FINAL TECHNICAL REPORT
         ABSORPTION AND  EMISSION BY S02 BETWEEN

            1050 and  1400 cm"1 (9.5-7.1 g,m)
                           Philco-Ford Corporation
PHILCO <^%B^§fe  Aeronutronic Division
                           Newport Beach, Calif. • 92663

-------
                                                  Publication No.  U-4947
                          FINAL TECHNICAL REPORT
                  ABSORPTION AND EMISSION BY S02  BETWEEN

                     1050 and 1400 cm"1 (9.5-7.1  urn)
          The work upon which this publication is based was  per-
           formed pursuant to Contract No.  68-02-0013  with  the
                      Environmental Protection Agency
                  EPA Project Officer:  Dr.  H.  M. Barnes
                     Investigators:   Darrell E.  Burch
                                     John D.  Pembrook
                                     David A.  Gryvnak
Approved By:
                       Paul M. Sutton, Manager
                   Physics and Chemistry Laboratory
July 1971

-------
                             TABLE OF CONTENTS







SECTION                                                              PAGE




  1       INTRODUCTION AND BACKGROUND  	   1-1




  2       EXPERIMENTAL METHODS 	   2-1




  3       EXPERIMENTAL RESULTS FOR S02	   3-1




          3.1  Band Strengths	   3-8




  4       CALCULATED VALUES OF (-1/vO^T	   4-1




  5       EXPERIMENTAL RESULTS ON H20	   5-1




  6       REFERENCES	   6-1




          APPENDIX A   	   A-l
                                    ii

-------
                             LIST OF ILLUSTRATIONS
FIGURE                                                               PAGE

 3-1     Two spectral curves at different slitwidths
         for a pure sample of S0?	3-2

 3-2     Spectral curves of transmittance between
         1060 and 1250 cm'1 for three samples of
         pure S02 at different pressures	3-3

 3-3     Spectral curves of transmittance between
         1050 and 1250 cm"1 for three samples of
         pure S0» at different temperatures	3-5

 3-4     Spectral curves of transmittance and1
         (-1/u)^) T between 1060 and 1250 cm"  for
         two samples having different absorber thicknesses  ....   3-7

 3-5     Spectral curves of (-l/u)xvriT between
         1000 and 1250 cm"1 for two different temperatures  ....   3-9

 3-6     Spectral curves of transmittance between
         1300 and 1400 cm"1 for four pure SO  samples
         at 296 K	3-10

 3-7     Spectral curve of (-l/u)^C)T between
         1300 and 1400 cm"1 for temperatures near 296 K
         and equivalent pressures between 0.5 and 2  atm   	   3-11

 4-1     Spectral curves of calculated emissivity for
         S02 at 475 K	4-16

 4-2     Spectral curves of calculated emissivity for
         S02 at 550 K	4-17

 5-1     Spectral curves for pure H_0 between 980 and
         1300 cm"1	5-1
                                    111

-------
                             LIST OF TABLES


TABLE                                                                PAGE

3-1       BAND STRENGTHS	    3-13

4-1       CALCULATED (-l/u)^T AT VARIOUS TEMPERATURES	    4-4

A-l       CONVERSION FACTORS FOR ABSORBER THICKNESSES AND
          STRENGTHS VALID AT ALL TEMPERATURES 	    A-4

A-2       CONVERSION OF TEMPERATURE SCALES AND ABSORBER
          THICKNESS	    A-2
                                    IV

-------
                                   ABSTRACT

 The absorption  by the Vj^  (1151.38 cm" ) and v., (1361.76 cm"1) bands of SO
 has been  studied  between  1050 and 1400 cm   (9.5-7.1 (nn)./ Spectral curves
               ••
    __ ,,_ . i    '  ' "  -•*•-•*-.- -- „_ rj • c--^-^-^3a^_4,- - if----- - - .. _ — — *i- >  -« ••-„— _ --_....•_       -       1
/'of transmittance have  been scanned with approximately 1 cm   resolution
i' for more  than 200  samples  varying  in  temperature from about 296 K  to  575 K
 and  in=pres.sur_e_fronL 0.01, .tp^J^^atm./rhe objective was to provide data  on
 SO.  absorption  and  emission that are required to interpret data obtained^, in
 this spectral intervalf-on the emission by smokestack exhausts containing
 SO . C. An extensive  table  provides information from which the emission be-
                        -1
 tween 1050 and  1250  cm   can be calculated for temperatures between 296  K
 and  650 K.  Water vapor absorbs and emits so strongly in the region of the
 v^ band of SO   that  this  band is probably not useful for remote sensing  of
 smokestacks.  Therefore,  the v,  band was emphasized.  The strengths of the
                                  -12-1                       -20
 two  prominent bands  in molecules  cm cm   are: v, ,  371 + 20 x 10   ; and
 V,  3020 ± 200  x 10"2°
                                       v

-------
                                SECTION 1
                       INTRODUCTION AND BACKGROUND
A proposed method of monitoring the S09 in the exhaust of smokestacks in-
                                      2                             -1
volves remote sensing of the emission by the S0_ in the 1050-1400 cm
(7.1-9.5 urn) region.  The absorption bands of SO  in this region are
sufficiently strong that small concentrations in a typical smokestack pro-
duce significant absorptance or emissivity.  The Planck function for black-
body radiation is near its maximum in this spectral region for typical ex-
haust temperatures, and atmospheric paths of a few hundred meters are rela-
tively transparent.

Besides the SO- lines, the emission spectrum of the exhaust from a smoke-
stack contains lines due to H?0 and possibly some additional lines due to
other combustion products.  Carbon-dioxide emission in the region of the
S0» bands between 8 and 10 |im is probably negligible   .   The spectrum of
the radiation reaching a remote observing station is modified further by
the H_0 absorption in the atmosphere.  Absorption by other permanent at-
mospheric gases over paths of a few hundred meters is probably negligible
over the spectral region of interest.

The primary objective of the present study has been to provide data on the
absorption and emission by SO  and H90 that are required  to interpret
                                    1-1

-------
emission data from smokestack exhaust containing SCL.  The emphasis has
been on quantitative data relating absorption to temperature, path length,
concentration of S0?, and pressure.  No work has been done on line identifi-
cation or line positions.  It is anticipated that the spectral features of
laboratory data and the integrated emissivity over various portions of the
band will be compared with field data on smokestack exhausts.  Errors in
determining the temperature of the exhaust gas and in accounting for the
interference by H_0 in the exhaust and atmosphere will probably result in
at least ± 10 % error in the SO  concentrations measured.

Although the primary interest is in emissivity, rather than absorptance or
transmittance, we have measured transmittance.  Since the gas was in thermal
equilibrium, the emissivity € can be found from the transmittance T by
6 = 1-T = A.  The effect of absorption or emission by the windows of the
hot cell was accounted for easily by the method used in this study.  The
radiation beam was chopped between the source and the hot cell so that
radiation emitted by the cell was not modulated, and therefore,  not de-
tected.  Absorption by the windows was accounted for by comparing the spec-
trum of a sample with a spectrum of the cell evacuated.

The VT band of SO ,  which is centered at 1362 cm   (7.34 |im) is  approximately
                                                       -1
8 times stronger than the v  band centered near 1151 cm   (8.69  (im).   Thus,
                           1                           -1
smaller amounts of S0_ could be detected in the 1362 cm   band than in the
one at lower wavenumbers.  However, HO absorption and emission are strong
                       -I            2-
enough near the 1362 cm   band to limit severely its usefulness  for smoke-
stack monitoring.  For example,  we have investigated the emissivity of a
laboratory sample of H_0 that corresponds approximately to a smokestack 4 m
in diameter with 30 7. HO at 500 K.  The average emissivity of the H~0 in
                         -1
the region of the 1362 cm   band is approximately 0.8;  whereas  near the
1151 cm   band,  it is less than 0.2.   It is clear that the H-0 emission
                -1                                          ^
near the 1362 cm   band would interfere strongly with measurements of SO .
Absorption by HO in the atmospheric path between the smokestack and the
               L                                   -1
receiver would also interfere more near the 1362 cm   band than  at lower
wavenumbers.
                                    1-2

-------
Since the 1151 cm   band shows more promise for smokestack monitoring, we
have emphasized it in the present study.  Spectral curves of the 1362 cm
band have been scanned and reduced for room temperature samples covering
wide ranges of pressure and path lengths, but no samples have been studied
at elevated temperatures.  The data obtained for this band have been suf-
ficient to determine the band strength and to produce spectral plots of the
absorption coefficient.

It is not practical to obtain data on samples of SO„, HO,  and N9 to simu-
late all of the smokestack exhausts that might be observed.  The concentra-
tions of each of the gases, the dimensions of the plume, and the temperatures
may all vary over wide ranges.  We have studied SO  and HO independently
with the objective of providing data so that the emission by either of these
gases can be calculated over the ranges of temperature, plume dimensions,
and concentrations of interest.  The simplest adequate method of applying
laboratory data appears to be different for the two emitting gases.  The
results of the S0_ measurements discussed in Section 3 indicate that at a
given temperature and at 1 atm pressure, the observed transmittance is re-
lated to the SO. concentration by a simple exponential expression within
the accuracy required to interpret most field data.  The analysis of the
data in Section 4 makes use of this simple relationship which is used with
the experimental data as a basis for calculations of the emissivity of a
variety of samples.  The limitations of this method of applying the labora-
tory data are also discussed in Section 4.

More accurate methods of using the laboratory data to calculate the spectral
characteristic of other SO  samples could be developed.  However,  such
methods are probably more complex and require a much more detailed knowledge
of the parameters of the individual absorption lines than could be obtained
during the present project.  The method of applying the data that is de-
scribed in Section 4 is simple and the accuracy is probably consistent with
smokestack measurements.  Spectral curves have been obtained and reduced
for a wide variety of samples not included in this report.   These
                                    1-3

-------
additional data were compared with those that are shown and will be used
in future studies of more sophisticated methods of calculating the trans-
mittance or the emissivity.

A different and more complicated approach is recommended for the application
                                     (2)
of the HO data.  Benedict and Calfee    have calculated the parameters
for all of the significant H90 lines centered in the spectral region of
interest.  The tabulated positions of the lines are quite accurate, but
the strengths and widths should be checked before these calculated data
are applied to field measurements.  Section 5 includes some data on H_0
absorption that we have obtained recently in our laboratory as a part of
another study under Contract F19628-69-C-0263 with Air Force Cambridge
Research Laboratories.  The data shown illustrate the influence of water
and are typical of those intended for use in checking and adjusting the
line strengths and widths tabulated by Calfee and Benedict.  Limited data
are also given on the H?0 continuum absorption in this spectral region.

The absorber thickness, u, of a gas sample is given by:
u (molecules cm"2) = 0.269 x 102° (273/9) p*(atm) L(atm)              (1-1)
The temperature, 0,  is in Kelvins, and L is the geometrical path length
through the sample.   The density-equivalent-pressure p* approaches the
partial pressure p of the absorbing gas at low pressures.  Because of the
non-linear relationship between the density of SO  and its pressure,  p*
differs significantly from p at the highest SO  pressures used.  The vapor
pressure of S0_ limited its maximum pressure to approximately 3 atm^   at
this pressure and 296 K,  p* = 1.03 p for SO .  At lower pressures and higher
temperatures,  the difference between p* and p is less.  At the H.O pres-
sures employed, the difference between p* and p for this gas is negligible.
The absorption coefficient due to a single collision-broadened absorption
line at a poini
Lorentz shape:
line at a point within a few cm   of the line center,  v ,  is given by the
                                    1-4

-------
k = !  	-2	2 '                                                   (1'2)
    11  (v-v r + «
           o
The line strength S = J k dv is essentially independent of pressure for the
conditions of the present study.  The half-width a is proportional to pres-
sure for a given gas mixture at a fixed temperature.  We have shown in a
              /3 A\
previous study  '   that the Lorentz equation may require modification for
|v-v |  greater than a few cm" .  The deviation from the Lorentz shape can
probably be ignored in the treatment of the SO- data, but it is important
in dealing with the H?0 data discussed in Section 5.

At a given wavenumber, there may be appreciable absorption by several lines
or by continuum due to pressure induced bands or dimers.  The total absorp-
tion coefficient K at a given wavenumber is related by Beer's law to T',
the true transmittance that would be observed with infinite resolving power.

T1  =  exp  (-KU),     or     (-l/u)^!*  =/c«                         (1-3)

Where K varies rapidly with wavenumber, the finite slitwidth of a spectro-
meter distorts the spectrum, causing differences between T' and the ob-
served transmittance T.  The smoothing of a spectrum by the finite slit-
width causes the observable quantity (-1/u) x-^T to be less than K near
points of maximum « and more than K near points of minimum K•  The differ-
ence between K and (-l/u)/>?T at a given wavenumber depends on the amount
of structure within the spectral slitwidth and upon the transmittance.
When T is different from T1, T does not have a simple exponential relation-
ship with u such as that shown in Eq.  (1-3).  In Section 3, we show typical
data that indicate T as observed with  1 cm   resolution approximately
follows the simple exponential dependence on the SCL absorber thickness
u at pressures of about 1 atm or more.  The deviation from the exponen-
tial relationship is less than the experimental uncertainty if T is
greater than about 20 or 30 %.  This simple relationship is ordinarily
not valid for gases such as C02, N«0,  or H_0 at 1 atm because of the
structure in the spectra of these gases.   The spectrum of SO- contains
                                    1-5

-------
many very closely spaced lines with clusters of lines in Q branches with
the clusters separated by about 3.5 cm  .  At 1 atm, the lines are broadened
enough that there is little structure within regions of a few-tenths of a
cm  .  Thus, T observed with 0.1 cm   is approximately equal to T1.

The integrals / T' dv and / T dv are equal if the integration is performed
over the entire band or over an interval between points where the observed
transmittance is independent of slitwidth.  However, because of the non-
linearity in the relationship between T' and K, / (-/^T1) dv may be greater
than / (yfo T) dv.

The half-width a of a collision-broadened line is proportional to pressure
for a gas mixture in which the fractional concentration of each gas species
is held constant.  In general, the broadening efficiencies are different
for different gases so that each gas species in a mixture must be weighted
in proportion to its broadening efficiency when calculating the line half-
widths.  The concentration of S0« in smokestacks is sufficiently low that
one can neglect self-broadening;  i.e.,  the collisions of S0_ molecules
with other SCL molecules.  Collisions of the SCL molecules with N?, H_0,
C0_ and 0_ will dominate the broadening.  In previous studies,  we have
found that the broadening efficiencies of H?0,  CCL,  and Q  are within about
30 7» of that of N. if the absorbing gas is not of the same species as the
broadening gas.  Therefore,  it is probably safe to treat the SO  lines in
smokestack exhaust as if they were broadened by N  at ambient pressure.
This assumption is substantiated by data discussed in Section 3 that in-
dicate that the absorption by SO  diluted in N_ at about 1 atm total pres-
sure has only a very weak dependence on line half-width.

Most of the laboratory samples in the present study were pure S09 or con-
tained large fractions of S0?.  Therefore,  in order to relate the results
to dilute mixtures of S0_ in N , we have defined a self-broadening coef-
ficient B and an equivalent pressure P  which is equivalent to a:
P  = Bp + p   = p (B-l)  + P .                                          (1-4)
 e         N2
                                    1-6

-------
The absorber pressure, N« pressure, and total pressure are denoted by p,
p   and P, respectively.  Note that P  = P = p   for a very dilute mixture
 N2                                 e        N2
of the absorber in N?.

We have determined B for SO  by a method used previously    to measure the
self-broadening coefficient for a variety of gases.  The method involved
two absorption cells of different lengths, one about four times as long as
the other.  A spectrum of the short cell filled with pure SO  was scanned.
The longer cell was then filled with SO  to a pressure so that the absorber
thickness was the same as that in the short cell.   Nitrogen was then added
to the SO. in the longer cell, and spectral curves were scanned for several
pressures.  By comparing the spectral curves, we determined the total pres-
sure of the SO  + N  mixture whose curve matched that of the short sample.
Since the absorption by the two samples was the same and the absorber
thicknesses were the same,  it follows that the equivalent pressures were
equal.  The value of B was found from Eq. (1-4) by substituting the values
of p and p   for the two matching samples.  By comparing the spectral curves
for a variety of samples,  we found that B = 5 ± 1  for S0~.  This is also
                                       (6)
the value determined previously for H_0   .  All values of P  for either
SO- or H?0 samples discussed in this report are based on Eq. (1-4) with
B = 5.
                                   1-7

-------
                               SECTION 2
                         EXPERIMENTAL METHODS
Two different grating spectrometers were employed to scan the spectral
curves.  The majority of the data on the 1151 cm   band were obtained with
a Perkin-Elmer Model E-l monochromator in the double-pass mode with a
spectral resolution of about 1 cm  .   In this system,  radiation from a
Nernst glower was chopped at 450 Hz and transmitted through a sample cell
with NaCl windows to the monochromator.  The beam emerging from the mono-
chromator was filtered to eliminate second and higher  orders of radiation
and was focused onto a helium-cooled,  GerCu detector.   The detector signal
was amplified by a phase-sensitive amplifier and displayed on a strip chart
recorder with the chart drive synchronized with the grating drive.

All of the optical path external to the Perkin-Elmer monochromator  was en-
closed in a plywood box that was flushed with dry nitrogen to reduce ab-
sorption by the HO in the atmosphere.  This method was adequate for the
                 2                   -1
spectral region including the 1151 cm   band;  but absorption by the
residual H90 was still bothersome near the 1362 cm  band where the H_0
absorption is stronger.  Therefore,  a different spectrometer with its
associated optics enclosed in a vacuum tank was used to study the region
containing the 1362 cm   band.  The spectrometer was also double-passed
and was coupled to a multiple-pass absorption cell with a base length of
                                    2-1

-------
1 meter.  The spectrometer and absorption cell were built previously in
our laboratory and have been described in detail elsewhere   .   Samples
of H.O and H_0 + SO , as well as a few low-pressure samples of pure SCL
were studied in the multiple-pass cell.  Other samples of SCL requiring
                                            -I              *
short paths for investigation of the 1362 cm   band were contained in small
cells placed in the optical path between the multiple-pass cell and the
spectrometer.  During these measurements, the multiple-pass cell was evac-
uated and adjusted to four passes.

Several absorption cell lengths from 0.102 cm to 416 cm were used in order
to investigate the influence of changing either the absorber thickness or
the pressure while holding the other of these two parameters constant.
All of the absorption cells shorter than 39 cm had windows on both ends
and were used single pass.  The 39 cm cell was 19.5 cm long and was double
passed.  An image of the radiation source occurred at the NaCl window on
one end of the 39 cm cell.  A 20 cm radius-of-curvature concave mirror at
the opposite end of the cell formed another image on the window about 1 cm
to the side of the input image.  The exit image was then focused on the  .
monochromator slits.  By double-passing this absorption cell, we were able
to use a longer path with uniform cell temperature than was possible with
a single-pass cell unless a larger furnace were used.  Paths of 416 cm or
longer were achieved in the multiple-pass cell with 1 meter base length.
An oil manometer measured pressures below about 0.1 atm,  an Hg manometer
between 0.1 and 2 atm,  and a Bourdon-type gauge above 2 atm.  The estimated
uncertainty in the pressure measurements is about + 1 percent.

Apparent adsorption and desorption of S0? on the walls of the absorption
cells created additional problems in the gas sampling.  Typically,  after a
sample of SO  was added to a previously-evacuated absorption cell and the
cell was shut off from the gas supply,  the pressure in the cell decreased
by a few percent within several minutes.   This decrease in pressure was
observable with the pressure gauges or by the infrared absorption and was
attributed to adsorption of the gas on the walls of cell.  Part of the
                                    2-2

-------
adsorption apparently occurred within a few seconds, but in some instances,
a few hours were required for equilibrium to occur.  The time required for
the pressure to reach equilibrium was decreased by preconditioning the
cell.  This was accomplished by filling the cell with S0? to a pressure
about 20 % higher than the final pressure desired.  This sample was allowed
to remain in the cell for a few minutes while part of it adsorbed on the
cell walls.  A portion of the sample was then pumped out to the desired
pressure.

The fraction of a gas sample adsorbed was dependent upon the temperature,
the pressure, the volume-to-surface ratio of the cell, and the history of
the cell with regard to the amount of SO  in it.  When a cell filled with
SO- was evacuated quickly and closed off, the pressure increased for
several minutes, indicating that S0_ was being desorbed from the cell walls.
No adsorption or desorption of N^ was observable.

Comparisons of the absorption by samples in cells covering a wide range
of lengths indicated .that there was negligible error due to any S09 which
might have adsorbed on the inside surfaces of the windows where it could
cause additional adsorption.  Thus, the errors due to adsorption were
limited to those resulting in changes in the S02 pressure in the cell.
When studying pure S0_ samples, the adsorption was accounted for by adding
gas as required to maintain constant pressure while a spectrum was scanned.
This technique was not satisfactory for S0? + N_ mixtures because the S0?
adsorbed faster than the N^ and changed the mixing ratio of the two gas
species.

In order to reduce errors due to adsorption in an SO  + N- mixture, we
flowed a pre-mixed sample through the absorption cell at regulated pressure
while its spectrum was scanned.  Mixtures were made in a 20 liter,  stain-
less steel tank with the inner walls honed  to reduce  the adsorbing surface.
The relatively large volume-to-surface ratio of the tank combined with the
smooth walls greatly reduced the fractional adsorption from that observed
                                   2-3

-------
with the small cells.  The tank was evacuated then preconditioned by the
method described above.  After the pressure had reached equilibrium at
pressure p, N. was added to total pressure P, usually 14.6 atm, and the
gases were mixed by a fan inside the cell.  The mixture in % S0? is
approximately 100 p:P;  as discussed in Section 1, a small correction is
required to account for the non-linearity in the relationship between the
pressures and the densities of the gases.  Although we investigated mix-
tures as lean as 1 % SO-, we reduced only the data for samples of 3.9 % SO
or richer.  The absorption by a sample taken from a freshly-made mixture
was indistinguishable from that by a sample of the same pressure taken
from the mixture after a large potion had been removed and the remainder
had been in the mixing tank for several hours.  This result indicates that
there was negligible error due to adsorption on the walls of the mixing
tank.  Spectral curves corresponding to samples of different mixing ratios
compared favorably.

Before scanning a spectrum of an SO  + N? mixture, we preconditioned the
absorption cell for a few minutes with the pressure in the cell approxi-
mately 20 % higher than the sample to be studied.   The pressure was reduced
to the desired value and a continuous flow from the mixing tank through
the absorption cell was established.   A modified,  natural-gas regulator
controlled the pressure while a needle valve on the downstream side of the
cell controlled the flow rate.  The methods of pressure-regulation and
                                                                    /o \'
flow control were similar to those used previously in our laboratory   .

Flow rates varied from about 1 to 30 cm /second,  depending on the cell size
and temperature.  At elevated temperatures,  the maximum flow rate was
limited by the time required for the gas to reach the temperature of the
cell.  Proper flow rates were determined by monitoring the absorption at
various wavenumbers as the rate was varied.   Absorption in the wings of
the bands increases rapidly with increasing temperature,  whereas the opposite
is true near the centers of the bands.   The absorption at all wavenumbers
decreased with decreasing absorber thickness which resulted from adsorption
                                   2-4

-------
of the SCL in the mixture if the flow rate was too low.  Typically, there
was a wide range of flow rates high enough to prevent significant errors
due to adsorption, yet low enough to permit the gas in the absorption cell
to reach thermal equilibrium.  No flow was used for samples contained in
the multiple-pass cell.

Samples at elevated temperatures with path lengths of 39 cm or less were
contained in an absorption cell placed inside a tubular furnace approxi-
mately 36 cm long by 8 cm inside diameter.  Adjustable end heaters and
baffles maintained the temperature constant to less than ± 2 K along the
length of the absorption cell.  Thermocouples monitored the temperature at
different locations on and near the cell.  Temperatures were controlled
manually by adjusting the voltage across the heating coils.  Normally, the
cell temperature varied by less than 1 K during the time required to scan
a spectrum.
                                   2-5

-------
                                 SECTION 3
                         EXPERIMENTAL RESULTS FOR
Two spectral curves obtained for the same SO  sample,  but with different
                                                 (9)
slitwidths are shown in Fig. 3-1.  Shelton et al.    have investigated the
line structure in this band and have shown that each of the prominent fea-
tures is a Q branch and consists of a cluster of several individual lines.
The curve obtained with the narrower slits contains some structure that is
smoothed out by the wider slits, but most of the lines are still unresolved.
At a few tenths of an atm of pure S0?,  the lines are collision broadened
enough that most of the structure is smoothed out,  except for that due to
the prominent clusters.

Figure 3-2 shows spectral curves of transmittance and  emissivity for three
samples having approximately the same absorber thickness,  but different pres-
sures.  The differences in the curves are due to the collision broadening
of the lines.  The transmittance curve of the 0.26  atm sample contains much
more structure in the strong part of the band than do  the curves corre-
sponding to the higher pressures.  The average transmittance of the lowest-
pressure sample is also significantly higher than the  other two, although
the absorber thicknesses are nearly the same.  The influence of pressure
can be explained in terms of the broadening of the many unresolved spectral
lines.  At P  = 0.26 atm, the lines are narrow enough  that there is still
                                   3-1

-------
LJ
O
   0.5
CO
cr
     0
                  1200
                       WAVENUMBER(cm-')
                                I        i        i       i
                              8.5  WAVELENGTH (/x.m )
1100
                                                         9.0
FIG.
               3-1.  Two spectral curves at different slitwMths for a pure sample of SCL.  The spectral slitwidths for the upper and lower curves
                  are 0.35 and 0.70 cm"1, respectively.  The upper curve has been displaced along with its ordinate axis.  The sample parameters
                  are: p = 0.005 atm; L = 416 cm; u = 0.514 x I020 molecules cm'2, and 0 = 297 K.

-------
                                                                                             LJ
                 1100
           1150
      WAVENUMBER (cm-')
1200
1250
                       9.0
                       8.5
       WAVELENGTH (fjm)
                       8.0
FIG.  3-2.  Spectral  curves of transmittance  between 1060 and 1250  cm   for three samples
          of pure SO.  at different pressures.  The values of P are  indicated.  Spectral
                         -1
          slitwidth =  1 cm
t= = 298 K.
P
e
(atm)
0.26
5.05
16.25
L
(cm)
39.0
1.99
0.602
                                                (molecules cm  )

                                                     4.99 £19
                                                     4.94 E19
                                                     4.80 El9

-------
structure due to the individual lines; i.e., there are absorption minima
between many of the adjacent lines.  Because of the relatively large spec-
tral slitwidth of the spectrometer, this structure does not appear in the
curves.  At P  =5.05 atm, the lines are broadened so that, in most cases,
they are wider than the distance between adjacent lines.  As a result, the
area between the lines is "filled-in" and the average transmittance is less
than at 0.26 atm.  A spectrum of the 5.05 atm sample scanned with infinite
resolving power would show little structure between adjacent lines.  At
5.05 atm, the half-widths of the lines are probably between 0.2 and 0.5 cm  ,
which is much less than the average distance between the clusters of lines;
therefore, some of the structure due to the clusters still remains.  At
P  = 16.25 atm, the lines are sufficiently wide that essentially all of the
structure has been smoothed.  With the exception of the region between
approximately 1145 and 1155 cm  ,  the average transmittance of the 16.25 atm
sample is nearly equal to that of the 5.05 atm sample.   As the pressure in-
creases from 5.05 to 16.25 atm,  the increase in absorption between the
clusters of lines is nearly compensated for by the decrease in absorption
near the line centers.

