EPA-660/3-75-021
 JUNE 1975
                                        Ecological Research Series
 [ooplankton  Production  in  Lake Ontario
as Influenced  by Environmental
Perturbations
                                      National Environmental Research Center
                                        Office of Research and Development
                                       U.S. Environmental Protection Agency
                                               CorvaHis, Oregon 97330

-------
                      RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development,
U.S. Environmental Protection Agency, have been grouped into
five series.  These five broad categories were established to
facilitate further development and application of environmental
technology.  Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in
related fields.  The five series are:

          1.   Environmental Health Effects Research
          2.   Environmental Protection Technology
          3.   Ecological Research
          4.   Environmental Monitoring
          5.   Socioeconomic Environmental Studies

This report has been assigned to the ECOLOGICAL RESEARCH STUDIES
series.  This series describes research on the effects of pollution
on humans, plant and animal species, and materials.  Problems are
assessed for their long- and short-term influences.  Investigations
include formation, transport, and pathway studies to determine the
fate of pollutants and their effects.  This work provides the technical
basis for setting standards to minimize undesirable changes in living
organisms in the aquatic, terrestrial and atmospheric environments.

                         EPA REVIEW NOTICE

This report has been reviewed by the Office of Research and
Development, EPA, and approved for publication.  Approval does
not signify that the contents necessarily reflect the views and
policies of the Environmental Protection Agency, nor does mention
of trade names or commercial products constitute endorsement or
recommendation for use.

-------
                                  EPA-660/3-75-021
                                  JUNE  1975
ZOOPLANKFON PRODUCTION IN LAKE ONTARIO AS

INFLUENCED BY ENVIRONMENTAL PERTURBATIONS
           Donald C. McNaught
             Marlene Buzzard
              Steve Levine
    Department of Biological Sciences
 State University of New  York at Albany
         Albany, New York  12222
              Grant  800536
          Program Element 1BA026
          ROAP/Task  No.  21AKT/35
             PROJECT  OFFICER
            Nelson A. Thomas
 National Environmental Research Center
          Grosse lie,  Labpratory
 NATIONAL ENVIRONMENTAL RESEARCH CENTER
   OFFICE OF RESEARCH AND DEVELOPMENT
  U.S. ENVIRONMENTAL PROTECTION AGENCY
        CORVALLIS, OREGON   97330
   For sale by the Superintendent of Documents', U.S. Government
         Printing Office, Washington, D.C. 20402

-------
                             ABSTRACT
     The Crustacean zooplankton are excellent indicators of environmental
perturbation, especially if enough of their biology is known to explain
why certain species increase with nutrient enrichment of lakes.  The dis-
tribution of zooplankton in Lake Ontario suggested that eutrophic indi-
cators were found in the vicinity of major urban centers.  The ratio of
the number of Bosmina longirostris, the most successful eutrophic species,
to Diaptomus sicilis, the most oligotrophic form, supported this con-
clusion.  Furthermore, mathematical indices, including diversity, the
community competition coefficient, and carrying capacity, separated urban
inshore from rural inshore waters, further evidence of perturbation.
Biomass estimates made with new acoustical techniques indicated that most
of the zooplankton biomass was in deep waters, thus the eutrophication
of Ontario's waters, both nearshore and in the vicinity of cities, is
still localized in nature.  Mathematical techniques have been developed
to model such perturbations.

     The report was submitted in fulfillment of an EPA project, Grant No.
800536, by the State University of New York at Albany under the sponsor-
ship of the Environmental Protection Agency.  Work was completed as of
15 August 1974.
                                ±i

-------
                               CONTENTS


Sections

I      Conclusions and Recommendations                               1

II     Introduction                                                  3

III    Methods                                                       5

IV     Analysis of Zooplanfcton Populations                          10

V      Effects of Urban Centers on Zooplanfcfcon Biomass               30

VI     Acoustical Estimates of zooplankton Biomass                  ^Q

VII    Comparative Mathematics Analysis of Zooplankton               gi^
       Communities

VIII   A Hypothesis on Calanoid Succession to Cladocerans            71
       During Eutrophication

IX     References                                                   78

X      Appendices                                                   33
                                   iii

-------
                                FIGURES


MO.

1    Design of a continuous-efficiency net calibrator.               7

2    Filtering efficiency with depth for 3 vertical tows             8
      (100 m- Om, 50 m - Om and 25 m - Om) made in
      Lake Ontario.

3    Density (no./rn^) of eutrophic Cladoceran Bosmina               IT
      longirostris on 21 - 25 August 1972 in surface waters
      (0 - 5m) of Lake Ontario at 60 stations of IFYGL
      Biology Program.

h    Density (no./m3) of oligotrophic Bosmina coregoni on           19
      21 - 25 August 1972 in surface waters "(0 -5 m)...

5    Density (no./m3) of eutrophic Daphnia retrocurva on            20
      21 - 25 August 1972 in surface waters (6-5 mj...

6    Density (no0/m3) of ultra-oligotrophic Diaptomus sicilis       21
      on 10 - lU July 1972 in surface waters (0 - 5 m)...

7    Density (no./m3) of mesotrophic Diaptomus minutus              22
      on 12 - 16 June 1972 in surface waters (0 - 5m)...

8    Density (no./m^) of Cyclopoid copepodites on 21 - 25 August    2k
      1972 in surface waters (0-5 m)...

9    Density (no./m^) of Cyclops bieuspidatus on 10 - lU July       25
      1972 in surface waters (0 - 5 m)...

10    Density (no./m^) of Cyclops vernalis on 21 - 25 August         26
      1972 in surface waters (0 - 5 m)...

11    Density (no./nr) of Tropocyttlops prasinus on 3 Octobwr         27
      2 November 1972 in surface waters (0 - JTin)...

12    Lake Ontario, divided into three areas of differing            32
      trophy and community structure...

13    Relationship between backscattering strength and size          ^1
      of spherical particles for five frequencies...

lU    Regression of zooplankton biomass (g. dry wt/m3) against       ^8
      acoustical reflectivity (D.C. volts/m3), made from
      actual samples and acoustical profiles collected
      simultaneously on Lake Ontario.

                                    iv

-------
                          FIGURES (CONTINUED)


No*                                                                 Page

15    Relative biomass (%) per 5 m interval versus depth (a)          53
      for 21 •- 25 August 1972, 30 October - 3 November 1972,
      and 12-16 June 1973.

16    Column biomass (g dry wt/nr ) during August 1972.                56

17    Column biomasa (g dry vt/m2) during February 1973.              59

18    Column bioaass (g dry wt/m2) during June 1973.                  62

19    Filtering rate compared to food concentration for               75
      Daphnia and Diaptomus and ingestion rates at these
      same food concentrations.

-------
                                TABIES


Table

1     inshore zooplankton population Densities.                      12

2     Offshore zooplankton population densities,                     lit

3     Comparison of areas under stress with oligotrophie areas       29
      on "basis of relative densities of Diaptcmus sicilis +
      minutus aad Bosmina longirostris.

U     Comparative mean densities of crustacean zooplankton           33
      from 0 - 5 m depth, contrasting urban inshore versus
      offshore community composition.

5a    Big Cities (inshore) community structure.                      35

5b    inshore (less Big Cities) community structure.                 36

6     Offshore community structure.                                  37

7     Analysis of variance (2 - way ANOVA) for effect                38
      of location and time on density, community
      competition coefficient, etc.

8     Correction factors for acoustical returns necessary           h2
      to equate returns to bicmass of zooplankton.

9a    Example of unconnected acoustical reflectivity at             bk
      four frequencies over 100 channels of 1% depth
      increments.  Lake Ontario, Station 17, August 1972.

9b    Corrected acoustical profiles.                                1^5

9c    Differences between reflectivities at adjacent                k6
      frequency envelopes (120 - 80 kHz, 200 - 120 kHz,
      and 500 - 200 kHz).

9d    Three profiles at constant 5 m intervals.                     ^

10    Acoustical reflectivity for three frequency                   50
      envelopes for 21 - 25 August 1972.

11    Mean acoustical reflectivity and relative bicmass.            5^

12    Acoustical reflectivity, estimated column biomass,            51*
      column volume, and blooass per unit volume for
      all stations, August 1972.

                                    vi

-------
                          TABLES (CONTINUED)


Table                                                               Page

13    Acoustical reflectivity, estimated column biomass,              58
      column volume and bicnass per unit volume for
      all stations, Lake Ontario, February 1973.

ih    Acoustical reflectivity, estimated column bicmass,              60
      column volume, and bicmass per unit volume for
      all stations, June 1973.

15    Comparison of acoustical bicmass estimates over                 63
      0 - 50 m column, with those of Watson (197*0.

16    Growth characteristics and a grazing estimate for               73
      hypothetical populations of zooplankton in an
      oligotrophic versus a mesotrophic lake.

17    Lakewide average of zooplankton densities.                      8k

18    Mean zooplankton population densities, 0 - 5 m.                 86

19    Mean zooplankton population densities, 0 - 50 m.                88
                                   vii

-------
                            ACKNOWLEDGMENTS
This study was undertaken as a part of the international Field Year for
the Great Lakes, a joint United States and Canadian contribution to the
International Hydrological Decade.  Logistic support w.s provided by
National Oceanic and Atmospheric Administration, with special thanks
to the men of the R/V Researcher.  Mr. Nelson A. Thomas, the Project
Officer, was of help in many aspects of this study including arrangement
of field operations.  Dr. Tudor T. Davies, Director of Grosse lie
Laboratory, provided facilities for data processing and writing during
my tenure there.  Robert Zeh designed the sonar and net efficiency
device.  Messrs. S. Markello, J. Mylroie, R. Zeh, and R. Schmidt
assisted aboard ship.  Dave Griesmer assisted in plotting the figures,
which Ryland Loos drew.
                                  viii

-------
                               SECTION I

                    CONCLUSIONS AND RECOMMENDATIONS
The horizontal distribution of the crustacean zooplankton of Lake
Ontario suggested that eutrophic indicator species were generally
found in the vicinity of Metropolitan Toronto, the Oswego River,
Mexico Bay, and Popham and Weller's Bays.  The shallow bays of Lake
Ontario likely represent areas of natural eutrophication, whereas
conditions off Toronto and Oswego deserve special attention, as these
areas of the lake are likely in a stage of accelerated cultural
eutrophication (Section IV).  Action in the near future is important
to reverse eutrophication in these perturbed regions.

The impact of urban areas upon the crustacean zooplankton was also
visible when using community matrix techniques to characterize
watermasses.  Zooplankton communities, considered together, showed
greatest perturbation when in shallow waters near urban areas;
correspondingly, least perturbation was associated with communities
of deep waters (Section V).  Thus the deepwater communities still
contain important oligotrophic species vital to a stable community
structure.

Biomass estimates made with new acoustical techni
-------
Mathematical techniques have been developed, to model zooplankton
communities, using new application of the community matrix.   Eventual
uses will include the development of simple mathematical indices
for perturbed communities.

-------
                              SECTION II

                             INTRODUCTION
The production of zooplankton in Lake Onatrio is closely related to
environmental perturbations, including the input of plant nutrients
and the introduction of exotic fishes.  The principal purpose of this
study, during The International Field Year on the Great Lakes, was
to examine the abundance of zooplankton with regard to likely sources
of nutrients and other perturbing factors, and then to evaluate the
quality of this environment using the tools of modern ecology.  These
included both mathematical tools, such as expressions for community
stability, as well as electronic devices such as our zooplankton-
sensitive echo-sounder.  With the results of this program now analyzed,
we have a much better picture of specific regions along the shorelines
of Lake Ontario where eutrophication is proceeding at an increased
rate; in addition, it has been observed that even the deep-water
communities sometimes exhibit signs of environmental instability.

In Section III we have listed the methods used, including traditional
collection techniques with fine-meshed (6^y) plankton nets, as well
as acoustical methods for determining the total biomass of zooplankton
in the water column.  In addition, a detailed discussion of the
collecting efficiency of nets has been included, with the result that
we have suddenly realized that previous estimates of zooplankton
biomass have been consistently low, by at least a factor of 2 and
possibly by as much as one magnitude.

The seasonal distribution of the zooplankton crustaceans is important
to modelling grazing and fish production.  Detailed summaries for all
ten cruises on Lake Ontario have been included in Section IV.  In
addition, horizontal distributions of all dominant species have been
interpolated using the 60 station IFYGL grid.  Analysis of these
distributions, coupled with a subjective division of the crustacean
zooplankton into oligotrophic and eutrophic indicators, has provided
us with a detailed picture of the polluted regions of Lake Ontario,
so that sources of plant nutrients may be identified and logical steps
taken to reduce the rate of degradation of this vital ecosystem.  One
important function of this distribution analysis of the zooplankton
is to identify in-basin sources of pollution, as opposed to perturbations
resulting from the inflow of nutrients from Lake Erie.

Certainly urban concentrations of people, as well as industry and
agriculture, are likely sources of nutrients and other perturbations.
In the Lake Ontario basin most urban centers are also associated
with rivers, whose mouths serve as natural harbors.  In Section V we
have examined the effects of urban centers and associated agricultural
drainage upon inshore communities of zooplankton.  Certainly the effects
are most striking.

-------
In modelling the trophic dynamics of a large ecosystem,  not only are
the fluxes of materials and energy difficult to quantify,  but the
standing crops of organisms ere both difficult and time-consuming to
estimate if traditional techniques of plankton sampling  are employed.
In Section VI we have presented our new acoustical method  for the
estimation of zooplankton bicmass over the entire water  column et
each sampling station.  The results suggest that others  may have
previously underestimated the abundance of zooplankton in  Lake Ontario.
These results will enable more realistic ecosystem models  to be
constructed, with a better understanding of the magnitude  of zooplankton
grazing.

Our estimates of the impact of urban areas upon water quality (Section V)
utilize one form of the competition matrix to interpret  community
structure on a comparative basis.  In Section VII Dr. Steven Levine
has investigated community structure with a new modification of this
matrix.  This approach enables us to estimate community  stability,
or the relative lack thereof, again from information on  species
abundance.

The changes in the composition of the crustacean zooplankton in
Lake Ontario, both on a geographical basis and with historical time,
are certainly related to their trophic relationships, especially
selective feeding upon certain algal forms.  In Section  VIII we have
suggested a new hypothesis to explain these dramatic community changes
occurring as Lake Ontario becomes more perturbed.

The appendix includes summaries of the zooplankton composition on
each IFYGL cruise, as well as a selected sample of results (h cruises),
from using our acoustical device in estimating zooplankton bicmass.

-------
                              SECTION III

                                METHODS
GENERAL FIELD TECHNIQUES

Zooplankton net samples

Vertical plankton hauls were taken from the NCAA R/V Researcher at the
60 IFYGL sampling stations on the 10 IFYGL cruises.   Fortunately
these 60 stations selected by the IFYGL Management were comparable
within the framework of our lakewide division,  described in Sections V
and VI.  The urban inshore stations had a mean  depth of 1^.0 m,
whereas those stations designated rural inshore had  a mean depth  of
18.5 m.  Samples were collected from 5 m depth  to the surface,
0 - 25, 0 - 50, 0 - 100, 0 - 150 and 0 - 200 m  using a plankton net
0.8 m in diameter, with mesh apertures of 15^y  for  cruises 1-3
and of 6^V  thereafter.  The zooplankton in these samples were relaxed
with COo, preserved in buffered formalin (pH 7.0), and counted in the
laboratory.  Approximately 3% of the most abundant forms in each
sample were counted, whereas all of the rare species were tallied.*
Thus we were able to discover 6 specimens of Diaptomus ashlandi
obscurred among the first 300,000 animals identified to species I

Acoustical profiles

At each station four acoustical profiles were recorded, both on
paper tape and on an X-Y plotter for immediate  inspection.  These
profiles were made at frequencies of 80, 120, 200 and 500 kHz.  The
theory behind acoustical sampling, the program  developed for data
reduction, and actual examples of such data will be  presented in
Section VI and in the Appendix.
*Wote:  plankton densities used in analyses found in Sections  IV  and V
are observed densities.  That is, the number per  unit volume  (nP) was
determined from a consideration of the amount of  water in a hypothetical
column of a given depth and from a consideration  of the number of
animals captured in those waters.  If corrected densities are  required
for modelling, multiply observed densities by 2.01 for samples from
the 0 - 5 m strata.  Likewise the data on density in the Appendix have
not been adjusted.  In calculating lakewide biomass (Section VI)  the
net efficiency was considered.  Thus the densities of zooplankton
and biomass estimates in Section VI are corrected for the inefficiency
of net sampling.  These data do not need to be adjusted.

-------
PERFORMANCE OF ZOOPLANKTOH HETS

Introduction

Our purpose was to design a meter to measure the efficiency of a
plankton net in a continuous fashion.  Vertical net-hauls remain  a
principal tool of many limnological investigators.  In making such
hauls the nets encounter successive water layers containing varying
densities of organisms.  With such encounters, a net becomes progres-
sively more clogged.  Thus a simple measure of total flow tells
little, for the net could have an efficiency of 15 to 70$ when a
distinct layer is encountered.  But a continuous measure will enable
an investigator to tell precisely the efficiency at any point in  the
water column.

These measures of efficiency which we have made will be of considerable
use.  They suggest that standing crops of zooplenkton in Lake Ontario
are 2-5 times larger than previously anticipated.

Construction and Operation

Two plastic rotor assemblies (Fig. 1), consists of a propeller 10cm
in length mounted upon a shaft, with a magnet mounted off -axis at
the opposite end.  Each time the shaft rotates, a magnetic switch
is closed, thereby applying a signal to a magnetic tape recorder.
One rotor assembly was mounted 7.5 cm below the rim of a 3/^ m dia .
net and 17 cm from the rim.  The other rotor was mounted 15 cm
outside the rim.  The electronics were mounted in a sealed pipe 12  cm
in diameter, which served also as a weight.  It was easily sealed
to withstand pressures to 150 m.

The electronics consisted of two free-running mult i- vibrators operating
at widely different frequencies .  The magnetic switch, closing at a
rate of once per revolution, is registered on a magnetic tape.  The
information was stored on the magnetic tape.  It was made by
transcribing the tape slowly (1/15 original) into a recording potentio-
meter.  One may visibly separate the two frequencies and thus count
the number of times the magnetic switches closed.

Results of field-trial
A 3/U m dia. net with mesh aperture of 6^1 was calibrated on Lake
Ontario.  The net was lowered to 25, 50 and 100 m and raised to the
normal speed (slow) of a B.T. winch.

The results (Fig. 2) show a curvilinear decrease in filtering
efficiency.  Whether the net was lowered to 25 or 100 m depth,
initially the efficiency was 65 - 70$.  In each case the efficiency
had dropped to 15 - 30 % by the time it reached the surface.  Nets
fished only in the trophogenic zone showed a steeper rate of decrease

-------
Outside
flowmeter
  Net
  flowmeter
                                                                                  Outside
                                                                                  flowmeter
                  Net
                  flowmeter
                                              Plankton
                                               cup
                                             Instrument
                                             package
Propeller-

 Teflon
 bearings
                                                                                                    Shaft
                                                                                                 ,Reed switch

                                                                                                   Eccentric
                                                                                                    magnet


;h L
c



o



\
.— 0

                                                                                                 High
                                                                                               frequency
                                                                                               oscillator
       Low
    frequency
    oscillator
                                                                                                     Tape
                                                                                                    recorder
                  Figure 1.  Design  of a  continuous-efficiency net  calibrator

-------
O3
          80 r
          70 -
          60
o
c
0)

£  40
M—
UJ



55  30
          20
           10
           0
                                            o o o
                                                            000
             100
                           o 0-50

                           • 0-100

                           <» 0-25
                     75
  50

Depth (m)
25
J

0
                   2. .  Filtering efficiency with depth for 3 vertical tows C1OO m - O
                     SO m — O m, and 2.5 m — O m> me»c3
-------
(0 - 25 m tow) than nets fished in deeper,  less  productive waters
(0 - 100 m).  In any case, without such a device,  it  obviously is
impossible to predict the efficiency of a net at the  moment  it
encounters a layer of plankton.

Recommendations

Devices are currently available, such as high-frequency sonar,
which graphically delimit layers of zooplankton  (see  Part VI).
Combined with such graphic devices, a net equipped with the  device
described herein is a logical companion, permitting precise  estimates
of net efficiency at any level during a vertical tow.

-------
                               SECTION IV

                   ANALYSIS  OF ZOOPLANKTON POPULATIONS
 Both seasonal patterns in species  abundance and estimates of
 secondary productivity are important  in understanding the dynamics of
 competing species,  let alone  relating their dynamics to that of the
 primary producers.   We have produced  detailed information on the
 abundance of all species  of Cladocera and Copepoda  (Crustacea) at the
 60 stations of the  IFYGL  Lake Ontario grid.  Estimates of standing
 crop are vital in estimating  zooplankton grazing.  Horizontal
 distribution is important to  understanding the development of
 populations, with regard  to the  non-homogeneous or clumped distribution
 of their food resources.

 SEASONAL DISTRIBUTION OF  THE  CRUSTACEA

 Bosmina longirostris, the most abundant cladoceran of Lake Ontario,
 began to increase in abundance in  April and May in inshore waters,
 although rapid population growth does not result in large standing
 crops until June (Table 1).   Maximum  densities were reached in
 August inshore.  In deeper, offshore  waters, the initial standing
 crops were lower in May and June,  but July and August densities were
 as  high as 63,691/m3 (Table 2).  Following a population crash in
 November,  Bosmina over-wintered  as parthenogenetic females, at densities
 of  only 0.3-10.2/m3.

 Bosmina coregoni, a  larger Bosminid considered characteristic of
 oligotrophic waters  (see  Section VIII), is also found in Lake Ontario.
 It  likewise overwinters at densities  of k - 65/m3, but is currently
 much less  successful in Lake  Ontario, reaching a maximum density of
 2,050/m3 offshore in October  (Table 2).

 Among the  daphnids,  Daphnia retrocurva is currently most successful in
 epilimnetic waters,  again with an  August maximum (11,965/m^) offshore
 (Table 2).   The smaller Ceriodaphnia  lacustris is chiefly a summer
 form,  as is Holopedium gibber urn.   Diaphanoscma sp. is a winter form,
 in  relatively low numbers (4  - 9/mJ)  from November through March
 (Table 2).

 Polyphemus  pediculus,  a non-bivalve cladoceran often considered
 predatory,  is  found  only  during August in offshore waters (Table 2).

 Cyclops  bicuspidatus was  the most  common cyclopoid of the offshore
waters,  whereas Tropocyclops prasinus was more common inshore (Table  2).
Cf bicuspidatus was most abundant during July and August (l2,V78/m3),
and overwintered at high densities (121-^52/m3) in offshore waters
 (Table 2).  C. vernalis likewise reached its maximum abundance in
                                10

-------
August, but never exceeded densities of 650/nr.  Tropocyclops is an
autumnal species, which reached densities of 1^,Ib5/m^ offshore at the
same time.  Thus not  only do C. bicuspidatus and T. pr a sinus show
different seasonal patterns, tiut their gross horizontal distribution,
to be  examined  further, is complimentary.

The calanoid  copepods, often abundant in oligotrophic waters, are a
diverse assemblage in Lake Ontario, but are never especially abundant.
Unidentified  copepodites were most alondant inshore during October-
November.  The  classical oligotrophic indicator, Diaptomus sicilis,
was most abundant offshore in June (lo^/m^) and July (119/m3"J^
Burytemora affinis, the recent invader from the sea, never exceeded
2350/mJ  (August) in inshore waters (Table 1).

These  data on relative density clearly indicate that Lake Ontario is
characterized by a single seasonal peak in zooplankton production
which  occurs  during August.  Most species overwinter in the lake as
adults,  the  exceptions being the rare cladocerans, Holopedium,
Polyphemus and  Diaphanosoma.
                                  11

-------
                 Table  1.   INSHORE ZOOPIANKTON POPULATION DENSITIES.  Values  (number/m3) represent
                            animals collected with net (6k u aperture) at stations in waters less
                            than 30 m in depth, over vertical range  of 0 - 5 m.
Species
Cladocera
Bosmina
coregoni
Bosmina
longirostris
Daphnia
galeate
Daphnia
retrocurva
Daphnia
longiremis
Ceriodaphnia
laeustris
Chydorus
sphaerieus
Holopedium
gibber urn
Polyphemus
pediculus
Diaphanosoma
Cyclopoida
Cyclopoid
copepodites
Cyclops
bicuspidatus
Cyclops
vernalis
15-19
May
13. ^
41.4
0.5
0.
0.
0.
0.1
0.
0.
0.
132. o
L70.1
0.7
12-16 10-14 21-25 Oct- Nov- 5-9 19-22 24-28 12-16
June July Aug Nov Dec Feb Mar April June
62.2
88?.
23.8 |
22.8 1
0.3 i
0.5
19.7 ;
0.7
0.
0.
418.
534.
25.7
2040.
9844.
78.6
86.0 '
0.3 j
101.
94.4
0.
0.
0.
1193.
5818.
146.
547.
97,741.
299.
8676.
0.
39«9.
358.
30.
4.
20.
21,552.
4274.
881.
3628.
2073.
24.8 i
2331.
30.3 i
13».
70.
4.5
0.
3.8
11,003.
1 932.
262.
1246.
126.4
56.8
689.
0.
4.9
610.
0.
0.
14.0
7532.
723.
129.
64.5
8.8
13.1
8.7
0.
0.
0.
0.
0.
0.
1893.
145.
8.3
62.7
3.5
1.9
2.4
0.
0.
1.5
0.
0.
9.0
1145.
184.
11.6
20.5
10.2
6.1
8.5
5.2
13.6
12.0
0.
0.
0.
1341.
13&3.
11.0
152.
2723.
12.3
39.5
6.0
27.1
26.3
0.
0.
0.
17482.
639.
203.
H
ro

-------
Table 1 (continued).  INSHORE ZOOPLANKFON POPULATION DENSITIES.  Values (mmber/m3) represent
                      animals collected with net  (64 u aperture) at stations in waters less
                      than 30 m in depth, over vertical range of 0 - 5 nu
15-19 12-16 10-14 21-25 Oct- Nov- 5-9 19-22 24-28 12-16
Species May June July Aug Nov Dec Feb Mar April June
Cyclopoida "^coii
Tropocyclops
pra sinus
Mesocyclops
Calanoida
Calanoid
copepodites
Diaptomus
ashlandi
Diaptomus
siciloides
Diaptomus
minutus
Diaptomus
oregonensis
Diaptomus
sicilis
Limn oca lanus
macrurus
Eurytemora
affinis
t)
0.5
0.8
28.4
0.
0.
0.7
12.7
59.6
0.
25.6
68.8
-
0.
50.3
25.4
39.8
309.
16.8
247.
+
209.
-
0.
84.4
105.
117.
88.7
0.
2000.
++
148.
0.
0.2
49.
17.5
8.8
8.0
2350.
14,185.
+
494.
-
21.9

60.9
63.3
33.7
161.3
1278.
218.
11.3
13.0
43.3
90.3
54.4
38.9
28.2
189.5
45.4
0.
7.0
33.7
71.5
4l.O
40.2
3.0
53.5
63.4
15.9
2.1
45.5
13.4
39.3
52.2
0.
65.1
122.7
-
1.5
37.8
43.8
39.0
124.7
22.6
140.
+
266.
-
6.0
228.
6.8
14.9
38.0
l£.l

-------
Table 2.  OFFSHORE ZOOPLAMKTOW POPULATION DENSITIES.  Values  (number/m3) represent
          animals collected with net (64 u aperture) at stations  in waters greater
          than 30 m in depth, over vertical range of 0 - 5 m.
Species
Cladocera
Bosmina
coregoni
Bosmina
longirostris
Daphnia
galeata
Daphnia
retrocurva
Daphnia
longirerais
Ceriodaphnia
lacustris
Chydorus
sphaericus
Holopedium
gibber urn
Polyphemus
pediculus
Dlaphanosona
Cyclopoida
Cyclopoid
copepodit«.i
Cyclops
bicuspidctus
Cyclops
vernalis
15-19 12-16 10-14 21-25 Oct- Nov- 5-9 19-22 24-28 12-16
May June July Aug Hov Dec Feb Mar April June
0.5
28.
0.4
0.
0.
0.
0.
0.
0.
0.
86.7
344.
0.7
31.3
288.
22.2
15.9
0.
0.7
16.0
0.
0.
0.
322.
1424.
28.1
389.
13206.
3027.
149.
291*.
103.
64l.
53.9
0.
0.
2201.
12,478.
190.
1453.
63,691.
99.
11,965.
0.
1*202.
100.
7.
3.
2.5
29,143.
12,113.
643.
2050.
1784.
13.6
1733.9
0.7
1^9.8
33.5
1.5
0.
0.3
10,803.
1182.
132.
751.
75.^
8.5
66.7
0.2
59.6
0.7
0.
0.
0.
6820.
3^5.9
131.
11.0
0.3
0.
0.
0.
0.
0.
0.
0.
0.
2260.
121.0
13.2
4.4
1.2
0.2
0.
0.
0.
0.
0.
0.
0.
1600.
268.
! 4.9
5.8
2.1
0.
0.1
0.
0.5
0.
0.
0.
0.
664.
452.
0.9
66.1
972.2
0.9
25.7
0.2
6.7
5.9
0.
0.
0.
9674.
538.5
34.9

-------
Table 2 (continued).  OFFSHORE ZOOPIANKTOW POPULATION DENSITIES.  Values  (number/m3) represent
                      animals collected with net (6k u aperture)  at  stations  in waters greater
                      than 30 m in depth, over vertical range of  0 - 5 m.
15-19 12-16 10- lU 21-25 Oct- Hov- 5-9 19-22
Species May June July Aug Nov Dec Feb , Mar
Cyclopoida (c'di
Tropocyclops
pra sinus
Mesocyclops
Calanoida
Calanoid
copepodites
Diaptomus
ashlandi
Diaptomus
siciloides
Diaptomus
minutus
Diaptomus
oregonensis
Diaptomus
sicilis
Limnocalanus
macrurus
Eurytemora
af finis
t)
0.
-
19.9
0.
0.
56.7
0.8
22. k
S8.2
0.
10.8
+
60.U
0.
0.
225.
70.7
let.
183.
0.
65.6
4-
123.9
0.
0.
90.9
76.1
119 A
139.
0.
1676.
++
116.
0.
0.
73.7
107.5
17.
6.
117.6
3510.
+
331.
0.
2.5
27.8
35.8
26.1
23.8
110.1
886.7
+
128.3
0.
5.2
28.6
3^.5
28.3
22.9
22.6
159.8
-
36.6
0.8
0.3
1*2.8
9.3
2?.^
20. U
0.3
159.
-
72.il
0.
0.
5k.k
6.2
2U.5
50.8
0.
2k-28
April
257-5
-
9^.5
0.
0.
50.6
10.7
1A.8
127.0
9.5
12-16
June
287.9
-
155.6
0.
0.6
vr.3
1.9
2.5
l.U
l.lf

-------
 HORIZONTAL DISTRIBUTION OF CRUSTACEAN ZOOPLANKEOH
 AT SPECIES POPULATION MAXIM

 Water Duality is  reflected in the horizontal distribution of the
 crustacean zooplankton of Lake  Ontario.  From our sampling during the
 1972-73 IFYGL survey,  the distributions of each species are available
 from a variety of water strata.  In this section we will discuss the
 horizontal surface  (0 - 5 m)  distribution of dominant forms at the
 time of their seasonal population maxima.

 Biologically it is  important  to interpret horizontal distributions.
 Inputs of plant nutrients from rivers tributary to Lake Ontario likely
 influence secondary production.  Thus areas of unusually high standing
 crops of zooplankton are likely indicators of stimulation by pollutants
 of the nutrient-poor Ontario  ecosystem.  Likewise, physical factors
 like upwelling, with associated increases in available plant nutrients,
 may influence observed horizontal distributions of zooplankton.  In
 the final interpretation of Lake Ontario results, such information
 must be considered.

 Lastly, the Ontario ecosystem is extremely dynamic.  Large populations
 of warm-water cladocerans, initially developing inshore, may be
 carried offshore, with little final correspondence between the location
 of a clump in time  and the environmental factors which led to its
 development.

 The Cladocera

 The horizontal distributions  of the cladoceran and copepod crustaceans
 will be discussed as a sequence of possible eutrophic indicators from
 Bosmina longirostris,  the most useful key to extreme eutrophy, to
 Diaptomus  sicilis,  the most primitive oligotrophic form,

 The smallest  major  cLadoceran, Bosmina longirostris» is likely a
 eutrophic  indicator because of its diet, which permits grazing on
 large forms of aLgae.   It is  predominantly an inshore form (Section V),
 presently  close to  urban centers.  Bosmina longirostris was found in
 Ontario over  12 months,  but reached maximum density during August 1972,
 Clearly the horizontal distribution of B. longirostris is (a) character-
 ized by greater densities inshore, and fb) associated with urban
 shoreline  development  and river inflow.  At maximum development from
 21  -  25 August 1972, it reached densities of greater than 200,000/m3
 off Toronto,  Ontario,  and 300,000 off Oswego, New York (Figure 3).
 Likely the  Oswego case was influenced as much by the agricultural
 nutrient load of the Oswego River as by the city itself, whereas the
 effect  from Toronto is likely more directly associated with nutrients
 originating from the city.  In both cases, of course, such nutrient
 stimulation is  thought  to have its primary impact upon the phytoplankton,
with the response which we have observed so clearly in the zooplankton

-------
Figure 3.  Density (no./nr) of eutrophic Cladoceran Bosmina longirostris
           on 21 - 25 August 1972 in surface waters (0-5 m)""of Lake
           Ontario at 60 stations of IFYGL Biology Program

-------
 a secondary one.   But the  usefulness of Bosmina longirostris as an
 indicator of stress  is  obvious.

 Bosmina coregoni,  almost twice as large as B. longirostris at maturity,
 has been considered  an  oligotrophic form.  In contrast to the inshore
 preferences of B.-longirostris, B. coregoni exhibited offshore blooms
 of up to 30,0007m3,  also during 5l ~^~^5 August 1972.  These intense
 concentrations were  largely confined to the eastern end of Lake Ontario
 (Figure k), with large  aggregations of 20,000/m3 and I,500/m3 offshore
 of Rochester,  New  York, and a cell of lesser density at the outflow of
 the lake.

 The third common cladoceran, Daphnia retrocurva, while not classically
 used as an indicator of eutrophication, is a small species which
 withstands fish predation well, and thus is very successful.  Large
 inshore concentrations were found again at Oswego (35»000/m^) and just
 eastward from Oswego at Nine Mile Point (10,000/m3), the site of a
 nuclear power  plant  complex from 21 - 25 August 1972.  A third cell
 of maximum densities of 20,000/m3 was located west of Rochester
 (Figure 5).

 The Copepods

 Diaptomus sicjlis, in sharp contrast to the cladoceran Bosmina longiro-
 stris,  is the  most oligotrophic form in the Great Lakes, and remains
 the dominant species in oligotrophic Lake Superior.  As expected of an
 oligotrophic indicator, it develops its maximum population earlier (July)
 than Bosmina longirostris  (August), and this development occurs in
 deeper,  cooler midlake water-masses.  Currently not nearly as abundant as
 Bosmina,  D.  sicilis  densities during 1972 did not exceed 375/m3.  Two
 large cells were found  in eastern Lake Ontario (Figure 6), one occupying
 most  of the deepwater basin north of Rochester and Oswego, and the other
 between this larger  cell and the outlet during the period 10 - 1^ July
 1972.   Less  intense  inshore development was observed in shallow Mexico
 Bay in  the  extreme southeast corner of the lake and in the western
 portion just east of the Niagara River inflow.

 Diaptomus minutus, a more mesotrophic species with the predatory
 avoidance characteristics associated with small size at maturity, also
 exhibited an offshore distribution at maximum development.  Large
 clumps with relatively  low densities of 300 - 1000/m3 were found in both
 the western and eastern parts of Lake Ontario frcm 12-16 June 1973»
 In  contrast  to the cladocerans, these cells were always centered well
 offshore  (Figure 7).

 The cyclopoid  copepods have not been used as indicators of pollution
 in the traditional sense.  They are likely predators which obtain a
 living by piercing and sucking body fluids from rotifers and small
 crustaceans.   Three  species are dominant in Lake Ontario.  In order
 of abundance,  these  are Cyclops bicuspidatus, C. vernalis and
 Tropocyclops prasinus.  Cyclops bicuspidatus reached its population
maximum in July, C. vernalis in August, and Tropocyclops in October 1972.
                                 18

-------
H
vo
             Figure k.  Density  (no./m^) of oligotrophic Bosmina coregoni on 21 - 25
                        August 1972 in surface waters (0 - 5 m) of Lake Ontario at
                        60  stations of IFYGL Biology Program

-------
ro
o
              Figure 5.  Density (no./m^) of eutrophie Daphnia  retrocurva  on 21 -  25
                         August 1972 in surface waters (0 -  5 m) of Lake Ontario at
                         60 stations of IFYGL Biology Program

-------
Figure 6.  Density (no./m^) of ultra-oligotrophic  Diaptomus  sicilis
           on 10 - lU July 1972 in surface waters  (0 -  5m)  of Lake
           Ontario at 60 stations of IFYGL Biology Program

-------
to
ro
              Figure 7.  Density (no./m^) of mesotrophic Diaptomus minutus on 12 - 16

                         June 1972 in surface waters (0 -5m) of Lake Ontario at

                         60 stations of EFYGL Biology Program

-------
Cyclopoid copepodites, or immatures of the above three species, were
abundant from 21 - 25 August 1972, both inshore and offshore (Figure 8).
A large cell with maximum densities of 50,000/m3 was present in shallow
eutrophic Mexico Bay in southeast Lake Ontario, but the greatest
concentrations were in the central basin of the lake (100,000/m3) and
inshore just southwest of Toronto (90,000/m3).  Cyclopoids develop
rather slowly, and it is likely that large aggregations may drift
about the lake for long periods of time with little relationship to
the origin of the underlying environmental factors responsible for
their initial population explosion.

Cyclops bicuspidatus, the most, abundant of the cyclopoid copepods, is
a spring species reaching a maximum abundance by early (10 - lU) July.
In eastern Lake Ontario it was most abundant over deepwater at Station  75
(20,000/mJ).  In the western waters a large cell was located in midlake
(70,000/nr3) and another inshore at Toronto (50,000/m3).  The density
of Cyclops in the inflowing waters from Lake Erie was apparently rather
low (10,000/m3), as illustrated in Figure 9.  Since Cyclops is a seizer
and serum sucker probably feeding upon rotifers and small crustaceans,
its distribution may reflect the abundance of such foods, but is
likely less closely tied to algal and nutrient distributions and thus
is not useful as an indicator of environmental stress.

Cyclops vernalis was much less abundant than C. bicuspidatus.  Two
small concentrations were observed in western~~Lake Ontario during
August (Figure 10), one off of Toronto (1500/m3), from 21 - 25 August
1972.  Elsewhere densities ranged between 250 and 1500/ra3.  Together
with the data on C_. bicuspidatus, these densities of C. vernalis may
enable modellers to estimate the incidence of zooplankton (non-fish)
predators.

Tropocyclops prasinus is an autumnal form which reached densities of
335,000/m3 during October 1972 (Figure 11).  it was found in a very
large inshore bloom (200,000/m3) west of the Murray Canal, which
connects the Bay of Quinte to Lake Ontario, from 30 October through
3 November 1972.  The relationship of such blocms in Popham's Bay to
nutrient inputs from the Bay of Quinte should be answered.

Generalities Regarding the Horizontal Distribution of the
Crustacean Zooplankton

Certainly the cladocerans are most abundant close to shore, while the
copepods prefer deeper waters.  These data illustrate differences
within these two orders, indicating clearly that some cladocerans
prefer more eutrophic conditions than others, while seme copepods are
more oligotrophic than others.  Bosmina longirostris, clearly the most
eutrophic form, exhibits a tendency to explode in areas of known
perturbation, especially off the Oswego River and the City of Toronto.
Bosmina coregoni, a more oligotrophic indicator on a relative scale,
is found in large offshore clumps, well away from major sources of
inorganic and organic plant nutrients.   Daphnia retrocurva is

-------
to
             Figure 8.   Density (no./m^) of Cyclopoid copepodites  on 21 - 25 August
                        1972 in surface waters  (0 -  5 m)  of Lake Ontario at 60 stations
                        of IFYGL Biology Program

-------
ro
vn
               Figure 9-  Density (no./m3) of Cyclops bicuspidatus on 10 - I1* July
                          1972 in surface waters (0 - 5 m) of Lake Ontario at 60
                          stations of IFYGL Biology Program

-------
Figure 10.  Density (no./m3) of Cyclops vernalis  on 21 - 25 August 1972
            in surface waters (0 * 5m) of Lake Ontario at 60  stations
            of IFYGL Biology Program

-------
Figure 11.  Density (no./m^) of Tropocyclops prasinus on 30 October -
            3 November 1972 in surface waters (0 - 5 m) of Lake Ontario
            at 60 stations of IFYGL Biology Program

-------
intermediate between the Bosminas in its response, probably closer
to B. longirostris.

Clearly Diaptomus sicilis. often called the most oligotrophic crustacean,
exhibits an offshore distribution, as does Diaptomus minutus.  From
our observation, strongly influenced by information in the literature,
we have erected a continuum of species, indicative of early oligotrophy
to eutrophy.  For these found in Lake Ontario, the extremes might include:

                Early oligotrophy:  Diaptomus sicilis
                Oligotrophy:        Bosmina coregoni
                Mesotrophy:         Diaptomus minutus
                Eutrophy:           Daphnia retrocurva
                Late Eutrophy:      Bosmina longirostris

Communities of Lake Ontario Under Stress

Four restricted areas of this tremendously large system are currently
under stress, as indicated by their zooplankton communities.  These
include the waters adjacent to Metropolitan Toronto, those off the
Oswego River, and three shallow and productive Bays, Mexico Bay in
southeast Lake Ontario and Popham's and Weller's Bays adjacent to the
Murray Canal which connects Lake Ontario to the Bay of Quinte on the
northeastern Canadian shore.

We have concluded that these areas are under stress, based on a
consideration of the relative numbers of cladocerans and calanoid
copepods found at maximum density, usually during July and August,
In the four areas under stress, the mean density of Bosmina longirostris
at population maximum was 150,000/nP, while that for Diaptomus sicilis
and minutus was 312/m > for a Bosmina;Diaptomus ratio of ^80:1 (Table 3).
In more oligotrophic waters at stations 17 » 77 and 83, the mean density
of Bosmina was 1000/m3 and that of Diaptomus was 255/m^, for a
Bosmina;Diaptcmus ratio of 3-9:l-  Thus Diaptomus, the oligotrophic
form, is relatively more abundant in oligotrophic waters as indicated.
Bosmina, on the other hand, was 150 times more abundant in eutrophic
than oligotrophic waters in this example.

Clearly, the Environmental Protection Agency should consider solutions
to problems of accelerated eutrophication in U.S. territorial waters
near Oswego and especially in Mexico Bay, and the Canadian government
should be concerned with the same problem in the area of Toronto and
in shallow Popham's and Weller's Bays on the northern coast of Lake
Ontario.  It may be possible to separate cultural causes from simple
morphometric (depth) relationships in these cases.  That is, the
problems associated with the input of nutrients from the Oswego River
and Toronto may have engineering or other technical solutions.  The
problems of high productivity in the shallow bays may be primarily-
associated with their morphometry.  These bays may be important feeding
grounds for young fishes and a slowing of their eutrophication may
be neither feasible nor desirable.
                                  28

-------
     Table 3.  COMPARISON OF AREAS UNDER STRESS WITH OLIGOTROPHIC
               AREAS OK BASIS OF RELATIVE DENSITIES OF DIAFTOMUS
               SICILIS + MIHUTUS AKD BOSMIMA LOKGIRQSTRIS (no./m3).

                                       Density of Organisms at Maximum

                                                             Bosmina
Areas under stress:

    Metropolitan Toronto

    Oswego Area

    Mexico Bay

    Popham's and Weller's Bays



MEAN Bosmina;Diaptomus ratio

Oligotrophic Areas

    Station 17  (mid-western)

    Station 77  (mid-eastern)

    Station 83  (mid-eastern)



MEAN Bosmina tPiaptomus ratio
     Diaptomus
sicilis + minutus
       100

       150

       500

       500

       312.5
        11
       255
longirostris


  200,000

  300,000

   50,000

   ^0,000

  150,000
        0

        0

    3,000

    1,000
               3.9:1
                                  29

-------
                               SECTION V

          EFFECTS OF URBAN CENTERS OS ZOOPLAMKTON POPULATIONS

INTRODUCTION

The zooplankton faunas of the Leurentian Great Lakes reflect water
quality, with seasonal population equilibria apparently achieved in
a short time between the quantity and quality of algal foods and the
density of grazers.  Thus, to some degree, the variety and abundance
of the zooplankton is a reflection of the secondary influences of
nutrient loading.  In a similar fashion the population size structure,
and ultimately the species composition of the zooplankton, is influenced
by their fish predators (Wells, 1970).

As a working hypothesis, we suggest that urban development along the
shores of Lake Ontario influences the community structure of inshore
zooplankton populations during a growing season.  A proposed mechanism
might involve the input of nutrients, in turn stimulating the production
of bluegreen algae, or the discharge of substances inhibitory or lethal
to zooplankton growth.  However, we will not attempt to further define
this mechanism now.  The purpose of this particular analysis of data
was to test this hypothesis.  Basically three questions are important.
First, do differences in community structure occur lakewide on a
defined horizontal scale within a growing season?  If so, are such
differences in community structure related to long-term changes
demonstrated for Lake Ontario?  And most importantly, what do such
differences infer regarding the eutrophication of Lake Ontario's
ecosystem?

Definition of the time-scale of changes during community succession is
important to understanding eutrophication.  This succession has been
partially answered.  Over time, the zooplankton of the Great Lakes
probably have adapted to both changing foods and predators.  During a
recent period of accelerated cultural eutrophication commencing about
1900 (Beeton, 19^9)» major changes in zooplankton community structure
probably were initiated.  Diaptomus sicilis, the dominant form in
Lake Superior, seems the most oligotrophic form in the Great Lakes
(Patalas, 1972).  Toward the eutrophic end of the spectrum, the summer
zooplankton community of Lake Ontario has shifted since 1939 from
dominance by Diaptomus to an abundance of Bosmina longirostris (McNaught
and Buzzard, 1973)•Thus long-term shifts have been documented for
Lake Ontario and probably have occurred in all of the lower Great Lakes.

Lake Ontario is the seventeenth largest body of freshwater in the world
(Hutchinson, 1957), an international resource of tremendous value to
both the united States and Canada.  Lake Erie, upstream to Lake Ontario,
is certainly responsible for important organic and inorganic inputs.
Thus it is also the purpose of this analysis of the Ontario ecosystem
                                  30

-------
to detect the ecological impact of in basin inputs of nutrients and
other substances.  This will be attempted by dividing Lake Ontario
into three segments, with special attention given to proximity to
human influence.  These designated areas thus include (l) inshore
waters adjacent to urban centers and less than 30 m in depth, (2) inshore
waters not offshore frcm but adjacent to rural areas, and (3) offshore
waters greater than 30 m in depth.

Vertical plankton hauls were taken from the NOM R/V Researcher at the
60 IFYGL sampling stations (Figure 12) on the cruises of 12 - 16 June,
10 - Ik July and 21 - 25 August 1972.  Fortunately these 60 stations
selected by the IFYGL management were comparable within the framework
of our lakewide division.  The urban inshore stations had a mean depth
of lU.O m, whereas those stations designated rural inshore had a mean
depth of 18.5 m.

COMPARISON OF ZOOPLANKTON COMMUNITIES

Basically three types of comparisons will be made between populations
inhabiting urban inshore, rural inshore, and offshore waters.  First
the relative densities of each species will be contrasted.  Secondly,
traditional measures of Shannon-Weaver diversity, richness and evenness
will be utilized.  Lastly, community indices, including the theoretical
community competition coefficient (ji.) and community carrying-capacity
(K) (Levins, 1968) will be used.  Discussion and application to Great
Lakes problems of these indices by Vandermeer (1972), Lane and
McWaught (1970), and McNaught and Buzzard (1973) may be consulted for
information on formulations and application.

Density Differences

In comparing densities (Table k)} relatively higher numbers, but fewer
species of many cladocerans were found in urban inshore waters.
Daphnia longiremis was limited to offshore waters, while Bosmine
longirostris, Ceriodaphnia, Chydorus, Polyphemus and Diaphanosoma were
usually more abundant offshore.  However, on a unit volume basis (no./m3)
the cladocerans, usually considered warm water organisms, were more
abundant inshore than offshore during June-August (mean of 6i4-,325/m3
versus 33,737/m3).  Roth and Stewart (1973) found a similar situation
in Lake Michigan.  In contrast to the cladocerans, the cyclopoid
copepods did not exhibit such an obvious trend.  Among the calanoid
copepods, both Diaptomus minutus and D. oregonensis were more abundant
offshore, as was Limnocalanus, a cold water form.  A two-way analysis
of variance demonstrated that zooplankton densities varied significantly
(p < .01) with time (Table 7), but not with location.  Clearly there
are seasonal pulses in zooplankton densities, as we have long realized,
but the differences between urban inshore, rural inshore and offshore
waters are not effectively described in terms of total crustacean
zooplankton densities.
                                  31

-------
                        TORONTO
ro
               HAMILTON
                                                                                               OSWEGO
                                                                       ROCHESTER
              Figure 12.  Lake Ontario, divided into three areas of differing trophy
                          and community structure -— including offshore (unstippled),
                          rural inshore (lightly stippled), and urban inshore waters
                          (heavily stippled) —- as well as associated cities of
                          Toronto, Hamilton, Rochester end Oswego, plus TJTYGL
                          sampling stations (0)

-------
 Table h.  COMPARATIVE MEAN DENSITIES (#/m3) OF CRUSTACEAN ZOOPLANKTON
           FROM 0 - 5 m DEPTH, CONTRASTING URBAN INSHORE VERSUS
           OFFSHORE COMMUNITY COMPOSITION.
                            June 1972
                  July 1972
August 1972
Species

Cladocerans

  Leptodora kindtii
  Bosmina coregoni
  Bosmina longlrostris
  Daphnia galeata
  Daphnia retrocurva
  Daphnia longiremis
  Ceriodaphnia lacustris
  Chydorus sphaericus
  HOlopedium gibberum
  Polyphemus pediculus
  Diaphanosoma

Cyclopoida

  Copepodites
  Cyclops bicuspidatus
  Cyclops vernalis
  Tropocyclops prasinus
  Mesocyclops spp.

Calanoida

  Copepodites
  Diaptomus minutus
  Diaptctnus oregonensis
  Diaptomus sicilis
  Limnocalanus mscrurus
  Eurytemora affinis
 Big             Big            Big
Cities Offshore Cities Offshore Cities  Offshore

12
179
-
5
-
-
-
-
-
"
1,160
650
76
25
35
67
10
18
68
28

31
288
22
16
-
7
16
-
0
"
323
1,424
28
11
60
225
71
184
183
+

82
7,060
108
164
-
-
-
-
-
™
816
17,555
^3
11
97
23
-
17
^7
-

389
13,206
3,027
149
29!*
103
64o
5^
+
™
2,201
12,478
190
66
124
91
76
119
139
11
H-
402
174,580
1,873
6,028
-
2,399
30
43
11
**
27,586
4,158
1,011
1,874
203
39

58
24
60

1,453
63,691
99
11,965

4,203
100
7
7
3
29,1^3
12,113
643
1,676
116
74
108
17
6
117
                                  33

-------
Diversity Differences

Comparison  of the three lake regions, losing Shannon-Weaver diversity,
as well as  the richness and evenness components, illustrated some
significant differences between watermasses (Tables § - 6).  In all
three  summer months, the' urban inshore areas exhibited the lowest
diversity (1.13  - 1.66 bits), with rural inshore areas intermediate
(2.1*3  - 2.93) and offshore waters most diverse (2.9^ - 3-31).  Note
that these  ranges in diversity do not overlap.  During the months
June and July fewer species (12 - lU) were found in urban inshore areas,
and the richness component was lower (2.1*9 - 3-85) than in offshore
waters (3.76 - ^.32).  In August the evenness component accounted for
reduced diversity in urban inshore waters.  The location and time
effects on  diversity were both highly significant (p <  .01), as shown
in Table 7.

