-------
TABLE 29
HF COLLECTION EFFICIENCIES
a
0
a
1
a
j?
i"
ft*
a
ft §
a ?
a
ft.
ft
a
a'
ft
ft
a"
••
a'
ft
Run Date
1 5/16/73
2
3
4 5/17/73
5
6 5/21/73
7
8 5/22/73
9 6/05/73
10
11
12 6/6/73
13
Flow
Absorbing Rate
Reagent cfm
Dist. M20 1
1
" 1
0.75
0,75
1
1
0.75
0.1 N NaOH 1
" 1
1
0.75
11 0.75
Concentra-
tion ppm V/V
82
80
79
90
85
11
11
9
35
71
63
95
92
Total HF
into
Impingers g
0.1109
0.1082
0.1080
0.0967
0.0934
0,0160
0.0143
0.01017
0.04853
0,10076
0.09939
0.10273
0.10095
Total HF
Recoverd
g
0.0640
0.0738
0.0838
0.0663
0.0754
0.0051
0.0053
0.00438
0.03378
0.09397
0.10172
0.09158
0.09208
%
Recovery
57.6
68.2
77.6
68.6
80.8
31.7
37.1
43.1
69.6
93.3
102.3
89.1
91.2
(1) g 1IF recovered T g HF in x
100%
-------
a
ft
ft
a
a
R.
ft
a
a
ft
ft
TABLE 29
HF COLLECTION EFFICIENCIES
0
a
3
(-5
a
Run
14
15
16
17
Date
7/25/73
7/26/73
Absorbing
Reagent
0.1 N NaOH
Flow
Rate
cfm
1
0,75
1
0.75
Concentra-
tion ppm V/V
68
96
10
9
Total HF
into
Impingers g
0.10920
0.10030
0.01393
0.01008
Total HF
Recovered
g
0.06487
0.06840
0.00630
0.00455
Recovery(l)
59.4
95.8
45.2
45.1
a
ft
-------
!??
.
_..--.
_____
! - '. .
LJ •":_ j
::: -::.
.-.' ; --
-.-.. .
: :
-••
•-• ,
'
...:'...'.:
•
.
.'
""-
. ..:....
• ':
•
...:..
~~
'
'
•' ' . ••:.::"
.-. .
.. , , _.--,.
-
'
' 1 "
_ .
:
'
:.%'•
• :-
• •
:
.. .: ..
....;. ..
'.. : .'
•
...:..
A— A
-——
h:r::i
•' : :
COLLE
. "
• •
. '
r.f.ir .:
::-.,-::.
CTIOf
;DI
._ ._^^
T^TT-A
F
EFF
STILL
.: : .
..... _.
[.GURE
CI'EN
.ED W
.-.:__
12
CY VS
ATER-
; .
L::u:J
TTT-r-TT
CONG
— — rr:
ENTR-
j
VTION
. :.: .'
A.11
• .3/
UJ
..-.I::.:
Cim
4 CflT
: — r. —
'
-:
• ' '
'•-'• :::-
. .
',
-—.
: — . ...
- •
-.— '-:•
:'— --'-
§ HF CONCENTRATION PPM V/V
80
60
40
20
20 40 60 80 100
COLLECTION EFFICIENCY PERCENT
-75-
-------
'
„ .J
- : ::
.!- •
. „ ;.;.
.
:
-::-
i
. --j^j ; .
•• .:- ::.:
- \ :
• . . ! __..
•: j r • :
1
I • :
. i ; "
•: • . .' :
.'
.
' ' ' i -
_; — L_;-: —
. :. J
. . .
-._ . .
— f—
. ..._ .
.. • - i ... .
.. i: • i;:::
:
:. .
•
J — gi
... :•:
:-~:..::
L— A
CU
;
-LECT
ION E
• ; ::
^FIGURE 13
FFIC
:. 1 .J ":
•-.r. . .-.-•
- I .
:. . I..:.:- ••
.. . : . ••:...
:•. : 1 : .: ;
•-:•-•' -'• -—
:i:-::»:|
::.;!.:.-
:---;-—
-----
V-
-G—
. . |: : :'.
:::;:.:::
L_:i: _
':• i 1
L- ^
i _
..:
~ *
1 : :l
-•~^—
Q
i::::;::-
. — --—.-,
\s
fc
:
ENCY
N N
-;-
_^-^:_
--~ ^
—~~
u
vs c
aOH -
.......
.....
•::;::-
!-.:--:-•!
._.: —
r__I--TL
r
-::•:.:
ONCEf
TRAT
[ON
..... .
.
.* "
-!::::=•
_ — - —
-----
t
—-•—
uu
.::; i:
!-.: -
— 1:^._:
-----
b
— :_^
: -:.;:
r-.^-j
_.. —
h
. :.
-. : --::
... ..
-.::•
.. : ...
. tt —
»— r
r: -
;:-: • .
.:.• • .
- - :• .
cTm
Tcfm
* *.
.
_ -; • u ~
'•
• -':
• '• i
--:.- '
. ....
: .
- .--::•:.
h
..:.•-.
-.-.:•
._....
-::: --'
i-
-:;: . :
"
.__
:r - -
±
•- " -
...... .
§ o HF CONCENTRATION PPM V/V
o
60
40
20
COLLECTION EFFICIENCY PERCENT
-76-
-------
water was used as the absorbing reagent and Figure 13 for those in
which sodium hydroxide was used. Examination of these two figures
reveals the following. First, there appears to be no significant
difference between the efficiencies in which sodium hydroxide was
used and those in which water was used. Second, the collection
efficiency appears to be directly proportional to the concentration
of the gases being measured. The first observation was borne out
by statistical analysis of the data which indicated no significant
difference between the two absorbing solutions (F=2.54). Table 30
presents a summary of these statistics.
The average collection efficiency for all of the runs using water
as the absorbing reagent was 58.1 percent the corresponding value
for 0.1N[ NaOH was the absorbing reagent was 76.8 percent.
In a similar study, Dorsey and Kemnitz found an average collection
efficiency for HF to be 90.7 percent for 12 runs at concentrations
ranging from 0 - 4000 ppm with a flow rate of 0.75 cfm using 0.1N_
sodium hydroxide'. While this value is somewhat higher than the
value of 73.4 percent found for four runs at the same conditions,
it is not known at this time how many runs they made with a con-
centration between 10 and 100 ppm. As was illustrated earlier, the
efficiency dropped off in direct proportion to the concentration.
Two runs made at about 100 ppm and 0.75 cfm using 0.1N_ sodium hydrox^
ide had an average collection efficiency of 90.2 percent which is in
very good agreement with their reported value of 90.7 percent (the
value for two similar runs using water was 74.7 percent).
-77-
environmcntal science and engineering, inc.
-------
0
a
|
a
**
a
Absorbing Reagent
Distilled Water
0.1N NaOII
TABLE 30
FLUORIDE RECOVERIES
Flow Rate
cfm
1
0.75
1
0.75
Concentration
Range
ppm V/V
10-100
10-100
Number
of Runs
5
3
10-100
10-100
5
4
Average
Collection
Efficiency
54.4
64.2
74.0
73.4
Standard
Deviation
17.6
15.7
21.1
18.6
32
24
28.5
25.3
R.
ft
a
a
ft
ft
a
ft
-------
6.0 CONTINUOUS FLUORIDE MONITOR
6.1 DESIGN
The basic design consideration for the continuous fluoride source
monitor was the ability to measure gaseous and water soluble particu-
late fluoride compounds; the latter condition dictated that a gas
scrubber be utilized in the design. The basic approach was to con-
tinuously withdraw a sample from the stack gas stream, scrub this
sample with a modified Greenburg-Smith impinger and analyze the con-
tents of this impinger using a specific ion electrode.
Figure 14 is a schematic diagram of the final design configuration.
Operation of the instrument was as follows. Gas from the stack was
withdrawn through the probe into the impingers where fluorides were
scrubbed out with distilled water. Liquid was continuously with-
drawn from the bottom of the impinger and replaced with fresh dis-
tilled water; the level of water in the impingers was controlled by
an on-off type controller. Approximately 0.5 ml/min of the impinger
water being drawn from the bottom was diluted with 4 ml/min of buf-
fering reagent in a peristaltic pump. The buffering reagent had the
following formula: 0.5 M. sodium acetate, 0.5 M. acetic acid, 0.01 M.
EDTA. EDTA was added to complex any heavy metal ions that would
interfere with the operation of the specific ion electrode. The
diluted stream was next sent to the inner chamber of the holder in
which the fluoride electrode was housed. The contents of this inner
chamber were kept well mixed by a magnetic stirrer. The surrounding
annular space was kept filled with water at 110°F which was circu-
lated through a Beckman sample conditioner by a separate pump to
maintain this temperature; this was found to be necessary as the
specific ion electrode is temperature sensitive.
A mathematical description of the system as described can be derived
from a material balance over the impinger.
Input = Output + Accumulation (1)
These terms are:
T * tr m-6\ n 492 x P x 20.006 x dt (2)
Input = (Cs x 10 u) x Qs x i— 2S79T 22 414
_3
Output = D x CL x QL x 10 x dt (3)
Accumulation = d(DVCL) = DVdCL x 10"3 (4)
where: Cs = stack gas concentration, ppm
Qs = gas flow through the impingers, liter per minute (liter/min)
-79-
cnvironmcntal science and engineering, inc.
-------
a
a
**
a
«*i
%
ft
a
ft
a
a
a,
ft
a
a'
ft
ft
i
i
CO
o
\
"I
~]
Waste
14
10
Waste
11
12
ft
Electrical lines
Fluid lines
1. Nozzle
2. Probe
3. Vacuum Pump
4. Rotomcter
5. Distilled water reservoir
6. Liquid level controller
7. Liquid level probe
8. Modified Grcenburg-Sinith impinger
9. Solenoid valve
10. Metering pump
11. Fluoride clecytode
12. Magnetic stirrcr
13. Millivolt meter
14. Buffering reagent
15. Liquid pumn
16. Liquid heater
FIGURE 14
CONTINUOUS FLUORIDE MONITOR
-------
T = gas temperature as measured through rotameter, °R
P = ambient pressure, inches Hg
20.006 = molecular weight of HF, g/mole
22.414 = molar volume at 0°C liters/9-mole
dt = time increment
D = dilution factor for liquid from impinger being mixed with
buffering reagent
CL = fluoride concentration in electrode chamber, nig/liter (ppm)
Q!_ = liquid flow from impinger, liter/min
V = volume of liquid in impingers, liters
dC[_ = incremental change in C|_ occurring during time increment dt
Combining the above terms yields the following differential equation
TdcL +.CL = KCS (5)
dt
where: T = V/Q^, time constant for the system
K = 492 x 20.006 x Q, x P x lO'3
_ , a constant
29.92 x 22.414 x D x T x QL
The solution to this equation is:
CL - CLQ = 1 - e-t/T '(6)
KCs " CLO
Where C[_Q is the initial liquid concentration at the start of sampling
(t = 0). The steady state solution to the above is then:
Cs = II x CL (7)
The above equations were developed assuming that all of the fluoride
in the gas stream was removed in the impinger, hence there was no out-
put term for the gas stream. Since this assumption was made and our
laboratory studies indicated that such was not the case, it was neces-
sary to calibrate the monitor in the laboratory. The same gas dilu-
tion system that was used for the collection efficiency study was used
for the calibration of the monitor. By reducing the constant factor
-81-
environmcntal science and engineering, inc.
-------
K, in equations 5 through 7, the following equation is derived for
state operation:
Cc = 68.13 DQLT C. (8)
S Qsp L
This equation predicts a linear relationship between CL and Cs, with
a slope that will vary depending on the factor DQ|_T/QSP .
This linearity was found to be valid down to approximately 25 ppm gas
concentration corresponding to 1.3 ppm liquid concentration (at this
point, the impinger concentration was about 20 ppm). Below this point,
the curve broke and dropped sharply. Figure 15 is the resulting curve
obtained from laboratory calibration.
The quantity DQ|.T was varied and essentially the same conclusion was
QSP
reached: a linear relationship prevailed down to a concentration of
about 25 ppm in the gas. Below this concentration, the same curve was
obtained regardless of the term D
Statistical analysis of the data between 25 and 100 ppm gas concentra-
tion resulted in a line with a slope of 61.89 which is fairly close
to the theoretical value of 68.13 from equation 8. Since laboratory
calibration covered a range of from 10 to 100 ppm in the gas, it is
quite possible that gases containing higher concentrations might gen-
erate a curve coinciding with equation 8. This is probably attributed
to the higher scrubbing efficiency of the Greenburg-Smith impinger at
higher gas concentrations (see collection efficiency study)
6.2 FIELD RESULTS
Based on the assumption that all curves will pass through the coordi-
nates 1.3 and 25 of the curve in Figure 15, it is possible to obtain
curves for different values of the parameter DQLT/Q$P. This procedure
was followed to obtain values of stack gas concentrations for field
measurements made using the continuous monitor. Table 31 gives the
comparative values between the monitor and concentrations as deter-
mined by the collection trains used.
Comparison between the monitor and the collection trains was quite good
only at the defluori nation facility where the average differences were
quite small. At the DAP facility, large differences were found which
can possibly be attributed to the low collection efficiency of the train
at such low concentrations and the relative magnitude of errors when
dealing with such low concentrations. Prior efficiency study results
indicated the possibility of a collection efficiency as low as 30 per-
cent when using a wet collection train. Hhen this fact is considered,
these results do not fare quite so poorly.
-82-
environntcntal science and engineering, inc.
-------
CONTINUOUS MONITOR1CALIBRATION CURVE '
j FIGURE .1
4 56 7 89 10 11 12
-83-
-------
TABLE 31
CONTINUOUS MONITOR FIELD RESULTS
Monitor
ft
3
^'
O
3
3
a
a
*
ft"
a
ft ,
ft co
a f
3
R.
ft
a
a*
ft
ft
2
a'
a*
ft
Operation
D.A.P.
Defluori-
nation
Kiln
Primary
Aluminum
Reduction
* Erratic
Date Location
1/22 Outlet
1/24
1/24
S/24 Outlet
S/24
S/25
6/12 Inlet
6/13 Outlet
6/13
6/14
electrode response
Test No.
3
2
3
1
2
3
1
-
1
2
3
DQ T/Q P
L* S
0.105
O.C6
0:06
0.14
0.14
0.14
0.17
0.16
0.17
0.16
CL
(electrode ppm)
0.15
0.095
0.08
0.34
0.90
9.80
2.90
0.23
0.10
<0.05
(gas ppm)
10
7.5
7
14
23
99
42*
12*
8*
<5*
Wet Collection
Train
2.9
1.24
1.5
14.9
25.2
83.2
140.0
15.2
16.4
31.0
-------
At the primary aluminum reduction facility, the electrode response was
very erratic which was caused by a cracked housing on the electrode.
6.3 CONCLUSIONS AND RECOMMENDATIONS
These tests, under laboratory and field conditions, have shown that
the development and operation of an in-stack continuous fluoride moni-
tor is feasible . Hith proper operational techniques, calibration,
and recording instruments, results obtained using such a device can
be comparable to those from standard wet-collection train methods.
One major problem that might be encountered could be the presence of
compounds in the gas stream containing heavy metal ions that would
interfere with the fluoride electrode. Although EDTA was included in
the buffering solution to complex metal ions, it is possible that a
gas stream might contain enough of a compound to overcome this. If
this compound was in a particulate form,"it could be filtered out with
glass wool or some other type of filter.
Operation would, of course, be simplified if it were known that the
temperature and pressure would not vary much,- in which case the quan-
tity DQ,T/QSP could remain essentially constant. In this case, only
one calibration curve would be needed for a given source to be moni-
tored.
-85-
cnvironmcntal science and engineering, inc.
-------
APPENDIX A - TENTATIVE REFERENCE METHOD FOR SAMPLING AND ANALYZING PARTICIPATE
AND GASEOUS FLUORIDES FROM STATIONARY SOURCES*
1. PRINCIPLE AND APPLICABILITY
1.1 Sampling
1.1.1 Principle - Samples are collected isokinetically by apparatus which
provides for the separate collection of participate and gaseous fluorides.
1.1.2 Applicability - The method is directly applicable for analyzing"dry"
streams [where "dry" refers to a relative humidity of less than 100% at stack
conditions] from various industrial stationary sources, including the various
processes within the primary aluminum, iron and steel, and glass industries.
With only slight modification (described in Section 11), the method can be
applied to analyzing "wet" streams [where "wet" refers to water or stream en-
trainment in the stream] such as occur for unit operations within the phosphate
rock processing industry. In the latter case, particulate and gaseous fluorides
cannot be separated.
1.2 Analysis
1.2.1 Principle - Fluoride ion in the collected sample is measured with the
fluoride specific ion electrode. If the sample to be analyzed contains particulate,
a caustic fusion must be performed to ensure that all fluoride will be soluble.
