VOLUME II: USERS MANUAL
MODELING, ANALYSIS, AND EVALUATION
OF RANKINE CYCLE PROPULSION SYSTEMS
U.S. Environmental Protection Agency
-------
MODELING, ANALYSIS, AND EVALUATION
OF RANKINE CYCLE PROPULSION SYSTEMS
VOLUME II: USERS MANUAL
By
J. H. Skinner, R. P. Shah, and J. B. Okesson
February 1972
Prepared for
OFFICE OF AIR PROGRAMS
ENVIRONMENTAL PROTECTION AGENCY
ANN ARBOR, MICHIGAN 48105
Contract No. EHS-70-111
Mechanical Engineering Laboratory
Corporate Research and Development
General Electric Company
Schenectady, New York 12305
-------
FOREWORD
This report, "Modeling, Analysis, and Evaluation of Rankine
Cycle Propulsion System," describes work carried out under Con-
tract No. EHS-70-111 for the Office of Air Programs, Environ-
mental Protection Agency at Ann Arbor, Michigan. The work was
conducted by the Mechanical Engineering Laboratory of Corporate
Research and Development of the General Electric Company in
Schenectady, New York.
The report consists of two volumes:
Volume 1 -- Final Report
Volume II -- Users Manual
Volume I includes the derivation of the models and their
application to specific designs. Steady-state and transient re-
sults are presented. Volume II includes copies of the computer
programs, FORTRAN nomenclature, flow diagrams, and other
user information.
The Project Officer for this contract was Mr. William Zeber
of the Environmental Protection Agency. The Deputy Project
Officer was Mr. Kent Jefferies of the National Aeronautics and
Space Administration Lewis Research Center in Cleveland, Ohio.
: II
-------
ACKNOWLEDGMENTS
The authors gratefully acknowledge assistance from
the following people:
Mr. Robert Barber and his associates of Barber-
Nichols Engineering Corporation, Arvada, Colorado, for
turbine expander data and analyses. Barber-Nichols was a
subcontractor in this project.
Mr. Dale H. Brown, Thermal Branch, General Electric
Corporate Research and Development, for advice and as-
sistance on transient thermodynamics.
Dr. Thomas Kerr of the Information Studies Branch,
Corporate Research and Development, and Mr. William
Keltz of the Specialty Fluidics Operation, General Electric
Company, for assistance in controls analysis.
Mrs. Barbara Kuhn, Contract Administrator, General
Electric Corporate Research and Development.
Mr. Peter M. Meenan and Mr. Robert C Rustay of
the Information Studies Branch, General Electric Cor-
porate Research and Development, for assistance in
modeling and simulation.
Dr. Dean Morgan and his associates in the Thermo
Electron Corporation, Waltham, Massachusetts, for recip-
rocating expander data and analyses. Thermo Electron
was a subcontractor on this project.
Professor Wen-Jei Yang of the University of Michigan
for consultation in the area of transient thermal analysis.
IV
-------
TABLE OF CONTENTS
Section Page
FOREWORD iii
1 INTRODUCTION 1
2 FLUID PROPERTY MODELS 3
Subroutine PROP 3
Particulars Corresponding to Change in Fluid
or Fluid Data Extension 3
Nomenclature -- PROP 4
Program Listing -- PROP 5
Subroutine PROPST 6
Particulars Corresponding to Change in Fluid
or Fluid Data Extension 6
Nomenclature -- PROPST 8
Program Listing -- PROPST 9
Subroutine SATP 10
Nomenrlature -- SATP 10
Program Listing -- SATP . 12
Subroutine SUPPT 14
Nomenclature -- SUPPT ..... 14
Flow Diagram -- SUPPT 16
Program Listing -- SUPPT 21
Functions . 25
Nomenclature . . . . . 25
Summary of Functions . ..... . 26
Program Listing -- FUNCTIONS ... 29
3 RECIPROCATING EXPANDER MODEL 35
Main Program -- ENGINE .... . . 35
Nomenclature -- ENGINE 35
Flow Diagram -- ENGINE 38
Program Listing -- ENGINE 40
Subroutine-- DOME 43
Nomenclature -- DOME 43
Program Listing -- DOME 44
4 TURBINE EXPANDER MODEL 45
Main Program -- TURBIN 45
Nomenclature -- TURBIN 45
Flow Diagram -- TURBIN 47
Program Listing -- TURBIN 48
-------
TABLE OF CONTENTS (Cont'd)
Section Page
5 FEEDPUMP MODEL 49
Main Program -- PUMP 49
Nomenclature -- PUMP . 49
Flow Diagram -- PUMP 50
Program Listing -- PUMP 51
6 VAPOR GENERATOR MODEL 53
Main Program -- VAPORG 53
Nomenclature -- VAPORG 53
Flow Diagram -- VAPORG 57
Program Listing -- VAPORG 76
Subroutine DISTR 86
Nomenclature -- DISTR 86
Program Listing -- DISTR 87
Subroutine GEOMCO . 89
Nomenclature - GEOMCO 89
Program Listing -- GEOMCO 90
Subroutine STEPSI 92
Nomenclature -- STEPSI 92
Program Listing -- STEPSI 93
Subroutine ITERAT 95
Nomenclature -- ITERAT 95
Program Listing -- ITERAT 96
Subroutine PDROP1 99
Nomenclature -- PDROP1 99
Program Listing -- PDROP1 100
Subroutine--PDROP2 101
Nomenclature -- PDROP2 101
Program Listing -- PDROP2 102
Subroutine PDROPA 108
Nomenclature -- PDROPA 108
Program Listing-- PDROPA 104
Subroutine INTSTE 105
Nomenclature -- INTSTE 105
Program Listing -- INTSTE 106
Subroutine PHASE 107
Nomenclature -- PHASE . . 107
Program Listing -- PHASE 108
Subroutine HT1PB . . 110
Nomenclature -- HT1PB 110
Program Listing-- HT1PB Ill
Subroutine HT2PB 112
VI
-------
TABLE OF CONTENTS (Cont'd)
Section Page
6 Nomenclature -- HT2PB 112
Program Listing -- HT2PB 113
Subroutine HTGR 115
Nomenclature -- HTGR 115
Program Listing -- HTGR 116
Subroutine HTGTB . 117
Nomenclature -- HTGTB 117
Program Listing -- HTGTB .... . . .118
Subroutine HTGTF . . ... . ... 119
Nomenclature -- HTGTF . . 119
Program Listing -- HTGTF . 120
Subroutine HTGTM . .121
Nomenclature -- HTGTM. ... . . 121
Program Listing -- HTGTM . . . . . . 122
Subroutine HTPF . 123
Nomenclature -- HTPF ..... . 123
Program Listing -- HTPF .... . 124
7 CONDENSER MODEL . . . . . 125
Main Program -- COND 125
Nomenclature -- COND .... . 125
Flow Diagram -- COND 128
Program Listing -- COND . . . 147
Subroutine CGEOMC . 157
Nomenclature -- CGEOMC . . .157
Program Listing -- CGEOMC .... 158
Subroutine STEPSC 160
Nomenclature -- STEPSC .160
Program Listing -- STEPSC 161
Subroutine HT2PC .163
Nomenclature -- HT2PC 163
Program Listing -- HT2PC 164
Subroutine HTAC 165
Nomenclature -- HTAC 165
Program Listing -- HTAC 166
8 REGENERATOR MODEL . . 167
Main Program -- REGEN 167
Nomenclature -- REGEN 167
Flow Diagram -- REGEN 170
Program Listing -- REGEN 186
vu
-------
TABLE OF CONTENTS (Cont'd)
Section
8 Subroutine RGEOMC . 194
Nomenclature -- RGEOMC 194
Program Listing -- RGEOMC 195
Subroutine STEPSR 197
Nomenclature - - STEPSR .... . 197
Program Listing -- STEPSR ... 198
Subroutine PDROPR . 200
Nomenclature -- PDROPR ... . 200
Program Listing -- PDROPR 201
Subroutine HTWTM 202
Nomenclature -- HTWTM .202
Program Listing -- HTWTM 203
9 COMBUSTOR MODEL . . . ' 205
Main Program -'- COMBST . . 205
Nomenclature -- COMBST 205
Flow Diagram --COMBST 206
Program Listing -- COMBST 207
Subroutine COMB1 208
Nomem lature -- COMB1 ... 208
Flow Diagram -- COMB1 209
Program Listing -- COMB 1 211
Subroutine COMB2 213
Nomenclature -- COMB2 . 213
Flow Diagram -- COMB2 215
Program Listing -- COMB2 217
Subroutine COMBS . 219
Nomenclature -- COMBS 219
Flow Diagram -- COMBS 220
Program Listing -- COMBS 224
Subroutine ENERGY 226
Nomenclature -- ENERGY 226
Program Listing -- ENERGY . . 227
Subroutine TRHT 228
Nomenclature -- TRHT 228
Program Listing -- TRHT ... 229
10 TRANSMISSION MODEL . . . 231
Main Program -- TRANSM . . 231
Nomenclature -- TRANSM 231
Flow Diagram -- TRANSM 233
Program Listing -- TRANSM 235
viii
-------
TABLE OF CONTENTS (Cont'd)
Sertion Page
11 DRIVER MODEL .... .... 237
Main Program -- DRIVER . 237
Nomenclature -- DRIVER ... 237
Flow Diagram -- DRIVER 239
Program Listing - - DRIVER . . 242
12 PARAMETRIC DESIGN PROGRAMS 245
Main Program -- EEFF .245
Nomenclature -- EEFF 245
Flow Diagram -- EEFF 248
Program Listing -- EEFF 252
Main Program -- ECOMP .254
Flow Diagram -- ECOMP .256
Program Listing -- ECOMP 261
Main Program -- TSIZE .263
Nomenclature -- TSIZE 263
Flow Diagram -- TSIZE 265
Program Listing -- TSIZE .' 268
Subroutine BLSIZ1 270
Nomenclature -- BLSIZ1 270
Flow Diagram -- BLSIZ1 272
Program Listing -- BLSIZ1 277
Subroutine BLSIZ2 280
Flow Diagram -- BLSIZ2 281
Program Listing -- BLSIZ2 285
Subroutine CONDSZ . .288
Nomenclature -- CONDSZ 288
Flow Diagram -- CONDSZ 290
Program Listing -- CONDSZ 293
Subroutine RGSIZE .... ... 294
Nomenclature -- RGSIZE .... 294
Flow Diagram -- RGSIZE 296
Program Listing -- RGSIZF 298
13 TOTAL SYSTEM MODEL . 301
Main Program -- MAINSYS . 301
Nomenclature -- MAINSYS 301
Flow Diagram -- MAINSYS . 314
Program Listing -- MAINSYS 319
Data File - Data Input 32K
Program Listing -- Data Input 329
IX
-------
TABLE OF CONTENTS (Cont'd)
Section Page
13 Data File - Data Initial SSI
Program Listing -- Data Initial 383
Data File -- ROUTE 334
Program Listing -- ROUTE 335
14 INDEX 337
Index of Programs 337
Index of Data Files 339
Appendix I -- WORKING FLUID THERMODYNAMIC
PROPERTIES FOR CP-34. WATER,
AND FC-75 341
LIST OF TABLES
Table
1 Data Files Referenced Within Programs 2
i
2 Transport and Metal Property Functions 26
3 Range of Fluid Property Tabulations 341
-------
LIST OF ILLUSTRATIONS
Figure Page
1 Links Between Subroutines Used by VAPORG ... 54
2 Links Between Subroutines Used by COND 126
3 Links Between Subroutines Used by REG EN 168
4 Arrangement of Data in Date Input File (3 Sheets) . . 320
5 Arrangement of Data in Data Initial File (2 Sheets) . 331
6 CP-34 Saturated Fluid Properties -- Pressure, Tem-
perature, Specific Volume Liquid, Specific Volume
Vapor, Enthalpy Liquid, and Enthalpy Vapor (3Sheets) 344
7 CP-34 Superheated Fluid Properties -- Pressure and
Temperature 348
8 CP-34 Superheated Fluid Properties I -- Specific Volume,
Entropy, and Specific Heat (21 Sheets) 347
9 CP-34 Superheated Fluid Properties II -- Specific Volume,
Enthalpy, Entropy, and Specific Heat (19 Sheets) .... 368
10 Water Saturated Fluid Properties -- Pressure, Tem-
perature, Specific Volume Liquid, Specific Volume
Vapor, Enthalpy Liquid, and Enthalpy Vapor (3 Sheets) 387
11 Water Superheated Fluid Properties -- Pressure and Tem-
perature ( 1 Sheet) .... 390
12 Water Superheated Fluid Properties -- Specific Volume,
Enthalpy, and Entropy (16 Sheets) . 390
13 FC-75 Saturated Fluid Properties -- Pressure, Tem-
perature, Sperifir Volume Liquid, Specific Volume
Vapor, Enthalpy Liquid, and Enthalpy Vapor 406
14 FC-7 5 Superheated Fluid Properties -- Pressure Tem-
perature, Enthalpy, Entropy, and Specific Volume (8
Sheets) 407
xl
-------
Section 1
INTRODUCTION
-------
Section 1
INTRODUCTION
Volume II, Users Manual, contains computer program listings for the
models derived and analyzed in Volume I of this report. FORTRAN nomen-
clature, flow diagrams, input and output information, and other user instruc-
tions are also included in this volume.
This manual assumes that the user is familiar with computer program-
ming in general, and understanding of terms such as COMMON, FUNCTION.
SUBROUTINE, etc. , is taken for granted. The programming language is
FORTRAN IV; the models have been run on the General Electric 605 com-
puter (635 compatible). v
The manual has been prepared so that the user can link the programs
together to form a component or system model, provide the needed input, run
the program, and obtain and interpret the results. The programs as written
employ standard programming practices so that persons familiar with the com-
puter language can use the nomenclature listings and flow diagrams to trace
logic, identify equations, and make programming changes.
Each section of this volume deals with a particular model. All of the
subroutines that are employed in constructing the model are listed. "VTany
subroutines are used in several models, and the nomenclature, flow diagram.
and program listing are not repeated in each instance; this information appears
in the first section in which the subroutine is mentioned. The "Program Index,
in Section 14 of this volume, can be used to locate the user information for
any particular program.
Input data files are generally listed in the same sections as the programs
that read them. The only exception is the working fluid data files, which be-
cause of their size are listed separately in the Appendix, "Working Fluid
Thermodynamic Properties for CP-34 Water, and FC-75 of this volume.
Data files are referenced within the programs by a two-digit integer code.
The file names and code are presented in Table 1.
For many programs the COMMON statements are identical to the COMMON
for the total system model, MAINSYS, described in Section 13. In these in-
stances the user is referred to MAINSYS for the COMMON nomenclature. The
nomenclature listed for each program has been subdivided into three sections:
*GE-600 Line FORTRAN IV, Technical Information Bulletin CPB-1006G,
General Electric Company Information Systems, September 1964.
-------
1. FORTRAN Variables in COMMON
2. FORTRAN Variables in Argument List
3. Other Selected FORTRAN Variables
In addition, some programs have a section on FORTRAN variables input
through READ statements. Employing these lists, the user can find a descrip-
tion and the units for the most important variables.
The total memory size requirement for all programs used in the total
systems model is approximately 45K. including the fluid property data for
CP-34.
Table 1
DATA FILES REFERENCED WITHIN PROGRAMS
Integer Code
Input Files
04
07
08
09
11
31
38
39
Output Files
13
15
Data File
CP-34 Saturated Fluid Properties
CP-34 Superheated Fluid Properties -- Pressure and
Temperature
CP-34 Superheated Fluid Properties I -- Specific Volume,
Enthalpy, Entropy, and Specific Heat
CP-34 Superheated Fluid Properties II -- Specific Volume,
Enthalpy, Entropy, and Specific Heat
Transient Start File
Route File
Data Input File
Data Initial File
Output File from VAPORG, REGEN. and COND
Output File from ITERAT
-------
Section 2
FLU ID PROPERTY MODELS
-------
Section 2
FLUID PROPERTY MODELS
The thermodynamic property models are entitled:
PROP
PROPST
SATP
SUPPT
The transport and metal property models are programmed as FUNC-
TIONS.
SUBROUTINE PROP
Subroutine PROP assigns subscripted labels to the CP-34 saturated fluid
properties data, file 04, in the Appendix of this volume. Each of the six ar-
rays thus constructed has dimension of 128 and is stored in COMMON with
the main system program as follows:
P(128) VVAP(128)
T(128) HLIQ(128)
VLIQU28) HVAP(128)
PARTICULARS CORRESPONDING TO CHANGE IN FLUID OR FLUID
DATA EXTENSION
In case a fluid other than CP-34 is used or the CP-34 saturated fluid
properties data list is extended, the dimensions of the arrays in COMMON
must be changed correspondingly.
If FC-75 is used as the working fluid, PROP must contain additional
operations. Since the units of the values in the FC-75 saturated fluid prop-
erties data (Appendix I) are different from those required by the systems
program. PROP for FC-75 must contain the following conversions:
P (I) = (P (I)) (14. 7)
(psia) (atm)
T (I) = |T (I)) (1.8)+ 32.
(°F) (°C)
VLIQ (I) ~- (VLIQ (I)] (0. 0382)
(f1?/lb) (liters/mole)
WAP (I) = (WAP (I)) (0. 0382)
(ft3/lb) (liters/mole)
HLIQ (i) = (HLIQ (i)] (4.32 x io~3)
(Btu/lb) (cal/mole)
-------
HVAP (I) = HVAP (I) (4. 32 X 10"3)
(Btu/lb) (call mole)
NOMENCLATURE -- PROP
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of PROP are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
There is no argument list in this program.
FORTRAN Variables in READ Statements:
The FORTRAN variables read in this program are defined in the COM-
MON list of the main program. MAINSYS.
-------
PROGRAM LISTING ~ PROP
SUBROUTINE
FLUID cp.14
COMMON AP.H.CH,CHK,CO
COMMON I:O?P,CU?S,nrs.HCT,MM
COMMON toni V.F ,f S»H20P,n?'iS
COMMON HP.MR.MTfLAM.HTlN.LHV
COMMON LHVT.LCS.LCT.MAIk.MFLUII)
COMMON MFilFI .N?P,N2R.N2i,.NHHNnA
COMMON NRENOG,NO,NP»02P,01»R
COMMON 0?S,KO,SP1,SSA,SIA
COMMON STii,10,US,hT. YbXI
ACIdQ).ACUdO).HMdi)),RTdO).CTf
CTFYdn.lt ),CTF(10 ).i;W,DHIdll).nHO(lU)
III (1 U J.nodU ),IIS(1 i|).nYYY(10 ),EF
l-FY(l0.1l).F-G,bGY(tfl,tt),FH|(lO),FHndO)
>N|(10).INU(in).FRAC.Fll(1b).F10(lU)
(itfZdO.ll , 2).HFdQ,11.2),H» I NX 10), HI I N2 d 0 ) , Hfi I Nl d 0 )
MfJ|N?dll).Hr, ],n01Y(ln.ll>,HTF,HTFY(in,ll)
J?f (10 )..I3I (10 ),L (1(1), LSTFP.MHZdO.il )
NCT(J ),NCLY(3).NCrtY(3),NrYfLF.NFSFCT(3)
NLOMP,NM(1U).NM| (lil),NMO(10).NPH
iMPriY(iii.]i)fNPh|NT,NbS,NSIdll).NSO(lli)
N(MANS,NX2MAX(10),NX??d(i),NXN,NXO
00020
nnii3o
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
RFAL
I'MdO). IR2(10.n.». Tn?AV(M10). 1C INI do), TRIN2(10)
I IMF. Tl (111,11 .2), TuRKOWdO ). VAfLI (10 ). VAPL2 (10 >
VAHLJ(IO).VOLdO), xl(,(10),X2L(10),X?Tdfl)
CT&R(69,27),HLIOd^8).HTAR(69.27),HyAPd28). INlJ
PTAR(7U),STAH(6Q,?7),Td ''«). T T AB ( 33 ). VL I Ud 2H )
VT«R(6V,27).VtfAP(l?fl)
L.LXV.l HVT.LCS.LCT.Ma|f/,MFlll|0,MrOtL.MHZ.N2P.N2R.N2S.NO
nnoso
00(160
00070
01)080
00090
uuiun
00110
001?0
ouuo
00140
001«>0
00160
U0170
00180
00190
OOPUO
00210
(10220
00230
00240
00 70 1=1. Ml INF
>, i/L IU( t ). VVAP( I ),HL10( I ),HVAP( I )
ntJNTIM'F
FORMAKhFU.5)
RETURN
ENR
00760
00270
002UO
002VO
00300
00310
00320
003JO
00340
00350
00360
00370
003HO
00390
00400
-------
SUBROUTINE PROPST
Subroutine PROPST assigns subscripted labels to the CP-34 superheated
fluid properties data, files 07, 08, and 09. In addition to this it specifically
defines, within the program, the first four pressure values. This last is
peculiar to CP-34 as the working fluid and was done for convenience at the
time the CP-34 superheated data were extended. The pressure array con-
structed by PROPST has dimension of 70. The first 69 values are actual
pressures, while the 70th value is a dummy value inserted for reading con-
venience. The temperature array has dimension of 33, of which the first 27
are actual temperature values and the remaining six are dummy values.
Each of the other four arrays is two-dimensional with a first dimension
of 69, corresponding to the 69 pressure values, and a second dimension of
27, corresponding to the 27 temperature values. All six arrays are stored
in COMMON with the main system program as follows:
PTAB (70)
TTAB (33)
VTAB(69,27)
HTAB(69,27)
STAB (69, 27)
CTAB(69, 27)
PARTICULARS CORRESPONDING TO CHANGE IN FLUID
OR FLUID DATA EXTENSION
In the case that a fluid other than CP-34 is used or the CP-34 super-
heated fluid properties data (Appendix I) are extended, the dimensions of
the arrays in COMMON must be changed accordingly. These dimensions de-
pend on the quantity of data available and the arrangement of the data for in-
put. For example, to change from CP-34 to water as the working fluid, the
dimensions of the fluid property arrays should change to the following:
PTAB (44)
TTAB (40)
VTAB (41,34)
HTAB (41,34)
STAB (41,34)
Figure 11, in Appendix I (p. 390) lists the pressures and temperatures at
which we have water-superheated-fluid property values. There are 41 real
pressure values and 33 real temperature values in the file. For convenience,
the pressures are placed 11 values to a line for four lines. Three dummy
values of . 0 have been inserted to complete the last line. The temperatures
are arranged 10-to-a-line for four lines, with seven dummy values inserted
in the last line. Since each line is read completely, 44 pressure values and
40 temperature values are stored in common. Figure 12 in the Appendix
-------
(pp. 390 - 405) contains the specific volume, enthalpy, and entropy values
corresponding to the pressures and temperatures tabled in Figure 11.
Each line of Figure 12 contains fluid properties for a given pressure and
two consecutive temperature values. Since there are only 33 temperature
values (an uneven number), there are three dummy values of . 0 to complete
the last line of each pressure block. Since each line of Figure 12 is read
completely, specific volume, enthalpy, and entropy values read for 41 pres-
sures and 34 temperatures. VTAB, HTAB, and STAB therefore have dimen-
sions of 41 and 34.
If FC-75 is used as the working fluid, the fluid property arrays in COMMON
should have the following dimensions:
PTAB (36)
TTAB (20)
VTAB (35,20)
HTAB (35,20)
STAB (35,20)
As in the case of water as the working fluid, these dimensions depend on the
arrangement of the data to be input.
In addition to making the proper dimension-changes when FC-75 is the
working fluid used, PROPST must be changed to contain the conversion state-
ments to change the superheated data to units comparable to those required
by the systems program. These conversion statements are:
PTAB (i) = (PTAB («) (14.7)
(psia) (atm)
TTAB (I) = [TTAB (I)] (1. 8) + 32.
HTAB (I, J) = [HTAB (I, J)] (4. 32)
(Btu/lb) (kcal/mole)
STAB (I, J) = STAB (I. J)j (2. 4 E-3)
(Btu/lb °F) (cal/mole dC)
VTAB(I.J) = (VTAB (I, J)) (0. 0382)
(ft3/lb) (liters/mole)
NOMENCLATURE -- PROPST
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of PROPST are in the COMMON
of MAINSYS.
-------
FORTRAN Variables in Argument List:
There is no argument list in this program.
FORTRAN Variables in READ Statements:
The FORTRAN variables read in this program are defined in the COMMON
list of the main program. MAINSYS.
-------
PROGRAM LISTING -- PROPST
SUBROUTINE PROPST
FLUID CP34
COMMON AP.B.Ch,CriK.CO
C02P»Ci)?S,l'CS.u01,DTH
EOUlV,r,FS.H?OP.H20S
HP.HR.HTI LAM,HIIN.LHV
LHVT.LCS.LCT.MAIK.MFLUID
MFUFL.N2P.N?»<.N2S,«JRfcNnA
NRFNI)G,Nli,NP,02P.O?R
0?S.PO,SP1,SSA,STA
STC.in.US.nT.YtXT
ACI(10).ACU(10),HH(1U).BI(10).CTF
CTFYdii.ll ),CT[(10 >,CM.DH|(lU).DHO(in)
ni(in).nu(in >,ns.NPKINT.NSS.NSI (lO).NSO(lO)
NTRANS,NX2MAX(10),NX2Z(l(l).NXN,NXO
HRV(in).kFA.I,HVAP(128). IND
NL |Nh.NND.NPSTLP.NTSTEP.Pd28)
PTA^(7(l),S1A(i(60,27).T(128).TTAR(33).VLlU(128)
VTAR(AV,?7>.VVAP(1?8)
L.LHV.LHVT,LCS.LCT,MAIR.MFLUID.MFUEL,MWZ.M2P.N2R,N2S.NO
COMMON
COMMON
COMMON
COMMON
CUMMON
COMMON
COMMON
COMMON
COMMON
CUMhON
COMMON
CUMMON
CUMfiOH
CUMhON
COMMON
COMMON
COMMON
COMMON
COMMON
CUMMON
COMMON
CUMhON
COMMON
COMMON
COMMON
COMMON
COMMON
CUMMON
RFAL
NPS1FP=69
NISFEP=27
PTAR(l)=.
PTAB(3> = .»>
PTAN(4)=2.
REAP(U7.6M)(PTAH( J). Js5.1*>>
REAl)(U7.All)(PTAR(J).J = 16,26>
RE A IKU7, 6 II MP1 AH < J). J = ?7,.W)
REAP(l)7.6il)(PIAH(J).J = 38.4fl)
REAO(U7.60)(PIAE« J), J = 49.(>9)
REAO(07,60)(PTAH( J), J=6U.70 )
REAU(07,6li)(TTA8( J). J=1.11 )
REAU(U7,60MTTAR( J), J=23.A3>
DO 30 1 = 1..17
DO 30 K=1,NTSIEP
READ(08,RO>VTAB(I.K),HTAR(I.K),STAB(I,K).CTA8( I.K)
30 CONTINUE
DO 40 I=37.NPSTEP
DO 40 K=l,NTSTEP
REAn(09,8H)VTAB(I.K).HTAR(I.K).STAB(I.K).CTAR(I.K)
40 CONTINUE
60 FOPMAT(11F7.1)
80 FORMAT(4F11.5)
RETURN
END
00020
nonjn
00040
000-70
00060
00070
OOOttO
00090
ooinn
00110
00120
00130
00140
noi<>n
00160
00170
OOlttO
OU190
00200
00210
00?20
00230
00240
002^0
00260
00270
00290
00300
00310
00320
00330
00340
003bO
00360
00370
00380
nn39n
00400
no4in
00420
00430
00440
00450
00470
00480
00490
00500
00510
00520
00530
00540
005*0
00560
00570
00580
00590
00600
-------
SUBROUTINE SATP
Subroutine SATP is the interpolation program for the saturated CP-34
fluid properties (Appendix I). For a given value of any one of three of the
thermodynamic properties, it computes the remaining properties of the set
by linear interpolation or extrapolation. SATP employs the subroutine PROP.
If extrapolation must be used because of an input value falling outside
the range of the saturated fluid properties data, a message will be printed
in the output indicating which value is falling above or below the range.
NPRINT, a logic variable for printing stored in COMMON, gives the option
of suppressing the printing. If NPRINT. the first value of line 00360 of the
Data Initial File, is set equal to zero, a message will be printed indicating
when an input value goes outside the range of the saturated fluid properties
data. If NPRINT is set equal to one, the message will be suppressed.
SATP can be entered with one of three different properties, depending
on the input code correspondingly entered. The output consists of the values
of the remaining tabled properties for the given input value.
Input Code (NO
0
1
2
Output
P, VLIQ. WAP. HLIQ, HVAP
T, VLIQ, WAP, HLIQ. HVAP
P. T VLIQ, WAP, HVAP
NOMENCLATURE -- SATP
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of SATP are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
HL
HV
NC
PCOND
TCOND
Definition
Enthalpy of working fluid liquid phase
Enthalpy of working fluid vapor phase
Logic variable for input quantities:
0 - TCOND
1 - PCOND
2 - HL
Pressure of working fluid
Temperature of working fluid
Ib/in?
°F
10
-------
FORTRAN
Variable (Cont'd) Definition Units
VCOND Specific volume of working fluid vapor
phase ft3/Ib
VCONDL Specific volume of working fluid liquid
phase ft3/lb
11
-------
PROGRAM LISTING -- SATP
SUBKOHTINF SATPCPCOND,TCOND.VCONDL.VCOND.HL.HV.NC) 00020
CUMMIN AP.R.CH.CHR.CO 00.140
COMMON C02P.C02S.UCS.UCT.nTH 00350
COMMON IOUI V,F.FS,H20H,H?llS 00360
COMMON HP.HK.HTFLAM.HTlN.lHV 00370
COMMON LHVT.LCS.ICT.MAIK.MFLUID 00380
COMMON MFUEI..N2P.N2K.N2S.IHBENDA 00390
COMMON NKENDO.MU.NP.02P.02R 00400
COMMON U?S.PO,SPt,SSA.ST« 00410
COMMON STR. 1U.WJ.WT, YtXT 00420
COMMON ACKin). ACUtlO ).HH(10).B1 (lO).CTT 00430
COMMON CTf Ydii. ID.CT 1(10 J.CH.DHI (lU).nHO(lO) 00440
COMMON HI(1n),nixin),nS(1n).DYYY(in),EF 00450
COMMON bFYdO.lt >.F-G.EGv,NCLr<3>.NCPv(3>.NCYCLE.NFSFCT<3> 00510
COMMON NLUMP,NM(in).NM|(10).NMO(10).NPH 00520
COMMON NPHYdU.11 ) , NPK I N T . NSS. NS I ( 10 ) , NSfl ( 1 0 ) 00530
COMMON MTHANS,NX2MAX(in>,NX7Z<10>.NXN,NXO 00540
COMMON PGV(1fl).KFA,KM(ln>.RM,RMY(10,ll> OU550
COMMON TRK10). TP,2(10.1 I. ? ), TO? A Vfi < 10 ). TG I Nl { 10 ). TGIN2(10) 00560
COMMON IMF, TTtlti.1 1 .<•>. TuHKflWdn ). VAPLlfin).VAPL2<10) 00570
COMMON VAfL3(10 ), VOI ( in ). tlGdO ) . X2L (10 ). X? T ( 10 ) 00580
COMMON CTnH(6,K ICM 1 ?B),HTAB{69,27 ).HVAP<128), INI) 00590
COMMON NLINt.NNU.NPbTeP.NlS!FP.H(12«) 00600
COMMON PTAR(7n ).SI AH(U0.7;).T(1?8).TTAR(33).VLIU( 1?8) 00610
COMMON VTAH(6v,77).vVAP<]^8) 00620
RfrAL L.LHV.I HVI.ICS.ICT,MA IK.MFLUID,MFUFL.MW7,N?P,N2R.N2S.MO 006JO
NLINE=12H 00640
IF(NND.GT.I) (iO TO V5 00650
NND=2 00660
CALL PROP 00670
95 CONTINHF 00680
IF (NU-l )inn,i>on, jnn 00690
> SEARCH THH COhPUCT 1NIEKVALS 00700
100 IFdCUND.LT.Td )) 00 10 mi 00710
IF(TCl)Nn.LE.T(NLINF) ) 00 TO in? 00720
1=NLINE 00710
IF(NPKINT.NE.II) GO TO ? 007J*
WHITF <6.495) 00740
00 TO ? 00750
101 1=2 00760
IF(NPKlNT.Nfc.u) GO TO 2 00765
MKIIF (6,*00) 00770
00 TO ? 00780
102 DO 1 Ial.NI.INb 00790
IF -TCONO)/-!<|-1)) 00820
GO 10 400 OORJO
200 IF(HCUND.LT.P(1 )) 00 TO 2ill 00840
IF(PCONn.LE.P(NLlNF» GO TO 20? 00850
IsNLlNE 00860
IF(NPKINT.NE.fl) GO TO •> 00865
WHITE (6.-J10) 00870
GO 10 *> 00880
12
-------
PROGRAM LISTING -- SATP (Cont'd)
201
202
4
JOU
301
302
40U
495
500
520
531)
540
IF(NPKINT.Nf.U) GU TO 5
WHITE (6,S2ll)
GO TO 5
DU 4 1=1.NLINE
IF (PCOND.LT.Pt I ) ) fiOlO 5
CONTINUE
RATIO=(H-P(1-1 ))
-KATI0»(T(I)-l(|-1))
Qt I )-RAIIU«tVLint I )-VLlQ(!-l»
I)-PATIO«(VVAP(I)-VVAP
-------
SUBROUTINE SUPPT
Subroutine SUPPT is the interpolation program for the superheated CP-34
fluid properties. For given values of any one of four pairs of thermodynamic
properties, it computes the remaining properties of the set by two-way linear
interpolation or extrapolation. As in SATP, if an input value falls outside the
range of the superheated data, causing the program to use extrapolation, i
message is printed in the output indicating this has occurred. By changing
the value of NPRINT (as explained in the section on SATP). this print mes-
sage can be suppressed. SUPPT employs the subroutine PROPST.
Subroutine SUPPT can be entered with one of four different pairs of prop-
erties, depending on the input code correspondingly entered. The output
consists of the values of the remaining tabled properties for the given pair
of inputs.
Input
PTAB, TTAB
PTAB. STAB
PTAB, HTAB
VTAB, STAB
NOMENCLATURE -- SUPPT
Input Code (NC)
1
2
3
4
Output
HTAB, STAB, VTAB
TTAB, HTAB, VTAB
TTAB, STAB, VTAB
PTAB, TTAB, HTAB
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of SUPPT are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
H
NC
PRES
S
TEMP
V
Definition
Enthalpy
Logic variable for input quantities
1 - PRES, TEMP
2 - PRES, S
3 - PRES, H
4 - V, S
Pressure
Entropy
Temperature
Specific volume
Ib/in?
Btu/lb °F
op
ft3/ Ib
14
-------
Other Selected FORTRAN Variables:
FORTRAN
Variable
PL
RATIO
RATIO1
RATIO2
Definition
New specific heat values based on
RATIO1 and RATIO2
Final specific heat value based on
Cl. C2, and RATIO
New enthalpy values based on RATIO1
and RATIO2
Subscripts of the tabled pressure
values either immediately above or
immediately below the given pressure
Subscript of the tabled property value
that is immediately above the given
property value
Subscript of the tabled property value
that is immediately below the given
property value
Tabled pressure value immediately
above the given pressure
Tabled pressure value immediately
below the given pressure
Proportionate distance that the first
input property value is from the
tabled value below it to the tabled
value above h
Proportionate distance that the sec-
ond input property value is from the
tabled value below it to the tabled
value above it
New entropy values based on RATIO1
and RATIO2
New temperature values based on
RATIO1 and RATIO2
New specific volume based on RATIO1
and RATIO2
Units
Btu/lb °F
Btu/lb °F
Btu/lb °F
Btu/lb
Btu/lb
lb/in.2
Ib/in?
Btu/lb °F
Btu/lb °F
°F
°F
ft3/lb
ft3/lb
15
-------
FLOW DIAGRAM -- SUPPT
KH • 1
K • KH - I
PL • PTAB(K)
PH • PTAB(KH)
16
-------
FLOW DIAGRAM -- SUPPT (Cont'd)
0
YES
TEMP * TTAB(NTSTEP)
17
-------
FLOW DIAGRAM — SUPPT (Cont'd)
LLl -1-1
LH1 ° I
Define RATIO1
RATIO2
LL2 • LLl
LH2 « LH1
LLl =1-1
LH1 = I
Define RATIO1
I©
LLl « I ' 1
LH1 • 1
Define RATIO1
LL2 • I - 1
LH2 • I
Define RATIO2
LL2 • I - 1
LH2 = I
Define RATIO2
18
-------
FLOW DIAGRAM -- SUPPT (Cont'd)
LHl
LL1
= J
• J -
1
8 ^X.
to ^^
fYES
e VI
L
NO
Calculate
RATI01
VI
K = 1
Define PH, KH, PL
19
-------
FLOW DIAGRAM -- SUPPT (Cont'd)
Calculate
RAT1O2
Calculate
Tl, HI. VI.
SI. Cl. T2.
H2, V2. S2, C2
Calculate
RATIO. PRES, H,
TEMP. CP
c
i
Return, End
Calculate
RATIO. V. TEMP.
H, S. CP
20
-------
PROGRAM LISTING -- SUPPT
96
SoR MOOTING SllfPUPRES. TfcMP.H.S. V.NC)
AP.U.Cll.CHK.CO
cn^p.cozSf i'Cbi OCT.
bUUI V.F.FS, H20P. H2l'S
OP.HH, HTFLAM.H1 |N, I.HV
CUMMIN
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CllMKON
COMMON
COMMON
COMMON
COMMON
COMMON
MFOF-Lf N?P, N?K,N2S» M)t.N|iA
Ni,HH(lU),RT()0).CTF
<:TFY(in,ii),tmin),rw,nHi,FHl(lii).FMO(in)
FNI(10>,FNO(1ll».FRAC,FTI(in),FTO<10>
(;Vl(10,ll,2>.Hf (10,11 ,2), HI INI (10 >,HF I N? ( 1 H >
HR|N?(in).HGl.iCl YOU. 11 >,MTF.HTF Y<10. 11 »
j?Fdfl)f J.iHin ),i (in ),isiFP.MUZ(in.ti )
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CUMMON
CiiMHON
KKAL
IF( INO
U I Ml I 1 II )
M.UMH, NM( ID ) , Nn| ( 1 ii ) , NhO( 1 (I ) , NPH
NI'HYClii.l.l ).NPK|NT,NSS,NbM10).NSO(lU)
KiTHANS,NX2MAX(10),NX2Z(ln),NXN,NXO
I'GVC 1 0 > . I'FA, kM< 1 II > . RW, KWY< 1 fl, 11 >
1Cl(tO).TRZ(in.l1 ,/).TG?*VG
UMF. Tl Un,1 1 ,iJ), Ti.RROWl IP ), VAHL1 (10 ), VAPL?( 10 )
vApiJ(tn).vr'i(io>.>iG(iO).x2L(iO).x?T(in)
UTtR(6''.27).hL I 0< 1 '« ) . HT AR ( 69. ?7 ) . HV*P( 128 ) . INH
N|_|Nt ,KNI),NPSIkP»NlSlEP.P(l26>
PTAR( 7 1) ) , STAM69, 21 ) . T ( 1 78 ) . TTAR( 33 ) . VI. I 0( l?ft )
VTAR<69,?7 ), VVAP(1?8)
I .LHV.LHVT.I.l.S.LCT.MAlK.MFl U I D. MF UfcL . M^Z . N?P. N?R. N2S. NO
GI.1 ) UP TO VS
CAI L PROPS!
