-------
Continuous Air Monitoring Program
in Washington, D. C.
1962-1963
COMPILED 8V
AIR QUALITY SECTION
LABORATORY OF ENGINEERING AND PHYSICAL SCIENCES
ROBERT A. TAFT SANITARY ENGINEERING CENTER
U. S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
Division of Air Pollution
Cincinnati, Ohio
September 1966
-------
The ENVIRONMENTAL HEALTH SERIES of reports was established to
report the results of scientific and engineering studies of man's environment:
The community, whether urban, suburban, or rural, where he lives, works,
and plays; the air, water, and earth he uses and re-uses; and the wastes he
produces and must dispose of in a way that preserves these natural resources.
This SERIES of reports provides for professional users a central source of
information on the intramural research activities of Divisions and Centers
within the Public Health Service, and on their cooperative activities with
State and local agencies, research institutions, and industrial organizations.
The general subject area of each report is indicated by the two letters that
appear in the publication number; the indicators are
AP - Air Pollution
AH - Arctic Health
EE - Environmental Engineering
FP - Food Protection
OH - Occupational Health
RH - Radiological Health
WP - Water Supply and Pollution Control
Triplicate tear-out abstract cards are provided with reports in the SERIES
to facilitate information retrieval. Space is provided on the cards for the
user's accession number and additional key words.
Reports in the SERIES will be distributed to requesters, as supplies per-
mit. Requests should be directed to the Division identified on the title page
or to the Publications Office, Robert A. Taft Sanitary Engineering Center,
Cincinnati, Ohio 45226.
Public Health Service Publication No. 999-AP-23
CONTROL NOW-
FOR CLEAN AIR!
-------
PREFACE
The Continuous Air Monitoring Program, commonly
known as CAMP, represents the first large-scale effort
to obtain comparable, continuous, concurrent data on
gaseous air pollutant levels in the atmospheres of a
number of major American cities. The fundamental pre-
mise in the establishment of the program was the need
for such data to augment research on the nature of air
pollution and its impact on man and his environment.
Consequently, the Public Health Service wishes to en-
courage all interested research personnel to participate
in exploiting the many avenues of investigation opened by
this information. To make the CAMP data immediately
available for such use, brief interim summaries have
been prepared monthly since the inception of the program.
Sufficient information has now been accumulated to warrant
publishing a series of more comprehensive reports, of
which this volume is a part. A similar publication sum-
marizing the results of 1962-1963 operations in Cincinnati,
Ohio, is available, and volumes are planned for data from
other cities and subsequent years. In addition to this
series, special reports discussing in detail specific as-
pects and interpretations of the data will be prepared
periodically; currently in progress are studies of the
effects of sample averaging time, of the ratios of peak
to average concentrations, and of pollutant interrelation-
ships.
This volume presents the results of operations in
Washington, D.C., during 1962 and 1963. It is intended
to serve not only as a report on CAMP operations, but
also as an introduction to the subject of gaseous air pol-
lution for the technical reader unfamiliar with such work.
Following a summary of the background of CAMP and its
current operations, Part 1 presents background informa-
tion about the Washington area to assist the reader in
visualizing the interpretations of the data in the light of
factors peculiar to Washington. Part 2 contains a brief
summary of the data with analysis and discussion, and
Part 3 summarizes the data as hourly, daily, and monthly
mean concentrations to permit the use of this volume as
a reference. An appendix describes the instrumentation.
In addition to the series of publications, copies of the
CAMP master data files, maintained on magnetic tapes
for electronic computer analysis, can be made available
for use by anyone having access to computer facilities.
Since data from the National Air Sampling Network of
the Public Health Service, as well as large quantities of
mortality, morbidity, meteorological, and socioeconomic
data, are also available on magnetic tapes from various
sources, the possibilities for computer analysis are almost
limitless. Correspondence concerning the availability or
use of CAMP data should be directed to the Chief, Air
Quality Section, Laboratory of Engineering and Physical
Sciences, Division of Air Pollution, Robert A. Taft Sani-
tary Engineering Center, 4676 Columbia Parkway, Cin-
cinnati, Ohio 45226.
in
-------
ACKNOWLEDGMENT vii
ABSTRACT vii
THE CONTINUOUS AIR MONITORING PROGRAM . 1
PART 1: WASHINGTON, D. C 3
Topography and Land Use 5
Principal Sources of Pollution 7
Meteorology 9
Air Pollution Control Activities 13
CAMP Station Site 15
PART 2: RESULTS AND DISCUSSION 17
Summary of Results 19
Pollutant Levels 19
Variations in Pollutant Levels 22
The Effects of Atmospheric Dilution Capacity . . 24
Results - Individual Pollutants 26
Sulfur Dioxide 26
Oxides of Nitrogen 31
Total Oxidant 40
Total Hydrocarbon 42
Carbon Monoxide 48
Participates 50
Atmospheric Stagnations and Photochemical
Smog 54
Additional Percentile Concentrations for 1-
and 24-hour Averaging Times 57
PART 3: DATA TABLES 59
Gaseous Pollutants 61
Soiling Index 61
Suspended Particulate Matter 62
Table 3-1: Index to Data Tables 62
Tables 3-2 -- 3-25 : Hourly Averages of
Sulfur Dioxide 63
Tables 3-26 -- 3-48 : Hourly Averages of
Nitric Oxide 87
Tables 3-49 -- 3-72 : Hourly Averages of
Nitrogen Dioxide 110
Tables 3-73 -- 3-96 : Hourly Averages of
Total Oxidant 134
Tables 3-97 -- 3-116: Hourly Averages of
Total Hydrocarbon ... 158
Tables 3-117 -- 3-135: Hourly Averages of
Carbon Monoxide .... 178
Tables 3-136 -- 3-145: Two-hour Averaged
Soiling Index 197
Table 3-146: Total Suspended Particulate
Matter 207
Table 3-147: Gross Beta Radioactivity 208
-------
APPENDIX A: INSTRUMENTATION AND
METHODS 209
Instrumentation 211
Sulfur Dioxide 211
Oxides of Nitrogen 211
Total Hydrocarbon 212
Carbon Monoxide 213
Particulates 213
Data Retrieval System 214
Data Analysis 214
APPENDIX B: REFERENCES 215
VI
-------
ACKNOWLEDGMENT
The Public Health Service acknowledges with apprecia-
tion the many contributions of the several cooperating
local agencies to the operation of the Continuous Air
Monitoring Program. In the publication of this volume
with data from Washington, particular appreciation is
expressed to the District of Columbia Department of
Public Health, Air Pollution Section, for the operation
of the station and for obtaining the station site.
ABSTRACT
This report presents the results of the operation of
the Public Health Service Continuous Air Monitoring Pro-
gram (CAMP) in Washington, D.C., during 1962 and 1963.
Data on atmospheric levels of sulfur dioxide, oxides of
nitrogen, total oxidants, total hydrocarbons, and carbon
monoxide are summarized, analyzed, and discussed. The
data are tabulated as hourly, daily, and monthly mean
concentrations; background information about Washington
and a description of the instrumentation used are included.
VII
-------
THE CONTINUOUS AIR MONITORING PROGRAM
It has been estimated that as many as 6000
urban areas in the United States are affected to
some degree by air pollution, but air quality
measurements have been made in no more than
a tenth of these communities.1 Generally,
measurements are limited to particulate pol-
lution, i.e. dusts and soot in the air. Data on
particulate weight from dustfall collectors and
high-volume filter samplers are available most
frequently; measurements of particulate soiling
in COH or RUDS* units are less commonly
made.
In recent years, there have been significant
increases in the technical ability and legal
authority needed to control the discharge of par-
ticulates to the air, and some urban areas have
made gratifying progress in reducing such pol-
lution. During this period, however, public
awareness and official concern has been ex-
panded to encompass the less obvious, but more
complex, problems of gaseous pollutants. Even
communities that have never been particularly
troubled by particulate pollution are showing in-
creased evidence of photochemical smog, a
serious manifestation of gaseous pollution, in
periodic episodes of decreased visibility, eye
irritation, and damage to vegetation.
Available data on gases in the air, however,
have been even more limited in distribution and
in quantity than the sparse particulate data.
The National Air Sampling Network of the
Public Health Service has measured sulfur di-
oxide and nitrogen dioxide in about 50 cities by
means of 24-hour integrated samples taken bi-
weekly. The cost of more frequent sampling has
limited routine gas monitoring to only the largest
urban areas. In some of the smaller cities,
intensive studies of some gaseous pollutants have
been made by local agencies and the Public
Health Service during cooperative air pollution
surveys,2'3-4 but these samp ling programs have
been conducted for relatively short periods of
time. The rare instances of daily, 24-hour
sampling programs that have been undertaken
have usually been restricted to the collection of
integrated samples of at least 2 hours duration,
despite the knowledge that the concentrations of
gaseous pollutants can change significantly with-
in a few minutes.
Understanding of the significance of gaseous
pollution is handicapped not only by the scarcity
of data, but also by differences among several
methods of sampling for any single pollutant.
These differences have limited comparison
among, and joint interpretation of, the results
of numerous studies. In addition, concurrent
data for more than one pollutant at any one site
are almost completely lacking; this lack handi-
caps studies of pollutant interrelationships and
the more complex effects of pollution.
The need for continous concurrent data for
several gases, obtained by comparable methods
in various communities, was recognized some
years ago. It was also apparent, however, that
the requisite sampling program would be far
more difficult than any effort previously at-
tempted. Completely satisfactory instrumen-
tation was lacking. The subject itself — the
rapid and concurrent variation of atmospheric
pollutant levels — was little understood. Ques-
tions of which pollutants could or should be
measured were largely unanswered. Further-
more, few groups interested in air pollution
could marshal the financial or manpower re-
sources needed for such an undertaking.
In 1960, Congress provided impetus and fi-
nancial support for a program capable of resolv-
ing some of the problems of gaseous pollutants
and their sampling. Public Law 86-493 directed
the Public Health Service to accelerate research
into the effects of air pollutants from motor
vehicles on human health. Since such pollutants
are largely gases for which available data were
inadequate, the Continuous Air Monitoring Pro-
gram was established to measure the concen-
trations of various gases in the ambient atmos-
phere. Development of the necessary instrumen-
tation was accomplished by the Public Health
Service through a contract with a commercial
instrumentation firm, and the operation of the
program was assigned to the Air Quality Section
of the Laboratory of Engineering and Phusical
Sciences in the Division of Air Pollution. The
first station was opened in Cincinnati in October
1961, and by early 1962 five additional stations
were operating. During 1962 and 1963 these six
stations were located in Chicago, Cincinnati,
New Orleans, Philadelphia, San Francisco, and
Washington, and were operated by the Public
*COH (Coefficient of Haze) units are based on the transmission of light through a soiled filter; RUDS (Reflectance Units of Dirt Shade),
on the reflection of light from a soiled filter. Both measure primarily the smaller particulates.
CONTINUOUS AIR MONITORING PROGRAM
-------
Health Service in cooperation with the local air
pollution control agencies. The instruments at
the New Orleans station were subsequently
moved to St. Louis in 1964, and the San Fran-
cisco equipment to Denver in 1965. Comparable
data are also obtained in Los Angeles and New
York, at stations provided and operated by local
groups. Insofar as practicable, the stations are
comparably located. They have been placed in
or near the principal business district in each
city, and situated wherever possible to avoid the
influence of significant point sources of pol-
lution.
The primary objective in establishing the
Continuous Air Monitoring Program was to over-
come at least partially the deficiencies in exist-
ing data on the nature of air pollution by pro-
viding information that was heretofore un-
available, i.e., continuous, concurrent data on
several gaseous pollutants obtained comparably
in a number of urban areas. It is hoped that
this effort will stimulate further air pollution
investigations and the control of pollution where
required; hence the program for publication of
the CAMP data has been planned to make this in-
formation available for use by those persons
interested in any of the several areas of air
pollution research and control.
Since a CAMP station constitutes only one
sampling site in a given community, the data do
not necessarily quantitate air pollution levels
beyond the immediate vicinity of the station;
however, the data do have application to studies
of the broad patterns of temporal variations and
pollutant interrelationships that affect the entire
urban area. The data have already demon-
strated significant occurrences of photochemical
smog in communities other than in California,
and further investigation of this phenomenon is
anticipated. The CAMP data are now being used
in conjunction with meteorological data in dy-
namic mathematical diffusion models; in studies
of the effect of large, single sources of pol-
lution on ambient concentrations; and in the
differentiation of temporal and geographic var-
iations.
Delineation of the effects of air pollution on
man and his environment depends upon know-
ledge of the variability of pollutant concen-
trations as well as of the average levels. In
the field, CAMP data can be used in epidemi-
ological studies of the health effects of various
pollutant combinations and of changing pollution
levels; in the laboratory, the data can be applied
to the selection of realistically varying pollutant
concentrations and combinations for the ex-
posure of animals and plants. Pollution effects
and behavior can also be examined in terms of
various time-concentration arrays. CAMP data
thus provide some of the information needed to
evaluate proposed air quality criteria and the
impact of implementing such criteria through
air conservation programs.
The improvement and development of tech-
niques for measuring air quality are also of
considerable importance. Relationships of peak
to average concentrations over various periods
of time are expected to provide guidance toward
optimum balance in the use of continuous or in-
tegrating types of instruments, or both, in the
light of cost versus information gained. Sim-
ilarly, studies of pollutant interrelationships
may indicate that one pollutant, or a combination
of a few, can provide a good index to the be-
havior of others. Either of these factors could
affect both the type and the cost of air quality
measurements.
CONTINUOUS AIR MONITORING PROGRAM
-------
PART 1:
WASHINGTON, D.C.
-------
PART 1: WASHINGTON, D. C.
This brief discussion of the Washington area
is included to provide a basis for visualizing the
interpretations of the data in Part 2 in the
light of features peculiar to the Washington area,
and to assist in evaluating the applicability of
these interpretations to other locations.
TOPOGRAPHY ANDLANDUSE
The city of Washington is co-extensive with
the District of Columbia, which occupies an area
of about 69 square miles between Maryland and
Virginia (see Figure 1-1). It is situated at the
confluence of the Potomac and Anacostia Rivers,
at the upper end of the Potomac tidal basin.
Washington lies on the relatively flat Eastern
coastal plain; elevations in the area range from
10 to 400 feet above sea level. The only distinc-
tive features of the terrain are the bluffs border-
ing the Potomac River as it enters the District
from the Northwest, and the Rock Creek ravine
running north and south through the middle of the
District's northwest sector.
The characteristics of a major urban center
change with distance from the central city core.
The Standard Metropolitan Statistical Area
(SMSA) of Washington* (Figure 1-1) includes the
District of Columbia, the Maryland counties of
Montgomery and Prince Georges, the Virginia
counties of Arlington and Alexandria, and the
independent Virginia cities of Alexandria and
Falls Church, with a total population over 2
million. Much of the outlying area is rural and
very sparsely inhabited, however, making the
SMSA a poor index of the extent of urbanization,
and hence a poor basis for comparison with
other cities (Table 1-1). The Washington Ur-
banized Area,* which includes only those in-
corporated places of at least 2500 persons and
adjacent unincorporated census tracts of 1000
or more persons per square miles, is also in-
dicated in Figure 1-1; the Urbanized Area con-
tains over 90 percent of the population on about
23 percent of the land, a density of 5300 persons
per square mile. The City of Washington itself
is the center of population; it is the ninth largest
city in the country, with a population over
TABLE 1-1
COMPARATIVE URBAN STATISTICS
City
Washington, D. C.
City
Urbanized area
SMSA
Other East
Coast cities11
Baltimore
Boston
Other CAMP
Cities*
Chicago
Cincinnati
Denver
Los Angeles
New Orleans
New York
Philadelphia
St. Louis
San Francisco
Land area,
sq mi
61
341
1,485
79
48
224
77
71
455
199
315
127
61
45
Population
Total,
1000's
764
1,808
2,002
939
697
3,550
503
494
2,479
628
7,782
2,003
750
740
Density,
persons/
sq mi
12,440
5,310
1,350
11,890
14,590
15,840
6,500
6,960
5,450
3,160
24,700
15,740
12,300
15,550
Housing
Density,
units/
sq mi
4,280
1,670
416
3,670
4,990
5,410
2,220
1,880
6,550
1,020
8,750
5,100
4,320
6,960
Single
units,
%
40
57
60
71
16
24
37
66
60
50
13
74
35
36
<10
yr old,
%
16
36
37
14
5
10
11
28
31
17
13
11
7
8
Private
passenger
car density,
cars/sq mi
2600
1520
390
1570
1250
1640
1170
1800
1880
770
1720
1540
1460
1460
Manufac-
turing
employ-
ment,
%
6
8
8
28
24
34
29
18
27
14
26
33
31
16
Median
family
income,
dollars
5990
7610
7580
5660
5750
6740
5700
6360
6900
4810
6090
5780
5360
6720
DData are for cities proper, except passenger-car densities, which represent urbanized areas.
Source: Bureau of the Census, References 5 and 6.
1960 Bureau of the Census definitions.
TOPOGRAPHY AND LAND USE
-------
City of Washington
Urbanized Area
( £1000 p/sq mi)
Standard Metropolitan
Statistical Area
Figure I-1. Washington metropolitan area.
TOPOGRAPHY AND LAND USE
-------
760,000 and a population density exceeding
55,000 per square mile in some areas and
averaging more than 12,000 per square mile
(Figure 1-2). Because the sampling station is
located on the fringe of the downtown area,
statistics for the City of Washington are the
most appropriate index with reference to air
pollution as measured by CAMP. Similarly, the
comparative statistics for other CAMP sites
(and two other east coast cities) in Table 1-1
are based on the central cities.
Washington is essentially an institutional
city, with most of the nonresidential land used
for governmental purposes; a 1955 survey in-
dicated that 42 percent of the land in the District
of Columbia was owned by the Federal Govern-
ment. The only portions of the area that are
somewhat industrialized are located in the
Alexandria - South Arlington area of Virginia
and in the northeast sector of the District of
Columbia.
The relatively minor role of industry in
Washington is also evident in Table 1-2, a
summary of employment; manufacturing activi-
ties provide only 4 percent of the total em-
ployment in Washington. The Federal Govern-
ment, on the other hand, employs the largest
segment of the work force. In fact, all levels
of government, Federal, state, and local, in-
cluding nearby military establishments, employ
some 40 percent of the working population in
administrative, scientific, and clerical occupa-
tions, most of which do not involve the pro-
duction of air pollution.
PRINCIPAL SOURCES OF POLLUTION
Because the minimal industrial activity in
the Washington area is generally restricted to
light manufacturing, process losses are neg-
ligible, and the vast majority of gaseous air
pollution is produced by the combustion of fuels
for transportation, heating, and electric power
generation. Combustion of gasoline and diesel
fuel for transportation is responsible for the
largest portion of carbon monoxide, oxides of
nitrogen, and hydrocarbon emissions. The use
of coal, fuel oil, and natural gas for space
heating and electric power generation contri-
butes most of the sulfur dioxide pollution and a
significant portion of the oxides of nitrogen
emissions.
TABLE 1-2
ESTIMATED EMPLOYMENT IN THE
WASHINGTON METROPOLITAN AREA,
DECEMBER 1960
Classification
Federal Government (civilian)
Military service
District, state and
local governments
Government: total
Wholesale and retail trade
Self-employed
Construction
Professional services
and organizations
Transportation, communication,
and public utilities
Personal services and
domestics (private homes)
Finance, insurance, and
real estate
Business, repair, and
recreation services
Manufacturing
Miscellaneous
Washington
174,400
23,800
25,100
223,300
83,700
33,000
21,100
42.500
28,400
28,300
25,600
17,200
20,700
8,500
Suburban
64,500
34,000
27,700
126,800
61,700
25,900
29,500
7,300
17,900
15,800
12,700
19,200
14,500
8,700
Total
238,900
58,400
52,800
350,100
145,400
58,900
50,600
49,800
46,300
44,100
38 , 300
36,400
35,200
17,200
Total 532,300
Source: Public Health Service, Reference 7.
340,000
872,300
Gaseous pollution from motor vehicles is a
proportionally greater problem in Washington
than in most areas, largely because of a very
high density of vehicles and the minimal in-
dustrial contribution. Although the density of
private passenger cars in the Urbanized Area
(Table 1-1) is no greater than in some other
urban areas, the total motor vehicle density in
the city proper is one of the highest among the
major cities in the country. In addition to the
2600 private passenger cars per square mile in
Table 1-1, 20,000 trucks and busses, 10,000
taxicabs, and large fleets of government and
military vehicles raise the total to a density of
over 4000 motor vehicles per square mile.8
When automobiles owned in the suburbs, through
traffic on several major highways, and a large
number of tourists' automobiles are also in-
cluded, the total rises to about 700,000 vehicles,
which daily consume 1,950,000 gallons of gaso-
line and over 48,000 gallons of diesel fuel in the
Washington Standard Metropolitan Statistical
Area (SMSA). The vehicular density is concen-
trated still further in the downtown core by a
massive influx of suburban commuters who
work in downtown Washington; traffic survey
data indicate that about half the vehicles in the
area enter and leave the city daily, and that
over a third of them concentrate in 1 square
mile of the downtown core.
TOPOGRAPHY AND LAND USE
-------
• INDUSTRIAL
:B&| CENTRAL BUSINESS DISTRICT
RESIDENTIAL DENSITY, p/sq. mi.
0-7000
7000-12,000
12,000-35,000
35,000 OR MORE
CAMP STATION
Figuri 1-2. Land use in District of Columbia and vicinity.
TOPOGRAPHY AND LAND USE
GPO 827-234-2
-------
Most of the non-vehicular gaseous pollution
results from the combustion of coal, fuel oil,
and natural gas for space heating and electric
power generation. Of the total energy require-
ment in the Washington SMSA (other than for
transportation) 46 percent is produced from
coal, 24 percent from fuel oil, and 30 percent
from natural gas.
An estimated 3-1/2 million tons of coal are
consumed annually; 79 percent of this total is
used by the local electric power utility, 12 per-
cent by the Federal Government in large heating
plants, and the remainder for residential space
heating, industrial, commercial, and miscel-
laneous uses. About 26 percent of the total is
consumed in one large power plant in Alexandria,
Virginia; another 40 percent is used in a power
plant at Dickerson, Maryland, more than 30 miles
from Washington. Most of the remainder is
consumed within the District of Columbia. About
40 percent of the latter is used for space heating
by the Federal Government; another 40 percent
is used by two of the electric power utility's
smaller plants. The remainder of the coal con-
sumed in the District is used for small com-
mercial and industrial boilers and for heating
apartment buildings. The sulfur content of the
coal used in the area ranges from 0.9 to 3.0
percent, averaging about 1.5 percent.
Approximately 360,000,000 gallons of fuel
oil are used each year. About two-thirds of the
total is composed of distillate oils used pri-
marily for residential heating; the other third, of
residual oils used as heating fuels for govern-
ment buildings, hotels, and apartments. Sulfur
content averages about 0.3 percent in the
distillate oils, and about 2.8 percent in the
residual oils.
Natural gas is the major residential heating
fuel; about 63 billion cubic feet of gas burned
annually in the Washington metropolitan area.
Seven incinerators and open-burning opera-
tions at two large dumps in the metropolitan
area dispose of about 2000 tons of dry refuse
per day, or about two-thirds of the total in the
SMSA. (Wet garbage is not incinerated, but is
used as livestock feed.) Pollution from these
disposal operations amounts to only a few per-
cent of estimated total gaseous emissions, but
most of the emissions and almost all of the com-
plaints are caused by the open-burning dumps,
which burn only about one-seventh of the total
refuse.
Locations of the major central heating plants,
power stations, and incinerators in the metro-
politan area are indicated in Figure 1-3. The
position of the CAMP station, located on the
southeast corner of the intersection of First
and L streets, N.W., is also shown.
METEOROLOGY
Pollutant concentrations in the atmosphere
depend not only upon the amount of pollution
emitted from sources in the community, but
also on the extent to which the pollution is
diluted or dispersed in the atmosphere. In the
Washington area, this dilution depends prima-
rily on meteorology, since topographic influ-
ences are minimal.
The extent of dilution and dispersion hori-
zontally is determined primarily by surface
wind speed. Table 1-3 summarizes by season
for several years the average surface wind
speeds* in Washington and the degree of hori-
zontal dilution afforded. In addition, Table 1-3
includes the frequency of winds affording "poor"
horizontal dilution, i.e., winds less than 7 mph.
The average wind speeds indicate that the gross
horizontal dilution in Washington is generally
best in winter and spring and poorest in summer.
In all seasons the city experiences light winds
affording "poor* dilution a significant portion
of the time; although much of this time is
probably at night, when wind speeds are typ-
ically lower, a few occasions of light winds
throughout an entire day did occur in each
season.
TABLE 1-3
HORIZONTAL DISPERSION
CHARACTERISTICS
Season
Winter
Spring
Summer
Aulumn
Average
hourly wind
speed, mph
10,8
11.0
8.5
9.1
Horizontal
dilution
capacity3
Good
Good
Moderate
Moderate
Frequency of
Hourly winds
% of hours
35
29
43
41
wind speeds S 7 mph
, Dally mean winds,
days per month
8-9
4-5
8-9
10-11
aOn a scale of poor, moderate, good, excellent (Reference 9).
The direction in which pollutants are carried
by the wind depends, of course, on the wind
direction. Figure 1-4 presents seasonal wind
roses for the Washington area. In winter, north-
All meteorological data used in this report are U.S. Weather Bureau data from Washington National Airport unless otherwise noted.
PRINCIPAL SOURCES OF POLLUTION
-------
Montgomery County
LEGEND
CAMP Station
Washington National Airport
Large Incinerator
Open-burning Dump
Sewage Treatment Plant
Railroad Station
Alexandria Power Plant
Benning Rood Power Plant
Buzzard Point Power Plant
Central Heating Plant
Georgetown West Heating Plant
Naval Gun Factory
Walter Reed Army Medical Center
Pentagon Heating Plant
Figure 1-3. Location of CAMP station in relation to major pollution sources.
10
PRINCIPAL SOURCES OF POLLUTION
-------
W INTER
SPRING
FREQUENCY
'•0 I OF CALM WINDS
Figure 1-4. Surface wind roses, Washington National Airport, 1962-1963.
METEOROLOGY
11
-------
west winds are predominant; in summer, south-
erly winds are predominant. In all seasons,
easterly winds are relatively infrequent.
The extent of pollutant dispersion in a verti-
cal direction is determined by the stability of
the atmosphere, i.e., the degree of turbulent
mixing in the air mass. This stability in turn
depends on the temperature gradient in the low-
est layer of the atmosphere. If the temperature
decreases with altitude at a rate greater than
5.4° C per 1000 feet (the dry adiabatic lapse
rate), the atmosphere is unstable and turbulent
mixing occurs. If the temperature decrease is
less than 5.4° C per 1000 feet, or if the tempera-
ture increases with height, the atmosphere is
stable and mixing is suppressed.
During the daytime, lowest layers of the
atmosphere are typically unstable, the low-
lying warm air tends to rise, and the resulting
air movement mixes gaseous pollutants verti-
cally throughout the air mass. Under these
conditions, the degree of vertical dilution af-
forded is determined by the depth of the layer in
which mixing can occur. This mixing depth is
dependent on the vertical temperature profile
and is at a maximum in the afternoon. The first
2 columns of Table 1-4 present seasonal aver-
ages of the daily maximum mixing depth and the
degree of vertical dilution afforded. The aver-
age depth available for mixing during autumn
and winter is half that available in spring and
summer.
TABLE 1-4
VERTICAL MIXING CHARACTERISTICS
Season
Winter
Spring
Summer
Autumn
Average daily
maximum mixing
depth,10 ft
1320
3050
3880
I860
Vertical
dilution
capacity3
Poor
Moderate
Good
Pooi-
Frequency of very stable
layer based within 500 feet
of the surface," 500 feet
7am 10 am 7 pm 10 pm
48 22 30 '14
51 5 12 -12
57 2 5 47
59 8 34 56
a On a scale of poor, moderate, good, excellent (Reference 9).
During the nocturnal hours, the earth's sur-
face is cooled as heat radiates away, the de-
crease in air temperature with height is typ-
ically less than during the day, and vertical
mixing is correspondingly reduced. Frequently
the cooling of the earth after sunset is rapid
enough that the temperature gradient becomes
inverted, i.e., the lower air becomes cooler
than that above. Such a "radiation inversion"
is very stable and essentially eliminates any
vertical dispersal of pollution until the inversion
is dissipated by the warming of the earth in the
morning. The last four columns of Table 1-4
indicate the frequency of occurrence of inversion
condition at various times during the day.
Radiation inversions occur overnight about half
the time in all seasons, with slightly greater
frequencies in summer and autumn. A more
obvious seasonal difference is that nocturnal
inversions tend to form earlier in the evening
and persist later into the morning during
autumn and winter than during spring and
summer.
The poorest overall pollutant dilution, con-
sidering both horizontal dispersion (Table 1-3)
and vertical mixing (Table 1-4), is thus to be
expected in autumn, which is characterized by
a relatively high frequency both of persistent
inversions and of wind speeds below 7 mph.
The similar high incidence of light surface
winds and low-level inversions during summer
is usually compensated for by good afternoon
mixing and the longer period each day during
which the mixing occurs.
It is also primarily during autumn that an
occasional high-pressure system stagnates over
some portion of the eastern United States,
frequently including the Washington area. The
air in such a stagnating weather system is
generally subsiding, and is warmed as it des-
cends; this produces a subsidence inversion,
which, in contrast to the nocturnal radiation in-
versions, may not entirely dissipate during day-
light hours and may persist for several days.
During these periods of atmospheric stagnation,
pollutants can accumulate to record levels.
A U.S. Weather Bureau program12 that fore-
casts such stagnations noted 10 occurrences
(for a total of 28 days) over the Washington
area during the 3-1/2-year period from mid-
1960 through 1963. Figure 1-5 indicates the
general pattern of occurrence of these stag-
nations over the eastern U.S. during this period;
Washington has experienced stagnations more
frequently than most major eastern urban areas.
Since this discussion of the atmospheric dilu-
tion of air pollutants in Washington is based on
data from various periods over several years, it
should be considered only general. Data from
1962 and 1963 are discussed more specifically
in Part 2.
12
METEOROLOGY
-------
Figure 1-5. Number of days of high air pollution potential,
August i960 to December 1963 (as reported by Air
Resources Field Research Office, Cincinnati, Ohio).
^
AIR POLLUTION CONTROL ACTIVITIES*
The existing program for control of air
pollution in the District of Columbia has devel-
oped over a long period of time. Perhaps the
earliest legislation on air pollution was passed
in 1875. This early law, still enforced by the
District Department of Public Health, covers
so-called "public-health nuisances," which are
concerned with odors, noxious gases, and dusts
resulting from certain natural causes or offen-
sive industrial trades.
In 1935 Congress enacted Public Law 279,
the District of Columbia Smoke Law, which
prohibits the discharge of dense smoke from
any building, any stationary or locomotive
engine, motor vehicle, place, or premises with-
in the District of Columbia; the law requires
that all ashes, cinders, rubbish, dirt, and refuse
be removed to a proper place and that cinders,
dust, gas, steam, or offensive or noisome
odors shall not be discharged from any building
or place to the detriment or annoyance of other
persons. Limited modifications and revisions
have been made to the smoke law, but for the
most part it stands as originally enacted. Since
1936, a smoke control program, through in-
spection of plans and issuance of permits for
fuel-burning equipment, has endeavored to as-
sure that fuel-burning equipment installations
would not create frequent nuisances or viola-
tions of the smoke law. The smoke law is ad-
ministered by the District Department of Li-
censes and Inspection.
Recent amendments to the Traffic and Motor
Vehicle Regulations prohibit motor vehicle ex-
haust emissions darker than Ringleman No. 2.
During a required annual inspection of motor
vehicles registered in the District, automobiles
are checked for excessive exhaust smoke, and
vehicles observed to be smoking excessively
can be required to appear at an inspection
station between annual inspections. The ex-
haust control ordinance is administered by the
District Police Department.
Under Reorganization Plan No. 5 of 1952,
the District Department of Public Health was
given the responsibility of supervising com-
munity activities relating to occupational and
environmental health. This responsibility
ranges from city planning to investigation of
nuisances. A comprehensive program for the
control of air pollution under this law has been
developed by the Health Department and is
awaiting implementation.
In Montgomery and Prince Georges Counties,
Maryland, authority for air pollution control is
vested in the county health departments and con-
sists primarily of investigation of complaints,
with assistance from the state Department of
Health when necessary. Neither county has a
smoke abatement program, but both have ordi-
nances and regulations establishing performance
standards for incinerators. In Montgomery
County, open burning of leaves and other com-
bustibles is limited to certain hours of the day.
In Prince Georges County, open burning at
dumps and sanitary land fills is prohibited.
In Arlington County, Virginia, the limited
air pollution activities are administered by the
Department of Inspections. These activities are
directed primarily toward the inspection and
licensing of boilers and incinerators, although
county regulations also limit the times when
leaves and other combustibles may be burned
in the open. Investigation of complaints is the
responsibility of the County Health Department.
Control activities are described as they existed during 1962-1963; since that time several local jurisdictions have enacted new
regulations, increased their staffs, and otherwise strengthened their control efforts.
AIR POLLUTION CONTROL ACTIVITIES
13
-------
In Fairfax County, Virginia, and in the City of
Falls Church, air pollution control activities are
administered by the County Health Department,
with assistance from the state Department of
Health. In Alexandria, Virginia, the local health
department investigates complaints and makes
some limited investigations of specific problems
with assistance from the Virginia Department
of Health. Smoke abatement activities are the
responsibility of the smoke and boiler inspector.
Individual backyard incinerators are permitted
and private open burning of leaves and other
combustibles is allowed, although the burning
of construction and demolition wastes is reg-
ulated by a permit system.
Following a period in June 1959 during which
serious photochemical smog incidents occurred
on four consecutive days, the Metropolitan
Washington Council of Governments, a volun-
tary association, established the Automobile
Nuisance Abatement Committee. The Com-
mittee's task was to supervise the control of
unnecessary noise, smoke, and fumes from
automotive equipment operated within the met-
ropolitan area. To meet the increasing com-
plexity of the air pollution problem, the Regional
Air Pollution Advisory Board has superseded
the original Committee. Working through the
Council of Governments, this Board advises
local officials in the metropolitan area of air
pollution problems and proposes corrective
measures. Since 1961, the Council of Govern-
ments has supported the operation of an area-
wide, eight-station oxidant sampling network.
Figure 1-6 indicates, for each network station,
the proportion of afternoon samples that ex-
ceeded 0.15 ppm oxidant (phenolphthalein meth-
od).* The downtown CAMP station recorded one
of the higher frequencies of such days.
The District Department of Public Health
participates in the National Air Sampling Net-
work (NASN), collecting bi-weekly suspended
particulate samples on glass-fiber filters with
a high-volume sampler. Figure 1-7 presents
the annual suspended particulate concentrations
in Washington, based on NASN data. Levels in
1963 were about typical for the 6 years; levels
in 1962 were the lowest recorded.
*CAMP station
•Counci I of Governments
network station
XX%Pr°P°rtion °f samples
£0.15 ppm oxidant
(phenolphthalein method)
1958 1959 1960 1961 1962 1963
Source: Metropolitan Washington Council of Governments, Reference 13
Figure 1-6. Geographic distribution of high total oxidant levels,
October 1961 to September 1963.
Figure 1-7. Suspended particulate levels (National Air Sampling
Network), 1958-1963.
*Equivalent to 0.07 - .08 ppm oxidant by the potassium iodide method used by CAMP.
14
AIR POLLUTION CONTROL ACTIVITIES
-------
CAMP STATION SITE
The Washington CAMP Station is located on
the southeast corner of the intersection of
First and L Streets, N. W., in a fairly dense,
older residential-commercial area. During
1962 and 1963 First Street, a major traffic
artery, was one-way southbound; 1962 traffic
data indicated that about 8000 vehicles passed
the station on an average weekday, mostly dur-
ing the morning traffic peak of inbound vehicles.
The only distinct point source of pollution in the
immediate vicinity is an elementary school on
the southwest corner of the same intersection;
school heating and waste disposal activities
often produce slight but discernable effects on
the pollutant levels recorded at the station.
In an attempt to identify any larger, more
distant, sources that exert an influence at the
station, the hourly pollutant concentrations oc-
curring with each of the wind directions (in-
cluding calms) were plotted in terms of per-
centage of the annual mean concentration of
each pollutant. The resulting directional pat-
terns for 1963 are presented in Figure 1-8.
Data for several of the pollutants did indeed
indicate some directional effect, with high con-
centrations during hours when the wind was
from certain directions. These effects and
their possible causes are discussed in Part 2.
SULFUR DIOXIDE
CENTER NUMBERS ARE
% OF MEAN
DURING CALMS
NITRIC OXIDE
NITROGEN DIOXIDE
TOTAL HYDROCARBON
CARBON MONOXIDE
Figure 1-6. Directional patterns of pollutant concentrations, 1963
CAMP STATION SITE
15
-------
PART 2:
RESULTS AND DISCUSSION
-------
PART 2: RESULTS AND DISCUSSION
SUMMARY OF RESULTS
Pollutant Levels
During 1962 and 1963 the CAMP station in
Washington collected over 884,000 valid five-
minute measurements* of gaseous air pollutant
concentrations, 2748 two-hour soiling index
values, and 317 twenty-four-hour suspended
particulate samples. Table 2-1 summarizes the
pollutant levels recorded and lists the periods
for which data are available.
Concentrations of the several gaseous pollu-
tants ranged from maximum values 7 to 30 times
the mean levels to minima below the sensiti-
vity of the instruments. As is usual with air
quality data, most of the values recorded were
numerically low; however, significantly high
pollutant levels did occur .t Sulfur dioxide levels
exceeded 0.1 ppm over 15 percent of the time,
averaged over 0.25 ppm for an hour or longer
18 times, and on one occasion averaged 0.36 ppm
for an 8-hour period. Nitric oxide levels
averaged more than 0.25 ppm for an hour or more
51 times, more than 0.50 ppm for anhour or more
10 times, and on one occasion exceeded 1.0ppm.
Nitrogen dioxide concentrations varied far
less widely, reaching a maximum of 0.3 7 ppm but
rarely exceeding 0.10 ppm. Totaloxidant levels
averaged 0.10 ppm or more for an hour or
longer on 29 days during the 2 years and averaged
more than 0.15 ppm for an hour or longer on five
occasions; the maximum hourly mean was 0.22
ppm and the maximum 5-minute value was 0.25
ppm. Since measurements of total oxidant are
subject to a negative interference by sulfur
dioxide, these values are probably underesti-
mates (see Appendix A). The maximum total
hydrocarbon concentration recorded was 20 ppm,
but levels exceeded 5 ppm only about 5 percent
of the time. Carbon monoxide levels exceeded
20 ppm for an hour or longer on 30 occasions
and once averaged over 35 ppm for 8 hours. The
latter incident included 1 hour of values over 40
ppm and a 5-minute maximum of 44 ppm.
Although the higher concentrations constitute
only a small portion of the data, they generally
represent the bulk of the pollutant dosage t to
which the population is exposed'. In addition,
they are usually not evenly distributed within the
data; rather, the highest concentrations, and con-
sequently the greatest portions of the exposure,
tend to occur in a relatively few periods of
sustained higher levels. For example, of the 883
ppm-hours total sulfur dioxide dosage in the 2
years, 402 ppm-hours, or 46 percent, occurred
during winter months. On a shorter time scale,
a similar effect can be seen in the period men-
tioned above (averaging 0.36 ppm for 8 hours),
which occurred on February 6, 1963. Although
the 8 hours represents only 1.2 percent of the
total time during the month, the dosage during
this period amounted to over 4 percent of the
total exposure for the month.
To quantitate this effect in greater detail,
Table 2-2 presents, for one season, the duration
of and the dosage included in those periods when
the sulfur dioxide levels reached or exceeded
0.13 ppm. (This value was selected to coincide
with a comparable analysis for Cincinnati.) Note
that both higher exposures and fewer occur-
rences are associated with the longer events.
These longer events account for a disproportion-
ately large amount of exposure to sulfur dioxide;
the 11 events that lasted 8 hours or longer in-
cluded 41 percent of the dosage in 34 percent of
the total time that sulfur dioxide was over 0.13
ppm.
Pollutant concentrations in Washington are
compared with those recorded at other CAMP
cities in Figure 2-1. The levels were generally
intermediate among those from the six stations,
except for the total oxidant concentrations. The
highest of the oxidant levels in Washington were
among the highest recorded at any of the stations;
these high levels were at least partially due to
particularly low levels of sulfur dioxide in
summer — the interference with oxidant mea-
surements was not so serious (see Appendix A).
*The basic CAMP data on gaseous pollutants are neither precisely instantaneous atmospheric concentrations nor 5-minute average
levels. The measurements represent instantaneous values of the instrument response recorded at 5-minute intervals. Each of these
instantaneous values, however, reflects some degree of sample integration resulting from the characteristics of the instrument systems
(see Appendix A).
tNote also that in terms of mass concentration units, such as /ig/m^, the values would from 700 to 2600 times larger numerically
than the parts per million volume concentration used herein.
t Dosage is defined as the area under the time-concentration curve, in ppm-hours.
SUMMARY OF RESULTS
19
-------
TABLE 2-1
AIR POLLUTANT LEVELSa AT THE WASHINGTON CAMP STATION, 1962-1963
Maximum
5-Minutes 1-Hour 24-Hour
Sulfur
dioxide, ppm 0.56 0.48 0.25
Nitric
oxide, ppm 1.03 0.87 0.26
Nitrogen
dioxide, ppm 0.37 0.30 0.09
Total
oxidant, ppm 0.25 0.22 0.07
Total hydro-
carbon, ppm 20 17 8
Carbon
monoxide, ppm 44 41 23
Soiling index,
COH/1000 ft 7.2(2hr) 4.2
Suspended
particulates , Hg/rrP 305
Arithmetic
Mean
0.051
0.034
0.032
0.012
2.1
6.3
1.49
98
Minimum
< 0.005
<0.005
<0.005
< 0.005
<0.5
<0.5
<0.05
36
Period
of data
1962-63
1962-63
1962-63
1962-63
3/62-12/63
4/62-12/63
1963
1963
Valid
data, %
81
75
81
77
62
57
63
87
aMeasurement methods are discussed in Appendix A.
Oxidant data are not corrected for the interference
caused by simultaneous sulfur dioxide occurrences
(see Appendix A).
TABLE 2-2
DURATION OF AND DOSAGE DURING OCCURRENCES
OF SULFUR DIOXIDE LEVELS EQUAL TO OR
GREATER THAN 0.13 ppm
Dosage,
ppm-hr
0.00-0.09
0.10-0.49
0.50-0.99
1.00-1.99
2.00-3.99
4.00
Total
Duration
5 min
267
0
0
0
0
0
267
10-55 min
169
25
0
0
0
0
194
1^ hr
0
49
8
0
0
0
57
4-8 hr
0
0
6
6
0
0
12
8 hr
0
0
0
5
5
1
11
Total
436
74
14
11
5
1
541
Total dosage 73.66 ppm-hours; total duration 147 hours, 35 minutes.
20
SUMMARY OF RESULTS
-------
1.00
1.00
I I I I I I I I
SULFUR DIOXIDE
II II
TOTAL OXIOANT
(Not CorrACted for SO^ Interference)
_ NITROGEN DIOXIDE
CINCINNATI
SAN FRANCISCO
NEWORLEANS
II I I I I I I I I
30 50 70
i r i i i i i i II
_ CARBON MONOXIDE
r^i^g^
5 10 JO 50 70 10 95
PERCENT OF 5-minute DATA EQUAL TO
OR LESS THAN STATED CONCENTRATION
5 ]Q 30 50 70 90 95
PERCENT OF 5-minute DATA EQUAL TO
OR LESS THAN STATED CONCENTRATION
Figure 2-1. Pollutant levels in six CAMP cities, 1962 - 1963.
SUMMARY OF RESULTS
21
-------
V,ariations in Pollutant Levels
The mean pollutant concentrations in Table
2-1 are of little significance without some know-
ledge of the variations around these levels.
Most of the pollutants measured in Washington
exhibited significant variability, both long-term
seasonal differences and short-term diurnal
fluctuations.
Figure 2-2 presents monthly mean levels of
the gaseous pollutants as percentages of their
respective 2-year mean concentrations.* Levels
of sulfur dioxide and nitric oxide exhibited pro-
nounced long-term seasonal cycles, with concen-
250
200
150
100
50
0
200
150
100
50
0
150
100
50
0
300
200
150
100
50
0
200
150
100
50
0
200
150
100
50
0
1962
NITRIC OXIDE
1963
SULFUR DIOXIDE
"] HALF OR LESS !
OF DATA VALID
ll.l III
JFMAMJ JASOND JFMAMJJ AS
j FMAMJJASONDJFMAMJ JASOND
NITROGEN DIOXIDE
TTTlnnTlTlTlTlTT
JFMAMJJ ASONDJFMAMJJ ASOND
TOTAL OXIDANT
(not corrected for
SO*} interference)
JFMAMJJASONDJFMAMJJ ASOND
TOTAL HYDROCARBON
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0.06
0.04
0.02
0.00
0.04
0.02 .
(
o.oo ;
0.025 i
0.020 i
0.015 ;
0.010
0.005
0.000
JFMAMJJASONDJFMAMJJASOND
JFMAMJJASONDJFMAMJJ ASOND
Figure 2-2. Seasonal variation of gaseous pollutant levels.
trations an order of magnitude higher in autumn
and winter than in summer. Totaloxidantlevels
showed an opposite, but equally obvious, seasonal
pattern, due at least in part to changes in sulfur
dioxide levels and the attendant interference.
Nitrogen dioxide levels were below average
during summer 1962 and above average during
winter 1962-3, but the difference was slight
and was not repeated in 1963. Monthly mean
levels of total hydrocarbon and carbon monoxide
also varied significantly, but with no obvious
seasonal patterns. Total hydrocarbon levels
were consistently well below the 2-year mean
during summer 1962 but not during summer 1963;
carbon monoxide levels exhibited even less
semblance of any pattern. Interpreting the values
for these pollutants is difficult, however, be-
cause the data are relatively sparse.
Levels of each of the pollutants also exhibited
short-term diurnal fluctuations, with variations
ranging as widely as did the seasonal differences.
Figure 2-3 presents the average patterns of
diurnal variation. Each bar represents the
average, over all the days, of the pollutant
concentrations during that hour; these average
concentrations are then normalized as percent-
ages of the 2-year mean. Total oxidant levels
followed an obvious pattern, nearly an order of
magnitude higher in the afternoon than at night;
as with the seasonal differences, some of this
variation was due to changing levels of sulfur
dioxide interference. Although the other pollut-
ants all exhibited patterns with similar shapes —
a morning peak, an afternoon minimum, and an
evening increase followed by an early-morning
low — the magnitudes of the variations differed
among the pollutants.
The extent to which the variations of the
several pollutants tended to occur together is
also of interest; such relationships can be
quantitated with correlation coefficients.t To
indicate the degree of concurrent seasonal varia-
tion, Table 2-3 presents simple correlation
coefficients between monthly mean concentra-
tions of various pairs of the pollutants; total
hydrocarbons and carbon monoxide are omitted
because too few valid monthly averages were
available. The correlation of 0.50 between sulfur
dioxide and nitric oxide indicates that these two
The dashed bars In Figure 2-2 and other figures represent invalid data-months, i.e., months for which less than 16 days of component
data was valid (see Part 3); as such, they should be considered only semi-quantitative. Missing bars indicate no valid data or only a
very few data that are not considered even qualitatively representative of the month.
t The simple correlation coefficient (r) is a measure of the linear dependence between two variables. By mathematical definition, the
correlation coefficient can vary from -1 to+1. Two variables that tend toward linear dependency will have a correlation near -1 or +1,
while independent variables will have a correlation near zero.
22
SUMMARY OF RESULTS
-------
150
100
50
200
150
100
50
100
Z 200
O
I- 150
a 100
£ 50
150
100
50
200
150
100
SULFUR DIOXIDE
12123456 891011121 23 4 5 678 9 10 11
NITRIC OXIDE
iiHIIih.. .ill!
12 123456789 10 II 12 123456789 10 II
NITROGEN DIOXIDE
12I23456789I011I2123456789101I
TOTAL OXIDANT (nol corrected lor SOj interference)
121 2 34 56 7891011121234 56 7 89 10 II
TOTAL HYDROCARBON
12 12 3456789 10 11121 23456789 10 11
. CARBON MONOXIDE
0.10
0.08
0.06
0.04
0.02
0.00
0.08
0.06
0.04
0.02
0.00
0.04
0.02
0.00 z"
O
0.02
III nil III ii nun Hi! II
121 234 56 7891011121 234 5 6 7 89 10 II
AM PM
HOUR BEGINNING:
Figure 2-3. Diurnal variation of gaseous pollutant levels.
tively related to sulfur dioxide and the oxides of
nitrogen in summer.
On the basis of the diurnal variation patterns
in Figure 2-2 one would expect to find stronger
relationships if concentrations of one of the
pollutants were compared with concentrations of
another at a different time, perhaps one to
several hours later.
TABLE 2-3
SIMPLE CORRELATION COEFFICIENTS FOR
MONTHLY MEAN CONCENTRATIONS
Pollutants
SO 2
SO 2
SO 2
NO
NO
NO2
- NO
- NO 2
- Oxidant
- NO 2
- Oxidant
- Oxidant
Coefficient
+0.50
+0.18a
-0.81
+0.24a
-0.67
-0.17a
95% Confidence Limits
+0.15
-0.30
-0.92
-0.18
-0.85
-0.54
- +0.75
- +0.54
- -0.60
- +0.59
- -0.37
- +0.26
aNot significantly different from zero.
TABLE 2-4
SIMPLE CORRELATION COEFFICIENTS FOR
HOURLY MEAN CONCENTRATIONS
pollutants generally followed the same seasonal
pattern, as is apparent in Figure 2-2. Monthly
average total oxidant levels correlated negatively
with both nitric oxide (r = -0.67) and sulfur
dioxide (r = -0.81); this negative relationship
reflects the opposite seasonal pattern shown for
total oxidant in Figure 2-2.
To quantitate the degree to which the diurnal
variations were concurrent, Table 2-4 presents
simple correlation coefficients between hourly
mean concentrations of the several pairs of
pollutants for summer and winter. No confidence
limits are given because each coefficient is
based on several hundred concurrent measure-
ments. All the pairs of pollutants, except those
involving oxidant, exhibited significantly positive
relationships; most of these correlations were
higher in winter than in summer. The hourly
concentrations of total oxidant were generally
uncorrelated with concentrations of any of the
other pollutants during winter, and were nega-
Pollutants
SO 2 - NO
SO 2 - NO 2
SO 2 - Oxidant
SO 2 - Hydrocarbon
SO2 - CO
NO - NO2
NO - Oxidant
NO - Hydrocarbon
NO - CO
NO 2 - Oxidant
NO 2 - Hydrocarbon
N02 - CO
Oxidant - Hydrocarbon
Oxidant - CO
Hydrocarbon - CO
Winter
1962-3
+0.50
+0.18
+0.03a
+0.33
+0.67
+0.55
-0.12a
+0.57
+0.65
0.00a
+0.43
+0.59
-0.13
-0.27
insufficient
data
Summer 1963
+0.37
+0.32
-0.19
+0.19
+0.23
+0.41
-0.39
+0.58
+0.43
-0.22
+0.46
+0.48
-0.10a
-0.12a
+0.31
Not significantly different from zero.
SUMMARY OF RESULTS
23
-------
THE EFFECTS OF ATMOSPHERIC
DILUTION CAPACITY
Both the long-term seasonal differences and
the short-term diurnal fluctuations in concen-
trations of atmospheric pollutants are caused by
variations in the rate at which pollutants are
emitted into the atmosphere and in the capacity
of the atmosphere to dilute and disperse the
pollution. Because dilution capacity affects all
the pollutants in essentially the same manner, it
is discussed separately here before the several
pollutants are discussed individually in more
detail.
The effects of changes in atmospheric dilu-
tion capacity are most apparent in the similarity
of several of the diurnal variation patterns in
Figure 2-3. The best dilution conditions gener-
ally occurred in the afternoon, when the depth of
the unstable mixing layer was greatest and wind
speeds were highest; thus afternoon levels of all
the pollutants but total oxidant were usually
minima. In the evening, when the atmosphere
was generally stable and winds generally lighter,
pollutant emissions were not rapidly dispersed,
and atmospheric concentrations i n c r e a s e d.
These poor dilution conditions continued through
the night, and the decrease in pollutant concen-
trations during the very early morning hours was
primarily due to a decrease in emissions. The
peak levels in the morning after sunrise resulted
partially from the concurrent increase in emis-
sions of most of the pollutants with the start of
the day's activities, and partially from the
morning "fumigations."* The relative signifi-
cance of these two causes varies among the
pollutants, and is discussed later in greater
detail. Total oxidant levels did not follow a
pattern similar to those of the other pollutants
because the oxidant levels in the atmosphere
depend so much upon solar radiation that this
effect overshadows differences caused by other
factors. The seasonal differences in average
pollutant levels caused the magnitude, and to a
certain extent the shape, of the diurnal variation
patterns to change from season to season, as
seen in Figure 2-4.
The general features of the patterns, as
determined by the daily cycles of dilution capa-
city, sunlight, and emission strength, remained
consistent in all seasons.
The long-term seasonal differences in atmos-
pheric dilution capacity of course affected pollut-
ant levels just as did the diurnal fluctuations;
however, the effects cannot be readily discerned
in Figure 2-2 because of the overriding seasonal
variations in emissions. The expected effects
can be partially defined, on a relative basis, by
meteorological variables. The surface wind
speeds and maximum mixing depths during 1962
and 1963 are summarized in Table 2-5; these
summaries indicate that daytime dispersion and
dilution capacity were above-average in 1962
and 1963, particularly in the summer months
(compare with Tables 1-3 and 1-4).
TABLE 2-5
MONTHLY MEAN DILUTION AND
DISPERSION DATA
Month
190 2
Jan
Fcb
March
April
May
June
July
Aug
Scpl
Ocl
Nov
Dec
1903
Jan
Feb
March
April
May
June
July
Aug
Sept
Oct
Nov
Dec
Average surface
wind speed, mph
B.8
7.9
10. 2
8.9
7.5
K.8
7..I
7.5
7.0
7.2
A. 4
8.9
7.7
9.0
8.7
9.9
8.2
7.3
8. 1
8.2
8.9
7.5
9.9
8.6
Horizontal
dispersion
afforded0
Mode ate
Mode ate
Good
Mode ate
Mode ate
Poor
Mode ate
Mode ale
Poor
Mode ale
Mode ate
Mode ale
Mode ate
Mode ate
Mode ate
Mode ate
Mode ale
Mode ale-
Mode ate
Mode ate
Mode ate
Mode ate
Mode ate
Mode ate
Average maximum
depth of mixing
layer, ft
3200
2400
5000
6400
5000
5000
5900
b
4U20
4850
:noo
b
2730
3520
3800
6400
6050
5850
7100
6550
4720
4270
3950
3650
Horizontal
dispersion
afforded3
Moderate
Poor
Excellent
Excellent
Excellent
Excellent
Excellent
b
Good
Good
Moderate
b
Moderate
Moderate
Good
Excellent
Excellent
Excellent
Excellent
Excellent
Good
Good
Good
Moderate
aOn a scale of poor, moderate, good, excellent (Reference 9).
bNot available.
Fumigation results when pollutants emitted aloft from elevated sources accumulate in a low-level inversion layer overnight and are then
brought to ground level briefly when the inversion is dissipated in the morning.
24
ATMOSPHERIC DILUTION CAPACITY
GPO 827-234—3
-------
15.0
10.0
5.0
1 1.0
u
o
u
0.15
0.10
0.05
I II I I I I I I I 1 | I I I I 1
WINTER
I T I I I
CO (Jon-Fob- 1963 only)
TOTAL HYDROCARBON
15.0
10.0
5.0
1.0
0.15
I I
I I I I I | I I I I I
SPRING
CO (April 1962 and May 1963)
TOTAL HYDROCARBON
, TOTAL OXIDANT -
6am J2 6 pm
TIME OF DAY (EST)
12 12
6 am 12 6 pm
TIME OF DAY (EST)
Z
O
15.0
10.0
5.0
1.0
Z 0.15
UJ
O
Z
o
o
0.10
0.05
0.00
I I I I I I I I I I I I I I I I I I I I
SUMMER
TOTAL HYDROCARBON
TOTAL OXIDANT
15.0
I I | I I I I I | I I I I I I I I | I I
AUTUMN
TOTAL HYDROCARBON
12
10.0—
5.0
1.0
0.15
0.10
0.05
0.00
6am 12 6pm 12 12 6am 12 6pm
TIME OF DAY (EST) TIME OF DAY (EST)
Figure 2-4. Diurnal variation patterns by season.
ATMOSPHERIC DILUTION CAPACITY
25
-------
RESULTS-INDIVIDUAL POLLUTANTS
Although the effect of atmospheric dilution
capacity on pollutants levels is generally the
same for all pollutants, most of the other factors
influencing atmospheric pollutant concentra-
tions, particularly the nature of and variations in
sources, affect the several pollutants quite
differently. For this reason, the following de-
tailed discussion of the data considers each
pollutant or group of pollutants separately.
Sulfur Dioxide
Sulfur dioxide pollution in the Washington
area results almost exclusively from the com-
bustion of sulfur-bear ing fossil fuels, parti-
cularly coal and fuel oil. Estimates of emissions
of sulfur dioxide from the several combustion
sources are presented in Figure 2-5.
The majority of these emissions originate
from elevated stacks at the large heating instal-
lations and power plants, most of which are south
of the CAMP station (Figure 1-3). There is no
evidence, however, that emissions from anyone
of these large fuel users unduly influenced sulfur
dioxide levels at the station; in fact, directional
patterns of 1963 hourly concentrations, shown as
percent of seasonal mean concentration (Figure
2-6), indicate that levels were generally higher
with winds from the north and east. This effect
may represent emissions from nearby residen-
tial areas or the industrial area to the northeast;
it may be merely a coincidence, with frequent
northeast winds during the morning peak levels;
or it may indicate that such winds are preferen-
tially associated with unusually cold weather
systems and associated increased fuel use. Note
also in Figure 2-6 that the highest average levels
were associated with calm winds only during the
summer; this effect indicates that the higher
sulfur dioxide levels generally result from emis-
sions brought to the station by the wind, rather
than being associated with poor horizontal dis-
persal of emissions from nearby sources.
Sulfur dioxide sources can be divided into two
general categories depending on the variability
of their emissions throughout the year. In one
category, including electric power generation,
use of fuel in commercial and industrial proces-
ses, and vehicular exhaust, the emissions vary
little from season to season; in the second cate-
gory, the use of fuels for domestic, commercial,
and industrial space heating follows a distinct
seasonal pattern, as do the corresponding emis-
sions. Figure 2-7 presents monthly mean sulfur
dioxide concentrations superimposed on a pattern
MOTOR VEHICLES
REFUSE DISPOSAL
AVERAGE WINTER DAY (403 Tons)
REFUSE DISPOSAL-'!
MOTOR VEHICLES
ELECTRIC POWER
GENERATION
AVERAGE SUMMER DAY (245Tons)
1 Elevated Point Sources
I Low-level Area Sources
Figure 2-5. Estimated sulfur dioxide emissions from various
sources.
of estimated sulfur dioxide emissions. The flat
bar across the bottom of the emission pattern
represents the mean sulfur dioxide level during
the 5 summer months in which concentrations
averaged below 0.01 ppm, and is used as an
approximation of the level produced by the
relatively constant portion of emissions from
electric power generation, industrial, com-
mercial, and vehicular sources. The upper area
of the emission pattern represents the distribu-
tion of monthly average heating demand (assumed
proportional to degree-days, base 65° F) normal-
ized to a scale such that the mean of the emis-
sion pattern coincides with the mean sulfur
dioxide level. The differences between the
26
RESULTS - INDIVIDUAL POLLUTANTS
-------
WINTER
SPRING
SUMMER
AUTUMN
CENTER NUMBERS ARE
% OF MEAN
DURING CALMS
SEASON
WINTER
SPRING
SUMMER
AUTUMN
TOTAL
NUMBER OF VALID HOURS REPRESENTED
N
183
122
87
79
471
NNE
53
74
61
61
249
NE
77
89
83
75
324
ENE
55
81
33
52
221
E
34
77
32
26
169
ESE
24
54
33
22
133
SE
48
62
57
28
195
SSE
52
88
94
79
313
S
368
405
304
213
1290
SSW
105
128
150
124
507
SW
66
95
113
78
352
WSW
55
50
117
90
312
W
78
73
77
48
276
WNW
154
164
109
127
554
NW
265
232
198
114
809
NNW
178
111
114
119
522
CALM
42
28
89
94
253
Figure 2-6. Directional patterns of sulfur dioxide concentrations, 1963.
RESULTS - INDIVIDUAL POLLUTANTS
27
-------
Figure 2-7. Comparison of monthly mean sulfur dioxide concentrations
with estimated emission pattern.
pattern of bars representing atmospheric sulfur
dioxide levels and the pattern of emissions in
the background thus roughly approximate the
influence of variation in the atmospheric dilu-
tion capacity, within the limits of the assumptions
made about emissions. Efforts to relate these
differences to meteorological parameters were
unsuccessful because of a lack of sufficiently
detailed data on vertical temperature gradients.
Figure 2-7 does indicate, however, that with
sulfur dioxide the seasonal changes in emission
rates influenced pollutant levels more signifi-
cantly than did seasonal differences in meteoro-
logical factors.
An attempt to weigh the relative significance
of emission rates versus meteorological factors
with respect to short-term fluctuations in pollu-
ant concentrations can be made by inspecting
diurnal variation patterns, such as the seasonal
patterns in Figure 2-8. These indicate the pre-
viously noted large seasonal differences in
levels; the shapes of the patterns, however, were
all similar, following the general pattern shown
for all the pollutants in Figure 2-3 and 2-4. The
spring and autumn patterns in particular were
strikingly similar, as might be expected during
these transitional seasons. The differences be-
tween afternoon and evening levels were largely
due to the difference in atmospheric dilution
capacity, while the decline in each pattern after
10 p.m. was presumably due to decreasing home
heating and electric power demand.
The causes of the morning peak levels in each
diurnal pattern are of particular interest, since
these levels were generally the highest for the
day; however, the relative significance of morn-
ing increases in source strength and of fumiga-
tions in causing these peaks is not obvious.
Some evidence that both are involved is offered
by Figure 2-9, which presents average patterns
of diurnal variations on weekdays and on Sundays.
The sulfur dioxide pattern on Sundays exhibits
0.15
0.00
12
6 om 12 6 pm
HOUR OF DAY (E5T)
Figure 2-8. Diurnal variation of sulfur dioxide levels by season.
o.io
z
o
0.05
O.OO1
WEEKDAYS (MON-FR'I)
SUNDAYS and HOLIDAYS
I , i , i i I , , . i
12
am 12 6 pm
HOUR OF DAY (EST)
12
Figure 2-9. Diurnal variation of sulfur dioxide levels on week-
days and Sundays.
28
RESULTS - INDIVIDUAL POLLUTANTS
-------
a distinctly lower and flatter peak than the pat-
tern for weekdays. Neither the meteorological
conditions producing the fumigation phenomenon
nor the overnight sulfur dioxide emissions that
contribute to it would be expected to exhibit any
particular variation through the week; the differ-
ences in Figure 2-9 thus indicate some difference
in morning sulfur dioxide emissions, presumably
the lackof space heating in office and commercial
buildings and the lessened electric power de-
mands on Sundays. On the other hand, the typi-
cal morning peak is not completely absent from
the Sunday pattern, an indication that fumiga-
tions are at least partially responsible.
Frequency distributions provide a more sta-
tistically quantitative manner of studying the
variability of pollutant levels. Frequency dis-
tributions* of the 5-minute sulfur dioxide data
by month, season, and year are presented in
Table 2-6, and the 2-year distribution is plotted
with the high and low seasons and the high and
low months in Figure 2-10. The seasonal differ-
ence in sulfur dioxide levels is quantitated
dramatically in Figure 2-10; in the winter of
1962-1963, nearly 90 percent of the 5-minute
values equalled or exceeded 0.05 ppm, a value
exceeded by only 6 percent of the summer 1963
data. The near-identity of the curves for the
highest month and highest season reflects the
relative uniformity of pollutant levels during the
winter.
Table 2-6 also includes frequency distribu-
tions of sulfur dioxide concentrations averaged
over various periods longer than 5 minutes.
There is no difference among these distributions
(except for the several maxima) until the
averaging time exceeds 1 hour. The fact that
the 5-minute and 10-minute distributions are
identical reflects only the 10-minute averaging
time of the instrument (see Appendix A); the
identity of the 5-minute and 1-hour distributions,
however, indicates that sulfur dioxide levels in
Washington do not generally fluctuate widely
within a short time interval, but vary gradually
over periods of several hours.
The highest hourly average (0.48 ppm) was
nearly as high as the maximum 5-minute value
(0.56 ppm), but about twice the highest daily
mean (0.25 ppm). These maxima were all re-
corded during the morning and early afternoon of
February 6, 1963 (see Table 3-15). These un-
usually high levels appear to have resulted from
U
z
o
U
1.00
0.80
0.60
0.40
0.30
0.20
0.10
0.08
0.06
0.04
0.03
0.02
0.01
0.005
F I T
"i i—i—i—i—i—i 1—i—q
J I
I I I I I I
5 10 20 30 40 50 60 70 80 90 95 99
PERCENT OF DATA EQUAL TO OR LESS THAN
STATED CONCENTRATION
Figure 2-10. Frequency distributions of 5-minute sulfur dioxide
data.
a combination of increased emissions from space
heating (the temperature averaged 35°F from
3 p.m. on February 5th through 3 p.m. on the 6th)
and severely limited atmospheric dilution capa-
city (wind speeds on the 6th averaged only 2.9
mph and the 7 a.m. sounding indicated a tem-
perature inversion that limited mixing to the
lowest 200 to 300 feet of the atmosphere). The
presumably high emissions of sulfur dioxide into
such a limited volume of air were no doubt
responsible for the record peak. These condi-
tions were associated with low-pressure weather
systems moving past the Washington area from
the south, and with a weak high-pressure system
to the north, producing light northerly winds.
