0.88
-I. 1C
-1.70
-2. 10
-2.71
-3.01
-3.32
-3.63
-3.93
-4.24
-4.85
.-5. 15
-5.46
-5.76
-6.07
          \
           \
              \
                \
                                              \
  '-42.000   -33.600  -25.200   -16.800   -8.400    0.000
                                                  8.400   16.800    25.200   33.600
                                                                                42.000
                              RADIAL POSITION, cm
 Figure  11-137.   RADIAL VELOCITY PROFILE  (Tangential Component)
    AT AN AXIAL POSITION OF  48.3  cm FOR THE SHORT-FLAME
   BAFFLE USING THE AXIAL NOZZLE.  GAS  INPUT,  2190  CF/hr;
            EXCESS OXYGEN,  3.0%;  PREHEATED AIR,  290°F
                                        183

-------
                   Table  11-21.   RAW  (Velocity)" DATA FOR SHORT-FLAME  BAFFLE BURNER
                                       AERODYNAMIC "MODELING OF  COMBUSTION BURNERS
00
         CALrBRATION'COEFFICIENTS "FOR FORWARD FUDVT ~  	
         Al  =   0.770590   A2  =    0.272353    A3  =   -0.059816
BO =
C =
TOTAL
THfc 1 A
0.
0.
0.
~ 0.
0.
u.
0.
u.
0.
—a.
0.
u .
0.
• 'o.
0.
OT
0.
U.
0.
0".
0.
0.
0.
0.
0.
ISO'.'
L80.
-IWr
180.
ISO.
130.
0. f 3 1120 BZ =
4.464660 D =
•• -0.158821 B4 = 0.129246
0.394812
AXIAL BURNER
DATA INPUT
AP
48.3
48.3
48.3
"48". 3
48.3
4B. 3
48.3
	 fS7J'
48.3
— (J.
760.
760.
760.
	 r&s.
760.
760.
760.
	 T6XJ7"
760.
76"0.
760.
76O.
760.
760.
760.
760.
760.
760.
760.

-------
              AXIAL BUKNtR SHUKT STAINLESS SltEPHEKR'S PRUBe. NOV.3. 1972
UP VS NI),L)?,C02,CU,CH4  AP« VI.40
  10.28                         -U—0—D—0—D>^
  10.08   	D	.           ,D-0— vr    .       D-D—D—Ov.





~


6
a
a
0
o
o
*~7 *""*
°6
Jj.^
r . |
'Z n*
W cj
U „
O (j
\J
O
E.







9. -88 D
9.66
9.48
•).28
9.07
8.67
8.47
8.27
8.07
7.86
7.66
7.26
7.06
6.86
6.66
till
iiii
^> . 04
4.84
*!4*
4.?4
KC3

3.43
3.23
2.83
2.62
2.02
1 .82
1.62
1. 01
o.ei
0.61
0.41
0.21
^»p- 	 U 	 -U'' ^tT U— D-O^
D^
0— — D-s. ^s'®'**^
^^^-o**1^^ ^**N*-

. _


CO = C
02 = O
NO = N
CO2 = D
CH4 = M

/(J 	 U\
/ \
/
/
//*
u • /
•u UN^ /
\ s*\ °
XA_,V /
ir-o — ix o
OV /
x y
u\ ^^ ^-^u

y NX /* N >^ \" ^ ~^ /^^ "N ^^ '
— " '4 • s J^— i"Ji"%J~~> .'J N "•• N C 0 ^r C^ N~C"~* N^^N — N *" N**"^
/ ° \
,c' \
^c'c \
^c^ c\
	 r 	 r 	 r*£ M 	 M/ M-/ M— M-^ tr ^-M— M — M-M — M — M— ^-f.-- 	 r 	 r_
                                                                                N - N
                                                                                C _ C


                          -2'J.SCO  -14.400    -3.000    H.40U   19.800    Jl.200   42.600   ')4.000
                              RADIAL POSITION, cm
   Figure 11-138.   COMPOSITE PLOT OF  GAS SAMPLING  PROFILES
      FOR CO,  CO2,  CH4,  NO, AND O2 FOR  THE SHORT-FLAME
     BAFFLE  USING  THE AXIAL  NOZZLE  AT AN  AXIAL POSITION
   OF 91.4 cm.   GAS  INPUT,  Z190 CF/hr; EXCESS OXYGEN,  3.0%;
                           PREHEATED AIR,   290°F

                                       185

-------
1


















tsS.
•*
.mt
w
z
2
JE
H
f^\
H
* 9
O.VJ92
0. U69
n.'i345
0.1322
0.1299
0. 1276
:<>. 1253
0. 1229
"071206"
0.1183
, 0. 1160
• 0.1137
0.1114
0. 1090
0'. 1067 r
. 0. 1044
0.1021
0.099B
0.0975
0.0951
'6.0928
0.0905
0.0882
0.0859
3.0835
0.0812
0.0789
0.0766
0.0743
C.0720
'1.0696
0.0673
11.0650
0.0627 •
0.0604 \
n.osei \
ft. 0557 v.
•U.0534 \ /
0.0511 •
0.048"
• U.0465
0.0442
0.04IH
0.0372
'.1.CJ4T
•J.0326
C.0302
U.027T
0.0256
.1.0233
0.0210
            AXIAL BUHNER SHUKT STAINLESS SHEPHERD'S PHOHEi NOV. 3( 1972
                                             \
                                             \
                                               \
                                                \
                                                \
                             /
                          ./ •
                                                  \

                                                   \
                                                   \
                                                  *   *
                                                      \
                                                      +  •
                                                       \
                                                        \
                                                        \
                                                         \
                                                          \
                                                          \
                                                           \
                                                            \
                                                            \
                                                              X
 -t.C.000  -48.600  -37.700   -25.SOO   -14.400   -3.000    a.400   19.800    31.200   42.600   54.000
                         RADIAL POSITION, cm
 Figure 11-139.   RADIAL COMPOSITION PROFILE FOR METHANE

    (CH4) FOR THE  SHORT-FLAME BAFFLE USING  THE  AXIAL

NOZZLE AT  AN  AXIAL  POSITION OF 91.4 cm.   GAS  INPUT.  2190
     CF/hr;  EXCESS OXYGEN,  3.0%;  PREHEATED  AIR,  315dF
                                    186

-------
             AXIAL  (llMNf."* SHIIkl STAINLESS SHEPHWS PKilHt.  NOV.3i1172
KV
'
'

-



"



^s.

W
Q
hH
X


0
2
(
Z '
o ;
3:

-------
            axial BURNER SHORI STilNLESS SHEPHERD'S PRDBEt NOV.3.1972
          91.40

^N.

w
Q
g
O
8
z
0
cq
05

-------
                HUXNEK ilUHT SfMNLESS bHEPHtRD'S PKDBE, NOV.3, 1072



















\3^-

*
Z
W
0
X
o























O.P VS 02,
5.2100
..5.1331 _
5.0563
4.1025
4.8257
4.7488
4.6720 .
" 4.5951
4.5182
4.4414
4. 3645
4.267*
4.210U
4. 1339
4.0571
3.9U02
J.9033
3.8265
J. '496
1.6727
3.5959
• 3.5190
3.4422
1. 3653
. 3.2884
3.2116
3.1347
3.0578
,2.9810
2.9041
2.8273
2.7504
2.6735
2.5967
2.5198
2.4429
2.. 366 1 .
2.2892
2.2124
2.1355
2.0586
.9818
.9049
.1)280
.7512
.6743
.5975
.5206
. .4437
.3669
.2900
      1P= 91.40
-60.000
        -48.AOO  -37.200   -25.800  -14.400
                                       -3.000    8.400   19.600
                                                              3I.2CO   42.600
                                                                             54.000
                         RADIAL POSITION, cm
  Figure H-142.   RADIAL COMPOSITION PROFILE  FOR  OXYGEN
    (O2) FOR THE SHORT-FLAME  BAFFLE USING  THE AXIAL
   NOZZLE AT  AN AXIAL POSITION OF  91.4  cm.    GAS  INPUT,
  2190  CF/hr; EXCESS OXYGEN,  3.0%;  PREHEATED AIR,  315°F
                                     189

-------
HP VS NOi
              4XUL BURNER SHORI STAINLESS SHEPHERD'S PROBEt NOV.3,1972
            91.40











6.
rt!

W
9
X
o

u
2
H
g





















' 158/67
158.31
157.94
157. 5B
157.22
'T56.49
156. 12
155.76
155.39
155.03
154.67
154.30
133.94
153.57
153.21
1 (52.48
1 -j 't . 1 2
151.75
1^1 .39
151.03
15(1.66
1 iP.30
149.93
14-1.57
149. 2C
!4b.H4
146.48
146.11
147. 15
147. 38
'.7.02
. 46.66
46.21
45.93
45.56
45. iO
144.63
144.47
144.11
14 J. 74
143. 
-------
      Table  11-22.   RAW (Gas  Analysis)  DATA FOR  SHORT-FLAME BAFFLE BURNER
                       	TRA.CER GAS STUDIES.,OF_i.QMRy5JJffiL_&URNER.S__PROQBA>j

INPUT GAS 2190
OUTPUT ANALYSIS
AXIAL BURNER SHORT
WALL TEMPERATURE
STAINLESS SHEPHERD'S PROBE, NOV.
2483
PREHEAT
TEMPERATURE
.3,1972
315
NITROGEN OXIDE   22.20 PERCENT ON RANGE I,  192.50  PPM       OXYGEN  3.38 PERCENT
CARBON Q10XIQE „ 79.30__PJRC_ENT ON RANGE 1, _ _ 9_..96_ PE.RCENT	
CARBON MONOXIDE   8.70 PERCENT ON RANGE 3,   0.003  PERCENT
MllHANE	  ._ .0.00. PERCENT ON.RANGE 0,	0_,_0.0_ PJRCEMt	....	

EXPERIMENTAL RESULTS
AP RP
91.40 -60.00
91.40 -54.00
91.40 -48.00
91.40 -42.00
91.40 -36.00
91.40 -33.00
91.40 -30.00
91.40 -27.00
91.40 -24.00
91.40 -21.00
91.40 -18.00
91.40 -15.00
91.40 -12.00
91.40 -9.00
91.40 -6.00
91.40 -3.00
91.40 0.00
9L,40 3.00
91.40 6.00
-9.U4Q- __._3_.0_0__
91.40 12.00
91.40 15.00
91.40 18.00
9 1 . AO 2.1.. 0_0
91.40 24.00
91,40 30.OO
91.40 36.00
91.40 42.00
91.40 48.00
9L..4JD 	 5.4.00 „_
NITROGEN OXIDE -NO
RANGE X Y
1
1
1
1
1
_ 1. .
1
I _
1
1
1
1
I
1...
1
1
1
1
1
_ 1
1
1
1
. -J. _
1
1
1
1
1
-_!..
16.50
16.50
16.40
16.40
16.50
16.60
16.90
_! 7.2.0
18. 10
17.50
17.30
.17.90.
18. 10
_18.20
17.90
18.20
18.40
18.00
17.90
.1.7.6.0 .
17.90
17.50
17.60
.11..60..
17.40
L7^_40
17.00
17.90
18.50
18.20
141.7
141.7
140.8
140.8
141.7
14.2.5 _..
145.2
147.8
155.8
150.5
148.7
154.0
155.8
156.7
154.0
156.7
158.5
154.9
154.0
151.4 _
154.0
150.5
151.4
. 151.4 ..
149.6
	 149.6 	
146.1
154.0
159.3
156.7
OXYGEN CARBON DIOXIDE-C02
02 RANGE X Y
3.58
3.69
3.58
3.57
3.28
.. .3. .34
3.05
3.01
2.78
2.81
2.78
,2.65.
2.46
2.07
1.89
1.50
1.29
U_i4
1.84
..L.35.
2.05
2. 18
2.75
1. .41
4.02
.4.45.
5.19
5.?1
4.85
4.59
I 78.70
1 79.60
1 79.20
1 78.90
I 79.20
. 1 79.7Q
1 79.60
1 .79.60
1 80.50
1 80.80
1 80.50
1 80.50
1 80.60
.. _ I 79,90
1 79.60
I 79.40
1 79.50
1 79,10
I 79.40
	 1..J.9..5J)
1 78.90
1 79.20
1 78.80
1. 77.^50
1 77.40
	 L 76.90
1 75.50
1 76.50
1 75.60
1 78.60
9.84
10.03
9.94
9.88
9.94
10.05
10.03
10.03
10.22
10.28
10.22
10.22
10.24
10. .09
10.03
9.98
10.00
9.92
9.98
. 10.. 00. _
9.88
9.94
9.86
9.59
9.57
9.47
9.18
9.39
9.20
9. 82
CARBON MONOXIDE -CO
RANGE X Y
3 11.50
3 12.70
3 19.70
3 31.60
3 74.30
2 8.50
2 12.10
2 .L2.70
2 11.10
2 19.70
2 30.90
2 30.20
2 48.50
2 77.20
2 84.30
1 47.80
1 52.20
L_43.60
1 44.30
	 1 	 4.1.. ZO.
1 36.70
? 82.70
2 74.50
2 24.20
0.004
0.005
0.008
0.013
0.035
0.139
0.199
0.226
0.182
0.329
0.530
0.517
0.866
1.468
1.628
1.717
1.936
L.J1.06
1.550
__1._408 . .
1.211
1.591
1.409
a. 408
2 14.90 0.246
7 1.70 0.057
3 34.50
3 70.BO
3 12.60
3 10.00
0.014
O.OOB
0.005
0.004
METHANE - CH4
RANGE X Y
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
1.40
1.10
1.50
1.60
2.30
2.10
2.60
2.30
2.50
2.30
2.50
1.90
0.06
0.05
0.06
0.07
0.10
0.09
0.11
OjJ5_
0.10
0.10
0.10
0.08
2.30 0.10
2.8Q 	 aa*_ ...
2.90 0.12
2.30 0.10
3 3.20
	 3 	 2.40
3 2.40
	 3_ 	 2^.00 	
3 2.10
3 2.OO
3
3
3
3
3
^
3
3
1.90
1.90
1.00
0.50
0.70
0.40
0.40
0.70
0.13
0.10 	
0.10
_CL..OB_
0.09
o.oa
O.OB
O.OB
0.04
0.02
0.03
0.07
0.02
0-.Q3_ _

-------
      26.5
       28
   N
    o
    uT
    a:
    tr
    UJ
    a.
    UJ
27
26
        25

      24.5
          65   55
                  35          15    5  0 -5
                      RADIAL POSITION,cm
-15
-35
                                                         A-122-1233
    Figure 11-144.   AXIAL TEMPERATURE PROFILE  FROM  THE
  SHORT-FLAME  AXIAL NOZZLE  BAFFLE BURNER AT  AN  AXIAL
     POSITION OF 91.4 cm.   GAS INPUT,  2190 CF/hr; EXCESS
          OXYGEN,  3.3%; PREHEAT TEMPERATURE,   310°F
cm and 18  cm as  compared with —12 cm and +20  cm at the 48. 3-cm
axial position.  Figure 11-146  shows the tangential  velocity at the 9V. 4-cm
axial position.  The raw numerical velocity data are given in Table 11-23.
    An examination  of a gas sample from the center line  of the  burner
at a 7. 6-cm  axial position  was made to determine  if higher hydrocarbons
were being formed during the  combustion process.   Table  11-24  lists the
chemical  components of  the natural gas  being used in the  burner.  Table
11-25 lists the gas  species  analysis on  the  burner center line  as deter-
mined  by the mass spectrograph.   We  conclude  that  the only  hydrocarbons
which  were formed in the  combustion process were 0. 4°/-  ethylene  and
0. 5%  acetylene.
                                    192

-------
HP












-





•^
^^
VH
,
^H .
H
U
3
W

"^











vs. vx
.30.69
To. 31
29.94
29.56
29. IB
28.80
J8..42
28.04
J7.66
27.28
26.90
26.52
26. 14
25.77
25.39
25.01
24.63
24.25
23.87
23.49
23.11
.22.73
22. J5
21.97
2K22
20. b4
20.46
20.08
19.70
19. 32
1 8 . '14
18.56
18. IB
17. RO
17.05
16.67
16.29
15.11
15.53
15.15
14. 77
14. 39
             AXIAL BURNER WITH SHORT FLAME BAFFLE - GAS 2109CFH - 290F PREHEAT - 3  EXCESS 02
       AP = 97.40
14.C1

13.25
12. Hf
12.50
1?. 12
1 1. 74
  .. 000
        -43.2GU   -32.4yr>   -21.600  -10. BOO
                                        -0.000
                                                10.801
                                                       21.600
                                                                       '.3.200
                                                                              V, .O'lO
                            RADIAL POSITION, cm
   Figure 11-145.   RADIAL VELOCITY  PROFILE  (Axial Component)
   AT AN  AXIAL POSITION OF  97.4  cm FOR THE SHORT-FLAME
  BAFFLE USING THE AXIAL NOZZLE.   GAS INPUT,  2190 CF/hr;
           EXCESS OXYGEN,  3.0%;  PREHEATED  AIR,  290°F
                                       193

-------
             AXIAL ilURNt-* t.MH SHU«I KAMI BAFKt -  C,AS <>I09CF>I - ?90F PBr.MEAT - 3  KCLSS 02
•


-------
                 Table  II-Z3.   RAW (Velocity) DATA FOR SHORT-FLAME BAFFLE  BURNER
Ul

CAL1BX;
Al =
BU =
C =

TOTAL I
1HEIA
0.
0.
0.
u •
0.
0.
0.
0.
0.
0.
0.
0.
0.
o!
0 •
0.
(1
0.
0.
Q
0.
0.
rrnrj-coFFTTCTFNTs~
0.770590 A2 =
u. rj i rto B2 = -
4.464660 D =
JATA" TN
AP
97. A
- "9T.4—
97. A
9T.^f
97.4
•*/•"•
97.4
97.4
97.4
97.4
97.4
97.4
97.4
' 9T7"4~
97.4
97." 4
97.4
9 I , *>
97.4
07 4
97.4
.- Q7- 4.
97.4
97 4
97.4
97.4
AXIAL
PUT"
RP
42.0
48.0
54.0
-54.0
-48.0
— **2 . u
-36.0
-30.0
-24.0
-18.0
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
3.0
O • \J
9.0
i ? n
15.0
i A n
21.0
24 0
27.0
30i 0
36.0
"A-ER
t-UK HURW
0.272353
•D. 15BUZ1
0.394812
ODYWAirrt^H
ARD-FTOW 	
A3 = -
B4 =
BURNER WITH SHORT

P13
-4.
-5.
-1.
-4.
-5.
-<£•
-5.
-5.
-2.
-0.
0.
3.
1.
- 2~.
-5.
-4'.
-6.

57
07
41
23
53
*?u
91
62
42
60
81
00
77
69
49
00
68
i . 1 1
-19.77
? 1 hf\
-20.20
— ?ft ° l
-18.
-17
-13.
-11*
-8.
02
27
72
74
61
ODELING Of COMBUSTION BURNERS
0.059818
0. 129246












FLAME BAFFLE - GAS 2109CFH - 290F PREHEAT - 3 EXCESS 02

P03
-0.62
-0.67
1.49
0.22
0.30
U.4 1
0.52
1.02
3.04
5.11
7.04
8.52
9.38
8.00
5.91
4. DO
0.87
™0. 29
-0.89
i 01
-2.09
n no
-0.32
-0 75
-1.38
-0*63
-1.13

P24
-1.27
-1.89
-0.15
O.Ob
0.02
O.U 1
0.25
0.60
1.42
0.94
-2.79
-2.52
-5.27
-5.71
-8.58
-9.00
-10.29
« O3
-7.78
f\ (t"\
-5.66
4 24
-5.06
— tf Oft
-4.97
-4,23
-3.10


P04
-0.31
0
1
.05
.22
' 0.59
0.71
U
0
1
3
4
4
6
5
3
-0
-1
-3
~1
-0
0.
2
3h
4
2
1
1
0
. 51*
.70
.39
.01
.80
.71
.08
.02
.13
.04
.12
.03
.38
an
.30
7O
.40
75
.74
^45
.47

POA
-1.84
-1.35
0.77
0.12
0.12
U. 1U
-0.07
0.22
1.30
4.21
4.53
6.14
5.77
4.32
1.60
LiS
0.98
.12
1.25
0 01
3.81
5. ^o
6.10
3 71
3.02
2.15
0.03

T
2504.
2504.
2504.
2500.
2530.
IbUU.
2655.
2730.
2790.
2803.
2803.
2790.
2764.
2751.
2745.
27«»3.
2745.
Z T38«
2699.
? f^7"\
2608.
^C f. ft
2543.
2 54-3
2530.
2504
2504.

PB
760.
760.
760.
76O.
760.
f bU.
760.
760.
760.
760.
760.
760.
760.
760.
760.
/t>u.
760.
oo*
760.
7/.O
760.
7* n
760.
760
760.
760*
760.

-------
     Table 11-24.    MASS  SPECTROMETER  LABORATORY
                           ANALYTICAL  REPORT
Material    8933 Natural Gas from Pilot Plant

Requested hy                                    •
                                                                 Date _JLL/i/lL
                                                                              3238
       C.vhon Mnnniirfp
       Hyrtroyen
       Water Vnpor

       Helium

       Methane

       Ethane

       Propane
       Hexanes
Calc. H. V.,  Bin SCF

C.ilc. sp yr.(Ait  1.000)
                              Uol
                               '
                               ' °8
                              3.93
                              0. 95
                              0. 03
                                                   Ethylene

                                                   Pfooylene
                                                   He«enes
Methyl

•fPropadiene

Vinyl

Benzene

Toluene
                                                   Elhyl Benzene

                                                   Styrene

                                                   Indene

                                                   Napthalcnc
                                             Air Content

                                             Approved by
                                                                          Mol  %
                                                                        100. 0
                                            196

-------
     Table  11-25.     MASS  SPECTROMETER  LABORATORY
                            ANALYTICAL  REPORT
Material   8933 Sample #2  11 /I 6/72

Requested by  .^__
                                                          Date _ii£i!£LL
                                                          M. S. Run No.

       Carhon Mannnidp
Carlion Dioxide

Hydrogen



Water Vapor
Methane

Ethane
       n-t

       Isoliutanc

     H. V., Bin SCF

     sp ijr (Air  1.000)
                             Uol

                             2- 7
                             0.5
                               ' 2
                                                   Ethylene
                                                   Cyclopenladiene
                                                   Methyl
                                                   Vinyl Acetylene

                                                   Benzene
                                            Xylenes

                                            Ethyl

                                            Styrene

                                            Inriene

                                            Napthalene

                                                   TOTAL
                                                                         Mol  \

                                                                         0. 4
                                                                           '
                                                                      100-°

                                            197

-------
     We  decided  to  do an in-depth profile  of the gas  concentrations  along
the center line of the burners because of the  interesting variation of the
nitric  oxide  concentration along  the  center line  of the burner.   (It had  a
maximum  value  near the burner  block,  dipped sharply at a 48. 3-cm  axial
position,  and recovered its  initial value at a  91-cm  axial position.)   The
profile is  presented in Figure 11-147.   The decrease  in  NO  concentration
corresponds to an increase  in oxygen  which leads one to believe  that a
dilution  process  takes place which  could  be caused by interval  recirculation.
     To investigate  this theory, further velocity data  were  taken at  the
axial position  of 48. 3 cm measuring reverse  flow.   These data are  plotted
in Figure  11-136 as  X.   It can be seen that they are  the same magnitude
as the forward velocity  and thus  cannot in our opinion be neglected from
a velocity magnitude  argument.
     Figure 11-147  was used to make an estimate of the  flame  length  by
assuming a  symmetrical  flame (which as  a result of  the gas  concentration,
temperature, and velocity profile data is  a very questionable assumption
for this  burner).   However, we  are defining  flame length as  that axial
position  where the  concentration  of  methane,   averaged across  the furnace
width,  is less than 1.0%.   For  this profile,   the end  of  the  flame occurs
at an  axial position  of approximately 70 cm.
     Additional gas  concentration  profiles  were taken  with the same  com-
bustion conditions  except the preheated air temperature  was  increased to
515°F.   Figures 11-148,   11-149,  and 11-150 show the  composite of chem-
ical  species profiles  at  axial positions of 7.6, 37.7,   and 91.4  cm,
respectively.
     These data show that increased preheated air temperature increased
both NO  formation  and mixing at the outer edges of  the visible flame
envelope.  NO   increased approximately  40 ppm at the  burner center line
              X
while the oxygen  concentration at the  flame edges decreased about 1. 0°/o
as air temperature was  increased from  Z90°  to  515°F.   Data plots with
greater  resolution are given in Figures  11-151 to 11-175  and  the  raw  data
appear in  Tables II-Z6,  11-27, and  11-28.
                                   198

-------
vD
              %
              28
              26
              24
              22
              20
              18
              16
              14
              12
              10
               8
                 CO, INO,
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
                  1.5
                  1.0
                  0.5
28C
260
24C
22C
200
180
160
 140
 120
 100
 80
    60
    40
    20
                  0  I 0

14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
    3.0
    2.0
    1.0
                                   10
                          30
                               50
                                                              130
150
                                          70      90       110
                                           AXIAL POSITION,cm
                                                                             A-I22-I236
Figure 11-147.   AXIAL GAS  COMPOSITION PROFILE  AT  A  0. 0-cm  RADIAL
POSITION  FOR  THE SHORT-FLAME BAFFLE  USING  THE AXIAL  NOZZLE.
GAS  INPUT,  2190 CF/hr;  EXCESS OXYGEN,  3% ; PREHEATED  AIR,  290°F
170 180

-------


-

g
>-l
a
(X
o
o
o
2~"
26
H2
r) o
Pk ^s.
H •
"8
\J
§8
u ~
(M
O

•J
DC
U










VS NO,I)2,CD2
24.33
23.85
23.38
22.90
21.95
21.47
TOT'tt
20.52
20.04
19.56
19.08
IB. 61
18. IT 	
17.65
17.18
16.70
16.22
15.75
15.27
14. 79
14.31
13.84
13.36
12.86
12.41
11.93
11.45
10..47
1C. 50 P— I
10.02
9.07
8.59
6.11
7.64
7. 16
h.68
6.20
5.73
5.25
4.7;
4.30
3.82
3.34
2.87 1) 	 l
2.39 -j 	 1
1.91
1.43
0.96
0.4B
0.00 C 	 1
           AXIAL BURNEh SHORT FLAME - SHEPHERD'S STAINLESS PROBE,  NOV.  13.'72
      Cf)2,CD,CH4   AP=  7.60
                                              M.
        I)	U	0
        C	 C	C
                                                                C——M	M	C	C
-60.000  -/.B.OOO  -36.000  -24.000   -12.000
                                      -0.000
                                              12.000
                                                     24.000
                                                             36.000
                                                                    46.000
                                                                            60.000
                           RADIAL POSITION, cm
      Figure 11-148.   COMPOSITE  PLOT OF GAS  SAMPLING
      PROFILES FOR CO,  CO2,  CH4, NO,  AND O2  FOR THE
    SHORT-FLAME  BAFFLE USING THE AXIAL  NOZZLE AT
   AN AXIAL POSITION OF  7.6 cm.   GAS INPUT,  2190  CF/hr;
         EXCESS OXYGEN,  3.0%; PREHEATED  AIR,  515°F
                                    200

-------
                4XI4L  BIHNtX  -SHIJRI H.td'f. bAFFI.E - SHEI'HFKD'S PKUBt:. NI~>V. Mt'72
,
       9.?7
       9.06
       8.B4
       9.62
       ea.'.i
       8'. 1 9
   CU   7.9H
   &•   7. 76
  o   '•"
  O   '• n
  O   '•'?
,7 ^H   (-'10
A |   6 . f. R

On   "•'•7
HH K   t,.?.;
                                         /u                    "u
                                          \       M_M_M        /
                                         c\     /     \     r
                                          \    /        \    /N-
                                      "-N-N-t^ /         \N---0  \
                                      /   \;—N^-N\°/   \
                                      '      °                    \
'   N   ». I H
z o   '•-1'6
w u   j-j*

Z O   «i 10
O U   5-8"
(J     3.67
   ,5   3.45             ^0"^ U
      O''l.24  ,1	U	0
       3.02
   i   2.80
       -(.0.000   -'iR.OOO   -J6.0CO   -2'.. 000   -12.000   -0.000    12.000   24.000    36.000    48.000   60.000
                                     RADIAL POSITION,  cm
               Figure  11-149.    COMPOSITE PLOT  OF GAS  SAMPLING
               PROFILES  FOR CO,   COE,   CH4,   NO,  AND O2 FOR  THE
             SHORT-FLAME  BAFFLE USING THE AXIAL NOZZLE AT
          AN AXIAL POSITION OF  37.7  cm.    GAS  INPUT,  2190  CF/hr;
                  EXCESS  OXYGEN,  3.0%; PREHEATED AIR,   515°F
                                                201

-------
            Ac
/X /Xcv
c-cy ^u-o-^ / c
/ ^ \c

	 M^C-C-^P^» — «-M— P-P— K-M— M-" 	 M-M— M->1 — M^C^ 	 C~C
— ^r-v' » — M — """-i C 	 C 	 C 	 C 	 C
-2<..000 -12.000 -0.000 12. nor; 24.000 16.000 <.fl.OOO 60.000
                            RADIAL POSITION, cm
         Figure 11-150.   COMPOSITE PLOT OF GAS SAMPLING
         PROFILES  FOR  CO,  CO2,  CH4,  NO,  AND  O2 FOR THE
        SHORT-FLAME BAFFLE  USING  THE  AXIAL NOZZLE AT
     AN AXIAL  POSITION  OF 91.4 cm.    GAS  INPUT,  2190 CF/hr;
            EXCESS  OXYGEN,  3.0%; PREHEATED  AIR,  515°F
                                       202

-------
  CH
-------
(f













^
'
w
Q
%
O
z
i

^
o
n
*
o



vs. cu
6.20
6.08
5.96
5.H3
5.71
5.59
- 9.«T
5. )5
5.23
5. 10
4.98
<..B6
<..62
<.!38
1.25
».0t
3.89
3. 77
3.65
3.53
3.<.0
J.28
3. 16
3.0<.
2.')2
2. BO
2.67
?.55
2! il
2.C7
.95
.82
.70
            AXIAL BURNER  INTERMEDIATE BAFFLE - BLUNT QUARTZ PROBf,  NOV. 7,
           7.ftO
                                                              72
 .58

 . 34
 .22
 . 10
0.97
0.85
  73
0.61
0.<.9
0. 37
0.2<.
0. 12
0
-jo.oor  -2*.err  -IH.OCO   -12.000    -6.000    -o.ooo     6.000    12.000    IB.OOO    2*.oco

                             RADIAL POSITION,  cm
                                                                                 30.000
   Figure  11-152.   RADIAL  COMPOSITION PROFILE  FOR  CARBON
   MONOXIDE  (CO)  FOR THE SHORT-FLAME  BAFFLE  USING THE
AXIAL  NOZZLE AT  AN AXIAL POSITION OF  7.6 cm.   GAS INPUT,
   2190 CF/hr;  EXCESS  OXYGEN,  3.0%;  PREHEATED  AIR, 315°F
                                        204

-------
K» VS C02
   9.66
               6XUL DUXNtR INURKDI AM HAfHE -  BLUM OUA»TZ PROBE. IDV. 7,
              7.60
                                                                 7i'













^5.

w-
Q
»-H
r^
O
1— 1
Q

2
o
1*

-------
KP





..








t5.
YGEN.
X
O











i/S 02,
10.99
10.78
10.57
10.36
10.16
9.95
9.53
9.32
9. 11
8.90
8.70
8.2B
8.07
7.86
7.65
' 7.23
7.01
6.82
6.M
6.40
6. 1,9
5.98
5.77
5.57
5.36
5.15
<..9<.
'..52
A. 31
<.. 11
3.90
3.69
3.27
3.06
2.85
            AXIAL BURNER INTERMEDIATE BAFFLE  - HLUNT guARTZ PRUBE, NOV.  7,
          7.60
                                                            ' 72
?.?3
2.0?
1.81
l.bC
1.39
1. IB
O.TB
0.77
0.56.
0.35
-30.000   -74.CPO   -IR.OrO
                       -12.0TO   -6.000    -O.OOC    6.000    12.000

                           RADIAL POSITION,  cm
                                                               18.000
                                                                               30.000
Figure  11-154.   RADIAL COMPOSITION  PROFILE  FOR  OXYGEN  (O2)
   FOR  THE SHORT-FLAME  BAFFLE  USING THE AXIAL  NOZZLE
  AT  AN AXIAL POSITION OF  7.6  cm.   GAS INPUT,  2190 CF/hr;
           EXCESS OXYGEN,   3.0%; PREHEATED AIR,  315°F
                                       206

-------
KP















s
a
a
»
W
9
X
o
o
5
L,
fc*
g




















VS 10,
214.23
21 1.32
208.40
205.49
23?. 57
199.66
I >6.74
1 )3.R3
190.91
188.00
135.08
102.17
171.25
I fh.34
173.42
I /0.51
Ih7.59
1 64 . 6.7
161.76
158.64
155.93
153.01
150. JO
147. IB
144.27
141.35
13B.44
135.52
132.61
129.69
1'26.78
123.66
120.95
116.03
115.12
112.20
A09.29
106.37
103.46
100.54
•17.63
94.71
91.80
88.68
85.97
83.05
00.14
77.22
74.31
71 . 39
68.48
65.56
           AXI4L UUKNER INIERMEUIflTfc BAFFLf - 8LUN1 UUARTZ PROREi NOV
      1P=  7.60
                                                      . 7,'72
-jo.oon  -/4.000   -18.000  -12.000
                                              6.000
                                                     12.000
                                                            18.000
                                                                   24.000
                                                                           30.000
                          RADIAL POSITION,  cm
   Figure 11-155.   RADIAL COMPOSITION PROFILE  FOR  NITRIC
OXIDE  (NO)  FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
   NOZZLE AT AN  AXIAL POSITION  OF  7.6 cm.   GAS INPUT,
  2190 CF/hr;  EXCESS OXYGEN,  3.0%; PREHEATED AIR,  315°F
                                    207

-------
7S CH4
Z4.77
/4.2B
23.80
23.31
22.8?
22.34
?.t.8S
21.37
20.88
             SX14L BUHNEI'  lNtt»«EDIATt H4FFLE BLUNI  StilNLESS PRUKE , NOV.  7,'72
            f.60
  . 71
 7.77
 -30.000   -24.000   -IS.OfT'i  -12.000   -6.000   -0.000    6.000    1?.000    18.000    24.000

                             RADIAL POSITION, cm
                                                                                   30.000
        Figure  11-156.    RADIAL COMPOSITION PROFILE  FOR
     METHANE  (CH4)  FOR THE SHORT-FLAME  BAFFLE  USING
    AN  AXIAL  POSITION  OF 7.6 cm.    GAS INPUT,  2190 CF/hr;
           EXCESS OXYGEN,  3.0%;  PREHEATED AIR,   315°F
                                        208

-------
             AXIAL BURNER  INTCrfMEDIMC BAFFLE BLUNT STAINLESS  PRIJBEt NOV. 7,
•tp












^.
w"
Q
*H
X
i
0
^
£
0
fl
ftj
u'


















1/5. CO AP = '.60
6. 16
6.04
5.91
5.79
5.67
5.55
5.31
5.19
5.07
4.95
4.83
1.7J
4.47
<.. 35
4. 10
3.9B
3.UA
3. 74
3.62
3.50
3.38
3.261
5.1".
3.02
2.90
2.78
2.66
2.54
2.42
2.29
2.17
2.05
1.93
. BT '
.69
.57
.45
.33
1.21
1.09
0.97
0.85
0.73
0.61
0.48
0.36
0.24
0. 12
0.00 • 	 « 	 • 	 •
•  -30..000  -24.000  -iB.ono   -12.000
                                  -6.000
                                         -o.ooo
                                                  A.ooo
                                                         12.000
                                                                 18.000    24.000   30.000
                             RADIAL POSITION, cm
     Figure 11-157.   RADIAL COMPOSITION PROFILE FOR CARBON
    MONOXIDE (CO) FOR THE SHORT-FLAME BAFFLE USING THE
  AXIAL NOZZLE AT  AN AXIAL  POSITION OF  7. 6 cm.    GAS INPUT,
     2190  CF/hr;  EXCESS  OXYGEN,  3.0%;  PREHEATED  AIR,  315°F
                                        209

-------
VS C02
• 9.93
 9.80
 9.67
 9.54
 9.41
 9.27
             AXIAL HURNER I NT fc RMEOI ATE RAFFLE BLUNT STAINLESS PKORF.. NOV.
       AP"  7.60
                                                            7, ' 72
 9.01






o
fe~~
.
OXIDE
Q
.RBON
<;
U


















R.8R
8.75
8.62
8.49
B.-J6
8.23
8. 10
7.97
7.84
7.71
T.5B
7.45
7.32
7.19
7.06
6.93
' 6.00
6.67
6.54
6.41
6.28
6.15
5.U9
5.76
5.e>3
5.50
5.37
5.24
5. 11
4.T8
4.H5
4. 72
4,5*
4 . 
-------










0
fe^
•
w
o
X
o


















VS 02
12.29
12.05
11.82
11. D8
1 1.34
11.11
10.87
10. h3
10.40
10. 16
9.69
9.45
9.22
6.98
8.74
fl.51
B.27
6.03
7.RO
7.S(,
7. J2
6.05
6.61
0.3H
5.91
5.67
5.20
4.96
4.01
3.78
3.54
3.30
3.07
2.83
2.59
2.36
2. 12
1 .89
1.65
1.1H
0.94
0. 70
0.47
0.23
            4XIAL BURNER IML4MIUUU HAKPLt BLUNT SUIMESS MBDI'E,  NOV.  I,
           .1,0
             t
-JO.OOn   -24.000   -IB.000  -12.000   -(..000    -0.000    6.000
                                                        i?.ono
                                                               19.000
                                                                       7'..000
                                                                               30.000
                            RADIAL POSITION, cm
   Figure  11-159.   RADIAL  COMPOSITION PROFILE FOR OXYGEN
      (O2) FOR THE SHORT-FLAME  BAFFLE USING  THE AXIAL
     NOZZLE  AT AN  AXIAL POSITION  OF 7.6  cm.   GAS INPUT,
   2190  CF/hr;  EXCESS  OXYGEN,  3.0%;  PREHEATED AIR,  3I5°F
                                        211

-------
a' vS NO,
 201.53
 1 (H.73
 195.93
 193.13
 TI0.33
               AXIAL BURNER  INTF.RMEDIATE BAFFLE BLUNT STAINLESS PRORE, NOV. 7,
             7.60
                                                                   •72








fi
a
a

W
9
X
o
^
H
2





IH1.94
179. 14
176.34
173.54
1 70.74
167.9*
165. 14
162.34
1S9.1)'.
156.74
[•>3.95
I'i 1 . 1 5
148.35
145.55
142. 7S
1 39.95
1 37. 15
134.35
131.55
128. 75
125.96
123.16
120.36
117.56
114. 76
1 11.96
ID9. 16
106.36
113.56
ion. 76
  95. 17
  »2.3'7
  .19.57
  H6.77
  B3.97
  <11. 17
  fB. 37
  /!>.57
  72.77
  f>9.97
  67.1R
  64. 3H
  SI .58
  58.78
   -30.001'
           -24.000   -IB.COO  -12.000
                                    -6.000
                                             -0.010
                                                      6.000
                                                             12.000
                                                                      1B.OCO
                                                                              24.000
                                                                                      30.000
                                RADIAL POSITION,  cm
      Figure  11-160.   RADIAL COMPOSITION  PROFILE FOR  NITRIC
   OXIDE  (NO) FOR  THE SHORT-FLAME  BAFFLE  USING THE  AXIAL
      NOZZLE  AT AN AXIAL POSITION OF  7.6 cm.    GAS INPUT,
     2190 CF/hr;  EXCESS OXYGEN,   3.0%; PREHEATED AIR,  315°F
                                           21Z

-------
W
    V5 CH4
    24. (3
    23.85

    22.90

    21.95
    21.47_
    20 •~9XJ
    20.52
    20.04
    19.56
    19.08
    18.61
    17.65
    17.18

    16.22
    15.75
    1 5. 27
    13.84
    13.36
    12.88
    12.41
    11.93
    1 1.45
    10.90
    10.50
    10.02

     9.07
     11.59
     0. II
     7.64
     7. 16
     6.6'B
     6.21
     5.73
     5.25
     4.77
     4.30
   •  3.'8 2
     3.'34
     2.87
     2.39
     1.91
     1.44
   "DT'JB"
     0.48
     0.00
                  «

    -------
                          RUHNtR
                                    FL4ME - SHF "HERD1 S ^l
                                                             CBDHF , NOV.  I), '72
    W
    Q.
    ><
    i
    1
    ex!
    3
       \/S.  CO
        6. II
        5.99
        5.67
        •>.75
        5.63
        5.M
        5.16
        <..UO
    
        <.!56
        <>. nn
    3. I?
    3.60
    
    1.36
    3.2".
    3. 12
    3.00
    2.89
    2.52
    
    2.28
    2. 16
    2.ll<.
     .0?
     .80
     .i.rt
     . 32
     .20
    I .01)
    
    0. H4
    0. /?
    0. S P
    0.4?
    0.3b
    
    O.I?
    o.or
                   7.60
                               .a. •_«.« — •
                                                                      •
                 '.n.oco   -in.OOi'   -
    -------
                AXIAL  DUUNI M. SHllHI  Fl«Mf - SltgPHEKU'
              1.1,0
                                              ,1 AIHUST. I'KOIII ,  -IIJV.  I 1, ' 12
    
    wo^
    b
    .»
    u
    9
    X
    o
    HH
    s
    ^
    o
    cq
    rf
    ^
    ^
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    8.21
    8. 14
    1 .11
    7.84
    7.61
    '7."54
    7.39
    7.23
    7.08
    6.93
    6.78
    6.63
    • h.48
    6.33
    6. 1 7
    6.02
    5.H7
    5'.57
    5.42
    S.27
    5.12
    4.16
    "4 . 81
    4.51
    4.36
    4.21
    4.06
    3.75
    3.60
    3.45
    3.30
    3.15
    3.00
    2.B5
    2.6")
    -60.000   -4«.ono   -16.00(1  -24.000  -12.000
                                            -0.000
                                                    I?.000
                                                           24.000
                                                                   36.000
                                                                           48.000
                                                                                   60.000
                                RADIAL POSITION, cm
       Figure  11-163.   RADIAL COMPOSITION  PROFILE  FOR  CARBON
    '    DIOXIDE  (CO2)  FOR  THE  SHORT-FLAME  BAFFLE  USING THE
    AXIAL NOZZLE AT AN AXIAL  POSITION  OF 7.6 cm.   GAS INPUT,
       2190 CF/hr;  EXCESS  OXYGEN,  3.0%; PREHEATED AIR,  515°F
                                            215
    

    -------
                    BURNER SH.IRI FLflME - SHEPHERD'S STAINLESS PRORF. NOV.  13. '72
    ;RP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    o
    6^
    
    OXYGEN,
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS 02
    10.02
    " 9 .' 8 3
    9.64
    9.45
    9.25
    4.06
    8.87
    ~B.6R~
    8.49
    8.30
    8.10
    7.91
    7.72
    7.53
    7.34
    7.15
    6.95
    6.76
    6.57
    6.38
    6. 10
    6.00
    5.01
    5.61
    5.42
    5.23
    5.04
    4.U5
    4.66
    4.46
    4.27
    4. OR
    3.B9
    3.70
    3.51
    3.32
    3. 12
    2.43
    2.74
    2.S5
    2.36
    2. 1 I
    1.-57
    1.78
    1.59
    l.'.O
    1.21
    1.02
    O.tt2
    0.63
    n.',4
              7.60
    
    -6P.000  -413.C'V)  -th.OOO   -24.000  -12.000
                                                  12.000
                                                          24.000
                                                                 36.000
                                                                         4f.000
                              RADIAL POSITION, cm
       Figure 11-164.   RADIAL COMPOSITION PROFILE  FOR OXYGEN
          (O2)  FOR  THE SHORT-FLAME  BAFFLE USING THE AXIAL
        NOZZLE AT AN  AXIAL POSITION  OF 7. 6  cm.    GAS INPUT,
       2190 CF/hr;  EXCESS  OXYGEN,  3.0%;  PREHEATED AIR,  515°F
                                          216
    

    -------
    RP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    e
    a
    a-
    •
    W
    Q
    
    ^
    0
    o
    2
    H
    g
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS NO,
    278.78
    275.70
    272.61
    269.53
    266. *5
    263.36
    260.28
    J57.2T)
    2i*. 11
    251.03
    2*7.95
    2**.R7
    2*1. 7fl
    218.70
    i 15.62
    232.53
    229. *5
    226.37
    223.28
    220.20
    217.12
    21*. 03
    210.95
    207.87
    20*. 79
    201.70 "
    198.62
    195.5*
    112. *5
    189.37
    186.29
    183.20
    180. 12
    177.0*
    173.96
    170.87
    167. 79
    16*. 71
    lhl.62
    118.5*
    155. *6
    152. 37
    1*9.29
    1*6.21
    1*3. 12
    1*0.0*
    136.96
    1)3.81!
    UO.7'1
    1 2 7 . V 1
    12*. 63
    121.5*
               AXIAL BURNER SHiMT FL4"E - SHEPHERD'S SfaiNLtSS PROBE, NOV.
          4P-  7.60
                                                               '72
                                         '     \  .'—'
                                                \.'
    -60.000   -*8.0nO  -36.000   -2*.000  -12.000
                                          -0.000
                                                  12.000
                                                          2*.000
                                                                 36.000
                                                                         ".8.000
                                                                                60.000
                              RADIAL POSITION,  cm
       Figure 11-165.   RADIAL COMPOSITION  PROFILE FOR NITRIC
    OXIDE (NO) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL
       NOZZLE AT AN  AXIAL POSITION  OF 7.6 cm.    GAS INPUT,
      2190 CF/hr;  EXCESS OXYGEN,   3.0%;  PREHEATED  AIR,  515°F
                                         217
    

    -------
    HP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ^0
    ^
    .'
    w
    2
    hS
    ffi
    h
    W
    ^
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS CH4
    i.4101
    '.3629
    '.3158
    .2686
    .2214
    >.1742
    '.1271
    '70799
    '.0327
    .9855
    .9384
    .8440
    .7968
    .7025
    .6551
    .hOBl
    ..5610
    .5138
    .4666
    . }72J
    .3251
    .2779
    .2307
    . 1836
    . 1364
    .0892
    .0420
    T.9949
    1.0477
    2.9005
    1.8031
    1.D062
    3.7590
    1.7118
    1.6646
    5.6175
    J.5231
    3.4759
    1.42HP
    1.3816
    ). )144
    1.28f2
    -.2401
     .1457
                 4X14L
              37.70
                          -5HUR1
    E B4FFLE - SHEPMtkO'S PRUBE, NOV. 13,'72
    
        -     A
                                   /
    0.0514
    1.0042
      -60.00(1  -4H.OCO  -lh.000   -24.000  -12.000
                                            -0.000   12.000    24.000   36.0(10
                                                                          48.000   fcO.OOO
                               RADIAL POSITION, cm
       Figure 11-166.   RADIAL COMPOSITION  PROFILE FOR METHANE
          (CH4) FOR THE SHORT-FLAME BAFFLE  USING  THE AXIAL
        NOZZLE AT AN AXIAL POSITION  OF  37.7 cm.   GAS INPUT,
        2190 CF/hr;  EXCESS OXYGEN,  3.0%;  PREHEATED AIR,  50Z°F
    

    -------
                          HUUNCH -SMUKT  FL4MF  BAFFLE  - SHEPHERD'S PROBE, NOV.  13, '72
     «p vs. co
        6.21-
                P =  37.70
    w
    Q
    g
    0
    Z
    O
    o
          01
          96
          84
        5.72
          60
          48
          35
        5.23
        5.11
        4.99
        4.87
        4.75
        4-/6J	
        4.50'
        4. 38
    . 14
    .02
    .90
    .77
    .65
    ,53
    .41
    .29
    .17
    .04
    ,92
    ,80
    .68.
    ,56
    .44
    .31
    .19
    .07
    .95
    .83
    .71 •
    ,58
    ,46
    , 34
    .22
    , 10
    ,
    -------
    
    
    
    
    
    
    fc5-
    w
    Q
    M
    ^
    o
    HH
    G
    Z
    O
    ffl
    K
    . io
    •j.llh
                AXIAL BURNER  -SHLMI FLAHE BAFFLE - SHEPHERD'S PROBE. NOV. 13»'72
          AP = 37.70
    
                                *
                                           \    •
                                           V
    -hO.PO'l
                   -16.000   -?<,.00n
                                           -0.000    1^.00')
                                                                  36.0CU   <.M.Cf>()
                                                                                 00.000
                               RADIAL POSITION,  cm
       Figure  11-168.    RADIAL  COMPOSITION  PROFILE FOR CARBON
        DIOXIDE  (CO2) FOR THE SHORT-FLAME  BAFFLE USING THE
    AXIAL NOZZLE AT  AN AXIAL POSITION OF 37. 7  cm.   GAS INPUT,
       Z190 CF/hr; EXCESS OXYGEN,  3.0%; PREHEATED AIR,  502°F
                                          220
    

    -------
    '

    45 4. 1637 4.072') 3.9022 3.8006, 3.7098 1.6190 J.5282 >.4375 3.3467 3.2559 3.1651 2.9835 2.8927 2.8020 2.7112 2.6204" 2.5296 2.3480 2.2573 2.1665 2.0757 .8033 .7125 .6210 '.5110 .4402 .25H6 .1678 .0771 0.9663 0.8955 0.8047 0.7139 0.6231 3.5324 0.4416 0.3508 0.2600 -60.000 -48.000 -36.000 -24.000 -12.000 -0.000 12.000 24.000 36.000 48.000 60.000 RADIAL POSITION, cm Figure 11-169. RADIAL COMPOSITION PROFILE FOR OXYGEN (02) FOR THE SHORT-FLAME BAFFLE USING THE AXIAL NOZZLE AT AN AXIAL POSITION OF 37.7 cm. GAS INPUT, 2190 CF/hr; EXCESS OXYGEN, 3.0%; PREHEATED AIR, 502°F 221


    -------
                AXIAL BURNER -SHORT FLAME BAFFLE - SHEPHERD'S PKUBS. NOV. 13.'72
    f VS NO,  «P« 37.70
    268.52  *
    265.96
    263.44
    260.91
     253.29
     250.75
     t. IB.06
    
    
    6
    a
    a
    W.
    Q
    ><
    O
    u
    H
    g
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    212.98
    210.45
    227.91
    225.37
    222.81
    2/C.29
    21 7. /6
    215.22
    212.68
    210. 14
    207.60
    205.06
    202.53
    199.99
    1 >7.45
    1-12.37
    189lfl3
    167.30
    104.76
    1H2.22
    1 79. 6b
    177. 14
    I 74.60
    1/2.07
    169.53
    166.99
    161. )l
    (•J9.3B
    lr-6.84
    1>)4. 30
    .1-1 1.76
    149.22
    146.68
    1 4 4 .' 1 5
    141.61
    139.07
           r*
    •^s
            -4R.OOO  -36.0(10  -24.000  -12.000   -0.000   12.000   24.000   36.000   4B.OOO   60.000
                             RADIAL POSITION, cm
        Figure  11-170.  RADIAL COMPOSITION PROFILE FOR  NITRIC
      OXIDE (NO) FOR  THE SHORT-FLAME BAFFLE  USING  THE AXIAL
        NOZZLE AT  AN AXIAL POSITION OF 37.7 cm.  GAS INPUT,
        21.90 CF/hr; EXCESS OXYGEN,  3.0%; PREHEATED AIR,  502°F
                                      222
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    Q
    fe^
    
    w
    £•4
    ETHA
    3
    
    
    
    
    
    
    1
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    <" VS CH4
    0.2030
    0. 1991
    0. 1952
    0. 1913
    0.1874
    0.1835
    0. 1796
    0."i'757"
    0.1716
    0. 1679
    0. 1640
    0. 1601
    n.i562
    ' OM523
    0.14B4
    n. 1445
    0. 1406
    0.1367
    0. 1328
    " 0". 12"B9~
    0. 1250
    n . L 2 I 1
    0. 1 172
    0.1133
    0. 1094
    ' 0.1055
    0.1016
    0.0978
    0.0939
    0.0900
    0.0861
    "070822
    0.0783
    C.0744
    ..0.0705
    0.0666
    0.0627
    ' 0.0588
    0.0549
    0.0510
    0.0471
    0.0432
    0.0 3') 3
    0.0354
    0.0315
    0.0276
    0.0237
    0.0198
    0.0159
    "0.0120
    0.0081
    0.0042
               4XIAL HUKNfiK SHIJKI FLftMfc - SHEPHERD'S SIAINLF.SS PRUUF-. NOV.14, '7,?
             91.1,0
    -60.000   -48.000  -36.000   -2"..000  -I?.000
                                           -0.000
                                                  12.000
                                                          24.000
                                                                 36.000
                                                                         48.000
                                                                                60.000
                              RADIAL POSITION, cm
     Figure  11-171.    RADIAL  COMPOSITION  PROFILE FOR METHANE
        (CH4) FOR  THE  SHORT-FLAME BAFFLE  USING  THE AXIAL
       NOZZLE AT AN  AXIAL POSITION OF 91.4 cm.   GAS INPUT,
       2190 CF/hr; EXCESS OXYGEN,  3.0%;  PREHEATED AIR,  502°F
                                         223
    

    -------
                      AXIAL HURNEK  S"UK I  FLAKE -  SHEPHERD'S STAINLESS PROHE, NOV.l*,'f2
      RP VS. CD   AP«  01.*0
        1.759*
       '1.7250
        1.6906
        1.6562
        1.6218
        1.5875
        1.5187
        l.*B*3
        l.*500
        I. 4156
        I .3012
        1.3*68
        i.3125
        1.2781
        1.2*37
        1.2013
        1.17*9
        1.1*06
    J5  1.0718
    (J  1.017*
    Z  1.0011
    Q  O.lbUI
    S  0.9UJ
    «4  O.P494
    ,_  0.6656
    *  0 . 8 .U 2
    O  n.7068
    CQ  n.762*
    Qj  0.7280
    ••J  0.6937
    ^  0.6r>93
    O  0.62*'>
       n.5218
       n.*87*
       O.MB6
       n. 38*3
       0. 3*99
       0.3155
       0.281 1
       J.2*6fl
       0.212*
       0.1780
       fl. 1*36
       r. 1093
       0.07*9
       n.0061  • - • —
    
         -o0.oor   -*H.onu   -ii.ncn   .-/"..ono   -12.noo    -n.ooo    12.0011    f-.ona    16.000    *«.ron    (,n.oon
    
                                      RADIAL POSITION, cm
           Figure  H-172.   RADIAL  COMPOSITION PROFILE FOR CARBON
           MONOXIDE  (CO) FOR  THE  SHORT-FLAME  BAFFLE USING THE
        AXIAL NOZZLE  AT  AN  AXIAL POSITION  OF  91.4  cm.   GAS  INPUT,
           Z190 CF/hr; EXCESS  OXYGEN,  3.0%; PREHEATED AIR,   50Z°F
                                                   224
    

    -------
                AXIAL hUKNEK SHIMl  I L A«t - SHE MltliRIl'S M A ML I S i> PRIIIII:, NUV.14.M2
     -60.000  -4R.OOO   -36.000  -24.000   -12.000
                                           -0.000
                                                   12.000
                                                           24.000   36.000    48.000   60.000
                               RADIAL POSITION, cm
       Figure  11-173.    RADIAL COMPOSITION  PROFILE FOR CARBON
       DIOXIDE  (CO2) FOR THE  SHORT-FLAME BAFFLE USING THE
    AXIAL NOZZLE AT  AN  AXIAL POSITION OF  91.4  cm.   GAS INPUT,
       2190 CF/hr; EXCESS  OXYGEN,  3.0%;  PREHEATED AIR,  485°F
                                          225
    

    -------
      HP VS 02,
        3.6100
        3.5531  *
                      AXIAL HURNEH SHURI FLAME - SHEPHERD'S STAINLESS  PROHE, NOV.14,-72
                AP= 91.40
    w
    o
    X
    o
        3.4418
        J. 3RS7
        3.3296
        3.2735
        3.2175
        1.1614
    
        3.0492
        2.9931
        2.9371
        > . l\f I
        2.3761
    2.2060
    2.1520
    2.03T8
     .9837
         .8716
         . 7594
         .7033
         .4 7TT
    
         . 3669
         . 310P
         .'/ •>', 7
         . 19B6
         . 0 H (. •)
        n.'
        n.'
        R.nodi
        P. 7"ill()
         -60.000   -46.000   -36.000   -^4.000   -12.000   -0.000    12.000
                                                                              30.000
                                                                                       fi.000
                                                                                              60.000
                                     RADIAL POSITION,  cm
            Figure  11-174.   RADIAL COMPOSITION  PROFILE  FOR OXYGEN
               (O2) FOR  THE SHORT-FLAME  BAFFLE USING THE AXIAL
             NOZZLE  AT AN AXIAL POSITION  OF  91.4 cm.    GAS  INPUT,
            2190  CF/hr; EXCESS  OXYGEN,  3.0%; PREHEATED  AIR,  485°F
                                                  226
    

    -------
    
    tn
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    E
    
    P
    •
    w
    p
    >— i
    X
    0
    
    u
    1— 1
    oi
    H
    g"
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    AXIAL
    1 VS NO, AP= 91.40
    266.66
    265.21
    2C.3.75
    262.30
    260.84
    259.39
    217.94
    255.03
    253.57
    252.12
    250.66
    249.21
    ?46.30
    244. B5
    243.39
    241.94
    240.49
    719.03
    237.50
    236.1?
    234.67
    233.22
    231.76
    no.ii • » •-•
    22B.85 \
    227.40 \
    225.94 \ •
    224.49 \
    223.04 \
    220.13 \
    218.67 \
    217.22 \
    215.77 \
    214.31 \
    212.86 - \
    211.40 \
    209.95 »^^_ «^
    208.50
    207.04
    205.59
    202.68
    201.22
    199.77
    118.32
    116.86
    195.41
    1 (3.95
    192.50
                         SHORT FLAME - SHEPHERD'S SIAINLI.-SS PRObE, NOV.14.-72
    -60.000  -48.000   -36.000  -24.000  -12.000   -0.000    12.000   24.000
                                                               36.000
                                                                       48.000
                                                                              60.000
                             RADIAL POSITION, cm
       Figure  11-175.   RADIAL COMPOSITION  PROFILE  FOR NITRIC
    OXIDE (NO) FOR  THE SHORT-FLAME BAFFLE USING THE AXIAL
       NOZZLE AT AN  AXIAL  POSITION OF 91.4 cm.   GAS INPUT,
      2190 CF/hr; EXCESS  OXYGEN,  3.0%; PREHEATED AIR,
    485^
                                        227
    

    -------
                     Table U.-26.    RAW  (Gas Analysis) DATA FOR  SHORT-FLAME BAFFLE  BURNER
                                         TRACER GAS STUDIES OF XOHBUSTTON "BURNERS "PTOGTTRW"2	  	
                                   AXIAL  BURNER SHORT FLAME - SHEPHERD'S STAINLESS  PROBE,  NOV.  13,'72
                                     WALL TEMPERATURE  2570
                INPUT GAS   2190
                UUIfUl  ANALYSIS	
                NITROGEN OXIDE   36.50 PERCENT ON RANGE 1,
               ~C~A"RBON~DTUXTDE   ST.ZXT PERCENT ON~RANGE T,~
                CARBON  MONOXIDE   5.30 PERCENT ON RANGE 3,
                HFTHANE	0700~PERCENT ON RANGED 0,"
           PREHEAT  TEMPERATURE
                                                                                        515
     324.99  PPM
    ~ T073"6~PER"CENT"
     0.002  PERCENT
       OTOO"PERCENT"
    OXYGEN  2.87 PERCENT
    bXKEK IM
    AP
    7.60
    ~T.60'
    7.60
    1 . 6U
    7.60
    TT50~
    7.60
    7760"
    7.60
    1 .60
    7.60
    7.60
    ~7."60
    7.60
    r.60
    7.60
    	 77YCT
    7.60
    7.6TJ"
    7.60
    7.60
    7.60
    7.60"
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    	 7.60
    IENIAL KtbU
    1
    	 RT> 	 1
    -60.00
    -=54-700 -
    -48.00
    -<»z.uu
    36.00
    -33.00
    -30.00
    -27.00
    -24.00
    -zi .00
    -18.00
    ~=T5~.'OD 	
    -12.00
    ~9.ao
    -6.00
    -3.00
    0.00
    	 3TOO 	
    6.00
    9.00
    12.00
    15.00
    18.00
    21.00
    24.00
    27.00
    30.00
    36.00
    42.00
    48.00
    54.00
    60.00
    Lib
    NIT;
    RAN
    1
    1
    1
    1
    1
    1
    1
    L
    1
    1
    1
    ~T
    1
    ~ T
    1
    1
    1
    ~T
    1
    "1
    1
    I
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    ROGEN OXIDE -NO
    GE"""X " Y
    25.80 225.1
    25.10" 218.7
    25.30 220.6
    25. 50
    25.50
    25.60"
    25.70
    — 25 . ff(T
    22.70
    Z0.60
    18.60
    "20720
    18.30
    " "22.80
    23.90
    25. 80
    23.30
    — 2ZTOTJ "
    22.20
    2?/70
    22.70
    22.60
    19.50
    14.20
    16.40
    29.50
    30.00
    31.60
    31.10
    31.40
    31.40
    30.80
    ZZZ.4
    222.4
    "223.3
    224.2
    225.1
    197.0
    1 78. 1
    160.2
    "174.5
    157.6
    "197.9"
    207.8
    225. 1
    202.4
    ~190."6
    192.5
    " 1 9'7~. 0
    197.0
    196. 1
    168.2
    121.5
    140.8
    259.2
    263.8
    278.7
    274.1
    276.9
    276.9
    271.3
    OXYGEN CARI
    02 RAN(
    2.90 1
    2.88
    2.84
    Z .91
    2.95
    "2.88
    2.95
    " 2". 9 9
    3.37
    4.92
    3.00
    0 . 43
    0.25
    ~ 0.46
    0.75
    1.08
    1.31
    " " 1.39
    1.20
    0.89
    0.48
    1.35
    3.13
    8.02
    10.02
    3.49
    3.43
    3.36
    3.40
    3.41
    3.20
    3.33
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    	 1
    1
    I
    1
    1
    1
    " T
    1
    1
    1
    1
    1
    " I
    1
    1
    1
    1
    1
    1
    1
    1
    30N DIOX
    ;E -x"
    80.80
    80.90
    81.00
    B 1 .ZO
    81.00
    " 80.50"
    81.30
    8 1 . 40
    75.40
    74.00
    74.50
    65.30
    55.10
    ""4 8. "70 '
    43.70
    38. 70
    35.00
    3^.20"
    38.10
    49.30
    63.70
    73.30
    74.30
    62.90
    56.80
    80.10
    79.90
    80.80
    81.00
    80.40
    79.80
    80. ?0
    IDE-C02 CARB
    	 Y 	 R'SNG
    10.28 3
    10.30
    10.32
    1O. 36
    10.32
    roTzz
    10.39
    10.41
    9.16
    B.BB
    8.98
    "7i24 	
    5.52
    " 4756 	 ~
    3.86
    3.22
    2.78
    " 2".6~9"~ "
    3.15
    6.96
    8.75
    8.94
    6.82
    5.79
    10.13
    10.09
    10.28
    10.32
    10.19
    10.07
    10.15
    3
    3
    3
    3
    3
    3
    3
    3
    2
    I
    ~r
    i
    i
    ON MONO>
    E__x_._
    10.00
    "8.90
    7.80
    0.40
    8.10
    ~~ 8.20~
    8.20
    "~8.90
    92.30
    13.20
    49.30
    1TO700
    112.60
    1T4TOO"~
    109.80
    1 101.30
    1 96.60
    ~1 	 95T20"
    1 100.50
    ~T~TO 67915"
    1 104.40
    1
    1
    2
    3
    3
    3
    3
    3
    3
    3
    3
    80.50
    49.70
    2~5~;?0
    18.00
    10.40
    11.10
    11.10
    10.50
    10.80
    9.90
    10.20
    (IDE -CO METHANE - CH4
    Y RffNGl X ~Y~ "
    0.004 3 0.00 0.00
    0.003
    0.003
    0.003
    0.003
    0.003
    0.003
    0.003
    0.045
    0.217
    1.791
    5.781 "
    5.996
    ~6.T13 	
    5.764
    5.087
    4.730
    4.625
    5.026
    5.529
    5.330
    3.594
    1.811
    0.346
    0.007
    0.004
    0.004
    0.004
    0.004
    0.004
    0.004
    0.004
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.4O
    3 1.70
    1 14.50
    1 59.10
    ~l 	 T¥7BO~
    1 106.10
    1 112.70
    1 112.40
    1 112.40
    1 113.20
    1 103.70
    1 49.50
    3 18.00
    3 2.00
    3 0.90
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    3 0.00
    0.00
    0.00
    o.oo
    0.00
    OTOU
    0.00
    0.00
    0.00
    0.02
    0.07
    8.59
    T37W
    21.83
    24. 15
    24.04
    24.04
    24.33
    21.01
    6.59
    0.78
    0.08
    0.04
    0.00
    0.00
    0.00
    0.00
    0.00
    0.00
    0.00
    0.00
    tSJ
    oo
    

