TECHNICAL REPORT
ANALYSIS OF AIRCRAFT EXHAUST
EMISSION /MEASUREMENTS.- STATISTICS
By: H.T. McAdams
CAL No. NA-5007-K-2
Prepared For:
ENVIRONMENTAL PROTECTION AGENCY
DIVISION OF EMISSION CONTROL TECHNOLOGY
CHARACTERIZATION & CONTROL DEVELOPMENT BRANCH
ANN ARBOR, MICHIGAN 48103
Contract No. 68-04-0040
19 November 1971
CORNELL AERONAUTICAL LABORATORY, INC.
OF CORNELL UNIVERSITY, BUFFALO, N. Y. 14221
-------
CORNELL AERONAUTICAL LABORATORY, INC.
BUFFALO, NEW YORK 14221
ANALYSIS OF AIRCRAFT EXHAUST
EMISSION MEASUREMENTS: STATISTICS
By: H.T. McAdams
CAL Report No. NA-5007-K-2
Contract No. 68-04-0040
19 November 1971
Prepared For:
ENVIRONMENTAL PROTECTION AGENCY
DIVISION OF EMISSION CONTROL TECHNOLOGY
CHARACTERIZATION & CONTROL DEVELOPMENT BRANCH
ANN ARBOR, MICHIGAN 48103
PREPARED BY:
H.T. McAdams
Principal Research Engineer
Systems Research Department
APPROVED BY:
A.D. O'Connor, Head
Systems Research Department
K.D. Bird, Head
Vehicle Research Department
-------
TABLE OF CONTENTS
Foreword and Acknowledgment
Abstract
Page
iii
iv
1. INTRODUCTION
2. A STATISTICAL VIEW OF TEST DATA
2.1 Random Variables and Induced Errors
2.2 Variance-Component Statistical Models:
A Prolegomenon
2.3 Confidence Intervals
1
3
4
7
STATISTICAL SIGNIFICANCE OF EMISSIONS DATA
3.1 Within-Engine versus Between-Engines
Variability
3.2 Factors Affecting Exhaust Emissions
3.2.1 Difference Between Test Site
Locations
3.2.2 Effect of Engine Age
3.2.3 Effect of Ambient Conditions
11
24
34
40
40
43
4.
SUMMARY AND CONCLUSIONS
48
APPENDIX I -
APPENDIX II -
APPENDIX III-
APPENDIX IV -
Composite Plots of Aircraft Engine Exhaust
Emissions
Analysis of Variance for Piston Engine Emissions
Analysis of Replicate Tests of Turbine/Turboprop
Engines
Statistical Summaries of Homogeneous Categories
of Aircraft Engine Emissions Tests
11
-------
LIST OF TABLES
Table Page
1. Statistical Summary of Aircraft Engine Exhaust
Emissions 12
2. Model T56-A7 Turboprop Data 13
3. LTO-Cycle Total Mass Emissions 16
4. Factors for Confidence Intervals 21
5. Analysis of Variance for Seven 0-320 Piston Engines 26
6. LTO-Cycle Total Mass Emissions 31
7. Analysis of Variance for Four JT8D Engines 33
8. Least Significant Difference Between Means 36
9. Comparisons of Various Categories of Exhaust
Emissions Tests 39
10. Effect of Engine Age on Exhaust Emissions 42
11. Effect of Ambient Conditions on T56-A15 Aircraft
Engine Exhaust Emissions ^
12. Analysis of Variance for Effects of Ambient
Conditions 47
111
-------
FOREWORD
This report was prepared by Cornell Aeronautical Laboratory, Inc.
(CAL), Buffalo, New York under Environmental Protection Agency (EPA)
Contract No. 68-04-0040. The work was administered under the direction of
the Office of Air Programs, Characterization § Control Development Branch,
Division of Emission Control Technology, Mr. Barry D. McNutt, Project
Officer.
This is the Phase II Technical Report that discusses the results
of statistical studies applied to the numerical data for aircraft exhaust
emissions previously published as the Phase I project report. The studies
reported herein were conducted during October and November 1971.
The effort was performed by the Systems Research Department of CAL.
Inasmuch as the sole source of the data utilized in this study is represented
by the Phase I report, it is fitting to acknowledge the contributions of
those individuals responsible for that report and whose names appear in
the Foreword thereto. Especially to be acknowledged in connection with the
Phase II effort is the capable assistance of Mr. Gary Higgins, who was
primarily responsible for the computer processing essential to this report.
IV
-------
ABSTRACT
Descriptive accounts are presented of statistical procedures which
were applied to the analysis of mass emissions data as determined from air-
craft exhaust emissions measurements. Results of these analyses are discussed,
with an emphasis on the significance of the results within the context of the
data base available. In essence, the purpose of the report is to isolate the
causes or sources of both fixed and random contributions to the variability
observed in the data and to estimate, wherever possible, the magnitudes of
these contributions. Specific questions of broad interest are addressed and
statistical inferences drawn with respect to these questions. In recognition
of the restricted scope of the Phase II effort, however, a primary function
of the report is to provide a statistically based methodology and general
guidelines by which the reader can perform additional analyses of the large
mass of data available as required by his own unique interests.
-------
1. INTRODUCTION
An extensive compilation of aircraft exhaust emissions data has
been previously published (October 15, 1971) by Cornell Aeronautical Laboratory,
Inc. (CAL) as CAL No. NA-5007-K-1, Analysis of Aircraft Exhaust Emissions
Measurements, by L. Bogdan and H. T. McAdams. The experimental data making
up that report consisted of concentration measurements of the exhaust gases
generated by turboprop and thrust turbine aircraft engines, light-utility
piston aircraft engines and auxiliary power units. These concentration data
were processed, wherever such processing was possible and applicable to the
promulgation of emission standards, in such a way as to estimate mass emissions
over specified landing-takeoff (LTO) cycles. The experimental data and the
LTD cycle specifications were provided by the Office of Air Programs, Environ-
mental Protection Agency (EPA), for whom the analysis was undertaken. In order
to coordinate and reduce to a standard and consistent basis the several sources
of emissions data, it was often necessary to employ graphical techniques,
interpolation, and sometimes extrapolation. Results obtained by these tech-
niques, as well as the original data serving as input, were published in the
aforementioned document, which will subsequently be referred to herein as the
Phase I Report.
Results contained in the referenced Phase I Report embrace approxi-
mately 400 aircraft engines and cover a diversity of engine models and the
factors which might influence their measured emissions. Eight different test
teams, operating in ten different geographic locations, were involved. Accord-
ingly, a spectrum of ambient conditions is represented in the data available,
this spectrum reflecting differences in temperature, humidity and atmospheric
pressure. At some of the test facilities only new engines were tested, whereas
at others only used engines undergoing maintenance were available. In some
instances, engines tested were equipped with smokeless burner cans, in distinction
to the regular burner cans in normal use. The compiled data, considered in the
aggregate, forms a baseline for the setting of aircraft emission standards.
-------
In view of the diversity of the tests performed under the program
and the extent of the data available, it is natural to ask if this baseline
information might not provide additional insights concerning the factors which
affect exhaust emissions. In particular, the following questions are of
interest to EPA, to the aircraft industry, and to a broad scientific community
concerned with air pollution:
1. How much variability in exhaust emissions exists from one
engine to another of the same model? How repeatable are
measurements on a particular engine? To what extent is
lack of repeatability due to instrumental errors and to
other aspects of the testing operation?
2. How many tests are required on a particular engine in order
to have "reasonable" confidence that its emissions are known
to within a specified interval of values? How many
engines of a particular model must be tested in order to
have similar confidence for the model? What is the optimum
tradeoff between many repeat (replicate) tests on a few
engines and few replicate tests on many engines?
3. What is the effect of engine age, as measured by - say -
time since last overhaul of the hot section, on exhaust
emissions?
4. To what extent do ambient environmental conditions affect
emissions -- e.g., does specific humidity affect NOX emissions?
Do differences between test site locations induce differences
in engine exhaust emissions?
5. Do smokeless retrofits affect gaseous emissions from aircraft
engines?
The order in which the questions above are listed is not to be
construed as their order of importance. It is the purpose of this report to
essay answers to these questions to the extent feasible within the limitations
of the data base. Though many other questions relevant to aircraft emissions
can be framed in the context of the available data, attention will be directed
primarily to the concerns noted above.
-------
2. A STATISTICAL VIEW OF TEST DATA
Errors affecting test data can be classified as either systematic
or random in nature. Systematic errors are those which derive from some
influence which tends to bias results in a particular way; for example, if
an instrument is miscalibrated, all results obtained from that instrument may
tend to be too high or too low, depending on the direction of the bias. Random
errors, on the other hand, are those which are induced by random causes and,
for the most part, are as likely to be positive as negative relative to the
true result. Their occurrence is less readily annotated than in the case of
systematic errors; in fact, they are often alluded to as "unassignable causes"
to emphasize the fact that on any particular observation a cause-effect
relation holds, but knowledge of this relationship is not available to the
observer. By virtue of the fact that such causes are presumed to operate in
a random fashion, their effects on test data are amenable to statistical
assessment and control and can be assayed in these terms.
In an examination of the available aircraft emission data, the
distinction between systematic and random errors must be made with care. The
distinction is often a subtle one, and it is for this reason that some
discourse on the subject is considered to be in order. Accordingly, the notion
of a statistical model will be introduced and developed in relation to the
aircraft emissions data.
2.1 Random Variables and Induced Errors
A random variable is a function defined on a sample space. For
example, a pair of dice can exist in a number of "states," in which any integer
from 1 to 6 can occur on either of the dice. There are thus 36 possibilities
in the sample space, each of which is presumed to have equal likelihood of
occurring. A familiar function (though not the only possible one) is the sum
of the two numbers which appear when the dice are thrown. These sums are
integers between 2 and 12; each will occur with a particular frequency controlled
by the "equal likelihood" process applicable to the individual dies and by the
-------
combinatorial rules which make it possible to obtain the same sum by several
routes -- e.g., 5=1+4, 5=2+3, etc. The sums, therefore, constitute
a random variable induced by the "random causes" underlying the throwing of
the dice. In a similar way, certain random occurrences can induce random
contributions to aircraft emissions measurements, though the physical
processes involved may be infinitely more complicated than the throwing of
dice.
The labored analogy above is presented not for its usual pedagogical
reasons but to emphasize the fact that one random process begets another and
that to understand error distributions it is instructive to consider their
origins. Under certain conditions, it is possible to decompose the observed
errors into "components" associated with specific cause systems; under other
circumstances, the several sources may be hopelessly intertwined or "confounded"
in such a way that decomposition is impossible or impractical. It is a major
concern of good experiment design to plan tests in such a way that the sources
of variability of interest to the experimenter can be unambiguously isolated
and quantified. Expediency, cost and other compelling considerations often
prevent such an optimum experiment, however, and the aircraft emissions program
is no exception. It is the intent of this report to structure error contrib-
utions wherever possible and, where such analysis is not possible, to point
out the nature of the confounding and to recommend experiments which might
correct these shortcomings.
2.2 Variance-Component Statistical Models: A Prolegomenon
Consider the dice-throwing experiment discussed in the previous
section. Simple heuristic analysis will show that the "average" result obtained
from the throwing of a single die is (1+2+3+4+5+ 6)/6 = 3.5. By
slightly more argument it can be shown that the average sum for the two dice is
7. Individual outcomes for particular throws of the dice will therefore tend
to cluster about 7 and could, for purposes of analysis, be referred to this mean
value and expressed as deviations or excursions from the mean value. Further-
more, these excursions could be decomposed into separate contributions for each
-------
of the two dies. Though the two contributions would be expected to be equal
for "honest" dice, such would not be the case if one of the dies were "loaded".
In this case two different systems of random causes would be at work, and each
would induce its own contribution to the distribution of excursions from the
mean value. If the two dies were tagged and their separate values noted, then
their separate contributions to "error" could be deduced. On the other hand,
if only their combined sum were reported, their individual contributions would
be confounded and would not be accessible by analysis.
The simple dice experiment gives rise to the following statistical
model :
Xij a P+ «i +*j CD
where ^t is the mean outcome of the experiment, o^ is the contribution of
the i state of the first die and -tfj is the contribution of the j state
of the second die. The model is of particular interest to the exhaust-emissions
analysis because, with minor modification, it is applicable to the contributions
to variability made by engine-to-engine variation and by sources of error
associated with the emissions -measurement process. By a process of analysis of
variance, the variance associated with y, the sum of the two dice, can be
decomposed as
2 2
where O^ is the variance contributed by the first die and CJJ is the
variance contributed by the second die. Note that if one of the dies is heavily
weighted, its contribution to the variance of y may be nearly or entirely
negligible. Instead, its contribution will be felt as a "bias" in the mean
value of y, and the previously mentioned subtlety of the distinction between
systematic and random errors becomes apparent.
The simple statistical model presented above is essentially that
which applies to test data in which replicate tests are made on a number of
engines of a particular model. If the results of all the tests are averaged,
one obtains a mean value about which all the observations tend to cluster.
Consider now, however, the average of all repeat measurements made for a
-------
particular engine. The extent to which this average departs from the "grand
average" of all the tests can be considered as a contribution peculiar to that
engine and plays the role of oL^in the model. Similarly, one can regard the
excursions of the individual repeat measurements from the average for a particular
engine as a contribution peculiar to the particular test run involved; these
excursions play the role of >flj in the model. Thus the result for the j test
on the i engine can be modeled as
and variances O^ and 0/9 can be extracted, under favorable conditions,
to serve as measures of the contributions made by engine differences and test-
run differences respectively. The difference between Equation (1) and Equation
(2) resides in the term jQ.( . In (2), the notation jS^(i implies that the
run-to-run variability occurs within a particular engine and has no meaning in
relation to a different engine. Since any given engine can be repeat tested
to any extent desired, the contributions in (2) can assume different weights if
all measurements are simply "pooled" into a "model summary", as was done in the
Phase I Report. To appreciate this point, consider a compilation in which 12
tests were averaged and their standard deviation computed. Suppose that in one
case only two different engines were available, but that each was tested 6
times. In a certain sense, more opportunity for test-to-test variability is
allowed than for engine-to-engine variability. On the other hand, suppose that
six engines were available and that each was tested twice. Now the reverse is
true. Depending on which of the two contributions is the larger, the pooled
variance may be too high or two low to represent the simple sum of the two
contributions, as would be obtained if 12 engines were available and each were
tested once. Though the latter arrangement would provide an unbiased estimate
of the combined variance, the individual contributions would be confounded and
it would not be possible to decompose this variance into its components.
Fortunately for our purposes, a considerable amount of data in the Phase I Report
is so structured that it permits such decomposition, and simple analysis-of-
variance (ANOVA) procedures makes it possible to "unscramble" the weighting
induced by different combinations of number of engines tested and number of
-------
repeat runs on each. The specific techniques employed for this purpose will
become apparent in later sections of the report devoted to the analysis of
the Phase I data.
As will be evident in subsequent discussion of the aircraft
emission data, the simple model of Equation (2) can be expanded to encompass
many other sources of variance. Presumably, ambient environmental conditions
such as temperature, humidity and atmospheric pressure, would make contributions
to the variability observed in test results. Differences in type of fuel might
be expected to have an influence on emissions, as might also ape and condition
of the engine. Contributions arising from such sources can be represented as
additional terms in the model of Equation (2). In some cases these contributions
might be of a random nature; in others, they might constitute "fixed effects",
that is, contributions uniquely associated with a particular value of the per-
turbing variable. For example, if two fuels are involved, each might be
expected to have a unique effect on emissions, and, in this case, the concept of
random causes would not be applicable. Nevertheless, a decomposition of the
type represented by Equation (2) would still be applicable; only its inter-
pretation would be altered.
2.3 Confidence Intervals: Their Use and Misuse
One of the most persistent questions in statistical inference is the
question: How much data is enough? Its answer in statistical terms is seldom
satisfying and, this being the case, much more is often read into the answer than
is permissible by strict statistical rigor. A convenient repository for such
interpretational liberties is the concept of "confidence interval", and it is to
this concept that our present concern is directed.
Let us imagine that an "infinite" supply of aircraft engines of a
particular model - say JT8D - is available. Suppose that N of these engines
are selected at random and that each is tested once for its mass emissions.
From the N tests, the mean or average value can be computed, as can also the
-------
standard deviation of the individual measurements about this mean. One must
note, however, that the N engines measured are only a "sample" of the entire
population of engines and that a second set of N engines will not necessarily
yield the same sample mean or sample standard deviation. Moreover, neither
of the sample means are likely to coincide with the population mean, which could
be determined by measuring emissions for "all" engines in the population.
Similarly, the sample standard deviations would be unlikely to coincide with
the "true" or population standard deviation similarly obtained by exhaustively
measuring all engines in the population. The concept of "confidence interval"
represents an attempt to invest a sample result with some measure of "nearness"
to the population result. For large value of N, for example, it can be shown
that the sample mean will tend to be "closer" to the population mean than would
be the case for small values of N. By the reverse of this reasoning process,
one can postulate how large N should be in order to achieve a certain degree of
"nearness" to the true or population mean. It is evident, however, that the
question of "How many tests are needed?" must be preceded by a question which
asks, in essence, "How close to the truth is close enough?"
The mechanics of computing a confidence interval is straightforward.
For example, suppose that 10 engines are tested and that for each engine the
total CO mass for the prescribed LTO cycle is calculated.
Call the CO mass measurements for the 10 engines x. , x_,...,x _.
Their mean is
and their sample standard deviation* is
10
2. 7/ (%• - %i
The sample variance, defined as A — /V ^ 1A/ ' does not provide an
unbiased estimate of (T& , the population standard deviation. The bias is
eliminated by using N-l in place of N. This practice was followed in the
Phase I report.
8
-------
As a random variable, % is an unbiased estimator of /4 , the
population mean. Similarly,
is an unbiased estimator of the population variance.
Inasmuch as Jc is a random variable, it has its own variance;
the magnitude of this variance is inversely proportional to N, the sample size.
Thus an unbiased estimator for the variance of x, is
and the square root of this quantity is the standard error of the sample mean.
By making certain assumptions regarding the statistical distribution of jc
one can compute the required confidence interval .
Confidence intervals rely on the assumption that the sample mean,
as a random variable, obeys a normal or Gaussian distribution with some popu-
lation mean /* and variance & j N , where &*• is the population variance
of X and N is the sample size.* If repeated samples are taken from the
population, and if (F is known, approximately 68% of the resulting values of
% will fall within an interval bounded on the low side by u - (T and on
the high side by /u. i- tf . Similarly, approximately 95% of the values of x,
will lie in the interval pL-Ztf to /u.+s.ff', and other percentages of the cases
can be bracketed by appropriate choice of k in the quantities yW. - & 0" and
,iL + -fi ff which bound the interval. Suppose, however, that only the result
from a particular sample is available. The sample quantities % and O"
provide estimates of p- and G" , and it is presumed that these values can
If N is only moderately large, the validity of this assumption is assured by
the Central Limit Theorem of mathematical statistics. In statistical quality
control, for example, it is found that N may be as small as 4 or 5.
-------
be used to construct a confidence interval
and that by proper choice of k, the width of the interval can be adjusted to -
say - 95% confidence that the population mean fi will be contained in the interval
For example, if X = 30.25 pounds CO per LTD cycle and (T =6.21 pounds,
a 95% confidence interval for /<• is provided by
For large N, the value of k approaches 1.96, but for small values of N, the
value may be considerably larger. For example, if N = 10, k = 2.26, and the
interval becomes
25.81 *. /X. •£ 34.69 (3)
A word of caution is in order, however. The population mean
is a constant, not a random variable. In reality, therefore, yu. either is or
is not contained in the interval given by (3). It is the interval, as computed
from the sample data, which statistically varies; both its midpoint and its
width depends on the particular values obtained in the sample. If repeated
samples of 10 engines were tested and a confidence interval computed for each
of these samples, approximately 95% of the intervals so constructed would
contain the population mean /•«• . It is in this sense that the confidence
interval should be interpreted. Thus, in the above example, if one asserts
that /4 falls in the interval 25.81 to 34.69, such an assertion is "more likely"
to be true than false; in the sense indicated, the assertion has probability 0.95
of being a true statement.
Properly interpreted, the concept of confidence interval is a
useful one in answering the question of "How many observations are needed to
establish the mean value of a random variable to within certain prescribed limits
and to a certain level of confidence?" In the following section of this report,
this question will be addressed to the emissions data published in the Phase I
10
-------
report. The mean mass emissions given there, and the corresponding standard
deviations, will be employed in estimating confidence intervals as a function
of number of tests conducted.
3. STATISTICAL SIGNIFICANCE OF EMISSIONS DATA
Basic information pertinent to statistical assessment of the
aircraft emission data of the Phase I report is provided by the model summaries
of that document, a typical example of which is given in Table 1. In this
summary, T56-A7 turboprop engines, 11 in number, were tested by Southwest
Research Institute at Kelly Air Force Base. For each engine, pollutant concen-
trations were available at various power settings. At CAL, these concentrations
were converted to mass emission form in pounds of pollutant per pound of fuel
and the points plotted by computer. A curve was faired through the points,
and from the faired curve a sufficient number of points were digitized and
stored in the computer to permit interpolation over the entire range of power
settings. Interpolation at specific power settings for the taxi-idle, takeoff,
climbout and approach modes produced estimates of the corresponding fuel-flow
rates and mass emission rates for CO, HC and NOX. Finally, these values were
combined into estimates of the total CO, HC and NOX mass emissions for the
entire cycle. The model summary provides, for each pertinent quantity in the
calculation, the mean and standard deviation for the 11 engines tested. For
example, one can examine such quantities as pounds of pollutant per pound of
fuel for a specific mode, pounds of pollutant per hour for a specific mode,
pollutant mass for a specific mode, pollutant mass for the entire cycle, and
so on. Such an array of statistics, though it provides a wealth of infor-
mation, is not readily assimilated and put to practical use. It is, in order,
therefore, to attempt to make some generalizations concerning the statistical
summaries and to provide some graphical aids to understanding.
Consider Table 2, which is a simplified and modified version of
Table 1. Two additional types of calculation have been performed. First,
the mass of each pollutant generated in a particular mode is expressed as a
11
-------
TABLE 1
STATISTICAL SUMMARY OF AIRCRAFT ENGINE EXHAUST EMISSIONS
KOOEl T36-AT TURBOPROP SAMPLE NUMBER • II.
MODE
TAK1-10LE
TAKEOFF
CL1MBOUT
APPROACH
TAKI-IOLE
EMISSION
RITE
IB/HR
NFiN 13.268
STO DEV 3.419
MEAN 2.1*0
STD OEV 1.285
MEAN 5.009
SIO OEV 0.791
MEAN 3.668
STO OEV 0.841
•FAN IS. 268
STD DEV 3.914
TOTAL FOR CYCLE
LBS POLLUTANT/IK IB
FUEL
RATE
LB/HR
948.004
94.099
2079.317
77.480
1908.447
29.679
1092.900
23.937
948.004
54.099
FUEL/CYCLE
IBS POLLUTANT/IK HP-HR/CVCLE
NODE
T»«I-101E
TAKEOFF
CL1M80UT
APPROACH
TAKI-IOLE
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MFAN 6.474
STD DEV 1.612
MEAN 0.430
STD DEV 0.411
MEAN 0.476
STO OEV 0.976
MEAN 0.517
STD OEV 1.00*
MFAN 6.47*
STO DFV 1.612
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
HP-MR AT T.O.
FUEL
RATE
LB/HR
948.004
94.099
2079.317
77.480
1908.447
29.679
1092.900
23.937
948.004
94.049
FUEL/CYCLE
IBS PniLUTANT/lK HP-HR/CYCLE
HDOE
TA»I-IDIE
TiKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MFAN 2.161
STD OEV 0.499
MEAN 22.878
STD DEV 3.566
MEAN 21.212
STD OEV 2.314
MEAN 7.776
STO DEV 0.913
MEAN 2.161
STO OEV 0.499
TOTAL FOR CYCLE
LHS POLLUTANT/IK LB
HP-HR AT T.O.
FUEL
RATE
LB/HR
948.004
54.095
2079.317
77.480
1108.447
29.679
1092.900
23.937
948.004
94.095
FUEL/CYCLE"
LBS POLLUTANT/IK HP-HR/CVCLE
LBS POLLUTANT/IOOOK
HP-HR AT T.O.
TIME IN
MODE
M1N.
19.00
0.0
0.90
0.0
2.90
0.0
4.90
0.0
T.OO
0.0
MEANI
STD DEVI
MEANI
STD OEVl
MEANI
STO DEVt
MEANI
STO DEVI
TIME IN
MODE
MIN.
19.00
0.0
0.90
0.0
2.90
0.0
4.90
0.0
T.OO
0.0
MEANI
STO OEVl
MEANI
STD OEVl
NEANI
STO DEV:
MEANI
STD OEVl
TIME IN
MODE
MIN.
14.00
0.0
0.90
0.0
2.90
0.0
4. SO
0.0
7.00
0.0
MEAN:
STD DEVI
NEANI
STO OEVl
NEANI
STD OEVl
MFANI
STD OEVl
cn
MASS
LBS.
4.839
1.119
0.018
0.011
0.125
0.033
0.2T5
0.063
I.T81
0.411
T.035
1.902
17.064
3. STO
23.031
4.91T
0.4T7
0.289
Ht
MASS
LBS.
2.050
0.311
0.004
0.008
0.020
0.041
0.039
0.079
0.755
0.1B8
2.868
0.705
6.970
1.745
9.390
2.309
0.999
2.021
NO I
MASS
IBS.
0.6B4
0.158
0.141
0.030
0.8B4
0.046
0.583
0.068
0.292
0.058
2.594
0.378
6.269
0.761
8.494
1.237
50.773
7.914
FUEL
MASS
LBS.
in. 53
IT. 13
17.33
0.65
79.52
1.08
78.97
1.79
63.93
6.31
413.28
24.11
FUEL
MASS
LBS.
173.93
17.13
17.33
0.69
79.52
1.08
TB.9T
1.79
63.93
6.31
413.28
24.11
FUEL
MASS
LBS.
173.93
17.13
17.33
0.69
79.52
1.08
78.97
1.79
63.93
6.31
413.28
24.11
LB CO /
IK LB FUEL
28.101
6.597
1.040
0.627
1.579
0.421
3.482
0.787
28.101
6.59T
LB HC /
IK LB FUEL
11.923
3.054
0.207
0.438
0.250
0.512
0.491
0.952
11.923
3.054
LB NOI/
IK LB FUEL
3.932
0.743
10.984
1.501
11.111
1.154
7.382
0.812
3.432
0.743
1 ENERGY
MJ-MR
35.67
0.04
31.24
0.03
140.81
0.18
• 84.44
0.14
13.14
0.01
303.41
0.0
ENERGY
HP-HR
33.67
0.04
31.24
0.03
140.81
O.IB
84.44
0.14
13.14
0.01
309.41
0.0
ENERGY
HP-HR
35.67
0.04
31.24
0.03
140.81
O.IB
84.44
0.14
13.14
0.01
305.41
0.0
LB CO /
HP-KR
0.13593
0.03124
0.00037
0.00034
0.00084
0.00023
0.00326
0.00073
0.13553
0.03124
LB HC /
HP-HR
0.05747
0.01431
0.00011
0.00024
0.00014
0.00029
0.00046
0.00089
0.05747
0.01431
LB NOX/
HP-HI
0.01418
0.00443
0.00604
0.00093
0.00628
0.00068
0.00690
0.00081
0.01918
0.00443
12
-------
TABLE 2
L T56-A7 TURBOPROP DATA Sample No,
= 11
Mode
TAXI -I OLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI -I OLE
TOTAL FOR CYCLE
Mean
Std. Dev.
Coef.Var(%)
Mean
Std. Dev.
Coef.Var(%)
Mean
Std. Dev.
Coef.Var(%)
Mean
Std. Dev.
Coef.Var(%)
Mean
Std. Dev.
Coef.Var(%)
Mean
Std. Dev.
Coef.Var(%)
CO
Mass
Lhs.
4 . 835
1.115
23.06
0.018
0.011
61.11
0.125
0.033
26.40
0.275
0.063
22.91
1.781
0.411
23.07
7.035
1.502
21.36
Percent of
Total CO
POT Cycle
68.73
0.26
1.78
3.91
25.32
100.00
HC
Mass
Lhs.
2.050
0.511
24.93
0.004
0.008
200.00
0.020
0.041
205.00
0.039
0.075
192.31
0.755
0.188
24.90
2.868
n.70
24.41
Percent of
Total HC
For Cycle
71.48
0.14
0.70
1.36
26.32
100.00
NOX
Mass
Lhs.
0.684
0.158
23.10
0.191
0.030
15.71
0.884
0.096
10.86
0.583
0.068
11.66
0.252
0.058
23.02
2.594
0.378
14.57
Percent of
Total NOX
For Cycle
26.37
7.36
34.08
22.47
9.71
100.00
-------
percentage of the total pollutant emitted over the entire LTD cycle. Second,
each of the standard deviations in the table is expressed as a percentage of
the corresponding mean. This quantity is known in statistical parlance as the
coefficient of variation or the relative standard derivation. Its value lies
in the fact that the standard deviation often is proportional to the mean;
in such instances, the coefficient of variation tends to approach a constant
value which is characteristic of the process beinp investigated.
Of particular note in Table 2 is the predominant influence of the
taxi-idle mode on the total CO and HC for the cycle. The taxi-idle modes before
takeoff and after landing are computed separately. If they are combined, then
94.05% of the CO and 97.80% of the HC for the LTD cycle was produced during taxi-
idle mode operation. In the case of NOX, the partition is considerably
different: only 36.08% of the NOX for the cycle was generated during taxi-idle
mode operation. It appears, therefore, that errors associated with the taxi-idle
mode may strongly determine the errors associated with the LTO cycle assessments
for CO and HC, unless the coefficient of variation is disproportionately small
for the taxi-idle mode and large for the other modes. In reality, this is not
the case. For CO, the coefficient of variation is relatively constant and is
approximately 21% of the mean for the entire cycle. In the case of HC, large
coefficients of variation occur at takeoff, climbout and approach, but the
magnitudes of the mean values for these modes are so small that the errors
contribute little to the total for the cycle.* The coefficient of variation
for the total HC for the cycle is approximately 24%. In the case of NOX, the
coefficient of variation is relatively constant over all modes, and is approxi-
mately 15% for the total NOX for the cycle.
Consideration of the nature of the emissions vs. thrust curves
makes it evident that for all the turboprop and thrust turbine engines tested,
CO and HC contributions to the LTO cycle burden are dominated by the taxi-
idle mode. In fact, the percentage of the total CO and HC produced during
the taxi-idle mode appears to vary little among the various engine models tested.
Though the coefficient of variation may depend to some extent upon the engine
One might postulate that the large variation in these modes is due to the
fact that the HC emissions are so low that they approach the limit of
sensitivity of the instrumentation.
14
-------
model, the test organization, and other factors, the range of values for the
LTO-cycle totals is not extreme. The weighted averages of the coefficients of
variation for CO, HC and NOX, as computed from the 145 engines in Table 3,
are:
CO 30.64%
HC 46.76%
NOX 13.97%
For purposes of statistical inference, it will be convenient to consider 15%,
30% and 45% as nominal values of the coefficient of variation for NOX, CO
and HC, respectively. Moreover, these values provide convenient increments
for parametric study of the implications of statistical variation of various
magnitudes.
A point to be noted in Table 3 is the fact that, for some models,
the number of engines tested is somewhat less than is indicated in the table
entry. In some instances a double entry, such as 7 (5) occurs. The first
number is the number of tests included in the computation of the mean and
standard deviation for that model. The presence of the number in parenthesis
indicates that some of these tests were replicate or repeat tests on the same
engine. The number (5) denotes that only 5 distinct or different engines were
included in the summary calculation. As will be shown later, interpretation
of such a set of tests as if it represented 7 different engines may exert a
bias on determination of the standard deviation for that set. For present
purposes, however, this bias is negligible, in view of the small number of cases
in Table 3 in which replication occurs.
Let J denote the sample mean for a sample of N engines selected
at random, each engine being tested once. Suppose that the population mean
is /w. and that the population standard deviation is
15
-------
TARLF 3
LTO-CYCLE TOTAL MASS EMISSIONS
Enpine Test No.
Category Organization Engines
T56-A7 SWRI Kelly 11
Turboprop
T56-A15 Allison 11
Turboprop
TPE-331 AiResearch 3
Turboprop
CJ-805 SWRI TWA 8 (4)
JT-3C United EPA 4
JT-3C SWRI TWA 3 (2)
JT-4A SWRI TWA 8 (6)
SPEY 511-14 RuMines AA 4
Mean
Std.Dev.
Coef.Var(%)
Mean
Std.Dev.
Coef.Var(%)
Mean
Std.Dev.
Coef.Var(%)
Mean
Std.Dev.
Coef.Var(%)
Mean
Std.Oev.
Coef.Var(%)
Mean
Std.Dev.
Coef.Var(%)
Mean
Std.Dev.
Coef.Var(%)
Mean
Std.Dev.
CoeO'ar(%)
Pollutant
CO
7.035
1.502
21.35
3.346
1.506
45.01
1.752
0.235
13.41
31.885
6.547
20.53
55.385
8.455
15.26
29.044
16.993
58.51
29.852
8.042
26.94
29.405
9 . 054
30.79
Mass Total for
HC
2.868
0.705
24.58
2.803
1.815
64.75
0.402
0.244
60.69
12.024
3.297
27.42
39.232
19.251
49.07
42.290
33.889
80.13
28.402
5.487
19.32
28.912
4.542
15.71
Cycle (ibs)
NOX
2.594
0.378
14.57
2.155
0.579
26.87
0.708
0.239
33.76
5.872
0.466
7.94
7.649
0.886
11.58
6.412
0.705
11.00
12.015
0.803
6.68
8.391
0.842
10.03
-------
TARLF 3 (font.)
LTO-CYCLE TOTAL MASS EMISSIONS
Engine Test
Category Organization
•IT- 3D Pratt $ Whitney
Production
JT-3D SWRI TWA
JT-3D United EPA
JT-3D BuMines AA
JT-3D Pratt P7 Whitney
Experimental
JT-9D Pratt f, IVhitney
Production
JT-9D Pratt f, Whitney
Fxceriihental
JT-8D SWRI TWA
Undiluted
Smokeless
No.
Engines
5 Mean
Std.Dev.
Coef.Var(%)
7 Mean
Std.Dev.
Coef.Var(%)
8 Mean
Std.Dev.
Coef.Var(%)
2 Mean
Std.Dev.
Coef.Var(%)
4 (1) Mean
Std.Dev.
Coef.Var(%)
5 Mean
Std.Dev.
Coef.Var(%)
4 (1) Mean
Std.Dev.
Coef.Var(%)
18 (14) Mean
Std.Dev.
Coef.Var(%)
Pollutant
CO
38.527
15.797
41.00
46.979
36.861
78.46
67.853
20.378
30.03
40.500
10.295
25.42
42.766
17.847
41.73
40.199
3.809
9.48
55.146
13.828
25.07
17.292
5.133
29.68
Mass Total
HC
19.873
12.519
63.00
37.919
27.333
72.08
62.072
25.257
40.69
48.322
12.982
26.87
43.263
12.487
28.86
8.732
2.934
33.60
16.461
14.097
85.64
3.869
2.481
64.13
for Cycle (Ibs)
NOX
6.844
0.590
8.62
7.021
0.534
7.61
6.643
0.535
8.05
8.255
0.482
5.84
9.386
0.192
2.05
29.708
3.221
10.84
33.623
6.706
19.94
6.891
1.651
23.96
-------
TABLE 3 (f.ont.)
LTO-CYCLE TOTAL MASS EMISSIONS
oo
Engine
Category
JT-8D
Undiluted
Regular
JT-8D
Diluted
Smokeless
JT-8D
Diluted
Smokeless
JT-8D
Diluted
Smokeless
JT-8D
Diluted
Regular
JT-8D
Diluted
Regular
JT-8D
Experimental
Test No.
Organization Engines
SWRI TWA 7 (5) Mean
Std.Dev.
Coef.Var(%)
BuMines AA 10 Mean
Std.Dev.
Coef.Var(%)
United EPA 4 Mean
Std.Div.
Coef.Var(%)
Pratt f, 'Afiitney 8 Mean
Std.Dev.
Coef.Var(%)
BuMines AA 5 Mean
Std.Dev.
Coe*.Var(%)
United EPA 2 Mean
Std.Dev.
Coef.V'ar(%)
Pratt § Whitney 4 Mean
Std.Dev.
Coef.Var(%)
Pollutant
CO
19.615
4.967
25.32
13.207
2.291
17.35
11.285
7.547
66.88
16.148
2.017
12.49
21.143
6.101
28.86
17.936
0.035
0.19
28.051
12.303
43.85
Mass Total
HC
3.701
1.276
34.48
3.385
1.180
34.86
2.327
1.926
82.77
2.945
0.841
28.56
6.045
2.655
43.92
2.543
1.977
77.74
4.058
2.503
61.68
for Cycle (Ibs
NOX
5.565
0.582
10.46
10.243
1.497
14.61
8.451
0.533
6.31
10.907
1.030
9.44
8.638
1.302
15.07
8.389
0.386
4.60
11.922
1.668
13.99
Weighted Average
Coef.Var(%)
30.64
46.76
13.97
-------
where p is the coefficient of variation. The standard error of the random
variable # is accordingly
' "**
If it is presumed that O" is known (or is adequately estimated by the
analysis of Table 3), then a 95% confidence interval for p. is given by
This result appears circuitous in that U. would need to be known in order to
establish the confidence interval, but if it were known there would be no need
for a confidence interval. Suppose, however, that one considers only the
width of the interval, which is
* +"1
Then the width of the interval, expressed in terms of U , is just
If*
or the interval half-width is 1.96
This simple result can afford broad guidance both in interpreting
the statistical consequences of existing exhaust measurements and in postulating
the number of additional tests which might be required to increase confidence in
the existing measurements or to establish baseline information for engine models
not yet tested. It should be noted that a similar argument can be developed
for other levels of confidence, say 99%. The 95% confidence level was selected,
however, as the basis for further analysis. Confidence intervals based on the
95% level of probability provide a high degree of assurance that a particular
interval will contain the population mean. Beyond 95%, the width of the interval
(in terms of multiples of the standard deviation) increases rapidly for each
additional 1% increase in confidence.
19
-------
In Table 4 is tabulated the quantity 1.96 pl^ for various
values of p and N. The parameter p is varied in 15% increments from 15% to
75%; the parameter N is varied from 1 to 100 in intervals which are perfect
squares. According to the table, for data with precision such that the co-
efficient of variation is 15%, approximately 9 tests would be required to
reduce the half-width of the 95% confidence interval to 10% of the population
mean, yu. . Similarly, if the coefficient of variation is 30%, 36 tests would
be required for the same purpose. If the coefficient of variation is as large
as 45%, 81 tests would be necessary to determine the mean value to within 10%
of its magnitude. On the basis of the coefficients of variation as estimated
from Table 3, the numbers 9, 36 and 81 would apply approximately to total-
cycle mass emissions for NOX, CO and HC respectively.
Two qualifications pertain to the above rough estimations. First,
the numbers of tests indicated are based on control of random errors only. If
a bias is involved, either as the result of instrumental errors or other causes,
no amount of additional testing will guarantee a closer approximation to the
mean values for mass emissions of NOX, CO and HC. Second, it must be realized
that the above estimates are based on current experience in the measuring and
assessment of emissions as practiced in the present program. As was previously
pointed out, the mass emissions for the LTO cycle are dominated by taxi-idle
mode operation in the case of CO and HC. Operation at low power settings
produces a highly critical region in the curve which relates emissions to power
or thrust. In this critical region, very small changes in power or thrust
setting can produce very large changes in CO or HC emissions. In view of the
subtle differences which might be expected to exist among engines in this respect,
it is conceivable that one engine might be just over this critical region when
operating at a specified fraction of rated power, whereas another engine might
be just under the critical point when operating ostensibly at the same specified
fraction of rated power. Moreover, it must be borne in mind that the rated
power for a particular engine model is a nominal value; individual engines
might be expected to vary somewhat from the nominal value. Consequently, 5%
of the nominal rated thrust might be a slightly smaller or slightly larger
fraction of the rated power or thrust if this rating were made for individual
engines rather than for a "typical" engine of that model.
20
-------
TABLE 4
FACTORS FOR CONFIDENCE INTERVALS
95% Confidence Bounds
Coefficient of variation, n (%)
Sample
Size, N
1
4
9
16
25
36
49
64
81
100
15
29.4
14.7
9.8
7.4
5.9
4.9
4.2
3.7
3.3
2.9
30
58.8
29.4
19.6
14.7
11.8
9.8
\
7.7
7.4
6.5
5.9
45
88.2
44.1
29.4
22.0
17.6
14.7
12.6
11.0
9.8
8.8
60
117.6
58.8
39.2
29.4
23.5
19.6
16.8
14.7
13.1
11 .8
75
147.0
73.5
49.0
36.8
29.4
24.5
21.0
18.4
16.3
14.7
21
-------
Refinement of the testing procedure, either improvement in
instrumentation or in the strategy of conducting the tests and analyzing the
data, could conceivably materially decrease the statistical variation of exhaust
emission assessments. In many of the tests, data were substantially missing
in the critical "knee" of the CO and HC tests; in others, the lowest power or
thrust setting employed in the test sequence was higher than the power or thrust
setting specified as the taxi-idle mode. Estimation of the taxi-idle mass
emission, so critical to the total LTO cycle calculation, was extremely
difficult in such cases and was subject to considerable error arising from the
necessity of a strongly subjective estimation process. In subsequent tests,
care should be taken to better define the critical region of the curves by
allocation of more test points to low levels of thrust power.
Though individual tests for a particular engine may have been
sparse in data points, the aggregation of a number of engines of a particular
model tends to reinforce the sparse regions. Where points might be missing
for one engine, they might be present in another, and this fact was taken
advantage of in the fairing of the individual curves. The success achieved
in this way can be seen in Figure 1, in which the CO test points for all
engines in the T56-A7 turboprop category are plotted to produce a composite
graph. The small circles denote actual test points as converted to the basis
of pounds of pollutant per pound of fuel. Now it will be recalled that for
each engine an individual emission curve has been previously drawn for each
of the pollutants, and these curves were used to interpolate for emissions at
the specified power or thrust values defined as being applicable at taxi-idle,
takeoff, climbout and approach. Finally, averages and standard deviations were
computed for these mode estimates by combining all engines in the particular
category. These average values are represented by crosses in the composite
plots; the lines through the crosses extend to one standard deviation above
and below the average values. It should be pointed out that in some instances
the average as plotted for the taxi-idle mode may appear to be too high for the
adjacent data points. Closer examination will often reveal, however, that these
data points were such as to necessitate extrapolation. If the average includes
many extrapolated values, it will be, and quite properly so, higher than the
adjacent data points. To augment the four modes used in the LTO cycle calculation,
a point in the knee of the curve was included to better define that region of the
composite curve.
22
-------
o _,
ro
r\i
LU <0 —
CD
O
LJ
CO
o
6
T56-R7 SNRI
V
o°<
I I II I
20 40 60 80 100
7. THRUST
Figure 1 COMPOSITE PLOT OF AIRCRAFT ENGINE EXHAUST EMISSIONS
-------
A compilation of composite plots for the various engine
categories of interest in this investigation can be found in Appendix I.
In general, it will be observed that:
1) The dispersion of points is much greater at high levels
of emission than at low levels.
2) The one-standard-deviation error bands indicated for the
interpolated points are compatible with the scatter of
the observed or "raw" data points.
3) A curve drawn through the average mode values, as given
by the crosses, would provide a "reasonable" fit to the
composite cloud of raw data points.
The graphs thus lend credibility to the semi-subjective, semi-automatic pro-
cedure used to obtain emissions over the LTO cycle and to the hypothesis that
errors tend to be directly related to the magnitude of the quantities being
assessed.
3.1 Within-Engine Versus Between-Engines Variability
It has been indicated that a certain amount of variation in measured
emissions is introduced by uncontrolled variables in the testing operation and
by certain necessary compromises in the data reduction process. Also, it has
been suggested that by further refinement of technique, it might be expected
that the variation induced by these causes might be reduced. Even if these
sources of error were completely eliminated, however, there would be differences
between engines of a particular model. These differences are the result of
factors peculiar to each engine and would not be eliminated even by a "perfect"
or error-free test procedure and measurement process. In such an ideal case, it
would hypothetically be possible to perform repeat or replicate tests on a
particular engine and obtain exactly the same measured emissions each time.
24
-------
A different engine, however, would give different results, results peculiar
to its own "personality." In reality, of course, such an ideal situation does
not and probably could not exist. Replicate tests of a particular engine do
not give identical results, and the variance observed in these replicate tests
provides a measure of "within-engine" variance. We are tempted to refer to
this variance as "run-to-run variability", where by a "run" is meant a series
of tests on a particular engine. When many engines of a model are tested,
there is superimposed on this "within-engine" variability a "between-engines"
variability. This variability might also be referred to as "engine-to-engine
variability", in that it denotes the variance induced when the test operation
is changed from one engine to another. Understanding of the relative magnitudes
of these two sources of variance will provide insight into how to more effect-
ively improve testing strategy as well as to indicate the degree of latitude
which might be appropriate in emission standards to allow for the natural
variation among engines of a particular model or type.
Estimation of the "repeatability" of emissions measurements--that is,
the "within-engine" variability alluded to above-- can best be achieved by
replicate tests set up for that purpose. In particular, it is desirable that
k engines be selected at random and that each of these k engines be tested n
times to produce kn emissions assessments. From this two-way table of measure-
ments one can extract, by analysis of variance, the variance components
associated with engine-to-engine variability and with test variables.
Unfortunately, replicate tests of turboprop and thrust turbine
engines exist in only a few, isolated cases which do not lend themselves well to
a systematic decomposition of errors according to source. In the case of piston
engines, however, a fairly extensive set of data well-structured for such
analysis is provided by the Scott Research Laboratories tests on light utility
aircraft engines. A summary of these tests is found in the Phase I report.
Table 5 was prepared by abstracting data from the Phase I report.
The table presents total CO, HC and NO emissions for 7 engines of the 0-320 type
as computed over a specified LTO cycle. Each of the 7 engines was tested three
times — that is, three replicates are available for each engine.
25
-------
TABLE 5
ANALYSIS OF VARIANCE
FOR SEVEN 0-320 PISTON ENGINES
CO TOTAL FOR CYCLE (LBS)
Mean
Std. Dev.
11.569
10.675
10.424
10.889
0.602
11.136
11.394
13.252
11.928
1.155
9.822
11.525
14.304
11.884
2.262
12.875
11.308
11.070
11.751
0.981
6.795
4.537
9.458
6.930
2.463
11.532
10.108
10.699
10.780
0.716
17.058
15.328
16.276
16.221
0.867
Mean Squares Among Engines
Mean Squares Within Engines
F Ratio
Among - Engines Component of variance
Combined Variance: Within + Among
Intra-Class Correlation Coefficient
Combined Standard Deviation
(6 d.f.)
(14 d.f.)
22.2266
2.1582
10.2989
6.6895
8.8476
0.7561
2.9745
HC TOTAL FOR CYCLE (LBS)
Mean
Std. Dev.
