VOLUME II: USERS MANUAL
 MODELING, ANALYSIS, AND EVALUATION
OF RANKINE CYCLE PROPULSION SYSTEMS
           U.S. Environmental Protection Agency

-------
   MODELING, ANALYSIS, AND EVALUATION
OF RANKINE CYCLE PROPULSION SYSTEMS
                       VOLUME II: USERS MANUAL

                                   By
                 J. H. Skinner, R. P. Shah, and J. B. Okesson

                              February 1972
                               Prepared for
                        OFFICE OF AIR PROGRAMS
                 ENVIRONMENTAL PROTECTION AGENCY
                      ANN ARBOR, MICHIGAN  48105
                         Contract No. EHS-70-111
                     Mechanical Engineering Laboratory
                    Corporate Research and Development
                         General Electric Company
                       Schenectady, New York  12305

-------
                          FOREWORD
   This report, "Modeling, Analysis, and Evaluation of Rankine
Cycle Propulsion System," describes work carried out under Con-
tract No. EHS-70-111 for the Office of Air Programs, Environ-
mental Protection Agency at Ann Arbor, Michigan.  The work was
conducted by the Mechanical Engineering Laboratory of Corporate
Research and Development of the General Electric Company in
Schenectady, New York.

   The report  consists of two volumes:

       Volume 1 -- Final Report
       Volume II -- Users Manual

   Volume I includes the derivation of the models and their
application to specific designs.  Steady-state and transient re-
sults are presented.  Volume II includes copies of the computer
programs, FORTRAN nomenclature,  flow diagrams, and other
user information.

   The Project Officer for this contract was Mr.  William Zeber
of the Environmental Protection Agency.  The Deputy Project
Officer was Mr. Kent Jefferies of the National Aeronautics and
Space Administration Lewis Research Center in Cleveland, Ohio.
                             : II

-------
                  ACKNOWLEDGMENTS
    The authors gratefully acknowledge assistance from
the following people:

    Mr. Robert Barber and his associates of Barber-
Nichols Engineering Corporation, Arvada, Colorado, for
turbine expander data and analyses.  Barber-Nichols was a
subcontractor in this project.

    Mr. Dale H. Brown, Thermal Branch, General Electric
Corporate Research and Development, for advice and as-
sistance on transient thermodynamics.

    Dr.  Thomas Kerr of the Information Studies Branch,
Corporate Research and Development, and Mr.  William
Keltz of the Specialty Fluidics Operation,  General Electric
Company, for assistance  in controls analysis.

    Mrs. Barbara Kuhn, Contract Administrator, General
Electric Corporate  Research and Development.

    Mr. Peter M.  Meenan and Mr. Robert C  Rustay of
the Information Studies Branch, General Electric Cor-
porate Research and Development, for  assistance in
modeling and simulation.

    Dr.  Dean Morgan and his associates in the Thermo
Electron Corporation, Waltham,  Massachusetts, for recip-
rocating expander data and analyses.  Thermo Electron
was a subcontractor on this project.

    Professor Wen-Jei Yang of the University of Michigan
for consultation in the area of transient thermal analysis.
                          IV

-------
                         TABLE OF CONTENTS


Section                                                           Page

         FOREWORD	    iii

   1     INTRODUCTION	      1

   2     FLUID PROPERTY MODELS	      3

             Subroutine PROP		      3
                 Particulars  Corresponding to Change in Fluid
                   or Fluid Data Extension	      3
                 Nomenclature -- PROP	      4
                 Program Listing -- PROP	      5
             Subroutine PROPST	      6
                 Particulars  Corresponding to Change in Fluid
                   or Fluid Data Extension	      6
                 Nomenclature -- PROPST	      8
                 Program Listing -- PROPST	      9
             Subroutine SATP	     10
                 Nomenrlature -- SATP	     10
                 Program Listing -- SATP	      .       12
             Subroutine SUPPT        	               14
                 Nomenclature -- SUPPT  .....                 14
                 Flow Diagram -- SUPPT	     16
                 Program Listing -- SUPPT	     21
             Functions	      .           25
                 Nomenclature  .  .      	      .    .  .     25
                 Summary  of Functions  .    .....       .     26
                 Program Listing -- FUNCTIONS           ...     29

   3     RECIPROCATING EXPANDER MODEL	     35
             Main  Program -- ENGINE   ....      .    .         35
                 Nomenclature -- ENGINE	     35
                 Flow Diagram -- ENGINE	     38
                 Program Listing -- ENGINE	     40
             Subroutine-- DOME	     43
                 Nomenclature -- DOME	     43
                 Program Listing -- DOME	     44

   4     TURBINE EXPANDER MODEL	     45

             Main  Program -- TURBIN   	     45
                 Nomenclature -- TURBIN	     45
                 Flow Diagram -- TURBIN	     47
                 Program Listing -- TURBIN	     48

-------
                      TABLE OF CONTENTS (Cont'd)


Section                                                         Page

   5      FEEDPUMP MODEL	   49

             Main Program -- PUMP	   49
                 Nomenclature -- PUMP  .	   49
                 Flow Diagram -- PUMP	   50
                 Program Listing -- PUMP	   51

   6      VAPOR GENERATOR MODEL	   53

             Main Program -- VAPORG	   53
                 Nomenclature -- VAPORG	   53
                 Flow Diagram -- VAPORG	             57
                 Program Listing -- VAPORG	   76
             Subroutine DISTR	   86
                 Nomenclature -- DISTR	   86
                 Program Listing -- DISTR	   87
             Subroutine GEOMCO  .	   89
                 Nomenclature - GEOMCO	   89
                 Program Listing -- GEOMCO	   90
             Subroutine STEPSI	   92
                 Nomenclature -- STEPSI	   92
                 Program Listing -- STEPSI	   93
             Subroutine ITERAT	   95
                 Nomenclature -- ITERAT	   95
                 Program Listing -- ITERAT	   96
             Subroutine PDROP1	   99
                 Nomenclature -- PDROP1  	   99
                 Program Listing -- PDROP1	100
             Subroutine--PDROP2	101
                 Nomenclature -- PDROP2	101
                 Program Listing -- PDROP2	102
             Subroutine PDROPA	108
                 Nomenclature -- PDROPA	108
                 Program Listing-- PDROPA	104
             Subroutine INTSTE	105
                 Nomenclature -- INTSTE	105
                 Program Listing -- INTSTE	106
             Subroutine PHASE	107
                 Nomenclature -- PHASE	      .  .  107
                 Program Listing -- PHASE	108
             Subroutine HT1PB .  .       	110
                 Nomenclature -- HT1PB	110
                 Program Listing-- HT1PB	Ill
             Subroutine HT2PB	112
                                VI

-------
                      TABLE OF CONTENTS (Cont'd)


Section                                                           Page

   6             Nomenclature -- HT2PB	   112
                 Program Listing -- HT2PB     	113
             Subroutine HTGR   	115
                 Nomenclature -- HTGR	   115
                 Program Listing -- HTGR	   116
             Subroutine HTGTB .	   117
                 Nomenclature -- HTGTB	   117
                 Program Listing -- HTGTB  ....    .    .    .118
             Subroutine HTGTF . .           ...    .        ...   119
                 Nomenclature -- HTGTF	          .  .   119
                 Program Listing -- HTGTF	      .   120
             Subroutine HTGTM  .	            .121
                 Nomenclature -- HTGTM.  ...            .  .   121
                 Program Listing -- HTGTM .   .    .  .      .    .   122
             Subroutine HTPF	        .   123
                 Nomenclature -- HTPF   .....              .   123
                 Program Listing -- HTPF  ....            .     124

   7     CONDENSER MODEL .  .      .   .	        .     125
             Main Program -- COND	                   125
                 Nomenclature -- COND   ....            .       125
                 Flow Diagram -- COND	         128
                 Program Listing -- COND  . .   .                   147
             Subroutine CGEOMC	        .       157
                 Nomenclature -- CGEOMC  .    .              .157
                 Program Listing -- CGEOMC   ....           158
             Subroutine STEPSC	       160
                 Nomenclature -- STEPSC	          .160
                 Program Listing -- STEPSC	       161
             Subroutine HT2PC	        .163
                 Nomenclature -- HT2PC    	163
                 Program Listing -- HT2PC  	   164
             Subroutine HTAC	       165
                 Nomenclature -- HTAC     	   165
                 Program Listing -- HTAC	   166

   8     REGENERATOR MODEL .    .       	167

             Main Program -- REGEN     	   167
                 Nomenclature -- REGEN    	167
                 Flow Diagram -- REGEN	   170
                 Program Listing -- REGEN	186
                                 vu

-------
                      TABLE OF CONTENTS (Cont'd)
Section
   8         Subroutine RGEOMC	            .      194
                 Nomenclature -- RGEOMC	              194
                 Program Listing -- RGEOMC	            195
             Subroutine STEPSR	              197
                 Nomenclature - - STEPSR   ....        .        197
                 Program Listing -- STEPSR  ...                198
             Subroutine PDROPR	      .          200
                 Nomenclature -- PDROPR  ...          .        200
                 Program Listing -- PDROPR	          201
             Subroutine HTWTM	        202
                 Nomenclature -- HTWTM	          .202
                 Program Listing -- HTWTM	          203

   9     COMBUSTOR MODEL .  .    .   '	          205
             Main Program -'- COMBST	      .      .    205
                 Nomenclature -- COMBST	    205
                 Flow Diagram --COMBST	      206
                 Program Listing -- COMBST	    207
             Subroutine COMB1	      	    208
                 Nomem lature -- COMB1 ...      	208
                 Flow Diagram -- COMB1	    209
                 Program Listing -- COMB 1   	211
             Subroutine COMB2	213
                 Nomenclature -- COMB2 .        	213
                 Flow Diagram -- COMB2	215
                 Program Listing -- COMB2	    217
             Subroutine COMBS	      .      	219
                 Nomenclature -- COMBS	219
                 Flow Diagram -- COMBS	220
                 Program Listing -- COMBS         	224
             Subroutine ENERGY	226
                 Nomenclature -- ENERGY	226
                 Program Listing -- ENERGY .  .      	227
             Subroutine TRHT	228
                 Nomenclature -- TRHT   	228
                 Program Listing -- TRHT  ...        	229

  10     TRANSMISSION MODEL  .  .  .	231

             Main Program -- TRANSM . .	231
                 Nomenclature -- TRANSM	231
                 Flow Diagram -- TRANSM	233
                 Program Listing -- TRANSM	235

                                 viii

-------
                      TABLE OF CONTENTS (Cont'd)


Sertion                                                           Page

  11     DRIVER MODEL ....     ....                  237

             Main Program -- DRIVER	      .            237
                 Nomenclature -- DRIVER ...                  237
                 Flow Diagram -- DRIVER	          239
                 Program Listing - -  DRIVER  .  .                  242

  12     PARAMETRIC DESIGN PROGRAMS	            245
             Main Program -- EEFF       	      .245
                 Nomenclature -- EEFF	              245
                 Flow Diagram -- EEFF     	          248
                 Program Listing --  EEFF	              252
             Main Program -- ECOMP     	        .254
                 Flow Diagram -- ECOMP	              .256
                 Program Listing --  ECOMP	              261
             Main Program -- TSIZE        	            .263
                 Nomenclature -- TSIZE	              263
                 Flow Diagram -- TSIZE	              265
                 Program Listing --  TSIZE  .'	            268
             Subroutine BLSIZ1      	              270
                 Nomenclature -- BLSIZ1    	               270
                 Flow Diagram -- BLSIZ1    	               272
                 Program Listing --  BLSIZ1	             277
             Subroutine BLSIZ2	           280
                 Flow Diagram -- BLSIZ2	             281
                 Program Listing --  BLSIZ2   	             285
             Subroutine CONDSZ	        .        .288
                 Nomenclature -- CONDSZ	             288
                 Flow Diagram -- CONDSZ	             290
                 Program Listing --  CONDSZ	             293
             Subroutine RGSIZE  ....         ...               294
                 Nomenclature -- RGSIZE     ....             294
                 Flow Diagram --  RGSIZE	           296
                 Program Listing --  RGSIZF	           298

  13     TOTAL SYSTEM MODEL	       .    301

             Main Program -- MAINSYS	       .    301
                 Nomenclature -- MAINSYS	    301
                 Flow Diagram --  MAINSYS  .	        314
                 Program Listing --  MAINSYS	319
             Data File - Data Input	  32K
                 Program Listing --  Data Input	  329
                                   IX

-------
                      TABLE OF CONTENTS (Cont'd)
Section                                                           Page

  13         Data File - Data Initial	SSI
                 Program Listing -- Data Initial	383
             Data File -- ROUTE	334
                 Program Listing -- ROUTE	335

  14     INDEX	337

             Index of Programs	337
             Index of Data Files	339

         Appendix I -- WORKING FLUID THERMODYNAMIC
                      PROPERTIES FOR CP-34. WATER,
                      AND FC-75	341


                            LIST OF TABLES

 Table

   1     Data Files Referenced Within Programs    	    2
                                    i
   2     Transport and Metal Property Functions	   26

   3     Range of Fluid Property Tabulations   	341

-------
                         LIST OF ILLUSTRATIONS

Figure                                                             Page

   1       Links Between Subroutines Used by VAPORG ...          54
   2       Links Between Subroutines Used by COND	        126

   3       Links Between Subroutines Used by REG EN   	      168

   4       Arrangement of Data in Date Input File (3 Sheets) .   .        320
   5       Arrangement of Data in Data Initial File (2 Sheets)   .        331

   6       CP-34 Saturated Fluid Properties -- Pressure, Tem-
          perature, Specific Volume Liquid, Specific Volume
          Vapor,  Enthalpy Liquid, and Enthalpy Vapor (3Sheets)       344
   7       CP-34 Superheated Fluid Properties --  Pressure and
          Temperature    	      348
   8       CP-34 Superheated Fluid Properties I -- Specific Volume,
          Entropy, and Specific Heat  (21 Sheets)     	      347
   9       CP-34 Superheated Fluid Properties II -- Specific Volume,
          Enthalpy, Entropy, and Specific Heat (19 Sheets)  ....    368
  10       Water Saturated Fluid Properties -- Pressure, Tem-
          perature, Specific Volume Liquid, Specific Volume
          Vapor,  Enthalpy Liquid, and Enthalpy Vapor (3 Sheets)       387
  11       Water Superheated Fluid Properties --  Pressure  and Tem-
          perature ( 1  Sheet)  ....            	390
  12       Water Superheated Fluid Properties -- Specific Volume,
          Enthalpy, and Entropy  (16 Sheets)   .      	390
  13       FC-75 Saturated Fluid Properties -- Pressure, Tem-
          perature, Sperifir Volume Liquid, Specific Volume
          Vapor,  Enthalpy Liquid, and Enthalpy Vapor	406

  14       FC-7 5 Superheated Fluid Properties --  Pressure Tem-
          perature, Enthalpy, Entropy, and Specific Volume (8
          Sheets)	      	    407
                                  xl

-------
  Section 1
INTRODUCTION

-------
                                Section 1

                             INTRODUCTION
    Volume II, Users Manual,  contains computer program listings for the
models derived and analyzed in Volume I of this report.  FORTRAN nomen-
clature,  flow diagrams,  input and output  information, and other user  instruc-
tions  are also included in this volume.

    This manual assumes that the user  is familiar with computer program-
ming  in general, and understanding of terms  such as COMMON,  FUNCTION.
SUBROUTINE, etc. ,  is taken  for granted.  The  programming language is
FORTRAN IV;  the models have  been  run on the General Electric 605 com-
puter (635 compatible). v

    The  manual has been prepared so  that the user can link the programs
together to form  a component or system model, provide the needed input, run
the program,  and obtain and interpret the results.  The programs as  written
employ standard  programming practices  so that persons familiar with the com-
puter language can use the nomenclature  listings and flow diagrams to trace
logic, identify equations,  and make programming  changes.

    Each section of this  volume deals  with a particular model.   All of the
subroutines that are employed  in constructing the model are listed. "VTany
subroutines are used  in several models,  and the nomenclature,  flow diagram.
and program listing are  not repeated in each instance; this information appears
in the first section in which the subroutine is mentioned.  The "Program Index,
in Section 14 of this volume, can be used to locate the user information for
any particular program.

    Input data files  are  generally listed in the same sections as  the programs
that read them.   The only exception is the working fluid data files, which be-
cause of their size are listed separately in the Appendix,  "Working Fluid
Thermodynamic Properties for CP-34  Water, and FC-75  of this volume.

    Data files are referenced within the programs by a two-digit integer code.
The file  names and  code are presented in Table 1.

    For  many programs the COMMON statements are identical to the COMMON
for the total system model,  MAINSYS, described  in Section 13.  In these in-
stances the user  is  referred to MAINSYS for the COMMON nomenclature. The
nomenclature  listed for each program has been subdivided  into three sections:
*GE-600 Line FORTRAN IV, Technical Information Bulletin CPB-1006G,
 General Electric Company Information Systems, September 1964.

-------
     1.   FORTRAN Variables in COMMON
     2.   FORTRAN Variables in Argument List
     3.   Other Selected FORTRAN Variables
     In addition,  some programs have a section on FORTRAN variables input
through READ statements.  Employing these lists,  the user can find a descrip-
tion and the units for the most important variables.
     The total memory size requirement for all programs used in the total
systems model is approximately 45K. including the fluid property data for
CP-34.
                                Table 1
             DATA FILES REFERENCED WITHIN PROGRAMS
Integer Code
Input Files
      04
      07

      08

     09

     11
     31
     38
     39
Output Files
     13
     15
                       Data File
CP-34 Saturated Fluid Properties
CP-34 Superheated Fluid Properties -- Pressure and
Temperature
CP-34 Superheated Fluid Properties I -- Specific Volume,
Enthalpy,  Entropy, and Specific Heat
CP-34 Superheated Fluid Properties II -- Specific Volume,
Enthalpy,  Entropy, and Specific Heat
Transient Start File
Route File
Data Input File
Data Initial File
Output File from VAPORG, REGEN.  and COND
Output File from ITERAT

-------
     Section 2
FLU ID PROPERTY MODELS

-------
                                Section 2

                         FLUID PROPERTY MODELS


     The thermodynamic property models are entitled:

         PROP
         PROPST
         SATP
         SUPPT

     The transport and metal property models are programmed as FUNC-
TIONS.

SUBROUTINE PROP

     Subroutine PROP assigns subscripted labels to the CP-34 saturated fluid
properties data,  file  04, in the Appendix of this volume.  Each of the six ar-
rays thus constructed has dimension of 128 and is stored in COMMON with
the main system  program as follows:
                 P(128)              VVAP(128)
                 T(128)              HLIQ(128)
                 VLIQU28)          HVAP(128)

 PARTICULARS  CORRESPONDING  TO CHANGE IN FLUID OR FLUID
 DATA EXTENSION

     In case a fluid other than CP-34 is used or the CP-34 saturated fluid
properties data list is extended,  the dimensions of the arrays in COMMON
must be changed  correspondingly.

     If  FC-75 is used  as the working fluid, PROP must contain additional
operations.   Since the units of the values in the FC-75 saturated fluid prop-
erties data (Appendix I) are different from those required by  the systems
program.  PROP  for FC-75 must contain the following conversions:
         P (I) =  (P (I))  (14. 7)
         (psia)   (atm)
         T (I) =  |T (I)) (1.8)+ 32.
         (°F)     (°C)
         VLIQ (I) ~- (VLIQ (I)] (0. 0382)
         (f1?/lb)    (liters/mole)
         WAP (I) = (WAP (I)) (0. 0382)
         (ft3/lb)    (liters/mole)
         HLIQ (i) = (HLIQ (i)] (4.32  x io~3)
         (Btu/lb)   (cal/mole)

-------
        HVAP (I) = HVAP (I)  (4. 32 X 10"3)
        (Btu/lb)    (call mole)

NOMENCLATURE  -- PROP

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of PROP are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:

    There is no argument list in this program.

FORTRAN Variables in READ Statements:

    The FORTRAN variables read in this program are defined in the COM-
MON list of the main program.  MAINSYS.

-------
PROGRAM LISTING  ~  PROP
SUBROUTINE
FLUID cp.14
COMMON AP.H.CH,CHK,CO
COMMON I:O?P,CU?S,nrs.HCT,MM
COMMON toni V.F ,f S»H20P,n?'iS
COMMON HP.MR.MTfLAM.HTlN.LHV
COMMON LHVT.LCS.LCT.MAIk.MFLUII)
COMMON MFilFI .N?P,N2R.N2i,.NHHNnA
COMMON NRENOG,NO,NP»02P,01»R
COMMON 0?S,KO,SP1,SSA,SIA
COMMON STii,10,US,hT. YbXI
       ACIdQ).ACUdO).HMdi)),RTdO).CTf
       CTFYdn.lt ),CTF(10 ).i;W,DHIdll).nHO(lU)
       III (1 U J.nodU ),IIS(1 i|).nYYY(10 ),EF
       l-FY(l0.1l).F-G,bGY(tfl,tt),FH|(lO),FHndO)
       >N|(10).INU(in).FRAC.Fll(1b).F10(lU)
       (itfZdO.ll , 2).HFdQ,11.2),H» I NX 10), HI I N2 d 0 ) , Hfi I Nl d 0 )
       MfJ|N?dll).Hr, ],n01Y(ln.ll>,HTF,HTFY(in,ll)
       J?f  (10 )..I3I (10 ),L (1(1), LSTFP.MHZdO.il )
       NCT(J ),NCLY(3).NCrtY(3),NrYfLF.NFSFCT(3)
       NLOMP,NM(1U).NM| (lil),NMO(10).NPH
       iMPriY(iii.]i)fNPh|NT,NbS,NSIdll).NSO(lli)
       N(MANS,NX2MAX(10),NX??d(i),NXN,NXO
                                                                          00020
                                                                          nnii3o
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      RFAL
        I'MdO). IR2(10.n.». Tn?AV(M10). 1C INI do), TRIN2(10)
        I IMF. Tl (111,11 .2), TuRKOWdO ). VAfLI (10 ). VAPL2 (10 >
        VAHLJ(IO).VOLdO), xl(,(10),X2L(10),X?Tdfl)
        CT&R(69,27),HLIOd^8).HTAR(69.27),HyAPd28). INlJ
       PTAR(7U),STAH(6Q,?7),Td ''«). T T AB ( 33 ). VL I Ud 2H )
       VT«R(6V,27).VtfAP(l?fl)
       L.LXV.l HVT.LCS.LCT.Ma|f/,MFlll|0,MrOtL.MHZ.N2P.N2R.N2S.NO
nnoso
00(160
00070
01)080
00090
uuiun
00110
001?0
ouuo
00140
001«>0
00160
U0170
00180
00190
OOPUO
00210
(10220
00230
00240
      00 70  1=1. Ml INF
                          >, i/L IU( t ). VVAP( I ),HL10( I ),HVAP( I )
      ntJNTIM'F
      FORMAKhFU.5)
      RETURN
      ENR
00760
00270
002UO
002VO
00300
00310
00320
003JO
00340
00350
00360
00370
003HO
00390
00400

-------
SUBROUTINE PROPST

    Subroutine PROPST assigns subscripted labels to the CP-34 superheated
fluid properties data, files 07,  08, and 09.  In addition to this it specifically
defines, within the program, the first four pressure values.  This last is
peculiar to CP-34 as the working fluid and was done for convenience at the
time the CP-34 superheated data were extended.  The pressure array con-
structed by PROPST has dimension of 70.  The first 69 values are actual
pressures, while the 70th value is a dummy value inserted for reading con-
venience.  The temperature array has dimension of 33,  of which the first 27
are actual temperature values and the remaining six are dummy values.

    Each of the other four arrays is two-dimensional with a first dimension
of 69, corresponding to the 69 pressure values,  and a second dimension of
27, corresponding to the 27 temperature values.  All six arrays are stored
in COMMON with the main system program as follows:

             PTAB (70)
             TTAB (33)
             VTAB(69,27)
             HTAB(69,27)
             STAB (69, 27)
             CTAB(69, 27)

PARTICULARS CORRESPONDING TO CHANGE  IN FLUID
OR FLUID DATA EXTENSION

    In the case that  a fluid other than CP-34 is used or the CP-34 super-
heated fluid  properties data (Appendix I)  are extended, the dimensions of
the arrays in COMMON must be changed accordingly. These dimensions de-
pend on the quantity  of data available and the arrangement of the data for in-
put.  For example, to change from CP-34 to water as the working fluid,  the
dimensions of the fluid property arrays should change to the following:

             PTAB (44)
             TTAB (40)
             VTAB (41,34)
             HTAB (41,34)
             STAB (41,34)
Figure 11,  in Appendix I (p. 390) lists the pressures and temperatures at
which we have water-superheated-fluid property  values.   There are 41 real
pressure values and 33 real temperature values in the file.  For  convenience,
the pressures are placed  11 values to a line for  four lines.  Three dummy
values of . 0 have been inserted to complete the last line.  The temperatures
are arranged  10-to-a-line for four lines, with seven dummy values inserted
in the last line.  Since each line is read  completely, 44  pressure values and
40 temperature values are stored in common.   Figure 12 in the Appendix

-------
(pp. 390  -  405) contains the specific volume, enthalpy,  and entropy values
corresponding to the pressures and temperatures tabled in Figure 11.

    Each line of Figure 12 contains  fluid properties for a given pressure and
two consecutive temperature values.  Since there are only 33 temperature
values (an uneven number),  there are three dummy values of . 0 to complete
the last line of each pressure block.  Since each line of Figure 12 is read
completely, specific volume, enthalpy,  and entropy values read for 41 pres-
sures and 34 temperatures.  VTAB, HTAB, and STAB  therefore have dimen-
sions of 41 and 34.

    If FC-75 is used as the working fluid,  the fluid property arrays in COMMON
should have the following dimensions:

             PTAB (36)
             TTAB (20)
             VTAB (35,20)
             HTAB (35,20)
             STAB (35,20)

As in the case of water as the working fluid, these dimensions  depend on the
arrangement of the data to be input.

    In addition to making the proper dimension-changes when FC-75 is the
working fluid used, PROPST must be changed to contain the conversion state-
ments to change the superheated data to units comparable to  those required
by the systems program.  These conversion statements are:

        PTAB (i) = (PTAB («)  (14.7)
        (psia)       (atm)
        TTAB (I) = [TTAB (I)] (1. 8) + 32.
        HTAB (I, J) = [HTAB (I, J)] (4. 32)
        (Btu/lb)      (kcal/mole)
         STAB (I, J) =  STAB (I. J)j (2. 4 E-3)
         (Btu/lb °F)    (cal/mole dC)

         VTAB(I.J) = (VTAB (I, J)) (0. 0382)
         (ft3/lb)      (liters/mole)

NOMENCLATURE -- PROPST

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of PROPST are in the COMMON
of MAINSYS.

-------
FORTRAN Variables in Argument List:

    There is no argument list in this program.

FORTRAN Variables in READ Statements:

    The FORTRAN variables read in this program are defined in the COMMON
list of the main program. MAINSYS.

-------
PROGRAM LISTING -- PROPST
SUBROUTINE PROPST
FLUID CP34
COMMON AP.B.Ch,CriK.CO
       C02P»Ci)?S,l'CS.u01,DTH
       EOUlV,r,FS.H?OP.H20S
       HP.HR.HTI LAM,HIIN.LHV
       LHVT.LCS.LCT.MAIK.MFLUID
       MFUFL.N2P.N?»<.N2S,«JRfcNnA
       NRFNI)G,Nli,NP,02P.O?R
       0?S.PO,SP1,SSA,STA
       STC.in.US.nT.YtXT
       ACI(10).ACU(10),HH(1U).BI(10).CTF
       CTFYdii.ll ),CT[(10 >,CM.DH|(lU).DHO(in)
       ni(in).nu(in >,ns.NPKINT.NSS.NSI (lO).NSO(lO)
       NTRANS,NX2MAX(10),NX2Z(l(l).NXN,NXO
       HRV(in).kFA.I,HVAP(128). IND
       NL |Nh.NND.NPSTLP.NTSTEP.Pd28)
       PTA^(7(l),S1A(i(60,27).T(128).TTAR(33).VLlU(128)
       VTAR(AV,?7>.VVAP(1?8)
       L.LHV.LHVT,LCS.LCT,MAIR.MFLUID.MFUEL,MWZ.M2P.N2R,N2S.NO
     COMMON
     COMMON
     COMMON
     COMMON
     CUMMON
     COMMON
     COMMON
     COMMON
     COMMON
     CUMhON
     COMMON
     CUMMON
     CUMfiOH
     CUMhON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     CUMMON
     COMMON
     CUMhON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     CUMMON
     RFAL
     NPS1FP=69
     NISFEP=27
     PTAR(l)=.
     PTAB(3> = .»>
     PTAN(4)=2.
     REAP(U7.6M)(PTAH( J). Js5.1*>>
     REAl)(U7.All)(PTAR(J).J = 16,26>
     RE A IKU7, 6 II MP1 AH < J). J = ?7,.W)
     REAP(l)7.6il)(PIAH(J).J = 38.4fl)
     REAO(U7.60)(PIAE« J), J = 49.(>9)
     REAO(07,60)(PTAH( J), J=6U.70 )
     REAU(07,6li)(TTA8( J). J=1.11 )
    REAU(U7,60MTTAR( J), J=23.A3>
    DO 30  1 = 1..17
    DO 30  K=1,NTSIEP
    READ(08,RO>VTAB(I.K),HTAR(I.K),STAB(I,K).CTA8( I.K)
30  CONTINUE
    DO 40  I=37.NPSTEP
    DO 40  K=l,NTSTEP
    REAn(09,8H)VTAB(I.K).HTAR(I.K).STAB(I.K).CTAR(I.K)
40  CONTINUE
60  FOPMAT(11F7.1)
80  FORMAT(4F11.5)
    RETURN
    END
                                                                       00020
                                                                       nonjn
                                                                       00040
                                                                       000-70
                                                                       00060
                                                                       00070
                                                                       OOOttO
                                                                       00090
                                                                       ooinn
                                                                       00110
                                                                       00120
                                                                       00130
                                                                       00140
                                                                       noi<>n
                                                                       00160
                                                                       00170
                                                                       OOlttO
                                                                       OU190
                                                                       00200
                                                                       00210
                                                                       00?20
                                                                       00230
                                                                       00240
                                                                       002^0
                                                                       00260
                                                                       00270
                                                                        00290
                                                                        00300
                                                                        00310
                                                                        00320
                                                                        00330
                                                                        00340
                                                                        003bO
                                                                        00360
                                                                        00370
                                                                        00380
                                                                        nn39n
                                                                        00400
                                                                        no4in
                                                                        00420
                                                                        00430
                                                                        00440
                                                                        00450
                                                                         00470
                                                                         00480
                                                                         00490
                                                                         00500
                                                                         00510
                                                                         00520
                                                                         00530
                                                                         00540
                                                                         005*0
                                                                         00560
                                                                         00570
                                                                         00580
                                                                         00590
                                                                         00600

-------
SUBROUTINE SATP
     Subroutine SATP is the interpolation program for the saturated CP-34
fluid properties (Appendix I).   For a given value of any one of three of the
thermodynamic properties, it computes the remaining properties of the set
by linear interpolation or extrapolation.  SATP employs the subroutine PROP.

     If extrapolation must be used because of an input value  falling outside
the range of the saturated  fluid properties data,  a message  will be printed
in the  output indicating which value is falling above or below the range.
NPRINT, a logic variable  for printing stored in COMMON,  gives the option
of suppressing the printing.  If NPRINT.  the first value of line 00360 of the
Data Initial File,  is set equal to zero, a message will be printed indicating
when an input value goes outside the  range of the saturated fluid properties
data.  If NPRINT is set equal to one, the message will be suppressed.

     SATP can be entered with one of three different properties, depending
on the  input code correspondingly entered. The output consists of the values
of the  remaining  tabled properties for the given input value.

                          Input Code (NO
                                0
                                1
                                2
                                     Output

                         P,  VLIQ. WAP. HLIQ, HVAP
                         T,  VLIQ, WAP, HLIQ. HVAP
                         P.  T  VLIQ, WAP,  HVAP
NOMENCLATURE -- SATP
FORTRAN Variables in COMMON:

     The FORTRAN variables in the COMMON of SATP are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:
     FORTRAN
     Variable

     HL
     HV

     NC
     PCOND

     TCOND
           Definition
Enthalpy of working fluid liquid phase
Enthalpy of working fluid vapor phase

Logic variable for input quantities:
   0 - TCOND
   1 - PCOND
   2 - HL
Pressure of working fluid
Temperature of working fluid
Ib/in?

°F
                                   10

-------
FORTRAN
Variable (Cont'd)         Definition                     Units
VCOND      Specific volume of working fluid vapor
             phase                                    ft3/Ib

VCONDL    Specific volume of working fluid liquid
             phase                                    ft3/lb
                                11

-------
 PROGRAM LISTING -- SATP
      SUBKOHTINF SATPCPCOND,TCOND.VCONDL.VCOND.HL.HV.NC)                 00020
      CUMMIN AP.R.CH.CHR.CO                                              00.140
      COMMON C02P.C02S.UCS.UCT.nTH                                       00350
      COMMON IOUI V,F.FS,H20H,H?llS                                        00360
      COMMON HP.HK.HTFLAM.HTlN.lHV                                       00370
      COMMON LHVT.LCS.ICT.MAIK.MFLUID                                    00380
      COMMON MFUEI..N2P.N2K.N2S.IHBENDA                                    00390
      COMMON NKENDO.MU.NP.02P.02R                                        00400
      COMMON U?S.PO,SPt,SSA.ST«                                          00410
      COMMON STR. 1U.WJ.WT, YtXT                                           00420
      COMMON ACKin). ACUtlO ).HH(10).B1 (lO).CTT                           00430
      COMMON CTf Ydii. ID.CT 1(10 J.CH.DHI (lU).nHO(lO)                      00440
      COMMON HI(1n),nixin),nS(1n).DYYY(in),EF                            00450
      COMMON bFYdO.lt >.F-G.EGv,NCLr<3>.NCPv(3>.NCYCLE.NFSFCT<3>                     00510
      COMMON NLUMP,NM(in).NM|(10).NMO(10).NPH                            00520
      COMMON NPHYdU.11 ) , NPK I N T . NSS. NS I ( 10 ) , NSfl ( 1 0 )                      00530
      COMMON MTHANS,NX2MAX(in>,NX7Z<10>.NXN,NXO                          00540
      COMMON PGV(1fl).KFA,KM(ln>.RM,RMY(10,ll>                            OU550
      COMMON TRK10). TP,2(10.1 I. ? ), TO? A Vfi < 10 ). TG I Nl { 10 ). TGIN2(10)        00560
      COMMON IMF, TTtlti.1 1 .<•>. TuHKflWdn ). VAPLlfin).VAPL2<10)            00570
      COMMON VAfL3(10 ), VOI ( in ). tlGdO ) . X2L (10 ). X? T ( 10 )                   00580
      COMMON CTnH(6,K ICM 1 ?B),HTAB{69,27 ).HVAP<128), INI)            00590
      COMMON NLINt.NNU.NPbTeP.NlS!FP.H(12«)                              00600
      COMMON PTAR(7n ).SI AH(U0.7;).T(1?8).TTAR(33).VLIU( 1?8)              00610
      COMMON VTAH(6v,77).vVAP<]^8)                                       00620
      RfrAL   L.LHV.I HVI.ICS.ICT,MA IK.MFLUID,MFUFL.MW7,N?P,N2R.N2S.MO    006JO
      NLINE=12H                                                          00640
      IF(NND.GT.I) (iO TO  V5                                              00650
      NND=2                                                              00660
      CALL PROP                                                          00670
  95   CONTINHF                                                            00680
      IF (NU-l )inn,i>on, jnn                                               00690
>      SEARCH THH COhPUCT  1NIEKVALS                                       00700
 100   IFdCUND.LT.Td )) 00  10 mi                                        00710
      IF(TCl)Nn.LE.T(NLINF) ) 00  TO in?                                    00720
      1=NLINE                                                            00710
      IF(NPKINT.NE.II) GO  TO ?                                            007J*
      WHITF <6.495)                                                      00740
      00 TO ?                                                            00750
 101   1=2                                                                00760
      IF(NPKlNT.Nfc.u) GO  TO 2                                            00765
      MKIIF (6,*00)                                                      00770
      00 TO ?                                                            00780
 102   DO 1 Ial.NI.INb                                                     00790
      IF -TCONO)/-!<|-1))                                   00820
      GO 10 400                                                          OORJO
 200   IF(HCUND.LT.P(1 )) 00 TO 2ill                                        00840
      IF(PCONn.LE.P(NLlNF» GO  TO 20?                                    00850
      IsNLlNE                                                            00860
      IF(NPKINT.NE.fl) GO  TO •>                                            00865
      WHITE (6.-J10)                                                      00870
      GO 10 *>                                                            00880
                                     12

-------
PROGRAM LISTING  -- SATP (Cont'd)
201



202

  4


JOU
301
302
40U
495
500
520
531)
540
IF(NPKINT.Nf.U) GU TO 5
WHITE (6,S2ll)
GO TO 5
DU 4 1=1.NLINE
IF (PCOND.LT.Pt I ) ) fiOlO 5
CONTINUE
RATIO=(H-P(1-1 ))
          -KATI0»(T(I)-l(|-1))
          Qt I )-RAIIU«tVLint I )-VLlQ(!-l»
           I)-PATIO«(VVAP(I)-VVAP
-------
SUBROUTINE SUPPT
    Subroutine SUPPT is the interpolation program for the superheated CP-34
fluid properties.  For given values of any one of four pairs of thermodynamic
properties,  it computes the remaining properties of the set by two-way linear
interpolation or extrapolation.  As in SATP,  if an input value falls outside the
range of the superheated data, causing the program to use extrapolation, i
message is printed in the output indicating this has occurred.  By changing
the value of NPRINT (as  explained in the section on SATP). this print mes-
sage can be suppressed.  SUPPT employs the subroutine PROPST.
    Subroutine SUPPT can be entered with one of four different  pairs of prop-
erties,  depending on the  input code correspondingly entered.  The  output
consists of the values of  the remaining tabled properties for the given pair
of inputs.
               Input
         PTAB,  TTAB
         PTAB.  STAB
         PTAB,  HTAB
         VTAB,  STAB
NOMENCLATURE --  SUPPT
           Input Code (NC)
                 1
                 2
                 3
                 4
      Output
HTAB, STAB, VTAB
TTAB, HTAB, VTAB
TTAB, STAB, VTAB
PTAB, TTAB, HTAB
FORTRAN Variables in COMMON:
    The  FORTRAN variables in the COMMON of SUPPT are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable
      H
      NC
      PRES
      S
      TEMP
      V
        Definition
Enthalpy
Logic variable for input quantities
   1  - PRES, TEMP
   2  - PRES, S
   3  - PRES, H
   4  - V, S
Pressure
Entropy
Temperature
Specific volume
    Ib/in?
    Btu/lb °F
    op
    ft3/ Ib
                                   14

-------
Other Selected FORTRAN Variables:
     FORTRAN
     Variable
      PL


      RATIO
      RATIO1

      RATIO2
            Definition

New specific heat values based on
RATIO1 and RATIO2

Final specific heat value based on
Cl. C2, and  RATIO
New enthalpy values based on  RATIO1
and RATIO2

Subscripts of the tabled pressure
values either immediately above or
immediately  below the given pressure

Subscript  of the tabled property value
that is immediately above the  given
property value

Subscript  of the tabled property value
that is immediately below the  given
property value

Tabled pressure value immediately
above the  given  pressure

Tabled pressure value immediately
below the  given  pressure
Proportionate distance that the first
input  property value is from the
tabled value below it to the tabled
value above h
Proportionate distance that the sec-
ond input  property value is from  the
tabled value below it to the tabled
value above it

New entropy values based on RATIO1
and RATIO2

New temperature values based on
RATIO1 and RATIO2

New specific volume based on RATIO1
and RATIO2
  Units

Btu/lb °F

Btu/lb °F

Btu/lb °F


Btu/lb

Btu/lb
lb/in.2


Ib/in?
                                                          Btu/lb °F

                                                          Btu/lb °F
                                                          °F

                                                          °F
                                                          ft3/lb
                                                          ft3/lb
                                   15

-------
FLOW DIAGRAM -- SUPPT
                               KH • 1
                               K • KH - I
                               PL • PTAB(K)
                               PH • PTAB(KH)
                                   16

-------
FLOW DIAGRAM -- SUPPT (Cont'd)
                                     0
                                                                 YES
         TEMP * TTAB(NTSTEP)
                                  17

-------
FLOW DIAGRAM — SUPPT  (Cont'd)
   LLl  -1-1
   LH1  ° I
   Define RATIO1
         RATIO2

   LL2  • LLl
   LH2  « LH1
LLl =1-1
LH1 = I
Define  RATIO1
                                                           I©
LLl « I ' 1
LH1 • 1
Define RATIO1
                            LL2 • I - 1
                            LH2 • I
                            Define RATIO2
                           LL2 •  I - 1
                           LH2 =  I
                           Define  RATIO2
                                          18

-------
FLOW DIAGRAM -- SUPPT  (Cont'd)
LHl
LL1
= J
• J -
1
8 ^X.
to ^^
fYES
e VI
L
NO

Calculate
RATI01
VI


              K = 1
              Define PH, KH, PL
                                     19

-------
FLOW DIAGRAM --  SUPPT (Cont'd)
                            Calculate

                                   RAT1O2
                            Calculate
                                Tl, HI. VI.
                                SI. Cl. T2.
                                H2, V2. S2, C2
                            Calculate

                               RATIO. PRES, H,
                               TEMP. CP
                           c
                                     i
Return, End
                                                             Calculate

                                                             RATIO. V. TEMP.
                                                             H, S. CP
                                            20

-------
PROGRAM LISTING  --  SUPPT
  96
      SoR MOOTING SllfPUPRES. TfcMP.H.S. V.NC)
             AP.U.Cll.CHK.CO
             cn^p.cozSf i'Cbi OCT.
             bUUI V.F.FS, H20P. H2l'S
             OP.HH, HTFLAM.H1 |N, I.HV
CUMMIN
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CllMKON
COMMON
COMMON
COMMON
COMMON
COMMON
            MFOF-Lf N?P, N?K,N2S» M)t.N|iA
            Ni,HH(lU),RT()0).CTF
            <:TFY(in,ii),tmin),rw,nHi,FHl(lii).FMO(in)
            FNI(10>,FNO(1ll».FRAC,FTI(in),FTO<10>
            (;Vl(10,ll,2>.Hf (10,11 ,2), HI INI (10 >,HF I N? ( 1 H >
            HR|N?(in).HGl.iCl YOU. 11 >,MTF.HTF Y<10. 11 »
            j?Fdfl)f J.iHin ),i (in ),isiFP.MUZ(in.ti )
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     CUMMON
     CiiMHON
     KKAL
     IF( INO
                                                             U I Ml I 1 II )
             M.UMH, NM( ID ) , Nn| ( 1 ii ) , NhO( 1 (I ) , NPH
             NI'HYClii.l.l ).NPK|NT,NSS,NbM10).NSO(lU)
             KiTHANS,NX2MAX(10),NX2Z(ln),NXN,NXO
             I'GVC 1 0 > . I'FA, kM< 1 II > . RW, KWY< 1 fl, 11 >
             1Cl(tO).TRZ(in.l1 ,/).TG?*VG
             UMF. Tl Un,1 1 ,iJ), Ti.RROWl IP  ), VAHL1 (10 ), VAPL?( 10 )
             vApiJ(tn).vr'i(io>.>iG(iO).x2L(iO).x?T(in)
             UTtR(6''.27).hL I 0< 1 '« ) . HT AR ( 69. ?7 ) . HV*P( 128 ) . INH
             N|_|Nt ,KNI),NPSIkP»NlSlEP.P(l26>
             PTAR( 7 1) ) , STAM69, 21 ) . T ( 1 78  ) . TTAR( 33 ) . VI. I 0( l?ft )
             VTAR<69,?7 ), VVAP(1?8)
             I .LHV.LHVT.I.l.S.LCT.MAlK.MFl U I D. MF UfcL . M^Z . N?P. N?R. N2S. NO
             GI.1 ) UP TO  VS
      CAI L  PROPS!
     IF(NC.F(J. 4) CO  TO  ?OU
     WITH PRf-SSUkE  AS  IMHD1
     SF-AI-CI' THIS  VALOH  FKOM  lAi'Ll
     irr pRbS.i i.rTARd >>  no  in 96
     If (HRfcS.Lb.HTAH(NPSIEP) )  ^0 TO
                                      07
      IF(NPH|MT. Nfc.i) ) GO  TO  1
      UR1IE <
      GO TO 1
     U (NPHlNT.Nfc.il)  GO 10 1
     MW| IF (ft.??U )
     GO 10 1
 97  no 10(1  l=l.NPSHP
     IF(HRfcS.Ll.HTAR(|))  Go TO 1
1011  CDNIIftm
  1  KH=|
     K=KH-1
     PI=PTAR(K)
                                SI
                                GO
00 10 (?.'>,10),NC
IF( TFMP.I.T..1T*B(1 ))  GOTO
IF ( IfMP.Lh.TTAR(NlSTEP))
  I=MTSTEP
                                  ro S2
                                                                    00020
                                                                    110030
                                                                    00040
                                                                    000*0
                                                                    00060
                                                                    noo?n
                                                                    oonao
                                                                    00090
                                                                    ouino
                                                                    noiio
                                                                    00120
                                                                    noun
                                                                    nniin
                                                                    nni^n
                                                                    011160
                                                                    o n 1 7 n
                                                                    OOIHO
                                                                    on? no
                                                                    00710
                                                                    00'20
                                                                    00730
                                                                    01)240
                                                                    002SO
                                                                    00?60
                                                                    nn?7o
                                                                    on?«o
                                                                    no?9o
                                                                     n it 3 1 n
                                                                     003 o
                                                                          n n ,w o
                                                                          on 390
                                                                          OU40n
                                                                          n u 4 3 n
                                                                          n«43«>
                                                                          00440
                                                                          00460
                                                                           00470
                                                                           00480
                                                                           00490
                                                                           00-500
                                                                           nosio
                                                                           00520
                                                                     00560
                                                                     00570
                                                                     00580
                                                                     00590
                                      21

-------
PROGRAM LISTING --  SUPPT (Cont'd)
      IF(NPRlNT.Nt.U)  GO  10  4
      WHITE  (6,230)
      00  TO  4
  51   l=?
      ir(NPRINT.NE.U)  60  TO  4
      WRITE  <6.?40)
      GO  TO  4
  52   no  3  I=1.NTSTEP
      If < TEHP.LT.TTARC I ))  00 TO 4
   J   CONTINllfc
   A   IL1=I-1
      LH1 = I
      WATI01=(TEHP-TTAB(LL1))/)
      HATI02=RAT101
      LL? = Ll.l
      LH2=IH1
       CO  TO 40
   5   |F(S.l T.SHHU.l))  GO  TO 53
      IF (S.LE.STA&CK.NTSTEPM  GO TO 54
       l=NTSTtP
      IF(NPRINT.NE.U)  GO  TO  7
      UMTE  (6,250)
      GO  TO  7
  5J   l=?
      IF(HPH|*T.N(-.0)  GO  TO  7
      HK11E  (A,2A(i)
      GU  TO  7
  54   Oi)  h  1 = 1 ,NTST£P
      IF(S.LT.STAh(K, 1 ))  GO  TO 7
   6   CONTINUE
   7   LL1=l-t
55
56
ID
57
          01 = (S-STAfl(K,LLl ))/ ( SI AH( fc. LH1 )-STAB (K. LL1 ) )
      IMS.LT.SfAH(KH,l ) )  C,U TO 55
      tF(i>.LE.STAB(KH,NTSTEP))  GO TO 56
       I=NTSTEP
      IF (NPRjNT.Nfc.O )  GU  TO 9
      WKITE (6,270)
      Rn  10 9
      I=?
      [F(NPKt NT.Nfc.O )  GU  TO 9
      WKITF (6,240)
      GU  10 9
      HO  8 I»1,NTSTEP
      H (S.LT.STAB(KH, 1))  fiU 10 9
      CONTlNUt
      LL?=I-1
       I02=(S-ST4H(KH,LL2))/(STAB(KH,LH2)-ST*B(KH,IL2) >
       TO 40
       h.LT.HTAb(K, 1 ) ) GO TO 57
       H.LF.HTAB(K,NTSTFP) ) Gu TO 5B
       NTSTFP
       NPKlNT.Nfc.U)  GO TO 12
       lE <6,290)
       TO 12

       NPHIM.Nf .0)  GO TO 12
       TE (6,30(1)
       TO 1?
      RAT
      no
      IF(
      IF(
       1=
      IF(
      Mftl
      GO
      l=?
      IF (
      WHI
      GO
00595
00600
00610
00620
00625
00630
00640
00650
00660
00670
006UO
00690
00700
00710
00720
00730
00740
00750
00760
00770
00775
00780
00790
00800
00805
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00915
00920
00930
00940
00945
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01065
01070
01080
01090
01095
01100
OHIO
                                     22

-------
PROGRAM LISTING -- SUPPT  (Cont'd)
 58

 11
 12
 59



 60

 13
200
 20
 2?
 23
 ?
     IF(H.I.T.HTAR(KH.l)) 60 TO 59
     IFCH.LF.HIAHUH.NISTEP)) GO TO 60
      IsNTSTbP
     IF(NPKINT.Nfc.O) GO TO 14
     WHITE (6.J10)
     BO TO 14
     1=2
     IF(NPKINT.Nt.O) GU TO 14
     UK HE <6.320>
     R() TO 14
     ni) 13 1=1.N1STEP
     IF(H.LT.HTAH(KH. I )) GU TO 14
     CONTlNllb
     LL2=I-1
     LH2=1
     RAT|02=»HAT|U1«< VTABC I.LHl )-VTAR< I,LL1»
     on Tn ?•>
     IF(V.GT.Vl) GO  TO 26
     CONTINUE
     K=l
     PHspTAB(K)
     KH=K-1
     PL=PTAR(KH)
     00 30  I=1.NTSTEP
     IF(S.LT.S1A8(KH, I ) ) GO  TO 32
     CONTINUE
     LL2=I-1
     RATI02H(S-STA8(KH.LL2))/(STAB(KH.LH2)-STAB(KH,LL2))
     T1=TTAR(LL1 )*RATIUl«(TTAB(LHl)-TTAB««ATI(il«(STAB(K.lHl)-STAR(K.Lll»
     C1=CTAB(K,| LI )*KAri01»(CTAB(K,l Ml )-CTAB(K,LLD)
     T?=TTA8(IL»)*KATIO?«( TTAfl( LH2 )- TTAB ( LL? ) >
     H? = HTAR(KH,LL?>*RATIO?»-CTAB(KH,LL2))
     1F(NC.F0.4) GO  10  45
     RAT10=(PRFS-PL)/(PH-PL)
01120
01130
01140
01150
01160
01170
01180
01190
01200
01205
01210
01220
01230
01235
01240
01250
01260
01270
012HO
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
014JO
01440
014511
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
                                     23

-------
PROGRAM LISTING --  SUPPT (Cont'd)
V=V1*KAT!0»
-------
FUNCTIONS

NOMENCLATURE

     The names of the transport and metal property functions, except for a
few exceptions, are coded.    "F",  the first letter of the name,  means t!-e
subprogram is a function.   The second letter indicates the particular prop-
erty being considered,  as  follows:

                   C - Specific heat

                   D = Specific volume

                   K = Conductivity
                   R - Density

                   V = Viscosity

                   Y - Surface tension

The third letter (with one exception) tells what material is being used:

                   A = Air

                   C - Copper

                   G = Gas

                  M = Metal
                   S = Steel
                  W = Working fluid

The fourth letter appears only in the names of functions concerning the work-
ing fluid and the metals.  It tells the phase of the working fluid or which metal
is being used,  whichever is appropriate:

                   C = Copper

                   L = Liquid phase

                   V = Vapor phase

                   S = Steel

As an example of this  coding, FCWV is the transport function used to calculate
the specific heat of the working fluid vapor phase.

    One of the exceptions to this coding is the function FKM, which generates
the value of the conductivity of the steel-copper matrix.  There are three
additional functions which do not follow this coding system.   FPRS is a Prandtl-
number calculation function for water  as the working fluid.  FPRS1 and FPRS2
are called  by FPRS to aid in the Prandtl-number calculation.
                                   25

-------
 SUMMARY OF FUNCTIONS
     Table 2  summarizes the parameters of the transport and metal property
 functions along with the ranges of the parameters at which the functions were
 compared with reference data.
                                Table 2
           TRANSPORT AND METAL PROPERTY FUNCTIONS
                       (Parameters, Range,  Units)
                                        Compared with
                         As a            Reference Data
                       Function           at Following
            Name         of               Conditions             Units
Functions Dealing with CP-34 as Working Fluid (Liquid Phase)
           FCWL         T              T:0-60°F          Btu/lb °F
           FOWL         T              T:0-200°F         ft3/lb
           FKWL         T              T:200°F           Btu/hr ft °F
           FVWL         T              T:0-600°F         Ib/hr ft
           FYWL         T              T:60°F             Ib/ft
Functions Dealing with CP-34 as Working Fluid (Vapor Phase)
           FCWV        P, T             T:25-100°F         Btu/lb 'F
                                         P:25-500 psi
           FDWV     P. T.NPH           P,T:Rangesof     ft3/lb
                                        Superheated Tables
           FKWV         T              T:200°F           Btu/hr ft °F
           FVWV         T              T:200°F           Ib/hr ft
Functions Dealing with Water as Working  Fluid (Liquid Phase)
           FCWL         T              T:60-500°F        Btu/lb °F
           FOWL         T              T:60-200°F        ft3/lb
           FKWL         T              T:60-500°F        Btu/hr ft °F
           FVWL         T              T:60-500°F        Ib/hr ft
           FYWL         T              T:200-500°F       Ib/ft
Functions Dealing with Water as Working  Fluid (Vapor Phase)
           FCWV       P,T             P:14. 7-500  psi     Btu/lb °F
                                         T:212-1000°F
                                   26

-------
                            Table 2  (Cont'd)
                                        Compared with
                         As a           Reference Data
                       Function          at Following
           Name          of              Conditions             Units
Functions Dealing with Water as Working  Fluid (Vapor Phase) (Cont'd)
           FDWV        (Same function as with CP-34 as Working Fluid)
           FKWV         T               T:500-600°F       Btu/hrft°F
           FVWV         T               T:500°F           Ib/hr ft
 Functions Dealing with Water as Working  Fluid
            FPRS        P. T
            FPRS1         T
            FPRS2         T
 Functions Dealing with FC-75 as Working Fluid (Liquid Phase)
            FCWL          T              T:200°F           Btu/lb °F
            FOWL          T              T:10-160CF        ft3/lb
            FKWL          T              T:constant         Btu/hrft°F
            FVWL          T              T:0-400CF         Ib/sec ft
            FYWL          T                  --             Ib/ft
 Functions Dealing with FC-75 as Working Fluid (Vapor Phase)
            FCWV        P, T             P:44-294  psi       Btu/lb °F
                                          T:115-295°F
            FDWV      P.T.NPH           P,T:Rangesof     ft3/lb
                                         Superheated  Tables
            FKWV          T              T:212-312°F       Btu/hr ft °F
            FVWV          T              T:220-460°F       Ib/sec ft
 Functions Dealing with Air
            FCA           T              T:0-200CF         Btu/lb °F
            FDA           T              T:0-200°F         ft3/lb
            FKA           T              T:0-200°F         Btu/hr ft °F
            FVA           T              T:0-800°F         Ib/hr ft
>:
-------
                           Table 2 (Cont'd)
Name
Functions Dealing with
FCG
FDG
FKG
FVG
As of
Function
of
Combustion Gas
T.RFA
T, RFA
T
T
Compared with
Reference Data
at Following
Conditions

RFA:0. 0504
T:0-1500°F
RFA:0. 0504
T:0-200°F
T:0-1500°F
T:0-200°F
Units

Btu/lb °F
ft3/lb
Btu/hr ft °F
Ib/hr ft
Functions Dealing with Copper
           FCMC         T*
           FKC           T
           FRMC         T*
Functions Dealing with Steel
           FCMS         T*
           FKS           T
           FRMS         T*
T: Constant
T:0-200°F
TrConstant

TrConstant
T:0-200CF
T: Constant
Function Dealing with Steel-copper Matrix
           FKM          T               T:0-200"F
Btu/lb °F
Btu/hr ft °F
lb/ft3

Btu/lb °F
Btu/hr ft °F
lb/ft3

Btu/hr ft °F
*The effect of temperature on the specific heat and density of metals is not
 included in the functions,  even though it is referenced as a parameter.
                                  28

-------
PROGRAM LISTING  --  FUNCTIONS
                                  LIUUII1  •' CP-34  (LB/Hk-FT)
                                            -1»-J .9R31F-8MM
             l'»' ^ VM i T)
      visc'isi IY "h MIKKING
      FVMI=2.11
      Rl TI'RN
      FNP
      IDNI.l I (IN
      Ciikl'UCl I VITY OF  wuPclNG Filiin  I.IOUIO - CP-34  (RTU/HR-F T-F)
     PETHIN
     F-NI)
     F uNT r Kir. i rn_t i >
     SPECIFIC -iFAT PI  WDKKINC ruilli  L I UU I D - CP-34 (BTU/LB-F)
     RF
                 HI  V.OHKINC U'>in  LIUUin - CP-34  (FT««J/LB)
CALL  bA!P(P. F.ri.^l A.IIV.HL.HV.H >
F'lWl =1
RFIUKN
                                       ^ 100(1.3184)
           1 |l'»  > vn » 1 )
«      SuRFACF rtNSI'.N  :l>  k-OuKINC  f|.li|l  I|UU|D  -  CP-.)4  (LP/FT)
•      NiiU  THAI T»-| ,  iXi'KtSSlON  SHOUl I) Mt CilFCKFD FOK  TUNSISTbNT
•      UM IS
       IF  I T.J:^ .riM4. i  ..u U- 10
       FYWl=?..i1,iF-4Mt(l.-T/5H4.
       F YWI =F Yhl oil'.
       nil  I P  ?ii
  1(1   FYWI =2.:«
       FYUI =1
  70   K
       FNR
FUNCl ION  ( VUVi T )
V ISCOSI I Y 01  h(li'K | ivr;  ( LUI 'I
RF-Tl.'KN
FNH
FUNCTKH  KKUV( 1 )
CONDUCTIVITY uF M(>kiklNr>
                                         - CP-34  (IH/HR-FI)
                                      VtPilH - CP-34 ( P TU/HH-F I -F )
     KhTUKN
     END
     FUNCTION FCWVIP.T)
     SPECIFIC MEA1  Cif  HfiKKIM; FlUIII VAPOK -  CP-34 (BTU/IB-F)
      IF (p-?nn. n.n, in, 3 n
 111   FCWtf=((?0'l.-P)«ICHVJ*(P-.l)oFCPV?)/19y.Q
      RETbKM
 30   F(;wv=((&liil.-P)»fCf'V}?*(P-?ilO.)«FCPV3)/Jlili.
      KFTURN
                                                                       onn?n
                                                                       nno3ii
                                                                       nnn^n
                                                                       n ii n *> n
                                                                       00060
                                                                       nnnao
                                                                       nnnvn
                                                                       n n i o n
                                                                       nuiio
                                                                       00120
                                                                       o n 1 4 u
                                                                       ii ft 1 1> n
                                                                       o « i *» o
                                                                       nni 70
                                                                       II Ul HO
                                                                       II 0 2 II II
                                                                             'i o 2 1 n
                                                                             unpin
                                                                             no2»,p
                                                                             n n ? 7 0
                                                                        OU310
                                                                        OH320
                                                                        110330
                                                                        1)1134 II
                                                                        01)3*0
                                                                        00360
                                                                        n 0 3 7 0
                                                                              o n 4 u n
                                                                              004th
                                                                             00430
                                                                              00460
                                                                              00470
                                                                              00490
                                                                              IUI4VO
                                                                              OU5HI
                                                                              00*20
                                                                              H0530
                                                                              00540
                                                                              00550
                                                                              011560
                                                                              00570
                                                                              00580
                                                                              OU590
                                                                              00600
                                                                              00610
                                       29

-------
 PROGRAM LISTING -- FUNCTIONS (Cont'd)

      rUNCTlON  FCML     CONDUCTIVITY  UF MORKINQ FLUID LIOUID -  WATER  (BTU/MR-FT-F)        00160
      FKMLs3.2*T«(5.96E-3*T»(-1.125E-5*1.042E-»«TM                     00170
      FKML'FKML/10.                                                     00180
      RETURN                                                            00190
      END                                                               00200
      FUNCTION  FDML(T)                                                  00220
•     SPECIFIC  VOLUME OF MORKIHG  FLUID LIQUID -  MATER  (FT««3/LB)        00225
      CALL  SATP(P,T,,FDMLA.DV,HL,HV.O)                                   00230
      FOML«FDMLA                                                       00240
»     NOTE  IT  IS ASSUMED TEMPERATURE MILL BE  THE  INDEPENDANT  VARIABLE   00250
      RETURN                                                            00260
      END                                                               00270
      FUNCTION  FYML(T)                                                  00290
•     SURFACE  TENSION OF MOKKINQ  FLUID LIQUID -  MATER             00300
      FYML=5.4612E-3-T»(6.276E-6«3.224E-9»T)                            00310
      RETURN                                                            00320
      END                                                               00330
      FUNCTION  FVMV(T)                                                  00350
»     VISCOSITY Of  MORKING  FLUID  VAPOR • MATER  (LB/HR-FT)               00360
      FVWV»5./9.»(T-32.)                                                00370
      FVWVs2.42E-4«(80.4«.407«FVMV>                                     00380
      RETURN                                                            00390
      END                                                               00400
      FUNCTION  FKWV(T)                                                  01)420
•     CONDUCTIVITY  OF MORKING FLUID VAPOR - MATER                        00620
      IF(FPRS.LT.FPRSL) FPRS»FPRSL                                     00630
      RETURN                                                             00640
      END                                                                00650
      FUNCTION FPRSKT)                                                 00670
•     FUNCTION USED IN  PRANDTL  NUMBER  CALCULATION FOR MORKINQ           00680
•       FLUID  - MATER                                                   00690
      FPRS1 = 4.432»T»(-7.821E-3»4.429E-6«T)                               007(10
      RETURN                                                             00710
                                     30

-------
PROGRAM  LISTING --  FUNCTIONS (Cont'd)
     END
     FUNCTION FPRS2
     RETURN
     END
     FUNCTION FVWL(T)                      ,
     VISCOSITY OF WORKING FLUID LIQUID - FC-75 (LB/HH-FT)
     1F< I.LE.250.) 00 TO 10
     FVWL = tXP(.97404-4. 5462E-03M)
     RETURN
 10  IFU.LE.100.) 00 TO 20
     FVWL»EXP(1.73261-7.5805E-03«T)
     RETURN
 20  FVWL»EXP(2.24071-1.2661E-02»T)
     RETURN
     END
     FUNCTION FKWL(T)
     CONDUCTIVITY UF WORKING FLUID LIQUID - FC-75 (BTU/HR-FT-F)
     FKWL=.036
     RETURN
     END
     FUNCTION FCWL
     SPECIFIC HEAT OF WORKING FLUID LIQUID - FC-75 (BTU/LB-F)
     FCWL=.2255*2.5E-04«T
     RETURN
     END
     FUNCTION FDWL(T)
     SPECIFIC VOLUME OF WORKING FLUID LIQUID - FC-75 
     If(H.GF.15.)GO TO 20
     IF(T.GT.195.)GO TO 30
     FCPV1=  .1655-3.OE-04«T
     GO 10 40
 30  FCPV1=  .1003*4.0764E-05»T
00720
00740
00750
00760
00770
00780
00790

00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00140
00150
00160
00170
001HO
00200
00210
00220
00230
00240
00260
002/0
00280
00290
01)31)0
00320
00330
00340
003*>0
00360
00380
00390
00400
0 (1410
00420
00430
00440
00450
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
                                     31

-------
PROGRAM LISTING -- FUNCTIONS (Cont'd)
  40   FCPV2=T/<-827.576*11.8346«T)
      IF(P-10. )5n,50,60
  50   FCWV=«10.-P)«FCPVl*(P-5. )»FCPV2)/5.
      GO  TO  110
  60   FCWV=«15.-P)«FCPV2*(P-10.)»FCPV3)/5.
      GO  TO  110
  20   IFU-255. )120.120,130
 120   FCPV4=.155
      GO  TO  70
 130   IFU-265. )80.80.90
  80   FCPV4=.7925-.0025»T
      GO  TO  70
  90   FCPV4=.2183-3.33E-04»T
  70   IF(P.GT.20.)GO TO  100
      FCWV=«20.-P)«FCPV3«
             I V I TV (IF AIM (HTU/nP-f T-t )
             I )
              0»
      KfcTliRN
      fNIt
      FUNCTION
      SPECIFIC
Rt TURN
tun
FUNCTION
vi sous i ir
                   1 )
                ni
      Ht-1 liRN
F I'NLT I tIM KOA( 1 )
SPECIFIC
FuA = (46l).+T)/
RFTl'KN
Fr.tt
FUNfTIOh FVO(
 All<  (HTII/LH-f )
 *?73.
 09F-J-4.«»9E-7«FCA)
 (Lh/HOUR-FT)
. 4E-5»T»(-2.0H5E-M*4.062E-12»T
                      Of AIK (FT»»3/Lb)
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00940
00950
00960
00970
00980
nnn?n
on ru n
00041)
n u n 
-------
PROGRAM LISTING -- FUNCTIONS (Cont'd)
VISCOSITY Of CAS (I I/MR-Fl>
  U=.fl:i76 + T«(fi.4UlF-5*T«(-2.85E-8*4.063E-12»T))
     FUNCTION  FKI;( i >
          CT I VlTY  t.F  GAS  (MTU/HN-FT-M
     RETURN
     ENU
     FUNCTION  Ff
     SPEC IMC  MEAT  
      SPECIFIC  VOLllNF  Of  HAS (F1**3/LH)
      FHfi = FliA(T)/<-.091l»KFA*l.iifl)
      RI-TURN
      END
      FUNCTION  fKS(1 )
                   HF  STFEL (BTI//HR-FT-F)
                  !-?.<»0?F-J»1»(-4.U17E-6»1.64F-9»T>>
      RI-Tl'RN
      FNO
      FUNCTION  FKC(T)
      CONMUCTIVITY  UF  COPPER (RFU/HH-fT-F )
FUNCTION
SPFCIMi:
FI:MS=.I??
                    OF ST^-FL (B1U/LB-D
      FNH
      FUNCTION fK^( D
              VITV UF SIFhL-CUPPER MATRIX  ( HTU/HB-F1 -F >
      f
      t-Nl)
      f (INCHON
             f HFAT Pf  CdHPtR (HTII/tB-F)
      RhTbRN
      HNR
      FUNCTION fMMS(T)
      HHNSI1Y OF STl-FL (LH/fl»*.i)
      KF-TURU
      END
      FIINCl IflN FRMCl 1 )
      DENSITY OF COPPER (LB/FT««3)
      KF
      FNP
      FUNCTION FIIMVIP.T.NHH)
      SPECIFIC VOLUME >0
0046P
00470
00490
00500
00510
00520
00530
00550
00560
00570
005bO
00590
OIIMO
00620
OOA30
OOA40
00650
00670
006HO
00690
00700
00710
00720
H0740
00750
00760
00770
00780
00800
00810
00820
00830
00fl40
OOftOO
00870
OORHO
ooavo
00900
00920
00930
00940
                                      33

-------
 PROGRAM LISTING -- FUNCTIONS (Cont'd)


  /f\ GUI SMP(P,T.Dl,t HriVA.HL.HV.0)
>     NUT» IT IS ASSUMED TEflPfcP^THRfc  WILL  BE  THE  IMDFP6NDANT VARIABLE   00960
     rnwvsfnwv*                                                       oo«/o
     RhTt.'RK                                                           OD9«0
  30  CALI SUhPKH, 1,l!.S.rD«VA.t )                                      009VO
     FHHV=^WVA                                                       mono
     RI-TURN                                                           IliniO
     FND                                                              01020
                                     34

-------
          Section 3
RECIPROCATING EXPANDER MODEL

-------
                               Section 3
                    RECIPROCATING EXPANDER MODEL
MAIN PROGRAM - ENGINE
    The reciprocating expander model is entitled ENGINE.  The model em-
ploys the following subroutines:
        SUPPT
        DOME
        FVWV
        FKWV
In ENGINE, iterations are performed to determine the value of VEV.  The
accuracy of the iteration is determined by the value of ERROR, which has
been set at 0. 02 in the model.  The variable ITER2 records the numSer of
iterations,  and the program is stopped when ITER2 reaches 100.
NOMENCLATURE -- ENGINE
FORTRAN  Variables in COMMON:
    FORTRAN variables  in COMMON of ENGINE are  in COMMON of
MAINSYS.
FORTRAN Variables in Argument List:

                       Definition
FORTRAN
Variable
     FLOWR      Mass flow rate through engine
     HE          Exhaust enthalpy
     HI           Inlet enthalpy
     PE          Exhaust pressure
     PI           Inlet pressure
     R            Engine intake ratio
     RPM         Expander rotational speed
     SE           Exhaust entropy
     SI           Inlet entropy
     TE          Exhaust temperature
     TI           Inlet temperature
     TORQUE     Torque
                                              rpm
                                              Btu/lb°F
                                              Btu/lb°F
                                              °F  ,
                                              op
                                              ft Ib
                                  35

-------
    FORTRAN
     Variable
     VE
     VI
     XE
        Definition
Exhaust specific volume
Inlet specific volume
Exhaust quality
Other Selected FORTRAN Variables:
    FORTRAN
    Variable               Definition
    APAIV        Ratio of piston area to aver-
                  age inlet valve area
    CODK        Working fluid conductivity
    DPEV        Pressure drop across exhaust
                  valve
    DPIV         Pressure drop across inlet valve
    DWEV        Work loss across  exhaust valve
    DWIV         Work loss across  inlet valve
    EFFALL      Overall expander efficiency
    EFFME       Mechanical efficiency
    EFFTH       Thermal efficiency
    ERROR       Convergence criterion for VEV
    HEV          Enthalpy at end of stroke
    HEVS         Enthalpy at end of stroke for
                  isentropic expansion
    HIV           Enthalpy after intake
    IMEP         Indicator mean effective
                  pressure
    ITER2        Counter of internal iterations
    PEVS         Pressure at end of stroke
    PIV           Pressure after intake
    PSPEED      Piston speed
    Ql            Heat loss
    Q2            Heat loss during intake valve
    SEV          Entropy at end of stroke for
                  isentropic expansion
Units
ft?/lb
ft?/lb
                                      Units
                                  Btu/hr ft ° F
                                  lb/ft3

                                  lb/ft2
                                  Btu/lb
                                  Btu/lb
                                  Btu/lb
                                  Btu/lb

                                  Btu/lb
                                  psi
                                  psi
                                  psi
                                  ft/min
                                  Btu/lb
                                  Btu/lb
                                  Btu/lb °F
                                   36

-------
                  °F
                  °F

                  °F
                  °F
FORTRAN
 Variable              Definition                    Units
TC           Average wall temperature
TEV          Temperature at end of stroke
TEVS         Temperature at end of stroke for
              isentropic expansion
TG           Average working fluid temper-
              ature
THETA       Crank angle for intake opening      degrees
VEV          Specific  volume at end of stroke    ft*/lb
VEV2         Previous specific volume at end    ft3/lb
              of a stroke
VEVS         Specific  volume at end of stroke    ft3/lb
              for isentropic expansion
VIS           Working fluid viscosity             Ib/hr ft
VIV           Specific  volume after  intake        ft3/lb
WA           Indicator work                     Btu/lb
WES          Isentropic work                    Btu/lb
WSHAFT      Shaft work                         Btu/lb
37

-------
FLOW DIAGRAM -- ENGINE (for Reciprocating EXPANDER)
f Start J
|
Define ERROR, ITER2
<
V
'?
Calculate
PSPEED, VEV. VEVS, SEV

^ CALL
i
SUPPT ^
i
Calculate
PEVS,
HEVS, TEVS
1
\^ CALL


DOME ^
J
1
Calculate
APAIV, THETA, DPIV, DWIV,
DPEV, DWEV, TG, TC, VIS,
CODK, Ql, Q2. HIV. PIV
^ Pfl
^ CALL

^ CALL
'®
^X^ YES
f < 150 .X1 "
7 S^
JNO
SUPPT ^
i
DOME ^
1©

1
Set
FLOWR = 0
WES = 0
WA =0
EFFTH = 0
IMEP = 0
EFFME = 0
EFFALL = 0
WSHAFT = 0
TORQUE = 0
1
(Return ]
End 7




                               38

-------
FLOW DIAGRAM -- ENGINE (for ReciprocatineEXPANDER) (Cont'd)
                   Calculate
              YES
                            VEV2 SEV
                                   NO
                            VEV = VEV2
                          ITER2 = ITER2 + 1
                                    YES
                           CALL SUPPT
                           CALL DOME
   Calculate
     FLOWR,  WES, WA, EFFTH,
     IMEP,  EFFME, WSHAFT,
     TORQUE, EFFALL, HE, XE
           CALL DOME

              Return
                                                    NO
Write
,-,
Engine -
100 Iterations"
                                                      (    Stop   J
                                  39

-------
PROGRAM LISTING -- ENGINE
    SUBKOUTINH
   1 VE.XE.FLOaR, TuRuitfr)
    CliHhON  AP.R.CH,CrtK.f:0
    COMMON  COXIJ,Cn?S, ITS, i)Cl , nlH
    COMMON  f iJOIV.f .1 S»t!/(IP.H?nS
    COMMON  HP,MH.,iTFLAM. H
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    CUMMON
    COMMON
    CUMMON
                                 I I . H I . S 1 . V I . *'f • TE . IIF . Sfc.
                                                     ).HU|NK1II)
CUMMIN
COM^llN
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
RFAL
HEAL  i
            MFiiFl.N?H.r.5»h,N2S.*HENIlA
            N1tN|)G.»Jii,uP,02P.O?R
            0?S,f-0. Sl'1 iSSA, S1A
            Sf'i, TO, MS. nT. n X I
            Aridn),ACndfi).HHdu).RidO),ci>
            CM Yd ii. 11 j,rn (in ),cw.onl do >.n, m , nu( j n >, nSd h > , DY YYdu ) ,fcf
            t F *( i n.11 >.f r,.tr,Y(in, n >.FKI <10 ) . FHOd
            FNI ( in ).r NIK in >.r «AC,r M »F TOM n >
            GV/dn.l t ,i-).HM 1 ".1 1 ,?),MF INI (1 il ),HF
            HI; M?( i n ) . nn i , MI; rr 1 1 H, 11 >,MTF.Mi( YUU. 11 )
            j?t-(ini, j.Ji (in »,i (in ),LSIFP,MWZ< in, n )
            M'T(3),NCl. Y(.U,K'Cf » ( .U . NC YCLF . Nf SFCT ( 3 )
            f!L''*IP,NM( HI ),MMI ( 1 ,' ) , MMOllO ),NPH
            NP''Y(10,ll), NPK|M.N',S,NSI(10),NSO(10)
            Nl',M, Ti;?avi;(in ), in INI .
            I |Mt, ri (10.1 I ,2). TiiHKHw(lO), VAHl 1 (10), VAPL?dO>
            VA^I j( ) n >, VIM (in>.xii;(in), x?i ( in >, XZTUO )
            l. lAH(Av,?7),HLIO(l?8 ),HTAM(69.?7),MVAP(1?«), I Nil
            NLINI-,i«Nll.NPSTI-P.NTSlFH.f(|?H)
            PMH(7u ), SI A'«r»9, ?7 > . T 1 1 ?H ). 1 1AR< JJ). VL IH( l?M>
            VTA9<60,?/), VVAPd^fl I
            L.lHV.lHvr.l i:S,LCT.MA||v.MFlOlD,MMIEL.MUZ,N?P.N?R,N2S,NO
    ITFh2=n
    IF(H)  17S.175.5
    CALL  SliPPKHEv, 1PV.MFV.SEV, VfV,4)
    PtVS=PFV
10  CALL  HOMFm V.Hf V.TI-V, VM,XFV,DH.l )
    RU  10 All
511  |F( ITI-R2.LF.1UO) UO Tu •»•>
92  FURMA1  (?/>H FNGINt-lOn  ITiRATIONS)
    FORMA!
    STOt-
5^>  CALI  SUPPKPEv,
57  CAI.l  UOMHPfcV.HM.lhV.VhV.XfcV.DII.l)
    CAICUIAIF  PRESSURE ORuP  AND  WUR*  LOSS THROUGH  VALVES
611  IF  (R.I l..4b) GO  10 inn
    APAI'
    GO  TO 12"
    APAI V = 4.H«!
    X = l.-2.«l»
                                                                      00020
                                                                      nnnjn
                                                                      non40
                                                                      nno70
                                                                      00000
                                                                      00090
                                                                      00100
                                                                      out 10
                                                                      nnizn
                                                                      n ii 1 4 o
o n 1 7 n
omen
n n i v n
un?nn
on?in
00270
nnp.in
                                                                          00?70
                                                                          OO?HO
                                                                          00?9(i
                                                                          003nn
                                                                          O03in
                                                                          00320
                                                                          O0.13n
                                                                          00340
                                                                          003^0
                                                                          OH360
                                                                          0037H
                                                                          on.ixn
                                                                      U04iin
                                                                      n n 4 1 n
                                                                      004>iO
                                                                          00470
                                                                          004bO
    ACS1=ATAN(XY)
                                                                      on*«4fl
                                                                      OOS50
                                                                      OOSAO
                                                                      00970
                                                                      OUA10
                                                                      006SO
                                                                      OU67n
                                                                      00680
                                                                      00690
                                                                      00700
                                                                      007tO
                                                                      00720
                                                                      II072S
                                                                      O07.t0
                                       40

-------
PROGRAM LISTING -- ENGINE  (Cont'd)
140
160
      THE TA = ACS T«UHO./3. 141592ft)
      IFCTHfcTA.LT.fl. )  THFTA=180.-THtTA
      DPiy=.3H8M«•( T I-TC )/ ( TC-TC )
     IF(02.GI..J1 ) u? = Ul
     HIV=HI-0?
     PIV=PI-2.»np|v/)44.
     IF(PI V.LT.l^ll. ) Gil  TO  108
     CALl SIIPPFCPIV, 1 I V.Hl V.SI V.VIV..1)
     CALL IMIMFCPI V.H1V, TIV.VIV.XIV.Dll.O)
                               )»( (PSPrFn/(VEV«VIS»««.75)»(TG-TC)«F
      S€V=SIV
      1F(ABS((VhV2-VFV)/VhV).LF.FHROR) GO TO
      VEV = VI-V2
      1TER2=ITFK2*1
      GO TO 50
 165  CUNTINIlt
*     CALCIILA1F FlOw  kAlh  AND EFFICIENCY
         WR = FI nAT(NP)«AP»»'SPEfcn/( VFV«4.«)
      WbS=(Hl-HEVS)*VhVS»(PtVS-PE)»(144./778.)
         = HA»77B./(
           1.-(PSPEEO«(1 /4./
                                    .6 )• ( l.E-Ob )*. 012 + 5.46/ I HEP)

      SHAFT UDKK  AND  UVtPALL EFFICItNCY
      T()RUUb=( USHAF l«FLOWK«77fl.)/(RPM»?.*3.14«60.).
      EFFALL=FFFTH»feFFMfc
      HE=H1-HA-U1
      XE = 1 .n
      CALL  UOME(PE,HF, TH. VE.Xb.SE, 0 J
 168  CONIlNllfc
      RF.TliRN
      FI.OkR = n.
      UES=0.
007-jn
011760
00770
007HO
00790
01)800
011810
OIIH20
008.10
111)84(1
00850
0(18*0
00870
OH8HO
POB90
IM1900
11091 II
00920
009.10
00940
011960
011970
00980
00990
01000
01010
01020
01030
01040
01041
01060
01070
010HO
01090
01100
01110
01120
01] JO
II 1 1 4 0
01160
II 1 1 / 0
01180
0 1 1 9 II
01200
01210
01220
01230
01240
012*>0
01260
01265
01270
01271
01291
0 1 3 U 0
01310
01320
                                      41

-------
PROGRAM LISTING -- ENGINE  (Cont'd)

EFFTH=0.                                                         01330
IMEP=0.                                                          01340
EFFMF=0.                                                         01350
FFFALL*0.                                                        01360
WSHAFloD.                                                        01370
TOROUEsO.                                                        01380
RfcTURN                                                          01390
END                                                             01400
                                    42

-------
SUBROUTINE - DOME
    Subroutine DOME employs the subroutines SATP and SUPPT.  DOME is
used to determine if the working fluid is in .the gas or two-phase flow region.
NOMENCLATURE -- DOME
FORTRAN Variables in COMMON:
    There is no COMMON block in DOME.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable              Definition                 Units
       H          Enthalpy                         Btu/lb
       NC         Logic variable
                     0 - define quality in terms
                        of specific volume
                        of mixture
                     1 - define quality in terms
                        of enthalpy of mixture
       P          Pressure                        Ib/in?
       S          Entropy                          Btu/lb °F
       T          Temperature                     °F
       V          Specific volume                   f1?/lb
       X          Quality
                                   43

-------
PROGRAM LISTING — DOME

     SUBROUTINE l)OME(P.H,T.V,X,S.NC>                                    00010
     CALL SAIP(P.T1.V1L.VIV.HH.M1V.1 )                                  00020
     IF(MIV.IT.H) liO TO 100                                             00030
     IF(NC.FO.fi) OH fO 300                                              00040
     x=(v-vii >/
-------
       Section 4
TURBINE EXPANDER MODEL

-------
                               Section 4
                        TURBINE EXPANDER MODEL
MAIN PROGRAM - TURBIN
    The turbine expander model is entitled TURBIN.  The model employs the
subroutine SUPPT.  The turbine model has not been used with the other com-
ponent models or  in MAINSYS; therefore, the COMMON statement in TURBIN
is not consistent with the COMMON in the other models.  The COMMON in
TURBIN and SUPPT must be consistent in order to exercise the turbine ex-
pander model.
NOMENCLATURE -- TURBIN
FORTRAN Variables in COMMON of TURBIN:
    FORTRAN
    Variable
    AREAE
    ARE AT
    GAMMA
    GASC
    HYDEFF
    MACHD
    MACHNE
    NCOEF
    NCOEFD
    NOZANG
    PRCRIT
    RCOEF
    ROTDIA
    SPTVEL
    STO
    TIPSPD
For the remaining
MAINSYS.
        Definition
Nozzle exit area
Nozzle throat area
Ratio of specific heats
Gas constant
Hydraulic efficiency
Design mach number
Isentropic Mach number
Nozzle coefficient
Design nozzle coefficient
Inlet angle
Critical pressure ratio
Rotor coefficient
Turbine rotor diameter
Isentropic spouting  velocity
Exit entropy
Turbine tip speed
   Units
in.8
in?
ft Ib/lb °F
radians
ft
ft/sec
Btu/lb ° F
ft/sec
FORTRAN Variables in COMMON, see the COMMON of
                                   45

-------
FORTRAN Variables in Argument List:
    FORTRAN
    Variable              Definition
    FRATET      Mass flow
    HTO          Exit enthalpy
    PBO          Inlet pressure
    PC           Exhaust pressure
    RPMT        Rotational speed
    TBO          Inlet temperature
    TEMPTO      Outlet temperature
    TORQT       Torque
    VOLTO       Outlet specific volume
Other Selected FORTRAN Variables:
    FORTRAN
    Variable
    Cl
    HBO
        Definition
Flow velocity relative to turbine
blades
Inlet enthalpy
                                 Units
                                Ib/sec
                                Btu/lb
                                lb/in.a
                                lb/in.s
                                rpm
                                «F
                                °F
                                ft -Ib
                                ft?/lb
 Units
Btu/lb
                                  46

-------
FLOW DIAGRAM -- TURBJN
           C
        Start
                Calculate
                   PRCRIT.TIPSPD
                  CALL SUPPT
Calculate
                        SPTVEL
                        Cl
                        RCOEF
                        MACHNE
                  MACHN = 1
                 AREA = A RE AT
             Calculate  FRATET
                       NCOEF
                       HYDEFF
                       HTO
                  CALL SUPPT
              Calculate  TORQT
            C
      Return, End
               (PC/PBO)sPRCRIT
                          M AC HN= MACHNE
                            AREA = AREAE
                                 47

-------
PROGRAM LISTING -- TURBIN
 SURI'OHTINt  TllMRIN(THn.PBO,PC.KPMT,FRATET.TOROI»TEHPTO.VULTO,HTO)
 COMMON NHTi. INii.fcPSTFP.NrSTF-P.Nl I NF . P ( 25 ) . T ( ?5 ) . VL 1 0< 25 ) .
lVVAP5).HLIO>).HVAP<25>.PTARe36).TTA».VT**O5.20).
2HIAH(.il>.2'l>.STAR(.t4.?U)
        CAHKA.nniOIA.SPTVFL^ARtAT.NOZANG.HACHD.NCOFFD.OASC
        riEF.hACHN.HYIiEfF. TIPSPH.hCOEF.NACHNF.PRCRIT.AREAt
 REAL nAr,MNT,NrntF.»«ACiiNE.NACMN. MACHO. NCOFFII
 PRCKI 1=
 SPT VFL=(?.»a2.?« 778. MHHO-HTOS ))••.•>
 CV = SPlVEL«COS(NUZANfi)
 CT=SP1VhL»SIN(Mj2ANO)
                   I. I!HSPO,SPTVEI. ,CV,CI
 HCOF F = . 99.J42- ?.1 f> VRI -U4«C1 *7.5499*E-OM»  G« TO 10
 10
 2n
  r.O TO 20
 MACHN1=1.
 ARFAaARfAl
 FWAlFl=AKfcA»( ( (i;AHMA».
                    ./1rtll^-1.6.1'<5•RMAl;H*1.50.^V•(RMArH••2)*
     WK1
                      , AREA.RMACH
          . P.T.I .)  UKITE(6.110)
                           •UPPT(PC.TfcMf 1 1., HTo. ST(). VOl TD.J)
 TURbT=(riFLTAH»FKATF |a/7H.»ftU. ) / ( 6. 28»RPHT )
                       COtFFICIIrNl PREATEH  THAN 1)
                                                                         11(1020
                                                                         00630
                                                                         00040
                                                                         OUOM»
                                                                         00070
                                                                         000 VA
                                                                         001 00
                                                                         00110
                                                                         00120
                                                                         "OHO
                                                                         OQ140
                                                                         08150
                                                                         OfllAO
                                                                         001/0
                                                                         OU180
                                                                         00190
                                                                         00200
                                                                         002in
                                                                         0024P
                                                                         O02')0
                                                                         00260
                                                                         00270
                                                                         002BO
                                                                         0029»
                                                                          OU.120
                                                                          00330
                                                                          OH.1AO
                                                                          OH 3 70
                                                                          003MO
                                                                          00390
                                                                          00400
                                                                          QH410
                                                                          00420
                                                                          OU430
                                                                          00440
                                                                          00450
     END
                                                                          0(1470
                                                                          004HO

-------
    Section 5
FEEDPUMP MODEL

-------
                                Section 5
                            FEEDPUMP MODEL
MAIN PROGRAM-PUMP
    V
    The feedpump model is entitled PUMP.  The model employs the sub-
routine SATP.

NOMENCLATURE -- PUMP
FORTRAN Variables in COMMON:
    There is no COMMON block in PUMP.
FORTRAN Variables in Argument List:
   FORTRAN
   Variable
        Definition
   DISP         Maximum displacement
   HPUMP      Pump power
   MPUMP      Mass now rate
   NPCYL       Number of cylinders
   PIN          Inlet pressure
   POUT        Exit pressure
   RPM         Rotational speed
   RPUMP      Variable displacement ratio
   TIN          Inlet temperature
Other Selected FORTRAN Variables:
   FORTRAN
   Variable
   DPIV
   EFFM
   EFFVOL
   VL
   WI
        Definition
Pressure drop across inlet valve
Mechanical efficiency
Volumetric efficiency
Specific volume
Flow work
Units
                                  in?
                                  hp
                                  Ib/sec

                                  lb/in.s
                                  lb/in.2
                                  rpm
ft3/lb
Btu/lb
                                   49

-------
FLOW DIAGRAM -- PUMP
                                Start
                            CALL SATP
                           DPIV >(PIN-PV)
)
1
i
Calculate DPIV
                                              YES
                      Calculate EFFVOL,  EFFM,
                      WI,  MPUMP, HPUMP
                            Return. End
                                                      Write: "PUMP
                                                       Cavitates"
                                                       MPUMP = 0
                                                       HPUMP = 0
                                                           J
                                50

-------
PROGRAM LISTING -- PUMP
     SUBROUTINE  PllMPtRM'HP.RF-M.PIN.PUUI, T I N, MPUMP, HPUMP.
    7[>ISP.NPCYL>
     Rt-AL  MPUMP
     CAU  SATP )••?)•( RPM }»»2/ (( 3300 . )»«2»VL>
     IF'»RPrt»FFFvnL)/(VL«1728.»60. )
     HPUMP=P»36nii.»3.?gE-4>/EFFM
     on  in  ?on
100  WHI iE(ft,?in )
210  FORMATdStl  PUMP CAVITATFS)
     UKI lE(A,??n )  l»PIV,PIN,PV
22(1  Fi)RMAT<14H  UPIV.PIN.PV  ..1F15.5)
     HPUMP=n.
200  RHTURN
                                                                          00010
                                                                          (111020
                                                                          (100.50
                                                                          IMKMB
                                                                          OOO1)"
                                                                          non6n
                                                                          0(1(170
                                                                          nnnwn
                                                                          On 100
                                                                          0«i1lO
                                                                          itiil2o
                                                                          om.tn
                                                                          00140
                                                                          nrO4»>
                                                                          001^0
                                                                          OiilHO
                                                                          0113^0
                                      51

-------
       Section 6
VAPOR GENERATOR MODEL

-------
                                Section 6

                       VAPOR GENERATOR MODEL
MAIN PROGRAM-VAPORG
The vapor generator model is entitled VAPORG. The model employs
the following subroutines:
DISTR
GEOMCO
STEPSI
IT E RAT
SATP
PROP
SUPPT
PROPST
PDROP1
PDROP2
PDROPA
INTSTE
PHASE
HT1PB
HT2PB
HTGR
HTGTB
HTGTF
HTGTM
HTPF
FCWL
FDWL
FKWL
FVWL
FYWL
FCWV
FDWV
FKWV
FVWV
FCA
FDA
FKA
FCG
FDG
FKG
FVG
FCMC
FKC
FRMC
FCMS
FKS
FRMS
' FKM
FVA
      Figure 1   illustrates the links between the various subroutines required
for VAPORG.

      The input parameter,  FRAC,  is the ratio of actual step size to stability
step size.  To avoid numerical instability,  its value should be less than unity.
FRAC has been set at 0. 5 in the present program.

    The data file referenced in VAPORG by the two-digit code 13 is a storage
file for  values output at the completion of the VAPORG run.  The user can
then employ this file as the input file, code 11, for a transient start run. Since
the data in the file vary according to the particular run just completed,  a
listing is not included here.