    -------
                    Table  11-27.   RAW  (Gas  Analysis)  DATA  FOR  SHORT-FLAME BAFFLE BURNER
                                        TRACER GAS STUDIES OF COMBUSTION BURNERS  PROGRW ~2
                                  AXIAL BURNER -SHORT FLAME BAFFLE - SHEPHERD'S PROBE,  NOV. 13,«72
               INPUT GAS  2190
                                    WALL TEMPERATURE  2584
                                                                PREHEAT TEMPERATURE
                                                                                      502
               UU T KUI  ANALYi15
               NITROGEN OXIDE  35.20 PERCENT ON RANGE It
               CARBON  DIOXIDE- 82.40 PERCENT ON RANGE 1,
               CARBON  MONOXIDE  5.50 PERCENT ON RANGE 3,
               METHANE          0.00 PERCENT ON RANGE 0,
    312.65 PPM
     10.62 PERCENT
     0.002 PERCENT
      0.00 PERCENT
    OXYGEN  2.90 PERCENT
    bXPbKIMb
    AP
    37.70
    37.70
    37.70
    37.70
    37.70
    37.70
    37.70
    37.70
    3 7 . iv
    37.70
    37T70
    37.70
    37.70 '
    37.70
    37.70
    37.70
    -3~r; 70-
    37.70
    "37T70
    37.70
    3 / . 1 U
    37.70
    " 3TT7(r~
    37.70
    3T.70—
    37.70
    37.70
    "37Y70"
    37.70
    NTAL KbbUL
    N
    RP 1,
    -60.00
    -54.00
    -48.00
    — ** 2 » 00
    -36.00
    -30". 00
    -27.00
    -24". 00
    -21.00
    - 1B.UU
    -15.00
    -12/00
    -9.00
    -6.00
    -3.00
    U. UU
    3.00
    " fr.OO
    9.00
    "I?. 00-
    15.00
    LU . UU
    21.00
    ' 2V. OQ- ~
    27.00
    -~30VOO-
    36.00
    42.00
    48.00
    - 54-roo"
    60.00
    ITI
    UNI
    1
    1
    1
    I
    1
    1
    I
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    I
    1
    1
    1
    1
    1
    1
    1
    1
    ROGEN OXIDE -NO
    3E X Y
    30.40 267.5
    26/00 227.0
    25.40 221.5
    2*» . ou
    23.70
    22.70
    22. 10
    21.30
    20.20
    19. 30
    18.90
    18.60
    18.00
    16.60
    16.20
    16. UU
    17.50
    19.90
    20.30
    21.70
    22.40
    i 3. UU
    25.70
    26. ra
    27.00
    29.00
    28.60
    29.30
    30.50
    29.80
    i I1* . £
    206.0
    197.0
    191.5
    184.4
    174.5
    166. '5
    162.9
    160.2
    154.9
    142.5
    139.0
    !*»<• . 3
    150.5
    171.8
    175.4
    187.9
    194.3
     . 1 7
    6.98
    • 7.94 --
    8. 11
    -8.92 	
    9.32
    V. "»5
    9.28
    ' "9.61 	
    10.11
    —1 0 . 15- -
    10.11
    10.28
    10.22
    10.05"
    9.69
    3 13. IU
    3 14.20
    i 20 • 00
    3 59.30
    2 12. 2U
    2 22.10
    2 46V30
    2 90.20
    i 5 / ,<:u
    I 89.80
    1 103.60
    1 108.50
    ~ T— ITS. 10
    1 114.50
    i i 13. uu
    1 101.80
    -I" ~B1.60
    1 79.50
    I "51T8O
    1 30.10
    1 14. iu
    I 3.00
    - r - -3 .TO
    3 17.10
    3 	 8. -00
    3 4.00
    3 5.20
    3 5.10
    —3 5.20
    3 5.10
    o ;TJD^
    0.005
    0. 008
    0.027
    0.200
    0.371
    0.822
    1.764
    2. 1 vs
    4.233
    5V267 	
    5.658
    6". 206—
    6. 156
    e>« u^v
    5.126
    3T6-68- —
    3.528
    1V9T6 ~
    0.941
    U. 3U4
    0.078
    07086 	
    0.007
    0/003 	
    0.001
    U.OU2
    0.002
    0.002"
    0.002
    METHANE - CH4
    RANGE" JC "- -Y
    3 0.00 0.00
    3
    3
    3
    3
    3
    —3^
    3
    3
    3
    3
    — - 3-
    3
    3
    3
    	 3-
    3
    3
    3
    3
    	 3 -
    3
    J
    3
    3
    3
    U. UU
    0.20
    0. 70
    0.40
    0. 80
    1.10
    irso
    6.00
    S>. 80
    21.40
    35.40
    36.00
    ~5-OTOO~
    52.20
    5u. «»0
    35.50
    -2XJ750"
    17.30
    ~rr. so~
    5.20
    t. 3U
    0.00
    --avoo-
    0.00
    — OTBtT
    0.00
    0.00
    0.80
    0.50
    0.70
    u.uu
    0.01
    0 • 03
    0.02
    0.03
    0.05
    -- 0.^)6
    0.25
    0.93
    TT58
    1.61
    	 2V79
    2.41
    2.31
    1.59
    0.75
    0.51
    0.22
    U. IU
    0.00
    0.00
    " 0.03
    0.00
    0.00
    0.03
    OV02
    0.03
    ro
    

    -------
                    Table  11-28.   RAW  (Gas Analysis) DATA FOR SHORT-FLAME BAFFLE  BURNER
                                       TRACER GAS STUDIES Of COMBUSTION  BURNERS   PROGRAM  2
                                 AXIAL BURNER SHORT FLAME - SHEPHERD'S STAINLESS  PROBE,  NOV.
                                                                 '72
              INPUT GAS  2190
    HALL TEMPERATURE2619
    PREHEAT TEMPERATURE
                                                                                      485
              OUTPUT ANALYSIS
             JQIROGJNJDXJpE	35.00 PERCENT ON RANGE_ljL
              CARBON DIOXIDE  81/90 PERCENT ON"RANGE  I,"
              CARBON MONOXIDE  7.60 PERCENT ON RANGE  3,
              METHA'NE"  ""      o.oo PERCENT ON RANGE  o,"
                          310.75 J|PM
                          " 10.51 PERCENT
                           0.003 .PERCENT
                            0.00 PERCENT
               OXYGEN  2.92 PERCENT
    EXPERIMENTAL RESULTS
    NITROGEN OXIDE -NO
    AP
    91. 40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91 .40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91 .40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    91.40
    RP RANGE X
    -60.00 1 26.40
    -54.00
    -48.00
    -42.00
    -36.00
    -30.00
    -27.00
    -24.00
    -21.00
    -18.00
    -15.00
    -12.00
    -9.00
    -6.00
    -3.00
    0.00
    3.00
    6.00
    9.00
    12.00
    15.00
    18.00
    21.00
    24.00
    27.00
    30.00
    36.00
    42.00
    48.00
    54.00
    60.00
    1
    1
    1
    1
    1
    1
    1
    I
    1
    1
    l"
    1
    1
    1
    1
    1
    1
    
    
    1
    1
    1
    1
    1
    1
    24.20
    24.20
    23.80
    24.00
    23.30
    23.30
    23.20
    22.80
    22.90
    23.60
    24.00
    24.80
    25.30
    26.30
    26.40
    26.80
    26.70
    26.60
    26.50
    25.90
    26.00
    25.20
    25.80
    22.60
    22.20
    25.20
    26.00
    27.80
    28.30
    30.30
    Y
    230.6
    210.5
    210.5
    206.9
    208.7
    '202.4
    202.4
    201.5
    197.9
    198.8
    205.1
    208.7
    216.0
    220.6
    229.7
    230.6
    234.3
    233.4
    232.4
    231.5
    226.0
    227.0
    219.6
    225.1
    196. 1
    192.5
    219.6
    227.0
    243.5
    248. 1
    266.6
    OXYGEN
    02
    3.55
    3.61
    3.49
    3.37
    3.36
    3.20
    3.05
    2.78
    2.60
    2.35
    2.07
    1.67
    1.34
    1.12
    0.91
    0.88
    0.78
    0.75
    1. 14
    1.44
    1.71
    1.97
    2.73
    3.11
    3.22
    3. 19
    3.45
    3.41
    3.44
    3.28
    3.22
    CARBON DIOXIDE-C02
    RANGE X
    1 81.10
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    80.90
    81.20
    81.40
    81.90
    81.70
    82.00
    82.30
    82.80
    82.30
    83.40
    83.50
    83.30
    82.80
    83.10
    82.80
    82.90
    83.80
    83.30
    82.60
    82.90
    82.50
    82.10
    81.40
    81.30
    80.70
    80.50
    81.80
    81.20
    81.50
    81.20
    Y
    10.34
    10.30
    10.36
    10.41
    10.51
    10.47
    10.54
    10.60
    10.71
    10.60
    10.84
    10.86
    10.82
    10.71
    10.77
    10.71
    10.73
    10.93
    10.82
    10.66
    10.73
    10.64
    10.56
    10.41
    10.39
    10.26
    10.22
    10.49
    10.36
    10.43
    10.36
    CARBON MONOXIDE -co
    RANGE X
    3 19.10
    3
    3
    3
    3
    3
    2
    "2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    2
    3
    3
    3
    3
    3
    20.00
    21.20
    32.00
    54.20
    96.70
    7.30
    12.20
    19. 10
    29.90 •
    43.80
    53.10
    70.00
    78.80
    88.50
    89.40
    90.00
    89.90
    80.00
    69.10
    55.50
    46.40
    29.20
    17.10
    13.10
    7.50
    71.50
    46.50
    15.20
    14.80
    15.10
    Y
    0.007
    0.008
    0.008
    0.013
    0.024
    0.047
    0.119
    0.200
    0.319
    0.511
    0.773
    0.958
    1.311
    1.504
    1.724
    1.745
    1.759
    1.757
    1.531
    1.291
    1.006
    0.824
    0.498
    0.2B4
    0.216
    0.122
    0.033
    0.020
    0.006
    0.006
    0.006
    METHANE - CH4
    RANGE X
    3 0.00
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    0.00
    0.70
    3.20
    2.50
    3.40
    2.50
    2.20
    3.00
    3.60
    3.40
    3.80
    3.90
    4.20
    4.20
    4.30
    3.90
    4.00
    4.70
    3.80
    3.90
    3.10
    3.30
    2.40
    2.20
    2.90
    2.00
    2.30
    1. 10
    0.50
    1.50
    Y
    0.00
    0.00
    0.03
    0.13
    0.10
    0.14
    0.10
    0.09
    0.13
    0.15
    0.14
    0.16
    0. 16
    0. 18
    0.18
    0.18
    0.16
    0.17
    0.20
    0.16
    0.16
    0.13
    0.14
    0.10
    0.09
    0.12
    0.08
    0.10
    0.05
    0.02
    0.06
    ro
    OJ
    o
    

    -------
    C.   Movable  Block Swirl Burner
         1.   Burner  Design
         The movable block burner  is  constructed  so that  the  ratio of the
    axial and radial velocities can  be  varied.   (See a cross-sectional view
    in Figure 11-176.)  The outlet  of the burner was designed so that divergent
    sections of different angles  could  be interchanged (Figure 11-177).
         Swirl vanes,  located in  the rear air chamber (Figure 11-178), will
    produce varying degrees  of  swirl  intensity of  the air  stream  by  adjusting
    the vane positions.   The movable  vanes are attached  to a circular  rotat-
    ing ring.  The fuel nozzle is  located  down the  center of the burner  and is
    retractable  to allow  for variation  of  the port mixing.   The  diameter  of
    the gas nozzle  is easily varied by substituting a new  center pipe and
    swirl-guide section.   This provides an easy means  for  changing the air/
    fuel velocity  ratio.   Figure  11-179 shows  an approximate  measure  of
    swirl intensity  as  a  function  of vane setting E.
         2.   Tracer-Gas Studies
         We made radial scans of tracer-gas concentration to  determine  the
    exact areas where point-by-point sampling should be undertaken.   Figure
    11-180 shows  the  coordinate  system used to define the probe position in
    the cold-model unit.
         Data were  gathered by  moving the  tracer-gas sampling probe radially
    across  the chamber  at  a constant  velocity, at several fixed axial positions,
    which corresponds to the axis  of the burner.   These  scans were limited
    to distances  on the Y-axis of +30  cm from the  X-axis.
         Figures  11-181,  11-182,  11-183,  and 11-184  show gas  concentration
    profiles for the  intermediate  swirl intensity on  the burner axis at  2. 5,
    6.12, 12.7,  and 16.8 cm from the burner.   Comparing Figure 11-181
    with later  velocity data, we  found that  the width of  the  central concen-
    tration  peak  increased  significantly with increasing swirl  intensity.
    Figure  11-183 shows  that at  16.78 cm from the  burner wall the  tracer
    gas  is  completely  mixed  and its concentration uniform across  the cham-
    ber  width;  however,  for the  case  of  minimum swirl, the  tracer  gas was
    not completely  mixed until it reached a point  101. 62 cm from the  burner
    wall.
    
                                       231
    

    -------
                                                                CONNECTING FLANGE
                                          SWIRL GENERATOR
                                             BLOCKS
                  COMBUSTION   *
                  AIR
                                                               A-23-290
    Figure 11-176.   CROSS SECTION OF HOT-MODEL BURNER
    

    -------
    _ ___ _ __ _____ _l
     • — ™~" *"~™ '"" ™ H
                                                             0-35° MAXIMUM
                                                    A-81855
           Figure  11-177.   DIVERGENT  FLOW  ADAPTER
                      OF  HOT-MODEL BURNER
                                    Z33
    

    -------
                              A-23-291
    Figure 11-178.   SWIRL VANES  OF  HOT-MODEL BURNER
                                234
    

    -------
    o
    X
    _l
    u.
    |  3
    h-
    LU
    2
    O
    2
    o:  2
     O
     z
                           THEORETICAL CURVE
                    0.2         0.4        0.6
    
                        ADJUSTMENT,  E/E--
                                                   0.8
    1.0
                                                      A-61856
    Figure  11-179.   SWIRL CURVE OF HOT-MODEL  BURNER
                                  235
    

    -------
    BURNER
    J
                                   10 ft
                         -40 in.
                   2?
                  Y/A
    /AREA OF FLOW ^ 30cm
    /MEASUREMENTS'
                                            I
                                           
    -------
     z
     o
     o
     o
     o
    1250
    
    IOOO
    
     750
    
     500
    
     250
             -30       -20       -10         0        10
                                 RADIAL POSITION,cm
                                                         20
                                                                  A-32206
         Figure 11-181.   RADIAL CONCENTRATION PROFILE OF
       CARBON  MONOXIDE FROM THE MOVABLE-BLOCK BURNER
         2.59 cm  OUT FROM BURNER  TIP [Air Velocity 28 ft/s;
            Gas  Velocity  (Air) 110 ft/s;  1000:1 Air/CO Ratio in
                   Gas Stream],   INTERMEDIATE SWIRL
    UJ
    o
    o
    o
    o
         750
    250
                                           \
            -30      -20       -10        0        10
                                RADIAL POSITION,cm
                                                       20
    30
                                                                 A-32207
         Figure H-182.   RADIAL CONCENTRATION PROFILE OF
       CARBON  MONOXIDE FROM THE  MOVABLE-BLOCK BURNER
       6.12 cm OUT FROM THE BURNER TIP [Air Velocity 28 ft/s;
              Gas Velocity (Air)  110  ft/s; 1000:1 Air/CO Ratio
                 in Gas  Stream],  INTERMEDIATE SWIRL
                                     237
    

    -------
      g
    
      
    -------
       1250-1
            -21  -18  -15  -12  -9  -6
    8  2SO
         -3    0   +3  +6  +9
    RADIAL  POSITION,cm
                  1
    +12  +15  +18  4-21
                                                                          A-32163
            Figure  11-185.   RADIAL CONCENTRATION PROFILE OF
           CARBON MONOXIDE FROM THE SWIRL  BURNER 5. 08 cm
          FROM BURNER TIP [Air Velocity 28 ft/s;  Gas Velocity (Air)
                  110 ft/s;  1000:1 Air /CO  Ratio in Gas Stream]
      O
      U
    3UU —
    
    400 —
    
    3OO
    
    ZOO
    
    too
    
    *
    
    
    
    
    
    
    M
    
    
    
    >l
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ny*i
    
    
    1
    8
    
    
    
    
    
    
    
    ^f\J
    
    
    -1
    
    
    
    
    
    
    
    
    
    
    5
    
    
    
    
    
    
    
    vV«
    
    
    -1
    
    
    
    
    
    
    
    
    
    
    2
    
    
    
    
    
    
    
    
    
    
    _
    
    
    
    
    
    
    
    
    
    
    9
    
    
    
    
    
    
    
    
    
    
    -i
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    .<-/
    
    
    
    
    
    
    
    1
    
    
    ^
    
    
    
    3 (
    
    
    1
    i
    i
    „!
    ~TS
    ;
    i
    !
    i
    3 +
    
    
    
    
    
    
    «p*»
    
    
    
    3
    
    
    !
    1
    • • r •
    I
    H-K
    
    i
    1
    1
    +6
    
    
    
    
    
    
    F,
    
    
    
    1
    + <
    
    
    
    
    
    
    ~M
    
    
    
    )
    
    
    
    
    
    
    K«<
    
    
    
    1-1
    
    
    
    
    
    
    
    
    
    
    2
    
    
    
    
    
    
    
    "
    
    
    +
    
    
    
    
    
    
    
    
    
    
    5
    
    
    
    
    
    
    
    
    
    
    1
    + 1
    
    
    
    
    
    
    
    
    
    
    8
    
    
    
    
    
    
    
    
    
    
    1
    + 21
                                   RADIAL  POSITION,cm
                                                                        A-32164
         Figure H-186.   RADIAL CARBON MONOXIDE CONCENTRATION
           PROFILE OF  SWIRL BURNER  50. 8 cm FROM BURNER  TIP
                [Air Velocity 28 ft/s; Gas Velocity (Air)  110 ft/s;
                       1000:1  Air/CO  Ratio  in Gas Stream]
                                       239
    

    -------
    sou -
    E
    g 400 -
    
    O 300 —
    8 200 -
    O ,nn
    O 100 —
    
    4
    — -
    
    
    - -
    •N"
    
    
    >l
    
    
    
    ---
    '•••*
    
    
    -
    	
    
    
    
    ~S^
    
    
    8
    - —
    
    
    
    WBW
    
    
    -1
    
    
    
    "
    •**
    
    
    5
    
    
    
    "
    
    
    
    -1
    .—
    
    
    
    
    
    
    2
    
    
    
    
    
    
    
    _
    -
    
    
    —
    *
    
    
    9
    
    
    
    --
    
    
    
    -i
    
    
    
    —
    
    
    
    »
    
    
    
    ;
    **
    
    
    
    
    
    
    
    
    
    
    $
    
    
    
    *j
    
    
    
    (
    
    
    
    W*"
    
    
    
    D
    
    
    
    ^
    ...
    
    
    1
    +
    
    
    
    v^
    
    
    
    3
    
    
    
    *•*
    
    
    
    1
    +(
    
    
    
    VM
    
    
    
    5
    
    
    
    
    
    
    
    1
    + <
    
    
    
    
    
    
    
    J
    
    
    
    —
    
    
    
    1
    + 1
    
    
    
    —
    
    
    
    2
    
    
    
    — -
    '
    
    
    + 1
    -
    
    
    
    
    
    
    5
    
    
    
    j
    
    
    
    + 1
    
    
    
    
    
    
    
    8
    
    
    
    
    
    
    
    1
    + 2
                              RADIAL POSITION,cm
                                                                    A-32165
    Figure 11-187.   RADIAL CARBON MONOXIDE  CONCENTRATION
      PROFILE OF SWIRL BURNER 76.2 cm FROM BURNER  TIP
          [Air  Velocity 28  ft/s; Gas Velocity (Air) 110 ft/si
                      SET FOR MINIMUM SWIRL.
    
    e
    Q.
    Q.
    z
    o
    z
    o
    o
    o
    500 -i
    400 -
    300 -
    200 ~
    100 -
    
    
    
    
    
    u \ 1 1 1 1 1 1 1 1 1 1 1 1 1 1
    -21 -18 -15 -12 -9 -6 -3 0 +3 +6 +9 +12 +15 +18 +21
                              RADIAL POSITION,cm
                                                                   A-32166
    Fig;ure 11-188.   RADIAL CARBON  MONOXIDE  CONCENTRATION
      PROFILE  OF SWIRL BURNER  101.6 cm FROM BURNER TIP
           [Air  Velocity  28  ft/s; Gas Velocity  (Air) 110 ft/s].
                      SET FOR MINIMUM SWIRL.
                                   240
    

    -------
         Figures 11-189,  11-190,  II-19^  and 11-192 show gas concentration
    profiles at  maximum swirl.   Ayain we found  that,  as  a function of swirl
    intensity, the  central peak of the  tracer  gas concentration in the burner
    region  decreases its  amplitude and  increases  its  width as  the swirl in-
    creases and the turbulence of the air stream  increases, accompanied by
    a stronger  recirculation in the burner  region  as the swirl increases.
         As; a result of the  continuous tracer-gas  scans, we undertook point-
    by-point tracer-gas  samples.   Radial profiles  were  mapped  at  3. 8,  7. 6,
    17.8,  30.5,  and  63.5  cm  for both tne  minimum swirl and intermediate swirl
    (swirl intensity =  0.8).   The data plots are shown  in  Figures 11-193  to
    11-199.   The raw  numerical  data  are  given in Tables  11-29 to 11-34.
    Table  11-35  shows the column heading  code.
         3.   Cold-Model Velocity Para
         Velocity  scans were taken  jy.  the  cold model  much like the tracer-
    gas  scans.   A continuous  radial  scan was made at  several axial  positions
    for minimum, intermediate,  and maximum  swirl.   These  scans for min-
    imum  swirl  are shown  in  Figures 11-200  to 11-203.
         Figure  11-204 shows the  radial  velocity profile  for the swirl  burner
    set for an intermediate  swirl intensity with the probe  tip positioned toward
    the burner,  7. 62 cm from the  burner  tip.  Comparing Figures 11-200  and
    11-204,  note the large difference  in the structure  of the velocity profile
    between the  minimum  and intermediate swirl  intensities.   The  continuous-
    scan  data obtained in Figure 11-204 are sufficient to determine  the radial
    areas  of interest for planning the point-by-point survey.  However,  they
    are  insufficient for determining the  general direction of flow,  which is
    also needed  for  the  detailed  survey.   We  discussed  earlier that the rota-
    tional  orientation of the probe  must be such that  the direction of the flow
    vector  is within ±60 degrees of the axis  of the probe  (Figure 11-205)  so
    that accurate  data can  be  obtained.   Where negative velocities  are ob-
    served in Figure 11-204,  the direction  of  the  flow cannot be  determined
    from :he  radial  scan alone.   It is necessary  to obtain  the radial scan
    with four different rotational orientations,  each exactly 90 degrees apart.
    The proper direction (rotational orientation) of the probe for  the point-by-
    point measurements  is  the direction  of the probe  during the  continuous
    scan for which the velocity  is  found  to be the  highest.
                                       241
    

    -------
    I    l;-50
    ^    1000
    o:
    ^E  ^50
    o
    o
    o
    o
    !>00
    
    ;>so
            -30       -20       -10         0        10
                                RADIAL POSITION,cm
                                                              -NJ-
                                                        20
    30
                                                                   A-32214
    Figm-e 11-189.   RADIAL  CONCENTRATION PROFILE OF  CARBON
      MCNOXIDE FROM THE MOVABLE-BLOCK BURNER SET FOR
        MAXIMUM  SWIRL 2.  54  cm OUT  FROM THE BURNER TIP
             [Air Velocity  28  ft/s; Gas Velocity (Air)  110 ft/s;
                    1000:1 Air/CO  Ratio in Gas Stream]
    £. ->VU
    O
    H- 400
    <
    tt
    l-c 200
    Zn
    8s 2:00
    2
    8 100
    o
    (J
    
    
    
    - 1*
    -3
    
    
    
    0
    
    
    
    
    
    
    
    
    
    
    
    f
    
    
    V
    ;o
    
    
    
    
    
    
    
    
    
    
    
    -
    .
    
    
    0
    
    
    
    
    
    >
    
    
    
    ^
    
    
    /
    
    
    0
    Is*
    
    
    
    s
    
    
    
    -
    N
    
    
    
    V
    
    I
    -
    
    
    0
    
    
    
    
    
    
    
    
    
    
    
    ^
    
    
    
    >0
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ^--
    30
                               RADIAL POSITION,cm
                                                                   A-32215
    Figure  11-190.   RADIAL  CONCENTRATION PROFILE OF  CARBON
      MONOXIDE FROM THE MOVABLE-BLOCK BURNER SET  FOR
          MAXIMUM SWIRL  5. 08 cm OUT FROM BURNER TIP
             [Air Velocity  28  ft/s; Gas Velocity  (Air)  110 ft/s;
                   1000:1 Air/CO  Ratio  in Gas Stream]
                                     242
    

    -------
     z
     o
     tr
     \-
     o
     o
     o
     o
             -30
    -20
    -10         0         10
    RADIAL POSITION,cm
                                                                  A-32216
    Figure  11-191.  RADIAL CONCENTRATION PROFILE OF CARBON
      MONOXIDE FROM THE  MOVABLE-BLOCK BURNER  SET  FOR
        MAXIMUM SWIRL  7. 62 cm OUT FROM THE  BURNER TIP
            [Air  Velocity  28 ft/a; Gas Velocity (Air)  110 ft/s;
                   1000:2 Air/CO Ratio in Gas Stream!
     O
     H
     O
     (J
     O
     O
    3UU
    400
    300
    200
    inn
    
    -
    
    -i
    
    
    
    -
    
    
    f
    
    
    ,
    
    
    
    
    
    
    
    
    
    
    
    
    
    -
    "
    
    
    
    
    
    
    
    
    
    
    
    -*,
    
    
    _
    ./x/
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
              -30       -20      -10         0         10
                                RADIAL POSITION,cm
                                           20
                                           30
                                                                    A-32217
    Figure 11-192.   RADIAL CONCENTRATION PROFILE OF CARBON
      MONOXIDE  FROM THE MOVABLE-BLOCK  BURNER SET FOR
       MAXIMUM SWIRL 10.16 cm OUT FROM THE BURNER TIP
            [Air Velocity 28 ft/s;  Gas Velocity (Air) 110 ft/s;
                   1000:1 Air/CO Ratio in  Gas Stream]
                                     243
    

    -------
     RP  VS.
        776
    ---- T&T
        7*6
        731
        716
        701
        68ft
                      MOVEA8LE  BLUCK HU1NER SET  FOR MINIMUM SHlRL - CUIO MODEL (CO  TRACER GAS)
           Cll  AP=  3.80
        67l
        656.
        641.
        625.
        610.
        595.
        580.
        565.
        t>50.
        535.
        520.
        505.
      E 475.
      '£ '•60.
      8 384.
      1- 369.
      5 354.
      U 339.
      Z 32^.
    
     y»::
      U 279.
        264.
        249.
        234.
        219.
        204.
        189.
        174.
        159.
        143.
        126.
        1 13.
         9d.
         83.
         6B.
         53.
         18.
         23.
    
        -30.COO   -?4.000   -IB.000   -17.000   -6.000    -0.000     r..OOO
    
    
                                            RADIAL. POSITION, rm
                                                                       17.000
                  Figure  11-193.    TRACER-GAS  MIXING PROFILES
                    FOR THE  SWIRL  BURNER  SET  FOR  MINIMUM
                        SWIRL AT  THE  3. 8-cm  AXIAL  POSITION
                                                    244
    

    -------
    E
       129.
       116.
       103.
       90.
       77.
       .6.4..
       51.
       38.
       25.
       12.
                                                                  /\X1AI. I'tlSI'l ION: V.(,
                     KflvEAoLH  BLOCK DINNER SEI fOR MINIMUM  SKIRL - CULO MdOEL (CU TRACER GAS)
    J.f VS. C)   Af> =   7.60
        675.
        662.
        649.
        636.
        623.
        610.
        597.
    
        571.
        558.
        545.
        532.
        519.
        506.
        493.
        4HO.
        467.
        454.
     °-  44 t .
     X  *«•
     O  415.
     P  402.
     <  309.
     «  376.
     7.  363.
     U  350.
     U  337.
     O  32«-
     O  311.
     Q  298.
     U  285.
        272.
        259.
        246.
        233.
      ...220.   .
        207.
      • 194.
        181.
        168.
        155.
      -30.000   -24.000   -16.000   -12.000
                                            -6.000    -0.000
    
                                            RADIAL POSITION, en
                                                                        12.000
          Figure  II-194.     TRACER-GAS  MIXING  PROFILE  SET  FOR
               MINIMUM SWIRL  AT  THE  7. 6-cm AXIAL  POSITION
                                                    245
    

    -------
                      MOVEABLE SLOCK HUR.NEB SET FOR  MINIMUM SWIRL - COLO MODEL ICQ TRACER G»SI
     lP_Vi. Jill . . 4P i. 17.BO
       330.4H                                               ,•
       324.50
       318.52
       312.53
       106.55
       10Q.57
        294.59
        288.60
        282.62
        276.64
        270.66
    	Z&4.A7 	
        258.69
        252.71
        246.72
        240.74
        234.76
        228.7B	
        222.79
      | 216.81
      o. 210.83
      z- 204.85
      O
       198.86
    <:  186.90
    *  180.91
    Z  174.93
    U  168.95
    U  162.97
    O -15.6 ..9 8
    U  151.00
    O  145.02
    U  139.04
       133.05
       127.07
       121.09
       115.10
       109.12
       103.14
        17.16
        51.17
        85. 19
        79.21
        73.23
        67.24
        01.26
        •>S.2B
        49.30
          31
                                                                   AXIAL POSITION: 17.8 cm
        -lO.'aO:'   -/4.0CO   -l«.0"-0   -I?.HOC
                                              -'>.ono    -'i.fMjo
    
                                               RADIAI. I'OSI I ION. cm
                   Figure  11-195.    TRACER-GAS  MIXING  PROFILE
                    FOR  THE SWIRL BURNER SET  FOR  MINIMUM
                       SWIRL  AT  THE  17. 8-cm  AXIAL  POSITION
                                                     246
    

    -------
                       MOVEAbLE BLOCK BURNER SE I  FOR
     . KP._VS..CC .. AP=. 30.50
        157.13
    
        152.7*
        150.54
        148.35
    	L4(L.-L5	.    _  _  .
        143.46
        141.76
        139.57
        137.37
        135.18
    	  Xl^SJ  ......
        130.79
        128.60
        126.40
        124.21
        122.01
    ._ ._113.B2
        117.62
    . g  115.43
     £  ll3-23
      .  111.04
     Z  108.84
    _S__lOJ>..6j	
     |~  104.46
    .a  102.26
     I-  100.07
         97.87
         95.66
         93.48	._	_.
         91.29
         89.09
         86.90
         84.70
         82.51
         an.31
                                                          SMIRL - CULO MODEL ICO TRACER GASI
                                                             *
                                                                        AXIAL POSITION:  30.5 cm
     Z
     u
     u
    _2_
     o
     u
     o
     u
         .-30.000   -74.000   -18.000   -I?.000    -6.COO    -0.000     6.000
    
                                                  UADIAI. IJOSITION. cm
                                                                                    18.000
                                                                                                      30.000
        Figure  11-196.    TRACER-GAS  MIXING  FOR  THE SWIRL  BURNER
         SET  FOR MINIMUM  SWIRL  AT  THE  30.  5-cm AXIAL POSITION
                                                       247
    

    -------
     \f.
       VS. CO
       79.32
       78.90
       78.47
       78.05
       77.63
    
     ~~76. 79
       76.37
       75.95
       75.53
       75.11
    .__!*.. 6.9
       74.26
       73.84
    .   73.42
       73.00
       72.58
     .  7J...L6
                      MOVEABIE BLOCK BURNER SET  FOR MINIMUM SWIRL -  COLD MODEL  ICO TRACER GAS)
                AP- 63.50
    . Z
    --8-
                                                         /
                                                        /
                                                        '
                                                          \>
    
                                                                      AXIAL POSITION: 63.5 cm
       71.3?
       70.89
       70.47
    .
     2  70.05
       69.21
       68.79
       66.37
       67.95
       67.53
        66.68
      O 66.26
      U 65.84
    
        65.00
       .64.56
        64.16
        63.74
        63.31
        62.69
        62.47
      -. .62*05
        61.63
        61.21
        60.79
        60.37
        59.95
        .59.52.
        59.10
        58.68
        56.26
        57.84
                                                                        ,
                                                                        \
                                                                    ,  .\
    
                     \.
        "-JO.'lcn   -24.000   -18.000   -12.00C    -6.000    -0.000    6.000    12.000
    
                                                     RADIAL POSITION, cm
                                                                                  18.0CO
                   Figure  11-197.    TRACER-GAS  MIXING  PROFILE
                    FOR  THE  SWIRL  BURNER  SET  FOR  MINIMUM
                       SWIRL AT  THE  63.  5-cm  AXIAL POSITION
                                                      248
    

    -------
                      BlIILK no-.lt I SCI FDK' IMCKPlDIAIC S.I'<1 - ClILI. MMOEl It I IHtOS GASI
    
                                              A
    
    -30.000   -?».000  -18.000   -12.000   -6.000   -0.000    6.000
    
                                     RADIAL POSITION, cm
                                                          12.000
                                                                          2
    -------
                       BLOCK BURNER SET FOR  INTERMEDIATE SWIRL - COLO MODEL (CO  TRACER GASI
    I?.?.1 OOP   -24.000  -18.000	-12.000   ^6_.0_0_0	;0. 000    6.000
    
                                      RADIAL POSITION, cm
                                                             12.000
                                                                      18.000
                                                                             24.000
                                                                                      30.000
             Figure 11-199.    TRACER-GAS  MIXING  PROFILE
            FOR  THE SWIRL BURNER  (Swirl Number,  S  =  0. 8)
                      AT  THE  7. 6-cm AXIAL POSITION
                                           250
    

    -------
          Table II-29.   RAW AND  COMPUTED TRACER-GAS MIXING
             DATA FOR  THE SWIRL BURNER SET FOR MINIMUM
                   SWIRL AT  THE 3. 8-cm AXIAL  POSITION
    
        .  TRACER GAS  STUDIES OF  COMBUSTION  BURNERS
    MOVEABLE BLOCK BURNER SET  FOR  MINIMUM  SWIRL  - COLO  MODFL  (CO  TRACER  GAS)
    
                 Y OBSERVED. Y  COMPUTED    DIFFERENCE
    0.00
    125.00
    250.00
    375.00
    500.00
    0.44
    124. ?6
    249. 14
    377. 18
    498.95
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
                 SD Y=  0.19159E  01
                 COEFFICIENTS FOR Y=  C ( 1 ) + C ( 2 ) *X+ . . . + C ( N+ 1 ) * X**N
                 C(  l) =   0.4445
                 C(  2)= 395.5515
                 C(  3)= 102.9597
    
                 EXPERIMENTAL RESULTS
    AP
    3.80
    3.30
    3.80
    3.30
    3.80
    i.ac
    3.30
    3.80
    J.80
    3.80
    3.80
    3.80
    3.80
    3.80
    3.80
    3.30
    3.80
    3.30
    3.80
    3.80
    3.80
    3.flO
    3.80
    3.dO
    3.80
    3.80
    3.80
    3.bO
    3.30
    3.80
    3.80
    3.80
    3.80
    3.80
    3.80
    3.80
    3.80
    RP
    3C.CO
    25.00
    20.00
    15.00
    14.00
    13.00
    12.00
    11.00
    1C. 00
    9.00
    8.00
    7.00
    6.00
    5.00
    4.00
    3.00
    2.00
    I. 00
    0.00
    -1.00
    -2. CO
    -3.00
    -4. CO
    -5.00
    -6.00
    -7.00
    -a. co
    -9.00
    -10.00
    -11.00
    -12.00
    -13.00
    -14.00
    -15.00
    -20.00
    -25.00
    -30.00
    X( V)
    0. 162
    0.160
    0. 158
    0. 158
    0. 157
    0. 155
    0.155
    0.151
    0.144
    0.117
    0.087
    0.047
    O.C22
    0.020
    0.021
    0.025
    0.126
    1.220
    1.430
    1.110
    0.052
    0.023
    0.024
    0.024
    0.027
    0.033
    0.063
    0.098
    0. 128
    0.144
    0. 156
    0.157
    0. 156
    0.157
    0. 157
    0.155
    0. 155
    CO
    67.22
    66.36
    65.51
    65.51
    65.08
    64.22
    64.22
    62.52
    59.53
    48. 13
    35.63
    19.26
    9. 19
    8.39
    8.79
    10.39
    51.91
    636.26
    776.62
    566.36
    21.29
    9.59
    9.99
    9.99
    11.19
    13.60
    25.77
    40.19
    52.76
    59.53
    64.65
    65.08
    64. 65
    65.08
    65.08
    64.22
    64.22
                                      251
    

    -------
         Table  11-30.  RAW AND COMPUTED  TRACER-GAS MIXING
              DATA  FOR THE SWIRL BURNER (Minimum Swirl)
                     AT  THE 17. 8-cm  AXIAL POSITION
    
          TRACER GAS  STUDIES OF COMBUSTION BURNERS
    MOVEABLE BLOCK BURNER SET FOR MINIMUM SwIRL - COLD MODEL (CO  TRACER GAS)
    Y OBSERVED
    n.oo
    125.00
    250.00
    375.00
    500.00
    SO Y = 0. 191
    Y COMPUTED
    0.44
    124.26
    249. 14
    377. 18
    498. 95
    59E 01
    DIFFERENCE
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
    
               COEFFICIENTS FOR
               C< 11=   0.4445
               C( 2)= 395.5515
               C( 3) = 102.9597
    Y= C(
    (2)*X+...+C (N+l )*X**N
    EXPERIMENTAL RE
    AP
    17.80
    17.80
    17.80
    17.80
    17.80
    17.80
    17.00
    17.80
    17.80
    17.30
    17.80
    17.80.
    17.80
    1 7 .dO
    17.00
    17.80
    17.80
    17.80
    17.80
    17.80
    17.80
    17.80
    17.80
    17.80
    17.80
    17.60
    17.30
    17.80
    17.80
    17.80
    17. BO
    17.80
    17. dO
    17.80
    17.80
    17.80
    17.80
    RP
    30.00
    25.00
    2C.OO
    15.00
    14.00
    13.00
    12.00
    11.00
    10.00
    9.00
    8. CO
    7.00
    6. CO
    5.00
    4.00
    3.00
    2.00
    1.00
    0.00
    -1.00
    -2.00
    -3.00
    -4. 00
    -5.00
    -6.00
    -7. CO
    -8.00
    -9. CO
    -10.00
    -11.00
    -12.00
    -13.00
    -14. CO
    -15. CO
    -20.00
    -25.00
    -30.00
    SULTS
    X(V)
    0.153
    0.153
    0.153
    0.141
    0.147
    0.121
    0. 122
    0.119
    0.115
    0. 105
    0.093
    0.089
    0.083
    0.09C
    0. 105
    0.16C
    0.333
    0.57C
    0.705
    0.585
    0 . 2 56
    0.092
    0.082
    0.062
    O.C70
    0.08C
    0.080
    0.09?
    0. 109
    0.110
    0.112*
    0.12b
    0.122
    0. 145
    C. 152
    0. 156
    0. 154
    
    CO
    63.37
    63.37
    63.37
    b8.26
    60.81
    49.81
    50.23
    43.97
    47.29
    43. 11
    38. 12
    36.46
    33.98
    36.37
    43. 11
    66.36
    143.58
    259.36
    330.48
    267.07
    100.45
    37.70
    33.57
    25.36
    28.63
    32.74
    32.74
    3 f.70
    44.78
    45.20
    46.03
    51.49
    50.23
    59.96
    62.94
    64.65
    63.80
                                      25Z
    

    -------
             Table  11-31.   RAW AND COMPUTED TRACER -GAS
             MIXING DATA FOR THE SWIRL BURNER (Minimum
                  Swirl) AT THE  30. 5-cm  AXIAL POSITION
          TRACER GAS STUDIES OF COMBUSTION
    MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MOOFL (CO TRACER GAS)
    
               Y OBSERVED  Y COMPUTED   DIFFERENCE
    0.00
    125.00
    250.00
    375.00
    500.00
    0.44
    124.26
    249. 14
    377. 18
    498.95
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
               SD Y=  0.19159E 01
    
               COEFFICIENTS FOR Y= C ( 1 ) +C(2 ) *X+...+C(N+1)*X**N
               C( 1)=   0.4445
               C( 21= 395.5515
               C( 3)= 102.9597
    
               EXPERIMENTAL RESULTS
    AP
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    30.50
    J0.50
    30.50
    30.50
    30.50
    30.50
    30.50
    RP
    30.00
    25.00
    20.00
    15.00
    14.00
    13.00
    12.00
    11.00
    10.00
    9.00
    8.00
    7.00
    6.00
    5.00
    4.00
    3.00
    2.00
    1.00
    0.00
    -1.00
    -2.00
    -3.00
    -4.00
    -5.00
    -6. CO
    -7.00
    -0.00
    -9.00
    -1C. CO
    -1 1.00
    -12.00
    -13. CO
    -14.00
    -15.00
    -2C.OO
    -25.00
    -30.00
    X(V)
    0.150
    0. 148
    C.152
    C. 138
    0. 129
    0.132
    0.125
    0.121
    0. 117
    C.12C
    C. 122
    0. 130
    0. 141
    0. 185
    C.204
    0.290
    C.362
    0.357
    0.3 50
    0.335
    0.247
    0.204
    0.158
    0. llfi
    0. 119
    0.111
    0. 110
    0.118
    0.116
    0. 124
    0.129 .
    0.130
    0. 132
    C. 130
    0.14C
    0. 150
    0. 154
    CO
    62.09
    61.24
    62.94
    56.99
    53. 18
    54.45
    51.49
    49.81
    48. 13
    49.39
    50.23
    53.60
    53.26
    77.14
    85.42
    123.61
    157.12
    154.77
    151.50
    144.50
    104.42
    85.42
    65.51
    48.55
    48.97
    45.61
    45.20
    4H.55
    47. 71
    51.07
    53.18
    53.60
    54.45
    53.60
    57.83
    62.09
    63.80
                                      253
    

    -------
             Table  H-32.   RAW AND COMPUTED  TRACER-GAS
             MIXING DATA FOR THE SWIRL BURNER (Minimum
                  Swirl) AT THE 63. 5-cm AXIAL POSITION
          TRACER GAS STUDIES  OF COMBUSTION BURNERS
    MOVEABLE BLOCK BURNER  SET  FOR  MINIMUM  SWIRL  - ClILD MODEL  (CO  TRACEK  GAS)
    
               Y OBSERVED   Y  COMPUTED   DIFFERENCE
    o.oc
    125.00
    250.00
    375.00
    500.00
    0.44
    124.26
    249. 14
    377.18
    498.95
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
               SD Y=  0.19159E 01
    
               COEFFICIENTS FOR Y= C(1)+C12)*X+..,+C(N+1)*X**N
               C(  l)=   0.4445
               C(  21= 395.5515
               C(  3) = 102.9597
    
               EXPERIMENTAL RESULTS
    AP
    63.50
    63.50
    63.50
    63.50
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    
    63.
    63.
    63.
    63.
    63.
    63.
    63.
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    
    50
    50
    50
    50
    50
    50
    50
    RP
    30.
    25.
    20.
    15.
    14.
    13.
    12.
    11.
    1C.
    9.
    8.
    7.
    6.
    5.
    4.
    3.
    2.
    I.
    C.
    -1.
    -2.
    -3.
    -4.
    -5.
    -6.
    -7.
    -8.
    -9.
    -10.
    -11.
    
    -12.
    -13.
    -14.
    -15.
    -20.
    -25.
    -30.
    00
    CO
    00
    00
    00
    00
    00
    00
    CO
    00
    00
    00
    00
    00
    00
    00
    00
    CO
    00
    00
    00
    00
    00
    00
    00
    00
    00
    00
    00
    00
    
    00
    00
    00
    00
    00
    00
    00
    X
    0.
    C.
    0.
    0.
    C.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    C.
    C.
    C.
    C.
    0.
    0.
    C.
    C.
    0.
    C.
    C.
    0.
    0.
    0.
    0.
    0.
    4
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    (V)
    150
    141
    145
    158
    151
    17C
    155
    155
    155
    168
    160
    169
    160
    169
    179
    160
    173
    17C
    188
    186
    170
    190
    185
    181
    175
    165
    154
    154
    169
    150
    
    149
    160
    140
    145
    145
    142
    150
    CO
    62.
    58.
    59,
    65.
    62
    70
    64
    64
    64
    69
    66
    70
    66
    70
    74
    74
    71
    70
    78
    77
    70
    79
    77
    75
    72
    68
    63
    63
    70
    62
    
    61
    66
    57
    59
    59
    58
    62
    *
    •
    *
    •
    •
    •
    •
    •
    •
    •
    •
    «
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    •
    
    •
    •
    •
    •
    •
    •
    •
    09
    26
    96
    51
    52
    66
    22
    22
    22
    80
    36
    23
    36
    23
    54
    97
    95
    66
    44
    57
    66
    31
    14
    41
    81
    51
    80
    80
    23
    09
    
    66
    36
    83
    96
    96
    68
    C9
                                     254
    

    -------
              Table 11-33.   RAW  AND COMPUTED TRACER-GAS
             MIXING  DATA FOR  THE SWIRL BURNER  (Maximum
                   Swirl) AT  THE 2. 5-cm AXIAL POSITION
    
          TRACER G^S STUDIES OF COMBUSTION BURNERS
    MOVEABLE BLOCK BURNER SET  FOR  MAXIMUM SWIRL - COLD MODEL (CO TRACER
    
                Y OBSERVED  Y COMPUTED   DIFFERENCE
    0.00
    125.00
    250.00
    375.00
    500.00
    C.44
    124.26
    249. 14
    377.18
    498.95
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
                SD Y=  0.19159E 01
    
                COEFFICIENTS FOR Y= C(1)+C«2)*X+...+C(N+l)*X**N
                C( l)=   0.4445
                C( 2)= 395.5515
                C( 3)^ 102.9597
    
                EXPERIMENTAL RESULTS
    AP
    2.
    2.
    2.
    2.
    2.
    ?.
    2.
    2.
    2.
    ?..
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    ?.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    2.
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    50
    RP
    -30
    -25
    -20
    -15
    -14
    -13
    -12
    -11
    -10
    -9
    -8
    -7
    -6
    -5
    -4
    -3
    -2
    -1
    0
    I
    2
    3
    4
    5
    6
    7
    8
    9
    10
    1 1
    12
    13
    14
    15
    20
    25
    30
    .00
    .00
    .00
    .CO
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .CO
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    X
    0.
    0.
    0.
    0.
    0.
    0.
    c.
    0.
    0.
    0.
    0.
    0.
    c.
    0.
    0.
    0.
    0.
    1.
    1.
    1.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    c.
    0.
    0.
    0.
    0.
    0.
    ( V)
    181
    180
    176
    174
    16fl
    160
    153
    155
    130
    106
    102
    124
    177
    242
    320
    450
    650
    230
    560
    260
    750
    480
    344
    240
    157
    116
    130
    155
    160
    170
    171
    173
    173
    177
    180
    199
    195
    CO
    75
    74
    73
    72
    69
    66
    63
    64
    53
    43
    41
    51
    73
    102
    137
    199
    301
    642
    882
    662
    355
    214
    148
    101
    65
    47
    53
    64
    66
    70
    71
    71
    71
    73
    74
    83
    81
    .41
    .97
    .25
    .38
    .80
    .36
    .37
    .22
    .60
    .52
    .86
    .07
    .68
    . 19
    .56
    .29
    .05
    .74
    .44
    .29
    .02
    .03
    .69
    .30
    .08
    .71
    .60
    .22
    .36
    .66
    .09
    .95
    .95
    .68
    .97
    .23
    .49
                                      255
    

    -------
              Table 11-34.   RAW AND  COMPUTED TRACER-GAS
             MIXING  DATA FOR THE  SWIRL BURNER (Maximum
                   Swirl)  AT THE  7. 6-cm AXIAL POSITION
    
          TRACER GAS STUDIES OF COMBUSTION BURNFRS
    MOVEABLE BLOCK BURNER  SET  FOR MAXIMUM SWIKL - COLD MODfcL  I CO TRACER I.AS)
    
                 Y OBSERVED  Y  COMPUTED   DIFFERENCE
    0.00
    125.00
    250.00
    375.00
    500.00
    0.44
    124.26
    249. 14
    377. 18
    498.95
    0.44457
    -0.73118
    -0.85674
    2. 18748
    -1.04412
                 SO  Y=   0. 19159E  01
    
                 COEFFICIENTS  FOR Y=  C(1)*C(2)*X+...+C(N+l)*X**N
                 C(  1)=    0.4445
                 C(  2)=  395.5515
                 C(  3)=  102.9597
    
                 EXPERIMENTAL  RESULTS
    AP
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.t>0
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    7.60
    RP
    -30.00
    -25.00
    -20.00
    -15.00
    -14.00
    -13.00
    -12.00
    -11.00
    -1C. 00
    -9.00
    -8.00
    -7.00
    -6.00
    -5.00
    -4.00
    - 3.00
    -2.00
    -I. CO
    O.CO
    I. 00
    2.00
    3.00
    4. CO
    5. no
    6.00
    7.00
    8.00
    9.00
    10.00
    11.00
    12.00
    13.00
    14.00
    15.00
    20.00
    25.00
    30.00
    X( V)
    0.174
    0. 173
    0. 172
    0.165
    0.160
    0. 150
    0. 150
    0. 150
    0. 160
    0. 163
    0.185
    0.200
    0.250
    0.31C
    0.400
    0.510
    0.730
    0.860
    I .000
    0.970
    0.925
    0.760
    0.630
    0.43b
    0.309
    C.220
    0. 180
    0. 160
    0. 180
    C. 1.97
    0. IflG
    C. 180
    0.180
    C. 168
    0. 170
    0. 165
    0. 170
    CO
    72. 3b
    71.95
    71.52
    68.51
    66. 36
    62.09
    62.09
    62.09
    66. 36
    67.65
    77.14
    H3.67
    105.76
    132.95
    175. 13
    228.95
    344.06
    416.76
    498.95
    481.00
    454.42
    360.53
    290.50
    191.99
    132.50
    92.44
    74.97
    66.36
    74.97
    82. 36
    77.57
    74.97
    74.97
    69.80
    70.66
    68.5J.
    70.66
                                      256
    

    -------
                    Table 11-35.   COLUMN HEADING  CODE
    
    
    
    
    
    
    
    
    AP  =   axial probe position,  cm
    
    
    
    CO  =   carbon monoxide concentration, ppm
    
    
    
    C(l), C(2),  etc.  =  coefficients of fitted calibration
    
    
    
    Difference  =  Y ,       , —  Y  .  ,    .,  ppm
                    observed     calculated
    
    
    RP  =   radial probe position, cm
    
    
    
    SD  =   standard deviation of Y-computed
    
    
    
    X(v)  =  experimentally measured lime-averaged voltage,  V
    
    
    
    Y-computed =  carbon monoxide concentration from fitted calibration, ppm
    
    
    
    Y-observed  = carbon monoxide concentration from calibration curve,  ppm
                                       257
    

    -------
    iio-
    ^ 88 -
    > 66-
    g4«-
    UJ 22 -
    i
    
    
    
    
    
    
    • • ! • •
    '. I . ' . .
    i
    1 i !'"'.'.' j
    A
    
    
    
    \ i i i i 1 i
    !l -18 -15 -12 -9 -6 -3 0
    - - •
    
    
    
    \^^^^t.
    