The increase in absorptivity with increasing pressure between 1145 and
1155 cm   is attributed to the increase in the wings of the very strong
lines centered a few cm   on either side of this interval.  At low pres-
sures,  most of the absorption near the band center is due to the relatively
weak lines centered within the interval.   At higher pressures, the contri-
bution by the wings of the strong,  neighboring lines becomes appreciable
since the absorption by the extreme wings of collision-broadened lines is
proportional to a,  and thus, proportional to pressure.
The influence of temperature is illustrated in Fig.  3-3,  which represents
three samples with the path length fixed and P  essentially constant.   Thus,
the absorber thicknesses are approximately proportional to the reciprocals
of the temperatures.   In the wings of the band,  from about 1050 to 1090 cm
and from 1220 to 1250 cm  , the transmittance decreases with increasing
                                   3-4

-------
UJ
o
  50
    1050
      9.5
1100
       1150
WAVENUMBER (cm-«)
     9.0
                   8.5
                                            WAVELENGTH (pm)
1200
                                                                                                    0
                                                                            >-
                                                                            t
                                                                            >

                                                                            1
                                                                            UJ
1250
                                                                                                    1.0
                       8.0
        FIG.  3-3.  Spectral curves of transmittance between 1050 and 1250 cm    for three samples
                  of pure SO  at different temperatures.  Pg ~ 5.01 atm.  Spectral slitwidth ^
                                                                  cm
                                                                    -1
                                 Temp.
                                (Kelvins)

                                 575
                                 474
                                 375
                     L
                     (cm)

                     1.94
                     1.99
                     1.99
                 (molecules cm  )

                 2.49 E19
                 3.09 E19
                 3.91 E19

-------
temperature in spite of the decrease in absorber thickness because of the
increased strengths of the nearby lines.  Near the band center, the trans-
mittance increases witL increasing temperature because of the decrease in
absorber thickness and the decrease in the strengths of the nearby lines.
For a discussion of the relative strengths of the individual lines within
a band and of their dependence on temperature, the reader is referred to
Refs. (10) and (11).

The upper panel of Fig. 3-4 shows curves of transmittance for two samples
having the same temperature and equivalent pressures of about 1.5 atm, but
different absorber thicknesses.  In the lower panel are the corresponding
curves of (-l/u)^* T.  We note that the two curves are nearly coincident,
indicating that (-l/u)/^rjT is essentially independent of u for a rather
wide range of values of u.  This result amounts to the observed transmittance
obeying Beer's law.  From the discussion in Section 1,  we can conclude that
at the pressure involved,  there is little structure remaining within an
interval of one slitwidth.

The shapes of the spectral curves of (-l/u)/&iT change only slightly with
changes in equivalent pressure from about 0.5 atm to 2 atm.   Consequently,
data obtained within this pressure range are applicable ,  without account-
ing for pressure differences, to measurements at 1 atm.  At about 1 atm,
most of the structure due to individual lines is smoothed, yet the lines
are much narrower than the distance between clusters of lines,  and the
transmittance is only weakly dependent on pressure.

We have compared several curves of (-1/uJx^iT for a variety of pressures
and absorber thicknesses.   In general,  for a fixed equivalent pressure
greater than about 0.5 atm,  we found that (-l/u)/£>jT was essentially constant
over a wide range of values of u, provided (-//h T) did not exceed about
1.5 or 2,  corresponding to transmittances of 0.22 and 0.14,  respectively.
As expected from the discussion in Section 1,  (-1/u)/^ T was systematically
low near the centers of the clusters of lines when T was less than about
                                    3-6

-------
   LJ
   o
   o:
            IOOR
                                                                                                        LJ
U)
        IOE-20
                             1100
                                     1150

                               WAVENUMBERtcm'1)
                                   1200
     FIG. 3-4.
1250
                   90                           8.5                              8.0

                                WAVELENGTH (/jm)


Spectral  curves of transmittance  and  (-l/uX^rT between 1060 and 1250 cm   for  two samples

having different absorber thicknesses.  Spectral slitwidth"^" 1 cm  .   -3 = 298 K.  The units
                          -i   •>
                of
             are molecules *  cir/.


              Curve
                                                                   -2
                                       (atm)    (cm)     (molecules cm  )
                             Broken

                             Solid
1.40    1.99

1.59    1.99
                                            0.49 E19

                                            1.55 E19

-------
20 % at these points.  The relatively weak dependence of (- 1/11)7 T on u
observed for a wide range of transmittances make it possible to construct
a single curve of this quantity that can be used to calculate transmittances
or emissivities for a wide range of u.  This result is exploited in
Section 4.

Spectral curves of (-l/u)x^7T are shown in Fig. 3-5 for two temperatures,
293 K and 573 K.  These curves are applicable to equivalent pressures be-
tween about 0.5 atm and 2 atm and a spectral degradiation corresponding
to 1 cm   spectral slitwidth.  As expected from the theory of the relative
strengths of lines within a band, the curve corresponding to the higher
temperature lies above the other one in the wings of the band and below it
near the band center.  Corresponding curves for 375 K and 475 K which have
been constructed, but not included in this report,  fall systematically be-
tween the curves shown.
Figures 3-6 and 3-7 show curves of T and (-l/u^^T,  respectively,  for the
1300-1400 cm   region,  which includes the very strong v~ band.   As  for the
curves in Figs. 3-4 and 3-5, the curve of (-l/u)/&7T in Fig.  3-7 can be
used to calculate the transmittance for samples covering a wide range of
values of u if the equivalent pressure is between approximately 0.5 and
2 atm.  No data on (-l/u^^T were obtained for the 1300-1400 cm   region
at elevated temperatures.

BAND STRENGTHS

The strength of a band system is related to the absorption coefficient by
S = / K dv.  If the sample pressure is sufficiently high that the structure
is smoothed out, the observed transmittance T approximates the true trans-
mittance T1 and the strength can be determined from the spectral curve by:
S = / K dv = (-1/u) ijhl* dv = (-1/u) ijnl dv .                     (3-1)
From the discussion of Figs. 3-2 and 3-4, we recall that the last term of
Eq. (3-1) is essentially independent of pressure and absorber thickness
                                    3-8

-------
u>
i
vo
             IOE-20
                     1000
                     1050                  1100
                    WAVENUMBER(cm-i)
10.0
 9.5
WAVELENGTH (ym)
                                                                      9.0
            IOE-20
                   1150
                  1200
         WAVENUMBER(cm-i)
                   1250
                              8.5
                                WAVELENGTH (pm)
                                         8.0
                                                                    -i
                                           1150
         FIG. 3-5.  Spectral curves of (-l/u)/;n.T between 1000 and  1250 cm"   for two different

                  temperatures.  In the wings of the band where  the absorption is weak,  the

                  values have been multiplied by either 10 or 100, as indicated,  before  being

                  plotted.  Spectral slitwidth ^ 1  cm

-------
                           100
                         UJ
                         o
                           50
OJ
I

                             1300
      1350
WAVENUMBER (cm-')
                                     7.6
       7.4
WAVELENGTH (pm)
     1400
                                     E
                                  0.5 is

                                     UJ

                                  1.0
 l
7.2
       FIG. 3-6.  Spectral curves of transmittance between 1300 and  1400  cm    for  four  pure SO
                  samples at 296 K.  Spectral slitwidth =  1.2 cm
                  curve to the bottom are:
                                                                 -1
                       Sample parameters  from top
                             Pe
                            (atm)
                            1.00
                            2.51
                            5.04
                           10.2
  (molecules  cm  )

      5.03  E17
     12.6   E17
     25.3   E17
     51.1   E17

-------
                            IOEM9
                            5E-I9
U)
I
                                1300
       1350
WAVENUMBER (cm-')
     1400
                                       7.6
        7.4
WAVELENGTH(pm)
 i
7.2

        FIG. 3-7.  Spectral curve of (-1/u) /^,T between 1300 and 1400 cm   for temperatures  near

                   296 K and equivalent pressures between 0.5 and 2 atm.  Spectral  slitwidth =1.2 cm

                   The units of (-l/u).^>,T are molecules cm

-------
for P  greater than about 1 atm.  Under this condition, Eq. (3-1) is valid
and the strengths of the band systems can be determined from spectral
curves.

The computer program used in reducing the data calculates the quantity
  v         /
/  , (-l/u)/MiT dv at several points throughout the spectrum.   The lower
limit of integration, VT, is at the low wavenumber side of the band.  We
have compared the computed values of the integral over each of the bands
from data on several samples.  The results agreed within a few percent for
samples with P  greater than 1 atm provided the transmittance was not less
than 20 %.

Table 3-1 summarizes the strengths of the v, and v., bands determined from
our data and compares them with the results of other workers.   The values
listed include contributions by other weak bands that overlap the main
band.  Our results compare favorably with previous work on both bands.
The v, band is difficult to measure because it is very strong and it is
necessary to use a very short absorption cell or dilute mixtures of the
S09 in a non-absorbing gas.   Adsorption causes uncertainties in the sampling
of dilute mixtures as pointed out in Section 2.  Our results are based on
samples contained in a 0.102 cm cell.  Results obtained with different mix-
tures agreed within a few percent.  The strength of the v,  band is essenti-
ally independent of temperature, although strengths of many of the individual
lines depend strongly on temperature.  Any possible variation in the band
strength is less than the experimental error.
                                    3-12

-------
                                TABLE 3-1

                             BAND STRENGTHS
Band
Temp.
 00
                      Strengths
                            -20          -12-1
  (Multiply all values by 10    molecules  cm cm  )
Present Work               Other Workers
1151 cm
       -1
296 K
(Room)
            735
            475
            570
 371 +  20
          373 +  25
          371 +  25
          373 ±  25
1362
296
3020 ± 200
 345+  35  Eggers and Schmid    (Ref.12)

 394 +  10  Mayhood              (Ref.13)

 435 +  25  Morcillo and Herranz (Ref.14)
3120 ± 300  Eggers and Schmid    (Ref.12)
3170 +  90  Mayhood              (Ref.13)
3270 + 100  Morcillo and Herranz (Ref.14)
                                  3-13

-------
                                 SECTION 4
                      CALCULATED VALUES OF
We have shown in previous sections that (-l/u).-c/H T at a given wavenumber
is nearly constant over a wide range of u when P  = 1 and the temperature
6 is constant.  The experimental data on (-l/u).,£r)T are limited to four
temperatures:  approximately 296 K, 375 K,  470 K,  and 573 K.  This section
deals with calculating (-l/u)/t7iT for several other temperatures with the
experimental data serving as a basis.  The results are presented for 296 K
and for thirteen higher temperatures in Table 4-1.

A few different samples were used to provide data for each temperature.
The sample used in a particular spectral region was usually chosen so that
(-Jh T) was between approximately 0.2 and 1 and could be measured accurately.
In the wings of the band where the absorption is very weak,  none of the
samples produced (•^/$fT) as large as 0.2.   In these cases, the samples
having the largest u were used.  The data used were consistent with similar
data obtained for other samples, but not included in this report.

Independent calculations were made at points separated by 0.2 cm   from
1050 to 1250 cm  .  A curve fitting routine was used to fit the experimental
data of (-l/u)x&»T to a second order polynomial expressed in terms of
1000/0.  Values based on this polynomial were then used to calculate
                                    4-1

-------
            (296 K) and the coefficients required to yield the following
ratio:
R(e) =  100

Values  of R(0) were calculated at the.thirteen different temperatures
listed  in Table 4-1.  The value of  "^  at 9 is denoted by
The ratio in Eq. (4-1) was expressed in terms of the reciprocal of Q, in-
stead of d, since the reciprocal appears in the expression relating the
strengths of individual lines to the band strength.  Satisfactory fits
could also probably be found if R(0) were expressed in terms of 0, instead
of 1/0.  The factor of 1000 makes the sizes of the coefficients a ,  a, ,
and a  more convenient than if 1/0 were used.  The factor 100 in Eq.  (4-1)
makes it possible to tabulate values of R(0) to an accuracy consistent with
the experimental data without using decimal points.

The values of the coefficients a , a.. ,  and a_ determined from the least-
squares fit to the data are included in Table 4-1.   Also included is  the
percentage deviation, to the nearest whole percent, between the experimental
data and the calculated values at the same temperatures.  From left to right,
the four columns under percent error correspond to temperatures of approxi-
mately 296 K,  375 K, 475 K, and 573 K.
In some spectral regions where there is structure in the spectrum, (
changes by several percent from one data point to the next.  Therefore,
slight errors in wavenumber calibration may produce sizeable errors in the
experimental value at a given wavenumber.  These errors are reflected in the
calculated values with the result that the uncertainty at a given wavenumber
may be much greater than the average uncertainty over an interval of a few
cm  .  The greatest errors probably occur on the sides of clusters of lines.

It should be emphasized that the values given in Table 4-1 are based on
data obtained with approximately 1 cm   spectral slitwidth.  The true values
                                    4-2

-------
of (-111)7! that would be observed with infinite resolving power would
show somewhat more structure,'  the peaks due to the clusters of lines
would be a few percent higher with the valleys between the clusters corre-
spondingly lower.  Differences of not more than a few percent probably
exist between the true and calculated values of / (-l/u),! dv if the
integration is performed over an interval of a few cm   and (-^T) does
not exceed approximately 1 or 1.5.  For larger values of (-/iT), the
calculated values of the integral of the emissivity or absorptance may be
larger than those observed.  The percent of error is expected to increase
with increasing (-;&'£').

The value of -,&» T for a sample of given u' at one of the temperatures in-
cluded in Table 4-1 can be calculated by:
(296)       100
)   •
                                                            (296)
                                                                 J.;
The quantities in the braces are given in the table.  From (--£*,T), other
quantities such as transmittance, absorptance, emissivity, etc., can be
calculated.  If a calculated value is desired at a temperature between two
of the temperatures listed, it can be found by interpolation or by sub-
stituting the coefficients a , a, ,  and a  into Eq. (4-1).  Calculations
outside the temperature range (296  K - 650 K) covered by Table 4-1 should
be made with caution since no experimental data were obtained at the higher
or lower temperatures.   The calculated values at 650 K represent a 75 K
extrapolation from the highest temperature at which data exist.  Further
extrapolation might yield sizeable  errors.  One use of the calculated data
in Table 4-1 is illustrated in Figs.  4-1 and 4-2.  These figures show
spectral plots of the calculated emissivity of various thicknesses of SO
at two temperatures,  475 K and 550  K, representative of the exhaust at the
top of a smokestack.
                                    4-3

-------
                  TABLE 4-1
CALCULATED  l:l/u)^nT  AT VARIOUS TEMPERATURES
V

1050.0
1050.2
1050.4
1050.6
1050.8
1051.0
1051.2
1051.4
1051.6
1051. 6
1052.0
1052.2
1052.4
1052.6
1052.8
1053.0
1053.2
1053.4
1053.6
1053.8
1094.0
1054.2
1054.4
1054.6
1054.8
1055.0
1055.2
1099.4
1055.6
1055.8
1056.0
1056.2
1056.4
1056.6
1056.8
1057.0
1057.2
1057.4
1057.6
1057.8
1058.0
1098.2
1058.4
1058.6
1098.8
1059.0
1059.2
1059.4
1059.6
1059.8
1060.0
1060.2
1060.4
1060.6
1060.8
1061.0
1061.2
1061.4
1061.6
1061.8
1062.0
1062.2
1062.4
1062.6
1062.8
1063.0
1063.2
1063.4
1063.6
1063.8
1064.0
1064.2
1064.4
1064.6
1064.8
1065.0
1065.2
1065.4
1065.6
1065.8
1066.0
1066.2
1066.4
1066.6
1066.8
^1
u.
^2
(molecule1
6-296K
2.05E-22
2.116-22
2.15K-22
2.20E-22
2.21E-22
2.23P.-22
2.26E-22
2.316-22
2.36C-22
2.460 22
2.946-22
2. 615-22
2.67E-22
2.716-22
2. 765-22
2.8l?-22
2.B6E-22
2.936-22
2. 996-22
3.046-22
3.07E-22
3.08E-22
3.13E-22
3.20E-22
3. 296-22
3.416-32
.55E-22
. 69(5-22
.83I5-22
.976-22
•08E-22
.20E-22
.30E-2J
.416-22
.38E-22
.366-22
.33E-22
.29E-22
.26E-22
.256-22
.37?-22
.506-22
.61G-J2
.72E-22
.846-22
.99E-22
.216-22
.366-22
.456-22
.575-22
.69E-22
.736-22
.75E-22
.77E-22
.B2E-22
.96E-22
.B8G-21!
.95E-22
.006-22
.13E-22
.276-22
.516-22
.736-22
.906-22
.1)86-22
.21E-22
.326-22
.566-22
.786-22
.935-22
.066-22
.11G-22
•llE-22
.13E-22
.166-22
.236-22
.34C-22
.506-?2
.74^-22
.136-22
.47R-22
.736-22
.95S-22
1.02E-21
l.Mf-21
iooJsT m t AJ (M6)
350 375
169 255
163 ?47
161 243
162 243
168 251
175 259
179 263
179 263
180 263
175 257
172 252
1'Z 252
173 251
173 251
173 250
17? 249
l7i 246
168 242
167 239
168 239
17Z 243
178 249
178 249
178 249
177 247
174 ?42
169 236
164 229
162 225
160 222
161 221
162 221
161 219
160 217
165 223
1»0 229
l7fl 230
169 229
174 235
180 243
179 240
177 236
176 235
174 234
173 236
178 235
1.7.1 228
J7J 227
176 231
178 233
178 232
181 235
182 237
182 237
180 234
179 232
179 233
l8o 234
183 236
182 235
181 232
179 229
179 228
180 Z28
l8o 227
l8l 228
184 232
l8l 226
178 223
175 219
I'l 214
170 213
172 2l5
176 219
179 223
179 224
179 223
179 223
163 227
185 228
189 232
186 229
185 228
182 225
178 219
d (Temper
600 425 450 475
356 467 582 697
346 455 568 682
342 449 560 972
340 4<6 555 666
343 454 563 67J
357 462 571 480
360 464 572 680
360 464 57l 679
360 463 570 677
392 455 560 66S
346 448 552 657
344 444 547 650
343 441 542 644
342 439 539 640
340 436 534 634
337 432 529 S27
333 4?7 523 623
327 419 514 609
323 4i3 506 599
321 4u 500 591
324 411 500 590
330 4i6 504 591
330 4tS 502 589
329 4i4 501 588
326 411 497 58J
320 404 489 574
313 394 478 562
305 385 468 551
298 377 457 539
293 369 448 52>
29l 365 441 5l9
289 362 436 5lO
286 357 429 50?
282 352 423 494
289 359 430 500
296 365 436 106
296 367 439 5m
296 368 441 5l3
304 376 449 52J
312 384 457 538
308 378 450 523
302 371 441 509
300 368 436 5Q4
298 365 433 500
299 365 432 497
297 362 427 491
289 552 415 473
287 349 411 47J
290 352 414 475
292 35? 413 471
291 350 410 470
294 353 4i3 472
295 355 414 47S
295 359 415 473
292 351 4U 469
290 349 409 467
29Q 349 408 466
29i 349 407 464
293 351 409 465
29l 348 405 460
287 344 399 454
282 336 390 443
279 331 383 434
279 330 390 *2*
277 327 376 424
277 327 J75 42?
28p 329 377 424
274 321 367 41?
269 3l5 360 4o3
264 309 354 J97
259 304 348 39?
257 302 347 390
259 3Q5 349 393
264 3lO 354 397
269 3l4 358 4ol
269 3l5 359 40?
269 3l3 358 «01
267 312 356 399
271 3l4 357 397
27l 3l3 354 393
275 316 396 393
272 3l4 353 39?
27l 3]2 353 391
26' 3g8 349 387
261 3(j2 342 580
ature In Kelvins)
500 525 550 575
811 924 1032 1138
794 90S 1013 1117
783 893 999 1101
776 983 988 1089
783 «89 993 1093
783 A94 996 1095
786 890 991 1089
785 888 989 1086
783 886 986 1083
77i B74 973 1069
761 "62 961 1056
752 952 949 1042
745 «43 938 1030
739 «36 930 1021
731 827 920 1009
724 818 910 998
7l5 808 899 986
703 795 884 970
691 782 869 953
681 769 894 936
679 763 847 927
677 761 843 921
674 758 838 916
674 757 838 9l5
668 751 831 908
657 739 818 994
645 726 804 879
633 7i3 790 865
619 696 772 845
604 680 754 825
593 666 738 806
582 653 722 789
573 642 710 775
564 632 698 762
570 638 703 766
575 643 708 770
580 648 714 777
585 654 721 786
593 663 730 794
601 670 736 800
589 656 721 783
577 ' 642 705 766
57i 635 698 757
565 6?9 690 749
56? 624 684 741
554 6l5 673 730
539 598 655 710
533 592 648 702
935 592 648 701
532 588 643 695
527 583 636 687
529 583 636 687
530 584 637 688
530 <>89 638 689
926 581 634 685
524 579 631 682
523 577 629 679
520 573 625 674
520 572 623 67l
514 566 616 663
507 558 607 654
493 543 590 635
483 530 575 »1B
477 523 566 608
470 5i4 557 597
469 5ll 553 593
469 -in 552 59l
455 497 536 574
445 485 524 560
439 479 5l8 554
433 474 512 549
432 472 510 947
435 475 514 551
43' 478 516 553
442 481 519 555
444 483 521 557
442 482 519 555
439 477 514 549
436 473 509 542
431 466 500 531
429 463 495 525
429 462 495 526
429 463 496 527
424 459 492 523
415 451 484 516
600 62J 650
1239 1337 1430
1217 1313 1406
1200 1296 1387
1186 1280 1370
1190 1283 1371
1191 1282 1370
1182 1272 1359
1179 1269 1355
1176 1265 1351
1161 1250 1335
1148 1236 1320
1132 '.'19 1302
1119 1204 1286
1108 1192 1?73
1095 1178 1257
1084 1165 1243
1070 1150 1227
1092 1132 1208
1039 1113 1187
1015 1091 1163
1004 10»8 1149
996 1068 H38
990 1062 1130
990 1061 1130
982 1053 1121
967 1037 1109
952 1021 1088
937 1006 1072
915 982 1047
893 958 1021
872 935 996
852 9i4 972
837 897 954
B?3 882 939
827 885 941
830 887 942
838 896 952
848 9Q7 964
896 9i6 972
861 920 976
842 899 954
824 880 933
8l5 870 922
8Q6 860 911
796 849 899
783 835 884
763 8i3 862
754 803 851
752 801 848
745 793 838
736 783 827
735 7B1 825
736 782 826
737 7B3 827
733 780 B24
730 776 820
727 773 8i7
721 766 BQ9
7l7 761 803
7o9 752 793
698 741 782
678 7i8 757
659 699 736
648 686 722
636 672 7fl7
631 667 701
628 663 696
609 643 676
595 62B 660
589 622 654
584 6]7 649
582 616 647
586 6i9 651
587 620 651
589 621 652
591 624 655
589 622 653
582 6l4 644
574 604 633
562 59o 617
594 581 606
955 582 609
556 584 611
553 98l 608
546 574 601
COEFFICIENT
°0 "l "2
4.87166*03 -2.92576*03 4.47946*02
.81626*03 -2. 90256*03 4.45926*02
.79596*03 -2-86796*03 4.40966*02
.68556*03 -2.82146*03 4.33376*02
.6406E*03 -2.77736*03 4.24256*02
.5830E*03 -2.72486-03 4.13756*02
.50746*03 -2.66676*03 4.03l8E*02
.48B*E*03 -2.6535E*03 4.0095E*02
.47286*03 -2.64336*03 3.9930E«02
•44i2E*03 -2.6325E*03 3.98676*02
.40666*03 -2.6l74E*03 3.9743E*02
.3324E*03 -2.569lE*03 3.89646*02
.26566*03 -2.52516*03 3.82466*02
.20896*03 -2.48706*03 3.76l5E*02
•1491E*03 -2.44866*03 3.70036.02
.09956*03 -2.4l82E*03 3.65376*02
•0446E*03 -2.38546*03 3.60486*02
3.98846*03 -2.35586*03 3.56636*02
3.91826*03 -2.J138E*03 3.50346*02
3-81426*03 -2.24376*03 3.38736*02
3.72766*03 -2.17926*03 3.27216*02
3.6380E*03 -2.10816*03 3.14Q06*02
3.60276*03 -2.08356*03 3.09846*02
3.60726*03 -2.08816*03 3.10786-02
3-5795E*03 -2.07296*03 3.08716*02
3-53886*03 -2.05366*03 3.06566*02
3.50606*03 -2.04286*03 3.06296*02
3.4797E.03 -2.0365E*03 3.06686*02
3.39B5E*03 -1.9901E*03 3.0007E-02
3.30906*03 -1.93586*03 ?.9l84E*02
3.20176*03 -1.86426*03 2.80036*02
3.09776*03 .1.79446*03 2-68506*02
3-03306*03 -1.75466*03 2-62376*02
2-98256*03 -1.72536*03 2-58i5E*02
2.95i06*03 -1.69296.03 2-91296*02
2.91646*03 -1.65856*03 2-44i5E*02
2.958lE*03 -1.68626*03 2.48696*02
3-0182E*03 -1.7283E*03 2-559lE*02
3-01l5E*03 -1.71246*03 2.5l79E*02
2.97686*03 -1-6755E*03 2-439oE*02
2.89636*03 -1.6257E*03 2-36206-02
2.83236-03 -1.58986*03 2-31206*02
2.7942E-03 -1.56706*03 2.27786*02
2.75l9E*03 -1.53986*03 2.23436*02
2-69026*03 -1.49556*03 2-l574E*02
2.63096*03 -1.45776*03 2.09746*02
?. 57326*03 -1.43026*03 2-0664E-0?
2.53326-03 -1.40536*03 2-02796*0?
2-49826*03 -1.37576*03 1.97io6*02
2.44486*03 -1.33666*03 1-90196*02
2-39916*03 -1.30626-03 1. 85206-02
2.37i3E*03 -1.28226*03 1.80546*02
2-36406*03 -1.27516*03 1.79066*02
2-36856*03 -1.27766*03 1.79426*02
2-3752E*03 -1.28786*03 1.B186E-02
2-36716*03 -1.28486*03 1.81656*02
2.34856*03 -1.27126*03 1.792BE*02
2-31026*03 -1.24446*03 1.74706*02
2-26816*03 -1-21116*03 1-68516*02
2-23546*03 -1.19186*03 1.65676.02
2-20016*03 -1.17256*03 1. 63056*02
2.11656*03 -1.12236*03 1.55526*02
2-0325E*03 -1.06866-03 1.4699E*02
1.96816*03 -1.02446*03 1.39546*02
1. 91176*03 -9.88246*02 1.33796*02
1.87676*03 -9.62916-02 1.29356*02
1.83506*03 -9.29186*02 1.23026*02
1.77856*03 -9.00246*02 1.19406*02
1.73l76*03 -8.75166*02 1.16086*02
1-73536*03 -8.85366*02 1.18786*02
1.74086*03 -8.96836*02 1.21706*02
1.74436-03 -9.01616-02 1.22816*02
1.74886*03 -9.01416*02 1.22366*02
1.71936*03 -8.73436*02 1. 16666-02
1.6963E*03 -8.5lOOE*02 l.i20«E*02
1.70556*03 -8.56396*02 H283E.02
1.70236*03 -8.55646*02 1.12686-02
1.66796*03 -8.32966*02 l.o9lB6*02
1.59i76*03 -7.74836*02 9,86576*01
1.51526-03 -7.2080E*02 8.93666*01
1.43996*03 -6.6275E-02 7.8777E.01
1.46846.03 -6.86826*02 8.34076*01
1.48866*03 -7.03126-02 8.64596*01
1.49736*03 -7.i483E.02 8.91676. 01
l-5flaiE*03 -7.26166*02 9.2?74E*fll
X ERROR
5-8 -2
6-9 -2
6-10 -2
7-10 -2
6 -9 .2
5 -8 -2
5 -8 -2
6 -9 -2
7-10 -2
8-11 -2
8-11 -2
8-11 -2
8-11 -2
7-11 -2
7-10 -2
7-10 -2
6-10 -2
6 -« -2
5 -9 -2
5 -a -2
4 -7 -2
3 -6 -1
3 -6 -2
4 -7 -2
4 -7 .2
4-7 4-2
5-8 4 .J
5-9 9-2
9-9 9-2
9-9 5-?
9-8 9-2
4 -8 9 .2
4-8 4-2
4-7 4-2
3-7 4-2
4-7 4-2
3-6 3-2
2-5 3-1
2-5 3-1
2-4 2-1
1-3 2-1
1-3 1-1
1-4 J -1
1-4 2-1
1-4 2-1
2-4 2-1
2-9 2-1
2-9 3-1
2-9 3-2
2-9 3-2
2-9 3-1
2-4 2-1
1-3 1-1
1-3 1-1
1-3 1-1
1-4 ? -1
2-4 2-1
1-4 2-1
1-3 1-1
1 -3 1 -1
1-3 2-1
1-3 1-1
1-3 1-1
1-3 1-1
1-3 1-1
1-3 1-1
0-2 0-1
1-3 1-1
1-4 2-1
1-4 2-1
1-4 2-1
1-4 ? -1
1-3 2-1
1-3 1-1
1-3 1-1
1-2 1 -1
0-2 1-1
0-2 1-1
0-1 0-1
0-1 0-1
0-1 0-1
-1 0-1 0
-2 1-2 0
-2 2-2 0
-2 2-2 0
                   4-4