NOMENCLATURE - - VAPORG

FORTRAN Variables in COMMON:

      FORTRAN variables in the COMMON of VAPORG  are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:
                                   53

-------
                         DISTR
                                                 INTSTE
                         GEOMCO*
                        HTGTB*
                         PDROPA
                                                 HTGTF*
                                                 HTGTM*
                                                 HTGR
  VAPORG
STEPSI*
                          ITERAT
                            I
                        SATP PROP
                      SUPPT PROPST
                                                 HT1PB*
                                                    I
                                                 HTPF*
                                                    1
                                                 HT2PB*
                         PHASE
                        PDROP1*
                         PDROP2*
*These subroutines use fluid or metal properties.
        Figure 1.  Links Between Subroutines Used by VAPORG
                               54

-------
FORTRAN
Variable
JS
MGI
MWE
NST
PGVE
PGVI
PWVE
PWVI
TGVI
Other Selected
FORTRAN
Variable
CPP
DXN
DXO
DYY
FCON
FF2F1
FF2F2
FF2T
FG2G1
FG2T
FTF
Definition
Variable to denote cumulative number
of timesteps
Mass flow rate of gas at inlet
Mass flow rate of working fluid at exit
Logic variable for transient start
0 - steady-state case
1 - transient case
Pressure of gas at exit
Pressure of gas at inlet
Pressure of working fluid at exit
Pressure of working fluid at inlet
Temperature of gas at inlet
FORTRAN Variables:
Definition
Specific heat of fluid
Stability distance limit, at future time
Stability distance limit, at present time
Selected time step
Parameter for dynamic relations --
tube
Parameter for dynamic relations --
fluid
Parameter for dynamic relations --
fluid
Parameter for dynamic relations --
fluid
Parameter for dynamic relations --
gas
Parameter for dynamic relations --
gas
Parameter for dynamic relations --
Units
--
Ib/sec
Ib/sec

lb/in.s
lb/in.3
lb/in.2
lb/in.8
°F

Units
Btu/lb-°F
in.
in.
sec
°F
--
--
Btu/lb °F
--
--
lb-°F/Btu
tube
                  55

-------
 FORTRAN
 Variable
 FTG

 FTT

 LZ
 MGVZ(I)
 MWVZ(I, J)

 NBB

 NITER

 PINCT

 PWV
QTOT
 RO
 VAL
 VAL1

 VAL2

 VAL3

WF
WG
 WS
XAV1
 XE1
 YREM
             Definition                    Units
Parameter for dynamic relations --
tube
Parameter for dynamic relations --
tube
Tube length for particular fluid phase     in.
Gas mass flow rate for fluid pass I       Ib/sec
Fluid mass flow rate for fluid pass I      Ib/sec
at node J
Required number of iterations for gas
side energy transient
Required number of subdivisions for
continuity equation
Fluid pressure change  during time
step DYY
Fluid pressure
Total energy  transfer
Fluid density
System volume
Total fluid volume occupied by sub-
cooled  phase
Total fluid volume occupied by boiling
phase
Total fluid volume occupied by super-
heat phase
Captive saturated liquid mass
Captive saturated vapor mass
Captive superheat fluid mass
Average fluid quality
Fluid quality  at exit
Time left to reach YEXT                 sec
lb/in.3

lb/in?
Btu/ sec
lb/ft3
in.3
in.3

in.3

in.3

Ib
Ib
Ib
                               56

-------
FLOW DIAGRAM -- VAPORG
                       c
Start
                                 I
                   Define
                     NTCOMP, NC, NCL, NCR,  :
                     MWVZ(NCL, 1), MWVE, PDDT
                                Does
                            NCYCLE = 0
                          CALL GEOMCOC
                     Define  MGVA(I)
                            Define  PWV
                                Does
                             NTRANS = 0
                                                            Do 3
                                                          3 Continue
                                 57

-------
FLOW DIAGRAM — VAPORG (Cont'd)
                                                Do 18
                   Initialize
                   I.  For each lump of each fluid
                       path,

                       a.  Use average values
                       b.  Call STEPSI (obtain
                          HOT, HTF, NPH, etc,
                          through COMMON)
                       c.  Find revised value of
                          NX2Z(I)

                   II.  Obtain initial distribution for
                       NX2Z(I) lumps, from end-
                       point data.
                       Obtain MWVZ(I.J), TGKD.
                       TG2(I,J,1).  HF(I,J, 1),
                       TT(I,J, 1)
                                               18 Continue
                                                            Print
                                                            Message
(stopj
                 225
                         Corresponding to PWV,
                                   find
                        TSAT, HL,  HV. GVL, GW
                  YES
                                   58

-------
FLOW DIAGRAM — VAPORG (Cont'd)
                721
                       Write (on file 6), entrance
                       node information as headlines.
                     NO
                       Write TIME on output file 13
                 717
                                  Continue
                                     1
                                  I = NCL
                                                              Do 396
                                  59

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                      Initialize   (for pass I)
                      NXO, NX2MAXOO, DXO,
                      VAPLl(I),  VAPL2(I),  VAPL3(I).
                      J2E(I), J3E(I)
                                   1
                           JI =  1  (Lump No. 1)
       JI = JI -i- 1
                                   1
                   For each lump JI,
                   a.  Calculate HW,  TA, TTZ,  MWV,
                       NX2
                   b.  CALL STEPSI
                   c.  Redefine RW,  HOT,  HTF, etc. as
                       arrays
                   d.  FindNX2Z(I)-NX2MAX(I)
                     Select
                        NX2Z(I) (=NXN) as
                        maximum of all values
                        for the fluid pass I.
                     Calculate  DXN
                   YES
Save DXN for pass I
i
©
Do 230
                                                          230 Continue
                                   60

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                                      Does
                                  JS = LSTEP
                          Write lump size information
                          as headline
                           Write NXN in output file 13
                                    61

-------
FLOW DIAGRAM — VAPORG (Cont'd)
                           727
                                    NO
                   Define MWZ(I.  JI) = MWVZ(I, JI)
                                 I
                   CALL DISTR(I)
                  *Obtain distribution of following
                   parameters for NXN nodes:

                 MWZ(I,JI), HF(I,JI, 1), TT(I,JI, 1),
                1TG2(I,JI, 1), HGTY(I,JI),  EGY(I.JI),
                   HTFY(I,JI),  EFY(I.JI), CTFY (I,
                   JI),  RWY (I.JI)
                                 I
                    Set MWVZ(I.JI) = MWZ(I.JI)
                                 I
                         For each lump JI
                         compute NPH,
                         store asNPHY(I.JI)
                              237 ,,
                         JI =  1  (Lump No.  1)
    Do 806
806 Continue
    Do 807
807 Continue
    Do 236

236 Continue
    Do 238
                                    62

-------
 FLOW DIAGRAM -- VAPORG (Cpnt'd)
©
                       Based on NPHY(I,JI),
                       calculate
                          VAPL2(I), J2E(I).
                          VAPL3(I), J3E(I).
                          VAPLl(I)	
JI
= JI +
1
Find (for each lump JI)
   DYX1,  DYX2.  DYX3,
   DYY [for NPHY(I,JD]
Find DYYM for I, and save
as DYYY(I)
I =
I *
- 1
                    NO
                          Find DYY, as a minimum
                          of DYYY(I) and YREM
                   YES
                                                          238 Continue
                                                              Do 265
265 Continue
                                                          396 Continue
                                      Do 412
                                  412 Continue
                                   63

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
(717)
                      CALL ITERAT. to obtain
                      iterative solution

                      After final iteration,  NSS = 0
                      (set in ITERAT)	
                YES
                 NO
                                     YES
                      Print TIME, JS as headlines
Initialize
   INX1 = 1, INX2
   QTOT = 0.
                                          = 1
                         I = NCL (Fluid Pass I)
                        Define
                              NXN, DXN
                        Initialize
                                TG2T
                                                            Do 600
                                 64

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                    Print title for output columns
                     Print "Fluid Pass No. = I"
                       JI = 1 (Lump No.  JI)
                                 1
                   Define (for the lump JI),
                      NPH,  TG
                   Calculate NBB(= no. of iteration
                      steps), FG2G1, FG2T
                   Calculate TG2 (I, JI, 2), TG2T
                   Set TG2(I, JI, 1) = TG2(I, JI, 2)
    Do 420
    Do 280

280 Continue
                                   65

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                397
   Define
   Find
TREF, HREF

CPP, TX
   Calculate
     FTG, FTT. FTF.  FCON,
     TT(I.JI,2)
   Set
     MWVZ(I,JI+1)=MWVZ(I,JI)
   Calculate
     FF2T, FF2F1, FF2F2,
              I
Define
HFN -- HF(I, JI+1,1)
^
1
r
'(?•)
                                                               NO
                                  Define
                                   HFA, HFB
                                               I
     Define
       HFA,  HFB
                                828
I
                                                         J
                                 Find
                                   HFAVG - TFX
                                 Define
                                   GVZ(I,JI, 1), HREF.  TREF
                                 Find
                                   CPP
                                         Calculate
                                            FF2F1,  FF2T,
                                            HF(I, JI+1,2)
                                         Define
                                            HEX2 = HF(I.JI+1.1)
                                         Set
                                            HF(I.JI+lf 1) = HFtt.JH-1.2)
                                         Calculate
                                            FTG,  FTT, FTF, FCON,
                                            TT(I, JI, 2)	
                                  398
                                  66

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                         10) v
Define
  HEXN2
  HFAVG - GV
  GVZ(I,JI,2) = GV
  HFW = HF(I, JI+1, 1)
                                 Calculate
                                    MWVZ(I, JI+1)
            NO


— — ^^ 11N.A i - 1
^SX*>^s^ ? ^^
^^T^YES
Define
HEN1, HENN1, MEN1
Define
INX1 = 2
fc
2000
Calculate
FTG, FTT, FTF,
TT(I,JI,2)
^



Calculate
HAVG1, XE1 (Min = 0),
XE2 (Max = 1),
VBAR, FF2F1, FF2F2, FF2T
HF(I.JI+1.2)
Define
TFX, HFN
Find
TERM1, DRODH, PREF
Calculate
MWVZ(I, JI+1)
Define
HEX1, HEXN1
                   410
                                   67

-------
FLOW DIAGRAM — VAPORG (Cont'd)
                                Calculate  QTOT
                   Write (on file 6) JI. HFN, TFX. TT(I. JI, 1),
                         TG2(I.JI,1), MWVZ(I,JI+1),
                         NPHY(I, JI)
                   Write (on file 13) HFN, TTtt.JI, 1).  TG2(I,
                     JI, 1), MWVZ(I,JI+1)
                                   68

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
     "  B7
                Write (on file 6) HTFY, CTFY, EFY.
                      HGTY
                 Set
                    MWVZ(I+1. 1) = MWVZ(I,NXN+1)
                          ,1.2)  = HF(I.NXN+if2)
JI
= JI +
1
                              420
                            Find  TG2AVG(I)
                                                           420 Continue
          421
      TGHNCL+1) = TGVI
                                 Value
                              of (I-NCL-1)
TGI (NCR) = TG2AVG(NCL+1)
                                  69

-------
FLOW DIAGRAM — VAPORG (Cont'd)
                       600
                NO
                                                    600 Continue
TIME
= TIME + DXY
                YES
               *Pressure calculation
               Initialize
                 VAL1, VAL2, VAL3, UM,  DENM
               Compute VAL1. VAL2, VAL3
               YES
       Does
(VAL2 + VAL3) = 0
                                 NO
                Compute

                Define
    HFG. GFG

    PLOW
                                 Do 610

                              610 Continue
                                 70

-------
FLOW DIAGRAM — VAPORG (Cont'd)
'(BS) iv^

Calculate
HFAVI, :
Find
DENM
fc
XAV1, WG, WF

»-



Write various
intermediate
values, if
NPRINT = 0 	
^__^^^
     635
       PINCT = 0.
                     Calculate
                          HFAVI, HFAV2, WS
                     Find
                          DENM,  UM
Write various
intermediate
values,  if
NPRINT = 0
                              630
                     Calculate
                          AS1, AS2
                     Find
                          UM,  DENM,  PINCT
                            640
Write various
intermediate
values,  if
NPRINT = 0
                        PWVE = PWVE + PINCT
                          PWV = PWVE + PDDT
                    *Reset
                    HF(I, 1, 1)=HF(I, l,2)ExceptI=NCI
                    TT(I,JJ, 1) = TT(I,JJ.2)
                    HF(I, JJ+1, 1) = HF(I, JJ+1. 2)
                    TGKNCL)  = TG2AVG(NCR)
                    YREM = YREM - DYY
                                                             Do 650
 650 Continue
                                  I
                                  71

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                   Write (on file  6)
                     DYY, TGl(NCL), TGl(NCL-H),  TGl(NCR)
                   Write (on file 13)
                     TGHNCL). TGKNCL+1),  TGKNCR)
                      Write title for pressure drop results
                                   72

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                       *Gas side pressure drop
                       Define PGV, TA1, TA2
                       CALL PDROPA
                       Find PDD
                       Repeat for all NC coils
                                 I
                Write for all fluid paths, pressure-drop   I
                data and results                          I
                          Calculate PGVE
                    * Fluid pressure drop
                    Write title for pressure droi
               Find
                          Define  PWVX, Jl
                                 I
                        I = NCL (Fluid Pass I)
                                i
                      J1E, LZ [for VAPLl(I)]
Do 1030
                                  73

-------
FLOW DIAGRAM — VAPOEG (Cont'd)
                           MWV = MWVZ(Ll)
                           Find  J2,  HFA, TX
                           CALL PDROP1
                           Find FDD
                                   I
                   Write pressure drop data and results
                          PWVX = PWVX - PDD
                              1013
i
                     Find
                          LZ [for VAPL2(I)]
                   YES
                    Find  Jl, J2, MWV
                     XENT (min=0), XEXT (max =
                    CALL PDROP2
                    Find  PDD
                                   I
                   Write pressure drop data and results
                          PWVX = PWVX  - PDD
                                 74

-------
FLOW DIAGRAM -- VAPORG (Cont'd)
                              1016
                     Find
                           LZ [for VAPL3(I)]
                   YES
                       Find  Jl, J2, HFA.  MWV
                       CALLPDROP1
                       Find  FDD
                                   I
                   Write pressure drop data and results
J
               1030
                          PWVX =  PWVX - PDD
I
= I +
1
                    Write PWVE. HF (NCR, NX2+1.1)
                                                        1030 Continue
                                  75

-------
PROGRAM LISTING -- V APPRO
an
SUHKOIIT
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CUHhUN
COMMON
COMMON
COMMON
COMhON
COMMON
CUHHOM
COMMON
COMMON
COMMON
COMMON
COMMON
             1NK  VAI'nWGCMGI.MwF.PUVI.PGVE.PUVI.PWVE.TCVI.JS.NST)
             AP.R.C.I.CHK.CO
             co2P,cu?s,oc»>.un.i'in
             tOll I V,f ,>S.H20P.H2tlS
             rtP.HK.ilTl: LAM.HJ Ifc.tHV
             I HVT.LUS.LCT.MAIK.MFIUIP
             MFOFL. N?P.N?k.4?S. tflt-NUA
             NflEN|lG,N(I.NP.02P.02R
             0?S.PO,SP1.SSA.STA
             ST(5. TO, MS. WT. YfcXl
             ACMlt) ), ACuUf) ),BH(10),HK10 ).CU
             OH YdH.lD.Cl K10),CW,nilI dU).l)HO(lO)
             i)mo>. Ou(jo),uS(iii).nvrv(in),t;F
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
UIHiNSI
KI-AL I Z
            f Nidnj.j NUdo j.r««c,Fi idO.Fiodo)
            OVZd0.11,2).HMl0.11 .?),HF|Nldu ),HMN?dO),Hl!lNl(10)
            HK|N2dO).M(;i..lG1Y(ll.,l1 ).HTF,HT> Ydu.ll)
            J?t(10 ). JJt( 10 ),L( 10 ).l SIEP.M«2(10,H )
            NCY(3.),NCLY( J ) . NCK Y ( .1 ) . NC YCLfc. NFStCT ( 3 )
            NLOHp.NMdU ).NM| (l'l).HhO(lO ).NPH
            NPHYdll, d),NPK|Nl,NSS.NSI dO).NSn(lO)
            MT»«ANS.Mx?HAX(lli),NX?2(lll>.NXN.Nxn
            PGV(10).KFA,HMdn>.HM,KWY(in>ll)
            IRK 10). TGi?dO.J1 . ^),TG?AV(;dO), lGlN1dO).IRIN/?(10)
            I Int. r i do.li.^ ) . TUHKOW< 10 ). v*Hl Kio >. vftPL2<10 »
            VAt'l Jdll ), VOKiO ). »1(i(10 ).x2Ldll ). X21 (10 )
            CfA»l(6V.27).MLI«d?0),HlAH(69,27).HVAP(12«). INu
            NL INt ."iNll.NPsrtP.NlSTEP.I'dZb)
            KTArt(7.l).S1Ah(»i9,?/), T(l>>8)» I T AH ( 3J > . VL I Ud2t<)
            V T/\M(6^. ?7 ) , VVAK 1X8 )
            L.lHV.lHVr,I.CS,lf:T.MA|h.hFLU|».MfUfcL.Mw2,H?P.N?H,N2S.NO
            ON  MMV/dU.ll)
            .M*-Nl,MR|,nrvA(lU ).MGV/(l(l).HMt.MWV.MMVt»MMV2
     Shf NCYCU=U  INITIALLY IN  (ME MAM  PROUPAM
     NC=NCY(NTCOKP)
     HHV2(NCL , 1 > = rtt,2(NU
     If(NSI.NE.I)
     MWVt=MUt
     DO 3  ICNCL.NCK
     IF (NCYCLE.NH.il )  GO 10 P11
     CALL  UbOMCOi I )
     MUVA( I )=M.;|/( 1?.«L( I ) )
     CONTINUE
     PHV=PMVI
     IF (NTKANS.Nt .-I )  GO FO 861
     iNlllALIZl-
     no IR  I = N(;I .NT w
      ASSllMt AVh.HAUi  VALORS. S1AIE KfcL A T I ONSM I PS  NO I  IMPORT AN]
     I(5sn.^»( TiJlM ( I )+ lfilN2( I ) )
     A MuRh ACCOKAIE  Tl2 CAN Hi  OHIAINHO  HY  OSINi; IIP A I -TKANS . LOfFFS.
     'IZ=Tl<
     A1=12.»L(|)
                                                                           000/0
                                                                           ouo.to
                                                                           00040
                                                                           000*0
                                                                           00040
                                                                           00070
                                                                           0»0«0
                                                                           OUOVO
                                                                           OOlUO
                                                                           00110
                                                                           OU120
                                                                           00130
                                                                           OUMO
                                                                           nuion
                                                                           00170
                                                                           00180
                                                                           01)190
                                                                           00?00
                                                                           00?20
                                                                           OU2JO
                                                                           00?40
                                                                           Ou26fl
                                                                           00?/0
                                                                           ("U?«0
                                                                           00?90
                                                                           OU3IIO
                                                                           UOJIO
                                                                           00320
                                                                           OOJJO
                                                                           00370
                                                                           OU390
                                                                           004UO
                                                                           00410
                                                                           00420
                                                                           IIU44S
                                                                           l)04->0
                                                                           Iiil4b0
                                                                           DU4/0
                                                                           ou4ao
                                                                           IUI490
                                                                           O'J^IO
                                                                           ou^zo
                                                                           Ull*40
                                                                           no«>7o
                                                                           OU5VO
                                                                           006 HO
                                                                           00610
                                                                           OU630
                                      76

-------
PROGRAM LISTING -- VAPORG (Cont'd)
  10


   2

  15
  IB

 B61


 «62
i
 220
 22*
 721
 724

 725

 726

500J

 816

 818
 867
NX2=NX2Z< I )
CALL STEPSI(PWV.TH,HW,TC,TTZ,MWVZ(NCL.1).MGVA( I ).XF. I.A1.NX2)
IF (NX2.LE.NLUMP) GO TO 15
FORMAT(36H  NO. OF LUMP KEuUIRED EXCEEDS NLUMP )
WHITE(6.1U)
WHITE(6.2)NX2
FORMAU6H NX2  .110)
STOP
NX2Z(I)=NX2
INITIAL DISTRIBUTION
IF(I.NE.NCL) IIF< I ,1 ,1 > = HFIN1< I )
TGK I ) = TGIN1( I )
TG2( I.1,1)=TGIN2( I >
XN22=FLOAT-Hf INK I ) )/XN2Z
MHVZ( l.l)=MfcVZ(NCL.l)
00 IB  J=1,NX2
MWVZ( I, J*l)=MWVZ(NCL.l)
HK( I. J«l.l)=Ht ( I, J.1)*A2
NOTE UO NOT USE TG?.TT AT NX2+1
TG2( I. J.1)=TGIN2( I )
THI.J.1)=T»»*MWVZ(I.J)»A?/(HTF«DXN>
IFINPH.EO.?) 1T(I,J,1>=1W
CONTlNUb
GO TO 220
00 662  I=NCL.NCR
NX2=NX?Z( 1 )+l
DO 662  J=1,NX2
MWVZ< I, J)=MWZ( I. J)
ENTRY  POINT AFTER FIRST CYCLE
YREh=YEXT
Al THIS POINT THE
THE  NEXT EXTERNAL
THEY SHOULD Ht MAUt EuUAL TO THE
PwV  FKOM PRESSURE COMPUTATION
THE  FULLOwlNG IS A LOUP HACK FROM
CONTINUE
HF(NCL,1.2)=Hf (NCL.1.1)
CALL SATP(Pk*V,TSAT.GVL.GVV,HL.HV.l)
IFtNSS.bO.l ) GO TO 717
JS=JS*1
IF( JS.FO.LS1EP)
IF(NST.NE.O) UO
IF( JS.Nb.LSTEP)
WKI 1E<6,5U30 > TIME, JS
WKITE<6,50?9)
HKITE(6,725)Ht (NCL.1.1)
FORMATC29H  FLUID ENIHALPY
HHI !E(6.726)MhVZ(NCL.l)
FORMAK29H  FLUID FLOW RATH
WRI TE(6,50nj)CWV,TSAT
FORMATC29H  fLUlU PRbSSUKE. SAT TEMP
UK! 1E(6,816)Mi,l
FORMAT(29H  GAS FLOW RATb  (tNTRANCC)
WKI TE(6,818)Pi;V|, 1GVI
F()RMAT(29H  GAb PRbS, TEMP (ENTRANCE)
CONTINUE
IF( JS.Nb.LSlEH-1 ) GU fO 717
WHl TE(1.5.701) I IME
                        EXTkRNAL CONDITIONS AKF ENTERED  FOR
                        TIMt STEP.  DURING  I NITIALI2ATI ON
                                        INITIALIZING  VALUES

                                         STATEMENT  1000-1
                      NPRINI=0
                      To 721
                      GO 10 867
(KNIRANCE)  =.E15.5)

 (ENTRANCE) =,E15.5)
            =,F15.5)
00640
00650
00660
00670
00680
00690
007UO
00710
00720
00730
00740
00750
00760
00770
00780
00790
noeoo
00810
00820
00830
00840
00850
00860
00870
00880
0088?
00883
00884
008H6
00888
00690
00900
00910
00920
00930
01)940
00950
00960
00980
OU990
01000
01010
01015
01020
01030
01040
01050
01060
01070
01080
01090
01100
OHIO
01120
01130
01140
01150
01155
01160
01170
                                      77

-------
PROGRAM LISTING -- VAPORG (Cont'd)
701
717
230
817

729

72B
730
72/
806
807
231
      FORHAT(E15.5>
      CONTINUE
      00 396 I«NCL.HCR
      NXO=NX2Z3
      MOVAU) = HGI/(12.»LC l»
      MOVZ( I) = MGI/TUBRON( 1 )
      00 230 Jlal.NXO
      HU»)/2.
      TA= = H01
      HfFY< I, Jl )«HTF
      EFY<1, Jl >=EF
      CIFY
      NX2Z(I)=NXN
      DXN=12.«L(I )/FLOA1(NXN)
      DX2=DXN
      IF(NSS.I-U.l) UO TO 727
      IF(I.EO.NCL) OXN1-OX2
      IF( I.EO.DXN1,DXN2,DX2
      FORMAT(29H LUMP SIZE (COILS 1,2,3)
      MKITE(6.5029)
      CONTINUE
      IFUS.NE.LSTEt'-l) GO TO 727
      UKITE(13.730)NXN
      FORMAT(IIO)
      CONTINUE
      IF
-------
PROGRAM LISTING -- VAPORG (Cont'd)
      GO TO 235
 232   IF(HM-HV) 233.23J.234
 233   NPH=2
      GO TO 235
 234   NPH=3
 235   NPHY< I. JI )=NPH
 236   CONTINUE
 237   OU 238  Jld.NXN
      IF(NSS.EQ.l)  GO TO 238
      NPH = NPHY( J, JI )
»     LOCATb INTEKPHASES
      IF(NPH-2)229.226,227
 226   VAPL2( I ) = VAPL2< I ) » < DX2»AC I ( I ) )
      J2E( I ) = J2fc< 1 )*1
      GO TO 229
 22 /   VAPL3( I ) = VAPL.H I )»(DX2»ACI < I ))
      J3E< 1 ) = J3E( I )*1
 22V   VAPI.K I > = 12.»ACI< I 1»L< I >-VAPL2( 1 )-VAPL3( I )
      IF( VAPLK 1 ).LT.OX2«ACKl )/2.)  VAPLK I )«0.
 238   CONTINUE
      nYYM=YREM
      OU 26b JI=1,N*N
      X2=2.»/HTFY»HTFY(I.JI»
      DYX2=(2.»CTfYU,Jl)/HIFY(l,JI))/< (X2/DXN)*!.
      DYX3 = ARS(rtUV(l,Jl>*ACI(l>OXN/(MUVZ(IfJI
      IF(NPHY( I. JI ).E0.1)  DrY = FKAC»AM|Nl(OYXl,DYX2)
      IF (NPHY( I,JI).E0.2)  DYY=FRAC«AMIN1   CONTINUE
      OXN=DX2
      OYYY( I ) = OYYh
 396   CONTINUE
      OYY=YKFM
      DO 412 I=NCL.NCR
 412   OYY = AM|N1(DYY,DYYY( I ) )
      IF(NSS.EQ.n)  UO TU 71tt
      CALL  I T£RAT(PGVI,MG1, 1 SA T , MM VZ ( NCL . 1 ) . ML . HV , PWV I . JS. NC .
     7NCL,1)
      JI=NX2Z(NCR)
      HE INT=HF (NCK. J|*1>1 >
      IF(NSS.EO.l)  GO TO 71/
      1F(NST.NE.1 >  UO TU 710
      HKITEC6, 5030)1 I ME, Jb
 718   CONTINUE
      INX1=1
      INX2=1
      UIOT=U.
      DO 60U I=NCL,NCH
         = NX22( I )
         = 12.«L( I )/» LOAT(NXN)
      TG2T=0.
      IF (NST. NE.n )  UO TU 82i?
      IF( JS.NE.LS1EH) GO IU  821
      IF ( l.NE.NCL)  >.0 TO 7U
822  IF ( l.NE.NCL) • .() TO 7U

732  FORMAK3X.5H LUMP, 1II X. 3H H2,14X,3H TF.14X.3H  TT,1.JX,4H
    714X.3H M2.10X.4H NPH)
71J  CONTINUE
                                                             TG2.
01760
01770
01760
01790
01800
01810
01820
01830
(11840
01850
01860
01870
01880
01890
019UO
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
021UO
02110
02120
02130
02140
02150
02154
02155
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
                                     79

-------
PROGRAM LISTING -- V APPRO (Cont'd)
      MKITE(6.20)I                                                       02340
  20  FORMA1 (3BX,t>H««»«t,l6H FLUID PASS NO.  , I5,5H«»»»«)                02350
 621  CONllNUfc                                                           02360
      00 420  JI«1,NXN                                                   02370
      NPM=NPMY(I. J! >                                                     02380
      TG=(TG1( I )*I02(I. JI,l>)/2.                                         02390
      CGG=FCG(TO.kFA>                      .                             02400
      Xl32..MGI»CGO/(H6TY( 1. Jl )»L(1 )»12.)  '                             02410
      BHol./Xi                                                           02420
      TGN=TU1(I>                                                         02430
      NHB = 1                                                             02440
      IF(HB.G1.0.5>  NH8«2.5»8B                                           02450
      BHraB/FLOATJNUB)                     •                             02460
      FG?G1=(1.-BH)/(1.»BB)                                             02470
      FG?T=1.-FG2C1                                                      02480
      AOT=FG?T»1T( I. Jl.l)                                               02490
      00 280  LK*1,NBB                                                   02500
 280  TGN=FU2G1*TGN*ADT                                                 02510
      TG2< I, JI,2)*TGN                                                   02520
      T0?< I, Jl,l) = TG2< I, JI.2)                                           02530
      TG?T=102T«TG2( I. JI.2)                                             02540
      GO TO (397.39B,d9V).NPH                                           02550
 397  TKEf=TSAT                                                         02560
      HFAVO=(HF(I, J|,l)»Hf (I. JI»l,l))/2.                                02570
      HREF»HL                                                           02580
      CPP=FCWL(TREF)                                                     02590
      TX=TREF                                                           026UO
 BOJ  TFX=TREF»(Hf A VG-HKEF )/CPP                                         02610
      TX!=(TRbF«T» X)/2.                                                 02620
      IF(ABS«TX-m>/TX)-.Ul>  805.805*804                              02630
 804  TX=1X1                                                             02640
      CPP=FCUL(IX)                                                       02650
      GO TO 803                                                         02660
 805  FrG=(OYYX2. )*(HGTV( 1, Jl )/CTKI ))                                  02670
      FTT = 1.-(DYY/CTT( I ))« >                                               02760
      FF2f 2 = 1.-(DYY/CIFY( I,JI))««H!FY(I.J1 )/2. )» (EF Y ( I , Jl )/DXN ) )       02770
      HF( 1. JI*1,2)=FF2F2»HF(I, J|»1,1)»FF2F1«HF(|, JI,1)»                 02780
     5FF2U(TT( I, Jl.l)- I REF*( HREF/CPP ))                                 02790
      HFN=HF(I. Jt+1.1)                                                  02800
      GO TO 410                                                         02810
 398  IF( INXl.Nfc.l)  60  TO 2000                                           02820
      HEN1»HF< I, JJ.l)                                                   02830
      HENN1=HF( I, JI.2)                                                  02840
      MEN1=HHVZ( I, Jl )                                                   02850
      1NX1=2                                                             02860
2000  CONTINUE                                                           02870
      DROIJH=( (l./GVD-(l./GVV) )/(HL-HV)                                 02880
      FTG=(OYY/2. )»HGTY(I.JI )/CTT(I)                                    02890
      FTT = 1.-(DYY/CTT(I))«(HTFY{|,J|)»HOTY(I,JD)                       02900
      FTF = DYY»HTFY( 1, Jl )/CTI( I)                                         02910
      TT( I, JI,2)aFTT«TT( I. J 1 , 1 > «F 1F*TSAT*FTG« ( TGI ( I >• T02( I . Jl,D)       02920
      riAVGl=(HF( I.JI.l )»HF( I. JI«l.l))/2.                                02930
                                     80

-------
PROGRAM LISTING -- VAPORG (Cont'd)
 399
 827
 &28
      Xtl=(HAVGl-HL>/(HV-HL>
      IFCXE1.LT.O.) XElsO.
      IF(XEl.GT.l.) Xfcl=l.
      RO=(l./GVL) + Xtl«((l./UVV)-(l./6VL»
      VBAk=l728./
      FF2F2=1 .-FF2F1
      Ff 21=UYY»VHARoHTFY(I. Jl )
      HF< I, Jl+1.2)=FF2F2«HF(I. JI*1.1)+FF2F1»W
     6(TT( 1, JI.D-TSAT)
      TFX=TSAT
      HFN=HF< I. Jl+l.l)
      DfcLlH=HF( I, JI.1)-HF( !.JI«1.1)
      TOIFF = TT(|, JI.D-TSAT
      IF« Xfcl.LT.O.U).AND.< TDIFF.GE.3f). )) TDIFF&30.
      TERM1=TUIFF*H1FY( 1. Jl )«DXN
      PKEF=-DKnOH/RO
      WVZ=NHVZ< I, Jl )
      TtRM2=PREF»DELTH
      TERM3=PREFoTEKMl
      UVZ=(1.*TERM2)»UVZ*1EKM3
      NUVZ( I, Jl+l)=wVZ
      HtXl=HF( I, JI+1,1)
      HEXN1=HF( |,JI+1,2)
      60  TO 410
      IF( INX2.NE.1 ) 60 TO 827
      HFA = HF( I. .11.1)
      HFB=Hf (I. JI+1,1)
      GO  TO H28
      HFA = Hf < I. JI.2)
      HF8=HM I. Jl«1.2)
                                                 J| ,1 ) + FF2T»
      CALL SIIPPKPUV. TFX.hFAVU,UD.GV.3)
      6VZ< I. Jl.l)=6v
      HREf =HFAV«*5.
      CALL SUPPKPHV.TRtt . HKEF.OD.DD.3)
      CPP=(HFAVB-hRtF)/=f TT«TM l.Jl,l)*FTF«(HFA*HF< I, JI + 1.2))*
     4( IGot lin < I ) + TU2l If Jl.l) ) + FCUN
      HFXN2 = Ht ( I, Jl+1.2)
      HJ AvG=(HM I. JI,2)*HF(1, JI + 1.2))/2.
      CAU Sl'HPKPMV, IUV.HFAVU.UD.GV.3)
      GVZI I, Jl ./>=GV
      HFN = HF t 1 .JI+1,1 )
      MMVZi I , Jl*1 )=MUVZ(I.JI )+(f)XN/UY».ACI( I )»(GVZ< 1.JI.2)
     7GVZI I. Jl.l) )/
-------
PROGRAM LISTING -- VAPORG (Cont'd)
5030
 736

5032
 668
 705
 71)6
503J
5021
 42U
 421

 423
 600
 610
      FORMATMOH                           ••••• TINE • ,E15.5.
     721H        (TIMESTEP NO..I5.2H »
      IF(NST.NE.O) GO TO 736
      IF< JS.NE.LSTEP) 00 10 868
      WKITE(6.S032)JI.H»N.TFX.TT(I.JI.1).TQ2(I.JI.1>*
     7MMVZ(I,JI«1 J.NPHYCI.JI)
      FORMATU6.4X,'>F17.5.I6)
      CONTINUE
      IF(JS.NE.LSTEP-l) GO TO 706
      MRITE<13.705)HFN,TT . MWVZ< I . Jl *1 )
      FORMAK4F.15.5)
      CONTINUE:
      IF(NPKlNT.Nb.O) 00 TO 5021
      WRITE<6.5U33)HTFY< I. Jl ) , C TF Y < 1 . J I ) . EF Y< I , Jl ) . HGT Y < 1 . J 1 )
      FORMAK17H HTF , C If . EF , HGT  ,4E15.5>
      CONTINUE
      IF( JI.NE.NXN) GO TO 420
      IF( I.hO.NCH) UO TU 420
      HF( I*1,1.2)=HF< I,NXN*1.2)
      CONTINUE
      TG?AVG( I )3TU2I/FLUAT(NXN>
      IF( I-NCL-1) 421,423.600
      TG1(NCL«1)=TOVI
      GO 10 600
      TGKNCR) = TG2AVG(NCL»1 )
      CONTINUE
      TIHE=TIHE*nYY
      PKFSSURE CALCUIATION
      VAL1=U.
      VAL2=0.
      VAL3=U.
      UM = 0.
      DENM=0.
      00 610 J=NCL.NCK
      VAL1 = VAI 1»VAPLKJ>
      VAL2=VAL2*VAPL2< J)
      VAL3=VAL3»VAPL3( J)
      1F< ( VAL2*VAL3).EO.O. ) GU TO 635
      VAL=VAL1*VAL2*VAL3
      HFG=HV-HL
      GFG=GVV-GVL
      AX=GFG/HFG
      OELH=2.
      OELP=2.
      PLOUcPHV-DFLP
      IF( VAL2.EU.O. ) UO TU 620
      HFAVl= XAV1=1.
      UG = XAV1*VAL2/(172H.*GW)
      WF=(1.-XAV1)«VAL2/(17^8.»GVL)
      CALL SATP(PLOw.OD.GVLl,GVvl,HLl.HVl.l)
      AK1=WG»(HV-HV1 )/DELP
      AR?=WF»(HL-HL1)/OELP
      AR3=WF»(GVL-GVL1)/OELK
         = UG*(GVV-nwi)/DELP
          = DENM»AX»( AI<1*AK2)-(AR3
      IF(NPklNT.NE.O) GO TO 620
03590
03600
03610
03620
03630
03640
036*0
036!>5
03660
03670
03680
03690
037110
03710
03730
03740
03760
03770
03700
U3790
03800
03810
03820
03830
03840
038*0
03860
03870
03890
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04195
                                     82

-------
PROGRAM LISTING -- VAPORG (Cont'd)
 82J
 620
 624
      WRITE(6,823)HEN1,HF;X1.HFAV1
      WHnE(6,823)HL.HV.XAVl. VA12.0VV.GVL
      gRlTE(6,B23)HG,WF,PLOw,GVLl.GVVl
      WRITE<6,823)HLl,HVl.DtLP.ARl.AR2
      WHlTE(6,623)AR3,AK4,DfcNM,AX
      FORMAT(7H  VAP1   .6F15.5)
      IF< VAL3.EU.O. )  GO  TU  630
      HFAVl=(HEXl+HfcX2)/2.
      HFAV2=
      CALL  SUPPT(PMV,nD,Hf AV1*I>K-LH,I)D,GAV3,3)
      WS=VAL3/(1728.»GAVJ )
      AXl=(UAV3-GAVl)/DfcLH
      AX2 = WS»(GAV1-GAV2)/I>ELP
      UH=Uh*US«(AXl-AX)MHFAV2-HFAVl)/DYY
      n6NM=UENM-AX2
      IF< NPKlNT .Nh.Q )  GU 10 6,3(1
      Hkl TE(6,824)UM,UENM
      FORMAK7H  VAP2   .2E15.5)
      NX2=NX2Z(NCK)
      AS1=AX«
 650
       WHI Tt<6,B?«5)TAVl.GAVl,GAV2.CAV3
       Wrtn£(6,H25)UH,AX.UYY.DbNM
       WKI TE(6,82^)AS1.0I01
       WWI TE( 6,8?5 )MwVZ( NCL, 1 ).Hl.» MF ( NCL. l.D.MWE
       kJKI IE(6.8/»5)HMNCK.NX^*1,1 >,AS2.GVL
       Fl)RMAT(7H  VAPj   .^F15.5)
       *JK| TE(6,5U62)P|NC!
       FORMAK8H  PINCT  ,E15.5)
       GU  TO  640
       PINCT = 0,
       PwVh=PWVE»P| NUT
       PWV=PHVE+POUT
       gRI (E(6,5029)
       RtStT
       OU  650  I=NCL,NCW
       NXN=NX?Z( I )
       IF ( I .bO.NCL >  iiO TU 64^>
       HF< J,l,l)=Hf U ,1,2>
       CONTINUE
       MWZ(l,NXN»l)eMMVZ(1.NXN*l)
       OU  65U  JJ=1,NXN
       TT( I, JJ.l ) = TT( 1, JJ,2>
       HF( I, JJ*1,1 )=HF( I, JJ*1,2)
       HHZl 1 , JJ)=MV*V2< I . JJ)
       CONTINUE
       TGKNCL ) = 1G?AVG(NCR)
       YKEM=YRbM-DYY
       IF(NST.NE.O)  (iO TU H26
       IF ( JS.NE.LSTEP) Gu 10  869
04200
04210
04220
042JO
04240
04250
04260
04270
04280
04290
043UO
04310
04320
04330
04340
04350
04360
04365
04370
04380
04390
04400
04410
04420
044JO
04440
044t>0
 04460
 04470
 04480
 04490
 04500
 04510
 04520
 04530
 04540
 04550
 04560
 04570
 04180
 04590
 04592
 04610
 04620
 04630
 04640
 04650
 04660
 04670
 046rtO
 04690
 04700
 04710
 04720
 04730
 04740
 047«>0
 04760
 04770
                                      83

-------
PROGRAM LISTING -- VAPORG (Cont'd)
 t)26  HHI TE(6.4H)DYr, TGKNCL), TUKNCL*! ).TG1(NCR>                        04780
  4fl  FuPMAKlOii DYr.TGl  .4E15.5)                                       04790
 86V  CUNTlNUb                                                           04795
      IF( jS.Nb.LSIEP-l> GU  10 7(18                                        04800
      MR1 TEU3. 707) IG1 (NCL ), TGI ( NCL* 1 ). TGI ( NCR )                          04810
 707  FURMAH JE15.5)                                                     04820
 708  CUNllNUb                                                           04830
      IF(JS.Nt.LSTEP) GU  10 225                                          04840
•     GAS-SIIH PRESSUHE nKUP                                             04850
      MRI IF(6,l>029)                                                      04852
      MKITE(6.5U?9)                                                      04854
      WRITE(6.42)                                                        04860
  42  FORMA1 (46X.28H »• PREbSURt  IIRUP RESULTS  • •)                        04870
      WHI TE «">,85l )                                                       049UO
 851  FURMAT(12H •• GAS SIDb)                                            04910
      WRITE(6.85?)                                                       04920
 H52  FORhAT(3X,»>H COIL,7x,iOH  MASS FLOW.9X.8H  INLET  P.10X,              04930
     7811 INLET I.10X.7H txll  T.10X.9H PR.  DROP)                          04940
10UU  CONIlNUt                                                           04950
      PGV                                                  04980
      J=NCL*1                                                            04990
      CALL  PDUUPA(PiiV< J). 1A1. T A2 , MG VZ < J >. NSO < J ), DHO< J ), 00 ( J ), AGO < J ).     0511 UO
     1 L(J>.X2L3)J.MGVZ( J).PGV( J). TGI ( J ) , TG2 A VG( J ). PDD                  05020
 B53  FORMA I( I6.4X,>E17,5)                                               05»30
      PUV(NCR)=PGV                                                    05090
      J=NCR                                                              05100
      CALL  PDHOPA(PuV(J),TAl.TA2,MGVZ(J).NSU(J),DHO(J).00(J),ACU(J).     05110
     ? L, PDD                  05130
      PGV(NCI ) =HGV(NCK)-POD                                              05140
      TA1 =TU1 i NIH )                     '                                  05150
      TA?=TG?AVU(NCL)                                                    05160
      J=NCI                            !                                  05170
      CALL  PPkOPA(PGV(J),TAl.1A2,MGVZ(J),NSU(J),DHO(J). U0(J) . ACO( J),     05180
     3 L(J).x?L(j),fNU(J>,FHO(J).FTO(J),RM(J),PDD)                       05190
      MHI1E(6,R>>3>J,MGVZ(J>,PGV(J),1G1(J>.TG2AVU(J>.PDD                  052UO
      WRI IE(6.5U?9>                                                      05210
      PUVf=PGV(NCI)-PDD                                                  05220
      WRI IE(6.854JPUVt.TG2AVG(NCL)                                       05230
 «54  FORMAH25H EXIT PRESSURE. TEMP     =.2bl0.5>                        05240
      WR I IE(6,50?9 >                                                      05250
      WRI (6(6.5U?V >                                                      05260
•     FLUID  fHEssuRb URUP                                                05270
      WR I IE (t>, 856 )                                                       05280
 856  FORHAU14H •• fLIMO SIDE)                                          05290
      wwl IE(6.857)                                                       05300
 857  FORMAH3X.5H COIL,9X,SH FLOW.14X,4H NPH,12X,7H LENGTH,             05310
     79X.11H  INLET PRES,8X,VH PH.  DROP)                                 05320
      PMVX=PWV                                                           05330
      Jl=l                                                                05340
      l)u 10JO I=NCL,NCR                                                  05350
      Jlt=NX?/(|)-(j?b«l)*JJE(l))                                        05360
      L2 = VAPL1U >/(!?.•ACIU ))                                           05370
      IF                                                       05390
                                      84

-------
PROGRAM LISTING -- VAPORG (Cont'd)
5070
5072
5U71
 M58
1013
1016
1U30
 859
      CALL SATPCPUVX. THV.DD,DD,HL.HV,I >
      J2=J1E*J1
      HFA=50 71,5071.5072
      TX=TX1
      GO 10 5070
      CALL PDkOPKPKVX, IM.NWV.DHKI > , AC I ( I > , L Z , 1 . POD. DO, DO, Of) )
      NPH = 1
      WKI TE(6.858) 1 , HWV, NPH, LZ. PWVX, PUD
      FORMA T< l6,4X,tl7.5,l9,8X.JEl7.5)
      PHVX=PHVX-PDD
      L2=VAPL2< !>/(!?. »AC|( I ))
      IFCLZ.ED.O. ) GO TO 1016
      Jl=Jlfc»l
      J2 = J26( I )*J1
      MHV=(MWVZ(I.Jl)»MWVZ(l.J2»/2.
      CALL SATP(PHVX. TWV.PO. DO. HL.HV.l)
      XtNl = (HF( |. Jl.l )-HL)/(HV-HL)
      XhXT=(HF(|,J2.1)-HL)/(HV-HL)
      IFCXENT.LT.O. )  XENT = 0.
      If ( XEXT.G1.1. )  XEXT = 1.
      CALL HUKOH?(PhVx, IWV. XENT, XEXI .MWV.OHI ( I ),ACI( I ).LZ.POD)
      LZ=VAPL3( I)/(12.*ACK 1»
      IK (LZ.Fti.n. ) 00 TO 10 JO
      Jl=J2b( I  )*J1E*1
      J2=J3E( 1  )»J1
      H^ A=(riF(  I, Jl,l )«HM I, J2>1
      MHV=(MWVZ(1 . J1)+MMVZ( I. J2))/2.
      CALL SUPPKPHVX, I WV, Hf A, I)U. DO. 3 )
      CALL PLlROPl(P^VX,lwV.rtWV.uH|(|),ACI(I ) , L 2. 3. PDD, Dl). I)D, DD )
      NPH = 3
      HKITE(6,858)I,MWV.NPH.LZ.PMVX,PDD
      MRI TF(6,'JU?V)
      PWVX=HWVX-PUD
      CUN1 I NIIE
      PWVfc=PWVX
      NX2=NX?Z(NCK)
      WKI TE(6,8->9)PwVE.HF(NCR.NX2*l,l )
      FURMAT(25H EXIT PRESSURE. ENTH
      KE TURN
      END
05400
05410
05420
05430
05440
05450
05460
05470
054HO
05490
05500
05510
05520
05530
05540
05550
05560
055/0
05580
05590
05600
05610
05620
05630
05640
05650
05660
05670
05680
05690
05700
05710
05720
05730
05740
05750
05760
05770
05780
05790
05800
05810
05820
05830
05840
05B50
05860
05870

-------
SUBROUTINE DISTR

    DISTR calculates new nodal distribution (NXN nodes) from previous
distribution (NXOnodes),  by linear interpolation, for VAPORG.

NOMENCLATURE -- DISTR

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of DISTR are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:

    FORTRAN
    Variable                 Definition                 Units

       I                  Fluid pass number
                                  86

-------
PROGRAM LISTING -- DISTR
  ?o
  (SO
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      CMMMQN
      COMMON
      COMMON
SllBKOUT I NH HlbTK( I )
COMMON AP.I.CH,CHh,CO
COMMON C02P,Ct(2S, DCS, OCT. HTH
       tOUIV,F,FS,H?OP,H20S
       HP.HH.HTrLAM.HTlN.LHV
       LHtfT,LCS,LCT,MAIK,MFLIHD
       MFOFL.N?P,N?f<. N2S.NRENDA
       NRI-NDG,NO.NP,02P.02R
       U?S.PO,SP1,SSA.STA
       Sin,10,MS,WT,YEX1
       ACIdO),ACU<10),BH<10),Bl(10),CTF
       CTFYdU.lU.CTTdO ).CH,DHI(10),DHO(10)
       Uldll),n'K10),DSdn),DYYYdO),EF
       fcFYdO,n>,FG.EGYdO,ll).FHI (10),FHO(10>
       fNI(in),rNU(10).fRaC,FTI(10)»FTO(10)
       i;VZdO,ll,2),HF(10,11.2),HF I Nl (10 ), HF I N2 (10 ) , HO I Nl (10 )
       HR|N2,HGT,HGTY<10,ll).HTF.HTFY(10,ll>
       J?h(in ),.)3t(10),LdO),LSTEP.MWZ(l0.ll)
       NCY(3),NCLt(J),NCRY(3),NCYCLE,NFSECT(3)
       NLHMP.NMdO ).NHI (lO).NMO(in >.NPH
       NPHY(lll,ll),NPKINT,NSS,NS!(10),NSO(10)
       NT«ANS.NX?MAX(10),NX2Z(10),NXN,NXO
       POVdO),WFA,KMdll).RM.RMY(10.11)
       TGI (10 ), TG2(10,11.2).Tr;2AVG(10). TO 1 Nl (10 ). TO I M2 d 0 )
       l|MP,TldO,1l,2), TIIBROWC10), VAPLK10), VAPL2(10)
       VAHI.3(10>,VOL(10 ),XlG(in),X2L(10).X2T(10)
       CTAR(AV,?7),HLlO,SIAH(69,27),T(128),TTAB(33).VLIO(128)
       VTAR<6V,27 ),VVAP<128)
       L.I.HV.I HVT,LCS,LCT,MAIH,MFLUID,HFUEL.MWZ,N2P»N2R,N2S,MO
           SCFK.KI ),SCF2(30),SCF:5(3U).SCF4(30).SCF5(30)
           SrF6(30).SCf7(3o).SCF«(30)
           •ON) w
                 OH.
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
      COMMON
Pt-Al
n i MI-MS I ON
      1 ON
      ,FO,
      ,GT,
                          NXN.GT.NLUMP) GO TO 20
n 11
It ( NXi>.
IF(MXO.
GO  10 Ml
>t K I I F t 6 , 5 I) )
FORMAK27H Nil. OF  LUMPS  EXCEEDS NLUMP)
S 101

     SINCF bCM ,SCF?.SCH,SCF4.SCF5,NSCF ARE
wl-  Nfci-li NiiT TrtANS>FK  (FU( 1 ), H( 0(1 ), PFO( 1 )
                                                     ONLY  SCRATCH ARRAY
                  = H> ( I ,NXO*1,1 )
      on inn  N s x > 1^ x N
      .1 = 1 »NXHo (N-l J/NXN
      A1=MOA[((N.1)»NXU-(J-1)«NXN)/XNN
      SCV?lN):ilF( l,.i,l)*A1»(HF(I
 1 nil  CUNI I Mif-
      N It- M = NXN* 1
      no ?on  i» = ?, MI- M
      MW?( I ,N) = SCFIt N)
      HF ( i, N. i »S«;I:F? ( N)
 20U  CONTINUE
      no JO n  N = l . MXu
      Js.l+.SoFlHATJ(?»n-l>»NXO)/XNN
•      NOU IMiT  J  CAN  Nt90
 00600
                                       87

-------
PROGRAM  LISTING --  DISTR (Cont'd)
 290
 295
 300
 400
If(J.EO.NXO) GO TO 295
6l = .5«f LO&T«?«N-l>»MXO--TO?
SCF6(N)=EFY»NXO)/XNN
SCFl(N) = Tf(I,1,1 )-Al»(TT< 1,2,1 )-TT< 1,1,1))
      SCF?(N)=Tfi?(
      SCF4(N)=EOY<
             , 1,1)-A1«(TG2l»
      SCF5(N)=HTFY 1,1)-A1«
           .LE
           .LE
           .IE
  ,0.) SCF1(N)=TT(1,1,1)
  ,0.) SCF2(N)oTG2(1,1,1)
  ,0.) SCF3(N)*HGTY(I,1)
  ,0.) SCF4(N)=EOY(1,1)
LE.O.) SCFb(N)sHTFY(I,l)
LE.O.) SCF6(N)»EFY(I,1)
LE.n.) SCF/(N)sCTFV<1,1)
LF.O.) SCF8(N)sRWY(1,1)
00 TO 300
A1 = .5»FL06T(NXOM2»N-1)-NXN»(2»HXO-1»/XNN
SCF1 (N) = TT( 1,^X0,1)*A1»(TT( I,NXO,1)-TT< f.NXO-l.D)
SCF2(N)=TG2f
SCF3(N)=HGTY
SCF4(N)?EUY<
SCF5(N)aHTFY
SCF6(N)=EFY<
SCF7(N)«CTFY(
SCFB(N)eRwY
CONTINUE
RETURN
END
                   , NXO,1 >»A1M TG2U,NXO,1)-TG2<1.NXO-1,1»
                   I ,NXO)»A1»(HGTY( |,KXO)-HOTY(I,NXU-D)
                   ,NXO)«Al«(tGY(I,NXO)-EGY( I.NXO-D)
                   I ,NXU)*A1»(HTFY( 1,NXO)-HTFY(I,NXO"D)
                   , NXO)*A1»(EFY( I,NXO)-EFY(I,NXO-D)
                   I,NXO)*A1»(CTFY( I,NXO)-CTFY( I.NXO-D)
                   , NXO)»A1«(RWY( I,NXO)-RWY(I,NXO-D)
                        SCFl(N)aTT(I.NXO.l)
                        SCF2(N)>TG2(I.NXO.l)
                        SCF3(N)aHGTY(I,NXO)
                        SCF4(N)EEGY(I.NXO)
                        SCF5(N)«HTFY(I.NXO)
                        SCF6(N)=EFY(I.NXO)
                        SCF7(W)«CTFY(I.NXO)
                        SCF8(N)*RMY(I.NXO)
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
OOA60
00870
00880
00890
n090fl
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
OHIO
01120
01130
01140
01150
01160
01170
01180
01190
                                     88

-------
SUBROUTINE GEOMCO

    GEOMCO calculates all geometric constants for VAPORG.

NOMENCLATURE -- GEOMCO

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of GEOMCO are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:

    FORTRAN
    Variable                 Definition                Units
       NC                Fluid pass number
                                 89

-------
PROGRAM LISTING -- GEOMCO


      SUBROUTINE GEOMCO(NC)                                             00020
      COMMON AP,B,CH.CHR,CO                                             00030
      COMhON CO?P,C02S,DCS.DCT,DTH                                      00040
      COMMON EOUIV,F.FS,H20P,H2nS                                       00050
      COMMON HP,HH,HTFLAM,HTIN.LHV                                      00060
      COMMON LHVT,LCS,LCT.MAIR.MF|_UID                                   00070
      COMMON MFUEL,N2P,N2R.N2S,NBENDA                                   OOOHO
      COMMON NBfiNnG,NU,NP,OZP,02R                                       0009D
      COMMON 02S.PO,SP1,SSA.STA                                         00100
      COMMON STG.10.WS.WT,YEXT                                          00110
      COMMON ACK10).ACO(10 ),BH{10).Bl(10 ).CTF                          00120
      COMMON CTFY.DHO<10>                     00130
      COMMON OHIO),00(10),l)S(10).DYYY(10).Er                           00140
      COMMON EFY<10,ll),EG.EGY(tO,ll).FHI(10),FHO(10)                   0015.0
      COMMON FNl(10),FNU(10).FRAC,FTI(10),FTO(10)                       00160
      COMMON GVZ(in,ll,2>.HF<10,ll,2),HFlNl<10V.HFlN2(lQ>,HGINl(10)     00170
      COMMON HGiN?(tn>,HGT.HGTY(IO,II),HTF,HTFY(IO,II)                  ooiao
      COMMON J2EUO I, J3fc(10),L(10),LSTEP.MW2(10,ll)                     00190
      COMMON NCY(3),NCLY(.n.NCRY(3),NCYCLE.NFSECT(3)                    00200
      COMMON NLUMP,NM(1Q),NM1(10).NMO(1U).NPH                           00210
      COMMON NPHYUil.ll >.NPRINT,NSS,NSIUO),NSO(10>                     00220
      COMMON NTRANS,NX2MAX(10).NX2Z(10),NXN,NXO                         00230
      COMMON PGV(10>,RFA,RN(10),RU,RWY(10.11)                           00240
      COMMON TGI(10),rG2(10.11,2),TO?AVG(10),TOINl(10),TBlN2(10)        00250
      COMMON T1MF,TT(10,M,2),TURROU(10),VAPL1(10),VAPL2(10)            00260
      COMMON VAPL3( 10 ), VOLdO ), XlGdO )/X2L(10),X2T(10 )                  00270
      COMMON CTAB(6v,27),HL10(128),HTAB(69,27).HVAP(12e>,1ND            00280
      COMhON NLINt,NND.NPSTbP,NTSTEP,P(128)                             00290
      COMMON PT&R(7ll ),SUH(69,27),T(128),TT»B(33),VLIO(128)             00300
      COMMON VTAB(6V,27),VVAP(1?8)                                      00310
      RFAL   L,LHV,IHVT,LCS,LCT,MA1R,MFLU|D,HFUEL,MWZ,N2P,H2R,M2S,NO    00320
•     HYDRAULIC DIAMETERS                                               00330
•     USE FUNCTIONS                                                     00340
      VOLB»(3.1416/4. )»(nO(NC)»»2-DI(NC>»»2)                            00350
      M1=NSO(NC)                                                        00360
      GO TO(10,?0,3U).M1                                                00370
  10  ACO(NC)=X2l(NC>-DO(NC>                                            00360
      DHOBX?L
-------
PROGRAM LISTING -- GEOMCO (Cont'd)
      AC I «FHI                                                          OQ670
      Gil 10  (140.145),Ml                                                 006AO
•     NUTE  THAT  A1  KRESENILY FOKMIILATED THE FUNCTIONS FCMS(TX),         00690
•     FHMS(TX>,FrhC5,160 ),MI                                                 00610
 155   C10 = FC:MS(TX)                                                       00820
      RTO=FKMS(TX)                                                       00830
      GO TO  165                                                          00840
 160   CIO=FCMC(TX)                                                       00«50
      RTn=FKMC(TX)                                                       00860
 165   MlsNSI(NC)                                                         00870
      It(MI.EU.l)  GU  TO 1HO                                             OORbO
      MlsNMKNO                                                         00«>Jn
      GO TO(170,175).MI                                                 00900
 170   CT!=FCMS(TX)                                                       00910
      PTI=FRMS(TX)                                                       00920
      00 TO  180                                                          009,50
 175   CTI=FCMC(rX>                                                       00940
      RTI=FKMC(«X)                                                       00950
 180   CTT(NC)=VOLfi»CTH»HTB                                              009^0
      IF(NSO  CTI (NC)=CTT(NC) + VOLO»CTO»RTO                     00970
      IFCNSI(NC).NE.l)  CTT(NC)iCTT(NC)*VOLI«CTI»RTI                     009HO
      CTT(NC) = CTT(ND/1728.                                             00990
      RETURN                                                             01000
      END                                                                01010
                                     91

-------
SUBROUTINE STEPSI
    STEPSI calculates the stability limit on lump size for each lump of
VAPORG.  STEPSI employs the following subroutines:
                  HT1PB
                  HT2PB
                  HTGR
                  HTGTB
HTGTF
HTGTM
HTPF
PHASE
NOMENCLATURE -- STEPSI
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of STEPSI are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable                 Definition
    HW         Enthalpy of working fluid
    MGV        Mass flow rate of gas
    MWV        Mass flow rate of working fluid
    NC         Fluid pass number
    NX2         Number of lumps for a given coil
    PW         Pressure of working fluid
    TG         Bulk gas temperature
    TI          Wall temperature at mid-node  of a
                lump
    TW         Bulk fluid temperature
    X           Quality of bulk mass within a lump
    X2G         Geometric limit on lump  size
                   °F
                   °F

                   in.
                                  92

-------
PROGRAM LISTING -- STEPSI
 10

 20

 30
 4U
 5U
 60
SUBROUTINE STEPS1(PW,TW,HW,TO,TI,MHV,M6V.X.NC»X20.NX2>             00020
COMMON AP.B.CH.CHK.CO                                              00030
COMMON C02P»C02S,UCStOrT,DTH                                       00040
COMMON EOUIV,F.FS.M20P.H20S                                        00050
COMMON HP.HR.HTFLAM.HTIN.LHV                                       00060
COMMON LHVT,LCS,LCT.MAIR.MFLIJID                                    00078
COMMON MFUEL,N2P.N2R.N2S.NBENDA                                    00080
COMMON N8ENDG.NU,NP.OZP.02R                                        00090
COMMON 02S,PO,SP1,SSA.STA                                          00100
COMMON STG,TO,WS,HT,YEXT                                           00110
COMMON ACI (10), ACO(]0),BH(10)*BM10),CTF                           00-120
COMMON CTFYUn,ll).CTT(in>.Cy,DHlUO>.tVHO(VO.>                      00139
COMMON Dl (lfl),r>0(10 ) , US( 111). DYY Y (10 ) , EF                            00140
COMMON FFY<10,ll),EG,eGY(10,ll).FHt(16),FHO(10)                    00150
COMMON FN|(10 ).rNO<10).FRAC,FTI(1U>.FT0<10 )                        00160
COMMON GVZ(10,11,2),HF(10.11.2).HFIN1<10)«HFIN2<10).HGIN1<10)      00170
COMMON HGIN2(10 >,HGT,HGTY(10.11>.HTF.HTFY(10,11 )                   00180
COMMON J2E<10 ),J3E(10 ),L<10 ),LSTEP,MHZ(10.11)                      001VO
COMMON NCY(3)., NCL Y ( 3 ) , NCR Y ( 3 ), NCYCLE. NFSECT (3 )                     00200
COMMON NLUMP,MM(10),NMl<10).NMO<10),NPH                            00210
COMMON NPHY(lu,ll),NPKlNT.NSS,NSI(10),NSO<10)                      00220
COMMON NTHANS.NX?MAX<10),NX2Z(10),NXN.NXO                          00230
COMMON PGVdO >,PFA.RM(lfl),RM,ftUY(1.a.ll)                            00240
COMMON TGK10 ), TG2(10,11.2).TG2AVG(10),TOIN1(10).TGIN2(10)        00250
COMMON IIMF. TKlO.ll.Z), TllBROM(lO). VAPLK10), VAPL5M10)             00260
COMMON VAPL3(1 0 ), VOLUO ), XlGdO ) , X2L (10 ) , X2T (10 )                   00270
COMMON CTA9<6V,?7).HLIO(1?8),HTAB<69.27).HVAP<128),INU             002BO
COMMON NLINE,NNIi,NPSTbP.NlSTEP.P(128)                              00290
COMMON PTAR(7n),STAB(69.27),T(128).TT*8(33).VLftl(l?8)              00300
COMMON VTAB«S9,?7),VVAP(1?8)                                       00310
REAL   L.LHV.LMvr,LCS,LCT.MAIR.MFLUID.MFUEL.MH7,N2P.N2R,N2S.NO    00320
REAL MHV.MRV                                                       011330
PW.HH.TG.Tl ,MWV.MGV.NiJ,X2G ARt  INPUT                               00340
NX2.X.TU  ARE  RETURNED.                                             00350
CM I PHASEfPW,TW.HH,X,GVL,GVV,Hl,HV)                               00370
GAS PROPERTIES                                                     00380
CO^CG(TG,RFA)                                                     00390
RG=1./FDG(TO,KFA)                                                  00400
OBTAIN HEAT TKAilS . COEKF SI  HTOT, HTTF                                00410
OBTAINING HTGT                                                     00420
r,sMGV/ACO(NC>                                                      O04.i0
M|aNSO(NC>                                                         00440
GO TO (10,20,JO).MI                                                00450
CALL HTGTR(HTOT,NC,G.fG)                                           00460
GO TO 40                                                           00470
CALL HTGTF(HTGT.NC.G.TG)                                           00480
GO TO 40                                                           00490
CALL HTGTM                                                         0(1560
GO 10 (50.80.90),MI                                                00570
GO 10 (60,70.60).NPH                                               00580
CALL HT1PM(HTTF,NC,GF,PH.TH)                                       00590
GO TO 100                                                          00600
                                     93

-------
PROGRAM LISTING -- STEPSI (Cont'd)

  70  CALL HT2PB                    00610
      00 TO 100                                                         00620
  80  CALL HTPF(HTTF,NC.GF.PW,TW.TI,X,GVL.8VV,HL.HV>                     00630
      GO TO 100                                                         00640
  90  WRITE (6,500)                                                     00650
 500  FORHATC52H HEAT TRANSFER NOT FORMULATED FOR BALL MATRIX INSIDE)    00660
      STOP                                                              00670
 100  CONTINUE                                                          00680
•     COMPUTE THT PARAMETERS                                            00690
      Er, = ABS(MOV«12.»L(NC) )»CG/FLOAT(NX2>                                00700
      EF=ABS                                                    00710
      HGT = HTGT».1.J4159»DO(NC)                                           00720
      HTF=HTTF»3.J4159«DI(NC)                                           00730
      CTF=RW»ACI(NC)«CW/1728.                                           00740
•     STEP SIZE CALCULATION                                             00750
      X2=?.»EF/HTF                                                       00760
         = AMINHX2»FRAC.X2G)                                            00770
         = INTSTEU>X2,X20)                                               00780
      IF(NPH.E0.2>  NX2»lfl                                               00790
      IFCNX2.GT.1)  DX2«X2G/FLOAT(NX2)                                   00800
      RETURN                                                            00810
      END                                                               00820
                                     94

-------
SUBROUTINE ITERAT
     ITERAT gives an iterative solution for steady-state distribution of fluid
enthalpy,  gas temperature, and tube temperature.   It employs the subroutine
SUPPT.
     The data file referenced in ITERAT by the two-digit code 15 is a storage
file for the values calculated before exiting ITERAT the final time.  Since the
data in the file vary according to the particular run just completed,  a listing
is not included here.
NOMENCLATURE -- ITERAT
FORTRAN Variables in COMMON:
     The FORTRAN variables in the COMMON of ITERAT are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable
    HL
    HV
    JS

    MGV
    NC
    NCL

    NCOD
    PGG
    PWV
    TSAT
    W
             Definition
Enthalpy of working fluid liquid
Enthalpy of working fluid vapor
Variable to denote cumulative number
of timesteps
Mass flow rate of the gas
Fluid pass number
First fluid pass number for the com-
ponent
Logic variable  to denote component:
   1 - vapor generator
   2 - condenser
   3 - regenerator
Pressure of gas
Pressure of working fluid vapor
Saturated temperature of working fluid
Mass flow rate of working fluid
Ib/sec
lb/in.s
lb/in.a
°F
Ib/sec
                                    95

-------
 PROGRAM LISTING -- ITERAT
10

12

15
18
    SORROIITINF  I TbRAT(PGG,MGV,TSAT.W.HL,HV,PWV.JS,NC.NCL.
   7NCOO)
    COMMON AP.R.CH.CHR.CO
    COMMON C02P.C02S.UCS,OCT.DTK
    COMMON EOUIV.F.FS.H20P.H20S
    COMMON HP.HR.HTFLAM.HTIN.LHV
    COMMON LHVT.LCS.LCT.MAIR.MFLUIO
    COMMON MFilFL,N2P,N?P,N2S,NBENr.A
    COMMON NRENnG.NO.NP,02P.02R
    COMMON 02S.PO.SPl.SSA.STA
    COMMON STO,10.WS.WT,YtXT
    COMMON ACI(10).ACO(10).BH(10),B1(10).CTF
    COMMON CTFYUIi.ll ),CT1(10),CW,DHI (10),DHOdO)
    COMMON DK10),no(lO),DS(lO),DYYY(lO),tF
    COMNON fcFYUO. 11). FG.tOYdO.ll ) . FH I < 10 ) . FHOUO )
    COMMON FNI(10),FNUdO),FRAC,FlIdO).FTOdO>
    COMMON GVZ<10,ll,2).HF(10,ll,2),HFINldO>,HFIN2dO).HUlNldO)
    COMMON HGIN2(10).HGT,HOTY(10,11).HTF,HTFYd0, 11)
    COMMON J2EUO), J3E (10). L( 10). LSTEP.NWZUO.il)
    COMMON NCY(3),NCLY(3),NCRY(3).NCYCLE.NFSEC1(3)
    COMMON NLOMH,NM(10).NMI(lfl).NMO(10).NPH
    COMMON NPHY(in,ll),NPHINT,NSS.NSl(lO).NSO(lO)
    COMMON NTRANS,Nx2MAXdO).NX2ZdO),NXN,NXO
    COMMON PRv(10),KFA,KM(lU),RW,KWY(10,H)
    COMMON 101(10). 102(10,11,2),TG?AVC(10),1GINI(10),TGIN2(10)
    COMMON 1 lMF.Tl(lO,1l,2),lOBROHdO),VAPLldO),VAPL2UO)
    C'lMhON VAfl J(in ), VOI. (10). XlGdO >,X2LdO),X?T<10>
    COMMON CT«R(69,27),HLlOd?8),HTAB(69.27),HVAP<128),I NO
    COMMON NL lNt,NNn,NPSTEP,NTSTEP.P(128)
    COMMON >>lAR(7u ), S1AR(69,27 ), T(128 >. TTAB(33). VL 10(128)
    COMKON VTAR(69.27),VVAP(128)
    REAI    I  ,1HV.LHVT.LCS.ICT,MAlk,MFLUID.HFUEl.HWZ,N2P,N2R.N2S,NO
         MGV
    NCR=NCL»NC-1
    MA=NX27(NC»)*1
    HFX I T = Hf ( nCH. n/l ,1
    no 100  l=NfL,NCK
    1G21=«.
    NXN=NX2Z(
M|=NX2Z(I
00 90 Jl=
                   (lA «NXN)
              ,M
NPH=NPHY(
1U=(TG1<  I )»1G2( I.Jl.l ))/2.
RO 10 (in,i2,15),NCOO
COG = F CG(1R.KFA )
Rn TO 18
Gil 10 If)
CGG=FCWV(HRG,IR)
COM!INUF

KJI =TG1 ( I I
                      >«12./(2.«H6V»C60>
    IF(hR.ni .0.5) NHBa2.5»HH

    FG2U1=«1.-RH)/(!.*RH)
                                                                   00020
                                                                   00030
                                                                   OU040
                                                                   00050
                                                                   00060
                                                                   00070
                                                                   OOOHO
                                                                   00090
                                                                   omoo
                                                                   noun
                                                                   00120
                                                                   01)130
                                                                   II 014 0
                                                                   00150
                                                                   00160
                                                                   00170
                                                                   00180
                                                                   00190
                                                                   00200
                                                                   00210
                                                                   00220
                                                                   00230
                                                                   OII240
00260
00270
0028H
011290
OII3UO
Ol)3in
OU320
00130
00350
00370
003HO
nnsvn
0II4 0 0
00410
00430
00440
004
-------
 PROGRAM LISTING  -- ITERAT (Cont'd)
 211
28U
 3U
 3t>
 38
 40
 50

 55

 60

 90


100

102


104


106


10W

107
     Mir=Hir Y< i. ji >
     HOT = HGTY( I, JI )
     H2=nF< I . Jl + l. I )
     Hl=HF( I, Jl.l )
     TGN=TGJ ( I )
     ADT=FG2T»TT( I. Jl
     00 280 LK=t,NHB
                      l)
     TG2( I. JI.1 ) = TGN
     GO TO (30.40.30 ),NPH
     IF(NPH.E0.3) GO TO 35
     CP = F.FY( I, Jl )/w
     HRnHL
     TR=TSAT
     GO TO 38
     HAVG«/2.
     CALL SUPPTII'WV, TFY.HAVG,nu,DD.3)
     HK=HAVG*5.
     CALL SUHPTU'WV. TR.HR.DDf DD.3)
     CP=(HAVG-HR)/< TFY-TR)
     CONllNUt
     F1=HTF/(2.»CP«(MGT*HTF)»
     F2=HGT/(?.»(HUT*HTF) )
     TFX=TR-(HR/CP)
     F3=(H1F/(HGT*HTF) )»TFX
     B8=HTF»DXN/(2.»W»CP)
     F5=?.«CP»«R/(1.*HB>
     TT( I, JI,1) = F1«(H1*H2)»F2»(T61(
     H2 = F4«H1*F5»
     HF( I, JI*l.l )=H2
     CUN1INUH
     Tr,2AVG(l> = TG21/FLOAT(NXN)
     IF( I.NE.NCR) HF(I*l,l,l)aH2
     CONllNUt
     GO TO (102,KM,106),NCOD
     TG1(NCL)=TG2AVG(NCR)
     TGKNCR) = TG2AVG(NCl*l )
     GU 10 108
     TOKNCL*! ) = I 62 A VG ( NCL )
     T01(NCR)=1G2AVG(NCL+1 )
     GO 10 108
     TGKNCl +?) = TG2AVG(NCR)
     TG1(NCL»1)=1G?AVG(NCL*2)
     TGI (NCL)= IG2AVG(NCL + 1 )
     !F(JS.LI.13) UO TO  10V
     WKI IF(6.1U7)
     FURHAK33H UIuN'l CONVEKfif-  IN  13  ITERATIONS)
     S10H
00720
0073n
00740
00750
00760
00770
007UO
00790
00860
00870
OQA90
00900
00910
OH920
011930
it n 9 4 o
00950
(10960
0 0 9 7 II
009HO
011990
0 1 0 11 n
0 1 0 1 II
01030
0 1 0 4 II
01050
01060
01070
01000
oinyo
01100
oino
01120
01130
01140
01150
01160
01230
01240
01250
01260
0 J ? 7 0
012HO
01290
01 3110
01310
01320
01330
01340
01350
01360
01370
013HO
01390
01395
01396
01397
01398
                                      97

-------
PROGRAM LISTING -- ITERAT (Cont'd)
109   !F«AHS«HFXI I-H2)/H2))-5.E-5)  13n.13U.110
110   CONllNUfc
      KhTUKN
13U   M|=JS-1
      HKI IE<15,131)MI
131   FORMAK ll«>)
      UU  133  J=NCL.NCP
      HHlTE<15.l32)r.X2Z< J)
132   ruKhAHUO)
133   CONTINUE:
      DO  1411  J=NCL.NCH
      MI=NX27(J)
      DO  140  Jl=1.Ml
                     J. J 1*1,1 >.T1( J. Jl, 1).T02(J.JI, 1)
                     f Y< J. Jl ).HUTY( J.JI )
      FURMAK JE15.5)
14U   CONMNUt
      HKITE(15.142)(TG1(J),JsNCL.NCR)
142   FORMAT<4E15.5)
      00  141  I=NPL,NCK
      MI=NX?Z(I)
141   CONTINUE
      NSS = 0
      JS = 0
      RETURN
      END
014UO
01410
01420
01430
01440
01450
01460
01470
01460
01490
01500
01510
01530
01590
01595
01600
01610
01620
01630
01640
01650
01660
01670
016HO
01690
01700
                                     98

-------
SUBROUTINE PDROP1
    PDROPl calculates the single-phase fluid pressure drop.
NOMENCLATURE -- PDROP1
FORTRAN Variables in COMMON:
    FORTRAN variables in the COMMON of PDROPl are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable
    AG
    DH
    DP

    DPB
    L
    NBEND
    NF
    P
    RFA
    T
    W
            Definition
Flow cross-section area
Flow hydraulic diameter
Fluid  pressure drop for straight tube
length
Fluid  pressure drop for bends in tube
Fluid  travel length
Number of bends in tube
Logic variable:
   1 - working fluid -- liquid
 2&3- working fluid -- vapor
   4 - combustor
Bulk fluid inlet pressure
Fuel to air ratio
Average fluid temperature
Mass  flow rate
Units
inf
in.

lb/in.a
lb/in.a
in.
lb/in.3

°F
Ib/sec
                                   99

-------
 PROGRAM LISTING -- PDROP1

      SUBROUTINE PDROP1(P.T,W,DH,AC,L,NF.DP.RFA.N8END.DPB)              00020
«     PR DROP -- SINGLE PHASE                                           00030
•     CODF NF   1 - WORKING FLUID  - LIOl 3 - M.F.-VAPORl                 00040
•          4 - COHBUS10K                                                 00050
      REAL L.NBEND                                                      00060
•     AT T. OBTAIN V.  RO                                                 00070
      GO TO <1.2,2,4>.NF                                                 00080
   1  V=FVML(T)                                                         00090
      RO=1./FDWL(T)                                                     00100
      GO TO 5                                                           00110
   2  V=FVMV(T)                                                         00120
      RO=l./FnWV(P,T.NF>                                                 00130
      GO TO S                                                           00140
   4  V=FVO(T)                                                          00150
      RO=1./(FDG(l.RFA))                                                 00160
   5  CONTINUE                                                          00170
•     CALCULATE PEY Nu.                                                 001HO
      G=W/AC                                                            00190
      GC»32.17                                                          00200
      RRY = ABS( (1?.»3600. >•((>• DH/V))                                     00?10
•     CALCULATE F OR OBTAIN FROM EXP DATA                               00220
      1F(REY.GE.?.E4)  Fc.04o/(REY«*.2)                                   00230
      IF<(RtY.LT.2.E4>.AND.(REY.GE.3.E3)) FO.0791/{REY««.25 )             00240
      IF(KEY.LT.3.E3)  Fel6./PEY                                         00250
•     CALCULA1E OELIA  P .NF                                                 002HO
   7  DPB=(2.»144./UC)»(F»G«G»NBEND/RO)                                 00290
   6  RETURN                                                            00304
      END                                                               00310
                                     100

-------
SUBROUTME PDROP2
     PDROP2 calculates the two-phase fluid pressure drop.  It employs the
 subroutine PDROP1.
 NOMENCLATURE — PDROP2
 FORTRAN Variables in COMMON:
     The FORTRAN variables in the COMMON of PDROP2 are in the COMMON
 of MAINSYS.
 FORTRAN Variables in Argument List:
     FORTRAN
     Variable                 Definition                   Units
     AC          Flow cross-section area                 in.s
     DH          Flow hydraulic diameter                 in.
     DP          Fluid pressure drop for straight tube
                  length                                  lb/in.2
     L           Fluid travel length                       in.
     PI           Bulk fluid inlet pressure                 lb/in?
     TI           Average fluid temperature               °F
     W           Mass flow rate                           Ib/sec
     XE          Quality of working fluid at exit
     XI           Quality of working fluid at inlet
                                    101

-------
PROGRAM LISTING -- PDROP2
       TINh fi)KPP?(PI. TI,XI.XEf U,DH*AC.lr DP)
       RE IIROP -- TWO PHASt
 HMl  I
 MJOLFKATION PRESSURE DHOP
 HIM l=l./FHWL( Tl )
 <»uV I =1 ./rnwv(p| , T J , 1 )
 fiC=32.J7
 nPA=(l44./r,C)«<0»G)«((XI-XE)/KOI.I*(XE-XI )/ROVI )
 FHICTION PRfcSSUWE OKOP
 CAM  PD^on 
 V I Si =f VWK T I )
 vi sv = f vwv< TI )
 XAV=( «I*XF>/?.
 x ( i = ( «t»UVI/kfU I )•( (VISL/VISV)»«.2)*(«1./XAV)-1.
 IF ( > Tl.LT.O.l J XTT = .l
 If < »TI.GT.1UO. >  XTT=100.
 /7 = AU'G(XTT>
 PH!=FXP<1.4M6-8.6R8E-««ZZ»5.4A3E-2»(ZZ»»2)
i-.4784»(ZZ«»3) )
 H IfHI.LF.l.E-lH) PHI=0.
 npnp=( PHI )••?•< (i.-xAV)»»i, 8)
 npf rnpn»i)POi'
 T(IT«L PRKSSl^G DRiiP
                                                                         00010
                                                                         00020
                                                                         00030
                                                                         00040
                                                                         00050
                                                                         OOObO
                                                                         00070
                                                                         00080
                                                                         01)090
                                                                         00100
                                                                         00110
                                                                         00120
                                                                         onun
                                                                         00140
                                                                         00150
                                                                         00160
                                                                         00170
                                                                         00160
                                                                         002UO
 WtTURN
 tMD
                                                                         no?in
                                                                         110220
                                                                         002.50
                                                                         H0240
                                                                         00350
                                                                         00360
                                     102

-------
SUBROUTINE POROPA
    PDROPA calculates the air-side pressure drop for VAPORG.
NOMENCLATURE -- PDROPA
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of PDROPA are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    The FORTRAN variables are applicable for air and gas.
    FORTRAN
    Variable
    ACOL
    D
    DH
    DP
    FH
    FN
    FT
    L
    NS
    PI
    RM
    Tl
    T2
    TSP

    W
           Definition
Flow cross-section area per unit length
Tube diameter, outside
Hydraulic flow diameter
Pressure drop
Fin height
Number of fins per inch
Fin thickness
Tube length
Logic variable to denote nature of outside
tube surface
   1 - bare
   2 - fin
   3 - ball matrix
Inlet pressure
Porosity of ball matrix
Inlet temperature
Exit temperature
Tube spacing transverse to the bulk air
flow direction
Mass flow rate
lb/inf
°F
°F
in.
lb/sec
                                  103

-------
 PROGRAM LISTING -- PDROPA
in
2U
3u
  41)
SUBROUTINE Pf)KOPA(Pl, ll. 12.W.NS.DH.D.AeOL.L»TSP,FN,FH,Fl,RM,DP>
CODR NS 1=HAHH»if = FINU = BftLL
REAL UK1.K2
GC=32.17
Ts,NS
sro=< isp-n)/rsp
CF = .3906»(lbP/n)-.3.J21
F = Cf »(REY«»(-.ltn )
SA = 4.»D/UH
KJ=u
K? = U
GOTO 40
SIO=(1SP-D-J?.»FH»FT)/ISP
SA = -1. •( n*?.«FK)/OH
Klr.8»SI«»< . 065*5 |r,» (.685 *.39b«S 10) )
K?=1.*S1C«(-?.46»SIU»(1.5X3-.87»SIG»
GOTO 4n
SI6=RM
SA=4.«H/DH
F = 78. 6.1 1( RE >••(-!. 179) ) « I . 397 • ( RE Y»« ( - .
Kl=0
K?=n
CONllNilf-
PRF»=(144./GC)«(G*K/(2.*Rni))
«R1=K1+1 .-SIO«SIB
    ?.«( (R01/K02 )-1 . )
AH4=(l.-SIG»SIG-K2)»(K01/R02)
FNI)
                                                                         0 002(1
                                                                         OOOJO
                                                                         00040
                                                                         OOU60
                                                                         OH070
                                                                         oooeo
                                                                         00090
                                                                         00110
                                                                         0012P
                                                                         011130
                                                                         00160
                                                                         011170
                                                                         001HO
                                                                         01)190
                                                                         OU2UO
                                                                         00210
                                                                         OU??0
                                                                         00230
                                                                         00240
                                                                         OU250
                                                                         OU260
                                                                         00270
                                                                         002BO
                                                                         00290
                                                                         00300
                                                                         00310
                                                                         00315
                                                                         00320
                                                                         00330
                                                                         00340
                                                                         00360
                                                                         00370
                                                                         003HO
                                                                         00390
                                      104

-------
SUBROimKE NTSTE

    INTSTE calculates the integer number of distance steps (lumps),  allowing
for geometric constraint.

NOMENCLATURE -- INTSTE
FORTRAN Variables in COMMON:

    There is no COMMON block in INTSTE.

FORTRAN Variables in Argument List:

    FORTRAN
    Variable                   Definition                 Units

    DX                        Lump length                in.
    X                         Total length                in.
                                  105

-------
PROGRAM LISTING -- INTSTE
     FUNCTION  WSTE                                           oooio
     |NTSTE=X/OX                                                    00020
     XT»DX»FLOAT
-------
SUBROUTINE PHASE
     PHASE determines the fluid phase,  based on gross fluid values for the
 lump.   It employs the subroutines SATP and SUPPT.
 NOMENCLATURE — PHASE
 FORTRAN Variables in COMMON:
     The FORTRAN variables in the COMMON of PHASE are in the COMMON
 of MAINSYS.
 FORTRAN Variables in Argument List:
     FORTRAN
     Variable                Definition
     GVL         Specific volume of liquid
     GVV         Specific volume of vapor
     HL          Enthalpy of liquid
     HV          Enthalpy of vapor
     HW          Enthalpy of working fluid
     PW          Pressure of working fluid
     TW          Bulk fluid temperature
     XW          Quality of bulk mass within a lump
                                  107

-------
PROGRAM LISTING -- PHASE
195
200

201
202
203
210
SUBROUTINE PMASfc(PW,TW,HW.XW,GVL.OVV,HL«HV)
COMMON AP,B.CH,CMH.CO
COMMON C02P, CUPS. nCS.OCT.UTH
COMMON FOUIV,F.FS.H20P,H20S
COMMON HP,HR,HTFLAM,HT!N.LMV
COMMON LHVT,LCS,LCT,MAJR,MFLUID
COMMON MFUFL.N?P,N2k.N2S.VB€NOA
COMMON NWEN|)G.NO,NP,02P,02R
COMMON 02S,PO,SP1,SSA.STA
CUMMON STO.TO.HS.WT, YtXT
COMMON ACI , EG. EG Y < 1 0 . I J > . FHI < 10 > . FHOC10 )
COMMON FNHJO).FNOUO).FRAC,FTI<10),FTO, LSTEP,MWZ(10.11)
COMMON NCV(3),NCLY(3),NCRY(3),NCYCLE«NFSECT(3>
COMMON NLUMP.NM(10),NM| (in),NMO(in >,NPM
COMMON NPHYdii.ii ),NPHINT,NSS.NSI <10),NSO<10)
COMMON NTMANS,NX2MAX(in).KIX2Z(10)«NXN,NXO
COMMON PGV(10).KTA,KM(10 j, RH. HWY410* 11 )
CUMMON TOK10), 1G2(10.11.2),TG?AVH(10),TOIN1(10),TOIN2(10)
COMMON TIME. T7(10,13 ,2), 1 UBROW ( 1 n ) , VAPL1 ( 10 ) . VAPL2 ( 10 )
COMMON VAPlidO), VOLUO). X1GC10 ), X2L<10).X2T(10>
CUMMON CTAR(69,27),hLJO(12fl),HTAB(69,27).HVAP(128), INO
CUMMON NLINfc,NNU,NPSTEP,NTSTEP,P(128)
CUMMON PTAB(70),STAR(69,27),T(J2fl).TTAB(33).VLIU(12«)
CUMMON VTAR(69.?7), VVAP(1?8)              .
REAL   L,LHV,lHVT,LCS,LrT,MAtH.MFLUID,MFUEL.MgZ,N2P.N2R.N2S,NO
DECIDE FLUID PHASE.  HW AND HW ARE INPUT
XH.GVL,GVV,HL,HV,NPH,CW,RW,TW ARE RETURNED
CALL SATPCP^, )SAT,GVL.GVV,HL.HV,1)
IF(HW-Hl) ?00,1<)5.195
IF(HM-HV)210,?20.220
NPH=1
TX=TSAT
CH=FCWL(TX)
TW=TSAT*(HW-HL)/CW
TX1=.5«(TSAT*TW)
IF(ABS(TX-TX1)/TX-.01)  203.203,?02
TXaTXl
00 TO 201
RUsl./GVl
THE FOLLOWING  STATEMENT
INSERTED FOR PURPOSE UF INTERPOLATION IN DISTR
220
60 TO 230
NPH«2
TH»TSAT
HFG=HV-HL
XMc(HM-HL>/HFG
CH>XW«FCHV(PU,TK)«(1.-XW)«FCML(TW)
RH3(XM/GVV)«((1.-XM)XUVL)
GO TO 230
NPHc3
CALL SUPPT(PH,TW,HH,S.GV,.D
CU=FCWV(PW, tW)
                                                                        60120
                                                                        oeoso
                                                                        80040
                                                                        00050
                                                                        00060
                                                                        06070
                                                                        OOOAO
                                                                        00090
                                                                        00100
                                                                        00110
                                                                        00120
                                                                        00130
                                                                        00140
                                                                        00150
                                                                        00160
                                                                        00170
                                                                        00180
                                                                        00190
                                                                        00200
                                                                        00210
                                                                        00220
                                                                        00230
                                                                        00240
                                                                        00250
                                                                        00260
                                                                        00270
                                                                        00280
                                                                        00290
                                                                        OU300
                                                                        00310
                                                                        00320
                                                                        00330
                                                                        00340
                                                                        00350
                                                                        00360
                                                                        00370
                                                                        00380
                                                                        00390
                                                                        00400
                                                                        00410
                                                                        00420
                                                                        00430
                                                                        00440
                                                                        00450
                                                                        00460
                                                                        00470
                                                                        00480
                                                                        00490
                                                                        00500
                                                                        00510
                                                                        00520
                                                                        00530
                                                                        00540
                                                                        00550
                                                                        00560
                                                                        00570
                                                                        00580
                                                                        00590
                                                                        00600
                                     108

-------
PROGRAM LISTING  -- PHASE (Cont'd)


      HWxJ./GV                                                         00610
•     THE  FOLLOWING STATEMENT                                          00620
•     INSERTED  FOR PURPOSE OF INTERPOLATION IN OISTR                    00630
      XW=1.                                                            00640
 2JO  CONTINUE                                                         00690
      RETURN                                                           00660
      END                                                              00670
                                    109

-------
SUBROiJTME HT1P6
     HT1PB calculates the heat transfer coefficient between a single-phase
fluid and the inside of a bare tube.
NOMENCLATURE -- HT1PB
 FORTRAN Variables in COMMON:
     The FORTRAN variables in the COMMON of HT1PB are in the COMMON
 of MAINSYS.
 FORTRAN Variables in Argument List:
     FORTRAN
     Variable
       G
       HTC
       NC
       PRES
       TEMP
      Definition
Mass velocity
Heat transfer coefficient
Fluid pass number
Fluid pressure
Fluid temperature
    Units
lb/in.a sec
Btu/sec in.3 °F

lb/in.a
                                  110

-------
PROGRAM LISTING -- HTlPB
  in
  .in
 1 Mil
              (Ml  HT|Prf(HTC.iiC.G.PREb. TEMP)
 •      THIS biMHMHT 1*4 CAirilLAlFS TH> HEAT  TKANSFFK COEFF ICI tNT
 e      Ut-UFMl A SIMM i  ell ASK-  FLUID ( S'.'Pt RHF. A TH H  NPHO OK SIH-
.«      CIIOIF.II MM>,= 1 I  A 40  M<£  INSIOI SURFACE UF  A  HAHL TUHE.
       COMMON Al', 0, Cl'. CH« , C1!
      COMMON
              MJill V.» .1
              HP, HI- ,,'M
                              1N.LHV
CUMMIN
CliMhON
CllMHON
COMMON
CllMhllN
                    ;, Nil, NP.
                                02R
       CUMMIN
       COMMON
              Sm, 10.US.hT, VfcXl
              ACI(10),ACU(10).HH(1U),B1(10),CTF
              ciFVdii.ii ).(:ri(in),rw,nHi(lii),
              III (1li>,liU(in>,iiS(lil).l)YYY(in>,EF
              bFY(in.11).F(;.LRY(10.11).FHI(lU).FHO(in)
              FN|(in),eNO(lO)>FKAC.FTI(in),FTn(10)
                       ,^). Mf ( 1 fl . 1 1 , ? ) . HF I Ml ( 1 II ) . HF I N? ( 1 (I ) , HO I Nl ( 1 II )
                       , nfiT,ilRTY(lll.ll).nTF,HTF Y(in.ll)
              j?Min i.j.u. (10).L (in ), isiEP.MWZdn.ii >
                 ( .1 ) , NCL Y ( .1 ) . NCR Y ( 3 ) , NC YCLF . NFSFCT ( 3 )
                        ll).NMl (1n),NM(l(J«), NPH
                     .ll ),NPw INT, NbS.NSI (111 )
                                           .11)
      CUMMIN  iro dn). ir,?dfl.ll,?),Tu?Avi:(lfl), lUlNldn), TO IN? (10)
      COMMON  T i MF . TI (in. i i,u ), TuBKOwdo ), VAHLl (10 ). VAPL2(10 )
      COMMON  V«P|. J9,?7),T(128).lTAP.(J3),VLIU(l2H)
              I ,1 HV.I.HVT.I CS.I i:T,MAI^,MFLUID.MFIIFL.MMZ.Ni»P.N2R,M2S.NO
IM II)
K = r iv wi
V=FV«L
C = FI:WI
GO 10
n.?ti,.>n
tMp )
FMP)
I-KP )
no
      WKI IF
       d'"  CAI I FLi MI>< 2 HHASt)

       IFrtP)
       1FHP)
            . TI HIM
       SHU
       K=Ff
       V=FV
       Nllll
       Ukl =4.^lin.»(i«'i
       p •* i = r • u / K
       HIC=.n>.t«-l' 4
       FM)
                                                                            oonzo
                                                                            onnjn
                                                                            nnnin
                                                                            nnnso
ooo7n
OOORO
onn«n
nuinn
oniin
011120
onun
ont4o
nni5n
00160
00170
00180
00190
OU200
no?in
00220
00230
00240
OU250
00260
007/0
00?90
011300
011310
011320
00.130
00340
OII3*0
00360
011370
003HO
00390
00400
00410
00420
OII4JO
00440
00490
OH460
00470
004MO
00490
005(10
00510
00520
00530
01)540
00550
                                       111

-------
SUBROUTINE HT2PB
    HT2PB calculates the heat transfer coefficient between a two-phase fluid
(boiling) and the inside surface of a bare tube.  It employs the subroutine SATP.
NOMENCLATURE -- HT2PB
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of HT2PB are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable               Definition
       DFL      Specific volume of liquid
       DFV      Specific volume of vapor
       G         Mass velocity of working fluid
       HFL      Enthalpy of liquid
       HFV      Enthalpy of vapor
       HTC      Heat transfer coefficient
       NC       Fluid pass number
       PPF      Fluid pressure
       TI        Wall temperature at mid-node of a lump
       TTF      Bulk fluid temperature
       X         Quality of bulk mass within a lump
Ib/in.3
°F
°F
                                  112

-------
PROGRAM LISTING -- HT2PB
SUBROUTINE hT2PH(HTC.NC,G,TTF.TI.X,PPf .OFL.IIFV.HFL.HFV)
THIS SUBROUTINE CALCULATES THE HEAT TRANSFER COEFFICIENT
BETWEEN A TWO PHASE FLUID AND THE INSIDE SURFACE OF A BARE
TUBE.  TF IS THE HULK FLUID TEMPERATURE AND Tl IS THE INSIDE
T08t HALL TEMPERATURE.
NUTfc THAT DFL.DFV,HFL,HFV,PF ARE PROVIDED FROM THE CALLING
PROGRAM
COMMON AP.B.CH.CHH.CO
COMMON C02P.C02S.UCS.OCT.OTH
COMMON EOUIV.f.FS.H20P.H20S
COMMON HP.HR,HTFLAM.HIIN.LHV
COMMON LHVT.LCS.LCT.MAIR.MFLUID
COMMON MFUEL,N?P,N2R,N2S.NBENDA
COMMON NBENDG.NO.NP.02P.02R
COMMON 02S.PO,SP1.SSA,STA
COMMON STG.10,HS,WT,YtXT
COMMON ACldO),ACUdO),BHdO),BTdO).CTF
COMMON CTFYdU,ll),CTldO).CW,DHl (lO.PHOdU)
COMMON UIdO),DOdO),USdl)),DYYYdO).EF
COMMON EFYdO.U),EG.tGYdO,ll),FHldO),FHOdU)
COMMON FN|dO),FNUdO),FRAC,FlldO),FTOdO>
COMMON GVZ<10,11.2).Hf dfl.ll.2).HFI Nl d 0 ). HF I N2 dO >. HG I Nl d 0 )
COMMON HG1N2 (10), HGT.HGTYdO.il).HTF.HTFYdO.il)
COMMON J2EdO),J3EdO),L(10>. LSTEP.MWZdO.il)
COMMON NCY(3),NCLY(3),NCRY(3),NCYCLE.NFSECT(3)
COMMON NLUMP.NMdU),NMldU),NMOdO ). NPH
COMMON NPHYdi|.ll>,NPRINT,NSS.NSI(lU).NSO(10)
COMMON NTRANS,NX2MAXdO).NX2Z(in),NXN.NXO
COMMON PGVdO),WFA,HMdO),RH,RHYdO,ll)
COMMON 161(10), TG2dO,11.2),TG2AVGdO>,TniNldO).TGIN2dO)
COMMON TIME.TT(10.11.2). MBROWdO ), V APL1 (10 ). V APL2(lO )
COMMON VAPL3dO).VOLdO),XlGdO).X2LdO).X2TdO)
COMMON CTAB(69,27 ),HL I 0(1^8),HTAB(69,27 ),HVAP(128), INU
COMMON NLINE.NN|),NPSTfcP,NTSTEP.P(12U)
COMMON PTA8C7U  ),STAH(69,27),Td28>, TTABOJ), VLIOdZH)
COMMON VTAH(69,27), VVAPd'/H)
REAL   L.LHV.LHVT.LCS.LCT.MAIR.MFI Uin,MFUEL.MWZ,H2P.N2R,N2S,NO
REAL KL.KV.KX
0=AHS(G)
CHECKING  10  MAKt SURE NOT SINGLK PHASE
IF( X.EO.d. ).OR.X.FU.(0. ) )GO  TO 500
THE FOLLOWING ARE NEEUFU  REGARDLESS WHETHER  XO.8
VISL=FVWL(T1F)
VISV=FVWV(TTF)
KL=FKWL 0
00160
OU170
nnian
00190
00200
0 (I ? 1 0
OU?20
00230
00240
002bO
00200
00270
002HO
00290
00300
01)310
00320
00330
00340
00350
OU3AO
00370
00300
 00390
 004UO
 00410
 00420
 00430
 00440
 00450
 00455
 00460
 00470
 00480
 00490
 00500
 00510
 00520
 00530
 00540
 00550
 00560
 00570
 0(1560
 00590
                                      113

-------
PROGRAM LISTING -- HT2PB (Cont'd)
•      EVALUATING  F=FUNCT1ON                                           00780
      GO  10  300                                                         00790
 210   IF(ARG.GE.(2,E5))00 TO  220                                        00800
      SC = 3.,J43-.257»ALOG      NOTE 4320U=12*3600                                                00920
      H1C=(H1*H2)/43200.                                                00930
      HfCl=HTC                                                          0093?
      IF(XE.GT.(0.8) ) GuTO  400                                          00935
      RETURN                                                           00940
 400   KVsFKUV(TTF)                                                      00950
      CPV=FCWV(PPF,fTF)                                                 00960
      UX=VISV                                                           00970
      KX=KV                                                             00980
      REL=43200.»G«OHI(NC)/UX                                           00990
      PKL=CPV«UX/KX                                                     010UO
      HIC=.023«REL«».8»PRL»».4»KX/OHI(NC)                               01010
      HTC=HTC/43200.                                                    01020
      HTC=HTCl*(XE-.8)«(HTC-HTCl)/.2                                   01025
      X=XE                                                              01028
      RETURN                                                           01030
 500   WRITE  (6,720)                                                     01040
 720   FORMAT <50H QUALITY X=l  OR 0  AS INPUT  TO  THIS 2  PHASE  PROGRAM)    01050
      STOP                                                              01060
      END                                                               01070
                                     114

-------
SUBROUTINE HTGR
    HTGR calculates the radiative heat transfer coefficient between combus-
tion gas and the tube surface of the vapor generator.
NOMENCLATURE -- HTGR
FORTRAN Variables in COMMON:
    There is no COMMON block in HTGR.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable                Definition                         Units
       HTC      Heat  transfer coefficient                  Btu/sec in.3 °F
       TAA      Bulk  gas temperature                     °F
       TWA     Wall  temperature at mid-node of a lump    °F
                                  115

-------
PROGRAM LISTING — HTGR

      SUBKOUTINE HTGRtHTC.TAA.TwA>                                      00018
      IFUAA.GT.TWA) KO TO 10                                           00020
      HTC=0.                                                            00025
      RETURN                                                            00026
  10  TAA=TAA*460.                                                      00030
      THA = TWA»4iifl.                                                      00040
      SB=.1713E-«                                                       00050
      EW=.9                                                             00060
      EH20=.(M                                                          00070
      EPH20=.08                                                         00080
      FC02=.05                                                          00090
      EPC()2 = .07                                                         00100
      OCO?=Se«EW»(EC02*TAA»»4-FPC02»TWA»»4)                             00110
      QH2Q=SB»EW»lEH2U»TfU»*4-EPH20»TUA*«4)                             00120
      HIC=(OC02»OH2«))/(TAA.TMA>                                         00130
•     NOTE 518400=144*3600                                              00160
      HTC=HTC/51840U.                                                   00170
      IFCHTC.LT.n.) HTC=0.                                              00175
      TAA=TAA-460.  .                                                    00177
      TUAsTUA-460.                                                      00178
      RETURN                                                            01)180
      END                                                               00190
                                      116

-------
SUBROUTINE HTGTB
     HTGTB calculates the heat transfer coefficient between air (or gas) and
 a bare tube.
 NOMENCLATURE -- HTGTB
 FORTRAN Variables in COMMON:
   The FORTRAN variables in the COMMON of HTGTB are in the COMMON
 of MAINSYS.
 FORTRAN Variables in Argument List:
    FORTRAN
    Variable
      G
      HTC
      NC
      TEMP
      Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Bulk gas temperature
    Units
lb/in.a sec
Btu/sec in.3 °F
                                  117

-------
PROGRAM LISTING -- HTGTB
      SUBROUTINE HTGTB, MM 1 n , 11, 2 ) , HF I Nl < 10 > . HF 1 N2 (10 > . HO I Nl < 10 >
             HGIN2(in),HG1,HGTY(10.11),HTF,HTFY(in,ll)
             J2E(10),J3fe(10),L(10),LSTEP.MWZ(10.11)
             NCY(3),NCLY(J),NCRY(3),NCYCLE,NFSECT(3)
             NLUMH,NM(10),NM1(10),NMO(10),NPH
             NPHY(10,11),NPHINT,NSS.NSI(10).NSO(10>
             NTH4NS,NX2MAX(in).NX2Z(10),NXN.NXO
             POV(ll)>,RFA,RM(10),RU,kUY(10,ll>
             IGK10>.TG2(10.11,2),TG2AVO(in),TOINK10).TOIN2(10)
             1 IMF,TT(10,11,2),TUPROW(10).VAPL1(10 ).VAPL2(10)
             VAPL3(10).VOL(10).X1G(10),X2L(10),X2T(10)
             CTAR(69,27),HL10(1PB),HTAB(«9,27),HVAP(12B),IND
             NLINE.NNO,NPSTEP.NTSTEP.P(128)
             PTAR(70),STAB<69,27),T(1?8),TTA8(33),VLIO<128)
             VTAO(69.27),VVAP(128)
             L,LHV,LHVT,LCS.LCT,MAIK,MFLU!D,MFUEL.MWZ,N2P,N2R.N2S,NO
RE AI
REAL  KG
KGaFKGUEMP)
VISGaFVO(TEMP)
CPG=FCG
-------
SUBROUTINE HTGTF

    HTGTF calculates the heat transfer coefficient between air (or gas) and
a finned tube surface.

NOMENCLATURE -- HTGTF

FORTRAN Variables in COMMON:

    The  FORTRAN variables in the COMMON of HTGTF are in the COMMON
of MAINSYS.