Differences in Community Indices

Biotic communities should evolve toward a moderately low level of
interspecific competition, otherwise species extinction will force
such evolution.  In apparently stable planktonic communities, as in
oligotrophic lakes, the mean community competition coefficient might
be on  the order  of 0.3.  For a larger number of samples collected from
Lake Michigan the mean community alpha was 0.31 (Lane and McNaught,
1970). Thus a third comparison, between location and alpha, was
attempted (Table 7).  During the months of June,  July and August, 1972,
the mean community alpha was highest for the communities of urban
inshore waters.  In two of three cases, alpha  was lowest for communities
of. offshore waters.  These indices suggest that offshore communities,
with reduced levels of potential interspecific competition, are the
most stable ecologically.  In contrast, the urban inshore communities
were again  judged least stable, and by using an index independent of
the previous Shannon-Weaver diversity computation.   The effect of
location upon alpha was highly significant (p  < .01), while there was
also a significant effect (p < .05) of time of year (Table 7).   Thus
two ecological indices have suggested greater  instability in urban
inshore regions.

Similarly,  a second community index, carrying  capacity (K), was higher
for urban inshore waters, as compared to rural inshore areas (Tables 5 -
6).  Since  this theoretical estimate of carrying capacity is calculated
using  alpha (Levins, 1968), this conclusion is not  unexpected.   However,
the ratio (U/K) of observed density (u) to theoretical carrying capacity
(K) is probably a better index of eutrophication.  During these same
three months the N/K ratio suggested that urban are-s were closer to
carrying capacity than rural inshore waters.  Moreover,  since we are
dealing with r-selection organisms,  which fill only a small fraction
of their carrying capacity, it was logical that these ratios would
remain below 15$.  It should also be noted that the offshore communities
of zooplankton are closest to theoretical capacity (11 - 12$).   A
two-way AHOVA suggested that the effect of location on the ratio of NK

-------
                      Table 03.  BIG CITIES (INSHORE) COMMUNITY STRUCTURE.  Abbreviations in text.
oo
VJl
Date
1972
15-19 May
12-16 June
10-14 July
21-25 August
20 Oct. -3 Nov.
27 Nov. -3 Dec.
1973
5-9 Feb.
19-22 Mar.
24-28 April
12-16 June
MEAN
(June 72-june Ti
Density
N/m3
2,400
26,020
220,1*86
19,547
9,476
2,462
1,325
1,608
7,474
32,310
)
Community
Competition
Coefficient
a var a
.53 .12
'.ho .12
.56 .11
.58 .11
.70 .11
.68 .12
.61 .11
.61 .11
.38 .10
.56

Relationships with
Theor. Carrying-Capacity
K N/K K/ (B/0)
31,20? .08 .75
192,088 .14 .61
3,580,032 .06 .81
319,395 .06 .90
118,479 .08 .95
33,551 .07 .88
10,571 .13 .86
11,U51 .14 .81
52,521 .14 .71
483,255 .07 .81

Number
Species
S est. S
14 4
12 5
20 5
21 5
18 5
14 5
10 4
9 4
11 5
14.3

Diversity
H Rich Even
1.13 3.85 .98
1.4l 2.49 1.31
1.66 3.56 1.28
1.57 4.66 1.79
1.73 4.27 1.38
1.33 3.83 1.16
1.28 2.88 1.28
.94 2.49 .92
1.25 2.58 1.2
1.37 3.40 1.26


-------
                               Table 5b.  INSHORE  (LESS BIG CITIES)  COMMUNITY STRUCTURE.
U)
ON
Date
1972
15-19 May
12 -16 June
10-14 July
21-25 August
30 Oct. -3 Nov.
27 Nov. -3 Dec.
1973
5-9 Feb.
19-22 Mar.
24-28 April
12-16 June
MEAN
(June 72- June 73
Density
N/m3
1*95
2,588
20,299
251,259
4o,o6l
13,833
2,602
1,830
4,124
26,132
40,270
)
Community
Competition
Coefficient
a var a
Ml .12
.33 .12
.31 .09
.39 .10
.54 .13
.^6 .15
.60 .12
.52 .13
.36 .13
.35 .10
.43

Theor. Carrying-Capacity
K N/K K/ (g/3)
5,239 .09
40,863 .06
213,957 .09
1,303,347 .19 .74
583,453 .12 .48
179,968 .08 1.00
35,364 .07 .94
28,179 .07 .88
44,203 .09 .46
405,847 .06 .73
315,042 .13

Species
S est. S
14 5
19 7
18 8
21 9
20 15
21 9
15 15
18 8
19 12
19 8


Diversity
H Rich Even
1.47 4.83 1.28
2.43 5.36 1.90
2.73 3.95 2.18
2.92 3.70 2.21
2.40 4.13 1.85
2.94 4.83 2.23
2.33 4.09 0.86
2.17 5.83 1.73
2.43 4.97 1.9
2.575 4.08 2.0
2.55 4.55 1.87


-------
                                        Table 6.  OFFSHORE COMMUNITY STRUCTURE.
U)
Date
1972
15-19 May
12-16 June
10-114- July
21-25 August
30 Oct. -3 Nov.
27 Nov. -3 Dec.
1973
5-9 Feb.
19-22 Mar.
24-28 April
12-16 June
MEAN
(June 72-June 7
Density
N/mi
670
2,991
33,217
129,994
22,365
9,816
2,763
2,291
1,891
12,158
24,165
)
Community
Competition
Coefficient
a var a
.48 .13
.29 .08
.27 .10
.4i .10
.49 .15
.54 .18
.47 .13
.58 .11
.39 .18
.28 .11
.in

Relationships with
Theor. Carrying-Capacity
K N/K K/ (e/e)
5,613 .12 1.21
24,7814- .12 .69
383,233 .09 .80
1,196,729 .11 .95
328,726 .07 .95
13^,737 .07 1.07
40,969 .07 .64
20,424 .11 .94
18,540 .10 .89
186,072 .07 .91
259,357 .09 1.01

Number
Species
S est. S
12 4
16 9
18 10
19 9
21 16
19 16
17
12 15
15 18
19 7


Diversity
H Rich Even
1.95 3.89 1.81
2.99 ^.89 2.48
2.95 3.76 2.35
3.31 3.52 2.59
3.23 5.60 2.45
3.30 4.51 2.58
2.55 4.04 1.23
2,76 3.27 2.55
2.96 4.27 1.0
2.69 4.4l 2.10
3.19 4.25 2.15


-------
        Table 7-  ANALYSIS OP VARIANCE  (2-WAY ANOVA) FOR EFFECT
                  OF LOCATION AND TIME  UPON DENSITY, COMMUNITY
                  COMEETITION COEFFICIENT, THE RATIO DENSITY TO
                  CARRYING CAPACITY  (N/K), NUMBER OF SPECIES (S),
                  AND DIVERSITY  (H).  — = p< .01, - = p<.05.
A.  Effect upon density;
Sum of Squ
                                        d.f.
Total
Location
Time
Residual
10.6xloJ°
11.7x10"
9.8xl010
7.3x10
26
2
8
16
B.
Effect upon
competition coefficient;

            Total
            Location
            Time
            Residual
.118
.21*9
.00k
C.  Effect upon N/K;
D.  Effect upon number species;

                Total          335. Ij.
                Location        96.5
                Time           158.7
                Residual        80.1

E.  Effect upon diversity;

                Total           llf.l
                Location        12.h
                Time             1.2
                Residual          .Ifl
                                             26
                                              2
                                              8
                                             16
                26
                 2
                 8
                16
                26
                 2
                 8
                16
                      Mean Sq..
                                                      5.8x10^     NS
                                                     12.3xlOg
                          .005
                          .003
                          .0003
Total
Location
Time
Residual
.002
.00005
.0006
.002
26
2
8
16

.00002
.00008
.0001

NS
NS

                                                   48.2
                                                   19.8
                                                    5.0
                                                    6.22
                                                     .158
                                                    2.59
                                  38

-------
was not significant (p  > .05) (Table 7).  Thus the ratio of observed
to theoretical carrying capacity (N/K) does not confirm the other
evidence suggesting that dramatic changes are occurring within water-
masses off larger cities along Lake Ontario's shores.

SIGNIFICANCE

Fewer species of crustacean zooplankters were found in urban inshore
areas of Lake Ontario than in adjacent inshore or offshore regions.
While the cladocerans Daphnia, Ceriodaphnia and Chydorus are important
in rural inshore areas, they have given way to Bosmina longirostris
and Cyclops in urban inshore waters.

Ecologically it was significant that seasonal and geographical
differences in zooplankton distribution wherein the urban inshore
waters were presumed more eutrophic than offshore waters, paralleled
changes that have occurred in the zooplankton communities of the
Great Lakes over much longer periods of time.  These findings thus
suggest that in waters offshore of urban centers we find drifting,
planktonic communities which are highly modified, even though drifting
along shore rapidly at velocities of 10 km/day (Scott, 1973).  The
causal effects of changes in zooplankton community composition off
large cities quite plausibly are included in the concepts of algal
resource availability, zooplankton selective feeding, and zooplankton
predator abundance.  These mechanisms are currently being investigated
in  our laboratory.

From a management viewpoint, the indices of diversity and theoretical
community competition may be used to identify similar urban-influenced
watermasses.  More importantly, such indices should be useful in the
conduct of surveys, especially as nutrient inputs to the Great Lakes
are reduced.
                                   39

-------
                              SECTION VI

              ACOUSTICAL ESTIMATES OF ZOOPLAHKTON BIOMASS
THE ACOUSTICAL METHOD FOR DETERMINATION
OF ZOOPLANKTOH BIOMASS

The echo-Integrating sonar, especially designed to be sensitive to
particles of the size and density of zooplankton,  has been described
previously  (McNaught, 1973).  The approach was to transmit an exact
waveshape (sound-wave) and detect the return, using a 100 channel
signal averager.  Each channel thus corresponded to 1% of depth (or
time).  The returning signal was simultaneously fed into an synchronous
demodulator, then to a storage oscilloscope,  providing a picture of
zooplarikton abundance with depth over time.  The data from the signal
averages, the heart of the system, were also  displayed on an X-Y
plotter, and later processed from paper tape  using a program described
below.

The 5-frequency sonar (53 or 80 kHz, 120, 200 and 500 kHz) operates
on the principal that the maximum reflectivity from small targets
(zooplankton) nearly the same density as water itself is obtained
when the wavelength of sound is equivalent to the  diameter of the
(sphaerical) target (McNaught, 1968, 1969).  Thus, as successively
higher frequencies are employed, smaller and  smaller organisms can
be detected.  For example, sound at a frequency of 200 IsHz is maximally
reflected by particles 2 mm in diameter, with reasonable sensitivity to
particles down to 1 mm in diameter.  Sound at a frequency of 500 kHz
is maximally reflected by particles 0.8 mm in diameter, and to some
extent by particles as small as O.ij- mm (Figure 13).  Thus these two
frequencies combined can be employed to give  an estimate of the biomass
of zooplankton between 0.8 and 2 mm in diameter.  In the same way,
signals from the 200 kHz and 120 kHz projectors provide an estimate of
the biomass of zooplankton between 2 mm and 3 mm in diameter, and the
120 kHz and 80 kHz projectors provide an estimate  of the biomass
between 3 mm and 5 mm, which is chiefly fish  larvae and fishes.  These
low-frequency projectors are thus used to eliminate echoes from fishes
from the zooplankton biomass estimate (or alternatively, to estimate
the biomass of fishes in Lake Ontario),

Corrections for properties of Sound and Transducers

In determining the zooplankton biomass with depth using acoustical
techniques, only physical correction factors  have  been employed.  The
necessary factors are (a) the relative strength of the acoustical
output (frequency normalization) for each frequency transducer? (b) the
relative attenuation of sound at 80, 120, 200 and 500 kHz, and (c) the
beam angle of the transducer (Table 8).  These correction factors have
been employed in writing a program to correct raw  field data.

-------
  .00001
                            456
                            Diameter (mm)
                                                            10
Figure 13.  Relationship between beckscattering  strength  (Appendix B),
            used to calculate biomass  of zooplenkton, and size of
            spherical particles for five frequencies  (80, 120, 200, 500
            and 1000 kHz).   (From McNaught,

-------
Table 8.  CORRECTION FACTORS FCR ACOUSTICAL RETURNS NECESSARY TO EQUATE RETURMS  TO
          BIOMASS OF ZOOPLANKTON
      Formula;  intensity x normalization x attenuation = Correction Factor
Corrections

  80 kHz


 120 kHz



 200 kHz


 500 kHz
beam
(Step 1)
Frequency normalization
Bottom Corr.
factor (x)
1.056
1.161
1.735
3.282
correction
(Step 2)
Attenuation factor
Channel
4
5
6
7
8
9
10
11
12
Equiv
Depth
1.4
1.7
2.0
2.4
2.7
3.1
3.4
3.7
4.1
(*)
'(M)
1.08
1.12
1.17
1.24
1.29
1.37
1.42
1.48
1.55
                                                                            (Step 3)
                                                                        Beam Correction
                                                                     factor (5° angle) (
                                                                      1 m
                                                                      2 m
                                                                      3 m
                                                                      4 m
                                                                      5 m
                                                                      6 m
                                                                      7 m
                                                                      8 m
                                                                      9 m
                                                                     10 m
1.00
1.16
1.33
1.51
1.71
1.92
2.13
2.37
2.6l
2.86

-------
Data Correction

In Table 9a we see an example of raw field data (first four sets at
80, 120, 200 and 500 KHz).  These acoustical reflectivities have been
multiplied by the suggested correction factors (Table 8) to yield
four sets of "corrected profiles" (Table 9b).  Then these corrected
profiles are subtracted (120 - 80 kHz, 200 - 120 kHz and 500 - 200 kHz)
to yield biomass estimates for particles of the three size ranges
previously indicated (Table 9c).  Since the data are not useful in 1%
increments of the gated interval or scan depth, they are then converted
to acoustical reflectivity per 5 m interval, again for three size
ranges  (last block) (Table 9d).

Calibration of Acoustical Technique

An empirically based calibration was made by comparing the sum of
differences in acoustical reflectivity, specifically between the
200 kHz and 120 kHz channels and the 500 kHz and 200 kHz channels,
with the product of numerical density of zooplankton and their mean
weight.  This calibration utilized the data of the cruises of 21 - 25
August  1972 when animals were abundant and 30 October - 3 November
1972 when animals were relatively scarce.  Because the 6kv aperture
net used to collect animals was most efficient over a 5 m tow, and
because the sonar likewise was most sensitive frcm 0 - 5 m, all
calibration points were based upon 0 - 5 m data.  A linear regression
was obtained for the relationship between acoustical reflectivity
 (D.C. volts) and zooplankton biamass (g/m3 dry-wt), such that biomass
 (g/m3)  is related to corrected acoustical reflectivity (D.C. volts)
as follows:

                                             (Corrected  )
              Biomass  (g/m3) = 0.681 + 13-53 (Aeoust. Ref)


Thus we observe  (Figure Ik) that the acoustical technique is insensitive
to biomass levels of less than 0.68 g dry-wt/m^.  At very low acoustical
reflectivity, it appears that biomass is overestimated.

-------
Table 9 (a).  EXAMPLE OF UNCCRRECTED ACOUSTICAL REFLECTIVITY AT FOUR
              FREQUENCIES (80, 120, 200 AND 500 kHz) OVER 100
              CHANNELS CR 1% DEPTH INCREMENTS
80
CM
08
15
22
£9
36
43
50
57
64
71
78
65
9£
99
120
01
08
15
gg
£9
36
43
50
57
64
71
78
85
92
99
200
01
08
15
22
29
36
43
50
57
64
71
78
85
92
99
500
01
08
15
22
29
36
43
50
57
64
71
78
85
92
99
KC
.2428
.1797
.1856
.1970
• 1918
.1857
.1856
.1974
.1867
.1867
.1871
.1879
.1876
.3581
.1896
KC
1.2135
. 1740
.1690
. 1 67 3
. 1 669
.1688
. 1699
. 1 659
. 1 653
.1614
. 1712
.1687
. 1 679
1 . 1 08 3
.1769
KC
.8153
. 22PR
.2158
. 2/!£3
.£418
.£418
.2418
.2425
.£410
- £4£4
. 2408
.2405
. £400
.£5£4
.2435
XC
. £4ti 6
.2012
. 193 1
. 1968
.1957
. Iv S-J
.19/-I
. 1951
. 1945
.1943
. 1944
. 19/18
. 19/11
. 1946
.1933

02
09
16
£3
30
37
44
51
58
65
72
79
86
93
oc

02
09
16
£3
30
37
44
51
58
65
72
79
.86
93
tut

OS
09
16
£3
30
37
44
51
58
65
72
79
86
93
ea

0£
09
16
£3
30
;»v
44
51
58
65
72.
79
U6
93
oo

.1931
.1879
. 18 69
. 1889
. 1888
. 18 67
. 1882
. 1927
. 1870
.1917
.1928
. 1883
. 1898
1. 1704
.1118

.3059
.1750
. 656
. 668
. 664
. 695
. 656
. 672
. 660
. 639
. 659
. 664
. 643
.3154
.1135

.3323
.2175
. £255
. £4'41
.£418
.£428
.2409
.2419
.£4l£
. £404
.£4 £6
.£417
.£403
. £5£9
.1145

.2141
. 1998
.1978
.1970
.1961
. 19 bW
. 1 9 5£
. 1947
.1945
. 1946
.1938
. 19/14
.1937
. 1940
• 1155

03
10
17
24
31
38
45
52
59
66
73
80
87
94


03
10
17
24
31
3S
45
5£
59
66
73
80
87
94


03
10
17
£4
31
38
45
52
59
66
73
80
87
94


03
10
17
£4
31
38
45
5£
59
66
73
HO
87
9 4


.1957
. 1898
.185£
. 189 5
.1871
. 1886
. 1885
.1854
. 1902
.1874
. 19 19
.1935
. 18 60
.4711


.1918
.1704
.1653
. 1 67 6
.1651
.1658
. 1651
. 1690
. 1 637
.1655
. 1628
. 1 667
.1658
. 1754


.£640
.2167
.2320
.2436
.2416
.2401
.2417
. 2409
. 239 1
.2403
.2416
.2417
.£403
.£503


.2078
. 1994
. 1971
. 1970
. 1960
. 19 53
. 19 53
. 19.46
. 1935
. 193ii
. 1939
. 1943
. 1941
. 1939


04
11
18
£5
3£
39
46
53
60
67
74
81
88
95


04
11
18
£5
32
39
46
53
60
67
74
81
88
.95


04
11
18
£5
32
39
46
53
60
67
74
81
88
95


04
11
18
f-5
3E
39
46
53
60
67
74
81
88
95


. 1943 OS
.1952 1£
.1912 19
.1894 £6
. 1S££ 33
. 18 68 40
.18*3 47
.1921 54
.1896 61
.1909 68
.18£4 75
.1964 8£
. 19 £4 89
.£054 96


.1757 05
.172O 1£
. 1 634 19
.1651 £6
.1658 33
.1639 40
.1684 47
.1636 54
. 661 61
. 656 68
. 653 75
. 65b .«£
. 654 89
.1714 96


. 25«7 05
i £ 1 £8 1 £
.2362 19
.£4£3 £6
. £4 1 3 33
.£393 40
.2394 47
.2394 54
.2397 61
. 239 6 68
.2413 75
.2415 8?
.£401 89
. £48 696


.£047 05
. 1994 1£
.1969 19
. U6rf £6
. 19 5S 33
. 19 54 40
.1944 47
.1949 54
.1938 61
.1943 68
. 19*6 75
. 1942 8£
.1937 89
.1941 96


.1944 06
.1953 13
.1911 20
.1888 £7
. 1927 34
.1867 41
. 19 64 48
.185.1 55
.1893 6£
. 18 61 69
.1854 76
.18/18 83
.1938 90
.1733 97


. 1 744 0 6
.1710 13
. 1 644 £0
.1686 £7
. 1 673 34
.1639 41
, 1 656 48
.1654 55
.1675 62
. 1 70 6 69
. 1CSO 76
. 1660 83
. 1666 90
. 1 730 97


.2465 06
.2117 13
.2390 £0
.£4 £9 £7
.24£8 34
.8424 41
. £399 48
.2418 55
.£410 C£
.£405 6)
. 240 6 76
.£405 83
.2411 90
.£488 97


. £03 606
. 198 7 1 3
. 197U £0
. 1954 £7
. 19 5t< 54
.1951 41
. 19 50 4tf
.194.5 55
. 19 51 68
.1941 69
. 1946 76
. 1941 83
.1940 90
.1936 97


.1914
. 1898
. 188 £
.19££
.1898
. 1890
. 19 £4
.1906
.19 £3
. 1896
.1894
.1836
.4963
. 1820


. 1 7££
. 1 655
. 1 655
. 1 663
.1653
.1630
. 1671
.1697
. 1684
.1676
. 1 641
. 1 666
. 57 5£
. 1 759


.£360
.2104
. £40 7
.2440
.£417
. £430
.£423
. £40 5
. £4£3
. £424
.•£404
. £403
.2556
.2464


. i.Otl
. 19d 6
. 19 71
. 19 &
. 19 t4
. 19 5£
.1950
. 19 44
. 1951
. 19 4 6
. 1939
.194K
. 1941
. 19 cB


07
14
£1
£8
35
4£
49
56
63
70
77
84
91
98


07
14
£1
£8
35
42
49
56
63
70
77
84
91
98


07
14
£1
f.8
35
4£
49
56
63
70
77
84
91
98


07
14
£1
£S
35
/>£
49
56
63
70
77
84
91
98


.1934
. 1889
. 1«S»3
. 19 74
. 189 7
. 1906
. 1890
. 1846
. 1986
. 19 Id
. 18 5)
. 18 fa
.3940
.1892


.1716
. 1 676
. 680
. 677
. Ctiti
. 8 53
. 651
. 673
. 607
. 673
. 671
. 6dO
1.7955
. 1748


. ££b 7
.2098
.241 7
.2437
. £403
. £.440
.£4£7
.£41 6
.£418
.£418
. £408
. £400
.£393
.£455


.£016
. 19tll.
. 19 66
. 19 63
. l'>4>
. 19 4-5
. 19 iO
. 19 /i 3
. 19 /it:
. t9/<8
.1940
.1942
.1947
.1937


-------
Table 9  (b).   CORRECTED ACOUSTICAL IRCFIIES
COKnKCTJ-P P1-.SIHI.KS FOi.!
/H:G k1t\ 17 I-/
80
01
08
15
££
89
36
43
50
57
64
71
78
85
9£
99
180
01
08
15
88
£9
36
43
50
57
64
71
78
85
98
99
800
0)
08
15
88
89
36
43
50
57
64
71
78
85
98
99
500
01
08
15
££
£9
36
43
50
57
64
71
78
85
92
9 4
KC
.££10
.1636
• 1690
.1793
.1746
. 1 6VJ 0
. 1690
.1797
.1700
.1700
.1703
.1710
.1708
.3£60
.17f:6
KC
1.8145
.1741
. 1 69 1
.1674
. 1 670
. 1 689
.1700
.1660
. 1 654
.1615
.1713
.1688
.1680
1 . 1 09 8
.1770
KC
1.8194
.3383
. 38£8
. 3684
.3616
.3616
.'3616
. 3687
.3604
. 362:5
.3601
.3597
.3590
..3775
.3648
KC
.7033
. 5698
.5605
. 5h68
.5537
. 5548
.5491
. 55PO
. 5503
.5497
. 5500
.5511
. 549 t
.5506
. 54 69

08
09
16
£3
30
37
44
51
58
65
7£
79
86
93
»»

0£
09
16
83
30
37
44
51
58
65
7&
79
86
93
Oft-

OS
09
16
£3
30
3.7
44
51
58
65
7£
79
86
93
09

08
09
16
£3
30
37
44
51
53
65
7?,
79
86
93
oo
i 10* » 4

.1758
.1710
.1701
.17PO
.1719
.1700
.1713
.1754
.170?.
.1745
.1755
.1714
.1788
1.0654
. 1018

. 30 68
.1751
. 1657
. I 669
. 1 665
.1696
.1657
.1673
. 1 661
. 1 640
. 1 660
. 1 665
. 1 644
.3157
.1136

.4970
.3£53
.3373
.3651
.3616
.3631
,3603
.3618
.3607
.3596
.3688
.3615
.3594
.378S
.1713

.6057
. 5653
. 559 6
. 5574
.5545
.5540
.55£3
. 550^
.5503
.5506
. 54(J 3
. 5500
.5460
. 54.-i9
.3868
Ava 5 rn-

03
10
17
84
31
38
45
58
59
66
73
80
87
94


03
10
17
84
31
38
45
58
59
66
73
80
87
94


03
10
17
84
31
38
45
58
59
66
73
80
87
94


03
10
17
£4
31
38
45
58
59
66
73
80
87
94


. 1 7« 1
.17P8
.1636
.1785
.1703
.1717
.1716
. 1688
.1731
.1706
.1747
.1761
. 1 69 3
. 4888


. 19 £.0
.1705
. 1 654
. 1 677
, 1 6.58
. 1659
. 1658
.1691
. 1638
. 1 656
. 1 689
. 1 668
. 1 659
.1755


.3948
.3841
. 3470
.3643
.3613
.3591
.3615
. 3603
.3576
.3594
.3613
.3615
.3594
.3744


.5879
.5641
. 5576
.5574
.5545
.55£5
. 5585
.5506
. 5475
. 5483
. 54rf 6
. 549 7
. 549 1
. 548 6

1H 130 SCAM 170

04
11
18
85
3£.;
39
46
b3
60
67
74
61
88
95


04
11
18
£5
38
39
46
53
60
67
74
81
88
95


04
11
18
85
38
39
46
53
60
67
74
81
88
95


04
11
18
£5
3?.
39
46-
53
fn
07
74
ol
toO
95


. 17C9 05
.1777 18
.1741 19
.17*4 £6
.1659 33
. 1700 40
. 1.69 6 "3J7
. 1 749 54
.1786 61
.1738 68
.1660 75
. 1788 88
. 17bl 89
.1870 96


.1758 05
.1781 18
.1635 19
. 1 658 £ 6
. 1 659 33
. 1 640 40
.1685 47
. 1 63 7 54
. 1668 61
. 1 657 68
. 1 659 7 5
. 1659 88
.1655 69
.1715 96


.3809 05
.3183 18
.3533 19
.3684 86
.3609 33
.3579 40
.3581 47
. 3 58 1 54
.35^5 61
.3584 68
.3609 75
.3618 8£
.3591 69
.3713 96


.5791 05
.5641 IE
.5571 19
.5568 £6
. 5540 33
. 5588 40
.5500 47
.5514 54
.54153 61
.5497 68
.54-^4 75
.5494 UP.
.5480 89
.5491 96


.1770
.177b
. 1 740
. 1 719
.1754
.1700
.1788
.1781
. 17f:3
. 1X94
.1688
. 1 66 E
. 1764
.1578


. 1 745
.1711
.1645
.1687
. 1 674
. 1 640
. 1 657
. 1 655
. 1676
.1707
.1681
. 1661
. 1 667
.1731


.3637
.31 66
.3575
.3633
. 3 63 1
.3685
.3588
.3616
.3604
.3597
.3598
.3597
.3606
,3781


.5760
. 5688
.5596
. 55£8
.5540
. 55EO
.5517
. 5503
. 5580
. !>49 I
.5506
.5491
. 5489
.5477


06
is
£0
£7
34
41
48
55
e-fe
69
76
83
90
97


06
13
£0
87
34
41
48
55
66
69
76
83
90
97


06
13
£0
£7
34
41
48
55
6£
69
76
83
90
97


06
13
£0
£7
34
41
48
55
6£
69
76
83
90
97


. 1 74f- 0 7
.17£H 14
. 1 71 3 £ 1
. I 750 £S
.17f-H 35
. 1 7£0 48
. 1 751 49
.1735 56
.1751 63
• 17?. 6 70
. 1 7£4 77
.1671 84
.4516 91
. 1657 98


.1783 07
.1656 14
. 1656 81
. 1 664 £6
. 1654 35
.1631 4£
. 1 67£ 49
. 1 698 56
.1685 63
.167} 70
. 1 648 77
. 1667 84
. 5757 91
* 1 7C-0 98


.3530 07
.3147 14
.3600 £1
.3649 £8
.3615 35
.3634 4£
.3684 49
.3597 56
.3684 63
.3685 70
.3596 77
. 3 59 4 84
.3883 91
. 3C65 98


. 571B 07
.5619 14
.5576 £1
.5540 £8
. 55£8 3 5
. 55£3 4£
. 551 7 49
.5500 56
. 5510 63
.5506 70
. 54U6 77
. 5494 84
. 549 1 9 1
.5483 98


.1761
. 1 71 0
.1714
. 1 79 7
.17f:7
.1735
. 1 7f.O
. 16dO
.1810
. 1 74 6
. 1 W £
.1700
.35K7
. 1 788


.1717
.1677
.1681
. 1678
.1689
.1855
. 1 658
. 1 674
. 16C8
. 1 674
. 1 678
.1681
1 . 79 70
. 1 749


. 34£1
.3138
.3615
.3645
.3594
. 3 649
. 3 630
.3613
.3616
.3616
. 3 60 1
.3590
.3579
.3678


.5704
.5607
. 556S-,
. 5554
.5514
.5511
. 5517
. 54; 7
. 54-J 4
.5511
. 54v>\>
. 54 .> 4
. 5508
. 54HO


-------
Table 9 (c).  DIFFERENCES BETWEEN REFLECTIVITIES AT ADJACENT
              FREQUENCY ENVELOPES (120-80 kHz, 200-120 kHz,
              AND $00-200 kHz)
PRINTOUT OF CHAHNEb
>YKS
HI FFS?
180-80 KC
01
08
15
en
89
36
43
50
57
64
71
78
35
98
99
.9935 02
.0106 09
.0008 16
-.0119 £3
-.0076 30
-.0001 37
.0011 44
-.0137 51
-.0045 53
-.0084 65
.0010 78
-.0088 79
-.0087 86
.783!% 93
.0045 *«
. 1.304
.0041
-.0044
-.0050
-.0053
-.0003
-.0056
- . 008 1
-.0041
-.0105
-.0095
-.0049
-.0083
-.7498
.0118
03
10
17
84
31
38
45
58
59
66
73
80
87
94

.0138
-.0088
-.0038
-.0048
-.0051
-.0057
-.0064
.0004
-.0093
-.0050
-.0118
-.0093
-.0034
-.8533

04
11
18
85
38
39
46
53
60
67
74
81
88
95

-.0010
-.0056
-.0105
-.0078
.0001
-.0060
-.0011
-.0111
- , 00 64
-.0080
-.0001
-.0188
-.0096
-.0154

05
18
19
86
33
40
47
54
61
68
75
88
89
96

-.OOP.4 06
-.0066 13
-.0094 80
-.OC31 87
-.0080 34
-.0059 41
-.0130 48
-.0066 55
-.b047 6£
.0013 69
-.0006 76
-.0081 83
-.0097 90
.0154 97

-.0019
-.00.71
-.0057
-.0005
-.0073
-.0089
- . 00 73
-.0037
-.0065
-.0047
-.OOtsS
-.OOQ4
.1839
.0104

07
14
81
88
35
48
49
56
63
70
77
84
91
98

-.0043*
-.00/12
-.0033
-.0119
-.0037
.0119
-.00 to
-.0006
-.0141
-.0078
- . 0080
-.0019
1.4383
.0087

800-180 KC
01
08
15
88
89
36
43
50
57
64
71
78
85
98
99
.0049 08
.1588 09
.1536 16
.1950 83
. 1946 30
.199.7 37
.1916 44
.1967 51
.1950 5d
.2010 65
.1888 78
.1909 79
.1909 66
-.7317 93
.1871 **
.1908
.1508
.1715
.1981
.1951
.1935
.1946
.1945
.1946
.1955
.1968
.1950
.1950
.0686
.0577
03
10
17
84
31
38
45
5£
59
66
73
80
87
94

.8089
.1536
.1816
.1966
. 19 61
.1938
. 19 63
.191ft
.1938
.1938
.1984
.1947
.1935
.1988

04
11
18
85
38
39
46
53
60
67
74
81
88
95

.8051
.1461
.1897
.1978
.1950
.1939
.1895
.1943
.1983
. 1986
.1950
. 19 53
.1936
. £003

05
18
19
86
33
40
47
54
61
68
75
86
89
96

.1941 06
.1455 13
.1989 80
.1946 87
.1957 34
.1985 41
.1931 48
.1961 55
.1988 68
.1890 69
.1917 76
.1936 83
.1939 90
.1990 97

.1806
. 1490
. 19 44
.1985
. 19 61
.8003
. 19 5E
. 1899
.1939
.1946
.1953
.1987
-.1934
.1985

07
1.4
81
88
35
48
49
56
63
70
77
84
91-
98

.1703
. 1460
.1934
. 19 66
.1905
.1795
.1978
. 1933
.1948
. 1948
.1989
.1908
1.4391
.1988

500- 800 KC
01
08
15
es
89
36
43
50
57
64
71
78
85
92
99
-.5161 08
.8369 09
.8377 16
. 1944 83
.1980 30
.1986 37
.1875 44
.1893 51
.1898 58
.1878 65
.1898 78
.1914 79
.190?. 86*
.1731 93
.1887 «»
.1087
.8400
. 8P.84
.1983
.1938
.1908
. 1980
.1891
.1895
.1910
.1855
.1885
.1886
.1706
.1555
03
10
17
£4
31
38
45
58
59
66
73
80
87
94

.1931
. 8400
.8106
.1930
.1938
.1934
.1910
. 1903
.1898
.1889
.1878
.1688
.1*197
.1748

04
11
18
85
38
39
46
53
60
67
74
81
88
95

.1988*
.8459
.8038
. 1944
.1931
.1949
. 19 19
.1934
.1898
.1914
.1885
.1888
.1839
.1773

05
18
19
86
33
40
47
54
61
63
75
&8
89
96

.8074 06
.8455 13
.8088 80
.1895 87
.1908 34
.1894 41
. 1989 48
. 188 C 55
.1915 68
.1894 69
.1907 76
.1894 83
.1883 90
. 1 756 9 7

.8188
. 84 78
. 19 76
. 1890
.1913
, iaeb
.1893
.1903
. 189 6
.1880
• 1890
.1900
. 1 60
.1794

07
14
81
88
35
4£
49
56
63
70
77
84
91
98

.8883
.8470
.1947
.1909
.1980
.18C8
. 1*$67
.1884
.1878
.1895
.1887
.1905
. 19 J 9
. IbOd


-------
Table 9  (d).  THREE PROFILES AT CONSTAMT 5 m INTERVALS,
              IN B.C. VOLTS/nr*.  LAKE QHATRIO, STATION 17,
              AUGUST 1972.
PUMCHOUT  CHA&MIL DI
     STrt  17  HA 10** 4 AVG 5 DIMH  130  SCAM 170
      VAL UE  0 1- 1J>; OF I L KS 0 V tr. . 5M I M 1 Eh VAL S
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- £
3- 4
5- 6
7- 8
9-10
11-12
13-14
1 5- 1 6
17-18
19-£0
£,!-££
S3- £4
£.5- £6
£7- £8
£9-30
31-3£
35-34
35-36
37- 38
39-*' 40
41 -/IE
43-44
45-46
47-48
49- 50
51-52
1£0-80
1£0-80
1£0-80
1P.O-80
120-80
1EO-80
lfcO-80
1P.O-80
IPO- 80
UiO-80
1PO-80
1 £.0- (;• 0
l£0-fcO
I£0-8C
1£0-80
1£0-SO
lf.0-80
1£0-80
IKOr'SO
1F.C-80
1 £0-8 0.
1PO-80
1£0-80
1£0-80
120-80
1EO-80
.9935
1 . 1 £39
1.1377
1. 1366
1. 134ft
1.1 3£3
1. 1£80
1 . 1 3d 6
1 . 1 4P.7
1. 1404
1.1349
1 . 1 £8 £
1. 1£11
1 . 1 1 69
1.1171
1.11 £7
1 . 1 09 5
.0990
. 089 0
. OS 39
. 08 0 0
. 0 08 7
.0037
. 0589
.0518
. 048 C
£00- ISO
£00-
1-EO
.
£00-1£0
£00-
£00-
£00-
£00-
f.OO-
£00-
£00-
£00-
£00-
£00-
£00-
£00-
£00-
£00-
£.00-
£00-
£00-
£00-
1£0
1£0
1£0
l.f.O
LEO
1£0
1£0
1£0
l£ti
1£0
1£0
1£0
1£0
1 ?0
1£0
igo
120
1£0
£00- 1 £0
£00-
EOO-
£00-
£00-
1£0
160
1£0
1£0
*
.
.
1.
1.
1.
1.
1.
1.
£*
?.•
£%
a.
•f.
t\
c- »
3*
3.
3.
3.
3.
/I.
4.
4.
t)049
1957
398 6
6037
79 7c
9 fa 5
1 4*3
3070
4571
6107
7 5 68
90 £3
0 £> 1 4
1974
3510
5££5
70/1 1
8938
08«
£.:i 1 1
4745
C-f94
i>676
064 Si
£613
4559
500- £00
500- £00
500- £00
500- POO
500- £00
500- £00
500- £00
500- POO
500- £00
500- £00
500- £00
50C-SOO
500- POO
500-800
50C-F:00
500- £00
500- £00
500- £00
500- £00
500- £00
500- £00
500-.£00
500-2UO
500- SOU
500- £00
500-200'
-.
« m
.
.
,
.
1.
1.
1.
1.
£.
£.
£.
£..
?.
£.
3.
3.
3.
3.
3.
4.
4.
4.
4.
4.
£037
0080
£051
4377
6777
9P.34
1 70 5
4005
607V
6076
OOfet-
194fc!
3d 6£'
5767
7W3
9 6P 5
1535
3458
5380
730 1
9177
1074
P.989
4900
6790
8686
5>;
lOi'i
ISK
f.OW
e b>;
SOi'I
35C'l
40?-;
45M
50K
55i-j
eoK
65;-]
70;';
7S-:
6 OH
8 si-;
90M
9 5i»i
1 0 o:
-------
  lOr
                                       Y = 0.681 + 13.53 X

                                        r = .80
.4
.5
                                                           ,6
.7
              Acoustical  reflectivity  ( D.C. Volts) /m3
Figure Ik.  Regression of zooplsnkton biomess (g dry wt/m^) against
           acoustical reflectivity  (D.C. volts/ra3), made  from actual
           samples and acoustical profiles collected simultaneously
           on Lake Ontario

-------
VERTICAL PROFILES OF RELATIVE ZOOPIANKTOH BIOMSS

Since the trophogenic zone, or the waters where phytoplankton photo-
synthesis exceeds respiration, is confined to the upper 30 m in Lake
Ontario, previous studies of zooplankton abundance have centered upon
the upper 50 m of water (Patalas, 1969* Watson, 197*0«  A major
contribution of the zooplankton acoustical samples is an indication of
abundant, zooplankton size particles at greater depths than 50 m.

Once acoustical data have been placed in 5 m depth intervals for each
station (Table 9)» it is relatively simple to produce a lakewide
estimate (Table 10) for each cruise.  On 30 October - 3 November 1972,
2 - 3 ram particles (200 - 120 kHz) and 0.8 - 2 mm particles (500 - 200
kHz) were both most abundant in the deepest waters at 230 m depth
(Table 10).  Summaries for the distribution of 0,8 - 3.0 mm particles,
the size-range for most crustacean zooplankton, are presented in Table 1]
and Figure 15.  During 21 - 25 August 1972 particles were relatively
most abundant between 100 and 200 m depth,  from 30 October - 3 November
1972 zooplankton sized particles were most common in the deepest waters.
Over the period 12 - l6 June 1973» these same particles were most
abundant between 60 and 130 m depth.  These average estimates of biomass,
made using acoustical techniques, are for all 60 stations of the IFYGL
grid and usually represent a mean derived from 5 days of measurements
made both day and night.

-------
       Table 10.  ACOUSTICAL RELFECTIVITY  (D.C.  VOLTS) FOR THREE
                  FREQUENCY ENVELOPES  (120-80  kHz,  200-120 kHz,
                  AMD 500-200 kHz), FOR 21-25  AUGUST  1972.
                      (average over 5 m intervals)

Meters    No. of Stations    120-80 kHz    200-120  kHz    500-200 kHz
   5            58
  10            58
  15            5l+
  20            1+9
  25            1+1
  30            32
  35            29
  i+o            27
  1+5            26
  50            26
  55            25
  60            25
  65            25
  70            23
  75            22
  80            21
  85            21
  90            19
  95            19
 100            17
 105            16
 110            16
 115            15
 120            llf
 125            13
 130            12
 135            11
 ll+O            10
 ll+5            10
 150             9
 155             8
 160             8
 165             8
 170             7
 175             5
 180             4
 185             1+
 190             2
 195             2
 200             2
 205             1
 210             1
 215             1
 220             1
 225             1
 230             1
.1516
.2222
.1686
.1500
.1+181
.3023
.3819
.171+6
.3236
.1+201
.5493
.6532
.7583
1.1152
1.3273
.8720
.9278
1.2515
1.3220
-.01+90
.0424
.0213
-1+71^
.1+31+6
.3*+07
.221+3
.1361
.0770
.0639
-.1263
-.1261+
-.11+1+6
. -.1631+
-.0553
-.6382
-.8859
-.9191
-.2769
-.2877
-.2913
-.71+70
-.7710
-.8052
-.836!+
-.871!+
-.901+0
.3755
.5881+
.8815
1.2811
1.1+21+0
1.2665
1.1621
1.2860
1.1+1+1+6
1.561+2
1.4088
1.5200
1.6323
1.7753
1.921+5
1.5111+
1.6023
1.7767
1.8696
1.961+8
1.9873
2.0753
2.3157
3.631+7
3.7682
3.9223
1+.0181
4.2136
4.3700
4.9523
6.2623
6.4664
6.6709
7.6473
8.8057
9.5345
9.8011+
4.4468
4.5589
4.6666
1.2507
1.2814
1.3164
1.3534
1.3887
1.4197
.0989
.3814
.7182
.9395
1.1877
1.7210
1.9927
2.4312
2.6259
2.9302
3.2152
3.5127
3.8100
3.9904
4.2193
2.8713
3.0559
3.2211
3.4035
5 .6283
6.1378
6.4365
7.0064
7.5339
8.6384
9.1292
9.8857
10.9437
11.3369
12.4129
13.7948
14.2425
14.6905
16.7466
20.2833
25.5993
26.3118
5.0913
5.2358
5.375*+
1.7701
1.8172
1.8631
1.9085
1.9555
2.0050
                                   50

-------
Table 11.  MEAI1 ACOUSTICAL REFLECTIVITY (B.C.
           5 m INTERVALS, LAKE ONTARIO, 1972-73-
FOR
Depth
Interval
(m)
0-5
5-10
- 10-15
15-20
20-25
25-30
30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
80-85
85-90
90-95
95-100
100-105
105-110
110-115
115-120
120-125
125-130
130-135
135-140
August 1972
Acoustics i\Reiative
Ref lectivitjA. Bioma ss
.46 .001
.96 .002
1.59 .004
2.21 .005
2.60 .006
2.98 .007
3.15 .007
3.71 .009
4.06 .009
4.49 .010
4.6l .Oil
5.03 .012
5.44 .013
5.76 .013
6.13 .014
4.38 .010
4.65 .oil
4.99 .012
5.25 .012
7.58 .012
8.11 .019
8.50 .020
9.31 .022
11.16 .026
12.39 .029
13.* .030
13.89 .032
15.15 .035
November 1972
A c oust ica lYReLat ive
Reflectivity^ Biomass
0. .0
0. .0
.11 .0004
.11 .000k
.08 .0003
0. .0
.03 .0001
.11 .0004
.31 .001
.53 .002
.88 .003
1.09 .oo4
1.32 .oo4
2.29 .007

2.58 .008
2.83 .009
3.07 .009
3.32 .010
3.81 .012
U.18 .oil*
U.^3 .Oltf
5.22 .017
5.26 .017
5.95 .019
6.23 .020
6.51 .021
6.79 .022
February 1973

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
June 1973
AcousticalVRelative
ReflectivityXBiomass
0. 0.
0. 0.
0. 0.
.15 .001
0. 0.
.13 .001
.25 .002
.71 .007
.9^ .009
1.16 .011
1.39 .013
1.58 .016
1.82 .018
2.08 .020

2.42 .024
3.61 .036
1+.38 -044
4.48 .044
U.83 .048
5.19 .051
5.56 .055
5.93 .059
6.30 .062
6.71 .067
7.12 .070
3.26 .032
3.53 .035

-------
Table 11 (continued).
MEAN ACOUSTICAL REFLECTIVITY (D.C. VOLTS/m3) AHD RELATIVE BIOMASS (%) FOR
5 m INTERVALS, LAKE ONTARIO,  1972-73-
Depth
Interval
(m)
140-145
145-150
150-155
155-160
160-165
165-170
170-175
175-180
180-185
185-190
190-195
195-200
200-205
205-210
210-215
215-220
220-225
225-230

August 1972
Acoustica IXRelative
Reflectivit^ Biomass
15.70 .037
17.36 ,o4i
20.05 .04?
20.07 .048
21.36 .050
214.38 .057
29.08 .068
35.12 .082
36.11 .081*
9.53 .022
9.78 .023
9.97 .023
3.02 .007
3.09 .007
3.17 .007
3.25 .008
3.33 .008
3.4l .008
428.03 1.01
November 1972
Acoustica l\Relative
Reflectivity^ Bioma ss
7.63 .025
7.91 .026
9.04 .029
9.34 .030
9.63 .031
9-93 .032
10.29 .033
11.32 .037
12.62 .041
11.52 .037
11.51 .037
11.83 .038
18.51 .060
18.97 .062
19.43 .063
19.83 .064
20.36 .066
20.81 .068
307.34 0.99^
February 1973

0.
0.
0.
0.
0.
0.
0.












June 1973
Acoustica l\Relative
Reflect ivity\Biomass
3-74 .037
3.98 .o4o
4.21 .042
4.45 .044
4.69 .047
6.14 .061












100.56 1.01

-------
                         Relative  Biomass / 5m depth  interval
      0('°')02  .04 .06  .08
         0('OI).02  .04 .06  .08
         Ot>0°02  .04  .06 .08
           T
1
           August 1972
   100 -
.c
"Q.
O
               November  1972
  200 -
  230

  Figure 15.  Relative biomass (%) per 5 m interval versus depth (m)
            for 21 - 25 August 1972, 30 October - 3 November 1972,
            and 12 - 16 June 1973
I
              June  /973

-------
      Table 12.  ACOUSTIC REFLECTIVITY (B.C. VOLTS/m3), ESTIMATED
                 COLUMN BIOMASS (g dry wt/m2), COLUMH VOLUME1 (m3)
                 AHD BIOMASS PER UNIT VOLUME (g dry wt/m3) FOR ALL
                 STATIONS, LAKE ONTARIO,  AUGUST 1972.
Field St.

    1
    2
    3
    5
    7
    8
   10
   12
   Ik
   15
   17
   19
   20
   2k
   26
   30
   31
   32
   34
   35
   36
   38
   ko
   kl
   42
   kk
   45
   k6
   48
   k9
   52
   54
   56
   59
   60
   62
   64
   66
   67
  Acoustic
  Biomass
(120-200-500)

    11.15
     1,
    13,
77
79
    74.00
     6.38
    46.38
    50.58
     8.21
     1.26
    59.04
    95.98
     1.22
     1.70
    30.91
    83.79
    11.37
    49.45
  429.94
    24.95
    14.62
    20.08
  131.13
  153.03
    6.23
    3
  367
  350.11
    86.43
    8.63
    1.90
    14.17
  111.64

    2.98
    1.58
   91.25
   51.55
    4.03
    2.71
55
Total
Column
Biomass
g dry wt/m
(from regression)
151.541
24.629
187.260
1,001.901
87.002
628.20
685.03
111.76
17.73
799.49
1,299.29
17.19
23.68
418.89
1,134.36
154.52
669.74
5,817.77
338.26
198.49
272.36
1,774.87
2,071.18
84.97
48.71
4,978.10
4,737.67
1,170.08
117.45
26.39
192.40
1,511.17
41.00
22.06
1,235.29
698.15
55.21
3735


Volume
depth m
(x 1m2)
30
15
20
95
25
70
115
20
10
100
130
10
15
110
145
20
25
170
85
25
30
125
170
25
15
170
200
120
25
20
65
135
25
10
165
85
25
20


Unit Volume
Biomass
g dry wt/m3
5.05
1.64
9.36
10.54
3.48
8.97
5.95
5.59
1.77
7.99
9.99
1.72
1.58
3.80
7.82
7.73
26.78
34.2
3.98
7.94
9.07
14.19
12.18
3.40
3.24
29.2
23.68
9.75
4.70
1.32
2.95
11.19
1.64
2.21
' 7-48
8.21
2.20
1.87
                                 54

-------
Tatile 12 (continued).
Field St.

   69
   71
   72
   73
   75
   78
   79
   83
   85
   89
   90
   92

   96
   97
   98
   99
   103
   105
   95
                       ACOUSTIC REFLECTIVITY (B.C. VOLTS/m3) ESTIMATED
                       COLUMN BIOMASS (g dry wt/m2), COLUMN VOLUME (m3)
                       AW BIOMASS PER UNIT VOLUME (g dry wt/m3) FOR ALL
                       STATIONS, LAKE ONTARIO, AUGUST 1972.
  Acoustic
  Biomass
(120-200-500)


    76.79
    23.05
     1.97
    75.65
    65.26
    13.Hi
     H.22
 1,92H.05
   H00.82

    83.09
    15.^5
     9.23
     6.
    36.
  .82
  .17
  .85
 9.19
11.73
                                 Total
                                 Column
                                 Bicmass
                               g dry wt/m
                            (from regression)

                               1,039.65
                               6,^25.27
                                 312.55
                                  27.3^
                               l,oeU.23
                                 883.6^9
                                 182.19
                                  57.78
                              26,033.08
                               5,^3.78
                                  56.02
                               1,121*. 89
                                 209.72
                                 125.56
                                   5.28
                                  92.96
                                 1^90.06
                                  12.18
                                 125.02
                                 159.39
Volume
depth m
(x 1m2)
150
185
30
15
230
50
20
95
185
75
10
65
35
35
15
25
20
Ho
20
25
Unit Volume
Biomass
g dry wt/nP
6.92
3^.73
10.H
1.82
H.H5
17.66
9.1
0.61
1^0.7
72.3
5.60
17-3
5.99
3.59
-35
3.71
2U.5
.30
6.25
6.37
                                                  687.01     H.8U
                                                    5E   g dry wt/nH

                                           (Mean  for lake, all depth)
                                   55

-------
Figure 16.  Column bioraess (g dry wt/m2) during August 1972

-------
HORIZONTAL DISTRIBUTIONS OF ZOOPLANKTON BIOMASS
(ACOUSTICAL EST.)