A distillation of the sample from sulfuric acid prior to the electrode measurement
is required for removal of interfering ions.
1.2.2 Applicability - The method as written is applicable to any type of
sample collected from process effluents which are discharged into the air from
unit processes within the primary aluminum, iron and steel, glass and ceramic,
and phosphate rock industries. The nature of the sample collected has little
effect on the success of the analysis, so that the procedure should be generally
applicable to stationary source fluoride emissions from other industries.
*This method is based on laboratory evaluations, discussions with industrial re-
presentatives and referenc0 to the open literature. The method cannot be accepted
as final until suitable field tests have been conducted and modifications to the
method are made, as appropriate.
Al
Arthur D. Little Inc
environmental science and engineering, inc.
-------
2. RANGE AND SENSITIVITY
2.1 Sampling - Not Available
2.2 Analysis - The fluoride electrode can measure fluoride concentrations
in the range of 0.02-2,000 -ug/ml; however, measurements of less than 0.2 ug/ml
require a great deal of care and should be avoided. Since the electrode measure-
ment is performed on an aliquot of 50- ml of solution containing the sample, the
practical lower limit ^ 100 ug of fluoride; the reagent blank for fusion and
distillation averages 10 -jg fluoride. The upper limit of fluoride which can be
measured has not been determined with certainty; 20 mg has been measured success-
fully.
3. INTERFERENCES
3.1 Sampling - Although evaluations are incomplete, there may be an inter-
ference from the materials of construction of the sample train components which
could influence the fluoride recovery by the sampling system. Also, physical
and chemical adsorption of gaseous fluorides onto particulate can effect the
apparent gaseous to solid fluoride distribution.
3.2 Analysis - The presence of more than the 1 mmole of silicon or iron,
or more than 10 mmoles of aluminum can retard the evolution of fluoride during
distillation. Large amounts of lead can have a similar effect. The maximum
amount of metal which can be tolerated depends to some extent on the amount
of fluoride in the sample. Maximum upper limits remain to be determined.
4. PRECISION, ACCURACY. AMD STABILITY
4.1 Sampli ng
4.1.1 Precision - Not Available
4.1.2 Accuracy - Not Available
4.1.3 Stability - Based on limited data, it appears that the particulate
catch, probe washings, and impinger solutions remain stable and unchanged for
at least a month as long as they are stored in sealed polyethylene or flint
glass containers.
4.2 Analysis - Reliable estimates of precision, accuracy, and stability when
analyzing field samples are not yet available. Although very tentative, some
estimates drawn from laboratory studies are presented below.
4.2.1 Precision - At the 2 mg fluoride level, a relative standard deviation
of ± 2% or better was achieved on sets of quadruplicate samples. •
A2
Arthur D. Little Inc
environmental science and engineering, inc.
-------
4.2.2 Accuracy - Accuracy depends first upon the accuracy with v/hich
the fluoride content of the standardization samples is knov/n. The more im-
portant limitation on accuracy is the effect of metals (see 3.2) on distillation
recovery. Within the constraints of 3.2, 95% or better recovery can be achieved.
4.2.3 Stability - The one source of instability in the method is potential
drift in the electrode response. A calibration curve, if used, should be generated
daily and a knov/n, mid-range standard should be measured as a check at' least once
per hour. If direct readout is employed, the span should be checked hourly.
Electrode response is temperature sensitive; relative concentration indicated
will change about 1.5/i relative/°C. If ambient lab temperature fluctuates more
than a few degrees, it is advisable to place samoles in a water bath prior to
measurement. If an electrically-driven magnetic stirrer is used, precaution should
be taken to see that it does not heat the solution.
5. APPARATUS
5.1 Samp][ing
5.1.1 Sample Probe - A 5-foot (or longer) length by 1/2 to 5/8 inch diameter
3.6 stainless steel with appropriate nozzle and orifice;
or
A 5-foot length by 1/2 to 5/8 inch diameter bcrosilicate glass tubing encased in
a metal support tube fitted with an appropriate stainless steel nozzle and orifice,
with provision for heating the probe to maintain a gas temperature of 250°F.
5.1.2 Particulate Collector - A 316 stainless steel or Pyrex filter holder
with suitable filter media (glass fiber, organic membrane, or paper) of high
collection efficiency, which may be preceded by a 316 steel or Pyrex cyclone;
A stainless steel enclosed electrostatic precipitator as described in Reference
A-l; both systems including a heating system capable of maintaining any temperature
up to 250°lr-
5.1.3 Impingers - Two, 500 ml Greenburg-Smith impingers made from poly-
ethylene or glass and containing 200 ml of distilled water or 0.1N NaOH, to be
contained in an ice bath.
5.1.4 Mist Trap - A 500 ml bottle containing a suitable desiccant (such
as 175g of dried silica gels) for protection of down stream components from
moisture.
5.1.5 Vacuum Pump - Rates at 4 cfm at 0 in.Hg and 0 cfm at 26 in.Hg.
5.1.6 Dry Gas Meter - Rates at a maximum of 175 cm. ft. per hour.
5.1.7 Air Flov/nieter - a calibrated rotameter or critical orifice capable
of measuring airflow within 2%.
A3 Arthur D. Little Inc
environmental science and engineering, inc.
-------
5.2 Analysis
5.2.1 Fusion Crucible - Crucible, nickel or Inconel, 60 ml capacity.
5.2.2 Distillation Assembly - Glassv/are (shown in Figure A-l) consisting
of a 1-liter, round bottom, borosilicate boiling flask (b), an adapter with
a thermometer opening (c), a condenser (f), and a thermometer reading .to 25C°C(d),
Standard taper or spherical ground-glass joints shall be used throughout.
Heat is provided by a hemispherical heating mantle (a) connected to a
laboratory variable transformer. Distillate is collected in a 500 ml volumetric
flask(g).
5.2.3 Fluoride Specific Ion Electrode System
\
5.2.3.1 Fluoride Ion Specific Electrode (Orion Model 94-09 or equivalent)
5.2.3.2 Reference Electrode - Silver/silver chloride or saturated Calomel
suitable for use with the fluoride electrode and electrometer used. A large
area liquid junction is preferable to a fiber-type liquid junction.
5.2.3.3 Electrometer - (more commonly a pH meter with millivolt scale, or
a "Specific Ion Meter" made specifically for ion-specific electrode use)
capable of ± 0.5 mv. resolution.
6. REAGENTS
6.1 Sampling
6.1.1 Distilled Hater
6.1.2 0.1N NaOH (optional)
6.2 Analysis
6.2.1 Fusion Flux - Either NaOH or Na-COo/KpCOo (equimolar mixture) may be
used and should be as low in fluoride as possible.
6.2.2 Calcium Oxide - low-fluoride, can be obtained commercially or can be
prepared from pure calcium metal.
6.2.3 Concentrated Sulfuric Acid - reagent grade.
6.2.3 Citrate Buffer - 1.0 M stock solution. Dissolve 294.1 g of reagent
grade Na3C5H507 .2H20 in 1 liter of distilled water.
6.2.6 Fluoride Standard Solution - A 0.1M fluoride standard solution is
commercially available, or it can be prepared by dissolving reagent grade sodium
fluoride in water.
A4
Arthur D. Little Inc
environmental science and engineering, inc.
-------
7. PROCEDURE
7.1 Sampling
7.1.1 Prior to sampling, measure stack gas velocity at a series of test
points to determine the velocity profile of the stack, using procedures such
as those given in Reference A2. If variation is 10% or less, sampling'may be
carried out at point of average velocity. If variation exceeds 10%, sampling
must be carried out incrementally at a series of test points to reflect an
average velocity.
7.1.2 Sampling will be isokinetic at a rate between 0.75 and 1.25 cfm.
7.1.3 Sampling time will reflect all cyclic variations in the process
being monitored, but v/ill not be less than 60 minutes.
7.1.4 After completion of sampling, the train shall be disassembled
and the collected materials placed in containers. The final volume of the
impinger catch will be noted to calculate moisture content of the gas.
Separate containers will be used for the particulate catch, impinger catch
and washings, and probe washings.
7.2 Analysis
7.2.1 Preparation of Sample for Distillation - Whether the fluoride
samples have been collected by an electrostatic precipitator in NaOH solutions,
or on filters, they generally require some treatment before a distillation can
be made. Organic matter must be destroyed without incurring any fluoride
losses, and large volumes of solution must be evaporated to volumes which
will permit their placement in the distilling flasks. Several precautions
are mandatory when preparing samples for distillation.
7.2.1.1 Filter Paper Sample - Fold the filter paper with the clean
side out and place in a nickel or Inconel crucible. Saturate the paper
with slurry of lime water prepared from fluoride-free CaO. Complete
saturation of the paper is essential to prevent loss of fluoride. Heat
the crucible and contents on a hot plate to remove excess water. When dry,
ash the sample in a muffle furnace at a temperature not in excess of 600°C
until no carbon remains. Ordinarily this is accomplished in less than 1 hr.
Remove the crucible from the furnace, cool, and add 3 g of NaOH (or 4.5 mixed
carbonates). Fuse the contents over a burner for ten minutes, and then allow
to cool.
7.2.1.2 Molecular Filter Sample - Proceed in accordance with 7.2.1.1 for
filter papers, except to omit folding, and thoroughly char the filter on the
hot plate at low hear, prior to ignition. Excessive heat causes an in-
stantaneous ignition of the filter with an attendant loss of sample.
7.2.1.3 Impinger Sample - If the impinger sample contains insoluble
particulate, transfer it to a nickel or Inconel beaker, add 0.1 g CaO and
3 g of NaOH, and evaporate to dryness. Fuse over a burner for 10 minutes
and allow to cool.
A5 Arthur D. Little Inc
environmental science and engineering, inc.
-------
Alternatively, the slurry can be filtered and the filter paper and solids
treated as in 7.2.1.1 and the clear filtrate as follows.
If the impinger sample contains no undissolved solids, it is ready for
distillation. If the sample volume is greater than 300 ml, a 300 ml aliquot
can be taken for distillation, or if the fluoride level is low, the volume
can be reduced by boiling after adding 0.1 g CaO.
7.2.1.4 Electrostatic Precipitator Sample - Wash the contents of the
precipitator into a 250 ml nickel or Inconel beaker with water. Add 0.1 g
CaO and 3 g of MaOH, evaporate to dryness, and fuse over a burner for 10
minutes. Allow the fusion to cool prior to distillation.
7.2.2 Distillation
7.2.2.1 Charging the Flask with Acid - Place 400 ml of water in the
distilling flask and add 200 ml of concentrated H2S04 (sp gr 1.84). Ob-
serve the usual precautions while mixing the ^$04 by slow addition of
the acid accompanied by constant swirlino. Add sufficient boiling stones
and assemble the apparatus. Heat the solution in the flask, preferably
with an electric heating mantle, until the temperature of contents reaches
exactly 210°C. A quartz heating mantle is preferred in order to reach
the required 210°C in a minimum time. The tip of the thermometer must
extend below the level of the liquid in the flask at this point. Discard
the distillate. The procedure, to this point, serves to adjust the acid-
water ratio for subsequent distillations. Before proceeding to add the
sample, cool to a temperature of less than 60°C. (See Figure A-l).
7.2.2.2 Distillation - The sample in a total liquid volume of 300
ml is then slowly transferred to the flask, with good mixing by swirling,
for distillation. Solid samples from fusions can be broken up with a
spatula and the fine chunks introduced directly with the aid of a water
wash. Additional water should then be added so that the total water
added is about 300 ml. In this case, the exact volume is not critical.
With clear impinger solution, an aliquot - 300 ml whose volume is
accurately known must be used. If the aliquot is < 300 ml, additional
water should be added.
The flask is then heated and distillate collected until the temperature
again reaches exactly 210°C. Step 7.2.2.2 may be repeated with the same
acid charge for 2 or 3 additional sample distillations.
7.2.3 Analysis
7.2.3.1 Calibration - Fluoride standards are prepared by taking ali-
quots of the 0.1 M stock solution, adding 5.0 ml of 1 M citrate buffer, and
diluting to a final volume of 50 ml. _£or wide dynamic range measurements,
seven standards spanning the range 10 - 10 M are adequate. The standards
are measured and a calibration curve (millivolts vs. log concentration) is
constructed.
AS Arthur D. Little Inc
environmental science and engineering? inc.
-------
For measurements over a narrower range, certain meters may be calibrated
to read directly in ppm fluoride by calibration v/ith two known solutions.
7.2.3.2 Measurement - The collected distillate is diluted to 500 ml
and a 25 ml aliquot is pipetted into a 50-ml volumetric flask. Four drops
of bromthymol blue are added and, if necessary, pH adjusted to be in the
range of 6.6 - 7.1 (indicator is green in color). Five milliliters of
1.0 M citrate buffer is added, and the resulting solution diluted to 50 ml.
The solution is transferred into a beaker, the fluoride electrode immersed
and the EMF in millivolts (or ppm F if instrument is direct reading) is
read. Concentration of fluoride is read from the calibration curve.
8. CALIBRATION, STANDARDS. AMD EFFICIENCIES
8.1 Sampling - Not Available
8.2 Analysis - The electrode measurement is calibrated daily and
checked hourly. Fusion and distillation are not normally calibrated but
assumed to be quantitative. Tests to date indicate that this assumption
is valid, but field testing is required to substantiate it. The entire
method should be run occasionally at appropriate time using a primary
standard such as NaF, cryolite, phosphate rock, etc. to ensure that it is
indeed working properly in a particular laboratory for a particular analyst.
9. CALCULATIONS
9.1 Sampling - From measurements of gas temperature, barometric pressure
and collected volume of water, calculate dry gas volume and total gas volume
at standard conditions. These volumes are required for subsequent calculations
of fluoride concentration.
9.2 Analysis - Total mg F in the submitted sample is computed from the
mg/liter value derived from the calibration curve as follows:
mi
illigrams F = (mg/ml) x 1000 x total sample volume
3 v b ; volume of sample taken
10. REFERENCES
10.1 Sampling
Al G. L. Rounds and H. J. Matoi, "Electrostatic Sampler for Dust-
Laden Gases", Anal. Chem. 2£, 1955, 829-830.
A2 "Standards of Performance for New Stationary Sources", Federal
Register 36, August 17, 1971, 15704-15722.
A7
Arthur D. Little Inc
environmental science and engineering, inc.
-------
10.2 Analysis
A3 ASTM Method Dl606-60 "Standard Method of Test for Inorganic Fluoride
in the Atmosphere."
A4 ASTM Method Dll79-68, "Standard Method of Test for Fluoride Ion in
Industrial Water and Industrial Waste Water."
11. MODIFICATION FOR MEASUREMENT OF WET GAS STREAMS
The procedure for measuring fluorides in v/et gas stream is the same
as above, except for the following modifications:
5.1.2 Delete
7.1.4 Change third sentence to: The impinger catch and washings
and the probe washings will be combined and placed in one container.
A8 Arthur D. Little Inc
environmental science and engineering, inc.
-------
Figure A-l Distillation Assembly for Fluoride Isolation
A. Heating Mantle (quartz) .
*
B. Round-bottom Flask, 1000 ml.
C. Adapter with thermometer opening.
D. Thermometer 250°C.
.E. Connecting tube.
F. Graham condenser, 300 mm.
G. Volumetric flask - 500 ml.
A9
Arthur Ol.ittl". •!;'.
-------
DETERMINATION OF FLUORIDES IN STACK GAS:
SPADNS - ZIRCONIUM LAKE METHOD
by
C. E. Decker
and
W. S. Smith
U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
Bureau of Disease Prevention and Environmental Control
National Center for Air Pollution Control
Cincinnati, Ohio
July, 1967
-------
/— /O A
v- /-//
;- / /I
DETERMIHATIOH OF FLUORIDES IN STACK GAS:
SPADHS - ZIRCON HM IAK2 METHOD
INTRODXTION
This method is intended for the determination of gaseous and particulate
fluorides in stack gas samples. Particulate and gaaeous fluorides are
collected froa the ease stack gas sample using a combination particulate
- gaa sampling train, consisting of probe, cyclone, filter, and Greenburg-
Smith irapingera containing distilled water. Particulate fluorides are
collected using a high-efficiency cyclone followed by a Whataaan No. 4l filter.
Gaseous fluorides in the stack gas react with a hot gltvss probe to fora
gaseous silicon tstrefluoride, vhich bydrolyzes in water to fora soluble
fluosilicic acid and slightly soluble orthoeilicic acid, and are collected
in the Greenburg-Saith inpingers. Water-soluble particulate fluorides,
total particulate fluorides, and soluble gaseous fluorides are determined
separately. Interfering substances are eliminated by distillation of the
flnosilicic acid from culfuric acid. Chloride interference is eliminated,
if present, by additon of AggSQ^ to the distillation mixture. Fluorides
recovered in the distillate are determined spectrophotoDCtrically at 570 mu
2
by the bleaching reaction of fluoride in a zirconiua-dye lake. (Spodns Method).
