WATER POLLUTION CONTROL RESEARCH SERIES
11010 FLO 03/71
Phosphorus Removal with
Pickle Liquor in an Activated
Sludge Plant
.\\IRON\11\IAI. I'ROIKC TION A(,1N( Y K KSF. ARCH AM) MONITORIN
-------
WATER POLLUTION CONTROL RESEARCH SERIES
The Water Pollution Control Research Series describes
the results and progress in the control and abatement
of pollution in our Nation's waters. They provide a
central source of information on the research, develop-
ment, and demonstration activities in the Environmental
Protection Agency, through inhouse research and grants
and contracts with Federal, State, and local agencies,
research institutions, and industrial organizations „
Inquiries pertaining to Water Pollution Control Research
Reports should be directed to the Head, Publications
Branch, Research Information Division, Research and
Monitoring, Environmental Protection Agency, Washington,
Do C. 20lt-60.
-------
PHOSPHORUS REMOVAL WITH PICKLE LIQUOR
IN AN ACTIVATED SLUDGE PLANT
Sewerage Commission of the City of Milwaukee
Milwaukee, Wisconsin 53201
for the
ENVIRONMENTAL PROTECTION AGENCY
Project #11010 FLQ
March, 1971
For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $1.25
-------
EPA Review Notice
This report has been reviewed by the Water
Quality Office, EPA, and approved for publication.
Approval does not signify that the contents
necessarily reflect the views and policies of
the Environmental Protection Agency, nor does
mention of trade names or commercial products
constitute endorsement or recommendation for
use.
ii
-------
ABSTRACT
The Milwaukee Sewerage Commission's Jones Island Waste
Water Treatment Plant consists of a mutual primary treatment facility
followed by two separate activated sludge plants. To enhance phospho-
rus removal in the 115 MOD East Plant, spent hot sulfuric acid pickle
liquor (ferrous sulfate) was added for a one year test period. The
85 MGD West Plant was operated as a control.
The major objective of the iron addition was to maintain
an East Plant effluent total phosphorus concentration of 0.50 mg/1 P.
The East Plant effluent total phosphorus concentration during the 1970
project period from January 12 to December 31, 1970 averaged 0.70
mg/1 P representing 91.3? removal. The East Plant effluent total
soluble phosphorus concentration averaged 0.30 mg/1 P or 90.7? removal.
Modification and automation of the iron addition which was completed
in December 1970 will further reduce East Plant soluble phosphorus
residuals.
Comparison of the efficiencies of the West and East Plants
in removing BOD, COD and suspended solids as well as microscopic
examination of the mixed liquors indicates that the addition of the
unneutralized pickle liquor did not adversely affect purification.
Waste pickle liquor can be and is being utilized at the
Milwaukee Jones Island Plant to enhance phosphorus removal. The
principal problem experienced in maintenance of low effluent total
phosphorus concentrations was the control of effluent suspended
solids containing 2.6l/? P.
This report was submitted in fulfillment of Project
Number 11010 FLQ, under the partial sponsorship of the Water Quality
Office, Environmental Protection Agency.
iii
-------
CONTENTS
Section Page
Abstract iii
Contents iv
Figures vi
Tables viii
I Conclusions 1
II Recommendations 3
III Introduction 5
IV Objectives 7
V Sewerage Commission of the City of Milwaukee Jones 9
Island Plant
VI Jones Island Plant Operation 13
VII Iron Addition Equipment and Operation 17
VIII Sampling and Analytical Techniques 23
IX Presentation and Discussion of Data 27
A. Screened Sewage and Effluent Characteristics 27
B. Mixed Liquor and Return Sludge Characteristics 35
C. Miscellaneous Tests 1*5
1. Pickle Liquor Free Acid 1*5
2. Alkalinities on Sewage, Effluents 1*5
and Mixed Liquors
3. Soluble Sulfates on Sewage and Effluents 1*5
1*. Phosphorus Uptake 1+6
5. Phosphorus Release 1*7
iv
-------
D. Rate of Iron Addition 52
E. Mixed Liquor Biota 52
F. Effects of Iron Addition on the 5U
Plant Physical Facilities
G. Effects of Iron Addition on the 56
Ferric Chloride Demand
X Acknowledgement 59
XI References 6l
XII Nomenclature and Glossary 63
XIII Appendices 65
-------
FIGURES
Figure No. Title Page
1 Jones Island Waste Water Treatment 11
Plants
2 Automatic Pickle Liquor Addition 20
Equipment
3. Transferring Pickle Liquor into 21
Storage Tanks
h
5
6
7
8
9
10
11
12
13
11*
15
16
17
18
19
20
Monthly Sewage BOD Variation
Monthly Sewage Suspended Solids
Variation
Monthly Sewage Total Phosphorus
Variation
Daily BOD Variation
Daily Phosphorus Variation
1970 Phosphorus Variation
Daily Iron Variation
1970 Solids Production per BOD Removed
Solids Production per BOD Removed
SOP Release from Mixed Liquor
SOP Release from Mixed Liquor
SOP Release from Mixed Liquor
Soluble Iron Release from Mixed Liquor
SOP Release from Mixed Liquor
Actinomycetaceae, Genus Nocardia
Actinomycetaceae, Genus Nocardia
Technicon Autoanalyzer
30
31
32
37
38
39
UO
U2
U3
1*8
^9
50
51
53
68
69
73
vi
-------
21 Sewage SOP Versus Time 13k
22 Sludge SOP Versus Time 135
23 Mixed Liquor SOP Versus Time 136
2U SOP Versus Time 137
25 pH Versus Time 138
vii
-------
TABLES
Table Title Page
1 Yearly Average Screened Sewage 27
Characteristics
2 Monthly Average Screened Sewage and 28
Effluent Characteristics
3 Phosphorus Concentrations for Different 31*
Periods in 1970
k Monthly Average Mixed Liquor and 36
Return Sludge Characteristics
5 Soluble Ortho-Phosphate Uptake 1*7
6 Microscopic Identification of Sedimentation 55
Basin Algae
7 Monthly Average Ferric Chloride Use 57
Requirements for Sludge Conditioning
viii
-------
SECTION I
CONCLUSIONS
1. Waste pickle liquor (ferrous sulfate) as an iron source was
successfully added to precipitate phosphorus in the 115 MGD East Plant
at the Milwaukee Sewerage Commission's Jones Island Activated Sludge
Waste Water Treatment Plant. An 85 MGD West Plant receiving the same
screened raw sewage was operated as a control.
2. During the grant period from January 12 to December 31, 1970 the
East Plant effluent daily total phosphorus concentration averaged
0.70 mg/1 P and 55.1? of the time (195 days out of 351* days) the
concentration was below the 0.50 mg/1 P objective. During certain
months the concentration was high because mixed liquor suspended
solids were discharged into the effluent.
3. Based on a 1970 average screened sewage total phosphorus
concentration of 8.2 mg/1 P, the East Plant with iron addition
removed 91.3? (0.70 mg/1 P effluent residual) while the control
West Plant removed 83.1? (l.U mg/1 P effluent residual).
U. Based on a 1970 average screened sewage total soluble phosphorus
concentration of 3.1 mg/1 P, the East Plant removed 90.7? (0.30 mg/1 P
effluent residual) while the West Plant removed 67.5? (l.l mg/1 P
e ffluent res idual).
5. An average of 9-^ mg/1 iron was added to the East Plant mixed
liquor (13,060 gallons/day at 0.71 pounds of iron per gallon) to
effect the phosphorus removal. No optimum iron dose was determined.
6. The pickle liquor addition increased the return sludge phosphorus
concentration from 2.29? in the West Plant to 2.6l? as P in the East
Plant, and increased the iron content from 1.86? in the West Plant to
5.08? as Fe in the East Plant.
7. Comparison of the efficiencies of the West and East Plants in
removing BOD, COD and suspended solids as well as microscopic exami-
nation of the mixed liquors indicated that the addition of unneutral-
ized pickle liquor did not adversely affect purification.
8. The pickle liquor (ferrous sulfate) addition increased the East
Plant effluent soluble sulfate concentration by about 18? (123 to
lU5 mg/1 SO^) on the samples collected and decreased the
alkalinity by 21? (213 to 169 mg/1 as CaC03). The alkalinity
of the East Plant mixed liquor was slightly less than the West
Plant and the yearly average mixed liquor pH values were 7.0 and
-------
7.1 respectively for the East and West Plants. The pickle liquor
free acid which ranged from 2.1 to 5.8J5 f^SO^ for the A. 0. Smith
Corporation pickle liquor and from 6.6 to 9.3% H2SO^ for the U. S.
Steel Corporation pickle liquor did not have any apparent effect
on the plant operation.
9. The pickle liquor caused no problems with the plant physical
facilities.
-------
SECTION II
RECOMMENDATIONS
The results of this one year study have shown that it is
not only feasible but practical to add waste sulfuric pickling liquor
as a source of iron for phosphorus precipitation and removal at the
Milwaukee Sewerage Commission's Jones Island Activated Sludge Plant.
Since iron was added only to the 115 MOD East Plant, the next phase
for demonstration and experimental purposes would be to add the pickle
liquor to the 85 MOD West Plant.
This 1970 study indicated that pickle liquor addition did
not adversely affect purification and was effective in maintaining low
East Plant effluent phosphorus residuals. Addition of iron to the West
Plant would increase phosphorus removal and subject the waste sludge
dewatering facilities to a 100/5 iron addition. With the entire 200
MGD Jones Island Waste Water Treatment Plant receiving iron, the West
Plant sludge characteristics will change as it did in the East Plant
and should produce a sludge with a different ferric chloride demand.
A study such as this would prove valuable if the waste water character-
istics remain relatively the same. Since the present State of
Wisconsin phosphorus removal requirement of 85^ was obtained in 1970,
the addition of iron to the entire plant is unnecessary except for
experimental purposes.
Another consideration is to continue adding pickle liquor
only to the East Plant. The iron probably affects other chemical
removals in addition to the phosphorus. The 1970 project could be
expanded to investigate the removal of the other chemicals of
interest in water pollution and waste water treatment. Meters
could be installed to accurately measure sludge production making
it possible to determine the difference between the East Plant and
the control West Plant using a mass balance. Also optimum iron
requirements for phosphorus removal could be determined especially
with the type of equipment presently installed and operating.
-------
SECTION III
INTRODUCTION
In 1967 the Sewerage Commission of the City of Milwaukee
initiated a three year research program to evaluate the phosphorus
removal in the Jones Island Activated Sludge Plant. This research
program, funded in part by the Water Quality Office, Environmental
Protection Agency, included studying methods to enhance phosphorus
removal. The theories of biological phosphate removal as stated by
Levin and Shapiro (l), Vacker et al.(2) Borchardt and Azad (3) and
Wells (h) along with the chemical precipitation theories contended
by Menar and Jenkins (5) were reviewed and attempts were made to
maximize biological precipitation of phosphorus in the activated
sludge plants. The 200 MOD Jones Island Plant consisting of the
85 MOD West Plant and the 115 MOD East Plant operated in parallel
receiving a common screened sewage was ideal for plant wide variation
of operating parameters to effect phosphorus removal.
In 1968 the Sewerage Commission of the City of Milwaukee and
the Water Pollution Control Corporation of Milwaukee, conducted &
plant scale study to enhance phosphorus removal by chemical precipi-
tation using aluminum and iron salts at a small activated sludge plant
(1*0-70,000 gallons per day) located in a contract area of the Metro-
politan Sewerage District. This work, at a plant receiving only
domestic wastes from a small subdivision, expanded the pilot plant
work done by Barth and Ettinger (6). Following successful phosphorus
removal with both sodium aluminate and alum, iron in the form of
ferrous sulfate was added. The A.O. Smith Corporation, who Joined
the study at this point, supplied the iron in the form of a neutral-
ized waste pickle liquor and also furnished laboratory services. The
conclusions of the May 1968 to January 1969 study indicated that the
aluminum or iron addition, to remove phosphorus, was an effective and
economical method to enhance phosphorus removal.
Concurrent research being conducted at the Sewerage Commis-
sion's Jones Island plant to relate operating parameters to phosphorus
removal indicated that 60 to 90% total phosphorus removal could be
expected but control of plant operations to consistently remove 85$ of
the phosphorus as required by the State of Wisconsin Department of
Natural Resources could not be accomplished. Supplementary cationic
precipitation of phosphorus in conjunction with the activated sludge
process was therefore investigated. Iron was chosen as the cation to
be used because of the availability of pickle liquor from the A. 0.
Smith Corporation, the cooperative attitude of the company, the
success experienced at the small activated sludge plant study and the
relative costs of the chemicals.
-------
In September 1968, Mr. George Hubbell (7) reported on his
federal grant activities to remove phosphorus from Detroit's waste
water. He indicated the phosphorus removal was achieved through
chemical precipitation using iron in a pilot plant. In May 1969 repre-
sentatives of the Milwaukee Sewerage Commission went to Detroit to ob-
serve the operation and discuss the project with Dr. Albert M. Shannon,
Chief of Water and Sewage Treatment. This information, combined with
the previous Sewerage Commission work, indicated that iron addition to
a portion of the Jones Island plant was the next logical step.
When a decline in phosphorus removal occurred in June of 1969
as a result of the Milwaukee Brewery strike it was decided to add
neutralized pickle liquor, from the A.O. Smith Corporation, to one
East Plant aeration tank to observe the effects upon phosphorus precipi-
tation and on the mixed liquor biota. This test indicated that the
iron effectively reduced the effluent phosphorus concentration with no
noticeable ill effects on the treatment process or equipment. An
addition rate of 15 mg/1 of iron to the mixed liquor was found to
maximize phosphorus removal. Neutralization of the pickle liquor free
acid (2-5?) was not necessary.
After the plant returned to normal operation following the
five week brewery strike (June 9 to July 15), unneutralized waste
pickle liquor was added to the entire 115 MOD East Plant from November
3 to November lU, 1969. The pickle liquor was trucked to the Jones
Island plant by the A.O. Smith Corporation and about 20,000 gallons of
the liquor was added to the mixed liquor aeration tank feed channel
each day. The plant scale test confirmed the single tank studies.
At this point, the Sewerage Commission of the City of Milwaukee
applied for a federal demonstration grant to assist in covering the
cost of a one year plant scale study to add pickle liquor to enhance
phosphorus removal. The A.O. Smith Corporation agreed to construct
and maintain pickle liquor storage and addition facilities and to
deliver the waste pickle liquor to the Jones Island plant.
-------
SECTION IV
OBJECTIVES
The objectives of the pickle liquor iron addition to the
115 MOD East Plant included:
A. Evaluate the effectiveness of continuous iron
addition to maintain an effluent total phosphorus
concentration of 0.50 rag/1 P or less.
B. Compare the efficiency of the West and East Plants
in removing phosphorus, BOD, COD and suspended
solids.
C. Determine the optimum iron requirements to
maximize phosphorus removal.
D. Determine the effects of iron addition on the
mixed liquor biota and its settling character-
istics.
E. Determine the effects of iron addition on the plant
physical facilities.
F. Determine the effect of iron addition on the waste
sludge conditioning ferric chloride requirements.
-------
SECTION V
SEWERAGE COMMISSION OF THE CITY OF MILWAUKEE
JONES ISLAND PLANT (8.9)
The Jones Island activated sludge waste water treatment plant
is designed to treat 200 million gallons of sewage daily. The plant
consists of the original 85 MOD West Plant and a 115 MOD East Plant
addition operated in parallel and receiving the same raw screened
sewage. The treatment plant has a connected population of about
1,000,000 people. The service area includes about 17,000 acres of
a combined sewer system and about 83,000 acres having a separate
sanitary sewer system.
The primary treatment facilities consist of conventional
coarse screening (mechanically cleaned bar screens, 1" between bars)
to remove hair, fleshings, garbage, rags, wood etc. Following
coarse screening, the waste water is directed to the grit chambers
consisting of eight 8 x 8 x 90 foot long compartments to reduce the
flow velocity to one foot per second. At this reduced flow rate the
grit consisting of sand, gravel, coal, ashes and some organic solids,
is deposited on the bottom.
Following this treatment, the waste water is directed to
rotary drum fine screens (3/32 inch slots - 2 inches long) to remove
troublesome solids before the waste water is divided between the
West and East conventional activated sludge plants for treatment.
The West Plant has a ridge and furrow-type aeration plate
arrangement in the 2k aeration tanks. The tank arrangement allows
the mixed liquor to travel through U72 feet of aeration tank (22
feet wide, 15 feet deep) prior to flowing into one of the 11 - 98
foot diameter sedimentation tanks. The East Plant has twenty
aeration tanks where the mixed liquor travels through 7^0 feet of
tank length (22 feet wide and 15 feet deep). These tanks have a
longitudinal plate arrangement (10, 11). This plant has ten sedi-
mentation tanks each consisting of two adjoining 8U foot diameter
tanks. In both plants the return sludge volume added to the
screened sewage is about 25$ of the sewage volume but occasionally,
the return sludge volume has been increased to
The aeration tanks in both plants are designed to aerate
the mixed liquor (screened sewage plus return sludge) for an
average period of six hours varying from four to eight hours over
minimum and maximum flow rates. The aerated mixed liquor is then
directed to the final sedimentation tanks for an average of a two
-------
hour detention time (the surface settling rate for West and East
Plants are respectively 900 and 870 gpd / sq ft at design flow) where
the settled sludge is drawn from the bottom of the base and the effluent
is discharged over a series of weirs into Lake Michigan.
The mixed liquor solids that are wasted from both the West
and East Plants are directed to one of six gravity thickeners located
in the West Plant. The thickened waste sludge is conditioned with
ferric chloride, filtered on vacuum filters, dried in rotary dryers
and sold as a fertilizer called Milorganite. This is the only way
sludge can be removed from the plant. During 1970 a total of 71,500
tons (dry basis) of solids were removed in the dewatering plant. The
physical layout of the Jones Island Plants is shown in Figure 1.
10
-------
HARBOR
ENTRANCE
KINNICKINNIC
RIVER
Figure I
Jones Island Waste Water Treatment Plant
-------
SECTION VI
JONES ISLAND PLANT OPERATION
The Milwaukee Metropolitan area, serviced by the Jones Island
Waste Water Treatment Plant, contains a variety of industries and the
liquid wastes vary from low strength metal-working wastes to the con-
centrated organic wastes contributed by the large brewing industries.
During 1970, the average daily waste water volume received was 171.9
mgd, having a BOD content of 209 mg/1. The average weekday flow
(industrial and domestic) was l8l.2 mgd with a BOD of 237 mg/1 and
the Sunday flow (essentially domestic) was 1U3.1* mgd with a BOD of
llU mg/1. Calculations from this data indicate that 21$ of the flow
is from industry along with 52$ of the BOD contribution.
With this type of load on a waste water treatment plant, many
changes are necessary to maintain an efficiently operating plant and
many problems can be experienced. The following review discusses
the monthly operational conditions and changes made in 1970.
January: The average sewage flow that entered the plant was 157 mgd
and was divided, directing on an average, k6% to the West Plant and
51*? to the East Plant. From the Uth to the 6th, the sludge dewatering
facilities were shut down for scheduled maintenance (this is usually
done once or twice a year as necessary). Prior to the dewatering
plant shutdown, the mixed liquor suspended solids concentration was
reduced and during the shutdown period, the mixed liquor suspended
solids that are normally wasted, were recycled and permitted to build
up within the system.
During 1969 an uncontrollable growth and froth formation,
identified as Actinomycetaceae Genus Nocardia would periodically de-
velop on aerated mixed liquor and return sludge channels (see Appendix
A). The 1969 appearance was the first observed at this plant and it
was restricted to the East Plant. The third occurrence appeared in
both plants in December, 1969 and continued into January, 1970. Some
of the aeration tanks were as much as 80S? covered with the froth that
was present in both the West and East Plants. The mixed liquor food
(BOD) to microorganisms (MLVSS) ratio remained low because of the
shutdown which was probably responsible for the continued presence
of the froth, although information received from other treatment
plant operators indicated that the froth comes and goes without any
known reason.
February: The average sewage flow that entered the plant was 158 mgd
with an average distribution of 50$ to each plant. The distribution
was adjusted and six of the twenty (30%) East Plant aeration tanks
were taken out of service to increase the food to microorganism ratio
in an attempt to eliminate the Nocardia froth. By the end of the third
13
-------
week, the froth had practically disappeared and the plant operation
continued under these conditions to determine if these changes caused
the disappearance of the Nocardia froth.
March: The distribution of the average l6l mgd of sewage that entered,
averaged 50$ to each plant. The six idle East Plant aeration tanks
were returned to service on the 6th, resulting in an East Plant loading
30% less than the West Plant. The Nocardia froth had not returned, but
patches of a white foamy substance formed on the aeration tanks in both
plants. This substance has an irridescent cast and appears to be a
detergent type foam of air, water and some grease solids. The greater
the solids concentration, the browner the color. The Jones Island
laboratory was not equipped for any detailed analyses of the foam.
April: The 50 - 50$ sewage distribution was continued until April 27
when it was changed to 1*5$ to the West Plant and 55$ to the East Plant.
The distribution of the sewage, averaging 172 mgd, resulted in an East
Plant loading 25$ less than the West Plant for the majority of the
month. The distribution was changed because of overloaded West Plant
sedimentation basins and sludge settling problems. These changes
resulted in overloaded sedimentation basins in both plants. This over-
loading caused a MLSS discharge into the effluents which effects the
results of analyses of effluent samples making the data on these days
unuseable as a plant performance indicator. The white foam was still
present.
May: The sewage distribution was changed several times resulting in
a U6$ West Plant - 5U$ East Plant average distribution of the 173 mgd
flow. Problems were still experienced with overloaded sedimentation
basins, but generally, the performance of both plants was good. The
white foamy substance was present until the return of the Nocardia
froth to the East Plant on the l8th. Only the white foam was present
in the West Plant.
A problem of filter cake cracking was experienced while the
cake was under vacuum resulting in a vacuum loss. The present vacuum
pumps did not have enough capacity to maintain the vacuum. The filter
cake cracking occurred during a period when the greatest portion of
the waste sludge originated from the East Plant. This resulted in
no major problems and lasted for only several hours. The cracking
probably resulted from the increased sludge ash caused by the higher
ash content of the East Plant sludge and the ash washed into the
combined sewer system with the heavy rains experienced during this
period.
June: The 182.7 mgd of sewage that entered the plant was distributed
hk% to the West Plant and 56$ to the East Plant. The sedimentation
basins were again periodically overloaded because solids could not be
removed fast enough to keep up with the biological solids production.
-------
The Nocardia froth covered from 20 to 70% of the East Plant aeration
tank surface, but only a trace was noted in the West Plant. By the
15th, most of the froth disappeared but the white foam returned to both
plants.
July: The distribution of the 176 mgd of sewage averaged 1*1? to the
West Plant and 59? to the East Plant. Two sludge dewatering plant
shutdowns were scheduled. The first shutdown was from the 6th to the
8th for major maintenance repair and the second was for a few hours
on the 22nd to make additional equipment adjustments. As a result of
these shutdowns, the sedimentation basins became overloaded with MLSS
discharged into the effluent. The white foam was still present in
both plants.
August: No major problems were experienced and excellent plant
operation was obtained. The 173 mgd of sewage was distributed 1*3 - 51%
respectively to the West and East Plants. Filter cake cracking was
noticed for a short period of time, but was eliminated when more West
Plant sludge was blended into the waste sludge. The white foam was
still present in both plants.
September: A distribution of 1*3 - 57% to the West and East Plants
was maintained for the average 188 mgd of sewage that entered the
plant. Sedimentation basins became overloaded again and the white
foam was still present with larger patches noted on some of the
aeration tanks.
October: The 172 mgd of sewage flow was distributed 1*5 - 55? re-
spectively to the West and East Plants. More sewage was directed
to the West Plant because of a mechanical failure and resultant damage
to one East Plant double sedimentation basin (10? of the East Plant
capacity). This loss in capacity resulted in the discharge of MLSS
into the effluent. The white foam and some brown foam was present on
the aeration tanks in both plants.
November: A 1*3 - 57? sewage distribution to the West and East Plants
was maintained with the 175 mgd. High mixed liquor suspended solids
concentration occurred resulting in a low food to microorganism ratio.
Not only did the reduced sedimentation basin volume become overloaded,
but by the 2l*th, channel surfaces were covered with a large quantity
of Nocardia froth.
December: The 175 mgd of sewage was distributed 1*1*? to the West Plant
and 56? to the East Plant. Again, the sedimentation basins were over-
loaded. The Nocardia froth build-up was so great that physical re-
moval was necessary. The froth finally disappeared and the white foam
returned.
15
-------
SECTION VII
IRON ADDITION EQUIPMENT AND OPERATION
The facilities proposed for addition of waste pickle liquor
iron for enhancement of phosphorus removal were designed to make
possible a precise and reliable operation (12, 13). The equipment
was comprised of 2 - 30,000 gallon pickle liquor storage tanks
insulated so that only a 1°F maximum temperature drop per day would
occur at an ambient temperature of minus 20°F. The automatic equipment
would consist of an automatic feed valve, a specific gravity column,
a calculator, a recirculation pump through a heater, and an equipment
by-pass. The calculator would summate the mixed liquor flow from the
existing meters, determine the iron concentration from the specific
gravity, and control the iron addition to maintain the desired iron
concentration. Deliveries on equipment were the only delaying factor.
The A. 0. Smith Corporation agreed to design, construct and maintain
the pickle liquor facilities and deliver the waste pickle liquor to
the Jones Island site.
On Wednesday January 7, 1970 the first truck load of pickle
liquor from the A. 0. Smith Corporation was delivered to Jones Island
starting the first addition during the grant period. Initially the
hot pickle liquor (l25°F) was drained from each truck tanker through
an insulated, heated hose and a flow meter into the East Plant screened
sewage channel Just upstream from the return sludge addition (this
point of addition would be changed when the pickle liquor storage tanks
were ready for use). The outside temperatures were below 0°F which
created many problems with crystallization of ferrous sulfate. These
crystals plugged the tanker valves, hose and flow meter. The construc-
tion of a shelter around the flow meter with heat lights was not enough
to prevent plugging. Pickle liquor was added continuously for five
days each week starting 7:00 A.M. on Monday and ending 5:00 A.M. on
Saturday.
During the second week of addition one truck was set up as
the feed source and was blanket insulated, covered with canvas and
heaters were placed under the covered area to prevent cooling and
crystallization of the pickle liquor. The hauling truck brought hot
pickle liquor from the A.O. Smith Corporation 10 miles to the station-
ary feed truck on Jones Island. Compressed air was used to transfer
the liquid from the delivery truck to the stationary tanker. The flow
meter was eliminated and a plastic garbage bucket was used to measure
the pickle liquor flow rate. This method proved to be very accurate
in measuring the flow rate. For the first two weeks an objective
addition of 15 mg/1 of iron in the East Plant mixed liquor was attempt-
ed. On January 23 the rate was decreased to 10 mg/1 of iron. Initially
pickle liquor was added independent of the specific gravity (iron con-
centrations) and independent of the mixed liquor flow. This rough
17
-------
method of addition however, worked fairly well. During January,
pickle liquor was added on eighteen days to the mixed liquor with
averages of 12.8 mg/1 of iron per day. This resulted in an initial
daily addition of approximately 11,800 Ibs of iron in an average of
17,1*00 gallons of pickle liquor per day.
To more efficiently control the iron addition, a chart was
prepared to specify the gallons per minute of pickle liquor to be
added over a certain specific gravity range assuming a constant
average mixed liquor flow rate (see Appendix B for sample of one of
the charts used). This was started on February 19 in an attempt to
accurately add 12 mg/1 of iron. On March 16 the rate of iron addition
was increased from 12 to 15 mg/1 to increase the phosphorus removal,
further saturate the return sludge with iron and compensate for not
adding iron on the week ends. Monday sewage has been character-
istically high in phosphorus as a major day for washing clothes and
more iron was added hoping to sustain a surplus.
On June 1, 1970 the two - 30,000 gal. pickle liquor storage
tanks and piping were ready for use. This streamlined the delivery
scheduling making it possible to add pickle liquor continuously
seven days per week. This resulted in a change of location of pickle
liquor addition to the mixed liquor channel about 55" downstream
from where the return sludge is added to the sewage. The pickle
liquor was added manually utilizing the automatic equipment by-pass
piping. The gallons per minute addition of pickle liquor was still
determined by using a bucket measurement. The pickle liquor stain-
less steel recirculation pump was put in operation on June 21 and
overnight it started leaking, spraying pickle liquor all over the
control house. In addition to losing a few thousand gallons of
pickle liquor, some of the electrical equipment was damaged. The
cause of the failure was traced to an "iron" plug that was dissolved
out of the stainless steel pump body by the acid.
The pickle liquor addition rate in June was modified to
better control the pickle liquor added in proportion to the phospho-
rus concentration and therefore less was added during the night time
(10 mg/1 during the day and 8 mg/1 at night). On Monday July 13 the
pickle liquor was found crystallized in the piping system stopping
the flow of iron into the plant for an undetermined number of hours
over the week end. Manipulation of the valves freed the system.
The piping at this time was not yet insulated but was scheduled for
the near future. Again on July 29 the piping system was plugged but
this was caused by sludge accumulation in the piping. In September
a new recirculation pump was also installed and put in continuous
operation. This pump operated from the llth to the 29th before
leaking pickle liquor all over the floor.
18
-------
The Fischer & Porter Company was to have made delivery of this
automatic equipment by mid June but they indicated that some of the
parts had been delayed and the entire package of equipment was not
received until September. During their installation and inspection,
a circuit board was burned out and had to be returned to the factory.
The repaired circuit board was returned in October and the automatic
pickle liquor control system was put in operation but electrical
problems caused the automatic valve to close unexpectantly. Another
signal problem resulted from open circuits in the Sewerage Commission's
mixed liquor flow rate meters causing an infinite mixed liquor flow
reading and response.
Concern was shown by the A.O. Smith Corporation as to their
ability to supply the East Plant with enough pickle liquor during
the period of the General Motors automotive workers strike. Pickling
activity at the A.O. Smith Corporation was considerably reduced and
the pickle liquor supply was basically from an old storage pond at
the company. The material from this pond had a low iron content and
the situation became critical to a point where an additional source
of iron had to be found. The U. S. Steel Corporation, Waukegan,
Illinois Works, was contacted and their management agreed to have
their sulfuric-hydrochloric pickle liquor delivered. Tests were
conducted and it was felt that the low chloride content in the U. S.
Steel Corporation pickle liquor would not appreciably damage the
stainless steel during this interum period. The first truck load of
U. S. Steel pickle liquor was delivered on November U and a total of
53 truck loads (235»000 gallons) were delivered through December 1st
when the A.O. Smith Corporation was again producing enough pickle
liquor to meet the demands.
During November and December, work was done in an attempt to
start up the automatic equipment. After additional changes and parts
replacement in the equipment, the unit was put in operation on
December 11. Final adjustments still remain and will be made in the
near future. This equipment will make it possible to set a desired
iron concentration in the mixed liquor and the equipment will auto-
matically control the rate of addition. Figure 2 shows the unit
in operation and Figure 3 shows one of the A.O. Smith Corporation
tanks being unloaded.
The equipment and materials used for the construction of the
facilities designed for pickle liquor addition to the 115 mgd East
Plant were:
1. Two 30,000 gallon steel tanks 12 foot in diameter and 36 foot
long were rubber lined and the outside was insulated with a cover of
urethane foam and painted aluminum. Both tanks were equipped with
a low level alarm which actuated a red light and a high level alarm
which activated a horn. The pickle liquor was transferred from the
tanker to the storage tanks using air pressure.
19
-------
ro
o
Figure 2
Automatic Pickle Liquor Addition Equipment
-------
Figure 3
Transferring Pickle Liquor into Storage Tank
-------
2. All the piping and valves were 316 stainless steel which was
resistant to the sulfuric acid pickle liquor. The piping from the
tanks was It inches in diameter and then reduced to 2 inches as it
passed through the equipment and then returned to U inches. The
equipment by-pass line was 1 lA inches in diameter. An 8' x 10'
building was constructed to house the automatic equipment . The
piping located outside of the equipment building was also insulated.
3. A Fischer & Porter Magnetic flow meter (teflon lined with
Hastelloy C electrodes) was used to measure the pickle liquor flow
rate (chart range of 0 - 50 gallons per minute ) .
k. A Saunders automatic rubber lined valve with a flexible diaphram
which seats tightly against a weir in the body was used to control
the pickle liquor gallon per minute flow rate.
5. The 316 stainless steel specific gravity column was used to
obtain the iron content of the pickle liquor. A differential
pressure density transmitter was used to determine the specific
gravity which was recorded. The initial recorder range was 1.00 to
6. A Vanton pump with a neoprene liner pumps a portion of the
pickle liquor flow (0.3 gpm) to the specific gravity column.
7. The mixed liquor flow rate was determined by summating the
resistance output of 20 potentiometers on the exisitng East Plant
tank metering equipment. The recorder mixed liquor flow range was
initially from 0 to 2**0 mgd.
8. The Fischer & Porter equipment had a range from 0 to 25 mg/1
of iron added to the East Plant mixed liquor.
22
-------
SECTION VIII
SAMPLING & ANALYTICAL TECHNIQUES
SAMPLING:
Sewage;
The daily sewage samples analyzed represent 2k hour composite
samples of fine screened sewage from 7:00 A. M. to 7:00 A. M. A
Phipps-Bird sampler was used to collect samples to form hourly com-
posites (30-200 ml portions per hour) which in turn were composited to
form a 2k hour composite in proportion to the screened sewage flow
rate.
Effluents:
The West Plant effluent samples represent a 2k hour composite
of hourly grab samples. Every hour the operator would take one dipper
full of effluent from each weir channel on all of the eleven clarifiers,
Each hourly sample was mixed and a volume in proportion to the sewage
flow was added to the 2k hour sample bottle.
In the East Plant the same effluent sampling schedule as the
West Plant was used until April 1, 1970 when an automatic Sonford
sampler was put into operation. This sampler was activated by a timer
set in proportion to the average flow rate.
Mixed Liquor;
The SDI analyses were performed on individual mixed liquor
grab samples taken at about 9:30 A.M., 5:30 P.M. and 1:30 A.M. each
day from a feed channel to the sedimentation basins and the results
were averaged. The mixed liquor pH was determined on the 9:30 A.M.
grab sample. The MLSS analysis was performed on a 2k hour composite
mixed liquor sample. Equal volumes of mixed liquor were collected
every hour for each shift and composited on a shift basis in pro-
portion to the average shift flow rate variations.
Return Sludge:
Equal volumes of return sludge were collected every two hours
for each shift. At the end of the shift the sample was mixed and a
designated volume was added to the 2k hour return sludge sample bottle.
This designated volume was proportional to the average flow variation
for each shift.
23
-------
Milorganite;
A Milorganite sample was collected in direct proportion to
the rate of production to produce a 2h hour composite.
ANALYTICAL TECHNIQUES:
Phosphorus Determinations;
Total, total soluble, and soluble ortho phosphorus concen-
trations were determined on liquid samples. After the filtration of
the total soluble and soluble ortho samples and the ternary acid
digestion of the total and total soluble sample, the prepared samples
were introduced into a Technicon Autoanalyzer for determination of
the soluble ortho phosphorus concentration using the Amino-
naphtholsulfonic Acid Method. For a detailed description of the
method refer to Appendix C. The return sludge phosphorus analyses
was a gravimetric method as outlined in Appendix D.
Iron Determination;
The total iron and total soluble iron (analyses on filtrate)
determination made on sewage and effluent samples were prepared by a
nitric acid digestion. Soluble iron determinations on mixed liquor
samples were handled in a similar manner. The digested samples were
introduced into an Atomic Absorption instrument (instrumentation
Laboratory, Incorporated, Model No. 153) for analyses. The sewage
sample for total iron was diluted 1 to 2 but the rest of the samples
were run direct. During the initial stages in the operation of the
atomic absorption unit, (January, February and March) problems were
experienced by using ternary acid for digestion, making too many
dilutions and an improper calibration and use of blanks for back-
ground correction. Therefore, the iron data for this initial period
is approximate but still presented in Appendix H.
The iron concentration in the pickle liquor was determined
using a volumetric titration-dichromate process. A description of
the method is in Appendix E.
The return sludge iron was determined on dry centrifuged
solids using a volumetric dichrornate method as given in the Appendix F.
Mixed Liquor and Return Sludge Suspended Solids Concentration
Determination:
A known volume of the sample was filtered through a weighed
filter paper in a Buchner funnel (100 mis of ML through a S & S
Sharkskin and 50 mis of return sludge through a Whatman No. 3). The
sludge and paper were dried at 103° C for one hour, cooled and weigh-
ed again. The difference in weight was used to determine the
-------
concentration.
Sludge Density Index Determination;
A relatively fresh mixed liquor sample was used for this
analysis. The suspended solids concentration was determined on one
part and a 30 minute settling test was determined on another part
using a 1000 ml graduated cylinder.
SDI = % MLSS x 100
% Cylinder volume occupied by solids after 30 minutes
Biochemical Oxygen Demand Determination;
This determination involved using the azide Modification
of the lodometric method as given in Standard Methods 12th Edition
(lU). The method for rounding off the effluent data was changed in
September as indicated in the presentation of the daily results.
Chemical Oxygen Demand Determination:
The sewage (20 ml aliquot) and effluents (kO ml aliquots)
were analyzed for COD using the method as explained in Standard
methods. 12th Edition (lU).
Total Solids Determination:
A 100 ml sample of sewage or effluent was placed in tared
silica dish and the liquid was evaporated to dryness on a water
bath. Then the dish was dried in an oven at 103°C and was put in a
desiccator to cool prior to being weighed again. The difference was
the total solid weight per 100 ml of sample. The method is from
Standard Methods, 12th Edition (lU).
Suspended Solids Determination:
The sewage (50 ml) and effluent (200 ml) samples were
filtered through a tared Gooch crucible with an asbestos pad. The
crucible was dried at 103°C for one hour cooled in a desiccator and
weighed again and the difference was the suspended solids weight.
The method is from Standard Methods, 12th Edition (lU).
Nitrogen Determination:
The total KJeldahl nitrogen analysis on the liquid samples
(sewage and effluents) is as indicated in Standard Methods 12th
Edition (lit).
The nitrogen analyses on the Milorganite and the dry
centrifuge return sludge solids is a method for total nitrogen on
dried solids explained in Appendix G.
25
-------
Ash Determination:
A three gram sample of the dried solids were put in a tared
crucible and ignited at 600° C. for two and one half hours, cooled
in desiccator and weighed.
Alkalinity Determination:
A 50 ml sample was titrated to a pH of U.3 using N/50
using the following calculation as in Standard Methods, 12th
Edition
Alkalinity as mg/1 CaCO^= mis f^SO^ x Normality H2SOi; x 50,000
mis sample
Sulfates Determination:
The sewage and effluent samples (20 mis diluted to 100 mis
with distilled water) were analyzed for soluble sulfate by first
filtering the sample through a glass fiber pad and running the
analyses on the filtrate. The Turbidimetric Method as in Standard
Methods, 12th Edition (lU) was used.
Specific Gravity Determination:
A standard 60° F. hydrometer was used to measure the
specific gravity of the pickle liquor. The readings were not com-
pensated for temperature.
% Free Acid Determination:
Initially, a 10 ml aliquot of the pickle liquor was
titrated with IN Na OH until the formed floe turned from green to
brown (pH about 6.0). This method was used for all the analyses on
pickle liquor from the A. 0. Smith Corporation. This method was
later changed to titrate to a pH of U.3 and all the pickle liquor
from the U. S. Steel Corporation was analyzed in this fashion.
The formula used in all determinations was:
% HpSOK = mis titrant x Normality of NaOH x Up
mis sample x Specific Gravity
26
-------
SECTION IX
PRESENTATION AND DISCUSSION OF DATA
A. Screened Sewage and Effluent Characteristics
The review and investigation of the performance of a waste
water treatment plant was greatly dependent upon the characteristics
of the waste water that enters the plant. Some of these character-
istics of the raw screened sewage entering the secondary or bio-
logical portion of the Jones Island treatment process presented as
1970 yearly averages are:
TABLE 1
Yearly Average Screened Sewage Characteristics
Total Solids, mg/1 939
Suspended Solids , mg/1 207
BOD mg/1 209
COD mg/1 U31
KJeldahl Nitrogen mg/1 N 28.3
Total Phosphorus, mg/1 P 8.2
Total Soluble Phosphorus, mg/1 P 3.1
Total Iron, mg/1 Fe 7.17
Total Soluble Iron, mg/1 Fe 0.60
These properties of the sewage entering the plant are further
broken down into monthly average concentrations on Table 2. The
West and East Plant operations are similar except iron was added
to the East Plant. Table 2 also indicates the quality of the
effluent from both plants along with the percent removal of the
different properties listed. Appendix H has all the daily results
of analyses.
The data shows some very significant and interesting
information. The sewage has a relatively high percent of insolu-
ble phosphorus, 62% or 5.1 mg/1 P. The pickle liquor iron, there-
fore only has to interact and precipitate the smaller portion of
the phosphorus (38/S soluble). Figures k, 5 and 6 show the monthly
variations in screened sewage BOD, suspended solids and total
phosphorus over the last six years. The year 1970 is far from an
average year and at the present time no substantial answer was
available that could explain the marked change experienced. The
sewage properties in the future may continue as in 1970 making the
plant data obtained during this grant period typical or it may
return to the earlier characteristics making 1970 an "unusual year",
27
-------
TABLE 2
MONTHLY AVERAGE SCREENED SEWAGE
AND EFFLUENT CHARACTERISTICS
MONTH
January
rebruary
March
April
May
June
July
August
Seotember
October
November
December
Average
BIOCHEMICAL OXYGEN DEMAND
mg/1
SS WPE EPE
251 16.6 12.9
2l49 13.0 lU.O
21*1* 12.5 22.9
203 9.0 11.1*
192 12.8 12.9
183 7.1* 2'i.8
Ilk lit. 6 15.5
171 8.7 10.3
187 12.6 ll*.i*
230 17.0 23.0
210 13.0 15.0
210 13.0 18.0
209 12.5 16.3
% Removal
WPE EPE
92.5 91*. 6
9!*.2 93.9
91*. 2 89. U
95.3 93.8
93.2 92.6
95.6 85.9
91.0 90.5
9^.1 93.1
92.1* 91.5
92.1* 89.U
93.5 92.5
93.1* 91.3
93.5 91.5
CHEMICAL OXYGEN DEMAND
mg/1
SS WPE EPE
505 81 67
1*99 86 78
1*76 85 79
1*1*3 77 67
1*20 83 66
395 55 81
377 60 63
368 5l* 61
377 52 65
1*50 65 81
1*1*0 56 61*
1*20 61 71
1*31 68 70
% Removal
WPE EPE
82.7 85.9
81.7 83.5
80.7 82.3
81.6 81*. 0
79.5 83.3
85.9 79.8
83.1* 82.6
81*. 3 82.0
85.1 81.9
81*. 9 81.2
86.5 81*. 6
81*. 1 82.0
83.1* 82.8
Month
January
February
March
April
May
June
July
August
September
October
November
December
Average
TOTAL SOLIDS
mg/1
SS WPE EPE
1077 801 803
990 722 756
1038 765 791*
1033 773 807
9l*l* 736 7^6
885 69!* 772
805 639 681
805 629 666
828 61*9 693
918 715 756
928 738 769
1017 829 860
939 721* 759
% Removal
WPE EPE
25.1* 26.6
26.1* 22.9
25.9 23.1
2U.5 21.2
21.5 20.1
21.1* 12.8
20.8 15.2
21.1 17.1
21.2 16.9
21.5 17.6
19.8 17.3
18.0 15.5
22.3 18.9
SUSPENDED SOLIDS
mg/1
SS WPE EPE
259 22 16
230 15 16
230 17 18
211* 18 13
193 27 16
177 13 1+1
177 22 23
177 12 ll*
189 15 23
232 22 1*2
199 18 25
207 21 29
207 18.5 23
% Removal
WPE EPE
90.5 93.8
93.1* 92.8
92.2 91.9
91.5 93.5
86.1* 91.2
92.6 77.1
87.3 87.5
93.2 91.7
91.8 87.9
90.3 81.0
91.2 87.7
90.0 85.5
90.9 88.5
KJELDAHL
NITROGEN
mg/1 as N
SS WPE EPE
3U.3 15.9 15.1
33.2 ll*.l ll*.l*
29.9 12.2 11.1*
27.3 9.0 7.6
26.1 10.0 6.1*
21*. 3 8.1 7.5
21*. 9 7.9 U.3
25.9 9.9 5.0
2U. 5 8.1 U.5
30.7 12.5 10.3
28.6 12.1 7.1
29.9 11.1* 10.0
28.3 10.9 8.6
*A11 effluent data represents the period from January
to December 31, 1970.
28
-------
TABLE 2 (cont.)
MONTHLY AVERAGE SCREENED SEWAGE
AND EFFLUENT CHARACTERISTICS
MONTH
January
February
March
April
May
June
July
August
September
October
November
December
Average
TOTAL PHOSPHORUS
rng/1 as P
SS WPE EPE
9.7 3.0 0.6U
10. U 2.5 0.86
9.6 2.2 0.86
8.3 1.6 0.52
7.3 1.1 O.U9
6.7 1.1 0.96
7.2 0.97 0.70
7.3 0.66 0.3U
6.8 0.72 0.58
8.9 1.2 1.1
8.1 0.91* 0.56
7.7 1.2 0.77
8.2 1.1* 0.70
% Removal
WPE EPE
69.1 93. U
75. U 91.2
76.6 90.8
81.1 93. U
85.2 93. U
83.6 85. U
86.5 90.5
91.1 95.5
89.2 91.3
86.2 87.5
88.7 93.1
81*. 0 90.2
83.1 91.3
TOTAL SOLUBLE PHOSPHORUS
mg/1 as P
SS WPE EPE
3.9 2.6 0.37
3.8 2.1 0.57
3.7 1.9 0.59
3.6 1.3 0.31*
2.8 0.55 0.22
2.6 0.91 0.23
2.5 O.U6 0.19
2.7 0.35 0.20
2.5 0.1*5 0.27
3.1 0.80 0.26
2.8 0.59 O.lU
2.7 0.83 0.17
3.1 1.1 0.30
% Removal
WPE EPE
31*. 2 91.1
1*1*. 1* 81*. 9
1*7.0 83.7
65.2 90.8
80.5 92.2
66.6 90.9
80.U 92.5
87.2 93.2
81.1* 89.7
7U. 0 91.1
79.3 914.7
69.3 93.1*
67.5 90.7
MONTH
January
February
March
Auril
May
June
July
August
September
October
November
December
Average
TOTAL IRON
mg/1 as Fe
S3 WPE EPE
8.1*3 0.67 0.91
7.11 0.30 0.83
7.72 0.39 0.73
7.26 0.1*8 0.60
6.95 0.69 l.Ol*
5.95 0.58 2.13
7.00 0.81 1.51
6.70 0.51 0.61*
5.60 0.33 0.92
8.15 0.52 1.76
7.82 0.39 1.1
7.1*0 0.1*7 2.0
7.17 0.51 1.18
% Removal
WE EPE
91.3 89.5
95.5 87.2
9U.8 90.1*
93.2 90.9
39.9 81*. 7
90.3 6U. 8
88.7 80.2
92.5 90.5
93.9 82.7
93.6 78.1*
95.0 85.8
93.6 75.3
92.7 83.1*
TOTAL SOLUBLE IRON
mg/1 as Fe
SS WPE EPE
l.Ol* 0.38 0.1*9
0.31* o.io 0.16
0.39 0.17 0.16
0.52 0.22 0.20
0.50 0.21* o.22
0.75 0.39 0.1*1
0.77 0.38 0.1*2
0.79 0.25 0.27
0.1*3 0.08 0.08
0.60 O.lU 0.13
0.5U 0.08 0.13
0.58 0.13 0.16
0.60 0.21 0.21*
% Removal
WPE EPE
55.3 5U.6
61*. 3 59.5
5U.8 59.5
55.1* 59.1
52.3 56.1
1+8.0 1*5.1*
58.7 51.5
67.3 62.7
79.7 79.3
75.5 76.1*
83.1 73.9
75.9 71.2
61*. 2 62.1*
29
-------
375
Q
O
00
3501
325H
300H
275-\
250]
225-\
20CH
1754
1970
150
J F
A S 0 N D
M A M J J
MONTH
Figure 4
Monthly Sewage BOD Variation
30
-------
co
Q
Li
o
CO
Q
LU
Q
Z
LJ
Q_
CO
ID
CO
375
250
325
300-
275'
250
225-
200
175-
150
1969
1970
J FMAMJ JASOND
MONTH
Figure 5
Monthly Sewage Suspended Solids Variation
31
-------
12 -\
II
0_
r- 10 J
(A
ID
or
o
1.
Q_
(/)
O
11
Q_
O
9-
6.
7-
6 -
1968
M A M J J
MONTH
N
Figure 6
Monthly Sewage Total Phosphorus Variation
32
-------
The biological activities for 1970 in the West and East
Plants will be different from the previous years because of the
different loadings, therefore the effluent properties were not
compared with the previous years. However, the percent total
phosphorus removal in the West Plant was greater in 1970 (83.1?)
than in the 1968 (76.2$) and 1969 (76.95?) period.
The effluent results indicate a very low total soluble
phosphorus concentration in the East Plant effluent; 0.30 mg/1 P
as a yearly average in comparison with 1.1 mg/1 P in the .West Plant.
A yearly average for effluent characteristics was from January 12,
1970 (iron addition) to December 31, 1970. The yearly averages for
total phosphorus concentrations for the East Plant was 0.70 mg/1 P
(91.3!? removal) and l.U mg/1 P (83.1$ removal) for the West Plant.