Detailed analysis of horizontal distribution of column
bioaass (zooplankton g dry-vt7m^7                 ~~~

21-25 August 1972 ---

The lakewide distribution of zooplankton biomass reached a maximum
during late summer 1972 (August).  As expected the largest bicmass per
surface area was in deepwater.  During 21-25 August 1972, notable
concentrations of biomass were observed at stations 85 and 89 in
eastern Lake Ontario and stations 32, Uk and ^5 in western Lake Ontario
(Figure 16).  The mean biomass per unit volume of lake-water, considering
all stations at all depths, was estimated to be 11.8k g dry wt/m3.  This
very high value resulted, as indicated in the previous section, as a
result of a large acoustical reflectivity from targets located at
100 - 200 m depth,(Table 12).

5-9 February.1973 ---

The lakewide distribution of zooplankton bicmass in February 1973 was,
as expected, lower than in August 1972, but again greatest in deepwater.
Three large cells are noted (Figure 17), one in the mid-western section
of the lake with a large area greater than 500 g/m , one in rnidlake
off Rochester, with 300 g/m , and one in eastern midlake with a biomass
of 150 g/m2.  A single large inshore area of high zooplankton bicmass
was observed off the Oswego River, with a small area greater than
150 g/m, rather high for shallow water (Table 13).

June 1973

By June 1973 the lakewide biomass had increased to a mean of 3.0 gm dry
wt/m-^ (per unit volume), as shown in Table lU.  Two large cells were
located in western Lake Ontario, centered upon stations 10 and 32.  An
inshore cell was located west of Rochester, centered on station 5&>
and a high concentration of particles was observed in Mexico Bay.  Again
the general principal of a predominantly deepwater distribution of
bicmass is evident (Figure 18).

Comparison with Previous Estimates of Zooplankton Biomass

Zooplankton biomass estimates for Lake Ontario were made by Watson (197M
from animals taken in vertical tows frcm 50 m to the surface (Table 15).
It is immediately obvious that our estimates are about lOOx those made
previously.  This is because (a) the efficiency of net sampling, about
 $, was not considered, and (b) because we have placed much of the
bicmass (estimated acoustically) below 50 m.  It is necessary at this
time that our acoustical estimates be considered preliminary.  But they
should provide a considerable stimulus to verify or deny the existence
of considerable zooplankton biomass at depths greater than 100 m in
Lake Ontario.
                                  57

-------
     Table 13.  ACOUSTICAL REFLECTIVITY  (D-C. VOLTS/m3),  ESTIMATED
                COLUMN BIOMASS (g dry wt/nr), COLUMN VOLUME (nH)
                AHD BIOMASS PER UNIT VOLUME  (g dry wt/m3) FOR ALL
                STATIONS, LAKE ONTARIO, FEBRUARY 1973.

                                  Total
                                  Column
                                  Biomass       Volume  (m3) Unit  Volume
           Acoustic Biomass    (g dry wt/m2)      depth m     Biomass
Field St.    (120-200-500)   (from regression)    (xl nr)   g dry wt/m3

   1            5.0?              69.27              30           2.31
   3             .57               8,39              20             .1+2
   5             .20               3.39              95             .01+
   8            0.                 0.                            0.
  lU            1.62              15.21              10           1.52
  15            5.1+3              96.06            100             .96
  20            9.35             127.19              15           8.^7
  2U            0.                 0.                            0.
  26            0.                 0.                            0.
  30           11.85             161.01              20           8.05
  31            7.83             106.62              25           ^ .26
  32           76.31           1,033.15            170           6.07
  31+           12.22             166.01              85           1.95
  35             .57               8.39              25             .3^
  1+2           10.02             136.25              15           9.08
  1+1+            0.                 0.                            0.
  1+6           10.05             136.65            210           1.13
  1+8            9.21             125.29              25           5.01
  60            1.81              25.16              10           2.51
  62           50.22             680.15            165           Wl2
  6U           23.68             321.07              85           3.77
  66            6.19              8l+.1+3              25           3.37
  73            7,31              99.58              15           6.63
  77             .21               3.52            117             .03
  75            0.                 0.              230           0.
  78            U.16              56.96              50           1.13
  79             .82              11.77              20             .59
  83           11.7^             159.52              95           1.68
  85            0.                 0.                            0.
  89            0.                 0.                            0.
  90           16.52             221+.19              10           22.1+
  92            3.23              1+1+.38              65             .68
  95            0.                 o.                            0.
 105            0.                 0.                            0.
                                                                 2.92
                                58

-------
Figure 17.  Column bianass (g dry wt/m2) during February 1973

-------
     Table l4.  ACOUSTICAL REFLECTIVITY (D*C. VOLTS/m3), ESTIMATED
                COLUMN BIOMASS (g dry wt/m2), COLUMN VOLUME (m3)
                AND BIOMASS PER UNIT VOLUME (g dry wt/nP) FOR ALL
                STATIONS, JUNE 1973.

                                  Biomass       Volume of   Unit Volume
           Acoustic Biomass      mg dry wt        depth _     Biomass
Field St.    (120-200-500)   (from regression)  (xl nr=m3)  g dry i

   1            0.0               0.681             30            .02
   2            0.0               0.681             15            .02
   3            0.0               0.681             20            .02
   5            5.3              72.39              95            .76
   7           14.9             202.28              25           8.09
   8           22.51            305.24              70           4.36
  10           84.16          1,139.37             115           9-90
  12            0.0               0.681             20            .03
  14            0.94             13.40              10           1.34
  19            0.0               0.681             10            .07
  20            2.08             28.82              15           1.92
  24           38.57            522.53             110           4.75
  26           53.14            719.67             1^5           ^.96
  30            2.51             34.64              20           1.73
  31           12.18            165.48              25           6.60
  32          127.75          1,729.14             170          10.17
  35            1.37             19.22              25            .77
  36            3.14             43.17              30           1.43
  41            0.0               0.681             25            .03
  42           24.81            336.36              15          22.42
  46            8.33            113.39             120            .94
  48            4.22             57.78              25           2.31
  56          145.49          1,969.16             129          15.26
  59            0.0               0.681             25            .03
  60            0.47              7.04              10            .70
  62           10.73            145.86             165            .88
  64            o.O               0.681             85            .00
  66            0.0               0.681             25            .03
  67            0.0               0.681             20            .03
  72            0.0               0.681             30            .03
  73            0.0               0.681             15            .05
  75            0.0               0.681            230            .00
  78            0.97             13.81              50            .28
  79            1.46             20.44              20           1.02
  89            0.16              2.846             75            .04
  90            0.0               0.681             10            .07
  92           55.90            757.01              65          11.64
  9^           10.19            138.55              35           3.95
  96            4.64             63.4b              35           1.81
                                60

-------
Table lU (continued).  ACOUSTICAL REFLECTIVITY (D.C. VOLTS/m3), ESTIMATED
                       COLUMN BIOMASS (g dry wt/m2), COLUMN VOLUME  (m3)
                       AM) BIOMASS PER UNIT VOLUME (g  dry wt/m3) FOR ALL
                       STATIONS, JUNE 1973.

                                  Biomass      Volume of   Unit Volume
           Acoustic Biomass      mg dry wt        depth      Biomass
Field St.    (120-200-500)   (from regression)  (xl m  =m3)  g
  97            2.80             38.57              15           2.57
  77            7.8^            106.76             121             .88
  95            9.76            132.73              25           5.30
                                                        mean = 3.02
                                 61

-------
ON
ro
              Figure 18.  Column biomass (g dry wt/m2) during June 1973

-------
                             Table 15.  COMPARISON OF ACOUSTICAL BIOMASS ESTIMATES  (g dry-
                                        wt/m3) OVER ENTIRE WATER COLUMN, WITH OTHER ESTIMATES
                                        (g dry-wt/m3) OVER 0 -  50 m COLUMN.
         Comparable
         Dates	

         17-21 August 1970 (Watson)
         August 1972

         3-8 February 1970 (Watson)
         February 1973

         22-27 June 1970 (Watson)
         June 1973

Previous Estimate
(Watson, 197^ )
.16
.02
.03
Acoustical
Biomass
Estimate
11.8
2.9
3.0
Ratio
Acoustical :Ere-
vious Estimates
73.8:1
1^5:1
100;1
cr\
CO

-------
                              SECTION VII

     COMPARATIVE MATHEMATICAL ANALYSIS OF ZOOPLANKION COMMUNITIES
INTRODUCTION

One  of the important topics of ecology is the comparison of different
communities.  Communities found in similar environments as well as
those occupying very different environments can be compared for species
composition, species interactions and mass and energy flow, as well as
other community properties.  Comparison can "be descriptive and qualita-
tive, or some quantitative measures of community structure and the roles
of species can be developed.

This study utilizes the competition matrix by Levins (1968) as a model
from which to develop such measures.  A very simple definition of
community is implied by this model, simply a group of species interacting
at a time and place — the question of whether the community is a
natural biological unit (Poole, 197^) is of no concern.

The  use of the competition matrix restricts the concept of community
to a group of competitors and therefore to essentially one trophic
level.  This study considers a community consisting of only the
dominant herbivorous zooplankters as the cladocerans, Daphnia galeata,
Daphnia longiremis, Bosmina, Diaphanosoma, and the calanoid copepods,
Diaptomus minutus and Diaptomus sicilis.  Cmnivores and carnivores are
excluded from the model.

Three different levels of community structure are investigated with
measures developed from the competition matrix.  First, the individual
interactions between species can be considered.  Then the importance of
each species in terms of competition levels can be investigated.  Finally,
at the community level, the average intensity of competition and
community stability can be studied.

Additional measures not directly related to the competition matrix are
also considered in this study.  Niche breadths, as a property of species,
and community diversity, a community property, are essentially informa-
tion measures which can be applied to comparing communities.

Utilizing these measures of the entire community the following hypothesis
can be investigated:  During the period between spring and fall turnovers
of the lake the zooplankton community evolves toward reduced competition,
increased stability and increased diversity.

The competition matrix is based on a model of interacting species first
used by Volterra (1926).  This model has been given two interpretations.
First,  it can be considered as a simple model of population dynamics in
                                 6k

-------
its own right.  Secondly, it can be viewed as an approximation to
certain more complex models in some region around equilibrium.  It is
this latter interpretation which we are considering here with the
resulting limiting assumption that the community under consideration is
always in a near equilibrium state.  For this reason the zooplankton
communities considered all occur at summer dates when the equilibrium
conditions are more nearly met.

MATHEMATICAL THEORY

Competition Matrix

The competition matrix arises from the Volterra (1926) system for m
interacting species
            -  -t*  -
                        m
a n
                                      ii
= 1; i = 1,2,-—m
(1)
where   n.  -  population density of the ith species
        Pi  -  intrinsic growth rate of the ith species
        k.  -  carrying capacity of the ith species
        cj. -  competition coefficient jth species on the ith species

 ay measures the number of individuals of species, i, displayed by one
individual of species, j, when the system is near equilibrium.   The
 Ojj can be grouped in an array known as the competition matrix (Levins,
19o8),  This matrix, A , is of the form
                      a
                 0111      a!2-
                                                                 (2)

                 •21
                  i
                  i
                  i
                  i
                 aml	amm
end contains information on competition between individuals  of different
species.

The o^.- measure the displacement of species i per individual of  species
j.  ItJis often of more interest to consider the displacement  of species
i due to the entire population of species j.  If we let  n represent the
equilibrium population of species j, then 0: .=6. would be a measure of
this displacement.   We can think of this as weighting each element a..
by the population density n..   In order  that the new elements  be scaled
similarly to c^ ., a  normalizing factor (n"ave)~1j where navg  =  -  j.  n ,
                                                                j=l

-------
is used and an adjusted competition matrix A  is formed with elements
                                 n
                                  eve
                                                                 (3)
These elements indicate the relative competitive impact of species j
on species i.

While a comparison of communities can be made using the «. .  or a1..
values directly, data reduction techniques can often facilitate the
analysis.  A number of these techniques are based on averaging over
the competition matrix in different fashion.

Vandermeer (I9?2a) suggested two approaches.  First is the row average,
which he termed the community effect.  It measures the competition
faced by a species.  The ith row average,, <^. (or "..), is defined as
                           a  £lj  a
                            1    m 3=1 lj

 (where _A_ means "is defined as")

A second measure is the column average, termed the species effect.
This is defined as

                                    m
                                  1 E
                           a-jA.*i=1aij                        (5)


and similarly for a^..  This measures the impact  of a  species  on the
community,  a. . can oe written
                                   ave
and considered to be a normalized effective population density (normal-
ized by navg), where effective refers to competitive impact.   This
measure is useful in rank ordering species in terms  of their  importance
in the community as a function of competition.

Eow and column averages are species'  properties  and  can be used in
comparing the roles of species within and between communities.  Another
species measure, not a function of the a's, is niche breadth.  If
species i has a one dimensional niche divided into r micro-environments
                                 66

-------
and pik is the proportion of the species utilizing the kth environment,
then
                                 Z  Pik
                                 k-1


is a measure of niche breadth (Levins, 1968).  For a two dimensional
niche such as is used in this study the relationship becomes
                                                                 (8)
                                  k=U=l

If the two dimensions are independent equation (8) can be written
Properties of whole communities can be measured as well.   Levins  (1968)
suggested the average a as s measure of niche separation  in the community.
This parameter,
                                  m  m
                              m
is a measure ofnaverage species co-occurrence in Levins'  original
formulation.  "& , analogous to "3, is a community measure  of competition
in the present formulation.

Diversity is another example of a community property_and  is often
measured by the Shannon-Weaver information measure, d, community diver-
sity, is defined as

                           _     m  n.      n
                           d A . r   J  ln   J                   (11)

-------
Utilizing a^ es a' weighted version of n., a second diversity index, cP-,
can be formed in a way analogous to equation (11).

We now have four community measures,  a" depends on niche structures and
is essentially independent of population densities,  d, on the other
hand, is a measure of population densities and does not depend on niche
structure.  "$• and c£ are both mixed measures, including information
on niche structure and population densities.

System Matrix

If we are interested in the dynamics of a cctnmunity in a near equilibrium
state and particularly in its local stability, analysis of the system
matrix is required.  To determine this matrix the system is linearized
around its equilibrium point.  The linearized system is
                      m
                                 - n.j); 1 - 1,2,— m             (12)
where the a^. ere defined as
               oi. .  ^ a ^   p.       m

                     anj   v       ^


The resultant value of  a.   is
                                                 n  n .
                                                  i   i
                                                                 (HO
The aij form the elements of A,  the  system matrix.  A  and A*  are
relates by a simple matrix transformation.  If D  is a  diagonal matrix
(all zeros except along the main diagonal) and the diagonal elements
are d.± = - Pjni , then A = DA.
Equation (12) can be re-written in matrix form as



                           n =  A(n -  n)                           (15)
                                68

-------
The solution for n - n, valid only near n, is of the form
                                       , t
                                m      Ak
n - n -  z c.
            .
                                                                 (16)
Where the m values ^k, knov/n as the eigenvalues of the system matrix A,
are the roots of the equation


                               Ml|= 0.                         (17)


I is the identity matrix and U-A.l| is the determinant of A-AI.

The stability of the equilibrium depends on the eigenvalues.  If any
A^ has a positive real part the equilibrium is unstable.  Thus, if we
designate by ^j^,. the eigenvalue with the largest real part, A    seems
a good measure of community stability (May, 1973).  We shall return to
this point later.

The Competition Coefficient

Basic to both the competition matrix and the system matrix is the
competition coefficient.  Levins (1968) initially used as an approxima-
tion to competition the probability of co-occurrence, essentially a
niche overlap model of competition.  Levins (Lane, 1971) and others
(MacArthur, 1972; May, 1973; Schoener, 197^; Yandermeer, 1972b) have
discussed other forms of niche overlap models.  This study will utilize
a rather simple form.

Assume initially a one dimensional resource spectrum, R]_, i^j lL> where
I?k is the equilibrium density (or standing crop) of the kth resource
group.  Let <)>.,  be the rate per unit density at which species i utilizes
resource k.  Then ^   R,  $ ,
                  Z    k  ik
                  k=l
represents the resources utilized by species i at equilibrium.  41..  can
be expressed as s.p.,  where •;   p   = 1.
                 1 1A       i,    j_k
                            k=l
Sp a magnitude term, is determined by filtering rates in this study.

A simple measure of niche overlap for species i and j is j?   \*j[v%v'
                                                         k=l
In order to equate niche overlap as competition coefficients with their

-------
requirement that a..  =1, a normalizing factor is needed, leading to
                              k=l
                       a
                                                                 (18)
                        ij    P   .2  2
                              2    Rk*ik
                              k=i
This can be re-written as
                                P
                              s .2
                        IJ
                                P
                                    -22
The model developed for herbivorous zooplankton considers  a  two-
dimensional resource spectrum (or niche).   These dimensions  are known
as habitat selection and resource allocation (Lane,  1971).   Habitat
selection refers to the vertical distribution of zooplankton species
in the water column and overlap in this niche dimension is  co-occurrence.
Resource allocation refers to size-selective feeding by the  zooplankton
(Burns, 1968; Wilson, 1973).  In turn the  density of the resources,
largely phytoplankton, must be described in terms of both vertical
distribution and size distribution.  The resource is now described as
    and the utilization function as ^-M-   As discussed for  niche
breadth, if it is assumed that the dimensions are independent  R...
and 41.. „ can be written as R^VRv2) and KlJK2).  Equation (l9Tbecomes
     lkA                    k   £,        ii  i£

                          ;dH2K2
 This is the form of a..  used  in  this study.
                      ij
 Thus we have developed a  new  approach to examining community inter-
 actions, which should in  the  future replace the a-analysls used in
 this study (Section v).
                                 70

-------
                             SECTION VIII

          A HYPOTHESIS ON CALANOID SUCCESSION TO CLADOCERANS

                         DURING EUTROPHICATION
INTRODUCTION

Changes in the species composition of the crustacean zooplankton have
long been used as an indication of the Increased eutrophication of
freshwaters.  The best known indicator, Bosmina longirostris, was
observed to replace the larger B. coregoni after 50 years of enrichment
of the Zurichsee (Minter, 1938).  B. longirostris likewise replaced
B. coregoni in Linsley Pond following a period of increased productivity
TDeevey, 19^2).

In the Laurentian Great Lakes a complicated series of changes have been
detailed.  In Lake Michigan the cladocerans Daphnia retrocurva and
D. galeata dominated in 1927 (Brooks, 1969) and 195^ (Wells, I960),
gave way to the smaller and likely more predation-free D. longiremis
by 1966, while D. retrocurva was again dominant by 1968~~(wells, 1970).
Likewise, Leptodora kindtii, the largest cladoceran, was common in
195^-j rare in 1966 and common again by 1968, as were the large calanoids
Limnocalanus macrurus, Epischura lacustris, and Diaptomus sicilis
(Wells, I960 and 1970).  Such data have been interpreted as a response
to high alewife predation through 1966 (Brooks, 1969), with a return
to 195^-like populations following the alewife dieoff after 1966 (wells,
1970).  By 1972, Bosmina longirostris and Cyclops bicuspidatus were
dominant (Roth and Stewart, 1973)-

Similarly, in Lake Ontario Diaptomus and Daphnia were abundant in 1939>
whereas Cyclops bicuspidatus and Bosmina longirostris took over as in
Lake Michigan by 1969 (McNaught and Buzzard, 1973).Bosmina is now
especially abundant inshore and nearby urban areas (McNaught, 197*0-
In Lake Erie similar communities were dominated by D. galeata in 1938,
with D. retrocurva second (Chandler, 19^-0), whereas by 1959 the smaller
D. retrocurva had succeeded (Bradshaw, 196i).  Again we could have
interpreted these observations as evidence of size-selective predation,
but in my opinion the size spectrum of food resources must also be
considered.

Clearly a better understanding of eutrophication will result from a
greater knowledge of selective factors governing changes in species
composition.  Brooks (1969) has suggested that, in addition to enrich-
ment, planktivory by fishes and zooplankton filtering capacity are
primary factors in species succession.  But additional factors under
two following headings are also vital; all emphasize the nutritional
aspects of a nutritionally dilute environment:
                                 71

-------
     I.  Evolutionary responses to variable phytoplankton foods.

         A.  evolution of generalists and specialists with regard to
             selective algal grazing by zooplankton
         B.  evolution for increased filtering capacity
         C.  evolution for increased ingestion rate and efficiency,
             both by size and density of algae
         D.  evolution toward increased efficiency of digestion

    II.  Evolutionary responses to fish predation.

         A.  evolution for small adult size at maturity
         B.  evolution of biotic potential (r-selection organisms with
             high intrinsic Mrth rates (b.^) °r low death rates)
         C.  evolution for reduced visibility, especially of larger
             adults.

EVIDENCE FCE EVOLUTIONARY TRENDS

From studies of zooplankton feeding it has been evident that some
oligotrophic forms are nannoplankton specialists, while many eutrophic
species are generalists.  But little argument exists regarding whether
zooplankton are size-selective feeders.  Calanoid copepods are special-
ists on nannoplankton, as confirmed by field studies.  Eudiaptomus in
Lake Erken preferred nannoplanktonic chrysomonads (Nauwerck, 1963).
Similarly 70$ of the diet of Diaptomus consisted of phytoplankton of
less than 6% diameter in one study (Lane, 1971), while in another
most was less than 22y (Bogdan and McNaught, 197^).  In contrast,
Bosmina longirostris had a preferred range of particles in the nanno-
plankton category (1 - 15y ) according to Gliwicz (1969), but has also
been observed to consume a sizeable percentage (50$) of cells above
6Uy (Lane, 1971).  These differences in size will be used to calculate
grazing (Table 16).

Thus each organism has been given an adaptive value within the framework
of lake productivity.  In actual application here, the relative values
for each of the 8 components to which the zooplankton show adaptation
are summed to determine the adaptive value.  The 8 components had
relative values from 5 to 100 and the resulting adaptive values for
Diaptanus. Daphnia and Bosmina range from 3^ to 642 (Table Ib).

The advantages of increased filtering capacity were discussed by Brooks
(1969), who found that filtering capacity increased as the square of
body length (Brooks and Dodson, 1965).  Indeed.the larger Daphnia
filtered nannoplankton at the same rate as Diapt-omus (Table 16), while
Bosmina longirostris lagged on all resources (Bogdan,197^).  Dodson
(1974) has suggested that the advantages of size and filtering capacity
alone were not enough to insure survival.

The efficiency of ingestion appears 'to be a dominant factor in contrasting
the evolution of feeding.  .Studies by McMahon and Rigler (1963) on
                                 72

-------
                 Table l6.  GROWTH CHARACTERISTICS AMD A GRAZING ESTIMATE FOR  HYPOTHETICAL POPULATIONS
                            OF ZOOPLANKT02I IN AN OLIGOTROPHIC VERSUS A MESOTROPHIC  LAKE.   ACTUAL
                            (PARENTHESES) AND RELATIVE VALUES FOR FEEDING.



I. Organismic Characteristics
Feeding related
Filtering rate (ml/an/day)

Ingestion rate with cell
density (cells /an/day)

Ingestion efficiency with
cell size (%}

Growth related
Size at maturity (ram)
(reciprocal)

Birth rate (bmax)

Organismic Subtotal
II. Production and Grazing
Factors
Relative grazing per
individual
Relative net production
in ten days
Production-Grazing Subtotal, or
Relative Grazing
III. Adaptation Value
Oligotrophic
! (L*
Diaptomus


(.If2)
100

(1800)
100

(.016)
2k-

(1.6)
0
(no
( .1*0
70
-295-


(6.21)
100
(Q T\
i.j.1
(If 100)
1(6
T8^
Superior)
Daphnia


(.If2)
100

(If 00)
22

(.065)
100

(0.7)
0

Bosmina


(.15)
36

(UOO)
22

(.065)
100

(0.3)
0
predation)
(.23)
100
322


(5.55)
89
(10.)
100
(8900)
100
611
(.22)
91
21f9


(1.98)
31
(9.0)
90
(2790)
31
IfOl


Mesotrophic
(L. Ontario)
Diaptomus Daphnia


(.If2)
100

(5000)
100

(.010)
10

(1/1.6)
19

(.20)
70
305


(5.1*6)
30
(1.6)
12
(373)
5


(.If2)
100

(1300)
26

(.065)
100

(1/0.7)
42

(.33)
100
3&S


(I8.tf5)
100
(10.)
-*-
(7^00)
100


Bosmina


(.15)
36

(1300)
26

(.065)
100

(1/0.3)
100

(.31)
91
~35T


(6.59)
36
03.10
100
(3600)
if8
1HT- -SET "137-
U)

-------
Daphnia magne and Richman (1966) on Diaptomus oregonensis have been
compared (Figure 19).  The ingestionrate (Ij.) has been described by
the above authors in terms of cells ingested, where:

                    Ir = ceils ingested/animal/day

Thus Diaptcmus feeding in a concentration of cells characteristic of
oligotrophic lakes (925 cells/ml), ingested cells at a rate of 1800
cells/an/day (Figure 19).  Daphnia, filtering at similar rates, would
ingest only ^00 cells/an/day.  In contrast, at an mesotrophic concentra-
tion of 2600 cells/ml, these graphs would indicate an ingestion rate
for Diaptomus of 5000 cells/an/day, while Daphnia would ingest 1300
cells/an/day.  Clearly at oligotrophic and mesotrophic concentrations
of planktonic algae, Diaptomus has a higher ingestion rate (Figure 19).
Diaptcmus thus has a higher ingestion efficiency at low densities,  in
these experiments, Daphnia was fed yeast and Diaptomus algae.  While
more such efficiencies must be determined for natural assemblages,
these comparative results suggest that Diaptcmus is adapted to existing
on a more dilute food source than Daphnia, which is better adapted to
the rigors of life in eutrophic waters, with its highly developed
respiratory system.

Just recently, Bogdan and McWaught (197*0 have examined ingestion
efficiency with regard to the size of algal foods.  Diaptomus, the
nannoplankton specialist, is three times more efficient on nannoplankton
(.016) than netplankton (.005), tut Daphnia, the generalist, was
equally efficient on both (.065 and .062).  These findings again suggest
Diaptcmus to be well adapted to oligotrophy.

The last nutritional item, the evolution of the efficiency of digestion,
relates to both the size and packaging of the algae resource,  Recently
Porter (1973) has found that green algae encased in thick gelatinous
sheaths pass the gut of Daphnia galeata in viable condition.  Much needs
to be done relating the efficiency of digestion to size, packaging,
available digestive enzymes, etc. and this parameter will not be given
a value here.

Growth related responses have likely evolved with regard to fish
predation.  Evolution toward smell size of the adult at the time of
first brooding is of considerable benefit under heavy predation.  We
have examined the size of Diaptomus sicilis (1.6 mm), Daphnia galeata
(1.0 ma), and Bosmina longirostris (0.26 mm) at the time of first
birth.  Quite obviously, Bosmina has a considerable advantage in this
regard.  Within genera, certain species also have an advantage, as
•§• lopgirostris is smaller than B. coregoni (0.5 mm) of oligotrophic
waters, possibly one of the important factors explaining the often
noted succession between these two species.

In a similar fashion, r-selection organisms can withstand considerable
predatory pressure through a high intrinsic growth rate.  Additionally,
selection for high growth rate (r) in planktonic organisms has enabled

-------
       lOr
11 1.0
— o
      O.I
     100
                                                        Daphnia
                           Diaptomus
 0) (/)
 c c
 o o
"w ro
— X
   o
   o
10
                                                 Daphnia
                                                 bolus
                                                 rejection
                   Diaptomus
                                           Daphnia
                   j_L
                                           j	L
                            10
                                        100
                                         -3.
600
                      Cell concentration  / I0'°ml
        Figure 19. Filtering rate compared to food concentration for Daphnia
                  (McMahon end Rigler, 1963) and Diaptomus (Richman, 19&6)
                  and ingestion rates at these same food concentrations
                                 75

-------
a  rapid response to resource explosion.   Our  species have been calibrated
using field data for Daphnia galeata  (Hall, 19§^) and Diaptomus and
Bosmina longirostris (McNaught,  unpublished).  The  significantly  lower
maximum birth rate for Diaptomus  (Tablel6) will likely become  a limiting
factor under eutrophic conditions.

Once  the  organismic factors had been described (Table 16, Section l),
we proceed to give them relative values.  However,  it must be  noted that
individual feeding and growth factors have not been weighted.  In
nature some are certainly more important than others.  In many cases,
specific  values for high or low foods were available.  Potentially
adaptive  characteristics have been summarized (Table 16) by actual and
relative  value.

POPULATION GROWTH AMD GRAZING

Determination of relative population growth and grazing in Lake Superior
served as the calibration for our oligotrophic lake.  During August
three species of Cyclotella constituted 76$ by density of the phyto-
plankton  (Schelske, et al. 1972) and ranged in size from 2.5y to  15p
in diameter.  The remaining algae were predominantly flagellates.  Thus
the bulk  of the phytoplankton was less than 15M  and fell in the 1 - 22|i
category  (Stoermer,1973) while cell densities ranged from 350 - 1500
cells/ml.

Lake  Ontario is the mesotrophic example.   In August, the time of maximum
phytoplankton standing crop, the plankton is evenly composed of chloro-
phytes (38$), cyanophytes (3^), cryptomonads (12$)j dinoflagellates (12$)
and chryscmonads (U$) (Munawar and Nauwerck, 1971).  These forms ranged
in size from 2 - 137^ in diameter, with almost all between 2 - 65y ,
and the largest sub group of these between 2 - 22y

To determine grazing, on an individual basis for each species, we have
simply multiplied filtering rate (F) times the efficiencies for
ingestion with size (Eg), times the ingestion rate (l) times the
standing  crop of phytoplankton (%>), for  Lake Superior within the 1 -  22U
size  category (925 cells/ml) and for Ontario (Stoermer, 1973) within
the 1 - 22P (1300 cells/ml) and 22 - 65y  (1300 cells/ml) categories.
This  calibration suggests more Bosmina when netplankton is abundant,
as Hrblcek et al. (I96l) have observed.  Thus relative grazing (G)
is denoted;

                         G - F • Ip • Eg  • Kp                     (21)

To determine net production, we used the  exponential growth equation:

                              IT  = N ert                           (22)
                               to                             v  '
where N  = number at time t, K  = number  at the  onset,  and r = the
intrinsic growth rate.   Furthermore:

                               r = b - d
                                 76

-------
where intrinsic birth rates (b) were used as designated in Table 7, and
death rates for Diaptomus (0,10 ind/ind/day), Daphnia (0.5 ind/ind/day),
and Bosmina (0.01 ind/ind/day) were based relative to size.  Fish preda-
tion was considered negligible in Lake Superior, and high in Lake Ontario.
Production was calculated for e period of 10 days, to illustrate the
potential of these populations.  Then to determine the impact of grazing,
we simply multiplied the individual grazing rate (G) times herbivore
abundance (K).  As opposed to the organismic subtotal of relative values,
we have termed this the Production-Grazing subtotal (Table 16, Section II).

Once each of these factors of evolutionary significance had been assigned
a relative value, we applied the non-parametric Wilcoxon's paired, signed
ranks test (Sokol and Rohlf, 19&9) to see whether one column (components
of adaptation for a species) was significantly different from another.
Under oligotrophic conditions, Diaptcmus totaled kSi pts., but was not
significantly better adapted than Bosmina with ^01 pts. (T = 11, p^O.l);
on the other hand, Daphnia was better adapted (T = 0, p<0.1) than
Bosmina.  Under mesotrophic conditions, Daphnia was significantly
(T = 6, p<0.1) better adapted than Diaptomus, while Bosmina was not
(T = 9, p>0.1).

CONCLUSIONS

The sum total of all relative Organismic and Production-Grazing subtotals
has been called the Adaptation Value (Table 16).  These Adaptation Values
suggest that Diaptomus would be successful in an oligotrophic lake like
Superior, because of its superior filtering capacity and its high inges-
tion rate at low cell densities and high ingestion efficiency at small
cell sizes.  Bosmina was not predicted successful under similar condi-
tions, because of its low filtering capacity.

In contrast, in mesotrophic Lake Ontario the feeding generalist, Bosmina,
was predicted successful because of its ingestion efficiency on small and
large cells alike, its small size at maturity, which reduces fish preda-
tion and its high intrinsic birth rate (bm=x).  Indeed, Diaptomus sicilis
is the dominant organism in Lake Superior (Patalas, 1969)> and occurs in
all of the Great Lakes (Robertson, 1966), while Bosmina longirostris
dominates in Lake Ontario (McWaught and Buzzard, 1973).

However, in both trophic simulations Daphnia was predicted more success-
ful than observed in nature, due to its high filtering capacity, high
ingestion efficiency on both small and large cells, and its high intrinsic
birth rate.  Clearly we have more to consider in this case, and possibly
fish predation upon Daphnia has been undervalued.  Also, Daphnia retro-
curva and Diaptomus have been observed to co-occur, made possible through
resource allocation (Lane and McNaught, 1973).

Regarding zooplankton succession, we have added the important concepts
of ingestion rate with the size of food, and ingestion efficiency with
the density of algae, to Brooks (1969) emphasis upon filtering capacity.
Further investigation of feeding habits should detail the successes in
the Great Lakes of species like Daphnia retrocurva, leading to a better
understanding of eutrophication.
                                 77

-------
SECTION EC




REFERENCES

-------
Beeton, A. M.  19&9.  Changes in the Environment and biota of the
     Great Lakes.  In;  Eutrophication:  Causes, Consequences,
     Correctives.  Hat. Acad. Sciences, Washington, D.C.  pp. 150-157.

Bogdan, K.  197^.  pers. comm.

Bogdan, K. and D.C. McHaught.  Selective feeding by Diaptomus and
     Daphnia.  Verh. Internat. Verein. Limnol. 19.

Bradshaw, A. S.  196U.  The crustacean zooplankton picture:  Lake Erie
     1939-^9-59; Cayuga 1910-51-61.  Verh. Internat. Verein. Limnol.
     15:700-708.

Brooks, J. L.  1969.  Eutrophication and changes in the composition
     of the zooplankton.  In;  Eutrophication:  Causes, Consequences,
     Correctives.  Mat. Acad. Sciences, Washington, D.C.  pp. 236-255.

Brooks, J. L. and S. I. Dodson.  1965.  Predation, body size, and
     composition of plankton.  Science 150;28-35.

Burns, C. W.  1968.  The relationship between body size of filter-
     feeding cladocera and the maximum size of the ingested particle.
     Limnol. Oceanogr. 13:675-678.

Chandler, D. C.  19^0.  Limnological studies of western Lake Erie.
     I.  Plankton and certain physical-chemical data of the Bass
     Islands Region, from September 1938 to November 1939«  Ohio
     J. Sci. 2+0:291-336.

Deevey, E. S.  19^-2.  Studies on Connecticut Lake sediments.  III.
     Biostratonomy of Linsley pond.  Amer. J. Sci. 2l+0;233-26U, 313-333.

Dodson, S. I.  197^.  Zooplankton competition and predation:  An
     experimental test of the size-efficiency hypothesis.   Ecol.
     55:605-613.

Gliwicz, Z. M.  1969.  Studies on the feeding of pelagic zooplankton
     in lakes with varying trophy.  Ekologia polska 17:663-708.

Hall, D.  1964.  An experimental approach to the dynamics  of a natural
     population of Daphnia galeata mendotae.  Ecol. ^5:94-112.

Hrbacek, J., J. Dvorakova, V. Korinek and L. Prochazkova.   1961.
     Demonstration of the effect of the fish stock on the  species
     composition of zooplankton and the intensity of metabolism of
     the whole plankton association.  Verh. Internat. Verein. Limnol,
     114:192-195.

Hutchinson, G. E.  1957-  A Ireatise on Limnology, Vol. I;  Geography,
     Physics and Chemistry.  John Wiley and Son, Inc., New York.
     pg. 1051.
                                 79

-------
Lane, p. A.  1971.  A comparative study of the structure of zooplankton
     communities.  Ph.D. Thesis, State Univ. of Mew York at Albany.
     216 pp.

Lane, P. A. and D. C. MeHaught.  1973.  A niche analysis of the Gun
     Lake (Michigan, U.S.A. ) zooplankton community.  Verh. Internet.
     Verein.. Limnol. 1
Levins, R.  1968.  Evolution in Changing Environments.   Princeton
     University Press, Princeton.  120 pp.

aacArthur, R. H.  1972.  Geographical Ecology.  Harper  and Row
     Publishers, Inc., New York.  269 pp.

May, R. M.  1973.  Stability and Complexity in Model Ecosystems.
     Princeton University Press, Princeton.  235 pp.

Mclvjahon, J. W. and F. H. Rigler,  1963.  Mechanisms  regulating the
     feeding rate of Daphnia magna Straus.  Can. J.  Zool.  Ul:321-332.

MeHaught, D. C.  1968.  Acoustical determination of  zooplankton
     distributions.  Proc. llth Conf. Great Lakes Res.  1968,  76-8U.

Mcllaught, D. C.  1969.  Developments  in acoustic plankton  sampling.
     Proc. 12th Conf. Great Lakes Res. 1969,  6l-68.

Mcjiaught, D. C.  1973.  Zooplankton Production in Lake  Ontario with
     regard to environmental perturbation.  First Annual Rept.  to E.P.A,

Mcllaught, D. C.  197^-  Impact of urban areas on inshore zooplankton
     populations of Lake Ontario.  Proc. 17th Conf,  Great  Lakes Res.
          (unpub.)
i'.lcKaught, D. C. and M. Buzzard.   1973.   Changes  in zooplankton
     populations in Lake Ontario (1939-1972).  Proc.  l6th  Conf.
     Great Lakes Res. 1973,  76-86.

Minter, L.  1938.  Der Zurichsee als  Eutrophierungs-pha'nomen.  Geol.
     Lleere BinnengewMsser 2;28k-299.

Munawar, M. and A. ilauwerck.  1971.   The composition  and horizontal
     distribution of phytoplankton in Lake  Ontario during  the year
     1970.  Proc. llrth Conf. Great Lakes Res.  1971, 69-78.

Nauwerck, A.  1963.  Die Beziehungen  zwichen zooplankton und phytoplankton
     im See Erken.  Symp. Bot. Upsal. 17:1- 163.

Patalas, K.  1972.  Crustacean zooplankton  and eutrophication of
     St. Lawrence Great Lakes.  J. Fish. Res.  Board Can. 29-1^51- 2.^62.

Patalas, R.  1969.  Composition  and horizontal distribution of crustacean
     zooplankton in Lake Ontario, j. Fish. Bd.  Can.  26:2135-2l6U.
                                80

-------
poole, R. W.  197^.  An Introduction to Quantitative Ecology.
     McGraw Hill, New York.  532 pp.

Porter, K.  1973.  Selective grazing and differential digestion of
     algae by zooplankton.  Mature 21A-:179-180.

Richman, S.  1966.  The effect of phytoplankton concentration on
     the feeding rate of Diaptomus oregonensis.  Verh. Internet.
     Verein. Limnol. 16;;
Robertson, A. A.  1966.  The Distribution of calanoid copepods  in the
     Great Lakes.  Univ. Michigan Great Lakes Res. Div. Publ. 15:129-139.

Roth, J. C. and J. A. Stewart.  1973.  Hearshore zooplankton of
     southeastern Lake Michigan, 1972.  Proc. l6th Conf. Great  Lakes
     Res. 1973, 132-1*12.

Schelske, C. L., L. E. Feldt, M. A. Santiago and E. F. Stoermer.   1972.
     Hutrient enrichment and its effects on phytoplankton production
     and species composition in Lake Superior.  Proc. 15th Conf.
     Great Lakes Res. 1972, 1^9-165.

Schoener, 1. W.  197^-  Some methods for calculating competition
     coefficients from resource-utilization spectra.  The American
     naturalist 108

Sokal, R. R. and F. J. Rohlf.  1969.  Biometry:  The principles and
     Practice of Statistics in Biological Research.  W. H. Freeman
     and Co., San Francisco.  776 pp.

Stoermer, E. F.  1973.  Analysis of phytoplankton composition and
     abundance during IFYGL.  Corvallis;  U.S. Envir. Prot. Agency,
     EPA 66013-73 021.  pp. 89-109.

Venderrneer, J. H.  1972a.  "On the covariance of the community  matrix,"
     Ecology Vol. 53, NO. 1, pp. 187-189.

Vandermeer, J. H.  1972b.  niche Theory.  In;  Annual Review _of
     Systematics and Ecology 1972, Palo Alto, pp. 107-132.

Volterra, V.  1926.  Variations and fluctuations of the number  of
     individuals of animal species living together.  In;  Animal
     Ecology (R. N. Chapman, ed.) McGraw Hill, New York.    ~

Watson, N. H.  197^-  Seasonal abundance of crustacean zooplankton
     and net plankton biomass of Lakes Huron, Erie and Ontario.
     J. Fish. Bd. Can. 31:309-317.

Wells, L.  I960.  Seasons! abundance and vertical movements of  planktonic
     Crustacea in Lake Michigan.  U.S. Fish and Wild. Serv., Fish.
     Bull. 60:3*13-369.
                                 81

-------
Wells, L.  1970.  Effects of alewife predation on zooplankton populations
     in Lake Michigan.  Limnol. Oceanogr. 15:556-565.

Wilson, D. S.  1973.  Food size selection among copepods.   Ecology 5^:lb
     909-91U.
                                82

-------
         SECTION X




        APPENDIX A






TABLES OF MEAN ZOOPLAHKEON




    DENSITY BY SPECIES,




  DATE AND DEPTH OF WATER




          SAMPLED
            83

-------
                    Table 17.  LAKEWIDE AVERAGE OF  ZOOPLANKTON POPULATION DENSITIES.  VALUES (n/m )
                               REPRESENT ANIMALS COLLECTED WITH A NET  (6k  APERTURE) AT STATIONS IN
                               WATERS LESS  THAN 30  m  IN DEPTH, OVER A VERTICAL RANGE OF 0 - 5 m.
Species
Cladocera
Bosmina
coregoni
Bosmina
longirostris
Daphnia
galeata
Daphnia
retrocurva
Daphnia
longiremis
Ceriodaphnia
lacustris
Chydorus
sphaericus
Holopedium
gibber urn
Polyphemus
pediculus
Diaphanosoma
Alone
15-19
May
8
k&
0
6
0
0
0.1
0
0
0
0
12-16
June
2k
382
3
6
0.05
1
3
0.1
0
0
0
10- Ik
July
532
11786
827
55
15
23
^
0.9
Ik
0
0.6
21-25
Aug
997
78230
186
10169
0
U028
213
17
k
10
0.2
Oct-Nov
2755
1913
16
2001
o.k
128
35
1.3
0
0.2
3.5
Nov-Dec
978
99
2k
352
0.2
&
Ui
0
0
0.7
18
5-9
Feb
2k
3
0.7
0.6
0
0
0
0
0
0
0.2
19-22
March
19
1
0.2
0.1
0
0
0.05
0
0
0.5
0.05
2^-28
April
7
5
0.1
0.7
o.k
0.9
0.3
0
0
0
0
12-16
June
52
1755
1.3
18
0.2
6
7
0
0
0
0
CO

-------
               Table 17 (continued).
LAKEWIDE AVERAGE OF ZOOPLANKION POPULATION DENSITIES.  VALUES (n/m)
REPRESENT ANIMALS COLLECTED WITH A MET (6k  APERTURE) AT STATIONS IK
WATERS LESS THAU 30 m IN DEPTH, OVER A VERTICAL RANGE OF 0 - 5 nu
Species
Cyclopoida
Cyclopoida
c opeped.it es
Cyclops
bicuspidatus
Cyclops
vernalis
Tropocyclops
pra sinus
Calanoida
Calanoide
copepodites
Diaptomus
ashlandi
Diaptomus
siciloides
Diaptomus
niinutus
Diaptomus
oregonensis
Diaptomus
sicilis
Limnocalanus
ma cr ur us
Eurytemora
af finis
15-19
May
70
7!40
1
0.5
37
0
0
iiU
15
28
188
.08
12-16
June
U31
I06l
6
h
57
0
0
132
22
79
187
9
10- lit
July
1599
10707
91
26
113
0
0
53
26
U2
65
10
21-25
Aug
25331
8520
737
175^
130
0
0.3
60
1(6
13
7
1115
Oct-Nov
10892
1051*
176
8022
U05
0
^.9
30
^7
1^0
22
133
Nov-Dec
11^6
519
8if9
1066
170
0.2
6.8
35
60
38
2^5
25
5-9
Feb
2077
126
10
170
Ifl
1
0.0^
37
h2
35
30
0.3
19-22
March
1U07
232
7
lilt
69
0,5
0.2
h9
8
28
50
0
2^-28
April
987
887
22
163
108
0
0.3
^3
20
38
123
6
12-16
June
13890
529
81
200
219
.09
0.5
29
1.3
1.7
19
2.3
CD
\J1

-------
            Table 18.  MEAN ZOOPLAKKEOK POPULATION DENSITIES.  VALUES  (HUMBER/m^) REPRESENT ANIMALS COLLECTED
                       WITH A MET (6k u aperture).
Species
Cladocera
Bosmina
c oregoni
Bosmina
longirostris
Daphnia
galeata
Daphnia
retrocurva
Daphnia
longiremis
Ceriodaphnia
lacustris
Chydorus
sphaericus
Holopedium
gibber um
Polyphemus
pediculus
Diaphanosoma
Alona
0-15m
12-16 10-14
June July
35 87
323 9137
o 127
8.5 1^
O.k 0
1 37
3 ^
0 0
0 0
0 0
0 8
0-10m
15-19 12-16
May June
Tb 81
70 3909
0.3 19
6 2
0 0
0 0
1 0.9
0 0
0 0
o 0.9
0 0
0-20m
12-16 10- lU
June July
3 107
235 10376
1 103
b 39
0 0.1*
0 40
0.3 k
0 0
0 0
0 0
0 0
0-25ra
15-19 12-16 10-1J+
May June July
6 9 76
27 125 6c49
0.7 0.2 129
1.^ 5 57
0 O.lf 2
o 0.3 37
0.8 2 k
000
000
000
0.7 0.1 13
OO

-------
              Table 18 (continued).   MEAN ZOOPLANKTON POPULATION DENSITIES.  VALUES (NUMBER/ra3) REPRESENT
                                     ANIMALS  COLLECTED WITH A MET  (6k- u aperture).
Species
Cyclopoida
Cyclopoid
copepodites
Cyclops
bicuspidatus
Cyclops
vernalis
Tropocyclops
pra s inus
Calanoida
Calanoid
copepodites
Diaptomus
minutus
Diaptomus
oregonensis
Diaptomus
sicilis
Diaptomus
ashlandi
Diaptomus
siciloides
Limn oca la nus
macrurus
Eurytemora
af finis
# or Stations
0~15m
12-16 10- 14
June July
580 2440
166 5004
10 52
17 55
20 105
5 100
0.1:- 3^
0.5 39
0 0
0 0
11 35
6 7
10 17
0-10m
15-19 12-16
May June
222 605
520 1332
0 16
1 21
26 57
80 43
16
14 0.9
0 0
0 0
13S 29
0 0
7
0-20ra
12-16 10-14
June July
571 1599
562 4494
7 102
28 76
51 105
33 74
2 93
17 25
0 0
0 0
45 55
6 2
10 15
0-25m
TCT-IQ TPTf-. 1 O— T It
May June July
161 362 1102
473 778 7929
1 12 100
0 1 42
25 71 77
69 79 86
15 11 52
14 29 46
000
0 0.6 0
96 132
031
26 39 20
OO

-------
                     Table 19.  MEAN ZOOPLANKTON POPULATION DENSITIES.  VALUES  (HUMBER/nr5) REPRESENT
Species
C la doc era
Bosmina
c oregoni
Bosmina
longirostris
Daphnia
galeata
Daphnia
retrocurva
Daphnia
longiremis
Ceriodaphnia
lacustris
Chydorus
sphaericus
Holopedium
gibber urn
Polyphemus
pediculus
Diaphanosoma
Alona
15-19
May
1
k
0
o.h
0
0
0.1
0
0
0
0
12-16
June











10- lU
July
5
825
0.5
0
0
0
0
0
0
0
0
21-25
Aug
157
7399
29
1917
2
279
2
0.5
0.1
0.5
0
Oct-Kov











Nov-Dec
176
35
0.1
15
0.2
0.3
0
0
0
0
0.1
5-9
Feb
14
1
0.03
0.06
0
0
0
0
0
0
0.03
19-22
March
0.7
1
0
0.8
0
0
0
0
0
0
0.1
2l|-28
April
.09
0.2
0
0.1
0
0
0
0
0
0
0
12-16
June
7
185
0
2
0.3
0
0
0
0
0
0
Co
Co

-------
              Table 19 (continued).  MEAN ZOOPLAHKTOK POPULATION DENSITIES.  VALUES (NUMBER/m3) REPRESENT
                                     ANIMALS COLLECTED WITH A NEI  (6h   APERTURE) AT STATIONS 50 m'TO SURFACE.
Species
Cyclopoida
Cyclopoid
copepodites
Cyclops
bicuspidatus
Cyclops
vernalis
Tropocyclops
pra sinus
Calanoida
Calanoid
copepodites
Diaptomus
ashlandi
Diaptomus
siciloides
Diaptomus
mi nut us
Diaptomus
oregonensis
Diaptomus
sicilis
Limnocalenus
macrurus
Eurytemora
af finis
# of Stations
counted
15-19
May
lUl
b08
0.3
0
1099
0
2k
87
17
Ik
182
0
16
12 --16
June











0
10-llf
July
1363
2833
59
5U
76
0
0
17
if
29
196
5
4
21-25
Aug
mo
26ck
1*53
190
58
0
0.9
18
17
6
5*
22
20
Oct -NOV











0
Nov-Dec
5753
69
o.h
576
119
.05
1
23
23
20
57
if
20
5-9
Feb
2963
25
0
163
35
.02
.06
2^78
6
8
16
0
Ih
19-22
March
1181
92
0
79
52
0.2
0
1*
6
9
82
0
17
2lf-28
April
511
562
0
89
82
0
0
39
8
8
1^7
0
17
12 --16
June
2U36
250
0.2
23
126
0.2
0
15
1
2
Iif3
0.1
17
CO

-------
         SECTION X




        APPENDIX B






ACOUSTICAL DATA BY STATION




    AMD CRUISE FOR EACH




    5 m DEPTH INTERVAL
          90

-------
     AUG  STATION  1  DEPTH 33  METEfcS HvEAMP 10*"»4  AVE 5 DEJ-TH
     MEAN VALUE 0F  PR0FILES  9V. Eh 5M
CH
CH
CH
CH
CH
CH
1-1 P.
1 3- £4
25-36
37-48
49-6.0
61-72
1EO-80
120-80
120-80
120-80
120-80
120-80
* •
-1.
-1.
-1.
-£.
-2.
5643
0299
5346
9403
£065
3221
£00-
200-
£00-
£00-
800-
200-
120
120
120
120
120
120


1
1
1
1
.5874
.9108
.1654
.42P.Q.
. 6947
.9197
500-200
500-200
500-200
500-200
500-200
500-200
.091 5
.2759
. 4794
. €886
.8855
1.0674
SM