Fluoride iona combine with zirconium in ths red-colored lake to form colorless
f)
(Zr Cl,-)' and the colorless fom of the azo dye. Beers' lav is obeyed in
the fluoride concentration range of 0 -1.1*
-------
REAGEKTS
All chemicals used must be ACS analytical reagent grade.
Spadns Solution Diooolve 0.959 gram of U,$ - dihydroxy - 3 (p-sulfo-
phenylazo). -_2,7 - napthalene disulfonic acid, trlsodiua salt (Spadns),
,;) a---i- .v'-u.^U, 7f- CJo.-^^'-
at room temperature, if protected from sunlight.
Zirconyl Chloride Uctahydrate Solution Dissolve 0.133 gram of ZrOCl_.
SHgO in 25 ml of HgO. Add 350 ml of concentrated HC1, and dilute to 500 ml
vlth distilled water. This solution is stable at room temperature for at
least 3 months.
SpadJia Reagent Combine equal parts of the Spadne solution and ZrOClp.
8HpO solution, and mix thoroughly. This reagent is stable for at least
2 years.
Reference Solution Dilute 7 ml of concentrated KC1 to 10 ml with distilled
BLO. Add 10 ml of Spadns solution to 100 ml of distilled water and add the
HC1 solution. Mix well. This solution istused to set the spectrophotometer
zero point and is stable indefinitely.
Standard Fluoride Solution Dissolve 2.2105 grams of dry NaF, and dilute
to 1 liter with distilled water. Dilute 1 ml of this solution to 1 liter.
W^
This final solution contains l.Ojtg/ml of fluoride.
APPARATUS
Sampling Apparatus The sampling apparatus consists of probe, cyclone,
filter, four impingers, flovrneter, manometer, dry meter, and air pump.
The numbers in parentheses indicate number shown on Figure 1. The stainless
steel, button-hook type probe tip (l) is drawn to 5/8 inches so that it will
- 2 -
-------
connect by a stainless steel coupling (2) with VIton "0" ring bushings to
the probe (3). The probe (3) consist of 5/8 inch medium wall Pyrex glass
tube with 28/12 T ball Joint on one end. The glass probe is wound with
25 feet of 26-gauge nickel-chromium wire. During sampling, this wire is
connected to a transformer. The wire-wound glass tube is wrapped vith a
fiber glass tape and encased in a 1-inch stainless steel tube. The end
of the tube that does not have the ball Joint protruding has a nut welded
to it for connection to the stainless steel coupling. The probe connects to
a cyclone and flask (k). The cyclone is described in detail in Reference 5
except for the 28/12 female ball Joint on the arm. The cyclone is designed
to trap particles larger than 5 microns in diameter. The cyclone connects
to a fritted glass filter (5), which holds a 2-1/2-in. No. ^1 Whatman filter
paper. The cyclone, flask, and filter are contained in an electrically
heated enclosed box (6), which is thermostatically maintained at 250 F.
Attached to the heated box is an ice bath (?) containing four impingers
connected in series. The first Impinger (8) receives the stack effluent
from the filter. The impinger is of the Greenburg-Smith design modified
"by replacing the tip with a 1/2-in. ID glass tube extending to 0.5 in. from
the flask bottom. This inpinger is filled with 250 ml. of distilled water.
The second impinger (9) is a normal Greenburg-Sraith impinger filled with
150 ml of distilled water. The third impinger (10) is Identical to the first,
This inpinger is left dry. The fourth impinger (11) is also Identical to
the first. This ijnpinger contains approximately 175 grams of accurately
weighed dry silica gel. From the fourth impinger (ll), the effluent stream
- 3 -
-------
flows through: a check valve (13); flexible rubber vacuua tubing (lU); a
needle valve (l6); a vacuua pump (lT)> rated at k cubic feet per minute at
0 in. of mercury gauge presoure, and in parallel with a by-paaa valve (18);
a dry test gas meter (19)* 1 cubic foot per revolution. The three
thermometers (12) are dial type with a range from 25 to 125° F and have a
5-in. stem. The vacuum gauge (15) is calibrated between 0 and 30 in. of
mercury. The manometers (21) across the calibrated orifice (20) and
pitotneter (22) are the inclined-vertical type graduated in hundreths of an
inch of water from 0 to 1.0 in. and in tenths from 1 to 10 in.
Distillation Apparatus All-glass distillation apparatus as shown in
Figure 2 consists of a boiling flaak, theraometer, connecting tube,
condenser, and receiver. The distillation thermometer should be capable of
neasuring temperature in the range from 30° to 200° C with an accuracy of
^1 C. An autosiatic distillation unit with thermo-regulated shut down
k
may alco be used.
Gas Burner A Meker type burner in used.
Pipettes Volumetric pipettes of the following sizes are needed: 1, 5, 10,
25, 50, and 100 ml.
Spectrophotoseter Thia instrument should be capable of treasuring color
intensity at 570 mu in 0.5-in. aborbance cells.
ANALYTICAL PROCEDURE
Collection of Sanples Sampling is performed isokinetically along a
representative traverse of stack. Assemble the equipment as indicated
in Figure 1 and ae described on Page 2. The heated box and ice bath
-------
with their respective glassware move with the probe. Keep the probe
sufficiently hot so as to avoid condensation. Place the remainder of
the equipment at sone convenient location, and connect by the rubber
vacuum hose. Select a probe tip s.o that isokinetlc sampling will be
obtained at approximately 0.75 cubic foot per ninute. Adjust the sampling
rate to isokinetic by the needle valve (l6) and by-pass valve (l8).
Determine the gas sampling rate at any instant from the inclined-vertical
manometer (21) connected across the calibrated orifice. Convert the dry
gas sampling rate to total gas sampling rate ty correcting for the
moisture condensed and absorbed out of the stack affluent by the impingers.
Generally, other condensable or soluble gases, including fluorine, are not
a significant part of the .^as volume sampled from ir.ost stacks: and they need
not be considered. If the moisture content of the stack effluent, is not
known, determine s^m« from a preliminary nonisnklnetic test of the stac';
effluent. The moisture content is determined from the water condensed
and absorbed by the impingers for a given volume of dry gas sampled. Use
the thermometer after the fourth impinger tc irdicate ice bath efficient;,.
Sample at each traverse point'so that the total sampling time is at least
1*0 min. Determine the gas volume sampled at each point from the dry test
gas meter (19). Obtain the temperature at which the dry gas was measured
by averaging the temperatures indicated by th« thermometers before and
after the dry gas test meter.
When sampling is completed, measure the volume of the contents of the
first three implr.
-------
vater into a sample "bottle. Determine tlie moisture content of the
sampled gas from the initial JiOO ml of water present, plus the volur.e
of water absorbed by the silica gel. Quantitatively '/rash with acetone
the contents of the probe and cyclone into a second sample bottle. Remove
the filter from the filter holder. Quantitatively wash wjth acetone the
contents of the filter holder into a third sample bottle. Insert the
filter into a plastic sample weighing bottle.
Sample Preparation Sample preparatory procedures are as follows:
1. ' Impinger Solution (approximate volume kGO ml). Transfer the
sample to a 1-liter graduated cylinder, and adjust to the 1-liter
mark with distilled water.
2. Particulate Samples.
a. Transfer cyclone and probe washings quantitatively to a
tared l^O-ml beaker vith acetone, and evaporate to dryness.
Dry at 110° C for 2 hrs in an oven; desiccate ar.d weigh on an
analytical balance to the nearest C.I x^. Record net weight
of particulate.
b. Transfer the filter sample particulate to a glass v«lining
dish and dry in an even at 110 C for 2 hours. Transfer tc a
desiccator: cool and weigh to the nearest. 0.1 mg. Continue the
drying process at 110° C until the filter and particulate come t.->
a constant veijht. Record the net weight cf the filter particulate
- 6 -
-------
c. Transfer filter holder washings to a tared beaker with acetone
and evaporate to dryr.ess. Dry at 110 C for 2 hra in an oven,
desiccate and weigh to the nearest 0.1 mg. Record net weight
of the inarticulate.
3. Transfer all particulate supples (a, b, c) to a 250-ml graduated
glass-stoppered cylinder, and dilute to 250 r.1 with distilled
..water. The filter is shredded with the aid of forceps before
transfer. Mix well, and transfer the total contents of the
graduated cylinder to a 300-ml Erleniceyer flask.
!»•» To estimate the appropriate aliquot size to be used in the
distillation procedure, take a 25-ml aliquot of each type of
sample (inipinger, water soluble particulate, total particulate)
and apply the sp_ectrophotonietric procedure. From the air.ount of
fluoride found in the undiotilled aliquot, calculate the sample
aliquot needed to yield 0.5 to 0.9 mg cf fluoride, preferably
closer to 0.5 ng
f^CCr'
Distillation Procedure
r I
u>-- >~
Place UOO ml lUO, 200 ml concentrated HpSO, , and a\>out 2S carborunduir.
chl.ps into the boiling flask, and swirl to nix. Caution - the sulfurlc
acid-water solution should be nixed thoroughly before heat Is applied
.to prevent splattering. Connect the apparatus as shown in Figure 2. Be^^
heating slowly at first, then rapidly until a temperature of lOO C has
2
been reached. The connection between the boiling flask and condenser
- 7 -
-------
must "be separated Immediately after the heat is removed to prevent suck-
back of the sample and for safety reasons. About 300 ml of water should
have "been distilled over in about 1*5 ninutes. At this point, the apparatus
has "been flushed free of fluoride and the acid-IUO ratio has been adjusted.
When the flask has cooled to 120 C, the apparatus is ready for the sample.
Add 300 nl of distilled water containing an aliquot of the impinger
i
sample corresponding to 0.5 to 0.9 rag of fluoride to the boiling flask;
swirl to mix; and connect the apparatus and distill as before until the
distillation temperature reaches 180 C. For distillation of water-
soluble particulate fluorides, take a suitable aliquot of the supernatant
liquid of the particulate saraple,. dilute to 300 ml with distilled water,
and add to the distillation flask. For distillation of total particulete
fluorides, use a suitable aliquot of the water-soluble plus water-
insoluble sacple. To obtain a representative sample, withdraw an aliquot
using a calibrated, sawed-off pipette, immediately after intlnate mixing
of the sample. In no case should the aliquot contain more than 0.9 ng of
fluoride. Distill the sample, as before, until a temperature of 180 C has
been reached. Fluoride content of phosphate rock or fertilizer nay be
determined using these same procedures, provided the approximate percent
weight of fluoride in the sample is known so that the still is not overcharged
Weigh out a sample to the nearest 0.1 ng, corresponding to about 0.5 rr.g
of fluoride, dilute to 300 ml with distilled water and distill as before
until a temperature of 180 C has been reached. Pipet a suitable aliquot
(containing 10 to ^0 jog of fluoride) from the distillate and dilute to 50 nil.
- 8 -
-------
Add 10 ml of Spadns reagent, nix thoroughly, and read the abaorbance.
If the abaorbance falls beyond the calibration curve range, repeat the
procedure using a smaller aliquot.
CALCULATIONS
v . M*.82 (C) (F)
VS
where:
C s concentration fluoride in aliquot, mg
F » dilution factor
VQ * volume of e&s sample at 70° F and 29.92 inche3 Hg, scf
o
X • Pirn fluoride
330° F x 22. k liters x 106
U4.82 =
, _g x 103 E£ x 28.32 liters
** sole g cu ft
^
PREPARATION OF CALIBRATION CURVE f ^
Pipet exactly 0.0, 10.0, 20.0, 30.0, HO, and 50.0 ml of standard KaF
aolction into separate 100-al beakers. Add 50.0, M).0, 30.0, 20.0, 10.0,
and 0.0 nl of distilled ELO reop«ctivcly, to the beakers. Add 10 ml of
Spadns reagent to each beaker. Mix thoroughly, and let stand for 15 niin.
at room tenperature. Dstemine the absorptivity of the reference solution.
The absorptivity of the reference solution should be in the range of 0.82
to 0.85. Then, set the instrument to zero absorbance using the reference
solution.
- 9 -
-------
Plot concentration vermin abBorbance on rectilinear graph paper.
Rerun a new calibration curve each tiae a new batch of Spadns reagent
Is prepared. It is inportant that standards and samples be at the saople
temperature because each degree difference causes about 0.01 ing/liter error.
DISCUSSION OF PROCEDURE
The estimated error for the coabined sampling and analytical procedure io
£ 15 percent. The error of the analytical method is +_ U percent. The
apectrophotoaetric measurements should be reported to the nearest 0.5 Mg.
Aluainvca, calcium, chloride, ferric, managaneoe, magnesiua, phosphate,
and oulfate ions interfere positively in the Spadns method. These
interferences are removed during the distillation of the sample. Chloride
interference can be eliminated when present in high concentrations by the
addition of 5 ng silver sulfate per ng of chloride. Addition of a few
cryatale of Ag-SO, to a snail portion of the sample should be performed before
diotillation to determine if chloride ions are present.
The determination of fluorides using this procedure say be carried out at
any temperature within the range of 15 to 30° C. The inportant
consideration here is that standards and sample should be at nearly identical
temperature, because an error of 0.01 Eg/liter of fluoride is caused by each
2
degree difference in temperature. Color stability after the initial 15-ain.
period is about 2 hrs.
When the fluoride content of tho aliquot is above 0.9 mg, the distillation
apparatus should be purged with 300 nl of distilled water so that no residual
- 10 -
-------
fluoride Is carried over when the next sample is distilled. Keeping the
fluoride content around 0.5 Eg eliminates the necessity of purging the
distillation apparatus between samples. The acid .need not "be replaced
until the accurnulation of ions causes carryover of interferences or retards
fluoride recovery. An occasional recovery check with standard fluoride
canples will Indicate when the acid is to be replaced.
- 11 -
-------
REFERENCES
1. Bellack, Ervin. Simplified Fluoride Distillation Method.
JAWWA. #50:530-6. 1953.
2. Bellack, Ervin and P. J. Schouboe, Rapid Photometric Determination
of Fluoride in Water. ANAL. CHEM. 30:2032. 1958.
3. Standard Methods for the Examination of Water and Waste Water.
APHA, AWWA, and WPCF. 12th Edition, pp. 1U-1U5. 1965.
k. Bellack, Ervin, Automatic Fluoride Distillation. JAWWA.
53:"96-100.
5. Patton, W. F., and J. A. Brink. Ncv Equipment and Techniques for
Sampling Chemical Process Gases. Presented at the 55th Annual Meeting
of APCA. .Chicago, Illinois. May 20-2U, 1962.
-------
Figure 1. Particulate sampling train.
-------
CONNECTING TUBE
12-MM ID
THERMOMETER
WITH J 10/30
J 24/40
1-LITER
BOILING
FLASK
BURNER
CONNECTING TUBE 5 24/40
24/40
•CONDENSER
500-ML
ERLENMEYER
FLASK
Figure 2. Fluoride distillation apparatus.
-------
TENTATIVE METHOD OF ANALYSIS FOR FLUORIDE
CONTENT OF THE ATMOSPHERE AND
PLANT TISSUES (MANUAL METHODS)
12204.01-68T
PART f\ tntrndtirtion (Grnrral Precautions and Sample Vrcfxiration)
PARISH: hidnlion of Fluoride (If'illard-lPinter Distillation)
(»
PART )r\\\ \\o\nt\nn of Fluoride (Ion Exchange)
PART <&fl Isolation of Fluoride (Diffusion)
£•
PART ^f: lirt frin illation of t'lnorule (Titrimctric Method)
PART W: Ih'ii-nnitiation of Fluoride (Sftcctrofihotomrtrir Method)
PART /: Introducf/on tGenrrnl I'rreautionit nnd Sample
1. General Precautions
iNnOIl for mie lir. (Jlnsuwnrc i* wnsh
will) hot determent solution followed
>f the mnrr nun- . . ... • i • • r »>
. a nn-e m \\nrm. (filulc ncid; il is finally
•» in nt lca»l Irjirc }
ringed with distilled wnli-r nnd dried
I *ee rMinluntc it on llir denning nf dis-
tilling (ta'-ksl. AH sampling device",
ennttii tiers, vnlu metric glassware, rca-
pent solutions, (Me. nrc stored under suit-
ohle condition*; nf protection from nir-
horne du-l* and fiinics. nnd ore re«crvrd
for cxclu-'nc UM: in low-fltjoride nnaly-
1.1 Kino.;.,,- i-
nmn clement- nnrl
ami* in \iilualh nil natural nnd tnnnu-
fuclun-d in.i1ert.iU. O HI 1.1 initial inn !>y
eMmi u- Muoride max. therefore, come
from MII h ,-otir» e-> o« *-amplin^ and
la).»ralor\ upp.iraltt*. rrn^enl-. and from
rxpo-urr In l.dtoralnr)- du-t und fiimr.