Weather Bureau observers reported smoke and
haze throughout most of the day.
The interpretation of frequency distributions and their application to CAMP data are discussed in Appendix A.
RESULTS - INDIVIDUAL POLLUTANTS
29
-------
TABLE 2-6
FREQUENCY DISTRIBUTIONS OF SULFUR DIOXIDE DATA
Jan 19(52
Feb 1962
Mar 1962
Apr 1962
May 1902
Jim 1902
Jul 1962
Aug 1962
Sep 1962
Oct 1962
Nov 1962
Dec 1962
Year 1962
Jan 1962
Feb 1962
Mar 1962
Apr 1962
May 1962
Jun 1962
Jul 1962
Aug 1962
Sep 1962
Oct 1962
Nov 1962
Dec 1962
Year 1963
Two years
1962-1963
Spring 1962
Slimmer 1962
Autumn 1962
Winter 1962 1963
Spring 1963
Summer 1963
Autumn 1963
Avg'g
time
5 min
5 min
5 min
5 min
5 min
10 min
30 min
1 hr
4 hr
12 hr
24 hr
5 min
Percent
of data
valid
87.2
73.5
88.6
91.0
76.8
79.2
62.6
90.0
91.9
94.7
87.4
64.7
82.3
90.3
97.0
97 . 9
77. 7
87 . :'j
96.9
94.6
47.0
26.3
84.3
84.4
68.2
79.3
80.8
85.4
77.2
91.4
83.7
87.7
79.3
65.2
Concentration, ppm
Min
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.00
0.01
0.01
0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
Frequency distribution. %
10 30 50 70 90 92 94 96 98
0.05 0.07 0.09 0.11 0.15 0.15 0.16 0.17 0.20
0.05 0.07 0.10 0.13 0.17 0.18 0.19 0.20 0.22
0.02 0.04 0.05 0.07 0.11 0.12 0.13 0.14 0.16
0.01 0.02 0.04 0.05 0.07 0.08 0.09 0.10 0.12
0.00 0.00 0.01 0.01 0.03 0.03 0.04 0.04 0.05
0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.03 0.04
0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.03 0.04
0.01 0.03 0.03 0.04 0.05 0.06 0.06 0.07 0.08
0.02 0.03 0.04 0.05 0.07 0.07 0.08 0.09 0.10
0.04 0.05 0.07 0.08 0.11 0.11 0.12 0.13 0.15
0.04 0.07 0.09 0.11 0.16 0.17 0.18 0.20 0.23
0.04 0.06 0.08 0.11 0.15 0.16 0.17 0.19 0.22
0.00 0.02 0.04 0.07 0.12 0.13 0.14 0.15 0.18
0.05 0.07 0.09 0.12 0.17 0.18 0.19 0.20 0.24
0.05 0.07 0.09 0.11 0.19 0.20 0.22 0.25 0.30
0.04 0.06 0.07 0.09 0.14 0.15 0.16 0.18 0.20
0.03 0.04 0.05 0.06 0.09 0.09 0. 10 0.11 0.12
0.00 0.01 0.02 0.03 0.06 0.07 0.03 0.10 0.14
0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04
0.00 0.01 0.01 0.03 0.05 0.06 0.06 0.07 0.08
0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.05
0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.03
0.00 0.01 0.01 0.02 0.05 0.06 0.07 0.08 0.10
0.00 0.01 0.02 0.03 0.04 0.04 0.05 0.06 0.08
0.00 0.01 0.02 0.06 0.15 0.16 0.18 0.20 0.23
0.00 0.01 0.03 0.06 0.11 0.12 0.14 0.16 0.19
0.00 0.02 0.04 0.07 0.12 0.13 0.14 0.16 0.19
0.00 0.02 0.04 0.07 0.12 0.13 0.14 0.16 0.19
0.00 0.02 0.04 0.07 0.12 0.13 0.14 0.15 0.19
0.00 0.02 0.04 0.07 0.12 0.13 0.14 0.15 0.19
0.00 0.02 0.04 0.07 0.11 0.12 0.13 0.15 0.17
0.00 0.02 0.04 0.07 0.11 0.12 0.13 0.14 0.16
0.00 0.02 0.04 0.07 0.11 0.12 0.12 0.13 0.15
0.00 0.01 0.03 0.05 0.08 0.09 0.10 0.11 0.14
0.00 0.01 0.01 0.03 0.04 0.05 0.05 0.06 0.06
0.03 0.04 0.06 0.08 0.12 0.13 0.14 0.16 0.19
0.05 0.07 0.09 0.12 0.17 0.18 0.19 0.22 0.26
0.01 0.03 0.05 0.07 0.11 0.12 0.13 0.15 0.17
0.00 0.00 0.01 0.01 0.04 0.04 0.05 0.06 0.07
0.00 0.01 0.01 0.02 0.04 0.05 0.05 0.07 0.09
Ma.\
0.39
0.35
0.29
0.25
0. 15
0. 11
0. 11
0.30
0.33
0.25
0.42
0.56
0.56
0.40
0.56
0 . 38
0.26
0.45
0. 15
0.20
0. 13
0.08
0.31
0. 10
0.50
0.56
0.56
0. 56
0.52
0.48
0.41
0.28
0.25
0.29
0.30
0.42
0.56
0.45
0.20
0.31
Arith
mean
0.093
0. 101
0 . 060
0.041
6.014
0.008
0.008
0.035
0.040
0.071
0.095
0.090
0.055
0. 104
0. 106
0.083
0.053
0.028
0.008
0.021
a
a
0.022
0.021
0.052
0 . 04 6
0.051
0.040
0.019
0.068
0. 101
0.056
0.013
0.019
aMean not comouted because of insufficient valid data.
30
RESULTS - INDIVIDUAL POLLUTANTS
-------
Oxides of Nitrogen
Nitric oxide and nitrogen dioxide are produced
by any high-temperature combustion process in
which air is an oxygen source. Such processes
include the combustion of petroleum fuels for
transportation and of fuels for space heating or
for industrial and commercial purposes. Be-
cause of the heavy traffic density and minimal
industrial activity, vehicular emissions are the
major source of oxides of nitrogen in Washington
(see Figure 2-11).
The directional patterns of nitric oxide con-
centrations for 1963, Figure 2-12, indicate high-
est levels from the northeast in winter, similar
to the slight effect seen in sulfur dioxide levels,
and from the west southwest predominantly in
other seasons. It is not apparent whether these
AVERAGE WINTER DAY (254 Tons)
ELECTRIC
POWER
GENERATION
AVERAGE SUMMER DAY (198 Tons)
j Elevated Point Sources
[y::^:;::x';j Low-level Area Sources
Figure 2-11. Estimated oxides of nitrogen emissions from
various sources.
effects were due to particular concentrations of
pollutant sources in these directions, or to
generally lighter winds from these directions.
The highest nitric oxide levels were recorded
during hours of calm and result from the accumu-
lation of low-level, disperse emissions from
vehicles during periods of poor horizontal dilu-
tion. Distinctly higher levels also were recorded
with autumn winds from the north and north-
northwest; these were the result of northerly
winds during a period of high nitric oxide con-
centrations occasioned by an atmospheric stag-
nation in October 1963. The directional patterns
of nitrogen dioxide in Figure 2-13 indicate no
distinct and consistent effects.
An estimated emission pattern for oxides of
nitrogen, constructed in a manner similar to
that for sulfur dioxide, is presented in Figure
2-14; the bars represent the sums of the monthly
mean nitric oxide and nitrogen dioxide concen-
trations actually recorded. The estimated emis-
sion pattern in the background represents con-
centrations resulting from electric power de-
mand and vehicular fuel consumption, which vary
only slightly throughout the year, and from heat-
ing fuel consumption, which of course follows a
seasonal pattern. The atmospheric levels gen-
erally followed the emission pattern; the differ-
ences, presumed to represent the variation in
atmospheric dilution, are similar to those for
sulfur dioxide (Figure 2-7).
In additon to changes in atmospheric dilution
and source strength, ambient levels of the oxides
of nitrogen also depend upon a chemical equili-
brium in the atmosphere, which involves a com-
plex series of chemical reactions between the
oxides of nitrogen and hydrocarbons photolyzed
by solar radiation. The effect of these photo-
chemical reactions is a net conversion of NO
into NO£ and the formation of reaction products
such as ozone and oxygenated organics, which
typify "photochemical smog." This role of the
oxides of nitrogen is of particular interest.
Were it not for this photochemical conversion
of NO into NO2, levels of each of the oxides
would be expected to show a pattern of seasonal
variation similar to that of total nitrogen oxides
in Figure 2-14. Instead, nitric oxide levels ex-
hibited a seasonal pattern more accentuated than
that of total oxides of nitrogen, with values rang-
ing nearly an order of magnitude from summer to
winter; monthly nitrogen dioxide concentrations,
conversely, exhibited no consistent seasonal pat-
tern and were much less variable than the total,
ranging only about 25 percent above and below
the 2-year mean (Figure 2-15). This difference
RESULTS - INDIVIDUAL POLLUTANTS
31
-------
WINTER
SPRING
AUTUMN
CENTER NUMBERS ARE
% OF MEAN
DURING CALMS
SEASON
WINTER
SPRING
SUMMER
AUTUMN
TOTAL
NUMBER OF VALID HOURS REPRESENTED
N
122
116
76
145
459
NNE
40
59
69
129
297
NE
53
82
80
146
361
ENE
35
72
30
66
203
E
28
73
28
33
162
ESE
19
47
35
31
132
SE
43
59
54
32
188
SSE
38
76
66
97
277
S
28!
381
247
272
1181
SSW
77
128
121
181
507
SW
67
93
95
120
375
WSW
50
51
83
109
293
W
59
70
59
66
254
WNW
114
156
83
124
481
NW
199
236
139
124
698
NNW
147
118
89
160
514
CALM
28
25
84
123
260
Figure 2-12. Directional patterns of nitric oxide concentrations, 1963.
32
RESULTS - INDIVIDUAL POLLUTANTS
-------
WINTER
SPRING
SUMMER
AUTUMN
CENTER NUMBERS ARE
% OF MEAN
DURING CALMS
SEASON
WINTER
SPRING
SUMMER
AUTUMN
TOTAL
NUMBER OF VALID HOURS REPRESENTED
N
163
109
86
143
501
NNE
51
63
64
136
314
NE
67
85
77
143
372
ENE
50
72
32
66
220
E
30
72
30
31
163
ESE
19
43
35
27
124
SE
42
51
51
27
171
SSE
47
77
96
92
312
S
316
375
283
254
1228
SSW
87
126
143
175
531
SW
70
92
121
117
400
WSW
63
48
111
110
332
W
78
70
73
65
288
WNW
166
162
97
138
563
NW
273
235
188
136
832
NNW
193
108
110
153
564
CALM
27
24
97
113
261
Figure 2-13. Directional patterns of nitrogen dioxide concentrations, 1963.
RESULTS - INDIVIDUAL POLLUTANTS
33
-------
JAN FEB MAR APR MAY JUNE JULY AUGSEPT OCT NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC
1962 1963
Figure 2-14. Comparison of monthly mean oxides of nitrogen con-
centrations with estimated emission pattern.
[__J LESS THAN 16 DAYS OF DATA VALID
1
-
|— 1
-
nnnn
~~
JIT
RIC OXID
*• — i
E
~~
On
OnnO
1 — -
-
-
J FMAMJJASOHDJFMAMJJA.SOND
NITROGEN DIOXIDE
JFMAMJJASONDJFMAMJJASOND
1962 1963
Figure 2-15. Monthly mean concentrations of nitric oxide and nitrogen dioxide.
34
RESULTS - INDIVIDUAL POLLUTANTS
-------
in patterns resulted from increased photo-
chemical conversion of NO into NO.2 in the more
sunny months, when emissions of both oxides
were lowest; the conversion subtracted from the
already low nitric oxide levels and added to the
minimum nitrogen dioxide levels.
This seasonally varying difference between
levels of the two oxides of nitrogen is seen also
in Figure 2-16, which compares their average
monthly diurnal variation patterns (values for
January 1962 and January 1963 are averaged to-
gether, and so on for each monthly pattern).
Most of the diurnal patterns in Figure 2-16
reflect the typical diurnal cycle of afternoon
minima, higher nocturnal levels, and morning
peaks. The interactions of emission rate, at-
mospheric dilution capacity, and NO-NOz con-
version rate introduced seasonal modifications
of these features and, in the winter nitrogen
dioxide patterns, eliminated them completely.
Maximum dilution in the atmosphere and
maximum photochemical conversion into nitro-
gen dioxide produced consistent afternoon
minima in the nitric oxide curves, just as the
same factors produced low summer levels in the
seasonal pattern. These minima ranged from
over 0.04 ppm in February to less than 0.005
ppm in the summer months, following the season-
al changes in solar radiation intensity. The
afternoon nitrogen dioxide levels reflected the
influence of sunlight as a balance between the
formation of NC>2 from NO and the further photo-
chemical formation of other nitrogen-containing
reaction products. In winter, with minimal solar
radiation and afternoon mixing, the high morning
concentrations of nitric oxide were converted
slowly to nitrogen dioxide, which accumulated
sufficiently to produce higher levels in the after-
noon than overnight. In summer, with greatly in-
creased solar radiation, the formation of NO2
from NO was rapid enough to produce a distinct
morning peak similar to but later than the nitric
oxide peak; good atmospheric dilution and further
photochemical conversion then produced distinct
afternoon minima in the patterns.
The evening and nocturnal portions of the
diurnal patterns in Figure 2-16 exhibit the effects
of evening rush-hour traffic and decreasing at-
mospheric dilution, with the attendant concentra-
tion of oxides of nitrogen emissions. During the
winter months, nocturnal radiation inversions
had frequently formed by the time of the peak
evening traffic emissions, and photochemical
activity had generally ceased, permitting nitric
oxide to accumulate rapidly to produce distinct
peaks from 5 to 7 p.m. in the winter patterns. In
summer, the period of insolation was prolonged
and the city changed to Daylight Saving Time, in
effect shifting the evening traffic peak 1 hour
earlier, so that the peak emissions occurred at
a time when the photochemical conversion rate
was still high. Consequently, the June, July, and
August patterns exhibit peaks in the nitrogen
dioxide curves at 4 to 5 p.m. (EST) and the ex-
pected nocturnal increase in nitric oxide levels
does not occur until late in the evening. During
autumn the increasingly early formation of poor
dilution conditions favored an increase in evening
levels of both of the oxides of nitrogen by in-
hibiting the dissipation of emissions from the
evening rush-hour traffic, and the decreasing
level of solar radiation caused more of the
rush-hour emissions to be accumulated in the
form of nitric oxide. Thus by November, the
patterns indicate both oxides of nitrogen in-
creasing at 4 to 5 p.m., but only nitric oxide
being accumulated overnight.
The most distinct feature of the oxides of
nitrogen patterns in Figure 2-16 is the peak
levels in the morning. Because the largest por-
tion of oxides of nitrogen emissions in Washing-
ton are from motor vehicles — a disperse, low-
level type of source — very little of the morning
peak levels can be attributed to fumigation
effects; note the nearly complete elimination of
the morning peak concentrations on Sundays and
holidays in Figure 2-17. Rather, the morning
oxides of nitrogen maxima are the direct result
of the emissions from morning rush-hour traffic,
although the magnitude of the peaks and the time
of their occurrence are also affected by the rate
of dispersion of the vehicular emissions in the
atmosphere and by the rate of photochemical
activity. The patterns in Figure 2-16 for the
winter months exhibit high, broad nitric oxide
peaks, since both the rate of atmospheric dilution
and the rate of photochemical conversion to
nitrogen dioxide are relatively low in the morn-
ing. During the summer the dilution capacity of
the atmosphere and the rate of photochemical
activity are much greater, and both of these
factors are active in reducing the atmospheric
nitric oxide levels during the time when the rate
of emissions from vehicular traffic is increasing
rapidly. As a result the nitric oxide patterns for
the summer months in Figure 2-16 exhibit much
lower and more sharply defined morning peaks
than are seen in the winter patterns. Note also
the earlier occurrence of the peaks in the
warmer months. This is partially due to the in-
creasingly early ventilation and photochemical
activity, but also reflects the shift of human
activity in the city to Daylight Saving Time in the
summer. The change in local time has the effect
RESULTS - INDIVIDUAL POLLUTANTS
35
-------
0.10
0.00
0.05 ~
0.00
0.05 —
0.00
0.10
0.00
1111 I I
6li 12 Spa
HOUR OF DAY (EST)
6"" HOUR OF DAY (EST)
Figure 2-16. Diurnal variation of oxides of nitrogen levels by month.
36
RESULTS - INDIVIDUAL POLLUTANTS
-------
z
<
400
12 6» 12 60. 12
HOUR OF OAY (EST)
Figure 2-11. Diurnal variation of nitric oxide levels on weekdays
and Sundays.
of shifting the rush-hour traffic peak 1 hour
earlier with respect to the time scale in Figure
2-16, since the CAMP station continues reporting
data on Eastern Standard Time. The effect is
seen clearly in a comparison of the April and
May patterns and of the October and November
patterns of Figure 2-16. In both cases the morn-
ing nitric oxide peaks exhibit a distinct 1-hour
shift, not only in the time of the peak concentra-
tions, but also in the time of the initial upward
inflection at the beginning of the peak.
The shape of the morning peaks in the nitrogen
dioxide patterns in Figure 2-16 also changes con-
siderably from month to month. In the winter
months, when the level of solar radiation is low,
the photochemical conversion of NO into NO2 is
quite slow; hence the nitrogen dioxide patterns
exhibit a slow rise through the morning to maxima
in the afternoon. In the summer, when conversion
is much more rapid, the nitrogen dioxide levels
rise quite rapidly following the nitric oxide peak,
and then decrease as ventilation increases and
as further photochemical reactions consume
nitrogen dioxide in the formation of oxidants.
Thus the patterns for the warmer months exhibit
a distinct morning peak in nitrogen dioxide con-
centrations, lagging about an hour after the nitric
oxide peak and exceeding it in magnitude during
the sunniest months.
Since the diurnal variation patterns in Figure
2-16, as well as others in this volume, are
compiled from average hourly pollutant concen-
trations, definition of the time of occurrence of
the peaks is not precise. Figure 2-18 illustrates
the morning-peak portions of diurnal variation
patterns compiled from 15-minute average nitric
oxide concentrations; the patterns are for the
5 weekdays immediately before and after the
change from Daylight Saving to Standard Time in
October (1962 and 1963 are averaged together).
The times of the peaks are more precisely
u.
O
l-
z
111
u
o:
200
DAYLIGHT SAVINGS TIME
TANDARD TIME
8 om
STANDARD TIME
10
Figure 2-18. Portions of diurnal variation patterns of nitric oxide
levelduringehange from dayllgntsavlng to standard
time, autumn.
defined in this manner, and the 1-hour shift in
human activity with respect to Standard Time
results in a distinct 1-hour shift in the time of
the peak concentrations. Figure 2-18 is taken
from a more thorough discussion of morning
peak concentrations, their time of occurrence,
and their relation to meteorology and emis-
sions.
14
Frequency distributions of oxides of nitrogen
concentrations are compiled in Tables 2-7 and
2-8 and are presented graphically in Figure 2-19.
The distributions for averaging times longer than
5 minutes show little difference except for the
several maxima; even the maxima changed
significantly only for averaging times exceeding
1 hour. This similarity may be due in part to
sample averaging in the instrumentation systems
(See Appendix A), but also reflects the fact that
concentrations of the oxides of nitrogen generally
do not vary rapidly.
The differences between the two families of
curves in Figure 2-19 illustrate the difference
in overall variability between the two oxides of
nitrogen. Nitrogen dioxide varied less, both
seasonally and diurnally. The curves are more
closely spaced and have a much lower slope.
The inflections at the upper ends of the curves
for October 1963 result from a lengthy atmos-
pheric stagnation during that month; the stagna-
tion was also responsible for the exaggerated
diurnal variability in the October curve of Fig-
ure 2-16.
The highest daily average concentration of
nitric oxide also occurred in October 1963
(0.26 ppm on the 18th) during the period of
atmospheric stagnation. The shorter-term
maxima, however, occurred on December 26-27,
1963, during an overnight radiation inversion
(see Table 3-49).
RESULTS - INDIVIDUAL POLLUTANTS
37
-------
TABLE 2-7
FREQUENCY DISTRIBUTIONS OF NITRIC OXIDE DATA
Jan 1962
Feb 1902
Mar I9(i2
Apr 1962
May 1962
Jun 1962
Jul 1962
Aug 1902
Sep 1962
Oct 1962
Nov 1962
Dec 1962
Year 1962
Jan 1903
Feb 1963
Mar 1903
Apr 1963
May 1903
Jun 1963
Jul 1963
Aug 1963
Sep 1963
Oct 1963
Nov 1963
Dec 1903
Year 1903
Two years
1962-1903
Spring 1962
Summer 1902
Autumn 1902
Winter 1962 1963
Spring 1963
Summer 1963
Autumn 1903
Avg'g
time
5 min
5 min
5 min
5 min
5 min
10 min
30 min
1 hr
4 hr
12 hr
24 hr
5 min
Percent
of data
valid
74.8
52.9
77.5
90.6
87.2
86.5
91.8
74.3
92.8
90.9
78.8
0.0
74.8
50.0
72.9
80.7
86.2
80.7
72.3
54.7
67.7
93.9
91.2
82.9
72.0
75.4
75.0
85.0
84.2
87.5
39.9
82.5
64.8
89.4
Concentration, ppm
Min
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Frequency distribution, 9c
10 30 50 70 90 92 94 96 98
0.00 0.02 0.03 0.04 O.OS 0.09 0. 11 0.15 0.20
0.00 0.02 0.03 0.05 0.09 0.11 0.12 0.14 0.17
0.00 0.01 0.02 0.03 0.06 0.07 0.08 0.09 0.11
0.00 0.01 0.01 0.02 0.07 0.09 0.10 0.12 0.17
0.00 0.00 0.01 0.02 0.04 0.04 0.05 0.00 0.08
0.00 0.00 0.01 0.01 0.03 0.03 0.04 0.05 0.06
0.00 0.00 0.01 0.01 0.03 0.04 0.04 0.05 0.07
0.00 0.00 0.01 0.01 0.03 0.04 0.04 0.05 0.11
0.00 0.01 0.01 0.03 0.10 0.12 0.16 0.23 0.32
0.00 0.01 0.02 0.05 0.12 0.14 0.15 0.19 0.27
0.01 0.03 0.04 0.07 0.13 0.15 0.18 0.23 0.33
no valid data
0.00 0.01 0.01 0.03 0.07 0.08 0.10 0.13 0.19
0.01 0.02 0.04 0.00 0.10 0.11 0.12 0.13 0.10
0.01 0.02 0.04 0.08 0. 16 0.18 0.20 0.24 0.28
0.00 0.01 0.02 0.04 0.09 0.11 0.14 0.17 0.22
0.00 0.00 0.01 0.02 0.05 0.06 0.08 0.11 0.20
0.00 0.00 0.01 0.02 0.05 0.06 0.07 0.09 0.12
0.00 0.00 0.01 0.02 0.06 0.07 0.08 0.09 0.11
0.00 0.00 0.01 0.01 0.04 0.04 0.05 0.07 0.09
0.00 0.00 0.01 0.01 0.03 0.04 0.06 0.07 0.09
0.00 0.00 0.01 0.02 0.06 0.07 0.10 0.13 0.16
0.00 0.01 0.03 0.07 0.27 0.31 0.35 0.41 0.48
0.00 0.01 0.03 0.06 0.16 0.19 0.23 0.28 0.37
0.00 0.02 0.04 0.06 0.12 0.13 0.15 0.18 0.24
0.00 0.01 0.02 0.03 0.10 0.12 0.14 0.18 0.27
0.00 0.01 0.01 0.03 0.08 0.10 0.12 0. 10 0.23
0.00 0.01 0.02 0.03 0.09 0.10 0.12 0.10 0.24
0.00 0.01 0.01 0.03 0.08 0.10 0.12 0.10 0.24
0.00 0.01 0.01 0.03 0.08 0.10 0.12 0.15 0.23
0.00 0.01 0.02 0.03 0.08 0.09 0. 11 0.15 0.21
0.00 0.01 0.02 0.04 0.08 0.09 0.11 0.14 0.19
0.00 0.01 0.02 0.04 0.08 0.09 0.10 0.14 0.17
0.00 0.01 0.01 0.02 0.06 0.06 0.08 0.09 0.12
0.00 0.00 0.01 0.01 0.03 0.04 0.04 0.05 0.07
0.00 0.01 0.02 0.05 0.12 0.14 0.16 0.22 0.30
0.01 0.02 0.04 0.07 0.13 0.14 0.10 0.20 0.20
0.00 0.01 0.01 0.02 0.06 0.08 0.10 0.13 0.19
0.00 0.00 0.01 0.01 0.05 0.05 0.07 0.08 0.10
0.00 0.01 0.02 0.04 0.15 0.19 0.24 0.30 0.40
Max
0.4-1
0.20
0. 19
0.40
0.20
0. 15
0.21
0.31
0.51
0.44
0.08
O.G8
0.38
0.07
0.52
0.58
0.29
0.33
0. 19
0.24
0.37
0.73
0.72
1.03
1.03
1.03
1.03
0.94
0.87
0.54
0.38
0.20
0.40
0.31
0.68
0.67
0.58
0.33
0.73
Mean
0.042
a
0.025
0.028
0.014
0.010
0.013
0.013
0.03S
0.045
0.005
0.029
a
0 . 008
0.038
0.025
0.018
0.022
0.013
0.011
0.021
0.081
0.000
0.050
0.038
0.034
0.022
0.012
0.048
a
0.027
0.016
0.054
aMean not computed because of insufficient valid data.
38
RESULTS - INDIVIDUAL POLLUTANTS
-------
TABLE 2-8
FREQUENCY DISTRIBUTIONS OF NITROGEN DIOXIDE DATA
Jan 1962
Feb 1962
Mar 1962
Apr 1962
May 1962
Jun 1962
Jul 1962
Aug 1962
Sep 1962
Oct 1962
Nov 1962
Dec 1962
Year 1962
Jan 1962
Feb 1962
Mar 1962
Apr 1962
May 1962
Jun 1962
Jul 1962
Aug 1962
Sep 1962
Oct 1962
Nov 1962
Dec 1962
Year 1963
Two years
1962-19G3
Spring 1962
Summer 1962
Autumn 1962
Winter 1962 1963
Spring 1963
Summer 1963
Autumn 1963
Avg'g
time
5 min
5 min
5 min
5 min
5 min
10 min
30 min
I hr
4 hr
12 hr
24 hr
5 min
Percent
of data
valid
79.8
86.2
81.8
89.8
83.5
89.3
85.8
76.9
91.6
89.9
71.6
50.7
81.3
79.3
84.5
86.0
84.7
73.2
83.7
84.8
60.9
81.5
92.7
89.2
76.8
81.4
81.4
85.0
83.9
84.5
71.1
81.3
76.4
87.9
Concentration, ppm
Min
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
Frequency distribution, %
10 30 50 70 90 92 94 96 98
0.01 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06
0.01 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06
0.02 0.03 0.04 0.04 0.06 0.06 0.06 0.07 0.07
0.00 0.02 0 03 0.04 0.05 0.05 0.06 0.06 0.07
0.00 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.06
0.00 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.06
0.00 0.02 0.03 0.03 0.05 0.05 0.06 0.07 0.08
0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.08
0.01 0.02 0.03 0.04 0.06 0.06 0.06 0.07 0.08
0.02 0.03 0.04 0.05 0.06 0.07 0.07 0.07 0.08
0.01 0.02 0.03 0.04 0.06 0.06 0.07 0.07 0.08
0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.06 0.06
0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.07
0.01 0.02 0.03 0.04 0.06 0.06 0.07 0.08 0.10
0.02 0.03 0.03 0.04 0.05 0.06 0.06 0.07 0.09
0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.09
0.02 0.02 0.03 0.04 0.06 0.06 0.06 0.07 0.08
0.00 0.02 0.02 0.03 0.05 0.05 0.06 0.06 0.07
0.01 0.02 0.03 0.04 0.06 0.07 0.07 0.08 0.10
0.01 0.02 0.03 0.04 0.06 0.06 0.06 0.07 0.08
0.02 0.03 0.04 0.05 0.07 0.07 0.08 0.08 0.09
0.01 0.02 0.03 0.04 0.06 0.06 0.07 0.07 0.08
0.01 0.02 0.04 0.05 0.09 0.09 0.10 0.11 0.12
0.01 0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.06
0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.06
0.01 0.02 0.03 0.04 0.06 0.06 0.07 0.08 0.09
0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08
0.01 0.02 0.03 0.04 0.06 0.06 0.06 0.07 0.08
0.01 0.02 0.03 0.04 0.06 0.06 0.06 0.07 0.08
0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08
0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08
0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.07
0.02 0.03 0.03 0.04 0.05 0.05 0.05 0.06 0.07
0.01 0.02 0.03 0.04 0.05 0.05 0.06 0.06 0.07
0.00 0.02 0.02 0.03 0.05 0.05 0.05 0.06 0.07
0.01 0.02 0.03 0.04 0.06 0.06 0.07 0.07 0.08
0.02 0.02 0.03 0.04 0.06 0.06 0.06 0.07 0.09
0.01 0.02 0.03 0.04 0.06 0.06 0.06 0.07 0.08
0.01 0.02 0.03 0.04 0.06 0.07 0.07 0.08 0.09
0.01 0.02 0.03 0.04 0.06 0.07 0.08 0.09 0.10
Max
0.20
0.08
0.10
0.09
0.09
0. 17
0.16
0.17
0.37
0. 19
0.14
0. 12
0.37
0.19
0. 13
0. 15
0. 12
0.12
0.24
0.23
0.22
0.17
0.24
0.12
0.13
0.24
0.37
0.37
0.34
0.30
0. 14
0. 10
0.09
0. 10
0.17
0.37
0.19
0.15
0.24
0.24
Arith
mean
0.028
0.028
0.037
0.029
0.025
0.025
0.027
0.030
0.031
0.038
0.034
0.033
0.030
0.035
0.035
0.039
0.033
0.027
0.036
0.034
0.040
0.031
0.043
0.028
0.032
0.034
0.032
0.030
0.027
0.034
0.034
0.033
0.036
0.034
RESULTS - INDIVIDUAL POLLUTANTS
39
-------
1.00
0.80-
0.60
0.40
0.20
£ 0.08-
z" 0.06
O
< 0.04
o:
- I
0.0:
0.01
0.005
95 78
I I I I I I
NITROGEN DIOXIDE
I \ -
LjWO YEARS
I I
I
I I I I I I
I
I
20 30 40 50 60 70 80 90 95 98
PERCENT OF DATA EQUAL TO OR LESS THAN STATED CONCENTRATION
Figure 2-19. Frequency distribution!
Total Oxidant
As generally used, the term total oxidant
includes all constituents of the atmosphere that
are capable of exerting an oxidizing effect. Oxi-
dizing substances are rarely emitted as such
from pollution sources, but are generally formed
in the atmosphere by photochemical reactions.
Some of the total oxidant found in the lower
atmosphere consists of ozone formed from
oxygen at high altitudes by high-energy solar
radiation and brought to lower levels by air
currents. The remainder of the total oxidant
consists of ozone and a wide variety of other
oxidants formed in the lower atmosphere by
reactions of man-injected pollutants, primarily
oxides of nitrogen and hydrocarbons.
The substances produced in the lower atmos-
phere are the oxidants of primary interest in
air pollution; they have been implicated as the
cause of the adverse effects associated with
photochemical smog, and are, at any rate, a
measure of the smog-producing reactions. Thus
the oxidant levels of significance are those of
the daylight hours, and the use of averaged values
dilutes the value of total oxidant as a smog indi-
of 5-minute oxides of nitrogen data.
cator by including data for the nocturnal hours.
That is, an average of the oxidant data recorded
between 6 a.m. and 6 p.m. (0.019 ppm) would be
a better comparative indicator of photochemical
smog than the mean of all available data (0.012
ppm) presented in Table 2-1. For this reason,
the seasonal variation pattern of total oxidant in
Figure 2-20 is presented in terms of both
nocturnal and daytime means for each month.
The daytime means in Figure 2-20 are gener-
ally higher than the nocturnal averages, as ex-
pected, but the most striking feature is the
seasonal pattern of the daytime means. Average
daytime concentrations of total oxidant ranged
from essentially zero during several winter
months to about 0.040 ppm during the summers,
while the nocturnal means ranged from near-
zero only as high as 0.015 ppm.
Although oxidant levels would be expected to
be lower during the less sunny months (because
of reduced photochemical activity), the near-
zero winter levels recorded also include a nega-
tive interference effect from the high winter
concentrations of sulfur dioxide.* During Jan-
uary 1962, when sulfur dioxide levels averaged
'Sulfur dioxide octs as o reducing agent to reverse the chemical reaction used as the sensing mechanism for total oxidants (see
Appendix A).
40
RESULTS - INDIVIDUAL POLLUTANTS
GPO 027-234—4
-------
0.10
z
o
0.05
U
z
o
U
0.00
[~~1 6 pm - 6 am MEAN
^ 6 om - 6 pm MEAN
[IH LESS THAN 16 DAYS VALID DATA
•inO
m
J FMAMJJ ASONDJ FMAMJ J ASOND
1962 1963
Figure 2-20. Monthly mean total oxidant levels during daytime and nighttime hours (not corrected for S02 interference).
0.09 ppm, the recorded total oxidant concen-
tration averaged 0.01 ppm (the minimum non-
zero level recorded) for only 11 hours during the
month, and reached a 5-minute maximum value
of only 0.03 ppm. During January 1964, with an
equal amount of sulfur dioxide eliminated by an
absorber device, the recorded oxidant concen-
tration averaged 0.01 ppm for the entire month
and reached a 5-minute maximum of 0.08 ppm.
Because the occurrence of measurable oxi-
dant levels, even if not always quantitative,
carries a certain measure of information, the
oxidant data have been included in Part 3 of this
report; because of the interference, however, the
data and analyses must be interpreted with care.
Figure 2-21 presents the seasonal patterns of
diurnal variation in the recorded total oxidant
levels. Although the seasonal differences in
magnitude of the oxidant concentrations are
obvious, the shapes of the patterns are essen-
tially the same. The patterns indicate the pre-
dominant effect of solar radiation intensity, with
6» 12 6p«
HOUR OF 0»Y (EST)
Figure 2-21. Diurnal variation of total oxidant levels by season
(not corrected for S02 interference).
increased levels during the daylight hours
despite optimum dilution conditions, and very
low levels overnight.
Because the portion of atmospheric oxidant
resulting from photochemical reactions in the
lower atmosphere is the primary indicator of the
extent of the photochemical smog problem, it is
worthwhile to attempt to quantitate this com-
ponent by determining the background level of
oxidant. The average total oxidant concentration
was obtained for those hours between 10 p.m.
and 4 a.m. in the summers when the interfering
sulfur dioxide averaged less than 0.005 ppm
(i.e., a zero hourly mean was reported). The
calculated value was about 0.01 ppm of oxidant,
presumed to be ozone brought down from high
altitudes or nitrogen dioxide, which can exert
some oxidizing effect.
An attempt to relate summer oxidant levels
to measurements of total solar radiation taken
in Sterling, Virginia, indicated no simple rela-
tionship for short-term measurements, presum-
ably because other factors also exert an influ-
ence. On a more gross basis, however, the effect
of solar radiation is easily demonstrated. Fig-
ure 2-22 presents average diurnal patterns for
summer days classified into two groups accord-
ing to solar radiation measurements, and indi-
cates higher oxidant levels with higher solar
radiation.
Assessing the seriousness of the photochemi-
cal smog problem from measurements of total
oxidant levels requires estimates both of the
effects produced by various levels of reaction
products and of the frequency of occurrence of
RESULTS - INDIVIDUAL POLLUTAjNTS
41
-------
r , , , p-r i T—r T-T
<. 500 calones/cmVda
(90 days)
500 calories/cm^/day
(40 days)
12 S«« 12 6pm 12
HOUR OF DAY (EST) •
Figure 2-22. Effect of solar radiation on summer total oxidant
levels (not corrected for S02 interference).
those levels. The Regional Air Pollution Advis-
ory Board11 for metropolitan Washington accepts
0.25 ppm of oxidant (phenolphthalein method) as
the level at which eye irritation and vegetation
damage may become problems and 0.15 ppm
(phenolphthalein) as the levelat which smog odor
may first become evident.* The frequency with
which these levels are exceeded can be deter-
mined by examining frequency distributions of
the data.
Frequency distributions of 5-minute total oxi-
dant data from the Washington CAMP station are
presented graphically in Figure 2-23. It is again
apparent that the group of data included in the
i.oo
0.50 -
0.20 -
£ 0.10 —
z
o
r. 0.05-
z 0.02 -
o
u
0.01 —
0.005 -
0.002 -
EVE IRRITATION THRESHHOLD
- SMOG ODOR THRESHHOLD
20
98 99 99.5 99.8
PERCENT OF DATA EQUAL TO OR LESS THAN STATED
CONCENTRATION
Figure'2-23. Frequency distributions of 5-minute total oxidant
data (not corrected for S02 interference).
analysis makes a great deal of difference in the
distribution. The curve of all the data is well
below the distribution of summer daylight data
because of the large portion of nocturnal data
and the heavy sulfur dioxide interference during
much of the year. Thus, although only about 2
percent of all the Washington oxidant data
reached or exceeded 0.08 ppm, 11 percentof the
daytime (7 a.m.-8 p.m.) data that were largely
unaffected by sulfur dioxide reached this level,
and nearly 2 percent of such data exceeded 0.13
ppm. These levels occurred on 78 days during
the year when oxidant levels averaged 0.08 ppm
or more for an hour or longer, including 9 days
when oxidant concentrations reached 0.13 ppm or
greater for an hour or longer.
Total oxidant concentrations during 1963 ex-
hibited a directional effect, highest with winds
from the southeast quadrant, as indicated in Fig-
ure 2-24; since oxidants are not directly emitted
from sources, such a directional effect was un-
expected. The effect may be attributable to more
favorable conditions for photochemical oxidation
with southeasterly winds, since nitrogen dioxide
levels showed a similar tendency, or it may be
merely the result of the coincidence of south-
easterly winds with high oxidant levels caused
by other factors. No obvious explanation is
available. Note also that the total oxidant con-
centrations associated with calm winds were
lower than average, especially in the winter and
summer, presumably because periods of calm
winds occur most frequently at night, when
oxidant levels are routinely low.
Total Hydrocarbon
Gaseous hydrocarbon compounds in the at-
mosphere consist of stable hydrocarbons, such
as methane, which do not participate in at-
mospheric photochemical reactions, and other
"reactive" compounds, such as olefins and
aldehydes, which are in effect raw material for
such smog-producing reactions. The non-re-
active portion consists of a constant geophysical
level of methane of about 1 ppm15 plus variable
contributions of methane and other stable hydro-
carbons from gas main leaks, natural decay
processes, sewage treatment, motor vehicle ex-
haust, and similar sources. The reactive hydro-
carbons in the atmosphere result essentially
from the combustion or evaporation of organic
compounds, primarily gasoline. In the Washing-
ton SMSA about 80 percent of an estimated
average hydrocarbon emission of 640 tons per
day is attributable to motor vehicles. Roughly
half of these vehicular emissions are reactive.
^Comparable levels in terms of the potassium iodide method used by CAMP are about 0.13 and 0.08 ppm, respectively.
42
RESULTS - INDIVIDUAL POLLUTANTS
-------
SPRING
CENTER NUMBERS ARE
%OF MEAN
DURING CALMS
SEASON
WINTER
SPRING
SUMMER
AUTUMN
TOTAL
NUMBER OF VALID HOURS REPRESENTED
N
142
123
78
115
458
NNE
34
71
55
128
288
NE
62
90
60
107
319
ENE
46
73
27
57
203
E
30
80
24
23
157
ESE
17
54
33
25
129
se
31
63
52
32
178
SSE
41
93
75
104
313
S
240
400
251
268
1159
SSW
76
132
124
153
485
SW
66
96
98
105
365
WSW
57
54
81
98
290
W
75
72
63
58
268
WNW
144
170
90
132
536
NW
215
244
168
131
758
NNW
164
130
96
142
532
CALM
43
28
87
111
269
Figure 2-24. Directional patterns of total oxidant concentrations, 1963. (Not corrected for S02 interference)
RESULTS - INDIVIDUAL POLLUTANTS
43
-------
Emissions of reactive hydrocarbons in Wash-
ington would be expected to exhibit little seasonal
variation because the slight winter contribution
from fuel consumption for space heating is off-
set by a decrease in vehicular fuels consumed.
Since the methane contribution from other
sources can vary greatly, however, the long-
term pattern of total atmospheric hydrocarbon
levels would not be expected to remain constant,
nor to necessarily follow seasonal differences in
atmospheric dilution capacity.
The monthly hydrocarbon concentrations did
not, in fact, exhibit any definitive pattern of
seasonal variation (Figure 2-2), in part because
the data were quite sparse. There was, however,
a distinct difference between levels during the
April-August periods of the two years; levels
averaged less than 1 ppm from April through
August 1962 and more than 2 ppm during the
similar period of 1963. This difference cannot
be readily attributed to differences in meteoro-
logical factors. In fact, the data on surface wind
speed and maximum mixing volume listed in
Table 2-3 indicate that the opposite effect would
have been expected; i.e., conditions were more
favorable for pollutant dispersal during April-
August 1963 than during, the similar period of
1962. The lack of a similar sizeable change in
levels of any other pollutant tends to confirm
that gross meteorological differences offer no
explanation for the difference.
The pattern of short-term variations in total
hydrocarbon levels was both more distinct and
more explicable. The average patterns of diurnal
variation are presented by season in Figure
2-25. The patterns illustrate the difference in
levels between the two summers, but their
44
I '
SPRING 1962
I I I I I 1 1
1 3
I I I I T-I | I I
SUMMER 1962
I i I I I
I I I I I I I I I I I I I I I I I I
AUTUMN 1962
I I I I I I I I I I I I I I I I I I I I I I I
WINTER 1962-3
\ 1 I I II | I I
SPRING 1963
I I I I I I I I I I I
I I I I I I I I I I I l'
SUMMER 1963
nl I I I I I I I I I I I I I I I I I I I I I I I
H 1 I I I I I I I I I T
AUTUMN 1963
of I I I I I I I I I I I I I I I I I I I I I I I I nl I I I I I I I I I I I I I i I I I I I I I I I
12 6am |2 6pm 12 12 6 om 12 6pm 12
HOUR OF DAV (EST| HOUR OF DAV (EST|
Figure 2-25. Diurnal variation of total hydrocarbon levels by season.
RESULTS - INDIVIDUAL POLLUTANTS
-------
shapes offer no further clue to its cause. In
general, the patterns exhibit the morning peaks
and higher nocturnal levels previously noted
as typical of most of the pollutants, although
these features are somewhat erratic because of
the limited number of data. The morning peaks
were due primarily to morning traffic emissions,
since there are essentially no major elevated
sources of hydrocarbons in the Washington area.
Because of the strong influence of motor
vehicle exhaust on emissions of hydrocarbons in
Washington, a relationship between atmospheric
levels and weekly traffic patterns would be ex-
pected. Figure 2-26 presents diurnal patterns
of hydrocarbon levels averaged separately for
weekdays and for Sundays and holidays. With
vehicular traffic the primary variable, the
patterns indicate the essential elimination of the
morning peaks on Sundays, and about a 10 per-
cent difference in mean levels. The slightly
higher levels in the very early morning on Sun-
days may be attributable to higher evening
traffic density on Saturday evenings.
z
<
o
u
z
o
u
I
• SUNDAYS AND HOLIDAYS (59 days)
12
6 am 12 6 pm
HOUR OF DAY (EST)
12
Figure 2-26. Diurnal variation of total hydrocarbon levels on
weekdays and Sundays.
Another interesting facet of the morning peak
concentrations is that their formation depends on
relatively low wind speed. Figure 2-27 presents
diurnal patterns of weekday data classified
according to wind speeds from 6 to 8 a.m. The
rapid dispersal of low-level traffic emissions
with high wind speeds prevented the accumula-
tion of hydrocarbon to high peak concentrations.
Frequency distributions of the 5-minute hy-
drocarbon values are presented in Table 2-9
and Figure 2-28. More than half the recorded
hydrocarbon values were 2 ppm or lower; 4per-
3 300
a
u. 200
O
100
O
<
I I I I I I I I I I I I I I I I I I I I
WIND 53 mph (39 days)
12
6 cm 12 6 pm
HOUR OF DAY (E5T)
12
Figure 2-27. Effect of 6-8 am wind speed on diurnal variation
of total hydrocarbon levels.
cent were 5 ppm or higher. The curve for the
season with the highest levels, Autumn 1963,
exhibits an upward inflection at the high end due
to a period of atmospheric stagnation during
October.
Average hydrocarbon concentrations asso-
ciated with winds from different directions
during 1963 are presented in Figure 2-29. To
reduce the diluting effect of the nondirectional
background of unreactive hydrocarbons, 1 ppm
was subtracted before the conversion to per-
centages of the seasonal mean. Although the
directional effects are not striking, they are
qualitatively similar to those for nitric oxide,
with little pattern in winter, distinctly higher
levels from the southeast during the rest of the
year, and a secondary effect from the north in
autumn. This similarity is as expected, since
vehicular emissions contribute significantly to
atmospheric levels of both nitric oxide and total
hydrocarbon.
10.0
5.0
°- 2.0
z"
o
5 1.0
ct
U 0.5
O
u
0.2
0.1
TWO YEARS-
AUTUMN 1963"
SUMMER 1962
I
I I I I I
I
I
I
5 10 30 50 70 90 95
PERCENT OF DATA EQUAL TO OR LESS THAN
STATED CONCENTRATION
98
Figure 2-28. Frequency distributions of 5-minute total hydro-
carbon data.
RESULTS - INDIVIDUAL POLLUTANTS
45
-------
TABLE 2-9
FREQUENCY DISTRIBUTIONS OF TOTAL HYDROCARBON DATA
Period
Jan 1962
Feb 1962
Mar 1962
Apr 1962
May 1962
Jun 1962
Jul 1962
Aug 1962
Sep 1962
Oct 1962
Nov 1962
Dec 1962
Year 1962
Jan 1963
Feb 1963
Mar 1963
Apr 1963
May 1963
Jun 1963
Jul 1963
Aug 1963
Sep 1963
Oct 1963
Nov 1963
Dec 1963
Year 1963
Two
years
3/1/62
to
12/31/63
Spring 1962
Summer 1962
Autumn 1962
Winter 1962 1963
Spring 1963
Summer 1963
Autumn 1963
Avg'g
time
5 min
5 min
10 min
30 min
1 hr
4 hr
12 hr
24 hr
5 min
Percent
of data
used
0.0
0.0
22.0
93.4
93.2
69.5
82.2
87.0
81.5
33.6
54.3
57.5
56.5
46.9
0.0
0.0
70.7
98.9
70.4
99.4
65.7
16.5
13.9
98.4
95.9
56.8
61.5
69.2
79.7
56.2
35.9
56.4
78.6
42.6
Concentration, ppm as C atom
Min
0
0
0
0
0
0
0
0
2
0
0
0
1
2
0
1
0
1
2
1
2
0
0
0
0
0
0
0
0
0
0
0
0
1
0
I
Frequency distribution, %
10 30 50 70 90 92 94 96 98
no valid data
no valid data
001111112
001122234
001112223
001122234
001122223
001222224
223345556
011277788
223345578
01235568 11
001233446
222334445
no valid data
no valid data
223344568
222344456
122233344
122344555
022233344
222333456
333345567
223455579
333455667
223344556
012344456
012344456
012344456
012344456
012344456
012344456
012344456
001122233
001122223
123355678
022344569
223344456
122244445
223345 5 6 8
Max
4
11
7
7
5
9
10
11
15
20
20
11
14
17
12
10
10
7
15
20
14
20
20
19
17
17
14
10
8
11
9
15
20
17
12
20
Arith
mean
a
0.9
0.7
0.8
0.7
1.2
3.0
a
2.9
2.5
1.4
a
3.0
2.6
2. 1
2.5
2.0
a
a
3.3
3.5
2.7
2. 1
0.7
0.9
2.7
a
2.8
2.2
a
aM'2an not computed because of insufficient valid data.
46
RESULTS - INDIVIDUAL POLLUTANTS
-------
WINTER
SPRING
AUTUMN
CENTER NUMBERS ARE
% OF MEAN
DURING CALMS
NOTE: TOTAL HYDROCARBON MINUS 1 PPM AS ESTIMATED MINIMUM METHANE BACKGROUND
SEASON
WINTER
SPRING
SUMMER
AUTUMN
TOTAL
NUMBER OF VALID HOURS REPRESENTED
N
98
59
84
31
272
NNE
74
46
66
45
181
NE
36
51
89
58
234
ENE
35
43
40
30
148
E
14
29
38
14
95
ESE
8
33
41
9
91
SE
19
43
58
7
127
SSE
30
79
93
43
245
S
170
264
311
157
902
SSW
57
92
159
91
399
SW
60
71
107
37
275
WSW
45
39
103
35
222
W
44
30
69
47
190
WNW
93
104
101
122
420
NW
155
161
194
101
611
NNW
132
74
108
58
372
CALM
43
28
74
45
190
Figure 2-29. Directional patterns of reactive hydrocarbon levels, 1963.
RESULTS - INDIVIDUAL POLLUTANTS
47
-------
Carbon Monoxide
Carbon monoxide is produced by the incom-
plete combustion of any organic fuel. Almost
all such fuel except gasoline is used in instal-
lations where combustion takes place with
excess air and is relatively efficient; thus gaso-
line combustion in motor vehicles is the primary
source of carbon monoxide pollution. Because
the efficiency of combustion in motor vehicles
varies widely with many factors, including
vehicle maintenance, carbon monoxide emis-
sions have not been estimated.
The expected seasonal pattern of carbon
monoxide emissions would generally depend on
the traffic patterns. During the colder months,
automobile engines can operate more efficiently
because the colder, denser air provides a higher,
more efficient air-fuel ratio. Hence if most of
the traffic in an area consisted of vehicles on
long trips, with engines fully warmed up and
operating efficiently, carbon monoxide emis-
sions would be expected to decrease in the
winter. On the other hand, if most of the traffic
consisted of vehicles making short trips, with
engines operating cold and probably partially
choked, carbon monoxide emissions would tend
to increase. It would be expected that the
CAMP station in Washington, because of its loca-
tion, would be influenced primarily by emis-
sions from short-trip commuter traffic, and
that carbon monoxide levels would tend to be
higher during the winter months.
The monthly mean carbon monoxide concen-
trations in Figure 2-2 do not indicate any defi-
nite seasonal pattern, in large part because valid
data were too sparse. The average diurnal
variation patterns in Figure 2-30 do indicate
somewhat higher carbon monoxide concentra-
tions in winter.
The shapes of the diurnal patterns in Figure
2-30 indicate that the carbon monoxide levels
varied in essentially the same manner as did
most of the other pollutants, although the curves
are somewhat erratic because of the small
number of valid data. A distinct evening rush-
hour peak is evident only in the winter curve,
and the morning peak in the summer pattern was
shifted 1 hour earlier than the peaks in the spring
and autumn patterns because of the shift to Day-
light Saving Time; each of these features is
similar to the effects apparent in the nitric
oxide and total hydrocarbon patterns.
Diurnal patterns of carbon monoxide concen-
trations on weekdays and Sundays are compared
in Figure 2-31, and patterns for days with high
winds and low winds from 6 to 8 a.m. are com-
6 am 12 6 am 12
HOUR OF DAY (EST)
Figure 2-30. Diurnal variation of carbon monoxide levels by
season.
pared in Figure 2-32. As in the hydrocarbon
patterns (Figures 2-26 and 2-27), the typical
morning peak is essentially eliminated on Sun-
days and on days with high winds. The directional
patterns of carbon monoxide in Figure 2-33 are
SUNDAYS AND HOLIDAYS (59 days)
6 am 12 6 pm
HOUR OF DAY (EST)
12
Figure 2-31. Diurnal variation of carbon monoxide levels on
weekdays and Sundays.
300
o
^-
z .
100
(Til I I I I I I
-WIND S3 mph (33 days)
' WIND 213 mph (16 days)
12
6 am 12 6 pm
HOUR OF DAY (EST)
12
Figure 2-32. Effect of 6-8 a.m. wind speed on diurnal variation
of carbon monoxide levels.
48
RESULTS - INDIVIDUAL POLLUTANTS
-------
WINTER
SPRING
SUMMER
CENTER NUMBERS ARE
%OF MEAN
DURING CALMS
SEASON
WINTER
SPRING
SUMMER
AUTUMN
TOTAL
NUMBER OF VALID HOURS REPRESENTED
N
68
46
90
145
349
NNE
22
37
71
144
274
NE
27
49
88
155
319
ENE
18
31
42
75
166
E
19
17
39
37
112
ESE
9
20
48
29
106
SE
23
31
66
34
154
SSE
18
56
115
106
295
S
88
209
346
290
933
SSW
13
77
172
182
444
SW
11
59
130
121
321
WSW
13
21
123
117
274
W
23
7
86
71
187
WNW
33
30
107
153
323
NW
59
66
200
147
472
NNW
35
45
125
158
363
CALM
0
28
109
131
268
Figure 2-33. Directional patterns of carbon monoxide levels, 1963.
RESULTS - INDIVIDUAL POLLUTANTS
49
-------
also similar in many respects to the directional
patterns of total hydrocarbon in Figure 2-29.
These similarities reflect the common origin of
the two pollutants in vehicular emissions.
Frequency distributions of the carbon mon-
oxide data are presented in Table 2-10 and Fig-
ure 2-34. The only feature of particular note is
the curve for November 1963; examination of
Table 3-136 indicates several discrete periods
of hourly mean levels in the range from 15 to
20 ppm; these produce the disproportionately
high "bump" on the frequency distribution curve
for November.
100
50
20
z
O
10
U
1.
o
u
I I I
J I
I
10
20 30 40 50 60 70 80 90 95 98
PERCENT OF DATA EQUAL TO OR LESS THAN
STATED CONCENTRATION
Figure 2-34. Frequency distributions of 5-minute carbon
monoxide data.
Poetic ulates
In addition to the six gases monitored at the
Washington station, particulate pollution was
measured during 1963. Figure 2-35 presents
monthly mean soiling index values, total sus-
pended particulate concentrations, and gross
beta radioactivity levels of the particulate
matter. Soiling index values, which primarily
reflect the fine particulate matter in the air, ex-
hibited a seasonal pattern similar to that of
sulfur dioxide, suggestive of emissions from
coal and oil consumption. The weight concen-
trations of the total suspended particulates,
however, varied only slightly except for October,
when a prolonged atmospheric stagnation occur-
red (October 15-22: see Table 3-148). The gross
beta radioactivity level of the particulate matter
exhibited distinct seasonal differences, with
higher levels in the spring. This seasonal effect
is typical of radioactive pollution originating
from atmospheric experiments with nuclear
J.U
x *~
UJ o
D o 2.0
Z c
O 0
•7 O
± 0
—1 "~ 1 ft
— \ 1.0
O I
\si o
U
0.0
SOILING INDEX
; ; loss ihon holf of doto volid
_
_
-
—
1
r-n
onn
-
J FMAMJJA SOND
JFMAMJJASOND
15
10 -
O " 5
< 0.
GR
OSS
BE1
PA R
ADK
DAC
nvi
ry
n i
JFMAMJJASOND
Figure 2-35. Monthly mean levels of particulate pollution, 1963.
weapons; such pollution is carried down from
the upper atmosphere by seasonal changes in
the upper winds during the winter season.
Frequency distributions of the total sus-
pended particulate concentrations and gross beta
radioactivity data from the CAMP station are
presented in Tables 2-11 and 2-12 and in Fig-
ures 2-36 and 2-37. Suspended particulate con-
centrations averaged 98 Mg/m3, about 15 per cent
lower than the average at the National Air
Sampling Network site (Figure 1-6). This differ-
ence may have been partially due to a difference
in the sampler shelters used at the two sites
(See Appendix A).
The diurnal variation of the soiling index
values is presented in Figure 2-38. Each season-
al pattern exhibited higher levels in the morning;
the peak shifted in time somewhat with the
seasons, but the 2-hour averages permit only the
largest changes to be seen. Higher levels in the
evening or overnight were less pronounced than
the morning peaks, and did not follow an obvious
pattern.
50
RESULTS - INDIVIDUAL POLLUTANTS
-------
TABLE 2-10
FREQUENCY DISTRIBUTIONS OF CARBON MONOXIDE DATA
Period
Jan 1962
Feb 1962
Mar 1962
Apr 1962
May 1962
Jun 1962
Jul 1962
Aug 1962
Sep 1962
Oct 1962
Nov 1962
Dec 1962
Year 1962
Jan 1963
Feb 1963
Mar 1963
Apr 1963
May 1963
Jun 1963
Jul 1963
Aug 1963
Sep 1963
Oct 1963
Nov 1963
Dec 1963
Year 1963
Two
years
4/1/62
to
12/31/63
Spring 19G2
Summer 1962
Autumn 1962
Winter 1962 1963
Spring 1963
Summer 1963 f
Autumn 1963
Avg'g
time
5 min
5 min
10 min
30 min
1 hr
4 hr
12 hr
24 hr
Percent
of data
used
0.0
0.0
0.0
80.8
4.5
10.9
36.8
78. 3
75.1
68.5
88.9
11.8
38.0
23.7
43.5
0.0
14.3
97.6
96.6
96.9
72.6
.98.9
90.2
98.7
0.0
61.2
56.5
28.2
42.3
77.4
25.7
37.6
88.6
95.9
Concentration, ppm
MIN
0
3
3
0
0
0
0
0
2
0
4
3
0
0
I
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
2
0
0
0
Frequency Distribution, %
10 30 50 70 90 92 94 96 98
no valid data
no valid data
no valid data
123355 G 79
345577777
455566677
4 5 7 9 12 12 13 13 14
1234889 11 12
3 5 7 8 11 11 12 14 19
1 4 5 8 13 13 14 16 19
2 4 5 6 8 9 10 13 15
4 5 6 8 20 21 22 23 26
2 3 4 6 10 11 12 13 16
6 8 9 10 13 14 14 15 16
4 5 7 10 16 18 20 23 26
no valid data
012344555
234 5789 10 13
3 4 6 7 10 10 11 12 14
2 4 5 6 10 10 11 12 15
4 5 7 9 13 14 15 17 19
1 2 4 6 8 9 10 11 13
5 6 8 10 16 17 19 21 25
4 6 8 12 19 20 21 22 28
2 4 6 8 13 14 15 18 21
2 4 5 7 12 13 14 16 19
2 4 5 7 12 13 14 16 20
2 4 5 7 12 13 14 16 19
2 4 5 7 11 12 14 16 19
2 4 5 7 11 12 13 15 19
2 4 6 7 11 1? 12 14 17
3 4 6 7 10 11 12 14 16
123356679
1 3 4 6 9 10 11 12 13
2 4 5 7 11 12 13 14 18
4 6 8 10 15 16 18 21 25
1 3 4 5 7 8 8 10 13
3 4 6 7 11 11 12 14 16
2 5 7 9 16 17 19 20 24
Max
26
11
11
20
24
24
30
29
30
30
22
32
11
27
22
33
25
24
37
44
44
44
43
41
41
37
29
23
26
24
30
32
27
33
44
Arith
mean
2.9
a
a
a
3.7
6.9
6.6
5. 1
a
5.3
a
a
a
4.3
6. I
5.4
7.7
4.6
9.2
10. 3
7.0
6.3
a
a
6. I
a
a
6.3
8.0
aMean not computed because of insufficient valid data.
RESULTS - INDIVIDUAL POLLUTANTS
51
-------
TABLE 2-11
FREQUENCY DISTRIBUTIONS OF SUSPENDED PARTICULATE DATA, 1963
Winter
Spring
Summer
Autumn
Year
No. of
samples
77
82
84
74
317
o
Concentration, ng/m°
Min
45
48
59
36
36
Frequency distribution, %
10 20 30 40 50 60 70 80 90
64 69 75 81 87 92 99 114 126
61 72 78 83 88 93 99 110 126
65 72 80 87 92 96 105 115 128
58 71 80 91 101 109 125 142 182
63 71 78 84 91 96 106 118 139
Max
272
165
229
305
305
Arith
mean
92
92
96
113
98
Geo
mean
88
88
93
102
92
Std
geo
dev
1.37
1.31
1.30
1.56
1.39
TABLE 2-12
FREQUENCY DISTRIBUTIONS OF GROSS BETA RADIOACTIVITY DATA, 1963
Winter
Spring
Summer
Autumn
Year
No. of
samples
39
82
84
74
279
Concentration, picocuries/m^
Min
0.2
1.5
1.4
<0.05
<0.05
Frequency distribution, %
10 20 30 40 50 60 70 80 90
0.3 0.5 0.6 0.7 0.7 0.8 0.9 6.9 7.8
3.3 4.4 6.5 7.4 8.2 8.8 9.5 10.5 12.1
3.2 4.4 4.9 5.4 6.0 7.0 7.9 8.9 10.7
0.6 0.9 1.1 1.3 1.8 2.1 2.4 2.8 3.6
0.7 1.3 2.3 3.5 4.7 6.1 7.5 8.6 10.4
Max
10.9
15.8
21.4
4.7
21.4
Arith
mean
2.6
8.0
6.8
2.0
5.3
Geo
mean
1.2
7.1
6.1
1.5
3.5
Std
geo
dev
3.40
1.67
1.63
2.26
2.86
52
RESULTS - INDIVIDUAL POLLUTANTS
-------
500
200
O
100
50
UJ
U
O 20
U
10
I I I I I I
I I I I I I
50.0
20.0
10.0
z
O
U
z
o
U
5.0
2.0
1.0
0.5
0.2 -
10
30
50
70
90
0.1
JL
I I I I_L
PERCENT OF DATA ECUAL TO OR LESS THAN
STATED CONCENTRATION
Figure 2-36. Frequency distribution of total suspended
paniculate data, 1963.
10 30 50 70 90
PERCENT OF DATA EQUAL TO OR LESS THAN
STATED CONCENTRATION
Figure 2-37. Frequency distributions of gross beta radio-
activity data, 1963.
WINTER (JAN., FEB., DEC.)
12
6 am
6 pm
12
SPRING
I
O
U
a
z
o
z
12
6 am
12
6 pm
12
SUMMER (JUNE ONLY)
6 om
6 pm
12
AUTUMN
12
6 om 12 6 pm
HOUR OF DAY (EST)
12
Figure 2-38. Diurnal variation of soiling index by season, 1963.
RESULTS - INDIVIDUAL POLLUTANTS
53
-------
ATMOSPHERIC STAGNATIONS AND PHOTO-
CHEMICAL SMOG
The Eastern portion of the United States
occasionally experiences the stagnation of an
entire weather system, usually a warm high-
pressure system or anticyclone, which tends to
permit the accumulation of pollution to higher-
than-normal levels. Such stagnations affected
the Washington area on five occasions during
1962 and 1963. Two of these were extensive
stagnations that covered much of the Eastern
United States for prolonged periods; they in-
cluded Washington from November 29 through
December 4, 1962,* and from October 15 to 19,
1963. Figures 2-39 and 2-40 compare diurnal
variation patterns compiled for these periods
with "normal" patterns compiled for the months
0.20
0.15
0.10
0.05
0.00'
I I I I I | I I
_ SULFUR DIOXIDE
| I I I I I I I I I I I
-1"----1* NORMAL
NOTE: NORMALS ARE AVERAGES FOR NOVEMBER AND
DECEMBER EXCLUDING STAGNATION PERIOD '
I I I I I I I I I I I I I I I I I I I I I I I
6 am
12
6 pm
12
z
o
u
z
o
u
I I I I I ] I I I I I I I I I I I I I I I I I
TOTAL HYDROCARBON
I I I I I I I I I I I I I I I I I I I I I I I
12
6 am
6 pm
15
10
| I I I I I | I I I I I | I I I I I
12
6 am 12 6 pm
HOUR OF DAY (E5T)
12
Figure 2-39. Diurnal variation of gaseous pollutant levels during
1962 stagnation (November 29 - December 4).
"This stagnation is described in greater detail in Reference 16.
excluding the stagnation periods. There were no
valid data during the 1962 stagnation for the
oxides of nitrogen or total oxidant, and none for
total hydrocarbon during the 1963 event
During the 1962 stagnation, pollutant levels
were elevated primarily overnight; the after-
noon minima were not drastically affected. Table
2-13 presents the stagnation-to-normal ratios
of peak hour and daily mean concentrations.
Note that during the stagnation the average
levels of each of the three pollutants for the
enitre day exceeded the peak hourly levels ex-
perienced normally.
During the 1963 stagnation (Figure 2-40) most
pollutant levels were more severely increased,
as shown in Table 2-14. Sulfur dioxide levels
were only slightly increased, perhaps because
emissions were lessened by reduced space
heating in the relatively fair and warm weather
during the stagnation period.
TABLE 2-13
COMPARISON OF STAGNATION AND
NORMALa POLLUTANT LEVELS, 1962
INCIDENT (NOVEMBER 29 TO DECEMBER 4)
Pollutant
Sulfur
dioxide
Total
hydrocarbon
Carbon
monozide
Ratio of concentrations
Stagnation peak hour
to
Normal
peak hour
1.4
2.4
1.8
Normal
daily mean
1.9
2.9
2.5
Stagnation daily mean
to
Normal
peak hour
1. 1
1.6
1.2
Normal
daily mean
1.5
2.0
1.7
' Normal used is average for November 1-28 and December 5-31, 19G2.