FORTRAN Variables  in Argument List:
    FORTRAN
    Variable
      G

      HTC
      NC

      TEMP
       Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Bulk gas temperature
     Units
lb/in.a sec
Btu/ sec in.3 °F
                                  119

-------
PROGRAM LISTING -- HTGTF
SUHIvP, Q2P, 0/?R
0?S,»'i),SPl,SSA.SlA
STli, ID. US, *1. Yt. XI
AC Idll ), ACddO ),HH(in),R1dU),CTF
CTI Yd ii, n ),r:TidO),cu,iiHidu),nHO(io)
H I d ii). n u (1 n >, n s (1 ii), D Y Y Y (10 ), *• F
EFYdH.11),Fb.tGYd0.11 ), FH I (10 ) ,FHO< 10 )

                    11,2),HFIN1 dl»,HFlN?dl)),HGINldO)
                    10,11),HTF.HTt
      COMf.nN
      CUMf-ON
      COMMON
      COMMON
       NL ItMl-, KM < III ) , MM I ( 1II ) , NhO (1 n ) , NPH
       NPHY(lil,11 ),NPH|NT,NSSf NSt (lO).NSO(lO)
       NT>"kKS.NX?MAX(in),hX?Z,NXN,NXO
       PlJVlin ),RFA,hM(in ),RW,RHY(lO,ll>
       TCt (30), Tn2Mn.ll,2),TG?AVG(in>,lGINl(10), TOIN?(10)
       UhF,TT(in,1l.?). TiiRKOwniM.VAPM (10 ), VAPLXC10 )
       VAPI .U 10), V"l (in), XlOdO), X?Ldn),X2T(10)
       CTAP(6-J,?7).i.LlOd/8),HTAR(69,27),HVAPd2fl), IND
       ML |Nfc,1MNi),NPSrhP,NlSFEP,f>(l2«)
      RhAL   L.I HV,LHVT,>CS.LCT,MAIK,MFlUII),MFUEL,MwZ,N?P,N2R,N2S,NO
      KEAl KR
             li( IFHP)
      NDTL
NuTF
                                     - . n
oon/o
non«n
00090
ooiuo
00110
ooizo
00130
00140
00150
flfllftfl
00170
noitfo
00190
no?oo
002111
nn?2n
no?jo
00240
00250
00260
00270
00280
00290
00300
00310
00320
00.1.10
00340
1)03*0
00360
00370
003HO
110390
00400
IMI410
00420
00430
00440
00450
00460
00470
00400
OII4VO
00500
00510
00520
00530
                                       120

-------
SUBROUTINE HTGTM
    HTGTM calculates the heat transfer coefficient between combustion gas
and a ball-matrix tube surface.
NOMENCLATURE -- HTGTM
FORTRAN Variables in COMMON:
    The  FORTRAN Variables in the COMMON of HTGTM are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable
      G
      HTC
      NC
      TEMP
       Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Bulk gas temperature
     Units
Ib/in? sec
Btu/sec in?°F
                                  121

-------
PROGRAM LISTING -- HTGTM
      SUBROUTINE  HTGTM(HTC,NC.G,TEMP)
      COMMON AP,B,CH,CHH,CO
      COMMON C02P.C02S.UCS.DCT.DTH
             EOUIV.F,FS,H?OP.H20S
             HP.HR.HTFLAM.HTIN.LHV
             LHVT.LCS.LCT.MAIR.MFLUID
             MFUEL»N2P,N2R.N2S.NBENI1A
             NPENDG.NO,NP,02P,02R
             02S,PO.SP1,SSA,STA
COMMON
COMMON
COMMON
CUMMON
CUMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
REAL
             STO.TO.WS.WT,YEXT
             AC Hid), ACU(10),BH (1(1),BT<10),CTF
             CTFY(10,11),CTT(10),CH,DHI(10),DHO(10>
             ni(10),DO(in>,US(ln),DYYY(lO),EF
             tFY(10.11).EG,EGY(10,ll),FHI<10),FHO<10 )
             FNK10), FNUdO ),FRAC,FTI (10),FTO(10)
             GVZ(10.11.2),HF<10,11,2).HFIN1(10),HFIN2<10).HOIN1<10)
             HGIN2(10>,HGT,HGTYU0.11).HTF.HTFY(10,11>
             J2EC10),J3E(10),L(10),LSTEP.MHZ(10,11)
             NCY(3),NCLY(3),NCRY(3),NCYCLE,NFSECT(3)
             NLtlMP.NMdU ),NMI (lO).NMO(in ),NPH
             NPHY(10,11),NPKINT,NSS,NSI(10>,NSO(10>
             NTRANS,NX2MAX(10),NX2Z(in)., NXN.NXO
             PGV(10 ),RFA.RM(10),RM,RWY<10,11)
             TGI(10),TG2(10.11.2),TG2AVO(10).TGIN1(10),TOIN2(10)
             T1ME,TT(10,ll,,VAPL2<10)
             VAPL3(10).VOL(10),X1G(10).X2L(10).X2T(10)
             CTA8(6»PRG»»(-.667)«G«CPG
      8M=SORT(36nO.«12.tHBTO/(FKM(T-EMP)«DS(NC)
      Z=3.63»HH(NC)«8M
      EM=TANH(Z)/Z
      SMTSBT*18.8*RH(NC)»BT(NC>/DO(NC>
      HTC=EM«SMTS8T»HBTO
      RETURN
      END
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
0046P
00470
                                     122

-------
SUBROUTINE HTPF
    HTPF calculates the heat transfer coefficient between the working fluid
and the inside surface of a tube with longitudinal fins.   It employs the sub-
routines HT1PB and  HT2PB.
NOMENCLATURE -- HTPF
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of HTPF are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable                Definition
       DFL      Specific volume of liquid
       DFV      Specific volume of vapor  •
       G         Mass velocity
       HFL      Enthalpy of liquid
       HFV      Enthalpy of vapor
       HTC      Heat transfer coefficient
       NC        Fluid pass number
       PPF      Pressure of working fluid
       TI        Wall temperature at mid-node of a lump
       TTF      Bulk fluid temperature
       X         Quality of bulk mass within a lump
    Units
ft3/lb
fta/lb
lb/inf sec
Btu/lb
Btu/lb
Btu/sec in.3°F

Ib/in?
                                  123

-------
PROGRAM LISTING -- HTPF

      SUBROUTINE HTPF,CTT<10 I.CU.DHI(10),DHO(10)                     00170
      COMMON DI(lU).nO(10),OS,EP,EGY(10.11>.FHI<10),FHO(10)                   00190
      COMMON FN|(10).FNO(10),FRAC,FTI(in).FTO(lO)                       00200
      COMMON GVZdO, 11.2>.HF(10.11,2),HFINl(10),HFIN2(10>,HGINl(10>     00210
      COMMON HGlN2dO>.HGT.HGTYUO.il).HTF.HTFYUO.il)                  Q0220
      COMMON J2EJ10 ),J3edO),L(10>.LSTFP.MWZdO.il)                     00230
      COMMON NCY(J).NCLY<3),NCRY<3),NCYCLE.NFSECT<3>                    00240
      COMMON NLUMP.NMdU).NMldfl).NMO<10).NPH                           00250
      COMMON NPHY(1U,11),NPKI NT.NSS,NSI(10> . NSO( 10>                     00260
      COMMON NTRANS.NX2MAXUO>.NX2Z(10).NXN,NXO                         00?70
      COMMON PGVdO).RFA,RMUO).RW.RWY<10,ll)                           00280
      COMMON T(51(10). TG2 < 10 .11 > 2 > . TG2 A VO (10 ) , TG INI (10 ) , TG 1 N2 ( 1 0 >        00290
      COMMON TIME.Tl(1U,11,2).TUBROW(IO).VAPL1(10 ) ,VAPL2(10 )            00300
      COMMON VAPL3(10).VOL(10).X1G(10).X2L(10 ) ,X2T(10>                  00310
      COMMON CTAB(69.27).HLIO(128).HTAB(69,27),HVAP(128>,IND            00320
      COMMON NI.|Nb.NNn,NPSTtP.NTSTEP.H(l28)                             00330
      COMMON PT4R(7n),STAb(69.27),T(128).TTAB(33).VLlO(128)             00340
      COMMON VTAR(69,27),VVAP(128)                                      00350
      REAL   L.LHV.LHVT,LCS.LCT.MAIR,HFLUID,MFUEL.MWZ.N2P.N2R,N2$,NO    00360
      GO TO <10,?U,10),NPH                                              00370
  10  CALL HTIPB(HBTI.NC.G.PPF.TTF)                                     003AO
      GO TO 30                                                          00390
  20  CALL HT2PB(HBTI,NC.G,TTF»TI.X,PPF.DFL,DFV,HFL,HFV>                00400
•     NOTE 86400=2*12*3600                                              00410
  30  Bl i=SORT(8MOO.»H8Tl/(FKS»                           00420
      ETA = BTI»FHI (NO                                                   00430
      ETA=TANH(ETA)/ETA                                                 00440
      StSfcTI«FNI(NC)»(2.»FH|(NC)*FTl(NC))/                              00450
     2       (3.1416*ni(NC)*rNI(NC)*2.*FHI(NC»                         00460
      SETSBT»1.*FN1 (NO «2.*FH I (NO/< 3.1416*PI (NO )                      00470
      EPS=ETA»SESfTI»l./StTSBT                                          00480
      HTC=EPS*SETbBT»HBTI                                               00490
•     NOTt HRTI ALREADY INCLUDES FACTOR 43200*12*3600                   00500
      RETURN                                                            00510
      END                                                               00520
                                     124

-------
    Section 7
CONDENSER MODEL

-------
                                Section?

                            CONDENSER MODEL
MAIN PROGRAM - COND

     The condenser model is titled COND.  The model employs the following
subroutines:
DISTR
CGEOMC
STEPSC
ITERAT
SATP
PROP
SUPPT
PROPST
PDROP1
PDROP2
PDROPA
INTSTE
PHASE
HT1PB
HT2PC
.HTAC
FCWL
FDWL
FKWL
FVWL
FYWL
FCWV
FDWV
FKWV
FVWV
FCA
FDA
FKA
FVA
FCG
FDG
FKG
FVG
FCMC
FKC
FRMC
FCMS
FKS
FRMS
FKM
    Figure  2  illustrates the links between the various subroutines required
for COND.

    The input parameter, FRAC, is the ratio of actual step size to stability
step size.  To avoid numerical instability,  its value should be less than unity.
FRAC has been set at 0. 5 in the present program.

NOMENCLATURE -- COND

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of COND are in the  COMMON
of MAINSYS.

FORTRAN Variables in Argument List:

    FORTRAN
     Variable                   Definition                      Units

       JS         Variable to denote cumulative number of
                  timesteps

       MGI        Mass  flow rate of gas at inlet                  Ib/sec


                                  125

-------
    COND
                            DISTR
                           CGEOMC*
STEPSC*
                            ITERAT
                          SATP PROP
                         SUPPT PROPS!
                           PDROPA*
                            PDROP1*
                              I
                            PDROP2*
                                                     INSTE
                                                     HTAC"
                                                     HT1PB*
                                                     HT2PC"
                                                     PHASE
* These subroutines use fluid or metal properties.
       Figure 2.  Links Between Subroutines Used by COND
                               126

-------
     FORTRAN
     Variable                    Definition
       MWE       Mass flow rate of working fluid at exit
       NST        Logic variable for transient start
                       0 - steady-state case
                       1 - transient case
       PGCE      Pressure of gas  at exit
       PGCI       Pressure of gas  at inlet
       PWCE      Pressure of working fluid at exit
       PWCI       Pressure of working fluid at inlet
       TGCI       Temperature of gas at inlet
Other Selected FORTRAN Variables:

                                 Definition
FORTRAN
 Variable
    MGCZ(I)
    MWCZ(I.J)

    PWC
              Gas mass flow rate for fluid pass I
              Fluid mass flow rate for fluid pass I at
              mode J
              Fluid pressure
                                                          lb/in.a
                                                          lb/in.3
                                                          lb/in.3
                                                          lb/in.3
lb/in.3
        Note;   For the  remainder of these variables, see "Other
                Selected FORTRAN Variables" for VAPORG,  in
                Section 6.
                                   127

-------
FLOW DIAGRAM -- COND
                         c
   Start
                    Define
                      NTCOMP, NC, NCL, NCR,
                      MWCZ(NCL. 1), PDDT
                 811
       = 1+1
                 NO
                 NO
                           CALL CGEOMC (I)
                                  1
                          Define MGCA (I)
                                    YES
                             Define  PWC
   Does
NTRANS = 0
                               I = NCL
                                                            Do 3
                                                           3 Continue
                                 128

-------
FLOW DIAGRAM -- COND (Cont'd)
                                                Do 18
                    Initialize
                    I.  For each lump of each fluid
                       path.

                       a.  Use average values
                       b.  Call STEPSC(obtain
                          HGT. HTF,  NPH, etc..
                          through COMMON)
                       c.  Find revised value of
                          NX2Z(I)
                   II.  Obtain initial distribution for
                       NX2Z(I) lumps,  from end-
                       point data.
                       Obtain MWCZ(I.J),  TGKD,
                       TG2(I.J. 1).  HF(I,J,  1),
                                                18 Continue
                                                             Print
                                                             Message
C  Stop  \
                 225
                          Corresponding to PWC
                                   find
                        TSAT, HL. HV.  GVL.  GW
                  YES
                                  129

-------
FLOW DIAGRAM -- COND (Cont'd)
               721
                       Write (on file 6), entrance
                       node information as headlines.
                     NO
                       Write TIME on output file 13
                 733
                                  Continue
                                  I = NCL
                                                               Do 396
                                  130

-------
FLOW DIAGRAM — COND (Cont'd)
                     Initialize  (for pass I)
                     NXO,  NX2MAX(I), DXO
                     VAPLKI), VAPL2(I), VAPL3(I)
                     J2E(I), J3E(I)
                                 1
                          JI = 1 (Lump No. 1)
      JI = JI + 1
                                 1
Do 230
                  For each lump JI,
                  a. Calculate HW, TA, TTZ, MWC,
                     NX2
                  b. CALL STEPSC
                  c. Redefine RW. HGT. .HTF.  etc. as
                     arrays
                  d. Find NX2Z(I) -NX2MAX(I)
                    Select
                       NX2Z(I) (=NXN) as
                       maximum of all values
                       for the fluid pass I.
                    Calculate   DXN
                  YES
                                                        230 Continue
Save DXN for pass I
i
©
                                  131

-------
FLOW DIAGRAM — COND (Cont'd)
                           Write lump size information
                           as headline
                           Write NXN in output file 13
                                    132

-------
FLOW DIAGRAM — COND (Cont'd)
                   Define MWZ(I. JI) = MWCZ (I. JI)
                                 I
                    CALL DISTR(I)
                  "•Obtain distribution of following
                    parameters for NXN nodes:

                 MWZU.JI), HFU.JI, 1), TT(I,JI, 1),
                1TG2(I.JI. 1).  HGTY(I.JI),  EGY(I,JI),
                    HTFY(I.JI), EFY(I.JI). CTFY (I.
                    JI), RWY  (I.JI)
                                 I
                    Set MWCZ(I.JI) = MWZ(I.JI)
                                 I
                         For each lump JI
                         compute  NPH,
                         store asNPHY(I.JI)
                              237
1
                         JI = 1  (Lump No. 1)
                            Do 806
                        806 Continue
                            Do 807
                        807 Continue
                            Do 236
                        236 Continue
                            Do 238
                                  133

-------
FLOW DIAGRAM -- CQND (Cont'd)
       1 = 1+1
                      Based on NPHY(I,JI),
                      calculate
                         VAPL2(I). J2E(I),
                         VAPL3(I), J3E(I).
                         VAPLKI)	
JI
= JI +
1
                   NO
                                     YES
                        Find  (for each lump JI)
                          DYX1, DYX2. DYX3,
                          DYY  CforNPHY(I.JI)]
                        Find DYYM for I, and-save
                        as DYYY(I)
                         Find DYY, as a minimum
                         of DYYY(I) and YREM
                   YE
                                                         238 Continue
    Do 265
265 Continue
396 Continue
    Do 412
412 Continue
                                 134

-------
FLOW DIAGRAM -- CORD (Cont'd)
 (733)
                       CALL ITERAT,  to obtain
                       iterative solution

                       After final iteration, NSS = 0
                       (set in ITERAT)
                       Print TIME. JS as headlines
Initialize
   INX1 =  1, INX2
   QTOT = 0.
                                            = 1
                           I = NCL (Fluid Pass I)
                         Define
                                NXN, DXN
                         Initialize
                                  TG2T
                                                              Do 600
                                   135

-------
FLOW DIAGRAM -- COND (Cont'd)
                      Print title for output columns
                        JI = 1 (Lump No. JI)
                    Define (for the lump JI),
                       NPH, TG
                    Calculate NBB(= no. of iteration
                       steps), FG2G1. FG2T
                    Calculate TG2 (I, JI. 2). TG2T
                    Set TG2(I.JI. 1) = TG2(I. JI.2)
                       Print "Fluid Pass No. = I"
    Do 420
    Do 280

280 Continue
                                   136

-------
FLOW DIAGRAM -- COND (Cont'd)
(
X
,397
Define
TREF. HREF
Find
GPP, TX
Calculate
FTG, FTT. FTF, FCON,
TT(I. JI.2)
Set
MWVZ(I. JI+1)=MWVZ(I,JI)
Calculate
FF2T. FF2F1. FF2F2,
HF(I,JI+1.2)
            i
 Define
    HFN = HF(I,JI+1,1)
410
                                10

                               398
                                                             NO
                                        Define
                                         HFA, HFB
                                        Define
                                          HFA,  HFB
                                              L
                                       814
                                   I
                                             J
                      Find'
                        HFAVG -  TFX
                      Define
                        GVZd.JI.  1),  HREF, TREF
                      Find
                        CPP
                                       Calculate
                                          FF2F1,  FF2T,
                                       Define
                                          HEX2 = HF(I, JI+1.1)
                                       Set
                                       Calculate
                                          FTG,  FTT,  FTF, FCON,
                                          TT(I, JI, 2)	
                                  137

-------
FLOW DIAGRAM -- COND (Cont'd)
                                Define
                                  HEXN2
                                  HFAVG - GV
                                  GVZU.JI.2) = GV
                                  HFN = HEX2
                                Calculate
                                  MWCZd.JI+l)
                               398
               Define
                  HEN1. HENN1, MEN1
               Define
                  INX1 = 2
                      2000
            Calculate
               FTG.  FTT. FTF,
               TT(I. JI.2)
            Calculate
               HAVG1, XE1 (Min = 0),
               VBAR, FF2F1,  FF2F2, FF2T
               HF(I.  JI+1,2)
             Define
               TFX.  HFN
             Find
               TERM1, DRODH,  PREF

             Calculate
               MWVZU.JI+1)
             Define
               HEX1, HEXN1
                                                   410
                                 138

-------
FLOW DIAGRAM — COND (Cont'd)
                                    410
                                 Calculate  QTOT
                    Write (on file 6)  JI, HFN. TFX. TT(I, JI. 1).
                          TG2(I,JI,1). MWVZd.JI+l).
                          NPHY(I.JI)
                    Write (on file 13)  HFN, TT(I,JI, 1),  TG2(I,
                      JI, 1),  MWVZU.JI+1)
                                     139

-------
FLOW DIAGRAM -- COND (Cont'd)
                Write (on file 6) HTFY. CTFY, EFY,
                      HGTY
                 Set
                   MWCZ (1+1.1)= MWCZU.NXN+1)
                         ,1,2) =  HF(I,NXN+'l.2)
                                                          420 Continue
                           Find TG2AVG(I)
                                Value
                             of (I-NCL-1)
  TGI (NCL+1) = TG2AVG (NCL)
TGKNCR) ; TG2AVG(NCL+1)
                                 140

-------
FLOW DIAGRAM — COND (Cont'd)
                NO
                YES
               * Pressure calculation
               Initialize
                 VAL1. VAL2, VAL3, UM, DENM
               Compute VAL1, VAL2, VAL3
                YES
                                 NO
                Compute

                Define
HFG, GFG

PLOW
                                                    600 Continue
TIME
= TIME + DXY
                             Do 610

                         610 Continue
                                141

-------
FLOW DIAGRAM -- COND (Cont'd)
          v(B
Calculate
HFAV1, XAV1, WG, WF
Find
DENM
*-

Write various
intermediate
values, if
NPRINT = 0 	
     635
       PINCT = 0
                    Calculate
                         HFAV1,  HFAV2, WS
                    Find
                         DENM, UM
                             630
                    Calculate
                          AS1,  AS2
                    Find
                          UM. DENM. PINCT
                            640
                        PWCE = PWCE + PINCT
                         PWC = PWCE + PDDT
                    *Reset
                    HF(1,1,1 )=HF(1,1,2)ExceptI=NCL
                    TT(I,JJ, 1) = TT (I,JJ,2)
                    HF (I.JJ+1.1) = HF (I.JJ+1. 2)
                    TGI (JL) = TG2AVG (JL)
                    JL = NCL, NCR-1
                    YREM = YREM - DYY
                                  1
 Write various
 intermediate
 values, if
 NPRINT = ()
 Write various
 intermediate
 values,  if
 NPRINT = 0
DO 429

429 Continue

DO 430

430 Continue
                                  142

-------
FLOW DIAGRAM -- COND (Cont'd)
                   Write (on file 6)
                     DYY, TGKNCL),  TGKNCL+1), TGI (NCR)
                   Write (on file 13)
                     TGKNCL).  TGKNCL+1), TGl(NCR)
                      Write title for pressure drop results
                                   143

-------
FLOW DIAGRAM -- COND (Cont'd)
                       *Gas side  pressure drop
                       Define PGC,  TA1, TA2
                       CALL PDROPA
                       Find FDD
                       Repeat for all NC coils
                Write for all fluid paths, pressure-drop
                data and results
                Calculate PGCE
                    * Fluid pressure drop
                    Write title for pressure drop
                         Define PWCX, Jl
                                I
                       I = NCL (Fluid Pass I)
               Find
                                1
                      J1E. LZ  [for VAPL3.(I)]
Do 1030
                                  144

-------
FLOW DIAGRAM -- CONP (Cont'd)
                     Find  MWC
                     Find  J2, HFA, TX
                     CALL PDROP1
                     Find  FDD
                  Write pressure drop data and results
                          PWCX = PWCX -PDD
                             1013
                     Find
                          LZ [for VAPL2(I)]
                   YES
                   Find  Jl.  J2. MWC
                     XENT (max =  1) XENT (min = 0)
                   CALL PDROP2
                   Find PDD
                                   1
                   Write pressure drop data and results
                        PWCX = PWCX- PDD
                               ion
                                 145

-------
FLOW DIAGRAM -- COND (Cont'd)
                     Find
                           LZ  [for VAPLl(I)]
                   YES
                       Find Jl. J2,  HFA. MWC
                       CALL PDROP1
                       Find FDD
                                  I
                    Write pressure drop data and results
                          PWCX = PWCX - FDD
                    Write PWCE. HF (NCR.NX2+1, 1)
                                                        1030 Continue
                                 146

-------
PROGRAM LISTING -- COND
 an
SUBROUTINE COND           00020
COMMON AP.B.CH,CHK,CO                                              00030
COMMON C02P.CU2S.UCS.UC1,UTH                                       00040
COMMON bOUlV,F.FS,H20P.H20S                                        00050
COMMON HP.HK.HTFLAM.HflN.LHV                                       00060
COMMON LHVT.LCS.LCT.MAIK.MFLUID                                    00070
COMMON MFUEL.N2P.N2K.N2S.NBENUA                                    00080
COMMON NBENUG.NO,NP.02P,02R                                        00090
COMMON 02S.HO.SP1.SSA.STA                                          00100
COMMON STG.10.WS.WT.YbXT                                           00110
COMMON ACI (10 ),ACOdfl).HH(10),BT<10),CTF                           00120
COMMON CTf YdU.ll ),CT 1(10 ),CW,OHl (10>,DMO(10>                      00130
COMMON I)I.DO(10).US(11)),DYYY<10),EF                            00140
COMMON tFYdO.ll >,EG,bGY<10.11).FHI(10),FHO<10)                    00150
COMMON FNJC10 ),FNU<10).fRAC,FTI(1U).FTO(10>                        00160
COMMON GVZM0.11,2>.HF<10.11.2).HFIN1(1U>,HF|N2<10).HG1N1<10)      00170
COMMON HG IN21 in ). HGT.HG1 Y (111, 11 ). HTF.HTJ YdO.ll )                   OU180
COMMON J2M10 ), JJtdO ),L<10).LSlEP.MWZUO.il)                      OU190
COMMON NCY<3),NCLY«3),NCHY(3).NCTCLE.NFStCT(3)                     00200
COMMON NLUMP.NMt li)),NHl (10 J.NMOUO ),NPH                            00210
COMMON NPHV, VAPL2<10>             00260
COMMON VftHL3(lO ), VOLdO ), XlGdO ). x2L(10 ),X2T(10)                   00270
COMMON (. URC6V.27 ),HLIO(128 ),HT4H(69,27 ) ,HVAP(12rt >. INU             00260
COMMON NL |Nt.NN|),NPSTfcP,N!STEP,P(l2B)                              00290
COMMON PMR(7U ),S1 AU(69,27>, 1(128), TTAR(33), VLItJ(128)              00300
COMMON VUH16V.27 ), VVAP(128)                                       00310
REAl    I.LHV,LHVT,LCS,LCT,MAIU,MFLUID.MFUEl.MHZ,N2P,N2R,N2S,NO    00320
OIME.NSION  MWC/I 10,11 ),PGC(10 )                                      00330
REAL MGI ,MWCI,MHE.MWC.MMCZ.LZ,MEN1.MGCZ(10),MGCA(10)               00340
SET NCYCLt=0  INITIALLY  IN  THE  MAIN  PROGRAM                         00350
NICOMPr?                                                           00360
NC=NCY(NTCOMP)                                                     00380
NCL=NCLY=MHZ(NCL.l>                                             00410
PUDT=PWCI-PKCfc                                                     0041R
DO 3 l=NCl.NCK                                                     00420
IF(NCYCLE.Nh.U)  GO TO 811                                          00430
CALL CGEOHClI)                                                     00440
CONTINUE                                                           00450
MUCA(I)=MGI/(12.»L=1                                                          00520
ASSUME AVfcRAGI- VALUES.STATE  Rt L A T I ONSH I PS NOT  IMPORTANT           00530
MH=0.5«HFIN1(I)»O.S»HFIN2(I)                                       00540
TG»fl.&«(TGIN1(I )» IRIN2(I ) )                                         00550
A MORE ACCURATE  T17 CAN Bfc  OBTAINED  BY  USING  HEAT-THANS.  COEFFS.  00560
T1Z=TU                                                             00570
Al=12.»L(I)                                                        00580
NX2=NX2Z(I>                                                        00590
CALL STtPSC
-------
PROG RAM LISTING — CQND (Cont'd)
  10  FORMAT(41H UNO.OF LUMP KEIJUIRLD EXCEEDS NLUMP (=10))
      WKI IE(6.10)
      SIOP
  15  NX2Z(I)=NX?
i      INIIIAL niSIRIRUTION
      IF(I.NE.NCL) HF(1,1.1 ) = HFIN1( I )
      TlU( I ) = TGIN1( I )
      TG2(I,1.1) = 1GIN?(I )
      XN2Z=FLOAT(NX2)
      DXN = 12.«L(I )/XN2Z
      A2=(HF|N2
      DO 18  J=1,NX2
      MwCZ(ltJ + l)=MMCKNrL»l)
      HF(I.J+1.1)=HF(I.J.1)»A2
»      NOTb 00 NUT USE  TU2.TI AT NX2*1
      TU2(I.J.1)=TG1N2
      TT
•      ENTRY  PUINT AFTI-.K FIRST CYCLE
 220  YKEM=YEXT
      HF(NCL.1.2>=W (NCL.1,1)
      AT THIS PUINT THE EXTbRNAL CONDITIONS AKE ENURED FOR
      THE  NEXT FXTEKNAL TIMb STEP.  DURING INITIALIZATION
      THEY SHOULD Bb  MADE  EUUAL TO THE INITIALIZING VALUES
      PMC  FKOW PRESSURE COMPUTATION
      THE  FOLLOWING IS A  LOOP BACK FROM STATEMENT 1000-1
 225  CONTINUE
      HF(NCL,1,2)=HF(NCL.1.1)
      CALL SATP(PWC.TSAT.GVL.GVV,HL.HV,1)
      IF(NSS.EO.l) UO TO  733
      JS=JS»1
      IF(NST.NE.O) GO TU  6
      IF(JS.Nt.LSTEP)  GO  TO 875
      WRITE<6,71(S>T|Mfc, JS
      FORMAK40H                           •••••  I I ME = ,
     7E15.5.21H        (TIMESTEP NO.,I5,2H ))
      MKITE(6.5U?9)
      MKITE(6,721)Hf(NCL.1.1)
 721  FORMAT(29H FLUID bNIHALPY (ENTRANCE)  =.E15.5)
      MRI  IE(6.722)MWCZ(NCL,1)
 722  FORMAT(29H FLUID fLOM RATE (ENTRANCE) =,E15.5)
      UHITE(6,5fln3)PUC.ISAT
5003  FURMAK29H fLUin PRESSURE. SAT. TEMP  =,2E15.5)

 73U

 717
 875
   6
 716
 704
 733
      FORMATI29H CAS (LOU RATL (ENTRANCE)   =,E15.5)
      W«ITE(6,717)PUCI , IRCI
      FORMAT(29H GAS PRhS, TEMP (ENTRANCE)  =
      CONTINUE
      If (JS.NE.LSTEP-1) GO TO 793
      Urtl TE(13. 704) TIME
      FURMAT(b]*>.5)
      CONTINUE
      DO 396 1=HCL,NCK
      NXO=NX2Z(1 )
00620
00630
00640
OU6&0
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
011780
00790
00800
01)801
0080?
00803
OU804
00805
00810
00820
00830
00840
00850
00860
00870
00880
01)890
00896
00900
00910
011920
OU9JO
00940
Ou9t>0
00960
00970
00980
00990
01000
01010
01020
01030
01040
oio-jn
01060
01070
010HO
010HS
01090
o 11. n o
01110
0)120
01130
01140
                                     148

-------
PROGRAM LISTING -- COND (Cont'd)
      NX2MAX/FLUAT(NXU)
      MGCAd )=MG!/(12.»L< I ))
      DO 230 JI=t.NXO
      HH=(HF«12.
      NWC=MHC/=Rfc
      HCTY(I,Jl )=HGT
      Hirvtl,Jl )sHT»
      EFY(I,Jl )=EF
      CtFYM. Jl ) = CTF
      NPHYd, Jl ) = NPU
      NX2MAX(I )sHAXO(NX2HAX(|),NX2>
 230  CONTlNUb
      NXN=NX2MAX(1)
      NX2/(I ) = NXN
      OXN=12.»HI )/FLUAF(NXN)
      nx2=nxN
      IFCNSS.hO.l) UO TU 707
      IF(l.bO.NCL) DXNl=nx2
      IF< r.tO.=MHC2( I.JI)
      CALL  UISTR(I)
      MA=NXN*1
      DO 807 JI=1.MA
 H07  MHCZd. JI)
      DO 236 Jl=1
      HHs0
01160
01170
01180
01190
01200
01210
01215
01220
01230
01240
01250
01260
01270
012RO
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
014HO
01490
015110
01510
01520
01530
01540
015*0
01560
01570
01580
01590
01600
01610
01620
01630
01640
016i>0
01660
01670
01680
01690
01700
01710
01720
01730
                                      149

-------
PROGRAM LISTING -- COND (Cont'd)
 235
 236
 237
 226
 227
 22«
 23«
 26>>
 J96
 734
 NPHY( 1, Jl ) = NPH
 CONTINUE
 OU ?38 JI=1.NXN
 IF(NSS.fcO.l) GO TO 238
 NPH=NPHY( |, J| )
 LOCATE INTERPHASES
 IF229.226.227
 VAPL2( I >=VAPL2< I ) » ( DX2» AC I ( I ) )
 J2E< I ) = J2H< l)*l
 GU 10  229
 VAPL3(I )=VAPLJ( I ) * ( UX2«AC I ( I ) )
 JJE( I ) = J3b(l)*l
 VAPIK I > = 12.»ACI< I )«L(I )-VAPL2( 1 )-VAPL3< I )
 IF(VAPL1( I ).ll.UX2»ACI< 1 )/2. ) VAPH(I) = 0.
 CONTINUE
 DYYM=YREM
 OU ?65 JI=1.NXN
 X2=?.»/»HTFY< 1. Jl »
 DYX2=(2.*CTFY(I.J|)/HlFY(|,JI»/( (X2/UXN)*!. >
 DYX3 = ABS(RWY(|.JM«ACI(I MUxN/(MUCZ( I. JI )«1728.
 -IF-(NPHY< I, Jl I.EU.l) OYY = FMAC«AH|N1(UYX1.UYX2)
 IF«NPHY(I,J| ).EU.2) DYY = FPAC*AH|NKbYX1.0VX3)
 IF(NPHV( I, J| ).EO.J) DYY = FRAC«IIVX1
 UYYM = AM1N1(UYYM,1IYY)
 CONIINUE
 OXN=DX2
 OYYY< I ) = DYYM
 CONIINUE
 OYY=YHEM
 OU 412 l=NCl,NCK
 DYY=AMIN1(DYY.DYYY( I ) )
 IF (NSS.bU.n) UO TU 734
 CALL  I TERATJ  IF( I.NE.NCL)  GO Tu 70J
      KKI 1E(6.7II2)
>0?  TuRHAT(JX.5H  LUMP.10X.3H M2.14X.3H TF.14X.3H  IT.1JX.4H  TG2,
     7l4X.,iH M2.10X.4H NPH)
 If\4  CuN' INU»
      WHI It <6.2U)  I
  20  FORMA K3flX,5H»»««».16H fLUll) PASS NO. , |5,5H«»«««)
  64  CUNTINUb
      Ou 42U JI=l.NXN
      NHH = NPHY( |, JI )
      TU=< TGK I )*IG2( 1. JI.l ))/2.
      CGG=FCA( TO)
01740
017*0
01760
01770
01780
01790
01800
01R10
01820
01830
01840
018*0
01860
01870
01880
01890
019UO
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
020UO
02090
021UO
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
022VO
02300
02310
02320
02330
                                     150

-------
PROGRAM LISTING — COND (Cont'd)
      X1=2.»MGI«CGG/(HGTY< 1,J1)«L(I>«12.)                                02340
      BH=1./X1                                                           02350
      TCN=TG1(I)                                                         02360
      NHB=1                                                              02370
      IFCBB.GT.0.5) NBB=2.5«BB                                           02380
      BB=BB/FLOAT(NHB)                                                   02390
      FG2G1=<1.-BB)/<1.*BH)                                              02400
      FG2T=1.-FG?G1                                                      02410
      AUT=FU2T.1T( [. J|,l )                                                02420
      DO 280 LI=l.NbB                                                    024JO
 28U  TUN=FG2Gl«TUN»ADT                                                  02440
      TG2< I, JI.2)=TGN                                                    02450
      TG2< I. JI.l ) = TI)2( I, JI.2)                                            02460
      TG2T=TG2T*TG2( I.JI.2)                                              02470
      GO 10 (397.39H.;399),NPH                                            024BO
 397  TKEF=ISAT                                                          02490
      HFAVG=(HF( I.JI.l)*HF(l.JI»l,l))/2.                                 0250 0
      HREF=HL                                                            02910
      CPP=FCWL(TRfcF)                                                     02520
      TX=TRbF                                                            02530
 /4U  TX1 = TREF*(HFAVG-HMEF )/Cf>P                                          02540
      IF«                                   02600
      FTT = 1.-(DYY/CIT( I ))«(HTF Y( I. J] )«HGTV( I, Jl ))                        02610
      FTF=(UYY/2. )»HTFY( I. Jl )/(CTT(l )«CPP)                               02620
      FCON=bYY«(HIFt( I.JI )/CTT( I ))• ( TkEF- ( HHF.F /CPP ) )                     02630
      TI( I. JI,?) = FTT»TT( I. JI.l )»FTF.(HF( I, J|.1)»HF( I. J!»l.l))»           02640
     4FTG*( TGK I )*TG2( I , J 1 . 1 ) ) *FCON                                      02650
      MMCZC I, Jl*l >=MWCZ< I, Jl >                                            02660
      FF2T = IIYY»(HTFY( I, J! )/CTr Y( I.JI ) )»CPP                               02670
      FF2Fl=(UYY/DXN)*(bFY( I, Jl )/CTF Y ( I . J I ) )• ( 1 .- < HTF Y ( I.JI >/            02680
     4EFYC I. Jl )>*(DXN/2.»                                               02690
      FF2F2=1.-(DYY/CTFY< I. Jl ) ) • ( ( HI F Y ( I . J I )/? . ) » ( EF Y ( I , J I )/ DXN ) )        02700
      HF(I.JI + l.?>3»F2F2*HF(l.J|«ltl ) + FF2Fl»HK( I, JI.D*                  02710
     5FF?1»(T1< I. JI,l)-rREF«(HHFr/CHP)>                                  02720
      HFN = HF( 1, Jl*l,l )                                                   02730
      TFX=TX1                                                            02735
      GO TO 410                                                          02740
 398  IF( INXl.Nh.l) GO  TO  20011                                           027*0
      HEN1=HF< I, JI.l)                                                    02760
      HtNNl=Hf ( I.JI, 2)                                                   02770
      MEN1=MHCZ( I . Jl >                                                    02780
      INX1=2                                                             02790
2000  CONTINUE                                                           02800
      n«OUH=( (l./GVL)-(l./GVV»/(HL-HV)                                  02810
      FTG=(I)YY/2.)»HGTY( I.JI )/CTT( I )                                     02820
      FTT=l.-(nYY/CTT( I ) >• ( HTF Y ( I , J| )+HGTY(I, Jl ))                        02830
      FTF = DYYoHTFY( I, Jl )/CTK I )                                          02840
      TT(l,JI,2)=FTTaTT(l,JI,l)*F 1 F» TSA T+FTG* < TGI < I )*TG2( I. JI.l))        02850
      HAVG1=(HF( I.JI, 1)»HF( I, J 1*1.1 ) )/2.                                 02860
      Xtl=(HAvGl-HL)/(HV-HL)                                             02870
      IF(XEl.LT.n. ) Xfcl=0.                                               02880
      IF(Xbl.GT.l. ) XL1=1.                                               02890
      R()B(l./GVL)«Xtl»((}./GVV)-(l./GVL))                                02900
      VBAR=1728./(RO«ACI( I ) >                                             02910
      FF?F1=(UYY/DXN)»VBAK«MWCZ( !, Jl )                                    02920
      FF2F2=1.-FF2F1                                                     02930
                                     151

-------
PROGRAM LISTING -- COND (Cont'd)
      FF2T=DYY»VBAR»HTFY
      DELTH=HF(|,J1.1 )-HF( I,J 1*1.1)
      TERM1 = MT(1.JI,1)-TSAT)»HTFY
      a«=DXN/Xl
      FF2F1=(1.-BB)/(1.*HH)
      FF2I=2.«HH/(1.*M8)
      HF(l,JI*1.2)=»F2Fl«HFA*fF2T»CCPP«(TT(l. Jl.D-lRtF)
     7*HREF)
      HEX2=HF(I,JI«l.l)
      FTG=(DYY/2. >MMGTY< I, Jl )/CTT< I ) >
      FTT = l.-(DYY/ClT(I))»(MTfY(l,JI)*HMY(I.JI»
      FTF=(UYY/?.)»riTfY(I.Jl)/(rTT(1)»CPP)
      FCONsDYY*(HlFY(I,JI)/CTT(I))•(TREF-(HHEF/CPP»
      TM I.JI.2 ) = FT1»TT( 1.JI.1 ) »F TF« (hFA»HF ( I. J I *1, 2 ) )*
     4FTG*(TG1( I) + TG?( I,J1.1 ) )*FCON
      HfcXN2=HF(I.JI+1,2)
      HFAVG=(HF(I.JI.?)«HF(I.JI+l,2))/2.
      CALL SUPPT(PUt. IMC.HFAVG.UU.GV.3)
      GVZII,Jl,2)=GV
      HFN=HbX2
 406  MWCZ
5U29  FURMAT(2H   )
      It (NST.NE.H) CO  TU  72
      IF(jS.Nf.LSTEP)  GO  10  876
  7?  UKITE(6.5u32MI.HFN.Tt X, 1 I ( I. J I , 1 ) , IG2 ( I . JI . 1) .
     7MHCZ(I.Jl»1 ),NPHY(I.JI )
503?  FuRHATC I 6, 4 X, t>E17.5. 16)
 876  CUNTINUk
      IF (JS.NE.LSTEP-1) GU 10 7il9
      UHITfc(13,70B)HFN,lT(I.JI.1).TU2(I.JI.1).MwCZ0
03360
033/0
03380
033VO
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03655
03660
03670
03680
                                     152

-------
PROGRAM LISTING -- COND (Cont'd)
 70V
5033
5021
 420
 421
 600
 610
 823
 62U
      CUNTlNUt
      IF(NPRINT.Nfc.O) GO TO 5021
      HRME(6.5U33)HTFY( |.Jl).ClFY(l.Jl).tFY(I.JI),HGTYU,JI)
      FORMAf(17H HTF , CTK . EF. HGT  ,41-15.5)
      CONTINUE
      1F( JI.Nb.NXN) GU  10 420
      IF( l.EO.NCR) liO TO 42U
      MUCZ( I+1.1)=MMC2( 1,NXN*1 )
      HF( l*l,l,2)=Hf < I.NXN*1.2)
      CONTINUE
      TG2AVGC I ) = TG2I/FLUAKNXN)
      IF(I-NCL-l) 421.423, 6UO
      TGKNCL*1) = 1G2AVG(NCL)
      GU 10 60n
      CUNlINUb
      TIMI. = 1 IME*DYY
      PRESSURE CALCULATION
      VAL1=U.
      V,AL2 = 0.
      VAL3=U.
      UM=0.
      DO 61U J=NCL,NCR
      VAL1 = VAL1«VAPLKJ>
      VAL2=VAL2»VAPL2( J)
      VAL3=VAL3*VAPL3< J)
      If «VAL2«VAL3).b.U.O
      VAL=VALl*VAL2*VAL3
      Hf G=HV-HL
      GFGcGVV-GVL
      AX = GFG/HFli
                           )  GO  TO  635
      I)FLP = 2.
      PLOW=PWC-UELP
      IF( VALP.F-U.O. )  liO  TO  620
      HFAV1=HhNl,HFXl.HF AVI
      MRITF(A.823)HL.HV.XAV1. VAL2,GVV.GVL
      WRlTE(6,823)Hli.MF,HLOri.bVLl.GVVl
      WrtITE(6,823)HLl,HVl,DbLP,ARl,AR2
      WHI Ib(6,823)A(<3, AH4.DtNM, AX
      FORHAT(7H  VAP1   .6E15.5)
      IF( VAL3.EU.U. )  CO  TO  630
      Hf AV1=(HF(NCL,1,1)»HEN1 )/2.
      HFAV2=
03690
037UO
03710
03730
03740
03750
03760
03770
037HO
03790
038 (If)
03B10
03820
03830
03840
038*0
03860
(1,1800
03890
03900
03910
U3920
03930
03940
039bQ
039*0
03970
039HO
039VO
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04HO
04140
04150
04160
041/0
04180
04185
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
                                     153

-------
PROGRAM LISTING — COND (Cont'd)
 824
 630
      CALL SUPPT(PMC.DD,HFAV1 *DELM. DD.GAV3, J)
      HS=VAL3/<1728.»GAV1>
      AXl=(GAV3-GAVl)/ObLH
      AX2=MS»(GAV1-GAV2)/DELP
      UM=UM*WS«(AX1-AX)»(HFAV2-HFAV1)/DYY
      DENM=I)ENM-AX2
      IF(NPRINr.Nfc.U) GU  TO 630
      WKI1E<6,B24)UM,I)ENM
      FORMAK7H  VAP?  .2E15.5)
      NX2=NX2Z(NCH)
      AS1=AX«(OTOT-MWCZ»NCL.1)»(HL-HF«NCL,1.1>)-MWE«
     7UIFtNCR.NX2*l,l)-HL>>
      AS2=-MWE)»GVL
      UM=UM*AS1*AS2
      OENW=I)ENN-AX»VAL/(12.«778.)
      PINCT=UM»DYY/UENM
      IF(NPRINT.NE.U) GU  10 640
      WKIlE(6.a25>HFAVl.HFAV2.HENl.HENNl
      WK1 TE(6,d25)TAVl,GAVl.GAV2.GAV3
      WKITE(6.825)VAL3,NS.AX1.AX2
 429
 64!>
 430
  77
 701
 677
 711
 712

1000
       WHlTE(6,825)MhCZ(NCL.l).HL.HF(NCL,l.l).HUE
       W«nE(6.825)Hf
  B25   FORMAK7H  VAP3
5062

 633
 64U
      FORMAT(8H P1NCT
      GO 10 640
      PINCT=0.
      PWCt=HMCE*PlNCT
      PwC=PwCb»PnuT
                        ,E15.5)
       REStT
       KKlsNCR-1
       DO  429  JL=NCL,KK1
       TGK JL*1 ) = TG2AVG( JL)
       DO  43u  1&NCL.NCR
       IF( l.fcO.NCL)  UO TO
       HFC 1,1.1 )=HF( 1,1.2)
       CUNllNUb
       MwZ( I .NXN+1 )=MWCZ( I,NXN*1 )
       DO 430  JJsl.NXN
       Tl ( I, JJ.l ) = TT( I.JJ.2)
       HF( I, JJ+1,1)=HF( I, JJ*1,2>
       MHZI 1, JJ)sHWCZ(l. JJ)
       CONTINUE
       YNEM=YREM-nYY
       IF(NSl.NE.n)  GO TO 77
       IF< JS.NE.LSTEP) GU 10  877
       WRI1E(6,701)DYY,TG1 
       FORMATdOH  DYY.FGl  .4E15.5)
       CONTINUE
       IF( JS.NE.LS1EP-1)  00  10 712
       UR I TEC 13. 711)  TGKNCL), 1GKNCL*! ), TGKNCR)
       CONTINUE
       IF( JS.Nfc.LSTEP)  GU TO 223
       CONTINUE
       GAS-SIDE  PRESSURE DkOP
       WHITE(6,5029)
04300
04310
04320
04330
04340
04350
04355
04360
04370
04380
04390
04400
04410
04420
04430
04440
04445
04450
04460
04470
04480
04490
04500
04510
04*20
045JO
04540
04550
04560
04565
04590
04610
04620
04630
04640
04650
04660
04670
046HO
04690
04700
04710
04720
047JO
04740
04750
04760
04770
04780
04790
04800
04805
04810
04820
04830
04R40
04850
04860
04870
04873
                                      154

-------
PROGRAM LISTING -- COND (Cont'd)
       MKI TE(6.50?9>
 651
 852
85,5
 1U02
 100J
 lUOb
                         MASS FLOH.9X.8H  INLEI
                         10X.9H PR. DROP)
                                                      P.10X.
 FORMAT(46X,28H •• PRESSURE DROP RESULTS  ••)
 MK1TE(6,85?>
 FORMATU2H • • GAS SIDt)
 MKITE(6,853)
 FURMAU.5X.5h i'ASS.7X.lOH
78H INLEI T.lOx./H EXII  1,
 DO 1008 1=NCL.NCR
 MUCZ(I ) = MGI/TuBROh( I)
 DIST=12.«l(I)
 TA1 = TG1(I )
 TA2=TG2AVG(I)
 U ( I.NE.NCL) GO TU  10U2
 PGC(I ) = PGCI
 GU TU 1003
 PUC< I ) = PGU( 1-1 )-PUP
 CALL PDROPAlPi.riN.IAi. I A>7 )
       FURMAKJX.5H
      '9X.11M INLFI
       PwCX=PWCI
       Jl = l
       no  1030  I=NCL.NC«
       LZ=VAPL3( I )/( 1?.«AC1( I ) )
       It (12. EU. II.)  "0 TU 1013
       J2= JJt( I )*J1
       HFA=(HF( I, Jl, 1 )»HM I, J2.1 ) )/2.
       MwC=(MWCZ( I . Jl )*HWCZ( I. J2) )/2.
       CALL  SUPPT(PML«. TwC.HJ A. 01), DO, 3)
       CALL  PDKOP1 (P*C«. IwC.MWC.iiHK I ),AC!( I ) . L Z. 3 . POD. OD , UD. DD )
 lull
HKI IE (6,8l>fl) I .MUC.NPH.Ll.PUCX.PDD
FURMATC l6.4X.tl/.1?. I9.8X.3E 17. 5)
PnCX=PWCX-PDD
LZ=VAPL2( I )/( 12.»ACI ( I ) )
IFCLZ.EO.U. ) GO Tu  1011
J1=J3E( I  >»1
J2 = J2b( I  )*J1
MrtC=(MWCZ( I, Jl )»MWCZ( 1. J2 ) )/2.
CALL SA1P(PWC», TWC.OD.DD.ML.HV.l)
X6NT=(HF  ( I. Jl . 1 l-HL)/(HV-ML)
X(-XT = (HF(|,J2.1 )-HL)/(HV-ML)
If ( XENT.GT.1. ) XENT=1.
IF( XEXT.I.1.U. ) XEXT = 0.
CALL HDKOP2(PMC*. TUC. XE NT , Xfc XT , MMC . DH I (
NPH = 2
WRME(6,85fl)I,MwC.NPH,L/.PHCX,PUD
P«CX=PWCX-PDD
IZ=VAPL1( I )/(l2.«Ari( I ))
                                                ) , AC I ( I ) . LZ . PUD )
04875
04880
04890
04920
04930
04940
04950
04960
04970
04980
04985
049VO
ObOOO
05010
05020
05030
05040
05050
05060
05070
D50HO
                                                                         051UO
                                                                         05105
                                                                         051U6
                                                                         05110
                                                                         1)5120
                                                                         051.MI
                                                                         05140
                                                                         05150
                                                                         05160
                                                                         05170
                                                                         05180
                                                                         05190
                                                                         1)5200
                                                                         05210
                                                                         05220
                                                                         05230
                                                                         05240
                                                                         05250
                                                                         05260
                                                                         05270
                                                                         05?t)0
                                                                         05290
                                                                         05300
                                                                         05310
                                                                         05320
                                                                         05330
                                                                         05340
                                                                         05350
                                                                         05360
                                                                         05370
                                                                         05380
                                                                         05390
                                                                         05400
                                                                         05410
                                                                         05420
                                                                         05430
                                                                         05440
                                                                         05460
                                      155

-------
PROGRAM LISTING — CQND  (Cont'd)


      IFCLZ.FU.O.) 00 TO 1030                                           05470
      Jl = J3fc< I )»J2E< I )*1                                                05)480
      J2=NX2Z                                  05910
      CALL PDKOPHPrtCX, THC.MWC,HHI< | ) , AC I ( I ) . LZ, 1 . PUD. DD, UD, DU >          05520
      NPH=1                                                             05530
      URITE(A.B58)I,NMC.NPH.L2.PMCX,PUD                                  05540
      PMCX=PUCX-PDO                                                     05550
103U  CONTINUE                                                           05560
      PMCt=PWCX                                                         05570
      NX2=NX?Z(NCR)                                                     05580
 859  TURMAK25H EXIT PRFSSURfc.  ENTh     »ZE15.5)                        056110
      KtTUHN                                                            05610
      END                                                               05620
                                    156

-------
SUBROUTINE CGEOMC

     CGEOMC calculates all geometric constants for COND.

NOMENCLATURE -- CGEOMC

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of CGEOMC are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:

    FORTRAN
     Variable                   Definition                    Units

         NC     Fluid pass number
                                  157

-------
PROGRAM LISTING — CGEOMC
141)
145
150
     SUBROUTINE CGhOMC(NC)
     COMMON AP.R.CH.CHR.CO
            COUP. CU7S. DCS. UCT.i'TH
            EOUIV.F,FS.H20P.H2iiS
            HP.Hh.HTtLAM.Hl IN.I.HV
            LHVT.LrS.LCT.MAIK.MFLUin
            MniFL.N?P.K?H,N2S,MRENDA
            NBhNI)G,NO,NP,02P,02R
            OZS.PO.SCI.SSA.SIA
            STfi. 10.Wb.nT, VbXT
            ACI(in),ACO(10).HHdO).RT(10),CTF
            CTFYdU.11 ) , C Tl (1 » ) . CM. DH I ( 10 ) . DHOUII )
            in n u ), nu< i n ). ns< in J.nYYvuo ).er
            EFYdO.ll ),Fl».tGVdD,ll).FHl<10>.FHO(10>
            FNI(lQ),riU(10),FI>AC,FTf (10).FTn(10)
            GVl(10,l)., TR2AVi;dO),TOINldO), T01N?dO)
            TIMF.T fdO.ll .2). Tl'BHOWdO ). VAPL1 (10). VAPL?(10)
            VAPLJ( IB). VOL(10).X1(;(10),X2L(10).X?T(10)
            CTAR(AQ,?7. >,MUOd?8),HTAB(69t27).HVAP(128>.INI)
            Nl INb»NNII,NPSTtEPfNTS1EP.Pd28)
            PTAR(7li).STAH(69,27),T(12fl).TTAR(33),VLlO(t28)
            VTAH(6V.27). VVAPd?8 )
            L.LHV.l HVT.LCS.LCT.MAIH.MFl UID,MFUbL.MHZ.N2P.N2R.N2S,NO
     HYIIhAOLIC niAMFTEKS
     USE FUNCTIONS
              C)*RH(NC)-lU (NC)»HT(NC)
            = X2L(NC)-00(NC)-FNi.(NC)»FHl.(NC)«FTO/< 01 (NO + HKNC) )
     TUBE METAL PRuPFRTIFS AKE ASSUMED CONSTANT  IN  THIS  PROGRAM
     ARRANUFMENT
     TX=0.
     M|=NM(NO
     GO TO d4n.l4*).M|
     NOTE THAT Al   PRtShNILY FORMULATEO THE FUNCTIONS  FCHS(TX),
     FKMS( 1X),FCMC(TX),FKMC(TXI.  THFY no NOT DEPENH  ON  TEMPERATURE
     WHICH IS NOT   nFFINFD AT THIS POINI.  (SUITABLE  TEMPERATURES
     COULD Rt UFFlNFD KOH  IHIS PURPOSE)
     CTR = FC"S<1X)
     RTR=FHMS(1X)
     GO TO 150
     ClB=rCMC
-------
PROGRAM LISTING -- CGEOMC (Cont'd)

     RTO=FKMC(1X)                                                     00600
180  CTTJNC ) = VUI.B«CTrt»RTH                                             00610
     IFCNStKND.NE.l )  CT1 (NC)=CTT(NC)»VOLO«CTO»RTO                     00620
     CTT
-------
SUBROUTINE STB»SC
    STEPSC calculates the stability limit on lump-size for each lump of COND.
It employs the subroutines HT1PB, HT2PB, HTAC,  and PHASE.

NOMENCLATURE  -- STEPSC
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of STEPSC are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:

                                Definition
FORTRAN
 Variable
       HW       Enthalpy of working fluid
       MGC      Mass flow  rate of air
       MWC      Mass flow  rate of working fluid
       NC       Fluid pass number
       NX2       Number of lumps for a given coil
       PW       Pressure of working fluid
       TG       Bulk gas temperature
       TI        Wall temperature at mid-node of a lump
       TW       Bulk fluid temperature
       X         Quality of bulk mass within a lump
       X2G       Geometric limit on lump size
 Units
Btu/lb
Ib/sec
Ib/sec
                                                        lb/in.a
                                                        °F
                                                        °F
                                                        °F

                                                        in.
                                 160

-------
PROGRAM LISTING -- STEPSC
      SUBROUTINE STEPSC,CW,DHI (lO).DHO(lO)                      00130
      COMMON Dl (10), 00(10 ).US(10).DYYY<10).EF                            00140
      COMMON EFtdO.ll ).EG.bGY(10,ll ) . FH I ( 1 0 ) , FHO ( 10 )                    00150
      COMMON FNK10 ),FNO(10 ),FRAC.FTI (10>,FTO<10)                        00160
      COMMON GVZ(10,11,2).HF(10,11.2).HFIN1<10>,HFIN2(10>.HGIN1(10)      00170
      COMMON HGIN2(10),HGT,HGTY(10,ll ) . HTF. HTF Y(10, 11 >                   OOlfiO
      COMMON J?E(10 ), J3E(10 ).L(10 ) . LSTEP, MWZ < 1 0 , 11 )                      00190
      COMMON NCY(3),NCLY( J),NCRY(3).NCYCLE,NFSECT(3)                     00200
      COMMON NLUMP.NM(10),NMI (1(1 > , NNO ( 1 0 ) , NPH                            00210
      COMMON NPHYdO.ll ) , NPR I NT , NSS. NS 1 (10),NSO(10)                      00220
      COMMON NTKANS,NX2MAX<10 > . NX2Z d 0 ) , NXN, NXO                          00230
      COMMON PGVdO >,RFA,RM(10 ) . RW, RWY < 10 , 11 )                            00240
      COMMON TGK10 ), 7G2(10,11,2),TG2AVO(10),TOINK10),TGIN2(10)         00250
      COMMON TIMF,TU10.11,2).TIJBROM(10>,VAPL1(10>»VAPL2(10)             00260
      COMMON VAPL3< 10 ). VOL (10 ) . XlGdO ). >2L(10 ). X2T(10 )                   00270
      COMMON CUB(69,27),HLIO<128),HTAB<69.27).HVAP<128). IND             00260
      COMMON NL IN.t.NNU,NPSTfcP.NTSTEP.P(12B>      .                        00290
      COMMON PTAB(70)>STAB(69,27),T(12B)»TTAB(33),VLIO(128)              00300
      COMMON VTAB(69,?7 ), VVAP(1?8)                                       00310
      REAL   I.IHV,LHVT.LCS,LCT,MAIR,MFLUID,MFUEI»MMZ,N2P,N2R,N2S,NO     00320
      REAL MWC.MOC                                                       00330
      PW,HH. TG, TI , MWC.MOC, NC, X20  ARE INPUT                               00340
      NX?,X,TVJ ARE RETUKNED.                                             00350
      CALL HHASF(PW, T H, HW, X , 0 VL , GVV, ML, HV )                               00440
      GAS PROPFWTIES                                                     00450
      CG=FCA(TG)                                                         00460
      RG=1./FDA(TG)                                                      00470
      OHTAIN HEAT TRANS COEFFSJ  HTGT.HTTF                                00480
      OBTAINING HTGT                                                      00490
      G=MGC/ACO(NC )                                                      00500
      CALL HTAC(HTGT,NC.G, TG)                                            00510
      OBTAINING HTTF                                                      00620
      GF*ABS                                        00850
      HTF = HTTF«2.»(DI(NC)«BT(NO)                                        00860
      CTFeRN«ACI(NC)«CM/172H.                                            00870
      STEP SIZE CALCULATION                                              00940
      X2»2.«Ef/HTF                                                       00950
      DX2=AMIN1(X2»FRAC,X2G)                                             00960
                                     161

-------
PROGRAM LISTING  -- STEPSC (Cont'd)


NX2=lNTSTfi                                              00970
IF(NPH.EO.J»)  NX2 = 5                                               00980
ir
-------
SUBROUTINE HT2PC
    HT2PC calculates the heat transfer coefficient between the condensing
fluid and the condenser wall.
NOMENCLATURE -- HT2PC
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of HT2PC are  in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:

                                  Definition
FORTRAN
 Variable
       G        Mass velocity of working fluid
       HFG      Latent heat enthalpy
       HTC      Heat transfer coefficient
       NC       Fluid pass number
       RHOL    Density of working fluid liquid phase
       RHOV    Density of working fluid vapor phase
       TI        Wall temperature at mid-node of a lump
       TTF      Bulk fluid  temperature
       X        Bulk quality of working fluid
    Units
lb/in.3 sec
Btu/lb
Btu/sec in.2 °F

lb/ft3
lb/ft3
                                    163

-------
PROGRAM LISTING -- HT2PC
  10
  15
  20
 SUBROUTINE  HT2PC(HTC,NC,R.TTF,TI,RHOV.RHOL.X,HFG)                 00020
 THIS  SUBROUTINE  CALCULATES THE HEAT TRANSFER COEFFICIENT          00030
 BETWEEN THE CONDENSING FLUID AND THE CONDENSER MALL               00040
 COMMON AP,B.CH.CHK,CO                                             00050
 COMMON C02P,C02S.I)CS,DCT.nTH                                      00060
 COMMON EOUIV.F.FS,H20P/H20S                                       00070
 CUMMON HP.HR,HTFLAM,HTIN,LHV                                      00080
 COMMON LHVT,LCS,LCT,MAIR.MFLU|D                                   00090
 COMMON MFtlEL.N2P.N?R,N2S,NBENDA                                   00100
 COMMON NRFNDG,NO,NP.02P.02R                                       00110
 COMMON U2S.PO,SP1,SSA.S1A                                         00120
 COMMON STG,10,WS,HT.YfcXT                                          00130
 COMMON ACI(10),ACO(10 ),8H<10),BT(10 ).CTF                          00140
 COMMON CTF YdO.ll >,CTT(10 ) ,CM,DM I(10>,DHO<10)                     00150
 COMMON Dl (10),00(10),OS(in),OYYY(10).EF                           00160
 COMMON EFYdO.ll ),EG.6GY(10,11),FHI <10),FHO(10>                   00170
 COMMON FNl(in),FNO(10),FRAC,FTI(10),FTO(10)                       00180
 COMMON GVZ,J3E(10),L(10),LSTEP.MWZ(lfl,ll)                     00210
 COMMON NCY(3).NCLY(3),NCRY(3),NCYCLE,NFSECT(3)                    00220
 COMMON NLUMP,NH(10),NMI(1(I),NMO(10),NPH                           00230
 COMMON NPHY(10,11),NPHINT,NSS,-NSI(10),NSO(10)                     00240
 COMMON NTH«NS.NX2MAX<10),NX2Z(10),NXN,NXO                         00250
 COMMON PGVdO ),RFA,RM(10),RU,RWY(10,11)                           00260
 COMMON 1G1(10).TG2(10.11,2),TG2AVO(10),TGIN1(10),TOIN2(10)        00270
 COMMON TIME,TT(10,11,2),TUBROW(10).VAPL1UO),VAPL2<10)            00280
 COMMON VAPL3(10).VOL(10 ).X1G(10),X2L<10).X2T(10)                  00290
 COMMON CT48(6                              00310
 COMMON PTAB(70),STAft(69,27),T(128).TTAB(33).VLIO(128)             00320
 COMMON VT4B(69.27 ),VVAP(128)                                      00330
 REAL    L.LHV.l HVT,ICS.LCT.HA IR,MFLUID.MFUEL»MHZ,N2P,N2R.N2S,NO    00340
 REAl  Kl                                                           00350
 VISL=FVUL(TTF>                                                     00360
 KL = FKWL< TTF )                                                       00370
 CL=FCWL(TTf>                                                       00380
 GL=(1.-X)«0                                                       00390
 GV=X»G                                                            00400
 REL=(DHI(NC)»Gl/VISL)»3600.»12.                                   00410
 REV=(DHI (NC)»GV/V!SL  ) »SORT(RXOL/RHOV)»3600.»12.                   00420
 IF)*(CL«VlSL/KL)«*(l./3.)                       00500
1  «(HFG/(CL»6BS(TTF-TI)))••(!./6.)«REV«»ZEXP                      00510
 GO TO 30                                                           00520
 GE»GV*(RHOL/RHOV)««.5+GL                                          00530
 TERM'.026*(3600.*!?.)»».8/(3600.«l2.)                              00540
 HTCs(TERM«KL/DHl(NT))•
-------
SUBROUTINE HTAC
    HTAC calculates the heat transfer coefficient between the air and conden-
ser tube wall for the louvered fin condenser.
NOMENCLATURE -- HTAC
FORTRAN Variables in COMMON:
    The FORTRAN variables in  the COMMON of HTAC are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
     Variable
       G
       HTC
       NC
       TTF
                Definition
Mass velocity of air
Heat transfer coefficient
Fluid pass number
Bulk air temperature
    Units
lb/in.a sec
Btu/sec in.a °F
                                   165

-------
PROGRAM LISTING -- HTAC
      SUBROUTINE HTACmr.NC.G.TTF)
«     THIS SUBWfjiJllNF CALCULATES  THF  HEAT  TRANSFER  COFFFlfcNl
•     BETWEEN THF A|R AND CONDENSER  TUBE  HALL  FUR  THE
•     LOUVEKED FIN CONDENSER
      COMMON AP.R.CH.CHK.CO
      COMMON C02P.C02S.UrS.OCT.UTH
      COMMON EOUIV.F.FS.H20P.M2US
      COMMON HP.HX.MTFLAM.HTIN.LHV
      COMMON LMVT.LCS.ICT.MAIK.NFLUID
      COMMON MFIJFL.N2P.N?N.N2S.NBfcNnA
      COMMON NBHNDG.NU.NP.02P.02R
      COMMON 02S.HO.SP1.SSA.STA
      COMMON sTR.To.ws.wT.YExi
      COMMON ACIdO).ACUdO),BH(10).B1(10>,CTF
      COMMON CTFY(lu.ll),CT1dO).CW,DHl(10).DHO(10)
      COMMON Dl <1f».00(10).USdU>.DYYYdO),EF
      COMMON EFYdO.1D.EG.HGYdO.ll ) . FH I (10 ) . FHOdfl )
      COMMON IN|(in),FNO(10).FRAC.F1IdU).FTO(lO)
      COMMON GVZdO,ll,2).HFdO,11.2>.HFINldO>,HF|N2dO>.HGINl(10)
      COMMON HGIN2(10),HGT.HGTY(10.11 ) .HTF.HTFY(10,11 )
      COMMON J2E(10). J3E(10).L (10). LSTEP.MMZdO.il)
      COMMON NrY(3),NCLY(3),NCRY(3).NCYCLE.NFSECT(3)
      COMMON NlUMP,NM(lO),NMIdO >.NHO(10 ) , NPH
      COMMON NPHYdO.ll ),NPKINT.NSS,NSI (lO).NSOdO)
      COMMON NTUANS.NX2HAX(10).NX2Z(10).NXN.NXO
      COMMON PGVdO ). KFA.WMdO ),RM.RWY-dO,ll)
      COMMON TGI (10). 1G2dO. tl .2 ). TGPAVGdO ),TGIN1<10 >, TCINV(IO)
      COMMON  I IMF. Tl (lU.ll.i?). TOBHOWdO ). VAPI.l(iq),VAPL2(10)
      COMMON V A PI 3(10 ), VOK10 ), XlGdO ). X2LdO),X2T(10)
      COMt-ON CTAH(69,?7).HLlOd?B).HTAB(69,27).HVAP(128), INI)
      COMMON NLINh,NN|i,NPSTtP,NlSTEP.P(l28)
      COMMON PTAB(7H).SIAH(69.27),T(1?6 ),TTAB(33),VLIO(128)
      COMMON VTAR(69,27),VVAP(128)
      RI-Ai   L,LHV.LHVT,LCS,LCT.MAlR.MFLUID.MFUEL.MhZ.N2P.Ni?R,N2S,NO
      RhAl K.KM
      If (NMiKND.EO.l )
      |F(MMIJ(NC).L0.2)
      V=FVA(TTF)
      KsFKA(TTF)
      C=FCA(T1F)
      REA=(DHO(NC)»U/V)«360U.*12.
       Y=AIOU(Z)
       YA=.Oi«EXP(HEIA)
       HTR=YMG»C»4»FHi.KNC))
       4F=?.«FNO(NC)»( (8H(NC)»I10(NC) )• ( 2 . «FHO( NC ) *F T0( NC )
      7 4.«FHO(NC)»(FHO(NC)*F TO(NO) )
       AU=2.«(HH)»d.-FNO»FTO(NC»
       A=AF«AU
       AFA1=AF/A
       EFF=1.-AFAT«(1.-ETA>
       HtC = HTB»FFF»A/(2.»n
                                                                          00360
                                                                          00370
                                                                          003AO
                                                                          00390
                                                                          00400
                                                                          OIJ410
                                                                          00420
                                                                          IIU430
                                                                          00440
                                                                          00460
                                                                          00470
                                                                          II04HO
                                                                          00490
                                                                          005(10
                                                                          00510
                                                                          00520
                                                                          005JO
                                                                          00540
                                                                          005-10
                                                                          00560
                                                                          01)570
                                                                          00580
                                      166

-------
     Section 8
REGENERATOR MODEL

-------
                                Sections

                           REGENERATOR MODEL
MAIN PROGRAM - REGEN
    The regenerator model is titled REGEN.  The model employs the follow-
ing subroutines:
DISTR
RGEOMC
STEPSR
ITERAT
SATP
PROP
SUPPT
PROPST
PDROP1
PDROP2
PDROPR
INTSTE
PHASE
HT1PB
HT2PB
HTWTM
FCWL
FOWL
FKWL
FVWL
FYWL
FCWV
FDWV
FKWV
FVWV
FCA
FDA
FKA
FVA
FCG
FDG
FKG
FVG
FCMC
FKC
FRMC
FCMS
FKS
FRMS
FKM
    Figure 3  illustrates the links between the various subroutines required
for REGEN.

    The input parameter,  FRAC,  is the ratio of actual step size to stability
step size.  To avoid numerical instability,  its value should be less than unity.
FRAC has been set at 0. 5 in the  present program.

NOMENCLATURE --  REGEN

FORTRAN Variables in COMMON:

    The FORTRAN variables in  the COMMON of REGEN are in the COMMON
of MAINSYS.

Fortran Variables in Argument List:

    FORTRAN
    Variable                 Definition
      HGRI       Enthalpy of vapor at REGEN inlet
      JS         Variable to denote cumulative number of
                 time steps
                                  167

-------
    REGEN
                        SUPPT PROPST
* These subroutines use fluid or metal properties.
          Figure 3.  Links Between Subroutines Used by REGEN
                                 168

-------
    FORTRAN
    Variable                 Definition
      MGE       Mass flow rate of gas (vapor) at exit
      MGI        Mass flow rate of gas at inlet
      NST        Logic variable for transient start
                    0 - steady-state case
                    1 - transient case
      PGRE      Pressure of gas at exit
      PGRI       Pressure of gas at inlet
      PWRE      Pressure of working fluid at exit
      PWRI      Pressure of working fluid at inlet
Other Selected FORTRAN Variables:
    FORTRAN
    Variable
    MGRZ(I)
             Definition
Gas mass flow rate for fluid pass I
    MWRZ(I, J)  Fluid  mass flow rate for fluid pass I
                 at node J
    PWR
Fluid pressure
                                         lb/in.2
                                         lb/in.3
                                         lb/in.2
                                         lb/in.a
   Units
Ib/sec

Ib/sec
lb/in.2
        Note:  For the  remainder of these variables see "Other
               Selected FORTRAN Variables" for VAPORG, in
               Section 6.
                                  169

-------
FLOW DIAGRAM -- REGEN
                        C
Start
                    Define
                       NTCOMP,  NC,  NCL, NCR,
                       MWRZ (NCL. 1)
                                Does
                            NCYCLE = 0
                         CALL RGEOMC (I)
                                 Does
                             NTRANS = 0
                                                        Do  3
                                                       3 Continue
                                170

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                      Initialize:

                       I.  FindTGINl(I) from HGINl(I)
                          TGIN2(I) from HGIN2(I)
                       II.  For each lump of each fluid path:

                           a.   Use average values
                           b.   CALL STEPSR (obtain
                               HTG,  HTF,  NPH, etc.
                               through COMMON)
                           c.   Find revised value of
                               NX2Z(I)

                      III.  Obtain initial distribution for
                          NX2Z(I) lumps, from end-point
                          data.  Obtain MWRZ (I, J), TGI
                          (I).  TG2(I, J. 1), HF(I.J.l).
                          TT (I.J.I)
    Is
  NX2>
 NLUMP
     9
                                                                      YES
                                                               Print
                                                               Message
C
                                                                  Stop
                                                             18 Continue
                    225
                            Corresponding to PWR,
                            Find TSAT, HL,  HV,
                            GVL. GVV
                                    171

-------
FLOW DIAGRAM -- REGEN (Cont'd)

                                   ©1
NO
                   712
                         Write,  on file 6, entrance node
                         information as headlines.
                                            YES
                         Write TIME on Output File 13
                       701
                                    Continue
                                       I
                                    I = NCL
                                                             Do 396
                                  172

-------
FLOW DIAGRAM --  REGEN (Cont'd)
       'I = JH-1
                    Initialize
                     (for Pass I) NXO,  NX2MAX(I),
                     DXO,  VAPLl(I),  VAPL2(I),
                     VAPL3(I),  J2E(I), J3E(I)
                             JI = 1 (Lump 1)
                                                              Do 230
                                   1
                            For Each Lump JI
                   a. Calculate HW,  TA, TTZ, MWR,NX2
                   b. CALL STEPSR
                   c. Redefine RW, HGT, HTF, etc. as
                     arrays.
                   d. Find NX2Z (I)- NX2MAX(I)
                                      YES
                    Select
                      NX2Z(I) (= NXN) as maximum of
                      all values for the fluid pass I.
                    Calculate DXN.
                 YES
                                       NO
230 Continue
Save DXN for Pass I
i
' ^^~s
                                  173

-------
FLOW DIAGRAM -- REGEN (Cont'd)
       ,   NO
4	t\	
                                     Does


                                  JS = LSTEP
                                          NO
                        Write lump size information

                        as headline
                                          YES
                        Write NXN in Output File 13
                                  703
                                  174

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                 YES
                                       NO
                    Define
                        MWZ (I, JI) = MWRZ (I, JD
                        MWRZ (I, JI) = MWZ (I, JI)
                                    I
                        For each Lump JI compute
                        NPH;  store as NPHY (I, JI)
    Do 811

811 Continue
                    / CALL DISTR(I).                \
                   /*Obtain distribution of the following \
                 /  parameters for NXN nodes:         \
                 (   MWZd, JI),  HF(I.JI.l), TTd, JI, 1),   )
                 \  TG2(I,JI,  1), HGTYd, JI), EGY(I, JI)/
                  \ HTFYd, JD, EFYd, JI), CTFY(I, JI)y'
                   \RWYd, JI)


                                    i
    Do 812


812 Continue


    Do 236


236 Continue


    Do 238
                                    175

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                                     1
NO
                     Based on NPHY (I, JI),

                     Calculate
                         VAPL2(I),  J2E(I), VAPL3(I),
                         J3E(I), VAPLl(I)
JI =
JI+1
                                         YES
                     Find (for each Lump JI) DYX1. DYX2,
                          DYX3,  DYY (for NPHY(I,
                     Find DYYM  for I, and save as
                          DYYY(I).
I =
1+1
                    NO
                                         YES
                     Find DYY,  as a minimum of DYYY(I)
                          and YREM
                  YES
                                                           238 Continue
                                                              Do 265
                                                           265 Continue
                                                          396 Continue
                     Do 412

                 412 Continue
                                  176

-------
FLOW DIAGRAM -- REGEN (Cont'd)
      F)
     (701)
                          CALL ITERAT, to obtain
                          iterative solution.
                          After Final Iteration,  NSS = 0
                          ( Set in  ITERAT )
                   YES
                    NO
                                           YES
                           Print TIME, JS as headlines
                          Initialize INX1 =  1,  INX2 = 1
                                        1
                              I = NCL (Fluid Pass I)
                           Define
                                   NXN, DXN
                           Initialize
                                   TG2T
                                                           Do 600
                                    177

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                                      YES
                                      i

                                  Does


                              JS =  LSTEP
                    Print title for output columns
                    Print  Fluid Pass No.  = "I
                            JI = 1 (Lump No.  JI)
                    Define,  for the Lump JI,  N PH, TG

                    Calculate NBB (= No. of  Iteration

                       Steps), FG2G1,  FG2T

                    Calculate TG2 (I. JI, 2), TG2T

                    Set TG2(I, JI, 1) = TG2(I, JI, 2)
                                                            Do 420
    Do 280


280 Continue
                                  178

-------
FLOW DIAGRAM -- REGEN (Cont'd)
,i 397
 Define
 Find
       TREF, HREF
       CPP,  TX
 Calculate
   FTG, FTT, FTF,
   FCON, TT (I, JI, 2)

 Set MWRZ (I, JI+1) =
    MWRZd, JI)

 Calculate FF2T,  FF2F1.
   FF2F2, HF (1, JM, 2)
           I
 Define  HFN = HF
   (1, JI+1, 1)
                                                          , , 399
                                    Write
                                    'Calculations for NPH = 3
                                    not permitted at
                                    pr e s ent "
                      'Calculations for NPH= 2
                      not permitted at
                      present1
              410
                       1
               Find HFGN Corresponding to TG2(I. JI, 1)
                                  179

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                                                 ES
                    Write (on File 6) JI,  HFN, TFX,  TT (I, JI.1)
                          HFGN, MWRZ  (I, JI+1/,
                          NPHY (I, JI)
                     NO
                                             YES
                    Write (on File 13) HFN, TT (I, JI, 1), TG2
                           (I, JI, 1),  MWRZ  U,JI+1]
                                            YES
                    Write (on File 6) HTFY,  CTFY,  EFY,
                           HGTY
                                     180

-------
FLOW DIAGRAM — REGEN (Cont'd)
                                        NO
               Set
                   MWRZG+i, i)= MWRZd, NXN+1)
                   HFft+1,1,2) =  HFd, NXN+1, 2)
               Find
                   HGINl(I) from TGI (I)
                   HGIN2(D from TG2AVG(I)
                NO
                                     YES
                           TIME = TIME + DYY
                *Reset
                Find  HGINl(I) from TGI (I)
                     Hr,IN2U+D = HGINl(I)
                Find HGIN2(NCL) from TG2AVG(NCL)
                HFd+1. 1, 2) = HF(I, NXN+1, 2) Except for
                I -- NCR
                HFd, 1. 1)  =  HF (1,1,2) Except for I - NCL
                MWZ(1, NXN+1) - MWRZ (1, NXN+1)
                TT (I, JJ, 1) -- TTd, JJ, 2)
                HF (I, JJ+1,1) = HF (I, JJ+1, 2)
                                                           420 Continue
                                                           600 Continue
    Do 429
429 Continue
    Do 430

430 Continue
                                  181

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                             YREM =  YREM - DYY
                  Write (on File 6) DYY,  TGl(NCL),  TGI
                     (NCL+1), TGI (NCR)
                  Write (on File 13)  TGI (NCL), TGI
                    (NCL+1),  TGI (NCR)
J
                                         YES
                  Write  title for pressure drop results
                                    182

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                  *Gas-Side Pressure Drop
                  Define  PGR,  TA1, TA2
                  CALL  PDROPR
                  Find    FDD
                  Repeat for all NC coils
                                  I
                  Write (for all fluid paths)
                    pressure-drop data and
                    results
    Do 1008
                  Calculate  and write PGRE
                  *Pluid Pressure Drop
                  Write title for pressure
                  Define PWRX, Jl
                         I =NCL (Fluid Pass I)
                       J1E, LZ [for VAPLKDJ
1008 Continue
     Do 1030
                                  183

-------
FLOW DIAGRAM -- REGEN (Cont'd)
                        MWR = MWRZ (1,1)
                        Find  J2,  HFA, TX
                        CALL PDROP1
                        Find  FDD
                                    1
                   Write pressure drop data and_
                   results
                          FWRX = PWRX -  FDD
                               1013
                    Find
                         LZ  [for VAPL2(I)j
                  YES
                                       NO
                        Find
                             Jl. J2,  MWR
                             XENT (Min  = 0)
                             XENT (Max = 1)
                        CALL  PDROP2
                        Find PDD
                    Write pressure drop data and
                    results
                          PWRX = PWRX - PDD
                                 184

-------
FLOW DIAGRAM -- REGEN (Cont'd)
 1030
                            1016
                  Find
                       LZ  [for VAPL3U)]
               YES
                                    NO
                      Find
                           Jl, J2, HFA,  MWV
                      CALL  PDROP1
                      Find FDD
                                 I
                  Write
                    pressure drop data and
                    results
                        PWRX = PWRX - FDD
                  Define PWRE
                  Write  PWRE, HF (NCR,  NX2+1,1)
                        C
Return, End
                                                       1030 Continue
                                 185

-------
PROGRAM LISTING -- REGEN
SUBROUT1NF KEliFNCMni.MGt.PGRl.PGRF.PWRI.PMRE.HnRF. JS.NST)
CUMhON AP,H,C«,CHK,r.O
COMMON co2P.CH?s.ucs,uri.DTH
COMMON fcUUlV.F.FS.HPOP.HZOS
       HP.MK.i.TFLAM.HTlN.LHV
       LHVT,L« S.LCT.MAIS.MFLUI o
       MFlJEL,N?P.M2H.N2S.NBFNfiA
       NRENDG.Nu.NP.02P.02R
       U2b.Pn.SPl.SS4.STA
       STH.TO.US.nT, YbXT
       ACI(10).ACu(10).HH(in).RT(10).CTr
       Clf Y<10. 11 l.CTf (10 ),CW,DH!<10),DHO<10)
       OI(lU)fnu(in).uS(1'i).DVYV(lO).EF
       FFY(in.ll).F«,eGY( 10.13 ) . FH I ( 10 ) . FHO (1 0 )
       FNl (llll.FNIMlO).f HAC.FI I(10)«FTO(1H)
       CVZ(10.U,^),HKin,11.2),HFINl(in).HFlN?(lll),HOINl(lll)
       HR|N2(in).HRT.HGT Ydll.ll » , HTF . HTFY (10 • 1 1 )
       J?M1D). J3f(30 ).L(10 > . LSTf-P. MWZ( 10 , 11 )
       NCY(3).NT.L t(.n,NCRt(.i),NCVCLE.NFSECT(3)
       NLUMP.MM(lU).NMI(lH).NMO(lll).NPH
       NPHY(lll.ll).NPKlNT.NSS,NSI(10),NSO(10)
       Mi,RW.HWY<1 n.ll)
       IOK10), lG?(in,11.2).TG2AVG(10),T6INl(10).T6IN2(10)
       T|ME.TT(]0.11.2),TliBHOM(.l.H).VAPLl(10).VAPL2(lfl)
       VAHI 3(10). VOLdO). xlG(lO), X2L ( 10 ) . X2 T ( 1 0 )
       CTAP(6V.?7).HLIO(128).HTAH(69,27),HVAP(1?8). INil
       NI. 1Mb. wNO.NPSTtP. NTSTEP.P< 128 )
       PTAR(7fl),STAH(b9.?/>,T(128>.TTAR(33),VLlUV2(10).nV2N(10).MGRZ(10)>MGRA(10).MWHZ(10.11)
DIMENSION PuRtlll)
RFAL LZ.MENl.Mr.h.MCI.MGR.MGRA.HGRZ.MUR.MUKZ
NIC(lMP=3
NC=NCY(NTCnMP)
                     1 >
                                                                         fllidiJO
                                                                         OlMMO
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMHOH
     COMKON
     COMMON
     CiiMhON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     COMMON
     CDMhON
     COMMON
     COMMON
     COMhON
     COMMON
     COMMON
     COMMON
     NCR=NCRY(NTCOwP)
     MHRZtNCL, 1)=M'«ZINCI
     00 3  IsNCL.NCM
     irD0.3)
     CALL  SUPPT.HG1N2< I J.DD.DD.J)
     A1=12.«L(|)
     Hli=( HGINK I )«HCIN2( I ) )/2.
     CALL  SUPPT(PGKI,TC.HG,DD.liD.3)
     TTZ = TG-10.
     NX2='NX2Z(I)
                                                                         Ullllftfl
                                                                         nmun
                                                                         00110
                                                                         rni14n
                                                                         Uul6n
                                                                         n ill 70
                                                                         nnl9n
                                                                         OtlZDO
                                                                         nil?lfl
                                                                         flli?30
                                                                         00240
                                                                         Ou?60
                                                                         00?70
                                                                         OH7HH
                                                                         nnpvn
                                                                         OH300
                                                                         00310
                                                                         00320
                                                                         0(1370
                                                                         OH3MP
                                                                         003HS
                                                                         H03CO
                                                                         00420
                                                                          00440
                                                                          00443
                                                                          OfM'jO
                                                                          00460
                                                                          OII46I>
                                                                          01)470
                                                                          0051)0
                                                                          00510
                                                                          0(i!>20
                                                                          00560
                                                                          00570
                                                                          1105/5
                                                                          00500
                                                                          Ou590
                                                                          00*00
                                                                          11(1610
                                                                          006JO
                                                                          00640
                                                                          0(1650
                                                                          011660
                                                                          00670
                                      186

-------
PROGRAM LISTING — REGEN (Cont'd)
     HbsQ.'jX Hf IM' I )«HFIN?( | ) )
     •7^1. I  ;jlrH%rr(H|dJ\0 INpHWfrGNJj l*Tf I I /
    71,Al.NX?)
     IF ( fcX/'.lF .Ml IMP)  r.n Tu  15
 111   FuWMAl (.IS-i  NO.  uF ll'MH  RF-nUIRpn  FXCfcEOS NIlIMP)
     WH!1E(6, 1 ii >

  •f   FllRMA I (hH  NX?   .110)
     SIOH
 !•>   NX?7( I ) = NX?
     I N I TIAl  M I SIRIRuTI ON
     TH 1.1.1 ) = TTZ
     IF ( I.NF.'TI. )  nF( |.l ,1 ) = hF INK I )
     T«1 i I )=IRIN]( I )
                                                                             (nift/5
                                                      >.M(;RA.xr.
       HXN=12.«L( I )
       A2=(HF|N?( I )-•!» Ml ( I ) )/XN?Z
       MwR7( I . 1 )=»*»/ I NC1.1 )
       1)0 18 J = ].NX?
       MWR?( I , J + 1 )=MHP/(Nfl,l )
       H» ( I, .1+1,1 )=ri> ( I . J.I )*«2
       TT( I. .1.1 ) = T1( i.l.l 1
       NDTF- I'D  MiiT  U'.F  Tl;?,TI A1  NX2 + 1
       Tt;?< I, j.i ) = 16IM?( I >
   1H
                  A»
                                CVCLF
 •      Al THIS PKTNT  Tut- f-XffRNAl  CONPITIONS AKF  FN-TFREO FDR
 •      TnF Nh x 1  FX1Ei"vAL ll«t ST»P.   DuRINIi  INITIALISATION
 •      TnM SHiiHLP  Hi  MAHF FiJUAl  TO  IH(  INITIALIZING VALuES
 •      PhR Fi~lNr.  is  A KUiP RACK  fROM STATEMENT  1000-1
71?
713
     CAI I  •sAUMPhK. ISAl.riVL.GVtf.hL.HV.l )
     \l (NSs.t ij.1 >   0 lu 701
     JS=JS+1
     IF INSI .NF-.n )  i,0 Fi> l\i
     u < js.Ni .i.sie^> oi; in  701
     HWI IFliS, 713 >TlMh. JS
     FuRMAI(4nn
    721H         (TIHhSIFP NO..I5.2M »
71S

716

72n

817

810
71V
701
                                              •••••  TIMF =
       MKlTF(6,71S)H^ (MCI . 1. 1 )
                   FL"I  ' tNjHALPV  (tNTRANCE)   =.F15.5)
       FiiRNAT(^9H  IL«li< tLOU  RATt-  (ENTRANCE)  =.F1S.5)
               , 770 )P->P. FbAT
               XO,!  FL"IH PRF-SS»HRF,  SAT. TEMP   =,2El5.^)
       wwi TE(6.817)M-;|
       FnRMAK2QH  liAL. FLuk RATE  (ENTRANCE)    =,F15.5)
       Mfl IF (f>, nifl JPnf' I .hRhl
       FnPMAI(?VH  GAS PHhS. tNTH (ENTRANCE)   ».2E15.5)
       IF( JS.NF .LS1HP) GU TO  701
       MKI IE (1.1. /19) I ME
       FURMAKM'J.'j)
       CUNTINlit
       DO  39f>  l=NCl
       NXO=NX7/' i )
                                                                             ii it A 4 n
                                                                             o u 7 1) n
                                                                             n n 7 i n
                                                                             0(1 7.10
                                                                             n n 7 1 n
                                                                             n n 7 / n
                                                                             n n 7 rt n
                                                                             U n 7 ^ n
                                                                             n n H •/. (i
                                                                           0 it H 4 n
                                                                           OllH>>0
                                                                           o M « / n
                                                                           OilH/S
                                                                           n r i H H n
                                                                             II n 91 0
                                                                             nn<>
                                                                            n (i Q v ii
                                                                            0 (i V i n
                                                                            it n *t t fi
                                                                            n i, g«n
                                                                            ii n v <* n
                                                                            n i nun
                                                                            ni n/n
01 o/,n
I) 1 1 H 0
niiin
1)1120
m i-jo
u i ion
n 1 1 / o
nil HP
                                                                            n i ? 4 n
                                                                            in
                                                                            01?60
                                                                            (112/0
                                                                            012HO
                                         187

-------
PROGRAM LISTING -- REGEN  (Cont'd)
230
721
723
703
811
»12
231

232
233

234
      NX2MAXC I )=t
      VAPI 1( I )=».
      VAPI?<1 )su.
      VAPL3«!?.
      MWH=MWK/< I, JI )
      NX2=NX2Z( 1 )
      CALL  STEPSR(PnR.Tk4,HW,PGRI.TA.TTZ,MUR.MGRA(l),XF. 1.A1.NX2)
      THE FOLLOWING ARE AVAILABLE FROM STEPSI  AMD  ARE  BULK
      P*Y< 1, J1)=RW
      HRTYC I, JI ) = HG1
      HTFY< I. JI >=HTF
      CTFY< I, JI )=CTF
      NHHYd. JI ) = NPH
      NX?HAX( I >=MAXO(NX2MAX( I )*MX2)
      CONTINUE:
      NXN=NX?MAX( I )
      NX2Z< I )=NXN
      DXN=12.»L(I )/FLOAT(NXN)
     IF(NSS.E').l) GO TO 703
     IF( I.EO.NCL) nXNlxDXZ
     IF ( I.EQ.(NCL*1>) DXN2 = DX2
     IF( I.EO. (NCL*2) ) DXN3=DX2
     IF(NSl.NE.n) 00 Tu 821
     IF( JS.Mt.LSTEP) GO TO 7l>3
     IFd.LT.NKR) RO TO 721
     WHlTE(6.5)nXNl,nXN2.DXN3,nX2
     FORMAK29H LUMP SIZE (COILS l.?,3,4)
                     60 TO 703
                                             =,4E15.5)
      CONTINUE
      IF( JS.NE.LSTEP)
      FORMAT(IIO)
      CONFINUt
      IF(NXN.EO.NXO)  GO  TO  237
      MA=NXO*1
      DU  811  JI=1.MA
      MHZ>0
                                                                       01460
                                                                       01470
                                                                       01490
                                                                       01500
                                                                       01510
                                                                       01S20
                                                                       01530
01550
01560
01565
01570
01580
01590
01600
016112
II ] 6 0 4
01610
01620
01630
H1640
01660
016/0
016UO
01690
017UO
0170?
01705
01707
01710
01712
01715
01717
0172M
111730
01740
017!>0
01760
01770
01780
01790
01800
                                      188

-------
PROGRAM LISTING -- REGEN  (Cont'd)
 23*  NPHYd. Jl > = »
 236  CONTINUE
 ?37  DO ?3H  JI=1.NXN
      IF(NSS.E0.1>  GO TO ?3»
      NPH = NHHY( I.Jl )
»     LUCATh  INfFKPHASES
 41?
                      l )*E< I ) = J2M I )*1
      GU  TO ?29
      VAPL3< I ) = VAKLK I )»(uXu»ACI< I ))
      J.1E< I ) = J^I ( I )*1
      VAPLim = l?.»ACMl>»LU>-VAPL2/( (X2/OXN)*!. >
      0 Y XS = ftPS « i'U YU , Jl )»ACH I >»DXH/(»HRZ(I«JI )»172».»
      IF(NPHY(|. U).tU.l) DVY=FWAC»AMIN1(DYX1,DYX2)
      It (NPhYt I. l| >.EO.?> I)YY = FRAC»AMIN1(DYX1.DYX3)
      It (NPHY( i.Jl >.F0.3) OYY=FRAC»DYX1
      CONTlNUk
      OXN=DX?
     COM INUt
     U»Y=YKEH
     DO 112  l=NCl.NCK
     OYY = AMINl
       OXN=12.*l(l)/FLOATH
      74H
                    .iMP.10X.3H H?,14X,3H  TF,14X,3H TT.13X,
                           4H NPH)
  724
                  ) I
  72-i   FORMA K3flx.1>Hc««»«.i6M  FLUID PASS NO. ,I5,5H»«»»»)
       nn 42U Jl =1 >NxN
       MpHsNPHY( I , Jl I
       Ti;=(lG1 ( I )* IGv( | .
                     , Ti.l
n i H $ n
n i K & n
n 1 6 / n
I1 1 « M (I
HI
U ] « 7 n
n?ii6fl
n f (» 7 n
H VI' HO
i) ^ 1 n n
n '/ 1 1 n
ii v i ? n
•i /» 1 4 n
1'21-jO
u v ) b n
n?5>,io
                                                                            n2?/n
                                                                            n/?vo
                                                                            li 2. til H
 u?33n
 023411
 023'>n
 02360
 n?3/n
 02380
 II23H3
 023V"
 n 24 n n
 n?4jn
                                                                            o?4jn
 (124'iH
 02460
 P ? 4 7 n
 0 /• 4 M II
 024VO
                              Jl
                                       189

-------
PROGRAM LISTING  --  REGEN (Cont'd)
      R.< = 1 .XXI
      TI;N=TGI (
 2H(1
 397
 7«7
 70H
     HHrfiB/FI llATttilft)
     FG2C1=<1 .-1H)/(J
     FfJ?T=l.-F(;?Cl
     MT=Fi:?T»m I, Ji.i )
     00 2811 LKsl.NuR
     TfiN = Fli201oT(;N«AIIT
     i«2d. JI,/) = H-N
     TC?( I. JI.D = Ti;?( I, JI.2)
     Tu2T = 10?T*Ti;?( I.JI. 2)
     GO T" (.597. j9h,39v).NrH
     IkEF=TSAl
     MFAVG=(MF( I , U.I )*HK( 1. J 1*1,1) )/2.
     HKEF=Hl
     CPP=FfWL< I'REF )
     TX=lRfcF
     TXt =
     lf(AHS((TX-lX1)/TX)-.li1)  709.709.708
     TX=TXl
     CPH=FCHL< IX)
     Gl) TO 7fl7
70»  FTG=»(M(.llr
     FTT = l.-
       FCON=OYY«(M1FY(I.j
     IT(
                Jsl T1»TT(
      4FIG*( IRK I )»Ti;?< I.
            I, Jl*1
                           I.JI >/Cll(l J)
                           • (HU Y( 1, JI )*HGTY( I, Jl »
                           . Ji)/(r.T1C I)»CPP)
                          )/CTI
                                    TRFF-(HREF/CPP»
                          , Ji,l )*FIF»(HF( I. JI.I )»Hf( I, Jl»l.l))*
                          1.1) )»>C(JN
                                        , JI)
                                                 .- (HTF Yd. J!
                         . Jl )
         = HYY»(HTFir(l. Jl )/CTFY( I.JI
     FF?I l = (|iYY/IUN)«<(-FY(l,J| )/PTf
    4EFY( I.JI ) )»(l)*N/i?. ) )
     FF2F2 = 1 .-/OXNM
     HF(ljJI*l.?)=FF?F?«HF( I.JI +1.1 ) *FF 2F1«HF ( I . J I . 1 )*
       HFN = HF( I. .11*1,1 )
       Gl) 10 41"
 39B
  26

 399
  27

 410
  21

5032
5029
 728
 727
       FORMAT(49.i CALCHLA1 IONS FuR  NPH=2  NOT PERhJTTtD AT HRtSENT.)
       SIOF
       FliRHAT(49i< CALCULATIONS FuR  NPH = 3  NOT PERMITTED AT PRESENT.)
       STOP
       CUN1 iNUt
       TGN=TG?(I,Jl.l)
       CALL SUPPHPGKl.TUN.HFGlS.nD.GV.I)
       IF(MST.NE.n) GO TO VI      '
       IFUS.NE.LSIEH ) GO 10 727
       HftlTE(6.*032)Jl,HFN.TFX.. TT( I . J 1 . 1 ) , HFGN,
            I. Jl*1 ),rPMY( I.JI >
              IA.4X.&i17.*. 16)
       FORMAT(?H  )
       IF(JS.NE.LSIEP) GO TO 727
       WK|TE(13,7?H)MFN, IT( I . J 1 . 1 ) , TG2 ( I . J I . 1 ) . HMRZ( I , Jl *l )
       FURM/n<4F15.5>
       CONTINUE
       IF(NPRINT.Nb.U) GO 10 R91
                                                                         n?52fl
                                                                         025.10
                                                                          H25AII
                                                                          11257(1
                                                                          0^540
                                                                          A259H
                                                                          o?6un
                                                                          07610
                                                                          02*211
                                                                          026.fl)
                                                                          02710
                                                                           0X760
                                                                           0277P
                                                                           027HP
                                                                         02MUP
                                                                         0?«10
                                                                           n?fl->n
                                                                           npngn
                                                                           0?9hO
                                                                         Il.i1 70
                                                                         O.tltiO
                                                                         03190
                                                                         03210
                                                                         03220
                                                                         03240
                                                                         (I3?60
                                                                         OJ270
                                                                         03290
                                                                         03300
                                                                         03310
                                                                         (1 3360
                                                                         033HP
                                                                         03390
                                                                         03400
                                                                         03410
                                                                         03420
                                       190

-------
PROGRAM LISTING -- REGEN (Cont'd)
 892
 b91
 4?0
 601)
 42t>
  22
  2J
 429
11)31

1032
430



 71
 48


U14
1UOU
6*>
      WKlTE(ft.ft9?)H1FY(I, Jl ).CTFY(1,JI ) . EF Y < I . J I > . HGT V < I . J I )
      FORMAK17H HTF , CTF . hF . HOT   .4E15.5)
      CONTINUE
      1F( JI.Nb.NXN) GU  TO 4=rfFC I,NXN»1,2)
      CIINTINHE
      Ti;?AVG( I ) = TG?T/FLOA1 (NXN)
      CALL  bl'PPTCPGR. 1GK I ).HGIM( I ).DD.n0.1)
      CALL  SUPPKPGK, TU2AV'J( I ).HG1N2( I ),DO.Un,l)
      CdNIINlUr
      VAPUUK  MASS BALANCF
      M(;R7(NCK>=Mb I
      I1U 425 JL=1.H|
             -1 )=MGKZ(KK
      CONTINUE
      REStI
      IF(NST.NF.n) CO Tu ??
      IFUS.NE.L^IEH) GO TO 2J
      WKI IE(6.bn?9 )
      CUNllNUb
      KK1=NCP-1
      OH 429 l=nCL.KKl
      IUJ ( I )=IG?AVG( 1*1)
      CALI  SMPPK^GKI. Tlil ( I ) . MG I Nl ( I > , HM. UU, 1 )
      HGIN2( 1 + 1 ) = hGINl( | )
      CALL  Sl(PPT(PRKI .TU?AVU(NCL>.HGIN2(NCL),nD,Dl),l)
      00 4311 I=NCL,NC«
      IF( I.EQ.NCR) 00  TU  1031
      HF< 1+1.1, ?)=HF ( I.NXN+l,
      IF< l.tU.NCl ) GO  TU  10J2
      HF( l.l.l)=HF( I.I./')
      MwZ< I.NXN+1 )sHM«Z( I.NXN+1 )
      DO 430 JJ=1 .NXN
      1 !( l.JJ.l »=TT(I. JJ.2)
      HF ( I, JJ+1.1 )=HF( I, JJ+1.2)
      HuZ< I, JJ)=MWRZ< I.JJ)
Tu
GU
                        71
                        10
                             R13
      YHE»-=YREM-nYV
      IF (NSl.NE.O) GO
      IF< JS.Nt.l STEP)
      Wh11E(6,4>ODYY.
      FURMATdOh bw.lGl
      IF( JS.NE.i SI El  ) GU
      WRITEO J, «14)1G1
      FORMAT(4H0.5>
      CONTlNHt
      IF( JS.NE.LSTEP) GO
      CONTlNHt
      GAS-SIOF  PBlSSUHF
      WRITE(6.>>
      FORHAT(46X,-('»tM •• PKESSURI-
                          10 813
                           I.TG1 (NCL + 1 ). TGI ( NCL +? ) . TGI (NCL + 3)
                          10 22S
                        PROP
                                                                        03423
                                                                        03427
                                                                        03429
                                                                        034JD
                                                                        113440
034AO
03470
034til)
03SUA
035.1 n
03520
03540
03550
03560
035/0
035HO
035H3
03581)
03685
03690
03700
03710
03715
03710
                                                                        039oO
                                  DROP  RESULTS ••>
                                                                        03904
                                      191

-------
PROGRAM LISTING — REGEN (Cont'd)
HOI
H03
      HKME<6,5»?9)
      WHI lE(6,5il?9)
      WKITE>6)
      FnRMAT(14H •• FLUID  SIDb)
      MK|TE(6.8S7)
      FORHAK3X.5H HASS.9X.5M  FLOw.14X.4H NPH.12X.7H LENGTH. 9X.
     711H iNlbT PKES.BX.9M  PR.  DROP)
      PMRXsPhK
      Jl=l
      DO 1030  I=NCL»NCR
      J1E=NX?Z( !)-( J?Q( I)«J3E( I ))
      LZ=VAPL1< I )/(!?. »ACI< l)>
      IF(LZ.EO.».) v.n TO 1013
      MHR=HMR;< i.i)
1012  CALL SAIPiPhRk. TWV.im.nO. ML. HV.l)
1019



1010

1017



 H59

1013
      H(-A=(HF( 1,1 .1 )»HF< I, J2.1))/?.
      TX=1MV
      CU = (CUL(TX)
      Tw=TWV*(HrA-HL)/CH
      TXl=.5«
      IK(ABS. I 9, « X, JEl 7. 5 )
      PWRX=PWRX-P|if)
      LZ = VAPL2( I )/ll?.«ACI( I ) )
      IK (LZ.FU.it. )  HO  TO  1016
      J1=J1E*1
      J2 = J2E( I )».!!
                                                                          (U960
                                                                          M970
                                                                          03971
                                                                          0397?
                                                                          113900
                                                                          03990
                                                                          04000
                                                                          04010
                                                                          04021)
                                                                          04030
                                                                          04IJ40
                                                                          1)40*0
                                                                          04060
                                                                          04070
                                                                           040H.t
                                                                           040HS
                                                                           040VO
                                                                           041110
                                                                           04110
                                                                           04140
                                                                           041*jfl
                                                                           1. 4) -,6
                                                                           nij-,7
                                                                           II41&R
                                                                           04160
                                                                           04170
                                                                           041MO
                                                                           04190
                                                                           04VOO
                                                                           04710
                                                                           H4?Sfl
                                                                           04770
                                                                           04?80
                                                                           04.110
                                                                           04330
                                                                           0436(1
                                                                           04370
                                                                           043HO
                                                                           04390
                                                                           044 ?0
                                                                           04423
                                                                           0442?
                                                                           04426
                                                                           04430
                                                                           04440
                                                                           04450
                                                                           04460
                                                                           04470

-------
PROGRAM LISTING — REGEN (Cont'd)
      MWR= i.O  Tu  10JO
      J1 = J2E(I )»JlE«t
      J?=J3E(I)»J1
      HFA=(HF( I..J1 .1 )»HF ( I, J?,l »/2.
      1Krt=(MWKZ( I . Jl )*NhUZ(I.J?))/2.
      CALL SUPPI(PWkX,ThR.HFA,nii.DD.3)
      CALL PUKOP1 (PwPX, IHH,HWD,UH1( I ) , AC1 ( 1 ) . L2,3. POP, OU, DD, DO >
      WWI TE(6,H-><') I ,MWR,MPH.L?,PHRX,PDD
      URlTE(.6,5n?9)
1030  CONllMUb
      PMPfc=HWXX
861
FuRMAT(25H tXIT PKFSSUPE. ENTh
R I- TOWN
END
                                          ,2E15.5)
                                                                   04530
                                                                   045411
                                                                   045SO
                                                                   1)456(1
                                                                   04565
                                                                   04570
                                                                   114590
                                                                   0 4 6 II 0
                                                                   0 4 >0
                                                                   0465^
                                                                   04655
                                                                   04657
                                                                   046MI
                                                                   046/H
                                                                   II46MII
046H7
0 4 7 II 0
047111
                                      193

-------
SUBROUTINE BGEOMC

    RGEOMC calculates all geometric constants for REGEN.

