EPA-460/3-78-004
March 1978
EXHAUST EMISSIONS FROM
VEHICLES IN DEMAND-
RESPONSIVE SERVICE
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
-------
EPA 460/3-78-004
EXHAUST EMISSIONS
FROM VEHICLES
IN DEMAND-RESPONSIVE
SERVICE
by
John A. Gunderson
Olson Laboratories, Inc.
421 East Cerritos Ave.
Anaheim, California 92805
Contract No. 68-03-2411
Task Order No.3
I
EPA Task Officer: Charles J. Domke
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
March 1978
-------
This report is issued by the Environmental Protection Agency to report technical data of interest to a
limited number of readers. Copies are available free of charge to Federal employees, current contractors
and grantees, and nonprofit organizations - in limited quantities - from the Library, Motor Vehicles Emis-
sion Laboratory, Ann Arbor, Michigan, 48105, or, for a fee, from the National Technical Information
Service, 5285 Port Royal Road, Springfield, Virgina 22161.
This report was furnished to the Environmental Protection Agency by Olson Laboratories, Inc., 421 East
Cerritos Ave., Anaheim, California 92805, in fulfillment of Contract No. 68-03-2411, Task Order No. 3.
The contents of this report are reproduced herein as received from Olson Laboratories, Inc. The opinions,
findings, and conclusions expressed are those of the author and not necessarily those of the Environmental
Protection Agency. Mention of company or product names is not to be considered as an endorsement by
the Environmental Protection Agency.
Publication No. EPA 460/3-78-004
II
-------
FOREWORD
Demand-responsive service is a term applied to a class of transportation
service provided to the public. Demand-responsive transportation service is
intended to attract riders from those portions of the population that customarily
use a personal automobile, or have none. This project relates to the fulfillment
of the Emission Control Technology Division (ECTD) responsibilities in character-
ization of emissions from presently unexplored emissions sources as well as in
basic emission factor efforts.
iii
-------
ABSTRACT
This report describes a study performed by Olson Laboratories, Inc. in
which II 1976 and 1977 demand-responsive service vehicles were tested to
measure exhaust emissions. Each vehicle was exhaust emission tested using the
Federal Test Procedure for Light-Duty Vehicles; the Surveillance Driving
Sequence, including steady-state modes; and the AA-1 Urban Bus Cycle. Each
vehicle was run at "typical" inertia loads for all test procedures and "fully
loaded" for the AA-1 cycle. Emission data collected and reported will be used
by the emission factors group of ECTD to estimate emissions inventories for
this class of vehicles.
iv
-------
CONTENTS
Foreword , iii
Abstract iv
Figures , vi
Tables vi
1 INTRODUCTION AND SUMMARY 1
2 BACKGROUND AND PROJECT DESCRIPTION 2
2.1 Background 2
2.2 Project Description 7
3 TECHNICAL DISCUSSION 10
3.1 Program Objectives 10
3.2 Program Design 10
3.3 Test Vehicle Procurement 11
3.4 Facilities and Equipment 11
3.4.1 Test Location 11
3.4.2 Constant Volume Samplers 13
3.4.3 Emission Analysis Console 13
3.4.4 Laboratory Standard Calibration Gases 13
3.4.5 Chassis Dynamometer 14
3.4.6 Miscellaneous Equipment 14
3.5 Equipment Qualification, Calibration, and Cross-check 15
3.5.1 Constant Volume Sampler (CVS) 15
3.5.2 Emission Analysis Console 15
3.6 Test Procedures 16
3.6.1 Vehicle Preparation 16
3.6.2 Equipment Preparation 16
3.6.3 Federal Exhaust Emission Test Procedure 17
3.6.4 AA-1 Bus Test Procedure 17
3.6.5 Modal Exhaust Emission Test Procedure 17
3.6.6 Vehicle Loading Practices 18
3.6.7 Daily Test Schedule 19
3.7 Data Handling 21
3.7.1 Data Collection 21
3.7.2 Data Processing 21
3.7.3 Quality Control 21
3.7.4 Calculation of Results 22
3.7.5 Certification Emissions 25
4 TEST RESULTS 24
4.1 Measured Versus Specification Engine Parameters 24
4.2 Exhaust Emission Results 24
References.
29
v
-------
CONTENTS (CONT'D)
Appendices
A Service Characteristics and Profile Duty Cycles 31
B Ann Arbor-1 Dynamometer Schedule 41
C Surveillance Acceleration-Deceleration Driving Sequence .... 53
D Certification Emissions for the Engine Families Represented
in the Program 55
E Individual Vehicle Test Results 57
FIGURES
Number Page
1 Conventional Versus Loop Routing 4
2 Conventional Routing on a Philosophical Basis 5
3 Typical Portions of AA-1 Cycle 8
4 Emission Test Sequence 20
TABLES
Number Page
1 Vehicles Tested 12
2 Engine Parameters, Measured Versus Specification 25
3 Comparison of Exhaust Emissions by Test Method 26
4 Comparison of Emissions by Federal Test Procedure Mode in
Grams Per Mile 27
5 Fleet Averages by Test Method 28
vi
-------
Section 1
INTRODUCTION AND SUMMARY
This final report is submitted by Olson Laboratories, Inc., to the Environ-
mental Protection Agency (EPA), to document the conduct and findings of Task
Order 3 of Contract No. 68-03-2411.
A total of 11 demand-reponsive vehicles were tested using the FTP followed
by the Ann Arbor (AA-1) Bus Test Procedure and the EPA modal exhaust emission
test procedure. Each vehicle was checked with respect to its engine condition
and, in general, was not at manufacturer's specification.
FTP emission results were from three to six times higher than the standards
for light-duty passenger vehicles. The AA-1 emission results closely approxi-
mated the bag 2 (cold stabilized) results of the FTP. This was to be expected
as both are basically hot-start tests with nearly equal average speeds and
cycle times.
-------
Section 2
BACKGROUND AND PROJECT DESCRIPTION
2.1 BACKGROUND
Demand-responsive service is a term applied to a class of service provided
to the public- Several different types of passenger vehicles are used depending
upon the type of service. These services are usually provided by, but not
confined to, municipalities for the benefit of those served. The vehicles
range in size from small passenger vans to buses carrying 25 passengers. The
operations of these vehicles deviate to a greater or lesser degree, depending
upon the circumstances, from those of larger (40 passenger and greater) buses
that operate on fixed routes with fixed headways and pre-determined time
schedules.
Demand-responsive systems are still in a developmental state and, hence,
are not easily characterized by a single generic term to describe their opera-
tions. There are four widely-accepted terms now in use to describe types of
demand-responsive service. These terms are "route deviation," "many-to-one,"
"many-to-few," and "many-to-many." These terms will be dealt with in greater
detail later in this report. In addition to the four accepted types of service,
there are hybrid types of service that evolve to accomodate a given set of
circumstances. There are about 80 to 100 demand-responsive systems operated
by municipalities or transportation authorities in the United States, .and
about 20 of them are in the State of Michigan.
Demand-responsive transportation service is intended to attract riders
from that portion of the population that customarily uses a personal automobile
to go to and from work, shopping, etc. These systems are frequently character-
ized by door-to-door service, although such service is not usually on an
exclusive basis. The obvious intent of the service is to reduce congestion on
the streets, to reduce the emission of noxious exhaust pollutants to the
atmosphere, and to conserve energy in the form of reduced motor fuel use. An
equally important goal is to provide persons of families of limited economic
resources, or very elderly people, with a transportation service which approaches
that of taxi service at a fraction of the price. Specially-equipped vehicles
are used to provide service to handicapped persons.
With the increasing emphasis on mass transit systems to reduce the consump-
tion of gasoline, the number and impact of demand-responsive systems should
increase within metropolitan areas. The number of operative systems is expected
to grow substantially from the approximately 100 presently in use. In addition
to the conventional demand-responsive service offered by municipalities, the
same kinds of vehicles are used as shuttle buses by rental car companies,
airport parking lots, hotels, etc. These services can be loosely classified
as demand-responsive (there being no fixed time schedule) and also occur in
congested urban areas. The EPA felt that it would be beneficial to collect
data that could be used to determine the reduction of emissions realized from
-------
a shift from personally-owned vehicles to the demand-responsive type of mass
transit.
This project relates to the fulfillment of the Emission Control Technology
Division (ECTD) responsibilities in characterization of emissions from presently
unexplored emissions sources as well as in basic emission factor efforts.
Informal requests for this work have been submitted to the Office of Transpor-
tation and Land Use Planning by regional EPA offices, and OPA has expressed a
need for improved bus emission factors of all kinds in order to proceed with
strategy option papers.
Because of socioeconomic or demographic circumstances, a demand-responsive
plan for one city might be completely inadequate for another municipality.
This gives rise to plans that are characterized by departure from conventional
routing on a geographical basis (Figure 1), or a philosophical basis (Figure 2).
A careful study of previous investigations of communities in similar circum-
stances would be required to select the type of system best suited for a
particular area; or, peradventure, after inauguration of a system in such an
area, the service experience might indicate that no one known system would
suffice, but that several must be combined to meet the local needs. This
diversity of system operation quickly implies that there can be no single
typical or average driving cycle. A consideration of these factors indicated
that design parameters should be built into this program to enable the EPA to
meet any reasonable needs as they are encountered.
Demand-responsive systems have been the object of considerable investiga-
tion, but on a small scale. This is not as ambiguous as it seems, for it just
means that a number of communities have instituted programs of limited scope.
The literature is replete with references to, or data on, "wait time," "ride
time," methods for dispatching, fares, usage by hour of day, usage by day of
week, etc.; but there is little published on trip length, average speed,
number of trips, average load, number of idles per mile or idles per trip, nor
anything at all on exhaust emissions.
By far the most comprehensive information available is that from a pilot
program (known as Dial-A-Ride) conducted in Ann Arbor, Michigan for a 1 year
period starting September 1971. This program was so successful that the
program was greatly expanded and is running yet, although not in the same
method of- operation as it was initiated. The present Ann Arbor fleet numbers
64 vehicles, of which 13 are especially equipped for the service of handicapped
persons.
In the original program a total of 8,505.2 vehicle hours were recorded
and the average speed (total vehicle miles divided by total vehicle hours) was
12 mph. This average speed includes standby and break time, during which
periods the vehicles were idle. Actual average speed of an instrumented Ann.
Arbor Dial-A-Ride vehicle, while in service, has been recorded at 14 to 16 mph.
During typical tours, maximum speeds of 35 to 40 mph were reached. Average
passenger riding time was 12.6 minutes and the average passenger trip length
was 2 miles.
The Ann Arbor pilot system started as a trip-making pattern best charac-
terized as "many-to-few" service during off-peak hours.(1)* The Ann Arbor
*Numbers in parenthesis denote references listed at end of report.
3
-------
Coventional routes
Partial loop routes
Full loop routes
Figure 1. CONVENTIONAL VERSUS LOOP ROUTING.
-------
1. ROUTE DEVIATION
Deviation for
Doorstep Service
Basic Route
2. MANY-TO-ONE
Activity Center
Destination
3. MANY-TO-FEW
Activity Center Wi
Service Area
4. MANY-TO-MANY
Figure 2.
CONVENTIONAL ROUTING ON A PHILOSOPHICAL BASIS
Several
Possible
Destinations
-------
small van fleet now largely operates on a "feeder" basis for the main bus
system. In a summary profile(2) of 57 demand-responsive transportation services
in North America as of May 1, 1974, the service patterns of services operated
were characterized and appear below.
Many-to-many only
Many-to-one only
Many-to-few only
Many-to-many and many-to-one
Many-to-many and many-to-few
Other
35
3
5
7
1
_6
57
This shows that most operators offer many-to-many services, although a
few offer either many-to-many or many-to-few service only. Some operators
employ a combination of service patterns, depending on the characteristics of
the market being served. The service patterns shown above can be expressed in
terms more descriptive of their operation.
The following discussion details typical operating profiles and indicates
performance requirements for the service uses of small bus operation in demand-
responsive service. It should be stressed that because of the diverse nature
of small bus operations, considerable variation from the profiles shown
may exist within any one service mode. In particular, services of a fixed
route nature tend to form a continuum rather than the discrete grouping outlined
herein. The identified service uses of small urban buses and basic operational
profiles are(3):
Source
A. Urban Fixed Route
B. Core Shuttle
C. Line Haul Feeder
D. Route Deviation/
Subscription
E. Demand-Responsive
F. Special Elderly/
Handicapped
Stops/Mile
10
12
5
2
1
1
Ratio of
Running:
Stopped Time
2.5:1
2.1:1
3.5:1
6.0:1
3.5:1
1.5 - 2.0:1
Avg. Speed*
(MPH)
10
9
16
25
20 - 25
20 - 25
* Includes stopped time
Service characteristics and profile duty cycles for each of these classes
of service are shown in Appendix A. .While the EPA believes that the data
presented on the service characteristics of the various routes are reliable,
the typical duty cycles leave a great deal to be desired. In none of them is
there a variation in the acceleration, deceleration, and cruise modes on a
mode-to-mode basis. The appearance presented by these cycles is most unrealistic.
Several years ago the EPA Technology Assessment and Evaluation Branch
(TAEB) developed the Ann Arbor-1 (AA-1) Urban Bus Cycle to enable evaluation
of exhaust emissions from buses. The AA-1 cycle is based on a speed-versus-
time trace generated, in the summer of 1971, by the TAEB by attaching a fifth
-------
wheel to one of the buses of the Ann Arbor Transportation Authority (AATA) and
recording the route traversed. The cycle is not an "official" test cycle, but
rather is used as an experimental tool by TAEB for comparing emissions from
buses. The cycle consists of 25 trip segments and the 5.6-mile route requires
29.5 minutes to complete, for an average speed of 11 mph. The maximum speed
on the cycle is 38 mph.(4)
The AA-1 cycle is quite similar to the Federal Test Procedure (FTP) in
that the acceleration, deceleration, cruise, and idle modes are random in
occurrence and length as contrasted to the cycles illustrated in Appendix A.
Typical portions of the AA-1 cycle are shown in Figure 3.
2.2 PROJECT DESCRIPTION
The program was structured on the FTP and on the AA-1 Bus Cycle. Table B-5
of Appendix B shows that salient portions of the AA-1 cycle compare favorably
with data from the Department of Transportation (DOT) Small Bus Report, No. 3.
The AA-1 cycle also compares favorably with data that have been developed by
Johnson et al, to characterize typical vehicle usage(5).
The Johnson paper made some generalizations on characteristic modes of
vehicle operation. Among the generalizations made was an analysis of stops
per mile versus average speed per trip. This enables one to compare the stops
per mile in the AA-1 cycle to those indicated in the Johnson paper.
The Dial-A-Ride data indicated that the average riding time per passenger
is 12.6 minutes and that an average of six passengers were carried per vehicle
hour at an average speed of 12 miles per hour. Obviously stops were associated
with the pickup and discharge of those passengers. The Johnson data indicated
that 4.5 stops per mile were made when the average trip speed was 12 miles per
hour. Taking into consideration the fact that more than one passenger might
get on or off a vehicle at the same time these data were not difficult to
reconcile.
The AATA operates approximately 66 passenger vans converted to transit
use. These vans accomodate about 12 passengers each and have an unladen
weight of about 7,000 pounds. The Southeastern Michigan Transportation Author-
ity (SEMTA) operates a fleet of abouli 85 converted passenger vans. Both AATA
and SEMTA expressed a desire to cooperate with the EPA by offering to provide
test vehicles as needed, contigent only on operating schedules and unforeseen
problems associated with the movement of buses- into the custody of the contrac-
tor. Both of these agencies were cooperative at all times, but the demands
for their service by the public were such that they could make vehicles avail-
able on weekends only. In some instances the vehicles they provided were not
in condition conducive to testing. Worn tires, marginal brakes, substandard
driveability, etc; although not widely encountered, were among the problems
experienced and vehicles with these defects had to be rejected, with no suitable
substitute vehicles readily available from the same sources. Because of the
foregoing, ultimately, only one vehicle from each of these organizations was
tested.
Early in the planning stages of the program it became evident that the
quota of vehicles to be tested would be difficult to meet if we depended upon
-------
Figure 3. TYPICAL PORTION.'; OF AA-1 CYCLE.
-------
AATA and SEMTA only. There are perhaps 20 demand-responsive systems in
Michigan besides AATA and SEMTA, but their operations are several orders of
magnitude smaller than AATA and SEMTA and their distances from the test facility
augered extreme difficulty in vehicle procurement from them. A common practice
used in emission factor programs, furnishing a loan vehicle during the time of
testing, was impossible because of the nature of the vehicles and the operations
involved. Airport parking lot and motel operators usually provide airport
shuttle service and use the same types and makes of vehicles as the transporta-
tion authorities. These services are, in effect, a form of demand-responsive
transportation in their own right and so it was decided to fill out the
sample with vehicles from these sources. The wisdom of this policy became
quite clear as the program got under way and the magnitude of the problem of
procurement of vehicles from AATA and SEMTA became increasingly evident.
The program called for the testing of each vehicle by the FTP for Light-
Duty Vehicles, the Surveillance Driving Sequence, including steady-state
modes, and the AA-1 Urban Bus Cycle. The AA-1 cycle has no official standing
but after exhaustive study of the demand-responsive transportation literature,
and particularly that published by the DOT, the EPA concluded that the AA-1
cycle had more merit than anything else that was available. Moreover, the
AA-1 cycle has been used by the TAEB to test various vehicles which they have
been called upon to evaluate and, hence, provides a convenient tie-in with
other comparable projects. CAB personnel procured the AA-1 Bus trace used by
TAEB, transcribed it on a second-by-second basis for computer applications,
and had the Data Branch generate strip charts for Government-Furnished Equipment
to the Contractor.
Inertia weights were determined by weighing the vehicles. The vehicles
were run at "typical" inertia loads for all test procedures and "fully loaded"
for the AA-1 cycle. The typical load, for this study, is considered to be the
vehicle weight plus driver and 3 passengers (600 pounds) for a 9-passenger
bus, and driver plus 4 passengers (750 pounds) for a 12-passenger bus. The
AA-1 cycle was repeated for all vehicles in the fully loaded condition, driver
plus all seats filled; that is, vehicle weight plus 1,500 and 1,950 pounds,
respectively. Inertia loading was rounded up or down to give even inertia
weight increments for testing in accordance with FTP procedures. Road load
was determined from vehicle frontal area. Because all the vehicles were air
conditioned, 10 percent was added to' the road load at which the vehicles were
tested.
Because the weight of some of these vehicles tested exceeded the capacity
of the dynamometer in Olson's laboratory, the EPA loaned Olson a dynamometer
capable of testing vehicles up to 10,000 pounds inertia weight.
-------
Section 3
TECHNICAL DISCUSSION
3.1 PROGRAM OBJECTIVES
The objectives of the overall program were to:
1. Determine the exhaust emissions from a representative sample of
demand-responsive vehicles by the cold-start 1975 FTP. Most of the
vehicles used in demand-responsive systems are certified by the EPA
truck exhaust emissions procedure, and the emissions determined by
that schedule should not be used to compute an exhaust emission
inventory because the emissions are not representative of those in
street service.
2. Determine the exhaust emission from these same demand—responsive
vehicles with the AA-1 cycle.
3. Determine modal emissions using the Surveillance Driving Sequence
including the steady-state modes of 5, 15, 30, 45 and 60 mph.
4. Run each of the above schedules at a dynamometer load representing
the average passenger load. Also run the AA-1 cycle (Item 2) at a
dynamometer inertia load representing the maximum passenger, load.
3.2 PROGRAM DESIGN
The testing program was performed to determine the emissions from a
representative sample of types of vehicles used in demand—responsive fleets.
The vehicles were procured from, but not limited to, van-type vehicles operated
by the Ann Arbor Transportation Authority (AATA), the Southeastern Michigan
Transportation Authority (SEMTA), Satellite Parking Company, Airways Rental
Company, and All Amerian Rent-A-Car. The EPA was responsible for the initial
contacts with these organizations and similar organizations as required, as
well as determining the mix of vehicles to be tested. Because the EPA antici-
pated that the vehicles to be tested would exceed the capacity of Olson's
dynamometer, the EPA furnished a medium-duty, 10,000-pound inertia weight
dynamometer to Olson for the duration of the project.
The-exhaust emission tests performed were:
1. The Federal Test Procedure, 40 CFR 85.075-1 to 85.075-26, inclusive.
The portion of the test pertaining to evaporative emission was
omitted.
2. The AA-1 Bus Test Procedure with a running hot start. The AA-1
procedure is tabulated in Appendix B.
10
-------
3. Modal exhaust emissions by the Surveillance Driving Sequence (SDS)
and steady-state modes of 5, 15, 30, 45, and 60 mph. The SDS
procedure is tabulated in Appendix C.
The curb weight of each vehicle tested was determined by weighing the
vehicle. The AA-1 Bus Test was run at two different inertia weight loadings,
representing typical passenger loadings. The Federal Test Procedure and
Surveillance Driving Sequence were run at one dynamometer loading representing
the average passenger loading as performed in Item 2. The inertia weight
loadings were furnished to Olson by the Project Officer. Road load horsepower
was determined by the frontal area of each test vehicle. The calculation of
the value of these dynamometer settings are prescribed in 41 CFR 86.129-79.
The frontal area was measured by photographing the front of the vehicle and
determining the area enclosed by the geometric projection of the basic vehicle
along the longitudinal axis, which includes tires but excludes mirrors and air
deflectors, onto a plane perpendicular to the longitudinal axis of the vehicle.
The actual measurement was used to calculate road load horsepower setting.
Eleven vehicles identified by the Project Officer were tested. Tail pipe
idle CO and HC exhaust emissions were measured from each vehicle using portable
garage-type instruments. Idle rpm and basic ignition timing were also measured
and reported.
3.3 TEST VEHICLE PROCUREMENT
Eleven vehicles were identified by the EPA which were typical of vehicles
used in demand-responsive service. However, only two were procured from
municipal demand-responsive systems because of the difficulty in procuring
vehicles from these sources. These vehicles were only available from .7:00 p.m.
Friday to 6:00 a.m. Monday. Hence, the other vehicles were drawn from other
sources.
Table 1 identifies the vehicles tested and the corresponding inertia and
road loads used.
A file containing the owner and vehicle information was established and
utilized to schedule vehicles for testing. Owners were contacted by telephone.
At this time, information submitted on the data card was confirmed and any
missing information was obtained. Vehicles which met with program design
requirements, were then scheduled for testing.
3.4 FACILITIES AND EQUIPMENT
3.4.1 Test Location
Olson Laboratories, Inc., operates a permanent facility in the Detroit
metropolitan area. Testing for this contract was performed in this facility.
The location of the facility is 11665 Levan Road, Livonia, Michigan 48150.
This facility contains approximately 26,000 square feet of laboratory/
office space and provides two emission test cells. However, only one was
equipped with the specified equipment.
11
-------
Table 1. VEHICLES TESTED
VEHICLES
NumBer
1
2
4
5
6
10
11
13
15
16
17
Year
1976
1976
1976
1977
1977
1976
1977
1976
1977
1977
1976
Make
Ford
Chevrolet
Ford
Ford
Chevrolet
Chevrolet
Dodge
Dodge
Dodge
Dodge
Dodge
DISPLACE-
MENT
(CID)
351
400
460
351
400
350
318
360
360
318
360
ODOMETER
(Miles)
5,500
9,683
10,176
18,455
12,426
54,280
5,484
47,314
25,264
11,405
37,932
WEIGHT
(Pounds)
5,435
5,370
5,500
5,000
5,390
5,140
4,395
5,020
4,460
6,640
6,020
ROAD,
LOAD3
(HP)
21.5
21.0
23.2
21.2
21.0
25.3
20.1
19.7
18.3
25.9
25.1
INTERIA LOAD
(Pounds)
Low
6,000
6,000
6,000
5,500
6,000
6,000
5,000
6,000
5,000.
7,500
7,000
High
7,500
7,500
7,500
6,500
7,500
7,000
5,500
7,000
6,000
8,500
8,000
Includes 10 percent for air conditioning.
12
-------
3.4.2
Constant Volume Samplers
One Olson six-bag CVS system with gas-to-water heat exchanger was used.
Sample and background bag selection was automatically controlled by computer
to select the proper bag set for each phase of the 1975 FTP.
3.4.3
EmissionAnalysis Console
One complete emission analysis console was previously designed and built
by Olson. The console had push-button selection of zero, span and sample for
each range of each instrument. The console had a built-in CL converter effi-
ciency test unit and automatic sample line purge as required by the contract.
The console contained the following instrument types:
Analyzer
Bendix Model
8501-5C (CO)
Beckman 315B
NDIR (CO)
Beckman 315B
NDIR (CO )
Teco 10A
Chemiluminescent
(NO )
Two Beckman 400
FID (HC)
Horiba GSM 300
(Raw HC)
(Raw CO)
Horiba MEXA 300A
(Raw HC)
(Raw CO)
Ranges
0-100, 0-500ppm
0-.3%, 0-3%, 0-5%
0-4%, 0-8%
0-100, 0-250,
0-1,000, 0-2,500ppm
0-50, 0-100
0-300, 0-1,000
0-3,000, 0-10,000ppm
0-400, 0-2,000ppm
Hexane Equivalent
0-2%, 0-10%
0-200, 0-l,000ppm
Hexane Equivalent
0-0.5%, 0-5%
3.4.4
Laboratory Standard Calibration Gases
Laboratory standard calibration gases had been previously sent to the EPA
Ann Arbor laboratory for analysis where concentrations were assigned to them.
This standard set of gases was used for defining instrument calibration
curves and assigning concentration values for the working gases. Each cylinder
of standard gas and each working gas was equipped with a dedicated pressure
regulator as specified by the contract. All gases were permanently plumbed to
a quick-disconnect panel for ease in selecting the gas desired during calibra-
tion and testing.
13
-------
3.4.5 Chassis Dynamometer
An EPA-supplied split roll CT-50 direct-drive dynamometer was installed
in the test cell and was completely checked out by Clayton. The unit had a
capacity of 10,000 pound inertia weight.
3.4.6 Miscellaneous Equipment
Miscellaneous equipment used in conjunction with the major items of
equipment included the following:
o Two Texas Instrument Servowriter II Recorders were used with the
analytical console.
o One Hewlett-Packard 2114A Mini-Computer was used to generate FTP
driver traces and control bag filling.
o A second Hewlett-Packard 2114A Mini-Computer was used to calculate
mass emission data.
o One Hewlett-Packard Model 7128-A-02-04-08-24-105-141-144 Driver's
Aid for FTP.
o One Varian Driver's Aid for SDS and AA-1.
o One Teco Model 100 NO Generator.
x
o One Sargeant Welch Continuous Flow Psychrometer, Model No. 542610
with continuous recording of wet/dry bulb temperatures by a dual-
channel Rustrak Recorder Model No. 2163E.
o Hartzell Model No. N-24-DUW cooling fan placed in front of the
vehicle for cooling during test.
o One Taylor Instrument Company Model No. 2314, 7-day continuous
recording barometer.
o One Autoscan Model No. 4000 Engine Analyzer.
o One Rustrak Model No. 2163B continuous temperature recorder for soak
area temperature.
o One Nova Mercurial Barometer.
o One Meriam 50 MC2-4(F) Laminar Flow Element for CVS calibration.
o One Mettler Model 1200 Balance used for weighing the propane cylinders
for propane recovery tests.
o One Strobotach for dynamometer coast down calibrations.
o Wet/dry Bulb Recording Systems - Periodic checks using a sling
psychrometer as a reference were made to verify calibration and
accuracy.
14
-------
o Miscellaneous Recorders - Other recorders were periodically checked
for mechanical zero, Rustrak Recorders were checked against precision
thermometers.
o Other auxiliary equipment was calibrated in accordance with manufac-
turer's procedures.
3.5 EQUIPMENT QUALIFICATION, CALIBRATION, AND CROSS-CHECK
This section describes the qualification, calibration, and cross-check
procedures utilized by Olson and verified by EPA technical personnel to ensure
that valid test data were generated throughout the test program. Initial
qualification included complete demonstration of individual instrument calibra-
tion, stability, response time, modal transport time, zero air and nitrogen
purity, CVS calibration, dynamometer calibration, and inspection of all daily,
weekly and monthly log records.
Prior to the initial EPA inspection, Olson performed a qualification
checkout which was defined in an eight-page Emission Laboratory Evaluation
Criteria Document. The completed document and all related data were submitted
to the EPA Project Officer. After review of the Olson qualification documenta-
tion, the Project Officer witnessed a verification of the qualification proce-
dures prior to initiation of testing.
3.5.1 Constant Volume Sampler (CVS)
The CVS was calibrated with the laminar flow element using the basic
procedures specified in the Federal Register. A copy of the calibration data
was provided to the EPA Project Officer as a part of the qualification data
package. Propane recovery tests were made after the calibration to confirm
the accuracy of the calibration. Propane recovery tests were also made each
day of testing to confirm continued calibration of the CVS system. The measured
propane mass recovered by the CVS had to be within ±2.0 percent of the injected
mass as determined gravimetrically.
3.5.2 Emission Analysis Console
Calibration and qualification of the emission analysis console was per-
formed as stipulated in the Federal Register and the Emission Laboratory
Evaluation Criteria. The daily qualification checks were:
o Leak check of each instrument as well as the system.
o Zero, gain, tune as applicable to each instrument.
o Hang-up and leak checks for background and sample bags and sample
line.
o Dilution air EC/CO concentration.
o Chemiluminescence vacuum and converter efficiency.
o FID fuel, air, sample pressures.
15
-------
o Propane recovery test result.
o Working gas log, cylinder number, concentration, deflections, cylinder
pressure.
In addition to the above daily checks, weekly checks were made for the
following:
o Calibration curve of each range of each instrument.
o CO instrument response to wet CO„.
Appropriate calibrations, leak checks, etc., were also made whenever
maintenance was performed which could change instrument or system operation.
3.5.3 Chassis Dynamometer
The Clayton dynamometer was initially calibrated by the Clayton represen-
tative using manufacturer's equipment and procedures to calibrate the speed
and horsepower meters. Coast down techniques specified in the Federal Register
were used to develop actual versus indicated horsepower curves for each inertia
weight setting.
3.6 TEST PROCEDURES
3.6.1 Vehicle Preparation
All vehicles tested in this program were inspected upon receipt from1the
owner for the following:
o A physical inspection of the vehicle's interior and exterior for
damage when received.
o An inspection to verify that the vehicle was safe for operation on
the dynamometer and that the exhaust system was not leaking or could
not be readily repaired.
Fuel was drained and the tank was filled to 40 percent volume with
Indolene 30 test fuel. After the vehicle was filled with test fuel, it was
operated for a 10-minute preconditioning drive over a street route prior to
being placed into pretest soak. The soak period was a minimum of 12 hours and
a maximum of 20 hours from key-off to key—on between 68 F and 86 F. A contin-
uous record of the soak area temperature was maintained 24 hours per day to
verify that the soak temperature limits applicable to each vehicle were met.
Vehicles for which the soak temperature limits were violated were given another
10-minute preconditioning drive and placed back into soak.
3.6.2 Equipment Preparation
Emission test equipment was checked daily prior to the performance of
emission tests. The emission analysis system was checked for leaks, zero and
gain settings where appropriate for each instrument, CVS inlet and outlet
pressures as well as Delta P. Additional checks included background and
sample bag leak checks and hydrocarbon hang-up, converter efficiency, and CVS
16
-------
calibration by propane recovery tests. In addition, the driver's aid and
computer-generated driving trace were calibrated prior to and after each test.
The dynamometer was warmed up using a nontest vehicle if the dynamometer had
not been used in the previous 2-hour period. During this warm-up period, the
dynamometer speed indicator was checked against the driver's trace to ensure
that both speed indications were identical.
The continuous wet/dry bulb system was checked on a periodic basis against
a sling psychrometer to verify proper calibration.
The emission analysis console was left in the operating mode. All instru-
ments were placed in the sample mode position with continuous purge of filtered
background air. Thus, the instrument console was at all times warmed up and
ready for calibration and test. In the event that instrument maintenance
required instrument shut off, a warm-up time of a minimum of 1 hour was used.
In practice, the warm-up time was in excess of 1 hour since calibration checks
were routinely performed after maintenance.
The CVS was normally not turned off during nontest hours. The blower was
left in speed #1 and the temperature controller was normally left on. Prior
to the propane recovery test, the CVS was used to exhaust the nontest vehicle
used for dynamometer warm-up, and was thus at operating temperature for the
propane recovery test and subsequent emission tests.
3.6.3 Federal Exhaust Emission Test Procedure
All vehicles received one 1975 FTP, without evaporative emission determina-
tions, performed in accordance with the requirements and procedures specified
in 40 CFR 85.075-1 through 85.075-26, inclusive. The sample collection for
each set of bags was controlled by the computer. At the completion of the
test, the computer printed out crank time and total test time for the cold-
start and hot-start portion of the test.
3.6.4 AA-1 Bus Test Procedure
The Ann Arbor-1 Bus dynamometer driving schedule consists of a 1,760-
second transient cycle as shown in Appendix A. A preprinted driver's trace
was supplied by the EPA for use on the Varian Single Pen Recorder. Shift
points, particularly for manual transmission vehicles were jointly determined
by Olson and the Project Officer. Vehicle operation and the CVS bag continued
to the end of the schedule.
3.6.5 Modal Exhaust Emission Test Procedure
The modal exhaust emission tests consisted of two separate tests; steady-
state modes and the Surveillance Driving Sequence. The modal tests were
performed in accordance with Appendix C.
Each test was preceded by a soak period no longer than 20 minutes from
the last sustained vehicle operation. At the end of the soak period, the
vehicle was operated on a chassis dynamometer at 50 mph for a period of
3 minutes. During this time, the dynamometer speed and horsepower settings
were checked and adjusted if necessary. Within 1 minute after the end of the
50-mph cruise period, the vehicle was returned to idle and the test begun.
17
-------
Steady-state exhaust emissions were measured using the CVS dilute bag
collection technique in the same manner as in the FTP. Emission measurements
were taken at each speed successively from idle (0 mph) through 5, 10, 15, 30,
45, and 60 mph. The exhaust emissions were continuously monitored and recorded
on a strip chart recorder. For continuous sampling, the analytical system was
equipped with a sample bypass to decrease delay time. Delay time from engine
to all analyzer outputs was less than 10 seconds. At each speed, equilibrium
of speed and all analyzer traces was maintained for at least 30 seconds before
sampling was started. A minimum sample volume of 2 cubic feet and a minimum
sample time of 3 minutes were required. Recorder chart speed was 3 inches per
minute.
The Surveillance Driving Sequence portion of the modal test was started
within 20 minutes after the end of the steady-state tests.
After the soak and 3-minute 50—mph cruise, the vehicle was operated at
idle for 1 minute before the Surveillance Driving Sequence began. No sampling
was done during the first 30 seconds. For the remainder of the minute, dilute
exhaust was directed through the sampling and analytical system. This dilute
sample from the CVS was continuously recorded on strip chart recorders while
the vehicle was driven through the driving sequence on the chassis dynamometer.
At the start of the Surveillance Driving Sequence, CVS dilute bag sampling was
begun.
The Surveillance Driving Sequence consisted of 32 acceleration and deceler-
ation modes and 33 constant-speed modes. These modes were combined into a
1,054-second driving sequence. Vehicle operation and CVS bag and continuous
sampling continued to the end of the schedule, at which point bag sampling was
terminated. Continuous sampling was maintained with the engine at idle for an
additional 10 seconds.
Immediately upon completion of the test, with the sample pumps and recorders
running, the sample line from the probe was purged with air to establish the
hydrocarbon "hang-up" levels. The allowable hang-up level for a valid test
was 5 percent of full scale within 10 seconds and 3 percent of full scale
within 3 minutes after completion of sampling. An additional requirement for
a valid test was that the span and zero points on all emission analyzers be
within ±2 percent of full scale from test pre-calibration to test post-
calibration. The bag samples were compared to the integrated continuous
traces.
3.6.6 Vehicle Loading Practices
The following vehicle loading practices were followed:
1. Road load was determined by the Frontal Area method and 10 percent
added to simulate air conditioning.
2. Low Inertia Weight - Scale weight of vehicle plus driver and one-
third passenger occupancy at 150 pounds per person. Thus:
18
-------
8 and 9-passenger vehicles
Scale Weight -
Driver @ 150 Ibs 150 Ibs
3 passengers @ 150 Ibs 450 Ibs
Scale weight plus 600 Ibs
12-passenger vehicles
Scale Weight -
Driver @ 150 Ibs 150 Ibs
4 passengers @ 150 Ibs 600 Ibs
Scale weight plus 750 Ibs
3. High Inertia Weight - Scale weight of vehicle plus driver and full
passenger occupancy at 150 pounds per person. Thus:
8-passenger vehicles
Scale Weight -
Driver @ 150 Ibs 150 Ibs
8 passengers @ 150 Ibs 1,200 Ibs
Scale weight plus 1,350 Ibs
9-passenger vehicles
Scale Weight -
Driver @ 150 Ibs 150 Ibs
9 passengers @ 150 Ibs 1,350 Ibs
Scale weight plus 1,500 Ibs
Inertia weights were rounded up or down in accordance with EPA
practices. Refer to Table 1 for actual weights used for each
vehicle.
4. Federal Test Procedure - Vehicles were tested at "low inertia weight"
for the FTP in this program.
5. AA-1 Cycle - Vehicles were tested at both "low inertia weight" and
"high inertia weight."
6. Surveillance Driving Sequence - Vehicles were tested at "low inertia
weight."
7. Steady-State Speed Modes - 0, 15, 30, 45, and 60 mph. Vehicles were
tested at "low inertia weight."
3.6.7 Daily Test Schedule
The daily test schedule provided for multiple shifts. In general,
the night shift performed weekly and monthly calibrations on Sunday nights,
and also performed the daily start-up checks including propane recovery tests
on a daily basis. Vehicle preparation and preparation for return to the owner
was performed on both shifts. Again, in general, the fuel draining and addition
of test fuel was done on the day shift, but preconditioning was accomplished
by both shifts in order to meet the 12- to 20-hour soak limit requirements. A
flowchart which shows the test sequence is given in Figure 4.