Carr niii-'l he rxert i-eil in tin- vf|.-c|inn,
purifi* nlinn nnd t<--tin^ of re.i^enl* nnd
apparatus atn| otd\ ntinimal expo-urr*
tn^. "r ciiu-tir fii'-mn nf sample* nrc pr.ut
fir>t ringed with warm, dilute ncid W> or ^*- |n|nl ""..riilp pi-r dclcrn.ina.
(ludrorhlnrir nr nilrirl Dilution, thrn l>0»' arc .cimMstrnlly nhtainrd. Call.
uiih di-lilh-d water onH nir dried under bralion sUindnrds nrr nnalj/ed whenever
clean loHvlinp. Inrunrl rrucil»lr«. u>rd new hatrhr? <>f rt-aprnl solutions nrc prc-
for fusion nf o-ih may require oddilinnnl pan-d. In oddition, one Maiik nnd one
clraning by boiling in 10 prr rent I w/v \ standard drlcrinination are curried
of """I
'™11''1
"'i-fn-'l-rily l-w v, ..... -.« IS
VOL 4. NO. 2. H.LS.
FLUORIDE (MANUAL)
ihmu^h the enliie nnnljtie procedure nact- at a temp »( .">.**•() fitHT (. unlil nil
wilb each «r| nf K> "r feurr samples. II rni I'.'iiaceoii* material h.i-. brni nxidi/rd.
-amplo nrc handled in larger M-|-. the ('.miti o| coml'ii-li..ii of fdlet- nf tlir inrui-
rntio nf one 1 think ami one Mandnrd Inane Icellillo-c c^ler > l\ pe l>\ diem h-
IIIT
"liiuilil l>r iii.iinlaiiiril.
2. Sample Preparation
2.1 Tin- Irrlinii-x nf ^innjili' rrmtcry
nml iirrliaraliiin \\ill tait. ni ili-vi i ilirit
lirli'H. »illi llir -.im|>luif: iiii-llinil ami
cilililHiii-Ml. anil »ill nUi> ilr|>i-ml n|>iin
tin- priii cilurr^ *rlri Ird f»r i^.iliilion
mill iiira"llli-ni''Ml i>f lliiMiiiliv I nlil
prnnf lo tin- finili.iit i*. i.«l.ili|i^li'-il.
!*ant|i|i-^ an- a^vnini'il lo rnnl.iiii lln.xiilr
i fiarlni') finiii- in ailililion lo llir
rnimiionlt cilrotlNlriril inlrl ft-rinj; ma-
lcria!>. Many ilrlail- inxnKnl in llir
ilrlriiiiinali >f -,i~i'"ii- ami (i.irlirul.ilc
lluoi iilrv in llu- almo~|ilirir .mil in
vrp'laliim air ilivi-ii'-^i-il \t\ 1'ark. rt
inp \\illi rlliannlic ^oilinni lit ill M\II)C
nnil ipiiiliii^ t\illi a oni.iH ^a> tl.inu'.
l!.J.:t Id- M- | iitil.il.. m.illiT.
roll.-, 1,-d l.y fir, lii.-lalir |Mi-.i|>il.ilii.n.
from lln- vnifai-i- of Loll, ,-l, I,-. VM||I
I lie ;i id of ,1 i ul'lu'r |iii'n .dk.dine ;md r\ :I|HM ;il»- I" dr\ne<^:.
'2.'2.\ Inle-t.itrd ^nii|ilr.. ic. lllnxr
roiil.lining Imlti ^.1-1 mi- ;md |»,irtn til.ilf
llii.n i.lr-. ulii.li h,i\r l>et*ii roll*-rird on
^l.i--. li!"'i lilh'iv ;irr in.I ;iiiH-n.d-lr d>
fusion: filing iin- Inm-fcrml diie. |i\ !•>
tin- di-lilkUMM, ll..-k. Inl.-^-ral.'d -,.i.,|>l,^
cnllei led in intjun^tTv ,11 c t Tiln-frr ird |o
lir.iketx tiKlile of n'h kel. jiljlimnn. oi
otlrer n--i-I.ini Irti.iK. ev,i|u.iiih>d to
. . .... . . . . til \ ne—- 111 I he alkaline condition, nnd
al, (!•>) nud nutoiiiniii- appniatu*. tor . • . . . , .,
, v . . . , ! the le-idue n-lied if m^.inu mailer »•>
I he ilelci m main MI nl nml Men I 11(1110-
spheric hvdro-:,.,, |luo,idecomn down to I>M""''".; - ... ,
0.1 ppl. has «!.,.. IM-.-II l\«- (In- cold
melt in a few ml of \*.ilrr. :i.ld n frw
drop- of .'lit pel ecu] h\dro^cn pemxidr
to n\idi/c Milfitcs lo Milf.ilr-, mid hoil
2.2 /'m/M-n/.i/e Fln.'tidt'.i
2.2.1 rarliculalc maltei eollceled
in (lir «amplin^ ^enerall\ require* fu-ion
w ill) -odium h\dro\nlc for roii\er-ion
inlo -olul'lc Lino piior In M-pntation nf
llunride |,\ \VillaidAVi,,lcr di-tillnlinn
(22). Tin*. Ircnlmenl 1- nl-n nrcc—at\
for inntci i.il" conl.iinin<: fluoride n--
socialed «ill) aluminum, for malcri.d-*
hiflli in silica, and for mnn\ mineral-.
2.2.2 Trnn-fer (he s-mple-hcaiin-
jiaper filler In n rc-i-lanl i rucihlc. c.^.
pl.it ilium, iiiekrl. or liienncl. nioj-h-n
wilh uali-r nnd ntakr nlkalinr li> phe-
nnlplilliiilein utlli .-pee in I lou-iluoi idr
calrimn oxide.t Aflcr c\ apor.ition tn
ilr)nes.-*, i^nilc I he paper in n muffle fur-
* Thr linld fjrf niiinlH-r^ in pjrrnlln»P!i re-
fer ID tlir li"t nf rrfi'rrnrrn apprnil'-d to tlli*
tAvjrlililr on «perij| onlrr from C. Frnl-
rri.-k Smiih Chi-niirjl Cn.. I*.O. IM.I 2-WW.
Colunil.uv Olitn 43223.
The -amplr solution i*- thru rent I \ for
i-nlnttmi of fluoride.
2..'i (tHM'twf Fliiotidr.t
23.} Dry Collcrtor*
2..1.1.1 '1 real filter papers imprc^-
naleil \\ilh c.ili iitm-1'.i-ed fixative .i^enl>
n* dc-t rihrd aho\ c f»r par lieu I ate
fluoriilc-. CM cpl dial can-lie fii-nui of
llic .i-hcd rc-idiie i- not iciptircil.
2.'1.1.2 Killer* impiequaled \\ilh
siduldc .dknlio arc IC.H lied uitli *alrr.
Kvapnrnte tlic \\a-hin^< in a MiilaMr
vc^-el and maintiiin in an alkaline con-
dition durinp rciluction to a volume con-
APRIU Ifit
-------
trim-ill fur lln> «iih<>eil
lilt1 folulion lo de-tio) e\eev peroxide.
2..TI.2 <:H«-.MI« flii'MiiM-i eolleeted
on plusH filter fillei> eannot lie Irarliii." uith H.iter.
'lian^frr Miili lilti-i* dim tly I" the ll;i-k>
in hhiili 11 \VillaidAVintrr 'H.-lilhllimi i*
I.. hr .ondmled.
2..1.2 \\Vl <:»ll«Ttnrfi
2. .'1. 2. 1 Trnn-fer n sample colleeled
in w.iier or alkaline Milulion In a snil.'ihly
«r/ed \*"->-rl. make alkaline lit phenol-
plil hair in « illi sodium hydroxide, and
eviiporatr In llie de-itt'd volume. Treat
the solution uiili 3') per ceni Imlrojien
peroxide niul destroy tin: exee>s per*
nxidr liv hoilin^ hefore prni redinp with
llir ixdation and determination "f
fluoride
2.1.1 Itedmv ll.r «ro- >p.-ei..irn to
inana;;enhlr --i/.f for mixing hj u«e of
hand -hear-* or. in ihe ea«-e of dried ma-
terial-. n \\ ih-\ nilliii^ mill. Tnke a
•mall porlinn i I" ><> 2."> K'l of the mix-'d
ypeeimen fur delerininati«n of ni'M'-liirc
In o\en-dr\in» ;il '.'.()' C for 21 l» -III hr.
2.1.2 \iljuM llir ul of Mi.itrri.nl
taken fur fluoride de term i nation ne-
cording to emidilion of I he ppreiinrn :
KM) to l.r>(» v t.f frr-li or fio/en vepelo-
tion i- >nti*>fnetory. uliile for «Ir!erl ma-
ti-rinK. >u« It O'- eurrd ha), dried leaves.
slrau, eti-.. a .11 > j; portion i« adequate.
2.*l..'t \\Cipli lite ^uiiiple into a re-
5t«l.inl M-**I'|.VV mnke alknline |o phe-
nolphihnlein hy nddili..ti of low-fluoride
ealeiunt oxide slurry, and nuiiiilain al-
kalinity during evaporation lo .")(»" |o MID" C in :m «-|ee|ri- fnr-
nai-e re-er\ed for the ignition of lou-lluo-
rifle malerials. 'i hr ash «l Id !>•• while
or pra\. indiealinp: remnval of organic
mailer.
2.4.4 \Vhrn the ie.li has cooled,
pulverize il and .oeiape all material front
the di-h: mix and determine ihe net wt.
Store in a li»hl|y ."toppeied Inrllle.
2.-l.r> Ii ler to efTeel iptantilat ivc
release of fluoride eoinhimrd \\llli silien
in many v,iti«-liea of vegetation, fu-imi
of the limed-a-h \\ilh sodium h\dro.xide
i« reipiirrd nnd is routinely pet formed
on all \e^elation spreimen" (!.">. Hi).
Transfer appi o\imalel\ one ^ of a*-h
into a tared nirkel. Ineonel. or plalinilin
eriM'thle nnd tvei^h ai rurale|y. Add
ahont S p of indium hylroxiile pellet*.
cover ihe ve>M-l and fu>e the mnleril^
for n few min o\er n ^ns hiirner. After
eoolin^ ihe melt no|e it- eolor: a hlne-
preen color imlirutes ihe pre^'in-c <>f
man^nnese nnd treatment with hydrogen
peroxide i-* required as de-nihed under
rrtirrifnrf fnr Sinfilr l)i,\lillatinn, }''»*£<••
Inlion ,-tJi. Disinle^rate lite melt \\ilh
hoi water, wii-liiiif: dou n tht: lid and
nails of llic erueihle. Itescrvr ihe re-
sulting material for isolation of fluoride.
tt Inc.'iir-l r. Wl'i Dixie Iliphwu). Clark-
-Inn. Miclii^.ni, jrr «.ili-f.i< lory.
3.
PART {(: Imilnlinn ilf fluoriile (WiUard-Wiiiltr Dinillnliiin)
1. Principle of the Method silica. Fluorlo • is sip.im-ili'.iilk'd n^ the
The prepared sample U l.> lrl.lli\rl) II.'. "I ilit.'l (.-rilip
MlJllfl i;il>. Illnl r.inljillillf: Illltilidi- ill
f,,,m. frniii ulii.li il i" ,-i-il> M|M-,.,I,..|.
m:i\ I lijn Inl li< il -in^lr .li-l ill.il iml
fri-iiipi-ii-hli>iiitr.-ii-iiliil IX". C. >.inipli-«
riuilaiiiiii^ apiui-'-i.ililr .-inilv nf .ilitini-
niitn. IMIMIII. ui tili>-:> rf<|iiiic n lii^lirr
triii|t niul l;tr;:cr Miluinr i>f ili~lil!;ilc for
'jlljMlil.itixi' M-IIIM-I\. In llii* i .1^1' a
|IIi'lirinn;n V lill.ilinii fl'Mil -Illdllir
ncid ill lfi.'r (! i" i•iiiiiiiiiinK n-i-il. l.,ii^r
anils nf rlilntiilr iix' si-ji.inilnt li\ jiir-
<-i|>il;iliun uill, -iKr, jH-l.-l.l.il.il.- [..I-
ln\\in^ iho r>i->l ili^lill.ilimi. Sin.ill iiinl.^
nrc In-Ill INK It in llir -r.-.ind ,li-l ill.il i,,n
friun (irrclll'iric nriil li\ ittldiliiul nf silver
plTi-liinnilr siilutiim In llir ,|i.tilling ll:i-L
4. Precision and Accuracy
K.vmi-ry .hila |..i llir \Vill.u,l-\Vi,,l,-r
ilislill.-iliiin. us ^i\rn in llir lilrrnlnir. mt*
dillii nil In ilissni-j.nii* froin in.irriirnrirs
inlu'rcnl in \iirinns nirllimls i>f s;im|i|(.
prf-piuiiliiin anil ftn.il c\ iilnnliiiti nf
(Iniiriilc. |(IM*IIV«TV d.iln fimn fii'ld sain-
plrs arc fnillirr <-iini|ilifiilril )i) \inial>il'
ily of inlfi fi'i in^* >nl>slani-i's nml i«in^c«
of fltioridf cnnlaiiiril. In pcnrnd. ir.
covnrirs .imji|r coin.
|insitiiiii find llnoi iilr ran^c. nii'an rr-
oni'lirs (if jpjiroviniiilrly ')') prr ccnl
wild slanilnril dr\ i.ilion of nliotit 2..~» jier
cent. lia\r IMTII rrjmitrd (20).
5. Apparatus
5.1 Slruni Gcnrralnr (Figure 1) —
2(K)0-inl rinrrnrr fla>k made of heal-re-
«i?lnnl ^lu'-'i. Ench flii.sk is filled with
a stopper having at trust 3 holr.i for in-
srrliti^ ln-.il-ri-si-.i-mi ^\ ,*•*
lulling. 'I'liinii^h niif of llir :;hiss ln|..-s.
Iirnl at li^ilil an^li-s, .sh-.iin i* inlriMluit-d
inlolli.-ilislillin- ll.i-k. TlM-M-o.n.l lulv
is a -Ic-.im n-li-.i-i- lul.i- iH^. 1.1)1 uliii-li
tiniirnls llir sir.iin lut-ssitrc. Tlir Mii.ill
|iii-i|. nf rilMiiT lulling wliirli is -li|i|n-(l
OM-I llic cnil of llic slt-.mi 1,-lr.i-,- Inl'i- is
il.,ln|..-.l s|MI| .|,Mi,,;; s ,|, ilistnl.ltioll.
'llic cl.il,I ml.,, is a >.,(,•!> liil'f. If ilc-
si,c.l. ..Ili.-r lul-cs n,.,, I..- a.l.lcd to |..-r-
mil lln- sii-.im ^ciii-riiliT In suj.ph n
max of .'1 ilisillli,,- n.-isLs. Am -,nl:i|.lr
Ili-.llin^ dc\ ii c in.l\ t.i- l|s.-.|.
.-,.1! ll^Hllin:: r'/..-a- lKi«ur.- l.lti —
A 2.".Hn.I nioililii-d Cl.ii-.-n lla-k mailr of
lic.il-icsisi.inl ^l.iss. 'I'hc an\ili.ir\ neck
of ll.is M.isk is .c.,1,-,1 and lln- ont'cr end
of ll,,- si,I,- i,,!,,- i. |.,-,,| ,|,,um>.ir.l .so lli.il
il in.n lie .ill.ii lied I., an li|.ii^lil con*
denser. Tlic lie used.
,ri.:t l.i.-l.ip C.m.iVin.-i ll'i^nie I .C P—
he.il-lesisl.,,,1 pl.i-s. .-flMI.!.!!!. j;nk«-l.
."). I >Veiiwi lirlni.tr Titlir iKi-nre 1.1)1
-- Ore >/i'«ni tti'iirriilur. Seeliini ."v I. I
."i.-i 7 lii-iuii'iiirtrr i l-'ienre I.Kl- Par-
ti,d Immersion 'I lienni.ni'-lri liax inj: a
riinpe of II lo 2HII C.
.i.ft >'n;./.fi/; I'lulf iKi^nrc l.Kl —
met-I. cei.imie. or liard .is!.es|os l.oartl.
*l lit* |.l.r-- sji.ill li.ixr a prrfr. tly round
."i-rni linle in "lii.li llir ili-lillin^ ll,l-k
is pla< ed as s|ioi n in i*-i^nrr 1. The
Claisrn llask nin-l fil udl in the S-cm
hole s,, ||,.,| ||,,- !l.,.k ...ill. al.otr Ihe
liijllid le\el. is no) sultjectcd In dircel
heal. |-'.\.essi\e heat on llie wall of llic
llask callst•^ the liliernlin^: ncid lo he
dislillnl.