NOMENCLATURE -- RGEOMC

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of RGEOMC are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:

    FORTRAN
    Variable                  Definition                   Units

       NC               Fluid pass number
                                194

-------
PROGRAM LISTING -- RGEOMC
140
190
      SUBROUTINE KGEOMCCNO
      COMMON AP,R.Cn,C'(K,rO
      COMMON cos?p.cu?s. lies. OCT. OTH
      COMMON FOul V.f ,F S,H?OP,H?nS
      COMMON HP.Mk,MTFt_AM.HTIN,LHV.
      COMMON LHVT.LCS.LCT.MAlH.MFLUin
      COMMON MFHt-l . N2P. N?H, N2S.NHENDA
      COMMON NRENT"i.Nu.NP.02P.02R
      ruMMON 02S.H),SP1,SSA.STA
      COMMON STl!. TO, WS. WT. YEXT
      r.iMMON AfTldn i.ACudO ).BMdO).BT(10),CTf
      C..WMUN CTFYd'i,)! >,r:TIUO>,CW,DHI (10),nHO<10)
      •-OMMON n id (i > .n.i(in).nS(iti).nvvy(io),tF
      CIIMMIIN EFY.FTO.HFlN2(lU),HGlNl(10)
           IN HR|N?dO),ttnT.HGTY(lU.ll ),HIF,HTFY
                 nn
     COMMON
     COMMON
     COMMON
     COMMON
             NI.HMP.i.M(ll!>,NM| ( J 11 ) . NMO < 1 0 ) . NPH
             NPny ( 1 1. . 1 1 ) , NP« I NT , NSS. NSI ( 1U ) . MSOC10 )
             NT^ANS. NX7MAX ( 10 ) , NXZZdO ) , NXN,HXO
             HUV( 10 > ,KF A, HMM o ),Rw,K WYCIO.11 )
             TGI'IO), IR2« 10 ,11 ,2) . Tf.ZAVUdO ), TGINKIO >. IGIN2( 10 )
             TIMF, Trdfl.11./). TuRKOhdO ),WAPL1(10), VAPL2C10 )
             VAPi JUO). vOKin ). xlG(10).X2L<10),X?T(10)
             CTAR(6V.?7),HLIO(128).HTAH(69.27).HVAP(12R)>1NU
             NL INb.NNP.NPSTfcP.^TSlEP.I'd?!!)
             PT«R( /ti ),SIAH(t>9.27).Td2(»).TTAH(33).. VL I 0(128)
             vTjfti f>v.27 ) . VVAPd?B)
             I .1 I* v.i HVT.i i:S.I tT,Mft IK,MFLUID.MFUEL.MWZ.N2P,N2R.N2S,NO
             ir n
                                2-ni(NC>»«2)
      USE FUNCTIONS
      VOLHsCJ. 14^/4. )«(nu(NC)
      Al=1 ,-PM(Nr )
      A?»X?l IND-UO(NC)
      BH(Nf > = A?
      ACQi NC)=A2«HHi NC)
          N( ) = 4
      ATI
      On I
                (NC
                        )»(ol(NC)**2)

                        IhS  APE  ASSUMED CONSTANT IN THIS PROGRAM
      M|sNMi NC)
      I X = II .
      OH 10 (14 it. 141 ),MI
      NUTt  fHAl Al HPtStNIL*  FORMULATED THE FUNCTIONS FCHSMX),
            !X),rCMCl TX),FHMC( IX).  THEY  DO NUT DEPEND UN TfcMPFRATUkE
            IS NOT HEMNPD  AT  THIS POINT. (SUITABLE TEMPEKATURES
      COULD RE UFFINF-D FOR  1H|$  PURPOSE)
      CTB=FCMS(TX)
      R1R=FfMS
      RTR = FKMC( TV >
      M|=NMO(NC)
      60
                                                                         00020
                                                                         niinjn
                                                                         OOU40
                                                                         OU060
                                                                         o o n 7 n
                                                                         01)040
                                                                         n u 1 « n
                                                                         o n 1 1 o
                                                                         OIM20
                                                                         OD130
                                                                         0 I) 1 4 0
                                                                         oniisn
                                                                         oin/n
                                                                         OOlHO
                                                                         u u 1 Q n
                                                                         n»?nn
00240
no2f>n
on?/n
OH2HO
00290
n mo n
00310
00320
00330
0034U
003*0
003AO
00371)
003HO
0039(1
00400
00410
01)420
00430
00440
004*0
01)460
00470
004ftO
00490
00500
00510
00520
00530
00540
005*0
00560
00570
OU500
00590
00600
                                      195

-------
PROGRAM LISTING -- RGEOMC (Cont'd)
      Rin=FRMS(TX)                                                       00610
      00  TO  tHO                                                          00*20
 160   Cin=FCHC(TV)                                                       006.10
      R10 = FKMC(1X)                                                       00640
 180   Cll>fl
      VUL(NC)=X2L»X2T ( NO )-(.1. 1416/4 . )«DO( NC )««2-VOLO                 006AO
      lf(NSU(NC).NE.l )  CTT(NC»CTUNC)»VOLO*riO»RTO                      00670
      CTT(NC)=CTT(NI )/17?8.                                              OOAHII
      RFTURN                                                            OUAVO
      FND                                                               OH700
                                     196

-------
SUBROUTME STffSR
    STEPSR calculates the stability limits on lump size for each lump of
REGEN.  It  employs the subroutines HT1PB, HT2PB, HTWTM,  PHASE,
and SUPPT.
NOMENCLATURE -- STEPSR
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of STEPSR are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable                 Definition
      HW        Enthalpy of working fluid
      MGR      Mass flow  rate of gas
      MWR      Mass flow  rate of working fluid
      NC        Fluid pass number
      NX2       Number of lumps for a given coil
      PG        Pressure of gas
      PW        Pressure of working fluid
      TG        Bulk gas temperature
      TI         Wall temperature at mid-node of a
                 lump
      TW        Bulk fluid temperature
      X          Quality of bulk  mass within a lump
      X2G       Geometric limit on lump size
lb/in.2
lb/in.3
°F

°F
°F

in.
                                  197

-------
PROGRAM LISTING — STEPSR
 60

 70
100
      SUBROUTINE STEPSR,nHO(10)                      00130
      COMMON DI(10),DO(in).US(10>,DYYY(10),EF                            00140
      COMMON EFYdO.lM.EG.EGYdO.M > . FHI ( 18 > . FHOdO >                    00150
      COMMON FN| (10 ),FNO(10),FRAC,FTI(10).FTO<10)                        00160
      COMMON GVZ(10,11,2),HF(10,11,2),HF1N1<10),HFIN2(10),HGIN1<10)      00170
      COMMON HGIN2(10).H6T.HGTY(in.ll).HTF.HTFY(10,ll)                   00180
      COMMON J2E(10>, J3E ( 1 0 ) , L < 1 0 ) . LSTEP. NWZ( 1 0 . 11 )                      00190
      COMMON NCY(3>,NCLY(3).NCRY(3>»NCYCLE«NFSECTC3)                     00200
      COMMON NLUHP,N*<10 >,NM] (10 >,NMO(10),NPH                            00210
      COMMON NPHYUO.ll ) , NPH 1 NT. NSS, NSI < 10 ) . NSO< 10 )                      00220
      COMMON NTRANS.NX2MAX(10).NX2Z(10).NXM,NXO                          00230
      COMMON PGV(10),RFA,RM(10 ) . RW, RW Y ( 10 , 11 )                            00240
      COMMON TGl(lO). TG2(10,11,?),TG2AVO(10), IGIN1(10),T01N2(10)         00250
      COMMON TIME,TT<10,11,2>, TtlBROW<10>,VAPLK10>. VAPL2<10>             00260
      COMMON VAPL3(10 ), VOLdO ) , XI G ( 1 0 ) , X2L ( 10 >,X2T(10>                   00270
      COMMON CTAR(69,27),HL10(128),HTAB(69,27>,HVAP(12e>,IND             00280
      COMMON NL|NE»NNn,NPSTEP.NTSTEP»P<128)                              00290
      COMMON PTABC70 ) . ST AB ( 60 , 27 > , T ( 1 28 ) . TTAR < 33 ) , VL 1 0< 128 )              00300
      COMMON VTAR(69,27). VVAP(128)                                       00310
      REAL   <.,LHV.LHVT,LCS,LCT.MAIR,MFLUID.MFUEL,1MZ.N2P,N2R.N2S,NO    00320
      REAL MMR.MOR                                                       00330
      PW,HW,PG, TG.MMR.MOR.NC.X2G  ARf^  INPUT                               00340
      NX2.X,TW,HG ARE RETURNED.                                          00350
      CALL PHAS6(HW, TW,HW.X,GVL.GVV,HL.HV)                               00440
      GAS PROPERTIES                                                     00450
      CALL SUPPKPG, TC.HG.SpGV.l )                                        00460
      CG=FCUV(PG,TG)                                                     00470
      RGal./GV                                                           00480
      OHTAIN HEAT TRANS  COEFFSj  HTGT.HTTF                                00490
      OHTAINING  HTGT                                                     00500
      G=MGR/ACO(NC)                                                      00510
      CALL HTWTM                                            00890
      HTF=HTTF»3.14159»DI(NC)                                            00900
      C1F=RH«ACI (NC)«CH/172B.                                            00910
      STEP SIZE  CALCULATION                                              00980
      X2=2.»EF/HTF                                                       00990
      DX?=AM|N1(X2»FRAC,X29)                                             01000
                                     198

-------
PROGRAM LISTING — STEPSR (Cont'd)


      NX2=INTST£(DX2,X2G)                                             01010
      IMNPH.EO.?) NX? = 5                                              01020
      IF(NX2.GT.1> DX2sX2G/FLOAT(NX2)                                  01030
      RETURN                                                          01100
      END                                                             OHIO
                                   199

-------
SUBROUTINE PDROPR
    PDROPR calculates the vapor-side pressure drop for a ball-matrix
regenerator surface.  It employs the subroutine SUPPT.
NOMENCLATURE -- PDROPR
FORTRAN Variables in COMMON:
    The FORTRAN  variables in the COMMON of PDROPR are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable                 Definition
      ACOL     Flow cross-section area per unit length
      BTH       Ball-matrix thickness in flow direction
      D          Tube diameter, outside
      DH        Hydraulic flow diameter
      DP        Vapor pressure drop
      L          Tube length
      PI         Inlet vapor pressure
      RM        Porosity of ball-matrix
      Tl         Inlet vapor temperature
      T2         Exit vapor temperature
      W          Mass flow rate of vapor
°F
Ib/sec
                                 200

-------
PROGRAM LISTING -- PDROPR


      SUBKOUTINE Pf)KOPR(Pl. II. T?, U. J)H. D. ACOL. L, RM, 8TH. DP )                00020
      HEAL  L                                                             OU040
      fiC=32.17                                                           00050
      r=                                       00103
      Rf)l = l./nvi                                                         00106
      W02=l./GV2                                                         00110
      REY = ABS«12.O600.)«<0»DH/V>>                                      00120
      SIC=RM                                                             00270
      SA=4.»BTH/nh                                                       00280
      X=ALOO(REY/1000.)                                                  00285
      F=FXP(-.6539*X»(-.17S429«X»(.046373-.007571»X)»                   00290
      PKEf=(144./GC)*(G*G/(2.«R01>>                                      00320
      Awt=l.*(S|R«»?)                                                    00330
      AR?=(H01/R02)rl.                                                   00340
      A«3 = F»SA»(P(J1»RO?)/(R02«2. )                                        00350
      np=PREF»(ARl*AR2»AM3)                                              00370
      RETURN                                                             00380
      END                                                                00390
                                    201

-------
SUBROUTME HTWTM
    HTWTM calculates the heat transfer coefficient between gas (or superheat
vapor) and ball-matrix outer tube surface.
NOMENCLATURE -- HTWTM
FORTRAN  Variables in COMMON:
    The FORTRAN variables in the COMMON of HTWTM are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable
      G
      HTC
      NC
      PPG
      TEMP
            Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Gas pressure
Bulk gas temperature
   Units
lb/in.a sec
Btu/ sec in.3 °F

lb/in.a
                                 202

-------
PROGRAM LISTING — HTWTM
      SUBROUTINE HTHTMtMTC.NC.G. TEMP, PRO)                               00020
      COMMON AP,B.CH,CHK,CO                                             00030
      COMMON C02P.C02S.DCS.DCT.OTH                                      00040
      COMMON EOI)JV,F.FS.H20P,H20S                                       00050
      COMMON HP.HR.HTFLAM.HIIN.IHV                                      00060
      COMMON LHVT.LCS.LCT.MA1R.MFLUID                                   00070
      COMHON MFUEL.N2P.N2R.N2S.NBEND*                                   00080
      CUMHON NHENDG.NO.NP.02P.02R                                       00090
      COMHON U2S.PO.SP1.SSA.STA                                         00100
      COMMON STG.TO.WS.WT, YEXT                                          00110
      COMMON ACI (10 ). ACOdO ).BH(10).BT(10 ),CTF                          00120
      COMMON CTFYUO.ll > , CTT < 10 ) . CU. DHl < 10 > . DHO< 10 )                     00130
      COMMON III (10 ), 00(10 ).DS(10 ),OtrY(10 ).EF                           00140
      COMMON EFV(10.11>,FG,EGY(10,11).FHI(10).FHO(10)                   00150
      COMMON FN|(10),FNO(10).FRAC,FTI(10>,FTO(10>                       00160
      COMMON GV2<10,I1.2>,HF(10,11,2),HFIN1<10>,HFIN2<10>.HOIN1<10)     00170
      COMMON HOIN2(10 ) . HfiT . HGT V (10 . 1 1 > . HTF. HTFY < 10. 11 )                  00180
      COMMON J2E(10 ), J3H10). 1(10), ISTEP.MUZ(10«11)                     00190
      COMMON NCY<3).NCLY<3).NCRY(3),NCYCLE.NFSECT<3>                    00200
      COMMON NLUMP,NM(10 ).N«1 (lO).NMO(in ),NPH                           00210
      COMMON NPHYdU.ll ) . NPR I NT. NSS, NSf ( 10 ) . NSO( 10 )                     00220
      COMMON NTRANS,NX2MAX(10).NX2Z(1Q).NXN,NXO                         00230
      COMMON HOVUO >,RFA,K1(1 0 >.RU.kWY<10.11 >                           00240
      COMMON TG1(10>, rG?(10.H,2).TG2AV6(10),TG|Nl(10),TGIN2<10)        00250
      COMMON TIMF.TK10.il. 2). TUBROU(IO). VAPLH10), VAPL2UO)            00260
      COMMON VAPL3(10), VOI ( 10 ) , X1G( 10 ). X2L( 10 ) , X2T( 10 )                  00270
      COMMON CTAB(69,27),HLIO(l?fl),HTAB(69,?7),HVAP(128), IND            00280
      COMMON NLINb.NND,NPSTtP.NTSTEP.P(128)                             00290
      COMMON HTAR(7l)),STAH(69.27),T(128>.TTAB(33)/VLIO(128)             00300
      COMMON VTABC69.27). VVAP(128)                                      00310
      RFAL   L,I.HV,lHVT.lCS,LCT.HAIR,HriUID,MFUEL.MhZ.N2P.N2R.N2S.NO    00320
      REAL KG                                                           00330
      KG=(KWV(TEMP)                                                     00340
      VISG=FVWV(TEMP)                                                   00350
      CPG=FCWV(PPG. TEMP)                                                00360
      NOTE 43?no=12»16no                                                00370
      REG=4J200.»G»OHO(NC)/VISG                                         003BO
      PRG=VISG»CPG/KG                                                   00390
      HBTO=.?30»PtG»»(-.3)»PPG»«<-.6«7)»0»CPG                           00400
      BM=SQRT(1600.*12.»HHTO/(FKH(TFHP)«DS(NC) »                        00410
      Z=3.63»BH(NC)»BM                                                  00420
      EMaTANH(?)/2                                                      00430
      SMTSBT=lfl.8»BH(NC)»BT(NC)/00(NC)                                  00440
      HTC*EM»SMTSBT«HBTO                                                00450
      RETURN                                                            00460
      END                                                               00470
                                     203

-------
    Section 9
COMBUSTOR MODEL

-------
                                Section?
                          COMBUSTOR MODEL
MAIN PROGRAM - COMBST
     The main program for the combustor model is entitled COMBST.  This
model uses the subroutines COMB1, COMB2, and COMB3.
     COMBST links together the flame temperature, thermal transient, and
emission submodels.  It is, at present, set up to derive the steady-state
solution through an iteration on the value of TA.  The accuracy of convergence
has been set as 5%, and must be changed by internal program modification
if tighter accuracy is desired.
NOMENCLATURE -- COMBST
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of COMBST are in the COM-
MON of MAINSYS.
FORTRAN Variables in Argument list:

                                 Definition
FORTRAN
Variable
     CP
     PACE
     PACI
     TA
     T FLAME
     TG
     TS
     TT
                Moles of unburned carbon in products
                Pressure of gas at combustor exhaust
                Pressure of air at combustor inlet
                Temperature of air
                Temperature of flame
                Temperature of gas
                Temperature of shell
                Temperature of tube
 Units
moles
Ib/in?
Ib/in?
op
op
op
OF
Other Selected Fortran Variables:
    FORTRAN
     Variable
    CONV
    DELT
    FAR
                             Definition
                 Convergence limit
                 External time step
                 Fuel/air ratio
                             205
 Units
sec

-------
FLOW DIAGRAM -- COMBST
                       C
   Start
                            Calculate FAB
                                 I
                         Set:  TAIR = TO
                              DELT = YEXT
                            CALL COMB1
                                  I
                        Set:  TS = TAIR
                             TA  = TAIR
                             TT  = TAIR
                             TG  = TFLAME
                            CALL COMB2
                       Calculate PACE,  CONV
                            Set: TAIR = TA
                            CALL COMB3
                       C
Return, End
                                 206

-------
PROGRAM LISTING — COMBST


     SUBROUTINE COMBST                00020
     COMMON AP,B.CH,CHR.CO.C02P                                        00030
     COMMON C02S.nCS.OCT.DTH.EOUlV,F                                   00040
     COMMON FS.M20P,H20S,HP,HR,HTFLAM                                  00050
     COMMON HTIN,LHV.LHVT.LCS.LCT.MAIR                                 00060
     COMMON MFLUIO.HFUEL.N2P.N2R,N2S,N8ENDA                            00070
     COMMON NHENDO.NO.NP.02P,0?R,02S                                   00080
     COMMON PO.SPI.SSA.SIA.STG.TO                                      00090
     COMMON ws,uT,yExT,oni,ou2,no3                                     ooioo
     REAL   L,LHV,IHVT,ICS,LCT,MA|R.MFIUID,MFUEL.MHZ.N2P.N2R,N2S.NO    00280
     REAL  MPUMP                                                        00290
     FAR=NFUEL/MAIH                                                    00300
     TAl«=TO                                                           00310
     DELT=YEXT                                                         00390
  10 CALL  COHflKTAIR,TFLAMf,CP>                                        00400
     TS=TA|R                                                           00410
     TA=TAIR                                                           00420
     TT=1A!R                                                           00430
     TG=TFLAMF                                                         00440
     CALL  COMH2                           00470
     PACE=PACI-nPT                                                     00620
     CONV=ARS(
-------
SUBROUTINE COMB!

     The submodel COMB1 calculates the combustion flame temperature.  It
 employs the subroutine ENERGY.

     The variables which specify the fuel have been set internally as:

         C =  0. 85
         H =  0. 15
         FMAX = 0. 1
         FM1N = 0. 01

 NOMENCLATURE -- COMB1

 FORTRAN Variables in COMMON:

     The FORTRAN variables  in the COMMON of COMB1 are in the COMMON
 of MAINSYS.

 FORTRAN Variables in Argument List:

     FORTRAN
     Variable                      Definition                    Units

     CP             Moles of unburned carbon in products       moles

     TAIR            Air temperature                           °F

     T FLAME        Flame temperature                        °F

 Other Selected FORTRAN Variables:

     FORTRAN
     Variable                      Definition                    Units

     FMAX          Fuel  air ratio, maximum limit

     FM1N           Fuel air ratio, minimum limit
                                  208

-------
FLOW DIAGRAM -- COMB1
            C
Start
                      I
             Calculate
                B, HTOS, CO2S,
                O2S, N2S, FS,  F
                        NO
                                  YES
                                      Write
                                           F > FMAX
                                  YES
                   Write
                      F < FMIN
            Compute
              O2R, O2P, N2R, N2P,
              HP, CP. H2OP, CO2P
                               NO
                                      Compute
                                       CO2P, H2OP.O2P,
                                       CP, HP
                                209

-------
FLOW DIAGRAM -- COMB1 (Cont'd)
                          COMPUTE LHVT
                      HTFLM1: (LHVT + HTIN)
TFLAM2 = TFLAM  1
HTFLM2 = HTFLM  1
TFLAM1 = TFLAM  1
           -100.
                                           TFLAME = TFLAM2 - BR
                        TFLAME  = TFLAM1
                                                    CALL ENERGY
                                       C
Return,  End
                                 210

-------
PROGRAM LISTING -- COMB1
  40
      SUflROUTINF cnn8KTAIR.TFLAHE.CP)
      COMMON AP,B.CH,CHR,CO,C02P
      COMMON C02S.ncS,DCT,DTH.EOUIV,r
      COMMON FS.H20P.H20S.HP,HR,HTFLAM
      COMMON HTIN.LHV.LHVT.LCS.LCT.MAIR
      COMMON MFLUID.MFUEL,N2P.N2R,N2S,NBENDA
      COMMON N9ENDG, NO. HP. 02P, 0?R, 02S
      COMMON PO,SP1.SSA,STA.STG.TO
      COMMON WS.UT, YEXT,DD1,DD2.D03
      REAL   L,LHV,LHVT,LCS,LCT,MAIK.MFLUID,HFUEL.MUZ,M2P.N2R,N2S,NO
      REAL MOLAIR
      FDR ANY HYflROCAWBUN FUEL  AIR MIXTURE
      C PI RCENT CARnON BY HEIGHT. H PERCENT HYDROGEN BY WEIGHT
      LHV LOWER HEATING VALVEJ  COMBUSTION LIMITS  FMAX.FMIN
      CALCULATION OF  FLAME  TEMPERATURE
                           --BOILER INLET
      FOR KEROSENE
      FMAX=.l
      FMIN=.ni
      C=.«5
      H=.15
      «=12.»(H/C)
      CHR=B*1?.
      STOCHIOMFFRY
      H20S=H/?.
          CO?S»H?OS/2.
          4.»02S
          12.*R)/(32.«02S«28.«N2S)
          STOCMIOME1R1C CONDITIONS
o?s=
N2S =
FS=(
OFF
F = MF
IF(F
IF(r
EMU I
MOLA
02H =
02P =
N2R =
N2P =
                 TO
                 TO
                          100
                          200
  70
.GT.FMAX) GO
.LT.FMIN) GO
V=F/FS
IR=1./EOUIV
MOLAIH»02S
02R-02S
MOLAIK»N2S
N2R
CP = 0.
H20P=H20S
C()?P»CO?S
1F<02P.GE.O.) GO TO 40
C02P=C02S-(02b-02R)/2.
H20PaH20S-(02S-0?R)
02P=0.
CP«1.-C02P
HP=B-2.»H20P
CONTINUE
FLAME TEMPERATURE CALCULATION
CALL ENERGY(TAIR,HT1N,H20P,C02P,N2P,02P>
LHVT=(1?.»B)»LHV
TFLAM1=4949.
CONTINUE
CALl ENfcROY(TFLAMl,HTFLHl.H20P,C02P.N2P,02P)
IF(HTFLM1-(LHVT*HTIN)) 70,350,80
BR«(HTFLM2-(LHV.T»HTIN))/(HTFLM2-HTFLH1)»100.
TFLAME"TFLAh2-BR
CALL ENERGY(TFLAH6.HTFLAM,H20P.C02P.N2P.02P)
00020
00030
00040
onoso
00060
00070
00080
00090
On 100
(1(1280
on?90
o n 3 ii o
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
                                    211

-------
PROGRAM LISTING --  CQMBl (Cont'd)

      GO TO 400                                                         00790
  80  TFLAM2«TFLAM1                                                     00800
      HTFLM2»HTFLM1                                                     00810
      TFLAM1»TFIAM1-100.                                                00820
      60 TO 50                                                          00830
 350  TFLAMEcTFLAHl                                                     00840
      GO TO 400                                                         00850
 100  WRITE<6,110)                                                      00860
 110  FORMAU7H F>FMAX)                                                  OOR70
      GO TO 300                                                         00880
 200  WRITE<6,120)                                                      00890
 120  FORMAT<7H F
-------
SUBROUTINE COMB2
     The submodel COMB2 calculates the combustor thermal transients.  It
 employs the following subroutines:
               TRHT                         FDA
               PDROP1                      FCG
               FCMS                         FVG
               FCA                          FKG
               FVA                          FDG
               FKA
 NOMENCLATURE -- COMB2
 FORTRAN Variables in COMMON:
     The FORTRAN variables in the COMMON of COMB2 are in the COM-
 MON of MAINSYS.
 FORTRAN Variables in Argument List:

                                 Definition
  FORTRAN
  Variable
       DELT
       DPT
       TA
       TF
       TG
       TS
       TT
                     External time step
                     Pressure drop across combustor
                     Temperature of air
                     Temperature of flame
                     Temperature of gas
                     Temperature of shell
                     Temperature of tube
Other Selected FORTRAN Variables:

                                Definition
FORTRAN
 Variable
     AHSA    Heat transfer coefficient between shell and air
     AHTA    Heat transfer coefficient between tube and air
     AHTG    Heat transfer coefficient between tube and gas
     CPA     Specific heat of air
     CPS      Specific heat of shell
     CPT     Specific heat of tube
     GAIRS    Air now rate
   Units
   sec
   Ib/in?
   op
   OF
   op
   op
   Units
Btu/sec °F
Btu/sec °F
Btu/sec °F
Btu/lb °F
BtuA'b °F
Btu/lb °F
Ib/sec in?
                                  213

-------
FORTRAN
Variable                Definition                    Units
   GGAS          Gas flow rate                    Ib/sec in?
   STAB          Stability time step                sec
   WS             Shell weight                      Ib
   WT            Tube weight                      Ib
                              214

-------
FLOW DIAGRAM -- COMB2
                         C
Start
                    Compute
                      GAIRS, GGAS,  CPS, CPT,  CPA,
                      MUA,  KA, RHOA, CPG,  MUG,
                      KG,  RHOG, RFA
                                    I
                               CALL TRHT
                                    I
                              Compute AHTA
                                    I
                              CALL TRHT
                                    I
                   Compute
                    HSA, HTA. HTG,  EA, EG,  CS,  CT
                        ABS (DELT - T):  . 02 BELT
       STAB: (DELT - T)
                                 215

-------
FLOW DIAGRAM -- COMB2 (Cont'd)
                     DTK = DELT - T
           TA,  TG, TS, TT
        |TG - TGll:  TG/100
                                          CALL  PDROP1
                                                  I
                                           Compute PIN
                                                  I
                                           CALL PDROP1
                                                  1
                                            Compute DPT
                                        C
Return, End
                                216

-------
PROGRAM LISTING -- COMB 2
      SUBROUTINE COMB2(TS,TA.TT,TF,1G.DELT,OPT)
•     CALCULATION OF AlK PREHEAT AND COMBUSTION  OAS COOLING
•     LOSSES IN COMHUSTOR
      COMMON AP.B.CH.CHR.CO.C02P
      COMMON C02S,DCS.DCT.DTH,EOU1V,F
      COMMON FS.H20('.H20S.HP,H«.HTFLAM
      CUMMON HTIN.LHV.LHVT.LCS.LCT.MAIR
      COMMON MFLU|O.MFUEL.N2P.N?R,N2S,N8ENDA
      COMMON NBENDG,NO,NP.02P,02R.02S
      COMMON PO.SPl.SSA.STA.SIG.TO
      COMMON WS.WT. ITEXT.001,DD2.D03
      REAL   L.LHV.LHVT.LCS.LCT.MAIR.MFLUID,MFUEL.MWZ.M2P.N2R.H2S«NO
      REAL KA.KG.MGAS.MUA.MUG
      T = 0.
      ACS=(DCS«(SSA*STA)/(4.«LCS)
      ACT=(DCT»(STG)/(4.»LCT))/12.
      MGAS=MAIR»MFUtL
      GAIRS=MAIK/ACS
      Gr,AS = MGAS/ACT
20Q
700
300
400
      TfilrTO
      CONTINUE
      CPS = FCMSUS)
      CPT=FCMS
      RHOC = 1./FI)G( TG.HFA)
      CALL TRHT
-------
PROGRAM LISTING --  COMB2 (Cont'd)

      TSorSA»lA*FSS«TS                                                  00780
      FTA=HTA«DTH/CT                                                   00790
      FTO=HTO«nTH/Cl                                                   00800
      FTT=1.--1G/100.) 600.600.900                               00870
 900  TG1=TG                                                            00880
      GO 10 ?00                                                         00890
 600  CONTINUE                                                          00900
      CALL PnRUPKPO,TA.MAm.DCS.ACS,LCS.4.UPA,O.NBRNnA,DPBA>           00905
      PIN=Pu-nPA-DP«A                                                  00906
      CALL >»OROPl(PIN.TG.MGAS,tVCT,ACT.LCT.4.DPO.RFA.HB6NnO.OP80)        00908
      nPT=DPA*npRA*uPG»DPhG                                             00910
      RE1URN                                                            00920
      FNP                                                              00930
                                   218

-------
SUBROUTME COMB3

    The submodel COMBS calculates the combustor emissions.

NOMENCLATURE -- COMBS

FORTRAN Variables in COMMON:

    The FORTRAN variables in the COMMON of COMB3 are in the COMMON
of MAINSYS.

FORTRAN Variables in Argument List:

    FORTRAN
    Variable                     Definition                   Units
      CHP            Moles of unburned carbon in products     moles
      DELT           Elapsed time                            sec
      TAIR            Temperature of air                      ° F

Other Selected FORTRAN Variables:
    FORTRAN
    Variable                     Definition                   Units
     CHTOT          Unburned hydrocarbons emitted in     grams/sec
                      time interval DELT

     COTOT          Carbon monoxide emitted in time      grams/sec
                      interval DELT

     NOTOT          Nitrogen oxide emissions emitted      grams/sec
                      in time interval DELT
                                 219

-------
FLOW DIAGRAM -- COMBS
             C
Start
                 Compute NOE
                                  YES
                                             1
                                       Compute NOE
                                  YES
                                       Compute NOE
                                       Compute NOE
                 Compute NOQ
                                  YES
                                        Compute COE
                               220

-------
FLOW DIAGRAM -- COMB3 (Cont'd)
                 Compute COE
                 Compute COQ
                                    YES
                                         Compute COE
                                    YES
                                          Compute COE
                                   YES
                                              1
                                          Compute CHE
                                    YES
                                              1
                                         Compute CHE
                                 221

-------
FLOW DIAGRAM -- COMB3 (Cont'd)

                       ©
               Compute
                    NOPPM
                    COPPM
                    CHPPM
                    PROP
                    NO
                    CO
                    CH
1
                                        Compute
                                              COT
                                              NOT
                                              CHT
                      T
                                 222

-------
FLOW DIAGRAM -- COMB3 (Cont'd)
                         Compute
                             NOTOT
                             COTOT
                             CHTOT
                      C
ReturaEnd
                                             YES
                                223

-------
PROGRAM LISTING -- COMB3
 in
 311
 40
 5U

 6U

 70
 80
 90

100

110
120
     SUBROUTINE COhB3UAIR.CHP.DELT>
     COMMON AP.P.CH.CHR.CO.C02P
     COMMON cn?s.ncs.DCT,i)TH.Fouiv,F
     COMMON F S,M?OP,H20S,HH,HR,HTFLAM
     COMMON HT|N,LHV.LHV1.LCS.LCT.MA|R
     COMMON MFLIHn,MFUEL.N2PiN2R,N2S.NBENDA
     COMMON NBENUGi N(i,NP.02Pt02R,02S
     COMMON HO.SP1.SSA,STA,STG.TO
     COMMON *s. wi , YF XT, nni, nf>2. nn3
     RhAL   L.LMV.LHVT.I i:S. LCT, MA I K. MFLUI D. MFUEL. MWZ, N2P, N2R. M2S, NO
     KFAl MF . NdF.NnPHM.NuQ.NUT.NOTOT
     CALCIILAIION OF POLLUTANTS FORMED IN TIME OELT
     MFsMFUEI.
     IFltOUl V.GT.l. ) GU 10 ?0
     IF(FOUI V.LT.0.3) GO Tu 30
     (MtOUl V.GT.O.ftrt) 00  10 10
GO TO 4U
NiiF; = l.flo
Gil TO 411
GO TO 40
NOE-10.
CONTINUE
N(10=NOE»H«
IF(fcOUl V.iJT.l. ) GU TO 60
IFUOU1 V.LT.0.3) UO TU 70
IF(EOU1V.«T. 0.365) GO TU SO
C(lE = -3466.«EOUlV*14H5.
GO TO 80
COF = l.«nHF*3*EOUlV«(-6.662E*3*6.4HOE*3»r:OUIV)
RO TO 60
GO TO flfl
COE=50n.
CONI INUE
COO=COE»HR
IF(fcHlll V.GT.l
IFIFOUI V.LT.0
If (tOUt V.GT.0
CHE=-llOO.«tOul V»6?B.
GU TO 120
                   ) GO TO llrt
                   47) GO TO 1110
                   54) RU TO 90
GO 10 120
CHE=110.
GO TO 1?P
CONTlNdt
CHr) = CHE
IF(TAIR.LF.20D.) (iO  TO 12t>
130
NOT = 2.091«TAIi"»(-6.874F-3*TAIR«(1.188E-5-3.288E-9«TAIR»
CHT=1.465*TAIR»<-2.H65E-l*TA!R»<2.643E-2-9.318E-««TAIR))
GO TO 131
COT=1.
NOT=1.
CHT=1.
CONTINUE
00020
00030
00040
00050
00060
00070
00080
00090
ooion
002HO
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
005*0
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
                                    224

-------
 PROGRAM LISTING -- COMB3 (Cont'd)

      COPPMsCUO«COT                                                    00780
      nHPHH=CHO»CHT                                                    00790
      PHnit = H?OP»CU?P*N?P*ll2P«CHP                                        00800
•     PHR IS 1HE HOLECULAK WEIGHT  OF  FUEL                               00810
•     WEIGHT Or POLLUTANTS PER UNIT  WEIGHT  OF  FUEL                      00820
      NU=NOPPM«PROD»30.»l.E-6/CMR                                       00830
      CO=COPPH»PROO»28.«l.E-«/CMR                                       00840
      CH=CHPPM»PROO»13.«l.e-6/CMR                                       00850
      IF(FO(llV.LE.l.)  00 TO 140                                        OOB60
      CMsCHP/CHR                                                       00870
 140  CDNTINUF                                                         00880
•     RKAM POLLUTANTS  IN DELT SEC                                       00890
      NOTOT=NO»MF»OFLT«(1./2.205E-3)                                    00900
      COTUT=CU»MF»nELT»(l./2.205E-3)                                    00910
      rMTOT=CH»Hr.ntLT»(l./2.205E-3)                                    00920
      HfeTURN                                                           00970
      END                                                              00980
                                     225

-------
SUBROUTME ENERGY
     The subroutine ENERGY calculates the enthalpy of the products of com-
bustion.
NOMENCLATURE -- ENERGY
FORTRAN Variables in COMMON:
     There is no COMMON block in ENERGY.
FORTRAN Variables in Argument List:
    FORTRAN
     Variable                    Definition                   Units
      CO2P        Moles of carbon dioxide in products       moles
      H            Enthalpy of products of combustion        Btu/lb
      H2OP        Moles of water vapor in products         moles
      N2P         Moles of nitrogen in products             moles
      O2P         Moles of oxygen in products              moles
      T            Temperature                            °F
                                 226

-------
PROGRAM LISTING — ENERGY
 6U
70U
90(1
80U
40li
60(1
mo
300
200
     SURHOUTINF  tNtRGY(T.H,H20P,C02P.N2P,02P)
     RfM U2P.N7P
     T«=l*460.
     IFC IR.GT.oOU. >6(l  TO 50
     HH?0=<17./6. )«TR
     GU  10  60
     HH?0=-:i.3?nt*>3*TR«<7.744*l5,793E-4»TR)
     CUNTlMUt-
     ir (TR.RT.inO. )GO  f0.7UO
     Hr<12=2.»Tn
     fill  TO  non
     IFl IR.ni.UOO. )GO TO 400
     HC02=<825./80. )«(TP-500. )»1000.
     Go  (0  Run
      IF < TR.GT.->00. )GO 10 4110
      H(l?=2.»IP
      GU  TO  5(KI
      IM 1R.RT.unO. )RU TO 600
      Hij?=(25./4. )»(TR-'jOO. ) «1000.
      on  10  son
      M.i?=8.7 t?*T
      ir ( IH.OI .ftno. IRU r« mo
      HN?=(40./1S.)»TR
      r;u  TO  ?nn
      IM IR.GI . i.inn. >GO TO jno
      G   Ml  ?U"
      fi M | NI>(-
      H .
      H I
      H I
      HI il?=U?P»HO?
                     f N?*hTU?
o it o i n
00015
00020
00021
0002?
00023
00024
00025
00031
(10032
00033
00034
00035
00036
00037
0003R
00041
00042
00043
00044
00045
nil 046
00047
00048
00051
                                                                         00053
      »(- I OMN
 00055
 00056
 00057
 0005R
 000/0
 nOOHO
 00090
 00100
 00110
 00120
 00130
                                     227

-------
SUBROUHNE TRHT
    This subroutine TRHT calculates the heat transfer coefficient between
the air or combustion gas and the shell or tube wall.
NOMENCLATURE -- TRHT
FORTRAN Variables in COMMON:
    There is no COMMON block in TRHT
FORTRAN Variables in Argument  List:
   FORTRAN
   Variable                      Definition                   Units
      C           Specific heat of air or gas                Btu/lb °F
      D           Hydraulic diameter of tube flow passage   in.
      G           Mass flow rate                          Ib/sec in?
      H           Heat transfer coefficient between shell    Btu/sec °F
                  and air or tube and combustion gas
      K           Conductivity of air or gas                Btu/hr ft  °F
      VIS          Viscosity of air or gas                   Ib/hr ft
                                  228

-------
PROGRAM LISTING -- TRHT

     SIIRKOUTINt ntHT(G,n.VIS,C,K,H)                                   00010
     REAL K                                                           n0020
     H=(.0?.1)»((J6UO.»l?.«G«U/ViS)»».B)»((C»VIS/K)»».4)»(K/D)          00030
    1«(1./(360U.M2. ))                                                00040
     KfcTURN                                                           8nn5°
     p N H                                                              00060
                                     229

-------
     Section 10
TRANSMISSION MODEL

-------
                                SectionIO
                          TRANSMISSION MODEL
MAN PROGRAM - TRANSM
    The transmission model is entitled TRANSM.  The model reads data
from data file 38, which is entitled Data Input and is discussed with the total
systems model, MAINSYS, in  Section 13.
NOMENCLATURE -- TRANSM
FORTRAN Variables in COMMON:
    There is no COMMON block in TRANSM.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable                 Definition
    INE          Logic variable to read data
    R            Engine intake ratio
    RPME       Engine rpm
    RPMX       Axle  rpm
    TENET      Engine torque
    TORQX      Axle  torque
FORTRAN Variables in READ Statements:
    FORTRAN
    Variable
    GRH
    GRL
    GRRE
    R1L
    R1U
    R2L
    R2U
                             Definition
                 High gear ratio
                 Low gear ratio
                 Rear-end gear ratio
                 Intake ratio at point 1L*
                 Intake ratio at point 1U*
                 Intake ratio at point 2L*
                 Intake ratio at point 2U*
                                                          Units
                                                         rpm
                                                         rpm
                                                         ft-lb
                                                         ft-lb
Units
  See Volume I,  Section 4 for the location of these points.
                                  231

-------
     FORTRAN
     Variable (Cont'd)         Definition                   Units
    RPM1L      Axle rpm at point 1L*                    rpm
    RPM1U      Axle rpm at point 1U*                     rpm
    RPM2L      Axle rpm at point 2L*                    rpm
    RPM2U      Axle rpm at point 2U*                    rpm
         *See Volume I for the location of these points.
Other Selected FORTRAN Variables:
    FORTRAN
    Variable                  Definition                   Units
    GR          Gear ratio
    HPX         Power required for driving auxiliaries     hp
                 and drive train losses
    TLOSS       Torque loss due to driving auxiliaries      ft-lb
                 and drive train losses
*See Volume I, Section 4 for the location of these points.
                                   232

-------
FLOW DIAGRAM -- TRANSM
                      C
Start
                NO
                                     YES
               READ  R1L,  RPM1L, R2L, RPM2L,
                      GRL1, R1U. RPM1U, R2U,
                      RPM2U,  GRH. GRRE
                          RPMX £ RPM1L
                    RPM1U - RPM1L
                               233

-------
FLOW DIAGRAM -- TRANSM (Cont'd)
                        RPMX s: RPM2L
                                       R - R2LI + RPM2L)
          Calculate
             RPME
             HPX
             TLOSS
             TORQX
         C
Return,  End
                               234

-------
PROGRAM LISTING -- TRANSM

      SUBROUTINE IRANSHIR.RPMX,TENET.RPME.TORUX.INE)                     00020
•      CLU1CH NOT CONSIDERED.   THIS IS  CRITICAL  AT IDLE CONDITION.        00025
•      MODIFY PROGRAM WHEN CONTROLS ARE INCLUDED.                         00026
      IF( INE.NE.O)  00 TO 7                                              00030
      READ<3fl.5)LINt.RU.RPHlL.R2L.RPM2L.GRL                            000 40
      READ(38,5)LINE,R1U.RPM1U.H2U.RPH2U.GRM                            00050
      READ(3f»,5)LlNb.GRRE                                               00060
   5  FORMAT»RPM1L> GO TO 10      00110
      IF(RPMX.LE.HPH?l) GO fO 30                                        OU120
      IF(RPHX.GE.«PPM2U-RPH2L)/(R2U-R2L))«(R-R2L)»RPM2L) GO TO 20      00130
      GO TO 30                                                          00140
  10  RR1=ORL                                                           00150
      GO TO 30                                                          00160
  20  r,Nl=GKH                                                           00170
  30  n«=CRRE»GKl                                                       00180
      PPHE>GR*RPMX                                                       00190
      HPX = 3.                                                            001<»5
      TLOSS»HPX«33000./(2.»J.1415»RPMX)                                 00197
      TnROX = GK»«TFN»-T-TLOSS)                                             00200
      RETURN                                                            00220
      END                                                               00230
                                     235

-------
  Section 11
DRIVER MODEL

-------
                                Section 11
                               DRIVER MODEL
MAIN PROGRAM - DRIVER
    The DRIVER model is entitled DRIVER.  It uses no subroutines.
NOMENCLATURE -- DRIVER
FORTRAN Variables in COMMON:
    There is no COMMON block in DRIVER.
FORTRAN Variables in Argument List:
    FORTRAN
    Variable
      A
      AA
      AR
      AS
      CR
      cs
      DIST
      DT
      KA

      KO
      LINBX
             Definition
Vehicle acceleration
Linear acceleration of wheel
Reference acceleration
Accelerator setting
Logic variable
   +1 - indicates acceleration
    0 - cruise at constant speed
   -1 - indicates deceleration
Logic variable for driver action during
wheel slip
   1 - accelerator setting
   0, -1 - accelerator held constant
Distance traveled
Time step
Accelerator sensitivity (changed
internally)
Accelerator sensitivity (initial value)
Logic variable:  when = 0, MAINSYS
reads new line of data  from ROUTE
mi
sec
      LINDEX    Logic variable: when = 1, vehicle idling
                                  237

-------
FORTRAN
Variable (Cont'd)         Definition                      Units
  LINEX     Logic variable: when ^ 0,  vehicle de-
             celerating; - 0, vehicle accelerating
  LR         Reference marker location               mi
  RADW      Wheel radius                            ft
  RPMX      Axle rpm
  TE         Cumulative idle time                     sec
  TI          Reference idle time                      sec
  V          Vehicle velocity                         mi/hr
  VR         Reference vehicle velocity                mi/hr
  VT         Wheel velocity                           mi/hr
  Z          Logic variables used during wheel slip:
             initially set as 1,  reset internally
                              238

-------
FLOW DIAGRAM -- DRIVER
           C
Start
                 LINDEX = 0
                 LINEX  = 0
                 LINBX  = 0
                       YES
                        YES
                        YES
                                 NO
                                   C
                                  NO
                                  C
                                 NO
                                   C
                                        TE = TE+DT
                                        AS =  0.
                                        RPMX = 0.
                                        LINDEX = 1
                                            I
                       Return
                                         LINBX = 1
                     Return
                                        LINBX = 1
                                            I
                       R etu rn
                                239

-------
FLOW DIAGRAM -- DRIVER (Cont'd)
                 YES
                                          NO
                                  YES
                             Z = -1
                                           YES
                           KO = KA/10
                           KA = KO
AS = 0
KO = KA/110
KA = KO
                                                       1
                               240

-------
FLOW DIAGRAM -- DRIVER (Cont'd)
        i
   AS = 0
   A = AB
   A = A/RADW
   LINEX = 1
 c
        I
                      A = 0
                      AA = 0
                      V = VR
                      VT = V
                      LINDBX = 1
Return
)      (     Return     )
     1
  AS = AS + KA * (AR-A)
                                      AS = AS + KA * (-AR-A
                         AS = AS + KA * (-A1T
                                241

-------
PROGRAM LISTING — DRIVER
  30
  3?
  40
  5U

  60
     IF(TI.LE.TF)  GO
     TE=TE*D1
      SUflKOUTINE I)R|VER GO TO 32
     LINBX=1
     RETURN
     IF(V.EO.VT)  GU 10 50
     IF(Z.EO.l)  GO  TO .15
     GU TO 130
     Z = -l
     IF(CS.E0.1.) "0 TO 40
     KO=KA/10.
     KA = KO
     GO TO 130
     AS*0.
     KO=KA/10.
     KAcKO
     GO TO 130

     JF(CR)60.80,120
     IF(V.LE.VR)  On TO 70
      AA=A/RADM
      LINRX=1
      RETURN
  70  A=0.
 80
 90

100

110

120
130
1411
      Vl =
      RETURN
      IF(V-VR)9U,10n.HO
      AS»AS»KA»(AK-A )
       GO TO 130
      AS=AS»KA»(-A)
      GO TO 130
      AS=AS»KA»(-AR-ft )
      GO 10 130
      IF(V.LT.Vlt) GO TO 90
      LINBX=1
      RETURN
      IMAS.GE.O. > GO TO MO
      AS=n.
      GO TO 160
      IF(AS.LE.l. ) 00 TU 160
00020
00030
00035
00038
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00160
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00516
00520
00530
00540
00550
00560
00570
00560
                                    242

-------
PROGRAM LISTING -- DRIVER (Cont'd),
     AS*1.                                                         00590
160   CONTINUE                                                      00600
     RETURN                                                        00610
     END                                                           00620
                                  243

-------
         Section 12
PARAMETRIC DESIGN PROGRAMS

-------
                                Section 12

                      PARAMETRIC DESIGN PROGRAMS
    The parametric design programs are employed to determine the component
sizes and cycle conditions for a given design power requirement.

MAIN PROGRAM - EEFF

    EEFF calculates the power and cycle efficiency for a system employing
a simple reciprocating expander   The intake ratio, piston speed,  and inlet
pressure are variable,  and parametric runs are made by providing appro-
priate input  data.

    The program iterates on the condenser temperature,  TCOND.  The iter-
ation accuracy is  set internally by ERROR  = . 02 and the number of itera-
tions limited by ITER1 = 100.  The  condenser temperature is determined by
scaling from a condenser with a specified heat rate QCONDT, and inlet tem-
perature,  TCOST.

    EEFF employs the following additional subroutines:
        SUPPT                DOME
        SATP                 PUMP
        ENGINE

It should be  noted that the argument list and COMMON of subroutine ENGINE
must  be modified  for use with EEFF.

    EEFF is currently set  up for  a Rankine cycle employing a regenerator.
                 /
NOMENCLATURE -- EEFF

FORTRAN Variables in COMMON:
    The variables  NND and IND (used in the COMMON of EEFF)  are in the
COMMON of MAINSYS. listed and defined in Section 13.

FORTRAN Variables in READ Statements:

   FORTRAN
   Variable            Definition                                Units
   AP            Piston area                                    in?

   DPRES        Pressure increment                            psi
   DR            Intake ratio increment

   DS            Piston speed increment                         ft/min
                                  245

-------
   FORTRAN
   Variable                      Definition                       Units
   EFFBOI     Boiler effectiveness                             ft/min
   EFFREG     Regenerator effectiveness
   NP           Number of pistons
   NQ           Logic variable = 1,  bypasses TCOND scaling
   PB           Boiler pressure                                 psi
   PEND        Final inlet pressure                            psi
   PSTART     Initial inlet pressure                            psi
   QCONDE     Condenser design heat rate                      Btu/hr
   REND        Final intake ratio
   RSTART     Initial intake ratio
   SEND         Final piston speed
   SP1           Piston stroke
   SSTART      Initial piston speed
   TB           Boiler temperature
   TCOST       Initial guess at condenser temperature
                 (also condenser design temperature)
Other Selected FORTRAN Variables:
   FORTRAN
   Variable                 Definition                            Units
   EFF          Cycle Efficiency
   EFFOVC     Overall efficiency
   H4            Inlet enthalpy condenser                         Btu/lb
   H8            Enthalpy pump exit                              Btu/lb
   H9            Enthalpy pump inlet                             Btu/lb
   HBOIL        Boiler heat rate                                 Btu/hr
   HP           Cycle design power                              hp
   HPUMP      Pump power                                   hp
   HSUB         Condenser enthalpy outlet                       Btu/lb
   P4            Condensing pressure                            psi
   PH            Pressure pump exit                            psi
ft/min
in.
ft/min
°F
0 F
                                  246

-------
FORTRAN
 Variable                Definition
 P9           Pressure pump inlet
 PSUB        Condenser pressure at outlet
 QCONDT     Condenser heat rate
 QREG        Regenerator specific heat rate
 RPM         Expander rpm
 TCOND       Condensing temperature
 TSUB        Condenser temperature outlet
 VSUB        Condenser specific volume outlet
 WNET        WSHAFT - WP  network
 WP          Pump work
 WSHAFT     Expander shaft work
Units
psi
psi
Btu/hr
Btu/lb
rpm
°F
op
ft?/lb
Btu/lb
Btu/lb
Btu/lb
                               247

-------
FLOW DIAGRAM -- EEFF
                       C
Start
                    Set
                       ERROR = 0. 02
                       IND    = 1
                       NND    = 1
                    READ
                           boiler conditions
                           CALL SUPPT
                    READ
                         condenser and engine
                         conditions
                                I
                    Set
                       IND = IND + 1
                       R = RSTART
                       PSPEED =  SSTART
                       PI = PSTART
                       TCOND = TCOST
                    Set
                       ITER1 =  0
                       HI = HB
                           CALL SUPPT
                                (A)

                                248

-------
FLOW DIAGRAM -- EEFF (Cont'd)
                                             NO
^ 1TEK1 S 1UU ^ *\
^^^^^ ? .X"^
J^YES


Set



Set

CALL
J
SATP

P3 = PCOND
NND = NND+1
TSUB = TCOND-20
\
CALL
j
NC2 = -1
,
L
SATP
.

.
>
CALL ENGINE /
\
t
Calculate
QREG, H4
Set P4 = PCOND

,
-

CALL DOME ^

,
-
Calculate
QCOND, QCONDT

                                I
                                249

-------
FLOW DIAGRAM -- EEFF (Cont'd)
              YES
 Set
    TCOND
NO
    Calculate
      TCONDP
       L
                     ITCONDP - TCQND  <;  ERROR
                            TCOND
                                   9
 Define
    TCOND
    ITER1
                     Calculate
                             H8. P8, H9,  P9,
                             QBOIL, HBOIL,
                             WNET.  EFF,
                             EFFOVL, HP.
                             HREG, RPM
                   Print
                         properties around cycle
                         efficiencies,
                         heat rates
                                  250

-------
FLOW DIAGRAM — EEFF (Cont'd)
                         Calculate
                             PSPEED
                         PSPEED * SEND
                        Set
                        PSPEED -- SSTART
                                I
                         Calculate
                                  R
                        Define
                              PSPEED
                              R
                        Calculate
                              PI
                                                 YES
                                251

-------
PROGRAM LISTING -- EEFF
          20
          30
          40
onoio •
noo^o
QUO.10
00040
00050
00060
00070 •
ooobo •
00090
ooion
ounn
00120
0(113(1
00140
00150
00160
00170
OU180
00190
00200
00210
00220
OU230
00240
00250
00260
00270
00280
00290
003UO
00310
0032D
00330 +
00340
00350
00360
003HO
00390
00400
00410
00420
00430
00440
00450
00470
00460
00490
1)0500
00510  166
00541
00542
00543 +
00550  170
00560
00570
00560
00590
00600
00610
          58
          59
                  Nb bFFICIFNCY CALCULATION
              COMMON NN[I, INP
              RfcAL HP. 1MEP
              FILF-NAMF F ILF2
              ERRORsO.O?
              INO = 1 >NND=1
              Kb A II IN DATA KOILER PRESSURE.  TEMPERATURE.  INTAKE RATIO,
              AND PISTON  SPEED, CONDENSER  TEMPERATURE
              RbAnLINE,AP,PB,T8.NP
              CALL SUPPTCPR.TM.HB.SB.VB.l)
              REA'.l<"FILE2".200)LINE,EFFREO,bFFBOI
              RtAu<"FILE2",?00>LlNE,NO,TCOST,OCOt»DE
              HbAlX-F lLE2".2flfl)LINE,RSTART.REND»SSTART,SEND
              REAn("FILfc2M.?OU)LI»lE,PSTART.PEND
              RF-An
-------
PROGRAM LISTING -- EEFF (Cont'd)
 OU620
 00630
 00640
 00650
 00660
 0 II6 7 0
 OU680
 00690
 00700
 00710
 00720
 00730
 00733
 00735
 00740
 00750
 00760
 00770
 OU780
 00790
 OOBOO
 00810
 OUB20
 00830
 OOB40
 00850
 00860
 OOR70
 00880
 00890
 00900
     NET POWER OUTPUf

     HNF T=WSHAFT-HP
     EFF=WNET/Q8UIL
     EFFOVL=tFF»EFFBOI
400
410
200
600
  RPM=6.»PSPEEn/SPl
  CONTINUE
  PKtNT:"uCONn,OCONDT,TCOND".OCONn.QCONnT,TCnND
  PH I N T:"HP.HPUMP,H8.P8.H9.P9".WP.HPUMP.H8.P8.H9,P9
  PRIHT:«PSUB.TSUB,MSUB,VSUB",PSUB.TSUB.HSUB,VSUB
PH|NT:"H4,H4",P4,H4
  PR I NT :" 0801 L. HBO IL", 0801 L. HBO IL
  PR|NT:"oREG".OREG
  PR[NT:"WNFT.EFF.EFFUVL.HP.RP«".WNET,EFF.EFFOVL.HP.RPN
  PRINT:  "   "
  PRINT:  "   "
  PRINT:  "   "
  PSPEFl)aPSPEfcn*OS
  IF (PSPfEn.LE.SfcNO)  GO  TO  20
  PSPFFD-SSTART
     If  (R.Lt.RENO) UO TO 20
     PSPfFD»SST»RTi RnRSTART
     P1=P1«OPPES
     IF(P1 .LH.PEND) UO TO 20
  CUNT INUK
  EMD
                                   253

-------
MAIN PROGRAM - ECOMP
    ECOMP calculates the power and cycle efficiency for a compound recip-
rocating expander with an energy accumulation between the first and second
stages.   It is analogous to EEFF, but with two stages rather than one (refer
to the preceding description of EEFF for further details).
    ECOMP employs the following subroutines:
         SUPPT             PUMP
         SATP
         ENGINE
FORTRAN Variables in COMMON:
    The variables NND and IND,  used  in the COMMON of ECOMP, are in the
COMMON of  MAINSYS, listed and defined in Section  13.
FORTRAN Variables Input through  READ Statement:
   FORTRAN
    Variable                     Definition
    API           Piston area,  stage 1
    AP2           Piston area,  stage 2
    DPRES        Inlet pressure increment
    DR2           Intake ratio increment, stage 2
    DS            Piston speed increment
    NP1           Piston number, stage 1
    NP2           Piston number, stage 2
    NQ            Logic variable: = 1, bypass TCOND scaling
    PEND         Final inlet pressure
    P]             Boiler pressure
    PSTART       Initial inlet pressure
    yC'ONDE       Condenser design heat rate
    HI START      Initial intake ratio, stage 1
    R2START      Initial intake ratio, stage 2
    R2END        Final intake ratio, stage 2
    SEND         Final piston speed
    SP1           Piston stroke, stage 1
Units
in.3
in?
psi
ft/min
pai
psi
psi
Btu/hr
ft/min
in.
                                   254

-------
    FORTRAN
    Variable
    SP2
    SSTART
    TAMB
    TCOST
             Definition
 Piston stroke, stage 2
 Initial piston speed
 Ambient air temperature
 Initial guess at condenser temperature
 (also condenser design temperature)
Other Selected FORTRAN Variables:
  FORTRAN
  Variable*
   H5
   H6
   H7
   HPUMP1
   HPUMP2
   P5
   P6
   P7
   WP1
   WP2
             Definition
Enthalpy, condenser pump outlet
Enthalpy, boiler pump inlet
Enthalpy, boiler inlet
Pump power, condenser pump
Pump power, boiler pump
Pressure, condenser pump outlet
Pressure, boiler pump inlet
Pressure, boiler inlet
Pump work, condenser pump
Pump work, boiler pump
 Units
 in.
 ft/min
 op
 °F
 Units
Btu/lb
Btu/lb
Btu/lb
hp
hp
psi
psi
psi
Btu/lb
Btu/lb
  *See subroutine EEFF for other variables.
                                   255

-------
FLOW DIAGRAM -- ECOMP
                               Start
                                I
                       Set
                          ERROR = 0. 02
                          IND    = 1
                          NND   = 1
                                1
                   READ
                         boiler conditions
                         condenser and
                         engine conditions
                                1
                   Set
                      IND = IND+ 1
                      Rl = Rl START
                      R2 = R2 START
                      PSPEED - SSTART
                      P2 = PSTART
                      TCOND = TCOST
                      Set
                          ITER1 = 0
                          H2 = HI
                                I
                           CALL SUPPT
                                1
                              NC2 = 1
                                1
                          CALL ENGINE
                                 256

-------
FLOW DIAGRAM -- ECOMP (Cont'd)
CALL
V
J
SATP
>

Define
P3, TSUB
Set
NND = NNEH-1
-
CALL
t.
.
NC2
-
.
SATP
>
-
-- -1
,
CALL SUPPT
t. >
,
,
CALL ENGINE
v >
.
,
Calculate
QCOND
QCONDT
1
,®
                                257

-------
FLOW DIAGRAM -- ECOMP (Cont'd)
                 YES
  TCONDP
  TCOND
       L
Calculate
   TCONDP
                     TCONDP - TCOND I s ERROR
                           TCOND
                                                         NO
1
YES
t
NC2 = 1
  Print
   "FLOW2 > FLOW1"
                            CALL PUMP
                                 T
                                                  TCOND =  TCONDP

                                                  ITER1  = ITER1 + 1
                           FLOW1: FLOW2
                                 258

-------
FLOW DIAGRAM -- ECOMP (Cont'd)
                                 1
                       Calculate
                             H5. P5, H6
                                 I
                            CALL PUMP
                                 1
                       Calculate
                           H7, P7, QBOIL,
                           HBOIL
                                 I
                      Calculate
                            WNET.  EFF
                            EFFOVL, HP,
                            RPM
                 Print
                       properties around cycle,
                       efficiencies, heat
                       rates
                      PSPEED - PSPEED + DS
                          PSPEED = SSTART
                                  259

-------
FLOW DIAGRAM -- ECOMP (Cont'd)
                           R2 = R2+DR2
                                 260

-------
PROGRAM LISTING -- ECOMP
00010
OU020
00030
0 11040
00050
00060
OH070
01)080
00090
onion
00110
00120
00130
00140
OU150
00160
00170
001HO
00190
00200
00210
00?20
00230
00240
OH250
00260
00270
OD280
00290
00300
0 0 3 1 0
00320
00330
00340
00350
00360
00370
OII3HO
00390
00400
0 U 4 1 0
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
•





•
•
•
•












20




«
4
30

40








*
»





58
59




166


*
*

              COMPOUND ENGINE PROGRAM
              COMMON NND.IND
              REAL NP1.NP2.IMEP1.IMEP?
              FILENAME FILE3
              ERRUR=.0.02
              READ B01UR PRESSURE:, TEMPERATURE. HO ILER EFFECTIVENESS.
              PISTON AREA STROKE AND NUMBER FIRST AND SECOND STAGE.
              CONDENSER TfcMHERATIIRE. AMBIENT TEMPERATURE, I NLET PRESSURE
              SFCOND STAGE.
              REAO("FILEJ".200)LINE.P1,T1,EFFBOI
              CALL SUPPT(Pl.Tl.Hl.Sl.Vl.l)
              READ("FILE3".200)LINE,AP1,SP1.NP1,AP2,NP2
              READ<"F1LE3",20U)LINE.NO.TCOST.UCONOE.TAK8
              REAIX"FILt3",200)LINE,PI
              REAIK"F1LK3".20U>L1NE,R1START
              REfll)("FlLb3".?Ou)LINE,R2START,R2END.DR2
              PEAD("FILH3M.20U)LINE.PSTART.PEND,DPRES
              REAn<"FILt3".200)LINE,SSTART.SENO.DS
              JND=IND*1
              R1«R1START;R2=R2START|PSPEED=SSTARTJP2=PSTART
              TCOND=TCOST
              ITER1=0
              H2«H1
              CALL SUPPT(P2.T2,H2.S2.V2.3)
              NC231
              CALL ENGINE»(OCONJ)T/OCONDE>
              GO TO 59
              TCONOPsTCOND
              CONTINUE
              IF(ABS«TCONDP-TCOND)/TCOND).LE. ERROR) GO TO 166
              TCOND=TCONDP
              ITER1=ITER1*1
              00 TO .10
              CONTINUE
              CALL ENUINE
-------
PROGRAM LISTING -- ECOMP(Contrd/
         300
00600
00610
00620  310
00630  170
00640
00650
00660
00670
00680
00690
00700
00710
00720 •
00730 •
00740 •
00750
00760
00770
00780
00790
00800  400
00810
OOR20
00830
00840
00850
00860
00870
00860
00890
00900
00910
0(1920
OU930
00940
00950
00960
00970
         410
PKINT:"FLUH2>FLOW1"
00 TO 410
CONTINUE
CALL PUMP(PCOND,PI.VSU8.FIOW2,PSPEED.MPUHP1.WP1)
H5=HSUB*WP1
P5=PI;P6»PI
H6=«FLOW1-FLOW2)«H!*FLOW2«H5)/FLOW1
CALL PUMP(PI,P1. VSUB,FLOM1,PSPEED.HPUMP2,WP2)
H7=H6»HP?
P7 = P1
QROIL*H1-H7
HBOIL=FLOW1.0bOIL

NET POWER OUTPUT

MNET=KSMAFTl»WSHAf T2-WP1-WP2
EFFaWNET/OBOIL
EFFGVL=EFF«EFrflOI
HP=((WSHAFTl-WP2)»FLOWl*(HSHAFT2-UPl)»FLOW2)/2545.
PPM=6.«PSPEEn/SPl
CONTINUE
PRlNT:"UCONU,UCONDT.TCOND",OCOND.OCONDT.TCOND
PRINT! "WP1.HPDMP1 .MS. P5,H6,P6',UPt. HPUHP1,H5.P5,H6, P6
PRlNTJ"WP2.HPU«P2,H7,P7",WP2,HPt)MP2.H7,P7
PR1NT:"PSU8,TSU8, VSUB, HSUfl" . PSUB. TSUB. VSUB. HSOB
PRINT:"080IL.HBU!L",Of)OIL,HBOIL
PRINT:«WNET,EFF.EFFOVL.HP.RPM".HNET,EFF.EFrOVL.HP.RPH
PSPEEH>PSPEtn«nS
IF(PSPEtD.LE.SEND) 00 TO 20
PSPEED»SSTART
         600
IF(«2.LE.R2kND)00  TO 20
PSPEFD«SST4HTiR2«K2START
P2'P?«DPRES
1F(P?.LF.PEMD UO  TO 20
FORMATS)
CONTINUE
END
                                     262

-------
MAIN PROGRAM - TSIZE
    TSIZE calculates the turbine rotor diameter,  blade height,  tip clear-
ance, cycle efficiency, and properties around the cycle.  The boiler condi-
tions, turbine horsepower, and efficiency are specified by the user.
    The following parameters are set internally:
        GAMMA =1.02
        GASC = 3. 72
        DS = 1. 3
        NS = 60
    TSIZE employs the following subroutines:
        SUPPT
        SATP
NOMENCLATURE -- TSIZE
FORTRAN Variables in COMMON:
    The FORTRAN variables in the COMMON of TSIZE are in the COMMON
of MAINSYS.
FORTRAN Variables Input Through READ Statements:
   FORTRAN
   Variable                Definition
   EB           Boiler effectiveness
   EPM         Pump mechanical efficiency
   EPTH        Pump thermal efficiency
   ER           Regenerator effectiveness
   ETM         Turbine mechanical efficiency
   ETTH        Turbine thermal efficiency
   HPT         Turbine power
   NOZANG     Nozzle angle
     NS          Logic variable
                     =  0 - saturated boiler outlet
                    i  0 - superheated boiler outlet
     PBO         Boiler pressure
     PC          Condenser pressure
     TBO         Boiler temperature
  Units
hp
radians
atm
atm
°C
                                  263

-------
Other Selected FORTRAN Variables:
   FORTRAN
    Variable
    AREAE
    AREANZ
    BLADEHGT
    CEFFNOEB
    CYCLEEF
    MACHD
    NOZCSS
    ROTCSS
    ROTOR DIA
    ROTORSP
    SPOUTV
    TIPCLEA
    VELTSS
            Definition
Nozzle exit area
Nozzle throat area
Blade height
Cycle efficiency, not including EB
Cycle efficiency
Design Mach Number
Nozzle coefficient
Rotor coefficient
Rotor diameter
Rotor speed
Spouting velocity
Tip clearance
Tip velocity
Units
in?
in?
in.
ft
rpm
ft/sec
in.
ft/sec
                                  264

-------
FLOW DIAGRAM -- TSIZE
                       C
Start
                 READ
                      ETTH, ETM, ER, EPTH,
                      EPM, EB, NOZANG,  TBO
                      PBO,  PC,  HPT,  NS
     CALL SUPP
     STO = SBOV
                  CALL SATP
                          CALL SUPP
                 Calculate
                      DELTAHTI
                      DELTAHTA, FLOWRATE,
                      HTOA. TURBWORK
                          CALL SUPP
                           CALL SATP
                              265

-------
FLOW DIAGRAM -- TSIZE (Cont'd)
                   Calculate
                           DE LTHRVI
                           DELTHRVA
                           HRVOA
                               1
                           CALL SATP
                 Calculate
                         DELTAHCA, DELTAHPI,
                         DELTAHPA, PUMPWORK,
                         HPOA, HRLOA, DELTAHBA,
                         CYCLEEFF, CEEFNOEB
                               I
                 Set
                    GAMMA, GASC, DS. NS'
                               1
                Calculate
                        TEMPI, HEAD, VOLFRATE,
                        ROTORDIA, ROTORSPD,
                        BLADEHGT, TIPCLEAR
                               I
                 Print the Rankine cycle
                      design parameters^
                   Calculate
                           AREANZ, MACHD,
                           VELTSS,  SPOUTV,
                           ROTCSS,  NOZCSS,
                           AREAE
                               266

-------
FLOW DIAGRAM -- TSIZE (Cont'd)
                  Print
                       the nozzle and rotor
                       parameters
                              Stop, End
                                 267

-------
PROGRAM LISTING — TSIZE
00010
00020
OU030
00040
00050
00060
00070
oooao +
00090 *
00100
00110
00120 •
00130 •
00140
00150 •
111)160 •
00170
00180
00190
00200 •
00210 •
00220 •
00230
00240
00250 +
00260 +
00270
002BO
00290
00300
00310
00120
00330 • '
00340 •
00350
00360
00370
00-180
00390
00400
00410 •
00420 •
00430
00440
00450
00460
00470 •
004HO •
00490
00500
00510 *
00520
01)530
00540
00550
00560 •
OH570 •
00580
00590 •
00600
THE PURPOSE OF IHt PROGKAh IS TO FIND RANK1NE CYCLE
EFFICIENCY. ROTOR OIAMETFR. TURBINE BLADF HEIGHT. TIP
CLEARANCE. AND OTHER VARIABLES OF INTEREST FOR A
TURHINE DRIVEN AUTOMOHILF. STEADY-STATE CONDITIONS
ARE ASSUMED.

COMMON NND. 1 Nil, NPSTFP, NT STEP, NL 1 NE , P< 25 ) , T ( 25 ) , VL 1 0 ( 25 ) ,
VVAI'(?5),HLIU(25).HVAP(2>>),PTAB(36).TTAB(20),VTAB(35,20).
HTAH(35.?0).S1AU(35.20)
RFAL MACHO, NOZCSS, NOZANG
INf) = l;NND = l
REAU INPUT PAHAMETEHS
INPUT EFFICIENCY FACTORS
READ: ETTH.feTh.ER.EPTH.EPH, EH. NOZANG
INPUT PRESSURE AND TEMPERATURE VALUES ( CENT I GRADE AND
AIM) ANIi TURRINh HORSEPOWER
READ! TuO.PHO.Pt.HPI
1H(I=TMO«9/5*3?.OKP(PC. 1TU.HTnA.STO, VTU.3)







FINh OIHPUT CONOITIi.NS AT VAPOR S 1 HE OF REGENFRATOR( SA TURATE
0 VAPOR)
CALL S.A )P(Pt. TCI, vRvOl. . VRVOV.HRVOL.HRVOV.l)
NMn=Nro»i
DELIH»
-------
PROGRAM LISTING -- TSIZE (Cont'd)
00610
00620
00630
00640
006*0
00660
00670
00680
00690
01)700
00710
00720
00730
00740
00750
00760
011770
00780
OH790
00800
00810
00820
OU830
00fl40
OOR50
00860
00870
00880
00890
00900
00910
00920
00930
00940
009!>0
00960
00970
009HO
00990
01000
01010
01020
01030
01040
OlObO
01060
01070
01080
01090
01100
OHIO
01120
01130
01140
011^0
01160
01170
01180
01190
01200
01210
             CYClELFt *<( TIIRRWORK-PUMPHORl6»100 . )/BOlLHEAT
             CEFFNOEH=CYU.EEFF/E«
             CALCUIATF.  VARTOUS  TuRHlNE  PARAMETERS
             ASSUMt  SPFCIFIC  HEAT  ANP  RATIO OF  SPECIFIC HEATS HAVE
             BEEN  PREVIOUSLY  CALCULATED.  OS AND  NS HAVE BEEN CHOSEN
             TO  MAXIMIZE  TURrtlNE EFFICIENCY.
             RAMMA=1.02J  GASC=3.7?J  US=1.3; NS=60
             ThMPIcTHO+460.0
             HE ATicC GAMMA/ «jAH»A-l . ) ) »G ASC»TEMP I • ( 1 . - { PC/PBO )•• ( ( OAMMA-1 . )
             /GAMMA))
             VOLFRATh=f LOWRA TE« VTO/3600.
             PUT»».5)/HEAD»».25
             POTOPSPI»«(NS»(HtAn>««.7»>)/VOLFRAT.E,»«.5
              TIPCLfcA«=.02»ULADfcHGT
              PHIKT:"SIMMARY  OF  IMPORTANT RANKINE CYCLE TURHINE DESIGN PA"
              ."RAMET6PS"
              PRINT  1
              IF  (NS.NE.O)  Pk 1 NT : "EXPANSI ON FROM SUPERSATURATED CONDITIO"
              ,"NS"
              IF  (NS.bO.U)  PKINT!"EXFANS|ON FROM SATURATED CONDITIONS*
              PRIfJT  1
              PRlNT:"BOILfcR PHESSURt = " ,KBO. "PSI A   80.ll.tR OUTLET TEMPERAT"
              PRINT  I
              PRINT: "CONDt-NSEk  PR6SSUKE«'',PC."PSIA   TURBINE HORSEPOWFR = " .
              HPT
              PRINT1
              PRlNT:"CVCLfc  FFF I C IEHC Y»" . C YCLEEFF , "   CYCLE EFF 1C IENCY ( I DE"
              ,"AL 80ILFR)«",CFFFNOt8
              PhlNTl
              PKlNTt"KOTOR  D I AhtTfcR = " . ROTORPI A, "FT   ROTOR SPEED=", ROTOHSP
              n,"kPM"
              PRINT1
              PRrNT:"BlADt  HE IGHT«" . Bl AUEHGT . " I N   T I P CLEARANCE*" . T I PCLEA
              P-, "IN"
            1  FORMAK1HO)
                t AHZ=(1./3?.2»».5)«FLOWRATE»<(TEMPI...S)/PBO)»«GASC/GAHMA
              (] . *( ( GAMMA- 1. )/?. )»»((&AMMA*1. )/( 2 .•( GAMMA-1 .))))•( 1 . 736 0 0 )
              MACHP=( ((PRO/PC )••« Oft HMA-1 .) /GAMMA)-!. )•(?./( GAMMA-1 .)))••.
              5
              VELlSSc(ROTURSPU«6.?8*ROTnRbIA)/(2.<»60. )
              SPOUT V=(?.»3?.2»7 78. »f)El TAHTI )»».5
              CV = SPUUTV»COS(NUZANG) J  CT = SPOUJ V»S I N( NOZANG.)
              Cl<=(CT«i:T«
              NOZCSScI (ETTH«SPOUTV)/(2.»Vf-LTSS«(l.*ROTCSS) )»< VELTSS/SPOUTV
              ) )/COS(NOZANR)
              ARF 4Et=AHE AN2» (1. /MACHO )•( (2. /(GAMMA*!. ))•(!. »(MACHD»«2)»
               ( (UAMMA-1. )/2. )))••< (GAMhA*!. )/( 2. • (GAMMA-1 .)))
              PhINT 1
              PRINT:PAPEA  NOZZLE  THROATSU.AREANZ,HSOIN MACHSS»".MACHDJ PRINT  i
              PRIuT:"TIPVELSS«",VELTSS."FT/SEC SPOUTVEL»", SPOUT V, "FT/SEC" I
               PRINT  1
              PRU'T:"KOTOk COfcF  SS = " . ROTCSS, "   NOZZLE COEF SS«".NOZCSS
               PHINT  1
               PPINT1"AREA NOZZLE EX I T«", AREAE. "SOI N«
              STOP
              END
                                       269

-------
SUBROUTINE - BLSIZ1

    The subroutine BLSIZ1 calculates the length of vapor generator tubing
required to raise the working fluid enthalpy from HFIN to HFOT.  A cross-
flow configuration is assumed, and the working fluid is single-phase.   The
working fluid flow rate and the combustor gas inlet temperature are specified;
a number-of-transfer-units (NTU) calculation for the heat exchanger surface
is employed.

    Hydraulic diameters and flow areas are calculated in a subroutine GEOMCO.
The COMMON of BLSIZ1 and GEOMCO must be identical for proper transfer
of information.  The tube length L (1) is iterated to an accuracy of 1%.

    BLSIZ1 uses the following subroutines:

         HT1PB
         HTPF
         HTGTB
         HTGTF
         HTGTM
         HTTOC
         HTTIC
         HTGR
         FCA
The subroutines HTTIC and HTTOC are blank; they have been included to
allow for a water jacket in the tube walls.  Appropriate heat transfer coeffi-
cient correlators can be used,  if desirable, to construct these subroutines.

NOMENCLATURE -- BLSIZ1

FORTRAN Variables in COMMON:

    There is no COMMON block in BLSIZ1.

FORTRAN Variables Input through READ Statements.*

    FORTRAN
     Variable                     Definition
      DCOIL          Coil diameter

      HFIN            Working fluid inlet enthalpy
      HFOT           Working fluid exit enthalpy

      LI              Initial guess tube length

      PPF            Working fluid pressure
 *See COMMON of MAINSYS for the remainder of these variables.

                                   270

-------
    FORTRAN
     Variable
      TAIN
      TFIN
      TFOT
      WA
      WAI
      WF
            Definition
Inlet combustion gas temperature
Working fluid inlet temperature
Working fluid outlet temperature
Combustion gas flow rate
Reference gas flow rate
Working fluid flow rate
Other Selected FORTRAN Variables:
    FORTRAN
     Variable
      ANTU
      CA
      CF
      COILN
      EFF
      HEIGHT
      TAOUT
      TMF
      TUBEL
            Definition
Number of NTU's
Heat capacity, combustion gas
Heat capacity, working fluid
Number of coils
Heat exchanger effectiveness
Coil height
Outlet combustor gas temperature
Mean working fluid temperature
Tube length
 Units
 op
 °F
 °F
 Ib/hr
 Ib/hr
 Ib/hr
Units

Btu/hr°F
Btu/hr°F
in.
in.
                                  271

-------
FLOW DIAGRAM -- BLSIZ1
                                 Start
                      READ  tube dimensions, fluid
                             and air properties, and
                             flow rates
                                  I
                                 1= 0
                                  I
                     Calculate CPA, Q
                                  1
                   Calculate
                           CA,  CF, CA1,  TAOUT
                  Calculate
                           CPA2, CA2,  CA,
                           TAOUT2
                      |TAOUT2| - TAOUT : TAOUT
                                         -  100
  Calculate  CMK,
    CMAXM, CMINM
    CRAT, EFF
TAOUT = TAOUT2
                                  272

-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
       CMAXM = CMIX
                             YES
   Calculate
         GAMA,  ANTU
Calculate
     GAMA,  ANTU
                                              J
   Calculate
        AU,  TAOUT
   Set PI=  22.11.
       CALL GEOMCO
                                 273

-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
              1
      Calculate
             TMA,  GA
                                274

-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
                                   I
                     Calculate
                               TAA, TWA
                             CALL HTGR
                     Calculate
                               HTOT,  UNIV, U,
                               TUBEL, COILN,
                               HEIGHT
                      Print
                           tube length, gas outlet
                           temperature, and other
                           selected items
                     Calculate
                             TUBELN, CONV
                                  275

-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
                            Print
                            "LOOP 100 TIMES"
                                276

-------
PROGRAM LISTING — BLSIZ1
100
200
250
 56
280
?60
270
  Ib
 20
      SUBROUTINE BLSIZI
      SINGLE PHASI- Ullll)
      CrtOSS FLOW
      REAL   l,f«PCYL
      REAL LI
      REAIM21,200)LINE,DO(1 ).DK1 >.NSO(1 ) , NS I ( 1 > , X2L U >
      FORMAK Id.SFlU.*)
      REAn(21.lHO)LINE.FNU(l),FHO(l),FTO(l)
      READ<21,in
      REAU(?l,\On)LINE,WF,TFIN,IFOT,HFlN.MFOT
      REAn.HA1,L1
      I=0
      FORHAK 16,3110)
      CPA=FCA(TAIN)
      Qeut MHFOT-HriN)
      CA=WA»CPA
      CA1=CA
      CF=0/(TFni-TF|N)
      TAOUT=TAIN-<0/CA)
      CPA2»FCA( rAOUT)
      CA2=UA»CPA2
                                     )270,270,260
      TAOUT2-TA|N-(lv/CA )
      IF(ARS(TAOIIT2-TAOUT)-IAUUT/100
      TAOUT=TAOUT2
      GO TO 2AO
      CONTINUE
      CK1X=CA
      CUN=CF
      CMAXM«AMAX1 (CA.CF)
      CMINH'AHINI (CA.CF)
      CRAlcCHAXH/CHINH
      EFF = 0/(CM|NM«( TilN-lFIN) )
      IF(CHAXH.EO.CMIX) 00 TO 15
      GAMA«-(AL06<1.-EFF))/CRAT
      ANTUa-(ALOG(l.-GANA))»CRAT
      nn  10  20
      CONTINUE
      GAMAc-( ALOHtl
      ANTU=-(ALOG(1
      CONTINUE
      Au=ANTU»CH|NM
      TAOUTsTA|N-'(0/CA)
                    -(EFF/CKAI ) ))»CRAT
                    -GAMA))
      CALI GEOMCO(l)
      FLUID  SIDE
      TMF=(TFIN+TFOT)/2.
      RF = hF/(ACI(1 ) )
      MI=NSI <1 )
      GO  in  (.in,40),MI
  30  CONTINUE
      CALL HT1PH(HTl,l.GF,PPF.TMF)
      WKI 1 E ( 6, 3 5 ) h T I
  35  FORMAT  («M  HT1PH   ,r1'j.5)
      GO  TO  5U
00020
noaao
00040
00740
00245
00250
00260
00270
00280
00290
00300
00310
(10320
OH3JO
00340
00350
00360
00370
00380
00390
00400
00402
01)410
00411
0041?
00413
00414
00419
00416
00417
00418
00419
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
ooison
00610
00620
00630
00640
00650
00660
00670
00680
00690
                                      277

-------
PROGRAM LISTING -- BLSIZ1 (Cont'd)
  40
 45
 50
 55



 60


 65

 7u


 7
      HPI IEn
      TALL HTGTFCHTU.I.UA.THA)
      WPITE(6.7V)HTu
      FiiRHAI  (ftll HTuTf   .El">.5)
      GU  10 911
      ri)NTlNU>
      CALL HTC.TM(HTu.1.WA, TriA)
      HPI TF(A.R'i)HTi.
      FuRMAI  <8M HTliTM
      CUNTINUt
      CALL HTinC(HTIl»TN«)
     FORMAT  (ftH HTIOC  .E15.5)
     f»LL  HTlir1 )ANTU,AH.TAOUT
       FORMAT  (i7H ANTU.AH.TAOUT   ,3Ei5.5)
       Urt! IE(6,3il?)TMF,GK,HTI
       FURMAT  (14H THF.GF.HT1    .3tl5.5)
       UKllF(6,103)TMA.GA,HTU
       FORMAT  (14H THA.GA.HTO   .SEl1*.1?)
       MPIIF(6.3fl4)HII1.HTI2.HTR
       FORHAI  (17H H T 1 1 , HT 1 2. H TR   .3E15.5)
       MKI IF(6.30S)U.U|NV
       FORMA I  (1QH U.IIINV    .2E15.5)
       HRI lE(6.^n(S)TUBtL
       FOKHAI  (9H TMBEL   .E15.5)
       HKI IF(6,3n7)COILN
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
OOROO
00810
00820
00830
00840
00850
OOR60
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
nioio
01020
01030
01040
01050
01060
01070
01080
01090
011(10
OHIO
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01?30
01240
01250
01260
01270
01280
01290
                                      278

-------
PROGRAM LISTING — BLSIZ1 (Cont'd)

 307  FORhAT (9H COILN   .E15.5)
      WtniE<6.3n8)HF:IGHT
 308  FORMA1 (10M HtlGHT   .E15.5)
      TUBtLNrTIIBEL/l?.
      CONV=(TU8FlN-L(l))/TU8ELM
      IF(AHS(CONV).LUO.ni) GO TO 310                                     , «
      L(l )=L(1)-(L(1)-T1IRFLN)*.«                                          , *
      WA«kAl»l(l)/Ll                                                    „!',,„
      IFU.LT.inO) 00 TO 56
 311  FORMAK15H LOOP 100 TIMES)                                        f)H«n
 310  RETURN                                                            014nn
      END                                                               ni"n
                                      279

-------
SUBROUTME BISC2

    Subroutine BLSIZ2 is similar to BLSIZ1 except that the working fluid is
tiro-phase.  Refer to the section on BLSIZ1 for details.

    BLSIZ2 uses the following subroutines:

        FCA
        GEOMCO
        SATP
        HT2PB
        HTPF
        HTGTB
        HTGTF
        HTGTM
        HTTOC
        HTTIC
        HTGR
                                 280

-------
FLOW DIAGRAM -- BLSIZ2
                    READ tube dimensions, fluid
                           and air properties, and
                           flow rates
                            Calculate CPA
                     Calculate
                         CA, Q, CA1,  TAOUT
                     Calculate
                       CPA2,  CA2, CA,  TAOUT2
                                                          TAOUT
                                                          TAOUT2
                  TAOUT2 - TAOUT| :  TAOUT/100
                                 281

-------
FLOW DIAGRAM -- BLSIZ2 (Cont'd)
                     Calculate
                         EFF. CMIN, ANTU, AU,
                         TAOUT, TMA, PI
                            CALL GEOMCO
                       Calculate GF. X, TJ
 Print TTF, HTI
                         Calculate TMA,  GA
                                 282

-------
FLOW DIAGRAM -- BLSIZ2 (Cont'd)
                         Calculate TAA,  TWA
                                 283

-------
FLOW DIAGRAM -- BLSIZ2 (Cont'd)
                              CALL HTGR
                      Calculate
                         HTOT, UINV,  U,  TUBEL.
                         COILN,  HEIGHT
                                  1
                  Print
                        tube length, gas outlet
                        temperature, and other
                        selected items.
                      Calculate
                              TUBELN,  CONV
 Calculate L (1),  WA
                        NO
                                  1
                          Print
                             "Loop  100 Times"
                                  284

-------
PROGRAM LISTING -- BLSIZ2
      SUBROUTINE  BLSIZ2
>      TUO  PHASE FLUID
>      CROSS  FLOW
      REAL    L.NPCYL
      REAL  LI
      RFAD(22.10n>LINE,DOm,|jm).NSO(1),NSI(1),X2L(1)
      REAU(2?,?On )LINE,FN(I(1).FHO(1 ),FTO(1)
      READ(22.2nfl)LINEftN|(l).FHl(l),FTim
      RFAD(22,200)LINE.HS(1).BH(1),UT<1 )
      READ(2?.?nn)LINE,urOIL.MA.TAlN
      READ(2?,2nO)LINk,wF.XlN.XOUT,HFr., TTF
      READ<2?.?>>0>LINE.NH(l),NMO
      REAO(22,2nO)UNff,ltM(l), l(i),WAl*Ll

      WK1TE(6.20)TTF
  20   FORMAT (6H  TTF  ,bl5.i>)
      CPA=FCA(TA!N)
  56   CA=WA«CPA
      Q=WF»(XOUT-«IN).HFO
      CA1=CA
      TAOUT=TAIN-(0/CA)
 280   CPA2=FCA(TAOUT)
      CA2=HA«CPA?
      CA«(CA1»CA?)/2.
      TAOUT2«TAIN-(0/CA)
      IF(ABS(TAOUT2-TAOUT)-UOUT/100. )270,270.260
 260   TAOUT»TAOUT2
      00 TO  280
 270   CONTINUE
      EFF = 0/(CA«(TA|N-TTF»
      CM|N»CA
      ANTLte-ALOG(l.-EFF)
      AU"ANTU»CH|N
      TAOUT=TAIN-(0/CA)
      TMAa(TAIN*TAOUT)/2.
      PI-22./7.
      CALL  GEOMCO(l)
»      FLUID  SIDE
      GF«WF/(AC1(1»
      X»(XIN*XOUT)/2.
      TI=(TMA*TTF)/2.
      WRITE(6.24)TI
  24   FORMAT (5H  II   .E15.5)
      CALL  SATPCPPF. TIF,OFL.PFV,HFL.HFV,0 )
      UMI TE(6,?">)T(1?H)
  25   FORMATJ9H  T(12R)   .E15.5)

      GO 10(30,40),MI
  30   CONTINUE
      CALL  HT2PH(HTI,l.(iF,TTF,T|,X.PPF.nFL.urv.HFlf HFV)
      WRITE(6.31)TTF
  31   FORMAK6H  TTF   ,E15.5)
      WHI TE«S,3-J)HTI
  3*>   FORMAT 
-------
PROGRAM LISTING -- BLSIZ2 (Cont'd)
  50
60
65
70
80
85
90
95
96
97
 300
301
 302
 303
304
305
 306
    CONTINUE
    AIRSIUE
    TMA=(TA|N»TAOUT
    GArKA/(ACU(l)»l
                        )»J2.
      MIsNSOM >
      60 Tn<60.70.80),«l
      CONTINUE
      CALL HTGTR(HT0.1.GA, TNA)
      WRITE(*.6'?>HTO
      FORMAT  <8H HTGTB  ,E15.5>
      00 TO 90
      CONTINUE
      CALL HTOTF < HTU. 1 , UA , TMA )
      WRITE «S.75)HTO
      FORMAT  <8H HTGTF  ,E15.5>
      GO TO 00
      CONTINUE
      CALL HTGTM(HTU.1»UA.THA>
      WRITE (6,H5)H1.0
      FORMAT  <8n HTGTM  ,E15.5>
      CONTINUE
      CALL HTTOCtHTll, THA )
      WRITE <6.95)HTU
      FORMAT  (8H HTTOC  ,E15.5>
      CALL HTTIC(HTJ?.TMA)
      WRITE <6.96)HTI2
      FORMAT  <8H HTTIC  ,E15.5)
      RADIATION
      TAA=TMA
      TWA=(TMA*1TF >/2.
      CALL HTCR(HTR, TAA,THA)
      WRITE (6,97)HTR
      FORMAT  (7H HTGR  ,E15.5)
      HTOT=HTO*HTR
        *(1./(HTI2«(DM1
    U=1./UINV
    TUHEL»AU»lJINV/(f'I»DO(l) )
    COILN«TUHEL/(PI»DCOIL )
    HEIGHT=(COILN»DO(1)+(C01LN-1.
    WRITE(6,30ft)CA,tFF
    FORMATdOH CA.FfF   ,2E15.5)
    WRITEC6.301 )ANTil, AU, TAOUT
    FORMAT (17H ANTn, Alt. TAOUT    .
    WRITF(6.3n?)OF,HTI
    FORMATdOH GF.Hfl   2E15.?)
    WRITE(6,303)TMA.GA,HTO
    FORMAT (14M TMA.GA.HTO
    WRITE(6,304)HTI1,HTI2.HTR
    FORMAT (17H HT 1 1 , HT 12 , HTR
    WRITE(6,305)U,UINV
    FORMAT (10H U.U1NV
    WHI TE(6,306)TUBFL
    FORMAT (9M TUbEL    *E1».5)
    WWI TE(6,307) COILN
                                    3E15.5)
                                   .3E15.5)
                            .2E15.5)
00580
00590
00600
00610
00615
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
onnoo
00«10
OOR20
00830
OOR40
00850
00860
00870
00880
00690
00900
00905
00910
00915
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
(11050
01060
01070
01080
01090
01100
                                     286

-------
PROGRAM LISTING — BLSIZ2 (Cont'd)

 307   FURMAT<8M TOILN  ,F15.5)                                           OHIO
      HRITE<6,308)HEIGHT                                                 01120
 308   FORMAT (10H  HFIGHT    .E15.5)                                       01130
 10U   FORMAT ( I6,2F10.4,2110,FIO.4)                                      01140
 200   FO»MAT = L(1 )-(L(l>-TUHELN)«.S                                         01159
      WAoHAl»L(l)/L1                                                     01160
      IF< I.l.T.inO)  GO Til  56                                              01161
      URITE(6.311)                                                       0116?
 311   FORMAT(15H LOOP 100 TIMES)                                         01163
 311   FORMATU5H LOOP 100 TIMES)                                         01163
 310   RETURN                                                            01164
      END                                                                01170
                                     287

-------
SUBROUTINE CONDSZ

    The subroutine CONDSZ calculates the condenser size required to con-
dense the working fluid.  The condensing temperature and flow rate and the
air temperature and flow rate are input and a NTU calculation is carried out
for a particular heat exchanger design.  A cross-flow configuration is assumed.