These total phosphorus concentrations varied greatly at times due
to plant operational problems, start up period of iron addition,
plant acclimation and seasonal changes. The objective of maintain-
ing a total phosphorus residual of 0.50 mg/1 P was obtained on a
monthly average only twice, in May and August. The daily data in
Appendix H indicates that this objective probably could have been
obtained every month after the initial acclimation period except
for a mixed liquor suspended solids control problem. During the
last four months of the grant period, mixed liquor suspended solids
were discharged in the effluent from the final sedimentation basins
contributing a significant amount of insoluble phosphorus to the
effluent. Considering the 351* days from January 12, 1970 to
December 31, 1970 the total phosphorus concentration in the East
Plant effluent met the objective on 195 days (55.1? of the time)
while the West Plant effluent met the objective on only 60 days
(l6.9? of the time). During the same time period the total
soluble phosphorus concentration in the East Plant effluent was
less than or equal to 0.50 mg/1 P on 311 days (87.9? of the time)
while the West Plant effluent was in that range only ll»3 days
(UO.U? of the time). Another comparison of the data was to
divide the year into several periods (remember iron was added only
to the East Plant) as shown in Table 3. The low total soluble
phosphorus concentration in the effluents indicated the success
to the iron addition for phosphorus precipitation in the East Plant.
The acclimation period referred to was very difficult to
define because of all the biological aspects that were possibly
affected. Arbitrarily we assigned January and February as the
initial period because of addition problems.
Plant performance indicators such as removal of BOD, COD
and suspended solids were compared between the West and East Plant
and both plants operated about the same. The slightly lower percent
removals in the East Plant reflected the greater loss of mixed
liquor suspended solids from the sludge blankets in the East Plant
sedimentation basins. The SDI yearly averages of 0.97 for the West
33
-------
u>
TABLE 3
PHOSPHORUS CONCENTRATION FOR DIFFERENT PERIODS IN 1970
1970 Total Phosphorus Total Soluble Phosphorus Iron Addition
Period mg/1 P % Removal mg/1 P % Removal to East Plant
SS W E W E SS WE W E Ib/day mg/1
Weekday Addition
Acclimation
Jan 12 - Feb 28 10.1 2.7 0.77 72.7 92.2 3.9 2.3 0.1*9 1*0.3 87.U 1100U 12.5
Spring
Mar I - May 31 8.1* 1.6 0.62 8l.O 92,5 3.1+ 1.2 0.38 614.3 88.9 12600 13.2
Continuous Addition
Summer
June 1 - Sept 30 7.0 0.87 0.6U 87.6 90.7 2.6 0.5** 0.22 79.2 91.6 7527 6.9
Fall - Winter
Oct 1 - Dec 31 8.2 1.1 0.81 86.3 90.3 2.9 0.7U 0.19 7U.2 93.0 7066 6.7
Yearly Average 8.2 l.U 0.70 83.1 91.3 3.1 1.1 0.30 67.5 90.7 9271* 9.1*
-------
Plant mixed liquor and l.OU for the East Plant indicated that the East
Plant produced a slightly better settling sludge. (See Table k).
The daily sewage and effluent results for BOD, phosphorus
and iron were separated by the days of the week. Figure 7 shows the
daily BOD variation indicating a fairly constant Monday through Friday
average BOD. The East Plant effluent BOD was slightly higher than the
West Plant due to the greater loss of solids. The Friday results were
higher because more solids were lost on that day. No logical explana-
tion was found for the higher East Plant effluent BOD on Monday ex-
cept that the effluent had higher suspended solids concentration than
the West Plant. The Monday mixed liquor SDI was 1.03 and 1.10 re-
spectively for the West and East Plants indicating better overall
settling in the East Plant.
Figure 8 shows the daily phosphorus variation. On Monday
the screened sewage total phosphorus and total soluble phosphorus was
the highest and on Sunday the lowest with the rest of the days fairly
constant. The effluent data shows the greater removal in the East
Plant. Figure 9 shows the monthly phosphorus variation and indicates
the great difference in the effluent values early in the year. This
figure clearly shows the variation between the West and East Plant
for the total and total soluble phosphorus concentrations and the
objective total phosphorus concentration of 0.50 mg/1 P. The East
Plant Monday data includes the period when iron was not added over
the week end resulting in a higher effluent total soluble phosphorus
concentration.
Figure 10 shows the daily iron variations (the data does not
include the January and February results because of problems in the
analyses). The sewage total iron concentration was lowest on Sunday
and increased to a peak on Friday and then dropped slightly on
Saturday. The East Plant effluent total iron content was about
double that of the West Plant. Some of this increase was caused by
the greater loss of solids especially on Fridays. The soluble iron
concentration in the effluents were very low averaging 0.21 mg/1 Fe
in the West Plant and 0.2U mg/1 in the East Plant. The total iron
concentration was greater in the East Plant effluent because of the
higher iron concentration in the suspended solids.
B. Mixed Liquor and Return Sludge Characteristics
The addition of iron increased the ash content of the East
Plant sludge. To compensate for this ash an attempt was initiated
in July, at the suggestion of project officer Dr. R. Bunch, to keep
the East Plant mixed liquor suspended solids 200 mg/1 higher than
the West Plant which would equalize the biomass or volatile suspend-
ed solids in both plants. The monthly average mixed liquor suspend-
ed solids values indicate that 200 mg/1 differential was success-
fully maintained.
35
-------
TABLE
MONTHLY AVERAGE'MIXED LIQUOR AND
RETURN SLUDGE CHARACTERISTICS
Month
January
February
March
At>ril
May
June
July
August
September
October
November
December
Average
Iron Addition
To East Plant
Lbs/day mg/1
11,778 12.8
10,1*23 12.2
12,192 13.7
12,960 13.7
12,630 12.3
8,081 7.2
7,392 6.7
7,210 6.9
7, ^427 6.8
6,1*08 6.2
6,780 6.3
8,001 7.1*
9,271* 9.1*
MIXED LIQUOR
E.P.
M.G.D.
103.U
98. 1+
100.2
109.0
119.8
132.8
130. 1*
123.7
133.0
123.8
126.9
127.6
119.1
pH \Susp.Solids mg/1
WP EP \
7.1 7.1
7.0 7.0
7.1 7.0
7.1 7.0
7.0 7.0
7.2 7.1
7.1 6.9
7.0 6.9
7.2 7.0
7.1 7.0
7.1 7.0
7.1 7.0
7.1 7.0
WP EP
2686 2693
2723 2805
2537 2580
271*1 2665
2991 2971*
251*1 260U
26lU 2617
2329 2589
2207 2U26
2588 2773
279l< 2976
252U 271*7
2606 2701*
S. D. I.
WP EP
0.91* 1.02
1.11 1.11
1.16 1.16
1.09 0.91*
1.03 0.90
0.82 0.81*
0.86 1.11
1.06 1.22
0.99 1.19
0.86 0.98
0.92 l.ll*
0.83 0.90
0.97 l.Ol*
Month
January
February
March
April
May
June
July
August
September
October
November
December
Average
RETURN SLUDGE - CENTRIFUGED SOLIDS - DRY BASIS
% Total - P
WP EP
2.36 2.76
2.37 2.65
2.31 2.62
2.18 2.1*7
2.11* 2.UU
2.18 2.1*9
2.1*0 2.87
2.U2 2.70
2.31 2.58
2.33 2.69
2.32 2.61
2.11 2.1*2
2.29 2.6l
% Total - N
WP EP
6.67 6.31*
6.53 6.1U
6.1*2 6.06
6.62 6.21
6.52 6.05
6.62 6.16
6.61* 6.00
6.63 6.12
6.61 6.01
6.76 6.30
6.83 6.30
6.90 6.U6
6.65 6.18
% Total-FE
WP EP
2.05 5.67
2.00 5.15
1.99 5.52
1.67 5.55
1.81* 5.3U
1.71* 1*.8U
1.81* U.76
1.91* 5.08
1.8U 5.11
1.81 1*.U5
1.90 1».73
1.72 1*.80
1.86 5.08
% Total Ash
WP EP
21*. 5U 30.57
25.31 29.71*
26.1*14 31.58
26.18 31.78
27.88 32.83
27.20 31.83
27.72 32.82
26.87 31.58
26.66 31.76
25.13 29.60
2U.78 29.36
23.20 27.97
25.99 30.95
36
-------
250-
200-
150 H
too.
I
Screened Sewoge
\
\
\
\
Su
M
Tu
W
Th
So
Q
O
00
10-
Su
Eost Plant Effluent
M
West Plant Effluenl
Tu
Th
Daily
w
DAY
Figure 7
BOD Variation
So
37
-------
O> 5
E
/
/
\ Total Phosphorus
7-
6-
Screened Sewage
West Plant Effluent
Eost Plant Effluent
(/)
(D
O
/ N
/ N
Total Soluble Phosphorus
^Totol Phosphorus
0.50-
• • • s. •
X....
.*•*** *••
Su
M
Th
Tu W
DAY
Figure 8
Daily Phosphorus Variation
Sa
38
-------
cr>
E
CO
z>
cr
o
i
Q_
CO
O
X
a.
ii.
10
9
8:
7-
6.
X V
Total Phosphorus
JFMAMJJASON
Screened Sewage
West Plant Effluent
East Plant Effluent
Total Soluble Phosphorus
otol
[ Phosphorus'
A M J J
MONTH
A S 0 N
Figure 9
1970 Phosphorus Variation
39
-------
8H
7-
.Totol Iron
Su M Tu W Th
So
Screened Sewage
West Plant Effluent
East Plant Effluent
2.0-
1.5.
Total Iron-
O
rr
1.0.
0.5-
Su M
Daily
Tu W
DAY
Figure 10
Iron Variation
40
Th
Sa
-------
During the initial stages of the pickle liquor addition,
Dr. Bunch raised the question as to what inhibitors were in the pickle
liquor and if they had any carcinogenic effects. The companies supply-
ing the inhibitors to the A. 0. Smith Corporation were contacted and
requested to supply us with information about their product. One
company said their product was a biodegradable surface active agent and
the other company said that they did not know anything about the
carcinogenity of their chemical but expected no problems because of the
tremendous dilution factor involved.
The solids production in the mixed liquor was reviewed. A
solids production difference between the West and East Plants could
not be determined because the volume of sludge wasted from each plant
individually was not accurately measured. The total sludge produced
in both plants was obtained by adding the tons of dried solids removed
and the solids present in the effluent. It should be remembered that
the Jones Island Plant does not have conventional primary settling,
only fine screening, and therefore the sewage BOD and suspended solids
feed to the biological process was high. This higher load will result
in a greater overall production of solids. Figure 11, shows the solids
produced in conjunction with the BOD removed and shows the monthly
variation of solids produced per 1000 pounds of BOD removed. The
increase in production of solids per BOD removed increased during periods
of low BOD content of the sewage because the dewatering facilities were
operated to remove as many solids as practical resulting in a lower
sludge age.
Figure 12 shows the solids production per pound of BOD
removed for the last six years. Relating this data to Figure U
(sewage BOD variation) a greater production per pound of BOD removed
occurs during periods of lower sewage BOD. During the lower BOD period
the solids were removed fast enough to produce a lower sludge age and
greater production. In 1965, 1966, 1967 and 1968 solids were not re-
moved fast enough and the sludge age was greater resulting in endogenous
respiration but possibly a more stable sludge. This greater solids pro-
duction and removal may be the reason for the increase noted in the
ability of the West Plant to remove phosphorus. The greater the solids
production, the greater the amount of phosphorus removed.
The increased phosphorus removal efficiency of the East
Plant was confirmed by the increased phosphorus content of the return
sludge.
MONTHLY AVERAGES JAN. 12 - DEC. 31
West Plant R.S. - 2.29? as P
East Plant R.S. - 2.6l# as P
1*1
-------
T3
CD
O
13
1
CL
to
•g
"o
CD
o>
o
O 0.9
o:
Q
o
to
.a
O
O
O
0.8
J FMAMJJ ASOND
0)
O
13
•o
2
Q_ 230
CO 210
.o
C
o
190
170 •
Q
O
CO ISO
r SOL IDS PRODUCED
X
80 D REMOVED
J FMAMJ JASOND
MONTH
Figure II
1970 Solids Production per BOD Removed
42
-------
1.0 H
O)
o
0>
CL
Q
O
00
O
O
o
o>
o
13
TJ
O
CL
(fl
T)
0.9-
0.8-
1970
0.7-
0.6-
19681
0.5-
1970
1969
1967
c
o
0.4-
0.3J
M
N
A . M J J A S 0
MONTH
Figure 12
Solids Production per BOD Removed
-------
Along with the phosphorus differences, the pickle liquor addition
clearly indreased the iron content of the East Plant return sludge
MONTHLY AVERAGES JAN. 12 - DEC. 31
West Plant - 1.86% as Fe
East Plant - 5.08$ as Fe
The monthly average mixed liquor and return sludge properties are
shown in Table k and the entire data in Appendix H. The greater
amount of ash in the East Plant sludge reflects the iron addition.
The nitrogen in the sludges from both plants on a yearly average are
almost exactly the same when based on an ash free sample.
From January 12 - December 31, 1970 a total of U ,177,39^
gallons of waste pickle liquor were added averaging 13,060 gallon
per day or 9,27^ Ibs per day to the East Plant. The specific gravity
ranged from 1.090 (0.20 pounds of iron per gallon) to 1.333 (l.OU Ibs
of iron/gal.) averaging 1.235 (0.71 lb of iron/gallon).
The phosphorus and iron content of the return sludge in-
creased as expected and the question was raised as to the form in
which the phosphorus had precipitated. The grant included funds for
x-ray diffraction tests to be conducted at Marquette University through
the Civil Engineering offices of Dr. Raymond J. Kipp, Chairman, and
Dr. Sudershan K. Malhotra, Assistant Professor. The work was done
by Dr. Martin A. Seitz and Mr. Robert Riedner (15) of the Marquette
College of Engineering. The objective of the x-ray diffraction was
to determine the nature of any crystalline inorganic or organic
matter in the sludge residue. Return sludge from the West and East
Plants was obtained and dried. The dried material was then magnet-
ically separated for x-ray diffraction of the magnetic portion. The
details of the procedure are in Appendix I. The inorganic crystal-
line compound, Vivianite: Fe^tPO^Jo * 8 1^0 and variations of ferrous
phosphate (Fe^POi^ • (8-x) I^O) were found in the sludge from both
plants.
Some of the conclusions to the work by Seitz and Riedner (15)
were:
"1. In order to identify the compound species in the sludge
residue, they must be concentrated and separated from
the bulk material.
2. Vivianite in a defective form, Fe3(PO],)2 • (8-x) H20,
is present in the sludge residue in varying amounts, of
the order of 1%.
-------
3. Freeze drying methods lead to better results upon x-ray
analysis, while air drying methods lead to better weight analysis
results. Further work, mainly in the area of electrostatic charge pick-
up by powder particles, is required in order to obtain a more reliable
weight analysis."
The relative concentrations of the ferrous phosphate forms were not
determined but of the dried solids samples obtained, one West Plant
sample had the greatest percent of magnetic material. This may have
resulted from the drying method used (Freeze dried). Much more work
is necessary before any conclusions can be drawn.
C. Miscellaneous Tests
During the course of the grant period additional tests were
conducted to further investigate the characteristics of the pickle.
liquor and the associated effect on the properties of the mixed liquor
and effluents. These tests included pickle liquor free acid determina-
tion; alkalinities on sewage mixed liquor and effluents; soluble
sulfates on sewage and effluents; phosphorus uptake rates of the mixed
liquor; and phosphorus release in the sedimentation basins.
1. Pickle Liquor Free Acid
The free acid in the pickle liquor from the A. 0. Smith Corp-
oration varied from 2.1 to 5-855 I^SO^ in the samples collected. The
addition of this acid to the East Plant mixed liquor had only a slight
effect on the pH with the yearly average West Plant mixed liquor being
pH 7.1 and that for the East Plant being pH 7.0. The sulfuric-
hydrochloric and pickle liquor from the U. S. Steel Corporation was
stronger in free acid and the free acid ranged from 6.6% to 9.355
The individual results are listed in Appendix J.
2. Alkalinities on Sewage, Effluents and Mixed Liquors
Periodically,starting in June, samples of screened sewage,
effluents and mixed liquors were collected for an alkalinity deter-
mination. This was done to determine the effect of the pickle liquor
acid on the alkalinity of the system. The yearly sewage alkalinity
averaged 22U mg/1 as CaCOg with the effluents averaging 213 in the
West Plant and 169 in the East Plant (20.7? difference in the
effluents). The alkalinities for the mixed liquors averaged 197 for
the West Plant and 187 for the East Plant. The entire data is listed
in Appendix K. The differences caused no problems in plant operation.
3. Soluble Sulfates on Sewage and Effluents
Since ferrous sulfate was being added to the East Plant,
samples of screened sewage and effluents were collected to determine
the differences in the sulfate concentrations. During the early
-------
part of the year a few daily samples were analyzed for soluble
sulfate and started again in August. Initially some problems were
experienced with the analyses but by the end of August all the
problems were solved and weekly composites were collected and
analyzed. This data from August 23, 1970 through January 2, 1971
should be very representative of what the actual soluble sulfate
concentrations will be. An average of the weekly composite data
shows a sewage soluble sulfate concentration of 120 mg/1 SO^ with
the effluents having 123 and ll+5 mg/1 SO^ respectively for the
West and East Plants. The East Plant effluent had a 17.9% higher
sulfate concentration but the increase was not substantial enough
to cause concern. As a comparison of relative sulfate concentra-
tions, the 1962 U. S. Public Health Service drinking water standard
is 250 mg/1 S0i| (16). The entire data is in Appendix L.
U. Phosphorus Uptake
To further understand the effects of the pickle liquor iron
addition, a few simple phosphorus uptake and release studies were
conducted. This iron addition, as one would expect, should change
the rate of phosphorus uptake in the mixed liquor through the
aeration period along with reducing the amount of phosphorus re-
leased after the mixed liquor is directed into the sedimentation
basin. An initial investigation was conducted to determine if there
were any sample handling problems. Samples of East Plant sewage,
return sludge and mixed liquor were collected and allowed to stand
for one or two hours. An aliquot was taken after various periods to
determine how fast the concentration of the soluble ortho-phosphate
(SOP) would change. The data shown in detail in Appendix M indicates
a small change in concentration of the SOP in sewage, but the concen-
tration changes in the return sludge and mixed liquor were significant.
Therefore, sample preparation (filtration) was undertaken immediately
after collection.
The SOP uptake rate (biological and/or chemical) was deter-
mined by collecting samples from the West and East Plants at various
stages during the aeration period. Only one complete test run was
conducted but the results do clearly indicate a difference between the
two plants. The data in Table 5 indicates a much faster SOP uptake
in the East Plant as expected because of the iron ladened sludge and
the iron addition.
-------
TABLE 5
SOLUBLE ORTHO - PHOSPHATE UPTAKE
SOP in mg/1 P
RETURN MIXED LIQUOR IN AERATION TANK MIXED LIQUOR
PLANT SEWAGE SLUDGE FEED CHANNEL INLET TURNING OUTLET
POINT
East 1.5 1.1* 1.9* 0.66 0.38 0.39
West 1.5 0.97 2.8 2.8 0.38 0.31
*Just prior to the addition of the pickle liquor
5. Phosphorus Release
The release of SOP from the mixed liquor suspended solids
can be a considerable amount as indicated by the bench scale studies
of R. M. Manthe (17). It is difficult to compare bench studies with
actual conditions in a waste water treatment plant but for purposes
of comparison this type of an experiment can be useful. The
difference in the SOP release between the West and East Plant mixed
liquor solids was determined by obtaining samples of mixed liquor
from the aeration tank outlet and allowing them to settle for 0, 1/2,
1, 2, 3 and U hours. The original mixed liquor sample was separated
into five - liter graduated cylinders for settling. After each
designated time period the cylinder was divided into five aliquots
each representing 200 ml. Each aliquot was filtered as soon as
possible and analyzed for SOP. The pH of each sample was also deter-
mined. Three tests were conducted in this fashion except the first
test was conducted in the laboratory and the second and third tests
were set up at the site of sample collection. The data clearly
indicates the reason for an on site test. The time delay between the
sample collection and delivery to the laboratory was too great and
as shown in Figure 13 the West Plant mixed liquor had already re-
leased a considerable amount of SOP.
The comparison bench SOP release tests in Figures 13, 1**
and 15 indicate that the iron added to precipitate the phosphorus
also decreases the release of SOP. Phosphorus release can hinder
the over-all phosphorus removal because a good phosphorus uptake
could be obtained in the aeration stage of treatment and lost in the
sedimentation basin. The varying soluble iron concentration was
investigated along with SOP release during one of the test runs.
Figure 16 indicates that a release of iron occurs in both plants,
especially in the sludge blankets. The pH values of the super-
natant remained relatively constant while the pH of the sludge from
both plants decreased markedly which would tend to solubilize more
iron. In spite of the pH change and soluble iron release in the
-------
Q
Cf
0-
z
a:
UJ
a.
:D
cn
1000
MLS
800
MLS
MLS
400
MLS
200
»West Plarft Mixed Liquor
oEost Plant Mixed Liquor
August II, 1970
a- o— o-
a>
E
60
a:
o
45
30-
15
UJ
x
z
<
_l
CD
tkj
O
O
^
_l
cn
MLS
TIME, HOURS
Figure 13
SOP Release From Mixed Liquor
48
-------
I
Q
O
Q_
I
z
tr
HI
a.
O
(O
0.0
O
(/)
60
30
15 -
UJ
*
z
<
_l
m
UJ
o
o
CO
1000
MLS
600
MLS
600
MLS
400
MLS
200
MLS
»West Plant Mixed Liquor
oEast Plant Mixed Liquor
August 26, 1970
TIME, HOURS
Figure 14
SOP Release From Mixed Liquor
49
-------
o
o
Q_ 0
CL
O
60
45
30
15
0-
or
Ui
o.
:D
UJ
CD
UI
o
o
V)
1000
MLS
800
MLS
600
MLS
400
MLS
200
MLS
.•West Plant Mixed Liquor
-eEast Plant Mixed Liquor
September 25, 1970
0123
TIME, HOURS
Figure 15
SOP Release From Mixed Liquor
50
-------
a>
U_
O
(/)
0.2
i °
LU
_l
CO
2 -
T
g
o
a:
UJ
a.
• .West Plant
a aEast Plant
September 25,1970
^
0 0.5 I 2 3
TIME, HOURS
Figure 16
Soluble Iron Release From Mixed Liquor
51
-------
East Plant sludge, very little SOP was released in comparison with
the West Plant.
Two additional tests were conducted to study SOP release
but these involved measuring only the supernatant SOP after settling
for 0, 1/2, 1 and 2 hours. The data shown in Figure 17 again
indicates a greater release of SOP from the West Plant mixed liquor
suspended solids.
D. Rate of Iron Addition
At the start of the grant period it was proposed to vary
the iron addition rate to determine minimum, maximum and optimum
iron requirements. This is the reason why the complicated automatic
iron addition controls were ordered. Unfortunately this equipment
was not operating until the middle of December 1970 because of
delays in equipment delivery and the time remaining was too short
for any experimentation.
The iron added throughout the year was varied producing
monthly averages of 13.7 mg/1 Fe in March and April to 6.2 mg/1 Fe
added to the mixed liquor in October. The dosing was rough because
it was not in proportion to the mixed liquor flow, sometimes in
proportion to the expected phosphorus concentration and sometimes
in proportion to the supply of pickle liquor available. The data
in Table U indicates the average monthly concentration of iron added
to the East Plant mixed liquor but no optimum iron requirement can
be determined from the information available.
E. Mixed Liquor Biota
Microscopic examinations of the mixed liquor from both the
West and East Plants were conducted five days per week for the first
part of the grant period and was reduced to biweekly examinations in
September for the remainder of the grant. These examinations deter-
mined the types and numbers of organisms and the general condition of
the mixed liquor.
At the start of the project in January, a very active and
profuse number of organisms were noted in the East Plant mixed liquor
with normal concentrations in the West Plant. The numbers decreased
after a change in the sewage distribution from k2% to the West and
58$ to the East Plant to 50% to each plant. In February the organisms
continued to decrease in the East Plant after six of the twenty
aeration tanks were taken out of service. No general change was
noted in the West Plant. During March, low mixed liquor suspended
solids were maintained in both the West and East Plants and a further
decrease in biota numbers was observed. This light biota concentra-
tion continued until the middle of May when an increase was observed
-------
RUN A
0.3
West Plant
a "East p|ant
August 28, 1970
0.5 I
TIME, HOURS
0.2-
0.
i
^
^~
Q_
O
RUN B
0.5 I 2
TIME, HOURS
Figure 17
SOP Release From Mixed Liquor
53
-------
(an especially light concentration was present in the East Plant).
The biota concentration increased through May and high biota con-
centrations with many varieties were noted from June through October
with very high concentrations in August and September. During
November the number of organisms decreased until a "normal" con-
centration was reached in December.
This "normal" concentration is that compared to the observ-
ations of the previous years. Considering the changes in the sewage
characteristics, the organism may continue to change or vary as they
did in 1970. This is extremely difficult to analyze and only future
microscopic analyses can determine any trends. Due to the many
changes in plant operations, sewage characteristics, the iron addition,
and the limited data, no detailed conclusions can be reached. However,
the data does indicate that no deleterious effects on the biota could
be traced to the iron addition. Appendix N shows sample microscopic
analyses of the mixed liquor on arbitrarily chosen days to show
generally the ranges of organisms throughout the year.
During the course of the project one very drastic difference
between the West and East Plants was the algae growths present in the
sedimentation basins (on the walls and overflow weirs). In April an
excessive algae growth was noted in the East Plant. A small amount of
algae always grew in the sedimentation basin but not to this extent.
This excessive algae growth continued through August and in June the
growth was so profuse that numerous basin cleanings were necessary.
The algae growth in the West Plant was normal, increasing in May
and decreasing in August. In September the algae had essentially
disappeared in both plants, with the coming of colder weather. The
algae had completely disappeared by the end of October.
Samples of the algae from both the West and East Plant
sedimentation basins were collected for microscopic identification.
The following Table 6 lists the various types of algae identified
along with the range of concentration in the samples collected.
F. Effect of Iron Addition on the Plant Physical Facilities
Every year at the Sewerage Commission a routine maintenance
program is scheduled for normal repair and cleaning of equipment.
This schedule includes draining, cleaning and checking East Plant
aeration tanks, sedimentation basins and channels which gives us an
ideal situation to determine if the iron addition has any effect on
the plant physical facilities.
In addition to the normal routine maintenance, special
consideration was given to the East Plant mixing channel where the
return sludge is added to the raw screened sewage, followed by the
iron addition. The mixing channel has five sets of swing diffusers
with ceramic tubes. In February 1970 two sets of the diffusers were
-------
TABLE 6
MICROSCOPIC IDENTIFICATION
OF SEDIMENTATION BASIN ALGAE
WEST PLANT
EAST PLANT
Green Algae Filaments
ULOTHRIX
RHIZOCLONIUM
MOUGEOTIA
MICROSPQRA
PITHOPHORA
CLADOPHORA
STIGECLONIUM FILAMENTS
MICROTHAMNION
CYLINDROCAPSA
SCENEDESMUS
Negligible to 50%
0 to possible 10$
0 to < 5%
0 to 20$
0 to 10%
0 to possible 10%
0 to > 90%
0
0 to low number
0 to negligible
30 to 60%
0 to 10$
0 to < 5
0 to U0$
0
0
0 to <5$
0 to <2%
0
0
Blue Green Algae
OSCILLATORIA
Low to 10$
0 to >20%
DIATOMS
PINNATE
CENTRIC
Negligible to very
high count
Low to high count
Medium to
high count
Negligible to
medium count
55
-------
replaced with new ceramic tubes to determine the effect of the iron
on these diffusers. The remaining three sets were washed and in-
spected. During September 1970 the swing diffusers were raised
for inspection showing the tubes covered with a layer of sludge
(similar to February), which was easily removed by washing with water.
The under layer of sludge did however have a iron red cast. The
inspection of the tubes indicated no unusual conditions.
During the warmer months, aeration tanks and sedimentation
basins were drained, cleaned and repaired under the routine mainten-
ance program. In May when one of the East Plant aeration tanks was
drained a slight iron red coloration deposit was noted on the walls
of the tank for the first 200 feet on the inlet side. Two East
Plant sedimentation basins were inspected in September. One of the
basins had a ring of red iron colored deposit on the lower walls
where the sludge blanket was normally in contact with the wall. The
other basin had similar markings but not as pronounced. Other than
the coloration, no repairs or problems with the plant physical
facilities could be related to the iron addition.
In the sludge filter and drying operation a considerable
loss in service life was noted for some of the equipment parts.
There was no evidence that could relate these problems to the pickle
liquor addition. The sludge dewatering characteristics changed
markedly in 1970 because of the change in the waste water properties.
The waste water changes in 1969 prior to pickle liquor addition also
affected the sludge dewatering operation. Any maintenance problems
in the sludge filtering and drying operation were most likely related
to the waste water characteristic changes.
G. Effect of the Iron Addition on the Ferric Chloride Demand
Ferric chloride was used to condition the thickened waste
sludge prior to filtration. The initial thoughts were that if ferrous
iron was added to the East Plant and the iron concentration in the
East Plant waste sludge was increased, possibly the ferric chloride
requirements would decrease. The ferric chloride used per dry solids
production was tabulated on a daily basis and compared to quantities
used in 1968 and 1969. Table 7 lists the monthly average ferric
chloride use for three years.
56
-------
TABLE 7
MONTHLY AVERAGE FERRIC CHLORIDE USE REQUIREMENTS
FOR SLUDGE CONDITIONING
Average Ferric Chloride Use
MONTH Lbs. Anhydrous FeClo per
Dry Tons Recovered Solids
1968 1969 1970
January 211.82 218.62 228.75
February 213.22 206.32 229.98
March 206.U6 209.06 238.53
April 209.^9 199.36 191*. U6
May 203.^2 211.U5 215.52
June 220.11 2U0.26 226.78
July 23^-OU 232.71* 260.08
August 223.^7 219.50 231.15
September 226.62 25^.63 2^5.62
October 239-73 257.18 262.69
November 251.10 236.91 257.63
December 223.83 229-33 238.03
Average 221.9^ 226.28 235-77
The data indicates that no reduction was obtained in the ferric
chloride requirements for sludge conditioning. As a result of the
changes in the characteristics of the raw sewage, comparison of these
three years was not really valid. The solids production for 1970 was
much different than for the previous years as shown in Figure 12.
Working with a lower sludge age and a less stable sludge was probably
the reason for the greater ferric chloride usage per ton of solids
recovered. Additional data collection is necessary before a review
should be made. The sewage properties and the resultant effect on
the mixed liquor quality plays an important role in the sludge de-
watering characteristics and therefore data from years with similar
sewage should be compared. Possibly in the years to come, this
data may be obtained.
57
-------
SECTION X
ACKNOWLEDGEMENTS
This report was written by Raymond D. Leary, Chief Engineer
and General Manager; Lawrence A. Ernest, Director of Laboratory;
Roland S. Powell, Assistant Director of Laboratory; and Richard M.
Manthe, Laboratory Supervisor of Research.
The authors gratefully acknowledge the assistance of the
A. 0. Smith Corporation of Milwaukee, Wisconsin for their complete
cooperation, financial assistance and engineering expertise through-
out the study period. We wish to acknowledge Mr. S. K. Rudorf and
other staff members of A. 0. Smith Corporation, especially Mr.
Milton Johnson, whose knowledge and advice have proved invaluable.
Also acknowledged is the Water Quality Office of the
Environmental Protection Agency for the financial assistance and
technical advice through the project officer, Dr. Robert Bunch.
The assistance from the U. S. Steel Corporation through
Mr. George J. Behrens, Chief Engineer, in supplying pickle liquor
on a temporary basis in November and December 1970 was appreciated.
Without the cooperation from the U. S. Steel Corporation, it would
have been necessary to discontinue the project due to a shortage
of iron.
The assistance of laboratory technician, Miss Gloria
Aldenhoff and all laboratory staff members for their laboratory
analyses as well as other Sewerage Commission personnel who have
contributed to the success of this project is greatly appreciated.
59
-------
SECTION XI
REFERENCES
1. Levin, G. V. and Shapiro, J., "Metabolic Uptake of Phosphorus by
Wastewater Organisms", JWPCF, 37, 6, 800, June 1965.
.2. Vacker, D., Connell, C. H. and Wells, W. N., "Phosphate Removal
Through Municipal Wastevater Treatment at San Antonio, Texas",
JWPCF, 39, 5, 750, May 1967.
3. Borchardt, J. A., and Azad, H. S., "Biological Extraction of
Nutrients", JWPCF, UO, 10, 1739, October 1968.
U. Wells, W. N., "Differences in Phosphate Uptake Rates Exhibited
by Activated Sludges", JWPCF, Ul, 5, 765, May 1969.
5. Menar, A. B. and Jenkins, D., "The Fate of Phosphorus in Waste
Treatment Processes: The Enhanced Removal of Phosphate by
Activated Sludge", Paper presented at the 2Uth Purdue Industrial
Waste Conference, Purdue University, LaFayette, Indiana, May 6 -
8, 1969.
6. Barth, E. F., and Ettinger, M. B. , "Mineral Controlled Phosphorus
Removal in the Activated Sludge Process", JjfPCF, 39, 8, 1362,
August 1967.
7. Hubbell, George E., "Process Selection for Phosphate Removal at
Detroit", Presented at the Ulst Annual Conference of the Water
Pollution Control, September 2U, 1968.
8. "Milwaukee Waste Water Treatment Facilities", Serving the Metro-
politan Sewerage District Under Control and Supervision of the
Sewerage Commission of the City of Milwaukee, 1968. Brochure
prepared by Sewerage Commission personnel explaining the plant
facilities.
9. Leary, R. D. and Ernest, L. A., "Industrial and Domestic Waste-
water Control in the Milwaukee Metropolitan District", JWPCF,
39, 7, 1223 July 1967.
10. Leary, R. D., Ernest, L. A., Katz, W. J., "Effect of Oxygen -
Transfer Capabilities of Wastewater Treatment Plant Performance",
JWPCF, UO, 7, 1298 July 1968.
11. Leary, R. D., Ernest, L. A., Katz, W. J., "Full Scale Oxygen
Transfer Studies of Seven Diffuser Systems", JWPCF, Ul, 3,
March 1969.
61
-------
12. Ernest, L. A. and Manthe, R. M., "Waste Pickle Liquor Utili-
zation at the Milwaukee Sewerage Commission for Phosphorus
Removal", Presented at the Indianapolis Scientific and Engineer-
ing Foundation, April 30, 1970.
13. Leary, R. D. and Ernest, L. A., "Municipal Utilization of an
Industrial Waste for Phosphorus Removal", Presented at the 32nd
Porcelain Enamel Institute Technical Forum at the University
of Illinois, October 8, 1970.
lU. "Standard Methods for the Examination of Water and Waste Water",
12th Edition, American Public Health Association, New York, 1965.
15. Seitz, M. A., Riedner, R., "X-Ray Diffraction Studies of Sewage
Sludge Residue", Marquette University, January 1971.
16. McKee, J. E. and Wolf, H. W., "Water Quality Criteria", 2nd
Edition, State Water Quality Control Board, Sacramento,
California, 1963.
17. Manthe, R. M., "Uptake and Release of Soluble Ortho-phosphate
in an Activated Sludge Plant", Masters Thesis, Marquette
University, Milwaukee, Wisconsin, 1970.
18. "Official Methods of Analysis of the Association of Official
Agricultural Chemists", 10th Edition, Washington D.C., 1965.
19. "Scott's Standard Methods of Chemical Analysis", 5th Edition,
New York.
62
-------
SECTION XII
NOMENCLATURE AND GLOSSARY
Phosphorus Nomenclature
1. Total Phosphorus (TP).
All the phosphorus present in sample (whether in the soluble
or insoluble state and present as ortho, poly, organic, etc.,
phosphorus compounds) which is converted by ternary acid
digestion to soluble orth-phosphate.
2. Total Soluble Phosphorus (TSP).
All the phosphorus compounds in the sample filtrate converted
by ternary acid digestion to orth-phosphate.
3. Soluble Orho-Phosphate (SOP).
All phosphorus measured by direct colorimetric analysis of
sample filtrate. (Angel Reeve Glass Fiber Pad No. 931tAB).
Iron Nomenclature
1. Total Iron.
All the iron present in the sample.
2. Total Soluble Iron.
All the iron compounds in the sample filtrate.
(Filtered thru Angel Reeve Glass Fiber Pad No. 93**AB).
Glossary
1. BOD - five day biochemical oxygen demand.
2. COD - chemical oxygen demand.
3. DO - dissolved oxygen.
U. EP - East Plant.
5. EPE - East Plant effluent.
6. MOD - million gallons/day.
7. ML - mixed liquor.
63
-------
8. MLSS - mixed liquor suspended solids.
9. MLVSS - mixed liquor volatile suspended solids.
10. N - nitrogen.
11. P - phosphorus.
12. SDI - sludge density index.
13. SOP - soluble ortho-phosphate.
lU. SS - screened sewage.
15. TP - total phosphorus.
16. TSP - total soluble phosphorus.
17. WP - West Plant.
18. WPE - West Plant effluent.
-------
SECTION XIII
APPENDIX
Appendix Title Page
A Actinomycetaceae» Genus Nocardia 66
B Pickle Liquor Addition Chart 70
C Phosphorus Determination with 71
Technicon Autoanalyzer
D Determination of Phosphorus in Sludges lk
E Determination of Ferrous Iron in 75
Pickle Liquor
F Determineation of Iron in Sludges 76
G Determination of Nitrogen in 78
Milorganite and Sludges
H Plant Operating Data 80
I X-ray Diffraction Techniques 128
J % Free Acid in Pickle Liquor 129
K Alkalinity 130
L Soluble Sulfate Concentration 132
M Uptake and Release of Soluble 133
Ortho-Phosphate
N Microscopic Count of Mixed Liquor 139
65
-------
APPENDIX A
ACTINOMYCETACEAE. GENUS NOCARDIA
In February, 1969 following a reduction in plant loading the
East Plant (a 115 mgd secondary portion of the 200 mgd Jones Island
activated sludge waste water treatment) operated by the Sewerage
Commission of the City of Milwaukee suddenly developed a heavy
growth of floating solids and microorganisms. Microscopic examination
of the floating material by personnel from the Robert A. Taft Sanitary
Engineering Center, Cincinnati, Ohio, Marquette University, University
of Wisconsin-Madison and the Commission indicated that the principal
microorganism in the foam belonged to the ACTINOMYCETACEAE, Genus
NOCARDIA. The predominant species of NOCARDIA were the proteolytic
type commonly found in soils and frequently in sewage associated with
the break down of paper cellulose.
This type of floating material, which had never been noted
previously, appeared in all portions of the East Plant where mixed
liquor or return sludge were being aerated. Chemical analysis on the
floating material indicated that it contained 85 percent organic
matter and 31 percent hexane soluble material.
Attempts made to reduce the floating material with regular
defoaming agents were unsuccessful, and vacuum skimming of the
aeration tanks and clarifier feed channels was instituted.
Surprisingly, no floating material appeared in the heavily
loaded West Plant (85 mgd secondary portion of the 200 mgd Jones
Island Plant) which received the same screened sewage as the East
Plant. During this period (February l8th to March 10th) when the
floating material first appeared in the East Plant, the food to
microorganism ratio (ib BOD applied per day/lb mixed liquor volatile
suspended solids under aeration) averaged 0.312 in the East Plant and
0.5^3 in the West Plant. During this period there were no reductions
in the plant efficiencies as measured by the BOD and suspended solids
removal.
The settling characteristics of the mixed liquors were not
affected as indicated by the average S.D.I, of 1.11 in the East Plant
and 1.18 in the West Plant.
In an attempt to overcome this foam problem, the food to
microorganism ratio in the East plant was gradually increased by
reducing the mixed liquor suspended solids and by increasing the BOD
applied. The quantity of air applied was reduced from an average of
l.M to 1.18 cu ft/per gal of sewage.
66
-------
The quantity of the floating material has been greatly re-
duced by the skimming operation and/or by the changed loading and
air rates or by the weather or other conditions beyond the control
of the plant operators. Figures 18 and 19 are pictures of the froth.
67
-------
ON
00
Figure 18
Actinomycetaceae, Genus Nocardia
-------
APPENDIX A (CONT.)
March 1970 Nocardia Froth on East Plant Aeration Tank
Microscopic Examination (l*30x), Nocardia Froth from
East Plant. Stained with Malchite Green - Safranin
Figure 19
Actinomycetaceae, Genus Hocardia
69
-------
APPENDIX B
June 9, 1970
TO: Mr. M. Johnson (A. 0. Smith Corporation)
cc: Mr. L. Ernest, Mr. R. Powell, Mr. D. Nelson
Effective immediately changes will be made in the rate of
pickle liquor addition to reduce the total iron added and to add at
two different rates to correspond to day and night East Plant mixed
liquor flow variations. The following Table is to be used to determine
the gallons per minute of pickle to be added for the different specific
gravities.
For Addition of 10 mg/1 Fe in the day (7:00/A.M. to 5:00/P.M.)
and 8 mg/1 Fe at night (5:00/P.M. to 7:00/A.M.)
G. P. M.
Specific Gravity
less than l.ll*9
1.150 - 1.178
1.179 - 1.208
1.209 - 1.236
1.237 - 1.265
1.266 - 1.293
1.291* - 1.321
1.322 - 1.350
Greater than 1.351
Day
20
16
13
11
9.5
8.5
7.5
7.0
6
Night
28
13
10.5
9.0
8.0
7.0
6.0
5.5
-J
I I \
Richard M. Manthe7
Supervisor
70
-------
APPENDIX C
Phosphorus Determination with Technicon Autoanalyzer
Reagents :
A. Ammonium Molybdate - Dissolve 200 gm of (NH^Jg
in 10 liters of distilled water. Add 1680 ml. of c. H2SOi+
and dilute to 20 liters.
B. ANSA Stock Solution - Dissolve 219 gm Na2S205 and ^ ^
Na2S03 in 700 ml of distilled water (temperature<50°C) ,
add U gm of 1-amino - 2 - naphthol - U - sulfonic acid (ANSA)
Dilute to 2 liters. For daily use prepare a 1:10 dilution.
C. Phosphorus Standard Curve - Use undigested standards from
0.1 to 1.2 mg/1 - P in increments of 0.1 mg/1 - P from a
1000 mg/1 - P stock solution.
D. Ternary Acid Mixture - Add 100 ml of 96% HgSO^ to 500 ml
of 10% HN03, mix. Add 200 mis 70% HClOl,, mix and cool.
Sample Preparation:
A. Total Phosphorus
1. Mix unfiltered sample and pipette into a 100 ml
volumetric flask (20 ml effluent, 5 ml for sewage).
2. Add 5 ml of ternary acid mixture and 3 glass beads.
3. Heat on hot plate to dense white fumes of perchloric
acid and continue heating for 5 minutes. Then remove
from hot plate and allow to cool.
h. Add 20 ml of distilled water, bring to a boil for 5
minutes and cool.
5. Add 1 drop of phenolphthalein indicator and
neutralize with 10 N_ NaOH to a faint pink color.
6. Just discharge the pink color with 1 N_ H2SOl4 ,
dilute to 100 ml and mix
7. Transfer solution to the sampling cup of the
autoanalyzer.
8. Obtain the phosphorus concentration of the sample
from the standard curve.
71
-------
B. Total Soluble Phosphorus
1. Same as total phosphorus, except the aliquot is
filtered through an Angel Reeves glass fiber
pad 931* AH.
C. Soluble Ortho - Phosphate
1. Filter through an Angel Reeves glass fiber
pad 931* AH.
2. Dilute filtrate if needed.
3. Place in sampling cup of autoanalyzer.
72
-------
-J
Co
TUBE SIZE
(INCHES)
CA^PLFP H /g^5"^ < TO WELL Q O.O9O . WATER
RATE'40_PERHR. fe Q o) ^ ^
|:? TAM \0 O/ . ^xO.073 ANSA
^o^/ ^^ U
WATER RINSE EVERY < ^^ (~\ 0 045 AIR
4lil SAMPLE @ ^^X^ ^
« ^^x /^ 0.056 SAMPLE
S< ^
S (^ 0.073
X \ c Jti LJ
1 1 L.ITAVI , \A/A-TT <: r^O-090
1 j HEATING WAoTL <: \_J
^^^/ BA™ PROPORTIONING
\t
t. .
' ^
------- - , v
|U j J
v V J
COLORIMETER RECORDER
50 mm TUBULAR f/c ^
653mu FILTERS w
• orv ~ RANGE
r IQUre 2O EyTFwnFR
'3*1*1 ** ^v^ T CAI ciNL'tn
Technicon Autoanalyzer **
MOLYBDATE
Schematic
-------
APPENDIX D
Determination of Phosphorus in Sludges
by Gravimetric Quinoline Molybdate Method
Reagents:
A. Citric - Molybdic Acid Reagent.
1. Dissolve 51* gm 100? molybdic anhydride (Mo 03)
and 12 gm NaOH in UOO ml hot water and cool.
2. Dissolve 60 gm citric acid in ihO ml HC1 and
200 ml water.
3. Gradually add molybdic solution to citric acid
solution with stirring, cool, filter and dilute
to 1 liter.
B. Quinoline Solution.
1. Dissolve 50 ml synthetic quinoline with stirring
in mixture of 60 ml HC1 and 300 ml water, cool
and dilute to 1 liter.
Procedure:
Pipette a 50 ml aliquot from the remaining sample described
in the iron procedure Appendix F Part A "Treatment of Sample", to
a 500 ml erlenmeyer flask. Add 30 ml citric molybdic acid, boil
3 minutes, remove from heat, add 10 ml of quinoline with continuous
swirling and cool. Filter through a Gooch containing a glass fiber
filter pad, and wash with 25 ml portions of water. Dry at 250°F,
cool in desiccator to constant weight. Weigh as
• 12 Mo 0,1 .
Calculation:
%P= (Wt-Reagent Blk) (Gravimetric factor .OlUO(3)
Wt of Sample
-------
APPENDIX E
Determination of Ferrous Iron in Pickle Liquor
by Volumetric Dichromate Method
Reagents;
A. Sulfuric Acid l:k
B. Phosphoric Acid 1:U
C. Mercuric Chloride
D. Potassium Dichromate
E. Diphenylamine Sulfonate indicator
(See Appendix F)
Procedure:
Place a 100 ml aliquot of pickle liquor sample in a 1 liter
flask and dilute to one liter. Pipette a 10 ml aliquot
into a 250 ml beaker, add 10 ml of 1:U sulfuric acid, 50 ml
of 1:1* phosphoric acid and 0.3 ml of diphenylamine
sulfonate indicator. Titrate immediately with 0.1N
potassium dichromate to a permanent blue endpoint. Subtract
0.05 ml for an indicator correction.
Calculation:
Ibs Fe/gal = ml 0.1N KgC^Oy x factor of .OU66
factor = 1000 x 3.785 x .005585
75
-------
APPENDIX F
Determination of Iron in Sludges
by Volumetric Dichromate Method
Reagents;
A. Hydrochloric Acid 1:1
B. Sulfuric Acid 1:U
C. Phosphoric Acid 1:U
D. Mercuric Chloride (saturated)
E. Potassium Dichromate (standard 0.1 N)
F. Stannous Chloride solution
1. Dissolve 50 gm SnCl2 in 100 ml of concentrated
HC1, dilute with water to 500 ml. Store over clean
metallic tin.
G. Diphenylamine Sulfonate indicator
1. Dissolve 0.32 gms of barium
diphenylamine in 100 ml of water.
H. Magnesium Nitrate solution
1. Dissolve 950 gm P-free Mg(N03)2'6H20 in water
and dilute to 1 liter.
Note: All reagents prepared with distilled water.
Procedure Part A Treatment of Sample
1. Place a 1 gm sample in a silica dish, add 5 ml of
Mg(N03)p solution, and evaporate. Then ignite at
500 to 6*00° for about 7 minutes. Add HC1 and
evaporate to dryness twice. Add HC1 and wash
solution into a 250 ml beaker with water, add 10 ml
of HNOo and boil for three minutes. Cool solution
in a water bath, filter into a 250 ml volumetric flask,
wash filter paper and dilute to volume. This solution
is used for both the iron and phosphorus determinations.
76
-------
Take a 100 ml aliquot for the iron determination and
save the remaining solution for the phosphorus
determination.
2. Place the 100 ml aliquot into a 250 ml beaker, neutralize
with ammonium hydroxide and heat but do not boil. Filter
the solution, wash the precipitate, and discard filtrate.
Dissolve precipitate into a 250 ml beaker using a 1:1 HC1
solution, and wash paper thoroughly.
Procedure Part B Volumetric Bichromate Method
Concentrate the sample prepared in Part A on a hot plate to
100 ml, add stannous chloride drop by drop until sample is decolor-
ized, cool and add 15 ml mercuric chloride solution. Let stand for
three to five minutes, add 30 ml 1:U phosphoric acid, 10 ml of 1:U
sulfuric acid, k to 5 drops of diphenylamine sulfonate indicator and
titrate with 0.1N potassium dichromate to the purple end point.
Calculation:
% Total Iron = (ml 0.1 N KCrO ~.05) (.005585)
wt of sample
(.05 is indicator factor)
77
-------
APPENDIX G
Determination of Nitrogen in Milorganite and Sludges
Reagents:
A. Sulfuric Acid 93-985? HgSO^, N-free
B. Mercuric Oxide, reagent grade, N-free
C. Potassium sulfate, reagent grade N-free
D. Salicylic Acid, reagent grade N-free
E. Thiosulfate solution
Dissolve 40 gm commercial Na2S203 in 1 L HpO.
F. Sodium Hydroxide
Dissolve U50 gm solid NaOH in water and dilute to 1 L.