    
    
    
    
    i i i i i i i
    + 3 +6 +9 +12 +15 +18 +21
                            RADIAL POSITION,cm
      Figure 11-200.   RADIAL VELOCITY PROFILE  OF SWIRL
        BURNER  5. 08 cm FROM BURNER TIP [Air  Velocity
                28 ft/s;  Gas Velocity (Air)  110 ft/a]
    110 -i
       -21   -18  -15  -12
     I     I    I    I
    +12  +15  +18  +21
                             RADIAL POSITION,cm
       Figure 11-201.   RADIAL  VELOCITY PROFILE OF SWIRL
        BURNER  50. 8 cm FROM  BURNER TIP  [Air Velocity
                28 ft/s;  Gas Velocity (Air)  110  ft/si
                                  258
    

    -------
       no -i
          -21  -18   -15  -12
     I    I     T    I     I
    49  +12   +15  +18 +21
                                RADIAL POSITION ,cm
         Figure 11-202.   RADIAL VELOCITY PROFILE OF SWIRL
       BURNER 76.2  cm FROM  BURNER TIP  [Air  Velocity 28  ft/s;
        Gas Velocity (Air)  110 ft/s].   SET  FOR MINIMUM SWIRL.
       no -
    
    $  88 -
    
    >-"  66 -
    K
    O  44 —
    UJ  22 H
    —
    •Mnr-T''-
    1 1
    -21 -18
    T^'T
    I
    -15
    •r ir"p»
    1
    -12
    
    1
    -9
    11 • -
    1
    -6
    r»
    i
    -3
    !'l
    \
    I
    0
    
    1 1
    + 3 +6
    
    (
    + 9
    
    I
    +12
    * 


    -------
                      -20
    -10        0        10
     RADIAL POSITION,cm
    20
    90
                                                                 A-32202
    
     Figure 11-204.  RADIAL VELOCITY PROFILE OF  MOVABLE-BLOCK
       BURNER SET  FOR INTERMEDIATE SWIRL 7. 62 cm OUT FROM
           BURNER TIP.   PROBE ROTATED AT AN ANGLE OF  0°
              [Air Velocity 28 ft/s; Gas Velocity (Air)  110 ft/s]
    DIRECTION OF
    FLOW RESULTING
    IN POSITIVE
    PRESSURE SIGNAL
                                 ATMOSPHERE
                              DIRECTION OF
                              FLOW RESULTING
                              IN NEGATIVE
                              PRESSURE SIGNAL
                      DIFFERENTIAL
                      PRESSURE
                      TRANSDUCER
                                                    A-32199
               Figure 11-205.   PRESSURE SIGNAL RESPONSE
                     FOR VARIOUS FLOW DIRECTIONS
                                     260
    

    -------
        Figures 11-204,  11-206,  11-207,  and 11-208 show the  radial  velocity
    profiles  for the  swirl  burner set for the intermediate  swirl  intensity at
    7. 62  cm from the burner  tip for the four rotational orientations.   (/cro
    degrees  corresponds  to  the  probe pointed toward  the burner. )   Similar
    profiles  were  run at  various distances from the  burner  from 1. 0  to  30
    inches.
        Figures 11-209,  11-210,  11-211,  and 11-212 show velocity profiles for
    the maximum  swirl intensity obtainable with our burner.
        Considering all of the velocity- and  tracer-gas-concentration scans
    as a  function of both axial position  and level  of swirl  intensity,  the fol-
    lowing point-by-point survey was undertaken as shown  in Table  11-36.
        We  collected the  point-by-point profile  data for the  swirl burner by
    using a  multidirectional  impact pitot tube (MDIT).   The  coordinate system
    used  in  data collection and  reduction is shown in Figure  11-213.
        A typical  set  of raw data obtained from the  MDIT is shown in Table
    11-37  for the  burner set at  minimum swirl  and at a 3. 8-cm axial position.
    The probe  is rotated through angle  6  in  the x-n  plane; AP  is the  axial
    position  of  the probe  in  centimeters and RP is its  radial position in centi-
    meters.   The  temperature,  T, is measured in degrees  centigrade  at the
    points where  the data  are collected.   PB is the  atmospheric pressure  in
    millimeters of mercury,  and P    is the pressure differential between
    pressure holes x and y  expressed in terms of time because of the inte-
    gration method used in collecting the  data.   The  pressure differentials
    we measured were constantly changing, since  we  were dealing  with a
    turbulent system.   To determine the mean  value  of these transient pres-
    sure  differentials, the instantaneous values  are electronically summed  up
    for a preset amount of time.   This total  equals  the product of the average
    instantaneous pressure  differential  and the time interval needed to  reach
    it.   Therefore,  by measuring the time  interval needed to reach this  sum
    by a  transient pressure  differential,  it  is possible  to experimentally de-
    termine  the mean value  of the pressure  differential.   These yield  the
    velocity  (magnitude and  direction) of the air stream, using  the  techniques
    outlined  earlier  in this report.   The computer program  which performs
    this  calculation  is shown in Appendix  A.
                                       261
    

    -------
                      -20
               -10       0         10
               RADIAL POSITION,cm
                                  20
       30
                                                                    A-32203
    
    Figure H-206.   RADIAL  VELOCITY PROFILE OF MOVABLE-BLOCK
      BURNER SET FOR INTERMEDIATE SWIRL 7. 62 cm OUT FROM
           BURNER TIP.  PROBE ROTATED 270° ABOUT y-AXIS
             [Air Velocity 28 ft/s; Gas  Velocity (Air) 110 ft/s]
             -30
    -20
    -10        0       10
    RADIAL POSITION,cm
    30
                                                                  A-32204
       Figure 11-207.   RADIAL VELOCITY PROFILE OF MOVABLE-
        BLOCK  BURNER SET FOR INTERMEDIATE SWIRL 7. 62 cm
        OUT FROM BURNER TIP.   PROBE ROTATED 180° ABOUT
         y-AXIS [Air Velocity 28 ft/s; Gas Velocity (Air)  110  ft/s]
                                     262
    

    -------
           -30
    -20
    -10        0         10
    RADIAL POSITION ,cm
           30
                                                                    A-32205
      Figure II-Z08.  RADIAL VELOCITY PROFILE OF MOVABLE-
      BLOCK  BURNER SET FOR INTERMEDIATE SWIRL 7. 62 cm
       OUT  FROM BURNER TIP.   PROBE ROTATED 90° ABOUT
       y-AXIS [Air  Velocity 28  ft/s; Gas  Velocity (Air) 110 ft/s]
              -30
      -20
      -10       0         10
       RADIAL POSITION,cm
    20
    30
                                                                  A-32210
      Figure 11-209.   RADIAL VELOCITY  PROFILE OF  MOVABLE-
       BLOCK BURNER SET  FOR MAXIMUM SWIRL 7. 62 cm OUT
    FROM BURNER  TIP.   PROBE ROTATED  0° ABOUT  THE y-AXIS
          [Air  Velocity 28  ft/s; Gas  Velocity (Air) 110 ft/s]
                                    263
    

    -------
          -30
            -10        0        10
            RADIAL POSITION,cm
                               20
    30
                                                              A- 32211
    Figure II-Z10.  RADIAL VELOCITY PROFILE OF MOVABLE-
     BLOCK BURNER SET FOR MAXIMUM SWIRL 7.62 cm OUT
     FROM BURNER  TIP.  PROBE  ROTATED  270°  ABOUT THE
     y-AXIS [Air Velocity  28  ft/s;  Gas  Velocity  (Air) 110  ft/si
           -30
    -20
    -10        0         10
    RADIAL POSITION,cm
                                                                 A-32212
    Figure 11-211.   RADIAL VELOCITY  PROFILE OF MOVABLE-
    BLOCK BURNER  SET  FOR MAXIMUM SWIRL 7. 62 cm FROM
     BURNER TIP.   PROBE ROTATED  90°  ABOUT THE y-AXIS
          [Air Velocity 28 ft/s; Gas Velocity (Air)  110 ft/si
                                  264
    

    -------
          -30
    -20
    -10       0         10
    RADIAL POSITION,cm
    20
                                                                  A-32213
    Figure  11-21Z.   RADIAL  VELOCITY PROFILE OF MOVABLE-
     BLOCK  BURNER SET FOR  MAXIMUM  SWIRL 7.62 cm OUT
    FROM  BURNER TIP.   PROBE  ROTATED  90° ABOUT y-AXIS
          [Air  Velocity 28 ft/s; Gas Velocity (Air)  110  ft/si
                                                  POSITIVE
                                                  PROBE ROTATION
                                            PROBE COORDINATE SYSTEM
            BURNER COORDINATE SYSTEM
                 Figure  11-213.   BURNER AND PROBE
                         COORDINATE  SYSTEMS
                                    265
    

    -------
             Table 11-36.   VELOCITY SAMPLING LOCATIONS
                     PLANNED  FOR SWIRL  BURNER
    Swirl Intensity
    
    Minimum
      (8=0)
    Intermediate
      (s ~ 0. 8)
    Maximum
           Radial Positions,  cm
    + 1.5  to -1.5
    + 1. 5  to +6. 0
    -1.5  to -6. 0
    + 6. 0  to +30. 0
    -6. 0  to -30. 0
    
    + 6. 0  to -6. 0
    +6. 0  to +30. 0
    -6. 0  to -30. 0
    in 0. 5-cm intervals
    in 1.0-cm intervals
    in 1. 0-cm intervals
    in 10. 0-cm intervals
    in 10. 0-cm intervals
    
    in 1. 0-cm intervals
    in 10. 0-cm intervals
    in 10. 0-cm intervals
    + 10. 0 to —6. 0  in 1. 0-cm intervals
    + 10.0 to  +30.0 in 10. 0-cm  intervals
    —6.0 to —30.0  in 10. 0-cm  intervals
    
    -30.0 to  +30.0 in 10. 0-cm  intervals
    
    + 10.0 to -10.0 in 1.0-cm intervals
    + 10.0 to  +30.0 in 5. 0-cm intervals
    -10. 0 to —30. 0 in 5. 0-cm intervals
    
    + 10.0 to —10.0 in 0. 5-cm intervals
    + 10.0 to  +30.0 in 1.0-cm intervals
    -10.0 to -30.0 in 1.0-cm intervals
    
    + 10.0 to —10.0 in 1.0-cm intervals
    + 10.0 to  +30.0 in 10. 0-cm  intervals
    —10.0 to —30. 0 in 10. 0-cm  intervals
    
    Plans for  run based on results at
    16. 78-cm  axial position
    
    +5. 0 to —5. 0   in 1. 0-cm intervals
    +5.0 to +15.0  in 0. 5-cm intervals
    —5.0 to —15.0  in 0. 5-cm intervals
    + 15.0 to  +30.0 in 5. 0-cm intervals
    —15. 0 to —30. 0 in 5. 0-cm intervals
    
    Same  as  for  2. 54-cm axial  position
    
    + 10.0 to -10.0 in 1.0-cm intervals
    + 10.0 to  +30.0 in 5. 0-cm intervals
    -10.0 to -30.0 in 5. 0-cm intervals
      Axial
    Position,
       cm
    
       5.08
      50.8
    
    
    
      76. Z
    
    
    
     101.6
    
       2.54
    
    
    
       7.62
    
    
    
      16.78
    
    
    
      30.48
    
    
       2.54
                                                                7. 62
    
                                                               10. 16
                                     266
    

    -------
    M
    
    ^1
             Table  11-37.    EXAMPLE OF RAW  DATA OBTAINED  FROM  MDIT VELOCITY PROBE "FOR
                THE SWIRL BURNER  SET FOR  MINIMUM  SWIRL AT  THE  3. 80-cm AXIAL POSITION
    
                                          AERODYNAMIC  MODELING OF COMBUSTIUN
    
             CALIBRATION COEFFICIENTS FOR  FOrUARD  FLOW
             Al  =   0.770590"  A2 = " 0.272353   A3  =   -0.059818
             uO  =   0.737720   B2 =  -0.158821   R4  =   C. 129246
             C   =   4.464660   0  =   0.304812
                               MOVEABLE  BLOCK  BURNER SET FOR MINIMUM SKIRL  -  COLO "UDEL
             TOTAL  DATA  INPUT
    THETA
    0.
    0.
    0.
    0.
    " "0."
    0.
    0.
    0.
    0.
    0.
    0.
    0 .
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    or
    0.
    0.
    AP
    3.8
    3.8
    3.8
    3.8
    ~ T. 8 -
    3.6
    3.8
    3.8
    3.0
    3.8
    - 3.8'
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.9
    3.8
    3.8
    3.8
    3.8
    ' 3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    - 3-. 8
    3.8
    3.8
    3.8
    3.8
    3.8
    3; 8"
    3.8
    3.R
    RP
    -30.0
    -25.0
    -20.0
    - 15.0
    -14/0
    - 13.0
    -12.0
    - 11.0
    - 10. 0
    -9.0
    -8.C
    -7.0
    -6.0
    -5.0
    -4.C
    -3.0
    -2.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10. 0
    11. 0
    12.0
    13.0
    14.0
    15.0
    '20.0
    25.0
    30.0
    P13
    3830.00
    3090. CO
    3120.00
    3370.00
    3130.00
    3800. 00
    4260.00
    4900. OC
    8860.00
    5110. OC
    398.00
    252.00
    920.00
    13000.00
    -930.00
    -773.00
    -2130.00
    32. 70
    -222.00
    -30.80
    -3960.00
    7960.00
    15160.00
    -2260.00
    -1844.00
    -652.00
    -23-5.00
    -343.00
    -5020.00
    3700.00
    5620.00
    12660.00
    15400. 0.0
    31900.00
    " 4~6~5 00.0-0 '
    57000.00
    28700.00
    P03
    -3930.00
    -39HO.no
    -36RO.OO
    -4120.00
    -3380.00
    -3930.00
    -3830.00
    -3620.00
    -2910.00
    -2900.00
    1005.00
    126.00
    134.00
    207.00
    196.00
    196.00
    207.00
    19.20
    16.50
    187.00
    215.00
    199.00
    201.00
    198.00
    189.00
    185.00
    420.00
    -1240.00
    -4570.00
    6700.00
    10920.00
    13700.00
    24900.00
    19000.00
    29200.00
    23800.00
    24200. OC
    P24
    -3600.00
    -44CO.OO
    -3820.00
    -36HO.OO
    -3830.00
    -4030. OC
    -371C.OO
    -3100.00
    -1760. OC
    -657.00
    -240. CO
    -66. 10
    -71 .40
    -66. 30
    -BO. 80
    -100. CO
    -133.00
    -51 .60
    -11P.3.00
    -•72.60
    4 19.00
    199. OC
    127. OC
    8'. .80
    68.60
    62.60
    70. 10
    195.0C
    1300.00
    4600.00
    23500.00
    9000. OC
    19700.00
    26000.00
    23500.00
    17400. QC
    1810C.OC
    P04
    -3850.00
    -3800.00
    -3590.00
    -4120. CO
    -3670.00
    -3660.00
    -252C.OO
    -2470.00
    -1850.00
    -162C.OO
    -428.00
    -202. CC
    -204. CO
    -227. CC
    -550. CO
    -186C.CO
    1064.00
    37.50
    16.00
    37.90
    163.00
    140.00
    114.00
    99.60
    88. 6C
    79.00
    100.00
    390.00
    4160.00
    19400.00
    -17000.00
    79900.00
    75900.00
    100800.00
    31300. UC
    21000. OC
    19100.00
    POA
    4 1C-. CO
    4i- /.OC
    450.0?
    43 ).00
    41-3.00
    DCO.OO
    7^6. CC
    698.00
    llfiC.CO
    i i < c . c r
    ot.-n.cc
    l^.CC
    1 34. CO
    :3o.cc
    I f 7.00
    17/.00
    184. OC
    20.30
    I I . 90
    30. 60
    1SU.OC
    163. 0"
    190. CC
    2C3.0C
    178. CC
    163. OC
    2C?.00
    •J45.0C
    •353.00
    422.00
    410. CO
    400.00
    403.00
    370.00
    36-3.00
    3V3.00
    Sfcr.LT
    r
    ?c.
    2C.
    zc.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    2C.
    2vj.
    20.
    2P.
    2C.
    2:;.
    20.
    2C.
    20.
    2ci.
    20.
    20.
    2C.
    ?C.
    ?n .
    20.
    20.
    2'J.
    20.
    20.
    2C.
    ?0.
    20.
    2f.
    20.
    20.
    2T.
    F-b
    7oC
    7o(
    /.•>.:
    7r^C
    7oC
    76C
    7r>C
    7bO
    76C
    TLr
    IL':
    VoC
    /oC
    'ft.f
    7cC
    7oC
    ?!,0
    'CC
    760
    7t;C
    7nC
    JLC
    70L
    7oC
    7(>0
    76C
    7oO
    7 ol~
    7oO
    7 o 0
    760
    7o'.
    7r,T
    ?n'J
    7f,:
    /OC
    /'.:
    

    -------
        A typical  set  of  reduced velocity data calculated from  Table 11-37
    is given in Table  11-38.   The direction of the  velocity  is defined by  FI,
    the conical angle measured  about the x-axis,  and  by delta,  the  dihedral
    angle measured  from  the  positive y-axis  in the y-z  plane.   The  magnitude
    of the velocity is  given by V in  ft/s.  p  is the density of the air in slugs/
    ft-sq  in.   The components of the velocity,  VX, VY,  and VZ,  are given
    in ft/s.   The  tangential velocity,  VT,  and the radial velocity,  VR,  are
    both expressed in  ft/s.   PST is  the  static pressure  in psig.
        A computer  plotting  subroutine is  used to  graphically represent the
    axial  velocity, VX,  and the  tangential  velocity, VT,   shown in Figures
    11-214 and H-215.
        Data were collected  for  the  swirl  burner with the probe  facing both
    toward  and away from the burner for all  radial positions between ±15
    cm of the burner  axis.   We found that in some sampling locations,  vel-
    ocities  were measured for both forward and reverse positions of the  probe.
    Since during a given time interval the  velocity vector cannot point  in two
    directions simultaneously, a procedure had to  be  developed to determine
    which of  the measured velocities  was real and which was fictitious.
    The most quantitative method for doing this  would be  to  calibrate the
    multidirectional  impact tube  for  reverse  flow (probe  pointed in the same
    direction as on  jet).   This  would allow a comparison  of  the velocities
    measured with the  probe going into and away from the air  stream.   The
    major shortcoming of this technique  was  that all  velocities which were
    calculated using  the recovery coefficients  determined by  the reverse flow
    calibration procedure  were  imaginary.   However,  the following  general
    qualitative results   concerning the velocity vector  arise from  the  attempted
    reverse flow calibration:  Using  the  forward flow  calibration coefficients
    on the  data  collected with the probe  pointed  in the same  direction as the
    air jet,  we  determined real-valued velocities whose  magnitudes  were 4-5
    times less than  the actual velocity and in a  direction  opposite to that of
    the uniform  air  jet.   Additional  qualitative  information concerning the
    direction of flow was  also obtained with wool tufts.   Using these qualita-
    tive types of information, we found that for  the movable-block burner,
    the minimum  swirl  setting showed no reverse  flow,  while the intermediate
    swirl setting showed reverse flow in the  center of the  burner region.
                                       268
    

    -------
               Table 11-38.   TYPICAL  COMPUTER OUTPUT"OF REDUCED VELOCITY  DATA
                       MUVEftttLE  BLOCK BURNER SET FOR  MINIMUM SWIRL - COLO MODEL
    RESULTS
    AP
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    J.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    3.8
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    -14.0
    -13.0
    -12.0
    -11. 0
    -10.0
    -9.0
    -8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10.0
    11.0
    12.0
    13.0
    14.0
    15.0
    20.0
    25.0
    30.0
    FI
    82.0
    82.7
    82.5
    81.4
    82.3
    83.0
    85.1
    84.6
    82.9
    71.9
    61.6
    31.7
    29.9
    31.9
    24.0
    20. 1
    15.8
    10.6
    0.8
    14.6
    5.4
    11.3
    16.7
    24. 1
    27.8
    27.2
    33.0
    50.5
    70.9
    62.2
    71.7
    59.1
    58.9
    52.4
    27.2
    23.4
    25.2
    DELTA
    226.7
    215.0
    219.2
    222.4
    219.2
    223.3
    228.9
    237.6
    258.7
    260.4
    2 3 8. "9
    255.3
    265.5
    269. 7
    274.9
    277.3
    273,7
    212.3
    349.4
    341.6
    83.9
    91.4
    90". 4
    87.8
    87.8
    84.5
    73.6
    60. 3
    "75.4
    141. 1
    166.5
    125.4
    141.9
    129. 1
    116.8
    106.9
    122.2
    RHO
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    ~~0.000'0"159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    ~~ 0.6600159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    6". 6000" 159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    V
    8.62
    9.01
    9.17
    8.62
    9.33
    8.75
    9.35
    9.26
    9.71
    10.20
    17.65
    35.25
    35. 16
    34.01
    34.30
    33.33
    31.27
    83.63
    106.95
    73.03
    29.92
    30.38
    31.71
    33.32
    35.12
    37.10
    33.36
    19.09
    7.81
    4.82
    4. 13
    3.29
    2.33
    2.53
    2.08
    2.46
    2.42
    vx
    1.19
    1.14
    1.19
    1.28
    1.23
    1 .06
    0.79
    0.86
    1.19
    3.16
    8.3H
    29.98
    30.47
    28.87
    31.33
    31.29
    30.08
    82.19
    106.94
    70.65
    29.78
    29.79
    30.37
    30.40
    31 .06
    32.99
    27.97
    12.12
    ?.55
    2.24
    1.29
    1 .69
    1.20
    1.54
    1 .85
    2.25
    2.19
    VY
    -5.84
    -7.31
    -7.04
    -6.29
    -7. 16
    -6.32
    -6. 12
    -4.93
    -1.87
    -1.60
    -8.02
    -4.70
    -1.35
    -0.09
    1.20
    1.47
    0.55
    -13.07
    1 .47
    17.53
    0.29
    -0. 14
    -0.07
    0.51
    0.60
    1.62
    5. 11
    7.26
    1.85
    -3.31
    -3.81
    -I .64
    -1.57
    -1.27
    -0.42
    -0.28
    -C.55
    VI
    -6.22
    -5.13
    -5.75
    -5.76
    -5.85
    -5.96
    -7.02
    -7.79
    -9.45
    -9.56
    -13.30
    -17.93
    -17.50
    -17.97
    -13.90
    -11.38
    -8. 50
    -8.20
    -0.27
    -5.81
    2.82
    5.9b
    9. 1 1
    13.63
    16.38
    16.88
    17.45
    12. PI
    7. 14
    2.67
    0.91
    2.30
    1.23
    1.56
    0.84
    0.93
    C.87
    VT
    -b.32
    -5.75
    -5. 18
    -4.36
    -3.34
    -2.42
    -2.40
    -2.98
    -5.93
    -1 I .66
    -17.57
    -16.49
    -16.24
    -12.65
    -10.41
    -7.00
    -12.58
    C.OO
    13. 10
    2.79
    5. 77
    6.76
    12.91
    15.54
    16.34
    17.37
    13.11
    4.97
    3.T7
    2.b3
    2.54
    1.62
    1.91
    0.94
    0.97
    1.C.3
    VK
    5.74
    6.b4
    7.47
    7.33
    8.27
    B.02
    B.9 )
    8.90
    9. 16
    7.67
    10.26
    5.90
    6.01
    7.6o
    5.44
    4.83
    4.04
    9.01
    1.50
    13.02
    0.5C
    1 .46
    2.49
    4.40
    5. 19
    4. 56
    5.36
    6.7J
    5.46
    2.34
    2.72
    1.24
    0.62
    0.6^
    C.09
    C.C6
    PSF
    0. 003264
    0.003?t, 7
    0.0031 79
    O.C030J2
    O.C03l'.9
    C.C02ou5
    U.OO?4oO
    0.0024 31
    O.OC 1-165
    C.C01 7/0
    0.002o V5
    0.000175
    0.001019
    -O.OOC314
    -0.001021
    -O.C01M9
    -G.CC142C
    -O.C051 13
    -0.00i;575
    -O.GG5770
    -C. 001^62
    -0.00l4ri4
    -O.C01660
    -C.C01329
    -0.000410
    -O.COC771
    0. 0001-57
    O.C02324
    O.C022 70
    0.00i"<45
    0.002'o4
    C.CC2496
    0.002454
    C.002:.61
    O.CC2726
    1
    20.
    20.
    20.
    20.
    20.
    /O.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    ZO.
    20.
    20.
    iQ.
    2C.
    20.
    20.
    i 0.
    if..
    i-'".
    i'C.
    76"
    7f>::
    76?
    7c '
    76T
    76-.'
    760
    760
    76 C
    76"
    76-.'1
    76''
    76T
    7bC
    76C
    76--
    761'.
    760
    76(.
    760
    76T
    7t>
    76;
    76''
    Ih i
    76J'
    

    -------
                   nOVKABLE BLUCK BUHNER SH FOR MINIMUM SHIHl  - CULU HOUEL
                 i.eo
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    -^
    —
    ^
    1-
    VELOC1
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    106.
    f04.
    102.
    100.
    96.
    16.
    94.
    '12.
    vo.
    88.
    H6.
    04 .
    ai.
    tv .
    / 1 .
    /S .
    n.
    M.
    69.
    67.
    65.
    0 1.
    61 .
    19.
    16.
    14 .
    48.
    46.
    44 .
    42.
    40.
    38.
    16.
    14.
    52.
    29.
    27.
    25 .
    21.
    21.
    19.
    i r.
    15.
    11.
    1 1.
    9.
    7.
    ^ .
    2.
    n .
    94
    86
    78
    70
    62
    53
    45
    57 "" 	 "
    29
    21
    15
    05
    9!
    BB
    aO AXIAL POSITION: 3.H cm
    7?
    64
    56
    48
    40
    52
    25
    I1)
    07
    99
    VI
    fll
    (5
    67
    58
    50
    42
    34
    26
    1 &
    10
    02
    95
    B5
    7;
    69
    61
    33
    45 '
    37
    28
    20
    12
    04
    96
    88 ,
       -30.JJOO   -24.000   -IB.OOP
    -6_.000   -0.000     6.000    12.000
    
    
     HADIAL POSITION, cm
                                                                       IB.000
                                                                               24.000   jo.noo
    Figure  11-214.    AXIAL  VELOCITY  PROFILE  FOR SWIRL BURNER
      SET  FOR  MINIMUM SWIRL AT THE 3. 8-cm  AXIAL POSITION
                                              270
    

    -------
                    MOVE4BLE BLOCK BUHNCR iCI FUR KIN1HUM ShlRL  - C.IJLU HDOEL
                  3. BO
    u
    >
        -30.000  -?«.000  -1H.OOO   -12.000
                                                        6.000
                                                               17.000
                                          RADIAL POSITION, cm
              Figure  11-215.    TANGENTIAL  VELOCITY PROFILE
             FOR SWIRL  BURNER  SET  FOR  MINIMUM  SWIRL AT
                           THE 3. 8-cm AXIAL  POSITION
                                             271
    

    -------
         For the case  of  minimum  swirl,  the  raw pressure input data are
    given in Table  11-37  and Tables 11-39 to 11-42.   The  reduced profile data
    are  listed in Table 11-38 and Tables 11-43 to 11-46.   Table 11-47 shows
    the column heading symbols for these tables.   Figure 11-214 shows  the
    axial velocity for  minimum swirl  at an  axial position  of  3. 8  cm.   The
    central peak occurs in the region of the gas nozzle,  while the  velocities
    reach  a plateau at 30 ft/s  in the  region of  the  throat  of  the burner.
    Figure  11-216 shows  the  tangential velocity  as  a function  of the  burner's
    radial position.   The  maximum magnitude of the  tangential velocity is
    approximately  18 ft/s,  while preliminary  work  on the  axial burner with
    the variable mixing rate axial  flow  burner nozzle  indicates a maximum
    tangential  velocity  of only  5 ft/s.    Figures  11-216 and 11-217 show the
    axial and tangential velocity profiles at  an axial position  of 7. 6 cm:
    There is little  change in the structure  of the curves  from those at  3. 8
    cm.   The  axial velocity  profile at 17.8 cm is illustrated in Figure  11-218.
    The  constant axial velocity plateau  no longer appears  the  region of  the
    burner,  and the velocities  decrease as  a  function  of radial position.
    Figure  11-219 shows  that the peaks  of the tangential velocity  profile are
    opening  toward  the outside walls of the  cold model and that the magnitude
    of the velocity  has decreased  by a  factor of 2 from its value  at the  7. 8-
    cm axial position.   The  axial velocity in  Figure 11-220 lost the identity
    of the gas nozzle,  and there is a systematic decrease in  the velocity
    from the axis  of the  burner.   Figure 11-221 shows that the peaks of the
    tangential  velocity  are  continuing  to open  and that its  magnitude is still
    decreasing.   In Figures  11-222 and  11-223 at an axial  position of 63. 5
    cm,  the tangential velocity component has disappeared and the  axial  vel-
    ocity is  about  one-sixth its initial magnitude at the burner.
         The numerical raw  data for the movable-block burner,  set  for
    intermediate swirl (swirl number,  S =   0. 8), are  included in  Tables 11-48
    to 11-51.   The  computer reduced  form  of the data, giving both  the mag-
    nitude and direction of the velocity  as functions  of the axial and radial
    positions,  is presented in  Tables  11-52  to 11-55.   The graphical repre-
    sentations  of these data,  Figures  11-224 to  11-231,  are discussed below.
                                       272
    

    -------
            Table 11-39.
                                   RAW  DATA  FO&  THE SWIRL  BURNER (Minimum "Swirl)
                                       AT  THE  7. 6-cm AXIAL POSITION
                            AERODYNAMIC  MODELING OF COMBUSTION BURNERS
     CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    -JTTT = — OT777J59K5 — zrr^ — ovrmsi --- /f 3~s
     BO  =    0.737720   B2 =  -0.158821   84 =
     C   =    4.464660   D  =   0. 394812
                                         0.129246
                 MOVEABLE  BLOCK  BURNER  SET  FOR MINIMUM SWIRL - COLD MODEL
    DATA INPUT
    THETA
    0.
    0.
    0.
    0.
    - ~o~
    0.
    0.
    0.
    0.
    0.
    " ~ 0 .
    0.
    0.
    0.
    0.
    0.
    "TT.- '
    0.
    0.
    0.
    0.
    0.
    CT.~
    0.
    0.
    0.
    0.
    0.
    TJ.
    0.
    0.
    0.
    0.
    0.
    TJ.
    AP
    7.6
    7.6
    7.6
    7.6
    	 r:6~
    7.6
    7.6
    7.6
    7.6
    7.6
    	 TV S
    7.6
    7.6
    7.6
    7.6
    7.6
    	 7T6
    7.6
    7.6
    7.6
    7.6
    7.6
    "'776
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    771
    RP
    30.0
    25.0
    20.0
    15.0
    	 IZT7TJ 	
    13.0
    12.0
    11. 0
    10.0
    9.0
    	 ETO 	 '•
    7.0
    6.0
    5.0
    4.0
    3.0
    ~ ' 7TQ-- —
    b.o
    -2.0
    -3.0
    -4.0
    -5.0
    •~--b~Q-- '
    -7.0
    -8.0
    -9.0
    -10.0
    -11.0
    -12.0
    -13.0
    -14.0
    -15.0
    -20.0
    -25.0
    -3CF7T)
    P13
    62800.00
    68800.00
    34800.00
    16600.00
    •~TT56~0'.W"
    8220.00
    7700.00
    -2590.00
    -765.00
    -390.00
    ~ -JOT-TOTT-
    -514.00
    -2900.00
    2590.00
    1339.00
    1656.00
    ' "6TZTOO -
    -113.60
    309.00
    -896.00
    -880.00
    -7450.00
    ~ 9J0700"
    309.00
    340.00
    956.00
    10600.00
    -11980.00
    -~9T4"070TT
    -31400.00
    155000.00
    79600.00
    32600.00
    35900.00
    39BOCT.00
    P03
    18700.00
    24000.00
    23500.00
    15600.00
    --T230B.OO
    18000.00
    33600.00
    -8530.00
    -2380.00
    13900.00
    530.00'
    243.00
    204.00
    204.00
    201.00
    221.00
    260.00
    17.80
    135.00
    237.00
    216.00
    188.00
    	 163.00
    182.00
    280.00
    1870.00
    -17000.00
    -12800.00
    ~-l~9"300.00 "
    -26000.00
    -125400.00
    214800.00
    27000.00
    27000.00
    " " 23500.00
    P24
    19100.00
    11700.00
    10500.00
    22900.00
    14150.00
    20500.00
    2950.00
    1010.00
    299.00
    203.00
    "107.00
    79.50
    77.20
    100.00
    139.00
    217.00
    910.00
    2700.00
    -131.00
    -106.00
    -88.50
    -77. OC
    -75.50
    -77.00
    -127.00
    -375.00
    -880.00
    -4920.00
    -12960.00
    -16100.00
    25200.00
    23000.00
    19700.00
    21700.00
    19000.00
    P04
    20900.00
    20500.00
    28300. OC
    30800.00
    19000.00
    51000.00
    3100C.OO
    2750.00
    698. CO
    245.00
    147.00
    100.00
    99.00
    113.60
    129.00
    148.00
    166.00
    16. 10
    437. OC
    -720. CC
    -490.00
    -303. OC
    -282.00
    -308.00
    -341 .00
    -628.00
    -1220.00
    -3050.00
    -5820.00
    39700.00
    73400.00
    -89600.00
    25700.00
    55000.00
    34300.00
    PCA
    339. CO
    3b6.CC
    354.00
    383. OC
    375.00
    418. OC
    444. CC
    583. CC
    3C3.0C
    344. CC
    22o. OC
    195.00
    164.00
    2C1.CC
    138.00
    196.00
    162.00
    12.40
    142. OC
    225. CC
    ?1C.OC
    191. OC
    195. OC
    250.00
    445. OC
    1C1C.OO
    780.00
    539.00
    51C.OO
    473.00
    433.00
    44o.OO
    415.00
    40C.OO
    390. OC
    T
    20.
    20.
    20.
    2C.
    20.
    2C.
    20.
    2C.
    2C.
    2C.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    2T, .
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    2C.
    2C.
    Pb
    760,
    760,
    760
    760
    760,
    760
    760,
    760,
    760
    76C,
    76C,
    700
    760,
    76C
    76C
    760
    760
    760
    760
    760
    760
    7oC
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    

    -------
                  Table  11-40.
    RAW  DATA  FOR THE SWIRL, BURNER (Minimum Swirl)
        AT THE  17. 8-cm  AXIAL  POSITION
                                  AERODYNAMIC MODELING OF COMBUSTION BURNEKS
    CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    hi -= — - -OVTTWJO	"S7~	0.272353	A~3~~ =0". 0598T8
    BO =   0.737720   62 =  -0.158821   B4 =   0.129246
    C  =   4.464660   D  =   0.394812
                       MOVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL - COLD MODEL
    TOTAL DATA INPUT
    THETA
    0.
    0.
    0.
    0.
    • ar
    0.
    0.
    0.
    0.
    0.
    " or
    0.
    0.
    0.
    0.
    0.
    0."
    0.
    0.
    0.
    0.
    0.
    ov
    0.
    0.
    0.
    0.
    0.
    . .. g_
    0.
    0.
    0.
    b.
    0.
    " "0".
    0.
    0.
    AP
    17.8
    17.8
    17.8
    17.8
    	 n~. 8""
    17.8
    17.8
    17.8
    17.8
    17.8
    	 1 7. -3-
    17.8
    17.8
    17.8
    17.8
    17.8
    — 17; a —
    17.8
    17.8
    17.8
    17.8
    17.8
    	 17V8 '
    17.8
    17.8
    17.8
    17.8
    17.8
    • — rrre"
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    '-~i*r.~o —
    -13.0
    -12.0
    -11.0
    -10.0
    -9.0
    ~-8TO " —
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    ""Tro
    -1.0
    0.0
    1 .0
    2.0
    3.0
    --4. 0"'
    5.0
    6.0
    7.0
    8.0
    9.0
    i over
    11.0
    12.0
    13.0
    14.0
    15.0
    20. c'""
    25.0
    30.0
    P13
    -60500.00
    -56500.00
    63600.00
    111400.00
    	 -~34~8Tjo~ro'cr " '
    -54800.00
    2490.00
    11020.00
    4420.00
    3140.00
    	 I470TTJ-0
    1140.00
    7800.00
    3670.00
    2520.00
    587.00
    	 TfflTOO
    101.00
    -287.00
    129.40
    -433.00
    543.00
    '2300TOO -
    2940.00
    2170.00
    1800.00
    1100.00
    -1820.00
    2T40T7J5""
    -2560.00
    12300.00
    5240.00
    999999999.50
    999999999.50
    32800.00
    20000.00
    31500.00
    P03
    8900.00
    36600.00
    52300.00
    -27400.00
    "' 48600.00
    19800.00
    -5650.00
    6710.00
    2800.00
    2090.00
    788.00
    888.00
    652.00
    517.00
    368.00
    283.00
    97.00
    41.30
    37.20
    39.70
    239.00
    260.00
    348.00
    414.00
    540.00
    700.00
    824.00
    1620.00
    2650700
    -10520.00
    11000.00
    -5600.00
    98400.00
    -188000.00
    "" "I'ZOOOYOO
    33000.00
    20800.00
    P24
    9640.00
    34600.00
    -97400.00
    -94400.00
    -4910.00
    -3300.00
    -1120.00
    -1240. OC
    -895.00
    -497.00
    -312.00
    -213.00
    -193.00
    -220.00
    -176.00
    -162.00
    -189.00
    -1160.00
    399.00
    3680.00
    1 104.00
    -169.00
    -181.00
    -200.00
    -171.00
    -312.00
    -504. OC
    540.00
    -690.00
    848.00
    -3740.00
    11090.00
    -8400.00
    -30600.00
    "22900.00
    22700.00
    24000.00
    P04
    9450.00
    29960.00
    37400.00
    -341C.OC
    -48800. OC
    -5800.00
    -1830.00
    -3720.00
    -1570.00
    -1040.00
    -2000.00
    - 1026.00
    -866.00
    -855.00
    -1150.00
    231C.CC
    141.00
    54.80
    35. CO
    42.80
    174.00
    698.00
    -2390.00
    -122C.OO
    -956.00
    -1115. OC
    -127C.OO
    563. OC
    -1650. OC
    154C.OO
    -4680.00
    1090C.OC
    -6000.00
    -6000.00
    45000.00
    72600.00
    18000.00
    H-OA
    399. OC
    4C5.0C
    401 .00
    450. OC
    483.00
    558.00
    185C.CO
    57C.OO
    488.00
    466.00
    483.00
    423.00
    312.00
    315. OC
    251.00
    163.00
    129.00
    37.00
    26. OC
    38.00
    133.00
    195.00
    26-J.OO
    295.00
    346.00
    410. OC
    439.00
    381. OC
    544.00
    bll.OC
    520.00
    553. CO
    44C.CO
    ^r-j.co
    410.00
    4C2.00
    395. OC
    T
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    P9
    760,
    76C,
    76C,
    760.
    760,
    •76U,
    7bC,
    76C,
    760,
    7bO,
    7oO,
    7hO
    760
    76C,
    760
    760,
    760
    760
    760
    760
    760,
    760
    7bO
    760
    760
    760
    760
    760
    76C
    760
    760
    760
    760
    760
    760
    760
    760
    

    -------
                  Table  11-41.
    RAW  DATA  FOR  THE  SWIRL  BURNER  (Minimum Swirl)
        AT THE  30. 5-cm AXIAL POSITION
                                 AERODYNAMIC MODELING OF COMBUSTION BURNERS
    CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    XT' = - •OT7T059T3	A7~s	OT772"353O =  -0.059818
    HO =   0.737720    B2  =  -0.158821   B4 =   0.129246
    C  =   4.464660    D   =   0.394812
                       MOVEABLE BLOCK BURNER SET FOR MINIMUM S*IRL - COLD MODEL
    TOTAL DATA INPUT
    1HETA
    0.
    0.
    0.
    0.
    " 0."
    0.
    0.
    0.
    0.
    0.
    (NJ • • 0.
    -J 0.
    01 0.
    0.
    0.
    0.
    o:
    0.
    0.
    0.
    0.
    0.
    ~o:
    0.
    0.
    0.
    0.
    0.
    ~ ~~o;
    0.
    0.
    0.
    0.
    0.
    - • -TjT.
    0.
    AP
    30.5
    30.5
    30.5
    30.5
    	 3TK 5 —
    30.5
    30.5
    30.5
    30.5
    30.5
    	 30V5 '
    30.5
    30.5
    30.5
    30.5
    30.5
    	 3Tj;-5~
    30.5
    30.5
    30.5
    30.5
    30.5
    — 3'or? -
    30.5
    30.5
    30.5
    30.5
    30.5
    — TO : r "
    30.5
    30.5
    30.5
    30.5
    30.5
    3T57T~
    30.5
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    •-TT.-0 	 ~
    -13.0
    -12.0
    -10.0
    -9.0
    -8.0
    . -_.7-0 • -
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    -rro 	
    0.0
    1.0
    2.0
    3.0
    4.0
    •~5V(r~
    6.0
    7.0
    8.0
    9.0
    10. 0
    "-1TVO 	
    12.0
    13.0
    14.0
    15.0
    20.0
    "2T70" "~
    30.0
    P13
    3420.00
    3340.00
    3280.00
    2790.00
    	 2-4-5 o.tro--'
    2340.00
    2040.00
    1820.00
    832.00
    1304.00
    100"OTOO~
    732.00
    491.00
    376.00
    402.00
    244.00
    " --55«roa'~"
    -3180.00
    -362.00
    -3000.00
    -468.00
    -860.00
    "~-92~OVOO "
    1620.00
    1270.00
    4660.00
    2500.00
    999999999. 50
    99999"99~9~97TO
    5040.00
    4620.00
    4790.00
    4720.00
    3240.00
    3240. ffO"
    3470.00
    P03
    -4180.00
    -4420.00
    -4680.00
    -4910.00
    -11310.00
    -7420.00
    -9000.00
    4240.00
    3480.00
    1482.00
    1057.00
    290.00
    252.00
    214.00
    192.00
    134.00
    141.00
    129.00
    194.00
    285.00
    404.00
    434.00
    394.00
    615.00
    1010.00
    1400.00
    1850.00
    3660.00
    6400.00
    53000.00
    -18840.00
    -9980.00
    -8640.00
    -6080.00
    -4420.00
    -5480.00
    P24
    -4420.00
    -4060.00
    -3480.00
    -2340.00
    -212C.OO
    -1160.00
    -726.00
    -694.00
    -552.00
    -352.00
    -351.00
    -326.00
    -403.00
    -274.00
    -P71.CO
    -526.00
    -525.00
    •2396.00
    -278.00
    -1 10.00
    3220.00
    930.00
    730.00
    700.00
    717.00
    740. OC
    950.00
    2040.00
    1060.00
    2630.00
    3720.00
    .2520.00
    2220. CO
    -5680.00
    -5040.00
    -5000.00
    P04
    -4200.00
    -3900.00
    -2260.00
    -2390.00
    -2250. OC
    -2220.00
    -178C.CO
    -2380.00
    -197C.OC
    -2940.00
    -6920.00
    1980.00
    858.00
    880.00
    296.00
    192.00
    152.00
    123.00
    184. UO
    225.00
    338. OC
    342.00
    179. CO
    466.00
    648.00
    820.00
    1 188. CO
    1570.00
    4310.00
    4300.00
    5800. OC
    7710.00
    -10440. CO
    -3870.00
    -4720.00
    -4920.00
    POA
    4CO.OO
    44C.OC
    512.00
    49C.OO
    674.00
    521.00
    536.00
    49o.OO
    53J.OO
    430.00
    381.00
    2P1.00
    245.00
    140.00
    1 1?..OC
    91.60
    7d.2C
    99.00
    80.60
    146.20
    2Ch.OO
    229.00
    332.00
    4oO.OC
    351.00
    305.00
    380.00
    364.00
    422.00
    436.00
    512. OC
    497.00
    484.00
    452.00
    427.00
    430. OC
    T
    20.'
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    PtJ
    76C,
    760,
    760
    760,
    760,
    /GO
    7oC,
    f60,
    76C
    760
    760
    760
    7oO
    /60
    760
    760
    760
    760
    760
    70n
    760
    7oC
    7oO
    760
    7C.O
    760
    760
    7oO
    760
    760
    760
    760
    /60
    760
    7hO
    760
    

    -------
                   Table II-4Z.
    RAW  DATA  FOR THE SWIRL BURNER  (Minimum Swirl)
           AT  63. 5-cm AXIAL POSITION
                                  AERODYNAMIC MODELING OF COMBUSTION  BURNERS
    CAL1BRATION COEFFICIENTS FOR FORWARD^ FLOW
    AT" =   0.77059BS~2~~SOT?TZT53A3~~=-0.059818
    BO =   0.737720   82 =  -0.158821   B4 =   0.129246
    C  =   4.464660   D  =   0.394812
                       MUVEABLE BLOCK BURNER SET FOR MINIMUM SWIRL  - COLD MODEL
    TUTAL DATA INPUT
    THETA
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0":
    0.
    0.
    0.
    0.
    0.
    ov
    0.
    0.
    0.
    0.
    0.
    ov
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    ' "TT7"
    0.
    0.
    AP
    63.5
    63.5
    63.5
    63.5
    '63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    	 63T5 ~
    63.5
    63.5
    63.5
    63.5
    63.5
    61V5
    63.5
    63.5
    63.5
    63.5
    63. 5
    ~" "63.5"
    63.5
    63.5
    63.5
    63.5
    63.5
    '63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63. 5
    63.5
    63.5
    RP
    -30.0
    -25.0
    -20.0
    - 15.0
    '-14. 0 •"
    -13.0
    -12.0
    -11. 0
    -10. 0
    -9.0
    ~"-8. 0 ~
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10.0
    11. C
    12.0
    13.0
    14.0
    15.0
    25.0
    30.0
    P13
    4370.00
    2450.00
    3400.00
    1680.00
    Ib86. 00
    980.00
    1054.00
    880.00
    1204.00
    950.00
    	 T28-OVOO
    1020.00
    1280.00
    1580.00
    1200.00
    1220.00
    3940.00
    19550.00
    19550.00
    -4500.00
    -2900.00
    -2280.00
    	 -45'8~0. OB '
    -2560.00
    -1600.00
    -2050.00
    -1350.00
    -2280.00
    -920. CO
    -4500.00
    -1070.00
    -980.00
    -1740.00
    -2470.00
    -4100.00
    -7180.00
    -20200.00
    P03
    10960.00
    5720.00
    2450.00
    980.00
    "905.00
    1020.00
    630.00
    500.00
    465.00
    730.00
    738.00
    383.00
    478.00
    542.00
    560.00
    430.00
    670.00
    530.00
    530.00
    632.00
    1000.00
    905.00
    880.00
    950.00
    1170.00
    800.00
    1740.00
    3940.00
    	 2100:00
    3370.00
    3840.00
    4880.00
    5200.00
    4820.00
    " "11300.00
    18800.00
    21000.00
    P24
    -7520.00
    -4060.00
    -3980.00
    -2120.00
    -1870.00
    -2330.00
    -1570.00
    -1180.00
    -1500.00
    -1590.00
    -1720.00
    -1790.00
    -3720.00
    -1880.00
    -2040.00
    -2060.00
    -6040. OC
    -3650.00
    -6070.00
    -2600.00
    -3040.00
    -2880.00
    5200.00
    15600.00
    999999999.50
    9160.00
    9470.00
    -4330.00
    11060.00
    4030.00
    3580.00
    10400.00
    5350.00
    3750.00
    	 " ""~214"0.00
    4020.00
    5940.00
    PC4
    -36000.00
    -15200.00
    -19760.00
    12640.00
    4700.00
    5390.00
    2440.00
    2640.00
    1890.00
    1500.00
    1536.00
    1840.00
    900.00
    780.00
    620.00
    710.00
    650.00
    560.00
    738.00
    552.00
    690.00
    790.00
    660.00
    820.00
    766.00
    1630.00
    980.00
    1414.00
    1040.00
    1480.00
    1120. OC
    3340.00
    2420.00
    3150.00
    4.480.00
    4530.00
    3980.00
    POA
    460.00
    437.00
    428.00
    365.00
    374.00
    348.00
    295.00
    260.00
    329.00
    302.00
    282.00
    299.00
    235.00
    249.00
    246.00
    218.00
    213.00
    247.00
    232.00
    248.00
    216.00
    277.00
    255.00
    277.00
    270.00
    305.00
    274.00
    403.00
    355.00
    290.00
    364.00
    345.00
    362.00
    374.00
    388.00
    404.00
    403.00
    T
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    2C.
    ?0.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    PB
    760
    760
    760
    760
    760
    76C
    760
    76C
    760
    760
    7hC
    76C
    760
    760
    760
    760
    760
    760
    760
    76C
    760
    760
    7i>0
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    

    -------
                       Table  11-43.   COMPUTER-REDUCED  DATA FOR SWIRL BURNER
                              (Minimum Swirl)  AT THE 7. 6-cm AXIAL POSITION
    
    
                       MUVcAHLE BLOCK BURNER  SET FLW MINIMUM  SV.IRL - COLO MODEL
    RESULTS
    AP
    7.6
    7.6
    7.6
    7.6
    "7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7". 6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6"~
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    "7.6
    KH
    30.0
    25.0
    20.0
    15. C
    14 . C"
    13.0
    12. C
    1 1.0
    10.0
    9.0
    8."C"
    7.0
    6.0
    5.0
    4.0
    3.0
    2.6
    0.0
    -2.0
    -3.0
    -4.0
    -5.0
    -6.0
    -7.0
    -8.0
    -9.0
    -10.0
    -1 1.0
    -12.0
    -13.0
    -14.0
    -15.0
    -20.0
    -25.0
    '-30.0"
    FI
    19.3
    35.5
    48.9
    30.9
    3"T71
    60.2
    74.2
    5B.9
    56.4
    31.3
    30V4" "
    26.6
    27.3
    23.0
    17.1
    11.5
    4" . 8"
    1 .6
    14.6
    23.2
    24.8
    27.9
    2a.3
    31.5
    38.0
    60.6
    70. 1
    80. I
    77.2
    42.9
    73. ti
    76.6
    29.7
    42.1
    3~3 . 6"
    DELTA
    106.9
    99.6
    106. 7
    144.0
    T40~T
    158. 1
    1 10.9
    63.6
    68.6
    62.5
    70.4
    31.2
    88.4
    92.2
    95.9
    97.4
    35.6
    2.4
    247.0
    276. 7
    275.7
    270.5
    265. 3
    256.0
    249.5
    248. 5
    265.2
    292.3
    323.6
    297. 1
    99.2
    106. 1
    121.1
    121.1
    1 1 5.5
    RHO
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    "O';0"0"0"0"159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    " OV0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0". 0000159"
    V
    2.66
    2.59
    2.65
    2.51
    2.91
    2.87
    5.78
    8.29
    14.98
    20.65
    28.13
    33.26
    33.31
    31.29
    30. 10
    28.92
    30.44
    105.59
    34.49
    30.60
    32.48
    33.34
    33.68
    32.02
    24.08
    13.53
    9.32
    6.38
    4.75
    2.89
    1.85
    2.45
    2.19
    2.07
    2.25
    vx
    2.53
    2.11
    1.74
    2.15
    2.43
    1.42
    1.57
    4.28
    8.28
    17.62
    24.24
    29.67
    29.57
    2fl.8C
    28.76
    28.34
    30.33
    105.55
    33.36
    28. 12
    29.47
    29.44
    29.65
    27.30
    18.97
    6.62
    3.16
    1 .09
    1.04
    2.12
    0.51
    0.56
    1.90
    1.53
    1.87
    VY
    -0.25
    -0.25
    -0.57
    -1 .04
    -1.24
    -2.31
    -1.99
    2.58
    4.54
    4.96
    4.78
    2.29
    0.40
    -0.47
    -0.91
    -0.75
    2.11
    2.98
    -3.41
    1.41
    1 .36
    0. 16
    -1.29
    -4.04
    -5. 19
    -4.30
    -0.72
    2. 39
    3.73
    0.90
    -0.28
    -0.66
    -0.56
    -0.72
    -0.53
    VZ
    0.85
    1.48
    1.91
    0.75
    1.01
    0.92
    5.20
    6.61
    1 1.62
    9.54
    13.45
    14.64
    15.32
    12.22
    8.82
    5.72
    1.51
    0.12
    -8.05
    -11.97
    -13.59
    -15.64
    -15.93
    -16.23
    -13.90
    -10.96
    -8.74
    -5.62
    -2.75
    -1.75
    1.76
    2.29
    0.93
    1. 19
    1.13
    vr
    0.88
    1.47
    1.63
    1.23
    1.50
    1.74
    2.27
    4.66
    8.21
    9.56
    12.45
    13. 16
    12.81
    10.27
    7.65
    5.13
    2.46
    O.CO
    -6. 19
    -8. 16
    -10.25
    -12.17
    -13.20
    -13.93
    -11.91
    -6.53
    -3.76
    - .53
    - .55
    - .73
    -0.84
    - .01
    - .06
    -1.34
    -1.23
    VK
    0.07
    0.32
    0.80
    0.37
    0.53
    1.78
    5.08
    5.35
    9.34
    4.92
    6.96
    7.23
    8.41
    6.63
    4.48
    2.65
    o.ec
    2.99
    6. 17
    8.87
    9.03
    9.62
    9.01
    9.26
    8.65
    9.82
    7.92
    6. 1C
    4.37
    0.94
    1.57
    2. 16
    0.23
    0.36
    0.20
    PST
    0.002844
    0.002732
    0.002775
    0.002532
    0.002583
    0.002'382
    O.C02516
    0.001967
    0. 002o97
    0.001 1 30
    0.001014
    -0.000512
    -0.00009fl
    -O.C00766
    -O.OOOH78
    -0.001 182
    -O.C01227
    -O.C09515
    -0.001476
    -0.001005
    -0.001040
    -0.000163
    -o.ooc2n
    -0.000139
    O.OOOH77
    0. 00ld40
    0.001 344
    0.002272
    O.C02153
    0.002064
    O.OC22V4
    0.002248
    0.002340
    0.002445
    0.002495
    r
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    Pd
    760
    760
    76C
    760
    76'->
    76C
    760
    760
    760
    760
    760
    76C
    7bO
    760
    760
    760
    761.'
    76C
    76C
    76C
    760
    76C
    760
    760
    760
    760
    760
    760
    760
    760
    760
    76C
    76C
    760
    76C
    

    -------
                            Table  H-44.   COMPUTER-REDUCED  DATA FOR SWIRL  BURNER
                                   (Minimum  Swirl) AT THE 17. 8-cm  AXIAL POSITION
                            MOVEABLE  BLOCK BURNER SET  FOR  MINIMUM SWIRL  -  COLO MODEL
         RESULTS
    00
    DELTA
    80.9
    58.5
    213.1
    229. 7
    278.0
    273. 4
    245. 7
    263. 5
    258.5
    261.0
    "258". 6
    259.4
    268.5
    266. 5
    266.0
    254. 5
    236.0
    184.9
    35. 7
    177.9
    21.4
    252.7
    2 65". 5
    266. 1
    265.4
    260. 1
    245.3
    73.4
    255.3
    71.6
    253. 0
    154.7
    269.9
    269.9
    124.9
    138.6
    127.3
    
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0".
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    " 0.
    0.
    0.
    0.
    0.
    0.
    "0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    4HO
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    OMOT5~9~~~
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0~000l59
    0000159
    0000159
    0000159
    OC00159
    0000159
    '0000159'
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    0000159
    V
    4.23
    2.36
    2.10
    6.95
    4.07
    4.45
    9.56
    7.27
    8.67
    11.32
    i"6:3S '
    18.55
    20. 13
    19.54
    23.07
    26.15
    41.31
    59. 16
    71.37
    63.87
    31.27
    27.76
    2 3". 7 1
    21.61
    21.72
    16.09
    12.76
    13.99
    9.68"
    8.72
    4.60
    6.59
    4.25
    4.92
    1.93
    2.07
    2.61
    VX
    4.05
    2.27
    2.01
    0.96
    3. 48
    2.86
    2.55
    5.47
    5.66
    7.71
    " 14:37
    15.09
    17.35
    17.16
    21.01
    24.43
    40.92
    58.86
    71.33
    63.71
    31.14
    26.36
    22.00
    19.65
    lfl.92
    13.86
    10.35
    12.98
    6.77
    5.66
    2.24
    1.75
    1.09
    O.R5
    1.44
    1.08
    2.51
    VY
    0. 19
    0.33
    -0.5C
    -4.45
    0. 29
    C.20
    -3.78
    -0.53
    -1. 30
    -1.29
    -1 .63
    -1 .90
    -0.25
    -0. 55
    -0.66
    -2.48
    -3. 15
    -5.91
    1 .86
    -4.5C
    2.60
    -2.58
    -0.69
    -0.60
    -0.83
    -1 .39
    -3. 1 1
    1.43
    -1 .74
    2.08
    -1.17
    -5.74
    -O.CO
    -0.00
    -0.73
    -1.32
    -0.44
    VZ
    1.20
    0.55
    -0.33
    -5.25
    -2.09
    -3.40
    -8.40
    -4. 76
    -6.43
    -8. 19
    -7.69
    -10.60
    -10.21
    -9.32
    -9.50
    -b.99
    -4.69
    -0.51
    1. 33
    0. 15
    1.01
    -8.31
    -8.81
    -8.96
    -10.62
    -8.05
    -6.79
    4.99
    -6.69
    6.30
    -3.85
    2.71
    -4.11
    -4.R4
    1.05
    1. 17
    0.58
    VT
    -1.20
    -0.63
    -0.58
    -0.80
    -1.67
    -1. 78
    - 1.69
    -2. 76
    -2.36
    -3.53
    -4.99
    -5.20
    -5.07
    -4.28
    -4.23
    -3.76
    -3.56
    -2.88
    O.CO
    2.80
    2. 18
    3.95
    4.31
    4.70
    5.47
    4.53
    3.94
    4. 07
    3.33
    3.09
    1.41
    1.25
    O.S4
    0. 71
    1.00
    1.15
    0.72
    VR
    0.21
    0.^12
    0. 15
    6.84
    1.29
    2.9C
    9.06
    3.91
    5.90
    7.50
    6.08
    9.44
    8.86
    8.30
    8.53
    8.54
    4.39
    5. 19
    2.29
    3.52
    1.74
    7.75
    7. 71
    7.65
    9. 14
    6. 79
    6.34
    3.23
    6.06
    5.87
    3.76
    6.23
    4.02
    4.79
    0.79
    1.34
    0.12
    PST
    0.002334
    0.002381
    0.002413
    6.002746
    0.001962
    0.001781
    O.C01385
    0.001645
    0.002064
    0.002139
    0.000792
    0.001301
    0.001439
    0.001340
    O.OOC975
    0.001 158
    -0.005529
    -0.000858
    -0.002739
    -0.006372
    -0.000300
    -0.000027
    O.C00289
    O.C00767
    0.000733
    0.001259
    0.001 764
    0.001403
    0.001792
    0.002002
    0. 001036
    0.0021 78
    0.002399
    0.002210
    0.002385
    0.002455
    0.002434
    T
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    ZO.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    P5
    760
    760
    760
    760
    760
    760
    76C
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    76C
    760
    760
    76C
    760
    760
    760
    760
    76C
    760
    760
    760
    760
    76C
    760
    760
    760
    760
    760
    

    -------
                      Table  11-45.   COMPUTER-REDUCED DATA FOR SWIRL BURNER
                             (Minimum Swirl) AT THE 30. 5-cm AXIAL POSITION
    
                      MQVEABLE BLOCK  BURNER SET  FOR MINIMUM SWIRL  - COLO MODEL
    RESULTS
    AP
    30.5 -
    30.5 -
    30.5 -
    30.5 -
    30.5 -
    30.5 -
    30.5 -
    30.5 -
    30.5
    30.5
    30.5"
    30.5
    30.5
    30.5
    30.5
    30.5
    "30.~5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    KP
    30.0
    25.0
    20.0
    15.0
    14.0
    13.0
    12.0
    10. 0
    -9.0
    -8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    '- 1 . 0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10.0
    11.0
    12.0
    13.0
    14.0
    15.0
    20.0
    25.0
    30.0
    FI
    82.3
    82.3
    84.9
    82. 1
    80.5
    71.3
    63. 3
    47.7
    54.4
    35.0
    31.4
    15.3
    13.1
    15.1
    11.2
    a. 7
    5. 1
    l.C
    7.3
    lb.9
    3.2
    /. 1
    8.4
    12. 1
    22.2
    23. 1
    29.8
    16.2
    44. 1
    60.4
    68.9
    76.9
    82.8
    83.5
    81.9
    81.7
    DELTA
    217.7
    219.4
    223.3
    230.0
    229. 1
    243.6
    250.4
    249. I
    236.4
    254.8
    250.6
    245.9
    230.6
    233.9
    236.0
    204.6
    2 2 6. "4
    306.9
    307. 5
    272.0
    8.2
    42. 7
    51.5
    113.3
    1 19.4
    99.0
    110. a
    89.9
    89.9
    117.5
    128.8
    117.7
    115. 1
    209.7
    212. 7
    214. 7
    WHO
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    "0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    V
    8.63
    8.61
    9.55
    9.28
    8.77
    9. 11
    10.28
    9.97
    12.09
    14.97
    15.75
    22.01
    22.92
    25. 18
    29.71
    32.98
    35.52
    38.44
    35.81
    36.73
    24.38
    22. 14
    27.37
    16.33
    12.78
    11.51
    9.46
    8.24
    6.00
    5.41
    5.69
    6. 87
    8.84
    8.31
    8.52
    7.98
    VX
    1 .15
    1.14
    0.84
    1.26
    1.44
    2.91
    4.60
    6. 70
    7.02
    12.26
    13.43
    21.22
    22.32
    24.31
    29.15
    32.60
    35.38
    38.43
    35.51
    34.74
    24. 13
    21.97
    27.07
    15.96
    11.83
    10.59
    a. 21
    7.91
    4.31
    2.66
    2.04
    1.55
    1. 10
    0.92
    1.19
    1. 14
    VY
    -6.76
    -6.59
    -6.92
    -5.90
    -5.66
    -3.B3
    -3.08
    -2.63
    -5.44
    -2.23
    -2.72
    -2. 36
    -3.29
    -3.87
    -3.23
    -4.53
    -2. 19
    0.43
    2.79
    0.43
    3.45
    2. 03
    2.50
    -1.36
    -2.38
    -0.70
    -1.67
    0.00
    0.00
    -2.17
    -3.33
    -3.11
    -3.73
    -7. 17
    -7.10
    -6.48
    VZ
    -5.23
    -5.42
    -6.52
    -7.04
    -6.54
    -7.73
    -8.65
    -6.90
    -8.20
    -8.29
    -7.75
    -5.31
    -4.01
    -5.31
    -4.79
    -2. 10
    -2.31
    -0.58
    -3.63
    -11.91
    0.50
    1.88
    3. 16
    3. 16
    4.22
    4.46
    4.39
    2.30
    4.17
    4.17
    4. 14
    5.92
    7.94
    -4.09
    -4.56
    -4.50
    vr
    -1.12
    -0.93
    -0.55
    -0.62
    -0.66
    -1.23
    -1.77
    -2. 10
    -2.02
    -3.01
    -2.88
    -3.39
    -2.99
    -2.86
    -2.56
    -1.96
    -1.09
    0.00
    I. 12
    2.23
    1.96
    1.99
    2.98
    2.32
    2.36
    2.36
    2. 15
    1.72
    1.45
    1.C2
    0.85
    0.70
    0.54
    0.60
    0.97
    1.11
    VR
    8.48
    8.49
    9.49
    9.17
    8.62
    8.54
    9.01
    7.08
    9.63
    8.04
    7.69
    4.72
    4.25
    5.91
    5.17
    4.59
    3.00
    0.73
    4.44
    11.7C
    2.88
    1.91
    2.71
    2.54
    4.22
    3.84
    4. 18
    1.52
    3.91
    4.59
    5.25
    6.66
    8.75
    d.24
    8.3B
    7.81
    PST
    0.002-J23
    0.003107
    O.C03066
    0.003015
    0.002320
    0.002570
    0.002425
    0.002024
    0.002227
    0.001-587
    0.001537
    0.0001 13
    0.000203
    0.002568
    0.001 /52
    O.OOlb 16
    0.002&38
    -0.001846
    0.001 15a
    -0.0020C4
    0.000199
    0.000487
    -0.002778
    0.000175
    0.001828
    0.001718
    0.002169
    0.002227
    0.002302
    0.002374
    0.002158
    0.002450
    O.C02962
    0.003014
    0.003147
    0.003021
    T
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    Pb
    760
    760
    76C
    760
    760
    760
    760
    760
    760
    76C
    760
    760
    760
    760
    760
    76C
    760
    760
    760
    760
    76C
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    

    -------
                      Table  H-46.   COMPUTER-REDUCED DATA  FOR SWIRL  BURNER
                             (Minimum Swirl)  AT THE 63. 5-cm AXIAL POSITION
                      MOVEABLE  BLOCK BURNER SET FOR MINIMUM  SWIRL - COLD MODEL
    RESULTS
    AP
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    6T.T-
    63.5
    63.5
    63.5
    63.5
    63.5
    N 63.5
    § 63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    63.5
    "63.5
    63.5
    63.5
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    - 1 4~. 0"
    -13.0
    -12.0
    -11.0
    -1C.O
    -9.0
    ^8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6. 0
    7.0
    8.0
    9.0
    ~ 10.0
    11.0
    12.0
    13.0
    14.0
    15.0
    "20.0
    25.0
    30.0
    F I
    53.3
    53.3
    25.9
    18.7
    15.4
    24.3
    14.4
    15.6
    13.3
    14.3
    10.9
    15.3
    7.7
    5.8
    8.0
    6.2
    3.4
    1.7
    4. 1
    3.7
    6. I
    4.6
    3. 1
    3.6
    5.8
    14.5
    8.5
    11.5
    "12". 1
    8.8
    13.9
    24.0
    16.7
    19.7
    "3976 	
    24.8
    18.7
    DELTA
    210. 1
    211.1
    220.5
    218. 3
    220. V
    202.8
    213.8
    216.7
    218.7
    210.8
    216.6
    209.6
    198.9
    220.0
    210.4
    210.6
    213.1
    259.4
    252.7
    300.0
    316.3
    321.6
    41.3
    9.3
    0.0
    12.6
    3. I
    332.2
    4.7
    48. 1
    16.6
    5. 3
    18.0
    33. 3
    6 2". 4"
    60.7
    73.6
    RHO
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    "0.0000159" '
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    "o.oooors'g
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    O.OOOOL59
    6.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    " 0'. 6000159
    0.0000159
    0.0000159
    0.0000lb9
    0.0000159
    0.0000159
    ~ 0^0000159""
    0.0000159
    0.0000159
    V
    4. 12
    5.47
    6.42
    10.49
    11.32
    10. 15
    13.55
    15.04
    15.98
    13.48
    13.52
    17.23
    16.58
    16.85
    17.37
    18. 16
    16.52
    18.55
    17.38
    18.39
    16.05
    15.92
    15.59
    14.92
    15. 10
    14.31
    13.40
    1 I. 18
    13.70
    9.50
    12.11
    10.66
    9.06
    8.00
    6.37
    5.12
    5.04
    VX
    2.45
    3.27
    5.78
    9.94
    10.91
    9.24
    13.12
    14.48
    15.55
    13.05
    13.27
    16.61
    16.43
    16.76
    17.20
    18.05
    16.49
    18.55
    17.33
    18.35
    15.95
    15.87
    15.57
    14.89
    15.02
    13.85
    13.25
    10.95
    13.40
    9.39
    11.75
    9.73
    8.68
    7.53
    4.90
    4.64
    4.77
    VY
    -2.86
    -3.76
    -2.13
    -2.63
    -2.29
    -3.85
    -2.81
    -3.25
    -2.87
    -2.86
    -2.06
    -3.96
    -2.11
    -1.32
    -2.09
    -1.71
    -0.03
    -0. 10
    -0.37
    0.59
    1.24
    1 .00
    0.64
    0.94
    1.52
    3.50
    1.96
    1.98
    2.87
    0.97
    2.79
    4.33
    2.48
    . 2.25
    1.88
    1.05
    0.45
    VZ
    -1.66
    -2.26-
    -1.82
    -2.09
    -1.94
    -1.62
    -1.89
    -2.42
    -2.30
    -1.71
    -1.54
    -2.25
    -0.72
    -I. 11
    -1.22
    -1.01
    -0.54
    -0.54
    -1.20
    -1.03
    -I. 19
    -0.79
    0.56
    0. 15
    0.00
    0.78
    0.27
    -1.04
    0.23
    1.08
    0.83
    0.40
    0.80
    1.48
    3.60
    1.87
    1.55
    VT
    -1.C9
    -1.23
    -1.52
    -1.92
    -1 .88
    -1.72
    -2.00
    -2. 13
    -2.03
    -1.61
    -1 .40
    -1.69
    -1.27
    -1.04
    -0.98
    -0.78
    -0.46
    -0.25
    0.00
    0.28
    0.48
    0.64
    0.64
    0.73
    1 .04
    1.40
    .27
    .27
    .70
    .08
    . Jb
    .81
    .54
    .48
    1.44
    1.39
    1.31
    VR
    3.12
    4.21
    2.35
    2.76
    2.35
    3.81
    2.7 i
    3.45
    3.06
    2.92
    2. 16
    4.23
    1.63
    1.37
    2.21
    1.82
    O.bh
    C.4B
    1.2o
    1.1-3
    1.65
    1.11
    0.56
    0.6C
    1.11
    3.3C
    1.51
    1 .84
    2. 3 i
    0.97
    2.32
    3.95
    2. 10
    2.2fj
    3.80
    1.63
    0.94
    PST
    O.C021 70
    0.002512
    0.002075
    0.001970
    0.001 728
    0.002248
    0.002023
    . O.C02202 '
    0.001 1 38
    0.001)57
    O.C021 14
    0.001210
    O.C02052
    0.001718
    0.001633
    0.001926
    O.C02443
    0.001232
    0.001P43
    C. 001281
    0.002530
    0. 001543
    O.OC191B
    0.001779
    0. 001d47
    0.001766
    O.G02203
    0.001^08
    0.001 123
    0.002(^1
    0.001645
    0.002207
    0.002149
    0.002214
    0.002451
    0.0022&3
    0.002266
    r
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    20.
    20.
    20.
    • 20.
    2C.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    ?0.
    20.
    20.
    PB
    760
    76>"
    760
    760
    760
    76C
    76C
    76C
    76C
    76C
    76C
    760
    7bC
    76C
    76P
    76C
    760
    760
    760
    760
    76'J
    76C
    760
    760
    760
    76C
    76C
    760
    760
    76C
    760
    760
    760
    76C
    76C
    760
    760
    

    -------
          Table  11-47.   COLUMN HEADING SYMBOLS
    
                  FOR TABLES 11-37 TO 11-46.
    AP   =  axia' probe position, cm
    
    
    
    delta =  dihe-lral angle,  deg
    
    
    
    FI    =  conical angle,  deg
    
    
    
    P  ,   =  differential pressure across probe holes a and b,  psig
     ct D
    
    
    PB   =  atmospheric pressure,  mmHg
    
    
    
    PST  =  static pressure, psig
    
    
    
    rho  =  density of flowing gases
    
    
    
    RP   =  radial probe position,  cm
    
    
    
    T     =  temperature of flowing gases,  °C
    
    
    
    theta =  probe rotation,  deg
    
    
    
    V     =  absolute velocity, ft/s
    
    
    
    VR   =»  radial velocity, ft/s
    
    
    
    VT   =  tangential velocity,  ft/s
    
    
    
    VX   =  velocity in x-direction, ft/s
    
    
    
    VY   =  velocity in y-direction, ft/s
    
    
    
    VZ   =  velocity in z-direction, ft/s
                                Z81
    

    -------
     HP  VS.
       105.
       103.
       101.
        99.
        IT.
        05,
        93.
    "~  or.
        89.
        07.
        84.
        62.
        80.
        78",
        lt>:
        '4,
        72.
        70.
        68.
        66.
        64.
        62.
        60.
        58.
        56.
    