1 5M
20M
££M
30M
     AUG  STATION 2 DEPTH  16 METERS PREAMP  10»«4 AVE  5/DEPTH £2
     MEAN VALUE 0F P1U3FILES 0VEK 5M INTEUVALS
     CH    l-£4     120-80   .0983   £00-120    .1698    500-200   .£730   5M
     CH  25-48     120-80   .1962   200-120    .0009    500-200   .5195  IOM
     CH  49-72     120-80   .2941   EGO-1£0   -.£076    500-EOO   .8215  ISM
1972 AUQ- STATION 3 D15PTH  22 METERS PREAMP  10**  4 AVE   DEPTH 25
     MEAN VALUE 0F PH8 FILES 0VEH  5M ' MT»rva;&i f,
     CH    1-32
     CH  £3-44
     CH  45-66
     CH  67-88
1EO-80   -.86C1
120-80 -1.1103
1 SO-SO -1.9.279
120-80 -2.7950
200-! 20   1.4906
£00-120   £.3583
£00-120   3. 7986
£.00-120   5.2875
500-200   -.3045    31
500-200   -.0124   iOM
500-200    .2769   1 5M
500-200    . 5655   20M
1972  AUG "STATION  5 DEPTH  95 METERS P'Pi'EAMF 10»*4 A'VE 5 DEPTH  120
     KEAM VALUE 0F PK3FILES 0VEIi  5M  INTEI:VALi>
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 4
5- 8
9-12
13-16
17-20
21- £4
£5- £8
'£9-32
33-36
37-40
41-44
45-48
49- 52
53-56
57-60
61-64
65-68
69-72
73-76
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
1EO-80
120-80
120-80
120-80
.3357
.4238
.4475
.4618
.4788
.4872
.4938
.5070
.5191
. 530B
. 5£9 7
.5316
. 5456
.5578
. 5682
.5785
.5836
. 5804
. 5800
EOO-
£00-
800-
200-
£00-
200-
200-
800-
200-
200-
£00-
£00-
200-
£00-
£00-
200-
120 -
120
120
1£0
120
ISO
120
120
120
120
1£0
120
120
120
-.0475
.0712
.251 1
. 430 6
. 6018
. 7691
.9260
.0752
.2195
.3599
.4998
. 6348
. 7659
.8958
120 2.0E26
120 £.1468
200-120 2.2683
£00-
£00-
120 2.3883
120 2. 51 £2
500-200
500- £00
5007£00
500-200
500-800
500-200
500-EOO
500-200
500-200
500-200
500-EOO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200



1
1
1
1
£
£
2
3
3
3
3
4
4
4
4
.
.
.
.
.
.
.
.
.
.
•
.
•
.
•
•
•
.
5.
£367
498 7
7778
0670
36£0
6621
9 51 6
82.04
4838
7435
002.7
2610
5204
7776
0364
£958
5563
81 78
0774
5M
IOM
15M
20M
£5>5
30M
35M
40M
45M
50M
5 SI
60M
65M
70M
75M
80M
8S-1
90M
95M
                                    91

-------
     AUG STATION 7 DEPTH  26 METERS PREAMP 10*»4 AVE 5 DEPTH 32
     MEAN  VALUE 0F PB0FILES 0VF1-. 5t1 INTERVALS
CH
CH
CH
CK
CH
1-16
17-3£,
33-48
49-64
65-80
120-80
120-80
120-80
120-80
.120-80
-.8578
. 669 4
1. 6884
2.3643
2.7587
200-120
£00- 120
800- 1EO
£00-120
200- 1 £0
2. £553
1.8019
.3961
-.116&
- . 3 53 7
500-200
500-200
500-200
500-200
500-200
.0629
.2717
. 49 61
. 7288
.9637
5M
10M
134
20M
£5M
1972 AUG STATIOM 8 DEPTH 70 METERS PREAMP  10»*4 AVE  5  DEPTH 78
     MEAN  VALUE 0F PROFILES 0VEH 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7-12
13-18
19-24
25-30
31-36
37-42
43-48
49-54
55-60
61-66
67-72
73-78
79-8-4
120-80
120-80
120-80
120-80
120-80
120-80
1EO-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
-.7544
-.8572
-.8782
-.8818
-.9070
-.92,25
-.9237
-.9189
-»9£22
-.9273
-.931 1
-.9325
-.9383
-.9426
200-120
£00- 120
£00-120
200-120
200- 120
200- 120
200-120
200- 1'20
200-120
200-120
£00-120
£00-120
200-120
200-120
-.0040
.0854
. 1 730
.2494
,3502
.4498
.5330
.6080
. 6800
.7570
.8307
.9055
.9836
1.0599
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
.3683
. 7349
1. 1019
1 . 4 749
1.8424
2. £119
2. 5841
£.9556
3.3282
3. 7016
4. 0 7£8
4. 44 54
4.8184
5. 1922
5M
10M
15M
20M
2M
30M
3 Sri
40M
45M
50M
5S4
60M
65M
70M
1972 "AUG STATION  10 DFPTH 11? METERS PKEAMP  10»*4 AVE  5  DEPTH 150
     MEAN VALUE 0F PR0FILKS  0VER 5M
CH
CH
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10- IS
13-15
16-18
19-21
£2- 24
£5-27
£8-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
5£-54
55-57
58-60
61-63
64-66
67-69
1£0-80
12t)-80
120-80
1EO-80
120-80
120-80
120-80
1. £0-80
120-80
120-80
120-80
120-80
120-80
ISO- 80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
.0650
. 1426
.1504
.1866
.201£
.2065
.2879
.2531
.3032
.4219
.5052
. 5368
.5633
. 60 73
.6399
.6515
. 6778
.7176
, 7520
. 7909
.8403
.8810
.9039
200-
£00-
200-
£00-
£00-
200-
200-
£00-
200-
£00-
300-
£00-
200-
£00-
200-
£00-
£00-
£00-
200-
200-
1£0
1£0
1£0
120
1£0
120
120
1£0
120
1£0
120
120
120
120 '
120
120
120-
120-
120-
120-
200-120-
£00-
£00-
120-
~ •
•" 1
-1.
-£.
-3.
-3.
-4.
-4.
-5.
- 6.
6737
3181
89 66
5033
0897
6652
£656
8600
4827
19-16
- 6. 8528
-7.
-8.
-8.
-9.
-9.
10.
11.
11.
12.
IS.
13.
120-14.
4582
0667
6764
£788
8670
4684
0913
7079
3E32
9473
•&5E8
1330
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
50C-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
5"00-gOO
500-200
500-£00
500-200
500-200
500-200
500-200
.
.
.
.
.
1.
1.
1.
1.
1.
£.
2.
£.
£.
2.
£.
3.
3.
3.
3.
3.
3.
4.
£155
4146
6016
TS 61
9701
1493
3£85
5059
68 52
86£1
03T9
2156
3916
5671
7418
9136
0906
£640
4378"
6113
7825
9554
1303
5M
10M
15M
£0.^5
£5>1
30M
35>i
40M
4 EM
50M
55M
60M
65M
TOM
75M
80M
8 5M
90M
95:^
100M
103-1
110M
MEM
                                    92

-------
1972  AUG STATION  12  DEPTH 21 METERS  PREAMP 10**4 AV6>  5 DEPTH E5
     MEAN VALUE 0F PROFILES 0'VEh 5M  INTERVALS
     CH    1-21
     CH   22-42
     CH   43- 63
     CH   64-84
           120-80    .0971
           120-80   -.5097
           120-80   -.5147
           120-80' --1.0890
200-120
800-120
£00-120
EQO-120
1. C866
2.0719
1 . 5431
1. 5037
500-200
500-200
500-200
500-200
. 129 7
.231 7
. 4288
. 638 I.
34
10M
15M
SOM
1972 "Aua STATION  14 DEPTH 10 METERS PREAMP io*»4 AVE 5 DEPTH i?
     MEAN VALUE 0F  PR0FILES 0VER  5M 11X11 ERVALS
     CH
     CH
 1-29
30-58
120-80
1SO-80
. 1007
-3652
200-120
200-120
.5496
.3997
500-SOO
500-200
.0631
,2605
 5M
10M
1972
     AUG STATION  15 DEPTH 102 METERS PEHAMP 10**4  AW 5 DEPTH 140
     MEAN VALUE 0F PR0FILES 0VER  5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-12
13-15
16-18
19-21
22-24
25-27
£8-30
31-33
34-36
37-39
40-42
43-45
46-48
49- 51
52- 54
55-57
58-60
120-80
120-80
420-80
120-80
120-80
120-80
120-80
180-80
120-80
1£0-60
180-80
120-80
120-80
180-80
1£0-8'0
120-80
120-80
120-80
120-80
120-80
- . 5827
-1.0174
- 1.8638
<-1.9734
- 1.9819
- 1.9782
- 1.9782
- 1.9940
-2.0053
-2.0046
-1.9826
-1.9415
-1.8873
-1.8558
-1.8505
- 1.8423
-1.8376
-1.83&0
-1.8320
-1.8261
200-120
200- 120
800- 180
200-180
200- ISO
200-120
£00- 120
£00- 120
£00-1£0
£00- 120
200-120
£00-1£0
200- 120
200- 120
200- 120
200- 1£0
200- 120
£00- 1EO
200- 120
200-120
.0542
.2679
.4646
. 6575
.8414
1.0188
1.1820
1.3504
1. 6240
1.8281
1.9766
2. 08 6£
2. 1743
£.2661
2.3579
2.4819
2. 6134
£. 7465
2.8746
3.0015
500-200
500-200
500- £00
500-200
500- £00
500-200
500- £00
500-200
500-800
500-800
500-200
500-200
500- £00
500- £00
500- £00
500- £00
500- £00
500-200
500-200
500-200
. 1461
. £ 654
.3591
.4875
. 6556
.8049
.9541
1 . 0 749
1. 1738
.2794
.3796
.4772
. 5763
. 6724
. 7689
.8675
.9658
2. 0 644
£. 1 592
£.2563
5M
10M
1 SM
80M
£5M
30M
35M
40M
4S-5
50M
55M
60M
65M
70M
75M
80M
8 5M
90M
93'!
100M
                                     93

-------
1972 AUG STA  17  PA 10»»4 AVG  5 DEPTH 130 SCAN  170
     MEAN VALUE  0F PROFILES 0VER 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH-
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- .8
9-10
11- If
1 .3- 1 4
1 5- 1 6
17-18
19-eo
21-22
S3- 84
25- 26
£7- £8
29 - 30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
120-80
120-80
120-80
120-80
120-80
180-80
1EO-80
120-80
120-80
120-80
120-80
180-80
120-80
120-80
120-80
120-80
180-80
120-80
120-80
120-80
1EO-BO
120-80
120-80
120-80
120-80
120-80
.9935
1.1239
1.1377
1.1366
1.1342
1. 1323
1 . 1 28 0
1 . 1 38 6
1.1427
1. 1404
1. 349
1. 282
1. 211
1. 169
1. 171
1. 127
1 . 1 09 5
1 . 099 0
1 . 089 6
1 . 08 39
1.0806
1.0687
1.0637
1.0589
1.0518
1.0486
200-120
200-120
200- 120
200- 120
200- ISO
200- 120
200-120
200-120
200- 120
200- 120
200-120
200^12.0
200-120
200-120
200-120
200- 120
200-120
200- IPO
200- 120
200-120
SOO- 120
200- 120
200- 120
200- 120
200-r 120
200-120
.0049
.1957
.398 6
. 60 3~7
. 7978
.9785
1. 1488
1. 3070
1.4571
1. 6107
1. 7568
1.9023
2.0514
£. 19 7/i
2.3510
2. 5225
2. 7041
2.8938
3.0868
3.2811
3.4745
3. 6694
3.8676
4.0642
4. 2.613
4.4559
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
-.2037
-.0080
.2051
.4377
. 6777
.9234
1 . 1 70 5
1.4005
1. 6077
1.8076
8.0022
2. 1948
2. 38 63
£. 5767
2. 7693
2.9625,
3. 1 535
3. 3458
3. 5380
3. 7301
3.91 77
4. 1 0 74
4.2989
4.4900
4. 6790
4.8666
34
10M
15M
20iM
£5M
30M
35M
40M
45M
50M
55M
60M
634
70M
75M
80M
8EM
90M
95C4.
100M
1G5M
110M
115M
120M
125M
130«-
     AUG  STATION 19 DEPTH  14 METERS PREAMP  10»*4 AV£ 5 DEPTH  E5
     MEAN VALUE 0F PR0FILES 3VER 5M ^
     CH    1-28      120-80  1.2320
     CH  29-56      120-80   .9767
200-120    .4721
200-120  -.3536
                                                    500-200
                                                    500-200
. 28 66    SM
.4744   10M
1972  ^UG STATI9N  20 DEPTH 18 PA  10**4 AVG 5 DEP1H  31
     MEAM VALUE 0F PROFILES 0VEH &M  INTERVALS
CH   1-19      180-80    .4778    £00-180 -1.5842
CH  80-38      120-80    .6679    EDO-180  -.8995
CH  39-57      180-80    .7308    SOO-120  -.7441
                                                         500-SOO
                                                         500-200
                                                         500-200
                              .2711    34
                              .5618  ION
                              .8779  ISM

-------
1972
     AUG STATION 24  DEPTH  114 METERS PEFAMP 'iO»»4  DEPTPH 150
     MEAN VALUE 0F PhOFILES 0VEk 5M INTERVALS
CH
CH
CM
CH
CM
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH'
CH
CH
1- 3
4- 6
7- 9
10-12
13-15
1 6- 18
19-21
££-£4
£5-27
28-30.
31-33
34-36
37-39.
40- 4?,
43-45
46-48
49- 51
58- 54
55- 57
58-60
61-63
64- 66
1 SO-SO
1SO-80
1EO-80
120-80
1SO-60
120- 80
120-60
120-80
ISO- 80
120-80
180-SO
120-80
120-SO
120-80
120-80
ISO-BO
120-80
ISO- 80
IPO- 80
120-80
1EO-BO
120-80
-.4321
-.8316
-1.170S
- 1 . 49 1 5
-1.7986
-E.0931
-£. 39 BE-
- S. .© 1 1
-2.9874
-3.2784
-3.5677
-3.8623
- 4. 1 68 4
-4.4585
-4.7553
-5.0507
- 5. 3399
- 5. 6402
-5.9366
-6. ££76
- 6. 5223
-6.8180
200-.120
200-120
£00-120
£00-120
£00-120
£00-120
£00-120
200-120
200- 120
£00- 120
£00-120
£00-120
200-120
200- ISO
200-120
200- 1 20
200-120
200-120
£00-120
£00-120
200- ISO
200-120
.0066
.0065
.0033
-.0071.
-.0045
-.0063
-.0177
-.0205
-.0231
-.0266
-.0310
-.0408
-.0354
-.0459
-.0410
-.0440
-.0551
-.0534
-.0567
-.0571
-.0625
-.0733
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- 200
500-200
500- £00
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
i£S15
.4127
. 5139
. 618 1
. 7270
.8273
.9320
1.0356
1 . 1 3 63
.2445
.3494
.4528
. 5624
. 6'6.51
1. 771 7
1 . 3 754
1.9802
£. 09 43
2. £031
£.3£11
2.4366
£. 5467
an
10M
15M
SOM
25M
SOM
35M
40M
45M
SOM
55M
COM
65M
70M
75M
SOM
8 SA
9 OM
95M
100M-
IDS!
1 1 OM
1972  AUG STATION' 26  DEPTH  146 METERS PI-.E 10** 4 AVE  5 DEPTH   £00
     MEAN VALUE OF PROFILES OVEH SM INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
11-1E
13-14
15-16
17-18
19-20
£1-22
£3-24
£5- £6
27-28
£9-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
53- 54
55- 56
57-58
120-80
1EO-80
1EO-80
180-80
120-80
120-80
120-80
120-80
1EO-80
120-80
120-80
120-80
120-80
120-80
120-80
1EO-80
120-30
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-30
120-80
120-80
1EO-80
120-80 ]
.B4£7
.6408
.6363
.623£
. 6187
. 6914
. 70 40
.8582
.9237
.9583
.9975
1.0322
1.0720
1.0997
1 . 1 328
1. 1622
1. 1907
.2345
.2617
.2968
.3461
. 38 1 7
.4039
.4317
. 4 64 5
.4961
.5336
. 5757
. 61 38
200- 120
200-120
200-120
£00-120
£00-120
£00-120
200-120
£00-120
£00-120
£00-120
£00-120
200-120
£00-1£0
200-120
200-120
200-120
200-120
200-120
£00- 1 £0
?.00- 1 £0
200- 1£0
200- 120
£00-120
£00-120
200- 1EO
£00-120
£00-120
200-120
200-120
-.4925
-. 5509
-. 51 53
-.4598
-.39 76
-.3774
-.3585
-.3143
-.££85
- . 22 74
-.1813
- . 1 £8 0.
-.0833
-.0388
, .0019
.0431
. 08 6£
. 1270
. 1 676
.£11 7
.2563
. £9 65
.3489
.3988
.4398
. 48 4 1
.5281
. 5741
.' 6233
500- £00
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500- £00
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-EOO
500- £00
500-200
500-200
500-200
500-200
. 1 155
.3108
. 5065
. C989
.8899
1.0771
1.2680
1.4544
1 . 63 78
1.8231
£.0090
2. 19 1 4
2. 3765
£. 5560
2. 7358
£.9144
3. 09 79
3. £834
3. 4 £39
3. 6536
3.838 6
4. 028 7
4.21 77
4. 40 73
4. W 70
4. 7380
4.9801
5. 1 733
5.3676
SM
10M
15M
20M
£34
SOM
•35M
40M
•45M
SOM
55M
frOM
65M
70M
7i«
SOM
8 5M
90M
95M
1 0 o;-;
1 0 5M
1 1 OM
1 1 5M
120M
1 2 5M
130M
135M
140iM
145M

-------
     AUG STATI0M  30 DEPTH 80 Pfcf. "10« tp7
-.0 '29
- . 09 1 6
-. 1046
-.1072
-. 1222
-. 1345
-. 1545
-. 1630
-. 1682
-.1766
-.1836
-.1972
- . 2 1 60
-.2248
-.2310
-.2382
200-
2.00-
£00-
POO-
200-
200-
200-
200-
200-
2.00-
£00-
200-
200-
200-
200-
eoo-
200-
EOO-
200-
200-
200-
200-
200-
200-
200-
200-
200-
2.00-
200-
200-
2.00-
2.00-
200-
200-
1EO
120
IPO
120
12,0
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
•
•
•
•
•
1.
1.
1.
1.
1.
1.
3145
5100
6792
8182
9 4 72
0671
18 12
2955
4347
5885
7552
1.9242
2.
2.
2.
2.
2.
2.
3.
3.
3.
3.
3.
4.
4.
4.
4.
4.
4.
5.
5.
5.
5.
5.
0986
2726
4442
6203
7933
9654
1407
3163
4932
6628
8365
0095
1844
3572
5329
7067
8841
0608
2334
4060
5758
7413
500-200
500-200
500-200
500-£00
500-200
500-200
500-200
500-200
500-200
50C-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- SOO
500-200
500-200
500-200
500-200
500- 200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-800
.
.
.
.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
2.
3.
3.
3.
3*
3.
3.
4.
4.
4.
4.
4.
4.
5.
5.
5.
5.
5.
5.
1344
3412
5704
8048
0072
1884
3624
5345
7032
8729
0423
2119
3803
548 5
7156
8842
0527
2184
3859
5544
7229
S892
0566
£237
39 28
559 7
7267
8937
0623
P320
399 1
5680
7369
9037
5M
10M
15M
2 DM
2 EM
30.M
35M
40i'I
45M
50M
55«
60M
65M
70M
75M
80M
85M
90M
9 5M
100M
10 5M
1IOM
11 5M
120M
1 2 5f'I
130M
135M
140M
145M
150M
155M
1 60M
165M
170M
                                     96

-------
     AUG ETATI0N 34  DFPTH 8 5 M PA  10*<>4 AVG  5 DEPTH  150 M
     MEAM  VALUE OF.PH0FILS.S  OVEH 5M  IMTtKVALS
CH
CH
CH'
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
1- 3
4- 6
7- 9
10-12
13-15
16-18
19- £1
2P.-P.4
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
120-60
120-80
120-80
120-80
12.0-80
120-80
120-80-
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
- . 1 09 7
-. 3403
-.4103
-.4469
-.4720
- . 49 62
-. 51-29
-. 5434
-. 5719
-. 5948
-. 62.66
-. 6650
-.7031
-.7352.
-. 7584
-.7818
-.8093
£00-120
200-12.0
800-120
200-120
2.00- 120
2.00- 120
200-120
2.00- 120
200- 12.0
200- 120
SOO- 120
200-1EO
200-120
200-120
200-120
200- 120
200- 180
-.3552
- . 2320
-.038 7
.1495
. 3239
.5007
. 6820
.8689
1.0500
1.2237
1.401 7
1. 5862
1. 7659
1.9466
2. 1221
P.. 2995
2.4758
500- 800
500-200
500-SOO
500- £00
500-200
500-200
500-200
500-200
500- £00
500-200
500- 2.00
500-200
500-200
500-200
500-200
500-200
500-SOO
-.0045
-.052.4
. 1 1 40
. 1 643
. 2 1 53
. 2624
. 30 74
.3526
.4002
.4473
. 491 7
. 5351
. 581 6
. 6E46
. 6692
. 7108
. 7547
5M
10M
15M
£OM
23-1
30M
35M
40M
45>1
50M
55M
60M
65M
70M
75IXI
80M
8 9X1
1972
     AI.IG  STATION 35  DFPTH  29  MB'.IFHS   P
                                    5M INI
                                              )0*»4  ft.Vf  5   tU-TH  35
.CH
CH
CH
CH
CH
1-16
17-33.
33-48
49-6/1
65-60
120-80
120-80
120-80
120-80
120-80
. 6212
l.OOtif
1.2079
1.2170
1.2077
200- 120
200- 120
200- lir.O
200- 1 20
200-120
. 6437
1.238 1
1. 6278
4.3624
6. 1 68 1
500-200
500-200
500-200
500-200
500-200
-. 32.8 1
- . 1 73 5
.0110
. i-OC-5
. 40B 5
5M
10M
1 5M
20M
2b«
1972 AUG  STATION  36 DEPTH  30 METERS PBEAMP 10**4 AVE: 55 1JEPTH 35
     MIi'AM VALUE 0F Ph0FILES 0VHJ--  5M INTERVALS
CH
CH
CH
CH
CH
CH
1-14
15-28
29-42
43-56
57-70
71-84
12.0-80
120-80
12.0-80
120-80
12.0-80
120-80
-. 1437
-.0319
-.3958
-.8767
- 1.0429
-.8993
200- 120
200-120
200- ISO
200-120
200-120
200-120
. 7650
1.2734
2.2566
3.3557
4.1117
3.7747
500-200
500-SOO
500-200
500-200
500-200
500-200
- . 1 62 1
. 1898
. 5522
.9215
1 . £88 7
1. 641 1
Sfi
10M
1 5M
£OM
25M
30M
                                      97

-------
1972
TATI0M  38 DEPTH IS5ME-TET.S AVF 5
VALUE OF i-l-.fjHLKS flVh.h EM
                                                      10»*4 DEMH 145
197?
CH
CH.
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
AUG
1- 3
4- 6
7- 9
10-18
13-15
1 6- 18
19-21
88- 24
25-2.7
28-30
31-33
34-36
37- 39
40-48
43-45
46-48
49-51
52-54
55-57
K-60
61-63
64- 66
67- 69
70-72
73-75
STATI0N
MEAN VALUE
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
11-18
13-14
15-16
17-18
19-20
21-22
23-24
25-2.6
27-28
89-30
31-38
33-34
35-36
37- 38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
53-54
55- 56
57-58
59-60
61-68
63-64
65-66
67- 68
69-70
180-80
180-80
180-80
120-80
12.0-80
120-80
120-80
180-80
180-80
180-80
120-80
180-80
120-80
180-80
18.0-80
180-80
120-80
180-80
120-80
120-80
120-80
180-80
120-80
12.0-80
180-80
. 5018
-. 1410
-.1561
.1971
.3645
.7728
1.0756
1. 1440
1.8827
1.3216
1.3361
1.3089
1.3014
1. 3804
1.3158
1.3206
1.3378
1.3808
1.4819
1. 5665
1. 5885
1.6004
1. 6069
1. 6178
1. 6350
40 DEPTH 175 MET EH
0F PE0FILES
180-80
180-80
180-80
180-80
180-80
180-80
180-80
12J0-80
120-80
180-80
120-80
180-80
180-80
180-80
180-60
120-80
180-80
180-80
180-80
120-80
180-80
180-80
180-80
120-80
120-80
120-80
120-80
180-80
180-80
120-80
180-80
18.0-80
180-80
180-80
180-80
OVER EM
.2274
.2606
.2664
.2718
.8779
.8889
.8837
.8851
.8847
.8888
. 29 48
. 89 4 6
.8931
.8883
.8910
. 28 68
.2803
. 2729
.2672
.8689
.2679
.8639
.861 1
.8610
.2687
. 8 609
.2596
.8490
.2480
. 2444
. 8379
.8387
. 8366
.8315
.££70
800- ISO
800-180
800- 120
200- 18.0
200-120
800- 120
800-180
800-120
200-180
800- 180
200- 180
200- 120
200- 180
800- 120
800- 180
200- 120
200-120
200- 180
800- 180
2.00- 180
800-180
800- 180
800-120
200-120
200- 120
S PEE 10
.2373
.8072
. 5588
.3782
. 539 1
. 4842
. 3730
. 5580
. 7029
.8873
1.0394
1 . 2.224
1.4048
1. 5888
1. 7722
1.9516
8. 139 5
8.3585
8. 4030
8. 5478
8. 7598
8.98 61
3. 281 5
3.4536
3. 6857
» e 4 £ VE
500-800
500-800
500-200
500-200
500-800
500- 20C
500-200
500-800
500-800
500-800
500-800
500-200
500-800
500-200
500-800
500-200
500-200
500-200
500-800
500-800
500-800
500-800
500-2,00
500-200
500-200
5 DEPTH 850
.2188
.4416
. 719 1
1.0368
1. 3674
1 . (f) 67
1 . 99 8 7
8.8770
2. 5570
2.8355
3. 1138
3. 39 18
3. 669 7
3.9471
4. 88.48
4. 5030
4. 7802
5. 0598
5. 3349
5. Cl 1 1
5.88 71
6. 1 630
6. 4393
6. 7147
6.9930

EM
IOM
1 EM
20M
8a<
3 OH
3 EM
40M
45M
50M
55M
60H
OEM
70M
7EM
80:«i
8 EM
90M
9 S'i
10 OH
IDS'!
1 1 OM
11 EM
120M
12 EM

INTERVALS
200- 120
200- 120
200- 180
200- 12.0
800- 180
800- 180
200- 120
8.00- 180
800-180
800-180
800-180
200- 180
200- 180
800-180
200- ISO
2.00- 180
200-180
200-180
800- 180
200- 180
800-180
800- 120
800- 180
800- 180
800- 180
800-180
200-180
800- ISO
800- 120
200- 180
800-180
200- 120
800- 180
800-120
800-180
. 6089
.8427
1.0325
.8035
.3541
.4982
. 6472
. 7904
.9367
8.0998
8. 8 74 7
2.4634
2. 6535
2.8441
3. 0400
3. 8290
3.4249
3. 6205
3.8189
4.0143
4. 8120
4.4076
4. 608.7
4. 7963
4.9884
5. 1826
5. 3 79 8
5. 5744
5. 7785
5.9643
6. 1 638
6.3570
6. 5586
6. 7451
6. 9406
500-800
500-800
500-200
500-SOO
500-200
500-200
500-200
500-200
500-iiOO
500-800
500-8.00
500-200
500-800
500-200
500-200
500-800
500-800
500-800
500-800
500-200
500-800
500-800
500-800
500-200
500-200
500-800
500-200
500-200
500-200
500-800
500-200
500-200
500-800
500-800
500-800
-.2473
- . 1 54 5
-.038 5
. 08 8. 7
. 189 5
.8653
. 3318
. 39 55
. 4556
. 5141
. 5735
. 6382
. (f) 1 1
. 7482
.8044
.8 59 7
.9150
.9 69 5
.0249
.0794
. 1320
. 1852
.8413
. 29 59
. 3482
.4014
. 4548
. 5084
1. 5603
1. 6187
1. 6656
1. 719 5
1. 7781
1.8248
1.8 798
EM
IOM
1EM
£OM
25M
30M
35M
40M
4 EM
50M
5 EM
60M
6 EM
70M
75M
80M
8 EM
90M
9 EM
100M
IDEM
11 OM
1 1 EM
180M
18 EM
130K
13 a-!
140X
145M
50*
5EM
COM
6 EM
70M
7EM

-------
1972  AUG STATION  41 DEPTH 26 METERS AVE  5 PREAMP 10»*4 'DEPTH 40
     MEAN VALUE 0F PROFILES OVER 5M INTERVALS
CH
CH
CH
CH
CH
1-13
14-26
£7- 39
40-52
53-65
120-80
120-80
120-80
120-80
120-80
.1004
-.3110
- . 6649
-.7378
- . 639 6
200-120
200-120
200-120
200- 1£0
200- 120
- ,
-,


-.
.7465
. 7353
. 6441
. 52 64
.4435
500- £00
500- £00
500-200
500-200
500-200
.4567
.8795
1.3055
1 . 7299
1.8984
EM
10M
1EM
£OM
2EM
1972  AUG STATION 42 DEPTH  15 METERS©  PRREAMP 10**4-AVE 5 DEPTH
     MEAN VALUE 0F PROFILES  0VF.R 5M INTERVALS
     CH    1-16
     CH   17-32
     CH   33- 48
ieo-80
120-80
120-80
. 099 0
. 1979
.0044
200-120
200-120
£00-120
1. 3 608
 .6338
 .0444
500-200
500-200
500-200
.3011   5M
. 48 69  1 OM
. 69 18  1 EM
1972  AUG STATI0N  44 DEPTH   174   PREAMP 10»«4   DEPTH
     ME'AN VALUE 0F PROFILES  OVER 5M INTERVALE
                                    £00 METERS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
Cft
CH
CH
CH
.1- 2
3- 4
5- 6
7- 8
9-10
1 1 - 1 £
13-14
15-16
17-18
19-£0
21-22
23- £4
25- £6
£7- £8
£9-30
31-32
33- 34
35-36
37- 38
39-40
41-4£
43-44
45-46
47-48
49- 50
51-52
53- 54
55-56
57-58
59-60
61- 6 P.
63- 64
65- 66
67- 68
120-80
1EO-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12d-80
120-80
1£0-80
1£0-80
120-80
1-20-80
120-80
120-80
120-80
120-80
120-80
1£0-80
120-80
1£0-80
120-80
120-80
1£0-80
1£0-80
1£0-80
120-80
120-80
120-80
120-80
120-80
1 .8706
1 . 24 59
1.3363
1.41HO
1.7678
1.9710
£.0850
£.1324
2. 168£
£.£081
£.2409
2.2678
£.£9.53
£.3339
£.3733
£.40 £7
£.4E46
£.4405
£.4718
2. 5100
2. 5371
£.. 5659
£. 5943
£.6209
£.. 6500
£. 6786
£.7090
£.7366
£.7618
£.7901
£.816£
£.8477
£.8721
2.9014
£00- 120
200- IPO
£00- 1£0
£00-120
£00- 1£0
£00- 120
£00- 120
£00- 1£0
£0o-ieo
£00- 1£0
£00-1£0
£00- 120
£00-1£0
£00- 1 £0
£00- 1£0
£00- 120
£00- 1£0
£00- 1£0
£00-120
£00- 120
200-1 120
£00- 120
£00- 120
£00- 120
200- 120
200- 1£0
200- 1£0
£00- 1£0
£00- 120
£00- 1£0
£00- 1EO
£00- 1£0
200- 120
£00- 120
- . 38 53
- . 538 0
. 1£19
. 6090
. 65£7
. 6555
.7194
.8388
.9667
1.0894
1.2190
1 . 3 6£9
1.5175
1. 6743
1.8337
£.0006
£.1713
£. 34rJ 5
£.51 6£
2. 6785
£.84£9
3.0080
3. 1 744
3.3421
3. 5105
3. 6777
3.8463
4.01 65
4. 1846
4.3479
4. 5141
4. 63 19
4.8504
5.0156
500-200
500-200
500- £00
500- £00
500-200
500-200
500-200
500-200
500- £00
500- £00
500-200
500-200
500-200
500-200
500- £00
500-200
500-EOO
500-200
500-EOO
500-£00
500-200
500-200
500-200
500-200
500-200
500- £00
500^- £00
500- £00
500-200
500- £00
500- £00
500-£00
500- £00
500-200
.2628
.1853
. 49 4 5
.9272
1.3656
1 . 79 £ 5
2. 1988
£. 5988
£.9948
3. 3889
3. TH07
4. 1 743
4. 5670
4.9E80
5. 3 50 5
5. 74£6
6. 1358
6. 5294
6.9££1
7. 31 57
7. 7076
8.1009
8.4930
8.88 65
9.2790
9. 671 7
10.0644
10. 4553
10.8489
11.2401
1 1. 6351
1£.0£77
1 2. 4200
12.8146
EM
10M
1 EM
&OM
£5M
3 DM
35M
40M
4 EM
50M
55M
60M
6 EM
70M
7SM
80M
8 EM
9 DM
95M
100M
10 EM
now
11 EM
120M
1£EM
130M
13EM
1 40M
145M
1 50M
1 5 EM
1 60M
1 6 EM
1 70M
                                     99

-------
1972 "AUG STATION  45 DEPTH 800 METEKS  PREftMP 10**4  AVE 5 DEPTH  820
     MEAM VALUE 3F PF-.0HLES OVEh  BM INTERVALS
CH
CH.
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH,
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
.CH
CH
CH
i- e
3- A
5- 6
7- 8
9-rlO
11-12
13- I/!
15-16
17-18
19-po
81-88
P. 3- £4
£5-86
£7-88
89-30
31-32
33-34
35-36
37-38
39-40
41-48
43-44
45-46
47- 48
49- 50
51-52
53-54
55-56
57-58
59-60
61-68
63- 64
65-66
67-68
69-70
71-78
73-74
75-76
77-78
79-80
ISO- 80
120-80
120-80
180-80
1 80-8 0
ISO- 80
120-80
ISO- 80
180-80
180-80
180-80
180-80
180-80
120-80
.180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-eo
180-80
180-80
'180-80
180-80
180-80
180-80
180-80
18P-80
1S'0-80
180-80
180-80
180-60
180-80
1£0-80
180-80
180-80
.0876
.8836
-.481&
- . 49 59
- . 479 0
-.4539
-.4314
-.4060
-.3837
-.3644
-.3475
-.3388
-.3836
-.3059
- . 88 63
-.8686
-.8504
-.8829
-. 1948
-. 1769
- . 1 68 7
- . 1 49 5
-. 1833
-. 1077
- . 089 2
-.0715
- . 0 58 1
-.0430
-.0898
-.0111
.0081
.0186
.038 1
.0547
.0656
.0794
. 09 1 3
.1188
. 1803
."1480
£00-180
800-180
800-180
800*180
800-180
800-180
800-180
£00-120
200- 180
£00-180
800- 180
800- ISO
8.00- 120
800-180
800-180
800-180
£00- 180
800- 180
8.00- 180
800- 180
£00-180
800- 180
800-180
800-120
8.00- 180
200- 180
800- 180
200- 180
800- 180
200-180
£00- 180
800-120
8.00- ISO
800- 180
800-180
800- ISO
800- 120
£00-120
£00- 120
200-120
.4578
1.0111
1.4189
1.6J5f
1. 7748
1.9833
2. 0 & 1
8. ? 1 84
8.3583
S.5S46
8.7006
8.8830
3.0698
3.8563
3.4441
3. 6380
3.8209
4.0101
4. 1965
4.3861
4. 5788
4.7686
4.9547
5. 1455
5. 388 3
5. 5138
5. ©83
5. 88 63
6.0786
6.8597
6.4468
6. 6388
6.8 189
7.0018
7. 1874
7.3733
7. 5688
7. 7484
7. 9 38 5
8.1172
500-800
500-800
500-200
500-800
500-200
500-800
500-800
500-200
500-200
500-200
500-200
500-800
500-800
500- £00
500-200
500-800
500-800
500-800
500-200
500-200
500-200
500-800
500-200
500-800
500-200
500-200
500-200
500-200
500-200
500-800
500-800
500-800
500-800
500-800
500- £00
500-200
500-200
500-800
500-800
500-200
-. 6339
-.4951
-.1980
.1067
.3978
. 6688
.9811
1. 1 713
1.4191
1 . 663 5
1 . 9 1 78
2. I 657
8. 4189
8. 6584
8.9064
3. 1510
3.3976
3. 6453
3.8904
4. 1358
4. 3830
4. 628 1
4. 8 74 6
5. 118 5
5. 3 648
5. 6101
5. 8 5£ 6
6. 09 73
6. 341 5
6. 58 71
6.8888
7. 0 732
7. 3 1 73
7. 5604
7.8071
8.0533
8.2976
8. 541 6
8. 7875
9.0277
5M
10M
15M
80:«i
2 EM
3011
35M
40M
45M
SOtf
55.M
60M
65M
70M
75>5
80M
8SM
9 OH
95M
100M
105M
110M
1 1 5M
180M
1 2 5M
130M
13SM
140M
14SM
1-50M
155M
160M
1 65M
170M
17S-!
18 OM
18 34
190M
195M
80 OM
                                   100

-------
 1972 "AUG  STATION 46 DEPTH  180 METERS PREA.MP 10«»4 AVE5 DEPTH 150
      MEAN  VALUE 0F PR0HLES OVER 5M
 1972
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
1- 3
4- 6
7- 9
10-12
13-15
16-18
19-21
P8-2.4
£5-27
£8-30
31-33
34-36
37-39
40- 4 E
43-45
46-48
49-51
5£- 54
55-57
5g-eo
61-63
64-66
67- 69
70-72
120-80
120-80
ieo-8o
120-80
IPO-BO
120-80
i£0-go
120-80
ieo-80
120-80
lEO-gO
120-80
120-80
120-80
120-80
120-30
120-80
120-80
120-80
120-80
120-80
i£o-ao
120-80
120-80
. 1903
.6815
1. 1051
1.8764
1.4685
1. 5042
1.5158
1. 5322
1. 551 1
1 . 5670
1. 5763
1.5833
1. 5860
1 . 58~8 £
1. 5342
1.6039
1.6034
1 . 59 7 1
1. 5942
1 . 59 1 6
1 . 59 24
1. 59 OS
1. 5798
1.5736
200-
1£0
EQO-120
£00-
200-
200-
120
120
1KO
1:00-120
200-
£00-
2.00-
200-
200-
200-
200-
200-
200-
£:00-
200-
200-
200-
200-
200-
200-
2.00-
200-
120
120
120
120
120
120
120
1£0
120
IPO
120
120
120
1£0
120
120
120
120
2.
8.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
1824
7653
SOS 4
7686
7109
7329
7431
7317
7170
7J38
7088
69 6 6
68 71
6727
6622.
663E
6716
068 7
7085
7358
7655
8021
3 38 6
8790
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-f.OO
500-200
500-200
500-200
500-2.00-
500-200
500- 200
500-200
500-200
-1.
- 1.
-1.
- 1.
-1.
-1.
-1.
- 1.
-1.
-1.
-1.
-1.
- 1.
-1.
-1.
-1.
- 1.
- £;•
— 2.
-2.
-2.
-£.
-2.
-2.
3690
6090
6026
5)18
5843
59 £0
6158
6460
6818
7193
7579
7983
8404
8 73 6
9 198
9594
99 60
038 6
0811
1247
1 654
2C65
2460
2:8 40
at
10M
ISA
20M
25M
3 CM
35M
iiOM
4 SI
50.1
5 EM
COM
GEM
7CM
7S'I
uOM
8 31
90W
9 bM
100M
1 0 5M
1 10M
1.1 EM
IE CM
AUG STATION  48  DEPTH £6 PREAMP io*«4 AVE
MEAM. VALUE 0F PKOHLES 0VER 5M INTE1-.VALS
                                                    DEPTH 35
CH
CH
CH
CH
CH
1-14
15-28
£9-42
43-56
57-70
120-80
1 2.0-6 0
120r80
120-80
12.0-80
.7803
. 6181
. 57£5
. 5984
. 6273
200-120
2.00-120
200-120
200-120
£00-120
. 6004
1.8190
2. 1448
2. 1082
1.9898
500-200
500-200
500-200
500-200
500-200
-.3011
-.31 70
-.3083
-. 2894
-.2676
EM
10M
1 5M
20M
£5M
1978   AUG STATION  49 DEPTH 2.0   DEPTH 25 METERS  AVE 5 PREAMP  10«*4
      MEAJO VALUE 0F PROFILES OVER EM INTERVALS
      CH    1-80
      CH  £1-40
      CH  41-60
      CH  61-80
               120-80  -.8125
               120-80 -1. 5937
               120-80 -2.3075
               1SO-80 -2.9413
200- 120
200- 120
£00- 120
2,00- 120
.0037
-.1 135
-.81 69
-.3028
500-200
500-2.00
500-200
500- £00
. 18 76
.3831
. 5783
. 7734
5M
10M
1 5M
20M
                                      101

-------
1972 AUG  STATION 5£ DEPTH  100  DEPTH 65 PA  10/4 AVE 5
     MEAN  VALUE 0F PROFILES  0VFK SM INTEhVAL'S
1972
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 5
6-10
11-15
16-80
21-25
26-50
31-35
36-40
41-45
46-50
51-55
56-60
61-65
120-80
120-80
180-80
120-80
120-80
120-80
IPO- SO.
120-80
120-80
120-80
120-80
120-80
1 80-8-0
. 09 39
. 6848
.2512
-.4655
- 1.0870
-l.0f.77
-2.2190
-2.9990
-3.4892
-3.7771
-3.9503
-4.0104
-4.0301
£00-120
2.00- ISO
200-120
200-120
200-120
200-120
200-120
200-120
200- ISO
200- 120
200-120
£00-120
200-120
- . 248 3
-.9743
-1.0091
-.9671
-.9344
- . 8 664
-.8103
-. 771 7
-.7387
-. 6998
- . 649 2
- . 59 3 5
-.5263
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- 2.00
500-200
500-200
-.07B7
.0898
.2550
. 422.5
. 6143
.8307
1.051 7
1 . 2 69 6
1.4920
1. 7139
1 . 'J 38 1
2. 1 61 6
S.3849
5X
10M
1 S>1
20M
ZSP1
sow
3 EM
40M
45>i
50M
55M
60M
6 EM
     AUG  STATIQ^ 54   DEPTH  180 DEPTH 139 PA  10/4 AVEE5
     MEAN VALUE 0F PROFILES  0V Eh SM INTERVALS
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- £
3- 4
5- 6
7- 8.
9-10
11-12
13-14
15-16
17-18
19-2.0
21-22
23- £4
25-26
27-28
£9-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
53-54
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
.2321
. 2747
. 29 34
. 3 1 28
.3306
. 3449
.3609
. 3727
.3839
.3966
.4097
.4240
. 4347
.4469
.4582
.4717
.4833
.4950
. 5054
. 5170
.5256
. 5353
.5459
. 5560
. 56i9
. 57 1 6
.5310
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
£00-
£00-
200-
200-
200-
200-
200-
200-
800-
200-
£00-
200-
200-
£00-
200-
200-
200-
120
120
12.0
120
120
120
12.0
120
120
120
120
120
12.0
120
120
12.0
12.0
120
120
120
120
120
120
120
120
1£0
120
1.
2.
2.
2.
£.
2.
2.
2.
£.
2.
£.
2.
2.
.2.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
9078
2473
3455
4114
4702
5272
5853
64 62
7062
7565
8096
8598
9121
9621
0126
0630
1143
1674
21 59
2646
3195
3788
4204
4702
5206
5691
6171
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
-.
-.
-.
-.
- .
-.
- .
.
.
.
.
.
.
.
.
.
.
.
.
£.
2.
2.
£.
2.
2.
3.
3.
9021
7665
6143
4693
3161
1676
0151
1379
£867
4425
53 61
7403
8979
0537
£116
3649
5£79
6376
849,7
0171
1842
3464
5203
6344
8502
0208
1883
EM
10M
1EM
20M
25M
30M
35M
40M
4 EM
50M
5 EM
60M
6EM
70M
75M
80M
8 EH
90M
9EM
100M
10 EM
110M
11 EM
120M
12 EM
130M
136M
1972  AUG STATION 59  DEPTH  35 DEPTH 26 80  KC PA LO //  4
          VALUE 0F PROFILES 0VER SM
   AVE 5
CH
CH
CH
CH
CH
1-14
15-28
29-42
43-56
57-70
120-80
120-80
120-80
120-80
120-80
.1.2.366
2.2606
3.0619
3.5004
3. 6884
                                     200-180 -1.1462
                                     200-120 -2.1760
                                     200-120 -3.0922
                                     200- 120 -3. 5886
                                     200-120 -3.7448
500-200
500-200
500-200
500-200
500-200
 . 1 692    EM
 .3616   10M
 . 5523  -I EM
 . 7478   20M
1.1789   £EM
                                   102

-------
1972 AUG STATION  60 DEPTH  12  M FA 10** 4 AVG  5 DEPTH 25
     MEAN VALUE 0F Ph0 FILES OVEh 5M INTERVALS
CH 1-24
CH P. 5- 48
,072 AUG STATION
7 MEAN VALUE
CH 1-2
CH 3- 4
CH 5- 6
CH 7- 8
CH 9-10
CH 11-12
CH 1 3- 1 4
CH 15-16
CH 17-18
CH 19-20
CH si- as
CH 23-24
CH £5-26
CH -27-T8
CH P9-30
CH 31-32
CH 33-34
CH 35-36
CH 37-33
CH 39-40
CH 41-42
CH 43-44
CH 4 5- 4 6
CH 47- 48
CH 49-50
CH 51-52
CH 53- 54
CH 55- 56
CH 57- 58
CH 59 -CO
CH 61-62
CH 63- 64
CH 65- 66
120-80 .0992 SOO-1P.O .5455
120-80 1.0234 200- 1£0 1.0483
62 DEPTH 169 MET Eli S PF.FAMP 10*»4 AVE
OF PROFILES OVEh 5M INTERVALS
120-80 -.1066 200-120 .0604
120-80 -.1391 200-120 .1465
120-80 -.1682 200-120 .2.277
120-80 -.1808 200-120 .2852
120-80 -.2063 200-120 .3331
120-80 -.2590 200-12.0 .3765
120-80 -.2998 200-120 .4198
120-80 -.3236 200-120 .4547
1EO-80 -.3315 200- ISO .4801
120-80 -.3553 200-120 .5209
1&0-SO -.3826 200-120 . 56E5
120-80 -.4095 200-120 .6047
120-80 -.4364 200-120 .64-43
12.0-80 -.4632 200-120 .6793
1SO-80 -.4939 200-120 .7218
1 SO-SO -.5264 200-120 .7602
120-80 -.5572 200-120 .8003
120-80 -.5858 800-120 .8380
12,0-80 -.6134 200-120 .8780
1SO-80 -.6410 £00-120 .9218
120-80 -.6720 200-120 .9662
1EO-80 -.6990 200-1 BO 1.0069
120-80 --7232 2.00-120 1.0354
120-80 -.7531 200-120 1.0C98
120-80 -.7859 200-120 1.1064
1PO-80 -.8181 200-120 1.1424
JEO-80 -.8423 200-120 1.1826
120-80 -.8794 200-120 1.22.69
1SO-80 -.9143 200-120 1.2.662
1&0-80 -.9443 200-120 1.3033
120-80 -.9666 200-120 1.3392
120-80 -.9965 200-120 1.3754
120-80 -1.0310 200-120 1.4129
1972" AUG STATION 64 DEPTH 85 METERS PRFA 10** 4 A VE 5
MEAN VALUE
CH 1-4
CH 5- 8
CH 9-12
CH 13-16
CH 17-20
CH El- 24
CH 2 5- £8
CH £9-32
CH 33-36
CH 37-40
CH 41-44
CH 45-48
CH 49-52
CH 53- 56
CH 57- 60
CH 61-64
CH 65-66
0F PROFILES 0VER. EM INTERVALS
12.0-80 -.8392 200-120 .4728
120-80 -.2752 200-120 -.3633
120-80 -1.3822 200- 120 -.5458
120-80 -1.6832 200-120 -.8314
120-80 -1.8047 £00-120 -1.0135
120-80 -2.0649 200-120 -1.0911
120-80 -2.2202 SOO-12.0 -1.1473
120-80 -2.2819 200-120 -1.1559
120-80 -£.2746 200-120 -1.1409
120-80 -2.2744 200-120 -1.0975
120-80 -8. £78 7 £00-120 -1.0655
120-80 -2.2831 £00-120 -1.0352
1PO-80 -2.2671 £00-120 - 1 . 0 1 £9
120-80 -2.282.1 200-120 -.9680
120-80 -2.3054 £00-120 -.9203
120-80 -2.3208 £00-1£0 -.8853
120-80-2.3373 £00-180 -.8448
500- 20t -.3820 34
500-200 -.K651 10M
5 DEPTH 210

500-200 .1211 3-1
500-200 .££43 1 OM
500-200 . 3384 1 EM
500-200 .4514 20M
500-200 .5607 2M
500- BOO .6630 3 OK
500-200 . 7942 3 M
500-200 .9515 40>i
500-200 1.0799 45M
500-200 1.2030 50M
500-200 1.3216 5 EM
500-200 1.4424 60M
500-200 1. 5614 634
500-200 1. 6754 70M
500-200 1. 7905 7&M
500-200 1.9062 80M
500-200 £.0184 8 EM
500-2,00 2. 1308 90M
500-200 2. £4£4 9 EM
500-200 £.3531 10 DM
500-2.00 2.462.1 10 SM
500- £00 £. 5724 1 1 OM
500-200 2. 6825 1 1 EM
500-200 £. 7943 1£OM
500-200 2.90£9 1 2 EM
500-200 3.0101 130M
500-200 3. 1£06 135>i
500-200 3.2292 MOM
500-200 3.3377 145M
500-200 3.4473 1 50M
500-200 3.5552 1 55M
500-200 3. 6640 1 60M
500-200 3. 7704 1 6 EM
DEPTH 1£5

500-200 .£732 EM
500-200 . 62 12 1 OM
500-200 .9 708 1 5M
500-200 1- 31 71 20M
500-200 1.6563 2 EM
500- £00 1.9962 30M
500-200 2.3365 3 EM
500- £00 2. 6810 40M
500-2.00 3.0189 4 5M
500-200 3.3561 50M
500-200 3. f934 55M
500-200 4.0313 60M
500-200 4.3681 6S-1
500- £00 4. 70 51 70M
500-200 5.0427 7 EM
500-200 5.37^9 80M
500-200 5. 718 6 8 EM
                                        103

-------
1972 AUG  STATION 66 DEPTH  26 DEPTH  30  PA 10»»4 AVE 5
     MEAN  VALUE 0F Ph0FILfc.S OVER 5M IN'lEhVALS
CH
CH
CH
CH
CH
1-17
18-34
35-51
52- 68
69-85
120-80
120-60
120-80
120-80
120-80
-.3700
-. 5099
-. 5419
-. 5302
-.5112
200-120
200-120
£00-120
200-120
200-120
. 1288
. 1 770
.22.91
. £8 40
.3471
500-200
500-200
500-200
500-200
500-200
. 189 6
. 38 70
. 58 60
. 78 62
.98 78
EM
10M
i EM
20M
2EM
1972 AUG  STAVi OM 67 DEPTH  20 METERS PREAMP  10*4 AVE 5 DEPTH  25
     MEAN  VALUE Bf PROFILES 0VEK 5M INTERVALS


     CH    1-20      120-80    .0975   200-120  -.5574    500-200   -.1659    EM'
     CH   21-40      120-80    .6068   200-120   .3514    500-200   -.0423   10M
     CH   41-60      120-80   -.0899   200-120   .8659    500-200    .0780   ISM
     CH   61-80      120-80   -.2030   200-120  1-2.535    500-200    .1856   2 DM
     AUG  STATION 69 DEPTH  152 DEPTH  180  PHEAMP  10*»4 AVE  5
     MEAN  VALUE OF PROFILES 0VEK 5M  INTERVALS
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CK
CH
CH
CH
CH
CM
1- 2
3- 4
5- 6
7- 8
9- 10
li-12
13-14
15-16
17-18
19-20
21-22
23-24
25-26
27-28
29-30
31-32
33-34
35-36
37- 38
39-40
41-42
43-44
4 5- 4 6
47-43
49-50
51-52
53- 54
55-56
57-08
59-60
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-SO
120-80
12.0-80
- 120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
. 0672
. 0314
.0043
-. 1876
-.2187
-. 1928
-.1824
- . 1 79 4
-. 1777
-.1851
-. 1796
-.1859
-.1951
-.2009
-.2073
-.2124
-.2237
-.2309
-.2373
-.2470
-.252,8
-.2587
-.2635
-.2633
-.2588
-.2642
-.2707
-.2764
- . 278 0
- . 289 1
200-
200-
200-
200-
200-
200-
200-
£00-
£00-
£00-
200-
200-
£00-
200-
200-
200-
200-
200-
200-
200-
200-
200-
£00-
£00-
200-
200-
£00-
200-
200-
200-
120
120
120
12.0
120
120
12.0
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
12.0
120
120
120
120
120
* •
-.
- .
- .