-------
TABLI4-I (CONT).
V
J 20«
171 206
16' 201
162 199
16? 194
162 194
16; 194
164 196
165 198
165 198
164 196
164 196
165 197
166 196
165 196
164 194
163 193
161 1»0
160 169
163 192
163 193
162 191
158 185
154 161
151 177
149 174
148 ]73
146 I7i
144 169
144 169
144 169
144 168
144 167
144 167
143 165
143 165
144 166
143 166
143 165
144 166
143 165
143 165
142 164
141 163
141 163
143 164
144 164
142 163
141 162
141 161
140 160
139 456
139 156
139 158
139 158
140 159
140 159
139 157
138 156
137 195
135 152
134 151
133 151
132 150
134 iJ2
136 154
136 152
136 152
135 192
0 (Temper
400 425 450 475
255 295 334 S72
25l 290 329 566
246 786 325 S6Z
245 285 323 J6l
J47 787 326 J6J
249 289 326 366
274 Ju 347 380
297 331 362 390
289 3?4 356 J85
280 3l5 348 373
264 300 339 367
248 785 320 J55
240 776 311 344
236 271 306 33'
238 773 306 33»
238 272 306 337
239 272 304 335
240 772 304 333
235 267 299 32»
228 ?61 292 S2J
227 758 269 Si»
226 758 268 Ji7
226 757 287 3l»
226 259 268 3l7
231 262 293 122
230 762 293 323
229 760 291 320
228 759 289 Jj?
229 760 289 Jl7
229 759 288 3l5
226 756 283 HO
224 253 280 *06
222 251 278 3o3
219 247 274 300
217 244 271 395
220 747 272 796
221 748 273 298
219 746 272 39S
212 237 261 285
206 231 255 377
202 727 251 27J
ZOO 724 248 271
199 224 246 271
196 722 246 7.70
194 319 243 367
194 216 243 764
194 7l6 242 366
193 7l7 241 764
192 7i5 236 261
190 713 236 757
188 210 232 25J
188 210 231 352
169 711 232 75!
188 210 231 252
187 209 229 249
187 708 229 '49
187 7.08 229 749
187 208 229 349
166 2!>7 228 249
165 206 227 347
185 706 226 741
185 205 224 243
184 204 222 33»
183 202 221 331
l8l zol 219 337
180 199 218 335
179 198 216 23J
176 196 2l5 332
178 196 214 231
177 196 213 238
177 i95 212 22«
177 194 211 226
177 194 210 225
17S 191 207 222
173 189 204 2l9
171 (87 202 316
169 185 200 2l5
167 iB3 199 3i4
168 185 201 2l6
167 i84 200 2l«
169 186 202 2l8
l7l 186 203 3l»
169 185 200 214
168 183 198 211
167 182 197 310
Bture In Kelvins)
500 525 550 575
406 442 475 506
402 436 466 499
398 433 465 497
398 432 466 497
400 435 468 500
405 436 47! 503
411 440 468 494
4iJ 439 460 480
411 436 458 479
406 432 457 479
39S 426 453 479
367 4i6 448 476
376 4Q7 436 464
371 401 430 457
370 4QO 426 455
368 397 424 45Q
364 392 419 443
361 388 413 437
357 384 410 434
352 379 406 430
347 374 400 424
344 371 396 4i9
342 368 393 36»03 -5.40776*02 6.6642E*01
1.1495E*03 -5.31676*02 6.54i6E*01
1-1340E*03 -5.22636.02 6.41036.01
1-10166*03 -4.97766*02 5.95836*01
l-06i9E*03 -4.69696.02 5.4843E»01
1.03606*03 -4.5636E.02 5.30746.01
1.01536«03 -4.45516.02 3.16776.01
•01066*03 -4.45106*02 5.l949£*01
•0037E*03 -4.44586*02 5.24l7E*01
.73286*02 -4.26616*02 4.9764E*01
-35716.02 -3.96066*02 4.40166*01
•41386*02 -3.98946*02 4.43696*01
.42156*02 -4.01536*02 4.5066E*01
•12666*02 -3.93286*02 4.52086*01
•96626*02 -3.90106*02 4.96746*01
.13966*02 -4.08556*02 4.96l6E*01
-37296*02 -4.2890E«02 5.35956*01
.53256*02 -4.4ii56.02 5.5823E.01
.73036*02 -4.58456*02 5.9209E*01
.7873E*02 -4.6643E*02 6.10766*01
.68916*02 -4.60066*02 6.00466*01
.63146*02 -4.55686*02 5.93l3E*01
•5057E*02 -4.46176*02 5.8134E*01
•23256*02 -4.31396*02 5.55616*01
.92606*02 -4.12196*02 5.2565E*01
•6722E*02 -3.9786E*02 5-05456*01
.45566*02 -3.83026*02 4.8050E*01
.40106*02 -3.78026*02 4.70506*01
•3726E*02 -3.7676E*02 4,6924E*01
•14016*02 -3.61896*02 4.4360E*01
.99616*02 -3.51656*02 4.2852E*01
-09276*02 -3.59116*02 4.41536*01
•0963E*Q2 -3.59JOE.02 4.4132E.01
-3353E*02 -3.77866.02 4,79776*01
•26366*02 -3.75576*02 4.73536*01
•11246*02 -3.64216*02 4.54696*01
•5671E*02 -3.25586*02 3.86346*01
7.11956*02 -2.95496*02 3.38506*01
7.21236*02 -3.04016*02 3.55576*01
7.22806*02 -3.07426*02 3.64296*01
7-l430E*02 -3.03016.02 3.56686*01
7.18286*02 -3.07956*02 3.69826*01
7.2300E*Q2 -3.13456*02 3. 81976*01
7-14456*02 -3.07646*02 3.72276*01
7-01616*02 -2.99106*02 3.56256*01
•7439E*02 -2.8034E*02 3-27i3E*01
.46446*02 -2.61376*02 2.94906.01
•2345E»02 -2.45706*02 2-6864E.01
,0773E*02 -2.37676*02 2-5864E«01
-00336*02 -2.35656*02 2.59l5E*01
.93536*02 -2.33216*02 2.57906-01
-09806*02 -2.47916-02 2.87146*01
-35S1E*02 -2.66496*02 3.23536*01
.6026E*02 -2.84926*02 3.52496-01
.80706*02 -3.00396*02 3. 60366.01
.61746*02 -2.6364E*02 3.47396*01
•24666*02 -2.35016*02 2.95146*01
.9Bl5E*02 -2.40096*02 2.74l9E*01
•71926*02 -2.22756*02 2.45876*01
•6375E*02 -2.16196*02 2.39536. 01
I ERROR
- 1 -2 0
I -2 0
1-20
- 1 -2 0
1 -2 0
•1 1-2 0
1-3 2-1
4-7 6-3
3-6 9-2
2-4 3-2
0-2 1-1
•1 0-1 0
•1 0 -I 0
-1 0-1 0
•1 0-1 0
0-1 0-1
0-1 0-1
0-2 1-1
0-1 0-1
0-1 0-1
0-2 1-1
1-3 I -1
0-2 1-1
0-1 0 '1
•1 0-1 0
-1 0-1 0
•1 1-2 0
•1 1-2 0
-1 1-2 0
•1 1-2 0
-1 1-2 0
-i 1-2 e
-1 0-1 0
-1 0-1 0
0 -I 0-1
"1 0-1 0
-1 1-2 0
-2 2-3 0
-1 Z -2 0
-1 1-1 0
•1 0 -I 0
0-1 0-t
0-1 0-1
•1 0-1 0
0-1 0-1
0-1 0 -I
0-1 0-1
0-1 0-1
0-1 0-1
•1 0-1 0
0-1 0-1
0-1 0-1
0-1 0-1
0 -1 0 -1
-1 0-1 0
•1 0-1 0
-1 0-1 0
-1 1-2 0
-10- 0
•10- 0
0 -1 -1
•1 0 - 0
•10- 0
-1 0 - 0
•1 0-1 0
•1 1-2 0
•1 1-2 0
•1 1-2 0
-1 1-2 0
•1 2-3 0
-1 1-2 0
-1 1 'i 0
-1 1-2 0
•1 0-1 0
0-1 0-1
0-101
0-101
0-211
0-211
0-1 0 1
0-101
0-2 1 1
0-211
0-211
0-211
       4-5

-------
TABLE 4-1 (CONT.)
V
02 2.58406-01
4.8174E-02 -1.9821E-02 2.32246-01
4.88406*02 -2.0266E*02 2-59586-01
4.8559E-02 -2.0399E-02 2.6597E-01
4.63296*02 -1.9320E-02 2. 39506-01
4.4434E-02 -1.8759E.02 2.53576*01
4.28996*02 -1.79936*02 2.44426*01
4.11606*02 -1,69306*02 2.28116-01
3.8'526*02 -1.49766*02 1.91386*01
3.64816*02 -1.30566-02 1.34446-01
3.59716-02 -1.20366-02 1.28716-01
3.54606*02 -1.10076-02 1.02736-01
3.59Q9E-02 -1.1048E*02 1.00066*01
3.63756*02 -1.1094E*02 9.73006-00
3.67226-02 '1.19286-02 1.18936-01
3.68256-02 -1.25616-02 1.3676E-01
3.64496*02 -1.26886-02 1.43836-01
3-57l4E«02 -1.J474E-02 1.43936*01
3.49406*02 -1.25516*02 I.53o06*01
3.43246*02 -1.2771E.02 1,64896-01
3.32986*02 -1.24056*02 1.63076*01
3.21396*02 -1.17946*02 1.55126*01
3.1131E*02 -1.097lE*02 1.396lE*01
3-03226*02 -1.02536*02 1.23696*01
3.00256*02 -9.62336*01 1.09406*01
2.9766c«02 -9.198BE*01 9.9108=. 00
2-93836-02 -8.67736-01 8. 70086-00
2.87556*02 -7.96706*01 7.14986-00
2-8325E-02 -7.3965E-01 5.8377E*00
2.98126*02 -8.38316*01 7.45546-00
3.12416-02 -9.38586*01 9.l7uE*00
3.10786*02 -9.28386-01 9.01266*00
3.09256*02 -9.22706*01 8.97816*00
3.15606*02 -9.98556-01 1-06686-01
3.22376-02 -1.08l3E.02 1.25226-01
3. 18066-02 -1-0964E-02 1.33496*01
3.12556*02 -1.09626*02 1.38236-01
2.87i9E»02 -e.9474E.oi 1.00846-01
2.58466*02 .6.6354E.01 5.75686*00
2-52906*02 -6.23186*01 5.04986-00
2.6030E-02 -6.8979E-01 6.3730E-0
2-74B2E-02 -7.90836*01 8.09l86-00
2.94006*02 -9.2631E-01 1.04216-0
3.08016*02 -1.03406*02 1.23826*0
X BRROR
0 -T ~0~-T
0 -I 0-1
•1 0 -I 0
-1 0-1 0
-1 0 *l 0
-1 0-1 0
-1 0-1 0
-1 0 '1 0
-1 0-1 0
•1 0-1 0
-1 1-2 0
-1 1 .2 0
•1 1-2 0
•1 1-2 0
-1 0-1 0
-1 0-1 0
•1 0-1 0
0-1 0-1
0-1 0-1
0-1 0-1
0-2 1-1
0-2 1-1
0-2 1 -I
0-2 I -1
0-1 1-1
0-1 0-1
-1 0-1 0
-1 0-1 0
-1 1-2 0
-1 1-2 0
•1 0-1 0
-1 0 -1 0
0 -I 0-1
0-1 0-1
0-1 0-1
0-1 0-1
-1 0-1 0
-1 0-1 0
•1 0-1 0
•1 0-1 0
-1 1-2 0
-1 0-1 0
•1 1-2 0
-1 2-3 0
-1 2-3 1
-1 2-3 1
-1 2-3 1
•1 2-3 0
-1 1-2 0
•1 1'2 0
-1 0-2 0
-1 1-2 0
-1 1-2 0
-1 1-3 0
-1 2-3 1
•2 3-4 1
•2 4-5 1
-2 3-4 l
•2 3-4 1
•1 3-4 i
-1 3-4 1
-1 2-3 1
-1 2-3 1
•1 1-3 0
•1 1-3 0
•1 1-2 0
-1 1-2 0
-1 1-2 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-2 0
•1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
0-1 0-1
0-2 1-1
0-2 1-1
0-2 1-1
0-1 1-1
0-1 0-1
0-1 0-1
       4-6

-------
TABLE 4-1 (CONT.)
V
<
2.H6E-'0
i.97c-,?(,
1.876-30
1.14E-2U
1.85E-2U
1.65S-ZJ
1.916-20
1.99-:-20
2.12t-29
2.?3q-?e
2.41H-30
2.57L'-?0
2.63E-20
2.73C-20
2.726-20
2.65R-20
2.52E-20
2.356-20
2.276-2J
2.20C-P.O
2.205-?0
2.16E-20
2.195-23
2.J5C-20
^f* (8) / 4* <"*>
350 375
113 120
Hi 116
111 117
111 117
111 116
111 116
111 116
111 116
111 116
111 116
113 118
114 120
115 121
115 121
116 123
11' 124
114 120
112 118
109 115
106 113
108 113
111 116
111 116
111 116
111 115
111 116
112 117
Hi 117
113 118
1)3. lie
11 4 120
113 119
H-! 118
110 116
lOd 113
108 112
106 111
106 110
106 110
107 111
106 109
10' 110
103 111
111 114
112 115
ii>: U6
113 lie
113 118
112 117
109 114
106 110
105 109
104 ioa
104 107
105 108
105 108
10« 107
:o.? 104
105 107
10' 110
109 in
109 113
106 112
110 114
109 U3
IOB 112
103 112
106 110
105 109
105 108
100 110
104 106
102 104
106 108
106 108
109 in
111 113
117 114
113 116
110 113
110 113
109 112
111 115
108 HZ
106 110
	
0 (Temper
400 425 450 475
126 133 139 149
125 131 137 14J
124 130 136 Ml
122 128 134 139
122 12' 132 138
122 12' 132 137
122 127 132 137
122 127 132 136
121 126 131 13!
122 126 131 1~35
123 128 133 137
126 130 135 139
126 131 135 14»
12' 132 136 140
128 134 138 141
130 135 140 14!
12V 133 138 144
124 i3i i3' 142
120 176 132 13'
119 124 130 13!
116 124 129 134
121 125 130 134
121 125 130 133
120 174 128 13;
120 124 12' 131
120 124 12' 131
121 124 128 131
121 17.5 128 131
122 126 129 t'32
123 12' 131 13"
124 129 132 13S
124 ij8 133 137
123 129 133 137
121 125 130 134
118 123 127 is?
11' 122 126 131
lie 121 126 131
11? 119 124 129
115 119 123 12!
114 118 121 12»
112 115 116 121
113 il5 118 12?
113 il5 117 u!
116 118 119 120
118 120 122 123
119 122 124 124
122 125 128 131
123 127 130 135
122 12' 131 13!
119 124 126 133
115 120 125 130
113 116 122 127
112 116 120 124
110 114 118 121
111 il4 118 121
111 114 117 iao
110 112 115 il7
10' 109 111 li«
109 112 114 nJ
112 11.4 116 1l7
tu us n7 m
115 li7 119 125
114 u.7 n9 1JJ
117 120 122 124
117 170 122 12!
115 u9 122 12!
116 170 124 1J7
114 MB 122 124
113 1-.7 120 124
111 Il5 118 12?
11J 1-.6 119 12?
109 HI 114 HJ
106 108 HO 112
110 112 113 114
110 111 111 112
112 112 112 1]2
114 n3 113 112
115 115 114 HJ
11' 118 118 1l9
115 116 116 H9
115 U' 119 120
115 11' 119 121
119 122 125 12!
116 120 123 126
114 11? 121 124
ature In Kelvins)
500 525 550 575
150 156 161 166
149 ,?4 i59 164
147 152 157 162
144 149 i54 159
142 147 i5l 155
141 M5 149 153
141 145 149 153
140 145 146 152
14Q 144 147 151
139 143 147 150
141 145 148 151
143 146 149 152
143 147 150 153
144 147 l5o 153
14S 150 153 156
149 153 157 160
149 154 i56 162
148 i!3 156 163
143 149 154 158
140 145 150 154
139 144 148 152
139 141 145 148
137 140 143 146
135 138 141 143
134 137 140 142
133 136 138 141
133 136 138 140
134 136 138 140
135 138 140 142
137 140 142 144
139 142 144 147
14|) 144 147 150
141 144 148 151
139 143 146 190
136 140 144 148
135 139 143 147
135 140 144 148
133 138 142 146
132 136 139 143
129 131 134 136
123 126 126 130
122 123 125 .1J7
11' 120 121 121
121 122 122 122
124 i25 125 126
12' 129 130 131
133 135 13' 136
134 138 140 142
139 142 145 146
13' 141 145 148
13! 140 144 149
132 136 140 144
129 132 136 139
125 126 132 135
124 1J6 129 132
122 125 127 129
120 122 124 126
116 118 120 122
119 120 121 123
H8 119 120 121
119 119 120 120
121 122 123 123
122 123 125 126
126 126 129 131
127 129 i3l 133
125 131 134 136
131 134 i37 140
130 133 137 140
129 132 135 139
125 128 131 134
129 127 130 132
119 121 123 125
114 116 116 120
115 116 117 118
112 112 112 112
111 110 HO 109
HI 109 107 106
H2 111 109 107
117 116 115 114
119 ll9 il9 H9
121 122 122 123
123 124 126 1J7
130 132 134 136
129 132 135 136
129 131 134 13'
600 623 650
170 175 179
1«9 173 ]77
146 170 174
1»3 167 171
1»9 163 167
157 160 163
156 160 163
156 159 162
194 157 160
153 156 i59
154 157 160
155 156 160
155 158 160
1*6 156 161
159 162 164
163 166 169
146 170 173
167 171 t75
163 167 I'l
159 163 167
156 160 164
151 154 157
149 151 154
146 146 150
144 147 149
143 144 146
142 144 145
142 144 146
144 146 147
147 146 150
149 151 153
152 155 157
194 157 |59
153 156 159
152 155 i58
151 154 i58
152 156 160
190 154 157
146 150 t53
139 141 144
132 134 135
128 129 130
122 122 123
123 123 123
126 126 12'
132 132 133
140 141 143
144 146 148
191 153 156
1»2 155 158
153 157 161
148 152 156
143 146 149
136 141 144
134 136 139
131 133 135
128 130 132
124 126 128
125 126 127
121 122 123
121 121 121
124 124 125
127 128 129
132 133 134
135 136 138
138 141 143
143 146 148
144 147 150
142 145 148
137 1J9 ]42
134 136 138
127 129 131
122 124 i2S
119 H9 120
112 112 112
108 107 106
104 1Q2 101
106 104 102
113 112 110
119 U9 n9
123 174 124
128 129 i30
137 139 140
140 142 144
139 142 145
COEFFICIENT
'I °2
3.1454E.02 -1.06321*02 1.3267E.01
J.l'77E«02 -1.1299E»02 1.43656*01
3. 10026-02 -1.09246-02 1.3933E«01
2.98626-02 -l.0297e.Q2 1.30786*01
2.63716*02 -9.37096*01 1.16426*01
2.6'526*02 -8.21756-01 9.6464E-00
2.6464E-02 -8.03676*01 9.35l5E-00
2.6179E-02 -7.86186-01 9.0954E-00
2.5562E*02 -7.4776E-01 8.49916*00
J. 47986-02 -6.9089E-01 7.48416-00
2.39696-02 -6.0473E-01 5.66Q9E-00
2-2968E-02 -5.02236*01 3.5042E-00
2-2604E-02 -4.6732E.01 2.79006-00
Z-2332E*02 -4. 37426*01 2.14316*00
2-3139E«02 -4.70016*01 2.404lE*00
2-45966*02 -5.510'E*01 3.52336*00
2-64696*02 -6.65656*01 9.44i56*00
3. 08416-02 -1.06776*02 1.33436*01
3-1463E-02 -l.l7l2E*02 1.56636-01
3-0146E-02 -1.1095E-02 1.50716*01
2.91396*02 -1.04D«E*02 1.40386*01
2.45l6E*02 -6. 86526-01 7.6023E-00
2-25l!E*02 -5.38666*01 4.97956*00
2.14826*02 -4.80276*01 4.;9626*00
2.l2l9E*02 -4.7299E*01 4.15796-00
1. 99.26-02 -3.44876-01 1.84756-00
1.66316*02 -2.72386*01 3.00646-01
1.84926*02 -2.54136*01 8.14226-02
1.89236*02 -2.72806*01 2.5644E-01
1.97576*02 -3.17276*01 8.42476-01
2-00766*02 -3.l99lE*01 6.41276-01
2-25966*02 -5.03916-01 3.8799E-00
2-3972E*02 -6.08046*01 5.75636-00
2-55106*02 -7.55606*01 6.77616*00
2.65956*02 -6.70756*01 1.12346-01
2.70806*02 -9.21746*01 1.23l9E*01
2.8'96E*02 -1.0979E*02 1.48466*01
2.61496*02 -1.02986*02 1.4584E*01
2.61866*02 -8.95146*01 1.23l3E*01
2.20256*02 -6.09626*01 7.50876*00
1.9190E*02 -4.41166*01 3.00696*00
1.6»24E*02 -2.47416*01 1.60746-00
1.24566*02 4.38036-00 -3.45Q2E-00
1.08956*02 1.94456*01 -6,53976*00
1.17366*02 1.60346-01 -6.27326-00
1.39226*02 2.9336E*00 -4,30466*00
1.70326*02 -1.50626*01 -1. '0236*00
1.8'l2E*02 -2.49776*01 -2.39416-01
2-27856*02 -5.40526*01 4.79806*00
2-6034E*02 -6.18986*01 1-01936-01
2. 9523E*02 -1.11766*02 1.59776*01
2-84646*02 -1.0'626*02 1.56796*01
2.6240E»02 -9.44806*01 1.37376*01
2.46676-02 -6.56736*01 1.25086-01
2.14496*02 -6.15506*01 6.16766*00
1.98256*02 -5.04936-01 6.33786-00
1.92l3E*02 -4.87276-01 6.35076-00
1.93436*02 -5.41276*01 7.63546-00
1.71116*02 -3.41126*01 3.86646*00
1.32356*02 -2.95806*00 -1.95906*00
1.18246*02 8.83636*00 -4.21376*00
1.25676*02 5.96026*00 -4.01346*00
1.4835E.02 -1.08796*01 -1.01636-00
1.55736*02 -1.17626*01 -1.39546*00
1.77i46*02 -2.73276*01 1.32986*00
2.07lS6*02 -4.9973E-01 5.4042E-00
2.3133E-02 -6.62776*01 6.11136-00
2.53036*02 -8.47326*01 1.16786*01
2.49o3c*02 -6.3584E*oi I.l684c*01
2.2875g. 02 -'.145!E*01 9.87oOE*00
2.00866*02 -4.95126*01 9.61856*00
1.91696*02 -4.94206*01 6.59466-00
1.66746-02 -5.10676*01 7.51636-00
1.33306*02 -6.94196*00 -6.63126-01
9.74856-01 l.'3106-Ol -4.90336-00
9.6166E-01 4.90046*01 -1-0665E-01
1.9604E-01 7.75286-01 -1.S904E-01
1.85326-01 8.02236*01 -1.66086-01
4.20746*01 6.78236*01 -1.50006*01
9.73226*01 2.56886-01 -7.3669E-00
1.1896E*02 1.12756*01 -4.9989E-00
1.49446-02 -1.06166-01 -1.18986*00
1.72856*02 -2.07566*01 -2.39446-01
2-l3l26*02 -5.34406*01 5.90696*00
2.26246*02 -6.79726*01 8.76536-00
I ERROR
0 -1 0 -1
0-1 0-1
0-1 0 -I
0-1 0-1
0-2 I -1
0-2 1-1
0-2 1-1
0-2 2-1
0-22-
0-22-
0 -1 1 •
0-1 0 •
0-1 0 -
0-1 0 -
0 -I 0 -
0-1 0-1
0 -1 0 -1
0 -1 0 -1
0-1 0-1
•1 0-1 0
•1 0-1 0
•1 0 -I 0
•1 0 -» 0
-1 0-1 0
•1 0 -I 0
•1 0-1 0
•1 1 't
1 -Z
- 1 -Z
• 1 -Z
0 •-.
1 •}
• 0 -2
1-20
1 -2 0
-1 2-3 1
-1 2-3 1
-1 1-3 0
-i o -z o
0 •-! 0 -1
0 -I 0 -1
'0-1 1 "1
0-2 1-1
0-2 1-1
0-2 3 -1
0-1 1-1
0-1 0-1
0-1 0-1
0-10
0-10
0 -1 0
• 2 -3 0
3 -4 1
•1 3-5 1
•1 2-4 1
-12-31
-1 1-2 0
-1 0-1 0
o-i o-i
0-1 I -1
0-2 J -1
0-2 1-1
0 -2 1 -1
0-2 1-1
0-1 0-1
-1 0-1 0
•1 1 -Z 0
-1 2 -3 1
-1 1-2 0
•1 1-3 0
-1 2-4 1
-1 1-3 1
-1 1-3 1
-1 0-1 0
0-1 0-1
-I 0-2 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
•1 0 -Z 0
-1 0-1 0
-1 1-2 0
•1 2-4 1
•1 1-2 0
-1 1-20
      4-7