TABLE 2-14
COMPARISON OF STAGNATION AND
NORMALa POLLUTANT LEVELS, 1963
INCIDENT (OCTOBER 15 TO 19)
Pollutant
Sulfur
dioxide
Nitric oxide
Nitrogen
dioxide
Total oxidant0
Carbon
monoxide
Ratio of concentrations
Stagnation peak hour
to
Normal
peak hour
1.3
3.3
2.6
2.1
2.2
Normal
daily mean
1.8
7.4
3.4
6.9
2.9
Stagnation daily mean
to
Normal
peak hour
0.7
l.G
1.4
0.7
1.3
Normal
daily mean
1. 1
3.6
1.8
2.2
1.7
aNormal used is average for October 1963 excluding October 15-19.
"Not corrected for SO2 interference.
54
STAGNATIONS AND SMOG
-------
iinii [ii
SULFUR DIOXIDE
0.10
0.05
n nnl I I I I I I I I I I I I I I I I I I I I I I I
STAGNATION .
12
6 cm
0.20
0.15 —
0.10 —
0.45
I I I I I I I I I I I I I I I I I I I I I I I
NOTE: NORMALS
ARE AVERAGE FOR
OCTOBER EXCLUDING
STAGNATION
PERIOD
\
I \
NORMAL • «
II
- 0.05 —
J 0.00
0.10
0.05
0.00
I I I I 1 | I I I I I | I I I I I | I I I I I
NITROGEN DIOXIDE
B-~**.
"*»-_^» NORMAL
I I I I I I I I I I I I I I I I I I I I I I I
I i I I I | I I I I I | I I I I I I I I I I
~ TOTAL OXIDANT (Not corrected for
S02 interference)
STAGNATION
6 pm
12
25
— 20
— 15
1 I I I I I I I I I T
CARBON MONOXIDE
— 5
I I I I I I I I I I I
J I
6 pm 12 12
HOUR OF DAY (EST)
6 om
6 pm
12
Figure 2-40. Diurnal variation of gaseous pollutant levels during 1963 stagnation (October 15 - 19).
STAGNATIONS AND SMOG
55
-------
The levels of nitric oxide, by contrast, were
extremely exaggerated. The stagnation in-
creased pollutant levels most severely during the
nocturnal and morning hours, when nitric oxide
levels are normally high; the very low inversion
severely limited the dispersion of the peak
emissions from rush-hour traffic.
In general, the 1963 stagnation increased the
average and peak pollutant levels to more than
twice normal levels.
The high levels of nitric oxide during the 1963
stagnation would be expected to fuel photo-
chemical smog reactions, and in fact, the total
oxidant levels were higher than normal. Figure
2-41 presents average diurnal patterns of data
0.50
0.40 —
1
-
—
—
1 1 1 1 1 1 1 1
OXIDANT — —
NO
11
II
i JY
i\
r\
n
z
o
u
z
o
0.30
0.00
0.10 —
12
6 am 12 6 pm
HOUR OF DAY (E5T)
Figure 2.41
Formation of photochemical smog during October
1963 stagnation.
for October 16, 17, and 19, the 3 days during
the stagnation when the sulfur dioxide inter-
ference could be eliminated from the oxidant
data. The patterns together form a typical
photochemical smog sequence, although data on
hydrocarbon concentrations were missing. The
peak nitric oxide levels at 8 a.m. and 10 p.m.
were extreme; the nitrogen dioxide peak in the
morning was also quite high. The morning peak
of nitric oxide resulted from rush-hour traffic
emissions into the limited volume of air. The
nitrogen dioxide peak 2 hours later resulted from
photochemical conversion of NO to NO2; further
photochemical reaction then produced the high
oxidant levels in the afternoon. The shapes of
the patterns in Figure 2-41 are typical of
photochemical smog formation, although the
nitric oxide peaks were unusually high. The
oxidant levels were not the highest recorded,
but were unusual for October.
The highest atmospheric levels of oxidant
for the 2-year period occurred on 2 days in
June 1963, shown in Figure 2-42. Data for these
days also indicate a "classic" photochemical
smog incident, although again the hydrocarbon
data were missing. The peak morning levels of
oxides of nitrogen were again occasioned by
rush-hour traffic emissions, the more favorable
atmospheric dilution in summer being reflected
in the lower peak nitric oxide concentrations.
•
The differences in the oxidant levels in Fig-
ures 2-41 and 2-42 are notable. These differ-
ences were the result of the differences in solar
radiation and temperature, as seen in Table 2-15,
which presents meteorological data for the dates
in question.
TABLE 2-15
METEOROLOGICAL DATA FOR
SELECTED DAYS
(WASHINGTON NATIONAL AIRPORT)
June 26 June 27 Oct. 16 Oct. 17 Oct. 19
Sunshine, hr:mln
Sunshine, % possible
Solar radiation,11
calorles/cmvday
14:53
100
736.6
14:52
100
722.7
10:35
95
383.9
10:10
91
353.0
10:15
93
356.2
Max hourly
temperature,1' "F
Wind speed ,b mph
Wind direction15
91
8.8
S-SSE
93
11.3
S-SSE
82
7.2
S-W
83
6.3
NW-N
82
4.9
NE
"Data from Sterling, Virginia.
for 10 a. m. -6 p. m.
56
STAGNATIONS AND SMOG
GPO 027-234-3
-------
0.25
0.20
0.15
0.10
0.05
I I I I III I I I I I I I I I I I I I I I I
OxToANT JUNE 27, 1963
NO
I I I I I
z
o
U
z
o
U
0.00
I I I I I I I I I I
JUNE 26, 1963
12
6 om
12
6 pm 12 6 am
HOUR OF DAY (E5T)
6 pm
12
Figure 2-42. Formation of photochemical smog on June 26 and 27, 1963.
ADDITIONALPERCENTILE CONCENTRA-
TIONS FOR 1-AND 24-HOUR AVERAGING
TIMES
Many air pollution control jurisdictions have
adopted or are considering criteria against
which to judge air quality, or upon which to
base control legislation. These criteria are
often based on averaging times other than 5
minutes and may well be based on percentiles
higher than those available in the frequency
distributions tabulated in the sections onindivi-
ual pollutants. To facilitate comparisons of air
quality in Washington with any such criteria,
Table 2-16 presents the 99-percentile concen-
trations for 5-minute CAMP data and for 1-hour
and 24-hour averaged data, and the 99.9-per-
centile concentrations for 5-minute and 1-hour
data. Two years of data do not provide enough
24-hour averages for the 99.9-percentile to be
meaningful, since 0.1 percent of 2 years time is
less than one 24-hour averaging interval.
TABLE 2-16
99 AND 99.9 - PERCENTILE
CONCENTRATIONS'1
Pollutant
Sulfur Dioxide
Nitric Oxide
Nitrogen Dioxide
Total Hydrocarbon
Carbon Monoxide
99th Percentile
5-Min.
0.22
0.32
0.10
7
22
1-Hour
0.21
0.32
0.10
7
22
24 -Hour
0.17
0.20
0.07
7
19
99.9th Percentile
5-Min.
0.35
0.58
0.15
13
32
1-Hour
0.33
0.58
0.14
13
32
aToial oxidant not included because of SC>2 interference.
ADDITIONAL PERCENTILE CONCENTRATIONS
57
-------
PART 3:
DATA TABLES
-------
PART 3: DATA TABLES
The results of the first 2 years of CAMP
operations in Washington are summarized in the
following tables. Although it is intended that
this volume can thus serve as a reference, the
data are necessarily condensed; more detailed
compilations are available. Any interested
person or group can obtain further information
by arrangement with the Chief of the Air Quality
Section, Laboratory of Engineering and Physical
Sciences, Division of Air Pollution, at the Robert
A. Taft Sanitary Engineering Center.
GASEOUS POLLUTANTS
Table 3-1 lists and indexes those months
for which valid data are available and for which
summary tables are included. Tables 3-2
through 3-135 present hourly average concen-
trations by month for the gaseous pollutants.
Values in these tables are the arithmetic means
of the 5-minute values in the clock hour be-
ginning at the time indicated. An average is not
calculated if the hour is considered an invalid
data hour, i.e., if fewer than seven 5-minute
values were valid. Similarly, if a calendar day
had fewer than 13 valid data hours, it is con-
sidered an invalid data day and the entire row of
averages for that day is deleted. The reason for
this procedure, which results in the loss of a
few valid hourly averages, is that the data that
are thus lost are usually concentrated at the
beginning or end of the day. Since pollutant con-
centrations show considerable diurnal variation,
the inclusion of data for such days would in-
troduce a definite bias into the monthly mean
concentrations.
The first summary line at the bottom of the
tables (titled MONTHLY MEAN) contains the
arithmetic means of the hourly averages, and
hence represents the pattern of diurnal varia-
tion for the month. Again by the same validity
criterion, this average is not calculated unless
16 or more hourly averages are present. The
second and third summary lines are the number
of and maximum of the hourly averages in the
column.
The first summary column at the right of the
tables (titled DAILY MEAN) is the arithmetic
mean* of the 13 or more hourly averages com-
prising the row, and the second is the number of
such valid hourly averages. The third summary
column, however, is not the maximum hourly
average for the day, but the maximum 5-minute
value included in the hours of valid data during
the day. The largest of these is not necessarily
the maximum for the month if any valid hours
have been deleted as part of an invalid day; the
maximum 5-minute concentration during the
month is best obtained from the tables of fre-
quency distributions, which are compiled with-
out considering the validity of any hour or day.
Two summary figures appear in the lower
right corner. The first is the monthly average,
an arithmetic mean, and appears only if 16 or
more days were valid (a valid data month). The
second is the total number of valid hours in-
cluded in the table, which offers some basis for
judging the representativeness of the monthly
average. (A 31-day month has 744 possible
hours; a 30-day month, 720; and a 28-day month,
672.)
SOILINGINDEX
Tables 3-136 through 3-145 present soiling
index values at the CAMP station by month.
Each value was obtained from a 2-hour in-
tegrated sample beginning at the time indicated
in the column heading. A missing value in-
dicates that the sample was not taken or was
invalid because of instrument malfunction.
The first summary line (titled MONTHLY
MEAN) represents the arithmetic mean of the
2-hour average values in the column, and is
calculated only if 16 or more days are repre-
sented. The first summary column (titled DAILY
MEAN) is the arithmetic mean of the 2-hour
values for the day; if fewer than seven such
values are present, the daily mean is not cal-
culated, and the data are not included in the
summaries, but the component 2-hour values
for the day are not deleted from the table as
is done with the data on gaseous pollutants.
The other summary columns and rows are
the number of and maximum of the respective
2-hour values. Three summary figures appear
in the lower right corner; the mean and maximum
value for the month are the upper left and lower
right figures respectively, while the center
figure is the total number of values. (A 31-
day month could have 372 such values; a 30-
day month, 360; and a 28-day month, 336.)
All the summary calculations in the tables are performed before the hourly overages are rounded.
DATA TABLES
61
-------
SUSPENDED PARTICULATE MATTER
Tables 3-146 and 3-147 present the results
of analyses of 24-hour particulate samples: the
gross weight of suspended particulate matter
and the gross beta radioactivity of the parti-
culate matter, respectively. Each value re-
presents a sample collected from about noon
to noon, ending on the date indicated, with the
exception of those indicated by asterisks; values
so marked represent 48-hour samples, usually
during a weekend, which are entered in the
tables as identical values for 2 days. The
summary row contains the arithmetic means of
the various values for the month, including the
duplicate pairs.
TABLE 3-1
INDEX TO DATA TABLES
Month
1962
January
February
March
April
May
June
July
August
September
October
November
December
1963
January
February
March
April
May
June
July
August
September
October
November
December
Sulfur
Dioxide
1 hour
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-1-1
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
Nitric
Oxide
1 hour
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
b
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48
Nitrogen
Dioxide
1 hour
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-69
3-70
3-71
3-72
Total
Oxidant
1 hour
3-73
3-74
3-75
3-76
3-77
3-78
3-79
3-80
3-81
3-82
3-83
3-84
3-85
3-86
3-87
3-88
3-89
3-90
3-91
3-92
3-93
3-94
3-95
3-96
Total
Hydrocarbon
1 hour
a
a
3-97
3-98
3-99
3-100
3-101
3-102
3-103
2-104
2-105
2-106
.3-107
b
b
3-108
3-109
3-110
3-111
3-112
3-113
3-114
3-115
3-116
Carbon
Monoxide
1 hour
b
b
b
3-117
3-118
3-119
3-120
3-121
3-122
3-123
3-124
2-125
3-126
3-127
b
3-128
3-129
3-130
3-131
3-132
3-133
3-134
3-135
b
Soiling
Index
2 hours
a
a
a
a
a
a
;i
:i
a
a
a
a
3-136
3-137
3-138
3-139
3-140
3-141
b
b
3-142
3-143
3-144
3-145
Suspended
Particulates
24 hours
a
3-146
Benzene-
Soluble
Organics
24 hours
c
c
Gross Beta
Radio-
activity
24 hours
a
3-147
Instrument not yet in operation
DNo valid data because of instrument repair, calibration, etc.
"Benzene-soluble organic analyses not performed
62
DATA TABLES
-------
TABLE 3-2 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. JANUARY 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
MONTHL1
NO. OF
MAX.HRL
OF
»EEK
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MEAN
DAYS
Y MEAN
12
6
15
4
4
7
5
7
U
10
U
21
5
11
7
8
16
8
5
12
8
16
8
7
6
5
9
27
21
1
9
6
13
2
3
9
5
7
U
9
7
17
b
9
7
12
14
a
5
8
9
14
8
11
9
11
6
9
8
9
8
9
U
14
10
£
6
14
11
9
6
7
10
* j
9
27
15
1
7
U
15
3
8
7
11
7
10
10
7
7
9
7
8
10
11
11
6
10
9
13
6
7
9
i n
8
9
28
15
2
5
11
12
4
5
7
11
9
7
7
8
8
7
8
8
8
11
7
8
7
15
5
7
8
8
8
27
19
3
12
3
6
6
10
7
8
7
9
7
8
8
8
9
5
8
7
13
6
6
8
9
8
24
13
4
15
3
5
7
8
8
7
9
10
7
6
7
7
9
9
10
4
8
6
12
6
7
9
9
a
26
15
P
5
5
14
5
5
7
9
9
9
9
13
7
8
8
6
10
9
12
5
8
8
10
7
8
8
9
8
27
14
M
6
8
18
14
5
7
7
10
13
13
12
U
11
10
9
9
13
11
14
6
7
15
8
6
8
7
11
10
28
18
7
9
18
18
5
5
9
10
10
14
14
13
8
11
9
8
15
11
12
7
8
15
7
7
8
10
14
10
28
18
e
7
23
23
4
6
6
9
14
13
14
13
6
15
9
9
16
11
10
8
8
15
6
7
8
10
14
10
28
23
9
8
20
15
4
6
7
9
17
14
12
13
6
14
9
8
18
11
B
8
8
15
5
5
8
10
10
10
28
20
10
8
20
6
4
5
6
9
13
17
13
15
5
14
7
10
17
11
6
7
11
15
7
6
6
8
8
9
28
20
11
7
13
3
3
5
5
8
15
14
12
22
6
13
7
7
16
10
5
12
10
15
7
6
6
8
9,
9
28
22
DAILY
MEAN
9.5
10.8
12.4
3.2
5.4
7.9
8.8
9.8
13."
9.3
10.3
12.3
9.8
9.0
8.1
12.5
13.2
11.0
6.2
9.4
13.6
10.6
6.7
7.8
9.1
.3
8.4
9.3
NO.
OFHR
21
23
22
24
24
24
22
22
24
24
24
24
24
21
24
24
24
24
24
21
Z4
24
24
24
24
23
21
651
5-MIN
MAX
27
27
28
9
10
13
15
19
23
15
24
26
18
17
17
22
26
IB
15
18
39
19
13
17
15
18
17
Oi
CO
-------
TABLE 3-3 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, FEBRUARY 1962
DAT
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
7H
MONTHLy
NO OF
MAX.HRL
OF
REEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
wrn
MEAN
DAYS
Y KAN
12
8
11
15
13
22
14
2
7
7
5
7
7
9
8
6
6
4
11
4
9
19
22
1
8
13
15
n
15
20
13
?
6
9
5
6
7
9
6
15
5
5
4
8
n
9
21
20
2
8
13
19
13.
15
20
12
1
6
9
7
4
9
8
6
15
5
•>
5
7
5.
9
21
?0
3
11
14
19
H
14
21
13
2
6
11
7
4
3
7
8
13
4
5
9
5
9
21
2;
4
10
13
21
1«
14
22
14
2
6
12
8
4
2
7
9
13
6
6
9
5
10
21
22
A
5
10
15
20
12
12
23
15
4
7
14
10
5
4
7
10
12
6
7
10
^
10
21
23
11
B
17
16
19
12
15
31
14
12
a
13
u
5
6
8
11
12
7
8
9
5
12
21
31
7
21
15
21
1?
15
25
14
14
11
13
8
9
B
1?
13
12
10
10
9
14
t>
13
21
25
8
20
16
18
11
16
20
17
9
10
10
6
9
8
10
11
13
7
9
21
9
12
21
21
9
21
19
22
12
17
21
8
8
10
5
9
7
11
18
6
10
11
12
18
22
10
19
n
16
1?
14
25
9
7
5
10
ft
11
18
9
5
16
13
12
17
2}
11
19
12
13
11
15
23
9
8
3
3
9
8
10
10
16
5
13
11
9
11
20
23
12
12
17
12
13
11
14
14
8
7
7
3
3
9
6
10
12
15
12
11
1*
10
22
17
1
11
15
13
13
11
14
7
6
7
4
9
6
8
12
11
U
11
9
9
20
J5
2
10
10
13
10
11
6
5
6
3
13
5
6
12
9
7
8
9
8
19
13
3
11
10
13
10
13
5
4
5
11
6
14
10
7
e
8
16
14
4
10
12
10
13
11
13
13
3
3
fl
12
6
6
14
12
6
6
9
19
14
P
5
11
14
11
11
11
17
12
3
4
11
5
6
6
13
11
a
16
8
10
20
17
M
6
10
15
13
14
20
13
4
6
7
6
7
7
12
10
6
11
16
7
10
19
20
7
12
14
13
15
14
20
12
4
8
9
7
6
7
7
8
10
12
5
12
15
7
10
22
20
8
13
14
15
22
14
19
14
5
7
12
8
7
7
8
7
14
11
6
11
10
7
11
22
22
9
15
16
11
15
19
15
5
9
14
8
7
9
9
fl
10
6
5
10
7
6
10
20
19
10
11
17
16
13
19
13
4
8
8
6
8
7
8
a
7
4
16
6
7
10
20
I'
11
11
18
16
12
IB
13
2
7
9
6
8
6
8
7
6
4
16
4
6
9
20
18
DAILY
MEAN
12.2
15.2
12.7
16.0
i?.;
15. a
lfl.1
8.5
6.1
8.0
8.0
6.6
7.6
6.5
8.0
10.6
12.2
.2
5.5
9.1
10.8
6.7
10.1
NO
OF HR
22
22
13
24
21
21
23
2i
23
24
20
IB
24
23
?2
21
23
24
24
24
22
22
481
5-MIN
MAX
26
21
20
28
17
22
35
20
19
21
18
14
19
11
14
19
19
17
12
20
2»
_ 16
o>
-------
TABLE 34 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, MARCH 1962
DAY
MONTH
1
2
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
31
MONTHL
NO. OF
MAX.HRl
OF
IEEK
THU
FRI
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
.FRI
SAT
1 MEAN
DAYS
Y MEAN
12
4
5
10
9
5
3
10
5
7
12
4
15
6
8
4
it
10
3
5
4
2
Z
1
28
13
1
4
5
7
7
4
3
9
5
7
10
5
6
6
6
3
2
10
1
3
2
2
2
2
28
10
2
5
5
7
7
3
3
8
5
9
9
5
7
5
7
2
2
9
3
3
1
2
1
3
28
9
3
-------
TABLE 3-5 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, APRIL 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
1
2
12
4
4
3
5
6
4
5
4
3
2
3
2
5
6
3
6
3
3
1
it
3
2
1
28
12
I
1
2
12
4
It
2
4
5
it
7
5
2
2
3
3
6
7
1
5
3
2
1
5
1
1
1
28
12
2
1
2
11
5
4
2
5
5
3
8
5
2
1
3
2
7
6
2
7
2
2
1
4
1
0
27
11
3
2
3
13
5
4
2
5
6
2
9
4
3
1
3
2
6
6
3
7
2
4
3
5
2
1
1
28
13
4
1
5
16
5
5
3
5
6
3
7
3
4
1
2
2
5
6
2
6
2
3
4
6
3
1
0
28
16
5
4
5
15
6
5
3
6
7
5
12
-------
TABLE 3-6 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. MAY 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLY
NO. OF
HAY UQI
OF
REEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
MEAN
DAYS
YUCAU
12
1
T
1
I
1
1
3
<•>
1
1
0
1
I
1
0
1
0
0
0
0
1
1
21
5
1
1
3
1
1
1
2
3
2
1
1
1
2
0
0
I
0
1
0
0
1
1
1
21
3
2
i
2
1
2
1
2
0
0
0
1
0
1
0
2
1
1
1
23
^
A
5
1
3
3
2
1
1
2
7
2
2
1
2
<•
1
1
•o
0
1
1
2
1
1
1
2
23
M
6
3
3
7
4
5
1
2
10
2
4
2
2
12
0
3
1
0
2
1
1
3
1
1
1
3
2*
1 J
7
<3
1
7
3
<.
1
2
7
3
3
1
3
6
1
1
1
0
5
1
-------
TABLE 37 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, JUNE 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
•EEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
1
1
2
I
I
\
0
i
1
1
c
0
1
1
1
2
1
C
0
0
0
1
21
c.
1
1
I
3
2
1
0
0
0
1
0
2
0
0
1
1
1
1
1
0
0
0
0
1
22
3
2
1
1
2
2
1
0
0
0
1
1
2
0
0
1
1
2
1
1
0
0
0
0
1
22
2
3
1
1
2
1
1
0
0
0
1
1
2
1
0
0
1
3
1
0
0
0
0
0
1
22
3
4
2
1
4
1
1
0
0
0
1
I
1
1
1
0
1
4
1
0
0
0
0
0
1
22
4
5
2
3
<>
1
1
2
0
0
1
3
1
1
1
0
1
3
1
0
1
0
0
0
1
22
GO
-------
TABLE 3-8 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, JULY 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLI
NO. OF
MAX.HRL
OF
IEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MEAN
DAYS
Y MEAN
12
1
0
0
c
0
0
1
c
c
0
0
1
3
1
3
1
1
1
17
1
1
0
0
0
0
0
0
0
0
0
0
0
1
t.
I
3
0
1
1
IB
4
2
1
0
0
0
0
0
0
0
0
0
I
1
5
1
1
3
1
1
1
18
5
3
1
0
0
0
0
0
0
0
0
0
0
1
1
3
1
1
4
1
2
1
19
^
4
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
3
1
Z
I
19
A
5
0
0
0
0
0
0
0
0
c
I
0
1
1
2
I
1
CO
-------
TABLE 39 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, AUGUST 1962
DAY
MONTH
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
20
21
23
24
25
26
27
28
29
•yn
31
MONTHLY
NO. OF
MAX.HRL
OF
WEEK
WED
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
r MEAN
DAYS
Y MEAN
12
3
3
1
5
3
2
2
5
5
5
5
8
3
3
2
2
0
7
27
8
1
3
2
I
""
3
2
2
2
5
5
5
4
6
3
3
2
0
7
27
7
2
3
1
1
6
3
3
2
2
4
4
5
5
6
3
3
3
2
0
5
27
6
3
1
3
2
1
6
3
3
2
1
5
4
6
6
3
3
3
2
0
5
28
6
4
0
3
3
1
5
3
4
2
2
4
4
*
7
3
3
3
2
1
5
28
7
A
5
1
3
3
2
1
5
3
3
2
2
5
6
4
4
5
7
3
4
2
1
5
28
7
M
6
3
4
2
1
1
3
7
5
2
5
5
5
6
4
6
11
4
5
4
5
3
1
8
28
11
7
2
5
10
2
2
1
3
6
4
4
2
5
A
5
5
6
8
5
4
6
3
1
10
5
28
10
B
1
3
14
3
2
1
3
4
6
3
1
5
7
4
4
7
5
5
4
3
5
^
3
1
12
28
14
9
3
8
2
1
3
3
5
5
4
4
7
4
4
3
3
3
0
17
4
22
17
10
2
6
2
1
0
7
3
4
3
5
6
4
5
7
6
3
4
3
2
3
0
2
16
4
25
16
11
2
2
7
3
4
1
6
3
3
3
6
5
4
4
7
5
4
3
3
2
5
3
1
2
7
4
27
7
12
3
2
4
1
1
5
2
3
3
6
6
5
6
3
3
3
2
2
2
1
2
4
3
27
6
1
3
2
2
1
1
2
3
5
6
5
3
4
3
2
3
2
2
4
3
24
6
2
3
2
3
1
4
2
2
5
6
5
5
3
4
5
3
2
3
2
2
5
3
26
6
3
3
2
6
2
5
2
2
1
5
4
5
4
4
3
4
4
3
2
2
2
5
3
27
6
4
2
2
4
4
7
2
2
3
1
5
5
5
4
4
3
4
4
3
2
1
1
2
4
3
29
7
P
5
2
3
2
1
2
2
2
2
1
6
5
4
4
4
3
4
4
3
2
0
2
2
2
3
29
6
M
6
2
3
2
1
2
2
2
2
1
5
4
4
4
4
3
3
2
0
2
3
2
3
29
6
7
3
2
2
0
4
3
3
2
2
4
5
5
4
4
3
3
3
0
3
3
2
3
29
5
8
3
2
3
2
3
4
3
3
2
5
4
5
5
5
3
3
3
1
4
4
2
3
29
5
9
5
3
2
2
2
3
3
3
2
5
4
4
5
5
3
3
3
0
4
4
3
3
29
5
10
6
3
1
2
1
3
3
2
2
5
4
4
7
8
3
3
3
0
4
5
2
4
29
8
11
4
3
3
1
1
3
3
2
1
4
4
4
5
8
3
3
2
0
4
6
2
3
29
8
DAILY
MEAN
2.5
3.0
2.8
1.7
1.9
4.3
3.1
3.0
3.1
2.1
3.3
s'.o
4.5
4.8
4.4
4.8
3.2
2.9
1.7
1.5
3.3
5.9
3.5
NO.
OFHR
19
24
24
24
24
23
14
24
24
24
17
22
19
24
24
24
24
23
22
22
24
23
24
24
23
24
24
24
659
5-MIN
MAX
7
6
19
7
6
9
7
6
6
6
13
6
7
6
8
5
6
8
11
9
11
6
5
8
10
5
5
7
30
-------
TABLE 3-10 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. SEPTEMBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
4
4
1
0
1
6
6
3
2
i
4
3
5
2
i
1
3
3
4
7
5
5
8
28
8
1
4
3
2
1
2
7
b
3
2
4
6
3
3
2
2
1
3
3
4
7
7
6
7
28
7
2
3
3
2
1
1
9
8
3
3
2
5
7
3
2
2
0
3
3
3
7
6
5
7
28
3
4
2
1
1
7
7
3
2
2
2
3
1
2
0
3
3
4
7
5
<,
8
28
8
4
3
4
1
0
1
6
7
3
4
2
5
5
3
4
1
3
0
3
4
5
5
6
8
6
9
28
9
5
?
2
1
3
1
6
7
4
2
5
5
4
3
1
6
2
4
5
5
4
9
9
6
8
8
28
9
6
2
2
2
3
2
5
9
9
b
4
5
13
2
5
5
2
7
5
6
8
4
16
9
8
8
11
6
28
16
7
3
5
3
2
3
4
9
10
5
S
4
7
fl
3
•b
4
2
7
2
9
5
17
11
6
q
17
6
28
17
8
3
3
3
3
2
4
10
9
3
3
b
15
3
2
5
3
4
2
3
3
9
5
9
10
5
8
12
5
15
9
2
2
4
2
3
6
8
2
J
4
4
7
3
2
7
3
3
3
3
7
4
7
5
6
9
4
25
9
10
2
2
5
4
5
6
3
2
4
4
7
3
2
5
3
3
3
3
2
4
5
5
6
5
7
6
4
26
7
11
2
1
7
3
4
3
4
2
4
3
7
13
2
4
2
3
3
2
3
3
6
b
5
5
5
5
4
26
13
f- M
12
3
1
4
4
4
3
2
7
1
4
3
3
3
6
6
5
5
4
22
7
1
3
1
4
4
3
3
2
3
4
2
2
0
3
2
3
5
6
4
6
5
3
25
6
2
3
1
4
1
6
4
3
2
2
3
2
' 3
4
0
3
2
3
5
6
5
5
5
3
27
6
3
3
1
3
1
5
4
3
2
3
3
2
5
3
1
3
2
3
6
7
4
5
5
3
27
7
4
2
1
3
1
4
3
3
2
3
2
3
2
3
2
0
3
2
3
6
6
4
6
4
3
2fl
6
5
2
1
3
1
4
3
2
3
5
2
2
2
3
2
0
3
2
4
5
6
4
6
5
3
28
6
6
1
- 2
1
3
3
2
3
3
3
2
5
3
3
2
0
3
3
4
4
5
6
3
6
7
4
28
7
7
1
1
1
4
3
3
2
3
5
4
5
11
3
2
1
3
3
4
6
5
7
4
6
7
7
28
11
B
1
1
1
4
3
3
3
6
5
4
3
4
2
0
3
4
4
6
6
6
4
6
7
7
28
7
9
1
1
1
4
4
2
2
5
3
5
3
2
2
0
3
4
4
4
6
6
5
8
9
7
28
9
10
0
1
1
5
3
2
2
5
3
5
3
2
2
2
3
4
4
4
6
6
5
a
8
9
2ft
9
11
5
I
1
1
7
3
2
2
5
4
5
4
2
2
3
3
4
3
4
6
5
4
8
8
9
28
9
DAILY
MEAN
3.0
2.0
2.5
1.3
3.0
3.6
5.4
5.0
2.9
2.9
3.0
4.4
5.7
3.* I
3.6
2.2
2.2
2.3
3.2
3.6
4.6
7.*2
5.9
6.0
6.7
7.2
(
NO.
OFHR
24
20
21
24
24
24
22
23
24
22
24
24
22
23
23
24
24
24
24
23
23
24
24
24
5-MIN
MAX
6
7
13
4
6
7
11
11
6
6
7
8
33
26
32
11
5
9
5
9
8
11
7
23
14
10
11
19
>54
-------
TABLE 311
HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. OCTOBER 1962
DAY
MONTH
2
3
5
6
7
8
9
10
11
12
13
14
16
17
18
19
20
21
22
23
24
25
26
27
29
30
31
MONTHL1
NO. OF
MAX.HRL
OF
WEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MEAN
DAYS
Y MEAN
12
6
5
5
7
6
8
7
6
7
10
u
9
5
6
5
7
7
6
i n
a
8
6
30
14
1
7
6
5
6
7
1 1
8
5
7
12
13
9
5
9
5
7
6
b
8
8
7
30
13
1
9
6
5
5
7
8
8
4
6
13
13
7
7
10
5
7
6
6
1 O
8
8
7
30
13
3
9
7
5
5
7
10
9
4
5
5
12
12
8
7
q
5
11
7
6
10
8
8
7
30
12
4
g
8
7
4
5
6
6
9
12
4
£
4
6
9
12
7
7
6
5
12
11
7
10
8
8
7
30
12
A
5
9
8
6
8
7
9
13
4
5
12
13
8
15
6
5
14
11
11
10
8
7
8
30
15
H
6
12
9
8
9
6
10
13
6
5
9
7
8
6
1 1
19
13
8
18
7
20
11
11
10
8
10
10
29
20
7
13
10
7
11
7
11
11
6
8
10
7
9
t ">
18
19
7
IB
14
23
11
11
i n
8
12
11
29
23
B
12
9
8
a
7
11
12
4
6
9
7
6
1 4
u
21
7
15
12
20
11
11
8
12
10
29
21
9
10
6
8
6
10
12
8
6
10
7
9
11
15
7
7
10
16
9
11
g
8
14
9
25
16
10
9
7
7
6
10
9
5
8
5
10
11
9
7
7
9
9
9
8
7
23
11
11
6
4
5
6
6
8
6
4
6
6
5
8
10
9
5
7
7
9
7
8
6
27
10
12
5
4
6
6
5
9
7
8
6
7
8
7
5
7
7
9
7
8
27
9
1
7
5
5
5
8
3
4
6
8
7
6
7
8
8
7
8
10
26
10
2
5
5
6
5
5
7
3
3
5
5
5
7
7
6
8
6
8
8
7
9
29
9
3
5
4
7
5
5
9
3
3
5
5
5
8
6
6
3
6
8
8
7
9
9
30
9
4
4
5
5
5
6
7
3
3
5
5
6
7
5
5
3
6
7
8
6
9
9
30
9
P
5
5
5
6
6
7
6
3
4
5
5
7
7
5
7
3
7
7
7
6
8
9
30
9
M
6
6
5
8
6
9
5
5
4
5
7
9
a
5
10
5
7
9
•V
7
8
10
30
10
7
7
5
7
7
10
4
8
3
7
7
11
10
5
10
1
10
11
10
8
12
30
12
8
6
5
7
7
11
4
8
4
5
6
14
9
5
10
5
11
11
10
8
12
30
1*
9
6
7
7
7
10
5
7
3
4
5
14
e
5
10
5
9
11
10
8
10
30
14
10
5
5
6
10
10
5
7
4
7
6
16
9
5
10
5
8
11
10
8
10
30
16
11
1
5
5
7
8
9
5
5
7
3
8
5
14
9
5
6
5
8
11 '
10
8
9
30
14
DAILY
MEAN
7 C
7.3
6.0
4 7
6.2
6.8
7.0
8.2
*.5
*.7
*.3
*.8
5.9
*•**
5.6
5.7
%*•
10.8
11.0
6.7
8.6
6.8
6.7
11.0
8.2
8.3
• *
8.1
9.7
NO.
OFHR
7?
23
22
24
24
24
24
23
21
24
24
24
24
23
22
24
24
24
24
23
17
24
24
24
23
21
69«
5-MIN
MAX
1*
11
10
15
13
17
18
15
11
7
10
13
9
11
23
25
10
20
1*
11
25
11
11
10
15
1*
-------
TABLE 3-12 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, NOVEMBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
NAX.HRLY MEAN
A M
12
8
3
6
15
7
1?
4
A
17
5
9
21
9
22
7
9
5
5
3
6
7
11
8
10
12
14
9
27
22
1
e
3
7
12
4
14
4
7
1 /
ft
9
20
8
21
6
4
3
6
d
9
8
9
12
16
9
26
19
3
7
3
8
9
1*
3
3
•3
18
5
11
14
8
Ifl
7
9
3
*
3
4
10
8
6
1 1
11
15
8
26
Ifl
4
9
6
7
9
15
3
3
5
11
7
9
20
12
17
7
6
4
6
4
5
10
7
6
1
20
Ifi
14
26
32
8
1 3
8
15
15
12
5
1 1
16
15
?7
18
13
12
11
13
7
4
10
15
Ib
4
9
13
1C
1 7
13
26
?6
9
12
13
7
14
10
6
7
13
10
21
31
13
12
11
10
7
4
7
7
12
7
9
12
13
17
11
26
31
10
8
13
6
16
10
6
8
12
24
19
1 1
11
9
4
4
6
5
10
6
9
14
13
10
21
24
11
8
19
4
20
1 1
4
6
10
1 3
16
1 1
7
7
4
7
5
13
6
9
13
12
9
22
20
P M
12
8
17
4
22
11
3
6
10
6
a
13
10
7
9
3
5
9
7
9
13
10
9
23
22
1
7
11
3
17
9
3
8
11
6
8
11
10
7
9
4
4
6
7
1?
12
7
8
23
17
2
6
4
11
10
3
10
6
7
12
8
7
6
10
3
4
5
5
11
12
7
7
22
12
3
6
1
9
8
3
8
6
4
8
11
a
6
7
3
4
6
5
9
10
13
7
7
23
13
4
6
1
7
8
4
8
5
4
10
12
9
6
«
12
4
5
8
5
10
12
12
9
7
?4
12
5
7
2
1
10
7
6
7
7
6
10
11
10
5
10
7
8
4
8
8
9
7
11
13
13
13
8
26
13
6
9
3
5
9
10
6
5
12
8
7
14
11
10
6
11
8
9
13
9
8
10
13
13
19
12
9
27
19
7
10
2
10
10
13
4
6
10
10
9
18
13
1 1
6
8
4
9
14
10
7
8
12
12
29
13
10
27
29
6
11
3
8
11
22
3
6
9
9
10
19
13
1 1
6
11
7
5
11
R
6
9
9
11
15
11
9
27
22
9
12
3
12
10
26
3
6
10
9
11
19
13
15
7
13
7
6
9
8
7
1 1
10
13
11
14
10
27
26
10
10
5
15
10
23
5
8
11
6
10
18
12
18
6
11
6
6
7
8
7
10
12
13
14
12
10
27
23
11
9
7
16
6
22
5
7
13
6
11
20
11
19
6
10
5
6
7
8
9
8
11
13
13
14
10
27
22
DAILY
MEAN
9.0
6.7
6.9
10.7
13.4
9.8
.'
4.6
8.6
11.3
8.6
14.3
17.3
11.3
11.1
9.4
B.5
5.7
4.2
6.9
7.0
9.3
7.7
9.1
12.1
14.4
13.1
NO
OFHR
24
23
15
16
24
24
23
24
23
22
24
24
24
24
20
23
18
24
24
24
24
24
22
21
24
24
5-MIN
MAX
18
24
19
21
30
22
9
16
23
23
29
42
19
22
21
16
12
8
16
23
19
13
16
17
31
21
9.5
610
-J
CO
-------
TABLE 3-13 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, DECEMBER 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHL
NO. OF
MAX.HRL
OF
WEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
1 MEAN
DAYS
Y MEAN
12
16
u
10
5
3
7
12
4
11
10
6
7
11
4
16
11
8
20
16
1
15
13
9
4
3
9
11
4
11
1 1
5
8
1 1
4
17
10
9
20
17
2
17
13
8
4
4
11
12
4
11
11
4
9
10
5
17
10
8
20
17
3
16
14
8
5
5
11
U
4
10
14
4
7
8
6
19
11
1
9
20
19
4
1*
14
11
8
5
11
12
<>
11
18
5
9
10
9
1*
11
5
9
20
18
A
5
14
11
12
7
7
12
13
5
13
U
5
8
17
8
13
11
10
20
17
M
6
16
7
13
8
8
15
18
6
13
10
5
6
18
9
15
12
10
20
18
7
19
8
14
7
6
20
15
6
16
10
5
9
11
9
17
12
11
20
20
e
IB
8
14
6
5
16
8
6
15
11
6
8
11
8
21
12
i n
10
20
21
9
15
8
12
5
4
14
7
6
16
9
6
10
11
8
16
11
9
20
16
10
16
7
12
4
U
7
14
10
5
9
10
13
8
9
17
16
11
10
8
11
2
6
10
6
15
14
5
9
10
10
12
j
8
18
15
12
7
6
9
3
5
8
8
14
12
6
9
11
10
13
8
18
!<•
1
7
5
7
6
6
7
12
11
13
5
9
11
8
13
8
18
13
2
5
4
6
4
7
6
13
12
9
4
9
9
6
8
7
18
13
3
5
5
8
4
7
6
13
11
12
5
10
10
5
11
7
18
13
4
6
8
11
5
7
7
10
14
12
14
5
11
9
6
14
8
19
1*
P
5
10
10
17
5
7
7
11
15
10
13
6
12
11
8
10
9
19
17
M
6
12
10
19
6
10
7
10
15
9
12
5
13
5
10
10
11
9
20
19
7
9
U
22
5
1*
9
12
16
9
7
7
13
5
9
11
14
10
20
22
e
7
12
23
6
15
12
12
15
11
5
7
12
5
13
11
14
10
20
23
9
7
13
25
6
14
13
16
15
12
5
6
11
4
11
15
9
10
20
25
10
9
12
29
4
8
12
13
13
10
4
6
12
4
13
14
8
9
20
29
It
10
13
29
3
7
11
14
12
11
5
6
11
4
14
13
6
9
20
29
DAILY
MEAN
11.6
9.7
14.0
5.1
7.0
10.5
12.1
9.3
12.0
10.6
5.3
9.6
9.1
9.2
12.7
10.8
.6
9.0
NO
OFHR
24
24
24
24
23
24
18
24
24
24
24
24
16
24
24
24
465
5-MIN
MAX
21
15
30
10
8
25
25
20
18
19
19
24
9
14
23
23
31
16
8
14
-------
TABLE 3-14 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. JANUARY 1963
DAY
MONTH
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL1
NO. OF
MAX.HRL
OF
IEEK
TIIF
WED
THU
•FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
MEAN
DAYS
Y MEAN
12
6
5
6
17
12
3
7
11
9
6
8
12
6
7
11
10
4
9
5
17
9
12
7
10
7
8
8
28
17
1
6
<•
•>
16
11
3
a
12
10
5
7
11
6
8
14
11
4
7
4
11
13
7
12
7
8
8
27
16
2
7
-------
TABLE 3-15 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. FEBRUARY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1 O
19
20
21
22
23
24
25
26
27
26
IEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
22
8
7
6
12
16
28
4
6
6
7
3
6
9
6
8
18
9
8
9
3
b
7
11
8
9
7
8
9
28
28
1
23
1 1
5
7
R
?1
21
4
5
4
10
3
4
10
5
7
22
1 3
6
9
4
5
8
9
8
1 1
5
7
9
?8
23
2
17
1 1
4
R
7
19
20
1
5
5
9
3
<>
9
7
7
19
10
9
8
•>
IS
9
9
8
8
6
6
9
28
20
3
1?
11
4
10
11
18
12
3
5
6
8
2
5
7
6
7
19
10
11
10
5
5
11
7
12
7
7
9
9
28
19
4
14
12
4
10
11
18
14
2
5
13
6
3
6
6
6
9
21
1*
13
10
3
5
16
8
16
7
9
7
9
28
21
5
15
14
4
12
10
20
13
7
7
11
6
10
8
9
7
U
25
17
17
10
5
6
16
7
22
R
U
7
11
28
25
B
16
17
4
13
18
26
16
7
6
12
9
12
10
10
10
11
25
21
10
12
8
7
17
7
23
11
17
9
13
28
26
7
17
16
-------
TABLE 3-16 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. MARCH 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MOM
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY IEAN
NO. OF DAYS
•AX. HOLY MEAN
A M
12
11
14
13
6
14
5
5
I*
15
6
7
6
6
4
7
10
6
3
6
5
6
5
10
4
4
8
11
5
4
7
31
15
1
14
13
13
6
18
5
5
17
18
6
8
5
6
5
5
8
4
3
5
4
5
5
13
5
4
7
11
5
5
8
31
18
2
13
12
16
5
17
5
7
10
18
10
7
7
6
<>
7
6
4
3
5
6
5
5
14
5
4
6
12
7
5
8
31
18
3
12
12
13
6
17
<>
7
6
18
11
10
7
6
6
7
10
5
3
5
6
7
5
15
5
4
5
12
7
5
8
31
18
4
12
10
14
7
19
5
9
V
19
11
14
7
7
5
9
8
5
3
6
5
7
5
12
5
3
4
6
6
5
8
31
19
5
13
13
21
10
15
6
11
6
13
U
12
10
10
8
11
11
6
6
7
6
6
5
8
13
6
6
8
5
6
6
6
9
31
21
6
14
18
21
13
10
9
9
8
10
21
12
16
13
14
17
12
8
11
a
10
8
10
9
12
7
6
8
7
8
7
7
11
31
21
7
18
27
21
9
11
11
10
8
12
la
10
21
16
U
20
17
10
9
9
U
11
10
8
15
a
6
11
10
5
10
5
12
31
27
8
15
15
19
10
13
10
11
8
10
7
12
25
13
12
11
14
9
9
10
14
11
10
6
18
6
6
12
13
4
8
4
11
31
25
9
16
11
10
8
16
16
10
9
13
5
28
17
11
7
10
8
9
U
16
8
9
5
16
6
7
8
9
5
6
3
10
30
28
10
14
11
9
9
13
12
7
8
14
4
25
15
11
5
6
6
9
9
a
9
6
6
6
7
6
5
5
5
3
9
29
25
II
13
10
7
6
11
10
7
7
10
4
21
10
6
4
6
8
8
9
9
6
7
9
4
6
6
4
7
3
8
28
21
P M
12
12
9
7
6
16
B
7
9
8
17
10
7
4
7
7
8
8
8
9
5
6
7
3
5
5
5
3
30
17
1
11
9
7
7
15
6
7
11
18
9
9
5
7
7
8
9
9
5
4
5
3
5
5
2
29
18
2
10
10
6
8
13
5
11
10
12
7
9
6
6
7
6
7
7
5
5
5
4
4
3
2
29
13
3
11
8
6
9
5
6
9
14
5
9
5
6
5
7
6
6
5
5
5
5
2
26
14
4
10
8
6
10
10
5
7
8
18
14
4
7
5
7
5
5
5
8
4
5
5
6
5
4
8
2
31
18
5
11
8
a
12
10
5
11
9
19
15
5
9
5
7
5
5
4
7
5
7
6
6
4
4
6
3
31
19
6
10
9
11
20
8
10
7
7
6
9
11
15
6
9
5
6
5
4
8
5
8
7
7
6
5
6
4
3
8
31
20
7
10
11
13
18
7
8
10
12
7
9
17
14
8
6
6
7
4
4
9
11
7
6
6
8
8
5
4
8
31
18
e
13
12
11
13
6
8
11
13
8
8
13
9
8
6
5
8
4
5
8
11
5
5
4
9
9
6
3
B
31
13
9
16
16
12
10
6
9
12
14
8
7
10
10
7
8
7
7
4
6
7
12
6
6
7
10
10
5
4
8
31
16
to
15
13
12
10
5
7
13
1*
9
8
11
6
B
12
8
7
7
7
7
15
6
5
8
10
11
5
4
8
31
15
11
12
16
11
11
5
6
19
15
5
6
6
10
5
8
8
7
7
6
6
6
10
4
4
8
8
10
4
4
8
31
19
DAILY
MEAN
L2.8
12.3
LI. 9
9.4
LI. 9
7.9
8.4
9.1
10.8
7.7
9.2
14.5
L0.7
7.9
8.8
7.6
5.9
6.3
6.5
7.1
7.5
7.3
9.0
5.7
5.0
6.7
7.2
5.9
5.1
NO.
OFHR
24
Z4
24
24
23
24
24
24
Z4 .
24
21
22
21
24
24
24
24
24
22
22
23
24
24
24
24
23
24
23
24
24
24
5-MIN
MAX
21
38
28
22
25
21
22
21
25
34
19
32
22
20
29
21
13
17
!<•
20
14
13
17
24
11
10
17
15
16
12
8
8.3
728
-------
TABLE 3 17 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, APRIL 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
MONTHLY
NO. OF
MAX.HRL
OF
KEEK
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MEAN
DAYS
Y MEAN
12
3
1C
7
-------
TABLE 3 18 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. MAY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
HONTHL1
NO. Of
MAX.HRL
OF
WEEK
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
r MEAN
DAYS
Y MEAN
12
1 1
6
3
3
5
3
5
2
2
1
1
1
1
2
1
1
1
1
3
1
1
1
0
0
2
27
11
1
10
9
6
3
3
3
5
2
2
1
1
1
2
2
1
0
1
1
2
1
1
1
0
1
2
27
10
2
8
3
3
7
4
4
3
2
1
1
1
2
2
1
0
1
1
2
1
1
1
0
0
0
27
11
3
12
10
4
3
5
2
4
7
2
1
1
1
1
2
1
1
1
2
2
1
1
1
0
0
0
27
12
4
9
5
3
2
it
7
10
2
1
1
1
1
2
1
1
1
3
2
1
1
1
0
0
0
27
13
A
5
15
12
5
5
2
4
9
7
2
1
1
1
2
2
1
1
2
3
3
1
1
1
1
1
2
27
15
M
6
16
5
4
2
4
13
4
2
2
1
1
2
2
1
2
3
5
4
1
1
2
1
1
3
4
27
24
7
38
18
6
4
3
7
17
3
2
1
1
1
2
2
1
4
2
5
7
1
1
2
0
1
1
5
27
38
8
16
6
5
3
5
16
2
2
1
1
1
2
2
1
5
1
2
2
1
1
2
1
0
0
4
27
34
9
11
7
7
3
6
13
2
2
1
1
1
1
1
1
1
1
2
3
3
1
1
1
0
<>
26
22
10
8
7
7
4
4
5
2
2
1
1
1
• 1
1
1
1
1
2
1
2
1
2
1
0
3
26
11
M
4
9
6
4
3
5
1
2
1
1
1
1
1
1
1
1
1
2
2
1
2
2
0
2
26
9
12
3
7
6
2
4
3
4
1
2
1
1
1
1
1
1
1
2
1
1
1
2
0
2
2*
8
1
4
4
7
3
3
1
2
1
1
2
1
1
1
1
1
0
1
2
19
7
2
3
4
6
2
2
1
1
1
2
2
1
1
1
1
1
0
0
1
2
20
6
3
4
3
5
1
2
3
1
1
1
1
2
1
1
2
1
2
1
1
0
0
1
2
23
5
4
4
5
4
1
3
3
2
1
2
1
1
1
2
1
1
1
3
1
2
1
1
0
0
1
2
26
5
P
5
5
4
3
1
4
3
3
1
3
1
1
1
2
1
1
1
1
2
1
2
1
1
0
1
1
2
27
5
M
6
6
3
3
1
2
4
1
3
1
1
1
2
1
1
1
1
2
1
3
1
1
1
0
2
2
27
7
7
5
3
3
2
3
6
3
3
1
1
1
2
1
1
2
1
2
1
4
1
0
0
0
6
2
27
7
e
5
3
5
3
4
3
4
5
1
1
2
2
1
1
1
2
2
1
2
1
1
0
1
3
2
27
7
9
5
4
3
3
5
3
3
5
1
1
2
2
1
1
1
4
2
1
1
1
1
0
2
2
2
27
6
10
5
3
3
4
2
6
3
2
5
1
1
2
2
1
1
1
1
2
1
1
1
1
0
3
2
2
27
6
11
3
3
4
2
5
5
4
2
7
1
1
Z
2
I
1
1
1
3
1
1
1
1
0
2
3
2
27
8
DAILY
MEAN
1 6
7.*
*.7
*.«»
3.0
3.5
3.7
5.9
2.8
2.7
.'
1.0
1.0
1.1
1.6
l.«
1.1
1.3
l.«
2.3
1.9
1.6
1.0
1.1
0.5
0.6
1.6
2.8
NO.
OFHR
24
24
24
24
22
21
2*
24
24
22
7t
22
24
24
24
22
20
24
22
22
24
24
24
23
22
24
20
622
5-MIN
MAX
AC
25
10
10
7
8
10
2*
11
8
2
4
2
2
3
3
7
5
6
11
5
3
4
4
8
9
-------
TABLE 3 19 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. JUNE 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY MEAN
NO. OF DAYS
MAI.HRLY MEAN
A M
12
3
0
0
1
0
1
0
0
0
1
1
0
0
0
0
0
2
2
0
1
1
1
0
1
1
0
0
0
0
0
1
30
3
1
1
0
0
1
0
2
0
0
0
1
1
0
0
0
0
0
3
1
0
1
1
1
1
1
1
0
0
0
0
0
I
30
3
2
1
0
1
1
0
0
0
1
0
2
I
0
0
0
0
0
2
2
0
1
0
1
0
1
1
0
0
0
0
0
I
30
2
3
1
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
2
0
1
0
1
1
1
2
0
0
0
0
0
1
30
2
4
1
1
1
1
0
0
2
0
0
2
1
0
0
2
0
2
2
1
0
I
0
1
1
1
1
0
0
0
0
0
1
30
2
5
1
2
2
3
0
2
1
0
0
2
2
0
0
2
1
2
3
2
0
1
1
1
1
1
I
1
0
0
0
0
1
30
3
6
1
1
2
5
0
3
2
0
0
3
3
0
1
2
1
2
5
3
0
1
1
1
1
2
2
4
1
0
0
0
2
30
5
7
1
1
2
4
0
2
2
0
0
it
3
0
1
1
0
2
it
it
I
I
1
1
1
3
3
3
0
0
1
2
29
it
a
i
i
i
6
0
2
1
0
0
24
21
24
24
24
24
24
24
23
19
24
23
20
24
24
24
22
22
24
24
24
24
23
23
24
24
24
24
24
5-MIN
MAX
4
3
4
12
3
4
5
7
4
5
5
1
2
7
1
4
7
5
2
2
15
2
2
6
4
6
5
5
1
7
0.8
700
00
o
-------
TABLE 3-20 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. JULY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL1
NO. OF
MAX.HRl
OF
WEEK
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
MEAN
DAYS
Y MEAN
12
1
0
0
0
0
0
1
0
1
5
it
5
9
0
1
1
1
1
3
0
1
0
1
1
0
0
2
30
9
1
1
0
0
0
0
0
0
1
1
4
4
5
8
0
1
1
1
I
3
0
0
0
2
0
0
0
?
30
8
2
0
0
0
0
0
0
1
1
1
3
4
6
6
7
1
1
1
1
2
3
0
0
0
1
0
0
0
2
30
7
3
0
0
0
0
0
0
0
0
1
3
5
5
6
1
1
0
1
2
it
0
1
1
3
1
1
0
2
30
6
4
1
1
0
0
0
1
0
0
1
4
6
6
6
1
I
1
2
3
5
0
0
2
2
1
1
0
2
30
7
A
5
2
1
0
0
0
1
1
2
2
8
7
7
7
7
2
1
1
2
2
4
0
1
1
2
1
1
2
3
30
8
M
6
it
3
0
0
2
5
-------
TABLE 3-21 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. AUGUST 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
t.
3
1
0
2
0
0
0
0
1
0
0
0
0
15
4
1
0
1
2
1
0
1
0
0
0
0
1
0
0
0
0
15
2
2
0
0
2
0
0
1
0
0
0
0
1
0
0
0
0
15
2
3
0
0
2
0
0
1
0
0
0
0
1
0
0
0
0
15
2
4
0
0
2
0
0
2
0
0
0
0
1
0
0
0
0
15
2
5
0
0
2
0
1
5
0
0
0
0
2
1
0
0
2
15
5
6
0
2
2
0
1
6
0
0
0
0
3
6
0
0
2
15
6
7
0
2
5
0
2
2
0
0
2
0
4
0.2
0.4
0.9
0.0
0.0
0.2
0.2
1.0
0.7
0.0
0.0
0.4
NO.
OFHR
24
24
24
23
24
23
20
24
22
24
21
24
16
24
24
5-MIN
MAX
13
5
11
2
10
8
3
0
4
6
6
8
2
1
3
341
00
N3
-------
TABLE 3-22 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. SEPTEMBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MONTHLY MEAN
NU Ur UATi
MAX.HRLY MEAN
A M
12
0
0
0
0
1
2
2
2
1
3
0
0
0
1
2
2
3
2
3
0
0
0
1
1
2
3
3
1
0
0
0
1
2
2
2
4
0
0
0
0
1
1
2
2
5
0
0
0
0
1
1
3
3
6
0
1
0
0
1
2
2
2
7
1
1
0
0
0
1
2
2
a
i
0
0
0
0
2
2
2
9
0
0
0
0
0
2
2
2
10
0
0
0
0
0
1
2
2
11
0
0
0
0
0
0
1
1
1
P M
12
0
0
0
0
0
1
1
1
1
1
0
0
1
0
0
1
2
2
2
2
0
0
0
0
1
1
2
0
2
3
0
0
0
0
1
1
2
0
2
4
0
0
0
0
1
1
2
0
8
2
5
0
0
0
0
1
1
2
0
2
6
0
0
0
0
1
1
2
0
2
7
0
0
0
0
1
1
2
0
2
8
0
0
0
0
1
1
2
0
2
9
0
0
0
0
3
2
2
0
3
10
1
0
0
0
2
1
2
0
2
11
0
0
0
0
2
2
2
0
2
DAILY
MEAN
0.1
0.3
0.3
0.0
0.0
0.7
1.2
1.8
0.9
NO
OFHR
13
24
14
17
24
24
24
24
17
5-MIN
MAX
2
7
3
0
1
B
4
3
3
CO
GO
-------
TABLE 3 23 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. OCTOBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29
30
31
MONTHL1
NO. OF
MAX.HRL
OF
WEEK
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
r MEAN
DAYS
Y MEAN
12
1
0
1
1
1
1
0
1
1
1
0
0
1
6
8
4
2
3
2
1
2
3
2
25
8
1
1
0
1
1
1
1
0
1
1
2
0
0
0
8
8
2
2
3
3
2
3
2
25
8
2
1
0
0
1
0
1
0
1
1
2
0
0
1
9
6
f
I
3
3
2
1
2
3
2
25
9
3
1
0
0
1
0
1
0
0
1
2
0
0
0
7
7
0
3
3
2
1
2
3
2
25
9
4
1
0
0
1
0
1
0
1
1
2
0
0
7
6
g
0
3
3
2
2
y
3
2
24
8
A
5
1
0
1
1
0
1
1
1
1
2
0
0
7
7
i n
i
4
4
2
2
3
2
24
10
M
6
1
0
l
i
1
1
1
i
i
3
0
1
7
8
i 7
i
4
4
2
2
7
3
3
24
17
7
0
1
1
0
1
1
1
1
1
0
1
10
9
1
5
5
2
2
4
3
23
10
8
0
0
1
1
1
1
1
1
1
0
1
1
13
1 4
i
5
5
2
2
i
4
3
21
14
9
0
0
1
1
1
1
0
1
1
0
3
i
16
5
1
3
4
2
2
i
4
2
22
16
10
0
0
1
1
0
0
0
1
1
0
1
1
17
3
3
3
2
3
2
?1
17
11
1
0
1
1
1
0
0
1
1
2
0
1
0
8
14
1
3
3
2
3
3
2
24
14
12
0
0
1
1
1
0
0
0
1
1
0
0
5
10
2
3
3
2
3
3
2
23
10
1
0
0
1
1
1
0
0
1
1
1
0
0
5
10
4
3
2
3
3
2
23
10
2
0
1
1
1
1
0
0
1
1
1
0
6
4
2
3
3
2
2
3
2
23
6
3
1
1
1
1
0
0
1
1
1
0
0
1
5
2
2
3
2
2
2
3
2
23
5
4
1
1
1
1
1
0
1
1
1
1
0
0
1
5
2
3
3
2
2
2
3
2
25
5
P
5
1
0
1
1
1
0
0
1
1
2
0
0
5
3
2
2
2
2
2
2
2
24
S
M
6
1
0
1
1
1
0
0
1
1
1
0
1
0
6
<,
3
2
2
2
2
2
2
25
7
7
1
0
1
2
1
0
1
1
1
1
0
0
0
6
6
3
2
2
1
2
2
2
25
9
8
0
0
1
2
1
0
0
0
1
1
0
7
8
3
2
2
2
2
2
2
23
12
9
0
0
1
2
1
0
0
0
1
0
1
8
11
2
3
2
2
1
1
2
23
11
10
0
0
1
2
1
0
0
1
1
0
1
2
9
11
2
2
3
1
1
1
2
24
11
11
1
1
1
2
1
0
1
1
1
0
1
3
9
9
2
3
2
1
2
1
2
24
9
DAILY
MEAN
0.6
0.3
0.9
1.2
0.7
0.4
0.3
0.7
1.0
1.4
0.0
0.6
0.8
6.9
8.2
.T
1.8
.9
3.0
3.0
1.9
1.9
• o
2.7
2.2
5
NO.
OFHR
24
23
23
24
24
21
24
24
24
21
23
22
13
21
24
22
24
24
24
24
24
68
5-MIN
MAX
6
1
1
3
1
1
1
3
2
10
0
<,
3
13
21
31
5
6
5
11
5
6
00
-------
TABLE 3 24 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON, NOVEMBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
WEEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
•ONTHLY MEAN
NO. OF DAYS
•AX.HRLY MEAN
A M
12
1
1
1
0
1
0
1
1
1
2
3
4
3
1
2
1
2
2
3
2
22
*
1
0
1
1
0
1
1
1
1
1
2
3
3
3
1
3
1
2
2
2
4
2
22
4
2
0
1
1
0
1
1
1
0
1
2
3
3
3
1
3
1
2
2
5
2
22
5
3
0
1
1
0
1
0
1
1
1
2
2
3
3
1
3
1
1
3
4
2
22
4
4
0
2
1
0
1
0
1
1
0
1
2
3
3
1
2
1
1
2
5
2
22
5
5
0
2
2
1
1
I
1
1
0
2
2
3
3
1
3
1
1
2
6
2
22
6
6
1
2
1
1
1
1
1
0
2
3
3
1
3
1
1
2
7
2
20
7
7
1
2
1
1
1
1
1
1
3
3
3
1
4
1
2
3
9
2
20
9
8
1
2
1
2
1
1
1
1
1
4
3
3
4
2
6
1
2
3
9
3
23
9
9
1
2
1
2
1
1
I
1
1
2
3
3
2
4
2
6
1
2
3
9
3
24
9
10
2
2
1
2
2
1
1
1
1
0
1
2
3
3
3
3
2
5
2
1
3
a
2
26
8
11
2
2
1
1
2
2
1
1
1
0
1
3
2
3
3
2
3
2
1
2
7
2
25
7
P M
12
2
2
1
1
3
2
1
1
1
0
3
2
3
3
2
2
3
2
1
2
2
7
2
25
7
1
2
1
2
1
3
2
1
1
1
1
3
3
3
3
<>
2
1
2
2
2
2
2
6
2
26
6
2
2
1
1
1
2
0
1
1
1
1
3
2
3
3
2
1
1
2
1
2
a
2
25
8
3
2
2
0
1
1
1
1
1
1
1
3
2
3
2
2
2
1
1
2
3
3
2
25
8
4
1
2
1
1
1
1
1
1
1
1
3
2
3
2
2
2
2
1
1
2
2
6
2
26
6
5
1
1
0
i
i
0
1
1
1
1
3
2
3
3
2
2
2
2
1
2
2
a
2
26
a
6
1
1
0
i
i
i
i
i
i
i
3
2
3
3
2
2
2
1
2
2
3
2
a
2
26
8
7
2
1
1
1
1
1
1
1
1
2
3
2
-------
TABLE 3-25 HOURLY AVERAGES OF SULFUR DIOXIDE, pphm (conductometric analysis)
WASHINGTON. DECEMBER 1963
DAY
MONTH
1
2
3
4
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLY
NO. OF
MAX.HRL
OF
IEF.K
SUN
MON
TUE
WED
THU
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MEAN
DAYS
Y MEAN
12
9
19
17
2
2
2
0
2
1
1
1
0
1
1
7
10
5
i n
21
19
1
10
20
20
2
3
2
0
2
1
2
1
0
1
I
7
10
6
i n
21
20
2
8
1$
22
5
3
1
0
1
1
1
1
0
1
0
5
9
6
14
21
22
3
8
21
22
3
2
2
0
2
1
1
1
0
1
0
5
8
5
16
21
22
4
11
21
28
3
2
2
0
3
1
1
1
0
1
0
5
8
6
14
21
28
A
5
13
16
19
3
2
2
0
3
1
2
1
0
1
I
4
8
2
14
21
19
M
6
18
20
26
3
2
2
0
3
1
2
1
0
2
1
15
1
8
4
14
6
21
26
7
20
20
34
4
2
4
0
3
1
2
1
0
2
1
19
1
8
10
20
8
21
34
8
20
20
31
4
3
3
4
1
1
1
0
2
1
20
1
8
9
18
8
20
31
9
18
20
33
3
2
1
2
1
1
1
0
2
1
22
0
9
9
15
7
20
33
10
8
14
39
2
2
1
2
1
1
1
1
1
2
2
1
6
21
3
7
8
1 y
6
23
39
11
7
14
27
3
2
2
2
2
2
1
1
1
1
1
5
19
3
3
8
14
6
22
27
12
7
14
19
3
2
1
2
2
0
1
1
1
1
1
3
8
7
2
4
7
5
22
19
1
7
15
18
2
2
2
2
2
1
1
1
1
3
7
2
3
4
18
18
2
6
14
21
3
2
1
2
2
0
I
1
1
0
3
5
2
2
5
4
20
21
3
6
16
19
3
2
1
2
2
0
1
1
1
1
0
2
5
5
2
2
4
4
22
19
4
7
U
18
2
2
2
2
1
2
1
3
1
1
1
0
2
3
4
2
2
4
4
22
18
P
5
9
22
18
3
3
1
0
2
1
1
1
1
1
1
6
4
3
2
7
4
4
22
22
M
6
11
11
15
2
1
2
2
0
2
2
1
1
1
1
1
3
9
8
4
4
22
15
7
10
10
14
2
2
3
1
0
2
1
1
1
1
1
1
4
8
10
4
4
22
14
e
n
13
14
3
3
2
0
2
1
1
1
1
1
1
3
7
5
5
22
14
9
17
12
12
2
2
1
0
2
1
2
1
1
1
1
6
7
6
5
22
17
10
18
15
2
2
1
0
2
1
2
1
0
1
1
9
9
6
5
21
18
11
19
17
2
2
2
0
1
1
1
1
0
. 1
1
7
10
6
5
21
19
DAILY
MEAN
11.5
16.4
22.1
2.5
.4
2.7
i.e
i.*
1.2
1.5
1.2
1.2
0.9
0.5
1.0
0.9
4.4
6.1
9.6
3.0
5.6
12.4
5.2
NO.