19
-------
DRAIN AND
40% FILL
FUEL TANK
PERFORM
MODAL
TESTS
REMOVE
VEHICLE
FROM DYNO
Figure 4. EMISSION TEST SEQUENCE
20
-------
3.7 DATA HANDLING
3.7.1 Data Collection
Olson developed keypunch-compatible forms for each test procedure required
for this contract. Numerous other forms were developed and used for system
quality control, working gas inventory control, etc. These forms included
daily start-up checks and tests, working gas pressure log, weekly instrument
calibration data forms, propane recovery data forms, NO converter efficiency
checks, dynamometer coast down data forms, and equipment maintenance logs.
Olson used a packet of file folders for each vehicle tested. This system
placed all data pertaining to any one test on each vehicle in a single filing
source to provide for rapid review of pertinent data, particularly for those
vehicles which were subjected to multiple types of tests. Copies of pertinent
data were retained at the test site with the original copy sent to Anaheim for
processing. Each test packet contained the following:
1. Vehicle information sheet
2. Bond application card (or incentive)
3. Loan vehicle and test agreement forms
4. Owner questionnaire
5. Test data sheets for each type of test required
6. All raw test data such as analyzer recorder strip charts, tempera-
ture strip charts, driver's aid charts, and all other raw test data
applicable to each specific vehicle
7. Maintenance data sheets.
3.7.2 Data Processing
Vehicle information, results of vehicle inspection, and emission test
data were turned over to the Quality Assurance section in Anaheim. The data
required to be transmitted to the Project Officer or included in this final
report were verified prior to keypunch for processing on a CDC 6600 computer.
All exhaust emission and fuel economy calculations were made on either the IBM
360 computer or the CDC 6660 computer.
Mass emission data for the FTP was also computed in Livonia using the
Hewlett-Packard 2114A Mini-Computer. These calculations were performed to
expedite disposition of the vehicles after each test. These data were provided
with the data packets, however, the final data was processed off-line using
the CDC computer described above.
3.7.3 Quality Control
Review of test data indicated that the errors found were those generally
associated with mass emission testing. Predominant errors included driver
trace violations, incorrect span points, and operating vehicles at incorrect
21
-------
dynamometer settings (i.e.; inertia weight, horsepower, or shift points).
Clerical errors and omissions were also detected in the maintenance data
sheets and were corrected prior to keypunch.
Since Olson processed data off-line, keypunch errors also occurred, due
in part to poor handwriting by the test personnel. A two-step audit procedure
was implemented which consisted of listing the punched cards and reviewing the
listed data for completeness and accuracy. After required corrections were
made, the punched cards were computer processed to obtain mass emission data
and correctly formatted output cards.
3.7.4 Calculation of Results
Mass emission test results were calculated off-line in accordance with
procedures specified in the Federal Register and the contract.
3.7.4.1 Exhaust Emissions (Federal Test Procedure)
Emission results were calculated for the 1975 FTP in accordance with the
Federal Register including provisions for the dilution factor, humidity correc-
tion factor for NO , and separate barometer, wet bulb and dry bulb data for
each phase of the 1975 FTP. Fuel economy was calculated from the composite
HC, CO, and CO mass emission data using the carbon balance method.
3.7.4.2 AA-1 Bus Test
Emission results for the AA-1 Bus Test were calculated using the carbon
balance method and mass emission measured during the 1,760-second driving
schedule. Mass emissions were computed from the following general equation:
M- V^
a
where:
M = mass in grains per mile
V = volume of exhaust sample in standard cubic feet (528 R and 760mm Hg)
d = density of pollutant in grams per cubic feet
c = concentration of pollutant in ppm or percent
a = cycle length in miles
3.7.4.3 Modal Emissions
The steady-state emission results were calculated in accordance with
Federal Register basic procedures used for mass flow rate, sample bag concen-
tration and distance traveled during bag sample collection. Emissions were
calculated in grams per mile (grams per minute for idle mode conditions), and
fuel economy was calculated in miles per gallon (gallon per minute) for idle
mode conditions.
The Surveillance Driving Sequence (SDS) emissions were calculated two
ways. The CVS bag results were calculated in accordance with standard CVS
procedures using a distance traveled of 9.080 miles for the cycle. In addition,
each mode of the surveillance driving cycle was calculated using integrated
diluted concentration levels per individual mode and the miles traveled for
each mode. These data were derived from the continuous strip chart recording
of each pollutant during the SDS cycle.
22
-------
3.7.5 Certification Emissions
A discussion of the certification emissions for the engine families
represented in this program appears in Appendix D.
23
-------
Section 4
TEST RESULTS
4.1 MEASURED VERSUS SPECIFICATION ENGINE PARAMETERS
Table 2 presents the measured versus specification engine parameters for
timing, idle rpm, and idle HC and CO emissions. As seen in Table 2, basic
timing ranged from 5 degrees retard to 14 degrees advance from basic timing
specification. Most vehicles were either at specification or advanced.
Measured idle rpm, for the most part, was either at or near specification.
Finally, idle emissions in HC and CO varied considerably due to engine settings,
different vehicle make and engine size, and that no idle emission specifications
are used for this parameter.
4.2 EXHAUST EMISSION RESULTS
As stated in the previous section, all FTP tests were "cold-start1' and
all other tests were "hot-start." Tables 3 and 4 summarize the individual
vehicle results of the emissions by FTP and test method. Table 5 summarizes
the fleet averages by test method.
As can be seen in Table 5, FTP emissions of HC are about four times
higher on the average than comparable light-duty standards. CO emissions on
the average are six times higher, and NO emissions are about three times
higher.
Modal emissions using the composite bag and calculated method agreed
quite well for each of the pollutants. As would be expected, AA-1 low inertia
weight versus AA-1 high inertia weight emissions were less for each pollutant.
In addition, fuel economy for AA-1 low inertia weight was better than AA-1
high inertia weight.
The cold transient portion of the FTP compared to AA-1 was considerably
higher in emissions due to the cold-start effect. However, the cold stabilized
portion of the FTP was much closer to the AA-1 as would be expected as the
average speed of the driving cycles of both tests are nearly equal and both
are essentially hot-starts.
Appendix E, presents individual vehicle test results.
24
-------
Table 2. ENGINE PARAMETERS, MEASURED VERSUS SPECIFICATION
VEHICLE
No.
1
2
4
5
6
10
11
13
15
16
17
Year
1976
1976
1976
1977
1977
1976
1977
1976
1977
1977
1976
Make
Ford
Chev
Ford
Ford
Chev
Chev
Dodge
Dodge
Dodge
Dodge
Dodge
TIMING, DEGREES
Spec.
-6
+4
+12
+4
+4
+8
-2
0
0
+2
0
Meas.
+8
+4
+14
+4
+4
+8
-6
+10
-1
+10
-5
IDLE RPM
Spec.
550
700
650
550
700
700
750
750
750
750
750
Meas.
550
700
620
520
680
710
680
820
780
850
650
IDLE
HC_ppm
75
15
150
300
15
110
60
220
600
620
170
CO Percent
0.24
0.12
2.35
4.1
0.07
5.0
0.65
5.0+
2.4
0.19
5.0
25
-------
Table 3. COMPARISON OF EXHAUST EMISSIONS BY TEST METHOD
VEHICLE
No.
1
2
4
5
6
10
11
13
15
16
17
Year
1976
1976
1976
1977
1976
1976
1977
1976
1977
1977
1976
Make
Ford
Chev
Ford
Ford
Chev
Chev
Dodge
Dodge
Dodge
Dodge
Dodge
HC
gm/Mi 1 e
FTPa
5.08
2.20
4.06
5.43
4.76
4.98
4.65
7.68
4.97
30.78
8.46
AA-la
4.44
2.01
3.92
5.61
4.96
5.31
3.41
7.17
5.24
44.94
8.12
AA-lb
4.74
2.31
4.26
6.15
5.38
5.12
3.57
7.73
5.98
46.52
9.07
CO
gin/ Mile
FTP3
43.13
19.61
58.21
61.79
34.26
243.96
55.61
153.64
67.69
76.79
178.53
AA-la
17.94
5.82
55.25
55.59
7.11
260.34
23.77
145.98
80.71
27.10
233.77
AA-lb
19.24
6.63
58.13
59.58
7.68
259.94
25.61
154.57
93.16
30.87
262.44
NO C
gm/Mi le
FTP3
7.93
7.09
8.27
6.01
4.19
2.87
3.94
5.42
6.72
12.32
5.41
AA-la
6.23
6.49
6.25
4.14
4.74
2.31
3.69
2.74
7.96
13.91
3.63
AA-lb
7.84
8.32
8.16
5.43
6.39
2.47
4.27
3.42
6.50
15.04
3.79
FUEL ECONOMY
mpg
FTPa
9.56
9.98
9.24
11.15
9.84
8.11
10.64
8.95
10.78
8.49
7.48
AA-la
8.93
8.04
8.07
10.50
9.69
7.08
9.92
8.85
9.27
7.76
6.80
AA-lb
8.42
7.53
7.66
9.78
9.09
6.97
9.45
8.34
8.51
7.28
6.44
to
Tested at "low inertia weight"
'Tested at "high inertia weight"
1977 Federal Standards
Passenger cars HC - - - - 1.5 gm/mi
CO 15.0 gm/mi
NO 2.0 gm/mi
Heavy-Duty engine HC + NO 16 gm/bhp-hr
CO
40 gm/bhp-hr
-------
Table 4. COMPARISON OF EMISSIONS BY FEDERAL TEST PROCEDURE MODE IN GRAMS PER MILE
VEH.
NO.
1
2
4
5
6
10
11
13
15
16
17
TRANS. COLD
HC
7.62
3.29
5.72
7.61
7.04
6.54
11.55
L2.86
6.26
31.07
13.00
CO
112.9
64.2
98.9
105.0
119.7
268
169
206
87.3
255
227
co2
899
867
908
758
893
759
728
771
752
816
1024
NOXC
8.1
7.7
9.7
6.9
0.86
4.4
3.17
6.3
6.85
7.38
5.83
STAB. COLD
HC
4.61
1.95
3.73
4.95
4.10
4.70
2.78
6.51
4.95
34.2
6.96
CO
26.0
7.16
55.9
56.4
10.3
241
23.3
153
64.5
22.8
175
co2
841
886
859
661
832
692
750
728
709
828
827
NO C
A
7.32
5.97
6.55
4.79
7.16
2.15
3.8
4.10
6.21
13.0
4.26
TRANS. HOT
HC
4.06
1.86
3.43
4.70
4.29
4.34
2.98
5.99
4.04
24.1
7.88
CO
23.1
9.67
31.9
39.5
15.3
232
31.2
115
58.9
45.3
149
co2
809
774
812
663
792
651
701
687
897
833
871
NOXC
8.97
8.73
10.5
7.62
1.06
3.10
4.79
7.28
7.61
14.8
7.26
COMPOSITE
HC
5.08
2.20
4.06
5.43
4.76
4.98
4.65
7.68
4.97
30.78
8.46
CO
43.13
19.61
58.21
61.79
34.26
243.96
55.61
153.64
67.69
76.77
178.53
co2
844.0
851.1
856.3
681.6
833.4
694.8
732.1
725.7
700.9
827.0
879.5
NOxC
7.93
7.09
8.27
6.01
4.19
2.87
3.94
5.42
6.72
12.32
5.41
to
-J
-------
Table 5. FLEET AVERAGES BY TEST METHOD
TEST TYPE
FTP composite
Modal bag
Modal calculated
AA-la
AA-lb
Trans, cold
Stab, cold
Trans . hot
NUMBER
11
10
10
11
11
11
11
11
EXHAUST EMISSIONS GMS/MILE
HC
7.55
5.445
5.611
8.648
9.166
10.23
7.22
6.15
CO
90.30
81.79
81.878
83.035
88.895
155
75.9
68.3
co2
784.205
751.75
750.60
889.086
939.694
834
783
772
NOXC
6.379
8.861
9.55
5.645
6.512
6.11
5.94
7.42
FUEL ECONOMY
MPG
9.475
10.086
10.091
8.628
8.134
7.97
I
9.54
10.79
Tested at "low inertia weight"
^Tested at "high inertia weight"
28
-------
REFERENCES
1. "Dial-A-Ride, Pilot Project, Final Report, April 1973" page 33; Ann Arbor
Transportation Authority.
2. "Demand-Responsive Transportation - State of the Art Overview, August
1974" U.S. Department of Transportation, Office of the Secretary and
Urban Mass Transportation Administration.
3. "Small Bus, Operating Profile and Performance Requirements for Small
Buses" DOT-UT-40015, Report 3, December 3, 1976.
4. "Exhaust Emissions from a 25-Passenger Organic Rankine Cycle Bus" June
1973, ECTD, OAWP, EPA.
5. "Measurement of Motor Vehicle Operation Pertinent to Fuel Economy"
Johnson, T.M.; Formenti, D.L.; Gray, Richard; and Peterson, W.C.
29
-------
Appendix A
SERVICE CHARACTERISTICS AND PROFILE DUTY CYCLES
31
-------
A. URBAN FIXED ROUTE
Service Characteristics
Stops/mile
Maximum speed
Initial acceleration
Average deceleration
Stopped time
Running time
Block speed
Running speed
Mileage
10
20 mph
3 mph/sec.
6 ft/sec2
10 sees, per block
24.6 sees, per block
10.4 mph
14.6 mph
83 per 8-hour shift
A typical duty cycle for this service is shown below:
Q.
S
LU
Q.
CO
1 One Mile
Stopped Time 10 Seconds
33
-------
B. CORE SHUTTLE
Service Characteristics
Stops/mile
Maximum speed
Initial acceleration
Average deceleration
Stopped time
Running time
Block speed
Running speed
Mileage
12
20 mph
3 mph/sec.
6 ft/sec.2
10 sees, per block
21.6 sees, per block
9.5 mph
13.9 mph
74 miles per 8-hour shift
34
-------
C. LINE HAUL FEEDER
Servi ce Ch_aracteri sti'_cs
Stops/mile
Maximum speed
Initial acceleration
Average deceleration
Stopped time
Running time
Block speed
Running speed
Mileage
6
30 mph
3 mph/sec.
6 ft/sec.2
10 sees, per block
34.5 sees, per block
16.2 mph
20.9 mph
103 miles per 8-hour shift
A typical profile for this type of service would be as follows:
fe 20
Q
UJ
Q.
to
6 One Mile
Stopped Tine 10 Seconds Per Stop
35
-------
D. ROUTE DEVIATION/SUBSCRIPTION
Service Characteristics
Stops/mile
Maximum speed
Average deceleration
Stopped time
Running time
Block speed
Running speed
Mileage
2
40 mph
6 ft/sec.2
10 sees, per stop
60.7 sec.
25.5 mph
29.6 mph
204 miles per 8-hour shift
The operating profile for this service will vary greatly with the local
situation. At either extreme, it will approach the feeder or demand-
responsive service profiles. The one indicated and depicted below is, there-
fore, a compromise between them in terms of stops/mile.
Q.
GO
One Mile
Stops Per Mile
'Stopped Time 10 Seconds
36
-------
E. DEMAND RESPOiJSIVE
Service Characteristics
Stops/mile
Service stops/hour
Service stopped time
Maximum service speed
Average service speed
Variable depending on traffic and loading
10 30
10 30 seconds per stop
55 mph or local legal limit
20 - 25 mph
The demand-type services are primarily suited to moderate density and
suburban-type locations. Under these conditions, road performance is high as
indicated. This is necessarily so in order to obtain adequate productivity from
the vehicles. As indicated, under these circumstances, road stops may be as
frequent as passenger stops. While single passenger boardings will predominate,
average stopped time will generally increase due to no-shows and to persons
waiting within building, etc., due to the degree of uncertainty of bus arrival
time.
1C
n_
Q
LU
Lul
Q.
Stopped Time
10-30 Seconds
£• One Mile
Stops Per Mile
37
-------
F- SPECIAL ELDERLY/HANDICAPPED SERVICE
Service Characteristics
Stops/mile Variable depending on traffic and loading
Service stops/hour 10 30
Service stopped time 10 sees, to 3 minutes (wheelchair)
Maximum service speed 55 mph or local legal limit
Average service speed 20 - 25 mph
38
-------
Appendix B
ANN ARBOR-I DYNAMOMETER SCHEDULE
39
-------
Appendix B
Ann Arbor-1 Dynamometer Schedule
Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Time Speed Tine Speed
(sec) (mph) (sec) (mph) (sec) (mph) (sec) (mph) (sec) (mph) (sec) (mph) (sec) (mph) (sec) (mph) (sec) (mph) (sec) (nph)
1
2
3
a
c.
h
7
p
10
11
12
13
14
IS
|f
!7
1**
1°
20
,»)
72
<<3
?4
JC,
/>6
?7
<*H
?Q
10
31
i?
33
14
15
16
17
18
39
40
'1
4?
43
44
45
46
47
18
49
-iO
il
-,?
=3
14
S5
16
-,7
if-
\o
"0
0.0
o.o
o.n
0.0
o.o
o.o
o.o
o.o
o.o
o.n
o.o
o.o
o.o
0.0
o.o
0.0
o.o
0,0
o.o
o.o
0.0
0.0
0.0
O.o
0.0
0.0
o.o
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
o.n
o.n
o.o
o.o
o.o
o.o
o.o
o.o
o.o
o.n
o.n
n.o
o.n
O.n
o.o
0.0
o.n
o.o
o.o
o.o
o.o
o.n
o.o
o.o
o.n
1 n
1 i*
1 '^
1 ''I
1> 1
1-T
1-S
1-7
1- H
!'••}
1 "0
I'M
I'V
1 :'3
194
1^5
1 ''6
1-7
I'M
l'-9
?un
?;>l
?:'?
2'-3
2"4
2;;^
gnu
?"7
Z'-.a
2l'9
2) 0
211
21 ?
213
214
215
216
217
21 8
2)9
2^-0
2?1
2??
2?3
2-)-»
??^
?r"6
2?7
?X'J
?(••-<
2 "I
2.11
213
2 1"
?.<^
236
6. 0
10.1
l?.o
I'-.n
16.0
1 7 . n
17.=
17.7
IK. 7
n.o
19,?
) <;.'i
1" .!'
17.0
!*• .n
l'-«5
l»-.n
17.0
17. S
l •>. o
l-'.S
/.MI . o
^0 . ^
vM .5
cV.O
-?2.5
^3.0
?3.5
.^4.0
24 .C.
^•4.7
/5.0
25.?
'5.5
25.5
?5.2
^5.?
2c.O
?' .0
23.0
2?.o
21 .S
o.o
1'i.d
17.^
15."
11 .0
'i.O
6.S
u.O
?.5
?.5
T.c,
S.5
".0
9.5
353
"V-.6
Th4
365
366
367
361
3^9
370
371
37?
371
T74
375
376
377
3 78
379
T-H
3"!
3>9
570
571
57?
573
574
°i75
576
577
57P
57^
580
581
EH?
583
584
585
586
587
588
5.5
6.0
6.5
7.3
7.5
7.5
8.5
10.0
1 1.0
isio
13.5
13.7
14.0
15.0
15.5
16.0
16.5
16.0
16.0
15.5
15.?
15.0
15.0
14.7
14.5
14.5
14.3
13.5
1?.0
10.5
7.5
5.0
?.. 0
0.2
0.0
0.0
0.0
0.0
0.2
1.0
1 .3
1.8
1.8
1.5
1.0
0.7
0.6
0.5
1.0
2.5
4.0
5.5
7.0
7.5
9.0
10.0
1 1.0
11.5
705
706
707
70S
710
711
71?
713
714
715
716
717
718
719
7?()
7?1
7?2
7?3
7?4
7?5
7?6
7?7
7?6
729
730
731
732
733
714
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
75?
753
754
755
7^6
757
758
759 I
760 •'
761
7*2
763
764
0.0
o.o
(1.0
d.O
0.0
0.0
0.0
o.o
0.0
0.0
0.3
1 .s
4.0
6.D
7.0
8.0
7.5
8.0
8.0
8.0
7.0
5.5
4.0
3.0
1.0
0.?
0.0
0.0
0.0
1.0
4.5
h.S
8.8
10.0
11.3
12.5
14.0
15.0
16.0
17.0
18. n
18. n
18.5
17.0
16.0
15.3
15.0
14.0
12.5
11.5
9.0
7.5
5.5
5.0
5.0
6.0
7.0
8.5
ln.0
11.5
882
8«3
8«4
886
887
«93
894
895
896
R97
898
899
900
901
902
903
904
905
906
907
908
909
910
911
91?
913
914
915
916
917
918
919
920
921
922
9?3
924
925
926
927
9?H
929
930
931
932
933
934
935
936
937
938
939
940
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.2
3.0
6.5
8.5
10.5
12.0
13.5
15.0
16.5
17.5
19.0
?0.0
20.5
20.5
20.7
20.7
20.7
21.0
21.?
21.5
21.0
20.5
?0.5
20.2
20.5
20.7
20.fi
21.0
21 .?
21.8
22.0
22.7
23.0
23.5
23. P
2?.0
21.5
21.0
?0.3
20.0
1ft. 0
16.5
16.0
15.0
13.0
11.0
9.0
5.0
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
107?
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
109?
109.3
1094
1095
1096
1097
1098
1099
1100
1101
110?
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
2R.2
28.0
^8.0
29.0
30.0
30.5
30.7
30.7
30.5
30.5
JO. 5
31.0
31.0
J1.5
31.5
31.7
31.8
31.8
31.7
30.1
r-8.5
27.5
26.0
?3.5
21.0
17.5
13.5
".0
4.5
1.0
0.3
0.0
0.0
0.0
0.0
0.0
1.0
3.0
7.0
9.5
11.5
13.0
15.0
17.0
18.5
20.0
21.0
22.5
23.5
24.5
25.5
^6.3
1?33
1?34
1?35
1236
1?37
1238
1239
1?40
124?
1?43
1?44
1?45
1?46
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1?63
1264
1265
1266
1?67
1268
1269
1270
1271
127?
1273
1274
1?75
1276
1277
1?7R
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1?91
129?
14^0
15.5
?0.0
21 .0
?3.0
?3.7
?4.0
?4.5
?5.0
25.5
26.0
26.0
?6.2
?6.2
26.0
?5.0
?4.0
23.5
?3.0
22.5
??.o
21.0
?1 .0
?r,.7
?0.5
?0.0
?r .5
?1 .0
?1 .5
??.o
??.5
?3.0
?3. 0
??.5
22.0
?1 .5
?0.0
17.0
1?.5
9.5
7.5
3.5
1.0
0.2
0.0
0.0
1.0
4.0
6.5
H.5
ft .7
8.8
*.5
1MO
1411
1M3
1415
1416
1416
1419
14?0
1421
14?2
1423
1424
1425
14?6
14?7
1428
14?9
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
20. =>
22.0
23.5
25.0
?* .0
25.7
25.5
25.0
23.0
1^5
17.0
14.5
11.7
10.0
8.0
5.0
3.0
3.5
4.0
5.0
5.5
8.5
11.5
14.5
17.5
19.5
21.0
23.0
23.7
?4.0
2^.5
25.0
?5.0
?<*.o
?3.5
23.0
22.5
22.0
21.7
21.5
20.0
18.0
16.0
13.5
11.5
8.5
5.0
3.5
5.5
7.5
10.0
12. n
13.0
15.0
17. f)
18.0
Zf'.O
20.3
15-6
15'?
15i9
15V1
15"2
15-3
15-7
15'-*8
15^9
1600
1601
1602
16u3
16C4
16u5
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
16^0
16?1
1622
1623
16x4
16^5
16?6
1627
1628
1629
16JO
1611
It -12
1633
16 14
lb.15
1636
16.J7
163P
1639
16^0
16-1
If -2
16^3
16^4
0.0
n , n
0 .5
1.5
2.0
2.5
2.2
2.0
4.0
8.0
9.0
11 .5
13.0
14.5
16.0
16.5
16.0
15.0
14.0
13.5
12.0
10.0
7.5
6.0
5.5
5.5
6.5
8.5
10.0
1 I .0
12.5
13.5
12.'
12.3
11.5
10.0
8.0
5.0
4.0
3.4
3.2
2.5
1.0
0.0
n.o
o.o
o.o
o.o
0.5
0.7
1.0
?.']
5.U
7.4
•J. J
10.5
12. S
14.11
1-.5
41
-------
Time
isec)
^ i
-./
~?
^i.
-S
*6
-7
-,-
-I.
70
71
7?
r$
74
ft,
7ft
77
f«
7»J
"0
,j]
-,p
-3
•",
•*S
.<(-
= 7
• 8
-9
90
^1
92
43
44
•J5
J6
1~I
•-8
49
ion
1"!
n?
1 "3
lr,4
1°S
lr,6
107
l'ih
109
110
111
11?
in
114
1 15
116
117
1 if-
1 19
120
Speed
(mph)
n.n
0 .0
0.0
o.s
1.0
].=•
1.7
f , n
2.5
3.0
4.S
6.r,
7.0
9.0
in.n
11. s
11.7
11."
11. s
11.?
10.5
9.n
6.5
5.0
3.5
?.o
o.n
O.o
o.o
O.n
0.0
O.n
O.n
o.o
0.0
0.0
o.n
0.0
o.o
o.o
o.o
o.n
n.o
o.o
O.n
O.n
o.n
O.o
o.n
O.n
o.n
o.n
o.o
O.n
o.n
o.n
o.s
1 .?
1 . c
2.0
Time
(sec)
237
2 11
2 '•>
2---I
2-1
2"?
?'. f
?~4
2<*S
2^-6
?•- 7
2- i
2--
?T,
?-,]
2~- X
2' 1
?' A
2^5
2-6
2' 7
a- 3
?- *
2' 0
?' 1
?"-?
?.-, 1
?>-4
2<-5
266
?67
2<-H
2<-4
270
271
2/2
2 '3
274
2/5
276
277
27H
279
2<-0
?M
?-''
?-1
2"<*
?' 5
2**>
2-7
2-8
2-9
2 "i
2'-l
?•-?
2r< <
2'A
?'->'•>
2^-6
Speed
(mph)
1 1 .0
1?.S
1 A.n
n.O
15.5
J7.(.
n.'l
1 -'.^
n.n
x n . n
21.0
x l • ^
x?.n
s 3 . o
xl.i
••A ,r
X*.2
XA.1-
XA.?
XA . 0
XA.?
X"*.?
•-3.?
2 >.S
XI. 5
23.0
2X.n
xl .0
2A .5
2d.O
J9.0
18.7
IK. 5
l°.o
1 «.?
18.5
1 '• . 7
19. p
n.n
19. S
n.7
XO.O
X". 1
2".?
xn.s
Xh.S
X) .0
XI .()
Xd.7
21). S
9.0
k.5
a.5
•^.5
".0
19.0
1 ".S
1 -^.n
1 ".0
l-.n
Time
(sec)
41 '<
41*
4) 5
A] 6
"1 7
A 1 *
A] 9
Axl
AXI
A?X
4x3
AX*
4X5
4X6
4?7
42*
4X9
4 10
431
14 JX
433
434
4 J5
436
4J7
43*
439
440
441
44?
443
444
44S
446
4-7
AAR
450
449
AS)
4S?
4ti3
4b*
455
4S6
Ab7
AS-1
iS°
A6[l
AH
46?
A63
A 64
4*5
A66
467
U65
469
A7H
4/1
47?
Speed
(mph)
0.1!
O.I.
fi.li
n.(..
n.o
n.'i
0.5
?.<:
4.,.
S.i!
6.1!
5.^
6. 'i
6.1!
6.4
7.p
9. .
1 O.S
1 2 . <;
1 3.S
1 5.^
1 6."}
1 8.5
19.5
20.5
21.5
2?. 5
X3.6
?A.i
XA.5
25. ^
26. t
26.3
27.2
27. i'
X7.3
27."
27.1
X7.j
27.,
27. X
X7._l
27.5
27. S
27.5
?7.t>
?7.5
27. ^
27.li
26. S
X6.I.
25.ii
2A.il
22.5
?0. li
18. >
16...
1^.6
1?.5
ll.n
Time
(sec)
S«9
SQO
S91
59?
S^l
'.yA
595
t,w6
597
Sv«
SW9
6|)fl
^ni
61)?
603
6[|4
"llS
6:1 6
«,07
^-0"
609
'-10
611
61?
613
614
61S
6 16
61 7
61°
619
6?n
6.21
622
KXT
6^4
625
6?6
627
6?A
629
630
631
63P
633
634
63=;
6J6
637
6 38
639
6*fl
64]
64?
643
644
6uS
646
647
648
Speed
(mph)
1 1.0
10.5
10.0
9.7
9.0
9.0
8.0
7.0
6.5
6.0
5.7
5.5
5.0
4. i)
3.0
X.O
1.5
1.0
0.4
0.0
".0
c.o
0.0
0.0
0.0
0.0
n.o
o.o
i) . 0
0.0
0.0
0.0
0.0
n.o
n.o
o.o
0.0
0.0
o.o
0.0
0.0
o.o
n.n
o.o
o.o
o.o
o . 0
o.o
n.o
o.o
o.o
o.o
o.n
o.o
o.o
o.o
o.o
o.n
0,0
o.o
Time
(sec)
765
766
767
76f
769
770
771
772
773
774
776
776
777
77*
779
7PO
781
7«?
7"3
78A
7«5
7&6
7*7
788
7«9
790
791
7"-i2
793
794
79}
796
797
798
799
>-on
801
^02
-03
80*
cpS
fn6
*07
i-r.f
r-r,'~>
,' \ 0
cl 1
f 1 ?
") 3
S]4
MS
p] 6
.-17
;'] h
H19
«?n
H21
*-?2
823
H?4
Speed
(mph)
13.0
14. n
is.n
16.0
16. n
16.0
15. S
15. n
14. S
n.5
12. S
12.0
10. n
9.0
7.S
5.S
4.1)
1 .5
O.S
0.0
0.0
0.0
o.n
o.o
o.n
o.n
n.n
o.o
n.O
0.0
0.5
3.n
4.5
A.S
5.n
6.0
i.n
10.0
1 1.0
1?.5
13.5
15.0
16.5
17.5
1 7.s
J7.0
16.7
16. s
!*.
-------
Time
(sec)
171
I:1?
173
1.74
175
176
177
•?8
79
to
)1
)?
*3
(4
15
1 t6
1 i7
n«
ii9
14C
1*1
14?
1*3
144
4b
1*6
147
148
149
ISO
141
152
1S3
1S4
155
1S6
1S7
1S8
1S9
160
161
162
163
I*i4
IhS
166
167
16H
1*9
170
171
173
H3
174
1 '5
1 /6
Speed
(mph)
2.?
2.5
2.6
2.S
2.0
1.5
1 .?
1 .5
2.n
3.0
4.1;
6.5
8.0
8.5
9.n
in. n
11. n
11.3
11. s
12. n
13.5
14.0
IS.o
16. n
IS. 7
15.5
lb.?
IS.]
15.0
15.0
14.9
14.8
14. H
15.1
IS.?
15.3
15.0
14.5
14.5
15.0
IS.?
IS.n
14.5
14.7
15.0
15.?
IS.?
15.0
14.5
12. 5
10.7
8.5
5.0
2.s
2.0
3.0
Time
(sec)
?U7
2^«
2a
3l'S
3i'6
3! f
3..*
3i, 4
310
311
31?
311
314
31i
316
31V
31->
314
37f)
321
3??
323
324
325
376
327
37R
379
330
331
33?
3.V3
3. (4
335
336
337
33"
339
3tO
3*1
34?.
343
344
34S
346
347
3<.=1
3*3
3-.0
3S1
3^?
Speed
(mph)
IH.O
!«.?
IK. 7
14. r>
]«.s
20 . 0
?o.5
?n.5
20.5
2r. .s
x>" . S
70. S
2f..S
70.5
2".S
7n . 7
''I .0
21 .?
2' .?
21.?
7) .0
71.0
70.7
20. S
20.0
10.5
10.?
19.0
l«.S
18. S
1».S
1*.7
1«.7
14. n
19.?
19.5
19.5
20.2
2P.7
?1 .0
2?.0
2?. 7
?3.5
24.0
24.5
25.0
25.2
2S.3
2S.3
2C.3
2S.?
?s.o
25.0
?s.o
24.8
?4.7
Time
(sec)
473
474
47S
478
477
u7K
479
4*0
4*-!
4H?
4h3
4%4
4f,S
4f-6
4H7
4>»8
4H9
440
4S/1
49?
443
494
4WS
4Vh
447
4"K
449
500
SCI
•=•(>?
Sn3
S(14
sos
S06
507
50*
509
510
Sll
512
513
514
515
51^.
517
S1H
S19
S^o
S2)
522
5?3
S?4
: 525
5?6
S27
S28
Speed
(mph)
P.O
"-.•1
3."
?.7
3.b
*.S
B.S
10. !l
1 l.s
12. S
13. b
IS..)
15.3
16.0
1.7
17.. 'I
17. :,
Ih.S
l^.'i
1S.S
14.V
14.11
13. S
13..,
12.5
ll.u
10.U
7.5
4.S
2.S
fl.S
O.I)
0.0
0.0
0.0
0.0
0.;)
O.d
0.0
0.0
(1.0
o.o
O.d
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
o.:>
l.d
3.5
Time
(sec)
f-^g
hSO
(^51
^s?
hST
654
•SSS
hSft
f-57
*SB
hS9
fr<,0
f.6]
f-f-.p
f-63
^,^4
^.es
frli'1'
ft67
66«
f-69
670
671
f 72
673
674
67S
676
677
67R
679
6HO
681
6H?
6h3
6H4
6f5
6rt«S
6M7
68S
6H9
690
691
69?
693
644
695
696
697
698
649
700
701
70?
703
704
Speed
(raph)
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
o.o
o.o
o.o
0.2
0.5
1.0
2.0
3.7
5.5
H.O
9.S
10.0
10.0
10.0
] o.o
1 0.0
)0.5
11. S
12.5
14.0
15.5
17.5
1*. 5
'0.0
?2.0
?^.7
?3.0
?i.5
73. ft
74.0
?4.?
'4.3
?4.0
?4.0
?3.0
72.0
?0.0
17.5
IS.O
13.5
10.5
ft. 5
S.O
3.0
1 .0
0.5
0.0
Time
(sec)
x?S
h?6
f?7
*>?H
H?4
<-30
K31
f 32
"33
«34
"35
('36
M37
»3H
^34
M40
ft4l
H4?
P43
H44
«45
K46
H4?
M4*
H49
SSO
fSl
KS2
"S3
PS4
HSS
«S6
»^l
PSH
"S9
H60
PM
*i,2
C63
f-f^U
^65
^•66
«67
H6H
K69
"70-
M71
R72
>>73
B74
n7S
f 76
X77
H7H
H79
p«n
Speed
(mph)
3.0
?.S
1 .11
0.?
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
1 .0
1.5
2.0
2.7
?.n
?.3
?.5
?.7
2.K
^.t*
2.S
1.5
1 .0
0.0
o.n
0.0
0.0
o.o
0.2
?.r>
S.O
6.S
7.5
rt.o
9.0
10.0
10.S
11. S
12.0
ll.o
10.5
10.1
H.O
6.Q
j.n
1.5
0.3
0.0
0.0
0.0
0.0
n.o
0.0
Time
(sec)
1001
1002
1003
1004
ions
1 006
1007
100H
1009
1010
1011
1012
1013
1014
1015
1016
1017
101"
1019
1020
1021
1 0?2
1 023
1024
1025
1026
1027
1 0?8
1 029
1030
1 031
1032
1033
i 034
1035
1036
! 037
103H
1039
1040
! 041
104?
1 043
1044
1045
1046
1 047
104«
1 049
10SO
lObl
105?
10S3
1flb4
1055
10S6
Speed
(mph)
25.0
26.0
26.5
27.0
27. n
26.5
26.0
25.0
24. S
23.0
21.0
19.0
lb.0
12.0
9.0
7.0
5.5
5.0
4.7
5.0
6.0
6.4
6.3
5.5
4.0
2.5
0.7
0.0
0.0
0.0
0.0
l.s
5.0
7.0
9.0
10.0
13.0
15.0
lb.5
17.5
18.5
20.0
21.5
22.0
22.5
23.5
24. S
25.0
?6.0
26.5
27.0
27.5
27.7
28.0
28. 2
28.2
Time
(sec)
1177
1178
1179
1180
1181
11H?
1183
11«4
1 185
1 186
1187
1188
1 189
1190
1191
119?
1193
1194
1195
1196
1197
119S
1199
1200
1201
1202
1203
1204
120S
1206
1207
120H
1200
1210
1211
1212
1213
1214
1?1S
1216
1217
121»
1219
1220
122 1
1222
1223
1224
12?S
1226
1227
122P
1229
1230
1231
1232
Speed
(mph)
28.9
<•«.=>
£7.S
26.5
^S.b
^•4.5
24.3
23.6
23.0
2P.S
21. b
21.0
20.5
^-0.0
20.0
19. b
19.5
19. b
20.0
20.5
21 .5
23.0
23.5
24.0
24.5
24.7
25.0
25.5
-------
Table B-l.
SPEED DISTRIBUTION
FOR
ANN ARBOR ONE DRIVING SCHEDULE
SPEED RANGE
ZERO
0.0 - 2.5
2.5 - 7.5
7.5 - 12.5
12.5 - 17.5
17.5 - 22.5
22.5 - 27.5
27.5 - 32.5
32.5 - 37.5
37.5 - 42.5
42.5 - 47.5
47.5 - 52.5
52.5 - 57.5
57.5 - 62.5
62.5 -100.0
FREQUENCY
387
120
206
231
255
285
192
78
6
0
0
0
0
0
0
FREQUENC'
21.99
6.82
11.70
13.13
14.49
16.19
10.91
4.43
0.34
0.0
0.0
0.0
0.0
0.0
0.0
CUMULATIVE
FREQUENCY,?