    CONDSZ uses the following subroutines:
        SATP
        FCA
        GEOMC2
        HT2PC
        HTAC
The subroutine  GEOMC2 is similar to GEOMCO, and calculates hydraulic
diameters and flow areas.  The COMMON for CONDSZ must be consistent
with the COMMON'S for all the  subroutines employed.

    The present subroutine is written for a louvered fin  on a flattened tube
heat exchanger.

NOMENCLATURE  --  CQNDSZ

FORTRAN Variables in COMMON:

    There is no COMMON block in CONDSZ.

FORTRAN Varuthles in Argument List:

    FORTRAN
    Variable                  Definition                      Units
       TAIN           Inlet air temperature                   °F
       TTt           Condensing temperature                °F
       WA            Air flow rate                          Ib/hr

       W F            Working fluid flow rate                 Ib/hr

       X              Average quality
       XIN            Inlet quality

       XOIT          Outlet quality
                                 288

-------
Other Selected FORTRAN Variables:

                            Definition
FORTRAN
 Variable
      ANTU
      CA
      EFF
      SECTNS
      TAOUT
      THCO
      TUBEL
      TUBNC
      WCO
      WCOND
                  Number of NTU's
                  Air heat capacity
                  Heat exchanger effectiveness
                  Number of flowpaases
                  Outlet air temperature
                  Tube height
                  Tube length
                  Number of condenser tubes
                  Tube width
                  Frontal width
Units
Btu/hr
  op
  in.
  in.

  in.
  in.
                                  289

-------
FLOW DIAGRAM -- CONDSZ
                       C
Start
                                 I
                            CALL SATP
                                 1
                    Calculate RHOL,  RHOV, HFG
                       Print  HFG, RHOL, RHOV
                      Calculate
                          CPA,  CA. CMIN, Q,
                          EFF, ANTU
                                 I
                      Print  CA,  EFF,  ANTU
                     Calculate AU,  TAOUT, TMA
                      Print AU,  TAOUT, TMA
                                 290

-------
FLOW DIAGRAM --  CONDSZ (Cont'd)
                                   1
                            Set  PI  - 22. II.
                             CALL GEOMC2
                     Print  tube length, air outlet
                             temperature and other
                             selected items
                          Calculate GF, X, TI
                           Print GF,  X,  TI
                            CALL HT2PC
                              Calculate GA
                              CALL HTAC
                          Print GA,  HTI, HTO
                                   291

-------
FLOW DIAGRAM -- CONDSZ (Cont'd)
                      Calculate UBNV, U, TUBEL
                       Print UINV.  U,  TUBEL
                           Calculate SECTNS
                                292

-------
PROGRAM LISTING -- CONDSZ
•
•
  50
  60
 100
 110
 120
 130
 140
 150
 160
 170
     SUBROUTINE CONDS7(TTF.X.UA,MF,XQII1.XIN.TA!N>
     CONDENSER SIZING
     CROSS FLOW
     REAl    L.NPCYL
     CALL  SATP(PPF,TTF,VL, VV, HFL. HF.V. 0 )
     RHOL=1./VL
     RHOVal./VV
     HFG=HFV-HFL
     WRI1E«S.50)HFG
     FORMAT (6H HFG   ,E15.t>)
     HRI1E(6,60)RHOL.RHOV
     FORMAT (12H BHOL.RHOV   .2F15.5)
     CHA=FCA( TAIN)
     CA=UA»CPA
     CM|N=CA
         •(XIN-XOUT)»HKO
        = 0/(CM1N»
     ANTlic-ALOG(l.-EFF)
     WKI1E(6.100)CA,EFF.ANTU
     FORMAU14H CA,EFF,ANTU   .JE15.5)
     TAOUT=TAIN*(0/CA)
     TMA=(TAIN*TAOUT)/2.
     MR I TE( 6.1 in) AO. TAOUT.TMA
     FORMAT  (1SH AH. TAOUT , TMA  .3E15.5)
     PI*22./7.
     CALL  GEOMC?(4)
     WRITE (ft f 120 )ACO(4).DHO(4)
     FORKftT(16H ACO(4),nHO(4)  ,?F15.5)
     WR ME (6,1. 10 )AO [ (4).DHIM ), TuRfcC
     FORMil  (22H ACI (4).UHI(4).TURNC  , 3E15.5)
     FLUID Sinb
     X=( X IN*XOIIT
     Tlr( THA+TTF
     WRITF  (6.140 )GF,X,TI
     FORMAT ant* OJ.X.TI
     CALL HT?PC(MTI.4.0F.TTF. T I , RHOV. RriOL . X )
     AIRSIDE
     GAsWA/( ACO(4 )»WCONn«TUBNC)
     CALl HTAC(HTO,4.GA,TNA)
     MRITE(6.15n>GA.HTI.MTO
     FORMATUJH GA.HTIjHTO   .3E15.5)
     UINV=(1 ,/HTI )»(1./HTO)
          = AU»tl|NV/(2.»(THCO»UCO)»TUBNC)
     WHITE I 6, 160 )U|NV,U,TU8EL
     FORMAUHH UINV.U.TUBEL  .3E15.5)
     SECTNS=TUHFL/WCUND
     URITE(6,l7n )SECTNS
     FORMAI  (9H SECTNS  .E15.5)
     RETURN
     ENP
00020
00030
00040
00240
00250
00255
00256
00260
00264
00265
00266
00267
00270
002HO
00290
00300
00305
00310
00315
00316
00320
00330
00340
00345
00346
00350
00360
00363
00364
00365
00366
00370
OU380
00390
00400
00405
00406
00410
00420
00430
00440
00445
00446
00450
00460
00470
00475
fl047«
00480
00485
00486
00490
00500
                                    293

-------
SUBROUTME RGSIZE
     The subroutine RGSIZE calculates the regenerator size required to raise
the gas enthalpy from HAIN to HAOUT.  The gas flow rate, liquid flow rate,
and inlet temperature are input and a NTU calculation is carried out for a
particular heat exchanger design.
     RGSIZE uses the following subroutines:
         FCWV
         FCWL
         RGEOMC
         HT1PB
         HTWTM
The subroutine RGEOMC is similar to GEOMCO, and calculates hydraulic
diameters and flow areas.  HTWTM is similar to HTGTM, and calculates
heat transfer coefficient for a ball-matrix heat exchanger. The COMMON
of RGSIZE must be consistent with the COMMON'S for all subroutines em-
ployed.
     RGSIZE is written for a ball-matrix or round-tube heat exchanger.
NOMENCLATURE -- RGSIZE
FORTRAN  Variables in COMMON:
    There  is no COMMON block in RGSIZE.
FORTRAN  Variables in READ Statements:*
    FORTRAN
     Variable                    Definition                      Units
      HAIN            Inlet gas enthalpy                      Btu/lb
      HAOUT          Exit gas enthalpy                      Btu/lb
      LT               Tube length per liquid flow pass         ft
      NFSECT         Number of gas flow sections
      PPF             Fluid pressure                         psi
      PPG             Gas pressure                          psi
      TAIN            Inlet gas temperature                  °F
      TAOUT          Exit gas temperature                   °F
      TFIN            Inlet fluid temperature                 °F
      WAT             Gas mass flow rate                     Ib/in.
      WFT             Liquid mass flow rate                  Ib/hr
   *See MAINSYS for the remainder of these variables.
                                  294

-------
Other Selected FORTRAN Variables:
    FORTRAN
     Variable
     ANTU
     CA
     CF
     EFF
     SECTNS
     TFOUT
     TUBEL
          Definition
Number of NTU's
Gas heat capacity
Liquid heat capacity
Heat exchanger effectiveness
Number of liquid flow passes
Liquid exit temperature
Tube length
 Units

Btu/hr
Btu/hr
op
in.
                                  295

-------
FLOW DIAGRAM -- RGSIZE
                       C
Start
                 READ tube dimensions, gas and
                       fluid properties, and flow
                       rates
                                 I
                  Calculate
                           WA, WF,  Q,  CPA1,
                           CPA2, CPA,  CA, CPF,
                           CF, CF1,  TFOUT
                  Calculate
                            TFAV,  CF, TFOUT2
                   Calculate
                           CMAXM, CMINM,  CRAT,
                           EFF,  ANTU,  AU,
                   Set
                       PI = 22. II.
                                 I
                           CALL RGEOMC
                                 T
                                                         TFOUT =
                                                            TFOUT2
                  TFOUT2 - TFOUT
                                 296

-------
FLOW DIAGRAM -- RGSIZE (Cont'd)
                    Calculate
                             TMF, GF
                    Set NPH = 1
                             CALLHT1PB
                                  i
                    Set  NPH = 3
                    Calculate  TMA, GA
                                   I
                            CALL HTWTM
                    Calculate
                              UINV,  U,  TUBEL,
                              SECTNS
                   Print
                        tube length, liquid outlet
                        temperature, and other
                        selected items
                        c
Return, End
                                   297

-------
 PROGRAM LISTING -- RGSIZE
      SUBROUTINE KGSIZE
•     REGENERATOR SIZINU
•     SINGLF PHASE FlUll)
•     CROSS FLOW
      REAL   L.HMVO
      REAL LT.NFSECr
      READ(21,?n
 100  FORMAU I6.5F10.4)
      RE A IK21 . 100)LINE,FNO(1),FHO(1>.FTO(1)
      RtAD<21.100)LINE.FNI(l).Frtt
      ANTU«-(ALnn«l.-EFF)/(l.-FFF/CRAT))/(l.-l./CRAT))
      PI=?2./7.
      CALL RGbOHC(l)
      FLUID  SIDt
      TMF«:(lF|N*TFOuT)/2.
      GF«WF/(ACI(1 ))
      NPH = 1
      CALL nllPHfHTI .l.UF.PPF. THF )
       FORMAT  <8'l  HT1PH
       GAS  SIOE
       TMA=( TA |N»TAOUT)/?.
       (3AnhA/('ACO(l)»LT)
       CALL  HIWTM(HTii.l.GA.TMA,PPG)
       FORMA I  (RH HTliTH
       Ual./UlNV
            = AU*UINV/(P|«OU(D)
08020
00030
00040
00050
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00338
00340
00350
00360
00370
00371
00372
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00520
00530
00540
00550
00560
00640
00650
00660
00678
00680
00690
00700
00730
00740
00750
00820
00825
00830
00840
00980
00990
01000
01020
01030
01040
                                     298

-------
PROGRAM LISTING — RGSIZE (Cont'd)

      SFCTNS=IUREL/(IT«1?.)                                              01050
      MHITE(6.300)CA.CF.FFF                                              01060
300   FORMAT  (13H  CA.CF.FFF    .3E15.5)                                   01070
      WKI TEU.ani )ANTII. All.TAOUT                                          010RO
301   FORMAT  (J/H  ANTII. AH. TAOUT    .3E15.5)                               01090
      HklTE(6.30?)TMF.OF.HTI                                             01100
302   FORMAT  <14H  THF.GF.HTI    ,31-15.5)                                  OHIO
      MRITE<6.3U3)THA,GA.HTO                                             01120
303   FORMAT  (14H  TMA.OA.HTO    .3F15.S)                                  01130
      WRlTE(6.30«)HTIl,HTI2,HrR                                          01140
304   FORMAT  (17H  HT 11,HT12.MTR    .3E15.5)                               01150

3U5   FORMAI  (10H  U.IIINV   .7E1S.5)                                      01170
      MKITE(6,3nShCTNS                                                01200
307   FORMATdOH  SECTNS  .E15.9)                                        01210
      WKlTE(6.30B)TKOHT                                                  01220
30d   F(lRMAT(9H TfODT    .F15.5)                                          01230
      RETURN                                                            01240
      END                                                               01250
                                    299

-------
     Section 13
TOTAL SYSTEM MODEL

-------
                                Section 13

                           TOTAL SYSTEM MODEL
MAIN PROGRAM - MANSYS

    The total system model is entitled MAINSYS.  To permit study of the sys-
tem steady-state and transient behavior, MAINSYS uses the following sub-
routines:
                 COMBST
                 COND
                 DRIVER
                 ENGINE
                 PUMP
REGEN
SATP
SUPPT
TRANSM
VAPORG
    MAINSYS reads the following data files:
                 File 38  Data Input
                 File 39  Data Initial
                 File 11  Transient Start
                 File 31  Route
The Transient Start File 11 supplies initial values for starting the program
from a transient condition.  Since the data in the file vary according to the
particular transient start condition, a listing is not included here.

NOMENCLATURE -- MAINSYS
FORTRAN  Variables in COMMON:
    The  FORTRAN variables  listed below appear in the COMMON of MAINSYS.
    FORTRAN
    Variable                 Definition
      AP          Piston area
      B            Number of hydrogen moles in reaction

      CH          Unburned hydrocarbon emissions

      CHR         Molecular weight of fuel

      CO          Carbon monoxide emissions

      CO2P        Carbon dioxide in products
      CO2S        Carbon dioxide stoichiometric
      DCS         Hydraulic diameter of shell-tube
                   flow passage
                         Units
                     in.2
                     moles
                         grams
                     grams of fuel

                     lb  moles
                         grams
                     grams of fuel

                     moles
                     moles
                     in.
                                  301

-------
FORTRAN
Variable
  DCT
  DTH
  EQUIV
  F
  FS
  H2OP
  H2OS
  HP
  HR
  HTFLAM

  HTIN

  LHV
  LHVT
  LCS
  LCT
  MAIR
  MFLUED
  MFUEL
  N2P
  N2R
  N2S
  NBENDA

  NBENDG

  NO
  NP
  O2 P
                Definition
Hydraulic diameter of tube flow
passage
Integration time step
Equivalence ratio
Fuel air ratio
Stoichiometric fuel-air ratio
Water vapor in products
Water vapor stoichiometric
Unburned hydrogen in products
Heat rate of combustor at design
Enthalpy of products of combustion at
flame temperature
Enthalpy of products of combustion at
air temperature
Lower heating value of  fuel
LHVT =  (LHV) (MFUEL)   '
Length of combustor shell
Length of combustor tube
Mass flow of combustor air
Mass flow of fluid
Mass flow of fuel
Nitrogen in products
Nitrogen in reactants
Nitrogen stoichiometric
Equivalent turbulent friction length due
to bends in airflow paths
Equivalent friction length due to bends
in gas-flow paths
Nitrogen oxide emissions
Number of pistons
Oxygen  in products
     Units
in.
sec
moles
moles
moles
10s Btu/hr
Btu/lb

Btu/lb

Btu/Ib
Ib
ft
ft
Ib/sec
Ib/sec
Ib/sec
moles
moles
moles
    grams
grams of fuel

moles
                               302

-------
FORTRAN
Variable                     Definition
 O2R         Oxygen in reactants
 O2S         Oxygen stoichiometric
 PO          Ambient pressure
 SP1         Reciprocating expander stroke
 SSA         Shell wetted area
 STA         Tube-air wetted  area
 STG         Tube-gas wetted area
 TO          Ambient temperature
 WS          Combustor shell weight
 WT         Weight of combustor tube
 YEXT       External time step
 ACI(I)       Inner-flow cross-section area for
              fluid pass  I
 ACO(I)      Outer-flow area per unit length for
              fluid pass  I
  BH(I)       Tube outside dimension in direction
              of gas travel for rectangular tube for
              fluid pass  I
  BT(I)       Tube inside dimension in direction
              of gas travel for rectangular tube for
              fluid pass  I
 CTF        Fluid energy storage capacity per
              unit length
 CTFY(I)    Fluid energy storage capacity per
              unit length for fluid pass I
 CTT(I)      Tube energy storage capacity per
              unit length for fluid pass I
  CW         Specific heat of working fluid
 DHI(I)       Inside hydraulic diameter for fluid
              pass I
 DHO(I)      Outside hydraulic diameter for fluid
              pass I
 DK1)        Tube inside dimensions in  direction
   or         perpendicular to gas flow for rectan-
              gular tube for fluid pass I, or
in.
in.2
in.2
in.2

Ib
Ib
sec
in.2

in.

in.

in.

Btu/in. °F

Btu/in. °F

Btu/in. °F

Btu/lb. °F
in.

in.

in.
                               303

-------
FORTRAN
Variable
 DO(I)

 DS(I)

 DYYY(I)
 EF

 EFY(I, J)

 EG

 EG Y(I, J)

 FHI(I)
 FHO(I)
 FNI(I)
 FNO(I)

 FRAC
 FT 1(1)
 FTO(I)
 GVZ(I, J, K)

 HF(I, J, K)
 HFINl(I)

 HFIN2(I)
 HGINl(I)
               Definition
Tube inside diameter for circular
tube for fluid pass I
Tube outside dimension in direction
perpendicular  to gas flow for rectan-
gular tube for  fluid pass I,  or
Tube outside diameter for circular
tube for fluid pass I
Sphere  diameter for ball-matrix con-
figuration for fluid pass I
Stability time step for fluid  pass I
Fluid-transport parameter (= mass
flow rate x  specific heat)
Fluid-transport parameter for fluid
pass I,  node J
Gas-transport parameter (= mass flow
rate x specific heat)
Gas-transport  parameter for fluid
pass I,  node J
Inside fin height for fluid pass I
Outside fin  height for fluid pass I
Number of fins inside for fluid pass I
Number of fins per inch outside for
fluid pass I
Ratio of actual to  stability step size
Inside fin thickness for fluid pass I
Outside fin  thickness for fluid pass I
Specific volume of fluid for  fluid pass
I,  node  J
Fluid enthalpy  for fluid pass I, node J,
at time  K
   K = 1, present
   K = 2, future
Fluid enthalpy  at entrance of fluid
pass I
Fluid enthalpy  at exit of fluid pass I
Gas enthalpy at entrance of fluid pass I
      Units
 in.

 in.

 in.

 in.

 sec
 Btu/sec °F

 Btu/sec °F

 Btu/sec °F

 Btu/sec °F

 in.
 in.

 II in.
in.
in.

ft3/lb
Btu/lb
Btu/lb

Btu/Ib
Btu/lb
                               304

-------
FORTRAN
Variable
HGIN2(I)

HGT

HGTY(I, J)



RTF


HTFY(I, J)



J2E(I)
J3E(I)
 LSTEP

 MWZ(I. J)


 NCLY(M)


 VCRY(M)


 NCY(M)

 N CYCLE
NFSECT(3)


NLUMP

NM(D

NMI(I)
                                                        ft
Ib/sec
               Definition
 Gas enthalpy at exit of fluid pass I

 (Heat transfer coefficient x perimeter)
 between gas and tube
 (Heat transfer coefficient x perimeter)
 between gas and tube  for fluid pass I,
 node J
 (Heat transfer coefficient x perimeter)
 between tube and fluid

 (Heat transfer coefficient x perimeter)
 between tube and fluid for fluid pass I,
 node J

 Index to locate liquid-vapor interphase
 Index to locate end  of superheat

 Total length of tube for fluid pass I

 Counter of timesteps
 Fluid mass flow rate  of fluid pass I,
 node J

 Sequence number for  the first fluid pass
 for component M

 Sequence number for  the last fluid pass
 for component M
.Number of fluid  passes for component M

 Logic variable to bypass geometric
 constants  and initialization within com-
 ponent program  after first run

   = 0  - initialize  geometric constants
  ^ 0  - bypass initialization
 Number of flow sections for tube and shell
 fluids
 Maximum number of lumps for any fluid pass

 Tube metal for fluid ^j
 pass 1               v If value =  1, then steel
 Inside additional sur-/If value =  2,then copper --
 face metal for fluid  ,
 pass I             J
  Units
Btu/lb
Btu/sec-in. °F

Btu/sec-in. °F


Btu/sec-in. °F

Btu/sec-in. °F
                               305

-------
FORTRAN
Variable

NMO(I)
NPH
              Definition
Units
NFHY(I, J)


N PR INT



NSI(I)
NSO(I)
NSS
NTRANS
NX2MAXU)


NX2Z(I)

NXN


NXO
                                   If value = 1, then steel
                                   If value = 2, then copper
Outside additional^
surface metal for \
fluid pass I       I

Nature of fluid phase

   1 - subcooled
   2 - saturated
   3 - superheated

Nature of fluid phase for fluid pass
I,  node J

Logic variable for printing

   0 - print
   1 - bypass prints
Type of heat transfer surface inside
for fluid  pass I

   1 - bare
   2 - finned or tape

Type of heat transfer surface outside
for fluid  pass I

   1 - bare
   2 - finned
   3 - ball-matrix

Logic variable for optional use of iter-
ation program

   0 - bypass iteration program
   1 - use steady-state iteration program

Logic variable for optional transient
start

   0 - start from end point values
   1 - start from given distribution

Maximum number of lumps required
for fluid  pass I

Number of lumps in  fluid pass  I

Required number of  distance lumps at
future time

Required number of  distance lumps at
present time
                               306

-------
FORTRAN
Variable
PGV(I)
RFA
RM(I)
RW
RWV(I, J)

TGl(I)
TG2(I, J. K)
TG2AVG(I)

TGINl(I)

TGIN2(I)

TIME
TT(I J, K)
TUBROW(I)
VAPLl(I)

VAPL2(I)

VAPL3U)

VOL(I)
X2UD
X2T(I)
              Definition
              Definition
Gas pressure at inlet of fluid pass I
Ratio of fuel to air
Ball-matrix porosity for fluid pass I
Density of working fluid
Density of working fluid for fluid pass
I,  node J
Inlet gas temperature for fluid pass I
Exit gas temperature for fluid pass I,
node J, at time K
   K = 1 - present
   K = 2 - future
Average exit gas temperature for fluid
pass I
Temperature of gas at  inlet of fluid
pass I
Temperature of gas at  exit of fluid
pass I
Real time
Tube temperature for fluid pass I,
node J, at time K
   K = 1 - present
   K = 2 - future
Number of gas passes for fluid  pass  I
Fluid volume of pass I  occupied by
subcooled phase
Fluid volume of pass I  occupied by
boiling phase
Fluid volume of pass I  occupied by
superheat phase
Volume per unit length for fluid pass  I
Geometric spacing between concentric
coils for fluid pass I
Longitudinal pitch for fluid pass I
[Note:  This variable is no longer used. ]
  Units
 lb/ in.2
 lb/ft3
 lb/ft3
UF
°F
 sec
op
in.

in.3

in.3

in?
in.

in.
                               307

-------
FORTRAN
Variable

CTAB(L, M)
HLIQ(N)


HTAB(L, M)



HVAP(N)


IND
NLINE
NND
NPSTEP


NTSTEP


P(N)

PTAB(L)

STAB(L, M)



T(N)


TTAB(M)


VLIQ(N)
              Definition

Superheated working fluid specific heat
at pressure PTAB(L),  temperature
TTAB(M)
Saturated working fluid liquid phase
enthalpy at pressure P(N)

Superheated working fluid enthalpy at
pressure PTAB(L), temperature
TTAB(M)
Saturated working fluid vapor phase
enthalpy at pressure P(N)

Logic variable for superheated inter-
polation program
   £ 1 -  read superheated fluid tables
   > 1 -  don't  read tables

Number of saturated fluid temperature
steps
Logic variable for saturated inter-
polation program
   s 1 - read saturated fluid table
   > 1 -don't read table

Number of superheated fluid pressure
steps
Number of superheated fluid tempera-
ture steps
Saturated working fluid pressure
Pressure of superheated working fluid
Superheated working fluid entropy at
pressure PTAB(L), temperature
TTAB(M)
Saturated working fluid temperature at
pressure P(N)
Temperature of superheated working
fluid
Saturated working fluid liquid-phase
specific  volume at pressure P(N)
Btu/lb


Btu/lb


Btu/lb
lb/in.2
lb/in.3

Btu/lb °F
ft3/lb
                               308

-------
    FORTRAN
    Variable
              Definition
 Units
    VTAB(L, M)   Superheated working fluid specific volume ft3/lb
                  at pressure PTAB(L),  temperature
                  TTAB(M)
                                                             o ,
    VVAP(N)      Saturated working fluid vapor-phase       ft /lb
                  specific volume at pressure P(N)

FORTRAN Variables in READ Statements:
    FORTRAN
    Variable

     AF

     CD

     DISP

     KO

     M


     NBURNR

     NPCYL

     NTCOMP

     RADW

     W
    FORTRAN
    Variable

     AS
     CS
     DIST
    Constant FORTRAN Variables*


              Definition

Vehicle frontal area
Air drag coefficient

Maximum displacement

Acceleration sensitivity

Rotational moment of inertia pf
rotating components

Number of burners

Number of cylinders

Number of heat exchangers
Tire radius

Vehicle weight

  Initialization FORTRAN Variables*


              Definition

Accelerator setting (OsASsl)

Logic variable for driver'action during
wheel slip
    +1 - accelerator settings
    0, -1 -  accelerator setting held
            constant
Distance along route
 Units

ft?


in.


lb ft sec:
ft
lb
 Units
miles
      :See COMMON for the remainder of these variables.
                                   309

-------
FORTRAN
Variable
 DT
 HWCI

 HWRI

 HWVI

 INE
 LINBX

 LINDEX
 LINEX

 MGCI
 MWCE

 MWCI

 MWRE

 MWRI

 MWVE

 MWVI

 NST
 PGRI
 PWCI

 PWRI
              Definition
Time step for vehicle integration
Enthalpy of working fluid at condenser
inlet
Enthalpy of working fluid at regenerator
inlet
Enthalpy of working fluid at vapor gen-
erator inlet
Logic variable to read data
Logic variable:  when =0, MAINSYS reads
new line of data from ROUTE
Logic variable:  when =1, vehicle idling
Logic variable:  when ^0, vehicle deceler-
ating; = 0, vehicle accelerating
Mass flow rate of gas at condenser inlet
Mass flow rate of working  fluid at con-
denser exit
Mass flow rate of working  fluid at con-
denser inlet
Mass flow rate of working  fluid at re-
generator exit
Mass flow rate of working  fluid at re-
generator inlet
Mass flow rate of working  fluid at vapor
generator exit
Mass flow rate of working  fluid at vapor
generator inlet
Logic variable to control printing inter-
val during transients
    0 - print last timestep
    1 - print every time-step
Pressure of gas at  regenerator inlet
Pressure of working fluid at condenser
inlet
Pressure of working fluid at Regener-
ator inlet
 Units
sec
Btu/lb

Btu/lb

Btu/lb
Ib/sec
Ib/sec

Ib/sec

Ib/sec

Ib/sec

Ib/sec

Ib/sec
lb/in.3
lb/in.3

lb/in.a
                              310

-------
FORTRAN
Variable
  PWVI
  R
  RFUEL

  RPME
  RPMP
  RPMX
  RPUMP
  TIMEX
  V
  VT
  Z
FORTRAN
Variable
 TIM(M)
FORTRAN
Variable
  AR
  CR
  G
  KF

  LR
              Definition                  Units
Pressure of working fluid at vapor        Ib/in.
generator inlet
Engine intake  ratio
Reference fuel flow rate for emission     Ib/sec
calculations
Engine rpm                              rpm
Pump  rpm                               rpm
Transmission rpm                       rpm
Variable displacement ratio
Time                                    sec
Vehicle speed                            mph
Tire speed at  periphery                  mph
Logic variable used during wheel slip:
initially set Z = l; reset internally
Transient Start FORTRAN Variables*

              Definition                  Units
Starting time  for transient start  for       sec
component M
    ROUTE FORTRAN Variables*

              Definition                  Units
Reference acceleration                   ft/sec3
Logic variable
    + 1 - indicates acceleration
      0 - cruise at constant speed
    -1 - indicates deceleration
Grade #
Maximum friction coefficient (traction
limit)
Next marker position                     miles
 •"See COMMON for the remainder of these variables
                              311

-------
    FORTRAN
    Variable.
Definition
      TI          Maximum idle time
      VR          Reference vehicle velocity (speed limit)
Other Selected FORTRAN Variables:
    FORTRAN
    Variable                     Definition
      A           Vehicle acceleration
      A A          Linear acceleration of vehicle wheel
      CWP        Specific heat of working fluid
      DA          Aerodynamic drag
      DG          Grade drag
      DIFF       Per unit enthalpy difference
      DR          Rolling and mechanical resistance
      FM         Maximum tractive effort
      FT          Tractive effort
      HGRE       Enthalpy of vapor at regenerator exit
      HGRI       Enthalpy of vapor at regenerator inlet
      HWCE       Enthalpy of working fluid at conden-
                  ser exit
      HWEI       Enthalpy of working fluid at engine inlet
      HWPE       Enthalpy of working fluid at pump exit
      HWRE       Enthalpy of working fluid at regener-
                  ator exit
      HWVE       Enthalpy of working fluid at vapor
                  generator exit
      IX          Local logic variable
      JS          Variable to denote cumulative number of
                  timesteps
      KA         Accelerator sensitivity (changed inter-
                  nally)
      KO         Accelerator sensitivity (initial value)
      MGI         Mass flow rate of gas  at inlet
Units
sec
mph
                           Units
                           ft/sec3
                           ft/sec8
                           Btu/lb °F
                           Ib
                           Ib

                           Ib
                           Ib
                           Ib
                           Btu/lb
                           Btu/lb
                           Btu/lb

                           Btu/lb
                           Btu/lb
                           Btu/lb

                           Btu/lb
                           Ib/sec
                                   312

-------
FORTRAN
Variable                    Definition                  Units
 MGRE       Mass flow rate of gas at regenerator       Ib/sec
              exit
 MGRI        Mass flow rate of gas at regenerator       Ib/sec
              inlet
 MGV        Gas flow rate for each burner             Ib/sec
 MGVI        Mass flow rate of gas at vapor gen-        Ib/sec
              erator inlet
 MWE        Mass flow rate of working fluid at exit     Ib/sec
 NCL         Number of the first fluid pass
 NCR         Number of the last fluid pass
 NX2         Required number of lumps
 PACI        Pressure of air at condenser inlet
 PGCI        Pressure of gas  at condenser inlet
 PGVI        Pressure of gas  at vapor generator
              inlet
 PWEE       Pressure of working fluid at engine exit
 PWEI        Pressure of working fluid at engine
              inlet
 PWPE       Pressure of working fluid at pump exit
 PWPI        Pressure of working fluid at pump inlet
 TAUX        Auxiliary torque
 TE          Cumulative idle time
 TENET      Net torque at inlet of transmission
 TGCI        Temperature of gas at condenser inlet
 TGVI        Temperature of gas at vapor generator
              inlet
 TWPI        Temperature of working fluid at pump     °F
              inlet
 TX          Temperature of working fluid             °F
 TX1         Subcooled temperature of working fluid    °F
 WN          Horizontal component of vehicle weight    Ib
                        lb/in.2
                        lb/in.3
                        lb/in.3

                        lb/in.a
                        lb/in.3

                        lb/in.3
                        lb/in.3
                        ft-lb
                        sec
                        ft-lb
                        °F
                        °F
313

-------
FLOW DIAGRAM -- MAIN SYS
      I = 1 + 1
                     C
                 Start
                                  1
                  READ NTCOMP
                         NCYfor all NTCOMP
                                 1
                  Define
                         NCLY, NCRY For All
                         NTCOMP
                                I = 1
                                      YES
/
                                  i
                  * Initializ e
                                  I
                                I = 1
                                  T
                                                            Do 10
                                                         10 Continue
                                                            Do 20
                  READ design data for all fluid
                         passes for thermal
                        component I
                                          20 Continue
                  READ design data for remaining
                 	components	
                READ  Initialization Boundary Data
                       For Thermal Components
                                 314

-------
FLOW DIAGRAM -- MAINSYS (Cont'd)
                  READ stored distribution values,
                         for transient start
                 READ initialization values for remaining
                        components

                 READ logic variable values
                           READ  Route (file 31)
                                   1
                             CALL DRIVER
                  Print   ambient pressure and temper-
                         ature data
                                                                Do 30
                    For thermal component I, READ
                     initial boundary values for each
                    fluid pass J
                                  Does
                              I =NTCOMP
                                         YES
                                  Does
                               NTRANS =0
 30 Continue
   Do 36

36 Continue
                                   315

-------
FLOW DIAGRAM --  MAMSYS (Cont'd)
                                  (B
               Define  combustor inlet parameter
                      values
                        CALL COMBST
                               1
                        Print combustor results
             Print  detailed results from  combustor
                  Define  vapor generator input
                          parameter values
                               I
                       CALL VAPORG
                               I
YES
                Find whether vapor generator exit
                flow is in saturated condition
                               I
       Print
      Message
                Define expander inlet parameter
                values
                               I
f
       Stop
                                 316

-------
FLOW DIAGRAM -- MAINSYS (Cont'd)
                           CALL ENGINE
                          Print Engine results
                  Define regenerator inlet parameter
                  values
                                  I
                            CALL REGEN
                    Define condenser inlet parameter
                    values
                             CALL COND
                                  i
                    Define feedpump  inlet parameter
                    values
                                  I
                             CALL PUMP
                         Reset  cycle conditions
                 Obtain transmission inlet parameter
                 values
                                  i
                           CALL TRANSM
                                  317

-------
FLOW DIAGRAM -- MAINSYS (Cont'd)
                   Print transmission results
Compute vehicle motion
i
r
                 Print vehicle motion results
                               Is
                          integration or
                            iteration
                           necessary
             Print detailed distribution for each
                   fluid pass
                      C
Stop, End
                                  318

-------
PROGRAM LISTING — MAINSYS
       AP,R.CH,CHK,CO
       co2P.co2s.nrs. OCT. DTH
       F: OIIIV.F,FS.H?OP.HPUS
       HP.MK.HTFLAM,HT1N,LHV
       LHVT.LCS.LCT.MAIR.MFLUID
       MFUEL.N2P.N2R.N2S.MBENDA
       NRFNOG»NU.NP,02P,05?R
       02S.PO.SP1.SSA.STA
       STO.TO.US.WT.YEXT
       ACldOlt AOUdO).HH,CW,nHK10).DHO<10>
       DIMO), 1)0(10). nS(10),DVYY(10)*EF
       EFYClO.ll ) , Fli. EGV ( 10 . 11 ) , FH I ( 1 1) ) , FHO ( 10 )
       FN|(10).FNU(10 >.FHAC.FT I (lll),FTO(in>
       UVZ(10,11.2>.HFd0.11,2),HFINl.(lfl).Hr IN2(10).HGIN1(10)
       HG|N2(10),HR1,HG7Y<1II,U >.HTF,HTFY(10,11)
       J?E(lfl>. J3t( 10). ld.0>, ISTEP.MWmO.ll.)
       NCY(3).NCLY<.O.NCRYm.NCYCLE,NFSFCT(3)
       NLUMP.NM(ll) ) ,NMI (1 il ),NhO(lfl ).NPH
       NPhYdll.ll I.NPHINT.NSS.NSI (lO).NSO(in)
       NTRANS.NX2MAX(lfl),NX?Zdn),NXN,NXO
       PGVd 0 ). RFA, HM(10 ) . PH. KUY( 10,11 )
       TR1 ( 10 ) , 1G2< 10 . 11, V ) . T02 AVG( 10 ) . TG I Nl < 10 ) . TG I N2(10 >
       IMF . TTdO. 11.2). TURRObdO ). VAPLK10 >.VAPL2(10 )
       VAPI j(in ), vntdo >. Kir.do ). x2L(in ),x?r
       CTAR(69,27),HL10(l/>8 ),HTAH(69.27 ),HVAP(128), 1NO
       Nl  I NF. NNU, NPSTtP.N [STEP, IM 1?H)
       PTAR(7ll ),ST*H(6Q.27),T<12B).TTAB<33), VLIQ(128)
       VTAR(6r>,27 ) , VVAPd ?R )                '
RI-Ai    i , LHV.I.HVT.I i:S.LCT.MAl«.MFLUID,MFUEL.MHZ.N2P.N2R,N2S,NO
REAL  nMVI.MliVh.MHCI .MrtCE.MWRI.MWRh.MWEf MWP.MWEE
Rt-AL 'Mnv.MOvl ,MGCI,MG«I.MC;Rfc,MBI,MGE
Kt-Al  KF.LK,KO,KA.M
OlMtNSION TM(3)
INTfGEH CK.Z
SLOMP=10
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    CUMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    COMMON
    CUMMON
    COMMON
    COMMON
    COMMON
    CUM- ON
    W| AL>(.™,1H>LINE, (NCYd ), U1.N1COMP)
    NCI Yd ) = \
    DO 10 I=?.NTCUMP
    NI:LY( i > = NCLY( 1-1 >»NCY( 1-1 )
III  NCRYC I-1)=NCLY( I )-l
    NCP»«NTCOMP)=NCLY(NTCOMP)+NCY(NTCOMP)-1
    00 ?fl I=1,NTCOMP
    J1=NCLY(I)
    J?=NCKY(I)
    RFAD< J«.15)LINE». J=J1. J2)
            I-OLINEf (NM( J), Jajl, J2 )
            li)L!NF. (Xllit J), J = J1. J2 )
    RF-AD(3R.1S)LINF.(X?L.( J). J»J1.J2)
    RbAb(Jf*.l^)L INE,(X?T( J), JaJl.j?)
    OF An (JR. !•>)•! . INE.(DS(J). J»J1.J2)
    WEAO)LlNE,(Fm< J).J=J1. J?)
    »EAD
-------
PROGRAM LISTING — MAINSYS  (Cont'd)

      R(EAD(J8,l>>)LlNE,(FNU(J), J=J1. J2 )                                   00610
      READ(3B.1'>)LINF,(FTI(J), JsJl, J2>                                   00620
      READ<3R.1->>LINF.                                    00680
      RkAD(3R.15)L(NE.(TUBROWtJ),J=J1,J2)                                00690
      RFAD(3A.1H)LINE.NFSEC1(I>                                          011700
  20  CONTINUE                                                           00710
      REAU(,.<8,2?)LINE.SP1,NI>,AP                                          00720
      READ)LlNF.SSA.STA,STG                                        00760
      KEAIMJfi.lSH INE.WS,WT,DCS.DCT                                      00770
      RtADOfl.lR)LlNE.NBFNDA,NBENDG                                      00780
      READ<3R.l5)llNF,LHV.LCS.LCT                                        00790
      READ(.$ft.tS)LlNE. 4F . CO, W, RADW, KO                                    00800
      READ(3fl,1*)L!NE.M                                                  00810
•     INITIALIZATION                                                     00820
      NTRANS=n                                                           00830
      READ(^9,1S)LINE.PMVI,HWVI.HUV|.HWVE                                00840
      RE&ij(-i9,i«m INE.PWCI.HWCI.MHCI.HWCE.MGCI                           ooaso
      REAU(39,ll>)LlNE.PHRI.HWKI,HMR|,hWHE.PGR|                           00860
      READ(39.l'»)LlNE.PHVE.PMCE                                          00865
      00 JO  I=l.NTCuMP                                                   00870
      J1=NCLY(I)                                                         008HO
      J2=NCRY(I)                                                         00890
      RtAD(J9.l^)LlNE,(HF|Nl(J),JsJl,J2)                                 00900
      HFA(J(J9,1S)LI'»F,(MFIN2(J). J=J1,J?)                                 00910
      ird.EQ.3) GO TO 25                                                00920
                   nE. (TRINUJ). J=J1,J2)                                 00930
                   hE.(lGIN2( J),JsJl. J2)                                 00940
      (50 TO  30                                                           00950
  2->  CONTINUt                                                           00960
      READ(39,1>>)L I NE , ( HR 1 Nl ( J ) , J = Jl. J2 )                                 00970
      Kb A I) (.f 9, !•>)(. INE, (HGIN2(J), J = J1, J2 )                                 00900
  30  niNTlNllfc                                                           00990
      |F(NTKANS.FU.O)  GO  TO  39                                           01000
  32  CONTINUE                                                           01010
      DO 36  1=1.NTCUMH                                                   01020
      J1=NCLY(|)                                                         01040
      .l? = NCRY(l)                                                         01050
      »FAD(l.l,ini )T|M( I >                                                 01060
 101  MiRMATMEl^)                                                     01070
      nil 33  J = J1.J2                                                      01080
  33  REAndl ,in2)NX??( J)                                                01090
 102  r()RMAT( 111))                                                        01100
      no 35  1K = J1 . J?                                                     OHIO
      MI=MX27(|lO                                                        01120
      HO .54  J = 1.MI                                                       01130
  34  Ht-40(11 ,101 )Mf ( IK,.I*1 ,1),7T( IK, J,1),T02( IK,J,1).MUZ< IK,J*1)       01140
      IV(1K.NF.J2)MwZ(IK*1,1)=MWZ(1K,M|»1)                               01150
      If( IK.Nt.J?)MF(U*l,l,l)»HF
-------
PROGRAM LISTING — MAINSYS (Cont'd)
 \*)
 IB

 19
 411

 50
 55.

 6U

 59

 61

613
 Rt-AHO9,ltt)L!NEfLlNUEX.LINEX.LlNBX
 REAFM39,IS)LINE,MFUEL.MAIR,MFLUID,RFUEL
 REAU(J9,15)LINE.PU,TO
 REAnLINE»AS.DIST,V,VT
 REAU(39.15)LINE,RPMX.CS
 REAn(J9,l8)LINE,Z
 KAsKO
 FORMA I ( I6.5F12.5)
 FORMATUA.5112)
 IF(NLUHP.EO.IO) GO
 IF(LINDEX.FO.l) GO
 TE = 0.
 READ(Jl.5H)LlflE.LK.G,lI.AR,VR.KF.CR
 FORMAT! 16.6.F8.2, 12)
 CALL l)RIVtR(TJ, I E, AR, UT, D I S F . LR, V, VT, Z, CS, K A, CR. VR, RADH, AS,
7A.LlNI)EX,LlNEit,LINRX.KPMX.KO.AM
 CONTINUE
 IFCLINBX.NE.O) GO TO 19
 CONTINUE
 WRITE(6,61)PO, TO
 FORMAT(32H1AHAIENT PRES (PSIA). TENP (F)  .2E15.5)
                        TO
                        TO
                            59
                            55
 62
 6J
201
20?
 203
204
20*
 20r>
207

20U
     FORMATtBH
     TGCI=TO
     PACI=HO
                11 »\-   .E15.9)
      MGV^Mf UtL*MAlW
      RFAsMFHEL/MAIK
      HH=LHV»RFUEL»J600.»l.fc-6
      HRITE(6.6?)
      FORhAT(2H  )
      FORMAT(4AX,22H »•••• COMBtlSTOH •••»•)
      MK!TE(6,62)
      CAL1  rOMRST(PACI,PACE.TG.TSC,TAC,TTC.CPC.TFLAME)
      WKITE(6,2H1)
      FORMATM9H •• FLOWS (LBS/SEO)
      WWI TE(6.9fl?)MAlR»HFUEL
                    AIR
 FORMAKinx.lQH
 UR|1E(6.6?)
 WIM IF«*.?03>
 FORMA )(2flH »• TEMPERA 1 URES 
 UR1U(A,?U4)TTC.TSC
 FORhAKinx.lQH TUBE
 WRI TE(6,?U5)TAC.TG
 FORhATdiU.lOM AIM
 WRITER. ?il6)TFLAMb
 FORMAUinXflOH FLAME
                             . E15.5,5X, 10H FUEL
                             • E15.5.5X.10H SHELL

                             . F15 .5. 5X, 10H GAS
                             .£15.5)
 UKITE<6,?07>
 FORMAT(3nn •• EMISSIONS  (GM/GH  OF  FUEL))
 UR!TE«S,?l)fl)NO.CO,rH
 FORMATdnX.lOH  NO       . E15.5, 5X, 10H  CO
710H CH        .E15.5)
 IF(NPRlNT.NE.n) GO  TO 69
                                                     ,E15.5)
                                                     .E15.5)

                                                     .E15.5)
                                                      ,E15.5,5X.
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
015&0
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
                                     321

-------
PROGRAM LISTING — MAINSYS (Cont'd)
 64

 65

 66

 67

 68
 69
200
       WRITE(6,64)H,H20S.C02S.02S         ,
       FORMATdBH  », H20S, C02S. 02S   .4E15.5)
       WKITE(6.
       CONTINUE
       PGV1=PACE
       TOVIsfG
       MGV1=MOV«FLOAT(NBURNR)
       CONllNtlk
       LSTFPaJ
       JS=0
       IF(NTRANS.NE.O) T|MF»TIM(1)
       IX = 1
       NCL=NCLY( IX)
       HF(NCL,l.l)=HWVI
       T(ilNt(MCL*1 )sT(?VI
       Mi;|=HGVl/iLOAT(NrSFCT(|K)i
       URITE(6,?10)
  210   FORMAT(2Ml  ,4SX,?HH  •••••  VAPOR  GENERATOR  •••••)
       CALL  VAPOWO(Mol,MWF.PbVI.POVE.PMVI.P«VE, TOVI.JS.NST)
       riMt=TfMFX
       NCR=NCRY(IX)
       NX2=NX?Z(NCh)
       HWVE=HF(NCff.NX2»l.l)
       NSS=1
       PwEI=PWVE
       HwFlaHHVE
       CALL  SATP(PWEI.1HEI.VML,VWV.MLfHV,l)
       If (HHfcl.OKHV)  GO  TO &00
       wHI1E(6,14)
   14   FuRMAF(45H  VAPOR UFNERATOR EXIT  IN  SATURATION CONDITION)
       srop
  500   CALL  SOPPMPHEI,TwFI.HWtl.SWEI.VWtI.3)
       PMEE=PGRI
       WR!TE(6.5U1)
  501   FORMA T(2Hi  ,4ex.ivH  ••••*  ENGINE •••••>
       URITE(6.6?)
       CALL  EN6INE(R.RPME,PHtI,TMEI,HWEI.SMEI,VWEI,PWEE,TMEF.
      7HHEF.SWEE.VHEE.XWEE.HHEE.TOROE)
       WRI1E(6.502)RHHE.K
  502   FORMAK24H  tNOI^E  SPEED*  STROKE ,2615.5)
       UKITF(6.503)PuEI.HUEI
  50J   FORMAK24H  INLET   PRES, ENTHALPY .2E15.5)
       v4finE(6.5Q4)PMEE.HUEE
  !>04   FORMAT(24M  EXIT PRES.  ENTHALPY   ,2E15.5)
       MKITE(6,505)NWEt
  505   FORMAT(24't  MASS FLOW (L8S/SEC)    
-------
PROGRAM LISTING — MAINSYS  (Cont'd)
 51U
 515
 516
525
 •>26
 •>0b
      CON1INUE
      NCL = NCI.Y( J>
      NfR=NCRY< J)
      IF (NTHANS.EQ.U) 60 TO 526
      HO 52^ 1 I=NCL,NCR
      wmTE<6,515)TGKI I )
      FORHATC6H TGI  ,F1?,5)
      HO 525 JJsl.NI.UNP
      H«IlF<6.51MHF.TG2=MHRI/FLOAT(NFSECT( IX))
      MGI=N(JRI/FI OAT(NFSFCT< IX))
      HKITE(6,5H7)
      FORNATC2H1 .46X.24M ••••• REGENERATOR  •••••)
      CALI KEUFNJMGI.MGt.PGHI.PGRfc.PWRI.PWRE.HGRI. JS.NST)
      T1MF=T1MEX
      JS = 0
      MGRE=MGb«n.OAT(NFSFCT( IX) )
      HiiPt =H01N?( NCI )
      HwRt=HF (NCR.NX2*!.! )
      MwRt-=MWZlNrK.NX2*l )»FLOAT(NFStCT< IX
      PUVI=PWRE
      MwCI=MGKF
      PwCI=HfiF
      HF(NCL.l .1 >=HWCI
      MhZ(NCL.1 )=MWCI/FLOAT(NFSFCT( IX))
      MGI=Mr!CI/FI (JAT(«MFSFCT(IX) )
                  OAT(NFSFCT( IX))
      FoRHAT(i»Hi  .47X.?2H  •a***  CONDENSER ••»••)
      CAI I CONn
-------
PROGRAM LISTING -- MAINSYS (Cont'd)
520
55(1
600
601

602

60J

604

605
606


607

608
609



17U

180
      CWP=FCWL.Lt.0.01) GO TO 550
      TXs(TXJ*TX)/2.
      GO 10 520
      THP|=TX1
      PWPE"HWVl*
      WHITE(6.6nl )
      Fl)RMAT(2Hl .47X.22H ••••• FEED PUHP •••••)
      MK1TE«S.6II?)RPUMP.RPMP
      FURMAT(?OM STKOKE, SPEED       .2E15.5)
      URIlE(6.6n3)PwPI,TMHI
      FuRMAT(20H INLET PRFS. TEMP   .2E15.5)
      WKI1F(6.6H4)PMPE
      FDRMAK20H EXIT PRFS          .E15.5)
      WKI TE«S.6n5)MWP,HKlMP
      FORhAT(20H tLOW. POWER         .2E15.5)
      HHPF=HHCE
      HWRIsHWPE
      NMRIeMUP
      TAUX=0.
      RPMX=1?28.
      TENtT=TOROE-TAUX
      URI1E(6,6?>
      WRITE(6«6Q«)
      FURHAT(48X,25H ••••• TRANSMISSION •••••>
      CALL TRANSMCR.RPMX.TENET.RPME.TOROX. INE)
      WKITE(6,6n7)RPHX.H. TENET
      FORHAT<30H INPUT SPEED, STROKE. TORQUE  .3E15.5)
      NKI1E(6.60B)RPHE.TOMQX
      FORHAT(30M OUTPUT SPEED. TORQUE         ,2E15.5)
      VEHICLE MOTION
      TIME=TIME*OT
      T]MEX=T1MEX*OT
      IF(LINEX.NF.O) GO TO 180
      KF=.5
      Ve90.
      AA = 0.
      VT=00.
      MN=W»COS(
      DGaU«SIN(ATAN(.01«G)>
      nK:(U/5l).)»(l.«ll.4E->3*V/1.47)«(1.2lOE-5*(V/1.47)«*2»
      Fr=TOKOX/RADU-M«AA/HAUU
      IFPA-DR-DG)/(H/32.2)
      AA=(TORUX.FH*RAOU)/M
      V=V*(1.5/l.47)»A»DT
      IF
-------
PROGRAM LISTING —  MAINSYS (Cont'd)
      irm.LT.u.)-
      RPMX>(44./3.14)»VT
      D1ST=DFST*<1. 5/3600. )»V«DT
      URITE<6,62)
      WRITE(6,611)
 611   FORMAH47X.27H  •••••  VEHICLE  NOTION •••••)
      MRITE(6.612)V.DIST
 612   FORMAK43H  VEHICLE  SPEEU(MPH),  DISTANCE TRAVELEO(MI)  .2E15.5)
      MRITE(6,62)
      WR|1E<6,62>
      IF(RPHX.LT.O.)  RPNXcO.
      DirF=ABS«HWRF-HWVI >/HWVI )
      IF(NLUMP.EO.IO) 00  TO 615
      IF GO TO  2000
      HgVI=/2.
      NCYCLfc=l
 6lb   WR|TE(6.614)
 614   FURMAT(44H  ENfl-PO|NT  DISTRIBUTION  AFTER THIS  ITERATION)
      HO 1500  I=1.N1COMP
      JlaNCLY(l)
      J2*NCRY(I>
      DO 1500  JsJl*j2
      J3=NX2Z(JJ»1
      HFIN1(J)=HF(J,1.1)
      HriN2(J)sHF(J, J3,l)
      TGlM(J)sT61( J)
      TGIN2(J)'T62AVO(J)
      WR|TE(6,1510)I.J,HFIN1(J).HFIN2(J).T6IN1(J)»T01N2(J),H9IN1(J)
     7,HGIN2
-------
DATA RLE-DATA INPUT
The Data Input File 38 supplies geometric and design data f<
tern components. Figure 4 indicates the arrangement of the datz
Reference
No.
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
UC120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
NTCOMP
NCY(l)
Following
BH(1)
BT(l)
Did)
DOd)
L(D
NMd)
XlG(l)
X2UD
X2T(1)
DSd)
FHKD
FHOd)
FNKD
FNOd)
FTI(l)
FTO(l)
NMKD
NMO(l)
NSKD
NSOd)
RMd)
TUBROW(l)

NCY(2)
Data Refer to
BH(2)
BT(2)
DI(2)
DO(2)
L(2)
NM(2)
X1G(2)
X2L<2)
X2T(2)
DS(2)
FHK2)
FHO(2)
FNN2)
FNO(2)
FTK2)
FTO(2)
NMI(2)
NMO(2)
NSK2)
NSO(2)
RM(2)
TUBROW(2)

NCY{3)
Vapor Generator
BH(3)
BT(3)
DI(3)
DO(3)
U3)
NM(3)
X1G(3)
X2L(3)
X2T(3)
DS(3)
FHK3)
FHO(3)
FNK3).
FNO(3)
FTK3)
FTO(3)
NMK3)
NMO(3)
NSK3)
NSO(3)
RM(3)
TUBROW(3)
NFSECT(I) for Vapor Generator
Following Data Refer
00260
00270
BH(4)
BT(4)
BH(5)
BT(5)
to Condenser
BH(6)
BT(6)
      Figure 4.  Arrangement of Data in Data Input File (Sheet 1 of 3)
                                 326

-------
Reference
No.
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
Following
DI<4)
D0(4)
L(4)
NM(4)
X1G(4)
X2L(4)
X2T(4)
DS(4)
FHK4)
FHO(4)
FNK4)
FNO(4)
FTI(4)
FTO(4)
NMI(4)
NMO(4)
NSK4)
NSO(4)
RM(4)
TUBROW(4)
NFSECT(I) for
Data Refer to Condenser (Cont1
DI(5)
DO(5)
L(5)
NM(5)
X1G(5)
X2L(5)
X2T(5)
DS(5)
FHK5)
FHO(5)
FNH5)
FNO(5)
FTK5)
FTO(5)
NMK5)
NMO(5)
NSK5)
NSO(5)
RM(5)
TUBROW(5)
Condenser
Following Data Refer
00490
00500
00510
00520
00530
00540
00550
BH(7)
BT(7)
DI(7)
DO(7)
L(7)
NM(7)
X1G(7)
BH(8)
BT(8)
DI(8)
DO(8)
L(8)
NM(8)
\
X1G(8)
DI(6)
DO(6)
L(6)
NM(6)
X1G(6)
X2L(6)
X2T(6)
DS(6)
FHK6)
FHO(6)
FNI(6)
FNO(6)
FTK6)
FTCH6)
NMI(6)
NMCK6)
NSK6)
NSO(6)
RM(6)
TUBROW(G)

to Regenerator
BH(9)
BT(9)
DI(9)
DO(9)
U9)
NM(9)
X1G(9)
d)




















BH(10)
BT(10)
DI(IO)
DO(10)
U10)
NM(10)
XIG(IO)
Figure 4.  Arrangement of Data in Data Input File (Sheet 2 of 3)
                            327

-------
Ref. No.
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710

00720
00730
00735
00740
00750
00760
00770
00772
00775
Following Data Refer to Regenerator (Cont'd)
X2U7)
X2T(7>
DS(7)
FHK7)
FHO(7)
FNI<7)
FNO(7)
FTK7)
FTO(7)
NMI(7)
NMO(7)
NSI'(7)
NSO(7)
RM(7)
TUBROW(7)
X2L(8)
X2T(8)
DS(8)
FHK8)
FHO(8)
FNN8)
FNO(8)
FTK8)
FTO(8)
NMK8)
NMO(8)
NSK8)
NSO(8)
RM(8)
TUBROW(8)
X2L(9)
X2T(9)
DS(9)
FHK9)
FHO(9)
FNK9)
FNO(9)
FTH9)
FTO(9)
NMK9)
NMO(9)
NSK9)
NSCK9)
RM(9)
TUBROWO)
X2L(10)
X2T(10)
DS(10)
FHI(IO)
FHO(IO)
FNI(IO)
FNO(IO)
FTI(IO)
FTO(IO)
NMI(IO)
NMO(IO)
NSI(IO)
NSO(IO)
RM(10)
TUBROW(IO)
NFSECT(I) for Regenerator
Design
SP1
DISP
NBURNR
SSA
WS
NBENDA
LHV
AF
M
Data for Remaining Components
NP
NPCYL

STA
WT
NBENDG
LCS
CD

Following Data Are
00780
00790
00800
R1L
R1U
GRRE
RPM1L
RPM1U

AP


STG
DCS

LCT
W

Read from TRANSM
R2L
R2U





DCT


RADW K


RPM2L G:
RPM2U G:

Figure 4.   Arrangement of Data in Data Input File (Sheet 3 of 3)
                            328

-------
PROGRAM LISTING — DATA INPUT
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
0031.0
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
3
3
.965
.5
.930
1.315
26.
1
1.J15
2.26
0.
.09375
0.
0.
0.
0.
n.
n.
0
l
1
3
.39
5.5
3
1.515
1.44
.146
.206
4.16667
1
1.515
.664
0.
n.
0.
.465
0.
14.
0.
.01)25
0
?
1
2
0.
1.
30
.3
.29
.5
.550
8. 33333
1
.55
.R5
n.
.0625
n.

3
0.
0.
.V30
1.315
17.
1
1.315
2.23

0.
.120
.356
16.
10.
.0312
.012
1
2
2
2
0.
5.9

.75
.72
.146
.206
4.16667
1
.75
.664
0.
0.
0.
.465
0.
14.
0.
.0025

2
1
2
0.
1.

.3
.29
.5
.550
a. 33333
1
.55
.85

.0625
0.
                                              4
                                             0.
                                             0.
                                           .930
                                          1.315
                                            35.
                                              1
                                          1.315
                                           1.42

                                             0.
                                             0.
                                             0.
                                             0.
                                             0.
                                             0.
                                             0.
                                              0
                                              0
                                              1
                                              1
                                             0.
                                            a.9

                                           .765
                                            .72
                                           .146
                                           .206
                                        4.16667
                                              1
                                           .765
                                           .664
                                             0.
                                             0.
                                             0.
                                           .465
                                             0.
                                            14.
                                             0.
                                          .0025

                                              2
                                              1
                                              2
                                             0.
                                             1.

                                             .3
                                            .29
                                             .5
                                           .550
                                        8.33333
                                              1
                                            .55
                                            .85

                                          .0625
                                             0.
     .3
    .29
     .5
   .550
8.33333
      1
    .55
    .B5

  .0625
     0.
                                    329

-------
PROGRAM LISTING -- DATA INPUT (Cont'd)


     00600           0.          0.           0.           0.
     00610           0.          0.           0.           0.
     00620           fl.          0.           0.           0.
     00630           0.          0.           0.           0.
     00640           0.          0.           0.           0.
     00650            1111
     00660            1111
     00670            1111
     00680            3333
     00690          .35         .35          .35          .35
     00700           4.          4.           4.           4.
     00710            4
     00720           3.           4         15.3
     00730         4.78           5
     00735            2
     00740         454.        374.         374.
     00750          6.8        3.15           4.           7.
     00760           75          30
     00770       201Af>.        .708        1.415
     00772          24.          .5        4600.           1.          .03
     00775         11.9
     00780        0.065        370.        0.065         435.           1.
     00790          .26        550.         .155         660.         .584
     00800         2.79
                                    330

-------
DATA RLE - DATA INmAL
The Data Initial file 39 supplies all the system components with the ini-
tialization data required to start the program. Figure 5 indicates the arrange
ment of the data in Data Initial.
Reference
No.
00010
00020
00030
00035
00040
00050
00060
00070
00100
00110
00120
00130
00160
00170
00200
00210
00280
00290
00300
00310
00320
PWVI HWVI MWVI MWVE
PWCI HWCI MWCI MWCE MGCI
PWRI HWRI MWRI MWRE PGRI
PWVE PWCE
Following Data Refer to Vapor Generator
HFIN2(1) HFINK2) HFIN1(3)
HFIN2U) HFIN2(2) HFIN2(3)
TGINl(l) TGINK2) TGIN1(3)
TGIN2U) TGIN2(2) TGIN2(3)
Following Data Refer to Condenser
HFINK4) HFINK5) HFIN1(6)
HFIN2(4) HFIN2(5) HFIN2(6)
TGINK4) TGINK5) TGINK6)
TGIN2(4) TGIN2(5) TGIN2(6)
Following Data Refer to Regenerator
HFINK7) HFINK8) HFIN1(9) HFINl(lO)
HFIN2(7) HFIN2(8) HFIN2(9) HFIN2(10)
HGINK7) HGINl(B) HGIN1(9) HGINl(lO)
HGIN2(7) HGIN2(8) HGIN2(9) HGIN2(10)
Miscellaneous
FRAC
LINDEX LINEX LINBX
Initial Data for Remaining Components
MFUEL MAIR MFLUID RFUEL
PO TO
R RPME
       Figure 5.  Arrangement of Data in Data Initial File (Sheet 1 of 2)
                                  331

-------
Reference
No.
00330
00340
00350
00360
00370
00380
00390
Initial Data
RPUMP
YEXT
IND
NPRINT
AS
RPMX
Z
for Remaining Components (Cont'd)
RPMP
TIME
NND
NSS
DIST
CS


TIMEX DT
NCYCLE
INE NST
V VT


Figure 5.  Arrangement of Data in Data Initial File (Sheet 2 of 2)
                            332

-------
PROGRAM LISTING -- DATA INITIAL
00010
00020
00030
0003b
00040
OOObO
00060
00070
00100
00110
00120
00130
00160
OH170
00200
00210
00200
00290
0 0 31) 0
00310
00320
0033(1
00340
003b(l
003)0
OU370
00300
OU390
                  5UO.
                 -91.7
                  -43.
                 1190.
                   43.
                -13.33

                121.67
                    77.

                    '.5
                     0
                  ,0123
                   14.7
                   .147
                   .434
                   QUO.
                     0
                     1
                     n.
                     o.
                     1
 -91.7
   43.
 -124.
 24.5b
  -43.
  2'J.O
 3330.
-13.33
-69.66
121.67
14H.34
 -1 It 7 .
  60.b
   bO .

     n
   05.
 20(10.
 ?OuO.
    U.
     II
     1
    0 .
    1.
  2.05
  2.Ob
  2.Ob

  2b.O
 12H.7
 1BV6.
 U90.
-69.66
 -126.
148.34

 -107.

   *U.
  51.b

     0
  2.Ob
    0.
     0
     U
    0.
 2.05
 2.Ob
 2.05
                                                                    17.
                                                                    25.
•98.b
 -90.
 51.b
  43.
                          ,0173
   1.

    II
   0.
                                     333

-------
DATA RLE - ROUTE




    The Route file 31 supplies the route profile for use in the DRIVER model.
                                  334

-------
PROGRAM LISTING -- ROUTE
Reference
No.
00010
00020
00030
00040
o ii n 5 n
00060
00070
OOObO
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
LR
(mi)
.65
.65
.65
.A5
.65
1.2
1.2
1.93
1.93
1.93
1.93
2.3
2.3
?,98
2.98
2.9B
3.65
3.65
3.65
3.65
G
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
n.
0.
0.
0.
0.
0.
0.
n.
.05
.05
TI
(sec)
1.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
AR
(ft/
secs)
0.
10.
6.
3.
3.
-5.
3.
10.
6.
3.
3.
-in.
3.
2.23
-in.
3.
-10.
8.8
3.
-10.
VR
(mi/hr)
0.
40.
50.
60.
60.
25.
?5.
40.
50.
70.
70.
50.
50.
80.
50.
50.
0.
65.
65.
0.
KF
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
CR
0
i
1
i
0
-1
0
1
1
1
u
-1
0
1
-1
0
-1
1
0
-1
                                335

-------
Section 14
  INDEX

-------
                             Section 14
                              MDEX

INDEX OF PROGRAMS
      Program                                         Page
      BLSIZ1   	270
      BLSIZ2   	280
      CGEOMC	157
      COMB1   	208
      COMB2   	213
      COMB3   .  •	219
      COMBST	205
      COND    	125
      CONDSZ	288
      DISTR    	86
      DOME	43
      DRIVER	237
      ECOMP  	254
      EEFF    	245
      ENERGY	226
      ENGINE	35
      FCA     	25
      FCG     	25
      FCMC    	•	25
      FCMS    	25
      FCWL    	25
      FCWV    	25
      FDA     	25
      FDG     	25
      FOWL    	25
      FDWV    	25
      FKA     	25
                              337

-------
INDEX OF PROGRAMS (Cont'd)
       Programs                                      page
        FKC      	   25
        FKG      	   25
        FKM     	   25
        FKS      	   25
        FKWL    	   25
        FKWV    	   25
        FPRS    	   25
        FPRS1    	   25
        FPRS2    	   25
        FRMC    	   25
        FRMS    	   25
        FVA      	   25
        FVG      	   25
        FVWL	   25
        FVWV    	   25
        FYWL    	   25
        GEOMCO	   89
        HT1PB   	110
        HT2PC   	163
        HT2PB   	112
        HTAC    	165
        HTGR    	115
        HTGTB   	117
        HTGTF   	119
        HTGTM	121
        HTPF    	123
        HTWTM	202
        INTSTE	105
        ITERAT	   95
        MAINSYS	301

                               338

-------
INDEX OF PROGRAMS (Cont'd)
        Program                                          Page
        PDROP1	    99
        PDROP2	101
        PDROPA	103
        PDROPR	200
        PHASE    	107
        PROP    	     3
        PROPST	     6
        PUMP    	    49
        KEGEN	167
        RGEOMC	194
        RGSIZE	294
        STEPSC	160
        STEPSI   	    92
        STEPSR	;	197
        SATP     	    10
        SUPPT    	    14
        TRHT    	228
        TRANSM	231
        TSIZE    	263
        TURBIN	    45
        VAPORG	    53
INDEX OF DATA FILES
                     Data File                           Pages
04  Saturated  Fluid Properties    	   2, 3, 344, 387, 406
07  Superheated Fluid Properties  - Pressure and
    Temperature	   2, 6, 346, 390, 407
08  Superheated Fluid Properties  I - Specific Volume,
    Enthalpy,  Entropy, and Specific Heat	   2, 6, 347, 390, 407
09  Superheated Fluid Properties  II - Specific Volume,
    Enthalpy,  Entropy, and Specific Heat	       2.  6, 368
                                 339

-------
INDEX OF DATA FILES (Cont'd)
                      Data File                            Pages
 11   Transient Start File	2,  53,  301
 13   Output File from VAPORG. REGEN, and COND  ...  2,  53
 15   Output File from ITERAT    	2,  95
 31   Route File    	2,  301, 334
 38   Data Input File    	2,  301, 326
 39   Data Initial File	2,  301, 331
                                   340

-------
APPENDIX I

-------
                               Appendix I

                 WORKING FLUD THERMODYNAMJC PROPERTES
                       FOR CP-34, WATW, AND FC-75


    The computer tabulations which make up this appendix present the thermo-
dynamic properties of the three fluids under investigation:
       • CP-34 -- Figures 6, 7, 8, and 9.
       • Water -- Figures 10,  11,  and 12.
       • FC-75 -- Figures 13 and 14.
Table 3 lists their respective temperature and pressure ranges in both the
saturated and  the superheated states.
                                Table 3

              RANGE OF FLUID PROPERTY TABULATIONS
Saturation
Fluid
CP-34
Water
FC-75
Temperature
Range
-55. 0°F
to
580. 0°F
l'sO. 0°F
to
550. 0°F
20. O'C
to
227. 06°C
Number of
Temperature
Steps
128
115
25
Figure
No.
6
10
13
Superheat
Pressure
Range
0. 1 paia
to
600. 0 psia
10. 0 psia
to
1000. 0 pela
0. 004 atm
to
40. 0 atm
Temperature
Range
175. O'F
to
600. 0°F
200. O'F
to
840. 0°F
110. 0«C
to
300. 0»C
Number of
Pressure
Steps
69
41
35
Number of
Temperature
Steps
27
33
20
Figure
No.
7.8,8
11.12
14
    The tabulations of the superheated fluid properties are interpreted in the
following subsections.

FLUID: CP-34
    The saturated fluid properties of CP-34 are listed in Figure 6.

    The reading program for subroutine PROPST names the following four
pressure values:

             PTAB(l)  = . 1
             PTAB(2)  = . 3
             PTAB(3)  = . 5
             PTAB(4)  -- 2.

These values together  with those in the CP-34 superheated pressure and
temperature  tabulation  (Figure 7) comprise  the pressures and  temperatures
                                  341

-------
for which  CP-34  superheated fluid properties are  given  in  Figures
8 and 9. *

     The first six lines of Figure 7 contain a total of 65 pressure values to
be added to the previous list of four pressure values. Each pressure cor-
responds to a pressure block of 27 lines in Figure 8  or 9.  (The last block
of Figure 8 is repeated as the first block of Figure 9 to satisfy the interpo-
lation program requirements. )

     The remaining three lines of Figure 7 list 27 temperature values, cor-
responding to the 27 lines in every pressure block.  Each line of a block in
Figures  8  and 9 then gives the specific volume, enthalpy, entropy, and spe-
cific heat values that correspond to both the pressure for the block and the
temperature for that particular line in the block.

     For example, to find the CP-34 fluid properties that correspond to pres-
sure 320. 0 psia and temperature 480.  0°F, first find  320. 0 psia in Figure 7.
It is the  fifty-first pressure value  in the tabulation.  To fifty-one must be
added the four pressure values named directly in subroutine PROPST.  Since
the total is then fifty-five, the fifty-fifth block of 27 lines in Figure 8 or 9 is
then found.

     Figure 8 contains  only thirty-three pressure blocks; the thirty-third
pressure block is repeated in Figure 9; therefore the twenty-third  pressure
block in Figure 9 corresponds to pressure 320. 0 psia.  The pressure blocks
in Figures  8 and 9 have been sectioned off and labeled in  order to facilitate
this  process.  The temperature of 480. 0°F is the fifteenth temperature,
corresponding to the fifteenth line of the 320. 0-psia pressure block, which
gives the following values:

             VTAB(51,15)   =     0.29749**
             HTAB(51,15)   =   106.18000
             STAB (51, 15)   =     0. 02190
             CTAB  (51, 15)   =     0. 37468
 FUJIP: WATER

     Figure 10 is the computer tabulation of the saturated fluid properties
 of water.
 * Figure 9 is a continuation of Figure 8.  The listing was divided for com-
  puter storage purposes.
**The nomenclature and dimensions correspond to those used in the reading
  program of subroutine  PROPST, listed in Volume II,  page 6.
                                   342

-------
     The reading of the superheated water property tabulation (Figure 12) is
very much like that of the CP-34 listings.  The pressure and temperature
values, however,  are read solely from Figure 11,  and the specific volume,
enthalpy, and specific heat are given in a single tabulation (Figure 12).

     Each of the forty-one pressures  in Figure 11 corresponds to a block of
seventeen lines  in Figure 12.  The superheated tabulations  for water vary
from those for CP-34 in that each line of a pressure block in the water tables
contains the fluid properties corresponding to the pressure value of that block
and to  two consecutive temperature values.

     For example, find the water fluid properties that correspond to a pres-
sure of 60. 0 psia and a temperature of 420. 0°F.  Since 60. 0 psia is the ninth
pressure value in  Figure 11, the ninth block of seventeen lines is located.
The  420. 0°F temperature is the twelfth temperature in Figure 11.   Since
each line of Figure 12 contains values corresponding to two consecutive tem-
perature values, the  values corresponding to the twelfth temperature are on
the right-hand side of the sixth line of the pressure block.  Thus, the fluid
properties corresponding to pressure 60. 0 psia and temperature of 420. 0°F
are:
             VTAB(9,12)   =     10.628
             HTAB (9,12)   =   1342.  1
             STAB (9, 12)   =       1.  8260

FLUID: PC -75

     The saturated fluid properties of FC-75  are given in Figure 13.

     The reading of the superheated FC-75 fluid property tabulation (Figure
14) is  almost  identical with that of the water table.  Each of the thirty-five
pressure blocks is made up of ten lines, and each line contains the enthalpy,
entropy, and specific volume values corresponding to  two consecutive tem-
perature values.

    The significant difference between the listings  for superheated water and
FC-75  is that the pressure and temperature ranges are included  as the first
five lines of the  FC-75 superheated fluid properties in  Figure 14, instead of
comprising a separate file.  The finding of fluid properties  to correspond  to
a given pressure and given temperature is identical with the process used
for superheated  water.
                                  343

-------

n
n
n
n
n
n
0
n
M
n
n
n
i<
n
n
'i
n
n
n
'i
n
n
(i
n
1
1
1
1
1
">
7
?
;«
3
3
4
4
S
4
6
7
8
fl
9
in
11
P
(psia)
. 11 1 ? 3 9
. 01 497
. II ? fl 4 3
.Hx'4'94
.H >?/?
. II40W9
. « 4 1 •• ?
.0^.112
.11 77M
.H9496
.1 14411
. 1 >9hn
. 1 ^«4n
. *x " 1 H n
. ?40r » ft .MI
. f* ^ 6 1 II
.7 » H i n
. H-« w>0
.9. .3*0
. 1 Nfl.lO
. ? J4-'i
. 4 /ft), n •
,6»« M. .•
.VI 1 111
. 1 -*4 ml
. 4 4 4 ii ii
. / •> 3 n n
. •' -M u 0
.4 '.9 nU
. H « ii ii n
. .S .Ml 1. il
.H/>?|ill
. .^ •> H n i)
.94?n 0
. 4/6nO
. '-"64IH1
. mi 9 1. n
.HI 4i u
. 6f ?n U
.6xOiin
.ft sn i. n
c
-s-,.
-4-i.
-4->.
-Hi.
- v>.
- Ml.
-/•>.
-?•!.
-1 '>.
-1-1.
- >.
il .
4.
1 '1 .
' *>•
•x...
?•>.
* " *
3 >.
4'i.
4'>.
4 '1.
4 4.
ft II .
ft-'.
7 u.
7 ..
H 1.
H-I.
9.1.
9-^.
1 ll '< .
i '" "> .
\ 1 '.
1 I >.
1 ? " .
1>> >.
13-1.
1 .Ii.
I 4 il .
1 4->.
I 4 n.
1 ''•»•
1 6.1.
I6i.
1 7 0 ii
no .1
i.i n n
UOii

u :i n
(I '1 II
(I ll ll
U'lil
III) 1
II ll ll
no u
u 0 u
n >i n
u .1 .)
i> -i n
u 'i n
fi 4
1 4 39
1 44?
1446
l4hP
1 4 >i 4
I 44h
1 4''?
1 4n6
14/1
1474
14/9
14*3
14A7
14^?
14'<6
I 4 H n
J  ?. 3
I'ii'ft
14.1?
1 4 .» 7
144?
1 447
144?
1447
1 46?
1567
] 4 72
14/7
1 4"M?
1">'<7
1 4^3
14wfl
1 6 n 3
L6n9
161.4
WAP
(ft3/lb)
41.64. il HI) OH
3? 71 . uli U On
?4»'» . M n u n u
?ii6.S. 1" n II >ll)
1 h 4 4 . P !> il 0 H
l.*3 / . n n 111)11
l U p. / . u M u n ii
HhH . .MI II •! U
7 3 H. 4 ii ll rt II
ft 0 .-i . H n II J M
4 fl I . *< ii n >1 0
4 1 v . f n u 1 n
.•>4* I . fin II 1 1.1
?4" ] . .Ml II -III
?. } 3 . H 0 11 1 0
1 H ? . ft H H '.1 U
l 4f' . fi n n ilu
1 3 4 . 1 U U U II
1 1 ft . •> u n fi il
101 ..(1 II H'lll
8 '/.Mr u J.i
7f>. 7? U On
67. 19 ii On
4 1> . u 3 n '1 n
4 :•' .Ml n '1 n
4 '• . *J4u U u
4ii . 7?nUii
3 * . I MI 0 u
3 v . / 2 u il u
? i . 7 7 ii -J H
?*>.76Uilll
? 3 . 1 1 (Ml il
?n. 7Hli:Hl
1 H . 7 .1 0 0 U
1 ^ . 9 ? ,| il u
1 4 . ,M ii U 0
1 ,> . « H U II u
1 ? . ft 1 fl 0 u
1 1 . 4«U lu
1 n . 4 7 n .) u
0 . 4 6 2 il 0
M . 7 •> H 1 il
M . u 1 w ii u
7 . 3 6 ?. n n
6 . / 6 9 :1 u
HLIQ
(Btu/lb)
-? 1 -J. Mil
- ? 1 1 . 9 0
-?H9. J|i
-? II K . II n
- 7 n 6 . '> II
-?il4 . In
-9 H?. in
-? n 0. 7 n
- 1 9 H . 9 il
-197.1 .1
-1 wH. 
-11
-1 -.
- V
-V
— ,1
-/
-('
-••>
-4
-4
— .»
-X
-1
— •!
K
1
x
1
-1 / 4. H n no 'I .
-1 / I.'H
-1 /i .->H
- 1 r>9 . A i.
I'Oil
nmi
.. un
->
f,
/
- 1 ft N . 1 n ii n il -H
- 1 r«6 . 'M.
- 1 *4 . "^ 'i
-1 »i3. 1 "'
-161 . 4 ll
-ll". /'•
-1 4f . 'in
-] 1ft. 3n
—144.6"
- 1 4 ? . •> "
-141 . 'x n
-1 49 .'ill
-147. Hi.
-1 46. 'In
- 4 4 . MI
- 4 ? . i n
- 4II.8H
- -jo. on
- J 7 . ? i)
-I,l5.4n
n un
n i) i u o
1' n 0
n no
nun
mi n
u u il
n u n
non
nun
liOO
nun
On')
nun
nun
Dun
OH II
n u u
,
I •
1 1
1 f
1 )
1 -1
1 •>
1 ..
1 /
Li
I1'
?!(
??
?3
24
?•>
?n
?7
?n
. 14 ii ll ..
.Mm- n •
. Ill !• II 1'
. ifV ' I1 ''
,'>1 •.H"
. '/n n.i
,gx-,n-'
. 1 1 •» n ,.
. X"9 1 0 n
.40,' f>"
./. 1 -vn '
. 7f» >0'-
.«*••. HI •
. n /"»•! •
. l ^n.,
. / 4 i 0 ••
. .\ ^ -i c ••
9 4 | A f\ ' *
. •» 1 IHI.
. 4 4 w II .
. si,'.n.-
. von-
..t '.'0-
. xw / n ..
. XH/U
. ? / / o ,
. JH | >'l ii
. V9-t n .1
. 1 y mi '
. .Mil '>..
. SM I il '•
. 4 3 ii n u
. /| ^ i. II H
.44-1 •> 11
. ^1? .1 ll !•
. 7 II ' 0 i'
. /Ml On
. '<7 ii 0 ii
. 9 7 u n h
. n H U 0 .i
. 19u O.i
. .) 1 II 11 I'
. 4 3 u n i.
.I7n0n
. V n n 0 u
. «4 n o -I
Figure 6  .  CP-34 Saturated Fluid Properties -- Pressure. Tem-
            perature, Specific Volume Liquid, Specific Volume
            Vapor,  Enthalpy Liquid, and Enthalpy  Vapor
                              344

-------
p
(psia)
17.71 OH a
1 3 . 8 7 0 M 0
15.11 Oi'O
1 6 . 4 4 0 li fl
17.H6000
19.3/oun
2n .99000
2?. 7 iin no
24.5 M)nn
26.470HO
28.520UO
.in. 7 n nun
3 1 . n 'i n u n
35.44000
jp.omon
4 n . 7 ? n it ii
4 3 . 5 H n ii n
46.59000
49.7*>nuo
*> 3 . M n o n o
5  ii ii n
9 fi . ,< M o n n
1 u 1 . ft n n n n
1 u 7 . 5 ii n 11 n
I 1 J . 4 ,| Oil f.
1 1 9 . 5 •! n n n
1 2 5 . 9 on n n
132. 5 HO 00
I39.4imno
1 4 6. 5 HO ii 0
153.9.jonn
161. 611000
16 9. 5*1 no a
177.7onnn
i«6.2nnno
l95.0uQnn
2 II 4 . I u 0 n i)
2 1 3 . 4 'i n n n
223.1UOUO
2J3.1 nn uo
T
<°F)
17'>. on u OH
1 H ii . 0 II (1 0 H
iK->.oflooo
1 9 n . u o o n ii
iy>.00u0n
? n n . u fl 0 n n
£ 0 5 . 0 fl (1 fl n
? 1 'i . o o it n u
2 \ ii . o n H n n
? ? n . o o ii n H
•> ? ** . o o n n !)
?. * o . n o u n o
iM*i.uniinu
' 4 o . u i) u n o
? 4 •> . n o r> u ii
2 s h . o fl u n i)
251.1TOOOU
2 vii . o 'in flu
?')^.nooon
"t 0 H . H Oil flu
^fl*>.ufliinii
M ".uOiiOn
.j T» . o o ii n u
S?H . || 111) I) II
^ ? •> . u o u n n
> 3 n . u n -j n u
s <-?.ui)iion
.* 4 n . o o 0 n n
.Mi.onnnu
35n.UOUfln
.^s.nouno
3 ft u . o o u o n
i * •» . u o o n n
5 7 n . 0 0 u 0 U
•i7l>.0 00 OH
jftii.ooonn
.i « *> . o u u n n
< 9 1) . o o n n o
.1 9 •> . o n u o n
4 o u . u o u o n
4 o •> . u o u n u
4 1 II . 0 0 U 0 II
VLIQ
6
O.OKS62
0.01A68
0.01674
n.016«l
n. 016^7
0.016V4
n . ft 1 7 ii o
n.f)l7ir7
0.01714
o.ni??i
fl.017^8
0.017.^5
0.01/4?
0.017-.0
0.017S7
n.ni7
0.01772
0.017nO
0.017*8
fl.017vfr
O.OIM'.1?
fl . .1 1 * 1 3
O.niH/M
n . n i * .> n
0.018 -W
0. 01 848
U . fll 8 1 7
0.01U66
0.01H76
0.018M6
0.01HV6
0.019H6
0.01916
0.019?7
0.019.S8
0.01949
0.01960
0.01972
0.019H3
fl. 01996
il.OZOUR
WAP
(ft3/lb)
6.23300
•j.747flfl
'j . :i 0 7 0 0
4.90HOO
4 . •> 4 4 0 U
4.21300
6 . S) 1 1 0 H
3.63500
3.38300
J . 1 5 1 0 II
2.9390-0
2.74400
?.i.»6*>0ti
?. 40000
?. 24700
2 . 1 II 7 0 0
1 .V7700
1.H5700
1.74900
1.04200
1 .54600
1.457DU
1 .v)7400
1.29700
1 .22500
1 .15801.1
l.U950u
1.03700
11.08170
0.93040
il.M8230
« . H 3 7 3 0
M.7949U
H.75520
u.71780
D.68270
0.64960
fl. 61840
0.58890
n. 16120
H.53500
n. 51020
0.48680
0.46460
n. 4 4 360
0.42370
0.40490
O..S8700
HLIQ
(Btu/lb)
-133.6UOOO
-131.80000
-130.00000
-128.10000
-126.30000
-124.40000
-122.60000
-120.70000
-118.80000
-116.90000
-1 15.00000
-113.00000
-111.10000
-109.111000
-107.1(1000
-105.20000
-103.211000
-1U1.1HOOO
-99.12000
-V7.flMOOO
-95.020011
-92.95000
-90.86000
-b8. 76000
-H
6M. 28000
6 9 . 4 8 0 fl 0
70.680 OH
71.88000
73.0700(1
74.26000
75.45000
70.63000
77.80000
78.98000
8 0 . 1 4 U 0 0
81.30000
82.46000
83.61000
84.75000
85.88000
Figure 6  .  CP-34 Saturated Fluid Properties  (Cont'd)
                         345

-------
p
(psia) (
243
254
264
276
2H7
?yy
311
374
337
34f
3ft 4
37H
397
407
477
438
454
470
4b7
5U4
521
5o9
547
576
SWi
6] 6
637
6:>y
6M
7 u 4
727
751
776
807
.4 n
. P.i
.9-1
. 1 ••
• / •'
• *fl (l
.9:)
.5i|
.4..
. 70
.4.1
.4-,
. 'in
.1 i
.7.'
.?•)
.1 -I
.4.1
. 1 ••
.1 M
. 6-1
. 4HiO
n n n
OnO
niiO
nun
Onil
nun
nn n
on u
OiiH
n u u
nun
n -I n
•1 u 0
n h n
n n u
ll nil
in. n
n n n
M n 0
ii u ii
0,1(1
OlMl
n n u'
n n i)
mi n
iinn
ll ll ll
n M n
nrifl
414
4 7 M
4?4
4. Vi
1 .< •>
4 4 n
44'i
14,i
45 >
46> i
4 
4 1 II
l>1 '.
4V |
')?•)
4.ti-
4 V.
»>4-i
54->
4S i
44S
46n
'-,6-,
47-i
47->
4-1.1
T
.uniin,.
. n 0 -I fl H
. 0 0 n I) n
. u i ii n n
. u 0 !i n u
. u il n n u
. II •! (J il U
. ft .1 n o ii
. n fl n i u
. n n u o H
. u n u n ii
. o n n -i n
. u n ii n u
. 0 0 ii il M
. u n n nn
. fl i u n ..
. o >i .j n H
. u n u n n
. II -1 n 0 >i
. U '1 (I 0 n
VLIQ
(ft3/lb)
...
ii .
0.
n.
n.
u .
n.
n.
.1.
0.
il.
0.
II.
II.
n.
n.
n .
0.
n.
n.
•I.
.1.
n.
n.
•i.
n.
o.
n.
n.
o.
.1.
ii.
n.
u .
ii 2 fl /> 1
n?n ^4
n 2 o 48
il 2 fl ^ 2
li 2 '1 7 6
n 2 1) n
fl21 (|6
n2iy2
071 .»8
ii21 '~*^
.1 2 1 / 3
H?!**!
n 2 2 in
n22^n
n72<>n
02272
fl 2 7 v 4
n 2 3 i 0
11 } "\ *l 4
i'73/n
n 2 •'< * *
n 2 4 /? A
n 7 4 „ ]
0749 '>
0 25 i3
M7574
H26 1 9
H26 / 'I
U 2 7 '* 7
ii J 7 w 4
1 • c M / %j
f i ) o J O
03 I n4
I' 3 * 1 5
WAP
(ft3/lb)
n . 3 7 ii n u
fi . ^5,}9ii
'1 . 3.)H5n
n . -> 2 3 9 1)
0 . ,1 1 H 0 U
H . /> 9 6 8 ii
U.7H42U
ii. '/ 7 22 n
H. 2 6 il 7 il
'i . 7497u
('. ? 39 2 u
.1.77921.1
(1 . 7 1. 9 6 u
M ,21li5ii
n . 7 ii 1 7 n
ii. i y 32 ii
n. 184 111
n . 1 7 7 4 o
ii . 1699M
li. 1627 I
" . 1 ^58(1
n. 1491 u
II.1476H
:i. 1364 ll
«. 1 3illir
n . 1 238 o
.' . 1 1 75n
.1 . 1 1 ] 4 ii
".10 43 u
i. . ii902v
.' . n 931 H
-I . nK69 ii
ii. u 8(| 26
n . u 777v
HLIQ
(Btu/lb)
-.il
-•e.*
-76
-23
-/»1
-LH
-1 •>
-1^
-1 n
-M
-5
-7
n
7
5
8
11
14
J ^*
1 0
2'
/">
/»«
31
31
.44
.^7
41
44
4H
'>?
->6
^1
r>8
,?9nin)
. 7 /i n n o
. 7411 OH
. / 1 n u •«
. I 4 n n o
.5^0 nil
.9r>fliin
. 3 4 il 0 U
. 7 i. ft U fl
. II .> 7 U 0
. 34 6 ii n
. V>3iHI
.n 7 ? o y
.871 H ii
. 5 iJ 4 II 0
. Sy7i|il
. 7 / n n n
. n / n o o
.•) >niin
. S / 0 ll •!
. H i nun
. H 't fl H 0
.8 'nun
. 4 •) n n ii
. 4 ^ ll M U
.6 /"I 111
. a 7 fl u n
. 7 i ll H U
. 7 -A Ii n 0
. 4 :•» n n ii
.4 Ml Inl
.9 s fi n n
. W SH |i i|
. i MI n o
HVAP
(Btu/lb)
87
8H
By
9u
91
9>
9 1
94
9->
9r>
97
9n
9v
I0>i
ini
i n^
io.>
10-
i n^i
i »i
10^>
i n;
i n ^
10"
i nv
i IL
1 1 i
1 1 ><
ii •
n ..
1 1 .
1 1 ••
1 li's
l'i/
. Id HO >•
. I7u0i
.23 n Hi-
. 3. Mini.
. 4 .'llO .
.4IIUO-
• *> 7 u n ••
. /. r* u n ••
. •> ^i o n •
. ^ v u f i >
. / 1 n fl
. 7 1 u II
.69uni
. 7 fl u n
. 6 (J 'I M "
. •> 0 fl 0 '•
. 4ii n n ..
. 3 n ii ii <
. 20 U '1 11
. ii u ii 0 ii
. KM .1 fli-
. *>i) n n i>
. ^'111 II ')
. w ii ii n n
. 4(Ulfl|i
.ill Oil"
. 1 0 n II ••
. /iiuii'1
.^ii-ni-.
. •> n >.i u •
. / u n n
. / n n n •
. 2 il ii H "
. •> fl II ft "
   Figure  6  •  CP-34 Saturated Fluid Properties (Cont'd)
i.n
?*. u
47. U
1 4 II . 1"
?•>(! .11
4 v n . .1
t /S. H
4-jn.n
^f,n.n
^
77
4«
IS ••
?6H
4 4 n
xn-i
4611
S7u
II
u
u
il
n
M
ll
u
"
7.0
?V.O
i>n.n
1 Oil. II
? 7 >i . n
4 6 n . n
7^'j.n
4 7 n . n
•5H1.0
9.11
31.U
O.U
4«O.U
•jPO.il
11
,»3
70
IMfl
?^0
500
775
4VIO

Figure 7  .  CP-34 Superheated Fluid Properties -- Pressure
            and Temperature
                             346

-------
VTAB
(ft3/lb)
m
809. 491 MO
841 .3^0110
873.29000
9U5.149f)0
937.0H6IIO
9o8.9H.inn
loon.RHo no
I03?.7nonn
1064.67000
io96.57ono
112.8.46000
1160.36000
1173.H8PO
11M5.H76MO
119R. 63400
1211 .39200
1224.150HO
12J6.9M6HO
1249.662HO
1262.41POO
12/5.1 7400
12H7. 9301.0
i3oo.6HR()fl
1313.44600
i.i?6. 2ii4oo
133R.962HI1
13-31 . 7 /u (in
269.739(iO
2bn.379no
2vi . m 7nn
301.6o5uO
3 12.293 n II
3 2 ? . 9 ? 9 li n
3j3.56'i(IU
344.?mon
3!?4.836nil
365.471 Pit
376.1 II SOO
3hA.74niiO
390.99340
395.P46PO
399.^11020
4 II 3. 7b360
4 II R . 0 II 7 II 0
41?. 26040
41(S.«>13HO
420.7N720
HTAB
(Btu/lb)
3H.90/40
37.12»4U
4.Ub6f>50
5n.22.^fl
57.08^40
A4.15c*7ll
71 .41f»?ll
7h.H6o7ll
Af>. 4949I)
«>4.^9'>6fl
1 (iy.?A^llil
llH.38r>OU
1 1.1. 72.^60
117. U6/20
1? n. 4 Oil ft it
1? V. 7JV4II
1 ? 7 . II 7 n 0 U
I3n.'j?'j60
1 3 1 . V 7 .1 ? il
137.4?.tRO
1 4 (1 . o 6 n 4 il
144.3loOi)
1 47.86100
1^1 .40600
1 64. 9^10 H
ISA. 49 »i 00
1 ft t . ii 4 1 0 lj
3 -i . R 9 .> ? n
3 /. 1 1 2 0 'i
4.^. bS4 0 H
S.i. 21 1 R n
S / . 0 7 H 3 W
64. 146? H
7l.4flri3ll
7H.HS/3U
Rft.4Hlj9||
94.?b71 'i
1 ll?.2S^IUi
1 1 ?H
1?0.^9.jfln
1?.»./.^4H
I ? 7 . II 7 1 0 0
1 3n.«J1 rt6ll
13^.96f»?(l
137.41 i« H
STAB
(Btu/lb °F)
.1 1)9*4
.1JHH5
.1?H43
.13798
.14748
,lb
.17569
.164^7
.19418
.2U331
.212,16
.21593
.219SO
,2?3iiR
.?26^5
.230??
.?3372
.23722
.24073
.244*3
.24773
.25116
.2545R
.25HH1
.26143
.?64n6
.063?.H
.092/i9
.10248
.1l2n3
.121^3
.130M9
.14048
.14974
.15902
.16R23
.17736
.1H642
.18999
.19356
.19714
.20071
.20428
.2077M
.21128
.21479
CTAB
(Btu/lb °F)
.2.4416
.i>5323
.26201
.27051
.27H71
.28662
.29425
.30158
..10863
.3153H
.32185
.32602
.33032
.33261 0. 1 psia
.33491
.337?o
.3395U
.34156
.34363
.3456V
.34776
.349*2
..1516-?
. <534*
.3553?
.3571->
.j5H9h
.24419
.25326
.26204
.27053
.27H74
.2«66'>
.2V427
.3016U
.30H64
• 3154U 0. 3 psia
.32186
.32H03
.33033
.33262
.33492
.33721
.33951
.34157
.34364
.34570
Figure  8 .   CP-34 Superheated Fluid Properties I -- Specific
             Volume, Enthalpy, Entropy, and Specific Heat
                            347

-------
   VTAB
   (ft3/lb)
                 HTAB
                (Btu/lb)
                                STAB
                             (Btu/lb °F)
                                               CTAB
                                            (Btu/lb °F)
4 41.7 * n 4 n
44 H . il.vSMl
4b4.?UftMl
4 Ml .54 0 (III
              14-i.h614n
              1 4 4. .MI 9 n i;
              I * 7 . '"> 4 ? n
              1
                  . V 4 4 6 II
                                              . .1 4 7 7 /
                                 ?32-«7
                                            . S b 9 ^ .1
                                                                  0. 3  psia
161.7M9nn
1 ft H . 1 7 6 (I (I
l 7*.*>ft3iin
                MI . H 7 9 n li
                < / . U 9 H 7 H

               *» >i. e. (i n n n
1 H 7. .<,} 4 Mil
1 V *<. 7 1 ft i) u

?llll.l II? Mil
? IJ ft . 4 M ft [I II
               6'i.l ,}S7ri
               71..) g ,»:t n
?!«<.?>? n n
' ^ s. ft .14 n n
? .t ?. 'i i ft u n
          n
? J 7 . 1
              j n'. ? 4 •> n n
              1 t r . 3 7 si n M
              1 1 %. 7 ii i Hi)
              1 1 /.I'4/6i'
              1 '/> >i. 0 H ft 4 II
?.44. / /gnu
?47 . < \l ftp
? 4 «*."". 4 ? 0
?^/». 4 W f, n
? *> a . > -19 4 l)

2 ft I' . " "14 n
2 ft 7 . 7 •> 1 •» 9
2 7 H . .5 tl 4 u u
              14 I.
             1 4 7.h4rt?n
             1*>| ..«9 5411
             1 bd . V M159
             1 S M . 4 H .> 7 v
                               , l'71 ?1
                               , 0 HII M ?
                               , n g n 4 n
                               , n g 9 w r>
                               , 1 H 9 -16
                               ,11«"2

                               , 1 .17 ft 7

                               ,lt»ft 1ft
                               ,1 ftb.MI
                               ,1 74 <«S

                               , 1 M1 4 9
                                IHb/7
                                1 H H i\ 4
                                              ./'/M70
                                              . .« '1 1 ft ?
                                             . ,S \ H 3 4
                                 ? b ? 7
                                            .-S4S7L
                                            . <477rt
                                                                  0. 5 psia
40 .344»»0
4 1 . g 4 R .Ml
4 3 . b b 1 .Ml
                 ". 77
               4 >.4474H
               S.I.H16,i
 46. 7^>S1 0

 4 O . g') 6 4 U



 b4.
               *» -I . U 5 0 9 M
               7 1 . 3 2.1H n
               7 ^.777?'i
 '> H . *> ^ 1 ft 4
 b o. '-M n H ft
             1 1 -I. 31 VI).'