-.
— .
- .
- 1.
-1.
-1.
-1.
-1.
- 1.
- 1.
- 1.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
- 3.
- 3.
-3.
-3.
o
O •
-3.
-3.
0933
2520
3654
4749
5747
7134
8416
9566
069.9
1 730
£852
3911
49 6 6
6010
7477
8936
0365
1884
3340
4760
6244
7686
9 120
0 53 6
1974
3361
4763
6132
7510
8897
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-P.OO
500-200
500-200
500-200
500- 200
500- £00
500-200
500-P.OO
500-200
500-200
•
•
•
•
«
•
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
3.
3.
3.
3.
3.
3.
4.
4.
4.
4.
4.
4.
4.
0594
21 72
3728
5394
6946
8563
0119
211 1
4122
5986
8027
9889
1 721
3552
5377
7258
9023
0792
2505
4137
5732
7377
88 60
0520
£133
3646
51 77
6520
8036
9395
EM
10M
1 EM
20M
25-1
30M
3 EM
40M
45M
50M
55M
60M
65M
70M
7 EM
80M
8 5M
90M
9 EM
100M
105M
1 1 OM
11 EM
1P.OM
1 f . EM
130M
13 EM
140M
14S-;
1 50M
                                   10k

-------
AUG  STAT10M 71 DEPTH  186 AVE 5 PftEAMP
MEAN VALUE 0F PH0FILES  3VEh 5M INTERVALS
                                                     DEP1H 235
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1972 AUG
MEAN
CH
CH
CH
CH
CH
CH
1- &
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19 -SO
£.1-82
63- 24
£5-26
£7- £8
E9-30
31-32
33-34
35-36
37-38
39-40.
41-42
43-44
45-46
47-48
49-50
51-52
53-54
55- 56
57-58
59- 60
61- 62
63- 64
65- 66
67- (8
69-70
71-72
73-74
STATI 0M
VALUE
1-13
14-26
27-39
40-52
53-65
66-7S
120-80
120-80
1 £0-8 0
120-80
1&0-80
ISO- 80
1SO-SO
180-80
120-80
120-80
120-60
120-80
120-80
120-80
120-80
1 20-8 0
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-30
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12,0-80
120-80.
72 DEPTH
-. 1804
-.4407
-.7016
-.9374
-1.1700
-1.4033
- 1. 6395
-1.8798
-2. 1224
-2. 35&s
-£.5999
-2.8414
-3.0774
-3.3123
-3. 5462
-3.7712
-3.9970
-4.2E86
-4.4627
-4. 6888
-4.9194
- 5. 1 48 1
- 5. 37 68
-5. 6088
-5.8369
-6.0728
-6.3112
-6. 5465
- 6. 79 1 £
-7.0314
-7.2649
-7- 5024
-7. 7342
-7.9665
-8. 1971
-8.4287
-8. 6630
32 P.FsEAMP
0F PI-.0FILES 0VEli EM
120-80
120-80
120-80
120-80
120-80
120-60
.0035
-.0216
.7510
1. 5563
1.7330
3.2.815
800-120
200-120
£00- 1£0
£00-120
200-120
£00-120
200-120
200-120
£00- ISO
200- ISO
£00-150
200- 120
£00-120
200-120
200-120
£00- 120
£00- 120
200- 1£0
200-120
200-120
£00- 120
£00-120
£00-12.0
£00- 120
£00-120
200- 1£0
£00-120
£00- 1£0
200-120
200-120
£00- 1£0
200- 120
200- 120
£00- 120
200-120
200- 120
£00-120
.2288
.5778
.7188
.8124
. 9 09 5
£.0154
2. 1246
2.2365
£.3513
2.4641
2. 5795
2. 6906
2. 7966
£.8938
2.988E
3.081 1
3. 1803
3. £8 68
3. 38.8 5
3.4739
3. 5766
3. 6706
3. 7638
3.8596
3.9561
4. 061 6
4. 1 699
4. £8 14
4. 40 1 1
4. 5146
4. 6215
4.7312
4.8442
4.9517
5.0563
5. 1597
5.2719
10»*4 AVE 5 DEPTH
INTERVALS
£00- 120
£00-1£0
£00-120
200-120
£00-120
£00-120

1.2893
1.8298
2. 1 I 53
2. 1656
2. 5747
1.458 6
500-200
500-200
500-200
$00-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-EOO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-'£00
500-f.CO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £.00
500-200
41

500-200
500-2*00
500-200
500-200
500-200
500-200
- . 1 572
. 3856
.9394
1 . 49 £9
£.0310
£. 5757
3. 1 1 60
3. 6593
4. 198 5
4. 7347
5. 2780
5.6084
6. 3344
6. 8 644
7. 39 0 1
7. 9 £32
8. 4452
8.9 724
9 . 49 0 6
10. 0090
10. 5298
11.0528
11. 5617
12.0824
12. 60 5£
13. 1188
13. 6348
14. 1 59 6
14. 7138
1 5. 2 569
1 5.8098
1 6. 3K>8
1 6. 9 1 3 1
1 7.4651
18.008 6
18. 5610
19. 1014


. 1968
.9246
1. 6104
£.£9«£
£.9821
3. 6750
5M
10M
15M
20M
£5M
aoM
35M
4 DM
4 EM
50M
53X1
COM
65M
70M
7 EM
80M
8 EM
90M
9SM
100M
105M
1 1 OM
115M
1 EOM
12S-1
130M
13 EM
14 DM
1 4 EM
1 50M
1 5 EM
1 60M
1 6 EM
1 70M
1 73M
18 OM
18 EM


EM
10M
ISM
20M
£31
3 OX>
1972'AUG  STATION 73  DEPTH  17 AVE 5 PREAMP 10*»4 DEPTH  £4
    MEAN VALUE 0F PF.0FILES 0VER 5M IMTEfiVALS
    CH    l-£3
    CH   £4-46
    CH   47- 69
               120-80  -.0482
               120-80  -.0077
               120-80   .8032
£00-120
£00-120
200-120
 .6278
 .3349
- . 39 10
500-200
500-200
500-200
-.3105    EM
 .2471   10M
 . TB 3 6   1 £M
                                    L05

-------
 1972 AUG  STATION 75 PFPTH  £33 METEI-S PKFAMP io*»4  AVE 5 DEPTH  ©S50
     MEAN VALUE Ot Ph0FILtS 0VIH 5M'
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
i- £
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
SI-PS
23-24
P, 5- £6
27- £8
£9-30
31-32
33- 34
35-36
37-33
39-40
41-48
43-44
45-46
47 -4S
49-50
51-52
53- 54
55-56
57-58
59 r 60
61-68
63- 64
65- 66
67-68
69-70
71-72
73-74
75-76
77-78
79-80
8 '1-8 2
83-84
85-8.6
87-88
89-90
91-92
120-80
120-80
120-80
120-80
1SO-80
120-80
120-80
120-80
120-80
120-8-0
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
180-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
12.0-80
1PO-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
12.0-80
. 0 52. 1
.0551
.049 6
. 1865
.2422
. 2352
.2.1 55
. 1989
. 1721
.1416
. 1 347
.1087
.0804
. 0 49 5
.0199
-.0118
-.0453
-.072.5
-.0927
-. 1202
- . 1 48 5
- . 1 7 57
- . £0 62
-.2063
- . 2. 1 7 1
-.2379
-.3250
-.3773
-. 4076
-. 4388
- . 4 68 0
- . 49 54
-. 52.33
-.5513
-. 5801
- . 609 4
- . 6379
-.6659
- . 69 57
-.72.46
-.7470
-.7710
-.8052.
-.8364
-.8714
-.9040
200- 120
200- 120
£00- 120
SOO-120
800-120
SOO-120
200- 180
200- 120
200-180
2.00- 12.0
SOO- 12.0
£00- 120
£00- 120
£00- 120
£00-120
£00-180
200- 120
200- 180
200- 120
200- 120
200- 120
£00- 120
200- 120
200- 120
eoo- 120
200- 180
200- 120
800-120
800- 120
200-120
800- 120
£00- 180
800- 120
SOO- 120
£00- 120
£00-12.0
200- 120
200-120
£00- 120
£00- 180
£00-120
200- 120
£00-120
£00- 120
£00- 120
200- 120
. 09 70
. 1383
. 1 6 64
. 078 5
.0676
. 09 67
. 132.6
. 1678
.2059
. £430
.£589
. 2942
. 3 3 48
.3706
.4072
.4438
.4851
. 5834
. 5567
. 5«96
. 62 38
. 6567
. 69 10
. 69 39
. 7128
. 7432
. 7760
.8110
.8424
.8 763
.9180
.9444
.9778
.0113
.0475
.0830
.1170
. 1452
. 1 79 3
1.21 60
1.2507
1 , 88 1 4
1.3164
1. 353'4
1.388 7
1.4197
5ffO-£00
500-200
500-800
500-800
500-800
500-200
500-200
500-800
500-800
500-200
500-200
500-200
500-800
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-800
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-800
500-200
500-200
500-20
500-200
500-800
500-200
500-200
500-2.00
500-800
500-200
500-200
500-200
.0072 5M
.0388 10M
. 0 750 1 5M
. 1 1 52 £OM
.1574 25>i
.2019 3 OK
.8463 35M
. 2888 40M
.3303 45M
.3757 50M
. 4204 55M
. 4 64 6 60E4
. 50 79 65M
. 5498 70M
.5941 75M
. 639 5 8 OM
. 68 62 8 5M
. 7330 90M
. 778 3 9 bM
.8285 1COM
. 8 68 5 1 0 5M
.9123 110M
.9578 1 1 5M
1.0037 JgOM
1.0487 185M
1.0980 130M
1 . 1 38 2 1 3 511
1. 1838 140M
1 . £2.9 0 1 4 5M
1.8750 50M
1.3208 55M
1 . 3 64 6 60H
1.4117 65M
1.4561 70H
1. 5013 1 75M
1. 5472 18011
1. 5942 18 EM
1. 6410 190M
. 6S42 19 5M
. 7231 800M
. 7701 20 5M
. 8 1 72 8 1 OM
.8631 21 5M
.908 5 220M
.9 555 22 5M
£.0050 8.30M
1972  AUG STATION  78  PFPTH 53 METERS  PREAMP 10*»4  AVE 5 DEPTH  60
     MEANT VALUK OK  PROFILES 0VEii  5M  INTE5-.VALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 8
9-16
17-24
25-38
33-40
41-48
49-56
57- 64
65-78
73-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1£0-80
-.5866
-.7701
-.2450
-.1715
-. 1330
-. 1513
-.4300
- . £9 1 4
- . 1 1 48
-. 1798
800- 12.0
200-120
200- 120
£00- 120
EOO- 120
POO- 18.0
P.OO- 120
£00- 180
200- 120
200- 120
1.0877
1 . 59 7 5
2. 1783
3.8303
5. 1836
6.4804
7. 8.193
7. 6423
7. 7984
8.2346
500-200
500-200
500-200
500-200
500-200
500-800
500-200
500-800
500-200
500-200
-. 4405
-. 1336
.8780
. 7074
1. 1376
1. 5674
1.9947
8. 481£
8.8492
3. 2 749
5M
1 Oil
15M
eoM
£5M
30M
35M
40M
45M
50M
                                     106

-------
1972  AUG STATI0N  79  DEPTH 20 METERS AVE 5 PRE  10»*4 DEPTH 30
     MEAN. VALUE 0F PROFILES OVER  5M INTERVALS
     CH   1-16
     CH  17-32
     CH  33-48
     CH  49-64
120-80  -.5073
1£0-80 -1.0146
120-80 -1.5217
120-80 -2.0290
200-120
200-120
200-120
200-120
 . 533S
1.0658
1. 5971
2. 1279
500-200
500-200
500-200
500-200
 .8295    5M
1. 6354   10M
2. 4333   1 S4
3. 2339   20M
1972
     AUG STATION 83  DEPTH 99 METERS PRE 10*^4 AVE  5  DEPTH 140
     MEAN .VALUE 0F PP.0 FILES OVER  5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-12
13-15
1 6- 18
19-21
26- 24
£5-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
120-80
120-80
120-80
120-80
1 SO-SO
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
leo-eo
12,0-80
120-80
120-80
1.9414
3.2773
2.7640
2. 1784
3. 3679
4.9012
6.4466
8.0397
9.5701
11. 1340
12.7147
14.2706
15.8255
17.3766
18.9 197
20.4682
22.0417
23. 5701
25.1159
200-120
200- 120
£00-120
200- 120
200-120
200-120
200- ISO
200- 120
200- 120
200- 120
200-120
200- 1£0
200- 120
200-120
£00- 120
200-120
200-120
200-120
200- ISO
-2.9074
-3.3017
-2.0621
- . 39 1 3
-.4644
-.4324
-.3228
-.21 56
-.0897
-.0023
.0754
. 1 709
.2710
.3781
.4899
.5879
. 6696
.7657
.8677
500-200 -1.0924
500-200 -2. 7439
500- 200 -4. 4289
500-200 - 6. 1054
500-200 - 7. T837
500-200 -9. 4589
500-200- 1 1. 1347
500-200-12.8102
500-200- 14.4849
500-200- 1 6. 1 599
500-200- 1 7.8325
500-200- 19. 5047
500-200-2U1776
500-200-22.8502
500-200-24. 5223
500-200-26. 1928
500-200-87.8 632
500-200-29. 5354
500-200-31. 2061
5M
10M
1 5M
20M
25M
30M
35M
40M
45M
50M
55M
60M
6ai
70M
75M
80M
8 EM
90M
95M
                                  1.07

-------
      AUG 'STATION 85 DEPTH 188  PRH'AMP 10**4 AVE 5 DEPTH  230
      MEAN VALUE 0F  PROFILES OVER 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- "i
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
21-22
£3-24
25-26
£7- 28
£9-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47- 48
49-50
51- 52
53-54
55- 56
57-58
59-60
61 -6£
63-64
65- 66
67-68
69-70
7 1-7 P.
73-74
1SO-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1 SO-SO
120-80
120-80
120-80
120-80
120-80
120-80
120-BD
igo-so
120-80
-.0835
1.3465
1.4091
1 . 49 18
1. 6565
1.8006
1.9579
2.0879
2.2076
S. 3644
2.4961
2.6164
2.7887
2.8469
2.969S
3.0910
3.2068
3.3270
3.4410
3. 5612
3. 6890
3.8102
3.9267
4.0378
4. 1459
4. 2638
4.3835
4. 5078
4. 6255
4.7408
4.8479
4.9569
5. 0659
5. 1810
5.2936
5. 4152
5. 5331
200-
200-
200-
120
120
120
200-120
£00-
£00-
200-
200-
200-
£00-
200-
200-
200-
200-
200-
200-
200-
200-
200-
120
120
120
12.0
120
120
12.0
120
120
120
120
120
120
120
ISO
200-120
2.00-
£00-
£00-
200-
2,00-
£ DO-
SO 0-
200-
£00-
£00-
200-
£00-
200-
200-
200-
200-
200-
120
120
ISO
120
120
120
120
120
120
120
IfO
120
120
12.0
120
120
120
™ •
~ •
•
1.
1.
2.
3.
4.
4.
5.
6.
6.
7.
8.
9.
9.
10.
1 1.
12.
12.
13.
14.
15.
1 5.
16.
17.
17.
18.
19.
2.0.
20.
21.
22.
23.
23.
24.
25.
7370
1650
5024
2160
9057
6341
347.6
0772
8099
5140
2.411
9727
7033
4347
1713
9033
6352
3659
0990
82.98
5607
2914
0247
7565
4899
2.165
9442
67? 1
4059
1333
8674
6026
3345
0 652
7969
5220
2539
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-£00
500-200
500-200
500-200
500-200
500-200
500-200
50 C- 200
500-200
500-200
500-200
500-200
500-200
3.
5.
7.
9.
11.
13.
15.
17.
19.
21.
2,3.
£5.
27.
£9.
31.
33.
35.
37.
39.
41.
43.
45.
47.
50.
52.
54.
56.
53.
60.
62.
64.
66.
68.
70.
72.
74.
76.
3257
388 7
4320
4740
51 £0
5475
5826
6119
6432
6714
6999
7260
7541
7B04
8047
8288
8 536
8 733
699 7
9213
9440
9638
9826
0050
0251
0448
0651
0841
1045
1256
1440
1 632
1826
2021
£203
2359
2541
EM
10M
15M
eon
2 EM
30«
33-1
40M
45M
50M
55M
60J-!
6M
70i1
75M
80M
85M
9 DM
9 EM
100M
105M
11 CM
115>!
12 CM
1S5M
130M
13bM
14 CM
l'4bM
15DM
1 55M
160M
1 65Ji
18 CM
18 5M
1972 "-AUG  STATION 89 DFPTH  76 METERS PRFAMP 10»*4  AVE 5 DEPTH  110
     MEAN  VALUE 0F PROFILES OVER 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 4
5- 8
9-12
13-16
1 7- 20
21-24
£5-28
29-32
33-36
37-40
41-44
45-48
49-52
53- 56
57- 60
1 £0-8 0
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
•
•
•
•
•
"• •
*
1.
3.
4.
6.
7.
9.
10.
12.
09 4£
1881
2819
3756
7601
5563
5447
9281
3494
7749
2385
7108
1733
6131
0490
200-
200-
200-
£00-
200-
£00-
200-
120
120
120
1£0
120
120
120
200- 120
2.00-
800-
200-
200-
200-
200-
£00-
120
120
120
1£0
120
ICO
120
-.7729
. 7602
£.0368
3.2336
4.4253
6. 38 79
6.9047
7. 5444
8.2394
8.9431
9.6776
10.3669
1 1 . 0 59 3
1 1 . 7678
12. 4g43
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-£00
500-200
500-200
500-2.00
500-2.00
500-200
500-200
3.
5.
7.
10.
12.
15.
1 7.
19.
££.
£4.
26.
29.
31.
34.
36.
1557
5635
940£
328 7
7116
0783
4518
8228
1902
5606
928 5
2963
6645
0336
4006
5M
10M
1EM
20M
£3-1
30«
3 EM
4GM
4 EM
50M
5 EM
60M
65>?
70M
75M
                                    108

-------
1972
AU3 STATION  90 DEPTH  13  METERS PREAMP
MEAN VALUE 0F PR0FILES 0V£h 5M INTERVALS
                                                     AVE  5
     CH   1-84      ISO-gO    .0488
     CH  £5-48      120-80  -.6690
                                 £00-180
                                 SO 0- 1 £0
1.8738
8.2172
500-200
500-800
-.0346    EM
 .0168   10M
1972  AUG STATION  92 DFPTHO 67'METERS PREAMP  1Q»*4 AVE 5. DEPTH 80
     MEAN VALUE  0F PH0FILES  0VER 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH'
CH
CH
CH
CH
CH
1- 6
7- IE
13-18
19-84
£5-30
31-36
37-4?
43-48
49-54
55-60
61-66
67-7 S
73-78
1SO-80
120-80
180-80
120-80
120-80
iso-ao
180-80
ieo-80
1 SO-SO
120-80
120-80
120-80
120-80
.1614
.2095
. 1B90
. 1 849
-.0890
-.0559
-.0432
.0084
.0005
-.0176
-.0080
.0106
.0027
SOO- 180
800-180
200-120
£00-180
EOO- 120
£00-120
200-120
200-180
200-120
£00-120
200-120
800-120
200-120
1. 1314
1. 6034
1. 76£5
1.8882
1.9955
8.8879
E.41 57
2. 5094
8. 6409
2. 7970
8.9171
3.0194
3. 1358
500-800
500-200
500-200
500-EOO
500-200
500-800
500-EOO
500-800
500-200
500-800
500-200
500-200
500-200
.3615
.9856
1 . 62 54
8.8605
8. 898 6
3. 581 7
4. 1405
4. 7505
5.3515
5.9423
6. 588 1
7. 1101
7. 63 79
5M
10M
1 SA
20M
2EM
30M
35.M
4 DM
45M
50M
55.M
COM
65M
1972  AUG STATION 94  DEPTH 35 METERS  PREAP 10»»4 AVE 5 DEPTH 45
     MEAN VALUE 0E PR0FILES 0VER  5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
1-11
18-28
83-33
34-44
45-55
56- 66
67-77
120-80
120-80
120-80
120-80
12d-80
120-80
120-80
.7611
1. 5873
2. 1540
2.7801
3.4810
4.3513
3.5186
800-180
800-120
800-180
SOO- 120
800-180
800- 1 20
£00-120
1.0744
1. 5066
1. 5867
1.3975
1.0677
. 7495
.2747
500-800
500-800
500-800
500-800
500-200
500-800
500-200
. 8940
. 6000
.8905
1. 1099
1.3764
I. 6534
1,941 6
EM
10M
1 5M
EOM
25M
30M
35M
1972= AUG STATI0N 96 DEPTH 35 METEHS PER 10»*4 AVE  5  DEPTH 45
     MEAN VALUE 0F  PROFILES 0VER  BM INTERVALS
CH
CH
CH
CH
CH
CH
CH
1-11
1 2- 28
83-33
34-44
45- 55
56-66
67-77
120-80
180-80
180-80
180-80
120-80
120-80
120-80
.7127
1.4250
8. 1370
8.8488
3. 5603
4.2716
4.9887
200-120
800-120
£00- 180
200- 180
200- 120
200-120
£00-120
.4800
.1084
1 . 79 59
2.3794
2. £08 5
1 . 50 84
. 7074
500-800
500-200
500-200
500-800
500-800
500-800
500-200
-.9400
-.9039
-.91 66
-.9377
-.9662
-.98 53
-1.0021
5M
10iM
1 5M
EOM
85M
30M
35M
                                    109

-------
1972  AUG STATION 95 DEPTH  18METEKS AVE  5 FtiE 10»»4  DETK 30
     MEAN VALUE OF PROFILES  0VEH 8M INTERVALS
     CH    1-20
     CH  El-40
     CH  41-60
1972
120-80    .0969
120-80    .1936
120-80    .2903
800-180
200-120
200-120
 . 5313
1.0621
1.5924
500-200
500-200
500-200
     AUG  STATIEN 97 DEPTH  £9  MEYTEKS PRE  10»»4 AVE  5  DEPTH 42
     MEAN VALUE 0F PROFILES  OVER 5M INTERVALS
1.4301    £M
2.8520   10«
4. 2 7£8   1 34
CH
CH
CH
CH
Ch
1-13
14-26
£7-39
40-52
53-65
120-80
120-80
120-80
120-80
120-80
.2513
.5025
.7536
1. 1437
2.0047
                                      800-120    .3475    500-200  -.3607   SM
                                      £00-120   -.0884    500-200  -.3802  10W
                                      200-180-1.0739    500-200  -.4178  1 EM
                                      200-120  -2.3232    500-200  -.4588  20M
                                      200-120  -3.8202    500-200  -.4964  23-1
1972 AUG  STATIST 98 DEPTH  22 METERS PRE 10** 4
     MEAN  VALUE 0F PROFILES 0VER 5M INTERVALS
                                    DEPTH 45
     CH    1-12
     CH   1 3- 24
     CH   25-36
     CH   37- 48
120-80  -.3069
120-80 - 1. 1058
120-80  -.7386
120-80  -.4742
200-12.0
200-120
200-120
200-120
-.0308
 .2586
 .9981
 .8523
500-200
500-200
500-200
500-200
 . 2 52 7    3-!
 .8825   10M
1. 5005   1 EM
2. 10 69   20M
 1972 Al!S  STATION 99 DEPTH  40 METERS PKEAMP 10C*4 AVE 5 DEPTH  51
     MEAN VALUE 0F PH0FILES 0VEH 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
1- 9
10-18
19-27
28-36
37-45
46-54
55-63
64-72
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1'20-80
. 29 1 3
-.4882
-.8070
- 1.0380
-2.0604
-1.6961
- 1.2820
-1.2610
800-120
200-120
200-120
200-120
200- 120
200-120
200-120
200- 180
. 7097
.9494
2.2671
2.8857
3. 638 5
2.4831
1. 1293
. 1088
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
. 1723
.9309
1. 6757
2. 4133
3. 1366
3.8661
4. 5344
5.31 65
5M
10M
1H-]
£OM
25M
30M
35M
40M
 1978 AUG  STATION 103  DEPTH 2', METERS  PREAMP 10*«4  e VE 5 DEPTH  25
     MEAN VALUE 0F PROFILES OVEh £M INTERVALS
      CH    1-20
      CH   2.1-40
      CH   41-60
      CH   61-80
 120-80    .8973
 180-80    .4600
 120-80    .6174
 120-80    .8885
200-120   . 6000
200-120   .2540
200-120  -.3432
200-120 - 1. 1851
          500-200   -.0238    EM
          500-200   -.0527  10M
          500-200   -.0865  15M
          500-200    .0052  20M
          STATION  105 DEPTH 26 METEfiS PREAMP  10*»4 AVE 5 DEPTH 30
      MEAN VALUE OF PROFILES 0VEh  5M  INTERVALS
      CH   1-17      120-80   .2742
      CH  18-34      120-80   .2003
      CH  35-51      120-80 -1.2186
      CH  52-68      120-80 -2.1356
      CH  69-85      120-80 -2.9902
800-120
200- 120
200- 120
200- 120
200- 120
.3470
. 1 739
2. 1056
2.9741
3.4154
500-200
500-200
500-200
500-200
500-200
-.£363
- . 1 48 7
- . 0 53 7
. 0 53 6
.1530
5M
10M
15M
£OM
25M
                                   110

-------
1972  N0V STATIST 1  PA  10»»4 AVG  5 DEPTH 44 M SCAM  50 M
     MEAN VALUE 0F PROFILES OVER  5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
1-11
12-22
£3-33
34- 44
45-55
56- 66
67-77
78-88
120-80
120-80
120-80
120-80
120-80
120-80
1EO-80
120-80
-. 6977
-.7373
- . 79 0 5
-.8207
-.8121
-.7774
-.7748
-.7827
200-120
200-120
200- 120
200-120
200-120
£00-120
£00-120
200-120
-. 1475
-. 1488
- . 0 79 3
-.0416
.0027
- . 0 1 49
.0180
.0546
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
. 68 1 6
.8320
.9 730
1. 108 7
1. £418
1 . 3 72 5
1. 5090
1. 5819
5M
10M
1 5M
20M
2EM
30M
35M
40M
1972 N0v STATION £ PA  io**4 AVG 5 DEPTH  20 M SCAM £5 M
     MEAM VALUE OF PROFILES 9VH.R 5M INTERVALS


     CH   1-20      120-80    .0978   £00-120  -.0274    500-200   .1870    5M
     CH  21-40      120-80   -.£482   200-120  1.3897    500-200   .4249   10M
     CH  41-60      120-80   -.w>03   £00-120  1.4362    500-800   .6835   ISM
     CH  61-80      120-80   -.7826   200-120  1.4663    500-200   .8851   20M


1972 N0V STATI0N 3 PA  10»*4 AVE 5 DEPTH  £2 M DEPTH 30 M
     MEAN VALUE OF PROFILES 0VEH 5M INTERVALS
     CH    1-18
     CH   19-36
     CH   37- 54
     CH   55-72
120-80
120-80
120-80
120-80
-.9900
- 1.0165
-.91 16
- . 8 38 4
200- ISO
200- 120
200-120
200-120
-.3102
-.1315
.02.8 7
. 1239
500-200
500-200
500-200
500-200
. 1'28 6
. C TK9
.0433
.0082
EM
10™
1 EM
20M
     -NBv  STATION 5 PA  10** 4 AVG 5 DEPTH  115 M SCAM  150  M
     MEAM  VALUE 0F PP.0FILES 0VER 5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
PH
t>n
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- C
7- 9
10-12
13-15
16-18
19-21
22-24
£5- £7
£8 -30
31- 33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
64-66
67-69
12,0-80 -.3767
120-80 -
120-80 -
120-80 -
120-80 -
1SO-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
1SO-80 -
120-80 -
120-30 -
120-80 -
120-80 -
120-80 -
120-80 -
1SO-80 -
. 3035
. 3993
.5621
.7383
.8301
.8365
.835!
. 8 3 67
.8483
.8625
.8737
.8879
.89 £5
.8957
.9150
.9171
.9216
I. 9 £67
1.9433
1 . 9 59 7
1.9767
1.9825
200-iao
200-120
200- 120
200- 120
£00- 120
£00- 120
£00- 120
. 7085
. 744S
.42 11
. 48 54
. 650 7
1.608 6
1.9 57S
200-120 2.1003
200-120 £.2.351
£00-1£0 £.3779
200-120 £..5273
200-120 2. 6705
£00-120 2.8144
£00- ISO £.9553
£00-120 3-0912
200-120 3.2329
200-120 3.3712
£00-120 3.5105
200-120 3.6554
800- 120 3.8045
eOO-lf.O 3.9545
£00- 120 4. 1034
200-120 4.2409'
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-EOO
500-200
500-EOO
500-200
500-200
500-200
500-EOO
500- £00
500- £00
500- 200
500-200
500-200
500-200
500-200
500-200
-.4828
- . S 699
-.0448
.1946
. 41 67
.6310
. 8 S£9
1. 0679
1 . 29 09
1. 51 13
1 . 7B3 5
1 . 9 61 7
2. 1948
2.4146
£. 6342
£.8 701
3. 08£3
3.3141
3. 549 6
3. 7914
4. 00 05
4. £2.93
4.4587
5M
10M
1 5.YJ
SOM
£5M
SOM
35M
40M
45M
50M
55M
60M
65M
70K
794
80M
85M
90M
95M
1 0 Of:
1 0 5M
110M
11SM
                                     111

-------
1972
     MOV STATI0M  7  PA 10**4  AVG 5 DEPTH  24 M SCAM 10  M
     MEAN VALUE 0F  PH0FILES  OVEJv 3-3 INTERVAL'S
     CH   1-15
     CH  1 6- 30
     CH  31-45
     CH  46-60
180-80   1.2347
120-80   1
1SO-80   1
120-80   1
7908
7380
200-ISO  -1.5888    500-EOO    .2447   31
£00-120  -2.0690    500-200    .4964  10M
2.00- 120  - 1.9488    500-200    .7412  1 SM
200-120-1.8043    50C-200    .8117  20M
1972 N 0V STATION  8  PA 10**4 AVE 5 DEPTH  70 M  SWEEP  77 M
     MEAN VALUE 0F  PR0 FILES OVER 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7- 12
13-18
19-24
25-30
31-36
37-42
43-48
49- 54
55-60
61- 66
67-72.
73-78
79-84
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
180-80
120-80
12,0-80
120-80
180-80
•
•
~ •
•
!-
•
•
~ *
- 1.
-1.
-8.
-3.
-4.
-4.
0953
1934
2051
7839
1476
8243
2090
5303
8206
8314
5254
5171
3524
8043
200-
200-
200-
800-
200-
200-
200-
200-
200-
200-
£00-
200-
800-
800-
120
120
120
120
120
120
120
180
120
180
120
12,0
120
120
.
1.
2.
1.
.
- .
- .
- .

- .
- .
- .
™ *
-.
5177
0353
68 69
4259
8768
8400
4401
4988
463 6
4888
348 1
2941
2232
149 7
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-800
500-800
- . 70 70
-. 5242
- . 3 59 1
-. 1931
-.02,70
. 1412
. 3103
. 479 7
. 648 5
.8207
.9918
1. 1 624
1. 3324
1 . 50 1 7
5M
10M
15M
20M
25M
30M
35M
40M
45M
50«
55M
60M
65M
70M
1972
     N0V STATI 0M  10 PA 10»*4  AVG 5 DEPTH  121  M StEEP  160 M
     MEAN VALUE 0F PROFILES 0VEK 5M IMTFBVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3,
4- 6
7- 9
10-12.
13-15
16- 18
19-81
2.2- 24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52-54
55-57
58-60
61-63
64-66
67- 69
70-72
120-80
12£-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1EO-80
120-80
120-80
120-80
ISO-HO
120-80
120-80
120-80
180-80
1 20-80
120-80
120-80
120-80
. 5541
.0501
. 0301
-. 1 143
-.2245
-.2818
-. 3293
-. 3555
- . 3 59 7
-. 3706
-- 3766
-.3872
-. 3873
-.3874
-. 3980
-.4061
-.41 58
-.4339
-.4453
-.4609
- . 4 68 1
-.4769
-.4KB P
-- 5126
200-120
200- 120
200-120
200- 120
SOO-1ED
200- 120
200- 120
200- 120
200- 180
200- 120
200- 1£0
200- ISO
2.00- 1 2.0
P.OO- 1 20
200-120
800- 120
200- 180
200- 120
EOO- 180
200-180
r,oo- 120
200- 180
800- 120
200-lfeO
- 1.4331
- 1 . 9 1 39
-8.2101
-2. 1341
-2.0619
-1.9978
- 1.9312
- 1.8 664
- 1.811 1
-1.74 59
- 1. 6769
-1. 6061
- 1 . 538 8
- 1. 48tfO
- 1.4272
- 1.3634
-1.3067
-1.2431
-1. 1807
- 1. 1 1 18
- 1 . 049 1
-.9920
-.9354
-.8 684
500-200
500-200
500-200
500-200
500-800
500-800
500- 200
500-800
500- EOO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-800
500-800
500^200
500-800
500-800
500-200
500-200
500-200
. 0103
. 1655
.3193
.4750
.6311
. 7905
. 9 4 52
. 1022
. 2559
.4079
. 5619
. 71 67
.8 678
2. 0289
8. 1882
2. 3419
fc. 4982
8. 6499
8.801 5
2.9555
3. 1096
3. 8597
3.4135
3. 5688
5M
10M
15M
2 OH
294
30M
35.M
40M
45M
50M
55M
60M
65M
70M
75>!
80M
85M
90M
95X'
100M
10 HI
llOtf
11 SI
180M
                                    112

-------
1972  N0V STATION 12 PA  10**4 AVG  5 DEPTH  87 M  SCAN 34 M
     MEAM  VALUE 0F PROFILES OVER  5M INTERVALS
     CH
     CH
     CH
     CH
     CH
 1-15
16-30
31-45
46- 60
61-75
180-80
120-80
120-80
120-80
120-80

-
-1
-
-1
.0924
.0880
.0226
.4519
.3085
200-
200-
800-
200-
200-
180
120
120
120
180
- .
1.
£.
1.
.
8057
3242
4418
459 6
8104
500-200
500-800
500-200
500-200
500-800
.053 7
. 2464
. 4846
. 6069
. 7862
5M
10M
ISM
2 DM
85M
1972 N0V  STATION 14 PA  10**4 AVG  5 DEPTH  15 M  SCAN 19 M
     MEAN  VALUE 0F PROFILES 0VER  5M INTERVALS
     CH    1-26
     CH  £7- 52
     CH  53-78
           120-80   -.2593
           120-80   -.6868
           120-80   -.3162
200-120    .1821    500-£00  -.3249    EM
200-120   -.2926    500-200  -.£127   10M
£00-120    .6333    500-200   .0316   ISM
1972 N0V STATION 15 PA  10** 4 AVG  5  DEPTH 102 M  SCAN 150 M
     MEAN VALUE OF PR0FILES  0VER  5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-12
13-15
16-18
19-21
22- 24
25-27
28-30
3i-33
34-36
37-39
40-42
43-45
46-48
49-51
52- 54
55-57
58-60
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
180-80
.0251
. 6095
1.0050
2.2499
2. 331 1
2. 2P.27
2. 1322
2.0160
1.9191
1.9030
1.9099
1.8906
1.8806
1.8661
1.8517
1.8420
1.8315
1.8 £23
1.8069
1 . 79 68
200- 120
200- 120
£00- 180
200-12C
200- 120
800- 120
200-120
800- 120
£00- 1£0
200-120
£00-120
200-lf.O
200- 120
200- 120
£00-120
200- 120
£00- 1£0
£00- 120
£00-120
200-120
-.2582
-.9864
- 1.8701
-3.0962
-3. 1674
-3.0844
-3. 001 1
-2.9185
-2. 8 89 5
-2. 7739
-8.7347
-8. 6521
-2. 5719
-2. 49 1 6
-8.4163
-2.3383
-2.2599
-2. 1773
-2. 1030
-8.0371
500-200
500-200
500-800
500-200
500-200
500-200
500- £00
500-200
500-200
500-'200
500-200
500-SOO
500-200
500-200
500-200
500-200
500-200
500-200
500-800
500-200
-.0411
. 159£
. 3447
. 5294
. 7145
.898 7
1 . 08 39
1. 2
-------
1972 N0V STAT10N 17 DEPTH  150 M PA  10»»4 AVG  5  DEPTH  180
          VALUE 0F PR0FILES  0VEK 5M  IMTEKVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- S
3- 4
5- 6
7- 8
9- 10
1 1-1£
13-14
15-16
17-18
19-20
21-2E
£3- £4
25-26
27- £8
£9-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
53- 54
55- 56
57-58
59-60
1EO-80
1.20-SO
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
lfiO-80
120-80
120-80
1 20-8 0
1EO-80
120-80
120-80
120-80
120-80
.7646
.7174
.9866
. 1466
-.0651
-.0731
-.0805
-.0856
-. 102E
-.0934
-.0989
- . 1 08 4
-.1167
-. 1223
- . 1 £9 £
- . 09 1 6
-.0530
-.0606
-.0719
-.0827
-.0804
- . 09 08
-.09 £5
-.0968
-.1108
-. 1173
-. 1333
- . 1 557
-- 1 507
-. 1640
£00-1£0 -
200-120 -
£00- 120 -
£00-120 -
£00-120 -
£00- 1£0 -
£00- 12.0 -i
£00- 1£0 -
£00- 120 -
£00- 120 -
£00-120 -
£00-120 -
£00- 1£0 -
£00- 1 £0 -
£00- ISO -
£00-120 -
£00- 120 -
£00-120 -
£00- 1£0 -
£00-120 -
£00-120 -
£00-120 -
£00-120 -
£00-1£0 -
£00-120 -
£00-1£0 -
£00-120 -
£00-1£0 -
£00-1£0 -
200-120 -
1.4088
2. 1263
2.3593
5. £655
?.. 1834
2.1011
2.0094
1.9 £09
1 . 8 29 7
.7473
. 659 3
.5713
.4823
.3905
.3078
.2633
. ££9 £
. 1389
.05EO
.9669
.8783
. 7925
. 708 7
. 6245
.5399
.4569
.3668
.£763
.1971
.1126
500-200
500-EOO
500-200
500-200
500-200
500-200
500-EOO
500-200
500-200
500-200
500-EOO
500-200
500-EOO
500-200
500-200
500-200
500-EOO
500-200
500-200
500-200
500-200
500-200
500-200
500-EOO
500-200
500-200
500-EOO
500- £00
500-EOO
500-200
. 11 58
. £ 739
. 4235
. 5737
. 7231
.8678
.0180
. 1 683
. 3231
. 4 74 6
. 6£9 6
. 7832
. 9 38 5
2. 0903
£. £451
£. 4029
2. 56E1
2. 71 77
£.8773
3 . 0 3 63
3. 1982
3. 3555
3. 5149
3. 6707
3.8250
3.9 774
4. 1341
4. £8 3 7
4.4364
4. 58 69
5M
low
1£M
20M
25M
30M
35K
40M
45M
50M
55M
60K
65K
70 M
791
80M
85M
90M
95M
10 CM
105M
110M
115M
l£0>i
lebM
130M
135K
14 DM
145M
150M
    .,. _; STATION  13  PA I0»»4  AVG 5 DEPTH  £4 M SWEEP  30 M
    MEAN! VALUE  0F PROFILES OVER 5M-INTERVALS.
     CH   1-£0
     CH  £1-40
     CH  41-60
     CH  61-80
1£0-80    .0971
120-80    .1941
120-80    .£909
120-80    .3876
£00-1£0
£00-1£0
£00-1£0
£00-1£0
 .5313
1.0619
1. 59 1 6
£.1204
500-200
500-£00
500-2.00
500-EOO
- . £ 7£8    5>i
- .1256   10M
-.0037   15.'1
 .2508   2 Oil
    N0V STATI0N 20  PA 10** 4 AVG  5 DEPTH 29  M  SCAN 36
    MEAN VALUE 0F PROFILES OVER  SM INTERVALS
CH
CH
CH
CH
CH
1-16
17-3E
33-48
49-64
65-80
120-80
120-80
120-80
120-80
120-80
.0968
. 1935
.£898
. 38 60
. 640E
£00- 1 20
£00-120
£00-1£0
£00-1£0
£.00-1£0
. 5269
1.0531
1 . 578 5
2.0122
1 . 39 1 0
500-EOO
500-EOO
500-£00
500-EOO
500-200
-.4800
-.3715
- . £ 61 5
- . 1 49 0
.313£
54
10M
1 S-!
£OM
831
                                   1-lU

-------
1972 N0v STATI0M 84  PA 10*»4 AVG  5 DEPTH  183 M StvEEP  160 M
     MEAN VALUE 0F PFsSFILFS 0VER  5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-18
13-15
16-18
19-81
22-84
85-27.
88-30
31-33
34-36
37-39
40-48
43-45
46-48
49-51
58- 54
55-57
58-60
61-63
64-66
67- 69
7-0-78
120-80
1SO-80
180-80
120-80
180-80
120-80
180-80
180-80
180-80
120-80
180-80
180-80
180-80
120-80
120-80
180-80
180-80
180-80
180-80
180-80
120-80
180-80
180-80
180-80
. 0 600
-. 1806
-.3633
- . 49 1 7
-. 5308
- . 499 0
-.49-63
-.4889
-. 5178
-. 5190
-. 5155
-.5195
-. 5384
-. 5855
- . 50 64
-.4946
-.4713
-.4787
-.4619
- . 49 56
-.4981
-.4989
-.4986
- . 49 0 6
800-
200-
£00-
8 0 fl-
ee 0-
200-
200-
200-
£00-
800-
800-
800-
200-
200-
£00-
800-
800-
200-
200-
200-
800-
800-
800-
200-
180
120
120
180
120
120
120
180
120
120
120
120
ISO
180
180
180
180
180
180
180
180
180
180
180
1.
£.
5.
6.
7.
7.
7.
7.
7.
7.
7.
7.
369 7
7553
5751
61 61
8480
5875
59 66
6351
6840
7436
7951
8473
7.9073
7.
7.
8.
8.
8.
8.
8.
8.
8.
8.
8.
9638
999 6
0484
0908
1473
80 68
8667
3800
3861
4398
4983
500-200
500-200
500-8.00
500-200
500-800
500-200
500-800
500-800
500-200
500-200
500-800
500-800
500-800
500-200
500-800
500-8.00
500-800
500-800
500-800
500-800
500-80'0
500-800
500-800
500-800
" •
*• •
•" •
™ •
*"• •
"• *
— •
™ •
-• •
™ •
- •
* •
*
«
.
•
•
•
•
1.
1.
1 .
1.
1.
3089
7889
5680
3918
8306
0708
9079
7494
5324
4883
8633
1130
0488
8080
3605
51 66
6774
8385
98 63
1484
8938
4484
5949
7435
5.M
1 OM
15M
EDM
25M
30M
35M
40M
4bM
50M
55M
60M
65M
70M
75M
3 OH
85M
90M
9 5M
100M
10 Ht
110M
1 1 5X
120M
         STATION  31  PA  I0*>«4 AVG 5  DFPTH 28 M  SCAN 39 M
     MEAN VALUE 0F PK9KILE'S 0VFJi. SM  INTEBVALS
     CH    1-14      180-80   -.8770
     CK   15-B8      180-80  -1.3849
     CH   89-48      120-80  -1.4034
     CH   43-56      180-80  -1.3848
     CH   57-70      180-80  -1.4316
200- 180
£00- 180
800-120
800-180
£00-180
-.5086
-. 6738
-.7541
-.7868
- . 73 1 5
500-800
500-800
500- SOC
500-800
500-800
. 1488
.2688
. 38 3 6
. 5107
. 642 7
SM
10M
1 5M
80M
8£M
                                    115

-------
1972 \j0v  STATION 32,  PA 10»*4 AVG
           VALUH OF Pi. 3 FILES OVER
5 DEPTH  171 M
5M IMTEhVALS
               SWEEP 810 M
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
M0V
M FAN
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 8
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
81-82
£3-2.4
25-26
87-28
29-30
31-32
33-34
35-36
37-38
39-40
41-42
43-4'4
45-46
47-48
49-50
51-52
53- 54
55- 56
57-58
59-60
61-62
63- 64
65-66
67- 68
STATI 0M
VALUE
1- 3
4- 6
7- 9
10-12
13-15
16-18
19-81
82- £4
8 5- £7
88-30
31-33
34-36
37-39
40-48
43-45
46-48
49-51
52- 54
55-57
58-60
61-63
64- 66
180-80
180-80
180-60
1P.O-80
1 2.0-8 C
120-80
120-80
120-80
120-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
18.0-80
120-80
120-80
180-80
180-80
120-60
18.0-80
180-80
18.0-80
180-80
120-80
18,0-80
180-80
18.0-80
180-80
120-80
120-80
34 PA 10*»4
0F PH0 FILES
180-80
180-80
120-80
120-80
120-80 -
120-80 - 1
120-80 - 1
180-80 -1
120-80 - 1
180-80 -1
180-60 - 1
180-80 -
120-80 -
120-80 -
180-80 -
180-80 -
120-60 -
180-80 -
180-80 -
120-80 -
180-80 -
180-80 -
.8045
.2400
.3336
.3208
.3190
.8991
. 88 63
.878.7
.292.6
.3045
.3101
.3U88
. 3999
.3940
.3927
.4105
.4126
.3847
.3766
.3667
.3528
. 3365
.3437
. 3378
.3260
.3206
.3182
.3288
. 3190
.3183
. 89 67
. 88 3 6
. 8666
.2487
AVG 5
0VER 5M
. 09 51
. 1897
.8193
. 48 67
. 1 501
.0107
.2.804
. 5758
. 5875
.5314
. 532.1
. 5099
. 5058
. 4938
. 48 66
. 49 1 7
. 49 55
. 51 13
. 5133
.5112
. 5808
. 58.89
£0.0-180 •
800- 120 •
800- 180 •
800- 180 •
800- 180 •
800-180 •
£00- 120 -
£00- 120 -
200- 120
£00-120
200-180
800- 120
200- 120
2.00- 18.0
£00- 180
£00- 180
£00- 1£0
200- ISO
200- 120
800- ISO
8.00- 180
800- 120
800-180
200- 180
800- 120
800- 180
800- 120
ZOO- 180
200- 180
800- ISO
800- 180
8.00- 180
800- 180
800- 180
DPPTH 110
INTEF-VALS
200- 180
200-120 -
800-180 -
£00-180 -
£00-180 -
200- 180 -
800-180 -
800-12.0 -
200-120 -
20 C- 180 -
£00-180 -
200- 180 -
£00-120 -
200- 1£0 -
£00-120 -
200- 120 -
200- 120 -
8.00- 120 -
200- 120 -
200-180 -
800- 12.0 -
800- 180 -
• 1.038.6
• 1.8940
•1.3831
•1.8558
•1.1968
• 1. 1319
• 1 . 0 68 0
• 1.0036
-.9659
-.91"69
-.8608
-.8067
- . 8 4 59
- . 78 73
- . 7288
-.6973
- . 6449
-. 5750
-. 5308
-.4768
-.419 6
-.3549
-. 3009
- . 839 7
-. 1 760
-. 1860
-.0673
-.0064
.0310
. 0833
. 1 459
. £009
.8613
.3840
M SWEEP

- . 588 6
1.4852
8.8364
3.8705
3.4019
3. 3345
3.8531
3. 1 708
3 . 09 58
3. 02.89
8.9433
2.8 666
8. 7880
£. 70 63
2. 6344
8. 5575
£ . 48 £ 1
8.4037
2.3259
8.8568
8. 1 785
8. 1010
500-800
500-800
500-200
500-800
500-800
500-800
500-800
500-200
500-800
500-800
500-200
500-200
500-200
500-200
500-200
500-2.00
500-8.00
500-200
500-800
500-800
500-800
500-800
500-200
500-200
500-800
500-8.00
500-200
500-200
500-800
500-200
500-200
500-800
500-800
500-800
135 M

500-800
500-800
500-800
500-200
500-800
500-£00
500-8.00
500-800
500-800
500-200
500-8.00
500-800
500-200
500-800
500-800
500-200
500-200
500-800
500-800
500-800
500-800
500-800
.2765
. 5358
. 7988
1 . 0 68 5
1. 3864
1 . 59 OS.'
1 . 8 509
8. 1 140
8.3778
8. 6501
8.91 63
3. 18 16
3. 4508
3. 71 51
3.991 5
4.2642
4. 5320
4.6007
5.0671
5. 3332
5. 6000
5.8652.
6. 1347
6. 40 75
6. 6300
6.9 556
7.2876
7. 50 1 3
7. 7763
8 . 0 509
8. 388 7
8. 6042
8.8827
9. 1 579


.0076
..1151
. 2057
.3011
.3967
. 4948
.5912
. 6S 71
. 7309
.8 740
,9 663
1.061 7
1. 1 56S
1.8498
1. 3402
1.4355
1 . 529 0
1 . 688 1
1. 7837
1.8883
1.9188
8.0164
5M
10M
15M
80M
30.M
35M
40M
45M
50M
55M
COM
65M
70M
75>i
80M
8 EM
90M
95M
100E4
105M
1 1 OM
11 EM
120M
125M
130M
1391
14 CM
1.45M
1 50.M
1 55M
16CM
1 65M
' 70M


5.1
10M
1 EM
80C-1
85M
30M
35>!
40M
45M
50M
55M
60M
6 EM
70M
7S4
80M
8 5M
90/j
95M
100M
105M
11 OM
                                    116