21.99
28.81
40.51
53.64
68.12
84.32
95.23
99.66
100.00
100.00
100.00
100.00
100.00
100.00
100.00
44
-------
Table B-2.
ACCEL/OECEL DISTRIBUTION
FOR
ANN ARBOR ONE DRIVING SCHEDULE
CUMULATIVE
ACCEL/UECEL RANGE FREQUENCY FREQUENCY,* FREQUENCY,*
20.0
-9.5
-8.5
-7.5
-6.5
-5.5
-4.5
-3.5
-2.5
-1.5
-0.5
0.5
1.5
2.b
3.5
4.5
5.5
6.5
7.5
8.5
9.5
9.5
8.5
7.5
- -6.5
- -5.5
4.5
3.5
- -2.5
- -1.5
- -0.5
- 0.5
- 1.5
- 2.5
- 3.5
- 4.5
- 5.5
- 6.5
- 7.5
- 8.5
- 9.5
- 20.0
0
0
0
1
0
3
15
37
105
180
863
331
179
40
5
o i
0
0
0
0
0
0.0
0.0
0.0
0.06
0.0
0.17
0.85
2.10
5.97
10.23
49.06
18.82
10.18
2.27
0.28
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.06
0.06
0.23
1.08
3.18
9.15
19.39
68.45
87.27
97.44
99.72
100.00
100.00
100.00
100.00
100.00
100.00
100.00
45
-------
Table B-3.
OPERATIONAL MODE SUMMARY
FOR
ANN ARBOR ONE DRIVING SCHEDULE
OPERATIONAL MODE FREQUENCY FREQUENCY,*
IDLE 362 20.58
CRUISE 501 28.48
ACCELERATION 555 31.55
DECELERATION 341 19.39
Table B-4.
TRIP STATISTICS
FOR
ANN ARBOR ONE DRIVING SCHEDULE
TRIP LENGTH 5.57
TRIP DURATION 29.33
AVERAGE SPEED 11.39
STOPS/MILE 4.49
46
-------
Table B-5. COMPARISON OF OPERATING CHARACTERISTICS
Stops/Mile
Max. Speed, mph
Init. Ace. mph/sec
2
Avg. Dec. ft/ sec
Stopped Time, sees/block
Running time, sees/block
Block Speed, mph
Running Speed, mph
Mileage/8-Hr. shift
Ratio Running to Stopped
AA-I
4.17
33.6
1.123
2.023
6.03
31.51
9.6
11.42
91.39
4.23:1
FROM "SMALL BUS" REPORTa
A
10
20
3
6
10
24.6
10.4
14.6
83
25:1
B
12
20
3
6
10
21.6
9.5
13.9
74
2.1:1
C
6
30
3
6
10
34.5
16.2
20.9
103
3.5:1
D
2
40
--
6
10
60.7
25.5
29.6
204
6.0:1
a"Small Bus, Operating Profile and Performance Requirements for
Small Buses: DOT-UT-40015, Report 3, December 3, 1976.
47
-------
Appendix C
SURVEILLANCE ACCELERATION-DECELERATION DRIVING SEQUENCE
49
-------
Appendix C
SURVEILLANCE ACCELERATION-DECELERATION DRIVING SEQUENCE
Tine
(sec)
1.
2.
3.
1*.
5-
6.
7.
8.
9.
10.
11.
12.
13.
Ik.
15.
16.
17.
18.
19.
20.
21.
22.
23.
2k.
25.
26.
27-
28.
29-
30.
31.
32.
33.
31*.
35-
36.
37.
38.
39.
1*0.
1*1.
1*2.
1*3.
1*1*.
»*5.
146.
b7.
Speed
(nph)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.8
5.1
9-1
13-2
17-1
20.6
23. k
25-7
27.3
28.6
29.6
30.0
30.0
30.0
30.0
"~30'.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
29-6
28.9
28.1.
26.9
25- k
23.5
21.2
18.5
:15-6
12.5
Tine
(sec)
1*8.
^9.
50.
51-
52.
53.
5k.
55-
56.
57-
58.
59.
60.
61.
62.
63-
6k.
65-
66.
67-
68.
69.
70-
71-
72.
73.
Ik.
75-
76-
77-
78.
79-
80.
81.
82.
83.
81*.
85-
86.
87-
88.
89.
90.
91-
92.
93-
91*.
Speed
(mph)
9-U
6.1*
3-7
1.6
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.7
k.6
7.6
10.3
12.3
13-7
11*. 6
15-0
15-0
15-0
15.0
15.0
15-0
15.0
15-0
15.0
15-0
15.0
15.0
15.0
15-0
15-0
15.0
15.9
17-3
18.9
20.6
22. k
2k. 2
25-9
27-5
Time
(sec)
95-
96.
97.
98.
99-
100.
101.
102.
103.
10l*.
-105-
106.
107-
108.
109.
110.
111.
112.
113.
lilt.
115-
116.
117-
118.
119.
120.
121.
122.
123.
121*.
125-
126.
127.
128.
129.
130.
131.
123-
133.
131*.
135.
136.
137-
138.
139-
ii*o.
lUl.
Speed
(mph)
28.8
29.8
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30-7
31-7
32.9
3l*. 2
35.6
37-0
38.5
39-9
111. 2
k2.k
1*3.5
1*1*. 1*
1*5.0
1*5.0
1*5-0
1*5.0
1*5.0
1*5.0
1*5.0
1*5.0
1*5.0
1*5-0
1*5.0
1*5.0
1*5.0
1*5-0
1*5.0
1*5.0
kk.7
Ti=e
(sec)
l!*2.
11*3-
11*4.
11*5.
11*6.
11*7.
ii*a.
Ik9-
150.
151.
152.
153.
151*.
155-
156.
157.
158.
159-
160.
161.
162.
163.
16U.
165.
166.
167-
168.
169.
170.
171.
172.
173.
17U.
175-
176.
177-
178.
179-
180.
181.
182.
183-
181*.
185.
186.
187.
188.
Speed
(mph)
kk.l
1*3.1*
k2.2
1*0.7
38.9
36.8
3U. 6
32.6
31.0
30.1
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
31.0
32.5
3^.3
36.2
38.3
1*0.5
1*2.7
1*5.0 -
1*7-3
1*9.5
51.6
53.6
55.5
57.2
58.6
59-8
60.0
60.0
60.0
60.0
60.0
Time
(sec)
189.
190.
191.
192.
193-
191*.
195-
196.
197-
198.
199.
200.
201.
202.
203.
201*.
205.
206.
207.
208.
208.
210.
211.
212.
213-
211*.
215.
216.
217-
218.
219-
220.
221.
222.
223.
221*.
225-
226.
227-
228.
229.
230.
231-
232.
233.
23>*.
235-
Speed
(mph)
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
59.7
59-1
58.3
57-2
55-7
53.8
51.7
1*9.6
VT.5
1*5-9
1*5-1
1*5.0
1*5-0
1*5.0
1*5.0
1*5.0
1*5.0
1*5.0
1*5.0
1*5-0
1*5.0
1*5-0
1*5.0
1*5.0
1*5.0
1*5.0
1*5.0
1*5-6
1*6.5
1*7.6
1*8.7
50.0
51.3
52.6
53-9
55-2
Time
(sec)
236.
237-
238.
239.
21*0.
21*1,
21*2.
2l*3.'
21*1*.
2l*5-
2U6.
21*7.
21*8.
2l*9.
250.
251-
252.
253.
25U.
255.
256.
257-
258.
259-
260.
261.
262.
263.
261*.
265.
266.
267.
268.
269.
260.
271-
272.
273-
27U.
275-
276.
277-
278.
279-
280.
281.
282.
Speed
(nph)
56. U
57-5
58-5
59.3
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60. -0
60.0
60.0
6C.O
60.0
6C.O
60.0
60.0
60. o
59.7
59-3
58.8
58.3
57.6
56-9
56.0
51*. 9
53-8
52.1*
50.9
1*9-2
1*7.1*
1*5-5
1*3-U
1*1.1
38.8
36.1.
3»*.0
31.5
29-0
26.6
21*. 3
22.1
20.2
18.1*
51
-------
Appendix C
SURVEILLANCE ACCELERATION-DECELERATION DRIVING SECUENCL'
Tiae
(sec)
283.
28U.
285.
266.
287.
288.
289.
290,
291.
292.
293.
29!*.
295-
296.
297-
298.
299-
300.
301.
302.
303.
30l*.
305-
306.
307.
308.
309.
310.
311.
312.
313.
311*.
315.
316.
317-
318.
319-
320.
321.
322.
323..
32U.
325.
326.
327.
328.
329.
330.
Speed
(cph)
17-0
15-9
15-2
15-0
15-0
15-0
15-0
15.0
15-0
15.0
15.0
15-0
15-0
15.0
15.0
15-0
15.0
15-0
15-0
16.7
20.0
23-1
26.1
28.9
31.6
31*. 2
36.6
38.9
1*1.1
1*3.1
1*5-0
1*6.8
1+8.5
50.1
51-5
52.8
51+.0
55.1
56.1
56.9
57-7
58.3
58.9
59-3
60.0
60.0
60.0
60.0
Tine
(sec)
331.
332.
333-
33U-
335-
336.
337-
338.
339.
31*0.
3U.
31*2.
31*3.
31*1*.
31*5-
31*6.
31*7.
31*8.
3l»9-
350.
•351.
352.
353.
351*.
355-
356.
357-
358.
359.
360.
361.
362.
363.
361*.
365.
366.
367.
368.
369.
370.
371-
372.
373.
371*.
375.
376.
377-
378.
Speed
(nph)
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
59-1*
58.5
57-1+
56.1
51*. 1*
52.1*
1*9.9
1*6.9
1*3.6
39.8
35.7
31.2
26.6
21-9
17-3
12.8
8.7
5-1
2.3
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.b
1.5
5-2
8.6
12.0
15-3
Time
.(sec)
379-
380.
351-
382.
383.
381+ .
385-
386.
387-
388.
389.
390.
391.
392.
393.
391+.
395-
396.
397-
393-
399-
1*00.
1*01.
1*02.
1*03-
1*01*.
1*05.
1*06.
1*07.
1*08.
1*09.
1*10.
1*11.
1*12.
1*13.
l*ll*.
1*15.
1*16.
1*17.
1*18.
1*19.
1*20.
1*21.
1*22.
1*23-
1*21*.
1*25-
1*26.
Speed
(*ph)
I8.lt
21.1*
21*. 2
27.0
29.6
32.1
31*. 5
36.8
39-0
1*1.0
1*3.0
1*1*. 8
1*6.5
1*8.1
1*9.6
51.0
52.3
53.5
51*. 5
55-5
56.4
57.2
57-9
58.5
58.9
59.3
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
59-7
59-3
58.9
58.3
57-6
56.7
Time
(sec)
1+27.
1*28.
It 29-
1+30.
1*31-
1*32.
1*33.
1*31*.
»*35.
1*36.
1*37-
1*38.
1*39-
1*1*0.
1*1*1.
1*1*2.
1*1*3.
1+1*1*.
1*1*5.
1*1*6.
1*1*7.
1*1*8.
1+1*9.
1*50.
1*51.
1*52.
1*53.
1*5!+.
1*55-
1*56.
1*57-
1*58.
1*59-
1*60.
1*61.
1*62.
1+63.
1+6!+.
1*65.
1*66.
1*67.
1*68.
1*69.
1*70.
1*71.
1*72.
1*73-
1*71*.
Speed
(nph)
55.7
51*. 5
53.1
51-5
1*9-6
1*7-8
1*5-3
1*3.7
1*1.6
39-1*
37-3
35-1*
33-6
32.1
30.9
30.2
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
29-5
28.7
27-3
25-3
22.7
19-9
17-3
15.1*
15-0
15-0
15-0
15-0
15-0
15.0
15-0
15-0
Time
.(see)
1*75-
1*76.
1+77-
1*78-
1*79.
1*80.
1*81.
1*82.
1*83.
1*81+.
1*85.
1*86.
1*87.
1*88.
1*89-
1*90.
1*91.
1*92.
1*93-
1*91*.
1»95-
1*96.
1*97.
1*98.
1*90.
500.
501.
502.
503.
50l*.
505-
506.
507.
508.
509.
510.
511.
512.
513.
511*.
515-
516.
517.'
518.
519.
520.
521.
522.
Speed
(mph)
15.0
15-0
15-0
15.0
15-0
15-0
15-0
15.0
ll*.U
13.3
11.3
8.5
5-2
2.1
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.1*
6.3
10.0
13.5
16.8
19-9
22.8
25.5
28.0
30.3
32.U
3>*. U
36.2
37-8
39.2
1+0.5
1*1.6
l»2.6
!+3.1*
1*1*. 0
1*1*. 5
1*5-0
Tize Speed
(sec) (mph)
523. 1*5-0
52l*. 1*5.0
525- 1*5.0
526. U5.G
527- 1*5.0
528. 1*5-0
529- 1*5-0
530. 1*5.0
531- 1*5.0
532. 1*5.0
533- 1*5-0
531*. 1*5.0
535- 1*5-0
536. 1*5.0
537- 1*5-0
538. 1*1*.5
539- 1*3.9
5l*0. 1*3.0
51*1- 1*1.8
51*2. 1*0.2
51*3. 38.2
5kk. 35.8
5!»5. 33-1
5k6. 30.1
51*7. 26.9
5W. 23-7
51*9. 20.7
550- 18.1
551. 16.1
552. 15.1
553. 15-0
55l«. 15-0
555- 15.0
556. 15.0
•557- 15-0
558. 15.0
559- 15-0
560. 15-0
561. 15.0
562. 15.0
563. 15'.0
561*. 15.0
565. 15-0
566. 15.0
567, p.5.0
568. 15.0
569. 15-9
57.0. 17-3
52
-------
SURVEILLANCE ACCSL£RATIO::-t-;CEL£RATIO!T DRIVIIIG SSQUEECS
Time
(sec)
571-
572.
573-
574.
575.
576.
577.
578.
579.
580.
581.
582.
583-
584.
585-
586.
587-
588.
589-
590-
591-
592.
593-
595.
596.
597-
598-
599-
600.
601.
602.
603.
604.
605.
606.
607.
608.
609-
610.
6u.
612.
613.
614.
615-
616.
617.
618.
619.
620.
Speed
(ccii)
18.9
20.7
22.6
24.5
26.6
23.7
30.8
32.9
34.9
36.9
36.8
40.5
42.0
43.4
44.5
45.0
45.0
45.0
45.0
4?.o
45.0
45-0
45-0
45.0'
45. .0
45.0
45.0
45.0
45.0
45.0
45.0
Jh Ji C
43^7
42.7
41.4
39-8
37-8
35-3
32.5
29-2
25-6
21.8
17.8
13-8
9-9
6.4
3-5
1.3
0.1
0.0
Tine
(sec)
621.
622.
623.
624.
625-
626.
627.
628.
629-
630.
631.
632.
633.
634.
635.
636.
637-
638.
639-
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651-
652.
653.
654.
655-
656.
657.
653.
659-
660.
661.
662.
663-
664.
665.
666.
667-
663.
669.
670.
Speed
(=?h)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.6
7-1
11.5
15-7
19.6
23-4
26.9
30.3
33.4
36.4
39-2
41.8
44.2
46.4
48.5
50.3
52.0
53.5
54-9
56.1
57-1
58.0
58-7
59.3
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
Time
-(sec)
671.
672.
673.
674.
675.
676.
677.
678.
679-
680.
681.
682.
683.
684.
685.
686.
687 .
683.
689.
690.
691.
692.
693.
694.
695.
696.
697-
698.
699-
700.
701.
702.
703.
704.
705-
706.
707-
708.
709.
710.
711-
712.
713-
714.
715-
716.
717-
718-
719-
720.
Speed
Uph)
59-6
59-0
53.3
57-4
56.5
55-3
54.0
52.4
50.6
43.5
46.2
43-6
40.8
37-8
34.6
31.3
27.9
24.3
20.8
17-3
14.0
10.7
7.8
5.2
3.0
1.3
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.2
3.5
6.4
9-6
12.8
15-9
18.8
21.3
23-5
25-2
26.7
27.8
Time
(sec)
721.
722.
722-
724.
725.
726.
727.
728.
729-
730.
731-
732.
733-
734.
735-
736.
737-
738.
739-
740.
741.
742.
743-
744.
745-
746.
747-
748.
749-
750.
751.
752.
753-
754.
755.
756.
757-
758.
759-
760.
761.
762.
763.
764.
765-
766.
767-
768.
769-
770.
Speed
(nph)
28.7
29.6
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30-0
30-5
31-4
32.4
33.6
34.8
36.0
37-4
38.7
40.2
41.6
43.1
.44.6
46.0
47.5
48-9
50.4
51-7
53.0
54.3
55-5
56.6
57-6
58-5
59-3
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
Tine
(sec)
771-
772.
773-
774.
775-
776.
777-
778.
779-
780.
781.
782.
783.
784.
785-
786.
787-
788.
789-
790.
791-
792.
793.
794.
795-
796.
797-
798.
799-
800.
801.
802.
803.
804.
805.
806.
807-
808.
809.
810.
811.
812.
613:
8l4.
815.
816.
817-
818.
819.
820.
Speed
(nph)
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
59.6
59-1
58.4
57.6
56-5
55-1
53-4
51-5
49-3
46.8
44.3
4i.6
38.9
36.3
34.0
32.1
30.7
30.0-
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
29-1
27-7
25.4
22.0
17-6
12-5
7.4
Time
(sec)
821.
822.
£23-
824.
825-
826.
827-
828.
829.
830.
831-
832.
833.
834.
835-
836.
837-
833.
839-
840.
841.
842.
843-
844.
845-
846.
847.
848.
849-
850.
851-
852.
853-
854.
855.
856.
857.
858.
859-
. 860.
861.
862.
863.
864.
865-
866.
867.
868.
869-
870.
Speed
(cph)
2.9
0-3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.9
4.0
6-9
9.8
12.6
15.3
17-9
20.4
22.8
25.2
27.4
29-6
31.7
33.7
35-7
37-5
39-3
4l.O
42-6
44.2
45.6
47.0
48.4
49-6
50.8
51-9
52-9
53-8
54.7
55.5
56.3
56.9
57-5
58.1
58.5
58.9
59.3
53
-------
Appendix C
SURVEILLANCE ACCELERATION-DECELERATION DRIVIMG SEQUEMCE
Tine
(sec)
871.
872.
873-
87U.
875-
876.
877-
878.
879-
880.
881.
882.
683.
881*.
885-
886.
887-
888.
889-
890.
891.
892.
893-
89U.
895-
896.
897-
893.
899-
900.
901.
902.
903.
901*.
905-
906.
907-
903.
909-
910.
911-
912-
913-
91*.
915.
916-
Speed
(cph)
60.0
60.0
60.0
60.0
60.0
60.0
. 60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
• 59.7
:59-2
53.7
58.1
57-1*
56.7
:. 55-8
5U.8
. 53.7
52. 1*
50.9
U9-3
1*7-6
1*5.7
1*3-6
1*1.1*
39.0
36.6
3t*. 0
31.3
23.6
25-8
22.9
20.1
17.3
11*. 6
12.0
9-5
7.2
5-2
Time
(sec)
917.
918.
919-
920.
921.
922.
923.
921*.
925-
926.
927-
928.
929-
930.
931.
932.
933.
931*.
935.
' 936.
937-
938.
939.
9l*0.
9Ul.
9**2.
9^3.
91*1*.
9^5.
9l*6.
9»*7.
91*8.
91*9.
950.
951.
952.
953.
951*.
955.
956.
957.
958.
959-
960.
961.
962.
Speed
(mph)
3.1*
1.9
0.8
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.8
2.7
U-9
7-5
10.1
12.8
15-1*
17.8
20.1
22.1
23.8
25.2
26.5
27.U
28.3
29.0
29.8
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
Time
(sec)
963.
961*.
965.
966.
967.
968.
969.
970.
971.
972.
973.
971*.
975-
976 .
977-
978.
979.
980.
981.
982.
983.
981;.
985-
986.
987.
985.
989.
990.
991-
992-
993-
99U.
995-
996.
997.
998.
999-
1000.
1001.
1002.
1003.
1001*.
1005.
1006.
1007-
1008.
Speed
(mph)
30.0
30.0
30.7
31.8
33-1
3>*. 5
36.0
37.6
39.3
ltl.0
1*2.8
1*1*. 6
1*6.3
1*6.1
1*9.8
51.5
53.0
5l*. 6
56.0
57-2
58.1*
59.3
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
59-5
58.7
57.6
56.1
51*. o
51-5
1*8.5
1*5-1
Tine
(sec)
1009.
1010.
1011.
1012.
1013.
1011*.
1C15-
1016.
1017-
1018.
1019.
1020.
1021
1022.
1023-
102U.
1025.
1026.
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1031*.
1035.
1036.
1037-
1038.
1039-
101*0.
10U1.
101*2.
1C!;3.
10UU.
10^5.
ioi*6.
10 vr.
10l*8.
10U9.
1050.
1051-
1052.
1053.
1051*.
Speed
(nph)
1*1.6
38.0
3l»-7
32.1
30.1*
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
29-1*
28.5
27.2
25- If
22.9
19.9
16.1*
12.5
8.6
5-0
2.1
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
54
-------
Appendix D
CERTIFICATION EMISSIONS FOR THE ENGINE
FAMILIES REPRESENTED IN THE PROGRAM
55
-------
Appendix D
CERTIFICATION EMISSIONS FOR THE ENGINE
FAMILIES REPRESENTED IN THE PROGRAM
As explained in the text, the engines in the demand-responsive vehicles
tested in this program were certified using an engine dynamometer test. The
engines in the vehicles used in the program could not be removed for testing.
Therefore, the certification test results for the engine families represented
in this program are shown in Table D-l. The reader should bear in mind that
the table is included for reference purposes since no well defined relationship
exists between the engine dynamometer procedure and the Federal Light-Duty
Test Procedure, or similar chassis dynamometer procedures.
The calibration year is the year that the calibration was originally
certified. Note that some 1976 vehicles have engines with 1977 calibrations.
The 125-hour emission results are taken from the emission data engine at the
125-hour engine operation point. When added to the deterioration factor (the
deterioration factor is obtained from a 1,500-hour durability data engine),
the result is the official certification value. This certification value is
what is compared to the Federal emission standards to see if the engine passes
or fails the standards. Note that there is no deterioration factor or official
certification value for HC or NO by themselves. This is because, for the
years for which the engines werexcertified there were no standards for HC or
NO separately.
57
-------
Table D-l. CERTIFICATION ENGINE EMISSIONS
VEHICLE
No.
1
5
4
10
2
6
15
13
17
11
16
Year
1976
1977
1976
1976
1976
1977
1977
1976
1976
1977
1977
MAKE
Ford
Ford
Ford
Chevy
Chevy
Chevy
Dodge
Dodge
Dodge
Dodge
Dodge
FAMILY
351 W
351 W
460
6M 113
350 CID
GM 113
400 CID
GM 113
400 CID
LA-1
360-1
LA-1
360-1
LA-1
360-1
LA
318-1
LA
318-1
CONTROL
SYSTEM
IMCO
IMCO
IMCO
CCS
CCS
CCS
EM
EM
EM
EM
EM
CALIBRATION
YEAR
1977
1977
1977
1977
1977
1977
1977
1976
1976
1977
1977
EMISSION RESULTS"
CERT.
REGMTS.
125 Hr
DF
Cert
125 Hr
DF
Cert
125 Hr
DF
Cert
125 Hr
DF
Cert
125 Hr
DF
Cert
125 Hr
DF
Cert
125 Hr
DF
Cert
125 Hr
DF
Cert
HC + NOV
A
12.71
0.00
12.71
14.92
0.00
14.92
14.15
0.00
14.15
9.20
2.49
11.69
10.13
2.49
12.62
15.40
0.296
15.70
15.40
0.296
15.70
14.51
0.00
14.51
CO
18.13
0.00
18.13
30.67
0.00
30.67
23.71
0.00
23.71
19.17:
7.67
26.84
27.34
7.67
35.01
14.95
0.00
14.95
14.95
0.00
14.95
20.81
3.30
24.11
HC
2.33
2.68
2.84
2.68
2.55
—
3.32
3.32
-
4.95
N0x
10.38
12.24
11.31
6.52
7.58
—
12.08
1.08
-
9.56
(Jl
CD
DF - Deterioration Factor
IMCO - Improved Combustion
CCS -- Controlled Combustion System
EM - Engine Modification
aAll emission results are on a gram/brake horsepower - Hr (gm/bhp-hr) basis.
-------
Appendix E
INDIVIDUAL VEHICLE TEST RESULTS
59
-------
DIAL A RIDE
LIVONIA
* TESTED THIS MC-MTH
VEHICLE MODEL
NUMBER YEAR MAKE CID
TEST TYPE
EMISSION RESULTS
HC CO
(GMS/WI)
CJ2 NCXC
FUEL
ECON
(MPG)
TEST
NO.
0001 * 1976 FORD 351
0002 * 1976 CHEV 400
1975 FTP
MQD(BAG)
MGD(CLC)
STEADY STA
0 MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA 1 a
AA Ib
(1035 AUDIT
1S75 FTP
MCC(dAG)
MQD(CLC)
5.08
3.90
4.15
TES (GMS/MIN
C.31
2.38
1.38
1.20
2.39
2.35
2.12
4.44
4.74
IONAL LOAD)
2.20
1.79
1.93
STEADY STATES (GMS/MIN
0 MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA 1 a
AA 1 bi
( 10* AUDIT
C.30
2.38
1.37
C.93
0.66
C.54
C.09
2.01
2.31
IGNAL LOAD)
43.13
26.62
27.72
AND MI
1.29
9.35
9.78
7.34
3.95
9.85
6.69
17.94
19.24
19. ol
29.75
31.05
AND M
O.oO
8.30
4.14
3.23
2.97
3.50
5.98
5.82
6.63
844.0
818.5
823.9
N/GAL AT 0
106.6
1334.3
885. 1
b78.0
467.9
538.6
605.5
951.2
1GC9.0
£i>l .1
788.8
812.6
f,/G4L AT 0
149.0
1340.3
900.7
646.1
520.4
578.^
683.8
108U.V
1160. 1
7-93
10.21
11.03
MPH)
0. 10
1.00
1.10
1.07
2.97
0.56
C.96
6.23
7.34
7.C9
10.52
11.51
PPHI
0.36
2.57
1.20
0.82
2.31
6.51
12.58
6.49
8.32
9.56
10.17
10.08
80.95
6.54
9.81
12.80
18.42
15.80
14.25
8.93
8.42
9.98
10.55
10.23
58.84
4.77
9.74
13.57
16.84
15. 16
12.75
8.04
7.53
1
1
1
1
L
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-------
DIAL A RIDE
LIVONIA
* TESTED THIS MONTH
VEHICLE MODEL
NUMBER YEAR MAKE CIO
FUEL
EMISSION RESULTS (GMS/MIJ ECQN TEST
TEST TYPE HC CO C02 NQXC
-------
DIAL A RIOE
LIVONIA
* TESTED THIS MONTH
VEHICLE HODEL
NUMBER YEAR MAKE CID
EMISSION RESULTS (GMS/MI)
TEST TYPE HC CD C02 NOXC
FUEL
ECON
(MPG)
TEST
NO.
0006 * 1977 CHEV 400
en
w
0010 * 1976 CHEV 350
1975 FTP
MQC(BAG)
MOD(CLC)
STEADY STATES
0 MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA la
AA lb
4.76
3.73
3.94
(GMS/MIN
0.46
3.65
1.77
1.87
1.46
0.89
C.89
4.96
5.38
34.26
30.64
31.71
AND MIN/GAL
0.48
833.4
748.9
720.9
AT 0
90.7
7.78 1313.4
5.G3
4.46
4.71
5.65
7.50
7.11
7.68
793.6
788.7
512.2
571.4
743.0
889.3
947.0
4.19
9.97
10.70
MPH)
0.07
0.69
0.75
0.96
1.77
6.08
15.24
4.74
6.39
9.84
10.97
11.33
95.55
6.64
11.00
11.07
16.93
15.22
11.72
9.69
9.09
1
1
1
1
1
1
1
1
1
1
1
1
( 10$ ADDITIONAL LOAC)
1975 FTP
MCD(BAG)
MOD(CLC)
STEADY STATES
0 MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA la
AA lb
4.98
4.78
4.97
(GMS/MIN
C.72
6.99
5.91
4.02
2.32
2.32
2.67
5.31
5.12
243.96
282.91
275.00
AND MIN/GAL
35.09
438.52 1
234.22
168.48
126.24
144.44
192.46
260.34
259.94
fc94.7
593.5
601.5
AT 0
108.1
316.0
643. 1
455.3
399.1
456.2
615.4
827.4
848. 9
2.87
2.38
2.43
MPH)
0.11
1.06
0.46
0.41
1.16
2.70
4.93
2.31
2.47
8.11
8.43
8.46
53.63
4.36
8.58
12.11
14.67
12.85
9.58
7.08
6.97
1
1
1
1
1
1
1
1
1
1
1
1
110* ADDITIONAL LOAD)
-------
DIAL A RIDE
LIVONIA
* TESTED THIS MONTH
VEHICLE KQOEL
NUMBER YEAR MAKE CID
TEST TYPE
EMISSION RESULTS (GMS/MI)
HC CO C02 NOXC
FUEL
ECON
(MPG)
TEST
NO.
0011 *
1977 DODG 318
0015 *
1977 DODG 360
1975 FTP
MOD(BAG)
MOD(CLC)
STEADY STATES
0 MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA la
AA lb
4.65
2.34
2.83
(GMS/MIN
0.42
2.20
1.16
1.32
1.43
1.11
0.73
2.41
3.57
55.61
42.46
42.25
AND MIN/GAL
5.43
44.15 1
12.99
6.90
5.S8
4.37
4.78
23.77
25.61
732.1
679.7
679.7
AT 0
90.6
156.3
664.5
466.8
399.9
460.5
538. 1
846.7
887.4
3.94
5.13
5.48
MPH)
0.12
0.93
0.54
0.52
1.29
3.67
6.48
3.69
4.27
10.64
11.75
11.75
88.37
7.18
12.89
18.42
21.45
18.85
16.20
9.92
9.45
1
1
1
1
1
1
1
1
1
1
1
1
(10X ADDITIONAL LOAD)
1975 FTP
MOC(BAG)
MGDICLC)
STEADY STATES
0 MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA 1 a
AA lb
4.97
4.13
4.39
(GMS/MIN
C.68
7.87
3.55
2.65
2.28
2.39
2.75
5.24
5.96
67.69
65.31
89.68
AND MIN/GAL
19.39
220.12 1
£4.65
42.59
7.78
20.36
30.86
8C.71
93.16
700.9
662.3
665.0
AT 0
94. 1
130. L
780. fl
574.0
387.5
426.4
526. 1
813.3
877.4
6.72
9.62
10.58
MPH)
0.10
1.24
0.99
0.88
3.32
7.17
13.64
7.96
6.50
10.78
10.96
10. 83
70.06
5.91
9.93
13.67
21.81
19.05
15.22
9.27
8.51
1
1
1
1
1
1
1
1
1
1
1
1
( 10% ADDITIONAL LOAD)
-------
DIAL A RIDE
VEHICLE
NUMBER
0013*
MODEL
YEAR
1976
MAKE
DODGE
CID
360
in
LIVONIA
EMISSION RESULTS (GMS/MI)
TEST TYPE HC CO C02
1975 FTP 7.68 153.64 725.66
MOD(BAG) -
MOD(CLS) -
* TESTED THIS MONTH
NOXC
5.42
STEADY STATES (GMS/MIN AND MIN/GAL
0
5
10
15
30
45
60
AA
AA
MPH
MPH
MPH
MPH
MPH
MPH
MPH
1 a
lb
1
17
6
4
1
2
2
7
7
,42
.65
.76
.10
,62
.68
.64
.17
,73
29
373
175
118
9
61
84
145
154
,09
,86
,68
,23
.63
.52
.06
.98
.57
59
829
456
385
453
455
594
750
797
.02
.55
.86
,47
.51
.61
.46
.45
.03
AT 0 MPH)
0.
0,
0,
0,
1.
2.
5.
2.
3.
03
31
31
21
30
01
22
74
42
FUEL
ECON(MPG)
81,26
6.03
11.77
15.19
18.73
15.83
12.08
8.85
8.34
TEST
NO.
1
1
1
1
.1
1
1
1
1
1
1
1
(107. ADDITIONAL LOAD)
-------
DIAL A RIDE
LIVQNIA
* TESTED THIS MCMTH
VEHICLE MODEL
NUMBER YEAR MAKE CIO
TEST TYPE
EMISSION RESULTS (GMS/NI)
HC CO CG2 NQXC
FUEL
ECQN
(MPG)
TEST
NO.
0016 * 1977 DODG 318
0017 * 1976 DODG 360
1975 FTP
MODI BAG)
MCO(CLC)
STEADY STATES
0 MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA la
AA lb
3C.78
19.67
19.78
(GMS/MIN
3.25
47.32
38.71
63.44
43.66
4C.98
12.05
44.94
46.52
76.79
80.76
79.72
AKD MI
6.64
29.09
14.63
7.88
2.98
6.52
20.20
27.10
30.87
827. 0
866.8
856.0
N/GAL AT 0
94.8
1138.0
516.4
549.1
475.6
574.2
728.5
959.1
1023.9
12.32
13.60
14.69
MPHI
0. 19
2.23
1.46
6.25
9.46
14.53
18.39
13.91
15.04
8.49
8.40
8.50
76.82
6.65
13.40
11.64
14.34
12.42
11.12
7.76
7.28
1
1
1
1
1
1
1
1
1
1
1
1
(10* ADDITIONAL LOAD)
1975 FTP
MOC(BAG)
MQO(CLC)
STEADY STATES
C MPH
5 MPH
10 MPH
15 MPH
30 MPH
45 MPH
60 MPH
AA la
AA lb
8.46
6.24
£.59
(GMS/MIN
1.13
10.64
4.94
3.64
2.50
3.51
2.72
6.12
9.07
178.53
181.17
180.10
AND MI
38.84
494.24
219.22
136.98
48.32
51.95
50.38
233.77
262.44
879.5
853.3
aid. /
N/GAL AT 0
72.8
1151.4
645.1
592.7
495. a
618.1
807.1
912.5
936.7
5.41
7.09
7.52
MPHJ
0.04
0.66
0.42
0.44
3.27
7.95
12.36
3.63
3.79
7.48
7.67
7. A3
64.50
4.52
8.83
10.83
13.23
12.49
9.92
6.80
6.44
1
1
1
1
1
1
1
1
1
1
I
1
( 10* ADDITIONAL LOAD)
-------
DIAL A
001 C \ R li LISTING
I Vi
CAR
JO.
0001
0002
u004
0005
OOot)
0010
0011
0015
OOlo
J017
CAR FY
•1CH 74
9 y
9 ^
9 V
9 9
9 9
FY74
NC. VP
SvVS 9
V V 9 V 9
9
!,
5
f,
5
5
5
t>
Ci u
351
400
^f O U
351
^t • ' 0
350
318
360
31d
360
Tri
1
1
1
1
1
1
A
1
1
1
* 0.
1\t TYL
? f
2 8
4 8
2 o
t 3
2. 6
i b
I B
2 ?
2 t>
/-' C
i
I
1
1
1
1
L
1
I
i
,vT
6000
6000
6000
'_. 5 0 c<
6000
6 0 0 "J
5000
5000
7500
/OUO
IN'IAL) M/L
t i ^ i I rl
-, |
21. u I
1
. X
1
c5 . 3 1
20. 1 1
j.0 . J 1
2 j . '- A
«L 3 • X X
j JIJM
5500
9c83
10176
i 3455
12^26
> 4 2 8 0
54tJ4
252o4
114C5
^7732
-------
DIAL A RIDE
002 CARD LISTING
LiVJNiA
CAP
"JG.
0001
0002
0004
OCQ5
0006-
0010
0011
0015
0016
0017
C
s
2
2
2
2
2
2
'i
2
1
2
C
R
2
2
2
2
tL
2
2
2
2
2
P
M
1
1
1
1
1
1
I
1
1
1
AI
R
2
2
2
2
2
2
2
2
2
2
EG
R
2
2
2
2
2
2
2
2
1
2
F
I
2
2
2
2
2
2
2
2
2
C
CA
T
2
2
2
2
2
2
2
2
2
2
T
K
,
2
2
2
2
2
2
2
2
2
PC
V
1
1
1
1
1
1
1
3
1
1
FT
C
23
30
36
3t
ENG FAM
351MMCC
113
46CIMCO
351-IMCC
113
113
EC1
LAI
LA
L«l
[UL£
550
700
020
52,
6bC
710
683
7 CO
650
b 50
IDLE
(S)
550
700
65C
550
70 C
700
750
750
75C
750
Uh
99
-,9
99
c<9
99
99
99
i9
99
99
L)V,
1 J)
99
99
9 -t
9Q
99
99
99
99
on
99
TIM
+ :R
+ 04
+ 14
+ 04
+04
+08
-Ob
-01
no
-05
TIM
(S)
-06
+04
112
+ 04
+04
+0b
+02
UOO
+ 02
000
IDLc
CO
0.24
0.12
2.35
4.10
0.07
5.03
0.65
i.4o
0. 19
5.00
IDLE
CCUS)
99.99
99.99
99.99
9V. V9
99.99
99.99
99.99
99.99
99.99
= 9.99
HC
75
15
15G
300
15
110
£>0
600
620
170
S LtAO
S CONT
1
1 9.999
1
1
1
1
1 9.999
1
]
1
*'i . n T . ^
;>^-. 2
yj 7u 2
5i>JO 2
3UJO 2
i> j vu Z
->1 4w 2
•» J9 J 2
•ttuJ 2
oo^J 2
cjZ.J 2
f-
l
3
3
3
3
3
3
3
3
3
3
TEST
1
1
1
1
1
1
1
1
1
i
01
CD
-------
SITE - LIVONIA
VEHICLE - 0001 RUN NJ.