(sp. gr. of solution should be 1.36 or higher).
G. Methyl red indicator
Dissolve 1 gm methyl red in 200 ml alcohol
H. Sulfuric Acid Std 0.1N
Procedure; Part A Treatment of Sample
Place a one gram sample in a KJeldahl flask, add UO ml
HgSOjj containing 2 gm salicylic acid, swirl until well mixed
and let stand. After sample has stood for a minimum of 20
minutes add 5 gm ^8203*51120, swirl and let stand a minimum
of 10 minutes. Place on an electric heater and heat sample
with occasional swirling until in the liquid state, cool and
add 15 gm ^SOij and 0.7 gm HgO. Place back on the burner
and boil briskly until sample turns a pale straw color. Wash
down neck and sides of KJeldahl flask with 5-10 ml cone.
and continue burning for 2 hours.
78
-------
Procedure: Part B Determination
Place cooled sample in a cooling bath and add 200 ml distilled
water and let stand 10 minutes. Add 25 ml Na2S20^ solution plus two
porcelain bumping disks and with the flask in an inclined position
pour approximately 90 ml NaOH solution gently down sides so as to
layer the NaOH. Immediately connect the flask to the distilling
apparatus, agitate and distill into receiver containing the proper
amount of 0.1N H2SOij. Collect about 150 ml of distillate and titrate
excess standard 0.1N ^SOii with standard 0.1N NaOH using methyl red
indicator.
Calculation:
% N= (ml Std. HpSO^x normality - ml NaOH x normality) mol wt N
wt of sample x 1000x 10°
79
-------
APPENDIX H
PLANT OPERATIONAL DATA
JANUARY 1970
D
a
t
e
1
2
3
I
j
i
7
fl
9
10
11
12
13
ll*
is
16
17
l8
19
20
21
22
?3
2l
2?
?4
27
P
29
30
31
D
a
J
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
'l1
vJ
'l'h
!•'
Sa
Su
M
T
W
Th
F
Sa
Total Solids
og/1
S3
935
1020
866
675
987
1050
1090
1108
1075
776
732
10514
1039
10514
1080
1119
878
696
1010
ii2y
1320
1026
1036
832
1002
11501
1U771
1526
1151
105C
902
WPE
796
7l*U
705
588
573
691
771
6»49
733
670
575
621
692
681
77!*
878
775
616
653
668
733
72l4
705
659
756
823
1199
EPE
8?3
7l*U
713
6014
616
730
7fle5
757
8ll4
707
632
719
691
763
791
81*7
7^3
6oi*
609
705
733
739
711
6B3
7^0
830
L035
12U3{l31l4
1181
938
L151
930
703< 727
% Removal
WPE
lU.Q
27.1
18.6
12.9
141.9
314.2
29.3
1*1. U
31.8
13.7
21,1*
1*1.1
33.1*
35.1*
EPE
12.0
27.1
17.7
1Q-5
37,6
30,5
28,0
31.7
2*4.3
8,9
13,7
31,0
33t5
27,6
28.3 26.8
21.5 121*. 3
11.7
15- 1*
11.5 13.2
35.3 39.7
1*0.8 37.5
l*l*. 5 jl4l4.5
29.14 28.0
31.9 31.U
20.9 18.0
214.6 126.2
28.14 127.8
18.8 29.9
18.5 13.9
^inus
10.7
0
11.1*
22.1 J19.5
Suspended Solids
mg/1
S3
153
?56
190
150
277
2l*7
36U
281
262
158
158
273
261
262
3l4l
316
181
lUl
256
283
581
231
219
198
165
21*2
259
29!*
2l*2
265
WPE
21
21*
21
21
12
16
35
1*2
31
17
11
18
8
U
20
53
39
15
25
2U
19
17
3U
29
21
ll*
17
18
20
28
162 25
EPE
16
22
22
15
17
2l*
19
30
86
ll*
15
21
16
13
21
31
12
2
10
ll*
12
13
8
18
19
16
9
2l*
19
23
^Removal
WPE
86.3
90.6
88.9
86.0
95.7
93.5
86.7
85.0
80.2
89.2
93.0
93.U
96.9
98.5
9!*. 1
83.2
78.5
89.14
90.2
91.5
96.7
92.6
8U. 5
85.1*
87.1*
914.2
93.^
93.9
EPE
89.5
91.1*
88.14
90.0
93.9
90.3
92.8
89.3
67.2
91.1
90.5
92.^
93.9
95.0
93. t
90.2
93.^
98.6
96.1
95. C
97. S
914.1
96.:
90.9
88.5
93.14
96.5
91.8
91.71 92.1
89.^91.3
11 i 814.6,93.7
BOD
m*/l
SS
150
295
180
155
325
310
265
315
320
190
1145
300
350
310
280
275
160
1U5
280
325
270
270
225
160
135
260
2BO
2UO
2 BO
275
190
WPE
L0.5
Ll.O
5.0
8.0
L0.5
L0.5
»1.0
25.0
L6.0
LO.O
7«2
9.5
6.2
12.0
8.5
31.0
2U.O
15.5
]8,5
17.0
21.0
15.5
30.0
18.0
ll*.0
1U..1
17.14
12.5
16.5
25.0
6,0
EPE
lU.O
12,8
ll*.0
I3t0
18,5
16.0
18,0
29.5
148,0
16.0
12.0
20,5
9.6
19 tO
?0,5
12.5
10.0
11.0
12.5
10.5
11.5
11.0
10.5
10.0
13.5
12.6
10. J*
19.5
11.0
13.0
9.0
% Removal
WPE
.93.0
96.3
97.2
9U.8
96.8
96.6
92.1
92.1
95.0
914.7
95.0
96.8
98T2~
96.1
-2.7.0
88J3J
85.0
89.3
93.14
9l*. 8
92.2
9l4.3
86,7
"SB. 8"
89.6
9*4/6
93. B
9^.8
914.1
90.9
96.8
EPE
90.7
95.7
91.9
91.6
914.3
914.8
93.2
90.6
85.0
91.6
91.7
93.2
97.2
93.9
92.7
95.3
93.8
92.U
95.5
96.8
COD
M/l
UlO
U65
1*70
322
229
600
756
WPE
ifi
28
75
57
EPE
166
20
137
67
38 1*5
30 51
50 j 53
!
585 i 1*1
145
525 i 101 j 1*2
307 i 61* 30
20 1*
35
37
517 i 99 67
6142 86
95.7! 571i 76
95.9! 5l46| 79
95. 3i 599 125
93.8' U3U
90.0! 290
95.2
96.3
91.9
96.1
95.3
95.3
5143
567
5^7
5147
390
1*2 1*
108
88
92
Q3
83
87
ioT
113
72
55
58
78
78
78
71
83
96
79
81
110
t Removal
WPE
06 . i
91*. o
814.8
'EPE
>9.5
p5.7
71 .3
82.3179.2
83.14
95.0
93.14
80.3
91.5
93.0
93.0t>2.3
80.8&2.0
79.290.2
82.861.9
80.987.0
86.668.8
86.79o.l4
85.5)
79.1!
39.1*
37.0
75.1j8?.n
69.717-3 i
814.9
83.6
81*. 8
86. Q
ft5.li
R?.U
8U.lfts.fi
73.3
73.3;
79.2
7U.1
OO
o
-------
CD
PLANT OPERATIONAL DATA FEBRUARY 1Q70
D
a
t
e
1
2
3
1*
?
4
7
3
9
10
11
12
13
ll»
1?
161
17
l8
!?
20
21
22
23
2l»
2?
24
PI
26
2?
30
31
D
a
y
Su
M
T
W
Tti
F
£a
Sv»
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Total Solids
a
SS
863
959
101U
1096
Il6l
1331
J2Q1.
96 **
121U
751
95.8
1008
963
750
692
985
IP1*!
1012
lll*3
975
1116
775
1011*
1013
1056
1091+
1031+
815
«/l
WPE
750
636
715
7l*7
80 1*
957
950
658
810
791*
680
67*4
669
5B5
561
603
70l*
723
792
7W
809
751
658
69i>
7^*3
670
677
656
EPE
719
68U
753
767
831
L0?l
897
777
822
795
755
820
725
63>
559
6i*U
733
739
819
729
873
782
757
720
757
709
697
6U8
f
% Removal
WPE
13.1
33.7
29.5
3M
30.7
28.2
Minus
31.7
33.3
Minus
29.0
32.7
30.5
22. d
EPE
16,'
28."
25.'
10. r
?8 1*
?3,^
1.1
19. l<
32.3
1inus
21.2
18.7
2l*.7
15.5
18. 9| 19. £
38. a 3l4.6
32. W 29. £
28.6 27. C
30. T 28.3.
2k. 1^25. 2
27.5121.8
3.;iMinus
35.125.:
31.1*128.9
29. 6j 28.2
38.8 35.2
3U.5 32. d
19. 5j 20.5
!
Suspended Solids
nii
SS
171*
16 ii
??0
235
2k5
18J
217
167
278
21*9
229
2*40
226
220
137
2UO
250
205
256
316
261,
lUO
269
2 1*9
257
29 **
297
20 1*
K/l
WPE
18
13
15
17
11
12
7
7
13
7
9
Ik
22
16
11
17
20
8
23
33
28
Ik
16
8
8
12
1U
27
;
EPE
27
15
2\
Ik
1
12
12
13
15
6
17
19
27
18
16
19
15
9
13
21
2k
15
19
Ik
9
12
18
16
i
^Removal
WPE
89.7
92.3
93. k
92.8
95.5
93.6
96,8
95.8
95.3
97.2
96.1
9^.2
90.3
92.7
92.0
92.9
92.0
96.1
91.0
89.6
89.3
90.0
9k. 1
96. t
96.9
95. S
95.:
86.8
EPE
8U.5
91.1
90.8
9U.O
97.1
93.6
91*. 5
92.2
91+.6
97.6
92.6
92.1
88.1
91.8
88.3
92.0
9*4.0
95.6
9^.9
93. k
90.8
89.3
92.9
9^
96.5
95.9
93.9
92.2
I
BOD
m«/l
SS ] WPE
100
280
2kO
270
290
295
180
13.0
25?
305
315
305
270
180
170
285
275
300
270
320
155
130
260
260
300
320
325
190
12-*5.
11.0
12.0
lU.O
11.0
l6.fi
15.2,
8,q
11.0
12_tQ
12.0
15. C
17.0
9.C
10.2
9,8
12,5
11,5
17^5
20.0
13,0
13,5
8.6
6.8
10.5
12.5
15.5
2U.O
EPE
9,5
18.0
L2.5
12.5
1-2,5
13.8
10. k
8.5
12.5
11.5
11.5
16.0
18.5
1U.5
13.6
Ik.0
12.2
16.0
ll4.5
22.5
f>k.O
13.0
11.1*
9.6
9.6
ll».5
19.0
15.1*
% Removal
WPE
87.5
96.1
95.0
9U.8
95.5
91.7
91. 1»
93.8
95.7
96.1
96.2
95.1
93.7
95.0
9*».0
96.6
95.5
96.2
93.5
92.3
91.6
89.6
96.7
97.1*
96.5
96.1
95.2
87.1*
EPE
90.5
93.6
9!*. 8
95.1*
95.7
95.3
9U. 2
93.5
95.1
96.2
96.3
9!*. 8
93.1
91.9
92.0
95-1
95.6
9^.7
91*. 6
91.3
81*.5
COD
W?/l
H
252
1*87
525
578
593
588
1*20
27*4
5l*7
626
58U
552
528
370
WPE
82
Ik
70
86
100
ill
96
75
73
82
90
88
EPE
68
71
76
8.1
fi7
8.3
8.8
76
77
78
78
90
96 |8U
78
1*99 i 65
519 j 87
5l*l 92
60l+ il02
51*1
U2 U
90.0 262
95.6 520
96.3
96.8
95.5
9l*. 2
91.9
520
569
573
J?82
398
10 1*
98
88
58
70
87
87
80
97
78
65
73
78
78
80
88
76
66
71
76
82
76
73
( Removal
WPE 'EPE
67.5 :73.0
tik.U
85.1
85.1
83.1
81.1
77.1
72.6
86.7
86.9
8*4.6
814.1
81.8
78.9
87.0
83.2
85. k
85.5
86.0
85.3
85.9
79.0
73.3
85.9
87.5
86.6
6-3.7
81*. 1
70.9
87.0
85.9
83.0 J85.6
83.1 (87.1
80.8 |85.2
76.9 179.2
66.14
88.8
71.0
67.3
86.5 J86.3
814.7 i86.6
8U.8 J85.7
86.3 86.9
75.6 81.7
-------
PLANT OPERATIONAL DATA
MARCH 1970
D
a
t
e
1
2
3
1*
5
6"
7
8
9
10
11
12
13
ll*
15
l6
1I
18
10
20
21
22
23
2U
2?
26"
?l
28
2?
30
?1
D
a
y
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
¥
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
I-1
Sa
Si
M
T
Total Solids
D
S3
L105
L201
L0l*2
L093
1067
1035
995
852
L381
llll*
lll*2
1121
10 U6
858
761
961
101*7
1021+
1013
9U1*
928
868
1067
11014
10U6
1390
.061*
895
897
1088
L037
«/l
WPE
629
iM
900
7Bb
805
789
J63
659
883
868
790
788
708
701
662
622
688
711
613
610
722
7Ul
762
801
791
L166
870
787
77U
738
EPE
782
923
82 1*
796
755
80 U
810
7U7
L020
933
81*1*
787
73U
71*4
650
633
728
729
75 >+
6s6
7^
768
821
822
827
961
iLOl
785
792
765
71*5 (783
% Removal
WPE
1*3.1
29. U
13.6
28.1
2U. 6
23.8
23.3
22.7
36.1
22.1
30.8
29.7
32.3
18.3
EPE
29.2
23.il
20.9
27,2
29,2
22,3
18.6
12.3
26.1
16.2
26.1
29.8
29.8
16.8
13.0 |ll*.6
3S.3 31*. 1
3U. 3
30.5
30.6 28.8
39.5 25.6
35.1* 30.5
22.2 18.8
ll*.6 jll.5
28.6 23.1
27.1* J25.5
2U. 1* 120.9
16.1 30.9
18.2 15.3
12.1 J12. 3
13.7
32.2
11.7
29.7
28.2 2U. 5
Suspended Solids
ng/1
SS
208
?S9
27U
267
250
22.8
190
;85.
21*9
2 1*2
271
3.09
211*
226
178
212
25»*
23.3
33.6
216
201*
^1*6
263
283
23.5
21*9
169
18U
172
251
WPE
1Q
13
13
19
16
35
22
ll*
8
6
9
11
20
1?
22
15
17
9
17
10
2U
25
13
18
11
13
17
13
29
28
188 16
EPE
19
20
16
20
1^
3f
'd'd.
20
ll*
9
9
8
11
19
20
10
20
11
17
13
15
18
18
25
17
15
31
21
21*
26
6 |
{Removal
WPE
90.9
95.0
9i>.3
92.9
93.6
8U. 6
88. U
92. u
97.2
97.5
96.7
96.1*
90.7
91.6
87.6
92.?
93.3
96.1
?l*.9
95.1*
88.2
82.9
95.1
93.6
95.3
91*. 8
89.9
92.9
83.1
88.8
EPE
90.9
92.3
91*. 2
89.5
91*. o
83.8
88.1*
89.2
91*.!*
96.3
96.7
97.1+
?1*.9
91.6
88.8
95.3
92.1
?5f3
91*. 9
91*. o
92.6
87.7
93.2
91.2
92.8
9l*.0
81.7
88.6
86.0
89.6
91.5J96.8
BOD
mj
SS
170
320
185
280
295
265
230
135
295
300
'360
305
305
185
ll*0
2UO
250
320
280
225
170
115
265
315
265
2U5
215
165
95
270
270
K/l
WPE
10.0
10.5
10.0
7.0
16.0
21,5
lU.O
7.5
6.8
8.5
8.0
8.5
19.0
lU.O
27,0
10,5
lU.O
1^,5
13,0
11,6
1U.6
13. C
9-5
15, c
10. C
12.?
"I V
12. C
9-5
11. C
13. C
EPE
15. 1*
22,5
13.5
28,0
20,0
38.0
31.0
20.0
15.2
17-5
ih.Z
12.6
31*. 5
26.=
17.'
27.=
19.Q
21*. <
23. \
1U.C
18. C
26. C
21. C
1?.,
27. c
25. C
39. C
33.5
20.5
32.5
13.i>
% Removal
WPE
9Utl
96.7
9l+. 6
97.5
9U.6
91.9
93.9
9i*.i*
97.7
97.2
97.8
97.2
93.8
92.U
80.7
95.6
96.0
95.5
95. U
9**.8
91. U
88.7
96.1*
95.2
96.2
9U. 9
93.3
92.7
90.0
95.9
95.2
EPE
90.9
93.0
92.7
90.0
93.2
80.0
bb.5
85.2
9**.ti
9**.^
9b.l
95.9
88,7
8s. 7
87.5
8.8.5.
91*. 6
Q2.3
Q1.61
Q3.8
8Q.U
COD
IK/1
&
316
563
1*51
516
538
550
1*53
272
513
572
601
WPE
81
66
8?
71*
98
L08
1 97
76
58
71
95
583 92
EPE
75
71
76
88
81*
103
87
72
59
68
88
83
585 b.12 ! 90
396
268
97
82
526 j 73
611 i 93
599
502
1*6 U
92
99
85
386 go
77. U; 21*9 i 96
92. li 505
93.8
89.8
89.8
81.9
79.7
78. U
88.0
95.0
572
50U
528
1*80
3U6
235
533
5UO
71*
73
77
78
91
95
78
70
89
85
70
73
76
85
88
79
83
8.2
75
71
71
76
93
79
72
70
72
( Removal
WPE 'EPE
71*. 1*76. 3
50.3
81,8
85.7
81.8
80.1*
37.1*
33.1
82.9
31*. U
31.3
78.600.8
72.1
88.7
87.6
8U. 2
81*. 2
80.9
75.5
69. U
86.1
73.5
88.5
88.1
8S. U
8S. 8
flU.fi
78. S
73.9
86.1
81*.8i87.6
8U. 6185. 8
80.382.5
81.7183.0
7U. 6178.5
6l.l*-'67.1
85. 385.1
87.287.6
81*.T85.9
85.2|85.6
81.080.6
72.577.2
66.869.1*
86.986.9
83.5:86.7
CD
ru
-------
PLANT OPERATIONAL DATA APRIL 1970
D
a
t
e
1
2
3
1*
5
6"
7
ft
9
10
11
12
13
ll*
1?
l6
ll
l8
!?
20
21
22
2?
2&
2?
2^
j27
26
2?
30
51
D
a
y
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
ft a
fin
M
T
W
Th
F
fin
fin
M
T
W
Til
Total Solids
D
ss
1285
12 u:
1023
Q52
ftQP
1007
1075
1117
1117
1125
9 1+2
fil?
ft?l
2.Q87
1,10C
100 1
112G
1055,
879
1085
1159
111+3
1102
1096
88(3
7?^
1021
1037
1093]
895
«/l
WPE
85.8.
1097
80$
8.11
770
71+2
71+0
73.1+
751+
755.
71+6
701
573
79 U
8140
777
811
817
715
653
792
800
809
796
731+
685
790
781+
768
727
EPE
8.6.3
L132
869
81*5
811
811
773
786
818
775
79 1*
68H
62U
810
917
85.5.
807
80 U
807
681+
813
865
818
799
71+7
709
7?1*
755
81+7
820
j
% Removal
WPE
33.2
11.7
21.2
12.7
11*. 3
26.3
31.2
3U. 3
32.5
32.9
20.8
15.7
30.2
27.0
EPE
?P.ft
8,9
15.1
11.2
9,7
19,5
28.1
29.6
26.8
31,1
15.7
17.8
2U. 0
25.5
23.6 16.6
22.6 1U.8
27.6
27.9
22.6 23.8
18.7 8.2
^9.8 37.0
25.2J23.2
30.0 2U. 3
26.7 25.8
27. U 127.1
17.3 15.9
13.9 '10.9
22.6 J26 2
2l+.l+|27.2
29.6
18.8
22.1+
8.1+
;
Suspended Solids
m,
SS
25.1
200
190
206
172
219
186
22U
255
238
176
127
11+8
182
219
227
266
259
171*
235
252
21+9
256
256
173
172
302
218
216
155
,
B/l
WPE
^1
11+
27
^1+
16
23
5
9
11+
16
17
6
2
11
9
10
1+1+
27
21+
15
10
13
1+
22
21
5
25
52
19
22
EPE
20
15
28
16
11
13
k
8
15
12
12
12
7
l+
6
7
7
5
11
9
11
10
8
1U
11
6
16
26
16
1+8
,
^Removal
WPE
87.7
93.0
85,8
83,1+
90.7
89.5
?7.3
96.0
91*. 5
93.3
90.3
95.3
98.6
9l*.0
95.9
95.6
83.5
89.6
86.2
93.6
96.0
9l+. 8
98.1+
91.1+
87.9
97.8
91.7
76.1
91.2
85.8
EPE
92.1,
92.5
85.3
92.2
91.1+
9J+.l
?7.9
96.1+
9l+. 1
95.0
93.2
90.6
95.2
97. £
97.2
96.9
97.1+
98.1
93.7
96.2
95.6
96.0
96.9
9l*. 5
93.6
97.2
9l+. 7
88.1
92.6
69.0
4
BOD
mj
SS
250
210
?i+n
200
115
22jD
210
210
21+5.
21+5,
165
100
160
200
220
21+5
260
165
120
225
2 1+0
225
235
2l+0
11+5
75
210
215
250
215
8/1
WPE
n.o
11.5
16.5
11.5
6.0
ll+.O
7.0
9.0
7.0
10.5
8.1+
5.2
6.6
2.2
5. ^
6.0
18.0
13.5
17.0
1+.8
5.2
1+.1+
5.B
9.0
9.J+
l+.U
U.6
18.0
10.5
6.0
EPE
LO.O
9.5
8.5
1+.6
6.8
L2.0
5.8
6.0
5.0
l+.o
3.8
6.1+
LI. 2
6.1+
7.0
8.0
6.2
9.2
13.2
17.5
ll.5
9.6
11. B
18.0
13.2
20.0
25.0
19.0
22.0
30.0
% Removal
WPE
91+. 8
91+.5
93.1
9l+. 3
?1+. 8
93.6
97.0
96.1
97.1
95.7
?»+.9
9l+. 8
95.9
98.9
97.5
97.6
93.1
91.8
85.8
97.9
97.8
98.0
97.5
96.3
93.5
9U.1
97.8
91.6
95.8
97.2
EPE
96.0
95.5
96.5
97.7
9U,1
9U.5
97.5
97.1+
98.0
98.1+
97.7
93.6
93.0
96.8
96.8
96.7
97.6
?1+.1+
89.0
92.2
95.2
COD
M/l
516
1*1+3
UUo
^si
222
1+jl*
1+97
527
561
585
377
257
361
1+39
1+68
WPE
96
05
92
89
66
75
68
81+
83
ftfi
86
71
EPE
ftl
75
72
6B
6l
S;ft
61+
67
6^
67
6ft
6?
62 ! 57
61+
63
1+50 i 72
578 j 99
1+61+
287
1+62
90
91+
56
521+ i 63
95.7; 522 | 71
95. Oi 532
92.5
90.9
73.3
88.1
91.2
91.2
86.0
513
31+0
208
1+67
*+95
511+
1+60
71*
79
75
56
51*
106
85
70
59
6H
61
61
65.
70
^
65
67
67
6i+
6?
5fl
56
7£
78
117
( Removal
WPE 'EPE
81.1*. 83.5
80.8
79.5
7^.6
70.3
82.7
86.3
81*. 1
85.2
85.3
77.2
72.1+
82.8
85.U
86.5
8U. 0
82.9
80.6
83.1
8U .0
80.6
72.5
86.6
87.1
87.3
88.it
88.5
82.0
75.9
8l*.2
86.6
86. 3
86.0
8g J*
86 J3
67.2J7-L.&
87.9
88.0
8S.^
87.6
86.1+187.2
86. 1-87.U
8U.6J87.5
77.9181.8
73.1]72.1
88.1+88.0
78.6 85.5
83.5 8U. 8
81+.8;7l+.6
OO
u>
-------
PLANT OPERATIONAL DATA MAY TQTD
D
a
t
e
1
2
3
I
5
£
7
8
?
10
11
12
13
ll*
1?
l6
17
iB
ii?
20
21
22
23
2&
2?
26
n
p*
2?
30
31
D
a
y
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
Total Solids
a
SS
1031
958
776
1007
IQltlt
1061
I0i*8
1029
813
79 **
960
820
897
893
868
870
' 821*
101?!
1097
115.5.
100JJ
1067
859
8.58
97?
1023
1Q6:
9*H
990
761?
719
«/l
WPE
695
727
700
721
709
730
769
851
70 i*
625
682
558
698
693
703
765
819
732
797
8i*5
831
813
697
731
716
789
811
793
871*
613
EPE
771
792
676
708
71*6
789
792
775
720
6l+l
6^9
671
679
661*
739
770
781
778
820
8.90
805
8^6
672
735
793
80 1*
81*6
735
791+
722
621< 637
% Removal
WPE
32.6
23.1
9.8
28.14
32.1
31.2
26.6
17.3
13.1*
21.3
29.0
32.0
22.2
22.1*
EPE
25.2
17.3
12,9
29,7
28,5
25,6
21*. 1*
2l*.7
11.1*
19.3
32.1*
18.2
2i*.3
25.6
19.0ilU.9
12.1J11.5
0.6] 5.2
30.1*26.0
27.3
27.8)
25.3
23.8
17.0119.6
23.821.6
18.921.8
iu.aiu.3
26. 118. U
22.9l21.lt
23.720.1*
16.822.9
11.TJ19.8
19.9 5.6
13.6;11.1»1
Suspended Solids
m,
SS
233
i8n
129
198
252
21*7
252
258
216
187
211*
233
121
117
ll*0
128
109
227
272
270
217
21*5
133
170
150
216
200
192
209
135
125
K/l
WPE
17
15
7
6
9
8
31
128
37
31
11
12
15
5
21
8
37
13
19
22
29
35
7
20
7
7
10
98
11*1
7
12
EPE
80
26
11
17
12
1*
7
17
15
19
1$
19
13
7
8
6
9
6
15
8
26
11
5
23
^
15
7
9
15
11
12 i
jCRemoval
WPE
92.7
91.7
94,6
97.0
96.4
96.8
87.7
50.1*
92,9
83. U
9^.9
9U.8
87.6
95.7
8.5., 0
93.8
66,1
9^.3
93.0
91.9
86,6
85,7
9^,7
88.2
95,3
96.8
95.0
1*7.1*
32.5
91*. 8
EPE
6s. 7
85,6
91.5
91.1*
95.2
98.1*
97.2
93.1*
93.1
89.8
91.6
91.8
89.3
91*. o
91*. 3
95.3
91.7
97. **
9!*. 5
97.0
88.0
95.5
96.2
86.5
6i*.0
93.1
96.5
95.3
92.8
91.9
90.1*j90.1*
BOD
mj
SS
220
225
8,0
210
230
295.
2§Q
2l*5
1^5.
120
23.5
155
1^5
160
115.
110
85
23.0
23.5
215
21*5
?1*5
215
80
215
230
270
255
235
122
9U
K/l
WPE
12.0
6.1*
U.2
l*.l*
5.2
10.0
11.0
62.0
1U.2
9.0
5.6
5.0
i*.6
3.8
9.0
8.2
ii*.o
8.5
8.0
12.2
17. C
13. C
5.C
1*.S
7.C
l*.c
6.5
1*0. C
66. C
6.C
12. C
EPE
35.5
L3.5
20.5
37.0
33.0
8.5
20.0
13.0
10.6
10.2
11.5
5.8
5.0
8.0
1*.2
3.6
5.2
11.5
5.0
5.J*
15.0
5.5
l*.0
6.0
33.0
7.0
5.5
15.5
9.0
13.5
18. 0
% Removal
WPE
.91*. 5
97.2
91*. 8
97.9
97.7
96,6
96.1
71*. 7
90.2
92.5
97.6
96.8
96.8
97.6
92.2
92.5
83.5
96.3
96.6
9U. 3
93.1
91*. 7
97.7
9!*. 8
96.7
98.3
97.6
8i*.3
71.9
95.1
87.2
EPE
83.9
91*. 0
7l*tl*
8?,1*
85.7
97.1
92.9
9U. 7
92.7
91.5
95.1
96.3
96.6
95.0
96.3
96.7
93.9
95.0
97.9
97.5
93.9
COD
fl*/l
!?
1*99
^17
2U5
^75
5^3
606
583
530
351
253
1*79
372
338
356
WPE
81
76
63
60
75
80
99
210
92
69
65
63
EPE
11*8
83
63
70
66
66
71
79
63
60
59
51*
60 ! 51
60
280 75
355 i 82
197 82
1*1*8 i 62
502 i 62
509 80
501* i 9l*
97.8 508 j 91*
98.1 351
92.5
81*. 7
97.0
98.0
93.9
96.2
88.9
80.9
203
1*37
502
507
501*
1*81*
267
59
52
59
68
69
158
176
5U
56
60
61
1*9
52
58
6i*
92
71
69
5l»
105
62
60
1*3
1*1
53
t Removal
WPE 'EPE
83.8 70.3
81.8
7^.3
87.1*
86.2
86.8
83.0
60.1*
73.8
72.7
86.1*
83.1
82.2
83.1
30.1
I'M
85.3
87,8
89.1
87,8
85.1
82.1
76,3
87.7
85.5
8»*,9
81*. 3
73.2 78.6
76.9 82.8
58.1* 175.1
86.2 J88.1*
87.6 J88.1+
81*. 3 J87.1*
81.3 181.7
81.5
83.2
86.0
80.3
71*. 1* J73.1*
86.5 76.0
86.5 ;87.6
86.1* 88.2
68.7 91.5
63.6 91.5
79.8 ^80.1
00
-------
PLANT OPERATIONAL DATA JUNE 1970
D
a
t
e
I
2
3
1*
5
6"
7
3
?
10
11
12
13
lU
15
l6
ij
l8
1?
20
21
22
23
2&
P?
26"
?!
26
e?
30
?1
D
a
y
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
Total Solids
a
SS
666
8Ui
10 1*1
1050
957
898
802
9?3
937
983
975
888
865
762
102»t
9»*1
90?
897
1006
833
751*
883
882
887
895
77!*
801
802
8U2
809
g/1
WPE
536
51*9
838
818
781*
821
681
70 1*
730
7^7
712
7l*2
667
702
767
738
703
6l+3
802
73. 5
•n1*
659
692
681
602
6?1
626
671
665
65.2
i
EPE
6.H6
532
882
905
81*0
832
71*6
863
802
758
887
786
735
702
81+6
791
8l6
788
878
7U2
700
692
720
7U1
771
763
670
771
752
% Removal
WPE
19.5
3M
19.5
22.1
18.1
8.6
15.1
2U. 5
22.1
21*. 1
27.0
16.1*
22.9
7.9
EPE
36.7
15.3
13,8
12.2
7.3
7.0
7.5
ll*.l*
22,9
9.0
11.5
15.0
7-9
25.1 i!7.1*
21.6 115.9
22.7
28.3
10.2
12.2
20.3 12.7
11.8 10.9
29.2 j 7.2
25. 1+ {21.6
21.5 ;18.1*
23.2 |l6.5
32.7 113.9
19.8! 1.1*
21.8 jl6.lt
16.1 j 3.9
21.0
19.1*
10.7
j
Suspended Solids
m,
SS
1^3
153
158
167
16U
196
17 i*
173
166
192
177
202
155
138
211+
206
211+
190
lB3
209
133
183
171
189
207
189
162
iVf
192
170 j
R/l
WPE
3
13
1*
9
13
23
9
9
13
12
9
32
9
22
9
15
12
28
1+6
12
11
3
6
9
1U
11
7
11
12
11
i
EPE
65
27
6
11
12
17
5
1*6
11
10
98
83
58
21
17
1U
52
97
66
17
2U
18
25
6.9
8.5.
L76
20
18
2.1+,
i
\ ^Removal
WPE
97. <;
91. S
97*5
9U. 6
92.1
88.3
91*. 8
91*. 8
92.2
93.8
91*. 9
8U. 2
91*. 2
8U. 1
95.8
92.7
9^.1+
85.3
71*. 9
9^3
91 1 7
98.1*
96.5
95,2
93,2
9l*,2
95,7
92.5
EPE
5l+. 5
82.U
96.2
93.1*
92.7
91.3
97.1
73.1*
93.1*
9^.8
l*U. 6
s8 9
6?. 6
81*. 7
Q?.l
cn.2
75.7
1*8.9
63.9
91. 9
ft?.0
90.2
fts.i*
67. S
S8.9
6.9
87.7
87. B
93.8 R7.S
93.5
i
BOD
mj
SS
125
150
170
190
190
165
86
175
205
210
215
150
155
102
225
260
190
200
250
1U2
88
215
200
230
2 UO
210
18?
120
220
220
j?/l
WPE
9.0
7.0
1*.6
6.8
10.0
7.5
5.0
6.1^
II.1*
8.C
10. k
17.0
5.2
7.6
fl.O
6.S
6.2
ft.O
?2.0
ft.?.
•3.0
?,6
i*.6
k,?
fi.f
6.0
5>
6.6
i*.o
3.8
EPE
^8,.o
~\Q."i
5,6
10,0
6.P
?3,o
7,8
17,5
12,0
5,^
i*6td
36.0
28.0
13.0
16,5
10. C
26. q
38. c
39. c
17«?
23. C
29 1^
20fC
29, c
37. c
66, c
21,"
26,=
29, c
1*6, C
% Removal
WPE
92.8
95.3
97.3
96.U
9^.7
95.5
91.9
96.3
9^.^
96.2
95.2
8b.7
96.6
92.5
9**.7
97. U
96.7
96.0
91.2
9^.5
96.6
98.8
97.7
97.8
97.2
97.1
97.1
9!*. 5
98.2
98.3
EPE
61.6
93.0
96.7
91*. 7
96.8
86.;
90.9
90.0
91*. 1
97.2
78.6
76.0
81.9
87.3
93.3
96.2
86.3
81.0
81*. 1*
88.3
COD
«/l
K5
276
276
383
1411
393
355
205
1*OU
1*28
1*21*
1*U3
U?n
^
?3l*
hsi
WPE
1*0
36
50
M
56
52
1*6
1*1*
57
76
57
69
EPE
6]
1*6
1*1
55
50
1*9
1*0
73
1*6
51
11*3
107
1*8 i 92
1*1*
1*0
lifi7 i 52
UUn
sfl6
51*
72
li6L i 85
^67
56
73.9! pnj i 1*2
86.3| !<27
90. Oi 1*27
87.3
81*. 6
67.6
38.1*
77.9
86,8
79.1
1*58
1*33
602
506
21*6
1*00
387
38
1*8
53
63
81
122
29
1*6
1*2
1*7
( Removal
WPE 'EPE
85.5
81,0
86.9
Q9.5
85.8
85.1*
77,6 1
89.1
86.7
82.1
87.1
83.6
85.7
77.9
83.3
89.3
86.6
87.3
66.2
80.5
81.9
89.3
88.0
67.7
7*1.5
72.5
81.2: ;79.9
21 91.1
^
80
151
100
65
1*6
60
88
111*
132
221*
103
73
68
138
88.9
95.3
87.7 Pi. 8
87.7 fTU.2
81.5 ,78.1*
81*. 7 02.3
79.7 77.8
91.1 '85.9
88.8 79. H
88.U [T5.1
85.5 69.5
86.5 62.8
75.9 79.6
88.2 70.3
88.5 83.0
89.1 61*. 3
oo
-------
oo
D
a
t
e
1
2
3
1*
5
6"
7
8
?
10
11
12
13
ll*
1?
l6
17
l8
!?
20
21
22
2?
2U
2?
26
PI
26
2?
30
?1
D
a
y
w
Th
"p*
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
SE
Si
M
T
W
Th
F
Total Solids
n
S3
8J6
811
9l»U
7**5
727
832
78^
86 1*
880
802
766
661
831+
71*3
807
851
762
719
713
908
908
81*1*
79 l*
930
7^
610
807
8,06
899
823
71*!
«/l
WPE
6ll
681
672
697
6i2
61i9
5.89
62"?
706
727
638
?62
697
550
627
62?
650
621
576
6140
61*1+
TO?
591*
730
731*
532
6^1*
613
701
?8?
573
EPE
7M
727
693
696
767
690
651
800
819
6U1*
699
662
697
^83
71**
675
61*0
62"?
586
716
698
681
630
781+
_J22
565
679
650
678
621*
573
% Removal
WPE
30.3
16.0
28.8
6J4
15.8
22.0
25.0
27.7
19.8
9.1*
16.7
15.0
16.1+
26.0
EPE
15.1+
10.1+
26,6
6,6
17.1
I7ii
7.1*
6,9
19,7
8.7
16, i»
21,5
22.311.5
26.620.7
Il*.7|l6.0
13.6;i3.1
19.217.8
29.521.1
29.1j23.1
16 . 5 19 . 3
25.220.7
21.5|l5.7
1.9 3.5
12.8! 7.1+
19.015.9
23.9:19.1*
22.0
28.9
22.7
2»».6
21*. 2
22.7
PLANT OPERATIONAL DATA JULY 1970
Suspended Solids
m,
SS
219
165
180
100
150
185
lW
?16
20l4
208
16U
135
193
156
177
206
127
168
131
231
199
191
191
205
195
107
167
196
172
227
K/l
WPE
8
5
5
6
9
7
7
12
50
129
50
15
15
8
13
13
75
21
18
18
20
17
20
20
30
12
31
11
6
19
168 ; i1*
EPE
25
12
10
8
18
9
10
127
101*
1*6
23
52
1*1
21
13
11*
7
11*
11
8
11
2
6
10
26
11
17
9
7
18
12 i
^Removal
WPE
96.3
97.0
97.2
91*. o
91*. o
96.2
95.2
9U.1*
75.5
38.0
69.5
88.9
92.2
91*. 9
92.7
93.7
1*0.9
87.5
86.3
92.2
90.0
91.1
89.5
90.2
81*. 6
88.8
81.1*
9l*.l
96.5
91.6
EPE
^8,6
92.7
91*. 1*
92.0
88.0
95.1
9J.2
1*1.2
1*9.0
77.9
86.0
61.5
78,8
86,5
?2.7
93.7
9^,5
91.7
91.6
96.5
9^5
99.0
96.9
95.1
86.7
89.7
89,8
55.2
95.9
92.1
91.782.9
BOD
nn
SS
220
180
230
155
102
175
160
185
230
185
11*5
92
235
120
205
180
170
120
106
210
230
235
215
210
100
92
175
190
230
165
iko
/!
WPE
1*,0
1*,0
5,1*
6.0
i*,i*
7f2
11.6
25.0
1*2.0
30.5
11. 1*
17.0
11*. 0
ll+.O
10.0
1*1*. 0
Ll.O
li*.o
15.5
L5.0
13.0
22.0
11*. 0
13.0
1U.O
13.0
9.1*
11.5
L2.0
LO.O
EPE
17.5
16.0
16.0
I1*. 5
11.5
50.0
21.0
60.0
5^.0
30.0
18.0
31*. o
31.0
16.5
8.1*
7.2
6.0
5.2
7.6
8.0
9.2
5.2
6.2
7.0
6.1*
10.0
7.6
5.0
7.2
6.6
7.0
% Removal
WPE
98.2
97. a
97.7
96.1
95.7
95.9
92.8
89.2
77.3
79.0
87.6
92.8
88.3
93.2
9^.^
?1». 1
90.8
86.8
92.1*
93.5
9^.5
89.8
93.3
87.0
8U. 8
92.6
95.1
95.0
92.7
92.9
EPE
92.0
91.1
93.0
90.6
88,7
88.6
86.8
67.6
76.5
83.8
87.6
63.0
86.8
86.3
95.9
96.0
96.5
95.7
92.8
95.9
96.0
COD
JK/1
is
1*10
1*06
1*01*
290
221*
392
398
1*52
1*36
1*19
310
200
1*01*
362
1*81*
WPE
^
1*8
52
^
^
1*1*
50
55
97
150
92
50
EPE
62
5.8
55
60
5>
1*8
65
176
131*
91
67
96
1*6 72
57
52
1*18 i 52
387
280
221
139
51*
1*5
1*19 U6
1*1*3 51*
97. 8; 1*52 | 52
97.1il*50
96.7
93.6
89.1
95.7
97.^
96.9
95.9
95.0
1*1*8
255
193
1*06
1*56
1*58
1*16
1*06
60
58
1*6
1*3
53
53
61
51
60
70
57
1*8
50
1*1*
37
1*0
51*
61
1*8
1*3
U3
37
1*2
56
62
52
61
( Removal
WPE 'EPE
89.0
88.2
87.1
81.1*
81.7
88.8
87.1*
87.8
77.8
61*. 2
70.3
75.0
88.6
81*. 3
89.3
flU.Q
^5.7
86,1*
79.3
75.9
87.8
83.7
6l.l
69.3
78,3.
78.1*
52.0
82.2
80.7
88.2
87.6 88.5
61*. 1 187.1
80.7 J81*.3
79.6 83.3
89.0 90.5
87,8
88.5
86.7
87,8
86.5
89.3
87.1 J90.1*
82.0 183.1
77.7 |80.8
86.9 89.7
88.1* .87.7
86.7 86.5
87.7 #7. 5
85.2 ;85.0
-------
PLANT OPERATIONAL DATA
AUGUST 1970
D
a
t
e
1
2
3
1*
5
61
7
8
9
10
11
12
13
ll*
1?
1^
17
iH
!?
20
21
22
23
2U
2?
26"
n
P»
2?
30
31
D
a
y
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
T
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
Total Solids
a
SS
656
TOO
736
8U7
871
8^9
986
81*1
661
902
89 U
893
882
T9T
600
625.
822
828
81*6
922
881*
760
63.8,
790
fl'jfi
866
89 U
906
6.6.1*
629
915
8/1
WPE
627
62l
571*
63>
609
63.3
71*1*
685
583
577
632
638
61*5
650
51*9
505
625
602
603
729
710
62U
563
589
559
618
723
718
6ll*
597
EPE
592
657
597
6U3
6U8
61*6
777
738
629
63.1*
655
698
657
656
697
6U1*
721
6U1*
655
712
718
675
707
639
637
715
736
631
670
529
710 i 682
% Removal
WPE
U,l*
11.3
22.0
25.1
30.1
26.3
21*. 5
18.5
11.8
36.0
29.2
28.6
26.9
18.1*
EPE
9,8
6.1
18,9
?U,l
25.,6
2U.8
21.2
12,2
1*,8
29.7
26.7
21,8
25,5
17,7
8.5
19. 2 i
21*. 0 12.3
27.3J22.2
28.7 22.6
20.9 22.8
19. 7 i 18. 8
17.9 11.2
11.8
25.U 19.1
3»*. 7 25.6
28.6 17.1*
19.1 17.71
20.8j 30.14
7.5J
5.1(15.9
22.1*; 25.5
Suspended Solids
m,
SS
156
.126
153
169
19 U
162
286
181*
ll*2
221
198
177
2U8
202
I51
123
198
161*
198
138
166
ll*2
131
167
139
175
179
252
191
137
R/l 1 {Removal
WPE
21
17
8
1*
12
9
9
9
8
lU
7
12
13
lU
20
13
lU
11
15
9
ll»
12
5
7
7
6
6
26
21*
8
206 9
EPE
17
lU
3
8
16
6
11
8
7
8
9
.8
12
12
11
20
23
13
12
9
22
18
17
11
11
18
ll*
2»*
25
2U
27
WPE
86,5
86,5
9!*, 8
97.6
93t8
91*,!*
96.9
95-1
9l*.l*
93.7
96.5
93.2
91*. 8
93tl
86.8
89.1*
92.9
93.3
92.1*
93.5
_91.6
91.6
96.2
95.8
95.0
96.6
95.5
89.7
87.1*
9*4.2
EPE
89,1
88.9
98.0
95.3
91.8
96,3
96.2
95.7
95.1
96.1*
95.5
95.5
95.2
91*. 1
92.7
83.7
88.1*
92.1
93.9
93.5
86J
87.3
87.0
93.1*
92.1
89.7
92.2
90.5
86.9
82.5
95.6j86.9
BOD
m,
SS
81*
66
150
170
220
220
205
110
98
255
205
190
200
180
85
82
190
220
205
235
210
115
215
195
86
220
220
235
10 1*
9!*
230
8/1
WPE
8.0
12.0
11.5
9.0
6,2
9.8
7.2
8.1*
6.6
9.6
10.2
7.4
8.2
7.0
8.0
7.2
7.E
11.0
9.1*
Q.I*
a o
7.2
8.8
8.8
•i.fi
ft. 6
11.6
12.0
10.0
7.£
fi.
-------
PLANT OPERATIONAL DATA
SEPTEMBER 1970
D
a
t
e
1
2
3
I
?
6
I
8
9
10
11
12
13
ll*
15
iS
17
iB
!?
20
21
22
23
2U
2?
26
n
28
P?
30
31
D
a
y
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
Y
Sa
Su
M
T
W
Total Solids
o
S3
888
821
719
896
8l?
581
706
QOl
8.Y?
9^6.
9Ur
733
611
760
731
928
761*
921
8U i
857
911+
823
fin
8.8.3.
827
711
9U
9 i+o
962
8/1
WPE
65.1+
667
586
609
665
51*0
601+
^85
692
529
697
622
596
572
1*88
670
621
687
766
678
61*6
670
772
576
716
775
671
652
679
706
j
EPE
681
712
587
6U1+
756
621
656
703
637
71+7
73**
600
61*9
590
713
611
720
7?i
769
700
712
7^
625
818
768
690
671
715
720
% Removal
WPE
-26. JL
18.8
18.5
32.0
18.2
7.1
llt.l*
35.1
17.1
1*1*. 1
25.9
15.1
2.5
21*. 7
EPE
23.3
13.3
18.1+
28.1
7.0
12.0
27.2
15.8
32.7
20.6
l.t
1U.6
33.2 19.2
27.8 23.2
18.7 20.0
25.1* 21. 8
9.1 6.2
21*. 6
Ifl.'
26.7 22.1
6.2 R. I
29.21 2?.l
18.91 7.1*
6.3J 7.1
5.6i 3.0
30.2; 28. 2
27.8
26,6
;
23.9
25.2
,
Suspended Solids
m
ss
206
233
167
223
176
11*1
161*
186
162
213
229
213
120
181*
178
203
178
192
11*7
206
177
188
155
196
160
91
256
255
288
p/1
WPE
12
19
16
18
10
9
15
i*
3
17
12
18
9
9
10
15
38
13
13
23
9
12
17
32
23
2U
10
18
20
15
i
EPE
in
1Q
2^
1Q
16
u
13
5
2U
30
60
21*
**3
31
23
23
15
16
30
15
11
11*
31*
37
21
11
16
21
19
i
jCRemoval
WPE
EPE
91+.2J95.1
91.8:91.8
90.U
91.9
9^.3
93.6
90.9
97.9
98.2
92.0
9^.0
91.5
?2.5
95.1
91*. 1*
92.6
78.7
93.2
91.2
95.6
93.2
91.0
79. 1*
88.3
85.0
89.7
93.0
92.2
91+.8
85.0
91.5
90.9
79.3
93.0
96.7
88.7
86.9
71. t
80.0
76.6
82.6
88.7
87.:
92.2
89.1
92. T
93. f
92. i
78.2
8ljJ
86,9
88,7
93, £
91.6
93J
i
BOD
mj
SS
2,80
220
190
210
120
66
90
250
170
260
230
150
110
190
160
230
220
200
110
210
250
200
160
180
120
100
250
21*0
250
*/l
WPE
9.0
11
11
13
6,8
7.9
11
8,6
9.1*
8.8
8.0
8,2
12
8.8
8,0
8,6
29
11
8,6
8,6
11
ll*
16
37
12
IT
16
22
16
11
EPE
12
11
17
15
13
ll*
12
12
11*
21
30
17
27
11+
13
13
11
12
10
12
12
12
22
11*
8.<5
13
15
10
12
% Removal
WPE
96.8
95.0
9U. 2
93.8
9U. 3
88.0
87.8
96,6
9U.5
96.6
96.5
91*. 5
89.1
95.1*
95.0
96.3
86.8
9^.5
92.2
91*. 8
9l*,l*
92.0
76.9
?3.3
85.8
8U.O
91.2
93.3
95.6
EPE
95.7
95.0
91.1
92.9
89.2
81*. 1*
95.2
92.9
9^.6
90.9
80.0
81*.^
85.8
91.3
91*. 3
9l». 1
91*. 5
89.1
91*. 3
COD
f/1
jl*90
1*1*0
360
1*60
300
ll»0
200
1*50
1*30
1*60
1*90
31*0
210
360
WPE
52
58
60
73
1*9
1*0
38
1*3
1*9
1*2
1*5
51*
EPE
J^
73
8l*
82
70
56
61*
59
b9
75
90
^2 62
38
320 36
1*30 1*1*
1*00
1*30
82
52
3UO i 1*8
1*?
1*30 l+i
95.2 1+50 | 76
91*. 0 ^70
86,3
92.2
92.9
87.0
9i*fo
95.8
95.2
330
3UO
250
200
1*90
350
570
6.3
82
32
65
^
5>
^7
58
07
59
6ft
71
1+8
61
6.P
50
59
76
66
66
52
52
W
51
60
( Removal
WPE 'EPE
89.U
86.8
83.1
81*. 1
83.7
71, ^
81.0
90.1+
88.6
90.9
90.7
81*. 1
79.5
89.1+
88.6
85.7
8.3..1*
76.3
82.2
76.7
72.0
85.8
86.3
85.0
81+.5
73.5
69.8
75. B
81.3
89.6 81*. 0
79.2 182.0
87.9 188.8
85.9 82.1
90.5 188.1*
83.1 86.9
86.6 !83.8
75.2 80.0
90.6 180.6
71*. 0 |79.2
77.5 7l*tO
89.0 90.1*
86.6 85.1*
89.8 ;89.5
00
CD
-------
PLANT OPERATIONAL DATA
OCTOBER 1970
D
a
t
e
1
2
3
1»
?