-------
TABLE 4-1 (CONT.)
V
(a.'1)
1118.0
1118.2
1118.4
1118.6
1118.8
lll'.O
1119.2
1119.4
1119.6
1119.8
1120.0
1120.2
1120.4
1120.6
1120.8
1121.0
1121.2
1121.4
1121.6
1121.8
1122.0
1122.2
1122.4
1122.6
1122.8
1123.0
1123.2
1123.4
1123.6
1123.8
1124.0
1124.2
1124.4
1124.6
1124.8
1125.0
1125.2
1125.4
1125.6
1125.8
1126.0
1126.2
1126.4
1126.6
1126.8
1127.0
1127.2
1127.4
1127.6
1127.8
1128.0
1128.2
1128.4
1128.6
1128.8
1129.0
1129.2
1129.4
1129.6
1129.8
1130.0
1130.2
1130.4
1130.6
1130.8
1131.0
1131.2
1131.4
1131.6
1131.8
1132.0
1132.2
1132.4
1132.6
1132.8
1133.0
11J3.2
1133.4
1133.6
1133.8
1134.0
1134.2
1134.4
1134.6
1134.8
J*
u
cm2
'molecule'
8-296K
Z.38E-20
2,536-20
2.62E-20
2.83fc-20
2. 955-20
3.026-20
3.J4S-JO
2.976-20
2.816-20
2.686-20
2. 585-20
2.33p-20
2.42P.-20
2.46I--20
2.55C-2U
2.65E-20
2.77E-20
2.93E-?0
3. 096-20
3.25P-20
3.43E-20
3.556-20
3.62P-20
3.62E-20
3.52P-20
3. 356-20
3.15R-20
2.91E-20
2.676-?0
2.-i9E-70
2.655-20
2.SOt:-?0
2.97C-?o
3,?5t=-?0
3.54E-20
3.76E-20
4.00E-20
4,266-20
4.39C-20
4.466-20
4.41E-?0
4.26E-20
4.00C-20
3.61E-2II
3. 266-20
2.90E-20
2.7SE-20
2.74C-?o
2.81E-20
2.99E-20
3.306-30
3.666-20
4.03C-20
4.37E-20
5.03K-20
5.36E-20
5.505-23
5. 356-20
4.976-JO
4.59C.-20
4.11C-20
3.606-20
3.25E-20
3.126-20
3.14C-20
3.32E-20
J.51E-2C'
3.68E-20
3.93E-2C
4.35E-20
4.91E-2J
5.43E-20
6.28I--20
6.40G-20
6.23E-20
5.75E-30
5.15E-20
4.576-20
4.07E-20
3.76E-20
3. 806-20
3.60E-2U
3.67E-20
3. 846-20
4.046-26
100^.1 m / £* (M6)
350 375
105 108
104 137
106 109
104 106
103 105
104 105
105 106
106 107
10V 108
106 107
106 107
90 91
107 110
107 111
103 111
108 112
108 111
106 108
106 108
105 107
10' 106
104 105
104 104
104 io4
104 104
103 103
10? 102
103 102
105 106
io7 inn
10.1 104
101 102
104 106
:o.'. 105
103 104
103 104
10J 103
101 101
102 102
101 101
102 101
103 102
104 103
105 104
104 103
106 106
104 io4
101 101
:oo 100
100 100
101 101
102 102
102 102
99 It
98 97
98 97
100 98
103 102
li' 106
107 106
109 108
103 107
104 106
10" 104
101 100
95 93
92 90
92 89
92 90
92 90
92 90
9l 87
89 95
94 9l
100 97
104 102
105 104
106 105
10? 106
103 102
lO'l 99
9V 95
95 93
94 9o
92 89
0 (Tenpe
400 425 450 475
111 114 117 12S
109 U2 114 u7
111 113 115 116
107 108 109 110
105 1D6 107 107
105 106 106 10!
106 106 105 10«
106 106 104 to3
108 107 106 10'
108 U8 107 107
106 109 110 119
93 It 99 104
113 116 118 120
113 116 n9 121
114 1l7 n9 121
114 ii7 n9 121
n4 n6 us i2n
111 113 115 ll7
110 112 113 114
108 109 110 111
106 107 107 107
105 105 104 104
104 i,j3 102 101
103 102 100 99
103 1u2 100 93
102 100 98 96
101 99 97 9S
102 151 99 9S
106 1J6 105 10*
108 1l9 108 10*
105 106 107 103
103 n5 106 107
107 109 HO 11?
106 108 109 110
105 106 107 10S
105 1:6 107 103
104 1i)5 106 107
102 102 102 10?
101 101 100 99
100 99 97 94
99 98 95 95
100 98 95 92
101 99 95 92
102 99 94 9J
101 99 96 93
104 102 100 97
103 102 101 99
101 100 100 99
100 100 101 101
100 100 101 101
101 101 102 10?
102 102 101 101
102 102 102 10?
98 96 97 97
96 95 94 93
95 94 92 93
96 94 92 90
100 97 94 91
104 100 97 9J
104 100 96 91
106 m2 97 92
105 102 96 94
104 102 99 94
102 100 '8 95
9? 97 96 94
92 91 90 69
88 87 66 a»
88 87 86 85
88 67 86 85
68 86 35 83
87 65 83 81
65 92 80 73
82 79 77 75
68 35 B2 79
94 90 66 83
99 95 90 85
100 96 9i 86
102 98 93 69
103 99 95 90
99 96 92 89
96 93 9o 87
9} 90 B8 85
9Q 38 36 83
87 65 83 81
86 83 81 79
rnture Ln Kelvins)
500 525 550 575
123 126 128 131
119 121 123 125
113 119 120 121
111 112 112 113
103 108 108 108
10' 105 105 104
1HS 102 101 100
101 99 98 96
103 101 100 98
104 105 104 104
110 ill 111 111
108 112 117 121
122 123 125 126
123 125 127 129
123 125 126 128
123 124 126 127
122 123 125 126
119 121 122 124
115 u6 117 118
112 112 113 113
107 107 106 106
1P3 102 101 100
100 96 97 95
97 95 93 91
96 94 92 90
94 92 90 87
94 92 90 88
95 95 93 92
103 102 101 99
1(17 106 io5 104
109 109 110 110
109 110 111 113
113 '14 il5 116
112 113 114 n5
109 no 110 111
10' 110 111 112
107 108 109 109
102 102 102 102
93 98 97 96
94 93 91 90
91 86 66 84
69 86 63 60
68 84 81 77
89 66 82 79
9Q 87 83 80
94 91 86 85
97 95 93 91
99 98 97 97
101 101 101 101
101 101 101 101
102 102 102 102
100 100 99 99
102 101 101 101
94 96 95 95
92 91 90 69
89 67 85 84
87 65 83 80
87 84 80 77
83 84 79 75
85 81 76 71
87 82 76 71
89 85 80 76
92 89 35 81
93 90 88 85
92 91 69 87
B9 87 87 86
84 66 66 86
35 85 85 85
8$ 64 84 63
32 82 81 60
79 78 76 75
76 75 73 72
7J 72 70 69
75 72 70 67
73 74 70 66
60 75 70 65
8l 76 71 66
B3 77 72 67
84 79 74 69
84 80 76 72
84 81 78 75
83 80 78 76
fll 79 77 75
7» 78 76 75
77 76 74 72
600 625 650
133 136 138
127 128 130
122 123 l?4
113 114 114
108 lo9 109
184 104 103
98 97 96
94 92 90
96 95 93
103 102 101
111 110 110
125 130 134
128 129 130
ISO 132 133
129 130 i3l
128 130 131
127 128 129
US 126 i?8
119 119 uo
113 H3 114
106 105 105
99 98 97
94 93 9i
89 68 86
87 85 83
85 83 91
86 84 62
90 39 67
98 97 96
103 102 101
111 111 112
114 H5 116
II7 116 n9
116 H7 116
112 112 113
112 H3 n4
110 110 111
103 103 103
95 94 94
88 87 85
«2 79 77
77 74 7i
74 70 67
76 72 69
77 74 7i
82 79 76
89 87 65
96 96 95
101 101 101
101 101 101
102 102 102
98 97 97
100 100 99
94 94 93
86 67 66
82 61 60
78 76 74
74 71 68
70 66 62
66 61 56
66 60 55
71 67 63
78 75 71
82 80 77
85 64 82
85 85 84
66 86 86
85 85 85
83 63 83
79 79 78
74 73 72
71 69 68
66 67 66
65 62 60
63 59 55
60 56 51
61 56 51
62 57 52
64 59 54
66 65 61
72 69 66
74 7? 70
74 72 71
73 72 7i
71 70 69
COEFFICIENT
"l °2
2-l2l4E*02 -6.03666*01 8.04926-00
1.65856*02 -4.46406*01 5.69i6E<00
1.46556*02 -1.44996*01 2.1320E-01
1.2349E*02 -4.50746«00 -7. 2379^.01
1.0673E*02 4.4932E*00 -1.92QOE*00
8.1452E*01 2.18366*01 -4.63896*00
4.113BE«01 5.14l9E*Ol -1.00636*01
1.32406*01 7.10966*01 -1.34436*01
1.7Bl6E*01 6.96286*01 -1.34696*01
5.61546*01 4.29446*01 -8.fl697E.00
9.69756*01 1.57976*01 -4.41096*00
3.0532E*02 -1.5325E*02 2.7372c*01
1.6231E*02 -2.23736*01 1.16286*00
1.74o3E*02 -3.00796*01 2.41696*00
1-6092E*02 -1.98656*01 5.42456-01
1.57i4E*02 -1.69556*01 1.18256-02
1.54466*02 -1.6123E*01 -1.36736-03
1.64616*02 -2.7B73E.oi 2.57i8E«00
1.33106*02 -6.9384E.oo -8.46o7E-01
1-132BE*02 4.26036*00 -2.42446*00
8.47906*01 2.09736*01 -4.8753E»00
5.4928E*01 4.01646*01 -7.93946*00
3.3284E.01 5.33586*01 -9.94856*00
1.20706*01 6.68536*01 -1.20846*01
-1.85246*00 7.70216*01 -1.38746*01
-2.4100E.OO 7.49536*01 -l.32l3E.01
1.0428E*01 6.40736*01 -1.11166*01
2.75226*01 5.37456*01 -9.55636*00
3.99626*01 5.2191E-01 -1.0188E-01
5.4250E»01 4.5657E.01 -9.50596.00
1.21236*02 -5.65186*00 -1.87566-01
1.5648E*02 -3.35246*01 4.97466*00
1.42856*02 -1.7694E.01 1.4833E*00
1.4427E«02 -2.0334E«01 2.14036*00
1.27486*02 -1.0244E.01 6.24406-01
1.32436*02 -1.39216*01 1-27906*00
l'. 25516*02 -1.05656*01 8.91996-01
1. 01596*02 2.1347E*00 -7.70666-01
6.Q944E.Q1 2.96276*01 -5.40696*00
3.00636*01 4.93636*01 -8.46406*00
-5.1853E*00 7.30656*01 -1.24176*01
-4.01206*01 9.87636*01 -1.69376*01
-6.80576*01 1.19S6E*02 -2.07606*01
•6.00146*01 1.15066*02 -2.00386*01
-4.9023E*01 1.0674J.02 -1.85376.01
-4.16466.01 1.05936.02 -1-89306*01
8-1133E.OO 6.99386*01 -1-26516*01
7.06116*01 2.2438E*01 -4.06686*00
9.9630E*01 1.61116*00 -4.4446E-01
1.0273E*02 -6.40846-01 -4.96076-02
1.00106*02 2.614iE*00 -7.62656-01
7.09766*01 2.4127E*01 -4.5985E*00
8.22556*01 1.66576*01 -3.37576*00
7.87446*01 1.28686*01 -1.95266*00
5.59866*01 2.58466*01 -3.79406*00
3.14426*01 4.11246*01 -6.16586*00
-2.36526*00 6.63766*01 -1.06786*01
-5-29366*01 1.06566*02 -1.81476*01
-1.0458E*02 1. 48826*02 -2.61266.01
-1.31116.02 1.67166*02 -2.92316*01
-1.49HE*02 1.83096*02 -3.23686*01
-1.06966*02 1.5224E*02 -2.693lE.01
-6.46326*01 1.2222E*02 -2.l73SE.01
-2-39206*01 9.06356*01 -1.59716*01
2.30896*01 5.23196*01 -8.74796*00
7.34146*01 7.05606*00 2.40836-01
1-05626*02 -2.13756*01 5.83456*00
1.01056*02 -1.83706*01 S.4047E.OO
8.97806*01 -1.01366*01 3.89626*00
7.17526*01 1.54116*00 2. 01886. 00
4.2<79E*01 2.11536*01 -1.22176*00
4.30246*01 1.66086*01 1.6821E-02
4.72936*01 9.61986*00 1.71136*00
-1.84966*01 6.4753E*01 -6.78496*00
-7.56536*01 1.13606*02 -1.82376*01
-1.28046-02 1.57606*02 -2.67276*01
-1-35876*02 1.65436*02 -2.63026*01
-1.41966*02 1.7203E*02 -2.9720E*01
-1-3997E.02 1.7261E-02 -3.00676*01
-8.10236*01 1.25306*02 -2.12286*01
-3.95506*01 9.2077E.01 -1.50286*01
4.6181E-01 5.86l6E*01 -8.62936*00
1.92066*01 4.16676*01 -5.3198E-00
3.76l7E*01 2.48306*01 -1.68396*00
3.66756.01 2-31296*01 -1-2979E-00
1 ERROR
-1 0 -I 0
-1 0-2 0
-1 0-2 0
-1 0-1 0
-1 0-2 0
-1 0-2 0
-1 0-1 0
0-1 0-1
-1 0-1 0
.1 0-1 0
-1 0-1 0
-2 8-9 3
•1 1-2 0
•1 1-2 0
•1 1-3 1
-1 2-3 1
-1 2-3 l
•1 1-2 0
-1 1-2 0
•1 1-2 0
-1 0 -J 0
-1 0-2 0
-1 0 -t 0
0-1 0-1
0-1 0-1
0-1 0-1
0-1 1-1
0-2 1-1
0-1 0-1
-1 0-2 0
-1 1-3 1
-1 1-2 0
-1 2-4 l
-1 3-5 2
-13-52
-1 2-3 1
-1 1-2 0
-1 0-2 0
-1 0-2 0
-1 0-1 0
0-1 0-1
0-3 3-2
1-5 7-4
0 -3 4 .3
0-3 4-J
0-2 2-2
0-2 1-1
-1 0-1 0
-1 2-4 l
-1 3 .6 2
-2 4-6 3
-2 4-6 2
-1 2-4 l
-1 2-4 1
-1 2-4 1
-1 1-2 0
-1 1-2 0
•1 0-1 0
0-1 1-1
-1 0-1 0
0-2 2-2
•1 0-1 0
0-1 0-1
-1 0-1 0
-1 0-1 0
0-1 0-1
0-1 0-1
-1 0 rl 0
-1 0-1 0
-1 0-1 0
-1 1-3 1
-1 1-3 1
-1 2-4 1
•1 0-2 0
-1 0-2 0
•1 0-1 0
0-1 0-1
0-1 1-1
0 -3 3 -3
0-2 1-2
0-1 0-1
-1 0-1 0
-1 0-2 0
-1 1-3 1
-1 1-3 1
       4-8

-------
TABU 4-1  ICONT.)
V

1135.0
1133.2
1135.4
1135.6
1135. B
1136.0
1136.2
1136.4
1136.6
1136.8
1137.0
1137.2
1137.4
1137.6
1137.8
1138.0
1138.2
1138.4
1138.6
1138.8
1139.0
1139.2
1139.4
1139.6
1139.8
1140.0
1140.2
1140.4
1140-6
1140-8
1141.0
1141.2
1141.4
1141.6
1141.8
1142.0
1142.2
1142.4
1142.6
1142.8
1143.0
1143.2
1143.4
1143.6
1143.8
1144.0
1144.2
1144.4
1144.6
1144.8
1145.0
1145.2
1145.4
1145.6
1145.8
1146.0
1146.2
1146.4
1146.6
1146.8
1147.0
1147.2
1147.4
1147.6
1147.8
1148.0
1148.2
1148.4
1148.6
1148.8
1149.0
1149.2
1149.4
1149.6
1149.8
1150.0
1150.2
1130.4
1150.6
1150.8
11)1.0
1191.2
1151.4
1151.6
1U1.8
Z^I
u
(r^->
Naoloculo
8-296K
4. 335-20'
4.75E-20'
5.D6E-20
5.63E-20
6.11E-20
6.34E-20
6.35E-20
4.23E-20
5.B2E-20
3.36«-?0
4.876-20
4.53E-20
4.33E-20
4.29E-20
4.31F-20
4.33e-20
4.35E-20
4.39E-20
4.47E-20
4.36E-20
4.69E-20
5.01E-20
3,316-20
3.S4E-2U
9.76E-20
S,72t-S0
3.316-JU
3.276-20
S.02C-2U
4. 826-20
4.69E-20
4.62E-20
4.37E-20
4.49E-20
4.42E-20
4.?6(=-?0
4.0BS-20
4.00E-20
3.896-20
3.95E-20
4.BBF-20
4.30'=-25
4.52E-20
4. 636-20
4.65E-70
4.60B-20
4.S7S-23
4.45E-20
4.29E-20
4.11E-20
S.«5E-20
3.32E-20
3.23E-20
2.99E-20
2.90E-20
2.92R-23
3.I11E-20
3.14E-20
3.24H-2J
3. 335-20
3.38E-20
3.37E-20
3.32F-20
3.10K-20
2. S8I--20
2.61P.-20
2.33E-20
2.18E-2U
2.14E-20
2.166-20
2.20E-20
2.296-20
2.36E-20
2.38C-20
2.34E-20
2.27E-20
2.206-20
2.13B-20
2.08I=-20
2.02E-20
1.9BI--20
1.97F-JO
1.98I--20
1.99E-20
S.02E-20
i°2Al (e) t Js* (2,6)
350 375
91 87
83 84
9i 87
89 85
89 64
90 86
93 89
96 92
99 94
99 96
99 95
97 94
94 93
94 9o
93 90
93 89
92 89
92 88
9i 86
89 85
88 84
87 82
87 81
87 82
36 81
87 82
ea 83
89 84
91 85
9a 83
69 85
89 85
90 86
9'J 86
90 86
90 86
90 85
88 83
87 82
84 79
83 77
82 76
81 75
82 76
84 78
86 81
87 81
Be 83
83 83
87 82
87 81
87 82
87 82
83 83
87 82
65 80
84 79
82 77
83 78
84 79
B5 79
66 81
87 82
90 86
9l 86
90 86
91 88
91 66
89 66
88 85
87 84
86 B4
88 64
89 86
91 66
93 90
94 91
93 90
92 69
92 89
92 90
92 90
92 90
92 90
92 90
8 (Tmpc
400 425 450 475
84 81 79 77
81 78 76 73
64 fll 79 74
62 78 73 7}
80 76 73 78
82 78 74 70
85 61 76 72
88 84 79 74
92 88 83 79
9j 87 83 79
92 87 82 7«i
9c 86 82 79
89 83 82 76
87 83 BO 77
86 83 79 76
86 82 79 76
65 62 78 73
84 81 77 74
82 79 75 72
81 77 73 70
79 75 72 65
77 73 69 6«
77 72 68 64
77 73 68 65
76 71 67 63
77 72 66 64
73 74 7o 6i
79 73 70 61
BO 76 7i 67
BO 76 7j 67
60 76 72 69
Bo 76 72 69
Si 77 7J 69
62 77 73 69
81 77 73 69
61 77 72 69
80 76 71 67
78 73 69 64
77 72 66 64
74 69 65 61
72 68 64 61
71 66 63 60
70 66 62 5»
7i 67 63 60
73 69 65 62
76 71 67 63
76 72 68 64
76 73 69 69
78 73 69 63
77 72 68 64
76 71 67 63
77 72 67 63
77 73 69 63
78 74 70 67
78 74 70 67
76 72 69 66
74 70 67 63
73 69 66 63
73 69 66 63
74 70 67 64
75 71 67 64
76 72 69 69
76 73 69 66
81 77 73 69
82 78 74 70
62 79 75 72
65 81 76 73
85 92 79 77
83 80 77 73
82 79 77 79
8l 79 77 76
81 79 77 73
81 79 77 73
63 80 78 76
85 83 81 79
66 83 83 80
88 86 84 82
86 66 84 82
87 93 84 8!
67 86 84 83
88 87 96 84
8S 87 66 65
86 67 86 65
69 67 86 89
88 87 66 89
rature In Kelvins)
300 925 550 575
75 73 71 70
72 70 68 67
74 7l 69 67
70 67 65 63
67 64 62 59
67 64 60 58
68 65 61 57
70 65 61 37
73 68 63 38
7J 66 63 58
7J 66 64 39
7} 69 65 62
74 70 67 63
73 70 67 64
73 7o 67 64
7} 70 67 64
7? 69 66 64
7i 66 65 62
66 65 63 60
67 64 61 59
65 62 59 57
62 59 56 54
61 57 54 52
61 58 55 52
60 57 54 51
60 57 54 51
62 56 55 52
62 59 55 52
63 59 55 52
65 59 56 53
64 61 57 54
69 61 58 55
65 62 59 56
66 62 59 56
69 62 58 55
64 61 57 54
63 59 55 51
61 37 33 50
60 56 53 50
36 55 32 50
53 55 53 SO
57 54 92 50
56 54 52 50
37 55 53 51
59 56 53 51
60 57 54 51
60 57 34 Si
61 57 54 50
61 57 53 50
60 56 53 50
39 55 92 49
59 56 52 49
61 SB 55 52
64 61 58 55
64 62 59 57
64 61 59 58
62 60 58 57
61 39 57 56
61 39 37 55
61 39 57 55
61 59 57 55
62 59 57 54
62 59 56 S3
65 62 58 55
67 63 60 37
69 66 64 61
73 70 68 66
74 72 70 68
73 72 70 69
74 72 7l 70
75 74 73 73
74 73 72 71
73 72 71 70
73 73 72 71
76 73 73 71
78 76 75 73
80 78 76 75
81 79 78 77
81 80 79 78
62 61 61 80
84 83 82 82
65 84 63 63
64 64 63 83
85 8'4 84 63
89 64 64 83
600 625 650
68 67 65
66 64 63
66 64 62
61 59 58
37 53 53
55 52 50
54 51 46
93 49 43
93 49 44
93 49 4«
55 51 47
56 54 51
60 57 54
62 59 56
62 59 57
62 59 57
61 59 57
39 57 53
57 55 53
56 54 52
55 52 50
31 49 47
49 46 44
49 47 45
46 46 44
48 46 43
49 46 43
49 46 43
49 45 43
49 46 44
51 49 46
92 50 47
33 50 47
53 SO 47
52 49 47
51 48 49
46 43 42
47 44 41
47 44 41
47 45 43
49 47 45
49 47 46
46 47 46
49 48 46
49 47 46
49 46 44
48 43 43
47 44 42
47 4 41
47 4 42
46 3 41
46 4 41
.30 7 45
33 51 49
55 53 51
56 54 53
55 54 53
33 34 53
94 53 51
34 52 51
53 31 50
32 50 48
31 48 46
52 49 46
54 52 49
59 56 54
64 62 60
66 64 63
67 66 65
69 68 68
72 72 71
71 70 70
69 69 68
70 69 68
70 69 67
71 70 68
73 72 71
76 73 74
77 76 76
79 79 79
81 81 81
83 82 82
83 83 82
63 63 63
93 83 83
COEFFICIENT
al '2
~3.l854E«01 2.3863E»Ol -L0933E*00
4.11486*01 1-2361E»01 1-4381E»00
1.6683E«01 3.43456*01 -2.9254E«00
1-0098E.01 3.4935E«01 -2.4640E-00
-1-0137E»00 4.0346E.01 -3.0927E.flO
-2-6346E.01 6.04g8E*01 -6.810'E'OO
-5,67i7E«ol 8.63486*01 -l-l887E*01
•«,0054E*01 1.13026*02 -1.7393E*01
•1.17386*02 1.40166*02 -2.2423E«01
-1-13476*02 1.38496.02 -2-2U«E.01
-1.0361E»02 1.2950E*02 -2.0492E*01
-7.4204E*01 1.0679E»02 -1.6346E-01
-5.2532E.01 9.0l30E*Ol -l.33l4E.01
-2'8421E«01 7.0109E«01 -9.5006E.OO
-2-l436E*01 6.4104E-01 -8.3350E.OO
-1.7163E»01 6.0214E«01 -7.5579E.OO
-1,5560E*01 5.6H9E.01 -7.o765E.00
-2-0259E.01 6.0279E«01 -7.30606*00
-1.82756*01 5.6059E.01 -6.23o6E.00
-1-2326E«01 4.9326E«01 -4.7590E»00
-1.0101E.01 4.3435E.01 -3.8022E*00
-1-4642E«01 4.5572E«01 -3.44486*00
-2.37i86«01 5.09026*01 -4.22756*00
-2.3049E.01 5.0945E.OI -4.2987E-00
-2-1197E.01 4.7826E«01 -3.5382E.OO
-2.79o9E»01 5.3956E«01 -4.7643E.OO
•3.92o3E»01 6.45l76.oi -6.9oo6E.flO
-4.6341E.Q1 7,1026E«01 -8.20l8E.00
-5.3768E.01 7.7493E»Ol -9.4655E*00
-4.9020E»01 7.4l70E»01 -B.B979E-00
-3.5332E.01 6.4183E«Ol -7.1409E-00
-3.0147E.01 6.0797E.01 -6.5930E.OO
-3.55lOE.01 6.6066E.01 -7.6627E.OO
-3-9333E.01 6.9580E«Ol -8.3877E.OO
-4.1031E.01 7.0173E«01 -8.4147E-00
-4.7339E«01 7.4062E*01 -9.0132E«00
-5.6037E»01 7.90136*01 -9.7164E«00
-4.3S95E.01 6.6513E*01 -7.l066E>00
-4.0434E«01 6.3284E.01 -6.42796*00
-1.0367E«01 3.7337E«01 -1.3643E.OO
7.2B41E.OO 2.2684E.01 1.4088E.OO
2-2873E*01 9.10196.00 4.Q634E-00
2>2359E«01 9.Q601E.OO 4.1149E.OO
1.90l3E«01 1.2966E'01 3.2578E>00
5.l756E«00 2.53576*01 8.0243E-01
•1.7299E*01 4.49l6E«01 -3.01846*00
-2.73896.01 5.3091E'Ol -4.5337E»00
-4.2964E.01 6. 62726* 01 -7.090«E*00
-4.6790E»01 6.9302E*01 -7.6323E.OO
•J.7079E.01 6.0533E«Ol -5-9076E.OO
-3.77716*01 6.00066*01 -5.69l3E.00
-3.76116*01 6.03806*01 -3.83736*00
-2.2527E.01 5.07l8E«01 -4.J771E*00
-1.27096.01 4.59316.01 -3.7203E.OO
4.5029E*00 3.28616*01 -1.3658E*00
2-2615E.01 1.76746*01 1.5486E*00
3.3500E>01 7.3332E*00 3.6558E*00
4.3074E.01 1.91726*00 3.53516-00
3,2160E»01 6. 6677E.QO 3.9110E*00
2.3672E*01 1.3957E*01 2.3364E>00
1.49796.01 2.09226.01 1.2361E.QO
-3.61836.00 3.66016*01 -1.75526-00
-2.1190E.01 5.0823E-01 -4.4254E*00
-4.2356E.01 7.1227E*Ol -8.6102E-00
-3.45j5E«01 6.71076*01 -8.07726-00
-9.6932E*00 5.0111E*01 -5.2044E.OO
2-8203E*00 4.4616E*01 -4.6918E-00
1.4641E*01 3.67Q9E*01 -3.40476-00
3.8l92E«01 1.7i34E*01 3.4386E-01
5-70fl7E*Ol 2.75496*00 2.9515E.OO
8.0025E-01 -1.4538E*01 6.05326-00
7.06316*01 -7.69386*00 4,83066.00
6.30486*01 -2.46956*00 3.96B6E.OO
5.1459E.01 6.2340E-00 1.8161E-00
3.2816E.01 2.5169E.01 -1.5637E*00
2.52l7E*01 3.3657E*01 -3.4104E*00
3.0649E»01 3.12416*01 -3.17116*00
4.7227E*01 1.9157E*01 -1.0468E-00
6.24l2E«01 7.1573E*00 l.l747E»00
7.4920E*01 -1.300*6-00 2.58236-00
7.8763E*01 -2,54816-00 2.6149E.OO
6.4061E.01 -5.690'E-OO 3.09106-00
6,7856E*01 -8.9351E.OO 3.70896-00
6.7497E«01 -6.12496*00 J,500
-------
TABLE 4-1 (CONT.)
V
(cm'1)