             1IM.99 16,i
                                              .•" 4 4 S ?
                                , H b 7') 8
                                , lift71 4
                                , 0 7 6 ft ft

                                , n V •> -> 3
                                ,1 04*8
                                .1 1417

                                ,132^?

                                ,14513
                                ,1487?
                                              '/> 7 II 7 «
                                             .Ml 177
                                             t.tl)MHil
                                                                 2. 0 psia
                                              .^3274
         Figure  8 .  CP-34  Superheated Fluid Properties I  (Cont'd)
                                      348

-------
VTAB
5V
15-t.43h7«J
161.9840(1
3 H . 7 0 0 0 u
3*. 931 00
43.38400
5H. fl520.il
5n.92bOn
64.00400
71.27400
7 H . 7 3 0 0 •)
8^. 36-30 n
94.1720'!
1 0 2 . 1 4 u 0 il
11 1'. 270 O'l
ll.i. 67 HOD
111.89(1011
12u. 2300(1
12 ^.59iiim
1 ? ft. 9 8 n Oil
1 <(-.3»tuU')
1.1 *. bid flu
I W.26'100
1 4 u. 7 3 H OH
14 4. 220 OH
14 7.7 3 H OH
15 1.26 II O'l
1 5 4 . 8 1 u 0 tl
15n.37uOO
lftl.95iifl!J
1 H . 5 5 6 fl tl
lh.79/0'1
4.>. 2580H
5 '•> . 8 1 6 0 0
A 4 M O \J II il
*l • •OiTTlllI
71 .174011
7H. 635011
STAB
(Btu/lb °F)
.15230
.155x7
.15944
.162V4
.16645
.16995
.17346
.1 76W6
.18039
.183K1
.187?4
IO ll A. f±
* ** o o
.194H9
O.f!2872
0.1138.^5
0 . 0/»7v5
0.057S1
0.00703
O.l- 76t>0
O.OH502
O.P95P7
0.1 U456
0.11377
o.i 2?yi
H.131W7
0.13558
0.1^916
0.14274
0 . 1 4 6 .1 P
M.149M5
U.153-<8
0 . 1 *>6^0
n. 16040
0 . 1 6 3 rt 9
0.16736
0.1 70h2
0.1/426
0.17769
0.18110
0. 18450
0.01651
0.02615
0.03577
0.04534
0.05487
0.06435
0.07377
0.08313
CTAB
(Btu/lb °F)
.33504
.33733
.33962
.34168
.34374
.34580
.34786
.34992
.35175
.35358
.35541
.357P4
.35907
0.2447]
ll.?5373
0.26247
U.?7092
0.27908
U. 28697
0. 29456
0.30187
U.30889
0.31563
0.32207
0.3282.3
J. 33061
0.33295
0.33524
0.33748
0.33968
0.34183
0.04394
U. 34600
I).34rt0l
11.34998
11.3519(1
(1.35377
II.3556D
0.35738
0.35912
H.24511
n. 25408
•1.26278
•1.27121
0.27935
0.28720
0.29478
n.30207








2. 0 psia



















3. 0 psia
















5. 0 psia



Figure 8  .  CP-34 Superheated Fluid Properties I  (Cont'd)
                           349

-------
VTAB
(ft3/lb)
2 1 . 2 1. 3 H n
23.1 59 nn
2 3 . 6 5 3 II n
2 3 . 9 il 9 II n
24. lift i! n
2 4. 4 2 2 ii n
24.fi/9HO
2 4 . o .1 5 n n
2^. 1 v 2 in'
2K . 4 4HH II
2^. 7 ii 4 III)
 M 9 II n
1 * . ii -1 9 n li
1 f- . 'i n M || I)
1* .ft ''2 Ml
it- . fc /ftt n
1 7 . Il '1 11 I* I)
1 7 . ? 4 3 n ii
1 7 . 4 ^ 7 ill)
1 7 . 6 1 II 0 ()
17.7^400
1 7 . 9 / 7 f l 0
1 « . 1 6 I M 0
1 H . 3 4 4 li II
1 ft . 5 V fl f i n
1 H . 7 1 1 u II
1H.HU4IIO
1 9 . n 7 H ll (1
I9.2ftlnn
9.221 411
HTAB
(Btu/lb)
fl ft. 2 7 5 nn
9 <\ . Ii 8 7 II H
Iii2. u ft n nu
11. H. 2 UU II I'
1 13. 4 9 n fin
1 1 ft.H1 III) ll
1 2 0. 15 'in. I
12 3. 5? I'll n
1 ?M . y i ii n ii
i 3 u. 3 in nil
1 3. 1.7 4 -in n
1 3 / . 2 n M n -1
1. 4 n . 6 7 :\ H n
1 4 4. 1ft • ill -1
1 4 /. 6 7 -inn
1 *i 1 .2'l.n II ')
1 r> '1 . 7 5 O n It
1 5 M. 31 Him
i 6i .« 9 n OH
3 n . 4 1 1 n .1
S n . ft (S i fl 'i
43.1310!!
4 w. HI 4 (in
5*. 704n!i
6,^ . 79 i (i ii
71.11741111
7h.ri4nfln
Wft . 1 H ; '! •'
>)4. Ill) 1 n n
1 H 1 .VH n II n
1 1 u . 12 n II M
11 t. 4 2 M nn
1 1 * . 7 4 ,i n n
1 9 u. IIM iinn
J 2 S. 45:' n n
] 2ft . »«3i> n i.
1 3 n . 2 4 o H "
133. 6 flil fl n
1 3 7 . 1 3 .1 0 "
1 4 M. ft nun u
1 4 t . II 9 i) II ii
1 4 7. ft Oil Oil
1 51 . 13 nun
1 5 4. 6 Hll 0 l>
1 5 •«. 2 5 ;i Hi-
1 ft 1 . H 4 n n h
3 ii . 2 6 ft fl I"
STAB
(Btu/lb°F)
n.iiii A5
(1.1 1079
0 . 1 1 9 n ft
11. 12346
il.t27"5
U . 1 oil ft?
n. 13419
n . 1 6 7 7 3
n . l 4 1 / 7
n.] 4479
il . 1 4 * •/ 9
0 . 1 5 1 /H
U . 1 <•> S ? ft
(1 . 1 :J M / 2
n . 1 1-, 2 1 ft
0. 1 65'..9
n . i r»9nn
u . 1 7 ? -1 n
0 . OOH«2
u . n in i. H
n. 027 711
') . 110729
n . P 4 ft »» 3
U .Ii'^ft31
n.nf>5;4
n . n 7 •> 1 1
n . i; M 4 4 1
ll . tr;3'i3
il . in 2 7 ft
0.111*5
il.ll 546
il.1 IP n 5
ii • 1 2 ? ft 3
il . 1 2 6 1 9
0.12974
n . i o .1 2 7
D.13679
0 . 1 4 0 3 0
n. 143 79
H.14727
11.151173
H . 1 5 4 1 7
•I . 1 5 7 6 II
(1 . 1 ft 1 n 2
0.16442
n . u i 2 ii 1
CTAB
(Btu/lb°F)
II . .til V H tf
ii . .> 3 ,s 1) 9
n . VS'J.S/
M..i.i7hl
"1.0 19ft ]
11.341 96
ii..1440ft
H. 14ft1l
l> . .\ 4 H 1 2
u . * 5 II U 9
•1.^5201
•i ,.^3HH
r. ..7li
•i . .•»*> 74*
•i . .*» •> v 2 1
I . /(4^k) J
n . ^5444
n . 2 r. o 1 1
M . 2715M
'i . 2 79ftX
l] . ? H / 4 5
n . 2Vt)llll
U. 3 1) 22 /
Il..1il9?ft
H..H5Q7
i! .32^39
u. o 2 it 5 2
ii. 0 3 n 9 ii
0 . 3 3 .1 2 o
n . 3 3 •> 5 1
n . 3 3 7 7 4
U..1399.1
H . 3 4 2 n ij
0 . 3 4 4 1 (t
0.34623
0.34H24
H.o5|i?li
" . 35211
"1 ..l539«
(l. 35 58 J
n .0^7 5 H
n.35931
H.254H1






5. 0 psia






















7. 0. psia













9. 0 psia
Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                         350

-------
VTAB
(ft3/lb)
9.58440
9.94660
1 0 . 3 II 8 (1 0
10. 66900
11 .02900
11.36900
11 .74800
1 2 . 1 II 7 fl 0
1?. 46600
1?. 82400
1?. 96800
13.111(10
13.25400
13.39700
13.54000
13. 68,1 00
13.82700
13.97000
14.112110
14.25500
14.398110
1 4.54)00
14.68400
1 4. 82 7 it n
14.97000
7.22140
7.521 DO.
7.81970
8.11750
8.41450
8.71100
9.0U690
9.30230
9.59730
9.8s»lVO
10.1d600
10.48000
10.59800
10.71500
10.83200
10.950HO
11 .067110
11 .185110
11 .3021)0
11 .41900
11 .5361(0
] 1 .6*>300
11 .7711(0
HTAB
(Btu/lb)
43.00401)
49. 69500
56.5910M
63.68600
7D.97300
78.44500
86.0950(1
93.91500
1 0 1 . 9 0 (I 0 it
110.0400U
1 1 A . 3 4 il 0 fl
I1h.66.l00
120.01000
123.3700(1
126.760 Oil
1 3 il. 17 u On
133.61 00 U
137.06UOO
14u. 53HOII
144.03000
1 4 7.54 UO n
1 5 1 . fi 7 II IHJ
154.62HOD
1 5 n. 19 HO u
161.78l)0u
3 II . 1 1 Y II II
3 00
49. 5 74 (Hi
5ft. 4 7M OH
63.58000
7u.b72nii
7*. 35 1) Oft
8 * . 0 0 4 0 0
93.82900
101.8200H
109.961)00
1 13.26000
116.59000
1 IV. 9300(1
123.30000
I2b. 69HOO
1 3 0 . 1 1 II 0 0
133.54000
136.99000
1 4 0 . 4 7 U 0 II
143.96000
147. 481)00
STAB
(Btu/lb °F)
0.02165
0.03124
0.04079
0.05029
0.05973
0.1)6910
0.07840
0.08763
0.09679
0.105H6
0.10947
0.11306
0.1 J664
0.12020
0.12376
0.12729
0.130M]
0.1343?
O.U7M1
0.1 4129
0.144/5
0.14820
0.15163
0. 15504
0.15844
-O.OU2S5
0 . 0 0 7 J 3
0.01679
0.026.<9
0.035M5
0.04546
0.05490
0.064^8
0.07359
0.082H3
0.09199
0.10107
0.1U467
0.10827
0.111*5
0.11542
0.118^7
0.122'JO
0.1261(3
0.129^4
0.13303
0.13651
0.13997
CTAB
(Btu/lb °F)
0.26343
U. 27179
0.27988
0.28769
0.29522
0.30248
0.30945
0.31614
0.32255
0.32867
0.33104
0.33337 . _
0.33564 9.0P8ia
0.33788
0.34U06
0.34220
U. 34430
0.34635
0.34835
0.35031
0.35222
f>. .15409
0.35591
0.35768
0.35941
0.24o33
0.25518
0.26377
0.27209
0.28015
0.2H794
0.29545
0.30 268
0.30964
0.31631
0.32271
0.32882 H.Opsia
0.33119
0.33351
0.33578
0.33801
0.3401V
0.34233
0.34442
0.34647
0.3484;
0.35042
0.35233
Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                          351

-------
VTAB
(ft3/lb)
11 .HUH no
1 ? . 0 n 5 n n
1?. 2390(1
n. ni6?n
ft . 3 4 3 7 0
ft.597HO
A.RM i n
7.1 ii 3ft n
7 . 3 *> 5 •> n
7. 6 n AH u
7.R'>7MI
H .1 -I flll II
M . S '> 8 1 0
8. A i' 7 /O
B.H'J/MI
8.0->ft7H
0 . I) ') ft 4 ll
9. ?->l>1->(l
0.3'>r>dO
0.4 ^4 4 II
9.5-^300
0 . A '; 3 3 n
. 9 . 7 *> ? ft ll
9.H'>?uil
0.9'i1 30
1 (1.0 i1 HO
1 n . i •> n u n
1 H . ? 4 9 «u»
1 0 . 3 1 8 ill)
n . o i ft ? o
5 . 4 i n .Ml
"?. 7ui /n
5 . o / ? 3 n
ft . M ? V I)
A.3M4II
ft . »> M o n n
6.7')8?n
7.0J59U
7 . ?^3?n
7 . 4 5 0 ? 0
7 . A 1- ft H 0
7. 76340
7 .8401)0
7 ,9J>650
P.01790
R. 09 9. MI
HTAB
(Btu/lb)
1 51 .('1 n 00
IbUllSn!!!
161 .7? n On
- 1 3 .> . 6 1 u 0 ll
* h . ? 5 1 0 U
4 •/ . 7 4 / n u
4 0 . 4 5 4 0 It
S,,. 3640H
ft 3 . 4 7 ? fl U
7 u. 77 LOU
7n. 2540U
Hl».91.l(lii
0 < . 7 4 0 0 i)
1 n 1 . 7 4 u (I U
1 dU. f«8iifln
113.10 u 0 ll
\ 1 ft . 5 1 n fl n
1l9.h6nflO
1 ? 3 • 2 3 u ft ii
l?fi.ft?nftn
1 \ n . U4n0 ii
1 3 * . 4 7 ii n ii
1 3 ft. 930 fil
1 4" . 40 ofl ii
14 >. 9 Oil On
. 14 7.4 I u OH
1 s u . 9 5 u 0 n
1 54 . 50 ii 0 n
1 5 * . 0 7 tl 0 i)
1 A 1 . ft 6 H (1 U
-1 V<. ft On flli
.^ o . 1 1 '/ n M
4 ; . M / fi ii
4 '/ . 3 3 2 0 0
5n.?5i»nu
ft ^.3650 '.l
7 '1 . 6 7 U 0 il
R5.H2?On
9.1.65/0'!
1 U 1 . A 5 II 0 0
1 H 9 . H 1 0 0 !•
11 < . 1 Hi 0 «i
1 1 h . 4 4 u 0 0
119. 7 H u OH
1 ? t . 1 A U ft 0
1 ?ft .55ii 00
STAB
(Btu/lb °F)
11.14342
0 . 1 4 A K 5
o!l53ft7
- il . 2 ft 3 ft 5
U.Oli 5.ii5
0.0127?
0.02234
0.03191
0.0414?
0 . II •> H M 7
H.OftO?6
0 . Of.9-58
D.07HH?
II. (IM79R
0 . 0 V 7 (l A
0.101)67
0 . 1 u 4 ? 7
0 .1 07*5
0.1 114?
0 . 1 1 4 w 7
n . 1 j H->I
0.1?2ll4
0.12555
n . i ? 9 n 4
0 . 1 ^ 2 •> 2
0.135Q8
0.13043
II . 1 4 ? •* 6
0 .l4ft,»R
0.1 4«>is8
-0 ,?o3^5
-ft . 11 II 114,6
0 .OuO?2
(I.01HM5
n.(l?H4.1
0.03705
0.0474]
0.06612
0 . 0 ?5.t7
0 .OH454
On ii z JL 7
• 1 f V \* O
0 . n 9 7 ? 4
0 . 1 II IM 4
0.1044?
0.1 0799
0. 11 154
CTAB
(Btu/lb °F)
.,..-,5419
n. 35601
u.35951
U . 4 5 4 9 0
u . ? 5 5 5 >?
u .? 6 4 1 (l
•l.?7?39
il.?HI!4?
il .SHttlft
n.2^567
H.3H2H9
(I . Ill 9 H 3
0.31649
n.3??ft7
H.32H97
0.33133
0.33365
11.3350?
II.33M14
H..< 4 03?
II.. > 4 ? 4 ft
ll . .S 4 4 54
0 . 3 4 ft 5 9
H.34H5H
0.3*5.154
0.35244
.1.35430
II. 35ft 1 ?
(1.3'3/b9
ll.359ftl
H.4558J
n ,25V>94
H.26444
II . 272711
H.2HH7U
0 . ?Hn44
'l .29590
n . 3 n 3 1 u
u.3l 002
0.31667
u . < 2 3 0 4
n.32012
H.3314H
U.33379
n.33r.U6
0.33b2B
n.34045



11. 0 psia














13.0 psia



















15.0 psia








Figure 8  .  CP-34 Superheated Fluid Properties I  (Cont'd)
                          352

-------
VTAB
(ft3/lb)
8.18570
8.27210
8.35840
8.44470
R. 53090
fl. 61710
8.70330
8.7d950
8.87560
8.96170
0.01620
4.H1990
5.01640
5.21200
5 . 4 II 6 9 0
5.60110
5.79480
5.9M790
6.1H070
6.37300
6. 565 II fl
6.75660
6.8.1320
6 . 9 1) 9 h fl
6.98620
7. 06? 70
7.13910
7.21550
7.29190
7.36820
7.44440
7.52070
7.596VO
7.67310
7.74930
7.82540
7.90150
0.01620
4.29850
4.47530
4.65120
4.32640
5.00090
5.17480
5.34830
5.52130
5.69390
5.86610
HTAB
(Btu/lb)
129.97000
I3.t.40unu
136.8600(1
140.34000
14.>. 8300(1
147.35000
ISn. 881100
154.44000
15rt.OHifl(i
161 .600011
-135.60000
3»>.97.inil
42.4870M
4V. 21 ft 00
5h. 135DH
6.1.257UU
7ii.56rtOfl
7n. 06100
«*>. 73100
9 .* . 5 7 u n n
1 " 1 . 5 7 II 0 U
1 U v . 7 3 H 0 (I
11 t.U.lilftu
11 6. 36 n On
1 1 y . 7 1 n n n
i y * . o 8 o o o
li">.48l>00
'i?v.yn«iftc
13^.33iiOii
1 3 ft . 7 9 1' fl n
1 4 li. 2 7 u no
14.*. 77011 U
1 4 7 . ? •• -i n 0
1 5 1- . h ? n fl M
1 5 4 . 3 7 U 0 Ci
157.95HOO
16] .t»400(l
-133.60UOU
3S. 83200
42.35600
4«^.08bnu
56.02000
6.>.14VOO
70.46600
7/. 965011
85.64tiflO
9 1.48300
101.49001!
STAB
(Btu/lb °F)
0.11508
0.11861
0.12212
0.125*2
fl. 12910
0.13256
0.136U1
fl. 13944
0.14286
0.14627
-0.26385
-0.00356
0.00614
0.01578
0.02537
0.0349U
0.04437
0.05377
0.06310
0.07235
0.08152
0.09QM
0.09423
0.097H3
0.10141
0. 10498
0.104>>4
0.11208
0.11561
0.11912
0.12261
0.12610
0.12956
0.13301
0.13645
0.139H7
0.14327
-0.26385
-0.00632
0. 00338
0.01304
0.02264
0.03218
0.04165
0.05106
0.06040
fl. 06966
0.07883
CTAB
(Btu/lb °F)
U. 34258
0. 34467
(1.34671
0.34870
0.351165
0.35255
II. 35441
0.35622
0.3579V
11.35971
fl. 45373
U. 25632
0.26479
0.27301
0.28098
fl.28869
0.29614
U. 3 033 I
0.31021
0.31685
0.32320
0.32927
H.33163
H. 33393
H.33619
•J. 33841
0.34058
0.34271
0.34479
n.34683
n.34882
U.35076
M. 35266
0.35452
i). 35633
n. 35809
H.35981
0.45571
0.25672
0.26514
fl. 27333
0.28127
0.2889*
fl. 29637
0.30352
H.31U41
0. 31702
0.32336






15. 0 psia


















17.0 psia


















19. 0 psia





Figure 8  .  CP-34 Superheated Fluid Properties I  (Cont'd)
                           353

-------
VTAB
(ft3/lb)
6.03HIIO
ft.l'lft70
ft. 1 7540
IS. 2 44 HO
ft. 3 1 250
A . i M 1 1 n
ft. 4 4 95 II
ft .51800
4HO
6. 7L'3i n
ft. 79150
ft.859HO
ft . 9 L> 8 n n
ft . 9 9 ft 3 0
7 . 0 ft 4 •> (I
ii. m ft? n
n . o i ft 4 9
4 . n .5 7 2 n
4.19720
4 . 3 •> ft 4 n
4 . 5 i 5 n n
4 . ft 7 .11) 0
4 . H .1 0 4 II
4.9f»750
5 . 1 4 4 1 II
5 . 3 n n 4 n
5 . 4 •> ft /l 0
S.-318M
s . 5 x o 9 0
* . 6 4 .1 1 11
5. 7 M 5? (1
S . 7 o 7 4 1)
5.H/>9''0
*• . K J 1 ^, ft
•V.9S3M1
ft . n i *> >> fi
ft . n / 7 5 n
ft. 139 40
ft . 2 -1 13 0
ft.2ft32ll
ft.325no
ft . 3 H ft w n
n . n i 6 ? o
II .111 ftlQ
3 . ft / 5 /• II
3 . rt ;> 2 ii i)
3 . 9n8l ii
HTAB
(Btu/lb)
i n«.65(ini>
1 1 V. 95 II On
n h. 2« no ii
1 1 v.641'0"
1? i.lll.iO-i
1 ?ft.4lilfli'
1 /> o . h ? ii n i!
1 .S >. ffti'fiii
1 3h. 7?. / ii ii n ii
4 / . * ? ii n ii
>-> , . 7 ft n 0 ii
S/» . ^1 Hft n
H /.h9 iflu
ft i . 4Hi' n H
-i ^ . 6fl n n »
-1 ?4 . 4.Su n ii
A .•./•2-,pu
4 .. . vft '» n ••
h^ . v n •> n i>
6.t . II 4 ii 0 it
7 ii . ,>ft >n i.
7 7 . oft»0 "
«->.k>4^n»
9 U jOfillu
. 1 II 1 . 4 1 (1 fl
I n vi. b 7 -inn
| 1 /» . HH M fl n
l 1 ft . ? 1 •• n n
n *< . *>ft'i n ii
}? •>. 9« on i'
i ? (j . j> 4 n n M
i <>y . 71?' OH
i ^ 1.1 9» n n
i ,*<> . ft 6 11 n ii
14". ] 4 ii On
1 4 .1 . r> 4 .• n "
1 4 7. 1ft n On
1 SH . ft 9 ii or
1 »i« . 7Si. n M
!«>/.•> ^n O.i
i ft i . 4 2 n n M
-1 3 1 . ft 'i ii n ii
- 1 9 4 . 4 3 !• 0 M
4/. II 9^0 i.
4 't . b 4 1 0 'i
V>. 7Hv0.i
STAB
(Btu/lb °F)
n .OH7«M
0 .n«yl*>4
0 ,nusi*>
0.098/3
0 . 1 U ? .1 0
0 . 1 lib* ft
0 . 1 U940
N.I l?v^
0.1 1645
n.ii9-->4
0 . 1 ? .< a 3
0.1?6r«g
0.1 .1034
0.1 i.W8
0 . 1 .^ 7 >» 0
n . 1 A u h j
-0.?o3H'j
- 'I . ? '« 9 7 0
fl . 0 U 0 H 0
u . n i ni is
o . n ? ii 1 7
il . Ii <> 9 / ?
ii . p .s 9 ; n
i) . n 4 «« /» ?
n.O1??-^
0.0ft7>'2
11 . 0 7 ft -» 1
O.UM'i'jl
n.dnoj ?
Ii . ii«?71
n.ovft'M
n . ii 9 g ^ 9
0.1 SI345
n.i U699
0.11. O'i?
0.11 404
n. n 7e.3
0.12102
0.12449
0.1?794
0.1.513«
0 . 1 3 4 A n
o.l,jM?n
-0.263«l>
-0.249/0
-O.OII13P
0 . 0 fl 4 .> (1
il.ni 7'i?
CTAB
(Btu/lb°F)
11.3294 .}
M . 3 .i 1 7 7
H.J340H
"I. 3363,1
:i.33H^6
11.^41171
!'. 342«4
•1.04491
•i. 3469^
il.34H94
'L.^riHrt
'i.3^>277
M.3S4AJ
u.3r>ft43
•I.3&H19
:'.3I>991
n.4t>ftft7
ILAbbOII
il . 2 6 b b il
'i.27,Jft'»
.i.?815'J
•'.2hV?l
• i ,79ft6'l
il . Ml 3 7 4
n . 3 1 i ft i
M.J1 /2'l
•i. 32353
.'1.32956
U. 331 92
.i. .13422
ii.33f>4/
'i . j 3 H ft ».»
ii . J4 nH'>
il.3429h
".34504
n.^470/
U . 3 4 9 0 5
11.351199
0.35289
0.^5473
n.35ft54
0 . 3 5 M 3 n
H.36U01
H . 4 5 7 fl 4"
u.45469
0.2ft586
11.2/397
U.281H4









19. 0 psia





















21. 0 psia















23. 0 psia


Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                           354

-------
VTAB
(ft3/lb)
4 . 1 1 3 H o
4.7S«.1il
4 . 4 ii ? 6 n
4 . *> 4 ft *> 1)
4 . 6 H 9 9 (1
4 . 8 .1 .} 0 0
4.9 /*/0
S.ll ^?/|)
5 . •' i9 '0
* . 14 ft 7 0
i-.9'i i . ? ft 04 II
*>. i! 7?o
S . .W 4 |i 0
s.4.^0 /o
S . 4 rt 7 *> 0
t».l>441 U
•> . 6" nnfi
t>.ft'»74P
*> . 7 1 4 n I)
s. 7/OftO
s.M^in
n . n 1 ft ? n
n . ui * 4 v
3 . 3 / 1 1 n
<.5iiftuo
*.ft4i vn
*. 7/6.io
3. 910 HO
4. 04370
4.1/611)
4. *i>84U
4.4404Q
4 . s /?uo
4.67460
4. ft/770
4. 7?97fl
4. 7H71 il
4.8 >4'>ll
4.8n6WO
4.9.i9lO
4.9v1 *fl
s . n 4 3 ** n
s . n wfr i H
^. i4H.>n
s . ? n n i> n
s .?•>?/ n
*> . j (i 4 H n
HTAB
(Btu/lb)
ft ^ . 9 3 1 n n
7 n. p 6 II Oil
7 / . 7 7 1 0 M
Hh.45f>0u
9 S . .i 0 V 0 ii
1 HI .6? Mill"
1 0''. 44unii
1 1 ^.HiM'fl"
1 1 ft . 1 Sil 0 i:
1 I*. 49iHl »
1 P^.H/iiiflil
i?h.?ftunn
I?w.68il0l'
1 M . 1 J ii 0 n
l .^f». (>9iin |i
J 4 -t . (1 7 il 0 M
1 4 .1 . •> 7 II 0 M
i 4 ; . u 9 ii n i<
1 h ;i . ft .1 ii 0 'I
1 S4 . 1 9 ii ft ii
is '. 7 ft ii nn
1 ftl . J 6 ii 0»
- M < . 6 n ii (I i'
- i i? 4 . 4 t ft n ii
41 ,9-JVfl'l
4 « . / 1 «i n ii
i." . 6 7 ? n ii
f\/ . H9 1 PII
/• .15/0
/ / . ft 7 > n .
M-i. J6.)0 "
9 ^.^'?l On
i ii i . ?4iinn
1 ii » . 4 1 ii 0 u
1 / » /'II OM
1 * . II ft II II II
1 ". 4 1 ii 0 n
/ /• . / 9 II (1 il
'• . 1 9 n On
'•> w . (• i u n n
^ .) . tl 6 (i 0 il
-^ ft . b ? ii 0 u
4 M . U Oil 0 II
4 .> . *> 0 il 0 II
4 /.(I 111 flu
si-.»>7iinii
^4.1 <.lOl|
S 7 . 7 n -i II (i
STAB
(Btu/lb °F)
1 1 . 0 ? / 4 8
O.O.S697
0 . 0 4 ft .» 9
0.0'3'>74
fl.Oh^.il
n. n?4^o
0 . o u .* .MI
n . OH*W?
o . oyo-j?
o . o y 4 1 1
il . 0 V 7 '• 9
0.1 II 1^5
U.1 0479
II. 1IIMJ?
0.11 1^4
II .1 I'..t4
0.1 1HM.J
0.1i??oO
ll.lys/^
n. 1^919
n.u?M
n . i .> ft ii ?
-0.?63>^5
-O.P49/1
-fl.Oll ^48
il . 00ft /I
il . 01 'JrtS
0.0i"»«1
n . n .1 4 w i
il . 044 <4
II . 0 •> W 0
0 . 0 ft ? v 7
U. 0/717
0.fiHl?H
'I.0d4rf9
n . o H H •> o
o .oy?n9
H.09I>67
0.099?3
1.1 U?/fl
n.l O6.n
11.1 U^M?
0.113.13
1.11 6H1
0.1?0?H
0. 12374
0.1^718
O.l.illftO
CTAB
(Btu/lb °F)
0.28947
M.79684
M.3II 39'^
II.31H81
U. 31 739
Ii. 3237 II
n.3?y7d
•i. 33207
n.33437
n.33662
".3388? 23. 0 psia
n. 3 4 II 9 b
h. 343119
n.34«>16
11.34/19
0.34917
II. 3*111
fi. 3530 H
n.3?>484
•I.3S664
•i.3SH4ll
•i. 36011
-L4570/
ii.4*65'j
H.2662v)
1.2743H
1.28^14
•1.28973
.I.7970H
•1. 10417
•i. 31 111 H
U..H7S7
".37387
"••»Z9»» 25.0 psia
n.33272
M.33451
.1.33676
H.33H96
•1.34111
n.34322
•1.34*29
u.34731
u.34929
H. 3*122
•1.3*311
n.3*49*
H.3567*
il.3*8*0
Figure 8  •  CP-34 Superheated Fluid Properties I (Cont'd)
                          355

-------
VTAB
(ft3/lb)
            HTAB
           (Btu/lb)
                STAB
             (Btu/lb °F)
              CTAB
            (Btu/lb °F)
">
n
n
,5
i
i
i
i









4
4
4
4
4
4
4
4
n
fi
. .1 0 A 9 0
.01670
. 01 ft 4 9
.1 17(10
.7.^H40
. ft 1 .1 < H
. 7 171 11
. K ft n 4 it
. 9 * * » U
. 1 ii 0 l/ H
. "» •> fl | n
,7/ft^O
. .^/"? / n
. \ / 4 1 II
. 4 •> .1 1 n
.4/1 Mi
.57040
.SftHUO
.M 7sn
.ft'.fti. 0
. ; i 4 /» n
. 7n7Wf|
. X 1 1 Ul
,H'»«/n
. 9 II Hn II
.9'jAoO
. U 1 ft *> 0
.0 1 *4»rf
Ift
1 .
- 1 3 .4 .
41 .
4 «.
*>->.
7.1.
7/.
Hi.
0
i>
n
1
1
1
9
1 f
J 7
1 *
1 \
1 .1
14
1 4
1 S
^.
1 .
* .
'.
i .
K.
/• .
^ •
•' .
'.
H .
•*.
» .
^ •
>' .
1^4.
1(>
1 ft
-11
-1 ?
/.
1 .
1.
4 .
,.1 H I)
On
ft II HO II
4 .1 .1 n H
N ?r> n n
^91 0 n
71 in.i
u o .» n n
H ; v n •'
X7I
1 < •
Ift.i
.1 3 ii
ft*>n
"yH".
^4 n
72ii
I7i'
'j 4 n
OQi.
4<7H
9411
44 'I
gfti,
•> II ,1
lift II
It 4 ii
?4,l
on n
4.1i.
0 I!
n i-
Oi>
On
On
0 Ii
(in
0 ii
OH
OH
fld
Hi-
0»
dn
On
0>i
nn
0»
On
H U
On
n
-Ii
-n
n
0
n
0
n
n
0
0
0
n
n
n
n
n
0
n
n
u
0
q
n
-0
-0
. i
,^
4
111
. 7 6 3 « 6
.74971
.Ob
.0
.0
.0
ft
/
/
IhO
1
f)
9
H9

40
. 0 H 3 M 7
• n
* u
* u
U
9
9
ft
n

.097
.1
.1
.1
.1
.1
. 1
.1
.1
.1
. 1
« f
(1
U
0
I
1
1
?
2
h3
'/?
h'O
3 A
Uv1
4
44
7wA
1
4
8
1
0
?fi
6
A
2
o
.749
46

42
Hfl
3?
74
1 b
Mft
71
'I.. 1 A II 2.1 5>S 0 psia
H. 40821
II •£*^r*T
II *J O ii Ik ||
ii ') 0 7 ~? ^
•I.3U439
n . 3 1 1 ? 1
».. il/70
:1.324n4
•i . J 3 U 0 •>
"..*J23M 27. 0 psia
n.3.^4AA
H . 3 3 ft 9 U
I". 3091 0
n.34 120
d.34330
0 . 34y42
u. 34744
H. .14941
U . 3 0 1 3 4
0.30322 .
n.oOOOo
n . ;s o 6 8 A
I) . ,V>rtAl
•1. .56031
0 . 4 5 n 4 II
(>.40A3«l
I- . '1 I A H I
*. O-i ft'Ml
.<. i ; 41 n

3 . .< •> 71 (•
1. 4 / 31 II
.1 . *> < R .1 H
» . 7 .IM P
1.^1 7 (-0
3 . 9 > 1 / II
1. 9 / 7 /Ml
4 . n 7 7 All
 4'•. 4f»i. n n
 *• -» . 4 3 / P 'I
 ft v. r fi 1 0 n
 ft ^. >no4
0.00933
0.06B»>3
               H . 0 H1 7 8

               H . 0 U H 4 H
1?y.47uO n

i 3(i.38iinn
                        n.1 n? 71
0.3114 I
H.31794
U.32471
  3 3 U 7II
  33203
  .13481
  33704
  33924
  341.16
  34.149
U.34'704
n..14706
                                                          29. 0 psia
       Figure  8 .  CP-34 Superheated Fluid Properties I  (Cont'd)
                                  356

-------
VTAB
(ft3/lb)
4
4
4
4
4
4
4
0
n
0
?
?
3
<
1
*
3
3
3
A
*
3
»
«
*
3








n
n
0
?
2
?
p
3
T»
3
*
3
•*
3
.340^0
.3H540
.43060
.47570
.52090
.566110
. 6 1 1 U 0
.Olft2n
.01649
.OlftHl
. 8 n 520
.91570
. 0 ? 5 S il
. 1 S4^
. 2 4 3 ? 0
.351 ^0
.4^91 P
.5ftft40
.67310
. 7 i ft i» (i
. 7->A«0
. Mil 1 '>ll
.8441 n
. « n ft h U
. 9/»9 1 n
. 9 / 1 /' 0
. ') 1 4 1 i)
. ii»>is',n
. n v ft w n
. 1 * 1 , U
. 1 M3MI
.9?e>*0
.?f,Hnn
.310 * 11
. Dl ft "i
. iM 6 1 y
. n 1 6r>0
. ft?8nrt
. 7 .> 2 2 0
. n 35 Mil
.93870
.04110
. \ 4 U U
. ?44f^0
. < 4 5 .' n
.44650
. 4 H ft ; n
.52690
HTAB
(Btu/lb)

-1
-1
-i







1
1
l
i
1
i
i






i
i
1
1
-1
-l
-1






1
1
1
1
1 11
\.' r
4 S
5u
54
61
3.1
21
14
4-%
5'.
ft'/»
fto
7/
8'>
9?
nil
il y
I ^
!•>
1w
2''
2*>
2l<
5/^
3ft
^vi
4 >
4r>
4 >i
S >
5/
61
.^.^
?4
14
4h
5'»
ftV
fty
77
Hi
9V
on
nv
1 /•
15
. J 7 u 0
.90)10
. 4 4 u 0
. II If il •'.
. 1 7 .) 0
. Ml il P
. 4 3 U P
,y5'iO
,.>4nO
.v)l ^0
.49)10
.H450
.3790
.OR'>0
. "J 5 7 0
.99-jO
.1 7ufl
.49u 0
.H3nP
. 1 9 u II
. 5 7 u 0
.91nP
. 40 MO
. MSnP
. 3 1 ii 0
. « 0 u fl
.01 -iO
.h ViO
. 3 8 n 0
.94nn
.52 'III
.1 Inn
. 6 0 U 0
.42>lO
.95uO
.2100
.2010
.37-tO
U
n
II
il
il
il
M
u
U
n
h
H
u
u
ti
n
u
.1
'i
•i
•i
u
ii
i:
-i
•i
ii
u
•i
u
u
•i
u
H
u
n
.28n(il)
.99^0
.K6VO
.yli'P
.Ii9n0
.41 "P
.75-iO
u
0
'.
|i
M
n
STAB
(Btu/lb °F)
u
0
0
0
0
-n
-0
-0
0
0
0
0
0
0
0
0
fl
0
I)
0
0
n
0
n
0
0
n
n
n
ii
5
78
45
(•5
^7
n 2
19
•'>9
yfi
--'?
r>4

*5
.09043
. Ow4
. P V 7
.1 ul
nil
55
.18
. 1 il 4 6 0
.1 U1
.111
.1 1~>
• 1 \ o
.1
-------
VTAB     HTAB
(ft3/lb)    (Btu/lb)
   STAB       CTAB
(Btu/lb °F)    (Btu/lb °F)
.?
.1
.<
3
:\
.1
j
4
4
0
II
II
?
7
?
V
7
^
:t
T
•^
3
3
,\
\
\
•*
•\
.<
*
.t
t
<
\
n
n
n
?
7
7
7
P
,ft47?0
. 6 X 7 ) il
. 7 ft 7 v f|
. MM 7 1 H
. « 4 7 H "
. rt H 6 u 0
.9^711
. 9 o 6 r> n
. '1 il 6 /" II
.lit 6 HI)
. n 1 6 ? n
.111 649
.01 6*u
. 4 / n v ii
. S 6 9 / n
f o O / • |i
7jk C 4 f 1
r» " . » n
. ft ft 7 ;- n
. 9'jHf l|
..1S46P
. 1 S (1 7 H
. ? 4 •> S 0
• ?Hj *» f)
. ^ <> 1 s n
. .<',94"
. <97.M1
.4.i«52ll
. 1 7 *n il
. s 1 n H o
. SIRS n
. *> i ft 6 n
.ftvjun
. ft ft 1 Ml
. fty9?n
. 7 .1 ft 8 II
.rtl 190
. 016?ll
. '1 I ft A 9
. n I ft* n
. t.tnun
. 4 ^>4H n
. s i PIUI
. 6 1 n s n
. 1 fi?sn
i
i
i
l
i
1
1
1 '.
?".
* •
\».
4 *.
4'>.
•>• .
1 1
.H
7H
7
?
/
.s
t
4
/
1
1 S s.*H
1

-1
-1
-1






1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
I
-1
-1
-1





^7 .

< < .
-'I.
1 4 .
4' .
S»>.
AV.
7/.
«4.
"* •
II .. .
" ' •
1 ' .
1 ".
1-.
7 -•.
7'-.
/'^ .
» ' •
• •
^ J •
4 ..
4r .
^•1 .
s.^.
/!„".
^.
46

h
4
W

n
7
*>
114
II
*
?A
1
H
•i n n
iO-i
•i n >i
.ip-i
u (' 1
n n •)
ii 0 l
i n it
•in
HI <
•in i
•inn
m-
n n i
sp..
/ 0 n
/H.
1 ""
n
M
o
n
t)
II
11
n
-n
-0
-n
-n
n
n
n
•
•
•
•
•
•
.1
.1
b
H
y
y
9
n
I
1
J
•/
/
y
.?6
,?4
. ?
.n
.0
.n
.(>
,\
n
M
1
S",)? ii . .ti 7.^3
hO|i ii.^39S1
747 ii.MlftS
60? ii . .* 4 .~t / »j
9Sft 'i..<4SBn
ft>>u M. .14977 33. 0 psia
•In* i'..tS16V
tS*> H..SS.SS7
7u1 i'..>SS4|(
H4ft ",^S7lM
^«B II . jl^HW?
7 y 9 M . ,1 6 (| 6 'I
^ftft 'I.4S9IIM
971 •>.4S7I>1
Sftft 'I.45SSM
7.t? ll.?7ftPl
1 .17 "1 . />H,lfth
ft 99 "i.P^Hl
%>i99 ii . .Mi S3 il
f'9*1' O.P4S"^f "..11P04
/
f<
h
J

n
M
h
/
;
i
i.
i
/
','
H
?
1
S
7
4
7
>
*
1
rt
/
ft
n
s
i. n •'
•I n -i
n fi >
n n
g
ft
•^
9
fi
V 1 . 4 V
1 4.
4/.
h 1 .
ft/».
6-*.
7/.
us
W
"
1
if
ii
S
ft
S
7
h
n n^
•inn
i< n n
.1 n n
/ n "
X 0 ,1
10"
tv n n
i nil
0
n
u
i)
n
n
n
n
n
n
0
11
n
u
U
n
o
-n
-n
-n
-n
n
n
n
n
. n
S
4r,fl n..n>>S1
. 0 ft .< v P n . .t ? 4 7 ^
.0
fl
!n
.n
.0
/
7

t<
8
.119
• U
• n
.1
.1
.1
.1
. i
.1
;]
A r.
9
9
II
U
II
1
1
1
/*
?
6
.?4
.?
.n
• 0
.0
. n
. n
^
.»n3 ".. t. "t(l An
'•ft 6 i' . Ji 3^99
"?« 'i..v^s?ft 35. 0 psia
<«7 H.j374ri
746 'i.,5,?9ftft
1 "3 i- . .t41 79
4>>P n . ;t4vtHH
^1? 'i..t4S°.t
1ft4 'i.,1479.>
S ] S ii . .t 4 V 9 II
Hn4 'i . .9?1
971 il.4b"90ft
S66 ".4S/H1
M7S H.P7637 37. 0 psia
u
l
?
^
*>9*» il . P8.t9h
7»>7 H.P91.39
*>!? 'I.P98SR
46P U . .i 0 S S )
       Figure 8  .  CP-34 Superheated Fluid Properties I  (Cont'd)
                                358

-------
VTAB
(ft3/lb)
7.794M
9.8M510
7.9/5HQ
3.116670
3.1 H730
3.13R30
3.1743 0
3.71020
3 . 9 4 6 1 n
3 . ? M 1 9 0
3. U770
3.35 3 ' i 0
3.3H930
3.4/»5lill
3.46070
3.4V630
3 . 5 3 1 V 0
3 . •> h 7 1> U
3 . 6 H 3 1 0
0.0 1670
0. n 1649
n . n i 6 ft P
7.7H510
?.?946(l
9 . 3 8 3 5 0
?.4/lftO
9 . 55920
9.64630
9 . 7 .1 3 0 0
9 . H I 9 .Ml
9.9U530
7 . 9 3 9 h 0
7.9/390
3 . 0 U A 1 0
3 . H4??0
3 . II 7 ft 4 0
3.11040
.'.14440
3.1 7R50
3.71250
3.7-1640
3.7H0.10
3.31470
3 . 3 4 H 1 0
3 . 3 M 1 . 1 1 'inn
1 3 J . f, 0 I- 0 0
1 4 ».1 1 i;nn
1 4/1.64 ii 0 |i
J *" . 1 MiiPn
1 5 4 . / K U 0 u
J *>/. 3 3 '-Pi-
1 ft i> . 9 3 n on
-i 4 >.5«Ji.r»n
- 1 7 1 . 4 7 i! 0 U
-1 1 4 . v5»n ii
4 / . H 2 1 0 0
st . n4 i o n
ft '<> . II 4 > 0 o
*w.474fli'
7'.. on /MI ii
«4 . / 1 Ii Oil
W '.60^ 0.-
i M h . f-5ii n .1
1 'I » . MH M 0 ii
\ 1 ' • 1 >$ 00 n
1 1 *».»,? u fi n
l IM.HQI, n>i
1 ? V . 7 »i » o it
1 7 4 . ft 9 ii P II
1 7 *. 1 7 ii OH
1 3 ^ . 5 7 u 0 u
13ft.U4llOi:
1 3 w. 5^ U OH
1 4 \ . U 4 U 0 H
14ft.57uOn
i •=» !• . 1 7 n n ii
1 *> 3 . f) V •! 0 H
1 5 7 . 7 7 » 0 n
1 60 ,H7iiOn
-1 3 3. 5 9 n Of-
-1 74 . 47nPii
STAB
(Btu/lb °F)
0.04399
0.05330
0.06753
0.07166
0 . II / 5 v 9
0.07H91
0 . II M 2 5 1
0. (IN 6 n 9
O.IIH966
0.0937?
0.096/6
0.1 0"78
0.1 U3/9
0.1 U729
0.11 076
0.114-A3
0.1 1767
0.12110
0.12451
- 0 . 2 ft 3 » 6
-0.24971
-" .23566
- 0 . II 0 5 1 7
0 . 0 II 4 * II
0.011 73
0 . 0 ? A 7 9
O.OJ377
0.0 4 7ft 7
0 . II 5 1 V 9
0.06172
0.07036
0 . 0 / 3oQ
0.077ftl
O.UM71
0 . P tl 4 n P
(1 . ObH.s7
0 .09143
0 . 0 V547
0.09H99
0.10750
0 . 1 II M) 0
0 .1 (1^4 ft
0.117^4
11.11639
0.1 19H?
0.12.123
-0 ,?63n6
- 0 . ? -\ Q 7 1
CTAB
(Btu/lb °F)
U. 31224
0.31070
0.37490
fl.33»R4
U. 3331 5
•1.33541
U. 43 762
H. 33980
0.34193
n.34402
0.34606
'1.34R06
H.. >5 II 02
".35193
•I.3538U
•1.35562
M. 357411
'i .35914
M. 36118 J
0.46153
M.45V09
•1.45766
•1.27673
U.7H431
•I.7916B
n.>»98H4
•1.30576
n.31745
u. J1HR9
ii..>?50rt
-1.33101
•i.3333u
ii. 33556
1.337 77
H. 33994
•1.34207
•1.34415
"1.34619
•1.3481''
1.35014
-.35705
-.35391
•1.35573
•1.35751
J. 35924
'I.36U93
•1.46137
u. 45903











37. 0 psia






















39. 0 psia














41. 0 psia
Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                          359

-------
VTAB
(ft3/lb)
n
n
9
7
9
9
?
9
9
"
7
9
9
9
9
*
<
.S
*
*
1
1
.^
n
n
n
n
•s
9
7
7
9
'
\
7
?
7
9
9
9
9
<>
'
?
?
. n 1 6 * n
. in 7 1 4
. i /7?n
. <4ft SM
. 4 v» Q vi (1
. •> i 3 1 M
. o ^ c * o
. ft 7H i n
. 7^n 1 n
. / * ? MI
. M ^ "j • i n
. i '"> fl 1 n
. •< flMI
. "1 S ? vi u
.11" 9 .Ml
.117(0
.Moon
. 1 H9xfi
.91440
. ''4 ft M»
. n 1 ft ? ft
. II 1ft 4V
. II 1 ft Mil
.'11 M 4
. n / n MI
. 1 ') 1 ''I.
. > v?^"
. S | >MI
. 
1 -<
?<•
?*!
9u
.<^
;si>
.T>
4;
4»
Sll
S >
*>/
ft ii
<.^
?-1
1 4
M^
«J4
ft1
ft"
7'.
H4
ox
nii
1?
T>
1 h
9y
?*>
?*
W
<*>
3y
4^
4n
.1 ft n ft il
.7?] nn
. g ? w n n
. j 1 / n ..
. HH i
. 6 1 •>
.91 .•»
. v 7 ii
.77n
. ] Ii »
.440
.81 II
. ?n u
. M "
.04.1
.•jftn
.47'"
.4ft n
.VHn
.91 M
. (1 ft II
,ft?:i
.?1
. M "
. SO"
,49i
. g*>.i
.l
.?1 I
. /«!
.0?]
n •
nn
n -i
(•»
n'i
On
Pll
On
n "
n..
n <•
p..
nn
n i1
n o
ri.<
nn
nn
n '•
n ••
i, ••
M"
n .
c .
p
n
n
n •<
n..
.4? >n .
!ft9n
. 0?:'
. A 7 -
. 7 3 1.
.13"
.9411
. 97i.
. 4 3 H
. g ii ii
. 4fln
.91H
.44)1
Oh
n ti
0"
Ou
n i.
n M
nn
mi
np
fi'i
nu
nn
STAB CTAB
(Btu/lb °F) (Btu/lb °F)
u
n
n
n
0
n
u
0
0
n
n
n
0
i)
ft
n
n
0
0
n
'i
n
- n
- u
-n
-n
ii
•i
•i
n
n
n
n
i)
•i
u
n
n
n
n
n
0
n
n
•
•
m
m
•
•
•
•
•
•
n
0
n
(i
n
n
n
0
n
n
?109 '..4S761
n.V g •; 7 ' ..? ft
6
7
/
0
>
r,
I ? -1.331 1 /
7S n.^334t>
^7 n . 1347 L
/ g v 7 K.A^/9'/ 41.0 psia
. n ,•>
."n
<
7
.nvn
•
•
•
•
»
•
•
•
•
»
•
•
•
•
•
•
•
n
w
flM
1
1
1
i
1
1
i
n
u
n
i
i
i
fc
4
7
1
4
^
1
h
•ift «i . ^4 iiftW
' 4 -1 . 3 4 y 7 I
/M n.34429
'4 '".34 ft 3 2
7 ft " . 3 4 n 3 1
/»H .i.39ll?6
77 i..35?17
s>- n. «S 4 O.i
7? n.3SSM«>
1ft ii.35 7ft ^
''Ml '..SSvy.iS
^
?r \
..
7
;>
n
n
n
f.
*
•
;
n
i
<-
%
j
»^
1
/
1
1

.04.
•
n
'.1 i.3M"3
.'7 ''.4fti»l
/? .1.4 ft U 4 3
^^ I.4SH71
••S -i. 4^/49
u 7 .1 . ?P49*
/I il . ?9??r>
in i.?gv»5ft
•ii 'i . .>n*?.i
' ? • : . 3 1 X H rt
' •' -« 4 . ,1 ] 9 9 i
. n r 1
•
•
•
•
n
u
n
7
>
7
II*
1
s
M
7
. ii f. "
•
•
•
•
•
•
n
n
n
1
1
1
'4 1.33134 43« ° Psia
/ -l.333ft/»
1 ° ".33(>H/
/g ii . S3M) /
%g l..)4'i?.t
J ft -I . .1 4 / 3 •>
M vii? .1.^444^
v
V)
(1
1.
•1
>
ft
H
•I ft 'l . A 4 ft 4 9
^g n.34144
11 '1.351139
V? ^
/
lift 'I..19419
Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                          360

-------
VTAB
(ft3/lb)
.1 . n n n 9 n
j.n*? vi
3.0^320
n . n 1 6 ? n
n . n i. 6 4 9
n . n iftun
n.ni 714
1 .9/350
P.nsiftn
7 . 12 8 9 (1
2 . 2 H S 7 0
? . 2H?nn
7. 3 s 7*0
7.4 1330
7 . 1 1) 8 4 ft
? . s .1 rt .1 n
?.5ftR?n
7.59R1 n
?.*?7<>n
7 ,ftb77n
V . ft M 7 4 II
? . / 1 7 j n
7.746HII
7.7/640
' . H IJ 6 II 1)
? . H •> 5 S 0
7.Hft5i n
7.Hy4ftO
9 V /* 4 1 1 0
^ V *) ^ ''J f)
n.ni6?n
n . n 1 6 4 9
n .n i 6no
n.ni 714
1 .8H47U
1 .94970
? . n .1 4 1 n
7.1 117^11
?.lbi2n
2 . 2 5 4 U 0
"> • 3 2 6 5 II
7 . 3 9 8 ft 0
7 . 4 ? 7 3 (I
? . 4 S ft H il
7.4M47II
9 . S 1 3 3 0
2 .541 9n
HTAB
(Btu/lb)
1 4" . y 9 n nil
1 5 / . i 5 ii n H
1ft". 75uOH
- j .\ \.59nnii
-1 74 . 4?ii nn
-n i.95nO'j
- 1 ii i . 1 6 n n u
5-1.47/nn
ft 1 . 7 n i n I-
6u. i nin-i
7 * . 6 R n 0 0
Mi.4?ftni'
y/.33.»ni
1 n ii . 4 il u H "
1 n>. . fti n n ii
1 1 i .94i,nn
1 i'..20i-n'i
1 1 .-1 . 6 ft u n o
1 ?'-». USi'nn
i ?-i . 47n n n
1 7 ».. 9 « n On
1 */ . jft '' n "
1 «-.».HVini.
1 -1^ . .1 in n n
1 4 * . »'4 n n ••
1 4». .^HilOH
1 4U. y *.ill i>
l s > . s ii M n i-
!•» /. Ii9ynn
u ".f>9 .nn
- 1 > * . S 9 u n n
-194. 47 II n ii
- 1 1 4 . *•»!! nn
- 1 n *» . 1 6 ii 0 n
*>4.jli'jnn
t> I . SRfi n ii
ftf».99^nll
7^.^7^0n
84 . j.i n n ii
09.24.inn
1 ii ii . ^1 ii nn
i n •« . •> 3 ii n n
1 1 i.K6nnu
1 is. ^ in nn
11x.S8nnn
1 ? 1 . ynii 0"
1 7 •> . 3 0 M n ii
STAB
(Btu/lb °F)
u.li.n-35
n.i 1 4. in
n . 1 1 7 4 .1
n.i2n*5
• 0 •rr)iirtp
~ n ? *j o 7 ?
• n •?»*^fto
-n .221ft6
n.onnso
n . n i n ->5
n. n ^ni 4
n . n 2 ° 6 4
n . n .« y n 7
0 . 0 4 M 4 n
n . 0'37ft5
0 . 0 ft 6 rt 0
n . n 7 n 4 4
0 . » 7 4 il 6
u . n / 7 <"> 7
O.OR176
o.no4 ^
n . n 8 M 4 n
n.n9i94
IJ . n 9 5 4 7
n . nyn ?9
n . 1 11 7 4 8
n . 1 ii S -J 7
n . i o 9 4 3
n . 1 i 7 .A 8
n . 1 1 ft.«>
n .no943
II. II 19.1?
n . o 2 R *» 3
O.H37U6
O.n47.s0
n . ns6->5
n . n 6 s 7 1
U . 069.^5
n . u 7 ? 9 R
0 . n 7ft^9
n . n H H 1 8
U.08.176
CTAB
(Btu/lb °F)
.1. 3559ft
n. 3*77.1
u. .1*046
•1.36114
n.4631 4
n . 4595H
0. 4580ft
u.4*Ms
ti. 28530
n . 29256
H.2996.J
ij.30647
u. .11310
n.31V4rt
') . 32S6?
•i.331«>ij
•i . 3 3 3 7 H
•1.33607
•1.33H22
0 . 3 4 u 3 o
•I .34249
i: . vl 4 4 5 ft
H.34659
U.34H57
n . .i*>osi
U.3*»241
n . 3542o
n.. 1*6 OH
D.J57H4
H. 3*957
H.36124
H.46304
U . 4 6 1 5 6
H. 4593ft
il . 4 5 H P h
0.28564
O. 29786
0.7999U
I'. 3067?
(1.3133?
H.3196H
n . 325RO
H.33167
n.33394
n.33ftlrt
0.33837
H. 34 052
H.3426J



43. 0 psia














45. 0 psia





















47. 0 psia








Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                          361

-------
VTAB
(ft3/lb)
7.57040
7 . 6 7 7 .1 n
7 . 6 1 r) N H
7.6*41 H
7 . 7 4 n Ml
7. 7 f> 91 II
7 . 7 v 7 4 0
?. H ^56 H
n . n i ft p n
n . n i ft 4 4
II.'M (SHU
H . u1 7 1 4
1 . H o 3 ii 'i
1 .H/540
1 . 4471.0
7 . 111 8 1 n
P.'llHMi
7 . 1 'i H 7 P
P . 7 X H 4 II
7 . /» M / / n
^ . « * S ft n
P.. 1 1.1 I'll
.' . S i 0 '• n
> . 4 M fl |i il
3 . 1 M> u
7 . 4ft?VMI
? . 4 •-» n > n
7.1)1 ' /n
7 . i4Mi n
P. S/ 3/11
?.1^4sn
7 . ft .» ft / H
7 . ft 4 .1 «j n
7 . ft« 1 ) n
7. 7iin?u
n . n i ft?n
II . IJ 1 6 4 9
II . 1 I fthli
n .0 i 71 4
1 . 'ft 4 7 H
1 . H SS 7.1
1 . w ,|ft i .1
i .w ;5Mi
7. "4i i n
7.1 i .1 4 n
? . 1 "7 j|i
HTAB
(Btu/lb)
1 7 .« . 8 .1 n n n
1 .17. 29 ill n
1 1*1. /f> n n n
1 .1 s» .? ft n n ii
14^. 7 *•! II n
1 4ft . 01 ii II ii
1 4 vi . H ft i n .1
1 5 1.4 Li Pi'
i 5 / . ii 7 ii n n
1 ft M . ft. i i n ii
-1 j.t. 5 9 n nil
- \ •> j . 4 p ,i n .1
-1 1 4. 95'. II n
-i n'.. 16. in n
54 . 7.1 1 0 n
ft 1 . 4 7 l n n
6 »t. HH. < on
7ft • 4 7 -ifl n
« 4 . ? .1 1 P "
47.15 ^Pil
1 n n.?. 3 it'i
1 ii * . 4 5 •• fi ii
1 1 1 . 7H- on
1 1 '. . 1 .1 i l> •
11 < .HI 	
171.40 in-
i />•.., 1 7 	
1 7 -1 . 7ft » n ii
1 * ' . i"7 -> 0 ..
1 ,1'i.r 9 HI
i i*. 1 9 n .
1 4 ->. 7 1 HI.
i 4«,.i's-n.
i 4 •/ . n n . n '"
i s i . .1 7 i n ••
1 *ift . 4ft I II H
1 6".t»7 »nn
- » i «. 59 tin n
-i?6 <7
-P.24'»/P
- n . ? 3 '» ft 6
-0 ,P?1 ^ft
- n . ii u i « H
n . n (i M ,t 4
II . 11 1 7 9 4
n . n ? / 4 7
" . H Jft 40
n . n 46 /»5
n . n •> 5 s n
n . n ft 4 1 • 7
') . Hr>M ,1
n . p 7 1 4 .1
'I . n 75^5"
II . P / 4 1 4
il.P*7/P
n . ii H ft v h
n . n h 4 - ,s
II . P4 1 if
(I ,|l«/ftr»
n . 1 /i n » H
.) . 1 u i * 7
0.1 n 7. 1 4
0 . 11 'i 7 9
0.11 477
0.11 7P4
-n.pft.5»i7
- n . 7 4 g / ?
-n.?.55ft6
-n ,??i ftft
- n . |) u I rt 8
n.nn7«i
ii.Ol 74?
ii ,n^ft45
n. 136.19
1) . II 4 5 7 3
0.05499
CTAB
(Btu/lb °F)
11.34470
11.34672
n .34n7u
n. .15 n 64
H.35253
n.'35M9
•1.. 15796
U .»>59ftH
0 . .1 6 1 3 5
M . 4ft366
n. 46184
.1.4601(1
0.45897
M.28598
H.79317
n. 3 U II 17
n.. IP 696
u. 31. 154
U . .11 V 8 8
H.3259H
0.33184
n.3.1411
0.. 1.1633
fi . .1 3 H 5 2
H. 3 4 U 6 7
•1.34277
0.34483
n.,14ft85
il . 3 4 M fl 3
n . v>5(17 7
11.35^65
u . 3 5 4 5 n
n . 35ft 31
n.35nO/
n. 3597 H
n. 36146
" .464?H
H.46187
M.4599?
U . 4 59 PO
li .7861 5
".2933^
U..10H31
n . 3 0 7 II 9
n . VM36^>
II. .11998
0.32607





47. 0 psia
















49. 0 psia


















50. 0 psia





Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                         362

-------
VTAB
(ft3/lb)
7.25D30
2.2/740
? . 3 il 4 5 n
? . 3 n 6 0
7.3S8SO
7.3*550
7.41240
7.439.^0
7.40610
7 . 4 V ? V II
'.51070
7. s/ifta 0
7.57310
? ,5v9Mi
7 . 6 V 6 4 0
? . 6 5 3 H 0
0.01670
0.fM*40
0.01 6HO
0 . II 1 7 1 4
n.m 7>>ii
1 .sj 1 70
1.57160
1 .6  7 ^ II
? . 1 799H
? . 7 |J 2 3 0
0.01670
0.01649
0 . 01 6HO
0.0171 4
n. 01750
HTAB
(Btu/lb)
j 0^.4 in nu
1 11 .740 mi
i is. 09 u on
1 1 *. 4 7 H Oil
i ?i .86 u rni
1 ?i . ?HuOii
1 7 ".7? HO II
i .« 7 . i M ii n ii
1 3 *» • 6 6 u P Ii
1 * v . 1 6 u n fi
1 4 v . 6 H n 0 n
1 4ft . 71 i| On
1 4 »». 7 7 HP U
1 s \ . 3 4 u n H
i 5 f» . y 3 o n n
i ft 'i . 54 i.i n n
- 1 4.1.50111*11
-i '4.41 imn
-i i 4. y 4 no n
- 1 us. ] 5i' n ii
- v s . h 1 7 n ii
ft'1 .8790"
6«.7R7flii
/ 1 . y 1 4 (i 'i
* 1 . 7 0 4 II n
U 1 .65^011
•J « . 7 5 .' H ••
i ii M . o n n n n
1 1 1 . 34 KM H
1 i ... 7 il H 0 .1
1 1 H . H H i, n n
1 71 .49.11)11
1 ?4 . ^l IP M
1 ' « . .1 6 u II H
1 * 1 . P 5
II . Oft «?p
O . 0 ft ft M 4
0 . o 7 n « 6
0.0 74116
0 . 0 7 7ft5
O.PK1 7?
n . n H 4 7 n
n . Ofcirf >?
O.OV1 *4
0 . 0^5.45
0.1)98*4
0 . 1 II ? 4 ]
n . 1 ii 5 7 7
U.1HV71
0 . 1 1 7 /> 4
-H.263H8
-0.24973
-0.73568
-0. 22167
-0.7(1769
CTAB
(Btu/lb °F)
n. .13192
n.33419
u . 3 3 o 4 1
il .330.6)1
H . 3 4 Ij 7 4
H.34?A4
(I.3449U
•1.3469?
n.34889
0.35083
11.3527?
M.35456
0.35636
II.35H13
n.35984
•1.36151
0.46707
U . 4 6 3 1 /
H.4625H
U.46126
0.46003
fl.?949?
'J . .1 0 1 7 ?.
0.30M35
U.3147V
•i.32ini
U. 32701
'".3377H
'•.335112
".33771
'•.3393H
i.. 34149
H.34J5/
'). 3 4 56 u
'1.34 76 il
0.34955
0.35147
0.35334
11.35516
I). 35695
U.35H69
0.3603V
"J.36205
0.4685?
H.4669M
'1.46574
0.46151
0.46216









50. 0 psia





















60. 0 psia















70. 0 psia


Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                          363

-------
VTAB
(ft3/lb)
1 .?79HP
.4 1540


1
1
1
1
1
1
1
1
1
1
1
1
II
n
n
n
n
n
1
1
1
1
1
1
1
1
1
1
1
j
i
1
1
1
1
1
1
1
.
.
.
.
.
.
.
.
.
.
6?6
646
665

7'.s
7<^4
744
7fi3
7*3
Mil?
y
II
7
4
1
7

h
3
0
0
0
0
n
n
0
n
n
HTAB
(Btu/lb)
AH
67
75
y ]
1 1.
1 1
1 7
?1
?4
?7
131
134
1 1h
14 '
•
•
•
•
•
•
•
•
•
.
•
•
•
•
23
73
.19
•n
18
*•) Q
Q "\
30
7ll
11
54
99
47
96
47
HI)
I fin
 P n
-Mill
i n n
• fin
inn
.in.,
•inn
i n n
i. n M
unn
>in n
U M II
7n 14*>.55nnu
. 8 •/ ? •/ n
•
s 4
.1 /H
3^6
41 4
4 S]
449
4**
4 H.I
5.11
518
4
n
1
y
n
4
4<>
5/»
^r.
S>;
- < \
- 74
- 1 4
- il*i
•
•
.
•
•
•
•
.
49 - g *i .
1?
70
Af\
9?
58
40
94
1 5
on
f.H ~H/I.*)J
7
1
7
• •
>.

-
1
t,
1
S
y
3
*
. 5 .^ 5 H
•
•
•
553
570
507
)
u
H
n
•1
U
!l
H
n
it
n
n
i)
n
u
n
u
.sn
4
.611 4*
•
6?1
/
n
n
n
* /
71
H '
g..
g •
1 M /
1 1 ••
l 1 »
11 /
1 ?»
1 V4
1?7
1 1 i
1 3-4
1 3"
1 4 1
1 4-.
14M
1 *iy
1 SS
•
•
•
.
•
•
.
.
.
.
•
•
•
•
•
.
•
•
•
•
1 ^
*5
71
7?
hj
1 7
*
in n
M n >i
•i n n
n n <
n M '•
•mo
u n n
•1 n n
U II -i
unn
' II ,1
.nu
• ui'
i n n
(|:i
•i ll u
STAB
(Btu/lb °F)
-n
n
n
n
0
n
n
n
n
n
n
n
n
n
U
0
-i)
-n
-n
-n
• n
-n
n
n
n
n
n
n
0
0
n
n
n
n
n
n
n
n
n
n
n
it
.00118
. n*j5^ n
. n*>9<>6
."69^1
. n 6 6 s 3
.O7ni5
.07.174
.n/7.*?
. fi H 0 M H
. PH443
.08796
.091 48
. ny4y8
. n y H 4 5
.1 in y?
.Hi5.<7
. 1 U 8 M 0
. ?f>.1Hfl
.?4^ /4
• t » I ^ O
• c c I o o
,?n7?n
. 1 y .1 7 ?
.nil4«H
. (1 1 4 S 4
. |i?4i«9
. n> *i4
. n 4 ? « 9
. 0 5 •> 1 4
.ot,?ii
.II5-J46
. p 6 i ii y
.n^ft/?
. n 7 n «?
. o 7 ,1 y l
.n/7<»8
. OP1 ll 3
. n H 4 -7 7
. nhmiQ
. nyi "»9
.Oy5"8
. 0 9 M '> 5
. 1 0 9 i. 0
CTAB
(Btu/lb °F)
H..1P9A9
l| L < i~ Q Q
M S ? ? II y
i . * o y Q Q
"..13367
•'. 33804.
O. 34 HI 7
o.34??6 70. Opsia
0 . ,1 4 4 3 2
•'I . .< 4 6 3 A
•I . .)4H35n? 1
'i . .1521?
" .,S539/
'1 .,15*» 7^
" .;15755
•J . 3 5 9 7 7
'i . .1 6 U 9 <»
". 16259
•t.47l 74
n . 4 ft H n u
H.4A499
 n 4 8 /*
il . 3 111 II
'1.31724
u.3?.1?l
i) . 3?yon
•i . ,1 3 4 5 y
0.33676 80. 0 psia
0.. 1389 ||
'1.34100
•1.1430 A
M . )4*j08
•I.347U7
'1.3490?
f) ^ < ^ i| Q O
1 *S *) ? 7 *V
•' • o ^ 4 o 2
•1 » ,^ *? f> 4 1
n. .15816
M. J5987
'i. 1615.1
Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                          364

-------
VTAB
(ft3/lb)
1 .63870
0.0162(1
0 . 1) 1 6 4 9
0.016HO
0.01714
0.01749
0 .017R8
1 .01270
1 .05470
1 .09610
1 .1.37110
1.17740
1.21730
1 .2332U
1 . 2 4 9 n 0
1 ,?o4ftH
1 . 2H05P
1 . ? y 6 2 M
1.31190
1.32740
1 . 3 4 3 n 0
1 .35H50
1 .3741-0
1 .3*940
1 .4.1480
1 .42020
1 .43550
1 . 4 5 0 H n
ft . 0 1 6?0
n .111 649
i) . ii 16/1 n
0.01714
n. oi 749
n . n i 7 h B
H .9H(I46
P .9 <91 4
n. 9/71 4
1 . 0 1 4 Ml
1 . 051*0
1 . OHfliill
1 .1 02511
1.116911
1.1313 M
1 .1 4560
1 . lr>9^o
1 .1 /420
1 . 1HR30
1 .2U250
HTAB
(Btu/lb)
159.M u ll n
-133.571'OU
- 1 ? A . 4 i) ,| n il
-1 1 4. 93 n Oil
-1 0^.14 n Oil
-94. 006 Oil
- H 4 . 5 1 V> 0 n
ftfr.57MOil
74.31 70.)
fl 2. 2H'»0.i
9-1.24 <0 i
y* . 4?4n n
1 M * . 7 4 ii ii •
1 1 n . 1 1 u n -i
1 1 3 . 5 0 ll n M
11*. 91 M 0"
1 2".33nP'i
1 2 ,•>. /Hiin-i
1 2 / . 25n ii i
\ M'. 74nn.i
134.25iill'i
1 < / . 7 7 .. fi i
1 4 1 . .\?< ill II
1 A 1.M ifl.i
1 .f 7 «n •
1 5"..}0 ip.-
- 1 3 \. S7 ill.'
-1? j. 4. In Hi-
-1 1 4. * 3 III-
- I .. .14-11"
-VJ , . ll II if) »
-*1 /n ..
*-..«« '0..
7»./6*0«i
H i . f>9 i n -i
H-J. 7* -inn
9 / .9 7MOii
1 II * . .»•' .1 0 ii
1 H-J. h5
0 . fi H 5 ii 7
IJ.l'MMlfl
O.OV2HH
0 . l!0ljtjl>
0 . (i V / 1'
- il . >» 2 1 '« 9
-II.2M771
-0.1 9W4
-0 .IMI 1 4?
II . II n X.t4
0 . M 1 7uA
0 . 0 2 7 r> 1
0.0 oft w2
11. P 4622
n . n 4 o 9
'1 . 0 5 7 2 4
ll . II 6 0 M P
0 . II h 4 »> 0
O.I16M1 J
0. 0 71 ft9
0 .0 /5*>6
CTAB
(Btu/lb °F)
".36315 80. 0 osia
n.4751?
ii . 3 7 Y 3 2
n.3«97rt
(I . 4 H 6 4 /
•1.42047
0.46562
H.30651
H.31 25JJ
n . 31 H5>7M
n . 3 0 H 3 3
ll . 3 1 4 1 6
U. 31^94
".3256i? 100. 0 psia
ii . ,> 3 1 1 *»
H.3365.S
u . .1306?
M. 34 069
ll . 3 4 2 7 3
ii . 3 4 4 7 3
ii. J4*6V
it . 3 4 H 6 1
H. 3 5 M 51
n.35237
Figure 8  .  CP-34 Superheated Fluid Properties I (Cont'd)
                          365

-------
VTAB
(fta/lb)
1 •
1 .
1 .
1 .
1 .
0 .
o .
n.
M.
n.
n .
i' .
r
11 .
" .
".
11 .
n .
1 .
i .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
i .
1 .
1 .
1 .
i .
» .
n.
•' m
n.
".
h.
P.
" .
n.
n.
n .
".
n .
i'.
?1 ft60
74470
?5H70
7 H A n n
3
0
0
i)
it
n
n
•i
H
H
>
V
"050
lft?o
Ift49
1 ft XII
1714
1 7^9
1 7HH
i H «n
44 iH
70*4
1 4?9
4841
1
1
1
1
1
-1
-1
-1
-1
-
-
-




HTAB
(Btu/lb)
37
4..
4 1
4-<
* 1
t, ,
3 >
? i
1 1
n •.
w-.
•^ M
7 »
7 %
* I
>> j
w /
.47,iO..
. 9 7 «, ft il
.54 n flu
. 1 ? n Oil
. / 3 '• n i1
.
•
.
•
•
•
•
.
•
.
•
•
yn
^h
09
')?
) 5
n 0
40
r>4
1 9
1ft
Vft
5"

On
.nn
STAB
(Btu/lb °F)
n
n
n
0
0
0
-n
-n
-0
-ii
-n
-n
-n
i)
n
n]
. n i •> « n
. f ' ? 4 » ft
. n ,> 4 s i
CTAB
(Btu/lb °F)
ii.
n.
n.
n.
n .
ii.
o .
n.
ii.
n .
n.
0.
n.
n.
S577? 100. 0 psia
35942
3611 u
,*A431
16n?l
3 7 il 4 3
T844i>
.* 9 8 5 ?
4 1 ft 5 0
43324
4697?
.M 5 0 3
•
<4
n
n
0
'(
n
M
1
1
1
1
i
i
1
0
0
0
0
n
0
0
7
7
H
H
8
^(54^
•i ft » 0
' J\\ n
\s?n
48^0
1140
745M
i7bll
'1040
1 3 4 0
/*63rt
W1 H
•> 1 VO
* A 7 II
/ 740
1670
1 ft49
1 AHO
1713
1749
1 7RH
1ft 30
* e o A

tnr>u
ft?4?
0376
Oil ft 19
V
1R55
1
1
i
i
i
1
1
1
1
1
i
1
i
1
I
-1
-1
-1
-1
-
-
-




1
1
1
«»«
1
1 -
1 w
•? «
Or
<-•
.^ \
W
4
1 1
4 /
^ 1
v,.
t .
« .
> 1
1 -1
M I.
VI
H<|
/ «
7 •>
h i
q><
9/
(l>.
n >•
1 •>
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.
.
•
•
•
•
.
•
•
•
•
•
•
•
•
?7
) •)
ss
cl
5i.
n n
i p
\ ft
ft?
- ii
7'v
ft l'
?
t i O
*> r)
3V
97
1 <
99
511
ft4
ft?
ft?
76
04
44
ft4
<"">
. n n
•Oi
.- n-i
. i, M
.. i« n
, n n
"• n n
,. 0 i.
II M
(l 1.
. (• .,
1 H •
• |, .1
. ().,
. r .i
O.I
.(III
> II .
. nn
•.III!
/ n ..
•ifM
I do
•On
»ni.
n 0 'I
•nn
• on
.. nu
0
u
n
o
0
u
n
0
n
n
u
H
II
1)
0
-n
-0
-n
-u
-n
-u
-n
n
n
n
n
n
n
0
.f'47 S4
. II 5 I -. 3
. H 5 4 -,9
. (I5M s4
. n ft i ^ 7
. 0 ft 5 'i H
.0(,91R
.117? 7ft
. 0 / ft \ J
.n/ ), ft
. n h ,\ M*
. 0 H f. •* 9
.noil *7
.nv < ,4
,09/ ^1
. ?ft 6.*
34559
3475?
3494?
.* 5 1 7 v
3531?
35492
3 5 ft ft M
3 5 M 4 u
3ft u DM
3ftl73
36^34
•5ft490
3 5 5 4 H
36542
37R8M
395H3
413??
4317ft
44g?? 120. 0 psia
3176?
3?.?9^
3?H?5
3 3349
3386?
34U63
34?61
Figure  8  •  CP-34 Superheated Fluid Properties I (Cont'd)
                          366

-------
VTAB
(ft3/lb)
0
0
11
0
II
1
1
1
1
1
1
1
0
0
n
0
0
11
0
0
n
H
n
0
n
M
0
n
n
n
0
0
II
I)
0
0
0
0
0
•
•
•
•
•
.
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.
•
.
•
•
•
•
•
•
•
•
•
•
.
•
*
•
93085
94310
95529
96744
97954
9V160
003f>l)
0 1. 5 ft 0
027SH
0 ,1 9 4 11
051 :m
0631 0
074 VII
n 1 620
01649
111 6hO
•11712
H1749
II 1 7 h 8
1118.111
6981 0
72923
7^968
7rt9h6
818W5
13058
84215
85306
8r,512
87652
HH787
8V917
91042
9/M63
932HO
94393
955u2
96607
9/709
9 n 8 0 7
1
1
1
1
1
I
1
1
1
1
1
I
-1
-1
-1
-1
-
-
-

HTAB
(Btu/lb)
!->
?y
?*
?i»
S3
\t\
4h
4.\
4 /
'jl
S4
5n
3 1
21
1 "
I' **
94
fcin
7 >
7 '
. ft 9 Ii
,15ii
.62'i
.11 .i
.Mi'
.161-
.70..
.27-1
.H5n
.45"
. n 7 n
.70.1
. .1 4 .1
.56..
. 38 i
.91
.04-1
.VW.t
. Ml »
.'•42
.1 *l
Mil
n h
n .1
(li<
(I.)
It 1
nu
on
ii.i
n>,
n n
on
Ou
n it
n n
n.i
OM
0 H
On
n .1
On
S.I . HP /»0 "


1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
HN
>
nt.
1 l
1 h
1 «
2 >
21?
2v
3.'
<*
iw
4.1
47
S.i
s/l
15>*
,26n
0..
.^6->P •
. !> Ilil
.40-
,m-
,2H.!
. X4,i
. 22i.
. 7«,i
. /5-i
,7H..
.34.,
. •v 1 n
,50il
.11H
.73..
.07 -i
. »2'i
Cil
r, ii
n ..
0
n.
n !•
0"
n..
i >.
n
n •!
O-
On
On
On
On
STAB
(Btu/lb °F)
0
ii
0
0
0
n
n
n
0
0
0
-0
-n
-0
-0
-0
-n
-0
0
0
ii
0
0
II
n
0
n
0
0
n
0
n
0
0
n
0
0
0
»
•
.
•
•
•
.
.
•
.
•
•
.
.
•
•
.
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
II 5 « ft 3
I>66i6
07044
Ii / 4 ill
0/756
081 "9
08460
ObHl 0
nyi*i7
n 95- j 3
263^1
24«J 77
23571
221 *8
20774
19376
1 7 « 7 7
n n n * 6
P 1 0 1 5
0201 0
029-3
O.)9'i2
047/5
Mfti5
05 II I 4
II H 3 '« 1
0-^746
061 n9
Ii ft 4 7 0
Oftrt^9
H 71 "7
075/^2
M 7Hi;6
Oh2«fl
0 » 5 u P
II (1 9 4 ft
092 )3
CTAB
(Btu/lb °F)
ii
0
n
n
Ii
II
U
il
-I
0
II
II
II
II
II
ll
M
n
M
n
u
d
u
i)
>i
u
n
n
"

u
i
n
Ci
n
n
n
n
n
.34457
..14650
. 14n3w
. 3 5 n 2 5
.35209
.'*•»»" 120. Opsia
. .1 5 •> ft 6
. 55739
. .< 5 9 1| 9
. i6h75
. 1ft23«
..16396
..16551
. .1 4 8 9 H
. 16H41
.-17291
.4577-1
.40W79
.42*75
.44724
.11 95 j
. .1 2 4 5 H
. .1 2 9 6 rt
.33474
. .1397.)
.34169 ,««
.14362 PSia
.34554
.34742
.34928
..15111
.35291
,3546V
. *564/»
. .> 5 n 1 3
.3598IJ
. .16144
..>6304
.36460
.36613
Figure 8  .  CP-34 Superheated Fluid Properties I  (Cont'd)
                          367

-------
VTAB
(ft3/lt>)
n
n
n
n
n
n
M
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
(i
n
n
n
n
n
M
n
n
n
n
n
it
n
n
n
n
n
n
n
n
n
n
0
•
•
•
•
•
•
•
•
.
.
•
.
•
•
•
.
•
•
.
•
.
•
•
•
•
•
•
•
.
•
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
oi6?n
n]649
Ol6nn
ni7i?
01749
017H8
n i R ^ n
698111
7 ? 9 '/ 3
7l>9f,n
7H9SA
RiRgs
«30'iR
H4?l»>
H *> 3 * 6
H651 ?
M 7 6 "* ?
Hh7K 7
"991 7
U| n4?
9 * 1 * 3
9.^?M.
94 VM
955 ii V
9 ft An 7
9 77> ' 9
9 •< * n 7
II 1 A V 0
0 1*4*
U1
II 1 7ln
II 1 7 /
II 1 R ^ n
II 1 « 1 h
6f*J"4
6 '•» H / g
7 ,> 7 n ?
7*> 4 ' *>
7n5 i l
7 7AM
7K74S
7gfl?9
R .1 W •vS
H i QM
H til? *
rt 4 (I h ii
HTAB
(Btu/lb)
-1 * >
-1 ?i
-1 1 1
-ins
-g*
-M-l
- i *
7 '
H '1
H <
Q-,
II .
n •<
1 1
1 T
1 ri
1? '
1 ••>••
1 '>'<
1 * '
1 V.
1 S ••*
\ 1 *
1 1 /
I •>
1 S-4
1"
- 1 \ -
- 1 •» 1
- 1 1 1
. 1 ,, .
_ 1 .,
- - 1
. / s
— f; '
/•<•
M ;
W '
1 •! 1
1 -I 7
1 1 1
1 M
1 1 s
I'l
1 ''•I
1 ' 1
1 ^ ^
.•36"
. .^Hii
.VI "
.114"
.g? >
.40 .
. t 4 '
. h ,\ \
. UR-
.•/t> •
.^^
.(Jilt
. 4 il n
v r* 1 '1
.^«i.
. /4n
.';?••
. / 3 -i
. '-''j.i
. 7s ,
n
n
n
n
p
ii
n
n
n
n
*»
n
0
i)
n
n
n
0
i\
n
u
n
n
ii
n
.1
n
n
ii
n
u
u
n
n
i,
u
u
u
ii
•I
. j 4 ' il n
.01 .•
. 'Ill ..
. 11 .
• * * I1
. <7 .
. (j 9 M
. '>•»
. '/ 4 i
.70,.
.!.?•!
,'M w
. 4l> »
^4-
.^Q/
. V,>d
. /4 ^
. h R »
.sin
.^An
.4IIH
.KMl
...3u
. f. ' ..
. J4 n
.MA.,
.41'.
n
n
n
n
n
n
n
(i
n
ii
n
n
n
0
n
n
n
n
M
n
i)
n
n
n
n
n
n
u
M
n
n
n
u
M
n
ii
H
f i
n
1.1
n
n
•I
•t
n
i.
n
u
u
u
ii
n
STAB
(Btu/lb °F)
-0
-il
-0
-n
-n
-i)
-n
n
0
n
n
n
n
n
n
n
n
n
n
0
n
n
n
n
n
n
n
-n
-n
-n
-n
-u
-n
-n
-n
n
n
CTAB
(Btu/lb °F)
.?6391 II . 3 4 8 9 (5
.74977
.
.
?3*>
??1
71
MR
./>H774
•
•
".36(141
H..17?91
H.4I»77il
11.40979
1V376 n.lZrt?1?
17i
n*>7
l»61
OA4
(lf)H
071
n ;^>
n;^
OH?
nns
IIH-l
nv?
?6<
?40
?»*•'
?i<1
?n ;
19 *
1 7g
1 A»-
OlIM
h'S
"?
/b
4*.
14
hi
4A
.•9
/»
•9
<7
1?
«A
«R
JR
•'.A
•'.X
g?
g7
*»?
M
»\
i-\
78
/n
>3
.ni 7v.3
n . n ? 7 n n
n
0
n
u
n
n
n
n
n
.
.
•
.
.
.
.
.
.
o.jo
n4u
II 4 4
n4M
11^1
n ^s
flSW
('6?
n*>A
^1
06
.*H
iiH
76
«?
>tfc
nH
-•H
M.33474
H.33973
n.34169 5giin
M . :i 6 3 4 4
I. ,.S 6 3 H 4
». >A4Ml
'I . .)6(>t3
•> . .1 4 ? 6 6
i.. 4 S.I 4 5
n. 4547^
'• . 4*» /?!
•I . 46 114, 1
,i . 4A47M
n .444H9
i . 4A^SA
'•.,^''632
"..J3117 140. 0 psia
ii . 13 A H6
" . .<> 4 n rt M
n . }4<'7g
'• . .> 4 4 6 7
n..s465i
" . J4h39
'i . 3 S i| 2 II
i« . 3 5 ^ n u
•1.35376
n . .>^V5(i
Figure  9  .   CP-34 Superheated Fluid Properties II -- Specific Volume,
             Enthalpy, Entropy, and Specific Heat
                                 368

-------
VTAB
(ft3/lb)
n
n
n
n
n
"'
n
n
n
n
n
n
n
u
n
n
n
n
n
n
n
n
ii
n
n
n
n
n
n
n
n
0
••
n
n
n
n
n
t\
n
n
u
n
n
ii
n
n
•
•
•
•
•
•
•
•
.
•
•
•
»
•
•
•
•
rt •> 1 .* 3
H f, 1 * 1
rt n ? ft 5
9n
VI
"1
Cl
n 1
11 1
n i

ft/
V15
1M
M9
ft<|H
ft79
71 •<>
74;
7H6
R,m
R7ft
Ha 1
S'HI
? 74
. ft>J9(i 4
. 7 n 9 4.1
. M9/5
•
•
•
•
•
•
7 ^
J 1
7->
7ft
7 7
/H
II n II
(t/ll
n^ i
04?
n 4 *>
f!43
HTAB
(Btu/lb)
1 Vi
1 .1>J
1 4 S
1 1««
1 TI
1 i 4
i-»7
-1 .* <
- ) V .1
-1 1 4
- 1 H •»
-04
-M1
- 7 ^
-ft v»
7^
M/
•v>.
1 >|4
1 II /
1 1 M
1 1 1
1 1 /
1 7|
y i
?••
< <*
.97HUO
.55HI.IO
. 1 5 M n 11
. 7 7 II n 0
. 39 uno
•
•
•
.
•
.
.
.
•
•
.
•
.
•
•
•
•
.
.
ft
•
•
. / .j n .> ft < -, .
•
•
.
.
•
.
•
•
•
•
.
•
.
•
•
.
.
.
.
.
M.I
«1
H I
«/•
^ <
M<»
n 1
II 1
•n
ni
in
n i
ni
ni
57
5v

n ;''•>
n i n
OV1
vn*
041
vl 1
M «
ft4 7
ft /H
1\V
M7
7Hft
fl.-»M
P /ft
31 9
951
51 >>
«y
4 ^
4n
e,.
•
•
•
•
u 4 n n
71UO
:s ft ii n
2?'in
7«.in
111 on
9fti»n
4440
6^ -»n
39ft n
V54ft
i»tll(l
5930
n 9 ii n
5? ii II
97iin
4 iiin
v?'in
4?ii n
9 1 ii n
4«illl
n .1 n n
ft n n n
tv.in
hh ii (1
4?. «n
ii ft ii n
n
u
ii
u
u
n
n
u
n
n
u
n
n
n
M
II
II
II
II
,1
II
II
STAB
(Btu/lb°F)
n
n
n
n
n
0
-n
-0
-n
-n
-n
-ii
-n
• n
n
n
n
u
n
u
n
n
n
n
n
u
. M ft 9 n h
.M 7<"» 9 7
. II H 0 1 9
. f»rt4nn
.ii
.0

• r
H749
V ii -l h
ft41 4
4<>V9
CTAB
(Btu/lb°F)
n'tft"?4 140. 0 psia
•i. SftS2ft
".3h67o
Ii . 4H4?R.
II . 455Q6
./>.>*> 9 4 n.4542/
. ?
.?
. l
. 1
. 1
.H
.M
. ft
.H
."
.n
.ft
.0
.11
.11
• n
. if
?1 V3
n7*4
9.1v 4
/9/9
ft^/9
(7 |4
ftu/7
64.*H
II . 4 *i ft 3 1
1 1 . 4 H V 7 H
'1.46429
n.44313
n. 461 45
n.3?'*l H
u . 33/>75
"1.33/42
'" . 3 4 ? |1 H
""!4^J 150. 0 psia
n. 3 45 7 7
•'.34759
 si) 2
n
u
ii
ii
H ^. 71 "OH
47
- < A
- V>4
- 14
- «*»
-04
.^4
-7 *
-ft/
7f
^'>
vs
. n 7 ii n ii
•
•
•
vJft'lO
2 I u 0
7 6un
l(
0
u
ft
n
n
:|
0
0
. n
-II
-n
.'.'
.n
.n
71 -.4
751 n
/«»»3
. (1M?1 4
. o
Mbo4
.fU<9i2
ii . 35V66
f'. fl^? Ins.
6 n
J950
372M
67«n
uv4n
II
,,
ft
n
D
n
u
ft ? u n u
n ft n n
n
-n
- n
-n
-n
0
0
n
0
n
. r
t •}
.1
.1
.II
.II
. H
.(I
.P
U7vft
93v7
7994
65^0
H 4 1 n
1 391
?3^6
.s 3 n 6
3 A •< 3
il . 461(49
n . 4 ft s 2 'l
,i.46hP5 160. 0 psia
n.45962
".33H1.4
•'.33444
".33(187
n. ."14 33 4
" • 3 4 5 1 2
.5?nnu n.n4"->7 n.34ft9o
Figure 9  .  CP-34 Superheated Fluid Properties II (Cont'd)
                           369

-------
VTAB
(ft3/lb)
0.67969
0.6H9.S7
0 .699nll
I) . 7 0 8 S 8
0 . 7 1 8 1 U
0.72756
0.7 1698
II . 746^6
0. 75569
U. 76498
0.77423
0.7H344
0.79262
0.01618
0 . 0 I 6 1 /
0.01678
0.01711
0.01747
0 . 0 1 7 H 6
0. 01828
0.01876
0.019^7
0.55847
n . •> H 3 n «
n . 6 u 7 u A
0.61 6^4
0 . ft f 5 0 2
0.6 ?4
n . (S4448
n . *> •} * c 7
n . <, * 7 / y
n . 6 / 1 M Ct
0 . '» i n - »•
0 . A\H9M^
0 ,6^H/7
n . 7 n 7 A, 5
0. 71 At4Q
n . 7->5X«
0 . 7 14 n 4
0 . 7 4 7 / A.
o . n i M &
n . n i A\4 7
0 . 0 1 6 7 *
0 . H 1 7 1 1
0. 01 74 7
O.ni /H5
0.01 8^8
0.018/4
HTAB
(Btu/lb)
114.00IKUI
1 1 / . 5 ll ii 0 u
1 ? 1 . 0 I n 0 U
1 "> 4 . b •» .1 0 U
1 7 •» . 0 9 u 0 M
1 11 . At5'iO II
1 1*>.7 tiilifl
1 * * . h .1 l 0 'I
1 4 ' . 4 4 n n il
1 4 A, . u / n 0 0
1 4 K. /i mm
1 5 ^ . 3 7 -i n n
1 5 7 . 0 4 i.l 0 (I
- 1 3 .1 . 3 4 ,i 0 0
- 1 > 4 . 1 * n n n
-1 1 4. /-jiinn
- 1 04 . 9Hn |M|
- >J 1 . H !'i /• 0 H
- » » . 4 2 1 n n
- 7 1 . ^ 9 a II ii
- *>•> . 3 9 > n -I
-i ii . 7"i / n i)
H*. 1 Villll
gd.hM/nn
1 1. , . 1 •> 1 11 .1
1 II '. . ft 1 ' II U
1 1 -i . MM i 0 ll
11 >.*?7 n,,
1 i / . ,. i n .,
i <•-.». i , n n
I ~> *\ . ', 4 i II ii
| 9/.rW .H,
1 •<<.','/ i ll il
1 * 4 . ^A« . n .1
l * .. 4't.in-i
1 4 -. us 11 n,,
1 i .. / ?H"I.
1 4 J . ,\ 7 • " ••
1 5 * . Ii 1 u 0 M
' 5 6 . 7 1 U O H
- 1 1 1 . 3 1 u n H
- 1 '' 4 . 1 H M " "1
- 1 1 4 . / Til It II
- 1 n i . v 7 ii n n
-9i.r*rtiMii
-HI. 41 ^On
- 7 »".fc»8oO u
- f\ / . .1 7 ^ 0 0
STAB
(Btu/lb °F)
0.044-^9
0.047V9
0 . 0 ^ 1 t , 7
0 . 0 «) *> %j 3
0.058v 7
0.067->9
0.06619
n. 06077
0 .U7333
O.ll76»i7
0 .OHH 19
n . ii H 3 * o
O.OM7.17
-0.76418
-0 .75ilu4
-i . ?35w
• u ? v i M y
— n ? f i / w y
- 11 . 1 9 4 i| 0
-fl .1 7^97
- 0 . 1 6 •> « 1
-0.151/7
.1 . ll 1 ? .i 2
0.1171 72
n . M j i s /
0 .II .15 n 4
II .II tH M(l
n . ii 4 9 1 ^
•I . 0 4 A» '» 4
'I . (i 4 «J u 3
0 . II b ^ '. 0
II . O1* /V5
0 . ll f> 0 r»H
II . 0 r> 4 4 9
0 . 0 h*< •• h
'I . 0 7 1 * S
0 . H / S i 9
0 . 0 7 * / 2
(>. OH273
O.OH57?
-0. 764^0
-0 . ?5M i'6
-0 . ?3A»n 1
-0. ??'••!
- 0 . X 0 R 'i 7
- l) . 1 9 4 n 3
-1 . 1 MM Ml
-U. 16504
CTAB
(Btu/lb °F)
0.34867
0.35042
n.35214
n . ^5385
0.35554
H.35771
!i. 3604o
0.36205
0.3636U
0.36512
H.36661
11.36807
n.45394
n.45383
U.45416
0.45625
n.45962
0.46491
".4688H
0.4579d
0.4776U
"1 . 3 3 r» 7 II
11.341)39
n.34466
0.. 14637
0 . 3 4 H 0 9
M.34979
0.35149
H..1S316
Ii., 15482
"'.35647
(1.35M1K
". .15970
M.36179
".36283
0. 16436
•1.36586
u.36732
0.36H75
0.453*2
'1.45358
n.45524
0.45789
0.45970
0.46497
U.46U66
0.47337






160.0 psia

















170. 0 psia

















180. 0 psia




Figure 9  .  CP-34 Superheated Fluid Properties II  (Cont'd)
                           370

-------
VTAB
(ft3/lb)
n . n i g v 7
n . S iS*i9
n . '> 7 ? / s
'i . b'lft 74
n.s J1)*/
n . ft ii 4 'j *
n . 
II . ft'ift4S
ii . ft *>4w?
n . A ; 3 .s s
ii . ft •* 1 7*i
n .ft in i n
i«.ft-vH4]
ft . n fti H
n .n ft4 ;
II . n ft 7 u
" . 'i 711
n . ;i / 4 7
n . n 7 h s
ft . .1 H /• 7
n . il R 7 4
n . ,i v - .'
!• . 1 lV»n 4
H . M 1 1 I /
.. . S , 1 > »
... -M j v. ;
n .1-.1 • -«
n . s ~ ;i .' .*
n . S ft R /' i
«• . S7 7 ) N
l« . «»M11 /
'•.•>**• J
n ,6'i?1 h
'i . *> 1 n • *
n . ft *4 / 4
n .M?/ ;
n . '>*> n / ^>
ft . * •> « 7 ^
o . n i * i H
n. n i *4 /
HTAB
(Btu/lb)
-*)•-. 7«>7n!i
x>..»>7inn
9 i . (i 7 i n u
'i .-» . h 7 ii n M
n '. n?ti nil
i 1. 1 3 u nn
i *.. r4n n ii
^H . 1 Rnfl n
> \ . / ^ ii ii n
-» / . / w n n u
< i.MH., 0"
•><> . 4min.i
< * . ;i g it n n
4 1 . 7 ? H 11 II
1 is . .\fy ii n n
1 4w. n? n n n
i *> /* . ft *> n n ii
i i*..>H,mn
- 1 < > . < 1 n n n
- 1 V -\ . \ ft n 0 II
- 1 1 4. /? II H II
- i n i . gft ii n n
- w ^ . f< s *i n ii
- i i. /in/n-i
- 7 s . •> 7 7 n i;
- * * . j ft " n n
-i.-. 7571111
•i 1 . ><'jg fl u
-v ^ . *> 4 > H II
i •> . i mi n n
i -..ft/.imi
i -i .. l 7 1' nil
i i ' . ftH u n ii
1 * -> . s 1 •> n n
i i •> . /•> n " u
' ' » . .*?!• n n
i -ii. ig on u
i > . 4 M -I n u
1 > 1 . ii «.) ii n ii
1 w . / 1 n n u
i -> i . .tS'inn
i 4 -> . n ;1 n 0 ')
i i • .* 7 n 01)
i • ' . ^ *> u n n
\ - - . n 4 n o u
- 1 < < . ?9n n u
- 1 -M . i 4 n nil
STAB CTAB
(Btu/lb °F) (Btu/lb °F)
- '1 . 1 b 1 / R ii . 4 7 4 1 o
n.nin^i n.33«H9
ll.lllyft O.J419M
n . n ,•» \\ 4 n . !5 4 7 ft 7
1I.H3711 n.-'MwiSX
n.n4Hi<5 ".35(190
n . !1 44-jR " . 3*5? ft II
n.n4ri>*A ll.3b4?Z
n.n'jsr*? n.^^744
>).nb(>''5 ii. 35 VH 2
11 . OO/* -^7 il . 3ft hb9
n.nftft47 ii.sft?i3
ii. n 7 on 4 n.:sft3ft4
O.H73nO i'.3ftSl.>
O.n77l4 ".36 ft ft ||
n. no ii ^5 'i..ifthn4
') . MM 4 | b ii . 36944
-'l.?ft4/»? |l.4''?Hft
-fl . ?^>n iirt it . 4S/?34
-M.'3'»-'.5 n.4S»>ii»
-n . ?i»/-i4 ii . 4t>ft77
-il.?ll^-i»> ".46!HH
-n. ly4,ift n.46479
-H.lM-.i4 H.46H4M
-n. !/»•»•< A n.47.>?l
-II . 1 •> 1 7Q n. 47447
•i . no -<«jft ii . .S4»1 1
.1 . Ii 1 « ;A r . 3 4 oft 7
" . n / / > 9 'I.3474/
n.i'ji^g ".3490.J
f) . n 3*> ' R •• • f5 uft n
'I.H39X4 >'.35?1H
n. 047^7 "..^376
>i . H 4 ^/>9 •• • 3(>l?3?
U.PSii^H 'i.^bfthrt
n.n|j4.i(i ".35H43
n. 0^7 70 (i.3b997
n . 'l ftl »? " . 361 S||
(i . nft4 w3 ii . 36.^11 U
T.nnH^l ".1644^
n . n 7? i A 'i . ^ft^94
" . 0 7S*7 ii . .>ft7 < 7
n.n/ui4 ii..>6H/n
H . ONi'r.'j " . ^7'1 Ib
-n.7ft4?4 11.4*5391.
- H . 7 •, n i 1 -i . 4 S 4 9 4





180. 0 psia





















190. 0 psia














200. 0 psia
Figure 9   .  CP-34 Superheated Fluid Properties II (Cont'd)
                           371

-------
VTAB
(ft3/lb)
n.ni 67R
n.n j 71 1
n.01 74ft
n.ni 7H5
n.mR?7
n . n i « 7 3
n.ni 9?ft
n . 4 'i 9 .1 7
n.4H1 ft?
n .«> u 3 1 7
n .511 ft?
n . 5 1 9 u A
n.^647
11 . 5 4 4 ft 1
n . s •> ? 6 9
ii .5*n /n
o . 5 * A f- f>
n . 57ft5ft
n .5M44U
n .5V?? 1
'i . 5 *Q9ft
n . ft -i 7* 7
(I .ft I 5^4
n . ft /> ? <•• I
n . MI ft i H
n . n i ft 4 7
n. n j ft /n
n . n 1 /ii
n.ni 7 4 h
n.ni 7 -«t.
n . n i «/ J
n . in « / •>
n . n i 9yi
n.4 s?41
n . 4 -, 4 n M
0 . 4 / 5 (| n
n . 4 >i 3 1 9
n ,4>M?9
n . 4>»9^n
H.*>.I 7?4
0.5151 1
n .s^?wn
n . 5 < n * 4
n .*> \R^i
II . *> A 5 V 9
n . i >> 3 4 9
n . 5M »n
n.56R47
HTAB
(Btu/lb)
- 1 1 1 . 7 o n n n
-in 4. 9 4. in ft
-91. A 4 Mill
-H 1 . j9 inn
-7 4.5ft>/Qil
- ft •' . 3 ft * 0 U
-'•»". 75r» n il
MI. 4 linn
^ t. uncoil
1 0 1 .ftVuOil
i n i . i 9 n o ii
i n ^ / n n n n
i i s.s Vi mi
ll->. / 7" n u
1 1 V. J?lifl||
1 9y . 9i| ii n n
9*. 4Hl!(tU
3 " . n 9 u n n
< ". 70t'nn
W.O 1"4iiOn
4 -,..>?.• no
•> ^. II 'I :i n -I
^'>.71 -I||:|
- S ^. 9 ft H 111!
-191.1 f H (1 II
- i i i . ft 9 ii n o
-1 "1 . -. 751 II -i
•« % . H i •» n ii
vv.46.snn
i Hi . i9u no
i IM. 7 n. i n«i
in * . ? 3 n n n
1 1 i .77-. n;.
i i -i . 3 ' M n n
11 . M^.inii
i > ' . 4 / n n u
1 ' t . U 7 ii II II
1 9 «.« . f» ft M H II
i \>.31 ••nil
I % -» . y 5 h (i n
i 4 ii . ft i n nn
i 4 4. 9 H n nn
STAB
(Btu/lb °F)
-l!*?2?!l6
- ii . ? n R n A
-n.194H9
-n.1 HO n 7
-II. 1 66 M?
- n . i b 1 H l
n . n n ft 7 ft
n . n i fthi
n . n ?ft/^9
n . n 3 n 1 1
n . n 3 3 j t
n . n A 7 ft H
n . n 4 1 4 3
n . n45ift
n . 04>M6
n . 059^4
•i .n5ft<">
•i . 05^ H4
ii . n 6 3 * 5
n . Oft7n5
II . II 7iifi?
n .n74i 7
.1 . !l 7 7 7 n
1.11 Hi /I
-0 . 9ft496
- n . ? •? n 1 3
-n . ?3ft u fl
-11 • ???II9
- n . ? u H 1 1
-ll . 1 93^7
- n . 1 4 n i o
-n . 16M'*
- U . 1 5 I w 4
n.nnsio
n.n 15 n?
n . n 2 4 / 4
n . o?8*»fl
n.n3?4n
n . n 3 ft i R
n .n.jv.95
II. 114  200. Opsia
II . 3549^
11.3564ft
(1.35797
0. 35946
u.36(l95
'1 . 3 6 ?. 4 3
H.363H9
" 9 »J 0 V *J \J
II v O n o 7 v
H.36HL6
M . 36953
11 . 3 7 H H «
n . 4S3?3
I' . 45j7ij
H . 454 n 7
ii.457ni
n . 4599n
II. 4? 4 8M
H.46»19J
n. 47994
n.47775
ii . j 4 4 59
H.J4736 o i n n
fciw» V |j91.T»
M ^ .* O II T ^i
H . J51 9ft
il. <5.>3o
n . t«S4 77
n . ^ 5 ft ? l
i' . .15/64
". ^5vnH
• • . *ftil5 <>
11 . 
-------
VTAB
(ft3/lb)
0
0
0
0
n
n
n
0
n
n
n
n
0
n
n
n
it
n
n
n
n
n
0
n
ii
n
o
n
n
0
0
0
0
0
n
n
n
n
n
n
n
0
0
n
n
0
0
»
•
•
•
•
•
•
•
•
•
•
•
.
•
•
.
•
.
•
•
•
•
•
.
9
•
•
•
.
•
•
•
•
•
•
•
•
•
.
.
,
•
•
•
•
•
•
575HO
5H3?7
5VO4
0 1 9 p 3
1 ? R y 6
4403?
4b7?R
4h5|5
4 /2Q?
4H06?
4 >\ R ? 4
4V5/9
5 H 3? 7
5 111 c> 9
*>lfll'5
5?53ft
5.tM
4i»5M
433^7
441 ??
44879
456?6
4 6 3 ft 6
47099
\


-
-
-
-
-
-
-
-
-
-

1
1
1
1
1
1
i
]
1
I




I
. i
- 1
-1
- 1
-
-
-
_
-
-

1
1
1
I
1
1
HTAB
(Btu/lb)
4;
51
5'i
3 ^
94
1 J
|1 •!
94
M4
73
ft/-
Sil
3K
9 1
On
04
O/
1 I
1 4
1 H
> >
•>^
7
4 -i
4 /
S I
», -^
^ \
•>•»
1 4
(I <4
W4
ft.l
7 <
^^
5 n
.^ »
41
0,|
(1 *
n 7
1 "
i -i
1 «
.96HII
. 6 6 1) 0
.37ilO
. 2 6 u 0
.lino
.f>7uO
.9l(,0
.bivn
.3710
.5iii»n
.3-5XO
.74WH
. 7 I •> 0
.9040
,h7-lO
. ? n u o
. Mirn
. 3 n n n
.87nO
.45l.iO
. Il 5 ii (1
.65HO
. ? R « n
. 9 ? w n
. 57(10
.^3,10
. h 0 II (1
. 3 ii u n
. n ?ii n
. ?4 :iO
.10.10
. 6 S H 0
. 9 U 0 0
. H 0 H 0
.o-»vO
.5440
. 34 1 0
.7470
. 71hO
. M40
. 1 5 ,• 0
. /ll.iO
,?6lid
.8300
II
II
II
II
II
II
0
II
0
II
II
II
II
II
M
II
11
II
II
II
II
II
II
n
II
11
II
,1
II
II
II
II
fl
n
II
II
n
II
II
II
II
II
II
II
. 4tiinu
. i) n n n
II
STAB
(Btu/lb
0
0
1)
-11
-0
-0
-II
-0
-11
-n
-it
-0
-u
0
I)
1.1
0
IJ
fl
n
n
0
u
n
0
n
M
H
n
-n
-n
-o
-n
-'i
-n
-n
-n
-0
-it
0
0
ii
0
n
. n
ii
.07?
.0/6
. 0 7-J
.?64

.23"
.?
.?OH
. 1 94
.1 Mil
.I6f»
.151
.137
°F)
77
31
*3
?H
1 5
1 fl
n
13
15
14
n9
VH
75
.01*46
. 0?3
'•M
CTAB
(Btu/lb °F)
U.36rt97
f . 3 7 u 3 0
0.37163
H.4529H
n .45336
H.455119
M . 44/l«j
'. .46021
n . 4 6 4 5 7
u.46ti6r>
1 1 4 7 ? 9 f
i' . 4 7 7 6 3
ii . 4H6R6
il. t493«
o . 3 5 ? y 7
.02/in ''.35352
» 0 3 0
.034
.03H
.04?
.04S
.049
.05.1
.n-,7
• "n U
.064
.071
'M
73

->6
99
"9
>7
„?