OFHR
24
24
22
14
24
24
24
22
22
24
24
24
21
24
13
14
24
22
24
24
23
24
509
5-MIN
MAX
23
30
50
13
17
11
9
2
8
8
3
2
6
2
2
12
10
24
18
16
11
27
CD
OS
-------
TABLE 3-26 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, JANUARY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
WON
TUE
WEO
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WEO
THU
FRI
SAT
SUN
MON
TUE
WEO
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
3
9
1
2
>»
4
4
15
0
13
1
2
4
2
4
6
5
15
4
1
t
1
0
4
24
15
1
11
2
9
1
1
4
2
3
14
0
8
I
4
4
2
1
3
6
-------
TABLE 3 27
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. FEBRUARY 1962
OAT
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
MONTHLY
NO. OF
MAX.HRL
OF
IEEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MEAN
DAYS
Y MEAN
12
2
0
4
1 1
c
3
3
4
e
i
2
0
16
i
t,
16
1 7
1
2
0
4
12
0
2
2
3
9
1
1
0
R
2
3
16
12
2
2
1
2
1 1
0
1
4
1
2
9
1
0
0
5
2
3
16
11
3
1
1
2
9
0
0
1
3
9
2
0
Q
4
2
?
16
9
4
1
1
1
7
0
0
0
4
6
1
0
0
5
2
2
16
7
A
5
2
2
1
10
0
0
c
5
7
1
0
1
5
2
3
16
10
M
6
4
3
2
11
0
1
1
6
6
3
0
i
5
2
3
16
11
7
6
4
2
15
2
3
2
6
S
3
1
4
13
<>
5
16
15
8
7
5
1
3
4
t.
7
10
5
1
7
16
i
15
16
9
10
e
i
3
6
3
7
11
5
1
8
18
5
15
18
10
7
8
0
2
7
1
5
12
3
0
17
16
9
15
17
11
5
b
\
2
5
2
5
10
1
1
18
14
8
15
18
12
3
it
1
2
2
4
2
7
9
0
0
13
8
15
13
1
3
3
1
2
?
1
8
7
1
0
8
11
5
U
11
2
1
2
3
'
1
1
1
4
0
5
1
7
1
6
6
2
5
3
t 1
7
P
5
1
7
2
10
2
U
2
6
7
0
2
(3
9
6
15
10
M
6
1
7
3
3
12
I
6
3
7
6
1
2
15
10
4
<>
16
15
7
1
6
5
6
0
-------
TABLE 3-28
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, MARCH 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY MEAN
NO. OF DAYS
MAX. HOLY MEAN
A M
12
1
1
3
H
7
1
1
5
1
8
1
0
2
2
2
2
6
1
8
1
1
3
1
1
3
25
8
1
I
0
1
6
5
1
1
5
1
6
1
0
I
1
1
0
5
1
2
1
1
3
1
1
2
25
6
2
0
0
1
4
3
1
0
1
1
4
0
1
0
1
1
1
0
10
1
I
•1
0
3
0
1
1
26
10
3
0
0
1
2
3
1
0
1
1
3
I
1
0
0
1
0
0
8
1
1
0
0
3
1
1
1
26
8
4
0
0
I
3
3
0
0
2
4
3
2
1
0
0
1
0
0
11
0
0
I
1
4
1
1
2
26
11
5
0
0
1
2
3
0
0
2
4
3
2
1
0
0
1
0
0
13
1
1
1
2
4
1
2
2
26
13
6
0
1
1
1
4
1
1
3
4
2
3
3
1
2
2
1
0
12
1
3
3
<>
a
<•
4
3
26
12
7
2
2
2
1
5
2
2
•5
7
2
7
1 1
ft
5
5
1
0
If.
3
i.
5
R
13
4
5
5
26
16
B
3
2
2
0
5
2
3
5
a
i
a
1 1
4
5
6
2
0
15
5
3
3
6
1 1
6
5
5
26
15
9
3
2
2
0
3
1
3
3
6
1
4
6
3
3
4
1
0
5
2
2
2
7
3
3
3
25
7
ro
2
2
1
0
3
1
3
2
2
1
7
4
2
2
1
1
0
2
2
1
1
5
2
2
2
25
7
11
2
1
1
0
3
1
1
1
2
1
3
2
1
2
1
0
0
2
1
. 2
1
1
2
1
I
25
3
P M
12
1
1
1
1
2
2
1
1
2
0
3
1
1
I
1
0
n
i
0
2
1
1
1
I
1
25
3
1
1
1
I
0
3
I
1
0
2
0
2
I
I
1
1
1
0
1
0
2
0
1
0
2
I
25
3
2
3
0
0
0
0
0
0
0
0
0
• o
I
2
13
2
4
1
1
2
1
4
4
1
I
5
1
3
3
2
1
1
0
0
1
2
2
1
2
3
2
?<•
5
5
2
3
2
1
3
3
2
2
8
2
2
2
3
2
3
1
0
3
2
2
2
3
3
2
2<>
8
6
3
3
2
2
2
2
3
3
B
3
4
3
3
2
3
1
0
3
2
2
3
3
4
3
24
8
7
3
4
6
6
1
1
6
3
10
1
1
3
2
4
2
2
4
3
3
5
3
2
3
23
10
B
3
5
6
9
1
1
7
4
10
1
1
2
3
3
2
3
2
e
3
9
2
4
4
23
10
9
2
5
7
10
2
1
9
V
10
1
0
3
3
3
2
4
2
12
2
4.
1
4
4
23
12
10
2
5
7
6
3
1
8
5
8
1
1
2
3
2
3
6
2
4
3
4
1
2
4
23
8
11
2
4
7
6
2
1
5
2
7
5
2
0
2
1
2
4
7
1
1
3
2
1
3
3
23
7
DAILY
MEAN
1.5
2.0
2.6
3.0
3.1
1.3
2.<.
2.5
*.7
3 7
1.9
2.9
2.7
1.7
1.8
2.1
1.1
1.1
5.6
1.*
2.3
2.5
2.2
«.7
2.1
2.<.
NO.
OFHR
22
22
22
22
22
22
23
23
23
23
23
18
20
22
23
23
23
23
21
!<•
14
22
22
20
22
23
5-MIN
MAX
4
6
a
10
7
5
9
6
11
i i
10
11
!<•
6
6
6
4
8
19
6
12
1*
9
15
9
7
*.5
557
CD
CO
-------
TABLE 3 29 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. APRIL 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
IS
19
20
21
22
23
24
25
26
27
28
29
30
KEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
\j
1
1 !
0
1
2
4
3
1
4
i
1
1
6
2
1
5
3
0
5
g
7
0
12
9
C
3
1
1
3
30
17
1
0
0
C
14
0
1
1
2
10
1
3
1
1
1
t~
2
1
5
h
0
1
•5
<«
0
1 '
<«
0
1
1
1
3
10
17
2
n
0
0
20
0
1
0
2
J
0
1 7
I
1
1
3
1
1
4
5
0
1
2
n
n
15
3
0
1
0
1
3
30
20
3
0
0
0
22
1
2
0
3
6
0
1 1
1
1
n
2
1
1
3
3
0
0
1
2
,1
21
1
i;
1
1
0
3
30
22
4
n
0
0
12
0
2
0
3
M
0
3
1
1
0
1
1
1
0
3
0
0
2
1
T
2 /
3
0
1
0
1
2
30
2V
5
0
0
0
12
1
2
1
3
7
0
7
1
2
0
1
1
1
0
3
0
1
1
2
1
2C
6
0
I
C
I
2
30
20
6
0
i
2
23
4
4
1
2
7
4
6
2
3
1
1
2
3
2
}
0
2
?
4
4
13
5
1
2
0
2
3
30
23
7
1
i.
3
17
5
1
3
10
<•
3
4
S
2
T
1
•j
2
I?
1
1
2
<<
rj
7
9
3
2
1
4
i.
29
1 7
8
1
3
2
1 0
5
2
1
1 3
t>
1 J
4
7
^
0
J
4
2
..
2
1
2
b
2
5
4
3
I
1
4
i.
29
10
9
1
2
1
3
4
2
•)
3
4
2
9
1
0
2
3
0
1
0
0
1
2
1
4
3
2
1
1
3
2
28
9
10
2
1
1
1
1
2
4
6
2
2
2
9
1
1
1
0
0
0
0
1
1
0
1
1
1
1
2
.2
27
9
11
2
1
0
1
1
3
. 4
6
2
2
2
7
1
1
0
0
0
0
2
1
0
0
0
1
1
2
25
7
P M
12
1
1
1
1
1
2
4
5
2
2
3
5
1
1
1
0
0
0
Q
,"l
1
1
0
^
0
0
1
2h
5
1
1
I
1
0
2
2
5
2
2
3
2
1
1
1
1
0
0
0
0
1
1
0
0
0
0
I
1
1
27
5
2
1
1
2
I
3
1
I
1
1
1
2
2
<.
2
1
10
<>
5
1
2
3
1
1
2
b
3
2
2
c*
<>
3
1
1
2
2
1
0
1
0
1
1
0
1
1
I
1
1
1
2
30
b
6
J
2
2
I
1
1
ID
'•i
I
3
(•+
/*
3
1
1
2
2
1
0
1
1
1
1
0
1
1
2
1
1
1
2
30
10
7
1
3
2
2
1
1
1 1
10
1
7
1
3
2
2
2
2
2
2
1
7
3
1
1
<.
1 1
1
1
1
1
1
3
30
1 1
B
0
3
3
1
1
1
10
B
1
7
1
2
1
<•
2
2
2
3
1
6
18
3
1
14
30
0
1
1
1
0
<,
30
30
9
1
i>
6
1
1
1
2
1
I
10
2
2
1
6
2
1
2
2
0
10
16
7
1
27
23
1
1
0
1
1
5
30
27
10
0
t.
J
1
1
1
3
1 1
2
1 1
2
2
1
r
2
1
b
3
0
5
1ft
1 3
1
3<.
12
1
1
0
1
0
5
30
3<.
11
0
3
10
1
1
1
2
13
2
b
2
2
1
^
2
2
9
3
0
t.
12
12
0
21
12
1
i
0
1
0
H
30
21
DAILY
MEAN
0.8
1.6
2.1
7.1
1.3
1.*
2.8
4.6
5.2
3.2
<•.*
2.5
3.0
1.8
1.6
1.6
2.<-
l.fl
2.0
1.9
3.6
3.1
1.9
5.1
11.5
3.2
0.9
0.8
0.8
1.2
NO
OFHR
22
22
23
23
20
16
23
23
23
22
22
23
23
23
22
21
20
22
22
22
22
22
21
22
20
19
22
22
21
21
5-MIN
MAX
4
6
12
30
6
6
15
1 7
13
14
22
5
10
10
8
4
10
7
14
12
25
16
8
40
35
1 1
3
4
2
5
2.8
649
CD
O
-------
TABLE 3-30 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. MAY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
TUE
WED
THU
FRI
SAT
SUN
MON
TMF
I Uu
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
TUN
i nu
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
1
1
1
2
0
3
2
16
1
1
0
1
6
1
0
1
1
1
1
1
2
0
(^
2
5
I
2
0
1
5
1
0
1
7| 4
0
0
1
0
0
2
2
1
6
1
1
1
2
29
16
0
0
1
1
0
3
5
0
5
1
I
0
2
29
5
2
1
1
1
3
0
2
1
1
2
0
1
3
1
0
1
1
0
0
1
1
0
4
1
0
3
1
1
0
I
29
9
3
0
0
1
I
0
Q
T
i
\
1
2
0
1
3
1
0
1
0
0
0
I
\
1
3
0
0
3
1
0
0
1
29
9
4
0
0
2
3
0
5
1
2
1
2
0
1
3
1
0
2
0
0
0
1
2
0
4
1
0
1
0
1
1
1
29
5
5
1
1
3
i.
0
1
£
1
6
1
3
0
1
13
1
1
6
1
0
3
0
5
1
8
1
0
1
1
1
1
2
29
13
6
2
1
4
3
2
3
9
1
5
1
<>
14
2
1
8
1
0
^
5
3
8
1
0
1
2
1
4
3
28
14
7
5
3
3
2
2
3
4
1
3
1
6
7
2
2
<,
8
3
5
1
1
1
2
I
2
2
1
4
2
2
2
1
0| 0
0
•i
t.
4
5
0
0
3
2
1
4
3
28
7
0
1
4
3
I
0
0
i
1
1
1
2
28
5
9
2
. 3
0
1
0
i
i
1
0
2
1
1
1
1
2
2
0
0
0
1
0
0
0
0
1
1
1
0
1
27
3
10
1
3
0
0
0
0
2
0
1
1
0
1
0
0
0
0
0
0
0
0
1
0
1
0
1
25
3
It
1
4
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
1
0
I
0
0
25
4
P M
12
1
5
0
0
0
1
1
0
1
0
0
0
I
0
0
0
0
0
0
0
0
0
0
0
0
23
5
1
I
5
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
22
5
2
1
0
1
3
1
3
2
0
0
2
1
1
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
0
2
1
0
3
1
25
3
4
2
4
0
0
2
0
1
1
0
0
1
1
0
1
0
0
0
1
0
1
0
0
0
2
1
0
3
1
28
4
5
3
5
0
0
2
0
1
1
0
0
1
1
0
1
0
0
0
1
1
0
1
0
0
0
1
1
0
1
I
29
5
6
3
5
1
0
1
0
1
1
0
0
I
1
0
2
0
0
0
1
1
0
1
0
0
0
1
1
0
1
1
29
5
7
1
5
2
0
2
1
1
1
1
0
1
1
0
1
1
0
1
2
1
0
3
0
0
0
1
1
0
1
1
29
5
8
1
6
2
0
3
1
1
0
1
1
2
2
0
2
3
0
1
2
2
0
2
3
0
1
1
1
2
1
2
29
6
9
1
5
4
0
8
3
1
1
1
1
3
1
0
2
5
0
1
2
1
0
4
6
2
2
1
1
2
2
2
29
8
10
2
5
3
0
5
6
1
0
1
I
2
1
0
3
5
0
0
1
1
1
3
4
1
4
1
I
1
3
2
29
6
11
3
5
3
0
2
2
10
1
0
1
1
3
1
0
2
4
0
0
1
1
0
4
3
1
5
1
1
1
5
2
29
10
DAILY
MEAN
1.6
3.2
!,<•
1.0
1.5
» -0
J.u
1.6
2.6
1.0
1.2
0.4
1.9
3.0
0.7
1.1
1.9
0.6
0.1
0.7
0.9
1.3
1.*
2.3
0.7
0.6
1.9
0.9
0.8
1.3
NO.
OFHR
22
23
23
23
22
7 a
£ y
24
21
23
23
23
20
21
22
23
22
23
23
20
14
20
23
23
23
23
21
22
23
23
5-MIN
MAX
4
7
7
4
10
1 I
1 J
14
21
3
6
2
6
18
3
4
8
8
I
2
2
8
6
14
7
7
8
3
2
6
1.4
639
-------
TABLE 3-31
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. JUNE 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHS
NO. OF
MAX.HRL
OF
IEEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MEAN
DAYS
Y MEAN
12
t.
1
0
2
9
C
1
0
0
0
I
0
0
6
2
0
1
I
12
0
i
3
<>
0
C
0
4
. 2
27
1 2
1
5
2
0
2
o
0
i
0
i
0
0
0
0
6
1
0
1
1
15
0
0
2
b
2
0
1
<•
2
27
15
2
3
2
0
1
0
0
1
0
0
3
0
0
0
•)
1
0
I
0
1 1
0
0
2
7
1
1
4
3
2
27
1 1
3
5
1
0
0
0
0
1
0
1
0
J
0
0
3
0
0
0
0
7
0
0
1
7
0
I
3
2
1
27
4
5
1
0
0
0
0
0
0
0
0
0
0
1
2
0
0
I
1
7
0
0
1
6
0
1
1
2
1
27
A
5
3
1
0
0
1
1
1
0
0
0
I
n
0
2
1
1
1
1
s
0
0
i
6
0
1
1
1
1
27
M
6
4
2
1-
0
2
3
3
0
2
3
2
0
0
2
3
2
4
2
7
1
0
2
6
0
3
1
1
2
27
7
5
1
b
2
?
3
3
0
?
5
1
0
0
1
i.
2
5
2
7
1
0
2
6
1
2
2
0
2
27
8
I
1
3
1
0
1
2
0
1
<•
1
0
0
1
1
1
1
1
4
1
0
2
2
1
1
i
0
1
?7
9
0
0
3
0
0
0
1
0
1
2
0
D
0
0
0
0
1
0
1
1
0
0
1
1
I
1
0
0
27
10
0
0
2
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
22
2
11
0
0
2
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
12
0
0
2
0
0
0
0
n
i
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?<•
1
0
0
0
0
0
0
0
I
0
0
0
0
0
0
0
0
0
0
0
0
0
20
2
3
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
22
4
0
1
2
0
0
1
0
0
1
1
J
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
0
26
p
5
0
0
I
0
0
0
0
0
1
1
n
0
n
p
0
2
2
0
0
0
0
0
0
0
0
1
0
0
27
M
6
0
0
1
0
;i
0
0
0
1
1
0
0
0
0
0
3
1
0
0
0
0
0
0
0
0
1
3
0
27
7
0
0
1
I
0
1
0
0
1
2
0
0
0
0
0
3
1
1
0
0
0
0
0
0
0
I
0
0
27
8
1
0
2
3
2
1
0
0
1
2
0
1
1
1
1
2
1
2
0
0
1
0
0
0
0
2
0
1
27
9
1
0
2
6
3
1
0
0
1
0
1
3
2
1
1
0
5
0
0
1
0
0
1
0
3
0
1
26
10
2
0
«*
3
1
1
0
0
I
0
1
6
4
1
1
0
5
0
0
I
0
1
1
0
3
0
1
26
11
1
0
1
5
I
1
0
0
0
0
1
•}
2
0
1
1
<>
1
2
5
3
1
9
6
5
<>
6
11
15
I
5
-------
TABLE 3-32 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, JULY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
1
1
0
1
5
0
2
I
1
1
3
1
I
17
C
1
1
5
1
0
1
6
0
1
1
1
1
2
1
1
20
0
2
5
1
0
1
5
0
1
1
1
I
2
1
1
20
0
1 , 1
0 00
000
8 <.
-------
TABLE 3-33
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, AUGUST 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
1
2
4
1
0
0
0
I
c
3
C
0
0
1
0
1
1
1
1
I
1
22
2
23
22
1
0
1
1
3
0
0
0
0
1
0
2
0
0
0
2
0
1
1
1
1
1
0
1H
1
23
Ifl
2
1
0
i
l
i
0
0
0
0
0
1
1
0
0
1
0
0
1
2
1
1
0
16
1
23
16
3
1
0
0
1
0
0
0
0
0
0
1
1
0
0
1
0
1
2
2
1
0
0
16
1
23
16
4
1
0
1
1
1
0
0
0
0
0
1
0
0
0
1
0
5
4
2
1
1
0
16
2
23
16
5
2
0
0
2
1
0
0
1
2
0
2
1
1
1
2
3
4
2
5
2
2
2
20
2
23
20
6
4
0
2
13
4
3
2
3
3
2
4
i.
4
1
4
5
5
4
10
5
3
4
27
5
23
27
7
4
0
3
5
<>
3
3
3
6
1
2
3
3
1
4
3
3
4
R
5
3
4
13
t,
23
13
B
2
1
2
0
2
1
3
2
1
1
1
2
1
1
1
1
1
t.
3
1
1
4
2
22
4
9
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
2
1
0
0
1
1
20
2
10
1
0
0
0
0
0
1
0
0
0
2
0
0
0
0
0
2
1
0
0
1
0
21
2
11
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
0
0
0
20
1
P M
12
0
0
0
0
0
0
0
3
0
0
1
0
n
0
0
1
0
- 1
0
0
0
0
21
3
1
0
0
r
0
0
1
1
0
0
0
0
0
2
1
0
0
0
0
0
0
19
2
2
3
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
18
1
4
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
2
1
0
0
0
0
24
2
5
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
24
1
6
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
1
0
0
24
1
7
1
0
1
1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
1
1
2
3
0
1
24
3
B
5
0
1
1
1
0
0
0
3
1
2
0
0
0
1
1
1
1
1
1
1
3
5
0
1
24
5
9
12
0
1
1
0
0
0
0
3
2
3
0
0
1
0
0
1
1
1
1
1
2
9
1
2
24
12
10
9
0
1
1
1
0
0
0
3
2
2
0
0
1
1
0
1
1
1
2
1
1
18
1
2
24
18
11
3
0
2
2
1
0
0
0
1
0
3
0
0
0
2
0
1
1
1
1
1
1
17
0
2
24
17
DAILY
MEAN
2.2
0.2
0.7
0.8
1.5
0.8
0.3
0.4
1.2
1.0
0.7
0.9
0.8
0.6
0.4
0.9
0.9
1.2
1.1
2.3
1.4
1.0
2.9
6.7
NO.
OFHR
21
23
13
23
23
17
20
22
23
23
23
23
22
21
18
23
23
23
23
22
19
23
23
23
5-MIN
MAX
14
2
4
4
15
5
5
4
4
6
4
4
5
4
3
5
7
6
6
11
6
4
25
31
1.3
517
<£>
-------
TABLE 3-34 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. SEPTEMBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
REEK
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
1
2
1
0
3
0
21
29
0
C
0
1
21
1
2
3
0
3
0
0
2
2
1
9
1
1
1
0
8
45
5
30
45
1
1
2
1
0
5
1
24
29
0
1
0
1
26
1
1
5
C
1
0
0
2
3
1
b
1
1
0
0
B
SO
fc
30
50
2
I
2
1
1
4
1
23
24
1
0
0
1
25
2
1
4
0
1
0
0
1
2
1
3
1
1
0
0
10
45
5
30
45
3
1
2
1
1
2
0
23
21
1
0
0
1
15
1
1
4
0
1
0
0
1
1
1
1
1
2
0
C
tf
46
5
30
46
4
1
1
1
1
2
1
23
23
3
1
0
1
25
1
1
3
0
3
0
0
2
2
1
4
2
2
0
0
6
43
5
30
43
5
I
I
1
1
3
1
U
n
•5
3
1
4
33
3
1
1
0
7
3
2
5
13
1
12
4
4
0
1
7
34
6
30
34
6
3
2
1
4
9
5
12
25
5
4
3
10
42
7
4
2
2
9
11
5
10
13
1
17
6
8
1
8
11
24
9
30
42
7
?
2
2
4
8
5
14
17
3
5
2
6
29
6
3
2
3
7
13
6
7
e
i
15
7
9
2
fl
11
23
8
30
29
8
1
2
2
2
7
2
8
10
1
1
0
2
9
3
1
1
1
2
6
3
3
13
1
4
5
6
2
3
7
13
4
30
13
9
1
1
?
1
3
1
3
3
0
1
0
0
1
1
0
1
0
0
1
1
5
1
0
3
5
3
1
4
5
2
29
5
10
0
1
1
1
3
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
2
1
0
2
5
1
0
2
3
1
30
5
11
1
2
I
1
2
0
0
0
1
0
0
0
1
3
0
0
1
0
1
0
0
1
1
0
2
3
I
0
1
1
1
30
3
P M
12
0
2
1
0
1
0
0
0
0
0
0
1
1
0
0
1
0
0
0
0
1
1
?.
0
0
1
1
0
27
2
1
0
2
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
2
0
1
1
0
0
24
2
2
3
0
0
1
8
1
I
1
1
0
2
1
1
1
1
0
1
2
0
1
2
1
1
1
1
3
4
3
1
0
1
29
8
4
0
0
1
fl
3
1
1
1
0
2
1
0
0
1
0
1
2
0
2
2
1
1
0
1
3
4
5
6
1
0
2
30
8
5
0
1
1
5
2
1
1
1
0
3
0
0
0
0
0
0
1
0
3
2
1
2
0
1
3
4
6
6
2
1
2
30
6
6
1
1
1
7
1
I
1
1
0
1
1
1
1
I
I
0
1
0
1
2
1
2
2
1
2
4
3
•)
5
5
2
30
7
7
1
1
1
7
2
3
3
1
1
2
1
10
0
2
1
0
2
1
0
5
2
3
3
2
1
3
3
5
8
13
3
30
13
B
1
1
1
8
2
3
5
1
1
2
1
17
1
2
1
1
3
0
1
5
2
3
3
2
1
3
3
5
17
37
4
30
37
9
2
1
1
5
2
8
7
1
0
1
2
14
1
^
3
1
4
0
0
6
3
2
3
1
1
3
2
8
31
35
5
30
35
10
1
1
1
5
1
12
14
1
0
1
1
13
1
4
5
1
5
2
1
4
3
3
6
1
1
3
2
12
32
34
6
30
34
11
i
1
0
3
1
15
22
1
0
1
2
14
1
4
7
1
3
4
0
4
2
i
10
0
1
i
\
9
45
36
6
30
45
DAILY
MEAN
1.0
1.3
0.9
3.3
2.9
2.7
9.6
9.0
1.0
1.3
0.8
4.3
10.2
2.0
!.<•
!.<•
!.<•
1.8
2.1
2.0
2.2
3.7
1.8
3.6
2.«
3.3
1.7
3.5
9.9
21.4
NO
OFHR
23
23
23
22
23
23
23
23
23
22
21
23
23
23
23
23
22
22
22
23
23
23
23
22
20
23
23
23
23
23
5-MIN
MAX
4
2
2
10
12
18
30
31
6
6
4
19
45
9
8
7
6
14
17
7
10
21
11
20
9
9
7
1*
47
51
3.8
679
CD
Ul
-------
TABLE 3-35
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, OCTOBER 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLY
NO. OF
MAX.HRL
OF
IEEK
WON
TUE
WED
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
WED
r MEAN
DAYS
Y MEAN
12
37
6
6
3
13
1
19
2
1
22
5
10
15
0
1
1
0
21
13
0
1
1
0
0
0
1
3
it
3
3
6
M
37
1
39
9
8
1
7
0
17
2
1
13
<•
3
15
0
1
1
0
20
12
0
1
2
0
1
0
1
2
2
2
5
3!
3<5
2
34
10
11
1
5
0
11
3
1
7
?
1
13
0
1
I
0
12
15
0
1
2
0
0
0
0
2
1
3
2
b
31
34
3
30
8
9
1
i,
0
6
2
1
7
3
0
11
0
1
0
0
6
13
0
1
2
0
0
0
1
2
0
2
4
31
30
4
24
6
6
0
6
0
5
5
1
9
3
0
12
0
1
0
1
5
14
0
1
0
0
2
0
2
1
0
2
4
31
24
A
5
26
10
5
2
6
0
6
6
2
9
4
0
13
1
2
3
3
7
13
0 .
3
1
1
5
1
4
1
0
4
5
31
26
M
6
37
17
7
. 7
8
0
9
9
16
11
1
11
11
6
9
10
24
18
1
6
4
5
14
2
6
2
0
7
9
29
37
7
42
18
6
9
7
1
9
9
18
12
1
9
8
7
10
10
30
13
2
6
5
6
15
4
9
3
3
12
10
29
42
B
19
8
4
6
3
1
6
4
14
9
1
7
4
5
3
6
10
7
1
3
4
3
8
2
5
2
4
13
6
29
19
9
6
3
0
2
1
0
3
2
1
5
4
1
6
3
0
3
4
i>
1
I
3
6
0
3
2
2
14
3
28
14
10
1
I
0
0
2
1
1
2
0
3
1
0
0
2
1
2
0
2
1
2
1
2
2
2
12
2
26
12
11
1
0
0
1
0
1
1
0
1
0
1
1
0
0
1
0
1
1
0
0
1
2
2
3
1
11
1
27
11
12
0
0
0
0
0
0
1
0
1
0
0
1
1
0
0
0
0
1
0
0
1
2
2
2
1
9
1
27
9
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
1
1
1
1
26
9
2
1
1
1
3
1
1
2
0
0
0
2
3
1
1
1
1
1
1
1
0
0
1
2
2
2
3
3
3
1
1
1
28
4
4
1
1
2
1
0
0
1
4
1
1
1
1
0
2
0
1
0
1
0
1
2
2
1
3
3
2
1
2
7
2
31
8
P
5
2
1
2
2
1
1
1
3
3
2
2
2
0
2
0
2
2
1
0
1
2
1
2
3
3
4
1
4
9
2
31
9
M
6
2
9
2
13
3
3
1
2
10
3
4
2
0
2
0
5
3
3
1
I
3
1
1
3
2
5
1
7
9
4
31
13
7
1
6
3
22
3
8
1
4
17
4
7
4
0
1
1
10
6
10
3
1
4
1
3
6
2
6
1
8
9
6
31
22
8
2
0
3
22
3
9
1
3
31
10
8
9
1
1
0
5
8
21
2
1
4
1
2
8
2
5
1
8
8
6
31
31
9
3
1
3
29
2
9
2
3
30
10
9
12
1
1
0
2
10
26
1
1
2
1
2
6
2
3
1
7
6
6
31
30
10
3
1
2
25
3
25
3
2
22
15
15
14
0
1
1
1
14
21
1
1
1
1
1
3
2
4
1
7
5
7
31
25
11
5
0
3
27
3
18
3
1
28
15
12
15
0
1
1
1
17
14
1
1
0
0
1
1
2
3
1
5
5
6
31
28
DAILY
MEAN
14.3
5.6
3.8
7.6
3.4
3.2
*.7
2.4
7.5
8.0
6.2
3.4
5.4
1.7
1.5
2.4
4.2
10.3
5.7
0.8
2,0
1.6
1.4
3.8
1.6
3.2
1.6
3.1
.8
7.1
4.5
NO
OFHR
22
21
21
23
23
23
23
20
23
23
19
23
22
20
23
23
22
23
23
23
23
22
22
23
23
23
23
23
23
21
684
5-MIN
MAX
44
23
13
34
25
31
30
11
35
24
19
20
17
15
9
13
18
35
19
3
7
6
9
17
5
10
4
10
12
15
CO
OS
-------
TABLE 3 36 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. NOVEMBER 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
27
28
29
30
MONTHL1
NO. OF
NAX.HRL
OF
IEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
f MEAN
DAYS
Y MEAN
12
4
5
5
2
b
1
65
7
1.)
I
3
32
6
43
7
9
2
2
<«
2
2
3
t.
4
10
25
65
1
3
t.
<,
3
4«
3
DAILY
MEAN
4.2
7.6
2.8
5.5
7.6
13.4
19.0
8.4
6.0
3.4
4.5
11.6
14.2
14.8
4.6
4.5
3.4
5.0
4.6
0.9
4.6
3.3
3.8
4.8
6.5
NO
OFHR
23
23
23
23
23
22
19
23
23
19
23
14
23
21
23
23
19
22
21
23
21
23
23
23
22
545
5-MIN
MAX
9
21
6
15
18
66
68
19
15
11
19
35
43
54
10
9
7
11
10
2
13
9
i n
8
12
-------
TABLE 3 37 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, JANUARY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
MAX.HRL
OF
WEEK
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SAT
SUN
MON
TUE
WED
THU
1 MEAN
DAYS
Y MEAN
12
4
6
1
2
3
2
2
5
2
2
3
14
7
1
4
6
1
2
2
1
1
5
0
2
3
14
6
2
2
6
0
2
6
0
0
2
1
1
3
U
6
3
0
b
1
2
6
0
0
1
2
0
2
U
6
4
0
6
2
1
3
0
0
1
2
0
1
14
6
A
5
0
7
3
1
3
1
0
0
2
0
1
U
7
M
6
0
9
2
3
1
0
1
2
0
3
13
11
7
1
9
4
5
3
4
2
2
1
4
13
16
e
i
7
4
5
7
10
4
3
9
8
13
Ib
9
5
5
8
9
9
4
5
10
6
11
12
10
5
4
8
7
7
3
4
9
4
11
9
II
1
7
2
8
1*
4
3
6
2
13
U
4
2
10
3
11
13
P
5
31
3
9
8
11
a
7
4.
7
3
12
-------
TABLE 3-38 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, FEBRUARY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
REEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
13
5
3
0
2
8
46
18
7
11
8
2
1
2
3
1
7
20
46
1
12
5
2
0
1
1
41
19
10
11
2
8
4
2
2
1
1
1
2
1
7
20
41
2
8
5
0
0
1
8
27
15
8
11
1
B
5
2
1
1
1
2
2
1
5
20
27
3
7
5
0
1
1
14
17
8
7
1
6
3
2
1
1
1
3
2
1
4
19
17
4
4
5
0
1
1
12
10
9
<3
I
5
3
2
2
0
1
3
2
1
4
19
12
5
4
6
0
2
1
8
13
8
8
1
6
6
4
3
0
0
5
1
2
4
19
13
6
5
6
0
3
2
12
10
9
7
2
5
9
4
7
2
1
6
1
4
5
19
12
7
7
7
0
4
6
13
15
11
12
3
6
18
7
11
3
2
7
1
8
7
19
18
8
9
10
0
6
8
1 /
22
12
9
3
5
30
15
11
3
2
5
1
12
9
19
30
9
13
12
0
B
22
18
22
10
14
2
5
31
17
8
2
1
5
2
6
10
19
31
10
q
1 7
0
25
13
20
q
7
2
3
19
11
5
2
2
4
2
4
8
18
25
11
7
14
0
15
14
15
*3
12
1
2
13
5
3
2
1
3
8
17
23
P M
12
6
13
0
8
9
13
19
15
1
1
8
5
2
2
1
3
3
6
17
19
1
5
9
0
6
8
V
15
10
2
2
2
6
3
2
2
1
1
4
3
5
19
15
2
3
1
6
2
6
12
27
2
3
3
2
2
1
4
3
14
27
4
7
0
3
7
16
'5
2
3
4
8
3
3
1
2
4
5
6
16
5
6
8
1
fa
11
19
-------
TABLE 3-39 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, MARCH 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLY
NO. OF
MAX.HRL
OF
WEEK
FRI
SAT
SUN
MON
TUE
WEO
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SUN
MON
TUE
WEO
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MEAN
DAYS
Y MEAN
12
1
0
6
19
2
2
3
7
1
2
5
0
1
2
1
0
2
15
2
I
1
6
26
2
2
4
2b
26
1
1
0
15
18
3
2
2
6
1
1
3
4
0
1
1
0
0
2
25
2
1
1
5
21
2
1
4
26
25
2
1
<>
23
2
1
4
7
1
1
2
3
0
0
1
0
0
2
38
2
1
0
3
U
2
1
4
26
38
3
1
1
1
25
2
0
3
6
1
1
2
0
0
1
0
0
1
49
1
1
0
2
6
2
1
4
26
49
4
1
1
1
19
2
2
2
5
1
1
2
0
0
1
0
0
1
33
1
0
0
1
2
2
1
3
26
33
A
5
1
2
1
11
2
1
2
5
1
1
2
0
1
1
0
0
1
27
3
1
1
2
1
2
1
3
26
27
M
6
3
2
2
5
5
3
6
R
2
2
1
1
2
3
I
1
2
23
7
2
4
5
1
5
1
26
23
7
6
ft
4
5
4
4
11
12
4
5
2
2
4
10
3
3
3
19
14
4
10
9
2
9
2
26
19
e
7
8
4
3
I
4
16
14
6
6
3
2
7
3
4
3
2
14
9
4
12
11
1
4
2
26
16
9
12
4
2
0
2
21
16
3
5
3
2
4
8
2
2
2
9
5
4
4
6
0
3
1
25
21
10
9
2
4
2
0
2
15
15
2
3
3
2
3
3
1
3
1
3
2
3
1
2
0
2
0
26
15
11
3
1
2
2
0
3
9
2
2
2
1
3
1
2
1
2
2
1
0
1
0
2
0
24
9
12
2
1
1
1
0
3
7
4
2
1
1
1
4
1
2
1
1
1
0
0
1
0
1
0
1
25
7
1
2
1
1
0
4
7
4
2
1
1
1
3
1
2
1
0
0
0
0
0
0
1
0
1
24
7
2
3
2
1
1
I
1
5
0
2
1
0
2
1
1
2
1
1
1
1
1
1
1
21
5
4
3
2
2
0
1
7
13
1
2
1
1
2
4
1
1
2
1
0
2
5
2
3
1
1
0
2
26
13
P
5
4
2
3
2
1
7
17
1
3
2
1
3
5
1
2
3
2
1
4
7
2
3
1
1
1
3
26
17
M
6
4
2
5
1
1
6
12
2
3
3
2
2
4
1
2
3
3
6
4
5
3
5
1
2
1
3
26
12
7
3
3
10
1
2
4
15
5
3
3
1
2
3
1
1
3
9
9
4
3
8
22
1
2
2
5
26
22
B
2
5
11
1
3
4
17
6
3
3
0
2
2
1
1
3
12
5
3
2
11
29
2
2
1
5
26
29
9
2
5
11
1
3
3
11
8
3
3
0
2
1
1
I
2
14
7
2
3
13
22
1
2
0
5
26
22
10
1
5
14
1
3
2
13
7
3
4
0
1
1
1
0
2
19
7
2
4
13
31
1
1
0
5
26
31
11
1
8
21
1
3
4
9
2
3
5
0
1
2
1
0
2
16
4
1
4
9
38
2
2
0
5
26
38
DAILY
MEAN
3.0
2.8
5.7
6.6
1.7
3.2
9.8
6.4
2.3
2.5
* y
1.7
1.2
2.5
2.2
1.0
1.7
*.3
12.9
3.2
2.5
«.l
9.4
3.7
2.2
0.8
3.8
NO.
OFHR
23
23
22
22
23
23
22
22
23
23
? ^
23
23
22
23
20
23
23
23
23
22
23
22
23
23
22
587
5-MIN
MAX
16
10
23
27
7
8
29
16
6
7
5
4
9
13
5
4
23
52
16
8
17
39
37
12
3
o
o
-------
TABLE 3 40 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. APRIL 1963
DAY OF
MONTH.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
WEEK
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.HRIY MEAN
A M
12
0
B
2
0
6
0
1
1
0
1
0
0
1
1
3
0
10
42
1
4
1
1
0
2
10
2
4
0
0
3
29
42
1
0
7
1
0
5
0
1
0
0
0
0
0
0
0
2
1
12
51
0
R
1
1
0
1
6
I
5
1
0
4
29
51
2
0
3
1
0
6
0
1
0
0
0
0
0
0
0
2
0
17
52
0
10
0
1
0
0
4
1
2
1
0
3
29
52
3
0
3
0
0
14
0
0
0
0
0
0
0
1
0
2
0
7
42
0
7
0
1
0
0
3
3
0
1
0
3
29
42
4
0
i
0
0
15
0
0
0
0
0
n
T
0
0
2
0
5
35
0
1
0
1
0
0
2
5
0
1
0
2
29
35
5
0
3
n
0
22
0
0
1
0
0
0
0
0
0
1
5
za
0
i
0
1
1
0
0
4
c
3
0
3
28
Zd
6
2
5
0
1
21
0
1
2
I
2
1
0
I)
1
1
b
1 J
0
i
1
1
1
1
0
5
0
6
1
3
28
21
7
5
10
1
2
1*,
0
3
5
2
3
1
0
0
2
5
14
3
1
2
2
2
3
3
0
4
0
4
3
3
26
16
6
3
10
1
2
5
0
2
4
2
2
1
1
1
2
7
21
4
0
1
i
2
3
3
0
1
0
2
4
3
28
21
9
1
6
1
1
2
1
1
3
I
1
1
0
1
2
2
22
2
0
1
1
1
2
3
0
0
0
2
3
2
28
22
10
2
3
0
1
0
1
1
4
1
1
0
0
1
1
0
1
1
1
0
2
2
1
0
0
1
2
1
26
4
11
1
1
0
1
0
1
1
4
2
1
1
1
0
2
1
I
1
3
1
1
0
0
1
1
1
24
4
P M
12
2
1
0.
0
0
0
1
3
2
0
1
1
1
0
2
0
0
0
0
2
1
I
0
0
1
0
1
26
3
1
3
0
0
0
0
1
4
2
0
1
I
4
0
0
0
1
1
1
1
1
2
0
0
2
1
24
4
2
*
3
2
1
0
0
1
1
1
3
1
1
0
1
1
1
0
1
0
1
17
3
4
1
I
1
0
0
3
1
1
1
1
1
2
I
1
0
2
1
2
1
0
1
0
2
1
23
3
5
3
1
2
0
0
2
3
4
1
I
1
1
2
1
3
. 2
2
0
0
2
1
2
1
0
I
0
1
1
27
4
6
4
1
3
0
0
2
3
3
1
1
1
1
2
0
3
2
2
1
1
1
1
2
1
1
1
0
1
1
27
4
7
2
1
4
0
1
2
4
2
1
1
1
1
4
1
10
10
2
1
2
1
1
2
2
1
L
0
0
2
27
10
8
4
1
8
0
0
1
5
2
1
1
1
1
5
1
15
24
1
2
3
1
1
2
5
1
3
1
0
3
27
24
9
3
1
8
0
0
1
1
2
1
1
I
1
5
0
1 1
45
1
2
1
1
1
2
1 1
1
3
1
0
4
77
45
10
7
1
7
0
0
2
0
2
1
0
0
1
4
1
9
50
1
J
1
1
1
2
11
3
2
1
0
4
27
50
11
r
0
6
0
0
i
0
i
i
i
i
i
3
0
8
51
1
7
1
1
1
2
11
3
3
1
0
4
27
51
DAILY
MEAN
2.1
<..5
0.6
2.1
5.1
0.2
1.1
2.2
1.3
0.9
0.6
0.5
0.7
1.8
0.9
3.9
Ib.H
12.6
0.9
2.1
1.1
1.2
!.<•
2.6
1.9
1.8
0.6
!.<•
1.1
NO
OFHR
23
14
22
23
22
23
21
22
21
23
22
23
19
20
16
23
19
23
23
23
20
22
23
23
20
23
23
22
13
5-MIN
MAX
9
12
3
1 1
30
1
4
6
4
3
2
2
2
6
3
18
56
58
8
15
4
4
3
14
12
6
6
7
7
2.5
614
-------
TABLE 3-41 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. MAY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
11
3
0
1
<>
2
0
0
1
0
0
3
5
0
5
0
0
0
4
0
0
0
2
1
3
2
26
11
1
0
10
2
0
I
2
1
0
0
0
0
0
3
3
0
9
0
0
0
2
0
0
0
1
1
1
1
26
10
2
0
8
3
0
2
1
1
0
0
1
0
0
I
2
0
11
0
0
0
•3
0
0
0
0
1
0
1
26
11
3
0
5
3
0
2
1
1
1
0
0
0
0
0
1
0
13
0
0
2
6
0
0
0
0
1
0
1
26
13
4
0
7
3
0
1
I
2
3
0
0
0
0
0
1
0
10
0
0
3
6
0
0
0
1
1
0
2
26
10
5
I
10
6
0
2
5
<.
3
0
3
2
2
0
1
1
6
P M
12
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
23
1
1
I
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
18
3
2
"•
3
1
0
1
1
0
0
1
1
0
0
1
1
1
1
0
1
3
0
1
18
3
4
1
1
0
I
I
1
0
0
1
1
0
0
0
1
1
1
1
0
0
0
1
2
0
0
1
2<»
2
5
1
2
0
1
1
1
0
0
1
1
0
0
0
1
1
1
1
1
0
0
0
I
2
0
0
1
25
2
6
1
2
0
I
1
1
0
1
0
2
1
0
0
1
1
1
1
1
0
0
0
0
2
0
0
1
25
2
7
5
2
1
1
2
1
0
0
0
2
1
0
1
2
0
2
2
1
0
0
0
0
2
1
0
1
25
5
B
13
2
0
2
3
1
1
1
0
3
1
0
1
2
1
1
3
1
0
1
0
1
3
6
1
2
25
13
9
22
1
0
3
7
2
1
2
0
2
3
2
<>
2
2
0
10
1
0
0
0
1
t.
16
4
3
25
22
10
23
2
0
6
18
2
1
3
0
0
<.
2
12
3
2
0
3
i.
0
0
0
1
3
9
12
4
25
23
f 11
l
16
3
25
18
DAILY
MEAN
4.1
*.3
1.8
0.3
2.1
4.1
2.1
0.8
0.4
1.0
1.7
1.0
1.4
1.8
0.9
4.4
1.5
1.5
1.5
2.3
0.1
0.2
0.7
2.4
1.9
2.5
NO.
OFHR
23
21
23
14
21
23
23
23
23
23
20
23
21
23
22
21
23
23
21
23
23
23
21
23
23
18
5-MIN
MAX
27
12
8
1
12
29
12
4
4
9
6
6
11
16
5
17
14
13
6
14
1
1
3
7
18
19
1.8
568
o
to
-------
TABLE 3 42 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. JUNE 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHLY
NO. OF
NAX.HRl
OF
WEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MEAN
DAYS
Y MEAN
12
17
3
0
1
6
8
0
0
0
7
1
27
4
0
I
2
\ \
3
a
i
0
i
5
22
27
1
13
2
1
1
9
5
1
0
0
5
1
22
1
0
1
1
b
fl
1
0
1
1
4
22
22
2
9
2
1
1
9
2
0
0
0
3
1
2
0
1
t
5
5
1
0
1
2
20
9
3
10
2
1
1
6
1
0
0
0
5
1
i
0
1
1
iS
7
i.
1
0
1
2
21
10
4
7
I
2
1
5
1
0
n
0
6
1
1
0
1
'i
'«
5
t
2
0
2
2
21
7
A
5
7
2
2
3
7
4
2
1
1
a
i
4
i
2
2
/.
0
i;
A
0
2
3
21
9
M
6
4
2
3
3
S
;
7
2
3
12
1
£
2
3
1
V
11
1C
ft
0
5
2
5
22
12
7
3
2
3
3
8
5
P
2
3
e
i
B
3
3
(i
fr
.3
1.0
5.0
4.1
1.7
0.7
1.3
2.2
2.2
3.7
2.9
1.3
1.0
1.0
l.l
2.2
NO.
OFHR
23
23
19
13
23
21
22
21
23
23
20
19
13
1 r
21
22
1*
19
21
20
21
23
20
17
20
501
S-MIN
MAX
IB
5
6
4
12
10
11
10
3
17
14
3
33
29
10
6
5
20
13
16
1 1
8
6
8
i.
o
CO
-------
TABLE 3-43 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON. JULY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
1
2
i»
2
2
b
2
I
0
1
0
0
0
0
0
0
1
17
6
1
0
0
2
1
1
1
b
2
\
0
I
0
0
0
0
0
0
1
17
7
2
0
0
1
4
0
2
7
4
1
0
0
0
0
1
0
0
0
1
17
7
3
1
0
1
1
0
9
7
4
1
0
0
0
0
2
1
0
0
2
17
9
4
1
1
1
1
3
10
6
7
1
0
0
0
0
2
2
0
0
2
17
10
5
6
1
2
3
5
14
6
11
2
1
1
0
2
2
4
3
I
4
17
14
6
6
1
4
S
7
17
5
7
4
3
2
0
2
14
6
2
5
16
17
7
2
0
3
3
4
14
4
6
0
1
0
1
1
2
3
2
4 1
3 1
3 1
2
0
I
6
3
2
3
16
U
1
0
0
2
2
0
1
17
3
9
0
1
0
1
0
1
1
1
2
1
1
1
0
0
0
0
0
0
1
18
2
10
0
1
0
.1
0
0
1
1
2
0
0
0
0
0
0
0
0
0
0
18
2
11
1
0
0
1
0
0
1
0
2
1
0
0
0
0
0
0
0
0
0
18
2
P M
12
0
0
0
1
0
0
1
1
2
0
0
0
0
0
0
0
0
0
0
IB
2
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
16
I
2
U
0
0
3
0
3
0
1
1
1
0
1
0
0
0
0
0
0
0
13
1
4
0
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
17
1
5
1
1
2
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
17
2
6
0
1
2
0
1
2
1
0
0
0
0
0
0
0
0
0
1
16
2
7
0
1
0
2
3
1
1
0
2
1
0
0
0
0
0
15
3
e
0
3
1
3
7
1
1
1
1
1
1
0
0
0
0
15
7
9
1
6
2
4
10
1
1
2
2
0
1
0
0
0
0
15
10
10
1
7
2
4
4
2
1
3
2
1
1
0
1
0
0
15
7
11
0
5
1
3
1
4
1
1
3
0
1
0
0
0
0
15
5
DAILY
MEAN
0.3
1.4
1.3
1.5
0.5
2.2
2.4
3.8
4.0
2.2
1.1
0.9
0.5
0.1
0.2
0.5
1.2
0.9
0.2
NO.
OFHR
15
14
23
17
14
23
23
23
14
23
23
22
23
23
14
22
23
17
24
5-MIN
MAX
2
7
11
5
2
9
13
19
9
13
5
4
4
1
3
2
19
9
2
1.3
3BO
-------
TABLE 3 44 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, AUGUST 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
2
3
0
1
0
0
3
3
3
1
0
7
7
0
1
2
1
2
18
7
1
0
1
1
0
0
0
0
0
-------
TABLE 3-45 HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, SEPTEMBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
1
8
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
6
8
2
0
0
3
13
1
1
10
0
1
2
30
13
1
1
12
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
1
2
6
2
0
0
2
16
1
I
1<>
0
1
2
30
16
2
1
10
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
2
5
0
0
1
2
19
8
0
5
0
1
2
30
19
3
0
14
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
2
6
0
0
0
2
19
19
2
2
0
1
2
30
19
4
0
13
0
0
1
0
0
0
2
0
0
0
0
1
0
0
0
1
2
4
L
0
1
2
20
14
3
3
0
1
2
30
20
5
0
13
0
1
2
1
0
0
3
1
1
1
1
1
0
1
1
2
3
4
1
0
3
3
13
IB
6
3
0
1
3
30
ia
6
i
13
i
i
4
**
2
3
3
2
2
2
3
1
0
6
7
14
1
1
11
5
23
11
7
0
4
5
27
23
7
0
6
1
4
4
i.
2
5
10
2
2
1
3
2
0.
6
16
16
1
0
8
5
32
21
11
5
1
7
6
28
32
8
0
0
0
1
1
2
2
1
4
0
3
0
2
2
0
5
2
3
13
.10
1
0
3
3
26
11
7
4
1
5
-------
TABLE 3-46
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, OCTOBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
KEEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO OF DAYS
MAX.HRLY MEAN
A M
12
5
3
Z
\
29
17
2
1
1
41
12
4
16
7
18
1
3
3
2
1
27
15
1
1
1
49
5
5
13
7
24
17; 9
54; AO
51
43
2
0
0
8
43
5
13
15
2
0
2
14
30
54
29
38
1
0
0
20
2
2
2
1
0
28
13
1
1
0
22
4
6
7
11
25
6
43
27
35
1
0
0
33
45 34
5
25
4
1
0
2
13
30
60
9
25
1
1
0
1
11
30
43
3
1
2
1
1
27
10
0
2
0
19
2
4
8
7
29
7
37
36
21
1
0
0
32
25
8
22
1
1
0
0
10
30
37
4
1
2
1
1
32
7
0
1
1
27
3
1
4
7
22
10
39
33
6
3
0
0
26
22
8
19
1
1
0
0
9
30
39
5
2
2
1
1
32
5
1
4
4
26
4
1
3
a
32
20
45
27
15
7
0
2
25
31
7
15
1
1
0
1
11
30
45
6
5
5
4
4
32
4
3
12
10
32
10
3
4
12
27
39
44
42
9
18
0
5
32
41
7
11
2
2
1
6
14
30
44
7
10
8
8
6
26
5
14
14
8
38
14
4
2
21
28
58
43
6
12
7
7
5
15
5
10
3
33
6
1
1
19
21
15
23
46 30
7
9
1
6
44
50
9
13
4
5
4
18
17
30
58
3
3
1
4
32
30
7
12
5
7
3
18
12
29
33
9
4
5
4
2
8
4
5
4
1
5
2
1
1
8
15
5
8
7
4
0
0
3
8
8
7
6
2
4
2
10
5
30
15
10
2
3
1
1
4
3
2
1
1
I
1
1
1
2
2
2
5
1
3
0
0
2
2
2
6
4
2
2
1
4
2
30
6
11
1
1
0
1
1
2 .
1
0
1
1
0
0
0
0
1
1
2
1
2
0
0
1
1
1
4
2
2
2
0
2
1
30
4
P M
12
1
1
1
1
0
1
0
1
0
0
0
0
0
0
0
1
2
1
1
0
1
0
1
0
2
2
2
1
1
1
1
30
2
1
0
2
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
I
1
1
2
2
1
1
1
28
2
2
3
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
0
0
1
0
0
1
1
1
2
0
25
2
4
0
1
0
1
0
0
2
1
1
1
2
0
0
1
1
0
0
0
0
2
1
1
2
1
I
4
3
3
1
28
4
5
0
1
0
1
0
0
2
1
1
1
2
1
0
8
10
1
1
1
2
2
0
2
3
2
6
6
3
5
6
2
29
10
6
I
1
1
3
0
2
2
1
3
1
6
5
4
32
9
7
2
6
8
2
1
4
4
6
4
7
2
5
3
4
29
32
7
2
2
0
6
1
3
2
3
5
5
b
5
4
63
15
9
8
7
6
I
2
7
5
7
4
5
1
3
2
6
29
63
8
2
2
1
10
3
3
2
3
11
6
3
9
4
56
32
35
28
5
8
2
3
8
4
10
6
3
1
4
2
9
29
56
9
2
2
1
16
5
4
I
5
25
9
5
17
5
52
49
43
31
6
1 1
1
6
25
3
12
7
3
4
2
13
28
52
10
3
2
1
25
7
4
2
6
30
15
3
26
9
52
53
44
42
6
5
1
7
33
rt
13
4
3
1
4
1
14
29
53
11
3
2
1
29
13
4
1
5
33
13
3
23
6
39
55
51
40
4
2
0
10
27
6
12
6
4
0
4
1
14
29
55
DAILY
MEAN
2.7
2.5
1.7
5.1
12.6
«.7
2.0
3.5
6.1
15.0
4.0
5.0
3.9
7.9
23.7
18. 0
25.9
21.0
9.6
3.8
0.7
2.4
16.1
16.0
6.3
9.1
3.5
2.0
2.0
3.8
NO.
OFHR
22
23
23
23
23
23
22
22
23
23
23
23
23
14
23
23
23
23
23
23
22
23
23
23
23
23
23
Zl
21
22
5-MIN
MAX
13
8
8
30
33
17
16
20
37
51
16
30
20
24
73
71
65
58
50
22
3
16
49
53
16
27
19
8
7
21
8.1
672
-------
TABLE 3-47
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, NOVEMBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
94
25
27
28
29
30
•ONTHM
NO. OF
IAX.HRL
OF
REEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
SAT
MEAN
DAYS
Y MEAN
12
1
1
1
15
3
17
3
2
30
1
5
26
7
0
29
1
23
0
0
4
• I
1
68
1
0
9
26
68
1
0
0
1
19
2
20
4
2
14
1
5
21
6
0
15
1
36
0
0
2
I
1
64
0
0
8
26
IS'.
2
0
1
0
16
1
iH
3
3
12
0
4
12
4
0
11
1
30
0
0
2
0
0
58
0
0
7
26
58
3
0
1
0
12
1
1 I
2
1
25
0
2
12
7
0
8
0
27
0
0
2
0
0
61
0
0
7
26
61
4
0
1
c
7
0
22
3
0
15
1
1
10
7
0
8
1
20
0
0
1
0
0
50
n
c
6
26
50
A
5
1
0
0
)
1
23
4
1
11
i
1
fl
6
0
8
1
18
0
0
1
0
0
43
0
0
5
26
43
M
6
2
1
I
11
4
1 7
7
3
13
5
2
6
6
1
18
3
19
0
0
3
3
3
37
0
0
6
26
37
7
7
3
1
20
8
30
g
10
34
11
5
8
7
9
5
29
«.
27
0
0
6
6
9
29
1
1
11
26
34
6
7
3
1
22
11
12
6
9
34
9
6
8
7
6
22
10
27
1
0
4
9
16
16
3
1
10
26
34
9
5
2
1
12
8
6
3
30
5
4
9
4
3
13
23
0
1
2
6
13
8
2
2
7
24
30
10
5
1
1
6
5
5
1
3
3
2
5
1
3
2
5
0
0
0
4
7
6
?
1
3
23
7
11
5
1
1
3
4
3
1
1
2
2
2
4
0
1
4
5
1
1
0
3
2
1
1
2
24
5
12
6
2
1
2
5
2
1
1
1
2
1
3
0
1
2
2
1
1
0
1
0
0
1
2
?4
6
1
6
1
1
1
3
2
0
1
1
2
1
3
0
2
0
1
2
5
0
1
0
1
0
0
0
1
1
26
6
2
3
9
2
1
2
1
0
1
2
2
1
0
1
2
1
1
1
1
2
1
0
1
1
22
9
4
7
2
1
4
9
1
1
2
2
3
3
2
1
2
3
&
3
1
1
1
4
7
0
3
2
3
26
9
P
5
7
2
3
7
11
3
5
4
5
7
6
3
I
5
4
12
1
2
2
3
5
13
1
2
2
5
26
13
M
6
6
3
5
5
9
4
18
5
7
4
7
4
2
9
4
15
1
3
2
4
4
22
2
2
3
6
26
22
7
4
2
9
7
10
6
29
7
7
2
B
4
3
14
3
12
0
4
3
5
4
30
3
1
2
7
26
30
a
4
2
10
6
13
10
30
12
6
2
1 1
5
3
12
2
7
0
2
3
3
4
51
5
1
2
R
26
51
9
3
1
17
9
14
5
8
17
5
3
14
4
2
14
2
6
0
0
3
3
2
50
5
1
1
7
?6
50
10
3
1
13
i
14
3
4
21
4
3
25
5
1
20
i
7
0
0
3
2
2
52
5
0
1
8
26
52
11
i
1
16
3
13
2
2
24
2
4
25
5
1
27
1
7
0
0
5
1
1
67
3
1
i.
8
26
67
DAILY
MEAN
3.9
1.4
3.8
8.6
6.6
10.2
6.1
6.3
11.0
3.1
6.1
7.2
3.3
5.5
8.3
5.0
13.1
0.7
1.1
2.3
2.7
15.1
20.3
1.0
1.0
6.0
NO
OFHR
23
2J
23
23
22
23
23
20
23
23
23
23
23
22
23
21
20
23
23
23
21
23
23
22
23
585
5-MIN
MAX
12
4
21
25
16
35
41
26
56
15
30
30
9
29
34
16
39
5
6
7
10
72
70
5
3
o
CD
-------
TABLE 3-48
HOURLY AVERAGES OF NITRIC OXIDE, pphm (colorimetric analysis)
WASHINGTON, DECEMBER 19.63
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
MAX.HRL
OF
WEEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
r MEAN
DAYS
Y MEAN
12
I
\ -i
7
0
2
2
0
2
20
>>
1
1
1
4
3
U
5
2
16
78
13
6
0
8
23
78
1
1
U
0
0
1
0
2
15
4
1
0
0
2
3
14
3
4
29
fl7
13
5
0
23
87
2
0
c
8
0
0
1
0
1
16
4
0
0
0
2
1
16
3
U
11
35
15
4
0
23
35
3
0
5
5
0
0
0
0
I
13
3
0
0
0
2
1
18
2
9
13
13
5
3
0
23
18
4
1
4
6
0
0
1
0
L
10
2
0
0
0
2
1
12
3
9
13
13
2
3
0
23
13
A
5
2
3
7
0
0
2
1
1
15
2
0
I
1
3
2
9
3
8
8
19
1
2
0
23
19
M
6
i
a
l
2
4
3
3
11
3
0
2
3
3
2
11
6
3
13
27
0
4
0
5
23
27
7
it
12
5
8
5
5
6
16
6
1
5
6
6
2
15
9
7
21
37
1
5
1
8
?3
37
8
5
11
6
9
5
9
10
13
6
1
7
7
7
4
18
11
4
15
33
3
8
3
9
23
33
9
4
12
5
5
4
7
9
12
5
1
5
5
3
14
it
7
1*
3
7
1
7
21
18
10
1
11
5
2
5
6
5
5
1
3
3
7
2
4
12
3
5
0
5
19
12
11
1
9
2
2
3
6
2
3
2
2
2
2
5
3
2
3
16
2
2
0
4
21
16
12
1
5
3
2
4
2
3
1
2
1
6
1
5
3
1
4
7
1
1
0
3
21
7
1
1
5
5
2
2
5
1
3
I
2
1
5
2
4
3
1
6
2
I
2
3
21
6
2
3
3
1
4
2
1
2
6
1
5
0
4
1
1
1
15
• 6
4
2
4
3
2
3
7
4
2
2
4
4
7
3
8
9
0
7
3
3
0
4
21
9
P
5
3
5
4
4
8
10
5
2
2
5
6
9
4
7
12
2
10
4
4
2
4
6
22
12
M
6
4
4
6
3
6
19
5
2
3
5
5
1
5
7
7
2
8
5
6
4
5
5
22
19
7
4
2
6
2
4
13
5
2
2
3
5
0
7
7
5
4
8
4
8
5
4
5
22
13
a
4
2
6
3
4
20
6
1
2
4
7
0
9
6
4
6
10
5
9
4
5
5
22
20
9
6
1
6
2
3
25
6
2
1
4
6
10
6
5
7
22
8
7
2
8
7
21
25
10
9
0
5
2
2
21
6
2
1
2
5
8
4
5
11
45
7
7
1
12
7
21
45
11
11
0
4
1
3
16
6
1
1
1
4
12
4
5
7
67
17
5
0
12
9
21
67
DAILY
MEAN
3.0
6.0
3.1
3.0
2.3
3.1
8.3
8.8
2.9
1.1
2.5
3.2
3.8
3.8
9.4
5.2
«.5
14.8
19.4
4.9
3.3
2.7
5.6
NO.
OFHR
22
?•*
23
18
13
22
23
23
22
23
23
22
21
18
23
23
20
23
23
23
23
23
20
497
5-MIN
MAX
14
9 1
14
7
12
6
10
28
22
7
3
9
8
11
13
24
14
16
77
103
18
8
14
o
CO
-------
TABLE 3-49 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, JANUARY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A 11
12
4
2
3
4
1
3
2
2
3
3
2
5
2
2
2
2
4
1
3
2
2
3
2
2
2
3
1
3
28
5
I
3
2
3
3
2
3
2
3
3
2
2
5
3
1
2
3
4
1
2
2
3
2
2
2
3
1
2
27
5
2
2
2
3
2
2
3
3
2
2
2
4
3
1
2
3
3
3
2
2
3
2
1
2
3
I
2
26
4
3
2
2
3
2
2
3
2
2
2
2
3
3
1
2
3
4
3
2
2
2
2
2
2
2
1
2
26
4
4
2
2
3
2
2
3
2
2
2
I
3
3
1
2
3
3
3
2
2
2
2
2
2
2
1
2
26
3
5
2
2
3
2
2
3
2
2
2
1
3
3
1
2
2
3
3
2
2
2
1
2
2
2
1
2
26
3
6
2
2
2
2
3
3
t
2
1
3
4
1
2
2
2
2
3
2
2
1
2
2
2
2
2
26
4
7
2
3
2
2
3
3
2
2
1
3
4
1
2
2
2
2
2
3
2
2
2
2
2
2
2
2
27
4
B
2
3
2
2
3
3
2
2
1
3
4
2
2
2
2
2
2
2
3
2
2
2
2
2
2
2
27
4
9
3
2
2
3
3
4
3
1
4
7
2
3
2
3
3
3
7
4
2
2
3
4
3
3
25
7
10
3
2
3
3
2
3
3
2
1
3
5
2
3
2
2
3
4
17
3
1
2
3
4
3
3
26
17
11
12
3
5
3
3
2
3
4
3
1
2
5
4
3
1
3
3
3
14
3
1
2
3
2
4
25
14
P M
12
IS
3
5
3
3
3
3
3
3
3
3
3
5
3
3
3
1
2
3
3
10
3
1
2
3
3
3
3
27
10
1
3
5
4
4
3
3
3
3
4
4
3
3
5
3
3
4
2
2
3
3
6
3
3
2
2
2
3
3
27
6
2
3
1
3
3
6
3
2
2
1
5
6
4
7
4
6
2
3
3
3
3
4
4
3
3
3
3
4
3
3
4
1
4
3
3
2
3
3
24
7
5
7
4
5
2
2
3
2
3
4
4
3
4
3
4
3
4
3
3
4
1
4
2
3
3
1
2
3
26
7
L 6
4
6
2
3
3
2
4
4
3
3
4
3
4
3
1
6
2
3
3
2
3
25
6
7
5
4
7
1
3
3
3
3
3
3
3
3
3
3
2
1
6
1
3
3
2
1
3
28
7
e
4
4
6
1
3
3
2
3
3
3
3
3
3
3
2
3
5
1
3
2
1
1
3
28
6
9
4
4
6
1
3
3
2
3
2
3
3
3
4
2
3
3
5
1
2
2
4
1
3
28
6
10
2
4
4
1
3
3
2
3
2
3
3
2
5
2
3
3
5
2
2
2
3
1
3
28
5
11
2
3
3
1
3
2
2
3
5
2
2
2
2
4
2
2
2
5
2
2
3
3
1
3
28
5
DAILY
MEAN
3.8
2.9
4.2
2.1
2.3
2.9
2.3
2.8
2.9
2.6
3.1
3.1
2.8
2.5
2.9
3.1
2.4
2.3
3.1
2.6
5.1
2.3
2.0
2.1
2.4
2.2
NO.