1192.0
1192.2
1.192.4
1152.6
1152.8
1153.0
1153.2
1153.4
1153.6
1153.6
1154.0
1154.2
1154.4
1154.6
1154.8
1155.0
1155.2
1155.4
1155.6
1155.8
1156.0
1156.2
1156.4
1156.6
1156. S
1157.0
1157.2
1157.4
1157.6
1157.8
1158. 0
1158.2
1158.4
1158.6
1158.8
1159.0
1159.2
1159.4
1159.6
1159.8
1160.0
1160.2
1160.4
1160.6
1160.8
1161.0
1161.2
1161.4
1161.6
1161. 8
1162.0
1162.2
1162.4
1162.6
1162.8
1163.0
1163.2
1163.4
1163.6
1163.8
1164.0
1164.2
1164.4
1164.6
1164.9
1165.0
1165.2
1165.4
1165.6
1165.8
1166.0
1166.2
1166.4
1166.6
1166.8
1167.0
1167.2
1167,4
1167.6
1167.8
1168.0
1168.2
1168.4
1168.6
1168. B
-J*
u
2
molecule
0-296K
.046-20-
.09E-20
. 096-JO
.10C-20
.13E-2CI
.18K-20
,22':-JO
.25i;-?0
,30f-2l)
S.361--20
J.45E-3C
2.50I--20
2.93R-JO
2.J4C-JO
2.S4t--2r,
2.3402C
Zi97r-?0
S,92'=-20
.21H-2G
.505-20
.76B-SO
.93G-20
,09n-?o
.96I--3U
.92E-2U
,90E-?0
.96E-20
.176-20
.37C-JO
.53K-?0
•66E-JO
,7dH-2'J
4.S4C-?0
4.F>9C-j()
4.»3r-?0
4.99E-?0
5.09 = -2(.
5.15E-30
5.S6E-?f.
9,*le.-?.«
5,38K-20
5.59E-2C
5.75r:-?L.
9.86S-?0
S.B1K-5U
3.31E-21'
5.23K-RT
5.02S-21'
4.B9P.-U
4.8lE-?o
4.79C-JC
4.946-Ji,
5.161--2U
9.44E-?0
5.B2c-20
6.ME-2C
6.62E-20
6.90G-20
7.005-21)
6. 63=.- 20
6.392-20
5.9ll:-2'.)
9.51C-2U
9.2H:-2u
5.08C-20
5.11K-2C
5.26H-JO
5.53E-?(J
5.78£-2U
6.06G-PI.
.32S-20
.55G-20
.69I--5U
.726-20
.70C-211
.47E-20
.25G-?0
.97S-21!
,64S-?u
.333-2U
.086-20
.OOS-70
.95I--JO
.956-21
5.n3E-aO.


350 379
91 89-
91 89
92 90
94 93
95 94
95 94
9; 94
94 93
93 91
92 89
91 89
9i 89
9i 89
92 89
9J 90
93 91
9J 91
89 8'
80 83
87 83
PS 84
88 84
83 84
6V 35
8« 85
B« 35
«v 06
89 65
69 85
89 65
83 84
8d 84
88 84
89 85
89 86
90 86
69 86
90 87
90 87
It 88
92 89
91 88
9(1 87
9(1 86
9i 87
9' 90
9« 9l
93 90
92 89
92 89
92 88
90 37
90 96
89 85
89 §5
90 86
90 86
9o 86
69 85
9,1 86
9J 89
1} 89
93 90
93 90
93 90
92 89
9J 90
92 89
9.i 90
9j 90
93 '0
93 91)
93 89
93 39
93 39
94 91
9« 91
95 92
1! 95
93 96
99 97
98 96
97 95
9ft 95
9$ 94 .
100^.1
u
a (YaoD4
«00 425 4SO 475
88 86 86 85
88 87 86 8»
89 38 87 87
92 "1 91 91
93 72 92 92
93 92 92 91
92 VI 90 90
9l 90 89 89
89 88 87 86
87 36 84 8)
87 85 S3 8i
86 i5 83 8!
87 65 84 82
87 n6 84 83
88 66 D5 84
69 68 87 86
90 S9 88 87
85 43 63 82
So 7B 77 74
60 78 77 74
81 .'9 77 75
Si ;6 75 73
B! ?i 75 73
BX -.'6 76 73
81 ;9 74 74
82 10 77 73
63 ao 78 76
82 30 78 76
82 79 77 79
62 79 77 74
Bl 78 75 73
60 '7 71 73
61 76 75 73
61 76 76 73
62 79 77 74
83 30 77 75
83 80 77 75
84 81 79 77
8« 61 79 77
85 33 90 79
86 S3 Bl 79
85 12 80 79
84 32 «0 79
63 81 79 77
84 Bi 78 76
87 34 61 73
98 65 Si 79
87 34 61 79
86 r<3 80 79
86 «3 6(1 79
65 83 80 79
84 ol 78 76
63 80 78 76
83 80 78 76
82 79 77 7?
63 80 77 74
62 79 76 74
62 V9 76 73
81 78 75 71
82 76 75 71
84 80 77 73
86 42 78 74
66 83 80 74
6/ 94 81 79
8'/ 84 82 79
86 54 81 79
87 35 82 80
67 94 62 80
88 35 83 81
86 B5 82 80
67 64 82 79
87 rt4 61 7S
86 33 60 77
86 -)3 60 77
86 i3 80 77
83 85 82 79
B8 36 83 80
90 37 84 82
92 QO 87 85
94 92 89 87
95 93 91 89
94 17 90 89
9J 91 89 87
93 91 89 87
«2 01 89 67
(8) •=* (296)

500 523 550 575
85 84 84 64
86 86 86 86
67 87 87 87
91 90 91 91
92 92 92 92
91 91 90 90
89 88 88 87
B7 86 89 89
85 84 83 83
82 «2 61 80
81 80 79 78
81 80 79 79
82 81 80 80
62 82 81 61
84 83 82 82
66 89 69 84
67 66 86 86
*2 82 82 82
75 75 75 75
75 74 74 73
73 72 70 69
7l 69 68 66
7l 69 67 65
7l 69 67 66
72 70 69 67
73 72 70 69
75 73 72 71
74 73 7l 70
73 72 7i 69
7J 71 69 68
71 70 68 67
71 69 67 66
7i 69 68 66
7l 69 68 66
7J 70 68 67
73 71 69 67
73 71 70 66
75 73 7l 69
75 73 7i 70
75 73 72 70
75 74 72 70
76 74 72 71
76 75 73 72
75 74 72 71
73 71 69 67
75 72 69 67
75 72 69 67
75 72 7o 68
75 73 7t 69
75 73 7l 69
75 73 71 70
74 72 70 69
74 72 70 69
75 74 72 71
73 71 69 68
72 70 68 66
71 69 67 65
71 68 66 64
69 66 64 61
68 66 63 60
70 67 64 61
71 66 64 61
73 70 67 64
75 73 70 68
74 74 72 49
77 75 73 71
73 77 75 73
79 77 76 74
79 77 75 73
73 76 74 72
76 74 72 70
75 73 70 68
75 72 70 67
75 72 70 67
75 72 70 69
77 74 72 70
73 75 73 71
79 77 74 72
B? 80 77 75
P4 82 79 77
B6 84 82 79
B6 84 82 80
85 83 82 80
65 64 82 60
«6 84 83 82


600 625 650
•4 84 84
16 87 87
87 68 88
91 91 91
92 92 92
90 90 90
87 86 86
64 64 83
82 62 61
10 79 79
T7 77 76
78 78 77
79 79 76
60 80 79
62 81 Bl
64 84 84
66 86 B6
82 62 83
75 75 75
73 73 73
68 67 67
65 64 63
64 63 62
64 63 62
66 65 64
68 67 66
70 69 68
69 68 67
68 67 66
66 65 64
66 64 63
65 63 62
65 64 62
45 63 62
65 64 63
66 44 63
67 45 64
68 67 66
68 67 66
68 67 65
68 67 65
69 48 67
71 70 69
70 49 A3
65 64 62
64 62 60
64 62 59
65 63 61
67 65 63
67 69 64
68 66 69
67 66 64
67 66 69
71 70 69
66 69 64
69 63 62
64 62 60
62 61 59
59 57 55
98 56 54
59 56 54
59 56 53
62 59 57
66 64 62
67 66 64
70 68 67
72 71 69
73 72 71
72 70 69
70 66 67
68 66 64
66 64 62
65 63 61
65 63 61
66 64 62
68 66 64
69 67 65
70 68 66
73 71 69
75 73 71
77 75 73
76 76 74
76 77 75
79 78 76
61 79 76
COEFFICIENT

'o . "l "2
1.0042E*02 -1.8S77E«01 5.46236*00
1-1382E«02 -2.7»56E»01 7.0645E*00
1.1Z46E«02 -2.9929E»01 6.46366-00
1.0503E»02 -1.4967£«01 3.9898E«00
l-06lOE»02 -1.4349E»01 3.7130E«00
9.Z9l7E»01 -4.9294E.OO Z.0797£«00
7.7440E»01 4.6462E-00 5.4215E-01
7.27l9E»01 6.1Z96E«00 9.7989E-01
7.48356.01 1.8776E«00 :.649lE>00
7.7036E«01 -2.70686*00 Z. 61326*00
6.8663E-01 1.9479E.OO 2.l69lE»00
7.3587E»01 -1.6803E-00 2.81l5E'00
7.7912E«01 -4.4443E«00 3.2508E.OO
7.9368E*01 -4.4126E»00 3.1138E-00
8.4186E»01 -6.m7E.00 3.49J7E-00
8.8151E»01 -7.6493EOO 3.3011E-00
9.9981E<01 -1.2148E.01 3.9829E.OO
1-1117E*02 -3.0904E*01 8.0'0'E-OO
1.0366E»02 -3.247JE01 9.2908E.OO
9.(><6?E«01 -2.28l?E«01 7.58936.00
5.5049E«01 3.3973E*00 J.9447E-00
J.9526E«01 1.3253E.01 1.3794E*00
3.4754E*01 1.6406E<01 8.60416-01
3-2120E*01 1.'310E'01 2-3150E-01
3.9823E*01 1.4l70E«Ol I. 07816-00
<.51726'01 1.1650E>01 1.3993E*00
4. 95906-01 9.7096E-00 1-54266-00
5.16526-01 7.4963E*00 2.02906-00
4.9112E-01 8. 58386-00 1.917BE'00
3.6581E«01 1.5725E»01 7.J667E-01
4.21976-01 1.H39E-01 1.64896-00
3.98496-01 1.2521E-01 1.56396-00
3.85i2E*01 1.393CE-01 1.2634E.OO
3.2878E«01 1.8774E»01 3.2373E-01
2.9868E.01 2.234l£»0l -4.6626E-01
2.6578E-01 2.4006E.01 -6.4813E-01
3.5407E.01 1.9022E»01 2.9035E-02
3.4U4E-01 2.1318E-01 -6.8536E-01
3.62o8E>01 2.02416-01 -4.0214E-01
2.4499E>01 3.0675E-01 -2.46486-00
1.60626-01 3.65136-01 -3.62896-00
3-3434E«01 2.3651E-01 -1.1686E-00
4.7992E.01 1.2653E-01 9.U35E-01
5.0053E«01 9.9990E»00 1.4144E.OO
1.68J1E-01 3.41666. 01 -i.63l3E.00
-1.24.126-01 5.92206-01 -7.6784E.OO
-2-0633E.01 6.6154E.01 -9.0123E.OO
-2-96J4E.OO 5.1974E.01 -6.363oE.00
B.l650E«00 4.3303E«01 -4.77i3E.00
1.28866-01 3.9660E*01 -4.i660E>00
2.20676-01 3.2487E-01 -2.7680E.OO
3.0496E-01 2. 36546-01 -9.71266-01
3.6366E-01 1.86516.01 -4.5612E-03
9.9141C»01 2.4043E.OO 2.66836-00
3-78l3E«01 1.6997g.0l 5.4766E-01
2.2777£»01 2.7755E»01 -1.4495E»00
2.0140E«01 2.8973E»01 -1.5789E.OO
1.4591E-01 3.25186-01 -2.1422E-00
•5.1441E-01 4,216lE«Ol -3.6789E.OO
-1-0394E.01 4.9740E«Ol -5.0907E-00
-2.3277E«01 6.1959E«01 -7.5389E.OO
-3. 51386-01 7.26156-01 -9.6538E-00
-2.28016-01 6.54286-01 -9.6074E-00
-3.6667£.(0 5.2834E.01 -6.9559E.OO
4.l957E«00 4.7679E«01 -5.7782E.OO
2.56706-01 3.12066-01 -Z.742oE.00
3-32396-01 2.7312E-01 -2.2349E.OO
4.15316-01 2.0969E-01 -1.0840E-00
2.67J1E.01 3.2979E.01 -3.3422E.OO
1. 60186-01 4.02706-01 -4.56186-00
7.35896-00 4.54966-01 -5.34996-00
1.5483E-00 4.96376.01 -9.77o7E.00
-1.2366E.OO 5.00716-01 -5.95llE-00
•4.1356E-01 4.9365E«01 -9.6200E»00
2.52736-00 4.71686-01 -5.42l5E.00
2.13306-00 4.9882E-01 -6.l9o5E.00
4.48266-00 4.93686-01 -6.2442E-00
2-0049E-00 5.29716-01 -7.0939E-00
3.1B92E-01 5.8028E«Ol -6.4428E«00
-5.4760E»00 6. 5325E«01 -1-0095E.01
2.2320E-00 6.1366E»01 -9.59g2E.00
1.2134E-01 5.31466-01 -8.03266-00
2.20HE-01 4.43936-01 -6.36686-00
3-1215E.01 3.73736-01 -5.03646-00
4.2635E«01 2.8925E-01 -3.5357E.OO
I ERROR


0-2 t -I
0 -2 1 -I
0-11 -1
-1 0-1 0
•1 0 -Z 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0 -I 0
-1 0-1 0
0 - 0-1
0 - 0-1
0 - 0 ^1
0 - 1-1
o - o-i
•1 -J 0
-1 3-6 2
•1 4-7 3
-1 3-6 Z
-1 2-4 1
-1 1-2 0
-1 0 -1 0
0-1 1-1
0-1 0-1
-1 0 -2 0
-1 1-3 1
•1 1-3 1
•1 0-2 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-i o :i o
-1 0 -1 .0
o-i o-i
•1 0-1 0
-1 0-2 0
-1 1-3 1
-11-31
-1 0-2 0
0-1 0-1
0-1 1-1
0-2 ! -2
0-2 2 -Z
0-1 1-1
0-1 1-1
0-1 1-1
0-1 0-1
•1 0-2 0
-1 1 -2 0
•1 0-1 0
•1 1 -Z 0
•1 1-2 1
-1 0 -Z 0
0-1 0-1
0-1 0-1
0-2 1-1
0-2 2-2
0-1 1-1
0-1 0 ~1
0-1 0-1
0-1 0-1
-1 1 -Z 0
-1 1 -S 1
-1 1-3 1
-1 1-3 1
-1 1-3 1
-1 1 -S 1
•1 1 -Z 0
-1 0 -Z 0
-1 0-1 0
0-1 0-1
0-1 1-1
0-1 1-1
0 -1 -1
0-1 -1
0 -1 -1
0 -1 -1
0 -1 -1
-10- 0
-1 0 - 0
•1 0 - 0
      4-10

-------
TABLE 4-1 (CONT.)
V
(-1
1169.0
1169.2
1169.4
1169.6
1169.6
1170.0
1170.2
1170.4
1170.6
1170.8
1171.0
1171.2
1171.4
1171.6
1171.8
1172.0
1172.2
1172.4
1172.6
1172.8
1173.0
1173.2
1173.4
1173.6
1173.8
1174.0
1174.2
1174.4
1174.6
1174.8
1175.0
1175.2
1175.*
1175. fl
1175. fl
1176.0
1176.2
1176.4
1176.6
1176.8
1177.0
1177.2
1177.4
1177.6
1177.8
1178.0
1178.2
1178.4
1176.6
1176.6
1179.0
1179.2
1179.4
1179.6
1179.8
1160.0
1160.3
1160.4
1160.6
1180.8
1181.0
1181.2
1161.4
1161.6
1181.8
1162.0
1162.2
1182.4
1162.6
1182.8
1183.0
1183.2
1163.4
1163.6
1163.6
1164.0
1164.2
1184.4
1184.6
1184.8
1185.0
1183.2
1165.4
1185.6
1185.8
Jsl
u
c»2
Molecule
8-296K
3.13l=-20
5.S7E-?U
5.65<=-?0
5.84E-2U
6.00E-70
6.16E-20
6.196-20
6.05S-20
5.B3E-21
3. 496-?':
3,l6i=-2U
4.B4I=-?C,
4.59E-2C
4,«1G-2N
4.32E-2C-
4.29E-?;:
4.34':--?'j
4.41S-2U
4.52E-2U
4.63E-3U
4.761;-?,.
4.92E-J.,
5.02E-2;,
5,o4:-2u
4.97C-21,
4.^4:-20
4.63E-73
4.39E-?u
4.19S-2?
J.90E-3U
1.71K-2H
l.str-20
3.74r>20
1.74i>J1
l.fU".-?."
.036-20
.165-20
.365-20
.56S-50
.63K-JU
.56>--30
.33E-20
.03S-2J
3.74H-2U
3.43G-7.0
3.13E-?t:
2.94E-2U
2.»IlE-?0
2.9Qc-?0
2.93G-211
2.99";-?3
3.n6:-20
3.165-7;,
3.27E-20
3.J7C-JC
3.45E-JO
3.44E-2J
3.35G-20
3.20":-?0
3.05S-20
2.90':-;'r>
2.69H-SU
2.48E-20
2.42C-?l.
2.45C-20
2.54C-2G
2.66G-20
2.80";-20
2.99H-20
3.15?-?0
3.30E-2C
3.33E-?0
3.29E-20
3.13S-2J
2.97i>?o
2.71E-20
2.301:-?!!
2.34E-20
2.20':-20
2.0'l=-20
2.06l=-2vl
2. 065-20
2.0»E-2l)
2.J6E-20
2.25E-20
isa/.! (8) / M (296,
350 375
97 95
96 94
95 93
9p 93
9S 93
95 92
9« 92
96 93
96 94
97 95
97 9J
99 97
100 99
101 100
101 101
111 100
1C,. 99
»v 98
99 98
99 96
99 98
96 97
9b 96
93 97
100 99
102 101
102 102
102 .102
10? 101
103 104
115 -10(
ID'S 107
.10.1 104
114 104
10.1 101
111 100
•IK, 99
96 93
93 97
99 98
Ul 100
103 102
iOi 105
104 134
ll>4 105
jO- 109
19' J10
106 107
105 106
;04 135
104 ;05
inJ 104
103 103
'.02 102
;02 102
101 101
103 103
105 106
jab io9
106 110
107 108
108 10'
109 111
11)7 1Q9
104 106
101 102
99 100
99 100
99 99
97 97
97 97
99 99
102 1C?
105 106
106 107
109 110
ill) 112
109 111
107 !()9
109 no
105 107
.104 105
10,> 103
100 101
98 99
6 (Tempc
400 425 450 475
93 92 90 6»'
92 91 89 87
91 69 67 66
9i B9 87 85
9l 99 86 64
9u 36 65 83
89 67 85 6?
9l IK 86 6«
»Z "0 87 85
93 9] 89 67
93 71 90 69
96 94 92 91
98 96 95 93
99 98 97 95
100 "8 97 91
100 '6 97 94
98 97 96 95
97 96 95 9«
97 V6 95 «4
97 96 95 93
97 95 94 91
95 94 92 91
95 'J3 9J 90
9s «4 92 90
98 V6 94 9!
99 96 96 9J
lOi 99 97 95
11)0 99 97 94
101 99 96 94
103 102 102 100
105 ll* 105 104
101 107 106 106
10-1 193 103 102
104 I'M 113 102
101 in J 112 101
100 99 98 97
99 98 97 97
97 46 95 94
9o 95 °4 95
97 96 94 92
99 97 95 93
101 99 97 93
104 132 101 99
104 1,13 101 100
104 1,13 102 101
109 118 108 107
111 HI 111 110
108 l;p9 109 to9
10' Ij7 108 1Q9
105 lt)6 100 107
105 10' 106 104
104 n5 10S lo5
10* 10* 10< 10*
102 102 102 10!
102 10? 102 to!
101 Ul 101 105
10J 133 102 10?
106 116 105 104
109 ]!)9 108 107
110 H]9 109 lo7
109 108 108 107
lit UC 110 10'
112 113 113 ilJ
110 111 112 113
107 JOB HO 111
103 11)4 il)6 io7
101 10? 104 i()S
101 112 102 103
'9 100 101 101
98 98 99 100
97 97 98 99
99 99 99 99
101 101 100 99
105 105 103 102
107 106 105 103
111 110 109 109
112 112 111 113
112 112 111 110
no 110 111 ill
111 112 112 113
108 110 110 111
107 ma 109 10'
105 106 107 i(|B
102 104 103 10*
Kill ml 102 103
aturc In Kelvins)
500 525 550 575
«7 85 84 82
«6 83 83 82
84 82 61 80
83 82 80 79
8? 80 78 77
81 79 77 73
BO 78 76 75
«1 79 77 75
A3 80 78 76
85 83 81 79
86 84 83 81
89 67 86 64
91 90 86 66
94 92 9l 69
94 93 91 90
94 93 92 90
93 92 91 90
93 92 9i 90
92 9l 90 69
92 91 89 89
9l 90 66 67
89 88 86 65
B9 67 85 84
1» 87 85 84
90 88 86 84
9l 89 87 85
92 90 88 86
94 92 '0 68
95 93 92 90
9! 98 97 95
101 112 101 OS
104 in 3 102 -100
ini 111 o" on
102 101 100 09
Inn QQ 19 (17
97 96 93 94
96 95 '4 93
94 93 92 92
91 90 69 68
91 8' 87 86
91 89 87 85
'3 '1 88 86
97 94 92 90
99 96 95 73
99 97 96 94
105 104 102 101
110 '»9 107 106
109 10' 108 108
109 108 108 108
107 io7 107 107
106 106 106 106
105 105 104 104
10« 10* 104 103
102 102 102 102
101 101 101 100
100 100 99 99
ini 101 100 "
103 102 101 100
ini 104 103 101
104 104 103 101
105 104 103 101
11)9 108 107 106
113 113 113 112
114 u4 114 US
11? 112 113 114
103 109 111 112
106 106 109 110
10« 105 106 107
102 103 104 105
101 102 103 104
99 99 100 100
93 96 '8 98
98 '8 97 96
1D1 99 96 96
102 100 '6 97
107 105 103 102
108 106 105 103
109 107 106 104
110 110 109 109
113 112 112 112
112 112 112 113
110 111 111 112
10' 110 110 111
107 106 10' 110
104 106 107 108
600 625 650
81 80 79
it 80 78
79 77 76
77 76 75
75 73 72
73 72 70
73 71 70
73 72 70
74 72 71
77 73 74
80 76 77
63 81 80
85 63 62
88 86 85
68 87 86
89 87 86
86 67 36
89 88 87
86 87 86
87 86 85
85 84 83
63 62 61
83 81 80
82 81 79
83 81 79
62 80 78
63 61 79
66 85 83
89 87 86
'4 93 92
19 97 16
19 1(1 15
97 If 15
98 97 9«
!>6 "5 04
93 92 91
92 92 9l
91 90 90
87 86 85
!« 83 82
63 82 80
84 82 80
88 86 84
91 90 88
92 91 8'
99 96 96
105 10* 103
107 107 106
106 107 107
10' 107 107
106 106 105
10< 10* 104
103 lo3 103
101 101 101
100 100 99
99 98 98
99 9S 97
98 97 96
99 96 96
99 98 96
100 99 97
104 103 102
112 ' 111 110
115 US 115
115 115 116
113 1\4 ' u5
111 113 114
108 109 no
105 106 107
105 106 106
101 102 102
98 98 96
95 94 93
94 93 91
95 93 9i
100 98 96
141 99 97
103 101 100
108 107 107
111 111 110
113 113 113
112 113 113
112 113 1)3
111 112 113
189 uo ill
COEFFICIENT
6l "2
3.8300E-01 3.33636*01 -4.47o2E*00
4.37276.01 2.61536*01 -3. 40366-00
4.2636E»01 2.64S5E*01 -2.822lE*00
3.63<7E.01 3.0736E*01 -3.5266E*00
2-l551E*01 4. 12UE-01 -5.3251E-00
1.7'75E*01 4.2387E-01 -3.3598E.OO
l.'68'E»01 4.0467E«01 -4.9477E«00
1.18686-01 4.80'3E>01 -6.513BE-00
9.3447E»00 5.1393E-01 -7.2694E-00
1.5191E-01 4.92216-01 -7.1388E-00
3.104)6-01 3.8477E-01 -3.3476E-00
2.82006-01 4.425IE-01 .6.8097E-00
2.3294|»01 5.1082i>01 -6. 39961*00
3-18186-01 4.7086E-01 -7.9636E-00
3.3443E«01 4.6470E-01 -7.9237E»00
3.5804E-01 4.48326-01 -7.64566-00
4.5044E-01 3.6076E-01 -3.8633E-00
5.08586-01 3.11246-01 -4.9070E-00
5-1756E-01 2.9779E-01 -4.5677E-00
4.J580E-01 3.55596-01 -3.58216-00
3.66416-01 4.00546-01 -6.30476-00
3. 61436*01 3.8172E-01 -5.70406*00
J.7JB1E-01 3.6286E-01 -3.2456E-00
?. 84596-01 4.37466-01 -6.6806E-00
1.5580E«01 5.5717E-01 -9.0956E-00
-1-3283E-01 6.95356-01 1.18096-01
-3.13956-00 7.32536-01 1.26466-01
1.4679E.01 6.0858E«Ol 1.0538E«01
2. 72086*01 5,2295E*01 ».1016E«00
4.00766-01 «. 73826-01 8.7749E-00
4.1«30r+01 5.0750n*01 -9.9197E*00
3.5151C+01 5.7577E+01 -1.1361E+01
5..1539r+11 3.3S91E+01 -7.3919L+09
.1242E+01 4.13MEt11 -7.9707E+00
.2l97r»01 3.9990E*01 -7 . 331 3E»01
.92596-01 2.88836-01 -4. 97996-00
•3139E»Ol 2.4673E»Ol -4.0735E-00
.93336-01 1.7256E«01 -2.4214E-00
.9029E«01 3.0S72E-01 -4.56356*00
2.86256-01 4.60826-01 -7.38656-00
1-06396. 01 6.09566.01 -l.02l3E.01
-5.2489E*00 7.58596-01 -1.32336-01
-2-626lE*00 7.8235E*01 -1.4148E.01
2-0402E-01 6.17076-01 -1.12906-01
2-2225E*01 6.13686*01 -l.l351E*01
2.74536*01 6.4627E»01 -1.2632E.01
4.38l2E*01 5.7001E*01 -L1949E.01
7-82316-01 2.8778E*01 -6.61006-00
9.17876*01 1.6879E*01 -4.?767£*00
9.8000E*01 1-0<57E*01 -2.91"E*00
9-13936-01 1.5o5lE*01 -3.7184E.QO
9.00806.01 1.4333E*01 -3.3732E-00
6.9816E«01 1-34Q4E.Q1 -3.o754E*00
e.'SBOE'Ol l.l763E*01 -2.3374E*00
8.3746E*01 1.527iE*Ol -3.o962E*00
8.2250E*01 1.4733E*01 -2.80586-00
6.7832E*01 2.76976*01 -3.3797E*00
4. 26336-01 4.9616E*01 -9.7366E-00
2-4966E*Ol 6.72o'E*01 "1.3320E.01
1.6641E-01 7.2580E-01 -1-4355E-01
3.2144E-01 6.132'E-Ol -1.2208E-01
4.84t8E«01 5.2109E-01 -1.0905E-01
7.4926E*01 3.4745E*01 -8.6799E*00
1.0B32E*02 1.0727E*01 -3.90446-00
1.3077E*02 -9.7743E-00 1.9761E-01
1.54llE*02 -3.2442E-01 4.6620E-00
l.S877E*02 -3.8460E-01 6.2350E*00
1.4330E«02 -2.639eE*01 4.6124E.OO
1.36466-02 -2.5834E-01 4.45o?E-00
1.45106-02 -3.4378E>01 6.2240E-00
1.2848E-02 -2.37556-01 4.53656-00
9.6151E*01 1.83296*00 -2.11236-01
6.0031E*01 3.0347E.01 -5.5398E-00
2. 49|66-01 6.1204E*01 -l.l338E*01
l-6981E*01 6.8977E.01 -1.3143E*01
1.6433E«01 7.5167E.01 -1.4929E-01
1.0043E*Ol 8.2153E«01 -1.64366-01
2-S993E»01 7.0197E*01 -1.4294E*01
7.05786-01 3.65536-01 -8.24186-00
7.97olE*01 3.2102E«01 -7.7237E»00
1.11466*02 5. 75556-00 -2.70786-00
1.2056E.02 -3.37736*00 -8.0201E-01
1.34i26»02 -1.5B63E*01 1-7057E-00
1.475iE*o2 -2.8483E*01 4. 26876*00
1.54626-02 -3.762lE*01 6.35016-00
X ERBOR
-1 1 -Z 0
-i a -t a
-1 0 -2 '0
-1 0-2 0
-1 0-2 0
-1 0-1 0
-1 0 -i 0
0-1 0-1
0-2 2-2
0-2 2-2
0-1 1-1
0-1 1 .1
0-1 0-1
0-1 0-1
0-1 8-1
0-1 0 -I
-1 0-1 0
-1 0-1 0
-1 0-2 0
•1 0-2 0
-1 0-2 0
•1 0-2 0
-1 1-2 0
•1 1 -2 0
-1 0-2 0
-1 0-1 0
0-1 1-1
0-2 2-2
0-2 2 -2
0-2 1-1
0-1 0-1
0-1 0-1
-1 0-1 0
-1 1-2 0
-1 1-2 0
-1 1-3 1
-1 2-4 i
-1 2-4 l
-1 1-3 1
-1 0-1 0
0-1 0-1
0-3 3-2
0-3 4-3
0-4 3-3
0 -J 3-2
0-2 2-2
0-1 0-1
-1 0-1 0
-1 0-1 0
•1 1-2 0
-1 2-3 1
-1 2-4 1
-1 2-4 i
-1 2-4 i
-1 1-3 1
-1 1-3 1
-1 1-2 0
-1 1-2 0
0-1 0-1
0-1 0-1
0-2 1-1
0-2 1-1
0-1 0-1
-1 0-2 0
-1 1-2 0
-12-31
-1 3-4 i
-1 J -4 1
-1 2-4 !
•1 2-3 1
-1 1-2 0
-I 1-2 0
-1 1-2 0
-1 0 -I' 0
0-1 1-1
0-3 3-2
0-3 4-J
0-3 3-2
0-2 1 rl
0-1 0-1
-i o-i a
-1 1-2 0
-1 2 -4 !
-1 3-3 i
-2 4-6 2
      4-11