4
7
ft
9
10
11
12
13
ll»
1?
l6
17
iB
!?
20
21
22
23
2U
2?
24
n
26
P?
30
31
D
a
y
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Total Solids
IB
SS
101+2
91+6
T9J
797
959
965
91"?
933
9l+3
819
707
980
956
1036
101+8
997
856
721
966
96*4
1005
1001
9lU
832
706
10571
8871
806
102^4
100 £
82^
«/l
WPE
755
732
787
629
676
710
771
737
730
710
666
726
710
691
755
761
763
656
760
730
71+9
7?2
733
668
61+2
702
687
602
731
808
596
EPE
822
755
788
702
716
739
813
73>
830
785
713
765
717
775
81+0
888
83>
681+
656
7*0
797
851+
807
727
681+
717
739
?85
673
821
718
% Removal
WPE
27.5
22.6
1.3
21.1
29.5
26.U
20.9
21.0
22.6
13.3
5.6
25.9
25.7
33.3
EPE
21.1
20.2
lil
11.9
25.3
23,1+
16,6
21,3
12.0
1+.2
21.9
25.0
25.2
28.0 19.8
23.7 J10.9
10.9 2.6
9.0 5.1
21.3
2k. 3
25.5
32.1
22.9
20.7
20.1Tll+.7
19.8 11.7
19.7L12.6
9.1 3.1
33.6 32.2
22.5 16.7
25.3
28.6
19.8
27.7
27.1+
31*. 3
18.6
12.9
Suspended Solids
m
SS
276
230
182
175
263
250
21+1
236
203
186
139
325
238
268
296
283
202
163
263
268
2l+l
238
189
169
128
303
255
2 1+9
273
276
K/l 1 ^Removal
WPE
13
18
18
15
17
12
23
1+8
21
20
13
29
13
20
55
33
27
lit
12
33
28
25
17
21
20
10
16
18
39
^n
189 ??
EPE
11+
IS
?8
21+
22
21
36
61
88
3>
18
30
23
21
L15
Ll+5
1+1+.
36
18
33
20
87
131*
29
39
18
25
16
1+3
1+0
1+0
WPE
95.3
92.2
90.1
91.1+
93.5
95.2
90.5
79.7
89.7
89.2
90.6
91.1
9l+. 5
92.5
81.1+
88t3
86.6
91.!+
95.1+
87.7
88.1+
89.5
91.0
87.6
81+. 1+
96.7
93.7
92.8
93.0
88.0
EPE
9l+. 9
93.5
8U. 6
86.3
91.6
91.6
85.1
71+.2
56.7
81.7
87.1
90.8
90.3
92.2
61.1
1+8,8
78.2
77.9
93.2
87.7
91.7
63.1+
29.1
82.8
69.5
91+.1
90.2
93.6
81+. 2
85.5
87.8^78.8
BOD
mi
SS
260
230
\hO
110
260
260
260
260
21+0
180
120
250
260
260
?70
270
160
130
310
270
290
300
230
170
120
290
250
210
270
270
ll+O
K/l
WPE
11,
Ik
10
11
15
15
19
36
17
I1*
11
12
10
18
27
28
21
10
13
19
23
23
20
15
11+
10
15
13
16
22
1U
EPE
13
11
15
16
18
16
25
33
1*6
16
15
ll+
23
17
1+6
1*5
22
22
15
16
18
1+1+
1+2
19
22
21
18
11
30
20
19
% Removal
WPE
95.8
93.9
92.9
90.0
9l+. 2
9^.2
93.1
86.2
92.9
92.2
90.8
95.2
96.2
93.1
90.0
89.6
86.9
92.3
95.8
93.0
92.1
92.3
91.3
91.2
88.3
96.6
91*. o
93.8
9U.1
91.9
90.0
EPE
95. 0
95.2
89.3
85.5
93.1
93.8
90.1+
87.3
80.8
91.1
87.5
91*. !»
91.2
93.5
83.0
83.3
86.3
83.1
95.2
9^.1
93.8
COD
>K/1
H
510
310
21+0
1+80
51+0
500
510
1+70
310
260
510
530
WPE
61
58
1+3
1+8
59
68
95
63
56
1+8
1+0
EPE
51+
65
6,5,
5.3
55
81*
106
128
69
51*
1+1+
60 ! 71
560 81
570 ^92
570 igl*
350 85
260
510
1+6
53
5^0 78
560 83
85.3:550 ,87
81.71530
88.8
81.7
92.8
92.8
91*. 8
88.9
92.6
86.1+
31+0
260
610
51+0
1+70
1+00
1+20
310
8U
71
62
55
59
1+8
60
7^
l+lt
70
li+6
176
73
63
51
67
63
11+3
195
70
92
51+
57
55
65
80
68
t Removal
WPE 'EPE
Aft n
81.3
82.1
QO.O
89.1
86,1+
81.1+
86.6
81.9
81.5
92.2
88.7
85.5
83.9
83.5
89.1*
7Q.Q
72.9
89.0
89.8
83.2
79.2
72,8
77.7
79.2
91.1*
86,6
87.5
71+.1+
69.1
75.7179.1
82.3J5.8
89.6J90.0
85.6187.6
85.^88.8
8»*. 271*. 0
8l+.2|63.2
79.0J79.1+
76. 2:61*. 6
91.0J91.1
89.189.1*
89.888.3
85.083.8
82.»*8l.0
85.878.1
Oo
-------
PLANT OPERATIONAL DATA
NOVEMBER 1970
D
a
t
e
1
2
3
1*
?
61
7
fl
9
10
11
12
13
ll*
1?
l6
17
18
1?
20
21
22
23
2U
2?
26
PI
26
2?
30
31
D
a
y
5u
M
r
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
Total Solids
IB
S3
757
91**
823
965
1006
1033
838
767
902
1033
101+3
1010
1019
882
790
985
1036
10 1*0
1020
892
907
763
1060
1073
101*6
85**!
9071
77**
685
102:
«/l
WPE
699
620
627
700
795
799
750
71*1*
693
6 1*9
835
787
787
778
715
687
7**9
860
867
623
778
630
712
839
81*2
729
708
7*»9
681
702
EPE
721
71U
636
679
802
827
763
687
763
713
835
757
833
803
731
785
785
813
902
790
797
629
778
898
8^3
772
766
690
737
817
i
% Removal
WPE
7.7
32.2
23.8
27.5
21.0
22.7
10.5
3.0
23.2
37.2
19.9
.22.1
22.8
11.8
EPE
i*fe
21.9
22.7
29.6
2P-3
19. Q
fi.9
10. It
15.14
31,0
I9i9
25,0
18,.;
9.0
9.5|' 7_s
30.3120.:
27.7
17.3
2*1.2
21. t
15.0 11.6
30.2
111. 2
11.1
12.]
17.14 17.6
32.8 26.6
21.8 16.:
19.51 19 M
lli. 6! 9.6
21.9(15.5
3.2 10.9
0.6)
31.4.20.1
;
Suspended Solids
m,
SS
113
193
150
219
209
267
191
151
265
255
17^
192
211
161*
155
210
215
211
282
18**
228
188
270
21*3
211
165
177
108
121
2**0
8/1
WPE
12
10
6
18
32
23
28
15
15
a
8
8
15
28
Pi.
1 S
12
9
70
17
lli
13
19
17
31*
8
12
li
12
23
;
EPE
Hi
16
8
20
22
31
26
18
18
11
8
9
28
111
18
7
18
21*
68
113
39
19
32
55
18
21
10
12
16
26
jBtemoval
WPE
89. **
9**. 8
96.0
91.8
81*. 7
91.1*
85.0
90.0
9*i.3
96.9
95.5
95.8
92.9
82,9
8U, 5
92.9
9U. li
95t7
75.2
90.8
93.9
93.1
93,0
93..0
83.9
95.2
93.2
96.2
90. OJ
90. li
EPE
37.6
91. 7
9*1.7
90.9
89.5
88.1*
86.1*
88tl
93.2
95.7
95.5
95.3
86.7
91.5
88.1*
_9JLJ
91.6
88,6
75.9
38.6
82.9
89.9
88,1
77. **
91.5
87.3
9!*, 1*
88,9
86.8
89.2
4
BOD
m,
SS
110
190
190
230
260
220
150
100
220
250
270
270
2UO
160
130
260
2 1*0
2**0
260
2 1*0
2 1*0
160
260
280
260
200
210
180
100
2**0
8/1
WPE
L5
8,6
ik
l*t
17
16
17
13
11
8.8
10
12
16
1*»
16
12
11
11
26
13
8.0
8.0
16
9.0
22
10
11
6.0
6.0
13
EPE
9.0
lli
15
13
12
18
13
11
111
7 -ft
6.0
11
19
11
li
11
1**
18
1*2
**
16
13
21
11
11
8,0
12
11
ll*
% Removal
WPE
86.1*
95.5
92.6
93.9
93.5
92.7
88.7
87.0
95.0
96.5
96.3
95.6
93.3
91.2
87.7
95. **
95.1*
95.1*
90.0
9*1.6
96.7
95.0
93.8
96.8
91.5
95.0
9^.8
96.7
91*. o
9*i.6
EPE
91.8
92.6
92.1
9*1.3
95.1*
91.8
91.3
89.0
93.6
96.9
97.8
95.9
92.1
93.1
91.5
95.8
9*1.2
92.5
83.8
77.5
COD
f/1
250
1*00
1*20
1*80
550
500
320
220
1*50
530
510
520
1*60
380
270
WPE
53
32
1*6
1*9
53
62
53
38
**5
1*8
57
57
EPE
55
1*7
6l*
1*8
59
62
53
1*5
5**
*i9
61
63
56 67
60
60
69
6l*
500 ! 58 62
510 j 1*9
550
550
60
100
*i50 59
93. 3! 1*20 1*9
91.9; 300 j 1*9
91. 9i 530
j 570
95.8! 560
9*1.5
96.2
93.3
89.0
9*1.2
330
1*10
1*00
230
510
55
53
85
87
62
1*8
39
51
111
71
107
1U6
78
62
61
92
61
55
5*i
51
5*i
66
f Removal
WPE !EPE
78.8 78.0
32.0
89.0
89.8
30.1*
87.6
83. i*
82.7
90.0
38.3
3U. 8
30.0
8g.3
87,6
p3,**
79.5
88.0
90.9 bo. 8
88.8
89.0
87.8
8U. 2
77.8
88.1*
88.0
87.9
85.U
81,8
76,3
87.6
90.U g2_0
89.1 J87.1
81.8 80.5
86.9 67.6
88.3 !8l.l*
83.7
89.6
79.3
88.5
90.7 J83.9
8U.8 189.1
73.6 i83.3
8*1.9 86.8
88.0 .87.^
83.0 76.5
90.0 ;87.1
-------
D
a
t
e
1
2
3
1*
5
61
7
fl
9
10
11
12
13
ll*
1?
l6
!7
18
!?
20
21
22
2?
2U
2?
26"
n
p*
2?
30
31
D
a
y
r
rf
rh
7
3a
3u
'4
r
w
rh
7
Ba
3u
"A
r
w
rh
F
3a
3u
'4
T
w
Th
F
Sa
Su
M
T
v7
111
Total Solids
a
S3
971
1083
973
971
932
727
1028
1051
1035
1067
1139
9l*3
976
983
1085
1315
1107
1051*
9l*7
809
1078
1388
1125
900
813
8U5
863
10 Ul
1113
111*1*
102 1+
K/l
WPE
758
859
765
758
732
653
655
821
81*U
709
979
909
887
817
806
1020
L019
91*7
81*5
711
859
1003
1011
81*5
7l*0
682
71*8
798
812
803
903|
EPE
806
862
7Ul
71*6
750
688
71*9
788
862
858
L108
930
906
887
815
JL035
1101
Q1Q
891
761*
836
1061
1027
890
75*4
72U
703
806
489
881*
88U
% Removal
WPE
21.9
20.7
21.1*
21.9
21.5
10.2
36,1
21.9
18.5
33.6
ll*.0
3,6
9.1
16.9
EPE
17.0
20.1*
23.8
23.2
19.5
5.1*
27.1
25.0
16.7
19.6
2.7
1.1*
7.2
9.8
25.7 2U. 9
22,1*
7.9
10.2
10.8
12.1
20.3 i
21.3
12.8
5.9
5.6
22.U
27.7 23.6
10.1 8.7
6.1 1.1
9.0 7.3
19. 311^.3
13.3 10.5
23.3 j22. 6
27.0
29.8
20.1
22.7
11.8jl3.7
PLANT OPERATIONAL DATA DECEMBER 1970
Suspended Solids
m
SS
195
282
236
21*2
21*1
1UU
238
277
263
272
23»*
166
116
183
237
178
19?
216
175
130
20J
2»*3
206
158
190
153
ll*5
196
2U8
261
K/l
WPE
16
21*
3.6
1*8
2
10
10
18
20
18
93
22
10
11
18
ll*
25
20
19
11
12
20
7
17
35
ll*
18
23
19
5
178 ; 21
EPE
ll*
23
22
21
10
12
10
28
13
78
178
37
1*7
1*3
17
9
10
1*7
1*6
18
1U
36
1*0
31
15
15
20
11*
15
5
11
jCRemoval
WPE
91.8
91.5
8U, 8
80.2
99.2
93.1
95.8
93.5
92.1*
93.1*
60.3
86. 7
91.1*
91».0
92. i*
92.1
87. U
90.7
89.1
91.5
9^.1
Ql .8
Qfi.fi
RQ_?
fil.6
Q0.8
87.6
RR.^
EPE
92.8
91.8
90.7
91.3
95.9
91.7
95.8
89.9
95.1
71.3
23.9
77.7
59.5
76.5
92.8
91*. 9
95.0
78.2
73.7
86.2
93.2
85.2
80.6
80.1*
92.1
90.2
86.2
92.9
92.3 91*. 0
98.1
98.1
88.2i93.8
BOD
mj
SS
250
260
280
250
200
120
270
280
260
220
130
110
2UO
2^0
190
260
2^0
150
130
210
270
260
130
90
150
100
270
280
330
200
R/l
WPE
ll*
12
21
2**
20
7.0
7.0
13
11
16
38
10
8.0
11
13
13
19
ll*
9.0
9.0
6.0
10
10
12
12
5.0
8.0
16
ll*
12
19
EPE
Ll
Ll*
>1
L5
?5
L2
Ll
37
LO
1*0
Dl
L5
L9
32
10
LO
9.0
22
3't
13
ll*
21
18
9.0
8.0
8.0
9.0
Ll*
L5
LO
LO
% Removal
WPE
91*. 1*
95.1*
92.5
90.1*
90.0
Ql*.2
97.2
95.1*
95.8
82.7
92.3
92.7
95.1*
91*. 8
93.2
92.7
93.6
91*. o
93.1
97.1
96.3
96.2
90.8
86.7
96.7
92.0
91*. 1
95.0
96,1*
90.5
EPE
95.6
91*. 6
92.5
9^.0
97.5
90.0
95.9
86.8
96.2
72.3
88.5
82.7
86.7
96.0
91*. 7
96.5
90.0
77.3
90.0
COD
y/i
SS
530
570
5UO
590
1*50
270
550
610
590
U30
310
260
U80
520
WPE
61*
67
86
88
53
1*7
Ul
62
60
68
135
63
EPE
60
70
fl.6
66
93
W
HO
75
59
132
209
93
51 | 86
55
66
390 61
520
1*70
71
65
350 57
280 52
93.8 UTO 51
92.2 520 j 51*
93.1 510
93.1
91.1
91*. 7
91.0
9^.8
9U.6
97.0
95.0
160
150
160
11*0
^80
320
57
59
1*8
31
38
1*7
65
92
*n
M
^7
102_
55
63
77
77
93
50
29
36
J»7
^
51
( Removal
WPE !EPE
87.9 88.7
88.2
8U.1
85.1
88.2
82.6
92.5
89.8
89.8
68.6
79.7
80.1*
88,5
87.3
81*. 1*
86.3
87.7
81*. 1
88.8
7Q.^
8;i.Q
92.7
87.7
90.0
51.1*
70.0
66,9
80,8
91.7
89.5
91.0
86.2 J78.3
83.7 81*. 3
81.1* 177.5
89. U I8U.O
89.6
88.8
85.2
81,8
83.6 J86.1
68.0 180.7
80.6 J77.5
72.9 66. U
87.6 88.2
79.7 :8U.i
-------
PLANT OPERATIONAL DATA
JANUARY 1970
D
a
t
e
1
2
3
I*
?
6
7
8
?
10
11
12
13
ll*
1?
16
17
18
!?
20
21
22
23
2*4
25
26
27
28
29
30
31
D
a
y
rh
7
3E
5u
'•1
L'
•/
L'h
?
3&
3U
•4
L1
rf
L'h
11
3a
3U
-1
I1
d
L'h
r
ba
fclu
4
1
J
Th
r
Sa
Total Phosphorus
mg/1 as P
SS
6.5
9.2
9.0
8.0
11.6
10.0
9.0
9.1*
9.9
10.1
8.1*
10.8
10.3
9.5
9.5
10.0
10. 3
8.2
10.7
8.5
?•?
9.0
9.1*
10.0
8.8
10.8
10.2
7.3
8.8
11.8
10.5
WPE
0.63
0.97
0.6U
2,*4
3-1*
1.7
1.9
1.8
1.3
0.57
0.1+8
2.6
2.1
2.7
2.3
l*.6
2.8
1.0
3.5
2.6
3.3
2.2
2.7
2.1*
2.1
U.I
*4. 8
2.8
2.3
3.1
6,1*
EPE
1.5
2.2
2.0
3.0
U.U
3.0
1.3
1.2
2.**
0.61
0.5C
0.57
O.UU
o.uq
0.3£
0.3f
0.37
0.8C
1.6
0.5C
0.5C
0.35
O.U7
0.5J
0.85
1,6
0.65
0.6=
0.36
0.6:
0.7'
? Removal
WPE
90.3
89.5
92.9
70.0
70.7
83.0
70.9
80.9
86.9
9**.l*
9**.:
75.9
79.6
71.6,
75. t
5^.0
72. £
87. t
67.:
69. 1*
65.'
75.6
71.:
76. C
76.2
62. C
52. S
61. e
_J3jC
73. j
EPE
76.9
76.1
77.8
62. S
62.1
70.0
85.6
87.2
75.8
91*. o
9*t.O
9^,7
95.7
95.8
96.0
96.2
96,1+
90.2
85.0
9*4.1
9l4,7
96,1
95.0
9*4.9
90.3
85.2
93.6
91.1
95.9
9**. 7
39.G.93.0
Total Soluble Phosphorus
mg/1 as P
SS
3.0
3.8
I*. 3
**.0
5.5
**.6
3.0
3.1
3.**
3.1*
3.0
*4.8
3.8
2.7
3.14
*4.2
3.6
14.8
3.3
3.B
3.2
3.2
5.2
U.3
5.2
3.5
2.9
3.3
*».5
5.3
WPE
0.29
0.71
O.U6
2.2
3.2
1.5
1.2
1.2
0.66
0.33
0.36
2.14
2.7
2.1
3.5
1.9
0.56
2.9
2.3
2.8
1.9
2.1
2.0
1.8
3.7
4.5
2.5
2.2
2.6
5.3
EPE
1.3
1.9
1.7
2.6
*4.2
2.6
0.92
0.52
0.25
0.20
0.19
0.23
0.16
0.12
0.1*1
0.15
0.60
l.U
0.26
0.16
0.17
0.12
0.21
0.59
1.2
0.3*4
0.28
0.25
0.21
O.UU
% Removal
WPE
90.3
81.3
89.3
**5.0
1*1.8
67. *4
60.0
61.3
80.6
90.3
88.0
50.0
28.9
22.2
5**. 8
8*4. *4
39.6
30.3
26.3
1»0.6
3*4-**
61.5
58.1
28.8
13.8
33.3
*42.2
EPE
56.7
50.0
60.5
35.0
23.6
*43.5
69,3
83.3
92.6
9*4.1
93.7
95.2
95.8
95.6
95.9
96.**
83.3
70.8
92.1
95.8
9*4.7
96.3
96.0
86.3
76.9
90.3
90.3
92.14
95.3
91.7
Total Iron
mg/1 as Fe
SS
6.01
7.31
6.72
5.27
U.76
5.86
7.76
10.10
9.06
9.73
10.78
9.87
6.UU
7.79
10.****
9.22
8.73
6.1*9
WPE
0.1*6
0.1*9
0.50
0.1*7
0.58
0.30
0.56
0.73
0.72
0.31
0.22
0.69
0.59
0.30
0.1*0
0.97
1.00
0.75
0.96
0.63
0.53
0.214
0.83
0.88
EPE
D.59
D.59
D.37
3.*40
3.52
D.96
3.92
3.56
1.03
3.87
3.70
0.91
0.93
0.88
0.76
1.16
0.89
0.99
% Removal
WPE
92.1*
93. *4
92.6
91.1
B7.9
95.0
92.8
92.8
92.1
96.8
98.0
93.0
90.8
96.1
93.0
89,5
88.5
88.1*
EPE
90.5
69.7
I627U
88.9
92.2
93.2
93A
90751
55.7
90.5
9^.9
89.6
86.5
91. Q
91.3
B9.9
89.9J
Ba.3
Total Soluble Iron
mg/1 as Fe
SS
1-0*4
10.71
0.61
0.60
o.l*l*
0.57
0.61
O.ii9
0.3*+
0.22
WPE IEPE
0.25
0.27
0.*4*4
O.UO
0.35
0.1*4
o.il*
0.11
0.09
0.23
0. 3i 0.08
2.05 0.57
1
1.25
0.9*4
0,6*
0,72
0.6=
0.2f
0.7:
0.5C
0.32
0.3C
0.3*
0.1*
Q.?5
0.11
0 77
0.36
0.06
0.30
O.lfi
0,3,14
0.1*1*
0.25
0.25
0.18
0.22
0.12
0.15
0.1C
o.**<;
0.5(
0.3^
0.3^
0.3$
O.*4l
0.56
0.*45
0.5C
0.5:
0.85
£ Removal
WPE
76, 0
62. *4
28.7
3*4.2
19.5
76.1
77.0
87.6
75.0
77.3
72.2
77.0
57. *4
15.6
55.6
53.8
EPE
71.2
75.2
**5.1
26.7
**3.7
56.6
71.3
75-1
66.2
30.2
71.2
76.1
59.0
62.8
46.9
145.8
36.9
-------
PLANT OPERATIONAL DATA
FF.RRllflRY
1970
D
a
t
e
1
2
3
t
•?
D
7
8
9
10
11
12
13
li*
15
l(i
17
18
19
20
?1
22
23
2l*
25
26
2T
28
2^
30
31
D
a
y
3u
M
r
vi
rh
F
5a
3u
Y;
r
./
rh
7
3a
3u
•4
r
4
rh
r
3a
3u
4
T
I/
Th
I1
Sa
Total Phosphorus
mg/1 as P
SS
6.3
11.1*
9.5
10.5
9.4
11.6
11.3
9.2
11.8
10.5
10.2
13.6
10.8
11.0
9.3
10.7
9.0
10.2
10.0
10,6
10.7
7.6
11.0
10.0
11.1
9.8
10.9
11.2
WPE
3,8
3.6
2.8
2.5
2.9
2.7
2.1+
2.2
3.8
2.9
1.9
3.1
2.1
1.9
2.0
2.9
2.1
1.5
2.1
3.9
3.6
3.5
3.0
2.3
1.1
0.86
0.81*
1.1
EPE
1.9
1.9
0.83
0.56
0.65
0.89
0.75
0.92
1.5
0.60
0.61
0.58
0.55
0.51*
0.96
1.8
0.71
0.56
0.1*7
0.62
0.98
1.6
1.3
0.1*6
0.38
0 . 1*7
0.56
0.50
% Removal
WPE
39.7
68.1+
70.5
76.2
70.1+
76.7
78.8
76.1
67.8
72.U
81.1+
77.2
80.6
82.7
78.5
72.9
78.6
85.3
79.0
63.2
66. i*
53.9
72.7
77.0
90.1
91.2
92.3
90.2
EPE
69.8
83.3
91.3
9>+.7
93.1*
92.3
93.1*
90.0
87.3
91*. 3
91*. o
95.7
91*. 9
95.1
89.7
83.2
92.8
9^5
95.3
94.2
90.8
78.9
38.2
95.U
96.6
95.2
94.9
95.5
Total Soluble Phosphorus
mg/1 as P
SS
3.1*
5.8
1*.8
1+.6
1+.3
U.2
1+.6
3.6
1+.3
3.0
1+.3
1+.3
3.0
1+.3
U.2
3.9
3.2
3.7
3.3
u.o
1+.2
2,1*
l*.l
3.3
3.6
1.9
2.6
3.5
WPE
3.3
3.3
2.7
2.0
2.7
2.3
2.2
1.9
2.8
2.6
1.7
3.0
1.1*
1.6
1.9
2.7
1.7
1.3
1.5
3.2
3.2
3.1
2.8
2.1
0.95
0.73
0.59
0.55
EPE
1.5
1.6
0.50
0.39
0.1+1
0.51
O.U5
0.73
1.1
0.30
0.31
0.23
0.21
0.23
0.72
1.5
0.1+ It
0.38
0.17
0.25
0.70
1.3
1.0
0.20
0.19
0.17
0.21
0.23
% Removal
WPE
2.9
1+3.1
1*3.8
56.5
37.2
U5.2
52.2
1*7.2
3U.9
13.3
60.5
30.2
53.3
62.8
5*+. 8
30.8
1*6.9
6)4.9
51*. 5
20.0
23.8
31.7
36.1+
73.6
61.6
77.3
81*. 3
EPE
55.9
72.1*
89.6
91.5
90.5
87.9
90.2
79.7
7l*.l+
90.0
92.8
9'+. 7
93.0
91+. 7
82.9
61.5
86.3
89.7
9*+. 8
93.8
83.3
1+5.3
75.6
93.9
9l+. 7
91.1
91.9
93.1*
Total Iron
mg/1 as Fe
SS
1+. 52
1+.72
5.32
5.92
5J+0
6.90
5.81+
7.96
9.02
5.68
1+.90
7.80
7.01*
U.20
6.81
8.78
9.72
7.98
6.18
8.06
7.32
8.1*1*
11 36
9.91*
5.06
WPE
.296
.196
.297
.268
.1+68
.1*57
.185
.333
.387
.263
.397
.262
.197
.209
.l*6C
.55:
.397
.325
.21+C
.199
.317
.21]
.295
EPE
.9V
L-06f
.980
.712
.8?6
.706
.606
.1*91
.691
.61+5
1.501*
L.1+91+
LD7£
L.27C
.1+86
.1+87
.777
l.OOS
.77i
.621*
.631
.70 ij
.65*
.676
.86:
.90:
% Removal
WPE
*
93.5
95.8
91+.1+
?5t?
91.3
93,1+
98.9
gTrT
96.:
93.2
9l+. 6
9l*.S
96.:
95.:
96. c
QU.£
9U.3
95. C
91+.1
97. C
97.?
96.2
98. 1
96, •
EPE
7fi R
79.2
8.6,6
85.9
86.9
91.2
91 .6
91. 3J
9?.?
73.5
6?^
86.2
82. C
88.1+
Total Soluble Iron
mg/1 as Fe
SS
,268
-357
,231+
.331
,28J
,185
,111
.371
.333
.1+27
t?27
.316
.276
.15**
.1*1+6
91.2.50:
89.6
90.^
89.9
92.2
90. U
92.3
9**.0
91.3
oa. t
.311*
.1YS
.36:
.391*
.1*63
.36^
,51t
,520J
WPE
.151
.097
.066
.085
.181
.091
.087
.01*3
.209
.112
.131
.093
.055
.106
.129
.073
uJ-11
.160
-fci>5_
• 060
• OJ6
.111*
.132
.066
SPE
.ll»l
.081*
,121*
.062
.088
.080
.1^.5
.078
.079
.162
.527
.171
.09?
.08C
.36C
• 19<
.1*1+0
.051+
.065
.06:
.051-
.19l
.121
.081
,36f
Jg Removal
WPE
1+3.7
72.8
71.0
7l*. 3
36.9
50. U
21.6
88.1*
37.2
73.8
99.9
58.5
66.3
61*. 3
76.2
71*. 1+
62.7
10.6
60.1
8U.£
83.6
69. C
73.?
87.:
EPE
1*7.1*
76.5
1*7.0
81.3
69.3
56.8
79.0
76.2
62.1
1*5-9
61*. 1
1+8.1
60. 6*
82. C
63.7
82.6
86.:
58.1
67.1
83. £
29.2
UJ
-------
PLANT OPERATIONAL DATA
MARCH 1970
D
a
t
e
1
2.
3
1*
5
6
7
8
9
10
11
12
13
ll*
1?
l6
17
18
!?
20
21
22
23
2ii
25
26
2J
28
2?
30
31
D
a
y
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
K
Sa
Si;
M
T
Total Phosphorus
mg/1 as P
SS
8.7
10.2
6.0
8.9
10.3
10.0
10.2
8.0
9,8
10.3
9.1*
9.8
10.6
ll.l
8.6
11.3
10.it
10.6
8.9
8.3
10. U
8.8
11.6
9.9
10.0
8.14
9.6
8.c
6.7
10.9
9.7
WPE
1.8
3.3
2.3
1.3
2.0
1.9
1.1
3, i1*
2.8
1.5
1.8
1,8
3.0
2.2
2.1
3.9
3.3
2.3
2.0
l.U
2.2
2.9
U.I
3.9
1.5
1.3
1.2
0.9C
2.2
3.1
2.9
EPE
1.2
l.U
o.u?
0^65
O.U3
1.3
0.8U
1.6
1.3
O.U7
0.30
0.26
O.U3
0.55
1.3
1.5
O.U3
0.53
O.U7
O.Ul
0.57
1.7
1.6
O.U9
0.51
0.1*7
0.93
0.8U
1.6
1.6
0.51
% Removal
WPE
79.3
67.6
61.7
85.1*
80.6
81.0
89.2
82.5
71.1*
85. U
80.9
83, ,6
71.7
80.2
75.6
65,5
68,3
78,3.
77.5
83,1
78,8
67.0
6U.7
60.6
85.0
8U.5
87.5
89.8
67.2
71.6
70.1
EPE
86.2
86.3
92.2
92.7
95.8
87.0
91.8
80.0
86.7
95. U
96.8
97.3
95.9
95.0
8U. 9
86.7
95. U
95.0
9U.7
95.1
9U.5
80.7
86.2
95.1
9*t.9
9*4.5
90. 3
90.5
76.1
87.7
9*4.7
Total Soluble Phosphorus
mg/1 as P
SS
2.7
3.7
1.8
3.0
3.6
3.3
l*.2
3.*4
3.2
3.6
3.1*
3.6
3. A
U.2
3.3
U.li
3.9
*4.2
3.5
3.5
5.0
U.8
U.9
3.6
3.0
2.8
3.2
3.5
2.7
U.9
U.6
WPE
1,6
3.2
1.9
0.97
1.8
1.2
0.77
1.1
2.7
i,u
1,6
1.7
2.U
1.9
1.7
3.8
3.0
2.1
1.7
1.1
1.7
2.1*
U,0
3.5
l.U
1.0
0.7*4
0.5*4
1.8
2.7
2.3
EPE
1.0
1.1
0.2U
0.20
0.27
0.65
0.1»5
1.3
1.1
0.2U
0.22
0.13
0.11
0.25
1.0
1.3
0.28
0.25
0.31
0.35
O.U5
1.6
1.3
0.2U
0.18
0.15
0.21
0.**7
1.3
1.2
0.30
% Removal
WPE
U0.7
13.5
67.7
50.0
63.6
81.7
67.6
15.6
6l.l
52.9
52.8
36.8
5U.8
U8.5
13.6
23.1
50.0
51. U
68.6
66.0
50.0
18. *4
2.8
53.3
6*4.3
76.9
8U.6
33.3
UU.9
50.0
EPE
53.0
70.3
82.1
93.3
92.5
80.3
89.3
61.8
65.6
93.3
93.5
96.**
97.1
9U.O
69.7
70.5
9JL8
9*4.0
91.1
90.0
91.0
66.7
73.5
93.3
9U.O
9*4.6
93. U
86.6
51.9
75.5
?3.5
Total Iron
mg/1 as Fe
SS
6.2U
8.02
7.58
8.01*
7.78
8.88
7.66
6.7U
10.26
8.8U
8.1U
7.7U
8.U6
8.32
6.12
8.08
8.00
8.36
8.50
7.22
7.58
6.06
8.UU
8.9U
10.88
8.70
7.22
5.82
14.68
6.U2
5.62
WPE
.333
.239
.379
1.000
.259
.72U
,U6l
.1*22
.233
.283
.235
.227
.U78
.630
.306
.570
.339
.27U
.309
.258
.U36
.1*23
.239
.268
.1*10
.309
.U97
.U^
.353
.U39
395
EPE
.557
.811
,98U
L.102
..88U
2. U55
,?UU
.591
.29U
,U56
.262
.253
,665
.601
.212
.507
.U93
.57U
.U81
.67U
.565
.558
.763
.7*42
.850
.700
1.913
.775
.57*4
.929
.5*i5
% RemovaJ
WPE
9U.7
Q7 0
95.0
87.6
96.7
9JL.8
9U.O
Q3.7
97.7
96,8
9Jfl
97.1
9U.3.
92. U
95.0
92.9
9c?iB
96,7
96.U
96.U
9U.2
93.0
97.2
97.0
96.2
96 ,U
93.1
92.6
92.5
93.2
93.0
EPE
91.1
89.9
07.6
86.3
88.6
73.0
87.7
91.2
97.1
9*».8
96.8
96.7
92.1
92.8
96.5
93.7
93.8
93.1
9U.3
90.7
92.5
90.8
91.0
91.7
92.2
91.9
73.5
86.7
87.7
8^.5
90.3
Total Soluble Iron
mg/1 as Fe
SS
,297
.U05
,399
391
,326
.350
.363
,20U
.525
.372
.563
.339
.U8J
.371
.253
•5U5
.532
557
511
UU9
385
22U
22U
381
U21
U60
333
303
275
UU3
U39
WPE
.1UO
.251
.171
.1UU
.1U9
.197
.163
.098
.075
.128
.113
,lU2
.2U8
.U02
.110
T28U
.212
.112
.160
.196
.lUl
.18U
rlU7
.119
.190
.193
.175
.196
.121
.096
.178
EPE
.253
.22U
,15U
,1U2
.121
.2U9
.126
.105
.109
.096
.115
r!29
.111
.563
,118
,087
.089
r 3-3.2
.117
.563
.108
,085
.106
,085
.191
,085.
,110
.080
.109
.102
.306
% Removal
WPE
52.9
38.0
57.1
63.2
5U.3
U3.7
55.1
52.0
#5.7
65.6
79.9
58.1
U9.1
56.5
U7.9
60.2
79.9
68.7
56.3
63,. U
17.9
3U.U
68.8
5U.9
58. C
1*7. U
35.3
56.0
78.3
59.5
EPE
1U.8
Ui*. 7
61.U
63.7
62.9
28.9
65.3
U8.5
79.2
7*4.2
79.6
61.9
77.2
53. U
8*4.0
83.3
76.3
77.1
71.9
62.1
52.7
77.7
5U.6
81.5
67.0
73.6
60. U
77.0
30.3
-------
PLANT OPERATIONAL DATA
APRIL 1970
D
a
t
e
1
2
T,
I
5
&
1
8
9
10
11
12
13
li*
15
16
17
18
!?
20
21
22
23
2l+
25
26
27
28
29
30
31
D
a
y
w
Th
F
Sa
Gu
M
T
W
Th
F
Sa
Su
M
T
W
'i'h
¥
Sa
Su
M
T
W
Th
F
Sa
Su
M
'I1
W
Th
Total Phosphorus
me/1 as P
ss TWPE
9.0|2.i*
7.6
8.2
8.14
6.8
9.9
9.1
9.1
9.2
9.3
8.7
7.8
6.8
7.6
8.2
8.'*
9.Y
10.6
6.1
8,8
8., 7
8,1
8.1
7.3
7,8
6.1*
9.8
8.2
8,"i
6.7
1.3
1.8
1.1*
1.8
3.5
3.7
1.9
1.6
2.0
1.8
1.7
2.1+
1.5
1.2
1.8
2.5
1.8
1.0
1.2
1.1
0^80
0.57
1.1
0.55
0.31+
0.35
1.8
1.1
l.U
EPE
0.1.6
0.37
Oj.21
0.28
1.2
1.5
0.1*3
0.26
0.18
0.22
0.22
0.88,
1.3
0.35
0.28
0.29
0.28
0.29
0.1*3
0.1*8
0.35
0.33
0.28
0.16
0.27
0.39
0.1*1*
0.80
0.67
1.8
% Removal
WPE
73.3
82.9
78.0
83,, 3.
73^5
61*. 6
59.3
79.1
82.6
78.5
79.3
78.2
61+.7
80.3
85.1*
78.6
7U.2
83.0
83.6
86.U
87,1*
90.3
QT.O
81*. 9
92.9
_3> J
96.1*
78 LC
86.7
79.1
EPE
9>«9
95 1
96.7
96.7
82.1*
81+.8
95.3
97.1
98.0
97.6
97.5
88.7
80.9
95. ^
96.6
96.5
97.1
97.3
93.0
91*. 5
96.0
95.9
96.5
97.8
96.5
93.9
95.5
90.2
91. .<>
73.1
Total Soluble Phosphorus
mg/1 as P
SS
l+_?
~\ p
3 1*
1* ?
3.5
5.2
l*.l*
2.9
i*.o
3.5
S3
i*,u
3.1
3.5
3.8
1*,0
3.9
2,6
2.7
3.9
3.9
1*,0
2,8
3.3
3,6
3.2
1+.7
3.0
3r5
2.8
WPE
1.9
1.1
1.3
0.86
1.7
3.1
3.5
1.7
1.3
1.8
1.1
1.6
2.1
l.U
1.1
1.7
1.8
1.3
0.1*3
0.99
0.87
0.72
0.50
0.71
0.1*3
0.26
0.27
0.65
0.70
1.3
EPE
0.16
0.11
0.11
0.19
1.0
1.3
0.38
0.17
0.17
0.18
0.19
0.82
1.2
0.29
0.22
0.20
0.19
0.19
0.33
0.35
0.18
0.19
0.18
0.11
0.10
0.26
0.33
0.28
0.31*
0.36
% Removal
WPE
51*. 8
63.3
61.8
79.5
51.1+
UO.i*
20.5
Ul.U
67.5
U8.6
7*4.1*
63.6
32, 3
60.0
71.1
57.5
53.8
50.0
8U. 1
7U. 6
77.7
82.0
82.1
78.5
88.1
91.9
9**.3
78.3
80.0
53.6
EPE
96.2
96.3
96.8
95.5
71. 1*
75.0
91.1*
9*1.1
95. ii
9^.9
95.6
81.1*
61.2
91.7
9U. 2
95.0
95.3
92.7
87. e
91. C
95. i
_95."
93.6
96.7
97.2
91.9
93. C
90.7
90.2
87.1
Total Iron
mg/1 as Fe
SS
6.90
6 ~1\
6^30
5.66
U.36
5.70
6.16
11.16
7.66
10. 9**
6.12
3.1+0
6.22
7.02
6.50
6.72
8.76
18.61*
6.91+
8.06
7.50
6.6£
8.16
6.U6
6.1*1*
5. lit
6.1*0
8.31*
6.1*0
6.21*
WPE
0. UU
D.37
0.61
0.62
0.20
0.81
•0.31
0.50
O.U3
0.5'»
0.63
0.26
0.33
0.33
0.31
0.27
0.81+
0.61*
0.80
0.73
0.1*9
0.21
0.26
0.35
0.29
0.1*1
0.13
1.51
0.1*3
0.39
EPE
0.67
0.81*
0.63
0.1*5
0.17
0.69
0.15
0.29
0.25
0.27
0.56
0,3.0
0.22
0.22
0.22
0.35
0.36
0.1*0
0.1+7
0.1*5
0.60
0.38
0.56
0.1*3
0.51+
0.81
0.1+1
1.22
0.97
1+.20
% Removal
WPE
93.6
91*. 5
90.3
89.0
95,1*
85.8
95.0
95t?
9i+.i+
95.1
89.7
92.1*
9U.7
95.3
95.2
96.0
90.1*
96.6
Ub.5
90.9
93.5
96.9
96.8
9U.6
95.5
92.0
98.0
Bl.9
93.3
93.8
EPE
9° • 3
87.5
90.0
92.0
9JL1
87,9
9T.6
97 11*
96.7
97.5
90.8
91.2
96.5
96.9
96.6
91*. 8
95.9
97.9
93.2
9U.U
92.0
9l+. 3
93.1
93.3
91.6
81+. 2
93.6
B5.1+
8U. 8
32.7
Total Soluble Iron
mg/1 as Fe
SS
0.1+5
0.39
0.37
0.38
0.31
0,1+0
0.90
1.11
0.50
0.60
WPE
0.27
0.20
0.20
0.20
0.16
0.13
0.30
0.31
0.33
0.27
6.60 0.35
0.35
0.1*7
0.1+9
0.1+y
0.1+1
0.61
0.90
0.1*3
0.73
0.55
O.U6
0.1*9
0.1*6
0.1*5
0.1*0
O.Jj
O.|?7
0.3fi
0,56
0.19
0.18
0.28
0.25
0.18
0.33
0.21
0.20
0.35
0.27
0.17
0.21
0.17
0.29
0.19
0.08
0.12
0.10
0.21
EPE
0,^6
0.18
0.17
0,15
0.15
0,15
0.11,
°t!^
o.ia
0.22
0.16
0.21
o.n
o.is
0.16
o.i:
0.15
0.15
O.ll*
Q-l*c
O.lc
Q.lfi
Q.,16.
0.22
O.?l
0.5C
0.1"
0.1'
q.oE
n,^1
% Removal
WPE
1*0.5
1*8.7
1*5.9
1+7. U
1+8.1*
67.5
66.7
72.1
31+.0
55.0
1+1.7
1+5.7
61.7
1+2. S
U7.S
56.1
U5.S
76.7
53.^
52.1
50.9
63.0
57.1
63. C
35.6
52.5
75". t
78 r 9
713.7
62,5
EPE
20.0
53.8
5^.1
60.5
51. 61
62.5
87.8
86.5
6U. 0
63.3
73.3
1+0.0
63.8
61.2
66.7
68.3
75.1+
83.3
67.1+
38.1*
72.7
65.2
67.3
52.2
53.3
60. 61
77.2
78.9
3.6
-------
PLANT OPERATIONAL DATA
MAY 1970
D
a
t
e
1
2
3
L
5
6
7
0
9
10
11
12
13
ll»
1?
l6
17
18
19
20
21
22
23
2l+
25
26
27
28
2?
30
31
D
a
y
F
Sa
Su
M
r
•A
Th
7
3a
5u
4
r
v
rh
r
Da
3U
A
L'
V
i'n
r
5a
Su
•1
f
//
Th
4
Sa
Su
Total Phosphorus
mg/1 as P
SS
7.9
8.0
6.9
Q.I*
8.9
8.8
8.8
8.3
6.,1*
5.9
8.0
5.5
**i9
5.U
5.0
5.8
5-^
8.5
7.8
7.9
7.5
8.1*
6.7
6,1+
8,0
8.2
8.0
7.7
7-7
6.8
5-3
WPE
1.1
o.u:
0.3:
0.1+0
1.1
1.6
2.1*
^. 7
1.3
0.5l<
0.51
0.1+1+
0.3*+
0.2^
0.56
0.55
0.8^
1.3
1.6
;,^
1.3
1.3
0.3£
0.3.1*
0.1*5
0.1*1*
0.6l
li1*
3,8
0,1*;
0.65
EPE
2.5
0.67
0.59
0.63
0.35
0.31*
0.1*8
0.73
0.1*3
0.32
0.32
0.21
0.20
0.28
0.23
0.23
0.21
0.1*5
0.29
0.21
0.21*
0.37
0.28
0.36
1.1
0.93
0.38
0.30
0.31
O.'tl
0.82
% Removal
WPE
86,]
91*. 6
95.2
95.7
87.6
81.8
72.7
1*3.1*
81*. 5
90.8
93.6
92.0
93.1
95.7
8b.O
90.5
8U.1+
81*. 7
79.5
82.3
82,7
81*. 5
91*. 3
91*. 7
91*. 1*
9l*. 6
92.1*
55.8
50.6
93.7
87.7
EPE
68.1*
91.6
91.1*
93.3
96.1
96.1
9**. 5
91.2
91*. 9
91*. 6
96.0
96.2
95.9
91*. 8
95. U
96.0
96.1
9H.7
96.3
97.3
96.8
95.6
95.8
9l*Tl*
86.3
88.7
95.3
96.1
96.0
9U.O
81*. 5
Total Soluble Phosphorus
mg/1 as P
SS
2-5
T-l
2.8
3.8
3.3
3-5
2-5
3.1
3.0
2.3
3.5
2.3
2.0
2.1+
2.0
2.6
2.0
3.7
2.1+
2.5
3.1
3.3
3.0
2.1+
3.2
3.1+
3.1
2.5
2.9
2.1*
2.0
WPE
0.66
0.25
0.19
0.32
0.87
1.1+
1.6
1.1*
0.63
0.28
0.33
0.28
0.23
0.19
0.17
0.27
0.27
1.1
It1*
0.85
0.65
0.61*
0.22
0.16
0.30
0.2£
0.36
0,82
0.1*2
0.23
0.27
EPE
0.21*
0.31
0.36
0.23
0.21
0.19
0.27
0.32
0.28
0.19
0.14
0.11
0.09
0.09
0.13
0.17
0.18
0.36
0.18
0.13
O.ll*
0.11+
O.ll*
0.18
0.21+
0.50
0.31
0.15
0.13
0.16
OJ*5
% Removal
WPE
73.6
91.9
93.2
91.6
73.6
60.0
36.0
51*. 8
79.0
87.8
90.6
07.0
00.5
92.1
91.5
89.6
90.1*
70.3
Ul.7
66.0
79.0
80.6
92.7
93.3
90.6
91.5
88.1*
67.2
85.5
90.1*
86.5
EPE
90.1*
90.0
87.1
93.9
93.6
91*. 6
89.2
89.7
?0.7
91.7
96.0
95.2
95.5
96.3
93.5
?3.5
?3.6
90.3
92.5
9**. 8
95.5
95.8
95.3
92.5
92.5
85.3
90.0
9l*.0
95.5
93.3
77.5
Total Iron
rag/1 as Fe
SS
7.1+1+
6.88
1*.78
7.81*
8.72
9.86
9.88
8.81*
7.62
6.90
9.16
7.62
6.20
5.28
5.UU
U.8U
l+.OO
i*.3i*
9. 11*
8.9J+
6.1*2
7.18
5.58
6.1*1*
6.96
6.72
7.52
8.1+0
5.82
5.21+
5.1*2
WPE
0.38
0.26
0.19
0.17
0.27
0.35
0.97
2.67
0.69
0.29
0.18
0.23
0.20
0.17
0.61
0.1*0
0.97
0.35
0.6U
0.06
0.93
0.92
O.U2
0.50
0.1+1
0.1+9
0.57
2.20
2.85
0.1*7
0.55
EPE
6.30
l.lli
0.55
1.22
0.56
0.1+6
0.02
1.25
0.1*3
0.1*3
0.57
0.1*5
0.1+5
0.87
0.1+2
1.13
0.2C
0.1*5
0.67
0.6S
1,5£
1.05
0.63
0.90
2.81
1.27
0.71
0.96
0.91*
1.17
1.11
% Removal
WPE
9U. 9
96.2
96.0
97.8
96.9
96.5
90.2
69.8
90.9
95.8
98.0
97.0
96. B
96.8
88.8
91.7
75.8
?1.9
93.0
90.1*
85.5
87.2
92.5
91.0
91+.1
92.7
92.1+
73.8
51.0
91.0
89.9
EPE
15.3
83.1+
88.5
81*. 1*
93.6
95.3
91.7
85.9
9U.U
93.8
93.8
91+.1
92.7
83.5
92.3
77.1
95.0
89.6
92.7
92.3
71?,1*
85,1+
88.7
86.0
59.6
81.1
90.6
88.6
83.8
78.2
79.5
Total Soluble Iron
mg/1 as Fe
SS
0.71
O.H3
0.37
0.33
0.1*1*
0.1*9
0.57
0.1*1*
0.38
0.35
0.51
O.U2J
0.1*3
0.39
0.3:
O.lt
0.22
0.3S
0.7;
0.8;
0.9i
0.7^
O.bi
0.1+9
0,51+
0,53
0.70
0,65
0.6-
0,1*9
0,36
WPE
0.?]
0.16
0.17
0.08
0.22
0.22
0.21
0.31
0.13
0.12
0.11
0.10
0.18
0.11
0.22
0.06
0.13
0.13
0.1*5
0.1*3
0.29
0.38
0.39
0.33
0.32
0.32
0.31
O.U:
0.31J
0.2;
0.3£
EPE
0^1+
0.??
0.19
0.09
0.30
0.17
0.09
0.16
0.08
0.11
0.06
0.18
0.16
0.0:
0.1C
0.0£
0.1C
0.32
0.3c
0.3J
0. V
0.21.