0.280
0.574
0.356
0.404
0.153
0.467
0.372
0.347
0.395
0.064
0.348
0.326
0.383
0.352
0.029
0.199
0.187
0.175
0.187
0.012
0.148
0.112
0.183
0.147
0.036
0.293
0.185
0.199
0.225
0.059
0.347
0.252
0.268
0.289
0.051
Mean Squares Among Engines
Mean Squares Within Engines
F Ratio
Among - Engines Component of Variance
Combined Variance: Within + Among
Intra-Class Correlation Coefficient
Combined Standard Deviation
(6 d.f.)
(14 d.f.)
0.031435
0.005100
6.163188
0.008778
0.013879
0.632496
0.117808
NO TOTAL FOR CYCLE (LBS)
Mean
Std. Dev.
0.0131
0.0094
0.0081
0.0102
0.0026
0.0
0.0
0.1306
0.0435
0.0754
0.3743
0.1277
0.0216
0.1746
0.1810
0.0274
0.0281
0.0176
0.0244
0.0058
0.0239
0.1044
0.0153
0.0473
0.0492
0.0136
0.0123
0.0126
0.0128
0.0007
0.0086
0.0125
0.0083
0.0098
0.0023
Mean Squares Among Engines
Mean Squares Within Engines
F Ratio
Among - Engines Component of Variance
Combined Variance: Within * Among
Intra-Class Correlation Coefficient
Combined Standard Deviation
(6 d.f.)
(14 d.f.)
0.010349
0.005843
1.771275
0.001502
0.007345
0.204513
0.085701
26
-------
The logic of the analysis in Table 5 can be appreciated by
heuristic reasoning. For example, consider the results for total CO emissions
over the LTD cycle. The first group of three measurements constitute three
replications on the same engine. The mean for these three measurements can
he computed and the standard deviation computed with respect to that mean.
The standard deviation squared is, of course, the corresponding variance;
this variance ostensibly arises from factors affecting the individual runs and
in no way can experience a between-engines effect. The individual variance
estimates for the seven columns of CO measurements can be "pooled" -- that is,
averaged -- to obtain a "best estimate" of the within-engine variance, called
in the table "mean squares within engines." Now suppose one considers the
entire set of 21 measurements in the manner employed in the Phase I report,
as if they represented 21 distinct engines. The grand mean for the 21
measurements is 11.483; the standard deviation of the 21 measurements, computed
with respect to the grand mean, is 2.860. Quite clearly, this result is a measure
of some mixture of the within-engine and among-engines effects. By appropriate
correction of this result for the separately computed within-engine component,
one can obtain the between-engines component of variance. Details of the
method need not be discussed here, since they are presented in standard statis-
tical texts.* Suffice it to say that two pertinent quantities can be derived
in this way: mean squares among engines and mean squares within engines. The
first quantity has associated with it 6 degrees of freedom (d.f.), one less
than the number of engines. The second quantity has 14 degrees of freedom,
2 for each of the 7 columns . By dividing mean squares among by mean squares
within, one obtains the F ratio
Referring to a table of the F distribution, one finds that the 5% critical
value for 6 and 14 degrees of freedom is 2.85 and that the 1% critical value
is 4.69. The computed value of 10.2989, exceeds even the 1% critical value,
* See, for example, C-.W. Snedecar, Statistical Methods, Fifth Edition, Iowa
State College Press, Ames, Iowa, 1956.
27
-------
so it can be concluded that the engine-to-engine variance is significant
at better than the 1% level. To appreciate the meaning of this conclusion,
suppose that no engine-to-engine variability existed and one had performed the
same type of analysis. Under these conditions, called the conditions of the
null hypothesis, an F-ratio as large as 4.69 or larger would occur very
rarely, only 1% of the time. It is thus unlikely that the observed F-ratio,
10.2989, could have occurred by chance.
By the methods of analysis of variance, it can be shown that the
. £ y
quantity called mean squares among engines is an estimate of O^ + 3 (% ,
where O^*" is the within-engine component of variance and ^ is the
between-engines component of variance. As previously noted, the mean squares
within engines is an estimate of O"A only.
Setting
g 2
0*, + J UA = 22.2266
and Ow = 2.1582
~*^> 2. 2.
one obtains two equations which can be solved for A" and 0* to
w A
obtain
£J = 6.689.
The sum of the two variance components gives
G^ f 0^ = 2.1582 + 6.6895 = 8.8476.
This combined variance is an estimate of the variance which would be obtained
if single tests were run on individual engines, so that the within and among
effects are equally weighted. The square root of this quantity, called combined
standard deviation, is an estimate of the corresponding standard deviation.
28
-------
Consider, now, the ratio of the among-engines component of
variance to the combined variance:
*^i = 0.7561
This ratio, called the intraclass correlation coefficient, is that fraction of
the combined variance which is attributable to engine-to-engine variability.
Examination of the results for MC emissions reveals that engine-
to-engine variability is also significant here at better than the 1% level
(F ratio = 6.16). In this instance, over 63% of the combined variance is
attributable to engine-to-engine variability.
In the case of the NO results, it is evident from examination of
the input data that the measurements are somewhat erratic. This fact is
reflected in the F-ratio of 1.77, which fails to reach even the 5% level of
significance. Oven if one were to consider engine-to-engine variability
significant, the best available estimate of its magnitude places it at approxi-
mately 20% of the combined variance.
Analysis of variance can be performed on any of the quantities
evolving from the LTO-cycle calculation: pounds of pollutant per pound of
fuel for individual modes, pounds of pollutant per hour for individual modes,
pollutant mass for each mode, and so on. An extensive compilation of these
results is given in Appendix II. These results are included as a source of
information on the partitioning of variance between engine and test-variable
sources.
A word of explanation is in order concerning the negative quantities
which occasionally occur in the analysis of variance. In the solving of the
two equations
29
-------
z +. ^/r2-
1~ 3 UA = mean squares among engines
O\fj = mean squares within engines
it must be appreciated that the mean squares are sample realizations of two
random variables, whereas 0^, and ££ are expected values, or population
parameters. Because of this fact, a set of values may occasionally occur in
which the means of engine replicates vary less than would be anticipated on
the basis of the individual variation observed among the replicates them-
selves. Thus (3^ appears to be a negative quantity, an obvious mathe-
matical impossibility. Clearly no useful information regarding the partitioning
of variance can be obtained in such instances. It will usually be observed,
however, that in such cases the F-ratio will often be non-significant, and
further analysis might be considered to be precluded by this fact. By general
overall assessment of the data contained in Appendix II, however, one can
obtain considerable insight into the variance-component disposition.
The prospect of spurious results in isolated cases of analysis of
variance makes evident the risk involved in attempting to draw conclusions from
the isolated cases of replicate data available for turboprop and thrust turbine
engines. Nevertheless, one can obtain some appreciation of the variability
which can occur from testing variables alone, even when these tests are con-
ducted on the same engine and under as nearly identical conditions as possible.
For example, in the testing program performed by Pratt and Whitney, replicate
tests were performed on three experimental engines, one JT3D, one JT8D and
one JT9D. The results obtained on these engines are statistically summarized
in Appendix III; an abbreviated summary, based only on total emissions over the
LTO cycle, is presented in Table 6.
The results of Table 6 present an anomaly in that the statistical
variation observed among replicates on the experimental engines is greater than
that observed among individual tests of different engines in the production
categories. If the same spectrum of testing errors applied to both the experi-
30
-------
TABLE 6
LTO - CYCLE TOTAL MASS EMISSIONS
Engine No. Pollutant Mass Total For Cycle Ubs.)
Category Items CO HC NOX
JT-3D Exp. 4 Mean 42.766 43.263 9.386
Std. Dev. 17.847 12.487 0.192
Coef. Var.(%) 41.73 28.86 2.05
JT-3D Prod. 5 Mean 38.527 19.873 6.844
Std. Dev. 15.797 12.519 0.590
Coef. Var.(%) 41.00 63.00 8.62
JT-8D Exp. 4 Mean 28.051 4.058 11.922
Std. Dev. 12.303 2.503 1.668
Coef. Var.(%) 43.86 61.68 13.99
JT-8D Prod. 8 Mean 21.143 6.045 8.638
Std. Dev. 6.101 2.655 1.302
Coef. Var.(%) 28.86 43.92 15.07
JT-9D Exp. 4 Mean 55.146 16.461 33.623
Std. Dev. 13.828 14.097 6.706
Coef. Var.(%) 25.08 85.64 19.94
JT-9D Prod. 5 Mean 40.199 8.732 29.708
Std. Dev. 3.809 2.934 3.221
Coef. Var.(%) 9.48 33.60 10.84
31
-------
mental and production engines, it would be expected that the variance for
the production category would be greater than for the experimental category
because the production category is affected by engine-to-engine variability,
whereas the experimental category is not. It appears, therefore, that test
variability is, for some reason, greater for the experimental engines than
for the production engines. Part of this difference may reside in the fact
that the experimental engines are rated at a somewhat higher thrust value
than are the production engines. Mean values for the pollutant mass for the
cycle are in many cases higher for the experimental engines than for the
corresponding production engines; this fact, if it represents a real difference
in pollutant output, might also be a factor influencing the greater variability
noted for the experimental engines. Because of the anomalies noted above,
therefore, it is not feasible to attempt to estimate engine-to-engine variability
by comparing the replicated and non-replicated tests of JT3D, JT8D, and JT9D
engines tested by Pratt and Whitney. The replicate tests do indicate, however,
that the coefficient of variation for replicate tests may in some instances
be at least as great as the weighted average values derived from Table 3.
Further tests conducted in somewhat the same manner as the Scott tests of
piston engines would be required to answer more definitely the question of the
relative importance of engine-to-engine and run-to-run variability.
A limited amount of data suitably structured twoard this end is
provided by replicate tests performed on four JT8I) engines tested by the
SWRI-TWA team. The results obtained for these engines over the LTD cycle
for CO, HC and NOX are summarized in Table 7. According to analysis of var-
iance, the among-engines variability is not significant and, in fact, the
results are such as to imply that engine-to-engine variability is negligible
relative to the testing variation. It is to be noted, however, that the
amount of data is so small as to make these conclusions uncertain, particularly
in view of the fact that in the case of the CO and HC analyses, one of the
observations appears inconsistent with the remaining observations and might
be regarded as an "outlier." As previously noted, more data would be required
32
-------
TABLE 7
ANALYSIS OF VARIANCE FOR FOUR JT8D ENGINES
CO TOTAL FOR CYCLE (Ihs.)
Mean
Standard Deviation
Mean Squares Among Engines
Mean Squares Within Engines
F Ratio
Among-Engines Component of Variance
Combined Variance: Within + Among
Intra-Class Correlation Coefficient
Combined Standard Deviation
25.792
14.823
20.308
7.756
12.967
12.016
12.492
0.673
18.547
15.663
17.105
2.039
(3 d.f.)
(4 d.f.)
15.395
15.367
15.381
0.022
21.3703
16.1927
1.3197
2.5889
18.7816
0 -1378
4.3338
HC TOTAL FOR CYCLE (Ibs.)
Mean
Standard Deviation
Mean Squares Among Engines
Mean Squares Within Engines
F Ratio
Among-Engines Component of Variance
Combined Variance: Within + Among
Intra-Class Correlation Coefficient
Combined Standard Deviation
12.
1.
7.
7.
816
869
342
741
2
2
2
0
.224
.253
.239
.021
4.
4.
4.
0.
(3
(4
136
317
226
128
d.f.)
d.f.)
4
4
4
0
8
15
0
-3
11
.-0
3
.390
.996
.693
.429
.8291
.0297
.5874
.1003
.9294
.2599
.4539
NOX TOTAL FOR CYCLE (Ihs.)
Mean
Standard Deviation
Mean Squares Among Engines
Mean Squares Within Engines
F Ratio
Among-Engines Component of Variance
Combined Variance: Within + Among
Intra-Class Correlation Coefficient
Combined Standard Deviation
6.877
8.087
7.482
0.856
5.760
5.314
5.537
0.315
6.398
6.578
6.488
0.127
(3 d.f.)
(4 d.f.)
6.1 30
12.186
9.158
4.282
4.7850
4.7963
0.9976
-0.0056
4.7907
-0.0012
2.1888
33
-------
to obtain a bona fide estimation of the relative importance of run-to-run
and engine-to-engine variability.
In Appendix III can be found a compilation of the limited number
of replicate analyses available on turboprop and thrust turbine engines.
3.2 Factors Affecting Exhaust Emissions
The ability to draw conclusions regarding the effect of such
factors as engine age and ambient conditions on aircraft engine exhaust
emissions depends on a number of factors. First, any apparent effects must be
evaluated with respect to their statistical significance. In the case of data
in which the standard deviation of observations may be as much as 50% of their
average value, the apparent effects must be relatively large in order to be
judged statistically significant, unless a fairly large number of replicate
measurements are available. Second, the apparent effects must be capable of
being identified with specific causes. For example, let us suppose that a
significant difference has been established between the mean CO mass output over
the LTO cycle for two groups of engines of the same type. If one of these
groups represent new engines and the other represents used engines, and if
this difference in age is the only factor which distinguishes one group of
engines from the other, then it might be concluded that the observed difference
in emissions was the result of the difference in engine age. If, however, the
two groups of engines were tested by different test organizations and at two
different geographical locations, it would be difficult to ascribe the observed
difference to age, since it might have been at least partially due to differ-
ences in test methodology or prevailing environmental conditions. In the latter
case, the effect of engine age is said to be confounded with other factors which
might have been responsible for the differences in emissions observed.
To test whether the difference between the two means can be regarded
as statistically significant, one frequently makes use of a device known as
34
-------
a "t-test". To apply the test, one formulates the null hypothesis
Ho :
where Jii. and /-I* are the population means for the two catepories of
data being compared. Of course, only the sample means %f and %z ,
each based on a relatively small number of observations, are available. These
sample means are almost certain to appear numerically different-- that is, it is
quite unlikely that they will be identical in magnitude. On the basis of the
considerations of Table 4, however, it is evident that relatively large
fluctuations in the value of either % or ?a can occur as a result of
sampling variation, even though the samples are drawn from the same population.
Now, if one considers the differences between two successively drawn samples,
the variation in these differences is even greater: the standard error of the
difference between the means is approximately //T times the standard error
of the means being compared. It becomes necessary, therefore, to regard
quite critically any apparent difference between means to assure that the
observed difference is not a chance occurrence having no relevance to the causes
under consideration.
A broad assessment of what constitutes or does not constitute a
significant difference between means can be had by modification of Table 4.
In that table, the magnitude of the standard deviation of observations is
assumed to be known as a fraction of the mean value of the observations.
Multiplying the entries in Table 4 by -xfT results in Table 8, which provides
an estimate of the "least significant difference" which would be required between
two means y, and 2^ to declare the difference significant at the 5%
level of significance. The entries in the table are the minimum differences
between means, expressed as a percent of their average value, which would be
required to establish significance at the 5% level if each of the means derives
from a sample of N measurements. Thus, for example, for data which normally
exhibits a 30% coefficient of variation, two means, each based on 16 measure-
ments, would have to differ by more than 20% of their mid-value in order to be
declared significantly different at the 5% significance level. In view of the
fact that 15%, 30% and 45% represent respectively estimates of the coefficient
35
-------
TABLE 8
LEAST SIGNIFICANT DIFFERENCE BETWEEN MEANS
0.05 Significance Level
Coefficient of
Sample
Size,
N
1
4
9
16
25
36
49
64
81
100
15
41.6
20.8
13.8
10.5
8.3
6.9
5.9
5.2
4.7
4.1
30
83.2
41.6
27.7
20.8
16.7
13.9
10.9
10.5
9.2
8.3
45
124.7
62.4
41.6
31.1
24.9
20.8
17.8
15.6
13.9
12.4
variation, p (%)
60
166.3
83.2
55.4
41.6
33.2
27.7
23.8
20.8
18.5
16.7
75
207.9
103.9
69.3
52.0
41.6
34.6
29.7
26.0
23.0
20.8
36
-------
of variation for NOX, CO and IIC, the entries in these columns can be used as a
general guide for judging the significance of differences between two categories
of engines, such as new and in-use or engines tested by two different test
organizations. If the number of engines in the two groups being compared are
unequal, the approximate least significant difference can be determined by
interpolation.
As in the case of confidence intervals, the choice of significance
level to be used in establishing least significant differences is to some extent
arbitrary. From a practical consideration, this choice is a compromise between
the risk of declaring a difference significant when it is not (Type 1 error)
and declaring a difference to be not significant when in reality it is (Type 2
error). At the 5% significance level, errors of the first type would occur with
probability 0.05. Therefore if the difference between two results (such as that
obtained by two organizations) is declared significant, one can have reasonable
assurance that the difference is not due simply to sampling variation. Dis-
cussion of the implications of Type 2 errors is beyond the scope of this
document. By the methods outlined, however, one can construct other criteria
for judging significance if a different level of significance is indicated by
consideration of the consequences of the two types of error.
Within the framework of a 5% significance level, Table 8 can be
used in a broad evaluation of comparisons of interest in Table 3 and Table 6.
For example, consider results obtained in the testing of JT3C
engines by the United Aircraft-EPA team and the SWRI-TWA team. For CO and HC,
the two mean values are centered on approximately 40 pounds of pollutant per
cycle. Approximately 4 tests were available in each group, so that it might
be concluded that if the difference between means for CO is greater than 41.6%
of this value, or about 17 pounds CO, one can adjudge the difference to be
significant. Since the observed difference is considerably greater than 17
pounds CO, the difference is significant. In the case of HC, however, signifi-
cance is not reached. In the case of NOX, the observed difference is approxi-
mately 1.2 pounds NOX, or approximately 17% of the average of the NOX values
37
-------
reported by the two organizations. Though this difference approaches the
minimum difference required for significance, it is less than conclusive. It
must be emphasized, however, that slavish adherence to the dictates of Table 7
should be avoided, because the values given are based on an estimated value for
the coefficient of variation, and this value was further rounded to even 15%
increments. For this reason, the NOX difference might be regarded as marginally
significant rather than being labeled not significant. In short, it is suggested
that the table be employed as a general guideline to significance statements
and that it be tempered with an appropriate measure of discretion.
With the above philosophy in mind, a number of comparisons were
made, as shown in Table 9. In this table the marginal entries are the categories
being compared, and the intersection of a particular row and column contains
an assessment of the significance of that comparison. The presence of the
symbols CO, HC or NOX in this position denotes that the coresponding comparisons
were judged to be significant or at least worthy of further consideration. If
a symbol is missing from the cell, its absence denotes that the observed differ-
ence did not reach the magnitude required (considering the size of the samples
involved) to be considered significant. Thus if the cell is completely empty,
no significant difference was observed for either CO, HC or NOX.
Table 9 does not attempt to exhaust all the possible comparisons
which might be made or which might be of interest to the reader. By the methods
suggested, however, other comparisons can be made as appropriate to the questions
of concern. The logic of these comparisons is based on the assumption that an
overall average of coefficients of variation obtained by pooling all turbine
engines tested is more reliable than local estimations made on the basis of the
categories actually being compared. It can not be contended that the significance
level of 5% is precisely achieved in all comparisons, nor is that the intent of
the analysis. Rather, the intent is to provide a rational scheme by which
comparisons can be screened according to a decision rule approaching uniformity.
38
-------
TABLE 9
COMPARISONS OF VARIOUS CATEGORIES OF EXHAUST
EMISSIONS TESTS
JT 3C
SWRI - TWA
(3)
JT 3C
UNITED- EPA
(4)
55.4 - 39.2 - 7.6
JT 3D
BuMINES - AA
(2)
40.5 - 48.3 - 8.3
JT 3D
PgW PROD
(5)
38.5 - 19.9 - 6.8
JT 8D
UNDIL-SMOKELESS
SWRI-TWA
(18)
17.3 - 3.9 - 6.9
JT 9D
PSW PROD
(5)
40.2 - 8.7 - 29.7
29.0-42.3-6.4
NOX
HC
CO
HC
HC
NOX
JT 3D
P5W EXPT.
(4)
42.8- 43.3-9.4
NOX
HC
NOX
CO
HC
NOX
HC
NOX
JT 8D
UNDIL-REG
SWRE-TWA
(7)
19.6-3.7-5.6
CO
HC
NOX
CO
HC
NOX
CO
HC
NOX
NOX
CO
HC
NOX
. .
JT 9D
P$W EXPT.
(4)
55. 1-16. 5- 33. f
HC
NOX
HC
NOX
NOX
CO
HC
NOX
HC
Note: Table entries imply significant differences at the 5% level of significance.
39
-------
In Appendix IV are statistical summaries of various homogeneous
categories of aircraft engine emissions tests. The basis of homogeneity may
be test organization, whether the engine is or is not equipped with smokeless
burner can retrofits, and so on. These summaries, together with the least-
significant differences of Table 8, can be used in further statistical
comparisons.
3.2.1 Differences Between Test Site Locations
One of the questions of interest in the analysis of engine test
data is whether significant differences are observed between test sites if
attention is restricted to a particular type of engine. In Table 9 was
presented an example of a significant difference between tests on the same
model engine (JT3C) by two different test organizations (SWRI-TWA and United-
EPA). Any of a number of factors could have contributed to this difference,
however. In addition to different locations of test sites, one must bear in
mind the fact that actually different engines were tested and that differences
in sample train, instrumentation and other factors could have existed. In
view of the manner in which the data were processed, there could even have
been differences arising from the interpolative process and the manner in
which these differences propagated in the computation of mass emissions over
the LTO cycle. In view of such confounding influences, it is difficult to
establish the actual cause of the observed differences. More carefully con-
trolled tests aimed at isolating extraneous factors would be required in order
to be definitive on this point.
3.2.2 Effect of Engine Age
In view of the fact that significant differences can occur between
test organizations for a variety of reasons, any study of the effect of engine
age or time since overhaul of the hot section should preferably be restricted
to tests performed by a single test organization. This fact restricts severely
the number of engines available for age comparisons since it precludes comparison
40
-------
of new engines tested by one organization with in-use engines tested by
another. In addition, differences in ambient conditions may occur between
tests of new engines and old engines. If these ambient conditions influence
emissions, they may tend to confound or obscure the effects of engine age.
In a well-designed experiment, care could be taken to balance out these
extraneous effects or to adjust the engine-age effects for any perturbing
effect of ambient test conditions. Though regression analysis can sometimes
be employed for this purpose, its use in the present analysis is discouraged
because of the limited number of cases available for analysis in a particular
homogeneous subset of engines tested.
The set of data most amenable to a study of the effects of engine
age are the 18 tests performed by the SWRI-TWA team on JT8D engines equipped
with smokeless burner cans. In this set of tests are 7 performed on engines
with newly overhauled hot sections and 3 tests on engines having less than
500 hours service since overhaul of their hot sections. The remaining 8 tests
were performed on engines which, with one exception of 1027 hours, had operated
several thousand hours since such overhaul. The number of engines tested is
large enough to assure at least some degree of balance in ambient conditions.
In Table 10, the two subsets of JT8D engines are tabulated
according to time since overhaul of the hot section. Ambient conditions which
might influence the comparison, such as specific humidity, temperature and
atmospheric pressure, are listed and averaged for the two subsets. Though it is
not assured that the effects of these ambient variables, if they exist, are
linear, it can be assumed that the values of these disturbing variables are to
some extent distributed so as to compensate for their influence on the average
results for the two subsets of engines tested.
In view of the requirements set forth for least significant differ-
ence in Table 8, neither CO nor HC mass emissions over the LTO cycle reach the
5% significance level. By strict interpretation of the table, the NOX emissions
over the LTO cycle show a significant effect for time since hot-section overhaul,
Attention is called to the fact, however, that this result hinges strongly on
one determination, 12.186, which is considerably higher than the remaining
41
-------
TABLE 10
EFFECT OF ENHINE ACE ON EXHAUST EMISSIONS
CAL
ID
No.
275
280
283
284
286
305
332
287
303
304
Average
Time Since
Overhaul
(hrs)
0
0
0
0
0
0
0
242
460
460
116
En pines
Specific
Humidity*
0.0123
0.0161
0.0107
0.0130
0.0076
0.0152
0.0121
0.0110
0.0129
0.0129
0.0124
with less than
Temperature
'(°F)
81.0
82.0
73.0
66.5
67.5
79.0
87.0
58.0
78.0
80.0
75.2
1000 hrs. operation
Atmospheric
Pressure**
28.88
28.81
28.83
28.90
28.98
28.92
29.05
29.00
28.82
28.97
28.92
since overhaul of
POLLUTANT MASS
CO
13.860
13.433
12.215
18.547
15.663
23.561
18.805
31.105
15.395
15.367
17.795
the hot section
TOTAL FOR CYCLE
HC
2.420
2.721
1.233
4.136
4.317
3.437
3.782
4.963
4.390
4.996
3.640
(Ibs.)
NOX
7.658
6.289
6.110
6.398
6.578
6.711
6.856
6.673
6.130
12.186
7.158
Engines with npre than 1000 hrs, operation since overhaul of the hot section
110
112
114
277
278
279
288
330
Average
6144
3343
6144
3142
3142
1027
2945
2937
3603
* Pounds water
** TnrViAC o^ m^i
0.0171
0.0131
0.0133
0.0164
0.0174
0.0141
0.0107
0.0113
0.0142
per pound of air
rniTv
80.0
72.5
81.0
77.0
76.5
71.0
63.0
65.0
73.2
28.81
28.92
28.94
28.94
28.78
28.82
29.02
29.12
28.90
25.792
15.190
14.823
12.967
12.016
21.336
15.489
15.693
14.812
12.816
3.447
1.869
2.224
2.253
4.422
3.298
2.925
3.695
6.877
9.056
8.087
5.760
5.314
4.578
6.381
6.404
5.829
-------
determinations in the set and might be considered an "outlier". In short,
evidence of a significant effect of engine age on emissions is not conclusive.
On the basis of available information, the effect, if real, would appear to
be small relative to the magnitude of reductions in emissions which micht
be contemplated in the setting of emission standards.
A complete statistical summary of the two sets of engines examined
above is given in Appendix IV.
3.2.3 Hffect of Ambient Conditions
The effect of ambient conditions on pollutant levels is one of
the questions of interest in connection with aircraft engine exhaust emissions.
As has been previously noted, different test organizations may report signifi-
cantly different emissions for comparable categories of engines and the source
of these differences may not be identifiable. For that reason, it is preferable
to restrict attention to a particular test organization when considering the
effects of ambient conditions on emissions. Moreover, to avoid confounding
environmental effects with any effect of engine age, it is desirable to work
with data which is not subject to variation in engine age. These restrictions
limit the number of engines available for the study of ambient conditions and,
because of this limitation and the others mentioned, may curtail the range of
such variables as specific humidity, atmospheric pressure and temperature.
A set of engines homogeneous with respect to test organization and
engine age is the collection of eleven new T56-A15 engines tested by Allison.
These engines are tabulated in Table 11, together with ambient conditions and
the CO, HC and NOX total emissions over the cycle.
It should be noted that if more than one of the ambient factors
exerts an influence on emissions, it will be difficult to ascertain the separate
effects of inlet humidity, inlet temperature and atmospheric pressure on
pollutant levels. However, by means of regression analysis, one can attempt to
43
-------
TABLF 11
EFFECT OF AMBIENT CONDITIONS ON T56-A15 AIRCRAFT ENHINE
EXHAUST EMISSIONS
CAL ID
Number
18
19
20
21
22
23
24
25
26
27
28
Inlet
Humidity *
0.0096
0.0094
0.0115
0.0140
0.0155
0.0163
0.0130
0 . 0094
0.0092
0.0118
0.0102
Inlet
Temperature
(°F)
80.00
90.00
82.00
83.00
74.00
83.00
90.00
85.00
93.00
79.00
90.00
Atmospheric
Pressure **
29.26
29.27
28.90
29.21
29.19
29.01
29.08
29.12
29.05
29.29
29.14
POLLUTANT
CO
1.669
2.182
4.919
3.596
6.558
2.973
4.079
2.857
4.395
1.796
2.155
MASS TOTAL
HC
2.794
2.691
5.662
2.026
5.999
3.215
1.953
1.033
3.987
0.579
0.927
FOR CYCLE
NOX
2.726
2.258
2.054
1.487
2.047
2.551
1.756
3.282
2.281
1 . 383
2.726
* Pounds water per pound of air.
** Inches of mercury.
-------
fit a hyperplane to the emissions to ascertain if there are any linear trends
in pollutant levels as a function of ambient conditions.
If X., X_ and X_ denote the ambient variables and Y denotes one
1 £ O
of the pollutant mass quantities (CO, HC or NOX computed as total over the
LTD cycle), one can write
Y = bO * bl Xl * b2 X2 * b3 X3
as an empirical relation. The coefficients b_, b., b and b_ are constants
determined from the data by least-squares analysis.
The following regression equations were obtained for CO, HC and
NOX total mass over the LTO cycle.
For CO,
Y = 179.448 + 158.207 X - 0.0565 X - 5.940 X
*. £
For HC,
Y = 265.460 - 22.782 Xj - 0.149 X2 - 8.572 X3
For NOX,
Y = 46.537 - 119.219 Xj - 0.0143 X2 - 1.426 X3
where X. = specific humidity (Ibs. H_0/lb. air)
X_ = inlet air temperature (°F)
an X3 = atmospheric pressure (in.Hg.)
To determine whether the apparent trends with ambient conditions
are statistically significant, one can employ analysis-of-variance principles.
First, we consider the total sum of squares for the pollutant masses observed
for each of the engines in the set. Next, we consider only the sum of squares
of the differences observed when the mass for each engine is subtracted from
the average for all engines. This sum of squares is considerably less than the
45
-------
sum of squares for the original data; the amount of the decrease can be
identified as the sum of squares due to adjustment for the mean. Now let us
suppose that the pollutant mass for each engine is computed by means of the
appropriate regression equation. The difference between the value computed
from the regression equation and the value originally observed can be considered
as error, and the sum of squares of these errors can be computed. This error
sum of squares, however, is less than the corresponding error sum of squares
as calculated by adjustment for the mean only. The extent of the reduction
can be identified as the sum of squares due to adjustment for the combined
trends with specific humidity, inlet air temperature and atmospheric pressure.*
These considerations of sources of variability in results are
summarized in Table 12. An F-ratio can be computed as the ratio of the mean
squares due to b , b_ and b., to the error mean squares. This F-ratio fails
to reach even the 0.05 level of significance for CO, HC and NOX. Thus it must
be concluded that the effects of ambient conditions on emissions are too small
to be detected with the small amount of homogeneous data available. Note that
significance is not reached even though the combined effects of humidity,
temperature and pressure are considered; consequently, it is not possible to
establish significance for the effect of any one of the ambient environmental
parameters.
* The quantity b in Table 12 is actually the mean for the 11 engines and is
different from b. in the regression equation. Though the two quantities
fulfill a similar role, that of a constant in an empirical equation, they will
be equal only if the values of the variables X., X-, and X.. constitute an
orthogonal set of vectors in the matrix formulation of the least-squares
normal equations.
46
-------
TABLE 12
ANALYSIS OF VARIANCE FOR EFFECTS OF AMBIENT CONDITIONS
CO MASS TOTAL
Source
of Variance
Total
Due to b ,b. ,
0 1
Due to b
o
Due to b. ,b_,
Error
IIC MASS TOTAL
Total
Due to b ,b. ,
Due to b
o
Due to b. .b-,
Error
OVER LTO CYCLE
Degrees
of Freedom
11
b2 h3 A
f-y J 4
1
b3 (adj) 3
7
OVER LTO CYCLE
11
b2'N 4
1
b3 (adj) 3
7
Sum
of Squares
148.5069
134.7413
125.8265
8.9148
13.7656
119.5071
99.8225
86.5649
13.2576
19.6846
Mean F
Squares Ratio
2.9716 1.51
1.9665
4.4192 1.57
2.8121
NOX MASS TOTAL OVER LTO CYCLE
Total
Due to b ,b. ,
Due to b
o
Due to b. ,b ,
Error
11
b2,b3 4
1
b3 (adj) 3
7
58.0593
55.3588
54 . 7069
0.6519
2.7005
0.2173 0.56
0.3858
47
-------
4. SUMMARY AND CONCLUSIONS
Aircraft engine exhaust emissions data compiled under this program
as a baseline for promulgation of emission standards also has potential
to provide important insights with regard to factors affecting emissions.
Because of the range of circumstances under which the numerous tests were
performed, however, the use of the data for the latter purpose is restricted
in its applicability. Factors which might be presumed to affect emissions,
such as engine age and ambient conditions, are often confounded in such a
way that the isolation of their individual contributions is not practicable.
In order to separate these effects definitively, experiments designed more
specifically for this purpose, with due regard to disturbing sources of
error, would be required.
Mass emissions, as quantified in this program, are based on a
specific landing - takeoff cycle. In the case of CO and HC emissions, the
mass emissions over the LTO cycle are strongly dominated by the taxi-idle
mode of operation, and it is this mode which is most subject to variability
in the observed and estimated mass emissions. The standard deviation of
total CO mass emissions over the LTO cycle, as determined from the available
data base, is estimated as approximately 30% of the average CO mass emission.
The corresponding estimate for HC is approximately 45% of the average HC mass
emission for the LTO cycle. In general, NOX emissions measurements are more
repeatable; the standard deviation of NOX mass emissions for the LTO cycle
is approximately 15% of the average mass emission for the cycle.
The variability observed in exhaust emissions measurements prescribes
that a relatively large number of tests must be conducted in order to estimate
the average mass emission levels for a particular engine model. Specifically,
it is estimated that to have 95% confidence that the average is known to
within 10% of its true value, as many as 36 tests may be required for CO and
81 tests for HC. Similarly, in order to establish that an observed difference
in mass emissions for two series of tests in statistically significant, the
actual difference must be quite large or a large number of observations must
be available. This fact made it difficult to assess the influence of such
48
-------
factors as engine age, specific humidity, temperature and atmospheric pressure
on mass emissions.
In summary, the following statements can be made with regard to
aircraft engine exhaust emissions as determined in this analysis.
1. Variation in total mass emissions over the LTD cycle, as
measured by the standard deviation of tests performed on several engines of
the same model, often approaches the magnitude of the average for all engines
in the set. Replicate tests on a particular engine may be subject to as
much variation as that attributable to engine-to-engine variability.
2. Unless a sufficient number of engines of a particular model
are tested, the average mass emissions for that model, as well as the range
of values for individual engines in that category, is subject to considerable
uncertainty. Much of the uncertainty in the case of CO and HC stems from
the critical role played by the taxi-idle mode of operation.
3. Lack of repeatability of engine exhaust emissions measurements
stems partly from experimental and measurement errors and partly from
differences in performance of individual engines. If measurement errors
dominate^several replicate tests on a few engines is more effective in
increasing precision than is an equal total number of tests allocated to a
larger number of engines without replicate measurements. If engine-to-engine
variability dominates experimental error, the reverse strategy would be
preferred.
4. In some cases, significant differences were observed in the
mass emissions reported by different test organization for the same category
of engines. Because of the possible confounding of causes responsible for
these differences, their occurrences poses a problem in how to use the data
from the several sources in the most effective manner. The testing of a
standard or "referee" engine by all testing organization is a conceivable
scheme for eliminating such biases and unifying test results.
49
-------
5. Time since overhaul of the hot section did not appear to have
a statistically significant effect on CO and HC emissions, as determined by
the total mass emissions over the LTO cycle. Some indication of an effect
of engine age on total NOX emissions over the cycle was observed.
6. Some evidence was adduced to indicate that NOX total mass
emission over the LTO cycle may be higher for engines equipped with smokeless
burner cans than for engines not so equipped.
7. No evidence was found to indicate that the ambient conditions
of specific humidity, temperature and atmospheric pressure affect gaseous
emissions of aircraft engines. Such effects, if present, are too small to
be detectable within the statistical variation which characterizes the
emissions measurements.
The above conclusions are necessarily generalized and might be termed
"macro conclusions" in the sense that they are formulated from a broad
overview of the extensive compilation of emissions data as a whole. This
fact does not preclude the existence of specific or "micro conclusions" with
regard to specific engine categories or other circumstances nor the fact
that such conclusions may be contrary to the general conclusions drawn above.
Further assessment of emissions results according to the specific interests
of the reader must necessarily be performed on an individual basis but is
facilitated by the statistical guidelines developed in this report.
50
-------
APPENDIX I
COMPOSITE PLOTS OF AIRCRAFT
ENGINE EXHAUST EMISSIONS
CONTENTS:
1-2 TO 1-4 T56-A7 ENGINES - SWRI
1-5 TO 1-7 T56-A15 ENGINES - ALLISON
I-8 TO 1-10 TPE 331 ENGINES - AIRESEARCH
1-11 TO 1-13 CJ-805-3A ENGINES - SWRI
1-14 TO 1-16 JT3C ENGINES - UNITED
1-17 TO 1-19 JT3C ENGINES - SWRI
1-20 TO 1-22 JT3D ENGINES - PRATT & WHITNEY
1-23 TO 1-25 JT30 EXPERIMENTAL - P & W
1-26 TO 1-28 JT3D ENGINES - SWRI
1-29 TO 1-31 JT3D ENGINES - UNITED
I-32 TO I-34 JT3D ENGINES - BU MINES
I-35 TO I-37 JT4A ENGINES - SWRI
I-38 TO 1-40 JT8D UNDILUTED, SMOKELESS - SWRI
1-41 TO 1-43 JT8D UNDILUTED, REGULAR - SWRI
1-44 TO 1-46 JT8D DILUTED, SMOKELESS - BU MINES
1-47 TO 1-49 JT8D DILUTED, REGULAR - BU MINES
1-50 TO 1-52 JT8D DILUTED, SMOKELESS - P & W
1-53 TO 1-55 JT8D EXPERIMENTAL- P & W
1-56 TO 1-58 JT8D DILUTED, SMOKELESS - UNITED
1-59 TO 1-61 JT8D DILUTED, REGULAR - UNITED
I-62 TO I-64 JT9D ENGINES - P & W
I-65 TO I-67 JT9D EXPERIMENTAL - P & W
I-68TOI-70 SPEY 511 - BU MINES
1-1
-------
O
rn
r\j
LU OD_
CD
O
O
CD
CD
oe>
8
20
T56-R7 SNRI
0 ^<% o o
^8*
60
80
100
X THRUST
-------
o _,
o
V
LjJ
-------
LU
en
•r1 CO
X
O
CD
(D
o
o
T56-R7 SNR1
00
•sb
O 00
20
40 60
7, THRUST
80
100
-------
T5S-R15 RLLISON
* — ' — .
IT)
•Sf _
OJ
1
LU oo_
ZD ""
I ,
Li
CD
_J
\/
""• fM_
\. — i
CD
CJ
CD
1
CD~
o
0
o
0
0
o
o
o
o
'
,'
0
o .
.A,
og
e
xA
o*
a i
0 1<°
^
-------
T56-R15 nLLISGN
o _,
r\i
LU ™~
6) CD
LJ
X
CD
Jfi
±:
20
9 8 o ±Vf
aoeensm fhrPm
40 . 60
X THRUST
80
100
-------
LU
W C0
>C
O
CO
T56-R15 fll_LISOr>
-1
-
—
0
s
o
o
s
0
o
o
8
!?
%
09
O '
O
a
a
r
\
o •
o
o
0
o
o
o
8
^ )
o
00
c a
0°
o
1
20
o
00
19 0 n° c
OO 8 o v
0 ',
0 0 0
O <
0>50 0
0 0
ID ID °
0 0
O
0 O „
° 0
0 o
0 . °
^
o
1 1 1
40 GO 80
o
ID
0
ID
0°
O
8
o
1
00
'/. THRUST
-------
LO
CO
TPE 331 niRESEnRCH
oo
CD
oo_
O
o
CD
en
0
20
40 GO
X THRUST
80
100
-------
TPE 331 RIRESERRCH
o _,
r-
LJ rvJ-
-------
TPE 331 RIRESERRCH
LP
3) „-
£ CO
o —'
x v-
o .
QQ
GO
I
80
100
'/. THRUST
-------
o _,
in
LU rvJ-
-. CO
OD_
O
O
CD
CJ-805-3R • SNRI
X
0
20
I
40
60
7. THRUST
80
100
-------
CJ-805-3R SHRI
LP .
ID
00.
r\j
CD
LJ
'X
CD
• J
* ' .
0 20-40 60 80
'/. THRUST
vx
t
100
-------
o _,
CO
o
* .
CJ-8055r3fl 'SNRI
o
o
n CD
X
CD'
r\J
20
60
80
100
X THRUST
-------
JT3C UNITED
L/1
O
0-J
DQ
0-J
O
CD
r\j
20
.*
GO
'/. THRUST
80
100
-------
JT3C UNITED
LP
O
0_J
LU
CD
o_J
LP
LJ
X
CD
r\j
0
20
40 GO
'/. THRUST
80
-¥
100
-------
r\J_
LU
* CD
o> —I
X
CO
JT3C UNITED
~T~
40
o
0
20
~T~
60
'/. THRUST
~T~
80
100
-------
LO-
O.
oo
I CO
r\i_
O
CD
JT3C SNRI
% . "
~r
40
Q
20
GO
80
100
'/. THRUST
-------
oo CD
_J
LJ
CO
in
oo
rg
JT3C SNRI
-r
80
20
40 GO
'/. THRUST
100
-------
JT3C SNRI
9 °0
UJ
M CD
X
O
'*'
r\i
20
60
'/. THRUST
~r
80
100
-------
o
on
CD-
CD
_J
\
O
CO
r\j.
LP
CO.
fM
JT3D P&.H
Xo ,,
SEX
100
o
0
I
20
T
T
40 . GO
'/. THRUST
80
-------
o
CO.
03
LJ
X
CO
JT3D PS.N
20
X
40
GO
THRUST
80
100
-------
o _
JT3D
NJ
NJ
I
LU
=>
U_
CD
e
s.
o
2:
CO
0
20
40 GO
7. THRUST'
80
100
-------
T3D Pg
-------
CD.
cn
tn
oo_
o
o
X
CD
r\l
JT3D P&.W EXP
20
GO
'/. THRUST
r
so
100
-------
JT3D P5.N EXP
o _,
r\j
ro
01
LU
CO
x;
CO
o
o
o
20
o
o
60
7. THRUST
(y
*•:
80
100
-------
Q _
Q1
CM _
r-
_J
^ S-
LJ_
CO
_l
\x
— * _
\rn
I' J
o
0-
CD
_i
QO_
O
0
JT3D S^
o
o
o
i»
0
o
6
o
/;«
o
*' 4
<# 0°
»* ^ »„ *:& a
i.i i I
20 40 60 80 1
NRI
V. THRUST
-------
IS)
o
o
o
CD
LL_
CD
r~i o_
LJ
X
CD
o_
r\i"
o
JT3D Sk
o
19
e
o
o
o
o
4 ' . . 4 , , ,
i i f 3 F u 1
20
40 60
X THRUST
80
JOO
-------
JT3D SNRI
ISJ
00
LU
£
CD
_J
V
X CD
CD
CO
ro
20
o
o
V
o
o
60
~r
80
100
% THRUST
-------
CO .
en
LU
ID
CD
CD_
o
LJ
CD
T3D UNITED
r\j
X
x
20
40 GO
X THRUST
80
100
-------
0
— 1
o
1
LLJ o_
— , en
-*
Li-
CD
i
i
"""^ o_
\ CD
LJ
X
CD
_l
o_
m
o
JT3.D U\\
o
D
)
5
O
o
^ '
X mfr> fR, --T n ffy, Y rrro \
1 1 . 1 1 A 1
20
40 GO
'/. THRUST
30
100
-------
T3D UNITED
LJ '
1
UJ
£"•-
li|
i
V
^t
\
X CD
CD
Z
CD
^J
rr>~
0
o
1 *
±
\ °
s>
0
o
o
•i
oo
L ' °
y>
\
• • 1 •'
0
/
o 1 1 1 I 1
0 20 40 GO 80 100
7. THRUST
-------
o
CD.
CD
CO
IS}
CQ
\s
1--4
O
O
CD
r\l
JT3D BUR
MINES
o
20
60
X THRUST
80
100
-------
JT3D BUR: MINES
o
•*• .
r\l
CO CD
CO _|
CD.
LP
LJ
X
CO
OO.
r\j
o
20
X
.— •
g) JQ - O-O
60
X THRUST
80
100
-------
JT3D BUR
<~
MINES
r\j_
en
CO
;x to
o
20
40 GO
7, THRUST
80
100
-------
d _,
o
o
in
LiJ rvM
JT4R SNRI
CO
01
CD
oo .J
O
LJ
CD
'oom
20
60
'/. THRUST
80
100'
-------
9
o
O_
to
LoJ LO-
DQ
o_
LJ
X
CD
JT4R 5NRI
oo of
20
40
^p
60
7. THRUST
80
100
-------
LP —,
r\l_
JT4R
r^
NRI
CD
X
O
CD
o8
0
•s
0
20
40 - 60
X THRUST
80.
100
-------
LP _
T
CO _
m
hi r~ —
U_
DQ
1
' ' OO_
0
O
CD
cn~
o
G
,
0
o
JT8D il-$
- o
15
b
a
o
0
O
0
o
\ r
o
0
o
&0
1 I 1 1 1
20 40 GO 80 100
X THRUST
-------
JT8D U-S SNRI
LP
—4
_J
LU -
— j
CD
1
LJ
X
CD
_J
m-
o
0
o
o
0
p
o
0 °
a
o
o
20 40 GO 80
«S^*MB—^
100
X THRUST
-------
o _,
.
r\J
JT8D U-S SNRI
LU
00 _J
1-1 CD
x
o
CD
,O o
0 0
0 0
0
20
40 60
X THRUST
80
100
-------
o.
un
CD-
LU o.
. ID
CD
o.
OJ
O
O
CO
o_
I
20
X
I
40
I
GO
7. THRUST
T8D U-R SNR1
CO
80
100
-------
JT8D U-R SNRI
CD
_J
LJ
X
CO
_J
rr>'
o
o
20
GO
80
100
X THRUST
-------
X
CD
JT8D U-R SNRI
LJ
£ CQ
& -1
o
o
20
40
60
80
7. THRUST
100
-------
JT8D D-S BUR. V1INE8
o __
ro
CD
_J
\
CD
CD
CD
o
o
I
20
x
40 GO
X THRUST
80
100
-------
rvi_J
JT8D D-5 BUR. MINES
LLJ -
en
Oi CD
o
o
LJ
X
CO
ro
o n o
o rOfn O n,
20
60
80
100
7. THRUST
-------
JT8D D-S BUR. MINES
CD .
PvJ
LJJ
•T" CO
$ -1
^ o.
X —'
CD
CD
T
20
o
o
60
80
100
THRUST
-------
JTGD D-R BUR
,/] T [
i !
L':J
o
r-
I I I .
r\i
O
LJ
CD
20
GO
'/. THRUST
o
o o
80
. 100
-------
LT> .
ro
00 _J
r\j
CD
JT8D D-R BUR. MINES
*--\
LJ
X
CD
r
to
*
20
60
80
X THRUST
100
-------
JT8D D-R BUR. MINES
o _,
IA1
1-1 CD
X GO
.0
CD
20
40 60
X'THRUST.