/•7
43
.07497
,0/M
. ?h4
.?5ll
. ?36
.???
.2lM
.1V4
.1HI1
.16*
'* 0
S(l
1 7
1 3
14
1.6
1R
1 7
1 3
.15?!.?
.137
.1)1 1
.021
• U ' *
. 02^
.033
.037
.04(1
76
w5
•n
*5
•»li
\?
11
«H
1?' .61 ii fill II . 041ft?
11 .35482
•I.35M6
il .35 752
".35b87
ii . S60?5
".36162
'1.36301
'1.3643V
n . 36577 "
M « . i O / 1 %1
t' » «Sort4 /
'•. »711l
.. .3723V
'1.45410
n . 4540 1
'1.45552
'1.45674
n.46003
il.464H]
H.46R79
u.47327
0.47704
H.4H791
•I. 15154
1.1.35406
H . 3551H
H.35637
•1.35761
ti.35«H7
H.3601 5
n . .^^14lS



210. 0 psia













220. 0 psia





















230. 0 psia









Figure 9  .  CP-34 Superheated Fluid Properties II (Cont'd)
                            373

-------
VTAB
(ft3/lb)
            HTAB
           (Btu/lb)
                           STAB
                        (Btu/lb°F)
                           CTAB
                        (Btu/lb °F)
n . 4 7 R ? 4   i > s. 2,5 o n ii
                                      n.^fi? 7 7
                         n . nb? n?
n
it
n
(i
n
h
n
n
n
n
n
n
n
n
n
n
n
i.
^
•i
••
u
ii
•i
n
ii
,490ft4
. 5 ti ft h ft
.11 .1ft 4
. S'-» H Sft
.4^/4
.«3
.0
.>.)
.n
.n
• '
. •!
."
. n
. n
.n
. 1
.4
.4
.4
. 4
.4
. 1
. 4
. 4
.4
14.'
161
4
7
7
1 ft4ft
1 ft/
1 7I
1 74
1 7>
i «;'
I H /
1 g/
10,
-M /
u 4 1
1 1 /
i u">
x*c. r
\ U(
•n i
Iflv
•;4 '
*'•> f
;
1
ft
4
ft
S
.<
i
?
g
7
4
1
II
0
•y
7
ft
il . 4 ft *J 1 M
•1
"
II
|l
"
1)
n
n
n
u
n
0
.4
. 4
. 4
. 4
• •
• *
. '1
.n
."
.<>
. >i
.n
/ft ..
.. ?„
. Of
V ft >
..TV,
1 l^ '
1 * 1
I ft*
I ft '
I 71
i / 4
1 7*
«j
4
1
/
H
II
7
ft
>
II
4
1 i X —
1 % 'J
1 4 ^
!«/.
1 •>••.
1 I*.
- 1 "1 1 .
-]?'».
-114.
- 1 '14 .
-•M.
-•< J.
- 7 ^.
— ** •
-'» ' .
- < .
*" "' •
** * •
i .; ^.
i i- .
n -.
i ' ».
117.
i > ' .
i > i .
!••>«.
> < •.
i » > .
• i'*.
1 4 ».
1 " ' •
1 - '.
!•••!.
- M ».
- 1 '4.
-11".
- 1 '• 1 .
-•M.
^>? I
'>4'l
?4-i
9TI
ftRi-
??!'
1' "i'l
ft 4 1
H«J|i
704
jSn
4 1ft
.<4l
74ft
71 /
7Si'
ft?l
1 <"
/ft..
,\ •> -1
vv4
1 1 n
7 S ,t
4 ;.-
Jftll
H7,i
•> ).i
.1 1-1
?1 -i
Oft n
MM
«7-
.13 >
0
n
n
n
(i
n
n
n
n
n
0
n
n
n
n
n
0
•>
n
u
n
O
n
ii
n
n
n
M
n
u
i
p
(i
n
0
ii
;i
H
II
M
n
M
II
(1
II
II
II
II
II
•II
II
U
II
II
II
M
II
II
H
II
II
.1
.1
II
|l
,.
II
U
'1
'1
II
(I
II
II
n
ii
n
n
-n
-n
-ii
-n
-n
-n
-n
-:i
-n
-n
it
n
M
n
n
•i
n
n
:i
•i
il
n
il
n
'1
,)
U
-n
-u
-d
-ii
-a
. Ohi
.07H
.071
.077
. ?ft 4
,?bO
.?>1ft
.;><>?
. ?u M
. I W1
.IK"
. Iftft
.1 *>•>
.•u/
.nio
. r VH
.IV 4
. 1" V •
. n^i
. 'i i •>
. 0 ^w
.04 S
.04 7
. M l> -i
. 0',4
. I'jrt
. I'ft 1
. "6*>
. Oft*
ftO
13
ftR
>?
^3
1 9
16
16
1 9
/1
?n
16
i;6
7fl
46
%•>
P4
1 }
w4
7^>
*»3
^g
•' 1
/?
w
is
ftH
•>9
*1
. P 7 y «. 3
. n 7->
. ?b 1
. ? *> II
. ?v1"!>
.???
1O ^
7 1
^'7
>4
V?
1 R
1 9
?1
ii.;<6i>43
1 1 • *^ ft ^> 7 ft
h% f\ H n A A«3i/« U pSlci
9 J \* " II O *
•i . 1 7 (1 6 •?
•i. .1719?
'i . i 7 ,1 1 7
•i . nr>?n9
" . 4 S 4 6 ,<
". 4 5451)
.1 . 4b66?
'i . 4596?
...4ft494
•'.46HH?
n. 4 7. 11 M
".t771w
n .4HM44
!• . .l^jMy
• i..sSSOi»
.. \Sft9 1 240. 0 psia
n . ^b^nii
n . •I'JVl 1
i. . .>h Il3il
i' ..161 49
M. 16? 7.1
'" . <63« /
-•..165?.)
i . V1 ft ft 5 1
• . ,^ft 7 7ft
'• . 16k/U.>
' . .1 / 1 1 ? /
•i . .171 52
i'. .•>7'>7ft
n. 17^97
|J . 4 5 ^ 7 6
'i . 45J5?.
'I . 4 4 .1 «> /
ii. 45671
'1.4ft04j „ « «
i..4643w 250.0 psia
II . ll I H .• >

" . ' I '• .' *
i. . 'i I Q» |

il . Ift^ ! P

0 .
 .; 4 •» n i

 . 1 •> ^n M
'. n 7»-on
                        • 0 . i x M -»3
                        •0 .1 hft/»fl
                        • n . 1 s •» i n
                                       n.
                                       ii. a 7 y 7 x
                                       U.47H1. ?
                         n . n I
                                M n
                                       ii . .14 0 J 1
                                       •i. .1 s 7 g .1
       Figure 9  .  CP-34 Superheated Fluid Properties II  (Cont'd)
                                    374

-------
VTAB
(ft3/lb)
n. 3*1 65
O..S9R96
il . 4 0 ft 1 o
0 . 4 1 3 2 7
n. 4^029
0 . 4 ? 7 2 4
i'. 4^4 111
u .44090
n .44 7ft 4
" . 4S431
•1.46093
M . 4 ft 7 4 9
n . 4 / 4 o n
(1 . 4 H 0 4 ft
n . 4 S ft h H
n. 11 61 7
H . 0 ft 4 ft
n.ll ft77
0 . n 7 1 II
n . n i 7 4 S
n . n 7^3
n.ii R?S
n .n H/I
'i . II 9^2
0 . II 0;-, |l
n . 3 4 ft 9 ^
» . .< ft S 7 <
II. W 3-1
" . .1 » " I a
I-. <><7-.M
•• . ,1-'4 1 H
n .4 i "S
«'.4 i /•. *
n.4 i 4'. s
'1 . 4 ;» 1 1 ft
0.4 •'772
n . 4 1 4 •/* 2
II . 4 4 0 ft ft
II . 44 7 ii 4
'i . 4*73 Jb
n . 4 4 0 /. ft
II .4o590
0 . HI ft 1 7
n .u i ft 46
II . (1 I ft 7 «
o . n 1 7 HI
0.01 74S
0.01 7 H 3
HTAB
(Btu/lb)
i iv.ftft'ino
i o *. . 2 5 ii n o
i ii*.«6"fli'
il i.47,ini.
11 7. u*n On
1 2 ... 7 3 u 0 "
? 4 . J 7 u 0 u
'•i . U ?HO i)
M . 7 •) n 0 l,
S •> . ,1 fl U 0 II
< *J . U H il 0 il
4 ' . 7 i -in n
1 n . S •! n 0 II
->•• . 2 Sun "
S < . 9 7 .1 On
- < •> . i g .1 n n
- '4 . y>ii 0 I;
- i4.ftiiinn
- I 04 . n6u 1 1'
-O/i . 7690)1
- M 1 . ^ ? * n ii
-7 %.S1 ynn
- ft ' . .) 3 'i 0 -'
-Si. /4^0"
- v.. 7? >n.i
••> J.S S^fln
o ,s<>.,nii
1 -i/. M il"
l 1-1.71 i nil
I 'i ' . .^ 6 " il n
i I .• . * V i 0 ••
1 i •. . s <,.nM
i > .//•""
1 > '.93.1(1-1
I '•> 7 . ft 1 ii rt ii
1 < ) .29. .On
1 M. **.ino
1 .«•» . ftn.l 0 n
1 \s . 4H ii * n
1 4-». 1 Linn
1 4 -j . M 7 i n n
l s % . ft ? .1 n n
-1 S %. 1 7-inn
- I 91. Ii S-i 00
-1 i ». 7 Si, nu
- 1 0 4 . p5«i U ii
- w « . 7'57nil
- K 4 . 3 1 -i n ii
STAB
(Btu/lb °F)
fl.022'J7
0.02675
1 . 0 3 0 * 0
(I . 0 3 4 4 3
0.03H/2
n . 041 99
il . 1) 4 S 7 3
>I.04*4S
•1 . 0 1> 3 1. 4
0 . fi s is •< 0
0 . 0&044
0 ,0h4n6
n . Oft765
•1.071??
'1.07477
-H .2ft4 >7
-11.2-jO --4
- n . "> 3 ft ? 0
- 0 . 2 2 2 .•" 1
- 0 . 2 i) H V 4
- fl . 1 * 4 > 7
-0 . lull; 7
- 1 . 1 o ft •; 3
-d . 1 -,7 i 4
-0.1 37'>6
U .0)1 7 16
n.m 7-^fl
".121->2
11 . n 2 *J J 2
0 .11^9^9
•l . 0 3 « 1 4
il . n.ift**;
•I. 04117 3
0.0444R
1) . 0 4 •* v 1
0 . Osl 91
0 . 0 S • j -, 9
0 . 0 s 0 ^ 4
0 . Oft?M7
0. Oft647
0.07 U !i 5
n . n 7 3 ft n
-0.26439
- 0 . ? s 0 > 6
i!:???51
- 0 . 2 II * 2 7
- 0 . 1 9 4 ,10
CTAB
(Btu/lb °F)
n . 3 5 U 7 M
U.3b97l
'l. 360 72
U. 301 79
M. 3 6 2, H 9
11.36404
H.36S2H
n . 36 ft 39
n. 3675*
u . 36nfl I
n. 3 7 n 02
n.37123,
".37243
n. 37362
•1.3747*
II. 4S.SH.S
H . 4S43H
M.4S4H7
n . 4S.63 I
H . 4*>96/'
-1 . 4 ft 4 rt 4
" . 46ri29
".47?93
H.47791
u . 4bo42
n .3 «S 9ll >
•1 . ,* (Ml 0 S
n . 3 6 u 7 /
11 . .161 5 ?
n..)ft24ii
l'.36 3 3 •>
n. .5ft 4 34
n . J6S4H
'i . 3 h ft 4 H
i'. 36761
'i. ff>rt 7s
H.369HM
n.37lU->
II.3722U
i). 1733s
u . j 7 4 5 n
n.37564
0 . 4 s 2 7 7
n. 45333
u..Sft3l9
n . 4 S S 3 rt
n.46(i92
n.4642.)









250. 0 psia



















260. 0 psia
















270. 0 psia


Figure 9  .  CP-34 Superheated Fluid Properties II (Cont'd)
                           375

-------
VTAB
(ft3/lb)
n
n
n
n
n
n
n
ii
n
n
n
0
n
n
n
n
n
n
n
n
n
d
ii
n
n
it
•i
•i
(i
n
i
.
n
i
0
n
n
n
n
n
n
P
n
n
n
n
n
•
•
•
.
•
•
.
V
•
•
•
•
•
•
•
.
•
•
»
.
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.
•
•
0 1 H?5
tt 1 fl 7 1
019??
Il 19HO
I) ? 0 4 R
.^5*9
.1 ft ? / *
* ft 9 ft 5
.17 6 4 7
.1 M ^ i 9
.1/19H?
W6.S7
4 u 7 M •>
4il9/">
4 1 5^9
4 ->1 K7
4 '/ R II 9
4 .S 4 ? ft
44 ll.tR
/J4fti«3
H 61 7
II ft ift
n ft; ;
II 7 1.9
n 7 1*>
n 7» *
n K ^4
II X ; |l
II 0 ,' 1
•. Q i W
r .» H >l 7
» ^ ? 1 v
*<4ft/l 7
v. 1/7
^•jw<«7
Iftft'.ft
~\ 1 * i. ft
.W947
»5 *H ^ 1' 1
^ U p n 7
.1 9 H /» 7
4 U 4 4 (|
4 1 H 4 7
41ft49
49?4ft
4 v R .} 7
"161 7
_
-
-
-
-
1
1
I
1
1
1
1
I
1
I
1
1
1
1
1
-I
-1
-1
. 1
-
-
-
-
-
-
-

1
I
1
i
I
1
1
I
1
1
1
1
I
1
-1
HTAB
(Btu/lb)
7 \
ft"
•» 'i
^ i
9ft
HI
fi-
ll •
1 '
1"
1 <
•> \
?/
\ ••
< ^
^ »
,' -4
\ *
n i
0/1
M 1
7 %
A -
1
s •
»-
w ;
11 i
M 1
•i <
i •
i .
i j
•> \
?*
< .
* 1
I/
4 1
4s
4-J
•j.'
< <
.91..
. ;•» ? i
. /4u
. 7 H
•?k>"
!^/
.^?
. h"S i
.•>il"
. !•>•!
,n'n
. 4 9 ii
.1 7.,
. u 7 ••
.*>7 •
• c **
. ol '
. /•»-
.',.1 ,
.^s
. 1ft •
.!•->.
.^•il
. 'M •
. / 1 .
. v> I /
.*> 1 '
. >1
. / < •
. ' * •
. ?s-
. .' i
. 111..
. ft 1 •
. ^ 4
. lin'i
.ft 7.
. -3 ^ ' '
. U 4 -i
. 74"
.44-'
.!'»•'
.R9,|
,ft;>,.
. J f ii
.1.1 '
,9Q.i
. 14 i
H II
n >i
nn
fin
n,.
n !
on
DM
nu
On
nil
n n
nu
n u
nn
nn
nn
On
n n
nit
n •)
n ii
nn
n M
0 < i
n .,
T.I
:> n
n,.
n
n .1
n ,,
n >.
n '
p •
n
ii •>
nil
n "
n.i
0'»
O'l
nn
Oil
n,i
On
nil
STAB
(Btu/lb
-n
-n
-n
-u
"."
n
n
n
n
n
n
n
n
n
u
•}
0
n
n
n
-0
-ii
-•i
-n
-n
-o
-0
-fl
-n
-0
-1
n
n
n
n
n
n
n
•i
0
n
•»
n
:i
n
n
n
-n
.inn
.166
.1 5?
.1.18
.l?3
. n •/. n
.H? 4
.n?R
.Ml
°F)
.Ml
f* 7
1 R
1)1
ftB
19
1?
n1
H7
. n .1 •» 7 n
.0.59
. 04 \
.047
. n t> (i
.054
.0'>a
.061
. OftS
•>0

Hi
7?
4]
;i7
70
\\
47
41
i»P
. ? .1 ft V 5
.???
.?I)M
.1*^4
. 1 K H
.1 ft6

.^0
.»3
13
H.iij
.1?.^
.1)14
. n i*
.IV?
. n?ft
.n in
. 0 J4
.P j»*
.04?
,n4l>
70
v*ll
*9
^4
7"j
« J
47
.•9
-.7
•<«5
. 0 4 9 *> 5
.Ob 1
A II T "
. iiftn
.064
. Oft7
.071
i">
«3
•>7
19
79
16
.?ft44?
CTAB
(Btu/lb °F)
!|
1)
U
II
II
"
II
II
•1
I.I
n
u
n
u
M
u
u
M
1)
II
fl
1)
11
il
II
M
H
11
11
'1
II
|>
"
.1
|.
II
|l
II
61>
. 5 0 9 0 ?
!'.16?MH
..*6j4.t
..1641 7
«-<6499 270. 0 psia
. ,< ft *) A M
,.S6ftR?
. .167Rv't
..S6rtt7
...16994
..1710?
..17? 1 U
. 1 7 6 ?. u
.,1741?
. "1 7 •> 4 i
..l7ftSl
.4|>.17n
. 4 S .S 7 H
,41>S74
. 4*>ft HO
.4ftU 7
,4ft4S|
.4ftt)W4
. 4 7 V 7 h
.47 7 7n
.4Hftl I
. Mi JM u
..1647^
•^fesn" 280. 0 psia
• *^ f> O 'I ^
• \^ 6 ^ / 1
..1674M
. ^d^/
. .1 6 9 ? ,t
. .1 7 u 1 M
.i711ft
. *72lM
..S7J7.1
..1742J
. J7*>30
. i76 t!?
. .5 7 7 4 fl
.<'».« OH 990 0 nsia
Figure  9 .  CP-34 Superheated Fluid Properties II (Cont'd)
                           376

-------
VTAB
(ft3/lb)
0.01646
0. 01677
n. ni 7 ii 4
n. in 744
n . n 1 7 H .5
0.018P4
n.niR/n
o . n 1 9 v i
n . « 1 o ; »i
n.n?(M«s
n. M747
n . 3 7 4 4 4
n.33l?7
0.3 1797
0.34456
n . 3M 1-4
n. 1^742
n.363/1
n. J6992
n. 376n5
n..irt7ii
n. 5H811
n . « y 4 n *>
n . 1^w97
n. 4'n 5 ;«>
o.4Mb2
n .01 M 7
o . n i * i *
0 . o i ft / *
n . n i 7 n y
n .01 7*4
0 . 0 \ 7 n ?
0 . 0 | R?4
n . m « 7 n
o . n i v ?  n
1). 34778
0.34RQ*
n.s-js..^
n. 361 07
n.3(!)7fil
HTAB
(Btu/lb)
-i?4.iionnu
-114.^.61100
-1 H4.82UOO
-y4.73jno
-R4.?9f>0u
-7 J.49400
-ft?. 312 00
- S ii . 7 3 f< 0 il
-3^.73^00
-?ft. 27^00
96.78HOD
1 "') . 4(SiiOU
i o 4 . 1 4 n o n
1 0 1 . 8 1 ii 0 0
11 1 . r> n n o o
1 1 •> . 1 9 ii n i)
1 1 x . B 8 (1 0 0
i 7 ?. 58 uon
i ?*.?9non
1 * 'i . (i l ii n u
l J i . 7 4 ii n n
U 7. 4 8 il On
14 i .?in no
l 44.99000
14-.. 76 il 00
lk>^.i>3HOO
- 1 * 1 . i J H n n
- 1 ' * . 9 8 ii 0 0
-1 1 4. 55(1011
- 1 '1 4 . H 0 II 0 U
-94.72100
-«4. 28-300
- 7 1 . 4 8 4 0 H
- ft '..JO/ 0 0
-c"'. 7 5jflO
- .* « . 7 4 1 0 H
-?i. 28^011
9^.1>UOO
y^.HBlOll
1 i o i.58onn
l n / . 2 H ii n o
1 1 ii. 98||00
1 1 4 . 6 9 U U U
1 1 ,-s . 4 0 0 0 II
1 ?->.!? ill) II
1 7i.Ht>ilOO
1 7 ^ . b * (1 0 0
I 3 1 . 3 2 II 0 |l
STAB
(Btu/lb °F)
-0.25030
-0.73627
-0.222^9
-0.708,32
-0.19436
-0.1H03A
-0. 166.14
-0.15226
-0.1 J810
-0.123H1
0.01359
Q.Ol7ftO
0.021*>8
•1.02551
0.02941
0. 0^327
O.OJ710
0.040^0
0.044*7
0 . (1 4 rt 4 1
0.05712
O.U1?1^!
0. 0^947
n.06.n n
0.0h«.70
0.0 70 -"i
-0.76415
-11.2511 13
-0.7J* >0
-0. 7 2 2- 12
-0.70»-<5
- n . 1 9 4 .1 9
-0 . 1 HII 40
-0.16ft <8
-0.1-37 ^
-n.i.iHM
-0.12316
0.fll7-->9
n . o i h .1 3
0.070 ^3
U.024V9
0.02HV1
0.03209
0.035-)4.
0.03976
0 . 0 4 3 n 4
0.04779
0 . 0 5 1 11 2
CTAB
(Btu/lb °F)
0.45370
H.t5503
0.45662
11.45904
H.4642U
II.46H79
0.47309
11.47763
0.48553
0.50830
II. .56735
0.36738
0.36761 290. 0 psia
il. 36HOI
H. 36853
0.36917
0.. 16988
n. 37067
U.37155
0.37245
0. 37339
ii.. 17433
n. 37531
i'.vS7632
0.37731
.1.37830
n. 45 431
D.45398
n.4538?
H.45585
0.45969
n.46494
fi.46H63
11.47309
n.47766
n. 48577
H.50K06 300. 0 psia
11.371)14
•1.36990
0.3699U
11.37009
n. 17044
ft. 37093
0.37153
n. 37220
11.37296
0. 57377
0. 57463
Figure 9  .  CP-34 Superheated Fluid Properties II (Cont'd)
                           377

-------
VTAB
(ft3/lb)
0. 3/788
n. 37869
0.3H444
0.39014
0.39578
n. 0161 7
0.01645
0.01676
0 . 0 1 7 II 9
fl. 01744
0.017H?
0.01823
0.01869
0.01919
0.01977
0 . 0 '1 0 4 3
n. 27756
0.2<)438
0.2V101
0.2^749
n . 3 n 3 M ?
0.310 ii.l
0.31613
0.32212
0 .328112
n. 33383
M. 3 3956
n. 34521
o . Vi o n n
0.35633
0.3o1 *n
n.3r>721
0.0161*
0.0 1*45
0.01*76
" . 0 1 7 U P
0.01743
0.017H1
0.01823
n.OIM^H
n. 01019
0.01976
n . o '' o 4 1
n . o x 1 v o
0.2M ?1
0.7h7Jv
n . p / 4 ] P
H .2*041
HTAB
(Btu/lb)
137. 0700 II
14H.83000
1 4 4 . 6 0 0 0 M
1 4 H. 3 8 (I mi
1 5 2 . 1 7 U 0 n
-133.09001)
-123.9500M
-114.b?un«
-104.78 « OU
-94.694HU
-84.2ft.jOll
-73. 46«OU
-6^.?9^0ll
- •> " . 7 2 y 0 II
-3^.74600
-26.304011
94.917011
9 n . 6 7 7 0 H
10/».4300rt
1 n is . ] P. i) o n
10y.92uOn
11 ^ 67 00 II
1 1. / . 4 ? u 0 ii
121.1 700H
1 ? 4 . V 3 U 0 II
l?H.f>9iinii
1 3 '/_ . 4 6 II 0 n
1 3ft. 24 II Oil
1 411.02 U OH
1 4 .* . H 1 il n M
1 4 / . 6 1 () 0 u
IV1..42UOH
-1 VJ.U'SflOil
- 1 2 A . 9 2 U " i)
- 1 1 4 . 4 9 0 II U
- 1 II 4 . 7 5 0 0 (I
- « 4 . 6 7 U 0 0
-Hi.24200
-7.*.45linn
-62.28300
-50.72400
-3H.751 OH
-7*>.3/?30ii
-1 i. 3690M
9 7. 40 7 nil
1 01 .22000
lfll».0?uno
inn. 82 ii nn
STAB
(Btu/lb °F)
0.0b472
0.058.59
0.06?<13
0.065*4
0.06923
-0.20449
-O.?5ll.)7
-0.23634
-0.22236
-U. 20841
-0.19445
-0.18046
-0.16645
-0.15238
-0.13823
-0.12397
II . 0 U 9 7 2
0.013H3
0.017H9
0.021«0
0.02SM6
0.02979
0.93367
0.03752
0.041.M
0.04512
0.04HM7
0.052S9
0.05629
0.05995
0.063-19
0.067?0
-0.26453
-0.2biln2
-n.23639
-0.22242
-0.20846
-0. 194^0
-0.18U13
-0.166S?
-0.15246
-0.138.13
-0.124H8
-0 .1 OV"4
0.011 15
0.01548
0.019-,5
0.023S6
CTAB
(Btu/lb °F)
0.37551
0.37642
0.37736
U.37831
0.3792b
0.45345
0.45395
11.45561
U. 45687
0.45880
0.46395
t). 46826
11.47312
0.47778
U. 48531
0.50753
II. 3 765 U
U. 37555
0.37497
0.37468
(1. 37463
H.37475
0.37505
0.37546
0.37598
0.37660
0.3772H
0.37800
0.37874
11.37956
0.38039
«. 38121
0.45305
1). 45361
0.45428
0.45575
H.45990
U. 46441
0.46842
11.47309
11.477H7
0.48488
0.50713
0.53051
0.38216
U. 38083
n. 37992
0.37936



300. 0 paia















320. 0 psia





















340. 0 psia








Figure 9  .  CP-34 Superheated Fluid Properties II (Cont'd)
                          378

-------
VTAB
(ft3/lb)
n
n
n
n
0
n
. 7 M 6 •> n
.;g?.4s
. S II 4 li J
..!/»> 7 I
. \ .) 1 4 S
. S S6/7
HTAB
(Btu/lb)
i
i
"..HI VJ
n
n
i)
n
n
n
(i
n
n
n
n
n
n
n
n
n
•
•
•
•
•
•
•
•
•
•
•
•

.
•
.
n
ii
n
M
II
n
u
n
u
n
'i
n
u
7
>
7
1616
16-1^
167b
I 7 n a
177
1918
19/4
7040
-M 1 H
91 '^
46>-l>
•> .1 7 1
•j W ,s H
-
-
-
-
-
1
1
.<
4
4
».
•s
?
1
u
o
^ •
•' .
'.
I .
'• •
^ •
'» .
" •
->.
.<.
** •
•1.
•1 .
-H4.
-
-
7
6
%.
>.
Mil
4i>ll
1 OH
•y '< n
1 0 ll
li 1 n
M \ n
"6ll
u 7 li
M9||
46l.i
72n
^4^
i>7l
nn
mi
nu
n ii
nu
n n
n i.
II M
tin
nu
I'M
n n
n n
flit
4 .^ ,j II H
?71
nu
-'ii! . M gnu
-
-
-


1
1
1
i>
1
,.
g
n
n
1.
^ .
* •
.4 ^
U .
*.
7.
/^•j
j4 ii
4 i) /
(I -1 4
94 ^
h^.i
(S7.I
II . 7 /»">,>» HI .^1 •!
n
n
n
u
'•
ii
i>
n
n
fi
n
i.
h
n
n
n
i'l
n
0
n
•
•
.
•
.
•
•
•
•
•
•
•
•
•
•
•
•
»
9
m
7
9
7
7
7
7
«
1
J
<
n
•
•I
n
(i
n
n
f|
1!
I)
7174
76U7
-. 7SQ
rung
w V,1
Jft' .<
n 4 n M
u g y *>
1 4 »6
1 0 4 ||
1 61 f,
1.6 IS
1 6 /•?
1 7nfl
I 71 1
I 7 •» il
1 »>1
: ** /
1 .. i 7
19 '.i
1
1
1
1
I
1
1
1
1
1
-1
-1
-1
-1
-
-
1
1
•.>
7
.<
<
<
4
•> .
J .
S.
'• .
ti.
4 .
•<.
^.
4*.
4
<
7
1
H
9
ri
^.
9 .
• •
A .
1.
•-».
•) •
.^b.i
11, i
111 i
h4 i
f>7n
hill
^4 n
IQ.i
II .* •)
HHH
V9n
fiSii
4 jn
nn
MM
nu
g ,.
n.i
ll'l
(I'l
n,i
n»
id.
n n
nn
n»
n ii '
n n
n n
n n
!l II
U H
II"
n n
6 9 -in n
ol •>
19y
n-
n.i
- 7.%.4i->n»
-
-
6
s
V.
H .
•i (y y
71 4
n -i
n ii
- .1 h . 7 s 9 n n
STAB
(Btu/lb °F)
n
n
0
n
it
u
n
-n
-n
-0
-n
- n
-il
-U
-n
-n
-n
-n
-n
-n
n
n
M
n
n
n
n
n
ii
u
o
n
n
n
-0
-n
- ii
-n
-n
-n
-n
-n
-n
-u
.n?7'?i
.n jy?u
. n 4 .1 n ?
. 0 4 6 M H
. n b u *> s
. n «o ? 4
.7M->7
. ? "j •! 4 ft
. 7.3644
.7?,»47
. ?'!><•> I
.19416
.1 M !)•>')
. 1 o 6 * 9
. 1 S 7 •> 4
.!.*«*:?
. 1 ?4 1 H
. 1 H V 7 7
. 1 n < » 7
.ni <"»
. n i 7 /?
.n 7 1. MI
. 1) ,•> 4 .< .5
. n?^.Mi
.n v<:>;s
. n ,5 7 1 ?
.04-ly7
. Il 44 79
. n 4rt->6
. n1?7 tl
. Il»jhil2
. n h o / n
. n 6 .M 6
. 764h?
.?Vr»n
. ? J i 4 8
.???'>?
.7nrti7
. 1 VI 6 ?
. 1 M n «>6
. 1 r>6*6
. 1 b?f>?
.1 .} H S ]
CTAB
(Btu/lb °F)
ii . .*7«97
M . ,l7VHf>
n. 37931
ii!.)Hul,t 340. 0 psia
il . .1 H II ft 6
lj • * i ti O \* J.
'I ^ 'i^>»C*O
I". 4*? 7 17
(i . 4«>4l g
(i . 4 ^ "7 7 1
•'.4 6 OS 7
II .4646,1
II.46H63
U.4777l>
.1.4777^
M.4846.^
1 .S06?!!
n .l>?V?»fJ
,. •> 4 n 1/4
H ! 
u . ,>879 7
'1.^8^04
•1 . 3 M S 7 •>
'i . Mi i">h
n . »»H,*94
H ,.S844/»
H . ,
II . .^ H «> S .S
ii . 4 "j > 4 M
•I. 4^.»4*>
n.45444
K.4I7S8*
".<6nSM 380> o psia
H . 46 \B/>
•l.4hM?6
n . 4 779 J
n . 4 7 73*>
tl . 4 H 4 6 6
Figure 9  .  CP-34 Superheated Fluid Properties II (Cont'd)
                           379

-------
VTAB
(ft3/lb)
n . n •? n ,> H
n . n 7 1 1 6
n . n ; 1 9 1
n . ? 3 4 1 7
n . ?  3 ^ 6
n . 9ft8r.ft
•i . 7 7 3  t"? v7
n . 7 -»H »• vj
ii .9 )4r6
0.91077
n . 74^ /?
i'.?'»1 1)5
«• . 7^676
» .7ft 1 >6
H . Pftft.1*?
0.77179
0. 7/61 4
n . 7 H I) y l
n. n i 615
0 . HI 6 4 4
n . ii 1 6 / 4
II . H 1 7 n 7
HTAB
(Btu/lb)
•1 >. 4 4'i flu
- •. . 1 II 4 7 il
- '.ft*> ^7 n
I o ' . s 4 -i n ii
1 0 i . 4 6 I II II
1 1 'i . A ft ii nn
1 1 4 . 7*5 .ill i;
1 1 ". I * HI"
1 9 x . |i II n H ,i
19-. .»• ; .1 n i.
1 7'». 74 ,i II .1
1 S S. on, Mill
1 W. 4 7 -. 'In
1 4 i . 3 4 ii n ii
i 4o . 7?'-n n
i. 4 >•! . b 9 ,i n n
- t "* ' . v5" . HPiill >l
- I 1 1 . 4H .' Il ii
- 1 HI . ft 6 il ft n
-«j.^.-. /n 'n i'
- 1 -. . 4 H | n ..
- • . • 5 / 4 ••
- '. /!••« '
1 n 1 . ' 9 ii 0 !•
1 M -i . ] w.in.,
1 n • . i. 6 -i n ••
11 i . M n n ••
11 /. n 4 -MI "
17- . >»6;i nn
1 7 4 . »' 7" n i'
17 \ . 7 * <\ n i.
1 .1 '.nrtnlli
1 3-i. -181.11 !•
1 4 n . 4rtu On
1 4 1 . ^ H .1 n n
1 4-^.7 8 il Oil
- 1 3 > . '> 7 I fi n
-.17 1. X 9. . It n
-1 1 t..) 7 MO n
- 1 M 1 . 0 4 '1 0 U
STAB
(Btu/lb °F)
-n. 124 79
-n.] H9H9
- n . 1 n 4 n 6
-II . IWM16
n . n i 4 y D
n . o 19 ii 5
n . n 7. 3 1 4
n . « 2 7 1 7
n.n;n is
n . n js-iB
n .i' jnw7
i) . n 4 ? M ?
n . n 4 ft ft 3
n . nsiMi
n.ns4i5
n . n •? 7 -1 5
o . n r> 1 *> 3
-'l.?6466
- II . 7 S ("i 5
-1 .?J6*>3
- 'I . 7 7 ? >i 7
-'1 .?l|Hft?
- U . 1 V 4 ft 8
-n .1 nn 7?
- n . 1 ft ft 7 4
- ii . i s 7 ; n
-n .ijH*n
-ft . 1 74 19
-0.1 l».i?
- 11 . ] II 4 .-• U
- '1 . II V H .S ?
•1 . fl 1 7 1 8
n . o ) ftni
ft . n?H-/7
II . (1 7 •> '1 6
n . 07<»i n
n . n j 3 n 8
n . o j7ui
n .041) 9 n
II . 11 4 4 / 4
II .O48'i 5
n . n s 7 1 2
n .ns ft n5
il .09^75
-II.P647H
inn:?j""«
-n.?7.?ft?
CTAB
(Btu/lb °F)
i:S:i
n . s 5 1 9 J
U. J9.ll?
Ii . 39n9n
H.OHV41
fl . .< H 8 3 1)
II.3H757
H..S87II]
H.3R673
i). 38664
H.38h69
il . 3 8 6 H ft
n.38714
n.38747
n. J878y
'1 . 45?.] 2
n . 4 5 J79
n . 4 5 3 4 8
11.45696
ii.4587(l
fl. 46435
(1.46888
ll.47?«4
(1 . 4 7 7 6 y
11 . 4 8 1 9 4
1) . ^ 0 4 4 4
O.S2733
H.S381 n

n . 4 fl l^ft
H.39M33
ii . v>9l>8ll
H.. 193.94
II . 3 9 9 5 3
M.39153
IJ . v> 9 1) 8 4
ii. 39 H 38
n. 39 ni 2
II. 39 00 II
11.3900?
n. 3 9 n ?n
II.3V047
11.453711
II.453H3
H. 49391
11.45/711







380. 0 psia





















400. 0 psia














420. 0 psia

Figure 9  .  CP-34 Superheated Fluid Properties II  (Cont'd)
                           380

-------
VTAB
(ft3/lb)
0.01742
0.01779
0.01820
0.01865
0.01935
0.01971
0.02035
0.02111
0.02146
0.02185
0.02228
0.2 H 68 7
0. 21290
0.218r>9
M.22428
0.2297(1
0 . ? 3 4 9 8
n. 24013
0.24515
0.250HR
o!2^965
n . 2 e> 4 ,s 2
n. 01615
11 . 0 1 6 1 4
n. 01674
0.017H7
0.01741
0.01779
0.01820
0.018f>4
O.IM914
n . 01 9 ;n
n . 'i / o vi 3
o . n > i n 9
0.02144
n . n >\ n2
n.ni»224
O.U72/2
•I .I98|i H
n. ? H 393
«.PilQ»i5
n . 2 i 4 9 8
0 . 2 2 It ^ 3
0.99S S4
n.2 ^ ii it 1
0.2J51 7
0 .?  . ? 3 3 0 il
-5 '1.7 0200
-3M. 76601!
-2*. 3 9 000
-13.516011
-*. 2.040 «l
-/•• . 77rt2n
v. 7 729 H
in t. 81 0 nit
1 II /. H 9 II 0 II
1 1 1 . 9 0 IJ 0 il
1 1 '). 9 0 ii 0 u
1 1 U . 8 7 il 0 0
1 2 A . 8 3 U (I «
127.78(100
131 .72MOO
1.T>.f6iiOH
I 4. 1.5 ? II 00
1 4 7. 46(10 U
- 1 3 '' . 8 9 (| 0 0
- 1 2 4 . 7 6 M 0 0
-111.34000
-1 il 4. 6 1 H "II
-94.54 iOn
-84.1 V'Oil
-/ t.,<61 fi»
- 6 '•" . 2 2 n 0 n
• •> 'i . ftQft n n
- j . . 76 v o n
- 2* . 4 Or»n fl
-1 i . *> 5 1 0 0
-M.24h7li
- -".836711
' . ft 9 / 7 il
•1 . 3 8 9 3 H
1 il i.b4 •) On
11 'i.f)4ijl)il
114.70000
11^.74 n n«i
1 2 • .1 5 u Oil
1 2ft . /5'i 0 'I
1 ?n . 74nO u
1 3 4 . 7 1 0 0 II
1 3 H . 6 A II P H
STAB
(Btu/lb °F)
-0.20868
-0.19474
-0.18079
-0.16680
-U.15278
-0.13869
-0.12450
-0.11015
-0 .1IJ4 44
-0.09847
-0.092-J3
0.01455
n . n 1 8 / 9
n. 02296
0.02/05
0.031 M 9
0 .0350 /
0 .039 Oil
0.042*9
0.046/3
0.05429
0 ,058h2
-0.26474
-0.?5 II ft 3
-0.2366?
-0.222ft7
-'l.?U*73
- II . 1 9 4 H 0
- I) . 1 H 11 M 5
-0 .10688
-0.1 "p2*6
-0 .I.A878
-0.1^460
-0.1 HI27
-0.10447
-U.09«ft2
-0.0927"
-U.OH667
0.016S9
0.020*4
0.025H2
1.02911
0.04315
0.03713
0 . 0 4 1 'i ft
0.04494
0. 04877
CTAB
(Btu/lb °F)
'1.46027
II. 46361
n.46«45
II. 4 73 Oft
".47744
H.48432
H.50419
H.52ft33
il .5374 r»
11.549211 ,0_ _
u.->6249 420. Opsia
0.40714
11.40431
n.40045
U.39H27
n.39f»62
11.49540
0.3945(1
M.39187
( I T rt T O *
ii / Q < J O
'1.39313
•1.45271
0.45355
H . 4 5 4 7 4
H.45557
0.45962
H . 46.189
H.46H1 /
ii . 4 7 4 H U
n.47794
•1.48262
0 . S 0 .1 4 4
n.52l>6>> 440. 0 psia
n.53597
II . *) 4 8 1] 9
n. •? 6 1) 5 4
H.57H Jfi
i- . 4 1 2 n
II.40HOH
H . 4 U 4 H 7
II . 4 M 2 4 1
fl.4«ll1>5
0 . .1 9 ^ 1 u
U. 3 9 « (It
n. 39/22
11.39667
Figure
CP-34 Superheated Fluid Properties II (Cont'd)
               381

-------
VTAB     HTAB
(ft3/lb)    (Btu/lb)
     STAB        CTAB
   (Btu/lb °F)   (Btu/lb °F)
n!?4«M7
n.n IM "s
n.n 1644
n . n i A 7 4
n. in 7 n A
n.ni 741
n . n i. 7 / H
o . n i HI 9
n.ni«<.4
n .ni y i 4-
n. DIP/I*
n . n ? n \ ^
n . n^i i- /
n . n v 1 1 1
n . n ; 1 • o
n . n .' •' v n
n . (]•/ "> h 7
n. l/i 4? 4
n .ion?i
n . 1 JS'y II
n.Pni 
" . ? 1 1 / 1
«l . ? \ A '•> *>
0 . ? ? 1 4 7
i) . ? y A i '
n . ? i n . •
n • ? .» *> t /
n . fi i ^ i s
n .n i A 1 «
n . in 6 4
n..i, ;,.!•
n . ii i ' ^ h

r, . ii ' « ' M
n . n i M • s
n.n 19 i ^
n.n 11*7
n.n 'n * n
n . n ; i • *>
n . n /» 1 4 o
n . ii »i /ft
n . n -"?i ;
II . n /» 7 fi 4
II . iiM 1 ft
n . 1 / 7 j A
n . 1 M .« i 4
M . 1 HHft 7
14/
- M '
- I? *
-1 1 .1
-1 n »
-94
-H 4
- / 4
-ft '
-S i
— 4 i
- v».
-1 4
--,
- ••

-(
1 " •
1 ->M
1 1 *
1 1 /
1 ->\
1 -''.
1 5» '
1 * *
1 4 '
1 4 1
14-'
-1 S •
- 1 » '
- 1 1 -*
- 1 .1 1
- t 1


-*
_ >1 !
- «
- '>.
-1 *
- «
- -'
'
^
1 «
1 H /
1 1 '
1 1 ^
. /.'liinn
. M ' n ii
. MS"n n
. M - n n
. ..» 1 •» n 'i
. HR n n H
. '»1 / n n
. M ., n n
. 44 .>r n
. / n ^n n
. ft 9 ii n D
. 77in »
. <• ? i n n
. '.Ml 'ill H
.?9.M(,
. MW ^ < n
.<•.:' ^-H
. ,' «* . ? n
. II On (I n
. .S Ml
. ft < 1 1' .1
. /, « .• n ,i
. 7?.iO n
.74-011
.74 • n n
. /4 • H ••
. / 4 . • M -I
. i / i1 -i
,ftO (• .,
.S« .1 "
. *>*• i n n
. 40 ; n n

. «' in n
. i w • n i.
. t. M ,n..
. / ' i n M
.4 «<•• n n
.f.1 tHu
. S * On
. 94 y.< ii
. *»S 4 0 II
. 1 9 /HH
.1.1 inn
. Xft il II II
. 11 -III II
. ,s n n n ii
I'MZl
-0 . ?A4 7ft
- il . ? b n ^ rt
- n . ? ,t A n /
- fl . ? •£ •> 7 ?
-II .?||M/H
- n . 1 y 4 * A
- n . 1 H n y ?
-n . 1 ftfty^
- H . 1 '.> ? u 4
- Il . 1 .} M ^ 7
-n . 1 ?4 71
- n . 1 1 n 4 n
-0 . 1 II 4n1
- 11 . 0 '* i / 7
- (I . (l «• -> K 6
- n . n » A * 6
11.014 *S
O.OIH71
n . n ? •> 1 1
0 . n ? 1 1 4
n.n.n M
n.n.v>/7
II . 0 J '' ^ S
n.n/> n 7
O.'M /•• 4
H . 1"? "I -4 7
n . fl y 4 r. A
-n . ?r,4 .?
-n .?*>'•/?
- 11 . ? 4 - / P
-\\.?v > n
-il.pi. to 4
— n 1 1<  4n?
- II . 1 .1 * < A
-II. lir"l il
-n.n ••••?
- II . 1 II 4 7 4
-II. II V v?
- n . n v * i .1
-n . HM ?.,«>
-n . fih" *A
n.nift ^;<
n . n ? n i o
n.nysis
,'i;j9606 440.0 psia
H . 4^370
n.4«i36i.
0 . 4 «j 4 0 7
II. 4S594
ii. 4ft 021
n . 4 ft 4 il 7
n . 4 ft rt n 4
M.4720li
n.4777i?
•1 . 4 H ? (1 ,t
n. Mi .121)
ii . '.> ? 4 4 ?
"• ^ssn 460. 0 psia
11 . *>46l 1
u.S'SH'jy
(i.S74l5rt
II . 4?3Jll
".41721
H.41P.61
M . 4 n y o 7
'' . 4II6..5^>
M.4IJ4?'J
n.40262
M . 4 U I3f>
'1.4111142
".,5997.1
.1 . j9921
•..45274
•1.4 54 « 4
'i . 4542P
u . 4">5Hb
•I . 4 A 1) ? 1
II A IS \ A U
1 1 • M i I * J "1 ~
!l.4ftH.lh
II. 47?9i|
n. 47772
n.4Hi i / 480. 0 psia
M .M>?5?
M. 52461
0 .Sj,J4n
n. I?4r>l?
n.S5«srty
n . h7j? AJ
M . b9?8M
u . 4 2 b J /
n . 4 2 1 H 0
H. 41 h A 4
       Figure
CP-34 Superheated Fluid Properties II  (Cont'd)
                                  382

-------
VTAB
(ft3/lb)
n. 19397
n. 199 ii 7
n . ? n 4 ii i
n . ? u H H n
n . ? i .< 4 ft
n.Pi flu]
r. . s ? •> 4 ft
n . n i ft l 5
n .01*4 \
n . HI 6 / 3
o . n l 7 n 5
0 .'11 7411
n.117 /7
0 . '1 l H 1 R
0." 1 v.-y
n. 'il 9i 1
n .u i 9ft 6

n. n? n? 9
n.o/M i-2
0 . U /> 1 ^6
0 . H 1 1 7 3
n . n p ? 1 3
n . ii??s9
n . i) -f ^ 1 1
n . 1 r>51 4
n.i 71 13
n .1 /67H
D.1MP15
n . i A 7 3 n
n . i -• ? >• s
0.1971.4
n . ? n i r8
'i . 2 u ft ? «
Ii . ? I 0-ft 1
n . ii i ft i 4
o . n i 643
n . n 1 6 1 3
n. ni 7 n 5
O.ni740
n. 01777
n.oiHi 7
n.ui8M
n. ni 9j o
n . ni 9ft5
n . n v n ? 7
n . M ••> 1 n n
n . 11^1 .\3
n.M21 70
HTAB
(Btu/lb)
1 P u . 4 5 u n u
l?4.57iinn
1 3 / . 7 3 il n U
1 .1 6 . 7 8 U n |l
1 4 -I . H 2 II 0 U
1 4 4 . H 5 II 0 I."
-13?. 7(> n nn
-1 ?.). 6 6 ii nn
- 1 1 4 . ? 5 u on
- 1 0 4 . 5 2 Oil (l
-9'i U
- 8 a . ft 6 4 " H
-7 ? . 3n6nO
- 6 •; . l 9 u n n
-5.1.67600
- 3 1 . 7 7 6 0 il

-Pft.45iinn
-1 <.6 5d nij
-« . 37H n n
- 1 . (I 0 .1 7 a
'S . 484611
M.].nn9'i
1 .*.M950n
1 0 ft . 3 1 U 0 H
1 in. (• 9 iinn
1 1 4.9HHO'i
11 ^.? 2 II I) M
1 ?. s. 4 nil Oil
1 P / . 5611 0 n
1 3 I .ftHn n n
1 3-1. 78(1 0 u
1 3w.H6uO«
143.V3nn.l
-l"V;.75ii{iii
- 1 P < . 6 3 il ft n
-11 4.22"n«i
-in4.49nnn
-94.44000
- H 4 . U 4 2 0 Ii
-73.2870 n
-6^. 16 /nn
-51.1.669 nn
-.*«. /770H
-?ft.4640'i
-1 .1.681 nn
-H . 41H4 II
- '<. 05 "JO ii
STAB
(Btu/lb °F)
0.029.J2
n . n 3 3 4 1
n . I) 3 7 4 4
n . n 4 1 4 1
0.045 S3
0.049PO
0 .053112
-'I.204M6
-0.2^77
-H.23676
- il . P 2 2 H 2
-'i .?UHn9
-0.19498
-H .lHln4
-"I .167119
-11.15309
-n * 1 39 n 5

-0.12491
- 0 . 1 1 11 * 5
-0 . 1 i) 4dft
-il . 0 99 i| 7
-0.09319
- 0 . n h 7 ? 3
- n . n H 1 1 7
n.014P8
n . n i H 7 /
n . n ?. 3 1 *
n.n?7.>8
0 . 031*>5
il . 11.1564
ii . n;<9ft7
" . 0 4 3 6 3
0 .04754
0.05140
-fl.?64«JO
-0.25 ll «1
-0.236*1
-0.22287
-0.20H95
-I1.195H4
-0.1811]
-0.16716
-n. 15317
-0.1 >9l4
-n.l2Sn2
-0.11077
- 0 . 1 II 5 11 1
-D.099P1
CTAB
(Btu/lb °F)
0.41306
n . 4 1 n n a
U.4II776
0.40596
0.4 H 4 55
0.40347
(1.40264
0 • 4 b ?. 1 2
11.45194
II.453I>4
0.45619
0 . 4*>tt 79
0.46364
0.46863
n.47262
0.47 7to 4
0 . 4 W712
i
0.50218
0.52267
0., 5:3;? 4 7

0/V5/4 453
ni 56975
/H./SHH42
/ 11^44243'
V. 43303
0.426nH
H . 4 2 ii 8 2
11.41674
U.41 -1SM
U . 4 1 1 0 7
H.4n9ll
0.40757
11.40634
"I.4523U
il . 4 5 6 II t>
H.45.376
0.45541
0.45904
0.4ft 432
H.46H11
0.47281
0.47/3M
II.482U9
11.40459
H. 52154
ii. 531 ft U
M.54249




480. 0 psia

















500. 0 psia



















520. 0 psia







Figure 9  .  CP-34 Superheated Fluid Properties II  (Cont'd)
                           383

-------
VTAB
(ft3/lb)
n . n ? ? i fi
n. n -MM 5
n . n ; 3 r. 5
P . 1 *> 9 / 9
n . i ^5*)ft.
P .1 /1 c 5
fi . 7 ft ? 7
n. "I? 6
«! «n?i
ii . y 5 <> 1
« • 1 y9»?9
n .111 61 4
n.-i | ft4?
n .•• 1 ft / 3
ii . n 1 7 |i 5
n.n i ?.% 9
ii .1' 1 7 /ft
fl . " 1 8 1 7
•' .H 1 KM
n .n i 9 1.9
n . -i i 9' 4
H . " •* n /ft
'i . ii / n u H
n . » ' i o 1
n . 0 y 1 » 7
n. "!-»•». ^
u . .• y ? • 1
n . ii / Ji n
ii . fl •> V M
d . c M/1 ~
ii . 1 *> 4 >• 7
n . 1 ». n *, <
H . -.S> /
•i . / nw 3
"I . /5 / M
n . /< n 4 4
Cl . M4t;4
n . 1 i9 si
n.niM 4
n . u i ft i ^
n . IM ft / ?
n . ii i 7i- 4
•i . II 1 7 M»
n . n i 1 1 *
n . in « i o
ii . il 1 «r- 0
HTAB
(Btu/lb)
t.'.ll**'*
1 \. 7R/n i.
1 •/. 74/nn
i !••». i 6'ini'
11 •>.•-'« n n i-
11 / . v l .1 is n
1'.> •> . 1 H n n ..
1 •> ^ . 4 i •( r. ii
I 3 •» . / 4 '•' n ii
l.» -.m-in.i
1 i ' . S 9 i " ii
- 1 M . 7 •> n f- »
- i y s. 5 y i.o-
-) 1 4. 19nn,.
- 1 IM . 4 7 i" h ..
- o 1 . 4 1 / n ••
-H4.nlyp i
7, r * m .
•\ . f ft Mil •!
-f x. 15. M' M
-') .ftftlM"
- ^ • . > 7«P i
-'•>'• .47/0 .
- 1 •>. 71 /in.
- .45rt.ii,
- ^.lijfio-,
.-1 . 35 i.ft ••
' . V 3 / 7 '-•
l % . f 7 •> n •
1 •< . r> P << Ii •
•» T. ?y 70 n
1 1 x . n ft u f| ,1
1 1 •».5?iinr
i ? n . h9.i n ii
i ?•• . iriiiifi h
1 ? 1.4 ft uni.
i « ^ . ft 7 '• n i-
1 W . hft.i II Ii
i 4 >. ii?-inii
- 1 J / . ft 8 •! n !•
- i ? •>. s ft -in H
- 1 1 4. 1 ft i, Hi'
- 1 n a . 4 4 ., n n
-O 1 . ,1H-<0 H
-H » . 99*. n ii
- 7 * . i 4 •; P n
-ft '. l 3^n n
STAB
(Btu/lb °F)
- o . n « 7 4 ?
-n . fin 1 *R
-n . n /5/n
O . n i ft 'i H
fl . n ?1 n 7
il . 0 •/ 5 1 3
0 . n •/ y r- H
P.n.,3^4
'•linJiwJ
II . 0 4 5 rt 9
•I . Ii 4 9 7 9
-M . ?h4'J5
- n . ? «, n M 5
-II . ? Jft.lft
- n . ? i* ? u i
-u . ? n 9 n n
-n. iy 5,1 9
- n . 1 m 1 y
- "'. 1 ft 7 x 3
-II. 153^5
- II . 1 ,S 0 v .}
-" .1 ?51?
- fl . 1 J fl f9
- 0 . 1 |i 5 | A
- n . n o y , ft
-o . n ^ s^i
- U . II h 7 n 0
- n . H H 1 •> ft
-H . 07S-J4
-n.o />'/.'«
ii . n i H ., 4
n.nv.i4?
n.n? 7/7
n . n ,>?n?
n .i:.%ft ] 7
(1 . P4 U/»4
U . fl 4 4 /» 5
II . T 4 * .1 9
-1.?ft4«y9
- n . ? 5 o •> n
- ii . ? .} ft * n
-H.??9-<7
-fl ,?ii9n5
-n . i 9si 5
-II .1 H1 ^3
- n . 1 ft 7 » n
CTAB
(Btu/lb °F)
M * ^ ^) X r) t
11 • ^ O / / 1
n . 5B709
H.ft091?
I) . 4 4 7 0 M
U.4379V
n. 4 3 H H?
H . 42449
...4?(l??
(.' . 4 1 4 ? 1
•I . 4 1 ? 1) d
P . 4 1. II 4 U
M . 4 5 ? H ft
n. 45352
)'. 45404
'1.45439
n . 45974
'1.46364
n .46*35
n.47272
M.477H4
(1.4 n j> 2 1
M. 49515
i'.5?ll H2
M.53114
M. 541 H9
u . *» 5 1 1 .i
n .>>65H^>
n.k«H279
H. ft 045 i
H . ft3?99
n. 4511ft
n . 441 II 9
n. 4 3 35 M
|) g 4 £ / ' *
ii >l O "\ A 1
U.4199U
11.41711
U.414H7
11.45227
n.45175
H . 45^.^9
n.45594
H.459B7
U. 4 ft 38 9
H.467H9
II . 4 7?ft9






520. 0 psia


















540. 0 psia
















560. 0 psia




Figure  9 .  CP-34 Superheated Fluid Properties II (Cont'd)
                           384

-------
VTAB
(ft3/lb)
n . u 1 9 n R
n . n 1 9 h ?
n . 070?4
n . nvnwis
n.n2i 29
n.021ft4
o . n 2 2 u .5
n.n?246
n . n /» 2 y 5
n. 07.157
o . n ? 4 2 n
0 .14459
n . 1 •; n 5 n
n . i r> ft u u
H.1 M 1 7
n . 1 ftMi9
H.1 /n ?v
0.1 /5.M
n . 1 79ftB
n. in ft] 4
0.01*42
n . o 1 ft 7 2
n.ni7"4
P.017.SR
n.ul 775
0.01M5
0 . (I 1 RhQ
0.0 19 1,7
n . TM 9 M
n . ii •> n •» ^
o . ii / n *. 4
n .n?i 2ft
0 . n v 1 M
P. U^ 2 no
n. 0^242
0. ii 7?*M
n . ii ? 34 ft
n. 02412
0 . n > 4 v 3
0 . 1 4 n M 4
n.1 46S7
n.i 51 vn
». 1^697
n . i fti *9
n . iftft25
n.1 7nft3
n.niftis
n.oift42
HTAB
(Btu/lb)
- 5 II. 6 5. J nil
- .1 M . 7 7 V n i)
-2ft.489fifi
- 1 .* . 7 4 ? n n
- H . 4 9 7 .1 n
- >.1567n
> . 2 8 7 ft n
/.h5ri7n
i ^ . sft'/n n
m. 4 ftft n n
/ 5 . ft n ft n n
1 1 n. 4 2 u nn
1 1 *> . M 3 u n u
1 10. 5. inn n
i ? < . v .1 n n n
1 9 1.2 7 nnn
I <<3.55nn n
i .«* . HO no n
j 4 i . u i o n n
- 1 1 > . 6 S u n n
-1 7 i.b.tiiPii
-1 14. 13.1 Pit
- 1 0 1 . 4 1 n n ii
-94.o6.)00
-•».«. y 7 .5 ft "
-7 «. 21 n n«i
-ftv.] 7 in ii
-t>,«.64f>n-.
- In . 7H»n n
- 9 * . S 0 1 (i i-
-1 ». 7 7 ii On
- ".^ .1 4 1 1I
- ,\ m ? 0 M 4 II
•'.2? ^7 n
/.77ftl"
1 i.4ftftnii
1 y . A .1 v n u
?•> . 4 2'j n n
1 1 . b 4 9 0 '1
11 1. 42 n n ii
1 1 H . U 6 U P II
1 2 1> . "j9nnn
1 7 7 . II 7 it ft II
1.11 .39 n on
1 is . / n ii o M
i .i9.97i»nn
-l.iv. M non
-12.^.50 H On
STAB
(Btu/lb °F)
-0.15.13.1
- n . i .1 9 .1 1
-0.125V 2
-o.ni ni
-0.1(|5?H
- n . o 9 9 s o
-U.093ft7
-0.08777
-n.nai7h
-II. 075^7
- n . n o 9 .1 7
0.01671
n.n 21 06
0 . 02*>H3
0 . 0 .3 M1 7
I1.P344I1
O.H.JHK5
U.n4?ftl
n . n 4 6 ft o
-0.2ft5u3
-II .?bn^4
-0.2.16W5
- n . 2 2 3 ii 2
- n . ? u y 1 1
- 0 . 1 V 5 2 1
- n . i H 1 .< H
-0.lh7.t7
-O.lb.141
- n . i j 9 4 n
-n. 12^. 12
-11.111 13
-n . 10540
-0.099f>4
- 0 . fl «y .1 M 3
- " . 0 f « 7 1> 5
-O.OHlvfl
-0.07^^0
- H . 0 f > 9 f, A
-O.nft3l2
n.ni9?n
n . n 2 .1 H 3
H . 0 2 H v 9
H . 0 •> 7 ft 1
0 . II Jh«3
0 .04006
n.n 45 iii
-U. 26507
CTAB
(Btu/lb °F)
n.47772
n.48737
u.49444
(i » v r n u H
ll ^i ? Q 1 \
II. 5 3 9. 10
II.54VRU
H.56.572
0.*>812l
M. ft OH 7 n
n.h2H.lH
ii . 4r>97ii
11.45479
II.4445M
II . 43o 7o
n.43092
H . 4 2ft 31
".42272
I'. 41981
(i .45165
n. 45.161
n . 452.49
11.45497
H . 4l>rt3v
n . 4ft S4tf
II . 4 ft H 2 -t
...47V7«
n . 4 7hO il
H . 
-------
VTAB    HTAB
(ft3/lb)    (Btu/lb)
                         STAB       CTAB
                       (Btu/lb °F)   (Btu/lb °F)
 ,01906   -«
0.01672
0.01704
0.01738
n.m 775
0.01815
n
n
n.
n.02021
n.n<»nv2
n.02124
0.112158
n.n?iv6

n.02?t<6
0 . 0 2 3 4 0
n.024U4

n. i .*i 4 3
 ,14749
 , 1 4 3 U .1
 ,14819
 , 1 •? 3 n 5
(i
0
n
n
n
n.1*210
•114.09 un n
•1H 4. JHilOil
 - o t. j 3 7 n n
         - * ? . 1 1 n fin
         -1.t.79nftn
          - M . 5 71 4 li
           t . 1 *S 4 1 U
           7.69M70

           . ^ . 2 0 | 0 n
  11 .6115011
 11 1. f< 4 ill) it
 11 f» . 4 H U P II
 1 ? 1 . 1 5 M (i U
 I 2-.. 7 tin On


 i '4 •<. it g n n M
                      - 11 . ? II 9 1 6
              •0.18136
              • U . 1 6 7 4 4
                      -n. 1.^949
              •0.09978
              • 0 . 0 V 3 u 8
              •0 .IIH81 2
              •O.OH218
              • 0 . (i ; 61 3
-n,
- 'i. n tt .4 4 ^
 0.0 1 6W2
 0.02174
 n. n 2 6.4 4
 n. n .1 n 7 H
                       n. n 4. 141
             n.45351
             ".45424
             n.45817
             n.46342
             n.47241
             n.47732
             M.4820V
             11.49459
             M.50829
             H.S2776
             u.53778
             0.54724
H.S7487
n.59.131
U.ftId9ft
n.49554
H.47467
i'.46(132
".44V96
n.4421V
H.43MH
".43142
                                                       600. 0 psia
       Figure  9 .   CP-34 Superheated Fluid Properties II (Cont'd)
                                386

-------
Line
No.
n o ii i o
00020
00030
00040
0005(1
00060
00070
00080
oonvo
00100
00110
Oil 120
001.50
00140
00150
00160
00170
00180
OU190
00200
0 0 ? 1 0
00220
ii o 2 6 n
00240
00250
00260
no? /o
oo2bo
00290
0 0 3 1) 0
OU310
00370
U0330
0 0 3 4 n
00350
003hO
00370
00380
00390
00400
OU410
00420
00430
011440
00450
(1U460
P
(psia)
1. 04*7. 4 3
101 1.75
978.9M
946. 8R
915.66
RM5.23
855. 5h
826.69
798.55
771.15
744.47
718.60
693.23
66H.65
644.73
621 .AH
598.87
576.9(1
555.55
534. Rl
514.67
495.12
4/6.14
4W.73
439.R7
4??. 55
405.76
3H9.49
373.7?
35fl.4r>
34.-J.67
329.369
315. b?u
3 1' 2 . 1 4 3
289.201
776.694
264.611
252.94?
241 .677
230. PO/
220.321
210.211
2U0.467
191.0811
1B2.040
1 73.339
T
(°F)
550.H
546. n
542.0
538.0
534.0
5.10.0
^26.0
522.0
S18.0
514. n
510.0
5 II 6.0
5 1. 2 . n
4v«. n
4W4.0
490. 0
4 h 6 . n
4 8 2 . 0
471.0
474.0
470.0
466. n
4h2.0
45*. 0
454.0
440 .0
446.0
442.0
4o*.0
434.0
4^0.0
426.0
4 •/ 7 . 0
4 1 H . n
414.0
410.0
41)6.0
4112.0
•*9fl.O
394. fl
39M.O
1 {< 6 . 0
3 H 2 . 0
^;H.O
3 7 4 . 0
3 7 0 . 0
VLIQ
(ft3/lb)
.02176
.02163
.02151
.021411
.02129
.U2118
. 0 2 1 0 7
.02U97
.02HR6
.II2U76
. U 2 It 6 7
.02U57
.02)1 4 K
. il 2 039
.U2U3D
.02u21
. 0 2 U 1 3
. U 2 u 0 4
.01V96
.01VRH
. 0 1 9 8 0
.111973
. 0 1 y h t>
.0195H
.M195U
.01943
.111936
.01929
.UH23
.H19]6
.01909
.U1903
.01H97
.111 t)90
.01 o84
,ni«7»
.01H72
.Ii1 *f>7
.U1061
.01M55
,01tJ50
.01rt44
,0ln39
.1)1 d34
.OIH29
."1«23
WAP HLIQ HVAP
(ft3/lb) (Btu/lb) (Btu/lb)
0.424 )2
.44 ii IK
.45661?
.4737X
.49155
.51004
.52926
.l>492'»
.57-106
.59173
,rtl4?9
.63779
.66228
.*R;H?
.71445
.74224
./7124
.M015?
.M3315
.86621
.•J On 7 6
.93nR9
.97469
1 .01 425
1.0S567
1 .OQ9u5
1 .1445?
1 .19217
1.2421^
1 .29460
1.34905
1.41)75
1.4<>R2
1 .5320
1 .5991
1.6f>97
1 .7441
1.8223
1 .9114 R
1 .991 7
2.0^3 <
2.1P01
2.2M21
2.3900
2.5H39
2.6244
549.5
544.4
539.3
534.2
529.2
524.3
519.3
514.4
509.6
504.7
499.9
495.1
4W0.3
4rt5.6
4 rt 0 . 8
476.1
471 .5
4ftft.8
462.2
457.5
45?.9
44H.4
443.8
•439.3
4.14.7
4 J 0 . ?
425.7
421.3
416.8
412.4
4 II 7 . 9
403.5
399.1
394.7
390.3
3R6.0
3«1 .6
377.3
372.9
368.6
364.3
360.0
355.7
351 .4
347.2
342.9
1191.2
1192.5
1193.7
1194.8
119*>.9
1196.9
1197.8
119H.6
1199.4
1200.2
1200.8
1201.4
1202.11
1202. *»
1202. V
1203.3
1203.7
1204.0
1204.2
1204.4
1204.6
1204.7
1204. fl
1 2 0 4 . 8
1204. M
1204.7
1204.6
1204.5
1204.3
1204.1
1203.9
1 2 II 3 . 6
1203.3
1202.9
1.202.6
1202.1
1201 .7
1201 .2
12QU.7
1200.2
1199.6
1199.0
1190.4
1197.7
1197.0
1196.*
      Figure 10 .   Water Saturated Fluid Properties -- Pressure,  Tem-
                   perature. Specific Volume Liquid.  Specific Volume
                   Vapor, Enthalpy Liquid, and Enthalpy Vapor*
*This file is not used when CP-34 is the working fluid.

                                  387

-------
Line
No.
00470
0 II 4 H 0
01)490
o u5nn
01151 Ii
0 115^0
0 0 5 j 0
OH540
1) 1) 5 h n
Oli5M)
OU57U
OU5bO
00590
OU600
01)61 u
0 u 6 / 0
11 U 6 J 0
011640
fl065n
OOAftf
00670
tl U A b n
OH6YO
0 ( > 7 u 0
On MO
ou'2fl
0 U 7 .1 n
0"! 740
n M 7 in
(111760
ii n 7 7 n
0 n 7 M 0
on 7no
0 U 8 u II
0 U H 1 0
00820
0 0 * J "
OOH4U
01)850
00860
008/0
lll)8Hfi
0 I) R 9 II
OU9l|0
0091 0
00920
U 0 9 3 0
00 940
P
(psia)
1 A4.96P
1^6.917
1 49.1 79
141.744
1 .) 4. 6 II 4
177.751
121 .177
1 14. R7 1
1 n 8 . 8 3 ?
11-3.045
9/.*j06
9? . <*P5
M7. M7
MV.793
7/.r>67
7 1.751
6 9 . d 3 8
6S.K?1
M .194
57.55U
54.1183
5 ii . 7H6
4 / . t> 5 3
44.67M
41 .M56
39. 1 79
^(S.^44
34.74J
<1 .972
? 9 . p. 7 5
77.797
75.M83
7 4 . h 7 9
77.379
PH.779
1 M . 9 1 ?
1 /. 186
1 '> . 5 9 ?
14. 1?3
12.770
1 1 .526
1 H.385
0.340
R.3H4
7.511
A. 7159
5.99?6
5.3361
T
366 . 0
367.0
358.0
354.0
350.0
346.0
342.0
3 ,) H . 0
1^4.0
^30.0
3 2 6 . n
32?. 0
318.0
31 4. n
3 1 U . 0
3 II * . 0
3 II ? . 0
?9H . P
794.0
? 9 I.I . 0
7h6 . 0
7H? . H
?78.0
774.0
? 7 11 . 0
766.0
767.0
75«.0
754.0
750.0
746.0
742.0
738.0
734.0
730.0
??5 . n
720.0
715.0
710.0
? II 5 . 11
7 II 0.0
1<>5.0
1 9 0 . 0
1 n 5 . n
1 H I) . 0
175.0
170.0
165.0
VLIQ
(ft3/lb)
.01 H1 H
. f ' 1 « 1 3
.111 10 9
. HI HO 4
.ill 799
.Ml 794
.Ml/90
.11! 7 H5
.01/81
.111 776
.01 772
,M1 76M
.U1764
.ii 1759
.01 755
.01 /SI
.1-1 747
.01 743
.111 /39
."1 736
.(•1732
.('172H
.n1 7246
. Ul /210
.(11/175
.1)17141)
. (i 1 7 1 II 6
.01/07?
. U 1 7 0 3 9
. 0 1 7 0 II 6
.011974
.(Jlo94?
. Uln91 U
. H16BHU
.Iilh849
.1116812
.U16775
.016740
.016705
.016670
. H 1 o 6 3 7
.111 6604
.01 '.5 72
.0.16541
.1)16510
.dl64tfO
.016451
.H 16423
WAP HLIQ HVAP
(ft3/lb) (Btu/lb) (Btu/lb)
2.7519
2.8868
3.0298
3 . 1 h 1 ?
3.341H
3.51??
3.6931
3.8H53
4.0M96
4.3U69
4.5382
4.7H46
5.0471
5.327?
5.626H
5.945?
6.?H64
6.6513
7.0419
7.4603
7.9089
R.3907
8.01(7
9.46?
10.H60
10.703
11.395
17.142
12. "4H
1 3 . H 1 9
14.761
15.78H
16.H84
18.H8?
19.381
21.166
73.14H
25.:S55
27.H16
30.564
33.639
37.086
41). 957
45.313
50.225
55.77
62.06
69.18
338.7
334.4
330.2
32A.O
321.8
317.6
313.4
3 M9. 2
305.0
300.8
?96.6
2V?.5
2H8.3
?84.2
?Hll . 0
275.9
271.8
267.7
263.5
259.4
255.3
251 .2
247.13
243.03
23H.95
234.87
230.79
276.7?
222.65
218.59
214.53
210. 4H
206.42
? 0 ? . 3 H
19H.33
193.78
188.23
183.19
178.15
173.12
168.09
163.06
158.04
153.0?
148.00
142.99
137.97
132.96
1195.6
1194.8
1194. U
1193.2
1192.3
1191.4
1190.5
1189.6
118H.7
1187.7
1186.7
1185.7
1 184.7
1I8J.6
118?. 5
1181.4
1180.3
1179.2
11 78.0
1176. H
1175.6
1174.4
1173.2
1171 .9
117U.6
1169.3
1 16M.O
1166.7
1165.4
1164.0
1162.7
1161 .3
1159.9
115M.5
1157.1
1155.3
1153.4
1151.6
1149.7
1147.9
114/>,0
1144.0
1142.1
1140.2
113H.2
1136.2
1134.?.
1132.2
Figure 10 .  Water Saturated Fluid Properties  (Cont'd)
                         388

-------
Line
No.
ou95n
OU960
00970
00980
00990
010UO
01010
01020
01030
01040
010-30
01060
01070
01000
01090
011UO
OHIO
01120
01130
01140
01150
P
(psia)
4.7414
4.2f)3369
.U16343
.1)16317
.1)16293
.1116270
.1116247
.016225
.016204
.U16184
.U16165
.016147
.016130
.1)16114
.1116099
.016085
.016(172
.016060
.016050
.1)16041
.1)16033
WAP HLJQ HVAP
(ft3/lb) (Btu/lb) (Btu/lb)
77.29
8ft. r>2
97.07
109.14
123.0
138.94
157.33
1 78.60
203.26
231.94
265.39
304.50
350.4
4 1) 4 . 4
468.1
543.6
633.3
740.3
H68.4
1022.1
1207.6
l?7.9f«
122.95
117. 9h
112.95
107.95
102.95
97.96
92.96
87.97
82.97
77.98
72.99
67.999
63.008
5B.U18
53.027
48.037
43.045
38.052
33.057
28.060
11311.2
112H.2
1126.1
1124.0
1122.0
1119.9
1117.8
1115.7
1113.6
1111.5
1109.3
1107.2
1105.1
1102.9
110U.8
1D98.6
1096.4
1094.3
1092.1
1089.9
1087.7
Figure 10.   Water Saturated Fluid Properties  (Cont'd)
                         389

-------
 Line
 No.
(i u o i n  i ii.
Dun?"  9n.
ouujn  ?«n.
nuiMn  650.
n n n 5 n  ? n n .
Ouuon  4iifl.
ouu/n  6 n n.
mi n H n  Run.
           !•>.  7|i.  25.  JO.  .15.  40.  50.  6U.   70.  80.
           inn. 1)0. l?l). 140. )6U. 180. ?00. ?20.  240. 261).
           Jim. .120. .14U. .160. 400. 440. 4AO. 520.  SAO. 600.
           /(ID. 750. Mflli. «->0. 40n. 950. lOlin. .0    .0    .0
            ?2I1.  240.  ?60.  ?rtO.  3nu.  320.  340.  360.  380.
            4?n.  440.  460.  4*0.  5*10.  5?0.  540.  560.  560.
            *?0.  640.  660.  6*0.  7)10.  720.  740.  760.  780.
            8?o.  B4n.  .n    .0    .n    .0    .0    .0    «o  _
                                                         PTAB,
                                                              (psia)


                                                         TTAB(op)
       Figure 11.  Water Superheated Fluid Properties — Pressure
                   and Temperature*
 L.ne
 No.
         VTAB
         .-/
          ft7.h
nil a ^i .*
hh . ^4


b >.44
4.S. 77
41 .,•>?
1 1 ft V . *>
1 4 S - . .>   ? . 11 ft 7
' 4 .1 » . 4   ? . | .) 1 1
1 1
1 .1 (M . H   't.') o 8 7
1 .> 7 -i . 1   .J. •' •> 1 h
i .«"> . . V   "> . "I J 4 6
i M• .b   ?.'ltft<,

!/">/.>   1 .'

1 / S  . 4   1 . 9.»* 7
1 - 4 • . ft   i . 9 1 7 v1
l.-7,.K   1 . M V4 V
1 :MI i. i    i . H /11)
1 ] H.I . .)   1 .H<4ftS
I.
                             7ft,

                             71,
                             ft1',
                             ftf>,
                             64,
                             ftl ,
54,
5?,

47,
44,
4?,
41),
            ,17
            ,/H
            ,39
            ,00
            ,ft1
            ,2?