1 DATE - 77/ 9/22
HC CD CQ2
AHP - 21.5
NOX NOXC
1975 FTP
CLC TRAN
3ARJ - 29.40 V.B - 59.
BACKGRCUNC(CGNC)
SAM.PLE(CONC)
CT»
iO
CB -
MASS EMISSIONS(GMS)
CLD STAS
BARO - 29.40 hB - 59. CB
BACKGRCUNC(CCNC)
SAMPLE(CCNC)
MASS EMISSIONS(GMS)
HCT TRAN
BARO - 29.40 KB - 59. DS
BACKGRCUNC(CCNC)
SAMPLEICCNO
MASS tMISSIONS(GMS)
CCflPGSIT
MASS EMISSIQNSiGM/MI J
0 MPH
- 29.36 1*3 - 59.
eACKGRCUNOlCCNC)
SAMPLECCONC)
MASS EMISSIONS(CMSJ
Co -
fiARC - 29.36 tvB - 59. Ci
BACKGRCUNDICCNC)
SAMPLE(CCNC)
M^SS EMSSIONS(GM3)
MASS EMISSI'3NS(GiVMI )
70.
2
70.
1
70.
1
72.
72.
PIN
14.
69t.
7.42
PIN
11.
272.
7.97
PIN
9.
37G.
4.60
5.C8
P I N
5.
72.
C .96
:.3i
P I h
4.
47.
C .fc I
2.38
- 33.80
6.
5051.
406.32
- 39.00
9.
741.
101.39
- 38. JO
H.
1C26.
fc3.11 •
43.13
- 3y.tn
2 .
141.
3.99
1.2*
- 36.30
1.
d5.
2.41
9.55
V/^f:V -
C.06
2.60
3235.25
V/PrlV -
C.C6
1.56
327fc.7b
V/PtV -
C.G5
2.32
2912. 7b
t44.C3
V/' 4
-------
VEHICLE - 0001
PUN NJ. -
DATE - 77/ 9/22
SITE -
ia
BARG - 29.36 tfB - 60. C3
bACKGRCUNCtCCNC)
SAMPLE(CGNCI
MASS ENISSIONS(GNS)
MASS EMISSICNSCGM/MI)
15 MPK
BAkG - 29.3o WB - 60. CB"
BACKGROUNDING)
S/>MPLE(CCNC)
MASS EtflSSIGNSiGPS)
MASS ENISSICNS(GfVMI)
30
BARO - 29. 3o WB - o9. Co -
BACKGRCUNOICONC)
SAMPLE(CCNC)
MASS EMISSIONS(GVS)
MASS EMISSIUN51GM/MI )
45 MPH
BARO - 29.36 VvB - 61. C8 -
bACKGHCUND(CCNC)
SAMPLE(CCNC)
MASS Ef"ISSIONS{UMSI
MASS EMI5SICNSOM/MI )
60 MPH
BARC - 29.36 foft - 61. CB -
BACKGP.CUKO(CONC)
SAMPLE(CCNC)
MASS EMISS
MASS E/*ISSICNS{G''VMI )
MOC(BAG)
- 29.30 rtd - 62.
BACKGF.CUNCICCJNC)
S«MPLt(CCMC)
C ti -
MASS EMSSICNSTiMSI
MASS EMSSICMS(vJM/MI )
72
12
12
12
12
15
. PIN
4.
54.
0.72
1.38
. PIN
U
^ •
7C.
0.93
1.20
. PIN
7.
267.
3.71
2.39
. PIN
12.
394.
5.47
2.33
PIN
12.
471.
6.56
2. 12
. PIN
12.
46 c.
3d. ic
•3. so
- 38.80
1.
177.
5.06
9.78
- 38.80
2.
200.
5 . o ' J
7.34
- 33.80
1.
214.
6.12
3.S5
- 38.80
7.
8U2.
22.38
9.85
- 38.80
7.
727.
20.74
6.o9
- 3tf.au
0.
15bl.
260.59
26 .c2
V/REV -
G.04
1.05
457.61
885.12
V/PI-'V -
C.05
1.21
3^5.43
677.98
V/I^EV -
C.C5
1.65
725.30
467.9t
V/PEV -
C.Q5
2.dl
1251. tl
536.65
V/REV -
C.03
4 '.IS
1877.08
605.51.
V/FcV -
O.CJ
3.C7
b C 1 1 . 3o
ci lb .^6
.2J23
U.
13.
0.61
1.19
.2823
0.
19.
0.90
1.16
.2823
').
105.
4.95
.3.19
.2823
').
29.
1.37
0.59
..M23
0.
68.
3.21
1.33
.2823
0.
33J.
1 J5.71
i ~ • o 0
TEMP - 103.
0.57
1.10
TEMP - 108.
0.83
1.07
TEMP - 103.
4.6U
2.97
TFMP - 108.
1.30
0.56
TcMo - 1C3.
3.Q-*
0.9^
r^yp - ico.
99.93
10.11
REVS
9.81
KtVS
12.30
REVS
18.42
REVS
13.30
KEVS
14.25
KCVS
10. 17
- 3747.
- 3743.
- 3
it.
- 3747
- 21921
-------
VEHICLE - 0001
RUN NO. -
DATE - 777 9/21
SITE -
L1VCNIA
AA 1 a
BARO - 29.35 KB - 61.
BACKGROUND(CQNCI
SAMPLE(CONC)
DB -
MASS EMISSICNSiGMS)
MASS EMISSIQNSIGM/MII
AA 1 b
BARO - 29.36 WB - 61.
BACKGRCUND(CGNC)
SAMPLEtCONCI
CB -
MASS eNISSIGNS(GMS)
MASS EMISSIQNStSM/MI)
74
75
•
18
24.
4.
•
PIN
4.
2 .
68
44
PIN
- 39
.
4
05
*
361.
99
17
- 38
10.
202.
26.
4.
36
74
*
•
4
84
94
95
.
392.
107
19
.
.
07
24
V/REV -
0.
1.
5293
951
05
25
.28
.17
V/PEV -
0.
1.
5615
1CC8
05
34
.00
.98
.2820
0.
81.
37.
6.
.2822
0.
104.
47.
6.
17
68
09
46
TEMP
34
6
TEMP
43
7
- 109.
.69
.23
- 109.
.62
.84
REVS - 36590.
8.93
Inertia - 7500
REVS - 36057.
8.42
-------
VEHICLE - 0001
RUN NO. -
DATE - 77/ 9/21
SITE -
LIVONIA
SURVEILLANCE DRIVING SEQUENCE - ACCEL/OECEL MCDES (EVEN NiJ.) ANO STEADY STATE MOOES (ODD NO.)
BARD - 29.36 WB - 62. C8 - 75. PIN - 38.80 V/RErV - .2823 TEMP - 103. REVS - MOD(BAG) VALUE
MODE 1
MODt 2
MODE 3
MODE 4
M3CE 5
MOdE 6
M3LJE 7
ro
400 E 9
^QDE 10
MGU£ 11
MODE 12
MODE 13
MODE 14
SAMPLE(CCNC)
MASS (QMS)
MASS (GM/MI)
SAMPLEICCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SANPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CCIMC)
mSS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGMC)
MASS (GMS)
MASS (GVMI)
SAfPLECCGNCI
MASS (GMS)
MASS (GM/MI)
SAKPLEiCCNC )
MASS (GMS)
MASS (GV/M1J
SAMPLc(CCNC)
MASS (GMS)
MASS
MASS (GMS)
MASS (GM/MI)
SANPLciCONC)
MASS (GMS)
SAfPLEiCGNC)
MASS (GMS I
56.
0.0455
C.27
0.4463
7.45
339.
0.4014
3.21
171.
0.2161
2.92
11C.
C.C867
0.52
17C.
0.1076
5.35
229.
0.2715
4.34
372.
0.3234
4.59
349.
0.4133
3.31
569.
0.6046
4.45
422.
C.4997
2.67
332.
0.3146
2.48
686.
0.6126
6.5C
942.
i.2648
5 . fc^:
108.
C.1722
1.33
1S67.
3.8009
63.14
359.
1.336fc
10.69
598.
1.5252
20.58
634.
1.0106
6 . 06
3GJ.
0.3928
19. i>4
93U.
2.2237
35. ib
698.
1.2239
17.36
57o.
1.3820
11.06
942.
1.9521
14.35
1C47.
i.5035
13.35
658.
1.2537
9.93
903.
2.1592
17.27
4 1 7 H .
1't .67u9
58. b 1
C.70
17.62
1C5..70
3.21
96.66
1605.60
2.02
75.88
6C7.07
I. 10
44.30
597. 91
0.79
19.89
119.32
1.40
27.99
1392.44
1.23
40.07
727.13
2.54
70.07
5.1b
69.
0.2710
2.17
1J43.
4.0*»3C
? 1. +7
0.0196
0.12
1.2025
20.97
0.6981
5.58
C.2'J31
3.96
0.0495
0.30
0 . Io8 1
9.36
0.3382
4.93
1.1627
16.49
0.7166
5.73
2.1947
16.14
1.6932
9.03
0.6208
4.90
0.2562
2.05
4 .3891
20.29
82.04
5.13
14.00
13.38
68.01
0.16
11.00
8.57
13.85
10.97
10.12
16.57
21.01
6.42
-------
VEHICLE - 0001
MODE 15
RUN NO. -
DATE - 77/ 9/21
SITE -
LIVCNIA
CO
MODE 16
MODE 17
NODE 18
MODE 19
MODE 20
MODE 21
MODE 22
MODE 23
MODE 24
MODE 25
MODE 26
MODE 27
MODE 28
SAHPLE(CONC)
MASS (CMS)
MASS (GM/NII
S4MPLE(CONC>
MASS (GMSI
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CDNC)
MASS (GMS)
MASS (GM/MI)
795.
0.9418
3.77
402.
0.3811
2.22
idle.
1.2061
6.43
682.
0.7544
3.69
657.
0.8294
3.11
569.
1.3480
4.00
295.
0.3492
5.59
686.
1.4083
. 4.49
616.
0.7325
2.93
521.
0.8639
4.3fl
630.
0.4972
2.98
599.
1.5144
4.57
548.
0.6485
2.59
464.
0.8417
2.61
4063.
9.7150
38.86
699.
1.3371
7.79
1717.
4.1055
21.90
2638.
5.8872
28.82
2018.
5.1469
19.30
770.
3.6823
10.94
5t.5.
1.3510
21.62
5077.
21.0419
67.10
1602.
3.8305
15.32
1173.
2.9267
19.90
945.
1.5064
9.04
4176.
21.3017
64.30
it»yy.
4.0577
16.23
887.
2.2520
10. Bo
5.30
199.36
797.45
3.43
103.26
601. .89
2.36
88.74
473.30
5.74
201.55
986.54
4.77
191.28
717.22
2.20
165.37
491.15
0.36
32.48
519.66
6.44
419.51
1337.72
4.74
173.19
712.75
2.06
108.37
549.25
0.66
16.63
99.74
5.54
444.63
1342.07
4.89
183.65
735.40
2.65
152.83
i>10.44
919.
3.6097
14.44
443.
1.3920
8.11
266.
1.0448
5.57
875.
3.2078
15.70
933.
3.9090
14.66
221.
1.7361
5.16
29.
0.1139
1.82
929.
6.3249
20.17
777.
3.0519
12.21
241.
1.3253
6.72
20.
0.0524
0.31
810.
6.7873
20.49
042.
3.3073
13.23
316.
1.9032
6i36
3.4123
13.65
1.3159
7.67
0.9877
5.27
3.0324
14.84
3.6953
13.86
1.6412
4.87
0.1077
1.72
5.9791
19.07
2.8b51
11.54
1.2528
6.35
0.0495
0.30
6.4162
19.37
3.1264
12.51
1.7991
6.01
10.20
14.29
16.81
8.51
11.72
17.03
15.53
6.09
11.90
14.93
71.92
,6.09
11.54
16.55
-------
VEH
MODE
MCOE
MODE
MODE
MO 01:
MODE
MLJDt
tV.305
MODE
MOOc
MDOE
MGU-f
MODE
MDJc
ICL6
29
30
31
3?
33
34
33
36
37
38
39
40
41
42
- 0001 RUN
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI )
SA^PLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCNCI
MASS (GMS)
MASS (GM/MI)
SAfPLE(CCNC)
VASS (GMS)
MASS (GM/MI )
SAMPLE (CONG )
MASS tGMS)
MASS (GM/MI)
SAMPLEICCNC)
MASS IGMS)
MASS I GM/MI )
SAMPLF-(CCNC)
MASS (GMS)
MASS -IGM/Mi )
SA"PLE(CC.MC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCNC)
MASS (GMS)
SAMPLE (CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLfc(CONC)
MASS (GMS)
MASS (GM/MI)
DATE - 111 9/21
SITE -
LIVCNIA
990.
1.1728
S.38
206.
0.1465
2.53
150.
U. 1775
2.84
77.
0.0487
2.fcl
34.
0.0662
0.40
432.
0.7502
4.26
439.
0.5194
2.77
345.
0.4353
3.13
361 .
0.4273
6.64
462.
0.6559
4.29
540.
0.6396
3.41
347.
0.5212
4.00
372.
G. 2936
1.76
789.
1.5569
5.67
1223.
2.9363
23.49
788.
1.1305
19.53
500.
1.1955
19.13
490.
C .o249
36. 12
542.
0.364G
5.18
1528 .
5.3586
30.46
903.
2 .1532
11.52
082.
2.2521
1 6 . 1 b
679.
1.6236
2 5 . •> 6
1137.
3 .4059
22 .^9
1954.
4.6722
?4.92
847.
2 . jc 53
19.67
534.
C.8512
5.11
5601.
2 i . 3 2 C d
*>4 . 10
1.19
44.58
356.61
1.12
2^.38
'+33.28
C.35
32.10
513.57
1. J6
21.35
1233.66
G.84
21. 15
126.86
4. 12
227.02
1290. 6C
3.84
144.58
771.11
1. 76
7C.48
5C6.33
.C. 77
29. C8
465.35
3. 15
169.43
UCb.a2
4.29
161.21
859.77
1.47
69.83
535.51
C. 76
19.14
114.80
5. 76
361.24
lbtl.12
50.
J. 19o4
1.57
66.
J. 1555
2 ,o9
23.
3.0903
1.45
0.
0.0
0.0
16.
3.0419
0.25
631.
3.6351
2C.67
454.
1. 7o32
9.51
140.
•3 . u 2 '.j 1
-+.45
19.
j. U 7>6
1.19
654.
3 . )t>2t
20.17
•j 38 .
1 . ^954
10.64
o7.
0.4328
} . 32
20.
•J.OJ24
1.31
937.
6. 1340
2j.ll
0.185?
1.49
C.1470
2.54
t
0.0854
1.37
0.0
0.0
0.0396
0.24
3.4363
19.54
1.0857
8.99
G.5802
4.21
0.0705
1.13
2.9140
19.07
1.3662
10.06
0.4092
3.14
C.O'+95
0.30
5.7986
21.85
20.97
18.61
16.06
d.83
o5.l4
6.56
11.12
16.39
16.31
7.67
9.76
15.33
69.12
5.87
-------
VEHICLE - 0001
MODE 43
RUN N3. -
GATE - 777 9/21
SITE -
LIVCNIA
on
MODE 44
MODE 45
MODE 46
MGCE 47
MODE 48
MODE 49
MODE 50
MIOfc 51
MODE 52
MODE 53
MODE 54
MODE 55
,40 DC 56
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAKPLECCONCI
MASS (CMS)
MASS (CM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAtfPLE(CONC)
MASS (GMS) -
MASS IGM/MI)
SAMPLE(CONC)
MASS
-------
VEHICLE - 0001
MODE 57
PUN NO. -
DATE - 77/ 9/21
SITb -
LIVCNIA
MODE 58
MODE 59
MODE 60
MODE 61
MODE 62
MODE 63
MODE 64
MODE 65
CALC TCTAL
SAMPLEtCONCI
MASS (GMS)
MASS IGM/MI)
SAMPLE(CONC)
MASS IGMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICCNC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CCMC)
MASS (GMS)
MASS (GM/MI)
SAWPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CQNC)
VASS (GMS)
MASS (GM/MI)
SANPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
213.
0.1679
1.01
277.
0.3935
4.44
396.
0.4717
3.77
502.
0.8316
3.20
774.
0.9163
3.67
458.
0.5068
2.80
000.
0.9476
7.58
294.
0.3021
5.10
107.
0.1012
0.51
488.
40.6063
4.15
743.
1.1844
7.10
511.
1.4662
16.55
731.
l.£674
14.94
2676.
8.9580
34.47
5090.
12.1707
48. '08
1015.
2.2652
12.4V
1C75.
2.5704
20.56
638.
1.3221
22.33
691.
1 .3218
6.61
1615.
271.3423
27.72
0.59
14.86
89.14
1.56
88.34
997.09
2.43
91.36
730.91
4.74
249.48
959.92
5.77
217.12
866.46
3. 71
13C.37
719.07
1.04
39.29
314.29
1.34
43.52
735.19
C.77
22.26
116.32
3.05
£C65.00
823. ae
13.
0.0340
0.20
351.
1.6544
18.67
241.
0.9466
7.57
734.
4.0363
15.53
816.
3.2051
12.82
556.
2.0383
11.24
62.
0.2435
1.93
74.
0.2519
4.26
15.
0.0471
0.24
41
14.68
3.0299
12.12
1.9268
10.63
0.2302
1.84
0.2381
4.02
0.0446
0.22
108.0151
11.03
85.75
8.56
11.58
8.67
9.2B
11.67
23.95
11.29
69.17
10.08
-------
SITE - LIVONIA
VEHICLE - 0002 RUN NO.
1 DATE - 77/ 9/2fc
HC CO C02
AHP - 21.0
NCX NOXC
IME^TIA - 6000.
MPG
1975 FTP
CLO IRAN
BARO - 28.85 WB - 63.
BACKGRCUNDICONC)
SAMPLEICLNCJ
ce -
MASS ENISSICNS(GMS)
CLD STAB
BARO - 28.85 WB - 63. CB
BACKGRCUND(CCNC)
SAMPLE4CGNC)
MASS EMISSIOi\!SfGI*S)
HOT TRAN
BARO - 28.85 W8 - 62. Cd
bACKGRCUNClCONG)
SAMPLE(CONG)
MASS EMISSICNS(GMS)
CCPPOSIT
MASS E-MISSIONSCGM/MII
0 MPH
BARO - 28.88 WB - 65. CB
BAGKGRCUNC(CCNC)
SAMPLE(CCNC)
MASS EMISSlL)NS(GMS)
MASS EMISSIQi\!S(GM/MI )
5 MPH
BAKO - 28.88 WB - 64. CB
BACKGRCUNC(CONC)
SAMPLE(CCNC)
MASS FMISSICNS(GNS)
MASS EMISSICNS(GC/MI )
71.
1
73.
74.
80.
80.
PIN - 38.50
11. 7.
31C, 2919-,
1.83 230.94
PIN -
12o
123.
7.62
PIN -
21.
188.
6.68
2,20
PIN -
26.
90.
0.92
C.3C
PIN -
26.
68.
0.62
2.38
38.70
2.
206.
27.93
38.40
2 .
442.
34. HO
19.61
J8.90
3.
69.
1.86
0.60
38.90
3.
2. 14
8.30
V/REV -
G.06
2.55
3119. 9U
V/REV -
O.G5.
3454.66
V/REV -
C.C6
2.29
2784.51
851.12
V/P^V -
C.C6
1.10
461.75
148.95
V/PEV -
C.06
1.13
474.81
1840.34
.2824 TEMP - 108.
0.
213.
27.73 27.83
.2823 TEMP - 109.
0.
105.
23.59 23.30
.2d25 TEMP - 109.
w-' •
247.
32.06 31.42
7.17 7 . 0 <>
.2622 T^MP - 110.
0.
25.
1.15 1.13
0.37 0.3o
.2822 TEMP - llU.
0.
15.
O.bS 0.66
2 . 6 H 2.57
REVS
REVS
REVS
9.S/8
KEVS
58.84
K&VS
t.77
- 182^0.
- 10512.
- 3747.
-------
VEHICLE - 0002
RUN NO. -
DATE - 77/ 9/26
SITE -
LIVCIMIA
10 MPH
BARO - 28.88 WB - 64.
BACKGRGUND(CONC)
SAMPLE(CONC)
CB -
MASS EMISSIONSIGMS)
MASS EMISSIONSCGM/MI)
15 MPH
BARO - 28.88 WB - 62. CB -
BACKGRCUNC(CONC)
SAMPLE(CCNCJ
MASS EMISSIONSIGMS)
MASS EMISSICJNSCGM/MI )
30 MPH
BARO - 28.88 HB - 62. CB -
BACKGRCUNC(CONC)
SAMPLE(CQNCJ
MASS EMISSIONS(GMS)
MASS Ef ISSIONSCGM/MI)
45 MPH
BARO - 28.83 WB - 62. CB -
BACKGRCUNO(CCNC)
SAMPLE(CCNC)
MASS ENISSIOi>IS
-------
VEHICLE - 0002
RUN NO. -
GATE - 777 9/26
SITE -
LIVCNIA
AA la
BARO - 28.90 MB - 60. CB
BACKGRCUND(CQNC)
SAMPLE(CONC)
AA Ib
MASS EHISSIONS(GMS)
MASS EMISSIONS(GM/MI)
BARO - 28.90 HB - 58. CB
BACKGRGUND(CONC)-
SAMPLEtCCNC)
MASS Ef ISSIONS(GMS)
MASS EMISSIONSiGF/MI)
80. PIN -
13.
94.
11.19
2.01
78. PIN -
4.
98.
12.86
2.31
39.05
2.
120.
32.41
5.82
38.70
2.
136.
36.89
6.63
V/REV -
0.05
1.45
6059.91
1C88.S3
V/REV -
0.04
1.53
6459.27
1160.70
.2821
0.
91.
40.98
7.36
.2823
0.
119.
53.72
9.65
TEMP - 110
36.14
6.49
TEMP - 110
46.32
8.32
REVS - 36582.
8.04
Inertia - 7500
REVS - 36605.
7.53
10
-------
VEHICLE - 0002
RUN NO. -
1
DATE - 77/ 9/26
SITE -
LIVCNIA
SURVEILLANCE DRIVING SEQUENCE - ACCEL/DECEL MCDES (EVEN NO.) AND STEADY STATE MOOES (ODD NC.)
BARQ - 28.90 WB - 60. CB - 80. PIN - 39.15 V/REV - .2821 TEMP - 111. REVS - MQD(BAG) VALUE
MODE
MODE
MODE
MOUE
MODE
MODE
MODE
MODE
MODE
••10 DE
MODE
MODE
MCDE
1
2
3
4
5
6
7
8
9
10
11
12
13
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI)
SAMPLEiCONC)
MASS (GMS)
MASS ( GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS IGMS)
MASS IGM/MH
SA!*PLE(CCNC)
MASS (GM/MI)
SAFPLF(CCNC)
MASS IGMS)
MASi (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
S*MPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE1CCNC )
MASS (GMS)
MASS 1 GM/MI)
SAMPLE(CCNC)
MASS- (GMS)
MASS (GM/MI)
S AMPLE ICjNC)
MASS (GrtS)
^ aSS I GM/MI »
13.
0.0100
O.C6
194.
0.1812
3.01
179.
0.2073
1.66
41.
C.05C9
0.69
25.
0.0192
C.12
6S.
0.0423
2.11
64.
0.0744
1.19
107.
O.C910
1.29
145.
0. 1678
1.34
155.
0. 1533
1.15
192.
0.2226
1.19
107.
O.C990
0.7o
28.
0 . C 3 2 7
C.26
12C.
C.1868
1.12
1708.
3.1910
5 3'. 0 1
1074.
2.5081
20.06
236.
C.5679
7.93
134.
0.2C66
1.25
294.
C.3662
13.22
243.
0.5675
9.06
528.
C.9042
12.83
335.
C .7823
6.26
416.
:.3420
6.19
505.
1.1793
6.29
369.
G.6894
5.44
21C.
C.49G4
3.^2
C.98
24.09
144.51
2.96
E7.02
1445.57
2.29
£4.07
672.57
1.35
52.70
711.22
C.97
23.84
143.34
1.72
33.63
1672.91
1.41
51.62
fc25. 91
2. 45
65.97
935.77
2.27
83.32
666.59
3.69
117.56
364.57
?. 77
138.62
739.31
2.14
62.83
4 9 f, . 4 7
1.36
49.78
3S3.20
36.
0.0972
0.53
410.
1.2583
20.90
246.
0.9437
7.55
38.
0.2373
3.20
12.
0.0307
C.13
61.
0.1248
6.21
100.
0.3836
L. 14
373.
1.0493
1 4 . £. 8
2o3.
1.0C89
8.07
o9b.
2.3140
17.01
5o7.
2.1751
11.60
156.
0.5 7 Co
4.50
37.
0. 1419
1. 14
0.0857
0.51
1.1097
18.43
0.8323
6.66
0.2093
2.82
0.0271
0.16
0.1101
5.48
C . 3 3 3 3
5.41
0.9254
13.13
0.8898
7. 12
2 .0^-07
15.01
1.9163
10.23
0.3034
3.97
0.1252
1.00
60.60
5.77
12.51
12.23
61.05
5.20
10.52
9.25
13.04
10.11
11.79
17.52
2 1 . 90
T: i C.OMC
-------
VEHICLE - 0002
MODE 15
RUN NO. -
DATE - 77/ 9/26
SITE -
LIVCNIA
oo
MODE 16
MODE 17
MODE 18
MOCE 19
MODE 20
*IOCE 21
MODE 22
MODE 23
,-IGDE 24
•100E 25
MODE 20
MOUE 27
•1QIJE 28
SAMPLE (CO NO
MASS (CMS)
MASS (GM/MU
SAMPLEiCONCJ
MASS 4GMS)
MASS (GM/MIJ
SAMPLE«CONC)
MASS «GMS)
MASS (GM/MI)
SAMPLEtCONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS CGMS)
MASS (GM/MI)
SAPPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CCNC)
MASS (GMSI
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAI^PLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CCNC)
MASi (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MII
MASS (GMS)
752.
0.8693
3.48
180.
0. 1669
0.97
415.
0.48C3
2.56
246.
0.2656
1.3C
476.
0.5879
2.2C
178.
0.4113
1.22
40.
0.0463
0.74
624.
1.2511
3.99
384.
0.4443
1.78
21i.
0.3434
1.74
151.
0.1164
C.70
529.
1.3059
3.94
343.
0.3971
1.59
140.
0.247b
C .83
6S61.
16.2561
65.02
496.
C.9267
5.40
619.
1.4456
7.71
1601.
2.4896
17.08
2684.
6.6858
25.07
330.
1.5413
4.58
132.
C.3083
4.93
10144.
41.0616
130.9-+
1365.
2.1877
12.75
435.
1.4222
7.21
147.
0.22S9
1.37
743d.
37.0560
111.65
1625.
2 .7SK9
15. U
35'».
1.2676
4.23
5.35
196.59
786.37
3.61
106.18
61b.76
2.32
85.17
454.27
5,-tO
185.13
906. 18
5.75
225.36
345. CC
2.15
157.80
468.67
1.06
39.0fc
625.35
5.t5
359.36
1145. 93
5.50
202.04
6C8.16
2.2i
113.56
575.57
1.C5
25.81
154.84
5.00
391 .88
Ild2. 86
5.66
^ J '7 . S <»
•131.77
2 . 2 -J
1
I 5 . !i 3
-------
VEHICLE - 0002
MODE 29
RUM NO. -
DATE - 77/ 9/26
SITE -
LIVONIA
MODE 30
MODE 31
MODE 32
MODE 33
MODE 34
MODE 35
MODE 36
MODE 37
MODE .38
MODE 39
MODE 40
MODE 41
MODE 42
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMFLE(CONC)
MASS (CMS)
MASS (CM/MI)
SAMPLEtCONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS {GM/MI)
SAPPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEtCONC)
MASS (GMS)
MASS (GM/MI1
SAMPLEtCONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEtCONC)
MASS (GMSJ
MASS (GM/MI)
SAMPLEtCCNC)
MASS (GMS)
MASS (GM/MI)
SAiVPLctCONC)
MASS (GMS)
MASS (GM/MI)
SAMPLEtCONC)
MA-SS (GMS)
MASS (GM/MI)
SPlPLEtCGNC)
MASS (GMS)
tG.'4/MI)
lie.
0.1369
1.10
30,
0.0210
0.36
20.
0.0232
0.37
26.
0.0161
0.93
22.
0.0169
C.10
217.
C.3650
2.10
202.
0.2341
1.25
70.
O.C8£2
0.£2
11.
0.0127
0.20
110.
0.1522
1.00
346.
0.40C4
2.14
69.
0.1007
0.77
24.
0.0165
0.11
651.
1.2541
4.73
179.
0.4180
3.34
196.
0.2746
4.74
148.
0.3456
5.53
92.
0.1146
6.62
71.
C.1105
0.66
817.
2.7983
15.91
628.
1.4666
7.82
?29.
0.5704
4.10
99.
C.2312
3.70
299.
0.8379
5.48
2729.
6.3731
33.99
214.
0.6330
4.85
81.
C.1261
0.76
12624.
49.1349
135. U
1.48
54.20
433.60
1.42
31.19
538.72
1.07
3V. -45
631.24
1.15
22.61
1307.16
1.02
25.07
150.40
3. 76
202.78
1152.80
3.62
133.09
709.83
2.00
70.26
562.21
1.06
39. CS
625.33
2.91
128.30
839.65
4.33
158.93
847.62
1.85
85.93
650. S7
1.09
26.79
160.72
4. 83
295.83
1114. b7
36.
0.1381
1.10
82.
0.1887
3.26
23.
0.0882
1.41
14.
0.0286
1.66
10.
0.0256
0.15
693.
3.8991
22.17
613.
2.3516
12.54
196.
D.8020
5.76
16.
0.0614
0.93
573.
2.6378
17.26
659.
2.5281
13.48
173.
0.8406
6.45
15.
0.0384
C.23
o90.
3.7723
14.21
0.1218
0.97
0.1665
2.87
0.0778
1.25
0.0253
1.46
0.0226
0.14
3.43£7
19.55
2.0739
11. Go
Q.7073
5.03
G.U541
0.87
2.3263
15.22
2.2295
11. 8S.
0.7^14
5.69
0.0338
') . 2 0
3.3268
12.53
20.07
16.22
13.84
6.72
58.48
7.49
12.22
15.55
14.05
10.42
9.78
13.27
54.70
0.25
-------
VEHICLE - 0002
MODE 43
RUN NO. -
DATE - 77/ 9/26
SITE -
LIVCNIA
MOCt 44
MODE 45
MODE 46
MODE 47
MODE 48
MODE 49
MODE 50
MODE 51
MOCE 52
MODE 53
MODE 54
MODE 55
MODE 56
SAMPLEiCCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSI
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MIJ
SAMPLE(CONGJ
MASS (GMS)
MASS (GM/MI)
SAI*PLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GM5)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAHPLE(CCNC)
MASS (CMS)-
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/tol)
SAMPLE(C3NC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CLlMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS IGM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
£48.
0.7492
3.00
179.
0.3873
1.47
86.
0.0664
0.4C
117.
0. 1354
1.64
156.
0. 1808
1.45
216.
0.416C
1.33
399.
0.4924
1.85
185.
0.2568
1.C9
271.
0.3346
2.51
54.
0.0418
0.94
IS.
0.0147
0.09
285.
O.Q351
2.C8
376.
0.4350
1.74
ifce.
0.5063
1.54
5C53.
11.8003
47.20
422.
1.8396
6.98
130.
0.2024
1.21
197.
C.4601
6.24
238.
0.5558
4.45
1578.
6.1419
19.60
2565.
6.3894
23.96
451.
1.2639
5.35
191.
0.4758
3.57
157.
0.2444
5.51
110.
0.1713
1.03
2002.
11.3441
29.54
1650.
3.8533
1 5 . \ 1
340.
1.8527
5.63
5.76
211.63
846.72
2.55
174.81
663.66
1.19
29.25
175.47
2.18
80.00
1085.54
2.50
91.80
734.41
4.00
244.53
780.40
6.47
253.28
949.66
3.29
14b.ll
614.36
1.26
49.16
368.83
1.35
32.94
741.84
1.19
29.25
175.47
4. 19
389.52
971.61
5.48
201.31
805.23
2.50
214.21
£50.49
1149.
4.4078
17.63
356.
2.5493
9.68
15.
0.0384
0.23
4J6.
1.6726
22.69
340.
1.3043
10.43
744.
H.7Da9
15.13
1325.
5.4-219
20.33
590.
2.7160
11. bO
34.
0.1391
1.04
61.
0. 1560
3.51
51.
C.13Q4
0.78
790.
7.6776
ly.15
1267.
4.b605
n . 4 4
39 b.
3.D626
10. U<'
3.88 73
.15.55
2.2482
8.54
0.0338
0.20
1.4751
20.01
1.1503
9.20
4.1951
13.39
4.7815
17.93
2.3953
10.14
0.1227
0.92
0.1376
3. 10
0.1150
0.69
6.7709
16.69
4.286!>
17.15
3.1418
y.54
9.54
13.07
49.68
8.06
11.90
10.38
8.94
14.17
23.21
11. 7d
50.04
8.66
10.63
13. J6
-------
VEHICLE - 0002
MODE 57
PUN NO. -
DATE - 77/ 9/26
SITt -
LIVONIA
MODE 58
MODE 59
MODE 60
MODE 61
MODE 62
MODE 63
MODE 64
MOOE 65
CALC TCTAL
SAMPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS CGMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
S/JMPLECCONC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CC.MC)
MASS (GMS)
MASS I GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
36.
0.0278
0.17
68.
0.1218
1.38
166.
0.1923
1.54
243.
0.3932
1.51
780.
0.9013
3.61
166.
0. 1788
C.99
317.
C.3669
2.94
50.
O.C5G4
0.85
40.
0.0371
C.19
232.
18.8544
1.93
116.
0.1306
1.03
207.
C.5801
6.55
296.
0.6913
5.53
2123.
6.9410
26.71
1C481.
24.4763
97.91
465.
1.0135
5.59
264.
0.6165
4.93
183.
C.3704
6.26
149.
C.2704
1.39
1852.
302.^023
31.05
1.15
28.27
169.57
1.91
84.06
94b..77
2.39
87.75
701.98
3.99
204.94
788.53
6.32
232.03
928.12
3.94
134.68
743.98
1.26
46. CS
368.75
1.40
44.42
750.28
1.12
33.04
165.18
3. 0 j
7954.54
812.60
21.
O.C537
0.32
268.
1.2337
13.92
389.
1.4923
11.94
620.
3.3298
12.81
1125.
t.3157
17.26
704.
2.5207
13.90
48.
O.lb4i
1.47
78.
0.^593
4.3d
25.
0. J690
0.4-3
t74.
127. 77J7
13.05
0.0474
0.23
1.0880
12.28
1.3161
10.53
2.9366
11.30
3.8061
15.22
2.2230
12.26
0.1624
1.30
0.22d7
3.86
0.0785
0.39
L12.CJ1?
11.51
51.66
9.21
12.40
10.63
8.12
11.74
23.00
11.64
52.04
1 J . 2 3
-------
SITE - LIVCMA
VEHICLE - 0004 RUN NO.
1 DATE - 77/ 9/27
HC CO C;J2
AHP - 23.2
MOX NQXC
INERTIA - 6000.
MPG
1975 FTP
CLC TRAN
&ARO - 29.03 WB - 6C.
BACKGRCUNCCCONC)
SAMPLEJCCNC)
CB -
MASS EMISSIGNS(GMS)
CLC STAB
BARO - 29.03 WB - 61. Cd -
BACKGRCUNO(CGNC)
SAMPLE(CCNC)
MASS EMISSIONStGPS)
HCT TRAN
BARO ^ 29.03 V»B - 61. CB -
BACKGROUNC(CONC)
SAMPLEICCNC)
MASS EMISSICNS(GMS)
CCMPCSIT
MASS crtlSSICJNStGW/MI)
0 MPH
B/5KO - 29.21 WB - 62. CB -
BACKGRCUNC(COiMC)
SAMPLEICCNC)
MASS EMISSUNSl'-iMS)
MASS EKISSIONS(GM/MI)
5 MPH
BARC - 29.21 WR - bl. C B -
bACKGRCUNC(CONC)
SAMPLEICCNC)
MASS EMISSIONS(GMS)
PASS tMISSIQNSlGM/VI)
74
75
75
76
76
. PIN
12.
532.
20.58
. PIN
V.
222.
14.55
PIN
9.
321.
12.35
4.06
. PIN
11.
129.
1 .80
0.58
. PIN
11.
123.
1.57
6. 10
- 38.70
C.
4482.
356.21
- 38.80
4.
1605.
217.82
,- 38.00
7.
1453.
115.0?
56.21
- 40.50
4 .
1724.
48.46
15.63
- 4C.^O
7.
1527.
42.86
166.11
V/REV -
C.C6
2.6t
3267.34
V/REV -
C.05
1.61
3351.18
V/PEV -
C.05
2.J3
2922.34
356.32
V/REV -
C.C6
C. 76
312.00
100.65
V/KcV -
C.06
c.7y
3 2 5 . 4 fi
1261.5?
.2823
0.
291.
37.99
.2322
0.
123.
27.48
.2822
0.
310.
4 L : . 1 15
8. ?2
.2813
C .
5.
0.23
0.07
.2813
0.
i.
0.14
u.54
TEMP - 110. REVS -
34.90
TtMP - 111. REVS -
25.50
TFMP - 110. R£VS -
37.63
8.27 9.24
TEMP - 111. REVS -
J.22
J.07 69.86
TEPP - 111 . KEVS -
0.13
0.50 5. It,
- 18071.
- 10532.
- 3
7 .