~r
80
100
-------
o _,
o
o
o
o
o_J
LJJ 2_J
g CD
O-J
O
CD
O.J
JT8D D-S PS
-------
LT> _,
JT8D D-S P&H
C71
CD
CO
LJ
X
CD
00
ID O
f X
20
40 GO
'/. THRUST
-r
80
100
-------
JT&D D-S .-P&,
o
ro
<*• —
LU
Z3 00 I
»r« CD
cji _j
X
o
CD
r\j_
0
20
0 0
0 °
°
O O
0
40 60
X THRUST
80
100
-------
CJ1
CO
;
Q -i
LT>
0_
T
_I
LU o_
— . , in
*
U_
CD
1
\/
' ' o_
\ r\j
O
0
CD
_)
o_
o~
O
O
O
- .JT8D- P&^
o
O
O
O
A '' a
w
0
0 ° 0
O
\ ^
»• k
° o
» , . °
a- o«t- o t
1 1 1 I "1
0 20 40 60- 80 100
7. THRUST
-------
MODEL JT80 U-S SNR1 NEN
SAMPLE NUMBER
10.
NODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI- IDLE
MODE
TAXt-IDLF.
TAKEOFF
CLIHBOUT
APPROACH
TAXI- IDLE
EMISSION
RATE
LB/HR
MEAN 36.338
STO OEV 12.959
MEAN S.TB1
STO OEV 2.057
MEAN 5.818
STO OEV 2.292
MEAN 13.516
STD OEV 2.225
MEAN 38.338
STD DEV 12.994
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/ IOOOK
EMISSION
RATE
LB/HR
MEAN 8.1*3
STO OEV 2.907
MEAN 0.597
STO OEV 1.098
MEAN 0.555
STD DEV 0.968
MEAN 1.252
STO OEV 1.052
MEAN 8.143
STD DEV 2.907
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MEAN 1.953
STD OEV 0.662
MEAN 138.979
STD OEV 35.009
MEAN 90.292
STO OEV 22.103
MEAN 20.709
STD OEV 6.780
MEAN 1.953
STO OEV 0.662
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
FUEL
RATE
LB/HR
B61.382
109.844
8672.137
151.132
7215.180
116.726
3667.403
512.661
861.382
109.844
FUEL/CYCLE
TH-MR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
861.382
109.844
8672.137
151.132
7219.180
116.726
3667.403
512.661
861.382
109.844
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
861.382
109.844
8672.137
151.132
7215.160
116.726
3667.403
512.661
861.382
109.844
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TINE IN
MODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEANl
STO DEVI
MEANl
STD DEVI
NEANl
STD OEV:
T.O. MEANl
STD DEVI
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MEAN:
STO DEVI
MEAN:
STD DEV:
T.O. MEAN:
STO OEV:
TINE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MEAN:
STD DEV:
MEAN:
STD DEV:
T.O. MEANl
STO OEV:
CO
MASS
LBS.
12.141
4.104
0.06T
0.024
0.213
0.084
0.901
0.148
4.473
1.912
IT. 799
9.T14
18.113
5.887
12.891
4.126
0.469
0.166
HC
MASS
LBS.
2.9T9
0.921
0.007
0.013
0.020
0.036
0.083
0.070
0.9SO
0.339
3.639
1.204
3.730
1.342
2.628
0.869
0.480
0.883
NOX
MASS
LBS.
0.618
0.210
1.621
0.408
3.311
0.810
1.381
0.452
0.228
0.077
7.159
I.B22
7.323
2.104
5.170
1.316
111.822
28.168
FUEL
MASS
LBS.
272.77
34.78
101.17
1.76
264.96
4.29
244.49
34.18
100.49
12.81
983.49
96.29
FUEL
MASS
LBS.
272.77
34.78
101.17
1.76
264.56
4.29
244.49
34.18
100.49
12. Bl
983.49
56.29
FUEL
MASS
LBS.
272.77
34.78
101.17
1.76
264.56
4.29
244.49
34.18
100.49
12.81
983.49
56.29
LB CO /
IK LB FUEL
44.727
15.716
0.667
0.241
0.808
0.322
3.739
0.737
44.727
19.716
LB HC /
IK LB FUEL
9.616
3.908
0.069
0.127
0.076
0.129
0.323
0.206
9.616
3.908
LB NOX/
IK LB FUEL
2.291
0.863
16.046
4.158
12.520
3.102
5.671
1.888
2.291
0.863
ENERGY
f TH-MR
275.90
0.0
169.17
0.14
451.92
0.33
386.67
0.0
101.50
0.12
1384.75
2.31
ENERGY
• TH-HR
275.90
0.0
169.17
0.14
451.92
0.33
386.67
0.0
101.50
0.12
1384.75
2.31
ENERGY
• TH-HR
275.50
0.0
169.17
0.14
451 .92
0.33
386.67
0.0
101 .50
0.12
1384.75
2.31
LB CO /
I TH-HR
0.04407
0.01490
0.00040
0.00014
0.00047
0.00019
0.00233
0.00038
0.04407
0.01490
LB HC /
1 TH-HR
0.00936
0.00334
0. 00004
0.00008
0.00005
0.00006
0.00022
0.000 IB
0.00936
0.00334
LB NOX/
• TH-HR
0.00224
0.00076
0.00956
0.00241
0.00733
0.00179
0.00357
0.00117
0.00224
0.00076
EMS
-------
MODEL JT80 U-S SHRI OLD
SAMPLE NUMBER
NODE
TAXI-IDLE
TAKEOFF
CLINBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAX1-IOLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 36.202
STD DEV 10.793
MEAN 9.413
STD OEV 2.040
MEAN 6.685
STD DEV 1.342
MEAN 10.015
STD OEV 6.TI2
MEAN 36.202
STD DEV 10.793
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/ 1000K
EMISSION
RATE
LB/HR
MEAN" 9. 519
STO OEV B.266
MEAN 0.112
STO DEV 0.116
MEAN 0.198
STO OEV 0.168
MEAN 0.3*8
STD DEV 0.285
MEAN 9.519
STD OEV 8.266
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK 18
LBS POLLUTANT/ 1000K
EMISSION
RATE
LB/HR
MEAN 1.702
STD DEV 0.511
MEAN 126.191
STD DEV 32.557
MEAN 82.824
STO OEV 16.05$
MEAN 19.658
STO OEV 4.757
MEAN 1.702
STD DEV 0.511
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LHS POLLUTANT/IK IB
LBS POLLUTANT/1000K
FUEL
RATE
LB/HR
852.010
128.177
8684.359
279.428
7116.414
195.959
3453.897
360.942
852.010
128.177
FUEL/CYCLE
TH-HR/CYCIE
LB TH-HR AT
FUEL
RATE
LB/HR
852.010
128.177
868*. 359
279.428
7116.414
195.959
3453.897
360.942
852.010
128.177
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
852.010
128.177
8684.359
279.428
7116.414
195.959
3453.897
360.942
852.010
128.177
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TIME IN
MODE
M1N.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEVI
MEAN:
STD OEV:
MEAN:
STD OEVl
T.O. MEAN:
STO DEVI
TIME IN
MODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV:
MEAN:
STD OEV:
MEAN:
STD DEV:
T.O. MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STD OEV:
MEAN:
STD DEV:
T.O. MEAN:
STO DEV:
CO
MASS
LBS.
11.464
3.418
0.063
0.024
0.245
0.049
0.668
0.447
4.224
1.259
16.663
4.603
17.292
4.290
12.034
3.324
0.436
0.164
HC
MASS
LBS.
3.014
2.618
0.001
0.001
0.007
0.006
0.023
0.019
1.111
0.964
4.157
3.594
4.222
3.298
3.002
2.595
0.090
0.094
NOX
MASS
LBS.
0.539
0.162
1.472
0.380
3.037
0.589
1.311
0.317
0.199
0.060
6.557
1.456
6.766
1.031
4.735
1.051
101.533
26.195
FUEL
MASS
LBS.
269.80
40.59
101.32
3.26
260.94
7.18
230.26
24.06
99.40
14.95
961.72
82.38
FUEL
MASS
LBS.
269.80
40.59
101.32
3.26
260.94
7.18
230.26
24.06
99.40
14.95
961.72
82.38
FUEL
MASS
LBS.
269.80
40.59
101.32
3.26
260.94
7.18
230.26
24.06
99.40
14.95
961.72
62.38
LB CO /
IK LB FUEL
42.520
10.776
0.624
0.236
0.941
0.195
3.028
2.085
42.520
10.776
LB HC /
IK LB FUEL
10.775
7.794
0.013
0.014
0.028
0.024
0.099
0.079
10.775
7.794
LB NOX/
IK LB FUEL
1.990
0.485
14.467
3.424
11.599
1.976
5.652
0.972
1.990
0.485
ENERGY
1 TH-HR
275.50
0.0
169.17
0.13
451.92
0.0
386.67
0.0
101.50
0.13
1384.75
2.30
ENERGY
• TH-HR
275.50
0.0
169.17
0.13
451.92
0.0
386.67
0.0
101.50
0.13
1384.75
2.30
ENERGY
1 TH-HR
275.50
0.0
169.17
0.13
451.92
0.0
386.67
0.0
101.50
0.13
1384.75
2.30
LB CO /
1 TH-HR
0.04161
0.01241
0.00037
0.00014
0.00054
0.00011
0.00173
0.00116
0.04161
0.01241
LB HC /
• TH-HR
0.01094
0.00950
0.00001
0.00001
0.00002
0.00001
0.00006
0.00005
0.01094
0.00950
LB NOX/
f TH-HR
0.00196
0.00059
0.00870
0.00225
0.00672
0.00130
0.00339
0.00082
0.00196
0.00059
nr-14
-------
MUIIEL .nan u-s SMRI
SAMPLE NUMBER • 1H.
MODE
TAXI-IDLE
TAKEOFF
CLIHBOUT
APPROACH
T4KI-IOLE
MUOF
TAXI-inLE
TAKEOFF
CLIMRUIIT
APPHOACM
TAXI-IDLE
HOUH
TAxi-rnLF
TAKtnFf
f. L MHflUT
APMKDAr.M
tAKI-inLI
EMISSION
P»TE>
LB/HR
NP.AN 37.389
SID OEV 11.750
MEAN 5. 617
STO OEV 1.997
HFAN 6.204
STO DEV 1.926
MEAN 11.960
Sin OEV 4.937
MEAN 37.389
STO OEV M.750
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LHS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MEAN 8.755
STU OEV 5.75*
KHAN 0.391
SID OEV O.B40
MEAN 0.39h
STn DEV 0.736
'•FAN 0.850
SID nFV 0.911
•"FAN U.7SS
STn DEV 5.T5*
TOTAL FUR CYC.LF
LdS POLLUTANT/IK LB
IBS POLLUTANT/IK LB
IDS POI.LUTANT/1000K
EMISSION
RATF
LB/HP
"FAN 1.6*1
STU OtV O.S97
TAN 1 13.295
STI> DEV 13.587
MEAN (16.972
SID nFV 19.»77
•UN ?0.2»2
Sill rifv 5.112 6
•41 AN 1.8*1
STn HFV O.VI7
tUTAl FOR CVCL6
LBS PRLLIITANI/IK LB
LBS PnLLUTANT/1* LB
L1S PULLUTANT/IOOOK
FUEL
RATE
LB/HR
857.216
11*. 788
8677. MI
210.96)
7171.270
160. +70
3572.512
*52.**0
857.216
114.789
FUEL/CYCLE
TH-HR /CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
PS7.J16
114.788
8677.555
210.981
7171.270
160.470
3572.512
*52.»*0
857.216
II*. 789
FUEL/CYCLE
TM-HR/CYCLE
LR TH-HR AT
FUEL
HATE
LB/HR
PS7.216
11*. 788
8677.555
210.981
71 71.270
160.470
3572.512
452.440
BS7.216
1 14.789
F1IFL/CYCLC
TH-HR /CYCLE
Ltl TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEANI
STD OEVI
MEANI
STD DEVI
NEANI
STO OEVt
T.O. "EAMl
STO DEVI
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4. on
0.0
7.00
0.0
MEAN:
STO DEVI
MFAN:
STO OEVi
MEAN!
STO OEVl
T.n. MEANI
STD riEV:
TIKE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEANI
STD DF.Vl
NtANI
STD DEVI
• FANI
STO »EVl
T.U. HEANI
STO DEVI
CO
MASS
IBS.
11.140
5.721
0.0*6
0.02)
0.227
O.OT1
0. T97
0.129
4.J62
1.371
17.2*2
S.I))
17.74)
S.109
12.488
3.707
0.452
0.161
HC
MASS
LBS.
2.772
1.822
0.004
0.010
0.015
0.027
0.057
0.061
1.021
0.671
).869
2.4)1
3.948
2.)44
2.794
1.792
0.307
0.676
N0>
MASS
LBS.
0.591
0.1R9
1.555
0.)92
1.189
0.714
1.3*9
0.388
0.215
O.OTO
6.891
1.651
7.076
1.692
4.977
1.192
107.249
27.024
FUEl
MASS
LBS.
271.45
34.35
101.24
2.45
262.95
5. B8
238.17
30.16
100.01
13.39
973.81
67.79
FUEL
MASS
LBS.
271.45
36.35
101.24
2.45
262.95
9.88
238.17
30.16
100.01
13.39
973.81
67.79
FUEL
MASS
LBS.
271.45
36.35
101.24
2.45
762.95
5.88
238.17
30.16
100.01
11.19
973.81
67.79
LB CO /
IK IB FUEL
43.746
13.411
0.648
0.232
0.867
0.2T4
3.420
1.4)6
43.746
13.411
IB HC /
IK LR FUEL
10.131
5.784
0.044
0.097
0.055
0.098
0.224
0.195
10.1)1
5.784
LB NOK/
IK LB FUEL
2.157
0.717
15.344
1.825
12.111
2.611
5.66]
1.509
2.IS7
0.717
ENERGY
• TH-MR
275.30
0.54
169.17
0.11
451.92
0.94
386.67
0.59
101.50
0.06
13)4.75
1.37
ENERGY
< TH-HR
275.50
0.54
169.17
0.11
451.92
0.94
386.67
0.59
101.50
0.06
1384.73
1.37
FNEKC.Y
i TH-HR
?75.50
0.54
1 69 . 1 7
0.11
451.9?
0.94
186.67
0.59
101.50
0.06
I3A4.75
1.17
LB CO /
f TH-Ht
0.0424)
0.01351
0. 00039
0.00014
0.00050
0.00016
0.00106
0.00085
0.0429)
0.01351
LB HC /
f TH-HR
0.01006
0.00661
0.00003
0.00006
0.00003
0.00006
0.00015
0.00016
0.01006
0.00661
LR NOX/
• TH-HR
0.0021?
0.0"069
0.00919
0.0021?
0.00706
0.00158
0.00349
0.00100
0.0021?
0.00069
nr-15
-------
MODEL JTSO D-S PCM
SAMPLE NUMBER
MODE
TAXI-IOLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IOLE
TAKFOFF
CLIHBI1UT
APPROACH
TAXI-IOLE
MODE
TAXI-IOLF
TAKEUFF
CLIMIinuT
APPROACH
TAXI-IOLF
EMISSION
RATE
LB/HR
MEAN 34.128
STO OEV 4.097
MEAN 2.967
STO OEV 1.456
MEAN 4.976
STO OEV 1.343
MEAN 17.131
STO OEV 3.770
MEAN 34.128
STD DEV 4.097
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MEAN 6.564
STO DEV 1.949
MEAN 0.346
STO DEV 0.27.1
HFAN 0.46U
STn OEV 0.25?
XEAN i.iss
STD DEV 0.214
MFAN 6.564
STO DEV 1.949
TOTAL FOR CYCLE
L^S PDLLUTANT/1K LB
L«S POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
Lfl/HR
MEAN 3.01?
STO OEV 0.607
MfiAN 207.71?
STO OEV 21 .779
NFAN 139. 07P
STfl OCV I2.f.3l
MEAN 31.1B4
STD OEV 2.62C
MEAN 3.012
STO OEV 0.807
TOTAL FQq CYCLE
LIU POLLUTANT/IK LB
LBS PO'L'LUTANT/IK LB
L1S POLLUTANT/IOOOK
FUEL
RATE
LB/HR
967.359
36.483
8693.578
162.382
7311.195
160.684
3320.138
83.714
967.359
36.483
FUEL/CYCLE
TM-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
S67.359
36.483
8693.578
162.382
7111.195
160.684
3120.138
63.714
967.159
36.463
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
967.359
36.483
8693.578
167.382
7311.195
160.664
3420. 139
83.714
967.359
36.463
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR Al
TIME IN
MODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEANI
STO OEVt
MEANI
STO DEVI
MEANI
STO OEV:
T.O. MEAN:
STO DEVI
TIME IN
MODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN!
STO OEV:
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
STO OEV:
TIME IN
MIN.
19.00
0.0
0. 70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MFAN:
STO OEV:
MEAN:
STD DEV:
MEAN:
STD OEV:
T.O. MEAN:
STO OEV:
CO
MASS
LBS.
10.807
1.298
0.035
0.017
0.182
0.049
1.142
0.251
3.982
0.478
16.148
2.017
15.996
2.070
11.612
1.457
0.238
0.116
HC
MASS
LBS.
2.079
0.617
0.004
0.003
0.017
0.009
0.079
0.014
0.766
0.227
2.945
0.841
2.913
0.834
2.117
0.606
0.279
0.179
Nnx
MASS
LBS.
0.954
0.256
2.423
0.254
5.100
0.463
2.079
0.175
0.351
0.094
10.907
1.030
10.767
0.620
7.838
0.675
166.314
16.166
FUEL
MASS
IBS.
306.11
11.55
101.42
1.90
268.06
5.89
221.34
5.58
112.86
4.26
1010.03
23.37
FUEL
MASS
LBS.
306.33
11.55
101.42
1.90
268.08
5.89
221.34
5.58
112. B6
4.26
1010.03
23.37
FUEL
MASS
LBS.
306.13
11.55
101.47
1.90
268.06
5.89
221.34
5.58
112.86
4.26
1010.03'
23.37
LB CO /
IK LB FUEL
35.317
4.477
0.142 •
0.169
0.681
0.187
5.167
1.171
35.317
4.477
LB HC /
IK LB FUEL
6.767
2.004
0.040
0.025
0.064
0.034
0.357
0.067
6.767
2.004
LB NOX/
IK LB FUEL
3.102
0.761
23.660
2.793
19.005
1.397
9.388
0.691
3.102
0.781
ENERGY
« TH-HR
276.69
3.35
169.90
2.07
453.86
5.50
388.33
4.71
101.94
1.25
1390.72
17.04
ENERGY
f TH-HR
276.69
3.35
169.90
2.07
453.86
5.50
366.33
4.71
101.94
1.25
1390.72
17.04
ENERGY
f TH-HR
776.69
3.35
169.90
2.07
453.66
5.50
366.13
4.71
101.94
1.25
1390.72
17.04
L8 CO /
f TH-HI
0.01906
0.00470
0.00020
0.00010
0.00040
0.00011
0.00294
0.00065
0.01906
0.00470
LB HC /
i TH-HR
0.00751
0.00223
0.00002
0.00002
0.00004
0.00002
0.00020
0.00004
0.00751
0.00223
LB NOX/
• TH-HR
0.00345
0.00092
0.01426
0.00139
0.01123
0.00090
0.00535
0.00042
0.00345
0.00092
EM 6
-------
MODEL JT8D 0-S BUR. MINES SANPLE NUMBER > 10.
NODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CL IHHdUT
APPROACH
TAXI-IDLE
NODE
TAXI-IOLF
TAKEHFF
CLIMBOUT
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 26.854
STD DEV 5.173
MEAN 7.977
STD (1EV 2.0*4
MEAN 8.900
STO DEV I. Its
MEAN 17.268
STD OEV 2.310
MEAN 26.854
STO REV 5.173
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 7.321
STO DEV 2.540
MEAN 0.826
STD OEV 1 .476
MEAN 1.184
STD nFV I .349
MFAN 2.394
STO DEV 0.935
MFAN 7.321
STO flfV 2.«0
TOTAL fOH CYCLE
LRS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LRS POLLUTANT/inOOK
EMISSION
RATF
LB/HR
MEAN 3.258
STO DFV 1.337
MC4N 188.047
STO t>EV 30.229
MEAN 124.179
Sri) OEV 17.249
MEAN 31.263
STO OEV 5.18(1
*EAN 3.256
STO OEV 1 .337
TOTAL FOR CYCLE
LKS POLLUTANT/IK LB
LBS PULLUTANT/1K LB
LBS POLLUTANT/1000K
FUEL
RATE
LB/HR
930.621
45.220
8699.055
245.912
7299.836
174.946
3375.182
142.461
930.623
45.220
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
930.623
45.220
8699.055
245.912
7299.636
174.946
3375.182
147.461
930.623
45.220
FUEL/CYCLE
TH-HR/CYCLE
L9 TH-H« AT
FUEL
RATE
LB/HR
930.623
45.220
0699.055
245.912
7299.936
174.946
3375.182
142.461
910.623
45.220
FUFL/CYCLE
TH-HR/CYCLF
LB TH-HK AT
TINE IN
NODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEVl
NEAN:
STD DEV:
MEAN:
STO DEV:
T.O. NEAN:
STD OEV:
TINE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV:
MEAN:
STD DEV:
MEAN:
STD DEV:
T.O. MEAN:
STD OEV:
TIME IN
MODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD DEV:
MEAN:
SID OEV:
T.C. MEAN:
STO OFV:
CO
MASS
LBS.
B. 504
1.63B
0.093
0.024
0.326
0.051
1.151
0.154
3.133
0.604
13.207
2.291
13.240
2.247
9.703
1.666
0.653
0.168
HC
MASS
LBS.
2.318
0.804
0.010
0.017
0.043
0.049
0.160
0.062
0.854
0.296
3.3B5
1.1 BO
3.395
1.178
2.482
0.841
0.672
1.191
NDX
MASS
LBS.
1.032
0.424
2.194
0.353
4.553
0.632
2.084
0.345
0.380
0.156
10.243
1.497
10.262
1.408
7.531
1.116
154.038
24.979
FUEL
MASS
LBS.
294.70
14.32
101.49
2.87
267.66
6.41
225.01
9.50
108. ST
5.29
997.43
28.49
FUEL
MASS
LBS.
294.70
14.32
101.49
2.67
267.66
6.41
225.01
9.50
108.57
5.28
997.43
28.49
FUEL
MASS
LBS.
294.70
14.32
101.49
2.87
267.66
6.41
225.01
9.50
108.57
5.28
997.43
28.49
LB CO /
IK LB FUEL
28.82$
5.141
0.91$
0.22T
1.217
0.175
5.113
0.613
28.825
5.141
LB HC /
IK LB FUEL
7.863
2.707
0.095
0.168
0.163
0.185
0.713
0.284
7.863
2.707
LB NOX/
IK LB FUEL
3.476
1.315
21.604
3.269
17.015
2.327
9.250
1.382
3.476
1.315
ENERGY
* TH-HR
270.75
5.00
166.25
3.08
444.12
8.21
360.00
7.01
99.75
1.85
1360.67
25.26
ENERGY
1 TH-HR
270.75
5.00
166.25
3.08
444.12
8.21
380.00
7.01
99.75
1.85
1360.87
25.26
ENERGY
* TH-HR
270.75
5.00
166.25
3.08
444.12
8.21
380.00
7.01
99.75
1.B5
1360.87
25.26
IB CO /
1 TH-HR
0.03140
0.00602
0.00096
0.00014
0.00073
0.00011
0.00303
0.00039
0.03140
0.00602
LB HC /
• TH-HR
0.00654
0.00288
0.00006
0.00010
0.00010
0.00011
0.00042
0.00016
0.00854
0.00288
LB NOX/
1 TH-HR
0.00381
0.00153
0.01320
0.00214
0.01026
0.00148
0.00549
0.00095
0.00381
0.00153
EM 7
-------
MODEL JT80 n-H BUR. MINES SAMPLE NUMBER • 5.
NODE
TAXI-IOLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IOLE
MOOE
TAXI-IDLE
TAKEOFF
CLIHHOUT
APPROACH
TAXI-IOLF.
mnf
TAXI-IDLE
TAKCJFF
CLIMOOUI
APPROACH
TAXI-IOLr.
EMISSION
RATE
LB/HR
MEAN 42.556
STO OFV 12.546
MEAN 13.720
STD DEV 7.158
MEAN 14.714
STO OEV 5.605
MEAN 50.035
SID DEV 7.562
MEAN 42.556
STO OEV 12.546
TOTAL FOR CYCLE
LRS POLLUTANT/IK LB
LOS POLLUTANT/IK LB
LHS POLLUTANT/1000K
FMISSIPN
RATE
LB/HR
MEAN 13.250
STO OEV 5.967
MEAN 0.264
STD OFV 0.21 1
MEAN 0.657
STO DEV 1.218
MEAN 4.028
STO OEV 2.253
MFAN 13.250
STD OCV 5.967
TOTAL C(1R CVCLF
LRS POLLUTANT/IK LB
L^S POLLUTANT/IK LB
L1S POLLUTANT/1000K
EMISSION
RATE
LR/HR
NfAN 3.358
SIO DEV 1 .447
Hf.AN 150. 216
STD DEV 76.483
MFAM 97.447
srn DKV 22.7BH
MEAN 27.863
STD DF.V 3.721
MFAN 3.35ft
STD DEV 1 .447
TOTAL FOR CYCLE
LRS POLLUTANT/IK LR
LRS POLLUTANT/IK LB
LHS POLLUTANT/ 1000K
FUEL
RATE
LB/HR
956.994
131.973
8485.988
140.171
7179.410
137.942
3506.267
234.034
958.994
131.973
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
958.994
131.973
8485.988
140.171
7179.410
137.942
3506.267
234.034
95H.994
131.973
FUEL/CYCLF.
TH-HH/CYCLE
LB TH-HR AT
FUFL
RATE
LB/HR
958.994
131.973
84d5.983
140.171
7179.410
137.942
3506.267
214.034
958.994
131.973
FUFL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TIKE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEVI
MEAN:
STD OEV:
MEAN:
STO OEV:
T.o. MEAN:
STO OEV:
TIME IN
NODE
HIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD DFV:
MEAN:
STO OEV:
T.O. MEAN:
STD OEV:
TIME IN
MDOE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
o.n
MEAN:
STO OEV:
MFAN:
STD DEV:
MEAN:
STD DEV:
T.O. MFAN:
STD OEV:
13
3
0
0
0
0
2
0
4
1
21
6
20
5
15
4
1
0
4
1
0
0
0
0
0
0
0
6
2
5
7
4
I
0
0
1
0
1
0
3
0
1
0
0
0
8
B
1
6
0
125
22
CO
MASS
LBS.
.476
.973
.160
.084
.540
.206
.002
.504
.965
.464
.143
.101
.670
.545
.814
.563
.143
.596
HC
MASS
LBS.
.196
.890
.003
.002
.031
.045
.269
.150
.546
.696
.045
.655
.950
.421
.521
.986
.220
.176
NUX
MASS
LBS.
.063
.458
.753
.309
.573
.836
.658
.?4H
.392
.169
.638
.302
.537
.085
.461
.974
. 180
.069
FUEL
MASS
LBS.
303.68
41.79
99.00
1.64
263.24
5.06
233.75
15.60
111.88
15.40
1011.56
68.62
FUEL
MASS
LBS.
303.68
41.79
99.00
1.64
263.24
5.06
233.75
15.60
111.88
15.40
1011.56
68.62
FUEL
MASS
LBS.
303.66
41.79
99.00
1.64
263.24
5.06
233.75
15.60
111.86
15.40
1011.56
68.82
LB CO /
IK LB FUEL
44
10
1
0
.262
.278
.613
.826
2.050
0.778
8
2
44
10
.686
.606
.262
.278
LB HC /
IK LB FUEL
13
5
0
0
0
0
1
0
13
5
.662
.036
.031
.025
.120
.170
.172
.692
.662
.03o
LB NOX/
IK LR FUEL
3
1
17
3
13
3
7
1
3
1
.433
.102
.702
.074
.563
.069
.965
.121
.433
.102
ENERGY
t TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
96.00
0.13
1337.00
1.73
ENERGY
1 TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.13
1337.00
1.73
ENERGY
1 TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.13
1337.00
1.73
LB
•
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
•
0.
0.
CO /
TH-HR
05066
01494
00098
00051
00124
00047
00536
00135
05066
01494
HC /
TH-HR
01577
00710
0.00002
0.00002
0.
0.
0.
0.
0.
0.
LB
I
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
00007
00010
00072
00040
01577
00710
NOX/
TH-HR
00400
00172
01073
00189
00619
00191
00496
00066
00400
00172
EM 8
-------
MODEL JT8D D-S UNITED
SAMPLE NUMBER
MODE
TAXI-IDLE
TAKEOFF
CLINSOUT
APPROACH
TAXI-IDLE
•MIRE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
Tnxl-IOLE
TAKEOFF
CLIN10UT
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 21.448
STD OEV 14.820
MEAN 12.540
STB DEV 9.266
MEAN 14.341
STD OFV T.68T
MEAN 19.787
STD OEV 12.976
MEAN 21.448
STD DEV 14.820
TOTAL FOR CYCLF
L8S POLLUTANT/IK LB
LBS POLLUTANT/IK LB
L1S POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 5.194
STO OEV 4.389
MEAN 0.240
STD DFV 0.285
MEAN 0.277
STO OEV 0.254
MFAN 0.949
srn REV 0.553
MEAN 5.194
STO OEV 4.339
TOTAL FOR CYCLE
LBS POLLUTANT/IK L8
L9S POLLUTANT/IK Lll
LBS POLLUTANT/inOOK
F1ISSION
PATE
UP/MR
.IF AN 1.T2I
STn DEV 0.89?
NF.AN 155.316
STO OEV 17.169
MFAN 109.007
STI) OFV 12.127
MEAN 2B.441
Sfn I1FV ?.8fl?
Mr AN l.7^l
STO OFV 0.89?
TC1«L FOR CYCLC
LbS POLLUTANT/IK 1. H
LOS POLLUTANT/IK LB
LHS POLLU1 ANT/1000K
FUEL
RATE
LB/HR
955.042
90.830
8311.246
123.935
7020.453
80.730
3370.989
64.415
955.042
90.830
FUEL/CYCLE
TH-HR/CYCLf
LB TH-HR AT
FUEL
RATE
Lfl/HR
955.042
90.830
8331.246
123.935
7020.453
KO. 730
3170.989
64.415
955.042
90.830
FUFL/CYCLE
TH-HR /CYCLE
LB TH-HR AT
FUEL
RATE
L8/HR
955.042
90.830
8311.246
123.915
7020.451
80.730
1170.989
64.415
955.042
90.830
FUEL/CYCLE
TH-H1 /CYCLE
L* TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN!
STO OEVt
MEAN!
STD DEVI
MEAN1
STO OEV:
T.o. MEAN:
STO OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO DEV:
MEAN:
STD OEV:
T.O. MEAN:
STO HFV:
TIME IN
MODE
MIN.
19.00..
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MFAN :
STO DEV:
MEAN:
STn nEV:
T.O. MEAN:
STO nEV:
CO
MASS
LBS.
6.792
4.693
0.146
0.1 08
0.526
0.282
1.319
0.865
2.502
1.729
11.285
7.547
11.594
7.857
8.441
5.645
1.045
0.772
HC
MASS
LBS.
1.645
1.390
0.003
0.003
0.010
0.009
0.063
0.037
0.606
0.512
2.327
1.926
2.387
1.996
1.741
1.440
0.200
0.238
NUX
MASS
LBS.
0.545
0.232
1.812
0.200
3.997
0.445
1.896
0.192
0.201
0. 104
8. 451
0.533
8.515
•«.S55
6.321
0.398
129.430
14.309
FUEL
MASS
IBS.
302.43
28.76
97.20
1.44
257.42
2.96
224.73
4.29
111.42
10.60
993.20
42.13
FUEL
MASS
LBS.
302.43
28.76
97.20
1.44
257.42
2.96
224.73
4.29
111.42
10.60
993.20
42.13
FUEL
MASS
LBS.
302.41
28.76
97.20
1.44
257.42
2.96
224.73
4.29
111.42
10.60
993.20
42. 13
LB CO /
IK LB FUEL
23.532
16.629
1.504
1.115
2.043
1.097
5.895
3.850
23.532
16.629
LB HC /
IK LB FUEL
5.673
4.860
0.029
0.034
0.039
0.036
0.283
0.167
5.673
4.860
LB NQX/
IK LB FUEL
1.873
1.023
18.641
2.046
15.528
1.731
8.427
0.700
1.873
1.023
ENERGY
1 TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.11
1337.00
1.29
ENERGY
1 TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.11
1337.00
1.29
ENERGY
* TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.11
1337.00
1.29
LB CC /
1 TH-HR
0.02553
0.01764
0.00090
0.00066
0.00121
0.00065
0.00353
0.00232
0.02553
0.01T64
IB HC /
1 TH-HR
0.00618
0.00522
0.00002
0.00002
0.00002
0.00002
0.00017
0.00010
0.00618
0.00522
LB NOX/
• TH-HR
0.00205
0.00106
0.01109
0.00123
0.00916
0.00102
0.00508
0.00051
0.00205
0.00106
nr-i9
-------
MODEL JTBO 0-R UNITED
SAMPLE NUMBER
NODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
C.LIHBOUT
APPROACH
TAXI-IDLF
."ODE
TAXI-mLC
TAKEOFF
CLMHPUT
APPROACH
TMI-IOLC
EMISSION
RATE
LB/HR
MEAN 32.080
STO DEV 5.729
MEAN 30.605
STO OFV 30.126
MEAN 31.123
STO DEV 27.426
MEAN 38.048
STD OFV 16.399
MEAN 32.080
STO OEV 5.729
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
UBS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
1FAN 5.5*2
STD OFV 4.636
MEAN 0.444
SfO OEV 0.620
.MEAN 0.754
STD DEV 0.756
MEAN 1.631
STO nev 0.052
••FAN 5.54?
STO OEV 4.636
TOTAL FOK CVCLF.
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS PQLLUT4NT/1000K
EMISSION
f» ATC
LB/llft
*FAN I.J95
STH OF-V 0.rt7S
MCAN 153. "12
STO ntv i.oai
1FAN 106. H^T
STO OFV 0.410
MF.AN 28.509
STO OEV O.U8
HFAN 1.785
STO DEV O.B7B
TUTAL KOR CYCLF
L3S PfJLLUTANT/lK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
FUEL
RATE
LB/HR
723.396
352.811
8211.006
104.690
6896.359
60.531
3340.465
44.542
723.396
352.811
FUEL/CYCLE
TH-HR /CYCLE
18 TH-HR AT
FUEL
RATE
LB/HR
'23.396
352.811
8211.008
104.690
6896.359
60.531
3340.465
44.542
723.396
152.811
FUFL/CYCLE
TH-HR/CYCLE
LR TH-HR AT
FUEL
HATE
LB/HR
721.396
352.811
8211. DOS
104.690
6896. 159
60.531
3340. 46b
44.542
721.396
352.811
FUEL/CYCLE
TH-HR/CYCLE
LB TH-Hft AT
TINE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN!
STO OEVl
MEANl
STO OEVl
MEAN:
STO OEV:
T.O. MEAN:
STO OEv:
T 1 ME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
KFAN:
STD DEV:
MEAN:
STO OEV:
T.n. MEAN:
STD OFV:
TIME IN
MOOE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV.
MEAN:
STO OEV:
MFAN:
STO DEV:
T.O. MFAN:
STD DEV:
CO
MASS
IBS.
10.159
1.814
0.357
0.351
1.141
1.006
2.537
1.093
3.743
0.668
17.936
0.035
20.601
3.673
13.415
0.031
2.590
2.511
HC
MASS
LBS.
1.755
1.468
0.005
0.007
0.028
0.028
0.109
0.003
0.647
0.541
2.543
1.977
2.717
1.745
1.902
1.479
0.370
0.523
NtlX
MASS
LFJS.
0.565
0.278
1.796
0.013
3.919
0.015
1.901
0.009
0.208
0.102
8.389
0.386
9.597
1 .291
6.274
0.289
128.260
0.923
FUEL
MASS
LBS.
229.08
111.72
95.80
1.22
252.87
2.22
222.70
2.98
64.40
41.16
884.83
159.30
FUEL
MASS
LBS.
229.08
111.72
95.80
1.22
252.87
2.22
222.70
2.98
84.40
41. 16
884.83
159.30
FUEL
MASS
LBS.
229.08
111.72
95.80
1.22
252.67
2.22
222.70
2.98
84.40
41. 16
884.8)
159.30
LB CO /
IK LB FUEL
46.140
15.559
3.751
3.717
4.531
4.017
11.424
5.062
46.140
15.559
LB HC /
IK LB FUEL
6.922
3.032
0.055
0.077
0.110
0.111
0.488
0.009
6.922
3.03?
LH NOX/
IK LB FUFL
2.465
0.011
18.745
0.108
li.500
0. 196
8.535
0.076
2.465
0.011
ENERGY
1 TH-HR
266.00
0.0
163.33
0.09
436.33
0.0
373.33
0.0
98.00
0.0
1337.00
0.0
ENERGY
11 TH-HR
266.00
0.0
163.33
0.09
436.33
0.0
373.33
0.0
98.00
0.0
1337.00
0.0
ENERGY
« TH-HR
266.00
0.0
163.33
0.09
436.33
0.0
373.31
0.0
98.00
0.0
1337.00
0.0
LB CO /
1 TH-HR
0.03619
0.00662
0.00219
0.00215
0.00262
0.00230
0.00679
0.00293
0.03619
0.00682
LB HC /
• TH-HR
0.00660
0.00552
0.00001
0.00004
0.00006
0.00006
0.00029
0.00001
0.00660
0.00552
LO NOX/
1 TH-HR
0.00212
0.00104
0.01099
0.00008
0.00898
0.00003
0.00509
0.00002
0.00212
0.00104
17-20
-------
MODEL JT8D U-R SWBI
SAMPLE NUMBER • 7.
MODE
TAXI-IDLE
TAKEOFF
CLIMROUT
APPROACH
TAXI-IDLE
MEAN
STO OEV
MEAN
STO DFV
MEAN
STD DEV
MFAN
STO OEV
MFAN
STD 06V
TOTAL FOR
EMISSION
RATE
LB/HR
41.395
11.148
7.975
3.354
10.621
4.385
17.920
1.665
41.395
11.148
CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/ IK LB
LBS POLLUTANT/1000K
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MEAN
STD DEV
MEAN
STO DEV
MFAN
STO OFV
MEAN
STO OEV
MEAN
SID OEV
TOTAL FOR
EMISSION
RATE
LB/HR
8.322
3.003
0.373
0.563
0.313
0.459
1.179
1.372
8.322
3.003
CYCLF
LBS POLLUTANT /IK LS
LBS POLLUTANT/IK L6
LRS POLLUTANT/1000K
MODE
TAXI-IDLE
TAKEIIFF
CLIHrtOUT
APPROACH
TAXI-IOLf
STD OFV
MEAN
STD OF.V
MFAN
srn OF. v
MCA\
STD OFV
MFAN
STO OFV
TOTAL FOR
EMISSION
RATF
LB/HR
1.765
0.?57
101.636
14.360
67.746
11 .251
16.952
7.070
1.765
0.257
CYCLf
L1S POLLUTANT/IK Lfl
LUS POLLUTANT/IK LB
LflS POLLUTANT/IOOOK
FUEL
RATE
LB/HR
823.275
113.528
8517. 72J
165.892
7116.582
95.555
3445.414
180.022
823.275
113.528
FUFL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
823.275
113.526
8517.727
165.892
7116.582
95.555
3445.414
1H0.022
823.275
113.528
FUEL/CYCLE
Trt-HR /CYCLE
LR TH-HR AT
FUEL
RATE
LB/HR
823.275
1 13.528
6517.727
165.892
7116.582
95.555
3445.414
180.022
821.275
113.528
FUFL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO DEV:
MEAN:
STO OEV:
T.O. MEAN:
STO OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MFAN:
STO DEV:
MEAN:
STO DEV:
T.O. MEAN:
STO OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO DEV:
MEAN:
STD DEV:
T.O. CEAN:
STD DEV:
CO
MASS
LBS.
13.108
3.530
0.093
0.039
0.389
0.161
1.195
0.111
4.829
1.301
19.615
4.967
20.657
4.947
14.671
3.715
0.665
0.279
HC
MASS
LBS.
2.635
0.951
0.004
0.007
0.011
0.017
0.079
0.091
0.971
0.350
1.701
1.276
3.901
1.306
2.768
0.954
0.311
0.469
NOX
MASS
LBS.
0.559
0.081
1.186
0.168
2.4R4
0.413
1.130
0.191
0.206
0.030
5.565
0.582
5.904
0.805
4.162
0.435
84.697
11.967
FUEL
MASS
LBS.
260.70
35.95
99.37
1.9*
260.94
3.51
229.69
12.00
96.05
13.24
946.76
49.19
FUEL
MASS
LBS.
260.70
35.95
99.37
1.94
260.94
3.51
229.69
12.00
96.05
13.24
946.76
49.19
FUEL
MASS
LBS.
260.70
35.95
99.37
1.94
260.94
3.51
229.69
12.00
96. 05
13.24
946. 76
49.19
LB CO /
IK LB FUEL
50.
13.
0.
0.
1.
0.
5.
0.
50.
13.
320
014
934
388
493
617
210
518
320
014
LB HC /
IK LB FUEL
10.
3.
0.
0.
0.
0.
0.
0.
10.
3.
102
399
043
066
044
065
332
368
102
399
LB NOX/
IK LB FUEL
2.
0.
11.
1.
9.
I.
4.
1.
2.
0.
172
410
930
644
517
559
959
097
172
410
ENERGY
t TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
96.00
0.14
1337.00
2.06
ENERGY
• 7H-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.14
1337.00
2.08
ENERGY
« TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
96.00
0.14
1337.00
2.08
IB
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
i
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CO /
TH-HR
04928
01327
00057
00024
00089
00037
00320
00030
04928
01327
HC /
TH-HR
00991
00357
00003
00004
00003
00004
00021
00024
00991
00357
NOX/
TH-HR
00210
00031
00726
00103
00569
00095
00303
00051
00210
00031
nr-21
-------
MODEL JT9D PEH
SAMPLE NUMBER
MODE
TAXI-IDLE
TAKEOFF
CL1MROUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IOLE
.MUDS
TAXI- IDLE
TAKEOFF
Cl IMIJOUT
APPROACH
TAXI-IOI.E
EMISSION
RATE
LB/HR
MEAN 85. 89*
STO OEV R.681
MEAN 6.456
STO OEV 4.529
MEAN 10.879
STO OEV 3.405
MEAN 17.555
STD OEV 13. 3*4
MEAN 85.694
Sin OEV 8.683
TOTAL FDR CYCLE
IBS POLLUTANT/IK IB
LBS POLLUTANT/IK LB
L8S POLLUTANT/IOOOK
EMISSION
DATE
LB/HR
MFAN 19.432
STD OEV 6.797
MEAN 2.015
STO OEV 2.771
SEAN 1.990
STD DEV 1 .B81
ME«N J.716
STD OFV 0.895
MFAN 19.432
STD OF V 6.797
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS PHLLUTANI/1K LB
LSS PdLLUTANT/lOOOK
EMISSION
HATF
LtVHR
MEAN 6./I2
Sfn DCV 2.636
MFAN 671. 666
STO OEV 121 .336
MFAN 424.907
STO I1EV S7.977
MMN S3. 965
STD DFV 6.279
MEAN 6.212
STfl nFV 2.636
TCTAL FOR CYCLF
LRS POLLUTANT/IK LB
LBS POLLUTANT/IK Lfl
L1S POLLUTANT/IOOOK
FUEL
RATE
LB/HR
1607.060
155.707
16627.021
824.427
13828.898
775.588
4895.511
389.702
1607.060
155.707
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
Lfl/HR
1607.060
155.707
16627.021
B24.427
118Z8.893
775. 5B8
4895.531
3S9.7C2
1607.060
155.707
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATL
LB/HR
1607.060
155.707
16627.021
324.427
11126.1198
775.58H
4995.531
189.702
1607.060
155.707
FUEL/CYCLF
TH-HR/CYCLE
LD TH-HH AT
TINE IN
NODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEANl
STO OEV!
MEAN!
STD DEV:
MEAN:
STO DEV:
T.O. MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OCv:
MEAN:
STO DEV:
MEAN:
STD OFV:
T.O. MFAN:
STO DEV:
TIME IN
MODF
HIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
o.o
7.00
0.0
MEAN:
STO DEV
MFAN
SID DEV
MFAN
STO DEV
T.O. MFAN
STO DEV:
CO
MASS
LBS.
27.200
2.749
0.075
0.053
0.399
0.125
2.504
0.890
10.021
1.011
40.199
1.809
23.301
1.386
9.483
0.899
0.166
0.116
HC
MASS
LBS.
6.154
2.152
0.024
0.026
0.07)
0.069
0.214
0.060
2.267
0.793
8.732
2.934
5.057
1.579
2.060
0.692
0.517
0.582
NOX
MASS
LBS.
1.967
0.615
7.938
1.416
15.580
2. 126
1.598
0.419
0.725
0.308
29.708
3.221
1 7 . 20 1
1.010
7.008
0.760
172.271
31.113
FUEL
MASS
IBS.
508.90
49.30
193.98
9.62
507.06
28.43
326.37
25.98
187.49
18.17
1723.80
99.15
FUEL
MASS
L6S.
508.90
49.30
193.98
9.62
507.06
28.43
326.37
25.96
187.49
18.17
1723.80
99. 15
FUEL
MASS
LBS.