            ,44
            , H 4
            ,ft4
                                         4]
                                         IIP
          144.V
          14?.V
          1 4 II V
          1 .1H 4 ,
          1 ,>ft 4 ,
          1 * 4 -),
1 19 .>. 7
1 174.n
1 IS<«. n
7.1H«9

7 . n 7 ft ^
7 . 'I ft 0 .^

7.'VSft
7. 0n74
1 .
1 .
1.9491
1
1
1
1
1 . fl j .1'
1 .Hn7i
                                                                   10.0 psia
   Figure 12.  Water Superheated Fluid Properties -- Specific Volume,
               Enthalpy,  and Entropy*  (continued on following pages)
*This file is not used when running with CP-34,  as the working fluid.
                                    390

-------
Line
 No.
VTAB   HTAB    STAB   VTAB
(fta/lb)   (Btu/lb) (Btu/lb°F)
                                    HTAB    STAB
                                   (Btu/lb) (Btu/lb °F)
OU170
nuiun
00190
nu2on
00210
ou2?n
00240
00240
00250
OH260
On??o
0"280
OU290
nti3nn
on3io
Oil 320
00330
OU340
00350
OM360
0 M 3 7 0
003bn
0 li 3 9 0
o n 4 u n
OU410
0 M420
0 U 4 3 0
0 114 40
00440
0 u 4 6 n
OU4/0
OU4MO
0 o 4 w n
00500
0 U510
00520
OU5.»0
OU540
Ou540
00560
00570
OU580
011590
0 1) A U 0
0 u * I P
00620
OU630
00640
38. M
51.557
49.964
48.37H
46.775
45.18(1
4.3.584
41 .98h
411.387
3ft. 786
37.18?
35.575
33.963
32..<44
30.717
2V.U78
27.421
.01664
3H.654
37.458
36.?61
35.064
33.H65
32.666
31 .466
3H.264
29.U6II
?7.H53
26.64.1
24.42H
74.206
?2.976
?1.732
? n. 471
. li 1 6ft 4
3 II . 9 0 2
29.954
2f. 996
28.036
27.077
26.116
25.15.S
24. 190
?3.224
22.256
21 .284
20.307
19.323
1l4o.6
145 *.\
1 4 .H . ?
1 4 1 .1 . 3
1 3 9 3 . ft
1 3 7 4 . (I
1 054.6
1.134.?
1 31 h . II
1296.9
1?77. H
1^5^.H
1 V 3 '/ . 4
1 ?? 1 .11
n1 n / . o
1 ] H .1 . II
1 1 6 .1 . 9
1 68.09
1 45^.9
1 4 3 ' . 9
141 J.I
139.1.4
1 J 7 < . K
1^54.3
1 3 1 4 . y
1 si 1 -j . 6
1 ?9/,.4
1 2 7 / . .1
1^5-, ..J
12^.2
1??-i.1
1201 .11
1181.7
1 1 *>>.?
H.H.11
145^. H
14 ^.7
141 ^.9
1,^9.^.1
1 3 7 S . •>
1 ,»54.ll
1334.6
1 J 1 •• . 3
129n .n
1 27^.8
125/.7
12.jH.-i
1 2 1 v . 3
1 .7928
2.0719
?.0^>63
9.0403
?.0^38
? . 0 U 7 0
1 .9H96
1 .9717
1 .9^32
1 .9.J4I)
1 .9142
1 .8935
1 . 8 / 2 U
1 .8494
1 .8^58
1 . 8 II 0 7
1 .7/41
.2040
P.0401
7.0Z44
? . 0 U h 4
. M v ? (I
.0/^1
.9-777
.9jU/
.9^-12
.9u2il
. 8 fl 2 1
.6'11 3
1 .8 >97
1 .8l7i|
1.7^30
1 . 7 o 7 h
1 . 7 'Ml 6
.2940
?.ni54
1 .9-V97
1 .9^37
1 .9f>7i?
1 .900J
1 .9.>2y
1.9149
1 .8V63
1.8/71.
1.8-i7]
1 .8.1*2
1 .8145
1 .7916
.n
5 U. 76H
49.167
47.573
4-3.978
44.382
42.784
41 .187
39. 487
37.984
30.37V
34.770
33.155
31 .43?
2 9 . 8 9 v
28.252
26.584
.n
38.056
36.854
35.662
34.46^
33.266
32.H66
3II.H64
2V. 662
2M.4S7
2/.24'>
2 0 . U 3 6
24.M1 H
23.59?
?2.356
21 .104
. ll 1 ft 7 n
.U
30.433
29.47'>
28.4lh
27.457
26.59h
25.635
24.672
23.707
22.74H
21.770
20.796
19.U16
18.H28
.0
1443.1
1423.*
1403.4
13H3.8
1364.3
1344.9
1325.6
1306.4
12H7.3
126H..>
124V.4
1231). 4
1711.5
1192.4
1173.5
1154.2
.0
1442.9
1 4 2 .1 . H
1403.?
13H3.5
1364.li
lJ44.h
1325.?
1306.11
128h.<>
1267.H
124*. 7
1229.7
12HI.O
119] .4
117^.1.
188.24
.(I
1442.7
1422. «
1 4 0 3 . n
138.^.3
13A3.7
1344.3
1324.9
1305.6
12H6.4
1267.3
124H.1
122H.9
1209.6
.11
2.0641
2.0483
2.0321
2.0155
1 .9983
1.9807
1.9625
1.9437
1 .9242
1 .9041)
1 .8829
1 .8609
1 .H37B
1.8134
1.7876
1.7601
.H
2.H323
P.0165
9.0003
1 .9836
1.9664
1 .9488
1.9305
1.911 7
1 .8921
1.8718
1 .8406
1 .8284
1 .8052
1. .7«05
1 .7543
..1241
.H
2.0(176
1 .991b
1 .9755
1.9488
1 .9417
1.9?40
1 .9057
1 ,8«68
1 .8*72
1 .8468
1 .8255
1.8032
1 .7796
10. 0 psia







15. 0 psia

















20. 0 psia














25. 0 psia






Figure 12.   Water Superheated Fluid Properties  (Cont'd)
                         391

-------
Line
 No.
VTAB
(fta/lb)
 HTAB     STAB   VTAB   HTAB     STAB
(Btu/lb) (Btu/lb °F)  (ftVlb)  (Btu/lb)  (Btu/lb °F)
n o 6 b n
HIJ660
n n 6 / o
OU6HO
no*yn
n n 7 n n
Ob7io
fli'720
n u 7 .HI
nil 7 4n
ri it 7 •> n
OH 7*0
II II / / 0
o n 7 n o
o i) 7 9 o
OOHuO
n n R i n
on « 20
n nM.in
» i« « 4 n
o n R v it
oiiflftn
oiiM/o
n n n MII
onH9n
0 n on "
0"9i n
n u o 2 n
0
On 1)40
0"9*»n
Oi«9ftO
mi v /n
0 liyMO
on 090
ni n n o
omm
ni 020
ni n in
n i n 4 n
n i n b o
ni o/>o
010 /n
« i 'i . . r.
0 i n w n
0 11 n o
0 11 l n
on?"
IH.3^11
1 7. .124
.M1693
.Olt>64
'5. /S]
P4.WS2
?4. 152
2 i. 152
2?.5M
21 . 749
2H.945
?0. [40
IV. )31
1r.->24
17.710
1".«o?
1 *.H67
1^.232
1 1 . .1 R 4
."1693
. n In 6 4
"2.064
'1 ..17V
>".t»92
? n . 0 0 ft
1 y . .11 n
1h.ft29
1 7.*™
1 7. 248
1 ft.b54
IS.rtSM
1S.]«)H
1 4.4b.<
1 .<.741
1 .< . M 1 «;
1 P.7R4
.n]/>9.<
.111664
1^.299
1R.699
1H.U9M
1 7.496
16.H9.5
l< .290
l^.ftfl^
1*>.ti7y
14.470
1 .'^.ttSy
1 ? 0 n . n
1 1 flu. 4
?OR.4»>
1*8. li»
1 4 5 '/ . '»
1 4 .} V . b
1 41 /-.6
1 JS 9 -> . V
137.5.^
1 J^J. 7
1 ,S .^ 4 . ?
1 J 1 4 . «
1?9*i. *.
! V 7 ^ . .<
r^/.i
1 ? 3 / . »
1 ?1'».4
1 i g •« . y
1 1 7 w . 1
?n rt . 4ft
1 (S H . 1 .}
1 4I>^.4
14^^.^
1 4 1 ,> . 4
1.^9^. ^
1 3 7 .^ . H
1 J«> S.4
1 .S M . T
1 ^ 1 4 . •>
1 x y •> . •>
1 ^ 7 •> . H
1 V S r . T
1 V M . \
1 /I / .r-
1 10/.H
11 77. /
"> I) « . 4 /
1 ft * . 1 4
1 4 f , > . S
1 4 i/.l
1 «1 /.^
1 .^?.0
H 7 /- . 7
1 >) *» S . I
KM.I.ft
1 v» 1 4 . 1
1^94. /
i ; ;•>. *
1 .7674
1 .711 /
..S5.i3
.2940
1 .9W5?
1 .V/O1?
1 .9Mb
1 .947U
1 ,9.in u
l.9l?ft
1 .flv4ft
' ,H/ftU
1 . H •> ft 7
1 .ft 36>>
1 .Mlb7
1 ,7vJ7
i .7707
1 .7162
1 . 72UI
..»•> 13
.i'940
1 .97H1
1 ,9(,?4
1 . 0 4 6 J
1 .929H
1 .iil?W
l . H v«>a
1 .H/ 7-1
i .H>,87
1 .fl.»9o
1 .«192
1 . 7vR2
1.7/61
1 ,7->2«
1 .7281
1 .7 ill 7
..^.\3
.2940
1 .9f>32
i .
1 .Hf>24
1 .H4l/
1 .8^4^
1 ,8u4J
17.R29
1 6.R14
.' II 1 6 7 H
.U
?b.35l
24. b^^
23.752
22.V51
22.10'.
21.347
2 U . •> 4 .<
19.737
lh.iJ2y
1^.1 1 M
1 / . A n v
16.481
lb.651
14. HI (1
13.9S4
.H1ft77
.0
21 .722
21 .H3ft
2H..H9
iy.662
1R.974
lH.2Pb
1 7.b94
1 6 . «> 0 2
16.207
1 ', . b n w
1 4.806
14.H9H
13.JR2
12.654
1 1 .909
.01*77
.0
lrt.999
1H..<9M
17.797
17.!9b
16.b92
lb.9RH
lb..iR2
14.77b
14.l6b
13.b5»?
1 1911.2
1 1 7 II . b
lriH.25
.n
1442.5
1422.6
1402.7
1 .^83.0
1.16.5.4
l.<44.0
1.S24.6
1 3 il b . 2
1 2 H f , . |,
126ft. 7
124/.b
122^.j
1 2 U H . 7
1 IMV.H
11 6';. 0
1 HH.2ft
.(•
1442.3
1422.4
. 1 4 0 2 . •>
13R2.H
l.lft 1.2
1343. ft
1324.2
1 3 M 4 . M
12flb.«7
126h.2
124ft. M
1227.4
1 2 II 7 . 7
11H7.M
1167.5
1«».?7
.11
1442.1
1422.1
1 4 11 V . 3
1382. b
1.162.9
134.S.3
1.123.V
1 3 0 4 . 4
12d'>.|i
126*>,6
1.7547
1 .72fll
.1241
.U
1.9M74
1 .9715
1.9553
1 .93R6
1 .9214
1 .9037
1 .HM53
1 .8664
1 .R467
1 .8262
1 . H U 4 H
1 .7H23
1 ,7bRft
1 . 7.134
1 . 7 H64
..124(1
.H
1.9703
1 .9544
1 .9.181
1.9214
1 ,9n42
1 .RM65
1 .6ftRl
1 .H491
1.8294
1 .8088
1.7M73
1 .7ft46
1 .7407
1 .7152
1 .6H77
.3240
.0
1 .9554
1 .9396
1.9233
1 .9065
1 .8893
1 .8715
1 .8531
1 .«341
1.R1.43
1.7936

25. 0 psia









30. 0 psia
















35. 0 psia











40. 0 psia





         Figure 12.  Water Superheated Fluid Properties  (Cont'd)
                                   392

-------
Line    VTAB    HTAB     STAB   VTAB
 No.    (fta/lb)   (Btu/lb) (Btu/lb °F)
                                     HTAB     STAB
                                    (Btu/lb)  (Btu/lb°F)
01130
01140
01150
01160
01170
01 180
01190
01200
01210
0122n
012 Ji»
01240
01250
0 1 2 & it
01270
01280
01290
01300
01310
01320
01330
01340
01350
01.160
01370
01380
01390
01400
0141 0
01420
0 1 4 3 n
01440
01450
01 46fl
01470
01480
01490
01500
01510
01520
01530
01540
0155"
01560
01570
015bO
01590
0 1 6 0 li
13.244
12.ft24
1 1 .096
1 1 . l*y
1 II. /HM
. n1 ft 9,1
. t.> 1 6 6 4
15.42H
1 4.V4 7
1 4.4ft".
13.y8/>
1 .5 . 4 0 o
1 .i . il 1 5
1 '/ . *>2y
1 2 . i. 4 1
1 1 .55?
i 1 . lift (l
1 l! .5ft 4
1 n . lift'/'
9.553
0 . 0 .1 4
.n1 77ft
.nioO?
. 1(1 oft 1
1 2 . K 4 H
17.446
1 2 . Ii 4 ,1
1 1 .640
1 1 .Alft
1 II . H J 1
1 U.425
1 .1. ..1 7
9 .6 lift
0.193
8.7/6
8 . 3 •> 4
7 . 9 V 4
7 . 4 n 3
.01.776
. -H602
,i'l6ft3
11.005
1 l. .059
1 n . .11 3
9.9ft7
9.620
0.271
« .OP?
125-j.o
12!o .4
121 •• . 7
1 1 0-,. 7
1 17' .4
7 li H . 4 >t
168.15
1 4 5 1 . M
1451.7
1 41 i .n
1391.9
1 .> 7 .' . 7
135'.5
1 3 3 x . v
1 .M ^4
1 29.1.9
1771.3
125 -I. 7
1 2 5-« .y
121-1.9
1 1 y •* . 5
749.1 /
7 II 8 . 5 fi
1 o8.1 /
•"45 .4
1 4 * . ;<
1 1 1 .3
139 .4
137 .6
105 .9
1 .) 3 / . 1
1 .1 1 ' . ft
1 ^9o. il
1*7^.3
125 <.5
1 2 *>,5
121 ).1
1192.2
749.19
•> V M . «5 7
1.08.711
1 451. n
1 4 3 -i . y
141-1.9
139'i.9
1371 .1
1 6 5 l . 3
1331.6
1
1
1
1
1
.
.
1
1
1
1
1
1
1
1
1
1
l
1
1
1
.
.
.
1
1
i
1
1
1
1
1
1
1
1
1
1
1
•
.
.
1
1
1
1
1
1
1
.7*1.111
. 7 6 II H
. 7.17..1
.7123
. 6 >j 5 5
•>5jJ
/9in
.9 i«4
.^227
. 9||ftO
. H o n i
. 8 / •*!
.8055
. * A 7 4
. Hi 80
. 7 vO|l
.7/87
. 7 •> 7 .1
. 7.14V
.711 n
.6*S5
40VH
.'5 i3
O Q A ||
Q i U i
. 9 u ? 4
. H n ft \
.8097
.*->?6
. ••< 1 5 u
. « 1 ftn
. /*7y
. 7/n ^
. 7 •> 7 H
. 7.) ft?
. /i!4
.6*92
. 6 ft 3 1
4H9fl
3 5 .> .1
^9j9
. Oiiny
. H rt K ?
.Ho9n
.8-)?4
. 8 > 5 >1
.Hi7ft
. 790j
17.934
1 ? . .) 1 1
11.679
1 1 . II .1 0
. il 1 7 0 W
,iil677
. il
1 5 . 1 8H
14.7(lo
14.2?4
1 U/41
1.S.257
12.777
IX .285
1 I .797
11.300
1 H . H 1 7
1 ii . J 1 4
9. 8 1| 9
9.295
8. /69
. n 1 7 0 9
.HI 677
. n
17.047
1 7 . ? 4 ',
1 1 . M i>
1 1 . 4 3 <;
1 1 . II 3 1
1 '1 . ft2M
1 n.221
Q . 8] 2
o . 4 u n
8 . 9 h l>
8.566
8.140
7.705
7.257
. II 1 7 0 0
.1)1677
. U
1 -I . H32
1 U . 4 8 6
1 " .1 4 II
9.793
9.446
9.097
8.746
1246.2
1226.6
1206. H
1 18
-------
Line
No.
01610
016?0
01630
01640
01650
111660
01670
01680
01690
D17UO
01710
01720
01730
01 740
01 750
01760
01770
01 7MO
01 790
01800
01810
018?0
01830
01840
oi8r>n
111 H6H
018/n
01880
111890
n 19 no
01910
0 192"
n 1 9 3 n
n 194 li
I1 1 9 •> 0
01 960
II I 9 7 0
019*0
01990
0 2 U II 0
0201 n
02020
0 2 0 .1 0
02040
02050
02060
H V || 7 n
0 2 i) M 0
VTAB
(ft3/lb)
8.
R.
7.
7.
7.
6.
6.
.0
.11
.11
9.
9.
9.
R .
«.
R.
7.
7 .
7.
6.
6.
6.
5.
5.
.U
.U
. H
8.
P.
P.
7.
7.
/.
6.
6.
6.
ft.
5.
5 .
5.
.H
• Ii
. II
.11
7.
7.
7.
ft .
570
217
860
5011
133
759
374
1 7?6
1692
166.)
62?
319
016
71?
407
10]
794
4«*>
174
86(1
54?
?1H
8H5
541
1 7?6
1 69?
1660
547
2/7
Ol.i7
7 Oft
464
19?
917
64?
3ft T
0«?
797
5d 5
?ll5
1/^6
1 7?6
1692
1663
6M7
443
? on
955
HTAB
STAB
VTAB
HTAB
STAB

(Btu/lb) (Btu/lb °F) (ft3/lb) (Btu/lb) (Btu/lb T)
101 1
129V
127V
1 ? 5 '.'
12V
121 1
1 1 8^
?49.
7U8.
1 68.
1 45 u
1 4 3 u
141..
1 09 n
1 37i«
1 o5u
133n
131 1
1 291
1271
1 ?5 1
123"
120^
1 Ifl/
749.
7 II 8.
1 f.8.
145"
143"
14l.i
i 3 9 u
1 .< 7 n
1 0 5 11
1 33"
1 31 1>
129..
i 27 n
l ?4w
12?'*
1207
?90 .
749.
7 li 8.
168.
1 44.•
. 1
• ' '
."
.1)
. 1
. S
. 0
. 1
./
.«
. V
. f
4"
?i
5<«
?ft
.9
. /
. *"*
. >j
,
1
1
1
1
1
1
•
•
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
•
•
•
1





1
1
1
1
1
1
1
•
•
.
•
T
\
1
.7004
.7006
.7099
.718?
.6V51
.6/04
.6437
afl98
1 5 j 3
) rt * Q
f *i "^ O |l
. 8 / f ' 2
. 8 •> 4 ll
.80/4
. 8 / ii ?
.RU?l>
. 7 n 4 ?
.7651
.7452
.7244
. 7u?4
.6/0(1
.ft^3U
. 6 2 6 6
40-yH
*533
?939
.ri/?H
. 8 •> 7 11
. 84 lib
.8241
.8069
. 7^U1
. 7 7 (1 7
. 7*>1 6
.7016
.7106
.6rt83
.6646
.6391
1609
41198
<533
29o9
.8609
.*8289
.8122
8. 594
8.039
7.681
7.317
6.947
6.568
. I) 1 7 4 5
. II 1 7 0 9
. I1 1 6 7 7
.1)
9.471
9.16H
8.864
8.560
8.754
7.948
7.640
7.330
7.01H
6.70?
6..1H1
6.U53
5. 715
.01745
.01709
.111677
.0
8.41?
8.14?
7.8/?
7.600
7.328
7 . n u 5
6.780
6.5H3
6.723
5.940
5.65?
5.356
5.051
.01745
.01709
. 0 1 6 7 7
.11
7.565
7.32?
7.078
6.833
1 3 II ?
1.28?
126?
1242
12?l
1 711 U
?69.
??8.
18M.
. U
1440
14?0
1 4IIU
108(1
136.)
] .< 4 il
1 0?l
1 101

1?61
1240
122(1
11 9«
?69.
??8.
1»8.
.11
144(1
14211
140(1
138(1
136(1
134(1
13?i(
1 3 (I ll
1280
12611
1239
1 ?1 H
1196
269.
??8.
188.
.)'
1439
1419
1099
1379
.n
.7
• O
.?
. 7
. 7
7?
83
35

.6
.4
.4
.'>
.6
.(1
.11
.2

.2
. H
.11
.*
74
85
37

.2
. U
.0
.0
.1
.2
.3
.4
.3
.0
.4
. 3
.4
76
87
39

.M
.6
.5
.5
1 .7706
1 .7504
1.7292
1 .7068
1 .6830
1 .6574
.437?
.3819
. *?4fl
.0
1.8781
1 .86?2
1 .8458
1 .8289
1 .8114
1.7934
1.7747
1 .7553
1 .7349
1 .7136
1 .6909
1 .6667
1 .6405
.4371
.0818
.0?40
.U
1 .8649
1 .8489
1.83?5
1.8156
1 .7981
1.7800
1 .7612
1 .7417
1.7212
1.6996
1.6767
1.6521
1.6?54
.4371
.3818
.3240
.'I
1 .8531
1.8371
1.8?06
1.8Q36




70. 0 psia
r












80. 0 psia
















90. 0 psia









100. 0 psia

Figure 12.  Water Superheated Fluid Properties (Cont'd)
                          394

-------
Line    VTAB    HTAB    STAB   VTAB   HTAB    STAB
 No.     (ft3/lb)   (Btu/lb) (Btu/lb°F) (ft3/lb)  (Btu/lb) (Btu/lb°F)
02090
02 In 0
02110
02120
02130
02140
02150
02160
02170
021HO
0 2 1 v 0
022DO
02210
112220
02230
02240
02?50
112760
02270
022KO
02290
023UO
0231 0
02320
l>2330
02340
0235 0
02 360
ii 2 3 / 0
n^3«0
U2390
H24 00
U2410
02420
0 ? 4 3 0
02440
>»24^n
W 2 4 6 0
024/0
02480
0?49fl
025(10
0251 0
07520
02530
02540
02550
6.
6.
6.
5.
5.
5.
5.
4.
4.
.II
.)'
.n
. II
6.
6.
6.
6.
6.
5.
5.
5.
5.
4.
4.
4.
4.
.0
.U
.0
.H
6.
6.
5.
5.
5.
5.
5.
4.
4.
4 .
4.
4.
3.
.u
.0
.11
.1.1
710
464
716
9ft7
715
460
2 110
93*
6'»1
1/66
1776
160?
lt>63
9H3
7ft1
5^9
316
093
8ftP
64?
414
1H4
9*>0
71?
46A
714
1 7*5
1776
Ift92
1663
3962
192M
9HR7
78411
57P4
371 7
1637
953H
7414
525R
3 U 5 4
II7R6
0474
J 765
1776
1692
1663
1 06'/
1 34'/
1 3?1'
1 3 II -i
1 2Hw
126"

1 ??/
120'.
790.
?49 .
•>li»».
1 ftM.
1 44 /
1 47'J
1 4il"
1 JH '
1 3 6 •-.
1 J 4 -
1 J2 .
i 3 n . .
1 XH-
1 !'6 •
1 i"i /
1 •/•> >
\ 2 n »
•71*11 .
•?49.
?|IM.
1 ftS.
1 A 4 «
1 4,> •
1 4 1
1 .«*"
1 ,}ft >
.•»4>-
Or.
.Mli
2«/
2* /
124 ••
122*
1 7 ill
?9il .
V49 .
"> MM.
1 6K.
.•>
.5
.0
.6
.5
.1

.4
.5
4?
27
61
?V
. *
. •>
. 1
. Il
.9
.4
.9
.M
.6
. 1
. ?
. «
• ^
44
9w
ft ^
3)
. 1
. i*
. *
.'>
. 1
• i)
.?
.<>
• "^
. u
^J
. I
.4
41)
n
ft 5
33
1
1
1
1
1
1
1
1
1
.
•
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
•
.
•
.
1
1
1
i
1
1
1
1
1
1
1
1
1
.
.
•
•
.7949
.7/71
.7-3P6
.7J94
. 7 1 9 3
. ft vR 1
. 6 / * ft
.ft 'ilf>
.6^55
4 6.* 9
lliyH
^5,S?
^'M9
. H-70^
. •< .» 4 4
. H 1 P 1
.8u1 4
.7ri41
. 7 ft 6 2
.7-476
. 7 / P .)
. 7 u H ]
,6rtft /
. 6 o 4 u
. 6 3Oft
.613]
46 >0
in-/ 7
^0?
/ •) 19
.fMM
.^;-?4ft
.Mi) 83
. 7 9 1 '>
.7741
. 7i62
. 7 J7ft
. 7 i B '/
. * w 7 M
.6 /67
. 6 •> 3 3
.62H6
.6nl5
4 ft 3 9
4n v7
^5,52
2939
ft.
6.
6.
5.
5.
5.
H.
4.
4.
. .1
. II
. II
. H
6.
6.
6.
6.
5.
5.
5 .
5.
5.
4.
4.
4 .
4.
.'1
. !l
. 'I
. ':
ft .
ft.
5.
5.
5.
5 .
5.
4 .
4.
4.
4.
3,
.11
. n
.H
. li
.H
5>t7
340
092
H41
5HP
331
OftP
799
519
1 741?
1 7 0 M
1*77

«72
650
4?H
2 II 5
9»1
755
CL «) O
" f f^
?«;9
liftP
H.I?
591
343
Oh. 3
1/45
1 711*
li.7/

794 ft
n y n •<
HH64
6«1 ^
475'
?ft 7w
059-1
H4Rii
6341
41 6 ^
193"
9ftlv
1 7R/
1 /4^>
I 7 0«
1677

1359.5
1 3 3 v . ft
1 .11 w . ft
1 2 9 v . 5
1279. .1
1 25*1 . ^
1 2 3 M . n
l'/l ft. 5
1194.2
2ft9.77
? ? H . H »/
1 HH.41
.H
1 4 .3 -v . 4
1419. 1
1.39W.O
1379...
1 .35 H . »/
1 33».o
1 -J 1 rt . «J
1 294 . /
1 2 7 M . .•>
125/.7
1.2 3ft. ft
1214.7
1191 .w
269.7'*
?2H.91
1 » « . 4 .>
. I'
1439...
1 4 1 M . 7
139^.5
1 <> 7 * . 4
1 J5,'..4
1.13H..*
1 3 1. rt . 1
1297. y
1777.4
1 <"5ft . ^
1735. 1
1212.9
311.2ft
2 ft 9 . » 1
2 ? H . w .}
1 «8.4ft
. n
1.7H61
1 . 7o8fl
1 .7491
1.7294
l./uBH
1 .6M7II
1.6ft38
1 .6^89
1 .6116
.43/1
.3H1B
.37411
. U
1 .8474
1 .8263
1 . dl)9H
1.7978
1 .7/5?
1 . 7 5 7 (I
1 . 7 .> H 1
1 . 7183
1 . ft w 7 5
1 .6/56
1.6571
1.6267
1.5WBH
.13/1
. 3H1.H
. 0?.t9
. n
1 .8.175
1 .« J 65
1 .7999
1 .7i?9
1.7ft53
1.7471)
1.7?RU
1. 71181
1 .6H72
1 .6ft5il
1 .6412
1 .6154
. 49 M ?
.4371
..^18
.3239
.H






100. 0 psia














110. 0 psia















120. 0 psia









 02560
5.4746   1 44 ".4   1
5.3H71   143H.?   1.K151
140. 0 psia
         Figure 12.   Water Superheated Fluid Properties  (Cont'd)
                                   395

-------
Line
No.
025/0
02580
02590
02600
02610
02620
02630
02640
02650
02660
II26/0
f 1 2 6 (J 0
02690
II 2 7 0 0
02710
II 2 7 2 n
02740
02740
02750
0276M
02770
027HO
H 2 790
1128(10
0 2 8 1 fl
02820
02840
02840
02840
02861'
02870
028MO
02*5VO
029UO
02910
02920
02940
02940
02940
02960
02970
Q29HO
02990
03000
03010
03020
04040
04040
VTAB
(ft3/lb)
5.2995
5.1238
4.9/»74
4.7701
4.5917
4.4119
4.2302
4. 046 H
3 . 8 4 8 7
3 . 6 6 S 6
3. 4 '.61
3.2467
.HI /65
.01726
.11169?
.01663
4.7H43
4.6?94
4.475ti
4.4190
4 . 1 6 3 H
4. 0
104/.1
1 4 2 * . "
1 4 H n . 4
1 28i. h
1 X6«i . M
1 ? 4 4 . 2
1 ??H . ;>
1 1 9/./
p ij f\ 4 u
Q 4 Q "^ Ij
7 li H. 6«
1 '< 8 . 3 *
1447.0
1 4 P / . :'
1 406.*
1 4 M r, . 4
146*). 2
1 J4i . •*
1 .>?'). 4
.Ml 4 . M
2*4.''
i"S ' . '»
V 1 ... 4
/ 1 / . 4
3 •> ? . 3 2
?*vi).Bi2
? 4 «j . .w
?nH . 7 t
1 r H . 4 /
i *» A o » *^
^ 4 x ^ » ^
1 4 l| » . W
148', .4
4 6 •> . 1
4 4 4 . -S
4 ? 4 . rt
.MM.?
? ^ ' . 0
? 6 n . 2
1 '<- < 7 . 6
1/1 > . rt
'^'.14
'9 '1 . 4 6
049.4 <
1 . 8 o 7 1
1 .7*07
1.7739
1 .7464
1 .7484
1.7196
1 . 7 ii 0 II
1.6/94
1 .6-j74
1 .6.541)
1 ,6ii85
' .5rt04
.4649
.40v7
.454?
.2949
1 ,8u7ri
1 . 7^1 V
1 .7/55
1 .7485
1 .7410
1 .7229
1 ,7.| 39
1 .6*41
1 .6632
1 .6409
1 .616V
1 .5V06
.4lol
.4648
,40v7
.45)2
.2948
1 .7944
1 .7/84
1 .7o19
1 .7-J49
1 .7^74
1 .7M90
1 ,6-yOO
1 .6o9V
1 .6187
1 ,6,>60
1 .6014
1 .5/44
.51nO
.46.t8
,40v6
5.2117
5.0457
4.858H
4.6H1 f|
4 . 5 li 2 «
4.3213
4.1485
3.9426
3.7627
4.5669
3.3629
.111787
.111745
. i» 1 / 0 rt
.'11*77
.11
4.71.65
4.4423
4.3975
4.2420
4 . 0 h 5 4
3.9V75
3.7680
3. 6 n 6 2
3.4413
3.2/2«l
3.IIW67
2.9127
.111 787
.111 /45
. 0 1 7 0 H
.U1677
.U
4.1771
4.0494
3.9012
3.7621
3.6221
3.4*07
3.3475
3.1970
3.0434
2.R900
2.7404
2.5616
.01787
.01/44
. 0 1 / 0 8
1417.9
1397.6
1 4 7 / . 4
1357.2
1437.0
1316.7
1796.1
1274.3
1254.1
1 ? 3 2 . 1
1209.2
311.29
269. «5
228.97
188.50
.H
1437.4
1417.0
1396.7
14 7*. 4
1356.0
1335.7
1314.2
1294.4
1273.4
1251.6
1229.1
12H5. 3
311.33
?69.8g
229.01
188.54
.0
1 436.6
1416.1
1394.7
1374.3
1354.9
1334.4
1314.7
1292.6
1271.2
1249.il
1225.9
12U1.4
311 .36
269.92
229.05
1.799U
1.7824
1 .7652
1 1 .7474
1.7291
1.7099
1.6H9W
1 .6686
1.6459
1 ,6?15
1 .5948
.490?
.4370
.3818
.3239
.11
1 .7999
1.7837
1.7671
1 .7499
1 .7320
1.7135
1 .6941
1.6738
1 .6522
1.6291
1.6041
1 .5764
.490?
.4370
.4817
.3239
.0
.7H65
.7702
.7535
.7362
.7183
.6996
1.6801
1.6595
1 .6376
1.6140
1 .5882
1 .5496
.4901
.4370
.3817







140. 0 psia















160. 0 psia
















180. 0 psia







Figure 12.  Water Superheated Fluid Properties  (Cont'd)
                          396

-------
Line
 No.
VTAB
(fta/lb)
 HTAB     STAB   VTAB
(Btu/lb) (Btu/lb°F)  (ft3/lb)
                                    HTAB     STAB
                                   (Btu/lb) (Btu/lb°F)
I) .> II ':> n
n j i) ft n
Ii .< n 7 n
o .1 n « n
u .•> u v ii
(1 0 1 H fl
n .n i n
(i .U ? n
fi * i < n
n .M 4 n
ii .01 n
n .* i ft n
n s i / n
n ,s 1 M n
n .1 1 v u
fM?nn
li.i?1 ii
n * ? / n
1) .t ? s> H
II.S?4fl
II.S?sn
n^?f>n
n .J ? 7 n
n^?nn
n >s ? y n
H ^ 5 U H
H Ml i'
II M/MI
II.MJII
II .1 <4 1
M .> Vi n
n .M ft n
II .M / ,i
I) .M •»!•
fi i \ . i.
|l.>4'in
n* 4 i M
n.>4/n
ii.H.»n
n .s 4 4 u
i< * 4 s n
(M4ftf1
Ii ,)4 / n
Ii.<4i- n
n ^ 4 w n
II <•> II II
II .^ 1 >'
\\^/ II
. ii 1 ftOV °i- •» . 7/v
. n i f , ft .s 1 1 * . 4 /
^.HlSft 1 44r . ]
* . h y 1 4 1 'i ?>.-.)
."S . "l ft ft 1* 1 1 II < . II
.1 . 4 4 1 .S 1 .% * 1 . '-,
S . .< 1 "•• I" 1 • ft -1 . "
.1 . 1 >i 7 4 1 .-. 1 , . <4
\ . II b >' « ' i />'.•.
? . i) v 7 1 1 . ui . *>
"> . 7»M1 1 /•«,.. n
7 . ft '> K 1 1 •> / . -v
' . '; 11 '. 1 > < i . 7
'•> . .t h 0 H 1 / 1 i . 1
. 1-1 -i1 1 <^V. .S,.
. h 1 / f- s Vw -I . h •>
. !• 1 7?'> ••><••). 4 /.
. h 1 »,'
. I'ldft.t 1f.'<.bl
^ . 4 '> ^ ft 1 4 4 -.. . ^
.< . ,V> r. 4 1 a y i . 7
.1 . ? >*>> 1 4 H ... |
^ . 1 / 1 " 1 .t •< 1 . ••>
< . 1 1' ft ' 1 . ' . W
' . M fi w 4 1 0 -1 ' . l
7 . 7 • 1 ii 1 o? i . >
' . ft •> fi '> 1 ^ lj < . u
^ . l> ^ 7 II 1 /• 7 -^ . .1
V . ,i'*«M 1 > ') » . -1
? . > t> l- v i :M i . /
' . i '-4 n i ^ ,i • . .^
. i. ' .-i 1 Ii < .> 7 . 4 1
. •! I / ' ') •"•'!. ft.'.
. . 1 / '", -><> -i.S 1
. i. 1 i.e.1 1 J i * . ^f-
. ' 1 *> .* 1 f. ,'< . l>f,
< . 1 / " 4 1 /i 4 1 . b
• . H'.A. 1 1 4 '•>»./'
->.«'.» ^ t /111 ,.,•>
'•> . Ml^'l 1 ,>M ' . '»
? . >4>'" 1 Oft 1 .M
7.ft41l 1.M'.1*
' . H - 1 h 1 ,n , . 1
•S . 4 1 w ; 1 /"M . V
' . . 1 '.' n 1 yS s. ,i
v . n n n •< 1 v ? i . *
i.»y^fth 1^il ' . 4
!^.!l
i . 7 •. ft ;<
i . 7 '1 0 »<
1 .7.^7
i . 7 I •* u
1 .ftvftf)
1 . ft / V ^
1 . ft •> 7 t
i . ft ^ h /,
1 .ft l?4
1 . 1 1 7 .•»
1 . S , «) .<
.••1 ''•
. ift i7
. " 'I /ft
. <•*> .i1!
. ' W ,) K
1.7/1/4
1 . 7 , «j .\
1 . 7 )H/
1 . 7x] ft
1 . 7 11 'Mi
1 .ft )1^
1 . 6«ir'H
1 . ft 4 b .1
1 .'V  «0s
1 .b/41
1 . 4 1 '> ,\
. i 1 "J V»
. 4ft %7
. Ill Vft
. ^'J.)1
. >> v ,> f-
1 . 7»,1 4
1 . 7lS/>
1 . 7/»fft
1 . 7 1 1 .*
. ft y 3 b
. ft ^H V
. ft >4"?
.ft i? 1
. *> ->H ^
.->--,1 M
. •> i?»
. ii n- 7 7
. n
:^ . s n 4 i
;< . ^ / « .^
.< . 1 ^ .vi
? . 
? . r> h 4 1
? . 4.^6')
. n 1 H.^ft
. u 1 7 R 7
.111/44
. m / n >\
. n 1 ft 7i.
.'i
J . 1 M 7 1
J.'ViV'
.» . 1 / <> •'
$ . n ft 4 ',>
? . W4ft 1!
? . H .•» 0 S
P.711 I
v . r> ii o y
?.4f'."?M
i> . ^ S.^',
^ . 1 'y ft '->
. n 1 -H -^ r,
. ii 1 7 H 7
. li 1 1 4 1
. " 1 / fl *
. II t ft 7 '>
. u
* . 1 1 R ,N
* . I1 1 3 7
? . Q (i n •)
? . Rll?4
/• . ft y •> ?
? . S h ft ft
? . 4 / ft n
'f . .5('?''
•f . ? 4 ft V
? . 1 /"4 ^
1 . 9 ^ 'i 1
. '1 1 H.Ki
]MH.l>y
1 4 A •> . I-
1 4 1 -j . V
1 . y n . "
1 V 4 r, . 1
1 y?:>.*
.^ S ,< . ^ H
.< 1 ] . .S ty
?'!** ,^'ftft."
1 /> 4 o . /
i * l y . .•>
.VJ.I.M
.'* 1 1 . i -1
^/ii.i.n
? s * . i i
1 * H . >. ,
. H
1 4 .M . >
141 i. ,
1 W/. -
1 ."» 7 V . 1
1 .> '> \ . i
1 .s n y . i.
1 '/ H / . v
1 <">'!.'•
1 ?41 .1"
1 ? 1 •> . M
i l> .1 . ft S
. II
1.7/44
1 .7'> HI
1 . 7 4 1 ,1
1 . 7 u *• V
1 . ft ><7 1
1 ,6ft74
1 .ft4ft*>
1 . ft '•> 4 ?
1 .ft H (I I
1 . •> / .1 7
. •> 4 1 S
. J9M1
. 1 !S ft W
.  H
. "
1 . 7 ft 3 4
1 .7471
1 . 7 .< 0 >»
1 . 71 ?rt
1 . ft y 4 ft
1 .ft /S7
1 .ft'i'i?
1 . ft.* 4 ft
1 . ft 1 7 U
1 . S n 1 ,\
1 . •> r. I.I 1
.?4 1 S
. 4 y n n
.4 s ». Q
. *rt1 6
..414
180.0 psia




200. 0 psia















220. 0 psia













240. 0 psia





Figure 12.  Water Superheated Fluid Properties  (Cont'd)
                          397

-------
Line    VTAB   HTAB     STAB  VTAB   HTAB     STAB
 No.     (ft3/lb)   (Btu/lb) (Btu/lbT) (ftVlb)  (Btu/lb) (Btu/lb°F)
03530
035HO
03590
036(10
0361 U
036^0
n 36 3 II
036 4 II
036'jll
03660
1(36/11
036HH
03691!
03700
0 3 7 1 II
03720
0373H
037411
03750
037ftO
037/0
037Hfl
n j 7 4 n
038 nil
»3rt i n
II OH/ |l
U38on
(1 3 A 4 Ii
n 3 H •> n
0 3 8 ft o
. H1H1 II
.1(1 764
.Hi 7?^
.H1601
.U166P
P.
?.
P.
P.
P.
P.
?.
P.
P.
P.
1 .
. U
.11
.11
.11
.1)
.11
? .
P.
?.
P.
P.
P.
?.
P.
1 .
1 .
1 •
. li
92??
8256
7 28 .1
6 o n ?
5312
4309
32P4
?P4ft
117?
011*3
H M 7 II
1*64
1 n 1 n
1/64
1 /?5
1ft91
166?
7li9'>
61 44
528ft
4371
344«S
?*>n7
1 *>51
1)57'
Qb59
8 SH1
7.>7ft
1 rtftj
"> \) H . 0 II
1 t H . 6 U
144s
t 47 >
1 4 U '
1 ^H i
1 06 •'
1 .1 1 '
1 ^1 «
1 P 4 n
1 ?7'J
1 74
1 2 ? •>
1/5.
Vi7.
741) .
?49.
P l« M .
1 6rt .
1 4 4 >
1 4 7/>
1 4 i| i
1 *M ,
1 ^ /
1 4j { M
101 •
1 V •)«
t ^7 '
1 > 4 /
1>?^
W5.
038 /n . HIM u <^7 .
03MHO
03890
II 3 9 u U
039) !•
039PO
039 Ml
03940
fl39'>0
039ftO
039/0
U 3 9 H (i
039911
0 4 0 H II
.n
.n
. il
.1'
p.
P.
?.
l'm
7 .
P.
1 .
1 .
1 7 ft 4
1 /"*>
1691
1.ft62
525 1
44d 7
3 *> l> ft
1H77
094*>
0(144
9119
8161
•>
1 4; I
1 411 ii
1 .•» /«
1 .»S .
1 JO/
lot-
1 P9 '
1/6-«
. /
. u
.3
. S
.(•
. h
.'
.4
. il
.4
,«j
1 1
4ft
7n
5H
9S
6*>
. H
. 1
.3
.5
.5
.3
• *
.7
.w
• ^
>
•
1 3
49
7o
6/*
9>v
7n
• *
• •)
.4
.4
.3
. n
.<*
. 4
. 7
1
1
1
1
1
1
1
1
1
1
.1
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
.
.
.
.
.
.
1
1
1
1
1
1
1
1
46.)7
4 0 ^ S
'} Q \ 7
.7n?l
. 7359
.7192
. /u 1 9
.6139
.*651
.6453
.6^44
. ft « 1 9
. '> / 7 4
. 5-jnp
^6ft6
HI •}<)
460ft
•I 1144
O'»3i'
/9o7
. 74J5
.7^73
. 7 i 0 5
.6431
.6/5u
. 6 •; ft 1
.6 JM
. ^ 149
.•»9?(l
.50711
.5091
46ft
4D44
%5 JO
.'907
. 7o*>5
.7192
. 7 || ? 3
. 6 H 4 H
. 6ft66
,f>47t)
.ft/74
.ft n 5 9
.5^2 /
.01786
.01744
. (I I / 0 H
.H1676
.11
P.B74I)
P. 7 7 7 u
2.6794
? .5HOtf
? . 4 8 1 P
2.3H01
P.P771
P . 1 7 1 3
P.(ift1«
1 .9471
1 . 8p4n
. I) 1 h ? 6
. U 1 / R 6
.01744
.01707
. 'lift 76
.H
2.664*7
? .574 )
2 . 4 h ? 9
2.3909
P.297H
? . P 0 3 1
2 . 1 H 6 '.
P. OH 7 n
1 . 9 u 3 /
1 .794H
1 . 6781-
. U 1 ft 3 5
.11178ft
. 01 7 4 4
.01707
.'It 676
. n
P. 483 n
P . 3 9 8 v
2.31?/
P.P26.'
2 . 1 3 8 H
2.0497
1 .9581.
I.fl64^
1 . 766b
311.46
2 7 0 . H .>
1MH.7P
.0
1433.4
t 4 1 2 . ft
1391 .9
1 o 7 1 .1
1 o*jii . 1
1324.11
130/.4
1 28*>.0
1 P62.4
1 P 3 M . />
1 ? 1 /» . 2
353.6r,
311.4"
2/0.07
P29.Pi
1*8.7*
.il
1 4 3 2 . '>
141 1 .7
i 39 n. 9
J  . 3
1 ? 0 rt . ft
3 •> 3 . 6 9
3ll.5v
2/0.1 1
229. PH
1 H H . 81
.H
1431.7
I 4 1 u . *
13M9.9
136M.9
1347. /
132ft. P
1 0 II 4 . P
1281.4
1257.7
•
1
1
1
1
1
1
1
I
1
1
1
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
•
•
•
.
.
•
1
1
1
1
1
1
1
1
4900
•* 1 0
J n •* A
• • r O ••
.7441
.7776
.7106
.6430
.6/46
.6554
.605(1
.ft 1 33
S 'i 0 Q
• / t\ 4 t
*> ^ ** »5
541 4
4rtv9
1 {ft8
*816
\?07
u
. / 3 5 5
.7189
.7 Ml 4
.6»«*l
.6656
.646P
. 6 /> l> /
. ft il 3 /
. 5 7 C H
. •> 4 3 1>
. *> / 3 h
S4i4
4ft49
4 
-------
Line    VTAB   HTAB     STAB   VTAB   HTAB     STAB
 No.    (ft3/lb)   (Btu/lb) (Btu/ib°F) (ft3/lb)  (Btu/lb) (Btu/lb °F)
04010
04020
04030
04040
04050
04060
04070
040HO
04090
041UO
04110
04120
U4100
04140
04150
U4lt>0
04170
04100
04190
0 4 2 0 U
U4210
04220
0420U
04240
04250
04?60
042/n
042«n
f)4?90
04.1110
P431 0
0432"
04330
04340
IJ43->0
04360
n 4 3 7 n
043HO
114390
044110
04410
0442(1
04430
P 4 4 4 »
04450
H4460
04470
044*0
04490
1.71*4
1.6079
.01863
. U 1 « 1 0
.01764
.017?5
.01691
.01662
2.363H
2.2843
? . 2 II 4 1
2.1L-31
2.0411
1.9577
1.8775
1 .7848
1 .6936
1.5974
1.494U
. U 1 8 6 3
.Illb09
.111764
.01/71
.U1691
.0166?
?.??15
9.146.1
?. 11704
1 .9V39
1 .9161
1 .8.^7 It
1 .7561
1 .*7?4
1 .5n*iO
1 .49311
1 .393.1
. H1860
. 0 1 M 0 9
.HI/64
.017?4
.('H691
.111662
P.0950
?.0?.17
1 .9->17
1 .8789
1 .8115 U
1 .7297
1.65?5
124?.?
121*. 9
375.15
30?. 52
290.77
?49.66
•> u 9 . n .1
1 6 H . 7 4
1441 .4
142H.-3
109V.5
\ it 7 n . 4
1057.?
lo.lo. 7
1 Jl.).7
1291 . I
1267.5
1*4,>. *>
lirl >.•>
375.17
.1o2.5>>
?9fl.8U
?49.7u
PU9.II/
16^,79
1 44-.*
141 •.*
1 J^-.5
1077.4
1 ^ ... U
1 .vS - . .S
1 v> 1 /•' . '<>
1 2 !J v . ,\
1?6-> ..1
1 /- .1 •« . ».<
1. 2 1 .' . n
.^ 7 i . ? n
H?.SH
P9II.H4
?4«.74
? 09.1 ?
1 6H.fi ^
1 4 3 ; . rt
141«.7
1 397.6
137'. .3
1 .15 <». a
131>.1
131 .6
1 ,5->72
1 .5i-ft6
.5605
.519H
.4605
.4094
,.S5oO
.^9,»7
1 .7279
1.7116
1 .6V46
1 .6771
1 .65H«
1 .6096
1.6192
1 .5*75
1 .5739
1 .547rt
1 .5184
. k> 6 o rj
,'>l57
.4605
.1UV4
.^5^9
.V906
1 . 7 2 0 H
1 . 7 u 4 4
1 .6074
1 .6o97
1 .6'»10
1 .60?"
1 .6114
1 .5«M
1 .5654
1 .5oHh
1 . 5 II P 6
.^604
.bl.57
.46.55
.4093
.0529
.?9 t6
1 .7141
1 .6976
1 .6*05
1 ,66?R
1 .6443
1 .6247
1 . 6 u 4 0
1 .66?7
1.5406
.U183-J
.U1786
."11/44
.01707
.01676
.0
2.324]
2.2440
P.1637
2.0H20
1 .9996
1 .9154
1.829u
1.7097
1.6462
1 .546ri
.Ulb9o
. 0103*7
.01786
. U 1 7 4 A
. U 1 7 0 7
. U 1 6 7 6
.U
2.1H4U
?.1 HR5
?.0320
1 .955?
1 .876H
1 ,7*J6H
1 .7147
1 .6294
1 ,5o9y
1 . 4 4 4 ,S
.111*19.1
.H1H35
.0 1785
. I1 1 7 4 3
.111707
.111676
.11
2.0594
1 .9H7H
1 .9154
1.84?1
1 .7676
1 .6934
1.6129
1232.3
1204. M
343.71
311.55
270.14
?29.?9
188.85
.0
1430.9
1 4 1 U . U
10B9.II
1367.8
1346.5
1324.H
1J02.5
1279.5
1255.2
1229.0
096.91
353.74
311. 5h
270.18
229.34
188.91)
.'II
1430.1
1409.1
138*. 1!
1066.7
1345.?
1320.0
1 3 0 il . 8
1277.5
1?5?.H
1226.2
396.9?
353.76
311.6?
270.22
229.38
1H8.94
.11
1429.3
140H.?
1387.11
1365.6
1344. U
1021.9
129W.1
1.5433
1.5127
.5413
•48y9 300. Opsia
.4367 K
.vS8!5
.3237
.U
1 .7198
1.7H32
1.6859
1.6680
1.6493
1.6295
1.6085
1.5859
1.5612 320. Opsia
1.5036
.5915
.5413
.4898
.4367
.0815
.3207
.0
1.71?/
1.696U
1.6787
1.6606
1.6418
1.6?19
1 .6006
1.5777 340. Opsia
1 ,55?5
1.524?
.5914
.541?
.4898
.4367
.0814
.3236
.ii
1 .7II59
1.6H91
1-6717 360. Opsia
1 .6536
1.6346
1.6145
1 .5931
         Figure  12.  Water Superheated Fluid Properties  (Cont'd)
                                  399

-------
Line
 No.
U45 IIP
M4510
0 4 5 .*> n
(14540
U4550
045/0
II45MO
VTAB
(ft3/lb)
                   HTAB     STAB   VTAB
                   (Btu/lb) (Btu/lb °F) (ft^/lb)
                                                HTAB     STAB
                                               (Btu/lb) (Btu/lb °F)
1.57?ft
1.4H9P
1 . 4 u II1
1.3034
. I11 H ft ?
. M 1 h 0 9
. H 1 7 ft 3
.U17?4
,i'1ft91
. n 1 ft ft?
                    J' .5 / . u
                                      1.5314
                                      1 .4454
                            1.5.Mil   1.35?"
                            1 .4v9ii
                  749.7*
                  ? II 9. 1ft
                             . 4 0 V .1
      .(II 7fl5
      .11174 *

      .111 67ft
      .11
                                                    4   1.5ft9«
                                                    3   1.5441
                                                   >. 1   1 .515?
                                                  .94   .5914
                                               31.3.7«   .541?    360. 0 psia
                                               311.65   .4897
                                               ?/11.75   .4366
                                               ] MM.9R
U 4 6II 0
0461 "
II 4 6/0
II 4 ft .1 0
n 4 ft 4 0
II 4 ft /I-

n 4 ft v n
u 4 / n o
U 4 71 n
047/0
ii 4 /JO
n 4 7 4 M
it 4 75H
Q47oli
 1 .8151


 1.6161
 1.547?

 i.4u?ft

 1 .?416
 . II 1 Mft?
 .Ml MO 9
 .n1 76.1
                   1 4 1 - . <
                   1 4 1 / . ,1
                   109 ,. 7
                   1 ,17 1 . ?
                  l?rt >.ft

                  1 ? 3 l . ?
                  419.04

                  3,19.67
                  7V it . 94
                            1 .7.11ft   1 .H47'-
                            1 .ft "Mi   1 . 7H7*-i
                            1 . ft o 7 h   1 . 7 1 6 /
                            I . ft -1 9 4   1.i
                             1 . ft L 1 3
                             1 . 5 4 ?
      ]„. 4399

      l.?841
      1.1970
      . H 1 M 9'/
      . "11 H 3 .1
1 4?7. 'I  1
1 '4 0 6 . 4  1
1 !«•>. n  1

1>41.4  1.6/1.1
131 9. ,1  1 .Ml II 9
1/9*>./  1.5/H9
1 ? 7 1 . ?  1
1 / 4 •.> . 1  1 . '
1?1f>.5  1.4«;7*
         400. 0 psia
          .ulftft<>
          ?l.9. 74
          1 r- rt . 9 7
      .iil7* <
      . Ii 17 0 f.
      .111675
      .u
311.71
? 7 0 . 3 1
                                                         . 4 .< * ft
                                               1M9.I. 7
0477"
ii 4 7 '•. h
n 4 / v ii


U 4 P ' II
048 Hi
(14840
0 4 H "> 0
II 4 HO Ii
I) 4 M 7 0
II 4 «« 0
II 4 H w n
049111
U 4 9 ? 0
n 4 9.5 n
           . ft44S
          1 .5' <*>
          1 . 4f,l 4
          1 ,.S«77
 1 .19M
 1 . I 1 1 .5
          . u 1 >\ M
          . 0 1 7 ? 4.
          . nlft9|i
                   1 4
                  1 .•* 7  .I
                  1 vl5., . I

                  1 0 'i •« . '
                  1 Si <.7
                  1 ? •> j . 0
                  IX?--. 1
                  419.07
                  .1/5.31


                  749.9.)
                  ? H 9 . .11
                   1 .
                   1 .
                             1 .
      1 .5->4 I
>fll.   1.49?*
J9U   l.4?9^
1 4?ft . II   1
1 4 H 4 . ft   1

1->61 . 1   1 .ft^Pft
1 1 Ih.'J   1 .ft'. 9]
1 ^ 6 . II   1
      1 .??74
      1.1517
      1 .'
      .Ill
                    ,4ft )3
                    . 4 0 v ?

                    . ° 9 \ 5
      .111 7P5
      .0174?
      . I11 7 0 ft
      . i) 1 6 7 5
      .0
      9  1.541H
i^:l  ;:«?P   440.0 psia
397.0?  .5911
31 1 . 7 n
'7U.4i|
? 7 9 . 5 H

.U
. -.813
..1735
04940
049^0
il 4 9 r> 0
049/0
          1.5571
          1.5073
          1.4467
          1 4 1
          141
                             .6/97  ].529H
                              .41«6
                       J.w
                            1 . ft -»5.1
                            1 .ft/ /II
                     1   1.6713
               14.i?. /   1.654?   480. 0 psia
               1JR|.H   1.6363
                     H   1.6176
          Figure 12.   Water Superheated Fluid Properties  (Cont'd)
                                      400

-------
Line
No.
04980
114990
05UOO
05010
ri 5 o 7 o
05030
05040
05050
05060
115070
05080
O50yn
n 5 1 n n
05110
n 5 \ -i o
05100
1)5141)
'>5150
n 5 1 o 0
1151.70
n5iMO
115: 90
052u"
nh2io
II522P
n 5 ? o ii
D5740
u 5 2 •? n
H5260
05270
05280
II52VO
05300
II 5 3 1 II
05.370
n 5 3 o n
n 5 3 4 o
05350
05360
05570
053HO
05390
054(10
0541 0
05470
0543(1
05440
05450
VTAB
(fta/lb)
1 .3324
1.2731
1.2115
1.1468
1 .0777
1 .01121
. II 1 ,9 7 4
.01861
.01H08
.01767
.01723
.01690
.H1661
1 . 4 3 3 II
1.3819
1.330]
1.2773
1 .223?
1 .1675
t .11194
1 .048]
.9820
.9090
.(11924
.U1061
.111 HO 7
.U1762
.111723
.016911
.Hi 061
1 .3266
1 .27*7
1 .2301
1 .1H05
1 .1295
1 .0768
1.0217
.9632
.8997
.8286
.111923
.fll860
.01807
.01762
.U1723
. n 1 6 fl 9
.01661
1 .2343
HTAB
STAB
VTAB
HTAB
STAB

(Btu/lb) (Btu/lb °F) (ft?/lb) (Btu/lb) (Btu/lb °F)
1347.6
1324.7
1 JOn. :«
1275.7
124H.6
1 ? 1 rt . H
419.00
375.36
332.79
291. PH
'50. "J.
'H9.41
169.15
1433.'>
1 4 1 1 . 8
13HV.^
1367.8
1 3 4 'j . 1
1 J?l.»*
129/. 4
1271.5
124.s.>j
121?. 1
419.1?
.1 / 5 . 4 n
3.12.85
291.15
2511.09
2 fi 9 . 5 0
X.9.24
1 4 3 1 . «
1 41 ii.n
1 .18 K. '1
1 3 6 •> . ft
1342.6
1 .J1P.H
U'9j,9
1267.3
123«,1
120^.2
419. IS
.175.41.
302.91
291.22
250.17
?09.5H
169.33
1 4 3 il . 3
1 .6078
1 .5873
1 .5052
1 .5410
1 .51.39
1 .4d28
.M?8
.5661
.51^4
.46.^2
.10^1
.35^7
.2904
1 ,*O9V
1 .6-?3l)
1 .6J53
1 .6168
1 . 5 y 7 j
1 .5765
1 .553';
1 .5^9u
1 . 5 1| 0 y
1 .4r>«2
. M '} 6
.5659
.5153
.46.S1
,40yO
.3526
.29o4
1 .6608
1 .6438
1 .6^61)
1.6073
1 .5«75
1.5662
1.5431
1 .5i75
1.4U84
1 .4->4n
.M^S
.5658
.5152
.4630
.4090
.35V6
.29o3
1 .6^23
1 . 3 II 3 Ii
l.?426
1 .1796
1 .1129
1 . 0 4 G 9
.(Hy61
.01891
.01833
.01784
.01742
.01706
.01675
.0
1 .4075
1 .3*>61
1 .3038
1.2504
1 .1956
1 .1388
1.0792
1.0157
.9466
.0196(1
.U1H91
.11833
.01784
.01742
.01706
.01675
.0
1.3027
1.2545
1 .2H54
1 .1552
1.1034
J .0496
.9930
.9322
.8653
.01960
.01890
.U1832
.01784
.111742
.111705
.01*74
.0
1.2119
1336.2
1312.9
1280.5
1262.4
1234.1
441.54
397.05
353.95
311.84
270.48
229.66
189.75
.11
1422.7
1400.9
137H.Q
1356.5
1 330.6
1 309.8
1284.7
1257.8
1228.3
441 .55
397.09
354.00
.111.91
270.55
229.74
189.33
.11
1421.0
1399.0
1376.8
1354.2
13311. K
1306.6
1280.9
1250.1
1272.2
441.57
397.13
354.0ft
311 .97
270.63
229.82
189.42
.n
1419.3
t.5977
1.5765
1.5534
1.5279
1.4990
.6404
.5-910
.5409
.4895
.4364
.3812
.3234
.11
1.6615
1 .6442
1.6262
1 .6072.
1.5871
1 .5654
1 .5418
1.5154
1 .4853
.6403
,59fl9
.54118
.4894
.4363
.3812
.3734
.0
1 .6524
1.6350
1.6167
1 .5975
1 .5771
1 .5550
1 .5307
1.5U35
1.4/70
.64117
.5908
.5407
.4893
.4363
.3811
.3233
.1)
1 .6438






480. 0 psia














520. 0 psia
















560. 0 psia








600. 0 psia
Figure 12.  Water Superheated Fluid Properties (Cont'd)
                          401

-------
 Line     VTAB    HTAB     STAB    VTAB
 No.      (ft3/lb)    (Btu/lb) (Btu/lb°F)  (ft3/lb)
                                                   HTAB     STAB
                                                  (Btu/lb) (Btu/lb°F)
II l> 4 ft 0
u •, 4 v n
n •> s u n
ni>s i n
i) '• s .} o
n->«>4n
OS5/0
o i> s H n
u-jftin
i. 1 4 .^ 4

1 . n * »• \
. o g M ?

. r M y 4

. M ?uo n
. n i ' S r, . II
1 .« I •,. ,c
1 /O,, . .%
1 ,  ft • . S


4(  4 . 4M
11V.1 7
                    "-0.74
                    •>•<>. ft 7
                    1 ft J . 4 ?
                                   7]
                                  i ? y
                                        1 . 1 ftf-4
                                        i. i ? n i
                                        1 . n; ?»,
                                            HP
                                                  i^^*. i
                                                  1 .<*>! .»
                              1 .
                                        . /Q44
                                        . H1 9*j'
                                                  1 .•> 0 ^. .i
                                                  1 v- 7 ft. v
                                                  441 .
                                                            1 .
                                                            .64DO
                              ,M
                              . -1 -i 1
                              . 4 ft ,i 0
                    .111 /R i
                    . n 1 7 4 1
                    .ii170^
                    .'H ft 71
                    . J
                                                  .^'>4.1l   .5411ft
                                                  11?.04   .4flV?
                                                  P70.7II   ,41ft?
                                                            .11
                                                  . u
                                                                      600. 0 psia
ft 5 ft *> n
0*6/0
(I16MI1
O^ft vii

Oi7i n

n •> 7 •"
II -i 7 4 i
n •> 7 o n
H17/0
Ol/iH
          1 .
          1.1
          1 . on ft M
          .ul wv
          . n
          .1-17*1
          . - 1 / ? ^

          . i.1 ft Mi
                    1401.0
                    1.»n ». 1
                    •• > s /.  i t 7 *J
                                        .11 ? . 1 '
                                        ?7H . 7 J   .4^1
                                        '} ^ll . " I   . >fl1 0
                                        l-w.*<>   ,-•?*?
                                                                       650. 0 psia
iimnO
     n
0 •> « ft I)
oSB/o
n •> «> H «
u i g l'»
          i .
          1 . n 1 n ?
          . /4nO
                    1 4 II % . 7
                    1 .^ M i. . Q
                     .' M . 4
                     .•» II " . 1
                     / M | , II
                    4r 4 . 4H
                              1 . ft.) 3 l»   1 . 'i .1 0 1
                              1 .ft 1*4   .«J'».J?
                              1 .1 v 7 U   . «< 4 g 1
                              1 . •> 7 7 ft   . 'Ml 7 ?

                                        .M 71
                              1 .
o s g j n
          . HlHflft
          .••I /ft!
          .Ml 7??
                               .*»!••!

                               .11 49
                                        . 0 ?. u 4 <

                                        . ill H *> '<
                        .47
                    7111 . 44
                              .111 741
                              . u I 7 fi 1
                                        1 41 ', .it   1 .fti>4^
                                        in.4   1.ftllft4
                                          * ft -i . 4   1
                                          > 4 ', . ft   1
                                          M.t.-j   1
                                          <*W4 . «   1 , i
                                          'ft ft . ••   1
                                          •M'../   1.4ft44
                                                  441 ,
                                                             .4
                                                                       700. 0 psia
                                                    1 ? . P H
                                                  ? 10 .1 1
          Figure  12.  Water Superheated Fluid Properties  (Cont'd)
                                       402

-------
Line
 No.
VTAB
(ft3/lb)
 HTAB     STAB   VTAB   HTAB     STAB
(Btu/lb)  (Btu/lb°F)  (ftVlb)  (Btu/lb) (Btu/lb°F)
05940
05950
05960
05970
05980
05990
06000
06U10
06020
06030
06040
06050
06060
06070
06080
06090
06100
06110
06120
06130
061411
06150
06160
06170
06180
06190
06200
06210
06220
06230
06240
06250
06260
062/0
062MO
06290
063UO
06310
06320
06330
06340
06350
06360
06370
06)80
06390
06400
06410
.016611
.97^9
.93H6
.90)14
.M6H
.8202
.7773
.7313
.6811
.<«24n
. i'199 /
.0192H
.i'l«5H
. Ml nn4
.01/6H
.Hi/72
,ul6«l)
.I1166H
.9113
. 8 7 *> V
. H 3 'i 6
.8021
.76.10
.7218
.^7/4
. 6 2 M 3
.4717
. ill W9*
.1)1^211
.HI rt4 7
. ii lrtP4
. ill /6n
. (1 1 / 2 1
. II lh8H
. fl 1 ft 5 y
.8542
. «2n4
,/859
. /5»n
./125
.6727
. f>2v6
.5814
. 0 2 U 9 H
.111991
.01919
. 1118*57
1 69.65
1 4 2 '» . 1
1 4 n i . 5
1 37'. .4
1 .15/1. 7
1 33 ' .0
Kl 0 4 . 1
1271.1
124^.2
1 ? fl '* . 7
4c4.4H
419.28
*75.6/
3 31 . 1 9
7*M . 54
7 4 11 . 5 4
7 II 9 . 9 V
1*9.76
1 47,/ . (1
1 J9w. 1
1,<7i.K
1351.7
1 3 ' t- . 6
1 0 '1 .1 . U
12*1.1
1 2 < « . 9
1 2 -1 J . 3
4 fr 4 . 4 M
419.31
1 7 4 . 7 .1
^M.27
v g 1 .6-1
740.64
910.09
^9.88
1 41U.9
1 3 9 1 . f*
1371.1
1^4^.7
1 .1 2 1 . 1!
12.7
1 26-1.9
1 r * ^ • •*
*> 1 1 Q *3
4r>4.4«
419.34
1/4.79
.2932
1 .6242
1 . 6 u 6 4
1 ,5d7h
1 .5o8!
1 .546H
1 .5236
1.4977
1 .4r»8fl
1 .43?b>
.6641
.6149
.4653
.4147
.4627
.40tJ7
.3523
.2931
1 .6159
1 .598U
1 .5/91
1 . 5 4 9 1)
1 .5374
1 .5136
1 .4H69
1 .4558
1 .4182
.663V
.6148
.-J6-J2
. 5 1. 4 6
.4626
.4046
.3522
.2930
1 .6U89
1 .5U99
1 .5/Ob
1 .5404
1 .5283
1 .5u39
1 .4/63
1 .4439
.7131
.6637
.61 46
.56-j]
.H1674
. II
. V5 /3
.91.96
o O it O
• *• •> 11 7
.M4II9
. 7 9 v n
.7547
.7069
.*536
.u 2 M 4 7
.H1946
. i)1 88 *
. U 1 H 3 (i
. II 1 7 8 ?
.U 174 n
.HI 701
.Ol67.>
.U
,n937
.H57°
,H?1P
.7820
. /427
. /nun
.6536
.6013
. II 2 II * I
.11195*
. U 1. 8 8 7
. II 1 H 3 0
.111781
. n 1 7 4 ii
.1117114
.01673
.U
.8375
.8033
.76H1
.7315
,f>929
.6516
.6063
.4546
.U2U39
. 01951
.01886
.01824
189.73
.0
I 4 1 2 . H
1 39 u. fl
I 3 6 o . h
1342.4
131/.3
129H.4
1261.1
127H.2
4H7.9U
441.64
3V7.31
354.31
312.28
2/n ,9M
230.21
1 89.H4
.11
1 41 H. *
138/.5
1 .1 6 3 . M
1339.3
1 3 1 .> . 4
] V85.y
1 254.4
1 2?n . y
4 H 7 . H l\
441 .6h
397.34
354. 3H
312.37
7 7 1 . n /
730.31
1*9.05
.0
140H.4
1 0 8 •> . f 1
J361.U
1 43f>. u
13.U9.6
1281.^
1249.7
1213.3
4M7.B6
441 ,6d
397.40
344.45
.3232
1 .6154
1.5973
1 .5781
1.5577
1.5355
1 .5111
1.4H35
1.4511
.6887
.6395
.5902
.54112
.4889
.4359
.3808
.3231
.0
1 .6M70
1 .5887
1.4692
1 .5484
1 .525*
1 . 5 (1 n 7
1 .4720
1 .4.181
.6HM5
.6393
.49111
.5401
.48*8
.4358
.3807
.3230
.I.'
1 .5990
1.5805
1 .5608
1 .5396
1 .5164
1 .4906
1.460*
1..425U
.6883
.639]
.5899
.5400
700. 0 psia








750. 0 psia
















800. 0 psia













850. 0 psia






        Figure  12.  Water Superheated Fluid Properties  (Cont'd)
                                   403

-------
Line    VTAB    HTAB     STAB   VTAB   HTAB    STAB
 No.     (fta/lb)   (Btu/lb) (Btu/lb °F)  (ftVlb)   (Btu/lb) (Btu/lb°F)
06490
06430
06440
06450
06460
06470
06480
06490
1)65)10
06510
065?0
06530
06540
06540
06560
06570
f 1 6 5 H 0
06590
066UO
n*61 0
066?fl
06600
06640
06640
1)6660
066/0
066*0
06690
06 7 li 0
IJ 6 / 1 0
067?0
0 6 7 3 II
(I 6 7 4 0
II 6 7 •> ft
II 6 7*0
M6 7/M
0 6 7 8 0
06790
06RUO
06H10
fl68?0
« 6 8 0 0
06840
06840
06860
06870
n 6 H H n
06890
. 11 1 H 0 4
. h 1 7 5 9
. II 1 7 9 ]
.01688
.01659
.H035
.7713
. 73M1
.70o*
.6675
.69H9
.4869
.43V4
,n9i|K9
.1)1 994
. 1" 191 H
. H I MS 6
. M 1 M 0 4
.111 /5V
.Hi 790
. H 1687
. 111659
.75MI
. /9/9
.6943
. 6 6 ? 1
.6971
,48V 7
.44H4
.4014
. n?ilR«
.H1990
. lil 91 7
. ••! 855
. 0 1 rt 0 3
. n l 7 *> 9
.1)1 7 9 II
.01687
.H165R
. 7179
.••R /5
.'•5o7
• /> ? 4 7
*> 9 n 7
.454?
.41J7
.466R
. |l?l|86
303.34
991 .73
9411.73
9 1 0 . 9 U
1 69.99
141 /. 8
1 394.4
1 3 7 :• . 5
1 0 4 -t . 6
1 3 1. 9 . 4
1?91 .4
1 ?6M . 0
1 ? 9 4 . 3
511 .911
464.4H
4 ] 9 . 3 M
3 7 5 . R 4
3 0 3 . 4 ?
991. R?
950. flo
71 0 .3)1
170.10
141-/.7
1 39 , .11
106/.7
1 34 '.4
1 01 4 . ~\
1 ?H / . II
1 2 5 4 . 1.
i ;>!••. n
511.84
4 6 4 . 4 /<
419.4?
* / 5 . 9 f)
VM . 5 IJ
991 .91
940.93
910.41
1 /0.?2
141 ^.4
1 > R ** . 6
1 36->. n
3 3 w . 3
3 1 / . V
?!)' .5
249.3
21 " . 4
51 1 .7V
.51.45
. 4 6 ? S
. 4 n M 5
. 3 1> 2 ?
.?9oO
1 .61)04
1 ,5rt9?
1 ,56?M
1 .5491
1 .4195
1 .4*44
1 . 4r>59
1 .4o?l.

. r> 6 0 4
.M44
.4649
.4144
.46?4
. 4 0 o 4
.o5?.1
.?9?9
1 .593?
1 .4/4M
1 .5-j5?
1 . 5 o 4 1
1.5111
1 . 4o5o"
1 .4-j47
1 .4^01
. /1 ?6
.*6o3
.6143
.»'64H
.5143
. 4 6 ? 3
. 4)1/13
,."5
-------
Line VTAB HTAB STAB VTAB HTAB STAB
No. (fta/lb) (Btu/lb) (Btu/lb °F) (ftVlb) (Btu/lb) (Btu/lb °F)
06900 H199? 464.49 .66i1
06910
069?0
069,J'i
06940
069t>n
06960
06970
U1917 .96 . ">647
ll 1 H 0 3 V\t . 5 7 . b 1 4 ?
017*56 ? 9 1 . 9 '* . 4 6 /» ?
11 1 7 ? 1) ? (j 1 . 0 * . 4 0 »i ?
01687 ? 1 •) . 5 ? ..<">19
016SH 1 7ll .3.* .>>9^8
..Il9«i?
.(I1H84
. |i IM?H
.Ml 7 8 ii
. n 1 7 3 n
. H 1. / 0 .*
. ll 1 6 7 '/>
.U
441.74
397. ^S
3b4 ,6*>
31?. 69
?71.44
?JO . 7?
190. 3"
.0
.6386
.')895
. •> 3 9 6
.48H4
.43«?5
.3804
. 3 ? ?. 8
.U
                                                     1000. 0 psia
Figure 12.   Water Superheated Fluid Properties (Cont'd)
                          405

-------
Line     P
 No.   (atm)
                         VLIQ
                        i liters!
                        1 mole 1
                                  WAP
                                 i liters >
                                 1 mole 1
                           I mole I   I mole I
(i u o i o  . n n 31
00020  .113.1
00030  . "4n
0 01) 4 0  .in.
QUO 60
o u o 7 n
0 II 0 H 0
0 II n v 0
0 II 1 ii 0
0 0 11 0
OU120
OII14M
o u 1 •? n
flu 160
0 u 11 n
n (i l H (i
OU190


o n 2 s n
Oil 2 4 II
       . 4 0 1 11
       1 .n-.o
       1 .2W
       1 .h/9
       2. 2'i 7
4 . r> V ft
r>. S 7 9
6 . 7 V V

Q . H r 7
1 I . r 0 >

1 1. /»)•>

I1*."*!
'H.

41.
Sll.
Ml.
7 i.
Hit .
"'I.
1 on.
1 -i2.6
                1 rid.
                1 70.



                2 | n.
                         ,31^7
                          .1 ? o H
         ,41


         ,40
                                 ft n n . M
                                 120.n
                                 H(S..14
                                 44
                                 •IX,
                                    66
                                     44
                  1 7
                  J <.24
                  1 M.42
                  H.2 iH
                                 3
                                 7
                    2 WO
                    •>tlftt>
                                 1 .4090
                                          1S2H.
                                          3241).
                                          7332.
                                          H 4 4 9 .
                                   10740.
                                   11U40.
                                   1lfl60.
                                   12970.
                                   14090.
                                   1S240.
\ 7810.
IV010.
2 « 3 9 M .
21790.
7.11 •» H.
?lfi40.
262HO.
26flpil.
                                            870 ».
                                            10700
                                            12300
                                            14000
                                            16156,
                                            1 70M ,
         1H920,
         19160,
         19HUO,
         20970
2324 il.
     0.
26710.
                                                   290 .10.
               7 '7.0
                          / n 7 3
                                 . / H738
                                   2 M 4 V 0
      Figure  13 .   FC-75 Saturated Fluid Properties -- Pressure. Tem-
                   perature, Specific Volume Liquid, Specific Volume
                   Vapor,  Enthalpy Liquid, and Enthalpy Vapor*
  *This file is not used when CP-34 is the working fluid.
                                   406

-------
Line
 No.
nnoin .on* .006 .noe .01   .«?   .04
110020 .8   i.    ?.    3.    4.    •>.
Oiiiun 12.   1.1.   M.   t-5.   16.   in.
0 U 0 4 n H (|.  1 ? I) .  130.   140.   150.
OllObl) 2in.  ?2Q.  230.   ?40.
.1)6  .On  .1    .?   .4   .6
6.   7.   H.    V.   HI.  11.
2li.  25.  JU.  35.  4U.  H. _
1MI.  1/0.  1HO.  140.  2011.'
?«sn.  s»7n.  ?no.  z<>n.  300.
PTAB
     (atm)
TTAB
Line
No.
0 ii o o n
OHO 7(i
UUOHO
OU040
001 110
OH] 1 II
OU12H
On 1.1 II
00140
Oiil^n
0 1)1 6 0
OUl 70
Oui»o
0 U 1 V 0
0 0 2 u 0
OU210
0 n 2 2 r.
0 U 2 0 0
00240
00250
007ftO
0 0 2 7 n
002*0
0024H
00300
0 u 3 1 n
00320
00330
OU340
00350
OU360
0 u 3 7 0
UU3HO
Ou340
0 U4 u 0
00410
HTAB
i kcal\
I mole I
1 * •
r 1 •
?.>.
2->.
2/.
r '"* •
V'.
54.
In.
5" .
1 *.
71 .
' >.
?/!
2*.
5''.
34.
3*.
5".
1 " .
7 1 .
2 1.
?'> .
\\\
3x.
5 * .
56.
3".
19.
21.
7->.
7->.
7 / .
2V.
70
08
70
74
r<9
Hi
16
<4
S4
7?
71
77
76
«1
i'3
18
.5ft
•>6
73
/?
73
77
vt
!••>
70
57
*>7
74
73
74
78
f*5
94
STAB
i cal
lmole-°C
67.
77.
R/1.
91.
^T.
1 III
1 1)4
1 uR
67.
* * •
77.
*l .
4 n.
4-..
9Y.
1 •• *
1-7
ftf, .
71 .
7».
"1 .
HI.
4*1.
OK.
1 n '
1 iift
61.
71 .
7'>.
Hll.
R'J.
RU.
94
Hf>
57
5-i
t>5
.il.i
.11
.f»-y
?o
25
1?
!i'
•M
1 I
79
. 57
. 5->
ft7
7?
>r)
v>>!
^
^ n
/ rl
.R4
.H,'
26
3 1
Irt
«9
45
H7
VTAB
)| lite rs i
I mole I
7H.52.
1241.
9ll'lH.
9467.
4fj 76 .
J. H7».i5
In 64 4
1 1 1 II 3
11^12
5271.
S 4 Q 4
v / ^* ft •
6 u 3V.
6 11 1.
6?«4.
6 11 5 ft .
71 ?y .
7 -1 n 2 .
7 74.
.5 ^ 1 h .
4 I •> II .
4o">.
4 -j ? V .
4 7 S ,1 .
S142.
7347.
5')51.
57-ib.
3132.
3796.
3 4 ft 0 .
36^?3.
3 7 R 7 .
J^SII.
42
LI
45
79
04
.5
..1
.2
.0
ft1
18
74
00
43
>;9
•>•»
il
ft7
^1
o3
11 •»
)R
yii
74
16
18
ul
47
•31
U4
•>R
12
66
HTAB
i kcal \
Imolel
77
24
2^
5*0
3 1
.5'»
37
3v
2"
2?
?4
7ft
3 M
.5.)
.5^
37
5 v
9 ii
'.»,/
'4
?^
3'i
3.5
5'*
37
) 4
?'i
?.'S
74
?'•
2^
31
.69
.71
.77
'.95
.118
.24
.43
.65
.71
.71
.73
.79
.97
.10
.26
.45
.67
.7?
.77
.75
.HO
.99
.12
.2.8
.47
.68
.71
.73
.76
.81
.89
.00
STAB
I cal I
lmole-°cJ
7H.49
8H.23
84. H6
8V.. 55
90.71
97.45
1 0 7 . 0 H
1 « 6 . 1 1
110.04
64.75
74.70
7V..49
H4.12
8H.M
97.47
97.71
n»i.34
1 u 5 . 3 7
1 0 9 . 3 II
69.22
74.18
7H.46
H3.60
8R.09
92.45
46.69
100.87
104.84
lllH.7b
6M.81
70.77
7ta.56
8.1.19
87.68
92.04
VTAB
i i liters \
I 1 mole I
H II 3 ft. H 4
M441.69
496.1. J7
O f^ 7 '3 O O
' ** * £ • *. r
1 0 U H 1 . 0 6
IU4H9.9
1UR98.8
11307.6
11716.4
5 557 . H9
5 ft. 111. 4 6
5400.07
644rt.14
6771). 71
6990.27
726-3. H3
7 5 1 M . .1 9
78111.96
401*1.42
42?7. H4
4477.26
4631 .ft9
483ft. 11
5ll40.->3
5244.95
5449. 57
565o. Mil
585R.2?.
3214.74
-537R.77
3541. HI
3705. .55
386H.H9
4037.47


0. 004 psia







0. 006 psia









0. 008 psia






0. 01 psia



 Figure 14.  FC-75 Superheated Fluid Properties -- Pressure Temperature,
             Enthalpy, Entropy,  and Specific Volume*
*This file is not  used when CP-34 is the working fluid.
                                    407

-------

Line
No.
00420
0 H 4 3 0
0 U 4 4 0
00450
0 U 4 ft 0
0 II 4 / II
0 0 4 H 0
OU4VO
0 0 5 H n
00510
0 052»
n u 5 .> o
OU54U
0 II 5 4 (1
HTAB
1 kcal \
1 molel
< * , n 6 v
STAB VTAB
cal i /liters i
mole-°C| 1 mole I
> 1 . 1 7 41l4.iO
14. VI 0 •< . 0 ft 4 2 7 / . / 3
 444 i . ^7
H6.41 4 ft (i 4 . o li
1 g . /ft ft 4 .99 1.56ft . 1R
2 I . / h >
"l . II 4 1 ft •» * . (C 5
2.1.77 74.gl 17 <«'..! 2
HTAB
j kcal i
Imolel
« « . i .5
V, .29
37. 4M
\ • . ftO
•>.-.76
>^. /ft
^4. /g
? 4 . « 1 7 ... ft 2 1 M 1 1 . y 0 2 * . * 4
P7.HM H4.18 1M93.46
P ^ . -v 7 m . ft d 1 -i / 4 . 1 3
^..•0 S
\ * . ' 4 V
3ft. 41 1
J '.' . ft 1 1
>/. go 2 ii 4 /. i ii
» 7 . II R ? M * . .1 ft
'i 1 . I ft 2 2 ? " . " •*
L '!*> . l-» 23'V . 4 P
Ou5ftn 1 g . M i) 61.71 7n<.?4
oii5 / n
0 U 5 H n
?l . 79 C
< ^ . 7 6 1 2 4 . 1 .1
7 .1 . M n 7 1 . h 1 ri ft 4 . 1) I
0 114^0 ">•. .-4 7 ».1 4 0|.S.»i
0 II 6 II n
0 M 6 1 H
00620
0 U 6 3 "
0 U 6 4 0
OU ft 40
0 U 6 ft 0
0116/n
006H'
On6oO
0 u 7 n 0
0 0 7 | n
n . n <
^1.16
* 1 9 % X
W . , 1
11J . /2
•'i .79
2? . /o
'i.»»?
?*..i7
STAB
/ cal I
lmole-°c)
9 6 . 2 «
1 0 H . 4 I
1 H4.44
1 u 8 . 3 7
ft 7 . 5 4
72.49
77.28
HI .91
rt ft . 4 0
O.i. /6
04.UO
9o. 13
I M 3 . 1 6
lu 7. 09
66.26
71.2?
7ft .in)
Hi). 6 4
'/.Ml *,.0'l 0/J6.7,. '".v^S M4.13
it ,, t .. n
/ . ^ ? 9o / . ft n
1 . 1 / '«!.'•? 1 i'2-t. ~>4
<4 . ' 7 v
J i. HO 1 11*4. 4^
<1 . ,16
i v 1 O
» i • i **
^••. S5
< ft . a -j v j . f rt 111 n.. 1 2 3 y . 1 4
t«.- 4
1 v ...7 >
3 1 . - . '
•1^.8- 1 1 ^ 1 . '!'
' -• . 9 ft '> / ? . 1 "
» ..i'l 440.42
^•'.75
2 -.-a
'^.^l
Hg.49
9 .1 . / 3
O7.r<6
1 "1 .*n
1 (i 4 « tJ 2
ft 4 . 5 0
'n.46
S*.r> 7-.hH 47ft. ft/ '«i.M /'>.25
2 •> . "•
> / .w;
» •• . • 1 *
1 /.';rt 6 u 1. -J 1
« ' . 1 4 6 1 1 . 1 )
>ft.47 6'>H.44
007^" »''.i< 9 -i . M 7 6 M 5 . 7 n
Ou 7 so
Ou 740
0 U 7 4 0
Oil ?h 0
0 u 7 7 n
0 ti 7 n ii
0 U 7 v n
OORuO
OORin
Oo82n
008.JO
0 u R 4 n
00840
OU860
OU8/0
0 U 8 H n
< 1 . M 1.
3 ft . 4 i V
3 - . ' •> 1
10."* '
' 1 . " I f
•) •>.'••> 3
' > . U 4 7 1 2 . J v
« * . M / 4 I' . ? 1
••'.11 7 ft 7. 4 /
^.42 1V1 . 62
>/.47 412. "(.
' •«. 34 4.1?. 4 i
2'-. >iH
2 . v ft
< 1 . 'i 7
s * . /> n
3 • . 16
3 y . 1 4
* '. / /
9 • . ' y
» -. i?
2 4 . .1 4
'i."6 7/.uo 4'»?.y-> '^.«g
' / . w .^ ,
VI. 1.2 '
^••.14 v
< 1 . fr 1 4 7 * . < •>
>'>.u3 49*.H1
)|..13 414.?/
^ - . »* 7
*l .118
l.i. ''I
7 g . M H
M '. . 1 7
n 1 . / 3
V2.o/
07.1 i
1 ••! . I.I
1 c5. .'ft
ft4 . y 7
6-; . w3
74. 71
70.. 14
M.i.h4
HM . ? 1
92.44
14. --g 0-4.41 434.72 1'».<7 9^W
^r- ,4ft y<.»jg 5v>4.1o
5 ".ft 6 1
1 0 . M 3 '
L ii ? . •? / 5 / 5 . 6 .j
^ . II 0 i 1* . 3 il
2 I . M 2 ft 7 . u "j 3 2 0 . ft '
9 1. n 1 71.92 3/»ft.'M
i 7 . ,h
:5 •* . / 7
?.. ,M7
•»/. 12
?1.M4
1 nu.4g
1 u4.->3
ft 4 . 4 4
6W.51
74 . 0 il
VTAB
/liters*
1 mole f
4ig->.*6
4359.50
4 5?. LU 4
4686.^7
1607. .>7
1.68VJ.14
1 7 7 n . 01
1 «52 .67
1934.44
? 0 1 ft . 2 1
2 u g / . u H
2179. 75
2261 .4?
2340.29
H 0 3 . 6 n
M4.5/
««5 . 45
026.34
0 ft 7 . 2 V
1 n n i . 1 1
1 n4h . og
lllH^.N?
1 1 V'.76
1 I71.ft4
5 o 4 . 7 g
4 6 3. 'IS
590. Su
6) 7.4ft
644.41
672.07
609.3.1
7 2 ft. 4 x
743.84
7 h 1 . 1 ,.i
4 fi 1 . H 4
422. ?M
447. 7.1
4ft3.1 7
4rt3.ftl
4 n 4 . •)'>
*>?4 .411
544.94
5ft5 . 5h
585.82
321.47
3.17. H.I
354. lh




0. 01 psi«





0. 02 psia








0. 04 psia









0. 06 psia









0. 08 psia






0. 1 psia

Figure 14 .  FC-75 Superheated Fluid Properties  (Cont'd)
                         408

-------
Line
No.
00890
009UO
OU910
01)920
00940
00940
00950
OU960
OU97H
OU9HO
00990
0 1 0 II 0
0 1 0 1 0
01020
01040
01040
01050
01060
01070
01080
0 1 0 9 II
0 1 1 11 0
OHIO
01120
01140
0 1 1 4 U
01150
0 1 1 ^ fi
01170
01 1M(
011*f.
012iiO
0121ft
01220
0 1 ? jo
01240
01250
01260
0 1 2 7 n
01280
01290
0 1 3 U 0
01310
01320
01341)
01340
01 35i'
HTAB
1 kcal 1
I mole I
75
27
511
32
34
36
3rt
19
21
24
25
77
Su
42
34
36
3M
19
21
24
?•>
?/
3 'i
32
41
1*
3h
19
?1
7 ^
?•>
M
4/>
14
Sn
3tt
1 *
21
> \
? •>
? '
4 n
I?
J4
36
3«
.67
.94
.1)3
.15
.30
.47
.67
.K5
.84
.85
.89
.95
. 05
.17
.41
.49
.69
.85
.84
.85
.89
.95
.05
.17
.41
.49
.69
.85
.84
. H4
,HH
.1(4
. 16
• •* 1
.48
^8
.84
.*4
.M
.M8
.94
.03
. 15
.40
.48
,*8
STAB
i cal
VTAB
I (liters)
\mole-°C| 1 mole I
76.
81..
8*!
91.
9l.
1 1.9
Mi.
6-7.
7u.
7>>.
84.
$H .
Q 'J
96.
1 .10
r* o
64.
6s».
74.
82!
87.
91.
9*..
99.
5«.
6'».
7 ^.
77.
R.>.
8*.
9D.
94.
9n.
5->.
6 \.
67.
7/>.
77.
81.
»"<•>.
9'l.
94.
««.
64
1 v
91
1 H
1 *
• L "^
7!1
75
6?
04
41
6 I
79
h7
. :\ ">
3 1
4?
29
li'J
9R
2*
46
54
S7
64
5 n
2 I
76
1 ^
49
6?
75
74
01
U6
9 \
6 '
2'i
6'
92
] I)
18
16
4*2.36
37H.71
411 .42
427.77
4 4 4 . 1 .<
4 6 H . 4 o
1 r> * . 6 ••>
1 6 4 . R .>
1 7 4 . 0 n
1 H 9 . 3 o
197.54
2 U * . 7 1
214.89
222. flo
24H .24
78.4?
82.41
86.511
9H.-?9
94.68
9M.77
1 II 7 . 8 •;
1 U * . 9 '»
1 1 1 . 11 )
115.1^
54.94
57.67
6M.49
6 i . 1 2
65.84
6" . 57
71.30
74. il?
76.75
39.16
41.21
44.25
4*? . 29
47.34
49. ja
51 .43
5 j . 47
55.52
57.56
HTAB
| kcal i
I mole)
2^
9M
41
44
4*.
47
4^
?•!
'2
24
29
41
14
^•>
M
4v<
2 II
7 >
2-?
7f.
41
< ^
.S'i
47
•<9
2n
7V
7 f»
Pr,
41
s \
4->
^7
49
?i.
2/»
24
^*,
2-
4 l
4-,
17
Jv
.90
.9fl
.09
.2?
.48
.57
.78
.b4
.84
.06
!on
. 10
. 74
.40
.5*
.80
. U4
. 84
.87
.92
.11(1
.10
.24
.40
.58
.811
.84
.84
. 86
O 1
Q O
. Id
. 24
.49
.58
.79
.84
.81
.85
.91
.98
.119
.22
.49
.57
.79
STAB
1 Cal 1
lmole-°Cl
7H.
84.
87.
92.
96.
I II 0
lii 4
64.
68.
72.
77.
82.
86.
9(1.
94.
9«.
Hi?
61.
66.
71.
7h.
80.
85-.
8V .
94.
97.
I'll
61.
66.
7.1.
75.
79.
84.
8H.
92.
96.
lill)
60.
65.
70.
74.
79.
84.
88.
97.
96.
1 00
VTAB
liters \
mole i

93 370.54
42 386.89
78 4 U 3 . 2 4
02 4 1 9 . 6 U
0. 1 psia
15 445.95
.1H 452.40
.11 468.66
25 1
20 1
99 1
60.74
68.91
77.09
62 1H5.27
11 193.44



0. 2 psia
47 2U1.62
71 2119.80
84 217.97
87 226.15
.80 244.54
92 811.47
87 R4.46
66 8H.>>5
29 92.63
78 96.72
14 1. 0 0 . 8 1
38 ]
104.911
0. 4 psia

51 1 U H . 9 f
54 1
114.08

.47 117.16
14 54.58
08 5 ^ . 4 0
87 59.03
50 61.76
99 64.48
J5 67.21
0. 6 psia
•59 69. vi
72 72.66
75 75.48
.6H 7tt.ll
56 40.18
5? 42.24
30 44.27
94 4ft. t?
43 4 n . ^ 6
79 5.1.41
0. 8 psia
03 52.45
16 54.49
18 56.54
.12 5h.58
Figure 14 .  FC-75 Superheated Fluid Properties  (Cont'd)
                         409

-------
      HTAB
Line  i kcal \
No.   1 mole)
  STAB   VTAB  HTAB
I   cal  j  i liters i  / kcal \
      lmole-°C| I mole I  Imolel
                                 STAB
                                  cal
VTAB
/liters i
I  uai   \
lmole-°C/  1 mole I
01370
o 1 3 H n
0 1 3 v n
U 1 4 II II
0141 0
01420
o 1 4 .MI
II 1 4 4 0
0 1 4 •> 0
014t>0
0 1 4 7 H
n 1 4 n n
0 1 4«0
i< 1 5 If (1
u J 5 1 II
U 1 5 7 ii
71
?'.
>]
3d
*/
S4
\r>
S ^
II.
? 1
3.\
?1
77
* v
< /
.n7
.K6
.l"3
. 16
. Ml
.47
. f ft

. *>V
. ^> 3
. /6
.*4
. V4
. " 7
6 '.67
7 * . 2 7
7 1 . . M 2
HI .2?
M.51
Hv.68
Vo.74
97.71
0.
.
1 7.
1 -A.
lv.
2u .
76
4?
?5
Hi
76
111
1M

96
1 U
:>6
;•)
.MI
;i
24. M8
J f. \) "I
? w (Ml
3 » . 1 0
3 3 . 2 3
3 ••> . \ 8
»>.-» A
V>./7
n.
2 v . 6 1
24.75
?/,.^n
?> .^9
.< i . n n
.^.15
Ml
65
69
74
79
*.>
87
91
9^
9V
U.
63
6H
7 S
77
81
80
.2.3
.17
.95
.56
.114
. JH
.01
.7*
.74
.66

. 58
.3.3
.01
.49
.H7
.14
.31).
.32.
,36.
38.
41).
41.
4.1.
45.
4/.
0.
15.
10.
1 /.
IB.
19.
2 IL
HO
71
•>o
33
1 3
90
64
34
H3

•>4
*5
77
79
*0
72

1. 0 psia









2.0 psia


u 1 5 .in
n i s 4 o
0 1 'i •> 0
0 1 5 h n
015/0
nis()n
01 590
Ol^nn
U161 n
0 1 6 '{ ii
ii 1 6 o n
0160ft
01650
01660
U16/0
016*1
01 6V II
01 7 o 0
01710
01720
0 1 7 .5 0
01 740
01750
.01760
017/0
017HO
0 1 7 V il
0 1 8 u 0
01810
01820
3i./ <
S t) m 4 ?
rtrt
9P
.X5
..>6
?
7
1 . Irt
^.1 '
3 1.3? 9 U.
W.I? 94.
3-3
36
? 1 . f»6
22.*>7


<., ,r2 9'. .j.3 ?-3.i" ^-<,/S 9M.28 ?j.45
0.
0.
2 * . « 8
?->.^fl
/>/./!
'W . - <
< | . V*
*4. 11
V . }6
^.••7
'1 .
.1 .
n.
•> •> . 4 (I
7 / . "' '
9v . / 1
31 . * H
* 4 . lift
Si, . >•«
^.-1
n.
D.
'i .
?i. 1 7
7 / . 4 1
V * . •• H
5i . n
0.
U.
A »
6V
/4
7'*
H \
t/
•' 1
'»-»
11 .
II .
".
M>4
7 %
77
HV
rtft
9,i
94
'1.
'I.
') .
f>7
1 >
1 1
M 1


.79
.ft7
. ;j v
.^5
. .16
. 32
.46
.44



. /O
..<9
.h6
..
J.. In
1 . f ,)
2 . *>H
.> . ?5
vi. V1
4 . Ml
1.23
•
•
•
.P73
.5-43
. 1 *H
.7111
II . 24
" . 7v
1 . .Ml
.
.
•
.91 7
.527
.OOH
.5ft I
0. 0.
« . n .
2-J.15 67.
2«.66 71.
">' .77 7h.
< .1 . 9 n s n .
3 ,s , i' 6 rt s .
1">.;5 89.
3 / . 4 6 Q .1 .
*".i8 97.
0. H.
0. II.
? 'i . v* 6 f> .
2^ .*>0 71 .
?".".* 7 'J .
i- ./V HO.
^.y7 84 .
v^ . I 7 8 H .
3 7. 4 II 92.
3vj.^? Vft.
U. I).
n. n.
n. 0.
2* . M 7 ii .
/>i.49 74.
3 •• . h 1 7 V .
v3/^.H7 8.1.


\1
94
45
H7
19
42
46
.19


17
07
64
10
47
7.3
7R
72



-Ml
99
46
87
". .
'1 .
1 0 . h ?
11.44
12.^1
I /• . V1
IS *> Q
1 4 4 'J fy
14.^2
Jl.^4
n.
n.
/ .5nl
^.211
8.814
9.517
9.974
1 U . 5 3
11.H5
1 1 .14
0.
0.
0.
6.'2«
6.8M4
7.350
7.7*4




3. 0 psia









4. 0 psia








5. 0 psia



Figure 14 .  FC-75 Superheated Fluid Properties  (Cont'd)
                          410

-------
Line
No.
01800
01840
01850
01860
01870
01880
01890
019QO
01910
01920
019JO
01940
01950
01960
01970
019HO
01990
020)10
02010
02020
02030
02040
02050
02060
U2070
02080
02090
021UO
02110
02120
021.50
02140
02150
02160
02170
021HO
02190
02200
02210
02220
022JO
0224 .
'} *V
1 1 •
3.S.
3->.
3S.
0.
0.
0.
0.
0.
24.
31 .
33.
*5.
3 .< .
0.
0.
0.
0.
97
?0
44




23
44
66
*7
12
26




"2
X9
55
77
1)3
?8




77
13
4?
*7
W4
20





94
29
56
tt5
12




STAB
i cal
VTAB
I (liters)
lmole-°C| I
Mn . H3
9H.21
94.22
0.
•1.
'I.
'I.
71.99
7h.62
*l .16
KT.M
RV . 77
9.\.75
0.
'».
n.
" .
7 i.. til
7n. u 5
*'i.h7
H4. u 5
M «< . <> 9
9.1.. 5 4
'».
n .
ii .
H .
7 n . 56
7>i. sn
H .1 . / II
H 4 . f i /»
rf * . n ')
9 <• . y 6
'1 .
i) ,
'I.
0.
il.
74.93
7-^.75
14.21
H H . •> ?
9 ? . M.
" .
0.
0.
(1.
8
8
8
0
0
0
0
5
5
6
6
6
7
0
0
0
0
4
4
5
5
5
6
0
0
0
0
3
3
4
4
4
5
0
0
0
0
0
3
3
4
4
4
0
0
0
0
mole 1
.oin
.475
.010
•
•
•
•
.151
.654
.112
.519
.023
.302
•
•
•
•
.145
.628
.1166
.451
.fill
.1 49
•
•
•
•
.367
.M4
.770
.642
.979
,'H7
•
•
•
•
•
.?10
.665
.010
.329
.61H
•
•
•
•
HTAB
1 kcal \
Imolel
.V,
37
39
0.
i).
n .
26
?"
\ •<
A/
3i
37
3-y
o .
i).
n.
0.
2H
3n
,V.>
34
37
3-<
Ii.
0.
0 .
0.
? 1
3»
3 >
•M
W
3g
0.
n.
u.
0.
2/
3..I
3?
34
A 7
.39
H .
0.
0.
0.
.08
..5?
.56



.09
.J-3
. *>5
.77
.99
. ?5
.49




. 16
.43
.67
.90
.17
.41




.96
.29
.55
.01
. 113
.34




.73
.14
.4.3
.71
.no
.26




STAB
; cal l
lmole-°Cl
VTAB
liters i
mole J

rt«.15 H.?57
97
.2.5 M.692
9o.l8 9.HO
0.
0.
0.
5. 0 psia

0.
0.
0.
6Y.53 4.873
74
7r
. ,<6 5.4UH
.89 5.923
6. 0 psia

KJ..54 6.316
«7
01
.66 6.732
.75 7.116
9',. 72 7.482
0.
U.
I).
u.
0.
1
i .

0.
0.
7.>.74 4.393
7*
H,'
f 7
91
7. 0 psia
.36 4.R64
.h7 5.262
.31 5.6.38
.33 5.947
9->.3l 6.317
II.
0 .
H .
U.
7 1
11
0.
U.
0.
0.
.13 3.615
,H5 4.1190

8. 0 psia
H^.43 4.4f>6
rtft.HO 4.H17
VII
94
0.
0.
0.
0.
77
77
8X
Hn
9 u
9*
0.
0.
II.
0.
,V4 '
'i.l 39

.94 5.44J
0.
0.
0.
0.
.47 2.994
. Jt 7 3.460
9. 0 psia

.00 3.840
.42 4.173
.5ft 4.475
.60




4.761
0.
0.
0.
0.


10. 0 psia


Figure 14 .  FC-75 Superheated Fluid Properties  (Cont'd)
                         411

-------
      HTAB    STAB    VTAB   HTAB    STAB    VTAB
Line  i kcalt  i   cal   \ i liters i  / kcal i  /  cal   1  i liters i
No.  Imolel  lmole-°c| I mole I  Imolel  lmole-° C M mole I

023UH 0.       n.       ».       ').       ii.        n.
02310 PH.73   74.J<    ?.7ir)    ?'.97    7(..n7    ?.944
      31. IS   /••*.,)'    3.lft3    V..SO    »1.'>9    <.3i3
       Ji.4S   H1.>?    3.^11"    31.C.O    Kft.nS    3.6'>S      10. 0 psia
02340  V>.7ft   -".1ft    .*.*ii4    3-*.vl    9n.?3    3.94.1
023^0 3«.'i4   OV.J.H    4,iin/»    3^.10    94.?*    4.P15
023ftO U.
023; n o.
023(10 0,
02390 H.
0 2 4 tl 0 l) .
024in ?n.4Q
02420 .1.i.w9
024.111 3i..i?
0241H V>.66
024-30 W.VS
0 2 4 A H 0 .
024/0 n.
024b" il .
U24VO 'i.
II 2 SUM u.
tl ^ SI n -»-./"?
ii ? s <- n i . . ^ v
i.i t s .1 n i > . / ii
I)?S40 *-..'.ft
I) 2 S •? II W . ^ ft
U ^ *> r, n
ii ^ "> / r> .
r i"> •• ii . .
H << S n 0 i .
!< S ft ' H ,
u /•ft in '.
ll^ft/^h S . • *
fV* MI ^ • . . h
uyftiii > . . i^
11^ ft 'HI */.X7
U ? b t> 0 n .
U?ft/n n.
II <>6H II i| .
II 'ft VP II .
0^7ii>i •• .
0 2 / J ft ».
n^7^fi in .4.1
ti s 7 .1 n < > . -. \
0^71" * •> . ^4
0/7*? n 1 ?./4?
"1.43 3 . n n II
n /..••> 3. «/3
O | i V ft <,ft«r>
i. . n .
" . " .
'i .
:' . • .
/ ». 1. 1 i . • i
/ • . .1 ' ' . » •
>> » . ii ft /^./ ••
». ; . 'jv ^. • . i
o i . r- ^ S , '-' / i
•I .
1 • •
'. «.
u .
• ' •
n . .- .
? / . - ' •..••>
M .-. >-•, --.41
«/.)'. ^ . 7 v
•>].•". ? . v f ;
n . n .
••. n.
,. . 'i .
(I ^
0. •!.
II . ll .
7 / . 14 1 . /IS
«^y.^0 V.lh1?
M n . rt i ? . 4 <1 't
<> 1 . f 7 ? . 7 n '!
H. 0.
•i. n.
n. n.
° . o.
n . n .
2^. /fl 7ft. >S
3^.17 X 1 . 1 7
i •» . s o H r> . ft 9
3 ft . ii ? ft w . w ii
3''. 10 9v>. V8
U . 0 .
0 . fl .
•i . 0.
«. n.
" . ll .
i /•.'!? 8 ii. 7 ft
14 . 1H HS/14
V.7? WV.^M
.1 «• . '1 1 ° .> . ft V
'i. 0.
n. ii.
11 . 0 .
" . II .
"» -» . .1 1 7 «... 1 V
* i . •< ft H n . * 3
* i . ?7 rt1? . nil
« ..ft 3 fly. ^7
1 • . •; 3 9 .1 . 4 ]
I. (I.
•I . fl .
•1 . II .
•1 . 0 .
1 . II .
ll . ll .
3 i . ft, H 79. H M
1«j,14 *<».6S
*S.S.1 Rh.97
.»i.h4 93. I 3
0.
0.
0.
0.
II.
2.9J 1
3.920
^.S 1 1
3 . 7 ft H
n.
n .
I* .
i- .
-' .
•' . 1 •> >
« " 1 «4
' . R / i
.1.1- 1
1..*1 '
n.
n.
M.
'i .
" •
1 .P 1
x» . V. '1
; . * / ?
V . M ,1 0
.i . ft •»?
*».
H.
0 .
II.
n.
n.
1 .Qxft
7.31?
2. Shi
» . fl 1 ->




11. 0 psia








12. 0 psia








13. 0 psia








14. 0 psia




0?7tjO  n.       n.       ii.       o.        o.       i».         15.0 psia


        Figure 14 .  FC-75 Superheated Fluid Properties (Cont'd)



                                  412

-------
Line i
No. 1
02770
02780
02790
028110
02810
02820
02830
02840
02850
02860
02870
02880
02890
029UO
02910
02920
029.) U
02940
02950
02960
02970
029HO
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
031UO
0311 0
03120
03130
03140
031->fl
03100
03170
03180
03190
03200
03210
03220
HTAB
kcalt
mole)
0.
0.
0.
0.
0.
3 n
32
15
37
U.
0.
0.
U.
0.
0.
29
3?
3'>
37
11.
0.
0.
0.
0.
0.
2M
3?
34
37
0.
0.
0.
0.
0.
0.
2H
31
34
3/
0.
0.
0.
0.
(I.
0.
27


.08
.76
. 23
.58





.M
. 48
.11
.48






.99
.16
.H7
./8






.65
.76
.01
.05






.98
STAB
1 Cal 1
lmole-°C]
n.
0.
n.
o.
n.
7 -s . M
« 1 .89
*ft.51
9:i.79
').
n.
n.
0 .
n.
'i.
7 *> . 1 6
HI. 47
HS.21
9il.^*
» .
n.
n.
n.
c, t
•I.
70.41
MI. n
«*>. 4rf
rt V . «y 7
n.
° .
o.
n.
n.
n.
74.40
HI-. 11
84.98
»**.'» 3
n.
n.
'i .
'>.
o.
n.
7'. 08
VTAB
i i liters i
1 I mole I
n.
0.
ii.
0.
n.
1 .450
1.936
2.22?
? . 4 7 U
(1.
n.
i).
0.
0.
0.
1 .1 1)6
1 .727
? . i) 1 7
2.262
0.
0.
0.
0.
0.
0.
.502
1.361
I .670
1.012
0.
II.
0.
0.
0.
U.
.459
1.022
I. <92
1.636
U.
0.
0.
0.
0.
0.
.425
HTAB STAB
f kcal i | cal \
Imolel lmole-°Ci
0.
0.
0.
n.
o.
31
34
3ft
3-1
n.
0.
n.
n.
n.
n.
31
33
3*
3-1
n.
n.
n.
0.
0.
0.
3 n
33
:sft
3:1
n.
0.
0.
0.
0.
n.
3u
33
3i
3n
•I.
0.
0.
0.
o.
•1.
?y


.46
.HI
.4?
.75





.!«
.87
.32
.66



.


.61
.59
.10
.46






.21
.31
.86
.25






.47
0.
0.
0.
0.
0.
79
84
8*
92
0.
0.
0.
0.
U.
0.
7*
83
8M
92
0.
0.
0.
0.
0.
0.
7n
83
87
9V
0.
0.
0.
0.
0.
0.
77
82
87
9l
0.
0.
0.
0.
0.
0.
75


.37
.31
.68
.87





.86
.96
.39
.61






.III)
.24
.81
.08






.14
.00
. 24
.56






.40
VTAB
1 liters i
1 mole I
0.
0.
0.
0.
0.
1 .
2.
2.
?.
0.
0.
0.
0.
0.
0.
1.
1.
2.
2.
0.
0.
0.
0.
0.
0.
1.
1.
1.
?.
0.
0.
0.
o.
0.
0.


724
081
354
576





4711
883
152
371






004
545
799
027







15. 0 psia








16. 0 psia









18. 0 psia








20. 0 psia

.644
1.
I.
I.
0.
0.
0.
0.
0.
0.
256
517
745












25. 0 psia


.481
Figure 14 .  FC-75 Superheated Fluid Properties  (Cont'd)
                         413

-------
Line
No.
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
HTAB
f kcal t
1 mole I
30
33
36
0.
0.
0.
0.
0.
0.
27
30
33
35
0.
0.
0.
0.
0.
0.
27
30
32
35
0.
0.
0.
0.
0.
0.
27
2V
32
34
.96
.84
.44






.54
.37
.Ufl
.80





.30
.00
.64
.?6





.18
.77
.37
.89
STAB
1 cal
VTAB
\ (liters}
\mole-°C| 1 mole I
7rt
83
88
0.
0.
0.
0.
0.
n.
71
76
HI
86
0.
0.
0.
U.
n.
0.
7 U
75
HII
31
n.
0.
o.
n.
n.
n.
711
7-i
HO
84
.27
.28
.04






.39
.81
.71
.69





.69
.99
.77
.56





.26
.37
.17
.77
.564
.890
1.133
0.
0.
0.
0.
0.
0.
.408
.484
.644
.858
0.
0.
0.
0.
0.
n.
.405
.455
.541
.685
0.
0.
0.
0.
0.
0.
.329
.430
.487
.591
HTAB
j kcal t
I mole I
3?
35
37
0.
0.
0.
0.
0.
0.
28
31
14
37
0.
0.
0.
0.
0.
0.
28
31
34
36
0.
0.
0.
0.
0.
0.
28
31
33
36
.43
.211
.66






.90
.74
.5.1
.04





.60
..S3
.01
.51





.46
,05
.68
.12
STAB
1 cal 1
lmole-«C»
80
85
90
0.
0.
0.
0.
0.
0.
74
79
84
88
0.
0.
0.
0.
0.
0.
73
78
83
87
0.
0.
0.
0.
0.
0.
72
77
82
86
.82
.58
.22






.15
.39
.18
.90





.28
.39
.13
.71





.82
.78
.40
.88
VTAB
1 literal
I mole 1
.726
1.020
1.250
0.
0.
0.
0.
0.
0.
.438
.550
.750
.963
0.
0.
0.
n.
0.
0.
.428
.481
.611
.759
0.
0.
0.
0.
0.
0.
.413
.454
.537
.649


25. 0 psia






30. 0 psia








35. 0 psia








40. 0 psia




Figure 14 .  FC-75 Superheated Fluid Properties  (Cont'd)
                          414

-------