0.25
0.33
0.31
0.1+1
0.36
0.33
0.31
0.20
0.1+2
% Removal
WPE
70.1+
62.8
5U.1
75.8
50.0
55.1
63.2
29.5
65.8
65.7
78.1*
76.2
56.1
71.8
33.3
66.7
Uo.9
66.7
38.1*
1+8.2
70.1+
U9.3
32.8
32.7
1+0.7
37.7
55.7
33.8
1+6.0
53.1
EPE
66.2
1*8.8
1*8.6
72.7
31.8
65-3
8i*. 2
63.6
78.9
68.6
88.2
57.1
6l.O
92.3
69.7
66.7
5U. 5
17.9
50.7
57.8
66.3
68.0
56.9
36.7
37.0
22.6
1+8. "6
1*9.2
50.$
59.2
-------
PLANT OPERATIONAL DATA
JUNE 1970
D
a
t
e
1
2
3
U
?
D
7
8
9
10
11
12
13
lU
15
16
17
18
19
20
21
22
23
2U
25
26
27
28
29
30
31
D
a
y
M
T
W
'Hi
F
fi^
Su
M
T
w
Th
F
Sa
S>;
M
T
W
Tit
F
Sf
S\,
* x
T
W
Th
F
Sa
Su
M
T
Total Phosphorus
mg/1 as P
SS
5.5
3.9
5.5
6.0
6,6
6,1
^,U
7,8
7,8
7.1
7.0
7.0
6,U
5.3
7.7
7,6
6,8
6,7
7,6
7.0
5,6
8.U
7-?
7.9
7.0
5.8
7.2
5.8
8.6
7.3
WPE
1.1*
0.93
0.38
0.37
0.59
0.52
o.la
1.3
1.1*
2.1
1.2
1,8
0.8U
0.39
1.6
2.9
1,8
1.1
1.9
0,58
0.37
1.3
1.9
1.1
0.93
0.53
0.38
0.6U
1.9
1.5
EPE
1.7
0.61
0.28
0.20
0.25
0.30
0.25
1.1
O.U6
0.31
2.7
1.9
1.5
0.73
0.1*7
O.U3
1.3
2.3
1.7
0.1*8
0.37
0.71
0.61*
1.8
0.60
U.I
0.52
0.38
0.1*1
0.31*
% Removal
WPE
7U.5
76.2
93.1
93.8
91.1
91.5
92.U
83.3
82.1
70.1*
82.9
7U.3
86.9
92.6
79.2
61.8
73.5
ii3.6
75.0
91.7
93.1*
81*. 5
71*. 7
86.1
86.7
90.9
9^.7
09.0
77.9
79.5
EPE
69.1
81t.lt
9^*. 9
96.7
96.2
95.1
95.1*
85.9
9*4.1
95.6
61.1*
72.9
76.6
tt6.2
93.9
9*4.3
Bo. 9
65.7
77.6
93.1
93.1*
91.5
91.5
77.2
91.^
29.3
92.8
93.1*
95.2
95.3
Total Soluble Phosphorus
mg/1 as P
SS
2.5
1.3
1.6
2.14
2.2
2.6
2.6
l*.o
3.1*
3.1
2.7
2.1*
3.2
3.1
2.6
2.1*
2.0
2.3
2.1
U.I
2.9
3.1
2.8
2.2
2.6
2.0
3.1
2.6
WPE
1.3
0.7U
0.21
0.22
0.28
0.22
0.21
1.1
M
1-9
0.88
0.21*
1.5
2.8
1.7
0.72
0.79
0.22
0.25
1.2
1.8
0.98
0.68
0.51
0.26
0.1*5
1^
1,1*
EPE
1.0
0.23
0.11
0.11
0.10
0.12
0.16
0.37
0.3'*
0.22
0.28
O.lU
0.13
0.25
0.30
0.1*7
O.lU
0.19
0.17
0.26
0.2U
0.25
0.16
0.17
O.li*
O.lU
0.22
0.15
% Removal
WPE
U8.0
U3.1
86,9
90.8
87.3
91.5
91.9
72.5
67.6
38.7
67. U
90.0
53.1
9.7
3U.6
70.0
60.5
_90.U
88.1
70.7
37.9
68. U
75.7
76.8
90.0
77-5
J38.7
U6.2
EPE
60. C
82.3
93.1
95.14
95.5
95. U
93.8
90.8
90.0
92.9
89.6
9U.2
95.9
91.9
88.5
80.14
93.0
91.7
91.9
93. Y
91.7
91.9
9U.3
92.3
9U.6
93.0
92.9
9U.2
Total Iron
mg/1 as Fe
SS
14.80
5.68
7.86
5.72
5.2U
U.30
U.UU
U.30
U.OO
5.H*
5.50
6.06
5.62
U.30
5.88
5.12
5.20
5.56
7.3U
5.76
14.66
14.80
6.148
6.86
11.02
6.88
7.52
7.28
7.8U
7.22
WPE
O.U5
n.39
0.60
0.81
O.U7
0.7U
O.U2
O.U6
0.33
0.31
O.U9
0.63
0.22
0.27
O.U9
0.29
0.52
0.51
0.88
0.67
0.39
0.31
0.86
0.77
1.02
0.99
0.02
0.93
0.62
0.73
EPE
3,?1*
1.71
3,8"?
l.ll
3.89
3.92
D.ril
2.62
0.63
0.60
5.92
i*.26
3.33
6.73
0.79
0.58
2.06
U.98
3.29
0.9J?
0.87
0.70
1.58
U.UO
1.56
8.22
1.U2
1.JJ3
1.07
1.53
% Removal
WPE
90.6
93.1
92. U
a1 5. 8
91.0
82.8
90.5
89.3
91.8
9U.O
91.1
^9.6
96.1
93.7
91.7
9^.3
90.0
90.8
88.0
88.1*
91.6
93.5
86.7
88.8
90.7
05.6
89.1
87.2
92.1
89.9
EPE
26.3
69.9
89.2
80.6
83.0
78.6
81,8
39.1
81* ,3.
88.3
29.7
U0.7
83.0
86.6
88.7
60. U
10. u
55.2
82.8
81.3
85. U
75.6
35.9
85.8
81.1
7*4.9
86. U
78.8
Total Soluble Iron
mg/1 as Fe
SS
3,5U
L,07
3,58
),75
),66
).6.7
3.51
1.^9
J.^?
3.U5
D.UO
3.35
D.78
3.51
3.53
3.70
3.Ul
3.1*8
3.57
3.6CT
L.23
1.72
1.26
1.10
1.07
0.93
0.9U
1.32
WPE
o.Uo
0.21
0.36
0.63
0.36
0.63
0.36
0.2U
0.22
0.23
0.09
0.20
0.33
0.19
0.26
0.27
0.26
0.2U
0.30
0.28
0.71
0.62
0.77
0.72
O.U6
0.1*9
0.53
0.62
EPE
3.31
3.36
0.36
0,2U
0.55
3.U6
3.UO
3.27
3.2U
3,11
3 • 17
3.2U
3.29
">ilU
0.13
b.2U
0,13
0.13
0.23
0.20
0.63
0.89
3.76
0.72
3.87
3.87
3.59
1.06
% Removal
WPE
25.9
80.1*
37.9
16.0
U5.5
6.0
29.1*
30.5
57. Y
'*8.9
77.^5
t2.9
57.7
62.7
50.9
6i.i*
36.6
50.0
U7.3
53.3.
U2.3
oU.O
38.9
3U.5
7.0
-(7.3
3.6
3.0
EPE
U2.6
66. U
37.9
68.0
16.7
31.3
21.6
30.8
53.8
75.6
57.5
31. U
62.8
72.5
75.5
65.7
68.3
72.9
59.6
66.7
U8.3
U8.3
39.7
3U.5
18.7
6.5
37.2
19.7
-------
PLANT OPERATIONAL DATA
JULY 1970
D
a
t
e
1
2
1
k
?
6
7
8
?
10
11
12
13
ll*
1?
1(5
17
18
!?
20
21
22
23
2*4
25
26
2T
28
29
30
31
D
a
y
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
V
A
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Total Phosphorus
mg/1 as P
SS
8.0
7.5
7.9
6.7
6.7
9.6
7.7
7.8
7.8
7.6
J.2
5.9
7.7
6.3
7.0
7.0
6.6
6.1
5.1
8.7
8.2
8.0
7-?
l-h
6.6
5.**
7.3
7.1
7.2
6.5
6.1
WPE
0.95
0.66
0.83
0.31
0.3**
1.1
1.2
1.3
2.9
3.7
1.7
0.50
0.51
0.56
0.60
0.60
2.7
0.63
0.51
0.62
0.1*7
0.5*4
0.89
Or87
0.5*4
0.1*9
0.69
0.52
0.82
1.1
0.91
EPE
0.1*5
0.36
0.19
0.31
0.1*5
0.80
0.96
It. 5
3.3
1.6
0.75
1.3
1.5
0.77
0.35
0.19
0.23
0.19
0.20
0.1*0
0.20
0.19
0.20
0.31*
0.31*
0.29
0.21*
0.25
0.26
0.21*
0.31
% Removal
WPE
88.1
91.2
89.5
95.'*
9*4.9
88.5
81*. 1*
83.3
62.8
51.3
76. U
91.5
93.14
91.1
91.1*
91.14
59.1
89.7
90.0
92.9
91*. 3
93.3
88,1
88,2
91.8
90.9
90.5
92.7
88.6
83.1
85.1
EPE
9*4.1*
95.2
97.9
95.'
93.3
91.7
87.5
1*2.3
57.7
78.9
89.6
78.0
80.1*
87.8
95.0
97.3
96.5
96.9
96.]
95.1*
97.6
97.6
97.:
95.1
9**. £
9**,6
96.7
96.5
96.1*
_96.3
9^.9
Total Soluble Phosphorus
mg/1 as P
SS
2.6
2.8
2.1
1.9
2.1
6.0
1*.8
3.5
2.1*
1.6
1.8
1.7
3.7
2.9
2.5
1.8
1.9
1.6
1.6
**.0
3.7
3.5
2.8
1.8
1.7
1.1*
2.5
2.1
2.5
1.2
2.0
WPE
0.85
0.52
0.71
0.22
0.26
1.0
0.79
1.0
1.5
0.571
0.21
0.20
0.17
0.15
0.2i
0.30
0.5i
0.2]
0.15
0.21*
0.21
0.21*
0.3*4
0.36
0.21
0.20
0.58
0.140
0.72
0/57
O.U3
EPE
0.17
0.16
0.11
0.11
0.16
0.5*4
0.58
0.**9
0.21
0.21
0.21
0.21
0.38
0.18
0.11
0.10
0.10
0.10
0.11
0.27
0.17
0.1**
O.ll*
0.1*4
0.1**
0.11
0.13
0.13
0.13
0.12
0.11
% Removal
WPE
67.3
R] .Ji
66.2
^sT1*
87.6
83.3
83.5
71. *4
37.5
6*4. h
88.3
88.2
95. *4
9**.8
91.6
83.3
69.5
86.9
90.6
9J'.0
9*4.3
93.1
87.9
80.0
87.6
85.7
76.8
81.0
71.2
kk. 2
78.5
EPE
93.5
9*4.3
9*4.8
9*4.2
92.**
91.0
87.9
86.0
91.3
86.9
88.3
87.6
89.7
93.8
95.6
9*4. ^
9*4.7
93.8
93.1
93.3
95. *4
96.0
95.0
92.2
91.8
92.1
9*4.0
93.8
9*4.8
90.0
9*4.5
Total Iron
mg/1 as Fe
SS
7.U1*
0.12
8.92
6.80
7.9*4
l*.8l*
3.9*4
6.1*0
9.86
10.52
7.98
7.76
6.00
**.76
5.8U
7.*46
6.16
6.46
6.16
5.06
5.80
5.*4*4
6.76
8.80
6.88
6.16
8.08
7.7b
f.3b
9.40
7.3*4
WPE^
3.83
D.57
1.06
0.8*4
0.89
1.02
0.88
0.98
1.96
3.36
1.81
1.16
O.U2
0.38
0.35
0.1*7
1.95
0.32
0.22
0.36
0.37
0.25
0.38
0.35
0.2*4
0.27
0.61
0.65
0.62
0.79 '
0.85
EPE
1.62
1.15
0.87
0.99
1.17
1.27
1.53
9.161
6.72
**.30
1.8£
3.,**0
2.15
1.67
0.7]
0.3(
0.6C
0.3*4
0.20
0.21
0.22
0.26
0.38
0.63
0.59
0.1*1
0.69
0.71
0.67
0.86
1.05
% Removal
WPE
88.8
93.0
88.1
87.6
88.8
78.9
77.7
8*4.7
80.1
68.1
77.3
45.1
93.0
92.0
9*4.0
93.7
68.3
95.0
96.1*
92.9
93.6
95. 1*
9*4. *4
96.0
96.5
95.6
92.5
91.6
91.6
91.7
88. i*
EPE
78.2
85.8
90.2
85.**
85.3
73.8
61.2
31.7
59.1
76.**
56.2
6*4.2
6**. 9
87. t
9*4.9
90.2
9*4.7
96. £
95.^
96.2
95.2
9*4 .U
92.8
91. *4
93.3
91.5
90.9
90.9
90.9
85.7
Total Soluble Iron
mg/1 as Fe
SS
1.29
1.13
1.72
1.1**
0.91
1.0*4
D.96
1.22
It 23
1.1*0
Or9*4
1.32
D,**5
°r32
0^55
°»i(9
0.**2
0.30
0.25
0,58
O.*40
Oil?
0,3,2
0.5*4
0.25
0.21
0.90
0.95
1.13
0.73
0.52
WPE
0.78
o.i»u
0.75
0.70
0.68
0.80
0.57
0.75
0.90
0.95
0.67
0.97
0.13
0.08
0.17
0.06
0.07
0.21
0.06
0.09
0.11
0.08
0.0**
0.07
0.06
0.03
0.3*4
0.25
0.3*4
0.31
0.22
EPE
0.66
0.60
0.53
0.59
0.76
0.72
0.51
1.08
0.75
0.90
0.83
0.97
0.31
0.22
0.06
0.16
0.25
0.07
0.08
0.06
0.0:
0.19
0.09
0.07
0.05
0.06
0.52
0.57
0.149
0.52
0.21*
f Removal
WPE
39.5
61.1
56.**
38.6
25.3
23.1
40.6
38\5
26.8
32.1
28.7
26.5
71.1
75.0
69.1
87.8
83.3
30.0
76.0
8*4."?
72.5
77-1
87.5
87.0
76.0
85-7
62.2
73.7
69-9
57.5
57.7
EPE
U0.«
U6.9
69.2
1*8.2
16.5
30.8
146.9
11.5
39-0
35.7
11.7
26.5
31.1
31.3
89-1
67.3
'40.5
76.7
6M.O
89.7
92.5
*45.7
71.9
87.0
30.0
71. *4
*42.2
140.0
56.6
2fl.8
53.8
-------
PLANT OPERATIONAL DATA
AUGUST 1970
D
a
t
e
1
2
3
1*
5
6
7
8
9
10
11
12
13
ll*
15
16
17
18
19
20
21
22
23
2i»
25
26
27
28
2?
30
31
D
a
y
Sa
Su
M
T
W
Th
Y
Sa
Su
M
T
J
I'h
F
Sa
Su
M
r
w
Th
T*
Sa
Su
M
T
il
Th
t1
Sa
Su
°I
Total Phosphorus
mg/1 as P
SS
6.5
5.0
8.3
7-1'
7.3
7.2
8.1
7.9
6.6
8.i+
7.0
7.0
7.7
7.2
5.6
6,2
8.5
6,1+
7.0
7.8
7.Q
7.3
6.S
Q.I
7.9
7,0
7.2
7.9
6.1
6.7
8.6
WPE
0.5>+
0.50
0.93
O.U6
0.55
0.62
0.1+5
0.52
0.1+1*
0.56
0.61
0.67
0.79
0.88
0.51*
0.1+9
0.56
0.55
0.57
0.71*
1.1
0.1+8
0.1+5
1.1+
l.U
0.69
0.60
0.70
0.56
0.1*6
0.50
EPE
0.29
0.17
0.21+
0.21
0.28
0.21
0.25
0.22
0.22
0.28
0.25
0.29
0.27
0.23
0.15
0.23
0.1+9
0.30
0.28
0.23
0.25
0.27
0.56
1.0
0.1+7
0.29
0.29
0.37
0.30
0.1+1+
1.1
% Removal
WPE
91.7
90.0
88.8
93.8
92.5
91. i*
91+. 1+
93.'*
93.3
93.3
91.3
90. 1+
89.7
87.8
90. U
92.1
93.1*
91.1*
91.9
90.5
86.1
93rl»
93.1
8U.6
82.3
91.2
91.7
91.1
90.8
93.1
9l».2
EPE
95.5
96.6
97.1
97.2
96.2
97.1
96.9
97.2
96.7
96.7
96.14
95.9
96.5
96.8
97.3
96.3
9*4.2
95.3
96.0
97.1
96.8
96.3
91. u
89.0
9*4.1
96.3
96.0
95.3
95.1
93. 1*
87.2
Total Soluble Phosphorus
mg/1 as P
SS
2.1
1.8
3.5
2.8
2.8
2.6
3.5
2.8
2.5
3.6
2.2
2.0
2.9
2.5
2.14
2.1
3."*
1.8
2.2
2.6
2.14
3.3
2.7
5.0
3.3
2.7
2.3
2.5
1.8
2.7
3.9
WPE
0.19
0.19
0.38
0.26
0.31
0.3»4
0.29
0.36
0.25
0.33
0.31
0.39
O.U1+
0.53
0.33
0.20
0.26
0.22
0.20
0.35
0.30
0.25
0.25
1.1
1.1
0.140
0.32
0.35
0.21
0.21*
0.35
EPE
0.?6
0.10
0.1)4
0.13
0.13
0.12
0.12
0.08
0.11
0.16
0.09
0.11
0.11
0.10
0.10
0.13
0.26
0.12
0.09
0.13
0.13
0.13
0.39
0.89
0.20
0.16
0.17
0.18
0.13
0.30
0.91
% Removal
WPE
91.0
89.14
89.1
90.7
88.9
86.9
91.7
87.1
90.0
90.8
85.9
80.5
814.8
78.8
86.3
90.5
92.14
87.8
90.9
86.5
87.5
92.14
90.7
78.0
66.7
85.2
86.1
86.0
38.3
91.1
91.0
EPE
87.6
91*. 1*
96.0
95. U
95.14
95.14
96.6
97.1
95.6
95.6
95.9
9*4.5
96.2
96.0
95.8
93.8
92.1*
93.3
95.9
95.0
9H. 6
96.1
85.6
82.2
93.9
9'4.1
92.6
92.8
92.8
88.9
76.7
Total Iron
rag/1 as Fe
SS
7.20
7.10
6.08
6.1*1*
6.56
7.00
6.1+8
7.38
6.96
6.81+
6.92
7.00
6.66
8.28
5.56
6.38
6.86
7.90
7.96
8.11+
8.50
7.86
6.1+2
1+.60
5.1+14
5.92
5.86
6.52
6.80
5.31*
1+.86
WPE
1.12
0.52
0.63
0.51+
0.73
0.53
0.1+8
0.1+2
0.39
0.1+7
0.51
0.1+0
0.1+8
0.53
0.93
0.50
0.62
0.59
0.61+
0.65
0.70
0.53
0.1+8
0.28
0.21
0.32
0.30
0.314
0.39
0 . 31
0.19
EPE
L.10
3.52
0.68
0.52
0.81
0.82
0.63
0.60
0.36
0.80
0.56
O.i+9
0.63
0.65
0.31+
0.1+9
0.77
0.75
0.61+
0.79
0.88
CL9_1
0.82
0.1+3
0.51
0.56
O.U
0.66
0.57
0.55
Oj+6
% Removal
WPE
$!+.!+
92,7
8,6
91.6
88,9
92.1+
92.6
?1+, 3
9!+.!+
93.1
92.6
91+. 3
92.8
93.6
83.3
92.2
91.0
92.5
92.0
92.0
91.8
93.3
92.5
93.9
96.1
914.6
9«t.9
9U. 8
9'). 3
914.2
96.1
EPE
81+. 7
92.7
88.8
91.9
87.7
138.3
90.3
91.9
94.0
88.3
91.9
93.0
90.5
92.1
93.9
92.3
88.8
90.5
92.0
90.3
89.6
88.2
87.2
90.7
90.6
90.5
92.5
89.9
91.6
89.7
90.5
Total Soluble Iron
mg/1 as Fe
SS
).63
3.1*9
0,81+
0,83
1r17
1.03
0,86
0,67
0.1+1
1.38
OJ8
1.25
1.16
0.98
0.1+6
0.82
1.18
1.31+
1.09
1.06
0,72
1.11+
0.63
0.1*2
O.U8
0.60
0.53
O.i+5
0.31+
0.27
0.1+6
WPE
0.37
0.31
0.1+8
0.35
0.33
0.25
0.21
0.29
0.15
0.39
0.35
0.27
0.23
0.18
0.12
0.33
0.32
0.1+3
0.29
0.1+0
0.28
0.37
0.31
0.13
0.11+
0.12
0.11+
0.07
0.08
0.07
0.10
EPE
0.32
0.27
0.36
0.1+3
0.33
0.30
0.22
0,28
0.21+
0.29
0.1+0
0.21+
0.17
0.20
0.23
0.20
0.1+3
0.37
0.37
0.27
p.1+2
0,1+5
0.1+0
0.10
0.11+
0.08
0.11
0.09
0.31
0.21
0.05
% Removal
WPE
i+1.3
36.7
1+2.9
57.8
71.8
75.7
75.6
56.7
63.1+
71.7
55-1
78. h
80.2
81.6
73.9
60.2
72.9
67.9
73.1*
62.3
61.1
67.5
50.6
69-8
70.fi
80. C
73.6
8i+ . 1+
76.5
7*4.1
78.:
EPE
1*9.2
1*1*. 9
57.1
1+8.2
71.8
70.9
7'».U
58.2
'»1.5
79-0
1+8.7
80.8
85.3
79-6
50.0
75-9
63.6
72.1+
bb.l
71*. 5
1+1.7
60.5
36.5
76.7
70.8
86.7
79.2
80.0
T.8
22.2
89.1
VO
-------
PLANT OPERATIONAL DATA
SEPTEMBER 1970
D
a
t
e
1
2
3
1*
^
6
1
8
9
10
11
12
13
lii
1?
16
17
18
19
20
21
22
23
2*4
25
26
27
28
29
30
31
D
a
y
T
vJ
'i'n
V
Sa
3u
M
'I1
W
'1'h
V
iJa
S'u
M
T
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Total Phosphorus
mj
SS
8.8
6.8
5.2
7.5
8,0
3.2
6.1
8.0
6.6
7-3
8.3
7.6
5.2
6.8
!+.5
7.2
6.0
6.1*
7.3
8.2
6.8
6.2
!+.9
6.3
6.7
6.0
ti.9
7.8
8.0
z/1 as P
WPE
0.55
0.61
0.50
0.75
0.39
0.33
0.95
1.1*
1.0
0.91
0.55
0.32
0.35
0.1*0
0.35
0.1*9
0.85
0.1*0
0.1*0
0.1*1
1.7
0.82
0.91
JL.O
0,1*3
0.71*
0.51*
1.8
1.3
0.56
EPE
0.1*5
0.39
0.58
0.50
0.33
0.71
1.0
0.1*3
0.37
0.98
1.2
0.60
1.2
0.73
0.1*6
0.32
0.38
0.33
0.33
0.53
0.35
0.1*0
0.57
0.56
0.39
0.67
1.1+
0.1*7
0.33
% Removal
WPE
93.8
91.0
90.1*
90.0
95.1
89.7
81*. 1*
82.^
81*. 8
87.5
93.1*
95.8
92.7
9^.1
92.2
93.2
85.8
93.8
91+.5
79.3
87. Q
^,3
79.6
93.2
89.0
9] ,0
79.8
^3 • 3
93.0
EPE
91*. 9
9U.1
88,8
93.3
5.9
88.1*
87.5
93.5
9*+. 9
88.2
81*. 2
88.5
82.1*
83.8
93.6
91+.7
91+.1
95.5
93.5
9^.9
93.5
88.1*
91.1
91+. 2
88.8
81*. 3
9^.0
95.9
Total Soluble Phosphorus
mg/1 as P
SS
3.9
2.2
2.0
1.6
2.8
0.80
2.9
3.1
2.9
2.8
3. it
2.3
2.2
2.«
1.6
2.b
l.U
2.1*
3.6
2.8
2.1
2.0
1.7
2.2
1.8
2.1*
3.6
3.1
2.8
WPE
0.21
0.29
0.20
0.39
0.21
0.20
0.75
1.2
0.1*6
0.62
0.35
0.21
0.20
0.23
0.19
0.31
0.37
0.16
0.26
0.27
1.5
0.55
0.1*1
0.60
0.21
0.33
0.26
1.3
1.0
0.37
EPE
0.35
0.23
0.20
0.31
0.17
0.1*6
0.83
0.27
0.17
O.i+l
0.21
O.li*
0.22
0.18
0.20
0.11*
0.15
0.16
0.22
0.38
0.19
0.19
0.12
0.19
O.ll*
0.21
0.83
0.25
0.17
% Removal
WPE
91*. 6
86.8
QO.O
75.6
92.5
75.0
7l*.l
61.3
81*. 1
77.9
89.7
90.9
90.9
91.8
88.1
88.1
79.1+
93.3
92.8
1*6.1*
73.8
79.5
61*. 7
90.5
81.7
89.2
63.9
67.7
86.8
EPE
91.0
89.5
90.0
80.6
93.9
81*. 1
73.2
90.7
93.9
87.9
90.9
93.6
92.1
88.8
92.3
92.2
93.8
95.6
86.1*
91.0
90.5
.22^2
91. J*
92.2
91.3
76.9
91.9
93.9
Total Iron
rag/1 as Fe
SS
5.76
6.26
5.61*
8.02
6.68
5.18
l*.06
6.22
l*.66
5.28
5.58
6.30
1*.56
1+.71+
5.30
5.98
5.22
1+.81*
l*.i*8
5.50
6.11*
5.86
i*.92
5.70
7.52
U.52
5.80
5.32
6.1*0
WPE
0.25
0.29
0.31*
0.59
0.23
0.13
0.18
0.13
0.20
0.22
0.1*5
0.21
0.27
0.22
0.17
0.10
0.97
0.23
O.ll*
0.11
0 35
0.28
0.70
0.72
0.27
0.51
0.52
0.1*8
0.32
0.21* '
EPE
0.5?
0.50
1.00
0.85
0.56
0.51
O.U9
0.38
0.86
1.1*2
2.67
1.20
2.86
I.b9
0.91
0.66
0.68
0.65
0.38
0.1*7
0.52
0.57
1.21*
1.17
0.52
1.22
1.13
0.57
0.1*2
% Removal
WPE
95.7
95.1*
91+. o
92.6
96.6
97.5
95.6
?7«?
95.7
95.8
91.9
96.7
9»+.l
95.1+
96.8
97.0
81.1+
95.2
96.9
93,6
95.1*
88.1
85.K
95.3
93.2
88\5
91.7
9J+.0
96.3
EPE
gi. o
92.0
82.3
89. 1+
91.6
87.1+
92.1
91.8
83.7
7l+. 6
57.6
73.7
39.7
68.1
8i+. 8
87.lt
86.0
85.5
91.5
91.5
90.3
71+.8
79.5
93.0
13.0
80. 5_
39.3
93. 1+
Total Soluble Iron
mg/1 .AS Fe
SS
0,66
0.55
O.'jfi
0.6s
o.Vr
0,31
0.39
0.58
0.50
0.55
0.71+
0.1+0
0.38
0.1+2
0.1+3
0.1+1
0.35
0.1+1+
0.25
0.29
0,51
0,31*
0,36
0,25
0.32
0.2:3
0.31+
0,1*0
0.1*6
WPE
3.08
0.13
0.08
0.11
0.06
0.06
0.03
0.05
0.07
0.05
0.08
0.06
o.oi*
0.11
0.09
0.07
0.10
0.15
0.02
0.07
0.12
0.08
0.13
0.16
0.10
0.05
0.08
0.06
0.07
0.06
EPE
0,11+
0.33
0.11
0.09
0.03
0.05
0.03
0.08
0.12
0.07
0.05
0.01
0.00
0.05
0.07
0.01+
0.01
0.05
0.07
0.17
0.13.
0.13
0.10
0.11
0.01+
0.06
0.18
0.07
0.06
% Removal
WPE
87.9
76.1+
86.2
83.1
87.2
80.6
92.3
91.1+
86.0
90.9
39.2
35.0
89.5
73.8
79.1
82.9
71.1+
65.9
92.0
53.6
3*+. 3
61.8
J5.6"
60.0
01*. 1*
65.2
82.1*
82.5
87.0
EPE
78.8
ltO.0
81.0
86.2
93.6
87.2
9*+. 8
81*. 0
78.2
90.5
87.5
97.it
22j&
88.1*
32.9
38.6
97.7
80.0
'+1.1*
7^.5
61.8
72.2
56.0
37-5
73.9
^7.1
82.5
87.0
o
o
-------
PLANT OPERATIONAL DATA
OCTOBER 1970
D
a
t
e
1
2
3
i
5
6
7
8
9
10
11
12
13
ll*
1?
16
17
18
19
20
21
22
23
2l*
25
26
2J
28
2?
30
31
D
a
y
rh
Y
Sa
Su
M
r
w
rh
F
3a
3U
-1
L1
^
Th
F
Sft
Su,
M
I1
w
Th
Si
§u
4
T
w
rh
r
5a
Total Phosphorus
mg/1 as P
SS
8.1*
9.0
8.6
7.3
9.1*
8.7
8.2
7.9
7.7
8.3
7.9
10.1*
8.9
8.8
9.6
10.3
10.2
8.6
10.0
8.7
8.5
8.1*
8.7
9.1*
8.0
10.9
8.0
13.0
8.1*
8.2
6.9
WPE
0.58
0.71
0.1*3
O.U8
1.3
0.95
1.0
1.7
1.1
0.60
0.51*
0.8U
0.76
1.2
2.9
3.2
1.7
O.i*5
0.62
1.5
1.5
2.1
2.5
0.00
0.63
1.3
1.1
1.9
2.1*
1.3
0.1*3
EPE
0.35
0.52
0.1*3
O.U6
0.58
0.57
0.76
0.77
2.6
0.60
O.Ul
0.60
0.60
0.81
3.2
i*.0
1.1
0.68
0.1*8
0.51*
0.61*
1.7
1*.6
1.1
0.58
0.1*8
0.1*8
0.50
1.9
1.1
0.95
% Removal
WPE
93.1
92.1
95.0
93.1*
86.?
89.1
8.7,9
78.5
8s. 7
92.8
93.2
91.9
91.5
86.1*
69.8
68.9
83.3
9^.8
93.8
82.8
82.1*
75.0
71.3
91.5
92.1
88.1
86.3
85. 1*
71. 1*
81*. 1
93.8
EPE
95. fl
91*. 2
95.0
?3?7
93.8
93.1*
90.7
90.3
66.2
92.8
91*. 8
?1*.2
93.3
90.8
66.7
61.2
89.2
92.1
95.2
93. 8
92.5
79. 8
W.I
88.3
92. 8
95.6
9^.0
96.2
77.1*
86.6
86.2
Total Soluble Phosphorus
mg/1 as P
SS
2.2
3.1
3.8
3il
3.1
3.1
3.1
3.0
2.2
3.0
2.8
3.8
3.2
2.5
3.2
3.0
3.3
3.0
3.8
2.5
3.0
3.1
3.1*
2.1*
2.1*
3.0
2.8
9.0
2.7
2.0
2.3
WPE
0.32
0.1*0
0.25
0.28
1.1
0.59
0.60
0.65
0.55
0.26
0.21
0.6l
0.1*5
0.72
2.0
2.5
1.1
0.23
0.30
0.70
0.92
1.7
1.9
0.19
0.19
0.96
0.00
1.5
2.0
0.60
0.16
EPE
0.19
0.30
0.21
0.17
0.28
0.31
0.33
0.33
0.26
0.20
0.15
0.28
0.1*0
0.1*1
0.32
0.16
0.12
0.15
0.28
0.29
0.1*1
0.27
0.13
0.12
0.16
0.17
0.16
0.29
0.88
0.22
O.lU
% Removal
WPE
85.5
87.1
93.1*
91.0
6U. 5
81.0
80.6
78.3
75.0
91.3
92.5
83.9
85.9
71.2
37.5
16.7
66.7
92.3
92.1
72.0
69.3
1*5.2
1*1*. 1
92.1
92.1
68.0
71.1*
83.3
25.9
70.0
93.0
EPE
91.1*
90.3
9l». 5
91*. 5
91.0
90.0
89.1*
89.0
88.2
93.3
?i*.6
92.6
87.5
83.6
90.0
?i*.7
?6.i+
?5.0
?2.6
88.1*
86.3
91.3
96.2
95.0
93.3
9l*. 3
91*. 3
96.8
37. 1*
39.0
3.9
Total Iron
rag/1 as Fe
SS
8.58
6.96
5.78
5.68
7.96
6.1*1*
6.1*0
6.30
6.72
7.01*
6.76
7.20
7.01*
7.70
7.98
7.2U
7.28
6.66
7.86
9.71*
8.98
7.60
10.21*
12.98
11.81*
11.1*1*
8.80
7.81*
8.96
10.62
9.92
WPE
0.1*3
0.1*1
0.32
0.13
0.39
0.37
0.1+8
0.93
0.1*0
0.36
0.71
0.52
0.28
0.1*3
0.66
0.52
0.1*0
0.19
0.1*8
0.76
0.77
0.67
0.81
0.87
0.67
0.1*5
0.51*
0.37
0.58
0.78
0.37
EPE
0.53
0.77
0.58
0.76
0.68
0.61
1.1*0
1.1*9
l*.l*0
0.91
0.67
0.22
3.51*
1.10
3.26
6.7^
1.79
l.olt
0.71
0.76
0.8l
2.82
8.90
2.30
1.05
D.83
i.oV
3.68
3.69
'.27
2.10
% Removal
WPE
95.0
9l*,l
?!*. 5
97,7
95,1
?1».3
92.5
85,2
9i*To
9»*.9
89.5
92.8
96.0
9l*.l4
91.7
92.8
9^.5
97.1
93.9
92.2
91.1*
91.2
92.1
93.3
9l*. 3
96.1
93.9
95.3
93.5
92.7
96.3
EPE
93.8
88.9
90.0
86,6
91.5
90.6
78.1
76,3,
31*. 5
87.1
90.1
96t9
92.3
85.7
59.1
6.6
75.1*
8l*.l*
91.0
92.2
91.0
62.9
13.1
82.3
91.1
92.7
87.0
91.3
70.0
78.6
78.8
Total Soluble Iron
mg/1 as Fe
SS
0.39
0^1*2
0.36
0.32
0.1*7
0.1*5
0.59
0.1*8
0.3fc
0.35
0.26
0.31*
0.1*9
0.1*1
0.1*3
0.36
0.1*1
o.l*l*
0.89
1.36
1.1*1
0.87
1.1*3
0.48
0.81
0.1*7
0.70
0.90
0.85
0.33
0.81
WPE
0.25
0.09
0.07
0.08
0.13
0.18
0.13
0.10
0.06
0.07
0.07
0.01
0.05
O.OU
0.10
0.13
0.08
0.07
0.36
0.27
0.27
0.26
0.32
0.30
0.13
O.lU
0.20
O.Ob
0.12
0.10
0.05
EPE
3.12
0.09
3.06
3.13
0.07
3.07
3.39
).08
3.08
).10
5.07
).02
5.03
5.03
3.01
).07
0.06
0.05
0.28
0.19
0.23
0.20
J.27
J.19
3.1*4
3.32
3.21*
3.13
3.20
J.17
3.06
% Removal
WPE
35 Q
78.6
HO. 6
75.0
72.3
60.0
78.0
79.2
8U. 2
80.0
73.1
97.1
89.8
90.2
76.7
63.9
80.5
8U. 1
59.6
80.1
80.9
70.1
77.6
21.1
8U. 0
70.2
7'*.1*
93.3
85-9
69.7
93.8
EPE
69.2
78.6
83.3
59.1*
85.1
8U. i*
33.9
83.3
78.9
71. i*
73.1
9'*.1
93.9
92.7
97.7
80.6
35.1*
88.6
68.5
86.0
83.7
77.0
31.1
50.0
82.7
31.9
69.2
85.6
76.5
1*8.5
92.6
-------
PLANT OPERATIONAL DATA
NOVEMBER 1970
D
a
t
e
1
2
3
1+
5
6
7
8
9
10
11
12
13
ll*
15
id
17
18
19
20
21
22
23
2l+
25
26
27
28
29
30
31
D
a
y
3U
-1
r
%»
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
r
w
I'h
?
Sa
Su
4
r
^
i'h
P
ba
bu
VI
Total Phosphorus
mg/1 as P
SS
6.9
6.1+
6.8
7.2
8.0
7.1
7.9
7.3
8.0
8.9
7.8
8.3
7.8
7.6
7.5
10. k
9.6
9.1
9.8
8.2
7.8
8.1+
9.7
8.3
8.5
7.^4
8.5
8.1
7.2
9.2
WPE
0.1*3
0.1*8
0.1*7
0.56
0.76
1.1
0.76
0.1+2
0.7Q
0.70
0.79
0.80
0.93
0.78
0.61*
0.77
0.72
0.81*
2.2
0.78
0.33
0.1*1
1.7
0.90
1.9
0.67
0.60
0.69
1.7
3.6
EPE
0.35
O.25
0.1*3
0.29
0.1*0
O.b1'*
0.1*9
0.1*1
0.32
0.27
0.28
0.32
0.514
0.30
0.27
0.31*
0.50
0.66
1.0
3.0
0.51
0.1*2
0.65
1.1
0.66
0.51
0.31
0.31+
0.33
0.77
% Removal
WPE
93.8
92.5
93.1
92.2
90.5
81+.5
90.1*
9l+. 2
90.1
92.1
89.9
90.1*
08.1
89.J
91.5
92.6
92.5
90.8
77.6
90.5
95.8
95.1
82.5
89.2
77.9
90.9
92.9
91.5
76.1*
60.9
EPE
91*. 9
96.1
93.7
96.0
95.0
88.2
93.8
91*, 1*
96.0
97.0
96.1*
96.1
93.1
96.1
96.1+
96.7
91*. a
92.7
89.8
63.1*
93.5
95.0
93.3
86.7
92.3
93.1
96.1*
95.8
95. U
91.6
Total Soluble Phosphorus
mg/1 as P
SS
2.0
2.9
2.7
2.0
i*.o
2.6
2.6
2.3
2.6
2.2
2.7
2.6
2.1
2.5
2.'*
3.1*
2.9
2.7
2.0
2.6
2.2
3.2
2.8
2.7
3.9
2.1
i*.l
.}.:>
3.3
3.9
WPE
0.16
0.1*0
0.23
0.20
0.1*6
0.60
0.35
0.21*
0.52
0.1*6
0.55
0.70
0.81
0.25
0.19
0.1*5
0.1*5
0.55
0.71+
O.UO
0.20
0.25
1.2
6.61
0.73
0.50
0.25
0.55
1.5
3.3
EPE
0.13
0.13
0.12
0.10
O.ll*
0.13
0.12
0.11
0.12
0.13
0.12
O.ll*
0.12
0.10
0.10
0.15
0.20
0.17
0.16
0.13
O.ll*
0.11,
0.16
0.15
0.20
0.15
0.12
0.13
0.19
0.32
* Removal
WPE
92.0
86.2
91.5
90.0
88,5
76.9
86.5
89.6
80.0
79.1
79.3
73.1
61.1*
90.0
92.1
86.8
81*. 5
79.6
63.0
OU. 6
90.9
92.2
57.1
77.14
81.3
76.2
93.9
Oi*. 3
5i*. 5
15. 14
EPE
93.5
95.5
95.6
95.0
96.5
95.0
95.it
95.2
95.14
9^.1
95.6
9*4.6
914.3
96.0
95.0
95.6
93.1
93.7
92.0
95.0
93.6
95.6
91*. 3
91+.14
9l+. 9
92.9
97.1
96.3
_£l*.2
91.fi
Total Iron
mg/1 as Fe
SS
10.30
5.98
6.66
0.00
7.60
7.50
0.00
9.06
7.28
9.26
6.1*1*
6.80
7.50
7.8U
7.514
7.21*
8.31+
7.72
9.16
7.70
7.3'4
7.614
9.11*
6.90
7.86
7.56
7. 1C
7.«3
5.5«
10.21*
WPE
0.36
0.00
0.33
0.1*5
0.38
0.53
0.50
0.26
0.39
0.27
0.29
0.23
0.31*
0.39
0.1*0
0.31
0.28
0.32
1.01*
0.1+8
0.30
0.21+
O.UO
0.92
0.07
0.19
0.31
0.11
0.15
0.53 '
EPE
0.58
0.53
0.80
0.52
0.73
1.90
1.18
0.75
0.59
0.1*1
0.1+8
0.51
1.07
0.55
0.1+7
0.56
0.70
1.20
2.05
6.15
1.57
0.72
1.21+
3.00
1.22
D.9'4
D.38
D.31
3.55
L.22
% Remova]
WPE
96,5
98,7
95.0
91*. 9
95.0
92.9
9*4.3
97.1
9!*. 6
97.1
95.5
96.6
95.5
95.0
9*4.7
95.7
96.6
95.9
88.6
93.7
95.9
96.9
9lt.7
86.7
88.9
97.5
95.7
9U.5
97.3
91^.8
EPE
9^.1*
91.1
88.0
9l+. 1
90.1+
71+. 7
86.6
91.7
91.9
95.6
92.5
92.5
85.7
93.0
93|8
92.3
91.6
81*. 5
77.6
20.1
78.6
90.6
86.1*
56.5
01+. 5
07.6
9l4.7
95. &
90.1
88.1
Total Soluble Iron
mg/1 as Fe
SS
0.5!+
0.50
0,61+
0.86
0.65
1.03
0.72
0,27
0 1+^
u . *j
0.21*
0.1*9
0.51
o.i+o
0.514
0.1*5
0.1+1+
0.61
0.1+9
0.1+5
o.i+o
0.1*5
0.20
0.1*1
0.57
0.1+3
0.76
0.85
0.60
0.51
0.56
WPE
0.05
0.05
o.oi*
O.OJ
0.08
0.07
0.10
0.03
D.09
D.09
D.10
D.ll
D.ll
).08
D.10
).08
).07
).10
).13
O.OJ
0.17
0.10
0.09
0.08
O.OlL
0.08
0.10
O.Qlt
0.03
0.00
EPE
0.10
0.07
0 67
0.05
0.02
0,11+
0.09
0.09
0.20
O.lfl
0.21
0.1"
0.09
O.OE
0.13
0.1-
0.2C
O.OJ
0.23.
o,;i+
0.09
0.17
0.07
o.oi*
0.06
0.06
0.06
0.03
0.02
0.11+
% Removal
WPE
90.7
90.0
93.^
91.9
07.7
93.2
86.1
88.9
80.0
62.5
79.6
73.1+
72.5
85.2
77. t
81. £
08.5
79.6
71.1
82.5
62.2
61*. 3
70.0
86.0
90.7
09.5
00.2
93.3
9^.1
05.7
EPE
81.5
86.0
91+. 2
96.9
86.1+
07.5
66.7
55.6
25.0
57.1
7U.5
77.5
85.2
75.6
70.5
67.2
83.7
1+0^2
65.0
Oo.o
39.3
02.9
93.0
86.0
92.1
92.9
95.0
96.1
75.0
o
ro
-------
PLANT OPERATIONAL DATA DECEMBER 1970
D
a
t
e
1
2
3
1*
5
4
7
8
9
10
11
12
13
lU
1?
id
17
18
!?
20
21
22
23
2l*
25
26
27
28
2?
30
31
D
a
y
m
i.
w
Th
F
3a
Su
M
T
A
rh
?
5a
5u
•1
r
;
Th
7
Sa
Su
4
T
fi
Th
p
Sa
Su
,;
T
/
Th
Total Phosphorus
m
SS
7.9
8.1
8.1
9.0
9.8
7.8
9.9
B.9
8.5
6.6
T-14
6.9
8,8
J.6
6,1
6.5
6,3.
6,7
6,9
7,6
7.1
7.0
6,6
8,2
6,7
6.6
8.5
7.8
3,7
7.6
?/l as P
WPE
2.0
0.83
1.1
1.6
0.72
0.39
0.95
1.5
0.71
1.2
2.2
0.614
0.79
3.0
1.9
1.1
1.2
0.9l*
0.1*6
0.36
0.68
1.7
1.1
0.96
O.U6
O.Ul
1.1
3.1
2.2
1.6
1.1
EPE
0.50
0.39
0.1*5
0.69
0.59
0.38
O.Ul
1.0
0.53
2.3
3.?
0.85
1.1*
1.1
0.35
0.36
0.30
1.1
1.2
0.50
0.30
0.78
1.2
0.77
0.19
0.21
0.33
0.68
0.1*9
0.29
0.29
% Removal
WPE
71*. 7
89.8
86.1*
82.2
92.7
95.0
90. ii
83.1
91.6
66.7
91.U
88.6
65.9
75.0
82.0
81.5
85.1
93.1
9**. 8
91.1
76.1
81*. 3
85.5
91*. 1*
93.9
83.3
63.5
71.8
81.6
85.5
EPE
93.7
95.2
9»*. 1*
92.3
9»*. 0
95.1
95.4
88.8
93.8
U0.9
88.5
79.7
87.5
95. 1*
_9l*.l
95.1*
82.5
82.1
92.8
96.1
89.0
82,9
88,3
_91_.J
96.9
95.0
92.0
93.7
96.7
96.2
Total Soluble Phosphorus
mg/1 as P
SS
3.0
2.8
2.5
?.B
3,6
2.6
l*.l*
3.0
2.9
1.8
2.9
3.2
3.7
2.7
1.9
1.8
1.1*
1.7
2.1
2.1*
1.9
2.2
2.6
1.1
2.7
2.5
U.2
2.9
2.9
3.7
WPE
L.6
3.59
0.1*2
0.1*1*
0,1*8
0.22
0.82
0.81
0.1*2
0.76
0.1*0
0.25
0.57
2.7
1.6
0.81
0.56
0.6'*
0.22
0.16
O.W
1.1+
0.90
0.65
0.17
0.22
0.93
2.5
1.9
I.1*
0.62
EPE
0.19
O.ll*
0.16
0.12
0.11
0.12
0.15
0.21
0.22
0.13
0.12
0.12
0.11
0.19
0.16
0.15
0.11*
0.08
0.10
0.10
0.18
0.29
0.17
0.17
0.13
0.13
0.17
0.53
0.33
0.17
0.15
% Removal
WPE
1*6.7
78.9
83.2
81*. 3
86.7
91.5
81.U
73.0
85.5
77.8
91. t
82.2
27.0
U0.7
57.1*
68.9
5^.3
87.1
92.1*
80.1*
26.3
59.1
75.0
81*. 5
91.9
62.8
1*0.5
31*. 5
51.7
83.2
EPE
en. 7
95.0
93.6^
95.7
96.9
95. 1*
96.6
93.0
92.1*
93.:
95.9
96.6
9". 9
9i«. 1
92.1
92.2
9l*.:
9l+. 1
95.2
92.5
8U. 7
92.:
93.5
88.2
95.2
93.2
87. it
88.6
91+.1
95.9
Total Iron
rag/1 as Fe
SS
9.60
L0.86
LI. 62
L2.50
LI. 61*
9.52
7.02
9. 11*
8.22
6.8U
5.66
5.00
5.70
6.30
6.68
7.1*6
6.21*
6.30
6.90
6.71*
6.96
5.76
5.1+0
6.61*
6.06
6.06
5.61*
7.68
7.16
l*.76
WPE
0.51*
0.39
0.77
1.1*3
0.1*7
0.27
O.i*3
0.51
0.1*7
0.52
1.30
1.07
0.30
0.28
0.39
0.33
0.1*7
0.31
0.23
0.21*
0.20
0.36
0.22
0.35
0.28
0.50
0.39
0.1*7
0.1*1
0.23
0.1*1*
EPE
0.91*
0.81
1.01
2.1*1
1.93
0.78
0.62
2.32
1.1+3
1+.22
L3.72
2.72
1*.87
3.1+5
3.1+1
3.63
0.58
3.07
3.0U
0.97
0.65
1.53
3.06
2.07
3.26
3.93
3.1*9
3.1+0
3,1+7
3.38
.'*9
% Removal
WPE
9V<
96,1+
93.1*
88.6
96.0
97.2
93.9
91*. 1*
9l*.3
81.0
81.1
91*. c
95.1
93. t
95.3
93. T
95. C
96.:
96.5
97.0
9l+. 8
96.2
93.5
95.8
91.7
93.6
91.7
9**.7
96.8
90. a
EPE
90.2
92.5
91.3
80.7
8^,1*
91,8
91.2
7U.6
82,6
51.9
2.6
39.5
93.5
90.6
92.2
50.8
51.7
85.9
90.1*
78.0
1*6.9
61.7
96.1
8i+. 7
91.9
92.9
93.9
9'».7
89.7
Total Soluble Iron
mg/1 as Fe
SS
0.68
0.61
0.81+
1.2t
0.78
0.51+
0.80
0.81+
0.67
0.581
9,6.?
0.60
0,72
0,51
0.67
0.1+0
0.36
0,3:
0.52
0,3.1
0.39
Otl36
0.32
0.35
0.36
0.35
o.st
0.59
0.66
0.67
WPE
0.12
0.09
0.20
O.ll*
0.10
0.09
0.11
0.13
0.15
0.15
0.13
0.11
0.12
0.17
0.19
0.27
0.07
0.09
0.02
0.05
0.05
0.10
0.11*
O.ll*
0.15
0.33
0.10
0.07
O.ll*
0.13
0.09
EPE
0.23
0.12
0.11
0.23
0.30
0.30
0.19
O.ll*
0.22
0.2»J
0.27
0.23
0.12
0.15
0.09
0.1:
0.22
o.os
o.os
0.2C
o.of
0.18
0.09
0.09
0.15
0.09
0.13
0.09
0.15
0.15
0.05
% Removal
WPE
82,1*
8S.?