    _.   «'
    
    C   47,
    >•"   45.
    \-   43.
    O   4"f,
    
    U   37.
    >   35.
        13.
        31.
        29".
        27.
        25.
        23.
        21.
      •  19.
      '  16.
        14,
        12.
        10.
    .  V*
    .56
    .50
    . 44
    ,38
    .32
    ,26
    ,20
    ."14
    .08
    .02
    .96
    .90
    .84
    .78
    .72
    ,6h
    .60
    .54
    .48
    
    .36
    .30
    .24
    .19
    .13
    .0"?
    ,01
    .95
    .89
    ,83
    .77
    
    ,65
    .59
    .53
    .47
    ,41
    .35
    .29
    .23
    .17
    . 11
    .05
                       MOVEAHLE BLOCK BIMNEB SET  FOR MINIMUM SwIRL - COLD MODEL
                     7.60
     99
     13
     88
     82
     76
     70
    ,64
     58
         -to.ooo   -24.000   -in.ooo    -12.000    -6.000    -o.ooo     f>.oo«
    
                                                 RADIAL POSITION, rni
                                                                           12.000    18.000    ,"..000
                                                                                                       10.001)
      Figure  11-216.    AXIAL VELOCITY  PROFILE  FOR  SWIRL  BURNER
         SET  FOR MINIMUM SWIRL AT  THE  7.  6-cm AXIAL POSITION
                                                       282
    

    -------
     IP  VS. VI
        13. 16
     .'   12.63
    :    12.10
        11.57
        11.04
        10.51
         9.98
        ' 9.4<
         8.91
         8.38
         7.85
         7.32
         6.79
    	5T75'"
         5.73
         5.19
         4.66
         4.13
         3.60
         2.54
         2.01
         1.48
         0.94
         0.41
       -TT.TT-
     _ -0.64
     Q -1.17
     U -1.70
     > -2.23
       -2.76
      "--"3Y30 '
       -3.83
       -4.36
       -4.B9
       -5.42
       -5.95
     " '~-"6.'*"B '
       -7.01
       -7.55
       -B.OB
       -8.61
       -9. 14
       -9.47
      -10.20
      -10.7)
      -11.26
      -11.80
      -12.31
      -12.86
      -11.39
      -13.9?
                                 BI.UCK BU4NER Stl FOB
                                                                 -  COI.U "ODFL
                             AXIAL POSITION:  7.6 cm
       u
          -30.000   -24.000   -13.000   -12.000    -6.000   -0.000    6.000
    
                                                 RADIAL POSITION, cm
                                                                                             24.000
                                                                                                      30.000
         Figure  11-211.    TANGENTIAL VELOCITY  PROFILE  FOR SWIRL
    BURNER  SET  FOR  MINIMUM  SWIRL AT  THE 7. 6-cm  AXIAL  POSITION
                                                       283
    

    -------
                      HOVE ABL!:  HLUCK BIHNES SCI FOR
                   17.80
                                                   SNIXL - CIILD HOUEL
                                                           AXIAL POSITION: 17.8 cm
         -30.000   -24.000   -18.000   -12.000
                                          RADIAL POSITION, cm
    Figure 11-218.   AXIAL  VELOCITY PROFILE FOR  THE  SWIRL BURNER
         SET  FOR  MINIMUM SWIRL AT THE 17. 8-cm  AXIAL POSITION
                                                284
    

    -------
                                                      - CIJLl) MODfl
         -30.000  -?«.OOQ   -16.000	-J^Z.OOO   -6.000   -0.000    6.000    12.000   18.000   2
    -------
    HP  VS
       38
       37"
       36
       36
       35
       34
    	34
       33"
       32
       31
       31
       30
       29
      "2~8"
       29
       21
       26
       25
       25
      " 24
       23
       22
       22
    „  21
    -  20
    w  20
    >•"  19
    t  18
    U  17
    S  "
    U  16
           . VX
           .44
           .70
           .96
           . 21
           .49
           .75
           ilL
           .28
           .54
           .80
           .07
           .33
           .59
           .86
           .12
           .38
           .64
           .91
           .J7
           .43"
           . 70
           .96
           .22
           .48
           .75
           01
           27
           54
           80
           06
           32
                       MOVE4RLE HLOC« BURNER  SCt FUR  HINIHUM
                    30.50
                                                              -  COLO XOOEL
    AXIAL 1'OSITION: 30.5 cm
        ...
         11.17
         10.43
         9.69
         8.95
         8.22
             _
         6.74
         6.01
         5.27
         4.53
         3.79
         3.06
         2. 32 "
         1.58
         0.85
                                               RADIAL. POSITION, en
    Figure 11-220.    AXIAL VELOCITY  PROFILE FOR  THE SWIRL  BURNER
         SET  FOR  MINIMUM  SWIRL AT  THE 30. 5-cm AXIAL  POSITION
                                                    286
    

    -------
      HP VS. VT
         2.99
                     MOVEABLE BLOCK BURNER SET FUR MINIMUM SKIRL - COLO MODEL
                  30.50
                                        -6.000   -O.UCO     o.OOO
    
                                        RADIAL POSITION, .'in
                                                                12.000
                                                                       1U.OOO
     Figure 11-221.    TANGENTIAL VELOCITY  PROFILE  FOR THE  SWIRL
    BURNER  SET  FOR  MINIMUM  SWIRL AT  THE  30. 5-cm  AXIAL POSITION
                                                287
    

    -------
                        M11VE4BLE BLOCK BURNER SET FOR MINIMUM SKIRL - CULO MODEL
                 AP> 63.50
                                                                      AXIAL POSITION: 63.5 cm
           -30.000   -M.OOO  -1(1.01)0   -12.000
                                             -6.000
                                                      -0.000
                                                               6.001'
                                                                       1^.000
                                                                               1H.OOU
                                                                                        ,"..000
                                                                                                JO.000
                                              RADIAL PO.SI'l ION.
    Figure  11-222.    AXIAL VELOCITY PROFILE FOR  THE  SWIRL BURNER
          SET  FOR  MINIMUM  SWIRL AT  THE  63. 5-cm  AXIAL  POSITION
                                                    288
    

    -------
                                                 SUI1L - CULO KOOU
          -30.000  -;<..ooo  -ie_.£0o _-12.000   -6.000    -o.ooo
    
                                    RADIAL POSITION, cm
                                                                           2^.000
                                                                                   30.000
     Figure  n-223.   TANGENTIAL VELOCITY  PROFILE  FOR  THE SWIRL
    BURNER SET  FOR MINIMUM SWIRL AT  THE  63. 5-cm  AXIAL POSITION
                                             289
    

    -------
                                     Table 11-48.    RAW DATA FOR  THE  SWIRL'BURNER
                                 (Swirl  Number,  S =  0. 8)  AT THE  2. 5-cm AXIAL POSITION
    
                                          AERODYNAMIC MODELING Of COMBUSTION BURNERS
    ro
    ^
    O
             CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    AI =
    BO =
    C =
    
    TOTAL
    THETA
    45.
    45.
    45.
    45.
    45.
    45.
    45.
    45.
    45.
    0.
    " 0.
    46.
    44 .
    58.
    43.
    44.
    16.
    0.
    0.
    0.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    315.
    0.770590 A2 = 0.
    0.737720 B2 = -0.
    4.464660 D = 0.
    MOVEABLE
    DATA INPUT
    AP RP
    2.5 -30.0
    2.5 -25.0
    2.5 -20.0
    2.5 - 15.0
    2.5 -14. C
    2.5 -13.0
    2.5 -12.0
    2.5 -11.0
    2.5 - 10.0
    2.5 -9.0
    "2". 5 " -8.~0
    2.5 -7.0
    2.5 -6.0
    2.5 -5.0
    2.5 -4.0
    2.5 -3.0
    2^5 " -2.0
    2.5 -1.0
    2.5 0.0
    2.5 1.0
    2.5 2.0
    2.5 3.0
    2.5 4.0"
    2.5 5.0
    2.5 6.0
    2.5 7.0
    2.5 8.0
    2.5 9.0
    2.5 10.0
    2.5 11.0
    2.5 13.0
    2.5 14.0
    2.5 15.0
    2.5 20.0
    2.5 25.0
    2.5 30.0
    272353 A3
    158821 B4
    394812
    = -0.059818
    0.129246
    
    
    
    
    BLOCK BURNER SET FOR INTERMEDIATE SHIRL
    
    P13
    744.00
    750.00
    1 140.00
    736.00
    724.00
    648.00
    440.00
    705.00
    1 12.00
    1039.00
    "~ 52. "40 ~
    30.60
    422.00
    -4960.00
    -1170.00
    -3330.00
    85". 00 "
    19.20
    503.00
    -41.00
    -560.00
    1380.00
    860 . 00
    910.00
    1020.00
    -4000.00
    -87.00
    -18.30
    -20.00
    -80.60
    580.00
    805.00
    725.00
    2690.00
    3750.00
    347*0.00
    
    P03
    8300.00
    -71500.00
    16600.00
    999999999.50
    -89600.00
    11750.00
    -64000.00
    6600.00
    445.00
    -846.00
    140.20
    18.00
    60.00
    146.00
    1500.00
    3330.00
    504.00
    18.30
    21.00
    -210.00
    -500.00
    3480.00
    1620.00
    1040.00
    520.00
    160.00
    68.50
    246.00
    -40.80
    -118.00
    1750.00
    3650.00
    5090.00
    41600.00
    86200.00
    -30600.00
    
    P24
    -3340.00
    -1730.00
    -1055.00
    -504.00
    -476.00
    -355.00
    -501.00
    -612.00
    -1080.00
    -200.00
    -42. 10
    293.00
    -82.60
    1820.00
    -380.00
    -209.00
    -192.00
    -197.00
    376.00
    208.00
    193.00
    357.00
    850.00
    1730.00
    1230.00
    161 .00
    81.00
    -199.00
    " -132.00
    -268.00
    -7350.00
    -34000.00
    91500.00
    22600.00
    23400.00
    34500.00
                                                                                - COLD MODEL
       P04
    -6880.00
    -2400.00
    -1450.00
     -712.00
     -636.00
     -698.00
     -950.00
     7800.00
      672.00
     -372.00
      -99.00
       31.50
      126.00
      188.00
    -2280.00
    -1080.00
    -2000.00
       29.30
       20.40
       72.80
      344.00
      712.00
     1500.00
     2100.00
      926.00
      126.00
       39. 10
       33.80
      100.80
      675.00
     8900.00
    77000.00
    20200.00
    22000.00
    37500.00
    94500.00
    POA
    HOb.OO
    965.00
    15700.00
    -238.00
    -130.80
    -127.00
    -92.20
    -IC5.20
    -59.20
    -180.00
    -267.00
    30.70
    120.00
    -214.00
    -85.20
    -60.00
    -65.60
    34.50
    20.50
    370.00
    -98.00
    -96.40
    -79.80
    -78.00
    -79.20
    -132.00
    64.40
    29.00
    28 7.00
    -1376.00
    -2780.00
    1520.00
    804.00
    432.00
    410.00
    407.00
    T
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    PB
    760
    760
    760
    760,
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    760
    7bO
    760
    760
    

    -------
                            Table  11-49.   RAW  DATA FOR ~THE SWIRL  BURNER
                        (Swirl Number,  S  = 0.8) AT  THE  7. 6-cm AXIAL POSITION
                                  AERODYNAMIC  MODELING  OF  COMBUSTION BUHNERS
    CAUBRAJIJ3N COEFFICIENTS FOR FORWARD FLOW
    Al = " ~0". 7705~90   A2" =   0.272353   A3  =  -0.059818
    BO =   0.737720   82 =  -0.158821   84  =   0.129246
    C  =   4.464660   C  =   0.394812
                       MOVEABLE BLOCK BURNER SET  FOR  INTERMEDIATE  SWIRL  -  COLD  MODEL
    lUFAL DATA INPUT
    THETA
    45.
    45.
    0.
    0.
    0.
    65.
    40.
    30.
    33.
    40.
    35.
    183.
    180.
    180.
    ISO.
    0.
    0.
    0.
    0.
    0.
    0.
    180.
    180.
    180.
    130.
    0.
    315.
    315.
    315.
    315.
    515.
    315.
    315.
    31?.
    315.
    315.
    315.
    AP
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    -14.0
    -13.0
    -12.0
    -11.0
    -10.0
    -9.C
    -8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10. 0
    11. C
    12.0
    13.0
    14. C
    15.0
    20.0
    25.0
    30.0
    P13
    999999999.50
    700.00
    2240.00
    620.00
    341.00
    -84700.00
    66200.00
    77.30
    83.50
    186.00
    87.00
    640.00
    1600.00
    11200.00
    999999999.50
    290.00
    258.00
    380.00
    -470.00
    -244.00
    -395.00
    -1000.00
    -418.00
    -244.00
    -310.00
    1830.00
    615.00
    2228.00
    -198.00
    -74. 70
    -128.00
    -58. 90
    -77, 30
    -123.00
    -870.00
    -3800.00
    -11260.00
    P03
    999999999.50
    3530.00
    -2402.00
    -252.00
    -1 1220.00
    250.00
    187.00
    -2360.00
    97.70
    130.00
    226.00
    835.00
    636.00
    665.00
    960.00
    517.00
    261.00
    140.00
    208.00
    2790.00
    -438.00
    1096.00
    773.00
    3380.00
    -4800.00
    -3000.00
    1010.00
    322.00
    325.00
    -1314.00
    -186.00
    -122.00
    -134.00
    -174.00
    -635.00
    -3990.00
    -6570.00
    P24
    -2780.00
    -1460.00
    -1C46.0C
    -404.00
    -306.00
    575.00
    -599.00
    -229.00
    -364.00
    1843.00
    -407.00
    26-J2C.OO
    770.00
    937.00
    . I 700.00
    -13d?). 00
    -1176.00
    2 B 30. CO
    770.00
    495.00
    2410.00
    - 1200.00
    -432.00
    -256.00
    -190. CC
    -4630.00
    635.00
    772.00
    -448.00
    -201.00
    -132.00
    -232.00
    -421.00
    -2040.00
    1 160.00
    1420. CO
    2420.00
    P04
    -7920. OC
    -3720. OC
    -1092.00
    -50o.OC
    -423.00
    446.00
    419.00
    550.00
    250. CC
    230.00
    323. OC
    1220.00
    576.00
    562.00
    680.00
    1600.00
    450.00
    160.00
    165.00
    388.00
    455.00
    1370. OC
    740.00
    -8990.00
    -512.00
    -2990. CO
    617.00
    353.00
    290.00
    372.00
    503.00
    554.00
    720.00
    81C.OO
    1560.00
    2740.00
    4780. OC
    PCA
    ".60.00
    7 b (.' . C P
    -blC.0'0
    - i e £ . c o
    - 149. CC
    -H5.0C
    -493.00
    -1 730. OC
    68C.CC
    982. 00
    1 4 fc fi . ij C
    -54C.OO
    925CO.OO
    f. 9.J.OC
    6Gi .OC
    -7^0.00
    2132.00
    350. GC
    32C.OC
    1 2 h 7 . C 11
    -427.00
    -72fc.OO
    -677.0C
    - 5 O G . 0 0
    - 1C6.CC)
    -/r)2.0C
    -^Ci'i . CO
    - 4 7 0 . C C
    900. OC
    4P4.CO
    -35)6.00
    -34 7. CO
    -267. 0^
    -2 rt 7. 00
    -loOO.OG
    77^.03
    T
    2:".
    2'.
    2C.
    2C.
    ??.
    2^ .
    20.
    20.
    20.
    20.
    2C.
    20.
    2C.
    2'i.
    20.
    20.
    2~.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    ?P.
    2-:..
    2'j.
    20.
    20.
    20.
    2C.
    20.
    20.
    2C.
    2T.
    20.
    jr.
    7 a '
    7.- _•
    7L-T
    7.1."
    7r>:
    7o"
    7 .T I"'
    7o •>
    760
    /t>C
    7o.
    7 or
    /e.~
    7o"
    7sO
    7 ,; !~
    ! t; I1
    7.-).;
    7sr
    /D-^
    /; .•>
    TO'.'
    7 r» i
    7 o .'•
    •»•, "
    7i->~
    /it
    fo"
    7oO
    t •., :
    70C
    7 r. .".
    73;
    7v .
    7 .» x
    '-, -
                                                                                                            23.
    

    -------
                                     Table  11-50.   RAW DATA FOR  THE  SWIRL" BURNER'
                                 (Swirl  Number,  S  = 0.8) AT  THE 17. 8-cm AXIAL POSITION
                                           AErtOOYNAMIC MODELIMG OF .COMBUSTION BURNERS
    ro
            CALIBRATION COEFFICIENTS  FOR  FORWARD FLOW
            41 "=   0~.77~0590   ~A2  =    0.272353    A3 =  -0.059818
            HO =   0.737720   82  =  -0.158821    B4 =   0.129246
            C  =   4.464660   D   =    0.394812
                               MOVEABLE  BLOCK  BURNER SET FOR INTERMEDIATE  SWIRL  -  COLO  MODEL
            tOTAL DATA  INPUT
    THETA
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    180.
    130.
    180.
    180.
    180".
    130.
    180.
    180.
    180.
    180.
    160.
    180.
    180.
    180.
    180.
    180.
    315.
    315.
    315. '
    3 I'S.
    315.
    315.
    315.
    315.
    315.
    AP
    17.8
    17.8
    17.8
    17.8
    17.8 "
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    "- 14.0
    -13.0
    -12.0
    -11.0
    -10.0
    -9.0
    -8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.C
    -2.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10.0
    11.0
    12.0
    13.0
    14.0
    15.0
    20".0
    25.0
    30.0
    P13
    68400.00
    -141600.00
    4720.00
    975.00
    1255.00
    218.00
    324.00
    431.00
    638.00
    5060.00
    -950.00
    -1000.00
    69700.00
    40flO. 00
    2820.00
    2650.00
    3580.00
    7260.00
    9300.00
    9660.00
    9999J9999. 60
    -9600.00
    -8570.00
    -39600.00
    58800.00
    -1830.00
    -1510.00
    -7440.00
    5920.00
    5590.00
    -600.00
    -283.00
    -205.00
    -193/00
    -574.00
    1 1500.00
    5280.00
    P03
    -19600.00
    -13700.00
    -25000.00
    5900.00
    3838.00
    340.00
    334.00
    272.00
    330.00
    441 .CO
    795.00
    2000.00
    2130.00
    2000.00
    1450.00
    1300.00
    1135.00
    980.00
    898.00
    840.00
    830.00
    477.00
    570.00
    2530.00
    2480.00
    2300.00
    31400.00
    3060.00
    314.00
    330.00
    303.00
    452.00
    850.00
    4320.00
    -3090.00
    8640.00
    I 1400.00
    P24
    15300.00
    -4260.00
    -1440.00
    -601.00
    -759.00
    -164.00
    -139. CC
    -127.00
    -1 I 7. (1C
    -115.00
    -150.00
    -1 76.00
    3000.00
    1 180.00
    960.00
    70S. 00
    638.00
    832.00
    1030.00
    IROC.OO
    14000.00
    -1680.00
    -12oO.OO
    -3190. 00
    -656.00
    -157C.OO
    -1 120.00
    -2630,00
    7200.00
    -828.00
    -438.00
    -296.00
    -312.00
    -237.00
    7370.00
    3830. CO
    7990.00
    P04
    -17500.00
    -5450.00
    -2250.00
    -1395.00
    -1738.00
    -485.00
    -400. OC
    -384.00
    -340.00
    -332.00
    -257. OC
    -363. CO
    214C.OO
    2810.00
    1670.00
    1210.00
    910.00
    735. CC
    817.00
    810.00
    994. CO
    1510.00
    2280.00
    4000.00
    4410. CO
    6570.00
    13110.00
    17660.00
    9400. OC
    500.00
    432.00
    434.00
    537.00
    581 .OC
    1050.00
    4570.00
    11 18C.CC
    r'OA
    453.00
    4C2.0.T
    o42.00
    CCO. 00
    759.00
    764.00
    700.00
    OC.7.0C
    630. OP
    lo40.CC
    -3700. CO
    -1 1CO.CC
    -439. CO
    --566.00
    -840.00
    -6<.2.0C
    - icvs.on
    -2080.00
    12ft40.UO
    12bPO.OO
    6 7fcC. 00
    -5C2C.OO
    -49'»0. OC
    470.00
    57-..00
    553.00.
    •> 14 . no
    •377.00
    H35.00
    348.0,-?
    2 1- i.OO
    243.00
    240. CO
    26C.CC
    4&O.OC
    464.00
    4T>6.CC'
    r
    7 J
    '2C
    .20
    20
    2C
    20
    20
    2P
    20
    2C
    2C
    70
    20
    2?
    70
    2C
    20
    7C
    20
    20
    2C
    20
    20
    ?.'J
    20
    2C
    2C
    2?
    20
    20
    20
    20
    20
    2C
    2C
    70
    2C
                                                                                                                             7oO.
                                                                                                                             IC.Q.
                                                                                                                             760.
    
                                                                                                                             /oC.
                                                                                                                             /GO.
                                                                                                                             76P. '
                                                                                                                             /oO.
                                                                                                                             7bO.
                                                                                                                             760.
                                                                                                                             7oO.
                                                                                                                             760.
    
                                                                                                                             7-j.-.
                                                                                                                             7 o ':•.
                                                                                                                             7r>0.
                                                                                                                             7nC.
                                                                                                                             7&0. '
                                                                                                                             7oO.
                                                                                                                             rti'j.:
    
                                                                                                                             76C. '
                                                                                                                             76C.
    

    -------
                        Table 11-51.    RAW DATA FOR THE SWIRL BURNER"
                        (Swirl Number,  S =  0..8)  AT  THE 30. 5-cm AXIAL  POSITION
                                  AERODYNAMIC  MODELING  OF  COMBUSTION  BURNERS
    CALIBRATION COEFFICIENTS FOR FORWARD  FLUW
    Al" =   "0." 7 705 90   A2 =   0.272353    A3  =   -C.059818
    bO =   0.737720   B2 =  -0.158821    84  =    0.129246
    C  =   4.464660   0  =   0.394812
                       MOVEABLE  BLOCK BURNER  SET  FOR  INTERMEDIATE  S«'IKL - COLO MOLJtL
    TOTAL DATA INPUT
    FHETA
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    180.
    100.
    180.
    180.
    180.
    180.
    180.
    180.
    180.
    180.
    180.
    180.
    0.
    0.
    3.
    0.
    0.
    0.
    0.
    0.
    AP
    30.5
    30.5
    30.6
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    3C.5
    30.5
    30.5
    30.5
    30.5
    30. 5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5"
    30.5
    30.5
    30.5
    30.5
    RP
    -30.0
    -25.0
    -20.0
    -18.0
    -16.0
    - 14.0
    -12.0
    12.0
    10.0
    8.0
    6.0
    4.0
    2.0
    0.0
    -2.0
    -4.0
    -6.0
    -8.0
    -10.0
    14.0
    16.0
    18.0
    20.0
    22.0
    24.0
    25.0
    30.0
    P13
    29000.00
    21500.00
    2890.00
    470.00
    403.00
    555.00
    576.00
    -3550.00
    -3400.00
    -4670.00
    -3580.00
    -5060.00
    -10150.00
    -11780.00
    -14320.00
    -14080.00
    -34500.00
    -10950.00
    -7260.00
    33700.00
    -1820.00
    -630.00
    -485.00
    -487.00
    -592.00
    -950.00
    -1510.00
    P03
    2800.00
    105300.00
    -5220.00
    516.00
    640.00
    -4200.00
    1432.00
    2650.00
    2450.00
    2680.00
    2104.00
    1875.00
    183C.OO
    1680.00
    1930.00
    2030.00
    2370.00
    2320.00
    5500.00
    1870.00
    2410.00
    8900.00
    -5080.00
    -2030.00
    -2040.00
    -1675.00
    -3630.00
    P24
    -2960.00
    -8240.00
    -3420.00
    -336.00
    -286.00
    - J05.00
    -210.00
    20200.00
    12400.00
    7420.00
    22400.00
    9150. OU
    3280.00
    2430.00
    2140.00
    1970.00
    2300.00
    2350.00
    416C.OC
    61C.OO
    390.00
    268. CC
    2R3.0C
    342. OC
    453.00
    526.00
    1650.00
    P04
    -8850. CC
    1 7400.00
    -4190.00
    -609.00
    -729.00
    -4300.00
    -368.00
    4120. OC
    3200.00
    5570.00
    2720.00
    2050. OQ
    2090. OC
    1940.00
    1920.00
    2090.00
    265C.OO
    2580.00
    4000. CC
    1230. OC
    54C.OC
    445.00
    441 .00
    328.00
    720.00
    324.00
    3000.00
    PC A
    752.00
    '< H L' . 0 1
    41-7.0C
    4 5 '-J . 0 'J
    479. OC
    49 >.CG
    J3J.OO
    171.00
    365. OC
    ^>75.00
    564.00
    •sco.or;
    11 5.00
    467.00
    Vt5.CC
    62}. OC
    676.00
    756.00
    800C.CC
    64i).OD
    622.00
    330.00
    }3C. 00
    ->t>? .0?
    59o.O'J
    542. OC
    i?0.0<>
    T
    20.
    2U.
    2'.:.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    2C.
    20.
    20.
    2C.
    2C.
    ?C.
    20.
    2C.
    2C.
    20.
    2C.
    2C.
    2C.
    P:-.
    I:.."
    7iL'
    IbC
    7o.T
    7 tO
    7^0
    7bC
    760
    76C
    ?6C
    760
    7 of.
    70r
    70v'
    ?'.'-
    thC
    T6C.
    760
    ft.:.'
    7o"
    7of
    If.r
    760
    7t..r
    7o )
    7(>.'
    760
    

    -------
    RESULTS
                    Table II-5Z.   COMPUTER REDUCED DATA  FOR  THE "SWIRL,  BURNER'
                          (Swirl Number,  S =  0. 8) AT THE 2. 5-cm AXIAL POSITION
    
                       MOVEABLE ULUCK BURNER  SET FOR INTERMEDIATE SWIRL  - COLD MQOCL
    AP
    2.5
    2.5
    2.5
    2.5
    ?T5~
    2.5
    2.5
    2.5
    2.5
    2.5
    2T5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5~
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    2.5
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    ~I~4~. 0 '
    -13.0
    -12.0
    -11.0
    - 10.0
    -9.0
    ~~-~8TO~"
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    ' - 2 . 0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    io;o
    1 1.0
    13.0
    14.0
    15.0
    20.0
    25.0
    30.0
    M
    68. 1
    63.2
    46.4
    41.2
    41.3
    31.6
    48.3
    30. 1
    63. 8
    71.0
    57.3
    48. I
    35.0
    62.7
    19.5
    7.2
    56.8
    16.9
    0.8
    25.4
    23.6
    16.8
    34.0
    39.5
    36.2
    32.4
    38.6
    49. 1
    63.3
    74.4
    71.8
    75.1
    75.2
    71.2
    70.9
    75.5
    DELTA
    175.0
    186.0
    205.4
    214.3
    216.4
    213.0
    197.2
    174.0
    159.3
    259. 1
    231.2
    104. 7
    93.0
    B8.0
    65.9
    72.4
    194.9
    1H5.5
    126. 7
    11.1
    43.4
    136. 7
    182.9
    211.4
    248.4
    270.9
    280.0
    293. 6
    318.5
    322. 1
    205.4
    197.2
    194.6
    189.9
    186.9
    186. 7
    RHO
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    O.C000159
    0.0000159
    0.0000159
    0. 0000159
    0.0000159
    0.0000159
    0.0000159
    V
    11. 10
    12. 19
    10.67
    14.50
    15.05
    15.19
    16.34
    13.62
    25.77
    20.60
    43.78
    81.49
    52.73
    33.21
    15.61
    18.54
    31.52
    82.09
    92.61
    47.75
    19.51
    13.38
    10.04
    9.66
    14.68
    33.05
    61.26
    81.46
    58.79
    30.42
    10.77
    9. 74
    10.75
    5.84
    5.05
    5.80
    VX
    4.12
    5.49
    7.35
    10.90
    11 .30
    12.92
    10. B7
    11 .7«
    11.34
    6.67
    23.59
    54.41
    43.16
    15.20
    14.71
    ie.40
    17.25
    78.52
    92.60
    43.1 1
    17.87
    12.80
    8.32
    7.45
    11.83
    27.88
    47.34
    53.24
    26.35
    8.14
    3.36
    2.49
    2.74
    1.87
    1.65
    1 .45
    VY
    -10.27
    -10.83
    -6.98
    -7.89
    -7.90
    -6.69
    -1 1 .65
    -6.79
    -21 .64
    -3.68
    -23. 10
    -15. 4J
    -1.62
    1.00
    2.12
    0. 70
    -25.48
    -23. Hb
    -0.82
    20. 13
    5.66
    -2.82
    -5.61
    -4.75
    -3.19
    0.28
    6.69
    24.75
    39.38
    23.14
    -9.24
    -9.00
    -10.06
    -5.45
    -4.74
    -5. 58
    VZ
    0.89
    -1.14
    -3.32
    -5.39
    -5.39
    -4.34
    -3.60
    0.71
    8.17
    -19.14
    -28.75
    58.67
    . 30.21
    29.50
    4.76
    . 2.21
    -6.78
    -2. 32
    I . 10
    3.96
    5.37
    2.66
    -0.28
    -3.91
    -8.08
    -17.73
    -37.67
    -56.46
    -34.79
    -17.99
    -4.39
    -2. 79
    -2.63
    -0.95
    -0.57
    -0.65
    VT
    -10.09
    -10.68
    -7.06
    -9.45
    -9.81
    -7.92
    -11.88
    -6. 77
    -20.61
    -15.14
    -33.14
    -56. 46
    -29.04
    -21.18
    -5.09
    -2.31
    -12.23
    - 19.05
    o.nc
    1 J.20
    6.85
    3. 76
    5.17
    5.69
    8.31
    I 7.30
    37.12
    58.68
    47.03
    22.69
    8.d3
    7.GI
    8.79
    5. 19
    4.59
    5. 3S
    •J*
    2. 1C
    2. 1 1
    1 .02
    l". 3c.
    1.54
    0.94
    2.77
    C.B i
    i c . 5 r.
    12.27
    16. 13
    22.44
    3.47
    20.56
    1.12
    0.24
    13. 36
    L4. ->4
    1.37
    15. 70
    3.74
    o . 9 •:.
    2. la
    2.35
    2.54
    3.91
    9.?7
    ie.c /
    23.44
    13.5-1
    5.16
    5.2 7
    5.55
    1 .91
    1 . 32
    1. 72
    PST
    0.002242
    0.002'-49
    o.oni i2~i
    -0.0021oO
    -O.CCr> 113
    -O.IOol /5
    -C . Oi;c3dO
    -O.OC9I C5
    -0. C14C 74
    -0.0019 i5
    O.OC3345
    -0.01 7r>'J4
    -C.0129<«6
    -O.C13230
    -0. 012756
    -O.C1 71 )7
    -0.009727
    -O.C1 7C'»C
    -O.C2C377
    -0.009416
    -O.C076^8
    -C.OC94 )B
    -O.C12.-:t.6
    -0. Ol2Bol
    -0.013^4
    -0. 01 5 J.S3
    -0.013270.
    -c.cuvcn
    0.00 3T. 3 8
    n.r 01 ?/k
    0.000140
    C.0013LO
    O.OC21.M
    O.OC25J6
    0. CC2oT6
    0.0027^9
    I
    '/(i.
    20.
    20.
    2C.
    20.
    20.
    2 o.
    20.
    20.
    20.
    2T.
    z C •
    20.
    iO.
    20.
    Z'"i .
    21).
    2^:.
    '/ C. .
    20.
    20.
    2;:.
    21 .
    20.
    20.
    20.
    20.
    20.
    2:?.
    2V.
    2?.
    ?0.
    20.
    2J.
    20.
    20.
    I'r.
    It, '..
    If, .
    7t '.
    76 '.
    ,'6.' ..
    t(,( .
    7^,- .
    '6 '.
    76. .
    7hi .
    76-':..
    76" .
    /t>- .
    761 .''
    76::.
    7 f . r. .
    76 -.•
    !hr .
    It,. .
    76''.
    /6 '.
    /6i .
    76'..
    76'1. •
    76 -.
    70T .
    76-^.
    76: .
    76' .
    li>'.~ .
    t6-'.,.
    76C .1
    tb-' .
    n. :.;
    76^.
    tb'-.\
    

    -------
    •USIH.TS
                    Table II-53.   COMPUTER-REDUCED  DATA FOR THE SWIRL, BURNER
                          (Swirl  Number,  S  =  0. 8)  AT  THE 7. 6-cm AXIAL POSITION
    
                       MOVEABLE BLOCK BURNER SET FOR INTERMEDIATE SWIRL  -  COLD KOOEL
    AC
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    7.6
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    -14.0
    -13.0
    -12.0
    -11. 0
    -10.0
    -9.0
    -8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10. 0
    11. 0
    12.0
    I'l.O
    14.0
    15.0
    20.0
    25.0
    30.0
    FI
    3.6
    55.5
    82.3
    81.2
    75.7
    80.9
    31.2
    57.8
    35.5
    42.9
    49.4
    162.1
    166.7
    171.0
    1 73.8
    39.7
    18.5
    4.9
    4.9
    23.0
    46.0
    168.6
    165.9
    154.4
    140.6
    82.7
    30.5
    38. 1
    50.8
    57.2
    78.2
    67.2
    69.3
    69.8
    48.0
    24.4
    24.4
    DELTA
    269.9
    179.5
    244.9
    236.9
    228.0
    89.8
    90. 1
    181.5
    134.0
    109.2
    157.4
    181. 7
    244.2
    265.2
    270.4
    191. 8
    192.3
    172. 3
    30.7
    26.2
    9.3
    39.8
    44.0
    43.6
    58.4
    201 .5
    213.9
    266. 1
    284.2
    297.5
    299.0
    317.0
    324.0
    333.6
    8.6
    40.9
    62.0
    *HQ
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    O.OOC0159
    0.0000159
    0.0000159
    0.0000159
    O.OOC0159
    0.0000159
    0.0000159
    0.0000159
    O.OOC0159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    V
    4.75
    10.91
    12.53
    28.77
    20.37
    23.39
    28.37
    36.69
    33.81
    29.83
    29.64
    12.12
    15.18
    15.96
    14.31
    15.63
    21.83
    33.07
    32.22
    21.39
    17.59
    15.69
    22.27
    22.57
    20.41
    10.96
    13.10
    21.71
    31.39
    36.34
    31. 15
    33.98
    29.33
    23.95
    11.36
    7.11
    5.62
    VX
    "4.74
    «.l 7
    1 .66
    4.39
    5.02
    3.68
    24.24
    19". 52
    27.51
    21.83
    19.25
    -11.53
    -14.78
    -15.76
    -14.23
    12.02
    20.69
    32.94
    32. 10
    19. 6U
    12.21
    -15.38
    -21.60
    -20.37
    -15.77
    1 .37
    11.28
    17.06
    19.84
    19.66
    6.35
    13.12
    10.33
    8.25
    7.59
    6.47
    5.12
    VY
    -0.00
    -9.00
    -5.25
    -15.52
    -13.18
    O.C4
    -0.03
    -31.06.
    -13.0o
    -6.69
    -20. bO
    -3.72
    -l.bO. •
    -0.20
    0.00
    -9.79
    -6. 78
    -2.82
    2.3'J
    7.51
    12.49
    2.37
    3.B9
    7.04
    6. 7o
    -10.11
    -5.52
    -0.90
    5. V8
    14. 13
    14. cO
    22.14
    22.22
    20. 16
    8.. 16
    2.22
    1.09
    VZ
    ^0.29
    0.'06
    -11.25
    -23.82
    -14.69
    23.09
    14.73
    -0.83
    14.12
    19.20
    8.64
    -0. 11
    . --3. 13
    -2.46
    -1.52
    -2.05
    -1.48
    0.37
    1.42
    3.70
    2.04
    1.98
    3.76
    6.71
    1 1.04
    -3.99
    -3.71
    -13.39
    -23.58
    -27.09
    -?6.66
    -21.35
    -16.11
    -9.96
    1.27
    1 .92
    2.05
    vr
    -0.29
    -8.23
    -4.13
    -8.29
    -B.38
    -6.07
    -13.75
    -20.90
    -17.27
    -15.98
    -15.07
    -3.51
    —-3.33
    -2.41
    -1.49
    -4.28
    -4.2fi
    -2.38
    0.00
    2.47
    3. 11
    2.75
    4.d9
    7.67
    8.97
    1.25
    5.60
    11.18
    17. 79
    20.62
    9.53
    18.24
    15.64
    .13.19
    7.78
    2.91
    2.30
    V*
    0.00
    3.65
    11.71
    27.20
    17. 8H
    22.26
    5.20
    22. 9 j
    9.37
    12.57
    16.75
    1.23
    C.99
    0.5 /
    0.30
    9.C1
    5.46
    1.5t,
    2. 7b
    C.OC
    12.26
    I.AC
    2.33
    5.71
    9.33
    10. 8C
    3.25
    7.42
    16. 5o
    /2. 3t>
    28.96
    25.4*
    ?2.55
    1H.21
    3.29
    0.40
    0.2:>
    PST
    0.002149
    0. ^02091
    0.000651
    0.004302
    -0.0(>06e 77
    -o.coei jo
    C. 007003
    -O.OG4S24
    -0.005440
    0.0005 78
    -O.C02736
    -0. 001652
    -0.000ft'.2
    0.000012
    -0. 001o81
    -0. 002>.43
    -O.C(15'7o3
    -0.003(!,->7
    -O.OOlf-72
    -C. 002235
    -I). 003170
    -0. 004 ?77
    -0.004327
    -0. fil GC 4 I
    -0.002449
    -0.0052 >2
    -C.iIP'j 7<;9
    -O.C06L44
    -O.C05207
    -C.0015 12
    -O.T01438
    -0.0024 74
    *C. CO 12 --11
    C. 000/67
    O.OOT.51
    0. 002C:>4
    T
    ir .
    21.
    20.
    2;..
    20.
    2C.
    2">.
    ?~ ,
    23.
    /• 0 .
    £.">.
    2C .
    f1 o .
    20.
    2".
    il (' .
    20.
    ; o .
    «v .
    2'T.
    20.
    20.
    20.
    20.
    20.
    2i' .
    20.
    2 ?.
    t C .
    2°.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    *> >
    i'6l
    7f-r
    76.'
    7l>:~.
    It-.
    7 Or.
    7t,"
    7.V
    7t>
    tt> :
    76 •'
    76 '
    7o"
    7o
    760
    'o1'
    /fi '
    !<_..
    ?o~.
    7 V
    7(.''
    7t>'
    76C
    7r,>'
    H,<^
    76 '
    76 '
    7o ••
    76;
    7'jT
    7ftC
    7t>-i
    76f:
    7t> .'
    7t>;;
    760
    7 fi ,;
    

    -------
    RESULTS
                   Table 11-54.   COMPUTER-REDUCED DATA  FOR  THE SWIRL  BURNER
                         (Swirl Number,  S =  0.8) AT  THE  17. 8-cm AXIAL  POSITION
    
                       HOVEABLE  BLOCK BURNER  SET  FOR INTERMEDIATE  SWIRL - COLO MODEL
    At>
    17.8
    17.8
    17.8
    17.8
    7.8
    7.8
    7.8
    7.8
    7.8
    7.8
    17.8
    17.8
    17.8
    17.8
    1 7.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    17.8
    i /.a
    17.8
    17.8
    7.8
    7.8
    7.8
    7.8
    7.8
    7.8
    7.8
    7.8
    7.8
    17.8
    17.8
    1 7.8
    RP
    -30.0
    -25.0
    -20.0
    -15.0
    -14.0
    -13.0
    -12.0
    -11. 0
    -10. 0
    -9.0
    -8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    -1.0
    0.0
    1.0
    2.0
    3.0
    4.0
    5.0
    6.0
    7.0
    8.0
    9.0
    10.0
    11.0
    12.0
    13.0
    14.0
    15.0
    20.0
    25.0
    30.0
    FI
    82.5
    77.2
    70.9
    61.9
    58. 1
    45. 1
    39.7
    34.0
    36. 1
    36.5
    47.7
    46.6
    166.6
    138.4
    146.2
    145.0
    151.3
    164.7
    167.2
    173.5
    176.5
    167.7
    167. 1
    171.6
    155.9
    164.0
    155.6
    165. 1
    33.6
    50. 1
    52.0
    54.6
    55.7
    59.6
    48. I
    18.7
    41.9
    DELTA
    257.3
    271.7
    253.0
    23B.3
    238.8
    233.0
    246. 7
    253.5
    259.6
    268.6
    278.9
    279. -i
    267.5
    253.8
    251.1
    255.0
    259.8
    263.4
    263.6
    25?. 4
    269.4
    80.0
    B1.6
    B5.3
    90.6
    49.3
    53.4
    70.5
    232. 7
    269.0
    276.3
    281.5
    287.2
    288.3
    303.2
    240.6
    191.2
    RHO
    0.0000159
    0.0000159
    0.0000139
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    V
    3.46
    4.81
    7.49
    11.50
    9.87
    21.89
    22.80
    24.64
    24.77
    24.69
    21.53
    19. 15
    8.57
    8.38
    9.59
    10.68
    11.80
    13. 12
    13.25
    13.93
    14.09
    17.38
    16.09
    8.74
    12.76
    10.95
    10.24
    8.01
    19.60
    22.58
    26.69
    27.95
    27.05
    27.00
    12.99
    4.68
    3.76
    VX
    0.45
    1.05
    2.43
    5.41
    5.21
    15.45
    17.53
    20.40
    20.00
    19.85
    14.49
    13.14
    -8.40
    -6.27
    -7.97
    -8.76
    -10.36
    -12.66
    -12.92
    -13.04
    -14.07
    -16.98
    -15.69
    -C.64
    -1 1 .65
    -10.52
    -9.33
    -7.74
    16.31
    14.47
    16.40
    16.17
    15. 2C
    13.65
    8.67
    4.43
    2.70
    VY
    -0.75
    0. 14
    -2.06
    -5.32
    -4.33
    -9.32
    -5. 74
    -3.90
    -2.63
    -0. 33
    2.43
    2.41
    -0.07
    -1 . i'.
    -1.71
    -1.58
    -0.99
    -0. 39
    -0.32
    -o.?a
    -0.00
    0.63
    0.52
    0. 10
    -0.05
    1 .96
    2.52
    C.68
    -6.58
    -0.29
    2.34
    4.56
    6.63
    7.34
    5.30
    -0.73
    -2.46
    VZ
    -3.35
    -4.69
    -6.77
    -8.63
    -7.17
    -12.39
    -13.39
    -13.25
    -14.33
    -14.68
    -15.73
    -13.71
    -1.69
    -5.34
    -5.04
    -5.91
    -5.06
    -3.41
    -2.91
    -1.04
    -0.84
    3.64
    3.54
    1.27
    5.20
    2.29
    3.40
    1.94
    -8.65
    -17.33
    -20.9J
    -22.34
    -21 .37
    -22. 10
    -8.0.9
    -1.30
    -0.49
    VT
    -0. 74
    -1.41
    -2.35
    -4. 16
    -3.68
    -9. 12
    -9. 18
    -9. il
    -8.11
    -a. 28
    -0.02
    -4.84
    -1.45
    -1.07
    -1.69
    -1.43
    -1.14
    -0.69
    O.OC
    0.69
    0. 74
    2.26
    2.51
    1.13
    3.13
    2.43
    2.V7
    I.d2
    7.00
    7.95
    7.79
    10.48
    10.54
    10.31
    6.86
    1.46
    2.21
    Vrt
    3.35
    4.47
    6.6::
    9.25
    7.53
    12.54
    1 1.32
    1 0 . 2 'J
    11.5V
    12. 1 J
    14.7'.
    1 3 . C 3
    C.8o
    S. 1"
    5.03
    5.93
    5.53
    1.37
    2.92
    1 .41
    0.3-}
    2. It
    2.53
    0.59
    4. 13
    1 .77
    3.00
    0.95
    8.31
    15.4^
    1 0.63
    20.24
    19.73
    2 c . a c.'
    6.81
    0. 31>
    1.10
    P b T
    C.C02 106
    O.C02338
    0. fiul 1o5
    0.001 TU7
    O.COU-71
    C.COl Io4
    0. Ofi 04 60
    -c.ooor>d9
    -C.C0052S
    -o. <.'oi:46
    -C.t -00.' 07
    -0. 000-301
    -C.C02 7 76
    -o.ooiyi5
    -0. uCl-. 79
    -O.COl'isl
    -0. OTluOO
    - 0 . C C I o / 3
    -0.001332
    -O.C014 J2
    -0. --01 WS
    -0. *:(U < J4
    -C.r.02075
    0. .IClvttO
    O.COUHOt
    O.OOC747
    C.OOl >29
    C.OC1247
    -O.COOa33
    -O.C011o2
    -C. 001762
    -C.OPlr. 19
    -C.COC84«,
    -0. OCC74H
    C.CC1 1 J5
    O.OUl V9
    O.C'02 1 75
    r
    20.
    20.
    20 .
    20.
    20.
    20.
    1J.
    / ).
    20.
    20.
    (^ \i •
    20.
    2'J.
    ?0.
    JO.
    20.
    20.
    ?•"•.
    ^ ij .
    2C.
    20.
    J J .
    20.
    20.
    2V.
    20.
    20 .
    2C.
    2C.
    20.
    'i> J.
    i -.' .
    21. .
    ?? .
    20.
    c. -1.
    20.
    PM
    tlj :
    7u-
    ft-.:.
    76:'
    7ovl
    7(-.''
    7'-~
    7nl'
    7^ '
    7t,~
    7o I
    7(. .
    7o '•
    7t-.'
    7o.'
    7t. .
    7t r
    7n'.
    7o.i
    7(S^
    7h '
    Jh 1
    76::
    76^
    7 00
    7rv.,
    7 Li 1
    7f.'i
    760
    7oU
    7e>;;
    7h"
    7(>.
    7r>i-
    7 6 •' '
    70
    / *•! 0
    

    -------
         RESULTS
                         Table  H-55.   COMPUTER-REDUCED  DATA FOR THE SWIRL BURNER
                              (Swirl Number,  S  =  0. 8) AT  THE  30. 5-cm AXIAL POSITION
                            MOVEABLE BLOCK BURNCR  SET FOR INTERMEDIATE SWIRL -  COLD MODEL
    vO
    -vl
    AP
    30.5
    30.5
    30. b
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    30.5
    RP
    -30.0
    -25.0
    -20.0
    -18.0
    -16.0
    -14.0
    -12.0
    12.0
    10.0
    e.o
    6.0
    4.0
    2.0
    0.0
    -2.0
    -4.0
    -6.0
    -8.0
    -10. 0
    14.0
    16.0
    18.0
    20.0
    22.0
    24.0
    25.0
    30.0
    F I
    25.0
    34.1
    80.2
    46.6
    47.7
    53.6
    62.3
    165.3
    167.0
    160.2
    169.3
    172.6
    168.4
    166.0
    164.9
    161.6
    160.2
    160. 9
    162.3
    41.6
    33.3
    43.0
    3=3.7
    42.3
    44.2
    51.7
    51.2
    DELTA
    264.1
    249.0
    220. 1
    234.4
    234.6
    241.2
    249.2
    350.0
    344.6
    327.8
    350.9
    331.0
    287.9
    281.6
    278.5
    277.9
    273.8
    282. 1
    299.8
    91.0
    77.9
    68.2
    59. I
    54.9
    52.5
    61.0
    42.4
    RHO
    0.0000159
    0.0000159
    O.C000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    O.OOC0159
    0.0000159
    V
    6.90
    4.05
    8.40
    15.62
    16.26
    17.79
    17.82
    8.57
    9.00
    7.99
    9.58
    9.96
    9.43
    9.69
    9. 19
    8.89
    8.02
    8.33
    6.29
    10.80
    13.90
    16.47
    16.51
    15.16
    13.25
    11.64
    7.40
    VX.
    6.25
    3.36
    1.4?
    10.72
    10.93
    10.55
    8.26
    -8.29
    -8.77
    -7.52
    -9.41
    -9.87
    -9.23
    -9.40
    -8.87
    -8.45
    -7.55
    -7.88
    -6.00
    8.07
    11.61
    12.02
    12.69
    11.21
    9.46
    7.20
    4 .63
    VY
    -0.29
    -0.81
    -6.32
    -6.61
    -6.96
    -6.89
    -5.59
    2. 13
    1.94
    2.28
    1.74
    I. 12
    0.5C
    0.47
    0.35
    0.38
    0. 18
    0.56
    0.94
    -0.12
    1.60
    4. 17
    5.32
    5.86
    5.62
    4.4?
    4.25
    VL
    -2.90
    -2.12
    -5.34
    -9.24
    -9.81
    -12.55
    -14.77
    -0.37
    -0.53
    -1.43
    -0.27
    -0.62
    -1.80
    -2.29
    -2.3o
    -2.75
    -2.71
    -2.65
    -1.65
    7.17
    7.47
    10.45
    9.12
    8.35
    7.34
    7.99
    3.89
    V.T
    -2.64
    -I. 75
    -0.92
    -5.52
    -5. 18
    -4.58
    -3. 18
    1 .80
    • 1 .65
    1.59
    1.28
    0.91
    0.57
    O.CO
    -0.56
    -1.02
    -1.30
    -1.64
    -I. 36
    3.29
    4.76
    6.00
    6.53
    6.34
    5.60
    4.96
    3.57
    VS
    1.2-5
    1 .<-5
    8.23
    9.9 >
    10.86
    13. 5b
    15.46
    1 .2C
    1.15
    2. 17
    1.22
    0.9C
    1 .PC
    2.34
    2.3?
    2.57
    2.3fc
    2.16
    1.32
    6.37
    5.97
    9.51
    8.30
    e.or
    7 . 2 'J
    7.67
    4.51
    I'iT
    0.001047
    O.C01 » 78
    0.002624
    0.002146
    O.OC21 12
    O.C02731
    G.o02739
    0.002 1.18
    0. f102098
    C.C01299
    ().t:0l051
    C.001 193
    0. 00 12^.6
    O.CC1342
    0. JCUC7
    O.C01C47
    0.001042
    O.OOCH48
    -0.000141
    o.ocrif>2
    C.OOC.H97
    0.001'.C2
    0. GO 13 58
    C. 0014 16
    . 0 . C ;> 1 5 5 8
    O.C02T 55
    (J. C01176
    T
    20.
    ?0.
    2C.
    20.
    20.
    20.
    i?..
    20.
    2C.
    2C.
    2C.
    20.
    ?C.
    2C.
    20.
    20.
    20.
    2C.
    2T.
    20.
    2C.
    2C'.
    2C1.
    20.
    2.1.
    2H.
    2C.
    nit j
    Ib".
    7h-:. !
    llj.-: . ':
    70i>. ,
    7f,,;. ,
    76C. •
    7r,r>.
    76". ,
    

    -------
    RP VS. VT
      58.69
                    MOVE4BLE BLOCK BURNER SET FOR  INTERMEDIATE SWIRL - COLD MODEL
                   .50
       -30.000  -2*.000   -16.000   -12.000
                                        -6.000    -0.000    6.000
    
                                             RADIAL POSITION, cm
                                                                 12.000
     Figure  U-Z24.   TANGENTIAL VELOCITY PROFILE  FOR  THE SWIRL
     BURNER  AT  THE  2. 5-cm AXIAL POSITION (Swirl  Number,  S = 0. 8)
                                                 298
    

    -------
                      MOVEABLE BLUCK BURNER SET FOR INTERMEDIATE SUIRL - COLD MODEL
                AP.  2.SO
                                                                A
                                                           •J      \
         -30.000  -24.000  -10.000   -12.000    -6.000    -0.000    6.000
    
                                              RADIAL POSITION, cm
    Figure 11-225.    AXIAL VELOCITY  PROFILE FOR  THE  SWIRL BURNER
           AT  THE  2. 5-cm AXIAL  POSITION (Swirl  Number,  S  =  0. 8)
                                                 299
    

    -------
                       MOVEABLE BLUCK  buRNER  SET FOR  INTERMEDIATE SUIHL  - COLD MODEL
                AP»   K60
                                                       •N
        -7.69
        -8.76
        -9.83
        -10.90
        -11.97
        -U.U*
        -U.ll
        -IS.IB
        -16.25
        -17.32
        -18.39
        -20.i2
        -21.59
         -30.000   -24.000   -18.000   -12.000
                                            -6.000    -0.000
                                                              6.000    12.000    18.000    24.000    30.000
                                            RADIAL POSITION, cm
    Figure  11-226.    AXIAL VELOCITY  PROFILE  FOR  THE SWIRL BURNER
            AT  THE  7. 6-cm AXIAL  POSITION (Swirl  Number,   S =  0. 8)
                                                    300
    

    -------
     HP VS.  VT
       20.S)
       20.01
                     MOVEABIE BLOCK BURNER SET FOR  INTERMEDIATE SWIRL -  COLO MODEL
                   7.60
        -30.000  -24.000  -18.000   -12.000   -6.000    -0.000     6.000    12.000   18.000   24.000
    
    
                                         RADIAL POSITION, cm
                                                                                          30.000
    Figure  11-221.   TANGENTIAL VELOCITY  PROFILE FOR THE SWIRL
    BURNER  AT  THE  7. 6-cm  AXIAL  POSITION (Swirl Number,  S  =  0. 8)
                                                 301
    

    -------
                      KOVEABLE
                  17.BO
                             BLOCK BURNER SET FOR INTERMEDIATE  SWIRL - CULO MODEL
         -30.000   -?<>.000   -IB.000   -12.000    -6.000   -0.000    (,.000   12.000    18.000    74.000    30.000
    
                                               RADIAL POSITION, mi
    
         Figure II-2Z8.    AXIAL  VELOCITY  PROFILE  FOR  THE  SWIRL
    BURNER  AT  THE  17. 8-cm  AXIAL POSITION  (Swirl Number,  S  =  0.8)
                                                 302
    

    -------
                     MOVE4BLE HLOCK BURNER SET FOR INTERMEDIATE SHUL - COLO MODEL
                  17.80
        -30.000  -24.000  -18.000  -12.000   -6.000    -0.000
    
                                  RyfrJfAL' POSITION, cm
                                                                 12.000
                                                                         18.000
                                                                                 24.000
                                                                                         30.000
    Figure  H-229.    TANGENTIAL  VELOCITY  PROFILE  FOR  THE  SWIRL
    BURNER AT THE 17. 8-cm  AXIAL  POSITION (Swirl  Number,  S =  0.8)
                                                 303
    

    -------
                     HOVfcABlE BLUIK BURNER SET FOR INTERMEDIATE SWIRL - COLO MODEL
              iP- 30.50
        -10.000   -2*.000   -18.000   -12.000   -6.000   -0.000    6.000   12.000
    
                                               RADIAL POSITION, cm
        Figure  11-230.   AXIAL  VELOCITY PROFILE  FOR THE  SWIRL
    BURNER AT  THE  30. 5-cm AXIAL  POSITION  (Swirl  Number,  S  =  0.8)
                                               304
    

    -------
                            lt BIOC< BUHNER ibl F(it I NT EKHtO III i-  SWIHL  - CL'LI) «IIUU
       VS. VI   4P- 30.50
    
        6. 30
        6.07
        5.U3
    
        5. 56
        •5. 12
        2.99
        2. 7-,
        2.52
        2.2B
        2.04
        1.81
        1.57
        1.33
        1.10
        0.86
      «  0.62
     5  0.39
      .  0.15
     £ -O.OB
    
     5 •°-31
     o -0-55
     J -0.79
     " -  -02
          26
          50
          73
          97
       -2.21
       -2.44
       -2.68
       -2.92
       -3.15
       -3.39
       -3.63
       -3.86
       -4.10
       -4.34
       -4.57
       -4.61
       -5.05
      "-*'. 28
       -5.52
        -30.000   -24.000   -18.000   -12.000   -6.000   -0.000     6.000
    
                                              RADIAL POSITION, cm
                                                                       12.000
                                                                                IB.000
                                                                                         24.000
                                                                                                  30.000
    Figure  11-231.    TANGENTIAL VELOCITY  PROFILE  FOR  THE  SWIRL
    BURNER AT  THE  30. 5-cm  AXIAL POSITION  (Swirl  Number,   S  =  0. 8)
                                                     305
    

    -------
         Figure 11-224  represents the tangential  velocity profile  at  an  axial
    position  of 2. 5 cm.   The  graph is  murh I.he same as that obtained in
    the minimum swirl case,  with  one  exception:   The maximum magnitude
    of the velocity has increased by a  factor  of 3-1/2.   There  has,  however,
    been  a  radical change in the shape of the axial profile,  which  can be  seen
    by comparing Figure 11-225  with Figure 11-214.   Two new peaks have  ap-
    peared  and are shown in Figure 11-225.    In the case  of minimum  swirl
    there was a constant velocity near  30 ft/s in  the  throat of the burner,
    while for intermediate swirl this region has a range of velocities  from
    8 to 56 ft/s.   Comparing  Tables 11-40 and 11-43,  we  see  that  the  magni-
    tude and  the size  of the region occupied by negative  static pressure is
    greater for intermediate than for minimum  swirl.
        Although  qualitative  investigations indicate a narrow  region of reverse
    flow in  the throat  of  the burner occurring between the outside  and central
    velocity peaks in the axial profile,  it was impossible  to  make  any quan-
    titative  measurements at the 2. 5-cm axial position because of  the  3-inch
    shepherd's-crook-shaped probe  head.  Thus,  all data  points  for the  2. 5-cm
    axial position are  presented as representing forward flow.
        Figure 11-226  shows that,  at an  axial position of  7. 6  cm,  the  axial
    velocity  in  the center  peak has decreased by  a  factor of  3 from its  value
    at 2. 5 cm, while  the outside peaks  have decreased by only a factor of 2.
    There is  recirculation on  both  sides  of  the  central peak;  these data  points
    are represented  by X  rather than by an asterisk,  and are shown  with  a
    negative velocity.   Figure 11-227 presents the  tangential  velocity.    (Note
    that  the  reverse flow stream has no  tangential velocity. )  At an axial
    position  of  17.8  cm,  the  central peak at axial velocity has  disappeared
    and the  entire burner  region has reverse  flow,  as shown  in  Figure 11-228.
    Figure  11-229 shows that the forward  tangential velocity has  a  magnitude
    of about one-half that  of the forward axial velocity.   Figures 11-230 and
    11-231 present the axial  and tangential velocity profiles at an axial posi-
    tion  of  30. 5 cm.   The  same general observations made for  the profiles
    at 17.8 cm still persist with the addition of an expanding recirculation
    region.
                                        306
    

    -------
     4.   Hot-Model Input-Output Data
          The  swirl burner was  operated at three different  swirl intensities
     for  the input-output tests,  with two gas  nozzle  positions  for  each swirl
     intensity.   For the  first gas nozzle position, the nozzle  tip was  located
     even with the  inside edge of the burner  wall (hot face) while in the second
     position the nozzle  tip was  withdrawn into the burner  block,  6 inches
     from the hot face wall.  (For  the  remainder of this report,  these posi-
     tions will be referred  to as  the  "exit position"  and "throat position, "
    ' respectively.)   The  input-output tests  were conducted  at  gas inputs of
    •1578 CF/hr,  1976 CF/hr,  and 2382 CF/hr,  with between  10 and  80%  of
     excess  air.   Figures  11-232  through  11-238  show  the input-output  test re-
     sults.  The nitric oxide  (NO) concentrations were normalized by  dividing
     the  weight  of  the flue products  at the stoichiometric mixture of fuel  and
     air  into the measured  concentration of NO,   and multiplying this  ratio by
     the  weight  of  the flue products  for the input conditions under which the
     measurements  were taken.
          Based  on  an analysis of the input-output data from the movable block
     swirl burner,  we  determined the following:
     •    The maximum measured  NO  concentration occurred at the lowest
         levels  of gas input and  swirl intensity.
     •    At excess  oxygen levels below  6%, generally more NO was formed
         when  the gas nozzle was in the throat position than when it was in
         the  exit position.   Insufficient data are  available to evaluate the
         relative effect of burner  nozzle position  when operating with more
         than 6%  excess  oxygen.
     •    Increasing  gas input (and consequently gas velocity) always  reduced
         the  normalized  concentration of NO independent  of  swirl intensity  and
         percent excess  air,  when the burner  was in the throat  position.
         However,  when the nozzle was  in  the exit position, changing  gas
         input  had little  or no effect on  the normalized NO  concentration.
         This was  observed for  intermediate  and  high  swirl intensity.   Insuf-
         ficient data were obtainable for the case of  low swirl intensity.
     5.   In-the-Flame  Data Survey  Results
          Again,  as  part  of  this  program,   we  mapped the concentrations of
     CO,   CO2,  CH4,  Oz,  and  NO; the temperature; and the gas  velocity in
     the  flame.   This information is  obtained to  gain  insight into  the  mech-
     anism and location of NO formation for  different flame conditions and
    ' for  use as  input data  to  an  NO  computer  modeling program,  sponsored
     by EPA with  Ultrasystems,  Inc.   The maps were obtained while  operating
     the burner  at  conditions  of intermediate  swirl intensity and with  the  gas
     nozzle in the throat position.   This was  determined by the input-output
     tests to produce the maximum  level  of NO.
                                        307
    

    -------
           250
           230
         o.
         a.
         <-T 210
         o
         UJ
         N
         a:
         O  190
           170
           150
                     O THROAT
    
                     V EXIT
                          7           8
    
                                 02 IN FLUE,%
    10
                                                              A-23-292
     Figure  11-232.   NORMALIZED NO CONCENTRATION AS  A
    FUNCTION OF EXCESS  AIR (Movable-Block Swirl Burner -
          Low Swirl  Intensity).   GAS  INPUT,  1578 CF/hr
                                   308
    

    -------
      170
      150
      130
      no
    
    
    Q.
    Q.
    
    0
    
    
    S 90
    N
    oc.
    o
    Z  70
       50
       30
       I 0
          123456
    
                                      02 INFLUE,%
    
    
    
           Figure 11-233.   NORMALIZED NO CONCENTRATION  AS A
    
          FUNCTION  OF  EXCESS AIR (Movable-Block Swirl Burner -
    
                Low Swirl Intensity).   GAS INPUT,  1976 CF/hr
    A-23-296
                                        309
    

    -------
                               2           3
                               02 IN FLUE,%
                                                                A-23-295
     Figure 11-234.   NORMALIZED NO CONCENTRATION AS A
    FUNCTION  OF  EXCESS AIR (Movable-Block Swirl Burner -
          Low Swirl Intensity).   GAS INPUT,  2382 CF/hr
                                  310
    

    -------
       190
                                                               O THROAT
    
                                                                EXIT
       170
    O
    z
    
    O
    UJ
    M
    QC
    O
    150
       130
       no
       90
                                       02 IN FLUE,%
                                                                              A-23-294
           Figure H-235.   NORMALIZED NO CONCENTRATION  AS A
    
           FUNCTION  OF  EXCESS  AIR  (Movable-Block Swirl Burner -
    
             Intermediate Swirl Intensity).   GAS INPUT,  1578 CF/hr
                                         311
    

    -------
      170 r
      150
      130
      110
    o.
    O.
    S  90
    N
    or
    o
    
    2 70
      50
      30
       0
               O THROAT
    
    
               V EXIT
                                   02!N FLUE,%
    
    
    
         Figure 11-236.  NORMALIZED NO CONCENTRATION AS A
    
        FUNCTION OF EXCESS AIR  (Movable-Block Swirl Burner  -
    
          Intermediate  Swirl  Intensity).   GAS INPUT,  1976 CF/hr
    A-23-297
                                      312
    