506.90
49.30
193.98
9.62
507.06
28.43
326.37
25.98
187.49
18. 17
1723.80
99. 15
LB CO /
IK LB FUEL
53.460
1.810
0.389
0.262
0.791
0.261
7. 788
3.220
53.460
1.810
LB MC /
IK LB FUEL
11.958
3.148
0.123
0.138
0.145
0.138
0.669
0.225
11.958
3.14b
LB NOX/
IK LB FUEL
3.HIO
1.361
40.215
5.078
10.628
2.426
11.050
1.284
1.610
1.363
ENERGY
1 TH-HR
1008.58
1.32
530.83
0.0
1418.08
1.32
910.00
0.0
171.58
0.0
4239.08
0.0
ENERGY
1 TH-HR
1006.56
1.32
530.63
0.0
1416.08
1.32
910.00
0.0
171. 5B
0.0
4239.08
0.0
ENERGY
# TH-HR
1006.56
1.32
510.83
0.0
1416.08
1 .32
910.00
0.0
371.58
0.0
4239.08
0.0
LB CO /
• TH-HR
0.02697
0.0027)
0.00014
0.00010
0.00028
0.00009
0.00275
0.00098
0.02697
0.00273
IB HC /
• TH-HR
0.00610
0.00211
0.00004
0.00005
0.00005
0.00005
0.00024
0.00007
0.00610
0.00211
LB NOX/
« TH-HR
0.00195
0.00081
0.01477
0.00267
0.01099
0.00150
0.00395
0.00046
0.00195
o.onoei
nr-22
-------
MODEL SPEY 511 BUR. MINES SAMPLE NUMBER
MDOE
TAXI-IOLE
TAKEOFF
CLINROUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLI1BOUT
APPRIIACH
TAXI-IOLF
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPRIIACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 60.173
STO OEV 19.601
MEAN 14.218
STD OEV 2.9*4
MEAN 15.251
STO OEV 1.804
MEAN 19.068
STO DCV 10.07S
MEAN 60.173
STO DEV 19.601
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/ 1000K
EMISSION
RATE
LB/HR
HFAN 66.051
STO OEV 11.083
HFAN 0.0
STD DFV 0.0
MEAN 0.242
SCO DEV 0.221
"EAN 4.224
STO OEV 4.447
MEAN 66.051
STtl OEV 11.083
TOTAL FOR CYCLE
LflS PULLUTANI/IK Lfl
LUS PHLLUIANT/1K LB
L1S PJLLUTANT/IOCOK
EMISSION
RATE
LB/HR
MFAN 0.849
STO DEV 0.381
"CAN 153.012
STD DCV 9.H45
1FAN 114.759
STO !)EV IJ.724
MEAN 30.446
STO DFV 5.197
HFAN 0.849
Sro OEV 0.391
TOTAL FOR CYCIF
LBS POLLUTANT/IK Lfl
L1S POLHITANI/IK LR
LrtS POLLUTANT/1000K
FUEL
RATE
LB/HR
661.542
110.889
7625.230
150.022
6354.934
60.839
3051.668
123.028
661.542
110.889
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
661.542
110.889
7625.230
150.022
tJ54.934
60.839
3051.668
m.oza
6M.542
110.889
FUEL/CYCLE
TH-HR/CYCLE
LR TH-HR AT
FUEL
RATE
L3/HR
(.61.542
1 I0.8ri9
7625.230
150.022
054.934
60.839
3051.668
123.028
661.542
110.889
FUEL/CYCLE
TH-HR/CYCLE
LQ TH-HK AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MEAN:
STO DEV:
MEAN:
STO OEV:
T.O. MEAN:
STD DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV:
(•FAN:
STO OFV:
MEAN:
STO DEv:
T.O. PEAN:
STO OEV:
TIME IN
MODE
"IN.
19.00
0.0
o.ro
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV
MEAN
STO OEV
MEAN
STD OEV
T.O. MEAN
STO OEV
CO
MASS
LBS.
19.055
6.207
0.166
0.034
0.559
0.066
2.605
0.672
7.020
2.287
29.405
9.054
35.942
9.707
29.705
9.147
1.455
0.301
HC
MASS
LBS.
20.916
3.510
0.0
0.0
0.009
0.008
0.282
0.296
7.706
1.293
28.912
4.542
35.776
6.654
29.207
4.588
0.0
0.0
NOX
MASS
LflS.
0.269
0.121
1.765
0.115
4.208
0.503
2.030
0.346
0.099
0.044
B. 391
O.R42
10.392
1.524
8.476
0.850
156.591
10.075
FUEL
MASS
LBS.
209.49
35.12
88.96
1.75
233.01
2.24
203.44
8.21
77.18
12.94
812.09
43.96
FUEL
MASS
LBS.
209.49
35.12
88.96
1.75
233.01
2.24
203.44
8.21
77. 18
12.94
812.09
43.96
FUEL
MASS
LBS.
209.49
35.12
en. i)6
1.75
233.01
2.24
203.44
8.21
77. 18
12.94
HI2.C9
43.96
LB CO /
IK LB FUEL
89.861
20.325
1.870
0.426
2.401
0.298
12.866
3.550
89.861
20.325
LB HC /
IK LB FUEL
102.865
28.897
0.0
0.0
0.038
0.035
1.394
1.451
102.865
2B.897
LB NOX/
IK LB FUEL
1.271
0.501
20.081
1.519
18.073
2.316
9.939
1.331
1.271
0.501
ENERGY
1 TH-HR
144.40
0.0
133.00
0.25
355.30
0.0
304.00
0.0
53.20
0.0
989.90
0.0
ENERGY
• TH-HR
144.40
0.0
133.00
0.25
355.30
0.0
304.00
0.0
51.20
0.0
989.90
0.0
ENERGY
f TH-HR
144.40
0.0
133.00
0.25
355.30
0.0
104.00
0.0
53.20
0.0
969.90
0.0
LB CO /
1 TH-HR
0.13196
0.04298
0.00125
0.00026
0.00157
0.00019
0.00857
0.00221
0.13196
0.04298
LB HC /
• TH-HR
0.14485
0.02430
0.0
0.0
0.00003
0.00002
0.00093
0.00098
0. 14485
0.02430
LB NOX/
It TH-HR
0.00186
0.00084
0. 01342
0.00086
0.01164
0.00142
0.00668
0.00114
0.00186
0.00084
m-23
-------
CD
CD
LJ
X
CD.
r\J
T8D
EXP
o
9
~T
60
S
I
80
0
20
40
7/THRUST
100
-------
T8D PiSN EXP
o _
ro
r-o
ID CO-J
U_ ^
CD
I
v:
x
CO
rxj_J
o
o
o
o
0
20
60
80
100
V. THRUST
-------
o _,
JT8D D-S UNITED
(71
O>
CD
(£> _
CD
LJ
CD
20
40 60
X THRUST
o
o
80
100
-------
JT8D D-S UNITED
^en^
J _j
\x
\
LJ
^1
CD
ro
20
40 GO
'/. THRUST
30
100
-------
JT8D D-S UNITED
o __,
rM
co_
LU
Z)
CO
I
v:
^\
o
2
CO
03
o
o
X THRUST
\
o
0
1 • 1
] 20 40
1 1
GO 80
1
100
-------
o _,
oo_
CD
JT8.D D-R UNITED
r\l
0
O
CD
f\J_
I
20
40 GO
X THRUST
9 o
80
100
-------
o _
LJJ
ID
U_
DO
LJ
X
CD
r\j
JT8D D-R UNITED
X
0
o
/T\ IH
^ y
O
20
40 GO
X THRUST
80
100
-------
JT8D D-R UNITED
1 — ' — .
OJ
C£>_.
_J
LU
ID CM_
u_ -"
* 5
2 —
\ x-
icl
. — 1
\
X OD
D
Z.
CD
_l
T ~
o~
0
X
o
o
X*
0.
o
X
X
o
>* . .
1 1 1 1 1
20 40 GO 80 100
'/. THRUST
-------
LO
LD
.
m
o
o
JT9D PS.N
O>
rs»
u_
CQ
co_
O
O
DO
o
O
oo
oo
20
I
60
80
7. THRUST
100
-------
JT9D
o
ITJ
O>
w
LU OD_
CD
LJ
X
CD
CO
oo
20
nff ID
40 GO
X THRUST -
—r
80
-—?
100
-------
JT9D-
Q
LP
o _
T1 CD
X
O
CD
CD-
CD—
CD
*
T
opo
oo
0
20
1
40
0 0 °
o o
0
1
60
80
X THRUST
100
-------
JT9D P&.H EXP
o>
U1
LP
O
o_
I I I LT>.
—, r-
GO
o.
LT>
O
O
CO
r\j
e x
_a X
20
60
80
100
7. THRUST
-------
LP
O _
_J
LU ir>_
ID ""
1 1
1 '
CD
_J
""* o_
C_J
X
CD
_l
m~
0
G
O
JT9D P&-
0
5
0
f 0
' 8
0 Jj.
ff ^ Oyo n n\ n
-------
LP _
rn
LU'
JT9D
EXP
CO
_l
v:
X
O
CD
oo_
O O
20
GO
7. THRUST
80
100
-------
o
QO .
OD
9
o
CD
O
CO
r\J_
\/
SrL T
BUR
MINFQ
20
40 60
X THRUST
80
100
-------
LP _,
CD
r-
DQ
co.
ro
LJ
X
CD
cn_
i
20
5PEY 511 BUR. MINES
40 60
Z THRUST
i
80
100
-------
5PEY 511 BUR. MINES
r\j
ID m-1
Ll_ •"
CD
X
o
CO
o_J
LP
O
O
o
20
60
V. THRUST
O O {,
80
100
-------
APPENDIX II
ANALYSIS OF VARIANCE FOR
PISTON ENGINE EMISSIONS
CONTENTS:
11-2 TO 11-4 MODEL 0-200-A
11-5 TO 11-8 MODEL 0-320
11-9 TO 11-10 MODEL 10-360
11-11 TO 11-13 MODEL 10-470
11-14 TO 11-15 MODEL TSIO-520
11-16 TO 11-17 MODEL 10-540
11-18 TO 11-19 MODEL 0-540
H-1
-------
ENGINE SUMMARY
SAMPLE NUMBER = 3.
0-200-A
TEST
MODE
2 MEAN!
STD OEVl
6 MEANi
STO nEVl
T MEANI
STO DEVI
1 MEAN:
STO DEV:
10 MEANI
STO DEVI
TOTAL FOR CYCLE
TOTAL FOR CYCLE/LB
. ENGINE SUMMARY
TEST
MODE
2 MEAN:
STO OEV:
6 MEAN:
STO OF.v:
7 HP AN:
STO OEV:
1 MEAN:
STD DEV:
10 MFAN:
srn HEV:
TOTAL FOB CYCLF
TOTAL fan CYCLE/LB
ENGINE SUMMARY
TFST
MUDF
7 MEAN:
STO ')FV
6 "EAN
STO DEV
7 MEAN
s yn OFV
9 MF AN
srn OFV
in TAN
Trim Fn» CV.LF/LI
ENGINE SUMMARY
TFST
NOOF
sro ocv
ft Mh AN
STO OFV
Srn nFv
9 MFAN
STO DFV
10 MFAN
STO PFV
TOTAL FOR CYU E
TOTAL FOO CYCLE/LI
MEASURED
FUEL FLOW
LB/HR
10.07
1.12
50.57
0.95
SO. 57
0.95
22.00
0.02
8.17
0. 46
HFAN:
STD OEVl
FUFL
SAMPLE
MEASURED
FUEL FLOW
LfWHK
7.53
O.IB
41.60
0.0
44.60
o.n
21.10
0.10
5.87
0.46
MEAN:
STD DEV:
FUEL
SAMPLE
MEASURED
FUFL FLOW
LR/HR
7.50
0.57
49.13
0.5R
'.9.11
0 . 5 R
22.30
0.57
MEAN :
FUEL
SAMPLE
MF ASURfU
CU|:L FLOW
LR/HP.
7.2^
n.oi
'.2.07
1.21
9.71
7.0.23
?.3?
6.11
0. 46
MEAN:
SIP OEV:
FUFL
FUEL
USED
LBS.
2.01
0.26
0.2!
0.00
4.20
0.08
2.20
0.0
0.56
0.03
9.224
0.243
NUM1EP. •
FUEL
USED
LBS.
1.51
0.20
0.25
o.n
4.12
0.0
2.11
0.09
0.31
0.03
R.375
0.22?
NUMBER a
FUEL
USED
L1S.
1 .50
n.io
•1.25
•).:)0
'..14
2.7.3
0. 05
.1.571
Nimco =
TIJFL
IISFD
LHS.
0.00
O..M
o.os
O.Jt,
2.02
0.23
0.41
C.03
7 . 576
1 .015
CO
LB/IK
LB FUEL
1118.14
5.83
1147.64
38.05
1147.64
38.05
1079.21
23.61
1137.95
49.15
3.
CO
LB/U
LB FUEL
899.67
53.86
114B.IB
45. 38
1148. IB
45.38
1160.00
12.53
116.28
61.17
3.
r.n
Lfl/IK
LB FUCL
1023. (3
62.41
1156. S7
56.13
1156.57
1167.82
26. -<7
3.
CO
LO/U
L« FUCL
c) i t , o 5
77.29
713.89
513.38
533.38
1063.36
I2H.15
R67.90
S5.24
CO
LB/1K
HOURS
11452.29
1444.57
58040.96
2545.96
58040.96
2545.96
23742.63
520.68
9505.93
123.42
MEANI
STO OfiVl
CO
LB/1K
HOURS
6772.32
934.00
56941.66
2252.31
56141.66
2252.31
24481.35
1241.69
54K2.82
376.62
MFAN:
STD DEV:
cn
LR/1K
HOURS
7693. 66
97fl .99
57763.96
3244. 1H
57763. 1<,
76035. 11
4^0.00
45,1.13
MFAN:
STP DF.v:
CO
Lt/lK
HOURS
".P 39 . S H
^••6.49
3h',T4.K
P704I .09
27C41 .09
21715. 1R
4934.22
5375. S4
•-71.95
MFAN :
SI" OEV:
CO
EMISSION
LBS.
2.290
0.289
0.210
0.013
4.817
0.211
2.174
0.052
0.637
O.OOB
10.409
0.329
1.128
0.016
CO
EMISSION
LUS.
1.354
0.187
0.285
0.011
4.727
0.187
2.448
0.124
0.367
0.025
1.182
0.381
1.016
0.01 H
CT
EMISSION
LHS.
1.531
0.19")
0.281
n.ni6
4. 794
2.604
0.04O
0.459
0.031
9.hfl4
0.44*
1 .130
0.07?
CO
F»ISSI'IN
LCS.
0. Ill
O.I")
0.115
2.2«4
2.17'
0.493
0. 357
o.niR
6.117
2 .974
".Bfl7
0.215
HC
LB/1K
LB FUEL
31.06
27.15
10.58
7.18
10.58
T.1B
13.24
B.74
19.45
11.79
HC
LB/IX
LB FUFL
32.42
3.00
15.01
3.6n
15.01
3.60
1 7.44
1.01
20.91
2.40
NC
LB/1K
LB FUEL
25.36
4. 11
15.47
1.47
15.47
1 7.31
7.11
PI. S3
4. 93
HC
LK/K
LR F||CL
2 2 . 92
4. II
11.04
6. 4Q
11.04
4.'.rf
1 7.05
0.2S
18.14
2.35
HC
LB/1K
HOURS
334.77
331.39
530.59
350.67
530.59
350.67
291.16
192.26
166.40
110.73
HC
LB/1K
HOURS
245.96
51.53
744.41
178.44
744.41
178.44
367.75
23.77
123.61
21.43
HC
LO/1K
HOURS
181. H>-
29.19
777.53
70.63
772.53
70.^3
3B5.17
42 .63
144. <=s
27.05
L3/IK
HOUBS
29. SS
507.7"!
339.41
503.75
34S .79
43.71
1 1 1 .7P
70.95
HC
EMISSION
LBS.
0.0670
0.0663
0.0027
0.0018
0.0440
0.0291
0.0291
0.0192
0.0111
0.0074
0.154
0.174
0.017
0.013
HC
EMISSION
L8S.
0.0492
0.0103
0.0037
0.0009
0.0618
0.014B
0.0368
0.0024
0.0083
0.0014
0.160
0.005
0.011
0.001
HC
E". tSSIHN
L3S.
0. 03flO
•).006T
0. 0039
0. 0004
0. fV.4 I
0. 03?5
0.0043
0. 0097
o.onic
O. 1 54
0.017
0 . 0 1 P
0.007
HC
EMISSION
I.RS.
n.n'",4
0. 0075
A. 00 17
0.0417
T.0'45
0.0044
0.0075
0.0014
0. 1 19
:> . 0 3 R
o . n 1 •>
O.O03
NO
Lfl/IK
LS FUEL
1.16
0.31
5.39
0.50
5.39
0.50
5.28
0.52
1.55
0.07
NO
LB/1K
LB FUEL
1.18
0.76
3.52
0.56
3.52
0.56
1.87
0.25
l.'l
0.1!.
HI
L«/l<
Lrt F||E|_
0.14
1. 11
* .96
1.40
S.9S
1 . '. 0
1.54
0. 16
1 .IT
0.14
•4'1
L H / 1 K
H FUEL
•1 . s :i
15.10
71. li>
IS. "0
1 .12
0.72
>.. 13
0.7S
NO
LB/IK
HOURS
11.36
2.15
272.38
70.65
272.38
20.65
116.18
11.50
12.95
0.80
NO
LB/1«
HOURS
R.fl5
2.25
1 74.61
77.10
174.61
27.10
31.27
3.51
7.64
1 .58
•\n
L'l/ IK
M'ltpas
6.24
1 .OS
347 .90
70. 73
347.10
Tn . 7 3
"..".3
3.6'
7.77
O.'j4
Nil
I.S/ IK
H100'<
0.0077
o.nn33
n.ov.9
0.00?6
0.0010
0. 0009
0.0003
0.0540
0.05B1
O.OOBO
0.0095
n-z
-------
ENGINE SUMMARY
SAMPLE NUMBER • 1.
0-200- A
TEST
NODE
2 HEtNl
STn DEVI
6 MEANl
STD DEV:
T ME AMI
sin nev:
9 HE AN I
STO OEV:
10 MFANI
srn DEVI
TOTAL FOR CYCLE
TOTAL FDR CYCLE/LB
ENCINE SUMMARY
TfST
MODE
7 MEAN:
sn OEV:
k MFAN:
STO n£v:
T MF.AN:
STO OEV:
4 MEAN:
STn OEV:
10 MEAN:
STO nEV:
TOTAL FDR CYCLE
IOTAL FOR CYCLF/LR
MODEL SUMMARY
TFST
TOF
> rcAN
STD OEV
6 MFAN
STn ;IEV
7 MEAN
STn nRv
q ME 4M
sin OEV
10 Mt\H
sin DEV:
TOTAL FOR CYCLF
TOTAL FOR CYC.LF/LR
MEASURED
FUEL FLO*
LB/HR
6. TO
1.28
44.27
0.58
49.27
0.58
20. SO
1.04
5.57
O.BS
HEANl
STO OEV:
FUEL
SAMPLE
MEASURF1
FUEL FLOW
LB/HK
7.23
O.B5
49.27
0.58
49.27
0.58
21.40
0.57
6.67
0.92
MEAN:
SIO nfv:
FUFL
SAMPLF
MFASURF.O
FUEL FLOW
L5/HR
7.71
1.17
4H .4S
4.16
48.45
'..36
21. 26
1.21
6.54
1.01
MEAN:
STD nry:
FUEL
FUEL
USED
LBS.
1.34
0.26
0.25
0.00
4.09
0.05
2.05
0.10
0.57
0.0*.
a. 090
0.412
NUMBER »
FUEL
USED
L1S.
1.45
0.17
0.25
0.00
4.09
0.05
2. 14
0.05
0.45
0.06
fl.369
0.224
MJM1EP a
FUEl
USEO
L1S.
1 .54
0.27
1 .24
0.02
"..02
n. »6
2.13
0.12
0.44
0. 07
9.369
0.657
CO
LB/1K
LB FUEL
1020. OB
121.66
1178.01
67.94
1178.01
67.94
1100.51
3.54
1065.25
44.44
3.
CO
LB/1K
LB FUEL
1007.91
44.73
1199. BO
86.74
1199.80
86.74
1142.20
25.70
1038.62
65. 77
1 R.
CC
LI/IK
LR FUEL
"S3. 36
121.72
1 104.02
237.51
1 104.02
237.51
i ua.qs
42. 4S
1012.32
101.27
CO
LB/1K
HOURS
6937.36
2154.10
5B062.27
3999.6?
58062.77
3999.62
22560.21
1143.19
5941.67
1045.25
MEANI
STn OFV:
CO
LB/1K
HOURS
7272.62
657. 9fl
59143.56
4935. 68
59143.56
4935. 6B
24451.75
1147.39
6883.65
556.79
SEAN:
STn Ofv:
ro
LR/1K
MOUP-S
7661.30
21 15.19
12694.16
54425.75
12694.16
23»31.07
2341.14
6664.61
1511 .55
"FAN:
STn OF»:
CO
EMISSION
LRS.
1.387
0.431
0.290
0.020
4.819
0.332
7.256
0.114
0.399
0.071
9.151
0.862
1.123
0.053
CO
EMISSION
IPS.
1.455
0.132
0.296
0.025
4.909
0.410
2.445
0.115
0.461
0.037
9.5F.6
0.490
1.143
0.031
m
FWISS10N
LRS.
1.512
0.421
0.061
4.51 7
1.0S4
l.i'i
n.2V.
0.44 I
1.101
9.151
1 .565
1 .OP5
0.13»
HC
LB/1K
LB FUEL
28.90
6. 37
18.94
1.50
18.94
1.50
20.37
0.70
24.15
1.93
HC
LB/IK
LB FUFL
26.04
4.26
IB. 09
1.4B
18.09
1.48
20. 2»
1.12
24.80
6.06
HC
LR/1K
LR FUFL
27. T1
10.51
4.10
14. H5
4.90
1 7.61
3.00
21.5f.
5.59
HC
LR/1K
HOURS
199.06
81.90
933.49
83.80
933.49
83.80
417.18
16.0?
135.46
31.20
HC
Lfl/lK
HOURS
1B6.14
11.70
R91.7B
81. OB
191 .78
B3.08
434.77
12.10
161.60
14.33
HC
LB/IK
HO DPS
720. 11
1 17.90
249. fl?
7?<*.?8
740. B2
171.53
H5.7J.
140.57
46.6?
HC
EMISSION
LBS.
0.03"8
0.0164
0.0047
0.0004
0.0775
0.0070
0.0417
0.0016
0.0091
0.0071
0.173
0.076
0.071
0.002
HC
EMISSION
L9S.
0.0372
0.0074
0.0045
0.0004
0.0740
0.0069
0.0434
0.0032
O.OIOB
0 . 00 1 0
o.i ro
0.004
0.020
o.oon
K
F'MSSION
LRS.
O. 0440
0.0766
0.0012
0. 0605
0.0?"f
•^.0174
o.non*.
'1. OOu^
o.orii
O.I 55
0.041
0.018
n.005
Nfl
LH/U
LR FUEL
0.9B
0.49
3.11
0.7B
3.13
0.78
7.00
0. 19
1.09
0.12
NO
LR/IK
LR FUEL
1.32
0.35
2.00
O.S1
?.oo
0.51
2.16
0.14
1.40
0.14
•«o
LV1K
LT FUFL
l.li
0.19
1.7rt
6. 15
•I. 71
'.4*
1 .16
1 . '. 1
•1.47
NO
LB/IK
HOURS
6.16
2.34
154.02
36.57
154.02
36.57
41.01
5.64
6.07
0.9H
NO
LB/IK
HOURS
9.70
3.54
98.17
24.70
Vfl. 1 7
74.7R
50.35
6.24
9.50
1.34
NO
LB/IK
HHU'^S
1. 76
i.r"i
771 . 79
?64 .M
271 .70
62.KO
to. 7 a
0.4 !
1 .5'.
NO
EMISSION
LBS.
0.0012
0.0005
O.OOOB
0.000?
0.0178
0.0030
0.0041
0.0006
0.0004
0.0001
0.0193
0.0030
0.0024
0.0005
NO
EMISSION
LflS.
0.0019
0.0007
0.0005
c.ooni
0.0081
0.0021
0.0050
0.0006
0.0006
0. 0007
0.0161
0.0012
0.0019
0.0002
N1
F M 1 S S 1 ON
I.HS.
0.0018
0.0006
0.0014
0.0220
0.0226
0.0053
0.0:110
n.0006
0.0007
0.0109
0.0245
0. 0030
0.0019
n-3
-------
ANALYSIS OF VARIANCE
WITHIN DECREES OF FREEDOM
BETVECN DECREES OF FREEDOM - 12
0-200-A
TEST
HOOF
MEASURED
FUEL FIOM
LB/MR
2 MS
AMONCl
MS MITHINI
F
VAR.
VAR.
R
SIC
6 MS
MS
F
VAR.
VAR.
R
SIC
T MS
MS
F
VAR.
VAP.
R
SIC
9 MS
MS
F
VAR.
vat.
R
sir.
10 MS
MS
F
V«R.
VAR.
R
SIC
RATIO!
AMONG 1
COMB.l
INTRAt
crmn. i
AMONC:
MITHINI
RATIO:
AMONC:
COMB.:
INTRAI
COMB.:
AMONC:
WITHIN:
RATIO:
AMONC:
COMB.:
INTRA:
COMB.l
AMONC:
WITHIN:
RATIO:
AMONG:
COMB.:
INTRA:
COMB.:
AMONG:
WITHIN:
RATIO:
AMONC:
COMB.:
INTRA:
COMB.:
TOTAL FOR CVf.LE Ml
MS
F
VAX.
VAR.
R
sir.
4.28
0.89
4.87.
1.11
2.02
o.jo
1.42
10.06
14.45
2. OB
5.20
19.66
0.26
4.43
10.06
14.45
7.08
5.70
19.66
0.26
4.43
1.99
1.31
1.52
0.23
1.5)
P. IS
1.24
2.96
0.41
7.31
0.85
1.26
0.61
1.12
AMONG:
HI THIN:
RATIO:
AMONG:
COMB.:
INTRA:
r.OMH. :
FUEL
USED
LBS.
0.17
0.04
4.82
0.09
0.08
0.56
0.28
0.00
0.00
2.08
0.00
0.00
0.26
0.02
0.21
0.10
2.98
1.04
0.14
0.26
0.37
n.o?
0.01
1.52
0.00
0.02
0.15
n.12
0.01
0.00
7.31
0.00
0.01
0.68
0.00
0.884
0.243
3.644
0.214
0.456
0.468
0.675
TOTAL FOR CYCIE/LB FUEL
CO CO
LB/U LB/1K
LB FUEL HOURS
38524.40 11494259.00
49)6.16 1550051.00
T.80 7.42
11196.08 3314735.00
161)2.24 4864796.00
0.69 0.68
127.01 2205.63
70468.00230418528.00
50551.66132276352.00
1.39 1.74
6638.78 32714048.00
57190.44164990400.00
0.12 0.20
239.15 12844.86
70468. 0023041 B528. 00
50551.66132276352.00
1.39 1.74
6638.78 32714048.00
57190.44164990400.00
0.12 0.20
239.15 12844.86
5776.00 7058073.00
3118.67 4623786.00
1.85 1.46
8B5.7B 744762.31
4004.44 5568548.00
0.22 0.13
63.28 2359. Tfl
27699.60 7119676.00
2987.83 356476.00
9.27 19.97
8237.25 2254400.00
11225.09 2610876.00
0.73 O.K6
105.05 1615. B2
MS AMONG:
MS UITHIN:
F RAUn:
VAR. AMONG:
VAR. COMB.:
R INTRA:
SIG COM1.:
CO
EMISSION
IRS.
0.4598
0.0620
7.4152
0.1326
0.1946
0.6814
0.4411
0.0058
0.00)3
1.7420
0.0008
0.0041
0.1983
0.0642
1.5874
0.9112
1.7420
0.2254
1.1366
0.1981
1.0661
0.0706
0.0482
1.4644
0.0075
0.0557
0.1340
0.2360
0.0370
0.0016
19.9699
0.0101
0.0117
0.8634
0.1081
4.2197
1.7115
2.4621
0.8354
2.5489
0.3778 "-
I.S965
0.0291
0.0151
1.9071
0.0046
0.0191
0.2122
0. 1409
HC
L8/1K
LB FUEL
)9. 67
1)9.87
0.28
-33.40
106.47
-0.31
10.32
36.25
IB.B5
1.92
5. BO
24.65
0.24
4.96
36.25
18.85
1.97
5.80
24.65
0.24
4.96
20.53
14.02
1.46
2.17
16. 19
0.13
4.02
70.22
35.83
0.56
-5.20
30.63
-0.17
5.51
HC
IB/IK
HOURS
11618.67
20182.41
0.58
-2B54.5B
17327.83
-0.16
131.64
96596.50
48163.45
2.01
16144.35
64107.80
0.25
753.59
96596.50
48163.45
2.01
16144.35
64307.80
0.25
253.59
7987.39
7090.84
1.11
798.85
7189.68
0.04
85.96
1360.63
2511.80
0.54
-381.77
2128.07
-0.18
46.13
HC
EMISSION
LRS.
0.000465
0.000807
0.575689
-0.000114
0.00069)
-0.164737
0.026327
0.000002
0.000001
2.005642
0.000000
0.000007
0.251056
0.001268
0.000665
0.000332
2.005562
0.000111
1.000443
0.251041
0.021048
o.oonoeo
0.000071
1.126380
0.000003
0.000074
0.040424
0. 001596
0.000006
0.000011
0.541710
-0.000002
0.000010
-0.180298
0.003091
0.001104
0.007967
0.372262
-0.000621
".002146
-0.264M6
0. 04 14 34
0.000015
0.000011
0.477671
-0.000005
0.00002*
-0.210BI1
0. 005061
NO
LB/IK
IB FUEL
0.14
0.15
0.90
-0.00
0.15
-0.03
0.38
77.75
76.76
1.01
0.33
77.09
0.00
8.78
77.75
76.76
1.01
0.33
77.09
0.00
8.78
5.87
0.17
14.07
1.90
2.07
0.92
1.44
0.45
1.1)
1.55
0.11
0.73
0.46
0.48
NO
LB/IK
HOURS
11.75
7.67
1.79
2.03
9.70
0.21
3.11
78672.88
71870.50
1.09
2267.46
74137.94
0.03
272.28
78672.88
71870.50
1.09
2267.46
74137.94
0.01
277.28
29B7.4*
54.71
55.11
"77.74
1131.95
0.95
12.12
26.77
6.61
4.04
6.70
13.32
0.50
3. (-5
NO
EMISSION
LBS.
0.000001
0.000000
1.793472
0.000000
0.000000
0.209168
0.000623
0.000002
0.000007
1.094644
0.000000
0.000002
0.03058)
0.001361
0.000542
0.000495
1.094646
0.000016
0.000511
0.030584
0.022599
0.000030
0.000001
55.114685
0.000010
0.000010
0.947474
0.003712
0.000000
0.000000
4. 019927
0.000000
0.000000
0.501105
0.000244
0.000*34
0.0005B6
1 .082670
O.OOOOlfe
0.000602
0.026820
0.02453?
0.000015
0.0000 l*t
r. 968675
-o.oooooo
0.000015
-0.010569
0.0011B1)
n-4
-------
ENGINE SUMMARY
SAMPLE NUMBER • 3.
0-320
TEST
MODE
2 MEAN:
STO OEVi
6 MEAN:
srn OEV:
7 MEAN:
STO OEV:
9 MEAN:
STO OEV!
to MEAN:
STO OEV:
TOTAL FOB CYCLE
TOTAL FOR CYCLE/LB
ENGINE SUMMARY
T"=ST
MODE
7 *";AN:
STO OFv:
6 MF»M:
STO OEV:
7 MEAN:
STO nEV:
9 MFAN:
sro OEV:
10 HFAN:
stn OF.V:
TI1TSL FOB CVC.LF
TOTAL F0° CYCLE/LR
ENGINE SUMMARY
. TESI
M01E
•> IF AN:
sro OKV:
6 MTAN:
Sfl OFV:
7 MT4N:
S TO 06 V i
9 MFAN:
sro nev:
10 MF4N:
Sf> OEV:
TOTAL FOB CYCLf
trim fm cvci '/LH
MEASURED
FUEL FLON
LS/HR
7. HO
0.52
64.63
0.56
69.63
0.58
19.90
1.04
in. 13
5.82
MEAN:
STD OEV:
FUEL
SAMPLE
MEASURED
FUEL FLOW
LR/HR
iv. in
0.0
58.20
13.il
50.40
fl.14
3H.67
4.10
IK. 77
1.15
MEAN:
STP Ifv:
FIICL
SAMPLE
MFASURTO
FIJFL FLUH
LR/H°
16. HO
1 .K3
73.47
5. R9
S9.HO
7.13
3S.97
7.44
I7.?o
O.M
MF ^N:
StO Ofcv:
FUEL
FUFL
USED
LBS.
1.56
0.10
O.J5
0.00
5.78
0.05
1.99
0.10
0.68
0.39
10.357
0.443
NUMBER •
FUFl
USED
LHS.
3.98
0.0
0.29
0.07
4.18
0.68
3.87
0.41
l.?6
0.08
13.578
i.«n
NU'*•*E^ a
FUeL
uSFn
L3S.
J.36
0.37
11. 17
.1.13
4.96
•1.59
3. (>V
O.P4
1.15
0.05
I 3. '.4O
0.230
CO
LB/IK
L8 FUEL
606.37
123.48
1213.75
20.88
1213.75
20.88
1040.78
14.61
603.65
30.94
3.
cn
LB/IK
LB FUEL
770.64
271.83
1049.05
202.23
850.14
182.05
1075.13
92.08
741. 3f
323.72
3.
r.o
LVIK
LR FUCL
959.33
275.49
201.43
675. 05
infli. 45
l?9.| 1
1044. «7
46.72
CO
LB/IK
HOURS
47BO.T5
1719.80
6*523.88
2071.37
84523.88
2071.37
20720.46
1352.69
6312.92
4147.60
HFAN:
STO OFV:
cn
LB/IK
HOURS
15335.64
5409.46
59233.81
85H.&5
41926. 16
3872.13
41422.91
3462.22
14067.07
6414.32
MEAN:
STO OEV:
r.u
LVIK
HOIIPS
16134.75
5015.77
15439.13
383*5.66
191 h3.flR
73* t.SH
1 7954. R4
526.06
MFAN:
sin OEV:
CO
EMISSION
LBS.
0.956
0.244
0.423
0.010
7.015
0.172
2.072
0.135
0.423
0.278
10.889
0.602
1.051
0.013
cn
EMISSION
LBS.
3.067
1.0B2
0.295
0.004
3.460
0.321
4.14?
0.346
0.942
0.430
11.928
1.155
0.879
0.009
CO
EMISSION
LKS.
3.227
1.00J
3.1H6
3.916
n. 735
1.701
n.rm
Il.flfl4
2.262
0.816
O.ld?
HC
LB/IK
LB FUEL
19.57
0.71
51.94
25.55
51.94
25.55
21.56
1.13
18.51
0.66
HC.
LB/IK
LB FUEL
J7.17
6.49
24.33
3.34
21.41
2.91
23.5B
B.5K
50.70
21.34
HC
in/i<
LB FUEL
32. 39
3.Rr.
21.71
71.04
I. hi
34.55
3. 74
MC
LB/U
HOURS
152.72
13.54
3609.56
1757.54
3609.56
1757.54
429.65
42.24
185.01
99.36
HI;
LB/IK
HOURS
739.71
129. ?3
1394.62
210.56
1065.68
81.12
H96.8I
272.25
929.73
373.19
»r.
IH/IK
HOUeS
i42.60
71.77
2736.75
1378.21
759.75
102. US
S9<..>3
75.74
HC
EMISSION
LBS.
0.0305
0.0027
0.0180
0.0088
0.2996
0. 1459
0.0430
0.0042
0.0124
0.0067
0.404
0.153
0.039
0.016
HC
FKISSiriN
LBS.
0. 1479
0. 0?MI
O.OP70
0.0011
0.0885
0.0067
0.0897
0.0272
0.0623
1.0250
0.395
0.064
1.029
O.r>17
MC
FMISSHIN
1 »S.
0. 10T5
0.014)
0.0137
O.I 144
1.071K
n.0113
[i.03"P
0.0049
0.3S2
1.079
-1 . 0 ? 6
1.00?
NH
LB/IK
LB FUEL
1.10
0.21
0.83
0.40
0.83
0.40
1.31
0.05
1.16
0.05
NO
LI/IK
LI CUEL
r.29
0.50
2.92
4. 49
6.50
1 1.26
l.»6
3.23
0.72
1.25
V:
L4/IK
1:1 FCIOL
1.2?
0.93
'.?2
7^.97
1.19
1. >'
1. \C
o.rn
NO
LB/IK
HOURS
8.52
1.39
57.99
28.28
57.99
28. 2fl
25.97
0.87
11.68
6.54
NO
L*/l«
HOURS
5.79
13.03
208.38
360.92
3AR.86
673.57
BO. 9 I
140.13
14.35
74. US
nn
LI/IK
HHUHS
20. 4 J
15. 9«
512.1 7
1174. 7P
109. P9
•*4 . 0?
19.71
2. 14
NO
EMISSION
LBS.
0.0017
0.0003
0.0003
0.0001
0.0048
0.0023
0.0026
0.0001
0.0008
0.0004
0.0107.
0.0026
0.0010
0.0002
NO
EMISSION
LBS.
0.0012
0.0020
0.0010
O.OOlfl
0.0323
0.0559
O.OOBl
0.0140
0.0010
0. 001 7
0.043S
0.0754
0.0029
0.0050
NO
FKISSICN
LHS.
1.0J41
0.0157
0.01J7
0.001 7
O.I1S6
0.0101
1.0144
0.001 3
1. OOOI
0. I 746
O.I 1IO
1.0121
n. on?
n-5
-------
ENGINE SUMMARY
SAMPLE NUMBER
o-3io
TEST
MODE
2 MEAN:
STO OEV:
6 HE AN:
STO DFV:
7 MEAN!
STD DEVI
9 MFAN:
STD OF.VI
10 MEAN:
STO DEVI
TOT«L TOR CYCLE
TOTAL FOR CVCLE/LB
ENGINE SUMMARY
TEST
MODE
2 MFAN:
STn DEV:
6 MEAN:
srn OEV:
7 MEAN:
STn OEV:
9 MFAN:
Sill nEv:
11 MEAN:
STD DEv:
TOTAL FOR CYCLE
TOTAL FtlR CYCLE/LB
ENGINE SUMMARY
TEST
•«11E
2 MF.\M:
srn OFV:
6 HFAN:
srn HF.V:
7 MFAN:
srn np.v:
9 MEAN:
STn OEV:
in MFAN:
srn nEv:
TOTAL Fnq CYCLE
TOTAL FOP CYCLF/LB
MEASURED
FUEL FLOM
LB/MR
12.90
1.20
71.87
1.78
71.87
1.78
19.17
2.71
11.70
0.01
MEAN:
STO DEV:
FUEL
SAMPLE
MEASURED
FUEL FLO*
LB/HR
7.80
1.26
S7.10
a. 03
57.77
9.18
14.97
O.B5
5.91
0.94
MFAN:
STO OEV:
FUEL
SAMPLE
MEASURED
FUEL FLOW
IH/HR
IO.07
7.02
•.11.61
1 .IS
68.61
1. is
17.60
1.1
7.80
O.S7
MFAN:
STn HEV!
FUEL
FUEL
USED
LBS.
2.58
0.2*
0.16
0.01
1.1k
0.15
1.92
0.27
0.78
0.00
11.60!
0.610
NUMBER •
FUEL
USFO
L9S.
1.56
0.26
0.29
0.1*
*.79
0.76
1.50
0.09
0.39
0.07
8.528
1.125
NUMBER °
FUEL
USED
L1S.
2.01
0.40
0.14
o.ni
S. 70
0.10
1 . 76
1.0
O.S2
0.01
11. 116
0.497
CO
L8/1K
IB FUEL
701.19
115. 41
1154.85
5.66
115*. 85
5.66
1122.10
2.15
589.6}
15.85
1.
CO
LB/1K
LB FUEL
709.7*
168.91
862.15
219.92
(150. 49
284.49
911.70
*0.*7
199.41
4.07
1.
CO
LB/IK
LB FUEL
1067.57
104.79
1092.03
23.00
1017.03
23.00
675. 7fl
14. 75
938.86
76.64
CO
LB/IK
HOURS
9175.18
2619.47
82988.18
1654.12
82988.38
1654.12
21508.28
1061.84
6898.61
419.45
MFAN:
STD OEVI
CO
LB/IK
HOURS
5676.49
2111 .21
50125.96
21754.54
50252.54
22951.25
12172.62
799.51
2326.62
411.66
MFAN:
STO DEv:
r.n
LiVIK
HOURS
IOHfl3.44
3114.20
74954.06
7275.39
74954.06
7775. 3S
1S4I3.73
219. 4fl
69M .46
969.14
MFAN :
STD ntv:
CO
EMISSION
LBS.
1.815
0.524
0.415
0.008
6.888
0.118
2.151
0.106
0.462
0.028
11.751
0.981
1.012
0.029
CO
EMISSION
LBS.
1.135
0.422
0.251
0.109
4.171
1.905
1.217
0.079
0.156
0.029
6.930
2.461
0.801
0.204
CO
CMISSI1N
LBS.
2.177
0.661
0.175
0.011
6.271
O.I 80
1.541
1.076
0.46*.
0.065
10.7BT
0.716
1 .047
0.021
HC
IB/IK
IB FUEL
14.9*
1.83
15.19
0.66
15.19
0.66
22.08
0.40
12.32
0.69
HC
LB/IK
L8 FUEL
21.87
1.51
15.31
3.93
14.97
1.64
19.00
0.72
19.52
1.1H
HC
LB/IK
Lfl FUEL
41. 10
27.66
15.11
3.2?
15. 3J
1.72
17.54
l.f.
27.19
2.1H
MC
LB/IK
HOURS
194.21
41.25
1090.98
20.61
1090.98
20.61
422.42
51.69
144.14
8.11
HC
LB/IK
HOURS
171.55
36.55
883.85
301.19
876.13
308.31
784.10
11.11
114.02
29.77
MC
LI/IK
MOUKS
451.96
391.75
1051.01
716. SO
1051.01
216.50
108.69
32.74
175. OS
25. 5H
HC
EMISSION
LBS.
0.0188
0.0081
0.0055
0.0001
0.0906
0.0017
0.0422
0.0052
0.0097
0.0005
0.187
0.017
0.016
0.000
HC
EMISSION
LBS.
0.0341
0.0073
0.0044
0.0015
0.0727
0.0256
0.0284
0.0011
0.0076
0.0020
0.147
0.036
0.017
0.003
HC
EMISSION
IKS.
0.0904
0.07P7
0.0053
o.onu
O.OB72
O.OIPO
C.0100
o.non
0.01 1 J
o.ooi;
0.27S
O.OS-)
0.077
o.oos
NO
LiVIK
L9 FUEL
1.47
0.31
2.49
0.64
2.49
0.64
1.80
0.38
I.7B
0.39
NO
L9/1K
Lfl FUEL
1.40
0.37
8.67
10. 13
1.42
10. 17
1.22
1.64
2.01
0.54
NO
L9/IK
LI MIOL
0.17
0.72
1 .09
0.01
1 .19
0.01
7.91
P. SI
0. 11
o.m
NO
LB/IK
HOURS
18.96
4.19
178.88
46.45
178.88
46.45
14.47
8.34
20.83
4.59
\
NO
LR/1K
HDUHS
10.64
1.79
470.21
535.41
4S4.86
5'. 9. 74
48.7?
10. 19
11 .67
3.S7
NO
Lrt/lK
HOURS
1.47
1.71
75.^4
1.35
75 .14
1.P5
SI .22
9.C6
6. SO
0.21
NO
EMISSION
LBS.
0.0018
0.0009
C.0009
0.0002
0.0148
0.0039
0.0034
0.0008
0.0014
0.0001
0.0244
0.005B
0.0021
0.0005
NO
EMISSION
LBS.
0.0021
0.0004
0.0024
0.0027
0.0179
1.0456
0.0049
O.OOIO
0.0009
0.0012
0.0478
0.049P
0.0059
0.0064
NT
FMSSIUN
LKS.
0.0007
0.0001
0.0004
O.COOO
0.0062
0.1001
O.OOS1
0.0109
1.0004
0.0000
0.0129
C.0007
1.0012
0.0001
tt-6
-------
ENGINE SUMMARY
SAMPLE NUMBER
0-320
TEST
MODE
2
6
7
9
10
TOTAL FOR
TOTAL FOR
MEAN!
STO DEV:
ME AMI
STO DEVI
MEAN:
STO OEV:
MEAN:
STO nEV:
MEAN:
STO OEV:
CYCLE
CYCLE/LR
MEASURED
FUEL FLOW
LB/HR
19.17.
0.64
74.23
1.33
74.23
1.31
26.07
2.34
IB. 40
0.69
MEAN:
STO nev:
FUEL
FUEL
USED
LBS.
3.83
0.13
0.37
0.01
6.16
0.11
2.61
0.23
1.23
0.05
14.205
0.463
CO
LB/1K
LB FUEL
1104.02
109.26
1183.62
17.62
1183.62
17.62
1179.67
10.42
961.71
24.26
CO
LB/1K
HOURS
21139.71
1854.79
87867.31
2249.58
87867.31
2249.58
30750.31
2778.62
17694.23
768.00
MEAN:
STO DFv:
CO
EMISSION
LBS.
4.228
0.371
0.439
0.011
7.293
0.187
3.075
0.278
1.186
0.051
16.221
0.867
1.142
0.037
KC
LB/1K
LB FUEL
29.70
11.76
12.99
0.56
12.99
0.56
26.03
1.43
18.52
0.64
MC
LB/1K
HOURS
566.74
214.04
964.55
56.47
964.55
56.47
677.66
62.82
140.54
12.52
HC
EMISSION
LBS.
0.1133
0.0428
0.0048
0.0003
0.0801
0.0047
0.0678
0.00*5
0.0228
0.0008
0.789
0.051
0.020
0.003
NO
Lil/lK
LB FUEL
0.37
0.18
0.82
0.36
0.82
0.36
0.83
0.05
0.68
0.04
NO
LB/IK
HOURS
7.17
3.57
60.77
25.83
60.72
25.83
21.50
0.86
12.52
0.64
NO
EMISSION
LBS.
0.0014
0.0007
0.0003
0.0001
0.0050
0.0021
0.0022
0.0001
0.0008
0.0000
0.0098
0.0023
0.0007
0.0002
MODEL SUMMARY
SAMPLE NUMHER » 21.
TEST
MODE
7 f'FAS:
sn ORV:
ft MEAN:
STO OEV:
7 MF AN :
STD PEv:
9 "FAN:
STO OF V 1
10 MEAN:
STO OFV:
TOTAL Fna cvr.i.F
TOTAI Efia CYCI E/L".
MEASURED
FUFL FLOW
LO/HR
13.49
5.01
67.59
8.60
64.62
9.46
74.62
9 .06
17.81
5.3H
MEAN:
srn OEV:
FUFL
FUEL
USED
2. 70
1.01
0.34
0.04
5.36
0.79
7.46
O.K6
0.16
11. 771
2.0*5
CO
LH/IK
LB FUFL
846.12
240.71
1073.31
177.69
1002.85
282.49
1027. ?3
116.73
746.91
244.9ft
CO
1 fl/lK
MUURS
1 1P75.16
6117.78
72851.94
15798.11
65IU2.50
71570.74
7.587P.P6
1 1718.68
1011 4. 19
6164 .07
MEAN:
STP OFv:
CO
EMISSION
LflS.
2.375
1.767
0.364
0.079
5.465
1.952
2.588
1.174
0.691
0.425
11.4P1
7.B6T
0.971
0.144
HC
LB/IK
LR FUEt
78.17
13.44
24.54
16.56
22.16
15.53
21.55
25.14
14. 14
HC
LB/IK
HOURS
407. 7fl
766.7?
1675.91
1707. 9<*
1433.74
1089.13
539.61
354.72
111.67
HC
EMISSION
L!1S.
O.OSP6
0. OOP4
0.006"
0. 11=0
0.0904
T..0540
0.0218
0.0710
0.114
0.074
o.oto
ND
LR/1K
i i FUEL
O.H9
O.6*.
1.42
4.91
7.02
14. 59
7.15
1. 19
0.67
NO
Lb/lK.
HOUR?
10.71
8.8'.
798.77
441 . 59
960. <"P
51.05
13. »1
NO
FMISSION
LRS.