76.?
80 1
87.?
8^,3.
8M
8%. 5
77.6
77.6
83.8
80.0
76.1+
62.7
59.7
Qp c
•JC . 2
75.0
93.9
90.1+
83.9
7I+.1+
61.1
56.3
57.1
8.3
71.!+
07.9
76.3
80. 3
Ob.b
EPE
66.2
80.3
79.8
82.0
61.5
1+1+ J+
76.3
83.3
65.7
53.1+
69.1
78.:
79.2
82.1*
80. £
*»5.C
75- C
72.1
61.5
71*.?
S?.F
75. r
71.9
57.1
75.0
62.9
81*. 5
71*. 6
77.3
92.5
-------
PLANT OPERATIONAL DATA
JANUARY 1970
D
a
t
e
1
2
3
1*
5
6
7
81
9
10
11
12
13
1»4
1?
l6
17
18
19
20
21
22
23
2l+
25
26
27
28
29
30
31
D
a.
y
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
I-1
Sa
Su
M
T
W
Th
F
Sa
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
12,000
10,013
1U.781
17.U66
12. U 70
13.71*6
15.170
11.9U6
10.382
15.19U
15.762
13.330
8.118
7.526
9.216
6.621+
9. 50U
10.212
n«/l
11.5
9.5
1U.3
17.2
12.2
13.6
16.1*
13.0
11.8
17.1*
18.0
15.1
9.7
8.8
10.3
6.7
10.5
11. U
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
91.1*
LIU. 3
95.3
93.3
L17.8
L18.7
L2U.6
L26.7
123.7
L01.6
93.3
121.9
122.7
121.1*
111.2
110.5
92.8
80.0
105.7
101*. U
10U.9
106.2
100.1+
78.5
67.1*
102.3
107.8
119.3
108.8
107.0
95.0
t>H
WP
7.1
7.0
7.0
7.1
7.0
7.1
7.0
7.3
7. i*
7.3
7.1
7.0
7.1
6.d
7.1
EP
6.9
6.9
7.2
7.1
7.0
7.1
7.0
7.2
7.3
7.3
7.1
7.1
6.9
6.9
7.1
Suspended
Solids rag/1
WP
2550
2120
2090
i860
21*00
2730
30 UO
2950
3050
2930
2770
2520
2660
2770
251*0
28UO
2830
2720
2130
2200
2300
21+UO
2770
2780
2600
2360
2690
2810
3220
3280
3250
EP
21*60
2350
2270
1830
221+0
2670
2650
2770
3200
3260
2870
2710
2820
2920
28UO
2180
I960
2690
2390
2680
2610
2610
2970
2810
2510
2U50
2500
2890
3050
3090
3180
SDI
WP
0.69
0.83
0,81+
0.76
0.93
0.92
0.88
0.87
0.86
0.91*
0.92
0.95
0.92
0.92
0.81
0.76
0.73
0.80
0.82
0.91*
0.93
0.89
0.90
0.89
0.91*
0.99
1.11
1.19
1.2U
1.08
1.06
EP
0.82
0.90
0.96
0.86
1.03
0.97
0,88
0.85
0.91
0.93
0.91*
0.95
1.03
0.98
0.96
0.89
0.92
0.99
0.98
0.95
1.03
0.99
0.97
1.01
1.05
L.07
1.07
l.li*
1.21
1.06
1.16
% Total P
WP
2.71
2.69
2.50
2.1*1
2.37
2.53
2.81
2.78
2.1*7
2.31
2.32
2.23
2.31
2.61
2.65
2.1*0
2.27
2.28
2.28
2.37
2.51
2.1+6
2.31
2.181
2.10
2.11
2.20
EP
2.61*
2.5**
2.1*0
2.1*9
2.1*1
2.57
2.75
2.79
2.79
2.77
2.71
2.6U
2.59
2.86
2.96
2.95
2.78
2.76
2.69
2.60
2.86
2.92
2.92
2.78^
2.57
2.6l
2.65
% Total N
WP
7.20
7.13
6.95
7.10
7.09
7.21
7.12
6.85
0.67
6.77
6.8l*
6.77
6.78
6.95
6.7B
6.1*3
6.56
6.68
6.77
6.85
6.89
6.71
6.70
6.23
6.23
6.1*9
6.1+9
EP
7.05
7.13
6.82
6.92
6.79
6.71
6.91
6.70
6.1+2
6.26
6.1+0
6.50
6.56
6.58
6.i*3
6.18
6.28
6.21
6.37
6.57
6.50
6.36
6.18
6.05
5.86
6.32
6.01+
% Total Fe
WP
1.65
1.71
1.65
1.71
1.71
1.91
2.21+
2.55
2.21
1.93
1,88
1.79
1.96
2.07
2.27
2.13
1.88
1.96
1.96
2.02
2.33
2.07
2.05
2.05
2.05
1.93
1.99
EP
2.50
2.16
2.21
2.86
3.3Q
1*.12
1+.21
1+.5U
5.05
5.07
5.1*7
5.83
1+.88
5.69
5.61
6.11+
6.31+
6.31+
6.1+2
6.11+
5.9U
5. 9U
6.00
5.83
5.30
5.U1
5.U7
% Total Ash
WP
23.60
22.87
23.51
23.52
23.30
23.92
21*. 95
25.50
21*. ll*
23.56
21+.08
2U.11
21*. 10
2U.66
2U.70
2U.OU
23.23
2U.32
23.80
2U.50
2U.76
2U.5U
2U.61
25. UU
26.15
25.53
25.59
EP
2U.79
23.38
2U.29
25.07.
25.33
26. 61+
27. 5U
28.12
28.28
28.1+U
28. 9U
29.71
28.36
30.30
30.11
30. 5U
36. 7U
31.39
30.13
30.06
30.32
30.83
30. 8U
36. OU
31.09
30.60
30. U9
o
-------
PLANT OPERATIONAL DATA
FEBRUARY 1970
D
a
t
e
1
2
3
k
5
b
7
o1
9
10
11
12
13
11+
1?
16
17
18
19
20
21
22
23
2k
25
26
27
28
29
30
31
D
&
y
su
M
T
W
Th
F
§a
fin
M
T ,
W
Th
F
ftfl
fill
M
T
w
Th
F
Sa,
Su
M
T
W
Th
F
Sa
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
10.703
9.936
8.781*
9.656
10.011
8r520
10,790
16,5^8
15,31+7
7.71*0
7,121+
'8,819
11,307
10.57U
8,35^
11.111
10.688
11.263
10.61*0
10. 5!+ 1+
mg/1
11.9
11.3
10.3
11.0
10.9
10.0
12.6
19. "5
18.1
0.1
8.8
10.6
13.6
12.8
9.9
13.2
12.6
13.1*
12.7
12.5
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
103.8
108.1
105.5
102.2
10U.8
110.0
87.2
85.9
102.1+
102.5
101.6
101.7
101.9
89.0
82.6
97.5
100.1
100.0
99.1+
101.5
90.3
86.2
100.7
102.0
100 . 8
100.2
101.0
07. 't
t>H
WP
7-1
7.1
7.0
6.9
6.9
6.9
7.1+
7.1
6.9
7.0
7.2
7.2
7.0
7.1
6.8
7.0
7.2
6.7
6.7
7.0
6.7
EP
7-1
7.2
7.1
7.0
6.9
6.9
7.3
7.0
6.9
7.0
7.1
7.1
6.7
6.9
6.5
7.0
7.' i*
7.0
6.6
6.7
6,6
Suspended
Solids rag/1
WP
3110
2760
311+0
2790
2980
3200
2970
2810
2290
2670
2820
2870
2920
2950
2750
2lUo
2330
2730
2650
2690
2830
2590
2170
2500
2600
2690
2670
2620
EP
2950
2820
3020
2730
281*0
21+50
3060
3200
2920
2810
2770
3100
3110
2950
2950
2550
2630
2600
2700
2870
3070
2760
2330
21+50
2600
2780
2750
2760
SDI
WP
1.12
1.17
1.06
l.lU
1.13
1.07
1.01+
1.08
1.13
1,18
1.11+
1.16
1.01+
0.98
1.07
1.17
1.07
1.18
1.09
1.08
1.10
1.08
1.15
1.20
1.15
1.13
1.08
1.08
EP
1.17
1.11
1.08
1.13
1.10
0.91+
0.96
0.96
1.02
1.12
1.08
1.16
1.10
1.10
1.21
1.21
1.18
1.15
1.21+
1.06
1.06
1.17
1.10
1.12
1.2U
1.11+
1.12
1.05
% Total P
WP
2.78
2.27
2.2U
2.17
2.16
2.36
2.37
2.30
2.29
2.21+
2.21+
2.37
2.50
2.51+
2.38
2.3U
2.29
2.31
2.51
2.5b
^.>Y
2. 35
2 31
2.30
2.33
2.1+9
EP
2.30
2.80
2.75
2.66
2.5't
2.68
2.76
2.67
2.58
2.53
2.1+9
2.61
2.77
2.82
2.77
2.61+
2.51*
2.55
2.76
2.83
2.UU
2.51
2.bb
2.58
2.1*1
2.51+
% Total N
WP
6,56
6.29
6.36
6.1*0
6.51
6,6}
6.23
6.78
6.51+
6.1*6
6.1+9
6.61+
6.75
6.85
6.81
6.58
6.33
6.50
6.57
6.56
6.68
6,58
6.36
6.26
6.36
6.58
6.51+
6.67
EP
6.30
6.01
5.88
5.93
6.01
6.29
6.01
6,1+7
6.35
6.30
6.15
6~,?3.
,21
6.33
6.30
6.21
•?i98
6.07
6.19
6.12
6.29
6.12
6.00
5.86
5.93
6.11
6.12
6.28
% Total Fe
WP
2.05
1.J7
ir79
1^7T
1.68
1.71
1.99
1.99
2.02
2.30
2.16
2. OS
1.93
2.05
2.07
2.16
2.16
1.93
1.88
1.85
2.05
2.07
2.16
1.99
1.99
1.93
2.13
2.27
EP
5.30
1+.99
5.10
5.05
!+.99
1+.71
1+.80
1+.99
1+.82
U.99
5.30
5.69
5.6l
5.38
5.35
5.13
5.02
5.02
5.19
5.2U
5.13
1+.91
1+.91
5.07
5.13
5.52
5.30
5.66
% Total Ash
WP
26.1+9
26.13
25.36
21*. 78
21*. 38
21+. 91+
21+.87
25.01*
25.29
25.13
21*. 97
25.08
25.12
25.1+2
21+.68
21+.50
21+.52
21+.1+8
25.21
25.98
26.33
25.95
25.78
25.78
25.66
26.21
EP
32.32
30.97
30.1*2
29.81
28.71+
28.81
28.97
29.21
29.1+2
29.75
29.50
29.75
29.70
29.1+9
29.20
29.09
28.86
28.61
29.11
29.99
30.20
30.1+1
30.08
30.30
30.27
30.18
-------
PLANT OPERATIONAL DATA
MARCH 1970
D
a
t
e
1
2
3
1*
5
6
7
&
9
10
11
12
13
11+
1?
16
17
18
19
20
21
22
23
2k
25
26
27
2b
29
30
31
D
a.
y
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
10.976
10.1+70
9.726
10.599
11.036
10.370
10.790
11.337
11.180
10.512
1U.190
13.906
13.195
16.779
1^ .970
13,276
12.790
12,711*
10,71+8
13,052
13,1+23
mg/1
12.0
10.1*
10.6
12.0
12.6
11.9
12.8
12.9
12.8
12.3
16. I*
16.7
15.7
17.0
15.6
15.1+
ll+.7
11+.3
11.1
15.3
15.6
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
85.7
109.6
121.3
110.2
105.9
105.1
89.9
80.0
10U.8
100.8
105.6
10U.3
102.3
83.0
78.0
103.7
99.9
100.5
118.3
111*. 7
89.1*
85.2
103.1*
10U. 5
106.1*
116.0
102.8
90.8
79.5
102.1
102.9
t>H
WP
7.1
7.2
7.1
7.0
T-1
7.5
7.0
6,8
6.9
6,9
7.3
7.0
7.1
6.9
7.0
J.3
7.0
7.1
7.0
6.9
7.1+
7.1
EP
7.1
7.1
7.0
6.?
6.9
7.3
7.0
6,8
6.9
6,9
7.2
7.0
7.0
6.8
7.0
7.3
7.1
7.1
7.0
7.0
7.**
7.0
Suspended
Solids rag/1
WP
2630
2170
2630
2810
2900
2930
2830
2750
2590
2550
2780
281+0
2810
2720
2600
2060
2230
2390
2720
2510
2550
231*0
2180
2370
251*0
2550
251*0
2520
2360
20UO
2200
EP
2660
21*20
231+0
291*0
2920
2730
2780
2680
2550
2590
2580
2560
2560
2750
2760
2380
2590
2560
2580
2530
2800
2670
2370
21+50
21*50
2560
251*0
2520
2570
2200
2390
SDI
WP
,1.17
1.25
1.38
1.37
1.33
1.09
1.02
1.13
1.21
1.23
1.16
1.15
1.02
0.91+
1.00
1.12
1.18
1.08
1.09
1.13
1.08
1.05
1.13
1.17
1.2U
1.25
1.10
1.12
1.10
1.21
1.2b
EP
1.12
1.21
1.1*0
1.37
1.39
l.li*
1.13
1.19
1.19
1.21
1.21
1.0*6"
1.03
1.03
1.09
l.li*
1.12
1.07
1.10
1.07
1.07
1.09
1.23
1.H+
l.li*
1.17
1.13
1.12
1.21+
1.18
l.li*,
% Total P
WP
2.53
2.1*9
2.20
2.05
2.08
2.15
2.21*
2.1+0
2.1+7
2.39
2.30
2.29
2.27
2.31
2.51
2.1+7
2.31
2.22
2.62
2.06
2.19
2.39
2.1+7
2.33
2.29
2.20
2.20
2.23
2.36
2.35
2.26
EP
2.72
2.78
2.52
2.31
2.32
2.1+1
2.55
2.71+
2.82
2.76
2.68
2.61
2.56
2.58
2.77
2.85
2.83
2.71
2.57
2.U2
2.U5
2.69
2.81
2.78
2.70
2.53
2.1*7
2.1*8
2.63
2.62
2.61+
% Total N
WP
6.1+7
6.28
5.71+
5.69
5.97
6.23
6.37
6.57
6.1+0
6.37
6.37
6.56
6.71
6.77
6.77
6.57
6.35
6.36
6.1+2
6.29
6.51
6.65
6.56
6.37
6.51
6.32
6.61
6.63
6.75
6.51*
6.1+1+
EP
6.?^
6.01
5.1+9
S 38
5.55
5.71+
5.86
5.98
5.97
5.81+
6.00
6.16
6.21
6.33
6.29
6.23
6.00
6.15
6.28
6.1l*
6.09
6.23
6.12
6.08
6.01+
6.16
6.28
6.25
6.33
6.28
6.16
% Total Fe
WP
2.1+7
2.38
2.13
2.10
2.02
1.96
1.93
2.21
2.21
2.21+
2.10
1.93
1.82
1,88
2.16
2.05
1.88
1.88
1.88
it?1*
1.77
1.99
2.02
1.99
2.05
1.93
1.77
1.88
1.82
1.85
1.71
EP
5.55
5.35
5.07
5.19
5.30
5.19
5.1+1
5.52
5.1+1
5.52
5.58
5.58
5.61
5.30
5.1+9
5.1+7
5.75
5.89
5.1+9
5.92
5.83
6.08
5.92
6.17
6.31+
5.86
5.02
5.13
1+.96
5.02
5.35
% Total Ash
WP
26.36
25.93
27.36
28.27
27.53
26.65
27.01+
27.28
27.1+1
26.63
26.00
PS.S1
29.16
2S.78
26. TL
2S.96
25.29
21+.80
21+.78
2S.69
26. 7S
26.82
26.79
25.72
25.89
26.21
26.19
26.57
27.01+
26.1+6
25.55
EP
30.13
29.85
31.17
31.80
31.22
30.1+2
32.15
32.60
32.70
32.09
31.91
30.68
31.22
30.93
31.25
31.63
31.1+7
31.23
30.26
31.36
32.31+
32.72
32.76
32.1+1+
32.27
32.21
32.22
31.39
31.78
31.1+9
31.1+0
-------
PLANT OPERATIONAL DATA APRIL 1970
D
a
t
e
1
2
3
1*
5
6
7
iJ
9
10
11
12
13
ll*
1?
16
17
18
!?
20
21
22
23
2**
25
26
27
2b
29
30
31
D
8.
y
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
K
Sa
bu
M
T
•A
Th
Iron Addition
to East Plant
Mixed Litjuor
Ibs/day
13j66l*
12.986
1U.188
12.853
13.186
13.005
12J321*
13.385
12.882
13.628
12.583
1U.306
lit. 82 1*
12 . k32
13.1*10
13.10U
lU.Olb
12.876
10.181*
10.231+
12.528
12.031
mg/1
15.0
13.6
15.3
11+.3
11+.5
11+.2
11+.3
11+.9
13.1
lU.2
13.0
15.2
16.3
13.0
ll*.l*
13.7
15.0
11+.1+
10.1*
9.9
12.1
10.2
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
log. 5
111*. 7
111.5
92.9
Q7.5
107.6
108.9
109.9
107.7
107.7
9U. 3
86.5
117.8
115.3
115.7
113.0
109.3
90.5
109.1*
111*. 8
111.7
111*. 8
112.3
107.5
91*. o
88.1*
117.6
123.1*
12 1*. 3
ll<1.5
r»H
WP
7.2
7.1
7.0
7.0
7.3
7.0
6.9
7.2
7, it
7.2
7.2
7.2
6,8
7.0
JL.O
6.8
7.1
6.9
7.0
7.2
7.1
EP
7.0
7.1
7.0
7.0
7.3
7.0
7.0
7.1
7.3
7.2
7.2
7.1
6,7
7.0
6.8
6.9
6.9
6.8
7.0
6.9
6.8
Suspended
Solids rag/1
WP
2 1*60
2620
2530
2660
21*1*0
1910
2230
21*10
2770
2790
2860
2830
2270
2390
2670
2820
2890
2800
2830
2620
27QO
2960
3030
32UO
331*0
3120
281*0
2620
3260
3230
EP
2380
251*0
2380
2550
2630
2380
21+80
2510
2650
2690
2730
2590
2660
2730
2660
2680
251*0
2650
2U70
2700
2610
28UO
2770
2Q^O
2820
2810
279J)
3ll*0
2970
SDI
WP
1 .P5
1.23
1.13
1.09
1.09
1.17
l.ll*
1.11
1.07
l.OU
1.05
1.08
1.09
1.16
l.ll*
1.08
1.00
0.93
1.10
1.13
1.19
1.13
1.10
1.08
1.01
1.05
1.10
1.06
1.08
0.91*
EP
1.06
1.13
1.06
1.01
1.07
1.15
1.03
1.08
0.90
0.95
0.85
0.96
0.97
0.92
0.89
0.79
0.81
0.8U
0.95
0.96
0.96
0.95
0.91
0.88
0.80
0.90
0.95
0.98
0.88
0.73
% Total P
WP
2.16
2.06
2.03
2.16
2.21*
2.19
2.15
2.10
2.12
2.12
2.16
2.30
2.22
2.08
2.07
2.07
2.09
2.25
2.37
2.31*
2.23
2.18
2.13
2.11
2.16
2.33
2.36
2.31*
2.23
2.19
EP
2.56
2.1*1
2.33
2.38
2.51
2.53
2.58
2_._50
2.1+5
2.37
2.39
2.52
2.56
2.1+7
2.1*1
2.39
2.31*
2.1*7
2.53
2.55
2.51
2.1*3
2.38
2.39
2.39
2.51
2.62
2.6U
2.58
2.53
% Total N
WP
fi.kfi
6,63
6.1*0
6,65
6,71*
6f58
6.58
6.67
6JU
6.82
6.82
6,81*
6.50
6.28
6.21
6.65
6.75
6. J8
6.1*6
6.1*6
6.1*6
6.56
6.67
6.1+1+
6.7l*
6.91
6.79
6.65
6.77
6.75
EP
6.32
6.29
6.11
6.26
6.39
6.11
6.12
6.15
6.28"
b.32
6.37
6,36
6.07
6.02
6.25
6.26
6.25
6.30
6.07
5.98
6.21
6.12
5.91+
6.16
6.19
6.32
6.11*
6.37
6.39
% Total Fe
WP
1.65
1.51
1,1*6
1.60
1,82
1,71+
1,65
1.51
1^71
1.60
1.77
l*£2j
1,95.
1.71*
1.65
1.51*
1.1*9
1,71*
2.16
2.07
Ir88
1.77
1.71
1.32
1.63
1.60
1.51*
1.51
1.60
1.1*6
EP
5.55
5.21
5.72
5.78
5.38
5.27
5.61
5.1*7
5.1+7
5.80
5.83
5.61,
5.55
5.55
5.69
5.58
5.61*
6.03
5.75
6.00
5.69
5.55
1+.99
5.55
5.^9
5.55
5.**7
5.10
5.27
5.35
% Total Ash
WP
25.51*
26.00
26.75
26.61
26.62
26.31
25.80
25.51
25.86
25.65
26.01
26.37
27.11
26.81*
26.28
25.73
25.63
27.12
27.07
27.38
26.77
26.05
25.81
26.01
25.81
25.96
26 . 10
25.66
25.30
25.60
EP
31.39
31.50
32.06
32.19
31.86
32.05
32.1+3
31.95
31.73
31.28
31.52
31.1*9
31.81*
32.17
32.25
31.78
31.1*0
33.38
32.11+
32.1+2
32.21+
31.79
31.65
31.90
31.1+3
31.1+5
31.1*8
31.05
30.70
30.82
-------
PLANT OPERATIONAL DATA
MAY 1970
D
a
t
e
1
2
3
It
5
6
7
81
9
10
11
12
13
Ik
15
16
17
18
!?
20
21
22
23
2l+
25
26
27
28
29
30
31
D
a.
y
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
rf
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
Iron Addition.
to East Plant
Mixed Liquor
Ibs/day
12.750
13.782
1U.102
1U.102
13.367
10.179
11.811
11.818
13.1*90
12,782
11.967
13.268
13,206
13.3U8
13.311
11.956
13,160
10,608
12,739
10,858
mg/1
12.3
15.2
15.5
16.7
1^.7
10.1*
11.2
10.3
11.1*
10.7
9.8
12.1
12.3
12.6
12.6
11.1*
12.8
10.5
12.6
10.2
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
12l*.l*
102.2
83.0
108.5
109.1
101.1*
108.7
HJLiO
108.2
92.3
126.9
136.9
11*2.5
11*3.5
11*7.1
129.1*
119.1
131.0
128.9
127.1*
126.2
125.5
120.0
119.1
122.9
121.0
121.1*
127.9
121.0
115.5
105.5
r>H
WP
6.9
7.1
7.2
7.0
6. a
6.6
7.0
6. J
6.7
6.8
7.0
7.1
6.9
7.0
6.9
7.2
7.5
7.1
7.2
7.1
EP
6.9
7.2
7.1
6,9
6.7
6.6
7.1
6.7
6.8
6.9
7.0
7.1
6.8
7.0
6.8
7.1
7.3
7.1
7.2
7.1
Suspended
Solids rag/1
WP
3300
3180
3170
2810
3000
3050
2970
3350
311*0
2860
2810
301*0
3110
3080
3090
3170
2990
2760
3070
3020
2980
3020
3080
2770
2600
2770
2860
2880
3020
2990
2790
EP
3000
3280
3010
2920
3010
30UO
3080
3060
321*0
3070
29UO
2930
2960
2890
2970
3250
3200
271+0
2790
2930
2780
2920
3200
3000
28UO
271*0
2830
2830
2980
3000
2760
SDI
WP
0.86
0.93
0.99
1.05
1.01*
1.01
1.03
0.91
0.91
1.09
1.0(3
1.16
1.2U
1.23
1.21*
1.17
1.19
1.20
1.12
1.12
1.02
1.02
1.00
0.96
0.91
0.81*
0.80
0.71*
0.93
EP
O.S9
0.82
0.98
1.08
1.02
0.97
0.77
0.1*6
0.69
1.03
0.82
0.98
1.11
1,11*
1.11
0.93
1.01
1.15
1.08
0.97
0.85
0.97
0.91
0.76
0.61*
0.76
0.75
0.76
0.96
% Total P
WP
2,lU
2.18
2.31+
2.1*8
2.31
2.22
2.13
2.07
2.10
2.11*
2.20
2.07
1.96
1.92
1.B9
1.95
2.07
2.10
2.12
2.09
2.09
2.03
2.06
2.17
2.23
2.22
2.23
2.29
2.2o
2.27
EP
2.1*2
2.1*1*
2.51*
2.66
2.67
2.6U
2.56
2.1*9
2.52
2.58
2.61*
2.1+7
2.29
2.25
2.19
2.16
2.21+
2.38
2.31+
2.30
2.30
2.26
2.31
2.1+U
2.51
2.1+7
2.1*3
2.51*
2.1*6
2.57
% Total N
WP
6.J1+
6.63
6.85
6.7!+
6.61
6.57
6.67
6.71
6.79
6.1+1+
6.35
6.15
5.91
6.09
6.25
6.30
6.29
5.91*
6.07
6.1*7
6.65
6.67
6.53
6.56
6.63
6.77
£.85
6.58
6.86
6.81
EP
6.?s
6.11
6.33
6.28
6.22
6.15
6.08
6.22
6.26
6.05
6.00
5.79
5.1*9
5.51
5.69
5.66
5.72
5.72
5.71*
5.93
6.15
6.22
5.97
6.15
5.95
6.36
6.1*7
6.07
6.50
6.1*9
% Total Fe
WP
1.1*3
1.1*3
1.1*7
M7
1.1+7
1.6l
1.68
1,5!+
1.51+
1.82
1.82
1,96
2.59
2.52
1.82
2.31
1.75
1.96
1.75
1.82
1.68
1.89
1.89
1.96
1.89
2.03
2.03
2.31
1.89
1.89
EP
5.19
5.16
1+.91
5.05
5.12
5.51+
5.1*7
5.61
5.33
5.05
5.05
5.1+7
5.51+
5.75
5.89
5.51+
5.26
5.1*0
1*.81*
5.33
5.1*7
5.51*
5.68
5.26
5.51+
5.1*0
5.26
5.26
5.51+
1+.70
% Total Ash
WP
21*. 63
26.18
26.63
26.83
26^16
25.60
25.61
25.1*1
25.92
28.1*2
28.1*9
29.25
31.31
30.96
30.60
30.32
30.1*1*
30.31
29.21*
28.1*1*
27.83
27.23
28.06
28.63
27.88
27.50
26.51*
27.72
26.62
27.78
EP
30.72.
^i nft
31.1*6
31.86
31. 9JL
31.76
31.91*
31.7&J
31.83.
33.26
33.78
31*. 1*6
35.77
36.13
35.63
35.12
35.08
35.52
3U. 07
33.11
32.1*1
31.80
32.98
32.61*
32.52
31.85
30.59
32.56
30.26
31.13
o
OD
-------
PLANT OPERATIONAL DATA
JUNE 1970
D
a
t
e
1
2
3
1*
?
6
7
b1
9
10
11
12
13
ll*
1?
16
17
18
19
20
21
22
23
2*4
25
26
27
2b
29
30
31
D
&
y
M
T
W
111
F
fifi
fill
M
T
W
Th
F
fin
SM
H
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
12 . 312
13.628
12.701
ll*.136
7_-100
5.UOO
1+.666
7.862
Q ,729
9.976
9,313
6,897
1+.12U
3,629
9,21+1
7,272
10,81*7
9,361*
7,898
3,780
2,U30
8,185
9,650
Q,^80
8.81*3
6.810
1+.180
3.888
10.588
8.585
mg/1
11.8
12.0
10.8
12.1+
6.6
5.1
1+.3
7.0
8.1*
8.1+
7.8
5.5
3.6
I,1*
8.2
M
9.0
7.8
6.8
Ii6
2,8
7.3
8.5
8.1+
7.8
5.8
1+.5
1+.8
9.7
7.7
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
138.7
135.6
lUl.l*
13b.7
129.5
126.3
116.2
13U.5
139.0
ll*2.0
11*2.6
151.7
139.0
127.7
131*. 8
137.8
1U5.2
11*3.7
138.3
125.6
105.9
131*. 7
136.3
133.9
135.2
139.8
111.0
97.0
130. £
131*. 5
DH
WP
7.1*
7.1
7.3
7.2
7.2
7.3
7.3
7.1
7.1
7.1
7.1*
7.1
7.1
7.1
7.3
7.5
7.3
7.2
7.3
7.3
7.5
7.1
EP
7.0
6.9
7.3
7.2
7.2
7.2
7.1
7.0
7.1
7.1
7.1
7.1
7.1
7.1
7.3
7.1
7.1
7.2
7.1
7.2
7.0
Suspended
Solids rag/1
WP
2580
21+80
2520
2750
2820
2810
2730
2510
2730
2890
2800
2620
2530
21*1+0
2280
2360
231*0
2310
2570
21*30
2370
2300
2U1+0
2370
2500
2U80
2780
21*1*0
21*30
2620
EP
2610
2290
21*50
2770
2590
2930
2810
2680
2630
2770
2580
2720
2630
2690
2610
2560
2530
21+20
2520
251*0
21*00
231+0
21*00
21+80
271+0
2580
2870
2820
2650
2510
SDI
WP
0.99
1.00
1.11
1.10
1.01
0.98
1.05
1.05
0.95
0.76
0.79
0,61+
0.75
0.89
0.92
0.8J
0.72
0.79
0.73
0.69
0.72
0.80
0.71*
0.65
O.U8
0.55
0.55
0.71
0.81
0.73
EP
0.98
0.99
1.06
1.05
1.00
0.90
0.98
1.01
LOU
0.8'+
0.82
0.59
0.81
0.76
O.U1
0.68
O.bb
0.75
0.72
O.bb
0.73
O.Ob
0.01
0.72
O.bl
O.by
0.71*
0.90
1.07
I.Ob
% Total P
WP
2.25
2.27
2.10
2.10
2.10
2.11
2.16
2.23
2.19
2.16
2.18
2.23
2.15
2.3l*
2.13
2.20
2.06
2.01
2.09
2.19
2.28
2.36
2.16
2.11
2.11
2.12
2.06
2.23
2.30
2.30
EP
2.51
2,1*1*
2.36
2.21*
2.21+
2.23
2.37
2.51
2,53
2.1*9
2.1*7
2.1*1
2.35
2.36
2.1*9
2,51*
2.1*5
2.3£
2.1+0
2.1*7
2.63
2.6£
2.65
2.5:
2.5:
2.1+5
2.66
2.8U
2.9C
% Total N
WP
6.1+2
6.16
6.11+
6,33
6.1*9
6.57
6.6t
6.67
6.5t
6.6C
6,81*
6.7S
6.8s
6.71
6.1*6
6.5C
6.6C
6.7C
6.71
6.6(
6.63
6.5»+
6.58
6.6fc
6.79
6.89
6.7C
6.79
6.72
6.7^
EP
6,11*
5.77
5., 98
6.00
6.00
6.25
6.22
6.15
6.12
6^.25
6.2:
6.^6
6 ?•*,
6_?1
6.11
6.11
6.2t
6.2C
6.31
6.22
6.07
5.9C
6.11
6. 1<]
6,3£
6,3.6
6.29
6,2'
6tO»+
5.86
% Total Fe
WP
1.89
2.17
2,10
1,96
2,52
1,89
1.75
1.75
1.6l
\^\
1,6;
i,Vr
1.61
1.75
1.75
1.6l
1.6l
1.61
1.61
2,17
1JS
1-7?
1.61
li^
1.6l
1.6l
1.6l
1.1*7
1.61
1.6t
EP
1*.1*9
5.1*0
5.51*
5.61
5.82
5.1*0
5. 5U
S.82
•5.26
5.26
1*.81+
1+.81*
1+.56
1+.56
3.1*3
U.98
1+.56
1+.56
1+.56
1+.56
1+.70
1+.77
1+.56
1+.U2
l*.i*2
U.li*
i*.i*2
T*.ll*
5.26
% Total Ash
WP
29.5**
31.09
30.1*6
29.59
29. M
28.20
28.07
27.8^
?7.1?
26.50
26.37
26.32
26.20
27.60
28.11*
26.59
26.03
26.90
26,92
27.58
27.61
27.51
26.69
26.17
22.38
25.62
25.71
25.85
26.01
25.81
EP
33.25
35.03
31.55
31*. 25
31*. 29
32.26
32.79
32.81
31.86
31.30
30.80
30.1*0
30.36
31.63
32.28
31.59
30.85
31.62
31.59
31.58
32.53
32.62
31.65
30.85
30.25
30.03
30.19
30.98
31.61
32.12
-------
PLANT OPERATIONAL DATA
JULY 197D
D
a
t
e
1
2
3
1*
5
6
7
&
9
10
11
12
13
1U
1^
l6
IT
18
!?
20
21
22
23
2l*
25
26
27
2b
29
30
31
D
&
y
w
i'h
F
3a
3u
M
r
fj
n\
F
?a
i?u
A
7
tf
fh
F
Sa
Su
M
r
w
foi
?
Sa
Su
M
T
W
Th
ji
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
9,353
8.1*36
6.802
5.703
5.233
8.595
9.193
8.1+33
9.929
6.U12
7.996
9.073
8.208
8.266
5.831
U.018
3.953
1+.711
8.138
9 Ml
6.176
5.590
5,735
8,229
7.972
8.989
8,159
8,3te
mg/1
8.3
7.6
6.5
7.2
7.1
8.1+
7.9
7-1*
8.6
5.5
6,1?
TfO
7.2
7.2
M
3.8
3.8
1+.1+
7.1+
8.1*
5.5
5.5
6.3
7.1
6.7
7.7
6.8
7.0
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
135. C
130.U
121*. 8
95.9
88.6
123.0
ll*0.3
137.2
138.5
138.7
122.7
112.8
ll*7.7
139.3
136.3
137.0
11*3.6
125.1*
123.7
127.8
131.0
131.9
131*. 7
131*. 7
122.8
108.8
138.9
11+3.1
11+0.3
ll*3.3
11*2.9
t>H
WP
7.1
7.0
7.1
7.1+
7.3
7.2
7.1
7.2
7.3
7.3
7.1
7.2
7.0
7.2
6.0
7.0
7.0
7.1
7.0
EP
7.0
7.0
7.0
7.0
7.0
7.0
6.9
6.9
6.9
7.0
6.7
6.9
7.0
6.9
6.7
7.0
6.9
6-?
7.1
Suspended
Solids mg/1
WP
2590
2610
2700
2950
2780
2710
2850
2910
3100
3130
2950
2770
21*50
21*1*0
21*90
2690
2850
28UO
25!+0
2330
2130
2210
2U70
2falO
2550
2U50
2080
2230
21*20
21+80
2690
EP
2580
21+00
21+70
2570
2680
2680
281*0
3010
3080
32 1*0
3130
2870
2650
2890
261*0
2700
2690
2760
2330
2190
2230
2U60
2510
2b70
2710
21+80
2150
2260
,2270
2320
2680
SDI
WP
0.68
0.63
0.51
0.51
0.75
0.81*
0.78
0.86
0.61+
0.65
0.76
0.86
1.01
1.01
1.01
0.92
0.86
0.89
1.01*
1.06
1.02
0.89
0.81
J3.76
0.92
0.96
1.03
1.03
0.98
1.05
l.Oi*
EP
1.03
0.92
0.81*
0.87
1.10
1.21+
1.22
1.17
1.12
1.07
1.12
1.23
1.381
1.32
1.21
1.22
1.11
1.13
1.1$
1.16
1.1*+
1.13
0.99
1.00
1.02
1.08
0.981
1.27
1.09
1.08
1.15
% Total P
WP
2.31
2.29
2.3U
2.1+2
2.53
2.89
2.75
2.1+1
2.1*1
2.1*1
2,1*1*
?•"?(?
2.58
2.1*5
2.31
2.33
2.35
2.33
2.'*'+
2.UO
2.37
2.25
2.32
2.25
2.35
2.51
2.1*6
•d.'£(
2.25
2.16
2.20
EP
2.93
2.91*
2.92
2.91
3.02
3.21
3.2**
3.01
2.96
2.9**
2.95
3.ll+
3.19
3.10
2.88
2.79
2.79
2.68
2.7^+
2.83
2.85
2.1k
2.65
2.61+
2.71
2.92
2.95
2.71+
2.63
2.1*7
2.1+3
% Total N
WP
6,8.5.
6.88
6.96
7.05
6.81
6.7!+
6.1+1+
6.1*2
6.51+
6.63
6.88
6.58
6.70
6.51+
6.11+
6.1+3
6.65
6.70
6.70
6.1*3
6.51
6.63
6.60
6.92
6.71+
6.67
6.51+
6.42
6.57
6.1*7
6.78
EP
5.91+
6.26
6.23
6.25
6.00
5,81*
5.62
5,7*+
5.77
5.81
6.05
5.77
5,67
5i67
5.59
5.90
5.93
6.12
6.01*
5-91
6.02
5.91
6.28
6.1+2
6.25
6.16
6.02
6.01
6.15
6.32
6.28
% Total Fe
WP
1,61
1.68
1.68
1.75
1.75
}|8?
1,89
1.75
j.6.1
1.75
1,89
2.17
2.03
2.03
1.89
1.89
1.75
1.89
1.89
2.03
1.89
1.75
1.75
1.75
1.75
1.89
2.03
2.03
1.75
1.68
1.89
EP
U.98
5.12
1+.98
5.26
5.J+0
5.68
5.51+
5.26
1+.98
t*.98
5.26
5.1*0
5.12
1+.98
U.70
1*.70
1+.70
1+.56
1+.70
l*.U2
1*.U2
i*.oo
3.85
i*.li+
i+.OO
U.56
1+.75
4.56
1+.11+
1+.11+
i*.i*2
% Total Ash
WP
26.13
25.59
25.57
26.08
26.13
27.91
27.68
27.92
27.90
28.05
28.21
28.72
28.63
28.79
29.81
29.1*8
28.63
29.21
29.51+
29.61
28.31+
27.38
27.77
26.66
27.2U
27.1*1*
27.37
27.01+
26.91+
26.51
?7.13
EP
32.11+
31.58
31.30
31.1+1+
31.55
33.89
31+.20
33.76
33.27
33.57
33.79
31+.88
35.09
35.16
35.65
35.1*2
31*. 09
33.86
31*. 02
33.85
32.90
31.51
30.53
30.57
31.26
32.06
32.1*3
31.1*7
31.1*3
29.99
30.67
-------
PLANT OPERATIONAL DATA
AUGUST
1970
D
a
t
e
1
2
3
U
5
6
7
u
9
10
11
12
13
lU
1?
16
17
18
ig
20
?1
22
23
2U
25
26
2Y
28
29
30
31
D
a
y
bla
bu
M
'j.1
W
Th
F
Sa
Su
M
T
W
Th
F
'da.
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
K
ba
Su
M
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
u,i5l»
5,069
8.6UU
9.207
9.U80
9.873
6. 275
Ut8o8
5.056
8.175
7,501
8,712
R,758
6.851
5r800
U.06U
8.986
10.U67
9.1U2
9.18U
6.361
U.210
2.U19
9.966
8.528
8.838
8.UOU
6.11U
5.387
U.859
7.726
mg/1
U.I
6,1
7|8
8,5.
Q,7
9.1
5.7
5.3
6,3
7.5
6.7
7.8
7.8
6.0
6.0
U.9
8.2
9.0
8.0
8,5,
5.9
*»•?
3.2
^.3
7.9
8.2
7.6
5.5
r 6*1
5.7
7.3
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
121.1
100.3
132.9
129.3
130.3
130.1
132.2
107.8
95.6
131.3
133.7
133.7
135.3
137.5
115.0
99.1
132.1
138.7
136.9
129.3
129.7
111.1
92.0
12U.9
129. U
129.2
132.3
131*. 3
116.5
102.3
126.3
t>H
WP
6,9
6,9
6,9
6.7
6,9
6.8
6., 8.
6,0
7.0
7.O
6,9
7.1
7.0
6,9
7.0
7.0
7.1
7.1
7.1
7.0
7.2
EP
6,9
6,8,
6,8
6.9
6,9
6,0
6,8.
6,7
6.0
6.8
7.0
6,8
7.0
7.0
6,9
6.9
6.9
6.8
6.9
6.9
Suspended
Solids rag/1
WP
2710
2500
2310
2190
2U70
2730
2870
2810
2510
2210
2300
2510
2630
2900
2*+90
2160
1810
1980
1930
2290
2610
2260
2070
1U30
1680
2220
21*90
2360
21*90
2210
2070
EP
2790
2590
2 U20
2580
2760
2930
1230
311*0
2920
2700
2680
2630
2660
2810
2770
2760
2520
2520
21+20
2370
2760
2380
22UO
2080
2130
2300
2U2Q
2U10
2700
2360
2200
SDI
WP
1.07
1.09
1.08
1.10
0.99
0.91*
0.93
0.96
1.10
1.03
1.15
1.09
1.05
1.03
1.11
1.01*
1.23
1.19
1.06
1.08
0.88
0.90
1.06
1.27
1.39
1.11
0.96
0.91*
0.95
1.02
1.12
EP
1.16
1.13
i,;1*
1.09
O.Q9
1.05
1.19
1.12
1.1*0
1.20
1.29
1.31
1.26
1.28
1.26
1.26
1.1*1
1.39
1.35
1.28
1.23
1.20
1.35
1.50
1.3U
1.13
0.99
i.od
1.01
1.15
1.19
% Total P
WP
2.27
2.1*1»
2.1*7
2.1*0
2.30
2.37
2.28
2.29
2.1*7
2,80
2.1*3
2.35
2.37
2.32
2.1*9
2.67
2.69
2.Ul
2.27
2.37
2.1*0
2.53
2. til
2.69
2.30
2.17
2.22
2.17
2.20
2.52
2.61*
EP
2.1*1*
2.65
2.69
2.68
2.6l
2.1*3
2.52
2.6l
2.81
2.98
2.91
2.85
2.58
2.68
2.7U
2.91
3.02
2.90
2.59
2.58
2.55
2.65
2.9U
2.93
2.89
2.68
2.50
2.51
2.52
2.66
2.82
% Total N
WP
6 UP
6.1*1*
6.23
6.22
6.6U
6.50
6,71*
6.79
6.70
6,1*7
6.5U
6.%
6, 11
6,82
6,82
6,6l
6,1*6
6.36
6.1*2
6.60
6.75
d.88
6.95
6.67
6.61
6.89
6.99
6.98
6.82
6.71
6.51
EP
6^08
6.05
5.9U
6jD2
6.09
6.37
6.30
6.21
6.07
5.97
•?,88.
6.QO
6,33
6.29
6.29
6ji*
5,88
5.98
5.76
6,18
6.29
5.98
6.30
6.08
6.09
6.29
6.29
6.30
6.36
6.12
5.91
% Total Fe
WP
1.96
1.89
2.03
2.17
1.75
2.B7
1.B9
1.75
1.89
2.03
^.75
1.82
1.75
1.75
1,96
2.03
2.17
2.17
2.03
2.17
2.17
1.89
2.17
2.03
1.61
1.U7
1.75
1.61
l.bC
l.tk
T..d9
EP
U.56
U.98
5.26
U.98
U.8U
U.28
U.8U
U.98
5.UO
5.68
5.26
5.19
U.98
5.12
5.33
5.5U
5.5U
5.5U
U.98
5.12
5.12
U.98
5.26
5.33
5.12
U.98
U.lU
U.75
U.70
5.19
5.U7
% Total Ash
WP
29.00
29.19
29.27
29.80
27.30
28. U6
26.69
26.17
27.21
27.85
26.19
26.16
26. ?o
26.05
26.78
27.78
27.17
26.11
26.00
26.27
^6.20
26.05
26. 7£
26. UU
2U.97
2U.3E
2U.8:
2U.6^
26.27
27. 9£
27.91
EP
12.27.
11.06
11.70
32. 5U
32.02
29.20
31.28
31. U9
32.21
33.21
32.96
32.03
30.91
31.25
31.76
32.96
33.05
32.11
31. UO
31.12
30. 7U
30. Ul
31.37
31.56
30.83
29.86
28.75
29.35
30.32
32. U7
32.82
-------
D
a
t
e
1
2
3
1*
5
6
7
tJ
9
10
11
12
13
ll*
1?
16
17
18
19
20
21
22
23
2l
25
26
27
2b
29
30
31
D
a
y
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
PLANT OPERATIONAL DATA SEPTEMBER 1970
Iron Addition
to East Plant
Mixed Liquor
Ibs/dajjr
8,035
6,968
7.931*
8.1*05
8.828
10,206
9.331
6.391*
7.603
7,296
8.91*1*
6.055
6.178
7,022
8,U82
7,085
7,111*
7,020
8,190
8,100
7.771*
7,960
6,392
1+.951+
14,118
3,966
6,579
11,610
7,525
6,739
rag/1
7.5
6.0
7.1
7.3
9.8
?A
9.**
5.ti
6.5
8.7
7.7
5.7
6.2
5.8
7.1
5.7
6.0
6.0
8.2
8.9
6.5
6.8
5.1
l+.O
3.1
3.6
7.0
10.1+
6.7
6.0
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MGD
127.7
135.7
131*. 8
137.6
108.1
130.3
118.8
131.9
11*1.1
100.1
139.7
127. i*
119.1*
11*5.5
11*2.3
150.0
ll*1.3
139.3
119.2
109.2
ll*2.3
ll+O.l
11+9.1
150.0
159.7
131.1
112.7
133.9
131*. 6
131*. 6
t»H
WP
7.2
7.1
r.i
(.>
7.1
7.1
7.1
7.0
7.1
7.3
7.1*
7.2
7.3
7.2
7.2
7.3
7.0
7.1
EP
6.9
6.9
7.0
7.3
7.2
6.9
6.9
6.9
6.9
7.2
7.2
7.0
7.2
7.0
7.0
7.0
6.9
6.9
Suspended
Solids rag/1
WP
2220
2390
2310
2360
2U80
2030
1810
1780
2310
2500
2650
2550
21*20
2010
211*0
2250
2370
2260
21*80
L950
L780
2130
2 1*00
1920
201*0
2090
2100
191*0
2130
21+10
EP
2310
21+UO
2260
2280
2500
2U20
21*70
221*0
2320
2500
2550
2510
2520
21*1*0
2380
2370
2380
21*70
261*0
21*10
221*0
21*50
28UO
2570
2650
2570
2320
21 1*0
2210
2360
SDI
WP
1.15
1.09
1.02
1.03
0.91
1.06
1.15
1.3»*
1.21
1.15
1.03
0.98
0.99
1.00
1.05
0.98
0.99
0.95
1.01
0.97
0.91
0.89
0.77
0.86
0.82
O.ti3
0.52
O.U5
0.93
0.88
EP
1.26
1.19
1.11
1.21
1.13
1.29
1.1*0
1.33
1.33
1.15
1.16
1.08
1.17
1.05
1.15
1.26
1.12
1.06
1.12
1.12
1.12
1.19
1.10
1.13
1.16
1.16
1.2Y
1.29
1.31
1.13
% Total P
WP
2.1*1
2.32
2.23
2.18
2.1*0
2.61*
2.55
2.1*9
2.27
2.22
2.19
2.30
2.1*1
2.1*5
2.33
2.50
2.16
2.08
2.21
2.1*6'
2.12
2.30
2.16
2.10
2.03
2.21
2.1*6
2.U2
2.33
2.22
EP
2.71
2.58
2.51
2.1*7
2.61
2.81+
2.91*
2,88
2.65
2.52
2.1*6
2.1*1*
2.59
2.71
2.62
2.12
2.1*0
2.1*2
2.50
2.71
2.1+7
2.73
2.58
2.1*1
2.37
2.1*8
2.69
2.79
2.71
2.63
% Total N
WP
6.51
6,68
6.70
6.71
6.57
6,56
6.19
6,;6
6.30
6,1*7
6.6,3
6.71
6,61
6,61
6.57
6.39
6,1*7
6,86
6.88
6.88
6.77
6.1*6
6.82
6.68
4.71*
6.71*
6.7**
6.60
6.57
6.70
EP
6.01+
6.19
6.05
6.01
5.87
5.97
5.27
5.1*1
5.80
5.97
6.11
6.15
6.02
6.08
5.95
5.98
5.91
6.23
6.21
6.16
6.01
6.08
6.25
6.18
6.11*
6.22
6.00
5.9l*
5.90
6.21
% Total Fe
WP
l,f?P
1.62
1.62
1.J6
1.J6
1.90
2.18
2.01*
2.0U
1.90
1.76
1.76
1.90
1.90
1.83,
1.76
1.76
1.76
1.82
1.97
1.90
1.76
1.90
1.69
1.69
1.97
2.01*
2.01*
1.90
1.76
EP
1*.99
l*.6l*
1+.36
1+.57
1*.78
5.69
6.1*0
6.12
5.55
5.13
1*.85
1*.78
5.27
5.69
5.20
5.20
U.92
1*.85
1*.85
5.27
5.62
5.27
1*.85
5.55
5.13
1+.1+3
1+.71
5.20
1*.99
1+.57
% Total Ash
WP
26 ..1*8
25.70
26.26
26.22
26.81
27.«2
30.09
28.65
27.21*
26.68
26.17
26.17
26.82
26.28
26.80
26.61
26.60
26.19
25.82
25.95
25.77
25.12
21*. 97
26.97
27.01
27.1*7
27.95
?7.29
26.37
25.61
EP
31.20
30.17
30.66
30.81
31.39
33.13
36.1*7
35.18
32.79
32.20
30.98
30.80
31.98
31.83
32.01
32.19
31.1*7
31.58
31.00
31.51*
32.06
31.05
30.19
31.30
31.1*6
31.65
32.17
2.30
1.30
o.oi*
-------
PLANT OPERATIONAL DATA
OCTOBER 1970
D
a
t
e
1
2
3
1+
5
6
7
tJ
9
10
11
12
13
li+
!5
16
17
18
19
20
21
22
23
2l+
25
?b
27
2d
29
30
31.