5.7 Rrrrirrr I Fi^urr l.(J)—2.iD- or
50().|iil volumrlric lla.sk. or s)(X)-ml
herikcr.
5.H Safety Tuhr (Figure 1.ID—A 6-
nun 00 heat-resjsiant plasi inhinp. 6<).
APRIL. Mtf
-------
cm lurijj. onr mil nf uliirli i.i 1 1-111 from fur flank (.•iiniiifliniui. made from natural
Ihe bollom of lite Mmm "rnrrntor fln«k. rulilirr. Lrnglh« tif rul>l>cr tubing nhall
5.9 Kuhbtr Tuliinn I Figure 1,1)— lir kept as .-liort as possible.
A - STEAM GENERATOR
B - DISTILLING FLASK
C - CONDENSER
o-STEAM RELEASE TUBE
E - THERMOMETER
r - PLATE
G • RECEIVER
M- SAFETY TUBE
I - RUBBER TUBING
J • SOFT GLASS BEADS
K - BOILING CHIPS
Figure 1—Apparatus for HUtillalton of fluorhlr.
VOL t. NO. 2. H.LI.
FLUORIDE (MANUAL)
.•>.!() .Si.// Clnu Ill-nils I Retire 1 J I —
.'{•linn ili:un. fin- u-c in the (li'-liMiti", lla>k
In |ire\rnl Mi|>erlieatin;: unit In supply
..ilie.-l Inrllie fnrmation n[ llnoilirir ai-ic'l
5.1 I /'oroiM I'miiifC Slunr.i or Uniting
(.Vif'jK I Ki^inc l.K I.
5.12 I'lin-li, •.»/, i l-'i«iiri- I.I.I in i ..... •
ll.il -I. MIII -ii|'|>l\ front llir (imcr-tlcr.
6. Reagents
(i.l t'ctt-liliirif Afiil (70-72 per cviil
li\ Mil -Onirrnllalrd |iri( Idorir nriil
(ilCIO,).1
r, ,,f ,) in 101) ml of
Malrr.
fi..'l .W/iiMr Ai-iil 1% JUT criil \<\ wtl
— C.iilli-i-llll:llril '-Illflirir iK'ill (II..SO,I.'
d. I II alft All rc'fiTi'iii-cH In Miili-r
.-liiill !.<• iinili I-.IIMH! in iiu-uii ill^lillcd (ir
ili-inni/i-il «;itcr .|i*;iiu ^cnct aim aliout
l\\(i.|liiid- full •< in
di.-ini lii.lc in llir jil.ilr .ind ri.mirrl llir
(M.llrl I,, n r.,,,drn-.T.
7.l.:< liin-r llir -id.-. ..[ llir lir.ikrr
(ir rillriHr \\tiirli ronljinrd llir maniple
uilli .Vl ml d[ i"-,, lilnrii- .irid i 7O In 72
|.n (cnl I - anil add I nil .if >.il\rr
|irn Idcl.'llr. Tlan-frr llir rill-ill^» I"
llir ,1,-lillm- II..A liv iiir.HK nf a -ni.lll
(linn,-I all.n lir.l l<> llir -\:-;tni iidrl lulu'.
Kill-,' llir lir.lkrr ,.| crip ililr » itll o.llcr
,-nid add Ihr rin>in-. I., llir ll.i-k. Mix
llir r,.i.|,-n|. ..[ llir ll.,-k l.v p-nllr -l.A-
in^ ami .ill.i, li ill'- lla-k In tin- Mr.ini
p-nri.ilnr. I'l.ii r ,i 2.">M.inl \ i.lnnirlrii-
ll.i-l. niidrr llir i i.iidi-ii-ri In rrrrixr llir
di-lill.ilr and l.'-pin hrrilini; llir ~i>lnli»ll
in llir ll.l-k. Krr|. llir |iilM In n, I in |.larr
nil llir .-I.-am inli-l Inl.r until llir ronlrnls
..f llir di-lillin^ ll.,-k ir;nli l:r> C.
7.I.-I. Krinnx- Ihr pin, I k (in llir
^I<•.|||| inlrt InU- and |il.n r il nn llir ^Irani
rlr
,.!>.- ..{ il,.
Mainl.iin llir di-lill.ili,in lrni|i al |.T> -•.
2 C. Snill llir , i.nlriiK .,( Ihr di-lillin^
ll.i-k flri|n(iilK In minimi/r ili-|i-i>i;i<>n
ml llir lla*k ».dl «[ .in\ ^ilirrnil^ ir-idur*
llial niivlil irlain lln,>tidr. Aflrr rnllcrl-
ii>(; 2"ill nil nf di-lill,ilr during a pel ind
nf all,ill! I III. rr vr llir |iini III i.rk
i liMlmxi'lc
id a fr
Irt i.f .-.
(if |ilirnul|ilillialrin iiuliralur >nluli alkaline
nl ;il I 1111 ir:*. A i Id a |nrrr nf | MI in ire t<>
|nTiiiil frrr liniliii^. mill liciit tli<- u.ilrr
ht huiliii-. Kri-|> ill.- -I'-.-im rrlr:)-'- lill'C
dj-rii al llii* liinr ;ind jthicc a piiu In o« k
mi tin- Hr.iin Mi|>|il> tul>in<:.
7.1.2 liilriMlurr tin- vnin|tic iiilo n
Clai*n> .li^hllii,- lln-k roiilaiiiiii^ Tut-
or !-ix •ti\;i** IH'IH!-. \V:i"li ilii\\n llit- viili*-
df llir M,i-k uilli \\alrr and lirin^ llie
vnltiitir Ifi ."tO |u 7r» nil. llu- Ir--cr \nltnnr
Iwin^ limn- dr-iralilr. IiiM-rl in I he
main nrrk nf the (task (hr rul'l"-r s)M|>|>rr
1 Arii
.,1
II
on llir Mr.ml inlrt llll.r. I )i-rc.nnr< I llir
rulil.rr lulling (mm llir Mram inlrl InKr.
and ,li-r,mlii liralin^.:l
•-•Cimli.in. \\li-n u-iiu pcnlil'^iM- ..( id.
ill,- i I |M,-. ..nn,.,,- -I,,.,,1,1 I,,, uk-n. II..I
(dlicd p,-i( lilt-lie .HI,! ni.n rr.nl r\|>!,"m*ly
HJlli ic,luring •.iili-t.nicc*. *in li j» itii: inir
in.illrr. Tic irfnlc. il i- HJ-C In -rr tli.it jn\
or^.i,,:. ,,,,,11,-r in lip- -,ru|.l- i- ,l..l,..,r.| in
ll..- .,-!,,„; pr ,.,,.., I.. ,li.|,ll,t,..n. I'rr.
r.lUll,,,,- I,.I l!,r u.r ,.f p.|(hl..M,' .(lid -If
H%lll.llilr in "I ll.lllil.ll Sjl.K D.ll.l >h.Tl Mi-
ll. I1. i,l,l..ric A, I,I N.l,iti-n." pull li. In-.! l»
the M.nnit.it lurinc (.liemi-t.' \—o, ijlirn »t
ill.- llnlr.l Sl.il,. (I I).
M:,,,,ll,,,,. Tile ,li.t(llinL- Hj-k> .hctlld lir
ele.nird u-inn ,'nlv j |,[u-li .111,1 ,|i-lillrtl »J
t
-------
7.2 I'rnrniurr for Sin/fir Diilillnliiin,
Vegetation A.\h
7.2.1 Transfer llir distinle^ratcd
Midi to n Claisen .li-lillin^ lla-k. as ili>.
scribed in s.-elimi 7.1 fur Mi*,-ellaiie,,us
Mal'-riak
7.2.2 Ilinse llic «idr« of ill'- crucible
in ulii'-lt the fnsinn uas made, uilh 5iO
ml nf |IITI him ie nriil 17(1 In 72 per
cent) :< ;u,,l .-,.1,1 1 ml ..[ siKrr per.-III...
rate solution.
7.2..'1 If llic s-ample contains manga-
nese, a.1.1 .-ull'ii-ii-nl 12 In 10 drops) .1
per cent hydrogen p.-roxide solution In
llic contents ,,( (III- di-lillili". Ha-k |n re-
duce manganese dinxidc mid permaniM-
nali-« (6).
7.2.4 (lurry out ihe dislillalinn as-
prcvinusK des, rihed. except that n ."><]().
ml vnluinetric flask i« used a** icecjver
anil filled with distillate durin", a prrini]
of about 2 hr.
7.3 I'ron'ihirc IDT Ihinltlc l)iitilllillin^ fl,\-l. In llie fleam ^eneralnr.
I'laee a 4(111.nil lienker uinlc-r llie enn-
ileiiM-r and In-^in hentin^ (hi- ilislillin^
lla^k and >leain ^em-ialni. keep (lie
pineln-nik in phie i the >le.nn inlel
Ilil'i- iilllil llie r..nIt-ills ..( llie cli-lilliiij;
(l.-l^k u-aeli |fi.'i" ;l f," (1. Sl^ill cnlllelllfl
<»f tin- lla--k as i-eipiiied In prexeiit ae-
einiinhilinn nf in^nlnlile inalel ial nn llic
ualk nf ill,- lh,-k ahnve Hie li.piid level.
G.lleel id.niit :!7"i ml of di*lill.-ite during
a |H-ii..d ,,f :,l...iii \\'.. I,, 2 hr.
7..-I.2 Add -ndinm livdnmde s,.h|.
linn III! f 'lilei -I In ill,- dislillale llnlil
alkaline l.y pliennl|iliali-in indii-alnr.
Ktllpnrale llie di.lillale In ID In IS ml l,y
healing ln-lnti llie liniliii^ pninl.
7..'I..'I 'I'll,- enneelilraled ilislillalc is
redistilled frtinl pereldnrie aeiil as di-
reeled under /'rm-e'/Hre fur Single l)i.itit>
tntiitn. Small ipiatililies nf elilnridr are
fl\c-,l in llie distilliii,; Husk l>) llie ad-
dilinn nf 1 ml nf silver pen-Morale pnlu-
linn. A 2.*il)-inl ipiantity of distillate is
cidleeled in a volumelric flask.
8. Calibration and Standards
9. Calculation
10. Effect of Storage
11. References (See Port VI. Sec-
tion 11.)
PART yt\: Itulnlion nf I'lunriilr (Inn Ex
1. Principle of the Method
danger of contamination on prolonged
cxpnsure iff 5nlulinn.i during evapora-
tion (12).
The sample i* freed nf interferences
}>y preferential sorplinn on an inn ex-
change rr«in, fnlloued by ih-snrptinn of - - * -
n -i n i i i • Z. Range of Sensitivity
Huiindr in a «mall vnlumc ol (.-luting '
c
impinpcr- or huhliler-ctillectinn media adap[(!(l to ipmntities of fluoride in the
may be achieved willioul the attendant low-ing u> /jg range.
70
VOL 6. NO. 1. H.LJ.
FLUORIDE IMANUAl)
3. Interferences
Inlet-fet in;: ealinn-' mav lie eliminated
liy snrpliiMi uf Ilii'irid i an nninn ex-
eiian^e te.in. l-'lnniide is Mien clnlcd
willi sodium h\dl'n\ide .soltilion.1
4. Precision and Accuracy
iNel l,-io\elie- (,.l ipl.mlilie- nf Illli'r-
ide .If 'JO ,,- MI II,.,I,- s|,nnld l>e ivilllill
' ."i per liir C.olitiuii - |)i-
mensiniis of the column are nnt erilieid
and main t\pi-s. axailnlde fimn sup-
pliers' sloeks. ale nsalile. A enlnimi
made nf 1,,,,,,-ili, ale j;l;i" lill'in^ ID mm
II),in,I Idem Ion-. Inn in-: a frilled j:lass
di^e fused inln tin- cmislfirled liase. and
a rc~et\nir of ;,|,,,,il Mill ml tapaeily
al llie lop. is s.ilisfarlon. A s|,ort pieee
nf pol\vin\l i-liloriile lnl>in^ allai-lied |o
llie l.ollom and elosal.le »illi a sercv,
hose elamp pel mils adjustment of fln\\
rates and prexenls <-ninpli-le diaina^e nf
liiplid from the eiillimn.
.1.2 (limit; Sin./. IHiilf Sand of
— fid | 120 li. purified liy hoi exliae-
lion uilll 20 per eent sniliinn h\dro\ide
Millilinn. folliiMed I') hoi 10 per eenl
h)drm him ie acid solution, is used as- a
ploleeliie lajer al llie Inp nf llic resin
bed.
6. Reagents
6.1 A iii'dii f,\r/iaii£c Kesin. Inter-
1 \\ticu inlcrfciciic," arc |irt-«,.|il in r.ili'uiir
us Mi-ll u« .iiiiniiic fnrm-, |MI||I in.iy hr rriinivcil
Ity ii«i- nf ii r.lrdn^ly li.i«ii* anidii rxi-lijiit:c
refill. Tlii-. is ,tc, dinplislicit liy ciiiivcrsiiin of
riilimis intii stniiicK-tii-ld roniplr* nninnv
Hliilc ill,* wc.ikly-h'-lil flutiriilu inns ore i|ti.inli-
l.ilix-1) .-liil.-'l (11,111 llic riiliimn (10).
medijle-ltase o[ llie granular aliphatic
pol\ amine I v pe:
Dunlilc A--I I. A.|:t {Diam.md Alkali
C,.. I
Ion.ie A :<02 llon.ie Cliem. Co., Di\.
,if liiller n.mdler Corp.)
I'l-linnlil A ll'eimlitil Co.. I.I,I.. Div.
of Killei I'f.miller Corp. I
HeMii 2n."i lOlll I l-'islicr Seienlilic
Co. I
Me.li si/e is mil iiilieal Imt. alonp willl
eolniim diam ai'd hei^lil. is a faelor in
eonliollin:: II,,u rale of solul ions. Mesli
si/es of (.11 i ion or - im -I.2IKI arc
ll-.il.le."'
d.2 llM/iiH-lilnnr A,-i,l. 2.0 N and 1.0
,\ s,.|,,li,,,,..
6.:( S»/miii //ii/rniiWc. 2.0 N. O.I N.
and O.lll l\ s,,|,,|i,,,i«.
7. Procedure
7.1 Prepare (lie K-sin enluinn h« add-
ing a fei\ ml of \\aler to tlie ehii'in.ito-
firapliie lube, llien a s|ui ,\ ,,( resin i I : 1 I
in ».ilel. \.l.l Milli'i.-ni -luriA s,, |],;,1
»li,-n III,- ie~in lias s,-;i|,.,|. n l.nei IO In
12 cm in hei-lu uill r It. Level llie
resin I.ed li\ luirlin- 'llie Inlie. and
before III,- < -I lexcl li... dropped below
llie MII(.nc of lli.- I,-in. add .1 2-cni Liter
of ipiail/. sand. \\a-h llie Ir-in »illl
200 ml ,.f 2.0 \ Indioililotie aeid -"lu-
ll,,n. riiiM- ullh Killer: u.i-h uilli 2OO
ml of 2.0 ,\ s,,,lin,n Indioyid Inlion.
and. lin.ilK. MIL,- itill, Jim nil »aler.
7.2 I'leeondilinii llie n-in b> ji.is.in^
Mill ml nf a solution emit.lining about
1 ppm li\ drolltmrie aeid and an cijual
\iiliiine eonlainiii^ I ppm smliuni lluo-
ride tliroi|d|i i|)r < liil of 0.01 .\ sodium lodrnvide
'• >i-|',ir.Minn o( (luiiri,],- in.iy br arliir\rd
hilli olh'-r ri-sin. an.I M|.]>ru|irijlc rtuliiiK
s'llininiis: l,.r rx.ini|ilt-. O..HCI 1-.X8 in ihr
.ict-tjl': furiii may lir u>-r»l »ilh plulinn by
•i.iliiiin art-ljle solulion ( I I ).
-------
solution. Discard ilu- rliiali-. Tin- tt-fin
iin,,« r.-ad> [,,r n-.
7.3 Aei.lify lli,. sample iinliilinii l.y
addili f I).'. ml „[ I ,N lu,l,,,,|,l,,,i;
in-ill |icr HIM nil. lull :nlil re lli:in
,'t ml .,f I ,\ I,;,!,,,, I,I,,ri,: a. id per
•ample. lteinn\e. I.) nitration, any
snli.U rem.-iiniii;: in lli,- xm.|,!,• after
QUlllI'li-atiim. Pa1-*- llie --ample •.nllllinn
ihrnn^ll the re-in enlumn nl n r;ilr nf
ahnnl Id ml'min. FnllniM-,1 liy n water
rinv nf .1 few ml. Klule Ihinridc uilli a
25-ml portion of O.I ."N sodium liyilruxiilc
snlulinn. fnllimcd liy a 25-ml |iortii>M nf
0.01 ,N -odium hydri.xideMiliilinn.