0.0021
0.0018
0.0011
0.0015
0.0167
0. C79H
0.0053
C.0009
O.OOOft
0.0462
0. 0849
0.001P
0. 1064
n-7
-------
ANALYSIS OF VARIANCE
WITHIN OFGRFFS OF FREEDOM
BETWEEN DECREES OF FREEDOM = 14
0-320
TFST
MODE
2
6
j
9
10
TOTAL
TOTAL
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB.:
R INTRA:
SIC COMB.:
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB.:
R INTRA:
SIG COMB. :
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB. :
R INTRA:
SIG COM<*.:
MS AMONG:
MS WITHIN:
F RATIO:
VAO. AMONG:
VAR. COMB.:
R INTRA:
SIG COMB. :
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB.:
R INTRA:
SIG CflMD. :
FOR 'CYCLF
V
V
FOR CVCLt/LB
MF.ASUREO
FUEL FLOW
LB/HR
80.54
1. 60
50. 40
26.32
27.91
0.1*
5.78
150.21
»l. in
3.65
16. }5
77.53
0.47
n.ni
229.30
70.69
7.72
66.53
96.21
O.A9
9.R1
261.32
5.15
46.87
Ri.32
90.67
0.94
9.57.
04.09
5.35
15.73
26.25
11.59
0.83
5.62
MS AMONG:
MS WITHIN:
F RATIO:
AH. AMONG:
AR. COMH.:
R INTRA:
SIC CdMR.:
FUEL
FUEL
USED
LBS.
3.22
0.06
50.40
1.05
1.1?
0.94
1.06
0.00
0.00
3.65
0.00
0.00
0.47
0.04
1.58
0.20
7.72
0.46
0.66
0.69
o.ai
?.M
0.05
48.87
0.15
0.91
0.94
0.95
0.36
0.0?
IS. 73
0.12
0.14
o.B3
n.iB
11.291
0.519
25.577
4.?55
4.774
o.ROi
2.195
CO CO
LB/1K LB/1K
LB FUEL HOURS
ll4Bl4.3ll064Hfl832.00
33565.71 11653526.00
3.42 9.14
27082.85 31611760.00
6064B.56 412657HO.no
0.45 0.73
746.27 6577.64
48702.50588726272.00
24234.93104212656.00
Z.ni 5.65
8155.86161497856. 00
32390.78265730512.00
0.25 0.61
179.97 16301.24
57815. 64194594512. 00
2.27 7.14
2442B. 81396478592. 00
82244.44593072896.00
0.30 0.67
286.78 24353.09
53?06. 66392465664. 00
1904.57 12240347.00
13.63 32.06
16434.03126741760.00
20330.60138982096.00
0.81 0.91
142.01 11789.07
160905. C61 14 83R6SB. 00
16761.96 864247?. 00
9.60 13.29
48047.69 3519B736.00
64309.64 44041200.00
0.74 0.80
254.58 6616. 16
MS AMONG:
MS WITHIN:
F RATIO:
VAR. IKtiNC,:
VAR. CO"B. :
0 INTRA:
Sir, COMfl.:
CO
EMISSION
LBS.
4.2596
0.4661
9.1379
1.2645
1.7306
0.7106
1.3155
0.0147
0.0026
5.6474
0.0040
0. 0066
0.6077
0.0815
1.3406
7.1429
2.7450
4.0856
0.6719
2.0213
3.9247
0. 1224
32.0668
1.2674
1.3898
0.9119
1.1789
0.5155
0.0188
13.2876
0.1589
0.1977
0.8038
0.4446
22. 2266
2.1582
10.2989
6.6895
A. 8476
0.7561
2.9745
0.0437
0.0111
3.9350
0.0109
n.0219
0.4945
0.1481
HC
IB/IK
LB FUEL
279.69
138.12
2.02
47.19
185.31
0.25
13.61
644.84
115.22
5.60
176.54
291.76
0.61
17.08
559. 85
104.78
5.34
151.69
256.47
0.59
16.01
23.66
12. 04
1.96
3.87
15.91
0.24
3.99
503.88
69.56
7.24
144. 7R
214.33
0.68
14.64
HC
LB/1K
HOURS
160939.00
32273.71
4.99
42BR8.41
75162.06
0.57
274.16
3404749.00
608214.88
5.60
932178.00
1540392.00
0.61
1241.13
2 833 877* 00
480066.75
5.90
784603.31
1264670.00
0.62
1124.58
169475.94
11470.60
12.58
52001 .77
65472.17
0.79
755.88
275856.50
72335.02
17.35
84507.13
106842. 13
0.79
126.07
HC
EMISSION
LBS..
0.006438
0.001291
4.986667
0.001716
0.003006
0.570611
0.054831
0.000085
0.000015
S. 598018
0.000023
0.000039
0.605160
0.006206
0.019523
0. OOJ107
5.903123
0.005405
O.OOR712
0.620403
0.093340
0.001695
0.000135
12.581062
0.0"0520
0.000655
0. 794254
0.075567
0.001238
0.000100
12.350817.
0.000179
0.0004BO
0.790951
0.071900
0.011435
0.005100
6.1631 88
0.008778
0.013879
0.637496
0.117808
0.000197
r.. 000047
4.1*7436
0.000050
0.000097
0.511574
0.009859
NO
LB/1K
LR FUEL
0.82
0.23
3.64
0.20
0.42
0.47
0.65
31.04
21.14
1.47
3.30
24.44
0.14
4.94
308. 13
172.05
1.79
45.36
717.41
0.21
14.74
7.. 64
1.88.
1.40
0.7.5
7.. 14
0. 1?
1.46
0.82
0.79
2.81
0.13
0.46
0.18
0.68
NO
Lfl/lK
HOURS
128.67
56.59
2.27
24.01
80.60
0.30
8.98
117177.31
76891.75
1.52
13411.85
90303.56
0.15
300.51
1 2 762 80. OC
777790.19
1.65
167996.56
940286.75
0.18
949.68
3008.48
3119.44
0.96
-36.99
3082.45
-0.01
55.52
71.94
99.83
0.72
-9.30
90.53
-0.10
9.51
NO
EMISSION
LBS.
O.OOOOOS
0.000002
2.272647
0.000001
0.000003
0.297859
0.001796
0.000003
0.000002
1.523269
0.000000
0.000002
0.148518
0.001501
0.005320
1.652596
0.001157
0.006478
0. 178666
0.080484
C. 000030
0.000031
0.964444
-0.000000
0.000031
-0.011994
0.005552
0.000000
0.000000
0.720664
-o.oooooo
o.oooooo
-n. 102677
0.000637
0.010349
0.005843
1.771775
0.001507
0.007345
0.704513
0.085701
0.000057
0.000014
1.669597
0.000008
C. 000042
n. 182477
0. 006466
n-e
-------
ENGINE SUMMARY
SIMPLE NUMBER • 3.
10380
IfSI
MODE
? MEAN:
STn OEV:
6 MEAN:
STO nEV:
7 , MEAN:
STD OEV:
9 ME IN:
STO nEV:
10 MEAN:
STD OEV:
TOTAL FOR CYCLE
TOTAL FOR r.YCLF/LB
ENGINE SUMMARY
TFST
tone
? MEAN:
STO nEV:
6 MFAN:
STO nEV:
7 MEAN:
STO OEV:
1 MEAN:
STO OFV:
10 MF4N:
STD OEV:
TOTAL FOB CYCLE
TOTAL FtlP CYCLE/L9
ENGINE SUMMARY
TFST
"OOF
J MEAN:
SM OEV
ti MF^f^
ST'l DEV
1 MF3N
sn OEV
9 "CAN
STn nEV
10 TIES'*
STn TFV:
THTAL FOR CYCLE
TOTAL F0» r.Yf.LF/LB
MODEL SUMMARY
TFSr
MOOF
2 VF1N:
srn IIFV;
6 MFAN:
srn OEV:
7 KF4N:
Stn OEV:
9 MF*N:
STO OEV:
10 »EAN:
srn OEV:
TOTAl FOR CVCLF
TOTAL FOR CTCLE/LB
MEASURED
FllFL FLOM
LB/HP.
6.20
0.01
13.77
1.16
75. 40
6.83
27.77
1.33
8.60
0.61
MEAN:
STD OEV:
FUFL
SAMPLE
MFASUREO
FUEL FLOW
LB/HR
15.21
0.18
55.10
1 .04
41.10
o.o
21.10
0.01
14.10
0.02
MEAN:
STn OFV:
FUEL
SAMPLE
MEASURED
FUEL FLP.M
L1/H'<
18.17
1.70
15. 71
3.15
66.ni
1.74
25.40
1 .81
18.77
1 .15
MEAN:
STD OFV:
FUFL
SAMPLF
MEASU*EO
FU^L FLOW
LB/HK
11.13
4.6?
11.51
1 1 .13
M .78
14.81
27.01
1.71
13. B2
4.46
"FAN:
STO OEV:
FUEL
FUEL
USFD
L«.
1.64
0.00
0.47
0.01
6.36
0.73
2.76
0.13
0.58
0.05
11.720
0.653
NUMBER a
FUEL
IISFD
LOS.
1.05
0.20
0.2B
0.01
1.64
0.0
2.91
0.0
0.14
0.00
10.721
0.111
NUMBER =
FUEL
USEO
LBS.
3.67
0.36
0.48
0.02
5.48
0.11
'.54
0. 18
1.76
0.08
11.410
0.4J7
NUMBER =
FUEL
IJSFO
LBS.
7.71
0.12
n.'. 1
0.10
5. 13
l.?l
2.71
0.17
0.13
0.10
1 1.157
1.253
CO
LB/1K
LB FUEL
1035.79
10. 80
1164.18
70.78
1142.87
84.90
983.83
19.30
1034.28
2.5. 53
1.
CO
LB/IK
LB FUEL
151.45
103.27
160.81
36.44
861.55
201.38
843.61
185.65
1142.04
74.7|
3.
CO
LR/IK
LB FUFL
533.56
120. ill
857.60
137. OP
670.11
57.15
677.01
M.K4
486.77
31.88
1.
CO
LB/IK
LH FUFL
840.76
250.25
114.70
156.67
811.61
216.67
834.84
166. 42
887.70
307.26
CO
LB/1K
HOURS
B493.46
744.51
109204.94
7806.82
86632. 88
16551. 70
27313.77
1285.04
8105.66
131.51
MEAN:
STP DEV:
CO
Lfl/lK
HOURS
14438.82
116.06
52164.81
2116.06
37877.21
1117.01
23707.77
5216.71
16102.73
1053.31
MEAN:
STD OEV:
CO
LB/IK
HHUHS
9664.88
1244.10
H22"6.94
1 T> 1 1 1 . 7 3
44407.48
6403.52
17215.75
7503.25
1157.. 81
1057.13
MCAN:
STO Rfv:
cn
LP/1K
HOURS
108*5. 71
2865.74
FU4Pq.44
25845.50
56217.51
75011.37
27745.76
5331.34
11187.07
3646.08
MFAN:
STO "EV:
CO
EMISSION
LBS.
1.699
0.141
0.546
0.039
7.191
1.374
2.731
0.128
0.597
0.062
12.763
1.370
1.087
0.058
cn
EMISSION
LBS.
2.88B
0.111
0.265
0.015
3.131
0.763
2.371
0.577
1.071
0.071
1.741
1.253
0.910
0.111
r.o
EMISSION
LBS.
1.111
0.249
0.41 1
0.07<,
1.6H6
0.531
1.727
0.750
0.611
0.071
8.165
0.264
1.67!
1.014
CO
EMISSION
LOS.
2. 171
5.571
0.4C7
0.129
4.677
2.077
2.775
0.533
0. 161
0.244
10.210
2.167
0.871
0.216
HC
LB/1K
LB FUEL
212.46
120.53
17.97
1.03
16.92
0.71
20.05
1.57
271.61
72.41
MC
LB/1K
Lfl FUEL
83.51
42.99
17.10
0.86
16.71
3. 68
18.82
2.71
110.65
62.1?
HC
LB/1K
13 FUEL
16.26
46.47
21.14
1. 17
14.97
1.07
24.11
5.12
137.43
48.71
HC
LK/1K
LB FUEL
177.41
11.79
71.14
6.07
Id. 16
2. 18
21.26
4. 11
1 75.81
15.21
MC
LB/1K
HOURS
1742.14
988.33
1684.97
89.88
1279. B9
206.38
557.12
54.47
2374.64
470.11
HC
LB/U
HOURS
1267.08
661.18
196.60
61. 6B
731.54
161.56
S2H.U2
78.37
1S60.15
887.15
HC
LB/IK
HOURS
1540. 74
716.16
216H.S7
,?0(..lf
1*].h?
PB.OI
M7.I1
161.18
7564.71
841.42
HC
1 B/IK
HOURS
1519.12
711. 10
1846.71
B32. 16
91H .35
774.71
574. 3R
IDA. 64
2166.50
801.73
HC
FMTSSIO'J
LBS.
0.3484
0.1977
0.0084
0.0004
0.1062
0.0171
0.0557
0.0054
0.1511
0.0316
0.678
0.239
0.057
0.017
HC
EMISSION
LBS.
0.2534
0.1138
O.OH41
n.onoi
0.0601
II.OI34
0.0521
0.0078
0.1045
0.0594
0.477
0.1 fl5
0.045
0.018
HC
E.MISSIIIN
LBS.
n.irl7
II. 14 '3
n . o I '• i
n. onin
».1!M5
0.0073
0.0637
^.0161
0. 17U
0.0564
0.641
0.111
'1.04H
n. noi
HC
EMISSION
1 BS.
(1.3039
0. 1462
n.00"7
r>.0"42
0.0871
0.0778
0.0574
0.0109
0. 1462
O.C537
n.5nl
0. 1 H6
O.OSO
0.014
NO
LI1K
LB FUEL
0.80
0.86
2.49
1.00
2.73
1.17
5.22
0.47
1.09
0.84
NT
LB/1K
LB FUEL
O.H7
H.24
4.14
l.OZ
1.9S
8.74
7.46
4 .00
0. 16
I). 11
NJ
LB/U
LO FUFI
t .4H
n. 64
1 1 . '. 7
6. 15
14.55
1.16
6.71
1. 18
1.32
O.H6
\{l
L?/ 1 K
ii CUEL
1 .06
0.64
6.17
5.10
1.11
6.16
.6.46
7.35
n.12
0.61
NO
LB/U
HOURS
6.54
7.07
233.28
92.34
199.36
69.70
145.01
15.76
9.78
8.23
NO
LB/1K
HOURS
13.36
4.40
271.36
52.03
416.61
383.71
201.57
1 12.44
5.04
4.64
\n
LI/IK
HfJURS
27.92
11. SI
1712. l>4
511 .64
956. 71
88.66
1 70.74
H.71
74.69
0.60
"!1
LB/IC.
Hnms
15.9'.
12.15
691.16
601 .05
510.91
190.59
1 75.1 1
66.26
11. 17
10.06
NO
EMISSION
LBS.
0.0013
0.0014
0.0012
0.0005
0.0165
0.0058
0.0145
0.0016
0.0007
0.0006.
0.0342
0.0091
0.0030
0.0001
NO
EMISSION
LBS.
0.0027
0.0009
0.0014
0.0001
0.0162
0.0118
0.0210
0.01 12
0.0003
0.0003
0.0616
0.041 1
0.0057
0.0038
"g(l
EMISSION
1 IS.
O.OOS6
0.0027
0.0065
0.0010
0.0714
0.0074
0.0171
0.0039
0.001 7
0.0000
0.1 102
U.0050
'':.noe^
n.noo4
NO
F MIS SUN
LBS.
0.0032
0.0026
c.o^in
O.OOl'l
C.0441
0.0124
0.0175
0. 0066
0.0001
0. 0007
0.0686
0.0395
0.0056
0.0030
n-9
-------
ANALYSIS OF VARIANCE
WITHIN DEGREES OF FREEDOM -
BF.TWEFN DEGREES OF FREEDOM .
10-360
TEST
MODE
2
6
1
10
TOTAL
TOTSL
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB. >
R INTRA:
SIC COMB.:
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB.:
R INTRA:
SIC COMB.:
MS WITHIN!
F RATIO:
VAB. AMONG:
VAR. COMB.:
R INTRA:
SIC COMB.:
MS AMONG:
MS WITHIN:
f RATIO:
VAD. AMONG:
VAR. COMB. :
R INTRA:
SIG COMB.:
MS AMONG:
MS WITHIN:
F RATIO:
VAP. AMONG:
VAR. COMB.:
R INTRA:
SIG COMB.:
FOR CYCLE
V
V
•=rm CTCLE/LB
MEASURED
FUEL FLOW
LB/HR
81.32
1.39
58.55
26.64
28.03
0.95
5.79
1 5 75 »0l
4.55
3*6.35
523.49
528.04
0.19
22.98
784 .95
30.6B
25.59
251.42
28?. in
0.89
16. BO
6.50
1.71
3.81
1 .60
3.31
0.48
1.8?
77.69
0.60
129.21
25.70
26.30
0.98
5.13
MS AMONG:
MS WITHIN:
f RATIO:
AR. AMONG:
AR . COMB. :
R INTRA:
SIO COMB. :
FUEL
FUEL
USED
LBS.
3.25
0.06
58.55
1.07
1.12
0.95
1.06
0.04
0.00
346.68
0.01
0.01
0.99
0.11
0.21
25.58
1.73
1.94
0.99
1.39
0.07
0.02
3.81
0.02
0.03
0.4B
0.18
0.35
0.00
129.25
O.I?
0.12
0.98
0.34
5.633
0.215
26. 174
1.806
2.021
0.494
1.422
CO CO
LB/1K LB/1K
LB FUEL HOURS
216993. HI 2975560C.OO
II16B.23 1031440.00
19.43 28.85
68608.50 9574T20.00
79776.69 10606160.00
0.86 0.90
282.45 3256.71
8370.66 99429024.00
8.72 23.87
21544. U75B0812BO.OO
29914.77857510144.00
0.72 O.B8
172.96 29283.27
18135.66133152336.00
9.34 15.80
50442.60657088256.00
68578.25790240512.00
0.74 0.83
261.87 28111.2?
70785.00 71560766.00
11332.83 11710634.00
5.11 6.71
19150.72 22283376.00
32483.55 33994000.00
0.59 0.66
180.23 5810.44
370386.75 50080240.00
2416.74 1031768.00
153.26 48.54
122656.63 16)49488.00
125073.31 173612*6.00
0.98 0.94
151.66 4169.08
fS AMONG:
MS WITHIN
F RATIO
VAO. AMONG
VAR. COMB.
« INTRA
SIG CO"*.
CO
EMISSION
LBS.
1.1902
0.0413
28.8498
0.3830
0.4242
0.9028
0.6513
0. 0593
0.0025
21.8701
0.0190
0.0214
0.8840
0.1464
1 4« 4974
0.9173
15.8047
4.5267
5.4440
0.8315
2.3332
0.7856
0.1171
6.7089
0.2228
0.3399
0.6555
0.5830
0.2248
0.0046
4B.5323
0.0734
0.0780
0.9406
0.2.793
15. 1850
1.1770
12.9563
4.6710
5.8430
0.7994
2.4172
0.1646
0.0071
23.1601
0.0525
0.0596
0.8903
0.2441
HC
IB/IK
IB. FUEL
16280.68
6176.75
2.64
3367.98
9544.73
0.35
97.70
144. 12
1.02
141.53
47.70
48.72
0.98
6.98
3 * 83
5.06
0.76
-0.41
4.65
-0.09
2.16
31.14
12.15
2.56
6.33
18.48
0.34
4.10
24739.46
3844.50
6.44
6964.98
10809.48
0.64
103.97
HC
LB/1K
HOURS.
171210.50
655609.81
0.26
-161466.44
494141.38
-0.33
, 702.95
2715234.00
18239.33
148.87
89B99B.OP
9172.17.31
0.98
957.73
224507. 50
25480.16
8.81
66342.44
91822.56
0.72
101.02
9478.34
12576.55
0.75
-1032.74
11543.81
-0.09
107.44
854131.00
572259.63
1.49
94024.44
666284.06
0.14
816.26
HC
EMISSION
LBS.
0. 006848
0.026224
0.26114?
-0.006459
0.019766
-0.326763
0. 140590
0. 000068
0. 000000
148.899307
0.000022
0.000023
0.980119
0.004789
0> 00 1547
0.000176
8.810695
0.000457
0.000631
0.722497
0.025151
0.000095
0.000126
0.753571
-0.000010
0.0001 15
-0. 089*94
0.010744
0.001835
0.002569
1.49?9IO
0.00042?
0.00?991
P. 141116
0.054689
0.034451
P. 034413
1 .000590
0.000007
0.014419
0.000197
0. 1855T9
P.OOCI1I
0.000221
1.5S712A
-C. 000011
P. 000192
-0.1595H9
0.011861
NO
LB/U
L8 FUEL
0.42
0.40
1.05
0.01
0.41
0.02
0.64
99 • 60
13.78
7.50
28.77
42.06
0.68
6.48
1 06. 40
27.20
3.91
26.40
53.60
0.49
7.32
1.90
6.04
0.65
-O.M
5.33
-0.13
2.31
0.76
0.27
2.78
0.16
0.43
0.17
0.66
NO
LB/ IK
HOURS
357.61
84.10
4.25
91.17
175.27
0.52
13.24
1 083770. 00
120424.88
9.00
321115.00
441539.08
0.73
664.48
4502 74 .50
53322.00
8.44
137317.50
185639.50
0.71
430.86
3168.46
4797.52
0.66
-543.02
4254.50
-0. 13
65.21
315.35
29. U4
10.57
95.17
125.01
0.76
11.18
NO
EMISSION
LBS.
0.000014
0.000003
4.252012
0.000004
0.000007
0.520154
0.007648
0. 000027
0.000003
8.999516
0.000008
0.000011
0.727261
0.003322
0*000167
8.444407
0.000912
0.001279
0.712765
0.015761
0.000012
0.000048
0.660456
-0.000005
0.000041
-0.127626
0.006523
0.000001
0.000000
10.568154
0.000000
0.000001
0.761101
0.000749
0.004446
0.000600
7.407304
0.001282
0.001882
0.681099
0.0433B3
0.000021
0.000005
4.103150
0.000005
0.000010
0.508466
0.001207
n-io
-------
ENGINE SUMMARY
SAMPLE NUMBER
10470
TEST
MODE
7
6
7
9
10
TOTAL FOR
TOTAL FOR
MEASURED
FUEL FLOW
LB/HR
MEAN: ' 14.63
STD DEV: 10.34
MEAN: 92.57
STO DEVI 22.38
MEANl 75.57
STD OEV: 12.67
MEAN: 42.77
STO OEV: 8.65
MEAN: 17.60
STD DEVI 14.37
CYCLE MEAN:
STD OEV:
CYCLE/LB FUEL
ENGINE SUMMARY SAMPLF
TFST
MnoF
*
6
7
g
in
TOTAL FOR
TOTAL FOK
MEASURED
FUEL FLOW
LB/HR
MEAN: 29.10
STD OEV: 0.07
MEAN: 113.47
STO nEV: 2.37
MEAN: 84.20
STO OEV: 1.5?
MFAN: 61.73
STn nF.V: 7.71
MEAN: 29.10
STn DFV: 0.0
CYCLF MEAN:
STD f)Ev:
CYCLE/LB FUEL
ENGINE SUMMARY SAMPLF
TEST
"Olf
2
*
7
9
10
TOTAL f">
TOTAL TOO
MFASIIRFI!
FUEL FLOW
LB/HR
MEAN: 25. SO
STn IIFV i .04
MEAN 100.00
STO DEV 13.71
MEAN B4.40
ST1 1EV 9.26
MEAN 60.97
STO REV 2.02
MEAN 74.60
STD OFV 0.01
CYCLE MFAN:
STn OEV:
CYCLE/LB FUEL
FUEL
USED
LBS.
2.93
2.07
0.46
0.11
6.27
1.05
4.28
0.86
1.18
0.96
15.117
4.643
NUMBER •
FUEL
USED
LHS.
5.96
0.01
0.57
0.01
6.99
0.29
6.17
0.27
1 .96
0.00
71.55?
0.427
NUMBFP *
FIJCL
USED
L"S.
5. 16
0.21
0.54
1.07
7.01
1.11
6.10
1.20
1.6-1
r.o
70. -.55
1.12?
CO
Lfl/lK
LB FUEL
842.97
75.98
920.88
60.51
858.31
IT. 68
937.68
9.06
887.40
75.78
3.
CO
LB/IK
LB FUFL
815.85
43.04
906.26
40.26
949.68
21.00
1021.73
43.35
850.31
41.15
1.
CO
LB/1R
LB FUEL
504.66
77.10
675.67
14.01
617.64
24.66
919.64
27.74
f67. B7
144.62
CO
LB/IK
HOURS
12504.01
9440.61
95344.31
71901.66
64866.38
11109.76
40075.46
7915.59
15811.97
12747.98
MEAN:
STD OF.v:
CO
LB/IK
HOURS
23904.31
1261.21
102854.94
5714.49
71495.25
1574.19
63066.19
3699.18
24913.94
1711.94
MFAN:
STD OEV:
CO
LB/IK
HOIJPS
13030.21
2060.54
73699.50
10027.91)
590IR.O?
C51H.38
57257.41
1110.77
1557.69
« AN:
STO OFv:
CO
EMISSION
LBS.
2.501
1.888
0.427
0.110
5.384
0.922
4.008
0.792
1.059
0.854
13.378
4.245
0.883
0.008
CO
EMISSION
LBS.
4.711
0.252
0.514
0.029
5.914
0.131
6.307
0.37J
1.669
0.081
19.205
0.337
0.101
1.016
CO
F11SSIT)
LUS.
2.606
0.414
0.16.1
0.051
4. BOH
0.707
oil"
1 .?(>•.
0.21R
14. P64
1 .606
0.775
0.042
HC
LB/IK
LB FUEL
202.55
7U26
17.54
1.36
14.36
1.27
20.31
1.34
314.17
38.32
HC
LB/IK
LB FUEL
II 1.71
21.54
41.72
11.21
27.89
11. 5B
24.91
1.08
159.31
18.74
HC
Ltl/IK
L° FUFL
30.5*
1 1.70
27.00
4.52
14.7"
n.5fl
16.91
1.11
122.41
69.40
HC
LB/IK
HOURS
3171.07
2961.78
1611.04
141.4?
1085.21
216.62
861.93
113.81
5607.93
4978.27
HC
LB/IK
HOURS
3271.13
631.75
4724.40
1241.88
7341.16
960.46
1539.41
132.15
4668.39
1135.04
HC
Lfl/lK
iinups
787. 84
?72.I2
7380. 71
I 7 01.2 ••
180. 9P
1011.51
60. IP
1011.74
7 19-1. 7 H
HC
EMISSION
L8S.
0.6342
0.5924
0.0081
0.001T
0.0901
0.0180
0.0862
0.0114
0.3757
0.1135
1.194
0.947
0.077
0.015
HC
EMISSION
LBS.
0.6546
1.1764
0.0216
0.0062
0.1945
0.0797
1.1539
0.01 12
0.1128
0.0760
1.339
0.109
0.06?
0.006
HC
F-MSSI'JN
LCS.
0. 1566
0.0544
0.0140
0. 0043
1. 1004
0.0151
0.101?
0. 0066
'1.701!
0. 1474
0.577
0.277
0.078
O.CIO
NO
Lfl/lK
LB FUEL
0.37
0.26
5.42
1.12
7.72
4.87
0.13
0.33
0.03
N'l
Lrt/lK.
LB FUEL
0.48
0.41
2.24
0.93
2.05
1.13
1.59
0.17
0.83
0.40
L '-' / 1 K
LB FUEL
1.91
1.58
10.04
6.06
3.17
3.75
4.15
3.21
LSI
0.14
NO
LB/IK
HOURS
4.34
2.39
485.60
45.10
583.72
100.90
208.51
46.28
. 6.01
5.21
NO
L3/1K
HOURS
14.06
12.00
253.72
91 .50
170.77
92.71
98.51
56.17
74.25
11.58
NT
L » / 1 K
4 fl . 2 6
I'.dB
'III:"-,
674. 54
716. >>7
751. ?fl
20.70
70.46
9.47
NO
EMISSION
LBS.
0.0009
0.0005
0.0024
0.0002
0.048*
0.0084
0.0209
0.0046
0.0004
0.0003
0.0730
0.0126
0.0050
0.0007
NO
EMISSION
LBS.
0.0029
0.0024
0.0013
0.0005
0.0142
0.0077
0.0009
0.3056
0.0016
0.0008
0.0797
0.0134
0.0014
0.0006
NO
F-ISSION
LOS.
0.0197
0. 0076
0.0055
0.0034
0.0567
1.0180
1.0751
0.1070
0.0014
C.0106
0.1980
0.0149
0.0048
1.0009
n-ii
-------
ENGINE SUMMARY
SIMPLE NUMBER • 3.
10-470.
TFST
MODE
2 ME IN:
STf) OEV:
6 MEAN i
sro OF.V:
T MEAN:
sro OEV:
9 MEAN:
STO OEV:
10 M«rg:
sin OEV.
TOTAL FOR CYCLE
TOTAL FOR CYCLE/LB
MODEL SUMMARY
TEST
MODE
2 MEAN
sin (lev
ft MF&N
SID nEV
7 MFAN
sn OEV
V MFAN
STD DEV
Itl MFftN
STO OEV
TPTAL FOR CYCLE
TOTAL FOR CYCLE/LI
MEASURED
FUF.L FLOW
LB/HR
16.40
1.0*
103.7}
6.3H
76.80
4.43
50.40
1.04
15.23
0.98
MEAN:
STO DEV.
FUEL
SAMPLE
MEASUREO
FUEL FLOH
LP/MK
?1 .53
7.H4
104.69
14.07
80.24
a. 29
53.97
9.13
21 .68
8.47
"FAN:
Sin CFV:
FIIFL
FUEL
USED
LBS.
3.28
0.21
P. 52
0.0}
6.37
0.37
5.04
0.10
1.02
0.07
16.234
0.600
NUM1FR •
FUFL
USED
LBS.
4.31
1.57
0.5?
0.07
6.66
0.69
5.40
0.91
1.45
0.57
11.340
1.511
CO
LB/IK
LB FUEL
732. 81
226.34
700.1}
17.85
764.13
41.5}
965.58
17.96
781.58
745.93
12.
CO
LB/IK
LB FUEL
7?.4.07
I7'i.94
800.73
123.41
792.44
72.97
965.91
42.73
821.79
137. Of.
CO
IB/IK
HOURS
12095.20
4091.06
72558.88
2894.19
58562.81
514.00
48675.35
1807.36
11817. }6
3464.06
MEON:
STD DEV:
CO
LB/1K
HOURS
15383.42
6R43.81
83614.44
16579.38
63485.63
8136.49
52267.35
9956.34
17R59.21
7697.96
MFAN :
STD OFV:
CO
EMISSION
LBS.
2.419
0.818
0.363
0.014
4.861
0.042
4.868
0.181
0.792
0.232
13.302
1.239
0.818
0.053
CO
EMISSION
LBS.
3.077
1.369
0.418
0.083
5.269
0.675
5.227
0.99fi
1.196
0.516
15.187
3.71S
0.83T
0.075
HC
LB/1K
LB FUEL
62.77
29.03
37.26
0.77
15.85
0.85
15.94
1.15
157.33
67.44
HC
LB/1K
Lfl FUEL
101.89
76.02
3C.8B
11.09
18. 10
7.76
19.52
3.80
18S.3I
93.81
HC
LB/IK
HOURS
1034.06
480.84
3863.89
215.00
1214.47
6.24
802.45
44.22
23H7.75
1044.92
HC
LB/IK
HOUR S
2065.28
i ras. en
J295.03
1375. 73
1463.02
683.24
1058.81
311. 65
1018.95
2759.??
HC
EMISSION
LBS.
0.706"
0.0962
0.0193
0.00 11
o.iooa
0.0005
0.0807
0.0044
0. 1600
0.0700
0.567
0.161
0.035
0.009
HC
FM1SSIUN
LBS.
0.4111
0.1574
0.0165
0.0069
0.1714
0.0567
0.1059
0.0114
0.2626
0. 1840
0.919
0.560
0.049
0.025
NT
LH/1H
Lfl FUEL
1.03
0.36
9.75
0.73
5.66
1.78
3.00
0.21
0.59
0.42
Nfl
LX/1K
L5 FUEL
0.9S
Q.96
'..86
4. 11
s.on
1.02
1.40
1.15
n.^'4
0.36
Nn
LHMK
iinuRS
16.61
5.76
1014.95
139.26
439.47
161.80
151.21
10.42
9.16
6.80
NO
LH/1K
HOURS
20.87
24.10
712.99
477.19
467. f,2
217.77
177.98
69. L"
14.47
10.66
NO
EMISSION
LBS.
0.0034
0.0012
0.0051
0.0007
0.0365
0.0134
0.0151
0.0010
0.0006
0.0005
0.0607
0.0145
0.0037
0.0008
NO
EMISSION
LBS.
0.0042
0.0049
0.0036
0.0024
0.0388
0.0197
0.0178
0.0069
0.0010
0.0007
0.0651
0.02H1
0.0037
n.ooif,
n-i2
-------
analysis OF VARIANCE
WITHIN DEGPEES OF FRFFOOM
BETWEEN DEGREES OF FREFDON •= 9
10-470
TFST
MODE
?
6
7
9
10
TCUAL
MS AMONG:
»s WITHIN:
r RATIO:
VAR. AMONG:
VAR. COMB.:
R INTRl:
SIC conn. :
MS AMONG t
MS WITHIN:
F RATIOI
VAR. AMONG!
VAR. COMB.:
R INTRA:
SIT, COM3.:
MS AMONG:
MS WITHIN:
t RATIO:
VA«. AMONG:
v»o. COM8.:
R INTRA:
SIG CPUS.:
MS AMONG:
MS WITHIN:
F RATIO:
YAK. AMONG:
VAO. COMB.:
R INTRA:
Sf. COMB.:
MS HHONG:
us WITHIN:
F RATIO:
VAR. AMONG:
VA». CO.MB.:
R INTRA:
Sir. COMO.:
FnR CYCLE
. MEASURED
FUEL FLOW
LB/HR
152.49
21.21
5.59
41.74
64.01
0.60
8.31
243.48
181.0?
1.35
20.112
201 .1)4
n. 10
14.21
66.70
61.60
0.96
-0.97
66.63
-0.01
6.28
247.50
71.63
11.34
75.22
17.06
0.7R
0.85
124. BO
51 .69
2.41
24.30
76. 19
0.32
R.T3
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAP. r.OMfl.:
TCTAL
rOP CYCLF/LR
K INTRA:
SIG COMB.:
FUH
FUEL
USED
LBS.
6.10
1.09
5.59
1.67
2.76
0.60
1.66
0.01
0.00
1.35
0.00
0.01
0.10
0.07
0.46
0.48
0.96
-0.01
0.47
-0.01
0.69
2.47
0.2?
11.33
1.75
0.97
0.76
0.19
0.56
1.23
7.41
n. n
0.34
1.1?
0.56
71.613
5.340
5.170
7.974
13.765
0.5T6
1.710
CO CO
LB/1K LB/1K
LB FUEL HOURS
70776.50 97247904.00
16020.55 27933888.00
4.42 3.48
18251.98 23104672.00
34272.53 51036560.00
0.53 0.45
185.13 7144.13
51335.66593696000.00
1689.36155318272.00
30.39 3.82
16548.76146125904.00
18236.14301444096.00
0.91 0.48
135.05 17162.14
17409.00110254752.00
793.63 49682944.00
21.94 2.72
5536.46 20190592.00
6332.08 69K7J536.00
0.87 0.79
79.57 6359.04
4660.33303009792.00
763.25 22673408.30
6.11 13.36
1299.03 93445456.00
2062.781161 18664.00
0.63 0.60
45.41 10775.15
9645.66 91525792.00
27713.00 47156528.00
0.43 1.94
-4119.11 14769066.00
1H023.89 61947616.00
-0.23 0.24
134.25 7P70.68
MS AMONG
MS WITHIN
F PATIO
VAR. AMONG
VAO. criMI.
K INTRA
SIG COMR.
CO
EMISSION
LBS.
3.6899
1.1173
3.4814
0.9242
2.0415
0.4527
1.4288
0.0146
0.0039
3.8223
0.0037
0.0075
0.4847
0.0866
0.7595
0.3473
2.2190
0.1391
0.4813
0.2889
0.6938
1.0300
0.7268
1 3.3616
0.9344
1. 1612
0.8047
1.0776
0.4109
0.2117
1.9406
0.0664
0.2781
0.2387
0.5273
23.0743
5.5626
4.1481
5.0177
1 1.3996
0.5170
1.3764
0.0177
0.0012
14.5543
0.0055
O.O067
O.R1R3
I.OfllH
HC
LB/1K
LB FUEL
16651.57
1677.72
10.15
5074.61
6702.14
0.76
81.87
351.20
37.54
9.36
104.55
142.10
0.74
11.97
129.56
34.20
3.79
31.79
65.93
0.46
8.12
49.24
1.39
15. 95
17.34
0.9?
4.16
21979.98
3877.57
5.67
6034. 13
991 1.7.1
0.61
91.56
HC
LB/IK
HOURS
5369749.00
2369122.00
2.27
1006375.63
3375997.00
0.30
1837.39
5301266.00
614402.36
8.63
1562283.00
2176690.00
0.72
1475.36
1043554.31
250549.13
4.17
264335.06
514684.19
0.51
717.55
336222.63
9167. 88
109011.56
116199.44
0.9?
343.80
6531893.00
8000050.00
0.82
-472719.00
7527331.00
-0.06
2743.60
HC
EMISSION
LBS.
0.215590
0.094765
2.274994
0.040275
0.135040
0.29P245
0.367478
0.000131
0.000015
8.628284
0.000039
0.000054
0.717734
0.007377
0.007181
0.001726
4. 165133
0.001021
0.003547
0.513392
0.059557
0.003362
0.000092
0.001090
0.001182
0.922276
0.03431)0
0. 02 9546
0.035912
0.872773
-0.00212?
0.031790
-0.062304
0.183821
0.413464
0.245328
7..007355
0.087545
0.128373
O.?il 177
0.573019
0.001345
0.000355
3.785263
0.000130
O.OC06H5
0.4R144I
0.0261 76
NO
LB/IK
L8 FUEL
1.41
0.72
2.08
0.76
0.97
0.26
0.99
41.93
9.61
4.27
10.71
20.52
0.52
4.51
23.40
1.79
6.19
6.54
10.32
0.63
3.21
6.15
0.21.
1.99
2. 19
0.90
1.43
0. 17
O.I 1
1.52
0.0?
i.n
0.15
1.16
NO
LB/ IK
HOURS
1085.94
404.44
2.61
227.17
611.61
0.36
25.13
502668.31
124847.50
4.03
125940.25
250787.75
0.50
500.79
146040.19
22969.55
6.36
41021.54
61111.09
0.64
752.17
13014.64
1451. RR
4060.1?
5512.80
0.74
74.75
730.21
69. B4
1.10
51.46
173.30
0.43
11.10
NO
EMISSION
LBS.
0.000041
0.000016
2.665072
0.000009
0.000025
0.359668
0.005026
0.000013
0.000003
4.026246
0.000003
0.000006
0.502178
0.002504
0.001006
0.000158
6.357885
0.000261
0.000441
0.641058
0.020996
0.000116
0.000015
0.000041
0.000055
0.716627
0.007425
0.000001
0.000000
3.296195
0.000000
0.000001
0.431577
0.000744
0.007415
0.000193
12.514117
C. 000741
0.000114
0.791105
0.030557
n. 000008
o.onoooi
1 1. 1*0770
0.000003
0.000003
1.R75081
0.001756
n-ia
-------
ENGINE SUMMARY
SAMPLE NUMBER
TSI0-620
TFST
MODE
2 HEtN:
•SID DEV:
6 MFAN:
srn OEV:
T MEAN!
STn OEVI
9 MFAN:
sin OEV:
10 MFAN:
srn nEv:
TOTAL FOR CYCLE
TOTAL FOR CYCLE/LB
ENGINE SUMMARY
IFST
MnDF
? MFAN:
STn nev;
6 «FAN:
srn nsv:
7 MFAN:
srn DEV:
9 MFAN:
srn OEV:
in MTMN:
srn OEV:
rOT/IU FOR CYCLE
inr«L Fnn CYCLE/LH
MODEL SUMMARY
'tsi
2 MF ^N
srn DFV
sru ntv
7 ME AN
s rn nf v
1 TIN
srn nFv
11 MEAN
srn nEv
TOTAL FnR CYCLE
mr»L FDR CYCLF/LS
MEASURED
FUEL FLOW
IB/HR
34.00
1.04
114.30
I0.<)8
9*. 93
9.30
58.60
1.04
38.67
1.75
MEAN:
srn DEV:
FUEL
SAMPLE
MEASURED
FUEL FLOW
LH/HR
21.70
2.08
128.90
1.05
1 14.07
0.99
5R.03
1 .75
19.90
1.04
MFAN:
STP nEv:
FUEL
SAMPLF
"EASURtO
CUEL FL'IU
L"/HR
7 7 . 8 5
t .90
I 2 1 . 60
1C-. 61
134.90
17.42
•>6.12
1 .31
?".2H
10.36
MCAN :
ST" nEv:
F'lEL
FUEL
USFO
LHS.
6.80
0.21
0.57
0.05
7.88
0.77
5.86
0.10
2.59
0.1?
23.702
0.599
NUMBER =
FUEL
USED
LBS.
4.34
0.42
0.64
o.ni
9.51
n.o8
S.BO
O.IR
1.33
0.07
71.655
O.S32
NUMBER =
FUEL
'js F. n
L1S.
"i . b 7
1.3H
".05
9.71
5.«3
0.13
Lift
0. SO
22.^.78
1 .210
CO
LB/1K
LB FUEL
611.83
.97.31
361.29
119.85
611.38
109.62
B65.85
20.80
841.46
20.10
1.
CO
LB/1K
L9 FUEL
593.74
342.8?
566.93
40.75
93R.30
5?.?3
1?01.95
9.54
190.22
10. «6
6.
CC
LB niFL
602 . 7H
7?5.60
I3U. 19
774. «4
1041.90
173.74
910. fl4
77.37
CO
LB/1K
HOURS
20751.02
2857.?.*
42171.25
18276.23
58599.35
14088.43
51896.56
367.65
1?545.61
1934.02
MEAN:
STD OEV:
cn
L8/IK
HOURS
13321.50
H791.34
73101.50
5774.70
107813.44
6948.15
69743. 3R
1636.70
19500.45
B 5 5 . H 1
MFAN :
srn OFV:
cn
HiJIIRS
6879.21
20831 .44
B3206.18
60*19. IH
9817. S3
26073.01
7769.27
MFAN :
srn ntv:
CO
EMISSION
LBS.
4.150
0.571
0.211
0.091
4.864
1.236
5.190
0.037
2.181
0.130
16.595
1 .579
0.699
0.049
CO
EMISSION
LBS.
2.664
I.I.5R
0. 166
0.029
8.949
0.577
6.974
0.164
1.307
0.057
20.259
2.268
0.934
1.0R2
C'l
LBS.
1.376
0. 104
6. 90S
6. OP?
0.48'i
1.744
H.487
18.477
7.650
3.81 f
1.147
HC
LB/1K
LB FUEL
49.68
15.73
9.95
0.71
9.90
0.92
13.88
0.39
41.16
10.13
HC
L3/1K
LB FUEL
12C.76
68. 5B
12.39
1.16
12.87
1.06
18.17
0.74
106.65
7.06
HC
L« FUCL
•i>i.-n
1.11
11.1"
16. "2
2. '.I
73.11
36.71
HC
LB/1K
HOURS
1679.14
476.30
1142.4?
189.38
945.27
171.98
813.08
24.94
1591.2?
413.76
HC
LB/1K
HOURS
2713.55
165B.55
1661 .96
147.95
1478.22
125.92
1054.48
45. R3
2126.88
749. 39
HC
unufs
L'79.66
127.67
1711. 74
"31.7R
1 16. 71
1D60.05
422.94
HC
EMISSION
LBS.
0.3358
0.0953
0.0057
0.0009
0.0785
0.0143
0.0813
0.0025
0.1067
0.0277
0.608
0.087
0.026
0.003
HC.
FMISSinN
LBS.
0.5477
0.3317
O.OOfll
0.00"7
0.1227
0.0105
0. 1054
0.0046
0. 1475
0.0167
0.127
0.312
0.04?
0.014
HC
l.«S.
3. 2459
0.0016
0. 1116
C.TJT,
C. 0116
1.1746
1.0761.
0.765
0.277
0.014
0.013
N'l
LI/IK
LB FUEL
0.87
0. 13
33.26
10.24
10.46
5.65
3.14
0.42
1.10
0.25
\0
Li!M<
LB FUEL
1.17
0.78
1 1.09
3.79
3.6H
0. 77
0.92
0.07
0.64
n. 15
M'l
LB H/EL
1.14
10. RO
7.07
>.?!
1.75
Ci.fl
0.30
NO
LO/1K
HOURS
29.45
4.27
1730.56
995.40
969.61
465.88
184.4?
73.16
42.56
9.63
NO
L'l/lK
HOURS
8.29
6.66
2 111.06
475. 6C
422. 1 1
35.21
5.1 . 6 8
5.11
li.74
0 .H5
MO
H"U«
17.67
999. HC
695 . H6
1 19.05
'1.97
27.65
I I , '< '•
NO
EMISSION
LBS.
0.0059
0.0009
0.0187
0.0045
0.0805
0.0387
0.0184
0.0028
0.0029
0.0006
0.1263
0.0438
0.0053
0.0019
NO
EMISSION
LBS.
0.001 7
0.0013
0.0117
0.0024
0.0150
0.1071
0.0054
0.0006
0.0001
0.0001
0.0546
0.0084
0.0025
0.0004
tin
LRS.
0.0038
0.0025
1.0157
0.0050
0.1578
0.01 11
0.007'.
O.OOl'l
".0017
0.0104
0.04R4
0.00 39
0. 0070
n-i4
-------
ANALYSIS OF VAX IANCF
K1THIN OEGRF.ES OF FRFEOOM •
BETWEEN DEGREES IF FRF.F.OOM =
TSIO-520
TFSI
MODE
2
9
10
TOTAL
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAO. COMB.:
R INTRA:
SIC COMB.:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMA.:
R INTRA:
SIC COMB.:
MS AMONG:
MS WITHIN:
F RATIO:
V Afl . AMONG :
R INTRA:
SIG coin.:
«S AMONG:
MS UITHIN:
VA». AMONG:
VAR. COMH.:
R INTRA:
SIG COM1. :
MS 1MONG:
«S WITHIN:
f RATIO :
VAR. AMONG:
VAR. C.OMH. :
x INTRA:
Sir, CO*1*.:
FOR CYCLF,
MEASURFD
FUEL FLOW
LB/HR
226.93
2.70
8*. 05
74. It,
77.44
0.97
B.BO
3 1 9 • 70
60. Bl
5.26
86.29
147.11
0.99
12.13
595 • 9fl
43.72
13.61
1 84 .09
227 . Bl
0.81
15.09
0.50
2.07
0 • 24
-0.52
1.55
-0.31
1.24
52B.28
7.0J
254.94
175.40
177.47
0.99
n.32
MS AMONG:
MS WITHIN:
F RATIO:
VAU. AMONG:
TOTAL
V
FOR CYCLE/LB
AR . COMB.:
< INTRA:
sir, COM?.:
^UFL
FUEL
USED
LBS.