-------
TABLE 4-1 (CONT.I
V
(a,'1)
Yiw.'o
1186.2
1186.4
1186.6
1186. 8
1187.0
1187.2
H87.<
1187.6
1187.8
1188.0
1188.2
1188.4
il»:l
1189.0
1189.2
1189.4
1189.6
1189.8
1190.0
1190.2
1190.4
1190.6
1190.8
1191.0
1191.2
1191.4
1191.6
1191.8
1192.0
1192.2
1192.4
1192.6
1192.8
1193.0
1193.2
1193.4
1193.6
1193.8
1194.0
1194.2
1194.4
1194.6
•1194.6
1195.0
1195.2
1195.4
1195.6
1195.8
1196.0
1196.2
1196.4
1196.6
1196.8
1197.0
1197.2
1197.4
1197.6
1197.8
1198.0
1198.2
1198.4
1198.6
1198.8
1199.0
1199.2
1199.4
1199.6
1199.8
1200.0
1200.2
1200.4
1200-6
1200.8
1201.0
1201.2
1201.4
1201-6
1201.8
1202.0
1202.2
1202.4
1202.6
1202. 8
• Ax
u
, 2
f
Snolecule
9 -2961
2,456-20
2.32E-20
2.61E-2U
2.66E-20,
2. 686-20
2.70E-20
2.64E-20
2.31E-20
2.39E-20
2,25=-20
2.11E-20
2.0SC-2U
2.0«E-20
i: §31:18
2,096-20
2.17E-20
2.25E-20
2.331=-20
2.40E-7.0
2.44E-20
2.43E-20
2.35E-20
2.?45-20
2.12E-20
2.01E-20
1.92E-20
1.S6E-2U
1.8Se-20
1.645-20
1.84E-7J
1.856-20
l,SB'--2l!
l,92 = -2'l
1.94S-2-J
1.9S5-ZO
1.966-20
1.95S-20
1.926-20
1.S9C-JO
1.885-20
l.B5d-2C
1.80e-?U
1.76E-20
1.74C-20
1.745-20
1.74E-20
1.7 48-2;.'
1.75E-20
1.76C-?rj
1.76B-2J
1.775-20
1.78E-2C,
1.7/E-7.U
1.75i=-20
1.74C-JO
1.716-7.0
1.666-70
1.64S-J.O
1.62E-20
1.40S-73
1.59C-2S
1.59E-2U
1.59E-2U
1.59I=-20
1.59E-2U
1,606-20
1.60E-2U
1.60E-7.0
1.5BE-2U
1.57E-2'.)
1.54E-20
1,«9E-20
1.43E-?.!,
1.3JE-20
1.296-20
1.26E-20
1.265-20
1.765-20
1.26E-20
.2BE-20
.J16-2U
.34t-20
.37E-20
.37E-70

350 375
'94 93
96 95
95 95
96 96
97 96
98 97
100 100
104 104
107 io7
109 110
110 111
107 108
104 1(15
1W iSS
93 98
96 96
96 96
9o 96
97 97
98 98
99 99
10.! 102
105 105
106 107
J06 107
105 105
103 103
;n;: 102
lO.i. 101
99 100
99 100
99 100
i>10 100
101 101
101 1C1
103 103
103 104
10* 105
11)6 106
104 105
105 105
105 106
lOt. 107
107 106
106 107
105 106
105 106
105 136
105 106
;06 H)7
lOi 107
106 107
10* 107
108 109
108 109
108 109
103 110
10' 109
10' 108
:o» 1(17
!05 ;06
IC« 1C5
10« 104
104 1|)5
104 105
104 lg5
104 !05
105 106
10V 1C8
107 159
107 109
108 110
110 112
113 116
113 U6
11" 117
111 114
110 112
109 112
109 H2
109 in
109 112
108 111
110 113
looAi
u
d (Teapei
400 425 450 475
" 93 94 95 94
95 95 96 96
94 94 94 99
95 95 95 95
9o 96 96 95
97 97 96 96
100 99 99 9S
104 104 103 102
108 107 106 10?
111 110 109 108
112 112 111 lltl
109 109 109 10»
105 11)6 106 106
103 133 104 104
100 100 101 101
98 98 98 99
96 96 97 97
96 96 96 94
95 95 95 95
96 96 95 95
97 97 96 9S
98 "8 97 97
101 til 100 99
105 1U4 103 101
106 136 104 102
106 1(16 105 103
105 lu5 104 10J
103 103 103 103
10: in2 102 10?
101 101 101 101
100 UO 101 101
103 100 101 102
100 100 101 101
100 1QO IOC 101
101 inl 101 101
101 U'l 101 101
103 11)3 102 102
104 1..3 103 102
105 104 104 103
106 11)5 104 103
104 104 103 102
105 104 103 102
11)6 106 105 104
107 107 106 10'
106 107 106 105
107 106 106 105
100 106 105 104
106 1[>6 105 10*
106 106 105 10'
106 106 106 lo5
107 107 107 104
107 u7 107 105
108 108 107 10*
108 138 io7 io7
109 1,19 joB 109
113 109 109 10'
109 109 108 10^
11C 110 109 10!
109 109 108 107
109 108 108 107
107 i(,7 io7 105
103 116 104 105
Ili5 l,-6 in5 10'
105 105 105 105
10S 105 105 10'
105 l"6 105 10'
106 136 106 10»
100 136 106 105
107 U'7 106 104
109 1(|9 106 105
109 139 109 10S
109 1,.9 109 10'
111) HI 1X0 113
113 113 113 112
116 1l9 119 ll9
118 119 120 I2f>
120 1?1 122 122
110 118 119 120
115 116 118 119
115 116 118 11»
114 1)6 117 118
11< 1-^5 116 il7
11« 11.5 116 117
113 114 115 116
115 116 117 117
(8) / £* (296)
iature In Kelvlna)
SCO 525 550 575
97 99 100 102
97 98 99 100
95 96 96 97
95 95 96 96
95 95 95 95
95 95 93 95
98 97 96 96
101 100 99 98
104 io3 101 100
107 io5 104 102
109 108 106 105
10S 108 107 106
104 106 106 106
104 104 105 105
102 102 103 103
99 100 101 101
93 98 99 100
97 97 97 98
95 96 96 96
95 95 94 94
96 95 95 95
96 96 96 95
99 98 97 96
100 99 97 96
101 99 97 95
102 100 98 97
11)2 101 100 99
102 101 101 100
102 101 101 101
101 101 101 101
101 102 102 103
102 103 103 104
102 102 102 103
101 101 101 101
100 100 100 100
100 100 99 99
101 100 99 99
101 100 100 99
102 1.01 100 98
102 100 99 97
100 99 97 96
101 99 98 96
102 101 100 98
114 102 101 99
104 102 101 99
104 102 101 100
103 102 101 100
104 103 102 101
104 103 102 101
104 io4 103 102
105 104 103 102
105 105 104 103
105 105 104 103
105 105 104 102
106 11)5 104 103
106 103 103 102
105 105 103 102
107 106 104 103
1H5 io5 103 102
104 104 103 102
105 105 104 103
105 104 103 103
in? 104 103 103
104 104 104 103
105 104 104 104
105 104 104 104
10' 104 104 103
105 104 104 103
105 105 104 103
107 106 105 104
107 106 105 103
107 106 105 104
109 108 107 106
112 111 109 \06
113 117 116 115
120 119 lie 118
1?? 122 121 120
120 121 121 121
120 120 121 121
120 120 121 121
119 120 120 120
llS 119 il9 n9
llS 118 119 119
116 u7 117 Ii7
11? 118 118 118

600 625 650
103 104 106
100 101 102
97 98 98
96 96 97
95 95 96
94 94 94
95 94 94
97 96 95
98 97 95
101 99 97
103 102 mo
105 104 104
106 105 105
m M is?
102 102 103
100 101 102
98 99 99
96 97 97
94 94 94
94 94 94
95 95 94
95 94 93
94 9J 91
93 91 89
95 93 92
98 96 95
100 99 99
100 100 100
101 101 101
103 103 104
104 lo5 io5
103 104 104
101 101 101
99 99 99
99 98 98
98 97 96
98 97 96
97 96 95
96 94 93
95 93 92
95 93 92
97 95 94
98 96 93
98 96 95
98 97 96
99 98 97
100 99 97
100 99 98
101 100 99
101 100 99
102 100 99
102 100 99
101 100 99
101 100 98
100 99 97
100 98 97
101 100 98
100 99 97
101 99 98
102 101 100
102 101 100
102 102 101
103 103 1D2
103 103 102
103 103 102
103 102 102
102 102 101
102 101 101
103 101 100
102 101 100
103 102 101
105 104 io3
107 106 105
ll« 112 ill
117 116 ii5
120 Il9 118
121 121 121
121 122 122
122 122 122
121 121 121
120 120 170
119 ll» i]9
117 1,7 tl7
118 H7 n7
COEFFICIENT
"l "2
1.672BE»02 -5.6l83E.01 L0733E.01
1.4026E«02 -3.4997E.01 6.829BE.OO
1.2630E»02 -2.6207E»01 S.4526E«00
1-1387E.02 -1.6379E.01 3.6326E.OO
1'0265E«02 -7.l972E.00 1.8979E.OO
B.B70BE.01 4.0142E.OO -1.9883E-01
7.1295E«01 2.0416E«01 -3.5283E«00
4.8283E'01 4.3208E.01 -8.2563E.OO
3.0567E.01 6.0828E.01 -l.l922E«01
2.2120E«01 7.H33E.01 -1.4232E«01
2.5264£»01 7,i227E«01 -1.4535E«01
6.03706*01 4.2267E.01 -».0389E«00
9.l673E>01 1.4402E'01 -3.53o8E.00
l.mmi :!:JWI:« 1:S!«I:H
1.2758E«02 -2.1992E.01 4.0929E-00
1-J243E«02 -2-8o21E«01 5.4S3lE«00
1-2138E.02 -2.OB40E.Ol 4.2781E«00
1-1348E.02 -1.5682E«01 3.46o4E«00
9.5340E«01 -2.0958E.OO 1.0286E-00
8.71506*01 5.3724E.OO -4.64J8E-01
8.3943E'01 B.9839E*00 -1.2524E'00
5.9025E»01 3.l506E»Ol -5.7363E.OO
2.8721E«01 5.74i2E«Ol -1.0749E.01
6.9493E.OO 7.5511E.01 -1-4199E.01
2.0609E.01 6.597l£.0l -1.2571E.01
4.4139E«01 4.7720E.01 -9.23o9E*00
7.2342E«01 2.5l09E»Ol -5.00B9E«00
B.3663E.01 1.5765E.01 -3.23SlE.00
9.7487E.01 4.3777E.OO -1.0756E«00
1.17?8E»02 -l.l3l3E«Ol 1.8345E.OO
1.2384E.02 -l.5827E.Ol 2.594lE«00
1.1855E«02 -l.?205E»Ol 1.9B70E«00
].OOBOE«02 6.8655E-01 -2.74i4E-0!
8.7flo5E«Ol 1.0773E»Ol -2.1202E«00
7.9504E.01 1.7299E.01 -3.3247E-00
6. 36886-01 3.06l8E>Ol -5.88l4E.00
5.72o5E*01 3.633«E«Ol -7.0060E«00
4.56olE«01 4.6l5lE«Ol -B.B944E-00
2.7798E«01 6.0263E»Ol -Ll5l2E'01
3.4247E.01 5.3218E.01 -9.99i5E.OO
3.2157E.01 5.5257£.0l -1.04l2E«01
3.1030E»01 5.3360E«Ol -l.l232E«01
2.9338E«01 6.1168E»Ol -l.l932E»01
2.B420E.01 6.2290E»Ol -L2166E.01
3.60l7E»01 5.5B82E«Ol -1.0935E«01
4.7933E»01 4.6118E.01 -9.o892E«00
5.0870E»01 4.4070E«Ol -8.74olE«00
5.4535E.01 4.1723E.01 -B.3665E«00
5.6692E«01 4,o399E»Ol -8.i6J6E.00
4.8790E.01 4.7836E'Ol -9.6726E.OO
5.1341E.Q1 4.59B5E.01 -9.34B3E-00
4.899BE.01 4.B06BE.01 -9.7596E.OO
4.6626E.01 4.9988E.01 -1-0120E.01
3.4786E.01 6.0449E.01 -1.2179E.01
2.B418E»01 6.5238E«Ol -1.3039E.01
2.75o2E«01 6.5548E.01 -1.3050E.01
2.7482E«01 6.6B34E«Ol -1.3429E.01
3-1277E.01 6.2535E.01 -L2489E.01
3.7540E»01 5.7294E.01 -l.l487E.01
5.2009E.01 4.5541E.01 -9.2753E.OO
5.99i3E»01 3.8667E»Ol -7.9332E.OO
7.0576E«01 2.9632E«Ol -6.1930E«00
8.0131E.01 2.1915E»01 -4.7461E«00
7.8746E.01 2.3377E.01 -5.o375E.00
7.58l8E«01 2.584SE«01 -5.53l4E.00
7.2806E«01 2.8222E«Ol -5.97llE.00
6.8551E«01 3.1570E»01 -6.5892E»00
6.1127E.01 3.8031E.01 -7.B5llE.00
4.6977E.Q1 5.1101E-01 -1.0480E.01
4.1852E.01 5.5744E.01 -1.1257E.01
4.4590E.01 5.3869E.01 -l.l09lE.01
4.7402E»01 5.3502E.01 -l.l228E.01
4.1005E.01 6.1797E.01 -1.3123E.01
4.l7iBE»01 6.8943E»Ol -1.53olE«01
3.7344E.01 5.8704E.01 -1.3639E-01
6.5897E.01 5.4557E«Ol -1.3161E-01
9.5767E.01 2.9098E.01 -8.2420E»00
1.1295E»02 1.4341E.01 -3.3791E-00
1.1601E«02 1.2043E«Ol -4.9678E.OO
1-1409E.02 1.2383E.01 -4.9593E>00
1-1123E.Q2 1.38l9E»Ol -5.0746E.OO
1-0614E«02 1.7442E«Ol -5.7004E>00
1.0412E.02 1.7461E'Ol -5.5295E-00
9.183BE.01 2.BB71E.01 -7.83Q6E-00
X ERHOR

•2 « -6 2
-1 3-3 2
-1 2-4 1
-1 2 ?4 1
-1 2-3 1
-1 1-2 0
•1 0-2 0
-1 0-1 0
0-1 0-1
0-1 0-1
0-1 0-1
•1 0-1 0
-1 1-2 0
:|«:i 8
•1 1-2 0
•1 2-« 1
-1 2-4 1
-1 2-4 1
-1 1-3 1
-1 1-2 0
-1 0-2 0
0-1 0-1
0-2 2-2
0-3 3-2
0-2 2-2
0-2 1-1
0-1 0-1
-1 0-1 0
-1 1-2 0
-1 1-3 0
-1 1-2 0
-1 1-2 0
•1 1-2 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
-1 0-1 0
0-1 0-1
0-1 0-1
0-1 1 .1
0-2 1-1
0-2 2-2
0-2 1-1
0-1 1-1
0-1 0 -1
-1 0 -t 0
•1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
•1 0-1 0
0-1 1-1
0-2 1-1
0-2 2 .2
0-3 3-2
0-3 3-2
0-3 3-2
0-3 3-2
0-2 1-1
0-1 0-1
-1 0-1 0
-1 0-2 0
-1 1-3 0
-1 2-3 1
-1 2-4 1
-1 2-4 1
-I 1-2 0
-1 0-1 0
0-1 0-1
0 -1 0-1
•1 0-1 0
-1 0-1 0
-1 0-1 0
•1 0-1 0
-1 1-2 0
-1 1-3 0
•1 1-3 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
-1 1-3 1
      4-12