-------
VEHICLE - 0004
RUN NO. -
CATf: - lit
SITE -
LIVCNIA
oo
01
10 MPH
BARG - 29.21 WB - 62. DB -
BACKGROUND(CONC)
SAMPLEICCNC)
MASS EMISSIONS(GNS)
MASS EMISSIONSCGM/MI)
15 MPH
BARO - 29.21 KB - 62. CB -
BACKGROUND (CCJNC)
SAMPLE(CGNC)
MASS EMISSIONSIGMS)
MASS EMISSIONS(GM/MI)
30 MPH
B*RO - 29.21 WB - 62. CB -
BACKGROUND(CONC)
SAMPLE(CONC)
MASS EMISSICNSdGNS)
45 MPH
BARO - 29.21 WB - o3. CB -
BACKGROUND(CQNCI
SAMPLE(CCNC)
MASS EMISSIONS(GNS)
MASS EMISSIONSCG'VMI )
60 MPH
BARO - 29.21 WB - 63. CB -
BACKGRQUND(CONC)
SAMPLEICCNC)
MASS EMISSICNSiGMS)
MASS EMISSIGNSIGM/MIJ
MOD(BAG)
BARG - 29.21 WB - 61. CB -
BACKGROUND(CONC)
SAMPLEICCNC)
MASS EMISSICNSIGMS)
MASS EMIS
76
76
76
77
79
78
. PIN
12.
101.
1.26
2.43
. PIN
12.
98.
1.22
1.57
. PIN
13.
156.
2.02
1.31
. PIN
13.
185.
2.44
1.C5
. PIN
15.
396.
5.42
1.75
PIN
11.
457.
35.34
3.61
- 40.50
2.
•602.
16.92
32.73
- 40.50
0.
578.
16.29
21.02
- 40.50
2.
344.
9.65
6.23
- 40.50
7.
427.
11.87
5.11
- 40.50
4.
904.
25.40
8.19
- 40. bO
22.
1592.
250.49
25.59
V/REV -
C.05
C.S3
391.84
757.91
V/REV -
0.06
1.21
512.30
661.03
V/REV -
0.05
1.87
610.15
522. 6b
V/RifV -
G.05
3.10
1355.76
563.38
V/REV -
0.05
4.89
2152.60
o94.39
V/REV -
Q.07
3.17
7794. b7
796.29
.2813
0.
5.
0.23
0.45
.2812
0.
1C.
G.46
O.fcO
.2813
0.
88.
4.08
2.63
.2dl3
0.
320.
14.60
6.37
.2313
0.
930.
43.04
13.68
.2813
1.
478.
124.64
12.73
TEMP - 111.
0.22
0.42
TEMP - 111.
0.44
0.56
TEMP - 111.
3.83
2.47
TEMP - 111.
14.11
6.C7
TtN-P - 111.
40.41
13.04
TE.VP - 111.
113.20
11.56
REV5
10.86
REVS
12.70
REVS
16.54
REVS
14.92
^EVS
12.45
REVS
10.47
- 3750,
- 3749
- 3750.
3745
- 3747,
- 21146.
-------
VEHICLE - 0004
RUN NU. -
DATE - 77/
-------
VEHICLE - 0004
RUN NO. -
C4TE - 77/ 9/26
SITE -
LIVCNIA
SURVEILLAr.;CF DRIVING SEQUENCE - ACCEL/DECEL MCOES (EVEN NO.) AND STEADY STATE MODES (ODO NO.)
C8 - 78. PIN,- 40.50 V/RSV - .2313 TEMP - ill, REVS - MQO(tiAG) VALUE
oo
O9
OARQ
MODE
MODE
MODE
MODE
MODE
MODE
.'40 D£
MODE
MODE
MODE
MCDE
rtOCE
MODE
MODE
—
1
2
3
4
5
6
7
8
9
10
11
12
13
14
29.21 WB - 61
S*MPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAPPL E (CQNC )
MASS (GMS)
MASS (GM/HI )
SAMPLE (CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI )
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLc(CONC)
MASS (CMS)
MASS (GM/MI)
SAKPLE(CCNC)
MASS (GMS)
MASS (GM/KI)
SAMPLE(CCMC)
MASS (GMS)
MASS (GM/MIJ
SUPPLE (CGNC )
MASS (GMS)
MASS I GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMHLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAM^LE(CLNC)
MASS (GMS)
MASS I GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS < G.1 X M I >
120.
C.C6S5
0.54
354.
C . 3 1 7 5
5.27
299.
0.3348
2. £6
93.
0.111C
1.50
£7.
0.0649
0.39
194.
0. 1157
5.76
195.
0.2167
3.5G
' 239.
C. 196 J
2.78
262.
0.293.3
2.25
357.
0.3468
2.5b
322.
0.3616
1.93
124.
0.1112
0.68
66b.
0. 7
5.^6
53b.
C.6831
3 . 1 £,
1895.
2.8577
17.14
3489.
6.3158
104.91
769.
1.7410
13.93
640.
1.5439
20.84
1709.
2.5776
15.46
3502.
4.2263
210.26
737.
1.6683
26.69
1468.
2.4351
34.54
705.
1.5941
12.75
lC3d.
2.0355
14.97
523.
1 .Id42
6.32
373.
C.6752
5.32
1450.
3 .2SUO
2*>.24
3555.
S.115Q
f. 2 - i*.
C.68
16.25
S7.47
3.36
95.64
1568.71
i.<;5
69.42
555.39
0.91
34.37
463. 79
C.83
20.78
124.64
1.5£
29.99
1492.23
1.28
45.46
727.30
3.19
83.13
1179.89
1.99
70.85
566.82
4. 72
145. 4t
1069.26
3.15
lll.Sb
597.25
1.11
31 .49
248.38
1.35
t7.S8
.383.86
7.85
316. 70
1 *, t *. . L 6
1.
C.GC27
0.02
46-3.
1.3924
23.13
202.
0.7514
6.01
'^3.
0.170S
2.30
6.
C.0151
0.09
39.
J. 0776
3.86
36.
0.3200
5. 12
397.
1.0823
15.36
177.
U.6585
5.27
420.
2.9647
21.80
427.
1.5830
8.47
90.
n.2679
2.11
43.
0. 1603
1.26
1205.
5;3270
2 *. - i •*.
G.0024
0.01
1.2646
21.01
0.6624
5.46
0.1551
2.09
0.0137
0.08
0.0705
3.51
0.2907
4.65
0.9834
13.95
0.5980
4.7S
2.6925
19.80
1.4422
7.69
0.2433
1.92
0. 1456
1.16
4.8380
22.37
70.38
5.01
15.15
17.71
59.10
4.82
11.37
7.14
14.93
8 . 0 6
14.47
34.20
19.99
5 - T&
-------
VEHICLE - 0004
MODE 15
RUN NO. -
DATE - 77 / 9/2U
SITE -
LIVONIA-
oo
vo
MODE 16
MODE 17
MODE 18
MOLE 19
MODE 20
MODE 21
MODE 22
MODE 23
MODE 24
MODF 25
MODE 26
Muoe 27
MODE 2«
SAPPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLEiCONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
S/»MPLE«CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLEiCGNCJ
MASS (GMS)
MASS (GM/MI)
SAMPLE (COIMC)
MASS (GMSJ
MASS (b'VMl)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAPPLEtCJNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLEtCONC)
MASS (GMS)
MASS (CiVMI)
65<3.
0.7390
2.96
364.
C.3259
1.90
1113.
1.2475
6.65
529.
0.5531
2.71
486.
0.58C6
2.18
592.
1.3279
3.94
377.
0.4224
6.76
544.
1.0558
3.37
530.
C.5939
2.3d
54 «.
C.d6GO
4.36
705.
0. 5265
3.16
1 76.
1. 1382
3.44
631.
0. 7069
2.83
381.
0.6539
2.18
2011.
4.5496
18.20
853.
1.5442
9.00
1554.
3.5168
18.76
1436.
3.0317
14.84
1621.
2.9133
14.67
905.
4. 0950
12.16
22J8.
4.9955
79.93
3661.
14.3560
45.76
1341.
3.033d
U.14
1160.
3.6752
18.63
21P1.
3.2905
19.74
3409.
16.H55**
49.67
130d.
2.9585
11. o3
904.
2.1364
10.48
5.10
181.41
725.63
1.72
48.96
285.31
2.32
82.69
441.00
5.62
186.o6
913.^,6
S.jl
209.13
784. 15
1.56
112. J9
333.81
i,.o2
29. C3
464.54
6.29
387.65
1236.12
5.78
205. 12
822. J6
1.14
5o. 55
287.12
C.51
12.21
73.22
5.75
^36.65
1217.99
5.59
198.92
795.o6
I.o7
91. 10
304.27
1075.
3.9970
15.99
233.
0.6932
4.04
250.
0.9299
4.96
1490.
5.1703
25.31
1023.
H.Ob 74
15.21
112.
J.833b
2.43
31.
0.1155
1.35
1319.
8.494J
2 7 . 0 •)
1005.
3.737C
14.95
12,
0.3752
1.90
19.
0 . 04 7 2
J.2d
1271.
10. JolD
30.4 J
11U.
4. U21
16.57
114.
C.65u5
2.17
3.6301
14.52
0.6296
3.67
0.8440
4.50
4.6957
22.98
3.6850
13.82
0.7570
2.25
C.1049
1.68
7.7146
24.60
3.3940
13. bd
u.34C7
1.73
0.0429
0.26
9.1561
27.64
j. 7619
1 '.) . 0 1>
0.59Ua
1.97
11.62
29.05
18.05
9.39
*
10.90
24.29
14.51
6.73
10.45
-------
VEHICLE - 0004
MOCE 29
RUN NO. -
DATE - 77/ 9/28
SITE -
LIVCNI4
MODE 30
MODE 31
MODE 32
MCCE 33
MODE 34
MODE 33
MODE 36
MODE 37
MODE 3d
MODE 39
MODE 40
MODE 41
MOOF 42
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE
-------
VEHICLE - 0004
MODE 43
RUN NO. -
GATE - 77/ 9/28
LIVCNU
MODE 44
MODE 45
MODE 46
MODE 47
MODE 48
MODE 49
MODE 50
MODE 51
MODE 52
MODE 53
MODE 54
MODE 55
MODI: 56
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONG)
MASS (GMSI
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS {GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(GONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CDNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQMC)
MASS (GMS)
MASS iGM/MI)
SAWPLE(CONC)
MASS (GMS)
MASS (GM/M!)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(GLNC)
MASS (GMS)
MASS (GM/MI)
606.
0.6796
2.72
447.
0.9360
3.55
1036.
0.7740
4.64
324.
0.3630
4.93
344.
0.3851
3.08
340.
C. 6343
2.02
525.
0.6271
2.35
429.
0.5772
2.44
1C95.
1.3092
9.82
517.
0.3664
8.70
171.
0. 1276
0.77
3<36.
1.1254
2.81
460.
0.5154
2.C6
41fi.
1.C922
3.32
1G33.
2.3482
9.39
1117.
4.7173
17.91
13o4.
2.8116
16.8 1
2A98.
d.1040
82.82
884.
2.0007
16.01
1396.
5.2650
16.80
1182.
2.6532
10.70
819.
2.224U
9.42
2157.
5.2046
39.04
589.
C.8390
20.02
1649.
2 .4668
14.92
2C7G.
1 1 .8639
29.^.9
992.
2.2441
8.96
1088.
5.7460
17.45
5.18
184.25
737.00
1.36
1C3.57
3S3.20
0.86
20.31
121.86
3.17
112. 74
1529. 71
1.81
64. 42
515. 3b
5. 38
319.01
1017.90
5.40
204.03
768.39
2. oO
1G6.92
452.66
l.lb
43.57
326. faE
1.26
29.63
671. 84
G. 75
17.6ti
106.04
5.Cb
457.74
1141.7S;
5.dO
206.42
tJ25.69
l.rib
Ib3.66
4 6 6 . t, 3
1168.
4.3427
17.37
233.
1.6175
o.l4
7.
0.0176
0.1 1
463.
1.7218
23.36
209.
0.7774
o.22
1092.
6.7671
21.t>9
131t>.
5.2269
1 9 . oG
455.
2.0302
a.oO
36.
0. 1432
1.07
76.
0. 16J6
4.25
19.
u.0473
0.28
1006.
9.4761
2J.f>4
129d.
4.8263
19.30
250.
2.22Lb
(..75
3.9440
15. 78
1.4690
5.58
0.0160
J.1U
1.5t>38
21.22
0.7060
5.65
6.1459
19.01
4.7471
17.80
1.8439
7.81
0.1300
0.98
0.1713
3.86
C.0429
0.26
8.6062
21.4 7
4.3830
17.53
2.0176
6.11
11.67
20.52
54.42
3.30
16.13
8.45
11.20
21.lo
12.14
b 7 . 2 M
7.41
10.4SJ
-------
VEHICLE - 0004
MODE 57
RUN NO. -
DATE - 77/ 9/28
SITE -
LIVONIA.
vo
MODE 58
MODE 59
MODE 60
MODE 61
MODE 62
MODE 63
MODE 64
MODE 65
CALC TCTAL
SflMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS tGM/MI)
SAMPLE(CGNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MIJ
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS {GMS)
MASS IGM/MI)
S4MPLE(CGNC)
MASS (GMS)
MASS IGM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
642.
0.4795
2.88
312.
0.4200
4.74
296.
0.3314
2.65
322.
0.5050
1.94
532.
0.5964
2.39
362.
0.38CO
2. 10
651.
0.7296
5.84
619.
0.6014
10.16
164.
0.1468
0.73
451.
35.4919
3.63
2206.
3.3270
19. <36
2357.
6.3987
72.22
65*t.
1.4805
11.84
1767.
5.5965
21.53
1321.
2.9897
11.96
764.
1.6126
0.89
1390.
4.2765
34.21
620.
1.214b
20.52
1695.
2.0690
15.34
1674.
266.2097
27.19
O.o7
15.78
94.68
2.53
108.24
1221.66
1.89
67.28
538.20
5. 71
284.50
1094.66
6.C8
216.45
865.78
2.64
87.83
484.45
O.S5
33.68
269.46
1.35
41.57
702.20
0.65
18.64
93.19
3.05
7619.05
778.33
7.
0.0175
0.11
331.
1.4772
16.67
227.
0.8443
6.75
1064.
5.5388
21.31
1338.
4.9748
19.90
571.
1.9815
10.93
46.
C. Lfl3
1.37
64.
0.2065
3.49
20.
0.0597
0.30
512.
133.7806
13.67
0.0159
0.10
1.3416
15.14
0.7668
6.13
5.0304
19.36
4.5181
18.07
1.7996
9.93
0.1556
1.24
0. 1876
3.17
0.0542
0.27
121.5007
12.41
65.66
6.57
15.70
7.82
9.95
17.57
25.97
11.56
74.19
10.60
-------
SITE - LLVCNIA
VEHICLE - 0005 RUN NU.
1 DATE - 111 9/29
HC CO CO 2
AHP - 21.2
NOX NGXC
IMtKTIA - 5500.
MPG
1975 FTP
CLD TRAN
6ARO - 29.29 WB - 57.
BACKGRCUNCICONCJ
SAMPLE(CGNC)
oo
Cb -
MASS EMISSICixJS(GMS)
CLD STAB
BARO - 29.29 WB - 57. Cb -
B/iCKtRCUNClCONC)
SAMPLE(CONC)
MASS EMISSIJNSIGMS)
HCT TRAN
BARO - 29.29 WB - 5d- DB -
BACKCRCUNC(CONC)
SAMPLE(CCNC)
MASS FMISSIONS(GMS)
CCNPu'SIT
MASS ENISSIG.MS(Gf/MI)
0 MPH
BARO - 29.29 rtB - 61. CG -
B.ACKGRCUNC(CONC)
SAMPLE(CCNC)
MASS t-MISSICMSdiMS)
MASS EMISSIQNS(GM/MI)
5 MPH
BARO - 29.2<* ^B - 6C. CB -
bACKGPCUNCiCONC)
SAMPLE
T£,MP - 110.
•
24.98
TEMP - 110.
16.68
TEMP - 110.
?7.42
6.01
TEMP - 110.
O.G8
0.03 1
TEMP - no.
0.08
0.32
h< E VS
.^bVS
RcVS
11.15
KEVi>
13.92
PEVS
9. 75
- l')b>20
- 3
3747,
-------
VEHICLE - 0005
RUN NO. -
DATE - 77/ 9/29
SITF -
LIVCNIA
10 MPH
10
BARO
15 MPH
BARD
30 MPH
BARO
45 MPH
BARO
60 MPH
BARO
MOCUBAG)
BARO
- 29.29 WB - 60. CB -
BACKGRCUNDICGNC)
SAMPLE(CONC)
MASS ENISSICNStGMS)
MASS ENISSICNSIGM/MI )'
- 29.29 VJB - 60. CB -
EACKGRCUNOICONU
SAMPLE(CCNC) ,
MASS EMISSIUNS(GMS)
MASS EMISSIONS1GM/MI )
- 29.29 rtB - uO. CB -
BACKGRCUNC(CGNC)
SAMPLE(CONC)
MASS EMISSIONStGMS)
MASS EMISSIONS(GM/MI )
- 29.29 Mb - 61. C3 -
BACKGRCUND(CONC)
SAMPLE(CCNC)
MASS EMISSICNS(GMS)
MASS EMISSIGNSIGM/MI )
- 29.29 WB - 62. C3 -
BACKGRCUNUCONC)
SAMPLE(CGNC)
MASS EMSSIGNS(GMS)
MASS EMISSIONSCGM/MI)
- 29. 2o WB - 61. CB -
BACKGRCUND(CONC)
SAMPLE(CCNC)
tiMjj C. ' l^olLJ IN j \ o t> o I
KASS EMISSlCNStOK/MI )
77. PIN
6.
97.
1.2d
2.48
77. PIN
5.
120.
1.62
2.C9
76. PIN
6.
195.
2.67
1.72
78. PIN
11.
367.
5.C4
2.17
79. PIN
13.
499.
6.89
2.22
79. PIN
12.
457.
36.76
3.76
- 39.90
4.
77.
2.08
4.02
- 39.90
2.
77.
2.13
2.75
- 39.90
0.
173.
4.91
3.17
- 39.90
7.
632.
17.76
7.b5
- 39.90
9 .
769.
21.66
6.99
- 39.90
13.
1940.
219.97
32.69
V/REV -
0.05
C.05
358.49
6<:3.41
V/REV -
0.03
0.75
322.46
41o.07
V/REV -
C.04
1.47
640.74
413.3d
V/REV -
C.GJ
2.39
1C49.07
451.41
V/RtV -
0.05
3.93
1748.80
564.13
V/i^LV -
C.C6
2. 71
6944.21
7C9.39
.2817
0.
7.
0.33
0.63
.2317
0.
9.
0 . '+ 1
G. 54
.2817
0.
63.
2.94
1.90
.2817
0.
240.
11.19
4.32
.2817
•).
o?<3.
31. U3
10.20
.2816
n
J'tC.
92.60
9.46
TEMP - 110.
0.29
0.57
TEMP - 110.
0.38
U.49
TEMP - 110.
2.65
1.71
TEMP - 110.
10.16
4.37
TFMP - 11D.
29.07
9.38
TEMP - 110.
83.46
3.53
REVS
12.54
REVS
20. 76
KtVS
20.94
RcVS
18.87
REVS
15.25
r.EVS
11.49
- 3745.
- 3749.
- 3743,
- 3747,
- 21912.
-------
VEHICLE - 0005
RUN NO. -
DATE - 77S 9/29
SITE -
LIVCNIAv
AA 1 a
BARC - 29.24 WB - 60. CB
BACKGRCUND(CONC)
SAMPLE(CONC)
MASS EHISSIONSIGMS)
MASS EMISSICNSiGM/MI)
AA 1 b
BARO - 29.22 WB - 60. CB
BACKGRGUND(CONC)
SAMPLEICCNC1
MASS EMISSICNS(GMS)
MASS EMISSIONS(GM/MI)
- 76. PIN - 39.90 V/REV - .2817 TEMP - 110. KEVS - 36660.
5.
232.
31.22
5.61
77. PIN
5.
254.
34.24
6.15
7.
1122.
3C9.33
55.59
- 39.60
4.
1200.
231.54
59.58
0.05
C.99
4117.. 33
739. b6
V/PGV -
0.05
1 .Co
^421.32
794.49
0.
56.
? 5 . 5 1
4.58
.2818
0.
74.
_ 33.69
6.05
23.04
'+.14
TEMP - 110
30.22
j.43
10.50
Inertia - 6500
REVS - 30623.
9.7B
cn
-------
VEHICLE - 0005
RUN NO. -
1
DATE - 111 9/29
SITE -
LIVCNIA
SURVEILLANCE DRIVING SEQUENCE - ACCEL/UECEL MODES CEVFN NO.)
CB - 79. PIN - 39.90 V/REV
vo
BARO
MODE
MODE
MODE
MODE
MODE
MODE
MODE
4QDE
MODE
MODE
MODE
MCDE
MODE
MODE
—
1
2
3
4
5
6
7
8
9
10
11
12
13
14
29.26 WB - 61
SAMPLE(CONC)
MASS CGMS)
MASS (GM/MI )
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI)
SAVPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAI*PLE(CCNC)
MASS (G.4S)
MASS (GM/MI)
SA^PLE(CQNC)
MASS (GMS)
M&SS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAfPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAi'PLE(CQNC)
MASS (bMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
STEADY STATE MODES (ODD NO.)
.2816 TEMP - 110. *EVS - MOU((3AG) VALUE
115.
0.0900
0.54
623.
0. 5B23
9.67
338.
0.3949
3.16
132.
0.1642
2.22
131.
0.1017
c.ei
374.
0.2333
11.61
211.
0.2466
3.95
425.
0.3646
5.17
276.
0.3244
2.59
474.
0.4804
3.53
442.
0.5163
2.75
230.
0.2622
2.07
520.
G.6C78
4.66
a03.
1.C637
•V - -i a
1052.
1.6541
9.92
4024.
7.5961
126. 18
1540.
2.6338
29.07
222.
0.5582
7.53
237.
C.3722
2.23
2685.
3.3795
168. 13
1414.
2.3366
53.39
843.
1.4580
20.68
55C.
1.2970
10.36
880.
1 .798d
13.23
737.
1.7389
9.27
511.
0.9637
7.60
1949.
i, > c c c 3
3 6 . "i 9
saoo.
15 .5C93
7 i _ ~r o
C.34
8.47
5C.8C
2.61
77. 6C
1289.04
1.64
68.25
546.03
0.70
27.85
375.83
C. 55
13.68
32.05
1.11
21. 9C
1089.56
C.S8
32. d4
325.42
2.50
6ti.C9
965.76
1.53
5 a. 54
4c8.36
3.55
114.06
338. 70
2.8b
1C7.01
570.70
1.43
42.36
334.09
C.S2
?3.97
211.11
6.07
2 5 5 - 2 c,
1 1 a O - 2 t,
C.
0.0
0.0
314.
j.9737
16.17
146.
0.5659
4.53
26.
0.1075
1.45
8.
J.0207
0.12
36.
u.0744
3.70
43.
0. 1067
2.67
343.
0.9730
13.83
132.
0 . a 1 1 i
4.L9
Co 8.
2.2443
16.50
354.
1.3722
7.32
81.
0.2512
1.98
38.
0.1473
1.13
H96.
3. 93i> 1
1 ....<- «t!O
0.0
0.0
O.d775
14.5fa
0.5100
4.08
0.0969
1.31
0.0186
0.11
J.D671
3.34
0.1502
2.40
0.8787
12.46
0.4611
3.69
2.0225
14.87
1.2367
6.60
0.2264
1.79
0.1327
1.06
3.5474
i ^ - s* n
130.32
5.85
14.75
22.49
101.44
6.36
14.27
8.75
1 b . .3 i
10.19
14.94
25.17
25. 73
ij - ~7 fj
-------
VEHICLE - 0005
MODE 15
RUN NO. -
DATE - 77/ 9/29
SITE -
LIVONIA
vo
MODE 16
MODE 17
MODE 18
MODE 19
MODE 20
MODE 21
MODE 22
MODE 23
MODE 24
MODE 25
MODE 26
MODE 27
."1UIJE 28
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI
SAMPLE(CONC
MASS (GMS)
MASS (GM/MI
SAMPLEUQNC
MASS (GMS)
MASS (GM/MI
SAWPLECCONC
MASS (GMS)
MASS (GM/M!)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLECCONC*
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SflMPLE(CCNC)
MASS (GMS)
MASS (GM/MI
SAMPLE(CCNC
MASS (GMS)
MASS (GM/MI
SA^PLE(CGNC
MASS (GMS)
MASS IGM/MI
SAPPLE(CGNC
MASS (GMS)
MASS (GM/MI)
680.
0.7942
2.18
347.
0.3241
1.89
902.
1.0542
5.62
584.
0.6376
3.12
741.
0.9233
3.46
372.
C.8703
2.58
639.
0.7465
11.94
66fi.
i.3525
4.21
454.
0.5307
2.12
287.
0.470.0
2.38
772.
0.6013
3.61
602.
1.5007
4.53
434.
C.5073
2.G3
311.
0. 5570
1.86
3610.
8.5182
34.07
486.
0.9172
5.34
2340.
5.5219
29.45
1800.
2.9638
19.40
4308.
10.8432
40.66
839.
4.1S/6
12.47
2309.
5.4479
87.17
4871.
19.9228
63.53
1219.
2.8775
11.51
755.
2.4953
12.65
1389.
2.1847
13.11
3650.
18.3751
55. 46
1496.
2 .5209
14.12
1C77.
3.696b
13.01
5.72
212.17
848.69
2.82
83.81
488.41
1.89
70.14
374.08
4. 74
164.25
ac3.97
5.78
228.72
357.58.
1.33
98.47
?<,2. M5
C.bO
18.7C
299.14
5.73
36E.45
1174.89
5.46
2C2.44
d09.75
1.26
65.27
330. 81
0.54
13.45
eo.fay
5.03
398. 56
12C3.02
5.48
203. 19
£12. 75
1.83
104.07
347. cL
1074.
4.1630
16.65
197.
0.6109
3.56
227.
O.b799
4.69
9D6.
3.2d49
16.05
951.
3.9319
14.74
97.
U.75LO
2.23
1^.
O.uSJ^
0 . (i 1
868.
5.8318
lb.60
605.
3. 1203
12.
-------
VEHICLE - 0005
MODE 29
RUN NO. -
DATE - 77/ 9/29
SITE -
LIVONIA
vo
00
MODE 30
MODE 31
MODE 32
MODE 33
MODE 34
MODE 35
MODE 36
MODE 37
MODE 38
MODE 39
MODE 40
MODE 41
MODE 42
SAMPLE(CONG)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MII
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAyPLE(CCNC)
MASS (GMS)
MASS IGM/MI)
SAVPLECCCNC)
MASS (GMS)
MASS (GM/MIJ
SAVPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CC-NC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SANPLEtCGNC)
MASS (GMS)
MASS (GM/MI)
-MASS (GMS)
MISS (GM/MI)
902.
1.0543
a. 43
253.
0.1776
3.07
201.
0.2346
3.75
225.
0. 1401
8.10
178.
0.1384
0.83
579.
C.9921
5.64
505.
0.58S8
3.15
258.
0.2221
2.31
34fc.
0.4063
6.50
525.
0.7365
4.62
483.
0.5647
3.01
220.
0.326C
2.50
280.
0.2178
1.31
801.
1.5596
5.88
2298.
5.4227
43.38
528.
0.7480
12.92
1C94.
2.5809
41.29
2495.
3.1397
181.49
1505.
2.3669
14.20
3902.
12.5041
76.77
969.
2 .2802
12.19
707.
1.7807
12.79
1268.
2.9912
47.8o
2C50.
5.8058
38.00
1612.
2 .8048
20.29
568.
1.6986
13.03
945.
1.4858
8.91
6932.
27.4585
103.46
0.82
30.26
242.05
1.22
27.08
467.62
C.62
23.14
370.27
0.57
11.36
656.70
C.41
10.21
61.27
3.71
201. b5
1147.54
2.7b
103.28
550. b5
1.38
54. 5C
391.51
C.4ts
17.93
286. £6
3.23
143.64
940.08
3.34
123.60
660.24
1.23
57.63
441.95
0.38
9.46
56.77
5.52
341.29
1285.95
20.
0.0775
0.62
32.
0.0744
1.29
16.
0.0620
0.99
d.
0.0165
0.9c
5.
O.C12S
0.03
586.
3.3314
ia.94
360.
1.3954
7.44
d7.
0.3597
2.53
11.
0.0426
?.68
o!4.
2.G559
18.69
364.
1.4109
7.52
67.
0.4271
3.28
8.
0.0207
0. 12
7C9.
4.5803
17. 2o
0.0699
0.56
0.0o71
1.16
0.0559
0.89
0.0149
0. 86
0.0116
0.07
3.0025
17.07
1.2576
6. 71
J.3242
2.33
0.0384
0.61
2.5739
16.85
1.2716
6.78
0.3850
2.95
0.01b6
0.11
4.1280
15.55
26.34
17.83
19.85
9.17
102.95
6. ?u
15.30
21.18
23.19
8.74
12.o5
18.b7
118.47
6.05
-------
VEHICLE - 0005
MODE 43
RUN NO. -
DATE - 77/ 9/29
SITE -
LIVONIA.
VJD
UD
MODE 44
MODE 45
MODE 46
MODE 47
MODE 48
MODE 49
MODE 50
MODE 51
MODE 52
MODE 53
,-IODc 54
MODE 55
MODE 56
SAMPLE(CCMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CaNC)
MASS (GMS)
MASS (GM/MI)
SANPLEICCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE{CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI )
SAMPLEICUNC)
M^SS (CMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLfclCONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS {GM/MI )
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CuNC)
MASS (GMS)
MASS (GM/MI)
606.
0.7079
2.63
262.
0.6162
2.34
715.
0.5568
3.34
552.
0.6455
8.76
392.
0.4580
3.66
500.
0.9731
3.10
637.
0.7939
2.98
324.
0.4548
1.93
849.
1.0583
7.94
336.
0.2619
5.90
91.
0.0705
0.42
520.
1.5395
3.84
276.
0.3228
1.29
38fc .
1.0576
3.21
3726.
8.7923
35.17
859.
3.7817
14.36
1360.
2.1368
12.83
4296.
1C. 1380
137.56
1279.
2.0181
24.14
1158.
4.5535
14.53
5014.
12.62C7
47.32
1COO.
2. 8329
11.99
1704.
4.2888
32.17
2109.
2.3180
74.73
355.
C.5578
3.35
2347.
14.0315
35.00
964.
2.2737
9.09
722.
2.9750
12.07
5.89
218.51
874.04
1.47
101.64
385. fc7
C . 3 7
9.22
55.33
2.03
75.38
1022.86
1.91
70.86
566. f7
3. 77
233.03
743.54
5.97
236.28
fc fi 5 . 94
2.39
1C6.49
450.36
C.71
28.29
212.19
1.01
24, 86
560.44
0.50
12.44
74.60
4.12
387.3C
966.08
5.63
2C6.77
835.07
1.88
162. 71
4 94. 1C
967.
3.7482
14.99
123.
0.890G
3.38
6.
0.0155
0.09
295.
1. 1435
15.52
199.
0.7714
6.17
674.
4.3542
13.39
S12.
3. 770 /
14.14
236.
1.0977
4.65
30.
0.124G
O.v3
38.
O.C9d2.
2.?1
20.
0.0517
0.31
707.
6.9424
17.32
1046.
4.0544
lb.22
214.
1.9355
5.66
3.3781
13.51
0.8021
3.05
0.0140
O.Qd
1.0306
13.98
0.6952
5.56
3.9243
12.52
3. 3984
12.74
0.9893
4. 19
U.1118
0.84
O.J865
1.99
0.0460
0.23
L .25t9
15.61
3.0541
14.62
1 ,744<*
5.3J
9.46
21.34
103.09
7.01
14.40
11.43
9.15
18.o5
30.82
12.74
109.30
d.59
10. fU
16,90
-------
o
o
VEHICLE
MODE 57
MODE 58
MODE 59
MODE 60
MODE 61
MODE 62
MODE 63
MODE 64
MODE 65
CALC TCTAL
- 0005 RUN
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI
SAMPLEtCONC
MASS (GMS)
MASS (GM/MI
SAMPLE(CCNC
MASS (GMS)
MASS (GM/MI
SAMPLE(CQNC
MASS (GMS)
MASS (GM/MI)
SAMPLEtCONC)
MASS (G.MS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CGNC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCNC)
MASS (GMS)
MASS (GM/MI)
DATE - 77/ 9/29
SITE -
LIVONIA
641.
0.4998
3.00
467.
0.6545
7.39
347.
0.4055
3.24
477.
C.78C8
3.00
779.
0.9105
3.64
385.
G.4242
2.34
682.
0.7969
6.36
283.
0.2867
4.84
122.
0.1137
0.57
465.
38.1576
3.90
1997.
2.1406
18.84
2938.
£.3185
93. d9
1045.
2 .4601
19.73
1765.
5.8322
22.44
6539.
15.4267
61.71
733.
1.7247
9.51
1498.
2.5345
28.28
1406.
2.8755
46.57
532.
1.0980
5.49
2029.
33^.3896
34.36
0.20
5.01
30.03
1.48
65.83
743.03
2.03
75.33
602.62
3.32
172.27
662.85
7.18
266.27
1C65.08
3.08
106.83
589.25
0.68
25.39
20i. 14
Co94
30. Ob
508.05
C.5J
15.82
79.11
2.6b
6544.34
7Cy.tO
8.
0.0207
0.12
154.
0.7163
8. J8
197.
0.763o
6.11
620.
3.3645
12. 95
1011.
3.9U8
15.63
396.
1.4326
7.90
30.
0.1163
0.93
46.
0.1545
2.01
19.
D.'35d9
0.2V
365.
99.4124
10.16
0.0186
0.11
0.6456
7.29
0.6882
5.51
3.0323
11.67
3.5318
14.13
1.2912
7.12
0. 1048
0.84
0.1393
2.35
0.0531
Oc27
89.5967
9.15
128.36
9.71
13.76
12.54
7.56
14.51
33.14
14.80
99.12
11.44
-------
SITE - LIVGNIA
VEHICLE - 0006 RUN NO.
1 DATE - 111 9/30
HC CO C02
4HP - 21.G
NGX NCXC
1975 FTP
CLD TPAN
BARQ - 29.16 WB - 62.
BACKGRCUNDICGNC)
SAMPLE(CONC)
CB -
MASS EMISSIONS(GMS)
CLC STAB
BARO - 29.16 WB - 62. CB
BACKGRCUND(CGNC)
SAMPLE(CCNC)
MASS EMISSIONSIGNS)
HCT IRAN
8ARO - 29.16 WB - 62. 08
BACKCRCUNC(CCNC)
SAMPLE(CCNC)
MASS EMISSlGiMSltiMSJ
CCMPCSIT
MASS EMISSIONS1GM/MI)
0 MPH
BARO - 29.12 fctt - 63. C3
BACKGRCUNC(CJNC)
SAMPLEICCNC)
MASS EHISSIQNS(iiMS)
MASS EMISSIONS(GM/MI)
5 MPH
BARCJ - 29.13 WB - 63. CB
bACKGROUND(CONC)
SAMPLE(CCNC)
MASS EMSSICWS(GMS)
MASS EMISStC ^S
75
77
76
77
77
. PIN
6.
648.
25.35
. Pity
6.
23b.
15.59
. PIN
1C.
400.
15.43
4.76
. PIN
7.
108.
1.42
0.46
. P I N
0.
73.
0.94
3.65
- 39.20
0.
5416.
430. / 2
- 34.40
3.
293.
40.29
- 39.30
4.
697.
55.17
34. 2o
- 39.60
3.
55.
1.47
0.48
- 39. 6C
2.
73.
2.01
7.7d
V/REV -
G.05
2.61
3216. 77
V/HEV -
C.C5
1.53
3242.39
V/PEV -
C.05
2.32
2850.49
833.38
V/REV -
0.05
0.63
281.13
90.69
V/REV -
0.05
0.31
338.85
1313. 3c
.2821
0.
25.
3.27
.2320
1.
132.
29.89
.2820
0.
31.
4.05
4.4J
.2oi9
0.
5.
0.23
0.07
.2819
0.
4.
°. 19
0. T2
TEMP - 110.
3. 10
TEMP - 110.
27.91
TEfP - 110.
3.81
4.19
TEMP - 110.
0.22
O.C7
TE!"P - 110.
0. Iti
0.0 'J
REVS
REVS
REVS
9.84
KEVS
95.55
REVS
o . -'-•> 4
INERTIA - 60 DC.
MPG
- 10511
- Idl02,
- 10518,
- 3743
-------
VEHICLE - 0006
RUN NO. -
DATE - 111 9/30
SITE -
LIVCNIA
o
ro
10 MPH
BARO - 29.13 WB - 62.
BACKGRCUND(CONC)
SAMPLE(CQNC)
CB -
MASS EMISSIONSIGMS)
MASS EMISSIONS{GM/MI)
15 MPH
fiARO - 29.13 WB - 63. CB -
BACKGROUNC(CONC)
SAMPLE(CCNC)
MASS ENISSIONS(GMS)
MASS EMISSIONS
BAKU - 29.12 WB - 63. CB -
...BACKGRCUNCICONC)
SAMPLE_(CCNC)
MASS EMISSIONS!CMS)
MASS EMISSIONSIGM/MI)
78
78
79
79
80
81
. PIN
6.
71.
0.92
1.77
. PIN
t.
1C9.
1.45
1.87
. PIN
6.
167.
2.26
1.46
. PIN
7.
153.
2.C7
0.89
. PIN
7.
202.
2.77
0.89
. PIN
12.
476.
36.52
3,73
- 39.60
2.
94.
2.60
5.03
- 39.60
2.
124.
3.45
4.46
- 39.60
2.
260.
7.30
4.71
- 39.60
9.
471.
13.14
5.65
- 39.60
4.
825.
23.26
7.50
- 39.90
11.
1908.