9.08
0.11
84.04
2.99
1. 10
0.97
1.76
0.01
0.00
5.26
0.00
0.00
0.59
0.06
4.11
O.JO
11.63
1.27
1 . 57
0.81
1.25
0.00
0.02
0.22
-0.01
0.02
-0.35
0.12
2. J7
0.01
254.95
0.79
O.RO
0.99
0.99
b.280
0.121
1 •> . 5 7 7
1.996
2.107
0.961
1.519
CO . CO
LB/1K LB/1K
LB FUEL HOURS
491.00 62797024.00
(.3497.00 38455040.00
0.01 2.15
-21002.00 1478092B.OO
42495.00 53235968.00
-0.49 0.28
206.14 7296.30
8012.67183681024.00
7.92 7.81
18473.65417113344.00
26486.22600794368.00
0.70 0.69
162.75 24511.11
7372.25134972416.00
21.75 26.92
0.87 0.90
241.57 36069.31
1498B 7. 004777656 32. 00
CO
EMISSION
LBS.
3.3119
1.53B2
2.1531
0.5912
2.1294
0.2777
1.4593
0. 0359
0.0046
7.8125
0.0104
0.0150
0.6943
0.1226
25.0281
0.9299
26.9158
H. 032 7
H. 9626
0.8963
2.993B
4.7776
261.75 1406976.00 0.0141
572.63 319.57338.0127
49875. 081587R620B. 00 1.5878
50136.83160193184.00
0.99 0.99
223.91 12656.75
28886.00255265536.00
261.00 2236416.00
1.6019
0.9912
1.2657
1.1459
0.0100
110.67 114.14114.2132
9541.66 84343C40.00
9802.66 96579456.00
0.97 0.97
99.01 9304. HI
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMR. :
0 INTRA:
SIG COM3.:
0.3786
0.3887
0.9742
0.6734
20.1109
1.7408
5.3836
5.4660
9.706H
0.5937
1.0343
0.0827
0.0046
I 7.9090
0.0260
0.0306
O.B491
0.1750
HC
IB/ IK
LB FUEL
7578.95
2467.51
3.07
1703. Bl
4171.32
0.41
64.59
12. 99
0.93
14.03
4.02
4.95
0.81
2.22
13.20
0.98
13.42
4.07
5. 06
0.81
2.75
27.71
0.15
9. 12
9.47
0.96
1.0>l
6414.27
76.20
84.4'.
2119.16
2195.55
0.97
46.96
MC
. LB/1K
HOURS
1604972.00
1488825.00
l.OB
38715.66
1527540.00
0.03
1235.94
2fl177i75
14.02
125340.38
1S42I8.I3
0.81
392.71
4? 60S 7 • OP
22716.50
IB. 76
114446.81
1571 63 .31
0.86
396.44
B7411.00
1361.25
28683.25
30144.50
0.95
173.33
427161.00
116697.25
1.66
101488.56
220185.81
0.47
469.24
HC
EMISSION
LBS.
0.064200
0.059553
1.078032
0.001549
0.061102
0.025351
0.24718R
0. 0000 10
0.000001
14.020529
0.000003
0.000004
0.812740
0.001964
0.002935
0.000156
18. 756561
0.000926
0. 001 08 1
O.B55467
0.032904
0.000874
0.000014
0.000787
0.000300
0.954679
0.017333
0.001918
0.000524
3.660565
0.000465
0.000988
0.470018
0.011430
0.14/576
0.05H9JO
2.503410
(1.029532
0. OH 84 6?
0. 333138
0.2°T425
0.000419
0.000109
1.8121 ""2
0.000101
0. 000213
1.49560R
•1. 01.4588
NO
LB/1K
Lfl FUEL
0.37
0.05
7.76
0.11
0.16
0.69
0.40
345.21
59.61
5.79
95.20
154.61
0.61
17.44
69 . 04
16.74
4.25
17. SO
33.94
0.52
5.8T
7.18
0.09
79.51
2. 43
2.52
0.96
1.59
0.32
0.03
4.46
1.10
O.I)
0.74
0.36
NO
Lfl/ 1«
HOURS
671.48
31. 28
21.46
213.40
244.68
0.87
15.64
2942082 .00
513967.50
5.72
809171.31
1123338. OC
0.61
1150.16
4^9631 .19
117151.19
4.01
1 1 2494 . 00
224645 .19
0.50
473.97
25641 .03
419.68
61.10
9407.12
9976. RO
0.95
91.95
1333.69
46.77
21.51
42R.97
475. 74
0.90
21. '1
NO
EMISSION
LAS.
0.000027
0.000001
21.464127
0.000009
0.000010
0.872145
0.003I2B
0.000013
5.724347
0.000020
0.000013
0.611617
0.005752
0. 003097
0.000771
4.009113
0. 0007 75
0 • 00 1 548
0.500760
0.039139
0.000256
0.000004
0.000084
O.OOOOBfl
0.9524S7
0.009195
0.000006
0.000000
28.514496
0.000002
0. (100002
0.90I6B6
0.001461
0.007722
0.000995
7.757502
0.002242
0.00171R
0.697544
0.056199
0.000012
C. "00007
6.357212
'i.coonoi
O.OOOOC5
0.640815
0.0077H1
n-i5
-------
ENGINE SUMMARY
SAMPLE NUMBER
10-640
TEST
MP.OF
2 MF.4N:
STD OEV:
6 MEAN:
STD OEV:
7 NE4N:
STO DEV:
9 MEAN:
STD OFV:
10 Mf.tN:
srn DEV:
TOTAL FOR CYCLE
TOTAL FHR CYCLF/LB
ENGINE SUMMARY
TFST
HOOF
2 MFSN:
STO DEV:
6 "EAN:
STO OEV:
7 MFAN:
STD PFV:
9 MEAN:
STO nEV:
10 XftH:
STO OEV:
TOTAL FOB CYCLE
TOTAL FOR CYCLF/LB
ENGINE SUMMARY
T^ST
«*noF
? **FAN
ft MFAN
ST1 DFV
7 >1EAN
STD ncv
0 MF \N
STH PEV
in r^M
ST'l DEV
TOTAL F0» CYCI F
MODEL SUMMARY
TCST
NtllF
SIO OFV:
ft MEAN:
S Tl) DE v :
7 M^AN:
ST'1 OEV:
0 VFAN:
srn MFV :
10 MUM:
sn DFV:
TOTAL COR CYCLE
TOTAL rni> CYCLE/LI
«£»SUREI)
FUEL FLOW
LB/HR
19.35
2.47
128.90
16.55
10B.40
4.10
55.10
11.60
16.40
1.70
MEAN:
STO oev:
FUEL
SAMPLE
MEASURFO
FUEL FLOW
LO/HR
24.65
2. 47
137.10
17.40
loo. no
O.P
57.10
ft. 22
23.75
1.20
MEAN:
sin OFV:
FUFL
SAMPLE
MEASUHI '1
FUEL FLOW
L1/HK
17.30
00 .5S
26.09
50.95
P. 47
26.4"
o.n
1 1 .40
1.27
"FA-J:
STO DFV:
SAMPLE
IC.ASUKEO
rnci rLDH
ft. 1 r
118.85
27.10
39.<.«j
70.90
4ft. 20
1 ft . 4*1
17. ID
5. ftft
MFAN:
STD OFV:
FUFL
FUEL
USED
LBS.
3.87
0.49
0.64
0.08
9.00
0.34
5.51
1.16
t.10
0. 11
20.120
1.164
NUMBFR *
FUEL
USED
L1S.
4.91
0.40
0.69
0.09
9.05
0.02
5.71
1.62
1.59
O.OB
21.964
1 .111
NimER =
FUFL
USEO
L'lS.
7 .4(.
0.4^
o.n
4. ?3
0.21
2.'j4
'1. 0
1. 76
0. on
11.545
1 .100
NU'-'TT* =
FUFL
USFD
1 .23
O.'sO
0.14
'.42
2.4(1
4.S2
1.65
1.15
n. \f.
17. '541
5 .593
CO
LB/IK
IB FUEL
901.58
193.12
1723.09
49.95
1233.68
81.91
1195.06"
7B.27
1120.59
11.48
2.
CO
L«/1K
Lfl FUFL
831 .H7
35.03
1177.41
37.71
1156.28
41.03
1151.43
34.87
1044.66
14.93
2.
cn
LB/IK
13 FUEL
936.54
1390.68
15. iO
1391. B7
7.35
I37H.19
•1.31
l?05. 70
173.58
6.
Cll
L«/ IK
112.15
1266.73
108.79
1261.27
115. S7
1241 .56
11*. 10
1123.65
108.70
CO
Lfl/lK
HOURS
17206. 68
150S.53
158061.56
26546.96
133B9B.13
13929. 3B
66301.56
18171.27
18404.36
2417.91
MEAN:
STD OFV:
CO
LB/IK
HOURS
20548.39
2922.15
161094.06
15309.52
126034.06
4571.41
65855.44
9157.37
24801.64
901.27
NFAN:
STD ofv:
cn
LB/IK
HOURS
12IR1.60
5117.63
126940.94
37909.41
71026.75
3825.57
3ft3P4 . 71
77S.27
I3C5-I.41
3570.44
ME AN :
STD IFV:
cn
LH/K
464S.53
148ft99.81
1 11310. ftj
11178.75
56180.45
178"*?.31
19021.54
529'. 16
MEAN:
STD OEV:
CO
EMISSION
LBS.
3.441
0.101
0.790
0.133
11.114
. 1.156
6.630
1.817
1.233 .
0.162
23.208
2.643
1.153
0.019
CO
EMISSION
LBS.
4.110
0.584
O.B05
0.077
10.461
0.380
• 6.586
0.916
1.662
0.060
23.623
1 .863
1.075
0.030
cn
F>iissin«<
L«S.
2.436
1.024
0.635
0.190
5.895
0.313
3.63"
1.022
n.921
0.239
13.531
1.113
1.284
1.01 •>
n
r^issnN
0.929
0. 741
9.1S7
?.'-0'.
5. Ml
1 . 7° 3
1.274
0.355
20.122
5.331
1.170
0.096
HC
LB/IK
LB FUEL
134.16
96.64
18.53
2.09
17.93
2.10
20.57
4.43
202.09
24.50
HC
LB/IK
LB FUEL
35.01
14. H2
14.95
0.81
15.50
1.22
18.96
0.26
97. 70
54.03
HC
LH/1K
LB FUEL
224.70
25.51
0.86
27.01
0.21
31.29
I. OH
155. 7ft
157.71
MC
LP/1K
9ft. 70
19.64
20. 1R
5. SI
24.24
7.34
1 51. B1!
18.ft9
HC
LB/IK
HOURS
2715.62
2201.97
2405.70
576.23
1939.30
153.61
1107.96
5.39
32«3.*4
58.92
HC
LB/IK
HOURS
831.32
451 .97
2028.97
146.76
1699.50
131.37
1076.26
102.48
2352.80
1400.7ft
HC
LB/1H
HOURS
2678.43
2300.51
588.5ft
1176.21
77.10
879.71
23.57
1675.10
1590.50
HC
L3/IK
140H.78
2245.0ft
lr>71 .ftK
271.C 3
1020.99
1 20 . Po
244'). SI
1197.14
HC
EMISSION
LBS.
0.5431
0.4404
0.0120
0.0029
0.1610
0.0128
0.110B
0.0005
0. 2Z07
0.0039
1.048
0.414
0.051
0.017
HC
EMISSION
LBS.
0. 1761
0.0904
0.0101
0.0007
0.1411
0.01 11
0. 1076
0.0102
0. 1576
0.0939
0.593
O.I 83
0.027
0.007
HC
F»ISSION
LHS.
0.5157
0.01 15
T. 0029
0. 1142
0.0064
0. 0*79
0.0020
1. 1127
0. 1072
".962
0.024
0 . 0 ° 2
0.005
Hr
F'lSSiriM
L HS .
1.2118
n.Ol 12
0. I197
1.0225
0. 1021
0.11 "* I
0. 1615
n.o«i2
O.P14
0. 70*,
0.051
0.02ft
NO
L8/IK
LB FIJCL
0.82
0.48
0.94
0.56
0.68
0.57
0.86
0.73
0.16
0.03
NO
LB/IK
LB FUEL
1 .09
0.08
0.88
0.11
1.09
0.1»
1.05
0.06
0.72
0.00
NO
LU/1K
L8 FUEL
1.46
1.75
0.11
1.19
1.12
0. IB
0.11
C. l«
0.15
N'l
Lrt/ 1 K
L ** '"(IE L
1.16
O.ftO
(1.65
0.43
0. 71
1.52
i. 15
1.26
ND
LVIK
HOURS
16.55
11.42
116.53
56.17
72.69
59.47
43.06
30.52
2.64
0.80
NO
LB/IK
HOURS
26.80
0.68
121.28
11.65
118.13
10.44
50.73
2.90
17.10
0.05
N1
L»/m
HOURS
5 .H7
3 . 18
21.18
7.4ft
9. no
1.38
4. 19
0.15
7.14
O.HI
tn
L-V IK
HO' ln S
n. "
pf.CC
*ft . Oft
'16.21
IS.Cft
7.20
7.63
NO
EMISSION
LBS.
0.0013
0.0023
0.0006
0.0003
0.0060
0.0049
0.0043
0.0031
0.0002
0.0001
0.0144
0.0060
0.0007
0.0004
NO
EMISSION
LBS.
0.0054
0.0001
C.0006
0.0007
0.0098
0.0017
0.0060
0.0003
0.0011
0.0001
0.0229
0.0011
0.0010
0.0001
NT
E-ISSION
L«S.
0.0012
0.0007
0.0001
0.0000
0.0003
o.oooo
0.0005
0.0000
1.01(11
r. 0001
0.002:
0.0003
P. 0001
NT
EMISSION
L * S .
O.C022
C.0004
0.015ft
0.0047
1.0016
0.0105
0.1005
0.01 33
0. 0105
0.0007
0.0014
-------
ANALYSIS Of VARIANCE
WITHIN OFGRFES OF FRFEDOM •
BETWEEN DEGREES OF FRFEOOM
10-540
TEST
MTOF
2
6
7
9
10
TOTAL
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB.:
R INTRA:
SIG COMB.:
MS AMONG:
MS hITHIN:
r RATIO:
VAP. AMONG:
VAB. COMB.:
R INTRA:
SIG COM3.:
MS AMONG :
MS WITHIN:
F RATIO:
VAR. AMONG:
R INTRA:
SIG COMB. :
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMH.:
R INTRA:
sir. COMB. :
MS AMONG:
IS WITHIN:
f RATIO:
VAP. AMONG:
VAR. COM3.!
» INTRA:
SIG r.RM9.:
FOR CYCLE
MEASURED
FUEL FLOW
LB/HR
76.77
12.25
6.27
12.26
44.51
0.72
6.67
1214.14
411. (IB
2.15
407.11
827.01
0.41
28.76
7221.56
7.65
210.82
1107. 16
1115. 60
0.11
31.40
510.07
57.71
10.22
266.17
371.10
0.8?
IB. 00
77. IB
1.18
18.15
17.61
11.58
0.15
6.21
MS AMONG:
MS 41 THIN:
F RATIO:
VAR. AMONG:
TOTAL
V
FOX CYC.LF/LR
AR. CHMi.:
R INTRA:
SIG COMB. :
FUEL
FUEL
USED
LRS.
1.07
0.41
6.27
1.21
1.78
0.72
1.33
0.03
0.01
2.15
0.01
1.02
0.41
0.14
1 5 • 3 ^>
0.05
281.17
7.61
7.61
0.11
2.77
5.10
0.58
10.72
2.66
1.24
1.R2
1 .BO
1.15
0.01
16.15
1.17
0.16
0.15
0.42
75.152
2.011
I'.OIl
36.561
3-1. 511
n.147
6.212
CO CO
LR/1K LB/IK
LB FUEL HOURS
12002.00 15471040.00
12161.66 12131161.00
C.13 2.88
-471.8) 11573584.00
12481.83 23105440.00
-0.04 0.48
111.72 4881.12
27563.00714715136.00
1350.67712081664.00
20.41 0.10
11106. 16-31683264.00
14456.8375)318272.00
0.11 -0.05
120.24 27448.10
2835.00 76520016.00
10.16 10.67
0.82 0.14
126.10 34806.71
28156.00587132672.00
2470.13138034512.00
11.72 4.26
13742.6)224148112.00
15713.16162163424.00
0.84 0.62
125.35 11052.11
12186.00 60446464.00
11015.33 6468664.00
1.18 1.34
175. 33 26168600.00
12010.66 31457664.00
0.08 0.81
101.51 5784.26
MS AMONG:
MS WITHIN:
f RATIO:
VAI7. AMONG:
VAR. COMB.:
H INTRA:
Sir, CHMR. :
CO
EMISSION
LBS.
1.4111
0.4113
2.6770
0.4621
0.1562
0.484]
0.1771
0.0171
0.0118
0.1023
-0.0010
0.0188
-0.0514
0.1372
16. 167 1
0.527)
10.6610
7.8 111
0.1168
2.8812
5.8715
1.3803
4.2515
2.2416
3.6211
0.6117
1.1052
0.271 1
0.0210
1.1440
0.1212
0.1502
0.8067
0.1875
65.1178
1.8182
16.7751
.10.6418
14.5481
0.8877
5.8779
0.0724
0.0005
41.1111
0.010'*
1.0115
0.1541
0.1070
HC
LB/IK
LB FUEL
18003.42
1582.83
5.02
7210.21
10713.17
0.67
101.61
56.85
1.12
10.60
28.47
)0.)1
0.14
5.51
72.72
1.18
)6.71
35.37
37 35
0.15
6.11
124.16
6.15
17.86
58.60
65.56
0.81
B. 10
5471.41
1461.67
0.58
-1116.01
7467.58
-0.27
86.42
HC
LB/U
HOURS
21185)1.00
1842067.00
1.11
178216.00
2020101.00
0.01
1421.17
75565.50
211124.31
0.12
-78871.18
154444.14
-0.51
112.11
151681 .00
15786.00
10.12
7 195 \ • 50
R77 37 SO
0.82
216.21
10864.00
1782.11
8.16
11541.83
17121.16
0.78
111.62
1 120720.00
1508016.01
0.88
-11688.00
1414408.00
-0.07
1181.21
HC
EMISSION
LBS.
O.OB7142
0.071661
1.11)507
0.007120
0.08061)
0.086211
0.284275
0.000002
0.000006
0.3 '40 15
-0.000002
0.000004
-0.510557
0.001165
o. ooi i no
0.000101
10.11)787
0. 0004 16
0.820041
0.024564
0.000101
0.0000)8
B. 150410
0.000135
0.000171
0.781645
0.01)161
0.005171
0.006770
0. 875755
-0.000421
0.006)41
-0.066217
1.0716B?
0. I045B1
0.074082
1.411701
0.01 5750
0.081311
0.170711
0.298BB3
0.011577
0.010119
17.1BOB55
n. 010715
0.010B22
'l. B56147
C.TH677
NCI
LB/IK
LB FUEL
0.70
0.08
2.42
0.06
0.14
0.42
0.18
0.21
1.11
2.62
0.01
0.20
0.45
0.44
0.12
1.21
0.14
0 76
0.51
1.51
0.42
0.1B
2.10
0.12
0.11
0.10
0.55
0.21
o.on
164.10
0.11
0.10
0.11
0.32
NO
LB/IK
HOURS
211.02
47.42
4.62
B5.80
113.22
0.64
11.54
6120.61
1447.61
4.23
2136.46
)784.15
0.67
61.52
51)) . 1 6
1111.11
4.52
2110. 12
1677 .71
0.64
60. 18
158*. 96
J11.15
5.06
6)6. 61
150.15
0.67
30. H2
144.33
0.74
115.47
71 .81
72.54
0.11
8.52
NO
EMISSION
LBS.
0.000001
0.000002
4.618177
0.00000)
0.000005
0.644063
0.002108
0.000000
0.000000
4.227806
0.000000
0.000000
0.617410
0.000108
0 >00004 1
0.000001
4.524550
0 .000025
0.617180
0.004115
0.000016
0.000001
5.064548
0.000106
0.000010
C. 670214
0.001082
0.000001
0.000000
115.452114
0.000000
0.000000
0.161B11
0.000571
0.000205
0.000011
15.801781
0.000016
0.000101
O.BH1077
0.010445
0.000000
0. 000000
6. 155216
0.000000
n. oonoo
1.770484
0.000420
-------
ENGINE SUMMARY
SAMPLE NUMBER
0-640
TEST
MODE
2 MEAN:
STD OEV:
6 MEAN:
STO OEV:
7 MEAN:
STO OEV:
9 MEAN:
STO DEV:
10 MEAN:
STO OEV:
TOTAL F0« CYCLE
TOTAL FOR CYCLF/LB
ENGINE SUMMMARY
TEST
MOOF
2 MEAN:
STD DEV
6 MEAN
STO OEV
7 MEAN
STC DEV
9 ME \H
STO OEV
10 MF.4N
STO OEV
tfllAL E0» CYC.LF
TOTAL Fno CYCLF/LP
MODEL SUMMARY
TFS1
MODE
2 ME AN :
srn OEV:
6 MEAN:
SID OEV:
7 MEAN:
STT OFV:
1 r«FAN:
STn IEV:
10 •'FM:
srn OEV:
TMTAL Fri* CYCIF
TQ1AL F'm CYCLF/L"
MEASURED
FUEL FLOW
LB/HR
25.80
1.04
111.17
7.70
87.90
3.50
57.41
0.9D
26.40
0.0
MEAN:
STO OEV:
FUEL
SAMPLE
MEASURED
FUEL FLOW
LB/HR
24.01
0.91
1 10.70
1.05
100.71
16.77
51.90
3.65
1.65
MEAN:
STO DFV:
FUEL
SAMPLF
FUFL FLOW
LB/Mk
1 .3?
1 10.71
1 .04
44 .07
12.77
55.67
1.01
7.31
sn DEV:
FUFl.
FUEL
USED
LBS.
5.16
0.21
0.56
0.01
7.10
0.29
5. 74
1.10
1.77
0.00
20.525
0.24B
NUMBER •
FUEL
USED
LHS.
4.81
0.20
0.55
0.01
3.37
1. 19
5.39
0.37
1.73
0.24
20.796
1 .775
NUM1ER =
FUEL
USED
L1S.
0.26
".55
1.11
7.. 11
I.H6
5.57
1.11
1 . 75
0.16
70..S60
1 . 1 ', 3
CO
LB/1K
Lfl FUEL
860.94
sa.ie
960.04
6.75
794.40
113.93
1115.75
268.05
933.48
11.20
3.
CC
LI/IK
LB FUEL
641.05
57.73
929.09
143.65
857.69
219.39
897.35
51.72
628.62
108. m
6.
CC
L-J/IK
LI FUEL
111.12
944.56
97. S7
826.04
170.66
1 OK,. 55
P11..15
781.05
180. 76
cn
LB/1K
HOURS
222*7.91
2305.61
106904.63
1879.48
70082.81
12596.95
64188.58
16118.71
24643.81
797.81
MEAN:
STD OFV:
CO
LX/1K
HOURS
15471.49
1741.54
102340.00
15464.11
18606.81
35801.30
48249.71
1 174.81
15951.12
910.96
."FAN:
STD DFV:
C1
n/iK
HOURS
4162.11
104677. i 1
10164.41
79344. P 1
7.6105.00
61.719. 14
11447.1 1,
70311.16
4797.75
STD OEV:
CO
EMISSION
LBS.
4.450
0.461
0.535
0.009
S.8I7
I. 046
6.419
1.612
I. 651
0.020
18.871
0.831
0.919
0.040
CO
EMISSION
LBS.
3.084
0.350
0.512
.0.077
7.354
2.971
4.325
0.117
1.069
0.062
16.845
3.053
0.805
O.OS2
C1
LBS.
0.831
0.521
1.051
7.167
5.62?
1.144
1.3')
1 7.35-1
7.7"!
•Ko'f's
HC
LB/1K
LB FUEL
51.20
4.19
21.50
4.28
17.51
1.44
26.55
10.83
60.59
2.66
HC
1 0/l<
LB FUFL
47.22
31.99
26.07
25.11
21.09
17.94
74. 58
18.36
43.40
32.35
HC
L" FlIFL
20.52
21.76
16.34
19.11
II. 65
25.57
11.52
•i 2 . 0.^
27.59
HC
LO/1K
HOURS
1123.92
158.86
2392.43
463.56
1535.76
65.15
1528.89
631.98
1599.64
70.22
HC
LB/1K
HOURS
1141.67
800.47
2376.39
2795.91
2245.49
2081.99
1368.45
II 14.50
1057.96
"680.19
HC
L"/ IK
HOIJOS
1211.77
5?6.'5C
7614.41
Mil. 9?
1390.67
1174. 7fl
817.74
1 17«.nn
524.51
HC
EMISSION
LBS.
0.2648
0.0318
0.0120
0.0023
0.1275
0.0054
0.1529
0.0639
0.1072
0.0047
0.664
0.084
0.032
0.004
HC
EMISSION
L1S.
0.7787
0.1601
0.0144
0.0140
0. 1164
0.1710
0.1168
0. 1114
0.0709
0.0456
0.617
0.5"!
0.010
0.072
HC
El IS. S 1 IN
L"S.
0.7461
0. 1051
O.CI32
O.ll'.l
?. 1449
O.C1I7
O.C190
0.0151
0.661
O.!71
1.031
(1.014
NO
IB/IK
L6 FUEL
0.59
0.19
6.25
0.90
21.07
19.04
1.8'.
0.85
0.35
Nf)
LB/K
LH FUEL
0.9-1
0.74
4.08
0.11
17.51
17.94
4.16
0.55
1.4)
0. 60
Nl
L1/K
L« CLITL
1. 7H
1. 2*
•j. 1 S
l.'l
14 .61
l.'l
1. V,
NO
LB/1K
HOURS
15.06
4.24
696.69
114.55
1809.73
1580.05
219.47
161.89
22.47
9.18
NO
LB/U
HOU«S
21.61
6.19
449.40
40.59
1711 .02
1357.18
225. 55
41.91
1H.46
21 .67
Ml
HHUHS
19.11
(,.67
573."',
155.74
1 T60. 3 I
1 1 1 P . ', 5
777.51
106.15
?n. 44
17.27
NO
EMISSION
LBS.
0.0010
0.0008
0.0035
0.0004
0.1502
0.1311
0.0219
0.0162
0.0015
0.0006
0.1802
0.1153
0.0088
0.0057
NO
EMISSION
L8S.
0.0047
0.0012
0.0022
0.0002
0.1470
0.1126
0.0226
0.0044
0.0076
0.0015
0.1741
0.11P1
0.01114
0.0052
N'J
EMISSION
1 US.
0. CC34
0.01U
o.oooi
0.1461
0. 1094
O.OZ21
') . 0 1 06
1. 0020
0.1012
O.I 771
1. IT I 7
1.00', 0
n-i8
-------
ANALYSIS OF VARIANCE
WITHIN DEGREES OF FREEDOM »
BETWEEN OEGHF.ES Of FRFFDOM •
O-640
TFSf
MODE
2 MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. conn.!
R INTRA:
SIG COMB.:
f> MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COMB.:
» 1 NT RA :
SIG CCIM1.:
T MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. COM3.:
R INTRA:
Sir, COMB.:
9 MS AMHNG :
MS WITHIN:
f RATIO:
VAR. AMONG:
VAR. COMB.:
R INTRA:
Sir, COMB.:
10 HS AMONG:
MS WITHIN:
F RATIO:
VAF. AMONG:
V A°. COMB. :
R INTRA:
SIG r.OMI. :
TOTAL FOP CYCLE
MEASURED
FUFL FLOW
LB/HR
4.68
1.02
4.58
1.2?
2.24
0.54
1.50
I.Ik
4.20
0.47
-0.74
1.45
-0.22
1.1)6
228.15
146.70
1.56
27.15
173.85
0.16
11.10
18.74
7.15
2.62
3.86
11.01
0.35
1.32
0.54
6.67
0.05
-2.04
4.62
-0.44
2.15
MS AMONG:
MS WITHIN:
F RATIO:
VAR. AMONG:
VAR. cti»n.:
TOTAL Fni CYCLF/LB
R INTPA:
SIC. COMB.:
FUFL
FUEL
USED
LBS.
0.19
0.04
4. 51
O.H5
1.09
0.54
0.30
0.00
0.00
0.48
. -0.00
0.00
-0.21
1.01
1.57
I. SI
1.5*
0.19
1.20
0.16
1 .09
0.19
1.07
2.62
0.04
1.11
0.15
0.17
0.00
0.03
0.08
-0.01
0.02
-0.44
0.14
0. 1 10
l.f>06
1.168
-1.499
1.107
-0.450
1.152
CO
CO
LB/1K LB/1K
L8 FUEL HOURS
72533.
3358.
21.
23058.
26416.
0.
162.
1440.
10139.
0.
-2966.
7373.
-0.
85.
6008.
14914.
n.
-9M2.
25272.
-0.
158.
71553.
37263.
1.
11430.
48693.
0.
220.
139416.
59B9.
23.
44475.
50465.
0.
?24.
00 69901312.00
75 4186624.00
60 16.70
08 21904896.00
83 26091520.00
87 0.84
53 5107.98
00 31236096.00
75171336832.00
14 0.26
58-30013568.00
16 91313264.00
40 -0.33
87 9555.27
00514695168.00
50723165184.00
17 0.71
16-69490000.00
34653675008.00
38 -0.11
97 25567.07
00181071360.01
00130596864.01
92 2.92
00 83491438.00
00214088352.00
23 0.39
66 14631.76
30113157170.00
50 477696.00
29 216. as;
50 3755980B.OO
00 38037504.00
aa 0.99
64 6157.46
"S AMONG:
MS Wl THIN :
VAR. AMONG:
VAR. COMB.:
R INTPl:
SIG COM8.:
CO
EMISSION
IBS.
2.7961
0.1674
16.6986
0.8762
1.0437
0.8396
1.0216
0.0008
0.0030
0.2573
-0.0008
0.0023
-0.3290
0.0471
3.5458
4.9819
0.7117
-0.4787
4.5032
-0.1061
2.1221
3.8107
1.3061
2. 9178
0.8149
2.1409
0.3900
1.4632
0.5080
0.0021
'37.2011
0. 16H6
0.1707
0.9875
0.4132
6. 1599
5. 0217
1.2267
0.3794
5.401 1
1.0702
2.3240
0.0195
0.1142
0.0051
0.0091
0.5495
0.0965
HC
LB/LK
LB FUEL
23.75
520.53
0.05
-165.59
354.94
-0.47
18.84
30.67
326. IB
0.09
HC
LB/1K
HOURS
48764.00
332990.25
0.15
-94742.06
238248.19
-0.40
488.11
351328.00
4015988.00
0.09
-98.50-1221553.00
227.67
-C.43
15.09
19.18
161.99
0.12
-47.60
114.39
-0.42
10.70
5. 81
227.11
0.03
-73. 73
153.40
-0.48
1 2. 39
443.32
526.84
0.84
-27. B4
499.00
-0.06
22.34
2794435.00
-0.44
1671.66
755584.00
2171632.00
0.35
-47?682.63
1700949.00
-0.28
1304.20
38607.00
875201.75
0.05
-262198.25
561003.50
-0.47
751.34
441141.00
233931.75
1.88
63736.18
302663.13
0.23
550.15
HC
EMISSION
LAS.
0.001951
0.013320
0. 146447
-0.003790
0.009530
-0.397658
0.097621
0.000009
0.000100
0.087491
-0.000031
0.000070
-0.417132
0.018558
0.005205
0.014974
0.347612
-0.013256
0.011718
-0.277894
0. 108249
0.010386
1.018252
0.046791
-O.OC2622
0.005630
-0.465709
0.075011
0.001976
0.101050
l.BH 1470
0.000119
0.001159
0.277097
0.035»61
0.011099
0. 128911
0.018521
-0.047601
0.086100
-1.493635
1.291769
0.101009
1.000249
0.1361 35
-O.OOOOHO
0.0001 69
-0.4731KO
0.012996
NO
LB/1K
Lfl FUEL
0.23
0.15
4.85
0.06
0.11
0.56
0.33
7.06
0.46
15.27
2.20
2.66
0.83
1.63
18.79
764.93
0.07
-82.05
192.SK
-0.45
13.52
1. 16
4.15
0.04
-1.13
2.32
-1.47
1.69
1.51
0.24
2.11
0.09
0. 13
0.77
0.5D
NO
LB/IK
HOURS
109.47
28.16
3.89
27.10
55.26
0.49
7.41
91730.44
7384.89
12.42
28115.16
15501.05
. 0.79
188.41
14607.00
2169252.00
0.01
-718215.00
1451137.01
-0.49
1204.59
55.50
14071 .08
0.00
-4671.86
9399.22
-0.50
96.95
381.60
277.08
1.38
15.51
312. 5fl
O.I 1
17.63
NO
EMISSION
LBS.
0.000004
0.000001
1.887541
0.000001
0.000002
0.490449
0.001487
0.000002
0.000000
12.421752
0.000001
0.000001
0.79I9BI
0.000942
0.000101
0.014944
0.006735
-0.004948
0.009996
-0.494965
0.099981
0.000001
0.000141
0.003927
-0.000047
0.000094
-0.497061
0.009695
0.000002
0.000001
1.334472
0.000000
0.010001
0.113599
H. 001185
0.000055
1.017782
0.004300
-0.004247
0.008539
-0.496782
0.092409
0.000000
0.110130
-0.000010
0.000020
-0.495128
0.004455
n-i9
-------
APPENDIX 111
ANALYSIS OF REPLICATE TESTS OF
TURBINE/TURBOPROP ENGINES
CONTENTS:
MI-2 JT3D EXPERIMENTAL ENGINE TESTED BY PRATT & WHITNEY
111-3 JT8D EXPERIMENTAL ENGINE TESTED BY PRATT & WHITNEY
111-4 JT9D EXPERIMENTAL ENGINE TESTED BY PRATT & WHITNEY
IM-5 JT3C ENGINE, SERIAL NUMBER 631329, TESTED BY SOUTHWEST
RESEARCH INSTITUTE
III-6 CJ805 ENGINE, SERIAL NUMBER 161302, TESTED BY
SOUTHWEST RESEARCH INSTITUTE
III-7 CJ805 ENGINE, SERIAL NUMBER 161108, TESTED BY
SOUTHWEST RESEARCH INSTITUTE
III-8 CJ805 ENGINE, SERIAL NUMBER TW2220, TESTED BY
SOUTHWEST RESEARCH INSTITUTE
MI-9 JT8D ENGINE, SERIAL NUMBER 665244, TESTED BY SWRI
111-10 JT8D ENGINE, SERIAL NUMBER 665165, TESTED BY SWRI
111-11 JT8D ENGINE, SERIAL NUMBER 674250, TESTED BY SWRI
MI-12 JT8D ENGINE, SERIAL NUMBER 674379, TESTED BY SWRI
111-13 JT8D ENGINE, SERIAL NUMBER 649185, TESTED BY SWRI
m-i
-------
MODEL JT30 PCW EXP.
SIMPLE NUMBER
NODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
NODE
TAXI-IOLF
TAKEOFF
CLINHOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLF
TAKEOFF
CLI>*SOUT
APPROACH
TAXI-IOLE
EMISSION
RATE
LB/HR
MEAN 91.612
STD OEV 41.30*
MEAN 17.087
STO OEV 10.155
MEAN 12.200
STO OEV 2.721
MEAN 35.009
STO DEV 4.506
MEAN 91.812
STO OEV 41.304
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 98. 318
STD OEV 29.232
MEAN 5.460
STO OEV 4.726
MEAN 4.482
STD OEV 4.628
MEAN 5.946
STD OEV 2.605
MEAN 98.398
Srn DEV 79.232
TOTAL FOR CYCLF
LBS POLLUTANT/IK LB
L9S POLLUTANT/IK LB
LBS POLLUTANT/IOUQK
EMISSION
PATE
LB/HR
MEAN 1.822
SfD DEV 0.716
1EAN 105.894
STD OEV 5.216
MFAN 123.124
STO OEV 6.143
MFAN 26.939
STD OEV 0.535
MEAN 1.822
srn OEV o. 716
TOTAL FOR CYCLE
L'iS POLLUTANT/IK LB
L1S POLLUTANT/IK LR
IRS POLLUTANT/1000K
FUEL
RATE
LB/HR
891.147
242.312
12267.809
414.665
10104.746
265.472
4635.438
142.511
891.147
242.312
FUEL/CYCLE
TH-HR/CYCLE
L8 TH-HR AT
FUEL
RATE
LB/HR
891.147
242.312
12267.809
414.665
10104. 746
265.972
4635.438
142.511
B91. 147
242.112
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
L9/HR
891. 147
Z42.1I2
12267.809
414.665
10104. 746
265.972
4635.438
147.511
891. 147
242.312
FUEL/CYCLF
TH-HR/CYCLE
LD TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STD DEV:
T.O. MEAN:
STD DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
STO OEV:
T 1 ME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
o.n
4.00
o.c
7.00
0.0
MEAN:
STO OEV.
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
STD DEV:
CO
MASS
LBS.
29.07*
13.079
0.199
0.121
0.4*7
0.100
2.33*
0.300
10.711
4.819
42.766
17.847
34.712
11.871
22.338
9.322
0.949
O.S75
HC
MASS
LBS.
31.159
9.257
0.064
0.055
0.164
0.170
0.396
0.174
11.4110
3.410
43.263
12.487
35.463
8.646
22.598
6.522
3.033
2.625
NOX
MASS
LBS.
0.577
0.227
2.285
0.061
4.515
0.225
1.796
0.036
0.213
0.084
9. 386
0.192
7.811
0.710
4.902
0.100
108.830
2.897
FUEL
HISS
LBS.
282.20
76.73
1*3.12
4.84
370.91
9.75
309.03
9.30
103.97
28.27
1208. 82
108.22
FUEL
MASS
LBS.
282.20
76.73
143.12
4.84
370.51
9.75
309.03
9.50
103.97
28.27
1208.82
108.22
FUEL
MASS
LBS.
282.20
76.73
143.12
4.84
370.51
9.75
309.01
9.50
103.97
28.27
1208.82
108.22
LB CO./
IK LB FUEL
99.455
22.414
1.405
0.861
1.20B
0.275
7.551
0.9*9
99.455
22.414
LB HC /
IK LB FUEL
112.105
32.469
0.450
0.397
0.446
0.466
1.279
0.541
112.105
32.46?
LB HO*/
IK LB FUEL
2.002
0.384
15.981
0.659
12.187
0.583
5.816
0.225
2.002
0.1«4
ENERGY
> TH-HR
332.50
0.0
2*1.00
0.20
654.50
0.0
560.00
0.0
122.50
0.14
1914.50
2.58
ENERGY
• TH-HR
332.50
0.0
245.00
0.20
654.50
0.0
560.00
0.0
122.50
0.14
1914.50
2.58
ENERGY
t TH-HR
312.50
0.0
245.00
0.20
654.50
0.0
560.00
0.0
122.50
0.14
1914.50
2.58
IB CO /
1 TH-HR
0.087*4
0.0399*
0.00081
0.000*9
0.00068
0.00015
0.00*17
0.00094
0.0874*
0.0393*
LB HC /
• TH-HR
0.09371
0.0278*
0.00026
0.00023
0.00025
0.00026
0.00071
0.00031
0.09371
0.02704
LB N0
9 TH-HR
0.00174
0.00068
0.00933
0.00025
0.00690
0.00034
0.00321
0.00006
0.00174
0.00068
m-2
-------
MODEL JTBD PCM FXP.
SAMPLE NUMBER - 4.
none
TAXI-IDLE
TAKEOFF
CLIMB OUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIHBOUT
APPROACH
TAXl-IIILF
MODE
TAXI-IOLF
TAKEOFF
CL IMRHUT
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 60.276
STD OEV 29.644
MEAN 10.268
STD OEV 6.653
MEAN 11.256
STO OEV 6.225
MEAN 20.477
STD DEV B.816
MEAN 60.276
STD OEV 29.694
TOTAL FOB CYCLE
LAS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 8.833
STO DEV 5.825
MEAN 2.059
STD DEV 0.407
MEAN 1.816
STD OEV 0.394
MEAN 2.0B9
STD OEV 0.485
MEAN 8.833
STO OEV 5.825
TOTAL F<1« CYCLE
LHS POLLUTANT/IK LB
LBS POLLUTANT/ IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MFAN J.046
STO OEV 1 .621
MFAN 244.467
Stn DCV 16.400
miN 1S3.997
STO (1FV l?.961
MEAN .11.557
SID DEV 8.476
MEAN 3.046
STD DtV 1 .621
rnr«L FOR CYCLE
LF1S PflULUTANT/lK LB
LHS POLLUTANt/lK Lfl
LilS PTLLUIANT/1000K
FUEL
RATE
LB/HR
1019.327
66.628
94)8.393
185.444
7796.668
102.424
3707.101
76.942
1019.327
66.628
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1019.327
66.628
9438.395
185.444
7796.668
102.424
3707. 101
76.942
1019.327
66.628
FUFL/CYCLF
IH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1019.327
66.621
9438.395
13S.444
7796.668
102.424
3707.101
76.942
1019.327
66.628
FUEL/CYCLF
TH-HR/CYCLC
LB FH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STO OEV:
MEAN:
STD OEV:
T.O. MEAN:
STD DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
SID OEv:
MEAN:
STO DEV:
MEAN:
STD DEV:
T.O. MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
SID OEV:
MEAN:
STD OEV:
MFAN:
STO DEV:
T.O. MEAN:
STO DEV:
CO
MASS
LBS.
19.087
9.403
0.120
0.078
0.413
0.228
1.398
0.588
7.032
3.464
28.051
12.303
25.631
10.467
18.950
8.311
0.773
0.501
HC
MASS
LBS.
2.797
1.845
0.024
0.005
0.067
0.014
0.139
0.032
1.031
0.680
4.058
2.503
3.706
2.181
2.741
1.691
1.550
0.306
NOX
MASS
LBS.
0.965
0.513
2.852
0.191
5.647
0.475
2.104
0.565
0.355
0.189
11.922
1 .668
11.037
1.893
8.054
1.127
184.007
12.344
FUEL
MASS
IBS.
322.79
21.10
110.11
2.17
285.88
3.75
247.14
5.13
118.92
7.77
1084.64
36.52
FUEL
MASS
LBS.
322.79
21.10
110.11
2.17
285.88
3.75
247.14
5.13
118.92
7.77
1084.84
36.52
FUEL
MASS
LBS.
322.79
21.10
110.11
2.17
285. 8B
3.75
247.14
5.13
118.92
7. 77
1084.84
36.52
IB CO /
IK LB FUEL
57.984
24.701
1.089
0.698
1.442
0.793
5.665
2.407
57.989
24.701
LB HC /
IK LB FUEL
B.48I
5.031
0.219
0.046
0.233
0.052
0.564
0.132
8.481
5.031
L8 NOX/
IK LB FUEL
3.067
1.715
25.923
2.049
19.768
1.889
8.527
2.361
3.067
1.715
ENERGY
1 TH-HR
294.50
0.0
180.83
0.0
483.08
0.0
413.33
0.0
108.50
0.10
1480.25
1.53
ENERGY
1 TH-HR
294.50
0.0
180.83
0.0
483.08
0.0
413.33
0.0
108.50
0.10
14B0.25
1.53
ENERGY
• TH-HR
294.50
0.0
180.91
0.0
483.08
0.0
413.33
0.0
108.50
0.10
1480.25
l'.53
LB CO /
1 TH-HR
0.064B1
0.03193
0.00066
0.00043
0.00085
0.00047
0.00338
0.00142
0.06481
0.03193
LB HC /
• TH-HR
0.00950
0.00626
0.00013
0.00003
0.00014
0.00003
0.00034
0.00008
0.00950
0.00626
LB NOX/
• TH-HR
0.00328
0.00174
0.01577
0.00106
0.01169
0.00098
0.00509
0.00137
0.00328
0.00174
m-3
-------
HUOF.L JT9n PCH FXP.
SAMPLE NUMBER ' 4.
NODE
TAXI-IDLE
TAKEOFF
CUMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIMQOUT
APPROACH
TAXI-IOLF
HOOF
IAXI-IDLC
CLIHBOUT
APPROACH
TAXI-IOLE
EMISSION
RATE
LS/HR
MEAN 121.619
STD OEV 31.634
MEAN 10.585
STD DEV 6.061
MEAN 12. 817
STO DEV 4.204
MEAN 26.140
STD OEV ?.840
MEAN 121.819
STO DEV 11 .634
TOTAL FOR CYCLE
LBS POLLUTANT/IK IB
LBS POLLUTANT/IK L8
LBS PHLLUTANT/IODOK
EMISSION
RATE
Lfl/HR
MEAN 17.164
STO OEV 12.075
MEAN 4.125
srn ocv i .705
MEAN 3.46R
STO DCV 1.519
MEAN 2.722
STO OEV 1.9SO
MFAN 37.164
Sin OEV 3?. 075
TOIAL FflR CYCLE
LUS POLLUTANT/IK LR
LRS PMI.LUTANT/1K LH
LBS PnLLUIANT/IOOOK
FMISSION
RAIF.
LR/HR
"(FAN 5.H7?
sm nFv 1 .«(>•)
STO nFV 111.6'tll
MEAN 500. 12h
Srn OEV 95.771
"FAN 54.270
Sll) nFV 5.900
MFAN 5.872
StU nFV 1 .R69
rnrAL Fin CYCLF
L«S POLLUTANT/IK IB
LflS POLLIJ1ANT/IK LB
L3S POLL Ul ANT /inOOK
FUFL
RATE
LB/HR
1901.106
52.786
17583.953
461.695
14926.891
316.784
5589.352
159.817
1901.306
52.786
FUEL/CYCLE
TM-HR/CYCLE
L8 TH-HQ AT
FUEL
RATE
LB/HR
1901.306
52.786
17583.953
461.695
14926.891
316.784
5569.152
159. B17
1901.306
52. 786
FUEL/CYCLE
TH-HR/CVCLF
L8 TH-HK AT
FUEL
RATE
LB/MR
1901.306
52.781.
461.695
14926. 191
116. 784
5589.352
159. 81 7
1-101.106
52.786
FUEL/CYCLF
TH-HB/CYCLt
LB FH-HR AT
TINE IN
MODE
Nltg.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD OEV:
MEAN:
STD DEV:
T.o. MEAN:
STO DEV:
TINE IN
NODE
MIN.
19.00
0.0
C.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MFAN:
sin OEV:
MEAN:
STO OEV:
T.o. MEAN:
STO DEV:
TIME IN
MnnE
MIN.
19.00
0.0
0.0
2.20
0.0
4. no
0.0
7.00
0.0
MFAN
STD DEV
MEAN
STO OEV
MEAN
STO npv
1.0. MFAN
sin nsv:
CO
MASS
LBS.
38. 582
10.017
0.123
0.071
0.470
0.154
1.756
0. 189
14.214
3.691
55.146
13.828
28.276
6. 886
13.607
3.412
0.284
0.163
HC
MASS
LBS.
11.769
10.157
0.048
0.020
0.127
0.056
0.181
0.130
4.336
3.742
16.461
14.097
B.5I5
7.420
4.062
3.478
1.106
0.457
NOX
MASS
LflS.