    -------
      190
      170
      ISO
    
      130
    s
    N
      110
    (T
    O
       90
       70
       50
       30
    O  THROAT
    
    V  EXIT
                    345671
                                      02 IN FLUE,%
    
            Figure  II-Z37.  NORMALIZED NO CONCENTRATION AS A
            FUNCTION OF EXCESS AIR (Movable-Block Swirl Burner -
                 High Swirl Intensity).   GAS  INPUT,  1578 CF/hr
                                                           A-23-298
                                        313
    

    -------
           130
           no
           90
         o.
         Q.
         Q
         Ul
         N 70
         cc
         o
           50
           30
           10
                 OTHROAT
    
    
                 V EXIT
                                 02 IN FLUE,%
                                                           A-23-293
     Figure 11-238.  NORMALIZED  NO  CONCENTRATION AS  A
    
    FUNCTION OF EXCESS AIR  (Movable-Block Swirl Burner -
    
          High Swirl Intensity).   GAS INPUT,  1976 CF/hr
                                  314
    

    -------
         Profiles  were first obtained  by scanning radially  at  several axial
    positions.   The  gas sampling  probe was  moved at a constant velocity
    (approximately 1.5 cm/s),  with the gas species concentrations  continu-
    ously measured  and displayed on a high-speed strip recorder.   These
    scanning  traverses were made at 30-cm  axial  intervals from the burner
    wall and  the  data  inspected  for the degree of primary and secondary
    combustion,  as well as for  the NO concentration  and  its variation with
    radial position.   From  these  analyses, we determined that a point-by-point
    time-averaged measurement of the gas species, temperature,  and vel-
    ocity should be taken  at axial positions of 1Z. 7,  30.5, and 107 cm to
    obtain the maximum amount of information with the minimum amount of
    detailed surveys.
         To determine  the  direction of flow in the flame front, continuous
    radial scans  were made  at axial positions  of  12.7,  30.5,  and 107 cm
    using the two-hole  cylindrical Hubbard Probe.   These scans are  shown
    in Figures  11-239,  11-240, and 11-241.  A positive reading indicates  flow
    moving away  from  the  burner wall and a  negative number  indicates  flow
    moving toward the  burner wall.   Although the  Hubbard Probe scans  give
    a qualitative  illustration of the flow patterns,  more quantitative  informa-
    tion is  required to determine  the  orientation for the five-hole  pitot tube
    to measure velocities.   Therefore,  detailed point-by-point profiles were
    later taken at the  appropriate axial position with  the pressure differential
    integrated at  each sample point.   Table 11-56 lists the data  for  the  radial
    profile  taken  at  the  12. 7-cm axial  position.  Flow reversal  occurs in six
    distinct radial regions,  as  exhibited by the negative time-averaged pres-
    sure  differentials.   The  data  obtained for the 30.  5-cm and 107-cm axial
    positions  are  given in Tables  11-57 and 11-58.
         The time-averaged  gas  species profiles were  run on  the  swirl bur-
    ner  set for intermediate swirl intensity with a gas input of 2008  CF/hr,
    with the gas  nozzle  in  the throat position,  and with 3. 6%  excess oxygen.
    Figure  11-242  shows a  composite of the gas-sampling  profiles  taken  at
    an axial position  of  12. 7 cm from  the  burner block face.  These curves
    show that methane  concentration  (curve M) was in excess  of 42% on the
    axis of the  burner  (0.  0 cm).  The carbon monoxide (curve C) varied
    between 0.4 and 2.4%  in the  region of the burner block  (from +7  cm to
    —7 cm) to a minimum of 200 ppm near the sidewalls  of the  furnace.
                                        315
    

    -------
                          1  1  1  _i  1 . 1  ,  1   1  I  I  1   1  1  J  I
              Forward
               Flow
     Figure II-Z39.   SCAN OF FLOW DIRECTION AT THE 12.7-cm
     AXIAL POSITION (Movable-Block Swirl Burner  - Intermediate
     Swirl Intensity).   GAS  INPUT,  2008 CF/hr; EXCESS OXYGEN,
                 3.6%; NOZZLE IN THROAT  POSITION
       Forward
        Flow
                               Radial Position
    
     Figure 11-240.   SCAN OF FLOW DIRECTION AT THE 30. 5-cm
     AXIAL POSITION (Movable-Block Swirl Burner  — Intermediate
     Swirl Intensity).   GAS  INPUT,  2008 CF/hr; EXCESS OXYGEN,
                 3.6%; NOZZLE IN THROAT POSITION
      Forward^
       Flow
                                Radial Position
    
    Figure 11-241.   SCAN OF FLOW  DIRECTION  AT  THE 107-cm
     AXIAL POSITION  (Movable-Block Swirl Burner - Intermediate
    Swirl Intensity).   GAS INPUT,  2008 CF/hr; EXCESS  OXYGEN,
                3. 6% ; NOZZLE  IN THROAT POSITION
                                    316
    

    -------
     Table 11-56.   TIME-AVERAGED DIRECTIONAL FLOW DATA OBTAINED
        AT  THE 12. 7-cm AXIAL  POSITION (Movable-Block Swirl Burner -
             Intermediate Swirl Intensity).   GAS INPUT,  2008 CF/hr;
             3. 6%  EXCESS  OXYGEN; NOZZLE IN  THROAT POSITION
    
    
                  Time-                    Time-                     Time-
    RP* cm  Averaged AP   RP,* cm  Averaged AP    RP,'  cm  Averaged  Ap
    20
    17
    15
    14
    11
    10
    9
    8
    7
    -1. 31
    -1. 11
    0. 00
    + 6. 87
    +202. 0
    +204. 8
    +40. 6
    -0. 1
    -5. 76
    6
    5
    4
    3
    2
    1
    0
    -1
    -2
    -7.59
    -7.5
    -6. 3
    + 0. 06
    + 7. 22
    + 12. 37
    + 12. 76
    -4.51
    -19. 31
    -3
    -A
    -5
    -6
    -7
    -8
    -9
    -10
    -13
    -26. 37
    -20. 93
    -7. 39
    +29. 87
    + 148. 3
    +282.7
    +213. 0
    + 91- 56
    -2. 28
      Radial Position
    

    -------
          Table 11-57.   TIME-AVERAGED DIRECTIONAL  FLOW  DATA
         AT THE 30. 5-cm AXIAL POSITION AND OBTAINED USING A
         HUBBARD  PROBE (Movable-Block Swirl Baffle - Intermediate
         Swirl  Intensity).  GAS INPUT, 2008 CF/hr; EXCESS OXYGEN,
                     3.6%; NOZZLE IN THROAT  POSITION
    
                  Time-         ^         Time-          i(         Time-
    RP* cm  Averaged  AP   RP/ cm  Averaged A P   RP/ cm Averaged A P
    -13
    -10
    -7
    -4
    -3
    -2
    
    +55. 86
    + 59.82
    +31. 52
    +4. 77
    + 1. 58
    -0. 94
    
    -1
    2
    5
    6
    7
    8
    
    -2. 09
    -3. 38
    -1.48
    -0.88
    -0. 08
    + 1. 86
    
    11
    14
    17
    20
    23
    26
    29
    + 17.21
    +42. 63
    + 33. 37
    + 8.59
    I 1. 08
    -0. 53
    -0.77
      Radial Position
          Table 11-58.  TIME-AVERAGED DIRECTIONAL  FLOW DATA
          AT  THE  107-cm AXIAL POSITION AND OBTAINED  USING  A
         HUBBARD PROBE (Movable-Block Swirl  Burner - Intermediate
         Swirl Intensity).   GAS INPUT, 2008 CF/hr; EXCESS  OXYGEN,
                     3.6%;  NOZZLE IN THROAT  POSITION
    
                 Time-                    Time-                    Time-
    RP,* cm  Average^ AP    RP* cm  Averaged A P   RP,*  cm  Averaged AP
    -13
    -10
    -7
    -$
    -1
    2
    5
    + 0. 28
    +7. 52
    +9.27
    + 9. 17
    + 7.43
    +4. 71
    •1-3. 12
    8
    11
    14
    17
    20
    23
    26
    +2. 21
    + 2. 06
    + 3.27
    + 5. 27
    + 7. 62
    112. 36
    l 13. 64
    29
    32
    35
    40
    45
    50
    
    + 13.76
    + 11. 69
    + 10. 05
    + 3. 92
    -0. 32
    -0. 68
    
      Radial Position
                                      318
    

    -------
                      MUVE4BLE BLOCK SKIRL BURNER - INTERNED! »H SWIRL - SIGNLESS SHEPHERD'S CRUDE
    E-i
    2
    U
    RP
    
    
    
    
    a
    (X
    PH
    
    O
    O
    O
    •—I
    
    1
    1
    g
    
    
    
    
    
    Q
    ^SK
    
    |
    
    N
    Q
    F -\
    ^
    
    *
    o
    U
    <3
    o
    
    U
    
    VS NOiO?>C02.CO.CH4 »P = 12.70
    50.04 ,"""MS
    49.06 M \
    48.08 N M
    47.10 / \
    46.12 / M
    45.14 / \
    44.16 /M \
    43.17 /
    42.19 M 1
    41.21 /
    40.23 / 1
    19.25 / 1
    38.27 /
    37.29 / 1
    16.31 / M
    15.32 H
    34.34 1
    13.36 /
    12.38 /
    11.40 M
    30.42 /
    29.44 /
    26.46 /
    27.47 /
    26.49 H
    25.51 /
    24.53 /
    23.55 /
    22.57 /
    21 .59 M
    20.61 1
    19.62 1
    18.64 1
    17.66 I
    16.68 U I
    15.70 A
    14.72 / U /
    13. (4 0 \ I
    !2.76 / \|
    11.77 / \M
    10.79 -U-OD-D-Q. / /
    9.81 D / U
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    A"
    
    0
    \
    
    8.83 \0 /\
    7.85 V /\ H
    6.67 A. / °\ l\ 1
    5.89 /H / \ '\
    4.91 1 \ \ ° \°
    3.92 0 \ * ,0-0*00-0^ / ^i
    2.94 / U^/^DC-C-CC-C DO-D-00-0-OD-Q-D>. /
    1.96-U — U-O-0 / -C 0-00-O—OU-O-OO OC^^-D
    0.00 C-HM-C-CC— C*C-N-N N-N^NC
                                                                    CO  =   C
                                                                      02  =   O
                                                                    NO  =   N
                                                                    C02  =   D
                                                                    CH4  =   M
           -15.000   -9.000   -3.000    3.000    9,000   15.000   21.000   27.000
    
                                   RADIAL POSITION, cm
            Figure  11-242.   COMPOSITE PLOT  OF GAS SAMPLING
        PROFILES  FOR CO,  CO2,  CH4,  NO,  AND O2 AT  THE  12. 7-cm
         AXIAL POSITION  (Movable-Block  Swirl  Burner - Intermediate
              Swirl Intensity).   GAS  INPUT,  2008  CF/hr;  EXCESS
                OXYGEN,  X 6%;  NOZZLE IN  THROAT  POSITION
                                            319
    

    -------
    Oxygen (curve O) varied from 1. 6% at +4 cm to a maximum  of 17. 1%
    at a 12-cm radial position  and to  a recirculation value of 3. 1% .   Nitric
    oxide (curve N)  had a maximum of 129 ppm at a radial position of  9  cm
    and  a  minimum  of  0. 0  ppm (no  instrument reading)  at  a  radial  position
    of 12 cm.   Carbon dioxide  (curve  D) varied from about 0. 84% at a radial
    position of  12  cm  to  10. 5%  in the  recirculation zone.
         The curves  of  Figure 11-242 were plotted  on a single 0-50% scale
    because of  computer  limitations.   The  following legend applies to this
    figure  and some of the others (computer  print-outs) that  follow:
         AP = axial position
         RP = radial position
         The actual data were collected over  a range of  concentrations  that
    provided greater resolution of the  measuring equipment.   Plots  of  these
    data are given in Figures 11-243 to n-247.   The raw and reduced data  from
    which  these plots were made are presented  in  Table 11-59.  Table  11-60
    shows  the  coefficients and standard deviation of the  mathematical fit for
    each gas.
         Figure  11-248  shows the temperature profile across the furnace at
    the  12. 7-cm axial probe position.   These data support  the  gas concen-
    tration  analysis  in  that the  "cold"  region (temperatures below the  2453°F
    ambient) of the flame front corresponds to positions  of high oxygen  (12
    cm and —7  cm) and methane (35 cm)  concentrations,  with the  "hot"  regions
    (temperatures  above 2426°F  ambient and  positions  of 11 cm and —4  cm)
    appearing at the point where  the stoichiometric  mixture between oxygen
    and  methane is achieved.
         Figure  11-249  displays  the tangential  component  of  velocity as a
    function of  radial position at  a  12. 7-cm axial  probe  position.   Peaks
    occur in the forward velocity at —8 cm,  3 cm,  and  13  cm.   By compar-
    ing these peaks with  the temperature and gas  concentration  analysis,  we
    conclude that  good  agreement exists with the positions  of the high con-
    centrations  of  oxygen and methane.   Figure  11-250 shows the axial  velocity
    component.
                                       320
    

    -------
    RP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    o
    ^
    ^
    W
    
    -------
    RP VS.  CO
     2.9659
     2.9078
     2.8497
      . 7916
      .7335
      .6754
      .6173
      .5593
      .5011
     2.44io
     2.3849
      .1768
      .2007
      .2105
      . I'j24
                    XOVE48LE
                 12.70
                           BLOCK SWIKL BUKNEO  - [NICBMEDIAIC  SW1HL - St&INLESS iHcPHERD'S PROBE
    w
    p
    o
    2
    o
    ffl
    3
    u
       .'1200
       .Uhl'f
       . 8U1B
       . I '. 'i 7
       .6U'6
       .6295
       .5/14
       .5133
       .<,55?
       .3971
       . 3) 10
       .2800
       .2?2fl
       . 1646
       . 1065
       .0484
     0.9903
     0.9322
     0.8741
     0.8160
     U.7579
     0.6998
     0.6417
     0.5836
     0.5255
     U.4674
     0.40T3
     0.3512
     U.2931
     0.2350
     0.1769
     0.1187
     0.0606
     0.0025
                               A
                                    «
       -15.000    -9.000    -J.OOO     3.000     9.000    15.000    21.000    27.000
    
                                  RADIAL POSITION,  cm
      Figure  11-244.    RADIAL PROFILE FOR CO AT THE 12. 7-cm
      AXIAL POSITION  (Movable-Block  Swirl Burner - Intermediate
     Swirl  Intensity).    GAS  INPUT,  2008  CF/hr;  EXCESS OXYGEN,
                     3. 6% ;  NOZZLE IN THROAT  POSITION
                                             322
    

    -------
    KP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ^^-
    
    w*
    Q
    H
    rS
    0
    P
    2;
    O
    «
    
    -------
    Kf
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    a
    a
    (X
    
    
    W
    P
    K
    o
    
    u
    ^H
    rf
    H
    M
    £
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ^S
    1 11
    128
    126
    123
    121
    118
    1 15
    1 13
    1 10
    108
    105
    102
    11)0
    17
    •15
    12
    •in
    S7
    04
    82
    /9
    77
    12
    66
    hi
    *>*)
    541
    4ft
    
    (, J
    41
    18
    16
    13
    10
    28
    25
    23
    20
    17
    15
    12
    10
    7
    5
    2
    -0
    MO,
    . 31
    .73
    . 16
    . 5P
    .00
    .43
    .85
    .28
    .70
    . 1 3
    .55
    .96
    .40
    .83
    .25
    . 6U
    . 10
    .'I'l
    .37
    .BO
    .22
    .65
    .07
    .92
    .35
    .77
    .20
    .62
    .04
    .47
    .H9
    .32
    . 74
    . 17
    .59
    .02
    . 44
    .87
    .29
    .72
    .14
    .56
    .99
    .41
    .84
    .26
    .69
    . 11
    .54
    .03
                 miVt»BLE tllULK SWIRL BlIKNIK - I NT CH MF 01 41 ^
              i2.;o
                                                          Sill PUT MO'
      -15.000
              -9.000
                            3.000
                                   9.000
                                         15.000
                                               21.000
                                                                    39.000
                            RADIAL POSITION,  cm
    Figure  11-246.   RADIAL PROFILE FOR NO AT  THE  12. 7-cm
    AXIAL  POSITION (Movable-Block  Swirl Burner  - Intermediate
    Swirl  Intensity).   GAS INPUT,  2008 CF/hr; EXCESS OXYGEN,
                 3.6%; NOZZLE IN  THROAT POSITION
    

    -------
               MUVE«BLE bLOCK SWIRL BUHNEK - lNItKM£niAU- SHIHl - STAINLESS SHtPMEKD'i CHIJRE
    KM
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    tS^
    
    
    OXYGEN,
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    tfS U2, 4P' 12.70
    17.10
    16.79 «
    16.48
    16. 17
    IS. 86
    15.55
    15.24
    14.93
    14.62
    14.31
    n
    \
    \
    \
    
    
    
    
    14.00 •
    13.69
    13. 3b
    1 J.07
    12.76 •
    12.45
    12. 14
    1 I.B3
    I I. 52
    11.21
    10.90
    10.59
    10. 2H
    9.97
    9.66
    •1.35
    9.04 *
    8.73
    6.11
    7. BO
    7.49
    7. IB
    6.87
    6.56
    6.25
    5.94
    5.63
    5. 12
    5.01
    4. 10
    4.39
    
    
    
    
    
    
    
    
    
    
    
    
    4
    
    
    
    
    
    
    
    
    
    
    4.08 •
    3.77 I
    3.46 I
    3.15 /
    2.b4 /
    2.53 •
    2.22 /
    1.91 • •
    1.60 \ •'
    1.29 ^
    -15.000 -9.000 -3.
                          3.000
                                 9.000
                                       15.000
                                              21.000
                                                     27.000
                          RADIAL POSITION,  cm
    
     Figure 11-247.   RADIAL  PROFILE FOR O2 AT THE  1Z. 7-cm
    AXIAL POSITION  (Movable-Block Swirl Burner - Intermediate
    Swirl Intensity).    GAS INPUT,  2008 CF/hr; EXCESS  OXYGEN,
                  3. 6% ; NOZZLE  IN THROAT POSITION
                                       325
    

    -------
             Table  11-59.    TIME-AVERAGED  RADIAL  PROFILE
               OBTAINED  AT  THE  12. 7-cm  AXIAL POSITION
                         TRACER CAS STUDIES OF COMBUSTION BURNERS  PROGRAM  2
                     MUvEABLE BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - STAINLESS SHEPHERD'S  PRUNE
    INPUT GAS  2008
                      .ALL TEMPERATURE  2453
                                              PREHEAT  TEMPERATURE
    OUTPUT
    ANALYSI S
    Nl 1KUGCN UXIOE
    CAKOUN
    CAABJN
    ME tMANE
    DIOXIDE
    HONUXIOE
    
    
    56.70 PERCENT
    79.30 PERCE'IT
    10.40 PERCEMT
    0.00 PERCENT
    
    UN RANGE
    0:t RANGE
    U.-. RANGE
    ON RANGE
    
    3. Ill .09 PPM
    1, 9.96 PERCENT
    3. 0.004 PERCENT
    0. 0.00 PERCENT
    
    OXYGEN 3.60 PERCENT
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    EXPERIMENTAL RESULTS
    i\ IRUGEN JX10E -NU
    AP
    12. 10
    12.70
    12.70
    12.70
    12. 7C
    12.70
    12.70
    12.70
    12. 70
    12.70
    12. 10
    12.70
    12. '0
    12.70
    12. 7C
    12.70
    12. 70
    12.70
    12.70
    12.70
    12.70
    12.70
    12. 7J
    12.70
    12.70
    12.70
    12.70
    12.70
    12. 70
    12.70
    12.70
    12.70
    12.70
    12.7C
    12. 70
    12.70
    12. 70
    RP
    -15.00
    -14.00
    -1 i.OO
    -12.00
    -1 1.00
    -1C. 00
    -9.00
    -rt. 00
    -t.OO
    -o.OO
    -5.00
    -4.00
    -3.00
    -i .00
    -1 .00
    0.00
    ; .00
    2.00
    3.00
    4.00
    3.00
    o.OO
    I.CO
    R.OO
    9.00
    10.00
    1 1 .00
    12.00
    13.00
    14.00
    15.00
    2C.OO
    23 . CO
    30.00
    33.00
    40.00
    45.00
    KASGE X
    3 34.30
    3 31.20
    3 31.60
    3 30.80
    3 2-1.20
    3 21.50
    3 1 9. 10
    3 3.60
    3 C.OO
    3 6.40
    3 36. 70
    3 4o.OO
    3 52.60
    3 55. OC
    3 56.20
    3 66. 7C
    3 00.70
    3 55. oC
    3 ol .4C
    3 63. 4C
    3 02.80
    3 63. 9C
    3 03.30
    3 03. 1C
    3 65.70
    3 5/.4C
    l 1 /.20
    3 0.00
    3 0. 7C
    3 0.60
    3 i J.ao
    3 30.90
    3 34.70
    3 35.00
    3 23.90
    3 IS. 30
    3 20.70
    Y
    06.4
    60.3
    61.1
    59.6
    56.4
    41.4
    36.7
    6.8
    -0.0
    12.2
    J1.2
    89.6
    102.6
    107.6
    1 14. I
    131.3
    1 19. 1
    108. e
    120.5
    124.6
    123.4
    125.6
    129.6
    128.0
    129.2
    112.5
    33.0
    -0.0
    1.2
    12.5
    38.1
    59.7
    67.2
    67.8
    46.0
    35. 1
    39.o
    OXYGEN CARBON OIOXIOE-C02 CARBON MUNOxlOE -CO
    02 RANGE X
    2.06
    1 .29
    1 .52
    1 .87
    2.44
    4. 14
    9.08
    13.90
    16.80
    15.20
    9.60
    6. 79
    5.66
    4.00
    2.90
    2. 17
    1.94
    83.30
    84.70
    84.00
    83.00
    82.70
    77.00
    60.10
    40.30
    19.20
    21.80
    36.00
    42.10
    43.70
    45.40
    43.00
    40.40
    39.10
    1.83 1 35.60
    .61 1 37.40
    .50 I 37.00
    .68 1 33.70
    .58 I 37.70
    .74 35.60
    .93 38.20
    2.60 38.10
    4.70 36.30
    12.80 21.70
    17.10 14.10
    15.90 28.00
    11.00 ' 50.10
    4.65 75.50
    2.41 61.90
    3.34 79.50
    2.66 81.90
    3.66 79.20
    3.12 1 80.10
    3.09 1 80.10
    Y RANGE X
    10.82 3 13.40
    11.12 3 69.50
    10.97 3 61.10
    10.75 3 51.20
    10.69 3 37.30
    9.49 3 46.40
    6.34 2 1.30
    3.42 3 66.80
    1.23 2 10.50
    1.45 2 38.70
    2.90
    3.65
    3.86
    4.09
    3.77
    3.43
    3.27
    2.85
    3.06
    3.02
    2.63
    3.10
    2.85
    3.16
    3.15
    2.93
    I .44
    0.84
    2.03
    53.80
    67.30
    65.00
    70.60
    66. 70
    63.30
    61.00
    54. 6C
    58.00
    57.90
    52.90
    59.30
    57.30
    60. 4C
    60.50
    58.00
    29.30
    3.90
    49. 4C
    4.76 3 45.70
    9.18 3 61.40
    10.51 3 27.40
    10.00 3 9.40
    10.51 3 14.20
    9.94 3 6.20
    10.13 3 7.00
    10.13 3 6.50
    Y
    0.005
    0.032
    0.02o
    0.022
    0.016
    C.020
    O.C22
    0.031
    0.1 72
    O.o75
    2. OH
    J.767
    2.033
    2.965
    2.M2
    2.535
    ; . 4 06
    2.060
    2.241
    2.236
    1.972
    2.312
    2.203
    2.372
    2.378
    2.241
    0.910
    f. 100
    C.022
    O.C20
    0.023
    0.011
    C.003
    0.005
    0.002
    0.002
    0.002
    HE IMA-\E - CH4
    3ANGE X
    3
    3
    3
    3
    J
    3
    3
    3
    3
    3
    1
    I
    1
    1
    I
    1
    1
    I
    1
    I
    1
    1
    1
    I
    1
    1
    1
    j
    3
    3
    3
    3
    3
    3
    3
    3
    3
    C.90
    0.3C
    0.20
    r.5C
    0. 70
    i.OO
    1.20
    3.40
    22. 5C
    73.40
    73.60
    1C4.00
    120.00
    132.00
    142. OC
    156.00
    160.00
    lofl.OO
    170.00
    172.00
    172.00
    172.00
    1 70.00
    168.00
    164.00
    144.00
    36.00
    26. OC
    6.-JO
    2. 70
    0. 90
    0.00
    O.OU
    0.00
    O.OU
    0.00
    0.00
    Y
    0.04
    0.01
    0.01
    0.02
    0.0)
    O.Co
    0.03
    0. 1-.
    0.90
    3.51
    12.12
    21.12
    2o.8-
    31 .57
    35. o&
    42. 15
    44.06
    48.00
    49.02
    50.04
    30.04
    30. 04
    49.0.:
    48.00
    -o.OI
    36.6o
    7.92
    1. 14
    0.29
    c-. 11
    0.04
    o.oc
    o.oc
    C.OO
    0.00
    0.00
    o.oc
    

    -------
              Table  II-60.     COEFFICIENTS AND  STAND'ARD  DEVIATIONS'
                      OF  THE  MATHEMATICAL  FIT FOR  EACH  GAS
                             TRACER  GAS  STUDIES  OF COMBUSTION BURNERS  PRUGRAM  2
     NO-RANGE 1
     NJ-RANGE "3
    C(J2 RANGE 1
    C02 RANGE !
    CO? RANGE i
    Cd  RANGE 1
    CU  RAMGE 2
    CO  RANGE 3
    <
    c.ooo
    26.000
    55.000
    77.500
    100.000
    X
    0.000
    26.000
    51.000
    76.000
    100.000
    X
    0.000
    41.200
    67.000
    87.000
    100. OCO
    X
    0.000
    33.000
    59.000
    32. OCO
    100.000
    X
    0.000
    32.000
    58.000
    81.000
    100.000
    X
    0.000
    37.000
    65.000
    83.000
    100.000
    t
    0.000
    29. 100
    55.000
    79.000
    100.000
    X
    0.000
    29.100
    55.000
    79.000
    100.000
    OBSERVED Y
    0.000
    250.000
    500.000
    750.000
    1000.000
    03SERVED Y
    C.OOO
    50.000
    100.000
    150.000
    200.000
    OBSERVED Y
    0.000
    3.750
    7.500
    1 1.300
    15.000
    OBSERVED Y
    0.000
    1.250
    2.500
    i. 730
    M.OOO
    OBSERVED Y
    O.OOC
    0. 125
    0.250
    0.375
    0.500
    OBSERVED Y
    0.000
    1.250
    2.500
    3.750
    5.000
    UBSE»X»
     C(  11=  1.1720BC3
     C(  21=  8.2232437
     C(  31=  0.0177582
    COEFFICI£NTS.Y=C(1I
     Ct  11= -0.0368039
     C(  21=  1.9082312
     C(  31=  0.000'Jlje
    COEFFICIENTS,Y=C(1>'C(2I«X«..«CIN»I)«X««,J
     C(  11=  0.0607462
     C(  21=  0.040t>835
     C(  31=  0.0010623
    COEFFICIENTS.Y=C( 1I
     C(  11=  O.OC86310
     C(  2>»  0.030S9PB
     Ct  31=  C.0001673
    COEFFICIENTS.Y=C(1I»C(2I»X«..»C(N»1I»X«»-;
     C(  11=  0.0005971
     Cl  21=  0.0031220
     Cl  31=  0.0000165
    COEFFICIENTS,Y=C(l>»C(2)«x»..«C(N»l)»x«
     Cl  11=  O.OC7<,353
     C(  21=  O.C223367
     Cl  31=  0.0002066
    COEFFICIr:NTS,Y=C< ll
     Cl 11=  O.C017783
     C( 21=  0.0l5d220
     Cl 31=  O.OOOC411
    COEf;FlClE.NIS,Y=C(ll«CI2)ex»..»CIN»ll
     Cl 11=  O.OOOP444
     C( 21=  0.0003955
     Cl 31=  0.0000010
    

    -------
                                 Table  11-60,   Cont.    COEFFICIENTS AND  STANDARD  DEVLATIONS-
                                              OF  THE  MATHEMATICAL FIT FOR  EACH  GAS
                                                   TRACER CAS STUDIES  OF COMBUSTION BURNERS  PROGRAM   2
    00
                           CHI,
                           CK<. RANGE I
                            CH4 RANGE i
    X
    0.000
    39. 100
    66.000
    85.200
    100.000
    X
    0.000
    32.500
    5B.800
    81.000
    100.000
    X
    c.ooo
    28.000
    5<-.000
    78.000
    100.000
    OBSERVED Y
    0.000
    5.000
    10.000
    15.000
    20.000
    OBSERVED r
    0.000
    2.500
    5.000
    7.500
    10.000
    OBSERVED V
    0.000
    1.250
    2.500
    3.750
    5.000
    COMPUTED Y
    0.084
    <>.701
    10. 181
    IS. 240
    19.792
    COMPUTED V
    0.012
    2.467
    5.007
    7.53*
    9.978
    COMPUTED y
    0.004
    I. 240
    2.500
    3.759
    4.994
                                                                        STANDARD DEVIATION UN
                                                                             0.33885
                                                                        STANDARD DEVIATION
                                                                             0.03837
                                                                                         ON
                                                                        STANDARD DEVIATION ON
                                                                             0.01073
    COEFFICIENTS, Y=C(1 I »CIZ)»X»..«CIN»1 I «X««-4
     Cl  11=  0.0843171
     Cl  21=  0.0673895
     Cl  31=  0.0012968
    COEFFICIENTS,Y=Clll»C(2>»X«..»CIN«ll«*««\
     Cl  11 =  0.0122515
     Cl  21=  0.0o3?469
     Cl  31=  C.0003571
    COEFFICIENTS. Y = CIU*C(2l»x»..»CIN« I I •<•
     Cl  11°  0.0041916
     Cl  21=  0.0419261
     Cl  31=  0.0000797
    

    -------
    14
                  12
    840
     RADIAL POSITION,cm
    -4
    -8
    -12
                                                                A-23-301
      Figure II-Z48.  RADIAL TEMPERATURE PROFILE AT  THE
       12. 7-cm AXIAL POSITION  (Movable-Block Swirl Burner  -
      Intermediate Intensity).   GAS  INPUT,  2008 CF/hr; EXCESS
           OXYGEN; 3.6%, NOZZLE IN THROAT POSITION
                                  329
    

    -------
    HP VS. VI
      45.34
      43.73
      42. 13
      40.52
      38.91
      37.31
      35.70
      34.09
      12.41
      30.ee
      29.26
      27.67
      26.06
      24.46
                12.70
                    MUVE4BLE  BLOCK SHIRL HIIRNEB -  INTERMtDUIt SwIBL -
                                                             2000 LtM  3.6  I.XCISS
    
    
    W
    
    _^J
    VH
    
    ."
    r^
    H
    H^
    8
    k_^
    W
    ^
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    19.64
    18.03
    16.43
    14.82
    13.21
    1 1.61
    10.00
    8.40
    6.79
    
    1.17
    0. 36
    -1.25
    -2.64
    -4.44
    -6.05
    - 7.66
    -9.26
    -10.67
    -12.46
    -14.06
    - 15.69
    -1 1.21
    -16.90
    -20.51
    -22.11
    -23.72
    -25.33
    -26.93
    -28.54
    -30. 14
    -31.75
    -33.36
    -34.96
    -36.57
       -16.000  -14.400  -10.800
                                      -3.600    0.000    3.600    7.200   10.600    14.400   16.000
                                  RADIAL POSITION,  cm
         Figure  11-249.    TANGENTIAL  VELOCITY  PROFILE AT THE
           12.7-cm  AXIAL POSITION  (Movable-Block Swirl  Burner -
      Intermediate  Swirl Intensity).   GAS  INPUT,   2000  CF/hr;  EXCESS
                OXYGEN,  3.6%;  NOZZLE IN  THROAT POSITION
                                              330
    

    -------
    UP JS. v<   «"= 12.70
      77.07
    
      72.88
      10.11
      6b. 70
      66.60
      64.51
    
      60.3?
       4. OS
                    MOVE4BL6 BLOCK SWIRL BURNER - INTF.RMfcnj A t E
                                                        - GAS 2000 CFH 3.6  fcxCESS U?
    co
    """•^
    ij
    
    *
    r*
    H
    U
    0
    »-4
    w
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    41.5R
    41.49
    J9.40
    H. 30
    J5.21
    J3. 12
    31.02
    20.93
    26.84
    24.75
    22.65
    18.47
    16.37
    14.28
    12. 19
    10. 10
    a.OO
    5.91
    1.B2
    1.72
    -0.36
    -2.45
    -4.54
    -6.64
    -B.73
    -10.82
    -12.92
    -15.01
    -17.10
    -19. 19
    -21.29
    -73.38
    -25.47
    -27.57
    -29.60
       -IB.OOn  -14.400   -10.600
                              -7.200
                                      -J.oOO    0.000    3.600    7.200    10.8nO   14.400    18.000
                               RADIAL POSITION,  cm
      Figure II-250.   AXIAL VELOCITY PROFILE  AT THE  12. 7-cm
       AXIAL  POSITION  (Movable-Block Swirl Burner  - Intermediate
      Swirl  Intensity).   GAS INPUT,   2000  CF/hr; EXCESS OXYGEN,
                     3. 6% ; NOZZLE  IN  THROAT  POSITION
                                           •J31
    

    -------
         Figure 11-251  shows a  composite plot of  the  CO,  CO2,  CH4,  NO,  and
    Oz at an axial position  of 30. 5  cm.   The  maximum methane  concentration
    has  decreased from more  than  50 to 8. 2%.   In contrast,  the CO  has  in-
    creased from 2 to  5°& in the burner block region.   The nitric oxide  con-
    centration  ranges in values from a maximum of  103 ppm to  a minimum
    of 32 ppm.  The  oxygen readings  show that  the peak concentrations of
    air are now at —12 cm and 26 cm,  as  compared with  the  previous posi-
    tions of —8 cm  and 13 cm at an axial position  of 12.7  cm.   Data plots
    with greater resolution are given in Figures  11-252 to 11-256.  Raw data
    appear  in  Table  11-61.
         Figure 11-257  shows the temperature profile  at the 30. 5-cm  axial
    position.   The central "cold" spot has  moved to  10 cm, accompanied by
    a 600°F temperature  increase,  and the outside  cold spots  have disappeared.
    The  "hot"  regions  are now  at —7 cm and 21   cm,  which corresponds nicely
    with the points where the stoichiometric mixture  of CH4 and  Oz are achieved
    (—7 cm and 20 cm).
         Figure 11-258  displays  the axial component  of velocity  as a function
    of radial position at 30. 5 cm.   Interestingly, the central portion of the
    flame front (—2  cm to 7 cm)  displays  reverse flow.   The  magnitude of
    the peak axial velocity  has  decreased  40% from its  value  at  the  12. 7-cm
    axial position.  The tangential velocity,  shown  in Figure  11-259,  displays
    a uniform  peak  of  magnitude  18. 6 ft/s  about  the  20-cm radial position.
         The composite  plot of the gas species concentrations for an  axial
    position of 107 cm  is given in Figure  11-260.   There  is no trace  of
    methane at this axial position.   The oxygen  (O  curve) shows  an average
    value of 1% in  the region of the burner block,  with a linear increase to
    5. 3% near the sidewall of the furnace.  The  nitric oxide (curve  N) has
    an average value of 36 ppm in  the burner block region,  with a gradual
    decrease to 21.5 ppm near the  furnace sidewall.   The CO  concentration
    (curve  C)  has a. peak value of 2. 8%  near  the axis of the  burner  and  drops
    to 4200 ppm near the sidewalls.
         The data  plot of  Figure 11-260 is  shown with greater resolution in
    Figures 11-261 to 11-264.   The  raw  data from which these plots were
    made are  given in  Table 11-62.
                                       332
    

    -------
                   HOVEABLE BLOCK SWIRL BUHNER - INTERMEDIATE SWIRL  - STAINLESS SMIPHERD-S
    RP VS NU,OP.CU?,CO,CH4  ftp. 30.50
    
    
    g
    0,
    a
    
    o
    0
    0
    1
    1
    jrO
    0*
    H
    .OH
    > . 7 1
    i.16 I) \
    ..07 / \
    .79 / \
    .60 / \
    .-.2 / \
    .^ U \
    .05 0
    .'68 \
    A \
    '.» \
    .13 \
    
    f b
    .SB
    . '•O
    • I \
    .03
    .lit
    .66
    .".B C
    .29
    .11 ,
    .92 /
    •"• /
    .55 H 	 M
    .37 N 	 -N^/
    .19 H'^~N 	 H 	
    .00 n
    
    
    ^U
    \
    \
    \
    No
    \
    °^
    V0
    
    C
    c
    c /
    c /
    /H
    C M /
    /
    /
    /
    MM
    y
    \ /
    \ /
    \ /
    \ /
    u/
    
    
    
    
    
    U H
    V0 _^-N
    ^N~T>~0
    __N 	 -N ^0
    
    
                                           0
                                           N	  0
                                         X   N—'N
                                   N	-NN-N   	
    
                                   .	oo'cT^
    5^"\
       -18.00U  -11.700   -5.400
                                     7.200   13.500   19.800   26.100   32.
    -------
    HI' VS CH4
       8.17
       8.01
       (.85
       7.69
       7.53
       7.37
       f.21
       T.05
       6.H9
       6. M
       o.'/'j
       6.09
       1. '11
       b. //
       5.61
       5.1?
        .96
        .80
        . J2
        . 16
        .00
       3.84
       3.68
    
       i. 36
       3.20
       3.04
       2.8H
       2. J2
    
       2.<.0
                    MUVE'BLE  BLOCK SWIRL BUHNER - INTeRMEDItIt SWIRL - STAINLESS SMtPHbRU'S PROBF
             1P= 30.50
    w
    z
    X
    H
       i. it,
       1.60
    
       1.21)
       1.12
       0.96
       0.80
       0.64
       0.4B
       0. 32
       0. 16
       0.00
                                        7.200    13.500    19.800   26.100   32.400   36.700    45.000
                               RADIAL POSITION,  cm
     Figure  11-252.    RADIAL PROFILE  FOR  CH4 AT THE 30. 5-cm
     AXIAL POSITION  (Movable-Block Swirl Burner  -  Intermediate
     Swirl Intensity).   GAS INPUT,  2008  CF/hr;  EXCESS  OXYGEN,
                    3.6%;  NOZZLE IN THROAT  POSITION
                                            334
    

    -------
                   MUVEHBLE BLOCK SH1RL HUKNEK -  I NT ERMEDI41 f iwlll - SIGNLESS SHtPHEKD'S PKDhfc
    RP VS. CO  «P- 30.50
       5. JO                        /• ~^
       5.19                      „.    \
       5.09                      •        «N
        .99                     /          «,
        .88
        .78
        .68
        .57
        .47
        .3h
        .26
        .16
        .05
       3.95
    
       3. /4
    w
    Q
    I-H
    X
    o
    z,
    0
    2
    
    £H
    O
    CQ
    51
    U
    
    
    
    
    
    
    
    
    
    
    
    
    
    I. 13
    3. 12
    3.01
    2.91
    2.81
    2.70
    2.60
    2.49
    2.39
    2.?9
    ?. 18
    2.08
    1.98
    1.87
    1.77
    1 .66
    1.56
    1.31)
    1.25
    1.14
    1.04
    0.94
    O.B3
    0.73
    0.63
    0.52
    0.42
    0.31
    0.21
    0. 11
    0.00
               -11.700   -5.*00    0.900   7.200   13.500    19.800   26.100    32.400   38.700    45.000
    
                              RADIAL POSITION,  cm
         Figure 11-253.   RADIAL  PROFILE FOR  CO AT THE  30. 5-cm
         AXIAL POSITION (Movable-Block  Swirl  Burner -  Intermediate
         Swirl Intensity).    GAS  INPUT,  2008  CF/hr;  EXCESS  OXYGEN,
                        3. 6% • NOZZLE  IN  THROAT  POSITION
                                               335
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    \SN
    
    
    * ,%
    Q
    |
    M
    P
    2
    0
    n
    pr*|
    |3]
    u
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    Hf VS C02
    9.3101
    1.3113
    9.2325
    9.1537
    9.0K9
    8.1161
    8.1173
    B.B3B5
    8.7597
    8.6601
    8.6021
    a. 5233
    8.4445
    8.3657
    6.2669
    U.2080
    6.1212
    8.0504
    '.1M6
    7.8128
    7.8140
    1. 7J52
    7.6564
    1.5776
    7.4200
    7.26?4
    7. 18)6
    /. 1048
    7.0
    -------
                MGVE4BLE KLUCK SWIRL BURNER - INTERNED! Alt SKIRL  - STAINLESS SHhPHERD'i ('KOBE
           4P» 30.50
                                                        «
                                                          \
                            0.900    7.200   13.500   19.800   26.100   32.400   18.700   45.000
    
                            RADIAL POSITION,  cm
     Figure 11-255.    RADIAL PROFILE  FOR O2  AT THE  30. 5-cm
    AXIAL POSITION  (Movable-Block  Swirl  Burner  - Intermediate
    Swirl Intensity).   GAS  INPUT,  ZOOS  CF/hr;  EXCESS OXYGEN,
              3.6%;  NOZZLE  IN  THROAT  POSITION
    

    -------
    > vs vo,
     103.46
     101.94
     100.41
     •»B.ee
    
     T5.82
    
     92.76
     11.23
    
     HB. IB
     06. 65
     05. 12
     H1.59
     1)2.06
     UO.S3
     /9.0I
     11.<,a
                  MMVE4BLE BLUCK SWIRL BUHNER - INI EBXEOI41 E SWIRl  - ilMMLESS  iHrPHERD'i CRflnE
               30.50
    £
    
    OXIDE,
    U
    2
    H
    I-H
    Z
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    n. s9
    M. 36
    66.30
    66. 73
    65.25
    63.72
    62.19
    60.66
    59.13
    •>7.60
    56.06
    51.02
    51.49
    49.96
    4B.43
    46.90
    45.37
    43.85
    42.32
    40. 79
    19.26
    17.73
    16.20
    34.67
    33.15
    31.62
    30.09
    26.56
    27.03
    25.50
      -16.000   -11.700   -5.400    0.100    1.200   13.500    19.600   26.100    32.400   36.700   -.5.000
    
                            RADIAL POSITION,  cm
     Figure  11-256.    RADIAL PROFILE  FOR  CH4 AT THE  30. 5-cm
     AXIAL POSITION (Movable-Block Swirl  Burner  -  Intermediate
     Swirl Intensity).    GAS  INPUT,  2008 CF/hr;  EXCESS OXYGEN,
                    3.6%; NOZZLE IN  THROAT POSITION
                                           338
    

    -------
                             Table H-61.   DATA OBTAINED  AT  THE 30. 5-cm  AXIAL  POSITION
                             (Movable-Block  Swirl Burner  —  Intermediate Swirl Intensity).    GAS
                        INPUT,  2008 CF/hr;  EXCESS  AIR,  3.6%; NOZZLE IN THROAT  POSITION
    UJ
    UJ
                                                   TRACER GAS STUDIES OF COMBUSTION BURNERS  PROGRAM  2
                                               MOVEABLE BLUCK SWIRt BURNER - INTERMEDIATE SWIRL - STAINLESS SHEPHERD'S PROBE
                                I<^UT GAS  2008
                                OUTPUT ANALYSIS
                                               WALL TEHPERA'URE  2453
                                                                     PREHEAT TEMPERATURE
    JlHUtEN OXIDE 56.70 PERCENT ON RANGE 3. 111.09 PPH OXYGEN 3
    CAK30N OIUXIOE 70.30 PERCENT ON RANGE 1, 9.96 PERCENT
    CA*IJU< MUMJXIuE 1U.40 PERCENT UN rfANGE 3i 0.004 PERCENT
    •"llMAMt 0.00 PERCENT UN RANGE 0, 0.00 PERCENT
    tXr-tRIMENTAL REiULTS
    NITROGEN OXIDE -NO OXYGEN CARBON OIOXIOE-C02
    AP
    30.50
    3T.50
    in. io
    (0.50
    30.50
    30.50
    JO. 50
    30.50
    3C.5U
    30.50
    30.50
    3U.5G
    3C. 50
    3C. 50
    Jo. 50
    11. .5U
    30.50
    3J.50
    3L'.5U
    30.50
    3f'.5C
    30.50
    )(. ' . 50
    3U.50
    30.50
    RP
    - IB. 00
    -15.00
    -12.00
    -9.00
    -6.00
    -J.OO
    -.J.OO
    -1.00
    0.00
    .J.OO
    •j.OO
    0.00
    7.00
    a. oo
    9.00
    12.00
    14.00
    17.00
    2i;.oo
    ?3.00
    26.00
    3C.OO
    35.00
    40.00
    45.00
    RANGE X
    3 22.
    3 19.
    3 13.
    3 1 3.
    3 19.
    3 21.
    3 28.
    3 30.
    3 31.
    3 33.
    3 37.
    3 40.
    3 33.
    3 46.
    3 52.
    3 50.
    3 4S.
    3 28.
    3 Ib.
    3 16.
    3 24.
    3 30.
    3 34.
    3 31.
    3 33.
    
    50
    70
    40
    30
    40
    40
    BO
    20
    90
    ao
    60
    50
    30
    00
    90
    60
    80
    90
    20
    40
    60
    OC
    00
    30
    2C
    Y
    43. 3
    37.9
    25.6
    25.5
    37.3
    41.2
    55.6
    5D.4
    61. 7
    65.5
    73.0
    78. 7
    74.3
    B9.6
    103.4
    98.8
    95.2
    55.8
    34.9
    31.5
    47.4
    5U.O
    65.8
    60.5
    04.3
    02 RA
    4
    5
    5
    4
    2
    0
    0
    0
    0
    0
    0
    0
    0
    0
    1
    0
    1
    2
    3
    5
    5
    5
    5
    4
    4
    .23
    . lo
    .26
    . 14
    .12
    .98
    .74
    .62
    .52
    .46
    . 44
    .42
    . 44
    .54
    .25
    .78
    . 18
    .46
    .93
    .40
    . IB
    .32
    .33
    .94
    .b7
    GE «
    76.50
    72.40
    70.60
    71.20
    70.30
    66.30
    6<..90
    64.00
    62.90
    62.30
    54. 10
    63.30
    63.10
    6J.2C
    63.20
    63.00
    63. 10
    66.20
    6B.30
    73.20
    73.00
    72.10
    72.80
    74.00
    74.50
    Y
    9.39
    8.57
    8.26
    B.34
    8.17
    7.42
    7.17
    7.01
    o.B2
    6.71
    5.37
    6.89
    6.85
    6.87
    6.87
    6.84
    6.87
    7.40
    7.79
    8.73
    8.69
    8.51
    8.65
    e.83
    a. la
    .60 PERCENT
    CARBON MONOXIUE -CO
    RANGE X
    3
    2
    2
    2
    2
    I
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    I
    1
    1
    1
    3
    3
    3
    100.20
    11.20
    31.40
    81.40
    111.80
    93. 10
    97.70
    100.90
    103.30
    104.00
    92.30
    101.10
    100.20
    99. 10
    97.10
    92.60
    92.00
    74.30
    53.20
    27.30
    10.30
    2.50
    17.40
    8.30
    6.50
    Y
    R.050
    0. 184
    0.539
    1.562
    .003
    4.919
    4. 767
    4.435
    4.391
    3. 194
    I .986
    0.833
    0.272
    0.066
    0.007
    0.003
    0.002
    WE IHA'.E - LM4
    KA-iGE X
    3
    3
    3
    3
    )
    3
    )
    3
    2
    2
    {
    (l
    t
    2
    /
    L
    2
    2
    3
    3
    3
    3
    3
    3
    3
    C.BL
    .'.50
    1 1 .30
    1 3.60
    41 .60
    6 9 . 1C
    od.4C
    90. dC
    14. 2C
    5-.3C
    of. 3C
    69.00
    69.00
    i'0.50
    86. 1C
    7B.90
    71.00
    65. 3C
    26.40
    U . 40
    3.40
    0. 7C
    O.OC
    O.OC
    0.00
    Y
    d.13
    0. 1C
    C.-.6
    0.5^
    1 .93
    3.2o
    3.24
    4.40
    C.99
    4.53
    •j.^j
    o. 12
    6. 12
    0.29
    6. lo
    7.2E,
    6.44
    5.71
    1.25
    C.3o
    0.14
    0.03
    c.oc
    0.00
    O.CJ
    

    -------
    30  27
    15
         9        30
    RADIAL POSITION,cm
    -3
    -9
     -15
    
    A-23-299
       Figure 11-257.   RADIAL TEMPERATURE PROFILE AT THE
        30. 5-cm AXIAL POSITION (Movable-Block Swirl  Burner -
    Intermediate Swirl Intensity).   GAS INPUT, 2008  CF/hr; EXCESS
            OXYGEN,  3.6%; NOZZLE IN THROAT POSITION
                                    340
    

    -------
    HP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    0)
    £
    
    .*
    r^
    H
    M
    U
    0
    HH
    w
    ^
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS. VX
    47. C7
    45.99
    44.90
    43.81
    42. 73
    41.64
    40.56
    39.47
    J8.3B
    17. JO
    36.21
    15.12
    14.04
    12.95
    u .H7
    10. 7B
    .• H . <> 1
    i^'j's
    /3. IH
    22.09
    21.00
    19.92
    1U.B3
    17. n
    16.66
    14.49
    13.40
    12.31
    11.23
    10. 14
    9.06
    7.97
    6.BB
    b.80
    4. M
    3.62
    1.45
    0.37
    -0. 71
    -1.80
    -2.BB
    -3.97
    -5.06
    -6. 14
    -7.23
    -fl.31
             AP» 30.50
                   MOVE4BLE BLOCK S«IHL BURMEH -  1 NTERHED1411 SHIKL - G4S 2000 CFH  3.6  fxCESS 02
                               \
       -13.000
               -8.700
                      -4.400
                             -0.100
                                     4.200
                                            B.500
                                                   12.BOO
                                                          17.100
                                                                        25.700
                                                                               30.000
                             RADIAL POSITION,  cm
    Figure 11-258.    AXIAL VELOCITY  COMPONENT  AT THE  30. 5-cm
       AXIAL POSITION  (Movable-Block Swirl  Burner - Intermediate
      Swirl Intensity).   GAS  INPUT,   2000  CF/hr;  EXCESS  OXYGEN,
                   3.6%; NOZZLE IN  THROAT  POSITION.
                                         341
    

    -------
                   MUVE4BLE BLOCK SliIRL BURNER - INIEKMEOIA1E SWIRL - C4i 2000 CFH 3.6  FXCCSS 1,2
      /S. VI
      16.56
      17.99
      17.41
    
      16.27
      15. 70
      15.13
    
      13.18
    
    
    
    
    
    
    
    to
    4->
    H
    U
    0
    W
    ^
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    12.84
    12.26
    1 l.6'l
    11.12
    lO.1)1!
    •I.'IB
    •I.4U
    u.e t
    fl./l,
    1 .111
    7. 1 1
    5.40
    1.613
    3. 11
    l.'lb
    Lit
    0.82
    0.25
    -0.31
    -O.B9
    -1.46
    -2.03
    -2.60
    -3. 18
    -3.75
    -4.32
    -4.89
    -5.46
    ' -6.04
    -6.61
    -7. 18
    -7.75
    -8.33
    -U.90
    -9.47
    -10.04
    -10.62
      -13.00C
               -8.700   -4.400   -0.100    4.200    8.500   12.BOO   17.100    
    -------
                  MOVE4BLE BLOCK SWIKl 8URNCR - INTEKMfDItlC SWIRL  - SHUNLESS SHLPHtKU'S PHimf
      fS NO,0*,C02,CU.CH4   APM07.00
      10.14  u—
      9.94     U^^                               >^D\   ^X"° — D"
      I'll      ^U —0      _o          D^^^O^  ""U^
                      \ /"   -^      /
      •). 1
                                 0.
    t
    &
    o
    o
    0
    f— 1
    
    1
    
    
    ,-
    8
    H
    ^f
    (yj
    T VP
    [H ^N
    ^y*
    w i
    §8
    U .
    o
    u
    
    
    rvl
    O
    
    •k
    
    ffi
    U
    
    
    B. f4
    B. 15
    7^75
    7.S1)
    '/. 35
    7.16
    6.96
    6. It,
    6.56
    6. 36
    6. 16
    5.96
    5.77
    5.57
    5.37
    5. 17
    4.97
    4.77
    4.57
    4.37
    4. IB
    1. 78
    ).5B
    3.38
    3. IB
    2.98
    2.79
    2.59
    2. )9
    2.19
    .99
    . 79
    .59
    .39
    .20
    . 00
    O.BO
    0.60
    0.40
    0.20
    0.00
                                                               CO   =
                                                                 02  =
                                                               NO   =
                                                               CO2  =
                                                               CH4  =
    C
    O
    N
    D
    M
                                              N	N	N	N	N
                 -M	H	 M—M	M	H	H	 M	M	H	M	M	 M	M-
              -11.200   -4.400
                                     9.200   16.000    22.800   29.600   16.400   43.200   50.000
                             RADIAL POSITION,  cm
        Figure  11-260.   COMPOSITE  PLOT OF GAS  SAMPLING
    PROFILES FOR  CO,  CO2,  CH4,  NO,  AND  O2 AT  THE 107-cm
    AXIAL POSITION  (Movable-Block Swirl Burner -  Intermediate
    Swirl Intensity).   GAS  INPUT,  2008 CF/hr; EXCESS  OXYGEN,
                  3.6%;  NOZZLE IN THROAT  POSITION
    

    -------
                     KOVEABLt BLOCK SWIRL BURNER - INTERMEDIATE  SWIRL - STAINLESS SMEPMEKO'S CHUHE
      P VS. CO   1PM07.00
       2.B452                 •
       2.7903
       2.7353
       2.6U04
       2.6254
       2.5704
    
       2.«
       2.*
       ?.?407
       t .IH57
       /.1307
        .9109
    
        .8009
    
        .6910
        .JO I?
        . 3063
        . Ot)6<.
        .0315
        .9765
    ^ O.BI 16
    {J 0.7567
       0.7017
       0.6467
       0.5918
       0.5368
       0.3719
       0.3170
       0.2620
       0.2070
       0.1521
       0.0971
       0.0421
         -18.000   -11.200
                         -4.400    2.400    9.200   16.000   22.BOO   29.600   16.400   43.200   50.000
                                 RADIAL POSITION,  cm
        Figure  11-261.    RADIAL PROFILE  FOR  CO AT  THE  107-cm
       AXIAL  POSITION  (Movable-Block  Swirl  Burner  - Intermediate
       Swirl Intensity).    GAS INPUT,  2008  CF/hr;  EXCESS  OXYGEN,
                      3.6%;  NOZZLE IN THROAT  POSITION
    

    -------
                      BLUCK SWIRL BUHNER - INTEHMFOIAU swim - staiNiess
                   -4.400    2.400   9.200   16.000   22.800   29.600   36.400  43.200   50.000
    
    
                             RADIAL POSITION,  cm
     Figure  11-262.   RADIAL PROFILE FOR CO2 AT THE 107-cm
    AXIAL  POSITION  (Movable-Block Swirl Burner - Intermediate
    Swirl  Intensity).   GAS INPUT, 2008 CF/hr;  EXCESS OXYGEN,
                 3.6%; NOZZLE IN THROAT  POSITION
                                      345
    

    -------
                      MOVEABLE BLOCK  SWIRL BURNER - INTERMEDIATE SWIRL -  SIA1NLESS iHCPHEKO'S P""*
    
    ^  2.398H
    Q  2.3094
        2.1306
         .041?
         ,6B35
    
         ,5047
         .0576
        0.9662
        0.6788
    
        0.7000
    
          -18.000   -11.200
                          -4.400    2.400    9.200    16.000    22.800    29.600    36.400    43.200    50.000
                                    RADIAL POSITION,  cm
           Figure  11-263.    RADIAL  PROFILE  FOR  O2 AT  THE 107-cm
          AXIAL POSITION  (Movable-Block  Swirl  Burner -  Intermediate
         Swirl  Intensity).    GAS  INPUT,  2008  CF/hr;  EXCESS  OXYGEN,
                         3. 6% ;  NO7./LE IN  THROAT  POSITION
                                                 346
    

    -------
      Rp vj NH,
                     Mi)VE«BLE HLUCK SWIRL HUKNtR -  1 NT tKWEUI 41F.  SWIKL - SIAItLESS  iHLPMbRO'i PKOrtE
               APMO/.OO
     a
     ft-
     CX
    tf
    R
    o
    u
    2
    H
    75. 10
    74.42
    73. 7b
    (3.OB
    
    71.73
    /I .06
    10. 3b
    1.0. 71
    09.U3
    
    67.69
    67.01
    66. 14
    c.5.67
    
    64.32
    03.64
    62.97
    62.30
    61.62
    
    60.28
    ^9.60
    
    S8.2S
    '..6.21
    O'j.56
        'j2.B6
        •jO.84
        •)0. 17
    
        48.82
    
        47.47
        46.80
        46. 13
        45.45
        44. 78
        44.11
        43.43
        42.76
        42.08
        41.41
                         -4.400    2.400    9.200   16.000   22.600    29.600    36.400   43.200   50.000
    
                                 RADIAL POSITION,  cm
         Figure 11-264.    RADIAL  PROFILE  FOR NO AT  THE  107-cm
        AXIAL  POSITION (Movable-Block Swirl  Burner - Intermediate
        Swirl Intensity).    GAS  INPUT,   2008  CF/hr;  EXCESS  OXYGEN,
                       3. 6%; NOZZLE IN  THROAT POSITION
                                              347
    

    -------
                            Table  II-62.   DATA OBTAINED  AT THE  107-cm, AXIAL  POSITION
                       (Movable-Block Swirl Burner —  Intermediate Swirl Intensity).    GAS INPUT,
                             2008 CF/hr; EXCESS  AIR,  3.6%; NOZZLE  IN THROAT POSITION
                                                 TRACER GAS STUDIES OF COMBUSTION BURNERS  PROGRAM  2
                                             MLWEABLE DLOCK buIRL BURNER - INTERMEDIATE SKIRL  - STAINLESS SHtPMERO'S P«OBE
    UJ
    *•
    00
    INKuT GAS 2008
    OUTPUT ANALYSIS
    i 1 IKUL.EN JXIOE
    CA-*bD'4 DI u< 1 OE
    LAtirttlN MONOXIDE
    HIMHANE
    WALL TEMPERATURE
    
    56. 70 PERCENT
    79.30 PERCENT
    10.40 PERCENT
    0.00 PERCENT
    
    0»l RANGE
    ON RANGE
    ON RANGE
    ON RANGE
    245J
    
    3. Ill
    1, 9
    3, 0.
    0, 0
    PREHEAT TEMPERATURE 0
    
    .09 PPM
    .96 PERCENT
    004 PERCENT
    .00 PERCENT
    
    OXYGE'l 3.oO PERCENT
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    EXPERIMENTAL RESULTS
    •Jl IROGEN OXIDE -NO
    AP RP
    11' 1 . 00 - lo1 . 00
    107.00 - 15.00
    107.00 -12.00
    ir.7.00 -9.00
    inf. 00 -t..OO
    107.00 -3.00
    1C J. 00 0.00
    107.00 i.oo
    1L-7.0C f.OO
    1C 7. 00 9.00
    IOf.00 12.00
    lOf.OG 15.00
    1(17.00 la.oo
    107.00 21.00
    107.00 24.00
    107.00 J7.00
    107.00 3U.OO
    107.00 35.00
    1C7.00 4C.OO
    1G/.00 45.00
    lo r .00 ->u. 00
    KAMGE X
    3 39.00
    3 36.70
    3 35.90
    3 35. 8C
    3 32. 5C
    3 38.40
    3 35.80
    3 32.50
    3 32.30
    3 37.80
    3 32.80
    3 35.90
    3 35.00
    3 34.80
    3 33. 3C
    3 31.00
    3 29.90
    3 28. OC
    i 26.10
    3 23.20
    3 21.50
    V
    75. 7
    71.2
    h9.6
    69.4
    o2 . 9
    74.5
    69.4
    62.9
    62.5
    73. 3
    63.5
    69.6
    69.0
    67.4
    64.5
    61.1
    57.8
    54. 1
    50.3
    44. 1
    41.4
    OXYGEN
    02
    1.44
    1.31
    1 .00
    0.95
    0. 70
    0.96
    0.84
    0.71
    O.a&
    0.9C
    0.96
    1 .OC
    1 . 16
    1 . 3C
    1 .30
    1.63
    2.26
    3.53
    4.49
    4.56
    5.26
    CARBON OIOXIOE-C02 CARBON MONOxloE -CO
    RANGE X
    1 80.10
    1 79.10
    1 77.90
    1 77.80
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    75.80
    77.10
    77.10
    76.30
    76.50
    77.80
    77.50
    78.50
    78.70
    78.50
    79.30
    19.00
    79.60
    76.70
    74.00
    1 72.90
    I 72.10
    Y RANGE X
    10.13 2 61 .60
    9.92 2 77.60
    9.67
    9.65
    9.24
    9.51
    9.51
    9.34
    9.39
    9.65
    9.59
    9.80
    9.84
    9.80
    9.96
    51. 10
    53.60
    68. 6C
    57.50
    59.40
    66.60
    62.00
    56.60
    55.60
    51.20
    45.00
    39.00
    32.70
    9.90 2 42.70
    10.03 2 45.00
    9.43 2 18.30
    8.88 2 8.60
    8.67 3 98.70
    8.51 3 86.80
    Y
    1.132
    1.477
    1 .881
    2.00
    -------
        The temperature profile for a  107-cm  axial position maintains a
    constant value of 2550° ± ZO°F  across the width of the  furnace.
        The axial component  of  velocity is shown in  Figure 11-265.   The
    peaks  occur at —4 cm and +40  cm, with  recirculation appearing  at 45  cm.
    Figure  11-266  shows the tangential  velocity at the  107-cm axial  position.
        We examined a  gas sample  from the center line of the  burner at a
    12. 7-cm axial position to determine if higher hydrocarbons  were being
    formed during the combustion  process.   Table 11-63 lists the chemical
    components of the natural gas being used.   Table 11-64 lists the gas  species
    analysis on the burner center  line  as  determined  by a  mass spectrograph.
    The hydrocarbons formed in the combustion process were 0.4%  ethylene,
    0.2%  propylene,  and 0.4%  acetylene.
        To get an indication of the axial variation of  the chemical species,
    an in-depth profile  of  the gas  concentrations along the  center line  of  the
    burner  was made.   The profile  is  presented in Figure 11-267.    The  NO
    profile  shows  similar  characteristics to that of the  short-flame  baffle
    burner; that is,  it has its maximum  value  on the  burner wall, reaches
    a minimum at an axial position  of  about  40 cm,  and then asymptotically
    approaches a constant value  which  is less  than the  average  concentration
    of NO  measured in the flue.
        By finding  the point where the  stoichiometric  fuel/air ratio  is  achieved,
    it  is possible to make  a prediction of the flame length along the axis of
    the burner.   In  this case, it occurs  near an  axial position  of 84 cm.
    D.  High-Intensity Flat-Flame  Burner
        1.   Burner  Design
        The flat-flame  high-intensity burner  (cross-sectional view in Figure
    11-268)  is  constructed  so  that the fuel and  air have  a high  swirl intensity
    and are then  allowed to rapidly  expand along  the  burner  block walls.
    This arrangement causes combustion to occur in  a  thin layer over the
    burner-block  surface.   This flame  has the visible appearance of being
    flat.
                                       349
    

    -------
    
    
    
    00
    ~v.
    4"*
    ,
    ^
    H
    U
    0
    ^
    w
    ^
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ' VS. VX
    17.72
    17.23
    16.75
    16.27
    15.78
    15.30
    14.82
    14.34
    13.85
    13.37
    12.89
    12.40
    11.92
    1 1.44
    10.95
    10.47
    9.->0
    9.02
    8.54
    8.U6
    7.09
    6.61
    6.12
    5.64
    •>. 16
    4.67
    4.19
    3.71
    3.22
    2. 74
    2.26
    1.78
    1.29
    0.81
    0.33
    -0.15
    -0.63
    -I. 11
    -1.60
    -2.08
    -2.56
    -3.05
    -3.53
    -4.01
    -4.49
    -4.98
    -5.46
    -5.94
    -6.43
    -6.91
                   HOVEABLE BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - GAS 2000 CFH 3.6  EXCESS 02
            1P-I07.00
                                                                            \
                                                                              \
                                                                               \
      -20.000  -13.000   -6.000    1.000   8.000   15.000   22.000   29.000   36.000   43.000
                               RADIAL POSITION, cm
    Figure  11-265.   AXIAL VELOCITY  COMPONENT AT  THE 107-cm
      AXIAL  POSITION  (Movable-Block Swirl Burner - Intermediate
      Swirl  Intensity).   GAS INPUT,  2000 CF/hr; EXCESS OXYGEN,
                    3.6%; NOZZLE IN THROAT POSITION
                                         350
    

    -------
    «p
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    to
    4-*
    
    KJ
    H
    HH
    u
    0
    -1
    W
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS. VT
    5.24
    5. 11
    4.84
    4.71
    4.5U
    4.45
    4.31
    4. IB
    4.05
    1.T2
    J. 79
    3.65
    J.52
    ). 12
    2. 06
    2.7J
    2.46
    2.20
    2.06
    1. -)3
    l.flO
    1.67
    1.53
    1.40
    1.77
    1.14
    1.00
    O.B7
    0. '4
    0.61
    0.48
    0.34
    0.21
    0.08
    -0.04
    -0.18
    -0.31
    -0.44
    -0.57
    -0.71
    -0.84
    -0.97
    -1.10
    -1.24
    -1.37
    -1.50
                   HOVE4BLE BLOCK SWIRL BURNER - INTERMEDIATE SWIRL - G4S 2000 CFH 3.6  EXCESS 0?
            4PM07.00
      -20.000   -13.000   -6.000   1.000   8.000   15.000   22.000   29.000   36.000   43.000
    
    
                            RADIAL POSITION,  cm
    Figure  II-Z66.   TANGENTIAL  VELOCITY COMPONENT AT THE
         107-cm AXIAL  POSITION  (Movable-Block Swirl Burner -
         Intermediate Swirl Intensity).   GAS  INPUT,  2000  CF/hr;
        EXCESS OXYGEN,  3.6%; NOZZLE IN THROAT POSITION
    

    -------
           Table  11-63.    MASS  SPECTROMETER  LABORATORY
    
                  ANALYTICAL REPORT  (Natural  Gas Input)
    Mntennl   8933 Natural Gas Input
    Requested by
                                                                          I/"/73
                                                                    U 
    -------
           Table  11-64.    MASS  SPECTROMETER  LABORATORY
               ANALYTICAL  REPORT  (Furnace  Product  Gas)
                8933 Furnace Product Gas
    M.ilenal Hadial Position — 0 cm   Axial  Position — I'l in.    Qi1tp
                                                                          1/11/73
          Carbon Dioxide
    
          Hydrogen
    
          Argon
    
          W.iler Vapor
    
          Helium
    
          Methane
    
          EtlMne
           i-Biit.ine
    C:ilc. H. V., Bin SCF
    
    C.llc. S|) (|r (Air 1.000)
                                2. 8
                                3  8
                                4  0
                                0. 6
    
                                                                               3554
    
    Nitrogen
    Ciirhon Monox.de
    Nitroyei' + CO
    Uol X
    51. 7
    3.2
    
    Ethylene
    Propylene
    Butenes
    Mol %
    0. 4
    0.2
    
                                                     1,3-Buladiene
                                                    Methyl
    
                                                    +Propadiene
    
                                                    Vinyl
    
                                                    Benzene
                                                    Xylenes
    
                                                    Ethyl Benzene
    
                                                    Styrene
    
                                                    Indene
    
                                                    Napthalene
    
                                                           TOTAL
    
                                               Air Content  	
    
                                               Approved by ________
                                                                          '
                                             353
    

    -------
    OJ
    U1
    CH4>
    %
    42
    39
    36
    33
    30
    27
    24
    21
    18
    15
    12
    9
    6
    3
    0
    CO,
    %
    7.0
    6.5
    6.0
    5.5
    5.0
    4.5
    4.0
    3.5
    3.0
    2.5
    2.0
    1.5
    1.0
    0.5
    0
    co2,
    %,
    14
    13
    12
    II
    10
    9
    8
    7
    6
    5
    4
    3
    2
    1
    0
    °2'
    %
    2.8
    2.6
    2.4
    2.2
    2.0
    1.8
    1.6
    1.4
    1.2
    1.0
    0.8
    0.6
    0.4
    0.2
    0
                                    60 -
                                    50 -
                                    40
                                       0  10
    30
                                                 50      70      90      110
                                                     AXIAL  POSITION.cm
    Figure 11-267.   AXIAL GAS COMPOSITION PROFILE AT THE 0. 0-cm RADIAL POSITION
           (Movable-Block Swirl Burner — Intermediate Swirl Intensity).   GAS INPUT,
             2008 CF/hr; EXCESS OXYGEN,  3.6%; NOZZLE IN THROAT POSITION
    

    -------
                     DIA.-8HOLES  EQUALLY SPACED
                            STRADDLE  t's AS SHOWN
    PIPE PLUG WHEN
    PILOT IS NOT USED
                                             I BOLT a NUT
                                               TACK WELD HEAD TO FCE.fc
                                                                       A-53-788
                 Figure  II-Z68.    CROSS-SECTIONAL  VIEW OF
                    HIGH-INTENSITY FLAT-FLAME BURNER
    

    -------
        2.   Hot-Model Input-Output Data
    
        The flat-flame burner was  operated at  three  different gas inputs,  all
    
    over  a  range of fuel/air ratios  expressed as  percentage of oxygen in the
    
    flue.   No changes  were made in the burner nozzle  position or the swirl
    
    vanes in the burner housing  as  these  were  fixed by design.   The input-
    
    output tests  were conducted at gas  inputs of 1670,  2010,  and 2394 CF/hr,
    
    with between 1. 0 and 7. 0% oxygen  in the flue by volume.   Figure 11-269
    
    shows the  results of these runs.   The  nitric  oxide  (NO) concentrations
    
    were  normalized by dividing the weight of the flue products  at the stoi-
    
    chiometric mixture  of  fuel and  air  into the  measured concentration of NO
    
    and multiplying this ratio by the weight of  the flue  products for  the  input
    
    conditions  at which  the measurements  were taken.  The input-output  data
    
    for the  other gas species (O2,  COz,  and CO)  are shown in  Table 11-65.
    