D
a.
y
Th
K
Sa
Su
M
T
W
Th
y
ba
bu
M
T
W
Th
F
Sa
Su
M
T
W
Th
K
ba
fc>U
M
T
W
Th
K
ba
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
6,653
7,109
6.183
8.191
8.690
5.792
9.38U
1+.765
7.1+61+
6.611+
12.91*0
11.303
8.909
5.3U3
6.270
7.W6
2.776
2.81*1+
6.892
6.859
1*.987
2.381
5.71*1
3.312
U.752
9.000
5. 6UO
6.291
7.137
912
6.01+0
mK/1
• 5.9
6.2
6.9
10.0
7.9
5.0
8.0
l+.O
6.6
6.9
11*. 7
10.3
8.0
5.0
5.8
7.3
3.2
3.5
6.6
6.2
U.6
2.3
5.2
3.7
6.5
9.1
5.0
5.1*
i 6.7
0.8
6.2
Mixed Liquor Return Sludge (Dry Basis}
East
Plant
MOD
135.2
138.0
107.1*
98.0
131.6
138.3
1UO.O
11*1.2
135.2
115.6
105.3
131.7
133.6
127.2
130.5
123.0
103.8
96.8
12 i*. 3
133.0
131.1*
126.9
131.1*
107.1
87.7
119.2
135.6
127.2
128.5
136.9
116.1
DH
WP
7.0
7.2
7.1
7.2
7.0
Jj-1
7.1
7.1
7.3
7.2
7.3
7.1
7.2
7.0
Tfl
7.3
Tr1
7.0
7.0
7.0
7.2
7.0
7.1
7.1
7.0
EP
6,9
7.1
6.9
7.0
6.9
6.9
7.0
7.0
7.1
7.1,
7.2
7.0
7.1
6,9
7.0
7.1
7.0
7.0
7.0
7.0
7.0
6.9
6.8
7.0
7.0
Suspended
Solids rag/1
WP
2770
21+60
21*1+0
221*0
I960
2500
21*80
2590
£710
2690
2U30
2170
2270
2350
271*0
2620
2620
2360
221*0
2580
291*0
3230
3110
3090
2670
21*10
2610
2600
2790
281*0
2710
EP
2690
2720
2800
2900
2580
2570
2550
2530
2690
261+0
2570
2 1*60
2 1*20
2520
2660
271*0
2880
2810
261+0
271*0
2900
3050
3110
3090
3070
2770
2830
2780
2970
3160
3130
SDI
WP
0.8U
n.fiU
0.91
0.97
1.05
0.97
0.81*
0.79
0.61+
0.79
0.85
0*21
0.93
0.89
0.62
0.52
0.50
0.66
0.92
1.00
0.81
0.71
0.69
0.70
0.92
1.01
0.99
1.01
1.09
l.OU
1.10
EP
;i.o9
1.01
0.81*
1.17
1.27
1.19
0.97
1,01*
0.85
0.81
0.70
0.93
0.98
0.80
0.77
0,71*
0.68
0.83
1.01
1.08
0.96
0.80
0.69
0.99
l.QJL
1.18
1.11*
1.20
1.21*
1.23
1.21+
% Total P
WP
2.18
2.18
2.27
2.51
2^1+7
2.33
2.30
2.25
2.1+1
2.28
2.57
2.67
2.1+6
2.20
2.23
2.21
2.50
2.58
2.36
2.22
2.20
2.11
2.19
2.UU
2.i<0
2.2Y
2.15
2.30
2.2b
2.27
EP
2.57
2.51
2.51+
2.77
2.87
2.82
2.70
2-59
2.53
2.59
2.71*
2.85
2.78
2.66
2.60
2.53
2.78
2.89
2.75
2.63
2.51
2.78
2.89
2.76
2.68
2.88
2.75
2.75
% Total N
WP
6.81
6.75
6.88
6.81*
6.58
6.1+9
6.70
6.77
6.88
6.93
6.81+
fiififi
6.60
6,, 77
6", 71
6,, 91
6.98
6.79
6.68
6.601
6.7*+
6.8U
6.86
6.88
6 65
6.65
6.71
6.61*
6.77
6.82
EP
6.16
6.25
6.12
6.18
6.09
6.08
6.26
6.36
6.1+1*
6.61
6.30
6.12
6.11+
6.28
6.36
6.58
6.51
6.33
6.35
6.39
6.1*2
6.51*
6.53
6.35
6_JJ3
6.18
6^29^
6.02
6.28
6.21
% Total Fe
WP
1.69
1.76
1.69
1 .97
2 nU
2.0l*
1.97
1.7JL
1.62
1.83
1.90
1.97
1,76
1.76
1.76
1.76
1.90
1.76
1.76
1.76
1.83
1.83
1.69
1.76
2.01+
1.76
1.76
1.76
1.76
1.69
EP
1*.29
l*.2_9
1*.36
U.85
5.27
5.20
1*. 71
1*.50
1*.15_
1*.1*3
U.85
5.1+1
5.13
1+.71
U.50
1+.15
1+.1+3
1+.36
1+.08
1+.15
3.80
3.02
3.80
1*.29
1*.57
1+.71
U.71
1+.57
1+.08
I*. 08
% Total Ash
WP
25.65
26.09
2it96
26.10
25.87
25.23
25.21*
25.25
25.12
25.60
25.95
25.88
25.06
23.81*
23.89
21*. 1+2
25.09
25.16
21*. 1*9
21*. 66
21*. 77
2l*.l*9
25.02
2l*.29
25.17
2l*.30
25.17
25.1*2
25.26
25.36
EP
29.97
30.08
30.21*
30.57
JJ1. 1+JL
30.66
29.67
29.1+2
29.08
28.90
30.20
30.96
30.09
28.58
28.01
27.91
29.07
29.13
28. 6^
28.52
28.57
28.33
28.55
29.61*
30.39
29.1*9
30.1*9_
30.81
30.1+3
30.05
-------
PLANT OPERATIONAL DATA
NOVEMBER
1970
D
a
t
e
1
2
3
U
?
6
7
81
9
10
11
12
13
lU
1?
1^
17
18
!?
20
21
22
23
2U
25
26
27
28
29
30
31
D
a
y
Su
H
'r
•J
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
U.351
11.UU8
8..813
11.225
11.3UO
6,500
5.590
U.U32
6.0U8
7.839
6.293
10.83U
7.680
5.558
8.U57
11.532
5.U21
7.880
8.258
6.21*0
2.871
3,511*
7.711
5.913
8.837
2,997
2,071*
2,600
3.370
7,771*
mg/1
5.2
10.5
7.6
9.5
9.7
5.7
5.8
5.0
5.2
7.0
5.7
9.9
7.0
5.1*
9.3
10.2
U.7
6.9
6.6
5.0
2.8
1*.2
7.2
5.1*
7.8
3.2
2.0
3.0
u.o
7.2
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
100.3
130.2
138.5
1U2.0
139.8
137.2
111*. 6
106.6
138.8
131*. 9
133.3
130.8
130.8
123.0
108.5
135.9
138.1
136.2
11*9.0
1U8.1*
120.9
100.3
129.3
132.9
135.9
111.3
121*. 9
10U. 9
100.8
128.9
oH
WP
7.2
7.1
7.0
7.2
7.2
7.1
7.0
7.1
7.2
7.0
6.9
7.0
7.1
7.2
7.2
7.3
7.1*
EP
7.0
7.0
6.9
7.0
7.0
6.9
6.9
7.1
7.1
7.0
6.9
7.0
6.9
7.0
7.1
7.2
7.1
Suspended
Solids rag/1
WP
2520
2220
2680
2U70
2800
3080
2890
2630
2360
2810
2830
3010
3150
3010
2920
2850
3010
3210
3200
2900
2960
2880
2710
2860
2860
3030
2610
2560
21*80
2330
EP
JU 7Q
2660
2680
2510
2650
3010
3090
3060
2680
2770
2930
2930
2870
2960
3080
2880
2930
3190
3290
3120
3UOO
3260
3160
3070
3030
3260
3l)20
2920
2710
SDI
WP
1.12
1.03
0.98
1.01
0.95
1.05
0.91*
l.OU
0.91*
1.10
l.OU
0.92
0.77
0.76
0.90
0.91
0.78
0.76
0.55
0.76
1.06
0.07
0.99
0.92
0.82
0.75
0.87
1.00
0.91+
1.05
EP
1.1Q
1.27
1.28
1.25
1.12
1.19
1.12
1.20
1.19
1.20
1.18
1.15
1.03
l.OU
1.01
l.OU
1.18
1.00
0.98
1.06
1.2U
1.06
1.13
1.13
I.Ob
1.07
1.1U
1.13
1.20
1.29
% Total P
WP
2.1*6
2.58
2.36
2.30
2.15
2.15
2.25
2.U7
2.1*5
2.33
2.20
2.09
2.1U
2.17
2.37
2.U6
2.31*
2.26
2.23
2.20
2.2U
2.U1
2.U3
2.20
2.16
2.31
2.UO
2.31*
2.52
2.1*8
EP
2.90
2.97
2.7U
2.62
2.5U
2.52
2.1*7
2.62
2.70
2.60
2.53
2.U7
2.38
2.1*0
2.56
2.67
2.58
2.51*
2.U9
2.U3
2.1*6
2.57
2.67
[2.61
2.55
2.58
2.68"
2.95
2.99
% Total N
WP
6.8U
6,77
6.67
6.67
6.68
6.7U
6.98
6.88
6.70
6.53
6.68
6.78
6.33
7.00
7.03
6.98
6.79
6.88
6.70
6.77
6.91
6.93
6.81
6.72
6.95
6.99
7.09
7.06
7.03
6.93
EP
6.26
6.05
6.12
6.18
6.09
6.30
6.35
6.36
6.18
6.16
6.22
6,1*3.
6.13
6.U9
6.UU
6.35
6.29
6.U2
6.30
6.30
6.Uo
6.U2
6.32
5.88
6.51
6.U6
6.51
6.35
6.36
% Total Fe
WP
1.90
1.83
1.83
1.83
1.83
1.90
1.90
1.97
2.25
1.83
1.97
1.83
1.69
1.69
1.83
1.76
1.83
1.76
1.90
1.97
1.97
2.01*
2.11
1.97
1.97
1.83
1.83
1.83'
2.25
1.83
EP
U.S7
U.Q2
U.85
U.71
U.61*
U.71
U.57
U.92
U.92
U.85
U.79
U.51
U.51
U.65
5.07
5.35
U.93
U.86
U.57
U.72
U.86
U.79
U.93
U.72
U.37
U.51
U.16
U.65
U.65
% Total Ash
WP
25. U6
25.33
2U.66
2U.U5
2U.27
2U.38
2U.79
25.51
25.52
25. UU
25.08
?U.o6
2U.58
2U.52
2U.73
2U.80
2U.32
2U.HO
2U.9U
25. U9
25.69
25.75
25. U9
2U.37
23.91
2U.2U
2U.26
23.93
2U.23
23.77
EP
30.90
31.36
30. UU
29.53
29.25
29. U6
28.92
29.63
30.30
29.55
29.29
29.08
28. OU
28.90
28. 9U
29. 6U
28.78
28.69
29.12
29.36
29.61
29.73
29.99
29. U5
27.98
28.66
28.61
29.08
29.11
-------
PLANT OPERATIONAL DATA
DECEMBER 1970
D
a
t
e
1
2
3
1*
^
6
7
&
9
10
11
12
13
111
1?
16
17
18
!?
20
21
22
23
2k
25
26
27
2ti
29
30
31
D
a.
y
T
w
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
K
Sa
L>u
M
T
W
Tn
Iron Addition
to East Plant
Mixed Liquor
Ibs/day
6,566
10,265
11,035
8.052
6.018
6.739
10.088
8.082
11.621+
13.001
11.957
10.603
6. U86
1+.695
5.01+5
13.818
9.525
8.71+8
7.1+52
1+.061
9.698
7.920
7.661
6.6^6
5.586
5.1490
14,980
5.760
7.398
6.662
6.365
mg/1
6.0
9.1
9I1*
7.3
5.9
7.1
8.8
7.1
10.14
10.7
10.1
9.3
6,^
^,2
l+,l*
1*,6
8,0
7.0
7.2
14,14
8.7
6.8
7.0
6.9
7.3
7.0
6.0
5.6
7.0
6.14
6.9
Mixed Liquor Return Sludge (Dry Basis)
East
Plant
MOD
130.6
136.0
lUO.O
132.14
121.3
113.9
137.0
136.1
13U.2
1146.1
11+2.1+
136.7
120^0
131.14
137.14
1143.2
1U2.3
150.3
123.7
110.6
133.14
139.0
132.0
1114.7
91. !*
93.5
98.7
12U. 3
126.14
121*. 3
111.2
t>H
WP
7.2
7.1
7.1
7.0
7.3
7.2
7.2
7.1
7.0
7.1
7.2
7.0
6,8
6.9
6.9
6.9
6.9
T-1
EP
7.1
7.0
7.0
7.0
7.1
7.0
7.1
7.1
7.0
7.0
7.2
6.9
6.8
6.9
6.9
6.9
6.9
7.;i
Suspended
Solids rag/1
WP
2500
261*0
2610
2690
2760
2530
2U 80
2560
2590
2780
2690
2900
2220
2170
2330
2500
2610
2670
2550
2390
2320
21*10
21*80
2770
2570
21*20
2170
2020
21*10
2560
29^0
EP
2680
2800
27UO
291*0
291*0
2810
2680
2670
2830
291*0
281*0
2520
2720
2690
2800
2720
2700
2650
2670
2750
2710
2770
281+0
3000
2930
2760
2 1*20
2310
2600
2760
2970
SDI
WP
0.83
0.68
0.65
0.58
0.51*
0.73
0.77
0.78
0.76
0.61
0.76
0.02
0.85
0.95
0.86
0.89
0.91
0.89
0.9'*
0.92
0.95
0.99
0.96
O.U3
0.85
0.87
0.93
1.00
0.97
0.90
0.87
EP
1.13
1.06
0.93
0.91+
0.81
0.88
0.91
0.85
0.77
0.1*7
0.72
0.73
0.79
0.93
0.0*7
0.91
0.91
0.91
0.91*
0.90
0.9^
0.98
0.8U
0.76
0.87
0.90
1.02
1.06
1.00
1.03
1.09
% Total P
WP
2.21
2.12
2.05
2.05
2.06
2.19
2.27
2.15
2.12
2.10
2.01*
2.07
2.25
2.29
2.08
2.00
1.92
1.95
1.99
2.13
P.lfi
2.08
1.98
2.02
2.11
2.26
2.33
2.26
2.06
2.00
2.01
EP
2.78
2.59
2.1+7
2.39
2.39
2.50
2.61
2.53
2.1*5
2.1+0
2.33
2.31*
2.1*1
2.53
2.1*6
2.37
2.28
2.20
2.17
2.31
2.1*0
2.3l*
2.35
2.27
2.37
2.1+8
2.61
2.66
2.149
?.3f>
2.31
% Total N
WP
6.79
6.92
6.86
6.99
7.l'+
7.26
7.09
7.03
6.63
7.03
6.981
7.0^
7.07
6.98
6.53
6. Bit
6.70
6.92
7.05
7.10
b.Jte
6.71
6.7l*
6.8U
7.07
7.13
6.96
6.60
6.60
6.70
6.75
EP
6.28
6.36
6.57
6.1*14
6.63
6.58
6.12
6.1*2
6.14J
6.60
6.1+6
6.1*6
6.1*U
6.32
6.1*0
6.1*1*
6.35
6.1*1*
6.58
6.56
6.1*6
6.142
6.581
6.65
6.67
6.58
6.50
6.29
6.29
6.37
6.5V
% Total Fe
WP
1.83
1.62
i.bb
1.62
1.62
1.76
1.76
1.76
1.62
1.62
1.83
1.12
:U62
1.69
l.?7
1,1*1
1,69
1.62
1.62
1.90
1.97
1.83
1.76
1.76
1.76
1.90
2.01*
2.0U
1.76
1.62
1.62
EP
1*.09
U.16
I*.l6
1».1*1*
14.37
1*.65
1*.86
1*.72
1*.37
1».1*1*
1*.51
U.79
5.61*
5.35
1*.79
1*.65
1*.79
1*.79
1*.79
5.28
5.1*9
5.H*
U.86
1*.72
14.93
5.28
5.614
5J+9
14.86
l*.l»l*
1*.16
% Total Ash
WP
23.1*2
23.08
23.17
23.30
22.82
22.93
23.02
22.80
22.96
23.00
23.03
23.67
23.29
23.07
22.78
22.78
23.01*
23.38
23.1+1
23.81*
23.67
23.87
23.87
23.38
23.16
23.03
23.12
23.05
22.80
23.06
23.39
EP
28.29
27.57
27.58
28.20
27. 51*
27.98
28.07
27.73
27.27
27.17
27.97
28.11
28.55
28.85
28.13
27.1*0
28.17
27.89
27.25
28.20
28.1*6
28.52
28.01
27.70
28.02
28.65
29.00
28.91*
27.78
27.28
26.71*
-------
PLANT OPERATIONAL DATA JANUARY 1970
D
a
t
e
1
2
3
I
5
6
7
8
9
10
11
12
13
ll*
15
16
17
18
*?
20
21
22
23
2J+
25
26
27
2b
^
30
31
D
a
y
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Til
V
Sa.
RH
M
T
W
Th
F
Sa
KJeldahl Nitrogen
mg/1 as N
SS
35.6
38.2
33.0
31.lt
39.3
37.5
U.7
37.9
36.8
33.7
31.9
36.5
37.1*
37.2
36^,3
35.8
3U. 1*
31.8
33.6
35.1*
35.1
31*. 6
36.3
33.3
32.1
31*. 1*
3l+. 2
29.0
31*. 6
33.3
31.5
WPE
16.7
21.1
11*. 7
16.2
20.0
2U. 5
13.7
ll*.l»
13.1*
12.5
17.9
20.1*
13.3
13.1*
16,2
16.5
lo.l
19.3
20.1*
1U.8
13.2
12.2
15.5
lit. 7
18.5
20.6
17.5
13.2
13.1*
lU.l*
lU.l*
EPE
19.0
19.9
15.8
28.6
20.9
12.7
12.6
ll*.0
lit1*
ll*.6
20.7
20.9
15.0
11.2
12.2
12.2
ll*.l
22.5
21.0
15.1*
12.9
12.7
1?.6
12.5
17.6
?3.0
15.8
13.6
-j.x.a
-Jl^
13.1*
Milorganite
As Received Basis
Tons/
Day
207.3
179.8
182.0
92.7
10.6
171.2
232.0
220.5
227.5
215.0
212.5
225.3
23l*.2
223.7
22l*.2
230.5
216.2
213.2
238.1
235.0
228.5
223.0
210.0
189.1
pm .Q
210.3
205.1
217.9
216.1*
222.1
Nitrogen
% U
6.63
6.96
6.81*
6.87
6.85
6.66
6.71
6.76
6.71
6.71
6.63
6.1*3
6.36
6.35
6.37
6.1*2
6.1*1
6.65
6.30
6.08
6.ll*
6.26
6 26
6.1*2
6.1*8
6 22
6.00
5.81*.
5.91
6.05
Ash
%
21*. 82
25.1*1
2»*.91
2l*.99
25.08
21*. 21*
2U.83
2U. 85
25.11
26.12
26.99
27.1*1
27.12
26.72
27.10
27.77
27.93
27.57
27.08
27.28
27.00
21^13
26^1*2
27.1*8
27.50
27.60
21.53
28.35
27.76
27.61
Average Ferric Chloride Use
pH
3.1
3.1
3.1
3.1
3.2
3.1
3.1
3.1
3.1
3.1
3.3
3.3
3.3
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.1
3.1
Waste
Sludge
* Solids
1.1*9
1.50
1.66
1.65
1.92
1.51
1.50
JLJ*5_
1.1*2
1.39
1.1*6
1.59
1.58
1.51*
1.51
1.1*6
1.1*5
1.1*5
1.63
1.67
1.59
1.36
1.35
1.27
1.32
1.1*1*
1.53
1.55
1.1*8
1.1*8
Ibs. Anhydrous FeClo !>er
Dry tons recovered Solids
1968
229.50
51*. 91
202.15
218.27
177.28
183.16
195.29
212.62
217.36
222.1*0
232. ll*
231.29
208.56
221.16
21*7.73
211*. 69
216.76
216.78
207.91
227.22
226.69
193.8U
209.13
213. 5U
215. U3
221*. 35
189 . 1*0
193.08
188.69
203.27
1969
238.81
21*0.61
220 . 89
220.57
2 31*. 39
239.1*0
211.1+6
285.31
201*. 67
206.56
219.10
216.06
219.98
199.69
199.33
206.71*
209 . 88
197.55
223.77
218.19
215.13
183.03
186.1*7
205.23
21*2.09
233.1*1*
229.1*1
21U. 93
217.29
1970.
278.71*
261*. 56
265.32
256.13
257.56
250.95
270.1*6
218.39
222.59
207.52
227.05
215.06
210.77
225.5U
228.39
20l».17
212.98
202.12
208.39
207.21
225.U7
230.85
223.61
213.M
213.07
219.17
216.UO
Precipitation
Water
Equivalent
Inches
.03
Trace
.01
Trace
Trace
.03
Trace
.01
Trace
.05
Trace
.09
Trace
Trace
.01
Trace
Trace
.01
.08
.02
.03
.01*
Trace
-------
PLANT OPERATIONAL DATA FEBRUARY 1970
D
a
t
e
1
2
3
I
5
I
7
a
?
10
11
12
13
Ik
15
16
17
18
1?
20
21
22
2?
2 it
2?
26
2J
28
2?
JO
31
D
a
y
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
Nf
T
W
Ift
F
Sa
KJeldahl Nitrogen
rag/1 as N
S3
27.2
31.8
32.9
33.7
35. k
3U.7
35.3
31.1
3U. 9
3^.6
36.7
33.7
33.5
32.3
32.9
32.8
32.9
33.3
31*. 2
32.6
31.5
28.6
32.. 8
32.5
31*. 1*
31*. 5
36.1
31.8
WPE
15.8
16.1
12.9
11.9
12.5
11.5
12.5
19.6
19.6
11*. 3
11.2
13.3
11.3
12.7
18.2
21.6
15.7
11.9
11.9
11.8
12.6
18.1
19.5
lU.U
10.5
10.2
11.2
12.0
EPE
18.5
18.1
15.5
11.6
11.8
1U.O
ll*. 8
18.2
18.8
13.1*
13.3
12.3
12.6
12.5
17.9
25.1
15.5
12.7
11.6
11.1
11.1
16.0
18.1
11*. 1
11. £
10. i
11."
10.9
Milorganite
As Received Basis
Tons/
Day
225.1
216.9
2U9.3
197.0
212.7
206.8
229.0
218.2
220.0
220.2
201.3
239.0
213.5
23U.5
211.0
221*. 5
218.1
217.8
231.1
221*. 6
210.0
203.8
219.7
227.0
226.6
212.5
217.0
215.0
Nitrogen
% N
6,16
6.06
5.78
5.7U
5.93
6.08
6.23
6.U2
6.33
6.15
6.08
6.1U
6.25
6.30
6.51
6.38
6.05
6.03
6.08
6.19
6.16
6.19
6.12
5.90
5.91
5.98
6.05
6.02
Ash
%
27.62
29.20
28.60
27.61
27.67
26.71
25.69
26.1*8
27.12
26.96
27.67
26.95
27.38
27.2U
27.91
27.23
27.05
27.36
26.71
26.1*2
26.72
27.71
28.38
28.30
27.82
27.29
27.92
27.50
Average Ferric Chloride Use
PH
3.1
3.1
3.1
3.1
3.1
3.2
3.2
3.2
3.2
3.1
3.1
3.1
3.2
3.0
3.0
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
Waste
Sludge
% Solids
1.50
1.60
1.70
1.61
1.51*
1.1*5
1.1*2
1.1*0
1.1*1
l.Ul
1.39
1.1*2
1.1*8
1.29
1.37
1.55
1.62
1.1*5
1.1*2
1.35
1.37
1.35
1.37
1.1*1
1.38
1.33
1.27
1.21
Ibs. Anhydrous Fed, $er
Dry tons recovered Solids
1968
201.89
199.33
21*0.71
272.52
206.U6
236.27
222.29
238.08
.23U.ll*
226.15
213.88
209.86
200.6U
202. U£
207.71
209.21
206.30
203^37
193.68
202.73
218.53
^29 ^02
196.01
193.37
190.87
21*6.36
181* .91
191*. 12
202.1*1
1969
220.36
216.98
22U.93
202.08
203.56
203.1*0
179.66
201.85
211.00
228.10
2214.53
198.29
192.3U
181*. 58
183.71*
189.29
209.11
209.51
205.96
207. 41*
206.76
223.72
212.87
21U. 35
215.88
219.66
l81*.85
202.26
1970
210.37
216.97
203.72
21*8.23
231.58
229.28
223.28
237.92
233.35
222.91
206^09
210.65
218.51
200. 3U
233.39
251*. 75
231.62
21*9.01*
21*1.71*
238.83
21*6.38
272.15
21*6.63
231.56
221*. 70
21U.90
222.71
237.79
Precipitation
Water
Equivalent
Inches
Trace
Trace
.Ok
.03
Trace
Trace
Trace
.01
Trace
Trace
.05
Trace
Trace
Trace
Trace
Trace
-------
CD
PLANT
D
a
t
e
1
2
3
I
5
6
7
8
9
10
11
12
13
1*»
1?
l6
17
18
!?
20
21
22
2?
2l»
2?
26
27
2b
^
30
31
D
a
y
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
ty
T,
W
T.U
F
sft
SU
M
T
KJeldahl Nitrogen
mg/1 as N
S3
28.0
32.9
2U. 5
29.8
30.7
31.5
30.5
29.0
29.8
31.5
32.6
33.6
33.5
29.5
31.1
33.5
3U.U
33.3
27.2
25.1
26.6
28.0
30. 1*
30.7
29. **
27.0
28.8
27.0
27.2
31.2
29.1*
WPE
10.1
20.3
12.0
9.7
8.1
9.0
8.8
12.6
17.9
11.1
8.8
9.8
12.2
11.5
17.6
19.6
13. U
11+.6
7.8
7.6
9.2
16.2
16.1*
12.5
8.3
7.14
6.7
7.1
1U.3
18.2
10.1
EPE
17.5
17.9
11.3
10.8
9.1*
J3.3
10.8
ll+.l*
16.0
9.1*
7.8
8.3
9.2
9.1
15.5
18.9
12.3
9.7
8.0
6.6
7.0
12.9
16.7
10.2
7.7
8.1
7.1
8.:
13. C
16.1;
9.2
Mllorganite
As Received Basis
Tons/
Day
207.5
213.0
221+.7
21+}.. 3
220.7
235.0
232.0
215.1
220.5
221+.8
211+.6
210.3
213.9
197.5
215.6
206.5
220.5
206.6
205.5
198.7
201.5
200.5
?!?.!
203.7
210.1
1QQ.7
207 1+
208.5
200.5
202.1
210.8
Nitrogen
% U
6.10
6.17
s fin
J.37
5.M
5.67
5.87
6.10
6.00
5.86
5.86
5.93
6.19
6.29
6.38
6.29
6.06
6.00
6.12
6.08
6. Oli
6.19
6.22
6JLO
6,01
6.01
6.1U
6,17
6,29
6.37
6.11
Ash
%
21*56.
28.09
28.18
29.57
29.25
29. 6l
28r}.9
28.82
29.29
29.50
29.02
28.67
28.39
27.22
27.U7
28.16
28.07
28.36
28.30
28.29
28.1*8
29.35
29.81
29.59
28.96
29.00
29. OU
28.10
28.71
29,37_
28.1+8
OPERATIONAL DATA MAR
Average Ferric Chloride Use
pH
3fl
3.1
3^1
3..1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
i.1
3.1
3.1
3.1
3.1
3,1
3.1
3.;.
3.1
3.2
3,2
3.2
3.2
3.2
3.2
3.2
3.U
Waste
Sludge
* Solids
1.27
1.37
1.50
1.65
1.1*9
1.32
1.27
1.18
1.20
1.29
1.31
1.23
1.21
1.20
1.20
1.40
1.55
1.50
1.U2
1.38
1.39
1.39
1.1*0
1.1*6
1.U6
l.Ul
1.35
1.25
1.25
1.33
1.51
Ibs. Anhydrous FeCl^ per
Dry tons recovered Solids
1968
22U.01
228.0U
209.25
217.03
219 . 39
23iLOi
236.6U
213.91
216.59
220.99
192.58
198. OU
191*. 92
225.72
215.17
23l*. 67
212.1*7
193.75
206.80
219.51
221.1*0
210.88
182.1+5
171.1*1
116. 8a
191*. 96
1771.66
182,28
168.28
19l+. 79
203.73
1969
210.58
207.1+6
202.58
192.91
182.93
19**.83
182.85
201.10
203.80
2U8.17
229.82
205.02
20U. 85
216.27
205 . 19
219.82
22U.U2
2U1.U5
219.32
212.67
208.36
210.96
221*. 1*0
239.21*
219.76
203.36
220.21*
218.1+2
187.66
186.67
155.91
1*70
251.77
232.21
219.69
221*. 09
231*. 1*2
21+1*. 81
21*1.22
260.90
265.65
21+9.1+3
230.32
233.66
228.91*
261*. 61
269.09
21*7.21
2U0.21
21*5.77
236.1+1
231+.1+9
237.09
250.05
265.85
257.36
220.83
216.58
207 J*l
215.871
220. 8U
237.1*6
210.31
H 1Q7D
Precipitation
Water
Equivalent
Inches
Trace
Trace
.17
Trace
Trace
.01
.1+2
.08
Trarp
Trace
.03
.35
.05
T,rarp
-------
PLANT OPERATIONAL DATA
D
a
t
e
1
2
3
I
5
6
7
8
?
10
11
12
13
lit
1?
16
17
18
!?
20
21
22
23
2U
2?
2b
2J
28
2y
JO
31
D
a
y
w
Th
F
Sa
Su
M
T
w
Th
F
Sa
Su
M
I
¥
Th
F
Sp.
Su
M
T
rf
Th
F
Sa
§u
M
£
rt
Th
KJeldahl Nitrogen
mg/1 as N
S3
28.3
21.7
2k. 1
26.9
21+.2
29.5
28.7
30.0
23.0
31.8
29.0
30.0
19.5
21*. 6
26.3
26.0
30.8
29.1+
21.U
30.0
?8.8
P8.6
29.7
30.0
pq.8
25.3
29.5
28.6
27.2
?5.Q
WPE
8.1
3.9
5.0
5.9
10.1
15.1
10.8
7.3
6.3
7.7
10.2
17.2
12.3
6.2
7.0
7.0
8.5
10.1
11+.1+
11.3
7.6
1+.9
5.5
7.3
5.6
10.6
17.6
10.1+
8.0
8.1
EPE
8.1
5.6
3.8
5.3
12.5
15.5
10.2
7.3
6.0
5.9
6.9
13.2
13.2
7.3
1+.3
1+.3
3.8
5.7
11.5
8.3
^5.0
14.3
U.I
1+.2
5.0
9.2
ll+.l
7.6
6.9
8.7
Milorganite
As Received Basis
Tons/
Day
2ps.5
192.7
207.2
200.3
208.5
225.9
2Q1+.9
193.5
190.0
20U.O
201.5
209.5
220.5
210.5
188.3
209.2
209.0
203.0
207.0
201*. 0
215.0
199.0
196.5
177.0
150,5
181.5
192.1
199.5
193.5
193.0
Nitrogen
% U
6.13
6.08
6.22
6.23
6.30
6.30
6.10
6.06
6.31
6.U1*
6.1+1*
6. 5U
6.39
5.95
5.88
6.06
6.33
6.1*2
6.1*0
6.29
6.13
6.17
6.16
6.16
6.38
6.1*8
6.50
6.35
6.2U
6.30
Ash
%
28.68
28.31*
29.29
28.67
28.59
29.09
29.31
29.00
29.75
28.81*
28.02
28.1*1
28.52
29.29
30.33
29.50
28.51+
28.20
29.77
29.67
29T13
29.11
28.53
28.72
28.72
28.79
28.90
29.12
28.55
28.79
Average Ferric Chloride Use
»H
3.1*
li1*
3.1*
3.3
3.2
3.2
3.2
3.3
3.3
3.2
3.1
3.1
3.1
3.2
3.3
3.3
3.1
3.1
3.1+
3.1*
3.1*
3,,!*
3.2
3.3
3.3
3.3
3.3
3.3
3.2
3.1
Waste
Sludge
* Solids
1.1*7
1.39
1.32
1.21*
1.18
1.26
1.35
1.27
1.23
1.21
1.19
1.17
1.21*
1.32
1.30
1.22
1.18
1.17
1.21*
1.31
1.35
1.31
1.28
1.32
1.30
1.26
1.32
1.1+5
X.52
1.1+9
Ibs. Anhydrous FeCl^ per
Dry tons recovered Solids
1968
188.1+7
201.1+3
218.71+
222.1+6
210.75
20l*.l8
215.8U
226.78
221.05
201*. 63
197.1*1+
199 . 88
211* 1+6
217.11=;
215.08
223.88
212.1+5
197.13
200.23
205.21+
179t73
198.33
210.61
192.56
206.30
227.86
226.62
231.15
196.17
217.9k
1969
181.69
192.00
175.33
173.53
189.63
191.85
200.89
202.21
188.95
171+.76
173.22
172.71
190.75
191+.21
193.31
206.61+
186.27
195.22
19*+. 32
211*. 78
229.1+7
231*. 99
208.9!+
199.63
213.1+5
233.37
21+J+.16
20ti.26
206.08
210,23
1970
179.1+2
17^.81
159.1+6
183.21
197.U1
212.85
207.52
181.78
179.61*
180.95
203.06
197.1*5
19^.75
178.16
189.11
198.91
202.35
201 . 32
183.91+
187.68
193^69
182.89
199.20
195.01*
200.1+2
205.31+
212.33
202.71
219.85
226.67
APRIL 1070
Precipitation
Water
Equivalent
Inches
.33
.1+3
.03
.07
Trace
.01
.99
.0?
Tracp
.05
.UP
.02
Traop
.07
.27
-------
ro
o
PLANT OPERATIONAL DATA
D
a
t
e
1
2
3
I
5
I
7
8
?
10
11
12
13
ll»
1?
16
17
18
1?
20
21
22
2?
2U
2?
26
2'f
28
'*}
30
31
0
a
y
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Tji
F
Sa
§W
M
T
W
Th
F
ftft
1711
M
T
W
Th
F
Sa
Su
KJeldahl Nitrogen
ng/1 as N
S3
28.6
28.8
26.2
29.5
31.6
26.5
31.1
29.8
2U.9
27.0
28.1+
17.1
18.8
19.1
19.5
20.0
21.1
27.6
28.0
29. 1*
28.0
29.7
25.1
21.8
26.7
29.0
.10.1*
10.2
21.7
28.1
21.8
WPE
7.8
8.1
11.2
1U.7
7.8
6.0
8.7
16.1
8.8
15.1
15.0
6.7
3.6
5.0
5.5
7.1
11.9
lU.O
9.0
Q.I
9.5
7.U
U.5
10.2
11.2
7.8
7.8
lU.l
n,6
T^Q
19, IP
EPE
10.2
7.3
9.8
1U.3
12.3
7.1
5.7
6.3
5.3
8.8
10.5
U.6
2.8
1.6
2.9
l.U
6.3
8.1
U.I
U.I
11.1
l.U
2.1
6 7
Q.5
k 1
1 5
6.2
2.U
3.U
6.9
Milorganite
As Received Basis
Tons/
Day
200.0
199.5
193.1
197.2
203.7
190.8
191.8
202.6
20U.7
208.7
205. U
203. U
211.2
21U.5
158. U
189.7
213.6
220.3
228.0
220.0
211.3
206.5
220^2
216.7
195.1
201.1
213,1
199.3
192.5
183.9
186.6
Nitrogen
% U
6.30
6.30
6.U2
6.37
6.23
6.22
6.18
6.18
6.26
6.33
6.16
5.98
5.76
JL.61
5.63
5.85
5.83
5.9U
5.81
5.88
5.92
6.23
6^29
6L30
6,08
6.27
6.19
6.26
6.32.
6.U2
6.53
Ash
%
28. U2
28.79
29.22
29. 2U
29.39
30. OU
29.23
29. U2
29.29
29.68
30.80
31.79
32.78
33.10
33.77
33.73
32.93
31,31
33. 3U
32.07
31.21
30.15
29.73
29.92
30.23
11. 1Q
30.78
30.52
30.11
29. U9
29. U7
Average Ferric Chloride Use
pH
1.0
1.0
1.1
3.1
3.1
3.1
3.1
3.1
3.2
3.2
3.2
3.U
l^.U
l.U
3.7
3.7
1.7
3.7
3.7
l.U
l.U
1.2
1.2
3.1
3.1
1.1
3.1
3.2
3.2
3.1
3.1
Waste
Sludge
* Solids
1.U6
1.51
1.U7
1.55
1.63
1.69
1.70
1.67
1.69
1.72
1.77
1.79
1.9U
i.au
1.72
1.72
1.72
1.85
1.89
1.8U
1.71
1.59
1.56
1.60
1.57
1.57
1.6U
1.62
1.62
1.52
1.51
Ibs. Anhydrous Fed-, ?>«r
Dry tons recovered Solids
1968
220.15
202.22
182. UO
185.28
107. 7b
203.85
216.62
19U.UO
203. U6
19U.UO
196.96
200.65
215.66
202.11
200.10
225.09
201.81
232.38
199.52
151.51
192,26
20U.U8,
210.61
215.17
228.97
196.86
20U.59
207.77
213.51
211.90
203.20
1969
209.62
223.30
226. 6U
22U.33
250.03
2U6.67
227.25
209.11+
193.70
193.62
215.79
209.90
219.29
23U.U8
222. U9
192.23
199. 5U
192. 3U
196.32
213.01
202.33
195.99
187.08
202.57
190.72
21U.07
205. 5U
226.27
227, Ul
210.21
193.09
1970-
2U3.68
225.29
2U1.31
255.06
2U3.70
229.02
222. 5U
220.76
213.00
213.79
228.18
196. 5U
205.93
192.91
178.63
173.16
180.99
179.61
195 . 32
197.38
198.65
211.75
201.09
208.95
239.56
223.16
219c59
222.06
226.05
2U3.52
2U5.89
MAY 1070
Precipitation
Water
Equivalent
Inches
°-4
0.02
Trace
0.68
Trace
0.15
1.01
0.2U
0.26
0.28
Tra.cc
Tracp
o.na
0.15
0.11
Trace
0.02
O.OU
0.07
0.20
-------
PLANT OPERATIONAL DATA JUIffi 1970
D
a
t
e
1
2
3
I
5
6
7
8
9
10
11
12
13
lU
1?
16
17
18
19
20
21
22
23
2l*
2?
26
2J
28
29
30
Jl
D
a
y
M
T
W
Th
y
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
KJeldahl Nitrogen
mg/1 as N
SS
18.2
15.7
21.7
23.9
2l*.5
23.7
23.2
23.9
23.7
26.5
25.5
2U. 5
2U.U
21.3
26.9
26.5
23.7
25.8
26.2
27.3
25.9
21*. 9
25.3
2U.6
26.5
21*. 8
.27.2
26.9
23.1
21.3
WPE
11.8
5.0
5.6
5.2
5.3
5.7
9.7
11.1
3.6
U.I
7.0
8.5
i*.9
11.9
13.0
8.U
6.2
6.0
7.8
7.1
13.1*
16.1
5.6
1».6
5.6
6.2
6.7
15.7
15.1*
6.8
EPE
l*.9
3.6
1*.2
2.2
3.1
2.9
6.0
7.8
2.3
3.1*
10.8
7.9
7.3
8.U
?•?
1.8
5.9
8.7
3.1
3.6
10.9
9.5
3.8
7.1
7.3
11* ._3
6.0
9.5
9.5
37.0
Milorganite
As Received Basis
Tons/
Day
192.0
195.3
195.0
177.0
153.0
17P.O
iR5.n
19.0-0
202.5
206.5
212.5
2U6.0
230.9
220.6
231.0
223.5
207.0
206.5
207.0
195.0
192.0
189.5
191*. o
180.0
180.5
193.5
190.5
189.5
176 ._5
178.0
Nitrogen
% N
6.25
6.01*
5.79
5.82
6.01
6.12
6.17
6.27
6.16
6.19
6.29
6.30
6.39
6.30
6.33
6.13
6.22
6.30
6.1*2
6.2U
6.16
6.21
6 11
6 21*
6.32
6 hh
6 in
6 i*6
6 27
6 11
Ash
%
30.09
31.73
32.99
33.56
32.36
32.93
30.68
31 .20
30.78
?n. rr
29. ll*
28.78
28.67
28.85
30.21
30.03
29.63
28.97
29.79
29.81
30.29
30.30
30.UJ
29.38
29.11
28.71
28.51*
28.65
29.32
30.26
Average Ferric Chloride Use
pH
3.1
3.1
3.2
3.U
3.1*
3.5
3.1*
3.6
3.6
3r6
3.1*
3.2
3.2
3.2
3.2
3.3
3.2
3.2
3.2
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.0
3.0
3.0
Waste
Sludge
% Solids
1.50
1.72
1.89
2.0U
2.02
1.92
1.82
1.72
1.71*
1.69
1.66
1.53
1.1*7
1.50
1.53
1.62
1.61
1.58
1.55
1.56
1.55
1.53
1.6U
1.69
1.67
1.59
1.52
1.37
1.67
1.91
Ibs. Anhydrous Fed, $>er
Dry tons recovered Solids
1968
195.51*
203.1*U
220.98
22U. 95
218.61*
2U5.99
2U1.68
233.17
231*. 1*5
208.0U
231*. 37
21*0.29
2U5.62
22U.50
218.66
201*. 93
220.63
228.25
226.70
206.56
217,95
196.59
187.97
212.23
229 . 10
228^20
206.2U
207.1*5
22X.50
218.57
1969
217.31*
2ll*.92
211.55
207.1*0
212.1*2
198.91
205.88
239.61
256.73
21*9.1*0
21*8.27
252.55
260.01
275.63
282.67
253.20
21*6.^1*
263.80
261.27
275.38
21*9.12
250.70
2U8.62
235.99
20l*.09
213.25
229.66
262.07
1970
250.56
21*1.1*1*
197.76
212.78
236.76
220.61*
205.11
205.09
199.2U
216. Qh
228.3U
220 . 89
225.1*0
212.76
231.31*
2U0.79
218.1*7
218.71
200.91
222.83
231.25
237.06
222.12
21*2.56
21*5.78
238.99
239.81
235.1*8
21+1.11
262 hh
Precipitation
Water
Equivalent
Inches
1.05
1.12
.20
•3?
.2^
.08
.22
.01
.01
.61*
Trace
-------
ro
ro
PLANT OPERATIONAL DATA ULY 1970
D
a
t
e
1
2
3
I
5
6
7
a
?
10
11
12
13
lk
15
16
17
18
19
20
21
22
23
2k
2
26
27
28
29
30
31
D
a
y
w
Tfr
Y
£ft
f?u
M
T
u
Th
F
f^p
Rii
M
T
X
Th
F
5ft
Su
M
T
W
Th
F
Sa
fiu
M
T
W
Th
F
KJeldahl Nitrogen
mg/1 as N
SS
26.5
2U.9
29.7
23. It
23.1
26.9
23.2
26.0
27.6
21*. 9
25.1
2»+.2
23.7
1Q.7
22.7
21*. 8
2U.1
22.3
21.7
26.3
26.5
26.7
28. 1*
26.7
22.3
23.5
2U.9
25.9
26.5
21+.8
2l*.U
WPE
7.6
6.7
6.6
10.1
15.3
16.0
13.9
7.8
9.1*
13.0
10.8
11*. 3
11.1
3.9
1*.3
5.2
9.0
6.1*
8.0
8.0
b.9
U.3
5.9
6.0
U.9
?*7
U.9
3.6
5.0
5.3
7.1
EPE
5.5
U.5
5.2
5.0
5.3
5.7
5.2
10.9
10.1
5.7
3.5
6.3
i*.e
2.7
2.1
3.1
2.5
2.1
2.9
3.2
3.1
2.7
3.8
1».5
2.8
2.1*
2.9
2.5
2.1
2.9
6.1*
Milorganite
As Received Basis
Tons/
Day
107.5
203.5
188.5
173.5
92.7
69.7
161*. 5
188.0
176.0
190.9
185 3
376.5
183.0
202.6
22l*.7
227.6
219.8
227.1*
216.1
116-Q
12 1*. 8
235.3
202.U
207.5
213.3
217.9
201*. 7
211.1+
196.U
Nitrogen
% N
6.12
6.11*
6.1*6
6.38
6.1*1*
6.28
6.01
5.87
5.9Q
6.09
5.89_
5.98
5.82
5.63
5.79
6.07
6.15
6.oi*
6.01
6.17
6.17
6.19
6.1*8
6.19
6.09
6.02
5.95
6.05
6.16
Ash
%
29.90
29.38
29.25
29.00
29.83
29.31
30.86
31.10
31.65
31.51*
31.71
31.1*8
32.63
33.26
32.57
31.61
31.82
31.66
31.08
30.50
30.21
28.88
29.21
29. 3U
30.23
29.89
29.66
29.13
28.39
Average Ferric Chloride Use
PH
3.0
3.0
2.9
2.9
2.7
2.8
2.8
3.0
2.9
2.9
2.9
2.9
2.9
3.0
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.0
3.0
3.1
3.2
3.1
3.0
3.0
Waste
Sludge
% Solids
1.89
1.86
1.80
1.67
1.67
1.93
1.82
1.98
2.10
1.79
1.77
2.00
2.36
2.27
1.98
1.81
1.80
1.79
1.88
1.86
1.79
1.53
1.1*8
1.U6
1.58
1.66
1.69
1.59
1.53
Ibs. Anhydrous FeCl^ per
Dry tons recovered Solids
1968
217.32
25U.69
229.02
229.31
219.56
221.03
235.91
237.78
253.38
263.85
2l*5.3l*
21*0.72
221j 15
250.06
21*0.88
268.33
260.73
2U1.70
253.25
212.1*1*
222.28
212.01*
226jJL6
232.67
212.1*1
206.30
221.1*5
216.25
227.92
23l*. 25
21*7.00
1969
229.63
251*. 67
200.77
22U. 62
277.81*
216.33
276.85
267.18
275.16
2U8.96
2U1.33
263.90
236 . 1*9
262.02
285.38
227.1*7
189.53
18U.91
199 . 16
195.60
195.67
191*. 56
218.18
229 . 1*9
2l*3.5l*
2l*U. 17
255.37
235.1+2
215.63
217.09
208.15
1970
2l*U. 17
231.81*
253.70
255.23
293.07
360.20
2U6.88
335.1*1
282.71
256.81
21*2.20
297.58
28U.1*0
228.65
227.29
230.59
210.66
209.66
2Q1.50
335 . 39
263.05
277.60
260.93
230.92
235.20
226.05
237.68
232.93
Precipitation
Water
Equivalent
Inches
Trace
.06
.51
Trace
.03
.15
.02
.06
.01
.36
Trace
.05
.1*0
.19
Trace
.05
.OU
-------
ro
oo
PLANT OPERATIONAL DATA AUGUST 1970
D
a
t
e
1
2
3
E
5
&
7
a
9
10
11
12
13
1U
15
16
17
18
!?
20
21
22
23
2U
2?
2b
27
2ti
29
30
31
D
a
y
Sa
SU
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
U
Th
F
Sn
Su,
M
T
*f
Th
F
Sp
Su
M
KJeldahl Nitrogen
mg/1 as N
SS
21.3
21.8
25.6
27.2
28.6
25.2
27.7
26.6
25.8
25.6
25.9
26.0
26.9
26.3
23.7
23.7
21.3
2k. 5
25.1
27.7
25.2
26.9
25.8
29.1
27.3
27.2
28.7
28.6
23.0
25.6
28.8
WPE
7.6
10.9
9.8
7.1
7.7
7.8
6.7
9.2
1U.8
1U.1
7.0
7. it
7.1
9.1+
10.it
lU.U
10.it
6.2
6.0
6.2
9.0
10. h
16. 1*
16.1
9.9
7.3
8.7
8.7
9.1
_1!L.J
16.1
EPE
6.2
7. »+
6.3
U.2
5.0
5.7
5.2
7.0
10.1
7.7
5.2
3.U
it. 2
U.I
3.6
U.6
2.5
2.2
2. U
2.8
3-9
5.6
6.2
3.9
2-9
2.7
U.2
U.8
6.0
9.5
6.0
Milorganite
As Received Basis
Tons/
Day
I82j3_
;L8Ufo
188.5
195.9
192. U
190.1
230.6
219.0
218.5
212. U
219.5
221.1
215.7
226. U
226.0
223.7
191.3
225.8
211.6
223.7
215.2
211.1
200. U
187.9
17U. 3
188.0
192.5
^02*5
198.5
19U.O
193.8
Nitrogen
% U
6.21
6.10
6.09
5.95
5.90
6.05
6^ 19
6.22
6.2U
6.17
5.91
5.9U
6.02
6.1U
6.17
6.35
6.03
5J.80_
5.87
5.96
6.15
6.20
6.U?