-------
1972 N0V STATION 35 DEPTH  £8  M SCAN  35 M
     MEAN VALUE OF PROFILES 0V Eh 5M  INTERVALS
CH
CH
CH
CH
CH
1-16
17-38
3 3- AS
49-64
65-80
120-80
ISO- 80
120-80
120-80
120-80
-.0245
-.0494
-.0744
-.0997
-.3085
200-180
£00-120
200- leo
EDO- 120
£00-120
.5270
1.0532
1.5787
2.1035
e.y 1 12
500- SCO
500- SOO
500-200
500-200
500-200
- . 5£ 1 2
-.4092
-.3063
-. £013
-.06BO
5M
i on'
15M
20M
25M
     M0V STATI0M 36 PA  10**4 AVE  5  DFPTH 88 M SWEEP  35 M
     MEAN  VALUE 0F PROFILES 0VER  5M  INTERNALS
CH
CH
CH
CH
CH
1-16
17-32
33-48
49- 64
65-80
120-80
120-80
120-80
120-80
180-80
-.0111
-.0841
-.0359
-.3657
. 5835
£00-180
800- 1?0
£00- 180
£00-120
200-180
.5850
i9106
£. 6753
3. 6360
2.5516
500-200
500-200
500-200
500-20C
500-200
-.4139
-. 400B
-.3473
-.2813
-.0467
5M
1 OM
1 EM
2.0M
25M
1972 KI0V  STATION 38 PA  H)*«4 AVE  5  DEPW ISO M  SWEEP 155 M
     MEA3J  VALUE 0F PFsBFILES 0VER  5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-12
13-15
16-18
19-21
22- £4
25^27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52- 54
55-57
58-60
61-63
64- 66
67-69
70-72
120-80
120-80
120-80
120-80
120-80
120-80
120-80
> 20-80
120-80
120-80
120-80
120-80
120-80
120-80
ISO- 80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
,120-80
.-.0264
.0219
-.0195
-.0143
-.0092
.0135
.0366
.0518
.0764
. 1 186
.1665
. 229 6
. 29 62
.3867
.4466
. 5255
. 6000
. 67 53
.7418
.8150
.8761
.9418
1.0156
1.0844
200- 12.0
200-180
200-120
200- IPO
200-120
200-180
800-120
200-180
200-120
200-120
200-120
200-120
200-120
200- 12.0
200- 120
200-120
200-120
200- 180
200-120
800- 1 20
200-120
200-120
800-120
200-120
. £4 64
.4797
.7245
.8916
1 . 0 60 5
1.2219
.3892
.5279
. 6567
. 7S8 6
.9102
2.0181
2. 1314
2.2165
2.3379
£.4507
2. 558 1
2. 69 1 5
2.8459
3.0015
3. 1648
3.3387
3.5156
3.7152
500-800
500-200
500-200
500-200
500-200
500-200
500-200
500-200
•500- EOO
500-200
500-800
500-800
500-200
500-200
500-800
500-800
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
.0410
. 11 59
.81 62
.3318
. 4 53 5
. 5786
. 6603
. 7304
. 7J) 07
.8469
.9079
.9562
1.0143
1 . 0 63 5
1.1251
1. 1843
1. 2368
1.3001
1. 3551
1. 4131
1. 4734
1. 5276
1. 5895
1. 6437
5M
10M
1 5M
BOM
25M
30M
35M
40M
4 EM
50M
55M
60M
65M
70M
7 EM
80M
8 EM
90M
9 H-l
100M
105M
110M
11 EM
120M
                                  13.7

-------
1972 N0V STATION  40 PA  10»*4 AVG  5  DFPTH
     MfAN VALUK 0F PI'.OFILtS 3VEK  5M
175 M SCAN PSO M
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1972 N0V
1- 8
3- 4
5- 6
7- 8
9-10
11-12
13-14
1 5- 1 6
17- 18
19-20
21-22
S3- £4
£5-26
27-28
29-30
31-3£
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49- 50
51- 52
53-54
55-56
57-58
59-60
61-6?
63- 64
65-66
67-68
69-70
ieo-80
1P.O-80
120-80
120-80
120-80
120-80
120-80
120-80
180-80
120-80
120-80
120-80
120-80
120-80
120-80
120r80
120-80
180r80
120-80
120-80
120-80
120-80
12.0-80
ISO- 80
120-80
120-80
120-80
180-80
120-80
12.0-80
120-80
120-80
120-80
120-80
180-80
-.5987
- . 669 3
-.7048
-.6924
- . 48 3 6
-.4349
-.3662
-.3015
-.8343
-. 1776
-. 1.89 1
-.0843
-.0225
.0284
. 1058
. 1 563
.2099
.2548
.3305
.3855
.4241
. 49 50
. 5333
. 5830
. 6448
.7027
.7469
.8059
.8517
.9 100
.9461
1.0051
1.0520
1. 1 126
1. 1581
STATI 0M 41 PA 10**4 AVG 5
MEAM VALUE Of
CH
CH
CH
CH
CH
CH
CH
1972 N0V
MEAN
CH
CH
CH
CH
CH
CH
CH
1-11
12-22
23-33
34-44
45-55
56- 66
67-77
STATI 0M 48
VALUE 0F
1-1 1
12-22
P.3-33
34-44
45-55
56-66
67-77
PF.3HLEE 0V£fi 5M
120-80
120-80
180-80
IEO-80
180-80
180-80
120-80
PA 10»»
PROFILES
120-80
120-80
120-80
120-80
120-80
180-80
120-80
.0259
.0699
.0634
.0597
. 09 7 6
. 1 170
.1178
200-180
200-180
200-180
800-180
£00-120
200- 180
800- 180
200- 120
£00-180
200- 180
200- 120
200-120
£00- 120
800-120
200- 120
200-120
200-180
200- 180
200-120
£00- 1£0
800- 120
£00- 120
200- 180
800- 120
800- 120
200-18.0
800-180
200- 180
8.00- 180
800- 180
£00- 180
800- 180
800- 120
200-180
800-180
.8188
.4561
. 6851
.8765
.8769
.0591
.8135
.3674
. 5855
. 689 6
.8 754
8.0920
£.3183
£. 5455
8. 7679
3.019 1
3.8560
3. 5154
3. 7538
3.9907
4. 8404
4.4807
4. 7268
4.9613
5. 80£8
5.441 7
5. 68 £ 6
5. 9 848
6. 1 588
6.3933
6. 64 1 7
6.8882
7. 1263
7.3683
7.6135
500-200
500-800
500-800
500-200
500-800
500-200
500-800
500-800
500-800
500-800
500- £00
500-200
500-800
500- 8CO
500- £00
500-800
500-200
500-200
500-£00
500-800
500-8.00
500-200
500-800
500-800
500-800
500-200
500-800
500-800
500-800
500-800
500-800
500-200
500-200
500-800
500-800
-.061 6
- . 09 64
- . 09 60
-.0791
- . 0 61 6
- . 0 758.
-. 1 1 55
- . 1 648
-.81 51
- . 2 72 1
-. 363.5
- . 3 74 5
-.4890
-.4804
- . 529 7
-. 5837
-. 6320
-. 6866
- . 738 6
-. 7888
-.8420
-.8963
-.9475
-1. 0053
-1.0611
-1.1145
-1. 1 719
-1.8,2 72
-1.8? £8
- . 3440
- .3990
- .4565
- . 51 77
- . 5785
- . 6312
SM
10M
15M
8 OX
85M
30M
35M
40M
45M
50i1
5 EM
60M
65M
TOM
7 EM
80M
sai
9 DM
9 EM
100M
105M
110M
11 EM
180M
185M
130M
13 5M
140M
1-4 5M
150M
155«
1 60M
1 65M
1 70M
1 75M
DEPTH 35 M SCAN 46 M
INTERVALS
200- 120
800-180
£00-180
200-180
£00-180
800-18.0
200-120
4 AVG 5 DEPTH 35 M
0VER 5M
.0963
. 1923
.2885
. 3844
. 48 1 4
. 5775
. 1466
INTERVALS
£00-120
200-180 -
£00-120 -
£00-180 -1
£00- 18,0 -
800-180 -
SOO-120

.0144
.0504
.1169
.1785
.8361
.2931
.3404
SCAM 45

. 5178
. 1788
.6570
. 6803
. 5876
. 1307
.1788

500-200
500-200
500-800
500-200
500-200
500-200
500-800
M

500-200
500-800
500-8,00
500-200
500-800
500-800
500-800

.1390
.879 6
. 4172
. 5554
.6946
.8350
1 . 08 08


. 5181
. 7388
.9375
1. 1438
1.3466
1. 5483
1.8545

5M
10M
15M
8.0M
g&M
30M
3 a-i


EM
10M
1 EM
80M
8.S-1
30M
3EM
                                   118

-------
1972 N0V STATI0M 4/1   PA 10*»4 AVG 5 DEP1H  190 M SCAN  £50 M
     MEAN VALUE 0F PR0FILES OVER 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
'CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
21-2.2
23- £4
25-26
£7-28
89-30
31-32
33-34
35-36
37-38
39-40
41-4E
43-44
45-46
47-48
49-50
51-52
53-54
55-56
57-58
59-60
61-62
63- 64
65-66
67- 68
69-70
71-72
73-74
75-76
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1'20-SO
120-80
120-80
180-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
.120-80
1P.O-80
120-80
-. 4689
- . 6043
- . 5669
-. 5227
-.4337
-.2748
-.1951
- . 1 328
- . 0 640
-.0090
.0510
. 1007
. 1469
.2003
. £520
. 2889
.3115
. 3450
.3807
.4277
.4741
. 49 64
. 51 65
. 551 6
.5858
.6272
. 6671
.7165
.7640
.7858
.8019
.8329
.,8645
.9034
.9428
.9799
1.0205
1.0718
200-
200-
£00-
200-
200-
200-
£00-
200-
£00-
200-
£00-
2.00-
200-
£00-
200-
200-
200-
200-
£00-
120
120
120
12.0
120
120
1£0
120
120'
120
ISO
120
120
120
120
1£0
120
1£0
120
200-120
200-
£00-
£00-
200-
200-
200-
£00-
£00-
200-
£00-
£00-
£00-
£00-
200-
EOO-
200-
200-
£00-
120
lf.0
120
ISO
120
120
ISO
120
180
120
ISO
120
120
120
120
120
120
ISO
,
.
.
.
1.
1.
1.
1.
1.
2.
2.
2.
2.
3.
3.
3.
3.
4.
4.
4.
5.
5.
5.
6.
6.
6.
6.
7.
7.
7.
7.
8.
8.
8.
9.
9.
9.
9^
3845
6414
6503
9 £8 4
0848
2083
4019
6029
7961
0352
£970
5626
8425
1240
4107
7008
9959
£824
5751
8601
1539
45£3
7572
0366
31 56
5956
8808
1578
43P.5
7099
9946
£685
5438
8149
089 5
3682
6394
9130
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500^200
500-£00
1 .
1.
2.
2568
7988
3788
£.9022
3.
3.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
£.
£•
2.
£.
2.
2.
E.
2.
409 6
7804
1070
4665
6788
7B£0
7760
6641
5545
4583
3418
2 61 2
1 618
0603
9 758
8853
8000
709 7
6280
541 6
458 5
3732
£888
2037
1208
0399
9535
8 631
7831
6989
6147
5306
4446
£69 7
5M
10M
1 £M
£OM
25M
30M
3S-!
40M
45M
50M
55M
60M
65M
70J"i
75M
80M
8 5M
9 OH
95M
100M
10 SI
11 OH
11 5M
1£OM
125M
130M.
135M
140M
143'1
1 50M
1 5 HI
1 60M
1 65M
170M
1 73>!
18 CM
18 S-i
190M
                                    119

-------
 1975J0V STATION  46 PA 10»« 4 AVE  b  DEPTH 150 M DEPTH 200 M
     MEAN VALUE 0F PROFILES OVEli  5M INTEHVALS
CH
CH
CH
CH
CH
an
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
11- IS
13-14
1 5- 1 C
17-18
19-20
21-22
P. 3- 2 4
£5-26
27-28
29-30
31-32
33-34
35-36
37-38
39-40
41-48
43-44
45-46
47- 48
49-50
5I-5S
53-54
55- 56
57-58
59-60
120-80
120-80
120-80
120-80
120-80
120-80
180-80
120-80
120-80
120-60
120-80
180-80
ISO-BO
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-eo
120-80
120-80
120-80
120-80
12.0-80
120-80
1SO-80
120-80
120-80
-.0263
.2989
.3031
. 3327
.3860
.4245
.4464
.4743
. 51 19
. 5365
.5691
. 608 2
. 6357
-6716
.6987
.7198
.7333
.7580
.7793
.8 136
.83E2
.8488
.8639
.8889
.9304
.9684
.9924
1. 02.41
1.0531
1.0832
SOO-1'20
200-120
200- 120
200-120
£00- 120
200- ISO
200-120
200-120
200- 120
epo- IEO
200-120
EOO-120
200- 120
200- 120
200-120
200-120
200- 120
200- 120
200- 120
200- 120
200- 120
200-120
200- 120
200- 120
200- 120
200-120
200- 120
200- 1 20
200-120
200- 120
-.5117
-1. 1983
-1. 1829
-.9278
- . 68 70
-.4590
- . es4«
-.0070
.2043
.4138
. 62 63
' . 8 2 64
1.0392
1.2.770
1 . 528 2
1 . 78 70
2.0538
2.3214
2. 6017
£.8763
3. 1473
3.4214
3. 6933
3.9694
4.2394
4. 5132
4. 7822
5. 049 1
5. 3236
5. 58 70
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500.- 200
500-200
500- £00
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
-.1157 &i
-.1011 1 ON
-.0847 I 5M
-.0435 20M
.0044 2 EM
. 0 58 7 30M
. 09 3 6 3 5W
.1004 40M
.0932 4SM
. 08 75 50M
.0778 55M
.0663 60M
.0538 6 EM
. 038 6 70M
. 0298 7SM
.0141 80M
. 008 6 8 5M
-.0049 90M
-.0136 93*1
-.0264 100*!
-. 039 5 10 M
-.0475 I10M
-.0602 11 SI
-.0634 120M
- . 0 78 7 1 2 5M
-.0855 130M
- . 09 60 13 5M
-. 1044 140*
-.1122 1431
- . 1 a 64 1 50M
         STATI ew 48 PA  io*»4  AVE 5 DEPTH 26   SWEEP 39 M
    MEAN  VALUE OF PROFILES BVEK EM INTERVALS
CH
CH
CH
CH
CH
1-13
14-26
27-39
40-52
53-65
1£0-80
120-80
120-80
120-80
120-80
-.0467
- . 09 38
-.1411
-.1885
-.2362
200-
200-
200-
200-
200-
120
12.0
120
120
120

1
1
1
1
. 5266
.0524
.5774
. 6722
.4207
500-200
500-200
500-200
500-200
500-200
_ .
_ .
. .
•• »
-.
3348
3424
2634
1 745
0783
5M
10M
15M
20M
25M
1072
 ?l  NJ0V  STATION 49 PA  T0»*4  AVE 5 DEPTH 30 M  S^EEl- 40 M
    MEAN  VALUE 0> PR0HLES OVFK 5M INTf.HVALS
    CH
    CH
    CH
    CH
    CH
    CH
 1-12
13-24
£5-36
37-48
49- 60
61-72
120-80
120-80
120-80
120-80
120-80
120-80
-.
-1.
-2.
-3.
-4.
-5.
8646
7294
5943
4593
3245
189-7
200-
200-
200-
200-
200-
200-
120
120
120
120
120
120
.
2 .
3.
3.
3.
a.
5281
1463
0383
431 3
2220
6471
500- £00
500-200
500-200
500-200
500-200
500-200
w



1
1
. 0002
. 2924
. 5513
.8099
.071 1
.3335
5M
10M
15M
frOM

30M
                                   120

-------
19780V STATION! 45 PA  10»*4 AVG 5 DEPTH  183 M SWEEP  250  M
   MEAN VALUE OF PROFILES OVER 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
.CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 8
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
£1-8?.
S3- 24
85-26
27 -2S
89-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-58
53-54
55- 56
57-58
59-60
61-62
63-64
65- 66
67-68
69-70
71-7S
120-80
120-80
120-80
120-80
180-80
120-80
120-80
180-80
1 SO-SO
1 SO-SO
120-80
iso-go
120-60
180-80
180-80
180-80
120-80
180-80
180-80
120-80
180-80
120-80
120-80
120-80
180-80
120-80
1 SO-SO
120-80
180-80
ieo-80
180-80
120-80
180-80
180-80
120-80
120-80
-.0197
.6051
.7318
.7988
.9454
1.0058
1 . 0 69 2
1.1677
1 . 2478
1.8925
1 . 3448
1.3983
1.4597
1. 5053
1. 5638
1. 6074
1. 6608
1.7098
1.7560
1.7977
1.8402
1.8963
1.9452
1.9832
2.0360
2.0817
8. 1207
8. 1 59 6
2.8018
2.2465
2.3013
2. 3483
8*3845
8.4424
2.4930
8. 5308
800-
800-
200-
200-
200-
8.00-
800-
120
120
180
120
120
120
120
™ •
3466
-.8068
- . 60 50
-.3798
-.
"™ •
•
800-120
200-
800-
200-
200-
800-
£00-
2.00-
200-
800-
800-
200-
200-
200-
200-
200-
800-
800-
120
180
120
120
120
120
120
ISO
180
180
180
180
120
120
120
180
ISO
200- 180
200-
200-
200-
200-
800-
200-
200-
200-
800-
200-
120
180
180
120
180
180
180
180
120
180
•
•
1.
1.
1.
2 .
8.
2.
3.
3.
3.
3.
4.
4.
4.
5.
5.
5.
6.
6.
6.
7.
7.
7.
8.
8.
8.
9.
23 68
0041
2044
4087
6107
8767
1632
4570
7649
0678
3864
7072
0293
3492
6735
9978
31 51
6366
9541
8798
5960
9 09 7
8899
5492
8614
1 758
4908
8088
1805
4676
7784
0930
500-800
500-800
500-800
500-800
.500-200
500-800
500-2,00
500-200
500-200
500-200
500-200
500-800
500-200
500-200
500-200
500-200
500-200
500-800
SCO- 200
500-200
500-200
500-200
500-800
500-800
500-800
500-200
500-200
500-800
500-800
500-200
500-800
500-200
500-800
500-800
500-800
500-'200
- . 3 1 63
" •
" «
"• m
~ •
™ •

™ •
~ •
~ it
~ •
™ *
™* •
'-1.
-1.
- 1.
- 1.
-1.
-1.
-1.
-1.
-1.'
- I.
- 1.
-1.
-1.
-1.
-2.
-2.
-8.
-2.
-2.
-8,
-8.
-8.
-8.
359 7
371 6
3618
3676
4858
4999
5797
6613
7468
8324
9158
99 77
0837
1 645
1384
1 770
2591
3409
42 62
5133
6185
6371
71 75
8008
8 TSl
9 563
0360
11 53
19 18
2666
3454
4245
5007
579 1
659 7
5M
10M
1 5M
20M
8. S-I
30M.
35>i
40!'!
45M
50H
5K-J
60M
65M
70M
7S-1
80>i
8 5>!
90M
95M
100M
105M
1 1 OM
11 SM
120M
1 8 S-!
1 3QM
1 3 5tfl
140M
1 4 5M
1 50M
155.M
1 60M
i 6a-i
1 70 M
1 75M
180'A
                                121

-------
197?N0V  STATION S£ PA  10»»4 AVE 5 DEPTH  65 M
    MEAN  VALUE 0F PE0FILES 0VEB 31 INTERVALS
SWEEP  77 M
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
Cn
CH
CH
1- 6
7-18
13-18
19- £4
£5-30
31-36
37- AS
43-48
49-54
55- 60
61-66
67-72
73-78
180-80
120-80
120-80
120-80
120-80
120-80
120-80
1SO-80
180-80
iso-eo
120-80
120-80
120-80
.0951
. 190S
.2849
.3797
,4742
. 5689
. 6633
.4465
.0798
- 1 . 1 49 0
. 1034
.7206
<8036
£00- 120
800- ISO
200- 120
800-180
200- 180
800- 120
200- 120
200- 120
200- IPO
200- 120
200- 120
200-120
£00- 120
1.3956
1.3932
.8149
-.0473
-.8396
- 1 . 661~6
-2. 5248
-3.0351
^ 3. 41 53
-3.3653
-4. 6985
- 5.2441
-5.2349
500-200
500-800
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
-.3514
-.2014
-. 0329
. 1343
.2981
.4623
. 6243
. 7912
.9570
1. 12.03
1 . 28 69
1 . 4498
1 . 61 3 5
EM
10M
lEtf
BOM
2 EM
30M
3 EM
40M
45M
50*
55M
60M
65M
1972 N 0V STATI0JO  56 PA 10»*4 AVG  5 DEPTH  154 M SfeEP 800  M
    MEANf VALUE 0F PH0FILES 0VEB  5M IMTEJiVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
ii- 12
13-14
15-16
17- 18
19-20
21-22
23- 24
25-26
27-28
29-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47- 48
49- 50
51- 58
53- 54
55- 56
57-58
59-60
120-80
120-80
120-80 '
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1SO-80
120-80
120-80
120-80
120-80
120-80
120-80 J
1£0-80 1
120-80 1
120-80 1
120-80 1
120-80 1
120-80 1
180-80 1
120-80 1
120-80 1
12.0-80 1
120-80
.0939
1.1171
?.. 1985
I .'6340
1. 6300
1.6087
. 5879
. 5708
. 5245
..5017
.4753
. 4489
.4180
.3829
.3589
.3353
. 3048
.2302
.2529
.2219
. 1868
. 1 69 3
. 1906
. 1 653
. 1476
.0948
.0678
.0345
. 0 1 60
.9767
800- 120
200- 120
£00-120
£00-120
200- 1£0
200- 120
200-120
200-120
200-120
200-180
200- 180
200- ISO
200- 120
200- 180
200- 120
200- 120
200-120
800- 120
£00-120
£00- 120
£00- 120
200-120
200-120
200- 180
£00-120
800-160
200-120
200-180
£00- 180
20-0-120
.0466
-1.4694
-8.5269
-8. 5169
-£.4452
-8.3709
-2.3101
-2.2498
-8. 1 775
-2. 1233
-8.0672
-2.0093
- 1.949 6
- 1.SSP.5
- 1.8273
- 1. 7788
- 1.7153
- 1 . 649 5
-1. 5858
- 1 . 52.9 1
- 1.4731
- 1.4350
- 1.4488
- 1,. 39 57
- 1 . 348 7
- 1 . 88 3 7
-1.8339
-1.1753
- 1. 1256
-1.0558
500-800
500- £00
500-800
500- 800
500-200
500-800
500-200
500-800-
500-200
500-200
500-800
500-800
500-2.00
500-800
500-200
500-200
500-200
500-800
500-800
500-200
500-800
500-800
500-800
500-800
500- £00
500-200
500-800
500-800
500-200
500-800
-.2235
. 0 1 58.'
.3569
. 7043
1. 0489
1. 39 63
1. 7409
8. OS 65
8.4315
£. 7733
3. 1225
3. 4646
3.8147
4. 1 588
4.4993
4.8484
5. 18 73
5. 5315
5.8736
6.8181
6. 568 6
6.9133
7. 8 59 0
7. 5982
7.9423
8 . 88 56
8. 6381
8.9 760
9. 319 5
9- 6630
EM
10M
ISM
20M
£ H'l
30M
35M
40M
45:'!
50 M
5S«I
60M
6 EM
70M
7 EM
80M
8 HI
90M
9 EM
100M
10 34
110M
115M
180M
1 £ 3-1
13 OH
1 3 EM
140M
145.M
150M
                                   122

-------
1972M0V.STOTI0N 59 PA  10»»4 AVG  5  DJMH 40 M  SfcEEP 50 M
    MEAN VALUE. Of Pr.0HI.lS OVUi  5M  IN'IH-.VALS
CH
CH
CH
CH
CH
CH
CH
CH
1-10
1 1-80
P. 1-30
31-40
41-50
51-60
61-70
71-80
If 0-80
i£o-80
180-60
IPO-BO
180-80
leo-so
180-80
180-60
. 09 6 1
. 1918
.8874
. 38 f 9
.4783
.5737
.6689
.76/10
£00-120
£00-180
800-120
£00- 120
£00-120
£00- 180
800-120
£00-120
. 5844
1.0492
.£109
1.7536
8. 7067
3.0188
£.8647
£.4787
500- £00
500- POO
500- £00
500- £00
500- £00
500- £00
500- £00
500- £00
-.0644
-.0936
-.0071
.079 7
. 1 6 SO
.£545
• 34£9
. 4£99
SM
10M
1 JM
£OM
£5>5
30M
33i
90M
9 5M
100M
105M
110M
11 bM
120M
185M
130M
135M
140M
145M
50M
55M
60M
65M
70M
75M
18 OM
18 5M
                                     123

-------
1972V0V STATI0M 64 FA  10*«4 AVE 5 DFFTH  114  M S'*EH-  130 M
    NFAM  VALUE' 0> Pf.3H.LKt OVih EM
CH
.CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1972 CH
yl MOV
M KAM
CH
CH
1972 ' M 0V
M EAi
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-1?
13-15
16-18
19- PI
P.2-24
2.5-27
28-30
31-33
34-36
37-39
40-42.
43-45
46-48
49-51
52-54
55-57
58-60
61-63
64-66
STATION
VALUE
1-20
21-40
STATIC
5 VALUE
1- 2
3- 4
5- 6
7- 8
9- 10
11-12
13-14
15-16
17-18
19-20
21-22
£3-24
25-26
27- 28
29-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51 -5P.
53-54
55- 56
57-58
59-60
120-80
120-80
120-80
120-80
120-80
1PO-80
1PO-80
1SO-80
120-80
120-80
120-80
120-80
20-80
20- 80
20-80
20-80
20-80
20-80
20-80
P.0-80
120-80
120-80
66 PA 10**
0F PROFILES
120-80
120-80 " -
l 69 FA 10*-"'
0F FK0 FILES
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
20-80 -
20-80 -
20-80 -
20-80 -
20-80 -
1P.O-80 -
120-80 -
120-80 -
120-80 -
120-80 -
12.0-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
180-80 -
120-80 -
120-80 -
120-80 -
120-80 -
.0948
. 1894
. 27 63
-.9471
.0702
1.2P98
P. 0867
2.2817
2. 2605
2.264P.
2.2528
2. S4P.4
2.2493
2.2479
2.8231
2.2318
P. 2231
2.2174
2.218?
P. PI 38
P. PI 65
P. 29H8
4 AVF 5
0VFF. 5M
.0704
-.0065
/: £ VF 5
0VER 5>
1.2321
1 . 4/479
1.4394
1.4131
1 . 39 68
1 . 39 49
1 . 39 4 1
1 . 39 2.1
1.38 55
1 . 38 0 1
1. 3736
1. 3712
1. 3772
1. 3625
1.3531
1. 3540
1.3469
I.34P.1
1.3337
1.3301
1.3380
1. 3P86
1.3331
1.3312
1.3P86
1.3152
1.2798
1.2309
1.2236
1.2131
200- IPO
P.OO- 120 .
200-120
200- IPO
200-1P-0 -
POO- 120 -
200- 1P..O -
POO- 120 -
200- 120 -
200-120 -
200- 120 -
POO- IPO -
200-120 -
200-120 -
200- 120 -
POO-IPO -
POO- IPO -
POO-IPO -
200- 120 -
POO- 120 -
200-120 -
POO- IPO -
DEPTH 12 M
INTERVALS
200- IPO •
800-120 •
DEPTH 1 52
INTKKVALS
200-120-
200- 180
200-120
2 0.0-1 P. 0
200- 120
200-120
£00- 120
200- 120
200-120
£00- 120
200- 120
200- 120
200- 120
200- 120
200- 120
200- 120
POO- 1P.O
200-120
200-120
200-120
200- 120
200.- 120
200- 120
SOO- IPO
200- 120
POO- 120
200- 120
200- 120
200- 1P.O
200-120
. 49 09
. 0 64 7
-.4583
- . 48 29
1.8453
3. 1 107
3.8 655
4.0597
3.98(5
3.931 r
3.8805
3.8276
3. 7705
3. 7141
3. 6540
3. 6121
3. 5557
3.4997
3.4481
3.3935
3. 3417
3. 3 78 5
£ U'EEJ

- . 29 1 1
-. 7533
B UKFP

.2080
. 3 609
.5125
. 6672
.8136
.9617
1. 1032
1.2422
1.3841
1 . 54 1 0
1 . 69 58
1.8597
2.0288
2. 1961
2.3621
2. 5323
2. '69 41
2.8 635
3.0319
3. 19 78
3.3638
3. 5362
3. 7097
3.8809
4.0490
4. £11 6
4.3439
4. 4661
4. 6P.1 6
4. 7847
500-200
50.0- POO
500-P.OO
500- POO
500-200
500-200
500-200
500-P.OO
500-200
500- POO
500- POO
500-200
500-200
500-200
500-200
500-200
500-200
500- POO
500-200
500-200
500-200
500-200
- 29 M

500- SOO
500-200
190 .M

500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500- P.OO
500-P.OO
500- £00
500-P.OO
500-200
500-200
5QO-P.OO
500-200
-. 58 1 1
-. 5008
-. 3443
-.1926
-.0411
. 1 1 09
. 26P4
.41 59
. 5707
. 7P10
.8 742
1.0305
1. 1822
1- 333P
1.4867
1. 6414
1 . 79 1 6
1.9432
2. 09 78
p. 2489
2. 4009
2. 5506


-.0181
.0384


.0478
. 1 1 73
. 1926
. 2 739
.3506
. 41S6
.4753
. 5328
. 5920
. 6491
. 7046
. 7599
.8165
.8 722
- 9 2 74
.9845
.0379
.0939
. 1489
. £083
.2646
. Sf.Ol
.3762
. 43? 6
. 489 6
. 5421
. 5970
. 648 6
. 7026
. 7560
5M
10M
15M
POM
F.EM
SOX
35M
4 OK
45M
bOM
55M
60M
65M
70M
75.-1
BOM
8 5X>
90M
9 5M
100M
10JM
MOM


5M
10M


5M
10M
ISM
POM
25M
30M
35M
40M
45M
50M
5S-1
COM
65M
70M
75M
80M
85M
90M
95M
10 OM
10 5M
110M
1134
120M
125M
1 3 OM
135M
MOM
145M
1 50M
                                     12U

-------
1972
     N0V STATI3M  71  PA 10** 4 AVG 5  DEPTH 204 M  SWEEP 240 M
     MEANT VALUE OF I-HOFILKS QVEh EM
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 8
3- 4
5- 6
7- 8
9-10
11-1 a
13-14
15-16
17-18
19-2.0
21- 2S
93- £4
25-26
£7-28
£9-30
31-32
33- 34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
53- 54
55-56
57-58
59-60
61-62
63-64
65- 66
67-68
69-70
71-72
73-74
75-7 6
77-78
79-80
180-80
120-80
120-80
120-80
120-80
1SO-80
120-60
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
1SO-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
. 5958
. 6703
.7419
.7486
.7532
.7598
.7713
.7703
.7655
.7650
.7654
.7618
.7631
.7519
.7357
.7321
.7207
.7201
.7182
. 7 1 22
.71 10
.7055
.7022
. 6927
. 67 69
. 6731
. 67 1 3
. 679 5
. 6761
. 67 53
. 670 1
. 669 3
.6679
.6731
. 6579
. 6506
. 6353
.6299
. 6270
.6191
£00-120
200-120
£00-1£0
£00-120
200- 120
200- 1£0
£00- 1£0
£00-1£0
200- 120
200- 120
£00- 120
200- 120
200-1P.O
£00- 120
£00- ISO
£00- 120
£00- 1£0
200- 120
200- 120
£00- 120
200- 120
200- 1£0
200- ISO
£00- 1£0
£00-1*0
£00-120
£00- 120
200- ISO
£00- 120
£00- 1£0
£00- IfcO
200- 120
200- ISO
£00- 120
2.00- 120
200-120
200-120
200-120
£00-120
£00-120
-.6335
-.7139-
-.7117
- . 6399
-.5769
-. 5124
-.4552
-.3893
- . 32£"6
- .2582
-. 1909
-. 1 19 5
-.0558
.010E
.0821
.1465
.2046
.2544
.3228
.3818
.4444
.5052
. 5655
. 6346
. 7028
. 7700
.8344
.8955
.9 573
.0138
.U7£l
.1332
. 19 12
.2469
.3063
. 3677
.4331
. 49 1 7
. 548 4
.6111
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500- £00
500- £00
500-200
500-200
500-200
500-200
500- £00
500-200
500- £00
500-200
500-200
500-2.00
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
.0989
. 1909
.2845
. 381 7
. 4776
. 5737
. 6® 3
. 7677
.8 753
. 9 718
1 . 0 & 3
1.1C63
1.2676
1 . 3 63 5
1.4624
1 . 5608
1. 6610
1. 7613
1 . 8 60 5
1.9 588
2.0575
£. 1 564
2. £548
£. 3533
2. 4554
£. 5604
£. 6627
2. 7634
2. 8 64 7
£.9 646
3.0672
3. 1 704
3.2730
3. 3770
3. 4813
3. 5835
3. 68 64
3. 7394
3.8942
3.9949
EM
10M
134
20M
£34
30M
334
40M
434
50M
55M
60M
634
70M
7 EM
8 CM
8 34
90M
95M
10 CM
1034
110M
1134
120M
1 2 EM
130M
1 3 34
1 40«
145M
1 50M
1534
1 60M
1 634
170M
1734
18 OM
18 34
190:4
19 EM
200M
1972 \'0V^STATr0N 72  PA lO"*^ A^B  5 DfPW  31  M SVJFFP  39  M
     MEfiN  VALUE OF FKOFILES OVER  5M IJJ1 FKVALS
CH
CH
CH
CH
CH
CH
1- 13
14-26
27-39
40- 52
53-65
66-78
120-80
120-80
1E:0-80
120-80
120-80
120-80
. 09 60
. 1918
. 287 5
-.£095
-.£941
-.4870
£00-
£00-
200-
200-
£00-
£00-
120
120
120
1£0
120
-
-
•
•
- 1.
-2.
- £«
-3.
4659
9213
4382
0314
7568
4899
500-200
500-200
500-200
500-200
500-200
500- £00
- . 0 6£. 5
.0548
. 1 568
. £6£2
. 3 64 6
.4735
5M
10M
£OM
25M
3 OK
                                      125

-------
1972 MOV STATI0M T3 PA  10*«4 AVE 5 CFI-TH 17 M  SWtf £7 H
     MFAM VALUE OF P?.0FILFS OVE-h 5>M  IN1 th V AL £
     CH    1-20
     CH   SI-40
     CH   41-60
120-80  -.761J
120-80  -.6103
120-80 - 1.1354
200-120
£00-120
2.00- ieo
                                                 1.3980
2. 3782
          500-£00
          50 0-200
          500-200
-. 606 7   EM
-.5652  10M
-.5128  1 5M
      N0V STATION  75 PA 10*»4  AVG 5 DiPIH  £33 M SftfciP 8 70 M
      MFAM VALUE 01- H-.0HLES -0VEh 5M
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 1
p- £
3- 3
4- 4
5- 5
6- 6
7- 7
8- 8
9- 9
' 10-10
11-11
1 £- 1 2
13-13
1 4- 1 4
15-15
1 6- 1 C
17-17
IB- 18
19-19
£0-20
21-21
2.2-22.
23-23
2.4-24
25-25
P6-26
27- S7
28-28
2.9-29
30-30
31-31
3E-3S
33-33
34-34
35-35
36-36
37-37
38-38
39-39
40-40
41-41
4P.-48
43-40
44-44
45-45
4f-46
IPO-BO
120-80
120-80
120-80
120-80
120-80
120-80
120-80
leo-eo
120-80
120-80
120-80
120-80
PO-80
20-80
20-60
20-80
20-80
20-80
20-80
12.0-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
180-80
120-80
120-80
120-80
120-80
120-80
120-60
120-80
120-80
120-80
120-80
if.o-ao
180-30
IPO- 80
120-80
.OC-31
. 1 224
. 3161
.3323
.352.2
. 379 2
. 39 6 5
.4253
.4543
.4714
. 478 5
. 49 38
. 509 0
. 5151
. 52.73
. 5407
. 5658
. 5768
. -59 53
. 6124
. 6353
. 6 58 6
. 6750
. 6851
. 69 48
.7103
.72.59
.741 5
.7590
. 7 69 6
. 7844
.8063
.889 9
.8520
.8651
.8763
.8982
.9116
.9206
.9389
.9539
.9731
. y j b«
1.0096
1.0192.
1. 0329
2.00-
200-
200-
£00-
200-
200-
200-
200-
200-
200-
200-
200-
200-
2.00-
200-
200-
200-
200-
200-
2.00-
200-
2.00-
200-
200-
200-
200-
200-
12.0
120
120
120
12.0
12.0
120
120
12.0
120
120
120
120
120
120
12.0
120
120
120
12.0
120
12.0
120
12.0
120
120
120
200- 120
200-
200-
£00-
2.00-
200-
120
12.0
120
120
120
200- 120
200-
200-
£00-
200-
£00-
£00-
poe-
200-
£00-
200-
£00-
£00-
120
120
120
120
120
120
120
120
120
1 fc'O
120
1£0
•
•
•
•
•
.
.
1.
1.
1.
1.
1.
1.
2.
2.
2.
2.
2.
2 .
3.
3.
3-
3.
3.
4.
4.
4.
4.
4.
4.
5.
5.
5.
5.
5.
b.
6.
6.
6.
6.
6.
6.
7.
7.
7.
7.
1422
2848
2 62 1
4018
5534
7095
8773
0425
208 5
3624
5636
7441
9 191
1086
2.8 65
4628
6330
8155
9870
1608
3373
5090
6807
8 553
029 5
2010
3748
5488
7212
8966
0698
2385
4115
5846
7560
9319
1072
£780
4600
6305
8050
9 78 6
1 543
3fi'. 6
5041
6793
500-200
500-200
500-2.00
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-£00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-SOO
500-POO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
*
•
•
1.
1.
1.
2.
2.
2.
2774
5674
8 661
1 718
4780
7706
0610
3431
6257
£.9 108
3.
3.
3.
4.
4.
4.
4.
5.
5.
5.
6.
6.
6.
6.
7.
7.
7.
7.
8.
8.
a.
9.
9.
9.
9.
10.
10.
10.
1 1.
11.
1 1.
12.
12.
12,.
1?.
13.
191 7
4710
7561
0365
3POO
60 42
8910
1 738
4574
7352
0149
3007
5813
8679
1465
4310
7104
999 7
2830
5671
a 551
1382.
4248
7122.
9998
2857
5708
8 588
141 7
429£
.7191
0062
2891-
57 W
8613
146W
ai
10M
15M
£GK
25M
30M
35M
40M
45M
50 M
55M
60M
65M
70M
75M
8 ox;
S5M
90M
9 5>1
100M
10 EM
11 CM
11 EM
1£OM
125.VJ
130M
135M
140M
145M
1 50 M
1 S5M
1 60M
16 EM
1 70iM
1 7EM
180M
18 S-1
19 OM
19 5M
200M
205M
•< 10M
2 1 5M
2.2.0M
2.2 EM
230M
                                      126

-------
1972 NPV STATION  77 PA  JO***/! AVG  5  DIMM 14/1 M SUEJP j 70 M
     MEAN VALUE 0F KhOHLFS OVlh  5M
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1972 NBV
1- 3
4- 6
7- 9
10-12
13-15
1 6- 18
19-21
22-24
25-27
28-30
31-33
34-36
37-39
40-42
43-45
46-48
49-51
52- 54
55-57
58- 60
61-63
64-66
67-69
70-72
73-75
76-78
79-81
82-84
STATION 78
MEAN VALUE 0>
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 7
8-14
15-21
22-28
29-35
36-42
43-49
50- 56
57- 63
64-70
120-80
120-80
120-80
120-80
120-.80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-BO
120-80
120-80
120-8.0
120-80
1 20-80
12.0-80
120-60
1. 6363
2.4774
3.7617
4. 6335
4. 68 52
4. 6648
4. 6694
4.707 1
4.7449
4.7712
4.7998
4.82,28
4.8450
4.8649
4.8906
4.9 164
4.9376
4.9524
4.9704
4.9813
5.0046
5.0348
5.0588
5.0774
5. 09 0 5
5. 1 1 54
5. 1384
5. 1 550
PA 10** 4 AVG 5
H-.OHL
120-80
120-80
1.20-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
KS 0V1.1-. 5M
. 3595
.831 1
1. 5551
3. 3663
4.0532.
4.2313
4. 5809
5.0347
5. 3143
5.4653
200-120'
200-120
2.00- 120
200- 120
200- 20
200- 20
200- 20
200- 20
200- 20
200- 20
200- 20
200- 20
200- 20
200-120
2.00-120
200- 120
200- 120
200-120'
200-120
200-120
200-120
200-120
200-120
200- 120
200- 120
200- 120
200- 120
200-120
PJMH 53
IN1EHVAL
200- 120
200- 120
200- 120
200- 120
200-120
200-120
200-120
200- 120
2.00- 120
200-120
-.3044
-1. 1408
-2.2903
-3. 1335
-3.0758
-2.8941
-2. 71 54
-2. 5410
-2. 3718
-2. 1947
-2.01 12
- 1.8190
- 1. ei 70
- 1.41 57
-1.2106
- 1.0047
-. 7923
-. 5841
-.3762
-. 1 61 5
.0434
.2435
.4488
. 6614
.8712.
1 . 0 79 5
1. 2857
1 . 49 3 1
M tVkSEf
c.
-.5584
- 1 . 3389
-2.0*02
-3. 4425
-3. 7056
-3.9088
-4. 1312
-4.-4£4<.>
-4. 6019
-4. 5997
5'00-200
500-200
500-200
500-200
500-20.0
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- EDO
500-200
500-2.00
500-200
500-200
500-200
500-200
500-200
500-200
67 M

500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
-. 598 5
- . 59 4 1
- . 59 28
-. 59 51
-. 6146
- . 6408
-. 6708
-. 7009
-. 7334
-. 7624
- . 79 1 3
-.8 19 6
- . d 48 5
-.8 761
-.9042
-.9301
-.9 600
-.991 1
-1.0221
-1.0534
- 1 . 0830
-1. 1 128
- 1. 1441
- 1 . 1 74 1
- 1. 2054
- 1 . 2 38 2
-1.2.710
- 1. 3018


-. 1004
- . 0 49 1
. 0 1 39
. 0755
.1226
. 1 665
. 2100
. 2499
. 29 2 5
. 3358
EM
10M
1 EM
2 CM
2 EM
30C1
35M
40M
4 EM
50M
5 EM
60M
6 EM
70M
7 EM
BOM
8 EM
90M
9 EM
10 DM
IDEM
1 10M
1 1 5M
12.0M-
12 EM
130K
13 EM
MOM


EM
10.M
1 EM
20.Y
25M
30M
3 EM
40M
4E«
50 M
1972=>J0V STATI0M  79 PA 10»»4 AVF 5 DFP1H  25 M SVJFEP  30 M
     HE AM VALUE  OF I-H0HLHS  0VEK 5M IMlihVALS
CH
CH
CH
CH
CH
1-16
17-32
33-48
49-64
65-80
12.0-80
120-80
120-80
120-80
120-80
. 09 66
. 1930
-. 0654
. 09 56
1 . 1 2.8 5
200-120
200- 120
200- 120
200-12.0
200- 120
-. 5368
. 7284
.0359
-. 0663
-.9235
500-200
.500-200
500-200
500-200
500-200
.0716
. 1 0 62
. 1 3 74
. 1790
. 2068
5M
10M
1 5>i
20«
2 EM
                                    127

-------
1972 XBV STA.TI0M 83  PA 10** 4 AVG  5 DBFTH
     MEAM V/iLUE: Of phSXILFS  OVif.  5M
         120 M  Sfc'E:EF  140
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-18
13-15
16- 18
19-21
£8-84
85-87
88-30
31-33
34-36
37-39
40-42
4.3- 4 5
46-48
49-51
58- 54
55- 57
58-60
61- 63
64-66
67-69
70-78
18.0-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
180-80
1 8.0- 8 0
180-80
180-80
120-KO
120-80
120-80
180-80
1*0-80
120-80
.8449
.4570
.371 1
.4787
. 678 6
.8766
1. 1005
1. 3887
1. 5700
1.7407
1 . 9 58 0
2. 1657
8 . 39 3 1
8. 608.5
2.8168
3. 0210
3. 8894
3. 4538
3. 6557
3.8686
4. 1 133
4.3425
4. 5583
4.7783
£00- 120
800- 180
£00- 120
800- 120
800- 180
800- 180
800- 120
800-120
800- 180
800- 180
800- 120
8.00- 180
£00- 80
8.00- 20
800- 8D
200- £0
200- 2.0
8.00- 80
800- 180
£00- 180
8:00- 180
200- 120
200-120
£00-120
-.1880
-.3430
-.5158
-.7128
- .9139
- . 1070
- .3188
- . 5398
- .7781
- .9694
-2. £051
-8. -4-303
-8. 6693
-8.8940
- 3. 1 864
-3. 3424
-3. 5538
-3.7 709
-3.9775
- 4 . 1 8 28
-4. 4133
- 4. 62 60
-4.8844
-.5.02.72
500-800
50'0-800
500-200
500-800
500-800
500-800
500-800
500-800
500-200
500-200
500-200
500-200
500-800
500-800
500-8,00
500-200
500-200
500-200
500-800
500-200
500-200
500-200
500-800
500-800
.08 56
. 1894
.3110
.4485
. 5760
. 69 75
.8 103
.9201
1. 02.73
1-1357
1. 8413
1. 3476
1. 4543
1 . 5 60 4
1 . 6 68.8
1. 7657
1 . 8 68 2
1 . 9 730
£.0777
2. 18 50
8. 2906
2. 39 65
2. 5083
£.. £-084
EM
10M
1 EM
f OM
8 EM
3 OX
3.EW
40M
45M
50M
55M
60M
65M
70M
75M
BOM
8 5M
9 CM
9 EM
100M
105M
1 1 OM
1 1 5M
1£OM
128

-------
1972 S0V  STATI3N 85 PA  10*« A AVF
     MEAN  VMA'F 01-  PF.0HLFS  OVH-.
               5 TEP1H  188 M
                                     198  M
1972
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- P
3- 4
b- 6
7- 8
9- 10
1 1-1P
13-14
15-16
17-18
19- PO
Pl-PP
P.3-P4
P5-P6
P.7-PB
£9-30
31-3P.
33-34
35-36
37-38
39-40'
41- 4P
43-44
45-46
47 - 48
49-50
51- 5P
53- 54
55-56
57 - 58
59-60
61-6!?
63- 64
65-66
67-68
69-70
7 1-7 P
73-74
1PO-80
1PO-80
1PO-80
1PO-80
1 PO-80
1P.O-80
1PO-80
1PO-80
1PO-80
1P.O-8G
1 P.0-80
1PO-80
IPO- 80
1PO-80
1PO-80
IPO- 80
IPO- 80
IPO-BO
1P.O-80
l£0-8 0
1PO-80
1PO-80
IPO- 80
IPO- 80
1PO-80
1PO-.80
1P.O-80
IPO- 80
1PO-80
IPO- 80
1PO-8G
IPO-BO
1PO-80
1PO-UO
lpp-80
1£'C-80
1PG-80
"* •
-.
™ •
P49P
P83P
P449
P OO-
PO 0-
£00-
1PO
IPO
1P,0
-. £458 200-1?0

— •
m, ^
" •
* •
""• *
.
•
•
.
•
•
.
.
•
•
•
•
,
•
*
.
•
•
•
•
.
•
.
•
•
1.
1.
P05P
1684
1£65
0904
0538
0169
0 189
0540
0695
IP 09
1567
1898
PP1 1
P540
PS 34
3P30
3643
3955
51 19
559 1
6009
6404
6770
7165
7464
7886
8P70
8731
9095
9319
9705
OOPO
040P
POO-
£00-
£00-
POO-
£00-
200-
POO-
£00-
POO-
ISO
1£0
IPO
IPO
180
IPO
IfeO
IPO
IPO
POO- IPO
P.OQ-
£00-
£00-
P.OO-
£00-
£00-
POO-
POO-
P. OO-
PO 0-
£.00-
POO-
£00-
£00-
P OO-
PO 0-
£ OO-
PO 0-
POO-
POO-
SOO-
£.00-
£00-
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
1P.O
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
1£.G
•
•
•
1.
1.
1.
1 .
1.
p.
p.
p.
p.
3.
3.
3.
3.
4.
4.
4.
4.
5.
5.
5.
5.
6.
6.
6.
6.
7.
7.
7.
7.
8.
8.
8.
eU
9.
I 69 P
5P8 5
7787
OP44
P517
4797
69 9 P
9 16T
14P5
3781
61 78
8 (. 48
1 1 19
3666
61 6P
8 69 4
IP 19
37P3
6P.8 P.
8 788
1 P9 4
38 3 P
553 P.
79 CO
04P4
P894
53bl
78 51
0340
P«33
5314
7775
OPP3 '
P.8 53
54 0_1
7988
0468
500-POO
500-POO
500-POO
500-POO
500-POO
500-EOO
500-POO
500-POO
500-POO
500- PGO
500- POO
500- POC
500-POO
500-POO
500-POO
500-POO
500-POO
50G-POO
500- POO
500-POO
500-POO
500-POO
500-POO
500-POO
500-POO
500- POD
500-POO
500-POO
500-POO
500-POO
500- POO
500-POO
500-P.GO
50G-POO
50-0- POO
500-POO
500- £00
.3568
. 718 5
1 . 08 76
1. 468 P
1.8410
£.£000
P. 5550
P. 9 08 4
3. P 6PO
3. 61P9
3.9 613
4. 3 IP. 5
.-a. 6633
5. 0 1 40
5. 3 6 7£
5. 71 67
6. G 708
6. 419 6
6. 7735
7. 1 P 5P
7. 4799
7. 83P8
8. 18 77
8. 541 5
8.89 77
9 . P 50 1
9. 60 3P
9.95 54
10. 3047
10. 6576
1 1. 009 7
11.3 6P8
1 1. 718 6
IP. 0734
IP. 430 7
IP. 7U9 6
13. 147P
5M
10M
1 bXl
POM
PbM
30M
35M
40M
4SM
50 M
55M
C-OM
6bX>
70«
75M
8 CM
8 5^
9 (IK
9 5M
10 OK
10 a»i
11 DM
11 5M
IP OK
1P5M
130M
13 bM
14 OH
1 4 M
1 50M
1 5bM
1 COM
1 GSM
1 70H
1 7S-!
18GM
18 SK
PP.  10a*4 AVF
                 0?
5 CIPTH  68 M ,S
5M 1MTIKVALS
                                                          80 M
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7- IP
13-18
19- P4
P5-30
31-36
37-4P
43-48
49 - 54
55- 60
61-66
67-7 P
73-78
1PO-80
1PO-80
1PO-60
P.0-80
PO-80
PO-80
PO-80
PO-80
PO-ciO
PO-80
P.0-80
PO-80
PO-80
•
•
1.
1,
1.
1.
•
•" •
- 1.
-£.
-'3.
-3.
-4.
09 4 6
87PO
5918
78 P. 6
8959
P547
3643
49 63
3 £39
1477
0031
8611
1 1 PP
POO-
£00-
'?.g.o-
POO-
£00-
POO-
£00-
P.OO-
£00-
£00-
POO-
POO-
POO-
1PO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
IPO
~ •
-p.
-3.
-4.
-5.
- 5.
- 5.
-4.
-4.
-4.
-4.
-4.
-4.
74 PI
18 PI
588P
4446
£01 7
P3P1
0345
8367
69 0 6
5 6P 1
4009
P409
0845
500- P.OO
500-POO
500-POO
500- £00
500-POO
500-POO
500-POO
500-POO
500-POO
500-POO
500- PGO
500-POO
500-POO
.0066
.0404
.08 K>
. 1 P9 £
. 1 599
. 18 58
. P1P3
. P 3 53
. £ 7P8
. P9 48
.31&6
. 34PO
. 3 638
bM
10M
1 SM
PGM
P. 5M
3 DM
35X
40M
45M
50 M
5K1
COM
65.X
                                       129