299.97
30.64
V/REV -
C.C5
C.97
410.27
793.56
V/REV -
0.05
1.42
611.23
788.69
V/REV -
0.05
1.83
793.94
512.22
V/REV -
0.05
3.02
1327.83
571.36
V/fcnV -
C.05
5.21
2303.18
742.96
V/kcV -
0.05
2.99
7330.91
748.89
.2819
0.
9.
0.42
0.81
• «iB19
0.
17.
0.79
1.02
.2819
0.
63.
2.92
I.d9
.2819
0.
323.
15.03
6.47
.2319
0.
1090.
50.63
16.33
.2817
C.
40o.
105. J2
10.76
TEMP - 110.
0.39
0.75
TEMP - 110.
0.75
0.96
TEMP - 110.
2.75
1.77
TEMP - 110.
14.12
6.08
TE^P - no.
47.24
15.24
TEMP - 110.
'
97.57
9.97
REVS
11.00
REVS
11.07
!*EVS
16.93
REVS
15.22
REVS
11.72
KtVS
10.97
- 3744,
- 3746
- 374U.
- 3754
- 3748
- 20V73.
-------
VEHICLE - 0006
RUN NO. -
DATE - 777 9/30
SITE -
LIVCNIA
AA 1 a
BARG -29.11 wB - 65.
BACKGRCUND(CONC)
SAMPLt(CCNC)
QB -
MASS EMISSICNS(GMS)
MASS EMISSIONSIGM/MI)
AA
1 b
bARO
- 2S.ll KB - o4.
bACKGRCUND(CCNC)
SAMPLE(CCNC)
CB -
MASS fcMISSIDNStGMS)
MASS EMISSIGNSlGy/Ml)
79. PIN -
7.
ill.
27.60
4.96
70. PIN -
12.
230.
29.94
5.38
39.45
4.
149.
39.59
7.11
39.55
1C.
164.
42.75
7.68
V/REV -
C.06
1.21
4S48.93
869. 3C
V/F-EV -
G.05
.1.26
527C.32
947.05
.2819
0.
60.
2u.84
4. 62
.2318
0.
91.
36.71
6.60
TEMP - 111
26.38
4. 74
TEMP - 111
35.54
6.39
KEVS - 36173,
9.69
Inertia - 7500
REVS - 36668,
9.09
o
CO
-------
VEHICLE - 0006
RUN NO. -
DATE - 111 9/20
SITE -
LIVCNIA
SURVEILLANCE DRIVING SEQUENCE
BARO - 29.12 WB - 63.
- ACCEL/DECEL MCOES (EVEN NO.) AND STEADY STATE MODES (ODD NO.)
CB - 81. PIN - 39.90 V/PEV - .2317 TEMP - 110. REVS - MDO(3AG> VALUE
NODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
MODE 8
MODE 9
MODE 10
MODE 11
MODE 12
MODE 13
HODE 14
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
75.
0.055*
0.33
418.
C.3723
6.18
259.
0.2860
2.30
221.
0.2622
3.54
294.
0.217L
1.31
245.
0.1452
7.22
163.
0.1816
2.91
261.
0.2944
4.16
187.
C.2077
1.66
427.
0.4121
3.C3
28t.
C.318d
1.7C
80.
0.0715
0.56
1026.
1.1422
9.14
1063.
> . 3^. 1 3
89.
0.1327
0.80
1099.
1.9755
32.82
682.
1.5317
12.25
239.
0.5723
7.72
151.
0.2269
1.36
219.
C.262S
13. CS
144.
0.3238
5.18
437.
C.7210
10.23
284.
C.6393
5.11
622.
1.2113
8.91
642.
1.4430
7.7C
305,
Q.5486
4.33
314.
0.7C58
5.o 5
13440.
3 A . 2 2 <-, <*
0.60
14. 2C
85.16
3.24
91.68
1523. CO
1.30
63.52
5C6.13
C.81
30.66
413.80
0.49
11.60
69.56
1.60
30.09
1496.93
1.22
43. 2S
692.61
2.91
75.45
1070.25
1.71
60.32
482.54
2.44
105.47
775.50
3.66'
129.50
690.65
1.31
36. 9C
291. C2
1.14
40.46
323.71
5.57
;? 2? . <;s
7.
0.0172
0.10
471.
1.3910
23.11
124.
0.4578
3.66
39.
0.153o
2.07
16.
0.0394
0.24
62.
0.1221
6.07
68.
0.3249
5.20
3f5.
1.0152
14.40
144.
0.5316
4.25
591.
2.2108
16.26
367.
1.3548
7.23
68.
G.20)y
1.58
52.
0.1920
1.54
646.
•£ . 7O^ 7
0.0160
0.10
1.2886
21.41
0.4241
3.39
0.1423
1.92
O.C365
0.22
0.1121
5.63
0.3010
4.82
C.9405
13.34
0.4925
3.94
2.0481
15.06
1.2551
6.69
0.1860
1.47
0.1778
1.42
.7 - 5 O 3 -3
101.48
5.57
16.60
20.30
117.01
5.76
12.50
8.07
17.90
11.11
12.53
29.62
24.55
-------
VEHICLE - 0006
MODE 15
RUN NO. -
DATE - 77/ 9/30
SITE -
LIVONIA'
o
en
MODE 16
MODE 17
MODE 18
MODE 19
MODE 20
.4GDE 21
MODE 22
MODE 23
MODE 24
MODE 25
MODE 26
MODE 27
MODE 28
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CCNC)
MASS (G"1S)
MASS (GM/MI)
SAfPLE(CCMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CDNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
1070.
1.1912
4.76
241.
0.2144
1.25
677.
0.1536
4.02
444.
0.4617
2.26
588.
C.6976
2.62
340.
0.7579
2.25
653.
0. 7269
11.63
1004.
1.9372
6. 13
584.
0.6497
2.60
152.
0.2376
1.20
426.
0.3158
1.89
972.
2.3060
0.97
563.
0.6263
2.51
172.
0.2929
0.93
6159.
13.8404
55.36
1352.
2.4301
14.16
1107.
2.467i>
13.27
1361.
2.8546
13.97
1141.
2.7352
10.26
472.
2.1230
0.31
359.
C.8C66
12.91
1C492.
4C.b676
130.32
1303.
2 .9288
11.72
844.
2 .6564
13.46
232.
C.3482
2. )9
6575.
31.5196
95.14
1219.
2.740C
10.90
630.
2.1/2!)
7.26
5.06
178.89
715.55
1.84
51.96
302.77
2.11
74.52
397.46
4. 74
156.30
765.05
5.97
225.17
844.28
l.lil
106. 4b
316.17
0.98
34. 7fc
556.55
5.03
344.60
1098.86
4.98
175.98
7C3.92
1.47
72.54
367.64
C.47
11. 13
66. 74
4.77
359.69
1065. by
6.17
216.19
H72.77
1.69
91.41
JC5. 30
928.
3.4258
13.70
171.
0.505C
2.94
203.
0.7494
4.00
1357.
4.6755
22.89
1188.
4.6780
17.54
146.
1.0779
3.20
21.
0.0775
1.24
936.
5.9393
19.10
1016.
3.7507
15.00
81.
0.-+lrto
2.12
10.
0.024;>
C.I 5
960.
7.5004
22.82
1089.
4.0202
16.03
117.
0.6623
2.21
3.1737
12.69
0.4679
2.73
0.6943
3.70
4.3315
21.20
4.3333
lo.25
0.9986
2.97
0.0718
1.15
5.5485
17.69
3.4747
13.90
0.3878
1.97
0.022b
0.14
7.0041
^1.14
3.7?4J
1^.90
0.6135
2.05
10.85
26. 9d
20.59
11.18
10.22
26.64
14.46
6.71
12.15
22.61
116. 74
7.06
9 . 8 H
2 1 . 7 b
-------
VEHICLE
MODE
MODE
MODE
MODE
MOCE
MODE
MODE
MODE
MODE
MGOE
MODE
MODE
HQDc
MODE
29
30
21
32
33
34
35
36
37
38
39
40
41
42
- 0006 RUN
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS IGMS)
MASS (GM/MII
SAMPLE(CONC)
MASS (GMS>
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLF(CCNC)
MASS (GMSi
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONL)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLC(CCNC)
MASS (GMS)
MASS (GM/MI)
5AMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CONC )
MASS IGMS)
MASS I GM/MI)
-SAMPLE(CCNC)
MASS IGMS)
MASS (G.VMI)
DATE - 77/ 9/30
SITE -
LIVONIA
617.
0.6869
5.50
941.
0.6287
10. 86
261.
0.2903
4.64
23*.
C. 1400
8.09
16e.
0.1230
0.74
511.
0.8335
4.74
321.
0.35o8
1.90
151.
0.1792
1.29
714.
0.7949
12.72
469.
C.62t5
4 . 1 0
445.
0.4958
2.64
20k.
0.2847
2, 1U
ais.
0.007d
3.04
1^98.
2.4072
9.07
583.
1.3103
10.48
435.
0.5869
10.14
304.
0.6826
10.92
459.
C.5490
31.78
297.
0.4445
2.67
2184.
7.1990
40.93
78?.
1.758i
9.38
499.
1.1959
8 . 5 ')
394.
Q.b&'j'j
14.17
1814.
4.8910
32.01
1C27.
i. . 3 0 <1 2
12.31
352.
l.OOlfc
7.6ti
399.
i;.5974
3 . 'j «
15439.
5 7 . lj 2 6 J
217. JL
1.13
40.11
320.86
1.33
28.11
485.49
O.HO
28.39
454.29
G.77
14. 5fc
842.56
0. 7l
17.51
105.03
4.77
247. 19
1405.31
2.6»
9-«. 74
505. /5
0.96
36. j4
261.07
l.Oo
38.33
o 13.32
4.24
179. cb
1175.93
3.C3
1 ^ 7 . j b
679.34
C.95
42. 7C
327. t9
C. 72
17.04
1C2.23
5.70
335.00
1264.52
41.
0.1514
1.21
36.
0.0797
1 .38
20.
0.0738
1.18
29.
i).0571
3.30
21.
J.051 /
G.31
o4a.
4.5914
20.10
2/4.
1 . 0 1 1 i
5. J9
37.
0. 1^5 /
1. J5
) 'I
t~ (- •
0.081*c
1.30
7U1.
3.45^:4
22.64
4!>;, .
1.6012
d . b6
5o.
0. 26 IS
2.01
2'i.
?J. J5c6
:.34
769.
'i . 7 3 1 4
1 / . d 3
0.1402
1.12
0.0739
1.28
0.0684
1.09
0.05P9
3. Go
0.0479
0.29
4.2535
24.18
0.9371
5.00
0.1350
U.97
0.0752
1.20
3.2052
20. 9 H
1.5390
8.21
0.242ft
1 .8u
0 . 'J 5 2 4
0.31
4.3833
16.52
^5.02
16.5o
la. 26
9.07
79.56
5. ^o
lo. H7
3i .a5
13.13
7.1o
12.55
t ;• . 6 2
74.32
5.^3
-------
VEHICLE
MODE 43
MODE 44
MODE 45
MODE 46
MODE 47
MODE 48
MODE 49
MODE 50
MODE 51
MODE 52
MODE 53
MODE 54
MODE 55
MODE 56
- 0006
flUN NO. -
DATE - 77/ 9/30
SITb -
LIVCNIA
SAMPLE(CONC»
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SANPLeiCCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(COMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
702.
0.7814
3. 13
282.
0.5849
2.22
735.
C. 5453
3.27
31C.
0.3448
4.68
301.
0.3348
2. £8
405.
C.7512
2.40
611.
0.7253
2.72
194.
0.2591
1.10
912.
1.0832
8.13
396.
0.2937
6.62
241.
0.1786
1.07
566.
1.5953
3.98
454.
0.5049
2.02
307.
0.7982
2.42
2461.
5.5297
22.12
699.
2 .9338
11.14
708.
1.0603
6.36
656.
1.4733
19.99
671.
1.5071
12.06
1096.
4. 10 3 3
13.09
1331.
2.1894
11.96
533.
1.4369
6.08
477.
1.1440
8.58
479.
C.7172
16. Ib
328.
C.4908
2.94
2197.
12.5097
31.20
1325.
I .9779
11.91
465.
2 .4J95
7.41
5.27
186.28
745.13
1.54
101.35
384.77
0.69
16.34
S7.99
3.00
106. C8
1439.42
1.85
65.29
522.32
5.34
314.57
1003.75
5.27
I<;ti.fc9
744.98
2.12
.89.84
380.35
1.35
50.73
380.57
0.77
18.22
410.40
0.64
15.14
90.85
4. 99
446.74
1114.35
6.04
213.58
854.32
1.37
112.61
341 .96
1159.
4.2736
17.11
63.
0.4341
1.65
14.
0.0345
0.21
486.
1.7941
24.34
137.
0.5057
4.05
1178.
7.2479
23.13
1228.
4.8355
IB. 13
13V.
0.8373
3.b4
55.
0.216o
1.62
30.
0.0738
1.66
20.
0.0492
0.30
1U73.
1J.0348
25.03
1267.
4.6773
18. Tl
77.
>'j.b633
2.01
3.9637
15.65
0.4022
1.53
0.0319
0.19
1.6621
22.55
0.4685
3.75
e.7145
21.42
4.4797
16.80
0.7756
3.28
0.2006
1.51
0.0684
1.54
0.0456
0.27
9.2964
23. 19
4.3331
17.33
0.6145
1.87
11.24
21.6ti
74.99
5.97
16.14
3.60
11.49
22.56
21.14
19.43
69.76
7.55
. 0
2 4 . 'j 7
-------
VEHICLE - 0006
MODE 57
RUN NO. -
DATE - 77/ 9/30
SITE -
LIVONIA,
MODE 56
MODE 59
MODE 60
MODE 61
MODE 62
MODE 63
MODE 64
MODE 65
_ CALC TCTAL
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MII
SAMPLECCONCI
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS 1GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS IGM/MII
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
767.
0.5669
3.41
291.
0.3860
4.38
254.
0.2824
2.26
549.
0.8556
3.29
946.
1.0533
4.21
257.
0.2665
1.47
774.
0.8618
6.89
496.
0.4784
8.08
115.
0.1021
0.51
493.
38.5428
3.94
511.
0.7650
4.59
831.
2.241b
25.30
493.
1.1070
8.86
5905.
18.5770
71.48
2039.
4.5818
18,33
789.
1.6556
9.13
785.
1.7645
14.12
445.
C.8663
14.63
551.
C.9899
4.S5
1966.
310.3789
31.71
0.58
13.73
82.38
2.65
112.41
1268.69
1.82
64.22
513.79
4.97
245.96
946.36
5.56
196.57
786.27
2.69
88.75
489.52
1.21
42.60
340.76
C.84
25.84
436.51
0.61
17.32
86.62
2.84
7056.80
720.89
19.
0.0468
0.20
365.
1.6169
18.25
119.
0.4393
3.51
975.
5.0390
19.39
1215.
4.4853
17.94
182.
0.6271
3.46
51.
0.1683
1.51
41.
0.1312
2.22
25.
0.0738
0.37
436.
113.0969
11.55
0.0433
0.26
1.4979
16.91
0.4070
3.26
4.6682
17.96
4.1553
16.62
0.5809
3.20
0.1744
1.40
0.1215
2.05
0.0684
0.34
104.7747
10.70
88.39
6.71
16.59
8.30
10.71
17.45
23.06
18.29
92.44
11.33
-------
SITE - LIVCNJA
VEHICLE - 0010 RUN NO.
12 GATE - 77/10/ 6
HC CO CG2
AHP - 25.3
NOX NOXC
INERTIA - 6000.
MPG
1975 FTP
CLC TRAN
BARO - 29.50 WB - 56.
BACKGRCUND(CONC)
SAMPLE(CCNC)
o
CB -
MASS EMISSIONSIGKS)
CLC STAB
BARO - 29.50 WB - 36. CB
BACKGRCUND(CQNC)
SAMPLE(CCNC)
MASS FN! IS S IONS (CMS)
HCT TRAN
bARO - 29.50 WB - 56.
BACKGRCUNO(CCNC)
SAMPLE(CONC)
77. PIN
•3
w •
591.
23.53
79. PIN
5.
273.
IP. 34
- 39.60
0.
11959.
V/REV
0.05
2.19
,2818 TEMP - 110. REVS - Iu549.
0.
143.
964.77 2731.32
- 39.90
0.
6820.
V/PEV
C.04
1.28
939.70 2699.79
18.95
,2816
0.
45.
10.19
15.82
TEMP - 110. REVS - 18045.
8.39
DB - 80. PIN
6.
396.
MASS EKISSICNS(GMS)
CCfPCSIT
MASS EMISSIQNS(GM/MI)
0 MPh
BARO - 29.51 WB - 57. CB
BACKGRCUNCtCQNC)
SAKPLE(CCNC)
MASS EMISSIONS(GMS)
MASS E
3ARG - 29.51 WB - 56.
BACKGRCUNCiCQNC)
SAMPLF(CCNC)
CB -
MASS EMISSIONS (QMS)
MASS EMISSICNSiGM/MI )
15.61
4.9d
62. PIN
5.
163.
2.25
G.72
82. PIN
7.
170.
2.32
8.99
- 39.70
0.
1C350.
633.55
243.96
- 40.00
0.
3802.
108.79
35.09
- 40.00
0.
2954.
113.14
438.52
V/PEV -
C.C5
1.89
2344.45
694.75
V/REV -
C.05
0.79
334.99
100.06
V/RtV •
0.05
c.ao
•339.53
1316.Cl
2818 TEMP - 110.
0.
103.
REVS - 10534.
13.63
3.48
11. Id
2.87
3.11
,2316 TFMP - 110« REVS
0.
9.
3747.
0.42
0.14
,2410
0.
7.
0.35
0.11 53.6J
- 110. REVS - 3747.
0. J3
1.28
0.27
1.06
4.3t>
-------
VEHICLE - 0010
RUN NO. -
13
DATE - 77/10/ 6
SITE: -
LIVCNIA
K-1
CI
10 MPH
BARD - 29.51 WB - 58.
BACKGROUND(CONC)
SAMPLE(CONC)
CB -
NASS EMISSICNS(GMS)
MASS EMISSICNSIG.M/MI)
15 MPH
BARO - 29.51 HB - 58. CB -
BACKGRQUNOtCONC)
SAMPLE(CQNC)
MASS EN>ISSIONS(GMS)
MASS EMISSIUNS(G.M/MI)
30 MPh
BARO - 29.51 KB - 58. CB -
BACKGRGUNC(CONC)
SAMPLE(CCNC)
MASS EMISSIONS(GMS)
HASb EMISSIONoCGrf/MI)
45 MPH
BARO - 29.51 UB - 6C. CB -
BACKGPOUNCCCJNCJ
SAMPLE(CCNCJ
MASS EfIS
MASS EMISSIGNS(GM/MIJ
60 MPH
tARC - 29.51 WB - 59.
bACKGRCUNDlCCNC>
SAMPLE(CGNC)
CB -
M.ASS GMISSIONSiGPS)
MASS FMISSIONS(GM/MI )
MQD(bAG)
BARO - 29.55 tab - 57. C6 -
BACKGROUND(CUNC)
SAMPLE(CONG)
MASS LMlSSIONMSMS)
MASS EMISS1CNS(G,V/MI )
82.
82.
83.
86.
fcb.
80.
4
PIN
6.
221.
3.C5
5.91
PIN
6.
225.
3.11
4.02
PIN
7.
260.
3.60
2.32
PIN
7.
366.
5.39
2.32
PIN
9.
589.
8.2d
2.67
PIN
10.
572.
0.62
4.78
- 40.00
0.
4232.
121.09
234.22
- 40.00
0.
4562.
130.57
168.48
- 40.00
C.
6847.
195.68
126.24
- 40.00
0.
11755,
233. 6b
144.44
- 40.00
J.
2C345.
5S6.61
192.46
- 4J.20
0.
1£551.
2 1 C 9 .
-------
VEHICLE - 0010
RUN NO. -
DATE - 77/10/13
SITE -
L1VCNIA
AA 1 a
BARO - 29.57 WB - 56.
BACKGRCUNDICONC)
SAMPLE(CONC)
CB - 79. PIN - 40.00 V/frEV - .2816 TtMP - 111. REVS - 36635.
MASS ENISSICNS(GMS)
MASS EMISSICNS(GM/MI)
AA 1 b
BARO - 29.57 KB - 54. CB -
BACKGROUND(CONG)
SAMPLE(CONC)
MASS EMISSIOiMS(GMS)
MASS EMISSIONS(GM/MII
8.
220.
29
5
77.
2
28
5
•
•
1
•
*
53
31
PIN
6.
1.
48
12
C
•
5176.
1448
260
- 40
bll
1446
259
.
•
t
0
6
.
*
77
34
30
*
•
S4
94
0.
1.
4604
827
V/R
C.
1.
4724
848
05
09
.68
.44
EV -
04
11
.36
.94
0.
34.
15.63
.28
•*
1
2.81
14
0.
7-
6.^9
3.05
12
2
TEMP
13
2
.67
.31
- Ill
.74
.47
7.08
Inertia - 7000
REVS - 36635.
6.97
-------
VEHICLE — 001.0
KtJTM NO . —
t: A T t —
X- 1. o X 1.
;» I T t_ —
SURVEILLANCE DRIVING SEQUENCE - ACCEL/DECEL MCDES (EVEM fMQ.) AND STEADY STATE MODES (ODD NQ.I
BARO - 29.55 MB - 57. CB - 80. PIN - 40.20 V/*EV - .2816 TEMP - 111. REVS - MOC(BAG) VALI
t\s
MODE
MODE
MODE
MODE
MOCE
MODE
MCUE
MODE
MODE
"400E
MODE
MOOE
MODE
MODE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SAMPLEICCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CONC )
MASS (GMS)
hASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI )
iAIKPLECCONC)
MASS (GMS)
MASS (GM/MI)
SArtPLt(CONC)
MASS (GMS)
MASS (GM/MI)
SAHPLE(CGNC)'
MASS (GMS)
MASS (CM/MI
SAMPLE(CCNC
MASS (GMS)
MASS (GM/MI
SAMPLE(CGNC
MASS (GMS)
MASS (GM/MI
SAMPLE I CONC
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
95.
0.0745
C.45
559.
0.5277
6.77
287.
0.3382
2.71
1S8.
0.2490
- 3.36
174.
0.1368
0.82
309.
0.1943
9.66
178.
0.21CC
3.36
531.
0.4590
6.51
277.
0.3261
2.61
561.
0.5723
4.22
396.
0.4669
2.49
316.
0.2935
2.35
498.
0.5879
4.70
1682.
2.248€
10. 4C
3467.
5.5040
33.02
16703.
31.8200
528.57
7231.
17.2193
137.75
4482.
1 1.3846
153.64
4310.
6.8423
41.05
£563.
10.8753
541.06
4758.
1 1.3303
161.26
12433.
21.7117
3C7.S7
6302.
15.0070
120.06
U511.
3C.2Q3C
280.90
12156.
26.9
-------
VEHICLE - 0010
•MODE 15
RUN NO. - 21
DATE - 77/10/13
SITE -
LIVCNIA
MODE 16
MODE 17
MODE 18
MODE 19
MODE 20
MODE 21
MODE 22
MODE 23
MODE 24
MODE 25
MODE 26
MODE 27
MODE 28
SAMPLECCONC)
MASS (CMS)
MASS (GM/MIJ
SAPPLE1CCNCI
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE!CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS IGMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI
SAMPLE(CONC
MASS (CMS)
MASS (GM/MI
SAMPLE(CQNC
MASS (GMS)
MASS (GM/MI
SAMPLEfCONC
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(COUC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
1028.
1.2122
4.85
326.
0.3077
1.79
974.
1.1493
6.13
936.
1.0306
5.05
712.
0.8959
3.36
558.
1.3157
3.91
266.
0.3136
5.02
1122.
2.2931
7.31
624.
0.7356
2.94
629.
1.0379
5.26
284.
0.2232
1.34
937.
2.3588
7.12
608.
0.7171
2.67
493.
0.8921
2.93
37661.
89.6825
358.73
£873.
16.9035
98.51
11325.
26.9683
143.63
39237.
87.2064
426.85
28443.
72.2471
270.89
8180.
36.9582
115.71
5C79.
12.0947
193.51
47C18.
194.0716
618.85
2C374.
46.5166
194.07
7325.
24.4203
123. 77
4298.
6.8232
40.93
36136.
183.8294
554.87
22280.
53.055b
< 212.22
1C374.
37.8790
126.52
3.84
143.98
575.92
1.87
56.11
326.96
2.00
75.07
4C0.40
4.49
156. £7
767.86
3.91
156.22
565.74
1.44
1G7.9C
320.46
0.87
32.45
519.21
4.09
265.49
84b .55
4.14
154. 31
619.87
1.26
66.03
334.67
0.70
17.36
104.15
3.55
283.63
856.71
4.37
163. tb
654.ol
1.09
108. 73
363.17
194.
0.7589
3.04
117.
0.3661
2.13
91.
0.3560
l.'-^O
203.
0.7412
3.63
233.
0.9722
3.65
93.
0.7276
2.16
8.
0.0313
0.50
138.
0. /323
?.34
236.
1.1 ICC
4.4-8
75.
J.4107
2.08
4.
0.0104
0.06
121.
1.C098
3.05
290.
1. 1344
4.54
131.
0.7857
2.62
0.6310
2.52
0.3045
1.77
0.2960
1.58
0.6163
3.02
0.8084
3.03
0.6C50
1.80
0.0260
0.42
0.6089
1.94
C.9303
3.72
0.3415
1.73
O.OJ87
0.05
0.3397
2.53
0.9433
3.77
0.6534
2 . Id
7.68
18.21
13.74
6. 10
8.68
17.24
1 0 . 5 d
4.G2
9.50
16. Z6
51.39
5.07
d . ) 0
1 5 . 1J 3
-------
VEHICLE - 0010
MODE 29
RUN NO. -
MODE 30
MODE 31
MODE 32
MODE 33
MODE 34
MODE 35
MODE 36
MODE 37
MODE 38
MODE 39
MODE 40
MODE 41
MODE 42
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE{CONC)
;*ASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI )
21
685.
0.8082
6.47
304.
0.2152
3.72
214.
0.2523
4.04
242.
0.1523
8.80
155.
0.121U
0.73
555.
0.9598
5.46
416.
C.49C6
2.62
324.
0.4081
2.93
290.
0.3418
5.47
604.
0.8546
5.59
463.
0.5463
2.91
380.
0.5681
.4.36
1x83.
0.14x38
0.8^
1359\
10.07
DATE - 77/
5720.
13.6211
1C8.97
4509.
6.4424
111.27
4320.
10.2873
164.60
4972.
6.3146
365.01
3676.
5.8358
35.01
17776.
62.0843
352.95
12310.
29.3139
156.34
5839.
14.8314
1C6.55
370U.
t.829*,-
141.28
20395.
56.2802
361.41
15C69.
35.864-0
191.38
5288.
15.9503
122.32
4341.
6.8915
41 .34
46560.
US4.7890
x 696.27
10/13
1.01
37.73
3Ci.es
C.97
21.72
375.16
C.72
26.79
428.71
0.88
17.51
1011.93
0.73
18.11
108.ol
3.30
181.43
1C21.43
2.fc5
99.16
528.84
1.13
45.06
323. 71
0.65
24. l> j
392.45
2.98
134.05
877.30
2.62
98.06
523.07
1.06
50.16
384.69
C. 72
17. 8c
107.16
3.61
225. 13
d4ti.45
SITE -
25.
0.09/e
0.70
27.
0.0634
1.09
13.
0.0509
O.dl
8.
0.0167
U.96
5.
O.IJ130
3.08
173.
0.9926
5.64
163.
0.7159
3. 62
57.
0.2378
1.71
7.
0.0274
0 . 44
106.
C.4976
3.26
171.
0.6669
3.57
40.
0.1932
1.52
10.
J.C261
0.16
58.
3.3781
1.42
LIVCNIA
0.0813
0.65
0.0527
0.91
0.0423
0.68
0.0139
0.80
0.0108
0.07
0.8253
4.69
0.5953
3.17
C.197o
O.C22S
0.36
0.4138
2.71
0.5562
2.97
0.
1.26
0.0217
0.15
C.3144
l.ld
17.93
15.80
12.68
5.50
53.48
5.54
11.J4
17.74
14.05
5.94
10.t,5
15.02
50.76
-------
VEHICLE - 0010
MODE 43
RUN NO. - 21
DATE - 77/10/13
SITE -
LIVONIA*
MODE 44
MODE 45
MODE 46
MODE 47
MODE 48
MODE 49
MODE 50
MODE 51
MODE 52
MODE 53
MODE 54
MODE 55
MODE 56
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI
SAMPLEICONC
MASS (GMS»
MASS IGM/MI
SAMPLE(CONG
MASS (GMS)
MASS (GM/MI
SAMPLE(CCNC
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS) -
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CUNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CCMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
829.
0.9779
3.91
573.
1.2611
4.79
621.
0.4883
2.93
479.
0.5655
7.67
322.
0.37S7
3.C4
684.
1.3436
4.29
777.
0.9770
3.66
459.
0.6490
2.75
844.
1.0621
7.97
277.
0.2179
4.91
595.
0.4677
2.61
67S.
2.0301
5.D6
637.
0.7511
3.00
582.
1.6018
4.66
42C85.
100.2175
400.87
8691.
38.6325
146.67
3900.
6.1914
37.14
1C850.
25.8372
350.57
£973.
21 .3675
170.94
23635.
92 .8038
299.31
31694.
80.5C48
301.86
10764.
3C. 7589
130.22
6704.
17.02d6
127.75
4482.
7.1154
160.26
3794.
t.0231
36.13
23738.
143.2031
357.20
21762.
31.8221
2C7.29
S283.
51.5800
15t).64
3.85
144.05
576.20
1.41
96.62
374.39
o.ai
20.12
120.69
2.06
77.32
1049.06
1.64
61.48
491 .86
3.58
223.26
712.40
4.18
167.11
626.58
2.20
98. b4
417.63
0.80
34.25
256.96
G.<>3
23.13
520.99
0.67
16.61
99.62
3.46
327.93
£17.99
4.17
156.12
624.48
1.68
146.C;S
446.38
193.
0.7550
3.02
34.
0.6134
2.33
7.
0.0183
0. J 1
113.
0.4420
6.00
74.
0.2895
2.32
177.
1.154C
3.68
242.
1.CC98
3.79
144.
0.076C
2.86
U.
0.0542
0.41
32.
0.0835
1.68
14.
0.0365
0.22
17^.
1.7342
4.33
2V4.
1.1501
4.60
90.
0.8215
2.49
0.6278
2.51
0.5100
1.94
0.0152
0.09
0.3676
4.99
0.2407
1.93
0.9596
3.06
0.8397
3.15
0.5621
2. 38
0.0451
0.34
0.0694
l.5e>
C.0304
0.18
1.4421
3.60
0.956J
3.d3
0.6831
2.07
7.28
14.31
47.12
5.46
11.52
7.42
7.98
1 '• . 0 7
18.38
11.26
53.69
6.36
-------
VEHICLE - 0010
MODE 57
RUN NO. -
DATE - 77/10/13
SITE -
LIVCNIA
MCDE 58
MODE 59
MODE 60
MODE 61
MODE 62
,_, MODE 63
(-
* ,•
MODE 64
MODE 65
CALC TOTAL
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
499.
0.3923
2.35
457.
C.6470
7.30
293.
0.3453
2.76
786.
1.2975
4.99
971.
1. 1454
4.58
383.
0.4215
2.32
905.
1.0677
8.54
430.
0.4396
7.43
404.
0.3bl2
1.91
587.
3830.
6.0803
36.47
S567.
27.3384
308.56
£490.
15.4547
123.64
29583.
SE.6248
379.47
36727.
£7.4584
349.83
13165.
29.2599
161.39
5938.
14.1402
113.12
5260.
10.8556
183.37
4C09.
7.6373
38.19
16033.
48. 64412691. 9517
4.97
275.00
C.66
16.86
101.12
1.80
81.02
914.40
1.63
61.06
488.51
3.29
172.41
663.38
4.45
166.53
666. 14
2.46
85.fci9
473. 74
C.95
35.49
263.88
0.85
27.48
4fc4.14
C.80
23.84
119.21
2.24
58b8.34
6C1.53
15.
0.0391
0.23
77.
0.3614
4.08
97.
0.3794
3.04
133.
0.7284
2.UO
194.
0.758S
3.04
171.
0.6243
3.44
18.
J.U704
0.56
35.
0.1187
2.00
18.
0.0563
0.7.8
104.
28.5863
2.92
0.0325
0.20
0.3006
3.39
0.3155
2.52
G.6057
2.33
0.6310
2.52
0.5191
2.86
0.0586
J.47
0.0987
1.67
0.0468
0.23
23.7707
2.43
53.50
6.24
12.83
6.96
7.21
12. Gb
16.16
11.44
47.91
8.46
-------
SITE - LIVONIA
VEHICLE - 0011 RUN NO.
1975 FTP
CLD TPAN
BARO - 29.58 WB - 57. CB -
BACKGRCUNOICONC)
SAMPLEICONC)
MASS EMISSIONS(GMS)
CLC STAB
BARO - 29.58 foB - 57. C3 -
BACKGRGUNC(CCNC)
SAMPLE(CONC)
MASS EMISSICNSIGMS)
HCT TRAN
BARO - 29.53 WB - 58. DB -
BACKGRCUNCICQNC)
SAMPLEICONC)
MASS EMISSIC;MS(GMSJ
CCMFCSIT
MASS fcMISSlONSCGrVMI )
0 MPH
BARO - 29.54 WB - 59. CB -
BACKGRCUNO(CONC)
SAMPLEiCGNC)
MASS Ef ISSICUS(GMS)
MASS EMISSIONS(GM/MI)
5 MPh
BARO - 29.54 kB - 59. CB -
BACKGRCUNC(CONC)
SAMPLE(CONC)
MASS EMISSIONSIGMS)
MASS EMISSIONS(GM/MI )
15 CATE - 77/1C/ 7
79
79
81
32
ai
HC
. PIN
3.
1044.
41.58
. PIN
6.
164.
1C. 86
. PIN
6.
274.
1C. 74
4.65
. PIN
6.
96.
1.31
0.42
PIN
7.
65.
C.83
3.20
CO
- 40.30
G.
7567.
6G9.82
- 40.50
7.
663.
90.75
- 40.40
4.
1399.
112.49
55.oi
- 40.05
2.
591.
I6.ti4
5.43
- 40.05
2.
401.
11. tO
44.19
C02
V/REV -
o.ce
2.13
2620.76
V/*EV -
0.06
1.40
2926.26
V/f
-------
VEHICLE - 0011
RUN NO. -
15
DATE - 77/10/ 7
SITE -
LIVONIA.
00
10 MPH
6ARO - 29.54 WB - 59. DB -
BACKGROUND(CONC)
SAHPLE(CGNC)
MASS EMISSIONS(GMS)
MASS EMISSIONSiGM/MIJ
15 MPH
BARO - 29.54 WB - 59. CB -
BACKGRGUND{CCNU
SAMPLEICONC)
MASS EMISSIGNS(GMS)
MASS EMISSIOiMS(GM/MI)
30 MPH
BARO - 29.54 WB - 59. CB -
BACKGRGUND(CONU
SAMPLE(CCNC)
MASS EMISSIGNS(GNSJ
MASS EMISSIONS1GK/MI )
45 MPH
BARO - 29.54 W8 - 59. DB -
tiACKGRCUNC(CONC)
SAMPLEICONC)
MASS EMISSIO.M3CGNS)
MASS EMISSIONS(GM/MIJ
60 MPH
BARO - 29.54 wB - 59. CB -
BACKGROUNCICONC)
SAMPLEICGNC)
MASS EMISSICNS(GMS)
MASS EMISSICNS(GM/MI)
MGO(bAG)
BARO - 29.56 WB - 58. CB -
BACKGRCUNDICCNCI
"SAMPLEICCNCI
MASS EMISSICNS(GMS)
MASS EVISSIONSIGM/MI)
81
31
81
Bl
80
81
. PIN
6.
46.
0.60
1.16
. PIN
7.
79.
1.03
1.32
. PIN
7.
163.
2.22
1.43
. PIN
9.
169.
2.57
1.11
PIN
9.
166.
2.26
0.73
. -PIN
10.
347.
27.79
2.84
- 40.05
0.
235.
6.71
12.99
- 40.05
2.
189.
5.35
6.90
- 40.05
4.
32U.
9.27
5.98
- 40.05
7.
361.
iG.iS
4.37
- 40.05
4.
522.
14.33
4.78
- 4C.20
24.
2531.
4 15. 60
42.46
V/REV -
C.07
C.83
34 3.. 54
664.48
V/PEV -
0.07
0.87
361.79
466.83
V/REV -
C.08
1.45
619.82
399.89
V/REV -
0.07
2 .n4
1070.29
460.54
V/R^V -
0.08
3.77
I66d.02
538.07
V/PEV ^
c.oa
2.62
6653.32
679. o7
.2815
0.
7.
0.33
0.64
.2815
0.
10.
0.47
0.61
.2315
0.
50.
2.35
1.51
.2815
0.
213.
9 .99
4. "30
.2815
0.
496.
23.37
7.54
.2814
0.
220.
5S.79
6. 1 1
TEMP - 111.
0.28
0.54
TEMP - 111.
0.40
0.52
TEMP - 111.
2.01
1.29
TEMP - 111.
8.54
3.67
TEMP - 111.
20.10
6.48
TEfP - 111.
50.21
5. 13
REVS
12.89
REVS
18.42
REVS
21.45
REVS
Ib.b5
RbVS
16.20
REVS
11. 75
- 3746.
- 3748.
- 3747.
- 3744.
- 3745.
- 21688.
-------
VEHICLE - 0011
RUN NO. - 15
DATE - 77/iO/ 6
SITE -
LIVONIA^
AA 1 a
8ARQ - 29.53 Wb - 58.