6.31
^.06
6.0?
6.21
6.UU
6.60
6.33
6.17
Ash
%
29.13
30.57
30.70
31.17
30.33
29.51
28.80
29.16
29. 2k
29.814
30.20
30.77
29. U2
29.32
28. 6U
28.87
31.12
30.32
29.28
29.29
29.10
28.62
28 7U
29.16
29. U7
?9 ?7
28.31
27.25
27.28
29.53
30. U9
Average Ferric Chloride Use
PH
3.0
3.0
3.0
3.0
3.0
3.0
3.0
2.9
2.9
2.9
3.1
3.3
3.U
3.2
3.1
3.1
3.3
3.3
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.0
3.0
Waste
Sludge
% Solids
1.U9
1.U2
1.U6
1.5U
1.57
1.58
1.62
1.66
1.62
1.73
1.9U
1.96
1.90
1.79
1.68
1.67
1.92
2.02
1.95
1.76
1.65
1.50
l.Uj
1.6U
l._90
1.81
1.U7
1.3U
1.30
1.32
1.U7
Ibs. Anhydrous Fed, per
Dry tons recovered Solids
1968
217.26
216.32
211.93
212.02
216.59
238. U6
231.57
229.33
22U.75
209.96
235.99
236.96
2U2.85
228.37
221.36
215.80
19JL95_
196.16
217.67
208.88
209,29
227.93
220.00
22U.90
2Ul,21_
216.18
2U7.68
23JL.95
220.96
225.71
252. UO
1969
211. U2
218.88
235.75
231.35
2U7.U6
276.61
2U7.U6
228.81
253.81
2U7.UU
235.99
2U3.61
218. U7
208. OU
222.59
201.09
192 . 80
211.60
211.15
207.06
222.79
208.93
238.88
198.63
22IL.9B
206.33
190.13
188.79
201*23
185. U8
191. ?3
1970
255.17
237.59
2U6.U3
2U2.21
2U9.71
262.13
203.95
227.05
2U3.25
267.27
250.31
228.97
223.92
215.51
219.96
221. 5U
239.31
208.28
2U2.51
222.06
216.12
217.73
213.21
21U.56
2U3.16
231. 1U
220. Ul
21U.22
209.57
218.09
260.37
Precipitation
Water
Equivalent
Inches
Trace
Trace
0.27
0.01
.OU
Trace
0.32
-------
ro
PLANT OPERATIONAL DATA SEPTEMBER
D
a
t
e
1
2
3
I
^
6
7
b
9
10
11
12
13
ik
15
16
17
18
!?
20
21
22
23
2i»
2>
2b
27
28
29
JO
Jl
D
a
y
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
r
W
KJeldahl Nitrogen
mg/1 as N
SS
28.7
26.3
21.7
27.U
25.6
15.8
20. 1*
26.3
23.9
26.6
28.7
25.8
21.1
23.0
18.3
25.6
21.1
25.5
23.9
2U. 8
26.6
23.7
20.6
23.7
23.0
.. 22.8
30.5
28.7
30.2
WPE
8.1*
7.1*
5.9
9.1
11.5
12.3
12.0
10.5
6.2
3.5
7.1
8.1
11.6
9.9
1*.8
1*.9
6.9
6.2
7.6
10.8
9.7
U.6
6.0
5.3
6.3
7.1*
11.8
12.3
9.0
6.3
EPE
3.6
1*.2
It. 2
5.9
6.3
2.8
3.2
3.1
3.9
6.2
8.0
8.3
8.0
3.6
1*.3
2.8
3.1*
1*.2
l*.l
2.9
3.1
3.8
3.8
I*. 3
1*.6
l*.l
14.9
3.8
1*.2
Milorganite
As Received Basis
Tons/
Day
185.1
196.6
186.5
186.5
187.5
187.5
163.0
117.6
170.0
171*. 5
187.1*
183.1
187.0
179.6
180.6
180.8
200.6
210.8
195.1*
197.8
193.0
193.8
191.3
209.7
19^.0
_llki_3_
186.9
190.7
191*. 8
203.5
Nitrogen
% N
5.99
6.11
6.26
6.23
6.29
6,18
6.03
5.70
5.58
5.80
6.07
6.26
6.32
6.30
6.11+
5. 91
6.07
6.36
6.U2
6.38
6.32
6.12
6.23
6.U2
6.28
6.29
6.15
6.15
6.12
6.114
Ash
%
29.68
29.65
28.61
29.08
29.06
28,91
30.5U
33.25
33.26
31.13
29.25
28.1*5
29.11
29.32
29.52
30,32
30. ll*
29.1*1
28.86
28.29
29.33
29.08
28.71
28.U2
29.1*0
30.00
29.97
30.57
30.16
29.65
Average Ferric Chloride Use
pH
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.3
3.3
3.3
3.1
3.0
3.0
3.0
3.0
3.1
3.2
3.2
3.2
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.1
Waste
Sludge
% Solids
l.6l
I.Sli
1.U6
i.ln
i . U?
i hh
•} ^
i .68
i _ft^
1 .76
l 6?
1 .U7
i .U6
i sn
1 S^
i 6?
1.6T
1 56
1 -UQ
1 .50
i.sU
1 .S7
1 lifl
i Uli
1.1*9
T "3Q
1 1*8
1 59
1 59
1 614
Ibs. Anhydrous Fed, -per
Dry tons recovered Solids
1968
?i s UU
??i hn
237.10
2i*i*. 69
2U1.08
233.09
225.07
227.72
22U.36
237.17
239.08
21U.90
211*. 23
219.8U
251.02
226.75
230.62
220. 1U
2l*7.5l<
220.67
233.1*8
2U6.88
221*. 76
226.21*
175.66
199 . 12
219 . 83
22l*.51
217.38
236.73
1969
207.61*
362 . 32
230.85
205.57
218.29
208.73
213.76
238.56
253.05
229.97
2U3.73
236.23
268.79
235.78
292.70
21*3.91
236.9.U
266.11
272.99
279.67
273.08
269 . 30
263.79
231.96
276.38
269.91
286 . 09
296.21
271.83
25l*.7l*
1*70
257.61
?5^.1n
2^8.1^
25l*.59
255.92
265.16
269.09
327.39
2U6.92
237.19
209.51*
231*. 1*3
222.66
2U0.32
230.75
2U1*. 23
231.02
21U. 37
232.71
21*3.88
252.96
26U. 1*7
250.20
225.79
227.56
21*3.17
251.37
21*1.1*2
2U1.61*
260.61*
1Q70
Precipitation
Water
Equivalent
Inches
.56
.51*
1.1*1*
Trace
.53
Trace
.16
.18
.22
.86
.66
.06
.11
1.19
.27
.13
.02
Trace
-------
PLANT OPERATIONAL DATA nr
26
27
28
29
JO
31
D
a
y
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Th
F
Sa
Su
M
T
W
Wl
F
h?ft
Su
M
T
W
Th
F
s^
KJeldahl Nitrogen
mg/1 as N
SS
31.5
31. i
27.7
27.0
30. 1+
30.5
30.1+
30.7
28.7
27.6
30.0
32.8
32.5
33.2
3U.6
3U.9
30.1
29.3
33.2
31.5
33.6
32.5
^0.9
30.7
29. 1+
^l+.6
27.9
23.2
32.6
TL.6
27.2
WPE
7.8
11.3
10.2
1U.3
1U.3
8.0
9.2
18.2
10.6
11.5
l6.H
17.8
11.2
10.6
13.3
13.7
13.9
15.1
18.8
12^.0
11.6
12. S
13.0
12.7
20. 1+
18.9
9.1+
1+.5
7.8
9.9
8.5
EPE
U.S
6.7
7.6
9.2
8.8
5.7
6.9
9.5
11.6
10.1
12.6
13.0
9.2
8.5
13.9
16.5
11,9
ll+.l
13.7
8.7
7.8
13.2
17.2
^LUJL
16.8
lit. 6
7.0
3.6
8.3
8.7
8.3
Milorganite
As Received Basis
Tons/
Day
201.0
201.5
203.2
20H.2
181.U
212.1
211+.1
200.2
200.0
211.1+
190.8
180.0
188.7
176.0
193.2
190.8
196.5
18U.1
196.2
J.66^JL
179.3
198. \
179.5
200.0
199.0
206. \
_200_J3
188^3
206.0
215.0
227.0
Nitrogen
% N
6.36
6.39
6.37
6.1+5
6.21
6.11
6.11+
6.13
6.32
6.1+8
6.1+8
6.28
6.06
6.13
6.17
6.1+0
6.1+1+
6.1+8
6.1+8
6.23
6 as
6.22
6.29
^6.i+a
6.U6
6.^3
6.12
6.06
6JD8
6.08
6.21+
Ash
%
27.93
27.63
28.06
28.30
28.59
29.1+9
28.59
27.71
27.92
27.27
27.U1
28.53
28.69
28.51
27. g9
26^96
_26_A8_9_
26.1+2
27.35
27.28
27.82
27.10
26.78
26.1+0
26.83
27. ^6
27.85
28.26
28.77
28^55
28.01+
Average Ferric Chloride Use
pH
3.1
3.1
3.1
3.1
3.1
3.3
3.3
3.3
3.1
2.9
2.9
2.9
2.9
3.0
3.0
3.0
2.9
2.9
2.9
3.0
3.0
3.0
2.9
2.9
2.9
3.0
3.0
3.0
3.0
2.9
2.9
Waste
Sludge
% Solids
1.52
1.U9
1.U3
1.1+8
1.57
1.76
1.91
1.81+
1.79
1.6J+
1.50
1.61+
1.73
1.77
1.63
1.60
1.1+9
1.1+9
1.50
1.71
1.77
1.71+
1.71
1.62
1 68
i 61+
1.73
1.83
1.85
1.87
1.72
Ibs. Anhydrous FeCl-, $>er
Dry tons recovered Solids
1968
230.53
237.92
231. U7
235.01+
227.1*2
2U5.96
278.60
262.31
21+9.16
230.67
236.87
219.71
222.20
221+.57
239.15
21+3.87
21+3.1+3
253.99
260.30
21+2.97
21+^.19
257.15
231. ^1
223.78
221+.91
21+2.86
231+. 01
21+0.1+3
220.60
21+1.66
21+3.68
1969
266.25
301.36
298.87
320.60
301+. 67
270.96
292.1+1+
301.08
310.57
331.65
325.33
311.96
28U.1U
267.36
225.29
21+6.13
238.29
217.82
229. U8
208.01+
200. 9*+
201*. 29
210^51
222. 80
23U.62
226.87
213.66
223.52
235.33
236.16
211.53
1970
232.32
23U.01+
229.1+9
235.50
263.1+5
237.63
211.29
23U.61+
239.96
252.72
21*9.61+
268.11
269.10
288.15
256.69
253.25
293.1+8
295.81
281*. 36
297.25
287.96
250.55
278.35
317.52
295^22
260.1+5
251.91*
256.1+7
2U1.25
281.20
295.51+
Precipitation
Water
Equivalent
Inches
.03
.06
.01+
Tracf
.06
.01
.09
.nL
.?s
.01
.51*
.53
.16
.27
-------
ro
PLANT OPERATIONAL DATA NOVEMBER 1970
D
a
t
e
1
2
3
I
5
6
T
ti
9
10
11
12
13
ll+
15
16
17
18
19
20
21
22
23
2k
2?
2fa
2J
28
29
30
31
D
a
y
Su
M
T
W
Th
F
Sa
fill
H
T
W
Th
F
Sa
fill
M
T
W
Th
F
fin
Gu
M
T
W
Th
F
Sa
Su
M
KJeldahl Nitrogen
mg/1 as N
SS
2k. 5
2U. 5
23.5
27.6
29.1
21.0
21.3
27.3
26.6
20.8
30.1
30.7
29.8
23.0
28.7
31.9
30.9
32.9
31.5
26.2
31.5
29.3
30.7
32.8
32.8
30.9
3U. 9
31.2
28.0
32.5
WPE
15.8
15.5
9.2
8.5
8.0
6.9
9^2
17.9
13.7
5.3
7.8
8.7
9.9
11.1
17. 1*
16. Q
11.3
10.5
13.1*
6.9
13.1*
ll*.7
15.1
Q.2
10.6
7.8
16.7
16.7
18.1
18.1
EPE
8.8
11.5
l«fi
3.5
3.6
3.6
7.1
8.3
5.6
2.3
3.2
3.6
?'7
1,6
5.7
6.1*
5.7
7.3
9.1
11.5
9.1
9.2
9.9
7.7
7.0
7.0
11.8
11.3
9.1
9.8
Milorganite
As Received Basis
Tons/
Day
237.5
203.2
203.8
180.0
207.3
218.6
229.8
217.2
211.7
227.7
23JL.**
218.0
222.5
213.3
208.3
206.5
200.3
218.1*
221.8
201*. 7
236.7
195.5
198.3
191.8
185. U
201.2
197.2
210.0
221.0
20U.1
Nitrogen
% B
6.31*
6.27
6.00
6.13
6.10
6.22
6.38
6.1*1*
6.31+
6.28
6.59
6.13
6.23
6.U3
6.141
6.U1
6.36
6.27
6.35
6.39
6.21*
6.31*
6.3U
6.31
6.26
6.1*1*
6 57
6.61
6 55
6.33
Ash
%
27.77
29.01
29.01
29.28
27.76
27.21
26.76
27.01*
27.75
28.57
27.90
27.85
27.56
27.pl*
26.95
27.1*9
27.51
26.1*7
26.81*
26.92
27.25
27.67
28.UU
28.58
27.76
26.89
27.19
27.16
26.97
27.21
Average Ferric Chloride Use
pH
2.Q
?i°
3.2
3.2
1- I
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.1
3.2
3.2
Waste
Sludge
* Solids
1.56
1.75
1.81
1*SL3_
1.82
1.70
1.58
1.5U
1.57
1.69
1.77
1.80
1.65
1.51
1.51*
1.55
1.62
1.71
1.68
1.59
1.5U
1.60
1.68
1.69
1.71
1.7^
1.63
1.56
1.6l
1.76
Ibs. Anhydrous FeCl., per
Dry tons recovered Solids
1968
21*6.15
257.81
251*. 80
266.56
277.07
235.29
195 . 8l
195.37
226.39
237.23
229.13
238.69
253.31
230.85
238.1*5
21+3.17
21*1.79
270.01
290.53
260.86
262.73
267.92
271.50
282.05
258.80
258.95
268.76
265.88
265.96
21*1. 11*
1969
181*. 1*6
197.62
196.10
198.09
191.^1
221.50
189 . 77
202 . 1*2
211*. 35
230.67
233Ll6
231.98
2U1*.51
255.59
250.68
259.1*5
265.35
251*. 1*9
21*0.16
21*1.56
251.39
267.39
281.23
280.08
238.33
277.57
251*.02
21*2.1*8
27U. 62
1*70
267.86
255.1*1
211.09
209.27
201*. 88
229.79
225.1*1*
237.1*7
266.55
260.99
2j*l. 56
261*. 1*2
269.85
305.91*
258.91*
260.1*1
286.1*8
21*9.17
261.72
309.21+
235.11
278.01
285 . 80
283.1*1
266.98
273.78
298.50
260.89
23l*. 20
235.70
Precipitation
Water
Equivalent
Inches
0.1*5
0.19
0^12
0.27
0.15
Trarp
n.n^
Trnr-p
Trn.^f>
n.m
0.62
Trace
0.01
Trace
0.03
0.12
0.01
0.02
Trace
-------
PLANT OPERATIONAL DATA DECEMBER 1970
D
a
t
e
1
2
3
It
5
6
7
a
?
10
11
12
13
ll*
15
16
17
18
19
20
21
22
23
2l»
2?
26
27
2ti
29
JO
Jl
D
a
y
T
•(I
Th
F
ftfl
RII
M
7
w
Th
F
Sa
3u
M
T
W
Th
F
Sa
Su
^
T
tf
£h
F
Sa
Su
M
T
,v
Til
KJeldahl Nitrogen
mg/1 as N
SS
31.8
33.6
30.8
33.0
32.9
27.9
35.3
35.0
31*. 6
38.1
26.2
27.6
25.3
29.7
29.0
23.7
27.7
27.1+
25.1
2**. 2
28.7
29.5
29.1*
28.3
25.9
28.7
26.6
31.1
31.9
33.9
3^2
WPE
11.6
8.1
8.3
10.2
8.7
13. 1*
16. 14
11.3
9.8
11.6
13.7
11.9
15.7
15.8
10.6
6.6
7.6
7.0
6.U
11.3
1U.1
9.5
8.5
11.5
13.6
17.5
lU.O
17.5
11.3
9.1
9.5
EPE
8.1
6.7
7.1
6. it
7.6
10.8
11.9
9.9
8.7
lit. 8
16.0
11-. 9
16.1
15.5
12.3
5.3
5.5
7.8
6.9
9.7
11.3
8.5
8.7
7.0
11.2
L5.0
lit. 6
llt.O
8.8
5.7
6.6
Milorganite
As Received Basis
Tons/
Day
207.1
221.3
211.3
225.7
219.lt
221.8
201.lt
191.0
200.1
200.8
207.9
207.8
203.6
219.0
208.1
210.5
215.0
211.5
216.0
222.lt
211.7
211.2
178.6
210.2
206.0
182.5
185., 8
168.1
169.1
200.1
195.7
Nitrogen
% U
6.23
6.26
6.55
6.1*8
6.56
6.57
6.60
6.1*6
6.50
6.57
6.59
6.63
6.59
6.52
6.1*5
6.31*
6.35
6_.J8
6.60
6.73
6.65
6.U5
6.1*1*
6.1*3
6.63
6.66
L65
6.1*9
6.3J
6j27
6.39
Ash
%
27.35
27.20
26.33
26.09
25.91
25.97
26.21
26.29
25.96
25.61
25.U1
25.61
25.55
26.02
26.03
25.50
25.35
25^53
25.1*8
25.1*1
25r98
^5^79
26.79
25.71
25.88
^5»93
261.58
26,60
26.81
26,. U8
25.78
Average Ferric Chloride Use
PH
3.2
3.2
3.2
3.0
3.1
3.1
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.1
3.1
3.2
3.2
3.1
3.0
3.0
3.1
3.1
3.1
3.1
3.1
Waste
Sludge
* Solids
1.83
1.77
1.65
1.52
1.1*2
1.37
1.39
1.U9
1.1*5
1.1*0
1.1*2
1.1*0
1.39
1.1*2
1.55
1.58
1.57
1.53
1.1*3
1.39
1.1*1*
1.1*6
1.1*7
1.1*2
1.38
1.36
1.1*2
1.56
1.72
1.75
1.68
Ibs. Anhydrous Fed, per
Dry tons recovered Solids
1968
21*2.00
250.21*
256.08
228.22
21*1*. 99
21*1.67
21*1.29
233.92
207.1*9
201*. 1*9
222.81*
219.66
237.26
207.82
221.93
21*3.97
266.06
21*2.11
236.81
2KL02
207.56
215.26
176 . 22
201.92
208.92
230.33
222,70
197.01*
201.99
2ll*.5l*
203.1*0
1969
?«Q if,
273.27
272.21
21*8.08
236.1U
221.1*5
233.38
222.37
207.89
228.03
235 . 82
195.UO
207.03
211*. 5U
208.39
187.01
186.68
193.19
203.91
190.52
201.16
196.77
??o 9?
21*3.67
263.60
263.99
21*8.19
267.57
225 . 12
266.71
257.01
1970
226.77
236.18
2U I*. 70
252.81*
2U5.98
250.50
232.36
21*7.59
21*1*. 16
255.71
2U1*. 12
219.66
220.27
211.13
233.53
229.70
207.30
232.23
216.76
235.58
262.77
237.86
2l*l*.30
225.90
260.31
301*. 22
270 . 89
229.23
21*1.08
205.37
209 . 85
Precipitation
Water
Equivalent
Inches
.01
.27
Trace
1.08
.71
.13
.07
.21*
Trace
Trace
Trace
.09
.15
.01
.03
.19
.01*
Trace
-------
APPENDIX I
X-ray Diffraction Techniques
To use x-ray diffraction techniques to explore crystalline
species in the sludge, the material must be changed from a liquid to
a powder. Air drying at room temperature and freeze drying were
chosen for drying because the temperature at which sludge was
initially formed would not be drastically exceeded.
Liquid sludge was obtained from the sewage plant. This was
centrifuged and the bulk of the liquid removed. The concentrated
sludge was placed in a Virtis Automatic Freeze Dryer, Model 10-010,
and dried. The freeze dried material thus obtained was fibrous in
character. When ground it appeared as a fine fluffy powder. Air
dried material appeared in the form of hard, millimeter sized
particles and when ground yielded a granular powder which was easier
to handle.
A crystalline sample selected from mineral Vivianite was
obtained from a commercial source. This material was found to be
magnetic. It was reasoned that if one of the chemical species of
interest in the sludge was an iron phosphate compound, it could be
separated and concentrated by a. magnetic separation technique and
identified.
The sludge sample, whether freeze dried or air dried, was
separated by dropping it through a high itensity magnetic field. The
powdered sludge residue was dropped through a 2 inch diameter glass
cylinder placed between a 10 kilo-gauss electro-magnet. The
magnetically separated material adhered to the side of the cylinder
and the nonmagnetic material dropped through.
The magnetically separated material was then loaded into a
0.5 mm diameter glass capillary. These capillaries were mounted in
a llU.6 mm Philips powder diffraction camera. The specimens were
then exposed to a beam of x-ray radiation, obtained from an iron
x-ray tube, for periods of time ranging from 2 to 6 hours. The
x-ray diffraction patterns were recorded on film in the form of lines
of varying intensities at various angular positions.
The angular positions of the x-ray diffraction lines were
used to calculate the interplanar d-spacings of the unknown crystal-
line materials. These d-spacings were compared with standard
patterns of crystalline materials in the ASTM files. This allowed
the identification of the crystalline species in the sludge residue.
128
-------
APPENDIX J
% FREE ACID IN PICKLE LIQUOR
From the A. 0. Smith Corporation
From U. S. Steel Corporation
DATE
SPECIFIC
GRAVITY
2-17-70
2-18-70
2-19-70
2-20-70
2-23-70
2-2U-70
2-25-70
2-26-70
2-27-70
3- 2-70
3- 3-70
3- U-70
3- 5-70
3- 6-70
3- 9-70
3-10-70
3-11-70
3-12-70
3-13-70
3-16-70
3-17-70
3-13-70
3-19-70
3-20-70
3-23-70
3-2U-70
3-25-70
3-26-70
3- U-70
8- U-70
8- 5-70
8- 6-70
8- 6-70
8- 7-70
8- 7-70
8-10-70
8-10-70
8-11-70
8-12-70
8-13-70
8-13-70
8-1U-70
8-1U-70
8-17-70
6-17-70
3-17-70
8-18-70
8-19-70
Ave
Max
Min
1.18U
1.185
1.262
1.26U
1.2U2
1.268
1.2U6
1.270
1.285
1.251
1.202
1.192
1.273
1.261
1.29U
1.229
1.288
1.291
1.238
1.277
1.217
1.181
1.288
1.300
1.30U
1.266
1.307
1.320
1.263
1.28U
1.273
1.283
1.280
1.268
1.321
1.319
1.331
1.316
1.301
1.216
1.223
1.221
1.272
1.252
1.267
1.26U
1.260
1.281
1.26U
1.331
1.181
% FREE
H^
ACID
U.5
2.7
5.0
5.8
U.9
3.9
U.I
U.6
U.3
U.I
U.5
U.3
5.2
2.7
U.O
U.6
U.5
U.2
3.9
3.9
5.6
3.3
2.1
5.7
U.2
3.9
U.7
U.3
U.2
U.3
U.O
U.5
U.6
U.8
5.2
5.0
5.0
U.8
U.3
U.7
5.0
5.0
5.3
U.9
5.0
U.8
U.5
U.U
U.5
5.8
2.1
DATE
11-
11-
11-
11-
U-70
U-70
U-70
5-70
11- 5-70
11- 5-70
il- 6-70
11- 6-70
11- 6-70
11- 9-70
11- 9-70
11- 9-70
11-10-70
11-10-70
11-10-70
11-11-70
11-11-70
11-12-70
11-12-70
11-12-70
11-13-70
11-13-70
11-13-70
11-16-70
11-16-70
11-16-70
11-17-70
11-17-70
11-17-70
11-18-70
11-18-70
11-18-70
11-19-70
11-19-70
11-20-70
11-23-70
11-2U-70
11-2U-70
11-27-70
11-27-70
11-27-70
11-27-70
11-30-70
11-30-70
11-30-70
12- 1-70
12- 1-70
12- 1-70
Ave
Max
Min
SPECIFIC
GRAVITY
.180
.186
.172
.206
.202
,19U
,198
,20o
.202
.198
,195
.19U
,198
,19U
,196
,203
,203
,201
,201
,201
,201
,203
,202
,210
,223
,209
,19U
,19U
,196
196
200
,200
192
200
208
193
220
222
206
198
20U
188
185
182
181
18U
136
1
l
1
1
1
1
1
1
.L
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l
1
l
l
1
1
1(
1,
I,
1,
1
1,
1,
1,
1,
1,
1,
1.186
1.198
1.223
1.172
;'J FHEE
ACID
8.1
8.0
3.2
7.7
7.6
7.8
7.3
7.U
7.7
8.9
7.5
7.2
6.8
6.6
6.9
7.2
6.9
7.5
7.5
8.8
7.8
7.9
7.9
7.6
7.8
8.0
8.9
8.9
8.3
8.5
8.5
8.2
8.9
6.8
7.6
7.6
7.2
7.2
7.6
7.6
7.8
7.3
7.5
7.5
8.3
8.5
9.3
7.8
9.3
6.6
129
-------
APPENDIX K
ALKALINITY AS mg/1 CaC03
5
6
7
DATE
RUN
1970
6-23
6-21*
6-25
7- 1
7- 5
7- 8
7-12
7-13
7-19
7-21
7-23
7-26
8- 3
8- 1*
8-
8-
8-
8- 8
8- 9
8-10
8-12
8-13
10-11*
10-19
10-20
10-21
10-22
10-26
10-27
10-30
11- 3
11- 1*
11-11
11-12
11-17
11-18
11-19
12- 1
12- 2
12- 3
12- 7
12-
12-15
12-17
12-29
Ave
8
SCREENED
Original
pH
7.0
6.9
6.8
6.9
7.0
6.9
6.9
6.9
6.9
6.9
6.9
7.0
6.6
6.7
7.0
7.0
7.0
6.9
7.0
6.9
6.9
6.9
6.9
6.9
SEWAGE
Alkalinity
232
220
201*
230
218
2lU
181*
228
230
232
238
231*
176
210
218
21*0
21*8
226
21*0
230
226
232
21*6
22U
WEST PLA1
Original
pH
7.8
7.8
7.7
7.8
7.9
7.9
8.1
7.9
7.9
7.7
7.8
7.6
8.0
7.6
7.8
7.6
7.9
7.8
8.0
8.1
7.3
7.6
6.9
6.9
7.2
7.1
7.0
7.2
7.7
7.0
7.2
7.5
7.1*
7.5
7.2
7.2
7.5
7.8
7.5
7.6
7.5
7.1*
7.3
7.3
7.2
7.5
EAST PLANT EFFLUENT
Alkalinity
206
210
200
210
200
190
200
200
170
190
188
182
196
192
206
196
208
200
202
171*
190
191*
232
231*
220
232
22U
228
232
198
216
232
2 U6
221*
230
230
262
21*1*
220
2l*2
232
220
218
21*1*
213
Original
pH
7.5
7.1*
7.1*
7.9
7.9
7.8
7.8
7.7
7.2
7.6
8.1
7.6
7.9
7.1
7.6
7.8
7.8
7.7
7.7
7.8
7.2
7.1*
6.9
7.1*
7.1
7.0
7.3
7.0
6.9
7.3
7.3
7.3
7.2
7.6
7.1
7.2
7.1*
7.8
7.6
7.6
7.1*
7.7
7.3
7.3
7.3
7.5
Alkalinity
172
170
168
166
12U
130
136
150
111*
161*
ll*2
158
131*
166
181*
168
166
11*6
ll*l*
121*
152
130
196
188
182
186
192
18U
172
166
16U
11*8
190
188
180
190
190
201*
191*
188
192
200
192
180
211*
169
130
-------
APPENDIX K(CONT.)
MIXED LIQUOR ALKALINITY
WEST PLANT
EAST PLANT
Date 1970
6-23
6-21»
6-25
7-1
7-5
7-8
7-12
7-13
7-19
7-21
7-23
8-6
8-9
8-10
8-12
AVE.
Original Alkalinity Original Alkalinity
t>H T>H
7.2
7.3
7.2
7.7
7.6
7.0
7.9
7.6
7.1*
7.2
7.3
7.1*
7.3
7.5
7.1
20 1*
196
200
190
206
202
180
190
182
196
19 1*
196
19 1*
221*
198
6.9
7.3
7.0
7.1*
7.»*
7.1
7.9
7.8
7.0
7.0
7.0
7.2
7.2
7.1*
6.9
180
180
176
192
216
20*4
191*
192
16 it
192
200
18U
182
190
166
7.1*
197
7.2
187
131
-------
APPENDIX
DATE 1970
SOLUBLE SULFATE CONCENTRATION - REPORTED AS rag/1
SCREENED
SEWAGE
EFFLUENTS
WEST EAST
DATE 1970
SCREENED
SEWAGE
U)
ro
2-22
2-2 U
2-25
3- 1 thru 3-7
8- 1
8- 2
8- 3
8- k
8- 5
8- 6
8- 7
8- 8
8- 9
8-10
8-12
8-13
8-lU
8-15
8-16
8-17
8-18
8-20
8-21
8-22
8-23
8-2U
75
Ilk
119
116
80
125
83
95
90
91
100
88
60
95
87
95
75
65
ho
83
98
83
88
83
59
91
90
152
11*8
139
130
115
103
110
118
120
128
105
105
110
118
130
125
118
103
90
110
118
118
115
98
108
92
109
110
115
100
90
91
88
103
103
80
88
91
70
100
79
152
122
103
103
130
131
131
123
115
122
8-23 thru 8-29
8-30 thru 9- 5
9- 6 thru 9-13
9-11* thru 9-19
9-20 thru 9-26
9-27 thru 10- 3
10- 1* thru 10-10
10-11 thru 10-17
10-18 thru 10-2U
10-25 thru 10-31
11- 1 thru 11- 7
11- 8 thru 11-lU
11-15 thru 11-21
11-22 thru 11-28
11-29 thru 12- 5
12- 6 thru 12-12
12-13 thru 12-19
12-20 thru 12-26
12-27 thru 1- 2
Average
'(8/23-1/2)
All Daily Samples
_
118
112
103
110
115
151
122
138
110
118
122
11*5
118
—
121*
118
108
110
120
Represent 2k hr.
120
131
108
98
118
125
130
130
138
125
108
138
118
125
—
133
121*
119
118
123
ll*0
133
135
131
H*5
151
11*8
11*8
11*8
ll*0
151
163
158
130
—
15U
151
ll*l*
138
1*5
Composites
-------
APPENDIX M
Uptake and Release of Soluble Ortho-Phosphate
In an investigation to determine and compare the soluble
ortho-phosphate uptake and release in the East and West plants,
samples of East plant sewage, return sludge and mixed liquor were
collected and allowed to stand for one to two hours. An aliquot
was taken initially and filtered immediately. Other aliquots
were taken after various detention periods and again filtered
immediately. Soluble ortho-phosphate (SOP) determinations were
run on the filtrates, the results for sewage, return sludge and
mixed liquor are shown on figures 21, 22 and 23. The data
indicates a slight reduction in the SOP for the sewage and large
releases of SOP from the return sludge and mixed liquor.
Another run was made similar to the first but this time
the pH values were taken and the detention time increased to
3 1/2 hours (figures 2U and 25 show the data). The SOP concentra-
tions again indicated slight reduction in the sewage, a large re-
lease from return sludge and slight release from the mixed
liquor. The sewage pH value decreased and the mixed liquor and
return sludge pH values increased.
The data indicates that any testing involving SOP uptake
or release would require the immediate filtering of all samples
taken.
133
-------
3-
Ld
CL
CO
O
Q_
I
O
X
cr
o
LU
_i
00
o
CO
2-
TIME, HOURS
Figure 21
Sewage SOP Versus Time
134
-------
East Plant Return Sludge
TIME, HOURS
Figure 22
Sludge SOP Versus Time
135
-------
Q_
i
0>
E
LU
Q_
(/)
O
X
CL
i
O
X
r-
cr
o
LU
_l
GO
Z>
_l
O
C/)
Eost Plant Mixed Liquor
0 " Fe Addition Point
a o Aeration Tank Inlet
0 0 Aeration Tank Turning Point
- 2-
TIME, HOURS
Figure 23
Mixed Liquor SOP Versus Time
136
-------
• 'Sewage
0- -OEast Plant Mixed Liquor
a a East Plant Return Sludge
4-
LU
X
a.
C/)
o
x
Q_
I
O
X
a:
o
LU
_i
CD
O
V)
0 0.5 I
2 3
TIME, HOURS
Figure 24
SOP Versus Time
137
-------
7.7
7.6
7.5
7.4
7.3
7.2
7.1-
7.0
6.9
6.8
6.7-
66
\
\
\
\o
0 ........
• • Sewage
O OFost Plant Mixed Liquor
D a East Plant Return Sludge
,0
..•©
.0-
0
6.5^
0 0.5 I 2 3
TIME, HOURS
Figure 25
pH Versus Time
138
-------
Mi c-1-10/66/69
APPENDIX N
Date
March 2. 1970
MICROSCOPIC COUNT OF MIXED LIQUOR PER MILLILITER AT 0.25* SOLIbS
10 Fields (200 PVR) Total Count x 200 • Count/ML
Solids diluted to 0.125*
WEST M. L.
M.L. Temp.
Solids
Color
SuTiernatant
Eerltrichla Epistilis
Opercularia
Zoo than! urn
CarcheBium
Vorticella
Holotrichia Colpoda-Colpidium
Loxoplyllun
Chaenia
ChilidQn
Spirotrichia Aspidisca
liypotrichia - Large Euplotes
Small
Sue tori a Podophrva
Flagellates Large Euglena
Astasia
Small Flagellates
Medium Flagellates
Amoebina Arcella
Rhizopoda Difflugla
Cuttula
Proteua
Kotirers
Nematodes
Algae*
Leptosplra/Field
Slime Molds .Small Amoeba Zooflagellates /Field
Bacteria Background
Filament/Slime Ratio
Filament Length/Type
Type Floe J
Kloc bize
Floe Connected >
Floe Thickness (Fluffy)
Floe Fragmentation*
Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West Negligible
East 20*
(Thioaystia
Sulnhur Bacteria (B. Gittai.etc
W««t Negligible
East jipfHffihl*
•iV
0.202
Mpri . ftrpv Rrmm
Tl
1
Tur
1
1
1
!•
t)1
1
•\
f1~*i
1
1
JJ
Fir
sme Si
3 1
1
1 1
1
1
1
1
T
1
if
1
1
Oc
•?nr
."400
2pO
GOO
n'lflf
l4QO(
2001
Snmp Dlnobrvon
\A ffht to ^prifrv"i«ifr.]y F^nff j
?/Ofl
Short & Medium
Negl-Fila Gran-Nornal Den!
I0tnln-?05smal .vrest med.
20*
Non-Fluffy (Non 3-Dimentior
10S - Granular Pin
rioAt-
Heel toLmj
Neel.tolnu
Marltpd
NeKliffible
i/Ju
5/10
None
None
Marked
Low
0.232
Mpd. Runt. Brovm
SJ
2
1
jTurbid-
1
^
k<
1
6
J
F:
1
qn
14
•)
e.
mp
2
.
d
f-
1
1
Uf]
14
f
rt
1
1
1
rloc
14,000
300
irwx>
10 000
uoo
oorea) Same as West
2/98
Short & Medium
Lty Same as West
Ipjtl nin lOionall rest med.
30?
11 ' Same as West
Negligible
Clpur
f^ptot^r^jj 2ph»j»rntLllla
M.tan> "
Free Zooglea, coarse
Slime Clots, Zoogleal
1 Ribbon-Connlora-Floc 1 B . 01 gas
Gxeaae. -
r.llro Rnri»a
Hocardia Mycelia
5>hrn-fr. Poi-m
Fungus Fil. Larae Troe
Fiber Count
»w foV PliimTJS
I. nil
Mnrlf.H
10/10
-10710
20%
None
None
Lo«
Lov
139
-------
Mic-1-10/66/69
APPENDIX N
Date April 29. 1970
MICROSCOPIC COUNT CF MIXED LIQUOR PER MILLILITER AT 0.25* SOLIDS
10 Fields (200 PWR) Total Count x 200 • Count/ML
Solids diluted to 0.125*
WEST M.L. . EAST M.L.
M.L. Temp.
Sollda
Color
Supernatant
Perltrichia Epistilis
Opercularia
Zoothanium
Carchesium
Vorticella
Holotrichla Colpoda-Colpidium
Loxoplyllum
Chaenia
ChilidQn
Spirotrichia Aspidiaca
Uypotrichia - Large Euplotea
Small
Suctoria Podophrya
Flagellates Large Euglena
Astasia
Small Flagellates
Medium Flagellates
Amoebina Arcella
Rhlzopoda Oifflugia
Guttula
Proteus
Kotirers
Nematodea
Algae it
Slime Molds. Small Amoeba Zooflagellates /Field
Bacteria Background
Filament/Slime Ratio
Filament Length/Type
Type Floe T>
noc size
Floe Connected >
Floe Thickness (Fluffy)
Floe Fragmentation^
Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West 20 - 30*
East oO£
(Thiooystls
Sulnhur Bacteria (B. Giffaa .etc
W«nt. NfI?Heihlp
East Neelieible
•Material Mostly Clumped
62°
.Ti
T.rav Brown
2
1
2
1
1
i
1
1
1
\
2
]
]
1
]
1
1
f
2
f>
1
\
1
200
180C
20C
i?nn
lI>tothrlx Sphiurotllla
N>(-an« "
Free Zooglea, coarse
Zoojjlea F
amigera
Slime Clots, Zoogleal
•Ribbon-Conglom-Floc 1 B. 01 gas ,
Grease. -
T.(lr. Nrxlo.
Nocardia !*rceli«
Rhfti^, Pnra
Fungus Fil. Largi
Fiber Count
B T3TDC
Neel.
riopi
T.r^
Meel.
•
Negl.
>b/10 Fid '
Hegl.
Low .
Nenl.
Heal.
140
-------
APPENDIX N
Mi c-1-10/66/69
Date
June 18. 1970
MICROSCOPIC COUNT OF MIXED LIQUOR PER MILLILITER AT 0.25* SOLIDS
10 Fields (200 PWR) Total Count x 200 • Count/ML
Solids diluted to 0.125*
WEST M.L.
M.L. Temp.
Solids
Color
Supernatant
Berltrichia Epistille
Opercularla
Zoothanium
Car che slum
Vorticella
Holotrlchia Colpoda-Colpldium
Loxoplyllum
Chaenia
Chilidon
Spirotrichia Aspidisca
liypotrichia - Large Euplotes
Small
Suctoria Podophrya
Flagellates Large Euglena
Astasia
Small Flagellates
Medium Flagellates
Amoebina Arcella
Rhizopoda Dlfflugia
Cutt-ila
Proteus
Hotirers
Nematodea
Algae?
Slime Molds .Small Amoeba Zooflagellates /Field
Bacteria Background
Filament/Slime Ratio
Filament Length/Type
Type Floe I
floe size
Floe Connected >
Floe Thickness (Fluffy)
Floe Fragmentation}
Microscopic Turbidity
Remarks
Heterogeneous .Conglomerate Floe
West Nealieible
East Lou
(Thioaystia
Sulphur Bacteria (B. Glaas etc
East MealiBible
70°
.POT
Medium Gray Brovn
Tur
1
i
1
]
i^
1
p.
1
\ ;
1
1
If
1
5pme Su
i
Fj
1
1
i
6,1
]
i
1
cp
2
^
1
1
t
1
1
n
1
1
1
innr
200
800
UOO
1400
600
600C
uot
1400
600
yuo
very Light
j/y i
Medium & Long
10? Fila 10» Small 60?Med
'nSof Floe Fila Gran-thin
20?
Non
10* Fila-Gran Thin
Clear
3/10 _
Negligible
Npfflitrible
Negligible
.266
Medium Brown
:ipai
3
1
1
1
1
2
,
1
1
P
1
p
ji s
p
1
]
1
1
1
e
3
J
ji
n°
•t
i
nr
k
1
1
1
rr
1
}j
i
Floe
1.000
1.200
800
I,BOO
POO
290
loo
1400
200
Very Light
2/98
Medium & Long
Negl.Fila-(Same as West)
(Same as West)
20?
Non
10* Fila-Gran Thin
Irftptnthrls Snhiuirntnin
NotAnn "
Free Zooglea, coarse
Zooglea Ramlgera
Slime Clots , Zoogleal
•Ribbon-Conglom-FloclB.Gigaa ]
f
;r»AQ" •
1.4 k« pnitof)
X Aetlno Involved
Nocardla Mrcelia
* KhriT-f Pnrv
Fungus Pil. Large Tyoe
Fiber Count
Negl.
Negl.
Some
10/10
10?
Negl.
Negl.
141
-------
APPENDIX N
Mic-l-10/66/69
Date
August 10. 19YO
MICROSCOPIC COUNT OF MIXED LIQUOR PER MILLILITER AT 0.25* SOLIDS
10 Fields (200 PWR) Total Count x 200 • Count/Ml,
Solids diluted to 0.125$
VfFJT M.I.. . EAST M.L.
M.L. Temp.
Solids
Color
Supernatant
Peritrichia Epistilis
Opercularia
Zoothanium
Carcheslum
Vorticella
Holotrlchia Colpoda-Colpldium
Loxoplyllum
Chaenia
Chilidon
Spirotrlchia Aspidisca
liypotrichia - Large Euplotes
Small
Suctoria Podophrva
Flagellates Large Euglena
Astasia
Small Flagellates
Medium Flagellates
Amoeblna Arcella
Rhizopoda Difflugla
Guttula
Proteua
Hotirers
Nematodes
Algae}
Leptospira/Fleld
Slime Molds .Small Amoeba ZooflaRellates/Field
Bacteria Background
Filament/Glime Ratio
Filament Length/Type
Type Floe J
Hoc size
Floe Connected >
Floe Thickness (Fluffy)
Floe Fragmentation}
Microscopic Turbidity
Remarks
Heterogeneous .Conslomerate Floe
West > 90* Granular
East > 90% Granular
(Thiooystis
Sulnhur Bacteria (3. Giaaa .etc
W««t. .larked BeR.OiKas.Sairulima
It Thiocvstis
East Negligible
72°
.217
Dark Orev Brown
Gliphtlv Turbid
1
1
1
1
{1
pi,
]•
1
^
V
1
1
fi
]
pi
i
h
]
2
1
1
1
tS
1
1
1
iJtoV
liOO
bOO
uoo
200
1400C
UOO
loOO
Very Hiph Count
Low
Ne^lipible Filaments
ilot Aonli cable
LO>Pin/Small & Medium 10',:
< 20£
,'Jon-fluffy
10> Granular
Clear
Hi/zh
1/10
Marked
10/10
Neplipible
Low
Low
>pt
fl
..?56
Medium Red urown
1
1
]
T
i
i
L
i
1
2
1
1
'*
\i
'J
1
1
J
1
L
]
2
2
1
If
1
1
1
1
L
1
iitoo
ipon
llOO
600
600
ciOO
2aon
600
1000
Negligible
Very LiRht
rieelipible Filaments
Not Annlicable
Floe Gran hetero-Con^lom
lO^Pin . 10 JSnall* frfedKELSe
> 20J
lion-fluffy
10,; Granular
Clear
othr^j Sphvirotl 1 ifl
• t.nna "
Free Zooglea, coarse
ZooRlea Ramiaera
Slime Clots, Zoogleal
*Ribbon-Conglora-Floc(B.51gaa]
nrrnsr -
1.1 k« Nnrt»,
X Actlno Involved
Nocardia Mycelia
ShnT^ Vni-m
FUDKUS Fil. Laroe TYDC
Fiber Count
Low
Hefl.
-------
APPENDIX N
Mic-l-10/66/69
Date November 13. 1Q7Q
MICROSCOPIC COUNT OF MIXED LIQUOR PER MILLILITER AT 0.25J SOLIDS
10 Fields (200 PVR) Total Count x 200 • Count/KL
Solids diluted to 0.125*
WEST M.L..
M.L. Temp.
Solids
Color
Supernatant
Perltrichia Epiatills
Opercularia
Zoothanium
Carcbeslum
Vorticella
Uolotrlchla Colpoda-Colpldlum
Loxoplyllum
Chaenia
ChilidQn
Spirotrichia Aspidisca
Uypotrichia - Large Euplotea
Small
Suctoria Podophrya
Flagellates Large Peranena Trichoohorum
Astasia
Small Flagellates
Medium Flagellates
Aooeblna Arcella
Rhlzopoda Oifflugia
Guttula
Proteus
Hotirers
Nematodes
Algae)
Leptosplra/Fleld
Slime Moldo. Small Amoeba Zooflaoellates /Field
Bacteria Backaround
Filament/Slime Ratio
Filament Length/Type
Type Floe J
rioc size
Floe Connected >
Floe Thickness I Fluffy)
Floe Fragmentation*
Microscopic Turbidity
RemarKs
Heterogeneous .Conglomerate Floe
West =20>
(Thiooystls
ffVllBbVJ fiM*V^* 'B- Gieas.etc
u..t Some
baat Low
67° F
.331*
Brovn Grey
w
1
.-,
i
1,
1
'
f
]
\
urh1
]
J
/^
]
1
1
Ruqn F OC
1
2
|
1
]
1
]
1
Lnn
600
1(00
200
£QQ_
HIKl
fcOO
^uu
200
800
200
200
Moderately Heavy
s/1??
Medium Lone Very LonR
Fila-Gran-Open-Lacey-Ligh^
10X Pin to 20% x .arse
30?
Fluffy
io2
Clear
Marked
Some
10/10
?02
Mark pd
Very Marked
Marked
.310
Brovn Grey
Turbid some bus
1
1
]
1
1
1
|
1
},
1
1
1
1
1
]
1
]
rioc
•]
1
B.
1
L
2,00
UOO
200
600
Lnr>
000
600
800
?°° !
ItOO
Lieht
2 .'98
Not Exposed
Granular, Lacey
10S Pin. 20)i Small
20*
Non-Fluffy
10? Granular Pin
Clear
[^p^pthr^j 5DtHflrOTi^^^n
^.|an. "
Free Zooglea. coarse
Slime Clots, Zoogleal
•Rlbbon-Conglom-Floc(B.Slgu ]
Grease- « -
Mir. Nnri..
llocardla Mycelia
^Hff1^ Vr»i-«
Funffus Fil* Larice Tnc
Fiber Count
Mign
Low (but Ige)
Low
?0/10
201
Some
Marked
Marked
143
-------
1
V
5
Accession Number
V
n Subject Field & Group
05D
SELECTED WATER RESOURCES ABSTRACTS
INPUT TRANSACTION FORM
Organization
Milwaukee, Wisconsin
JLl
Title
Phosphorus Removal with Pickle Liquor in an Activated Sludge Plant
J Q Authors)
Leary , Raymond D.
Ernest , Lawrence A.
Powell, Roland S.
Manthe, Richard M.
16 1 Pn^0cl Designation
' EPA WQO
Project #11010 FLQ
21 1 Note
221
Citation
Proceedings of the Porcelain Enamel Institute Technical Forum, Volume 32,
Page 103, 1970
23
Descriptors (Starred First)
"Activated Sludge, "Biological Treatment, "Chemical Precipitation, "Iron,
"Phosphorus, "Waste Treatment, Ferrous Sulfate, Pickle Liquor, Phosphorus Removal,
Sewerage Commission of the City of Milwaukee
25
Identifiers (Starred First)
27
Abstract
The Milwaukee Sewerage Commission's Jones Island Waste Water Treatment Plant
consists of a mutual primary treatment facility followed by two separate activated
sludge plants. To enhance phosphorus removal in the 115 MOD East Plant, spent hot
sulfuric acid pickle liquor (ferrous sulfate) was added for a one year test period.
The 85 MOD West Plant was operated as a control.
The major objective of the iron addition was to maintain an East Plant effluent
total phosphorus concentration of 0.50 mg/1 P. The East Plant effluent total
phosphorus concentration during the 1970 project period from January 12 to
December 31, 1970 averaged 0.70 mg/1 P representing 91.3$ removal. The East Plant
effluent total soluble phosphorus concentration averaged 0.30 mg/1 P or 90.7$
removal. Modification and automation of the iron addition which was completed
in December 1970 will further reduce East Plant soluble phosphorus residuals.
Comparison of the efficiencies of the West and East Plants in removing BOD,
COD, and suspended solids as well as microscopic examination of the mixed liquors
indicates that the addition of the unneutralized pickle liquor did not adversely
affect purification.
Waste pickle liquor can be and is being utilized at the Milwaukee Jones Island
Plant to enhance phosphorus removal.
Abstractor
Manthe, Richard M. |
Ifixtittit ion
Sewerage Commission of the City of Milwaukee
W R : 1 D 2 I R C V. JULY
WRSI C
SEND, WITH COPY OF DOCUMENT. TO: WATER RESOURCES SCIENTIFIC INFORMATION CENTER
U.S. DEPARTMENT OF THE INTERIOR
WASHINGTON, D. C. 20240
CPO: 1970 - 407 -B»l
------- |