OFHR
20
22
22
22
22
23
14
22
20
22
22
18
22
22
22
22
22
22
22
16
22
22
22
22
21
20
19
23
5-MIN
MAX
15
5
9
4
4
4
3
4
4
5
5
5
6
9
4
5
5
4
3
5
4
20
4
3
3
4
4
4
2.8
590
-------
TABLE- 3-50 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. FEBRUARY 1962
DAY
MONTH
1
2
3
4
5
6
7
3
9
10
1 1
12
13
14
15
16
17
18
20
21
22
23
24
25
26
27
28
MONTHLY
NO. OF
MAX.HRL
OF
REEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SUN
MON
TUE
WED
MEAN
DAYS
Y MEAN
12
j
2
2
2
6
i
3
4
i
J
4
3
2
<>
4
4
2
2
i,
3
1
3
2
3
27
6
1
2
7
2
2
5
1
3
1
3
1
3
i,
3
1
5
3
3
2
2
4
1
3
1
2
3
2
27
5
2
2
2
2
2
4
1
3
1
3
1
3
2
1
4
3
3
2
2
4
2
0
2
3
2
26
4
3
2
2
2
2
4
1
2
J
1
2
2
1
3
3
3
1
2
4
2
0
2
2
2
26
4
4
2
2
2
2
3
1
2
2
a
2
2
1
3
3
3
0
2
3
2
0
2
2
2
26
3
A
5
2
2
2
2
3
1
2
2
2
1
3
3
3
0
2
3
2
0
2
2
2
25
3
M
6
2
2
2
2
3
2
3
3
2
2
2
3
2
3
I
2
3
2
0
2
1
2
25
3
7
2
2
2
2
3
2
3
1
2
3
2
3
2
3
1
2
3
3
0
2
1
2
25
<•
8
2
3
2
2
4
2
3
5
2
3
2
3
2
2
I
2
3
2
1
2
1
2
26
5
9
4
4
1
2
3
4
4
5
4
3
5
2
2
1
2
4
2
4
3
2
3
25
5
10
4
4
1
2
3
4
3
4
1
4
7
4
5
3
2
' 1
2
4
2
5
3
3
3
25
7
M
3
4
1
2
2
4
3
I
4
7
4
3
5
3
3
1
2
5
2
4
3
3
3
26
7
12
2
4
1
3
3
4
3
4
5
5
3
5
3
3
0
5
5
2
4
3
3
25
5
1
2
3
3
3
3
4
4
4
5
2
5
3
3
0
5
5
3
2
5
3
3
3
23
5
2
0
2
1
3
1
3
0
0
I
7
4
4
2
3
6
2
3
3
4
3
4
2
3
3
0
8
3
4
3
3
5
3
2<>
8
P
5
2
3
&
7
3
0
2
4
4
3
4
2
4
0
7
3
4
3
4
4
3
25
7
M
6
3
4
J
6
7
2
3
3
4
3
2
4
2
4
0
5
3
4
4
4
3
3
26
7
7
4
3
3
6
4
2
2
3
4
3
2
6
2
4
4
3
3
3
4
4
3
3
26
6
8
3
3
3
6
3
2
2
3
4
3
3
6
4
5
4
3
3
3
3
3
3
3
26
6
9
3
3
3
5
2
2
2
2
?
3
5
3
5
4
5
3
3
3
2
3
2
3
3
26
5
to
3
3
3
5
2
1
1
3
3
4
3
5
4
4
3
2
3
2
4
2
3
3
25
5
11
2
3
2
6
2
3
1
3
3
4
2
5
4
4
3
2
2
1
4
1
2
3
25
6
DAIIY
MEAN
2.5
2.8
2.2
3,
-------
TABLE 3-51
HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, MARCH 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
MAX.HRl
OF
WEEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
Y MEAN
DAYS
Y MEAN
12
2
3
3
4
4
3
3
3
3
3
7
2
5
•i
3
3
4"
5
5
3
g
5
4
4
3
5
4
4
28
7
1
2
2
3
3
4
2
3
2
3
2
5
2
3
3
3
3
4
5
3
5
3
4
3
3
4
5
3
28
5
2
I
2
3
3
3
1
3
3
2
4
2
3
2
3
3
3
5
3
&
2
3
2
3
4
5
3
27
5
3
1
2
3
3
3
1
3
3
3
4
3
2
1
3
2
3
5
3
2
3
3
3
5
5
3
27
5
4
1
1
2
2
3
1
3
3
3
3
3
2
l
1
3
2
3
5
2
3
2
4
4
4
5
5
3
27
5
A
5
1
2
2
2
3
1
3
3
2
^
3
3
2
2
2
3
5
3
2
4
4
4
5
4
3
27
6
M
6
2
2
2
2
3
2
4
3
3
3
3
3
3
3
3
4
3
2
4
5
6
3
3
26
7
7
2
2
2
?
3
1
4
3
2
3
3
4
3
3
3
3
1
5
&
7
3
3
25
7
e
3
3
2
2
3
2
4
3
2
2
3
4
3
4
3
3
1
5
6
7
4
3
25
7
9
3
3
2
2
4
2
5
5
2
2
5
6
4
3
2
5
1
4
4
6
4
4
25
6
10
3
2
2
5
7
4
4
2
4
6
3
3
2
5
4
1
3
3
6
5
4
4
27
7
11
3
3
2
2
5
•i
6
3
4
2
4
5
3
4
3
5
3
1
2
2
7
4
3
27
7
12
3
3
2
3
4
•i
5
3
4
^
2
4
5
3
3
2
4
3
2
2
2
2
5
3
3
27
5
1
3
3
3
3
4
5
3
4
2
4
5
3
3
4
4
3
2
1
2
2
4
6
3
3
27
6
2
3
1
2
2
1
1
1
1
3
5
5
3
13
5
4
4
3
4
5
3
3
4
4
4
6
5
4
4
5
3
4
2
4
4
4
8
4
4
27
8
P
5
4
4
4
6
3
4
5
4
4
5
5
5
4
5
4
5
4
4
5
5
9
5
5
27
9
M
6
5
5
4
6
3
5
5
3
4
6
5
4
5
5
5
6
5
5
4
4
7
9
7
5
5
27
9
7
4
5
4
4
2
6
6
4
3
7
5
4
5
6
5
6
5
6
6
5
8
8
6
5
5
27
8
8
4
5
4
4
2
5
5
4
2
8
5
4
5
5
5
5
6
6
5
8
8
6
5
5
27
8
9
4
4
4
4
3
4
5
3
2
7
3
4
5
5
5
5
6
6
4
8
6
5
4
5
27
B
to
3
4
4
4
3
4
5
3
3
6
4
4
4
5
5
5
5
5
4
7
6
4
3
4
27
7
11
3
3
3
4
3
3
4
3
3
5
3
3
3
5
4
5
5
4
3
6
6
5
3
4
27
7
DAILY
MEAN
2.7
3.0
2.9
3.3
3.3
2 A
«°
4.2
4.0
3.3
3.1
4.2
4.0
3.0
3.2
4.2
3.5
4.6
3.1
4.2
3.0
3.8
3.6
4.6
6.0
5.4
4.0
3.7
NO.
OFHR
22
Z2
22
22
22
22
14
23
23
23
22
23
23
23
14
23
20
14
22
22
22
22
23
23
23
23
602
5-NIN
MAX
5
5
4
8
5
5
10
6
6
7
8
7
5
6
5
6
5
7
6
6
6
7
6
9
9
7
6
CO
-------
TABLE 3-52 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. APRIL 1962
DAY
MONTH
1
2
3
4
5
7
8
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHL
NO. OF
MAX.HRl
OF
IEEK
SUN
WON
WED
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
MON
1 MEAN
DAYS
Y MEAN
12
4
1
7
5
4
2
3
5
4
3
5
2
4
A
2
2
2
2
2
3
2
2
2
1
1
3
29
7
1
3
1
6
4
3
2
2
5
4
3
2
5
2
3
4
2
0
1
2
2
3
1
2
1
1
0
3
29
A
2
3
1
7
3
2
2
1
6
A
3
2
2
3
4
2
0
1
1
2
3
2
2
1
1
0
2
29
7
3
3
I
7
2
2
1
5
4
3
2
1
3
<*
2
0
1
1
2
4
2
2
1
1
0
2
29
7
4
3
1
6
z
1
5
3
3
1
3
1
1
0
1
1
3
4
2
2
1
1
0
2
29
6
A
5
3
2
5
4
2
1
2
5
4
4
2
2
4
2
1
0
I
3
3
2
2
1
0
0
2
29
5
M
6
3
2
7
6
2
4
5
3
2
4
3
2
0
1
1
5
3
3
2
2
1
0
1
3
29
7
7
4
3
6
3
2
4
5
S
3
2
0
1
3
2
2
1
1
1
3
29
7
8
1
3
7
8
4
3
5
4
2
2
0
2
7
2
4
3
1
0
L
3
29
0
9
2
2
5
5
3
4
4
I
0
0
1
2
1
3
7
2
1
1
1
3
29
7
10
2
1
5
6
4
2
4
3
0
0
0
0
1
1
5
2
1
1
0
2
27
6
II
2
5
4
2
tt
0
0
0
0
2
1
5
2
1
I
0
2
24
7
12
2
4
<»
2
4
4
3
3
3
0
0
0
0
2
0
Q
2
2
1
2
2ft
7
1
2
2
4
6
4
2
4
4
4
3
3
0
0
0
0
2
1
0
1
1
0
0
2
2
29
6
2
0
2
2
2
3
2
4
6
4
3
4
5
4
3
•y
3
3
16
6
4
2
5
5
5
4
5
5
5
3
4
1
0
3
0
5
1
0
3
1
2
1
3
29
5
P
5
3
5
6
5
7
5
5
5
5
3
4
2
1
3
0
fc
1
1
3
1
2
2
4
29
7
M
6
4
5
6
6
5
5
5
4
4
3
2
3
1
^
1
2
3
1
1
2
4
2T
7
7
3
5
7
5
5
4
5
3
3
3
3
5
4
2
3
1
1
2
4
28
7
8
2
5
6
5
5
5
3
0
3
4
5
4
3
3
1
1
2
4
28
6
9
3
5
6
5
5
5
2
0
3
4
4
5
2
2
1
1
3
4
28
b
10
2
5
6
5
5
5
2
1
3
3
4
5
2
2
1
1
2
4
2fl
6
11
2
5
5
5
5
5
2
5
2
2
2
3
3
4
2
2
1
1
2
3
23
6
DAILY
MEAN
2.7
3.0
5.7
/. a
3.7
3.3
*.5
«.l
3.6
3.1
2 Q
3.9
2.1
1.1
1.1
1.3
j O
3.9
2.3
2.2
2.2
0.9
0.8
l.l
2.9
NO
OFHR
23
21
y T
23
77
18
23
23
23
23
23
2 3
22
22
22
22
22
22
22
20
22
22
22
22
641
S-MIN
MAX
4
6
8
g
7
6
7
5
5
6
5
6
3
4
4
8
5
5
3
2
2
3
-------
TABLE 3-53
HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, MAY 1962
DAY
MONTH
1
2
3
4
5
6
7
9
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
29
30
31
MONTHL
NO. OF
Mil MRI
OF
WEEK
TUE
WED
THU
FRI
SAT
SUN
MON
WED
FRI
SAT
SUN
MON
TUE
WED
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
r MEAN
DAYS
¥ MF1N
12
2
1
2
3
0
2
2
4
2
0
5
3
3
6
2
2
5
2
2
1
3
3
26
1
2
1
2
3
4
3
1
3
1
4
2
0
5
2
3
6
2
3
5
1
2
?
2
3
2H
2
2
1
2
3
•»
3
I
2
1
<>
1
0
2
2
b
1
3
3
1
1
2
2
2
27
3
1
1
?
2
3
2
1
3
1
4
1
0
2
3
3
2
3
2
I
I
1
2
2
27
4
2
1
2
3
3
3
1
a
z
J
2
3
1
0
4
2
i
3
2
2
2
4
2
2
2
2
2
2
2fl
A
5
2
1
1
4
3
3
2
2
3
3
2
1
5
2
2
?
2
4
3
27
e
1
2
3
7
5
3
2
1
4
3
4
1
4
3
4
3
2
3
4
2
2
1
2
3
3
28
9
1
2
3
2
3
3
1
1
4
2
4
n
2
2
2
2
1
3
2
1
2
1
2
2
2
28
10
1
2
3
1
1
2
0
3
2
3
1
1
1
1
2
1
1
2
1
2
2
2
25
11
1
2
1
1
1
1
I
4
2
2
1
1
1
1
3
1
2
2
1
2
2
1
24
12
1
2
0
0
2
1
1
o
4
2-
2
1
1
1
2
1
1
1
0
2
1
I
23
1
1
2
0
0
1
1
1
1
2
I
2
2
1
1
1
2
1
1
1
2
1
1
23
2
1
3
2
4
1
1
2
2
2
2
2
4
2
2
1
1
3
2
1
2
3
1
5
2
25
4
2
3
4
1
1
3
2
3
2
1
5
3
2
2
1
1
4
2
I
2
3
1
5
3
27
P
5
3
3
3
5
2
2
2
2
3
1
2
4
3
2
2
2
2
3
2
1
2
2
I
4
3
28
M
6
3
3
4
3
1
2
2
3
2
2
5
3
2
4
2
3
3
2
3
2
3
3
3
27
7
2
2
4
4
2
4
3
3
4
2
5
5
2
6
2
4
5
2
4
2
3
3
3
27
8
2
3
4
2
5
4
2
3
2
5
5
2
a
3
5
-•
7
5
4
3
4
3
4
26
8
9
2
2
4
2
5
4
2
4
2
6
2
2
a
3
5
a
5
4
2
4
3
4
26
8
10
2
2
4
1
4
4
2
3
2
5
2
2
6
3
4
6
3
4
2
4
3
3
26
6
11
2
2
3
1
4
4
3
3
1
5
3
2
6
2
4
5
3
4
2
3
3
3
26
6
DAILY
MEAN
1.7
1.9
2.1
2.8
2.9
2.1
2.2
7 c
2.2
.0
2.7
2.7
2.1
2.5
3.0<5
5-MIN
MAX
5
3
5
8
7
4
5
5
4
5
5
6
9
4
8
6
6
5
8
6
4
3
4
5
-------
TABLE 3-54 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. JUNE 1962
DAY.
MONTH
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
20
21
23
24
25
26
27
28
29
30
MONTHL
NO. OF
MAX.HRl
OF
IEEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
r MEAN
DAYS
Y itAN
12
3
4
4
•j
3
5
2
5
2
•a
2
3
2
3
2
2
3
2
2
c
2
2
3
6
3
1
2
3
29
1
2
4
3
4
t
3
1
2
4
1
2
3
1
1
1
1
2
2
6
4
2
2
3
29
2
2
3
2
1
1
2
3
3
1
1
•2
3
0
i
1
1
3
2
2
4
3
3
2
2
29
3
2
4
2
3
Q
1
1
1
2
2
1
2
2
0
1
0
2
2
2
1
3
2
2
2
2
2S
4
2
3
2
1
1
2
3
2
3
2
2
1
2
2
1
2
2
1
2
2
2
1
3
1
1
2
2
29
A
5
2
4
3
3
2
3
3
5
2
5
1
2
2
2
2
2
I
2
2
2
2
3
2
1
2
2
29
M
6
3
5
2
4
2
3
3
5
2
3
2
1
2
2
3
4
2
1
3
2
2
3
4
2
1
1
3
29
7
4
7
2
3
3
3
6
6
2
3
?
1
2
2
3
2
2
1
3
7
2
2
1
3
29
B
4
4
2
3
2
3
5
6
y
4
2
1
1
2
1
3
3
2
K
2
0
2
14
4
2
1
3
29
9
2
2
2
2
1
2
2
3
1
1
1
0
0
3
1
I
2
2
9
3
2
1
2
27
10
1
2
2
2
1
1
I
3
2
1
1
1
0
1
0
2
2
1
6
1
I
2
27
6
11
1
2
2
2
1
2
1
3
2
1
0
0
0
0
1
1
1
5
0
1
2
26
5
12
1
2
3
2
1
I
1
2
1
1
1
0
0
y
2
1
1
5
1
0
1
1
27
5
1
2
2
3
1
1
1
2
2
2
0
0
1
1
1
0
1
1
22
3
2
0
1
0
3
I
3
3
2
3
2
2
I
6
3
2
1
3
19
6
4
3
2
3
3
3
2
3-
2
5
2
1
0
2
5
2
2
1
4
2
2
3
0
3
28
5
P
5
3
3
2
2
3
2
4
2
2
1
0
2
6
2
3
1
1
2
1
2
2
1
3
29
6
M
6
4
2
2
3
2
4
2
3
1
1
0
2
4
2
3
2
1
2
1
2
2
1
3
29
5
7
5
2
5
4
5
3
4
1
2
2
4
4
3
1
2
3
3
3
2
3
28
5
8
5
2
6
7
5
3
2
4
4
5
3
5
3
2
2
3
2
3
3
29
9
5
2
5
4
3
3
3
1
5
4
2
5
2
3
3
3
3
3
3
28
5
10
4
2
5
2
6
4
2
2
4
4
3
2
5
2
4
5
3
3
3
4
3
29
11
4
5
1
5
2
5
3
2
3
3
3
2
5
2
3
5
3
2
2
5
3
28
DAILY
MEAN
2.9
2.9
2.5
• 3
2.7
3!2
3.3
.5
3.3
2.8
1.2
2.0
1.8
1.7
2.7
1.8
2.0
1.8
2.0
4.6
2.2
.7
1.7
1.8
2.5
NO
OFHR
22
23
23
23
22
23
23
23
19
22
22
22
22
20
22
22
22
20
22
21
21
23
!>38
5-MIN
MAX
5
9
6
5
6
7
7
6
6
3
5
4
6
6
6
4
4
5
17
4
3
6
-------
TABLE 3-55 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, JULY 1962
DAY
MONTH
1
2
3
4
5
6
8
9
10
11
12
13
14
IS
16
18
19
20
21
22
23
24
25
26
28
29
30
31
MONTHU
NO. OF
MAX.HRL
OF
WEEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SAT
SUN
MON
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
CD)
SAT
SUN
MON
TUE
f MEAN
DAYS
Y MEAN
12
5
I
2
3
3
2
3
3
3
0
4
5
9
1
4
3
2
5
3
2
5
4
4
i
3
1
29
9
1
5
1
1
3
3
3
2
3
3
0
4
5
10
1
4
3
2
4
3
3
5
4
4
1
3
1
29
10
2
<»
1
1
2
3
2
1
2
2
0
4
3
9
1
4
3
I
3
2
4
3
4
1
3
1
28
9
3
3
I
1
2
2
1
2
2
2
0
2
1
a
i
3
1
1
2
3
3
1
2
0
27
8
4
2
1
0
2
1
2
1
0
3
1
8
3
1
3
1
1
2
3
2
i
1
2
1
27
8
A
5
2
1
1
2
2
2
2
2
0
4
3
8
•\
2
3
2
1
1
2
3
2
2
2
2
27
8
M
6
2
2
1
2
3
3
2
2
1
6
4
10
3
4
2
1
2
4
3
3
2
3
27
10
7
1
2
1
3
9
?
2
3
2
7
3
12
3
9
2
1
2
5
6
2
4
27
12
8
0
3
-------
TABLE 3-56 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis) WASHINGTON. AUGUST 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
4
5
3
«*
4
2
4
3
3
4
3
4
3
1
3
1
3
3
2
1
I
2
7
3
2<>
7
1
3
5
2
3
2
I
2
2
<•
3
f.
2
1
4
2
2
2
2
1
0
2
3
24
6
2
3
4
2
2
2
I
2
2
3
2
3
3
I
2
1
2
3
2
0
0
2
2
24
b
3
2
4
2
2
1
2
4
2
2
3
2
3
3
2
1
2
3
3
2
0
0
2
2
24
5
4
I
4
2
3
1
2
4
2
2
2
2
3
2
3
2
2
3
3
2
1
1
2
2
24
5
5
3
4
3
4
1
2
4
2
3
3
2
3
3
4
2
3
3
3
2
1
1
3
3
24
5
6
5
5
4
I
2
5
3
4
4
3
3
4
4
3
4
3
3
3
3
1
2
4
7
3
24
7
7
7
3
1
2
5
4
5
7
2
3
4
6
3
5
4
4
4
4
1
2
5
11
4
24
11
a
5
4
4
2
2
3
2
4
b
2
3
4
IS
2
3
3
2
. 2
5
2
1
5
16
4
24
16
9
4
2
2
2
2
2
2
4
4
2
2
4
2
2
2
1
1
3
1
0
2
14
3
23
14
10
n
i
2
2
3
2
3
2
2
3
3
2
2
1
1
1
3
1
0
1
9
2
22
9
II
1
2
1
2
2
4
2
1
2
3
1
2
1
2
1
2
I
0
1
3
2
21
4
P M
12
1
4
2
t
1
2
1
5
2
2
2
3
3
1
1
1
1
1
0
1
2
2
21
5
1
2
1
2
4
1
2
1
3
4
3
2
2
2
2
1
2
1
1
0
0
1
2
2
22
4
2
3
3
2
3
4
1
1
3
4
3
2
2
3
1
3
2
2
1
3
2
3
2
20
4
4
3
2
4
2
2
1
1
4
6
3
2
3
4
4
2
3
2
2
1
2
3
0
2
4
3
24
6
5
3
4
4
2
2
2
1
4
6
3
2
2
3
3
2
2
2
3
1
1
3
0
2
3
3
24
6
6
4
2
5
2
2
2
4
5
3
3
3
2
3
2
2
2
3
2
3
4
24
5
7
7
2
3
2
t
2
6
7
6
4
3
3
3
2
4
4
3
1
4
7
24
7
8
9
2
5
2
4
5
7
6
5
3
3
4
4
3
4
2
1
4
8
24
9
9
9
4
5
2
4
4
6
6
4
3
3
5
4
2
4
2
1
3
8
24
9
10
8
4
5
3
5
4
5
7
4
3
2
4
4
2
4
3
1
2
8
24
8
II
6
4
5
2
4
3
4
5
4
2
2
4
4
1
3
2
1
2
4
8
24
8
DAILY
MEAN
4.2
3.3
3.3
1.8
2.3
3.1
3.1
4.3
3.9
2.5
2.7
2.9
3.2
2.5
2.9
2.4
2.5
2.1
1.9
1.7
I.*
3.6
NO.
OFHR
21
23
23
21
22
23
23
23
23
23
23
23
22
21
20
23
23
23
23
23
20
22
23
23
5-MIN
MAX
10
9
a
5
4
5
7
7
8
11
5
5
5
7
5
6
5
5
4
5
5
5
9
17
3.0
537
-------
TABLE 3-57 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, SEPTEMBER 1962
DAT
IONTH
I
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
• flNTHI 1
NO. OF
•AX.HRL
OF
IEEK
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
fHEAN
DAYS
Y MEAN
12
4
2
1
2
1
6
7
2
I
1
1
5
5
3
2
3
2
2
3
2
2
2
2
2
2
2
6
3
30
7
1
3
2
1
2
1
5
6
2
1
1
2
1
2
I
3
2
2
3
2
3
3
30
7
7
2
2
2
1
2
4
4
4
1
3
5
11
6
3
30
6
2
1
3
2
2
1
8
2
3
2
2
3
3
3
29
30
9
1
2
2
3
1
6
8
1
I
1
2
10
5
2
3
1
1
0
4
2
3
2
3
2
3
8
3
29
10
10
1
3
2
3
1
3
5
2
1
1
1
it
4
2
3
1
4
1
0
3
2
3
3
2
2
2
6
30
b
II
1
3
2
3
1
3
2
2
0
2
1
4
7
1
3
2
3
2
0
2
2
2
3
2
2
2
3
30
7
12
1
3
4
1
3
2
1
I
<>
5
1
3
2
3
1
0
1
2
3
1
2
2
2
25
5
1
2
1
2
3
1
3
1
2
1
3
-------
TABLE 3-58 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. OCTOBER 1962
DAY
MONTH
1
2
3
4
5
7
8
10
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
31
MONTHL1
NO. OF
MAX.HRL
OF
IEEK
WON
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
Tl 1C
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MEAN
DAYS
Y MEAN
12
6
;
3
3
5
6
2
5
5
6
2
2
5
3
5
5
1
1
1
2
2
3
5
3
29
7
1
6
7
3
3
3
6
1
4
•>
5
3
2
5
3
5
5
1
1
1
2
2
1
4
3
29
7
2
5
6
2
2
2
5
1
3
3
5
3
3
4
2
4
4
1
1
1
3
2
1
3
3
29
6
3
5
6
2
2
2
5
2
4
2
5
3
3
3
2
4
4
1
1
1
4
2
1
3
3
30
6
4
4
4
5
3
2
2
5
2
4
2
5
2
4
3
2
4
3
1
2
1
1
1
3
0
2
3
30
5
A
5
3
5
3
2
2
4
2
4
2
4
4
5
4
3
3
3
1
2
1
2
3
0
1
3
30
5
M
6
4
4
5
3
2
2
3
4
3
4
4
5
4
3
4
3
1
2
1
2
4
0
2
3
3
30
5
7
7
6
3
2
3
3
5
2
4
5
5
5
4
6
4
1
3
1
2
5
0
2
4
4
30
7
e
9
7
2
3
4
8
2
5
6
4
3
4
5
4
2
1
2
5
0
2
3
4
27
9
9
15
6
2
2
3
9
2
7
4
2
3
4
4
3
2
1
4
0
1
4
4
27
15
10
3
2
2
3
5
2
6
4
3
2
2
3
4
3
2
2
2
2
2
0
3
3
27
6
11
7
2
3
2
2
2
2
4
4
3
2
1
2
3
2
2
I
2
3
1
3
3
29
7
12
3
3
2
2
2
4
2
2
3
3
4
2
1
2
3
3
2
2
1
2
3
1
2
2
28
5
1
2
3
4
2
3
2
4
2
2
2
2
3
2
1
2
2
2
2
2
2
3
1
2
2
25
4
2
3
5
5
4
5
2
6
4
5
2
3
4
5
4
3
2
2
2
4
2
3
2
3
4
27
6
4
5
7
4
6
3
6
5
7
4
3
6
5
5
3
3
2
1
5
2
3
3
3
7
4
4
30
7
P
5
7
6 '
4
e
5
5
7
8
6
4
7
5
5
5
5
5
1
4
2
3
3
3
6
5
5
30
8
M
6
7
8
6
4
10
7
6
6
8
7
4
7
4
5
6
6
6
2
5
3
2
3
3
3
7
6
6
30
10
7
4
6
4
9
8
5
8
8
4
6
6
6
6
7
6
2
5
2
3
3
3
6
7
6
30
9
8
5
5
3
9
8
6
6
8
5
5
3
S
5
6
6
2
5
2
3
3
3
6
7
5
30
9
9
5
5
3
8
7
6
6
8
5
4
3
4
5
6
5
2
5
2
2
3
3
3
5
4
5
30
8
10
5
3
3
7
8
6
6
7
It
3
5
4
5
6
5
1
2
2
2
3
5
4
4
29
8
11
5
3
2
6
6
5
5
7
4
3
4
4
5
5
5
1
2
2
3
5
3
4
29
7
DAILY
MEAN
5.7
5.1
3.1
«.3
3.8
4.8
37
4.0
55
5.7
4.0
«.5
4.1
3.8
3.7
3.4
4.2
4.0
.5
2.6
.7
1.7
1.8
2.3
3.0
2.5
3.4
«»,•»
3.8
NO.
OFHR
22
f i
23
20
23
7 '4
23
23
yn
23
73
19
23
23
22
23
23
23
23
23
21
21
23
23
23
22
22
yy
b65
5-MIN
MAX
16
8
4
10
j
8
8
19
^
10
8
7
7
6
6
6
7
6
6
3
4
4
5
7
7
CO
-------
TA3LE 3 59 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. NOVEMBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A N
12
2
3
3
4
3
9
5
5
2
2
1
4
5
3
5
4
5
3
3
2
1
22
9
1
2
3
3
4
3
6
5
4
2
2
1
4
2
3
4
4
5
2
3
2
1
22
6
2
2
3
3
3
3
4
4
4
2
1
1
4
2
3
3
4
5
2
3
2
1
22
5
3
2
4
3
3
3
4
4
4
1
1
0
3
2
2
2
6
5
2
3
2
1
22
6
4
2
4
3
3
2
4
4
3
1
1
0
2
2
2
2
5
5
2
2
2
1
22
5
5
2
4
3
2
2
3
4
3
1
1
0
1
2
2
4
4
4
2
2
3
1
22
4
6
3
2
3
4
4
2
2
1
1
2
3
2
4
2
2
3
0
3
22
4
7
3
4
3
4
4
2
2
1
1
2
3
4
7
2
4
4
1
3
22
7
a
4
3
3
5
5
3
1
1
1
2
3
7
11
2
3
1
0
3
22
11
9
4
3
3
7
8
3
1
1
1
2
4
7
13
2
3
1
0
4
22
13
10
4
3
2
10
3
1
!•
1
2
11
11
3
1
4
18
11
11
2
3
2
11
4
1
1
1
3
6
7
3
1
4
18
11
P M
12
2
4
3
3
3
2
13
5
1
1
2
4
2
7
6
3
1
3
2
1
3
20
13
1
2
3
3
3
3
2
12
5
1
4
4
2
7
3
2
3
2
1
3
18
12
2
3
3
4
3
3
4
4
6
4
1
2
2
3
3
4
3
2
0
3
17
6
4
3
4
3
4
4
4
7
7
4
2
2
3
3
4
8
4
3
5
3
0
4
20
8
5
4
5
3
4
4
5
6
7
4
1
2
3
2
4
4
8
4
3
5
4
2
0
-
4
22
8
6
5
3
5
5
6
7
4
1
2
4
2
5
7
4
4
3
0
22
7
5
3
5
5
6
7
3
1
2
2
2
6
7
5
3
2
0
22
8
5
3
5
6
5
7
2
2
2
2
3
6
7
5
3
2
0
22
9
5
2
5
6
6
7
2
2
2
2
3
4
6
5
3
2
0
22
10
5
2
4
6
5
7
2
2
2
2
3
5
5
5
^
3
2
0
22
11
5
3
4
8
5
6
2
1
2
2
4
5
5
5
5
2
2
0
22
8
DAILY
MEAN
*.l
3.3
3.6
3.7
3.6
5.3
6.7
3.4
1.3
1.5
1.6
2.7
2.9
*.z
6.3
*.7
3 8
3.2
3.0
2.2
0.4
NO.
OFHR
23
23
23
23
23
22
19
23
23
23
22
23
21
19
23
21
23
23
20
21
21
23
5-MIN
MAX
4
5
4
5
6
9
11
14
6
2
3
5
5
6
11
14
7
5
7
5
4
1
3.*
485
-------
TABLE 3 60
HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. DECEMBER 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL1
NO. OF
MAY UQI
OF
IEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MEAN
DAYS
Y If PA 11
12
3
1
6
3
4
2
3
2
2
3
16
1
3
2
6
3
4
2
3
1
2
3
17
2
2
0
2
5
3
4
2
3
1
2
3
17
3
2
0
2
4
3
3
1
3
1
2
3
17
4
3
0
2
*
2
3
3
1
3
1
2
3
17
A
5
•1
3
0
1
3
3
3
1
3
2
1
2
3
17
•
6
3
0
1
3
3
3
1
3
3
3
2
3
17
7
3
0
1
3
3
3
2
3
3
3
2
3
3
17
8
•a
3
0
1
2
3
2
2
3
3
3
2
3
3
17
g
•a
i m o M
3
2
2
3
3
2
3
3
17
10
4
0
3
3
3
2
3
2
3
2
3
15
11
3
0
1
3
3
2
3
4
3
2
3
15
12
3
0
3
6
5
2
5
3
5
2
3
17
1
3
0
4
2
3
6
6
2
4
5
3
5
2
3
4
17
2
3
4
5
3
7
7
3
4
5
4
4
3
4
5
6
3
6
8
3
5
5
5
5
3
15
P
5
5
3
4
7
4
5
5
5
5
3
15
M
6
5
4
3
6
4
5
4
3
4
16
7
5
4
3
6
4
5
4
3
4
16
B
4
4
2
5
4
5
5
3
4
16
g
4
3
4
2
5
3
5
5
3
4
16
10
2
3
4
2
5
3
4
4
3
3
16
11
2
4
2
5
4
4
3
3
3
16
DAILY
MEAN
3.3
0.1
3.4
3.3
3.9
3.7
2.5
4.>
3.5
3.8
3.8
2.4
2.6
3.3
NO.
OF HO
23
14
21
23
22
23
23
23
23
23
23
20
23
»73
5-IIN
•AX
6
1
7
7
4
7
9
4
6
5
6
5
5
3
-------
TABLE 3-61 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, JANUARY 1963
DAY OF
MONTH
1
2
3
4
5
6
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
01
REEK
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
3
3
3
8
6
4
3
5
5
I
2
4
2
2
5
2
2
2
2
3
3
25
1
2
2
3
3
6
7
4
3
5
4
1
2
4
2
2
2
5
1
2
2
2
3
3
25
2
2
3
3
6
8
4
2
5
4
1
2
4
2
2
3
5
1
2
I
2
3
3
25
3
2
3
3
8
3
2
4
b
\
2
3
2
2
5
1
2
1
2
2
3
25
4
2
3
2
R
3
1
4
!>
1
1
3
2
2
3
6
I
2
I
2
2
3
25
5
2
3
2
5
8
3
1
4
5
1
1
3
2
1
6
1
2
1
2
1
3
25
8
6
2
3
3
7
3
1
4
5
1
2
1
1
5
1
1
0
2
2
25
7
3
2
3
1
5
7
2
1
3
5
1
1
1
2
2
3
5
2
2
1
1
2
25
8
•J
2
1
7
2
1
3
5
1
2
1
1
5
2
1
1
1
3
25
9
2
2
1
8
8
5
2
3
4
1
3
3
1
2
2
1
2
23
to
2
3
0
1 1
10
2
3
2
5
5
}
2
3
2
2
2
2
20
11
2
3
0
9
3
3
2
1
4
5
2
2
2
2
2
20
P M
12
2
4
fi
17
10
3
1
0
2
t>
5
2
4
3
1
2
3
4
22
17
1
2
5
15
1 1
10
7
2
1
0
6
5
2
4
2
2
2
4
4
22
13
2
3
5
7
7
5
4
6
2
3
3
4
4
14
4
2
5
6
6
V
8
6
5
6
2
3
3
4
2
2
2
5
4
1<>
9
5
3
6
7
9
6
9
6
3
2
5
6
7
3
4
2
3
3
2
6
5
23
6
2
5
6
6
6
10
5
10
6
3
2
5
7
3
3
2
3
3
1
6
5
24
10
7
3
5
5
5
5
5
3
2
5
6
3
3
2
3
3
2
5
4
24
8
2
b
4
4
6
2
2
4
5
3
2
2
3
2
2
4
4
24
9
3
5
3
4
6
2
2
4
5
3
2
3
3
2
2
4
4
24
10
3
5
4
2
3
5
2
2
4
4
3
2
3
2
2
2
4
4
24
II
2
5
3
2
3
5
1
2
4
4
3
2
3
2
2
2
4
3
24
DAIIY
MEAN
2.3
4.0
4 3
4.0
8.0
4.0
3.6
4.6
3.1
1.3
2.9
4.0
3.5
» j
3.*
2.1
*.o
l.B
2.2
1.7
1.9
3.3
NO.
OFHR
22
22
23
23
23
7*
14
20
23
21
23
20
20
22
23
22
21
?n
20
ii
16
22
22
23
22
5-NIN
MAX
3
6
19
11
7
11
6
5
3
5
6
8 .
3
6
3
3
3
3
7
3.5
532
-------
TABLE 3-62
HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. FEBRUARY 1963
DAY
MONTH
1
2
3
4
5
6
7
g
9
10
11
12
13
14
15
16
18
19
20
21
22
23
24
25
26
27
28
MONTHLY
NO. OF
MAX.HRl
OF
IEEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MEAN
DAYS
Y (CAN
12
3
•>
2
2
3
9
3
3
t
3
<*
3
3
Z
5
4
3
3
3
26
9
1
*t
2
2
3
q
2
3
3
2
3
4
2
3
Z
4
4
3
3
3
25
a
2
4
2
2
3
6
1
2
3
2
3
3
2
3
3
3
3
3
3
24
6
3
1
2
2
3
2
3
2
3
3
2
3
3
3
3
2
3
3
25
4
4
1
2
I
2
2
}
3
2
1
3
3
1
2
3
3
24
4
A
5
1
2
1
I
1
2
2
3
3
2
3
i,
3
2
2
3
3
24
4
M
6
3
1
2
2
1
1
2
2
3
3
i
3
4
4
3
2
2
3
25
5
7
3
1
2
2
1
\
2
2
3
4
2
3
4
4
3
3
4
3
3
25
5
8
2
I
2
2
1
2
2
i
J
3
2
3
b
4
3
3
2
3
25
5
9
2
1
2
1
2
2
3
3
4
2
2
9
4
3
3
2
3
24
9
10
3
1
2
3
1
T
2
4
3
4
2
3
12
4
3
3
4
2
3
25
12
11
3
1
2
12
3
3
2
4
3
3
3
9
3
3
3
2
4
24
12
12
2
1
2
11
5
2
2
4
3
3
3
•>
6
3
3
3
2
3
23
11
1
2
1
1
12
7
i
4
•}
2
4
5
3
3
•\
3
H
4
23
12
2
3
3
•>
1
2
9
b
<•
7
^
3
3
5
4
2
3
4
20
9
4
3
1
3
->
b
4
7
7
4
4
3
5
5
4
2
3
4
2<.
2
3
9
4
2
4
5
5
4
3
3
b
3
b
4
"'
4
25
9
ID
3
2
2
3
3
9
3
4
3
4
b
5
3
3
4
3
4
4
4
24
9
11
i
2
1
3
3
10
2
3
3
4
<•
5
3
3
4
2
4
4
3
2
3
24
10
DAILY
MEAN
2.9
2 3
1.3
2.4
3 9
8.5
4.3
2.4
2. a
3.fl
*.l
4.0
3 9
2.7
3.3
3 2
5.1
4.0
4 2
3.1
2.8
2.9
4 1
4 b
3.5
1
Nfl
OF HR
20
2 1
23
22
22
16
23
2 '*
20
23
23
22
19
21
23
23
23
Z2
Z2
23
23
23
j \
23
2\
14
)59
5-MIN
MAX
4
2
4
g
13
10
4
4
7
9
5
5
4
5
£
13
6
4
5
5
£
IS3
CO
-------
TABLE 3-63 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. MARCH 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
3
B
3
2
3
5
5
4
<-,
3
3
3
3
2
5
2
2
3
3
27
7
5
3
2
7
3
2
2
3
3
3
4
3
3
3
2
1
4
3
2
2
3
6
6
3
3
i>
3
3
28
7
6
3
i.
3
<>
2
2
2
2
3
1
3
24
11
2
3
3
3
3
3
3
3
2
5
12
4
5
4
4
5
4
3
4
3
3
5
3
3
4
22
12
4
4
4
6
4
3
4
4
3
5
10
14
4
5
4
4
5
5
3
3
4
4
3
5
5
3
10
4
4
2
5
29
14
5
4
4
6
4
3
5
6
3
5
10
12
4
5
3
3
b
5
3
4
5
5
5
5
5
3
7
6
3
5
28
12
6
5
5
4
3
b
b
5
7
10
3
3
5
5
3
3
5
7
5
5
8
5
28
10
7
5
4
4
3
b
b
5
7
10
4
3
b
3
5
b
5
4
8
5
27
10
6
5
3
4
4
b
b
5
7
7
3
3
b
3
5
b
5
4
8
5
4
28
8
9
5
3
3
4
5
5
5
5
5
3
3
b
3
4
4
5
7
4
7
27
7
10
5
3
3
4
b
5
4
5
b
3
3
5
3
3
4
4
5
b
4
5
28
b
11
5
3
3
3
5
5
5
4
4
3
3
2
5
3
3
4
3
4
5
4
3
27
b
DAILY
MEAN
3.2
5.6
3.1
2.6
3.7
4.2
4.0
6.1
b.b
3.4
3.5
3.2
2.8
3.3
2.8
2.5
3.2
5.T
5.9
3.5
3.5
5.3
3.6
3.9
2.2
NO.
OFHR
23
23
17
23
23
23
22
23
23
22
22
23
23
23
22
18
22
20
17
23
23
20
22
22
23
21
20
20
18
5-MIN
MAX
5
6
8
5
4
6
b
5
b
12
15
5
b
5
4
b
5
4
4
5
b
10
10
5
b
10
7
9
6
3.9
624
-------
TABLE 3-64 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. APRIL 1963
DAY OF
•ONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
NINTHLY IE AN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
2
5
3
4
4
2
5
5
T
3
3
2
3
7
5
3
2
4
3
4
3
2
2
3
4
4
24
7
5
4
5
4
4
3
6
5
7
3
3
3
1
3
5
7
9
?
2
3
5
• 3
4
4
3
2
2
4
4
27
9
6
5
4
4
4
3
7
5
5
3
4
1
3
4
6
8
7
3
5
5
3
4
3
3
2
4
27
8
7
4
4
5
4
3
6
5
3
4
2
5
5
6
10
6
<,
7
5
2
4
5
5
1
5
27
10
B
4
5
6
2
5
5
3
4
2
5
4
6
9
6
7
6
2
4
5
5
2
5
27
9
9
4
5
0
6
s
3
4
2
5
4
5
9
6
2
6
2
4
4
5
1
4
26
9
10
3
4
4
2
0
5
3
3
2
5
4
5
9
6
2
6
2
3
4
4
1
4
27
9
11
3
4
4
3
!>
4
3
3
2
5
4
4
9
6
3
4
2
3
3
4
1
4
27
9
DAILY
MEAN
3.5
<..?
3.7
<.. 1
3.1
<-.5
3.0
3.0
2.8
3.0
2.0
2.2
3.8
4.8
6.1
3.0
3.6
3.5
2.*
2.6
2.6
2.6
2.2
2.2
2.7
NO.
OFHR
17
14
21
23
21
23
22
22
21
23
23
23
20
20
17
23
21
23
23
22
19
22
23
23
17
23
23
22
5-MIN
MAX
5
9
7
5
6
6
7
6
R
5
5
5
4
5
6
9
12
12
7
9
7
5
4
5
6
6
4
5
3.3
594
to
tn
-------
TABLE 3-65 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. MAY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
27
28
30
31
MONTHL
NO. OF
MAX.HRL
OF
WEEK
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SAT
SUN
MON
TUE
WED
TMU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
r MEAN
DAYS
Y MEAN
12
1
2
2
4
2
2
3
5
3
4
1
1
1
1
3
4
3
20
6
1
I
2
3
*
2
2
3
1
5
0
3
4
1
1
1
1
1
3
4
2
24
5
2
1
2
1
3
1
2
3
1
5
1
2
5
0
1
1
1
0
2
2
2
24
7
3
1
1
1
3
2
1
2
1
3
1
3
5
1
1
1
1
1
1
2
24
5
4
0
1
1
2
4
3
1
2
1
3
2
2
4
1
1
1
0
1
2
2
2
25
4
A
5
1
2
1
1
4
3
1
3
2
3
2
3
4
2
1
2
1
1
2
2
2
25
4
M
6
2
2
I
A
2
1
3
3
5
3
J
<•
3
1
3
2
2
3
3
24
6
7
1
2
1
3
9
2
1
4
3
6
3
4
3
5
2
2
2
1
2
3
•3
24
9
6
3
1
10
i
1
3
2
4
3
4
4
7
1
1
2
1
1
3
24
10
9
1
2
1
7
8
2
1
2
1
3
1
3
4
2
2
1
1
1
1
3
24
8
10
1
2
2
3
2
1
1
1
4
1
3
4
0
2
1
1
1
1
2
22
7
11
1
2
2
4
2
1
0
1
3
2
2
3
0
2
1
1
1
2
22
4
12
1
1
1
2
2
1
0
1
3
2
2
0
2
0
0
1
1
20
3
1
1
1
C
2
2
1
0
1
2
1
2
0
1
1
16
3
2
3
2
4
1
1
3
1
2
i*
2
3
1
15
4
4
2
4
1
1
3
3
1
2
<.
3
3
2
2
1
3
20
7
P
5
2
2
5
i
5
4
2
2
2
3
4
2
-------
TABLE 3-66 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, JUNE 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WEO
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
•ONTHLY IEAN
NO. OF DAYS
•AX.HRLY KAN
A M
12
5
3
2
2
3
3
5
2
2
2
5
4
5
11
8
3
2
3
5
5
2
10
5
25
11
1
5
3
2
2
2
2
<>
1
2
1
5
4
4
9
b
3
2
2
4
5
2
10
5
?5
10
2
3
1
3
?.
3
1
1
1
4
3
4
7
7
2
1
2
4
4
1
8
5
4
5
25
8
3
5
2
2
1
2
2
3
2
1
1
4
3
4
5
7
4
1
2
4
4
1
a
b
4
5
27
8
4
4
2
3
1
2
2
3
1
I
1
5
2
5
5
4
4
2
2
3
4
1
7
S
4
5
27
7
5
4
2
2
2
4
1
3
3
2
I
5
3
5
6
5
4
2
2
3
4
1
6
5
4
4
27
6
6
4
3
2
1
4
2
5
4
4
3
2
6
3
b
9
6
5
3
3
3
3
9
0
6
3
4
27
9
7
4
3
2
1
4
5
5
7
4
3
1
6
3
7
21
R
8
3
3
3
5
9
13
12
1
3
5
28
21
e
3
2
2
I
3
B
7
3
3
1
6
2
a
10
10
9
4
3
2
4
9
11
1 7
1
3
5
27
17
9
2
2
1
2
2
2
4
3
2
2
5
2
5
3
6
4
3
2
4
5
7
d
1
3
3
26
8
10
1
3
1
2
2
0
2
3
2
2
2
5
4
2
5
3
2
2
3
3
7
5
1
3
3
26
7
11
1
3
1
2
3
0
2
3
2
2
2
4
3
1
3
3
2
2
2
2
7
3
I
2
2
26
7
P M
12
1
4
1
1
2
0
2
2
3
2
2
3
3
4
2
2
2
1
2
2
2
2
5
2
4
3
2
2
27
5
1
I
4
2
1
2
0
2
2
2
3
3
3
2
2
2
2
2
2
3
4
3
3
3
2
2
24
4
2
3
2
4
2
2
6
4
3
3
5
3
4
4
3
2
2
2
2
3
5
3
3
2
3
22
6
4
2
4
2
2
7
4
4
3
4
4
3
4
3
2
3
3
3
2
0
2
3
5
3
3
3
2
3
26
7
5
2
4
2
3
9
3
3
2
3
4
3
4
3
2
3
b
3
3
0
2
3
5
3
3
4
2
3
26
9
6
4
2
8
4
4
2
3
5
4
5
3
3
1
7
3
0
2
3
3
3
3
25
8
7
3'
2
8
•«
3
2
4
4
!>
5
3
2
5
4
0
3
i
4
•*
24
8
8
2
3
5
4
4
5
2
6
7
6
9
6
2
4
5
1
6
£
4
2<.
9
9
2
2
4
2
2
5
3
7
7
6
1 1
8
2
3
5
.2
11
5
5
2*
11
10
3
2
J
2
2 .
4
2
6
7
~3
9
8
3
3
5
2
10
4
4
24
10
It
2
2
2
3
4
1
3
3
3
5
6
6
11
7
2
4
5
3
10
4
4
24
11
DAILY
MEAN
2.8
2.9
2.0
1.6
2.8
2.5
4.2
3.5
3.0
2.2
2.7
5>
3. A
5.6
6.3
3.4
3.0
2.8
3.5
2.4
3.6
5.8
6.2
5.2
2.5
3 2
3.9
NO.
OF MR
22
22
23
14
23
18
19
22
21
23
23
19
23
22
23
22
23
23
23
23
22
23
18
15
16
16
23
22
5-HIN
MAX
7
4
4
3
5
9
12
9
6
4
7
8
6
12
24
12
10
7
5
6
5
12
11
17
21
5
6
7
3.6
586
-------
TABLE 3-67
HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. JULY 1963
DAY
MONTH
1
2
3
4
5
6
7
g
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
28
30
31
MONTHL
NO. OF
MAX.HRL
OF
IEEK
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WEO
THU
FRI
SAT
SUN
MON
TUE
WEO
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
r MEAN
DAYS
Y MEAN
12
6
4
2
t.
5
4
j
2
5
5
7
1
2
<3
3
3
2
4
4
£
b
4
24
1
4
H
2
4
4
4
2
b
4
4
b
1
2
•i
ij
2
3
2
1
3
3
3
5
4
2
3
3
29
2
3
3
2
3
3
3
2
5
2
4
b
1
2
4
K
2
2
1
1
2
3
3
5
3
2
2
3
29
3
3
4
1
2
3
3
1
2
4
2
6
5
0
2
4
c
2
2
2
1
3
3
3
^
3
j
1
2
3
?9
4
2
3
1
2
3
3
2
4
4
6
4
1
2
4
4.1
«.5
5.3
3.1
1.8
3.2
5.0
H.b
2.8
3.2
2.8
2.0
3.2
1.0
3.6
3.7
«.5
.9
3.7
3.7
2.8
.'
3.4
NO.
OFHR
23
14
13
23
23
23
23
19
22
23
23
22
23
23
22
18
13
23
23
14
16
22
23
17
23
16
lb
t>31
5-MIN
MAX
7
10
3
6
8
7
5
6
6
7
8
23
7
4
6
14
5
5
5
5
5
3
b
9
14
9
7
7
-------
TABLE 3-68 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, AUGUST 1963
OAT
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
UONTHL
NO. OF
MAX.HRL
OF
WEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
CAT
r MEAN
DAYS
Y MEAN
12
3
6
7
2
5
6
4
8
1
3
4
5
3
7
1
4
17
8
1
2
5
a
4
2
3
5
1
7
3
3
3
5
2
8
I
3
18
8
I
3
3
7
3
i
2
3
3
5
2
3
^
4.
3
2
8
1
3
18
8
3
3
3
6
1
2
2
3
2
5
2
2
2
3
2
8
1
2
18
8
4
3
2
6
1
i
3
4
1
5
2
3
2
2
2
V
2
I
18
9
A
5
2
3
6
1
3
4
5
3
5
2
3
2
3
3
10
3
2
18
10
M
6
4
<>
7
2
<«
5
6
4
7
2
2
3
5
3
5
3
4
18
7
7
5
<»
R
?
11
2
4
7
5
<•
5
5
18
11
9
5
3
11
2
2
3
7
3
<>
2
6
3
2
0
4
17
11
10
3
?
fl
?
2
?
9
?
4
2
4
3
2
0
3
17
9
It
3
2
5
2
2
2
7
2
3
2
3
2
2
0
3
17
7
12
3
5
2
2
2
5
2
4
2
2
2
2
0
2
5
3
16
5
1
?
r
2
2
?
6
1
3
2
2
2
2
0
3
4
<>
3
17
7
2
3
<•
2
4
?
3
5
1
(•
(,
<>
5
3
4
3
2
2
0
2
5
6
6
7
2
7
5
1
1
1
5
11
5
18
11
9
8
fl
4
5
8
•5
7
7
8
3
6
5
0
2
5
10
6
17
10
10
9
7
5
5
7
4
8
6
9
2
5
5
1
2
5
10
5
17
10
11
7
8
3
5
7
4
8
7
7
3
5
4
0
2
5
8
5
17
8
DAILY
MEAN
*.<•
3.6
6.6
2.6
3.2
*.2
5.3
4.0
5.7
3.6
2.7
«.0
3.5
2.3
0.2
4.2
3.8
5.2
••• *
4.0
NO
OFHR
23
17
22
23
23
22
23
23
23
23
15
23
23
20
14
23
23
19
*05
5-MIN
MAX
10
7
14
7
6
9
10
9
22
9
7
8
6
5
2
11
6
12
to
CO
-------
TABLE 3-69 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, SEPTEMBER 1963
DAY
MONTH
1
2
3
4
5
g
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHLY
NO. OF
MAX.HRl
OF
IEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SAT
SUN
MON
f MEAN
DAYS
Y MEAN
12
5
6
6
2
2
5
1
2
1
3
3
I
2
1
2
3
3
1
2
3
4
2
6
2
1
3
27
6
1
5
6
7
2
3
5
1
2
2
2
1
2
1
2
2
4
1
2
3
5
2
6
2
I
3
26
7
2
5
7
7
2
3
4
0
2
1
3
1
1
1
2
3
3
1
2
3
5
2
5
2
1
3
26
7
3
6
7
8
2
3
0
2
1
3
1
1
2
2
3
1
2
3
4
3
4
1
1
3
25
B
4
5
7
a
2
3
0
1
1
2
I
2
1
2
1
1
2
2
4
2
4
1
1
3
25
9
A
5
6
7
3
4
6
3
1
2
1
2
1
2
1
2
3
1
2
2
3
2
3
1
I
3
25
7
M
6
/
3
4
5
6
3
2
2
2
2
2
2
2
1
3
3
3
2
4
1
I
3
23
8
7
7
6
5
6
7
3
2
1
2
2
2
2
4
1
4
3
7
3
5
1
1
23
7
e
7
4
5
5
3
2
2
3
1
2
2
2
3
I
10
1
2
4
15
-------
TABLE 3-70 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON, OCTOBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
30
MONTHL1
NO. OF
MAX.HRL
OF
REEK
TUE
WED
THU
FRI
SAT
SUN
MON
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
WED
THU
f MEAN
DAYS
Y MEAN
12
2
2
1
2
4
3
5
3
5
5
6
3
3
0
5
6
10
10
8
b
3
1
5
8
3
4
5
3
2
3
30
10
1
i
2
2
2
4
2
5
3
7
5
5
?
3
0
•j
5
11
9
9
5
2
?
5
10
3
5
6
3
2
3
TO
11
2
1
2
2
2
4
2
5
?
4
5
4
2
3
0
5
b
9
9
8
5
1
2
h
8
3
5
3
2
3
30
9
3
1
1
2
1
2
4
2
5
2
4
b
5
2
2
0
5
4
7
8
8
5
1
2
b
7
3
4
2
2
3
31
8
4
1
I
1
1
2
4
1
i
2
4
5
4
2
2
0
4
4
7
8
6
5
0
2
5
6
3
3
2
2
31
8
A
5
1
1
1
1
2
3
1
5
3
4
•5
<>
2
2
0
5
4
3
6
h
5
0
2
5
5
3
3
1
1
31
8
M
6
1
1
1
0
2
3
1
5
3
4
5
4
2
4
0
3
4
6
7
7
6
2
3
5
e>
3
3
2
3
31
7
7
1
1
3
0
2
3
3
6
4
7
5
4
2
4
0
4
9
7
9
b
8
2
3
6
8
2
3
3
3
4
91
9
8
2
3
0
2
3
9
3
Ib
b
2
1
b
0
b
9
9
14
7
7
2
3
10
13
3
4
3
4
5
29
Ib
9
3
2
1
2
4
b
2
13
5
2
1
10
10
10
11
22
7
3
1
3
12
13
4
7
2
6
29
22
10
5
2
3
1
2
4
7
2
8
5
2
1
9
6
7
13
13
8
3
1
4
fl
9
8
10
2
2
5
29
13
It
3
2
3
I
3
4
b
2
5
5
1
1
4
4
5
11
6
8
2
1
4
5
5
11
12
2
1
4
30
12
12
2
2
2
0
3
4
4
1
2
4
1
1
2
3
6
10
3
b
1
1
3
3
3
12
11
2
3
30
12
1
2
3
0
4
4
1
1
3
2
1
2
2
4
b
2
5
1
3
3
4
7
7
2
3
2b
7
2
3
2
3
3
2
2
1
6
2
2
4
1
0
3
5
2
3
2
2
1
2
1
2
2
3
2
1
2
27
b
4
2
5
3
?
3
3
a
5
3
3
A
2
1
7
9
5
IS
3
4
2
b
3
5
3
b
5
5
4
30
9
P
s
2
3
2
1
3
3
S
4
4
6
2
1
5
9
10
10
a
6
4
9
2
4
b
4
9
9
A
C.
5
31
10
M
6
2
3
2
2
4
3
7
5
b
b
3
3
5
9
12
10
10
8
7
11
2
5
8
4
14
8
<»
31
14
7
3
3
2
2
5
3
7
5
b
b
3
3
4
8
13
10
9
10
8
10
2
6
8
4
10
b
<»
e
31
13
e
2
2
2
1
5
3
8
5
5
b
3
3
8
b
12
10
10
12
8
9
3
b
7
3
7
b
3
5
31
12
9
2
2
2
2
4
3
b
b
b
b
3
3
10
b
11
10
10
10
8
9
3
5
8
3
b
b
5
31
11
10
2
2
1
2
4
3
6
5
b
5
4
3
1
5
11
10
10
9
8
8
2
5
8
3
5
5
3
4
31
11
11
2
2
1
2
4
3
5
5
5
5
3
3
0
5
8
10
10
9
8
6
1
5
a
3
4
5
2
4
31
10
DAILY
MEAN
2.1
2.0
2.1
1.1
2.9
3.3
".7
51
« l
3.2
5.5
5.1
3.0
1.8
4.3
3.4
b.5
6.9
8.6
8.4
6.7
5.6
1.7
3.5
6.1
5.9
5.7
5.6
^ 0
2.8
37
4.3
NO.
OFHR
17
23
23
23
23
23
21
23
23
23
23
23
23
18
23
23
23
23
23
23
22
23
23
23
23
23
22
31
7 y
692
S-MIN
MAX
6
5
4
2
6
4
9
6
21
7
6
3
18
10
14
12
13
24
10
11
5
6
13
15
15
13
6
-------
TABLE 3-71 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colorimetric analysis)
WASHINGTON. NOVEMBER 1963
DAY
MONTH
1
2
3
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHL1
NO. OF
•Al.nnl
OF
IEEK
FRI
SAT
SUN
WED
THU
FRI
SAT
MON
WED
THU
FRI
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
r MEAN
DAYS
12
4
1
1
3
4
2
1
2
3
3
3
3
3
2
3
2
2
2
2
3
1
3
27
1
3
1
1
2
3
2
1
3
3
3
4
3
3
2
3
2
2
5
2
2
3
3
1
3
28
7
2
3
1
1
3
3
2
1
2
3
3
<>
3
3
2
3
2
2
3
2
2
1
4
I
3
28
6
3
2
2
1
3
t
I
2
3
3
5
2
2
2
3
2
2
3
1
2
2
2
1
2
28
4
3
1
1
3
1
2
2
3
2
4
3
2
3
1
3
2
2
2
3
28
B
3
2
3
2
2
1
2
3
3
5
2
3
3
2
4
3
2
2
3
2
2
1
3
28
9
3
1
1
3
2
2
2
3
8
1
3
4
2
5
2
2
2
3
2
2
3
25
10
3
1
1
3
2
2
3
2
3
2
3
4
5
2
2
2
4
2
2
3
24
11
7
1
1
3
3
2
2
1
3
3
2
3
3
4
6
2
3
2
3
2
1
3
25
12
4
2
1
3
2
2
2
2
3
3
3
2
2
2
<>
6
2
3
2
<>
2
2
3
26
1
4
2
I
2
1
2
2
2
2
2
2
2
2
2
6
1
3
2
2
2
2
2
2
28
6
2
3
3
1
0
1
2
2
1
2
2
2
0
5
4
2
3
3
2
2
22
4
•5
1
1
4
<•
2
3
2
2
3
3
3
3
y
1
7
3
5
2
3
5
J
2
3
2fl
P
5
4
1
1
3
2
3
2
4
4
3
3
2
2
6
3
5
2
3
4
2
2
3
2 fa
M
6
3
1
2
3
2
3
3
-------
TABLE 3-72 HOURLY AVERAGES OF NITROGEN DIOXIDE, pphm (colonmetric analysis)
WASHINGTON, DECEMBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
VEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
2
3
3
2
2
3
3
4
3
3
1
3
5
3
3
4
4
4
4
5
10
3
3
4
26
10
1
2
3
4
2
2
2
3
3
2
2
1
3
3
3
4
4
4
-------
TABLE 3-73 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON, JANUARY 1962
OAT OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
I
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
3
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
1
4
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
1
5
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
1
6
0
0
0
0
0
0
I
0
0
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
1
7
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
1
e
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
25
0
g
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
0
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
24
1
P M
12
'o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
25
1
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
23
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
23
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
25
1
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
g
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
0
11
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
1
DAILY
MEAN
0.0
0.0
0.0
0.1
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
O.I
NO.
OFHR
17
21
15
23
21
21
20
22
23
23
23
23
14
23
23
23
23
23
23
23
23
23
23
23
20
20
23
5-MIN
MAX
0
0
0
1
1
1
1
1
0
1
I
1
0
0
0
0
0
0
0
0
1
0
1
0
1
1
3
0.0
582
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-74 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON. FEBRUARY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
•EEK
THU
FRI
SAT
SUN
MOM
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
0
1
0
0
0
27
1
1
0
0
2
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
0
0
0
0
0
0
0
0
27
1
7
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
I
8
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?b
1
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
-------
TABLE 3-75 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON, MARCH 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
MAX.HRL
OF
IEEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
r MEAN
DAYS
Y MEAN
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
2
2
0
28
2
1
2
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
4
0
0
25
3
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
28
4
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
28
A
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
28
1
1
M
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
28
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
27
8
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
?7
1
1
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
1
0
27
1
1
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
2
0
0
I
2
0
1
2
0
26
It
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
3
1
1
2
3
1
1
24
12
0
0
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
1
3
2
3
3
3
5
3
2
1
27
1
0
1
1
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
1
3
3
4
2
3
6
1
2
1
27
2
0
1
1
1
0
0
1
0
0
0
0
0
0
1
0
1
1
0
1
3
2
4
3
3
5
3
1
1
27
3
0
1
1
1
0
0
2
0
0
0
0
0
0
0
1
1
1
1
0
2
4
2
3
4
4
4
2
2
1
28
4
1
0
1
0
0
0
1
1
0
0
0
0
0
0
I
0
1
1
0
4
3
2
3
5
I
1
2
1
27
P
5
0
0
0
0
0
0
1
1
0
0
0
1
0
1
0
1
1
0
2
1
1
2
3
1
1
0
1
26
M
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
"
1
0
0
1
1
0
1
I
0
27
1
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
27
1
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
27
1
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
1
0
27
2
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
1
0
27
2
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
2
1
0
27
DAILY
MEAN
0.1
O.I
0.2
0.1
0.0
0.0
0.4
0.2
0.0
0.0
O.I
0.0
0.1
0.2
0.2
0.1
0.3
0.4
0.0
0.4
1.1
0.7
0.8
1.0
1.2
1.2
1.3
0.9
0.4
6
NO.
OFHR
23
23
23
23
23
23
19
20
23
23
23
23
23
17
23
23
23
23
23
15
23
23
23
23
22
22
22
23
20
5-MIN
MAX
1
2
2
2
0
1
2
2
1
1
2
1
2
1
3
2
2
2
1
3
5
4
5
6
6
7
4
4
GO
01
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-76 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON, APRIL 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHL1
HO. OF
MAX.HRl
OF
IEEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
f MEAN
DAYS
Y MEAN
12
2
0
0
0
2
0
0
\J
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
29
1
0
0
0
3
2
0
n
0
0
2
2
0
0
0
1
0
c
0
0
0
0
0
0
1
0
0
2
1
1
0
24
3
0
0
0
0
0
0
2
0
0
2
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
30
4
1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
29
1
A
5
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
29
M
6
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
29
7
0
0
0
0
n
0
n
0
0
0
0
n
0
0
1
0
0
0
0
0
0
0
n
0
0
1
0
0
0
0
29
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
n
3
0
0
u
0
0
0
0
0
0
2
1
0
0
29
9
0
1
1
0
0
0
0
.0
0
0
1
0
0
0
1
0
0
2
0
0
1
0
2
1
1
0
0
26
10
0
3
2
0
1
0
0
o
0
1
0
0
1
0
4
0
0
1
1
2
1
1
1
22
11
0
2
2
5
0
0
0
0
1
0
0
1
1
0
n
3
1
0
4
2
3
3
3
3
1
24
12
0
0
2
4
3
0
n
" o
1
0
0
0
1
1
0
0
3
2
0
5
4
1
3
2
0
5
4
1
2
28
1
1
1
1
5
6
1
1
0
0
2
0
0
0
1
3
0
0
2
3
0
4
5
1
3
4
1
6
4
3
2
2
30
2
0
0
2
4
6
2
2
0
0
2
0
0
0
2
2
0
I
2
2
0
4
4
2
3
4
0
6
3
3
2
2
30
3
0
0
2
3
1
1
0
1
3
0
0
0
2
2
0
2
1
1
0
4
4
3
3
1
4
3
2
4
2
28
4
0
0
1
3
2
0
0
1
2
0
0
0
2
?
D
1
1
3
0
5
2
2
4
3
1
2
2
1
5
2
29
P
5
0
0
2
3
2
0
0
1
1
0
0
0
2
1
0
0
1
1
0
4
3
1
3
2
0
3
1
1
5
1
29
M
6
0
0
1
1
0
2
0
0
7.
0
0
0
0
1
0
n
0
0
i
0
2
1
1
2
1
0
0
1
2
3
1
30
7
1
0
0
1
0
1
0
0
1
0
0
0
0
0
n
n
0
0
0
0
0
i
0
0
0
0
0
2
2
0
29
e
i
0
0
1
0
0
0
0
1
0
0
0
0
0
°
0
0
0
1
0
0
1
0
0
0
0
0
1
1
0
29
9
1
0
0
1
0
1
0
0
0
0
0
0
0
D
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
29
10
0
0
0
1
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
29
11
0
0
0
2
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
29
DAILY
MEAN
0.3
0.1
0.6
!.<•
1.2
0.6
0.5
0.0
0.3
0.8
0.0
0.1
0.1
0.7
0.6
0.1
0.2
0.6
0.8
0.0
1.6
1.4
0.5
1.2
0.9
0.3
1.8
1.2
1.0
1.2
0,7
(
NO
OFHR
22
20
23
21
20
22
22
22
21
23
20
23
23
23
23
22
23
22
23
23
23
IB
19
23
21
15
23
24
23
22
>52
5-MIN
MAX
3
2
6
7
a
3
3
0
3
4
1
1
1
3
4
1
3
5
5
1
7
6
3
5
5
2
7
5
4
6
CO
-3
Note:
Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-77 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON, MAY 1962
DAY
MONTH
1
2
3
4
5
g
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
HQNTHL
NO. OF
Hit UDI
OF
WEEK
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
rMFikl
DAYS
V HFiU
12
0
I
0
0
0
1
0
0
0
1
0
3
1
0
3
2
I
0
3
1
2
2
2
1
0
4
0
0
1
1
1
31
1
0
1
0
2
0
1
0
0
0
1
0
0
1
1
0
3
1
0
3
2
1
0
3
1
2
1
0
0
0
0
2
0
1
1
30
3
3
0
1
0
0
0
n
0
0
i
0
4
0
0
1
?