IF(NC.F(J. 4) CO TO ?OU
WITH PRf-SSUkE AS IMHD1
SF-AI-CI' THIS VALOH FKOM lAi'Ll
irr pRbS.i i.rTARd >> no in 96
If (HRfcS.Lb.HTAH(NPSIEP) ) ^0 TO
07
IF(NPH|MT. Nfc.i) ) GO TO 1
UR1IE <
GO TO 1
U (NPHlNT.Nfc.il) GO 10 1
MW| IF (ft.??U )
GO 10 1
97 no 10(1 l=l.NPSHP
IF(HRfcS.Ll.HTAR(|)) Go TO 1
1011 CDNIIftm
1 KH=|
K=KH-1
PI=PTAR(K)
SI
GO
00 10 (?.'>,10),NC
IF( TFMP.I.T..1T*B(1 )) GOTO
IF ( IfMP.Lh.TTAR(NlSTEP))
I=MTSTEP
ro S2
00020
110030
00040
000*0
00060
noo?n
oonao
00090
ouino
noiio
00120
noun
nniin
nni^n
011160
o n 1 7 n
OOIHO
on? no
00710
00'20
00730
01)240
002SO
00?60
nn?7o
on?«o
no?9o
n it 3 1 n
003 o
n n ,w o
on 390
OU40n
n u 4 3 n
n«43«>
00440
00460
00470
00480
00490
00-500
nosio
00520
00560
00570
00580
00590
21
-------
PROGRAM LISTING -- SUPPT (Cont'd)
IF(NPRlNT.Nt.U) GO 10 4
WHITE (6,230)
00 TO 4
51 l=?
ir(NPRINT.NE.U) 60 TO 4
WRITE <6.?40)
GO TO 4
52 no 3 I=1.NTSTEP
If < TEHP.LT.TTARC I )) 00 TO 4
J CONTINllfc
A IL1=I-1
LH1 = I
WATI01=(TEHP-TTAB(LL1))/)
HATI02=RAT101
LL? = Ll.l
LH2=IH1
CO TO 40
5 |F(S.l T.SHHU.l)) GO TO 53
IF (S.LE.STA&CK.NTSTEPM GO TO 54
l=NTSTtP
IF(NPRINT.NE.U) GO TO 7
UMTE (6,250)
GO TO 7
5J l=?
IF(HPH|*T.N(-.0) GO TO 7
HK11E (A,2A(i)
GU TO 7
54 Oi) h 1 = 1 ,NTST£P
IF(S.LT.STAh(K, 1 )) GO TO 7
6 CONTINUE
7 LL1=l-t
55
56
ID
57
01 = (S-STAfl(K,LLl ))/ ( SI AH( fc. LH1 )-STAB (K. LL1 ) )
IMS.LT.SfAH(KH,l ) ) C,U TO 55
tF(i>.LE.STAB(KH,NTSTEP)) GO TO 56
I=NTSTEP
IF (NPRjNT.Nfc.O ) GU TO 9
WKITE (6,270)
Rn 10 9
I=?
[F(NPKt NT.Nfc.O ) GU TO 9
WKITF (6,240)
GU 10 9
HO 8 I»1,NTSTEP
H (S.LT.STAB(KH, 1)) fiU 10 9
CONTlNUt
LL?=I-1
I02=(S-ST4H(KH,LL2))/(STAB(KH,LH2)-ST*B(KH,IL2) >
TO 40
h.LT.HTAb(K, 1 ) ) GO TO 57
H.LF.HTAB(K,NTSTFP) ) Gu TO 5B
NTSTFP
NPKlNT.Nfc.U) GO TO 12
lE <6,290)
TO 12
NPHIM.Nf .0) GO TO 12
TE (6,30(1)
TO 1?
RAT
no
IF(
IF(
1=
IF(
Mftl
GO
l=?
IF (
WHI
GO
00595
00600
00610
00620
00625
00630
00640
00650
00660
00670
006UO
00690
00700
00710
00720
00730
00740
00750
00760
00770
00775
00780
00790
00800
00805
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00915
00920
00930
00940
00945
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01065
01070
01080
01090
01095
01100
OHIO
22
-------
PROGRAM LISTING -- SUPPT (Cont'd)
58
11
12
59
60
13
200
20
2?
23
?
IF(H.I.T.HTAR(KH.l)) 60 TO 59
IFCH.LF.HIAHUH.NISTEP)) GO TO 60
IsNTSTbP
IF(NPKINT.Nfc.O) GO TO 14
WHITE (6.J10)
BO TO 14
1=2
IF(NPKINT.Nt.O) GU TO 14
UK HE <6.320>
R() TO 14
ni) 13 1=1.N1STEP
IF(H.LT.HTAH(KH. I )) GU TO 14
CONTlNllb
LL2=I-1
LH2=1
RAT|02=»HAT|U1«< VTABC I.LHl )-VTAR< I,LL1»
on Tn ?•>
IF(V.GT.Vl) GO TO 26
CONTINUE
K=l
PHspTAB(K)
KH=K-1
PL=PTAR(KH)
00 30 I=1.NTSTEP
IF(S.LT.S1A8(KH, I ) ) GO TO 32
CONTINUE
LL2=I-1
RATI02H(S-STA8(KH.LL2))/(STAB(KH.LH2)-STAB(KH,LL2))
T1=TTAR(LL1 )*RATIUl«(TTAB(LHl)-TTAB««ATI(il«(STAB(K.lHl)-STAR(K.Lll»
C1=CTAB(K,| LI )*KAri01»(CTAB(K,l Ml )-CTAB(K,LLD)
T?=TTA8(IL»)*KATIO?«( TTAfl( LH2 )- TTAB ( LL? ) >
H? = HTAR(KH,LL?>*RATIO?»-CTAB(KH,LL2))
1F(NC.F0.4) GO 10 45
RAT10=(PRFS-PL)/(PH-PL)
01120
01130
01140
01150
01160
01170
01180
01190
01200
01205
01210
01220
01230
01235
01240
01250
01260
01270
012HO
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
014JO
01440
014511
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
23
-------
PROGRAM LISTING -- SUPPT (Cont'd)
V=V1*KAT!0»
-------
FUNCTIONS
NOMENCLATURE
The names of the transport and metal property functions, except for a
few exceptions, are coded. "F", the first letter of the name, means t!-e
subprogram is a function. The second letter indicates the particular prop-
erty being considered, as follows:
C - Specific heat
D = Specific volume
K = Conductivity
R - Density
V = Viscosity
Y - Surface tension
The third letter (with one exception) tells what material is being used:
A = Air
C - Copper
G = Gas
M = Metal
S = Steel
W = Working fluid
The fourth letter appears only in the names of functions concerning the work-
ing fluid and the metals. It tells the phase of the working fluid or which metal
is being used, whichever is appropriate:
C = Copper
L = Liquid phase
V = Vapor phase
S = Steel
As an example of this coding, FCWV is the transport function used to calculate
the specific heat of the working fluid vapor phase.
One of the exceptions to this coding is the function FKM, which generates
the value of the conductivity of the steel-copper matrix. There are three
additional functions which do not follow this coding system. FPRS is a Prandtl-
number calculation function for water as the working fluid. FPRS1 and FPRS2
are called by FPRS to aid in the Prandtl-number calculation.
25
-------
SUMMARY OF FUNCTIONS
Table 2 summarizes the parameters of the transport and metal property
functions along with the ranges of the parameters at which the functions were
compared with reference data.
Table 2
TRANSPORT AND METAL PROPERTY FUNCTIONS
(Parameters, Range, Units)
Compared with
As a Reference Data
Function at Following
Name of Conditions Units
Functions Dealing with CP-34 as Working Fluid (Liquid Phase)
FCWL T T:0-60°F Btu/lb °F
FOWL T T:0-200°F ft3/lb
FKWL T T:200°F Btu/hr ft °F
FVWL T T:0-600°F Ib/hr ft
FYWL T T:60°F Ib/ft
Functions Dealing with CP-34 as Working Fluid (Vapor Phase)
FCWV P, T T:25-100°F Btu/lb 'F
P:25-500 psi
FDWV P. T.NPH P,T:Rangesof ft3/lb
Superheated Tables
FKWV T T:200°F Btu/hr ft °F
FVWV T T:200°F Ib/hr ft
Functions Dealing with Water as Working Fluid (Liquid Phase)
FCWL T T:60-500°F Btu/lb °F
FOWL T T:60-200°F ft3/lb
FKWL T T:60-500°F Btu/hr ft °F
FVWL T T:60-500°F Ib/hr ft
FYWL T T:200-500°F Ib/ft
Functions Dealing with Water as Working Fluid (Vapor Phase)
FCWV P,T P:14. 7-500 psi Btu/lb °F
T:212-1000°F
26
-------
Table 2 (Cont'd)
Compared with
As a Reference Data
Function at Following
Name of Conditions Units
Functions Dealing with Water as Working Fluid (Vapor Phase) (Cont'd)
FDWV (Same function as with CP-34 as Working Fluid)
FKWV T T:500-600°F Btu/hrft°F
FVWV T T:500°F Ib/hr ft
Functions Dealing with Water as Working Fluid
FPRS P. T
FPRS1 T
FPRS2 T
Functions Dealing with FC-75 as Working Fluid (Liquid Phase)
FCWL T T:200°F Btu/lb °F
FOWL T T:10-160CF ft3/lb
FKWL T T:constant Btu/hrft°F
FVWL T T:0-400CF Ib/sec ft
FYWL T -- Ib/ft
Functions Dealing with FC-75 as Working Fluid (Vapor Phase)
FCWV P, T P:44-294 psi Btu/lb °F
T:115-295°F
FDWV P.T.NPH P,T:Rangesof ft3/lb
Superheated Tables
FKWV T T:212-312°F Btu/hr ft °F
FVWV T T:220-460°F Ib/sec ft
Functions Dealing with Air
FCA T T:0-200CF Btu/lb °F
FDA T T:0-200°F ft3/lb
FKA T T:0-200°F Btu/hr ft °F
FVA T T:0-800°F Ib/hr ft
>:
-------
Table 2 (Cont'd)
Name
Functions Dealing with
FCG
FDG
FKG
FVG
As of
Function
of
Combustion Gas
T.RFA
T, RFA
T
T
Compared with
Reference Data
at Following
Conditions
RFA:0. 0504
T:0-1500°F
RFA:0. 0504
T:0-200°F
T:0-1500°F
T:0-200°F
Units
Btu/lb °F
ft3/lb
Btu/hr ft °F
Ib/hr ft
Functions Dealing with Copper
FCMC T*
FKC T
FRMC T*
Functions Dealing with Steel
FCMS T*
FKS T
FRMS T*
T: Constant
T:0-200°F
TrConstant
TrConstant
T:0-200CF
T: Constant
Function Dealing with Steel-copper Matrix
FKM T T:0-200"F
Btu/lb °F
Btu/hr ft °F
lb/ft3
Btu/lb °F
Btu/hr ft °F
lb/ft3
Btu/hr ft °F
*The effect of temperature on the specific heat and density of metals is not
included in the functions, even though it is referenced as a parameter.
28
-------
PROGRAM LISTING -- FUNCTIONS
LIUUII1 •' CP-34 (LB/Hk-FT)
-1»-J .9R31F-8MM
l'»' ^ VM i T)
visc'isi IY "h MIKKING
FVMI=2.11
Rl TI'RN
FNP
IDNI.l I (IN
Ciikl'UCl I VITY OF wuPclNG Filiin I.IOUIO - CP-34 (RTU/HR-F T-F)
PETHIN
F-NI)
F uNT r Kir. i rn_t i >
SPECIFIC -iFAT PI WDKKINC ruilli L I UU I D - CP-34 (BTU/LB-F)
RF
HI V.OHKINC U'>in LIUUin - CP-34 (FT««J/LB)
CALL bA!P(P. F.ri.^l A.IIV.HL.HV.H >
F'lWl =1
RFIUKN
^ 100(1.3184)
1 |l'» > vn » 1 )
« SuRFACF rtNSI'.N :l> k-OuKINC f|.li|l I|UU|D - CP-.)4 (LP/FT)
• NiiU THAI T»-| , iXi'KtSSlON SHOUl I) Mt CilFCKFD FOK TUNSISTbNT
• UM IS
IF I T.J:^ .riM4. i ..u U- 10
FYWl=?..i1,iF-4Mt(l.-T/5H4.
F YWI =F Yhl oil'.
nil I P ?ii
1(1 FYWI =2.:«
FYUI =1
70 K
FNR
FUNCl ION ( VUVi T )
V ISCOSI I Y 01 h(li'K | ivr; ( LUI 'I
RF-Tl.'KN
FNH
FUNCTKH KKUV( 1 )
CONDUCTIVITY uF M(>kiklNr>
- CP-34 (IH/HR-FI)
VtPilH - CP-34 ( P TU/HH-F I -F )
KhTUKN
END
FUNCTION FCWVIP.T)
SPECIFIC MEA1 Cif HfiKKIM; FlUIII VAPOK - CP-34 (BTU/IB-F)
IF (p-?nn. n.n, in, 3 n
111 FCWtf=((?0'l.-P)«ICHVJ*(P-.l)oFCPV?)/19y.Q
RETbKM
30 F(;wv=((&liil.-P)»fCf'V}?*(P-?ilO.)«FCPV3)/Jlili.
KFTURN
onn?n
nno3ii
nnn^n
n ii n *> n
00060
nnnao
nnnvn
n n i o n
nuiio
00120
o n 1 4 u
ii ft 1 1> n
o « i *» o
nni 70
II Ul HO
II 0 2 II II
'i o 2 1 n
unpin
no2»,p
n n ? 7 0
OU310
OH320
110330
1)1134 II
01)3*0
00360
n 0 3 7 0
o n 4 u n
004th
00430
00460
00470
00490
IUI4VO
OU5HI
00*20
H0530
00540
00550
011560
00570
00580
OU590
00600
00610
29
-------
PROGRAM LISTING -- FUNCTIONS (Cont'd)
rUNCTlON FCML CONDUCTIVITY UF MORKINQ FLUID LIOUID - WATER (BTU/MR-FT-F) 00160
FKMLs3.2*T«(5.96E-3*T»(-1.125E-5*1.042E-»«TM 00170
FKML'FKML/10. 00180
RETURN 00190
END 00200
FUNCTION FDML(T) 00220
• SPECIFIC VOLUME OF MORKIHG FLUID LIQUID - MATER (FT««3/LB) 00225
CALL SATP(P,T,,FDMLA.DV,HL,HV.O) 00230
FOML«FDMLA 00240
» NOTE IT IS ASSUMED TEMPERATURE MILL BE THE INDEPENDANT VARIABLE 00250
RETURN 00260
END 00270
FUNCTION FYML(T) 00290
• SURFACE TENSION OF MOKKINQ FLUID LIQUID - MATER 00300
FYML=5.4612E-3-T»(6.276E-6«3.224E-9»T) 00310
RETURN 00320
END 00330
FUNCTION FVMV(T) 00350
» VISCOSITY Of MORKING FLUID VAPOR • MATER (LB/HR-FT) 00360
FVWV»5./9.»(T-32.) 00370
FVWVs2.42E-4«(80.4«.407«FVMV> 00380
RETURN 00390
END 00400
FUNCTION FKWV(T) 01)420
• CONDUCTIVITY OF MORKING FLUID VAPOR - MATER 00620
IF(FPRS.LT.FPRSL) FPRS»FPRSL 00630
RETURN 00640
END 00650
FUNCTION FPRSKT) 00670
• FUNCTION USED IN PRANDTL NUMBER CALCULATION FOR MORKINQ 00680
• FLUID - MATER 00690
FPRS1 = 4.432»T»(-7.821E-3»4.429E-6«T) 007(10
RETURN 00710
30
-------
PROGRAM LISTING -- FUNCTIONS (Cont'd)
END
FUNCTION FPRS2
RETURN
END
FUNCTION FVWL(T) ,
VISCOSITY OF WORKING FLUID LIQUID - FC-75 (LB/HH-FT)
1F< I.LE.250.) 00 TO 10
FVWL = tXP(.97404-4. 5462E-03M)
RETURN
10 IFU.LE.100.) 00 TO 20
FVWL»EXP(1.73261-7.5805E-03«T)
RETURN
20 FVWL»EXP(2.24071-1.2661E-02»T)
RETURN
END
FUNCTION FKWL(T)
CONDUCTIVITY UF WORKING FLUID LIQUID - FC-75 (BTU/HR-FT-F)
FKWL=.036
RETURN
END
FUNCTION FCWL
SPECIFIC HEAT OF WORKING FLUID LIQUID - FC-75 (BTU/LB-F)
FCWL=.2255*2.5E-04«T
RETURN
END
FUNCTION FDWL(T)
SPECIFIC VOLUME OF WORKING FLUID LIQUID - FC-75
If(H.GF.15.)GO TO 20
IF(T.GT.195.)GO TO 30
FCPV1= .1655-3.OE-04«T
GO 10 40
30 FCPV1= .1003*4.0764E-05»T
00720
00740
00750
00760
00770
00780
00790
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00140
00150
00160
00170
001HO
00200
00210
00220
00230
00240
00260
002/0
00280
00290
01)31)0
00320
00330
00340
003*>0
00360
00380
00390
00400
0 (1410
00420
00430
00440
00450
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
31
-------
PROGRAM LISTING -- FUNCTIONS (Cont'd)
40 FCPV2=T/<-827.576*11.8346«T)
IF(P-10. )5n,50,60
50 FCWV=«10.-P)«FCPVl*(P-5. )»FCPV2)/5.
GO TO 110
60 FCWV=«15.-P)«FCPV2*(P-10.)»FCPV3)/5.
GO TO 110
20 IFU-255. )120.120,130
120 FCPV4=.155
GO TO 70
130 IFU-265. )80.80.90
80 FCPV4=.7925-.0025»T
GO TO 70
90 FCPV4=.2183-3.33E-04»T
70 IF(P.GT.20.)GO TO 100
FCWV=«20.-P)«FCPV3«
I V I TV (IF AIM (HTU/nP-f T-t )
I )
0»
KfcTliRN
fNIt
FUNCTION
SPECIFIC
Rt TURN
tun
FUNCTION
vi sous i ir
1 )
ni
Ht-1 liRN
F I'NLT I tIM KOA( 1 )
SPECIFIC
FuA = (46l).+T)/
RFTl'KN
Fr.tt
FUNfTIOh FVO(
All< (HTII/LH-f )
*?73.
09F-J-4.«»9E-7«FCA)
(Lh/HOUR-FT)
. 4E-5»T»(-2.0H5E-M*4.062E-12»T
Of AIK (FT»»3/Lb)
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00940
00950
00960
00970
00980
nnn?n
on ru n
00041)
n u n o
o o o ( . n
onoon
onnvn
o o i n n
nniio
ooi?n
0(1130
noi60
n (i 1 7 o
o o i »* n
omen
on2 in
O02?n
00240
0(1260
32
-------
PROGRAM LISTING -- FUNCTIONS (Cont'd)
VISCOSITY Of CAS (I I/MR-Fl>
U=.fl:i76 + T«(fi.4UlF-5*T«(-2.85E-8*4.063E-12»T))
FUNCTION FKI;( i >
CT I VlTY t.F GAS (MTU/HN-FT-M
RETURN
ENU
FUNCTION Ff
SPEC IMC MEAT
SPECIFIC VOLllNF Of HAS (F1**3/LH)
FHfi = FliA(T)/<-.091l»KFA*l.iifl)
RI-TURN
END
FUNCTION fKS(1 )
HF STFEL (BTI//HR-FT-F)
!-?.<»0?F-J»1»(-4.U17E-6»1.64F-9»T>>
RI-Tl'RN
FNO
FUNCTION FKC(T)
CONMUCTIVITY UF COPPER (RFU/HH-fT-F )
FUNCTION
SPFCIMi:
FI:MS=.I??
OF ST^-FL (B1U/LB-D
FNH
FUNCTION fK^( D
VITV UF SIFhL-CUPPER MATRIX ( HTU/HB-F1 -F >
f
t-Nl)
f (INCHON
f HFAT Pf CdHPtR (HTII/tB-F)
RhTbRN
HNR
FUNCTION fMMS(T)
HHNSI1Y OF STl-FL (LH/fl»*.i)
KF-TURU
END
FIINCl IflN FRMCl 1 )
DENSITY OF COPPER (LB/FT««3)
KF
FNP
FUNCTION FIIMVIP.T.NHH)
SPECIFIC VOLUME >0
0046P
00470
00490
00500
00510
00520
00530
00550
00560
00570
005bO
00590
OIIMO
00620
OOA30
OOA40
00650
00670
006HO
00690
00700
00710
00720
H0740
00750
00760
00770
00780
00800
00810
00820
00830
00fl40
OOftOO
00870
OORHO
ooavo
00900
00920
00930
00940
33
-------
PROGRAM LISTING -- FUNCTIONS (Cont'd)
/f\ GUI SMP(P,T.Dl,t HriVA.HL.HV.0)
> NUT» IT IS ASSUMED TEflPfcP^THRfc WILL BE THE IMDFP6NDANT VARIABLE 00960
rnwvsfnwv* oo«/o
RhTt.'RK OD9«0
30 CALI SUhPKH, 1,l!.S.rD«VA.t ) 009VO
FHHV=^WVA mono
RI-TURN IliniO
FND 01020
34
-------
Section 3
RECIPROCATING EXPANDER MODEL
-------
Section 3
RECIPROCATING EXPANDER MODEL
MAIN PROGRAM - ENGINE
The reciprocating expander model is entitled ENGINE. The model em-
ploys the following subroutines:
SUPPT
DOME
FVWV
FKWV
In ENGINE, iterations are performed to determine the value of VEV. The
accuracy of the iteration is determined by the value of ERROR, which has
been set at 0. 02 in the model. The variable ITER2 records the numSer of
iterations, and the program is stopped when ITER2 reaches 100.
NOMENCLATURE -- ENGINE
FORTRAN Variables in COMMON:
FORTRAN variables in COMMON of ENGINE are in COMMON of
MAINSYS.
FORTRAN Variables in Argument List:
Definition
FORTRAN
Variable
FLOWR Mass flow rate through engine
HE Exhaust enthalpy
HI Inlet enthalpy
PE Exhaust pressure
PI Inlet pressure
R Engine intake ratio
RPM Expander rotational speed
SE Exhaust entropy
SI Inlet entropy
TE Exhaust temperature
TI Inlet temperature
TORQUE Torque
rpm
Btu/lb°F
Btu/lb°F
°F ,
op
ft Ib
35
-------
FORTRAN
Variable
VE
VI
XE
Definition
Exhaust specific volume
Inlet specific volume
Exhaust quality
Other Selected FORTRAN Variables:
FORTRAN
Variable Definition
APAIV Ratio of piston area to aver-
age inlet valve area
CODK Working fluid conductivity
DPEV Pressure drop across exhaust
valve
DPIV Pressure drop across inlet valve
DWEV Work loss across exhaust valve
DWIV Work loss across inlet valve
EFFALL Overall expander efficiency
EFFME Mechanical efficiency
EFFTH Thermal efficiency
ERROR Convergence criterion for VEV
HEV Enthalpy at end of stroke
HEVS Enthalpy at end of stroke for
isentropic expansion
HIV Enthalpy after intake
IMEP Indicator mean effective
pressure
ITER2 Counter of internal iterations
PEVS Pressure at end of stroke
PIV Pressure after intake
PSPEED Piston speed
Ql Heat loss
Q2 Heat loss during intake valve
SEV Entropy at end of stroke for
isentropic expansion
Units
ft?/lb
ft?/lb
Units
Btu/hr ft ° F
lb/ft3
lb/ft2
Btu/lb
Btu/lb
Btu/lb
Btu/lb
Btu/lb
psi
psi
psi
ft/min
Btu/lb
Btu/lb
Btu/lb °F
36
-------
°F
°F
°F
°F
FORTRAN
Variable Definition Units
TC Average wall temperature
TEV Temperature at end of stroke
TEVS Temperature at end of stroke for
isentropic expansion
TG Average working fluid temper-
ature
THETA Crank angle for intake opening degrees
VEV Specific volume at end of stroke ft*/lb
VEV2 Previous specific volume at end ft3/lb
of a stroke
VEVS Specific volume at end of stroke ft3/lb
for isentropic expansion
VIS Working fluid viscosity Ib/hr ft
VIV Specific volume after intake ft3/lb
WA Indicator work Btu/lb
WES Isentropic work Btu/lb
WSHAFT Shaft work Btu/lb
37
-------
FLOW DIAGRAM -- ENGINE (for Reciprocating EXPANDER)
f Start J
|
Define ERROR, ITER2
<
V
'?
Calculate
PSPEED, VEV. VEVS, SEV
^ CALL
i
SUPPT ^
i
Calculate
PEVS,
HEVS, TEVS
1
\^ CALL
DOME ^
J
1
Calculate
APAIV, THETA, DPIV, DWIV,
DPEV, DWEV, TG, TC, VIS,
CODK, Ql, Q2. HIV. PIV
^ Pfl
^ CALL
^ CALL
'®
^X^ YES
f < 150 .X1 "
7 S^
JNO
SUPPT ^
i
DOME ^
1©
1
Set
FLOWR = 0
WES = 0
WA =0
EFFTH = 0
IMEP = 0
EFFME = 0
EFFALL = 0
WSHAFT = 0
TORQUE = 0
1
(Return ]
End 7
38
-------
FLOW DIAGRAM -- ENGINE (for ReciprocatineEXPANDER) (Cont'd)
Calculate
YES
VEV2 SEV
NO
VEV = VEV2
ITER2 = ITER2 + 1
YES
CALL SUPPT
CALL DOME
Calculate
FLOWR, WES, WA, EFFTH,
IMEP, EFFME, WSHAFT,
TORQUE, EFFALL, HE, XE
CALL DOME
Return
NO
Write
,-,
Engine -
100 Iterations"
( Stop J
39
-------
PROGRAM LISTING -- ENGINE
SUBKOUTINH
1 VE.XE.FLOaR, TuRuitfr)
CliHhON AP.R.CH,CrtK.f:0
COMMON COXIJ,Cn?S, ITS, i)Cl , nlH
COMMON f iJOIV.f .1 S»t!/(IP.H?nS
COMMON HP,MH.,iTFLAM. H
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CUMMON
COMMON
CUMMON
I I . H I . S 1 . V I . *'f • TE . IIF . Sfc.
).HU|NK1II)
CUMMIN
COM^llN
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
RFAL
HEAL i
MFiiFl.N?H.r.5»h,N2S.*HENIlA
N1tN|)G.»Jii,uP,02P.O?R
0?S,f-0. Sl'1 iSSA, S1A
Sf'i, TO, MS. nT. n X I
Aridn),ACndfi).HHdu).RidO),ci>
CM Yd ii. 11 j,rn (in ),cw.onl do >.n, m , nu( j n >, nSd h > , DY YYdu ) ,fcf
t F *( i n.11 >.f r,.tr,Y(in, n >.FKI <10 ) . FHOd
FNI ( in ).r NIK in >.r «AC,r M »F TOM n >
GV/dn.l t ,i-).HM 1 ".1 1 ,?),MF INI (1 il ),HF
HI; M?( i n ) . nn i , MI; rr 1 1 H, 11 >,MTF.Mi( YUU. 11 )
j?t-(ini, j.Ji (in »,i (in ),LSIFP,MWZ< in, n )
M'T(3),NCl. Y(.U,K'Cf » ( .U . NC YCLF . Nf SFCT ( 3 )
f!L''*IP,NM( HI ),MMI ( 1 ,' ) , MMOllO ),NPH
NP''Y(10,ll), NPK|M.N',S,NSI(10),NSO(10)
Nl',M, Ti;?avi;(in ), in INI .
I |Mt, ri (10.1 I ,2). TiiHKHw(lO), VAHl 1 (10), VAPL?dO>
VA^I j( ) n >, VIM (in>.xii;(in), x?i ( in >, XZTUO )
l. lAH(Av,?7),HLIO(l?8 ),HTAM(69.?7),MVAP(1?«), I Nil
NLINI-,i«Nll.NPSTI-P.NTSlFH.f(|?H)
PMH(7u ), SI A'«r»9, ?7 > . T 1 1 ?H ). 1 1AR< JJ). VL IH( l?M>
VTA9<60,?/), VVAPd^fl I
L.lHV.lHvr.l i:S,LCT.MA||v.MFlOlD,MMIEL.MUZ,N?P.N?R,N2S,NO
ITFh2=n
IF(H) 17S.175.5
CALL SliPPKHEv, 1PV.MFV.SEV, VfV,4)
PtVS=PFV
10 CALL HOMFm V.Hf V.TI-V, VM,XFV,DH.l )
RU 10 All
511 |F( ITI-R2.LF.1UO) UO Tu •»•>
92 FURMA1 (?/>H FNGINt-lOn ITiRATIONS)
FORMA!
STOt-
5^> CALI SUPPKPEv,
57 CAI.l UOMHPfcV.HM.lhV.VhV.XfcV.DII.l)
CAICUIAIF PRESSURE ORuP AND WUR* LOSS THROUGH VALVES
611 IF (R.I l..4b) GO 10 inn
APAI'
GO TO 12"
APAI V = 4.H«!
X = l.-2.«l»
00020
nnnjn
non40
nno70
00000
00090
00100
out 10
nnizn
n ii 1 4 o
o n 1 7 n
omen
n n i v n
un?nn
on?in
00270
nnp.in
00?70
OO?HO
00?9(i
003nn
O03in
00320
O0.13n
00340
003^0
OH360
0037H
on.ixn
U04iin
n n 4 1 n
004>iO
00470
004bO
ACS1=ATAN(XY)
on*«4fl
OOS50
OOSAO
00970
OUA10
006SO
OU67n
00680
00690
00700
007tO
00720
II072S
O07.t0
40
-------
PROGRAM LISTING -- ENGINE (Cont'd)
140
160
THE TA = ACS T«UHO./3. 141592ft)
IFCTHfcTA.LT.fl. ) THFTA=180.-THtTA
DPiy=.3H8M«•( T I-TC )/ ( TC-TC )
IF(02.GI..J1 ) u? = Ul
HIV=HI-0?
PIV=PI-2.»np|v/)44.
IF(PI V.LT.l^ll. ) Gil TO 108
CALl SIIPPFCPIV, 1 I V.Hl V.SI V.VIV..1)
CALL IMIMFCPI V.H1V, TIV.VIV.XIV.Dll.O)
)»( (PSPrFn/(VEV«VIS»««.75)»(TG-TC)«F
S€V=SIV
1F(ABS((VhV2-VFV)/VhV).LF.FHROR) GO TO
VEV = VI-V2
1TER2=ITFK2*1
GO TO 50
165 CUNTINIlt
* CALCIILA1F FlOw kAlh AND EFFICIENCY
WR = FI nAT(NP)«AP»»'SPEfcn/( VFV«4.«)
WbS=(Hl-HEVS)*VhVS»(PtVS-PE)»(144./778.)
= HA»77B./(
1.-(PSPEEO«(1 /4./
.6 )• ( l.E-Ob )*. 012 + 5.46/ I HEP)
SHAFT UDKK AND UVtPALL EFFICItNCY
T()RUUb=( USHAF l«FLOWK«77fl.)/(RPM»?.*3.14«60.).
EFFALL=FFFTH»feFFMfc
HE=H1-HA-U1
XE = 1 .n
CALL UOME(PE,HF, TH. VE.Xb.SE, 0 J
168 CONIlNllfc
RF.TliRN
FI.OkR = n.
UES=0.
007-jn
011760
00770
007HO
00790
01)800
011810
OIIH20
008.10
111)84(1
00850
0(18*0
00870
OH8HO
POB90
IM1900
11091 II
00920
009.10
00940
011960
011970
00980
00990
01000
01010
01020
01030
01040
01041
01060
01070
010HO
01090
01100
01110
01120
01] JO
II 1 1 4 0
01160
II 1 1 / 0
01180
0 1 1 9 II
01200
01210
01220
01230
01240
012*>0
01260
01265
01270
01271
01291
0 1 3 U 0
01310
01320
41
-------
PROGRAM LISTING -- ENGINE (Cont'd)
EFFTH=0. 01330
IMEP=0. 01340
EFFMF=0. 01350
FFFALL*0. 01360
WSHAFloD. 01370
TOROUEsO. 01380
RfcTURN 01390
END 01400
42
-------
SUBROUTINE - DOME
Subroutine DOME employs the subroutines SATP and SUPPT. DOME is
used to determine if the working fluid is in .the gas or two-phase flow region.
NOMENCLATURE -- DOME
FORTRAN Variables in COMMON:
There is no COMMON block in DOME.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
H Enthalpy Btu/lb
NC Logic variable
0 - define quality in terms
of specific volume
of mixture
1 - define quality in terms
of enthalpy of mixture
P Pressure Ib/in?
S Entropy Btu/lb °F
T Temperature °F
V Specific volume f1?/lb
X Quality
43
-------
PROGRAM LISTING — DOME
SUBROUTINE l)OME(P.H,T.V,X,S.NC> 00010
CALL SAIP(P.T1.V1L.VIV.HH.M1V.1 ) 00020
IF(MIV.IT.H) liO TO 100 00030
IF(NC.FO.fi) OH fO 300 00040
x=(v-vii >/
-------
Section 4
TURBINE EXPANDER MODEL
-------
Section 4
TURBINE EXPANDER MODEL
MAIN PROGRAM - TURBIN
The turbine expander model is entitled TURBIN. The model employs the
subroutine SUPPT. The turbine model has not been used with the other com-
ponent models or in MAINSYS; therefore, the COMMON statement in TURBIN
is not consistent with the COMMON in the other models. The COMMON in
TURBIN and SUPPT must be consistent in order to exercise the turbine ex-
pander model.
NOMENCLATURE -- TURBIN
FORTRAN Variables in COMMON of TURBIN:
FORTRAN
Variable
AREAE
ARE AT
GAMMA
GASC
HYDEFF
MACHD
MACHNE
NCOEF
NCOEFD
NOZANG
PRCRIT
RCOEF
ROTDIA
SPTVEL
STO
TIPSPD
For the remaining
MAINSYS.
Definition
Nozzle exit area
Nozzle throat area
Ratio of specific heats
Gas constant
Hydraulic efficiency
Design mach number
Isentropic Mach number
Nozzle coefficient
Design nozzle coefficient
Inlet angle
Critical pressure ratio
Rotor coefficient
Turbine rotor diameter
Isentropic spouting velocity
Exit entropy
Turbine tip speed
Units
in.8
in?
ft Ib/lb °F
radians
ft
ft/sec
Btu/lb ° F
ft/sec
FORTRAN Variables in COMMON, see the COMMON of
45
-------
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
FRATET Mass flow
HTO Exit enthalpy
PBO Inlet pressure
PC Exhaust pressure
RPMT Rotational speed
TBO Inlet temperature
TEMPTO Outlet temperature
TORQT Torque
VOLTO Outlet specific volume
Other Selected FORTRAN Variables:
FORTRAN
Variable
Cl
HBO
Definition
Flow velocity relative to turbine
blades
Inlet enthalpy
Units
Ib/sec
Btu/lb
lb/in.a
lb/in.s
rpm
«F
°F
ft -Ib
ft?/lb
Units
Btu/lb
46
-------
FLOW DIAGRAM -- TURBJN
C
Start
Calculate
PRCRIT.TIPSPD
CALL SUPPT
Calculate
SPTVEL
Cl
RCOEF
MACHNE
MACHN = 1
AREA = A RE AT
Calculate FRATET
NCOEF
HYDEFF
HTO
CALL SUPPT
Calculate TORQT
C
Return, End
(PC/PBO)sPRCRIT
M AC HN= MACHNE
AREA = AREAE
47
-------
PROGRAM LISTING -- TURBIN
SURI'OHTINt TllMRIN(THn.PBO,PC.KPMT,FRATET.TOROI»TEHPTO.VULTO,HTO)
COMMON NHTi. INii.fcPSTFP.NrSTF-P.Nl I NF . P ( 25 ) . T ( ?5 ) . VL 1 0< 25 ) .
lVVAP5).HLIO>>).HVAP<25>.PTARe36).TTA».VT**O5.20).
2HIAH(.il>.2'l>.STAR(.t4.?U)
CAHKA.nniOIA.SPTVFL^ARtAT.NOZANG.HACHD.NCOFFD.OASC
riEF.hACHN.HYIiEfF. TIPSPH.hCOEF.NACHNF.PRCRIT.AREAt
REAL nAr,MNT,NrntF.»«ACiiNE.NACMN. MACHO. NCOFFII
PRCKI 1=./(G1M*A»1 . ) )«»(f;AHMA/CGAHHA-1 . »
TIPSPII=(RPMT»h.?H«kdTllIA)/(2.«6n. )
CALL SlirPKPBii.TBii.hRU.SBO.VBU.l)
CALL SUPPKl'C.TF:MpfS.iin)S.SRO,VUL,TOS.i»>
SPT VFL=(?.»a2.?« 778. MHHO-HTOS ))••.•>
CV = SPlVEL«COS(NUZANfi)
CT=SP1VhL»SIN(Mj2ANO)
I. I!HSPO,SPTVEI. ,CV,CI
HCOF F = . 99.J42- ?.1 f> VRI -U4«C1 *7.5499*E-OM» G« TO 10
10
2n
r.O TO 20
MACHN1=1.