BACKGROUND(CONG)
SAMPLE(CONC)
CB -
V/REV - .2813 TEMP - 111. REVS - 36643.
MASS EMISSICNS(GNS)
MASS EMISSIONS(GM/MI)
AA 1 b
BARO - 29.50 WB - 57. CB
BACKGRCUNDICONC)
SAMPLE(CONC)
MASS EMISSIONSIGMS)
MASS EMISSIONSIGM/MI)
5.
142.
18.98
3.41
77. PIN
5.
148.
19.84
3.57
3.
477.
132.25
23.77
- 40. 40
4.
514.
142.51
25.61
0.05
1.12
4711.75
846.68
V/REV -
0.05
1.17
4S38.64-
887.45
0.
53.
24.28
4.36
.2813
0.
61.
27.98
5.03
20.53
3.69
TEMP - 110.
23.74
4.27
9.92
REVS
9.45
Inertia - 5500
36660.
IO
-------
VEHICLE - 0011
RUN NO. - 15
DATE - 77/10/ 7
SITE -
LIVONIA
SURVEILLANCE DRIVING SEQUENCE - ACCEL/DECEL MCDES (EVEN NO.) AND STEADY STATE MODES (ODD NO.)
BARO - 29.56 WB - 58. CB - 81. PIN - 40.20 V/REV - .2814 TEMP - 111. REVS - MODlbAG) VALUE
ro
o
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
MODE 8
MCDE 9
MODE 10
MODE 11
MODE 12
MODE 13
MODE 14
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS CGM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS IGM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (Gtf/MI)
SAYPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GrtS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONG)
MASS (GMS)
MASS (GM/MI)
^SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (QMS)
MASS IGM/MI 1
53.
0.0409
0.25
403.
0.3755
0.24
150.
0. 1751
1.40
82.
0.1016
1.37
55.
0.0426
0.26
115.
O.C717
3.57
148.
0.1729
2.77
202.
0.1726
?.45
201.
0.2341
1.67
27S.
0.2822
2.06
115.
0.1337
0.71
399.
0.3719
2.93
507.
C. 59C9
4.73
900.
1. 1890
5 . SO
369.
0.5797
3.48
2882.
7.3119
121.46
703.
1.6547
13.24
286.
0.7172
9.68
456.
0.7154
4.29
618.
C.7761
38.61
710.
i.0715
26.7*
945.
1.6323
23.15
664.
1.5636
12.51
1424.
2.9052
21.36
153.
C.3602
1.92
502.
C.9443
7.45
4017.
9.45t>4
75.65
12335.
32.9116
152 . 16
C.63
15.66
93.95
2. '93
86.80
1441.85
1.42
52.55
420.43
0.77
30.22
407.86
C.88
21.62
129.71
1.58
31.21
11552.53
1.49
55.16
8fc2.59
2.26
62.03
£79.92
2.14
79.37
634.97
4.15
133.04
97ti.25
2.12
78.61
419.27
C.76
22.38
176.49
3.17
117.44
939.35
C.26
^62.49
1 21i- 55
4.
0.0103
0.06
207.
0.6405
10.64
119.
0.4602
3.68
28.
0.1155
1.56
13.
0.0335
0.20
32.
0.1691
3.
-------
ro
VEHICLE
MODE 15
MODE 16
MODE 17
MODE 18
MOCE 19
MODE 20
MODE 21
MODE 22
MODE 23
MODE 24
MODE 25
MODE 26
MOCE 27
tfOUE 2fc!
- 0011 PUN
SAMPLEICONC)
MASS (GMSJ
MASS (GM/MI)
SAPPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (GMS)
MASS (GM/Mi)
SAMPLE(CONC)
MASS (GMS)
MASS (&M/MI)
SAMPLECCONCI
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS (GM/MI)
SAM.PLE(CONC)
MASS (GMS)
MASS I GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GilS)
MASS (GM/Mi)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
N'ASS (GMS)
MASS (GM/MI)
SAMPL^(CCNC)
MASS (MS)
MASS (GM/MI)
15
DATE - 77/10/ 7
SITE -
LIVCNIA
131.
0.1533
0.61
1068.
1.0152
5.92
408.
0.4761
2.54
417.
0.4544
2.22
152.
0. 18b7
0.71
452.
1.0535
3.13
554.
C.6460
1C. 34
666.
1.3499
4.30
128.
0.1495
o.eo
428.
0.6980
3.54
31ti.
0.2470
1.4 B
t42.
1.5967
4.82
142.
0. 1654
0.66
417.
C.7452
2.49
378.
C.8896
3.56
1C03.
1.8891
11.01
2207.
5.1956
27.71
3824.
8.4022
41.13
367.
C.92C4
3.4i>
342.
1.6089
4.78
8143.
19.1718
306.75
6490.
34.64^9
110.47
469.
1.1048
4.42
344.
1.1349
5.75
336b.
5.2863
31.71
7638.
36.3oO?
115.79
618.
1.4547
5.82
399.
1.4398
4.C1
3. 15
116.61
466.44
1.39
41.17
239,93
4.10
151.67
8C8.90
5.54
191.30
936.38
3.52
129.08
521.50
C.79
58.18
172.70
3.09
114.56
1822.90
5.55
356.11
1 135.55
2.61
1C3.95
415.79
0.58
30.29
153.34
1.81
44.76
268. 52
5.C4
•145.40
1344.39
3.70
137.10
548.40
0.8d
49.74
U6.14
344.
1.3304
5.32
98.
0.3032
1.77
422.
1.6321
6.70
o49.
2.3427
11.47
419.
1 . 7 2 d 3
6..76
15. bt>
4 a. a &
-------
VEHICLE - 0011
MODE 29
RUN NO. -
15
DATE - 77/107 7
SITE -
LIVONIA
ro
ro
MODE 30
MODE 31
MODE 32
MODE 33
MODE 34
MODE 35
MODE 36
MODE 37
MODE 38
MODE 39
MODE 40
MODE 41
MODE 42
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
S/!MPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CONC)
MASS (GMS)
MASS (GM/MI)
175.
0.2040
1.63
72.
0.0501
0.86
48.
0.0555
0.89
54.
0.0339
1.S6
206.
0.1601
0.96
419.
0.7172
4.08
145.
0.16S6
G.SO
186.
0.23C7
1.66
161.
0.1872
3.00
517.
0.7240
4.74
139.
0.1627
0.87
211.
0.3109
2.38
338.
0.2624
1.57
930.
1.8067
6.81
626.
1.4743
11.79
539.
0.7619
13.16
369.
C.8699
13.92
564.
0.7C83
40.94
2293.
2.5984
21.59
3059.
1C. 5626
60.05
212.
C.5002
2.67
296.
0.7439
5.34
1375.
=.2364
51.78
4887.
13.8071
90.36
303.
0.7123
3.80
280.
0.8357
6.41
5429.
8.5214
51.12
14643.
57.4736
216.57
1.09
40.26
322.10
0.63
14.10
243.49
0.70
26.10
417.60
0.46
9.15
529.18
2.26
55.67
333.95
4.07
220.84
1255.46
1.83
67.81
361.68
0.55
21.86
157.20
1.82
67.47
1079.49
3.95
175.37
1147.72
1.87
69.31
369.63
0.55
25.99
199.27
2.80
69.13
414.68
5.8y
363.75
1370.59
37.
0.1431
1.14
16.
0.0371
0.64
10.
0.0387
0.62
6.
0.0124
0.72
179.
0.4615
2.77
408.
2.3143
13.16
200.
0.7735
4.13
19.
0.0784
0.56
133.
0.5144
8.23
360.
1.6707
1C. 93
225.
0.8702
t.64
21.
0.1029
0.79
139.
0.3584
2.15
507.
3.2680
12.31
0.1202
0.96
0.0312
0.54
0.0325
0.52
C.0104
0.60
0.3676
2.33
1.9435
11.05
0.6496
3.46
0.0658
0.47
0.4320
6.91
1.4031
9.18
0.7306
3.90
0.0864
0.66
0.3010
1.81
2.7445
10.34
25.67
33.25
20.07
14.80
23.93
6.51
24.07
' 51.95
7.56
6.80
23.46
40.92
17.75
5.12
-------
VEHICLE - 0011
MCDE 42
RUN NO. -
15
DATE - 77/10/ 7
LIVONIA
CO
MCDE 44
MODE 45
MODE 46
MCDE 47
MCDE 48
MODE 49
MODE 50
MODE 51
MODE £2
MODE 53
MCDE 54
yODE 55
MOOt 36
SAMPLE(CGNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI I
SAMPLEICONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE (CONIC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLclCONCJ
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SANPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (GrtS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLEICCNC)
MASS (GMS)
MASS (GM/MI)
142.
0. 1651
C.66
373.
0.8110
3.08
202.
0,1568
0.94
190.
0. 2214
3.00
215.
0.25C4
2.00
582.
1.1320
3.61
129.
0. 1603
0.60
550.
0.7692
2.26
191.
U.2374
1 .78
97.
0.0751
1.69
150.
0. 1168
0.7C
46h.
1.3338
3.45
132.
0. 1535
O.fcl
294.
0.7993
2.43
384.
C.904i>
3.62
395.
1.7376
6.60
2053.
3.2225
19.33
1031.
2.4263
32.92
863.
2 .0322
16.26
4999.
19.6141
62.58
405.
1.01o9
3.81
402.
1.1349
4.8C
482.
1.2107
9.oa
419.
0.65d2
14.cl2
1072.
1 .63213
10.09
4603.
27.4514
68.47
4U8.
C.9612
3.34
2ol.
1 . 4 3 2 rt
4.35
2.34
123.69
494. 75
C.fc4
44.56
169. Ib
2.00
49.46
2S6.G9
2.36
87.20
1183. 19
2.1't
79.38-
635.01
5.35
329. fc6
1052.5^
3.75
14d.22
555.76
0.7;
3^.91
1^7.60
1.04
40.96
3C7.25
C.ci
15.17
341. 59
1.44
35.54
213.19
5. '^8
5C4.20
1257. <.6
3.39
125.55
5C2.20
C.8*
76.55
232.46
463.
1. 79t)o
7 . Ib
29.
0.2094
0.79
117.
0.3017
1.31
2 2 6 .
3.8740
, 11. do
155.
0.5995
4.80
016.
3.9706
12.67
479.
1.9760
7.41
60.
0.2735
l. la
36.
U . Ii>c8
1. 18
Ib.
0.0387
o . a 7
54.
0.1392
0.84
b49.
5.37d9
1 3 . • > 2
4'iC.
1.6951
7.58
45.
0.<» Jol
1.23
i.5038
6.02
0. 1758
O.o7
0.2533
1.52
J.734J
9.96
0.503^»
4.03
3.3345
10.64
1.6595
6.22
0.233d
0.99
0. 131o
C.99
0.0325
0.73
0.1169
0.70
4.5172
11.27
1.5915
6.37
0.3410
1.04
1 7.66
46.88
26.89
7.13
13.31
7.64
15.75
53.57
27.13
23.97
38.38
6.45
17. 4U
3 b . 9 '5
-------
fVJ
4=>
VEH
MODE
MODE
MODE
MODE
MODE
MODE
.4CDE
MODE
MODE
ICLE
57
58
59
60
61
62
63
64
65
CALC TCTAL
- 0011 RUN
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MH
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
15
DATE - 77/LO/ 7
113.
O.C677
0.53
20E.
C.29C9
3.28
241.
0.26C5
2.24
951.
1.5531
5.98
147.
0. 171C
0.68
439.
0.4774
2.63
214.
0.3660
2.93
67.
0.0673
1.14
4?.
0.0388
0.19
33£.
27.7068
2.83
687.
1.07&3
6.47
1012.
2.8579
32.26
1004.
2.3632
13.91
I48d«.
49.0711
188.81
418.
C,9£50
3.94
299.
C.656C
3.62
631.
1.4856
11.89
290.
0.5924
10.01
325.
C.6112
3.06
2500.
412.6111
42.25
0.96
23.61
141.65
2.37
1C5.09
1186. 10
1.91
7C.81
566.51
5.51
265.75
1C99.45
3.44
127.41
509.65
0.71
24.37
134.40
1.00
36.91
295.30
O.c2
20.04
338.45
C.73
21. H8
iC7.3d
2.56
6653.30
679.67
23.
0.0593
0.36
226.
1.0489
11. «4
170.
0.6575
5.26
425.
2.3011
B.85
448.
1. 7326
6.93
45.
0. 1624
G.90
41.
J.1536
1.27
18.
0.0603
L.02
10.
0.0339
U.15
235.
63.8e.22
o.52
0.0496
0.30
0.8808
9.94
0.5521
4.42
1.9325
7.44
1.4551
5.82
0.1364
0.75
0.1332
1.07
0.0507
0.86
0.0260
0.13
53.6315
5.48
57.d3
7.12
14.71
6.27
17.13
59. 79
27.46
24.81
78.69
11.75
-------
SITE - ST. LOUIS
VEHICLE - 0013 RUN NO.
19 DATE - 77/10/12
HC CO C02
AHP - 19.7
NOX MuXC
1975 FTP
OLD TRAN
BARO - 29.25 WB - 3
BACKGRCUND(CONC)
SAMPLE(CQNC)
ro
tn
CB -
MASS EMISSIQNS(GMS)
CLD STAB
BARO - 29.25 WB - 56. CB -
BACKGROUND(CGNC)
SAMPLE(CCNC)
MASS EMISSIONS(GMS)
HCT TRAN
BARO - 29.25 WB - 56. CB -
BACKGRCUNO(CCNC)
SAMPLE(CONC)
MASS EMISSIONS(GMS)
CCMPOSIT
MASS EMISSIONS(GM/MI)
0 MPH
BARO - 29.08 WB - 59. CB -
BACKGRGUND(CCNC)
SAMPLEtCCNC)
MASS EMISSICNS(GMS)
MASS EMISSIONS(GM/MI )
5 MPH
BARO - 29.08 WB - 58. CB -
BACKGRCUNO(CONC)
SAMPLEtCONC)
MASS EMISSIONS(GMS)
MASS EMISSICNS(GM/MI)
77. PIN
9.
1182.
46. 2S
80. PIN
9.
384.
25.38
79. PIN
8.
554.
21.56
7.68
76. PIN
8.
3?2.
4.39
1.42
75. PIN
7.
333.
4.55
17.65
- 39.70
0.
S341.
742.85
- 39.80
0.
4384.
597.17
- 39.70
0.
5202.
413.51
153.64
- 39.30
C.
3201.
90.17
29.09
- 39.30
0.
3426.
96.46
373.86
V/REV -
G.04
2.25
2776.26
V/REV -
0.04
1.36
2839.43
V/REV -
C.C4
2.01
2472.35
725.66
V/REV -
C.05
0.46
182.97
59.02
V/REV -
0.05
0.53
214.02
829.55
.2818
' 0.
208.
27.17
.2817
0.
87.
19.47
.2318
C.
243.
31.73
6.57
.2815
0.
2.
0.09
0.03
.2815
0.
2.
0.09
0.36
TEMP - ill.
22.73
TEMP - 111.
15.98
TEMP - 110.
26.20
5.42
TEMP - 111.
0.08
0.03
TEPP - 111.
O.OB
0.31
KEVS
REVS
RtVS
a. 95
REVS
81.26
REVS
6.03
INEKT1A - 6000,
MPG
- 10519,
- 18029,
- 10496.
- 37i>0
3748
-------
VEHCLE - 0013
RUN NO. -
23
DATE - 77/10/15
SITE -
ST. LOUIS
10 MPH
BARO - 29.08 WB - 58. DB
BACKGROUND(CONC)
SAMPLEICONC)
MASS EMISSICNS(GNS)
MASS EMISSIONS.d3
REVS - 3747.
I2.0fc
REVS -
99.99
REVS - 36651.
J.8i>
Inertia - 7000
P£VS - 36637.
8.34
-------
SITE - LIVONIA
VEHICLE - 0015 RUN NO.
27 , DATE - 77/10/20
HC CO C02
AHP - 20.1
NOX NOXC
1975 FTP
CLD TRAM
BARO - 29.42 MB - 65.
BACKGRCUNO(CONC)
SAMPLECCONC)
ro
CB -
MASS EMISSIONS(GMS)
CLD STAB
BARO - 29.42 WB - 65. CB
BACKGRCUND(CONC)
SAMPLE(CCNC)
MASS EMISSIONSCGMS
HCT TRAN
BARD - 29.42 HB - 66.
BACKGRCUNC(CONC)
SAMPLE(CONC)
CB -
MASS EMISSIOMS(GMS)
CCPPCSIT
MASS EMISSICNS(GM/MI)
0 MPH
BARO - 29.19 hB - 76. CB -
BACKGRQUND(CONC)
SAMPLE(CONC)
MASS EMISSIONS(GMS)
MASS EMISSIONSIGM/MI»
5 MPH
BAftO - 29.19 WB - 76. CB -
BACKGRCUND(CONC)
SAMPLE(CCNC)
MASS EMISSIONS(GMS)
MASS EMISSIONS(GfVMI)
79. PIN
16.
570.
22.52
80. PIN
3.
285.
19.29
31. FIN
6.
371.
14.54
4.97
ao. PIN
4.
153.
2.10
0.66
80. PIN
4.
148.
2.C3
7.87
- 39.40
0.
3853.
314.44
- 39.60
7.
1830.
251.63
- 39.50
2.
2643.
211.92
67.69
- 39.10
4.
2120.
60.11
19.39
- 39.10
4.
2003.
56.79
220.12
V/REV -
O.'OS
2.15
2707.63
V/REV -
C.04
1.31
2765,50
V/REV -
0.03
1.87
2327.82
700.68
V/RtV -
0.04
C.69
291.59
94.06
V/REV -
0.04
0.69
291.58
1130.14
.2820
0.
188.
25.20
.2818
0.
110.
2H.93
.2819
0.
211.
27.81
6.88
.2621
0.
5.
0.23
c.oe
.2821
0.
5.
0.23
0.90
TEMP - 111.
24.65
TEMP - 110.
24.20
TEMP - 111.
27.41
6.72
TEMP - 110.
0.32
0.10
TEMP - 110.
0.32
1.24
REVS
REVS
REVS
10.78
REVS
70.06
REVS
5.91
INERTIA - 5000.
MPG
- 10709.
- 18096,
- 10535.
- 3749.
- 3749.
-------
VEHICLE - 0015
RUN NQ. -
26
DATE - 77/10/19
SITE -
LIVCNIA
10 MPH
BARO - 29.19 WB - 76. CB
BACKGRCUNC(CONC)
SAMPLElCGNC)
MASS EMISSIONS(GMS)
MASS EMISSIO.MSIGM/MI )
15 MPH
BARO - 29.19 WB - 75. CB
BACKGRCUND(CONC)
SAMPLE(CONC)
MASS EMISSIONSOMS1
MASS EMISSIONSIGM/MI)
30 MPH
BARO - 29.19 WB - 75. CB
BACKGRCUNCICONC)
SAMPLE(CCNC)
MASS EMISSIOUS(GMS)
MASS EHISSIO.NIStGM/MI)
45 MPH
BARO - 29.19 WB - 75. CB
BACKGRCUNO(CONC)
SAMPLE(CCNC)
MASS EMISSIONS(GMS)
MASS EMISSICNSiGM/MI )
K 60 MPH
00 BAP3 - 29.19 WB - 76. CB
BACKGRCUNDtCGNC)
SAMPLEICONC)
MASS EMISSICNS(GMS)
MASS EMISSIONS(GM/MI)
MOC13AG)
BAPO - 29.22 Wb - 75. LB
BACKGFCUNC(CONC)
SAM-PL E_ir.CNC)
MASS EM.ISSIONS1GMS)
MASS EMISSIONStGM/MI)
80.
79.
79.
80.
81.
30.
4
PIN
4.
134.
1.83
3.55
PIN
5.
150.
2.C5
2.65
PIN
6.
256.
3.53
2.28
PIN
10.
402.
5.54
2.39
PIN
10.
615.
8.54
2.75
PIN
7.
496.
0.41
4.13
- 39.10
0.
1176.
23.42
64.65
- 39.10
2.
1161.
33.01
42.59
- 39.10
2.
426.
12.05
7.78
- 39.10
4.
1668.
47.31
20.36
- 39.10
0.
3376.
95.66
30.86
- 39.10
0.
5C22.
€35.13
85.31
V/REV -
0.04
C.94
403.69
780.84
V/REV -
0.04
1.03
444.67
574.02
V/PEV -
0.04
1.38
6C0.70
387.55
V/REV -
0.04
2.25
991.06
426.45
V/REV -
0.03
3.68
1630.68
526. C9
V/REV -
0.04
2.51
6'«fc3.48
662.32
.2821
0.
8.
0.37
0.72
.2821
0.
11.
0.51
0.66
.2821
0.
83.
3.87
2.50
.2821
0.
272.
12. 7C
5.46
.2821
0.
072.
31.29
10.09
.^1
0.
2c3.
71. d4
7.3^*
TEMP - 110.
0.51
0.99
TEMP - 110.
0.6d
0.88
TEMP - 110.
5.14
3.32
TEMP - 110.
16.67
7.17
TEMP - 111.
42.28
13.64
TEN'P - 111.
94.21
9.62
REVS
9.93
REVS
13.67
REVS
21.81
REVS
19.05
REVS
15.22
^EVS
10.96
- 3751.
- 3758.
- 3750.
- 3751
- 3747,
-------
VEHICLE - 0015
RUN NO. -
26
DATE - 77/10/19
SITE -
LIVCNIA
AA 1 a
BARD - 29.24 WB - 75. CB
BACKGRCUNDICONC)
SAMPLE(CONC)
MASS EMISSIONS(GMS)
MASS EMISSIQNSIGM/MI I
AA 1 b
BARO - 28.90 bB - 59. DB
BACKGRGUNC(CONC)
SAMPLEICGNC)
MA*SS EMISSIGMS(GMS)
MASS EMISSICNS(GM/MI)
80
80
.
2
29
5
*
2
33
5
PIN
5.
16.
.14
.24
FIN
7.
52.
.29
.98
- 39
161
449
80
- 39
.
4
8
9
-
•
7
10
*
*
13
71
oO
.
1902.
518
93
^
.
46
16
V/REV -
0.
1.
4527
813
V/P
C.
1.
4b82
677
05
06
.C7
.49
EV -
05
18
.52
.36
.282
0
74
32
6
1
.
•
.82
.06
.2818
0
93
41
7
•
•
.78
.51
TEMP - 1
44.32
7.96
TENP - 1
36.13
6.50
10
11
REVS - 36648.
9.27
Inertia - 6000
REVS - 36652.
8.51
ro
10
-------
VEHICLE - 0015
RUN NO. - 27
DATE - 77/10/18
L1VCNIA
SURVEILLANCE DRIVING SEQUENCE - ACCEL/DECEL MODES (EVEN NO.) AND STEADY STATE MODES (ODD NO.I
BARO - 29.22 WB - 75. CB - 80. PIN - 39.10 V/REV - .2821 TEMP - 111. REVS - MOD(BAG) VALUE
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
MODE 8
MODE 9
MODE 10
MODE 11
MODE 12
MODE 13
MODE 14
SAMPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GHS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CChiC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAr*PLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS"(GMS)
MA5-S (GM/MI)
SAPPLE(CONC)
MASS (GMS)
MASS (GM/MI)
96.
0.0754
0.45
561.
0.5258
8.73
362.
0.4244
3.40
174.
0.217C
2.93
127.
0.0996
0.60
263.
0.1644
8.13
216.
C.2528
4.04
459.
0.3949
5.60
340.
0.3965
3.19
61G.
0.6194
4.55
529.
0.6200
3.31
293.
0.2747
2.17
219.
0.2563
2.05
1039.
1.3802
6.23
1685.
2.6585
15.95
5017.
9.4937
157.79
2517.
5.9568
47.65
972.
2.4537
33.11
1767.
2.7879
16.72
2891.
2.649G
181.54
1414.
3.3464
53.54
2714.
4.7102
66.31
2529.
5.9852
47.88
2621.
5.3759
39.53
3572.
6.4536
45. C9
17CC.
3.2356
23.32
2031.
4 . bCt>6
38.45
15204.
35.4154
163 . 73
0.60
14.95
89.67
2.70
80.39
1335.32
1.69
62.75
502.00
C.98
39.04
526.86
C.60
14.95
89.66
1.36
26.90
1338.23
1.09
40.71
651.39
2.42
66. CO
936.21
1.53
56.78
454.22
2. £3
91.27
671. C9
3.27
121.74
o49.3C
1.61
47.80
3 77.00
1.C5
39.23
313. 80
4.21
177.45
620.39
4.
0.0134
0.06
299.
- 0.9299
15.45
Ibl.
0.6259
5.01
68.
0.2820
3.81
10.
0.0259
0.16
67.
0.1389
6.91
d2.
0.3168
5.10
263.
0.7498
10.64
Ul.
0.5093
4.07
520.
1.7520
1 2 . 1 8
357.
1.3879
7.40
171.
O.bilP
4.19
71.
0.2760
2.21
417.
1.8373
3 . 4-y
0.0136
0.08
1.2195
20.26
0.8208
6.57
0.3698
4.99
0.0340
0.20
0.1822
9.06
0.4130
6.69
0.9833
13.95
0.6679
5.34
2.2976
16.89
1.8200
9.71
0.6974
5.50
0.3620
2.90
2 .4U9<*
11.14
76.40
5.51
15.10
15.09
75.31
b.38
11.66
8.38
16.45
11.07
12.Ib
20.93
23.31
s. oa
-------
VEHICLE
MODE 15
MODE 16
MODE 17
MODE 18
MODE 19
MODE 20
MODE 21
MODE 22
MODE 23
MODE: 2.
0.0337
0.20
445.
3.o907
11.14
710.
2.7602
11.04
336.
2.0029
6.69
2.9059
11.62
1.3785
8.03
1.2388
6.61
3.6496
17.86
3.8991
14.62
1.8047
5.36
0.0561
0.90
4.338^
13.84
3.5640
14.34
1.0349
5.25
0.0442
0.27
'+.8393
14.61
3.6197
14.48
2.626t>
8.77
9.28
14.13
19.91
9.79
12.81
17.16
1 o. 06
b.66
•11.52
15.56
59.32
7.06
10.07
18. BO
-------
CO
ro
VEHICLE
NODE 29
MODE 30
MODE 31
MODE 32
MODE 33
MODE 34
MODE 35
MODE 36
MODE 37
MODF 38
MODE 39
MODE 40
MODE 41
MODE 42
- 0015
RUN NO. -
27
DATE - 77/10/18
SITE -
LIVONIA
SAMPLE(CQNC)
MASS (GMS)
MASS (GH/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSI
MASS (GM/MI)
237.
0.2775
2.22
222.
0. 1559
2.69
161.
0.1881
3.01
131.
0.0822
4.75
121.
0.0949
0.57
588.
1.0110
5.75
566.
0.6632
3.54
322.
0.4025
2.89
425.
0.4977
7.96
982.
1.3811
9.C4
639.
0.749C
3.99
303.
0.4496
3.45
143.
O.il21
0.67
1071.
2.0931
7.fa9
3026.
7.1614
57.29
1402.
1.9908
34.38
1714.
4.0564
64.90
1418.
1.7898
103.46
2446.
3.8592
23.15
5410.
16.7784
106.76
3964.
9.3813
50.03
2064.
5.21G4
37.43
2230.
5.2776
84.44
5749.
U.3268
106.85
4820.
11.4071
60.84
2C83.
fc.2443
47. 89
1619.
2.5544
15.32
1E787.
74.1028
279.21
1.01
37.74
3C1.95
1.16
25.99
448.96
0.74
27.65
442.39
0.75
14.94
863.78
0.51
12.71
76.27
3.30
180.23
1024.63
2.93
1C9.06
581.64
1.44
56.97
409.29
C. 75
28.03
448.50
2.85
127.31
633.21
3.22
119.89
639.43
1.33
62.93
482.57
C.62
15.45
92.66
4.44
275.37
1037.56
22.
0.0855
0.68
64.
0.1493
2.58
23.
0.0894
1.43
11.
0.0228
1.32
5.
0.0130
U.08
438.
2.4974
14.20
370.
1.4384
7.67
175.
0.7257
5.21
14.
w.0544
0.87
313.
1.4695
9.62
407.
1.5823
8.44
167.
0.8224
6.31
12.
0.0311
0.19
286.
1.8531
6.96
0.1122
0.90
0.1958
3.38
0.1173
1.88
0.0299
1.73
0.0170
0.10
3.2750
18.62
1.3863
10.06
0.9517
6.84
0.0714
1.14
1.9271
12.61
2.0749
11.07
1.0784
8.27
G.0408
0.24
2.4301
9.16
22.24
17.35
16.02
8.52
77.55
7.33
13.22
18.60
14.64
8.62
11.87
15.61
74.67
5.91
-------
VEHICLE - 0015
MODE 43
RUN NO. - 27
DATE - 77/10/16
SITE -
LIVCNIA
to
to
MODE 44
MODE 45
MODE 46
MODE 47
MODE 48
MODE 49
MODE 50
MODE 51
MODE 52
MODE 53
MODE 54
MODE 55
MODE 56
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MIJ
SAPPLEICCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS tGMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI )
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MAS-i (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
1211.
1.4198
5.68
369.
0.8078
3.07
170.
0.1325
0.79
357.
0.4189
5.68
391.
0.4587
3.67
612.
1.1962
3.82
866.
1.0829
4.C6
477.
0.6704
2.84
247.
0.3083
2.21
177.
0.1382
3.11
1£4.
0.1276
0.77
622.
1.8478
4.61
728.
0.8533
3.41
350.
0.9576
2.91
13883.
32.8558
131.42
3794.
16.7607
63.63
2672.
4.2157
25.29
4360.
1C. 3185
140.01
4342.
10.2759
82.21
4899.
19.3234
61.66
S145.
23.0356
86.56
3661.
10.3970
44.02
2417.
6.1015
45.77
1631.
2.5733
57.96
159d.
2.5212
15.12
6267.
37.5734
93.72
7169.
I£.96b3
67.67
2550.
1 4 . 0 8 1 4
42. 7b
4.62
171.89
687.55
1.78
123.43
468.61
0.64
15.95
95.69
2.09
77.70
1054.31
2.00
74.34
594.74
3.78
234.66
748.77
4.83
191.65
716.59
2. 63
117.42
497.14
0.84
33.48
251.19
1.42
35.36
796.28
0.85
21.17
126.99
3.61
340.65
849.71
4.90
182.26
729.04
1.82
157. 74
479.02
636.
2.4726
9.89
236.
1.7126
6.50
8.
0.0207
0.12
211.
0.6203
11.13
184.
0.7153
5.72
518.
3.3563
10.71
696.
2.8862
10.32
394.
1.33d!
7.78
38.
0.1576
1.18
ICo.
0.2747
6.19
35.
0.0907
0.54
493.
4.8554
12.11
716.
2. 7d3o
11.13
251.
2.2769
6. 91
3.2424
12.97
2.2459
8.53
0.0272
0.16
1.0757
14.60
0.9381
7.50
4.4014
14.04
3.7849
14.19
2.4104
10.20
0.2065
1.55
0.3t>03
8.11
0.1190
0.71
6.3672
15.88
J.650J
J4.60
2.9.358
9.07
9.73
15.35
64.34
6.87
12. 07
10.35
10.23
15.43
26.86
9.89
57.94
8.77
10.48
lb.98
-------
VEHICLE
MODE 57
MODE 58
MODE 59
MODE 60
WODE 61
MODE 62
MODE 63
MODE 64
MODE 65
CALC TC7AL
- 0015
RUN NO. - 27
DATE - 77/10/18
SITt -
LIVONIA
CO
SAWPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLEtCONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(COMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
122.
0.0950
0.57
321.
0.4517
5.10
428.
0.5019
4.02
693.
1.1376
4.38
1291.
1.5139
6.G6
530.
0.57S7
3.20
25fc.
0.3020
2.42
198.
0.2008
3.39
150.
0. 1402
0.70
522.
42.9634
4.39
2155.
3.4000
20.40
3106.
6.3209
99.56
3764.
8.9080
71.26
6501.
21.5396
82.88
19197.
45.4320
181.73
3241.
11 .5766
63.85
2567.
6.0751
48.60
2243.
4.6005
77.71
2030.
3.8434
19.22
5279.
£77.86fa4
89.08
0. 79
19.68
118.06
1.75
78.00
880.31
1.79
66.50
531.98
3.53
164.08
7C8.27
4.61
171.57
686.30
2.94
1C2.15
563.42
0.95
35.50
283.99
1.01
32.70
552.42
C.70
20.93
104.64
2.49
6509.94
665.03
9.
0.0233
0.14
180.
0.83J7
9.48
176.
0.6842
5.47
388.
2.1118
8.13
525.
2.0410
8.16
425.
1.5421
d.51
44.
0.1711
1.37
62.
0.2089
3.53
22.
0. J684
0.34
289.
78.9469
8.06
0.0306
0.18
1.1012
12.43
0.8973
7.16
2.7693
10.66
2.6765
10.71
2.0223
11.15
0.2243
1.79
0.2739
4.63
0.0897
0.4i>
103.5282
10. 5d
58.42
3.43
13.52
10.41
8.96
13.17
24.12
12.95
64.76
10.83
-------
SITE - LIVONIA
VEHICLE - 0016 RUN NO.
1975 FTP
CLD TRAN
BARO - 29.52 WB - 63.
BACKGRCUND(CONC)
SAMPLE(CGNC)
CO
in
CB -
MASS EMISSIONS(GMS)
CLD STAB
BARO - 29.52 WB - 63. CB
BACKGRaUNDlCONC)
SAMPLE(CONC)
MASS EMISSIGNS(GMS1
HCT TRAN
BARO - 29.52 WB - 63. CB
BACKGRCUNC(CONC)
SAMPLE(CCNC)
MASS EMISSIONSIGMS)
CCfPCSIT
MASS EMISSIONSIGM/MI)
0 MPH
BARO - 29.54 WB - 63. Db
BACKGPCUNC(CGNC)
SAMPLEICCNC)
MASS EMISSIONS(GMS)
MASS EMISSIONS(GM/MI )
5 MPH
BARO - 29.54 WB - 63. DB
BACKGRCUND(CONC)
SAMPLEICCNC)
MASS EMISSIONSiGMSI
MASS EMISSICNS(GM/MI)
28 DA
HC
78. PIN -
5.
2757. 1
111.84
79. PIN -
15.
1959.
133.19
79. PIN -
9.
2176.
86.92
30.78
78. PIN -
0.
710.
10. ce
3.25
78. PIN -
1U.
87C.
12.21
47.32
TE -. 77/
CO
39.20
1.
1177.
S16.52
39.40
0.
644.
88.99
39.30
2.
2C17.
162.92
76.79
40.10
0.
718.
20.58
6.64
40.10
C.
262.
7.50
29.09
10/22
C02
V/PEV -
0.06
2.32
2936.06
V/ftEV -
0.05
1.53
323C.88
V/REV -
0.04
2.39
2996.08
826.97
V/PEV -
C.03
0.68
293.86
94.79
V/RfrV -
0.03
C.6d
2^3.60
1137.97
AHP -
NOX
.2821
1.
210.
2d.l9
.2819
0.
238.
54.03
.2820
0.
430.
57.10
13.16
.2815
0.
13.
0.61
0.20
.2815
0.
13.
O.ol
2.37
25.9
NCXC
TEMP - 1
26.56
TEMP - 1
50.52
TfcMP - 1
53.39
12.32
TEMP - 1
0.58
0.19
TEMP - 1
0.58
2.23
INERTIA
MPG
10. REVS
10. REVS
10. REVS
8.49
10. REVS
76. 82
10. REVS
o.65
- 7500.
- 10t>92,
- 18040
- 10546,
- 3752.
- 3749.
-------
CO
VEHICLE * 0016
10 MPH
BARO - 29.54 Wf
BACKGROUND I CONG)
SAMPLE(CONC)
15 MPH
BARO - 29.54 Wt
BACKGRCUNCCCUNCJ
SAMPLE(CCNC)
30 MPH
BARO - 29.54 ME
BACKGRCUND(CONC)
SAMPLE(CCNC)
45 MPH'
BARO - 29.54 Wf
BACKGRCUNC(CDNC)
SAMPLE(CONC)
60 MPH
BARO - 29.54 ht
BACKGROUND(CONC)
SAMPLE(CCNC)
MOC(BAG)
BARO - 29.55 Wt
BACKGROUND(CGNC)
SAMPLEiCClMC)
RUN NO. -
63. CB -
C)
(QMS)
(GM/MI)
63. CB -
CJ
JGNS)
< GM/MI )
63. CB -
C)
(CMS)
(GM/KI )
62. CB -
C)
(CMS)
(GM/MI )
62. CB -
C)
(GNS)
(GM/MI )
o2. Cb -
C)
(GMS)
(GF/MI )
28 DATE - 77/10/22
78. PIN
0.
1410.
20.01
36.71
79. PIN
30.
3490.
49.17
63.44
79. PIN
30.
<*790.
67.67
43.66
79. PIN
70.
6760.
95.24
4C.S8
78. PIN
3C.
2650.
37.35
12.05
77. PIN
21.
234fc.
192.58
IS. 67
- 40.10
0.
264.
7.57
14.63
- 40.10
0.
213.
6.11
7.88
- 40.10
0.
161.
4.62
2.98
- 40.10
4.
532.
15.16
6.52
- 40.10
0.
21b6.
62.63
20.20
- 40.10
C.
4740.
790.56
80. 76
V/REV -
0.04
C.63
266.98
516.41
V/REV -
0.04
C.98
425.58
549.14
V/RFV -
O.U3
1.66
737.20
475.61
V/PFV -
C.04
2.99
1334.50
574.25
V/PEV -
O.C3
5.03
225o.<*4
72B.5J
V/REV -
C.05
3.27
8484.71
866. 76
SITE -
.2815
0.
17.
0.80
1.55
.2815
0.
110.
5.18
6.68
.2815
0.
333.
15.69
10.12
.2815
0.
783.