0
1
3
2
2
0
0
0
0
2
1
1
0
0
1
31
4
0
1
0
0
0
0
0
0
0
0
3
0
0
1
2
1
2
0
1
0
2
0
0
1
1
0
0
0
1
31
A
5
0
1
0
0
0
0
0
0
0
0
0
2
0
0
2
1
0
1
2
0
1
0
1
0
0
1
0
0
0
0
30
M
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
3
0
0
0
1
1
0
1
0
0
0
0
30
7
0
0
0
0
0
0
n
0
0
0
0
1
0
0
1
?
2
3
•I
0
0
0
1
3
0
1
1
0
0
1
30
8
0
0
2
2
2
1
0
0
0
2
1
0
1
1
0
b
5
0
0
0
0
4
0
1
1
0
I
29
9
0
0
3
5
3
2
1
1
it
1
0
4
1
0
6
7
2
0
3
5
1
1
2
0
2
27
10
0
0
0
2
5
6
?
1
1
3
1
6
0
2
7
8
4
4
2
1
2
2
3
23
11
1
1
0
3
4
3
2
1
4
2
2
6
3
7
8
<>
4
5
3
1
3
2
2
26
12
I
1
0
3
5
4
3
3
6
3
3
6
i.
9
1
5
3
6
6
3
4
2«
1
1
0
0
3
5
4
5
3
4
6
4
3
7
5
7
6
8
1
6
5
5
6
7
I
3
4
3
30
2
1
1
3
4
1
5
3
4
5
3
0
7
4
8
7
8
2
6
5
5
6
7
2
3
4
3
29
3
1
1
3
4
0
5
2
0
5
3
1
7
4
8
6
8
3
5
5
5
6
4
1
3
4
1
29
4
1
1
4
5
0
5
1
1
4
4
2
6
6
8
6
8
3
5
4
4
6
7
2
2
2
4
1
30
P
5
0
0
3
4
0
4
1
0
5
3
2
4
6
2
7
6
4
4
4
4
6
6
4
2
2
3
2
30
f
M
6
0
0
2
2
0
3
0
0
3
2
1
2
5
1
5
5
2
4
3
1
4
5
3
2
2
2
1
30
7
1
0
1
0
1
i
0
1
1
0
1
0
0
4
1
1
3
0
3
1
1
1
3
1
1
1
1
0
30
e
1
0
1
0
0
0
1
0
1
2
0
0
2
3
1
0
*2
0
1
2
1
0
1
0
2
0
0
1
31
9
0
0
1
0
0
0
0
1
2
1
0
0
5
3
0
0
1
0
0
2
0
0
2
0
2
0
0
1
31
10
1
0
0
0
0
0
0
1
1
3
0
0
5
2
0
0
2
0
1
2
1
0
2
0
1
0
0
1
31
It
0
0
0
0
0
1
0
0
1
1
3
1
0
4
1
1
0
1
2
1
2
0
0
2
0
1
1
1
1
i
31
4
DAILY
MEAN
0.4
0.4
0.2
1.*
2.0
1 Q
0.8
1.5
1.0
1.0
z.*
2.0
0.7
3.1
2.5
2.4
3.1
*.7
1.3
2.5
1.9
2.0
I.*
3.2
2.1
1.3
1.2
1.4
1.2
.'
6
NO
OFHR
23
22
18
23
23
y a
22
23
19
23
23
23
22
22
23
21
23
22
•*•*
23
17
23
20
23
15
22
22
22
22
23
22
75
5-MIN
MAX
3
2
3
5
7
5
5
6
5
6
7
5
4
8
8
11
10
i n
9
5
7
6
7
7
7
8
3
4
5
5
CO
CO
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-78 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON, JUNE 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
VEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MONTHLY MEAN
NO. OF DAYS
•AX.HRLY MEAN
A M
12
l
0
i
0
c
3
1
2
1
2
\
0
3
1
0
I
3
0
0
0
3
0
0
1
1
0
1
1
27
3
1
2
0
0
0
0
3
1
1
3
2
0
2
2
1
1
3
1
0
4
2
1
1
0
3
1
0
0
1
0
0
I
29
4
3
0
0
0
1
2
1
2
4
2
1
1
1
0
0
2
1
0
3
1
0
1
0
2
0
1
0
1
0
0
1
29
4
4
0
0
1
2
1
0
I
2
1
0
1
1
0
0
2
1
0
2
1
0
0
0
I
1
0
0
1
0
0
1
29
'i
5
0
0
1
1
1
0
1
1
0
0
0
1
0
0
2
1
0
1
1
0
0
0
0
0
1
0
0
0
0
0
29
2
6
0
0
1
I
0
0
1
0
0
1
I
1
0
0
1
2
0
0
0
0
0
0
0
0
1
0
1
0
0
0
29
i
1
0
0
0
2
1
1
1
1
1
2
1
1
3
1
1
3
2
4
1
1
0
1
I
24
4
8
2
2
2
I
1
2
2
5
3
3
2
1
•J
1
3
4
•
2
4
5
5
6
9
6
2
4
3
4
7
5
1
4
23
10
11
•>
9
0
4
4
3
9
6
4
3
2
6
5
7
8
1 1
6
2
4
t>
5
7
B
6
5
5
25
11
P M
12
5
6
1
4
4
7
7
7
4
4
2
7
5
7
7
12
6
2
4
6
4
8
8
B
5
5
6
26
12
1
4
6
2
5
0
9
7
7
5
6
3
10
5
7
ft
5
2
5
6
5
8
9
6
4
5
24
10
2
4
6
2
4
2
7
9
a
5
6
3
1 1
4
7
8
H
5
3
5
4
4
7
10
7
4
6
25
11
3
5
7
1
4
2
6
7
?
6
4
2
0
7
6
H
3
H
4
3
4
4
4
6
10
B
3
5
26
10
4
5
7
3
4
0
4
8
7
7
5
3
2
0
9
b
7
4
8
3
1
5
5
3
5
6
8
3
1
5
?e
9
5
4
7
4
3
0
4
7
6
6
3
4
2
0
7
6
6
7
7
1
2
5
5
3
5
6
8
4
1
4
28
8
6
3
2
3
0
3
6
4
5
5
3
1
0
6
4
6
(>
6
0
1
*»
1
2
4
5
4
7
4
1
3
28
7
7
1
2
3
0
I
3
2
4
3
1
0
0
4
2
3
3
4
0
1
2
2
1
3
3
4
4
2
0
2
28
4
8
0
1
3
0
0
1
3
3
2
2
1
0
3
1
0
1
2
0
2
0
4
1
2
b
2
2
1
0
2
28
6
9
0
0
2
0
0
3
3
3
0
2
0
0
4
2
0
1
1
0
2
0
4
2
1
3
0
0
2
0
1
28
4
ID
0
0
2
0
0
3
2
2
1
2
1
0
4
1
0
I
2
0
1
0
2
0
0
1
0
0
1
1
27
4
M
0
0
2
0
0
3
1
3
2
2
0
0
3
1
0
1
3
0
1
0
3
0
0
1
0
0
1
1
27
3
DAILY
MEAN
2.0
4.0
1.0
2.4
0.8
1.4
3.5
4.4
3.8
2.7
2.4
1.3
0.2
3.8
3.2
3.5
3.h
4.7
2.4
1.3
2.1
2.7
2.3
3.2
2.7
3.6
2.9
2.0
0.4
NO.
OFHR
23
16
22
Z3
20
18
23
23
23
23
23
22
1R
23
23
23
23
22
23
23
23
23
23
23
16
23
22
21
13
5-MIN
MAX
9
13
6
7
4
5
12
10
10
8
7
4
2
16
7
9
10
13
9
4
6
7
7
11
10
12
9
6
4
2.6
624
Note:
Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 79 HOURLY AVERAGES OF TOTAL OXIOANT, pphm (Kl analysis)
WASHINGTON. JULY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
1
1
1
0
0
0
1
2
1
0
0
1
0
1
0
a
0
0
1
0
20
2
1
1
1
I
2
0
2
1
0
0
0
3
0
0
0
0
0
1?
3
3
0
2
2
0
2
0
0
1
0
0
0
2
2
0
3
0
0
1
0
0
1
20
3
4
0
1
?
0
0
1
1
0
0
0
2
2
0
3
0
0
0
0
0
1
20
3
5
0
1
1
0
1
0
1
1
0
0
1
1
0
2
0
0
0
0
0
0
19
2
6
0
0
1
0
0
1
0
0
0
1
1
0
0
0
0
0
0
0
0
19
1
7
2
0
1
0
2
0
1
0
0
0
1
I
1
0
0
0
0
0
0
0
19
2
B
5
?
2
1
1
0
0
0
1
1
3
0
0
2
0
2
0
1
18
5
9
6
5
4
3
2
0
0
i
2
5
1
0
3
1
6
2
3
17
6
10
f>
3
1
2
0
1
4
6
2
0
4
5
0
4
15
6
11
6
4
2
1
0
-------
TABLE 3-80 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON, AUGUST 1962
DAY
MONTH
1
z
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
HONTHL1
NO. OF
MAX.HRL
OF
WEEK
WHO
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
MEAN
DAYS
Y MEAN
12
0
0
3
2
0
2
0
1
0
i
4
I
0
. 1
0
I
I
0
1
13
4
1
5
1
2
5
2
o
1
0
3
1
1
1
0
4
1
0
I
0
1
0
0
1
16
4
3
0
0
4
2
0
2
0
1
0
0
2
2
0
1
0
1
0
0
1
18
4
4
0
0
0
0
0
z
1
1
0
0
I
0
1
0
0
0
0
0
18
2
A
5
0
0
i
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
18
1
M
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
0
7
0
0
?.
0
1
0
0
1
0
0
0
0
0
0
I
0
0
17
2
8
1
3
3
1
2
2
3
i
2
1
2
2
0
2
1
15
3
9
1
2
4
5
2
5
3
-------
TABLE 3-81 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON, SEPTEMBER 1962
DAY
MONTH
1
2
3
4
5
6
7
g
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHLY
NO. OF
MAX.HRL
OF
WEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MEAN
DAYS
Y MEAN
12
1
0
1
2
0
c
0
3
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
c
0
0
0
c
28
3
1
2
1
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
1
0
2
0
0
I
0
0
27
2
3
0
0
0
1
0
1
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
2
0
0
1
0
0
?7
2
4
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
1
A
5
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
1
M
6
0
1
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
1
0
0
0
0
0
0
0
27
2
7
0
0
0
0
0
0
0
0
0
0
0
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
4
8
2
I
0
0
0
1
0
4
1
I
0
7
^>
2
0
1
0
1
0
0
0
0
0
0
0
0
1
?7
7
9
6
3
0
0
1
0
4
1
2
3
9
5
4
1
1
2
0
0
1
0
1
1
?
?1
9
10
1 1
4
0
1
1
2
3
2
2
4
12
7
4
1
3
1
3
3
0
0
0
0
1
0
3
3
?6
12
11
9
5
0
1
3
4
2
3
3
6
8
7
5
2
it
2
4
4
0
1
0
0
2
2
5
3
26
9
12
9
5
2
1
2
5
5
3
5
9
6
3
2
3
2
4
4
2
3
0
0
2
2
5
4
25
9
1
9
4
2
1
4
2
6
5
3
6
a
6
3
2
3
3
5
3
3
9
1
1
0
1
3
6
4
27
9
2
11
4
1
0
9
3
6
4
4
6
5
4
2
2
2
4
3
3
9
0
0
0
1
3
6
4
76
11
3
•i
4
2
0
5
3
6
4
3
6
4
5
2
2
2
4
4
2
5
1
0
0
0
3
6
3
26
9
4
7
2
3
0
1
3
5
3
0
4
7
3
3
2
t
2
4
3
2
5
1
0
0
0
3
4
3
27
7
P
5
5
1
4
0
2
3
5
2
0
3
7
2
2
2
1
1
2
1
2
4
1
0
0
0
1
2
2
27
7
M
6
3
0
3
0
1
2
2
2
0
1
2
1
2
0
2
0
1
I
1
2
1
0
0
0
0
0
1
27
3
7
1
1
4
0
0
1
1
1
0
1
2
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
1
27
4
8
I
1
3
0
0
1
1
1
0
1
1
1
1
0
1
0
0
0
0
1
I
0
0
0
0
0
1
?7
3
9
0
1
2
0
0
0
1
1
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
27
2
10
0
2
2
0
0
0
1
1
0
1
1
0
1
0
0
0
0
1
0
3
0
0
0
0
0
0
1
27
3
11
0
2
2
0
0
0
0
•t
2
0
0
0
0
0
0
0
0
1
1
0
3
0
0
0
0
0
0
0
27
3
DAILY
MEAN
3.6
1.8
I.*
0.3
1.2
1.1
1.9
7 S
2.2
0.4
1.3
2.4
*.3
2.6
1.7
0.7
1.1
0.7
1.5
1.1
0.8
2.2
0.7
0.0
0.0
0.4
1.0
1.7
1.4
NO
OFHR
23
23
23
23
19
23
23
2 3
23
19
23
23
13
23
23
23
22
23
23
23
23
19
23
22
23
23
15
23
S12
5-MIN
MAX
1*
6
5
2
12
4
8
6
3
5
9
15
9
6
3
5
3
6
5
5
13
4
1
0
3
4
8
Note: Tocal oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-82 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON. OCTOBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED'
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
1
1
0
0
1
0
0
1
0
0
0
0
<>
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
4
1
2
0
0
0
0
0
0
I
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
I
3
0
0
0
0
0
0
1
0
0
0
0
0
I
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
30
2
4
0
0
0
1
0
0
2
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
30
2
5
0
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
1
6
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
1
7
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
1
e
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
u
0
0
0
0
28
I
9
1
1
0
0
0
3
0
0
0
2
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
24
3
10
2
3
0
0
1
5
0
1
1
3
1
1
1
0
1
0
2
0
0
0
0
0
0
0
0
0
1
26
5
II
4
5
5
1
2
3
5
2
2
2
2
4
3
1
0
0
1
5
0
3
0
0
0
0
0
0
0
0
2
28
5
P M
12
4
5
4
1
3
4
6
2
1
4
3
5
4
3
0
1
3
6
0
2
0
0
0
0
1
1
0
0
2
28
6
1
•A
6
2
1
4
6
6
<>
1
5
3
6
5
3
1
3
5
3
7
1
1
2
0
0
0
1
2
0
0
3
29
7
2
5
5
5
0
3
5
7
4
2
4
3
6
5
2
2
3
5
<>
8
1
2
1
0
0
0
1
3
1
0
0
3
30
8
3
4
5
4
0
4
6
7
1
1
3
4
3
5
5
1
1
3
4
3
6
1
2
2
0
0
0
1
2
1
0
0
3
31
7
4
4
4
2
0
3
5
5
3
1
3
2
2
3
5
1
1
2
2
2
5
I
0
I
0
0
0
1
1
0
0
0
2
31
5
5
1
2
1
0
2
2
2
3
0
1
1
i
1
3
0
0
0
0
1
3
0
0
0
0
0
0
0
1
0
0
0
1
31
3
6
1
1
1
0
0
1
1
2
0
0
0
0
1
1
0
2
0
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
31
2
7
1
0
1
0
0
1
0
I
0
0
0
0
0
2
1
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
30
2
8
0
i
i
0
0
0
0
1
0
0
0
0
0
2
1
2
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
31
2
9
0
i
i
0
0
1
0
1
0
0
0
0
0
2
I
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
2
to
0
1
1
0
0
0
0
0
1
0
0
0
0
2
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
31
2
11
0
1
1
0
0
1
0
0
1
0
0
0
0
3
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
31
3
DAILY
MEAN
1.5
1.6
1.*
0.3
0.9
1.5
2.*
1.0
0.5
1.1
0.9
0.4
1.9
1.9
1.0
0.6
0.5
1.2
0.7
1.9
0.3
0.7
0.4
0.0
0.0
0.0
0.2
0.5
0.2
0.0
0.0
NO.
OFHR
20
23
23
23
23
23
23
23
23
21
22
17
22
23
22
22
21
13
23
23
23
23
21
23
23
23
23
23
20
23
22
5-MIN
MAX
7
7
6
1
5
7
8
6
3
5
5
4
7
6
5
3
4
6
4
9
2
4
3
1
1
0
1
4
2
0
0
0.8
680
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 83 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON, NOVEMBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
0
0
0
0
2i
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I)
0
0
0
0
0
0
0
0
22
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
c
0
0
20
0
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20
0
P M
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21
0
2
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
19
1
3
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
18
I
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?2
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
DAILY
MEAN
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
NO
OFHR
23
22
22
23
22
?1
23
22
23
?1
20
23
?1
23
23
23
23
23
23
22
23
23
5-MIN
MAX
1
1
0
1
0
0
1
2
0
0
0
0
0
2
1
1
0
0
0
1
0
I
0.0
<>92
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 84 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON. DECEMBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
c
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
16
1
3
0
0
0
0
0
0
0
0
0
0
0
o
0
0
0
1
0
0
17
I
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
0
7
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
17
1
8
0
0
0
0
0
0
0
0
0
0
0
I
0
0
0
0
0
0
17
1
9
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
17
1
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
15
0
11
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
15
1
P M
12
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
16
1
1
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
16
1
2
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
16
1
3
2
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
16
2
4
1
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
17
1
5
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
17
1
6
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
17
1
7
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
16
1
6
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
16
1
9
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
16
1
10
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
16
1
11
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
16
1
DAILY
MEAN
0.3
0.0
0.0
0.0
0.1
0.1
0.0
0.1
0.2
0.0
0.0
0.5
0.1
0.0
0.0
0.1
0.1
NO.
OFHR
18
23
22
23
17
23
22
23
23
23
23
22
23
23
23
23
23
5-MIN
MAX
t.
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
0.1
377
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-85 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON, JANUARY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
«EEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
0
0
0
1
1
1
1
0
1
0
1
0
1
1
1
0
1
0
0
1
0
24
1
1
2
0
0
0
0
0
0
0
1
0
1
0
1
1
1
1
1
1
1
1
0
1
1
0
1
0
24
1
3
0
0
0
0
0
0
0
1
0
0
1
1
1
0
0
0
1
1
1
0
1
1
0
0
0
24
1
4
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
0
0
0
23
1
5
0
0
0
0
0
0
0
1
1
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
23
1
6
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
23
1
7
0
0
0
0
0
0
0
1
0
0
8
0
0
0
0
0
0
0
1
0
0
0 0
1
0
0
1
0
1
1
0
0
0
0
0
0
23
1
0
0
0
1
0
0
0
0
1
0
0
0
0
23
1
9
0
0
0
0
0
0
0
0
0.
1
0
0
0
0
0
0
0
0
0
0
0
0
21
1
10
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
20
1
11
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
23
1
P M
12
0
0
0
0
0
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
0
0
1
0
23
1
1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
21
1
2
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
23
1
3
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
1
1
0
0
0
1
0
23
I
4
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
23
1
5
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
24
1
6
0
0
0
0
0
0
1
1
0
1
1
1
0
0
0
0
0
0
1
1
1
0
0
1
0
24
1
7
0
0
0
0
0
0
1
1
1
0
1
0
1
0
0
I
0
0
0
0
0
0
1
0
23
1
8
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
24
1
9
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
0
1
1
0
0
1
0
24
1
10
0
0
0
0
0
0
1
1
1
1
0
1
0
1
0
0
1
1
0
1
1
0
0
0
0
24
1
11
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
0
0
1
0
24
1
DAILY
MEAN
0.1
0.0
0.0
O.I
0.1
0.1
0.2
0.5
0.5
0.4
0.3
0.4
0.3
0.2
0.2
0.5
0.3
0.4
0.4
0.4
0.4
0.1
0.1
0.4
NO.
OFHR
23
23
22
23
21
23
21
17
21
22
20
23
23
22
23
21
23
22
23
23
23
23
23
23
5-MIN
MAX
1
0
1
1
1
1
I
2
2
2
1
1
1
1
1
2
1
1
1
1
1
1
1
2
0.3
531
CD
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-86 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON, FEBRUARY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
REEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY KAN
A M
12
1
0
0
1
0
0
0
1
1
2
1
11
z
1
2
1
0
1
1
1
1
1
1
1
9
1
3
1
0
1
1
1
0
1
0
1
1
1
11
1
4
1
0
1
I
0
0
0
0
1
1
1
11
1
5
0
1
1
1
1
.
0
0
1
1
1
10
1
6
1
1
1
1
1
0
0
1
1
1
10
1
7
0
1
1
0
1
1
0
1
1
1
10
1
8
1
1
1
1
0
0
0
i
1
1
10
1
9
0
1
1
0
0
0
0
0
0
0
10
1
10
0
0
1
0
0
0
0
0
1
0
10
1
11
0
1
1
0
0
0
0
1
0
0
10
1
P M
12
0
1
1
1
0
0
0
0
0
1
0
11
1
1
0
0
0
1
0
0
1
1
0
0
0
11
1
2
n
0
1
1
0
0
1
0
0
1
0
11
1
3
0
0
1
1
0
0
1
1
1
1
0
11
1
4
0
0
1
I
1
1
1
1
1
1
0
11
1
5
0
0
1
0
1
0
0
1
1
1
1
11
1
6
0
0
1
1
1
0
1
1
1
1
0
11
1
7
1
0
1
0
1
0
1
1
1
1
0
11
1
8
1
0
0
1
1
0
0
1
1
1
0
11
1
9
1
0
1
1
10
1
1
1
0
0 i 1
1
I
0
0
I
1
1
0
12
1
0
0
0
1
1
1
0
12
1
11
1
I
1
0
1
0
0
1
1
I
1
1
12
1
DAILY
MEAN
o.«
o.«.
0.7
0.5
o.*
0.2
0.2
0.3
0.6
0.6
O.B
0.5
NO
OF HR
23
5-MIN
MAX
1
23 1
22
23
23
13
Ib
23
!<•
23
23
22
3
2
1
1
t
2
1
2
2
2
2*7
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-87 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON. MARCH 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
2
0
1
1
1
0
0
0
0
1
1
0
0
0
0
29
2
1
2
1
1
1
0
1
0
0
0
0
2
1
1
1
1
1
1
0
0
0
18
2
3
0
1
0
0
1
1
0
1
0
0
0
0
0
0
0
2
2
1
1
1
1
0
0
1
1
1
0
0
1
1
29
2
4
0
0
0
0
0
1
0
0
1
0
0
1
0
1
0
2
1
1
1
1
1
1
1
2
1
0
1
0
0
0
29
2
5
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
. 0
0
0
1
1
1
1
0
0
0
1
0
1
0
28
1
6
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
1
0
0
1
0
0
0
0
0
1
1
0
1
0
28
1
7
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
1
1
1
0
0
0
0
0
1
0
28
1
B
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
0
0
1
0
1
0
28
1
9
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
1
0
0
0
2
0
1
0
25
2
10
0
0
0
1
0
0
0
0
0
1
0
1
1
0
1
0
1
0
0
0
1
1
1
0
2
0
25
2
11
0
1
0
1
0
0
0
0
1
I
0
0
1
1
0
I
0
1
1
0
2
0
1
2
0
3
1
26
3
P M
12
0
1
1
1
0
0
0
0
2
0
0
0
1
1
0
1
0
1
1
1
3
2
3
1
2
3
3
3
1
28
3
1
0
0
1
1
0
0
0
2
0
1
0
0
1
1
0
1
1
0
0
1
5
3
3
1
3
3
4
3
1
28
5
2
0
0
1
I
0
0
0
1
0
1
0
0
1
1
2
1
1
0
2
i>
2
0
2
<>
3
6
2
1
27
6
3
0
0
1
1
0
0
0
2
0
1
0
0
1
1
2
1
1
1
0
2
4
1
0
2
4
4
5
2
1
28
5
4
0
1
1
1
I
0
0
1
1
0
1
0
1
0
5
0
0
0
0
1
0
0
0
0
1
0
1
0
0
1
1 , 1
2
1
2
1
1
1
4
0
0
2
3
2
2
2
1
*9
4
1
1
2
0
0
1
2
0
0
1
3
2
1
2
1
30
3
6
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
I
1
0
0
1
1
1
1
1
0
30
1
7
0
0
0
1
1
0
0
0
0
0
0
1
0
0
1
2
0
0
1
0
0
0
1
0
0
1
0
1
1
0
0
30
2
8
0
0
0
1
0.
0
0
0
0
0
1
0
0
0
1
2
1
1
1
0
0
0
1
0
0
0
0
0
1
1
0
30
2
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
1
1
1
1
0
1
0
0
i
0
0
1
1
0
30
2
10
0
0
0
1
1
0
0
0
0
0
0
1
0
0
1
2
1
1
1
1
1
1
1
0
1
1
0
0
1
1
0
30
2
11
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
2
0
1
1
1
0
1
1
0
0
1
1
0
1
2
0
30
2
DAILY
MEAN
0.1
0.3
0.3
0.5
0.3
0.2
0.1
0.2
0.3
0.4
0.2
0.6
0.2
0.2
0.6
0.7
0.9
0.7
0.7
0.5
0.5
0.7
1.3
0.6
0.6
0.7
1.2
1.2
1.1
1.3
NO.
OFHR
23
23
22
21
23
19
23
21
19
23
16
13
22
23
22
23
19
20
21
21
22
23
23
22
22
22
23
23
23
23
5-MIN
MAX
2
I
2
3
2
2
1
I
1
3
1
2
2
3
2
3
3
3
3
I
2
4
7
5
4
3
7
5
7
4
0.6
643
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 83
HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON. APRIL 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
REEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
NAX.HRLY MEAN
A M
12
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
3
0
3
2
2
0
0
0
2
3
1
30
3
1
2
0
1
0
0
0
0
0
0
0
0
0
0
2
0
3
2
1
a
0
0
3
1
23
3
3
2
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
4
2
2
0
0
0
0
3
1
30
4
4
I
0
2
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
2
1
3
1
2
0
0
0
0
3
1
30
3
5
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
1
3
2
1
0
0
0
0
2
1
30
<3
6
0
0
1
0
0
0
0
0
0
0
0
0
0
•o
0
0
0
0
3
0
0
1
0
0
0
0
0
1
0
30
3
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
1
1
0
0
0
0
2
0
0
0
30
2
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
1
2
0
0
1
3
I
0
0
0
30
3
9
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
3
4
2
2
0
0
1
3
y
2
0
1
28
t,
10
0
0
2
1
1
0
0
0
0
1
1
2
2
3
0
0
3
•>
1
0
1
2
4
2
0
1
26
5
11
1
6
1
1
0
0
0
0
0
1
1
3
2
3
1
2
3
6
0
0
2
4
6
3
2
2
26
6
P M
12
7
1
2
1
0
0
0
0
0
2
3
2
2
0
3
6
3
6
2
1
2
4
5
1
2
2
27
7
1
7
1
3
2
I
0
0
0
3
3
3
3
0
3
6
3
7
4
5
1
3
3
6
0
2
3
27
7
2
7
t
3
5
3
0
0
1
3
4
4
3
0
3
5
4
8
3
4
1
3
3
5
2
2
3
27
8
3
5
1
3
6
2
0
1
1
3
3
4
3
0
3
4
3
7
3
3
1
4
4
5
2
2
3
27
7
4
4
1
3
3
h
2
0
1
1
2
3
2
1
0
3
3
4
R
2
2
1
3
4
5
1
2
3
2fl
8
5
2
2
2
2
4
1
0
0
1
2
2
3
0
0
3
1
5
6
2
1
0
3
3
4
1
2
2
28
6
6
0
5
1
1
2
2
0
0
0
0
0
1
1
1
0
0
1
1
4
2
1
1
0
2
1
3
I
1
1
30
5
7
0
5
0
0
1
3
1
0
0
0
0
0
0
0
0
0
0
2
2
1
1
1
0
0
0
1
2
1
1
30
5
B
0
1
0
0
0
4
2
0
0
0
0
0
0
0
0
0
0
3
1
3
1
2
0
0
1
1
1
2
1
30
4
9
0
0
0
0
1
4
0
0
0
0
0
0
0
0
0
0
0
1
1
4
1
1
0
0
0
0
0
2
1
30
4
to
0
1
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
2
0
4
1
1
0
0
0
0
1
2
0
30
4
11
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
1
0
2
0
I
0
0
0
0
2
3
0
30
3
DAILY
MEAN
o.<-
t n
2.2
0.9
0.6
1.0
1.9
0.7
0.0
0.1
0.1
0.3
0.8
1.1
1.0
0.8
0.1
0.9
1.6
2.6
3.2
1.9
1.8
0.5
0.9
1.3
2.2
27
1.1
1.7
NO
OFHR
15
23
22
17
22
23
22
16
21
23
23
23
23
23
23
20
23
23
23
23
20
23
23
23
23
23
22
23
S-MIN
MAX
3
9
3
4
4
8
4
2
1
1
2
5
4
5
4
1
5
8
6
9
5
7
3
5
6
7
4
4
1.2
657
to
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3-89 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON. MAY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
MAX.HRL
OF
WEEK
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
r MEAN
DAYS
Y MEAN
12
2
1
0
1
2
2
1
0
0
1
0
0
1
2
0
1
It
0
1
0
3
2
0
0
3
3
2
0
2
0
1
30
4
1
2
3
2
3
1
0
1
0
0
0
2
4
0
2
0
0
3
3
3
1
1
2
1
23
4
3
4
0
1
3
2
0
0
0
1
0
0
1
1
4
1
0
2
2
0
0
3
3
3
0
2
3
1
29
4
4
3
0
0
0
3
2
0
0
0
1
0
0
1
1
2
1
1
1
1
0
0
2
3
0
1
1
1
30
3
A
5
1
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
1
1
0
0
0
2
1
0
1
0
0
30
2
M
6
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
I
0
0
1
0
0
30
1
7
0
0
0
0
0
1
2
0
0
0
1
0
0
0
0
1
0
0
I
0
0
1
2
0
0
2
1
0
29
2
B
0
0
0
0
4
0
0
1
I
1
0
1
1
2
0
1
I
0
0
It
3
1
27
4
9
0
0
1
1
5
2
2
2
0
1
1
2
4
2
0
1
1
0
0
5
4
2
27
5
10
0
1
3
3
5
1
6
7
1
2
3
0
1
?
3
2
4
2
3
4
3
0
0
6
6
3
29
7
It
0
7
7
9
2
7
2
5
2
3
1
2
3
4
3
5
3
5
5
6
1
0
7
7
4
30
9
12
0
6
8
14
3
6
3
5
3
3
1
3
4
2
8
7
7
1
7
8
4
28
14
1
0
6
11
15
6
7
4
5
6
4
3
1
4
2
4
2
8
7
3
2
8
8
5
30
15
2
0
5
12
13
7
4
4
4
5
2
2
5
1
3
3
10
7
5
2
1
8
8
5
30
13
3
1
4
9
11
a
3
4
3
5
1
3
3
2
3
3
10
6
4
2
1
8
9
5
30
11
4
0
4
7
9
6
2
3
3
6
2
2
4
3
4
3
9
7
1
2
2
8
9
4
30
9
P
5
0
4
7
7
7
1
3
2
3
1
2
5
4
2
2
4
7
1
1
2
7
9
4
30
9
M
6
0
2
2
6
5
1
2
1
2
1
1
1
4
4
2
2
2
3
6
0
2
1
6
7
2
30
7
7
0
1
2
5
5
1
1
0
1
0
0
3
1
1
1
0
3
6
0
2
0
3
0
1
30
6
8
0
1
3
4
2
1
1
1
0
0
0
2
1
0
2
0
2
5
2
1
0
1
0
1
30
5
9
0
1
2
2
3
1
1
0
0
1
2
0
1
0
1
0
2
4
3
1
0
1
0
1
30
4
10
0
o
2
3
2
2
1
1
0
0
2
2
0
0
1
2
0
1
3
3
0
1
0
1
1
30
4
11
0
1
3
2
2
0
0
0
0
2
1
1
0
0
2
0
0
3
2
0
2
0
0
1
30
4
DAILY
MEAN
0.5
i •>
2.2
3.8
*.7
3.3
3.3
1.8
1.*
1.7
. '
1.6
1.2
0.9
1 ft
1.8
2.1
2.8
. i
1.2
. 3
2.3
1.4
3.0
3.3
2.3
.9
1.1
0.5
3.7
3.8
2.2
NO.
OFHR
22
23
22
21
23
21
13
13
18
23
y y
23
22
22
22
23
23
23
y »
20
? "\
22
23
23
23
23
23
21
23
23
f.72
5-MIN
MAX
4
11
14
17
9
8
5
6
8
6
4
3
6
5
7
5
6
3
12
9
8
6
4
3
8
11
01
o
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 90 HOURLY AVERAGES OF TOTAL OXIDANT, pphm (Kl analysis)
WASHINGTON. JUNE 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
•flUTUI V MFAII
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
2
0
1
0
0
0
3
1
0
1
1
0
0
1
0
1
2
\
0
0
0
1
0
0
1
2
29
3
I
2
2
0
1
0
0
0
2
2
0
1
1
0
0
0
1
5
1
0
0
0
1
2
0
I
26
5
3
0
2
0
0
0
0
0
2
1
0
0
0
1
0
0
0
1
1
1
0
0
0
1
1
0
1
1
29
2
4
0
1
0
1
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
29
3
5
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
1
0
29
2
6
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
2
29
2
7
2
0
0
0
0
1
2
0
1
0
0
0
0
0
2
0
2
1
0
0
1
3
0
1
2
1
1
2
29
3
8
5
0
0
0
1
4
4
0
2
3
0
0
0
0
1
4
3
3
1
1
5
1
6
15
2
4
1
29
15
9
7
0
0
0
2
5
3
0
3
4
0
0
0
1
2
6
4
4
1
3
6
3
11
17
2
4
4
29
17
10
8
0
0
0
2
5
2
0
4
3
0
0
0
5
2
7
8
6
4
2
9
6
17
21
2
6
10
29
21
11
8
0
0
3
1
6
4
0
3
3
1
1
0
4
4
6
11
9
4
4
12
9
1 1
20
15
I
9
13
30
20
P HI
12
ft
0
1
4
2
R
6
0
4
4
3
0
6
5
7
11
9
4
5
12
9
12
21
13
1
9
12
29
21
1
8
0
0
4
3
7
6
0
8
1
7
5
10
10
9
3
5
12
8
11
22
11
3
8
9
27
22
2
6
0
0
5
6
8
3
0
1
4
1
6
3
10
9
9
5
11
8
10
16
9
1
7
9
27
16
3
7
0
0
6
7
R
1
0
7
4
1
1
4
3
11
9
9
2
5
12
9
11
13
9
3
6
7
29
13
4
7
0
0
5
7
6
4
0
6
4
0
0
3
4
12
10
9
2
6
12
9
10
12
7
4
5
5
29
12
5
7
0
0
4
5
3
7
0
6
4
0
1
3
3
12
9
5
2
5
10
9
11
9
5
4
4
5
29
12
6
6
0
0
3
3
1
1
0
4
2
0
0
1
2
2
10
8
4
2
4
7
12
9
8
3
5
4
5
30
12
7
4
0
0
1
1
1
0
1
3
0
0
0
0
1
2
6
5
2
1
3
4
11
4
5
1
0
2
1
30
11
B
%4
1
0
1
1
1
2
0
1
1
0
0
0
0
1
2
3
2
1
1
1
1
3
1
2
2
1
29
4
9
4
1
0
1
0
1
3
0
0
2
0
0
1
0
1
1
1
2
1
1
0
1
2
0
2
1
1
29
4
10
3
1
0
0
0
1
3
0
0
1
0
0
0
0
0
1
1
0
1
0
0
1
2
0
1
3
1
29
3
It
3
0
0
0
0
0
3
0
1
0
0
0
0
0
1
1
2
1
0
0
0
1
1
0
1
2
1
29
3
DAILY
MEAN
4.4
0.4
O.I
1.7
1.8
2.9
2.4
0.5
2.9
1.8
0.3
0.2
0.3
1.8
. '
1.7
4.7
4.8
3.9
1.5
2.3
5.1
5.0
6.9
7.4
3.8
1.5
3.6
4.0
NO
OFHR
22
23
23
23
23
23
23
23
23
22
18
19
23
23
y -i
23
23
23
23
22
J a
23
23
49
13
23
23
23
22
23
5-MIN
MAX
9
4
1
7
8
9
11
4
9
6
5
2
1
8
6
13
12
10
6
7
14
14
14
25
23
6
10
14
. '
663
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 391
HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON. JULY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
0
0
0
1
1
1
10
1
1
I
1
0
1
0
0
0
1
1
1
1
10
1
3
0
0
1
0
0
0
0
1
1
1
10
1
4
1
0
1
0
0
0
0
0
1
0
10
1
5
0
0
0
0
0
0
0
0
0
0
10
0
6
0
0
0
0
0
0
0
0
0
0
10
0
1
0
0
0
0
0
1
1
0
0
0
10
1
8
1
0
0
1
6
3
2
0
1
0
10
6
9
1
1
1
5
6
it
3
1
1
3
10
6
10
1
1
1
^
9
6
6
5
5
2
4
11
9
11
0
1
1
1
8
12
6
7
4
5
3
11
12
P M
12
0
1
1
1
8
8
7
7
6
6
5
<•
12
8
1
1
1
1
1
9
11
8
6
5
6
5
5
12
11
2
0
1
1
8
10
7
6
3
6
6
7
11
10
3
1
\
1
6
8
8
7
1
2
5
8
11
8
4
1
1
1
3
7
9
6
0
2
7
5
11
9
5
1
1
1
t,
7
8
6
1
1
7
-------
Ol
CO
TABLE 3 92 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis) WASHINGTON. AUGUSTA
DAT OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
-SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
2
0
1
1
0
0
0
2
1
0
0
1
1
0
0
2
6
1
2
I
23
6
1
7
0
2
0
2
2
2
0
0
3
0
0
0
0
0
0
0
2
3
0
1
1
20
3
3
0
3
0
3
2
1
2
0
0
3
0
2
2
0
0
1
0
0
0
4
4
1
0
1
23
4
4
0
2
0
3
2
0
1
0
0
3
0
2
2
0
0
1
0
0
0
2
2
1
0
1
23
3
5
0
1
0
3
1
0
0
0
0
2
0
1
2
0
0
0
0
0
0
0
0
0
0
0
23
3
6
0
1
0
3
0
0
0
0
0
2
0
1
1
0
0
0
0
0
0
0
0
0
0
0
23
3
7
1
1
0
3
1
1
0
0
0
2
0
1
0
0
0
0
0
0
0
0
0
1
0
22
3
R
0
0
4
1
3
0
2
2
3
1
1
0
1
1
1
1
0
2
2
1
19
4
9
1
2
2
5
1
4
1
4
7
4
3
2
3
0
4
4
1
3
4
2
4
4
3
22
7
10
3
3
4
3
2
3
0
3
3
5
2
4
7
6
3
6
4
1
7
2
0
3
6
4
23
7
11
5
4
3
5
2
6
2
5
9
5
2
3
9
13
7
9
6
2
8
9
5
1
7
6
6
24
13
P •
12
4
5
4
5
3
6
5
B
2
5
6
14
14
9
5
3
10
9
8
1
6
6
6
24
14
1
4
%
3
6
4
6
1
6
2
4
7
18
13
9
3
3
12
11
7
2
7
7
7
24
18
1
5
3
3
6
4
7
5
7
3
4
8
16
12
8
4
4
14
11
6
3
b
8
7
24
16
3
6
5
4
6
4
7
3
7
2
5
6
13
2
7
7
3
4
15
8
6
3
7
8
6
25
15
4
6
2
5
7
14
2
5
7
2
4
13
8
8
5
7
7
b
25
14
5
4
3
4
5
3
6
3
7
2
5
8
8
2
3
5
2
4
8
8
8
4
7
6
5
25
8
6
4
3
4
4
2
5
1
4
3
6
2
4
8
5
1
1
2
1
3
4
3
5
2
5
3
3
25
8
7
2
2
1
2
2
3
2
2
0
4
0
2
7
5
0
0
0
0
0
2
2
3
1
2
1
2
25
7
fl
1
1
1
1
0
0
2
1
0
2
1
1
6
4
0
0
0
0
0
1
1
4
1
1
1
1
25
6
9
0
0
1
1
0
0
2
0
0
0
0
5
2
0
0
0
0
0
0
1
4
1
0
1
1
24
5
10
0
0
0
1
0
1
2
0
0
0
0
4
2
0
0
0
0
0
0
0
3
1
1
2
1
24
4
11
0
0
1
3
0
1
1
0
0
0
0
2
1
0
0
1
0
0
0
1
5
1
1
1
1
24
5
DAILY
MEAN
2.0
2.*
1.9
3.*
1.8
3.0
1.7
2.5
3.0
3.7
1.4
2.1
6.2
6.2
1.1
2.8
3.1
1.7
1.3
4.4
3.7
4.0
i.a
3.1
3.1
NO.
OFHR
23
ZZ
23
23
23
23 1
22
23
23
20
14
23
15
22
14
23
22
23
23
20
23
23
23
23
23
1963
5-IIN
MX
8
6
11
6
5
9
7
7
10
6
3
6
9
19
4
16
11
7
5
17
14
9
6
8
8
2.8
539
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 93 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON, SEPTEMBER 1963
DAY
MONTH
1
2
3
4
5
6
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
MONTHU
NO. OF
NAX.HRl
OF
IEEK
SUN
MON
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
MON
f MEAN
DAYS
Y MEAN
12
0
0
5
2
0
2
2
0
0
5
I
0
2
1
0
0
0
1
0
0
0
1
1
1
25
5
1
2
0
0
3
3
0
0
2
0
0
4
4
0
2
0
0
0
0
0
1
0
0
0
1
1
24
4
3
0
0
3
0
0
i
1
1
0
0
2
4
0
0
0
1
0
0
0
1
0
0
0
1
1
1
26
5
4
0
0
2
0
0
2
1
0
0
2
1
0
0
0
0
0
0
1
0
0
0
3
0
1
25
4
A
5
0
0
i
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
24
3
M
6
0
0
o
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
23
1
7
1
1
0
0
1
0
0
0
2
0
0
0
0
0
0
0
0
0
0
0
1
0
0
25
2
8
3
3
2
1
0
0
Q
4
1
2
0
3
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
27
4
9
4
6
I
3
0
1
i
3
6
5
0
5
1
0
0
0
1
0
1
1
2
0
0
0
1
0
2
27
6
10
5
8
4
1
3
4
12
6
6
1
0
0
0
2
0
2
8
2
0
0
3
1
0
3
26
12
It
6
7
6
0
5
9
9
7
7
1
1
0
0
2
0
5
14
3
1
0
4
10
2
1
4
27
14
12
5
8
4
0
5
9
9
6
8
6
2
1
1
0
2
1
5
13
3
2
0
6
8
3
1
5
28
13
1
6
9
5
1
7
8
9
7
10
6
3
1
1
0
2
1
6
11
4
2
1
7
7
4
1
5
28
11
2
6
9
4
2
6
8
8
8
10
6
3
2
1
0
3
3
6
9
5
2
1
7
2
5
1
5
28
10
3
6
8
5
2
6
10
8
8
9
6
3
2
1
0
2
3
7
6
4
1
2
5
3
5
1
5
28
11
4
6
7
A
2
7
9
8
5
a
6
2
2
1
0
2
3
6
5
4
0
2
4
1
5
1
4
28
9
P
5
5
7
5
1
6
8
7
4
8
6
2
1
1
0
1
2
4
3
3
0
1
2
1
2
0
3
28
a
M
6
4
5
0
1
4
3
3
2
5
2
1
1
0
0
1
1
1
1
1
0
0
1
1
0
0
2
28
7
7
2
4
2
1
2
2
1
1
5
2
0
1
0
0
0
1
1
1
0
0
0
1
0
0
1
27
5
a
i
5
2
0
0
2
1
0
5
2
1
1
0
0
0
0
0
0
0
0
0
0
0
1
26
5
9
1
4
2
1
0
2
1
0
4
2
0
2
0
0
0
0
0
0
0
0
2
0
0
1
26
4
10
0
5
2
0
0
2
1
0
2
1
0
2
0
0
0
0
0
0
0
0
2
0
0
1
26
5
11
0
5
2
0
0
1
2
1
0
2
2
0
1
0
0
0
0
0
0
0
2
1
0
1
25
5
DAILY
MEAN
2.6
4.4
•a i
3.1
0.6
2.3
4.'
4.1
3.8
2.6
3.8
3.6
1.*
0.8
0.5
0.1
0.8
0.6
2.6
*.2
. 3
2.3
0.5
0.3
1.6
2.0
1.5
0.4
2.1
NO
OFHR
23
23
?•»
21
23
23
23
23
23
20
23
23
23
23
23
23
23
17
17
16
17
23
21
23
22
23
605
S-MIN
MAX
7
10
7
3
8
11
15
9
11
8
5
4
3
1
3
4
8
15
5
3
4
9
12
6
2
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 94
HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON. OCTOBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
g
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLY
NO OF
MAX.HRL
OF
IEEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MEAN
DAYS
Y MEAN
12
0
0
0
0
0
1
0
0
0
0
0
0
1
1
2
0
0
0
0
0
0
0
0
0
0
0
27
2
1
2
0
0
1
0
0
0
0
0
0
0
0
I
1
1
0
<>
0
0
0
0
0
0
0
0
0
0
27
It
3
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
4
0
0
0
0
0
0
0
1
0
0
28
4
4
0
0
0
0
0
0
0
Q
0
0
0
0
0
1
1
1
0
4
0
0
0
0
0
1
0
0
0
0
28
4
A
5
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
2
0
0
0
0
0
1
0
0
0
0
28
2
M
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
0
28
2
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
26
2
8
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
1
2
0
0
0
0
0
0
0
0
0
0
26
2
9
0
0
1
1
1
0
0
1
0
1
2
0
0
2
0
1
0
0
0
0
0
0
0
1
29
2
10
0
1
3
1
3
1
0
2
2
2
2
3
1
2
4
I
0
1
0
0
0
0
1
24
4
11
2
1
4
1
5
4
2
3
•»
3
1
3
4
2
*>
9
0
7
0
4
1
0
2
0
0
3
26
9
12
4
3
3
I
7
6
4
2
4
3
4
4
6
7
10
0
10
0
4
5
1
6
0
0
0
0
28
10
1
5
4
2
2
10
5
3
4
5
5
5
2
8
8
9
1
9
0
?
I
4
8
0
0
0
0
28
10
2
5
4
2
2
12
6
6
4
6
5
5
4
10
8
8
6
6
0
0
4
1
4
6
0
0
0
0
29
12
3
3
4
3
2
9
4
5
4
6
2
4
3
4
7
9
11
7
0
4
1
4
5
0
0
0
0
28
11
4
3
2
3
1
8
4
3
2
4
1
3
2
4
5
4
11
5
0
3
0
2
2
0
0
0
0
28
11
P
5
2
1
2
0
6
2
1
1
3
1
2
1
4
1
3
4
2
0
0
0
0
1
1
0
0
0
0
1
29
6
M
6
1
0
1
0
3
1
1
1
1
0
I
I
2
1
2
2
1
0
0
0
0
1
1
0
0
0
0
1
29
3
7
1
1
1
0
1
1
1
0
0
1
1
0
1
1
2
2
1
0
1
0
0
0
0
0
0
0
0
1
29
2
8
0
l
i
0
0
1
2
0
0
0
1
0
1
1
2
1
1
0
0
0
0
0
0
0
0
0
0
0
29
2
9
0
0
0
0
0
1
2
0
0
0
0
0
1
1
2
1
0
0
0
0
0
0
0
0
0
0
0
0
29
2
10
1
0
0
0
0
1
1
0
0
0
0
0
1
1
2
1
0
0
0
0
0
0
0
0
1
0
0
0
29
2
11
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
29
1
DAILY
MEAN
1.7
0.9
1.1
0.5
2.7
1.6
1.5
1.1
i 2
i.*
i.o
i 5
1.5
1.2
1.9
2.3
1.5-
2.1
2.4
1.1
0.1
1.0
0.4
0.7
1.3
0.1
0.1
0.1
0.1
1.2
NO.
OFHR
15
23
23
23
23
23
23
22
7*
23
23
7 -1
23
20
23
23
21
23
21
18
21
23
23
23
23
21
23
20
21
637
5-MIN
MAX
7
5
5
3
14
7
7
5
7
6
5
6
12
9
12
14
12
5
1
6
6
6
10
1
1
1
1
tn
tn
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 95 HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON, NOVEMBER 1963
DAY OF
MONTH
l
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
MONTHLY MEAN
NO. OF DAYS
NAX.HRLY MEAN
A M
12
2
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
22
2
1
2
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
1
1
0
0
19
1
3
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
22
1
4
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
1
0
1
1
0
0
0
22
1
5
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
22
1
6
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
22
1
7
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
22
1
8
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
22
1
9
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
0
20
1
10
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
19
1
11
0
1
1
0
0
0
0
0
1
0
0
0
1
0
1
1
1
0
0
0
1
0
0
22
1
P M
12
0
1
1
0
0
0
0
0
1
0
1
0
1
1
1
1
1
1
0
0
1
1
0
22
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
2
1
0
0
0
1
1
0
22
2
2
0
0
1
1
0
0
0
0
1
0
2
0
1
0
0
2
1
0
0
1
1
0
0
22
2
3
0
0
1
0
0
0
0
0
1
0
2
0
1
0
1
1
1
1
0
0
1
0
1
0
23
2
4
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
1
1
0
0
0
0
1
0
0
23
1
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
1
1
0
23
1
6
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
0
0
0
1
0
0
23
1
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
1
1
0
23
1
a
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
0
0
0
0
0
0
23
1
9
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
0
0
23
1
10
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
0
0
23
1
11
1
0
0
0
0
1
1
0
0
0
0
0
1
0
1
1
1
0
0
0
0
1
0
0
23
1
DAILY
MEAN
0.3
0.2
0.3
0.2
0.1
0.2
0.3
0.2
0.2
0.0
0.3
0.0
0.3
0.3
0.5
0.9
0.8
0.6
0.3
0.3
o.<.
0.5
0.2
NO
OFHR
22
23
23
13
23
21
-------
TABLE 396
HOURLY AVERAGES OF TOTAL OXIDANT. pphm (Kl analysis)
WASHINGTON, DECEMBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
OF
«EEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
31
1
1
0
1
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
26
1
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
30
1
4
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
30
1
5
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
30
1
6
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
30
1
7
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
30
1
B
0
0
1
0
0
0
0
0
o-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
Z7
1
9
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
25
1
10
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
25
1
11
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
0
0
0
26
1
P M
12
1
1
1
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
26
1
1
1
1
1
0
0
0
0
1
0
I
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
26
1
2
1
0
1
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
29
1
3
1
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
29
1
4
0
1
I
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
31
1
5
0
1
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
31
1
6
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
31
1
7
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
31
1
B
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
31
1
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
31
1
to
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
31
1
11
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
31
1
DAILY
MEAN
0.2
0.2
0.5
0.0
0.0
0.0
0.1
0.4
0.1
0.5
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.8
0.4
0.3
NO.
OFHR
22
22
23
23
23
23
23
23
22
23
19
15
23
23
17
23
15
19
23
23
23
23
18
23
22
21
20
23
23
23
23
5-MIN
MAX
1
1
1
1
0
1
1
2
1
1
1
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
0
1
2
1
1
0.1
669
Note: Total oxidant data are not corrected
for sulfur dioxide interference.
-------
TABLE 3 97 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, MARCH 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLt
MO (IF
MAX.HRL
OF
IEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MEAN
nivc
Y MEAN
12
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
A
5
0
0
0
0
0
0
0
0
M
6
0
0
0
0
0
0
0
0
7
0
o
0
0
0
0
0
e
0
0
0
0
I
0
1
9
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
2
0
0
0
0
0
1
0
1
3
0
0
1
0
0
0
1
4
0
0
1
0
0
0
0
1
p
5
0
0
1
0
1
0
0
1
M
6
1
0
1
1
0
0
0
1
7
1
1
3
1
0
0
0
3
8
1
2
1
2
0
0
0
2
9
2
I
1
1
0
0
0
2
10
1
0
1
0
0
0
0
1
11
0
0
0
0
0
0
0
0
DAILY
MEAN
0.2
O.I
0.4
0.3
O.I
0.1
0.0
NO.
OFHR
24
24
24
22
23
23
24
1 A6
5-MIN
MAX
2
3
it
3
1
2
2
CJl
CO
-------
TABLE 398 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, APRIL 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHL
NO. OF
HIV UDI
OF
IEEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON'
TUE
WED
THU
FRI
SAT
SUN
MON
f MEAN
DAYS
V MPiU
12
0
0
0
3
1
1
1
2
2
1
1
1
0
1
0
0
I
I
1
2
I
0
2
2
0
1
0
0
1
29
3
1
0
0
0
3
0
1
1
1
2
I
1
1
0
1
0
0
1
1
0
2
1
0
4
1
0
0
0
0
1
29
2
0
0
0
3
I
1
1
1
<>
1
1
1
0
0
0
0
1
1
0
1
1
0
3
1
0
0
0
0
1
29
3
0
0
0
3
1
1
1
2
2
1
1
I
0
0
0
0
I
1
0
1
1
0
r
i
0
0
0
0
1
29
4
0
0
0
2
0
1
1
2
2
1
1
1
0
0
0
0
0
1
0
2
\
1
6
2
0
0
0
0
1
29
6
A
5
0
0
0
2
1
1
1
2
3
1
1
1
0
0
0
0
0
1
0
1
1
1
4
2
1
0
0
0
1
29
N
6
0
0
0
4
I
1
1
1
2
1
1
1
0
0
0
0
1
1
1
1
1
1
3
2
1
0
0
0
1
29
7
0
0
1
2
1
2
1
2
2
1
?
2
1
0
0
0
1
1
1
1
1
1
1
3
1
0
0
1
1
29
B
0
0
0
1
1
2
1
1
2
1
1
2
1
0
0
0
0
1
1
1
1
0
t.
1
0
0
1
1
28
9
0
0
0
0
1
1
2
1
2
1
2
1
0
0
0
0
1
1
3
0
0
1
1
23
10
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
1
22
11
0
0
0
1
1
2
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
0
0
1
23
12
0
0
1
1
2
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
1
1
0
0
0
1
2?
1
0
0
1
1
1
1
1
1
1
1
1
0
0
0
1
0
1
1
1
0
1
1
0
0
0
0
1
27
2
0
0
1
1
1
1
1
I
1
1
1
0
0
1
0
0
I
1
1
0
1
1
0
0
0
0
1
27
3
0
0
L
1
1
1
1
1
1
2
1
0
0
0
0
1
1
0
0
0
0
1
28
4
0
1
1
1
1
1
1
2
2
2
1
0
0
0
1
1
0
1
0
0
0
1
28
P
5
0
1
1
1
1
2
2
1
2
1
t
0
0
0
1
I
1
1
1
1
0
2
1
1
3
0
0
1
28
M
6
0
0
1
1
1
1
3
2
1
2
1
1
1
0
0
0
1
1
1
1
1
1
1
2
1
1
0
0
1
28
7
0
0
1
1
I
1
4
2
1
3
1
I
0
0
0
1
1
1
2
1
I
2
6
1
1
0
0
0
1
29
B
0
0
1
1
1
1
2
2
1
3
1
1
1
1
0
0
1
1
0
1
0
3
9
1
1
0
0
0
1
28
9
0
1
1
1
1
1
1
2
1
3
1
1
0
1
0
0
1
1
I
2
1
7
5
1
1
0
0
0
1
28
10
0
0
1
1
I
1
2
2
1
2
1
0
1
0
0
1
1
1
2
1
6
3
1
0
0
0
0
1 '
28
11
0
0
1
1
1
1
2
2
1
2
1
0
1
0
0
1
1
1
2
0
3
3
1
1
0
0
0
1
28
DAILY
MEAN
0.0
0.1
0.4
1.5
0.9
1.1
1.4
1.5
1.6
1.5
.0
1.2
1.0
0.3
0.1
0.0
0.4
0.6
0.7
0.8
1.2
0.9
1.2
2.9
1.3
0.5
0.1
0.0
0.1
0.9
NCI
OFHR
24
17
24
24
24
22
24
24
24
21
24
22
22
24
24
21
24
24
18
24
24
22
22
24
22
24
22
24
662
5-MIN
MAX
0
3
2
5
2
2
5
4
7
<>
it
3
2
2
0
2
1
2
2
3
2
9
11
5
2
2
1
5
-
CO
-------
TABLE 3-99 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. MAY 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20
21
22
23
24
25
26
27
28
29
30
31
HONTHL
NO. OF
MAX.HRL
OF
IEEK
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
f MEAN
DAYS
Y MEAN
12
0
0
0
I
1
1
0
1
1
3
1
I
1
3
1
0
4
0
0
0
0
0
0
1
0
2
0
0
2
1
30
1
0
0
0
1
I
2
0
2
1
1
1
1
1
3
0
0
<•
0
1
0
0
0
I
2
0
1
0
0
1
1
30
2
0
0
1
1
2
2
1
3
1
1
1
1
1
2
0
0
2
0
0
0
0
0
1
0
0
1
0
0
0
1
30
3
0
0
1
1
1
1
1
2
1
I
1
1
1
2
I
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
30
4
0
0
1
1
2
3
1
1
1
1
1
1
1
2
0
0
0
0
0
0
0
0
2
1
0
0
0
0
0
1
30
A
5
0
0
0
2
3
3
1
1
1
?
1
1
1
5
1
I
1
0
0
0
0
1
3
I
0
0
0
0
1
1
30
M
6
0
0
1
2
3
2
1
1
1
1
2
1
1
5
1
1
1
0
0
0
1
2
2
0
0
1
1
0
1
1
30
7
0
0
2
3
2
1
1
1
1
1
1
1
?
2
1
1
1
0
2
0
1
I
I
0
0
1
0
0
2
1
30
e
0
0
1
2
2
1
0
1
1
1
1
1
1
1
1
1
0
0
1
0
0
0
0
0
0
1
0
0
0
1
30
9
0
0
0
1
1
0
1
1
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
10
0
0
0
1
1
0
0
0
1
I
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
I
11
0
0
0
0
0
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
1
12
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
26
1
0
1
0
0
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
26
2
1
0
0
0
1
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
25
3
0
1
1
0
0
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
2
0
26
4
0
1
1
0
1
0
1
0
1
I
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
21
?
5
0
0
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
28
M
6
0
0
1
1
1
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
28
7
0
0
1
1
1
1
1
1
1
1
1
2
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
28
8
0
0
1
1
2
1
1
1
1
1
1
2
1
1
1
1
0
0
1
0
0
3
1
1
0
0
1
1
1
29
9
0
0
1
1
2
1
2
1
1
1
1
2
1
1
1
0
1
0
0
0
1
3
1
1
0
0
1
2
1
29
10
0
0
1
1
1
0
1
1
2
1
1
2
1
1
1
0
0
0
0
0
1
3
1
1
0
0
I
1
1
29
II
0
0
1
1
1
0
1
1
3
1
1
2
1
1
1
0
0
0
0
0
0
1
0
1
0
0
2
1
1
29
DAILY
MEAN
0.0
0.0
0.8
1.*
1.1
0.9
0.6
1.0
0.8
1.0
1.1
1.0
1.2
1.7
0.7
0.8
1 2
0.7
0.1
0.2
0.1
0.1
0.4
1.0
0.4
0.2
0.4
0.1
0.2
0.7
0.7
NO.
OFHR
23
19
22
17
24
24
24
23
24
13
24
24
24
23
24
24
2 1
24
24
Z4
16
24
24
24
24
24
24
24
24
24
683
5-MIN
MAX
1
1
3
4
6
6
3
5
5
6
2
2
5
7
4
3
5
1
4
1
2
5
5
3
2
3
1
2
3
-------
TABLE 3-100 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. JUNE 1962
DAY OF
•ONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
•ONTHLY IEAN
NO. OF DAYS
•AX.HRLY KAN
A •
12
1
0
0
0
0
0
0
3
0
1
0
5
1
1
1
4
3
1
1
2
1
20
5
1
2
0
0
0
0
0
0
3
0
0
0
4
I
1
1
5
3
1
2
2
1
20
5
2
3
0
0
0
0
0
0
3
0
1
0
1
V
1
1
t.
2
1
2
1
1
20
4
3
3
0
0
0
0
0
0
3
0
1
0
1
1
1
4
1
1
2
2
t
14
it
4
2
0
0
0
0
0
0
2
0
0
0
1
1
1
4
1
1
1
1
1
19
4
5
2
1
0
0
0
0
0
1
1
1
I
1
1
1
4
I
1
1
1
1
19
4
6
2
1
0
0
0
0
0
I
2
1
2
1
1
1
5
1
1
2
1
1
19
5
7
1
1
0
0
0
0
0
1
1
I
1
1
1
1
6
1
1
1
I
1
19
6
e
i
i
0
0
0
0
0
0
0
1
1
1
1
1
4
1
1
1
1
1
19
4
9
0
0
0
0
0
0
0
0
1
1
I
1
2
1
1
1
1
1
17
2
10
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
2
1
1
1
1
1
20
2
11
0
0
0
0
0
0
0
0
0
0
1
0
1
1
I
1
2
1
1
1
1
0
21
2
P M
12
0
0
0
0
0
0
0
0
0
1
0
I
1
I
1
1
1
1
1
1
1
20
1
1
1
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
0
19
1
2
1
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
21
I
3
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
1
1
1
1
1
21
1
4
0
0
0
0
0
0
0
0
0
1
1
0
1
1
1
1
1
1
1
1
1
1
21
1
5
0
0
0
0
0
0
0
0
0
1
2
0
1
1
1
1
1
1
1
1
1
1
21
2
6
0
0
0
0
0
0
0
0
0
1
2
0
1
1
1
1
1
1
1
1
1
1
21
2
7
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
21
1
8
0
I
0
0
0
0
1
1
1
I
1
1
1
1
1
1
2
1
1
1
2
1
21
2
9
0
1
0
0
0
0
2
1
1
1
1
2
I
1
2
2
3
1
1
2
1
1
21
3
10
0
0
0
0
0
0
2
2
0
0
1
2
1
1
2
2
3
1
1
2
2
1
21
3
11
0
0
0
0
0
0
2
1
0
0
4
1
1
2
2
2
1
1
2
3
1
20
4
DAILY
MEAN
1.3
0.2
0.1
0.1-
0.0
0.0
0.0
0.4
0.9
0.3
0.6
0.8
0.8
1.*
1.1
1.1
1.2
2.9
1.2
1.0
1.2
1.3
NO.
OFNR
15
23
24
13
21
24
24
23
24
24
23
23
14
17
24
24
23
22
24
24
23
24
5-HIN
•AX
4
2
1
2
0
0
1
3
4
3
3
2
7
5
2
3
3
7
4
2
2
4
0.8
480
-------
TABLE 3-101 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. JULY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
•EEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.KRLY MEAN
A M
12
t>
1
1
2
1
1
1
0
1
1
1
t,
0
0
0
0
1
0
0
1
2
0
0
1
0
1
25
4
1
3
1
1
2
1
1
1
0
1
1
I
4
0
0
0
0
1
0
0
1
1
0
0
2
0
1
25
4
2
t,
I
1
2
1
1
1
0
1
1
0
It
0
0
0
0
1
0
0
0
1
0
0
2
0
1
25
4
3
2
1
1
1
I
1
1
0
1
1
0
2
0
0
0
0
0
1
0
0
1
0
0
1
0
1
25
2
4
2
1
1
I
1
1
1
1
1
1
0
1
0
0
0
0
1
1
0
0
1
0
0
1
0
1
25
2
5
2
1
1
3
1
1
1
1
?
2
1
2
0
0
0
0
2
2
0
0
2
0
0
1
0
1
25
3
6
2
1
1
3
1
1
1
1
2
3
0
4
0
1
0
0
2
2
0
0
2
1
1
1
0
1
25
4
7
1
1
1
3
1
1
1
1
2
i
0
3
0
2
0
0
2
2
0
0
1
1
0
1
0
1
25
3
B
1
1
0
1
1
1
I
1
1
2
0
1
0
I
0
0
1
1
0
0
1
0
0
0
0
1
25
2
9
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
25
1
10
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
24
1
11
1
1
1
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
23
1
P M
12
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
24
1
1
1
1
1
1
1
1
I
1
1
0
0
0
0
0
1
0
0
0
1
1
0
0
0
0
23
1
2
1
1
1
1
1
1
I
I
1
0
0
0
0
0
2
0
0
1
I
0
0
0
0
1
23
2
3
1
1
0
1
1
1
1
1
0
0
0
0
0
1
0
0
1
1
0
0
0
1
21
1
4
1
1
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
25
1
5
1
1
0
1
1
1
1
1
1
0
0
1
0
0
0
1
0
0
0
1
1
0
0
0
0
0
25
1
6
I
1
1
1
1
1
1
1
1
0
0
0
0
0
0
2
0
0
1
1
1
0
0
0
0
1
25
2
7
1
1
1
1
1
2
1
1
1
1
0
0
0
0
0
1
1
0
2
1
0
1
0
0
0
1
25
2
8
1
1
1
I
1
2
1
1
2
1
1
0
0
0
0
1
1
0
1
2
1
1
0
0
0
1
25
2
9
1
1
2
1
1
1
1
1
2
1
1
1
0
0
0
1
1
0
1
3
1
1
0
0
0
1
25
3
10
1
1
1
1
1
1
1
1
2
1
1
1
0
0
0
2
1
0
0
3
1
I
1
0
0
1
25
3
11
1
1
2
1
1
1
1
1
2
1
3
0
1
0
0
2
I
0
1
2
0
1
I
0
0
1
25
DAILY
MEAN
1.6
1.0
0.8
1.3
1.0
1.0
1.0
0.8
1.3
1.1
0.4
1.2
0.0
0.2
0.0
0.6
0.6
0.4
0.4
0.9
1.0
0.3
0.1
0.4
0.0
NO.