-------
 1972M0v -STATION 00 FA 10** 4  AVG 5 DEPTH 24 M  S'.v'EEP 30 M
     MFAX1  VALUE 0F PROFILES SVEr. M INTERVALS
1972
CH
CH
CH
CH
N0V
1-£0
£1-40
41-60
61-80
STATI 0M
MEAM VALUE
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
M0V
MI-AM
CH
CH
CH
CH
CH
CH
CH
1- 5
6-10
11-15
16-80
2S-S5
8.6-30
31-35
.36-40
41-45
46-50
51-55
56- 60
61-65
STATI m
VALUE
1-18
13-24
85-36
37- 48
49-60
61-78:
73-84
120-80 .
180-80 -.
120-80 -.
120-30 -1.
9£ PA 10*«4
0978
5087
4780
0150
AVG 5
OF PhfJKILES 0VE1-. 5M
180-80
180-80
120-SO
180-80
12,0-80
120-8-0
180-80
120-80
180-80
180-80
180-80
180-80
120-80
94 PA 10»s
OF 'pl-.0M.LES
180-80
80-80
80-80 -
2.0-80 -
8<)-80 -
£0-80 -
80-80 -
1.
2.
3079
8920
£.9327
1.
t
£.
3.
4.
4.
4.
4.
4.
4.
4
939 6
9 189
7873
7091
1 4 64
8989
4190
6177
7017
68 6£
AVE 5
0V I's: 5M
..
8660
-.8184
1.
a.
3.
4.
5.
6567
5243
3878
861 5
1381
£00-
£00-
200-
£00-
BFP1H
120
12.0
120 -
120 -
67 M
-. 7552
-.8043
1. 6714
1.9675
S KEEP"
500-200
500-800
500-800
500-200
100 M
.4106
.7112
1.0245
1.3384

5M
10K

INTERVALS
£00-
£.00-
2.00-
£00-
200-
200-
200-
£00-
800-
800-
800-
8.00-
200-
D1P-1H
180 -
120 -
180 -
120 -
120 -
180 -
120 -
ISO -
120 -
120 -
180 -
180 -
120 -
39 M
1. 58 63
3.034£
8..S930
£.8501
£.8353
4. 5669
5. 48 65
5.8055
5.S803
5.8360
5.9308
5.9048
5.7151
SWEEP
500-8.00
500-800
500-200
500-800
500-200
500-800
500-800
500-800
500- 800
500-200
500-200
500-200
500-200
45 M
.039 7
. 1028
. 1829
. £63 7
. 3375
. 4005
. 4 5 74
.5181
. 5C93
. 6831
.6808
. 7498
.8056

EM
1 OM
1 EW
20M
25>i
30->i
35M
4C:-3
45M
50M
5S-5
60M
6 EM

IMTEhVALS
200-
800-
200-
200-
200-
200-
200-
120 •
120 -•
120 •
18.0
120 •
ISO •
120
-. 3438
-. 5138
-. 4034
- . 8 68 8
-. 1374
-.0016
. J407
500-200
500-800
500-200
500-200
500-800
500-800
500-800
. 0 63 6
. 1 547
. 8 60 5
. 3 60 5
. 44 78
. 5308
. 6188
EM
10M
1 5M
£OM
8S-1
30M
35M
1972  N0v STATICM 95  PA  io»*4 AVF  5  TEPIH 33 M SUHP  40  M
     MFA.\i VALUE OK PhCHLES 0VEI-.  5M  IMIli-lALi
CH
CH
CH
CH
CH
CH
1- 13
1 4- 8 6
87-3-J
40- 52
53-65
66-78
180-80
18.0-80
180-80
180-80
180-80
120-80
.0970
.8793
. 3669
-.0180
.0306
- 1 . 39 1 2
8:00-
800-
800-
800-
800-
£00-
180
180
180
18.0
180
180

.
- 1
- 1
- 1
-
.4064
.9041
. 1 571
. 1 618
. 08 58
.961 1
500-800
500-800
500-800
500-800
500-800
500-800
- . 1 4 59
- • 1 58 5
- . 1 568
- . 1 556
- . 1 6 53
- . 1 78 0
EM

1 M
80M
85M
30M
                                     130

-------
1972 MOV STATION 9 6 FA 10*»4 AVE 5 DEPTH  35 M S^EEP  42 M
     MEAN  VALUE 0F FK0FILES 0VER 5M I NT Eh VALE
CH
CH
CH
CH
CH
CH
CH
1-11
18-22
£3-33
34-44
45-55
56-66
67-77
ISO- 80
1 SO-SO
180-80
180-80
1SO-80
180-80
1EO-80
. 1 £8 7
.2557
-.SI 19
.3618
.SO 65
- . 37 5S
- 1. 1883
                                       EDO-ISO   -.9014    500-£00    .1135   EM
                                       £00-180  - 1.6050    500-200    .£039  10M
                                       200-lSO  -1.7887    500-800    . £888  1 EM
                                       £00-IRQ  -3.0630    500-SOO    .4095  20M
                                       200-ISO  -3.6681    500-200    .5231  S5M
                                       800-ISO  -3.8£71    500-SOO    .6305  30M
                                       £00-120-3.7676    500-SOO    .7357  35M
 1972
     N0V  STATI0N! 97 PA. 10** 4 AVG  5 DFf-TH £9 M  SVEEP 38 M
     ME'AM  VALUE. 0F PK0HLES OVER  bM IMUEVALS
CH
CH
CH
CH
CH
1-1 5
1 6- 3.0
31-45
46-60
61-75
1SO-80
180-80
l&O-tiO
180-80
180-80
- . 8 48 7
-.4876
-. 1704
.0706
. 1947
                                       £00-ISO   -.3898    500-800   .13S4    5M
                                       £00-180   -.8441    500-800   .8686   1 OM
                                       80CJ-180 -1.1566    500-800   .4173   1 hX
                                       800-180 -1.871W    500-800   .5616   EOM
                                       800-180 -1.£711    500-800   .7085   S EM
 1972 N 0V  STATI0N 98  PA 10** 4 AVE 5 DEPTH  30 M SWEEP  36 M
     MEAN  VAL'UE 0F PROFILES 0VEE SA INTERVAL'S
     CK    1-13      180-80  -.1633
     CH   14-86      120-80  -.7385
     CK   87-39      1£0-80 -1.4840
     CH   40-58      18.0-80 -S. 8039
     CH   53-65      180-80 -3.0533
     CH   66-78      18.0-80 -3.9841
800-180
800-180
8,00- 180
800- 120
800- 180
200- ISO
-.8041
-.9913
-.9897
-.9 156
-.7745
-.6180
500-800
500-8.00
500-800
500- £00
500-800
500-SOO
.0478
.0938
. 1 580
- 81 71
.8.718
.3836
S-J
1 OM
15M
8.0M
S.EM
30M
1972 N0V  STATI-0M 99 PA 10*»4 AVE 5 DEPTH 40 M
     MEAN  VALUE 0F PE0FILES 0 VER SM INTERVALS
                                                   SWEEP  54 M
CH
CH
CH
CH
CH
CH
CH
CH
1- 9
10-18
19-87
88-36
37-45
46- 54
55- 63
64-72
180-80
80-.8 0
180-80
80-80
£0-80
80-80
80-80
20-80
. 09 63-
. 1986
. 8.38 5
. 38 4S
.4798
. 1847
1. 1136
1 . 59 7 1
800-120
800-18.0
200- 18:0
800- 18.0
£00- 18.0
EDO- ISO
800- 180
son- iso
. 5061
- . £9 69
- 1 . 09 4 5
-1.9135
-8. 7857
-3. 1383
-4. 7888
-5.9861
500-800
500-800
500- POO
500-8.00
500- £00
500-800
500-800
500-SOO
. 3354
. 5441
. 7675
.9904
1. 1989
1.4036
1. 6077
1.8032
SM
10M
1 5M
80M
sai
30M
3 EM
40M
                                      131

-------
1972 >j 0v  5TATI0M  103 FA  10** 4 A.VF
    KFAM  VALUE OF  PK0HLFS 0VKH
                                        DtPlH  27 M  S'WfhF 29  M
     CH
     CH
     CH
     CH
     CH
          1-18
         19-36
         37 - 54
         55-72
         73-90
ISO-BO
ieo-80
1FO-80
ieo-80
120-80
.097E
. 19^11
. K> 09
.3870
.£619
soo- ieo
eoo- i£0
aoo-if.o
SOO-1P.O
?.00-1SO
.46P.9
.90S3
. 5S14
-. 1 b61
-. 7775
500-900
500- £00
bOO-P.OO
500-200
500-200
. 11 &9
. 31 60
. 5488
. 7782
-9 79 6
5M
10M
1 bM
£OX>
P. 5M
1972 °30V  STATION  105 PA 10**4 AVE  5 'LH-TH P.6 M S1*EH-  31 M
     MKAM  VALUF Sf  PROFILES  0Vtn 5M INTBhVALS
     CH
     CH
     CH
     CH
     CH
          1- It
        17-3P
        33-48
        49- 64
        f 5-80
ieo-8 o
i e.o- a o
120-80
1PO-80
120-80
.0977
- . 8 39 5
- . 6 59 t
-.7898
- 1. 34C5
£00- 120
P.OO-1PO
P.OO- 120
P.OO- 1P.O
P.OO- IPO
-.8351
-.0104
-.5077
- . 8 78 7
- .9 4 69
500-200
50.0-200
.500-200
500-fOO
500-200
. 1 19 E
. P 51 4
. 39 70
. b480
. 69 1 4
5M
10M
15M
f.o:-!
£5M
                                      132

-------
  1973FEB STA  1  PA 10»»4 AVG  5 DEPTH 33M  DEPTH 35M SCAN  50 M
      MEAN VALUE 0r PROFILES  OVER 5M INTERVALS
      CH
      CH
      CH
      CH
      CH
      CH
      CH
 1-10
11-20
81-30
31-40
41-50
51-60
61-70
120-so
ieo-80
120-80
120-80
180-80
120-80
120-80
. 1125
.8678
1. 1600
. 1962
. 6561
.9 536
1. 1588
£00-120
800- ISO
200-120
200-120
£00-120
200- 120
200-120
.2220
. 5775
.7082
1.0101
-.0086
- . 8 59-4
-1.5034
500-800
500-200
500-200
500-200
500-200
500-200
500-200
- . 30 60
- . 09 52
.1095
.3151
.5217
. 7301
. 9 39 0
EM
10M
1 EM
20M
2 EM
30M
3 EM
 1973
      STATia*J 3 FEB PA  10**4 AVE 5 DEPTH  15-M  DEPTH
      MEAM  VALUE 0F PROFILES 0VER 5M INTERVALS
                                              18  M SCAN 25 M
      CH    1-24
      CH   25-48
      CH   49-72
           120-80 -1.3841
           120-80 -3.0380
           120-80 -4.6428
         200-180    .5780    500-200  -.5970   EM
         200-120  -.0353    500-200  -.5342  10M
         200-120  -.7348    500-200  -.4740  1 EM
 1973
      FEB  STA  7  PA 10»*4 AVG  5 DEPPTH 16 DEPTH  24 M SCAN 35 M
      MEAN  VALUE 0F PROFILES  0VEH EM INTERVALS
      CH    1-17      120-80    .7373   200-120-1.2644   500-SOO   -.0314    EM
      CH   18-34      120-80   -.1422   200-120 -1.1144   500-200    .0248  1OM
      CH   35-51      120-80    .5749   200-120 -2.4339   500-200    .0 63 2  1 EM
      CH   5E-68      120-80    .8997   200-120 -3.5311   500-SOO    .1100  20M
1973
      FEB STATION  8 PA **4 AVE 5  DEPTH 15 M  DEPTH  65 M SWEEP  72 M
      MEAT,' VALUE 0F PR0FILES  OVER 5M INTERVALS
1973
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7-12
13-18
19-24
25-30
31-36
37-42
43-48
49-54
.55-60
61-66
67-72
73-78
12D-80
120-80
120-80
120-80
120-80
120-80
120-80'
120-80
120-80
120-80
120-80
120-80
120-80
.0982
. 7623
1 . 1 1 29
. 549 2
.0418
- . 3 578
-. 5799
-.7505
-.8398
-.8722
-.9014
-.9282
-.9562
200-120
200-120
200-120
200- 120
200- 120
SOO-1SO
200-120
200-120
200- ISO
200-120
200-120
200-120
200-120
-.088 6
-. 7466
-2.2914
-2. 5793
-2. 6226
-2. 5898
-2. 5678
-2. 5267
-2. 5099
- 2. 49 49
-2.4705
-2.4559
-2.4405
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500- 200
500-200
500-200
500-200
—
- .
- .
- .
- .
- .
- .
- .

-.
" *
-.
3443
3762
4043
4338
48 63
5141
5455
5667
6011
6337
6648
69 55
7239
EM
10M
1 EM
20M
2 EM
30M
3 EM
40M
4 EM
BOM
5 EM
60K
6 EM
      STATI0M  14  FEB PA 10** 4 AVE 5 DEPTH 10 M  DEPTH 14 M SWEEP  14  M
      MEAM VALUE  0F PROFILES 0VER 5M INTERVALS
      CH    1-50
      CH   51-**
          120-80
          120-80
.1038
.8514
200-120
200-120
 . 5431
1. 08 52
500-200  -.4788
500-200  -. 659 6
 5M
10M
                                     133

-------
 1973  STATION 19 FEE  PA 10**4 AVE  5 DEPTH 14 M  DEPTH 21.M  SWEEP 24 M
      MEAN VALUE 0F PROFILES 0VEH  5M INTERVALS
      CH    1-21
      CH   £2-4£
      CH   43- 63
      CH   64-84
120-60   -.5907   200-120   .5455
1SO-80    .0475   £00-120  1.0907
120-80    .5645   200-ISO  1.6347
120-80   1.2147   £00-120  2.1780
                    500-800 -1.2900    EM
                    500-200 -2.0821  10M
                    500-200 -2.0663  1 5C1
                    500-200 -2.0553  £OM
1973 ' jrEE STATION 20 PA  10*°4 AVE  5  DEPTH  18 DEPTH  S3 SWEEP 27
     MEAN  VALUE 0F PP.0EILES  0VER  5M  INTERVALS
     CH    1-£1
     CH   22-42
     CH   43- 63
     CH   64-84
120-80  -.7741
120-80 -1.1313
1EO-80 -1.2090
120-80 - 1.2169
200-120
200-120
200-120
200-ISO
1.5747
£>.. 19 7£
£. 5493
3. 0525
500-200
500-200
500-200
500-200
-.2452    EM
-.2476   10M
-.2470   ISM
-.£448   SOM
1973 STATIST £4 PA  10** 4 AVE 5 DEPTH  114 M DEPTH  123 M SVEEP  150 M
     MEAN VALUE 0F  PROFILES OVER  EM INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-12
13-15
16-18
19-21
28-24
25-27
28-30
31-33
34-36
37- 39
40-42
43-45
46-48
49-51
52-54
55-57
58 -"60
61-63
64- 66
67-69
70-72
120-80
120-80
120-80
1SO-80
120-80
120-80
120-80
120-80
1£0-80
120-80
180-60
120-80
120-80
120-80
120-80
120-80
180-80
120-80
180-80
120-80.
120-80
ISO- 80
120-80
120-80
.1785
. 3038
-. 601 1
-.7063
-.7110
-.7014
-.7001
- . 69 2 1
-. 6851
- . 69 0 6
-. 6894
- . 69 64
-.7053
-.7078
-.71 16
-.710E
- . 7£1 1
-.7234
-.7284
-.7387
-. 7429
-.7505
-.7536
-.7559
200- 120
£00-1£0
200-120
£00-120
200- 120
£00- 120
£00-12,0
£00-120
200- 120
200-120
2.00-120
200-120
£00-120
2.00-120
£00- 120
200-120
£00-1£0
£00-120
200- 120
£00- 120
200-120
£00-1£0
200-120
200- 120
-.2741
-.3126
-.3417
-.3112
-.3071
-.3031
-. 300E
-.2971
-.£971
- . 29 69
-. 2956
- . £9 1 6
-.288 6
-.2899
-.£902
- . £8 66
-.£836
- . 2.8 1 7
-.2787
-.2745
-.£738
-.£734
-.£739
-.£726
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500- £00
500- £00
500-200
500-£00
500-200
500-200
500- £00
500-fOO
500-200
500-200
500- £00
500-200
500-200
-.2559
- . S 60 6
-.2599
- . £ 60 6
-.£600
-.2619
-.2633
- . £ 63 5
-.2652
- . £ 63 £
-.£70£
-.271 7
- . £ 7£ 7
-.2752
-. S756
- r £ 74 7
-.£744
- . £ 7£ 5
-. £734
-,£7££
-. £70£
-.£668
- . 2. 644
- . £ 639
5M
10M
1 5M
£OM
£5M
30M
35M
40M
45M
50M
55.M
60M
6 EM
70M
75M
80M
8 5M
90M
9 EM
100M
10SM
11 CM
11 bM
i BOM

-------
 1973 FEB STATI0M  26 PA 10S»4 AVE 5 DEPTH 146 M  SCAN 175 M
      MEAM VALUE 0F PR0FILlrS  0VEK EM  INTERVALS
CH
CH
CM
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 8
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
21-22
23-24
£5- £6
£7- £.8
£9-30
31-3E
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47- 43
49-50
51- 52
53-54
55- 56
57-58
120-80
120-80
120-80
120-80
120-80
•120-80
120-80
1SO-80
120-80
1£0-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
-.2514
«.5£00
. 6059
. 6002
. 6071
. 60££
.6018
. 60 £9
. 5967
. 5936
. 5900-
.5931
. 5951
. 6008
. 5937
. 5962
. 5933
. 59 34
. 5909
. 5907
. 5904
. 5979
. 6000
. 5990
. 5973
.5975
. 5978
. 5946
. 5967
£00-1£0
£00- 120
200-120
200-120
£00- 120
200- 120
£00-1£0
£00- 120
£00-120
£00- 120
£00-120
£00-120
£00- 120
£00- 120
£00-120
200- 20
£.00- 20
£00- 20
£00- 20
£00- £0
200- 120
£00-120
200- 1£0
200- 120
£00-120
£00- 120
£00- 120
£00- 120
200-120
-1. 1803
-2.4454
- 2. 640.5
-2. 6300
-£. 6£53
-£. 6137
-2. 6056
-2. 59 69
-2. 5847
-S. 5761
- 2. 5638
-£. 5530
-2. 5461
-2. 5443
-2. 5334
-2. 5229
-2. 51 16
-2. 5041
-2.4905
-2. 4796
-2. 4 63 6
-2.4657
-2. 4559
-2. 4410
-2.4276
-£.41 73
-2.4105
- 2. 39 63
-£.3840
500-200
500-200
500- £00
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500- £00
500- £00
500-200
500-200
500-£00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
.0054
-.001£
-.0030
-. 0067
-.008 6
- . 0 1 60
-.0181
-.OS 51
-.0282
-.0373
-.04S6
-.0543
-.061 7
-.0700
-.0776
- . 08 7£
-.0981
-. 1062
-. 1 1 76
- . 1 £ 70
-. 141 5
-. 1 534
-. 1 676
-. 1 TO9
-.-19 53
-. £09 6
-.2231
-.2370
-.2,488
EM
10M
1 EM

£EM
30M
35M
40M
45M
50M
55M
60M
6EM
70M
75M
80M
8 EM
90M
9 5M
10 DM
105M
1 10M
1 1 5M
1 £OM
125M
1 30M
135M
140M
1 4S-J
1973 FEE STA  30  PA 10»»  4 AVG 5
                                          20 M DEPTH £4 M
     MEAN VALUE -0F PR0FILES 0VEJi  5t-I  IN1ET-.VALS
      CH   1-20
      CH  £1-40
      CH  41 - 60
      CH  61-80
120-80
120-80
120-80
120-80
. 6594
.9171
1. 1878
1.4397
£00- 120
200- 120
200-120
200-120
1.4782
£. 5723
3.4764
4.3405
500-200
500-200
500-200
500- &00
- . 629 0
-. 5389
-.451 7
- . 3 5£ 7
5M
10M
1 M
£OM
'1973  FEE  STA  31 PA  10*»4 AVG  5 DEPTH £8 M  DEPTH  29  M  SCAN  35 M
      MEAN!  VALUE 0E  PROFILES 0VER S4 INTERVALS
CH
CH
CH
CH
CH
CH
1- 14
1 5- 88
29 -48
43-56
57-70
71-84
120-80
120-80
120-80
120-80
120-80
120-80
. 098 5
. 19 69
.2951
.3930
.4907
.5883
£00-120
200- ISO
£00- 120
£00-120
£00-120
200- 120
. 5618
1 . 08 79
1 . 0 69 7
.£656
1.8102
3.0 £67
500-200
500-200
500-200
500-200
500-£00
500-200
-. 6616
- . 62 74
-. 5889
-. 5045
- . 40 70
-.2403
3-1
10M
1 5M
20M
£34
30M
                                       135

-------
1973'FEE STA 32  PA 10fi»4 AVG  5  DEPTH 171 M  DEPTH 180 M  SCAM  200 M
     MEAN VALUE  0F PK0 FILES 0VER  5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1973 - FEE
1- £
3- A
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
£1-22
£3-24
£5-86
27-28
£9-30
31-32
33- 34
35-36
37-38
39-40
41-42
43- 44
45-46
47-48
49 - 50
51- 52
53- 54
55-56
57-58
59-60
61-62
63- 64
65-66
67-63
69-70
71-72
STA 34
MEAN VALUE
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 4
5- 8
9-12
13-16
1 7- 20
21-24
£5-28
£9-32
33-36
37- 40
41-44
4 5- 48
49 -5£
53-56
57- 60
61- 64
65- 68
ISO-BO
1P.O-80
18,0-80
120-80
120-80
120-80
120-80
ISO- BO
180-80
120-80
120-80
180-80
120-80
120-80
180-80
180-80
120-80
120-80
120-80
180-80
180-80
120-80
120-80
20-80
20-80
20-80
20-80
80-80
180-80
120-80
120- SO
120-80
120-80
120-80
120-80
I SO- 80
PA 10°* 4
-.1686
- . 1 78 6
-.1938
-. 1962
-.1950
-.2001
-.2041
- . 2044
-.201 1
- . 2032
-. 1997
-. 1937
-. 1998
-.2013
-.1955
-. 1944
-. 1994
-. 2007
-. 2047
-.21 69
-.2181
-.2168
-.2230
-.2239
-.P. 160
- . 8 1 29
- - 2 1 7 6
-.2114
-.2088
-.2131
- . 208 1
-.2000
-.2017
-.2065
-. 1976
-.2007
P.OO- 120
£00- 120
200-120
£00- 120
200- 120
200-120
200-180
200- 120
200-180
200-120
200- 120
200-180
800-120
£00- 120
200- 1£0
200-120
200- 12.0
200- 120
£00- 120
200- 1 20
200- 120
200- 120
200- 120
200-120
£00- ISO
200- 120
POO- ) SO
200-120
£00- 120
2.00- 120
200- 120
200- 120
•200- 120
200- 120
200-120
200- 120
. 5542
. 5742
. 5824
.5808
.5787
.5785
. 581 5
. 5736
. 5622
. 5567
. 5475
. 5350
. 529 5
. 5248
. 51 18
. 5004
. 49 57 ,
. 48 64
.4792
.4796
.4755
.4625
.4600
.4528
. 43 67
.4264
./.'?. 19
.4079
. 39 4 5
. 39 0 1
.3774
. 3 5 63
.3505
.3465
.3305
.3246
AVG 5 DEPTH 85 DEPTH 88 M
0F PP0 FILES 0VER 5M
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-60
120-80
120-80
120-80
120-80
. 09 54
. 6751
. 1 28 3
.0605
-.0412
-.1193
- . 09 50
-.0892
-.1011
-. 1032
- . 1 08 4
-. 1049
-.1006
-.1135
- . 1 1 57
-.1216
-. 1272
INTERVALS
200-120
200- 120
200-120 -
200- 120 -
200- 120 -
200- 120 -
200-120 -
200- 120 -
200-120 -
200-120 -
£00-120 -
£00-120 -
200-120 -
200- 120 -
200- 120 -
200- 1£0 -
200- 1£0 -

-. 1242
-.9 629
1 . 08 29
1.0558
1 . 0 649
1.0766
1.0952
1.1012
1.0904
1.0875
1.0871
1 . 09 64
1 . 09 54
1 . 0 744
1 . 0 744
1.0743
1.0844
500- 200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2,00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
SCAN 125

500-200
500- COO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500- £00
-. 1864
-.07)7
.0258
. 1310
.2379
.3437
.448 6
. 5563
. 6635
. 766 6
.8740
.9 "58 6
1.0819
1. 1843
1.2884
1 . 39 2 5
1. 4957
1. 598S
1. 7026
1.8055
1.9099
2.0149
2. 118£
2. £204
2. 3244
f:. 42 65
2. 5300
2. 6312
2. 7331
£.8333
£.9337
3. 0343
3. 1348
3. £342
3. 3311
3- 4294
M

- . 1 1 5£
-.0080
.09 73
. 19 £7
.29 69
. 40£7
. 509 4
. 6141
. 71 62
.82.35
.9 £91
1. 0270
1 . 1 £9 3
1.2361
1.3389
1.4440
1. 5450
EM
10«
15M
20M
£5M
30M
35M
40M
45M
50M
5 EM
60M
65M
70M
75M
80M
8 EM
9 Oi'j
9 EM
1 0 OM
10 SI
1 10M
1 1 5M
1 20M
125M
130M
1 3 5M
140M
145M
1 50*
1 5 EM
1 60H
1 65M
1 70M
175M
180M


•EM
10M
1 5M
BOM
8 EM
30M
35M
40M
4 EM
50M
5 EM
60M
631
70M
7S'!
80M
8S-1
                                    136

-------
 1973  FIE STA 35 PA  10»*4 AVG  5 PBPTH 18 M  DFPTH
      MEAN VALUE: 0F  PP.0HLES 3VER 5M INTEKVALS
                                1 0 M SCAN  2 5 M
      CH   1 - 81
      CH  28-48
      CH  43-63
180-80    .1115
180-80    .2283
180-80    .3329
800-ISO    .5798
£00-120   -.0810
800-180   -.9458
SCO-POO  -.8430   EW
500-800 - 1.0417  10M
500-200  -.9306  1 b>i
1973'FHB  STA  48 PA 10**4  AVG 5 DEPTH  15 M DEPTH  89  M
     MEAN  VALUE OF PK0HILES 0VEH  5M INTERVALS
CH
CH
CK
CH
CH
1-16
17-.3E
33-48
49-64
65-80
180-80
18.0-80
180-80
120-80
180-80
.1081
.8041
.3060
.4030
.3497
800- 180
200- 180
200-1BO
200- ISO
soo- ieo
. 6368
1.8714
1.9058
8. 5398
3. 6953
                                                          500-800 -1. 1 758    S«i
                                                          500-200 - 1. 1877   10M
                                                          500-800 - 1. 1843   1 5M
                                                          500-SOO - 1. 18 61   80M
                                                          500-800 -1. 1883   S5M
1973  FEE  STATION 44 PA  10»«4 AVG  5  DEPTH L74 M DEPTH  189 M SCAN 800  M
     MEAN  VALUE 0F PROFILES 0VER  5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 8
3- 4
5- 6
7- 8
9- 10
11-18
13-14
IS- 16
17-18
19- SO
81-82
83- 84
85-86
87-28
89-30
31-32
-33-34
35-36
37-38
39-40
41-48
43- 44
45-46
47- 48
49-50
51-52
53-54
55-56
57-58
59-60
61-68
63- 64
65-66
67- 68
69-70
71-72
73-74
120-80 .8657
180-80 1.4498
120-80 1.7975
180-80 1.8102.
180-80 1.79S1
180-80 1.7988
180-80 1.7953
120-80 1.78£S
120-80 1.7760
180-80 1.7662
120-80 1.7568
180-80 1.7448
120-80 1.7361
180-80 1 ..73-12
180-80 1*7851
120-80 1.7158
180-80 1.6997
120-80 1.6901
120-80 1.6805
180-80 1.6736
180-80 1.6666
180-80 1.6563
1 80-8 0
180-80
18/1-80
180-80
180-80
180-80
180-80
120-80
180-80
120-80
180-80
180-80
120-80
120-80
180-80
. 6480
. 6389
.6288
.6185
.6106
.6011
. 59 78
.5903
. 5887
.5781
.5608
. 5517
. 5432
.5386
. 5893
800-180
200- 180
200- 180
£00- 120
800- 180
800-180
200- 120
200- 180
200- 180
800- 120
800- 120
200- 180
800-180
200- ISO
800- ISO
800- 120
200-120
800- 18,0
800-180
800- 120
800- 180
800-180
200-180
800-180
200-180
800- 180
800- 180
200- 180
200-180
800- 120'
800-180
800- 120
800- 180
800- 180
200-180
800-180
800- 180
-.8411
- 1.9877
-8.3305
-2.3875
-2.3139
- 8. 30 61
-8.2983
-8. 88 6E
-8.8788
-8. 8673
-8.2594
- 8. 849 1
-8.8386
-8. 2305
-8. 2199
-2.81 10
-8. 199 1
-2. 1876
-£. 1756
- 8. 1 658
-2. 1 564
-8. 1466
-2. 1333
-2. 1216
-8. 1 124
-8. 1018
- 8. 09 1 4
-8.0804
-8. 0738
- 2. 0 678
-2. 0569
-8.0439
-8.0314
-8.0806
-2.0098
-2.0083
-1.9931
500-200
500-200
500-800
500-800
500-800
500-200
500-200
500-800
500-200
500-800
500-800
500-800
500-200
500-200
500-200
500-800
500-800
500-800
500-200
500-800
500-200
500-200
500-200
500-800
500-800
500-800
500-800
500-800
500-800
500-800
500-800
500-200
500-200
500-800
500-800'
500-800
500-800
-. 1005
-. 1018
--1051
-. 1088
-.1113
- . 1 1 50
-. 1803
-.1266
-. 1331
-.1401
-.1456
-.1511
-. 1 578
-. 1 645
- . 1 78 7
-. 1814
-. 1895
-. 1993
-.8.083
-.818 7
-. 8282
-.£388
-.2479
-.859 5
- . 8. 70 7
- . 2 79 5
- . 29 1 8
-- 301 7
-.3127
- . 3820
-.3893
-.3373
-.3440
- . 3 50 7
-.3576
- . 3 68 5
-.3634
S<5
10M
1 5M
80M
25M
3 DM
35M
40M
45.M
50M
5 EM
6CM
6SM
70M
75M
80M
8 5M
90M
9 5M
10 CM
105M
1 1 OM
1 1 EM
120M
185M
13 CM
135M
1 40M
14H4
1 50H
153-1
1 60M
1 GEM
170M
1 7 bM
180;i
18 5M
                                    3L3T

-------
 1973 STATION  46 FEE PA  10«»4 AVE 5 DEPTH  120 DEPTH  130  SWEEP 180
     MEAN  VALUE OF PROFILES OVER 34 INTERVALS
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CK
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17- 18
19-20
Sl-fitt
23- £4
25-2.6
27-28
29-30
31-3E
33-34
35-36
37-38
39-40
41-42
43- 44
45-46
47-48
49-50
51-58
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
li'0-80
120-80
120-80
1SO-80
120-80
lgO-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
ISO- 80
.0404
.0345
.0299
.0305
.0246
.0183
.0106
.0081
. 0013
-.0062
-.0113
-.0191
-.0257
-.0336
-.0379
-.0441
-,0bl 6
-.0616
-.0657
-.0715
-.0763
-.0848
- . 09 49
-.0973
-. 1027
-. 1089
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
£00-
200-
eoo-
200-
200-
200-
200-
200-
200-
200-
SOO-
200-
200-
1SO
120
120
120
ISO
120
ieo
120
120
120
120
120
120
120
120
120
120
ISO
120
120
1£0
120
120
120
120
ISO
.2818
. 2 1 64
.2273
.2364
.2502
.2642
.2783
.2934
.3143
.3382
.3455
.3609
.3801
. 3976
.4105
.4267
.44££
.4592
.4730
. 488 6
.5036
. 5237
. 54£4
.5541
. 5710
. 5895
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-SOO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- SOD
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
-.4419
-.4403
-. 4465
-.4465
-.4558
-. 4540
-.4628
- . 4 63 1
-.4741
-. 4770
-. 4900
- . 49 48
- . 50 76
-.5126
-.5257
- . 53 1 4
-. 541 1
-. 5494
-.5613
-. 5699
-. 578 6
-. 58 71
-. 5984
-. 6088
- . 61 53
- . 62 60
5M
10M
15M
20M
25M
30M
35M
40M
45M
50 M
55>5
60H
65M
70M
75M
80M
8 5M
9 OK
9 W.
100M
105M
1 1 OM
1 1 SCI
120M
12H4
130M
1973 "KH3 STA  48  PA 10»*4 AVG  5 DEPTH 26 DEPTH  29 SVf.W 35
     MKAN  VALUE  OF PROFILES 0VER S-i INTERVALS
CH
CH
CH
CH
CH
CH
1-14
1 5- 28
S9-42
43-56
57-70
71-84
1$0-80
120-80
120-80
120-80
120-80
120-80
-.6173
. 3 1 28
.9339
.8715
.4674
.0103
20C-120
200- 120
SO 0- ISO
200-120
BOO- 120
200- ISO
1.2849
.9321
-.4614
1.0192
2.3054
3. 6965
500-200
500-200
500- £00
500-200
500-200
500-200
- . 8 62 5
- . 8 409
- .8226
- . 8 0 59
-. 7905
-. 7752
EM
10M
1 5M
20M
e'sM
30M
FEE STA  60 PPAMP 10*»4  AVG 5 DEPTH  12  DEPTH
MHAM VALUE 0F PROFILES  0VER 5M INTERVALS
                                                     12 M  SCAN  SO M
     CH   1-30
     CH  31-60
               120-80    .1107
               120-80  -.8597
200-120
200-120
. 5831
.9 655
500-200
500-200
1354
1448
 5M
10M
                                    138

-------
1973  FEE STA  62   PA 10**4 AVG  5  DEPTH  169  M DEPTH 18 5 M  SCAN  £50 M
     MEAN VALUE  0F PROFILES 0VEK 5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
11-12.
13-14
15-16
17- 18
19-20
£!-££
S3- £4
£ 5- £ 6
27-28
29-30
31-32
33-34
35-36
37- 38
39-40
41-42
43- 44
45-46
47-48
49-50
51-52
53-54
55-56
57-58
59- 60
61-62
63- 64
65-66
67-6-8
69-70
71-72
73-74
1973 STATION! 64
M EAN
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
VALUE
1- 3
4- 6
7- 9
10-12
13-15
1 6- 18

22-24
£5-27
2S-30
31-33
34-36
37-39
40-42
43- 4 5
46-48
49-51
52- 54
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-SO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
-
-
FEB PA 10"* 4
0K PROFILES
12.0-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80


1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.0170
. 044£
.0676
. 09 32
. 1S24
.1575
-1806
.2061
.2383
.2649
.2911
.3193
. 3432
.3725
.4000
.4269
.4542
.4774
. 5056
. 5320
. 561 1
. 5923
. 621 6
. 6446
. 6608
. 68 25
.7071
.7387
.7685
.7977
.8242
.8494
.8738
.9006
.9267
.9 520
.9760
AVE 5
OVER 5M
.8763
. 6036
. 39 65
.3559
. 3487
.3515
.3375
.3535
.3505
.3415
.3360
.3265
. 32.42
. 3175
.3113
.3081
.3038
.3036
200-
200-
£00-
200-
200-
£00-
£00-
200-
£00-
120 -
ISO
120
ISO
12.0
120
1£0
120
120
£00-120
200-
ISO
200-120
£00-
£00-
£00-
200-
£00-
£00-
2.00-
200-
200-
£00-
200-
200-
200-
200-
200-
200-
200-
£00-
2.00-
800-
200-
£00-
£00-
200-
200-
DEPTH
1£0
120
120
120
120
120
1£0
120
120
120
1£0
1£0
120
120
120
120
120
1£0
1EO
120
120
1£0
ISO
120
1£0
85 M
.0014
.0058
.0154
.0283
.033 7
.0534
.06£3
.0688
.0776
.0833
.088 7
. 09 56
. 1034
.1127
. 1 184
. 1E51
.1314
. 1377
.1459
. 1 51 1
. 1 545
. 1 6£ 6
. 1 69 5
.1783
.1706
. 1 740
.1776
. 1 79 4
. 1828
. 189 6
.1911
. 1963
.201 6
-205£
.2 1 29
.2158
. £ 1 79
DEPTH
500-200
500-200
500-200
500- £00
500-EOO
500-200
500-EOO
500-200
500-200
500-200
500-200
500- EOG
500-200
500-800
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
50C-EOO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-EOO
500-200
500-200
94 M SCAN
a
.
,
.
^
9
,
•
.
.
.
«
.
.
.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1 .
1.
1.
1.
1.
1.
2.
2.
2.
2.
£.
£.
2.
1 50
0651
1282
191E
£552
3213
3894
4549
5201
5864
6528
7201
7839
8491
91 64
9828
0502
1 149
1800
2454
3099
3740
4390
5036
5692
633 6
69 66
7606
8241
88 76
9 501
0131
0749
1378
2005
2 634
3249
3877
M
EM
10M
1 S'l
SOW
8 EM
30M
35M
40M
45M
50M
5 EM
60M
65M
70K
7 EM
80M
SEM
90M
95M
100M
1 0 S-5
1 10M
1 1 S-1
120M
1 £ EM
130M
13H-1
140M
1 4 S-l
1 50 M
1 55M
1 60M
1 65M
1 70M
1 7H-!
18 OM
18 S'l

INTERVALS
£00-
200-
200-
800-
£00-
200-
£00-
200-
£00-
£00-
200-
800-
800-
200-
200-
£00-
£00-
120 -
ISO -
120 -
120 -
120 -
120 -
120 -
120 -
120 -
12.0 -
120 -
120 -
120 -
120 -
120 -
1£0 -
120 -
200-120 -
. 4489
.7837
. 79 49
. 79 30
- 7886
• 788 4
. 7783
. 791 1
.7831
. 7 69 7
. 7642
. 7532
. 749 7
. 7435
. 7355
. 7£8 6
.7381
. 7349
500-200
500-200
500-KOO
500-EOO
500-EOO
500-EOO
500-200
500-200
500-200
500-200
500-200
500-800
500-200
500-200
500-200
500-EOO
500-200
500-EOO
.
.
.
.
.
.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
2.
£.
52.0 6
6192
7113
803£
8963
9950
0885
1 799
£731
3677
4618
5550
6530
7443
8373
9 £9 0
0216
1148
S-l
10M
15M
80M
2 EM
30M
3 EM
40M
4 EM
50M
5SM
COM
6 EM
70M
7 S-l
8 OM
85M
90M
                                    139

-------
1973 STATI 0M 66 FEE PA  10*»4 AVE 5 DEPTH  IP.  H  DEPTH £1 M  SWEEP £7 M
     MEAM  VALUE 0F PH0FILES 0VFK SI IMTEI-.VALS
CH
CH
CH
CH
1-19
£0-38
39-57
58-76
1973 STATI 0N 73
MEAN VALUE
CH
CH
CH
l-£4
£5-48
49-72
1973 STATI 0N 7 5
M EAM VAL UE
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 1
2- 2
3- 3
4- 4
5- 5
6- 6
7- 7
8- 8
9- 9
10-10
11-11
12- 12
13-13
1 4.- 1 4
15-15
16-16
17-17
18-18
19-19
20-20
£1-21
22-22
23-23
£4-24
25-25
26-26
£7-27
28-28
£9-29
30-30
31-31
32-32
33-33
34- 34
35-35
36-36
37-37
38-38
39-39
40-40
41-41
42-42
43-43
44-44
45-45
46-46
47- 47
48-48
1£0-80
12,0-80
120-80
120-80
i
•
1.
1£50
4456
£381
£.£753
FEE PA 10»*4
AVE 5
0F PKO FILES 0VEH S1
120-80
120-80
120-80
- . 1 60 6
** •
"" •
FEE PA 10**4
3956
0980
AVE 5
OF Pli0FILES 0VEK 5M
120-SO
120-80
1£0-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1SO-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-CO
120-80
ISO- 80
1EO-80
120-80
120-80
1£0-80
1£0-80
120-80
•
™ *
"• •
•" •
*• •
™ •
™ •
~ •
** •
"" •
•" •
m- ^
— •
~ •
- .
" 9
"* •
™ •
™ •
— •
*" •
™ •
— *
~ •
™ *
"" •
" •
— •
™ •
-1.
-1.
-1.
-1.
-1.
™" •
*• •
— *
~ *
"• »
~ ' •
— •
*• •
~ •
~ •
~ •
*• •
" •
-1.
0112
1174
3888
5040
5427
5638
5906
6086
6304
6496
6653
6874
7086
7298
7513
7710
7986
8195
8351
8564
8657
8848
8941
9023
9162
9328
9573
9783
9944
0130
0360
0571
0762
0975
1 197
1432
1675
186£
£089
2£67
2451
£657
£860
3076
3£69
3478
3653
3826
£00-
£00-
£00-
£00-
120
1EO
120
120
DEPTH 17
1.0223
1.2761
1.4655
2.0621
M DEPTH
500-200
500-200
500-200
500-200
18 M SWEEP
.
.
.
•
0826
09 58
1031
1116
5M
10M
1 5M
£OM
25 M
INTERVALS
£00-
£00-
£00-
DEPTH
120
120
l.£0
233
£.£960
1.8056
3.2243
M DEPTH
500-200
500-200
500-200

_ .
— .
£40 M SWEEP
3296
3192
31 1 1
£60 M
34
10M
1 5M

INTERVALS
200-
200-
£00-
£00-
£00-
200-
£00-
£00-
£00-
200-
200-
£00-
£00-
£00-
200-
200-
£00-
£00-
200-
£00-
£00"
200-
200-
£00-
£00-
200-
£00-
£00-
200-
£00-
£00-
£00-
200-
£00-
£00-
£00-
£00-
£00-
200-
£00-
£00-
£00-
£00-
200-
200-
200-
200-
200-
1£0
120
120
120
120
1£0
120
120
120
120
120
120
120
1£0
1£0
120
120
120
120
120
120
120
120
1£0
1£0
1£0
1£0
120
120
1£0
120
1£0
120
120
ISO
120
120
120
120
180
1£0
ISO
ISO
120
1£0
1£0
ISO
ISO
-. 101 6
- . 09 52
- . 09 0 2
- . 088 5
- . 08 52
-.0875
- . 08 63
- . 08 49
-.0889
-.089 5
-.0923
-.0955
- . 099 1
-. 1033
-. 1030
-. 109E
- . 1 0 59
-.1141
-. 1235
-. 1279
-.1471
-. 1 5£2
-.1614
-. 1673
-. 1744
- . 1 7 64
-. 1805
-. 1807
-. 1876
--.1935
-.£013
-.2058
-.2104
-.2146
- . 2 1 79
-.£££7
-.2272
-.£332
-.2387
-.£431
-.£473
-.£515
-.2559
-.2608
-.£630
-.2655
-.2728
-.2773
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-£00
500- £00
500-200
500-200
500- £00
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500^200
500-200
500-200
500-2'00
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500- £00
500-200
500-200
500- £00
500- 200
500-200
500-200
500-200
_ w
-.
- .
- .
— .
- .
- .
-.
- .
- .
-.
™ •
-.
-.
-.
-.
-.
- .
- .
-.
- .
-.
-.
- .
-.
-.
- .
— •
- .
-.
- .
- .
-.
-.
- .
-.
- .
- .
-.
-.
- .
- .
-.
. .
_.
- .
_.
-.
0133
0226
0339
0453
0524
0566
0623
0690
0749
079 7
08 64
0910
0940
039 7
1057
1111
1155
1135
1128
1 135
11 66
1 198
1£1£
1251
1278
133£
1360
139 5
1411
138 6
1384
139 5
1409
14£3
1443
1472
1494
1507
1528
1551
1565
1579
1563
1553
156£
156 7
1598
1614
5M
1 OM
15M
£OM
2 EM
30M
35>i
40M
43-1
50M
55M
60M
65M
70*
731
80M
8 5M
90M
9 5M
100M
IDS'!
110M
11 5M
1£OM
1S5M
130M
135M
140M
145M
1 50M
1 S5M
160M
1 65M
1 70M
1 75M
180M
18 5M
190M
19 5M
20 DM
205M
£1011
£1 EM
££OM
££5M
230M
23S"!
240M

-------
1973 STATION  77 FEB PA  10*«A-AVF  5  DEPTH 114 M DEPTH.1I7M SWEEP. 1 70  M
     MEAN  VALUE 0F PR0FILES OVER  5M          '
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
i- e
3- 4
5- 6
7- 8
9-10
11-12
13-14
15-16
17-18
19-20
21- SB
£3-24
£5-26
27-28
29-30
31-32
33-34
35-36
37- 38
39-40
41-42
43-4-4
45-46
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
1 20-8 0
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
-.0287
.6334
1.0943
1.0966
1. 1000
1.1023
1 . 09 0 5
1.0861
1.0769
1.0697
1.0632
1.0527
1.0281
1.0206
.9865
.9662
.9511
.9404
.9351
.9121
.8915
.8678
.8633
200-120 .2137
200-120 -»626S
200-120 -
200--120 -
200-120 -
200- 1£0 -
200- 20 -
200- £0- -
SCO- 20 -
200- SO -
200- 20 -
200-120 -
200-100 -
200-1SO -
200-120 -
200-120 -
£00- ISO -
200-120 -
200-120 -
200- lf,0 -
200-120 -
200-1SO -
200- ISO -
.2711
.3357
.3169
. 3 1 69
.3089
. 3028
.2899
. 28 3 6
.2872
.2903
.2909
.2876
.2902
.299 6
.3022
. 299 3
.2996
.3050
.3050
.2983
.E988
500-800
500-200
500-200
500- £00
500-200
500-200
500-200
500- SOO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
-.4932
-.4741
'-.4803
- . 48 39
- . 49 70
-.4966
- . 50 61
-.5065
-. 5137
-. 51 63
-. 5£ 39
- . 528 6
-. 5324
- . 53 53
-.5365
-. 5429
- . 54 54
-. 5510
-. 550S
-. 5561
- . 5542
-. 5620
-. 5592
31
10M
15M
20M
25M
30M
35W
40M
45M
50M
55M
60M
65M
70M
75M
80M
85M
90M
9 5M
100M
105M
110M
11 5M
1973 STATI0N 78 FEB PA  10*«4 AVE 5 DEPTH  53 M DEPTH  60 M  SWEEP 62 M
     MEAN  VALUE OF PR0FILES 0VEK EM INTERVALS
1973
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 8
9-16
17-24
25-32
33-40
41-48
49- 56
57-64
65-72
73-80
81-88
89-96
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
.
.
_ .