ARFAaARfAl
FWAlFl=AKfcA»( ( (i;AHMA»..2)/(OASi:»TEMPAR»«».5)»
1 (Pt
./1rtll^-1.6.1'<5•RMAl;H*1.50.^V•(RMArH••2)*
WK1
, AREA.RMACH
. P.T.I .) UKITE(6.110)
•UPPT(PC.TfcMf 1 1., HTo. ST(). VOl TD.J)
TURbT=(riFLTAH»FKATF |a/7H.»ftU. ) / ( 6. 28»RPHT )
COtFFICIIrNl PREATEH THAN 1)
11(1020
00630
00040
OUOM»
00070
000 VA
001 00
00110
00120
"OHO
OQ140
08150
OfllAO
001/0
OU180
00190
00200
002in
0024P
O02')0
00260
00270
002BO
0029»
OU.120
00330
OH.1AO
OH 3 70
003MO
00390
00400
QH410
00420
OU430
00440
00450
END
0(1470
004HO
-------
Section 5
FEEDPUMP MODEL
-------
Section 5
FEEDPUMP MODEL
MAIN PROGRAM-PUMP
V
The feedpump model is entitled PUMP. The model employs the sub-
routine SATP.
NOMENCLATURE -- PUMP
FORTRAN Variables in COMMON:
There is no COMMON block in PUMP.
FORTRAN Variables in Argument List:
FORTRAN
Variable
Definition
DISP Maximum displacement
HPUMP Pump power
MPUMP Mass now rate
NPCYL Number of cylinders
PIN Inlet pressure
POUT Exit pressure
RPM Rotational speed
RPUMP Variable displacement ratio
TIN Inlet temperature
Other Selected FORTRAN Variables:
FORTRAN
Variable
DPIV
EFFM
EFFVOL
VL
WI
Definition
Pressure drop across inlet valve
Mechanical efficiency
Volumetric efficiency
Specific volume
Flow work
Units
in?
hp
Ib/sec
lb/in.s
lb/in.2
rpm
ft3/lb
Btu/lb
49
-------
FLOW DIAGRAM -- PUMP
Start
CALL SATP
DPIV >(PIN-PV)
)
1
i
Calculate DPIV
YES
Calculate EFFVOL, EFFM,
WI, MPUMP, HPUMP
Return. End
Write: "PUMP
Cavitates"
MPUMP = 0
HPUMP = 0
J
50
-------
PROGRAM LISTING -- PUMP
SUBROUTINE PllMPtRM'HP.RF-M.PIN.PUUI, T I N, MPUMP, HPUMP.
7[>ISP.NPCYL>
Rt-AL MPUMP
CAU SATP )••?)•( RPM }»»2/ (( 3300 . )»«2»VL>
IF'»RPrt»FFFvnL)/(VL«1728.»60. )
HPUMP=P»36nii.»3.?gE-4>/EFFM
on in ?on
100 WHI iE(ft,?in )
210 FORMATdStl PUMP CAVITATFS)
UKI lE(A,??n ) l»PIV,PIN,PV
22(1 Fi)RMAT<14H UPIV.PIN.PV ..1F15.5)
HPUMP=n.
200 RHTURN
00010
(111020
(100.50
IMKMB
OOO1)"
non6n
0(1(170
nnnwn
On 100
0«i1lO
itiil2o
om.tn
00140
nrO4»>
001^0
OiilHO
0113^0
51
-------
Section 6
VAPOR GENERATOR MODEL
-------
Section 6
VAPOR GENERATOR MODEL
MAIN PROGRAM-VAPORG
The vapor generator model is entitled VAPORG. The model employs
the following subroutines:
DISTR
GEOMCO
STEPSI
IT E RAT
SATP
PROP
SUPPT
PROPST
PDROP1
PDROP2
PDROPA
INTSTE
PHASE
HT1PB
HT2PB
HTGR
HTGTB
HTGTF
HTGTM
HTPF
FCWL
FDWL
FKWL
FVWL
FYWL
FCWV
FDWV
FKWV
FVWV
FCA
FDA
FKA
FCG
FDG
FKG
FVG
FCMC
FKC
FRMC
FCMS
FKS
FRMS
' FKM
FVA
Figure 1 illustrates the links between the various subroutines required
for VAPORG.
The input parameter, FRAC, is the ratio of actual step size to stability
step size. To avoid numerical instability, its value should be less than unity.
FRAC has been set at 0. 5 in the present program.
The data file referenced in VAPORG by the two-digit code 13 is a storage
file for values output at the completion of the VAPORG run. The user can
then employ this file as the input file, code 11, for a transient start run. Since
the data in the file vary according to the particular run just completed, a
listing is not included here.
NOMENCLATURE - - VAPORG
FORTRAN Variables in COMMON:
FORTRAN variables in the COMMON of VAPORG are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
53
-------
DISTR
INTSTE
GEOMCO*
HTGTB*
PDROPA
HTGTF*
HTGTM*
HTGR
VAPORG
STEPSI*
ITERAT
I
SATP PROP
SUPPT PROPST
HT1PB*
I
HTPF*
1
HT2PB*
PHASE
PDROP1*
PDROP2*
*These subroutines use fluid or metal properties.
Figure 1. Links Between Subroutines Used by VAPORG
54
-------
FORTRAN
Variable
JS
MGI
MWE
NST
PGVE
PGVI
PWVE
PWVI
TGVI
Other Selected
FORTRAN
Variable
CPP
DXN
DXO
DYY
FCON
FF2F1
FF2F2
FF2T
FG2G1
FG2T
FTF
Definition
Variable to denote cumulative number
of timesteps
Mass flow rate of gas at inlet
Mass flow rate of working fluid at exit
Logic variable for transient start
0 - steady-state case
1 - transient case
Pressure of gas at exit
Pressure of gas at inlet
Pressure of working fluid at exit
Pressure of working fluid at inlet
Temperature of gas at inlet
FORTRAN Variables:
Definition
Specific heat of fluid
Stability distance limit, at future time
Stability distance limit, at present time
Selected time step
Parameter for dynamic relations --
tube
Parameter for dynamic relations --
fluid
Parameter for dynamic relations --
fluid
Parameter for dynamic relations --
fluid
Parameter for dynamic relations --
gas
Parameter for dynamic relations --
gas
Parameter for dynamic relations --
Units
--
Ib/sec
Ib/sec
lb/in.s
lb/in.3
lb/in.2
lb/in.8
°F
Units
Btu/lb-°F
in.
in.
sec
°F
--
--
Btu/lb °F
--
--
lb-°F/Btu
tube
55
-------
FORTRAN
Variable
FTG
FTT
LZ
MGVZ(I)
MWVZ(I, J)
NBB
NITER
PINCT
PWV
QTOT
RO
VAL
VAL1
VAL2
VAL3
WF
WG
WS
XAV1
XE1
YREM
Definition Units
Parameter for dynamic relations --
tube
Parameter for dynamic relations --
tube
Tube length for particular fluid phase in.
Gas mass flow rate for fluid pass I Ib/sec
Fluid mass flow rate for fluid pass I Ib/sec
at node J
Required number of iterations for gas
side energy transient
Required number of subdivisions for
continuity equation
Fluid pressure change during time
step DYY
Fluid pressure
Total energy transfer
Fluid density
System volume
Total fluid volume occupied by sub-
cooled phase
Total fluid volume occupied by boiling
phase
Total fluid volume occupied by super-
heat phase
Captive saturated liquid mass
Captive saturated vapor mass
Captive superheat fluid mass
Average fluid quality
Fluid quality at exit
Time left to reach YEXT sec
lb/in.3
lb/in?
Btu/ sec
lb/ft3
in.3
in.3
in.3
in.3
Ib
Ib
Ib
56
-------
FLOW DIAGRAM -- VAPORG
c
Start
I
Define
NTCOMP, NC, NCL, NCR, :
MWVZ(NCL, 1), MWVE, PDDT
Does
NCYCLE = 0
CALL GEOMCOC
Define MGVA(I)
Define PWV
Does
NTRANS = 0
Do 3
3 Continue
57
-------
FLOW DIAGRAM — VAPORG (Cont'd)
Do 18
Initialize
I. For each lump of each fluid
path,
a. Use average values
b. Call STEPSI (obtain
HOT, HTF, NPH, etc,
through COMMON)
c. Find revised value of
NX2Z(I)
II. Obtain initial distribution for
NX2Z(I) lumps, from end-
point data.
Obtain MWVZ(I.J), TGKD.
TG2(I,J,1). HF(I,J, 1),
TT(I,J, 1)
18 Continue
Print
Message
(stopj
225
Corresponding to PWV,
find
TSAT, HL, HV. GVL, GW
YES
58
-------
FLOW DIAGRAM — VAPORG (Cont'd)
721
Write (on file 6), entrance
node information as headlines.
NO
Write TIME on output file 13
717
Continue
1
I = NCL
Do 396
59
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
Initialize (for pass I)
NXO, NX2MAXOO, DXO,
VAPLl(I), VAPL2(I), VAPL3(I).
J2E(I), J3E(I)
1
JI = 1 (Lump No. 1)
JI = JI -i- 1
1
For each lump JI,
a. Calculate HW, TA, TTZ, MWV,
NX2
b. CALL STEPSI
c. Redefine RW, HOT, HTF, etc. as
arrays
d. FindNX2Z(I)-NX2MAX(I)
Select
NX2Z(I) (=NXN) as
maximum of all values
for the fluid pass I.
Calculate DXN
YES
Save DXN for pass I
i
©
Do 230
230 Continue
60
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
Does
JS = LSTEP
Write lump size information
as headline
Write NXN in output file 13
61
-------
FLOW DIAGRAM — VAPORG (Cont'd)
727
NO
Define MWZ(I. JI) = MWVZ(I, JI)
I
CALL DISTR(I)
*Obtain distribution of following
parameters for NXN nodes:
MWZ(I,JI), HF(I,JI, 1), TT(I,JI, 1),
1TG2(I,JI, 1), HGTY(I,JI), EGY(I.JI),
HTFY(I,JI), EFY(I.JI), CTFY (I,
JI), RWY (I.JI)
I
Set MWVZ(I.JI) = MWZ(I.JI)
I
For each lump JI
compute NPH,
store asNPHY(I.JI)
237 ,,
JI = 1 (Lump No. 1)
Do 806
806 Continue
Do 807
807 Continue
Do 236
236 Continue
Do 238
62
-------
FLOW DIAGRAM -- VAPORG (Cpnt'd)
©
Based on NPHY(I,JI),
calculate
VAPL2(I), J2E(I).
VAPL3(I), J3E(I).
VAPLl(I)
JI
= JI +
1
Find (for each lump JI)
DYX1, DYX2. DYX3,
DYY [for NPHY(I,JD]
Find DYYM for I, and save
as DYYY(I)
I =
I *
- 1
NO
Find DYY, as a minimum
of DYYY(I) and YREM
YES
238 Continue
Do 265
265 Continue
396 Continue
Do 412
412 Continue
63
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
(717)
CALL ITERAT. to obtain
iterative solution
After final iteration, NSS = 0
(set in ITERAT)
YES
NO
YES
Print TIME, JS as headlines
Initialize
INX1 = 1, INX2
QTOT = 0.
= 1
I = NCL (Fluid Pass I)
Define
NXN, DXN
Initialize
TG2T
Do 600
64
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
Print title for output columns
Print "Fluid Pass No. = I"
JI = 1 (Lump No. JI)
1
Define (for the lump JI),
NPH, TG
Calculate NBB(= no. of iteration
steps), FG2G1, FG2T
Calculate TG2 (I, JI, 2), TG2T
Set TG2(I, JI, 1) = TG2(I, JI, 2)
Do 420
Do 280
280 Continue
65
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
397
Define
Find
TREF, HREF
CPP, TX
Calculate
FTG, FTT. FTF. FCON,
TT(I.JI,2)
Set
MWVZ(I,JI+1)=MWVZ(I,JI)
Calculate
FF2T, FF2F1, FF2F2,
I
Define
HFN -- HF(I, JI+1,1)
^
1
r
'(?•)
NO
Define
HFA, HFB
I
Define
HFA, HFB
828
I
J
Find
HFAVG - TFX
Define
GVZ(I,JI, 1), HREF. TREF
Find
CPP
Calculate
FF2F1, FF2T,
HF(I, JI+1,2)
Define
HEX2 = HF(I.JI+1.1)
Set
HF(I.JI+lf 1) = HFtt.JH-1.2)
Calculate
FTG, FTT, FTF, FCON,
TT(I, JI, 2)
398
66
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
10) v
Define
HEXN2
HFAVG - GV
GVZ(I,JI,2) = GV
HFW = HF(I, JI+1, 1)
Calculate
MWVZ(I, JI+1)
NO
— — ^^ 11N.A i - 1
^SX*>^s^ ? ^^
^^T^YES
Define
HEN1, HENN1, MEN1
Define
INX1 = 2
fc
2000
Calculate
FTG, FTT, FTF,
TT(I,JI,2)
^
Calculate
HAVG1, XE1 (Min = 0),
XE2 (Max = 1),
VBAR, FF2F1, FF2F2, FF2T
HF(I.JI+1.2)
Define
TFX, HFN
Find
TERM1, DRODH, PREF
Calculate
MWVZ(I, JI+1)
Define
HEX1, HEXN1
410
67
-------
FLOW DIAGRAM — VAPORG (Cont'd)
Calculate QTOT
Write (on file 6) JI. HFN, TFX. TT(I. JI, 1),
TG2(I.JI,1), MWVZ(I,JI+1),
NPHY(I, JI)
Write (on file 13) HFN, TTtt.JI, 1). TG2(I,
JI, 1), MWVZ(I,JI+1)
68
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
" B7
Write (on file 6) HTFY, CTFY, EFY.
HGTY
Set
MWVZ(I+1. 1) = MWVZ(I,NXN+1)
,1.2) = HF(I.NXN+if2)
JI
= JI +
1
420
Find TG2AVG(I)
420 Continue
421
TGHNCL+1) = TGVI
Value
of (I-NCL-1)
TGI (NCR) = TG2AVG(NCL+1)
69
-------
FLOW DIAGRAM — VAPORG (Cont'd)
600
NO
600 Continue
TIME
= TIME + DXY
YES
*Pressure calculation
Initialize
VAL1, VAL2, VAL3, UM, DENM
Compute VAL1. VAL2, VAL3
YES
Does
(VAL2 + VAL3) = 0
NO
Compute
Define
HFG. GFG
PLOW
Do 610
610 Continue
70
-------
FLOW DIAGRAM — VAPORG (Cont'd)
'(BS) iv^
Calculate
HFAVI, :
Find
DENM
fc
XAV1, WG, WF
»-
Write various
intermediate
values, if
NPRINT = 0
^__^^^
635
PINCT = 0.
Calculate
HFAVI, HFAV2, WS
Find
DENM, UM
Write various
intermediate
values, if
NPRINT = 0
630
Calculate
AS1, AS2
Find
UM, DENM, PINCT
640
Write various
intermediate
values, if
NPRINT = 0
PWVE = PWVE + PINCT
PWV = PWVE + PDDT
*Reset
HF(I, 1, 1)=HF(I, l,2)ExceptI=NCI
TT(I,JJ, 1) = TT(I,JJ.2)
HF(I, JJ+1, 1) = HF(I, JJ+1. 2)
TGKNCL) = TG2AVG(NCR)
YREM = YREM - DYY
Do 650
650 Continue
I
71
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
Write (on file 6)
DYY, TGl(NCL), TGl(NCL-H), TGl(NCR)
Write (on file 13)
TGHNCL). TGKNCL+1), TGKNCR)
Write title for pressure drop results
72
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
*Gas side pressure drop
Define PGV, TA1, TA2
CALL PDROPA
Find PDD
Repeat for all NC coils
I
Write for all fluid paths, pressure-drop I
data and results I
Calculate PGVE
* Fluid pressure drop
Write title for pressure droi
Find
Define PWVX, Jl
I
I = NCL (Fluid Pass I)
i
J1E, LZ [for VAPLl(I)]
Do 1030
73
-------
FLOW DIAGRAM — VAPOEG (Cont'd)
MWV = MWVZ(Ll)
Find J2, HFA, TX
CALL PDROP1
Find FDD
I
Write pressure drop data and results
PWVX = PWVX - PDD
1013
i
Find
LZ [for VAPL2(I)]
YES
Find Jl, J2, MWV
XENT (min=0), XEXT (max =
CALL PDROP2
Find PDD
I
Write pressure drop data and results
PWVX = PWVX - PDD
74
-------
FLOW DIAGRAM -- VAPORG (Cont'd)
1016
Find
LZ [for VAPL3(I)]
YES
Find Jl, J2, HFA. MWV
CALLPDROP1
Find FDD
I
Write pressure drop data and results
J
1030
PWVX = PWVX - PDD
I
= I +
1
Write PWVE. HF (NCR, NX2+1.1)
1030 Continue
75
-------
PROGRAM LISTING -- V APPRO
an
SUHKOIIT
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CUHhUN
COMMON
COMMON
COMMON
COMhON
COMMON
CUHHOM
COMMON
COMMON
COMMON
COMMON
COMMON
1NK VAI'nWGCMGI.MwF.PUVI.PGVE.PUVI.PWVE.TCVI.JS.NST)
AP.R.C.I.CHK.CO
co2P,cu?s,oc»>.un.i'in
tOll I V,f ,>S.H20P.H2tlS
rtP.HK.ilTl: LAM.HJ Ifc.tHV
I HVT.LUS.LCT.MAIK.MFIUIP
MFOFL. N?P.N?k.4?S. tflt-NUA
NflEN|lG,N(I.NP.02P.02R
0?S.PO,SP1.SSA.STA
ST(5. TO, MS. WT. YfcXl
ACMlt) ), ACuUf) ),BH(10),HK10 ).CU
OH YdH.lD.Cl K10),CW,nilI dU).l)HO(lO)
i)mo>. Ou(jo),uS(iii).nvrv(in),t;F
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
UIHiNSI
KI-AL I Z
f Nidnj.j NUdo j.r««c,Fi idO.Fiodo)
OVZd0.11,2).HMl0.11 .?),HF|Nldu ),HMN?dO),Hl!lNl(10)
HK|N2dO).M(;i..lG1Y(ll.,l1 ).HTF,HT> Ydu.ll)
J?t(10 ). JJt( 10 ),L( 10 ).l SIEP.M«2(10,H )
NCY(3.),NCLY( J ) . NCK Y ( .1 ) . NC YCLfc. NFStCT ( 3 )
NLOHp.NMdU ).NM| (l'l).HhO(lO ).NPH
NPHYdll, d),NPK|Nl,NSS.NSI dO).NSn(lO)
MT»«ANS.Mx?HAX(lli),NX?2(lll>.NXN.Nxn
PGV(10).KFA,HMdn>.HM,KWY(in>ll)
IRK 10). TGi?dO.J1 . ^),TG?AV(;dO), lGlN1dO).IRIN/?(10)
I Int. r i do.li.^ ) . TUHKOW< 10 ). v*Hl Kio >. vftPL2<10 »
VAt'l Jdll ), VOKiO ). »1(i(10 ).x2Ldll ). X21 (10 )
CfA»l(6V.27).MLI«d?0),HlAH(69,27).HVAP(12«). INu
NL INt ."iNll.NPsrtP.NlSTEP.I'dZb)
KTArt(7.l).S1Ah(»i9,?/), T(l>>8)» I T AH ( 3J > . VL I Ud2t<)
V T/\M(6^. ?7 ) , VVAK 1X8 )
L.lHV.lHVr,I.CS,lf:T.MA|h.hFLU|».MfUfcL.Mw2,H?P.N?H,N2S.NO
ON MMV/dU.ll)
.M*-Nl,MR|,nrvA(lU ).MGV/(l(l).HMt.MWV.MMVt»MMV2
Shf NCYCU=U INITIALLY IN (ME MAM PROUPAM
NC=NCY(NTCOKP)
HHV2(NCL , 1 > = rtt,2(NU
If(NSI.NE.I)
MWVt=MUt
DO 3 ICNCL.NCK
IF (NCYCLE.NH.il ) GO 10 P11
CALL UbOMCOi I )
MUVA( I )=M.;|/( 1?.«L( I ) )
CONTINUE
PHV=PMVI
IF (NTKANS.Nt .-I ) GO FO 861
iNlllALIZl-
no IR I = N(;I .NT w
ASSllMt AVh.HAUi VALORS. S1AIE KfcL A T I ONSM I PS NO I IMPORT AN]
I(5sn.^»( TiJlM ( I )+ lfilN2( I ) )
A MuRh ACCOKAIE Tl2 CAN Hi OHIAINHO HY OSINi; IIP A I -TKANS . LOfFFS.
'IZ=Tl<
A1=12.»L(|)
000/0
ouo.to
00040
000*0
00040
00070
0»0«0
OUOVO
OOlUO
00110
OU120
00130
OUMO
nuion
00170
00180
01)190
00?00
00?20
OU2JO
00?40
Ou26fl
00?/0
("U?«0
00?90
OU3IIO
UOJIO
00320
OOJJO
00370
OU390
004UO
00410
00420
IIU44S
l)04->0
Iiil4b0
DU4/0
ou4ao
IUI490
O'J^IO
ou^zo
Ull*40
no«>7o
OU5VO
006 HO
00610
OU630
76
-------
PROGRAM LISTING -- VAPORG (Cont'd)
10
2
15
IB
B61
«62
i
220
22*
721
724
725
726
500J
816
818
867
NX2=NX2Z< I )
CALL STEPSI(PWV.TH,HW,TC,TTZ,MWVZ(NCL.1).MGVA( I ).XF. I.A1.NX2)
IF (NX2.LE.NLUMP) GO TO 15
FORMAT(36H NO. OF LUMP KEuUIRED EXCEEDS NLUMP )
WHITE(6.1U)
WHITE(6.2)NX2
FORMAU6H NX2 .110)
STOP
NX2Z(I)=NX2
INITIAL DISTRIBUTION
IF(I.NE.NCL) IIF< I ,1 ,1 > = HFIN1< I )
TGK I ) = TGIN1( I )
TG2( I.1,1)=TGIN2( I >
XN22=FLOAT-Hf INK I ) )/XN2Z
MHVZ( l.l)=MfcVZ(NCL.l)
00 IB J=1,NX2
MWVZ( I, J*l)=MWVZ(NCL.l)
HK( I. J«l.l)=Ht ( I, J.1)*A2
NOTE UO NOT USE TG?.TT AT NX2+1
TG2( I. J.1)=TGIN2( I )
THI.J.1)=T»»*MWVZ(I.J)»A?/(HTF«DXN>
IFINPH.EO.?) 1T(I,J,1>=1W
CONTlNUb
GO TO 220
00 662 I=NCL.NCR
NX2=NX?Z( 1 )+l
DO 662 J=1,NX2
MWVZ< I, J)=MWZ( I. J)
ENTRY POINT AFTER FIRST CYCLE
YREh=YEXT
Al THIS POINT THE
THE NEXT EXTERNAL
THEY SHOULD Ht MAUt EuUAL TO THE
PwV FKOM PRESSURE COMPUTATION
THE FULLOwlNG IS A LOUP HACK FROM
CONTINUE
HF(NCL,1.2)=Hf (NCL.1.1)
CALL SATP(Pk*V,TSAT.GVL.GVV,HL.HV.l)
IFtNSS.bO.l ) GO TO 717
JS=JS*1
IF( JS.FO.LS1EP)
IF(NST.NE.O) UO
IF( JS.Nb.LSTEP)
WKI 1E<6,5U30 > TIME, JS
WKITE<6,50?9)
HKITE(6,725)Ht (NCL.1.1)
FORMATC29H FLUID ENIHALPY
HHI !E(6.726)MhVZ(NCL.l)
FORMAK29H FLUID FLOW RATH
WRI TE(6,50nj)CWV,TSAT
FORMATC29H fLUlU PRbSSUKE. SAT TEMP
UK! 1E(6,816)Mi,l
FORMAT(29H GAS FLOW RATb (tNTRANCC)
WKI TE(6,818)Pi;V|, 1GVI
F()RMAT(29H GAb PRbS, TEMP (ENTRANCE)
CONTINUE
IF( JS.Nb.LSlEH-1 ) GU fO 717
WHl TE(1.5.701) I IME
EXTkRNAL CONDITIONS AKF ENTERED FOR
TIMt STEP. DURING I NITIALI2ATI ON
INITIALIZING VALUES
STATEMENT 1000-1
NPRINI=0
To 721
GO 10 867
(KNIRANCE) =.E15.5)
(ENTRANCE) =,E15.5)
=,F15.5)
00640
00650
00660
00670
00680
00690
007UO
00710
00720
00730
00740
00750
00760
00770
00780
00790
noeoo
00810
00820
00830
00840
00850
00860
00870
00880
0088?
00883
00884
008H6
00888
00690
00900
00910
00920
00930
01)940
00950
00960
00980
OU990
01000
01010
01015
01020
01030
01040
01050
01060
01070
01080
01090
01100
OHIO
01120
01130
01140
01150
01155
01160
01170
77
-------
PROGRAM LISTING -- VAPORG (Cont'd)
701
717
230
817
729
72B
730
72/
806
807
231
FORHAT(E15.5>
CONTINUE
00 396 I«NCL.HCR
NXO=NX2Z3
MOVAU) = HGI/(12.»LC l»
MOVZ( I) = MGI/TUBRON( 1 )
00 230 Jlal.NXO
HU»)/2.
TA= = H01
HfFY< I, Jl )«HTF
EFY<1, Jl >=EF
CIFY
NX2Z(I)=NXN
DXN=12.«L(I )/FLOA1(NXN)
DX2=DXN
IF(NSS.I-U.l) UO TO 727
IF(I.EO.NCL) OXN1-OX2
IF( I.EO.DXN1,DXN2,DX2
FORMAT(29H LUMP SIZE (COILS 1,2,3)
MKITE(6.5029)
CONTINUE
IFUS.NE.LSTEt'-l) GO TO 727
UKITE(13.730)NXN
FORMAT(IIO)
CONTINUE
IF
-------
PROGRAM LISTING -- VAPORG (Cont'd)
GO TO 235
232 IF(HM-HV) 233.23J.234
233 NPH=2
GO TO 235
234 NPH=3
235 NPHY< I. JI )=NPH
236 CONTINUE
237 OU 238 Jld.NXN
IF(NSS.EQ.l) GO TO 238
NPH = NPHY( J, JI )
» LOCATb INTEKPHASES
IF(NPH-2)229.226,227
226 VAPL2( I ) = VAPL2< I ) » < DX2»AC I ( I ) )
J2E( I ) = J2fc< 1 )*1
GO TO 229
22 / VAPL3( I ) = VAPL.H I )»(DX2»ACI < I ))
J3E< 1 ) = J3E( I )*1
22V VAPI.K I > = 12.»ACI< I 1»L< I >-VAPL2( 1 )-VAPL3( I )
IF( VAPLK 1 ).LT.OX2«ACKl )/2.) VAPLK I )«0.
238 CONTINUE
nYYM=YREM
OU 26b JI=1,N*N
X2=2.»/HTFY»HTFY(I.JI»
DYX2=(2.»CTfYU,Jl)/HIFY(l,JI))/< (X2/DXN)*!.
DYX3 = ARS(rtUV(l,Jl>*ACI(l>OXN/(MUVZ(IfJI
IF(NPHY( I. JI ).E0.1) DrY = FKAC»AM|Nl(OYXl,DYX2)
IF (NPHY( I,JI).E0.2) DYY=FRAC«AMIN1 CONTINUE
OXN=DX2
OYYY( I ) = OYYh
396 CONTINUE
OYY=YKFM
DO 412 I=NCL.NCR
412 OYY = AM|N1(DYY,DYYY( I ) )
IF(NSS.EQ.n) UO TU 71tt
CALL I T£RAT(PGVI,MG1, 1 SA T , MM VZ ( NCL . 1 ) . ML . HV , PWV I . JS. NC .
7NCL,1)
JI=NX2Z(NCR)
HE INT=HF (NCK. J|*1>1 >
IF(NSS.EO.l) GO TO 71/
1F(NST.NE.1 > UO TU 710
HKITEC6, 5030)1 I ME, Jb
718 CONTINUE
INX1=1
INX2=1
UIOT=U.
DO 60U I=NCL,NCH
= NX22( I )
= 12.«L( I )/» LOAT(NXN)
TG2T=0.
IF (NST. NE.n ) UO TU 82i?
IF( JS.NE.LS1EH) GO IU 821
IF ( l.NE.NCL) >.0 TO 7U
822 IF ( l.NE.NCL) • .() TO 7U
732 FORMAK3X.5H LUMP, 1II X. 3H H2,14X,3H TF.14X.3H TT,1.JX,4H
714X.3H M2.10X.4H NPH)
71J CONTINUE
TG2.
01760
01770
01760
01790
01800
01810
01820
01830
(11840
01850
01860
01870
01880
01890
019UO
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
021UO
02110
02120
02130
02140
02150
02154
02155
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
79
-------
PROGRAM LISTING -- V APPRO (Cont'd)
MKITE(6.20)I 02340
20 FORMA1 (3BX,t>H««»«t,l6H FLUID PASS NO. , I5,5H«»»»«) 02350
621 CONllNUfc 02360
00 420 JI«1,NXN 02370
NPM=NPMY(I. J! > 02380
TG=(TG1( I )*I02(I. JI,l>)/2. 02390
CGG=FCG(TO.kFA> . 02400
Xl32..MGI»CGO/(H6TY( 1. Jl )»L(1 )»12.) ' 02410
BHol./Xi 02420
TGN=TU1(I> 02430
NHB = 1 02440
IF(HB.G1.0.5> NH8«2.5»8B 02450
BHraB/FLOATJNUB) • 02460
FG?G1=(1.-BH)/(1.»BB) 02470
FG?T=1.-FG2C1 02480
AOT=FG?T»1T( I. Jl.l) 02490
00 280 LK*1,NBB 02500
280 TGN=FU2G1*TGN*ADT 02510
TG2< I, JI,2)*TGN 02520
T0?< I, Jl,l) = TG2< I, JI.2) 02530
TG?T=102T«TG2( I. JI.2) 02540
GO TO (397.39B,d9V).NPH 02550
397 TKEf=TSAT 02560
HFAVO=(HF(I, J|,l)»Hf (I. JI»l,l))/2. 02570
HREF»HL 02580
CPP=FCWL(TREF) 02590
TX=TREF 026UO
BOJ TFX=TREF»(Hf A VG-HKEF )/CPP 02610
TX!=(TRbF«T» X)/2. 02620
IF(ABS«TX-m>/TX)-.Ul> 805.805*804 02630
804 TX=1X1 02640
CPP=FCUL(IX) 02650
GO TO 803 02660
805 FrG=(OYYX2. )*(HGTV( 1, Jl )/CTKI )) 02670
FTT = 1.-(DYY/CTT( I ))« > 02760
FF2f 2 = 1.-(DYY/CIFY( I,JI))««H!FY(I.J1 )/2. )» (EF Y ( I , Jl )/DXN ) ) 02770
HF( 1. JI*1,2)=FF2F2»HF(I, J|»1,1)»FF2F1«HF(|, JI,1)» 02780
5FF2U(TT( I, Jl.l)- I REF*( HREF/CPP )) 02790
HFN=HF(I. Jt+1.1) 02800
GO TO 410 02810
398 IF( INXl.Nfc.l) 60 TO 2000 02820
HEN1»HF< I, JJ.l) 02830
HENN1=HF( I, JI.2) 02840
MEN1=HHVZ( I, Jl ) 02850
1NX1=2 02860
2000 CONTINUE 02870
DROIJH=( (l./GVD-(l./GVV) )/(HL-HV) 02880
FTG=(OYY/2. )»HGTY(I.JI )/CTT(I) 02890
FTT = 1.-(DYY/CTT(I))«(HTFY{|,J|)»HOTY(I,JD) 02900
FTF = DYY»HTFY( 1, Jl )/CTI( I) 02910
TT( I, JI,2)aFTT«TT( I. J 1 , 1 > «F 1F*TSAT*FTG« ( TGI ( I >• T02( I . Jl,D) 02920
riAVGl=(HF( I.JI.l )»HF( I. JI«l.l))/2. 02930
80
-------
PROGRAM LISTING -- VAPORG (Cont'd)
399
827
&28
Xtl=(HAVGl-HL>/(HV-HL>
IFCXE1.LT.O.) XElsO.
IF(XEl.GT.l.) Xfcl=l.
RO=(l./GVL) + Xtl«((l./UVV)-(l./6VL»
VBAk=l728./
FF2F2=1 .-FF2F1
Ff 21=UYY»VHARoHTFY(I. Jl )
HF< I, Jl+1.2)=FF2F2«HF(I. JI*1.1)+FF2F1»W
6(TT( 1, JI.D-TSAT)
TFX=TSAT
HFN=HF< I. Jl+l.l)
DfcLlH=HF( I, JI.1)-HF( !.JI«1.1)
TOIFF = TT(|, JI.D-TSAT
IF« Xfcl.LT.O.U).AND.< TDIFF.GE.3f). )) TDIFF&30.
TERM1=TUIFF*H1FY( 1. Jl )«DXN
PKEF=-DKnOH/RO
WVZ=NHVZ< I, Jl )
TtRM2=PREF»DELTH
TERM3=PREFoTEKMl
UVZ=(1.*TERM2)»UVZ*1EKM3
NUVZ( I, Jl+l)=wVZ
HtXl=HF( I, JI+1,1)
HEXN1=HF( |,JI+1,2)
60 TO 410
IF( INX2.NE.1 ) 60 TO 827
HFA = HF( I. .11.1)
HFB=Hf (I. JI+1,1)
GO TO H28
HFA = Hf < I. JI.2)
HF8=HM I. Jl«1.2)
J| ,1 ) + FF2T»
CALL SIIPPKPUV. TFX.hFAVU,UD.GV.3)
6VZ< I. Jl.l)=6v
HREf =HFAV«*5.
CALL SUPPKPHV.TRtt . HKEF.OD.DD.3)
CPP=(HFAVB-hRtF)/=f TT«TM l.Jl,l)*FTF«(HFA*HF< I, JI + 1.2))*
4( IGot lin < I ) + TU2l If Jl.l) ) + FCUN
HFXN2 = Ht ( I, Jl+1.2)
HJ AvG=(HM I. JI,2)*HF(1, JI + 1.2))/2.
CAU Sl'HPKPMV, IUV.HFAVU.UD.GV.3)
GVZI I, Jl ./>=GV
HFN = HF t 1 .JI+1,1 )
MMVZi I , Jl*1 )=MUVZ(I.JI )+(f)XN/UY».ACI( I )»(GVZ< 1.JI.2)
7GVZI I. Jl.l) )/
-------
PROGRAM LISTING -- VAPORG (Cont'd)
5030
736
5032
668
705
71)6
503J
5021
42U
421
423
600
610
FORMATMOH ••••• TINE • ,E15.5.
721H (TIMESTEP NO..I5.2H »
IF(NST.NE.O) GO TO 736
IF< JS.NE.LSTEP) 00 10 868
WKITE(6.S032)JI.H»N.TFX.TT(I.JI.1).TQ2(I.JI.1>*
7MMVZ(I,JI«1 J.NPHYCI.JI)
FORMATU6.4X,'>F17.5.I6)
CONTINUE
IF(JS.NE.LSTEP-l) GO TO 706
MRITE<13.705)HFN,TT . MWVZ< I . Jl *1 )
FORMAK4F.15.5)
CONTINUE:
IF(NPKlNT.Nb.O) 00 TO 5021
WRITE<6.5U33)HTFY< I. Jl ) , C TF Y < 1 . J I ) . EF Y< I , Jl ) . HGT Y < 1 . J 1 )
FORMAK17H HTF , C If . EF , HGT ,4E15.5>
CONTINUE
IF( JI.NE.NXN) GO TO 420
IF( I.hO.NCH) UO TU 420
HF( I*1,1.2)=HF< I,NXN*1.2)
CONTINUE
TG?AVG( I )3TU2I/FLUAT(NXN>
IF( I-NCL-1) 421,423.600
TG1(NCL«1)=TOVI
GO 10 600
TGKNCR) = TG2AVG(NCL»1 )
CONTINUE
TIHE=TIHE*nYY
PKFSSURE CALCUIATION
VAL1=U.
VAL2=0.
VAL3=U.
UM = 0.
DENM=0.
00 610 J=NCL.NCK
VAL1 = VAI 1»VAPLKJ>
VAL2=VAL2*VAPL2< J)
VAL3=VAL3»VAPL3( J)
1F< ( VAL2*VAL3).EO.O. ) GU TO 635
VAL=VAL1*VAL2*VAL3
HFG=HV-HL
GFG=GVV-GVL
AX=GFG/HFG
OELH=2.
OELP=2.
PLOUcPHV-DFLP
IF( VAL2.EU.O. ) UO TU 620
HFAVl= XAV1=1.
UG = XAV1*VAL2/(172H.*GW)
WF=(1.-XAV1)«VAL2/(17^8.»GVL)
CALL SATP(PLOw.OD.GVLl,GVvl,HLl.HVl.l)
AK1=WG»(HV-HV1 )/DELP
AR?=WF»(HL-HL1)/OELP
AR3=WF»(GVL-GVL1)/OELK
= UG*(GVV-nwi)/DELP
= DENM»AX»( AI<1*AK2)-(AR3
IF(NPklNT.NE.O) GO TO 620
03590
03600
03610
03620
03630
03640
036*0
036!>5
03660
03670
03680
03690
037110
03710
03730
03740
03760
03770
03700
U3790
03800
03810
03820
03830
03840
038*0
03860
03870
03890
03900
03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04130
04140
04150
04160
04170
04180
04190
04195
82
-------
PROGRAM LISTING -- VAPORG (Cont'd)
82J
620
624
WRITE(6,823)HEN1,HF;X1.HFAV1
WHnE(6,823)HL.HV.XAVl. VA12.0VV.GVL
gRlTE(6,B23)HG,WF,PLOw,GVLl.GVVl
WRITE<6,823)HLl,HVl.DtLP.ARl.AR2
WHlTE(6,623)AR3,AK4,DfcNM,AX
FORMAT(7H VAP1 .6F15.5)
IF< VAL3.EU.O. ) GO TU 630
HFAVl=(HEXl+HfcX2)/2.