OFHR
21
24
24
24
23
24
24
24
24
22
24
24
24
24
24
23
24
22
24
23
24
22
24
24
24
5-MIN
MAX
5
4
3
4
2
4
2
2
3
3
5
5
1
4
1
3
4
3
2
4
3
3
2
4
1
0.7
588
o>
CO
-------
TABLE 3-102 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. AUGUST 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
0
L
?.
2
2
2
2
2
0
0
1
1
1
1
0
0
1
0
1
1
1
1
1
I
1
I
6
1
27
6
1
0
0
2
2
2
2
2
2
0
0
1
1
1
1
0
0
!
0
1
1
2
1
I
1
1
1
5
1
27
5
2
0
0
2
2
2
2
2
2
0
0
1
1
1
1
0
0
1
0
1
0
2
1
1
1
1
1
6
1
27
6
3
0
0
2
2
2
2
2
2
0
0
1
1
1
1
0
0
1
0
1
0
2
1
1
2
1
1
5
1
27
5
4
0
0
2
2
2
2
2
2
0
0
2
1
1
1
0
0
0
0
1
0
1
1
2
2
1
1
6
1
27
6
5
0
1
2
3
2
2
2
2
0
1
1
1
1
1
1
1
1
2
1
2
2
2
1
2
1
7
2
26
7
6
1
1
3
2
2
3
2
2
0
4
2
2
2
1
2
1
1
2
1
2
2
2
1
2
2
7
2
26
7
7
0
1
2
2
2
2
2
2
0
0
2
1
2
2
2
1
1
2
1
2
2
I
1
2
1
t
2
26
4
8
0
0
2
2
2
2
2
2
0
0
1
1
1
*
1
0
1
1
2
0
1
1
1
1
2
1
1
3
1
27
3
9
0
0
2
2
2
2
2
2
0
0
1
1
1
0
0
1
1
0
1
1
1
1
1
1
0
2
1
26
2
10
0
0
2
2
2
2
2
2
0
0
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
1
26
2
11
0
2
2
2
2
2
2
2
0
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
I
25
2
P M
12
0
2
2
2
2
2
2
0
1
1
1
1
0
0
1
1
1
1
1
1
1
0
0
0
1
2*
2
1
0
2
2
2
2
2
2
0
1
L
1
1
0
0
1
1
1
1
1
1
1
0
0
1
1
24
2
2
0
2
2
2
2
2
2
2
0
1
1
1
1
0
0
0
1
1
1
1
1
1
1
0
0
0
1
26
2
3
0
2
2
2
2
2
2
2
0
I
1
1
1
0
0
1
0
1
1
1
1
I
I
1
2
0
0
1
27
2
4
0
2
2
2
2
2
2
0
1
1
1
1
o
0
1
0
1
1
1
1
1
1
1
2
1
0
2
1
27
2
5
0
2
2
2
2
2
2
0
1
I
1
I
0
0
1
0
1
1
1
1
1
1
1
1
0
0
2
1
27
2
6
0
2
2
2
2
2
2
0
1
1
1
2
0
0
1
0
1
1
1
1
1
1
1
2
1
1
2
1
27
2
7
1
2
2
2
2
2
2
0
1
1
1
2
1
1
1
0
1
1
1
1
1
1
1
2
2
2
2
1
27
2
B
2
2
2
2
2
2
2
0
I
1
1
1
1
1
1
0
1
1
2
1
1
1
1
2
2
4
2
1
27
4
9
3
2
2
2
2
2
2
0
1
1
1
1
1
1
1
0
2
2
2
1
1
1
1
2
1
3
2
1
27
3
10
1
2
2
2
2
2
2
0
1
1
1
1
0
1
1
0
1
1
2
1
1
1
1
1
1
7
2
1
27
7
11
0
2
2
2
2
2
2
0
1
1
1
1
0
0
1
0
1
1
2
1
1
1
1
1
1
6
2
1
27
6
DAILY
MEAN
0.3
1.3
2.1
2.1
2.0
2.1
2.0
2.1
0.0
0.8
1.1
1.0
1.2
0.7
0.3
0.6
0.3
0.9
1.2
1.0
1.3
1.1
1.1
1.1
1.4
1.0
1.5
3.0
NO.
OFHR
24
24
23
24
23
24
16
24
24
23
24
24
24
19
24
14
24
24
24
24
24
21
24
24
16
24
24
23
5-MIN
MAX
4
3
4
3
2
4
3
4
1
5
3
3
6
5
3
2
1
6
4
2
3
3
3
2
3
3
8
9
1.2
63*
05
CO
-------
TABLE 3-103 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, SEPTEMBER 1962
DAY
MONTH
1
. 2
3
4
5
6
7
g
9
10
11
12
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
30
•ONTHL1
NO. OF
•AX.HRl
OF
IEEK
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
FRI
SAT
SUN
MON
TUE
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
r IEAN
DAYS
Y MEAN
12
2
2
2
1
2
2
3
2
2
3
6
3
3
3
3
3
5
3
3
5
3
25
6
1
2
2
2
1
2
2
3
2
2
3
7
3
3
3
3
3
4
3
2
5
3
25
7
2
2
2
2
2
2
2
2
2
2
3
6
3
3
3
3
3
3
3
3
5
3
25
6
3
2
2
2
2
2
2
3
2
2
3
3
3
3
3
3
4
3
3
-------
TABLE 3 104 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, OCTOBER 1962
DAY
NONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
HONTHU
NO. OF
MAX HRL
OF
IEEK
MON
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
f MEAN
DAYS
YMEAN
12
7
2
0
0
0
2
1
1
8
1
8
2
2
2
0
0
2
1
1
9
2
9
2
2
2
0
0
2
1
1
9
3
8
2
2
1
0
0
2
1
1
9
4
2
2
1
0
0
2
1
1
9
7
A
5
9
2
2
I
0
0
2
1
1
9
H
6
9
2
2
1
0
0
2
1
I
9
7
9
2
2
1
0
0
2
1
1
9
8
2
2
1
0
1
1
1
1
8
9
2
2
1
0
1
1
1
1
8
10
3
2
2
1
0
1
1
1
1
9
11
6
1
2
0
0
1
1
1
1
9
12
6
2
2
0
0
1
1
1
8
1
6
2
2
0
0
0
2
1
1
1
10
2
6
2
2
0
0
0
2
1
1
1
10
3
7
2
2
0
0
0
2
1
1
1
10
4
2
2
0
0
0
2
1
1
1
10
p
5
2
2
0
0
0
2
1
1
1
10
•
E
2
2
0
0
0
2
1
1
1
9
7
2
2
0
0
0
2
1
1
1
10
8
2
0
0
0
2
1
1
1
9
7
9
2
0
0
0
2
1
1
3
9
10
2
0
0
0
2
1
1
3
9
11
2
0
0
0
2
1
1
3
9
DAILY
HEAN
2.0
2.0
0.6
0.1
0.0
1.1
1.3
1.0
1.2
NO.
OFHR
y i
19
23
20
16
24
23
24
24
24
218
5-BIN
•AX
2
2
2
1
0
2
2
1
3
-------
TABLE 3-105 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, NOVEMBER 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
•flUTUI \
NO. OF
HiV UDI
OF
IEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
rMFlU
DAYS
V UTAH
12
3
10
4
4
2
2
2
3
2
2
3
2
2
3
3
3
3
16
I
2
9
3
3
2
2
2
3
2
2
3
2
2
2
3
3
16
2
2
5
3
3
2
2
2
2
2
2
3
2
2
2
3
3
16
3
2
4
3
3
2
2
2
2
2
2
3
2
2
3
3
3
16
4
2
3
3
3
2
2
2
2
2
2
3
2
2
3
3
3
16
3
A
5
2
4
3
3
2
2
2
2
2
2
3
2
2
2
3
3
16
M
6
4
6
3
3
2
2
2
2
2
2
2
2
2
3
3
4
16
1
7
7
3
3
3
3
3
2
3
3
3
3
3
3
4
5
16
8
7
d
3
3
3
3
3
2
3
2
3
2
2
3
3
<>
16
9
4
8
3
3
2
3
3
2
2
2
2
2
2
3
3
3
16
10
4
5
3
3
2
3
3
2
2
2
2
2
2
3
3
3
16
II
2
3
3
3
2
3
2
2
2
2
2
2
3
3
3
15
12
2
2
3
3
2
2
2
2
2
2
2
2
2
3
2
3
16
1
2
2
3
3
3
2
2
3
2
2
2
2
2
3
2
3
16
2
2
2
3
3
2
2
2
3
2
2
2
2
2
2
3
3
3
17
3
2
3
4
3
2
3
2
2
2
2
2
3
3
2
3
15
4
2
4
5
3
2
3
4
2
3
2
2
3
3
3
3
4
16
P
5
3
6
5
3
2
3
3
5 *
2
3
3
3
3
4
3
3
6
17
II
6
3
a
6
4
2
3
3
4
2
3
3
3
3
4
3
4
6
17
7
3
9
5
4
2
3
2
3
2
4
2
2
3
3
3
4
6
17
8
2
9
6
4
2
3
2
3
2
3
3
2
3
3
3
3
6
17
9
3
7
5
3
2
3
2
3
2
2
3
2
3
3
3
3
7
17
10
3
7
4
3
2
2
2
3
2
2
3
2
2
3
3
4
7
17
11
3
H
4
3
2
2
2
3
2
2
3
2
2
3
3
3
13
17
i •*
DAILY
MEAN
2.<«
4.5
5.3
3.2
2.6
2.<*
2.3
2.7
2.1
2.4
2.3
2.4
2.3
2.5
2.8
3.0
4.4
2Q
Nfl
OFHR
13
24
22
24
24
24
22
23
24
23
24
24
24
23
24
24
24
390
5-MIN
MAX
4
10
13
5
4
4
4
7
3
4
3
4
4
4
4
5
15
OS
-------
TABLE 3-106 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. DECEMBER 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A 11
12
13
10
3
4
I
I
1
14
10
3
4
1
1
1' I
•5
4
Q
1
1
1
1
1
3
1
3
17
13
<:>
4
7
1
1
1
1
1
4
1
3
17
14
2
14
12
3
4
1
1
1
5
4
5
1
1
1
1
1
4
1
it
17
14
3
1<>
11
2
4
1
1
1
4
6
6
1
1
1
1
1
5
1
<»
17
14
4
17
11
3
3
2
1
1
3
5
2
1
1
1
1
1
2
1
3
17
17
5
-------
TABLE 3-107 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, JANUARY 1963
DAT
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
MAX.HRL
OF
IEEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
r MEAN
DAYS
Y MEAN
12
2
2
2
4
2
3
2
2
3
2
1
2
2
2
2
IS
4
1
?
2
?
3
3
3
2
2
3
2
1
2
2
2
2
15
3
2
2
3
2
3
3
3
2
2
2
2
1
2
2
2
3
15
3
3
?
2
2
3
3
<,
2
2
2
2
1
2
3
2
2
15
4
4
?
2
2
2
3
3
2
2
3
3
1
2
2
1
2
19
3
A
5
2
2
2
3
3
3
2
2
3
3
1
2
3
2
2
15
3
M
6
2
2
3
3
3
3
3
3
1
2
4
2
2
14
it
7
?
?
ft
3
4
4
3
3
2
4
3
3
3
14
4
e
3
3
5
3
t
4
3
2
2
4
3
3
3
14
5
9
2
3
5
3
3
3
3
2
2
4
2
2
3
14
5
to
2
3
4
2
3
2
3
2
2
oo
-------
TABLE 3-108 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, APRIL 1963
DAY OF
MONTH
1
2
3
4
5
6
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
MON
TUE
WED
THU
FRI
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
•AX.HRLY MEAN
A M
12
5
3
3
3
2
3
2
2
2
2
10
3
4
3
3
3
18
10
1
<>
3
3
3
2
2
2
2
2
2
12
3
5
3
3
3
18
12
2
3
3
3
3
2
2
2
2
2
2
12
3
5
3
3
3
ie
12
3
2
3
3
3
2
2
2
2
2
2
9
3
4
3
2
3
18
9
4
2
3
3
3
2
2
2
2
2
Z
8
3
3
3
2
3
18
8
S
3
3
9
3
3
2
2
2
2
2
2
7
3
3
3
3
3
3
18
9
6
4
4
3
2
3
2
2
2
2
3
3
3
3
3
18
7
7
<•
6
4
3
3
3
2
2
2
2
3
3
3
3
3
3
18
6
8
4
3
3
3
2
2
2
2
2
3
3
3
3
3
18
4
9
3
2
3
3
3
2
2
2
1
2
2
3
3
3
3
3
20
4
10
3
2
3
3
3
3
2
2
2
1
2
2
5
3
3
3
3
20
5
11
3
2
2
3
3
4
3
2
2
2
2
2
2
3
3
3
3
3
20
4
P M
12
3
2
2
3
3
3
3
2
2
2
2
2
2
2
3
3
3
3
3
3
3
22
3
1
3
2
2
3
3
3
3
2
2
2
2
2
2
2
3
3
3
3
3
3
3
22
4
2
3
2
2
3
3
3
2
2
2
2
2
3
3
3
3
3
3
3
3
M
4
3
2
2
2
3
3
3
2
2
2
2
3
3
3
3
3
3
3
3
20
3
4
3
2
4
3
3
3
2
2
2
2
2
3
4
3
3
3
3
3
3
21
4
5
4
3
4
3
3
3
2
2
2
2
2
3
4
3
3
3
3
3
3
21
4
6
5
2
4
3
3
2
2
2
2
2
2
4
4
3
3
3
3
3
3
22
5
7
10
2
4
3
3
3
2
2
2
2
3
8
4
3
4
3
3
3
4
22
10
8
7
2
5
3
3
2
3
2
2
2
9
3
3
4.
3
2
3
3
21
9
9
6
3
!>
3
3
3
2
2
2
2
11
3
3
3
3
2
3
3
21
11
10
6
4
5
3
2
3
2
2
2
2
11
3
4
3
3
2
2
3
21
11
11
6
4
3
2
3
2
2
2
2
12
3
4
3
3
2
2
3
20
12
DAILY
MEAN
*.*
3.0
2.7
3.6
* 2
3.1
2.9
2.3
2.2
2.0
1.9
2.0
2.0
5.6
5.2
3.1
3.3
3.0
2.7
2.9
. '
NO
OFHR
15
23
13
24
24
24
24
24
23
24
iZ
24
20
14
20
24
24
22
24
16
S-MIN
MAX
13
6
4
6
10
5
4
3
3
3
3
3
3
13
14
5
6
4
4
4
3.0
476
at
to
-------
TABLE 3 109 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. MAY 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
WED
THU
FRI
SAT
SUN
WON
TUE
WEO
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
3
2
5
3
2
2
5
3
2
2
2
2
2
3
2
2
3
3
3
2
2
2
3
2
2
2
3
2
3
3
31
1
2
2
3
3
2
4
3
2
2
2
2
2
3
2
2
3
3
4
2
2
2
3
2
2
2
2
2
3
3
31
2
2
2
3
3
2
4
3
2
2
2
2
2
3
2
2
3
2
5
2
2
2
4
2
2
2
2
2
2
2
31
3
2
2
2
2
2
3
3
2
2
2
2
2
2
2
2
2
2
4
2
2
2
4
2
2
2
2
2
2
2
31
4
2
2
2
2
2
3
3
3
2
2
2
2
2
2
^
2
2
4
2
2
2
4
2
2
2
2
2
2
2
31
5
2
3
3
3
3
4
3
3
2
3
3
2
2
2
2
3
2
4
3
2
3
5
2
2
2
2
2
3
3
31
6
3
3
3
3
3
5
5
3
2
3
3
2
4
3
3
2
3
4
3
3
4
2
2
2
4
2
3
3
31
6
7
3
3
3
3
3
!>
4
3
2
4
3
2
4
3
3
2
3
3
2
2
2
2
2
3
3
2
2
3
31
6
B
2
2
3
3
2
4
4
3
2
3
3
2
3
2
j
2
3
3
2
2
2
2
2
2
3
2
2
3
31
7
9
2
2
3
3
2
3
3
2
2
2
3
2
2
2
2
2
2
3
2
2
2
2
2
2
3
2
2
2
31
5
10
2
2
3
3
2
3
3
2
2
2
3
2
2
2
-------
TABLE 3-110 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. JUNE 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHll
MO. OF
MAI.HRl
OF
IEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
r MEAN
DAYS
Y MEAN
12
2
2
2
2
4
3
1
2
<•
1
2
1
2
3
2
2
3
3
2
19
6
1
2
2
2
2
5
3
I
2
3
1
1
1
2
2
2
2
3
3
2
19
5
2
2
2
2
2
4
3
1
2
3
1
1
1
1
3
2
2
3
2
18
4
3
2
2
2
2
4
2
1
2
2
1
1
1
2
3
2
2
2
3
2
19
4
4
2
2
2
2
3
2
1
2
3
1
1
1
2
2
2
2
3
3
2
19
3
A
5
2
2
2
2
3
2
1
2
5
3
1
2
2
3
2
2
3
3
2
19
5
M
6
2
2
2
2
3
3
1
2
4
3
2
2
2
3
3
2
3
3
2
19
4
7
2
2
2
2
4
3
1
2
4
3
2
2
2
3
3
2
3
3
2
19
4
6
2
2
2
2
3
2
2
2
3
2
1
2
1
3
3
2
3
3
2
19
3
9
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
3
3
2
18
3
10
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
3
3
2
19
3
II
2
2
1
2
2
2
2
2
2
2
1
0
2
2
2
2
3
3
2
19
3
12
2
2
2
1
2
2
2
2
2
2
1
1
0
2
2
2
2
3
3
2
19
3
1
2
2
2
1
2
1
2
2
2
2
1
1
0
2
2
2
2
3
2
2
19
3
2
2
2
2
2
2
2
2
2
2
2
1
1
1
2
2
2
2
3
2
2
20
3
3
2
2
2
2
2
2
2
2
2
2
1
1
1
2
2
2
2
3
2
2
20
3
4
2
2
2
2
2
3
2
2
2
2
2
1
1
2
2
2
2
3
2
2
20
3
P
S
2
2
2
2
2
4
2
2
2
2
1
1
1
2
2
2
3
3
2
2
20
4
M
6
2
2
2
2
2
3
1
2
2
2
1
1
1
2
2
2
3
3
3
2
20
3
7
2
2
2
2
3
3
2
2
2
2
2
1
1
3
2
2
2
3
3
2
20
3
8
2
2
2
2
3
2
2
3
2
2
2
3
1
3
2
2
2
3
4
2
20
4
9
2
2
2
3
3
1
2
3
1
3
2
3
2
3
2
2
2
3
4
2
20
4
10
2
2
2
4
3
1
2
3
2
2
t
3
3
2
2
2
3
4
2
19
4
H
2
2
3
4
3
1
2
4
2
2
1
2
3
3
2
2
3
5
2
19
5
DAILY
MEAN
• ->
2.0
2.0
1.9
2.1
2.7
2.2
1.5
2.2
2.4
2.0
!.«•
1.5
1.3
2.3
2.3
2.2
2.1
2.8
3.0
2.1
NO
OFHR
24
24
24
24
24
22
24
24
24
24
24
21
22
14
24
24
24
23
24
462
5-MIN
MAX
3
3
3
4
12
4
2
5
6
4
2
4
4
3
4
4
3
4
5
-------
TABLE 3-111 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. JULY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
UONTHL
NO. OF
•Ax.HnL
OF
WEEK
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
Y MEAN
OATS
T DEAN
12
5
2
2
3
3
3
2
2
4
2
1
I
3
2
2
I
2
2
2
2
2
2
2
2
3
Jl
6
1
3
2
2
3
3
3
3
2
4
2
1
1
2
1
2
1
2
1
2
2
2
1
2
2
2
31
£
?
3
2
2
3
3
3
2
2
5
3
1
1
1
1
1
1
2
I
2
2
2
1
2
2
3
31
£
3
3
3
2
3
3
3
2
2
•i
6
3
1
1
1
1
1
1
2
1
2
2
1
1
1
2
2
31
6
4
3
3
2
3
2
3
2
2
6
5
I
1
2
1
2
1
2
2
2
2
1
1
2
2
3
31
6
A
5
4
4
2
3
3
3
3
2
7
4
6
2
2
2
1
2
2
<>
2
2
2
1
2
2
2
3
31
7
M
6
5
A
2
3
3
3
3
3
9
5
5
4
2
2
2
1
2
2
4
3
3
2
1
3
3
2
3
31
7
4
3
2
3
3
3
3
3
9
5
3
2
2
2
1
2
2
2
3
4
2
2
2
2
3
30
e
-------
TABLE 3-112 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. AUGUST 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
HAV UOI
•AX.HRI
OF
WEEK
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
r MEAN
DAYS
u yr • u
Y MEAN
12
2
3
4
4
2
2
2
1
3
3
2
2
2
2
2
it
3
2
2
3
2
2
21
*
%
1
1
2
<>
2
2
2
2
1
3
1
2
2
2
2
3
3
4
2
2
2
2
2
21
^
2
1
2
3
2
2
2
2
1
2
1
2
2
2
2
2
2
3
2
2
3
2
2
21
3
1
2
2
2
2
2
2
1
2
1
2
2
2
2
2
2
2
2
2
3
2
20
4
1
2
3
2
2
2
2
1
2
1
1
2
2
2
2
2
2
2
2
2
2
20
A
5
2
2
5
2
2
2
2
2
3
1
1
3
2
2
2
2
2
3
3
2
19
M
6
3
2
it
2
3
3
3
3
4
1
1
3
2
2
2
2
2
it
2
3
19
7
3
2
4
2
2
2
3
2
5
1
1
2
2
3
2
2
2
2
17
8
2
2
-------
TABLE 3-113 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON. SEPTEMBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
IS
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHL1
NO OF
MAX.HRL
OF
WEEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
MEAN
DAYS
Y MEAN
12
3
3
2
2
^
i
<»
2
2
2
4
2
<>
2
3
2
it
3
6
2
2
2
6
4
6
2
2
2
6
A
5
7
3
3
2
7
M
6
7
3
7
7
2
3
3
B
2
2
3
9
3
2
3
10
3
2
3
It
1
3
3
12
1
2
3
2
2
5
3
1
1
2
3
2
2
5
3
2
1
2
3
.3
2
5
3
3
1
2
3
3
2
•>
3
4
1
2
3
2
2
S
3
P
5
1
2
3
3
2
5
3
M
6
1
3
3
3
2
5
7
1
3
3
2
2
S
8
3
3
3
2
2
5
9
4
2
2
2
2
5
10
4
3
3
2
2
5
11
3
2
2
2
2
5
DAILY
MEAN
1.8
3.3
2.7
2.5
2.1
NO
OFHR
13
24
24
24
23
108
5-NIN
MAX
5
7
3
6
3
-------
TABLE 3-114 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, OCTOBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
VEEK
TUE
WED
THU
FRI
SAT
'SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
3
3
3
3
3
1
3
3
3
5
3
2
3
3
3
3
3
3
3
2
2
3
3
4
3
2
2
3
3
5
3
2
3
3
3
6
3
2
3
3
3
7
3
3
4
3
4
B
3
3
4
3
4
9
3
3
3
3
3
10
4
3
3
3
4
11
4
3
3
3
4
P tt
12
<>
3
3
4
1
4
3
3
4
2
3
3
3
3
3
3
3
3
3
4
4
3
3
4
5
5
3
3
5
6
6
3
3
3
6
7
S
3
3
3
5
B
3
3
3
7
9
3
3
3
6
10
3
3
3
4
11
3
3
3
3
DAILY
MEAN
3.0
2.7
3.0
NO.
OFHR
14
24
24
22
5-MIN
MAX
9
4
3
4
84
-a
en
-------
TABLE 3-115 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, NOVEMBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
•ONTHLY MEAN
NO. OF DAYS
•AI.HRLY MEAN
A M
12
2
2
2
3
3
2
2
2
4
2
3
6
3
3
5
2
2
5
3
12
12
3
I
*
30
12
1
2
2
2
2
3
2
2
2
5
2
4
4
3
3
4
2
2
3
11
11
3
1
3
30
11
2
3
2
2
2
3
2
2
2
6
2
4
5
3
3
3
2
2
3
9
12
3
1
3
30
12
3
2
2
2
3
3
2
2
2
4
2
3
9
3
3
4
2
2
3
7
12
3
1
3
30
12
4
2
2
2
2
2
2
2
5
2
3
5
3
2
3
2
2
3
7
9
3
1
3
29
9
5
3
2
2
3
2
3
2
2
1
5
2
3
4
3
3
3
2
2
3
7
3
1
3
29
7
6
2
2
3
2
2
2
5
3
6
3
3
3
3
3
3
7
4
5
5
3
1
3
29
7
7
2
2
3
2
2
2
7
2
9
3
3
3
3
3
3
9
5
3
1
4
29
9
B
2
2
3
2
2
2
2
2
8
3
3
3
3
3
3
8
5
3
1
3
29
8
9
2
2
3
2
2
2
2
2
5
3
3
3
2
3
3
7
3
1
3
28
7
10
2
2
3
2
2
2
2
1
3
3
2
3
2
3
3
6
3
1
3
28
6
11
2
2
2
2
2
2
2
3
3
3
2
3
2
3
2
5
4
3
3
1
3
30
5
P M
12
2
2
3
2
2
2
2
2
3
3
3
2
2
2
3
2
3
3
4
5
4
3
3
1
30
5
1
2
2
2
2
2
2
2
2
3
3
3
2
2
2
2
3
3
4
4
4
3
3
1
29
4
2
2
2
3
2
2
2
2
3
3
3
2
3
2
3
3
3
3
4
5
4
3
3
1
29
5
3
2
2
3
2
2
2
1
3
3
3
3
3
3
3
3
3
4
5
5
5
3
3
1
29
5
4
2
2
3
2
2
2
2
2
3
3
3
3
3
3
4
3
3
4
4
5
6
3
3
1
30
6
5
2
3
3
2
2
2
2
2
5
3
3
3
3
3
4
3
3
5
4
5
7
3
3
2
30
7
6
3
2
3
2
2
2
2
2
7
4
3
3
3
3
6
4
5
5
8
3
1
30
8
7
3
2
3
1
2
2
2
2
7
4
3
3
3
3
4
4
S
5
11
3
1
30
11
8
3
2
3
1
2
2
2
3
6
S
3
4
3
3
4
4
12
2
1
30
12
9
3
2
4
1
2
2
3
2
4
6
3
4
2
3
4
3
11
2
1
30
11
10
3
2
3
1
2
2
3
2
4
6
3
5
2
3
4
4
13
2
1
30
13
11
3
2
4
2
1
2
2
3
2
3
6
3
5
2
3
5
4
15
2
1
4
30
15
DAILY
MEAN
3.0
2.0
2.4
3.1
3.0
2.3
1.9
2.0
2.0
3.0
3.1
3.7
4.3
3.0
3.0
3.1
2.7
2.7
3.5
3.7
5.9
3.7
*.2
6.5
2.8
1.1
NO.
OFHR
24
24
24
24
24
23
22
24
24
24
24
24
24
24
24
24
24
23
24
24
24
24
24
24
24
22
24
IB
24
24
5-MIN
MAX
5
3
4
5
4
4
3
3
5
10
9
7
12
4
6
6
4
5
6
7
6
14
5
5
6
6
20
14
3
2
3.3
708
o>
-------
TABLE 3 116 HOURLY AVERAGES OF TOTAL HYDROCARBON, ppm C atom (flame ionization analysis)
WASHINGTON, DECEMBER 1963
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
REEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
4
5
6
5
2
2
2
3
3
2
3
3
3
3
3
3
3
4
11
3
3
it
28
11
1
4
5
6
5
2
2
2
3
3
2
3
3
3
3
3
3
3
5
12
3
3
4
29
12
2
4
5
5
6
2
2
2
3
3
2
3
3
3
3
3
3
3
4
5
3
3
4
29
6
3
it
5
7
5
2
2
2
3
3
2
3
3
3
3
3
3
3
<>
4
3
3
4
29
7
4
5
5
a
4
2
2
2
2
3
3
3
3
3
3
3
3
3
4
4
3
3
4
29
8
5
S
5
6
5
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
5
3
3
3
29
6
6
5
6
5
5
3
2
3
3
3
3
3
3
3
3
3
3
3
4
6
3
3
4
4
29
7
5
6
6
5
3
2
3
3
3
3
3
3
3
3
3
3
4
6
3
3
4
4
28
B
5
6
6
"3
3
2
3
3
2
3
3
3
3
3
3
4
3
4
5
3
3
4
4
29
9
4
6
5
4
3
2
3
3
2
3
3
3
3
3
3
4
3
3
4
3
3
4
3
29
10
4
S
5
4
2
2
3
3
2
3
3
3
3
3
3
4
3
3
4
3
3
3
3
29
11
4
8
5
5
4
2
2
3
3
2
3
3
3
3
3
3
3
3
3
4
3
3
3
3
90
8
P M
12
9
5
2
2
2
2
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
30
9
1
8
5
3
2
2
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
29
8
2
8
5
3
2
2
3
3
3
3
3
3
S
3
3
3
3
3
3
3
3
3
28
8
3
8
5
3
2
3
3
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
28
8
4
8
5
3
2
3
3
3
3
2
3
3
3
3
3
3
3
3
4
3
3
3
3
29
8
5
5
7
5
3
3
2
3
4
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
3
30
7
6
7
5
5
3
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
30
7
7
7
5
4
3
2
2
3
3
3
3
3
3
3
3
3
3
3
4
3
3
3
30
7
8
6
5
5
2
2
2
3
3
3
2
4
3
3
3
^
3
j
4
3
3
3
30
6
9
6
5
5
2
2
2
3
3
3
3
3
3
3
3
3
3
3
5
3
3
3
30
6
10
6
5
5
2
2
2
3
3
3
3
3
3
3
3
3
3
4
7
3
4
3
30
7
11
6
5
6
2
2
2
3
3
2
3
3
3
3
3
4
3
4
9
3
4
3
30
9
DAILY
MEAN
7.2
5.0
4.4
3.3
2.2
2.1
2.7
3.2
.5
3.0
2.6
2.8
3.0
3.1
3.0
3.0
3.0
3.1
3.3
3.3
*.l
3.0
3.1
3.*
NO.
OFHR
24
13
24
24
24
24
24
22
24
24
24
24
24
24
22
24
24
24
24
24
24
24
24
23
24
22
24
24
24
24
5-NIN
MAX
6
9
7
7
6
10
7
3
3
3
5
5
4
3
4
5
6
3
4
3
4
5
4
5
10
14
5
4
4
5
3.5
702
-------
TABLE 3117 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. APRIL 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
•ONTHLY IEAN
NO. OF DAYS
UX.HRLV MEAN
A M
12
0
2
3
4
L
3
1
1
1
•4
1
2
3
3
3
3
4
5
2
5
4
2
3
2
2
3
25
5
1
0
1
2
3
1
2
1
1
1
3
2
2
3
4
2
2
2
3
2
6
3
2
2
1
2
2
25
6
2
0
1
2
2
1
5
1
I
1
2
1
2
3
3
2
2
1
2
2
5
3
2
1
1
2
2
25
5
3
0
1
2
1
1
3
1
1
1
2
1
2
2
2
3
1
1
2
2
9
3
2
1
1
2
2
25
9
4
0
0
2
1
1
2
1
1
1
2
2
2
1
2
3
1
2
1
2
7
3
2
0
1
2
2
25
7
5
0
0
2
1
1
3
1
1
1
2
2
2
I
3
3
2
1
2
3
5
4
2
1
1
2
2
25
5
6
1
0
2
3
3
2
2
1
2
3
3
3
5
-------
TABLE 3-118 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. MAY 1962
DAY OF
MONTH
1
2
3
4
5
6
7
8
5
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
4
1
3
2
3
(
i
1
1
1
3
3
1
4
3
1
5
&
1
6
<3
\
7
5
1
8
5
1
9
5
1
10
4
1
11
5
1
P M
12
5
I
1
5
1
2
3
4
5
1
5
5
1
6
5
1
7
4
1
B
t
1
9
5
1
10
5
1
11
5
1
DAILY
MEAN
*.3
NO.
OFHR
22
5-MIN
MAX
6
22
-------
TABLE 3119 HOURLY AVERAGES OF "CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON, JUNE 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IONTHL
NO. OF
•AX.HRl
OF
WEEK
FRI
SAT
SUN
MOM
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
r IEAN
DAYS
Y MEAN
12
4
6
3
6
1
*>
6
3
6
2
5
6
3
6
3
5
5
3
5
4
4
5
3
5
A
5
5
5
3
5
M
6
6
6
5
3
6
7
6
6
5
3
6
8
s
5
5
3
5
9
it
5
5
3
5
10
4
5
2
5
11
5
1
5
12
4
2
<.
1
5
2
5
2
6
5
3
6
3
5
5
3
5
4
5
5
3
5
P
5
5
5
3
5
M
6
<,
5
5
3
5
7
4
5
3
5
8
5
7
3
7
9
5
6
3
6
10
4
7
3
7
11
5
9
3
9
DAILY
MEAN
<•.*
5.1
5.*
NO
OFHR
22
21
24
67
5-IIN
MAX
7
11
10
00
o
-------
TABLE 3-120 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. JULY 1962
DAY
MONTH
1
2
3
4
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO OF
MAX.HRL
OF
IEEK
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
Y MEAN
DAYS
Y MEAN
12
9
4
4
4
7
8
5
a
8
u
12
12
12
1
9
4
4
4
6
7
5
8
a
11
12
12
12
2
9
3
4
4
6
7
5
8
8
11
11
12
11
3
7
3
4
4
5
7
5
7
8
11
10
12
11
4
7
3
4
4
5
7
5
8
8
U
10
12
11
A
5
7
4
5
5
7
S
8
10
12
12
12
12
M
6
7
4
6
5
6
7
7
9
11
16
U
16
7
4
6
6
6
7
7
9
10
15
10
15
8
4
6
5
5
6
7
9
B
15
10
15
9
4
6
5
6
7
7
8
8
13
10
13
10
5
5
5
6
7
8
12
a
12
11
5
6
5
5
7
6
8
11
12
9
U
12
12
B
4
5
5
7
5
8
11
12
10
11
12
1
5
4
5
9
6
8
11
12
9
10
12
2
4
4
6
7
8
6
9
8
11
12
10
12
12
3
4
4
6
7
8
6
9
a
12
10
11
12
4
4
5
8
8
6
9
8
1?
12
10
11
12
P
5
4
5
8
8
6
9
a
11
12
10
11
12
M
6
4
5
7
8
6
9
9
11
13
11
11
13
7
5
5
7
8
6
10
9
12
13
12
11
13
B
5
5
8
8
6
9
9
13
14
14
11
14
9
5
5
7
8
6
9
10
n
14
14
11
14
10
4
4
7
a
6
9
9
13
14
17
11
17
11
4
4
7
8
5
8
9
12
13
17
11
17
DAILY
MEAN
5.9
4.1
5.1
5.8
6.7
6.5
7.3
8.4
10.4
12.6
11.6
NO
OFHR
19
23
16
23
23
24
23
24
23
23
19
264
5-MIN
MAX
10
5
9
9
9
8
11
11
14
19
20
03
-------
TABLE 3-121 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. AUGUST 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
13
14
.6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL1
NO. OF
MAX.HRL
OF
«EEK
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WFD
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
cot
r MEAN
DAYS
Y MEAN
12
3
3
2
2
2
Z
3
2
2
2
1
3
1
2
5
4
5
15
25
15
1
2
2
6
2
2
1
2
2
2
2
2
1
0
0
0
9
12
5
5
25
1)
2
2
2
2
2
1
1
2
2
2
2
1
1
0
0
0
7
9
4
4
12
25
12
3
2
2
2
2
1
2
2
2
2
1
1
0
1
1
7
10
4
4
25
12
4
?
2
2
2
i
2
2
9
1
1
0
10
a
4
5
i y
25
12
A
5
5
4
3
5
3
4
2
2
4
3
2
2
0
9
11
7
7
1 4
25
14
M
6
5
5
6
4
8
3
2
6
3
3
3
0
9
10
7
10
1 7
25
17
7
4
5
5
6
e
2
2
6
3
3
3
1
9
10
8
9
25
12
8
6
3
3
3
3
2
2
5
2
1
0
6
7
6
10
7
25
11
9
5
3
3
i
2
4
2
2
4
2
1
0
3
7
5
5
5
^
25
9
10
6
3
3
2
3
2
2
3
2
1
0
0
8
4
4
5
25
9
11
2
4
3
2
2
3
2
2
3
1
2
0
0
5
4
4
•7
24
8
12
2
2
3
2
2
2
2
4
2
2
0
0
5
5
5
3
23
8
1
?
3
3
1
3
2
2
4
2
4
1
0
5
4
5
3
22
11
2
f
3
2
3
2
2
4
2
2
3
1
1
2
0
5
5
5
5
£
3
25
7
3
3
2
4
3
3
3
2
2
3
1
1
4
0
11
11
5
5
4
25
11
4
3
2
4
3
4
4
2
2
3
2
1
5
0
6
8
5
5
4
25
10
P
5
3
2
2
3
3
3
2
2
3
1
1
1
0
7
6
5
5
7
3
24
7
M
6
3
2
2
2
3
3
2
1
1
1
0
4
7
7
8
24
8
7
3
4
2
3
5
2
2
1
2
1
0
4
8
9
11
24
11
8
3
4
3
2
5
3
2
2
5
0
4
6
9
12
24
12
9
2
6
3
3
2
5
3
3
1
1
2
1
0
4
7
7
14
24
14
10
2
4
2
2
5
3
2
2
2
0
0
4
6
7
21
25
21
11
3
4
2
2
2
3
3
2
2
2
2
0
4
4
7
16
25
16
DAILY
MEAN
«°
3.3
• o
2.9
2.9
2.8
. 3
2.7
3.5
2.2
2.0
.3
3.2
1.7
1.5
1.4
2.4
0.7
6.6
7.2
5.8
7.5
.9
3.7
!
NO.
OFHR
1 Q
7*
24
76
24
y/.
24
22
24
24
24
24
24
24
24
24
24
21
24
24
24
89
5-MIN
MAX
1 y
9
7
12
j
8
9
12
11
5
4
8
B
6
13
10
1 3
10
17
17
16
24
20
-------
TABLE 3-122 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. SEPTEMBER 1962
DAY OF
•ONTH
1
2
3
4
5
7.
8
9
10
11
12
13
14
15
16
17
18
19
20
2i
23
24
25
26
27
28
29
30
•EEK
SAT
SUN
WON
TUE
WED
TMII
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
3
2
5
10
12
3
2
8
7
10
7
6
10
11
13
8
7
22
13
1
6
3
2
5
9
12
3
?
7
7
8
10
6
10
12
13
8
7
22
13
2
5
3
2
5
9
9
3
?
7
6
8
6
7
10
15
11
8
6
?2
15
3
3
2
5
9
9
3
?
7
7
7
6
7
8
10
10
ft
6
22
10
4
2
2
5
9
8
3
2
8
8
6
7
8
10
10
a
6
22
10
5
2
3
8
6
7
10
4
4
9
9
12
7
9
7
9
U
8
7
22
14
6
2
10
8
7
10
4
6
5
15
10
16
10
11
7
9
13
8
8
22
16
7
2
11
7
9
3
7
7
9
7
10
6
7
7
18
6
22
18
1
2
3
8
•5
4
4
4
7
7
a
a
10
9
8
19
7
19
19
2
2
3
9
5
<>
5
4
4
8
8
8
9
10
15
10
21
7
20
21
3
2
3
10
10
5
•>
5
4
5
8
8
9
12
8
7
13
12
22
8
22
22
4
3
3
1 0
12
5
S
4
b
4
8
8
9
11
8
6
10
9
23
7
22
23
5
2
3
9
5
5
5
4
4
8
8
8
11
10
6
9
9
24
7
22
24
6
3
4
9
9
5
6
5
5
9
8
9
10
9
7
8
9
24
8
22
24
7
3
i*
8
6
7
5
5
10
8
9
9
8
5
8
8
18
7
22
IB
8
3
4
8
6
8
3
4
9
7
9
9
8
5
8
7
6
6
22
9
9
5
3
4
7
7
9
3
4
9
8
8
11
1?
9
7
5
7
?1
12
10
3
3
6
9
10
3
4
8
8
7
8
9
9
7
5
6
21
10
11
3
3
6
9
12
3
3
4
8
8
• K
7
8
11
10
12
8
5
7
22
15
DAILY
MEAN
• °
2.6
3.1
• °
8.3
5.9
7.1
6.*
3.8
4.0
3.4
8.6
7.6
f y
' .'
9.3
8.6
9.0
6.9
9.*
9.7
U.I
NO
OFHR
jt.
24
24
y y
24
24
24
24
24
24
23
Z«
24
74
24
24
24
20
24
24
24
5-MIN
MAX
6
6
18
11
15
14
6
9
8
20
12
1 O
20
16
16
13
23
21
24
6.9
521
00
CO
-------
TABLE 3 123 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. OCTOBER 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
is
19
20
21
22
23
24
25.
26
27
28
29
30
31
OF
WEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
HAX.HRLY MEAN
12
5
6
5
4
3
6
20
16
1
5
h
r
i
4
a
11
i
12
6
7
8
7
20
5
4
3
6
20
20
A M
2
5
6
8
I
5
0
7
0
11
7
6
7
7
17
5
3
3
5
20
17
3
5
7
8
3
1
0
5
1
13
1
5
6
7
1 1
4
3
3
5
20
13
4
4
7
8
it
0
0
6
1
11
6
6
6
7
11
4
5
4
5
20
11
5
3
6
7
4
0
0
11
4
M
•^
n
6
9
12
6
21
13
1
12
13
3
0
2
0
5
8
9
9
7
4
7
8
5
7
5
4
6
20
13
?
16
10
4
1
0
5
9
10
7
4
7
8
6
6
5
5
6
19
16
3
23
10
3
0
0
6
10
11
5
a
7
10
5
6
7
7
18
23
4
16
11
0
0
0
5
8
10
12
10
5
8
8
8
6
5
6
6
7
?0
16
5
13
11
0
1
0
5
8
14
10
11
6
9
14
9
8
5
5
5
7
20
14
6
11
11
0
3
2
5
5
17
10
14
6
S
1
11
9
5
5
5
5
7
20
17
7
9
6
0
2
4
5
5
24
H
13
&
9
7
16
9
4
6
6
8
20
24
fl
6
5
0
2
6
5
22
15
13
9
8
6
23
8
4
6
6
8
20
23
9
6
5
3
2
1 1
4
3
18
16
14
10
8
6
23
7
4
5
5
8
20
23
10
7
6
5
3
19
4
17
16
14
9
7
6
15
7
4
4
4
3
20
19
11
7
7
5
3
12
4
20
13
14
9
7
6
12
7
4
4
3
7
20
20
DAIIY
MEAN
10.1
9.1
3.8
2.4
1.6
2.5
6.7
9.1
12.0
10.2
6.i
6.6
7.7
12.0
9.3
5.3
5.1
L. 7
5.2
NO.
OFHR
24
24
24
24
14
24
24
24
24
23
2*
21
24
13
24
24
24
24
S-MIN
MAX
23
13
8
9
5
21
21
30
24
21
19
16
18
29
30
16
11
1 J
13
6.6
479
00
-------
TABLE 3 124 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON, NOVEMBER 1962
DAT
KONTH
1
2
3
4
5
6
7
8
12
13
14
15
16
17
19
21
22
23
24
26
27
28
30
IONTHL1
NO. OF
•AX.HRl
OF
IEEK
THU
FRI
SAT
SUN
WON
TUE
WED
THU
MON
TUE
WED
THU
FRI
SAT
QIJM
MON
WED
THU
FRI
SAT
MON
TUE
WED
FRI
f HAN
DAYS
T MEAN
12
4
5
a
17
b
4
11
3
3
IS
i
2
9
0
5
4
4
5
6
27
19
1
4
it
H
11
4
3
fl
2
2
15
2
2
6
0
5
4
<>
5
5
27
15
2
3
A
h
H
5
4
8
2
2
9
2
1
3
0
5
4
3
5
4
27
9
3
3
4
6
7
4
2
fl
1
1
6
2
2
2
0
5
it
3
5
<,
27
8
4
3
t,
5
6
3
•a
•a
2
t,
1
1
4
c
3
i
2
3
0
5
3
3
4
3
27
6
A
5
3
4
5
5
6
5
2
3
2
2
5
3
2
2
1
9
3
3
4
<>
27
9
M
6
4
5
6
7
8
6
3
4
4
5
10
3
i
2
1
6
4
4
6
4
27
10
7
5
5
b
9
10
9
5
3
ft
7
12
15
(.
5
2
2
7
4
b
10
b
27
15
8
b
b
6
9
11
10
5
3
5
5
13
16
3
5
2
1
b
5
7
7
b
27
18
9
6
7
7
b
8
9
3
<>
. 3
b
3
4
2
1
5
5
5
6
5
26
9
10
It
7
6
5
6
8
5
3
3
2
8
2
4
1
0
5
5
5
5
4
26
8
11
4
6
7
4
<>
a
3
3
2
4
7
2
3
1
0
8
4
4
5
4
27
8
12
It
7
4
<>
7
5
4
?
3
b
'2
3
1
1
7
4
4
4
5
4
27
7
1
4
10
4
4
6
3
5
2
3
6
2
4
1
7
4
5
4
5
5
4
25
10
2
4
4
5
5
3
4
2
3
5
3
4
1
6
4
4
4
5
4
23
7
3
4
5
5
5
b
4
3
5
3
6
1
6
5
5
5
22
9
4
5
7
8
b
5
4
8
t*
9
1
7
6
6
6
11
6
2<»
11
P
5
5
7
15
9
b
5
12
4
10
0
12
10
7
7
7
Ib
7
25
16
M
6
6
8
10
14
9
5
7
4
16
4
6
0
11
7
6
7
6
14
7
25
16
7
5
8
11
9
8
6
4
18
3
4
0
9
6
5
6
6
14
6
25
18
8
5
8
!<.
8
8
5
4
17
3
3
0
8
6
5
6
6
13
6
25
17
9
5
8
10
13
9
7
b
-------
TABLE 3-125 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. DECEMBER 1962
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO OF
MAX.HRl
OF
IEEK
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
f MEAN
niY^
Y MEAN
12
24
20
6
24
1
25
19
ft
25
2
25
21
5
25
3
22
18
5
22
4
23
17
5
23
A
5
15
U
4
15
M
6
20
6
5
20
7
22
5
10
22
8
12
6
7
8
12
9
11
6
6
11
10
7
6
5
7
11
7
b
5
7
12
7
5
4
7
1
7
5
4
7
2
6
6
<.
6
3
10
5
5
10
4
11
6
11
P
5
20
8
20
M
6
21
8
21
7
13
8
13
B
9
7
9
9
10
6
10
10
12
6
£
12
11
19
6
£
19
DAILY
MEAN
K..9
8.9
5.6
5.3
NO.
OFHR
24
24
24
16
5-MIN
MAX
30
24
1 1
13
00
o>
-------
TABLE 3 126 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. JANUARY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
31
MONTHL
wn nf
MAX.HRl
OF
WEEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SUN
MON
TUE
WED
THU
1 MEAN
DiVC
Y MEAN
12
7
9
^
8
11
10
11
1
6
8
6
8
10
10
10
2
5
6
8
9
10
10
3
5
8
6
a
9
10
10
4
"3
6
9
10
9
10
A
5
5
8
6
14
10
10
14
M
6
6
8
7
12
11
11
IZ
7
7
8
9
15
14
12
15
B
7
10
15
14
12
15
9
7
9
13
13
11
13
10
7
8
12
12
11
12
11
7
8
1 1
15
11
15
12
6
8
10
1ft
12
16
1
7
9
15
11
15
2
r
8
10
14
11
14
3
7
10
11
15
11
15
4
10
10
12
16
13
ie>
p
5
10
11
12
16
13
16
M
6
10
8
10
11
16
14
16
7
«
9
10
10
13
14
14
B
9
9
10
12
1*
1*
9
8
9
10
12
14
1*
10
1
g
9
10
12
14
14
11
7
9
10
11
14
14
DAILY
MEAN
7.0
Hi
8.3
10.9
12.7
11.6
NO
OFHR
24
74
24
23
24
24
i «. 7
5-MIN
MAX
13
i f>
12
21
22
16
-------
TABLE 3-127 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. FEBRUARY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
MONTHU
NO. OF
NAX.HRl
OF
IEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
VON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
KAN
DAYS
Y MEAN
12
13
6
3
9
29
5
9
6
12
29
1
12
6
3
8
28
5
6
7
12
26
2
12
6
3
12
20
5
15
6
12
20
3
11
11
3
16
16
-------
TABLE 3-128 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON, APRIL 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHLY
NO. Ur
MAX.HRl
OF
IEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON,
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
f MEAN
DATS
Y MEAN
12
3
3
1
1
3
1
1
4
0
I
4
2
1
1
0
1
1
3
3
1
0
1
3
4
3
0
1
2
3
A
5
3
0
3
2
3
M
6
4
0
4
4
4
7
2
0
4
5
4
6
0
0
2
4
4
9
0
0
2
5
4
10
0
0
2
4
4
11
0
0
2
3
u
12
1
0
2
3
^
3
1
0
0
3
3
3
2
1
0
2
1
2
3
1
0
3
*
4
4
4
1
0
3
5
4
5
P
5
2
0
2
4
4
4
M
6
2
1
2
4
4
7
2
1
2
4
4
8
3
1
2
3
3
9
3
1
2
3
3
10
2
1
2
2
*
11
3
1
1
2
3
DAILY
MEAN
1.7
0.7
2.0
3.2
NO
OFHR
24
24
24
22
94
5-MIN
MAX
6
7
11
7
oo
<0
-------
TABLE 3-129 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON, MAY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
29
31
HONTHL
NO. OF
MAX.KRL
OF
WEEK
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
FRI
SUN
MON
WED
FRI
1 MEAN
DAYS
Y MEAN
12
2
2
9
<>
2
5
5
b
3
3
2
•*
5
3
3
4
2
i
i
i
i
3
7
31
9
1
2
1
8
4
2
5
5
5
3
3
2
4
2
2
5
2
1
0
1
2
5
31
8
2
1
1
6
5
1
5
5
4
3
2
2
3
2
2
5
2
1
0
1
2
•a
4
31
6
3
1
1
7
4
1
5
!>
4
3
2
2
?
2
2
2
5
2
1
0
0
3
i
4
31
7
4
1
2
10
-------
TABLE 3-130 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON, JUNE 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IONTHL1
NO. OF
•AX.HRL
OF
IEEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MEAN
DAYS
Y MEAN
12
4
5
11
3
4
8
6
5
5
9
6
n
9
9
5
4
6
29
17
1
10
4
4
11
3
3
4
6
5
5
7
6
14
9
8
5
3
6
29
14
2
4
4
10
3
3
3
6
5
5
7
6
11
8
5
4
3
5
29
11
3
4
4
7
2
3
3
6
5
5
8
7
6
8
9
5
4
3
^
5
29
9
4
4
5
7
2
3
4
7
5
5
8
6
8
f
7
7
4
3
5
29
a
A
s
5
7
10
3
3
8
10
6
7
10
6
12
11
10
7
4
7
29
12
M
6
6
9
13
3
12
14
7
9
13
6
15
5
11
13
10
7
8
29
15
7
5
7
9
14
3
11
13
7
7
11
7
14
1Z
8
6
9
8
13
13
7
8
29
14
8
6
a
12
4
7
11
6
6
8
7
8
5
6
7
13
5
6
28
13
9
6
5
4
4
10
6
6
8
7
7
5
•>
5
5
8
i
27
10
10
6
6
5
4
11
5
6
7
7
6
4
4
5
6
4
5
28
11
tt
6
6
4
3
10
5
6
7
7
6
5
4
4
5
4
3
5
29
10
12
6
6
5
4
5
2
9
6
6
7
7
6
5
4
5
4
3
3
29
9
1
6
6
5
4
7
8
6
6
7
7
6
5
5
4
3
4
4
30
8
2
6
6
5
5
8
9
6
6
8
J
7
5
5
5
4
3
30
9
3
7
7
6
8
9
9
6
7
9
7
8
5
5
5
5
5
3
30
9
4
7
7
6
8
9
q
8
7
9
7
7
6
5
5
5
5
4
30
9
P
5
7
6
7
14
8
6
6
7
8
7
6
4
5
4
4
3
29
14
M
6
8
7
8
11
5
9
8
6
7
8
8
6
4
5
5
4
6
29
11
7
9
8
11
6
10
9
6
9
10
8
7
6
b
6
4
5
7
29
U
8
9
9
9
7
8
10
6
13
10
11
6
7
j
8
7
5
g
7
29
13
9
4
7
11
10
8
7
11
7
15
12
14
6
7
i y
n
7
5
8
29
15
10
4
4
6
£
13
9
8
7
7
6
11
14
7
14
6
£
8
7
13
7
10
7
4
0
7
29
14
11
4
4
5
£
13
8
5
9
7
6
6
10
11
20
6
5
8
5
14
7
9
6
5
9
7
29
20
DAILY
MEAN
• K
5.2
6.1
% 4
7.2
8.2
6.3
3.7
4.3
7.2
8.8
5.9
7.3
9.0
7 0
7.9
9.5
5.7
ft Q
4.9
u a
5 8
6 3
7.0
6.6
5.8
3.8
4.5
6.1
NO
OFHF
24
24
24
24
23
24
24
24
24
21
2<.
24
24
24
24
24
17
13
24
24
24
24
24
22
24
24
24
24
24
696
5-HIN
MAX
1 S
g
11
15
19
18
7
12
16
16
10
19
16
i n
22
19
10
i 4
1 4
11
1 O
1 Q
1 fl
17
16
17
6
10
-------
TABLE 3-131 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. JULY 1963
DAY OF
MONTH
1
2
3
4
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
WEEK
fel/^KJ
WHJN
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
MONTHLY MEAN
NO. OF DAYS
MAX.HRLY MEAN
A M
12
g
3
2
2
3
5
ft
3
5
7
6
19
5
4
9
6
4
6
(+
b
6
5
10
6
4
it
2
6
c
30
19
1
^
3
2
\
2
(^
5
4
3
b
8
5
17
5
6
8
6
4
6
6
7
9
9
6
3
5
0
3
30
17
2
3
2
1
2
A
5
3
3
5
5
7
14
b
5
8
7
4
4
4
4
6
6
10
3
b
<•
4
0
3
30
14
3
1
J
4
2
1
2
A,
5
3
3
4
a
11
11
4
5
8
5
^»
A
*t
4
•a
3
9
6
9
2
6
2
3
0
29
11
4
4
2
1
2
A
H
5
4
3
4
8
12
8
5
6
1
8
L
•t
5
4
7
9
12
3
5
1
4
3
29
12
5
8
6
2
4
5
5
4
7
12
21
6
5
10
10
10
7
4
7
9
9
5
4
1
6
11
5
30
21
6
10
6
2
5
5
8
5
d
U
27
1
5
13
14
•V
7
1
9
A
**
9
14
15
7
6
1
9
11
6
30
27
7
8
9
5
1
4
5
9
5
5
9
20
6
5
11
13
9
9
6
4
8
10
12
U
5
3
5
7
4
30
20
B
A
*t
7
3
1
2
5
6
4
4
7
9
5
5
8
10
7
c
j
f
'
b
A
H
7
9
10
5
3
4
4
6
29
10
9
4
7
3
1
2
A,
5
5
4
4
6
7
4
5
6
5
5
A
t
7
f
5
A
H
6
6
6
4
5
3
3
2
4
^
30
7
10
5
4
3
3
I
4
5
4
3
4
4
6
5
6
6
6
5
4
4
7
B
6
11
4
2
1
2
A
*t
4
4
2
4
4
5
6
5
5
A
5
A
*f
A
H
4
7
5
8
2| 4
4
3
2
4
7
A
H
30
8
2
1
2
1
3
^
30
8
P M
12
5
4
2
3
2
4
4
4
3
4
4
5
6
5
6
4
5
A
4
3
b
5
5
5
5
3
3
0
4
A
H
30
b
1
4
2
1
<>
4
3
4
4
5
-7
5
b
4
5
A»
^
3
5
7
8
7
10
4
1
2
1
3
A
H
29
10
2
A
H
7
2
0
4
A
*t
4
5
4
5
5
5
6
5
4
5
A
*t
A,
3
7
4
4
9
3
3
3
2
5
A,
29
9
3
9
2
1
5
4
5
4
5
4
8
4
5
4
4
5
4
3
A
H
7
9
8
8
5
4
3
3
5
30
9
4
^
3
b
2
1
5
A
•*
4
5
4
5
b
9
5
5
S
3
5
b
7
9
3
8
3
1
b
4
b
t
5
30
9
5
3
4
2
1
4
4
4
4
5
5
12
b
6
4
3
4
4
5
9
7
9
4
5
9
4
5
30
12
6
3
4
2
1
5
5
4
4
4
b
7
14
5
b
5
4
5
7
5
5
a
8
7
b
7
4
4
4
5
30
14
7
4
4
3
3
b
i.
5
4
7
10
9
b
b
8
7
b
8
b
b
H
8
5
5
3
4
5
7
29
10
e
5
2
3
5
7
7
4
b
5
8
12
11
b
7
9
11
5
7
b
13
B
9
9
2
3
b
b
29
13
9
f>
4
3
9
8
7
(,
5
b
8
14
17
•b
b
12
9
b
8
B
13
7
b
9
b
2
1
7
4
?9
17
in
3
2
7
7
4
4
5
8
7
13
b
b
15
9
b
9
8
11
7
b
8
7
2
2
b
4
7
29
IS
11
4
3
2
5
7
b
4
3
5
8
b
17
b
5
15
8
4
7
7
d
9
8
7
4
2
6
3
29
17
DAILY
MEAN
4,b
4.9
2.7
2.2
3.9
U 7
** . '
4.4
4.7
3.9
5.4
7.2
10.7
7,*
5.3
7.5
7.2
5.9
5 -a
. 3
5Q
• O
5.3
30
.8
7.3
7.8
7.7
6.9
5.3
2.4
3.9
3.7
<•.?
NO.
OFHR
a 4
24
24
24
23
J A
C •»
24
24
24
24
24
24
24
24
23
24
24
•y ,
£. H
•» A
t *>
24
1 Q
1 9
24
23
24
24
24
24
24
24
22
S-MIN
MAX
12
15
9
11
10
8
b
12
8
11
Ib
33
20
8
22
17
12
10
12
13
14
18
24
27
Ib
15
12
14
23
Ib
5 A
• H
710
CO
tS9
-------
TABLE 3 132 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. AUGUST 1963
DAT OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
THU
FRI
SAT
SUN
MOM
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MOt-
TUE
WEC
THL
FRI
SA1
MONTHLY KAN
NO. OF DAYS
HAX.HRLY DEAN
A M
12
10
18
9
19
2
4
4
5
6
6
6
8
6
14
10
8
6
9
7
1
5
6
12
11
18
2
4
»
5
5
5
5
7
ft
10
10
7
6
7
7
8J 7
22) 23
19^ 18
2
5
8
9
11
13
1
3
4
5
4
5
5
6
5
7
9
7
6
7
9
6
23
13
3
8
6
10
10
14
1
4
4
5
5
5
5
7
5
7
8
7
6
7
10
6
23
14
4
8
3
12
11
17
2
6
5
5
5
6
5
7
5
7
8
7
7
6
9
1
23
17
5
8
6
8
11
14
20
4
0
5
5
5
9
7
8
9
7
10
11
10
8
10
10
9
23
20
6
12
10
7
9
12
!•»
13
IS
5
J
11
9
13
12
9
9
13
10
9
12
11
10
23
19
7
12
10
8
8
10
18
12
5
5
9
8
13
10
9
13
9
9
11
8
9
22
18
B
12
8
11
12
Ib
7
5
6
8
b
10
8
;
12
8
8
y
6
8
21
15
9
7
b
13
9
12
7
5
b
8
b
a
7
5
11
7
8
7
6
7
21
13
10
b
4
M
10
11
11
6
•i
4
6
5
6
5
5
6
9
6
U
6
6
7
23
13
11
7
5
10
12
10
10
2
6
5
5
5
6
4
3
7
7
6
11
5
5
6
22
12
P M
12
7
5
10
14
10
13
2
4
5
7
5
7
4
4
7
8
7
U
fa
4
7
21
14
1
q
3
10
13
9
17
1
4
b
5
6
5
7
"3
4
7
7
b
1
b
4
7
22
17
2
H
b
9
11
11
20
2
4
5
4
b
5
7
5
5
b
7
7
9
7
4
7
22
20
3
10
7
13
12
9
17
3
5
4
3
5
7
b
b
5
6
b
8
b
10
8
5
7
23
17
4
10
b
10
13
10
is
3
b
4
3
5
b
b
6
b
rl
b
7
7
9
7
5
7
23
Irt
5
10
R
14
B
8
14
3
4
4
3
4
5
5'
7
ft
b
5
5
7
7
9
b
7
22
14
6
9
8
13
15
10
13
4
5
4
5
4
5
9
8
b
5
b
8
9
8
7
22
15
7
9
10
12
13
11
17
5
5
5
S
4
b
16
10
7
7
8
9
7
13
9
9
23
1 J
e
8
11
12
17
12
Ib
5
b
5
5
5
b
17
12
7
7
8
10
9
15
8
9
23
17
9
b
13
16
21
14
20
5
5
5
5
6
6
U
16
6
7
9
10
10
13
a
10
23
21
10
9
10
15
22
12
19
5
6
5
4
8
7
11
13
5
9
9
9
10
U
7
9
23
22
11
U
10
19
21
19
18
5
4
6
b
6
6
b
11
7
5
15
9
9
10
9
8
10
23
21
DAILY
MEAN
8.6
7.4
10.3
13.1
11.0
16.1
3.1
5.6
*.8
*.5
4.6
6.3
5.7
8.5
7.7
5.8
5.3
7.7
9.1
• t
8.7
8.7
7.1
NO.
OFHR
23
24
22
24
24
24
24
24
23
20
24
24
24
24
24
24
24
21
24
2*
24
22
24
5-MIN
MAX
20
16
25
24
25
24
10
15
8
7
8
16
11
20
19
11
16
16
20
12
15
18
12
7.7
539
CO
CO
-------
TABLE 3-133 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON, SEPTEMBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MONTHL
NO. OF
MAX.HRl
OF
WEEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
1 MEAN
DAYS
Y MEAN
12
7
12
6
0
1
1
1
1
2
3
2
ft
5
6
2
2
3
3
ft
2
5
10
6
6
10
6
30
12
1
7
1ft
6
0
0
0
1
1
1
2
2
2
ft
5
2
2
2
2
3
2
4
9
5
6
11
5
30
14
2
6
12
6
0
0
0
1
1
1
1
2
2
4
•}
2
2
2
2
2
2
4
10
9
5
6
6
30
12
3
6
14
6
0
0
0
1
1
2
2
2
3
5
5
2
2
2
1
1
1
4
10
9
6
5
5
30
14
4
5
13
6
1
1
0
1
2
2
3
3
5
6
2
2
2
1
1
?
5
11
9
7
6
5
30
13
A
5
6
13
8
3
2
2
2
2
5
4
4
4
5
d
2
3
3
4
2
2
6
12
12
11
7
5
5
30
13
M
6
6
14
9
5
3
4
3
5
9
5
6
6
5
5
4
5
8
12
2
2
11
8
18
15
17
10
5
7
29
18
7
6
a
9
5
3
4
3
5
14
5
6
6
5
4
4
12
12
2
2
9
6
21
16
18
9
5
7
29
21
e
5
7
8
3
3
3
3
2
9
5
4
4
5
2
2
3
7
10
2
2
6
7
17
11
15
9
7
7
6
30
17
9
5
7
8
2
3
2
3
1
9
5
4
5
5
2
2
2
3
6
3
3
6
4
7
7
8
10
6
5
30
10
10
6
5
a
3
3
2
2
1
6
2
4
5
2
2
2
2
3
3
?
5
5
6
6
6
8
6
ft
29
8
11
5
5
7
1
3
2
1
1
3
4
2
5
4
2
2
2
2
2
3
5
5
5
5
6
7
5
5
4
29
7
12
6
5
6
2
3
2
1
1
2
4
4
6
6
2
2
3
2
1
3
5
5
7
7
6
6
29
7
1
5
5
7
2
4
1
1
1
2
4
5
6
2
2
2
2
1
2
5
5
5
9
7
6
5
30
9
2
6
5
2
3
2
1
1
3
5
5
6
2
2
2
2
3
3
6
5
5
8
6
5
5
28
8
3
6
5
2
2
2
1
1
3
5
5
5
3
2
2
2
2
4
5
5
5
8
5
6
ft
29
8
4
5
5
1
0
1
2
1
0
3
5
4
5
3
2
2
2
2
4
4
4
5
7
7
6
5
30
7
P
s
6
6
0
1
1
3
1
1
3
3
4
5
3
2
2
3
4
4
3
5
5
7
8
6
7
30
8
M
6
7
7
2
2
1
3
2
3
6
5
5
5
5
7
2
2
4
6
6
4
5
6
6
10
9
7
10
5
30
11
7
9
7
1
2
1
3
3
5
7
4
5
5
6
7
3
2
4.