-------
TABlf 4-1 (CONT.)
V
(cm'1)
1203.0
1203.2
1203.4
1203. 6
1203.8
1204.0
1204.2
1204.4
1204.6
1204.8
1205.0
1205.2
1205.4
1205.6
1205.8
1206.0
1206.2
1206.4
1206.6
1206.8
1207.0
1207.2
1207.4
1207.6
1207.8
1208.0
1208.2
1208.4
1208.6
1208.8
120».0
1209.2
1209.4
1209.6
1209.8
1210.0
1210.2
•1210.4
1210.6
1210.8
1211.0
1211.2
1211.4
1211.6
1211.8
1212.0
1212.2
1212.4
1212.6
1212.8
1213.2
1213.4
1213.6
1213.. 8
1214.0
1214.2
1214.4
1Z14.6
1214.8
1215.0
1215.2
1215.4
1215.6
1215.8
1216.0
1216.2
1216.4
1216.6
1216.8
1217.0
1217.2
1217.4
1217.6
1217.8
1218.0
1218.2
1218.4
1218.6
1218.8
1219.0
1219.2
1219.4
1219.6
1219.8
-J~l
u
c=2
molecule
S-296K
1.34E-2C
1.336-2U
1.325-20
1.296-20
1.26E-2!!
1.226-21
1.1SE-20
1.15E-20
1.10E-20
1.09E-3U
1.036-20
1.08l=-2C
1.095-21
1.10E-2U
1.I2E-2U
1.13E-20
1.135-so
I.l3(=-2l!
1.11E-7H
1. 096-20
1.06E-2CI
1.02E-2I)
l.OO'J-20
9.B2E-21
9.66C-J1
9.536-21
9.43E-21
9.33E-21
9.275-21
9.21E-21
9.186-21
9.1BE-21
9.186-21
9.21E-21
9.236-21
9.24E-31
9.216-21
9.18E-21
9. 126-21
9.06E-21
6.966-21
8.S1E-2:
8.67E-21
8.466-21
B.26E-21
8.076-21
7.936-21
7.796-21
7.68E-21
7.586-21
7.39=-2!
7.316-21
7.236-2.1
7.l6=-2i
7. "76-21
6.936-21
6.806-31
t.TOf-ii
6.74E-J1
6. 716-21
6.57C-J1
6.415-21
6.73.= -21
6.055-21
5.P7E-J1
». 756-21
5.62S-21
5.55E-?!
5.526-21
5.486-21
5.426-21
5..16E-21
5,^1E-?1
5.276-21
5. 225-21
5.17C-21
5.11E-71
5.016-21
4.945-21
4.88C-21
4.805-21
4.7i:-n
4.62E-?!
4.52F.-31
IS^I m 1 £3. (296)
350 375
113 116
114 u>
115 119
11' 121
116 120
115 US
114 U8
113 117
115 120
115 119
115 119
115 119
115 120
116 120
115 119
115 119
116 120
116 120
11' 122
118 122
119 124
i2C 125
121 126
121J 125
119 124
119 124
119 124
l2'l 125
120 115
120 12?
119 125
119 124
119 124
118 124
lid 123
11? ]23
117 122
11' 122
116 122
116 121
11* 121
116 :i2
117 122
118 124
119 126
120 127
120 127
;20 127
123 127
12C 12'
l2d 127
;20 127
l2J 127
123 127
1?1 128
1J1 128
1*2 130
123 131
lU 130
122 130
1?2 130
1?^ 132
126 135
128 131
l3l 140
132 142
iJZ 142
132 142
)3Q 140
127 1J7
;?6 136
l2e 136
127 137
1?8 139
1.1 J 140
131 143
133 143
135 147
i3a 148
134 146
131 142
129 140
126 137
lJ« 134
123 134
6 (Temper
400 425 450 475
119 120 120 121
119 120 121 121
121 121 121 121
123 124 123 123
122 123 123 122
121 122 122 123
120 122 123 (21
120 122 123 124
123 125 127 129
122 125 126 l'2»
122 125 126 12!
122 124 126 127
123 125 126 (27
123 126 127 12S
122 i;-« 126 126
122 124 126 126
123 1K5 U6 127
123 125 126 127
125 127 128 i2S
125 127 128 12»
127 129 130 130
129 ill 132 132
129 131 132 133
128 131 132 131
12' 1JO 131 13!
128 130 132 13!
128 131 133 134
129 132 134 135
129 iJ2 134 136
129 )33 135 137
129 133 135 137
129 1.S2 135 135
128 132 134 136
128 131 134 i3»
127 130 133 135
127 130 132 134
127 130 132 134
126 129 132 134
126 129 i32 134
126 129 132 135
126 \f.1 132 135
126 130 133 136
127 131 134 137
129 133 137 MO
131 U5 139 14J
132 137 i«o 144
133 137 141 i !
133 138 142 l 6
133 138 142 1 S
133 l.iB 142 1 5
133 138 !42 1 5
133 138 i42 i 5
133 138 142 146
133 138 143 145
134 139 1*3 ,47
134 140 144 149
136 142 146 l5»
138 144 i48 ,51
lil 1«3 1*8 153
136 142 148 15?
136 1<3 148 153
139 145 150 155
142 148 153 157
145 151 136 160
148 154 !59 163
;5D 156 161 16!
150 l" 16J 16'
150 157 163 i6S
149 156 162 169
146 154 160 165
145 153 160 164
145 153 160 167
146 154 ]62 169
148 156 164 171
ISO 158 166 17J
l5r 161 168 174
154 163 170 17S
156 164 i?i i?7
158 166 173 1"
156 164 171 171
152 1M 168 179
150 15' 166 174
14? 156 165 175
144 154 162 171
144 )S3 1*2 178
ature In Kelvins)
500 525 550 575
120 120 119 119
120 1l9 118 117
120 1l9 117 116
122 120 119 n7
122 121 120 118
122 122 121 120
123 123 123 122
125 123 125 1Z5
129 129 129 129
128 129 129 130
129 129 130 130
129 128 129 129
1?3 128 128 128
129 129 129 128
127 127 127 127
127 127 127 127
127 ,27 127 i27
127 127 127 127
129 128 128 127
129 128 128 127
130 130 129 128
132 132 131 130
133 132 131 131
13.1 133 132 132
131 133 133 133
134 133 135 135
135 136 136 136
134 137 137 137
137 ,38 i3B 138
139 139 t39 139
139 139 140 140
139 139 140 141
139 139 140 141
137 139 140 140
137 138 139 140
135 137 138 139
136 137 i38 139
135 138 139 ]40
135 138 139 i4l
137 1J8 140 141
137 139 i4l 142
139 140 142 144
140 142 144 1«5
142 144 146 148
144 147 149 150
145 149 151 152
149 150 152 154
149 151 154 156
149 ,51 154 156
149 152 155 157
149 ,32 155 ]57
149 ,52 155 158
149 ,52 i55 157
130 153 :55 157
l5o ,53 i56 158
l5l ,55 157 160
154 ,37 160 162
196 ,60 163 ,65
157 141 164 167
154 160 164 167
157 161 164 167
159 163 166 169
161 164 166 169
163 166 168 170
164 169 l7l 173
16J 172 174 176
171 174 177 179
172 176 179 182
172 177 180 184
17? 177 181 183
172 177 182 186
173 179 iB4 189
175 181 186 191
177 182 187 t92
179 184 189 193
180 185 l9Q 194
ini 186 190 193
182 187 i9o 194
184 188 192 195
183 188 192 196
161 186 i9i 196
180 186 191 196
179 186 192 198
175 185 192 198
175 ,85 192 199
600 625 650
118 117 116
116 US 1J4
114 113 ill
115 114 112
II7 llS n4
119 118 117
122 121 121
125 125 124
1S9 129 i?9
130 130 130
130 130 130
129 129 129
188 128 127
US 128 127
117 127 126
127 1?7 ,26
126 126 125
126 126 125
127 126 1?5
126 125 174
127 126 US
129 128 127
130 IP' 127
131 130 130
133 132 132
135 134 i34
136 136 136
137 137 ,36
138 138 i38
140 140 140
141 141 ]41
141 141 142
141 142 142
1*1 141 t42
140 14] 141
140 140 141
140 141 141
141 141 142
142 143 143
142 143 144
143 145 146
145 146 ,47
147 148 149
149 151 152
152 153 154
134 135 ,S7
136 158 159
137 159 160
136 159 161
139 161 163
139 161 163
160 162 164
160 161 163
160 161 163
160 162 164
162 164 166
165 167 i«B
168 170 172
169 172 174
169 172 174
170 173 175
172 174 iT7
171 173 175
172 173 175
174 176 177
178 179 160
1B1 183 184
184 186 188
187 189 i92
189 192 195
190 194 197
193 197 P01
193 199 ?o3
196 200 204
197 201 204
197 201 204
197 200 702
197 199 J02
198 201 203
200 203 ?05
200 203 707
201 205 209
203 208 713
204 2o9 JlS
205 210 715
COEFFICIENT
a a. a.
o 1 2
6. 31936-01 S.4859E-01 -1.3013E-01
4.4660E-01 6. 91036-01 -1.562SE-01
2-5307E-01 8.4473E-01 -1.8«60E-01
1.5434E.01 9.4614E.01 -2.o596E.01
3-l8o6E-01 8-l'l'E-Ol -1.8154E-01
S.3H6E-01 6.5206E-01 -1.5193E.01
7.42066*01 4.96076-01 -1. 24246-01
9. 25856-01 3.6344E.01 -1-0167E.01
9.8029E«01 3.7004E*01 -l.O'816-Ol
1.0296E-02 3.3l57E*01 -1-0074E.01
1-06246>02 3.0746E»01 -9.6483E.OO
1.0306E*02 3.2219E-01 -9.8065E.OO
9.09206*01 4.1973E-01 -1-1628E.01
8.5535E»01 4.6894E-01 -l.26l3E>01
8.9624E-01 4.1971E.01 -i.l3l4E-01
6.8153E-01 4.3069E-01 -I.l7i06-01
8.0204E«01 4.9655E«01 -1.2964E.01
7.4675E»01 5.4327£.01 -1.3862E«01
6.73SOE*01 6.l33lE>01 -1.53S2E>01
6.0122E*01 6.7439E-01 -1.646BE*01
5.0031E.01 7.738lE«01 -1.8527E.01
3.0364E»01 7.95l9E«01 -1.9189E-01
5.2233E«01 7.85l5E«01 -1.9055E-01
6.66'8E>01 6.7492E»01 "1. '0586-01
B. 33436-01 5.42l9E<01 -1.45B9E>01
9.0443E>01 5.0080E-01 -1.3986E-01
9.6501E-01 4.62936-01 -1. 33976-01
9.33Q5E-01 5.0169E.Q1 -1.4263E-01
1-0025E-02 4.5634E-01 -1.3529E-01
1.0728E»02 4.1037E-01 -1.2785E-01
1<1369E>02 3.6364E-D1 -L1964E-01
1.21686*02 2.9875E-01 -1.0742E>01
1.2492E-02 2.71646-01 -L0224E-01
1.2BllE>02 2.38916-01 -9.5343E-00
1.2899E-02 2.2313E-01 -9.1445E-00
•2938E-02 2.1421E-01 -B.9146E-00
.3158E-02 1.9674E-01 -6.59g7E-00
•3994E-02 1.3008E-01 -7.3498E-00
•47i6E«02 7.6262E-00 -6.3897E-00
.53436-02 2.993BE-00 -5.5673E-00
1.39546-02 -1.39916-00 -4.8025E-00
1.64616-Oi -3.84066-00 -4.5242E-00
1.6735E-02 -4.38326-00 -4'.6039E>00
1.68086-02 -2.0615E-00 -5.3549E-00
1.67Q6E-02 1. '1506-00 -6.3B31E-00
1.7221E-02 -1.3038E-01 -6.28816-00
1.80176.02 -4.86456-00 -3.5B41E-00
1.8419E-02 -6.89376-00 -5.3360E.00
1.87126-02 -9.U47E-00 -4.9352E-00
1.9BHE-02 -1-7453E-01 -3.4299E-00
1.9839E.02 -1.7445E-01 -3.4749E-00
2-0329E-02 -2.1095E-01 -2-8055E-00
1-9924E-02 -1.7832E-01 -3.4166E-00
1.9537E-02 -1.4369E-01 -4.1034E-00
1-9374E-02 -1.4178E-01 -4.l9i2E»00
2-0042E-OJ -1.62196. 01 -3.99726.00
2.03936*02 -1.59836-01 -4. 37506-00
2.06976-02 -1.6693E.01 -4.546.6E.OO
2.22376.02 -2.6960E-01 -2.74HE-00
2.2983E-02 -3.3620E-01 -1. 42586-00
2.3250E-02 -3.53156-01 -1. 15566-00
2.2525E-02 -2.6492E-01 -3.132'E-OO
1.98596.02 -3.71916-00 -7.5371E-00
1.79iBE-02 1.4618E-01 -L1264E-01
1.7016E-02 2.5658E-01 -1.3742E-01
1.7423E-02 2.58B1E-01 -1.4167E-01
1.9135E-02 1.4646E-01 -1.2339E-01
2.1070E-02 1.3138E-00 -l.OOBBE-01
2.3726E-OJ -1.9812E-01 -6.1617E-00
2.7046E-02 -4.7164E-01 -9.6854E-01
2.86026-02 -5.94316-01 1.2937E-00
3.0468E-02 -7.25B2E.Ol 3.55l3E.OO
3.Q799E.02 -7. 30266. 01 3.3921E.OO
2.9933E-02 -6.4047E-01 1.49216-00
2-9051E-02 -5.4909E-01 -4.3867E-01
2.73466-OZ -3.93386-01 -3.49446-00
2.3300E-02 -2.20076-01 -6.89Q6E-00
2.36526-02 -B.9883E-00 -9.4762E-00
2.3266E-02 -2.26026-00 -1.09556-01
2.5934E-02 -2. 43226-01 -6.76i<£.00
2. 88706-02 -5.0406E-01 -1.6131E-00
3.1412E-02 -7.1694E-01 2.4611E-00
3.4753E-02 -9.9147E.01 7.66026-00
3.73136-02 -1.21016-02 1. 18686-01
3.80266-02 -1.2669E-02 1-2947E.01
X ERiOB
-1 1-1 0
-1 0-1 0
•1 0-1 0
•1 0 -I 0
•1 0-1 0
-1 0-2 0
-1 0-1 0
•1 0-1 0
-1 0-1 0
0-1 0-1
-1 0-1 0
-1 0-2 0
-1 2-3 l
-2 J -» 2
•1 3-4 1
-1 3-4 l
•1 3-4 i
-1 2-3 1
-1 0 -J 0
0-1 1 -1
0-2 2-2
0-2 1 •;!
0-2 t -1
0-1 0-1
0-1 1-1
0-1 0-1
0-1 0-1
0 -1 0 -1
0 -1 0 -1
-1 0 -t 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 O-il 0
-1 0-2 0
-1 0-2 0
-1 0-2 0
•1 0-2 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
•1 1 -! 0
-1 1-2 0
-1 1-2 0
-1 1-2 0
•1 1-2 0
•1 0-2 0
-1 0-2 0
-1 0 -t 0
•1 0-1 0
•1 0 -t 0
0 -t 0-1
0-1 0-1
0-2 1-1
0 -Z t -1
0-3 2-2
0-3 3-2
1-4 4-2
1-4 4-2
1-4 4-2
0-3 3-2
0-3 3-2
0-2 2-1
0-2 1-1
0-1 0-1
-1 0-1 0
-1 1-2 0
-1 2-3 0
-1 2-3 1
-1 2-3 1
-1 2 -3 0
-1 1-2 0
-1 0-1 0
0-101
0-101
0-101
0-101
0-101
0-101
0-101
0 -1 0 t
•1 0-1 0
      4-13

-------
TABLE 4-1 (CONT.)
V

1220. '0
1220.2
1220.4
1220.6
1220.8
1221.0
1221.2
1221.4
1221.6
1221. B
1222.0
1222.2
1222.4
1222.6
1222.8
1223.0
1223.2
1223.4
1223.6
1223.8
1224.0
1224.2
1224.4
1224.6
1224.6
1225.0
1225.2
1225.4
1225.6
1225.8
1226.0
1226.2
1226.4
1226.6
1226.8
122'. 0
1227.2
122'- 4
122'.6
1227.8
1228.0
1228.2
1228.4
1228.6
1228.8
132'. 0
122».2
122V. 4
1229.6
1229.8
1230.0
1230.2
1230.4
1230.6
1230-8
1231.0
1231.2
123l.«
1231.6
1231.8
1232.0
1232.2
1232.4
1232.6
1232.8
1233.0
1233.2
1233.4
1233.6
1233.8
1234.0
1234.2
1234.4
1234.6
1234.8
1235.0
1235.2
1235.4
1235.6
1235.6
1236.0
1236.2
1236.4
1236.6
1236.8
Jo.
u
cm2
Molecule'
6-296K
.406-21
.29E-21
.165-I1
-03E-71
-96E-21
.93E-3.1
.935-21
.026-21
.15E-7.1
.l7E-?l
-176-21
.116-21
.036-21
.96E-J1
.845-21
.'06-21
.60S-21
-53!=-3.i
.446-21
.36E-21
,30E-'l
-?7c--Ji
.186-n
.12E-2:.
.OSE-21
.06C-21
.025-21
•Q2:-Z-
,03?-?i
.036-21
3.036-?!
8.996-21
2.93S-71
i.Vt'.-li
2.78t=-21
2.7l,-:i
2.645-i!
2.S8S-J1
2.525-71
2.46i-:-n
?.41?-?l
2.35=-?l
2.301--?!
2.27C-71
2.3Sr:-21
2.24E-'!
2.?5f-?.i
2.?7<=-?1
2.?8;:-?i
2. 285-71
2.27?-2l
8.71E-71
Z.HE-n
2.089-21
2.026-21
1.97E-31
1. 92E-.il
l.*65-,>i
1.»1E->1
1.756-Jl
l.'16-Jl
1.67'.:->.l
1.65C-3J.
1.M5-31
l.«4S-i;
1.641--P1
1.S5I--71
1.65E-?!
1.64E-21
1.62E-21
1.57S->1
\.c.2t-Xl
1.47E-J1
1.44E-31
1.40E-7!
1.35E-7.1
1.32=-'l
1.285-?!
1.255-31
1. 235-71
1.21E-21
1.20E-M
1.203-?;
1.205-?!
l.?C«.-?l
isaAi (e) / Jss. (296)
350 375
12* J36
1?.? 139
JJ1 143
1J4 148
J3a 150
137 152
133 152
135 149
132. 145
132 145
13J 145
l3l 144
iJO 143
129 142
130 1«4
•32 146
lit 146
l3f 146
132 147
l3J 148
133 149
:33 148
133 152
1J3 154
1.19 i56
;4; 156
145 157
l4,> 166
139 155
US 1S4
i.v 154
138 !S4
139 156
:.4'J 157
139 157
139 157
14-; 158
Ji)9 157
i1 1 i5B
139 158
139 158
139 J58
141 161
j4,' 162
j44 ]65
i46 167
146 167
1<4 165
14? 162
I4! 161
141 160
!<•• .162
14: 163
141 165
J4J 16S
J44 166
i«4 166
144 J67
145 166
143 1?2
140 174
14'; 174
iSl 177
l54 180
155 181
155 181
!« 181
JS4 180
151 1/7
l5l 17IS
;54 ].8o
lif. 18J
,5H 185
l-H 107
159 187
161 190
161: 192
I" 195
165 196
16« 196
1*3 196
J6!> 19I>
]»t 197
115 197
;6« 195
6 (Temper
400 425 450 475
146 1i5 164 i'?
149 159 160 {75
154 144 174 |6?
160 T'o ISO 183
162 |73 183 19?
164 ,76 Ifl6 19!
165 1/6 IB6 196
162 173 1«3 19?
157 ,46 )7B ,87
156 1»,7 177 ,84
156 107 177 i8»
156 ,f,7 176 ,84
155 ,66 l76 ,84
154 ,65 176 184
156 166 179 ,6»
159 ,7j 182 J93
160 172 1B4 19?
160 |.'2 184 ,95
161 1 .'4 166 197
162 176 186 ?0.1
163 176 189 ?Dl
162 ,76 |89 ?00
166 i.lo 193 ?o5
169 ,54 197 Jo'
171 1.16 199 ?n
172 186 199 ?i?
173 ,37 201 ?l3
172 187 Joo ?l3
l7l 185 199 ?n
1'0 1«4 i98 ?H
1*9 183 197 3i)9
l7o 184 196 ?ll
1'2 1«7 201 ?14
174 U9 203 7i4
174 ,«9 304 31*
174 ,g0 ;os ?2i]
176 193 208 ?23
175 ,V2 ?08 ?25
I'O 194 210 ?.2S
176 194 ?io ?2«
176 1V4 in 527
177 ,V6 213 ?33
l6o 199 i]7 ?34
182 ?gl 219 334
185 ?i)4 222 '3'
187 ?U6 224 341
1" '.16 224 ?43
1M ?13 220 '37
1"! ?10 217 ?34
1^0 1VB 215 ?3?
180 198 215 ?32
181 ?jo ?.\9 334
183 ?:i3 Z?.Z '40
iBt- ?i6 2'6 74?
1"7 ?-jB 728 3«J
IBS ?to 23C '55
l(W ?u 232 '.55
I'l ?12 233 554
l'l' ?;4 236 m
196 ?,9 241 '62
1«B ??2 245 '6S
198 ?i-3 ^46 '6'
202 'J7 ??i 373
205 ??9 353 37S
206 ?:(0 253 375
206 ?.10 253 ?75
206 ?31 253 375
205 '39 252 >74
202 ??6 2SO '7?
202 ?J7 ?Sl 374
207 ?.(? 356 360
210 '.S6 261 384
2U '.^9 ?»4 36"
214 3«i 266 390
215 3<2 266 39?
219 3a7 274 399
221 350 277 30?
225 3S« 292 30?
227 3J6 285 11?
227 'S6 285 JiJ
2i? 3S7 286 U3
22» ?S9 287 3i«
226 'SB 267 1l4
2?B 'S7 3R(, TIJ
226 3>)7 285 M3
aturo In Kelvins)
500 525 550 575
1»0 187 193 199
1*3 190 197 203
1»0 197 i04 210
195 '04 210 '.16
200 '08 215 ?2l
205 311 216 ?24
2C4 '12 219 ?25
201 ?09 216 ?22
195 703 210 217
194 301 206 215
19! ?01 208 ?14
194 702 209 ?i6
195 '03 210 ?lB
195 ?04 212 719
199 ?07 216 223
203 712 220 228
205 ?1> 224 3]2
20S 716 225 234
20S 7l8 227 336
211 322 231 241
212 723 232 742
212 722 232 ?4l
217 727 237 346
273 331 240 750
2?J 733 243 352
223 '34 244 ?53
*25 736 246 755
224 335 245 ?55
223 '34 244 353
222 '33 243 252
i?l '32 242 252
223 334 244 754
226 ?37 248 257
229 740 251 261
231 744 255 766
233 746 256 269
237 ?5o 262 773
X37 750 2'3 775
240 '54 267 779
241 756 ?69 782
242 757 271 763
244 761 ?75 789
290 765 y8o 293
257 367 28i 295
255 ?7o iB4 797
257 772 286 299
255 '7l 285 ?98
^57 767 281 794
24} 364 278 291
243 762 276 269
243 763 277 790
255 366 262 296
257 773 269 303
'tk\ 780 296 311
265 764 301 3l7
269 767 303 3l9
271 789 .'(07 123
273 792 J10 326
277 796 314 331
29? 3Q1 319 336
217 307 325 343
2'0 Ml 330 -148
2«5 3l5 334 .153
296 .'16 335 353
2°6 Jl5 334 J51
294 MS 333 151
2°S 315 333 350
294 M4 332 350
293 .113 332 .150
2"5 .116 336 354
302 .123 343 361
307 .128 346 167
511 .132 353 372
313 335 355 374
315 .138 359 378
.173 .145 367 367
325 .151 373 393
333 357 379 400
333 362 385 407
339 163 387 409
139 .163 386 408
34D 364 3B7 408
339 .164 3B6 406
33? .163 3B6 408
33? 364 387 4Q9
600 625 650
20? 211 216
209 2l4 Ji9
215 221 225
222 22' 732
22' 232 237
230 236 741
231 237 ?42
229 234 739
223 229 734
221 226 732
220 225 230
222 228 233
224 231 736
227 233 74Q
231 237 744
236 243 749
240 24' 254
242 249 ?57
244 252 760
249 25' 765
250 259 J66
250 258 266
255 263 770
298 266 774
261 269 776
262 270 278
264 272 280
264 272 780
262 271 278
261 270 276
261 269 777
263 271 779
267 275 783
271 280 766
276 285 ?94
260 290 299
264 294 304
286 297 3[,7
291 3o2 312
294 3o? 316
296 3o' 316
301 3i4 375
306 346 330
308 370 331
310 322 333
311 323 334
310 321 332
306 3i8 329
303 3i5 376
302 3t4 325
303 3i4 ]26
309 322 333
31' 330 342
326 339 352
332 346 359
334 349 3»2
339 354 .168
342 357 372
347 363 377
352 36' 382
360 375 390
366 382 398
370 386 402
369 385 400
368 383 .198
367 382 397
367 382 396
366 382 396
367 383 399
372 389 404
379 396 4,2
385 402 4i8
390 407 47.3
392 4,o 476
397 4t4 431
4Q6 «?< 441
413 432 449
420 439 457
42' 44' 465
429 449 468
428 448 466
429 448 466
426 448 466
429 44A 467
430 450 469
COEFFICIENT
"l *2i
3.67i2E*02 -1.1421E'02 1.0403E>01
S.6476E«02 -l.0794g.02 8.75l4£«00
3.64i6E«02 -9, 9579g.01 6.3304E«00
3.6343E.02 -9.0997E.01 3.8544E>00
3.6995E*02 -9.1103E>01 3.3149E>00
3.7422E*02 -9.1010E'01 2.9133E.OO
3.7946E»02 -9.4138E-01 3.3795E.OO
3.B493E.02 -1.0249E*02 !.373?E«00
3-B6i6E>02 -1.1035E.02 7.59l2E>00
3-79B9E.02 -l-07l3E«02 7-1887E.OO
3.7382E.02 -1.0301E-02 6.50096-00
3.9140E«02 -1-1624E.02 8.6772E-00
4-12486.02 -1-3221E»02 l.l757E»01
4.3490E«02 -1.4967E.02 1.49606. 01
4.4045E«02 -1.4964E*02 1.4525E>01
4.4931E.02 -I.5l59f.02 1.4264E-01
4.68016-0? -1.6358E'02 1.6177E.01
4.6005E'02 -1.7204E*02 1.7625E>01
4.8771E.02 -1.757lE«02 1-6040E.01
5.027'E«02 -1.837lE«02 1-9091E.01
5-OB8BE.02 -1.B758E.02 1-9698E.01
5.0791E-02 -1.8723E«02 l-968lE«01
5-0369E.02 -l.78o6E.02 1-7320E.01
5.0076E«02 -l.'129E«02 1.5569E«01
5-0082E>02 -1.6831E<02 1-4'OOE.Ol
5.0482E'02 -l.'05lE>02 1.5004E-01
5-0936E.02 -1.72096.02 1-5072E-01
5.1344E.02 -1-7621E-02 1-5935E.01
S.l59'E«02 -1-8002E«02 1-6839E.01
5-l830E«02 -1-8310E«02 1.7550E.01
5.l9'5E»02 -1.3520E-02 1-6042E.01
5.2699E.02 -l.89i3E.02 1-8571E.01
5.3279E.02 -1-8982E'02 1-826'E«01
S-4296E«02 -1.9422E*02 1.8679E.01
5.740OE'02 -2.15836«02 2.2355E«01
5.9523E»02 -2.3017E-02 2.4725E»01
6-0626E.02 -2.347f.E-02 2.5133E>01
6.2644E.02 -2.5062E-02 2.605BE-01
6.4335E>02 -2.6010E>02 2.9382E-01
6-629l6«02 -2.74206-02 3-1842E-01
6.7292E.02 -2.6100E.02 3.2978E-01
6.9659E»02 -2.97l5E«02 3.5512E.01
7-0125E»02 -2.9425E«02 3.44!9E.01
».99]8E«02 -2.9017E«02 3.3392E»01
6.»ll3E«02 -2.8028E.02 3.1170E.01
6.80l7E>02 -2.6922E*02 2.86576.01
6.7l90E*02 -2.6334E«02 2.7642E-01
6-7285E>02 -2.6836E-02 2.9242E-01
6.7688E.02 -2.'540E.02 3.0975^.01
6.8H7E.02 -2.6lOBE.02 3.2261E.01
6.6733E.02 -2.85676*02 3.30986*01
7.1101E«02 -2.99156*02 3.5014E.01
'.4378E*02 -3.19-126*02 3.6054E.01
7.7435E*02 -3.36556*02 4.05376.01
6.0194E.Q2 -3.54!7E.02 4.3335E*01
6-0664E.02 -3.55l8E*02 4.J202E.01
8.31006.02 -3.7i55E*02 4.5933E.01
6-4370E*02 -3.766JE»02 4.697oE«01
8.56o2E*02 -3.6450E.02 4.7571E.01
6.5334E*02 -3.7»B3E*02 4.524QE.01
6.80866*02 -3.91626*02 4.7504E*01
9-l394E*02 -4.1425£*02 5.1303E*01
9.11646*02 -4.06836*02 4.9310E-01
8.8696E.02 -3.8554E«02 4.5169E.01
8.6664E-02 -3.6944g.02 4.J1B4E-01
B.6187E.02 -3.66076*02 4.i605E*01
8-5946E*02 -3.64llE*02 4.1236E*01
8.707B6.02 -3.'473E«02 4.3386E.01
6.98l3E«02 -3.9794E-02 4.7861E-01
9.2488E«02 -4.1647E-02 5.1001E-01
9.3091E-02 -4.13456*02 4.95616*01
9.43676*02-4.17506*02 4.96616*01
9.49i3E*02 -4.1680E«02 4.6975E-01
9-5l54E*02 -4.1613E*02 4.6565E-01
9.70716*02 -4.26166*02 5.04486*01
9.92456.02 -4.3697£*02 5.1149E*01
1-0190E*03 -4.5210E*02 5.3304£*01
1.0345E*03 -4.57806*02 5.3632E-01
1-0624E*03 -4.7416E-02 5.6030E-01
1-0765E*03 -4.64236*02 5.77776.01
1.06346*03 -4.73926*02 5.58'lE*01
1.0537E*03 -4.64B5E-02 5.4036E-01
1.0576E*03 -4.6839E*02 5.4747E-01
1-06516*03 -4.74666*02 5-595lE*01
1-0821E*03 -4.8H26E*02 5.6478E*01
I ERROR
-1 1-3 0
-1 2-3 1
-1 2-3 1
-1 2 -S 1
-1 2-3 1
-1 2-3 1
-1 2-3 0
-1 1-2 0
•1 1-2 0
-1 1-2 0
-1 1 -J 0
-1 1-2 0
-1 0-1 0
-1 0-1 0
0-1 0 -t
0-1 0 -I
-1 0-1 0
-1 0 -1 0
-1 0 -t 0
-1 1-2 0
-1 0 -i 0
-1 0-1 0
0-1 0-1
0-1 0-1
-1 0-1 0
0-1 0-1
0-1 0-1
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 0-1 0
-1 1-2 0
-1 1-2 0
-1 0-1 0
-1 0-1 Q
0-1 0 -1
0-1 0-1
0-2 1-1
0-1 0-1
0-1 0-1
0-2 1-1
0-1 0-1
0-1 0 -1
-1 0-1 0
-1 0-1 0
-1 1-2 0
-1 2-3 0
-1 1-2 0
-1 0-1 0
0-1 0-1
0-2 1-1
0-2 1-1
0-2 1-1
0-2 1-1
0-2 1-1
0-21-
0-2 1 -
0-21-
0-21-
0-1 0 •
-1 0-1 0
•1 1 ?2 0
-1 2 r2 0
-1 2-2 0
-1 1-2 0
-1 0-1 0
0-1 0 ~-\
0-2 0-1
0-2 1 -1
0-2 1-1
0 -2 1 -1
0-2 1-1
0-2 1-1
0-1 0-1
0-2 1-1
0-1 0-1
0-1 0-1
0-1 0-1
-1 0-1 0
-1 0-1 0
-1010
-1010
-1010
-1010
-1010
      4-M