HFAV2=
CALL SUPPT(PMV,nD,Hf AV1*I>K-LH,I)D,GAV3,3)
WS=VAL3/(1728.»GAVJ )
AXl=(UAV3-GAVl)/DfcLH
AX2 = WS»(GAV1-GAV2)/I>ELP
UH=Uh*US«(AXl-AX)MHFAV2-HFAVl)/DYY
n6NM=UENM-AX2
IF< NPKlNT .Nh.Q ) GU 10 6,3(1
Hkl TE(6,824)UM,UENM
FORMAK7H VAP2 .2E15.5)
NX2=NX2Z(NCK)
AS1=AX«
650
WHI Tt<6,B?«5)TAVl.GAVl,GAV2.CAV3
Wrtn£(6,H25)UH,AX.UYY.DbNM
WKI TE(6,82^)AS1.0I01
WWI TE( 6,8?5 )MwVZ( NCL, 1 ).Hl.» MF ( NCL. l.D.MWE
kJKI IE(6.8/»5)HMNCK.NX^*1,1 >,AS2.GVL
Fl)RMAT(7H VAPj .^F15.5)
*JK| TE(6,5U62)P|NC!
FORMAK8H PINCT ,E15.5)
GU TO 640
PINCT = 0,
PwVh=PWVE»P| NUT
PWV=PHVE+POUT
gRI (E(6,5029)
RtStT
OU 650 I=NCL,NCW
NXN=NX?Z( I )
IF ( I .bO.NCL > iiO TU 64^>
HF< J,l,l)=Hf U ,1,2>
CONTINUE
MWZ(l,NXN»l)eMMVZ(1.NXN*l)
OU 65U JJ=1,NXN
TT( I, JJ.l ) = TT( 1, JJ,2>
HF( I, JJ*1,1 )=HF( I, JJ*1,2)
HHZl 1 , JJ)=MV*V2< I . JJ)
CONTINUE
TGKNCL ) = 1G?AVG(NCR)
YKEM=YRbM-DYY
IF(NST.NE.O) (iO TU H26
IF ( JS.NE.LSTEP) Gu 10 869
04200
04210
04220
042JO
04240
04250
04260
04270
04280
04290
043UO
04310
04320
04330
04340
04350
04360
04365
04370
04380
04390
04400
04410
04420
044JO
04440
044t>0
04460
04470
04480
04490
04500
04510
04520
04530
04540
04550
04560
04570
04180
04590
04592
04610
04620
04630
04640
04650
04660
04670
046rtO
04690
04700
04710
04720
04730
04740
047«>0
04760
04770
83
-------
PROGRAM LISTING -- VAPORG (Cont'd)
t)26 HHI TE(6.4H)DYr, TGKNCL), TUKNCL*! ).TG1(NCR> 04780
4fl FuPMAKlOii DYr.TGl .4E15.5) 04790
86V CUNTlNUb 04795
IF( jS.Nb.LSIEP-l> GU 10 7(18 04800
MR1 TEU3. 707) IG1 (NCL ), TGI ( NCL* 1 ). TGI ( NCR ) 04810
707 FURMAH JE15.5) 04820
708 CUNllNUb 04830
IF(JS.Nt.LSTEP) GU 10 225 04840
• GAS-SIIH PRESSUHE nKUP 04850
MRI IF(6,l>029) 04852
MKITE(6.5U?9) 04854
WRITE(6.42) 04860
42 FORMA1 (46X.28H »• PREbSURt IIRUP RESULTS • •) 04870
WHI TE «">,85l ) 049UO
851 FURMAT(12H •• GAS SIDb) 04910
WRITE(6.85?) 04920
H52 FORhAT(3X,»>H COIL,7x,iOH MASS FLOW.9X.8H INLET P.10X, 04930
7811 INLET I.10X.7H txll T.10X.9H PR. DROP) 04940
10UU CONIlNUt 04950
PGV 04980
J=NCL*1 04990
CALL PDUUPA(PiiV< J). 1A1. T A2 , MG VZ < J >. NSO < J ), DHO< J ), 00 ( J ), AGO < J ). 0511 UO
1 L(J>.X2L3)J.MGVZ( J).PGV( J). TGI ( J ) , TG2 A VG( J ). PDD 05020
B53 FORMA I( I6.4X,>E17,5) 05»30
PUV(NCR)=PGV 05090
J=NCR 05100
CALL PDHOPA(PuV(J),TAl.TA2,MGVZ(J).NSU(J),DHO(J).00(J),ACU(J). 05110
? L, PDD 05130
PGV(NCI ) =HGV(NCK)-POD 05140
TA1 =TU1 i NIH ) ' 05150
TA?=TG?AVU(NCL) 05160
J=NCI ! 05170
CALL PPkOPA(PGV(J),TAl.1A2,MGVZ(J),NSU(J),DHO(J). U0(J) . ACO( J), 05180
3 L(J).x?L(j),fNU(J>,FHO(J).FTO(J),RM(J),PDD) 05190
MHI1E(6,R>>3>J,MGVZ(J>,PGV(J),1G1(J>.TG2AVU(J>.PDD 052UO
WRI IE(6.5U?9> 05210
PUVf=PGV(NCI)-PDD 05220
WRI IE(6.854JPUVt.TG2AVG(NCL) 05230
«54 FORMAH25H EXIT PRESSURE. TEMP =.2bl0.5> 05240
WR I IE(6,50?9 > 05250
WRI (6(6.5U?V > 05260
• FLUID fHEssuRb URUP 05270
WR I IE (t>, 856 ) 05280
856 FORHAU14H •• fLIMO SIDE) 05290
wwl IE(6.857) 05300
857 FORMAH3X.5H COIL,9X,SH FLOW.14X,4H NPH,12X,7H LENGTH, 05310
79X.11H INLET PRES,8X,VH PH. DROP) 05320
PMVX=PWV 05330
Jl=l 05340
l)u 10JO I=NCL,NCR 05350
Jlt=NX?/(|)-(j?b«l)*JJE(l)) 05360
L2 = VAPL1U >/(!?.•ACIU )) 05370
IF 05390
84
-------
PROGRAM LISTING -- VAPORG (Cont'd)
5070
5072
5U71
M58
1013
1016
1U30
859
CALL SATPCPUVX. THV.DD,DD,HL.HV,I >
J2=J1E*J1
HFA=50 71,5071.5072
TX=TX1
GO 10 5070
CALL PDkOPKPKVX, IM.NWV.DHKI > , AC I ( I > , L Z , 1 . POD. DO, DO, Of) )
NPH = 1
WKI TE(6.858) 1 , HWV, NPH, LZ. PWVX, PUD
FORMA T< l6,4X,tl7.5,l9,8X.JEl7.5)
PHVX=PHVX-PDD
L2=VAPL2< !>/(!?. »AC|( I ))
IFCLZ.ED.O. ) GO TO 1016
Jl=Jlfc»l
J2 = J26( I )*J1
MHV=(MWVZ(I.Jl)»MWVZ(l.J2»/2.
CALL SATP(PHVX. TWV.PO. DO. HL.HV.l)
XtNl = (HF( |. Jl.l )-HL)/(HV-HL)
XhXT=(HF(|,J2.1)-HL)/(HV-HL)
IFCXENT.LT.O. ) XENT = 0.
If ( XEXT.G1.1. ) XEXT = 1.
CALL HUKOH?(PhVx, IWV. XENT, XEXI .MWV.OHI ( I ),ACI( I ).LZ.POD)
LZ=VAPL3( I)/(12.*ACK 1»
IK (LZ.Fti.n. ) 00 TO 10 JO
Jl=J2b( I )*J1E*1
J2=J3E( 1 )»J1
H^ A=(riF( I, Jl,l )«HM I, J2>1
MHV=(MWVZ(1 . J1)+MMVZ( I. J2))/2.
CALL SUPPKPHVX, I WV, Hf A, I)U. DO. 3 )
CALL PLlROPl(P^VX,lwV.rtWV.uH|(|),ACI(I ) , L 2. 3. PDD, Dl). I)D, DD )
NPH = 3
HKITE(6,858)I,MWV.NPH.LZ.PMVX,PDD
MRI TF(6,'JU?V)
PWVX=HWVX-PUD
CUN1 I NIIE
PWVfc=PWVX
NX2=NX?Z(NCK)
WKI TE(6,8->9)PwVE.HF(NCR.NX2*l,l )
FURMAT(25H EXIT PRESSURE. ENTH
KE TURN
END
05400
05410
05420
05430
05440
05450
05460
05470
054HO
05490
05500
05510
05520
05530
05540
05550
05560
055/0
05580
05590
05600
05610
05620
05630
05640
05650
05660
05670
05680
05690
05700
05710
05720
05730
05740
05750
05760
05770
05780
05790
05800
05810
05820
05830
05840
05B50
05860
05870
-------
SUBROUTINE DISTR
DISTR calculates new nodal distribution (NXN nodes) from previous
distribution (NXOnodes), by linear interpolation, for VAPORG.
NOMENCLATURE -- DISTR
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of DISTR are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
I Fluid pass number
86
-------
PROGRAM LISTING -- DISTR
?o
(SO
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CMMMQN
COMMON
COMMON
SllBKOUT I NH HlbTK( I )
COMMON AP.I.CH,CHh,CO
COMMON C02P,Ct(2S, DCS, OCT. HTH
tOUIV,F,FS,H?OP,H20S
HP.HH.HTrLAM.HTlN.LHV
LHtfT,LCS,LCT,MAIK,MFLIHD
MFOFL.N?P,N?f<. N2S.NRENDA
NRI-NDG,NO.NP,02P.02R
U?S.PO,SP1,SSA.STA
Sin,10,MS,WT,YEX1
ACIdO),ACU<10),BH<10),Bl(10),CTF
CTFYdU.lU.CTTdO ).CH,DHI(10),DHO(10)
Uldll),n'K10),DSdn),DYYYdO),EF
fcFYdO,n>,FG.EGYdO,ll).FHI (10),FHO(10>
fNI(in),rNU(10).fRaC,FTI(10)»FTO(10)
i;VZdO,ll,2),HF(10,11.2),HF I Nl (10 ), HF I N2 (10 ) , HO I Nl (10 )
HR|N2,HGT,HGTY<10,ll).HTF.HTFY(10,ll>
J?h(in ),.)3t(10),LdO),LSTEP.MWZ(l0.ll)
NCY(3),NCLt(J),NCRY(3),NCYCLE,NFSECT(3)
NLHMP.NMdO ).NHI (lO).NMO(in >.NPH
NPHY(lll,ll),NPKINT,NSS,NS!(10),NSO(10)
NT«ANS.NX?MAX(10),NX2Z(10),NXN,NXO
POVdO),WFA,KMdll).RM.RMY(10.11)
TGI (10 ), TG2(10,11.2).Tr;2AVG(10). TO 1 Nl (10 ). TO I M2 d 0 )
l|MP,TldO,1l,2), TIIBROWC10), VAPLK10), VAPL2(10)
VAHI.3(10>,VOL(10 ),XlG(in),X2L(10).X2T(10)
CTAR(AV,?7),HLlO,SIAH(69,27),T(128),TTAB(33).VLIO(128)
VTAR<6V,27 ),VVAP<128)
L.I.HV.I HVT,LCS,LCT,MAIH,MFLUID,HFUEL.MWZ,N2P»N2R,N2S,MO
SCFK.KI ),SCF2(30),SCF:5(3U).SCF4(30).SCF5(30)
SrF6(30).SCf7(3o).SCF«(30)
•ON) w
OH.
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
Pt-Al
n i MI-MS I ON
1 ON
,FO,
,GT,
NXN.GT.NLUMP) GO TO 20
n 11
It ( NXi>.
IF(MXO.
GO 10 Ml
>t K I I F t 6 , 5 I) )
FORMAK27H Nil. OF LUMPS EXCEEDS NLUMP)
S 101
SINCF bCM ,SCF?.SCH,SCF4.SCF5,NSCF ARE
wl- Nfci-li NiiT TrtANS>FK (FU( 1 ), H( 0(1 ), PFO( 1 )
ONLY SCRATCH ARRAY
= H> ( I ,NXO*1,1 )
on inn N s x > 1^ x N
.1 = 1 »NXHo (N-l J/NXN
A1=MOA[((N.1)»NXU-(J-1)«NXN)/XNN
SCV?lN):ilF( l,.i,l)*A1»(HF(I
1 nil CUNI I Mif-
N It- M = NXN* 1
no ?on i» = ?, MI- M
MW?( I ,N) = SCFIt N)
HF ( i, N. i »S«;I:F? ( N)
20U CONTINUE
no JO n N = l . MXu
Js.l+.SoFlHATJ(?»n-l>»NXO)/XNN
• NOU IMiT J CAN Nt90
00600
87
-------
PROGRAM LISTING -- DISTR (Cont'd)
290
295
300
400
If(J.EO.NXO) GO TO 295
6l = .5«f LO&T«?«N-l>»MXO-«J-l)«NXNf/XNN
SCFKN) = TT( I, J,1)*A1«(TTU, J»1.1)-TT< I,J.1»
SCF2(N)*TG2<|.J,1)*A1«(TG?-TO?
SCF6(N)=EFY»NXO)/XNN
SCFl(N) = Tf(I,1,1 )-Al»(TT< 1,2,1 )-TT< 1,1,1))
SCF?(N)=Tfi?(
SCF4(N)=EOY<
, 1,1)-A1«(TG2l»
SCF5(N)=HTFY 1,1)-A1«
.LE
.LE
.IE
,0.) SCF1(N)=TT(1,1,1)
,0.) SCF2(N)oTG2(1,1,1)
,0.) SCF3(N)*HGTY(I,1)
,0.) SCF4(N)=EOY(1,1)
LE.O.) SCFb(N)sHTFY(I,l)
LE.O.) SCF6(N)»EFY(I,1)
LE.n.) SCF/(N)sCTFV<1,1)
LF.O.) SCF8(N)sRWY(1,1)
00 TO 300
A1 = .5»FL06T(NXOM2»N-1)-NXN»(2»HXO-1»/XNN
SCF1 (N) = TT( 1,^X0,1)*A1»(TT( I,NXO,1)-TT< f.NXO-l.D)
SCF2(N)=TG2f
SCF3(N)=HGTY
SCF4(N)?EUY<
SCF5(N)aHTFY
SCF6(N)=EFY<
SCF7(N)«CTFY(
SCFB(N)eRwY
CONTINUE
RETURN
END
, NXO,1 >»A1M TG2U,NXO,1)-TG2<1.NXO-1,1»
I ,NXO)»A1»(HGTY( |,KXO)-HOTY(I,NXU-D)
,NXO)«Al«(tGY(I,NXO)-EGY( I.NXO-D)
I ,NXU)*A1»(HTFY( 1,NXO)-HTFY(I,NXO"D)
, NXO)*A1»(EFY( I,NXO)-EFY(I,NXO-D)
I,NXO)*A1»(CTFY( I,NXO)-CTFY( I.NXO-D)
, NXO)»A1«(RWY( I,NXO)-RWY(I,NXO-D)
SCFl(N)aTT(I.NXO.l)
SCF2(N)>TG2(I.NXO.l)
SCF3(N)aHGTY(I,NXO)
SCF4(N)EEGY(I.NXO)
SCF5(N)«HTFY(I.NXO)
SCF6(N)=EFY(I.NXO)
SCF7(W)«CTFY(I.NXO)
SCF8(N)*RMY(I.NXO)
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
OOA60
00870
00880
00890
n090fl
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
OHIO
01120
01130
01140
01150
01160
01170
01180
01190
88
-------
SUBROUTINE GEOMCO
GEOMCO calculates all geometric constants for VAPORG.
NOMENCLATURE -- GEOMCO
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of GEOMCO are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
NC Fluid pass number
89
-------
PROGRAM LISTING -- GEOMCO
SUBROUTINE GEOMCO(NC) 00020
COMMON AP,B,CH.CHR,CO 00030
COMhON CO?P,C02S,DCS.DCT,DTH 00040
COMMON EOUIV,F.FS,H20P,H2nS 00050
COMMON HP,HH,HTFLAM,HTIN.LHV 00060
COMMON LHVT,LCS,LCT.MAIR.MF|_UID 00070
COMMON MFUEL,N2P,N2R.N2S,NBENDA OOOHO
COMMON NBfiNnG,NU,NP,OZP,02R 0009D
COMMON 02S.PO,SP1,SSA.STA 00100
COMMON STG.10.WS.WT,YEXT 00110
COMMON ACK10).ACO(10 ),BH{10).Bl(10 ).CTF 00120
COMMON CTFY.DHO<10> 00130
COMMON OHIO),00(10),l)S(10).DYYY(10).Er 00140
COMMON EFY<10,ll),EG.EGY(tO,ll).FHI(10),FHO(10) 0015.0
COMMON FNl(10),FNU(10).FRAC,FTI(10),FTO(10) 00160
COMMON GVZ(in,ll,2>.HF<10,ll,2),HFlNl<10V.HFlN2(lQ>,HGINl(10) 00170
COMMON HGiN?(tn>,HGT.HGTY(IO,II),HTF,HTFY(IO,II) ooiao
COMMON J2EUO I, J3fc(10),L(10),LSTEP.MW2(10,ll) 00190
COMMON NCY(3),NCLY(.n.NCRY(3),NCYCLE.NFSECT(3) 00200
COMMON NLUMP,NM(1Q),NM1(10).NMO(1U).NPH 00210
COMMON NPHYUil.ll >.NPRINT,NSS,NSIUO),NSO(10> 00220
COMMON NTRANS,NX2MAX(10).NX2Z(10),NXN,NXO 00230
COMMON PGV(10>,RFA,RN(10),RU,RWY(10.11) 00240
COMMON TGI(10),rG2(10.11,2),TO?AVG(10),TOINl(10),TBlN2(10) 00250
COMMON T1MF,TT(10,M,2),TURROU(10),VAPL1(10),VAPL2(10) 00260
COMMON VAPL3( 10 ), VOLdO ), XlGdO )/X2L(10),X2T(10 ) 00270
COMMON CTAB(6v,27),HL10(128),HTAB(69,27).HVAP(12e>,1ND 00280
COMhON NLINt,NND.NPSTbP,NTSTEP,P(128) 00290
COMMON PT&R(7ll ),SUH(69,27),T(128),TT»B(33),VLIO(128) 00300
COMMON VTAB(6V,27),VVAP(1?8) 00310
RFAL L,LHV,IHVT,LCS,LCT,MA1R,MFLU|D,HFUEL,MWZ,N2P,H2R,M2S,NO 00320
• HYDRAULIC DIAMETERS 00330
• USE FUNCTIONS 00340
VOLB»(3.1416/4. )»(nO(NC)»»2-DI(NC>»»2) 00350
M1=NSO(NC) 00360
GO TO(10,?0,3U).M1 00370
10 ACO(NC)=X2l(NC>-DO(NC> 00360
DHOBX?L
-------
PROGRAM LISTING -- GEOMCO (Cont'd)
AC I «FHI OQ670
Gil 10 (140.145),Ml 006AO
• NUTE THAT A1 KRESENILY FOKMIILATED THE FUNCTIONS FCMS(TX), 00690
• FHMS(TX>,FrhC5,160 ),MI 00610
155 C10 = FC:MS(TX) 00820
RTO=FKMS(TX) 00830
GO TO 165 00840
160 CIO=FCMC(TX) 00«50
RTn=FKMC(TX) 00860
165 MlsNSI(NC) 00870
It(MI.EU.l) GU TO 1HO OORbO
MlsNMKNO 00«>Jn
GO TO(170,175).MI 00900
170 CT!=FCMS(TX) 00910
PTI=FRMS(TX) 00920
00 TO 180 009,50
175 CTI=FCMC(rX> 00940
RTI=FKMC(«X) 00950
180 CTT(NC)=VOLfi»CTH»HTB 009^0
IF(NSO CTI (NC)=CTT(NC) + VOLO»CTO»RTO 00970
IFCNSI(NC).NE.l) CTT(NC)iCTT(NC)*VOLI«CTI»RTI 009HO
CTT(NC) = CTT(ND/1728. 00990
RETURN 01000
END 01010
91
-------
SUBROUTINE STEPSI
STEPSI calculates the stability limit on lump size for each lump of
VAPORG. STEPSI employs the following subroutines:
HT1PB
HT2PB
HTGR
HTGTB
HTGTF
HTGTM
HTPF
PHASE
NOMENCLATURE -- STEPSI
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of STEPSI are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
HW Enthalpy of working fluid
MGV Mass flow rate of gas
MWV Mass flow rate of working fluid
NC Fluid pass number
NX2 Number of lumps for a given coil
PW Pressure of working fluid
TG Bulk gas temperature
TI Wall temperature at mid-node of a
lump
TW Bulk fluid temperature
X Quality of bulk mass within a lump
X2G Geometric limit on lump size
°F
°F
in.
92
-------
PROGRAM LISTING -- STEPSI
10
20
30
4U
5U
60
SUBROUTINE STEPS1(PW,TW,HW,TO,TI,MHV,M6V.X.NC»X20.NX2> 00020
COMMON AP.B.CH.CHK.CO 00030
COMMON C02P»C02S,UCStOrT,DTH 00040
COMMON EOUIV,F.FS.M20P.H20S 00050
COMMON HP.HR.HTFLAM.HTIN.LHV 00060
COMMON LHVT,LCS,LCT.MAIR.MFLIJID 00078
COMMON MFUEL,N2P.N2R.N2S.NBENDA 00080
COMMON N8ENDG.NU,NP.OZP.02R 00090
COMMON 02S,PO,SP1,SSA.STA 00100
COMMON STG,TO,WS,HT,YEXT 00110
COMMON ACI (10), ACO(]0),BH(10)*BM10),CTF 00-120
COMMON CTFYUn,ll).CTT(in>.Cy,DHlUO>.tVHO(VO.> 00139
COMMON Dl (lfl),r>0(10 ) , US( 111). DYY Y (10 ) , EF 00140
COMMON FFY<10,ll),EG,eGY(10,ll).FHt(16),FHO(10) 00150
COMMON FN|(10 ).rNO<10).FRAC,FTI(1U>.FT0<10 ) 00160
COMMON GVZ(10,11,2),HF(10.11.2).HFIN1<10)«HFIN2<10).HGIN1<10) 00170
COMMON HGIN2(10 >,HGT,HGTY(10.11>.HTF.HTFY(10,11 ) 00180
COMMON J2E<10 ),J3E(10 ),L<10 ),LSTEP,MHZ(10.11) 001VO
COMMON NCY(3)., NCL Y ( 3 ) , NCR Y ( 3 ), NCYCLE. NFSECT (3 ) 00200
COMMON NLUMP,MM(10),NMl<10).NMO<10),NPH 00210
COMMON NPHY(lu,ll),NPKlNT.NSS,NSI(10),NSO<10) 00220
COMMON NTHANS.NX?MAX<10),NX2Z(10),NXN.NXO 00230
COMMON PGVdO >,PFA.RM(lfl),RM,ftUY(1.a.ll) 00240
COMMON TGK10 ), TG2(10,11.2).TG2AVG(10),TOIN1(10).TGIN2(10) 00250
COMMON IIMF. TKlO.ll.Z), TllBROM(lO). VAPLK10), VAPL5M10) 00260
COMMON VAPL3(1 0 ), VOLUO ), XlGdO ) , X2L (10 ) , X2T (10 ) 00270
COMMON CTA9<6V,?7).HLIO(1?8),HTAB<69.27).HVAP<128),INU 002BO
COMMON NLINE,NNIi,NPSTbP.NlSTEP.P(128) 00290
COMMON PTAR(7n),STAB(69.27),T(128).TT*8(33).VLftl(l?8) 00300
COMMON VTAB«S9,?7),VVAP(1?8) 00310
REAL L.LHV.LMvr,LCS,LCT.MAIR.MFLUID.MFUEL.MH7,N2P.N2R,N2S.NO 00320
REAL MHV.MRV 011330
PW.HH.TG.Tl ,MWV.MGV.NiJ,X2G ARt INPUT 00340
NX2.X.TU ARE RETURNED. 00350
CM I PHASEfPW,TW.HH,X,GVL,GVV,Hl,HV) 00370
GAS PROPERTIES 00380
CO^CG(TG,RFA) 00390
RG=1./FDG(TO,KFA) 00400
OBTAIN HEAT TKAilS . COEKF SI HTOT, HTTF 00410
OBTAINING HTGT 00420
r,sMGV/ACO(NC> O04.i0
M|aNSO(NC> 00440
GO TO (10,20,JO).MI 00450
CALL HTGTR(HTOT,NC,G.fG) 00460
GO TO 40 00470
CALL HTGTF(HTGT.NC.G.TG) 00480
GO TO 40 00490
CALL HTGTM 0(1560
GO 10 (50.80.90),MI 00570
GO 10 (60,70.60).NPH 00580
CALL HT1PM(HTTF,NC,GF,PH.TH) 00590
GO TO 100 00600
93
-------
PROGRAM LISTING -- STEPSI (Cont'd)
70 CALL HT2PB 00610
00 TO 100 00620
80 CALL HTPF(HTTF,NC.GF.PW,TW.TI,X,GVL.8VV,HL.HV> 00630
GO TO 100 00640
90 WRITE (6,500) 00650
500 FORHATC52H HEAT TRANSFER NOT FORMULATED FOR BALL MATRIX INSIDE) 00660
STOP 00670
100 CONTINUE 00680
• COMPUTE THT PARAMETERS 00690
Er, = ABS(MOV«12.»L(NC) )»CG/FLOAT(NX2> 00700
EF=ABS 00710
HGT = HTGT».1.J4159»DO(NC) 00720
HTF=HTTF»3.J4159«DI(NC) 00730
CTF=RW»ACI(NC)«CW/1728. 00740
• STEP SIZE CALCULATION 00750
X2=?.»EF/HTF 00760
= AMINHX2»FRAC.X2G) 00770
= INTSTEU>X2,X20) 00780
IF(NPH.E0.2> NX2»lfl 00790
IFCNX2.GT.1) DX2«X2G/FLOAT(NX2) 00800
RETURN 00810
END 00820
94
-------
SUBROUTINE ITERAT
ITERAT gives an iterative solution for steady-state distribution of fluid
enthalpy, gas temperature, and tube temperature. It employs the subroutine
SUPPT.
The data file referenced in ITERAT by the two-digit code 15 is a storage
file for the values calculated before exiting ITERAT the final time. Since the
data in the file vary according to the particular run just completed, a listing
is not included here.
NOMENCLATURE -- ITERAT
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of ITERAT are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
HL
HV
JS
MGV
NC
NCL
NCOD
PGG
PWV
TSAT
W
Definition
Enthalpy of working fluid liquid
Enthalpy of working fluid vapor
Variable to denote cumulative number
of timesteps
Mass flow rate of the gas
Fluid pass number
First fluid pass number for the com-
ponent
Logic variable to denote component:
1 - vapor generator
2 - condenser
3 - regenerator
Pressure of gas
Pressure of working fluid vapor
Saturated temperature of working fluid
Mass flow rate of working fluid
Ib/sec
lb/in.s
lb/in.a
°F
Ib/sec
95
-------
PROGRAM LISTING -- ITERAT
10
12
15
18
SORROIITINF I TbRAT(PGG,MGV,TSAT.W.HL,HV,PWV.JS,NC.NCL.
7NCOO)
COMMON AP.R.CH.CHR.CO
COMMON C02P.C02S.UCS,OCT.DTK
COMMON EOUIV.F.FS.H20P.H20S
COMMON HP.HR.HTFLAM.HTIN.LHV
COMMON LHVT.LCS.LCT.MAIR.MFLUIO
COMMON MFilFL,N2P,N?P,N2S,NBENr.A
COMMON NRENnG.NO.NP,02P.02R
COMMON 02S.PO.SPl.SSA.STA
COMMON STO,10.WS.WT,YtXT
COMMON ACI(10).ACO(10).BH(10),B1(10).CTF
COMMON CTFYUIi.ll ),CT1(10),CW,DHI (10),DHOdO)
COMMON DK10),no(lO),DS(lO),DYYY(lO),tF
COMNON fcFYUO. 11). FG.tOYdO.ll ) . FH I < 10 ) . FHOUO )
COMMON FNI(10),FNUdO),FRAC,FlIdO).FTOdO>
COMMON GVZ<10,ll,2).HF(10,ll,2),HFINldO>,HFIN2dO).HUlNldO)
COMMON HGIN2(10).HGT,HOTY(10,11).HTF,HTFYd0, 11)
COMMON J2EUO), J3E (10). L( 10). LSTEP.NWZUO.il)
COMMON NCY(3),NCLY(3),NCRY(3).NCYCLE.NFSEC1(3)
COMMON NLOMH,NM(10).NMI(lfl).NMO(10).NPH
COMMON NPHY(in,ll),NPHINT,NSS.NSl(lO).NSO(lO)
COMMON NTRANS,Nx2MAXdO).NX2ZdO),NXN,NXO
COMMON PRv(10),KFA,KM(lU),RW,KWY(10,H)
COMMON 101(10). 102(10,11,2),TG?AVC(10),1GINI(10),TGIN2(10)
COMMON 1 lMF.Tl(lO,1l,2),lOBROHdO),VAPLldO),VAPL2UO)
C'lMhON VAfl J(in ), VOI. (10). XlGdO >,X2LdO),X?T<10>
COMMON CT«R(69,27),HLlOd?8),HTAB(69.27),HVAP<128),I NO
COMMON NL lNt,NNn,NPSTEP,NTSTEP.P(128)
COMMON >>lAR(7u ), S1AR(69,27 ), T(128 >. TTAB(33). VL 10(128)
COMKON VTAR(69.27),VVAP(128)
REAI I ,1HV.LHVT.LCS.ICT,MAlk,MFLUID.HFUEl.HWZ,N2P,N2R.N2S,NO
MGV
NCR=NCL»NC-1
MA=NX27(NC»)*1
HFX I T = Hf ( nCH. n/l ,1
no 100 l=NfL,NCK
1G21=«.
NXN=NX2Z(
M|=NX2Z(I
00 90 Jl=
(lA «NXN)
,M
NPH=NPHY(
1U=(TG1< I )»1G2( I.Jl.l ))/2.
RO 10 (in,i2,15),NCOO
COG = F CG(1R.KFA )
Rn TO 18
Gil 10 If)
CGG=FCWV(HRG,IR)
COM!INUF
KJI =TG1 ( I I
>«12./(2.«H6V»C60>
IF(hR.ni .0.5) NHBa2.5»HH
FG2U1=«1.-RH)/(!.*RH)
00020
00030
OU040
00050
00060
00070
OOOHO
00090
omoo
noun
00120
01)130
II 014 0
00150
00160
00170
00180
00190
00200
00210
00220
00230
OII240
00260
00270
0028H
011290
OII3UO
Ol)3in
OU320
00130
00350
00370
003HO
nnsvn
0II4 0 0
00410
00430
00440
0040
0 n 4 6 0
00470
OU4HO
00490
00500
00510
00520
005JO
0(1540
00550
00560
00610
00620
00630
006HO
00690
00700
00710
96
-------
PROGRAM LISTING -- ITERAT (Cont'd)
211
28U
3U
3t>
38
40
50
55
60
90
100
102
104
106
10W
107
Mir=Hir Y< i. ji >
HOT = HGTY( I, JI )
H2=nF< I . Jl + l. I )
Hl=HF( I, Jl.l )
TGN=TGJ ( I )
ADT=FG2T»TT( I. Jl
00 280 LK=t,NHB
l)
TG2( I. JI.1 ) = TGN
GO TO (30.40.30 ),NPH
IF(NPH.E0.3) GO TO 35
CP = F.FY( I, Jl )/w
HRnHL
TR=TSAT
GO TO 38
HAVG«/2.
CALL SUPPTII'WV, TFY.HAVG,nu,DD.3)
HK=HAVG*5.
CALL SUHPTU'WV. TR.HR.DDf DD.3)
CP=(HAVG-HR)/< TFY-TR)
CONllNUt
F1=HTF/(2.»CP«(MGT*HTF)»
F2=HGT/(?.»(HUT*HTF) )
TFX=TR-(HR/CP)
F3=(H1F/(HGT*HTF) )»TFX
B8=HTF»DXN/(2.»W»CP)
F5=?.«CP»«R/(1.*HB>
TT( I, JI,1) = F1«(H1*H2)»F2»(T61(
H2 = F4«H1*F5»
HF( I, JI*l.l )=H2
CUN1INUH
Tr,2AVG(l> = TG21/FLOAT(NXN)
IF( I.NE.NCR) HF(I*l,l,l)aH2
CONllNUt
GO TO (102,KM,106),NCOD
TG1(NCL)=TG2AVG(NCR)
TGKNCR) = TG2AVG(NCl*l )
GU 10 108
TOKNCL*! ) = I 62 A VG ( NCL )
T01(NCR)=1G2AVG(NCL+1 )
GO 10 108
TGKNCl +?) = TG2AVG(NCR)
TG1(NCL»1)=1G?AVG(NCL*2)
TGI (NCL)= IG2AVG(NCL + 1 )
!F(JS.LI.13) UO TO 10V
WKI IF(6.1U7)
FURHAK33H UIuN'l CONVEKfif- IN 13 ITERATIONS)
S10H
00720
0073n
00740
00750
00760
00770
007UO
00790
00860
00870
OQA90
00900
00910
OH920
011930
it n 9 4 o
00950
(10960
0 0 9 7 II
009HO
011990
0 1 0 11 n
0 1 0 1 II
01030
0 1 0 4 II
01050
01060
01070
01000
oinyo
01100
oino
01120
01130
01140
01150
01160
01230
01240
01250
01260
0 J ? 7 0
012HO
01290
01 3110
01310
01320
01330
01340
01350
01360
01370
013HO
01390
01395
01396
01397
01398
97
-------
PROGRAM LISTING -- ITERAT (Cont'd)
109 !F«AHS«HFXI I-H2)/H2))-5.E-5) 13n.13U.110
110 CONllNUfc
KhTUKN
13U M|=JS-1
HKI IE<15,131)MI
131 FORMAK ll«>)
UU 133 J=NCL.NCP
HHlTE<15.l32)r.X2Z< J)
132 ruKhAHUO)
133 CONTINUE:
DO 1411 J=NCL.NCH
MI=NX27(J)
DO 140 Jl=1.Ml
J. J 1*1,1 >.T1( J. Jl, 1).T02(J.JI, 1)
f Y< J. Jl ).HUTY( J.JI )
FURMAK JE15.5)
14U CONMNUt
HKITE(15.142)(TG1(J),JsNCL.NCR)
142 FORMAT<4E15.5)
00 141 I=NPL,NCK
MI=NX?Z(I)
141 CONTINUE
NSS = 0
JS = 0
RETURN
END
014UO
01410
01420
01430
01440
01450
01460
01470
01460
01490
01500
01510
01530
01590
01595
01600
01610
01620
01630
01640
01650
01660
01670
016HO
01690
01700
98
-------
SUBROUTINE PDROP1
PDROPl calculates the single-phase fluid pressure drop.
NOMENCLATURE -- PDROP1
FORTRAN Variables in COMMON:
FORTRAN variables in the COMMON of PDROPl are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
AG
DH
DP
DPB
L
NBEND
NF
P
RFA
T
W
Definition
Flow cross-section area
Flow hydraulic diameter
Fluid pressure drop for straight tube
length
Fluid pressure drop for bends in tube
Fluid travel length
Number of bends in tube
Logic variable:
1 - working fluid -- liquid
2&3- working fluid -- vapor
4 - combustor
Bulk fluid inlet pressure
Fuel to air ratio
Average fluid temperature
Mass flow rate
Units
inf
in.
lb/in.a
lb/in.a
in.
lb/in.3
°F
Ib/sec
99
-------
PROGRAM LISTING -- PDROP1
SUBROUTINE PDROP1(P.T,W,DH,AC,L,NF.DP.RFA.N8END.DPB) 00020
« PR DROP -- SINGLE PHASE 00030
• CODF NF 1 - WORKING FLUID - LIOl 3 - M.F.-VAPORl 00040
• 4 - COHBUS10K 00050
REAL L.NBEND 00060
• AT T. OBTAIN V. RO 00070
GO TO <1.2,2,4>.NF 00080
1 V=FVML(T) 00090
RO=1./FDWL(T) 00100
GO TO 5 00110
2 V=FVMV(T) 00120
RO=l./FnWV(P,T.NF> 00130
GO TO S 00140
4 V=FVO(T) 00150
RO=1./(FDG(l.RFA)) 00160
5 CONTINUE 00170
• CALCULATE PEY Nu. 001HO
G=W/AC 00190
GC»32.17 00200
RRY = ABS( (1?.»3600. >•((>• DH/V)) 00?10
• CALCULATE F OR OBTAIN FROM EXP DATA 00220
1F(REY.GE.?.E4) Fc.04o/(REY«*.2) 00230
IF<(RtY.LT.2.E4>.AND.(REY.GE.3.E3)) FO.0791/{REY««.25 ) 00240
IF(KEY.LT.3.E3) Fel6./PEY 00250
• CALCULA1E OELIA P .NF 002HO
7 DPB=(2.»144./UC)»(F»G«G»NBEND/RO) 00290
6 RETURN 00304
END 00310
100
-------
SUBROUTME PDROP2
PDROP2 calculates the two-phase fluid pressure drop. It employs the
subroutine PDROP1.
NOMENCLATURE — PDROP2
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of PDROP2 are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
AC Flow cross-section area in.s
DH Flow hydraulic diameter in.
DP Fluid pressure drop for straight tube
length lb/in.2
L Fluid travel length in.
PI Bulk fluid inlet pressure lb/in?
TI Average fluid temperature °F
W Mass flow rate Ib/sec
XE Quality of working fluid at exit
XI Quality of working fluid at inlet
101
-------
PROGRAM LISTING -- PDROP2
TINh fi)KPP?(PI. TI,XI.XEf U,DH*AC.lr DP)
RE IIROP -- TWO PHASt
HMl I
MJOLFKATION PRESSURE DHOP
HIM l=l./FHWL( Tl )
<»uV I =1 ./rnwv(p| , T J , 1 )
fiC=32.J7
nPA=(l44./r,C)«<0»G)«((XI-XE)/KOI.I*(XE-XI )/ROVI )
FHICTION PRfcSSUWE OKOP
CAM PD^on
V I Si =f VWK T I )
vi sv = f vwv< TI )
XAV=( «I*XF>/?.
x ( i = ( «t»UVI/kfU I )•( (VISL/VISV)»«.2)*(«1./XAV)-1.
IF ( > Tl.LT.O.l J XTT = .l
If < »TI.GT.1UO. > XTT=100.
/7 = AU'G(XTT>
PH!=FXP<1.4M6-8.6R8E-««ZZ»5.4A3E-2»(ZZ»»2)
i-.4784»(ZZ«»3) )
H IfHI.LF.l.E-lH) PHI=0.
npnp=( PHI )••?•< (i.-xAV)»»i, 8)
npf rnpn»i)POi'
T(IT«L PRKSSl^G DRiiP
00010
00020
00030
00040
00050
OOObO
00070
00080
01)090
00100
00110
00120
onun
00140
00150
00160
00170
00160
002UO
WtTURN
tMD
no?in
110220
002.50
H0240
00350
00360
102
-------
SUBROUTINE POROPA
PDROPA calculates the air-side pressure drop for VAPORG.