8. Calibration and Standards
9. Calculation
10. Effect of Storage
An inn exehan<:r rnliiiiin niiiy In- pic-
served iiifli'flnitrl) if tin- resin i.-* cnvcred
*\itll wal'-l. Hefnle till- riillllllll i* IT-
ll-ed. ;i n-cnu-rj li-l vlninld I,,, made Ii)
pa—ape nf ' a mi-a-ilii-d ijiuuitily <>f
M.tml.,1,1 Humid,- -oluliim Ihrouph the.
column; 2IIO nil i,f neiilial Midiitm lluii-
ride snlutinn. ill .1 rale nf ID nil/niln. is
Mi~Mi-.ini. The! ipianlily nf (hmiidc
;iilili>il -I,Mill,I apprntimate ||inl expected
in llir S''itn|ili'. Munriilc in clulril, as
dcM-rilied uniliT I'rnrciliirr, anil del'-r-
niiiied )>} llir tni-lllnd srlrrlcil fnr cvnlu-
tilinn of !-;nnplc3.
11. References (See Part VI, Sec-
tion 11.)
PART^V: Imlnlion »/ flnitriilp (Diffusion)
1. Principle of the Method
An alii|imt nf tni: prrp.'irrd ^aiiiple
i* rni\ril wild a vlmn^ acii], ^rntly
liratnl in n yralnl rnnlainiT. and llic
lilirrali'il liidrn^rn flunriili- is alunrlidl
hy an alkjli (7,17,19).
2. Range and Sensitivity
(Jii.-inlilirc nf fluniiilc frnnl alinnl .10
Pg In a feu trnllm nf a ftp may lie utrd.
In rnntinc wnrk. (dank;* range from 0.5
Pi! In (1.0 ,.f.
3. Interferences
Int'Tfrrinp nialrriaU llial vnlalili7.c
frnni arid inrditiin inu^t !>r rliminali'd.
Sulfilrs arc nxiili/.rd tn sulfatc liy jirr-
liniiiiary trralnirnt uilli HO |>i'r rrnt
hyilrugi.'ii prrnxiili- M>lulinn. Itdnlivrly
larpp anils of rlilnride may hi- fi.\rd in
llip iliffusion vrs^rl as «ilvcr chloride, l>y
nilililinn of 0.1 In 0.2 g silver pcrchlo.
rale (n the sample aliqunl prior to dif-
fusion. Samples hif;h in carbunalcs re*
ipiiri* caution upnn actilifiiMlinn, In cnn-
Irnl i.'ffei'XTw-eiirc.
4. Precision and Accuracy
Itrrnverirs frnm five <>i)dium fluoride
standards rnvrrin^ llir ran^c 4 /i£ to
20 /jg !•'-, varied frnin 'J7.S per mil to
102.."> per i-rnt: average W.4 per
i-enl (17). liy a ,-li^lilly nioclifi,-,! ireli.
nir. slandariN ennlainiii^ 0.2 /^p. O..r> ;ip.
and I.(I ;-p K' I five n-pliriilr.i i>f i-nrh)
yielded ieen\erie5 nf 9t per eenl to 101
JUT eenl: uverapc 'Jlt.l per cent (7).
5. Apparatus
S.I Mirrmliffiisinn /)i'.«/i—Dispnsahle
pla-lic I'i'tri 'li-li. '!"• mm II) liy I! mm
deep. (Olilainalde fnmi Millipnre Filler
Cnrp., Itedlnnl, Mn«. 017301."
«Tlir C..n»jy Micrmliniivioii Di^h. with
Olirink niiMlififatinn, ni^ili- nf nirlhyt melha-
(trylutr rrsin or similar )il.Mic i:a|<3hle of
willi^lanilitif; trinp^ U|i In MI" ('., niuy al*o lie
IJSrd.
72
VOL. 4. NO. 2. H.LS.
FLUORIDE (MANUAL)
5.2 ttrrn—A thermoMalically con-
trolled oven eapalde nf maintaininp teniji
with -' I" ('. in the 50° to Ml" ('. ranpe.
5.3 /'//»•/. d/o/ir—Capacity 0.1 ml.
0.01 ml sul'ilivisions.
6. Reagents
6.1 r.-i,-hl,»ir nriil, 70 In 72 per
eenl.'
d.2 .S'r'/eer ncrr/i/nrn/i', anhjdrou*.
ft.3 .S'i;,//»/M Ay,/r*M'i/e. 1 N alcoholic
snlntinii Hi^.-nKe -I p Midinm Indioxiile
llN'adlll in 5 ml of water and dilute lo
100 ml »ilh elli)l-, mclhyl- or l-'mnmla
30ilenalured alenhnl.
7. Procedure
7.1 IM.H-I- 0.05 ml nf 1 N alcnhnlie
sodium h}drn\idc solution on llie center
of the in-ide Inp of the plastic I'elri
ili«h. I'M- the tip of the O.I-ml Mohr
pipe! lo -prcad llie droplet into a cir-
cular *pol of alinut 3-1 em diam. Dry
llir tup fnr alinnl I hr. under «lij;hlly
redllretl pri^Niire. in a de^ieenlnr enn-
lainiiip :n li\ aled almniit.i.
7.'J '1'raN-fer a 1.0 ml ali.pml ,,f pre-
p.in-,1 'ample M.lntiini In ill,- dillii-inn
llnll. Add 2.'l ml nf pen lilnl ir arill
and tinini-iliali-li i-lii-e tl-2Olir.
7..'t Cinefiillv lemme tile dillu-inn
\i--~rl frnm the IIM-II and I.ike nil tin-
lid. \V.i-li the alkaline ali-nrlu-nl inln
n 1O. nr 2."i-ml \nlmnelrie ll.i-k la »mall
funnel i- helpful), llie si/e ,i( the fla.<-k
depending upnn nml nf flllnride e\peetcd
ainl niellmd nf mea^uiement elm^en.
8. Calibration and Standards
°. Calculation
10. Effect of Storage
11. References (See Part VI. Sec-
tion 11.)
t-
HART f: /Vleriiif'/i'iiioii »f I;lnttrii1r iTilrii
1. Principle of the Method
1.1 In llie direel lili.ilinn nf Ilimride
with Mandaril ihniinm nitrale «nlu.
Ii ..... lli,- sample -"lulioi, nr di-lillale
cmilaininp .•Mulium ali/.il •iii-iilfini:ili1 is
hlllFeied at pll 3.0. Tpnll ailililinn iif
illinium niliale. in^nlulile ihnrinm flmi-
ride is fnrmed. \\'hen lite endpninl i*
rearhed. and all Hum ide ha* re:n ted.
the additinn nf aimllier inerement nf
llimiiiin nilral'- ean>e« fnrmaliiin nf a
pink "lake" (Ifi).
1.2 In the li.uk lilralinn prm-edure.
llie pink take i* fn>l fnrmed hy addilinn
nf sndiiim ali/.ariiiMilfnnale and a slight
exeess nf thiiriimi nitrnle tn the J-ample.
Ki|lial amnunls of dyr and llmrium snlll-
linn are added tn a fluoride-free refer-
enec. The refereneo solution is tlien
lilr.iled \\ilh i-land .1 •.ndium flunride
?iilnlinn until a enlnr mateh i« nehievrd
\vith the nuknn^n sample ( I Ti) .
2. Range and Sensitivity
The direel tilr.ilinn procedure ean
aeenminndjte 10 to 0.0.*) m^ llunridc in
llie Inlal >.,,,,|,|r. Tlir liai k litralion
mnilifirarmn' ean measure 50 In jdmut
5 /jp flunride in the tntal .-ample. With
phntnmelrie enilpiiint deleitinn. direct
lilraliiiu can al-n he IIM-,| fnr the lower
ranges.
3. Interferences
3.1 lohn cajiaMe nf forming insoluble
or u lissKrinlrfl eompnumU with fluo-
rine ur with thorium interfere with
APRIL, 1V6V
73
-------
them tilriinelrie methods and must \tn
separated hy nn npprnprinle technie
frjj distillation, diffusion nr ion ex-
change). Amoii;! the mnie eniinimn of
the iiitcifcriiif: rations are A I ' ". llu ' '•',
Cn ' -. V- ' '. Th ' '. TiO...' •-'. VO ' '. mid
/.i1'1. The piini-ipai inlerfei in^ iminns
art* I'Oi ^ mid SO( L>. llnucver. any ma-
terial which eiin-lilllle- an apprerialile
change in lolal iiinie -tlen^lh nf the
sample -iillllinll will alli-el the endpnint
rol'ir a- well a- -IniellinlllclM nf llie
reinliiin. Tim-, i-.xcc.—i\r aeidilv in llir
di-lillalr from a \Villanl-\Vi'ilri di-lillu-
tinn. n« finin llie lilieralin^ acid nr
chloride emilenl of the sjmplr. will
interfere. This (-fleet may he reduced
liy careful eonlm' nf lemp and tale of
adini—inn nf .-leain. and h\ n'paralinn
nf rhlniide. Siinilailt. .iridil) or alkn-
liniU of elnali— frniii inn exihanp-
twjiaiiilinii- inu-l he inalclieil with (lull
of slandaid- n-i'd in calilnaliou. and
uilh llie rei|u!|cmcnls nf (he melllnd of
ruination.
,'i.2 Sulfidr and -ulfite intel ferenees
willi 3D per cent h)dr(i^en pnnxidc in
hoiliii^ .-iiliitinn, a- de-rrihrd under
.Siim/ilc I'lffmrnliim. liilerfrreni c liy
free chlorine !- eliminated hy addition
of h)dinxvlainine h}droeliloride solu-
tion.
4. Precision and Accuracy
5. Apparatus
5.1 t'lnorrsi-t'iit /,'frrrri--In prnvidi: il-
liiniimiliiiii fnr lilralin*;.
5.2 Mirnilmrrl— having S-ml en-
pin it), O.OI-nil divisions, and a reser-
vnir holding ahnul 50 ml.
5.3 Nritlrr Tula's—Mnlched set of
50-ml, tnll-fnrin luhes with shndoHless
Initlnmo. Tuhe« may lie rilled with
cither ground (;l.i-- nr ruhher >toppcrs.
Tim set !>lmuld lie checked for optical
similarity as follows: Add (o the lubes
40 nil nf ivalrr. I nil nT sodiinn a|i/.nrin-
guirnnntc Miiluliiin. and 2 nil of O.O."! N
li)dnifliliirir arid. Add lluuiiini tiilralc
siilnlinn frmii a linrrl until (lie rnlor nf
tin* •.nllitinn jll-1 i-lljlll1:!'* In |>ink. (!|IIM-
lln- tnji nf iln- lul»' :ind iiiM'il M-icral
tiniri. Add llic -ami1 I'llanlily nf llm-
llinn nilialr Milnliiin |n llu- ri-iiiaiiiin^
lill>f<. I'ill all llir lu)it> In lln- ."ill-nil
niiiik i\ilh uali'r mid mix. (!mii|iarr (lir
riilnr> and rvjn-t ani lilln-*t slninin^ dif-
frirnrrs in vliailr nr inlril*iit).
.~>.) tVi'Mlrr 'I'litir* - Malrlicd S'l nf
lOO-nil. lall-f'inn Inlii-s uilli .sliadi-u!<•<•«
linlliilli-. Tlir M-l --Iniiild In- clln-kcd fur
njiliriil :>iiiiilaril}. n<-in^ llin same Ifrlmii:
u^ uilli llic ."ill-nil liilirv. rxrr|il that llir
i|iianlilii> nf ir.ip'iil- -hall In- dmililfd.
."».."i A'l'Ai/ei 'I'tllir /i«i7i in {'.ntn\Mti»lnr.
.S.6 1'lnttntiii'tiif Tiimlt'i A ItrrL-
IMUll Miidfl It Sjifrl I ii|llliiliillirlrr.
ri|lli|i|>nl uilh an Alcii.i |{CMMM-|I Ijilm-
ratiiiir-' lilniliiin allai-hinciil (T'l^iin- 21
ni njiiivalrnl (It). I j^lll fnini ihr iinuifi.
I'lunnialiii1 |ia—1-!< llil'iMi^li a 2ll..t-rni
Ill-inrll) »am|ilr ci'll to lli» liluc-srnsi-
lite phnliihilir innnntrd ul (lie iiiiiliiiaid
end nf tin- rrll III-IIMH;:. A ina^ii'Mir
slirirr i» alltichril under lliu cell cnni|iart-
nifnt. 'I'lir lip nf ii M'liiiinicrnliiirrt
pn--rs ihniii^li llu- rrll liiill-in^ mid is
ininiiT-rd in llir xiliilinii In lie lilralrd.
A litdl-ilnil Mirkrl jiiinl cnnnrrl^ tin* lip
In llir Iniirl. fnrililaliiif: rrninvnl nf llir
sample rrll. The lilralinn rrll i« S.I
em 12 inrlie>l »idr, 7.(> rin 1.1 inrlies)
ilerp. and 2D..'i mi III iiieheO Inn);.
6. Reagents
ft. I lluffi'i-liiilifHttir Stilutiun—l)i*-
jinlve O.^O fi iif siidiiiin nli/iirin-siilfnnnle
in nliiiul 2110 nd nf water. Weipli 47.2.1)
£ nf nmniirhlururulir nrid iiiln n fXX)-inl
liriikrr nml di-'nlve in 2OO ml nf water.
Add iiidiciilnr siilntimi willi slirrin^.
l)i.-*nlve 10 p "( Muliiiin hydroxide pel-
let.' in SO ml nf waler, cnnl lo npprnxi-
iiinlely 15° In 20° C, mid mill lo llir
nliove solution slowly willi ftirriri(;.
74
VOL *. NO. 2. H.L.S.
FLUORIDE (MANUAL)
A . lln-fcin.ln Mnrtrl I' SIMM lr|i|ilv.liMn-'er
IJ . Ale(i.: llesi.iri-li l.:il«ir.iliincs lilr.ilion altnrnmenl
C - Cell Cinnpirlnii-iil On-cr (hin^eill
I) - l'l«ili>lul » ill iniiiiiieliliiriinei-lie
acid nml 2.0 •; nf -odium hidrnxidr
^a()ll; in 101) ml nf water. Tlii- ndu-
linn is oliilde [nr nmre llian Inn week->
if slnrrd under refii^eralinn.
6.3 llytlrwlilniir drill. Sniniliinl So-
luliun (0.05 N I—Dilute 4.2!; ml of
liydrnrlilnric nrid (IICI, sp fr 1.19) to
I liter. Thu iinrinalily nf this solution
should I"- ex.irlly cipuil In ih.il nf the
siidium h\dro\idr iXaOHl solution
ill.O.'i X).
6.1 II\ilrn\\liuninr llMlim-lilariile
Snliiliim'- I p' ,.f .Ml..0ll.lia. KM) ml
of water.
6.5 f"/jrffn/f>/r//ifr/rf/i Intlicntor Solu-
tion I(!.."• p liter) — l)i<.-olve D.5 g of
plieiinlplilhaleiii in W> ml of clh)l alcohol
and dilute In 1 liter with water.
6.6 Sitilinm Alizarinsuljonale Solu-
tion (O.HO g/lilerl—Dissolve O.'U) g nf
APRIL. lf«9
75
-------
sodium nlir.urindulfoniite in SOU ml nf
»otrr.T
6.7 SiH/intn .lli±nrirt.Htllrtin,tr Snln-
lion III.Ill r/lilrrl - Di..oln- O.lll f! of
5ndiimi ali/.arindulfon.'itr in 10OO nit nf
*alrr.
Ml SIH/IHHI Pliiiiiiilf. Illll I'rr Cent.
(,.') Sodium Kin..riil.-. Sl.in.lard Solii-
li.in ( I ml ~ l.m ,,,,. |-'|_ l)i..,,Ur
2.2111', ^ of 'odium lli,o,idr iNal-1. UK)
|HT rent > in ualri and .lilutr In ] lilrr
in a voluinrli 11- lla.k. mix. and lian.fiT
It. II p..l;rllulr,lr I.Mlllr (,„ St..KIM,-.
6.10 Stftiiiln r'limtiilt', Slnntlitnl .So-
lulinn II nil -O.lll t,,,: n — Dilni,. II)
ml ..( NJ|-' solution I I ml =: l.OI) m", K)
to I lilrr \\itli >\alrr in .1 \olimirlrii:
lla«-k. mix. nn.I Ir.-in.frr li. n polyrlliylrm.'
lioltlr (nr .|ora"r.
(..II Siuliiini llyhn\i,lr Wifffiw
III! t 1,1.;)- Di-oli,: ID » ,,f ,NaOll
in Vkal.-r. dilillr to 1 lilrr fin.I mix.