36. B6
13.86
. 2 a 1 5
0.
1313.
ol.dO
is.ya
.2816
0 .
523.
143.29
14. 6t
LIVONIA
TEMP - 110.
0.75
1.46
TEMP - 110.
4.84
6.25
TttfP - 110.
14. 60
9.46
TEfP - 110.
33.77
14.53
TEMP - 110.
57.02
Id. 3^
TEfF - 111.
13J. 15
13.60
REVS
13.40
RLVS
11.64
REVS
14.34
PEVS
12.42
REVS
11.12
HEVS
8.40
- 3751
- 375?
- 3753.
- 3751
- 3750,
- 21852.
-------
VEHICLE - OOL6
RUN NO. -
28
DATE - 77/10/2:2
sire -
LIVCNIA
AA 1 a
BARO - 29.58 WB - 67. CB -
BACKGROUND(CQNC)
SAMPLE(CC^C) H
MASS EMISSIONS(GMS) 2b!
MASS EMISSIQNSCGM/MI) 4'
AA 1 b
BARD - 29.58 WB - 67. CB - 80.
BACKGRGUN13CCONC)
SAMPLE(CCNC)
MASS EMISSICNS(GMS)
MASS EMISSICNS(GM/MI )
V/RhV - .2813
- 110. REVS - 36025,
7.
0.
11
94
PIN
H •
?•
88
52
13
551
•
•
0
1
•
•
150.84 5337
27.
- 40.
11
623
171.
30,
10
30
•
•
81
«7
S5
V/
c
1
102
y
H
•
•
7
•3
12
32
.51
.12
EV -
11
39
.94
.89
0
166
76
13
•
•
•
•
24
7C
.2814
1
ISO
32
14
•
•
•
•
42
8L
7
1
TEMP
7
3
83
1
5
.40
.91
- 1
.68
.04
7.76
Inertia - 8500
- 36641
7.28
-------
VEHICLE - 0016
KUN NU. -
CATt - 77/10/24
SITE -
LIVONIA
SURVEILLANCE DRIVING SEQUENCE - ACCEL/CECEL MCOfcS (EVEN NC.I
BARQ - 29.55 WB - 62. CB - 77. PIN - 40.10 V/REV
AND STEADY STATE MODES (ODD NO.)
• .281o TEMP - 111. KEVS - MGDtdAGJ VALUF
oo
00
MODE 1 SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
MCDfc 2 SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
MODE 3 SAMPLE (CCNC)
MASS (GMS)
MASS (GM/MI)
MCCE H SAMPLE(CCNC)
MASS (GMS)
,'^ASo ( oVi I )
MOLJt 5 SAMPLE (CC-ML)
MASS (GMS)
MASS ( GM/MI)
MPCE 6 SAMPLE (COMC)
MASS (GMS)
MASS (GM/MI)
MHQE 7 SAMPLE (CONC)
MASS (GMS)
MA£i (GM/PI)
MuDE a S^'/DLE (CCKC )
MASS (G.-1SI
MACS (Gi-i/MI)
r'GOL 9 SAMPLMCCNC)
MASS (GMS)
MAGS IGM/'-il )
•IODE 10 SA^PLE(CCi>iC)
MASS (GMS)
MASS (GM/MI)
MGuC 11 SAMPLE (CCNC I-
MASS (GMS)
MASS (GM/MI)
MODE 12 SAi'PLE (CCNC)
MASS (GMS)
IMSS (GM/MI)
MODE 12 SAf-VLF. (CC.MC )
MASS (GKS)
MASS (GM/MI)
,'IOLE 14 SAMPLE (CCIVC)
MASS (GMS)
MASS (GM/MI)
8B2.
0.6922
4.15
2024.
1.9035
31.62
315b.
3.7127
29.70
19bl .
2.4645
33.53
129fc .
1.01:4
o.C9
1799.
1. 1262
5o. 13
2704.
3.1792
5" . t 7
1942.
1.6746
23.75
4152.
4. 8816
39. 05
168t .
1.9218
14. 13
4781.
5.6201
29.97
2736.
2.5750
20.31
4727.
5. -j5 td
44.45
2619.
3. 48 £-9
16.13
554.
0.8766
. .5.26
£435.
16.C169
266.06
21C9.
5.0C59
40.35
858.
2.1723
29.32
513.
C.3110
4. a 7
i2(i b.
1 . o 3 J t)
£1 . li
771.
1. J3UO
29.213
119C.
2.5712
2 9 . 3 fc
514.
1.2200
9.76
219b.
4.5215
23.25
9b5 .
Z . 2 6 ' j 6
1 2 . C 9
511.
CJ 7 '1 ^
• ' i \ ' _/
7.ui>
dll.
1.925C
1 i; • . 4 v
22312.
6C.020o
277.49
0.55
13.76
fl2. 52
3. 33
99.34
1650.09
2.T4
76.14
609.11
0.4b
19. ?3
259.56
C. 77
19.25
115.51
1. 11
3'j.2C
1751.04
1.03
29.U2
62'. .34
2.Cd
64.39
1197. JO
2.24
13.62
r.6fc. 99
4.b'0
155.27
1141 .c9
3 . :o
132.25
I L 'j . C 5
O.ol
2-T.32
191 .(30
1 . /3
6 < . 5 3
51 1-,. 2?
6.03
339. 6fc
1570.41
6.
O.')20a
G.12
350.
1.0917
18. 14
350.
1.3647
i ; . y ^
ol.
J.2337
3.42
20.
•J. J52D
L.31
27r .
0 . D 6 1 5
?7.93
Ic5.
J.6434
1'"! . 29
o 4 4 .
1.6414
26.12
441.
1.71V!)
1 j . 7 c
1014.
3.i2c5
25.20
He 5.
J. . :•? 7 2 7
1 f . 9 v
1 j^j.
3.3306
2.61
3 ^ tj .
1 . 3 H :j i
11.1 0
1 i ^ r .
5 . 2t7^
2-+. 35
G.C193
0.12
1.0145
16. £5
1.2631
10.15
G.2358
3.18
0.048}
0.29
0.521 7
25.96
0 . 5 9 7 J
9.57
1.7111
2H.27
1 .5970
1 2 . 7 d
3.1041
23.41
3.1341
16.72
'j . 3 C 7 i
2.42
1.2U99
10.32
't.8943
22.63
d5.38
4.09
11.5o
21. 54
62.29
4.^2
10.67
6.73
7.1o
1 J .62
33.09
13.02
p.31
-------
VEHI
MODE
MODE
MODE
MODE
MODE
MODE
MODE
MCDE
MLUE
MCCE
MODE
MOOt
MODE
MODE
CLE -
15
16
,
17
1C
19
20
21
22
23
24
25
26
27
28
0016 RUN
SAMPLE(CONC)
MASS (GMS»
MASS (GM/MI)
SAPPLEl CCNC )
MASS (GMS)
MASS (GM/MI)
SAMPLE(CUNC)
MASS (GMS)
MASS (GM/MI )
SAMPLE (CONG)
MASS (GMS)
MASS (GM/MI)
SAfPLEtCQNC)
MASS (GMS)
MASS (GM/ML)
SAMPLE(CC.NC)
MASS IGMS)
MASS IGM/MII
SAMPLE (GONG)
MASS (GMS)
MASS (GM/MI )
SA^PLE(CCNG)
MASS (GMS)
MASS (GM/MI )
S0MPI.F (GCNC )
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCNC)
MASS IGMS)
MASS (GM/MI)
SAMPLE (CONG)
I^ASS IGMS)
MASS (GM/MI)
S*VPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAWPLE(CCNC)
I^ASS (GMS)
MASS (GM/MI)
SAMPLEICCNC)
MASS (GMS)
MASb (GM/MI)
DATE - 77/10/24
SITE -
LIVONIA
2245.
2.6391
10.56
3261.
3.0674
17.68
7048.
8.2854
'+4.19
2062.
2.2630
1 1 . C 8
1809.
2.2685
8.51
2504.
5.8993
17.52
2133.
2.5077
40.12
1690.
3.4444
10.98
1567.
1.8659
7.46
1720.
2.8302
14.34
1253.
0.9817
5 . 8 ')
1402.
3.516?
10.62
1945.
2.2868
9.15
2/81.
5.0122
16.74
-|3*1.
17.4245
69.70
3154.
5. 9 bye
34.90
1901.
4.5122
24.06
799C.
17.7C06
&6.t>4
4897.
12.3983
46.49
1431.
7.03C5
20.it
1390.
2.2993
52.79
16G8C.
74.3849
237.20
^813.
11.4359
45.74
1854.
fc.1609
31.23
1664.
2.633 I
1 5 . >J 0
1*141.
71.60^9
216.13
4987.
11.8371
47.35
2078.
7.5629
23.26
5.92
220.62
883.29
2.17
64. b2
277.74
3.27
121.90
650.13
6.87
239.33
1171.45
6.33
251.89
944.46
1.46
Kb. 78
323.08
0.91
34.15
b4t,.<*2
7.12
't60.94
1469.82
5.7d
215.91
863.63
1.24
64. t»C
327.41
C.62
15.52
93.09
C.25
497.64
15C2.G9
5.75
214. 79
859.16
2.05
117.31
391.82
1429.
5.5718
22.29
212.
0.6613
3. S3
d40.
3.2752
17.47
1381.
5.0257
24. bC
149d.
6.2302
23.36
186.
l.tSJi
4.31
59.
0.2690
4.30
974.
6.5d27
2J.99
1473.
5.7434
2
-------
VEHICLE
MODE 29
MODE 30
MODE 21
MODE 32
MCDE 33
MODE 34
MODE 35
MODE 36
MODE 37
MODE 38
MODE 39
MODE 40
MODt 41
MOCE 42
- 0016
RUN NO. -
DATE - 77/10/24
SITE -
LIVCMA
SAyPLE(CGNC)
MASS (GMSJ
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS (GM/MI I
SAMPLEICCNCJ
MASS (GMSJ
MASS (GM/MI)
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAI/PLEICCNC)
MASS (GMS)
MASS (GM/MIJ
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI)
S'AMPLE(CCNC)
MASS (GMS)
MASS (GX/MI)
SAMPLE(CONC)
MASS (GMSJ
MASS IGM/M!)
SAMPLC(CONC)
MASS (GMSJ
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLF(CCJNC)
MASS (GMS)
MASS CGM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
369C.
A. 3381
34. 70
2554.
1.8015
31.11
1882.
2.2122
35.40
1708.
1.C711
61.91
1104.
C.&656
5.19
1331.
2.295d
13.05
4167.
4.S917
26.13
3181.
3. see?
23.65
1690.
1.S864
31.70
1700.
2.39B1
15.69
3974.
4.6716
24.92
2917.
4.343d
33.31
1267.
1.C09C
6.C5
U3C.
3.5857
13.51
1195.
2.8364
22.69
729.
1.0362
17.03
756.
1.7944
2B.71
373.
C.4722
27.29
650.
1.C286
6.17
S338.
32.5CdO
184. dl
1551.
3.5814
19.63
1031.
2.6103
18.75
753.
1.7873
28.60
9162.
26.C961
17C.79
24dl.
5.8889
31 .41
1082.
2.2531
24.95
774.
1.2243
7.35
20156.
79.7365
3CC.44
1.40
52.15
417.24
0.82
16.47
318.92
0.77
28.89
462.30
0.51
10.21
59U.20
0.69
17.26
103.52
4.31
235.97
1341.51
3. 7b
140.96
751.80
1.31
52.02
373.74
0.75
2&.14
451.27
4.54
203.41
1331.23
3.02
134.98
719. 89
0.82
39. 'JO
299.05
O.bt
16.51
99. C4
7.37
456.25
172o.63
200.
0.7798
6.24
122.
0.2854
4.93
52.
0.2020
3.24
82.
0.1705
9.d6
28.
0.0728
0.44
669.
3.8258
21.75
910.
-,.54o2
18.92
135.
0.5615
4.03
39.
0. 1521
2.43
579.
2.7091
17.73
062.
3.3610
17.93
113.
0.55bl
4.2P
•>o.
O.C7UO
0.47
1107.
7.1938
27. 11
0.7246
5.8C
0.2652
4.58
O.ld84
3.01
0.1585
9.16
0.0t>76
0.41
3.5551
20.21
3.2972
17. 5b
0.5217
3.75
0.1413
2.26
2.5174
16.48
3.1232
16.66
0.51d6
3.9o
0.0725
0.43
6.6349
25. 19
15.77
19.91
14.32
10. 70
68.44
5.30
10.25
17.96
l
-------
VEHICLE -
MODE 43
MODE 44
MODE 45
MODE 46
HODE 47
MODE 48
MODE 49
MODE 50
MODE 51
MODE 52
MODE 53
rtODE 54
MODE (55
MODE 56
0016 RUN
SAPPLE(CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE (CCNC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (CMS)
MASS IGM/MIJ
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLED CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEtCCMC )
MASS (GMS)
MASS (GM/MI)
SAIKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAPPLEtCCNC)
MASS (GMS)
MASS (GVMI)
SAMPLE (CQNC)
MASS (GMS)
MASS (GM/MI)
SAl"PLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CDNC)
MASS (GMS)
MASS 1 GM/MI )
SANPLEtCQNCl
MASS (GMS)
MASS (GM/MI)
28
GATE - 77/10/24
SITE -
LIVONIA
2336.
2.7458
10.98
2522.
5.5345
21.01
1314.
1.0295
6.18
1409.
1.657G
22.48
2824.
3.3201
26.56
2467.
4.3332
15.42
1716.
2.1543
8.03
2210.
3. 1173
13.20
3396.
4.2584
31. C5
2651.
2.0777
46.79
1678.
1.31S5
7.89
1294.
3.8532
9.61
1315.
1.5455
6.18
2670.
7.3232
22.24
6299.
14.9512
59.80
186C.
6.2411
31.29
1411.
2.2328
13.39
2841.
£.7433
91.50
1224.
2.9053
23.24
8914.
35.2035
112.52
5023.
12.7173
47.68
212«t.
6.0498
25.51
1347.
2.4104
25.58
675.
1 .068 1
24.06
6b6.
l.)B55
6.51
9497.
57.1061
142.44
4141.
9.3290
J9.32
1351.
7.4623
22.72
6.50
242.54
970.16
1.42
98.74
374.67
0.70
17.51
1U5.07
3.02
112.84
1531.11
2.16.
80.62
644.94
5.03
313.13
999.13
6.90
274.o7
1C29.87
2. 48
ill. 13
470.51
1.29
51.23
284. 35
C.84
21.02
473.36
C.62
15.51
93.06
5.13
485.42
1210.84
6.22
222.01
926.02
1 . 8 a
U3.t>3
49c. SO
1554.
6.0592
24.24
182.
1.3247
5.03
16.
0.0416
0.25
515.
2.0080
27.25
412.
1.6064
12.85
860.
5.5887
17.83
1554.
6.4631
2f .23
427.
2.C447
8.66
15^.
0.6239
4.6d
107.
0.2781
6.2t,
35.
J.C910
G.b5
b24.
8.13V2
2 0 . 3 0
15*1.
6. (,085
<£4.03
33V,
3.0342
9.i7
5.6305
22.52
1.23C9
4.67
0.0386
0.23
1.8660
25.32
1.4926
11.94
5.1933
16.57
6.0059
22.52
1 .90uu
8.04
0.5797
4.35
0.2585
5.82
0.0845
0.51
7.5634
10.87
5.5834
22.33
2.8660
d.7C
8. 08
18.09
60.91
5.08
11.59
7.25
7.85
16.06
16. 88
13.46
69.16
6.06
j. fy
14.72
-------
.£»
ro
VEHICLE
'^ODE 57
MODE 58
-IODE 59
M3DE 60
MODE 61
MODE 62
MOOt 03
MODE 64
MODE 65
CALC TCTAL
- 0016 RUN NO. - 28
SAMPLE(CCNC) 1147.
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CONG)
MASS (CMS)
MASS (GM/MI)
SAMPLE -(CONG)
MASS (GMS)
M*,SS (GM/MI)
S^PLfclCCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLEICCNC)
MASS (GMS)
MASS (GM/MI )
C.8992
3.39
1387.
1.9571
22.09
2502.
2.9411
23.53
3094.
5.0926
19.59
1641.
1.9295
7.72
2112.
2.3175
12. 7d
2903.
2.4134
27.31
2655.
2.9067
49.13
1367.
1.2861
6.43
2344.
193.6460
19.76
DATE - 77
504.
C.7975
4.7ti
1872.
5.3320
60.18
814.
1.9321
15.46
14/98.
49.1740
189. 2C
1CC28.
23.3023
95.21
2208.
4.8915
26.98
126S.
3.0121
24. 1C
075.
1.3185
23.46
R63.
1 . u 3 o 7
3.19
4679.
76 C .3l!0 1
79.72
/ 10/24
0.63
15.76
94.52
2.34
104.82
1163.09
1.99
74.24
593.91
5.30
276. 79
1064.99
6.62
247. Cb
908.31
2.30
97.63
536.49
1.10
40. 9C
327.24
C. 77
25. C5
423. Ib
0.67
20. 11
100.57
3.19
b 379.35
L5o.CC
SITE -
13.
0.0338
0.20
421.
1.9698
22.23
416.
l.t>220
12.93
122*
3.9412
15.16
1394.
5.4353
21.74
522 .
L.39V6
10. 4U
1J :>.
0. 448^
3.^9
12o.
0.4258
7.19
26.
0 . ? y 1 1
0.41
565.
154. 7966
1^.81
LIVC.\
0.0314
0.19
1.8305
20.66
1.5073
12.06
3.6624
14.09
b.ObCd
^0.20
1.7652
9.74
0.4167
3.33
0.3057
6.68
v-.O 754
0.3:3
143.8451
14.69
IA
74.49
6.59
12.81
6.23
7.64
14.26
19. o5
14.41
t, 6 . 3 1
8.50
-------
SITE - LIVONIA
VEHICLE - 0017 kUN NO.
30 CATE - 77/1C/29
HC CO C02
AHP - 25.1
NJX NGXC
1975 FTP
CLC TPAN
BARD - 29.56 1*8 - 64.
BACKGROUND(CONC)
SAMPLE(CCNC1
CB -
INERTIA - 7000.
MPG
- 10652,
MASS EMISSIQNS1GMS)
CLC STAB
BARG - 29.56 WB - 64. CB -
BACKGROUND(CCNC1
SAMPLE (CCiMC)
MASb EMISSICNSIGMSJ
HCT TRAN
BARG - 29.56' WB - 65. CB -
BACKGRCUND(CGNC)
SAMPLE(CONC)
MASS ENISSIGMS(GyS)
CCNPCSIT
MASS cMISSIONStGIVMI 1
0 MPh
bARQ - 29.55 tab - 61. L3 -
BACKGPCUNt(CQNC)
SAMPLE(CCNCI
MASS EMISSIQNSIGMS)
MASS EMISSICNSCGM/MII
5 MPH
BARO - 29.55 KB - 61. Ct> -
BACKC^GUND(CCNC)
SAMPLE(CCNC)
MASS =^Ii!JlCNS(C4SJ
MASS £MSSIC- 4.5?
- 1803d.
3/45.
3742.
-------
VEHICLE - 0017
RUN NO. -
30
DATE - 77/10/29
jiTE -
IIVCNU
10 MPH
BARO - 29.55 I*B - 61. CB -
BACKGRCUND(CONC)
SAMPLE(CGNC)
MASS EMISSICNS(GMS)
MASS EMISSIONStGM/MI)
15 MPH
BARO - 29.55 WtJ - 6C. CB -
BACKGRCUNC(CGNC)
SAMPLEtCONCJ
MASS EMI3SICNS1GMS)
MASS EMISSIONS(GM/MI}
30 MPH
BARD - 29.55 KB - 61. CB -
B^CKGPCUNDlCrNC)
SAMPLE{CCNC)
MASS EMISSIQNS(GMS)
MASS EMISSIGNS(GM/MII
45 MPH
BARO - 29.55 kiLi - 62. Cb -
BACKGRCUND(CONC)
SAMPLE(CCNC)
MASS EKISSICNS(GMS)
MASS EiVISSIGiNSlGM/MI )
60 MPH
BARO - 29.53 VvS - 63. CB -
BACKGRCUNLXCCNC)
SAMPLE(CCNC)
MASS EMSSICNS(GMS)
MASS EMISSICNS(GM/MII
MOD (BAG)
- -29.51 KS - 62.
bACKGRCJJNC(CJNC)
SAfPLE{CCNC)
Cb -
MASS EMISSIONS(GMS)
MASS EMISSIONStG^/MI I
76.
75.
76.
77.
76.
79.
6
PIN
10.
190.
2.55
4.94
PIN
10.
20 *;.
2.82
3.64
PIN
1C.
393.
5.42
3.50
PIN
1C.
bfc5.
8.17
3.51
PIN
17.
607.
8. 42
2.72
PIN
27.
762.
1.C4
6.24
- 41.10
0.
3979.
113.34
219.22
- 41.10
0.
3727.
1C6.16
136. 9<3
- 41.10
0.
263C.
74. a9
4b.32
- 41.10
0.
4231.
120.73
51.95
- 41.10
48.
5511.
156. 17
50.38
- 42.10
276.
1C891.
1773.30
iai.1 7
V/PEV -
C.C5
C.79
333.50
645.07
V/FEV -
0.05
1.07
459.36
592.72
V/REV -
C.G4
1.75
766.54
495.83
V/PFV -
C.G4
3.23
1436.45
618.09
V/REV -
O.C6
5.62
2501.91
6C7.C7
V/R^'V -
C.il
3.26
b352.96
^53. 3C
.2811
0.
5.
0.23
0.4^
.2811
0.
6.
C.37
0.48
.2bll
0.
lib.
5.52
3. 56
.2811
1.
425.
19.817
8.5t
.2H11
1.
872.
40.76
13.15
.2605
7.
283.
75.73
7. 74
TEKP - 111.
0.21
0.42
TEMP - 111.
0.34
0.44
ThNP - 111.
5.06
3.27
TEMP - 110.
10. 4d
7.S5
TENP - 111.
38.39
12.36
TEMP - HO.
6S.40
7.09
REVS
8.83
REVS
10.83
REVS
15.23
REVS
12.49
RtVS
9.92
PEVS
7.67
- 3749.
- 3749.
.748
- 3749
- 3750.
- 2190^.
-------
VEHICLE - 0017
RUN NO. -
30
DATc - 77/10/29
SITE -
LIVCNIA
AA 1 a
BARO - 29.51 W8 - 61. CB
BACKGRCUNC(CCNC)
SAMPLE(CONC)
MASS EMISSIONS(GMS)
MASS EMISSIOI>JS(GM/MI J
AA 1 b
BARO - 29.50 WB - 64. DB
BACKGRCUNC(CCIMC)
SAMPLE(CGNC)
78. PIN - 41. 8C
10. 24.
338. 4715.
V/PEV - .2807
C.G4 C.
1.20 49.
45. 2C 13CQ.S6 5C7B.13 22.31
3.12 233.77 912.51 4.01
MASS EMIS
MASS ErtISSIGNS63d.
6.44
•P*
tn
-------
VEHICLE - 0017
RUN NO. -
30
DATE - 77/10/29
SITE -
LIVONIA
SURVEILLANCE DRIVING SEQUENCE
BAftO - 29.51 UB - 62.
MODE 1
MODE 2
MODE 3
MODE 4
MODE 5
MODE 6
MODE 7
MODE 8
MODE 9
MODE 10
'ODE 11
MODE 12
MGOc 13
MODE 14
SAMPLE(CONC)
MASS (CMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SANPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MII
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMo)
MASS (GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
!*ASS (GM/MI)
SAMi3LE(CCNC)
MASS (GMS)
M*SS (GM/MI)
- ACCEL/DECEL MODES (EVEN N3.) AMU STEADY STATE MODES (ODD NO.)
CB - 79. PIN - 42.10 V/REV - .2805 TEMP - 110. REVS - MOD(BAG) VALUE
92.99
4.07
10.21
. 00
59.21
5.14
ti.80
7.36
10.23
7.34
9.29
16.48
17.04
6.01
145.
0.1156
0.69
644.
0.7865
13.10
41C.
0.4789
3.63
264.
0.3543
4.78
292.
0.2275
1.36
36E.
0.2290
Il.i9
266.
0.31G2
4.96
564.
0.4632
6.65
415.
C.4847
3. 68
745.
G.7544
5.55
638.
C. 744fa
3.97
359.
0.3352
2.6't
1170.
1.3659
10.93
1567.
2.0742
9.59
3328.
5.2303
31.30
15398.
29.0397
482.39
5267.
12.4155
99.32
2300.
5.7846
76. 'J 7
462f.
7.2/25
43.63
t328.
7.9556
393.30
4390.
1C. 3476
165.57
7213.
12.6422
179.32
4499.
i:.oQ48
84.84
9039.
18.4678
135.79
£430.
15.27bd
61.48
217t>.
4.1034
32.36
4942.
11.6495
93.20
22205.
5S.324V
274.27
C.30
7.33
43.94
2.81
E3.26
1382. 9y
2.36
67.68
701.42
C.C5
33.62
453.70
C.32
12.84
77.00
1.09
21.46
1067.71
1.23
45.78
722.54
2.20
61.33
869.94
2.43
9C.27
722.16
4.1^
133.11
978. 73
4.12
152.76
814.70
2.05
60.80
479.46
1.15
^2.46
339.71
5.22
219.45
1014.55
0.
0.0
C.O
230.
0.7323
12.16
111.
0.4283
3.43
37.
0.1514
2.04
i .
0.0015
0.01
23.
3.0475
2.J5
3t>.
0.13*2
2.23
240.
0. 6806
9.o5
138.
J.5328
4.26
527.
I.7o78
13. CO
436.
I.d'i04
1J.OJ
179.
0.5554
t.38
90.
0.3435
2.79
•'tod.
2.1418
9. ?C
0.0
0.0
0.6710
11.15
0.3924
3.14
0. U87
1.S7
0.0014
0.01
C.0435
2.16
0.1276
2.04
0 . 6236
8.65
0.4082
3.91
1.6199
11.91
1.7231
9.19
0.5089
4.01
J.3193
2.55
1.9626
9.07
-------
VEHICLE
rtODE 15
MODE 16
MODE 17
MODE 18
MODE 19
MODE 20
MODE 21
MODE 22
MODE 23
MODE 24
MODE 25
MODE 26
MCJE 27
MODE 28
- 0017 RUN
SAMPLE(CONC)
MASS (GMSI
MASS (GM/MI)
SAMPLE (CGNC)
MASS (GMS)
MASS { GM/MI)
SAMPLE (CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCfMC)
MASS (GMS)
MASS (GM/MI)
SAyPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLclCCNC)
MASS (GMS)
MASS ( GM/MI)
SAMPLEIGGNG)
MASS (GMS)
MASS (GM/MI)
S^NPLEICGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEIGONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLf(CCMC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CONG)
MASS (GMS)
MASS (GM/MI)
30
DATE - 77/10/29
SITE -
LIVONIA
1370.
1.5992
6.40
428.
0.3994
2.33
1364.
1.5923
8.49
951.
1.0368
5.07
765.
0.9532
3.57
668.
1.56C7
4.64
387.
C.4516
7.23
1681.
3.4016
10.85
782.
C.9131
3.65
845.
1.38C6
7.00
939.
0. 73C7
4.36
1369.
3.4105
10.29
93C.
l.C6u2
4.34
450.
0.8049
2.69
35C75.
02.6846
330.74
6550.
12.3513
71.98
4914.
11.5643
61.78
1 1322.
24.9113
121.93
11592.
29.14tll
109.29
277d.
12.3994
33.91
4896.
11.5421
IGA.o?
3t*72.
144.1253
459.58
1359b.
32.CS09
128.20
4359.
14.3360
72.91
3527.
5.54*7
33.25
28254.
142.GS36
128.90
14694.
34.6 JoY
136.55
404L>.
14.6202
4d. a 3
e.c7
299.04
1196.16
3.45
102.47
597. 13
2.62
97.04
517.54
5. £5
202.37
990. t>7
7.d3
309.83
1161.71
2.1d
161.76
480.44
0.71
26 . 3 7
421.67
5.57
357.70
1 L4C.fc<:
7.44
275.95
1103. 79
2. 13
110.69
561.04
C.29
7. 10
42.57
4.51
356.o4
1077.10
7.45
276.36
1 105.44
3.22
183.10
611 .55
661.
2.5602
10.24
221.
0.6853
3.99
396.
1.5325
8.17
933.
3.3712
16.50
a^8.
3.4192
12.32
213.
1.652t>
4.91
3.
C.G105
0.17
404.
2.71Gb
b.64
a 9 3.
3 . 4 5 o ( ;
13. y3
137.
•j . 74 j i-
3. fb
I <*.
0.0115
0 . 0 7
33 7.
2.7635
d.4 j
7 Jl.
3.0o21
12.25
379.
2.2503
7.b2
2.3461
9.38
G.6280
3.66
1.4043
7.49
3.C892
15.12
3.1332
11. 75
1.5144
4.50
0.0396
J.I 5
2,4841
7.92
3.1o77
12.67
0 . ub2 3
3.46
0.0105
0.06
2.5307
7.70
2.8060
11.22
2.0620
6.87
5.11
12.37
13.83
7.41
6.60
15.96
12. 38
6.
12. 72
81.64
4 .9U
. 74
-------
VEHICLE
29
-p.
00
MODE 30
MODE 31
MODE 32
rtODE 33
MODE 34
MODE 35
«10Dc 36
MODE 37
MOOc 38
MODE 39
MODE 4C
MODE 41
42
-0017 h J.\
SAPPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAfPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONG)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CG,NC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SArtPL54
13. 3 C
/9.7b
3.27
177.54
1CC9.33
4. Ob
150.25
801.35
2.21
fc7.47
628.34
C.72
26. 72
4 2 7 . t> 5
2.95
131.40
fc 5 9 . 9 3
4.36
161.58
£61.75
1.62
75.92
5fa2.24
C.47
11.53
69.47
4. 7ti
2 c- 5 . C 9
1 L 1 1 . t£>
S>i •
0.2048
1.64
102.
0.2366
4.09
10.
j.0375
0.60
5.
O.CC95
0.55
3.
0.0065
C.04
219.
1.2431
I .07
475.
1.8384
9. 30
212.
0.8773
c.30
o.
0.0220
0.35
244.
1. 1345
l.'tZ
31o.
1.2226
6. i>2
152.
0. 7459
5.72
5 .
0 . C 1 1 7
0.07
344 .
2 .2214
.t . ^ 7
0 . 1 1 7 7
l.Su
0.2168
3.74
0.0343
0.55
C.0087
0.50
0.0060
0.04
1.1391
6.43
1.6846
8.98
0.8039
5.78
0.0202
0.32
1.0396
6.80
1.1203
5.98
0.6835
5.2
-------
VEHICLE
MODE 43
MODE 44
MODE 45
MCDE 46
MDCE 47
- 0017
RJN NO. -
30
GATE - 77/10/29
SITE -
LIVCNH
49
MODE 50
.-UJDE 51
E 52
,1GOE i:
1oUE 55
1'JCb 56
SAMPLECCCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLEICONC)
MASS (GMS)
MASS (GVMI)
SAMPLEICONC)
MASS (GMS)
MASS (GM/MI)
SAHPLEICQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE (CCNC)
MASS (GHS)
MASS (GM/KI)
SAMPLE (CCNC)
MASS (GMS)
MASS I GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMbl
MASS (GM/KI )
SAMPLE (CCNC)
MASS (GMS)
MATS (GM/MI)
MASS,
MASS
(GMS)
(GM/MI)
iMASS (GM/MI)
S/lCPLhCCCNC)
MASS (GMS)
MflSS (GM/MI)
SAMPLE (CONG)
MASS (GMS)
MASS (GM/MI)
15o2.
1.8239
7.30
774.
1.6677
6.41
561.
C.437C
2.62
560.
0.6544
8.88
490.
0.5713
4.57
c51 .
1.6554
5.28
892.
1. 111J
-^ J O
12. 6d
367.
C. 2855
6.44
24 fa.
L.1931
I. It
1131.
3.4929
a. 71
518.
0.6050
2.42
68H.
I.d724
5.5?
27712.
65.3275
261.31
5297.
22.3080
68.49
2250.
2.5356
21.21
S526.
22 .4569
304.71
5333.
12.5731
ICO. 59
S239.
36.4950
116.45
15560.
39.1270
146.71
7652.
21 .6472
91.65
3801.
9.5591
7 L . 7 i
2C07.
3.1537
71.3'i
2315.
2.6387
2 1 . 3 i
2C481.
122.3154
3U5.10
5031.
21.29&3
G 5 . 1 9
56T<«.
3 1 . 3 1 9 5
93.11
7.52
27b.64
1114.57
2.44
166.57
639.96
. 0.26
n.31
37. Ld
2.10
77.72
1054.54
2.t4
97.77
782.19
4.13
256.49
324.78
7.26
267.24
1077.00
4.75
211.15
893.96
0. 74
29.32
219. jj>
1. 72
4^.44
955.79
C.65
16.03
9 o . 1 -3
4. 13
j 3 fi . 1 0
96o. 06
b. Jl
297.11
1186.42
3. Ot
26?.0o
79o. (.5
735.
2.8481
11.39
216.
1.5533
5.W
1.
0 . u C 3 5
0.02
20 y.
0.8081
1 J.V6
14'».
J. 5760
4.61
596.
3.b4pl
12.27
S3 7.
3.5337
13.27
302.
1 . 1 2 1 4
7.71
j>5.
J.226C
1.7:
90.
0.2326
u.2-f
lr».
J.C453
0.27
3d 2 .
3.554u
d.M
S )c.
J . t; 1J 5 9
15.42
^.27.
2. 3519
o.23
2.6099
10.44
1.4284
5.42
O.OJ32
0.02
0.7405
10.05
0.5276
«+.22
3.5233
11.24
3.2426
U.lo
1.6690
7.C7
0.2071
1 .55
C.213L
4.dO
0.0415
0.25
3.2572
3.12
3.5333
14. 13
1 .1*793
5 . 7 L
5.73
11.10
111.60
5.68
8.66
o. 72
.47
a.
66. 1
>. lo
-------
VEHICLE - 0017
MCOE 57
WUIM NO. -
30
DATH - 77/10/29
SITE -
LIVONIA
MODE 58
MODE 59
MCDE 60
MODE 61
MODE 62
MODE 63
MODE 64
MODE t5
:ALC TOTAL
01
o
SAMPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CGNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CCMC)
MASS (GMS)
NASS (GM/MI)
SAMPLE(CCNC)
MASS (GMS)
MASS (GM/MI)
SflMPLElCQNC)
MASS (GMS)
MASS (GM/MI)
SAMPLE(CONG)
MASS (GMS)
MASS (GM/MI)
SAKPLE(CONC)
MASS (GMS)
MASS (GM/MI)
284.
C.2208
1.32
446.
0.6250
7. 05
**70.
0.5484
4.39
1024.
1.6743
6.44
1413.
1.6501
6.60
469.
0.5111
2.62
1226.
1.4312
11.45
359.
C.3632
6.13
250.
0.2333
1.17
786.
64.48631
6.59
2990.
4 . o 9.9 7
28.19
5958.
16.8533
190.22
t5C9.
15.3447
122.76
12679.
42.5038
163.54
3518s.
82.9427
331.77
£496.
18.6925
1C3.10
3765.
6.875r-J
71.01
2837.
5.793V
97.90
2957.
5.5769
27.bfa
1C643.
762 .9607
180.10
0.39
9.56
57.37
1.75
77.88
£ 7 9 . 0 C
2.51
92.95
743. 6C
3.11
161.30
620.61
8.37
310.26
1241.05
5.47
169. 3Y
1044.52
0. 7t
27.48
219.33
1.50
46.06
cll.ee
0.43
12.67
6^.35
3.23
C4C5.46
858.06
•3.
0.0049
0.05
171.
0.7961
6.99
127.
0.4908
3.93
3^3.
1.9159
7.37
756.
2.92cJ7
li.71
369.
i.3350
7.36
31.
0.1169
0.95
93.
0.3122
5.27
9.
C.C293
0.15
295.
ci ).3o20
3.21
0.0081
0.05
U.7295
8.23
0.4497
3.60
1. 7557
6.76
2.6838
10.74
1.2233
6.75
0.1090
0.07
0.286U
4.83
0.0269
0.13
72.6397
7.52
63.83
7.39
9.34
9.38
4.98
7.30
24. 14
9.01
b 0 . 0 5
7.o3
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
460/3-78-004
2.
3. RECIPIENT'S ACCESSION"NO.
4. TITLE AND SUBTITLE
Exhaust Emissions From Vehicles in
Demand-Responsive Service
5. REPORT DATE
MarD£hTE1978
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
John A. Gunderson
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Olson Laboratories, Inc.
421 East Cerritos Avenue
Anaheim, California 92805
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-2411
Task Order No. 3
12. SPONSORING AGEN.CY_NAME AND ADD/tESS
^fal Protection Agency
...,__ _. .hr.and Waste Management
Jffice of Mobile Source Air Pollution Control
PONSORING AC
invironme.nl
ffice of
13. TYPE OF REPORT AND PERIOD COVERED
Emission Control Technology Division
Ann Arbor, Michigan 48105
14. SPONSORING AGENCY CODE
EPA-ORD
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report describes a study performed by Olson Laboratories, Inc. in which 11
1976 and 1977 demand-responsive service vehicles were tested to measure exhaust
emissions. Each vehicle was exhaust emission tested using the FTP for Light-Duty
Vehicles; the Surveillance Driving Sequence, including steady-state modes; and
the AA-1 Urban Bus Cycle. Each vehicle was run at "typical" inertia loads for
all test procedures and "fully loaded" for the AA-1 cycle. Emission data collected
and reported will be used by the emission factors group of ECTD to estimate
emissions inventories for this class of vehicles.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
8. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS (ThisReport)
UNCLASSIFIED
21. NO. OF PAGES
20. SECURITY CLASS (Thispage)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (9-73)
151
------- |