-1.
-1.
-2.
-g.
-2.
-2.
-2.
-2.
11 14
2226
1835
5899
3538
4856
1'0£5
3286
3058
3735
3784
3732
£00-
200-
£00-
£00-
200-
200-
800-
£00-
200-
200-
200-
200-
120
120
ISO
1P.O
120
ISO
120
ISO
120
ISO
120
120
"• »
- 1.
-2.
"* ?
-2.
6706
6379
1752
7118
8909
-2.88 57
-2.
-?..
-2.
-£.
-2.
-2.
8816
879 6
8701
8576
8424
8323
500-200
500-200
500-200
500-200
500-SOO
500-200
500-SOO
500- £00
500- £00
500-200
500- £00
500-200
. 3350
. 3489
.3570
. 3656
.3737
.3846
. 3943
.4031
. 4122
. 4191
.4256
-.2371
514
10M
1 51
20M
25M
30M
3 EM
40M
45M
50M
55M
60M
     FEE STA  79  PA 10s*4 AVG  5 DEPTH 20  DEPTH £0 SCAN 25
     MEAN VALUE 0F PROFILES 0VEH 5M IMTEEVALS
     CH    1-20
     CH  21-40
     CH  41-60
     CH  61-80
120-80    .4707
120-80    .3578
120-80 -1.3082
120-80 -£.8882
200-120--1.1038   500-200    .0150    91
200-160   -.5487   500-200    .0340  10M
200-120   -.0337   500-200    .0511  1 5M
£00-120    .6505   500-200    .0710  20M

-------
1973 STATION 83 FEE PA  10»* 4  AVE  5  DEPTH  99 M DEPTH 96 M SWEEP  130  M
     MEAN VALUE OF PE0FILES 0V EK 5M INTERVALS
1973
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH'
CH
CH
CH
CH
CH
CH
CH
CH
1- 3
4- 6
7- 9
10-18
13-15
16-16
19-S1
22- £4
£5-87
28-30
31-33
34-36
37-39
40- 42
43-45
46-48
49-51
52-54
55-57
STATI 0N 85
MEAN VALUE
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9.- 10
11-12
13-14
15-16
17-18
19-20
21-22
23-84
25-26
£7- 28
29-30
31-3E
33-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-58
53- 54
55-56
57-53
59-60
61-62
63- 64
65- (6
67-68
09-70
71-72
73-74
120-80
1SO-80
120-80
120-80
120-80
120-80
120-80
\ 20-80
180-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
. 78 63
1.1546
.3321
.3190
.3024
.8793
.2572
.2397
.2218
.1975
. 1851
. 1 667
. 1580
. 1983
. 1770
.1614
. 1442
1. 1230
1. 1025
FEE PA lb*»4 AVE
0F PR0 FILES 0VER
120-80
120-80
IE 0-80
120-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-30
120-80
120-80
120-80
120-BO
120-80
120-80
1 20-8 0
120-80
120-80
1BO-80
-.0046
-.0221
-.0379
-.0504
-.0702
- . 089 1
-. 1045
-. 1240
-.1418
-.1544
-.1695
-.1828
-. 1972
-.2126
-.2274
-.241 5
-.2543
-.2670
- . 88 4 6
-.3014
-.3142
-.3250
-.3451
-.36S5
-.3749
- . 39 09
-.4033
-.4188
-.4346
- . 449 1
-.4647
-.4771
-.4911
-.5043
- . 51 79
- . 5343
- . 548 5
£00-120
200- 1 20
200-120
200-120
200-120
200- 120
200-120
200-120
200-120
200-120
200- ISO
200-120
200- 120
200-120
200-120
200- 120
200- 1£0
200-120
£00-120
5 DEPTH 188
.3639
.2903
.1 645
.2855
.2902
.3573
.4856
. 4897
.5549
. 6244
. 6893
. 7578
.81 £8
.8145
.8800
.9425
1 . 00 62
1 . 0 63 4
1. 1301
M DEPTH
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
50C-200
500-200
500-200
-. 5240
-. 5934
-. 661 6
- . 73 1 6
-.7971
-.8633
-.9269
-.9933
-1. 0573
- 1. 1230
- .1867
- .2478
- . 3098
- .3784
- .4346
- . 49 63
- . 5577
- . ceo 4
-1. 6834
SM
10M
1EM
20M
£5M
30M
35M
40M
434
50M
55M
60M
6bM
70M
75M
80M
8 EM
90M
95M
186 M SWEEP £25 M
5M INTERVALS
200-120
200-120
200-120
200-120
200-120
200- 120
200-120
200- 120
200-120
200- 120
SOO-120
200-120
200- 120
£00-120
200-120
200- 120
200-120
£00-120
200-120
200-120
200-120
200- ISO
200- ISO
SO 0-1 80
200- 1 80
200-120
800- 1£0
200-120
200-120
200-180
200- 120
200- 1£0
£00-120
200-1 20
200- 120
£00-120
200- ISO
-.0275
-.0455
-.0602
-.0752
-.0870
-.0998
-.1191
-.1358
-.1537
-. 1735
-. 1937
-.8087
-.2299
- . 248 7
-.2672
-.2858
-.3053
-.3283
-.3483
-.3670
-.3898
-.4179
- . 438 5
-.4576
-.4787
-.5009
-.5207
- . 5409
-. 561 5
-.5811
- . 60 1 4
- . 6248
- . 648 5
-.6697
-.6874
-. 7087
- . 7£8 0
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-800
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500- £00
500- £00
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
-.0033
-.0100
-.0167
-.0208
-.0226
-.0240
- . 0243
-.0269
-.0290
-.0314
-.0319
-.0292
-.0265
- . 02 63
-. 0246
-.0235
-.0828
-.-0821
-.0216
-.0207
-.0200
-.0201
-.0192
-.01 79
-.01 74
-.01 59
- . 0 1 62
- . 0 1 54
-.0126
-.OlfcS
-.0114
-.0118
-.0143
-.01 65
-.0185
-.0181
-.0180
5M
10M
15M
20M
25M
30M
35M
40M
45M
50M
55M
60M
65M
70M
75M
80M
85M
90M
95M
100M
105M
1 10M
11 5M
120M
1 2 5M
130M
135M
140M
14. EM
1 50M
15SM
160M
1 6 EM
1 70M
1 75M
180M
18 5M

-------
1973-pEB STA  89  PA  10*»4 AVG 5  DEPTH  76 M   DEPTH?? M SCAN 80 M
     MEAN  VALUE 0F PH0FILES OVER 5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7- IS
13-18
19- £4
£5-30
31-36
37-42
43-48
49-54
55- 60
61-66
67- 7 £
73-78
79-8 4
85-90
120-80
1SO-80
180-80
iao-so
120-80
120-80
1SO-80
120-80
120-80
1SO-80
1SO-80
120-80
120-ao
120-80
120-80
.7308
1.42.88
1. 50E2
1 . 49 20
1 . 48 69
1 . 49 4 1
1 . 50 38
1 , 48 08
1 . 48 38
1.493S
1 . 489 1
1 . 4408
1.4345
1.4277
1.4351
200-120
£00-120
200- i £0
£00- 180
SOO-120
£00- 120
£00- 1£0
200- 1£0
£00-180
BOO- 1£0
20 0-1 SO
£00- ISO
£00-180
£00-120
£00-120
-.8955
- 1 . 49 1 7
-1.4980
-1.4435
- 1.4026
-1.4088
- 1.4183
- 1 . 40 1 £
-1.4036
-1.4117
- 1 . 4SO 7
- 1.431 7
- 1.4453
- 1.4556
-1.4695
500-200
500-200
500- £00
500- £00
500-200
500-200
500-200
500-200
500-200
500- £00
500- £00
500-200
500-200
500-200
500-200
-.0806
-.0845
-.0881
- . 089 7
-.0884
-.0834
-.0767
- . 0 709
- . 0 659
- . 0 6E 5
- . 0 61 6
-. 0621
-. 059 7
-.0575
-. 19£8
EM
10M
15M
£OM
£91
30>i
35M
40H
45M
50.M
55M
60 M
65M
70M
7 EM
1973 FEE STA  90 PA 10**4  AVG 5 DEPTH L3 DEPTH < SOUNDER)  £0 SC/W  £5
     MEA.M  VALUE 0F PR0FILES 0VER EM INTERVALS
     CH    1-20
     CH  £1-40
     CH  41-60
     CH  61-80
1£0-80  -.6544
1£0-80 -1.4540
120-80 -1. 6804
1£0-80 - 1.4496
200-1£0
£00-120
200-120
£00-IPO
1.6677
1. 60 5£
1.4637
 . 7840
500-£00
500-200
500-£00
500-200
 . 1 194    5M
 .0£9£   10M
-.0634   1 EM
-.1611   £OM
1973'FEE STA 9£ PRE AMP  10*4 AVG 5 DEPTH  67 M@DEPTH  86 M
     MEAM VALUE 0F PR0FILES 0VEH EM INTERVALS
                                          SCAM 100 M
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 5
6-10
11-15
16-20
21-S5
£6-30
31-35
36-40
41-45
46-50
51-55
56-60
61-65
66-70
71-75
76-80
8 1-8 5
120-80
1£G-80
1£0-80
1EO-80
120-80
l£0-8n
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
120-80
1£0-80
120-80
1.0658
£.09 £4
£.616£
4.4£86
5. 48 38
5.7512
5.8356
5.9 1 63
5.9479
5.9550
5.9536
5.9611
5.9678
5.9766
5.9901
5.9998
6.0088
£00-1£0
EDO- 120
£iOO-120
£00- 120
£00-120
£00-120
800- 1£0
£00- 1£0
200-120
200-120
£00-120
£00-120
£00- 120
£00- 1£0
£00- 1£0
£00- 1£0
£00-120
1. 5550
1. 048 5
. 6488
- 1. 0404
- 1.9746
-£. 1£3£
-£. 09 0£
-£.0524
- 1.9641
-1.8513
-1.7304
- 1. 61 60
- 1. 50£1
- 1.3924
- 1 . £8 60
- 1. 1779
- 1.071£
500- £00
500- £00
500-200
500- £00
500-200
500-200
500-200
500- £00
500-200
500-f;tiO
500-200
500-200
500-200
500-200
500-200
500-200
500-200
-. 6730
-. 78 1 6
-.8944
- .0069
- . 1 1 73
- .££88
- .3405
- . 4528
-1. 5674
- 1. 6793
- 1. 79 £2
-1.9069
-£.0£34
-£. 1378
-£.£525
-2. 3666
-2.4801
EM
10M
15M
£OM
2fiM
30M
35M
40M
45M
50M
55M
60M
65M
70 M
75M
80M
8 5M

-------
1973 FEE STA 95 PA  10**4 AVG 5 DEPTH  18  M DEPTH  25 M SCAN 30 M
     MEAN VALUE 0F  P1-.0FILES 0VEB  5M  INTERVALS


     CH   1-16      120-SO   .1014    200-120  -..7959   500-200   -.53EO    EM
     CH  17-32      120-80   .8023    £00-1£0 -1.4958   500-EOO   -.8000   10M
     CH  33-48      120-80   .3033    200-1EO -1.4673   500-200   -.766S   1 5M
     CH  49-64      120-80   .4044    £00-120  -.9198   500-EOO   -.7344   20M
     CH  65-80      120-80   .5053    EDO-120  -.3733   500-200   -.6988   25.M
1973 FE8 STA 105  PA  10** 4 AVG 5 DEPTH 26 ]  DEPTH  18  SWEEP 30
     MEAN VALUE 0F PR0FILES 0VEH 5M INTERVALS
     CH   1-20
     CH  21-40
     CH  41-6Q
120-80  1.1257
120-80   .9819
120-80   .8454
200-120   -.7816    500-SOO  -.0717   SM
200-120-1.6278    500-SOO  -.0661   10M
200-120 -2.1278    500-200  -.0630   1 SM
                                    lUU

-------
73  JUN  STATION  i  DEPTH  31  M SWEEP  36 M
    MJAN VALUE 0F Ph0 FILES  0VI.I-: 5M  INTU-.VALS
CH
CH
CH
CH
CH
CH
1-1/1
15- £8
89- HZ
43- 56
57-70
71-84
120-80
120-80
120-80
120-80
180-80
180-80
. 0661
.£090
.2688
.2456
. MB 3
. 1245
200-120
EDO- 120
200- 180
200- 120
200- 120
200- 120
-.0614
- . 1 548
-.2269
-.2657
- . 28 67
-.2703
500-200
500-200
500-200
500-200
500-200
500-200
.0000
. 0000
. 0000
. 0000
.0000
-0000
3*1
10M
1 5M
20M
25M
30M
     JIN STATION 2 EEP1H  20-M SVIFFP 26 M
     MEAM VALUE OF PR0FILF.S OVEfc  5M INTERVALS
     CH    1-19
     CH  20-38
     CH  39-57
     CH  58-76
12.0-80    .0047
120-80  -.5464
120-80 - 1. 5684
180-80 -2.8411
800-120 -1.0095
200-120 - 1.9888
2.00-12.0"-2. 498 3
200-120 -2. 7273
500-200    -0000   5M
500-200    .0000  10M
500-200    .0000  1 5M
500-200    .0000  SOM
1-973 JIN STATION 3 DEPTH  15 M SWEEP 25 M
          "VALUF 0F PROFILES 0VEh  5M INTERVALS
     CH    1-20
     CH  21-40
     QH  41-60
120-80    .6524
12.0-80   1.5677
120-80   2.5898
200-120  -.922.9    500-200   .0000    5K
200-120 -2.2619    500-200   .0000   1OM
£00-120 -3.7662    500-200   .0000   1 5M
1973 JUN  STATI 0M  5  DEPTH 92 M  SWEEP so M
     MEAN  VALUE EF  PROFILES 0VEfi EM INTEHVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7-12
13-18
19-24
25-30
31-36
37-42
43-48
49- 54
55-60
61-66
67-72
73-78
79-84
85-90
91-96
120-80
120-80
120-80
120-80
120-80
120-80
120-80
320-80
120-80
120-80
120-80
12.0-80
120-80
12.0-80
120-80
120-80
- 1.3735
-2.7449
-3.8318
-4. 59 61
-4.8751
-4.8662
-4.8622
-4.8603
-4.8 59 1
-4.8593
-4.8 590
-4.S5f 6
-4.8553
-4.8527
-4.8525
-4.8510
200- 12.0
200- 180
200- 120
200- 180
200-180
2.00-120
200- 120
200- 120
200- 120
200- 120
200- 120
200- 120
200-180
2.00- 120
200- 120
200-120
-.0858
-.0459
.0092
.0653
. 1233
. 1773
. 83 65
.2949
.3539
.4117
. 4 70 1
. 5293
. 5383
. 64 60
. 7063
.7656
500-200
500-800
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-800
500-200
500-200
. 0000
.0000
. 0000
.0000
• 0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
5M
10M
15M
20M
25M
SOM
35M
40M
45M
SOM
55M
COM
65M
70M
75M
80M

-------
1973 JfN STATI0N 7 DEPTH  £3 M i=WFFP  45 M
     MEAtf VALUE OF PJ:0HLFS 0VEK EM  INTERVALS
     CH    1-18
     CH  1 3- £4
     CH  E5-36
     CH  37- 48
1973
ipo-8o   -.02.26
i£0-ao   -.0167
120-80    .0061
120-80    .0902
£00-120   1.5001
£00-120   £.9902
£00-120   4.4763
200-1£0   5.9475
         STATI3M 8 DEPTH  75 M SWEEP 77 M
     MfcAM VALUE, 01' PK3HLES 3VEH 5M INTlhVALi
500-£00    .0000    5M
500-£00    .0000   10M
500-200    .0000   1 5M
500-200    .0000   £OM
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7- IP
13-18
19-24
S5-30
31-36
37-48
43-48
49- 54
55- 60
61-66
67-72
73-78
79-84
85-90
120-80
120-bO
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
lao-ao
1 . 488 6
2. 2.59 £
3.0620
3.8796
4.7051
5. 5224
6. 3356
7. 1 514
7.9 677
8.7856
9 . 60 SB
10.4195
11.2377
12.0472
12.8663
£00- 120 - 1.8061-
200- 120 -2. 599 7
200- 120 -3. 2.899
200- 120 -3.9801
200- 120 -4. 6675
200-12.0 - 5.3547
200- 120 - 6.0414
£00-120 -6. 7287
£00-120 -7.4185
200- 120 -8. 1093
£00-120 -8. 7996
200- 120 -9. 49 14
200-120-10. 1841
200- 120- 10-8679
200- 1£0- 1 1. 5620
500-200
500-200
500-200
500-200
500-2.00
500-200
500-£00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
. 148 7
. 3355
. 5250
. 71 64
- 9 09 4
1. 102.4
1. 2982
1. 49 50
i. fysi
1.8922
2. 0921
2. 2925
£. 49 4£
2. 69 62
2.8989
EM
JOM
1 5M
20M
25M
30M
35M
40M
45M
50M
55M
60M
65M
70M
75M
1973 JUM ST/STIBM  10 DEPTH  117  M S*FFP 2.00 M
     MEAN VALUE  01-  PF.0HLFS  SVIfh 5M lNTHHVALi>
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9-10
1 1- 12
13-14
15-16
17-18
19-20
21-22
23- £4
25-26
£7 - 28
£9-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
1 20-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
1£0-80
120-80
120-80
120-80
120-80
120-80
120-80
. 0019
.00£3
-.0009
- .0008
-.0020
-.0013
-.0024
-.0024
.0000
.0023
.0046
. 0 09 2
.0124
.0164
. 0£00
. 02.48
. 0298
.0350
. 0 39 7
.0449
.0496
.0536
. 0 59 3
200-120 .1065
200-120 .2123
£00-
£00-
£00-
£00-
200-
200-
2.00-
20 .3207
£.0 .4277
£0 . 5343
20 . 6344
20 .7643
20 .8960
£0
200-120
200-
120
200-120
200- 120
200-
120
£00- 120
£00-
20
£00- 1 20
. 0 1 64
.1464
. 2 509
. 3 542.
.4576
. 6517
. 741 7
.8328
.9220
200- ISO 2.0129
200-
20, 2.1041
£00-160 2.1934
£00-120 £.2812
200-120 £.3709
£00-120 £.4604
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-2..00
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
. 188S
. 3773
. 5701
. 7353
.9065
1. 0983
1. 2461
1.4510
1. 6573
1.8 635
2. 0 70 6
2. 27«3
2. 48 56
2. 6943
2.9024
3. 1119
3.3210
3. 59 75
3.8049
4.01 19
4.2200
4. 42«£
4. 6373
5Ji
10M
1 5M
£OM
fe5>]
30M
35M
40M
4bK
50M
5K«!
60K
65M
70M
75M
80M
85M
9 DM
95M
100M
1 0 E«
1 10M
HEM

-------
     JIN STATION 12 DEPTH  20 M SWF.FP  35 M
     MEAN VALUE 0F PJ-0 FILES OVER. 5M
     CH    1-14
     CH   1 5- 88
     CH   £9-18
     CH   4 3- 56
1SO-80   1.0789
120-80   8. 7489
ISO-80   £.6272
1SO-80   8.6084
200-180  -.9582
800- 180 -8.8800
£00-180 - 1.4739
£00-1£0  -.7371
500-800    .0000   EM
500-£00    .0000  10M
500-e.oo    .0000  IH-I
500-200    .0000  20M
1973 jujj STATION 14 DEPTH  10 M SVFFP  16 M
     MEAN  VALUE 0F Pf.3 FILES 0VEH £M
     CH   .'-31      180-80   1.7635   200-180    .3189    500-800  -.1166    EM
     CH   3S-68      180-80   1.8336   200-180    .5658    500-£00   .0738   10M
1973 JUN  STATION 19  DEPTH  84 M SWEEP  so  M
     MEAN  VALUE 0F Ph0 FILES 0VEh 5M IMlEhVALS
     CH    1-£0
     CH  81-40
     CH  41-60
     CH  61-80
12.0-80
180-80
18.0-80
180-80
-.1868
-.4055
-.3634
- . 38 63
200-180
£00- ISO
200-180
200-180
- 1.4687
-2.9883
-4.4738
-5. 7904
500- 200
500-200
500-8.00
500-800
.0000
.0000
.0000
. 0000
5M
10«
1 5M
20M
1973 JUM STATION 80 DFPTH  SO M SKFEP  35 M
     MEAN  VALUE 0F PROFILES 0V£h 5^5 INTEHVALS
CH
CH
CH
CH
1973 JUN
1- 14
1 5-88
£9-48
43- 56
STATI 0>
MEAN VALUE.
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH.
CH
CH
CH
CH
CH
1- 6
7-12
13- 18
19-84
85- 30
31-36
37-48
43-48
49 - 54
55- 60
61- 66
67-78
73-78
79-84
H5-90
91-96
18.0-80
120-80
180-80
120-80
J 24 DEPTH 1
01- PH0HLIS
180-80
180-80
180-80
120-80
180-80
180-80
180-80
180-80
120-80
120-80
120-80
180-80
180-80
180-80
180-80
180-80
.3988
. 5869
,7083
.8313
800- 120
200- 1 20
200- 180
800- 1£0 -
-.4693
-. 7431
-.9830
1.8037
500-800
500-800
500-200
500-200
. 8099
. 4198
. 6307
.8432.
E«
10M
1 EM
80M
18 M SVF.KP 80 M
0VH-. 5M
.6946
1 . 08 f 9
1. 5844
£.04£8
2.5681
8.8887
3. 1063
3.2490
3.4023
3. 6563
3.7983
3.8 583
3.9825
3.9475
3.9438
3.9485
INlihVALb
800- 180
800- 180
800- 180
800-180
800- 180
800- 120
800-180
800-180
800- J80
800- 180
200- 120
800- 180
800- 180
800- 120
800-180
£00- 120

.8519
1. 7899
8.2507
8.3849
8.09 19
.8 680
.7185
. 6447
. 5558
..3718
.3005
1 . 3 1 54
1.3181
1.3627
1. 4357
1. 5015

500-200
500-200
500-800
500-800
500-800
500-800
500-800
500-800
500-800
500-800
500-200
500-800
500-200
500-800
500-800
500- £00

- . 639 6
-. 4675
- . £9 3 5
- . 1 1 54
. 0 68 9
.8534
. 4377
. 6808
.8015
-9888
1. 1 678
1 . 3 539
1 . 539 1
1 . 78 1 7
1.9045
8.08 78

5M
10M
1 5M
8.0 M
25M
SOW
35M
40M
45M
50 M
55K
60 M
65M
70M
75M
BOM

-------
1973 JUN STATION  26 DEPTH  150 M SVEEP so M
     MEAN VALUE 0f PI-.0HLES  0VE.K 5M IMlEhVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7- 12
13-13
19- £4
85-30
31-36
37-12
43-48
49- 54
55-60
61-66
67-78
73-78
79-84
85-90
9 1-96
181-80
180-80
180-80
120-80
180-80
18,0-80
120-80
180-80
120-80
180-80
18.0-80
180-80
180-80
120-80
120-80
180-80
-. 1899
1.3670
2.4373
3.4168
4. 1056
4. 6301
4.7887
4.7360
4. 6541
4. 5655
4. 4800
4.3947
4.3109
4.8256
4. 1430
4.0599
BOO- 120
£00- 120
£00- 180
800- 12.0
800- 180"
800- 120
800- 180
200- 180
8.00- 18.0
800- 120
800- 120
2QO- 120
800- 180
£00- 180
800- 180
800- 120
8.2907
8.2132
.9633
.5367
.3485
. 3848
. 6649
£.8156
2. 7989
3.3873
3.9678
4. 5465
5. 1258
5. 7049
6. 28 2 6
6.8589
500-200 -
500-200 -
500-200 -
500-200 -
500-^200 -
500-200 -
500-200 -
500-200 -
500-800 -
500-200 -
500-800 -
500-200 -
500-800 -
500-200 -
500-800 -
500-200 -
. 598 £
. 6518
. 71 66
. 7798
.8569
.9414
.01 78
. 1004
. 1824
. 8 662
.3477
.4304
. 5181
. 60 72
. 69 57
.7845
5M
10M
15M
20M
25M
30M
35M
40M
45M
50M
55M
60M
65M
70M
75M
80M
 1973 JUN STATI 0»  so DEPTH  88  NSUEEP 34 M
      MEAN VALUH  Bf PF-.0HL.frS  0VJH 5M INTERVALS
CH
CH
CH
CH
CH
1-16
17-38
33-48
49- 64
65-80
180-80
180-80
180-80
1 80-80
180-80
1. 5^84
1.7814
.3108
. 9 679
1 . 7 1 52
200- 180
800- 18.0
200-18:0
800- 120
£00-180
-
-
-
-
-
1.
3.
2.
4.
5.
5676
\'c ( 5
8317
3485
7465
500-200
500-200
500-fcOO
500-200
500-200
. 148.2
. 3806
. 5086
. 6B 76
.8759
5M
10M
1 5M
£OM
3SM
       CH
       CH
       CH
       CH
       CH
       CH
       CH
           STATI 0N  31  DB'PTH 36 M  SWFFP 44 M
            VALUE 0F  PhGHUS 0VIR  5M INTERVALS
 1-11
12-82
23-33
34-44
45-55
56-66
67-77
120-80 - 1.3670
120-80 -2.6180
18.0-80 -3.4187
120-80 -3.7807
120-80 -2.1054
180-80   -.6794
120-80    .3050
£00- 120
£00-180
200- 180
200- 180
200-120
200- 180
200-120
. 9 09 2
1.8419
2. 5003
8.9365
1.3575
.0030
-.9270
500-200
500-200
500-200
500-200
500-200
500-200
500-800
-. 1578
.0157
. 18 76
. 3609
. 5351
. 709 7
.8843
HI
10K
i ai
20M
2bM
30M
3EM
                                        1U8

-------
 3-973 JUN STATI0M 38  DEPTH 166 M  SV.J:iTJ £10 M
      MiAM VALUE 0f PhOHLES 0Vih 5M  INTMiVALi
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- £
3- 4
5- 6
7- 8
9-10
11-1?
13-14
15-16
17- 18
19-20
2 1-22
23-24
2.5-£f
87 -fit}
29-30
31-32
33-34
35-36
37-38
39-40'
41-42
43-44
45-46
47-48
49-50
51-52
53-54
55,- 56
57-58
59 - 60
61-62
63-64
65-66
120-80
i?o-«o
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
1EO-80
ieo-80
1£0-80
120-80
120-80
IPO- 80
120-80
120-80
120-80
120-80
120-80
. 3403
. 3895
. 39 68
.4021
. 40 ($
.4136
.4828
.4? 7 3
.4353
. 44P.4
. 4483
.4514
.4574
. 4613
.4704
.4857
.5150
. 5337
. 5445
. 5521
. 5664
. 5738
. 5803
. 5826
.5845
. 5848
.5901
. 59 64
. 6025
. 607.8
. 61 10
. 6173
.6213
£00-120
200-1 20
POO- IPO
SCO- 120
£00- 120
800-120
200- 12.0
£00-120
200- 120
200- 120
£00- 120
200-120
200- 120
200- 120
200- ISO
200- 120
200- 120-
200- 120
200- 120
200- 120
200-120
200- 120
200- 120
200- 120
200- 120
200- 120
200- 120
eoo- 120
BOO- 120
£00- 120
£00- 120
POO- 120
200- 120
- . 08 29
-.071 6
-.0135
.0445
. 1036
. 1 613
. 21 72
.2742
.3304
. 38 66
. 4439
. 5017
. 5577
. 6143
. 6675
. 71 50
. 7478
. 79 1 0
.8425
.89 58
• 9430
.9977
1. 0520
1.1115
J,. 1702,
1.2305
1 . P8 62
1.3417
1.3980
1.4539
1. 5118
1. 5680
1. 6231
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2:00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
.0922 S<
. 2 78 5 1 OM
.4655 15M
. 653'? £.OK
.8425 25M
1.0316 30M
1.2215 35M
K4104 40M
1.5999 45M
1. 7894 50M
1.9795 55M
2. 1 69 5 60M
P. 3586 65M
2. 5489 70M
2. 7392 75tf
2.9293 80M
3.12.10 8 5K
3.3124 90M
3. 5033 9 5M
3. 6937 100M
3.8839 105M
4.0744 110M
4.2648 115M
4.4550 JfcOM
4. 6456 12.5M
4.8353 130M
5.0262 I35M
5.2164 140M
5.4063 145M
5. 59 73 1 bOM
5. 7882 l'55M
5. 9 78 5 1 60M
6. 1 68 6 1 65K
      OIW STATION 35 DEPTH  17 M SWi'EP S3 M
      MEAN VALUE 0F PP.0HLES 0VH-.  5M
      CH   1-24      120-80  -.7731    2.00-120  -.2594   500-200   .2465    511
      CH  25-48      120-80 - 1.9868    200-120  -.5706   500-200   .4588   10M
      CH  49-72      120-80 -3.£522    200-120  -.8169   500-200   .6831   1 5M
1973 JUM STATION' 36 DEPTH  23 M SWEEP  30 M.
     MFAV VALUE 0F PH0F1LES 0VFR  5M INTi.I-.VALS
      CH    1-19
      CH   20-38
      CH   39-57
      CH   58-76
120-80    .2627
120-80    .8282
180-80  -.3681
120-80   ..5869
200-120    .2553
2.00-120    .1325
200-120   1.6889
200-120   1.0506
500-200   -.3951    5M
500-200   -.1846   1 OM
500-200    .0313   ISM
500-200   -.0130   20M

-------
1973 J'-N STATI0M  41  DEPTH 24 M  SWEEP 30 M
     MEAN VALUE 0F PROFILES 0VER  5M  INTERVALS
     CH   l-f.O
     CH  81-40
     CH  41-60
     OH  Cl-gn
1EO-SO  -.8813
120-80 - 1. 5833
120-80 -S.4400
120-80 -3.0622
200-120   -.0138
600-120   -.1566
200-120   -.3096
SOO-1SO   -.4188
500-200    .0000    5M
500-2.00    .0000   10M
500-200    .0000   1 5M
500-200    .0000   20M
1973 JUN STATI 0M  AS DEPTH 2/1 M  SWEEP 40 M
     MEAN VALUE 0F PR0FILE'S 0VEh  5M INTERVALS
     CH   1-15
     CH  1 6- 30
     CH  31-45
     CH  46-60
1P.O-80    .0161
120-80    .3133
J20-80  -.9740
120-80 -2.1247
200-ISO   2.6496
200-120   5.0390
£00-120   7.4506
200- 120   9. 6900
500-200    .0000    5M
500-200    .0000   10M
500-200    .0000   ISM
500-200    .0000   80M
1973
      .    STATION 46 DEPTH 128 M  SWEEP so M.
     MEAN  VALUE 0F PROFILES  0VEh 5M INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7-12
13-18
19-24
25-30
31-36
37-42
43-48
49 - 54
55-60
61-66
67-72
73-78
79-84
85-90
91-96
120-80
ISO-BO
ISO- 80
120-80
1EO-80
12.0-80
120-80
120-80
120-80
180-80
120-80
120-80
120.-80
l£d-80
120-80
120-80
_.
- 1.
- 1.
-£•
-2.
ri
~ f • •
-e.
•» C
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-S.
677 5
178 1
1340
0774
5017
6689
6758
6654
6583
6542
6454
639 0
68 53
61 53
60 67
5985
2.00-
200-
200-
200-
2,00-
SOO-
£00-
SOO-
200-
2.00-
120
120
120
120
120
120
120
120
120
120
200-120
200-
200-
200-
200-
SOO-
120
120
120
ieo
120
.0238
. 08 68
. 1 574
.2207
- 28 29
.3504
.421 5
. 49 0 1
. 5603
. 62 70
. 691 1
.7573
.8222
.8911
. 9 60 1
1.0305
500-200
500-200
500-200
500- EDO
500- £00
500-200
50.0-200
500-200
500-200
500-200
500-£00
500-200
500-200
500-200
500-200
500-200
.0000
.0000
. 0000
. 0000
. ocoo
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
5M
10M
1 5M
20M
25."
30M
35M
40M
45X
50M
534
COM
6hM
70M
7 EM
BOM
         STATI 0M 48 DEPTH 33 M  SfcfeEP 40 M
     MEAM  VALUE 0F PROFILES 0VER 5M INTERVALS
     CH    1-13     120-80    .8276
     CH   14-26     120-80    .3252
     CH   27-39     120-80  -.0821
     CH   40-52     120-80  -.7952
     CH   53-65     120-80 -1.680S
     CH   66-78     120-80 -2.4513
                  EOO-120  -.7323    500-2.00   .192.1    5M
                  200-120 -1.5E77    500-200   .3992   1OM
                  200-120 -2.0739    500-200   .6053   1 5M
                  200-120 -S. 3069    500-2.00   .8119   2.0M
                  £00-120 -2. 3536    500-200   1.0188   2.5X
                  £00-120 -2.3489    500-200   1.ES57  30M
                                      150

-------
     STATI0N 56 EEPTH  189 M SfcFiP ICO M
MEAN  VALUE 0? PK0HLES 0VEI<  SM  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
GH
1- 3
4- 6
7- 9
10- IP
13-15
16-18
19- £1
££- £4
£5- £7
ES-30
31-33
34-36
37-39
40- 4£
43-45
46-48
49-51
52- 54
55-57
58-60
61-63
64- 66
67-69
70-78
73-75
120-eo
1SO-80
1PO-80
i£0-8o
1SO-80
IPO- 80
120-80
120-80
120-80
180-80
180-80
120-80
120-80
180-80
120-80
120-80
120-80
120-80
1EO-80
120-80
120-80
120-80
120-80
120-80
120-80
-.0852
-.0844
- . 08 53
-.0874
-.0898
- . 09 1 3
- . 09 2 5
- . 09 1 0
- . 09 28
-.0933
-. 0940
- . 09 64
-.1006
-. 1030
-. 1027
-. 1027
-. 1045
-.1067
- - 1 0 69
- . 1 0 60
- . 1 09 0
- . 1 09 0
-. 1 107
-. 1 1 57
- . 1 1 59
£00- 120
200- 1EO
SOO- 120
200- ISO
£00-120
200- 1£0
200- 120
£00- 1£0
£00- 120
200- 120
£00- 1£0
200- 120
£00- 120
£00-120
£00- 120
£00- 120
£00- 120
200- 120
200- 1£0
£00-120
£00- 1£0
200- 120
£00- 1£0
£00-120
£00- 120
.0£66
.0787
. 1 £9 6
. 1834
• £38£
.£925
.3471
. 4(Jl£
.4536
. 50 60
. 5567
. 60 78
. 6602
. 71 £4
. 7602
.808 7
.8594
.9110
.9 593
1.0082
1.0612
1. 11£1
1 . 1 64 1
l.£193
1.271 5
500-200
500- £00
500-200
500-200
500-200
500-£00
500-2.00
500-200
500- £00
50C-200
500-200
500- £00
500- £00
500- £00
500-2.00
500-200
500-200
500-200
500- £00
500- £00
500-£00
500-200
500- £00
500-200
500- £00
.2683
.5741
.9414
1.31 18
1 . 68 77
£. 0413
£.39 57
£. 76 60
3. 1943
3. 6144
4.032:1
4. 479 7
4.9467
5. 4 £39
5.9134
6. 3698
6.8£OS
7. £69 5
7. 7464
8. £71£
.6.81 51
9.3450
9.8 784
10. 3782
10.9 133
JM
10M
1 JM
20M
25M
30M
35>i
40M
45M
50M
55M
60M
65>I
70M
75M
8 CM
8 M
9 CM
9 5M
100M
105M
1 10M
1 1 SM
1£OM
IE a-i
JUN  STATI0NT 59 DEPTH  16 M SWEEP  25 M
MEAN  VALUE 0F Pfc0FILES 0Vlh 5M
CH    1-21
CH   £2-42
CH   43^ 63
120-80
1£0-80
          .139£
          .4157
          .7346
200-1£0   -.1365   500-2.00   -.5320    5M
£00-120   -.0527   500-EOO   -.345£  1OM
£00-120   -.0909   500-200   -.1578  1 5>I
JUN  STATION 60 DEPTH  16 M SWEEP  25 M
MEAN  VALUE 0F PH0FILES 0VEH 5M INTERVALS
CH    1-E1
CH  22-4£
CH  43- 63
1£0-80  -.9337
120-80 -£.0217
1£0-80 -3. 1040
                  £00-120    .0874    500-200   .0000    H4
                  £00-120    .1784    500-200   .0000   10M
                  £00-120    .££10    500-EOO   .0000   1 5M
                                  151

-------
1973 JUN STATION)  62. DEPTH 170 M  SWEEP 80 M
     MEAM VALUE  0F PROFILES 0VEh 5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
'CH
CH
CH
1973 JUN
1- 6
7-18
13-18
19- £4
25-30
31-36
37-42

49-54
55- 60
61- 66
67-72
73-78
79-84
85-90
91-96
STATION
MEAN VALUE
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 5
6-10
11-15
16-20
21-85
26-30
31-35
36-40
41-45
46-50
51-55
56-60
61-65
66-70
71-75
"76-30
120-80 -
120-80 -
180-80 -
120-80 -
180-80 -
180-SO -
120-80 -
120-80 *•
120-80 -
120-80 -
1£0-80 -
120-80 -
120-80 -
120-80 -
120-80 -
120-80 -
.9108
.2875
. 348 5
. 3381
.3330
.3195
.3115
.3010
.8879
.2805
.2720
.8664
.8580
.2513
.2488
.2359
800-
200-
800-
800-
200-
800-
200-
200-
£00-
£00-
£00-
200-
200-
120
ISO
180
ISO
180
120
120'
120
180
180
180
180
ISO
200- 180
800-
£00-
64 DEPTH 84 M SWEEP 80
0F PK0HLES
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
180-80
129-80
180-80
120-80
0V ER 5M
.0304
. 131 5
.8685
.4162
. 561 1
. 6525
.6938
. 7 1 28
.7877
= 7447
.7809
.8036
.8051
.8279
.8342
.8424
120
120
M
B
*
.
.
.
*
*
.
,
*
*
.
.
1.
1.
I.

1181
1888
3085
4177
4743
5306
5910
6604
7831
7844
8451
9077
9 709
0382
0936
1548

500-800
500-200
500-200
500-200
500-800
500^800
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-eOO
500-200
500- SOO

.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

SM
10M
ISM
20M
25M
3DM
35M
40M
45M
50M
5£M
60M
6£M
70M
75M
80M

IN1ERVALS
800-
200-
180
1£0 -
200-120 -
200-
£00-
£00-
200-
200-
8.00-
200-
200-
800-
£00-
200-
800-
800-
180 -
180 -
120 -
120 -
180 -
120 -
120 -
120 -
120 -
180 -
180 -
180 -
18.0 -
_.
1.
1.
2.
a.
8.
2.
2.
8.
1.
1.
1.
1.
1.
1.
1.
79 OE
4903
8483
0882
1323
1 727
1 509
0970
033F.
981 5
9480
8958
8410
7988
7892
6670
500-200
500-800
500-200
500-800
500-200
500-200
500-200
500-200
500-200
500-800
500-800
500-200
500-200
500-800
500-800
500-800
.0000
.0000
. 0000
. 0000
. 0000
. 0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
5M
ION
ISM
20M
2.SM
30M
35.M
40M
45M
50M
5SM
60 M
•65M
70M
75M
8 OK
1973 UUM STATI0N  66 DEPTH 24 M SWEEP 35 M
     MEAN VALUE 0F  PH0FILES 0VEli  5M  INTERVALS
     CH   1-17
     CH  18-34
     CH  35-51
     .CH  58- 68
X973
1SO-80   1.0051
120-80   8.3576
180-80   1.9263
120-80   1.4810
£00-120  -.1764
£00-120  -.6524
200-1£0 -1.2624
£00-180-1.8572
     JUN STATION  67  DEPTH 83 M  SWEEP 85 M
     MEAN VALUE 0F PHOHLES 0VEli  5M  INTERVALS
                   500-200    .0000    SM
                   500-200    .0000  10M
                   500-800    .0000  134
                   500-200    .0000  20M
     CH   1-23
     CH  24-46
     CH  47- 69
     CH  70-92
120-80  -.0013
120-80    .1191
120-80    .5065
180-80  1.2782
£00-180  -.8649
£00-180  -.8394
SOO-180 -1.7148
SOO-120 -£.9300
                    500-800
                    500-200
                    500-800
                    500-200
.0000    EM
.0000  10M
.oooo  iSM
.aooo  eow
                                      152

-------
1973 JUM STATION 7? DEPTH  121 M SWEEP so M
     MEAN  VALUE 0E FH0HLES OVER  5M  INTERVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7-12
13-18
19-84
25-30
31-36
37-48
43-48
49- 54
55- £0
61-66
67-78
73-78
79-84
85-90
91-96
120-80
180-80
180-80
180-80
120-80
180-80
120-80
180-80
180-80
120-80
120-80
120-80
120-80
180-80
180-80
120-80
-
-
- 1
-1
- 1
- 1
-1
-1
-1
- 1
- 1
-1
-1
- 1
- 1
- 1
. 6439
. 0 57 1
.0086
.0083
.0053
.0034
.0054
.0088
. OC9 5
.0114
.0108
.0112
.0106
.0187
.0131
.0139
200-
800-
800-
200-
800-
200-
200-
200-
200-
180
180
180
180
120
180
120
120
180.
800-180
200-
200-
800-
200-
800-
800-
120
120
180
12.0
18.0
180
.0010
.0701
.1374
.8051
.2705
.3340
.4007
.4655
. 589 6
. 5927
. 6568
. 7219
. 7861
.8495
.9 141
.9791
500-800
500-200
500-800
500-800
500-800
500-800
500-8.00
500-800
500-800
500-800
500-800
500-800
500-200
500-800
500-800
500-200
•
•
•
•
•
•
•
•
.
*
•
.
.
,
•
*
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
EM
10K
1 M
£OM
85M
30M
35M
40M
45M
50M
5 EM
COM
C-5M
70M
75M
80M
          STATI0W 78 DEPTH 56 M SVFFP  65 M
           VP.LUE 0K PH0FILES 3VER  5M INTEhVALS
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 7
8-14
15-81
2 £-2,8
89-35
36-42
'13-49
50- 56
57-63
64-70
71-77
180-80
180-80
120-80
180-80
180-80
180-80
18.0-80
180-80
18J3-80
180-80
180-80
-.
-.
- 1.
- 1.
- 1.
-1.
- 1.
- 1.
"" 1 •
-1.
-1.
6386
9786
1685
19EO
1907
1882
1737
1 643
1 654
1737
1743
800-
8.00-
800-
200-
200-
800-
200-
800-
200-
200-
200-
180
180
120
120
180
180
180
120
120
120
120
- . 29 73
- . 899 6
-.2393
-. 1626
-..0888
-.0153
.0493
. 11 73
. 1978
. 88 1 5
.3599
500-200
500-800
500-800
500-200
500-200
500-800
500-200
500-200
500-200
500-200
500-2-00
.
.
.
.
.
.
.
.
.
.
.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
EM
10M
15M
20M
8bM
30M
35M
40M
4bM
50M
bSM
     JtIM STATI0M  79 DEPTH  21  M SVFEF 85 M
     MFAM VALUE 05- PK0HLES  0VKK 5M IMllhVALS
     CH    1-81
     CH  82-42
     CH  43-63
     CH  64-8 4
18.0-80  -.9098
18.0-80 -8.0338
180-80 -3.1336
180-80 -4.1114
200-120  -.8965   500-800    .1380    S4
200-180  -.77f8   500-800    .2917  1OM
800-12.0-1.8460   500-800    .4471  1 5M
800-180 f 1.8 193   500-200    .6048  80M
                                     153

-------
1973  JIM STATION  72  DEPTH 19 M SVEEP as M
     MEAN VALUK Df PK0HLKS 0VEh 5M IMlEhVALS
CH
CH
CH
1973 Ju?
1-25
26-50
51-75
J STATION
MEAN VALUE
CH
CH
CH
1973 juj
1-21
22-42
43- 63
J STATIST
MEAN UAL UK
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 2
3- 4
5- 6
7- 8
9- 10
11-12.
13-14
15-16
17- 18
19-20
21-22
P3-24
2 5- 2 6
27-28
2,9-30
31-32
33-34
35-36
37-38
39-40
41-42
43-44
45-46
,47-48
49- 50
51- 52
53-54
55-56
57-58
59-60
61-62
63- 64
65- 66
67- 68
69-70
71-72
73-74
75-76
77-78
79-80
81-82
83-84
8 5-8 6
87-88
89-90
120-80
120-80
12.0-80
73 DEPTH
_.
-.
-1.
16
3708
9020
3041
200-
200-
200-
M SVEEP 25
0F PI-.0HLE& 0VE.B 5M
120-80
120-80
120-80
75 DEPTH
_.
-1.
-3.
69 39
8630
1527
120
120
120
M
— *
872.8
-1.4381
-2.

0534

50.0-200
500-200
500-200

.0000
. 0000
. 0000

EM
10M
1 EM

INTEhVALS
200-
2.00-
200-
120
120
120
— .
- .
-.
2668
4519
5469
500-200
500-200
500-200
.0000
. 0000
.0000
EM
10M
1 EM
225 M .SVtEP 250 M
OF Pf-.S FILES 0V Eh 5M
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
1-2.0-80
12,0-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
12.0-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80
120-80

*
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
I.
1.
1.
1.
1.
3001
7334
1S43
3270
4641
5024
542.7
5437
5375
49 47
447 3
4195
3940
3728
3549
3356
32.76
3201
3183
3228
3336
3387
3429
3456
3468
3504
3542
3570
3584
3619
3675
3706
3741
3786
3834
3870
3886
3916
3942
3959
3983
3994
4027
4044
4075
INTthVALfc
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
800-
200-
200-
200-
200-
200-
200-
2.00-
200-
200-
200-
200-
200-
200-
200-
200-
2.00-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
200-
£00-
200-
120
12.0
120
120
120
120
120
120
120
120
120
120
120
120
ISO
120
120
12.0
120
120
120
120
120
120
120
120
120
120
12C
120
120
120
120
120
120
120
120
IkO
120
120
120
120
120
120
120
""* •
- 1.
7141
579 6
-2.4481
-3.
-3.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-4.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
- 3.
-3.
-3.
1870
8199
2906
6332
8557
9778
998 5
9 746
9 548
9206
8862
8464
7953
7540
7095
6634
62.17
5813
5380
4974
4566
41 60
3747
3342
2936
2574
2180
1791
1410
0994
0600
0217
9789
9380
899 7
8577
8 1 65
7780
7363
6953
6545
6124
500-200
500-200
500--200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- £00
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500- 2.00
5'00-EOO
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
. 0000
.0000
. 0000
.0000
.0000
. 0000
. 0000
.0000
.0000
. 0000
.0000
.0000
. 0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
. 0000
-0000
.0000
.0000
.0000
.0000
.0000
EM
10M
1S-1
20M
25»
30M
35M
40M
45M
50M
5 EM
60M
6 HI
70M'
75M
80M
8 EM
90M
9 EM
100M
IDEM
110M
11 5M
120M
12 EM
130M
13 EM
140M
145M
1 50M
1 55M
1 60M
1 6EM
1 70M
1 75M
18 OM
18 EM
190M
19 EM
2 COM
20 EM
2.10M
21 EM
220M
££5M

-------
     JUN  STATI0N B9  DEPTH 72 M  SWEEP 80 M-
     MEAN VALUE 0F PROFILES BVEfc 5M INTERVALS.,
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
1- 6
7- 12
13- It!
19-84
25-30
31-36
37- 42
43-48
49-54
55-60
61- C6
67-7 £
73-78
79-84
120-80
120-80
180-80
120-80
120-80
1SO-80
120-80
1EO-80
120-80
120-80
1£0-80
120-80
120-80
120-80
-.0724
1. 1972
1.8808
2. 1632
S.2313
2. 247 6
2.2577
2.2718
2.2849
2.2984
2.3108
2. 32.20
2. 3358
2.3474
£00- 120
£00- 1 20
200- ISO
200-120
200-120
2.00-120
200- 120
200-120
200-120
2.00-120
200- 120
2.0C- 120
200-120
200-120
. 1673
-1.0258
- 1. 6540
-1.8865
- 1.8888
-1.8378
-1. 7774
-1. 7228
- 1. 6 64 6
- 1 . 608 4
- 1 . 5488
- 1.4833
- 1.4191
- 1.3588
500-200
500-200
500-200
500-200
500-200
500-800
500-200
500- 200
500-200
500-200
500-200
500-200
500-200
500-200
.0000
.0000
.0000
. 0000
. 0000
.0000
.0000
.0000
.0000
. 0000
.0000
.0000
. ocoo
.0000
£M
10M
1 5M
2.0M
25M
30M
35M
4 OK
4 a-i
50M
55M
60M
6bM
70M
1973 JUM  STATION 90  DEPTH 16 M  SWEEP 25 M
           VALUE 0F Ph0 FILES 0VEh  5M  INTERVALS
     CH    1-21
     CH   22-42
     CH   43-63
1SO-80  -.4795
180-80  -.7790
120-80 -1.0059
200-120    .0017
200-120   -.1091
2.00-120   -.2032
500-200    .0000    5M
500-'2CO    .0000   10M
500-200    .0000   15M
J-973 JUS STATION 92 DEPTH  8 5 M SWEEP  1*10  M
     MEAN VALUE 0E PfcOfclLPS  0VFR 5M INTEI-.VALi
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH

CH

CH
CH
CH
1- 4
5- 8
9-12,
13-16
17-20
21-24
25-28
29-32
33-36
37-40
41- 44
4 5- 48
4'J- 52
53- 56
57-60
61- 64
65- C-8
2.0-80
20-80
2.0-80
20-80
20-80
120-80
12:0-80
120-80
120-80
120-80
1 2.0-80
120-80
120-80
120-80
1EO-80
1 20-80
120-80
.7034
.9638
1. 0260
1. 0235
1.0227
1.0241
1.0266
1.0299
1.0353
1 . 0 38 3
1.0398
1.0420
1.04 £2
1 . 0 50 1
1.052.3
1 .' 0 567
1 . 0 59 1
200- 120
200- 120
200- 120
200- 12.0
2.00- 120
200- 120
200-120
200-120
200- 120
200- 120
200- 120
200- 120
200- 120
200-120
200- 12.0
200-120
200- 120
1.0918
1. 3326
1.4306
1.49 OF:
1. 5461
1. 6044
1. 6566
1. 7094
1. 7614
1.8136
1 . 8 69 7
I. 9 £15
1.9721
2.0212
2.071 1
2. 1202
2.1705
500-200
500-200
500-2,00
500-2.00
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-200
500-2.00
500-2.00
500-200
500-200
500-200
-.3655
-. 1 512
. 0 62 5
.278 1
. 49 3d
. 7123
.9 622
1. 2201
1 . 4778
1. 7377
1.9984
2.2598
2. 522.2
2. 78 53
3.048 7
3.3124
3. 5740
5X
10M
1 9X1
20M
25M
3 Oil
3SM
4 DM
45M
50M
55M
60M
6S1
70M
80M
8 ai
                                       155

-------
1973 JIN STATION 94 DFPTH 39 M  SUFFJ- 43M
     MIAN VALUE  0f  Ph.0HLFS OVIK SM Ijm>.VALS
CH
CH
CH
CH
CH
CH
CH
i- ie
13-84
85-36
37-48
49- 60
61-72
73-84
ISO- 80
180-80
180-80
1PO-80
IPO- 80
120-80
IPO-BO
-.3647
- . 48 11
- . 7 69 4
. 67 1 0
-. 3885
- 1.8748
- 1.9256
200- 180
200- I '80
800- IPO
800- 180
200- 180
800- 180
EDO- 120
.9939
1 . 60 60
2. 0818
. 6465
.0583
-.£305
-.4318
500-800
500-P-OO
500-200
500-800
500-800
500-200
500- £00
.0876
.£414
. 4598
. 68 7£
. 9 29 5
1. 1 71 7
1 . 4 1 50
bM
10Y;
1 5M
POM
£ 5M
30M
3bM
1-973 OIJN STATI 0M 95 DEPTH  ?.9  M SVEFP sc M
     MEAN VALUK 0F PI-.0FILFS  0VE.H 5M IMlFFiVAUS
CH
CH
CH
CH
CH
1-16
17-3^
33-4t<
49 - 64
£-5-80
180-80
180-80
180-80
IP.O-fcO
180-80
.7348
1 . 689 0
8. 58 13
2. 1 100
1.9330
800- 1 20
200- 180
200-120
800- 180
200- 120
. 7404
1. 5058
8. 0692.
2.3300
8. 71 51
500-800
500-200
500-200
500-200
500-800
-.4187
-. 8376
-. 0564
. 1246
.3057
5M
10M
1 5.X
POM
S5M
1973 JUM STATI0M  96 DEPTH  37  K  SfctFP 48 M
    'MEAN'VALUE OF PROFILES OVER 5M
CH
CH
CH
CH
CH
CH
CH
1- 12
13-84
85-36
37-48
49- 60
61-72
73-84
180-80
120-60
120-80
180-80
l'20-80
120-80
120-80
1 . 57 56
1. 5888
1.7257
1.7588-
1.7285
1,7813
1.7997
                                      800- 180  -2.0698
                                      200-180  -3.3155
                                      800-180  ^4.38 75
                                      800- 180.  -5. 1666
                                      800- 180  -5. 675'J
                                      200-180  - 5.9004
500-800
500-200
500-800
500-200
500-200
500-800
500-200
.0820
.2767
. 4 73 1
. 6681
.8 637
1 . 0 59 6
1. 8594
5M
10M
1 5M
20M
25M
30M
3bM
     JUM STATI0M 97  DEPTH 31 M  SWEEP 35 M
     MEAN VALUE 0F PH0FILFS OVFH 5M IMlFhVALS
CH
CH
CH
CH
CH
CH
1- 14
15-28
29-42
43-56
57-70
71-84
180-80
180-80
120-80
180-80
180-80
180-80
1. 3671
8.9357
4.4587
5. 5974
6.3758
6.8454
800- 180
800- ISO-
POO- 180
800- 12.0
800- 180
800- 120
. 509 4
.4800
.3413
. 1 1\ 52
.8209
.0839
500-200
500-200
500-800
500-200
500-200
500-800
-.3356
-. 1604
.01 70
. 19 54
.3735
. 5374
5M
10M
1 5M
80M
85M
30M
                                   156

-------
                                   TECHNICAL REPORT DATA
                           (/'lease read iMtruf lions on the reverse before completing)
 . rui'tint NO.
 ^5^660/3-75-021
4. TITLt ANUSUBtlTLE"
   ZOOPLANKTON PRODUCTION IN LAKE ONTARIO AS
   INFLUENCED' BY ENVIRONMENTAL PERTURBATIONS
            3. RECIPIENT'S ACCE88IOI*NQ.
                                                           S. REPORT DATE
                                                            June  1975
            6. PERFORMING ORGANIZATION CODE
                                                            66030
7. AUTHOR(S)
                                                           8. PERFORMING ORGANIZATION REPORT NO,
   McNaught, D.C.,  M.  Buzzard, and S.  Levine
9 PtRfOMMING ORO M^IZATION NAME AND ADDRESS

    Department  of Biological Sciences
   State University of New York at Albany
   Albany, New  York  12222
            10. PROGRAM ELEMENT NO-

                  026	
            11. CONTRACT/GRANT NO.

             Grant  800536
 12. SPONSORING AGENCY NAME AND ADDRESS
   Environmental Protection Agency
   National Environmental Research Center
   Grosse lie Laboratory
   Grosse lie,  Michigan  U8138
            13. TYPE OF REPORT AND PERIOD COVERED
             Final
            14. SPONSORING AGENCV CODE
 16, SUPPLEMENTARY NOTES
 18. ABSTRACT
   The Crustacean zooplankton are  excellent indicators of environmental perturbation,
   especially  if enough of their biology is known to explain why certain species
   increase with nutrient enrichment  of lakes.  The distribution of zooplankton
   in Lake Ontario suggested that  eutrophic indicators were found  in the vicinity
   of major urban centers.*  Furthermore, mathematical indices, including diversity,
   the community competition coefficient, and carrying capacity, separated urban
   inshore from rural inshore waters,  further evidence of perturbation.  Biomass
   estimates made with new acoustical techniques indicated that most of the
   zooplankton biomass was in deep waters, thus the eutrophication of  Ontario's
   waters, both nearshore and in the  vicinity of cities, is still  localized in
   nature.  Mathematical techniques have been developed to model such  perturbations.

   The report  was submitted in fulfillment of an EPA project, Grant  No. 800536,
   by the State University of New  York at Albany under the sponsorship of The
   Environmental Protection Agency.   Work was completed as of 15 August
   *The ratio of the number of Bosmina longirostris, the most  successful eutrophic
   species, to Diaptomus sicilis, the  most oligotrophic form,supported this
   conclusion.	
17.
                                KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                              b.IDENTIFIERS/OPEN ENDED TERMS  c. COSATI Field/Group
   Zooplarikton, perturbed wateraasses
Lake Ontario,  IFYGL,
Zooplankton
                                              10. SECURITY CLASS (This Report)
li, DISTRIBUTION STATEMENT

  RELEASE UNLIMITED
                                                                        21. NO. OF PAGES
                                              20. SECURITY CLASS (Thispage>
                                                                        22. PRICE
EPA Perm 2120-1 (*-73)
                           U.S. GOVERNMENT PRINTING OFFICE: 1975-698-781 /I7I  REGION 10

-------