        Based on the analysis of the  input-output results  we  concluded that —
    
    1.  From  1. 0 to about 3. 75%  excess oxygen  in  the flue, the gas input
        rate made  little  difference  in the amount of NO formed so  long  as
        the flame  had a  visible appearance of being flat.   Spot-check runs
        for NO in the  flue gases  at  gas inputs  below 1670 CF/hr (where the
        flame  lost  its  flat appearance)  showed  differences as gas input was
        changed.   However,  the flame  was very  lazy and concentration  read-
        ings erratic.   Definite  measurements could  not be  made, only gross
        differences observed.   Consequently, measurements at gas  inputs
        below  1670 CF/hr were  not  pursued further.
    
    2.  The amount of NO formed with more than 3. 75%  oxygen in  the  flue
        did change significantly with changes in the  gas input.   We  observed
        that the  shape and appearance of the flame also changed as  the  flue
        oxygen  increased beyond 3.75%.   The  flame  withdrew into  the burner
        block and appeared as though combustion was  completed before  the
        gases  could expand around  the  curvature  of  the burner block and form
        the characteristic  flat appearance.
    
    3   The NO  concentration  at all gas inputs  and excess  air  levels tested
        was considerably lower for the flat-flame burner than any other
        "commercial type" burner tested.   We  postulate  that the NO was
        relatively  low  because the flame tightly adhered to the burner block,
        which  is  a good  heat sink.   The heat-sink effect  of the  block lowered
        flame  temperature and hence lowers NO  formation.
    
        3.   In-the-Flame Survey Results
    
        Again,  as part  of  this program, we mapped the concentrations  of
    
    CO,  COz,  CH4, Oz, and NO; the temperature; and the gas velocity in
    
    the flame.
    
    
                                      356
    

    -------
        no
     o. 90
     a
    
    o"
    z
    
    
    S 70
    N
    O 50
    Z
       30
    O  2394
    
    A  2010
    
    O  1670
                                    % 02 IN  FLUE
                                                                A-83-iaeo
       Figure 11-269.   NORMALIZED NO CONCENTRATION AS A FUNCTION
    
    OF EXCESS AIR FOR THE FLAT-FLAME BURNER AT THREE GAS INPUTS
                                       357
    

    -------
                      Table 11-65".   INPUT-OUTPUT DATA  FOR THE FLAT-FLAME BURNER
    
                            „                             Flue Analysis                      ,.,     ..   ,
                            Gas          	z	     Normalized
           Run No.      Input,  CF/hr      NO,  ppm     O2>  %     CO2,  %      CO, ppm       NO, ppm
    
              1             2394             48          2.31        10.7           2.3             53
              2             2394             39          0.63        11.5           7.6             41
              3             2394             65          4.53         9.0           0.7             80
              4             2394             71          4.13         9.2           0.3             86
              5             2394             72          3.62         9.7           0.6             85
              6             2394             65          2.86        10.2           0.7             73
              7             2394             56          2.36        10.5           1.2             62
              8             2394             42          1.21        11.2         44.5             45
              9             2010             50          6.53         7.9           0.1             69
             10             2010             58          6.13         8.2           1.3             78
             11             2010             73          5.49         8.7           1.2             95
             12             2010             78          4.66'        9.1           0.6             97
    w        13             2010             77          3.68         9.8           0.5             91
    ui        14             2010             53          2.37        10.5           4.8             59
    00        15             2010             42          1.30        11.2         46.6             45
             17             1670             58          2.82        10. 1           3.6             66
             18             1670             51          1.26        10.9         26.8             55
             19             1670             85          4.49         9.1           1.2            105
             20             1670             79          5.80         8.5           1.3            105
             21             1670             70          6.48         8. 1           0. 8             96
             22             1670             51          7.24         7.6           0.9             73
             23             1670             40          7.84         7.2           0.3             60
             24             1670             75          3.77         9.6           2.9             89
    

    -------
        Both because gas  input had little effect  on the  NO  formed and the
    NO concentrations were  relatively low,  we ran only one set of conditions
    at a gas input of Z010 CF/hr and  4.4%  oxygen in the flue.  We also sus-
    pected that most  of the flow patterns of interest  occurred near the burner
    block because  of  the visible appearance  of the  flame.   A  radial scan  of,
    temperature at axial positions of  12,  69,  and 130 cm substantiated that
    combustion is  nearly  complete very near the burner-block hot face
    (Figure II-Z70).   At only 12 cm from the  block,  the  temperature  across
    the furnace width was  already nearly uniform.   The  maximum deviation
    from  the mean was only ±40°F.
        Flow direction was also looked at with a two-hole  Hubbard Probe.
    Table 11-66 shows a radial flow direction  scan at 1Z. 7 cm axially from
    the burner  hot face.   Flow was found to be  up the furnace [toward the
    burner as  indicated by the  negative (—)  AP readings]  except  at extreme
    radial positions of beyond  ±30 cm.   Farther out into  the  furnace,  the
    flow direction  was always  away from the burner  as shown in Tables  11-67
    and 11-68 by positive  (+) AP  readings.   The  data of  Tables  11-67  and
    11-68  were  taken  at axial positions of 71 cm  and 104 cm,  respectively.
        This initial work was  followed by detailed  in-the-flame  scans  for
    gas species at 1Z. 7  cm,  68. 6 cm, and  104. 1  cm from the burner block.
    A  composite of the results is  shown  in Figure  II-Z71  for  NO, Oz,  COz,
    CO,  and CH4 at  an axial position  of only  1Z. 7  cm.   Interestingly,  at  an
    axial  position relatively  close  to the  burner,  the methane  concentration
    is already  less than 1/4%   with only  small variations  in concentration  as
    a function of  radial position.   This is another  indication  of how fast and
    near the burner  that combustion is completed.   Because  of the scale  re-
    quired to plot  all of the  species concentrations on  the  same graph,  a great
    deal of resolution is lost.   However, the  data  were collected in such a
    way as  to  obtain  the required  finer resolution as shown by the raw data
    given in Table 11-69 and plotted in Figures 11-272,  11-273,  11-274,  11-275,
    and 11-276.
        Radial  scans  of  species concentration  were  also  taken farther down
    the furnace length at  68. 6 cm and  104. 1 cm.   However,  these were  of
    only minor interest since  combustion was  complete and the  concentration
    from  one axial position to the next changed  very little.   The raw and
    
                                       359
    

    -------
        27
    CVJ
    g
    X  26
    LJ
    tr
    
    
    2  25
    UJ
    Q.
    UJ
        24
    WALL TEMPERATURE 2510 °F
      O  AXIAL POSITION, 130cm
      A  AXIAL POSITION, 69 cm
      D  AXIAL POSITION, 12cm
                                             I	I
                   55      35       15   5 0 -5  -15
                                RADIAL  POSITION, cm
                     -35
    -55
                                                                A-83-I2I9
           Figure 11-270.   RADIAL SCAN OF TEMPERATURE FOR THE
             FLAT-FLAME BURNER AT A GAS INPUT OF 2010 CF/hr
                    AND 4. 4% EXCESS OXYGEN IN THE FLUE
                                       360
    

    -------
    Table 11-66.   TIME-AVERAGED DIRECTIONAL FLOW DATA OBTAINED USING
             A  TWO-HOLE PROBE AT AN AXIAL POSITION OF  12. 7 cm
          (Flat-Flame  Burner; 2010 CF/hr,  Gas  Input; 4.4%  Excess Oxygen)
    
                   Time  Avg,              Time  Avg,              Time Avg,
        RP,  cm      A P       RP, cm      A  P       RP, cm      A P
           50         2.173         15        -2.456       -20       -1.434
           45         1.879         10        -2.644       -25         0.294
           40         0.970          5        -3.082       -30         1.542
           35        -0.206          0        -3.158       -35         2.532
           30        -0.764         -5        -3.067       -40         1.701
           25        -1.521       -10        -2.812       -45         1.306
           20        -2.207       -15        -2.226
    Table 11-67.   TIME-AVERAGED DIRECTIONAL FLOW DATA  OBTAINED USING
              A TWO-HOLE PROBE AT  AN AXIAL POSITION OF 71 cm
          (Flat-Flame  Burner; 2010 CF/hr,  Gas  Input; 4.4%  Excess Oxygen)
    
    RP, cm
    45
    40
    35
    30
    25
    20
    15
    Time Avg,
    AP
    0. 880
    0. 849
    1. 097
    1. 071
    1. 150
    1. 089
    1. 043
    
    RP, cm
    10
    5
    0
    -5
    -10
    -15
    -20
    Time Avg,
    AP
    0. 994
    0. 973
    1. 020
    0. 907
    0. 853
    0. 765
    0. 819
    
    RP, cm
    -25
    -30
    -35
    ^0
    -45
    
    
    Time Avg,
    AP
    0. 763
    0. 659
    0. 645
    0. 518
    0. 329
    
    
    

    -------
    Table 11-68.   TIME-AVERAGED DIRECTIONAL FLOW DATA OBTAINED USING
              A TWO-HOLE PROBE AT AN AXIAL POSITION OF 104 cm
          (Flat-Flame  Burner; 2010 CF/hr, Gas Input,  4.4% Excess Oxygen)
    
    RP, cm
    45
    40
    35
    30
    25
    20
    15
    Time Avg,
    A P
    0.398
    0.223
    0. 302
    0. 318
    0. 164
    0.285
    0. 293
    
    RP, cm
    10
    5
    0
    -5
    -10
    -15
    -20
    Time Avg,
    AP
    0. 234
    0.269
    0. 259
    0. 295
    0. 323
    0. 375
    0. 375
    
    RP, cm
    -25
    -30
    -35
    -40
    -45
    -50
    
    Time Avg,
    A P
    0. 395
    0.421
    0.465
    0. 509
    0. 581
    0. 633
    
    

    -------
               FLAT FLAHE BURNER - STAINLESS SHEPHERD,S PROBE
    RP VS NO,02,C02,CO.CH4 AP> 12.70
    10.52 D~v_
    10.31 ^0 	 0— .
    10.11 ^0 	 x-D~\
    9.90 °^ / "^
    9.69 \ D' \
    9.49 ^0 / ^a
    9.28 	 0^ \
    "9". 08' ~ ~ ' 	 \
    8.87
    8.66
    8.46
    8.25
    8.04
    ' " 7'.84 " " •" 	 "~ 	 • •
    7.63
    7.43
    7.22
    7.01
    6. 81
    6.60
    6.39
    6.19
    5.98
    5.78
    5-'5J _ /
    5.36 /
    5.16 /
    4.95 /
    4.74 0
    4.54 /
    ,*-33 	 . 	 /
    4.13 /
    3.92 0
    3.71 /
    3.51 /
    3.30 /
    3.10 C 	 C /
    2.89 / \ ' 1
    2.68 / \ 0
    2.48 C' \ /
    2.27 / \
    2.06 C 	 C 	 C 	 C C /
    1.66 \ 1
    1.65 y
    1.45 A
    1.24 0 \
    1.03 / \
    0.83 N — N — N ~^— -^^. ^--u y\ — N — N —
    0.41 M^^"b^^ " " ~~ V
    0.00 XC 	 C 	
    
    1-D 	 D 	 0 	 »-^
    S
    V ^
    ^•D 	 0 	
    A
    \
    \
    °\ ^-°
    \ ^-u
    \ ^-°
    NJ 	 u-*^
    ^1 	 N 	 N 	 N 	 N 	 N 	 N 	 N 	 N 	 N
    C 	 C 	 C- — ~^"C 	 C- 	 C
    t_6.0._09e_ .-48,000. . r36.000 	724.000. ._^U-..O.PP___lP_.p_Op_	12.000
    Figure  11-271.    COMPOSITE  PLOT  OF RADIAL GAS SPECIES
      CONCENTRATION AT A 12. 7-cm AXIAL POSITION FOR  A
      FLAT-FLAME BURNER  OPERATING  AT A GAS INPUT OF
       2010  CF/hr AND  4.4%  EXCESS  OXYGEN IN THE  FLUE
                                         363
    

    -------
        Table  11-69.   RAW AND REDUCED  GAS SPECIES  DATA FOR RADIAL  SAMPLING  SCANS
          AT AN AXIAL  POSITION OF  12.7  cm FROM  A  FLAT-FLAME BURNER OPERATING
             AT  A GAS INPUT OF 2010 CF/hr AND 4.4%  EXCESS  OXYGEN IN  THE  FLUE
                             TRACER GAS STUDIES OF COMBUSTION BURNERS
                       FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
                                                  PROGRAM
    INPUT GAS  2010
    WALL TEMPERATURE  2480
    PREHEAT TEMPERATURE
    OUTPUT ANALYSIS
    NITROGEN OXIDE  45.50 PERCENT ON RANGE 3,   88.67 PPM
    CARBON DIOXIDE  75.70 PERCENT ON RANGE**,  177.73 PERCENT
    CARBON MONOXIDE  1.60 PERCENT ON RANGE 3,   0.000 PERCENT
    METHANE          0.00 PERCENT ON RANGE 0,    0.00 PERCENT
                                           OXYGEN  4.40 PERCENT
    EXPERIMENTAL" RESULTS
    NITROGEN OXI
    AP
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12.70
    12/70
    12.70
    12.70
    12.70
    12.70
    12.70
    RP
    -60.00
    -54.00
    -48.00
    -42.00"
    -36.00
    -30.00
    -24.00
    -18.00
    -12.00
    - 6~. 00
    0.00
    6.00
    12.00
    18.00
    24.00
    "30.00""
    36.00
    42.00
    48.00
    54.00
    60.00
    RANGE
    3
    3
    3
    "3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    	 3
    3
    3
    3
    3
    3
    X
    39.80
    40.70
    40. 10
    36.70
    35.80
    36.50
    33.80
    33.30
    37.60
    41.90
    40.70
    38.50
    41.10
    41.10
    41.10
    38.50
    40.70
    41.80
    42.20
    47.30
    46.60
    DE -NO
    Y
    77.3
    79. I
    77.9
    71.2
    69.4
    70.8
    65.5
    64.5
    73.0
    81.5
    79.1
    74.7
    79.9
    79.9
    79.9
    74.7
    79.1
    81.3
    82.1
    92.2
    90.8
    OXYGEN
    02
    0.56
    0.50
    0.55
    0.57
    0.70
    0.65
    0.79
    1.29
    2.78
    3.90
    V 83
    5.80
    6.59
    6.05
    5.00
    4.05
    3.52
    3.56
    3.80
    3.92
    4. 19
    CARBON DIOXIDE-C02
    RANGE
    1
    1
    1
    " 1
    1
    1
    1
    1
    1
    "1
    1
    1
    I
    1
    1
    i
    i
    i
    i
    i
    i
    X
    81.90
    81.10
    80.70
    80.10
    78.70
    77.00
    76.20
    78.20
    80. 10
    78.50
    76.60
    74.20
    72.00
    71.90
    73.30
    75.40
    76. 70
    77.00
    76.80
    76.90
    76.00
    Y
    10.51
    10.34
    10.26
    1 0 . 1"3
    9.84
    9.49
    9.32
    9.73
    10.13
    9.80
    9.41
    8.92
    8.49
    8.47
    8.75
    9.16
    9.43
    9.49
    9.45
    9.47
    9.28
                                                                          CARBON
                                                                          RANGE
                                                                            1  53
                                                                               52
                                                                               53
                                                                               54
                                                                               63
                                                                               73
                                                                               72
                                                                               54
                                                                               10
                                                                               64
                                                                                8
                                                                                5
                                                                                6
                                                                               98
                                                                               12
                                                                               24
                                                                               26
                                                                               13
                                                                                4
                                                                                0
                                                                               74
                                                            MONOX
                                                            X
                                                            .30
                                                            .80
                                                            .20
                                                            .80
                                                            .30
                                                            .00
                                                            .20
                                                            .10
                                                            .00
                                                            .10
                                                            .60
                                                            .70
                                                            .90
                                                            .30
                                                            .90
                                                            .80
                                                            .50
                                                            .60
                                                            .70
                                                            .70
                                                            .00
                                     IDE -CO
                                       Y
                                      1.993
                                      1 .967
                                      1.988
                                      2.071
                                      2.535
                                      3.113
                                      3.064
                                      2.034
                                      0.263
                                      0.029
                                      0.003
                                      0.002
                                      0.002
                                      0.048
                                      0.212
                                      0.419
                                      0.449
                                      0.224
                                      0.077
                                      0.012
                                      0.034
    METHANE
    RANGE
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
      3
    IE - CH4
    X
    8.40
    5.70
    5.20
    5.10
    5.90
    6.20
    6. 80
    6.90
    3.80
    3.50
    4.30
    3.10
    2.60
    6. 10
    4.80
    5.40
    4.60
    4.00
    2.80
    3.60
    4.70
    
    Y
    0.36
    0.24
    0.22
    0.22
    0.25
    0.26
    0.29
    0.29
    0. 16
    0.15
    0.18
    0. 13
    0. 11
    0.26
    0.20
    0.23
    0. 19
    0.17
    0.12
    0.15
    0.20
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    L-
    • w
    Q
    X
    o
    n
    .£
    o
    m
    <
    u
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RP VS C02
    10.5185
    10.4785
    10.4385
    10.3985
    10.3585
    10.3185
    10.2784
    10.2384 '
    10. 1984
    10.1584
    10.1184
    10.0784
    10.0384
    9.9983
    9.95B3
    9.9183
    9.8783
    9.8383
    9.7983
    9.7583
    9.7182
    9.6782
    9.6382
    9.5982
    9.5582
    9.5182
    9.4782
    9.4381
    9.3981
    9.3581
    9.3181
    9.2781
    9.2381
    •5.1981
    9.1580
    9.1180
    9.0780
    9.0380
    8.9980
    8.9580
    8.91BO
    8.8779
    8.8379
    8.7979 "
    8.7579
    8.7179
    8.6779
    8.6379
    8.597B
    8.5578
    8.5178
    8.4778
                 FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
            AP- 12.70
      -60.000	7_*8.ppp   -J6.000 .^2*_-OOp 	-12.000  	rPiPP.?   12.000 _  24.000   36.000   48.000   60.000
    
                                         RADIAL POSITION, cm
    Figure  11-272.    RADIAL  SCAN OF CARBON  DIOXIDE  FROM A
    FLAT-FLAME  BURNER AT  AN  AXIAL POSITION  OF  12. 7 cm
        WHILE OPERATING AT A 2010  CF/hr GAS INPUT AND
                   4.4%  EXCESS  OXYGEN  IN  THE  FLUE
                                         365
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ^
    
    u
    z
    <
    H
    u
    7,
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RP VS CH4
    0.3620
    0.35M
    0.3523
    0.3474
    0.3425
    0.3J77
    0.3328
    0.3279
    0.3231
    0.3182
    0.3133
    0.3085
    0.3036
    0.2987
    0.2938
    0.2890
    0.28*1
    0.2792
    0.27*4
    0.2695
    0.2646
    0.2598
    0.2549
    0.2500
    0.2452
    0.2403
    0.2354
    0.2306
    0.2257
    0.2208
    0.2160
    0.2111
    0.2062
    0.2014
    0.1965
    0.1916
    0.1868
    0.1819
    0.1770
    0.1722
    0.1673
    0.1624
    0.1575
    0.1527
    O.I4T8
    0.1429
    0.1381
    0.1332
    0.128)
    • 0.1235
    0.1186
    0.1137
                 FLAT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
               12.70
      -60.000  -48.000   -36.000  -24.0OO   -12.000   -0.000   12.000
    
                                         RADIAL POSITION, cm
                                                           24.000
                                                                          46-.oot>
         Figure  11-273.   RADIAL SCAN OF METHANE  FROM A
    FLAT-FLAME BURNER  AT AN AXIAL POSITION  OF  12. 7  cm
        WHILE OPERATING  AT  A  2010 CF/hr GAS INPUT AND
                  4.4%  EXCESS OXYGEN  IN  THE FLUE
                                          366
    

    -------
    RP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    f
    ^
    Z
    u
    0
    X
    0
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS 02.
    6.59
    6.47
    6.35
    6.23
    6.11
    5.99
    5.87
    5/75
    5.63
    5.52
    5.40
    5.28
    5. 16
    5.04
    4.92
    4.80
    4.68
    4.56
    4.44
    4.32
    4.20
    4.08
    3.96
    3.84
    3.72
    3.60
    3.49
    3.37
    3.25
    3.13
    3.01
    2.89
    2.77
    2.65
    2.53
    2.41
    2.29
    2.17
    2.05
    .93
    .81
    .69
    .57
    .46
    .34
    .22
    .10
    0.98
    0.86
    0.74
    0.62
    0.50
                    FLM FLAME BURNER - STAINLESS SHEPHERD,S PROBE
               AP- 12.70
         -60.000  -48.000  -36.000   -24.000 __li2._000	-0.000   12.000   2*.000   36.000    48.000   60.000
                                             RADIAL POSITION, em
      Figure  11-274.    RADIAL  SCAN  OF  OXYGEN  FROM  A  FLAT-FLAME
      BURNER AT AN AXIAL  POSITION  OF  12.7  cm WHILE OPERATING
    AT A 2010 CF/hr GAS  INPUT AND 4.4%  EXCESS  OXYGEN IN THE FLUE
                                               367
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    -
    
    
    
    
    
    
    
    \,°
    u
    Q
    H
    o
    §
    2
    
    Z
    O
    0
    a.
    ^
    u
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RP VS. CO
    1.1136
    3.0526
    2.9116
    2.9305
    2.8695
    2.8085
    2.7475
    2.6865
    2.6255
    2.5645
    ?.5035
    2.4425
    2.3815
    2.3205
    2.2595
    2. 1985
    2.1375
    2.0765
    2.0155
    1.9545
    1.8935
    1.8325
    1.7715
    1.7105
    1.6495
    1.5884
    1.5274
    1.4664
    .4054
    .3444
    .2834
    .2224
    .1614
    . 1004
    .0394
    0.9784
    0.9174
    U.8564
    0.7954
    0.7344
    0.6734
    0.6124
    0.5514
    0.4904
    0.4294
    0.3684
    0.3074
    0.2464
    0.1853
    0.1243
    0.0633
    0.0023
                FLAT FLAME  BURNER - STAINLESS  SHEPHERD,s PROBE
              12.70
    -60.000   -48.000   -36.000   -24.000 ~-TZ.OOO~' -O.OOD   '12.000'
                                         RADIAL POSITION, em
                                                            2V.000
                                                                    36.000-
        Figure  H-275.   RADIAL SCAN  OF  CARBON  MONOXIDE
     FROM A FLAT-FLAME  BURNER AT  AN  AXIAL POSITION
       OF  12.7  cm  WHILE  OPERATING AT A  2010 CF/hr  GAS
          INPUT  AND 4.4%  EXCESS OXYGEN IN  THE FLUE
                                         368
    

    -------
    RP
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    £
    £
    _
    u
    Q
    8
    NITRIC
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS NO,
    92.27
    91.72
    91.16
    90.63
    90.09
    89. 5*.
    39.00
    88. ",6
    87.91
    87.37
    86.82
    86.28
    85. 74
    85.19
    84.65
    84.10
    83.56
    .03.02
    82.47
    dl.93
    81.38
    80.8".
    80.30
    79.75
    79.21
    re. 66
    78.12
    77.58
    '7.03
    16.49
    75.9*
    75.1.0
    74.86
    74.31
    73.77
    73.22
    72.68
    '2.14
    71.59
    71.05
    70.50
    69.96
    69.42
    68.87
    68.33
    67.78
    67.24
    66.69
    66.15
    65.61
    65.06
    64.52
            FLAT FLAME BURNER - STAINLESS SHEPHERD.s PROBE
          12.70
                \/
        -48.000  -36.000  -24.000   -IZ.OOO   -0.000   12.000   24.000   36.000  48.DOO   60.000
                                  RADIAL POSITION, em
    Figure 11-276.   RADIAL SCAN OF  NITRIC  OXIDE FROM
     A FLAT-FLAME BURNER  AT  AN AXIAL POSITION OF
      12.7 cm WHILE OPERATING AT A 2010 CF/hr GAS
       INPUT AND 4.4%  EXCESS OXYGEN  IN THE FLUE
                                   369
    

    -------
    reduced  data  for  an axial position of 68. 6 cm are  shown in Table  11-70
    and plotted as a composite  graph in Figure  11-277.   Plots  of  each species
    with a greater  resolution than in Figure 11-277 are  shown  in Figures
    11-278,  11-279,  11-280,  11-281, and  11-282  for NO,  O2,  CO2, CO,  and  CH4.
    The  raw and  reduced data for an axial position  of  104. 1 cm is  shown in
    Table 11-71 and plotted as a  composite in  Figure 11-283.   Again plots of
    each species  at greater resolution  are  given in  Figures 11-284,  11-285,
    11-286,  H-287,  and 11-288.
    E.   Boiler Burner
        1.   Burner Design
        The  experimental burner used  for these tests was  a sealed-down
    (momentum) version of a typical vane-register  boiler burner (Figure
    11-289).   This design was  selected  because it generates the same type of
    swirl pattern and intensity as a  large number of full-scale  types  from
    different major manufacturers.   This  type of vane  arrangement is also
    readily  mathematically  modeled  to  describe  the  swirl intensity.   The  bur-
    ner consists of eight air-guide vanes through which the air passes in
    parallel  to  the vane major area  surfaces  (Figure 11-290).   The  vanes can
    be adjusted 90 degrees  on their  own  axis  from a full closed position to
    full open.   At the full  open  position,  the  air stream is directed radially
    to the  burner axis.   By adjusting the  angle  of the  vanes,  the  amount  or
    intensity of swirl is changed.   Gas is injected through  a. central tube
    located  at  the  hot face  of the  burner  block hole  and  on  the  axis  of the
    burner.   The end of the gas nozzle has a hemispherical head with eight
    gas ports  drilled  at a  45-degree angle  to  the burner axis.   In this way
    the gas is injected  slightly  radially to the axis of the burner.   The hole
    diameters  in  the  end of the  gas  nozzle are 0.25  inch in  diameter.  The
    exit  gas  velocity  is  dependent on volumetric flow of  gas.   The design
    capacity  of the  burner  is 4000 CF/hr  for  a  gas  velocity per nozzle of
    about 107 ft/s.
                                       370
    

    -------
               Table 11-70.   RAW  AND REDUCED  GAS SPECIES  DATA FOR RADIAL SAMPLING SCANS
                 AT AN AXIAL POSITION OF  68. 6 cm FROM  A  FLAT-FLAME BURNER OPERATING
                     AT  A GAS INPUT  OF 2010 CF/hr  AND  4.4%  EXCESS  OXYGEN  IN  THE  FLUE
                                        TRACER GAS STUDIES OF COMBUSTION BURNERS
                                   FLAT FLAME BURNER - STAINLESS SHEPHERD,S  PROBE
                           PROGRAM  2
                INPUT GAS  2010
                                     WALL TEMPERATURE  2*80
          PREHEAT  TEMPERATURE
                OUTPUT ANALYSIS
                NITROGEN OXIDE   45.50  PERCENT ON RANGE
     88.67  PPM
                    OXYGEN  4.40 PERCENT
                CARBON DIOXIDE   75.70 PERCENT ON RANGE**.
                CARBON MONOXIDE	1.60 PERCENT ON RANGE 3,
                METHANE       '   0.00 PERCENT ON RANGE 0,
    177.73  PERCENT
     0.000  PERCENT
      0.00 PERCENT
    uo
                EXPERIMENTAL  RESULTS
    NITROGEN OXIDE -NO
    AP
    68.60
    ""68.60"
    68.60
    68.60
    68.60
    68.60
    68.60
    68.60
    68.60
    68.60
    68.60
    68.60
    68.60
    RP RANGE X
    -60.00 3 54.80
    -50.00
    -40.00
    -30.00
    -20.00
    -10.00
    0.00
    10.00
    20.00
    30.00
    40.00
    50.00
    60.00
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    50.80
    59.00
    56. 10
    54.50
    48.70
    49.40
    47.90
    44.40
    43.90
    42.70
    39.10
    36.30
    Y
    107.2
    99.2
    115.7
    109.8
    106.6
    95.0
    96.4
    93.4
    86.4
    85.4
    83.1
    75.9
    70.4
    OXYGEN CARBON DIOXIOE-C02
    02 RANGE X
    0.69 1 84.80
    0.77
    1.08
    1.65
    1.40
    2.28
    3.08
    3.81
    4.84
    4.92
    5.08
    5.23
    6.01
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    85.50
    84.70
    86.20
    85.90
    83.30
    80.90
    78.90
    76.00
    75.40
    75.10
    74.00
    72.00
    Y
    11.15
    if. 3d
    11.12
    11.46
    11.39
    10.82
    10.30
    9.88
    9.28
    9.16
    9.10
    8.88
    8.49
    CARBON MONOXIDE -CO
    RANGE X
    2 13.70
    2
    2
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    9.20
    1.60
    104.30
    76.10
    52.70
    9.70
    0.60
    1.20
    0.50
    1.40
    2.60
    1.10
    Y
    0.226
    0.150
    0.027
    0.052
    0.036
    0.023
    0.003
    0.000
    0.000
    0.000
    0.000
    0.001
    0.000
    METHANE - CH4
    RANGE X
    3 6.00
    3 5.60
    3 6.40
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    6.20
    5.40
    5.00
    4.70
    4.40
    3.80
    4.10
    4.70
    3.80
    4.50
    Y
    0.25
    0.24
    0.27
    0.26
    0.23
    0.21
    0.20
    0.19
    0.16
    0.17
    0.20
    0.16
    0.19
    

    -------
    RP VS NO
       11. *6
                    FLAT FLAME  BURNER  - STAINLESS SHEPHERD, S PROBE
           , 02, CO?, CO, CH*  »P- 66.60
       11.2*
       11.01
       10.79
       10.56
       10.3*
       10.11
        9.89
        9.66
        9.**
        9.21
        8.99
        8.76
        8.32
        8.09
        7.87
        7.6*
        7.«2
        6.97
        6.7*
        6.52
        6.29
        6.07
       "57!i*~
        5.62
        *.72
       -*r*
    -------
                FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
           AP> 66.60
                  L _-36.00.0	-Zt.OOO   -12.000   -0.000    U.OOO  	2*.rOOO	36.00.0  ._*8..QOO..
                                        RADIAL POSITION, cm
      Figure 11-278.   RADIAL SCAN  OF  NITRIC  OXIDE FROM  A
    FLAT-FLAME  BURNER AT AN AXIAL POSITION OF  68.  6  cm
           WHILE  OPERATING AT  A  2010  CF/hr GAS INPUT
                AND 4.4%  EXCESS OXYGEN IN THE FLUE
                                         373
    

    -------
               FLIT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
          IP- 68.60
    -60.000   -48.000  -36.000  -24.000
                                           -0.000
                                                   12.000
                                                          24.000
                                                                  36.000
                                                                         48.000
                                                                                 60.000
                                       RADIAL POSITION, cm
          Figure  H-279.    RADIAL SCAN OF  OXYGEN  FROM A
    FLAT-FLAME  BURNER AT  AN  AXIAL  POSITION OF  68. 6 cm
           WHILE  OPERATING  AT  A  2010 CF/hr  GAS INPUT
                AND 4.4%  EXCESS OXYGEN IN  THE  FLUE
                                          374
    

    -------
                     FLAT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
                AP- 68.60
    <
    O
          -60.000   -'.8.000 _JO6.PQO	-H.OOO	iii-OOQ   -0.000	IJiPOO	?«.OOQ
                                            RADIAL POSITION, cm
          Figure  II-Z80.    RADIAL  SCAN  OF  CARBON  DIOXIDE FROM
             A  FLAT-FLAME  BURNER AT AN AXIAL  POSITION  OF
               68.6  cm WHILE OPERATING AT  A 2010 CF/hr  GAS
               INPUT  AND 4.4%  EXCESS  OXYGEN IN  THE FLUE
                                              375
    

    -------
               FLAT FLAME BURNER - STAINLESS SHEPHERD.S PROBE
             68.60
    -60.000  -48.000  -36.000   -2*.OOP  -12.000
                                          -0.000
                                                  12.000
                                                                        46.000
                                       RADIAL POSITION, cm
       Figure  II-Z81.   RADIAL SCAN  OF  CARBON MONOXIDE
     FROM A FLAT-FLAME  BURNER AT AN  AXIAL  POSITION
      OF  68.6  cm WHILE  OPERATING AT A  2010  CF/hr GAS
          INPUT AND  4.4%   EXCESS OXYGEN  IN  THE FLUE
                                       376
    

    -------
               FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
             66.60
    -60.000   -48.000  -36.000	-2*.000  -12.000
                                                   12.000
                                                          2*.000
                                                                  36.000   48.000   60.000
                                        RADIAL POSITION, cm
        Figure 11-282.   RADIAL SCAN  OF METHANE FROM A
         FLAT-FLAME  BURNER AT AN  AXIAL  POSITION  OF
          68.6  cm  WHILE OPERATING AT  A 2010  CF/hr GAS
          INPUT AND 4.4%  EXCESS OXYGEN  IN  THE FLUE
                                         377
    

    -------
               Table 11-71.   RAW AND REDUCED GAS SPECIES DATA FOR RADIAL  SAMPLING  SCANS
                AT  AN AXIAL POSITION  OF 104.1 cm FROM A  FLAT-FLAME BURNER OPERATING
                    AT  A GAS  INPUT  OF 2010 CF/hr  AND  4.4%  EXCESS  OXYGEN IN  THE  FLUE
                                   TRACER GAS STUDIES Of COMBUSTION BURNERS
                             FLAT FLAME BURNER - STAINLESS SHEPHERD,S PROBE
                                                 PROGRAM  2
           INPUT GAS  2010
    HALL TEMPERATURE   2480
    PREHEAT TEMPERATURE
          OUTPUT ANALYSIS
          NITROGEN OXIDE  45.50 PERCENT ON RANGE 3,
          CARBON DIOXIDE  75.70 PERCENT ON RANGE**,
          CARBON MQNPXIDE__ JL.60 PERCENT ON_RANG_E__3,
          METHANE"        " o.bo"PERCENT"ON RANGE o.
                           88^67  PPM
                          177.73  PERCENT
                           0.000  PERCENT
                            0.00  PERCENT
               OXYGEN  4.40  PERCENT
    EXPERIMENTAL RESULTS
    NITROGEN OXI
    AP
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    104.10
    RP
    -60.00
    -so'.bb
    -40.00
    -30.00
    -20.00
    -10.00
    0.00
    10.00
    20.00
    30.00
    40.00
    50.00
    60.00
    RANGE
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    X
    39.40
    3 8. "80
    37.40
    37.40
    37.70
    35.10
    34.00
    33.20
    33.90
    33.60
    30.50
    31.40
    29.50
    DE -NO
    Y
    76.5
    75.3
    72.6
    72.6
    73.2
    68.0
    65.8
    64.3
    65.7
    65.1
    59.0
    60.7
    57.0
    OXYGEN
    02
    1.62
    1.57
    1.82
    1.92
    2.34
    2.82
    3.07
    3.60
    4.37
    4.80 .
    5.09
    5.38
    5.88
    CARBON OIOXIDE-C02
    RANGE X
    1 84.40
    1
    1
    I
    1
    1
    1
    1
    1
    1
    1
    I
    84.50
    83.90
    83.60
    83.20
    80.10
    79.80
    79.30
    77.50
    76.00
    74.60
    ~?3.90
    72.10
    Y
    11.06
    11.08
    10.95
    10.88
    10.79
    10.13
    10.07
    9.96
    9.59
    9.28
    9.04
    8.86
    8.51
    CARBON MONOXIDE -CO
    RANGE
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    X
    39.50
    35.80
    19.50
    12.50
    11.80
    7.00
    3.50
    2.70
    1.70
    0.60
    0.50
    ~1.70
    2.00
    Y
    0.017
    0.015
    0.008
    0.005
    0.004
    0.002
    0.001
    0.001 "
    0.000
    0.000
    0.000
    0.000
    0.000
    METHANE - CH4
    RANGE
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    — r
    3
    X
    6.20
    5.30
    5.20
    4.90
    5.50
    4.60
    4.10
    4. 50
    4.90
    4.20
    4.00
    "4.10
    3.40
    Y
    0.26
    0.22
    0.22
    0.21
    0.23
    0.19
    0.17
    0.19
    0.21
    0.18
    0.17
    0.20
    0.14
    -J
    00
    

    -------
                   FLAT FIANE BURNER -  STAINLESS SHEPHERD.S PROBE
    RP VS NO,02,C02.CO.CH4   AP'104.10
    
      10.87            '~"*-"o     D-   ~
      10.65
      10.43
      10.21
      10.00
     _ 9,16	   _    ___
    9.35 ^ 	 D__ 	
    9.13 -D. 	
    8.91
    8.69
    8.48
    B.26
    8.04
    7.B2
    7.61
    7.39
    7.17
    6.95
    6.74
    6.52
    6.30
    6.09
    5.87 . _ 	 _ 	
    5.65
    5.43
    i.22 ^
    5.00 	 Q"
    4.7B _--u''"
    4.56 . 	 	 . ^S^
    4.35 ^°
    4.13 ^
    3.91 S
    3.69 0'
    3.48 X'
    3.26 	 .... .^
    3.04 	 .0
    2.83 ^-°^
    2.61 ^^
    2.39 ^-°
    2.17 ^ —
    .30
    .09
    O.B7 N^^^
    0.43
    
    	 -D.
    \1-^
    M
    
    
             	-48.000   -36.000   -24.000  -12.000   -0.000	I2-*OOP  _.2*.,0p.0_  36.000.	48._000
                                                                                      60.000
       Figure  U-283.    COMPOSITE PLOT  OF  RADIAL GAS SPECIES
          CONCENTRATION  AT A  104.1  cm  AXIAL, POSITION FOR
       A FLAT-FLAME  BURNER  OPERATING AT  A GAS INPUT  OF
           Z010  CF/hr AND 4.4%  EXCESS  OXYGEN IN  THE  FLUE
                                              379
    

    -------
                     FLAT FLAKE BURNER - STAINLESS SHEPHERD.s PROBE
                  104.10
    E
    £
    u
    Q
     71.
     71.21
     70.82
     70.44
     70.06
     69.68
     69.29
     68.91
     68.53
     68.15
     67.76
     67.38
     67.00
     66.62
     66.23
     65.85
     65.47
     65.08
     64.70
     64.32
     63.94
     63.55
     63.17
     62.79
     62.41
     62.02
     61.64
     61.26
     60.88
     60.49
    "60.11
     59.73
     59.35
     58.96
     58.58
     58_.20
     57.81
     57.43
     57.05
        -60. pop	-48.000  -36.000   -24.000   -12.000	I
    -------
        RP VS 02.
                       FLAT FLAME BURNER • STAINLESS SHEPHERD.S PROBE
                  •P-104.10
      V*
          2.3.306	
          2.2*61
          2.1616
          2.0771
          1.4925
          1.9080
         -.JU.8ii5_
    ._	   -60.000  -*B.OOO  -36.000	-2*.OOP  -12.000    -0.000    12.000 	.2*jpOO_	i6»000.  »8.000	60.000 .
                                                RADUL POSITION, em
                                                                            X
    
    
                  Figure  11-285.   RADIAL SCAN  OF OXYGEN  FROM A
                  FLAT-FLAME  BURNER  AT  AN AXIAL POSITION OF
                  104.1 cm  WHILE  OPERATING AT  A 2010 CF/hr GAS
                   INPUT  AND 4.4%  EXCESS OXYGEN  IN  THE FLUE
                                                  381
    

    -------
      HP  vs co2
                      FLAT FUME BURNER - STAINLESS SHEPHERD. S PROBE
                *p»io4.io
    u
    Q
         0)36
         4832
         4)24
         8826
         8322
         7814
         7)15
         6812
         6)04
         9803
         5102
         4748
         4245
         3741
         3288
         2785
         .7751
         .7247
         .6744
         .6240
         .5737
         .5234
         .4730
         .4227
         .3723
         .3220
         .2716
         .2213
         .1710
         .1206
         .0703
         .0194
       _8.4646
        8.9193"
        8.8689
        8.8186
        8.7682
        8.7174
        8.6676
        8.6172*
        8.5669
        8.5165
        ..-.60.000	-*8.000	-36.000   -2*.OOP   -12.000   -0.000	12.000
                                                RADIAL POSITION, em
                                                                             36.000
                                                                                      48.000
                                                                                              60.000
         Figure H-286.   RADIAL SCAN  OF CARBON DIOXIDE FROM
             A FLAT-FLAME  BURNER AT  AN AXIAL POSITION OF
               104.1  cm  WHILE OPERATING AT A  2010  CF/hr  GAS
                INPUT  AND  4.4%  EXCESS  OXYGEN  IN THE FLUE
                                                  382
    

    -------
    o
    D
    a.
    u
                     fUT FltME BURNER - STAINLESS SHEPHERD.S PROBE
    RP VS. CO   4PM04.IO
     0.01728 _»_v
    .6.01694
     0.01661
     0.01627
     0.0159*
     0.01561
     Oj.01127	
     0.01*94
     0.01460
     0.01*27
     0.0139*
     0.01360
     0.0.1327
     0.01293
     0.01260
     0.01227
     0.01193
     0.01160
     0.01126
     0.01093
     0.01060
     0.01026
     0.00993
     0.00959
     0.00926
     O.OOB93 "    	
     0.00859
     0.00826
     0.00792
     0.00759
     0.00726
     0.00692
     0.00649
     0.00625
     0.00592
     0.00559
     0.00525  .
     0.00492
     0.00458
     0.00425
     0.00392
     0.00358
     0.00325  _
     0.00291
     0.00256
     0.00225
     0.00191
     0.00158
     0.00124	  	
     0.0009*1
     0.00058
     0.00024
          .^6Q.,.QfiO__. -48.000  _-.3J>.tOOO
                                            .   -12.000	:0i00p_	LI-'OOp	24_.000	_36..0.00.	48..0.00
                                                   RADIAL POSITION, cm.
                                                                                                      60.000
               Figure  11-287.    RADIAL  SCAN  OF  CARBON  MONOXIDE
            FROM  A  FLAT-FLAME  BURNER  AT AN  AXIAL  POSITION
             OF  104.1  cm  WHILE  OPERATING  AT  A  2010  CF/hr  GAS
                  INPUT AND  4.4%  EXCESS  OXYGEN IN  THE  FLUE
                                                      383
    

    -------
         RP VS CH*
                       FLAT FLAME BURNER - SIMNIESS SHEPHERD. S PROBE
                  AP'10*.10
      u
      i
    	;60^000	-*6.000  -36.000   -24.000  -12.000   -0.000
                                                          12.000
                                                                 2*.OOP
                                                                         16.000
                                                                                *B.OOO
                                                                                        60.000
                                              RADIAL POSITION, em
               Figure II-Z88.   RADIAL  SCAN OF METHANE  FROM A
                FLAT-FLAME  BURNER  AT  AN AXIAL POSITION OF
                104.1  cm  WHILE OPERATING AT A 2010  CF/hr GAS
                 INPUT AND 4.4%  EXCESS  OXYGEN IN  THE  FLUE
                                                384
    

    -------
                                         ^.ADJUSTABLE
                                            VANE
                                              A-83-II99
    Figure  11-289.   BOILER BURNER
                     385
    

    -------
                                         A-53-787
    
                        Figure 11-290.   GUIDE VANES
        2.   Hot-Model Input-Output  Data
        The boiler  burner was operated at only one gas input during these
    tests.   The  characteristic stability of  the  burner occurred at 75%  of rated
    input  or 3020 CF/hr  of natural gas.   Gas inputs of less  than 3000 CF/hr
    prevented good  control  of  excess air level  and fuel oxygen concentrations
    below  5^.   Burning more than 3020 CF/hr  resulted in excessively long
    flames  and  instability of the flame  pattern.   This occurred  because the
    gas velocity from  the nozzles  was high enough to push through the swirl-
    ing air stream.   Drilling  larger  ports  in the  gas nozzle  to  lower velocity
    was not possible because  of the  overall nozzle diameter.   A new burner
    design with a large gas nozzle is needed to give greater  flexibility to the
    gas input.
        Figures 11-291, 11-292,  and 11-293  show the results of the input-output
    tests  as a function of combustion air temperature and amount of excess
    air (excess oxygen in the  flue) for  three  different vane angles.   Changing
    the combustion  air temperature had about  the  same  effect for the boiler
    burner  as  other burners studied, particularly  the intermediate baffle
    burner.   Increasing air temperature increased the  amount of  NO and shifted
    the location  of  the peak NO  to higher  amounts  of excess  air.   Changing
    the vane angle  (changing the swirl intensity) also had  an  effect on the NO
    formed.   Increasing the vane  angle, which increases the  swirl intensity,
    
                                       386
    

    -------
        500
     E  400
     a.
     o.
     o
     z
     N
     2
     01
     O
        300
        200
        100
                                                         550 °F PREHEAT
                                                         285°FPREHEAT
                               2         3
    
                               % 02 IN FLUE
    5         6
    
    
       A-63-934
         Figure 11-291.   NORMALIZED NO CONCENTRATION AS A
    
        FUNCTION OF  EXCESS AIR  (Boiler Burner With 30-deg Vane
    
    Setting; Gas Input, 3020 CF/hr) AND COMBUSTION AIR TEMPERATURE
                                     387
    

    -------
         750
    
    
    
         700
         600
      E
      ex
      Q.
    
    
      o"
    
    
      o
      UJ
      N
      OC
      O
         500
    400
    300
         200
         100
                                                        530°F PREHEAT
                                                   265°F PREHEAT
                                                         85°F PREHEAT
                               2         3
    
    
                                % 02 IN  FLUE
                                                       5         6
    
    
                                                           A-63-933
         Figure  H-Z92.   NORMALIZED NO CONCENTRATION AS A
    
     FUNCTION OF  EXCESS AIR  (Boiler Burner With 40-deg  Angle  Vane
    
    Setting; Gas Input,  3040 CF/hr) AND COMBUSTION AIR TEMPERATURE
                                     388
    

    -------
           700
           600
         E
         9- 500
         o.
        O
    
        M 400
        (T
        O
        Z
           300
           200
    
    
    
            150
                                                  530°F  PREHEAT
    265°F PREHEAT
                                                  85°F  PREHEAT
                                   2          3
    
                                  %  02  IN FLUE
       4         6
    
           A-63-932
         Figure 11-293.  NORMALIZED NO CONCENTRATION AS A
     FUNCTION OF EXCESS AIR (Boiler Burner With 60-deg Angle Vane
    Setting; Gas Input 3040 CF/hr) AND COMBUSTION AIR TEMPERATURE
                                    389
    

    -------
    generally increased the amount of NO  formed.  However,  the  magnitude
    of the change in NO varied with the preheat temperature  of the air and
    the total amount the vanes were open. The greatest increase in NO oc-
    curred,  for any  change in vane angle,  at the higher air temperatures.
    At near  ambient air temperatures,  changing the vane angle had relatively
    little effect on the amount of NO  observed in the  flue.  The amount the
    vanes  were open prior to any  vane change also affected the magnitude of
    change of NO.  At  a  preheat temperature of about 530°F,  increasing  the
    vane  angle from 30 to 40 degrees increased NO from 425 to  630 ppm at
    a 2%  concentration of oxygen in the flue.   This is  an increase of 205
    ppm.  However,  increasing  the vane angle  from 40 to  60 degrees at  the
    same  level of air preheat temperature only increased the NO from 630
    to 650 ppm or 20 ppm.   The same was  true  for  lower  preheated air
    temperatures,  but  the changes were of a smaller amount.
         Tables  11-72 to 11-76 show  the  raw and reduced data  for  Figures
    H-291, 11-292, and 11-293.
         3.   In-the-Flame Survey Results
         Again,  as part of this program, we  mapped the species concentration
    in the flame for  CO,  COz,  CH4,  Oj, and NO.   Profiles were obtained at
    the same gas input (3040 CF/hr)  as the  input-output data for  20% excess
    air and at two combustion air  temperatures  of  100° and 270°F.   Higher
    air temperatures produced flame  temperatures  excessive  for  the  sampling
    probes.   Tables  11-77 and 11-78 show the raw and reduced data for air
    temperatures  of  100°  and 270°F.   Figures 11-294  and 11-295 show a com-
    posite plot of the raw data  of  Tables 11-77  and 11-78.   While  the  input-
    output data  showed  a  great  similarity to  the baffle burners  run earlier,
    the detailed profiles are similar  to the flat-flame data.   That is,  most
    of the methane is burned very near  the burner at an axial position of
    12. 7  cm.  The  effect of increasing preheat temperature can also be  seen
    both on the nitric oxide and  carbon monoxide levels  while it is not clear
    for methane.   When the  air  temperature is  increased from 100° to 270°F,
    the NO increases and the CO concentration  decreases significantly.   This
    effect  is caused  by the  increased  air velocity associated with a higher
    volumetric flow at higher temperatures increasing the  gas-air mixing
    rate.  While  the effect of increased air  temperature cannot be  seen on
    
                                       390
    

    -------
    Table 11-72.
     INPUT-OUTPUT DATA FOR THE BOILER BURNER WITH A RADIAL NOZZLE
             (30-deg Vane Angle; Gas Input, 3020 CF/hr;
    Preheated Air Temperatures of 104°, 285°, and 550°F Average)
                      Preheat
      Run No.    Temperature,  °F
    
          1             104
          2             104
          3             104
          4             104
          5             104
          6             104
          7             104
          8             104
          9             104
         10             104
         11             300
         12             310
         13             300
         14             270
         15             320
         16             280
         17             315
         18             310
         19             540
         20             525
         21             510
         22             550
         23             590
         24             550
         25             620
                                                 Flue Analysis
    NO, ppm
    155
    126
    139
    171
    135
    138
    153
    159
    162
    160
    252
    275
    241
    192
    262
    211
    257
    260
    379
    354
    314
    378
    368
    361
    375
    02, %
    2.43
    5. 08
    3. 89
    0. 30
    3.41
    2.39
    1.47
    0. 52
    0. 82
    1. 17
    0. 55
    2. 05
    3. 32
    4. 68
    0. 78
    3.91
    1. 04
    2.46
    2. 63
    3.48
    4.49
    1.49
    0. 74
    3. 83
    0.35
    CO2, %
    10. 6
    9.0
    9.7
    11.6
    9. 97
    10. 7
    11.3
    11.9
    11. 6
    11.4
    11. 6
    10. 8
    9. 95
    9.2
    11.9
    9. 9
    11.3
    10. 7
    10.5
    10.2
    9.6
    11.2
    11.5
    9.8
    11.7
    CO, ppm
    45
    30
    33
    8300
    25
    27
    45
    225
    82
    52
    195
    37
    26
    20
    100
    58
    67
    31
    40
    32
    28
    57
    90
    35
    12
                                                                  Normalized
                                                                   NO, ppm
    
                                                                      172
                                                                      161
                                                                      166
                                                                      174
                                                                      157
                                                                      153
                                                                      164
                                                                      163
                                                                      168
                                                                      170
                                                                      259
                                                                      281
                                                                      278
                                                                      240
                                                                      272
                                                                      252
                                                                      270
                                                                      289
                                                                      424
                                                                      414
                                                                      386
                                                                      404
                                                                      381
                                                                      430
                                                                      383
    

    -------
      Table 11-73.  INPUT-OUTPUT DATA FOR THE BOILER BURNER
    WITH A RADIAL NOZZLE (40-deg Vane Angle; Gas Input,  3040 CF/hr)
    Run No.
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    Temperature, °F NO, ppm
    85
    85
    88
    85
    85
    85
    85
    85
    85
    85
    85
    85
    87
    87
    245
    260
    275
    250
    265
    240
    250
    260
    245
    265
    290
    260
    270
    525
    500
    575
    550
    500
    470
    590
    550
    510
    475
    212
    179
    159
    174
    191
    207
    147
    186
    179
    187
    186
    188
    227
    208
    232
    244
    269
    257
    291
    296
    289
    325
    307
    328
    312
    324
    345
    482
    564
    561
    607
    520
    449
    439
    591
    547
    469
    O2( %
    1.88
    2.78
    4.24
    2.81
    2.33
    1.29
    0.44
    4. 64
    2.61
    1. 68
    0. 70
    0.52
    1.32
    3.57
    4.46
    3.62
    2.70
    3.35
    2.36
    1.40
    0. 70
    1.89
    3. 56
    2.30
    1. 00
    4.08
    . 1.82
    1.22
    3.09
    1.70
    2.78
    3.73
    4.61
    0. 60
    2.12
    2. 90
    4. 19
    C02, %
    10.9
    10.3
    9.6
    10. 4
    10.7
    11.2
    10.7
    9.1
    10.4
    11.0
    11.4
    11.2
    11.3
    11. 1
    9. 3
    9.8
    10.4
    10.0
    10. 6
    11.2
    11.7
    11.0
    9.9
    10.6
    11.4
    9.6
    10.9
    11.2
    10.3
    11.2
    10. 6
    10.2
    9.5
    11. 1
    10.7
    10. 5
    9.8
    CO, ppm NO, ppm
    45
    50
    20
    25
    30
    55
    16.0 X 10'
    30
    45
    65
    25
    11. 1 X 10'
    75
    50
    35
    25
    25
    20
    35
    55
    200
    35
    40
    52
    145
    27
    65
    105
    50
    65
    51
    40
    30
    800
    60
    57
    46
    231
    202
    194
    197
    211
    220
    151
    232
    200
    202
    193
    193
    242
    244
    287
    289
    302
    298
    322
    316
    298
    353
    359
    362
    328
    392
    374
    511
    646
    606
    686
    614
    557
    452
    647
    621
    570
                                                            B-83-1218
                                     392
    

    -------
    U)
                Table 11-74.   INPUT-OUTPUT DATA  FOR  THE BOILER BURNER  WITH A RADIAL
              NOZZLE (60-deg Vane  Angle;  Gas Input,  3040 CF/hr; Air Preheat Temperature,  85°F)
                   Preheat
    Run  No.    Temperature,  °F
    
        1             85
        2             85
        3             85
        4             85
        5             85
        6             85
        7             85
        8             85
        9             85
       10             85
                                                          Flue Analysis
    NO, ppm
    218
    232
    217
    210
    217
    184
    204
    218
    229
    204
    02, %
    2. 14
    3.51
    1.39
    1. 69
    2.56
    0. 59
    2. 85
    2.91
    0. 75
    0.26
    C02f %
    10.6
    10.2
    11.2
    10.9
    10. 3
    11.6
    10.4
    10.1
    11.4
    11.3
    CO, ppm
    35
    25
    50
    40
    30
    370
    25
    25
    115
    130
    Normalized
     NO,  ppm
    
        240
        271
        231
        227
        242
        192
        231
        247
        240
        212
    

    -------
           Table  11-75.  INPUT-OUTPUT DATA FOR  THE BOILER BURNER  WITH  A RADIAL
    NOZZLE (60-deg Vane  Angle;  Gas Input,  3040 CF/hr; Air Preheat Temperature,  265°F Average)
    
                         _  ,   ,                      Flue Analysis                 ..     ..   ,
                         Preheat         ......-_			T~r~~~-	   Normalized
         Run No.   Temperature,  °F    NO, ppm   Oz, %   COz, %   CO, ppm    NO,  ppm
    
             1              235            262       3.55     10.0         20          308
            2              245            296       2.87     10.3         25          334
             3              260            318       1.97     10.9         35          347
            4              270            325       1.29     11.3         55          346
             5              285            270       0.70     11.7         155          284
             6              310            244       0.32     11.5        3800          322
            7              300            318       1.06     11.3         70          317
           Table H-76.  INPUT-OUTPUT DATA FOR  THE BOILER BURNER  WITH A RADIAL
    NOZZLE (60-deg Vane Angle;  Gas Input,  3040 CF/hr; Air  Preheat Temperature,  530°F Average)
    
                         T-.  ,   .                      Flue Analysis	.T     ..   ,
                         Preheat       	'	   Normalized
         Run No.   Temperature,  °F   NO, ppm   Oz, %   CO2> %   CO, ppm    NO,  ppm
    
             1              560             507       1.21      11.1         70          537
             2              575             424       0.58      11.5        215          443
             3              555             575       1.74      10.9         50          621
             4              530             598       2.24      10.6         35          658
             5              515             571       2.77      10. 3         30          579
             6              490             522       3.49       9.8         25          611
             7              480             498       3.63       9.7         20          588
    

    -------
                       Table II-77.   RAW AND REDUCED  GAS CONCENTRATION RADIAL SCAN
                DATA FOR THE BOILER BURNER OPERATED  AT A  3040 CF/hr  GAS INPUT,  1.9%
               EXCESS OXYGEN IN  THE FLUE,  AND  A  COMBUSTION AIR TEMPERATURE OF  100°F
                                  TRACER GAS STUDIES OF COMBUSTION  BURNERS  PROGRAM  2
                              BOILER BURNER - RADIAL GAS NOZZLE  - BLUNT  STAINLESS PROBE
    Ul
          INPUT  GAS   3039
          OUTPUT ANALYSTS
    WALL TEMPERATURE   2534
    PREHEAT  TEMPERATURE
    NITROGEN OXIDE 32.00 PERCENT ON RANGE 1, 282.52 PPM OXYGEN
    CARBON DIOXIDE 83.70 PERCENT ON RANGE 1, 10.90 PERCENT
    CARBON MONOXIDE 18.00 PERCENT ON RANGE 3, 0.007 PERCENT
    METHANE 0.00 PERCENT ON RANGE 0, 0.00 PERCENT
    EXPERIMENTAL- RESULTS _.._.. - -..-
    NITROGEN OXIOE -NO OXYGEN CARBON OIOXIOE-C02
    AP
    12.70
    12.70
    12.70
    -12V70
    12.70
    12.70
    12.70
    12.70
    12.70
    12770
    12.70
    12. TO
    12.70
    12.70
    12.70
    12. 70
    12.70
    RP RANGE X
    -12.00
    -9.00
    -6.00
    -3YOO-
    0.00
    3.00
    6.00
    9.00
    12.00
    15.00 '
    18.00
    21.00
    24.00
    27.00
    30.00
    15.
    15.
    15.
    15.
    15.
    15.
    15.
    14.
    14.
    13.
    13.
    16.
    17.
    13.
    12.
    33.00 1 13.
    36.00 I 20.
    