I.R59
0.592
2.120
18.360
3.491
5. MB
0.393
0.685
0.218
1 ».621
6. 70h
17.260
3.451
8.296
1.655
209. ?11
48.732
FUEL
MASS
LBS.
602.08
16.70
205.15
5.39
547.12
11.62
372.62
10.65
221.82
6.16
1148.99
33.14
FUEL
MASS
LBS.
602.08
16.70
205.15
5.19
547.32
11.62
372.62
10.65
221.62
6.16
I
-------
HOnEL JT3C SRI REPS 631329 SAMPLE NUMBER
MODE
TAXI-IOLE
TAKEOFF
CLIMROUT
APPROACH
TAXI-IOLF.
MOOF
IAXI-IOLF
TAKEOFF
CLiMBnui
APPROACH
TAXI-IOLF
MODE
TAXI-IOIF
TAKEOFF
CL IMHflUT
APPROACH
fA»l-IOLE
EMISSION
RATE
LB/HR
MEAN 61.620
STO DEV 47.113
MFAN 6.903
STO nEV 12.590
MEAN 9. ITS
STO DEV 12.979
HEAN 21.241
STO OEV 1.590
HEAN 51.620
STO OEV 47.113
TOTAL FOR CYCLE
LBS POLLUTANT/IK IB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATF.
LR/HR
MEAN 61.199
STO OEV 68.B67
MEAN 1.4S7
STO OEV 2.104
MF. AN 1 . 190
STD OEV 0.695
MEAN 5.?12
STO OEV 2.415
MFAN 61.199
Srn HEV 68.867
TUIAL FOR CYCLE
LI'S POLI UTANT/IK LB
LrlS PniLUTANT/lK LB
LBS POLLUTANT/I1COK
EMISSION
RATE
LB/HR
"FAN 1.698
SfO OEV r.02fl
"FAN 119.986
Sin OEV 22.257
MFAN 13.807
STP DFV 7.929
MFAN 22.943
srn DEV 0.515
MF.AN 1.698
STD OEV O.OZfl
fOIAL FOu CYCLE
LBS POLLUTANT/IK LB
LflS POI.LUIANI/1K LB
L»S POLLUTANT/10COK
FUEL
RATE
LB/HR
1154.107
132.590
10527.086
100.955
8780. 414
24.331
4435.035
65.727
1154.107
132.590
FUEL/CYCLE
TH-HR/CYCLE
L8 TH-HH AT
FUEL
RATE
LB/HR
1154. 107
132.590
10527.086
100.955
8780.414
24.131
44)5.035
65.727
1154.107
112.590
FUEL/CYCLE
TH-HK /CYCLE
LB TH-HK AT
FUEL
RATC
LU/HH
1154.107
112.590
10527.086
100.955
8780.414
24.131
4435.035
65.727
1 154. 101
U2.590
FUFL/CYCLE
TH-HR/CYCLE
LB TH-HH AT
TIME IN
HDDE
HIM.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO DEV:
MEAN:
STD DEV:
T.O. MEAN:
STO DEV:
TIKE IN
HOOE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
HEAN:
STO OEV:
MEAN:
STO DEV:
T.O. HEAN:
STO nEv:
TIME IN
HOOF
Ml N.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN :
STD OEV:
MEAN:
STO nFV:
MEAN:
STD OEV:
T.O. MEAN:
STO OEV:
CO
MASS
LBS.
16.346
14.919
0.104
0.147
0. 3J7
0.476
1.416
0.106
6.022
5.496
24.225
20.93?
19.892
17.691
22.144
19.134
0.866
1.224
HC
MASS
LBS.
19.380
21.808
0.017
0.025
0.044
0.025
0.347
0.161
7. 140
8.035
26.928
29.681
22.217
24.639
24.614
27.130
1.446
2.045
NOX
MASS
LBS.
0.538
0.009
1.400
0.260
3.073
0.291
1.530
0.034
0.198
0.003
6. 736
0.597
5.446
0.705
6.159
0.545
116.653
21.639
FUEL
MASS
LBS.
365.47
41.99
122.82
1.18
321.95
0.87
295.67
4.39
134.65
15.47
1240.55
51.01
FUEL
MASS
LBS.
365.47
41.99
122.82
1. IB
321.95
O.B7
295.67
4.39
134.65
15.47
1240.55
51.01
FUEL
MASS
LBS.
365.47
41 .99
122.82
1.18
321.95
0.87
295.67
4.39
134.65
15.47
1240.55
51.01
LB CO /
IK LB FUEL
47.385
46.266
0.840
i. tea
1.043
1.475
4.792
0.430
47.385
46.266
LB HC /
IK LB FUEL
56.B30
66.201
0.140
0.198
0.136
0.080
1.179
0.562
56.830
66.20,
LB NOX/
IK LB FUEL
1.483
0.194
1 1.388
2.005
9.544
0.877
5.173
0.039
1.483
0.194
ENERGY
I TH-HK
190.00
0.0
140.00
0.20
374.00
0.0
320.00
0.0
70.00
0.0
1094.00
0.0
ENERGY
* TH-HR
190.00
0.0
140.00
0.20
374.00
0.0
320.00
0.0
70.00
0.0
1094.00
0.0
ENERGY
H TH-HR
190.00
0.0
140.00
0.20
374.00
0.0
320.00
0.0
70.00
0.0
1094.00
0.0
LB CO /
1 TH-HR
0.08603
0.07852
0.00074
0.00105
0.00090
0.00127
0.00443
0.00033
0.08603
0.07852
LB HC /
i TH-HR
0.10200
0.11478
0.00012
0.00018
0.00012
0.00007
0.00109
0.00050
0.10200
0.11478
LB NO*/
* TH-HR
0.002H3
0.00005
0.01000
0.00185
0.00822
0.00078
0.00478
0.0001 1
0.00283
0.00005
m-5
-------
MODEL CJ805 SR REPS 161302 SAMPLE NUMBER • 2.
MODE
TAXI- IDLE
TAKEOFF
CLIMBDUT
APPROACH
TAXI-IOLE
MODE
TAXI-IDLE
TAKFHFF
CLIMBDUT
APPROACH
TAXI-IDLF
MODE
TAXI-IOLE
TAKEOFF
CL IHtlllUI
APPROACH
TAXI-IOLF
EMISSION
RATE
LB/HR
MEAN 47.536
STD DEV 0.868
MEAN 27.195
STD DEV 1.423
MFAN 25.579
STD DEV 0.394
MEAN 37.537
STD DEV 4.534
MEAN 47.536
STD DEV 0.868
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/ 1000K
EMISSION
RATE
LB/HK
MFAN 20.596
STtl DEV 3.967
MFAN 0.257
srn DEV 0.347
MFAN O.B16
srn DFV 0.604
MEAN 2.931
STO DFV 1.75H
MEAN 20.596
STD DEV 3.967
TOTAL FflR CYCLE
LBS POLLUTANT/IK LR
LSS PULLUTANI/1K LB
L1S POLLUTANI /IOOOK
EMISSION
RATE
LB/Mrf
•*tAN 1.545
sin nnv 0.035
MFAN 109.962
Sin OFV 7.869
"FAN R1.7R4
Sin ntv .1.917
MFAN 17.742
SID 1FV 1 .017
"CAN 1.545
Sin ncv 0.015
IOIAL F0» CYCLF
L1S POLLUTANT/IK LB
L1S POLLUTANI/IK LB
LTS POLLUIANT/1000K
FUEL
RATE
LB/HR
911.666
43.417
10028.430
320.250
8451.645
1B1.373
3617.816
255.437
911.666
43.417
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
911.666
43.417
10028.430
320.250
8451.645
IB1.373
3617.816
255.437
911.666
43.417
FUEL/CYCLE
IH-HH/CYCLE
LB TH-HR AT
FUEL
RAIF
LH/MR
91 1 .666
43.417
10028.430
120.250
8451.640
ldl.171
3617. H16
255.437
91 1.666
41.417
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TIKE IN
NODE
KIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN!
STD OEV:
MEAN:
STD DEV:
T.Q. MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
HFAN:
STD OEV:
MFAN:
SID OEV:
MEAN:
STD OEV:
T.O. MEAN:
SID OEV:
TIME IN
MflDF
MIN.
I9.no
0.0
0.70
0.0
2.20
0.0
4. no
o.n
7.00
0.0
MFAN:
STO DFV:
MEAN:
SID OFV:
MFAN:
STD OEV:
T.O. MEAN:
STD DEV:
CO
MASS
LBS.
15.053
0.275
0.317
0.017
0.938
0.014
2.502
0.302
5.546
0.101
24.356
0.676
22.915
0.898
25.044
0.695
2.833
0.148
HC
MASS
LBS.
6.522
1.256
0.003
0.004
0.030
0.022
0.195
0.117
2.403
0.463
9.153
1.810
B.601
1.604
9.412
1.861
0.268
0.362
Nnx
MASS
LBS.
0.489
0.011
1.283
0.092
2.999
0.144
1.183
0.06B
0. 1BO
O.OO4
6. 134
0.183
5.769
0.106
6.307
o.iea
114.544
8.197
FUEL
MASS
LBS.
288.69
13.75
117.00
3.74
309.89
6.66
241.19
17.03
106.36
5.07
1063.13
12.17
FUEL
MASS
LBS.
288.69
13.75
117.00
3.74
309.89
6.66
241. 19
17.03
106.36
5.07
1063.13
12.17
FUEL
MASS
LBS.
268.69
13.75
117.00
3.74
109.89
6.66
241 . 19
17.03
106.36
5.07
1063.11
12.17
LB CO /
IK LB FUEL
52.223
3.439
2.711
0.055
3.028
0.112
10.357
0.522
52.223
3.439
LB HC /
IK LB FUEL
22.514
3.280
0.026
0.035
0.097
0.074
0.829
0.545
22.514
3.280
LB NOX/
IK LB FUEL
1.696
0.042
10.958
0.435
9.674
0.258
4.906
0.065
1.696
0.042
ENERGY
• TH-HR
141.87
0.09
130.67
0.23
349.07
0.0
298.67
0.0
52.27
0.0
972.53
0.0
ENERGY
• TH-HR
141.87
0.09
130.67
0.23
349.07
0.0
298.67
0.0
52.27
0.0
972.53
0.0
ENERGY
« TH-HR
141.87
0.09
130.67
0.23
349.07
0.0
298.67
0.0
5?. 27
0.0
972.53
0.0
LB CO /
1 TH-HR
0.10611
0.00194
0.00243
0.00013
0.00269
0.00004
0.00838
0.00101
0.10611
0.00194
LB HC /
* TH-HR
0.04597
0.00886
0.00002
0.00003
0.00009
0.00006
0.00065
0.00039
0.04597
0.00886
LB Nnx/
> TH-HR
0.00345
0.00008
0.009B2
o.oooro
0.00859
0.00041
0.00396
0.00023
0.00345
0.00008
rn-e
-------
MODEL CJ805 SR REPS 161108 SAMPLE NUMBER
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IOLE
MOOF
TAXI-10LE
TAKEOFF
CLINHOUT
APPROACH
TAXI-IDLE
MODE
TAX I-IOLF
FAKEnFF
CLMflOUT
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 64.406
STD OEV 10.288
MEAN 31.433
STD OEV 4.817
MEAN 31.987
STO OEV 4.009
HFAN 37.259
STO OEV 13.078
MFAN 64.406
STO OEV 10.288
TOTAL FOR CYCLE
LRS POLLUTANT/IK LB
L1S POLLUTANT/IK LB
LHS POLLUTANT/1000K
EMISSION
RATE
LB/NR
MEAN 28.862
STn DEV 5.464
HFAN o.4ir
STD DEV 0.540
"FAN 0.31)4
Sll> OEV 0.464
MEAN 3.124
STO OEV 2.002
MEAN 28.862
STO DFV 5.464
IOIAL FOR CYCLF
L8S PHLl.UTANT/lK IB
LBS POLLUTAN1/1K LO
LQSiPQLI UTANT/1000K
(Ml SSIUN
RATfi
LB/HR
»EAN 1.387
STD OEV 0.573
MEAN 19.560
SIR flFV 4.471
MEAN 69.097
STII OFV 2.0SH
ir.AN 18.330
STO I1FV 1.6.17
1F.AN 1.387
Sro DFV 0.573
rnrAL fao CYC.LC
LBS POLLUIANT/1K LB
LBS POLLUTANT/IK LB
FUEL
RATE
LB/HR
989.941
156.802
9801.734
185.444
8150.773
105.805
3875.177
109.861
989.943
156.802
FUFL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
989.943
156.802
9801.734
195.444
8150.773
105.805
3875.177
109.861
939.943
156. B02
FUEL/CYCLE
TH-'IR/CYCLE
FUEL
RATE
LR/HR
9fl1.943
156.302
9801.734
115. 444
8150. 771
105.805
3875.177
109.861
199.943
156.802
FUFL/CYCLE
1H-HR/CYCLE
TINE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
NEANl
STD OEV:
T.O. MEAN:
STO DEv:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD REV:
MEAN:
STO DEV:
MEAN:
STO OEV:
STO HEV:
TIME IN
MODE
MIN.
19. OC
0.0
0. 70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OFV:
MEAN:
STO OEV:
MEAN:
STO OEV:
CO
MASS
LBS.
20.395
3.258
0.367
0.056
1.173
0.147
2.484
0.872
7.514
1.200
31.933
4.954
28.887
2.820
32.6)4
. 5.094
3.274
0.502
HC
MASS
LBS.
9.140
1.730
0.005
0.006
0.014
0.017
0.208
0.133
3.367
0.638
12.734
2.349
11.516
1.622
13.094
2.416
0.435
0.563
NOX
MASS
LBS.
0.439
0. 181
1.162
0.052
2.534
0.075
1.222
O.I 12
0. 162
0.067
5.518
0.350
5.019
0.243
5.674
0.359
FUEL
NASS
LBS.
313.48
49.65
114.35
2.17
298.86
3.87
258.34
7.32
115.49
18.29
1100.54
70.24
FUEL
MASS
LBS.
313.48
49.65
114.35
2.17
218.66
3.87
258.34
7.32
115.49
18.29
1100.54
70.24
FUEL
MASS
LBS.
313.48
49.65
114.35
2. 17
298.86
3.87
256.34
7.32
115.49
IB. 29
1100.54
70.24
LB CO /
IK LB FUEL
65.045
1.665
3.202
0.451
3.921
0.446
9.579
3.171
65.045
1.685
LB HC /
IK LB FUEL
29.106
2.659
0.043
0.055
0.047
0.057
0.801
0.497
29.106
2.65?
LB NOX/
IK LB FUEL
1.372
0.395
10.151
0. 474
8.480
0.324
4.725
0.326
1.372
0.395
ENERGY
1 TH-HR
141.67
0.20
130.67
0.14
349.07
0.0
298.67
0.0
52.27
0.0
972.53
0.0
ENERGY
i TH-HR
141.87
0.20
1 30 . 67
0.14
349.07
0.0
298.67
0.0
52.27
0.0
972.53
0.0
ENERGY
• TH-HR
141 .37
0.20
130.67
0.14
349.07
0.0
218.67
0.0
52.27
0.0
972.53
0.0
LB CO /
1 TH-HR
0.14376
0.02297
0.00261
0.00043
0.00336
0.00042
0.00832
0.00292
0.14376
0.02296
LB HC /
• TH-HR
0.06442
0.01220
0.00004
0.00005
0.00004
0.00005
0.00070
0.00045
0.06442
0.01220
LB NOX/
• TH-HR
0.00310
0.00128
O.OOB89
0.00040
0.00726
0.00072
0. 00409
0.00038
0.00310
0.00128
LUS PULLUTANT/IOOOK LB FH-HR AT
T.n. MFAN: 103.701
STD OEV: 4.657
m-7
-------
MODEL CJ805 SH REPS TW2220 SAMPLE NUMBER - 3.
MODE
TAXI-IOLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IOLF
TAKFOFF
Cl IMBHUT
APPROACH
TAXI-IDLE
MODE
TAXI-IOLF
TAKtOFF
CL MBnuT
APPROACH
TAXI-IDLE
FMTSSION
RATE
LB/HR
MEAN 63.66)
STD OEV 14.172
MEAN 20.246
STD OEV 3.930
MEAN 19.632
STO [MiV 1.328
NFAN 32.86)
STO OFV 4.408
MEAN 63.663
STO OEV 14.172
TOTAL FOR CVCLF
LRS POLLUTANT/ IK LB
L»S POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MF.AN 16.488
STO DEV 8.599
MEAN 1.796
srn OEV 0.177
STO DEV 2.217
MEAN 4.901
STO DCV 1.416
MEAN 56.4R8
STD DEV 8.599
TOTAL FOK CYCLE
LRS POLLUTANT/IK LB
LliS POLLUIAN1/IK IB
LRS PPLLUT ANT / IOOOK
EMISSION
RATF
Le/HR
MFAN 2. 145
STO OFV 0.177
MEAN 241.767
SIP DEV 10.256
MF»N 156.150
STO DEV 3.1 12
•(TAN 33.460
STO OEV 1 .047
.MFAN 2.345
srn OEV 0.377
TOTAL F0« CYCLF
L'lS POLLUTANT/IK Lfl
LBS POLLUTANT/1* LB
L3S POLLUTANT/IOOOK
FUEL
RATE
LB/HR
1286.913
110.935
15622. 656
375.915
13193.387
114.622
6028.520
53.516
1286.913
110.935
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1286.91)
110.935
15622.656
375.915
114.822
6028.520
S3. 516
1286. 9H
1 10.935
FUEL/CYCLE
TH-HH/CYCLF
LO TM-HR AT
FUEL
KATE
LR/HR
I2H6.911
IIP. 935
15622.656
175.915
13193.387
114.822
6028.520
53.516
1786.91)
110.935
FUEL/CYCLE
TH-HK/CYCLE
IR TH-HK AT
TINE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV:
MEAN:
STO OEV:
MEAN:
STO DEV:
T.O. MEAN:
STD DEV:
TINE IN
MODE
MIN.
19.00
0.0
0.70
0.0
0.0
4.00
0.0
7.00
0.0
MFAN:
STD OEV:
MEAN:
STD OEV:
MEAN:
STD OEV:
T.O. MEAN:
STO OEV:
T 1 ME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD OEV:
MEAN:
STO OEV:
T.n. MFAN:
STO DEV:
CO
MASS
LBS.
20.160
4.488
0.236
0.0*6
O.T20
0.049
2.191
0.294
7.427
1.653
30.734
5.824
18.859
3.121
19.264
3.690
1.350
0.262
HC
MASS
LBS.
17.888
2.723
0.021
0.002
0 129
o.oai
0.327
0.094
6.590
1.003
24.950
3.742
15.392
2.707
15.639
2.345
1.198
0.118
NOX
MASS
LBS.
0.743
0.119
2.871
0.120
5.725
0. 115
2.231
0.070
0.274
0.044
11.79)
0.322
7.258
0.252
7.392
0.202
161.178
6.840
FUEL
MASS
L8S.
407.52
3S.13
182.26
4.39
483.76
4.23
401.90
3.55
150.14
12.94
1625.58
43.96
FUEL
MASS
LBS.
407.52
35.13
IB2.26
4.39
4i23
401.90
).55
150.14
12.94
1625.58
4). 96
FUEL
MASS
LBS.
407.52
35.13
182.26
4.39
4K3.76
4.J3
401.90
3.55
150.14
12.94
1625.58
43.96
LB CO /
IK LB FUEL
49.135
7.051
1.294
0.232
1.488
0.090
5.456
0.781
49.135
7.051
LB HC /
IK L8 FUEL
44.453
10.565
0.115
0.011
0.167
0.812
0.228
44.453
10.565
LB NOX/
IK LR FUEL
1.815
0.142
15.482
0.7B2
11.836
0.242
5.550
0.151
1.815
0.142
ENERGY
1 TH-HR
277.08
0.0
204.17
0.0
545.42
0.0
466.67
0.0
102.08
0.11
1595.41
2.12
ENERGY
1 TH-HR
277.08
0.0
204.17
0.0
545 .42
0.0
466.67
0.0
102.08
0.11
1595.41
2.12
ENFRC.Y
• TH-HR
277.08
0.0
204.17
0.0
545.42
0.0
466.67
0.0
102. on
O.ll
1595.41
2.12
LB CO /
( TH-HR
0.07276
0.01620
0.00116
0.00022
0.00132
0.00009
0.00469
0.00063
0.07276
0.01620
LB HC /
• TH-HR
0.06456
0.009B3
0.00010
0.00001
0. 0002 3
0.00015
0.00070
0.00020
0.06456
0.00983
LB NOX/
• TH-HR
0.00268
0.0004)
0.01382
0.00059
0.01050
0.00021
0.00478
0.00015
0.00268
0.00043
m-s
-------
MODEL JTaO U-S REPS 665244 SAMPLE NUMBER * 2.
MODE
TAXI-IDLE
TAKEOFF
CLIMBDUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MOOt
TAXI-IDLF
CLIM90UT
APPROACH
TAXI-IDLC
EMISSION
RATE
LB/HR
MEAN 45.500
STD DEV 17.997
MEAN 7.18*
STD DEV 0.778
MEAN 6.767
STD DFV 0.463
MEAN 3.890
STD DEV 0.750
MEAN 45.500
STO DFV 17.997
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS OOLLUTANT/1000K
EMISSION
RATE
Lfl/HR
MFAN 16.86C
STD DEV 17.776
MEAN 0.03B
STO DFV 0.054
MEAN 0.236
srn OEV 0.33*
MEAN 0.405
STP OEV 0.356
MFAN 16.860
SIR OEV 17.778
TOTAL FOR CrCLC
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LOS POLLUT ANT/1000*
EMISSION
RATE
LP/HR
MEAN 1.75B
STO DEV 0.522
STO OEV 10.067
MFAN 95.56B
STD DFV 11.513
MEAN 23.176
SIO HFV 1 .316
MFAN 1.75H
STO OFV 0.522
TOT«L FOR CYCLE
LBS POLLUTANT/IK L8
LRS POLLUTANT/IK LB
LBS PIIL1 UTANT/1000K
FUEL
RATE
LB/HR
968. 896
65.628
9020.762
21.166
7310.188
299.626
3817.285
52.15*
968.896
65.628
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
968.896
65.628
9020.762
21.166
7310. 188
299.626
3RI7.2B5
52. 154
968.896
65.62D
FUEL/CYCLE
TH-HR/CYCLE
LB FH-HR At
FUEL
RATF
LB/HR
96H.896
65.628
21. 166
7)10. IH8
299. 626
TM7.2SS
52. 154
968. 996
65.628
FUEL/CYCLE
TH-HH/CYCLE
LB TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO oev!
MEAN:
STD DEV:
MEAN:
STD OEV:
T.O. MEAN:
STO OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MFAN:
STO OEV:
MEAN:
STD DEV:
T.O. MEAN:
STD OEv:
TIME IN
MODE
MIN.
19.00
0.0
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MFAN:
SID OEV:
MEAN:
STD DEV.
MEAN:
STO OEV:
T.O. MEAN:
STD DEv:
CO
MASS
LBS.
14.408
5.699
0.084
0.009
0.248
0.017
0.259
0.050
5.308
2.100
20.308
7.756
19.315
7.023
14.665
5.601
0.578
0.063
HC
MASS
LBS.
5.339
5.630
0.000
0.001
0.009
0.012
0.027
0.024
1.967
2.074
7.342
7.741
6.937
7. 252
5.302
5.590
0.031
0.043
NOX
MASS
LBS.
0.557
0.165
0.117
3.504
0.422
1.545
0.090
0.205
0.061
7.482
0.856
7.151
0.958
5.403
0.618
115.229
8.099
FUEL
MASS
LBS.
306.82
20.78
105.24
0.23
268.04
10.99
254.49
3.46
113.04
7.66
1047.62
20.66
FUEL
MASS
ies.
306.82
20.78
105.24
0.23
268.04
10.99
254.49
3.46
113.04
7.66
1047.62
20.66
FUEL
MASS
LBS.
306.82
20.78
0.23
268.04
10.99
254.49
3.46
113.04
7.66
1047.62
20.66
LB CO /
IK LB FUEL
46.438
15.429
0.796
0.085
0.928
0.101
1.020
0.210
46.438
15.429
LB HC /
IK LB FUEL
16.818
17.210
0.004
0.006
0.033
0.047
0.106
0.092
16.818
17.210
LB NOX/
IK LB FUEL
1.837
0.663
15.875
1.080
13.052
1.040
6.074
0.435
1.837
0.663
ENERGY
1 TH-HR
275.50
0.0
169.17
0.27
451.92
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
ENERGY
1 TH-HR
275.50
0.0
1 69 . 1 7
0.27
451.92
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
ENERGY
< TH-HR
275.50
0.0
1 69 .17
0.27
451.92
0.0
386.67
o.n
101.50
0.0
1384.75
0.0
LB CO /
1 TH-HR
0.05230
0.02069
0.00050
0.00005
0.00055
0.00004
0.00067
0.00013
0.05230
0.02069
LB HC /
• TH-HR
0.01938
0.02043
0.00000
0.00000
0.00002
0.00003
0.00007
0.00006
0.01938
0.02043
LB NOX/
9 TH-HR
0.00202
0.00060
0. 00988
0.00069
0.00775
0.00093
0.00400
0.00023
0.00202
0.00060
m-9
-------
MODEL JT80 II-S RFPS 665165 SAMPLE NUMBER • 2.
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MEAN
STD DEV
MEAN
STD DEV
MEAN
STO DEV
MEAN
STO DEV
MEAN
STD DEV
TOTAL FOR
EMISSION
RATE
LB/HR
25.708
1.671
6.07*
1.119
6. TIB
0.827
15.503
0.027
25.708
1.671
CYCLE
LRS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LRS POLLUTANT/1000K
HOOE
TAXI-IDLE
TAKFflFF
r.LI"ROUT
APPROACH
TAXI-IDLE
MEAN
STD DEV
MEAN
STD OEV
NFAN
STD OEV
MEAN
STO OEV
•(FAN
STD OEV
TOTAL FHR
EMISSION
RATE
LB/HR
5.065
0.155
0.074
0.105
0.739
0.175
0.510
0.570
5.065
0.15)
CYCLE
LBS POLLUTANT/IK LB
LnS POLLUTANT/IK LB
LOS PIULUTaNT/lOOOK
xont
TAXI-IOI.F
TAKEOFF
CL IMBOUT
APPHflACH
TAX 1- IDLE
MEAN
sin r>Fv
"ESN
srn nFv
MEAN
Srn nf v
.1F.AN
SfD OCV
MEAN
STD OEV
TOTAL FOR
EMISSION
RATE
LB/HR
1.324
0.030
102.462
5.488
73.183
2.«70
16.269
2.331
1.124
0.030
CYCLE
LBS POLLUTANT/IK L»
LUS POLLUIANT/1K LB
LBS POLLUTANT/1000K
FUEL
RATE
LB/HR
735.095
5.196
8530.191
2*1.793
7023.316
46.648
3184.645
379.768
735.095
5.196
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
HATE
LB/HR
715.095
5.196
8530.191
241.793
7023.316
46.648
3184.645
379.768
735.095
5.196
FUEL/CYCLE
TH-HR/CYCLE
LH TH-HR AT
FUEL
RATE
Lfl/HR
735. C95
5. 196
8590. 191
241.793
7023.316
46.648
1184.645
379.768
7J5.095
5. 196
FUFL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TIME IN
MODE
M1N.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STD OEV:
T.O. MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STO DEV:
MEAN:
STD DEV:
T.O. MEAN:
STD DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
o.n
7.00
0.0
MFAN:
STD DEV:
MFAN:
STO OEV:
MEAN:
STD DEV:
T.O. MEAN:
STO OEV:
CO
MASS
LBS.
8.141
0.529
0.071
0.022
0.247
0.030
1.034
0.002
2.999
0.195
12.492
0.673
14.064
0.250
9.021
0.486
0.4B9
0.154
HC
MASS
LBS.
1.604
0.048
0.001
0.001
0.009
0.006
0.034
0.038
0.591
0.018
2.239
0.021
2.523
0.114
1.617
0.015
0.060
0.084
NOX
MASS
LBS.
0.419
0.009
1.195
0.064
2.681
0.105
1.085
0.159
0. 155
0.003
5.537
0.315
6.234
0.130
3.999
0.227
82.440
4.415
FUEL
MASS
LBS.
232.78
1.64
99.52
2.B2
257.52
1.68
212.31
25.32
85.76
0.60
887.89
32.08
FUEL
MASS
LBS.
232.78
1.64
99.52
2.82
257.52
1 .68
212.31
25.32
85.76
0.60
887.89
32.08
FUFL
MASS
LBS.
232.78
1.64
99.52
2.82
257.52
1.68
212.31
25.32
85.76
0.60
887.69
32. CB
LB CO /
IK L8 FUEL
34
2
0
0
0
0
4
0
34
2
.965
.028
.716
.245
.960
.124
.902
.577
.965
.028
LB HC /
IK LB FUEL
6
0
0
0
0
0
0
0
6
0
LB
IK L
0
12
0
10
0
5
0
1
0
.892
.256
.009
.012
.034
.025
.151
.161
.892
.256
NOX/
.802
.053
.007
.303
.419
.340
.100
. 139
.802
.053
ENERGY
1 TM-HR
275.50
0.0
169.17
0.27
451.92
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
ENERGY
1 TH-HR
275.50
0.0
169.17
0.27
451.92
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
ENERGY
275.50
0.0
169.17
0.27
451 .92
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
LB
•
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
•
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CO /
TH-HR
02955
00192
00042
00013
00055
00007
00267
00001
02955
00192
HC /
TH-HR
00582
00018
00001
0000 I
00002
00001
00009
onoio
00582
00018
NCX/
00152
00003
00707
00038
00594
00023
00280
00041
00152
00003
m-io
-------
MODEL JT8D U-S REPS 674250 SAMPLE NUMBER • 2.
NODE
TAXI-IDLE
TAKEOFF
CLIM80UT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLF
TAKEOFF
CLIMHOUT
APPROACH
TAXI-IDLE
unit
TAXI-IDLE
TAKEOFF
CLIMOnUT
APPROACH
IAXI-IOLF
EMISSION
RATE
LB/HR
MEAN 36.603
STD OEV 4.816
MEAN 4.653
STD DEV 1.915
MEAN 4.483
STO OEV 0.165
MEAN 15.335
STD OEV 0.955
MEAN 36.603
STO OEV 4.816
TOTAL FOR CYCLE
IBS POLLUTANT/IK LB
L1S POLLUTANT/IK LB
L3S POLLUTANT/tOOOK
EMISSION
RATE
LB/HR
MEAN 9.576
STD OFV 0.177
MEAN 0.417
STfl DFV 0.351
MEAN 0.49S
STD DEV 0.322
NFAN O.B06
STD OFV 0.534
MEAN <).576
STD DEV 0.177
TOTAL FOR CYCLE
IBS POLLUTANT/IK LB
LRS POLLUTANT/IK LB
LBS PfJLLUTANI/lOOOK
EMISSION
RATE
LB/HR
MCftN 1.767
sin OEV 0.22?
MEAN 136.411
STD DEV 4. 190
MEAN 86.176
STI) OEV 1 .435
MEAN 14.560
STO DEV 1 .056
MEAN 1.767
STD DF.V 0.222
TOTAL FPK CYCLF
LMS PIILLUT ANT/IK LH
LBS POLLUTANT/IK LR
FUEL
RATE
LB/HR
857.740
40.175
8712.180
163.805
7080.656
14.967
3589.559
53.814
857.740
40.175
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
857.740
40.175
8712.180
163. B05
7080.656
14.967
35B9.559
53.814
957.740
40.175
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR «T
FUEL
RATE
LB/HR
857.740
40. 175
8712. 1BO
163.805
7090.656
14.967
3589.559
53. 814
S57. 740
40.175
FUFL/CYCLE
TH-HR/CYCLE
TINE IN
MODE
MIN.
19.00
0.0
O.TO
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV!
MEAN:
STO DEVI
MEAN:
STD DEV:
T.O. MEAN:
STD OEV:
TINE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO DEV:
MEAN:
STO OEV:
t.O. MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
o.o
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MFAN:
STD DEV:
MEAN:
STO DEV:
MEAN:
STD OEv:
CO
MASS
LBS.
11.591
1.S25
0.057
0.022
0.164
0.006
1.022
0.064
4.270
0.562
17.105
2.039
17.578
1.822
12.352
1.473
0.390
0.154
HC
MASS
LBS.
3.032
0.056
0.005
0.004
0.018
0.012
0.054
0.036
1. 117
0.021
4.276
0.128
4.349
0.200
3.052
0.092
0.335
0.2R3
NOX
MASS
LBS.
0.560
0.070
1.591
0.049
3. 160
0.053
0.971
0.070
0.206
0.026
6.488
0.127
6.675
0.235
4.685
0.092
FUEL
MASS
LBS.
271.62
12.72
101.64
1.91
259.62
0.56
239.30
3.58
100.07
4.69
972.26
15.23
FUEL
MASS
LBS.
271.62
12.72
101.64
1.91
259.62
0.56
239.30
3.58
100.C7
4.69
972.26
15.23
FUEL
MASS
LBS.
271.62
12.72
101. en
1 .91
259.62
0.56
239.30
3.5)1
100.07
4.69
172.26
15.23
LB CO /
IK LB FUEL
42.589
3.620
0.555
0.209
0.633
0.022
4.270
0.202
42.589
3.620
18 HC /
IK 18 FUEL
11.161
0.730
0.048
0.041
0.070
0.045
0.224
0.145
1 1.181
0.730
LB NOX/
IK LB FUEL
2.069
0.355
15.665
0.775
12.170
0.179
4.059
0.355
2.069
0.355
ENERGY
1 TH-HR
275.50
0.0
169.17
0.27
451.92
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
ENERGY
• TH-HR
275.50
0.0
169.17
0.27
451.92
0.0
386.67
0.0
101.50
0.0
1364.75
0.0
ENERGY
* TH-HR
275.50
0.0
169.17
0.27
451 .92
0.0
3K6.67
0.0
101 .50
0.0
13B4.75
0.0
LB CO /
( TM-HR
0.04207
0.00554
0.00033
0.00013
0.00036
0.00001
0.00264
0.00016
0.04207
0.00554
LB HC /
• TH-HR
0.01101
0.00020
0.00003
0.00002
0.00004
0.00003
0.00014
0.00009
0.01101
0.00020
LB NOX/
9 TH-HR
0.00203
0.00025
0.00941
0.00029
0.00699
0.0001?
0.00251
0.000 IS
0.00203
0.00025
LUS POLLUTANT/1000K L9 IH-HR AT
T.O. MEAN: 109.757
STD OEV: 1.367
EMI
-------
MODEL JT8D U-S REPS 674379 SAMPLE NUMBER « 2.
Nnr>E
TAXI-IOLF
TAKEOFF
CLIMBOUT
APPROACH
T»K[-IOLF
MODE
TAXI-IDLF
TAKEOFF
CLIMHQUT
APPROACH
TAXI-IDLF
MODE
IAXI-IOLF
TAKEOFF
CLI MnnuT
APPHOACH
IAXI-IDLF
EMISSION
RATE
IB/HR
MEAN 32.637
STD OEV 0.888
MEAN 7.992
STO OEV 1.694
MEAN T.868
STD DEV 3.5*5
MEAN 12.851
STO OEV 3.230
MEAN 32.637
STD OEV 0.888
TOTAL FOR CYCLE
LBS POLLUTANT/IK IB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 10.697
SID DFV 0.959
MEAN 0.0
STO DEV 0.0
MFAN 0.109
STO REV 0.154
MEAN 0.81?
STD OEV 0.286
MFAN 10.697
STD otv 0.95H
TOTAL FOR CYCLE
L«S POLLUTANT/IK L8
IIS POLLUTANT/IK LB
L9S POLLUTANT/ IOOOK
EMISSInN
RATE
LB/HR
MFAN 2.393
Sin OFV 1.699
MFAN 180.366
Sm OEV 76.259
MFAN 115.365
Sin DFV 50.762
MFAN 26.7'»9
Sm OEV 11 .926
MFAN 7.393
STD DEV 1 .699
TOTAL FOR CYCLE
LBS PflLLUTANT/IK LH
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
FUEL
RATE
LB/NR
764.324
24.597
8639.105
101.430
7214.418
63.372
3154.975
96.333
764.329
24.597
FUEL/CYCLE
TH- MR /CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
764.329
24.597
8633.105
101.430
7214. 418
63.372
5354.975
96.333
764.329
24.597
FUEL/CYCLE
TM-HR/CYCLE
LH TH-HR 41
FUEL
RATE
Lfl/HR
764.329
?4.597
8653.105
101.430
7214.410
63. J72
1354.975
96.331
704.329
24.597
FUEL/CYCLE
TH-HR/CYCL6
LO TH-HR AT
TINE IN
MODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD DEV:
MEAN:
STD OEV:
T.O. MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD DEV:
MFAN:
STD DEV:
T.O. MEAN:
STD DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
SID DEV.
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
SID DEV:
CO
MASS
LBS.
10.335
0.261
0.093
0.020
0.288
0.130
O.S57
0.215
3.808
0.104
15.381
0.022
16.716
0.035
11.108
0.022
0.643
0.136
HC
MASS
LBS.
3.387
0.303
0.0
0.0
0.004
0.006
0.054
0.019
1.748
0.112
4.693
0.429
5.101
0.462
3.389
0.309
0.0
0.0
NO I
MASS
LBS.
0.758
0.538
2. 104
0.890
4.230
1.861
1.787
0.795
0.279
0. 198
9.158
4.282
9.951
4.646
6.613
3.092
145.122
61.359
FUEL
MASS
L8S.
242.04
7.79
100.72
1.18
264.53
2.33
223.67
6.42
89.17
2.87
920.12
0.0
FUEL
MASS
LBS.
242.04
7.79
100.72
1.18
264.53
2.31
223.67
6.42
89.17
2.87
920.12
0.0
FUEL
MASS
LBS.
242.04
7.79
100.72
1.18
264.53
2.33
223.67
6.42
69.17
2.87
920. 12
0.0
LB CO /
U LB FUEL
42.741
2.537
0.927
0.207
1.093
0.501
3.846
1.073
42.741
2.537
LB HC /
IK LB FUEL
13.982
0.804
0.0
0.0
0.015
0.021
0.243
0.092
13.982
0.80'>
LB NOX/
IK LB FUEL
3.097
2.123
20.946
9. OHO
16.022
7.177
8.042
3.785
1.097
2. 123
ENERGY
1 TH-HR
275.50
0.0
169.17
0.27
451.92
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
ENERGY
1 TH-HR
275.50
0.0
1 69 . 1 7
0.27
451.92
0.0
386.67
0.0
1C1.50
0.0
1384.75
o.n
ENERGY
» TH-HR
775.50
0.0
169.17
0.27
451.9?
0.0
386.67
0.0
101.50
0.0
1384.75
0.0
LB CO /
• TH-HR
0.09751
0.00102
0.00055
0.00012
0.00064
0.00029
0.00222
0.00056
0.03751
0.00102
LB HC /
» TH-HR
0.01229
0.00110
0.0
0.0
0.00001
0.00001
0.00014
0.00005
0.01229
0.00110
LB NOX/
1 TH-HR
0.00275
0.00195
0.01244
0.00526
0.00936
0.00412
0.00462
0.00206
0.00275
0.00195
m-i2
-------
MODEL JT8D U-R REPS 6*9185 SIMPLE NUMBER - 3.
NODE
TAXI-IDLE
TAKEOFF
ClIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBdUT
APPROACH
TAXI-IDLE
MIIOE
TAXI-IOLF
TAKEOFF
CLIM'iOUT
APPROACH
TAXI-IQLF
EMISSION
RATE
LB/HR
MEAN *7.20*
STD DEV 8.0*6
MEAN 9.0*6
STO OEV 3.8**
MEAN 13.821
STD OEV 3.788
MEAN 17.052
STD DEV 0.531
MEAN 47.204
STO DEV 8.0*6
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
IE IN 6.6*7
STD DFV 1.092
MEAN 0.117
Sin DEV 0.102
MEAN 0.067
STO OEV 0.071
MEAN 0.505
STO OFV 0.302
MEAN 6.6*7
STD flF.V 1.092
TOTAL FOR CYCLF
LOS PULIUTAN1/1K LB
LBS POLLUTANI/1K LB
LBS POLLUTANT/1000K
EMISSION
RATE
Lfl/HR
"EAN I. tit
SID HEV n.072
MEAN 9?. 425
SID OEV 2. 0*1
MEAN 60.981
STO OEV 0.672
"FAN 16.601
Sin OEV 0.803
MEAN 1.989
STn OEV 0.072
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
L«S POLLUTANT/IK LB
LOS POILUTANI/1000K
FUEL
RATE
LB/HR
771.609
*0.09*
8514.625
73.593
71*9.059
49.234
3*66.591
42.615
771.609
40.09*
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
771.609
40.09*
851*. 625
73.593
7149.059
49.23*
3*66.591
42.615
771.609
40.094
FUEL/CYCLE
TH-HR/CYCLE
L8 TH-HR AT
FUEL
RATF
LB/HR
771.609
40.094
8514.625
73.591
7149.059
49.214
1466.591
42.615
771.609
40.094
FUEL/CYCLE
TK-HR/CVCLF
LB TH-HR AT
TIME IN
NODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STO DFVI
T.O. MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
STO nEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV.
MEAN:
STO OEV:
MEAh:
STO DEV:
T.O. MEAN:
STO OEV:
CO
MASS
. LBS.
14.948
2.548
0.106
0.0*5
0.507
0.139
1.137
0.035
5.507
0.939
22.20*
3.380
23.938
3.5*0
16.608
2.528
0.75*
0.320
MC
MASS
LBS.
2.105
0.3*6
0.001
0.001
0.002
0.003
0.03*
0.020
0.775
0.127
2.918
0.460
3.1*3
0.450
2.182
0.3**
0.098
0.085
NOX
MASS
LBS.
0.630
0.023
I.07S
0.02*
2.216
0.025
1.107
0.051
0.232
0.008
5.283
0.096
5.700
0.177
3.951
0.072
77.021
1.700
FUEL
HISS
LBS.
2»*. 3*
12.70
99.57
0.86
262.13
1.82
231.11
2.85
90.02
4.68
927.17
12.83
FUEL
MASS
LBS.
2*4.3*
12.70
99.57
0.86
262.13
1.82
231.11
2.85
90.02
4.68
927.17
12.83
FUEL
MASS
LBS.
244.3*
12.70
99.57
0.86
262.11
1.82
231. 11
2.85
90.02
4.68
927.17
12.83
LB CO /
IK LB FUEL
61.11*
9.556
1.058
O.**l
1.93*
0.53*
*.918
0.100
61.11*
9.556
LB HC /
IK LB FUEL
8.582
0.9*2
0.01*
0.012
0.009
0.010
0.1*5
0.086
8.582
0.9*2
LB NOX/
IK LP FUEL
2.582
0.1*2
10.830
0.244
8.530
0.071
4.787
0.174
2.582
0. 142
ENERGY
f TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.06
1337.00
0.0
ENERGY
1 TH-HR
266.00
0.0
163.33
0.0
436.33
0.0
373.33
0.0
98.00
0.06
1337.00
0.0
ENERGY
« TH-HR
266.00
0.0
163.33
0.0
436.13
n.o
373.33
0.0
98.00
0.06
1337.00
0.0
LB CO /
1 TH-HR
0.05620
0.00958
0.0006!
0.0002T
0.00116
0.00032
0.00305
0.00009
0.05620
0.00958
LB HC /
• TH-HR
0.00791
0.00130
0.00001
0.00001
0.00001
0.00001
0.00009
0.00005
0.00791
0.00130
LB NOX/
• TH-HH
0.00237
0.00009
0.00660
0.00015
0.00512
0.00006
0.00296
0.00014
0.00237
0.00009
m-i3
-------
APPENDIX IV
STATISTICAL SUMMARIES OF
HOMOGENEOUS CATEGORIES OF
AIRCRAFT ENGINES
CONTENTS:
IV-2 T56-A7 ENGINES, TESTED BY SWRI
IV-3 T56-A15 ENGINES. TESTED BY ALLISON
IV-4 TPE 331 ENGINES, TESTED BY AIRESEARCH
IV-5 CJ-805-3A ENGINES, TESTED BY SWRI
IV-6 JT3C ENGINES, TESTED BY UNITED/EPA
IV-7 JT3C ENGINES, TESTED BY SWRI
IV-8 TO IV-11 JT3D ENGINES, TESTED BY PRATT & WHITNEY, SWRI,
UNITED/EPA, BU MINES/AA.
IV-12 JT4A ENGINES, TESTED BY SWRI
IV-13 JT8D (NEW) ENGINES, TESTED BY SWRI
IV-14 JT8D (OLD) ENGINES, TESTED BY SWRI
IV-15 JT8D (NEW AND OLD) ENGINES. TESTED BY SWRI
IV-16 TO IV-21 JT8D ENGINES, SMOKELESS (S) AND REGULAR (R),
DILUTED (D) AND UNDILUTED (U) AS INDICATED
IV-22 JT9D ENGINES, TESTED BY PRATT & WHITNEY
IV-23 SPEY 511 ENGINES, TESTED BY BU MINES/AA
DT-1
-------
MODEL T56-A7 SHRI
SAMPLE NUMBER • 11.
NODE
TAXI-IDLE
TAKEOFF
CLIM80UT
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
HEAN 15. 268
STD OEV 3.519
MFAN 2.190
STO DEV 1.285
MEAN 3.004
srn OEV 0.791
HEAN 3.668
STO DEV 0.841
MEAN 15. 268
STD DEV 3.S19
TOTAL FOR CYCLE
LBS POLLUTANT /IK LB
FUEL
RATE
LB/HR
548.004
54.095
2079.317
77.480
1908.447
25.675
1052.900
23.937
548.004
54.095
FUEL/CYCLE
LBS PHLLUTANT/1K HP-HR/CYCLE
MODE
rAKI-IDLC
TAKEOFF
CLIMBOUI
APPROACH
TAXI-IDLE
LBS PQLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 6.474
STD OEV 1.612
MEAN 0.410
Sin OEV 0.911
MEAN 0.476
STO !>F.V 0.976
MFAN 0.517
STO DF.V 1 .004
MEAN 6.474
srn DEV 1.612
TOTAL FOB CYCLE
LBS POLLUTANT/IK LB
HP-HR AT T.O.
FUEL
RATE
LB/HR
548.004
54.095
7079.317
77.480
1908.447
Z5.675
1052.900
23.937
548.004
54.095
FUEL/CYCLE
LOS POLLUTANT/IK HP-HR/CYCLF
MODE
T1XI-IOLF
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
LOS POLLUTANT/IOOOK
EMISSION
RATE
LH/HR
"FAN 2.161
STD OEV 0.499
MFAN 22.878
Sm OFV 3.566
MFAN 21.212
STD I1CV 2.314
MEAN 7.776
STI) DEV 0.9IJ
MEAN 2.161
STD OEV 0.499
TOTAL FDR CYCLF
LBS POLLUTANT/IK LB
HP-HR AT T.O.
FUEL
RATE
LB/MR
548.004
54.095
?1)79.J17
77.480
1908.447
25.675
IOS2.900
23.937
548.004
54.095
FUFL/CYCLF
LDS POLLUTANT/IK HP-MR/CYCIE
LHS POLLUTANT/ 1000K
HP-HR AT 1.0.