Storr in il p..l\rlli)lrnr I.-.III.-.
6.12 Sii-liiim ll\iliii\nlf. Siuiiiliinl
S,ilnii,,n lll.ll.> IV) -Di.-di.Uc 2.MO K ,,f
NiiOII in Hiilri Mini clilnl,- I.. I 111,-i. Tin-
normality ..I lllid solution .ll.ml.l lie r.x.
only r.pial I.. lli;il ..[ llir .lamlard MCI.
I O.O.I Nl. Store in n pohrtlulrnr
I I,-.
6.13 Tltnriuin i\itinlf. Slfinfiartl Sltn-fi
."?„/„,,„„ II u,l .- ].') ,„£ r') — l)i...,Kr
13.110 ^ .if lliormm nitralr Irtralit dnilr
iTIil.NOjIr III...O) ill walrr on.I ililule
lu 1 lilrr.
6.14 Tint,linn Xitnilr Siiliilinn (l>.2!i
f.lilrr) — Di.uiUv 0.2.1 (.• of ilmriiiiii
nilrutr Irlraliidrnlr O'lii iN().-,) t ••HIjO I
in wulrr. dilulr to 1 lilrr nmi mix. Slorr
in a poUrlliy Inn- l.olllr.
6. 1.1 Tlii'iiuin MlriilfSiiliiliim.ll.nl ,\
!<>.!'> ,: r I'-.l .S. .ili/.irin H.-'l. nl./jrin-S, a]i-
/jrin rjrniinr, uli/jrin. ..i.lium uli/jrin *u|.
f'.n.il.1. ..Mliii.ii nli/jrin iii»ni.Milr»iulr, mnnn.
•f.ilium •ti^arin ^iitfonjlr. anil 3>nliurin*nl-
fonir ari.l .ixtiii.n vill. 1'lic tlyr i« iilcntirir.l
liy Color In.l'x No. .SRIXlj.
(|U..t nf llli- vlork «,,luli,.ll (6.13) In I
liliT mill ..loir in n |KI|)rlliyl.Mic liotllr.
7. Procedure
7.1 I'rin-rtltiif ftir 1/iin-t Tilnttinn.
l/ifll C'liii-riilrnlinnii (10 In 0.05 mj; K
in Tuliil S;ini|,l.'l.
7.1.1 l'i|>i-l an uli.|llot of ill.-. ili..|i|.
l:it<- inlo a -HID-ii.! lin-;ik-r anil .lil lo
Hill ml. A.I.I I ml ,,f .o.linm nli/aiin-
Mll(..|l.-llr ...Illlioll |ll.!!0 p/lilrrl. mill
llii-n .o.linm li\,lroxi.lu .olulion I III ;;/
lil.-rj ilrn|i\vi.i- unlil a |.ink ruliir i. ol>-
lainr.1. l)i..-li:iip- llu- ,,ink i-olor l.y
mliliii- O.li:, ,\ ln,l,,,r|,|,,,i<- a.-i.l .Iro,,'-
uisr. A.I.I 1 ml of rliloniai-rtnlr Imll.-r
soliilion ih..|n\i..-. nml lilialr »illi llio-
rii lilialr ...Inli.in I I ml — I.') m^ I'l
I" a fnini. |iri.i.lrnl. pink i'iul|ioinl.
Drlriminr a I.lank ol.lainril liy i-arry-
ih^' llir .niiir ami of all rra;:rnl< llinm-li
lilt* rnlilr |.rorr.llltf.
7.2 I'ntfi'iltn,' Jtir lltu-k Tilrnlioii,
Mi-tliinii ('.iiiifni'iniiiin 10.05 I,, 0.01
Hi); I'' in Ti.lal S.ini|.|.. I.
7.2.1 '('r.-m.-frr .'ill ml of llir ili.lil-
lair into a fill nil iNrs.li-r tnl.r. a.1,1 1
ml of •."ilium ali/.-iriiiMilfonalr ...Inl'ion
III.Ill - liln I anil ..nflirirnl ll.ll.'> N
Muliiim li\,lro\iilr ..olulion I., proilnrr
a pink roli.r. iN'olc pirri.rly llir voliimr
of O.O.'i N ...tlinni li).lro\i.lf v.iliition rr-
i|uitril foi iiruliali/alion: llirn ili-ranl
llir lilrnlr.l .olulion. If moic lli.ui 4 ml
of 0.0.1 iN Miiliiini li\ilroxi.lr «"luli,ni id
rripiirr.!. makr llir irniaininv. (li..|illalr
alkalinr. rtapoialr I.. 10 I., 1.1 ml. ami
Irau-frr it I., a ili.tilling lla.k. l!r|irat
llir ili-lill.ilion. pirr.inlion.. licinj; lakrn
In rriln.-r llir ami of prrrlilorir will ili.«-
lillril ,nrr.
7.2.2 Tran.frr anolln-r .lO-inl |i..r-
linn of .11-lilialr into a ."lO-nil Nrv.lrr Inl.r
ls.lin|ilr tnl.r) anil nd.l 1 ml of sodium
nli/..nrinsulfonalr soliilion 10.01 ",/lilrrl.
Ailju.l llir ariilily »ilh 0.0.1 ,N lijilro.
rlllorir uriil until llir ri|uivalrn| of rx-
ni-lly 2 ml of nriil is prr.rnl: lh.nl i*. 2
ml minli5 the nutnlirr nf ml of 0.0.1 N
74
VOL. 4. NO. 2. H.LS.
FLUORIDE (MANUAL)
•miliinn liyilrmiilr Fiiliilii.n minimi for
nriilr.ili/ation a< ilr.rril.i-.I. II l>rlv\rrn
2 ml ami -1 ml of O.l>*> N .o.linm lix.llox.
iilr .olulion urn- rr.piiir.l for iirnlr.ili/a-
lion, oi.iil Ilir ail.lilion of l.ylro, III,,, ir
ari.l I., llir .li.lill.ilr. A.I.I ill.iiinm ni-
Iralr soliili..!! 10.2.-. fi IilrI I fiom a mi-
rrolintrl nnlil .1 f.iinl pink r..l..r iipjirar..
Notr tin- voliimr of ill..limn nilriilr ...In-
lion rr.|uir.-.l. ami ..".' lli" Nr-lrr Inl.r
for r..mp.iri..'n >vilh llir -l.m,lr tin., llial in llir .amplr III].,-.
7.2.'i ll.lnminr a I'l.iok |.v , al I \-
in:; llir -ami- .mil of all r .!;•• rl- lln.nir.li
tlir pr !i lr..iil,r.l. \Villi pn.prr
..|i;.nli,.n to ,1,-lail .. Mark. ..[ .1 ML of
llm.u.lr. 01 I,-., ran Lr ..l.t.iim-d.
7..'I /'/... nluir /or ll'ifk Tinnlntn. /.on-
(:.- : .1 i,. 'Hi-mi
p,.|li"ll- of .li-lill.ilr .|il,,lj> into llin-r
i.l- ("ill 100 ml Nr..|rr till r-. Takr ran-
I,, k-rp III.- .,.1,1 ,,( pn.ldolir a, i,l di:..
lillli,..- ..vri a. -m.ill a- | iMr. |.r.-.,,,-r
llir rnlilr . I l-l lll.l!,' i. lilialr.I and tll.Tr
,. it« ali'px.l a\ ailal'lr I<>| a srp.italr
ari'lil\ drlrimin.ilion. A nail /r ra. Il of
llir dMill.llr |,,,,li,.H, in tlir 100.,,,|
V.-|,T ml,,.. .rp.ii.il.-K a. f,.llo».:
7.XI.I \.l.l 2 ml ..I ...ilium iili-
;-ann-,il( i Inli.rn lll.OI - lilrrl
and nrnliali/r llir a, i.l I", adding O.O.1
\ ...dim.i h\d|..\idr .olulion until a
pink r.-l, I i. | In. rd. \dd I ml of
11.111 N li\ di.u lil.'i ir ni id I .nlli. i.-nt
ill,.mini nilr.ilr .olulion |O.2.1 'f lil"ll
lo pto\idr a f.iinl pink rolor. C.omp.irr
llir llralrd .li.lill.ilr polli.'n uilll il
.liml.nd of r.pi.d lol.-d ...Inmr ,-on-
lainin". 2 ml of .odium ali/arin.iilfonalt*
d-iluli.M. lll.OI ^ liln i. 1 ml of livdio-
rlllorir arid and llir .amr \«]mitr of
tli.irii ilialr ...lulion III.2.1 r litrrl
a. i. inpiiird lo prodnrr tlir pink rolor
in llir ...ooplr tul>r. Add .mliirn Iliiorii'r
crllllion 1" llir .lan.l.ird lul.r until tin-
color mat. lir. llial of llir ..'inplr lul.r.
'I'll,- .urn of all -i-infi, anl ami. ..( llu...
ridr found in rarli sinrr..iir poilion of
di.llllalc id llir lolal ami of llu..ride
in llir samplr.
7.-1 rriii'filuir t'ir /'/io/omr/r/,- Titrn-
linn —
7.-1.1 Traiidfrr tlir di.tillalr In a
20.3 rm I!',-in, hi IMri'lion r'-M .-ml add
.1 in] of li^droXN lamiur IndriK-luorule
APRIL. 1769
-------
wolntioii. AdjiM. if nri-i"*^itr\. In |ill
3.6 uilll O.ll.'i ,\ |.,-rrlil«lir [li-iil. and llli-il
ailil ~i ml 'if luilfiT-iiiilii iilnr -<.liili..n."
7.1.2 n.irr lli.- i-.-ll in llu- lih.ilinr.
otlai limrnl. immrr-r llir l'IIK-1 lip. .nnil
Mart ill.' .limn;: m.i|.,r. (.ln.r llir li.
Iraliif liil. «H tin- oavi'li'ii^lh In .'>2."i in/i.
mill tin* M-iiMlM il} knnli In lln- (iM.jirr
|><»ilion Hi-nail) I |. C|ii.r lln- .liiillrr
niul iuljii.1 lli'- -lil ui.llli h. ",iir a li.-in-.
iiiill.ni"- r.-.i'lin- .if HID.
7.1..'I 'liir.ilt- «illi tlan.l.ird lliiirium
nilralr ID.Ill N >"luli"iH in n Iran*-
inillaiirr l.-adin;; iif T.'i |»'-i rrnt. Itivnrd
lilt.- \tiliimr In III.- iirarr.l ".MlI.', ml.
7.1.1 Drill.. I .1 l.l.ink iililaim-il l.y
rarrvin^ tin- -amr anil i*f all n-a^ciil^
llirnujjll lllr rnlilr |il>amr jinn "'luii'. (ialrulalr
ihr .|rrn;.'lli nf lln> lli»rium nitralr MI-
•Hi.- j.l'lili'.n '.I linlT.-r.iii.lir.iliir <..ili.ili.in
»li.iijl>( o i.,nlr..|l'-.l. "II,.- j.l.lili'.n ..I Imlli-i.
in.lii.it.ir -..luli'in Hill in.iinl.iiti u |.ll nf .1.0
un<)« r lh»-««- fimlilirmv K..r r^irnnf rj*->«;.
•.li.-re j.l.lil;- nl III.- ,l,,i,II.,|.- is I.-., ili.m p||
.V>. O.IIJ .V'.."limn lii.lr.ni.l- nny I..- u.i-d
I,, r.ii-1- ill.- (ill In llir iiro.irr I.-..-I. Ifowrvi-r.
il li.i» lir.-n f.iiin.l hi In- ih.. rulr- thjl ili-lilla.
liiinn iiro'M-rly c.jn.l.irlr>d *AI|| hjvc • plf
•ircalr-r llun 3.5. 'Ihr ".•*• u[ nudiuin liyifrox-
iilr (or ticulriili/jti..n |iriitlui r« • plight i Imncr-
in llir factor due to the nidium prrrhlnnte
f.irmrd.
liilion in Ifrniu iif ni<* nf rlnori.lr inti/nil
of .xnltjl inn ns fiilloM5:
riimriilf i.in. iiiif'iiil = C X W
A — It
Wlu-i.-:
A — ml of Tin NO.,), "111.0 viliilii.n n-
<|iiin-il fnr lilralinii "f lli.- fliiiiiiilu.
II z^ ml of 'I'liliNO,!,- 1II..O Miluli..n r.--
i|iiin-.l f'T liliali >f llir lil.ink,
ami
C =z I). I.'i2 1- ulirn titralin1' smlilim fllio.
riilr l\al-'l.
\\.'i Tliiiriuni Kiliiilr Siiliitinn, ((.(II N
(O.I1; » I-'/liii-ri 1'irjiiirc a i-aliliru-
linn rurvr fur llii^ snliilinn fnnn ilatu
nlil.iinril in tlir f.illiiuiii'' »ay:
::.2.l l'i|n-l ali'|ii"l- iif Mamlard
fii>iliiiiii (lu.iri.lr ^.'lillinli cuvrriii^ llir
ran^r III l.i I HOI) ,,» .,f flii.'ri'lc inlo
.'illll.ml \iiliimi-lrir llavkn ami ililiilr
In vi.lmm-. Tran-f.-r I., a 20..'f-nn li-
tratimi rrll. aitil T> nil uf liyilriixylaininc
li\ iltiirlil.irtilr Milnli.in, ami adjuM to
|ij| .I/, uilli O.ir, .N |,rrrlil-,rir ai-iil. Ailil
."> ml nf liulTiT-imliralnr solution and
lilr.ili1 a-» di'M-riliri! in ihc I'roc<irf for
I'ltnltiiitrlrir Tit union.
9. Calculation
9.1 Calrulalc llic fluoride ion cun-
li-nt of llir tolal ili.-lillnti:" in m\i a> f"l-
!..»,:
K =r IA- IDCD
E
\Vhpri-:
F ~ in" of fluoridr; ion in total dixlitlnlr,
"I'll- <...llll.l.- nf L.l.ll lillali- r.ill.-i-ti-.l." and.
K - ml of di-lill.ilr lilial.-d."
•>:i Cal. id.ilr llir Iliimidi- i-nm-li in
llir nlm..-|.ln-i.- al :'.">('. -mil 7M> liirr.
in lrrm~ nf |i|im "f ludm^rn (liinridf
I III-'I nr llnmiiir I I'.. I. "t m^ of pai.
tirnlntr Ilimiidi-. in'1. ii« follo««:
lljlllllJ-.-ll Illlnlidi-. |||IMI - -
.'. I.Ml V. K X 127.". 1 II
I'V
Khliirinr. |ijmi •
Id 111 ;•- I-' •;• (27:, |-1)
I'S'
I'nrlii id.Mr lluori.lr. nif; •in''1 —
2.V>(I X I'' .-' (27.1 -I- n
I'V
rithrr ill.- Till .NO.I. ...luli.'n ii-rd in arrnrd-
an..- willi ill.- I'l liir.- li.r Mirrrt Tilr.ilinn.
or III.- N'.iK -olulinii I I nil - U.01 1111: K) u-r.l
in rm'-'-iliir.- I'.r It.i.-L Tin.ili'.n, M.-iliu'n C.in-
ri-iilr.ili«n ;iinl in rrn.-i-ilnrr (nr Mj.-k Titra*
lin.i. I...** I 'in. <-ntr.ilinn*.
Wln-lr:
I-' — mt; of flimridr i.-iin|din^ li'inp in drprt-r crl«iu.«.
and
V T^ samjilr volimii' in lilrr'».
'^..'i ('ali-nlatr llir flimridr COIICM in
trp-lalinii on llir turn-dry l,~:
l-'liK.riilr. I'l'in ldr\ l>a<-i- I =
I-' X A V 10.10
\V v s X I l-iM:IOi!Tl
\\li.-n-:
I-'- in^ "f llmiiiilr ion in lolnl dittil.
l.llr.
A - ^of|,.lala-li
\V -._ ,:..rii-.li.lMill<-il
S - f of dr-li >.ini|ilr
M — jiri i-rnl.i^r of moi«lurc in frt?.«-h
10. Effects of Storage
All riMpi'iit .cnluliiiM1*. li'lcd are «lnl>lc
al room Iriiip cxi r|it a<« indi\idually
n.ili-.l.
11. References (Sec Port VI. Sec-
tion 11).
r.
PART/1: Iri-liTiiiiimtioil of l-'llioriilr
1. Principle of the Method
,„.,.,, .
trai-lmn id Illlondr «llli llir inrlal
ion nion'l\ o. a mrlal-il\r romiilrx rr-
, .. .... .' ... i
5iilli in f.idin" /.iii-oiiiuni-r.iiiK-liromc
_ . ,,.-,>. i •/ • •
C \ a n i n i' It (')) and /. i r i- o n i u in-
...;.,.. . ,,, , •
.SI'AllV-t ('1 ) rrajii'nl-l or ini-rra-r
. . ,i. . /• i /-i\
( l.antliammi. All/at in (.oni|ilrxonf (.>)
rrnK'-ni 1 in llir ali'.orliam-r of llie solu-
.