11
4
4
5
8
6
8
8
7
9
i n
5
30
11
8
13
7
0
1
1
3
2
3
7
3
5
5
5
6
2
2
2
8
5
3
6
8
6
7
9
7
10
5
30
13
9
17
6
1
1
1
2
2
2
6
3
5
5
4
6
2
2
4
7
6
3
5
10
6
8
11
6
8
5
30
17
10
15
6
0
0
0
2
2
1
6
3
4
5
4
6
2
2
5
6
9
3
4
10
6
7
11
7
5
5
30
15
11
12
6
0
1
1
2
2
2
5
3
4
5
5
6
2
2
4
3
5
3
5
9
6
6
12
6
4
5
30
12
DAILY
MEAN
7. ft
8.1
ft. 8
1.6
1.6
1.9
1.6
1.9
ft. 7
3.7
3.9
4.5
4.5
5.6
3.2
2.2
2.8
ft.l
ft. ft
2.8
2.8
5.3
6.0
8.5
8.3
8.7
7.2
6.1
*.6
^
NO
OFHR
2ft
2ft
22
2ft
2ft
2ft
24
2ft
2ft
23
2ft
2*
2ft
2ft
22
23
2ft
2ft
2ft
2ft
Zft
23
2«
24
2ft
2ft
2ft
2ft
12
5-MIN
MAX
19
16
10
9
ft
6
5
6
17
9
8
8
6
8
11
6
8
15
19
7
5
1ft
12
2ft
18
22
1ft
15
1ft
-------
TABLE 3-134 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON, OCTOBER 1963
DAY
MONTH
1
2
3
4
5
g
7
8
9
10
12
13
14
IS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
BONTHL
NO. OF
•AX.HRl
OF
WEEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
1 KAN
OATS
Y IEAN
12
6
7
5
4
12
1 1
6
7
6
16
7
1C
7
10
12
9
25
?7
25
7
C
•
9
19
6
5
4
10
28
27
1
5
6
5
1
15
g
6
6
5
16
7
8
7
7
14
6
23
17
21
6
4
5
12
17
7
4
4
9
28
23
2
5
5
5
0
11
g
5
6
4
9
tt
7
7
6
13
6
17
is
19
5
4
5
U
13
7
4
3
8
28
19
3
5
5
6
0
17
7
5
7
5
10
5
6
6
5
13
6
18
20
11
6
4
5
13
12
6
4
3
8
28
20
4
6
6
6
1
15
j,
6
7
6
11
5
4
6
7
U
8
20
16
9
7
5
5
12
11
7
U
t,
B
28
20
A
5
i
9
a
3
15
8
9
8
11
5
5
8
10
16
U
19
15
10
12
6
7
12
14
7
5
5
9
28
19
M
6
14
11
1 1
U
15
10
14
10
Id
7
5
13
14
19
23
22
22
8
16
1
8
17
19
8
6
7
12
28
23
7
U
1?
11
fl
8
11
13
9
20
1
6
4
15
16
17
26
22
22
8
11
7
9
21
21
8
6
10
M
28
26
8
U
1 1
10
7
6
10
14
7
20
5
4
16
16
IB
12
14
21
7
9
7
8
1 1
16
9
7
1 1
11
28
21
9
R
9
9
6
5
8
13
7
10
5
4
13
12
14
9
10
15
U
H
7
8
10
11
12
7
8
9
28
15
10
p
9
7
5
5
7
fl
8
5
5
o
10
9
8
9
9
8
7
6
8
10
7
12
7
8
26
12
11
5
8
7
5
6
9
5
6
7
4
4
7
9
6
6
9
6
7
7
6
8
9
6
1 1
7
7
27
I 1
12
5
8
7
6
6
1 1
7
7
f>
5
5
7
7
5
9
8
5
7
7
8
8
7
1 1
6
7
7
27
1 1
1
7
7
7
6
7
11
7
6
7
4
4
6
3
7
8
5
6
7
7
9
8
a
9
6
r
7
27
U
?
3
5
7
5
6
11
6
6
6
7
4
4
3
6
2
6
8
5
5
6
6
7
7
7
9
<•
a
6
28
11
3
7
7
5
6
6
10
6
6
6
i,
4
5
6
3
6
8
5
5
7
7
6
7
8
8
5
9
6
28
10
4
7
H
b
'.
6
1 1
7
6
7
5
<.
6
8
6
9
3
6
6
7
7
7
7
8
10
5
10
7
2S
11
P
5
7
•j
6
3
7
10
7
6
B
6
b
7
10
15
14
12
8
7
9
7
8
a
8
13
7
10
8
28
15
M
6
10
8
6
10
11
JO
R
a
8
9
7
9
17
2i
12
13
10
9
14
7
8
9
9
16
6
8
10
28
26
7
8
8
5
13
10
g
11
8
9
9
8
7
14
12
3J
17
16
17
9
10
6
B
11
9
12
6
8
1 1
28
33
R
8
7
5
14
9
10
7
11
9
9
6
13
11
24
23
29
23
9
11
6
8
13
7
12
6
8
1 1
28
29
9
8
7
6
1 9
9
9
8
15
10
14
7
14
12
26
29
25
?5
9
10
6
9
16
7
1 1
S
7
1?
28
29
10
,
6
5
20
13
f
B
9
13
10
15
7
1 1
13
24
21
25
28
8
d
b
10
16
6
10
5
7
12
28
28
11
8
6
5
18
13
5
7
7
15
10
7
13
7
12
11
16
28
30
28
8
6
5
9
15
6
11
5
7
1 1
28
30
DAILY
MEAN
7.8
7.5
6.5
7.5
9.8
7 3
8.7
8.2
e.o
10.6
p 1
6.8
5.6
9.3
10.1
14.4
13.3
16.6
15.6
9.5
8.5
6.0
7.4
11.7
10.6
9.6
5.6
7.1
9.2
NO
OFHR
24
24
24
24
24
24
23
24
24
24
24
24
24
23
24
24
24
24
24
24
23
24
24
24
24
24
24
22
667
5-MIN
MAX
17
14
14
24
19
1 3
13
17
18
24
17
12
18
23
37
32
35
33
26
20
10
14
23
23
19
8
14
CO
01
-------
TABLE 3-135 HOURLY AVERAGES OF CARBON MONOXIDE, ppm (infrared analysis)
WASHINGTON. NOVEMBER 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
•ONTHU
NO. OF
NAX.HRL
OF
IEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
f MEAN
DAYS
Y MEAN
12
6
6
10
8
10
5
7
5
13
5
8
2
11
7
1
17
14
33
7
6
8
8
14
37
19
12
10
30
37
t
6
6
10
8
10
5
6
4
13
4
6
2
8
5
0
12
14
30
6
5
7
8
13
33
18
12
9
30
33
2
5
5
9
7
10
t,
6
<,
13
3
7
3
6
6
0
12
14
25
6
5
6
8
13
30
18
12
8
30
30
3
5
5
8
8
4
6
3
10
4
10
3
6
7
1
12
14
21
7
6
8
8
13
31
19
12
8
29
31
4
6
4
8
8
9
4
.7
11
5
5
3
5
5
1
12
15
18
7
6
8
8
14
26
19
13
8
30
26
A
5
7
5
9
8
10
4
6
4
10
6
5
3
5
5
2
12
15
20
7
6
8
9
15
24
19
13
a
30
24
M
6
9
6
11
9
12
4
a
5
9
7
10
5
5
5
3
17
16
23
8
6
9
10
17
21
20
13
9
30
23
7
11
5
14
11
12
6
9
5
11
7
17
6
6
6
6
20
18
27
8
6
9
11
20
19
19
13
11
30
27
a
10
6
14
12
13
8
10
5
6
6
18
6
6
6
5
16
19
27
9
6
8
14
22
16
20
14
11
30
27
9
10
7
12
12
12
8
10
5
5
5
10
5
7
6
9
16
20
26
9
7
8
22
17
20
14
11
29
26
10
10
7
10
12
10
7
8
5
6
4
5
4
5
6
5
14
15
20
24
10
7
7
20
18
20
14
10
29
24
II
10
7
9
11
16
5
8
5
7
2
5
4
5
7
15
17
19
21
9
7
7
20
19
20
16
10
28
21
12
11
6
6
9
10
19
5
7
5
7
3
5
4
5
7
15
17
18
22
9
8
8
19
19
20
17
10
29
22
1
13
5
7
9
12
20
7
5
6
4
6
6
6
5
7
17
18
19
21
8
8
8
18
18
19
16
11
28
21
2
15
5
7
10
12
20
8
6
6
4
7
6
6
7
18
19
20
14
8
8
8
13
22
20
19
16
11
29
22
3
16
5
7
11
11
18
9
6
6
5
4
7
5
6
8
18
20
22
14
8
9
8
13
22
19
20
16
11
30
22
4
13
6
7
12
13
13
10
6
6
6
4
6
6
6
7
3
19
20
25
12
10
10
10
15
*7
20
21
17
12
30
*7
P
5
12
6
8
12
14
11
11
8
6
8
9
7
7
6
8
20
19
27
12
10
10
10
15
30
21
19
17
12
30
30
M
6
11
7
9
11
12
9
10
7
8
7
16
7
4
7
8
20
18
26
10
11
10
11
13
29
21
18
17
12
30
29
7
10
7
11
11
12
7
-------
TABLE 3-136 TWO HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON. JANUARY 1963
DAY
MONTH
1
2
3
4
5
6
7
8
9 *
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
KONTHL
NO. OF
MAX.
OF
KEEK
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
T MEAN
DAYS
12
1.8
2.2
2.3
1.7
0.5
1.4
2.2
2.1
1.9
1.8
1.5
0.6
0.8
1.4
0.8
1.6
1.2
1.2
1.1
1.3
1.5
l.«
1.50
22
2.3
2
2.3
2.1
2.1
1.6
0.6
1.7
2.1
2.3
1.8
2.1
1.5
0.7
1.2
0.9
0.7
0.7
1.3
1.5
0.8
1.8
1.0
1.5
1.49
22
2.3
A
4
2.6
2.1
1.7
1.2
2.0
3.0
2.2
1.7
1.7
1.*
0.8
1.5
1.3
1.3
0.8
1.3
1.1
1.2
2.8
4 4
1.9
1.88
22
4.4
M
6
3.4
3.1
1.5
1.7
3.2
4.0
2.0
2.*
2.3
1.2
1.3
1.*
2.2
1.2
1.*
1.6
1.1
1.9
3.9
1.9
2.29
22
4.0
8
3.4
2.6
2.0
2.2
3.4
3.6
3.2
3.3
2.2
1.2
1.2
1.5
2.3
1.7
1.6
3.1
1.5
1.4
3.9
1.9
2.46
22
3.9
10
2.4
2.3
2.9
1.5
1.5
3.1
3.1
2.4
3.2
2.3
1.7
1.0
1.7
2.0
1.0
1.0
1.8
1.2
1.0
2.6
1.6
2.02
22
3.2
12
1.7
2.3
1.7
2.6
0.8
1.2
1.5
1.9
1.9
2.5
2.7
1.1
0.9
1.5
2.4
0.9
0.9
I. 5
1.5
1.0
2.0
1.3
l.?3
22
2.7
2
1.6
2.0
1.7
1.6
1.0
1.0
0.9
1.5
1.4
?•'
1.9
0.6
0.9
1.4
2.2
0.8
1.0
1.5
0.8
1.4
1.8
1.3
1.49
22
2.9
P
4
1.7
3.3
3.8
1.4
1.0
1.6
2.0
2.5
1.8
2.8
1.8
1.2
1.*
2.1
0.9
I.*
1.5
1.1
0.9
1.3
1.9
1.5
1.90
22
3. S
M
6
2.7
4.0
3.1
1.4
1.1
1.6
2.8
3.5
2.0
2.3
1.8
1.3
1.0
2.6
1.1
1.5
1.7
1.4
1.3
1.5
1.8
.8
2.2
2.0<.
22
4.0
8
2.5
2.9
2.3
1.6
0.7
1.8
2.0
2.5
1.2
2.3
1.5
2.1
1.2
2.1
1.*
1.2
1.9
1.3
1.3
1.6
2.1
1.6
2.2
1.80
22
2.9
10
2.7
2.6
2.0
1.1
0.9
1.*
2.4
2.1
1.4
2.2
1.9
1.0
1.0
1.4
0.8
1.2
1.3
1.5
1.1
1.6
2.1
2.9
2.2
1.69
22
2.9
DAILY
MEAN
2.77
2.58
2.11
1.32
1.42
2.24
2.71
2.02
2.48
2.05
1.36
1.04
1.64
1.62
1.18
1.34
1.59
1.24
1.35
2.37
2.62
1.78
1.86
2.77 '
NO.
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
>64
MAX.
2.7
4.0
3.8
3.1
2.0
2.2
3.4
*.°
3.2
3.3
2.7
2.1
1.4
2.6
2.4
1.7
1.9
3.:
1.5
1.9
3.9
4.4
2.2
4. 4
• DATA FOR DAYS WITH FE*ER THAN 7 VALID VALUES APE PRINTED,
BUT ARE NOT INCLUDED IN THE SUMMARY ROWS AND COLUMNS
-------
TABLE 3-137 TWO-HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON. FEBRUARY 1963
1.3
1.6
1.2
0.9
1.4
0.9
0.8
1.4
1.5
1.4
1.3
0.9
1.3
1.2
2.1
.6
1.6
1.1
2.3
1.50
27
3.2
P
4
2.1
1.1
1.9
1.9
4.0
1.6
1.0
2.2
1.3
1.1
1.5
1 ft
1.2
1.2
1.8
1.8
2.0
1.2
1.4
1.3
1.6
1.7
.6
1.7
2.0
3.0
1.82
26
4.0
M
6
1 Jk
2.5
1.0
1.9
3.2
0.1
3.0
1.3
1.3
1.6
1.1
1.7
1.5
1.1
1.5
1.6
2.3
2.5
1.3
2.3
1.5
1.5
1.4
2.0
1.7
2.1
3.7
1.86
27
3.7
8
I »
l . '
2.1
1.4
2.1
3.1
4.2
2.3
1.3
1.4
2.0
2.0
2.5
1.4
t *
1.3
1.8
1.9
2.6
1.2
1.3
1.2
2.0
2.2
2.7
1.7
2.7
3.7
2.12
27
<>.2
10
1 •
1.6
1.9
1.6
2.6
5.7
1.5
2.2
1.5
2.8
2.5
2.1
1 ft
1.3
2.6
1.9
l.l
1.4
1.1
0.9
1.2
1.8
1.1
1.4
1.9
2.6
1.89
26
5.7
DAILY
MEAN
2 11
2.17
1.01
1.94
2.53
3.67
4.17
1.42
1.47
1.78
1.93
1.92
1 AA
1.38
1.44
1.96
2.55
1.74
1.76
1.16
1.28
1.61
1.89
1.60
1.68
2.92
1.91
4.17
NO.
12
12
12
12
12
11
12
12
12
11
12
12
i 9
12
12
12
12
12
12
12
12
12
12
12
12
12
322
MAX.
2 8
3.5
1.5
2.1
4.1
9.8
6.4
2.2
2.3
2.4
2.9
2.5
2.1
24.
2.0
2.6
2.6
4.4
3.4
2.9
1.9
2.0
2.2
2.7
.4
1.9
2.7
3.7
6.<*
• DATA FOR DAYS WITH FEwER THfl'i 7 VALID VALUES APE PRINTED,
BUT ARE NOT "INCLUDED IN THE SUMMARY ROWS AND COLUMNS
-------
TABLE 3 138
TWO HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON, MARCH 1963
to
CO
DAY
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29*
30
31
MONTHL
NO. OF
MAX.
OF
WEEK
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
MON
TUE
WED
THU
FRI
SAT
SUN
Y MEAN
DAYS
12
2.0
2.3
1.*
1.3
2.7
0.9
i.o
3.0
2.8
1.9
1.0
1.0
1 y
0.7
1.0
1.2
0.9
o.*
0.9
0.8
0.9
0.3
1.5
1,5
0.8
1.3
0.9
1.41
28
3.0
2
1.7
1.5
1.7
0.8
3.5
1.0
0.7
1.8
3.9
1.*
1.1
1.3
1.2
0.8
1.1
0.7
0.5
0.7
0.8
1.0
0.8
1.0
1.3
0.8
0.9
1.1
1.43
28
4.2
A
4
1.6
1.8
2.1
1.6
2.7
1.0
1.6
1.7
3.7
1.8
1.*
1.3
0.8
1.0
U*
1.3
0.7
0.5
0.7
0.8
0.6
1.1
1.*
1.0
1.0
1.4
1.50
28
3.7
M
6
2.4
3.1
*.2
2.8
1.9
1.9
2.3
2.4
2.5
2.5
1.7
2.9
1.9
1.8
1.9
1.5
1.4
1.5
2.1
1.3
1.4
1.5
2.2
1.6
2.1
1.4
2.17
28
4.2
8
2.8
2.0
3.4
2.9
2.1
2.6
1.8
2.3
2.3
1.5
1.5
3.5
1.3
1.3
1.6
1.6
0.6
2.0
2.1
1.4
1.1
1.4
2.3
1.2
1.4
0.7
1.99
28
3.5
10
. 2.1
1.7
1.8
1.7
1.4
2.3
1.1
1.6
2.2
1.0
1.4
2.8
1.1
0.6
1.3
0.9
0.9
1.7
1.4
0.9
1.0
1.3
1.7
0.8
1.2
1.0
1.51
28
2.8
12
2.1
1.7
1.6
1.6
1.8
1.6
0.7
1.0
1.6
0.7
1.6
3.0
1.1
1.1
0.9
1.0
0.9
1.4
1.6
1.2
0.9
0.7
.9
1.0
0.9
0.6
0.8
0.6
1.36
28
3.0
2
2.2
i.e
1.5
1.6
1.7
1.1
0.8
0.7
1.3
0.8
1.7
3.1
21
1.1
1.5
1.4
0.7
i.o
2.7
0.9
1.2
0.9
1.0
• i
0.9
0.9
0.7
0.9
0.9
1.39
28
3.1
P
4
2.5
1.6
1.*
1.9
2.4
1.5
l.l
0.9
1.7
0.8
1.7
3.4
20
• °
1.2
1.3
1.3
1.1
1.0
1.8
0.8
1.5
0.9
1.2
. '
1.1
1.3
1.0
1.*
0.8
1 .52
28
3.4
M
6
2.3
1.8
2.7
3.3
1.7
1.7
1.6
1.8
1.5
0.6
1.7
2.9
.3
1.4
1.7
1.8
0.8
1.4
1.3
1.2
1.6
1.1
1.9
.9
1.5
1.8
1.3
1.1
1.5
1.78
28
3.3
8
2.9
2.4
2.8
2.9
1.2
1.5
1.7
2.2
1.6
1.*
I.*
2.7
.3
1.6
1.6
1.5
0.5
1.4
0.9
1.3
1.3
1.4
2.2
. l
1.*
1.0
0.8
1.0
1.0
i.'3
28
2.9
10
2.4
2.2
2.6
2.2
0.9
1.2
2.4
2.6
1.5
1.3
1.2
2.1
• 1
1.8
1.3
1.8
0.5
1.2
0.9
0.6
1.1
1.2
2.4
. 3
1.1
1.2
0.9
0.9
0.3
1.56
20
2.6
DAILY
MEAN
2.29
2.03
2.32
2.07
2.04
1.56
l.*5
1.86
2.25
1.36
t.50
2.54
1.32
1.30
1.49
0.99
0.98
1.40
1.21
1.22
I. 01
1.47
. 30
1.51
1.14
1.21
1.01
1.60
2.64
NO.
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
1?
1?
12
12
12
1?
12
12
12
12
12
12
336
MAX.
2.9
3.1
4.2
3.3
3.5
2.6
2.4
3.0
3.9
2.5
1.7
3.5
3.3
1.9
1.8
1.9
1.6
1.*
2.7
2.1
1.6
1.4
2.4
4.2
2.3
1.8
1.3
2.1
1.5
4.2
• DATA FOR DAYS WITH FEfcER THAN 7 VALID VALUES ARE PRINTED,
BUT ARE NOT INCLUDED IN THE SUMMARY POWS AND COLUMNS
-------
TABLE 3-139 TWO-HOUR AVERAGED SOILING INDEX, COHS per 1000 lin. feet
WASHINGTON. APRIL 1963
to
o
o
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 *
18
19 *
20
21
22
23
24
25
26
27
28
29
30
WEEK
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
MONTHLY MEAN
NO. OF DAYS
MAX.
A M
12
0.8
1.7
2.5
1.1
0.6
1.5
0.5
0.9
0.5
0.7
0.8
0.8
O.B
0.6
0.2
1.0
0.8
0.3
0.8
0.6
0.5
0.4
1.2
3.1
1.0
1.7
0.6
0.3
0.99
27
3.1
2
0.7
1.3
2.1
0.8
0.3
2.1
0.6
0.7
O.B
0.3
0.6
1.1
0.5
0.6
0.7
1.3
0.7
0.5
0.8
0.5
0.4
0.3
0.8
2.1
1.2
0.7
0.3
0.0
0.87
27
2.1
4
0.9
1.4
1.6
0.7
0.7
2.8
0.7
0.6
1.0
0.5
0.7
0.6
0.9
0.8
0.6
1.6
0.8
0.4
0.6
0.4
0.6
0.3
0.9
1.8
2.3
0.4
0.8
0.5
0-97
27
2.8
6
1.5
2.1
3.1
0.7
0.8
3.3
0.5
1.7
2.0
1.3
1.7
0.8
1.6
0.9
1.1
1.8
1.7
0.8
0.8
0.7
0.8
o.e
1.6
2.3
2.4
1.0
1.*
1.1
1.47
2?
3.3
8
1.1
2.1
1.8
0.5
1.1
1.1
1.5
1.0
1.6
1.1
0.9
0.8
0.9
0.8
O.B
1.2
1.6
0.6
0.7
1.1
0.7
0.8
0.8
1.2
0.8
0.9
0.6
1.1
1.06
27
2.1
10
1.4
1.5
2.0
0.6
1.3
0.8
1.0
1.6
1.7
0.6
0.5
0.7
0.7
0.6
0.4
0.5
1.2
0.2
0.7
0.6
1.0
0.7
1.0
0.3
0.5
0.6
0.7
0.8
0.90
27
2.0
P M
12
1.4
1.5
0.9
0.4
1.0
0.7
1.2
1.0
1.9
0.7
0.8
0.5
0.8
0.4
0.9
0.5
1.0
0.4
0.5
0.7
0.8
0.5
0.9
0.3
0.8
0.4
1.7
0.7
0.86
27
1.9
2
1.5
1.2
1.0
0.8
0.5
0.8
0.9
1.0
2.2
0.7
0.8
0.9
0.6
0.3
0.6
0.5
0.8
0.4
0.5
0.7
0.9
0.8
0.6
1.0
0.6
0.4
0.9
0.2
C.82
27
2.2
4
0.9
1.3
1.1
0.7
0.8
0.7
0.7
0.8
1.6
1.2
0.5
0.9
1.0
0.3
0.6
1.*
1.3
0.5
1.5
0.8
0.8
1.0
0.7
1.1
0.6
0.2
0.9
0.6
0.91
27
1.6
6
1.5
2.9
1.3
0.9
1.0
1.1
1.1
1.0
1.3
1.0
0.6
0.8
1.3
l.l
0.9
1.3
1.4
0.7
1.1
0.9
0.6
1.1
1.4
0.9
1.1
O.B
0.9
0.9
1.14
27
2.9
8
1.2
3.2
1.6
0.4
1.7
1.5
0.7
1.1
1.7
O.B
0.9
0.7
1.3
0.9
1.7
0.7
0.8
0.6
0.8
0.7
0.5.
1.4
2.4
1.4
1.*
0.4
0.3
0.7
1.17
27
3.2
10
1.7
3.2
1.4
0.5
1.2
0.7
0.7
0.7
0.9
1.0
0.9
0.9
0.8
0.8
1.2
0.9
0.8
1.5
0.6
0.8
0.4
0.7
2.8
1.4
1.1
0.5
0.3
0.3
1.06
27
3.2
DAILY
MEAN
1.25
2.00
1.74
0.72
0.96
1.48
0.88
1.06
l.*7
0.85
0.85
0.83
0.96
0.71
0.85
1.09
0.62
0.82
0.75
0.72
0.79
1.29
1.45
1.20
0.70
0.82
0.64
NO.
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
MAX.
1.7
3.2
3.1
l.l
1.7
3.3
1.5
1.7
2.2
1.3
1.7
1.1
1.6
1.1
1.7
1.8
1.7
1.4
1.5
1.5
l.l
1.0
1.4
2.8
3.1
2.4
1.7
1.7
1.1
1.02
324
2. 00 3.3
• DATA FOR DAYS WITH FEWER THAN 7 VALID VALUES ARE PRINTED.
BUT ARE NOT INCLUDED IN THE SUMMARY ROWS AND COLUMNS
-------
TABLE 3-140 TWO HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON. MAY 1963
to
o
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
•EEK
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
MONTHLY MEAN
NO. OF DAYS
MAX.
A H
12
0.4
0.*
2.8
1.0
0.9
0.7
0.8
0.7
4.4
1.0
0.*
0.5
0.8
o.*
0.7
o.i
1.5
1.0
1.9
0.5
0.6
0.*
1.1
0.9
0.4
0.2
0.7
0.6
1.0
0.84
29
2.8
2
0.5
2.8
1.4
0.6
0.6
0.6
0.6
1.3
1.0
0.8
0.5
0.4
0.5
0.8
0.4
0.4
1.4
1.0
2.7
0.5
0.6
0.8
1.*
0.5
0.4
0.1
0.3
0.7
0.6
0.87
29
2.8
4
0.5
0.9
3.3
1.4
0.4
0.9
0.4
0.9
1.6
1.3
1.4
0.2
1.1
1.1
1.4
0.7
0.6
0.9
1.0
2.1
1.0
1.3
1.2
2.5
0.0
0.6
0.4
1.0
0.5
0.7
1.09
30
3.3
6
1.0
1.1
3.6
l.S
0.6
0.9
1.7
1.4
2.1
2.5
0.7
0.4
1.0
1.2
2.1
1.5
1.2
0.9
1.1
2.0
1.6
0.7
2.2
1.5
0.5
0.9
0.3
0.9
0.7
I.*
1.35
30
3.6
8
1.0
1.1
4.5
2.2
0.7
0.7
0.6
1.2
1.9
1.3
0.5
0.7
0.3
1.2
0.9
1.0
0.9
1.0
2.2
1.2
0.5
1.0
1.0
0.8
0.6
0.5
0.7
0.5
1.0
1.13
29
4.5
10
1.0
0.8
1.7
1.3
0.8
1.0
0.1
1.2
1.0
1.0
1.0
0.4
0.5
1.1
0.6
0.9
0.6
0.8
0.5
0.8
1.5
0.9
1.3
1.3
0.5
0.8
0.8
0.6
0.6
1.1
0.4
0.91
3i
1.7
P M
12
0.9
0.6
0.8
0.8
ft. 5
0.7
0.2
0.8
0.8
0.6
0.7
0.2
0.6
1.1
0.6
0.7
O.S
0.3
0.3
0.8
0.6
0.5
0.7
1.0
0.5
0.7
0.3
0.6
0.4
0.4
0.2
0.63
31
1.1
2
0.9
0.7
0.8
0.3
0.5
0.8
0.4
1.0
1.0
1.1
0.5
0.5
1.0
0.5
0.4
0.8
0.6
0.1
0.9
1.3
1.1
0.3
0.8
0.3
1.1
0.6
0.3
1.3
0.2
0.4
0.71
30
1.3
4
0.8
0.9
0.7
0.9
0.9
0.9
0.5
1.0
I.*
1.0
0.5
0.4
0.8
0.4
0.6
0.6
0.6
0.3
0.7
0.8
0.8
0.6
0.9
0.6
0.8
0.5
0.6
0.7
0.3
0.9
0.75
30
1.4
6
1.5
1.1
0.7
0.6
0.7
0.8
1.4
1.1
0.9
0.6
0.6
0.7
0.5
0.6
0.5
0.7
1.1
0.8
0.7
0.9
1.1
0.6
1.3
0.8
0.9
0.6
0.9
0.7
1.1
0.9
0.88
30
1.5
8
1.3
3.4
1.0
0.4
0.8
0.2
1.4
1.0
2.3
1.0
0.9
0.7
0.3
1.3
0.7
0.7
1.7
1.4
0.3
1.1
0.4
1.5
0.7
0.5
0.5
0.6
0.9
1.0
2.4
2.1
1.13
30
3.4
10
1.0
3.0
0.8
0.4
0.1
0.3
0.5
2.4
3.6
0.8
0.7
o.e
0.6
3.6
0.6
0.5
2.0
2.0
0.6
0.7
0.5
0.4
1.1
0.3
0.2
0.2
0.9
0.4
1.6
2.6
1.15
30
3.6
DAILY
MEAN
0.98
1.24
2.00
1.09
0.67
0.75
0.75
1.16
1.64
1.13
0.76
0.53
0.70
0.98
1.12
0.90
0.75
0.91
0.95
0.86
1.52
0.88
0.81
1.10
0.95
0.63
0.59
0.56
0.75
0.88
1.07
NO.
11
12
12
12
12
12
12
12
12
12
12
12
12
07
07
10
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
MAX.
1.5
3.4
4.5
2.2
0.9
1.0
1.7
2.4
3.6
2.5
1.4
0.8
1.1
1.2
3.6
2.1
1.5
2.0
2.0
i.i
2.7
1.6
1.5
2.2
2.5
1.1
0.9
0.9
1.3
2.4
2.6
0.96
359
2.00 4.5
-------
TABLE 3-141 TWO HOUR AVERAGED SOILING INDEX, COHS per 1000 lin. feet
WASHINGTON. JUNE 1963
to
o
DAT
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 *
20
21
22
23
24
25
26
27
28
29
30
MONTHL1
NO. OF
MAX.
OF
•EEK
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
r MEAN
DAYS
12
2.T
0.*
0.8
0.5
0.7
2.1
2.0
0.5
2.7
0.5
0.6
0.5
1.7
0.7
0.5
2.9
1.4
1.0
1.27
17
2.9
2
1.8
0.9
0.3
0.
0.
1.
1.
0.
0.4
1.1
0.4
0.4
0.2
1.4
0.5
0.2
1.6
1.8
0.9
0.8B
18
1.8
A
4
2.1
0.5
0.4
0.8
1.1
1.7
1.4
0.2
0.6
1.5
0.7
0.5
0.2
2.1
0.6
0.9
1.5
1.3
1.6
1 .0'.
18
2.1
N
6
1.6
1.2
1.0
0.5
0.7
2.3
1.6
0.5
0.6
1.9
1.5
0.7
0.8
2.0
0.8
0.9
2.9
1.6
2.5
1.32
16
2.9
8
1.1
0.6
0.8
0.5
0.8
1.5
0.9
1.1
0.4
1.2
1.2
0.5
0.5
0.8
0.7
0.7
1.2
1.6
1.7
0.94
IB
1.7
10
0.8
0.8
0.5
0.7
0.4
0.8
0.6
0.3
0.6
0.8
1.1
0.8
0.5
0.8
0.3
0.8
0.5
0.7
0.69
18
1.1
12
0.9
0.5
0.4
0.4
0.6
1.1
1.0
0.5
0.7
0.9
0.7
0.4
0.5
0.6
0.5
0.6
0.6
0.68
17
1.1
2
0.2
0.9
1.1
0.6
0.9
0.6
1.0
0.9
0.8
0.7
0.7
0.1
0.5
0.8
0.6
0.2
1.1
0.7
0.73
18
1.1
P
4
1.0
1.1
1.1
0.5
0.6
0.8
1.6
I.*
0.7
1.1
0.5
0.6
0.6
0.9
0.4
1.1
0.7
0.91
17
1.6
M
6
0.5
0.9
0.7
0.7
0.8
1.5
1.4
0.5
0.9
0.6
0.6
1.1
0.4
1.1
0.5
0.8
0.4
0.8
0.82
18
1.5
8
0.*
0.3
0.5
0.9
1.3
1.4
0.9
0.7
1.1
0.9
1.3
0.4
1.7
1.1
1.0
1.4
1.1
0.8
1.00
18
1.1
10
0.7
0.7
0.5
i.o
1.9
1.8
0.4
0.7
1.8
0.4
0.5
0.3
1.8
1.7
0.7
2.6
1.1
0.9
1.14
18
2.6
DAILY
MEAN
1.20
0.79
0.75
0.66
0.89
1.46
1.22
0.74
0.77
1.16
0.86
0.58
0.72
1.26
0.67
0.91
1.37
1.10
0.96
1.57
NO.
11
12
12
12
12
12
12
11
12
12
12
12
12
12
12
11
12
12
213
MAX.
2.7
1.2
1.1
1.0
1.9
2.3
2.0
1.4
1.8
2.7
1.5
1.1
1.8
2.1
1.0
2.6
2.9
1.8
2.5
2.9
• DATA FOR DAYS WITH FEnfER THAN 7 VALID VALUES APE PRINTED.
BUT ARE NOT INCLUDED IN THF SUMMARY ROWS AND COLUMNS
-------
TABLE 3-142 TWO-HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON, SEPTEMBER 1963
tsi
O
CO
DM
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18*
19
20
21
22
23
24
25
26
27
28
29
30
MONTHLY
NO .OF
MAX.
OF
IEEK
-SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
f MEAN
DAYS
12
1.2
1.7
1.3
0.3
0.2
0.7
2.1
0.5
1.1
1.9
0.8
0.7
12
2.1
2
1.2
1.6
1.4
0.6
0.5
0.7
2.8
1.3
2.1
1.2
0.3
12
2.8
A
4
0.9
1.8
1.6
0.3
0.4
1.3
2.9
1.7
1.3
0.7
0.1
12
2.9
M
6
1.9
1.6
0.9
0.3
!.«•
1.9
3.5
2.6
1.5
0.3
0.0
12
3.5
B
1.5
2.3
0.9
0.6
1.3
1.3
3.7
2.1
1.7
0.5
1.0
12
3.7
10
0.7
2.5
0.7
0.3
0.5
1.0
1.2
1.6
1.1
2.1
0.7
1.0
12
2.5
12
0.6
0.4
1.9
0.7
0.3
0.4
0.2
0.5
1.0
0.7
1.3
0.3
0.3
12
1.9
2
0.7
0.6
1.1
0.5
0.1
0.7
1.1
0.8
0.9
1.0
1.1
0.3
0.8
12
1.1
P
4
0.6
1.0
0.6
1.1
0.4
0.9
0.9
0.7
0.7
0.8
1.0
0.6
0.5
12
1.1
M
6
0.9
1.4
0.8
0.7
0.2
1.0
1.6
0.8
1.4
2.0
0.8
0.6
1.5
12
2.0
8
1.4
2.0
0.9
0.5
0.4
1.0
1.9
1.1
1.0
1.7
1.0
1.5
1.4
12
2.0
10
2.0
2.5
0.9
0.5
0.6
1.2
2.5
0.8
0.9
1.5
1.0
1.3
1.5
1Z
2.5
DAILY
MEAN
1.32
1.50
0.95
0.41
0.81
1.30
1.79
1.57
1.50
1.43
0.78
0.80
1.7Q
NO.
12
12
12
12
12
12
12
12
12
12
12
12
144
MAX.
2.0
2.5
2.5
1.6
0.6
1.4
2.5
3.7
3.4
2.6
2.1
1.5
1.5
3.7
• DATA FOR DAYS WITH FErfER THftM 7 VALID VALUES ARE PRINTED,
BUT ARE NOT INCLUDED IN THE SUMMARY ROWS AND COLUMNS
-------
TABLE 3 143 TWO-HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON, OCTOBER 1963
to
o
DAY OF
MONTH
1
2 *
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
IEEK
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
MONTHLY MEAN
NO. OF DAYS
MAX.
A M
12
1.0
1.4
1.2
02
l.«
2
0.6
0.9
O.T
0?
0.9
4
0.7
0.8
1.3
02
1.3
6
1.9
1.6
2.6
03
2.6
8
2.7
1.7
1.9
02
2.7
10
1.5
1.0
1.3
03
1.5
P M
12
0.8
0.9
0.8
03
0.9
2
0.4
1.1
0.8
03
1.1
4
1.3
1.*
1>
03
1.4
6
1.0
1.1
1.3
03
1.3
8
1.3
1.1
1.2
03
1.3
10
1.2
1.4
1.2
03
1.4
DAILY
MEAN
1.23
1.18
1.34
NO.
12
07
12
MAX.
2.7
1.7
1.4
2.6
031
1.3* 2.7
• DATA FOR DAYS rftTH FEWER THAN 7 VALID VALUES ABE PRINTED,
BUT ARE NOT INCLUDED IN THE SUMMARY ROWS AND COLUMNS
-------
TABLE 3-144
TWO-HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON. NOVEMBER 1963
to
o
CJl
DAY OF
MONTH
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
IEEK
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI
SAT
SUN
MON
TUE
WED
THU
FRI '
SAT
MONTHLY MEAN
NO. OF DAYS
MAX.
A H
12
1.2
0.6
0.6
2.9
1.6
1.6
0.3
0.5
0.7
3.5
1.9
1.3
2.6
0.8
1.*
3.2
2.6
1.)
0.9
1.1
4.5
1.1
0.7
1.3
1.*
1.4
2.0
1.4
0.4
1.57
29
4.5
2
0.9
0.4
0.4
2.1
1.0
1.2
0.4
0.2
0.7
2.7
1.0
1.4
3.4
1.0
1.1
3.0
2.3
1.5
0.5
1.0
4.2
0.5
0.6
O.B
0.8
1.7
1.0
1.1
0.3
1.33
29
4.2
4
1.0
0.3
0.4
2.0
1.1
UO
0.6
0.4
0.3
2.9
1.8
1.2
2.8
1.3
0.8
3.1
2.8
1.9
1.1
1.6
4.0
0.7
0.6
1.9
1.6
1.9
0.4
1.4
0.3
1.47
29
4.0
6
1.6
1.2
1.2
3.1
2.8
1.9
1.2
1.1
1.2
3.7
2.9
1.7
4.9
2.3
1.7
3.1
3.5
2.8
1.9
2.7
5.2
1.4
I.*
i.e
3.0
2.2
2.3
1.0
0.9
2.31
29
5.2
B
1.7
0.6
0.8
2.4
2.1
1.9
1.8
1.0
1.0
2.4
1.6
1.2
4.0
1.7
1.2
3.3
3.0
2.7
1.5
2.3
4.9
1.6
1.2
1.3
3.1
3.6
2.4
1.3
0.9
2.07
29
4.9
10
1.9
1.0
0.5
1.3
1.8
1.4
1.1
0.5
0.9
2.3
0.8
1.3
0.9
1.2
1.7
2.7
1.7
2.2
0.8
2.5
2.6
3.9
1.4
1.0
0.4
2.1
2.0
2.5
0.8
1.0
1.58
30
3.9
P M
12
2.0
0.7
0.4
1.0
1.6
1.0
1.3
1.0
0.6
1.3
0.6
0.9
0.6
1.0
1.3
1.6
1.4
1.7
0.8
1.3
1.6
2.1
1.1
0.9
0.5
2.1
1.1
1.4
0.6
0.9
1.18
30
2.1
2
2.1
0.6
0.7
1.3
1.2
1.2
0.6
1.1
0.9
1.0
0.5
0.8
1.0
0.9
1.2
2.0
1.2
2.5
1.1
1.3
2.1
2.3
1.1
1.1
1.4
2.2
1.9
1.4
0.9
1.2
1.34
30
2.3
4
1.6
0.9
1.1
2.4
2.2
1.*
0.9
1.3
1.0
l.l
1.4
1.*
1.*
1.6
1.9
2.3
1.6
3.0
2.0
2.3
3.1
2.0
1.3
1.1
2.3
0.9
2.7
2.0
l.l
1.0
1.74
30
3.1
6
0.9
0.7
1.9
1.6
2.0
0.8
0.5
1.1
1.7
1.9
3.3
2.1
1.4
1.3
2.3
2.8
2.2
2.5
2.7
1.9
3.3
1.6
1.3
1.3
2.6
1.4
3.8
2.2
0.6
1.1
1.86
30
3.8
8
1.3
0.8
1.9
1.7
2.1
0.8
0.5
0.7
2.2
2.0
2.4
2.5
1.4
1.0
2.8
2.4
2.0
1.9
2.7
1.6
2.0
1.3
0.9
1.3
2.4
1.6
4.6
2.2
0.6
1.3
1.80
30
4.6
10
0.9
0.7
2.3
1.2
2.0
0.2
0.3
0.8
2.4
1.0
1.0
3.1
l.l
0.9
3.7
1.9
2.0
1.1
3.9
1.3
2.3
1.0
0.4
1.7
1.7
1.3
4.6
1.8
0.9
1.1
1.66
30
4.6
DAILY
MEAN
1.46
0.77
1.06
1.96
1.84
1.25
0.84
0.84
1.16
2.25
1.60
1.62
2.17
1.28
1.78
2.67
2.23
2.12
1.70
1.77
2.20
3.12
1.11
1.12
1.59
1.84
2.67
1.84
1.00
0.92
NO.
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
07
12
12
12
12
12
12
12
12
12
12
MAX.
2.1
1.2
2.3
3.1
2.8
1.9
1.8
1.3
2.4
3.7
3.3
3.1
4.9
2.3
3.7
3.3
3.5
3.0
3.9
2.5
3.3
5.2
1.6
1.7
2.6
3.1
4.6
2.5
1.4
1.3
1.66
355
3.12 5.2
-------
TABLE 3-145
TWO HOUR AVERAGED SOILING INDEX. COHS per 1000 lin. feet
WASHINGTON. DECEMBER 1963
to
o
en
DAY
MONTH
1
2
3
4 •
5
6
7
8
9
10
11
13
14
15
16
17 •
18
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHL
NO. OF
MAX.
OF
REEK
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
WED
THU
FRI
SAT
SUN
WON
TUE
Y- MEAN
DAYS
12
0.8
2.5
2.1
1.0
1.6
1.5
3.5
3.1
1.2
1.1
0.9
1.1
3.3
1.6
0.8
1.1
0.8
1.3
1.0
1.2
1.9
3.1
1.7
2.0
3.0
7.2
2.5
1.7
1.1
3.0
?.12
28
7.2
2
1.1
2.4
1.7
1.1
1.7
1.4
4.1
3.5
1.5
1.1
0.9
• 2
2.6
1.4
0.8
0.8
1.0
1.4
1.0
1.6
1.4
3.1
1.9
2.9
2.8
2.8
1.8
1.4
1.1
2.7
1.95
25
*.l
A
4
1.9
1.8
2.0
1.2
2.1
2.1
3.9
2.7
1.9
1.7
1.5
3.0
1.8
0.8
1.5
1.5
2.
1.
1.
1.
2.
1.8
2.5
2.6
3.7
0.9
1.3
1.7
3.1
2.11
?S
^.o
M
6
2.3
3.0
2.5
1.7
2.6
3.0
4.2
3.4
2.8
1.*
1.9
2.7
2.2
1.0
1.9
2.5
2.1
2.2
2.2
2.*
3.7
2.8
2.7
3.2
4.6
1.0
1.*
3.8
3.3
2.b8
28
-------
TABLE 3-146 TOTAL SUSPENDED PARTICUUTE MATTER. ngm/m3
WASHINGTON. 1963
to
o
1
2
3
4
5
6
7
8
9
10
II
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27
26
29
30
31
MONTHLY MEAN
JAN.
105
123
144
152
149
123
130
93
78*
78*
113
174
119
92
118
57*
57*
84
88
75
79
78
48*
48*
91
90
80
99
FEB.
113
78
68*
68*
272
77
100
89
99
118
98
81
103*
103*
89
67
66
71*
71*
91
94
93
96
•ARCH
140
99
90*
90*
105
74
68
74
58
81
126
129
75
88
60*
60*
55
56
69
105*
105*
111
78
90
128
90
98*
89
APRIL
98*
154
106
76
92
75*
75*
97
82
67
81
79
59*
59*
79
98
116
165
148
98*
98*
81
58
68
94
93
82*
82*
75
91
•AT
48
128
115
92*
92*
116
106
150
96
128
90
88
89
51
95*
95*
96
75
83
146
84*
84*
85
66
71
100
95
JUNE
139
75*
75*
65
115
117
100
94*
94*
102
85
75
101
93
80*
80*
136
147
116
86
73
155
122
89
117
97
86
63*
99
JULY
63*
95
81
70
73
89
67*
67*
87
81
97
108
105
61*
61*
89
102
95
229
109
62*
62*
119
83
122
140
108
90»
90*
83
95
93
AUGUST
126
119
111
65*
65*
74
110
134
127
112
102*
102*
59
86
94
74*
74*
95
93
126
69*
69*
130
97
92
96
SEPT.
60
87
77
87
100
81
105
121
150
137
60
81
77
105
149
90
143
137
118
111*
111*
52
102
OCT.
78
103
100
94
157
112*
112*
146
112
182
123
119
224
243
251
283
305
190*
190*
146
94
153
185
108
135*
135*
79
154
NOV.
49*
, 49*
82
36
49
74*
74*
76
103
72
65
106
74*
74*
119
108
91
136
45
57*
57*
67
81
125
80
78
DEC.
45*
45*
90
76
107
104
123
88*
88*
72
68
79
90
54*
54*
74
74
71
78
97*
97*
74
68
149
93
76*
76*
114
83
-------
TABLE 3-147 GROSS BETA RADIOACTIVITY, picocuries/m3
WASHINGTON. 1963
to
O
oo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
IE
17
16
19
20
21
22
23
24
25
26
27
28
29
30
31
MONTHLY IE AN
JAN.
6.9
7.1
7.3
7.7*
7.7*
9.6
10.9
8.2
FEB.
7.4
6.5
6.2
8.2
7.1
MARCH
7.9
4.5
6.9*
6.9*
2.5
2.5
4.8
6.5
7.6
3.3
1.8
3.6
3.8
3.8
8.3*
8.3*
4.9
2.6
6.5
7.7*
7.7*
8.8
10.6
7.9
10.7
13.6
7.2*
6.3
APRIL
7.2*
9.7
13.2
7.0
7.5
10.6*
10.6*
11.4
8.7
1.5
2.3
6.5
8.7*
8.7*
10.7
12.0
11.3
11.7
15.8
15.4*
15.4*
13.8
6.0
7.5
9.7
8.5
8.9*
8.9*
9.0
9.6
MAT
3.9
10.8
9.9
8.8*
8.8*
9.4
13.7
7.4
6.3
9.6
5.9
2.6
4.8
3.6
11.3*
11.3*
8.4
8.6
4.0
9.6
7.8*
7.8*
9.9
6.3
3.3
10.7
7.9
JUNE
9.1
5.3*
5.3*
6.5
5.5
8.4
4.7
4.9*
4.9*
12.6
10.0
6.1
8.2
10.0
10.9*
10.9*
13.3
14.5
13.7
5.0
6.3
21.4
9.4
8.5
9.9
4.6
2.9
4.2*
8.5
JULY
4.2*
4.7
4.7
7.8
10.5
11.1
10.2*
10.2*
7.3
7.8
5.1
5.8
6.9
7.7*
7.7*
5.9
7.0
7.3
6.3
4.6
7.9*
7.9*
5.0
5.0
5.2
6.0
8.1
4.2*
4.2*
3.4
7.3
6.7
AUGUST
4.9
5.5
6.6
6.1*
6.1*
7.6
9.3
9.3
6.1
9.1
6.9*
6.9*
4.9
4.4
5.5
3.7*
3.7*
1.5
1.4
4.3
2.4*
2.4*
2.2
2.8
2.7
5.1
SEPT.
3.2
3.4
4.7
3.7
1.0
4.2
2.4
2.6
3.0
2.8
3.7
4.4
1.4
0.7
2.3
3.7
3.2
2.1
2.7
4.5*
4.5*
1.0
3.0
OCT.
2.3
2.1
2.8
2.7
2.4
3.3*
3.3*
3.8
2.2
2.3
1.9
2.2
2.1
2.3
2.4
1.6
2.0
1.9*
1.9*
1.4
1.3
1.2
1.5
0.8
1.0*
1.0*
1.3
2.0
NOV.
0.7*
0.7*
1.3
0.0
0.1
0.4*
0.4*
1.1
0.5
0.7
0.3
0.8
1.1*
1.1*
1.2
2.2
1.7
1.3
0.6
1.2*
1.2*
1.6
1.4
1.9
1.1
1.0
DEC
0.5*
0.5*
0.9
0.6
0.7
0.8
0.6
0.8*
0.8*
0.2
0.2
0.6
0.4
0.7*
0.7*
0.6
0.7
0.9
0.6
0.3*
0.3*
0.7
0.7
1.0
0.6
0.8*
0.8*
0.8
0.6
-------
APPENDICES
A: INSTRUMENTATION AND METHODS
B: REFERENCES
-------
APPENDIX A: INSTRUMENTATION AND METHODS
INSTRUMENTATION
The gaseous pollutant instrumentation was
originally developed and fabricated by Beckman
Instruments, Inc., under contract with the Public
Health Service; the calibration techniques were
developed by the CAMP staff. When subsequent
field operations have disclosed difficulties,
instruments have been modified by CAMP per-
sonnel; all the instruments have been so modified,
and some of the changes have been major.
In addition, the calibration techniques, parti-
cularly for the "wet" instruments, have been
continuously studied and frequently revised.
The gas-measuring instruments, as modified,
are thus unique. The other instruments at the
CAMP stations (high-volume and spot-tape par-
ticulate samplers) are, in contrast, intentionally.
similar to many others used throughout the
country.
Sulfur Dioxide
The SO2 instrument is based on a conducto-
metric analysis. The sample air stream is
drawn through a dilute sulfuric acid solution
containing hydrogen peroxide. SO2 in the
sample stream is oxidized to further ionize
the solution. Any change in the solution con-
ductivity, compared to a reference cell, is
proportional to the SC-2 concentration, and is
measured in a range corresponding to 0-2 ppm
of SO2.
This instrument is very stable and presents
few calibration difficulties. The electronics are
checked daily by switching to a built-in circuit
that simulates 1.5 ppm S02. At least weekly,
the air flow is manually eliminated to simulate
a zero condition. The upscale range is static-
ally calibrated at least monthly with standard
solutions, and very little drift has been ex-
perienced. Dynamic calibration is performed
at least once a year with standard gas mixtures.
The response time of the SC>2 instrument is
about 8 to 12 minutes; this lag causes some
smoothing of concentration peaks of 10-minute
duration, which are believed to occur in some
locations. Since the instrument response is
largely a function of the reagent movements,
improvements are being sought in the liquid flow
controls and design details.
The conductometric analysis is considered
very accurate; although it is sensitive to any
ionizable substance, it is essentially specific
for SO2 (including accompanying 863) because
other ionizing substances do not occur to any
significant extent in the normal urban atmos-
phere.
Oxides of Nitrogen
The NO2 instrument utilizes a colorimetric
technique, incorporating Saltzman reagent to
quantitatively form a magenta color. 17 The
color is measured by a ratio photometer (oper-
ating at 545 millimicrons) that has a 90 percent
response equivalent to 1 ppm of NO2. Such
colorimetric analysis is considered accurate
within 10 percent.
After the NO^ has been extracted, the sample
air stream is bubbled through an acidified
potassium permanganate solution to convert
NO in the stream to NO2- It then passes into
an identical instrument, which thus measures
the original NO concentration as NO2.
These instrument systems are subject to
considerable zero drift; hence they are purged
(with carbon-filtered air) daily at a time when
pollutant levels are usually low, the zero cor-
rection being recorded daily and reset when the
drift becomes excessive. The scale range is
calibrated with colored optical filters at least
biweekly and also after each cleaning or adjust-
ment of the photometer. In addition, both in-
struments are dynamically calibrated periodi-
cally with standard gas mixtures.
The response time of the NOx instruments is
about 15 to 20 minutes, part of which is in-
herent in the reaction that produces the reagent
color change; the remainder is due to en-
gineering features of the instruments necessary
to insure the desired precision. Although this
response time is the longest of any of the CAMP
instruments, it is not considered a major
problem because NOX levels are believed to
fluctuate less rapidly than those of other pol-
lutants.
211
-------
Total Oxidant
The total oxidant instrument reacts the
sample air stream with a neutral 10 percent
potassium iodide (KI) solution, releasing free
iodine in the presence of oxidizing agents. A
ratio colorimeter (operating at 345 millimi-
crons) measures the color of the liberated
iodine against a reference, operating in the
range 0-0.5 ppm of oxidants. The instrument
will record the presence of any substance
capable of oxidizing iodide in the KI solution,
such as ozone, the peroxyacetyl nitrates, to a
lesser extent nitrogen dioxide, and others.
Sulfur dioxide produces a negative inter-
ference, driving the oxidation reaction back to-
ward the neutral potassium iodide. The effect
of this interference on the instrument, and
hence on the recorded data, can be seen in
Figure A-l. The figure presents recorded
traces of oxidant levels from two instruments
operating side by side, one with and one with-
out an absorber device to remove SO2J the
simultaneous trace of SO2 levels is also in-
cluded. The interference effect is obvious:
during the morning, when SO2 levels were high,
the oxidant instrument without the filter re-
corded essentially no oxidant, although the other
indicated levels up to 0.08 ppm. As SO2 levels
decreased, the unfiltered instrument began to
record the oxidant, and by mid-afternoon the
two instruments were responding similarly.
This interference is of course very trouble-
some, and dictates extreme caution in inter-
preting any type of total oxidant data from any
location where SO2 occurs simultaneously in
appreciable amounts. The large proportion of
time at such sites for which zero oxidant con-
centration is reported represents those times
when the oxidant concentration was truly zero
plus those times when SC>2 completely sup-
pressed the oxidant measurement; any non-zero
oxidant level recorded may also be lower, by
an unknown amount, than the actual atmospheric
concentration. Thus the only unequivocal state-
ment that can be made is that the appearance
of a measured oxidant value indicates the pres-
ence of that concentration or higher in the atmos-
phere.
If the SC>2 interference can be quantitated, of
course, simple calculations can provide more
meaningful oxidant information. Such a cor-
rection has been used with some sucess for
short periods of data, but cannot be applied
generally to all of the CAMP data. The ab-
u
z
o
u
0.60
0.40
0.20
0.00
0.06
0.04
0.02
0.00
0.08
0.06
0.04
0.02
0.00
n i i
SULFUR DIOXIDE
- TOTAL OXIDANT (without S02 filter)
- TOTAL OXICANT
ABSORBER OFF
9 10
AM
12
HOUR OF DAY (EST)
2
PM
Figure A-l. Effect of sulfur dioxide on recorded total oxidant
measurements.
sorber devices to remove SO2 from the sample
stream, and hence prevent the chemical inter-
ference, have been employed by CAMP routinely
since January 1964, but none were operational
during the 1962-1963 period reported herein.
Apart from the SC-2 interference, the oxidant
instrument system presents sensitivity and
stability problems, and satisfactory data are
acquired only with extensive and careful main-
tenance. Frequent calibration similar to that
described for the oxides of nitrogen system is
required, including a daily instrument purge
from 1 to 2 a.m.
Total Hydrocarbon
The total hydrocarbon instrument utilizes a
flame ionization detector, in which the sample
air stream is introduced into a hydrogen-air
flame, where the hydrocarbons are dissociated
in the intense heat. The positive carbon ions
produced by the dissociation are collected by an
electrode above the flame, and the current
produced is proportional to the number of carbon
atoms ionized. The operating range of the in-
strument can be as sensitive as 0-10 ppm carbon
atoms, although CAMP operates the instrument
on a scale of 0-40 ppm to insure inclusion of
all peak levels.
The flame ionization technique is well estab-
lished and is considered very precise, and the
instrument operates with little difficulty. Be-
cause the response of the hydrocarbon in-
212
APPENDIX A: INSTRUMENTATION AND METHODS
-------
strument is normally almost instantaneous,
CAMP has incorporated an integrating flask into
the system to provide data averaged over about
5 minutes. The system is dynamically cali-
brated twice weekly on standardized air-methane
mixtures in the near-zero and 20 ppm ranges.
Carbon Monoxide
The CO instrument is a short-path monobeam
infrared analyzer, based on the molecular ab-
sorption of infrared radiation by carbon mon-
oxide; it is an interesting variant of the more
conventional long-path infrared analyzers. The
single infrared energy beam is directed in
series, as indicated in Figure A-2, through a
sample cell containing the flowing sample air
stream, and through sample and reference com-
partments of a dual detector unit, charged with
CO-argon mixtures.
DETECTOR UNITS
samp le reference
diaphragm*
capacitor
pressure
transducers
Figure A-2. Short-path monobeam infrared analyzer.
The sample detector compartment is charged
with a low concentration of CO, which absorbs
a quantity of radiant energy dependent upon the
amount previously absorbed by the sample air
stream. The reference detector compartment
contains a high CO concentration, which absorbs
enough radiation to be largely unaffected by the
slight fluctuations in incident energy produced
by varying absorption in the sample cell and
sample detector unit. It thus provides a very
stable reference, with which absorption in the
sample detector is differentially compared. In
each compartment, the energy absorbed is
measured by pressure transducers.
The CO instrument can have a very rapid
response, but about 5 minutes integration time
has been introduced in the same manner as with
the hydrocarbon system. It is extremely sensi-
tive along the entire range (0-100 ppm), and is
dynamically calibrated twice weekly in the man-
ner described for the hydrocarbon instrument.
Both water vapor and carbon dioxide absorb
infrared radiation at wavelengths very near the
wavelength of CO. The degree of such inter-
ference is periodically measured by filtering
the sample stream through columns of silica
gel and ascarite. When interferences are signi-
ficant, the CO data are declared invalid and not
reported. Because of such interference early
in the operation of the CAMP program, valid CO
data were often sparse, and on occasion non-
existent, during 1962 and 1963. Since early
1964, this problem has been largely eliminated
by adding an infrared filter, which narrows the
radiation band to converge on the CO absorp-
tion wavelength.
Participates
The high-volume air samplers in use at the
CAMP stations are of the type used by the
National Air Sampling Network (NASN) and by
most state and local agencies. Particulate
samples are collected on 8- by 10-inch glass-
fiber filters considered 100 percent efficient for
particles about 0.3 micron in diameter and
larger; vertical influent airflow velocity limits
the sample to particulates smaller than about
100 microns in diameter.
The filters are analyzed in the same manner
as routine NASN samples. They are equilibrated
at 75° F and 50 percent relative humidity over-
night prior to determination of both tare and
total particulate weights. Gross beta radio-
activity* is measured with a proportional gas
flow counting chamber when the filter is 4 days
old and again several days later. The apparent
half-life so determined is used to calculate the
reported values representing activity on the day
sample was collected; these values are also
corrected for counter efficiency, filter absorp-
tion, and self-absorption. More detailed des-
criptions of analytical procedures and sampling
methods are available in the 5-year summary
of NASN operations.18
The multi-purpose shelters used during 1963
to house the particulate instruments at the CAMP
stations are not identical with those used for
the high-volume samplers at the NASN stations.
Although the differences are slight and were
not expected to affect the collection of parti-
culates, later checks have revealed that the
particulate data from the CAMP stations are
Gross beta radioactivity is measured by the Public Health Service's Division of Radiological Health with samples supplied by the
Division of Air Pollution.
APPENDIX A: INSTRUMENTATION AND METHODS
213
-------
systematically lowered by an unknown amount.
Thus any comparison with NASN data is open
to doubt.
Soiling index measurements are obtained at
the CAMP stations with a standard automatic
paper tape sampler. Air is drawn at 0.25
cfm through a 1-inch circular "spot" on What-
man No. 4 filter paper tape for a 2-hour period,
the sampler advancing the tape automatically.
The tapes are periodically removed and the
percentage of light transmission through the
soiled spots is compared to that of the clean
tape.
DATA RETRIEVAL SYSTEM
Each of the gaseous pollutant instrument sys-
tems produces an electric output signal, which
drives a strip chart recorder. At 5-minute
intervals, the signal is momentarily diverted
to an analog-to-digital recorder, which records
the magnitude of the signal on punched paper
tape. Thus the basic data represent the in-
stantaneous instrument response value recorded
at 5-minute intervals.
The raw data are transferred from punched
paper tape to punched cards for computer use
by an automatic translator. The actual pollutant
concentrations are calculated by a computer
program from the raw data, station operator's
logs, and the known instrument parameters, and
are stored on magnetic tape for subsequent
analysis. Throughout the several steps of this
process, the time synchronization and complete-
ness of the data are checked by hand. All
unusually high concentrations or abrupt changes
in concentration are manually checked against
the recorder charts before the data are accepted
as valid.
DATA ANALYSIS
The information presented in this volume is
derived from the data through the application of
several analytical techniques. Some of these
are common statistical methods, whereas others
have been modified specifically for use with the
CAMP data. The tremendous quantities of data
have necessitated the programming of even the
simplest operations for the digital computer
facility of the Robert A. Taft Sanitary Engineer-
ing Center. The application of frequency distri-
bution analysis to the CAMP data is sufficiently
specialized to warrant its description here, both
as background to the results reported in Part
2 and as an illustration of the type of additional
material available on request.
A frequency distribution analysis summa-
rizes the frequency of occurrence of the various
pollutant concentrations recorded. The pollutant
concentrations tabulated in the frequency distri-
bution tables represent the concentration that
was not exceeded by the specified percentage
of the total data considered. Although such a
distribution is properly termed a relative cumu-
lative frequency distribution, the phrase "fre-
quency distribution", or merely "distribution",
is used in the text for convenience. Frequency
distributions of this type provide a convenient
means for determining the median pollutant con-
centration and data for other specific fre-
quencies, such as the concentration exceeded 2
percent of the time or the concentration below
which the pollutant level fell 10 percent of the
time.
The graphic presentations of frequency dis-
tributions are drawn to logarithmic-probability
scales; if the logarithms of the pollutant con-
centrations were distributed according to a
normal probability distribution, the resulting
curve would be linear, and the data would be
described as being log-normally distributed.
The slope of a curve plotted to such scales is
a function of the variance of the population of
data included, a steeper slope representing
more variable pollutant levels. The curve's
vertical placement is determined by the magni-
tude of the pollutant concentrations. Thus a
curve that has an inflection represents data
recorded from two relatively distinct popu-
lations with differing variances or levels.
214
APPENDIX A: INSTRUMENTATION AND METHODS
-------
APPENDIX B: REFERENCES
1. HEARINGS before a SPECIAL SUBCOMMIT-
TEE ON AIR AND WATER POLLUTION of
the COMMITTEE ON PUBLIC WORKS, U.S.
SENATE, Eighty-Eighth Congress, First
Session, September 9, 10, and 11, 1963,
U.S. Government Printing Office, Wash-
ington, D.C., 20025, 1913.
2. Mitchell, H.C., and Copley, C.M. Jr.,
'Air Quality of the St. Louis Metropolitan
Region," presented at the 58th Annual Meet-
ing of the Air Pollution Control Association,
Toronto, Ontario, June 1965.
3. Sheehy, James P., et al.: A PILOT STUDY
OF AIR POLLUTION IN JACKSONVILLE,
FLORIDA, Public Health Service Publica-
tion No. 999-AP-3, U.S. Government Print-
ing Office, Washington, D.C., 20025, 1963.
4. Hochheiser, Seymour; Horstman, Sanford
W.; and Tate, Guy M., Jr.: A PILOT STUDY
OF AIR POLLUTION IN BURMINGHAM,
ALABAMA, Robert A. Taft Sanitary En-
gineering Center Technical Report A62-22,
Cincinnati, Ohio, 1962.
5. U.S. Bureau of the Census: COUNTY AND
CITY DATA BOOK 1962 (a Statistical Ab-
stract Supplement), U.S. Government Print-
ing Office, Washington, D.C., 20025, 1962.
6. U.S. Bureau of the Census: U.S. Census of
Housing : 1960, Volume I, States and Small
Areas. District of Columbia, Final Report
HC(1)-10, U.S. Government Printing Office,
Washington, D.C., 20025, 1961.
7. Welsh, Gene B.: AIR POLLUTION IN THE
NATIONAL CAPITAL AREA, Public Health
Service Publication No. 955, U.S. Govern-
ment Printing Office, Washington , D.C.,
20025,1962.
8. Automotive Industries 124:6, Statistical Is-
sue, March 15, 1961, Chilton Company,
Philadelphia.
9. Personal communication with George C.
Holzworth, Air Resources Field Research
Office, Robert A. Taft Sanitary Engineering
Center, Cincinnati, Ohio.
10. Holzworth, George C: "Estimates of Mean
Maximum Mixing Depths in the Contiguous
United States," Monthly Weather Review
92:5, pp. 235-242 (May 1964).
11. Hosier, Charles R.: "Low-Level Inversion
Frequency in the Contiguous United States,'
Monthly Weather Review 89:9, pp319-339
(September 1961).
12. Miller, Marvin E.,andNiemeyer, Lawrence
E.: "Air Pollution Potential Forecasts - A
Year's Experience," J. Air Poll. Control
Assoc. 13:5, pp205-210 (May 1963).
13. ANNUAL REPORT(s) OF THE METROPO-
LITAN WASHINGTON COUNCIL OF GOV-
ERNMENTS' OXIDANT SAMPLING NET-
WORK, Regional Air Pollution Advisory
Board of the Councilof Governments, Wash-
ington, D.C., 20006.
14. Smith, Raymond; Lynn, David A.; and Baker,
Peter: "The Relationship of Morning Pol-
lution Peaks to Fumigation and Emission
Factors," Presented at the 58th Annual
Meeting of the Air Pollution Control Associ-
ation, Toronto, Ontario, June 1965
15. Altshuller, A.P., et al.: "Methane Composi-
tion of Urban Atmospheres," Int. J. Air
Wat. Poll. 8, pp29-35 (1964).
16. Lynn, D.A., Steigerwald, B.J.; and Ludwig,
J.H.: THE NOVEMBER - DECEMBER 1962
AIR POLLUTION EPISODE IN THE EAST-
ERN UNITED STATES, Public Health Ser-
vice Publication No. 999-AP-7, U.S. Govern-
ment Printing Office, Washington, D.C.,
20025, 1964.
17. Saltzman, B.E.: "Colorimetric Determina-
tion of Nitrogen Dioxide in the Atmosphere,"
Anal. Chem. 26, 1949-55 (December 1954).
18. AIR POLLUTION MEASUREMENTS OF THE
NATIONAL AIR SAMPLING NETWORK,
1957-1961, Public Health Service Publica-
tion No. 978, U.S. Government Printing
Office, Washington, D.C., 20025, 1962.
APPENDIX B:
OfO M7-II4-I«
REFERENCES
215
------- |