    30
    10
    60
    50
    40
    80
    80
    90
    70
    20
    60
    10
    90
    90
    90
    9CJ
    10
    Y
    131.1
    129.4
    133.7
    132.9
    132.0
    135.5
    135.5
    127.6
    125.9
    11 2. "8
    116.3
    138.1
    154.0
    118.9
    110.2
    " "T18.9 '
    173.6
    02 RANGE X
    3.06
    2.47
    2.15
    2V1T 	
    2.14
    2.06
    1.65
    1.73
    1.87
    2«"^5~
    2.38
    1.47
    0.82
    0.21
    0.19
    0. IB
    0.41
    1
    1
    1
    1"
    1
    1
    1
    1
    I
    r~
    i
    i
    i
    i
    i
    T
    1
    79.50
    81.50
    82.10
    -82.10
    81.50
    81.90
    82.30
    81.60
    81.00
    79;70
    80.20
    82.00
    .81.50
    76.40
    69.90
    63.50
    76.30
    Y
    10.00
    10.43
    10.56
    ID ;56-
    10.43
    10.51
    10.60
    10.45
    10.32
    tO'.OS"
    10.15
    10.54
    10.43
    9.36
    8.09
    6.92
    9.34
    1.92 PERCENT
    CARBON MONOXIDE -CO
    RANGE X
    2
    2
    2
    	 -2-
    2
    2
    2
    2
    2
    "2
    2
    2
    I
    _. . . _ j
    I
    4.60
    7.00
    9.00
    -tr.oo
    13.00
    24.00
    34.00
    59.00
    42.00
    ' 38. OO
    42.00
    56.00
    49.00
    78.00
    104.00
    1 IIO.OU
    I
    78.00
    Y
    0.075
    0.114
    0.147
    0.197
    0.214
    0.405
    0.587
    1.078
    0.738
    ' 0.662
    0.738
    1.016
    1.776
    3.431
    5.298
    6.283
    3.431
                                                                          METHANE - CH4
                                                                          RANGE  X      Y
                                                                             3   0.70   0.03
                                                                             3   0.80   0.03
                                                                             3   0.40   0.02
                                                                            -3 - arOT-  0.03
                                                                             3   0.60   0.02
                                                                             3   0.60   0.02
                                                                             3   0.60   0.02
                                                                             r  OJT90   0.04
                                                                             3   1.40   0.06
                                                                          —T—r.?o—o.t>6
                                                                             3   1.40   0.06
                                                                             3	1.70   0.07
                                                                             3   3.00   0.13
                                                                           -3 - 4-TlO   0.17
                                                                             3   5.20   0.22
                                                                          	3	TT6t>	OT32
                                                                             3   5.10   0.22
    

    -------
             Table 11-78.   RAW  AND  REDUCED  GAS CONCENTRATION  RADIAL SCAN  DATA
              FOR THE BOILER  BURNER OPERATED  AT A  3040  CF/hr GAS  INPUT.   1. 9%
         EXCESS  OXYGEN IN THE  FLUE,  AND  A  COMBUSTION  AIR  TEMPERATURE  OF  270°F
                             TRACER  GAS  STUDIES  OF  COMBUSTION  BURNERS  PROGRAM  2
                        BOILER  BURNER  -  RADIAL GAS  NOZZLE  -  BLUNT  STAINLESS PROBE
    INPUT GAS  3039
    OUTPUT ANALYSIS
    NITROGEN OXIDE
    CARBON DIOXIDE
    CARBON MONOXIDE
    METHANE
                 WALL  TEMPERATURE  253*
            32.00  PERCENT ON RANGE
            83.70  PERCENT ON RANGE
            18.00  PERCENT ON RANGE
             0.00  PERCENT ON RANGE
                                    PREHEAT  TEMPERATURE
                                                  270
    EXPERIMENTAL RESULTS
       AP
     12.70
     12.70
     12.70
     t2.7O
     12.70
     12.70
     12.70
     12.70
     12.70
     12-. 70
     12.70
     12.70
     12.70
     12.70
     12.70
     12.70
     12.70
     12.70
     12.70
     12.70
     12.70
       RP
     60.00
     55.00
     50.00
     45.00
     40.00
     35.00
     30.00
     27.00
     24.00
    -21.00
     18.00
     15.00
     12.00
      9.00
      6.00
     -3.00
      0.00
     -3.00
     -6.00
     -9.00
    -12.00
    NITROGEN
    RANGE  X
      1  31.
         29.
         29.
                              OXIDE  -NO
                                     Y
         30.
         29.
         28.
         18.
         15.
         18.
         21.
         24.
         23.
         25.
         25.
         28.
         28.
         27.
         25.
         24.
         23.
         22.
    20
    50
    50
    10
    70
    00
    80
    80
    90
    10
    20
    30
    10
    80
    50
    70
    60
    SO
    80
    80
    60
    275.0
    259.2
    259.2
    264.8
    261.0
    245.3
    162.0
    135.5
    162.9
    182.6
    210.5
    202.4
    218.7
    225.1
    249.9
    251.8
    241.6
    222.4
    216.0
    206.9
    196.1
    1. 282
    1. 10
    3, 0.
    Ot 0
    OXYGEN
    02
    4.68
    5.01
    4.78
    4.7J --
    4.75
    3.81
    0.30
    0.23
    0.23
    0;2r
    1.03
    1.30
    0.84
    0.45
    0.43
    0.4-8"
    0.57
    1. 01 -
    1.17
    r.5t>
    2.14
    .52 PPM
    .90 PERCENT
    007 PERCENT
    .00 PERCENT
    OXYGEN
    
    
    
    CARBON DIOXIDE-C02
    RANGE X
    1 76.10
    I 74.40
    I 75.80
    -I 75.90
    1 76.40
    I 78.10
    1 73.90
    I 70.80
    1 75.90
    1 T9.30
    1 82.10
    1 81.40
    1 82.30
    1 82.70
    1 84.00
    - - 1 84.00
    1 84. SO
    1 84.40
    1 84.00
    1 83.80
    1 82.30
    Y
    9.30
    8.96
    9.24
    9.26
    9.36
    9.71
    8.86
    8.26
    9.26
    9.96
    10.56
    10.41
    10.60
    10.69
    10.97
    ro.rr
    11.08
    11.06
    10.97
    10.93
    10.60
    1.92 PERCENT
    
    
    
    
    
    
    
    CARBON MONOXIDE -CO
    RANGE X
    3 11.00
    3 10.00
    3 8.00
    3 8.00
    3 8.00
    2 19.00
    1 86.00
    1 99.80
    82.00
    66.00
    28.00
    64.00
    83.00
    39.00
    31.00
    -' 2 63.00
    2 51.00
    2 27.00
    2 21.00
    2 15.00
    2 5.00
    Y
    0.004
    0.004
    0.003
    0.003
    0.003
    0.317
    3.967
    4.972
    3.694
    2.691
    0.860
    1.183
    1.598
    1.310
    0.976
    1 . 1 62
    0.915
    0.458
    0.352
    0.248
    0.081
    METHANE - CH4
    RANGE
    3
    3
    3
    3-
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    3
    ... y. _
    3
    3
    3
    ~3^
    3
    X
    0.00
    0.00
    0.00
    0.00
    0.00
    0.00
    2.60
    3.30
    2.70
    2.-10
    1.20
    1.20
    I. 10
    1.10
    1.50
    1.60
    1.20
    0.50
    0.60
    tr.so
    0.10
    Y
    0.00
    0.00
    0.00
    0.00
    0.00
    0.00
    0.11
    0.14
    0.11
    0.09
    0.05
    0.05
    0.05
    0.05
    0.06
    0.07
    0.05
    0.02
    0.02
    0.02
    0.00
    

    -------
                     BOILER BURNER - RADIAL CAS NOZZLE - BLUNT  STAINLESS PROBE
     RP VS NOi02iC02iCOiCH4   AP-  12.70
       II.08          ^.0—O^L
     E 10.87  ^0—0-^        0	0^
     g; 10.65  0                      ^-D— 0\   ^°\
       10.43                   .            XD^   \
     U 10.21                                      \
     9 10.00                                        o
     §  '•"                                        \            ,o-
    • ° • 9-. 36                         ..-...-         \
     3  9-35
     3  9.13
    H
       8.91
     '•  8.69
    
     '• a'.it
     I  8.04
        .82
        .61
        .39
        .17
        .96
        .74
    
        .30
        .09
        .87
        .63
        .43
                                                       \
    
     Si
     a-
     5.
     o-
     I;  .»
    o.
        .00
        .78
        .57
        .33
        .13
        .91
        .70
     §•   :S
     >,  2.83
     X  2.61
     0  2.39
     tf-  2-18
        1.96
     U ' 1.74
     Q  1.52
    
     2  l'°9
     3  0.87
     Z,  0.66
     O1 n.«4
            K
        0.22     C
        0.00  M	 M	n	N	K-
    
    
        -12.000    -4.800   -2.400    9.600    16.800    24.000    31.200   38.400   4S.600    52.800    60.000
    
                                             RADIAL POSITION, cm
         Figure  II-294.   COMPOSITE  RADIAL SCAN  OF  GAS SPECIES
     FROM A  BOILER BURNER  WITH A  60-deg  VANE ANGLE SETTING
       AT  AN AXIAL  POSITION  OF 12.7 cm WHILE  OPERATING AT A
             3040 CF/hr GAS  INPUT,   1.9%  EXCESS  OXYGEN,  AND
                     A  100°F  PREHEATED  AIR  TEMPERATURE
                                                 397
    

    -------
    RP
    
    I
    U
    a
    
    S '
    o
    a
    i-
    z
    
    \.' •
    u
    3
    I
    5-
    
    .
    X
    o
    si
    
    u '
    Q
    X
    0
    5 •
    z
    0 -
    a
    5-
    u
    VS NO
    10.60
    10.40
    10.19
    9.98.
    9.77
    9.57
    9.36
    9.15
    8.94
    8.74
    8.5)
    8.32
    8. 11
    7.91
    7.70
    7.49
    7.28
    7.08
    6.87
    6.66
    6.45
    6.25
    6.04
    5.83
    5.62
    5.42
    5.21
    5.00
    4.79
    4.59
    4.38
    4.17
    3.96
    3.76
    3.55
    3.34
    J.13
    2.9)
    2.72
    2.51
    2.30
    2.10
    1.89
    1.68
    1.47
    1.27
    1.06
    0.85
    0.64
    0.44
    0.2)
    0.02
    
    .02
    
    0
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    U,
    
    
    
    
    
    
    
    N
    
    
    H
    
                 BOUER BURNER - RACIAL GAS NOZZLE - BLUNT STAINLESS PROBE
          C02.CO.CH*  »f>. 12.70
    
                          —D—"^      ""^"
    -12.000
             -7.200
                    -2.400
                            2.400
                                    7.200
                                           12.000
                                                  16.800
                                                          21.600
                                                                 26.400
                                                                         31.200
                                                                                56.000
                                  RADIAL POSITION, em
    Figure  II-Z95.    COMPOSITE  RADIAL SCAN OF  GAS  SPECIES
       FROM A BOILER  BURNER WITH A 60-deg VAN ANGLE
        SETTING  AT AN AXIAL POSITION OF  12.7 cm WHILE
      OPERATING AT  A 3040  CF/hr GAS INPUT,  1.9%  EXCESS
      OXYGEN, AND A  270°F  PREHEATED AIR TEMPERATURE
                                         398
    

    -------
    the composite  plots (Figures 11-294 and 11-295),  it is clearly seen in
    Figures  11-296 and 11-297, which have greater resolution.   As air temper-
    ature and hence  volumetric flow and mixing  rate  increase,  the  average
    methane  concentration decreases at an axial position  of  12. 7 cm.   Gas
    species scans  with greater  resolution are  shown in Figures 11-298 to
    11-301  for  a 100°F air temperature and in Figures 11-302 to 11-305  for  a
    2700°F air temperature.
                                      399
    

    -------
                       BOILER BURNER - RADIAL CAS NOZZLE - BLUNT  STAINLESS PROBE
     RP VS CH*   »P- 12.70
      0.327*
      0.321*
      0.315*
      0.309*
      0.303*
      0.297*
      0.291*
      0.285*
      0.279*
      0.273*
      0.2673
      0.2613
      0.2553
      0.2*93
      0.2*33
      0.2373
      0.2313
      0.2253
      0.2193
      0.2133
     . 0.2073
      0.2012
    '  0.1952
      0.1892
      0.1832
     • 0.17T2
      0.1712
      0.1652
      0.1592
     . 0.1532
      0.1*72
     • 0.1*12
      0.1351
     • 0.1291
     I 0.1231
      0.1171
     . 0.1111
      0.1051
      0.0991
      0.0931
      0.0871
      0.0811
      0.0751
      0.0690
      0.0630
      0.0570
      O.OSIO
      0.0*50
      0.0390
      0.0330
      0.0270
      0.0210
    
    
        -12.000   -7.200   -2.*00    2.*00     1.200	12.000    16.800    21.600   26.»00    31.200   36.000
    
                                         RADIAL POSITION, cm
            Figure  H-296.   RADIAL  SCAN OF  METHANE FROM A
          BOILER  BURNER  WITH  A  60-deg VANE  ANGLE  SETTING
     AT AN  AXIAL POSITION  OF   12. 7  cm  WHILE OPERATING  AT  A
            3040  CF/hr  GAS  INPUT,  1.9% EXCESS  OXYGEN,  AND
                    A  100°F PREHEATED AIR  TEMPERATURE
                                                400
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    . _ .
    
    
    
    
    
    
    
    
    
    <*
    a
    w
    z
    H
    3
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RP VS CH*
    0.1*3*
    ' 'O.IWT
    0.1380
    0.1352
    0.1325
    0.1298
    0.1270
    'V. 17*3
    0.1216
    0.1168
    0.1161
    0.113*
    0.1107
    0.1079
    0.1052
    0.1025
    0.0497
    0.0970
    0.09*3
    - 0.0915
    o.oaee
    0.0861
    0.083*
    . ' 0.0806
    0.0779
    ' 0.0752
    0.072*
    0.0697
    0.0670
    0.06*2
    , 0.0615
    f 0.0586
    0.0561
    | 0.0533
    0.0506
    0.0*79
    0.0*S1
    0.0*2*
    0.0397
    0.0370
    0.03*2
    0.0315
    0.0288
    0.0260
    0.0233
    0.0206
    0.0178
    0.0151
    0.012*
    " ' OT009T
    0.0069
    0.00*2
                 BOILED BURNER - RADIAL G»4 NOZUE - BLUNT STAI11ESS PROBE
               12.TO
      -12.000   -4.800    2.»00    1.600   16^*00   2*.OOP   II.200   36.400   O.600   52.800   60.000
    
                                    RADIAL, POSITION, cm
    Figure  II-Z97,   RADIAL SCAN OF  METHANE FROM A BOILER
        BURNER WITH  A  60-deg VANE ANGLE SETTING AT AN
        AXIAL POSITION OF  12.7 cm  WHILE OPERATING AT  A
             3040  CF/hr  GAS INPUT,  1. 9%  EXCESS  OXYGEN,
             AND A 270°F  PREHEATED AIR  TEMPERATURE
                                        401
    

    -------
    RP
    
    
    
    
    
    
    —
    
    
    
    
    
    
    
    
    
    
    
    
    ^t
    
    a
    a .
    o
    o
    2
    z
    o
    a .
    5 .
    u •
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    VS. CO
    6.28
    6io*
    5.92
    5.80
    5.67
    5.55
    ' 3.4J-
    5.31
    5.19
    5.07
    *!s2
    4.70
    4.58
    4.46
    4.34
    4.21
    4.09
    3.97
    3.85
    3.73
    3.61
    3.48
    3.36
    3^12
    3.00
    2.88
    2.75
    
    2.51
    2.39
    2.27
    2.14
    2.02
    .90
    .78
    .66
    .5*
    .41
    .29
    .17
    .05
    0.93
    o.ei
    0.6B
    0.56
    0.44
    0.32
    0.20
    0.08
                BOILER BUHNER - RAOUL C»S NOZZU - SLUM! STAINLESS PROSE
             12.70
    -12.000   -7.200   -2.*00   2.400    2-'t0-   >2-000 _ 16.800   21.600   26.400   11.200   36.000
    
                                 RADIAL POSITION, cm
        Figure H-298.   RADIAL SCAN OF  CARBON  MONOXIDE
       FROM  A  BOILER BURNER  WITH A 60-deg  VANE  ANGLE
        SETTING AT AN AXIAL POSITION OF  12.  7  cm WHILE
      OPERATING AT  A  3040 CF/hr  GAS INPUT,  1. 9%  EXCESS
      OXYGEN,  AND A  100°F PREHEATED AIR  TEMPERATURE
                                       402
    

    -------
           »P- 12.70
                   BOILER BURNER - RiDIAL 0»S NOZZLE - BLUNT STAINLESS PROBE
    u
    o
     0278
    .9557
    .8836
    .811$
     TJ<>5
     6674
     5943
    .5232
     4511
     3790
    .3069
    .2348
     1627
     0906
     0165
    .9464
    .8743
    .8022
    .7301
    .6580
    .i860
    .5139
    .44(8
    .3697
    .2976
    .2254
    .1534
     0813
    .0092
    .9371
    .8650
    .7929
    .7208
    .6487
    .5766
    .S045
    .4325
     3604
     2883
     2162
     1441
     0T20
     9999
     9278
              -7.200   -2.400    2.400    7.200    12.000   J^6_.800
    
                                        RADIAL POSITION, cm
                                                               21.600
                                                                        26.400
                                                                                31.200
                                                                                        36.000
          Figure  11-299.    RADIAL  SCAN  OF CARBON  DIOXIDE
       FROM  A  BOILER  BURNER  WITH  A 60-deg VANE ANGLE
         SETTING  AT AN AXIAL POSITION OF  12. 7 cm  WHILE
      OPERATING  AT  A 3040 CF/hr  GAS INPUT,  1.9%  EXCESS
      OXYGEN,  AND A  100°F PREHEATED  AIR  TEMPERATURE
                                             403
    

    -------
    RP
    
    
    
    
    
    
    
    
    
    
    
    ~
    
    
    
    .
    
    '§'
    o
    X
    O ' .
    
    
    
    
    
    
    
    c
    r
    C
    C
    c
    c
    c
    c
    c
    c
    c
    c
    0
    c
    c
    VS 02.
    3.0600
    J.-OOT5"
    2.9471
    2.8906
    2.8341
    2.7776
    2.7212
    2:6647
    2.6082
    2.5518
    2.49S3
    2.4388
    2.3824
    2.2694
    2.2129
    2. 1565
    2.1000
    2.0435
    .9871
    .9306
    .8741
    .8176
    .7612
    .7047
    .6482
    .5918
    .5353
    .4788
    .4224
    .3659
    .3094
    .2529
    .1965
    .1400
    .0835
    .0271
    .9706
    .914)
    .8576
    .8012
    .7447
    .6882
    .6318
    .5753
    .5168
    .4624
    .4059
    .3494
    .2929
    .2365
    .1800
           i  AP*  12.70
                    BOILER BURNER - RADIAL CIS NOZZLE - BLUNT STAINLESS PROBE
       -12.000
               -7.200
                       -2.400
                                 £__  T.400   12.000
    
                                 RADIAL POSITION, cm
                                                    16.800
                                                           21.600
                                                                  26.400
    31.200
           36.000
       Figure  11-300.   RADIAL SCAN  OF OXYGEN  FROM A  BOILER
     BURNER WITH A  60-deg  VANE ANGLE SETTING  AT AN  AXIAL
    POSITION OF 12.7 cm  WHILE OPERATING AT A  3040 CF/hr GAS
        INPUT,  1.9%  EXCESS OXYGEN,  AND  A  100°F PREHEATED
                               AIR TEMPERATURE
                                           404
    

    -------
                      BUILEH BUHNER - K»UI«I CAS nniu.1 - BIUNI  SKINLESS PROBE
    DP vs NO,
      in.65
      172.41
      171.17
      169.92
      168.68
      167.44
      166.19
      I64-.9S
      163.70
      162.46
      161.22
      IS9.97
      158.73
      157.01
      1S6.24
      155.00
      153.76
      152.51
      151.27
      150.02
      I 48.78
      147.S4
      1*6.29
      I4S.OS
      143.61
      142.S6
      141.32
      140.07
      138.83
      1 17.S9
      1)6.34
    •  in.10
      113.86
      112.61
      131.17
      I 10.13
      128.88
      127.64
      126.39
      12*.IS
      123.91
      122.66
      121.42
      120.18
      118.93
      117.69
      116.45
      115.20
      113.96
      Itr.Tl
      111.47
      110.23
              »(•• 12.70
       -12.000
                 -7.200
                         -2.400
                                   2.401
                                           7.200
                                                   12.000
                                                           16.BOO
                                                                    21.600
                                                                            26.400
                                                                                     11.200
                                                                                             36.000
                                          RADIAL POSITION, cm
          Figure  11-301.    RADIAL  SCAN OF  NITRIC  OXIDE FROM
       A  BOILER  BURNER  WITH A  60-deg  VANE  ANGLE SETTING
         AT  AN AXIAL POSITION  OF 12.7 cm  WHILE OPERATING
          AT A  3040  CF/hr  GAS INPUT,  1. 9%  EXCESS  OXYGEN,
               AND  A  100°F  PREHEATED AIR  TEMPERATURE
                                               405
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    S*
    -
    Q
    
    Q
    Z
    O
    2
    CO
    3
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RP VS. CU
    .9725
    .8750
    .7776
    .6802
    .5827
    4.4853
    4.3879
    4.2904
    4.1930
    4.0956
    3.99U1
    1.9007
    1.8033
    3.7058
    1.6084
    1.5110
    1.4135
    1.3161
    3.2186
    1.1212
    1.0238
    2.9263
    2.8289
    2.7315
    2.6340
    • 2.5366
    2.4392
    1 2.3417
    2.2443
    2.1469
    <".0494
    I.9J20
    1.8545
    1.7571
    1.6597
    1.5622
    1.4648
    1.3674
    1.2699
    1.1725
    1.0751
    0.9776
    0.8802
    0.7828
    0.6853
    0.5879
    0.4905
    0.3930
    0.2956
    0.19BI ,
    0.1007 •
    0.003}
    -12.000
               BOILER BURNER - RADIAL GAS NOZZLE - BLUNT STAINLESS PROBE
         AP- 12.70
           -4.800    2.400    9.600   16.800   24.000   31.200   38.400   4$.600   52.800
    
                                 RADIAL POSITION, em
      Figure  11-302.   RADIAL SCAN OF CARBON MONOXIDE
     FROM A BOILER  BURNER  WITH A  60-deg VANE ANGLE
      SETTING  AT AN  AXIAL POSITION  OF 12.7 cm WHILE
    OPERATING AT  A  3040 CF/hr  GAS  INPUT,  1.9%  EXCESS
    OXYGEN, AND  A  270°F PREHEATED AIR TEMPERATURE
                                      406
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    • -
    
    I'
    
    u
    a
    §
    
    S
    z
    a
    
    «?
    u
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RP VS C02
    11.0839
    11.0287
    10.9734
    10.9182
    10.8629
    10.8077
    10.7524
    10.6972
    10.6419
    10.5867
    10.5314
    10.4762
    10.4209
    10.3657
    10.3105
    10.2552
    10.2000
    10.1447
    10.0895
    •- 10.0142
    ' 9.9790
    • 9.9217
    9.8685
    • 9.8112
    9. 7580
    ' 9.7027
    ' <».6475
    9.5922
    9.5370
    1.4817
    1.4265
    ' 9.1712
    1.3160
    9.2608
    1.2055
    9.1503
    9.0950
    9.0J98
    8.9845
    8.9293
    8.8740
    8.8188
    8.7635
    8.7083
    6.6530
    8.5978
    8.5425
    8.4873
    8.4320
    8.3768
    8.3215
    8.2663
                BOILER BURNER - RADIAL
             12.70
                                 GAS NUtllE - BlUHt SIAItLESS PROBE
    -12.000
            -4.800
                    2.400
                            9.600
                                  16.*00
                                          24.000
                                                 31.200
                                                        38.400
                                                                45.600
                                                                       $2.800
                                                                              60.000
                                    RADIAL POSITION, cm
        Figure  11-303.   RADIAL  SCAN OF  CARBON DIOXIDE
     FROM  A  BOILER BURNER WITH A 60-deg  VANE  ANGLE
      SETTING AT  AN AXIAL POSITION OF  12.7  cm WHILE
    OPERATING  AT  A 3040  CF/hr GAS INPUT,  1.9%  EXCESS
    OXYGEN,  AND A 270°F  PREHEATED AIR  TEMPERATURE
                                      407
    

    -------
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ^
    **
    *
    s
    o
    >•
    g
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    RP VS 02,
    5.0100
    *!s225
    4.7288
    4.5414
    4.4476
    4.15)9
    4.2602
    4.1665
    4.0727
    1.9790
    3.6853
    J.7916
    3.6976
    3.6041
    1.510*
    3.4167
    3.3229
    3.229}
    3.1355
    • 3.0418
    2.9460
    > 2.8543
    2.7606
    - 2.6669
    2.5731
    2.4794
    2.3857
    2.2920
    2.1982
    2.10*5
    2.0108
    1.9171
    1.6233
    .7296
    .6359
    .5422
    .4464
    .3547
    .2610
    .167)
    .0735
    0.9798
    0.8661
    0.7924
    0.6966
    0.6049
    0.5112
    0.4JTS
    0.3237
    0.2300
               BOILER BURNER - RADIAL CAS NOIZLE - BLUNT SIAlNLESS PROBE
             12.70
    -12.000
            -4.600
                    2.400
                           9.600
                                        **.000
                                                11.200   38.400   45.600   52.800
                                                                            60.000
                                    RADIAL POSITION, cm
         Figure 11-304.   RADIAL SCAN  OF OXYGEN FROM A
      BOILER  BURNER WITH A 60-deg  VANE ANGLE  SETTING
       AT AN  AXIAL POSITION OF 12.7 cm  WHILE OPERATING
       AT A 3040 CF/hr GAS INPUT,  1. 9%   EXCESS OXYGEN,
           AND A 270°F  PREHEATED AIR  TEMPERATURE
                                       408
    

    -------
                     BURNER - RADIAL CIS NOZZLE - BLUNT STAINLESS PROBE
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    g
    p.
    *
    u
    a
    
    
    o
    2
    H
    5
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    ftP VS NO.
    •'• 275.0*
    272.31
    269.57
    266.8*
    '26*. 10
    261.37
    258-; 67
    255.90
    253.16
    250.*)
    2*7.69
    2**. 96
    - 2*2.22
    2)9. *9
    236.75
    23*. 02
    231.28
    228.55
    225.81
    223.08
    220.)*
    217.61
    21*. 87
    212.1*
    ' 209. *0
    206.67
    20). 9)
    201.20
    198. *6
    195.7)
    ' 192.99
    190.26
    187.52
    18*. 78
    182.05
    179.31
    176.58
    ir).e*
    171.11
    168.37
    165.6*
    162.90
    . 160.17
    157.*)
    ' 15*. 70
    151.96
    1*9.23
    1*6. *9
    1*1.02
    138.29
    1)5.55
             i2.ro
    --12. 
    -------
                   APPENDIX II-A.   Computer Program for
                           Reduction Velocity t?ata
        The following  computer program was written to transform the  raw
    pressure  difference data from the hot- and cold-model five-hole pitot
    probe into axial and tangential velocity profiles.
                                      410
    

    -------
                                     Table II-A-1
    // JOB
             0001 2801 ?603
    OOUl ?603 0001  2M10.101
    LUG DRIVE
    0000
    0001
    0002
    CART SPEC
    0001
    2801
    2603
    CART AVAIL
    0001
    2801
    2603
    PHY DRIVE
    0000
    0001
    COO?
    V? MIO   ACTUAL  16K   CONFIG 16K
    
    // FOR
    »L 1ST ALL
    *0,'JE WORD  INTEGERS
    'EXTENDED  PRECISION
    *IUCS(CARD,1403  PR I N I IrR , D I SK )
    C      MARCH  24,1972
    C      Al,A?f A3,HO,B2,B4,C,l)t ARC CALlGRATItN  COE FF I C I KiT S
    C      THtTA  ANuLC  THRU  WHICH THE PROBE  IS  ROTATED ABOUT THE Y AXIS
    C      AP  AXIAL  POSITION, RP RADIAL POSITION,  T  TEMP  IN OFGRCCS C
    C      PB  IS  ATMOSPHERIC  PRESS IN MM UF  HG ,  FI  COMICAL  AJGLh, Ot-LTA  IS
    C      VT  IANGF.-ITIAL  VELOCITY, VR RADIAL  VELOCITY
          DIMENSION  XI(20C) ,Y1(200) ,Y2(200) ,         KARKI200)
           DIMENSION MAi)  Al,A2,A3,bO,b2 ,B4 ,C ,D
        f> FURMAT  (8F10.0)
      BUI INDEX=1
    
    C     IPAGE -CU..STANT  FUR SKIPPING TO NEW  PftGb  UN  INPUT PR|.\TOUl
          lOPGf: =   b2
    C     IOPGL" -CONSTANT  FOV< SKIPPING TO NCVv  PAGC  UN  OUTPUT
          1C =  0
          READ!INPUT,912)ID
        4 READ  (2,6)  THETA,AP,KP,PM,P03,P24 ,P04 ,POA,T ,PB
          RP =-l
                                1006
    1006
    
    
    1007
    
    
    100«
          CALL EXIT
          WRIT: ( mui ,TIS) ID
          dRI TE( IOUT, 919)
          1C  = 0
          iMn= INDEX- i
          DO  1008  1=1, NO
          IF( IC-IOP&E ) 1007,
          WRI TE( IUUT,917)
          1C  = 0
          KKiTci iuur,9ni
          READ! 1 ' I ) AP,RP,F I ,DFL f A , RHO , V , VX , V Y , VZ , V T , VR , PS T , T , PH
          WRITE(5,92C)   APtRP,FI,DFLTA,RHii,V,VX,VY,V?,VT,VR,PST,T,PH
          1C  = IC+1
          CUNTI.MUE
          WRITE! IOUT, 903) ID.APST
          CALL   PTSE91 XI, Yl , MARK, NO)
          WRI TC( IOUT,TO^) IO.APST
          CALL PTSE9(Xl,Y2,MARK2,NO)
          GO  TO  ROl
                                           411
    

    -------
                         Table II-A-2
         IF( r,DEX-l)5CO,lCTG,100?
     •300 WRITCI loui rni )
         CALL HXI r
    1000 v.UITbl IUUI , -M3IAI ,A2,.Vi,hG,i>2,tt'»,C,l)
         ldRITF( ll.iljl ,9U) ID
         WRITfcl ini)If»15)
    1002 IF{ IC-IPAGU 1003, 1003, IOCK
    loo* hRiTbi IULT,'?-rjELU
      12 RHU = «O.OC2<,58*Ph/760.*273./(?73.*T) )/( I2.*12
         FIS=FI*Fl
         XKV=( (Fl
         VT=V*SIN(FI I
         VX=V*COS(FI )
         VY = VT*COS(Oi:LTA)
                             412
    

    -------
                               Table II-A-3
        IF (THFTA) 20,^1,20
        THETA=THErA*0.017<«533
        VXP=VX
        VZP=VZ
                   THETA)*VXP*bIN!THr FA)
        A=ABS!VX/V)
        FI =ATAN(DKN/A)
        IF (VX) 5C.51.51
     •JO FI = 3. 1415 )-FI
     •>l A=ABS(VZ/(V*SIN!FI ) ) )
        DE-N^SORTI l.-(A*A) )
        DELTA = ATAN(A/OEM
        IF (VZ) 52,53,53
     52 IF 
    -------
                                                            Table II-A-4
          FORMAT! 15H ERROR  IN  LOGIC  I
     911
    "T12
     913  FORMAT! 1H1, 30X.42HAERUDYNAMIC  MODELING OF COMBUSTION BUK'.ERS  //
        142H CALIBRATION COEFFICIENTS FOR  FORWARD FLOW /
        25H  Al  =  F11.6.3X, 4HA2 = Fl 1 .6, 3X.4HA3 =
        35H  BO  =  F11.6.3X, 4H62 = F 1 I . 6 , 3X ,4HB4 =
        45H  C  =  F11.6.3X, 4HD  = Fll.6)
     014  FTJRMATr/2CX,40A2/17>l TOTAL  DATA  INPUT  )
     •115  FORMATI/6H THETA,4Xi 2HAP,  5x,  2riRP,12x,
        124, 13X,  3HP04, 13X, 3HPOA ,  7X,  1HT, 6X.2HPB)
     916  FORMATI1H , F 5 . 0 , 2F 7 . 1 , 5 ( 2 < , F 1 4 . 2 ) , F 8 . C , F7 . 0 )
     917  FORMAT! 1HI)
     TIB  FORMAT! 1H1, 20X.40A2/ 8H RESULTS/)
     919  FORMATC/  5H   AP.5X, 2HRP,  6X,  2HF I , 4X , 5HDELT A ,
                                                    Fll.6/
                                                    Fll.6/
                                                    3HP13,  13X,  3HP03,13X.3HP
                                                            5X,
         11HV, 7X, 2HVX,  7X.2HVY,  7X.2HVZ, 7X.2HVT, 7X.2HV3,
         21HT.5X, 2HPB)
      920 FORMAT! F6.1,F7.1,2F8.1,F12.7,6F9.2,Fil.6,F8.0,F6.0)
          END
    VARIABLE ALLOCATIONS
                                                                3HRHO, 10X,
                                                               6X,  'iHPSI,9X,
    XKR =025C-0007 Y1IR =C4B4-025F
    BOIR =0718 B2IS = C71b
    APIR =072A RPR =0720
    POA(R =073C U-< =073K
    V(R =074E VX(* =0/61
    "STIR =0760 APSTIR =0/63
    FISIR =0772 XKVU =3775
    DENIR =0784 X2H =0797
    IF1LEII =0951 INPUTII 1=0952
    1C! I =0957 NO! I 1 = 095b
    ir.RGFERENCED STATEMENTS
    901 40 105 90?
    STATEMENT ALLOCATIONS
    5 =099A 6 =C9')D 901 = 09A4 12
    911 =OAIO 912 =OA1A 913 =OA10 914
    801 =OB3C 4 =OB52 805 =0077 803
    1002 =OC3D 1004 =OC43 1015 = CC55 1016
    14 =0027 16 =002F 17 =OOJ6 Ib
    5-j =OE4C 54 =OE54 53 = OE5C 16
    809 =CF43
    Y2 R
    b4 R
    P13 R
    Pb R
    VY ft
    P01 R
    XKPIR
    ROI R
    luUTI I
    1 ( I
    
    
    
    = C9A9
    = CA7A
    = 0678
    = CC5B
    = OD3C
    = OE6l
    
    )=07CC-04B7 AKR )=C70F A2
    )=071E C(R 1=07^1 1)
    1=0730 POJI3 )=C733 f?.',
    1=0742 FKR )=U7',5 OELM
    )=C754 V/IK )=C757 VT
    1=0766 r>02(R 1=0769 PR
    1=0778 vX^(-t)=v":773 7ZP
    )=07«A MARr.lt )=CH60-0799 MAsK,'
    1=0953 KUE^II }=C<)i'i I°-GE
    1=0959
    
    
    
    40 =C9b6 )C3 =09C'J 134 =09uo 9C
    915 =OA8A T16 =CAriO 117 =CAUC 9
    1006 =OB9/ 1007 =CBA3 10CP =OBLP H(
    1003 =CC5R 70 =CCC.H 71 =OCE7 K
    15 =0042 12 =OD4S 20 =ODCO 5(
    57 =OE69 21 =CE6!} hOh =OEFJ 3(
    
    K )=-;/!? A-J IK i=;:/i-j
    K 1 = '7 '4 Ti.;' T.\ ( k ) =.• 7 ,. 1
    •< ) =C7 i(j m* ( < ) =" 73 )
    •^ I = '.) 7 4 f- >. H ' I 3 1 - 7 4 n
    -( ) =C7-ji '/•<(•< ) ='.! /o j
    R ) ='C7 o\. XT I .-( ) -r /oc
    ^ )=T77(- A I •"' )-'7r. 1
    1 1 ='.'"l>?-f-rtM I ,.( 1 ) -'. 9-j'..
    1 I =v.9 >5 I- .V,f- I I 1 =1 ;:j6
    
    
    
    
    :•: =>:'7cL -K)) =.;irr M: =
    L ^ = c. :\ 'j r -j 1 1 - A ^ C j 2 ;; =
    :*. =(Cii ;co -cci-' I;TO =
    J =Cull 13 =>r!lt. 11
    : =C:i6 51 =:.E1C ')2 -
    ^7 =CFrc bf. -:Fii) 811
    
    FEATURES SUPPORTEu
     Oxl£ WORD INTEGERS
     EXTENDED PRECISION
     IOCS
    CALLED
     PTSE9
     EOVR
     SOF
           SUBPROGRAMS
             ESQRT    EABS
             CARDZ    SRED
                            EATAN
    cSIN
    SCOMP
                                             ECCS
                                             SFIU
    EEXP
    SIOAI
    EAOL)
    SI OF
    ESUB
    SUBSC
    EDI V
    SNK
    r S 1 :•
    b J •< r •-•
                             £ST.:<
         CONSTANTS
        100000000E 01=095C
        OCOOOOOOOE 00-0966
        27300COOOE 03=097A
        572957700E 02=0989
                                .980000000E 00=095F
                                ,157079630E 01=096£
                                .12000COOOE 02=0070
                                .90COCOOOOC 02=0?8C
                                                       .5COOOOOOOE  00=0962
                                                       .471238900E  01=C971
                                                       .20COOOOCOC  Ol =
                                                .6283180COC  Cl='
                                                .24560COCn£-C2 =
                                                . 174VJ30COc-Cl -'. ?F. 3
                                                 31'
                                                 76
                                                            1 5
    

    -------
                               Table II-A-5
    // PO
    *l)Mt; r
     I c,b'i( XI'Ll! I , YPLDT
     I'RiJGKAKMEK   -   LOT Tit.  T'lC7Yf.K|
     UIMENSI'J.'i  Xi'L'T ( 7 > , YPLDI I?) »VAKK (?)
     DIMENSION  L ( ir>Tl )
     DIME'-iSlm  L MM 101 ) ,  I = 1 ,NO
     L(1)=l
     XLINE = 1CO.O
     YL IME = 'il.C
     LINEX = NUMBER CT  POINTS
     LINEY = NLMBfc« 'IF  POINTS
     LINEX = XLINE  +1.0
     LINEY = YLINE+1.0
                                               JO)
                                                             -  MAY 1T71
                                                NUMiFK f;F
                                             IMC WHICH X
                                             IMC UHICH Y
    POINTS=COI
    AXIS is Diviar-i)
    AXIS is
          hH
          TO
                PLl'TTEO IS GREATER THAfJ ALI.MMEn
                1  10)
    PLOTTED
    PLCTfEO
                                              ON
                                              ON
                    AXIS
                    AXIS
          ARRANGE  THE Y-VALbES  IN DESCENDING  ORDER
          LIM  =  NO-1
          INT  =  1
          DO <.  I = 1,L1M
          II   =1+1
          IF(YPLOT( II 1-YPLUTI I ) ) A , <,, 2
          TEMPI  =  YPLOTI I 1)
          TEMP2 = XPLOTI I  1)
          1T3  =  L( I 1)
          YPLOT   l)=YPLOr(I)
          XPLOT    )=XPLl)T ( I )
          LI I 1)  L  I )
          MARK!    =MARK ( I )
          YPLOT     =  TEMPI
          XPLOT    =  TEMP?
          L( I )=  T3
          MARKl  )=IT4
          INT    =1
          CONTINUE
          IF( INT  -1)6,6,5
          LIM=INT
          GO  TO  1
          OY=  STEP SIZE FOK Y-AXIS
          DY  =(YPLOT( l)-YPLOT(NO) 1/YLINE
          POWK  =  10COO.C
          DO  50  LD=1,<3
          IF(DY-POWK)
    -------
                      Table II-A-6
        on i.i r>i
     4 \  ?Qw-i = P(),.«*'j. H;
        Ih (UY-P')V.1^)  bC,42,'« lAC.'.O, 13
     }9 XKIN = XPL()T ( I )
     40 CONTINUE
        DX = I XMAX-XI/INI/XLlNE
        PLOT X,Y
        1 = 1
        Y   = YPL11T t I )
     90 DO 7 J=1,LINEX
      7 LINEU)= IBLK
     10 IF(YPLOTIl)-  Y + C.5  *ABS(I)Y) ) 1A, 11 , 1 1
     11 J   = (XPLOTI I )-X^IN)/DX *1.5
    128 LINE( J) =   MARK! I )
        1   = 1 + 1
        IF ( I-NO) 10,10, 14
     14 GU TOI 61,61,61 ,64,64,66,66,60,69) , IPRNT
     61 WRITE ( IULT.911 )  Y.UME
        GO TO 20
     64 YPRMT = Y+0.005
        WRITE (IOUT.912)  YPRnT.LlNE
        GO TO 20
     66 YPRNT = Y+0. 00005
        WRITE (IOUT.913)  YPRNT, LINE
    913 FORMATtlH ,F8.4,2X,101A1)
        GO TO 20
     68 YPRNT = Y+O.OCOC05
        WRITE (IOUT.914)  YPRNT.LINE
        GO TO 20
     69 WRI TE ( 1001,915)  Y,LI ME
     20 Y   =  Y-DY
        IH I-NO)9C,90,91
     91 CONTINUE
        K   =  0
        DO 21 1=1,11
        XP( I )= XMIN + DX*K
     21 K=K+1C
        IFIXPI 11 1-10000. 170,74, 74
     74 IF(XP( 11 1-1. E7) 72,71,71
     72 DELX=0.5
       .DO 81 1=1,11
        1F(XP( I ) 176,81,77
     76 XP( I )=XP( I 1-HELX
                           416
    

    -------
               Table II-A-7
        '.j'l  f'l '.! I
     17 X a (  1 > = X i>( I M I : F L X
     ol CO.Mll Jl;E
        rtRITti i.ini,:;i
        GO  Tli 19
     n v.w. i  rt i mui , -IM XP
        GO  10 9-)
     70 IHXPI 11 1-0.01) 71 , 7S,
        DO 02  1=1,11
        IF< XP( I 1 ) 7B,H2,fl3
     70 XPI I ) = XP ( I 1-PfcLX
        GU II J  R2
     33 XPI I )=XP( I ) *OCLX
     H2 CuNTINUE
        KRl IE! IDU1,')02)XP
        GO TlJ  99
     99 CUNT INUE
        L IM = 'JO
    201 INT=l
        00 96  I = 1 ,L If
        J=L ( I )
        IF (J-I 197,96,97
     97 TEMP 1  =  YPLOT ( I 1
        TEMP2  =  XPLOT ( 1 1
                 I )
    IT3 = L
    YPLOTlI
    XPLOTII
    L( I 1  = LIJ)
        YPLOIIJ
        XPLOTU
        LIJ) =
                  =  YPLUT(J)
                  =  XPLUT(J)
             = TEMPI
             = TEMP2
            T3
        INT=I
     96 CONTINUE
        IF( INT-1)205,20S,202
    202 LIM=1NT
        GO TO 201
    205 RETURN
    902 FORMATI/2H   , 11 ( 9X , 1H ' )/2H  ,111=10.3)
    911 FORMATtlH  ,F9.0,2X, KHA1)
    912 FORMATI1H  ,FH.2,2X,101Al)
    914 FORMAM1H  , F 8 . 5 , 2 X , 1 0 1 A 1 )
    915 FORM.ATIE1C.2  ,1X,  10UI 1
    916 FORMAT(/2H   ,11 I9X,IM' 1/7H  .11E10.2)
    917 FORMATI/2H   , I I (9X, IH')/2H  .11FIO.S)
    918 FURMATI/2H   , 11 I9X,IH')/2H  .11F10.0)
        END
                    417
    

    -------
               APPENDIX II-B.   Cold-Model Studies of an Axial
                   Flow  Burner With an'ASTM Flow Nozzle*
    Burner Design
        Axial  flow burners are typically used on high-temperature,  large-
    scale applications  such as steel mill soaking pits and  slab heaters  and
    large car  bottom and  rotary hearth furnaces,  where burner  inputs  are
    in the 5-30 million Btu/hr  range.   Numerous individual  designs of  axial
    flow burners  are in use.   Surface  Combustion has two designs.   The first
    was  used over a 15-20 year period (1950 to  1965) and installed on  about
    1200  soaking  pits in the United  States (Figure  II-B-1).
                            FLOW NOZZLE
                   AIR-DISTRIBUTION
                   SCREEN
                 GAS
                                                      -BURNER BLOCK
                                 AIR
                                               A-I2M256
      Figure  II-B-1.   SURFACE COMBUSTION  AXIAL BURNER DESIGN
    The major  design feature  is  the use  of an ASME flow nozzle contour for
    air discharge at  the air-gas  mixing point.   This not  only provides  con-
    trol over velocity and velocity  distribution of the mixing point,  but also
    precision air metering for burner-input control.   An  axial  flow gas nozzle
    is located at the  flow  nozzle throat for long-flame applications.   An  even
    longer flame can be obtained if the gas nozzle is positioned at  a  point  of
    lower  velocity differential.
       This burner had a flame longer than our experimental furnace.
       Therefore,  it was not studied in hot-modeling conditions.
                                       418
    

    -------
         Flame  length must usually be tailored  for heating-chamber  dimensions,
    and  this is  accomplished by using additional gas  nozzles.   Nozzle patterns
    are  usually 1, 2, or 4.   Additional flame-length  control can be  achieved
    by introducing swirl into the  gas nozzles.  With  multiple  nozzles,  2 or 4,
    swirls  can  be in opposite  directions.
         The second  burner design is being used on installations built since
    the  1963-1964 period and uses the same  air-side design contours including
    the flow nozzle.   The major  improvement is in the gas nozzle  system,
    which  incorporates  both radial and axial  gas mixing for flame-length con-
    trol.   This gas  mixing system can be installed on  existing old-style
    burners (Figure  II-B-2).
         The experimental burner is  designed to simulate both of the above
    burner designs through the use of removable inserts.   The  gas  input of
    the experimental burner is limited by our furnace  to 3. 5  million Btu/hr.
    Therefore,  it  has to  be scaled down  from the  30 million Btu/hr input  of
    a full-sized burner  using velocity scaling techniques.   Velocity  scaling
    is the  most widely  used technique of  burner equipment manufacturers.
    The  basic  operating characteristics of the experimental burner  are  given
    in Table II-B-1  and represent the conditions found  in  a full-sized com-
    mercial burner.
              Table II-B-1.  OPERATING CHARACTERISTICS  OF
                   EXPERIMENTAL  AXIAL FLOW BURNER
            Gas  Input (Maximum)                    4000 CF/hr
            Air  Input at  10% Excess  Air        44,000  CF/hr  (STP)
            Air  Preheat  Temperature                800°-900°F
            Air  Duct  Velocity at  900°F                30 ft/s
           .Air  Housing  Velocity at 900°F             30 ft/s
            Air  Velocity at  Throat                    160 ft/s
            Burner Block  Velocity at  900°F            40 ft/s
            Gas  Nozzle Velocity at 60°F
             (Maximum Flame  Length)                160 ft/s
         Based on  the above design information,  the following  scaled-down
    burner dimensions were calculated.
                                       419
    

    -------
                                          RADIAL GAS
                                                          AXIAL GAS
                                              A-I2II258
    Figure II-B-2.   COMBINATION RADIAL-AXIAL GAS BURNER
                                   420
    

    -------
         1.   Air Mousing  Diameter
         Air  at  44, 000 CF/hr (STP),  raised to a 900°F preheat  temperature
    while maintaining a 30 ft/s chamber  velocity, requires  a housing diam-
    eter of 14 inches as  determined from Equation II-B-1.
                            D2 = 4Q(T2/Ti)/V7T(3600)                  (II-B-1)
    where —
         D  = diameter, ft
         Q  = air flow at  STP,  CF/hr
         T2 = preheat temperature,  °R =  1360
         TI  = temperature at STP,  °R =  520
         V  = velocity,  ft/s  (30 ft/s)
         2.   Surface Combustion Flow Nozzle  Diameter
         Air  again at  44, 000 CF/hr (STP),  raised to  900°F preheat  tempera-
    ture while maintaining a 160  ft/s velocity, requires a nozzle  diameter of
    6 inches using  Equation  II-B-1.   The pressure drop  through the nozzle
    was calculated  at 2.4  inches  of water per velocity head  using the following
    relationships:
         Pressure drop, h ,  in feet of fluid flowing is  given by Equation
    H-B-2:
                                     v   2g                                  '
    
    To  express h  in feet of water  column, it is  corrected for the density
    difference  between water and the flowing fluid, air, where —
        V2         = velocity, ft/s at STP
        g          = gravity  constant,  32. 17 ft-lb/lb,.s2
        p (water)   = 62.4 Ib/cu ft
        p(air)     = 0. 0763 Ib/CF
    Therefore,
    
                                            V2    Pair
                        hv(feet of water) = j— (        )              (II-B-3)
                                             °c   water
                                      421
    

    -------
         3.   Surface Combustion Gas  Noy.zle Diameter
         For longest flame operation  the velocity of the  gas should equal the
    velocity of the  air  or  be 160 ft/s.   Again using  Equation II-B-1  and as-
    suming TI = Tz,  the nozzle  diameter was calculated at 1. 12 inches.  The
    pressure drop in the  nozzle will  be 5. 0 inches of water  using Equation
    II-B-3.
         4.   Axial  Flow Burner Operation  for  Cold Flow Studies
         The burner  designed for  use  on the hot furnace  (Figure  II-B-3) will
    also be  used on the cold model with adjustments made to the volumetric
    flow to scale mixing for  the  lower air  temperature  (70°F) in the cold
    model.   We decided that momentum flux scaling  would be better than
    either Reynolds  number  or velocity scaling  for obtaining the data required
    from the cold  model for  this program.   To scale from the  hot burner
    (900°F preheated air) to the cold burner  (70°F  air),   momentum flux is
    held constant according to Equation II-B-4.
    
                                "nV =  "cV                       
    -------
    tSJ
    
    
    OO
    CK
    ATE
    \ i
    c
    
    -------
      Table II-B-Z.  OPERATING VARIABLES AND BURNER DIMENSIONS
           FOR AXIAL  FLOW  BURNER USING 900°F AND 70°F AIR
                                                   Air  Temperature
                                                    900°F      70°F
          Gas  Nozzle Input,  SCF/hr                4,000     6,4ZO
          Air  Input,  SCF/hr                       44, 000    70, 500
          Air  Duct Velocity, ft/s                    30       <30
          Nozzle  Diameter,  inches                     6         6
          Nozzle  Pressure Drop, in.  HzO            2.4       2.4
          Gas  Nozzle Diameter,  inches             1-1/8     1-3/4
          Gas  Nozzle Pressure Drop,  in.  HaO         5       3. 6
        In both the hot and cold test  work, a pressure-drop screen was used
    in the burner to distribute flow evenly across  the  burner housing diam-
    eter.   These  screens are  designed for a  3. 0 inches of water column pres-
    sure  drop.   For the hot operation, this is a screen having about 13%
    open  area.
    Tracer-Gas Mixing Studies
        Table  II-B-3  and Figure II-B-4  show the raw  data  input, the reduced
    data,  and  a graphical presentation of the  data  for  the axial flow burner
    fitted with the ASTM  flow  nozzle  at  a  5. 1-cm  axial  sampling position.
    The following is an explanation of the  headings listed in Table II-B-3:
    Y-observed is a carbon  monoxide  value on the calibration  curve for a
    given value of x;  Y-computed is the  value of Y-calculated from a poly-
    nomial fit  of  the calibration  curve for  the same  value of x;  difference
    is the numerical difference between  Y-observed and Y-computed; SD is
    the standard deviation of Y-computed.   The  coefficients  of the fitted
    calibration curve  are  listed next as  C(l),  C(2)...C(N).   Under  experi-
    mental results we  list AP,  the axial position of the data point in centi-
    meters; RP,  the radial position of the data point in centimeters;  X(V),
    the experimentally time-averaged voltage  corresponding to  the unknown
    concentration;  and  CO,  the value  of  the carbon monoxide concentration  in
    parts  per  million (ppm).   Figure  II-B-4 shows the  graphical output of
    Table II-B-3.   The carbon monoxide concentration above the ambient level
    of approximately 70 ppm occurs between  ±2  cm  from the axis of the bur-
    ner; in the throat of the burner the  concentration falls  to 8 ppm.   Figure
                                      424
    

    -------
             Table H-B-3.   TRACER-GAS  MIXING DATA FOR
               THE AXIAL  BURNER WITH  THE ASTM FLOW
                NOZZLE AT THE 5. 1-cm AXIAL POSITION
    
          TRACER GAS STUDIES OF COMBUSTION  BURNERS
    AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLD MODEL (CO TRACER  GAS)
    Y OBSERVED Y COMPUTED
    0.00 0.44
    125.00 124.26
    250.00 249.14
    37S.OO 377.18
    500.00 498.95
    SD Y= "0.19159E 01
    DIFFERENCE
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
    
                COEFFICIENTS FOR Y= C( I I»C<2)*X*. ,
                C(  1)=   0.4445
                C(  2)=  395.5515
                C(  3) =  102.9597
    iXPERIMENTAL RESULTS
    AP
    5.10
    5.10
    5.10
    5.10
    5.10
    5.10
    5.10
    5. 10
    5. 10
    5.10
    5.10
    5.10
    5. 10
    5.10
    5.10
    5.10
    5.10
    5.10
    5.10
    5.10
    5.10
    5.10
    5. 10
    5.10
    5.10
    5.10
    5.10
    5 . IT)'
    5.10
    5.10
    5.10
    5.10
    5.10
    •srnr™
    KP
    -25.00
    -20.00
    -15.00
    -14.00
    -13.00
    -12.00
    -10.00
    -9.00
    -8.00
    -7.00
    -6.00
    -5.00
    -4.00
    -3.00
    -2.00
    -1.00
    0.00
    1.00
    2.00
    3.00
    4.00
    5.00
    6.00
    7.00
    8.00
    9.00
    10.00
    11.00
    12.00
    13.00
    14.00
    15.00
    20.00
    ZB'.'OTJ"'
    X(V)
    0.172
    0.170
    0.172
    0.171
    0.171
    0.171
    0. 171
    0.171
    0.169
    0.080
    0.030
    0.020
    0.019
    0.018
    0.645
    1.410
    1.600
    1.720
    0.690
    0.021
    0.019
    0.020
    0.021
    0.021
    0.065
    0.146
    0.169
    0.172
    0.172
    0.172
    0.172
    0.172
    0.171
    0.172
    CO
    71.52
    70.66
    71.52
    71.09
    71.09
    71.09
    71.09
    71.09
    70.23
    32.74
    12.40
    8.39
    7.99
    7.59
    298.40
    762.86
    896.90
    985.38
    322.39
    8.79
    7.99
    8.39
    8.79
    8.79
    26.59
    60.38
    70.23
    71.52
    71.52
    71.52
    71.52
    71.52
    71.09
    71.52
    .+C(N+1)*X**N
                                     425
    

    -------
        HP VS.  CO
           ~7.
          H  449.
          £  «•»•
          3  *10.
          Z  391.
          0  371.
            352.
          8  »*.
            314.
            295.
            276.
            256.
            237.
            218.
            199.
            IBOi'
            160.
            141.
            122.
            103.
             84.
          	65V  *-
             45.
             26.
              7.
                         AXIAL BURNER WITH SURFACE COMBUSTION
                        5.10
                                                           NOZZLE - COLO MODEL  (CO TRACER GAS)
    U
    
            "-257000   -20.000   -15.000   -10.000
                                                 -5.000     0.000     5.000
    
                                                      RADIAL POSITION, cm
                                                                            10.000
    Figure  H-B-4.    TRACER-GAS MIXING  PROFILE FOR THE AXIAL BURNER
         WITH THE  ASTM FLOW NOZZLE AT THE  5. 1-cm AXIAL  POSITION
    

    -------
    II-B-5 shows the tracer-gas studies made at an axial position of 25.4 cm.
    We found that there  is  little difference in the  qualitative  structure  of the
    concentration profile:  Only the magnitude of the carbon monoxide  concen-
    tration at the  center of the peak has  decreased.   The tracer- gas profile
    taken at an axial position of 45. 7  cm  is  shown in Figure II-B-6.   The
    concentration in the  peak is  one-half  the  concentration measured at 5. 1  cm,
    and the width  of the peak has  increased by 2 cm.  Figure  II-B-7 shows
    the tracer-gas  data gathered at an axial  position of 66. 0 cm.   The peak
    concentration has again decreased, accompanied by an increase  in  the
    width of the peak.  The difference between the ambient  carbon monoxide
    concentration and the concentration in the throat  of the burner is now 20
    ppm,  compared with 62 ppm at an axial  position of 5. 1  cm.   A profile
    taken at an axial position of 86. 7  cm  showed that the central peak has
    vanished; therefore,  we considered the mixing complete  and did not run
    full profiles beyond this point.   Data taken at axial positions farther from
    the burner  only showed experimental  fluctuations about the  ambient  con-
    centration.   The raw and computed data  for the axial burner fitted  with
    the ASTM  flow nozzle  are presented in Tables  n-B-4 to  II-B-6.
    Cold-Model Velocity Data for the Axial Burner
        Point-by-point velocity profile data were collected for the axial bur-
    ner, fitted  with the ASTM flow nozzle, by using  a multidirectional impact
    tube (MBIT).   A typical set  of raw data  obtained from the  axial flow bur-
    ner fitted with  the ASTM  nozzle is shown in Table II-B-7.   The rotational
    angle of the probe in the  x-z plane is represented by 6.   AP is the axial
    position  of  the  probe in centimeters, and  RP is its  radial position in
    centimeters.   PB is the atmospheric pressure  in millimeters of mercury
    and P    is  the pressure differential between pressure holes,  x and y,
         xy
    expressed  in  terms of time.    The pressure  differentials  are  expressed
    in terms of time because of the integration method used  to collect the
    data.   The  pressure differentials we  are  attempting to measure  are con-
    stantly changing since  we are  dealing  with a turbulent system.   To deter-
    mine the mean value of these  transient pressure differentials, we elec-
    tronically integrate.   These  experimentally determined mean  pressure
    differentials yield the velocity  (magnitude and  direction)  of  the air  stream
    by means of the techniques outlined earlier in this report.
                                       427
    

    -------
    ts)
    oo
    vs. co
     839.  '
     823.
     807.
     791.
     77*.
     758.
     742".
     726.
     710.
     69*.
     678.
     661.
     6*5.
     629.
     613.
     597.
     581.
     565.
     5*8.
     532.
     516.
     500.
     *8*.
     *68.
     *S2.
     *35.
     *19.
     *03.
     387.
     371.
     355.
     33B.
     322.
     306.
     290.
     27*.
     258.
     2*2.
     225.
     209.
     193.
     177.
     161.
     1*5.
     129.
     112.
      96.
      80.
    ~W~
      *8.
      32.
      16.
                                               AXIAL BURNER  WITH SURFACE COMBUSTION NOZZLE - COLD HOOEL  (CO TRACER GAS)
                                        AP= 25.*0
                                                                      • -• •   •
                                                                               *
    \         ^9<
    V. .>* •
                                 ~25TOW ~ -2T3.000  -15.000   -10.000
                                                                       -5.000     0.000     5.000
    
                                                                        RADIflL POSITION, cm
                                                                                                  10.000 "
                          Figure  U-B-5.    TRACER-GAS MIXING  PROFILE  FOR  THE  AXIAL BURNER
                             WITH  THE  ASTM  FLOW  NOZZLE AT  THE  25.4-cm AXIAL POSITION
    

    -------
         RP VS.  CO
          4BV.OO
          472.29
          463.57
                         AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE  - COLO MODEL tco TRACER CAS)
                   AP« 45.70
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    E
    &
    2
    O
    p
    
    a.
    z
    u
    u
    z
    o
    u
    o
    u
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    437.42
    428.71
    419.99
    411.27
    402.56
    393.84
    385.12
    376.41
    367.69
    358.97
    350.26
    341.54
    332.82
    324.11
    315.39
    306. 67
    297.96
    289.24
    200.53
    271.81
    263.09
    254.38
    245.66
    236.94
    228.23
    219.51
    210.79
    202.08
    193.36
    184.64
    175.93
    167.21
    158.49
    149.78
    141.06
    132.35
    123.63
    114.91
    106.20
    97.48
    88.76
    80.05
    71.33
    "S276T
    53.90
    45.18
    36.46
                     -20.500  -IS.000   -10.000
                                               -5.000     0.000    5.000
    
                                                    RADIAL POSITION, cm
                                                                         10.000    15.000
    Figure II-B-6.   TRACER-GAS  MIXING PROFILE FOR  THE  AXIAL BURNER
        WITH  THE ASTM  FLOW  NOZZLE AT  THE  45. 7-cm AXIAL  POSITION
    