NOMENCLATURE -- PDROPA
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of PDROPA are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
The FORTRAN variables are applicable for air and gas.
FORTRAN
Variable
ACOL
D
DH
DP
FH
FN
FT
L
NS
PI
RM
Tl
T2
TSP
W
Definition
Flow cross-section area per unit length
Tube diameter, outside
Hydraulic flow diameter
Pressure drop
Fin height
Number of fins per inch
Fin thickness
Tube length
Logic variable to denote nature of outside
tube surface
1 - bare
2 - fin
3 - ball matrix
Inlet pressure
Porosity of ball matrix
Inlet temperature
Exit temperature
Tube spacing transverse to the bulk air
flow direction
Mass flow rate
lb/inf
°F
°F
in.
lb/sec
103
-------
PROGRAM LISTING -- PDROPA
in
2U
3u
41)
SUBROUTINE Pf)KOPA(Pl, ll. 12.W.NS.DH.D.AeOL.L»TSP,FN,FH,Fl,RM,DP>
CODR NS 1=HAHH»if = FINU = BftLL
REAL UK1.K2
GC=32.17
Ts,NS
sro=< isp-n)/rsp
CF = .3906»(lbP/n)-.3.J21
F = Cf »(REY«»(-.ltn )
SA = 4.»D/UH
KJ=u
K? = U
GOTO 40
SIO=(1SP-D-J?.»FH»FT)/ISP
SA = -1. •( n*?.«FK)/OH
Klr.8»SI«»< . 065*5 |r,» (.685 *.39b«S 10) )
K?=1.*S1C«(-?.46»SIU»(1.5X3-.87»SIG»
GOTO 4n
SI6=RM
SA=4.«H/DH
F = 78. 6.1 1( RE >••(-!. 179) ) « I . 397 • ( RE Y»« ( - .
Kl=0
K?=n
CONllNilf-
PRF»=(144./GC)«(G*K/(2.*Rni))
«R1=K1+1 .-SIO«SIB
?.«( (R01/K02 )-1 . )
AH4=(l.-SIG»SIG-K2)»(K01/R02)
FNI)
0 002(1
OOOJO
00040
OOU60
OH070
oooeo
00090
00110
0012P
011130
00160
011170
001HO
01)190
OU2UO
00210
OU??0
00230
00240
OU250
OU260
00270
002BO
00290
00300
00310
00315
00320
00330
00340
00360
00370
003HO
00390
104
-------
SUBROimKE NTSTE
INTSTE calculates the integer number of distance steps (lumps), allowing
for geometric constraint.
NOMENCLATURE -- INTSTE
FORTRAN Variables in COMMON:
There is no COMMON block in INTSTE.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
DX Lump length in.
X Total length in.
105
-------
PROGRAM LISTING -- INTSTE
FUNCTION WSTE oooio
|NTSTE=X/OX 00020
XT»DX»FLOAT
-------
SUBROUTINE PHASE
PHASE determines the fluid phase, based on gross fluid values for the
lump. It employs the subroutines SATP and SUPPT.
NOMENCLATURE — PHASE
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of PHASE are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
GVL Specific volume of liquid
GVV Specific volume of vapor
HL Enthalpy of liquid
HV Enthalpy of vapor
HW Enthalpy of working fluid
PW Pressure of working fluid
TW Bulk fluid temperature
XW Quality of bulk mass within a lump
107
-------
PROGRAM LISTING -- PHASE
195
200
201
202
203
210
SUBROUTINE PMASfc(PW,TW,HW.XW,GVL.OVV,HL«HV)
COMMON AP,B.CH,CMH.CO
COMMON C02P, CUPS. nCS.OCT.UTH
COMMON FOUIV,F.FS.H20P,H20S
COMMON HP,HR,HTFLAM,HT!N.LMV
COMMON LHVT,LCS,LCT,MAJR,MFLUID
COMMON MFUFL.N?P,N2k.N2S.VB€NOA
COMMON NWEN|)G.NO,NP,02P,02R
COMMON 02S,PO,SP1,SSA.STA
CUMMON STO.TO.HS.WT, YtXT
COMMON ACI , EG. EG Y < 1 0 . I J > . FHI < 10 > . FHOC10 )
COMMON FNHJO).FNOUO).FRAC,FTI<10),FTO, LSTEP,MWZ(10.11)
COMMON NCV(3),NCLY(3),NCRY(3),NCYCLE«NFSECT(3>
COMMON NLUMP.NM(10),NM| (in),NMO(in >,NPM
COMMON NPHYdii.ii ),NPHINT,NSS.NSI <10),NSO<10)
COMMON NTMANS,NX2MAX(in).KIX2Z(10)«NXN,NXO
COMMON PGV(10).KTA,KM(10 j, RH. HWY410* 11 )
CUMMON TOK10), 1G2(10.11.2),TG?AVH(10),TOIN1(10),TOIN2(10)
COMMON TIME. T7(10,13 ,2), 1 UBROW ( 1 n ) , VAPL1 ( 10 ) . VAPL2 ( 10 )
COMMON VAPlidO), VOLUO). X1GC10 ), X2L<10).X2T(10>
CUMMON CTAR(69,27),hLJO(12fl),HTAB(69,27).HVAP(128), INO
CUMMON NLINfc,NNU,NPSTEP,NTSTEP,P(128)
CUMMON PTAB(70),STAR(69,27),T(J2fl).TTAB(33).VLIU(12«)
CUMMON VTAR(69.?7), VVAP(1?8) .
REAL L,LHV,lHVT,LCS,LrT,MAtH.MFLUID,MFUEL.MgZ,N2P.N2R.N2S,NO
DECIDE FLUID PHASE. HW AND HW ARE INPUT
XH.GVL,GVV,HL,HV,NPH,CW,RW,TW ARE RETURNED
CALL SATPCP^, )SAT,GVL.GVV,HL.HV,1)
IF(HW-Hl) ?00,1<)5.195
IF(HM-HV)210,?20.220
NPH=1
TX=TSAT
CH=FCWL(TX)
TW=TSAT*(HW-HL)/CW
TX1=.5«(TSAT*TW)
IF(ABS(TX-TX1)/TX-.01) 203.203,?02
TXaTXl
00 TO 201
RUsl./GVl
THE FOLLOWING STATEMENT
INSERTED FOR PURPOSE UF INTERPOLATION IN DISTR
220
60 TO 230
NPH«2
TH»TSAT
HFG=HV-HL
XMc(HM-HL>/HFG
CH>XW«FCHV(PU,TK)«(1.-XW)«FCML(TW)
RH3(XM/GVV)«((1.-XM)XUVL)
GO TO 230
NPHc3
CALL SUPPT(PH,TW,HH,S.GV,.D
CU=FCWV(PW, tW)
60120
oeoso
80040
00050
00060
06070
OOOAO
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
OU300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
108
-------
PROGRAM LISTING -- PHASE (Cont'd)
HWxJ./GV 00610
• THE FOLLOWING STATEMENT 00620
• INSERTED FOR PURPOSE OF INTERPOLATION IN OISTR 00630
XW=1. 00640
2JO CONTINUE 00690
RETURN 00660
END 00670
109
-------
SUBROiJTME HT1P6
HT1PB calculates the heat transfer coefficient between a single-phase
fluid and the inside of a bare tube.
NOMENCLATURE -- HT1PB
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HT1PB are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
G
HTC
NC
PRES
TEMP
Definition
Mass velocity
Heat transfer coefficient
Fluid pass number
Fluid pressure
Fluid temperature
Units
lb/in.a sec
Btu/sec in.3 °F
lb/in.a
110
-------
PROGRAM LISTING -- HTlPB
in
.in
1 Mil
(Ml HT|Prf(HTC.iiC.G.PREb. TEMP)
• THIS biMHMHT 1*4 CAirilLAlFS TH> HEAT TKANSFFK COEFF ICI tNT
e Ut-UFMl A SIMM i ell ASK- FLUID ( S'.'Pt RHF. A TH H NPHO OK SIH-
.« CIIOIF.II MM>,= 1 I A 40 M<£ INSIOI SURFACE UF A HAHL TUHE.
COMMON Al', 0, Cl'. CH« , C1!
COMMON
MJill V.» .1
HP, HI- ,,'M
1N.LHV
CUMMIN
CliMhON
CllMHON
COMMON
CllMhllN
;, Nil, NP.
02R
CUMMIN
COMMON
Sm, 10.US.hT, VfcXl
ACI(10),ACU(10).HH(1U),B1(10),CTF
ciFVdii.ii ).(:ri(in),rw,nHi(lii),
III (1li>,liU(in>,iiS(lil).l)YYY(in>,EF
bFY(in.11).F(;.LRY(10.11).FHI(lU).FHO(in)
FN|(in),eNO(lO)>FKAC.FTI(in),FTn(10)
,^). Mf ( 1 fl . 1 1 , ? ) . HF I Ml ( 1 II ) . HF I N? ( 1 (I ) , HO I Nl ( 1 II )
, nfiT,ilRTY(lll.ll).nTF,HTF Y(in.ll)
j?Min i.j.u. (10).L (in ), isiEP.MWZdn.ii >
( .1 ) , NCL Y ( .1 ) . NCR Y ( 3 ) , NC YCLF . NFSFCT ( 3 )
ll).NMl (1n),NM(l(J«), NPH
.ll ),NPw INT, NbS.NSI (111 )
.11)
CUMMIN iro dn). ir,?dfl.ll,?),Tu?Avi:(lfl), lUlNldn), TO IN? (10)
COMMON T i MF . TI (in. i i,u ), TuBKOwdo ), VAHLl (10 ). VAPL2(10 )
COMMON V«P|. J9,?7),T(128).lTAP.(J3),VLIU(l2H)
I ,1 HV.I.HVT.I CS.I i:T,MAI^,MFLUID.MFIIFL.MMZ.Ni»P.N2R,M2S.NO
IM II)
K = r iv wi
V=FV«L
C = FI:WI
GO 10
n.?ti,.>n
tMp )
FMP)
I-KP )
no
WKI IF
d'" CAI I FLi MI>< 2 HHASt)
IFrtP)
1FHP)
. TI HIM
SHU
K=Ff
V=FV
Nllll
Ukl =4.^lin.»(i«'i
p •* i = r • u / K
HIC=.n>.t«-l' 4
FM)
oonzo
onnjn
nnnin
nnnso
ooo7n
OOORO
onn«n
nuinn
oniin
011120
onun
ont4o
nni5n
00160
00170
00180
00190
OU200
no?in
00220
00230
00240
OU250
00260
007/0
00?90
011300
011310
011320
00.130
00340
OII3*0
00360
011370
003HO
00390
00400
00410
00420
OII4JO
00440
00490
OH460
00470
004MO
00490
005(10
00510
00520
00530
01)540
00550
111
-------
SUBROUTINE HT2PB
HT2PB calculates the heat transfer coefficient between a two-phase fluid
(boiling) and the inside surface of a bare tube. It employs the subroutine SATP.
NOMENCLATURE -- HT2PB
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HT2PB are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
DFL Specific volume of liquid
DFV Specific volume of vapor
G Mass velocity of working fluid
HFL Enthalpy of liquid
HFV Enthalpy of vapor
HTC Heat transfer coefficient
NC Fluid pass number
PPF Fluid pressure
TI Wall temperature at mid-node of a lump
TTF Bulk fluid temperature
X Quality of bulk mass within a lump
Ib/in.3
°F
°F
112
-------
PROGRAM LISTING -- HT2PB
SUBROUTINE hT2PH(HTC.NC,G,TTF.TI.X,PPf .OFL.IIFV.HFL.HFV)
THIS SUBROUTINE CALCULATES THE HEAT TRANSFER COEFFICIENT
BETWEEN A TWO PHASE FLUID AND THE INSIDE SURFACE OF A BARE
TUBE. TF IS THE HULK FLUID TEMPERATURE AND Tl IS THE INSIDE
T08t HALL TEMPERATURE.
NUTfc THAT DFL.DFV,HFL,HFV,PF ARE PROVIDED FROM THE CALLING
PROGRAM
COMMON AP.B.CH.CHH.CO
COMMON C02P.C02S.UCS.OCT.OTH
COMMON EOUIV.f.FS.H20P.H20S
COMMON HP.HR,HTFLAM.HIIN.LHV
COMMON LHVT.LCS.LCT.MAIR.MFLUID
COMMON MFUEL,N?P,N2R,N2S.NBENDA
COMMON NBENDG.NO.NP.02P.02R
COMMON 02S.PO,SP1.SSA,STA
COMMON STG.10,HS,WT,YtXT
COMMON ACldO),ACUdO),BHdO),BTdO).CTF
COMMON CTFYdU,ll),CTldO).CW,DHl (lO.PHOdU)
COMMON UIdO),DOdO),USdl)),DYYYdO).EF
COMMON EFYdO.U),EG.tGYdO,ll),FHldO),FHOdU)
COMMON FN|dO),FNUdO),FRAC,FlldO),FTOdO>
COMMON GVZ<10,11.2).Hf dfl.ll.2).HFI Nl d 0 ). HF I N2 dO >. HG I Nl d 0 )
COMMON HG1N2 (10), HGT.HGTYdO.il).HTF.HTFYdO.il)
COMMON J2EdO),J3EdO),L(10>. LSTEP.MWZdO.il)
COMMON NCY(3),NCLY(3),NCRY(3),NCYCLE.NFSECT(3)
COMMON NLUMP.NMdU),NMldU),NMOdO ). NPH
COMMON NPHYdi|.ll>,NPRINT,NSS.NSI(lU).NSO(10)
COMMON NTRANS,NX2MAXdO).NX2Z(in),NXN.NXO
COMMON PGVdO),WFA,HMdO),RH,RHYdO,ll)
COMMON 161(10), TG2dO,11.2),TG2AVGdO>,TniNldO).TGIN2dO)
COMMON TIME.TT(10.11.2). MBROWdO ), V APL1 (10 ). V APL2(lO )
COMMON VAPL3dO).VOLdO),XlGdO).X2LdO).X2TdO)
COMMON CTAB(69,27 ),HL I 0(1^8),HTAB(69,27 ),HVAP(128), INU
COMMON NLINE.NN|),NPSTfcP,NTSTEP.P(12U)
COMMON PTA8C7U ),STAH(69,27),Td28>, TTABOJ), VLIOdZH)
COMMON VTAH(69,27), VVAPd'/H)
REAL L.LHV.LHVT.LCS.LCT.MAIR.MFI Uin,MFUEL.MWZ,H2P.N2R,N2S,NO
REAL KL.KV.KX
0=AHS(G)
CHECKING 10 MAKt SURE NOT SINGLK PHASE
IF( X.EO.d. ).OR.X.FU.(0. ) )GO TO 500
THE FOLLOWING ARE NEEUFU REGARDLESS WHETHER XO.8
VISL=FVWL(T1F)
VISV=FVWV(TTF)
KL=FKWL 0
00160
OU170
nnian
00190
00200
0 (I ? 1 0
OU?20
00230
00240
002bO
00200
00270
002HO
00290
00300
01)310
00320
00330
00340
00350
OU3AO
00370
00300
00390
004UO
00410
00420
00430
00440
00450
00455
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
0(1560
00590
113
-------
PROGRAM LISTING -- HT2PB (Cont'd)
• EVALUATING F=FUNCT1ON 00780
GO 10 300 00790
210 IF(ARG.GE.(2,E5))00 TO 220 00800
SC = 3.,J43-.257»ALOG NOTE 4320U=12*3600 00920
H1C=(H1*H2)/43200. 00930
HfCl=HTC 0093?
IF(XE.GT.(0.8) ) GuTO 400 00935
RETURN 00940
400 KVsFKUV(TTF) 00950
CPV=FCWV(PPF,fTF) 00960
UX=VISV 00970
KX=KV 00980
REL=43200.»G«OHI(NC)/UX 00990
PKL=CPV«UX/KX 010UO
HIC=.023«REL«».8»PRL»».4»KX/OHI(NC) 01010
HTC=HTC/43200. 01020
HTC=HTCl*(XE-.8)«(HTC-HTCl)/.2 01025
X=XE 01028
RETURN 01030
500 WRITE (6,720) 01040
720 FORMAT <50H QUALITY X=l OR 0 AS INPUT TO THIS 2 PHASE PROGRAM) 01050
STOP 01060
END 01070
114
-------
SUBROUTINE HTGR
HTGR calculates the radiative heat transfer coefficient between combus-
tion gas and the tube surface of the vapor generator.
NOMENCLATURE -- HTGR
FORTRAN Variables in COMMON:
There is no COMMON block in HTGR.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
HTC Heat transfer coefficient Btu/sec in.3 °F
TAA Bulk gas temperature °F
TWA Wall temperature at mid-node of a lump °F
115
-------
PROGRAM LISTING — HTGR
SUBKOUTINE HTGRtHTC.TAA.TwA> 00018
IFUAA.GT.TWA) KO TO 10 00020
HTC=0. 00025
RETURN 00026
10 TAA=TAA*460. 00030
THA = TWA»4iifl. 00040
SB=.1713E-« 00050
EW=.9 00060
EH20=.(M 00070
EPH20=.08 00080
FC02=.05 00090
EPC()2 = .07 00100
OCO?=Se«EW»(EC02*TAA»»4-FPC02»TWA»»4) 00110
QH2Q=SB»EW»lEH2U»TfU»*4-EPH20»TUA*«4) 00120
HIC=(OC02»OH2«))/(TAA.TMA> 00130
• NOTE 518400=144*3600 00160
HTC=HTC/51840U. 00170
IFCHTC.LT.n.) HTC=0. 00175
TAA=TAA-460. . 00177
TUAsTUA-460. 00178
RETURN 01)180
END 00190
116
-------
SUBROUTINE HTGTB
HTGTB calculates the heat transfer coefficient between air (or gas) and
a bare tube.
NOMENCLATURE -- HTGTB
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HTGTB are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
G
HTC
NC
TEMP
Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Bulk gas temperature
Units
lb/in.a sec
Btu/sec in.3 °F
117
-------
PROGRAM LISTING -- HTGTB
SUBROUTINE HTGTB, MM 1 n , 11, 2 ) , HF I Nl < 10 > . HF 1 N2 (10 > . HO I Nl < 10 >
HGIN2(in),HG1,HGTY(10.11),HTF,HTFY(in,ll)
J2E(10),J3fe(10),L(10),LSTEP.MWZ(10.11)
NCY(3),NCLY(J),NCRY(3),NCYCLE,NFSECT(3)
NLUMH,NM(10),NM1(10),NMO(10),NPH
NPHY(10,11),NPHINT,NSS.NSI(10).NSO(10>
NTH4NS,NX2MAX(in).NX2Z(10),NXN.NXO
POV(ll)>,RFA,RM(10),RU,kUY(10,ll>
IGK10>.TG2(10.11,2),TG2AVO(in),TOINK10).TOIN2(10)
1 IMF,TT(10,11,2),TUPROW(10).VAPL1(10 ).VAPL2(10)
VAPL3(10).VOL(10).X1G(10),X2L(10),X2T(10)
CTAR(69,27),HL10(1PB),HTAB(«9,27),HVAP(12B),IND
NLINE.NNO,NPSTEP.NTSTEP.P(128)
PTAR(70),STAB<69,27),T(1?8),TTA8(33),VLIO<128)
VTAO(69.27),VVAP(128)
L,LHV,LHVT,LCS.LCT,MAIK,MFLU!D,MFUEL.MWZ,N2P,N2R.N2S,NO
RE AI
REAL KG
KGaFKGUEMP)
VISGaFVO(TEMP)
CPG=FCG
-------
SUBROUTINE HTGTF
HTGTF calculates the heat transfer coefficient between air (or gas) and
a finned tube surface.
NOMENCLATURE -- HTGTF
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HTGTF are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
G
HTC
NC
TEMP
Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Bulk gas temperature
Units
lb/in.a sec
Btu/ sec in.3 °F
119
-------
PROGRAM LISTING -- HTGTF
SUHIvP, Q2P, 0/?R
0?S,»'i),SPl,SSA.SlA
STli, ID. US, *1. Yt. XI
AC Idll ), ACddO ),HH(in),R1dU),CTF
CTI Yd ii, n ),r:TidO),cu,iiHidu),nHO(io)
H I d ii). n u (1 n >, n s (1 ii), D Y Y Y (10 ), *• F
EFYdH.11),Fb.tGYd0.11 ), FH I (10 ) ,FHO< 10 )
11,2),HFIN1 dl»,HFlN?dl)),HGINldO)
10,11),HTF.HTt
COMf.nN
CUMf-ON
COMMON
COMMON
NL ItMl-, KM < III ) , MM I ( 1II ) , NhO (1 n ) , NPH
NPHY(lil,11 ),NPH|NT,NSSf NSt (lO).NSO(lO)
NT>"kKS.NX?MAX(in),hX?Z,NXN,NXO
PlJVlin ),RFA,hM(in ),RW,RHY(lO,ll>
TCt (30), Tn2Mn.ll,2),TG?AVG(in>,lGINl(10), TOIN?(10)
UhF,TT(in,1l.?). TiiRKOwniM.VAPM (10 ), VAPLXC10 )
VAPI .U 10), V"l (in), XlOdO), X?Ldn),X2T(10)
CTAP(6-J,?7).i.LlOd/8),HTAR(69,27),HVAPd2fl), IND
ML |Nfc,1MNi),NPSrhP,NlSFEP,f>(l2«)
RhAL L.I HV,LHVT,>CS.LCT,MAIK,MFlUII),MFUEL,MwZ,N?P,N2R,N2S,NO
KEAl KR
li( IFHP)
NDTL
NuTF
- . n
oon/o
non«n
00090
ooiuo
00110
ooizo
00130
00140
00150
flfllftfl
00170
noitfo
00190
no?oo
002111
nn?2n
no?jo
00240
00250
00260
00270
00280
00290
00300
00310
00320
00.1.10
00340
1)03*0
00360
00370
003HO
110390
00400
IMI410
00420
00430
00440
00450
00460
00470
00400
OII4VO
00500
00510
00520
00530
120
-------
SUBROUTINE HTGTM
HTGTM calculates the heat transfer coefficient between combustion gas
and a ball-matrix tube surface.
NOMENCLATURE -- HTGTM
FORTRAN Variables in COMMON:
The FORTRAN Variables in the COMMON of HTGTM are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
G
HTC
NC
TEMP
Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Bulk gas temperature
Units
Ib/in? sec
Btu/sec in?°F
121
-------
PROGRAM LISTING -- HTGTM
SUBROUTINE HTGTM(HTC,NC.G,TEMP)
COMMON AP,B,CH,CHH,CO
COMMON C02P.C02S.UCS.DCT.DTH
EOUIV.F,FS,H?OP.H20S
HP.HR.HTFLAM.HTIN.LHV
LHVT.LCS.LCT.MAIR.MFLUID
MFUEL»N2P,N2R.N2S.NBENI1A
NPENDG.NO,NP,02P,02R
02S,PO.SP1,SSA,STA
COMMON
COMMON
COMMON
CUMMON
CUMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
REAL
STO.TO.WS.WT,YEXT
AC Hid), ACU(10),BH (1(1),BT<10),CTF
CTFY(10,11),CTT(10),CH,DHI(10),DHO(10>
ni(10),DO(in>,US(ln),DYYY(lO),EF
tFY(10.11).EG,EGY(10,ll),FHI<10),FHO<10 )
FNK10), FNUdO ),FRAC,FTI (10),FTO(10)
GVZ(10.11.2),HF<10,11,2).HFIN1(10),HFIN2<10).HOIN1<10)
HGIN2(10>,HGT,HGTYU0.11).HTF.HTFY(10,11>
J2EC10),J3E(10),L(10),LSTEP.MHZ(10,11)
NCY(3),NCLY(3),NCRY(3),NCYCLE,NFSECT(3)
NLtlMP.NMdU ),NMI (lO).NMO(in ),NPH
NPHY(10,11),NPKINT,NSS,NSI(10>,NSO(10>
NTRANS,NX2MAX(10),NX2Z(in)., NXN.NXO
PGV(10 ),RFA.RM(10),RM,RWY<10,11)
TGI(10),TG2(10.11.2),TG2AVO(10).TGIN1(10),TOIN2(10)
T1ME,TT(10,ll,,VAPL2<10)
VAPL3(10).VOL(10),X1G(10).X2L(10).X2T(10)
CTA8(6»PRG»»(-.667)«G«CPG
8M=SORT(36nO.«12.tHBTO/(FKM(T-EMP)«DS(NC)
Z=3.63»HH(NC)«8M
EM=TANH(Z)/Z
SMTSBT*18.8*RH(NC)»BT(NC>/DO(NC>
HTC=EM«SMTS8T»HBTO
RETURN
END
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
0046P
00470
122
-------
SUBROUTINE HTPF
HTPF calculates the heat transfer coefficient between the working fluid
and the inside surface of a tube with longitudinal fins. It employs the sub-
routines HT1PB and HT2PB.
NOMENCLATURE -- HTPF
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HTPF are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
DFL Specific volume of liquid
DFV Specific volume of vapor •
G Mass velocity
HFL Enthalpy of liquid
HFV Enthalpy of vapor
HTC Heat transfer coefficient
NC Fluid pass number
PPF Pressure of working fluid
TI Wall temperature at mid-node of a lump
TTF Bulk fluid temperature
X Quality of bulk mass within a lump
Units
ft3/lb
fta/lb
lb/inf sec
Btu/lb
Btu/lb
Btu/sec in.3°F
Ib/in?
123
-------
PROGRAM LISTING -- HTPF
SUBROUTINE HTPF,CTT<10 I.CU.DHI(10),DHO(10) 00170
COMMON DI(lU).nO(10),OS,EP,EGY(10.11>.FHI<10),FHO(10) 00190
COMMON FN|(10).FNO(10),FRAC,FTI(in).FTO(lO) 00200
COMMON GVZdO, 11.2>.HF(10.11,2),HFINl(10),HFIN2(10>,HGINl(10> 00210
COMMON HGlN2dO>.HGT.HGTYUO.il).HTF.HTFYUO.il) Q0220
COMMON J2EJ10 ),J3edO),L(10>.LSTFP.MWZdO.il) 00230
COMMON NCY(J).NCLY<3),NCRY<3),NCYCLE.NFSECT<3> 00240
COMMON NLUMP.NMdU).NMldfl).NMO<10).NPH 00250
COMMON NPHY(1U,11),NPKI NT.NSS,NSI(10> . NSO( 10> 00260
COMMON NTRANS.NX2MAXUO>.NX2Z(10).NXN,NXO 00?70
COMMON PGVdO).RFA,RMUO).RW.RWY<10,ll) 00280
COMMON T(51(10). TG2 < 10 .11 > 2 > . TG2 A VO (10 ) , TG INI (10 ) , TG 1 N2 ( 1 0 > 00290
COMMON TIME.Tl(1U,11,2).TUBROW(IO).VAPL1(10 ) ,VAPL2(10 ) 00300
COMMON VAPL3(10).VOL(10).X1G(10).X2L(10 ) ,X2T(10> 00310
COMMON CTAB(69.27).HLIO(128).HTAB(69,27),HVAP(128>,IND 00320
COMMON NI.|Nb.NNn,NPSTtP.NTSTEP.H(l28) 00330
COMMON PT4R(7n),STAb(69.27),T(128).TTAB(33).VLlO(128) 00340
COMMON VTAR(69,27),VVAP(128) 00350
REAL L.LHV.LHVT,LCS.LCT.MAIR,HFLUID,MFUEL.MWZ.N2P.N2R,N2$,NO 00360
GO TO <10,?U,10),NPH 00370
10 CALL HTIPB(HBTI.NC.G.PPF.TTF) 003AO
GO TO 30 00390
20 CALL HT2PB(HBTI,NC.G,TTF»TI.X,PPF.DFL,DFV,HFL,HFV> 00400
• NOTE 86400=2*12*3600 00410
30 Bl i=SORT(8MOO.»H8Tl/(FKS» 00420
ETA = BTI»FHI (NO 00430
ETA=TANH(ETA)/ETA 00440
StSfcTI«FNI(NC)»(2.»FH|(NC)*FTl(NC))/ 00450
2 (3.1416*ni(NC)*rNI(NC)*2.*FHI(NC» 00460
SETSBT»1.*FN1 (NO «2.*FH I (NO/< 3.1416*PI (NO ) 00470
EPS=ETA»SESfTI»l./StTSBT 00480
HTC=EPS*SETbBT»HBTI 00490
• NOTt HRTI ALREADY INCLUDES FACTOR 43200*12*3600 00500
RETURN 00510
END 00520
124
-------
Section 7
CONDENSER MODEL
-------
Section?
CONDENSER MODEL
MAIN PROGRAM - COND
The condenser model is titled COND. The model employs the following
subroutines:
DISTR
CGEOMC
STEPSC
ITERAT
SATP
PROP
SUPPT
PROPST
PDROP1
PDROP2
PDROPA
INTSTE
PHASE
HT1PB
HT2PC
.HTAC
FCWL
FDWL
FKWL
FVWL
FYWL
FCWV
FDWV
FKWV
FVWV
FCA
FDA
FKA
FVA
FCG
FDG
FKG
FVG
FCMC
FKC
FRMC
FCMS
FKS
FRMS
FKM
Figure 2 illustrates the links between the various subroutines required
for COND.
The input parameter, FRAC, is the ratio of actual step size to stability
step size. To avoid numerical instability, its value should be less than unity.
FRAC has been set at 0. 5 in the present program.
NOMENCLATURE -- COND
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of COND are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
JS Variable to denote cumulative number of
timesteps
MGI Mass flow rate of gas at inlet Ib/sec
125
-------
COND
DISTR
CGEOMC*
STEPSC*
ITERAT
SATP PROP
SUPPT PROPS!
PDROPA*
PDROP1*
I
PDROP2*
INSTE
HTAC"
HT1PB*
HT2PC"
PHASE
* These subroutines use fluid or metal properties.
Figure 2. Links Between Subroutines Used by COND
126
-------
FORTRAN
Variable Definition
MWE Mass flow rate of working fluid at exit
NST Logic variable for transient start
0 - steady-state case
1 - transient case
PGCE Pressure of gas at exit
PGCI Pressure of gas at inlet
PWCE Pressure of working fluid at exit
PWCI Pressure of working fluid at inlet
TGCI Temperature of gas at inlet
Other Selected FORTRAN Variables:
Definition
FORTRAN
Variable
MGCZ(I)
MWCZ(I.J)
PWC
Gas mass flow rate for fluid pass I
Fluid mass flow rate for fluid pass I at
mode J
Fluid pressure
lb/in.a
lb/in.3
lb/in.3
lb/in.3
lb/in.3
Note; For the remainder of these variables, see "Other
Selected FORTRAN Variables" for VAPORG, in
Section 6.
127
-------
FLOW DIAGRAM -- COND
c
Start
Define
NTCOMP, NC, NCL, NCR,
MWCZ(NCL. 1), PDDT
811
= 1+1
NO
NO
CALL CGEOMC (I)
1
Define MGCA (I)
YES
Define PWC
Does
NTRANS = 0
I = NCL
Do 3
3 Continue
128
-------
FLOW DIAGRAM -- COND (Cont'd)
Do 18
Initialize
I. For each lump of each fluid
path.
a. Use average values
b. Call STEPSC(obtain
HGT. HTF, NPH, etc..
through COMMON)
c. Find revised value of
NX2Z(I)
II. Obtain initial distribution for
NX2Z(I) lumps, from end-
point data.
Obtain MWCZ(I.J), TGKD,
TG2(I.J. 1). HF(I,J, 1),
18 Continue
Print
Message
C Stop \
225
Corresponding to PWC
find
TSAT, HL. HV. GVL. GW
YES
129
-------
FLOW DIAGRAM -- COND (Cont'd)
721
Write (on file 6), entrance
node information as headlines.
NO
Write TIME on output file 13
733
Continue
I = NCL
Do 396
130
-------
FLOW DIAGRAM — COND (Cont'd)
Initialize (for pass I)
NXO, NX2MAX(I), DXO
VAPLKI), VAPL2(I), VAPL3(I)
J2E(I), J3E(I)
1
JI = 1 (Lump No. 1)
JI = JI + 1
1
Do 230
For each lump JI,
a. Calculate HW, TA, TTZ, MWC,
NX2
b. CALL STEPSC
c. Redefine RW. HGT. .HTF. etc. as
arrays
d. Find NX2Z(I) -NX2MAX(I)
Select
NX2Z(I) (=NXN) as
maximum of all values
for the fluid pass I.
Calculate DXN
YES
230 Continue
Save DXN for pass I
i
©
131
-------
FLOW DIAGRAM — COND (Cont'd)
Write lump size information
as headline
Write NXN in output file 13
132
-------
FLOW DIAGRAM — COND (Cont'd)
Define MWZ(I. JI) = MWCZ (I. JI)
I
CALL DISTR(I)
"•Obtain distribution of following
parameters for NXN nodes:
MWZU.JI), HFU.JI, 1), TT(I,JI, 1),
1TG2(I.JI. 1). HGTY(I.JI), EGY(I,JI),
HTFY(I.JI), EFY(I.JI). CTFY (I.
JI), RWY (I.JI)
I
Set MWCZ(I.JI) = MWZ(I.JI)
I
For each lump JI
compute NPH,
store asNPHY(I.JI)
237
1
JI = 1 (Lump No. 1)
Do 806
806 Continue
Do 807
807 Continue
Do 236
236 Continue
Do 238
133
-------
FLOW DIAGRAM -- CQND (Cont'd)
1 = 1+1
Based on NPHY(I,JI),
calculate
VAPL2(I). J2E(I),
VAPL3(I), J3E(I).
VAPLKI)
JI
= JI +
1
NO
YES
Find (for each lump JI)
DYX1, DYX2. DYX3,
DYY CforNPHY(I.JI)]
Find DYYM for I, and-save
as DYYY(I)
Find DYY, as a minimum
of DYYY(I) and YREM
YE
238 Continue
Do 265
265 Continue
396 Continue
Do 412
412 Continue
134
-------
FLOW DIAGRAM -- CORD (Cont'd)
(733)
CALL ITERAT, to obtain
iterative solution
After final iteration, NSS = 0
(set in ITERAT)
Print TIME. JS as headlines
Initialize
INX1 = 1, INX2
QTOT = 0.
= 1
I = NCL (Fluid Pass I)
Define
NXN, DXN
Initialize
TG2T
Do 600
135
-------
FLOW DIAGRAM -- COND (Cont'd)
Print title for output columns
JI = 1 (Lump No. JI)
Define (for the lump JI),
NPH, TG
Calculate NBB(= no. of iteration
steps), FG2G1. FG2T
Calculate TG2 (I, JI. 2). TG2T
Set TG2(I.JI. 1) = TG2(I. JI.2)
Print "Fluid Pass No. = I"
Do 420
Do 280
280 Continue
136
-------
FLOW DIAGRAM -- COND (Cont'd)
(
X
,397
Define
TREF. HREF
Find
GPP, TX
Calculate
FTG, FTT. FTF, FCON,
TT(I. JI.2)
Set
MWVZ(I. JI+1)=MWVZ(I,JI)
Calculate
FF2T. FF2F1. FF2F2,
HF(I,JI+1.2)
i
Define
HFN = HF(I,JI+1,1)
410
10
398
NO
Define
HFA, HFB
Define
HFA, HFB
L
814
I
J
Find'
HFAVG - TFX
Define
GVZd.JI. 1), HREF, TREF
Find
CPP
Calculate
FF2F1, FF2T,
Define
HEX2 = HF(I, JI+1.1)
Set
Calculate
FTG, FTT, FTF, FCON,
TT(I, JI, 2)
137
-------
FLOW DIAGRAM -- COND (Cont'd)
Define
HEXN2
HFAVG - GV
GVZU.JI.2) = GV
HFN = HEX2
Calculate
MWCZd.JI+l)
398
Define
HEN1. HENN1, MEN1
Define
INX1 = 2
2000
Calculate
FTG. FTT. FTF,
TT(I. JI.2)
Calculate
HAVG1, XE1 (Min = 0),
VBAR, FF2F1, FF2F2, FF2T
HF(I. JI+1,2)
Define
TFX. HFN
Find
TERM1, DRODH, PREF
Calculate
MWVZU.JI+1)
Define
HEX1, HEXN1
410
138
-------
FLOW DIAGRAM — COND (Cont'd)
410
Calculate QTOT
Write (on file 6) JI, HFN. TFX. TT(I, JI. 1).
TG2(I,JI,1). MWVZd.JI+l).