_ -. ...... . -
2. Sensitivity and Range
'
2.1 lioth Xiri-oniuin-Krioclironir Cy-
aninr It uml Xirroniuni-SrAONS re-
n-iriii.s ••\>v\ Itrrr'" Law mrr ilu- ran^r «t
O.IHI ,i" I.. I. 111;." Iliioridi- 'ml uilll a dr.
• i- • r I I c.,,.-> i
In lion limit of llir oiili-r nf H.tlL' 11" ml.
,,., . - r i i
llir iiroi-riliirr pn rn f"t llir lowrr-rati"!',
. .
Laiilliaiilliil- \li/.-irili (...niplrxonr. .-..\rr«
. '
llir raii"r 0.01 1 ,.•_• In (l..i ,.» Iliiornlr ml
. , r, . ',. . ,' r
"ill' .1 di-lri-lion linnl id ,H. IT. -\unalrK
nill~ I
' , ,n ' . . .
2..Z In i-omnion uilli ollirr FjH't-tro-
jiliolomrlric incllmiU, tlir>r urr lrni|>-
M-n-ilivr antl ali^iirlianct-s inu<-i be rrad
... _, ,. . . . . . .
uillnn L": 2 (. of tin- Irinji al hliu-h llie
rrv|u-(-ti\c raliliration curve was otal.-
lislit-tl.
APRIL. 1969
7»
-------
3. Interferences
•J.I Mn.lfrate \ariali>in>* in aei'lily of
•ample solution* uill mil int"ifcrf with
ihf /in oniiim.Kri'.i hrnme C\iinine It
or /.in oiiium.SI'ADNS rfa"fnts. The
Lanllianum.Ali/.arin Cmnplexnnr reagent
has ".realer pll H>nsili\ily and nnliili'ins
nil|s| nnl eM eed lhe c.iparity of llif
linlTcr M«lem l'i maintain an appaient
pll 1.5O • 0.112.
•'t.2 Manx ion<« inli-rffif \sttli ihfsr
llunri'lr n-a;:fnis. hut ihose most likely
In I.e eiif.iimlfrfd in an.il\si« of lllllliifnl
uir are aluminum. in>n, plio...|ihale and
fulfill)-. If lh."f .IT:' plf-elll aliovf ||,n
Iran' leiel llieir rlln I- inii-l In- eliini-
nnled. Distillation, diiril-ion, nr inn
rxflianp- in.ix In- employ.! lm|f in ecr-
Inin cn^i--. rontplexalioli.f.xlrai linn (2)
ma\ lie a»l\ aiil.i^f.His.
.'(..'< In ie;.-flalion anaUsi.. iiohili;! and
distillation lit lln- \\ illim).\Vinler lei hnif
p-ni-iall} a-suri- a sampli- solution Midi-
l-ii-nlK fr.-e 'if interd-riiif: ions fur diri-fl
rolorimelrie evaluation. Traecs uf free
fhlorine in llie distillate, if pri-sfnt. innM
In- rfilnt-fd \\ilh h\ di nxi laniinf hjdro-
ehloMilf.
4. Precision and Accuracy
lie* aijsf nf lln- u idt- \ari.ihililt in nun.
position of s.mtplfs. anil in mfllmdi mill
nmditions nf sampling, no ^fin-ral stale-
infills tif pr.-fisjon anil an utaf) f>ir fn-hl
«jni|i|fs i-an lit* ^ivfn. I'rrri^iiin •.litdif*
nf |iuri- sniliiiin flij'iridf >landaid~ inili.
ralf 1'iat. uilliin llif funcn lan^f^ fur
Mlltlll (III- I.M-rllK fullnu llfi-r'< Law.
Mand.ird id-> ialimi nf •• 0.015 [,, 0.020
/i^ nf flunridf 'nil 5lniuli) lif fxpfflfd.
5. Apparatus
Siifrirniitinlniiiftrr —i\n i n«l runirnt
rapalilf nf Qfrrplinp 5ainp!c rt-lls nf ]
cm In 2.5 fin iiptii-al jialh, and uhirh 15
odjif*>lalilr lliriiu^lxiul llir vi«ililf wavc-
Ifiifllh rcpinn. i^ rc<|uirc«l. F'.orh !>prc-
Iroplintnmclfr naniplr n-ll i« given an
iilfiitififalinn niaik and i-aliliralfd liy
rt-ailin^ a purlinti nf llir «:unc rraj;fnt
lilank snlnlinn al llir df-i^nalfil wave-
Ifn^lli. Tin- dficriniiifil cfll i:nrreflinn is
«u|iv.'i|iic-i|ll) applinl In all al>«iirliam-f
rr.iilin^o in.idr in thai ri-ll.
6. Reagents
6.1 Arrlir Ariil. ^hifial.
6. t\r<-liiitrt rr.Infill j;iadf.
(t..\ .-Hlzftrirt (Zi>ii>itlf\tiiirt (1.2-dihy-
-/«-
linn l)i-.<.ii|n- |.,'!(KI •: nf Kiiiifhriinic
Cxaninf I! iMi.idanl Ithlf .'(, Color In.
dfx ,\n. n.':2lll in «ali-r lii iiiiikr 1 lilfr.
Snliili'in i> slalilf fur ninri1 ill.MI n ji-.ir
»lifn pnili-rli-il fi li-lil.
6.7 l.nrillttninnt C.liltniilt1, *)*).') per
mil assay (Avnilalilf frmn Klflirr
l.alimaliiriis. liniliank. Calif.)
Ci.Jt I.Hiilliiiiinin-Ali-nrin ('.urnjtlf\finr
Hi'd^rnl - l)ivsnl\f };.2 j; Midiuni nfflalL-
in 0 nil nf glacial ai-flit- ai-iil. unil Mifli-
fifnl \\alcr In pi-nnil volution, and tuns.
fi-r In a 21 Ml m| iiilnim-lrif llask. Dis-
solif O.IIIT'J ^ ali/.irin funiplfvinf in
1.0 nil »f 2(1 pi-r frnt annniiniuin ai-flaU*
solulion. O.I ml aniinniiiiiin hvdroxiilf
ninl 3 nil u.ili-i. Killer Ilii- sMlniion
ihroil^ll a \\lialntnn ^± I papfr inln llir
2 flask.
Dissolve sfparalfly 0.012 ". iif Innlhaniiin
llTlii« rfaprnl li.i* \yrn viirinu«ly nanird in
ihr lilt-ralnrf. r.p. oli7,irin rnmpli-ian. ili/jirin
riimplcxnn. ali/jrtn eninplrinnr. anil ali/jrm
Klit'irin^ Illllr.
10
VOL t. NO. 1. H.LS.
FLUORIDE (MANUAL)
chloride in 2..r) ml 2 N hyll oi-lilorii- in id
.•ohilion, wanning .sli^hlK lo pionmtf
solution, and fotiiliine lliis with the lla-k
niiilfiils.15 Dilnlf, mix «rll. i'".I llir
«oliition I" room Ifinji and ailjus| llie
voliimf lo llif mink. I'hf riMp-iil .soln-
lion i» stalilf for alioul 1 »fik if kfpl
nndfr red ivflalion.
(,.') Siuliiim t'lli.iliil" >'/.«•<• Saltllliill
I I ml : 1.0 m- I-' ) Ili-solM- 2.'2 I li:, ^
of ('oil |.r, ,• soiliinn lliioii.lf. or Ilie
fi|iii\alfnl VM-i^lil ..I if infill ^l.ulf so.
di llnoiidf. in ».ilfi .mil dilntf to I
lili-r. Si in a |iiil\flli\l.-nf liolllf.
6.10 Xinlinni ll,i:>liil<- II iill.ineSlniiil.
nnl Siiliitinii I I mil- IH/i^K I -I'llnle
.-,.0 ml id llif sloi-k solnlion I.. .".I'D ml.
Slorf in a polM-llnlfiif I...llif.
d.I I SI' ll>.\.< Siiliirinn i ;.."i-dili\.
,1 ro \ \ -.'I-1 p-siilf.i|ilif in I.i/o 1.2.7-na|illi.l.
Iflif disiilf.inif ai id Ilisodimn La]|. .iv.iil.
al.lf from r..is|iiian Oi^.mif (.li'-mifals.
Uofhfslfi. N. V.. fal. no. 7'10'H Uis.
M,|\C (!.'»"") ^ SI1 \I)NS d)r in «alfr and
ililulf lo TillO ml.
6.12 .sr.l/M.S' A'e/.-rni.r Solution -
A.I.I 1(1 ml M'ADNs'Solnlion I" ICO ml
of u.iliT and in idi(\ willi a solniion
prcparfd li\ diliilin^ 7 ml i-nin il hvdro.
flindif a. id lo III ml. This s,,|u|i.in ni.u
l\S HrnpriH—
Mix f.pial iiilnnif« of ihf SI'ADMS and
the 7.irfonium .solutions. Cool lo roniu
Ifinji l.ffoir usr. This rca^fiil mny l»r
«|on-'l for several monllis, at room Ifinp.
in a pol)flhleiif luillle.
" An r.|iiiinnltr rnnrn of Innlhnnnm nitrate
nia^ lir imlisliliitrd for ihr chloriilc.
7. Procedure
7.1 l'ro,-fi{nrc lor Intcililfilinlr Rnnilf
7.1.1 /. i rrn n i n in-Kri<»fliriiinr
(iyiiiiim* It Ki-aufiit -Transfer .in
ali,|i,..l of llie piepan-il -ampl.-. «l.ui.l:ir.l.
or I.lank solniion lo a 2"<-ml Milumflric
llask fonl.iinin:: 1 ml of llif /irronium-
r.ri'.fhrome Cv.mine I! Kfa^flil. Diltllf
the so|nli..n lo lln- m.ilk. mix «fll. .mil
allovt lo M.md fot .{II min for l.-mp
f ijnilil.i .it ion. 'liaiisffi [he solution lo
a falil.ralfd spfflro|>lio!..mflfr i .11 of
nlmiii 2..">-fin li-lit p.ilfli. Tlif >pff
Iroplioloii.fliT is M-I on a « iii-lrn^lll of
.-).'((• nm ami tin- li"ln fonlml adjn-lnl
lo an al.soil..line \.dne of I>..".!«I on a
lif.ijfnl ('.Link siipi|;irK pifp.irf.l.
7.1.1.1 S|..i Iropliotomfli-r n-IU of
I -i in liirht prli m.u In- nsrd |iy making
llir [nlloitiii^ .idiii.lnifiils of \olnmi-:
Inmsfi-i tin- alti|iio| of s.mi|ilh tin- ~\m trophotoim-li-r
adjusted to rf.ul zero al.sorliaitfe on ihf
SPADNS Kfffifiiif Solution.
7.2 l'io'rtlntf, I,otit-r /*./»::»• - l.an-
lh.innn|.AIi7ai in CnmpTfXoiif Itfj^flit:
Transffr a siiil.d.lf alii(u«l nf s.imple
solniion. fonlainm^ no more th.in 4 /.^:
of lluoriilf. to .1 lll.ml \oluinftrir llask.
Add ,'t ml of Lanthanum-Alizarin Com-
plexonr Itfa^fnl. dilute lo llie mark anil
mix well. Allnu In stand for .10 min.
Measure the nli.wrhanrr al 622 nm. in
APRIL. 1«69
II
-------
a rnlilir.ilrd 1 -mi rrll. n*ing n rr-
fl£rnl Idank in rfffciicr.
8. Calibration and Standards
H. I y.irrtniii/m-l-'ritirltrfinir C.ynninr.
H /{ftifirnf --|'ii'|i;nr n siaridnnl MTN'«,
• l-.-uiniit- (In- r:i i !;:•• nf yrm In 20 >»» nf
flimriilr. liy |ii|.rllin» ali'junK nf the
"Lnidard vndiiini Iliiniidr Miliiti»n I 10
ftl In r;.,|. f|.,-k. .lilutr
In llir in;irk nml mix lli..mii^lil\. AI-
|m% llir -l;Hi.l;inU t>* s1;mt| unlit >nlutinll
Irriip IKI- i-<|uililtt ;ih-d at tlirj floircd
Vllllir. MiM-lil'* ;ili-ni ItfilHTs .it .r)'U> MM),
in 2..-i.rm .-.-IU. n»ini,^l ;( rra»rnl l>l;i»k
for \\liiih ilit- ••|)i-<-trn|tli()tiiiii'i1fr i.s nd-
juslrd In n-iul O.SOO ;i|^.>rli;itiri* unit.
I'lnt u r;ililirnli"ii i-tirvc irhilin^ fluoride
1'iiiirn. in fill. |«» n|i«|ilrs nri: ralrulnlril liy II.-M:
nf llic furiniilif (livrn under I'nrl V :
Tilrimfliii- Mi-lliml.1. Calrlllaliims 9.2
HIM! <>.'.\.
]Q. Effects of Storage
11. References
il.1.1 If l-i-ni r-IU an- In („• us..,|. a
•I . i I • ' 1-1,1
Mlllllar vl.'lll'l.inl "(TH'«* |> |iM'|i;i|('i| III 10-
ml \<.iuiM.-iii< n.i^k^. .-niiiiii" :i mi nf
... . •• - i /• • l> i>
/irruiiiiini-r.i inclii'iiiiii* (.yaiini'1 K lit:-
, ,,,„ ...... ,„.,
,„,..,. ., „ ..... ,,„, ,.„,,,.,
'•'. "••• '-'.
T- s- *"' x ..... ') "f ''"
dr
.. . .
MTllM-(| nl
fr,,», 7,-r-i I., :»:, ^ ,,f flm.riil, l,y
|ii|ii-|lin^ alic|iic,l- nf lln- «larnl.ir,l -nilium
llil'.riili- Millllinll lll)|.(.'K Jii-i ml) into
2.'i.ml >.,! ....... tii.- lla-k>. Ail.l .'. ml ,,f
/.in ..... iiiin-SI'AD.NS Id-.-ip-iit In rarli
llask, .liluti- l.i llir maik nn.l mil »rll.
All.iM ill.- ..l.-iii.lariU in >laml .'ID min
Id fi-ai h lrni|i i'.|ililil.riimi J( llir iloin-il
viilur. M.-a-iin- al.-i .rli. in. .•- nl .)7ll inn
.
-,-1.1....
i M ...... ..... ..-.,. «
I"!i,' ii'..'.,,.'..! "
I ...... . ' ml. t
llir SI'ADNS
....
pnrc a Ciilinrnt
coiirn, in /'fi. l»
Soliilimi.
. M.
HrnLrnt — I'm KICK a -tnii.lnnl M-riis run-
... . r n -I I
lainin» r.rrn In \ ,,» of Ilii..rnlr hy
nipaiurin" iMirtir*
VOL 4. NO. 2. H.LS.
FLUORIDE (MANUAL)
.\f,ff, .Mt.lt. M..II..I.I. l.ir.ne I l.^mi-l.1 A IK.1'. *rl. Jh.M.'.. I"'-'-
I' n. ^li.til \.r N »' »*.l"nrl-» l» '" "f*"11* Jl- T»"'««. M "-. ""•• * "«• J"*"1 •"•' s * < h.-V-«
,",„ ..... . ^ „,....„,.,.,,f «„..,..1, ,^..f.ir, « < r if vr,,,./
13. ll-..,.,t,-rl, 1.. r.; T. H. I'..V.; \. M. I.-rrn^; .n,l I'uMn •!,„* C.'*'. I'f'J'.
mantel* \i.«l I '•• - ."> P"J| 1"">> 'lt| J'l «•""••" " "' nn»"nr. In J. I ft I r.-«t . \n*l
14. H...U,. n. j : n,,.i M, v. M.....I..II. r,i...,..« -I H. »•'. i»«.
An.l r.l. 9 V.I. I'M: Siiltri.rii.nillfr 2
IT. It...I... Ii. J.: •«•! '• H. »•«•!•. li.ffN.i-« mrih.H|
t.., .1...,,..,n.n..n -I .MH«* n,,..,,.lr. A.n^r. U.I. |. V. C«AI.I.».^. (knirmnn
ll,e \...--. J. /i in. iw.3. I. V Mur
,„. ,,...,... M j : i. .:,.,.,.. ..... ii. ... r......... i... A w I|ll(fk
. «;' " ' '•' A"l!- ' K.J.S...M...W
1». >tne^.. U..n ...-I W. M \.»»n.»it. H'1. ii«iMli..n J. 0. SflHI Tllf B
JO. ."m.lh. r. A. an.) M. I., (iir.lnr.. I Kc i|.-|.-iimi»l...» '- ''' "HN*1MN
APRIL. 196t
13
-------