    -------
          RP
             VS. CO
            269.66
            265.36
            261.06
            256.75
            252.45
            248.1%
            243.85
            239.5*
            235.24
            230.94
            226.64
            222.33
            218.03
            213.73
            209.43
            205.12
            200.82
            1-J6.42
            112.22
            187.91
            183.61
            179.31
            175.01
            170.70
            166.40
            162.10
            157.80
            153.49
            149.19
            144.89
            140.59
            136.28
            111.98
            127.68
            123.38
            119.07
            114.77
            110.47
            106.17
            101.86
             97.56
             93.26
             88.96
             84.65
             80.35
             76.05
             71.75
             67.44
            ' CTVIV -
             56.84
             54.54
             50.23
                           AXIAL BURNER KITH SURFACE COMBUSTION NOZZLE - COLO MODEL ICO TRACER GAS)
                     AP-  14.00
              -Z5.00TJ   -20.000   -15.000   -10.000    -5.000     0.000
                                                    RADIAL POSITION, cm
                                                                       5.000
                                                                                10.000 •-  ir.ooo
    Figure  II-B-7.    TRACER-GAS  MIXING PROFILE FOR  THE  AXIAL BURNER
        WITH  THE  ASTM  FLOW  NOZZLE  AT THE  66. 0-cm AXIAL POSITION
    

    -------
             Table II-B-4.   TRACER-GAS MIXING  DATA  FOR
              THE AXIAL BURNER  WITH THE ASTM FLOW
               NOZZLE  AT  THE 25.4-cm AXIAL POSITION
    
          TRACER GAS STUDIES OF COMBUSTION  BURNERS
    AXIAL BURNER WITH SURFACE COMBUSTION  NOZZLE - COLD MODEL (CO TRACER  GAS)
    Y OBSERVED Y COMPUTED
    0.00
    125.00
    ?50.00
    375.00
    500.00
    SO Y =
    0.44
    124.26
    249.14
    377.18
    498.95
    0.19159E 01
    DIFFERENCE
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
    
               COEFFICIENTS FOR Y= C(I) *C(2»*X*.
               C(  11=   0.4445
               C(  2)= 395.5515
               CC  3>= 102.9597
    EXPERIMENTAL RESULTS
    AP
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    ?5.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    25.40
    Z5.4T)
    RP
    -25.00
    -20.00
    -15.00
    -14.00
    -13.00
    -12.00
    -10.00
    -9.00
    -8.00
    -7.00
    -6.00
    -5.00
    -4.00
    -3.00
    -2.00
    -1.00
    0.00
    1. 00
    2.00
    3.00
    4.00
    5.00
    6.00
    7.00
    8.00
    9.00
    10.00
    11.00
    12.00
    13.00
    14.00
    15.00
    20.00
    25.00
    X(V)
    0.171
    0.165
    0.163
    0.157
    0.145
    0.133
    0.120
    0.102
    0.091
    0.077
    0.067
    0.058
    0.070
    0.206
    0.748
    1.290
    1.520
    1.300
    0.590
    0.141
    0.042
    0.039
    O.C54
    0.065
    0.084
    0.097
    0.108
    0.127
    0.147
    0.162
    0.165
    0.170
    0.171
    0.170
    cu
    71.09
    68.51
    67.65
    65.08
    59.96
    54.87
    49.39
    41.R6
    37.29
    31.51
    27.40
    23.73
    28.63
    86.29
    353.92
    682.04
    839.56
    688.66
    269.66
    58.26
    17.23
    16.02
    22.10
    26.59
    34.39
    39.78
    44.36
    52.34
    60.81
    67.22
    68.51
    70.66
    71.09
    70.66
    .+C(N*l)*X**N
                                     431
    

    -------
             Table II-B-5.   TRACER-GAS MIXING  DATA  FOR
              THE AXIAL  BURNER WITH THE ASTM FLOW
               NOZZLE AT THE 45. 7-cm AXIAL POSITION
    
    
          TKACEK  GAS  STUDIES OF  COMBUSTION  BURNERS
    AXIAL BURNER  WITH SURFACfc  COMBUSTION NOZZLE - COLO MODEL ICO TRACER GAS)
    
    
               Y  OBSERVED  Y COMPUTED   DIFFERENCE
    0.00
    125.00
    250.00
    375.00
    500.00
    0.44
    124.26
    249.14
    377.18
    498.95
    0.44457
    -0.73118
    -0.85674
    2.18748
    -1.04412
               SD Y=  0.19159E  01
    
               COEFFICIENTS  FOK Y= C( I ) +C(2)*X+...*C(N*1)*X**N
               C«  1)=    0.4445
               C(  2)=  395.5515
               C(  3)=  102.9597
    
               EXPERIMENTAL  RESULTS
    AP
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    45.70
    415.70'
    RP
    -25.00
    -20.00
    -15.00
    -14.00
    -13.00
    -12.00
    -10.00
    -9.00
    -8.00
    -7.00
    -6.00
    -5.00
    -4.00
    -3.00
    -2.00
    -I. 00
    0.00
    1.00
    2.00
    3.00
    4.00
    5.00
    6.00
    7.00
    8.00
    9.00
    10.00
    11.00
    12.00
    13.00
    14.00
    15.00
    20.00
    25.00
    XIV)
    0.169
    0.155
    O.l3b
    0.135
    0.130
    0.125
    0.125
    0.109
    0.105
    0.104
    0.118
    0.145
    0.232
    0.359
    0.600
    0.835
    0.970
    0.780
    0.538
    0.282
    0.149
    0.109
    0.090
    0.089
    0.095
    0.108
    0.102
    0.110
    0.131
    0.137
    0.149
    0.153
    0.170
    0.169
    CO
    70.23
    64.22
    56.99
    55.72
    53.60
    51.49
    51.49
    44.78
    43.11
    42.69
    48.55
    59.96
    97.75
    155.71
    274.84
    402.51
    481.00
    371.61
    243.05
    120.17
    61.66
    44.78
    36.87
    36.46
    38.95
    44.36
    41.86
    45.20
    54.02
    56.56
    61.66
    63.37
    70.66
    70.23
                                     432
    

    -------
             Table II-B-6.   TRACER-GAS MIXING DATA FOR
              THE AXIAL BURNER WITH THE ASTM  FLOW
               NOZZLE AT  THE 66. 0-cm AXIAL POSITION
          TRACER  GAS  STUDIES OF COMBUSTION BURNERS        ......   .
    AXIAL BURNER  WITH SURFACE COMBUSTION NOZZLE - COLO MODEL  (CO  TRACER CASI
    
               Y UbSfcRVED  Y CUMPUTED    OIFFERENCt
    o.ob
    125.00
    P50.00
    !37'3.00
    500.00
    0.44
    124.26
    249.14
    377.18
    498.95
    0.44457
    -0.73118
    -0.85674
    2.16748
    -1.04412
               SO Y=  0.19159E  01
    
               COEFFICIENT F0« Y=  C ( 1 ) *C ( 2 ) *X+ . . . *C ( N+ 1 ) *X**N
               C« l)=   0.4445
               C( 2>= 395.5515
               C( 3) = 102.9597
    
               EXPERIMENTAL RESULTS
    AP
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00"
    66.00
    66.00
    66.00
    66.00
    66.00
    66.66"
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    66.00
    RP
    -25.00
    -20.00
    -15.00
    -14.00
    -13.00
    -12.00
    -10.00
    -9.00
    -8. CO
    -7.00
    -6.00
    -5.00
    -4.00
    -3.00
    -2.00
    -1.00
    0.00
    1.00
    2.00
    3.00
    4.00
    5.00
    6. "00
    7.00
    8.00
    9.00
    10.00
    11.00
    12.00
    13.00
    14.00
    15.00
    20.00
    25.00
    X(V)
    0. 166
    0.149
    0.142
    0.137
    0.136
    0.136
    0.131
    0.135
    0. 138
    0.150
    0.159
    0.210
    0.303
    0.378
    0.525
    0.580
    0.590
    0.500
    0.383
    0.303
    0.189
    0.170
    0.141
    0.124
    0.122
    0.125
    0.125
    0.133
    0.145
    0.156
    0.155
    0.164
    0.175
    0.182
    CO
    69.80
    61.66
    58.68
    56.56
    56.14
    56.14
    54.02
    55.72
    56.99
    62.09
    65.94
    88.05
    129.74
    164.67
    236.48
    264.50
    269.66
    223.96
    167.04
    129.74
    78.88
    70.66
    58.26
    51.07
    50.23
    51.49
    51.49
    54.87
    59.96
    64.65
    64.22
    68.08
    72.81
    75.84
                                     433
    

    -------
               Table U-B-7.   RAW  VELOCITY  DATA  FOR  THE AXIAL BURNER WITH
                     THE  ASTM  FLOW NOZZLE AT THE  5. 1-cm AXIAL  POSITION
                                  AERODYNAMIC MODELING OF COMBUSTION BURNERS
    CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    Al -   0.770590   A2 =   0.272353   A3 =  -0.059818
    BO =   0.737720
    C  =   4.4o4660
     82 =   -0.158821    84
    JD_=	0._3?48L2	
    0. 1292*6
                       4XJ_AL_BJJRN_iR_WI TH_SUR_FACE .COMBUSTION NQZZLE_- CQL.D MQDEL__
    TJTAL DATA INPUT
    THETA
    . o.
    0.
    0.
    6.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0,
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    AP
    5. 1
    5. 1
    5. I
    5.1
    5.1
    5.1
    5.1
    5.1
    5.1
    5. I
    5.1
    5.1
    5. 1
    5.1
    5.1
    5.1
    5. 1
    5.1
    5.1
    5.1
    5^1
    5.1
    5.
    5.
    5.
    5.
    .5. .
    5.
    5.
    5.1
    RP
    -25.0
    -20.0
    - 1.5 . 0
    -14.0
    -13.0
    -12.0
    -Jl.O
    -10.0
    -9.0
    -8.0
    -7.0
    -6.0
    -5.0
    -4.0
    -3.0
    -2.0
    -1.0
    0.0
    1.0
    2.0
    1.0
    4.0
    5.0
    6.0
    7-0
    8.0
    9.0
    10.0
    25.0
    20.0
    15.0
    P13
    28000.00
    25600.00
    20000. OC
    17900.00
    15100.00
    14000.00
    J2400.00
    10400.00
    6120.00
    -1200.00
    -320.00
    -417.00
    -4420.00
    4720.00
    1880.00
    1550.00
    534.00
    -672.00
    2730.00
    4670.00
    -3540.00
    -2668.00
    -11120.00
    11720.00
    439.00
    301.00
    2380.00
    -294000.00
    16400.00
    10000.00
    8200.00
    P03
    32800.00
    69400.00
    97000.00
    -70000.00
    -87000.00
    -118000.00
    .-204000. .00
    -43400.00
    107000.00
    -3240.00
    4770.00
    212.00
    162.00
    155.00
    	 15.4.00..
    153.00
    113.00
    162.00
    116.00
    136.00
    167.00
    152.00
    156.00
    141.00
    274.00
    38880.00
    -18400.00
    -77200.00
    -76400.00
    -66000.00
    P24
    55000.00
    84000.00
    999999999.50
    -12100C.OO
    -120000.00
    -58900
    -56800
    -16800
    -17100
    -2750
    -2530
    300
    730
    . ._ 59.2
    488
    544
    1180
    930
    1600
    51.2
    -2308
    1090
    392
    358
    1860
    -23620
    -24000
    -63000
    -53200
    -92000
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    .00
    P04
    43200.00
    180400.00
    -152400.00
    -41000.00
    -43000.00
    -57200.00
    -48000.00
    -26600.00
    -18700.00
    -6800.00
    448.00
    152.00
    139.00
    144.00
    142.00
    136.00
    114.00
    135.00
    113.00
    150.00
    134.00
    172.00
    147.00
    162.00
    143.00
    374.00
    49000.00
    -52000.00
    -68800.00
    -52000.00
    -32800.00
    PDA
    420.
    440.
    455.
    480.
    455.
    501.
    475.
    504.
    492.
    486.
    200.
    94.
    88.
    86.
    88.
    86.
    41.
    78.
    70.
    90.
    76.
    87.
    85.
    87.
    76.
    179.
    445.
    386.
    442.
    414.
    380.
    00
    00
    00
    00
    00
    00
    00
    00
    00
    00
    00
    00
    80
    00
    00
    80
    20
    00
    40
    20
    40
    20
    60
    20
    80
    00
    00
    00
    00
    00
    00
    T
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    PB
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    

    -------
        A typical  set of reduced velocity data is given in Table  II-B-8.   The
    direction of the  velocity is defined by FI, the conical angle measured
    about the x-axis, and  by A,  the dihedral angle measured from the posi-
    tive y-axis in the  y-z  plane.  The magnitude of the velocity in  ft/s is
    given by  V; RHO is the density  of the air in slugs/ft-sq in. ;  and VX,
    VY, and  VZ are the velocity components in ft/s.   Both VT, the tangen-
    tial velocity, and VR,   the  radial velocity,  are  expressed in  ft/s.  PST
    is the static pressure  in psig.
        Figure II-B-8 shows the axial velocity at an axial position of 5. 1 cm.
    The central peak occurs  in  the region of the throat of the burner.
    Figure  II-B-9 shows the  axial velocity profile at an axial position of
    25.4  cm.   The  most noticeable  structural change  in  the  curve from the
    profile  at 5. 1  cm  is the  increase  in  radial length of the shear region
    between the combustion  air  and  surrounding recirculation region radially
    from 4 to 6 cm.  Figure  II-B-10  presents the  axial  velocity profile at
    45. 7  cm.   The  central peak and the  constant-velocity plateau have blended
    together with the shear  layer to give a  smooth bell-shaped velocity dis-
    tribution.   The  structure of the  axial velocity profile  at  66. 0 cm,  shown
    in Figure  II-B-11,  is  very similar to the profile at 45.7 cm.   The max-
    imum velocity at the peak is 31. 5  ft/s,  a slight  decrease  from the 39. 0
    ft/s measured at an axial position  of 5.  1  cm.
        The raw pressure  data  for the case  of the axial burner  fitted with
    the ASTM nozzle are given  in Tables II-B-9  to II-B-11.   The reduced
    profile  data are  listed  in Tables II-B-lZ to II-B-14.
        Initial  runs  on  the  hot  furnace with  the axial burner fitted with the
    ASTM nozzle showed that  the flame was  longer than  the  furnace.   Con-
    sequently,  further  work was  not undertaken.
                                       435
    

    -------
                Table II-B-8.   COMPUTER REDUCED  DATA FOR THE AXIAL BURNER
                  WITH THE ASTM FLOW NOZZLE AT THE 5. 1-cm AXIAL POSITION
    RESULJ.S
                       AXIAL BURNER WITH  SURFACE COMBUSTION NOZZLE - COLO  MODEL
    AP
    . ..5..1 ._-.
    5.1 -
    . . 5 .1. . -
    5.1 -
    5.1 -
    5. 1 -
    5.1
    5. 1
    5.1
    5-1
    5.1
    5.1
    S- 1
    5.1
    5.1
    5.1
    5.1
    5.1
    5- 1
    5.1
    5.1
    5.1
    5-1
    RP
    20.0
    15^.0. _
    14.0
    i 3.n
    12.0
    10.0
    -8.0
    -7.0
    -6.0
    -4.0
    -2.0
    - 1 _n
    0.0
    2.0
    3^.0
    4.0
    5-O
    6.0
    7-O
    8.0
    9_n
    10.0
    25-O
    20.0
    i 5-n
    Fl DELTA
    27.3 153.0
    62.9
    . .-7-3^.4
    82.2
    AI .n
    77.7
    76.6
    _ . -7.6..J3 	
    48.0
    lfc.2
    8.7
    _ 3.1
    3.7
    3. h
    2.7
    2.3
    1. 1
    1 .7
    6.3
    h.R
    16.1
    fcB- 7
    77.4
    77.9
    77.2
    79-5
    163.0
    179.9
    188.4
    1 H7. 1
    193.3
    192.3
    RHO
    0-OOOO159
    0.0000159
    0.0000159
    n.oooni 59
    V
    1.84
    1.64
    2...Q6
    3.02
    3- 10
    0.0000159 2.99
    D-OOOO159 3-10
    211.7 0.0000159
    _19_9^_6 	 0 . QQOQ.1 5 9
    336.4 0.0000159
    352.7 0.0000159
    54.2
    98.7
    10 7.. 4.
    107.4
    1 35. 5
    29.6
    _ioa^a.
    108.9
    	 81. .7
    310.8
    R4.4
    91.9
    129. 1
    170.8
    1 R5. 7
    274.6
    1 94. 5
    190.6
    1H5-O
    0.0000159
    0.3000159
    0.0000159
    .__ O.Ofl 0015.9
    0.0000159
    n.oonoi 59
    0.0000159
    O-OOOO159
    0.0000159
    _Q.OO00159
    0.0000159
    O-OOOOI59
    0.0000159
    0.0000159
    0.0000159
    O.OOOO159
    0.0000159
    O.OOOO159
    0.0000159
    n.oonoi 5<»
    3.71
    	 4.15
    7.50
    20.72
    31.91
    33.67
    33.89
    	 33.^68
    33.87
    37.97
    35.60
    39.04
    35.20
    34.62
    33.32
    34.35
    32.29
    32.74
    21.17
    fe. 19
    2.94
    2.HH
    3.53
    4.0O
    VX
    J..63 .
    0.74
    0.5B
    0.40
    0.4R
    0.63
    0.85
    	 L.O.O.-
    5.01
    19.89
    31.54
    _31..59
    33.86
    . -J3.63
    33.80
    37.89
    35.56
    	 JO..Q2.
    35.17
    34.56
    33.31
    34.34
    32.09
    _ -.12. 5.1.
    20.33
    2.24
    0.64
    0.60
    0.77
    0.72
    VY
    . -0..75
    -1.39
    . -1.38 .. .
    -2.96
    -3.04
    -2.84
    .. -:2.96
    -3.07
    . -.3.80..
    5. 11
    5.75
    2.82
    ..0.23
    -0.22
    -0.55
    -0.67
    -1 .73
    1.46
    _ -0.33_ . .
    -0.45
    0.2.8
    0.41
    0.09
    -0.12
    -2.48
    -5.82
    -5.74
    0.23
    -2.73
    -3.38
    -3.91
    VZ
    0.42
    o.ao_
    -0.43
    -0.38
    -0.67
    .-0.64..
    -1.90
    -1.36
    -2.23
    -0.72
    3.92
    _.2.30
    1.42
    1,76
    2.13
    1.70
    0.83
    0.97
    1.34
    1.99
    -0.48
    1.01
    3.59
    3.04
    0.94
    -0.57
    -2.86
    -0.71
    -0.63
    -0.34
    VT
    --0.8A
    -1.30
    -1.30
    -1.05
    -1.14
    -1.33
    .. -L.2B
    -1.52
    . - 1 ..61
    -4.55
    -5.67
    -4.79
    -1.43
    -1.83 ..
    -2.20
    -2.30
    0.00
    J..Q2
    1.41
    2.00
    0.63
    1.02
    3.58
    3.91
    5.80
    3.26
    1.15
    2.04
    2.28
    L.BB
    VR PST
    0.08 0.002316
    0.65 0.002242
    1.49 0.002192
    2.80 0.002149
    2.84 0.002263
    T PB
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    2.60 0.002048 20. 760.
    _ 2 J4_ 	 Q «Jttfl2163. 	 20. 760.
    3.27 0.002083 20. 760.
    .. 3jjb9 0.002162 	 20. 760.
    3.23 0.002053 20. 760.
    1.20 0.001962 20. 760.
    0.62 0.002656
    .. Q...L6 0_t_0.0.2ft9.5
    0.07 0.002287
    0 » LJ 0_, 0.0.2 L6_L
    0.37 0.002234
    0.75 0.012402
    1.68 0.002521
    0.13 0.001813
    0.14 0.001037
    0.19 0.003350
    0.01 0.002414
    0.03 0.002075
    0.34 0.003126
    0.34 0.004448
    1.07 0.002402
    4.75 0.002487
    2.63 0.002628
    1.95 0.002304
    2.57 0.002494
    3.45 0.002754
    20. 760.
    20. 7607
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. T60.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    

    -------
                                            AXIAL BURNER WITH  SURFACE COMBUSTIOM 'NOZZLE - COLO MODEL
    OJ
    39.03
    1H.77
    37.51
    36.00
    .35.2.4, 	 	 	 	 	 	 	
    34.49
    32.97
    47-71
    31.46
    .30.70 _ . _. .„.._._ ...
    29.94
    28.43
    27.67 . ....._.
    26.91
    26.16
    25. 4C
    24 . 64
    23.88
    23.1_3_
    22.37
    21.61 . ...
    20.85
    70. in
    19.34
    18.58 .
    ^ 17.83
    C 17.07
    .- 16.31
    (_ 1 S.SS _
    5 14.80
    O 14. .04 . 	 	 ...
    J 13.2U
    ™ 12.57
    11.77
    1 1 .ni
    10.25
    9.50
    B.74
    .. 7.98 	 	 	 _ ... 	
    7.22
    b.47
    5.71
    • A
    	 /\ .
    / \
    " . 	 / \ *
    / N--.
    / '• i
    
    1
    
    
    
    
    
    
    
    
    — 	 . —
    
    — -
    
    «
    
    _
    
    
    r: n::;:;.::::_:::___
    
                                4.19
                                2.68
                                1 .07
                                -25.000   -20.000   -15.000  -10.000
                                                                  -5.000
                                                                           0.000
                                                                                   5.000
                                                                                           10.000
                                                                                                   15.000
                                                                                                           20.000
                                                                                                                   25.000
                                                              RADIAL POSITION, cm
                           Figure II-B-8.   AXIAL  VELOCITY  PROFILE  FOR THE AXIAL  BURNER
                             WITH  THE ASTM FLOW NOZZLE  AT  THE 5. 1-cm AXIAL POSITION
    

    -------
                             ftp
                                             AXIAL  BURNER MIIH SURFACE  COMBUSTION NOZZLE - COLO MODEL
                                      _AR= 25.^0  __  „ .   .  	  __ -  _. .. 	 '      .   	
    OJ
    00
                                -25.000   -20.000   -15.000   -10.000
                                                                   -5.000
                                                                            0.000
                                                                                     5.000
                                                                                             10.000
                                                                                                     IS.000
                                                                                                             20.000
                                                                                                                      25.000
                                                                RADLAL POSITION, cm
    
                          Figure II-B-9.   AXIAL VELOCITY PROFILE FOR  THE AXIAL  BURNER
                           WITH THE ASTM  FLOW  NOZZLE  AT  THE 25.4-cm  AXIAL POSITION
    

    -------
                       AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
            ¥.& .
         33.S
          -25.000  -20.000-   -15.000  -10.000   -5.000
                                                      0.000
                                                              5.000
                                                                      10.000
                                                                              15.000
                                                                                      20.000    25.000
                                      RADIAL POSITION, cm
    Figure II-B-10.    AXIAL VELOCITY  PROFILE FOR  THE AXIAL  BURNER
     WITH THE  ASTM FLOW  NOZZLE  AT  THE 45. 7-cm AXIAL  POSITION
    

    -------
                                                AXIAL BURNER wirH SURFACE COMBUSTION NOZZLE  - COLO MODEL
    4*.
    ^
    o
                                VS.._W  __AR?-6.6...0C
                                31.46
                                30.35
                                _29.£0 _.
                                29.24
                                26.69.
                                28.13
                                ?7.SR	
    
                                27.02
                                26.46
                                25.91
                                25.35
                                24.80
                                24.
                                 7.02
                             	6^46.
                                 S.91
                             	J^15_
                                 4.60
                            	4.?4
    	x
                                 3.69
                                 J.li
                                 -25.000   -20.000  -IS.000   -10.000
                                                                       -5.000
                                                                                0.000
                                                                                          5.000
                                                                                                  10.000
                                                                                                           15.000
                                                                                                                    20.000
                                                                                                                             25.000
                                                                 RADIAL POSITION, em
                            Figure  II-B-11.   AXIAL VELOCITY  PROFILE  FOR  THE  AXIAL  BURNER
                             WITH  THE  ASTM  FLOW  NOZZLE  AT THE  66. 0-cm  AXIAL  POSITION
    

    -------
    Table II-B-9.   RAW VELOCITY  DATA FOR THE AXIAL  BURNER WITH
        THE ASTM  FLOW NOZZLE  AT  THE  25.4-cm AXIAL POSITION
    AERODYNAMIC MODELING OF COMBUSTION BURNERS '
    CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    Al = 0.770590 A2 = 0.272353 A3 = -0.059818
    BO =
    C =
    TOTAL
    IHETA
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    o«
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.737720 B2 =
    4.464660 D -
    
    AXIAI
    DATA INPUT
    AP
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    25.4
    HP
    25.0
    20.0
    15.0
    10.0
    9.0
    8.0
    7.0
    6.0
    5.0
    4.0
    3.0
    2.0
    1.0
    0.0
    -1.0
    -2.0
    -3.0
    -4.0
    -5.0
    -6.0
    -7.0
    -8.0
    -9.0
    -10. 0
    -15.0
    -20.0
    -25.0
    -11. 0
    -12.0
    -13.0
    -0.158821 B4 - 0.129246
    0.394812
    L_ BURNER WITH
    P13
    -41500.00
    -215200.00
    374800.00
    1830.00
    1120.00
    -677.00
    -553.00
    -421.00
    -510.00
    -B47.00
    -1920.00
    -3300.00
    -970.00
    -756.00
    -628.00
    1050.00
    5760.00
    -36200.00
    4200.00
    980.00
    556.00
    594.00
    680.00
    1720.00
    -53000.00
    -42400.00
    -48000.00
    2440.00
    7200.00
    10600.00
    .SJJRFACJE COMBUSTION NOZZLE _- COLO
    P03
    12300.00
    11800.00
    11600.00
    16100.00
    4080.00
    1480.00
    534.00
    324.00
    218.00
    174.00
    165.00
    160.00
    181.00
    147.00
    , 134.00 .
    139.00
    174.00
    163.00
    162.00
    173.00
    207.00
    294.00
    473.00
    874.00
    11400.00
    11100.00
    11100.00
    2780.00
    3160.00
    5380.00
    P24
    12100.00
    13800.00
    11400.00
    -20700.00
    -69300.00
    3340.00
    3020.00
    -6800.00
    25240.00
    1560.00
    770.00
    563.00
    648.00
    624.00
    610.00
    1002.00
    -4540.00
    4740.00
    1280.00
    604.00
    660.00
    876.00
    1164.00
    1350.00
    19400.00
    11400.00
    98400.00
    29600.00
    3200.00
    6500.00
    MO.DEL 	
    P04
    12300.00
    12600.00
    12700.00
    11300.00
    1860.00
    620.00
    355.00
    231.00
    186.00
    156.00
    153.00
    146.00
    148.00
    122.00
    122.00
    139.00
    176.00
    164.00
    159.00
    178.00
    227.00
    336.00
    557.00
    980.00
    11600.00
    11000.00
    10600.00
    3490.00
    4350.00
    5900.00
    
    
    POA
    351.00
    355.00
    353.00
    336.00
    299.00
    214.00
    152.00
    125.00
    83.70
    84.60
    83.00
    84.00
    88.00
    72.00
    74.00
    83.00
    85.20
    84.80
    87.20
    106.00
    127.00
    166.00
    218.00
    270.00
    343.00
    338.00
    342.00
    330.00
    335.00
    340.00
    
    
    T
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    
    
    PB
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    

    -------
    Table II-B-10.  RAW VELOCITY DATA FOR THE AXIAL BURNER WITH
         THE ASTM FLOW NOZZLE AT  THE 45. 7-cm AXIAL POSITION
    AERODYNAMIC MODELING OF COMBUSTION BURNERS
    CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    Al = 0.770590 A2 = 0.272353 A3 * -0.059818
    HO =
    C =
    
    0.737720 B2
    4. 464660 D
    = -0.158821 84 = 0.129246
    0.394812
    AXIAL BURNER WITH SURFAC
    TOTAL DATA INPUT
    THETA
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    6.
    0.
    0.
    0.
    0.
    . ..0., .
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    AP
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7 ..
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    RP
    25.0
    20.0
    15.0
    14.0
    13.0
    12.0
    11.0
    10. 0
    . r.fi._
    8.0
    7.0
    6.0
    5.0
    4.0
    3.0
    2.0
    1.0
    0.0
    -1.0
    
    -3.0
    -4.0
    -5.0
    -6.0
    -7.0
    -8.0
    -9.0
    -10.0
    -11.0
    -12.0
    -13.0
    -14.0
    -15.0
    -20.0
    -25.0
    
    P13
    -20000.00
    -25000.00
    -20000.00
    -13900.00
    -12700.00
    -4880.00
    -2580.00
    -1220.00
    	 -8.Q4_..00_ ..
    -633.00
    -630.00
    -58i.OO
    -552.00
    -664.00
    -840.00
    -1000.00
    -1150.00
    -900.00
    -4380.00
    7300.00
    3680.00
    1380.00
    1140.00
    1070.00
    930.00
    798.00
    1080.00
    1190.00
    1680.00
    2130.00
    4290.00
    5190.00
    IBOOO.OO
    -52800.00
    -17300.00
    6 COMBUSIIO_N_.NOZZ_LE -. CCIL.D. MODEL _ 	 __ 	 _.
    P03
    _Zl_
    -------
                        Table  II-B-11.   RAW  VELOCITY DATA FOR THE AXIAL BURNER
                       WITH THE ASTM FLOW NOZZLE  AT  THE 66. 0-cm AXIAL POSITION
    UJ
    AERODYNAMIC MODELING OF
    COMBUSTION BURNERS
    CALIBRATION COEFFICIENTS FOR FORWARD FLOW
    Al = 0.770590 A2 = 0.272353 A3 = -0.059818
    BO = 0.737720 B2 = -0
    C = 4.464660 0=0
    .158821 B4 =
    .394812
    0.129246
    
    
    
    
    
    AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
    TOTAL DATA INPUT
    THETA
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    .. o.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    .. cu...
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    0.
    AH
    66.0
    66.0
    66.0
    66.0
    66.0
    66.0
    66.0
    .66.0
    66.0
    66.0
    66.0
    66.0
    66.0
    .66.0
    66.0
    66.0
    66.0
    _66_.-0_
    66.0
    66~.0
    66.0
    66.0
    66.0
    66.0
    _66«-Q_
    66.0
    66.0
    66.0
    66.0
    66.0
    66.0
    66.0
    66. O
    RP
    20.0
    15.0
    14.0
    13.0
    12.0
    11.0
    10.0
    9^0.
    8.0
    7.0
    6.0
    5.0
    4.0
    3.0
    2.0
    1.0
    0.0
    -UO
    -2.0
    -3.0
    -4.0
    -5.0
    -6.0
    -7.0
    -8.0
    -9.0
    -10.0
    -11.0
    -12.0
    -13.0
    -14.0
    -15.0
    -20.0
    -25.0
    
    P13
    -22300.00
    -14900.00
    -4090.00
    -4o"ib.o"b
    -2250.00
    -2350.00
    -1780.00
    -1140.00
    -980.00
    -738.00
    -828.00
    -740.00
    -65B.OO
    -582.00
    -726.00
    -970.00
    -1120.00
    -1650.00
    -2620.00
    21190.00
    3600.00
    1240.00
    1090.00
    1280.00
    1170.00
    1330.00
    1300.00
    1660.00
    1380.00
    1740.00
    2000.00
    3280.00
    3440.00
    20400.00
    194400.00
    
    P03
    6570.00
    11200.00
    8440.00
    5580.00
    4410.00
    4160.00
    2100.00
    1960.00
    1270.00
    960.00
    593.00
    496.00
    419.00
    324.00
    277.00
    228.00
    210.00
    199.00
    183.00
    183.00
    ..2J)5,_Q.O _
    205.00
    240.00
    241.00
    323.00
    391.00
    428.00
    558.00
    648.00
    980.00
    1350.00
    1700.00
    1910.00
    10600.00
    13500.00
    
    P24
    10600.00
    12000.00
    11800.00
    11160.00
    200000.00
    35800.00
    15600.00
    9600.00
    6800.00
    2620.00
    2620.00
    1840.00
    1010.00
    1090.00
    980.00
    816.00
    720.00
    636.00
    680.00
    682.00
    . 67.4 ._00
    825.00
    894.00
    1190.00
    1090.00
    1440.00
    1680.00
    2110.00
    2990.00
    2500.00
    2590.00
    4830.00
    6800.00
    9380.00
    12000.00
    
    P04
    6760.00
    16400.00
    5900.00
    3180.00
    2620.00
    2370.00
    1460.00
    900.00
    692.00
    559.00
    415.00
    349.00
    292.00
    244.00
    209.00
    179.00
    176.00
    168.00
    168.00
    167.00
    181.00
    208.00
    246.00
    261.00
    325.00
    379.00
    447.00
    589.00
    777.00
    1030.00
    1400.00
    1960.00
    2480.00
    6520.00
    13800.00
    
    POA
    356.00
    457.00
    344.00
    330.00
    316.00
    323.00
    290.00
    256.00
    232.00
    208.00
    201.00
    184.00
    152.00
    135.00
    118.00
    108.00
    107.00
    93.80
    92.10
    99.00
    104.00
    115.00
    133.00
    139.00
    160.00
    182.00
    198.00
    220.00
    261.00
    259.00
    277.00
    304.00
    309.00
    341.00
    345.00
    
    T
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    __20. 	
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    20.
    
    PB
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    760.
    76O.
    

    -------
                 Table  n-B-12.   COMPUTER  REDUCED DATA  FOR  THE  AXIAL BURNER
                  WITH THE ASTM FLOW NOZZLE  AT THE 25. 4-cm AXIAL POSITION
                       AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
    8JE.iUJ.LS	
    
    AP
    25.4
    25.4
    25^4
    25.4
    25-4
    25.4
    25.4
    25.4
    25.4.
    25.4
    25.4
    2-J.4
    23.. 4
    25.4
    25. 4_
    25.4
    25.4
    25.4
    25.4
    _Z5..4_
    25.4
    25.4
    25.4
    25,4
    25.4
    25.4
    25.4
    25.4
    25.4
    RP
    25.0
    20.0
    15.0
    10.0
    9.O
    8.0
    6.0
    4.0
    3.0
    2.0
    -L^Q
    0.0
    _. -.L..D 	
    -2.0
    -3.0
    -4.0
    -5.0
    -6.0
    -7.0
    -8.0
    -9.O
    -10.0
    -15.0
    -20.0
    -25.0
    -11.0
    -12.0
    -13.0
    FI
    17.6
    15.3
    19.0
    63.1
    43.3
    11.2
    6.0
    2.4
    2. 7
    3.3
    3.0
    J..6.
    2.2
    O.fe
    0.5
    4.5
    fc.R
    8.9
    13.1
    13.8
    10.3
    16.6
    3.2
    20.7
    24.8
    17.1
    DELTA RHO
    73.7 0.0000159
    86.3 0.0000159
    91.7 3.0Q00159
    185.0 0.0000159
    Ifl0.9 0.0000159
    11.4 0.0000159
    10.4 0.0000159
    356.4 0.0000159
    	 L..l._ O.OQ.OQ15-9. .
    28.4 0.0000159
    68.1 0.0000159
    80.3 0.0000159
    56.2 0.0000159
    50.4 0.0000159
    _. 43...S . ,_D. .000.0.15.9 	
    133.6 0.0000159
    231.7 0.0000159
    82.5 0.0000159
    	 106^.9 	 O..JO.Q.a0.15_9. ._
    121.6 0.0000159
    13a. 8 . 0_. .0,00.0.15.9
    145.8 0.0000159
    149.7 O.OO00159
    128.1 0.0000159
    69.8 0.0000159
    74.9 0.0000159
    26.0 0.0000159
    175.2 0.0000159
    113.9 0.0000159
    121.5 0.0000159
    V
    3.73
    3.62
    3.51
    6.83
    9.38
    16.63
    .22.46
    28.31
    ~33.65
    33.37
    33.61
    33.J.5 ...
    36.83
    _J37.8l
    34.96
    32.27
    33.22
    _ 3.2^8 	
    30.37
    26.32 ._
    21.62
    16.41
    12.19
    3.91
    4.16
    6.83
    6. 19
    4.89
    VX
    3.55
    3.49
    3.08
    6.81
    16.31
    22^28
    28. 15
    .31.55
    33.62
    33.33
    33.55
    33,09
    36.78
    37.73
    34.93
    32.26
    33.22
    _32.._97
    30.28
    ^6.33
    21.36
    15.98
    11.84
    .J..81
    3.74
    4.15
    6.39
    5.62
    4.67
    VY
    0.31
    0.06
    -0..03 .
    -6.07
    -h.44
    3. 18
    2.83
    2.96
    2.2.0
    1.27
    0.59
    0.33
    1.09
    l.2o
    1.68 .
    -0.95
    -0.22
    0.04
    -0...26 .
    -1.25
    . -2. 4 3 .
    -2.78
    -3.23
    -1.80
    0^23 ..
    0.29
    0.21
    -2.41
    -1.05
    -0.75
    VZ
    1.08
    0.95
    . 1.16.
    -0.53
    -0. 10
    0.64
    -0.18
    0.04
    0.69
    1.49
    1.96
    U63. .
    1.52
    . ..1..73.
    1.00
    -0.28
    0.32
    0 ..8.5 _
    2.02
    .2, .04.
    1.88
    1.88
    2.29
    0^65
    1.08
    0.10
    0.19
    2.37
    1.22
    VT
    1.07
    0.90
    1*. 19 ~
    2.26
    2.74
    . 2 ,_«>_
    2.71
    2.07
    1.39
    1.48
    1.59
    1.08
    0.00
    -1.26
    -1.23
    -0.36
    -0.32
    -2.26
    -2...21
    -3.00
    -3.12
    -2.47
    -0.66
    -1.04
    -0.23
    -1.82
    -1.85
    -1.23
    VR
    0.34
    0.31
    0^53
    5.97
    6.03
    1.73
    	 U.22_
    1.21
    ~oT38~~
    0.60
    1.19
    1.64
    PST
    0.002699
    0.002669
    0.002693
    0.003177
    0.003210
    0.002527
    0*_OQ2549
    0.001588
    ~0700266V
    0.002987
    0.002738
    0.002451
    1.98 0.002877
    . 2.05 	 Q..OQ1952 	
    0.62 0.002114
    0.03 0.003223
    0.02
    O.JL2_
    0.75
    1.27
    1.50
    2.06
    1.55
    0.20
    0.39
    0,01
    1.59
    1.82
    0.74
    0.002779
    0.002599
    0.001985
    0.002261
    0.002343
    0.002550
    0.002566
    0.002744
    0.002795
    0.002728
    0.002682
    0.002717
    0.002721
    T PB
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20j_ 760 »
    20. 760.
    20. _ 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    

    -------
                 Table H-B-13.   COMPUTER REDUCED  DATA FOR THE AXIAL  BURNER
                   WITH  THE ASTM  FLOW  NOZZLE AT  THE 45. 7-cm AXIAL  POSITION
                       AXIAL  BURNER WITH SURFACE  COMBUSTION NOZZLE - COLO MODEL
    RESULJ.S	
    
    AP
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    4b.7.
    45.7
    45.7
    45.7
    45.7
    45.7
    ..45^7 _
    45.7
    45^7_
    45.7
    45.7
    45.7
    45. 7_
    45.7
    _45^7_.
    45.7
    45.7
    4r>.7
    45,7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    45.7
    
    RP
    25.0
    20.0
    J.5-.0
    14.0
    11.0
    12.0
    11.0
    10.0
    9.0 .
    8.0
    7.0
    6.0
    __.5^0.. .
    4.0
    .. _.3.0. .
    2.0
    1 .0
    0.0
    -2.0
    -3.0
    -4.0
    -5.0
    -6.0
    -7.0
    -8.0
    -9.0
    -10.0
    -11.0
    -12.0
    -13.0
    -14.0
    -15.0
    -20.0
    -25.0
    
    Fl
    17. 1
    15.3
    16.3
    10.2
    5.3
    8.0
    10.5
    11.9
    11.3 .
    10.4
    7.5
    5.8
    3.6
    _. .3_..l...
    2.8
    ?.5
    2.9
    2.1
    2.4
    2.1
    2.4
    3.2
    3.6
    4.. 6
    6.6
    5.7
    7.6
    6.9
    12.6
    a. i
    8.7
    8.5
    11.9
    Ik. 2
    
    DELTA
    67.8
    70.4
    63.4
    48.7
    1 6.6
    11.5
    355-9
    15.8
    _ 4.. 2 .
    13.5
    14.8
    14.9
    _ —13.. 0_.._
    27.0
    _. 34.^-7 	
    45.5
    50. 1
    45.6
    79.0
    97.1
    104.4
    127.7
    131.5
    134.9
    142.6
    151.8
    1 57-5
    152.7
    159.?
    142.3
    13R.6
    140.4
    124.5
    75.2
    58.2
    
    RHO
    0.0000159
    0.0000159
    _a*-QO.QO-15_9,
    0.0000159
    O.OOO0159
    0.0000159
    0.0000159
    0.0000159
    .£....0.0.00159
    0.0000159
    0.0000159
    0.0000159
    _a..QaOQ.15_9_
    0.0000159
    ..0^.00.0015.9. _
    0.0000159
    0.0000159
    0.0000159
    0.000.0 15 9_
    0.0000159
    -0..-OflJD.015.9_
    0.0000159
    0.0000159
    0.0000159
    O..JHH).OL5_9
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    0.0000159
    O.OO00159
    
    V
    4.74
    4.83
    5. 16
    5.79
    7.27
    B.J6.
    12.21
    . . 15. .17
    18.23
    21.09
    26.51
    ... .2_7_^25
    30.47
    	 _J.CL.J7.4_
    31.74
    32.57
    33.62
    33.96
    33.24
    . 32^18.
    31.42
    28.85
    27.46
    24.32
    20.75
    lfl.75
    15.92
    13.71
    9.89
    8.87
    7.98
    5.14
    3.75
    4.37
    
    VX
    4.53
    4.66
    4.55
    5.08
    5.77
    7.20
    .J..6J. .
    11.95
    14.8.7
    17.93
    20.91
    26.37
    . .2.7.1.4
    30.41
    ... -30.. 6 9
    31.70
    32.54
    33.58
    -.33.94
    33.21
    ... 3.2..J6. .
    31.39
    28.81
    27.41
    24.. 24
    20.61
    	 18 j. Jib
    15.78
    13.61
    9.65
    8.78
    7.88
    5.09
    3.66
    4.20
    
    VY
    0.52
    0.42
    . 0...5S ._.
    0.60
    0.51
    0.99
    1 .60 _
    2.42
    . .2.98
    3.23
    2.66
    2.62
    2,35 '
    1.73
    1 . 3.8.
    1.11
    0.94
    1.19
    0.23
    -0. 17
    -5.30
    -O.B1
    -1.06
    -1.25
    -1.55
    -2.13
    -_U.75
    -1.88
    -1.54
    -1.71
    -0.94
    -0.93
    -0.43
    0.19
    0.64
    
    VZ
    - lj.29_
    1.20
    1.19
    0.68
    0.15
    0.20
    -0 ..1 1
    0.68
    0.22
    0.77
    0.70
    0.70
    0.54 	
    0.88
    . . 0.95 .
    1.14
    1. 12
    1.22
    U23
    1.42
    . .l...i=>..
    1.04
    1.20
    1.25
    1*18_
    1.14
    0.72
    0.96
    0.58
    1.32
    0.82
    0.77
    0.63
    0.75
    1.04
    
    VT
    1.22
    1.08
    0.99
    0.78
    0.51
    0.89
    . 1 . 2.6. .
    1.81
    2..09
    2.28
    2.09
    2.13
    _. i.ja.7 _
    1.57
    1.29.
    1.04
    0.64
    0.00
    -0.63
    -1.02
    .-1.07.
    -1.19
    -1.43
    -1.58
    -2.01
    -1.68
    -1.80
    -1.47
    -1.64
    -1.12
    -1.08
    -0.69
    -0.69
    -1.06
    
    VR
    0.68
    0.67
    0.88
    0.46
    0.16
    0.48
    0..9J
    1.74
    2-13_
    2.41
    1.80
    1.67
    	 1^52.
    1.15
    1.07
    1.20
    1.32
    1.70
    Ls.07
    1.01
    0.61
    0.57
    0.73
    0.78
    0.91
    1.34
    0.86
    1.10
    0.74
    1.40
    0.56
    0.54
    0.32
    0.33
    0.57
    
    PST
    0.002680
    0.002661
    0.002771
    0.002787
    0.002780
    0.002755
    0.002713
    0.002479
    0.002482
    0.002459
    0.002506
    0.001179
    _0_._OP2079. 	
    0.001912
    0.001769
    0.001920
    0.002128
    0.002185
    0.003067
    0.003048
    0.001513
    0.001972
    0.002011
    0.001582
    0.002398
    0.002421
    0.002079
    0.002233
    0.002227
    0.002644
    0.002740
    0.002634
    0.002749
    0.002830
    0.002856
    
    T PB
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760..
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    

    -------
                  Table II-B-14.    COMPUTER REDUCED DATA FOR THE AXIAL BURNER
                    WITH  THE  ASTM FLOW NOZZLE AT THE  66. 0-cm AXIAL POSITION
                       AXIAL BURNER WITH SURFACE COMBUSTION NOZZLE - COLO MODEL
    KFS.ULT.S...
    AP
    66..Q
    66.0
    h^.n
    66.0
    fcfi.O
    66.0
    66. O
    66.0
    66.0
    66.0
    hh.n
    66.0
    66.0
    66.0
    66-0
    66.0
    AA.O
    66.0
    66-O
    66.0
    66-0
    66.0
    hfc.O
    66.0
    f>6.n
    66.0
    Ah.n
    66.0
    AA _n
    66.0
    mA-n
    66.0
    ACi.n
    66.0
    AA.fl
    RP
    75.0
    20.0
    1 S-Q
    14.0
    1 3-O
    12.0
    11.0
    10.0
    9.0
    8.0
    7-0
    6.0
    -5^Jb
    4.0
    1.0
    2.0
    1 -O
    0.0
    -2.0
    -3.0
    -4.0
    -S-O
    -6.0
    -?.n
    -8.0
    -10.0
    - 1 1 -fl
    -12.0
    -1 1.0
    -14.0
    -i 5.0
    -20.0
    -75-O
    fl
    11.5
    24.3
    17-1
    10. 1
    11.7
    10.7
    8.9
    .9.6
    8^4
    9.2
    6. 1
    6.0
    6.6
    5.7
    4^.3
    3.5
    3. A
    3.5
    3.3
    3.0
    3.4
    3.8
    4.4
    3.8
    S.7
    5.0
    S-4
    5.7
    7-h
    10.0
    1 3.7
    9.5
    1 O. 1
    15.3
    1 9-Q
    DELTA RHO
    64. S O-0000159
    51.1 0.0000159
    19.1 O.OOOO159
    19.7 0.0000159
    n.h O.OO00159
    3.7 0.0000159
    fa. 5 0.0000159
    6.7 0.0000159
    J,2 0,0000159
    15.7 0.0000159
    17.5 0.0000159
    21.9 0.0000159
    43.0 0.0000159
    28.0 0.0000159
    36,5 0.0000159
    49.9 0.0000159
    S7.? o.nnonis9
    68.9 0.0000159
    7S.4 O.OOOO159
    91.8 0.0000159
    10O.6 0.0000)59
    123.6 0.0000159
    179. \ 0.00001 59
    132.9 0.0000159
    137.9 0.0000159
    137.2 0.0000159
    I/.?.? O.O000159
    141.8 0.0000159
    ISI.? 0-O0001S9
    145.1 0.0000159
    K.7.3 0-00001S9
    145.8 0.0000159
    1S3.1 O.OOOO159
    114.6 0.0000159
    93-5 O-OOOD1S9
    V
    5. 15
    4.10
    6. 16
    7.38
    8.94
    9.07
    11.52
    13.79
    15.8?
    17.70
    20.41
    22.10
    . _Zi. J3. .
    -26.45
    2B.03
    30.04
    30.53
    30.97
    31.51
    31.24
    29_.3.0
    28.17
    75.7?
    25.61
    Z2..A5.
    20.28
    18.93
    16.50
    14. 65
    11.96
    9.97
    8.93
    8.2O
    4.14
    3.33
    VX
    5.04
    3.73
    5.89
    7.27
    8.75
    8.91
    11.38
    13.59
    L5..6.5
    17.46
    20.30
    21.97
    . .23 .i7
    26.32
    _2J^95
    29.99
    30.47
    30.91
    3L..46
    31.20
    29.44
    28. 11
    25.64
    25.55
    -2.1.96
    20.20
    18.84
    16.41
    14.52
    11.77
    9.70
    8.80
    8.07
    3.99
    3.13
    VY
    0.44_
    1.05
    L.J1
    1.22
    1.87
    1 .69
    . L.13L-
    2. 30
    2.30
    2.74
    2.09
    2. Ib
    2. .29
    2.34
    1^72
    1.20
    1 .04
    0.69
    0.45
    -0.05
    .-0..33
    -1.04
    -1.27
    -1.16
    -1.36
    -1.31
    -L..4_3
    -1.28
    -1.76
    -1.71
    -1.H1
    -1.22
    -1.29
    -0.45
    -0.06
    VZ
    0.92
    1.31
    0.59
    0.44
    0.02
    0.11
    0.20
    0.27
    0.33
    0.77
    0.66
    0.87
    ._. 1.49.
    1.25
    1.27
    .43
    .62
    .79
    .76
    .67
    . _ .. J. ..7.6
    .56
    .55
    .25
    1.46
    1.21
    I.J.Q. .
    1.01
    0.81
    1. 19
    1.40
    0.83
    0.65
    0.99
    1.13
    VT
    0.90
    0.94
    1.07
    0.99
    1.25
    1.17
    1..30
    1.53
    1..57
    1.69
    1.53
    1.61
    1,49
    1.36
    1^09
    0.81
    0.44
    0.00
    -0.46
    -0.82
    -1.07
    -1.26
    -1.39
    -1.37
    -1.44
    -1.47
    -1.36
    -1.51
    -1.49
    -1.46
    -1.15
    -1.13
    -0.81
    -0.82
    VR
    0.48
    1.40
    I.A&.
    0.83
    1.32
    1.22
    1.24
    1.73
    .l.Jl
    2.28
    1.56
    1.77
    . _. 2^9
    2.27
    1.83
    1.68
    1.87
    1.92
    1..7&.
    1.45
    1.44
    1.39
    1.45
    1.01
    1.30
    1.06
    1.04
    0.90
    1.21
    1.46
    1.76
    0.91
    0.89
    0.73
    0.78
    PST
    0.002556
    0.002051
    0.002592
    0.002489
    0.002511
    0.002419
    0.002368
    0.002390
    0.002308
    0.002334
    0.001627
    0.001518
    0.002073
    0.001792
    0.002117
    0.001942
    0.001796
    0.002869
    0.002788
    0.002172
    0.002546
    0.002257
    0.002162
    0.001873
    0.002312
    0.002158
    0.002144
    0.002327
    0.002100
    0.002708
    0.002821
    0.002620
    0.002665
    0.002754
    0.002770
    T PB
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    20. 760.
    

    -------
           APPENDIX II-C.   Investigation of Velocity Measurement
               Dependence on Five-Hole  Pitot Probe Orientation
        We completed an investigation to determine if the experimentally
    determined velocities depend  on the  orientation of the multidirectional
    impact tube's (MDIT) sensing head  of the probe,  relative  to the air jet.
    The MDIT's sensing head or  probe tip was placed at a position in the
    swirl burner's air stream,  where we already knew that the direction  of
    flow was  at an  approximate angle of 45  degrees to the axis of the burner.
    This position was  1  inch from  the burner  wall and 3 inches out,  radially,
    from the  burner axis.   We collected data  at  this point in the  test cham-
    ber with the probe  rotated  0, 45,  and 90 degrees relative to  the  burner
    axis,  with 45 degrees being the approximate  known direction of flow.
    Since the MDIT probe head can measure the  velocity and  direction of a
    stream  so long as the stream approaches  it  from a direction  less than
    ±60 degrees from the probe head axis,  the values  of velocity and flow
    direction  obtained  at  the three  rotational probe positions  should be the
    same.
        Table  II-C-1  shows  the results of these  measurements.   The error
    introduced by the position of  the MDIT  head  relative  to the direction of
    flow is  about ±5%.
         Table  II-C-1.   VELOCITY  ANALYSIS FOR VARIOUS PROBE
       ORIENTATIONS  RELATIVE  TO A  FIXED  DIRECTION  OF FLOW
                                    Rotational Orientation, degrees
    
                Velocity,  V,  ft/s
                Conical  Angle,  


    -------
                                           Y-Z PLANE
                                 DIHEDRAL
                        X-Y PLANE
                         CONICAL
                       PROBE ROTATION
                             9
        BURNER COORDINATE SYSTEM
                                                         POSITIVE
                                                         PROBE ROTATION
                                                  PROBE COORDINATE SYSTEM
                                                               A-32200
        Figure II-C-1.   BURNER AND PROBE COORDINATE SYSTEMS
    Figure II-C-1.   Therefore,  the raw data must  be  related to the burner's
    coordinate system  before any analysis is made.   For  a  rotational orien-
    tation of the probe  other  than  zero degrees, the raw data are translated
    from the probe to  the  burner coordinate system by the transformation
    Equations II-C-1, II-C-Z,  II-C-3,  and II-C-4.
                          V  = V '  cos  9 - V '  sin 6
                           XX           Z
                 V   =  V '  cos 8 +  V '  sin 6 =  V sin 6 sin V
                  Z     Z            X
                                                   V
                         $ (conical angle)  =  cos"1  -^-
                       V  (dihedral angle) = sin
                                              -i
                                                 V sin
    (II-C-1)
    
    (II-C-2)
    
    (II-C-3)
    
    (II-C-4)
                                      448
    

    -------
    where —
        V ,  V     = velocities  relative to the burner  coordinate system,
          X   z      ft/s
        V ', V  '   = velocities  relative to the probe head coordinate system,
          x    z     ft/s
                                       449
    

    -------
            APPENDIX II- D.  Method of Calculating Swirl Number
        In swirling free jets or flames  both  the  axial flux of the  angular
    momentum,  G ,  and  of  the linear momentum,  G ,  are  conserved.   G
                  S                                  X                     S
    and G  are expressed by Equations  II-D-1  and II-D-2:
          •X
                       G  =  J1"2 V pV ZTTrdr  + JroPZ7Trdr            (II-D-1)
                        jC     r i   x.   .x           Q
    
                             G  =  fr2 V r2pV ZTTdr                    (n-D-2)
                               s    J n  t  r  x                        v       '
    where V ,  V ,  V , and  P are the axial,  tangential,  and radial compo-
            x    t   r
    nents of the velocity  and static pressure  in a jet enclosed by an annular
    disk of outer radius,  r2, and inner  radius,  n.   Since both of these
    momentum  fluxes are  characteristics of  the aerodynamic behavior of the
    jet,  a nondimensional  characteristic based on these quantities is used as
    a criterion of swirl intensity,  defined as —
    
                                   s  =                                
    
        To define  V ,  the tangential velocity,  in terms  of  the quantities
    measured by the multidirectional impact tube,  the geometrical scheme
    shown in Figure II-D-1 was used.   The angle  $ corresponds to the meas-
    ured  conical angle, x is the distance of the sensing head from the  burner
    wall,  and ro is the radius of the burner.   From geometrical  arguments,
    which can be  directly deduced from Figure  II-D-1,  the  tangential velocity
    is shown to be —
                             .*.  .           Vr0 sin $ cos $            ,_, _  ..
                 V  = V  sin 4> sin  

    + X2 sin2 $ The radial velocity equals — Vr° Sin V = V sin $ cos


    -------
                             BA¥r088r
                                                     A- 32201
     Figure II-D-1.   GEOMETRIC RELATIONS DESCRIBING
    DEFINITION OF TANGENTIAL AND RADIAL VELOCITY
                                451
    

    -------
        In a paper  published by Beer  and Leuckel, ! the swirl number, S, is
    calculated  from the input velocity  distribution  in the awirl generator  rather
    than from  the velocity distribution in the jet.   Thus, the static  pressure
    term  is  omitted and a good approximation of the  swirl  number is —
                                  S' -                               (II-D-6)
    
    where
                            G ' = 277 fr* P(V  ')2 rdr                 (II-D-7)
                             x       J n   v x '                      v      '
    and V '  represents the axial  velocity in the swirl generator.  Using this
          ?c
    approximation,  they derived the following general relationship for the
    swirl number, S',  of flow through a cylindrical or annular duct attached
    to a movable -block swirler:
    
                             s'  =  a TJT  Cl  ~ (TT)2]                   (n-D-8)
    The  dimensionless  coefficient, CT ,  can be interpreted as the ratio of the
    average  tangential and radial velocity  components at the swirler  exit.  /3
    is the channel width in the  axial direction,  R is  the radius  of the throat
    of the burner, and R,  is the  inner  radius of the air  duct  at the  throat of
    the burner.   The values for these parameters used in the movable -block-
    type swirl generator are  shown in Figure 11-178  of the text.   For the
    movable-block swirler the coefficient as  a  function of the  swirler adjust-
    ment £/£m,  where  £  is the angle of adjustment  of the swirler (0 < £ <
    £m),  is  shown in Figure 11-178.
        Table  II-D-1  compares the swirl numbers for our burner and oper-
    ating conditions as  calculated from  experimental  data, from the semi-
    empirical  equations of Beer and Leuckel, '  and  from the values obtained
    by the International Flame  Research Foundation and published in  IFRF
    Document  No.  G01/9/18.   The  agreement between the three sources is
    quite  good.
                                       452
    

    -------
              Table II-D-1. COMPARISON OF SWIRL NUMBERS
          CALCULATED FOR SWIRL BURNER WITH INTERMEDIATE
              VANE SETTING AND 28 ft/s  THROAT VELOCITY
    
                         Method        Swirl Number, S
    
                    IGT Experimental         0. 82
    
                    Beer and Leuckel         0.78
    
                    IFRF Measured*          0. 79
    
    References Cited
    
    1.   Beer,  J.  M.  and Leuckel,  W.,  "Turbulent Flames  in Rotating Flow
        Systems. "  Paper No.  F-NAFTC-7 presented at the North American
        Fuel Technology Conference,  Ottawa, Canada,  May  31-June 3,  1970.
    
    2.   Thring, M. W. , "Study of  Burners With Air Vortex, "  Riv.  Combust.
        24, 53-59 (1970) February  (Italian text with English  summary).
       Corrected for small-dimensional differences between  IFRF and IGT
       burners.
                                      453
    

    -------
    APPENDIX II-E.  Computer Program for  Data Transformation
               and Plotting Tracer-Gas Mixing Results
                                  454
    

    -------
                              Table II-E-1
    
    // JOB T
    LUG DRIVE
    0000
    
    
    CARI SPEC
    OCC1
    
    
    CART AVAIL
    0001
    2H01
    2603
    PHY DRIVE
    0000
    0001
    0002
    V? M10   ACTUAL  16K   CONFIG 16K
    
    // FOR
    *ONE WORD  (INTEGERS
    "•EXTENDED  PRECISION
    *LIST SOURCE PROGRAM
          SUBROUTINE CUF1HIC,X,Y,N,M)
    C      MARCH 28,1972
    C     N =  ORDER OF FI T
    C     M =  NUMBER OF DATA  PUINTS
    C     C =  COEFFICIENTS
    C     X =  INDEPENDENT  VARIABLE
    C     Y =  DEPENDENT    VARIABLE      Y=C<1)*C(2)*X+...+C(N+1)*X**N
          DIMENSION C(10),X(100»,Y(100),AUO,10)
          [OUT = 5
          DO 155 1 = 1,1C
          C(I)=0.0
      155 CONTINUE
          L = '\*1
          IF(L-in)157,Ib7,1^6
      156 CALL CXIT
      I'3 7 CONTINUE
          LL =  N + 2
          DO C J=1,L
          DO 0 K=l,LL
        8 A ( J , K ) =  C . 0
          DO 12 I = I , M
          DO 11 J=l,L
          DO 10 K = l ,L
       10 A(J,K) =  MJ,K)+  X( I )**{ J + K-2)
       11 A(J,LL)=  A«.I,LL)+X( I )**( J-l )*Y( I )
       12 CONTINUE
          A(1,1)=M
          A( 1,LL)=0.0
          DO 1 1A 1 = 1,1'
      IK A« li LL)=A( 1 ,LL )*Y( I )
          00 13 I=1,L
          C( I ) = A( I ,LL )
       13 CONTINUE
          I =  C
      105 I =  1+1
      106 J =  I
          DD = A(I,J)
          IF(M 1 ,J ) ) 120, 107, 120
      107 IF( J-L ) ICo, 15C, ICi)
      ICO K =  I
      109 IF( AIK + 1,J) ) 111, 110,111
      1 10 K =  K*l
          IFI.I-L ) 10s', ISO, Ifl'J
      111 Ud 121 J = I , L
                                    455
    

    -------
                               Table II-E-Z
    
    
      121 A(K,J)  =  A
    -------
                               Table  II-E-3
    
         MARCH 28,1972
        DIMENSION MARM200)
        DIMENSION XI200),CON(200),ID(40)
        DIMENSION CF(10),XCF(100) ,YCF(I 00)
        DATA ISTAR/1*'/
        CALL OVERFLIIOVFL)
        CALL OVCHKIIDVCK)
        CONTINUE
        INPUT=2
        IOUT=5
        READ!INPUT,902)ID
        WRITE(IUUT.905)ID
        INDEX=0
        XCFI1)=O.C
        YCF( 1 )=0.0
        XCF(2)=.29l
        YCF(2) = 12i>.
        XCFI3)=.5b
        YCF(3)=25C.
        XCF(4)=.79
        XCF(5)=1.
        YCFI51=500.
    
        N = M-3
        CALL COFIH(CF,XCF,YCF,N,M)
        WRITE(IOUT.904)
      1 RCADIINPUT,900) AP,RP,V
        IF!AP)500,20,2
      2 INDEX=INOtX+l
        IF( INDEX-20C)3,3,bOO
      3 MARK! INDEX) = ISIAR
        X(INDEX)= RP
        CON( INDEX) =CF(1)+CF(2)*V + CF(3
        WRITE! I OUT,901)AP,RP,V,CON(INDEX)
        APST=AP
        GO TO 1
     20 WRITEfIOUT.903)ID
        WRI TE( IOUT,909)APST
        CALL PTSE9IX,CON,MARK,INDEX)
        CALL OVERFLtIOVFL)
        GO T0(201,202,202),IOVFL
    201 WRITE(IOUT.908)
    202 CALL DVCHKlIDVCK)
        GO TO (201,203),IDVCK
    203 CONTINUE
        GO TO 5
    500 CALL FXIT
    •)00 FORMAT
    >01 FORMAT
    002 FORMAT
        FORMAT
        FORMAT
        FORMAT
        FORMAT
        FORMAT
        FND
               IOF8.3)
               F6.2,F8.2,F9.3,F9.2)
               ACA2)
               1HI,/?CX,/«CA2)
               /' EXPERIMENTAL RCSULTS'/5H    AP , 5X,2HRP,7X,4HX(V),5X,?HCO)
               lHl,?t)X, ' TRACE< GAS  STUDIES  OF  COMBUSTION BURNERS ' /20X40A2 )
               '  OVERFLOW OR DIVISION  ftY  ZERO')
               I OH "P VS. CO ,3X,3H4P = F6.2)
                                     457
    

    -------