NPHY(I.JI)
Write (on file 13) HFN, TT(I,JI, 1), TG2(I,
JI, 1), MWVZU.JI+1)
139
-------
FLOW DIAGRAM -- COND (Cont'd)
Write (on file 6) HTFY. CTFY, EFY,
HGTY
Set
MWCZ (1+1.1)= MWCZU.NXN+1)
,1,2) = HF(I,NXN+'l.2)
420 Continue
Find TG2AVG(I)
Value
of (I-NCL-1)
TGI (NCL+1) = TG2AVG (NCL)
TGKNCR) ; TG2AVG(NCL+1)
140
-------
FLOW DIAGRAM — COND (Cont'd)
NO
YES
* Pressure calculation
Initialize
VAL1. VAL2, VAL3, UM, DENM
Compute VAL1, VAL2, VAL3
YES
NO
Compute
Define
HFG, GFG
PLOW
600 Continue
TIME
= TIME + DXY
Do 610
610 Continue
141
-------
FLOW DIAGRAM -- COND (Cont'd)
v(B
Calculate
HFAV1, XAV1, WG, WF
Find
DENM
*-
Write various
intermediate
values, if
NPRINT = 0
635
PINCT = 0
Calculate
HFAV1, HFAV2, WS
Find
DENM, UM
630
Calculate
AS1, AS2
Find
UM. DENM. PINCT
640
PWCE = PWCE + PINCT
PWC = PWCE + PDDT
*Reset
HF(1,1,1 )=HF(1,1,2)ExceptI=NCL
TT(I,JJ, 1) = TT (I,JJ,2)
HF (I.JJ+1.1) = HF (I.JJ+1. 2)
TGI (JL) = TG2AVG (JL)
JL = NCL, NCR-1
YREM = YREM - DYY
1
Write various
intermediate
values, if
NPRINT = ()
Write various
intermediate
values, if
NPRINT = 0
DO 429
429 Continue
DO 430
430 Continue
142
-------
FLOW DIAGRAM -- COND (Cont'd)
Write (on file 6)
DYY, TGKNCL), TGKNCL+1), TGI (NCR)
Write (on file 13)
TGKNCL). TGKNCL+1), TGl(NCR)
Write title for pressure drop results
143
-------
FLOW DIAGRAM -- COND (Cont'd)
*Gas side pressure drop
Define PGC, TA1, TA2
CALL PDROPA
Find FDD
Repeat for all NC coils
Write for all fluid paths, pressure-drop
data and results
Calculate PGCE
* Fluid pressure drop
Write title for pressure drop
Define PWCX, Jl
I
I = NCL (Fluid Pass I)
Find
1
J1E. LZ [for VAPL3.(I)]
Do 1030
144
-------
FLOW DIAGRAM -- CONP (Cont'd)
Find MWC
Find J2, HFA, TX
CALL PDROP1
Find FDD
Write pressure drop data and results
PWCX = PWCX -PDD
1013
Find
LZ [for VAPL2(I)]
YES
Find Jl. J2. MWC
XENT (max = 1) XENT (min = 0)
CALL PDROP2
Find PDD
1
Write pressure drop data and results
PWCX = PWCX- PDD
ion
145
-------
FLOW DIAGRAM -- COND (Cont'd)
Find
LZ [for VAPLl(I)]
YES
Find Jl. J2, HFA. MWC
CALL PDROP1
Find FDD
I
Write pressure drop data and results
PWCX = PWCX - FDD
Write PWCE. HF (NCR.NX2+1, 1)
1030 Continue
146
-------
PROGRAM LISTING -- COND
an
SUBROUTINE COND 00020
COMMON AP.B.CH,CHK,CO 00030
COMMON C02P.CU2S.UCS.UC1,UTH 00040
COMMON bOUlV,F.FS,H20P.H20S 00050
COMMON HP.HK.HTFLAM.HflN.LHV 00060
COMMON LHVT.LCS.LCT.MAIK.MFLUID 00070
COMMON MFUEL.N2P.N2K.N2S.NBENUA 00080
COMMON NBENUG.NO,NP.02P,02R 00090
COMMON 02S.HO.SP1.SSA.STA 00100
COMMON STG.10.WS.WT.YbXT 00110
COMMON ACI (10 ),ACOdfl).HH(10),BT<10),CTF 00120
COMMON CTf YdU.ll ),CT 1(10 ),CW,OHl (10>,DMO(10> 00130
COMMON I)I.DO(10).US(11)),DYYY<10),EF 00140
COMMON tFYdO.ll >,EG,bGY<10.11).FHI(10),FHO<10) 00150
COMMON FNJC10 ),FNU<10).fRAC,FTI(1U).FTO(10> 00160
COMMON GVZM0.11,2>.HF<10.11.2).HFIN1(1U>,HF|N2<10).HG1N1<10) 00170
COMMON HG IN21 in ). HGT.HG1 Y (111, 11 ). HTF.HTJ YdO.ll ) OU180
COMMON J2M10 ), JJtdO ),L<10).LSlEP.MWZUO.il) OU190
COMMON NCY<3),NCLY«3),NCHY(3).NCTCLE.NFStCT(3) 00200
COMMON NLUMP.NMt li)),NHl (10 J.NMOUO ),NPH 00210
COMMON NPHV, VAPL2<10> 00260
COMMON VftHL3(lO ), VOLdO ), XlGdO ). x2L(10 ),X2T(10) 00270
COMMON (. URC6V.27 ),HLIO(128 ),HT4H(69,27 ) ,HVAP(12rt >. INU 00260
COMMON NL |Nt.NN|),NPSTfcP,N!STEP,P(l2B) 00290
COMMON PMR(7U ),S1 AU(69,27>, 1(128), TTAR(33), VLItJ(128) 00300
COMMON VUH16V.27 ), VVAP(128) 00310
REAl I.LHV,LHVT,LCS,LCT,MAIU,MFLUID.MFUEl.MHZ,N2P,N2R,N2S,NO 00320
OIME.NSION MWC/I 10,11 ),PGC(10 ) 00330
REAL MGI ,MWCI,MHE.MWC.MMCZ.LZ,MEN1.MGCZ(10),MGCA(10) 00340
SET NCYCLt=0 INITIALLY IN THE MAIN PROGRAM 00350
NICOMPr? 00360
NC=NCY(NTCOMP) 00380
NCL=NCLY=MHZ(NCL.l> 00410
PUDT=PWCI-PKCfc 0041R
DO 3 l=NCl.NCK 00420
IF(NCYCLE.Nh.U) GO TO 811 00430
CALL CGEOHClI) 00440
CONTINUE 00450
MUCA(I)=MGI/(12.»L=1 00520
ASSUME AVfcRAGI- VALUES.STATE Rt L A T I ONSH I PS NOT IMPORTANT 00530
MH=0.5«HFIN1(I)»O.S»HFIN2(I) 00540
TG»fl.&«(TGIN1(I )» IRIN2(I ) ) 00550
A MORE ACCURATE T17 CAN Bfc OBTAINED BY USING HEAT-THANS. COEFFS. 00560
T1Z=TU 00570
Al=12.»L(I) 00580
NX2=NX2Z(I> 00590
CALL STtPSC
-------
PROG RAM LISTING — CQND (Cont'd)
10 FORMAT(41H UNO.OF LUMP KEIJUIRLD EXCEEDS NLUMP (=10))
WKI IE(6.10)
SIOP
15 NX2Z(I)=NX?
i INIIIAL niSIRIRUTION
IF(I.NE.NCL) HF(1,1.1 ) = HFIN1( I )
TlU( I ) = TGIN1( I )
TG2(I,1.1) = 1GIN?(I )
XN2Z=FLOAT(NX2)
DXN = 12.«L(I )/XN2Z
A2=(HF|N2
DO 18 J=1,NX2
MwCZ(ltJ + l)=MMCKNrL»l)
HF(I.J+1.1)=HF(I.J.1)»A2
» NOTb 00 NUT USE TU2.TI AT NX2*1
TU2(I.J.1)=TG1N2
TT
• ENTRY PUINT AFTI-.K FIRST CYCLE
220 YKEM=YEXT
HF(NCL.1.2>=W (NCL.1,1)
AT THIS PUINT THE EXTbRNAL CONDITIONS AKE ENURED FOR
THE NEXT FXTEKNAL TIMb STEP. DURING INITIALIZATION
THEY SHOULD Bb MADE EUUAL TO THE INITIALIZING VALUES
PMC FKOW PRESSURE COMPUTATION
THE FOLLOWING IS A LOOP BACK FROM STATEMENT 1000-1
225 CONTINUE
HF(NCL,1,2)=HF(NCL.1.1)
CALL SATP(PWC.TSAT.GVL.GVV,HL.HV,1)
IF(NSS.EO.l) UO TO 733
JS=JS»1
IF(NST.NE.O) GO TU 6
IF(JS.Nt.LSTEP) GO TO 875
WRITE<6,71(S>T|Mfc, JS
FORMAK40H ••••• I I ME = ,
7E15.5.21H (TIMESTEP NO.,I5,2H ))
MKITE(6.5U?9)
MKITE(6,721)Hf(NCL.1.1)
721 FORMAT(29H FLUID bNIHALPY (ENTRANCE) =.E15.5)
MRI IE(6.722)MWCZ(NCL,1)
722 FORMAT(29H FLUID fLOM RATE (ENTRANCE) =,E15.5)
UHITE(6,5fln3)PUC.ISAT
5003 FURMAK29H fLUin PRESSURE. SAT. TEMP =,2E15.5)
73U
717
875
6
716
704
733
FORMATI29H CAS (LOU RATL (ENTRANCE) =,E15.5)
W«ITE(6,717)PUCI , IRCI
FORMAT(29H GAS PRhS, TEMP (ENTRANCE) =
CONTINUE
If (JS.NE.LSTEP-1) GO TO 793
Urtl TE(13. 704) TIME
FURMAT(b]*>.5)
CONTINUE
DO 396 1=HCL,NCK
NXO=NX2Z(1 )
00620
00630
00640
OU6&0
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
011780
00790
00800
01)801
0080?
00803
OU804
00805
00810
00820
00830
00840
00850
00860
00870
00880
01)890
00896
00900
00910
011920
OU9JO
00940
Ou9t>0
00960
00970
00980
00990
01000
01010
01020
01030
01040
oio-jn
01060
01070
010HO
010HS
01090
o 11. n o
01110
0)120
01130
01140
148
-------
PROGRAM LISTING -- COND (Cont'd)
NX2MAX/FLUAT(NXU)
MGCAd )=MG!/(12.»L< I ))
DO 230 JI=t.NXO
HH=(HF«12.
NWC=MHC/=Rfc
HCTY(I,Jl )=HGT
Hirvtl,Jl )sHT»
EFY(I,Jl )=EF
CtFYM. Jl ) = CTF
NPHYd, Jl ) = NPU
NX2MAX(I )sHAXO(NX2HAX(|),NX2>
230 CONTlNUb
NXN=NX2MAX(1)
NX2/(I ) = NXN
OXN=12.»HI )/FLUAF(NXN)
nx2=nxN
IFCNSS.hO.l) UO TU 707
IF(l.bO.NCL) DXNl=nx2
IF< r.tO.=MHC2( I.JI)
CALL UISTR(I)
MA=NXN*1
DO 807 JI=1.MA
H07 MHCZd. JI)
DO 236 Jl=1
HHs0
01160
01170
01180
01190
01200
01210
01215
01220
01230
01240
01250
01260
01270
012RO
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
014HO
01490
015110
01510
01520
01530
01540
015*0
01560
01570
01580
01590
01600
01610
01620
01630
01640
016i>0
01660
01670
01680
01690
01700
01710
01720
01730
149
-------
PROGRAM LISTING -- COND (Cont'd)
235
236
237
226
227
22«
23«
26>>
J96
734
NPHY( 1, Jl ) = NPH
CONTINUE
OU ?38 JI=1.NXN
IF(NSS.fcO.l) GO TO 238
NPH=NPHY( |, J| )
LOCATE INTERPHASES
IF229.226.227
VAPL2( I >=VAPL2< I ) » ( DX2» AC I ( I ) )
J2E< I ) = J2H< l)*l
GU 10 229
VAPL3(I )=VAPLJ( I ) * ( UX2«AC I ( I ) )
JJE( I ) = J3b(l)*l
VAPIK I > = 12.»ACI< I )«L(I )-VAPL2( 1 )-VAPL3< I )
IF(VAPL1( I ).ll.UX2»ACI< 1 )/2. ) VAPH(I) = 0.
CONTINUE
DYYM=YREM
OU ?65 JI=1.NXN
X2=?.»/»HTFY< 1. Jl »
DYX2=(2.*CTFY(I.J|)/HlFY(|,JI»/( (X2/UXN)*!. >
DYX3 = ABS(RWY(|.JM«ACI(I MUxN/(MUCZ( I. JI )«1728.
-IF-(NPHY< I, Jl I.EU.l) OYY = FMAC«AH|N1(UYX1.UYX2)
IF«NPHY(I,J| ).EU.2) DYY = FPAC*AH|NKbYX1.0VX3)
IF(NPHV( I, J| ).EO.J) DYY = FRAC«IIVX1
UYYM = AM1N1(UYYM,1IYY)
CONIINUE
OXN=DX2
OYYY< I ) = DYYM
CONIINUE
OYY=YHEM
OU 412 l=NCl,NCK
DYY=AMIN1(DYY.DYYY( I ) )
IF (NSS.bU.n) UO TU 734
CALL I TERATJ IF( I.NE.NCL) GO Tu 70J
KKI 1E(6.7II2)
>0? TuRHAT(JX.5H LUMP.10X.3H M2.14X.3H TF.14X.3H IT.1JX.4H TG2,
7l4X.,iH M2.10X.4H NPH)
If\4 CuN' INU»
WHI It <6.2U) I
20 FORMA K3flX,5H»»««».16H fLUll) PASS NO. , |5,5H«»«««)
64 CUNTINUb
Ou 42U JI=l.NXN
NHH = NPHY( |, JI )
TU=< TGK I )*IG2( 1. JI.l ))/2.
CGG=FCA( TO)
01740
017*0
01760
01770
01780
01790
01800
01R10
01820
01830
01840
018*0
01860
01870
01880
01890
019UO
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
020UO
02090
021UO
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
022VO
02300
02310
02320
02330
150
-------
PROGRAM LISTING — COND (Cont'd)
X1=2.»MGI«CGG/(HGTY< 1,J1)«L(I>«12.) 02340
BH=1./X1 02350
TCN=TG1(I) 02360
NHB=1 02370
IFCBB.GT.0.5) NBB=2.5«BB 02380
BB=BB/FLOAT(NHB) 02390
FG2G1=<1.-BB)/<1.*BH) 02400
FG2T=1.-FG?G1 02410
AUT=FU2T.1T( [. J|,l ) 02420
DO 280 LI=l.NbB 024JO
28U TUN=FG2Gl«TUN»ADT 02440
TG2< I, JI.2)=TGN 02450
TG2< I. JI.l ) = TI)2( I, JI.2) 02460
TG2T=TG2T*TG2( I.JI.2) 02470
GO 10 (397.39H.;399),NPH 024BO
397 TKEF=ISAT 02490
HFAVG=(HF( I.JI.l)*HF(l.JI»l,l))/2. 0250 0
HREF=HL 02910
CPP=FCWL(TRfcF) 02520
TX=TRbF 02530
/4U TX1 = TREF*(HFAVG-HMEF )/Cf>P 02540
IF« 02600
FTT = 1.-(DYY/CIT( I ))«(HTF Y( I. J] )«HGTV( I, Jl )) 02610
FTF=(UYY/2. )»HTFY( I. Jl )/(CTT(l )«CPP) 02620
FCON=bYY«(HIFt( I.JI )/CTT( I ))• ( TkEF- ( HHF.F /CPP ) ) 02630
TI( I. JI,?) = FTT»TT( I. JI.l )»FTF.(HF( I, J|.1)»HF( I. J!»l.l))» 02640
4FTG*( TGK I )*TG2( I , J 1 . 1 ) ) *FCON 02650
MMCZC I, Jl*l >=MWCZ< I, Jl > 02660
FF2T = IIYY»(HTFY( I, J! )/CTr Y( I.JI ) )»CPP 02670
FF2Fl=(UYY/DXN)*(bFY( I, Jl )/CTF Y ( I . J I ) )• ( 1 .- < HTF Y ( I.JI >/ 02680
4EFYC I. Jl )>*(DXN/2.» 02690
FF2F2=1.-(DYY/CTFY< I. Jl ) ) • ( ( HI F Y ( I . J I )/? . ) » ( EF Y ( I , J I )/ DXN ) ) 02700
HF(I.JI + l.?>3»F2F2*HF(l.J|«ltl ) + FF2Fl»HK( I, JI.D* 02710
5FF?1»(T1< I. JI,l)-rREF«(HHFr/CHP)> 02720
HFN = HF( 1, Jl*l,l ) 02730
TFX=TX1 02735
GO TO 410 02740
398 IF( INXl.Nh.l) GO TO 20011 027*0
HEN1=HF< I, JI.l) 02760
HtNNl=Hf ( I.JI, 2) 02770
MEN1=MHCZ( I . Jl > 02780
INX1=2 02790
2000 CONTINUE 02800
n«OUH=( (l./GVL)-(l./GVV»/(HL-HV) 02810
FTG=(I)YY/2.)»HGTY( I.JI )/CTT( I ) 02820
FTT=l.-(nYY/CTT( I ) >• ( HTF Y ( I , J| )+HGTY(I, Jl )) 02830
FTF = DYYoHTFY( I, Jl )/CTK I ) 02840
TT(l,JI,2)=FTTaTT(l,JI,l)*F 1 F» TSA T+FTG* < TGI < I )*TG2( I. JI.l)) 02850
HAVG1=(HF( I.JI, 1)»HF( I, J 1*1.1 ) )/2. 02860
Xtl=(HAvGl-HL)/(HV-HL) 02870
IF(XEl.LT.n. ) Xfcl=0. 02880
IF(Xbl.GT.l. ) XL1=1. 02890
R()B(l./GVL)«Xtl»((}./GVV)-(l./GVL)) 02900
VBAR=1728./(RO«ACI( I ) > 02910
FF?F1=(UYY/DXN)»VBAK«MWCZ( !, Jl ) 02920
FF2F2=1.-FF2F1 02930
151
-------
PROGRAM LISTING -- COND (Cont'd)
FF2T=DYY»VBAR»HTFY
DELTH=HF(|,J1.1 )-HF( I,J 1*1.1)
TERM1 = MT(1.JI,1)-TSAT)»HTFY
a«=DXN/Xl
FF2F1=(1.-BB)/(1.*HH)
FF2I=2.«HH/(1.*M8)
HF(l,JI*1.2)=»F2Fl«HFA*fF2T»CCPP«(TT(l. Jl.D-lRtF)
7*HREF)
HEX2=HF(I,JI«l.l)
FTG=(DYY/2. >MMGTY< I, Jl )/CTT< I ) >
FTT = l.-(DYY/ClT(I))»(MTfY(l,JI)*HMY(I.JI»
FTF=(UYY/?.)»riTfY(I.Jl)/(rTT(1)»CPP)
FCONsDYY*(HlFY(I,JI)/CTT(I))•(TREF-(HHEF/CPP»
TM I.JI.2 ) = FT1»TT( 1.JI.1 ) »F TF« (hFA»HF ( I. J I *1, 2 ) )*
4FTG*(TG1( I) + TG?( I,J1.1 ) )*FCON
HfcXN2=HF(I.JI+1,2)
HFAVG=(HF(I.JI.?)«HF(I.JI+l,2))/2.
CALL SUPPT(PUt. IMC.HFAVG.UU.GV.3)
GVZII,Jl,2)=GV
HFN=HbX2
406 MWCZ
5U29 FURMAT(2H )
It (NST.NE.H) CO TU 72
IF(jS.Nf.LSTEP) GO 10 876
7? UKITE(6.5u32MI.HFN.Tt X, 1 I ( I. J I , 1 ) , IG2 ( I . JI . 1) .
7MHCZ(I.Jl»1 ),NPHY(I.JI )
503? FuRHATC I 6, 4 X, t>E17.5. 16)
876 CUNTINUk
IF (JS.NE.LSTEP-1) GU 10 7il9
UHITfc(13,70B)HFN,lT(I.JI.1).TU2(I.JI.1).MwCZ0
03360
033/0
03380
033VO
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
03560
03570
03580
03590
03600
03610
03620
03630
03640
03650
03655
03660
03670
03680
152
-------
PROGRAM LISTING -- COND (Cont'd)
70V
5033
5021
420
421
600
610
823
62U
CUNTlNUt
IF(NPRINT.Nfc.O) GO TO 5021
HRME(6.5U33)HTFY( |.Jl).ClFY(l.Jl).tFY(I.JI),HGTYU,JI)
FORMAf(17H HTF , CTK . EF. HGT ,41-15.5)
CONTINUE
1F( JI.Nb.NXN) GU 10 420
IF( l.EO.NCR) liO TO 42U
MUCZ( I+1.1)=MMC2( 1,NXN*1 )
HF( l*l,l,2)=Hf < I.NXN*1.2)
CONTINUE
TG2AVGC I ) = TG2I/FLUAKNXN)
IF(I-NCL-l) 421.423, 6UO
TGKNCL*1) = 1G2AVG(NCL)
GU 10 60n
CUNlINUb
TIMI. = 1 IME*DYY
PRESSURE CALCULATION
VAL1=U.
V,AL2 = 0.
VAL3=U.
UM=0.
DO 61U J=NCL,NCR
VAL1 = VAL1«VAPLKJ>
VAL2=VAL2»VAPL2( J)
VAL3=VAL3*VAPL3< J)
If «VAL2«VAL3).b.U.O
VAL=VALl*VAL2*VAL3
Hf G=HV-HL
GFGcGVV-GVL
AX = GFG/HFli
) GO TO 635
I)FLP = 2.
PLOW=PWC-UELP
IF( VALP.F-U.O. ) liO TO 620
HFAV1=HhNl,HFXl.HF AVI
MRITF(A.823)HL.HV.XAV1. VAL2,GVV.GVL
WRlTE(6,823)Hli.MF,HLOri.bVLl.GVVl
WrtITE(6,823)HLl,HVl,DbLP,ARl,AR2
WHI Ib(6,823)A(<3, AH4.DtNM, AX
FORHAT(7H VAP1 .6E15.5)
IF( VAL3.EU.U. ) CO TO 630
Hf AV1=(HF(NCL,1,1)»HEN1 )/2.
HFAV2=
03690
037UO
03710
03730
03740
03750
03760
03770
037HO
03790
038 (If)
03B10
03820
03830
03840
038*0
03860
(1,1800
03890
03900
03910
U3920
03930
03940
039bQ
039*0
03970
039HO
039VO
04000
04010
04020
04030
04040
04050
04060
04070
04080
04090
04100
04110
04120
04HO
04140
04150
04160
041/0
04180
04185
04190
04200
04210
04220
04230
04240
04250
04260
04270
04280
04290
153
-------
PROGRAM LISTING — COND (Cont'd)
824
630
CALL SUPPT(PMC.DD,HFAV1 *DELM. DD.GAV3, J)
HS=VAL3/<1728.»GAV1>
AXl=(GAV3-GAVl)/ObLH
AX2=MS»(GAV1-GAV2)/DELP
UM=UM*WS«(AX1-AX)»(HFAV2-HFAV1)/DYY
DENM=I)ENM-AX2
IF(NPRINr.Nfc.U) GU TO 630
WKI1E<6,B24)UM,I)ENM
FORMAK7H VAP? .2E15.5)
NX2=NX2Z(NCH)
AS1=AX«(OTOT-MWCZ»NCL.1)»(HL-HF«NCL,1.1>)-MWE«
7UIFtNCR.NX2*l,l)-HL>>
AS2=-MWE)»GVL
UM=UM*AS1*AS2
OENW=I)ENN-AX»VAL/(12.«778.)
PINCT=UM»DYY/UENM
IF(NPRINT.NE.U) GU 10 640
WKIlE(6.a25>HFAVl.HFAV2.HENl.HENNl
WK1 TE(6,d25)TAVl,GAVl.GAV2.GAV3
WKITE(6.825)VAL3,NS.AX1.AX2
429
64!>
430
77
701
677
711
712
1000
WHlTE(6,825)MhCZ(NCL.l).HL.HF(NCL,l.l).HUE
W«nE(6.825)Hf
B25 FORMAK7H VAP3
5062
633
64U
FORMAT(8H P1NCT
GO 10 640
PINCT=0.
PWCt=HMCE*PlNCT
PwC=PwCb»PnuT
,E15.5)
REStT
KKlsNCR-1
DO 429 JL=NCL,KK1
TGK JL*1 ) = TG2AVG( JL)
DO 43u 1&NCL.NCR
IF( l.fcO.NCL) UO TO
HFC 1,1.1 )=HF( 1,1.2)
CUNllNUb
MwZ( I .NXN+1 )=MWCZ( I,NXN*1 )
DO 430 JJsl.NXN
Tl ( I, JJ.l ) = TT( I.JJ.2)
HF( I, JJ+1,1)=HF( I, JJ*1,2>
MHZI 1, JJ)sHWCZ(l. JJ)
CONTINUE
YNEM=YREM-nYY
IF(NSl.NE.n) GO TO 77
IF< JS.NE.LSTEP) GU 10 877
WRI1E(6,701)DYY,TG1
FORMATdOH DYY.FGl .4E15.5)
CONTINUE
IF( JS.NE.LS1EP-1) 00 10 712
UR I TEC 13. 711) TGKNCL), 1GKNCL*! ), TGKNCR)
CONTINUE
IF( JS.Nfc.LSTEP) GU TO 223
CONTINUE
GAS-SIDE PRESSURE DkOP
WHITE(6,5029)
04300
04310
04320
04330
04340
04350
04355
04360
04370
04380
04390
04400
04410
04420
04430
04440
04445
04450
04460
04470
04480
04490
04500
04510
04*20
045JO
04540
04550
04560
04565
04590
04610
04620
04630
04640
04650
04660
04670
046HO
04690
04700
04710
04720
047JO
04740
04750
04760
04770
04780
04790
04800
04805
04810
04820
04830
04R40
04850
04860
04870
04873
154
-------
PROGRAM LISTING -- COND (Cont'd)
MKI TE(6.50?9>
651
852
85,5
1U02
100J
lUOb
MASS FLOH.9X.8H INLEI
10X.9H PR. DROP)
P.10X.
FORMAT(46X,28H •• PRESSURE DROP RESULTS ••)
MK1TE(6,85?>
FORMATU2H • • GAS SIDt)
MKITE(6,853)
FURMAU.5X.5h i'ASS.7X.lOH
78H INLEI T.lOx./H EXII 1,
DO 1008 1=NCL.NCR
MUCZ(I ) = MGI/TuBROh( I)
DIST=12.«l(I)
TA1 = TG1(I )
TA2=TG2AVG(I)
U ( I.NE.NCL) GO TU 10U2
PGC(I ) = PGCI
GU TU 1003
PUC< I ) = PGU( 1-1 )-PUP
CALL PDROPAlPi.riN.IAi. I A,MGCZ( I ).NSU( I ),IIHOt I ) , DO ( I ) . ACO ( I ),
7n!SI.X?L(M.FMO(l).»Hj(l).rTO(l)«HM(|),PnD)
*KITE<6.754)I.MGC/< I ).PGC( I ).TG1< I).TG2AVG(I).PUD
FUKMAI( I6.4X.5E17.5)
CUN1INUE
PUCI=PGC(NCR)-PHD
KK ME (6, 871 )P(iCk , TB2A»G(Ni;R)
FUHMAM25H t-XIT PHFbSURfc. TfcMf .2E15.5)
FLUID PRESSURE DKUP
FtOW.14X.4H NPH.12X.7H LENGIH,
PK. DKOP)
FDRMAfCMH •• ^LUIH S I Dt )
WKI IE (A,ft>>7 )
FURMAKJX.5H
'9X.11M INLFI
PwCX=PWCI
Jl = l
no 1030 I=NCL.NC«
LZ=VAPL3( I )/( 1?.«AC1( I ) )
It (12. EU. II.) "0 TU 1013
J2= JJt( I )*J1
HFA=(HF( I, Jl, 1 )»HM I, J2.1 ) )/2.
MwC=(MWCZ( I . Jl )*HWCZ( I. J2) )/2.
CALL SUPPT(PML«. TwC.HJ A. 01), DO, 3)
CALL PDKOP1 (P*C«. IwC.MWC.iiHK I ),AC!( I ) . L Z. 3 . POD. OD , UD. DD )
lull
HKI IE (6,8l>fl) I .MUC.NPH.Ll.PUCX.PDD
FURMATC l6.4X.tl/.1?. I9.8X.3E 17. 5)
PnCX=PWCX-PDD
LZ=VAPL2( I )/( 12.»ACI ( I ) )
IFCLZ.EO.U. ) GO Tu 1011
J1=J3E( I >»1
J2 = J2b( I )*J1
MrtC=(MWCZ( I, Jl )»MWCZ( 1. J2 ) )/2.
CALL SA1P(PWC», TWC.OD.DD.ML.HV.l)
X6NT=(HF ( I. Jl . 1 l-HL)/(HV-ML)
X(-XT = (HF(|,J2.1 )-HL)/(HV-ML)
If ( XENT.GT.1. ) XENT=1.
IF( XEXT.I.1.U. ) XEXT = 0.
CALL HDKOP2(PMC*. TUC. XE NT , Xfc XT , MMC . DH I (
NPH = 2
WRME(6,85fl)I,MwC.NPH,L/.PHCX,PUD
P«CX=PWCX-PDD
IZ=VAPL1( I )/(l2.«Ari( I ))
) , AC I ( I ) . LZ . PUD )
04875
04880
04890
04920
04930
04940
04950
04960
04970
04980
04985
049VO
ObOOO
05010
05020
05030
05040
05050
05060
05070
D50HO
051UO
05105
051U6
05110
1)5120
051.MI
05140
05150
05160
05170
05180
05190
1)5200
05210
05220
05230
05240
05250
05260
05270
05?t)0
05290
05300
05310
05320
05330
05340
05350
05360
05370
05380
05390
05400
05410
05420
05430
05440
05460
155
-------
PROGRAM LISTING — CQND (Cont'd)
IFCLZ.FU.O.) 00 TO 1030 05470
Jl = J3fc< I )»J2E< I )*1 05)480
J2=NX2Z 05910
CALL PDKOPHPrtCX, THC.MWC,HHI< | ) , AC I ( I ) . LZ, 1 . PUD. DD, UD, DU > 05520
NPH=1 05530
URITE(A.B58)I,NMC.NPH.L2.PMCX,PUD 05540
PMCX=PUCX-PDO 05550
103U CONTINUE 05560
PMCt=PWCX 05570
NX2=NX?Z(NCR) 05580
859 TURMAK25H EXIT PRFSSURfc. ENTh »ZE15.5) 056110
KtTUHN 05610
END 05620
156
-------
SUBROUTINE CGEOMC
CGEOMC calculates all geometric constants for COND.
NOMENCLATURE -- CGEOMC
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of CGEOMC are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
NC Fluid pass number
157
-------
PROGRAM LISTING — CGEOMC
141)
145
150
SUBROUTINE CGhOMC(NC)
COMMON AP.R.CH.CHR.CO
COUP. CU7S. DCS. UCT.i'TH
EOUIV.F,FS.H20P.H2iiS
HP.Hh.HTtLAM.Hl IN.I.HV
LHVT.LrS.LCT.MAIK.MFLUin
MniFL.N?P.K?H,N2S,MRENDA
NBhNI)G,NO,NP,02P,02R
OZS.PO.SCI.SSA.SIA
STfi. 10.Wb.nT, VbXT
ACI(in),ACO(10).HHdO).RT(10),CTF
CTFYdU.11 ) , C Tl (1 » ) . CM. DH I ( 10 ) . DHOUII )
in n u ), nu< i n ). ns< in J.nYYvuo ).er
EFYdO.ll ),Fl».tGVdD,ll).FHl<10>.FHO(10>
FNI(lQ),riU(10),FI>AC,FTf (10).FTn(10)
GVl(10,l)., TR2AVi;dO),TOINldO), T01N?dO)
TIMF.T fdO.ll .2). Tl'BHOWdO ). VAPL1 (10). VAPL?(10)
VAPLJ( IB). VOL(10).X1(;(10),X2L(10).X?T(10)
CTAR(AQ,?7. >,MUOd?8),HTAB(69t27).HVAP(128>.INI)
Nl INb»NNII,NPSTtEPfNTS1EP.Pd28)
PTAR(7li).STAH(69,27),T(12fl).TTAR(33),VLlO(t28)
VTAH(6V.27). VVAPd?8 )
L.LHV.l HVT.LCS.LCT.MAIH.MFl UID,MFUbL.MHZ.N2P.N2R.N2S,NO
HYIIhAOLIC niAMFTEKS
USE FUNCTIONS
C)*RH(NC)-lU (NC)»HT(NC)
= X2L(NC)-00(NC)-FNi.(NC)»FHl.(NC)«FTO/< 01 (NO + HKNC) )
TUBE METAL PRuPFRTIFS AKE ASSUMED CONSTANT IN THIS PROGRAM
ARRANUFMENT
TX=0.
M|=NM(NO
GO TO d4n.l4*).M|
NOTE THAT Al PRtShNILY FORMULATEO THE FUNCTIONS FCHS(TX),
FKMS( 1X),FCMC(TX),FKMC(TXI. THFY no NOT DEPENH ON TEMPERATURE
WHICH IS NOT nFFINFD AT THIS POINI. (SUITABLE TEMPERATURES
COULD Rt UFFlNFD KOH IHIS PURPOSE)
CTR = FC"S<1X)
RTR=FHMS(1X)
GO TO 150
ClB=rCMC
-------
PROGRAM LISTING -- CGEOMC (Cont'd)
RTO=FKMC(1X) 00600
180 CTTJNC ) = VUI.B«CTrt»RTH 00610
IFCNStKND.NE.l ) CT1 (NC)=CTT(NC)»VOLO«CTO»RTO 00620
CTT
-------
SUBROUTINE STB»SC
STEPSC calculates the stability limit on lump-size for each lump of COND.
It employs the subroutines HT1PB, HT2PB, HTAC, and PHASE.
NOMENCLATURE -- STEPSC
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of STEPSC are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
Definition
FORTRAN
Variable
HW Enthalpy of working fluid
MGC Mass flow rate of air
MWC Mass flow rate of working fluid
NC Fluid pass number
NX2 Number of lumps for a given coil
PW Pressure of working fluid
TG Bulk gas temperature
TI Wall temperature at mid-node of a lump
TW Bulk fluid temperature
X Quality of bulk mass within a lump
X2G Geometric limit on lump size
Units
Btu/lb
Ib/sec
Ib/sec
lb/in.a
°F
°F
°F
in.
160
-------
PROGRAM LISTING -- STEPSC
SUBROUTINE STEPSC,CW,DHI (lO).DHO(lO) 00130
COMMON Dl (10), 00(10 ).US(10).DYYY<10).EF 00140
COMMON EFtdO.ll ).EG.bGY(10,ll ) . FH I ( 1 0 ) , FHO ( 10 ) 00150
COMMON FNK10 ),FNO(10 ),FRAC.FTI (10>,FTO<10) 00160
COMMON GVZ(10,11,2).HF(10,11.2).HFIN1<10>,HFIN2(10>.HGIN1(10) 00170
COMMON HGIN2(10),HGT,HGTY(10,ll ) . HTF. HTF Y(10, 11 > OOlfiO
COMMON J?E(10 ), J3E(10 ).L(10 ) . LSTEP, MWZ < 1 0 , 11 ) 00190
COMMON NCY(3),NCLY( J),NCRY(3).NCYCLE,NFSECT(3) 00200
COMMON NLUMP.NM(10),NMI (1(1 > , NNO ( 1 0 ) , NPH 00210
COMMON NPHYdO.ll ) , NPR I NT , NSS. NS 1 (10),NSO(10) 00220
COMMON NTKANS,NX2MAX<10 > . NX2Z d 0 ) , NXN, NXO 00230
COMMON PGVdO >,RFA,RM(10 ) . RW, RWY < 10 , 11 ) 00240
COMMON TGK10 ), 7G2(10,11,2),TG2AVO(10),TOINK10),TGIN2(10) 00250
COMMON TIMF,TU10.11,2).TIJBROM(10>,VAPL1(10>»VAPL2(10) 00260
COMMON VAPL3< 10 ). VOL (10 ) . XlGdO ). >2L(10 ). X2T(10 ) 00270
COMMON CUB(69,27),HLIO<128),HTAB<69.27).HVAP<128). IND 00260
COMMON NL IN.t.NNU,NPSTfcP.NTSTEP.P(12B> . 00290
COMMON PTAB(70)>STAB(69,27),T(12B)»TTAB(33),VLIO(128) 00300
COMMON VTAB(69,?7 ), VVAP(1?8) 00310
REAL I.IHV,LHVT.LCS,LCT,MAIR,MFLUID,MFUEI»MMZ,N2P,N2R,N2S,NO 00320
REAL MWC.MOC 00330
PW,HH. TG, TI , MWC.MOC, NC, X20 ARE INPUT 00340
NX?,X,TVJ ARE RETUKNED. 00350
CALL HHASF(PW, T H, HW, X , 0 VL , GVV, ML, HV ) 00440
GAS PROPFWTIES 00450
CG=FCA(TG) 00460
RG=1./FDA(TG) 00470
OHTAIN HEAT TRANS COEFFSJ HTGT.HTTF 00480
OBTAINING HTGT 00490
G=MGC/ACO(NC ) 00500
CALL HTAC(HTGT,NC.G, TG) 00510
OBTAINING HTTF 00620
GF*ABS 00850
HTF = HTTF«2.»(DI(NC)«BT(NO) 00860
CTFeRN«ACI(NC)«CM/172H. 00870
STEP SIZE CALCULATION 00940
X2»2.«Ef/HTF 00950
DX2=AMIN1(X2»FRAC,X2G) 00960
161
-------
PROGRAM LISTING -- STEPSC (Cont'd)
NX2=lNTSTfi 00970
IF(NPH.EO.J») NX2 = 5 00980
ir
-------
SUBROUTINE HT2PC
HT2PC calculates the heat transfer coefficient between the condensing
fluid and the condenser wall.
NOMENCLATURE -- HT2PC
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HT2PC are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
Definition
FORTRAN
Variable
G Mass velocity of working fluid
HFG Latent heat enthalpy
HTC Heat transfer coefficient
NC Fluid pass number
RHOL Density of working fluid liquid phase
RHOV Density of working fluid vapor phase
TI Wall temperature at mid-node of a lump
TTF Bulk fluid temperature
X Bulk quality of working fluid
Units
lb/in.3 sec
Btu/lb
Btu/sec in.2 °F
lb/ft3
lb/ft3
163
-------
PROGRAM LISTING -- HT2PC
10
15
20
SUBROUTINE HT2PC(HTC,NC,R.TTF,TI,RHOV.RHOL.X,HFG) 00020
THIS SUBROUTINE CALCULATES THE HEAT TRANSFER COEFFICIENT 00030
BETWEEN THE CONDENSING FLUID AND THE CONDENSER MALL 00040
COMMON AP,B.CH.CHK,CO 00050
COMMON C02P,C02S.I)CS,DCT.nTH 00060
COMMON EOUIV.F.FS,H20P/H20S 00070
CUMMON HP.HR,HTFLAM,HTIN,LHV 00080
COMMON LHVT,LCS,LCT,MAIR.MFLU|D 00090
COMMON MFtlEL.N2P.N?R,N2S,NBENDA 00100
COMMON NRFNDG,NO,NP.02P.02R 00110
COMMON U2S.PO,SP1,SSA.S1A 00120
COMMON STG,10,WS,HT.YfcXT 00130
COMMON ACI(10),ACO(10 ),8H<10),BT(10 ).CTF 00140
COMMON CTF YdO.ll >,CTT(10 ) ,CM,DM I(10>,DHO<10) 00150
COMMON Dl (10),00(10),OS(in),OYYY(10).EF 00160
COMMON EFYdO.ll ),EG.6GY(10,11),FHI <10),FHO(10> 00170
COMMON FNl(in),FNO(10),FRAC,FTI(10),FTO(10) 00180
COMMON GVZ,J3E(10),L(10),LSTEP.MWZ(lfl,ll) 00210
COMMON NCY(3).NCLY(3),NCRY(3),NCYCLE,NFSECT(3) 00220
COMMON NLUMP,NH(10),NMI(1(I),NMO(10),NPH 00230
COMMON NPHY(10,11),NPHINT,NSS,-NSI(10),NSO(10) 00240
COMMON NTH«NS.NX2MAX<10),NX2Z(10),NXN,NXO 00250
COMMON PGVdO ),RFA,RM(10),RU,RWY(10,11) 00260
COMMON 1G1(10).TG2(10.11,2),TG2AVO(10),TGIN1(10),TOIN2(10) 00270
COMMON TIME,TT(10,11,2),TUBROW(10).VAPL1UO),VAPL2<10) 00280
COMMON VAPL3(10).VOL(10 ).X1G(10),X2L<10).X2T(10) 00290
COMMON CT48(6 00310
COMMON PTAB(70),STAft(69,27),T(128).TTAB(33).VLIO(128) 00320
COMMON VT4B(69.27 ),VVAP(128) 00330
REAL L.LHV.l HVT,ICS.LCT.HA IR,MFLUID.MFUEL»MHZ,N2P,N2R.N2S,NO 00340
REAl Kl 00350
VISL=FVUL(TTF> 00360
KL = FKWL< TTF ) 00370
CL=FCWL(TTf> 00380
GL=(1.-X)«0 00390
GV=X»G 00400
REL=(DHI(NC)»Gl/VISL)»3600.»12. 00410
REV=(DHI (NC)»GV/V!SL ) »SORT(RXOL/RHOV)»3600.»12. 00420
IF)*(CL«VlSL/KL)«*(l./3.) 00500
1 «(HFG/(CL»6BS(TTF-TI)))••(!./6.)«REV«»ZEXP 00510
GO TO 30 00520
GE»GV*(RHOL/RHOV)««.5+GL 00530
TERM'.026*(3600.*!?.)»».8/(3600.«l2.) 00540
HTCs(TERM«KL/DHl(NT))•
-------
SUBROUTINE HTAC
HTAC calculates the heat transfer coefficient between the air and conden-
ser tube wall for the louvered fin condenser.