-------
TABU 4-1  (CONT.)
V
(cm'1)
1237.0
1237.2
1237.4
1237.6
1237.8
1238.0
1238.2
1238.4
1238.6
1238.8
1239.0
1239.2
1239.4
1239.6
1239.8
1240.11
1240.2
1240.4
1240.6
1240.8
1241.0
1241.2
1241.4
1241.6
1241.8
1242.0
1242.2
1242.4
1242.6
1242. S
1243.0
1243.2
1243.4
1243.6
1243.8
1244.0
1244.2
1244.4
1244.6
1244.8
1245.0
1245.2
1245.4
1245.6
1245.8
1246.0
1246.2
1246.4
1246.6
1246.8
1247.0
1247.2
1247.4
1247.6
.1247.8
1248.0
1248.2
1248.4
1248.6
1248.8
1249.0
1249.2
1249.4
1249.6
1249.8
1250.0
J-l
u
on2
Molecule1
6»296K
1.206-71
1.J9E-7.1
I.18S-21
1.16E-71
1.13E-2:
i.ios-71
1.06E-7.1
1. 025-31
.95S-J2
.726-72
.536-77.
.355-22
. 145-22
.04E-22
B.93I--72
a.PcE-?;:
8.67E-2i
8.546-22
8.376-2;;
8.205-31!
B.06S-?,!
7.79E-52
7.54C-32
7.335-72
7. 186-22
7,035-27.
6.S9S-22
6.755-22
.565-72
.46E-22
.335-22
.20?-?2
.G75-7.2
3.94E-7.2
5.MS-77.
5.735-22
5.66E-22
5. 586-22
5.49?-22
5. 395-?2
5.775-?.;;
5.166-21!
5.026-72
.B66-2;;
.706-72
.58J-22
.456-22
.33?-??
.25E-JJ
.185-22
.176-22
.185-?.,.-
.1«£-?S
.14E-22
.0«5-:>,>
.03E-22
,9«6-7;>
3.84C-22
3.745-22
3.656-52
3.S4E-22
3.46C-22
3.38S-72
3.31E-22
3. 236-22
3. 146-72
AS2^r m ! AT (296)
350 375
\t>t 194
160 191
153 '.B9
157 1.88
J56 186
l5-> 188
157 189
157 191)
158 191
15J 192
1?8 192
153 192
159 194
Jb9 194
16,1 195
1*1 L'7
•62 199
16J 7no
165 203
166 204
165 ?03
i6i 205
J68 208
168 ?Q9
1*7 208
166 298
i66 237
165 207
;6S 709
166 209
168 711
l/> 215
17? 21S
j'/5 1>21
;77 2J4
179 226
:73 225
173 ?25
177 224
;76 223
175 223
174 722
l7< 223
I7? 225
171 225
173 224
i'.' 226
J7H 727
173 727
i75 230
J75 229
174 227
173 ?«:5
174 227
l7! 226
l7l 225
l?i ?25
j7o 225
l7o 725
169 225
168 225
J67 225
166 724
i6J 221
161 219
164 223
Q (Temper
400 425 450 475
225 755 2M JiJ
222 753 783 311
220 750 210 10'
219 750 279 30'
218 7*9 279 JOS
220 757 2B3 US
222 755 2B7 3i9
224 758 291 S24
226 7<.0 294 323
22V 7!>2 297 530
227 763 298 33?
228 744 300 334
231 7*7 304 339
231 768 304 340
232 769 306 .141
234 77l 308 S44
236 774 311 347
238 776 314 350
241 730 318 154
244 7H3 321 359
243 752 321 159
246 736 326 365
2«9 791 332 37?
25i 294 3.16 177
251 7«5 338 383
251 795 339 381
251 795 339 38J
250 795 339 183
253 7V9 344 3B3
254 Jjj 347 19?
257 3,4 J5l 397
261 .n9 356 40?
265 313 361 4Q7
269 .116 366 4;J
273 .122 370 41?
275 325 374 42?
274 324 373 421
?7« 3^4 373 421
274 324 373 42?
273 37.4 374 423
274 375 377 427
2?4 J26 379 430
276 3?9 383 4J5
278 333 388 44?
28g 337 393 449
280 3.18 397 454
283 3<2 4()2 461
286 .146 407 161
286 347 409 47)
289 351 4U 474
288 349 4n 471
285 345 405 465
283 342 402 461
285 345 4116 465
285 345 406 467
283 344 406 467
285 347 4Q9 47i
286 .149 4U 476
287 352 417 482
238 354 421 487
29(1 357 426 494
29Q 359 42(1 499
289 .159 42» 501
287 357 426 503
286 .156 4?9 So?
Z9j 363 436 513
ature In Kelvins)
500 525 55d 575
339 .164 388 411
333 364 388 "12
334 362 386 «10
336 .162 387 4u
336 363 388 413
342 369 396 421
349 377 405 431
355 385 413 440
359 390 419 447
363 394 424 452
365 397 427 456
369 4QO 431 460
373 406 437 467
374 4Q7 438 468
375 4Q8 44Q 469
379 4n 443 473
382 4i5 447 478
3«5 4i9 451 482
390 424 456 487
395 4{9 462 493
396 431 464 496
403 439 474 507
4ll 448 483 517
417 455 49i 526
420 459 496 532
423 462 501 537
474 464 502 539
425 465 504 541
431 472 512 550
436 478 518 557
441 484 524 564
447 490 531 570
452 495 537 576
453 501 543 582
463 507 549 589
469 512 554 595
467 512 554 595
46B 5l2 555 595
463 5l3 556 597
471 5l7 560 602
476 522 567 610
480 528 574 M8
466 535 582 628
495 545 594 640
503 555 606 654
SlO 564 616 666
51? 574 t,28 679
527 564 639 69l
529 587 643 696
53' 592 647 701
531 588 643 696
523 580 634 686
5l3 574 628 679
523 579 634 686
524 583 637 690
S?S 584 639 693
532 99l 648 702
539 599 657 7t2
545 607 666 724
552 Hi6 677 736
561 626 »89 749
566 632 69s 758
569 637 702 765
570 639 /05 769
573 643 710 775
582 653 721 787
600 625 650
432 453 472
434 455 474
432 453 473
433 455 «75
436 458 478
445 468 489
496 4SO 502
446 491 514
474 499 573
479 504 S?9
484 5io 535
488 5]3 540
495 522 5«8
496 523 549
498 5j5 551
502 529 555
507 534 560
5tl 539 565
516 544 571
523 551 978
526 555 583
538 561 596
549 580 609
559 59l 621
566 598 679
572 605 636
574 6Q8 640
577 6n 643
586 6;i 654
594 629 663
601 637 671
608 644 678
614 650 684
620 656 691
627 664 698
633 670 705
634 670 70S
634 67i 706
637. 674 709
642 681 717
651 690 7?8
660 700 738
671 74J 751
685 727 768
700 744 786
714 7«o 804
7?9 776 821
742 790 836
747 796 84J
752 801 848
747 795 841
736 784 82»
7J9 776 871
735 7B3 828
741 789 835
744 792 839
754 804 852
766 8V7 846
779 831 881
792 846 A98
807 863 916
817 874 928
825 883 939
831 890 946
838 898 955
890 9il 969
COEFFICIENT
•ij
1. 10736-03 -5.0821E-02 6.2174E>Oi
1.1331E«03 -5.29786*02 6,6304E>01
1-1429E»03 -5.4022E<02 6.85686*01
1.1566E*03 -5.51566*02 7.0695E-OJ
l-l8l9E*03 -5.7ll8E*02 7.42806*01
1.2206E*03 -5.95056*02 7.7956E*01
1.26766*03 -6.24136*02 6.24446*01
1.31236*03 -6.52156*02 8.66l66*01
1.3452E*03 -6.72636*02 9,OOOlE*01
1.36476*03 -6.8393E*02 9.16396*01
1.39l5E*03 -7.02136*02 9.4677E.01
1.4145E*03 -7.17416*02 9.71846*01
1-4330E»03 -7.2595E-02 9.80856*01
1.4384E*03 -7.29246*02 9.85936*01
1.43856*03 -7.27486*02 9.80576*01
1.44666*03 -7.30276*02 9.81726*01
1.45836*03 -7.34876*02 9.85146*01
1.47036*03 -7.40426*02 9.91086*01
1.47786*03 -7.41046*02 9.86276*01
1.49836*03 -7.51376*02 9.98$6E*01
1-5261E*03 -7.72366*02 1.03676*02
1.57i3E*03 -7.99266*02 1.07656*02
1.61346*03 -8.23146*02 1.11056*02
1.65696*03 -8.50276*02 1-15276.02
1.69525*03 -8.76926*02 1-19806*02
1.72986*03 -9.01226*02 1.2397E*02
1.74705*03 -9.13486*02 1.2608E*02
1.76616*03 -9.27476*02 1.28556*02
1.79B9E*03 -9.49936*02 1.31146*02
1.83566*03 -9.69946*02 1.35016*02
l.B569E*03 -9.7990E*02 1.36l5E*02
1.86486*03 -9.79286*02 1.35256*02
1.87066*03 -9.77136*02 1.34106-02
1-6772E*03 -9.75696*02 1.33096*02
1.89366*03 -9.82166*02 1.33576*02
1-9082E*03 -9.88206*02 1.34086*02
1.91716*03 -9.9578E*02 1.3554E-02
1.92006*03 -9.97516*02 1.35806*02
1.93906*03 -1.01l8E*03 1.38376*02
1.97806*03 -1.03986*03 1.43256*02
2-0267E*03 -1.07286*03 1.4875E-02
2.07665*03 -1.10746*03 1. 54606-02
2-l256E*03 -1.13876*03 1. 59566-02
2.l892E*03 -1.17896*03 1.65916*02
2.2671E*03 -1.23056*03 1.74366*02
2-34876*03 -1.28696*03 1.8390E*02
2.41456*03 -1.32876*03 1.9052E-02
2.47ii6*03 -1.36406*03 1.9600E*02
2.4995E*03 -1.3831E*03 1.99166-02
2.5059E*03 -1.38296*03 1.98556-02
2.46066*03 -1.36686*03 1.99976-0?
2.4423E*03 -1.34506-03 1.92896*02
2.41566*03 -1.32986*03 1.90746-02
2.43726*03 -1.34126*03 1-92216*02
2.47056*03 -1.36486*03 1-96276*02
2.50016*03 -1. 38776*03 2-00476*02
2-5512E-03 -1.42lOE*03 2-0'84E-02
2-61276-03 -1-46236*03 2-12686-02
2-6784E-03 -1.50616-03 2.19906-02
2.75i8E-03 -1.55586*03 2.28l76-02
2-62925*03 -1,60716*03 2.36576*02
2-68276*03 -1.64J5C-03 2.4266C.Q2
2-9383E-03 -1.6836E-03 2.4968E-02
2-99016*03 -1,72376*03 Z.57fllE*02
3-04106*03 -1. '6086-03 2.63516*02
3.07235*03 -1.77446*03 2.64806-02
t ERROR
0-1 0-1
0-2 1 ^1
-31.
-32-
-32-
-32-
-3 2 -
1-31-
0-21-
1-31-
1-32-
1-42-
1-4 Z -1
1-3 i -1
1 -3 2 -1
1-3 1-1
1-2 1-1
0-2 I -1
0-2 1-1
0-1 0-1
0 -2 1 -'I
0-2 1-1
1-3 1-1
1-32 -1
1-4 8-1
2-4 3-2
2-9 3-2
2-5 3-8
2-5 3-2
2-4 2-1
1-4 2-1
1-3 2-1
-3 1 -1
-2 1 -1
-2 I -I
-2 1 -1
-2 1 -1
-3 1 -1
•3 1 -1
-3 1 -1
1-3 2-1
1-3 8-1
1-3 2-1
1 -4 2-1
1-4 J -1
2-4 2-1
2-4 2-1
8-4 2-1
8-4 8-1
8-4 8-1
2-4 J -l
8 -4 8-1
2-4 8-1
2-4 2-1
8-4 2-1
2-5 8-1
2-5 3-1
3-6 3-2
3-6 3-8
3-6 4-8
3-6 4-2
3-6 3-8
3-6 3-8
3-6 4-2
3 -7 4- -8
3-7 4 -Z
        4-15

-------
g
>
       105C
HOC
                                           WAVENUMZER  (cm  )
1150
1200
1250
       9.5
        9.0
                                                      WAVELENGTH (urn)
               8.5
                                                                                                          -1
                              8.0
      FIG. 4-1.  Spectral curves of calculated emissivity for SO  at 475 K.   The curves correspond to 1 cm   spectral slitwidth

                                                                                                                  -2
                 and represent samples with equivalent pressures near 1 atm.   Absorber thicknesses in molecules cm   from top


                 curve to bottom are:  4 x 1019,  2 x 1019,  1 x 1Q19 and 0.5  x 10 9.

-------
    1.0
M   0.5
CO
CO
                                                                                                       r
      1050
1100
WAVENUMBER (cm"1)    1150
                                                                                               1200
                                                                                         1250
       9.5
      9.0
                                                     WAVELENGTH (urn)
                                    8.5
                                                                                                           -1
                                                                                                                            8.0
       FIG.  4-2.   Spectral  curves  of  calculated  emissivity  for SO.  at  550 K.  The curves correspond  to  1  cm   spectral  slitwidth
                                                                                                                   _2
                  and  represent  samples with  equivalent pressures near 1 atm.  Absorber thicknesses  in  molecules  cm  from top

                  curve  to  bottom  are:  4  x 10   ,  2  x  10  ,  1 x  10   and 0.5 x 1019.

-------
                                 SECTION 5
                        EXPERIMENTAL RESULTS FOR
Spectral curves of transmittance for H»0 between 1000 and 1300 cm   are
shown in Fig. 5-1.  Many additional lines not apparent in the figure also
occur in this region.

The parameters for more than 600 individual lines between 1000 and 1300 cm
                                          (2)
have been tabulated by Calfee and Benedict^  .   The parameters listed for
each line include the identification of the upper and lower states involved
in the transition, the wavenumber position of the line center, the strength,
and the half-width.  The values tabulated are based on a combination of
theory and experiment.  The positions are known to approximately 0.01 cm
for most of the lines strong enough to be significant for smokestack mon-
itoring.  However, the strengths and widths should be checked experimentally
and adjustments made to provide fits with experimental data.   The temper-
ature dependence of the strengths and widths can be calculated reliably
after these quantities have been determined at  one temperature.

A relatively smooth envelope curve can be drawn through points of maximum
transmittance in the curves of Fig. 5-1.  Such  a curve would  occur between
transmittances of 0.70 and 0.80 in the middle panel of Fig.  5-1.   Continuum
absorption is the cause of this "extra" absorption not due to the nearby
                                   5-1

-------
I
N3
      W
      O
      H
      H
            i.o
           0.5
            0
            1.0
            0.5
            1.0
           0.5
            1.0
                8.8
                                                I
                                                I
                       1000
               WAVENUMBER (cm"1)
1100
                       10
                WAVELENGTH (urn)
                      1150  WAVENUMBER (cm"1) 1200
                                                     1250 WAVENUMBER (cnT
                               1300
     WAVELENGTH  (urn)
                                                        8.2
                                                               8.2
             FIG.  5-1.
Spectral curves for pure HO between 980 and 1300 cm
                                                                            -1
Curve

Upper
Middle
Lower Left
Lower Right
L
(cm)
288U
416
416
416
P
(atm)
0.252
1.00
0.504
0.132
                                                                   u             Temp.
                                                           (molecules  cm   )   (Kelvins)
             WAVELENGTH  (urn)          7.6

           The sample parameters are:
                    Slitwidth
                                                                13.5   E21
                                                                 7.78  E21
                                                                 3.91  E21
                                                                 1.02  E21
                                                         392
                                                         392
                                                         392
                                                         392
                     (cm"1)
                      0.6
                      0.6
                      0.8
                      1.0

-------
lines.  It may be due to the extreme wings of very strong lines centered
below 1000 cm   and above 1300 cm   or to H?0 dimers.  The continuum ab-
sorption coefficient at a given wavenumber varies with pressure according
to the following equation for an HO + N  mixture.
           (continuum) = C = C  p + C   p   .                        (5-1)
The transmittance refers to the continuum onlyj p and p   are the pressures,
in atm, of the H?0 and N , respectively.  The subscript   s denotes self-
broadening; i.e., continuum due to broadening by collisions of the absorbing
HO molecules with other H_0 molecules.  Similarly,  the subscript N  corre-
sponds to collisions of the H90 molecules with N .  In the smokestack ex-
haust or in the atmospheric path, collisions of HO can be treated as if
they were with N«.  The quantity -/c^T (continuum) for a pure sample is
                                   2
proportional to pu  and, thus, to p  for a cell of given length.   The
strong dependence on p can be seen by comparing the upper and middle
panels of Fig. 5-1.  The 1 atm sample represented by the middle panel
shows more continuum absorption than the 0.252 atm sample represented by
the upper panel in spite of the larger absorber thickness of the 0.252
sample.

We have assumed that the continuum is due to the extreme wings of lines,
rather than to dimers.  For the purposes of analysis, it does not matter
which is the true absorbing mechanism since the pressure dependence indicated
by Eq. (5-1) is valid for both.  Values of C  and C   calculated  on the
                                            s      N
basis the Lorentz line shape for all of the lines outside the 1000-
1300 cm   interval do not agree with experimental values.  This result
does not exclude the wings of these lines as the cause of the absorption,
but it does indicate that the Lorentz shape is not valid in the extreme
wings.  Values of CN  are so small that they are difficult to determine
experimentally, but   they are probably less than 0.005 C  and much less
                                                         S
than the calculated values.  The exhaust from a typical smokestack con-
tains several percent H90 so that the self-broadening term in Eq. (5-1)
is dominant.  We have recently measured C  from samples of pure HO at
                                         S                       Z
                                   5-3

-------
392 K.  The following results were obtained:
           Wavenumber                 C
                                       s
             I  'IN          /  i    i   "I  2   -IN
             (cm  )          (molecules  cm atm  )
              1000                40 x 10~24
              1100                30 x 10~24
              1200                43 x 10"24
              1250                70 x 10"24

The FLO data obtained as part of the present study combined with those ob-
tained in our laboratory under other contracts are all of the laboratory
data on H_0 that are required to account for this gas in the reduction of
data on smokestack exhausts.  We recommended that these data be used to
determine the continuum coefficients and to adjust the line parameters
tabulated by Benedict and Calfee.  Relatively simple computer programs
can then be used to calculate the emission by any exhaust gas and the ab-
sorption by any atmospheric path of interest.
                                    5-4

-------
                                 SECTION 6
                                 REFERENCES
1.   D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, Investigation of
     Infrared Radiation by Atmospheric Gases, Philco-Ford Report No. U-4829,
     Contract F19628-69-C-0263, Project No. 5130, June 1970.

2.   W. S. Benedict and R. F. Calfee, Line Parameters for the 1.9 and 6.3
     Micron Water Vapor Bands. U. S. Department of Commerce, Environmental
     Science Services Administration, Professional Paper 2, Washington, D. C.,
     1967.

3.   D. E. Burch, J. Opt. Soc. Am. ,58, No. 10, 1383 (1968).  Also, Semi-
     Annual Technical Report Investigation of the Absorption of Infrared
     Radiation by Atmospheric Gases, Philco-Ford Report No. U-4784, Con-
     tract No. F19628-69-C-0263, January 1970.

4.   D. E. Burch, D. A. Gryvnak, R. R. Patty, and C. E. Bartky, J. Opt.
     Soc. Am. 59, 276 (1969).  Also, The Shapes of Collision-Broadened C02
     Lines. Philco-Ford Report No. U-3203, Contract No. NOnr 3560(00),
     ARPA Order No. 237, August 1968.

5.   D. E. Burch, E. B. Singleton, and D. Williams, Appl. Opt. I, 359 (1962).
                                    6-1

-------
6.   D. E. Burch, D. A. Gryvnak, and R. R. Patty, Absorption by H^O
                             -1                                  2
     between 2800 and 4500 cm   (2.7 Micron Region). Philco-Ford Report
     No. U-3202, Contract No. NOnr 3560(00), ARPA Order No. 273,
     September 1965.

7.   D. E. Burch, D. A. Gryvnak, and R. R. Patty, J. Opt. Soc. Am. 57,
     885 (1967).

8.   D. E. Burch and D. A. Gryvnak, Infrared Radiation Emitted by Hot
     Gases and Its Transmission through Synthetic Atmospheres, Aeronutronic
     Report No. U-1929, Contract NOnr 3560(00), October 1962.

9.   R. D. Shelton, A. H. Nielsen and W. H. Fletcher, J. Chem. Phys. _21,
     No. 12, 2178 (1953).

10.  G. H. Herzberg, Molecular Spectra and Molecular Structure. II.
     Infrared and Raman Spectra of Polyatomic Molecules.
     (D. V?n Nostrand Co., Inc., Princeton, N. J., 1960.)

11.  S. S. Penner,  Quantitative Molecular Spectroscopy and Gas Emissitive.
     (Addison-Wesley Publishing Co.,  Inc., Reading,  Mass., 1959.)

12.  D. F. Eggers,  Jr. and E. D. Schmid, J. Phys. Chem. 64, 279 (1960).

13.  J. E. Mayhood, Can. J. Phys. J35, 954  (1957).

14.  J. Morcillo and J. Herranz, Anales. real Soc. espan. fis.  y quim.
     (Madrid), A52, 207 (1956).
                                   6-2

-------
                              APPENDIX A
This appendix provides factors required to convert units of temperature,
absorber thickness, and strengths of lines or bands used in this report to
units commonly used by other workers.  The absorber thickness u is the num-
                                            2
ber of molecules of the absorbing gas per cm  cross section of the optical
path.  For a perfect gas, the number N of molecules of absorbing gas per
cm  is:
N = 0.269 x 102° p (273 K/0) ,
where 6 is the temperature in Kelvin and p is the partial pressure of the
absorbing gas in atm.  It follows that:
               _ 2                   _3                    20
u (molecules cm  ) = N (molecules cm  )L (cm) = 0.269 x 10   pL (273.2 K/9)

Units of (atm •  cm)    are used frequently by other workers for a quantity
                   oTP
corresponding to our absorber thickness:
u (atm • cm)STp = (273.2 K/0) p(atm) L(cm) .

The subscript STP indicates that the absorber pressure p has been adjusted
to the value it would be if N were kept constant and 9 were standard
temperature, 273.2 K.
                                   A-l

-------
The unit
u(atm ' cm)      = (300 K/9) p(atm) L(cm)
also appears in the scientific literature.  At 6 = 300 K, a common laboratory
temperature, this unit conveniently becomes p(atm) L(cm).  The units de-
fined in the equations above differ from each other by factors which are
independent of temperature.  The factors are summarized in Table A-l.

Some workers use units equivalent to
u(atm •  cm)         = p(atm) L(cm) .
           at temp.
It is apparent that the conversion factor relating this quantity to our
            -2
molecules cm   depends on temperature.  The constants required to make the
conversion are given in Table A-2 for several temperatures.   As explained
in Section 1, deviations from the perfect gas law must be accounted for at
high pressure.
                                    2
Units of gms of absorbing gas per cm  also are used.   Table A-l relates
                                                                   -2
absorber thicknesses in these units for S0_ and H. Q to molecules cm
The conversion between these sets of units is independent of temperature,
but dependent on the molecular weight of the absorber (18 for HO and 64
                                                       3
for S09).  Since the density of liquid water is 1 gm/cm , values of u in
         _2
gm H«0 cm  are numerically equivalent to those in precipitable cm (pr.cm)
which correspond to the depth of the column of liquid water that would
result if the H90 vapor in the optical path were condensed.

The units of absorption coefficient K are the reciprocals of the units of
absorber thickness.  The strength of a line or band is the integral of
the absorption coefficient, / K dv, where the integration is performed
over the line or band.  It follows that the units of strength are cm
times the reciprocal of the units of absorber thickness.  In Tables A-l
and A-2, the unit cm   which denotes the number of waves per cm is kept
separate from the unit cm which denotes length.  Some workers integrate
over a line or band in units of sec   instead of cm  .  In this case,
                                   A-2

-------
sec   is the number of waves per second;  thus, values expressed in the
two different sets of units differ by c, the speed of light in cm sec
                                    A-3

-------
                                TABLE A-l




              CONVERSION FACTORS FOR ABSORBER THICKNESSES AND

                    STRENGTHS VALID AT ALL TEMPERATURES
       Absorber Thickness

                20             -2
Equivalent of 10   molecules cm
    Strengths of Lines or Bands

_  .   .      . ..-20   .    .-12-1
Equivalent of 10    molecules  cm cm
3.72    (atm cm)
                STP


        (for all gases)
4.09    (atm cm)
                300 K
        (for all gases)
0.01063 gm SO./W
0.00299 gm H 0/cm  or


        (pr.cm)
     0.269 (atm cm)~Jp •  cm"1
     0.245 (atm cm)OAA   "cm
                   jUU K.
    94.1   (gm SO.)"1 cm2 •  cm"1
   335     (gm HO)"1 cm2 •  cm"1  or


           /     N-l   2     -1
           (pr.cm)   cm  •  cm
                                  A-4

-------
                       TABLE A-2
CONVERSION OF TEMPERATURE SCALES AND ABSORBER THICKNESS
Kelvin
273.2
296
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650
Temperatures
Centigrade Fahrenheit
0
22.8
26.8
51.8
76.8
101.8
126.8
151.8
176.8
201.8
226.8
251.8
276.8
301.8
326.8
351.8
376.8
32.0
73.1
80.2
125.2
170.2
215.2
260.2
305.2
350.2
395.2
440.2
485.2
530.2
575.2
620.2
665.2
710.2
Rankine
491.7
532.7
539.9
584.9
629.9
674.9
719.9
764.9
809.9
844.9
899.9
944.9
989.9
1034.9
1079.9
1124.9
1169.9
20 -2
Equivalent of 10 molecules cm
(atm cm)
at temp.
3.72
4.04
4.09
4.43
4.77
5.11
5.45
5.80
6.14
6.48
6.81
7.16
7.50
7.84
8.18
8.52
8.86
                        A-5

-------