TINE IN
NODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
SID OEV:
MEAN:
STO QEV:
MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MFAN:
STO OEV:
MEAN:
STO DEV:
MEAN:
STD OEV:
II ME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV.
MFAN:
STD OEV:
HtAN:
STD DEV:
MEAN:
STD DEV:
CO
MASS
LBS.
4.835
1.115
0.025
0.015
0.110
0.029
0.245
0.056
1.781
0.411
6.996
1.502
17.455
3.674
23.989
5.152
0.668
0.399
HC
MASS
LBS.
2.050
0.511
0.005
0.011
0.017
0.036
0.034
0.067
0.755
0.188
2.863
0.704
f.155
1.790
9.815
2.414
1.337
2.830
NOX
MASS
LBS.
0.684
0.158
0.267
0.042
0.778
0.085
0.5IR
0.061
0.252
0.05B
2.499
0.371
6.212
0.765
8.570
l.?71
71.082
11.080
FUEL
MASS
IBS.
173.53
17.1}
24.26
0.90
69.98
0.95
70.19
1.60
63.93
6.31
401.90
24.21
FUEL
MASS
LBS.
173.53
17.13
24.26
0.90
69.98
0.95
70.19
1.60
63.91
6.31
401.90
24.21
FUEL
MASS
LBS.
173.53
17.13
24.26
0.90
1.0.98
0.95
70. 19
1 .60
63.93
6.31
401.90
24.21
LB CO /
IK LB FUEL
28.101
6.597
1.040
0.627
1.579
0.421
3.482
0.787
28.101
6.597
L8 HC /
IK LB FUEL
11.923
3.054
0.207
0.438
0.250
0.512
0.491
0.952
11.923
3.054
LB NOX/
IK LB FUEL
3.932
0.741
10.9H4
1.501
11.111
1.154
7.382
0.812
3.932
0.743
ENERGY
HP-HR
35.67
0.04
43.81
0.10
123.91
0.08
75.10
0.08
13.14
0.01
291.64
0.0
ENERGY
HP-HR
35.67
0.04
43.81
0.10
123.91
O.OR
75.10
0.06
13.14
0.01
291.64
0.0
ENERGY
HP-HR
35.67
0.04
41.81
0.10
123.91
0.08
75.10
o.oa
13.14
0.01
291.64
0.0
IB CO /
HP-HR
0.1355)
0.03124
0.00057
0.00034
0.00089
0.00023
0.00326
0.00075
0.13553
0.03124
LB HC /
HP-HR
0.05747
0.01431
0.00011
0.00024
0.00014
0.00029
0.00046
0.00089
0.05747
0.01431
LB NOX/
HP-HR
0.019IR
0.00443
0.00609
0.00095
0.0062B
0.0006H
0.00690
o.oooei
0.019IH
0.00443
n-2
-------
MODEL T56-A15 ALLISON
SAMPLE NUMBER • 11.
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IOLE
EMISSION
RATE
LB/HK
MEAN 6.779
STO OEV 3.348
MEAN 3.916
STO OEV 1.241
MEAN 3.500
STD OEV 0.764
MEAN 3.520
STO DEV 0.883
MEAN 6.779
STD OEV 3.348
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
FUEL
RATE
LB/HR
485.527
125.216
2395.7*8
130.378
2190.641
99.591
1146.848
20.452
485.527
125.216
FUEL/CYCLE
LBS POLLUTANT/IK HP-HR/CYCLE
MODE
TAXI-IOLE
TAKEOFF
CLIMROUT
APPROACH
TAXI-IDLE
LBS PQLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MFAN 6.377
STD DEV 4.226
MEAN 0.429
STD DFV 0.698
MEAN 0.3R9
STO DEV 0.618
MEAN 0.306
STD DtV 0.329
MFAN 6.371
STD DEV 4.226
TOTAL FOR CYCLE
LBS POLLUTANT/IK LR
HP-HR AT T.O.
FUEL
RATE
LB/HR
485.527
125.216
2395.748
130.378
2190.641
99.591
1146.848
20.452
485.527
125.216
FUEL/CYCLF
LBS PdLLUIANT/IK HP-HR/CYCLE
MOOE
TAXI-IDLE
TAKEOfF
CLIMBOUT
APPROACH
TAX l-IDLf
LBS PflLLUTANT/lOOOK
EMISSION
RATE
LB/HR
MFAN 1.194
STD OCV 0.717
MEAN 28.405
STO OEV II .898
MFAN 22.441
STO OCV 3.600
MEAN 7.225
STO OF.V 1 .608
MEAN 1.194
STO OEV 0.717
ItlTAL FOR CYCLE
L3S PIJLLUTANT/1K LB
HP-HR AT T.n.
FUEL
RATE
LB/HR
435.527
125.216
2195.748
130.378
2190.641
99.591
1146.348
20.452
485.527
125.216
FUFL/CYCLE
LOS POLLUTANT/IK hP-HR/CYCLE
L US POLLUTANT/ 1000K
HP-HH AT 1.0.
TINE IN
NODE
HIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STD OEV:
MEAN:
STO DEV:
MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MFAN:
SID DEV:
MEAN:
STD DEV:
MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
0. 70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MFAN:
STD OEv:
MEAN:
STO DEV:
MEAN:
STD DEV:
MEAN:
STO DEV:
CO
NASS
LBS.
2.1*7
1.060
0.0*6
0.01*
0.128
0.028
0.235
0.059
0.791
0.391
3.3*6
1.506
8.573
3.866
9.384
4.224
0.995
0.315
HC
NASS
LBS.
2.019
1.338
0.005
0.008
0.014
0.023
0.020
0.022
0.744
0.493
2.803
1.815
7.066
4.221
7.861
5.090
1.090
1.773
NOX
NASS
LBS.
0.378
0.227
0.332
0. 139
0.823
0.132
0.482
0.107
0. 139
0.084
2.155
0.579
5.420
1.086
6.047
1.624
72.413
30.236
FUEL
NASS
LBS.
153.75
39.65
27.95
1.52
80.32
3.65
76.46
1.36
56.64
14.61
395.13
56.15
FUEL
NASS
LBS.
153.75
39.65
27.95
1.52
80.32
3.65
76.46
1.36
56.64
14.61
395.13
56.15
FUEL
MASS
LBS.
153.75
39.65
27.95
1.52
BO. 32
3.65
76.46
1 .36
56.64
14.61
395.13
56.15
LB CO /
IK LB FUEL
1*.
a.
i.
0.
i.
0.
3.
0.
14.
8.
909
335
626
465
592
295
069
761
909
335
LB HC /
IK LB FUEL
13.
7.
0.
0.
0.
0.
0.
0.
13.
7.
489
858
173
285
174
279
268
287
489
856
LR NO*/
IK LB FUEL
2.
1.
11.
4.
10.
1.
6.
1.
2.
1.
406
230
892
927
242
584
292
348
406
230
ENERGY
HP-HR
43.61
0.09
53.56
0.09
151.50
0.08
91.82
0.08
16.07
0.0
356.57
0.0
ENFRGY
HP-HR
43.61
0.09
53.56
0.09
151.50
0.08
91.82
0.08
16.07
0.0
356.57
0.0
ENERGY
HP-HR
43.61
0.09
53.56
0.09
151.50
0.08
91.1)2
0.08
16.07
o.n
356.57
o.n
LB
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CO /
HP-HR
04922
02431
0008S
00027
00085
00018
007.56
00064
04972
02431
HC /
HP-HR
04610
03068
00009
00015
00009
00015
00022
00024
04630
03068
NOX/
MP-HR
00867
00521
00621
00259
00543
00087
00525
0011 7
00867
00521
EZ-3
-------
MODEL TPE 331 AIKESEARCH
SAMPLE NUMBER • 3.
NODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
EMISSION
RATE
LR/HR
MEAN 3. S3)
STD OEV 0.640
MEAN 0.393
STO OEV 0.309
MEAN 0.568
STO OEV 0.313
MFAN 2.582
STD DEV 0.443
MEAN 3.533
STO DEV 0.640
TOTAL FOR CYCLE
LBS POLLUTANT/IK LR
FUEL
RATE
LB/HR
145.910
16.530
.165.419
9.366
339.093
10.361
206.096
7.348
145.910
16.530
FUEL/CYCLE
LBS POLLUTANT/ IK HP-MR/CTCLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBOLII
APPROACH
TAXI-IDLE
LHS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MFAN 0.079
STD OGV 0.579
MEAN 0.055
STO DEV 0.062
MEAN 0.053
STO 1EV 0.060
MEAN 0.240
STD OEV 0.125
XFAN O.B79
STD DFV 0.579
TOTAL FOR CYCLE
L3S POLLUTANT/IK Lfl
HP-HR AT T.O.
FUEL
RATE
LB/HR
145.910
16.530
365.419
9. 366
319.093
10.361
206.096
7.34H
145.910
16.530
FUEL/CYCLE
LUS POLLUTANT/IK HP-HR/CYCLF
nnne
TAXI-IDLE
TAKEHFF
CL IMHOUT
APPROACH
TAK1-IOLF
LHS POLLIITANT/IOOOK
EMISSION
RATE
LB/HR
MEAN 0.155
STIJ OFV 0.360
MhAN 3.639
STD OEV 1.276
"FAN 1.313
STO OEV 1 .111
"FAN I.63S
srn orv 0.543
MFAN 0.955
STD DEV 0.360
TOTAL FOK CYCLE
L'lS POLLUTANT/IK LH
HP-HR AT T.O.
FUEL
KATE
LO/HR
145.910
16.530
3>.5.4I9
9.366
139. 093
10.361
216.096
7. 341
145.910
ld.530
FUEL/CYCLE
L1S POLLUTANT/IK HP-HR/CYCLE
L1S POLLUIANT/IOOOK
Hp-H-t AT r.n.
TINE IN
NODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD DEV:
HFAN:
STD DEV:
NEAN:
STO DEV:
TINE IN
MODE
NIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MEAN:
STD DEV:
MEAN:
STD DEV:
MEAN:
sro DEV:
TIME IN
MODE
MIN.
19.00
0.0
0. 70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV.
HFAN:
sin OEV:
MEAN:
STD OEV:
MEAN:
STD DEV:
CO
MASS
LBS.
1.119
0.203
0.005
0.004
0.021
0.011
0.172
0.030
0.412
0.075
1.729
0.238
18.495
2.390
32.640
5.018
0.778
0.610
HC
MASS
LBS.
0.278
0.183
0.001
0.001
0.002
0.002
0.016
0.008
0.103
0.067
0.400
0.245
4.292
2.538
7.576
4.755
1.096
1.227
NOX
MASS
LBS.
0. 302
O.I 14
0.042
0.015
0.121
0.044
0.112
0.040
0. Ill
0.042
3.690
0.233
7.255
1.944
13.020
4.4IH
72.765
26.312
FUEL
MASS
IBS.
46.20
5.23
4.26
0.11
12.43
0.38
13.74
0.49
17.02
1.93
93.66
8.01
FUEL
NASS
LBS.
46.20
5.23
4.26
O.U
12.43
0.38
13.74
0.49
17.02
1.93
93.66
8.01
FUEL
MASS
LBS.
46.20
5.23
4.26
0. 11
17.43
D.38
1J.74
0.49
17.02
1.93
93.66
a. 01
LB CO /
IK LB FUEL
24
4
1
0
1
0
12
2
24
4
•
.
.
.
.
351
413
082
848
684
936
537
145
351
413
LB HC /
IK LB FUEL
6
3
0
0
0
0
1
0
t
'
.
.
091
835
153
175
158
184
177
643
6.091
3.835
LB NOX/
IK LB FUEL
6
1
9
3
9
3
8
2
6
1
•
.
.
.
.
417
795
902
263
706
245
113
641
417
795
ENERGY
HP-HR
11.11
0.16
6.82
0.10
19.30
0.29
11.70
0.17
4.09
0.06
53.04
0.78
ENERGY
HP-HR
11.11
0.16
6.82
0.10
19.30
0.29
11.70
0.17
4.09
0.06
53.04
0.78
ENERGY
HP-HR
11.11
0. 16
6.8?
0.10
19.30
0.29
11.70
0.17
4.09
0.06
53.04
0.78
LB
0.
0.
0.
0.
0.
0.
CO /
HP-HR
10086
01989
00067
00052
00107
00058
0.01469
0.00235
0.
0.
L3
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LB
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
10086
01989
HC /
HP-HR
02520
01695
00009
00011
00010
00011
00136
00070
02520
01695
NO*/
HP-MR
02719
01016
00624
00226
00631
00234
00962
00347
02719
01016
EZ-4
-------
MODEL CJ-105-3A SWRI
SAMPLE NUMBER
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKFOFF
CLIMBOUT
APPROACH
TAXI-IDLF
*OOF
TAXI-IDLF.
TAKtOFF
CL If ROUT
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 63.767
STD DEV 13.744
MEAN 29.071
STD OEV 4.213
MEAN 28.876
STD OEV 4.692
MFAN 42.625
STD OEV 14.524
MEAN 63.767
SID OEV 13.744
TOTAL FOR CYCLE
L9S POLLUTANT/IK LB
L9S POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 27.309
STD OF.V 7. (.38
MtAN 0.556
STO OF.V 0.547
MEAN 0.583
STD OFV 0.442
MF4N 2.427
Sm OEV 1.882
••FAN 27.30°
STO riF.V 7.638
TOTAL FOK CYCLF
L1S POLLUTANT/IK LB
LBS POLLUTANT/ IK LB
LBS "QLLUIANT/1POOK
FMISSIC'N
RATE
LB/HR
HFAN 1.566
srn HF.V 0.450
MCAN 110.632
SfD DEV 17.743
"EAN 73.982
STD OF V 6.116
MFAN 17.845
SID DCV 1 .362
MEAN 1.566
srn OFV 0.450
tOTAL FOR CYCLE
LBS POLLUTANT/IK LH
LBS POLLUTANT/IK LB
L^ PflLLUIANT/IOOOK
FUEL
RATE
LB/HR
1000.692
128. 982
9959.773
251.241
8290.375
181.826
3776.597
314.310
1000.692
128.982
FUEL/CYCLE
TH-HR /CYCLE
LB TH-HR AT
FUEL
RATF
LB/HR
1000.692
128.982
9959.773
251.241
8290.175
131.826
3776.597
114.310
1000.692
128.982
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1000.69?
128.982
1959. 773
251.241
B290.175
181.826
3776.597
314.310
1000.692
128.982
FlIFL/CYCLC
TH-HR/CYCLE
LB TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
o. ;o
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STU OEV:
MEAN:
SID OEv:
MEAN:
STD OEV:
r.o. KEAN:
STO OEV:
TIHE IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MFAN:
STD REV:
MEAN:
SID OEV:
MEAN:
STO DEv:
i.n. MEAN:
STD OEv:
CO
MASS
LBS.
20.193
4.352
0.339
0.049
1.059
0.16B
2.855
0.968
7.440
1.603
31.885
6.547
28.662
4.585
32.786
6.732
3.028
0.439
HC
MASS
LBS.
8.648
2.419
0.006
0.006
0.021
0.016
0. 162
0.125
3. 1B6
0.891
12.024
3.297
10.849
2.79B
12.363
3.390
0.579
0.570
NOX
MASS
LBS.
0.496
0.143
1.791
0.207
2.713
0.224
1.190
0.091
0. 183
0.053
5.872
0.466
5.315
0.376
6.037
0.479
115.242
IB.4B2
FUEL
MASS
LBS.
316.89
40.84
116.20
2.93
303.98
6.67
251.77
20.95
116.75
15.05
1105.58
62.21
FUEL
MASS
LBS.
316.89
40.84
116.20
2.93
303.98
6.67
251.77
20.95
116.75
15.05
1105.58
62.21
FUEL
MASS
LBS.
316.89
40. 84
116.20
2.93
103.98
6.67
251.77
20.95
116.75
15.05
1 105.58
62.21
LB CO /
IK IB FUEL
63.266
7.6S4
2.921
0.437
3.488
0.584
11.509
4.613
63.286
7.654
LB HC /
IK LB FUEL
27.147
5.843
0.056
0.054
0.070
0.053
0.645
0.493
27.147
5.843
Lfl NOX/
IK LB FUEL
1.547
0.323
11.086
1.565
8.917
0.600
4.739
0. 116
1.547
0.323
ENERGY
1 TH-HR
141.87
0.19
130.67
0.13
349.07
0.0
298.67
0.0
52.27
0.06
972.53
1.20
ENERGY
« TH-HR
141.87
0.19
130.67
0.13
349.07
0.0
298.67
0.0
52.27
0.06
972.53
1.20
ENERGY
« TH-HR
141.87
0.19
130.67
0.13
149.07
0.0
290.67
0.0
52.27
0.06
972.53
1 .20
LB CO /
1 TH-HR
0.14234
0.03068
0.00260
0.00038
0.00303
0.00048
0.00956
0.00324
0.14234
0.03068
LB HC /
1 TH-HR
0.06096
0.01705
0.00005
0.00005
0.00006
0.00005
0.00054
0.00042
0.06096
0.01705
LB NOX/
• TH-HR
0.00350
0.00101
0.00988
0.00158
0.00777
0.00064
0.00398
0.00030
0.00350
0.00101
-------
MODEL JT3C UNITED
SAMPLE NUMBER
NODE
TAXI-IDLE
TAKEOFF
CLIN30UT
APPROACH
TAXI-IDLE
MODE
TAX I-IDLE
TAKFOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-iniF
TAKEOFF
APPROACH
TAXI-IDLt
EMISSION
RATE
L8/MR
MEAN 115.427
STD OEV 11.037
MEAN 10.659
STD OEV 7.444
MEAN 20.936
STO DEV 3.013
MEAN 67.123
STO OEV 9.214
MEAN 115.427
STD OEV 19.037
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MFAN DR. 741
StO Ofv 43.348
MEAN 0.090
STD DEV 0.181
MFAN 0.6)4
STO DFV 0.584
MEAN 11.296
STO OEV 7.539
MEAN Bfl.741
STD OEV 43.398
TOTAL FOR CYCLE
LOS PUILUTANT/IK LB
LBS POLLUTANT/IK LB
L8S POLLUTANT/ IOOOK
EMISSION
RATE
LB/HR
MFAN 3.06B
STn OEV 0.439
1EAN 12R.08I
SID 1EV 23.809
SFD OEV 14.7)2
MEAN 21.157
STO OEV 3.772
MFAN 3.068
STO DEV 0.419
IOTSL F0<< CYCLE
LBS PHLLUTANT/IK LB
LflS POLLUTANT/IK LB
LOS POLLUTANT / ItlOOK
FUEL
RATE
IB/ MR
122T.736
84.711
10218.871
165.763
8553.961
96.443
3970.854
147.404
1227.736
84.711
FUEL/CYCLE
TH-HR/CYCLE
Lfl TH-HR AT
FUEL
RATE
Lfl/HR
1227.736
84.711
10218.871
165.763
8553.961
96.443
3970.854
147.404
1227.736
H4.711
FUEL/CYCLE
TH-HR/CYCLE
LB TM-HR AT
FUEL
RATE
L8/HR
1227.736
84.711
1021H.871
165.763
96.44.1
1970.854
147.404
1227.736
84.711
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STO DEV:
MEAN:
STO DEV:
T.O. MEAN:
STO OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV:
MEAN:
STO OEV:
MEAN:
STD OEV:
T.O. MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0. C
0.70
0.0
2 . 20
o.o
4. no
0.0
7.00
0.0
MEAN:
STD DEV:
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
STO OEV:
CO
MASS
LBS.
36.552
6.028
0.124
0.087
0.767
0.110
4.475
0.614
13.466
2.221
55.385
8.455
44.949
5.944
50.626
7.729
1.036
0.724
MC
MASS
LBS.
28.101
13.743
0.001
0.002
0.023
0.021
0.753
0.503
10.353
5.063
39.232
19.251
31.914
15.447
35.861
17.597
0.088
0.176
NOX
MASS
LBS.
0.972
0.139
1.494
0.278
3>262
0.540
1.544
0.251
0.358
0.051
7.649
0.886
6.2)1
0.806
6.992
0.810
124.523
23.147
FUEL
MASS
LBS.
388.78
26.83
119.22
1.95
313.65
3.54
264.72
9.83
143.24
9.88
1229.61
44.41
FUEL
MASS
LBS.
388.78
26.83
119.22
1.95
313.65
3.54
264.72
9.83
143.24
9.88
1229.61
44.41
FUEL
MASS
LBS.
388.78
26.83
IIV.22
1. ->5
3 I 3 . t5
3.54
264.72
9.83
143.24
9.68
1229.61
44.41
LB CO /
IK LB FUEL
93.677
11.397
1.043
0.725
2.447
0.361
16.971
2.772
93.677
11.397
LB KC /
IK LB FUEL
72.935
35.557
0.009
0.018
0.074
0.068
2.805
1.779
72.935
35.557
LB NOX/
IK LB FUEL
2.496
0.276
12.512
2.152
1.618
5.830
0.928
2.496
0.276
ENERGY
1 TH-HR
190.00
0.14
140.00
0.25
374.00
0.0
320.00
0.0
70.00
0.09
1094.00
0.0
ENERGY
1 TH-HR
190.00
0. 14
140.00
0.25
374.00
0.0
320.00
0.0
70.00
0.09
1094.00
0.0
ENERGY
* TH-HR
190.00
0.14
140.00
0.25
0.0
320.00
0.0
70.00
0.09
1P94.00
0.0
LB CO /
1 TM-HR
0.19238
0.03173
0.00089
0.00062
0.00205
0.00030
0.01398
0.00192
0.19238
0.03173
LB HC /
1 TH-HR
0.14790
0.07233
0.00001
0.00002
0.00006
0.00006
0.00235
0.00157
0. 14790
0.07233
LB NDX/
« TH-HR
0.00511
0.00073
0.01067
0.00198
0.00144
0.00482
0.00079
0.00511
0.00073
DT-6
-------
MODEL JT3C SWRI
SAMPLE NUMBER
NODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
T»XI-lnLE
TAKEOFF
CLIMBOUT
APPROACH
TAKI-IOLE
MOOE
TAXI-IDLE
UKEOFF
r.LixflOur
APPROACH
TAXI-IDLE
EMISSION
RATE
LB/HR
MEAN 62.225
SrO OEV 38.042
MEAN 6. 873
STO DEV 9.572
MFAN 9.332
STD OEV 9.182
MEAN 2*. 971
STO r)EV (,.388
MFAN 62.225
STO OEV 38.042
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MEAN 96.789
STO DF.V 78.557
MEAN 1.874
STO DEV 1.631
"FAN 1.239
STD DEV 0.499
MEAN 4.215
STD DFV 2.428
MEAN 9(1.789
Sin OEV 76.557
TOTAL FOR CYCLE
L9S POLLUTANT/IK LB
LBS POLLUTANt/lK LB
LOS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 1.716
STD af\i 0.036
MFAN 106.911
SID riFV 27.579
MFAN 78.245
STD DEV II .146
MbAN 23.285
STO OFV 0.696
MCAN 1.716
STO OEV 0.016
TOTAL FOX CYCLE
LflS POLLUTANT/IK L3
LBS POLLUTANI/1K LB
LHS POLLUTANT/ IOOOK
FUEL
RATE
LB/HR
1157.855
93.979
10135.688
681.645
8449.488
573.425
4308.172
224.606
1157.855
93.979
FUEL/CYCLE
TH- MR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1157.855
93.979
10135.688
681.645
8449.488
573.425
4308. 172
224.606
1157.855
93.979
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1157.855
93.979
10135.688
611.645
8449.488
573.425
4)08.172
224.606
1157.855
93.979
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV:
MEAN:
STD DEV:
MEAN:
STD DEV:
T.O. MEAN:
STD OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MEAN:
STD DEV:
MEAN:
STD OEV:
i.o. MEAN:
STO OEv:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STD DEV:
T.O. MEAN:
SID DEV:
CO
MASS
LBS.
19.705
12.046
0.080
0.112
0.342
0.337
1.658
0.426
7.260
4.438
29.044
16.993
24.282
14.640
27.620
16.524
0.676
0.925
HC
MASS
LBS.
30.650
24.876
0.022
0.019
0.045
O.OIB
0.281
0.162
11.292
9.165
42.290
33.889
35.614
29.102
40.679
33.797
1.900
1.646
NOX
MASS
LBS.
0.543
0.012
1.247
0.322
2.B69
0.409
1.552
0.046
0.200
0.004
6.412
0.705
5.272
0.583
6.021
0.454
106.320
23.546
FUEL
MASS
LBS.
366.65
29.76
118.25
7.95
309.81
21.03
287.21
14.97
135.08
10.97
1217.01
54.43
FUEL
MASS
LBS.
366.65
29.76
118.25
7.95
309.81
21.03
287.21
14.97
135.08
10.97
1217.01
54.43
FUEL
MASS
LBS.
366.65
29.76
118.25
7.95
309. 61
21.03
287.21
14.17
135.08
10.97
1217.01
54.43
LB CO /
IK LB FUEL
55.455
35.576
0.660
0.896
1.108
1.049
5.837
1.834
55.455
35.576
LB HC /
IK L8 FUEL
85.931
68.789
0. 188
0.163
0.148
0.060
0.969
0.539
85.931
68.789
LB NOX/
IK LB FUEL
1.489
0.138
10.470
2.130
9.235
0.818
5.419
0.428
I.4B9
0.138
ENERGY
1 TH-HR
184.72
9.14
136.11
6.74
363.61
17.99
311.11
15.40
68.06
3.37
1063.61
52.63
ENERGY
• TH-HR
184.72
9.14
136.11
6.74
363.61
17.99
311.11
15.40
68.06
3.37
1063.61
52.63
ENERGY
• TH-HR
184.72
9.14
1 36.11
6.74
363.61
17.99
311.11
15.40
68.06
3.37
1063.61
52.63
LB CO /
1 TH-HR
0.10792
0.06723
0.00058
0.00079
0.00094
0.00090
0.00538
0.00168
0.10792
0.0672)
LB HC /
• TH-HR
0.16980
0.14275
0.00016
0.00014
0.00013
0.00005
0.00089
0.00049
0.16980
0.14275
LB NOX/
• TH-HR
0.00295
0.00021
0.00911
0.00202
0.00787
o.oooai
0.00500
0.00039
0.00295
0.00021
-------
MODEL JT3D PtW
SAMPLE NUMBER
MODE
TAXI-IOLE
TAKEOFF
CLIMBDUT
APPROACH
TAXI-IOLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
lAPtFDFF
CLIMBOUT
APPROACH
TAXI-IOLE
EMISSION
RATE
LB/HR
MEAN 81.990
STO DEV 36.606
MEAN 7. 695
STD OEV 7.338
MEAN 12.017
STD OEV 5.787
MEAN 37.023
STO OEV 5.566
MEAN 81.990
STD DEV 36.606
TOTAL FOR CYCLE
LDS POLLUTANT/IK LB
LBS POLLUTANT/IK L8
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/MR
MEAN 44.885
STD DEV 28.600
MEAN 1.982
STD OEV 1.803
MEAN 2.139
STO OEV 1.624
MEAN 4.817
STD DEV 2.271
MEAN 44.885
STO OFV 28.600
TOTAL FOR CYCLE
LHS POLLUTANT/IK LB
LBS POLLUTANT/IK L9
L'lS PULLUTANT/IOOOK
EMISSION
RATE
LB/HR
MEAN 1.3)1
STD DFV 0.662
MEAN 141.347
STD DC V 17.116
"FAN 89.484
SID DEV 5.893
MEAN 20.053
STtl DEV 0.814
MFAN 1.331
STO DEV 0.662
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LAS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
FUEL
RATE
LB/HR
779.227
334.953
10121.176
291.204
8238.910
451.628
3660.162
196.092
779.227
334.953
FUEL/CYCLE
TH-HR/CYCLE
IB TH-HR AT
FUEL
RATE
LB/HR
779.227
334.953
10121.176
291.204
8238.910
451.628
3660.162
196.092
779.227
334.953
FUEL/CYCLE
TH-HR/CYCLE
L3 TM-HR AT
FUEL
RATE
LB/HR
779.227
334.953
10121.176 •
291.204
0238.910
451.628
3660.162
196.092
779.227
334.951
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
TINE IN
MODE
M1N.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN1
STO OEV:
T.O. MEAN:
STO OEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO OEV:
MEAN:
STO OEV:
T.O. MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STO REV:
MEAN:
STO OEV:
T.C. MEAN:
STO DEV:
CO
MASS
LBS.
25.963
11.592
0.090
0.086
0.441
0.212
2.466
0.371
9.565
4.271
38.527
15.797
36.936
11.462
23.478
9.627
0.499
0.476
HC
MASS
LBS.
14.214
9.057
0.023
0.021
0.076
0.060
0.321
0.151
5.237
3.337
19.873
12.519
19.791
11.794
12.110
7.629
1.285
1.169
NOX
MASS
LBS.
0.422
0.210
1.649
0.200
3.281
0.216
1.337
0.060
0.155
0.077
6.844
0.590
6.970
1.129
4.171
0.359
91.614
11.106
FUEL
MASS
LBS.
246.76
106.07
lie. OB
3.40
302.09
16.56
244.01
13.07
90.91
39.08
1001.85
169.97
FUEL
MASS
LBS.
246.76
106.07
118. C8
3.40
302.09
16.56
244.01
13.07
90.91
39.08
1001.85
169.97
FUEL
MASS
LBS.
246.76
106.07
118.08
3.40
302.09
16.56
244.01
13.07
90.91
39.08
1001.85
169.97
IB CO /
IK LB FUEL
105.740
8.632
0.7T5
0.739
1.487
0.764
10.097
1.241
105.740
8.632
LB HC /
IK LB FUEL
66.391
37.017
0.199
0.182
0.269
0.207
1.330
0.652
66.391
37.017
IB NOX/
IK LB FUEL
1.862
0.700
13.961
1.589
10.877
0.742
5.495
0.454
1.862
0.700
ENERGY
1 TM-MR
285.00
0.0
210.00
0.18
561.00
0.0
480.00
0.0
105.00
0.15
1641.00
1.94
ENERGY
t TH-HR
285.00
0.0
210.00
0.18
561 .00
0.0
480.00
0.0
105.00
0. 15
1641.00
1.94
ENERGY
1 TH-HR
285.00
0.0
210.00
O.IB
561.00
0.0
480.00
0.0
105.00
0.15
1641.00
1.94
LB CO /
» TH-HR
0.09110
0.04067
0.00043
0.00041
0.00079
0.00038
0.00514
0.00077
0.09110
0.04067
LB HC /
• TH-HR
0.04987
0.03178
0.00011
0.00010
0.00014
0.00011
0.00067
0.00032
0.04987
0.03178
LB NOX/
• TH-HR
0.00148
0.00074
0.00785
0.00095
0.00585
0.000)9
0.00279
0.00012
0.00148
0.00074
J3Z-8
-------
MODEL JT3D SNRI
SAMPLE NUMBER
MODE
TAXI-IDLE
TAKEOFF
CLINBOUr
APPROACH
TAXI-IDLE
MODE
TAXI-IULF
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MD9E
TAXI-IDLF
JAKEDFF
CL IMBOUT
APPRDACH
TAXI-IOLC
EMISSION
RATE
LB/HR
MEAN 102.886
STD DEV 86.372
MEAN 10.101
STO DEV 8. 177
MEAN 9.962
STD DEV 5.1*7
MEAN 28.688
STO DEV 11.55*
MEAN 102.886
STO DEV B6.372
TOTAL FOR CYCLE
IBS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 84.269
STD OEV 61.550
MEAN 11.810
SID OEV 14.190
MEAN 12.776
STO OEV 13.249
MEAN 11.940
STO OEV 8. 939
MEAN 84.269
Srn DEV 61.350
TOTAL FC1R CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/IK IB
L"*S POLLUTANT/1000K
EMISSION
RATE
LB/HR
MEAN 1.144
sin DEV 0.2J6
MfAN 147.570
STD DEV 13.680
yFAN 94.511
STD DEV 7.840
"FAN 20.074
STtl 1CV 1 .82S
NF&N 1.144
sin nfv 0.236
roiflL FOH CYCLE
L1S POLLUTANT/IK LB
LBS POLLUTANT/ IK LB
LBS POLLUTANT/ 1000K
FUEL
RATE
LB/HR
853.590
81.384
11158.953
420.235
9234.824
152. OTO
4242.242
170.341
853.590
81.384
FUEL/CYCLE
TH-MR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
853.590
61.384
11158.953
420.235
9234.824
152.070
4242.242
170.341
653.590
81.384
FUFL/CYCLE
TH-HK/CYCLE
Lfl TH-HR AT
FUEL
RATE
LB/HR
353.590
31.384
1 1158.963
420.235
9214. 824
152.070
4242.242
170.341
J53.590
H1.384
FUEL/CYCLE
TH-HR/CYCLF
LB TH-HH AT
TIME IN
MOOE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STO DEV:
ME AN i
STO DEV:
1.0. MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
MEAN:
STO DEV:
MEAN:
sin DEV:
T.O. MEAN:
STD DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD OEV:
MEAN:
STD DEV:
MEAN:
STO DEV:
T.O. MEAN:
STD OEV:
CO
MASS
. LBS.
32.581
27.351
0.118
0.095
0.365
0.189
1.913
0.770
12.003
10.077
46.979
36.861
41.083
30.279
28. 629
22.462
0.655
0.530
HC
MASS
LBS.
26.685
19.42B
0.138
0.168
0.468
0.486
0.796
0.596
9.831
7.158
37.919
27.333
33.201
22.473
23.107
16.657
7.655
9.327
NOX
MASS
LBS.
0.362
0.075
1.722
0.160
3.465
0.287
1.338
0.122
0. 133
0.02B
7.021
0.534
6.263
0.441
4. 279
0.325
95.647
8.867
FUEL
MASS
LBS.
270.30
25.77
130.19
4.90
338.61
5.59
282.82
11.35
99.59
9.49
1121.50
46.63
FUEL
MASS
LBS.
270.30
25.77
130.19
4.90
338.61
5.59
282.82
11.35
99.59
9.49
1121.50
48.61
FUEL
MASS
LBS.
270.30
25.77
130. 19
4.90
338.61
5.59
282.82
11.35
99.59
9.49
1121 .50
48.63
LB CO /
IK LB FUEL
114.834
82.394
0.909
0. 734
1.075
0.551
6. 780
2.T84
114.834
82.394
LB HC /
IK LB FUEL
94.532
57.934
1.058
1.298
1.385
1.445
2.7B7
2.084
94.532
57.934
LH NOX/
IK LB FUEL
1.335
0.223
13.234
1.263
10.235
O.B41
4.726
0.276
1.335
0.223
ENERGY
I TH-HR
285.00
0.0
210.00
0.18
561.00
0.0
480.00
0.0
105.00
0.10
1641.00
2.31
ENERGY
1 TH-HR
285.00
0.0
210.00
0.18
561.00
0.0
460.00
0.0
105.00
0.10
1641.00
2.31
ENERGY
• TH-HR
2B5.00
0.0
210.00
0.16
561.00
0.0
480.00
0.0
105.00
0.10
1641.00
2.31
LB CO /
• TH-HR
0.11432
0. 09597
0.00056
0.00045
0.00065
0.00034
0.00398
0.00160
0.11432
0.09597
LB HC /
• TH-HR
0.09363
0.06817
0.00066
0.00080
0.00084
0.00087
0.00166
0.00124
0.09363
0.06817
LB NOX/
I TH-HR
0.00127
0.00026
0.00820
0.00076
0.00618
0.00051
0.00279
0.00025
0.00127
0.00026
nr-9
-------
KOOEL JT3D UNITED
SAMPLE NUMBER
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MODE
TAXI-IOLE
TAKEOFF
CLIMflnut
APPROACH
TAXI-IDLE
MODE
TAX1-10LF
TAKtnrF
CLi*inuT
APPROACH
tAXI-IDLF
EMISSION
RATE
LB/HR
MEAN 145.859
STD OEV 48.057
MEAN 16.851
STO OEV 6.671
MEAN 24.867
STO OEV 4.994
MEAN 53.089
STO DEV 10.501
MEAN 145.859
STD OEV 48.057
TOTAL FOR CYCLE
LBS POLLUTANT/IK IB
LBS POLLUTANT/IK LB
LBS POLLUTANT/IOOOK
EMISSION
RATE
LB/HR
MEAN 142. 378
STO OEV 58.350
MEAN (1.683
SIO OEV 1 .933
MEAN 1.024
STD DEV 1 .481
MEAN 4.946
STD OEV 3.398
MEAN 142.378
STO OEV S8.350
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
LBS POLLUTANT/ LK LI
LflS POLLUTANT/ IOOOK
FMISSION
RATF
LB/HR
"ESN 1.449
STD nrv 0.506
MFAN 127.417
srn OEV I?. 514
1FAN 85.156
STD OFV 5.442
MEAN 20.651
STD DEV 1.640
-------
MODEL JT30 9UR. MINFS
SAMPLE NUMBER
MODE
TAXI-IOLE
TAKEOFF
CLIMBDUT
APPROACH
TAXI-IDLE
MODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAXI-IDLE
MflOE
TAX1-IDLL
TAKEOFF
CLIMUnUT
APPROACH
TAXI-IOLC
EMISSION
RATE
LB/HR
MEAN 86.285
STD OEV 22.259
MEAN 1.323
STO DEV 1.062
MEAN 10.164
STO OEV 1.759
MEAN 40.480
STD DEV 6.957
MEAN B6.285
STD OEV 22.259
TOTAL FOR CYCLE
LAS POLLUTANT/IK LB
LBS POLLUTANT/IK LB
LBS POLLUIANT/1000K
EMISSION
RATE
LB/HR
MEAN 108.904
STO OEV 29.622
MEAN 0.554
STU HEV 0.784
MEAN 0.773
STO 0FV 1.093
MEAN 16.436
STO OEV 2.921
MEAN IOB.904
SID OEV 29.62?
TOTAL FOR CYCLE
LUS POLLUTANT/IK LB
L1S POLLUTANT/IK Lfl
L«S POLLUTANT/ 1000K
EMISSION
RATE
LB/HR
MEAN 1.855
STD nfv 0.210
ML AN 1S4.304
STO DEV 18. IIS
XtAN 106.259
STU nf V «.?.Th
MEAN 26.319
STD ntv I .977
"FAN 1.655
SIU DEV 0.210
TOTAL FOR CYCLE
L-1S POLLUTANT/ IK LB
LOS POLLUTANT/IK LB
FUEL
RATE
LB/HR
886.948
57.350
10462.506
682.911
8650.008
520.461
4036.367
338.2)1
866.946
57.350
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1)86.948
57.350
10'. 62.508
682.911
8-.50.006
520.461
4036.367
118.231
886.946
57.150
FUEL/CYCLE
TH-HR/CYCLE
L« TH-HR AT
FUEL
RATE
LB/HR
886. 94«
57. 150
10462.508
(.82.911
81.50. 000
520.461
4036.367
33H.23I
886.941
57.150
FUEL/CYCLE
TH-HR/CYCLE
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV:
MEAN:
STD OEV:
MEAN:
STO OEV:
T.O. MEAN:
STD DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STD OEV:
MEAN:
STO OEV:
T.O. MEAN:
STD DEv:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STD DEV:
HFAN:
SID DEV:
MEAN:
STD DEV:
CO
MASS
LBS.
27.324
7.049
0.0)9
0.013
0.373
0.065
2.699
0.597
10.067
2.597
40.500
10.295
36.6)0
6.912
25.276
5.4)1
0.22)
0.081
HC
MASS
LBS.
14.486
9.3BO
0.006
0.009
0.026
0.040
1.096
0.195
12.705
3.456
48.122
12.9B2
41.921
a. 888
10.148
6.919
0.160
0.538
NQx
MASS
LBS.
0.587
0. 067
I.BOO
0.219
1.896
0.303
1.755
0.112
0.216
0.025
B.255
0.462
7.557
0.074
5.172
0.093
FUEL
MASS
LBS.
280.87
18.16
122.06
7.97
317.17
19.08
269.09
22.55
10). 46
6.69
1092.66
74.45
FUEL
MASS
LRS.
280.67
16.16
122.06
7.97
317.17
19.06
269.09
22.55
103.46
6.69
1092.66
74.45
FUEL
MASS
LBS.
2B0.87
18. 16
122.06
7.97
117. 17
19.06
269. C9
22.55
101.48
b. 69
1092.66
74.45
LB CO /
IK LB FUEL
96
18
0
0
1
0
9
96
16
.674
.845
.322
.124
.171
.113
.971
.364
.674
.645
LB HC /
IK LB FUEL
121
25
0
0
0
0
4
0
121
25
.960
.512
.056
.079
.093
.132
.056
.384
.960
.512
LB NOX/
IK LB FUEL
2
0
14
0
12
0
6
1
.088
. 102
.721
.8)6
.27H
.219
.564
.040
2.066
0.102
ENERGY
1 TH-HR
277
11
204
8
545
22
466
18
102
4
1595
64
.08
.20
.17
.25
.42
.04
.67
.86
.06
.12
.42
.46
ENERGY
• TH-HR
277
11
204
8
545
22
466
18
102
4
1595
64
.08
.20
.17
.25
.42
.04
.67
.86
.08
.12
.42
.46
ENERGY
• TH-HR
277
11
204
R
545
22
466
16
102
4
1595
64
.06
.20
.17
.25
.42
.04
.67
.86
.08
.12
.42
.46
LB
<
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
L8
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
LR
I
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CO /
TH-HR
09818
02147
00019
00007
00068
00009
00576
00105
09818
02147
HC /
TH-HR
I238B
02885
00001
00005
00005
00008
002)4
00012
I236R
02685
NOX/
TH-HQ
00212
00015
ooeao
00072
00714
00027
00)77
00041
00212
00015
L8S POLLUTHNT/IOOOK L» Tlt-MR AT
i.o. MEAN: ioz.700
STD DEV: 8.382
ET-11
-------
10DEL JT4A SWRI
SAMPLE NUMBER °
NODE
TAXI-IDLE
TAKEOFF
CLIMBOUT
APPROACH
TAX-IDLE
MODE
TAXI-IDLE
TAKFMFF
CLIHBOUT
APPROACH
TAXI-IOLF
MODF
TAXI-IDLF
TAKEOFF
CLIMBOUT
APPROACH
TAXl-IOLt
ENISSIUN
RATE
LB/HR
MEAN 63.767
STO DEV 17.688
MEAN 18.623
STD REV 3.994
MEAN 18.277
STD DEV 3.129
MEAN 26.326
STD f)EV 9.529
MEAN 62.787
STD DEV 17.688
TOTAL FOR CYCLE
LBS POLLUTANT/IK LB
L6S POLLUTANT/IK LB
LBS POLLUTANT/1000K
EMISSION
RATE
LB/HR
MFAN 64.828
STD OEV 12.819
MEAN 0.674
STO OEV 0.934
MEAN 1.274
sin DFV ?.i20
MEAN 3.814
STD DEV 2.383
MEAN 64.828
STC OEV 12.810
TOTAL F0« CYCLE
LBS POLLUTANT/IK Lfl
L»S POLLUTANT/IK LB
LBS OQLLUIANT/1000K
EH1SSIOM
RATE
LB/HR
.MEAN 2.708
STO nFV 0.629
MFAN 216.335
STO OEV 28.993
1FAN 155. 218
STO OEV 9.813
MEAN 15.859
STO OFV 4.203
MEAN 2.708
STO OEV 0.629
IOTAL FOR CYCLE
LOS PCJLLUTANT/1K LB
LBS POLLUTANT/IK LI
LlS POLLUI ANT/ IOOOK
FUEL
RATE
LB/HR
1386.763
103. 796
15511.203
427.062
13066.484
240.685
5993.734
324.933
1388.763
103.796
FUEL/CYCLE
TH-HR/CYCLE
LB TH-HR AT
FUEL
RATE
LB/HR
1388.763
103.796
155U.203
427.062
1)066.484
740.685
5993.734
124.933
I38R.763
103.796
FUEL/CYCLE
TM-HR/CYCLE
LB TH-MR AT
FUEL
RATE
LD/HR
1188.763
103.796
15511.203
427.062
11066.464
240.685
5993.734
124. 913
1398.763
103. 796
FUEL /CYCLE
TH-MR/CYCLE
LB TM-MR AT
TIME IN
NODE
KIN.
19.00
0.0
0.70
0.0
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO OEV.
MEAN:
STD DEV:
MEAN:
STO DEV.
T.O. MEAN:
STD Otv:
TIME IN
MODE
MIN.
19.00
0.0
0.70
o.o
2.20
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STO OEV:
PEAN:
STD DEV:
T.O. MEAN:
STO DEV:
TIME IN
MODE
MIN.
19.00
0.0
0.70
0.0
2.23
0.0
4.00
0.0
7.00
0.0
MEAN:
STO DEV:
MEAN:
STO DEV:
MEAN:
STO OEV:
T.n. MEAN:
STO OEV:
CO
MASS
. LBS.
19.882
5.601
0.220
0.047
0.670
0.115
1.755
0.635
7.325
2.064
29.852
8.042
17.971
4.602
18.711
5.041
1.255
0.266
HC
MASS
LBS.
20.529
4.059
0.008
0.011
0.047
0.076
0.256
0.159
7.563
1.496
28.402
5.487
17.071
3.091
17.802
3.439
0.449
0.623
NOX
MASS
LBS.
0.657
0. 199
2.757
0.318
S.694
0.360
2.391
0.280
0.316
0.073
12.015
0.80J
7.231
0.419
7.531
0.503
157.557
19.329
FUEL
MASS
LBS.
439.76
32.86
160.96
4.96
479.10
8.78
399.58
21.66
162.02
12.11
1661.45
47.30
FUEL
MASS
LBS.
439.78
32.86
100.96
4.96
479.10
8.78
399.50
21.66
162.02
12. 11
1661.45
47.30
FUEL
MASS
LBS.
439. 78
32.86
180.96
4.96
479.10
8. 78
399.58
21 .66
162.02
12.11
1661.45
47.30
LB CO /
IK LB FUEL
45.231
11.907
1.214
0.258
1.399
0.235
4.412
1.671
45.231
11.907
LB HC /
IK LB FUEL
46.766
8.940
0.043
0.060
0.096
0.160
0.646
0.413
46.766
8.940
LB NOX/
IK LB FUFL
1.941
0.374
15.224
1.714
11.881
0.641
5.976
0.526
1.941
0.374
ENERGY
1 TH-HR
277.08
0.0
204.17
0.0
545.42
0.0
466.67
0.0
102.06
0.16
1595.41
1.51
ENERGY
H TH-HP
277.08
0.0
204.17
0.0
545.42
0.0
466.67
0.0
102.08
0.16
1595.41
1 .51
ENERGY
• TH-HR
277.08
0.0
204.17
0.0
545.42
0.0
466.67
0.0
102.08
0. 16
1595.41
1.51
LB CO /
• TH-HR
0.07176
0.02021
0.00106
0.00023
0.00123
0.00021
0.00376
0.00136
0.07176
0.02021
LB HC /
• TH-HP.
0.07409
0.01465
0.00004
0.00005
0.00009
0.00014
0.00055
0.00034
0.07409
0.01465
LB NOI/
i TH-HR
0.00309
0.00072
0.01350
0.00166
0.01044
0.00066
0.00512
0.00060
0.00309
0.00072
rsr-12
------- |