NOMENCLATURE -- HTAC
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HTAC are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
G
HTC
NC
TTF
Definition
Mass velocity of air
Heat transfer coefficient
Fluid pass number
Bulk air temperature
Units
lb/in.a sec
Btu/sec in.a °F
165
-------
PROGRAM LISTING -- HTAC
SUBROUTINE HTACmr.NC.G.TTF)
« THIS SUBWfjiJllNF CALCULATES THF HEAT TRANSFER COFFFlfcNl
• BETWEEN THF A|R AND CONDENSER TUBE HALL FUR THE
• LOUVEKED FIN CONDENSER
COMMON AP.R.CH.CHK.CO
COMMON C02P.C02S.UrS.OCT.UTH
COMMON EOUIV.F.FS.H20P.M2US
COMMON HP.HX.MTFLAM.HTIN.LHV
COMMON LMVT.LCS.ICT.MAIK.NFLUID
COMMON MFIJFL.N2P.N?N.N2S.NBfcNnA
COMMON NBHNDG.NU.NP.02P.02R
COMMON 02S.HO.SP1.SSA.STA
COMMON sTR.To.ws.wT.YExi
COMMON ACIdO).ACUdO),BH(10).B1(10>,CTF
COMMON CTFY(lu.ll),CT1dO).CW,DHl(10).DHO(10)
COMMON Dl <1f».00(10).USdU>.DYYYdO),EF
COMMON EFYdO.1D.EG.HGYdO.ll ) . FH I (10 ) . FHOdfl )
COMMON IN|(in),FNO(10).FRAC.F1IdU).FTO(lO)
COMMON GVZdO,ll,2).HFdO,11.2>.HFINldO>,HF|N2dO>.HGINl(10)
COMMON HGIN2(10),HGT.HGTY(10.11 ) .HTF.HTFY(10,11 )
COMMON J2E(10). J3E(10).L (10). LSTEP.MMZdO.il)
COMMON NrY(3),NCLY(3),NCRY(3).NCYCLE.NFSECT(3)
COMMON NlUMP,NM(lO),NMIdO >.NHO(10 ) , NPH
COMMON NPHYdO.ll ),NPKINT.NSS,NSI (lO).NSOdO)
COMMON NTUANS.NX2HAX(10).NX2Z(10).NXN.NXO
COMMON PGVdO ). KFA.WMdO ),RM.RWY-dO,ll)
COMMON TGI (10). 1G2dO. tl .2 ). TGPAVGdO ),TGIN1<10 >, TCINV(IO)
COMMON I IMF. Tl (lU.ll.i?). TOBHOWdO ). VAPI.l(iq),VAPL2(10)
COMMON V A PI 3(10 ), VOK10 ), XlGdO ). X2LdO),X2T(10)
COMt-ON CTAH(69,?7).HLlOd?B).HTAB(69,27).HVAP(128), INI)
COMMON NLINh,NN|i,NPSTtP,NlSTEP.P(l28)
COMMON PTAB(7H).SIAH(69.27),T(1?6 ),TTAB(33),VLIO(128)
COMMON VTAR(69,27),VVAP(128)
RI-Ai L,LHV.LHVT,LCS,LCT.MAlR.MFLUID.MFUEL.MhZ.N2P.Ni?R,N2S,NO
RhAl K.KM
If (NMiKND.EO.l )
|F(MMIJ(NC).L0.2)
V=FVA(TTF)
KsFKA(TTF)
C=FCA(T1F)
REA=(DHO(NC)»U/V)«360U.*12.
Y=AIOU(Z)
YA=.Oi«EXP(HEIA)
HTR=YMG»C»4»FHi.KNC))
4F=?.«FNO(NC)»( (8H(NC)»I10(NC) )• ( 2 . «FHO( NC ) *F T0( NC )
7 4.«FHO(NC)»(FHO(NC)*F TO(NO) )
AU=2.«(HH)»d.-FNO»FTO(NC»
A=AF«AU
AFA1=AF/A
EFF=1.-AFAT«(1.-ETA>
HtC = HTB»FFF»A/(2.»n
00360
00370
003AO
00390
00400
OIJ410
00420
IIU430
00440
00460
00470
II04HO
00490
005(10
00510
00520
005JO
00540
005-10
00560
01)570
00580
166
-------
Section 8
REGENERATOR MODEL
-------
Sections
REGENERATOR MODEL
MAIN PROGRAM - REGEN
The regenerator model is titled REGEN. The model employs the follow-
ing subroutines:
DISTR
RGEOMC
STEPSR
ITERAT
SATP
PROP
SUPPT
PROPST
PDROP1
PDROP2
PDROPR
INTSTE
PHASE
HT1PB
HT2PB
HTWTM
FCWL
FOWL
FKWL
FVWL
FYWL
FCWV
FDWV
FKWV
FVWV
FCA
FDA
FKA
FVA
FCG
FDG
FKG
FVG
FCMC
FKC
FRMC
FCMS
FKS
FRMS
FKM
Figure 3 illustrates the links between the various subroutines required
for REGEN.
The input parameter, FRAC, is the ratio of actual step size to stability
step size. To avoid numerical instability, its value should be less than unity.
FRAC has been set at 0. 5 in the present program.
NOMENCLATURE -- REGEN
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of REGEN are in the COMMON
of MAINSYS.
Fortran Variables in Argument List:
FORTRAN
Variable Definition
HGRI Enthalpy of vapor at REGEN inlet
JS Variable to denote cumulative number of
time steps
167
-------
REGEN
SUPPT PROPST
* These subroutines use fluid or metal properties.
Figure 3. Links Between Subroutines Used by REGEN
168
-------
FORTRAN
Variable Definition
MGE Mass flow rate of gas (vapor) at exit
MGI Mass flow rate of gas at inlet
NST Logic variable for transient start
0 - steady-state case
1 - transient case
PGRE Pressure of gas at exit
PGRI Pressure of gas at inlet
PWRE Pressure of working fluid at exit
PWRI Pressure of working fluid at inlet
Other Selected FORTRAN Variables:
FORTRAN
Variable
MGRZ(I)
Definition
Gas mass flow rate for fluid pass I
MWRZ(I, J) Fluid mass flow rate for fluid pass I
at node J
PWR
Fluid pressure
lb/in.2
lb/in.3
lb/in.2
lb/in.a
Units
Ib/sec
Ib/sec
lb/in.2
Note: For the remainder of these variables see "Other
Selected FORTRAN Variables" for VAPORG, in
Section 6.
169
-------
FLOW DIAGRAM -- REGEN
C
Start
Define
NTCOMP, NC, NCL, NCR,
MWRZ (NCL. 1)
Does
NCYCLE = 0
CALL RGEOMC (I)
Does
NTRANS = 0
Do 3
3 Continue
170
-------
FLOW DIAGRAM -- REGEN (Cont'd)
Initialize:
I. FindTGINl(I) from HGINl(I)
TGIN2(I) from HGIN2(I)
II. For each lump of each fluid path:
a. Use average values
b. CALL STEPSR (obtain
HTG, HTF, NPH, etc.
through COMMON)
c. Find revised value of
NX2Z(I)
III. Obtain initial distribution for
NX2Z(I) lumps, from end-point
data. Obtain MWRZ (I, J), TGI
(I). TG2(I, J. 1), HF(I.J.l).
TT (I.J.I)
Is
NX2>
NLUMP
9
YES
Print
Message
C
Stop
18 Continue
225
Corresponding to PWR,
Find TSAT, HL, HV,
GVL. GVV
171
-------
FLOW DIAGRAM -- REGEN (Cont'd)
©1
NO
712
Write, on file 6, entrance node
information as headlines.
YES
Write TIME on Output File 13
701
Continue
I
I = NCL
Do 396
172
-------
FLOW DIAGRAM -- REGEN (Cont'd)
'I = JH-1
Initialize
(for Pass I) NXO, NX2MAX(I),
DXO, VAPLl(I), VAPL2(I),
VAPL3(I), J2E(I), J3E(I)
JI = 1 (Lump 1)
Do 230
1
For Each Lump JI
a. Calculate HW, TA, TTZ, MWR,NX2
b. CALL STEPSR
c. Redefine RW, HGT, HTF, etc. as
arrays.
d. Find NX2Z (I)- NX2MAX(I)
YES
Select
NX2Z(I) (= NXN) as maximum of
all values for the fluid pass I.
Calculate DXN.
YES
NO
230 Continue
Save DXN for Pass I
i
' ^^~s
173
-------
FLOW DIAGRAM -- REGEN (Cont'd)
, NO
4 t\
Does
JS = LSTEP
NO
Write lump size information
as headline
YES
Write NXN in Output File 13
703
174
-------
FLOW DIAGRAM -- REGEN (Cont'd)
YES
NO
Define
MWZ (I, JI) = MWRZ (I, JD
MWRZ (I, JI) = MWZ (I, JI)
I
For each Lump JI compute
NPH; store as NPHY (I, JI)
Do 811
811 Continue
/ CALL DISTR(I). \
/*Obtain distribution of the following \
/ parameters for NXN nodes: \
( MWZd, JI), HF(I.JI.l), TTd, JI, 1), )
\ TG2(I,JI, 1), HGTYd, JI), EGY(I, JI)/
\ HTFYd, JD, EFYd, JI), CTFY(I, JI)y'
\RWYd, JI)
i
Do 812
812 Continue
Do 236
236 Continue
Do 238
175
-------
FLOW DIAGRAM -- REGEN (Cont'd)
1
NO
Based on NPHY (I, JI),
Calculate
VAPL2(I), J2E(I), VAPL3(I),
J3E(I), VAPLl(I)
JI =
JI+1
YES
Find (for each Lump JI) DYX1. DYX2,
DYX3, DYY (for NPHY(I,
Find DYYM for I, and save as
DYYY(I).
I =
1+1
NO
YES
Find DYY, as a minimum of DYYY(I)
and YREM
YES
238 Continue
Do 265
265 Continue
396 Continue
Do 412
412 Continue
176
-------
FLOW DIAGRAM -- REGEN (Cont'd)
F)
(701)
CALL ITERAT, to obtain
iterative solution.
After Final Iteration, NSS = 0
( Set in ITERAT )
YES
NO
YES
Print TIME, JS as headlines
Initialize INX1 = 1, INX2 = 1
1
I = NCL (Fluid Pass I)
Define
NXN, DXN
Initialize
TG2T
Do 600
177
-------
FLOW DIAGRAM -- REGEN (Cont'd)
YES
i
Does
JS = LSTEP
Print title for output columns
Print Fluid Pass No. = "I
JI = 1 (Lump No. JI)
Define, for the Lump JI, N PH, TG
Calculate NBB (= No. of Iteration
Steps), FG2G1, FG2T
Calculate TG2 (I. JI, 2), TG2T
Set TG2(I, JI, 1) = TG2(I, JI, 2)
Do 420
Do 280
280 Continue
178
-------
FLOW DIAGRAM -- REGEN (Cont'd)
,i 397
Define
Find
TREF, HREF
CPP, TX
Calculate
FTG, FTT, FTF,
FCON, TT (I, JI, 2)
Set MWRZ (I, JI+1) =
MWRZd, JI)
Calculate FF2T, FF2F1.
FF2F2, HF (1, JM, 2)
I
Define HFN = HF
(1, JI+1, 1)
, , 399
Write
'Calculations for NPH = 3
not permitted at
pr e s ent "
'Calculations for NPH= 2
not permitted at
present1
410
1
Find HFGN Corresponding to TG2(I. JI, 1)
179
-------
FLOW DIAGRAM -- REGEN (Cont'd)
ES
Write (on File 6) JI, HFN, TFX, TT (I, JI.1)
HFGN, MWRZ (I, JI+1/,
NPHY (I, JI)
NO
YES
Write (on File 13) HFN, TT (I, JI, 1), TG2
(I, JI, 1), MWRZ U,JI+1]
YES
Write (on File 6) HTFY, CTFY, EFY,
HGTY
180
-------
FLOW DIAGRAM — REGEN (Cont'd)
NO
Set
MWRZG+i, i)= MWRZd, NXN+1)
HFft+1,1,2) = HFd, NXN+1, 2)
Find
HGINl(I) from TGI (I)
HGIN2(D from TG2AVG(I)
NO
YES
TIME = TIME + DYY
*Reset
Find HGINl(I) from TGI (I)
Hr,IN2U+D = HGINl(I)
Find HGIN2(NCL) from TG2AVG(NCL)
HFd+1. 1, 2) = HF(I, NXN+1, 2) Except for
I -- NCR
HFd, 1. 1) = HF (1,1,2) Except for I - NCL
MWZ(1, NXN+1) - MWRZ (1, NXN+1)
TT (I, JJ, 1) -- TTd, JJ, 2)
HF (I, JJ+1,1) = HF (I, JJ+1, 2)
420 Continue
600 Continue
Do 429
429 Continue
Do 430
430 Continue
181
-------
FLOW DIAGRAM -- REGEN (Cont'd)
YREM = YREM - DYY
Write (on File 6) DYY, TGl(NCL), TGI
(NCL+1), TGI (NCR)
Write (on File 13) TGI (NCL), TGI
(NCL+1), TGI (NCR)
J
YES
Write title for pressure drop results
182
-------
FLOW DIAGRAM -- REGEN (Cont'd)
*Gas-Side Pressure Drop
Define PGR, TA1, TA2
CALL PDROPR
Find FDD
Repeat for all NC coils
I
Write (for all fluid paths)
pressure-drop data and
results
Do 1008
Calculate and write PGRE
*Pluid Pressure Drop
Write title for pressure
Define PWRX, Jl
I =NCL (Fluid Pass I)
J1E, LZ [for VAPLKDJ
1008 Continue
Do 1030
183
-------
FLOW DIAGRAM -- REGEN (Cont'd)
MWR = MWRZ (1,1)
Find J2, HFA, TX
CALL PDROP1
Find FDD
1
Write pressure drop data and_
results
FWRX = PWRX - FDD
1013
Find
LZ [for VAPL2(I)j
YES
NO
Find
Jl. J2, MWR
XENT (Min = 0)
XENT (Max = 1)
CALL PDROP2
Find PDD
Write pressure drop data and
results
PWRX = PWRX - PDD
184
-------
FLOW DIAGRAM -- REGEN (Cont'd)
1030
1016
Find
LZ [for VAPL3U)]
YES
NO
Find
Jl, J2, HFA, MWV
CALL PDROP1
Find FDD
I
Write
pressure drop data and
results
PWRX = PWRX - FDD
Define PWRE
Write PWRE, HF (NCR, NX2+1,1)
C
Return, End
1030 Continue
185
-------
PROGRAM LISTING -- REGEN
SUBROUT1NF KEliFNCMni.MGt.PGRl.PGRF.PWRI.PMRE.HnRF. JS.NST)
CUMhON AP,H,C«,CHK,r.O
COMMON co2P.CH?s.ucs,uri.DTH
COMMON fcUUlV.F.FS.HPOP.HZOS
HP.MK.i.TFLAM.HTlN.LHV
LHVT,L« S.LCT.MAIS.MFLUI o
MFlJEL,N?P.M2H.N2S.NBFNfiA
NRENDG.Nu.NP.02P.02R
U2b.Pn.SPl.SS4.STA
STH.TO.US.nT, YbXT
ACI(10).ACu(10).HH(in).RT(10).CTr
Clf Y<10. 11 l.CTf (10 ),CW,DH!<10),DHO<10)
OI(lU)fnu(in).uS(1'i).DVYV(lO).EF
FFY(in.ll).F«,eGY( 10.13 ) . FH I ( 10 ) . FHO (1 0 )
FNl (llll.FNIMlO).f HAC.FI I(10)«FTO(1H)
CVZ(10.U,^),HKin,11.2),HFINl(in).HFlN?(lll),HOINl(lll)
HR|N2(in).HRT.HGT Ydll.ll » , HTF . HTFY (10 • 1 1 )
J?M1D). J3f(30 ).L(10 > . LSTf-P. MWZ( 10 , 11 )
NCY(3).NT.L t(.n,NCRt(.i),NCVCLE.NFSECT(3)
NLUMP.MM(lU).NMI(lH).NMO(lll).NPH
NPHY(lll.ll).NPKlNT.NSS,NSI(10),NSO(10)
Mi,RW.HWY<1 n.ll)
IOK10), lG?(in,11.2).TG2AVG(10),T6INl(10).T6IN2(10)
T|ME.TT(]0.11.2),TliBHOM(.l.H).VAPLl(10).VAPL2(lfl)
VAHI 3(10). VOLdO). xlG(lO), X2L ( 10 ) . X2 T ( 1 0 )
CTAP(6V.?7).HLIO(128).HTAH(69,27),HVAP(1?8). INil
NI. 1Mb. wNO.NPSTtP. NTSTEP.P< 128 )
PTAR(7fl),STAH(b9.?/>,T(128>.TTAR(33),VLlUV2(10).nV2N(10).MGRZ(10)>MGRA(10).MWHZ(10.11)
DIMENSION PuRtlll)
RFAL LZ.MENl.Mr.h.MCI.MGR.MGRA.HGRZ.MUR.MUKZ
NIC(lMP=3
NC=NCY(NTCnMP)
1 >
fllidiJO
OlMMO
COMMON
COMMON
COMMON
COMMON
COMMON
COMHOH
COMKON
COMMON
CiiMhON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CDMhON
COMMON
COMMON
COMhON
COMMON
COMMON
COMMON
NCR=NCRY(NTCOwP)
MHRZtNCL, 1)=M'«ZINCI
00 3 IsNCL.NCM
irD0.3)
CALL SUPPT.HG1N2< I J.DD.DD.J)
A1=12.«L(|)
Hli=( HGINK I )«HCIN2( I ) )/2.
CALL SUPPT(PGKI,TC.HG,DD.liD.3)
TTZ = TG-10.
NX2='NX2Z(I)
Ullllftfl
nmun
00110
rni14n
Uul6n
n ill 70
nnl9n
OtlZDO
nil?lfl
flli?30
00240
Ou?60
00?70
OH7HH
nnpvn
OH300
00310
00320
0(1370
OH3MP
003HS
H03CO
00420
00440
00443
OfM'jO
00460
OII46I>
01)470
0051)0
00510
0(i!>20
00560
00570
1105/5
00500
Ou590
00*00
11(1610
006JO
00640
0(1650
011660
00670
186
-------
PROGRAM LISTING — REGEN (Cont'd)
HbsQ.'jX Hf IM' I )«HFIN?( | ) )
•7^1. I ;jlrH%rr(H|dJ\0 INpHWfrGNJj l*Tf I I /
71,Al.NX?)
IF ( fcX/'.lF .Ml IMP) r.n Tu 15
111 FuWMAl (.IS-i NO. uF ll'MH RF-nUIRpn FXCfcEOS NIlIMP)
WH!1E(6, 1 ii >
•f FllRMA I (hH NX? .110)
SIOH
!•> NX?7( I ) = NX?
I N I TIAl M I SIRIRuTI ON
TH 1.1.1 ) = TTZ
IF ( I.NF.'TI. ) nF( |.l ,1 ) = hF INK I )
T«1 i I )=IRIN]( I )
(nift/5
>.M(;RA.xr.
HXN=12.«L( I )
A2=(HF|N?( I )-•!» Ml ( I ) )/XN?Z
MwR7( I . 1 )=»*»/ I NC1.1 )
1)0 18 J = ].NX?
MWR?( I , J + 1 )=MHP/(Nfl,l )
H» ( I, .1+1,1 )=ri> ( I . J.I )*«2
TT( I. .1.1 ) = T1( i.l.l 1
NDTF- I'D MiiT U'.F Tl;?,TI A1 NX2 + 1
Tt;?< I, j.i ) = 16IM?( I >
1H
A»
CVCLF
• Al THIS PKTNT Tut- f-XffRNAl CONPITIONS AKF FN-TFREO FDR
• TnF Nh x 1 FX1Ei"vAL ll«t ST»P. DuRINIi INITIALISATION
• TnM SHiiHLP Hi MAHF FiJUAl TO IH( INITIALIZING VALuES
• PhR Fi~lNr. is A KUiP RACK fROM STATEMENT 1000-1
71?
713
CAI I •sAUMPhK. ISAl.riVL.GVtf.hL.HV.l )
\l (NSs.t ij.1 > 0 lu 701
JS=JS+1
IF INSI .NF-.n ) i,0 Fi> l\i
u < js.Ni .i.sie^> oi; in 701
HWI IFliS, 713 >TlMh. JS
FuRMAI(4nn
721H (TIHhSIFP NO..I5.2M »
71S
716
72n
817
810
71V
701
••••• TIMF =
MKlTF(6,71S)H^ (MCI . 1. 1 )
FL"I ' tNjHALPV (tNTRANCE) =.F15.5)
FiiRNAT(^9H IL«li< tLOU RATt- (ENTRANCE) =.F1S.5)
, 770 )P->P. FbAT
XO,! FL"IH PRF-SS»HRF, SAT. TEMP =,2El5.^)
wwi TE(6.817)M-;|
FnRMAK2QH liAL. FLuk RATE (ENTRANCE) =,F15.5)
Mfl IF (f>, nifl JPnf' I .hRhl
FnPMAI(?VH GAS PHhS. tNTH (ENTRANCE) ».2E15.5)
IF( JS.NF .LS1HP) GU TO 701
MKI IE (1.1. /19) I ME
FURMAKM'J.'j)
CUNTINlit
DO 39f> l=NCl
NXO=NX7/' i )
ii it A 4 n
o u 7 1) n
n n 7 i n
0(1 7.10
n n 7 1 n
n n 7 / n
n n 7 rt n
U n 7 ^ n
n n H •/. (i
0 it H 4 n
OllH>>0
o M « / n
OilH/S
n r i H H n
II n 91 0
nn<>
n (i Q v ii
0 (i V i n
it n *t t fi
n i, g«n
ii n v <* n
n i nun
ni n/n
01 o/,n
I) 1 1 H 0
niiin
1)1120
m i-jo
u i ion
n 1 1 / o
nil HP
n i ? 4 n
in
01?60
(112/0
012HO
187
-------
PROGRAM LISTING -- REGEN (Cont'd)
230
721
723
703
811
»12
231
232
233
234
NX2MAXC I )=t
VAPI 1( I )=».
VAPI?<1 )su.
VAPL3«!?.
MWH=MWK/< I, JI )
NX2=NX2Z( 1 )
CALL STEPSR(PnR.Tk4,HW,PGRI.TA.TTZ,MUR.MGRA(l),XF. 1.A1.NX2)
THE FOLLOWING ARE AVAILABLE FROM STEPSI AMD ARE BULK
P*Y< 1, J1)=RW
HRTYC I, JI ) = HG1
HTFY< I. JI >=HTF
CTFY< I, JI )=CTF
NHHYd. JI ) = NPH
NX?HAX( I >=MAXO(NX2MAX( I )*MX2)
CONTINUE:
NXN=NX?MAX( I )
NX2Z< I )=NXN
DXN=12.»L(I )/FLOAT(NXN)
IF(NSS.E').l) GO TO 703
IF( I.EO.NCL) nXNlxDXZ
IF ( I.EQ.(NCL*1>) DXN2 = DX2
IF( I.EO. (NCL*2) ) DXN3=DX2
IF(NSl.NE.n) 00 Tu 821
IF( JS.Mt.LSTEP) GO TO 7l>3
IFd.LT.NKR) RO TO 721
WHlTE(6.5)nXNl,nXN2.DXN3,nX2
FORMAK29H LUMP SIZE (COILS l.?,3,4)
60 TO 703
=,4E15.5)
CONTINUE
IF( JS.NE.LSTEP)
FORMAT(IIO)
CONFINUt
IF(NXN.EO.NXO) GO TO 237
MA=NXO*1
DU 811 JI=1.MA
MHZ>0
01460
01470
01490
01500
01510
01S20
01530
01550
01560
01565
01570
01580
01590
01600
016112
II ] 6 0 4
01610
01620
01630
H1640
01660
016/0
016UO
01690
017UO
0170?
01705
01707
01710
01712
01715
01717
0172M
111730
01740
017!>0
01760
01770
01780
01790
01800
188
-------
PROGRAM LISTING -- REGEN (Cont'd)
23* NPHYd. Jl > = »
236 CONTINUE
?37 DO ?3H JI=1.NXN
IF(NSS.E0.1> GO TO ?3»
NPH = NHHY( I.Jl )
» LUCATh INfFKPHASES
41?
l )*E< I ) = J2M I )*1
GU TO ?29
VAPL3< I ) = VAKLK I )»(uXu»ACI< I ))
J.1E< I ) = J^I ( I )*1
VAPLim = l?.»ACMl>»LU>-VAPL2/( (X2/OXN)*!. >
0 Y XS = ftPS « i'U YU , Jl )»ACH I >»DXH/(»HRZ(I«JI )»172».»
IF(NPHY(|. U).tU.l) DVY=FWAC»AMIN1(DYX1,DYX2)
It (NPhYt I. l| >.EO.?> I)YY = FRAC»AMIN1(DYX1.DYX3)
It (NPHY( i.Jl >.F0.3) OYY=FRAC»DYX1
CONTlNUk
OXN=DX?
COM INUt
U»Y=YKEH
DO 112 l=NCl.NCK
OYY = AMINl
OXN=12.*l(l)/FLOATH
74H
.iMP.10X.3H H?,14X,3H TF,14X,3H TT.13X,
4H NPH)
724
) I
72-i FORMA K3flx.1>Hc««»«.i6M FLUID PASS NO. ,I5,5H»«»»»)
nn 42U Jl =1 >NxN
MpHsNPHY( I , Jl I
Ti;=(lG1 ( I )* IGv( | .
, Ti.l
n i H $ n
n i K & n
n 1 6 / n
I1 1 « M (I
HI
U ] « 7 n
n?ii6fl
n f (» 7 n
H VI' HO
i) ^ 1 n n
n '/ 1 1 n
ii v i ? n
•i /» 1 4 n
1'21-jO
u v ) b n
n?5>,io
n2?/n
n/?vo
li 2. til H
u?33n
023411
023'>n
02360
n?3/n
02380
II23H3
023V"
n 24 n n
n?4jn
o?4jn
(124'iH
02460
P ? 4 7 n
0 /• 4 M II
024VO
Jl
189
-------
PROGRAM LISTING -- REGEN (Cont'd)
R.< = 1 .XXI
TI;N=TGI (
2H(1
397
7«7
70H
HHrfiB/FI llATttilft)
FG2C1=<1 .-1H)/(J
FfJ?T=l.-F(;?Cl
MT=Fi:?T»m I, Ji.i )
00 2811 LKsl.NuR
TfiN = Fli201oT(;N«AIIT
i«2d. JI,/) = H-N
TC?( I. JI.D = Ti;?( I, JI.2)
Tu2T = 10?T*Ti;?( I.JI. 2)
GO T" (.597. j9h,39v).NrH
IkEF=TSAl
MFAVG=(MF( I , U.I )*HK( 1. J 1*1,1) )/2.
HKEF=Hl
CPP=FfWL< I'REF )
TX=lRfcF
TXt =
lf(AHS((TX-lX1)/TX)-.li1) 709.709.708
TX=TXl
CPH=FCHL< IX)
Gl) TO 7fl7
70» FTG=»(M(.llr
FTT = l.-
FCON=OYY«(M1FY(I.j
IT(
Jsl T1»TT(
4FIG*( IRK I )»Ti;?< I.
I, Jl*1
I.JI >/Cll(l J)
• (HU Y( 1, JI )*HGTY( I, Jl »
. Ji)/(r.T1C I)»CPP)
)/CTI
TRFF-(HREF/CPP»
, Ji,l )*FIF»(HF( I. JI.I )»Hf( I, Jl»l.l))*
1.1) )»>C(JN
, JI)
.- (HTF Yd. J!
. Jl )
= HYY»(HTFir(l. Jl )/CTFY( I.JI
FF?I l = (|iYY/IUN)«<(-FY(l,J| )/PTf
4EFY( I.JI ) )»(l)*N/i?. ) )
FF2F2 = 1 .-/OXNM
HF(ljJI*l.?)=FF?F?«HF( I.JI +1.1 ) *FF 2F1«HF ( I . J I . 1 )*
HFN = HF( I. .11*1,1 )
Gl) 10 41"
39B
26
399
27
410
21
5032
5029
728
727
FORMAT(49.i CALCHLA1 IONS FuR NPH=2 NOT PERhJTTtD AT HRtSENT.)
SIOF
FliRHAT(49i< CALCULATIONS FuR NPH = 3 NOT PERMITTED AT PRESENT.)
STOP
CUN1 iNUt
TGN=TG?(I,Jl.l)
CALL SUPPHPGKl.TUN.HFGlS.nD.GV.I)
IF(MST.NE.n) GO TO VI '
IFUS.NE.LSIEH ) GO 10 727
HftlTE(6.*032)Jl,HFN.TFX.. TT( I . J 1 . 1 ) , HFGN,
I. Jl*1 ),rPMY( I.JI >
IA.4X.&i17.*. 16)
FORMAT(?H )
IF(JS.NE.LSIEP) GO TO 727
WK|TE(13,7?H)MFN, IT( I . J 1 . 1 ) , TG2 ( I . J I . 1 ) . HMRZ( I , Jl *l )
FURM/n<4F15.5>
CONTINUE
IF(NPRINT.Nb.U) GO 10 R91
n?52fl
025.10
H25AII
11257(1
0^540
A259H
o?6un
07610
02*211
026.fl)
02710
0X760
0277P
027HP
02MUP
0?«10
n?fl->n
npngn
0?9hO
Il.i1 70
O.tltiO
03190
03210
03220
03240
(I3?60
OJ270
03290
03300
03310
(1 3360
033HP
03390
03400
03410
03420
190
-------
PROGRAM LISTING -- REGEN (Cont'd)
892
b91
4?0
601)
42t>
22
2J
429
11)31
1032
430
71
48
U14
1UOU
6*>
WKlTE(ft.ft9?)H1FY(I, Jl ).CTFY(1,JI ) . EF Y < I . J I > . HGT V < I . J I )
FORMAK17H HTF , CTF . hF . HOT .4E15.5)
CONTINUE
1F( JI.Nb.NXN) GU TO 40
IF( l.bO.NCR) 60 TO 42»
IwRZC I+1.1)=MMRZ<|.NXN+1)
HF ( l+l.l.?>=rfFC I,NXN»1,2)
CIINTINHE
Ti;?AVG( I ) = TG?T/FLOA1 (NXN)
CALL bl'PPTCPGR. 1GK I ).HGIM( I ).DD.n0.1)
CALL SUPPKPGK, TU2AV'J( I ).HG1N2( I ),DO.Un,l)
CdNIINlUr
VAPUUK MASS BALANCF
M(;R7(NCK>=Mb I
I1U 425 JL=1.H|
-1 )=MGKZ(KK
CONTINUE
REStI
IF(NST.NF.n) CO Tu ??
IFUS.NE.L^IEH) GO TO 2J
WKI IE(6.bn?9 )
CUNllNUb
KK1=NCP-1
OH 429 l=nCL.KKl
IUJ ( I )=IG?AVG( 1*1)
CALI SMPPK^GKI. Tlil ( I ) . MG I Nl ( I > , HM. UU, 1 )
HGIN2( 1 + 1 ) = hGINl( | )
CALL Sl(PPT(PRKI .TU?AVU(NCL>.HGIN2(NCL),nD,Dl),l)
00 4311 I=NCL,NC«
IF( I.EQ.NCR) 00 TU 1031
HF< 1+1.1, ?)=HF ( I.NXN+l,
IF< l.tU.NCl ) GO TU 10J2
HF( l.l.l)=HF( I.I./')
MwZ< I.NXN+1 )sHM«Z( I.NXN+1 )
DO 430 JJ=1 .NXN
1 !( l.JJ.l »=TT(I. JJ.2)
HF ( I, JJ+1.1 )=HF( I, JJ+1.2)
HuZ< I, JJ)=MWRZ< I.JJ)
Tu
GU
71
10
R13
YHE»-=YREM-nYV
IF (NSl.NE.O) GO
IF< JS.Nt.l STEP)
Wh11E(6,4>ODYY.
FURMATdOh bw.lGl
IF( JS.NE.i SI El ) GU
WRITEO J, «14)1G1
FORMAT(4H0.5>
CONTlNHt
IF( JS.NE.LSTEP) GO
CONTlNHt
GAS-SIOF PBlSSUHF
WRITE(6.>>
FORHAT(46X,-('»tM •• PKESSURI-
10 813
I.TG1 (NCL + 1 ). TGI ( NCL +? ) . TGI (NCL + 3)
10 22S
PROP
03423
03427
03429
034JD
113440
034AO
03470
034til)
03SUA
035.1 n
03520
03540
03550
03560
035/0
035HO
035H3
03581)
03685
03690
03700
03710
03715
03710
039oO
DROP RESULTS ••>
03904
191
-------
PROGRAM LISTING — REGEN (Cont'd)
HOI
H03
HKME<6,5»?9)
WHI lE(6,5il?9)
WKITE>6)
FnRMAT(14H •• FLUID SIDb)
MK|TE(6.8S7)
FORHAK3X.5H HASS.9X.5M FLOw.14X.4H NPH.12X.7H LENGTH. 9X.
711H iNlbT PKES.BX.9M PR. DROP)
PMRXsPhK
Jl=l
DO 1030 I=NCL»NCR
J1E=NX?Z( !)-( J?Q( I)«J3E( I ))
LZ=VAPL1< I )/(!?. »ACI< l)>
IF(LZ.EO.».) v.n TO 1013
MHR=HMR;< i.i)
1012 CALL SAIPiPhRk. TWV.im.nO. ML. HV.l)
1019
1010
1017
H59
1013
H(-A=(HF( 1,1 .1 )»HF< I, J2.1))/?.
TX=1MV
CU = (CUL(TX)
Tw=TWV*(HrA-HL)/CH
TXl=.5«
IK(ABS. I 9, « X, JEl 7. 5 )
PWRX=PWRX-P|if)
LZ = VAPL2( I )/ll?.«ACI( I ) )
IK (LZ.FU.it. ) HO TO 1016
J1=J1E*1
J2 = J2E( I )».!!
(U960
M970
03971
0397?
113900
03990
04000
04010
04021)
04030
04IJ40
1)40*0
04060
04070
040H.t
040HS
040VO
041110
04110
04140
041*jfl
1. 4) -,6
nij-,7
II41&R
04160
04170
041MO
04190
04VOO
04710
H4?Sfl
04770
04?80
04.110
04330
0436(1
04370
043HO
04390
044 ?0
04423
0442?
04426
04430
04440
04450
04460
04470
-------
PROGRAM LISTING — REGEN (Cont'd)
MWR= i.O Tu 10JO
J1 = J2E(I )»JlE«t
J?=J3E(I)»J1
HFA=(HF( I..J1 .1 )»HF ( I, J?,l »/2.
1Krt=(MWKZ( I . Jl )*NhUZ(I.J?))/2.
CALL SUPPI(PWkX,ThR.HFA,nii.DD.3)
CALL PUKOP1 (PwPX, IHH,HWD,UH1( I ) , AC1 ( 1 ) . L2,3. POP, OU, DD, DO >
WWI TE(6,H-><') I ,MWR,MPH.L?,PHRX,PDD
URlTE(.6,5n?9)
1030 CONllMUb
PMPfc=HWXX
861
FuRMAT(25H tXIT PKFSSUPE. ENTh
R I- TOWN
END
,2E15.5)
04530
045411
045SO
1)456(1
04565
04570
114590
0 4 6 II 0
0 4 >0
0465^
04655
04657
046MI
046/H
II46MII
046H7
0 4 7 II 0
047111
193
-------
SUBROUTINE BGEOMC
RGEOMC calculates all geometric constants for REGEN.
NOMENCLATURE -- RGEOMC
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of RGEOMC are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
NC Fluid pass number
194
-------
PROGRAM LISTING -- RGEOMC
140
190
SUBROUTINE KGEOMCCNO
COMMON AP,R.Cn,C'(K,rO
COMMON cos?p.cu?s. lies. OCT. OTH
COMMON FOul V.f ,F S,H?OP,H?nS
COMMON HP.Mk,MTFt_AM.HTIN,LHV.
COMMON LHVT.LCS.LCT.MAlH.MFLUin
COMMON MFHt-l . N2P. N?H, N2S.NHENDA
COMMON NRENT"i.Nu.NP.02P.02R
ruMMON 02S.H),SP1,SSA.STA
COMMON STl!. TO, WS. WT. YEXT
r.iMMON AfTldn i.ACudO ).BMdO).BT(10),CTf
C..WMUN CTFYd'i,)! >,r:TIUO>,CW,DHI (10),nHO<10)
•-OMMON n id (i > .n.i(in).nS(iti).nvvy(io),tF
CIIMMIIN EFY.FTO.HFlN2(lU),HGlNl(10)
IN HR|N?dO),ttnT.HGTY(lU.ll ),HIF,HTFY
nn
COMMON
COMMON
COMMON
COMMON
NI.HMP.i.M(ll!>,NM| ( J 11 ) . NMO < 1 0 ) . NPH
NPny ( 1 1. . 1 1 ) , NP« I NT , NSS. NSI ( 1U ) . MSOC10 )
NT^ANS. NX7MAX ( 10 ) , NXZZdO ) , NXN,HXO
HUV( 10 > ,KF A, HMM o ),Rw,K WYCIO.11 )
TGI'IO), IR2« 10 ,11 ,2) . Tf.ZAVUdO ), TGINKIO >. IGIN2( 10 )
TIMF, Trdfl.11./). TuRKOhdO ),WAPL1(10), VAPL2C10 )
VAPi JUO). vOKin ). xlG(10).X2L<10),X?T(10)
CTAR(6V.?7),HLIO(128).HTAH(69.27).HVAP(12R)>1NU
NL INb.NNP.NPSTfcP.^TSlEP.I'd?!!)
PT«R( /ti ),SIAH(t>9.27).Td2(»).TTAH(33).. VL I 0(128)
vTjfti f>v.27 ) . VVAPd?B)
I .1 I* v.i HVT.i i:S.I tT,Mft IK,MFLUID.MFUEL.MWZ.N2P,N2R.N2S,NO
ir n
2-ni(NC>»«2)
USE FUNCTIONS
VOLHsCJ. 14^/4. )«(nu(NC)
Al=1 ,-PM(Nr )
A?»X?l IND-UO(NC)
BH(Nf > = A?
ACQi NC)=A2«HHi NC)
N( ) = 4
ATI
On I
(NC
)»(ol(NC)**2)
IhS APE ASSUMED CONSTANT IN THIS PROGRAM
M|sNMi NC)
I X = II .
OH 10 (14 it. 141 ),MI
NUTt fHAl Al HPtStNIL* FORMULATED THE FUNCTIONS FCHSMX),
!X),rCMCl TX),FHMC( IX). THEY DO NUT DEPEND UN TfcMPFRATUkE
IS NOT HEMNPD AT THIS POINT. (SUITABLE TEMPEKATURES
COULD RE UFFINF-D FOR 1H|$ PURPOSE)
CTB=FCMS(TX)
R1R=FfMS
RTR = FKMC( TV >
M|=NMO(NC)
60
00020
niinjn
OOU40
OU060
o o n 7 n
01)040
n u 1 « n
o n 1 1 o
OIM20
OD130
0 I) 1 4 0
oniisn
oin/n
OOlHO
u u 1 Q n
n»?nn
00240
no2f>n
on?/n
OH2HO
00290
n mo n
00310
00320
00330
0034U
003*0
003AO
00371)
003HO
0039(1
00400
00410
01)420
00430
00440
004*0
01)460
00470
004ftO
00490
00500
00510
00520
00530
00540
005*0
00560
00570
OU500
00590
00600
195
-------
PROGRAM LISTING -- RGEOMC (Cont'd)
Rin=FRMS(TX) 00610
00 TO tHO 00*20
160 Cin=FCHC(TV) 006.10
R10 = FKMC(1X) 00640
180 Cll>fl
VUL(NC)=X2L»X2T ( NO )-(.1. 1416/4 . )«DO( NC )««2-VOLO 006AO
lf(NSU(NC).NE.l ) CTT(NC»CTUNC)»VOLO*riO»RTO 00670
CTT(NC)=CTT(NI )/17?8. OOAHII
RFTURN OUAVO
FND OH700
196
-------
SUBROUTME STffSR
STEPSR calculates the stability limits on lump size for each lump of
REGEN. It employs the subroutines HT1PB, HT2PB, HTWTM, PHASE,
and SUPPT.
NOMENCLATURE -- STEPSR
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of STEPSR are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
HW Enthalpy of working fluid
MGR Mass flow rate of gas
MWR Mass flow rate of working fluid
NC Fluid pass number
NX2 Number of lumps for a given coil
PG Pressure of gas
PW Pressure of working fluid
TG Bulk gas temperature
TI Wall temperature at mid-node of a
lump
TW Bulk fluid temperature
X Quality of bulk mass within a lump
X2G Geometric limit on lump size
lb/in.2
lb/in.3
°F
°F
°F
in.
197
-------
PROGRAM LISTING — STEPSR
60
70
100
SUBROUTINE STEPSR,nHO(10) 00130
COMMON DI(10),DO(in).US(10>,DYYY(10),EF 00140
COMMON EFYdO.lM.EG.EGYdO.M > . FHI ( 18 > . FHOdO > 00150
COMMON FN| (10 ),FNO(10),FRAC,FTI(10).FTO<10) 00160
COMMON GVZ(10,11,2),HF(10,11,2),HF1N1<10),HFIN2(10),HGIN1<10) 00170
COMMON HGIN2(10).H6T.HGTY(in.ll).HTF.HTFY(10,ll) 00180
COMMON J2E(10>, J3E ( 1 0 ) , L < 1 0 ) . LSTEP. NWZ( 1 0 . 11 ) 00190
COMMON NCY(3>,NCLY(3).NCRY(3>»NCYCLE«NFSECTC3) 00200
COMMON NLUHP,N*<10 >,NM] (10 >,NMO(10),NPH 00210
COMMON NPHYUO.ll ) , NPH 1 NT. NSS, NSI < 10 ) . NSO< 10 ) 00220
COMMON NTRANS.NX2MAX(10).NX2Z(10).NXM,NXO 00230
COMMON PGV(10),RFA,RM(10 ) . RW, RW Y ( 10 , 11 ) 00240
COMMON TGl(lO). TG2(10,11,?),TG2AVO(10), IGIN1(10),T01N2(10) 00250
COMMON TIME,TT<10,11,2>, TtlBROW<10>,VAPLK10>. VAPL2<10> 00260
COMMON VAPL3(10 ), VOLdO ) , XI G ( 1 0 ) , X2L ( 10 >,X2T(10> 00270
COMMON CTAR(69,27),HL10(128),HTAB(69,27>,HVAP(12e>,IND 00280
COMMON NL|NE»NNn,NPSTEP.NTSTEP»P<128) 00290
COMMON PTABC70 ) . ST AB ( 60 , 27 > , T ( 1 28 ) . TTAR < 33 ) , VL 1 0< 128 ) 00300
COMMON VTAR(69,27). VVAP(128) 00310
REAL <.,LHV.LHVT,LCS,LCT.MAIR,MFLUID.MFUEL,1MZ.N2P,N2R.N2S,NO 00320
REAL MMR.MOR 00330
PW,HW,PG, TG.MMR.MOR.NC.X2G ARf^ INPUT 00340
NX2.X,TW,HG ARE RETURNED. 00350
CALL PHAS6(HW, TW,HW.X,GVL.GVV,HL.HV) 00440
GAS PROPERTIES 00450
CALL SUPPKPG, TC.HG.SpGV.l ) 00460
CG=FCUV(PG,TG) 00470
RGal./GV 00480
OHTAIN HEAT TRANS COEFFSj HTGT.HTTF 00490
OHTAINING HTGT 00500
G=MGR/ACO(NC) 00510
CALL HTWTM 00890
HTF=HTTF»3.14159»DI(NC) 00900
C1F=RH«ACI (NC)«CH/172B. 00910
STEP SIZE CALCULATION 00980
X2=2.»EF/HTF 00990
DX?=AM|N1(X2»FRAC,X29) 01000
198
-------
PROGRAM LISTING — STEPSR (Cont'd)
NX2=INTST£(DX2,X2G) 01010
IMNPH.EO.?) NX? = 5 01020
IF(NX2.GT.1> DX2sX2G/FLOAT(NX2) 01030
RETURN 01100
END OHIO
199
-------
SUBROUTINE PDROPR
PDROPR calculates the vapor-side pressure drop for a ball-matrix
regenerator surface. It employs the subroutine SUPPT.
NOMENCLATURE -- PDROPR
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of PDROPR are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
ACOL Flow cross-section area per unit length
BTH Ball-matrix thickness in flow direction
D Tube diameter, outside
DH Hydraulic flow diameter
DP Vapor pressure drop
L Tube length
PI Inlet vapor pressure
RM Porosity of ball-matrix
Tl Inlet vapor temperature
T2 Exit vapor temperature
W Mass flow rate of vapor
°F
Ib/sec
200
-------
PROGRAM LISTING -- PDROPR
SUBKOUTINE Pf)KOPR(Pl. II. T?, U. J)H. D. ACOL. L, RM, 8TH. DP ) 00020
HEAL L OU040
fiC=32.17 00050
r= 00103
Rf)l = l./nvi 00106
W02=l./GV2 00110
REY = ABS«12.O600.)«<0»DH/V>> 00120
SIC=RM 00270
SA=4.»BTH/nh 00280
X=ALOO(REY/1000.) 00285
F=FXP(-.6539*X»(-.17S429«X»(.046373-.007571»X)» 00290
PKEf=(144./GC)*(G*G/(2.«R01>> 00320
Awt=l.*(S|R«»?) 00330
AR?=(H01/R02)rl. 00340
A«3 = F»SA»(P(J1»RO?)/(R02«2. ) 00350
np=PREF»(ARl*AR2»AM3) 00370
RETURN 00380
END 00390
201
-------
SUBROUTME HTWTM
HTWTM calculates the heat transfer coefficient between gas (or superheat
vapor) and ball-matrix outer tube surface.
NOMENCLATURE -- HTWTM
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of HTWTM are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable
G
HTC
NC
PPG
TEMP
Definition
Mass velocity of gas
Heat transfer coefficient
Fluid pass number
Gas pressure
Bulk gas temperature
Units
lb/in.a sec
Btu/ sec in.3 °F
lb/in.a
202
-------
PROGRAM LISTING — HTWTM
SUBROUTINE HTHTMtMTC.NC.G. TEMP, PRO) 00020
COMMON AP,B.CH,CHK,CO 00030
COMMON C02P.C02S.DCS.DCT.OTH 00040
COMMON EOI)JV,F.FS.H20P,H20S 00050
COMMON HP.HR.HTFLAM.HIIN.IHV 00060
COMMON LHVT.LCS.LCT.MA1R.MFLUID 00070
COMHON MFUEL.N2P.N2R.N2S.NBEND* 00080
CUMHON NHENDG.NO.NP.02P.02R 00090
COMHON U2S.PO.SP1.SSA.STA 00100
COMMON STG.TO.WS.WT, YEXT 00110
COMMON ACI (10 ). ACOdO ).BH(10).BT(10 ),CTF 00120
COMMON CTFYUO.ll > , CTT < 10 ) . CU. DHl < 10 > . DHO< 10 ) 00130
COMMON III (10 ), 00(10 ).DS(10 ),OtrY(10 ).EF 00140
COMMON EFV(10.11>,FG,EGY(10,11).FHI(10).FHO(10) 00150
COMMON FN|(10),FNO(10).FRAC,FTI(10>,FTO(10> 00160
COMMON GV2<10,I1.2>,HF(10,11,2),HFIN1<10>,HFIN2<10>.HOIN1<10) 00170
COMMON HOIN2(10 ) . HfiT . HGT V (10 . 1 1 > . HTF. HTFY < 10. 11 ) 00180
COMMON J2E(10 ), J3H10). 1(10), ISTEP.MUZ(10«11) 00190
COMMON NCY<3).NCLY<3).NCRY(3),NCYCLE.NFSECT<3> 00200
COMMON NLUMP,NM(10 ).N«1 (lO).NMO(in ),NPH 00210
COMMON NPHYdU.ll ) . NPR I NT. NSS, NSf ( 10 ) . NSO( 10 ) 00220
COMMON NTRANS,NX2MAX(10).NX2Z(1Q).NXN,NXO 00230
COMMON HOVUO >,RFA,K1(1 0 >.RU.kWY<10.11 > 00240
COMMON TG1(10>, rG?(10.H,2).TG2AV6(10),TG|Nl(10),TGIN2<10) 00250
COMMON TIMF.TK10.il. 2). TUBROU(IO). VAPLH10), VAPL2UO) 00260
COMMON VAPL3(10), VOI ( 10 ) , X1G( 10 ). X2L( 10 ) , X2T( 10 ) 00270
COMMON CTAB(69,27),HLIO(l?fl),HTAB(69,?7),HVAP(128), IND 00280
COMMON NLINb.NND,NPSTtP.NTSTEP.P(128) 00290
COMMON HTAR(7l)),STAH(69.27),T(128>.TTAB(33)/VLIO(128) 00300
COMMON VTABC69.27). VVAP(128) 00310
RFAL L,I.HV,lHVT.lCS,LCT.HAIR,HriUID,MFUEL.MhZ.N2P.N2R.N2S.NO 00320
REAL KG 00330
KG=(KWV(TEMP) 00340
VISG=FVWV(TEMP) 00350
CPG=FCWV(PPG. TEMP) 00360
NOTE 43?no=12»16no 00370
REG=4J200.»G»OHO(NC)/VISG 003BO
PRG=VISG»CPG/KG 00390
HBTO=.?30»PtG»»(-.3)»PPG»«<-.6«7)»0»CPG 00400
BM=SQRT(1600.*12.»HHTO/(FKH(TFHP)«DS(NC) » 00410
Z=3.63»BH(NC)»BM 00420
EMaTANH(?)/2 00430
SMTSBT=lfl.8»BH(NC)»BT(NC)/00(NC) 00440
HTC*EM»SMTSBT«HBTO 00450
RETURN 00460
END 00470
203
-------
Section 9
COMBUSTOR MODEL
-------
Section?
COMBUSTOR MODEL
MAIN PROGRAM - COMBST
The main program for the combustor model is entitled COMBST. This
model uses the subroutines COMB1, COMB2, and COMB3.
COMBST links together the flame temperature, thermal transient, and
emission submodels. It is, at present, set up to derive the steady-state
solution through an iteration on the value of TA. The accuracy of convergence
has been set as 5%, and must be changed by internal program modification
if tighter accuracy is desired.
NOMENCLATURE -- COMBST
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of COMBST are in the COM-
MON of MAINSYS.
FORTRAN Variables in Argument list:
Definition
FORTRAN
Variable
CP
PACE
PACI
TA
T FLAME
TG
TS
TT
Moles of unburned carbon in products
Pressure of gas at combustor exhaust
Pressure of air at combustor inlet
Temperature of air
Temperature of flame
Temperature of gas
Temperature of shell
Temperature of tube
Units
moles
Ib/in?
Ib/in?
op
op
op
OF
Other Selected Fortran Variables:
FORTRAN
Variable
CONV
DELT
FAR
Definition
Convergence limit
External time step
Fuel/air ratio
205
Units
sec
-------
FLOW DIAGRAM -- COMBST
C
Start
Calculate FAB
I
Set: TAIR = TO
DELT = YEXT
CALL COMB1
I
Set: TS = TAIR
TA = TAIR
TT = TAIR
TG = TFLAME
CALL COMB2
Calculate PACE, CONV
Set: TAIR = TA
CALL COMB3
C
Return, End
206
-------
PROGRAM LISTING — COMBST
SUBROUTINE COMBST 00020
COMMON AP,B.CH,CHR.CO.C02P 00030
COMMON C02S.nCS.OCT.DTH.EOUlV,F 00040
COMMON FS.M20P,H20S,HP,HR,HTFLAM 00050
COMMON HTIN,LHV.LHVT.LCS.LCT.MAIR 00060
COMMON MFLUIO.HFUEL.N2P.N2R,N2S,N8ENDA 00070
COMMON NHENDO.NO.NP.02P,0?R,02S 00080
COMMON PO.SPI.SSA.SIA.STG.TO 00090
COMMON ws,uT,yExT,oni,ou2,no3 ooioo
REAL L,LHV,IHVT,ICS,LCT,MA|R.MFIUID,MFUEL.MHZ.N2P.N2R,N2S.NO 00280
REAL MPUMP 00290
FAR=NFUEL/MAIH 00300
TAl«=TO 00310
DELT=YEXT 00390
10 CALL COHflKTAIR,TFLAMf,CP> 00400
TS=TA|R 00410
TA=TAIR 00420
TT=1A!R 00430
TG=TFLAMF 00440
CALL COMH2 00470
PACE=PACI-nPT 00620
CONV=ARS(
-------
SUBROUTINE COMB!
The submodel COMB1 calculates the combustion flame temperature. It
employs the subroutine ENERGY.
The variables which specify the fuel have been set internally as:
C = 0. 85
H = 0. 15
FMAX = 0. 1
FM1N = 0. 01
NOMENCLATURE -- COMB1
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of COMB1 are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
CP Moles of unburned carbon in products moles
TAIR Air temperature °F
T FLAME Flame temperature °F
Other Selected FORTRAN Variables:
FORTRAN
Variable Definition Units
FMAX Fuel air ratio, maximum limit
FM1N Fuel air ratio, minimum limit
208
-------
FLOW DIAGRAM -- COMB1
C
Start
I
Calculate
B, HTOS, CO2S,
O2S, N2S, FS, F
NO
YES
Write
F > FMAX
YES
Write
F < FMIN
Compute
O2R, O2P, N2R, N2P,
HP, CP. H2OP, CO2P
NO
Compute
CO2P, H2OP.O2P,
CP, HP
209
-------
FLOW DIAGRAM -- COMB1 (Cont'd)
COMPUTE LHVT
HTFLM1: (LHVT + HTIN)
TFLAM2 = TFLAM 1
HTFLM2 = HTFLM 1
TFLAM1 = TFLAM 1
-100.
TFLAME = TFLAM2 - BR
TFLAME = TFLAM1
CALL ENERGY
C
Return, End
210
-------
PROGRAM LISTING -- COMB1
40
SUflROUTINF cnn8KTAIR.TFLAHE.CP)
COMMON AP,B.CH,CHR,CO,C02P
COMMON C02S.ncS,DCT,DTH.EOUIV,r
COMMON FS.H20P.H20S.HP,HR,HTFLAM
COMMON HTIN.LHV.LHVT.LCS.LCT.MAIR
COMMON MFLUID.MFUEL,N2P.N2R,N2S,NBENDA
COMMON N9ENDG, NO. HP. 02P, 0?R, 02S
COMMON PO,SP1.SSA,STA.STG.TO
COMMON WS.UT, YEXT,DD1,DD2.D03
REAL L,LHV,LHVT,LCS,LCT,MAIK.MFLUID,HFUEL.MUZ,M2P.N2R,N2S,NO
REAL MOLAIR
FDR ANY HYflROCAWBUN FUEL AIR MIXTURE
C PI RCENT CARnON BY HEIGHT. H PERCENT HYDROGEN BY WEIGHT
LHV LOWER HEATING VALVEJ COMBUSTION LIMITS FMAX.FMIN
CALCULATION OF FLAME TEMPERATURE
--BOILER INLET
FOR KEROSENE
FMAX=.l
FMIN=.ni
C=.«5
H=.15
«=12.»(H/C)
CHR=B*1?.
STOCHIOMFFRY
H20S=H/?.
CO?S»H?OS/2.
4.»02S
12.*R)/(32.«02S«28.«N2S)
STOCMIOME1R1C CONDITIONS
o?s=
N2S =
FS=(
OFF
F = MF
IF(F
IF(r
EMU I
MOLA
02H =
02P =
N2R =
N2P =
TO
TO
100
200
70
.GT.FMAX) GO
.LT.FMIN) GO
V=F/FS
IR=1./EOUIV
MOLAIH»02S
02R-02S
MOLAIK»N2S
N2R
CP = 0.
H20P=H20S
C()?P»CO?S
1F<02P.GE.O.) GO TO 40
C02P=C02S-(02b-02R)/2.
H20PaH20S-(02S-0?R)
02P=0.
CP«1.-C02P
HP=B-2.»H20P
CONTINUE
FLAME TEMPERATURE CALCULATION
CALL ENERGY(TAIR,HT1N,H20P,C02P,N2P,02P>
LHVT=(1?.»B)»LHV
TFLAM1=4949.
CONTINUE
CALl ENfcROY(TFLAMl,HTFLHl.H20P,C02P.N2P,02P)
IF(HTFLM1-(LHVT*HTIN)) 70,350,80
BR«(HTFLM2-(LHV.T»HTIN))/(HTFLM2-HTFLH1)»100.
TFLAME"TFLAh2-BR
CALL ENERGY(TFLAH6.HTFLAM,H20P.C02P.N2P.02P)
00020
00030
00040
onoso
00060
00070
00080
00090
On 100
(1(1280
on?90
o n 3 ii o
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
211
-------
PROGRAM LISTING -- CQMBl (Cont'd)
GO TO 400 00790
80 TFLAM2«TFLAM1 00800
HTFLM2»HTFLM1 00810
TFLAM1»TFIAM1-100. 00820
60 TO 50 00830
350 TFLAMEcTFLAHl 00840
GO TO 400 00850
100 WRITE<6,110) 00860
110 FORMAU7H F>FMAX) OOR70
GO TO 300 00880
200 WRITE<6,120) 00890
120 FORMAT<7H F
-------
SUBROUTINE COMB2
The submodel COMB2 calculates the combustor thermal transients. It
employs the following subroutines:
TRHT FDA
PDROP1 FCG
FCMS FVG
FCA FKG
FVA FDG
FKA
NOMENCLATURE -- COMB2
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of COMB2 are in the COM-
MON of MAINSYS.
FORTRAN Variables in Argument List:
Definition
FORTRAN
Variable
DELT
DPT
TA
TF
TG
TS
TT
External time step
Pressure drop across combustor
Temperature of air
Temperature of flame
Temperature of gas
Temperature of shell
Temperature of tube
Other Selected FORTRAN Variables:
Definition
FORTRAN
Variable
AHSA Heat transfer coefficient between shell and air
AHTA Heat transfer coefficient between tube and air
AHTG Heat transfer coefficient between tube and gas
CPA Specific heat of air
CPS Specific heat of shell
CPT Specific heat of tube
GAIRS Air now rate
Units
sec
Ib/in?
op
OF
op
op
Units
Btu/sec °F
Btu/sec °F
Btu/sec °F
Btu/lb °F
BtuA'b °F
Btu/lb °F
Ib/sec in?
213
-------
FORTRAN
Variable Definition Units
GGAS Gas flow rate Ib/sec in?
STAB Stability time step sec
WS Shell weight Ib
WT Tube weight Ib
214
-------
FLOW DIAGRAM -- COMB2
C
Start
Compute
GAIRS, GGAS, CPS, CPT, CPA,
MUA, KA, RHOA, CPG, MUG,
KG, RHOG, RFA
I
CALL TRHT
I
Compute AHTA
I
CALL TRHT
I
Compute
HSA, HTA. HTG, EA, EG, CS, CT
ABS (DELT - T): . 02 BELT
STAB: (DELT - T)
215
-------
FLOW DIAGRAM -- COMB2 (Cont'd)
DTK = DELT - T
TA, TG, TS, TT
|TG - TGll: TG/100
CALL PDROP1
I
Compute PIN
I
CALL PDROP1
1
Compute DPT
C
Return, End
216
-------
PROGRAM LISTING -- COMB 2
SUBROUTINE COMB2(TS,TA.TT,TF,1G.DELT,OPT)
• CALCULATION OF AlK PREHEAT AND COMBUSTION OAS COOLING
• LOSSES IN COMHUSTOR
COMMON AP.B.CH.CHR.CO.C02P
COMMON C02S,DCS.DCT.DTH,EOU1V,F
COMMON FS.H20('.H20S.HP,H«.HTFLAM
CUMMON HTIN.LHV.LHVT.LCS.LCT.MAIR
COMMON MFLU|O.MFUEL.N2P.N?R,N2S,N8ENDA
COMMON NBENDG,NO,NP.02P,02R.02S
COMMON PO.SPl.SSA.STA.SIG.TO
COMMON WS.WT. ITEXT.001,DD2.D03
REAL L.LHV.LHVT.LCS.LCT.MAIR.MFLUID,MFUEL.MWZ.M2P.N2R.H2S«NO
REAL KA.KG.MGAS.MUA.MUG
T = 0.
ACS=(DCS«(SSA*STA)/(4.«LCS)
ACT=(DCT»(STG)/(4.»LCT))/12.
MGAS=MAIR»MFUtL
GAIRS=MAIK/ACS
Gr,AS = MGAS/ACT
20Q
700
300
400
TfilrTO
CONTINUE
CPS = FCMSUS)
CPT=FCMS
RHOC = 1./FI)G( TG.HFA)
CALL TRHT
-------
PROGRAM LISTING -- COMB2 (Cont'd)
TSorSA»lA*FSS«TS 00780
FTA=HTA«DTH/CT 00790
FTO=HTO«nTH/Cl 00800
FTT=1.--1G/100.) 600.600.900 00870
900 TG1=TG 00880
GO 10 ?00 00890
600 CONTINUE 00900
CALL PnRUPKPO,TA.MAm.DCS.ACS,LCS.4.UPA,O.NBRNnA,DPBA> 00905
PIN=Pu-nPA-DP«A 00906
CALL >»OROPl(PIN.TG.MGAS,tVCT,ACT.LCT.4.DPO.RFA.HB6NnO.OP80) 00908
nPT=DPA*npRA*uPG»DPhG 00910
RE1URN 00920
FNP 00930
218
-------
SUBROUTME COMB3
The submodel COMBS calculates the combustor emissions.
NOMENCLATURE -- COMBS
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of COMB3 are in the COMMON
of MAINSYS.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
CHP Moles of unburned carbon in products moles
DELT Elapsed time sec
TAIR Temperature of air ° F
Other Selected FORTRAN Variables:
FORTRAN
Variable Definition Units
CHTOT Unburned hydrocarbons emitted in grams/sec
time interval DELT
COTOT Carbon monoxide emitted in time grams/sec
interval DELT
NOTOT Nitrogen oxide emissions emitted grams/sec
in time interval DELT
219
-------
FLOW DIAGRAM -- COMBS
C
Start
Compute NOE
YES
1
Compute NOE
YES
Compute NOE
Compute NOE
Compute NOQ
YES
Compute COE
220
-------
FLOW DIAGRAM -- COMB3 (Cont'd)
Compute COE
Compute COQ
YES
Compute COE
YES
Compute COE
YES
1
Compute CHE
YES
1
Compute CHE
221
-------
FLOW DIAGRAM -- COMB3 (Cont'd)
©
Compute
NOPPM
COPPM
CHPPM
PROP
NO
CO
CH
1
Compute
COT
NOT
CHT
T
222
-------
FLOW DIAGRAM -- COMB3 (Cont'd)
Compute
NOTOT
COTOT
CHTOT
C
ReturaEnd
YES
223
-------
PROGRAM LISTING -- COMB3
in
311
40
5U
6U
70
80
90
100
110
120
SUBROUTINE COhB3UAIR.CHP.DELT>
COMMON AP.P.CH.CHR.CO.C02P
COMMON cn?s.ncs.DCT,i)TH.Fouiv,F
COMMON F S,M?OP,H20S,HH,HR,HTFLAM
COMMON HT|N,LHV.LHV1.LCS.LCT.MA|R
COMMON MFLIHn,MFUEL.N2PiN2R,N2S.NBENDA
COMMON NBENUGi N(i,NP.02Pt02R,02S
COMMON HO.SP1.SSA,STA,STG.TO
COMMON *s. wi , YF XT, nni, nf>2. nn3
RhAL L.LMV.LHVT.I i:S. LCT, MA I K. MFLUI D. MFUEL. MWZ, N2P, N2R. M2S, NO
KFAl MF . NdF.NnPHM.NuQ.NUT.NOTOT
CALCIILAIION OF POLLUTANTS FORMED IN TIME OELT
MFsMFUEI.
IFltOUl V.GT.l. ) GU 10 ?0
IF(FOUI V.LT.0.3) GO Tu 30
(MtOUl V.GT.O.ftrt) 00 10 10
GO TO 4U
NiiF; = l.flo
Gil TO 411
GO TO 40
NOE-10.
CONTINUE
N(10=NOE»H«
IF(fcOUl V.iJT.l. ) GU TO 60
IFUOU1 V.LT.0.3) UO TU 70
IF(EOU1V.«T. 0.365) GO TU SO
C(lE = -3466.«EOUlV*14H5.
GO TO 80
COF = l.«nHF*3*EOUlV«(-6.662E*3*6.4HOE*3»r:OUIV)
RO TO 60
GO TO flfl
COE=50n.
CONI INUE
COO=COE»HR
IF(fcHlll V.GT.l
IFIFOUI V.LT.0
If (tOUt V.GT.0
CHE=-llOO.«tOul V»6?B.
GU TO 120
) GO TO llrt
47) GO TO 1110
54) RU TO 90
GO 10 120
CHE=110.
GO TO 1?P
CONTlNdt
CHr) = CHE
IF(TAIR.LF.20D.) (iO TO 12t>
130
NOT = 2.091«TAIi"»(-6.874F-3*TAIR«(1.188E-5-3.288E-9«TAIR»
CHT=1.465*TAIR»<-2.H65E-l*TA!R»<2.643E-2-9.318E-««TAIR))
GO TO 131
COT=1.
NOT=1.
CHT=1.
CONTINUE
00020
00030
00040
00050
00060
00070
00080
00090
ooion
002HO
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
005*0
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
224
-------
PROGRAM LISTING -- COMB3 (Cont'd)
COPPMsCUO«COT 00780
nHPHH=CHO»CHT 00790
PHnit = H?OP»CU?P*N?P*ll2P«CHP 00800
• PHR IS 1HE HOLECULAK WEIGHT OF FUEL 00810
• WEIGHT Or POLLUTANTS PER UNIT WEIGHT OF FUEL 00820
NU=NOPPM«PROD»30.»l.E-6/CMR 00830
CO=COPPH»PROO»28.«l.E-«/CMR 00840
CH=CHPPM»PROO»13.«l.e-6/CMR 00850
IF(FO(llV.LE.l.) 00 TO 140 OOB60
CMsCHP/CHR 00870
140 CDNTINUF 00880
• RKAM POLLUTANTS IN DELT SEC 00890
NOTOT=NO»MF»OFLT«(1./2.205E-3) 00900
COTUT=CU»MF»nELT»(l./2.205E-3) 00910
rMTOT=CH»Hr.ntLT»(l./2.205E-3) 00920
HfeTURN 00970
END 00980
225
-------
SUBROUTME ENERGY
The subroutine ENERGY calculates the enthalpy of the products of com-
bustion.
NOMENCLATURE -- ENERGY
FORTRAN Variables in COMMON:
There is no COMMON block in ENERGY.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
CO2P Moles of carbon dioxide in products moles
H Enthalpy of products of combustion Btu/lb
H2OP Moles of water vapor in products moles
N2P Moles of nitrogen in products moles
O2P Moles of oxygen in products moles
T Temperature °F
226
-------
PROGRAM LISTING — ENERGY
6U
70U
90(1
80U
40li
60(1
mo
300
200
SURHOUTINF tNtRGY(T.H,H20P,C02P.N2P,02P)
RfM U2P.N7P
T«=l*460.
IFC IR.GT.oOU. >6(l TO 50
HH?0=<17./6. )«TR
GU 10 60
HH?0=-:i.3?nt*>3*TR«<7.744*l5,793E-4»TR)
CUNTlMUt-
ir (TR.RT.inO. )GO f0.7UO
Hr<12=2.»Tn
fill TO non
IFl IR.ni.UOO. )GO TO 400
HC02=<825./80. )«(TP-500. )»1000.
Go (0 Run
IF < TR.GT.->00. )GO 10 4110
H(l?=2.»IP
GU TO 5(KI
IM 1R.RT.unO. )RU TO 600
Hij?=(25./4. )»(TR-'jOO. ) «1000.
on 10 son
M.i?=8.7 t?*T
ir ( IH.OI .ftno. IRU r« mo
HN?=(40./1S.)»TR
r;u TO ?nn
IM IR.GI . i.inn. >GO TO jno
G Ml ?U"
fi M | NI>(-
H .
H I
H I
HI il?=U?P»HO?
f N?*hTU?
o it o i n
00015
00020
00021
0002?
00023
00024
00025
00031
(10032
00033
00034
00035
00036
00037
0003R
00041
00042
00043
00044
00045
nil 046
00047
00048
00051
00053
»(- I OMN
00055
00056
00057
0005R
000/0
nOOHO
00090
00100
00110
00120
00130
227
-------
SUBROUHNE TRHT
This subroutine TRHT calculates the heat transfer coefficient between
the air or combustion gas and the shell or tube wall.
NOMENCLATURE -- TRHT
FORTRAN Variables in COMMON:
There is no COMMON block in TRHT
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition Units
C Specific heat of air or gas Btu/lb °F
D Hydraulic diameter of tube flow passage in.
G Mass flow rate Ib/sec in?
H Heat transfer coefficient between shell Btu/sec °F
and air or tube and combustion gas
K Conductivity of air or gas Btu/hr ft °F
VIS Viscosity of air or gas Ib/hr ft
228
-------
PROGRAM LISTING -- TRHT
SIIRKOUTINt ntHT(G,n.VIS,C,K,H) 00010
REAL K n0020
H=(.0?.1)»((J6UO.»l?.«G«U/ViS)»».B)»((C»VIS/K)»».4)»(K/D) 00030
1«(1./(360U.M2. )) 00040
KfcTURN 8nn5°
p N H 00060
229
-------
Section 10
TRANSMISSION MODEL
-------
SectionIO
TRANSMISSION MODEL
MAN PROGRAM - TRANSM
The transmission model is entitled TRANSM. The model reads data
from data file 38, which is entitled Data Input and is discussed with the total
systems model, MAINSYS, in Section 13.
NOMENCLATURE -- TRANSM
FORTRAN Variables in COMMON:
There is no COMMON block in TRANSM.
FORTRAN Variables in Argument List:
FORTRAN
Variable Definition
INE Logic variable to read data
R Engine intake ratio
RPME Engine rpm
RPMX Axle rpm
TENET Engine torque
TORQX Axle torque
FORTRAN Variables in READ Statements:
FORTRAN
Variable
GRH
GRL
GRRE
R1L
R1U
R2L
R2U
Definition
High gear ratio
Low gear ratio
Rear-end gear ratio
Intake ratio at point 1L*
Intake ratio at point 1U*
Intake ratio at point 2L*
Intake ratio at point 2U*
Units
rpm
rpm
ft-lb
ft-lb
Units
See Volume I, Section 4 for the location of these points.
231
-------
FORTRAN
Variable (Cont'd) Definition Units
RPM1L Axle rpm at point 1L* rpm
RPM1U Axle rpm at point 1U* rpm
RPM2L Axle rpm at point 2L* rpm
RPM2U Axle rpm at point 2U* rpm
*See Volume I for the location of these points.
Other Selected FORTRAN Variables:
FORTRAN
Variable Definition Units
GR Gear ratio
HPX Power required for driving auxiliaries hp
and drive train losses
TLOSS Torque loss due to driving auxiliaries ft-lb
and drive train losses
*See Volume I, Section 4 for the location of these points.
232
-------
FLOW DIAGRAM -- TRANSM
C
Start
NO
YES
READ R1L, RPM1L, R2L, RPM2L,
GRL1, R1U. RPM1U, R2U,
RPM2U, GRH. GRRE
RPMX £ RPM1L
RPM1U - RPM1L
233
-------
FLOW DIAGRAM -- TRANSM (Cont'd)
RPMX s: RPM2L
R - R2LI + RPM2L)
Calculate
RPME
HPX
TLOSS
TORQX
C
Return, End
234
-------
PROGRAM LISTING -- TRANSM
SUBROUTINE IRANSHIR.RPMX,TENET.RPME.TORUX.INE) 00020
• CLU1CH NOT CONSIDERED. THIS IS CRITICAL AT IDLE CONDITION. 00025
• MODIFY PROGRAM WHEN CONTROLS ARE INCLUDED. 00026
IF( INE.NE.O) 00 TO 7 00030
READ<3fl.5)LINt.RU.RPHlL.R2L.RPM2L.GRL 000 40
READ(38,5)LINE,R1U.RPM1U.H2U.RPH2U.GRM 00050
READ(3f»,5)LlNb.GRRE 00060
5 FORMAT»RPM1L> GO TO 10 00110
IF(RPMX.LE.HPH?l) GO fO 30 OU120
IF(RPHX.GE.«PPM2U-RPH2L)/(R2U-R2L))«(R-R2L)»RPM2L) GO TO 20 00130
GO TO 30 00140
10 RR1=ORL 00150
GO TO 30 00160
20 r,Nl=GKH 00170
30 n«=CRRE»GKl 00180
PPHE>GR*RPMX 00190
HPX = 3. 001<»5
TLOSS»HPX«33000./(2.»J.1415»RPMX) 00197
TnROX = GK»«TFN»-T-TLOSS) 00200
RETURN 00220
END 00230
235
-------
Section 11
DRIVER MODEL
-------
Section 11
DRIVER MODEL
MAIN PROGRAM - DRIVER
The DRIVER model is entitled DRIVER. It uses no subroutines.
NOMENCLATURE -- DRIVER
FORTRAN Variables in COMMON:
There is no COMMON block in DRIVER.
FORTRAN Variables in Argument List:
FORTRAN
Variable
A
AA
AR
AS
CR
cs
DIST
DT
KA
KO
LINBX
Definition
Vehicle acceleration
Linear acceleration of wheel
Reference acceleration
Accelerator setting
Logic variable
+1 - indicates acceleration
0 - cruise at constant speed
-1 - indicates deceleration
Logic variable for driver action during
wheel slip
1 - accelerator setting
0, -1 - accelerator held constant
Distance traveled
Time step
Accelerator sensitivity (changed
internally)
Accelerator sensitivity (initial value)
Logic variable: when = 0, MAINSYS
reads new line of data from ROUTE
mi
sec
LINDEX Logic variable: when = 1, vehicle idling
237
-------
FORTRAN
Variable (Cont'd) Definition Units
LINEX Logic variable: when ^ 0, vehicle de-
celerating; - 0, vehicle accelerating
LR Reference marker location mi
RADW Wheel radius ft
RPMX Axle rpm
TE Cumulative idle time sec
TI Reference idle time sec
V Vehicle velocity mi/hr
VR Reference vehicle velocity mi/hr
VT Wheel velocity mi/hr
Z Logic variables used during wheel slip:
initially set as 1, reset internally
238
-------
FLOW DIAGRAM -- DRIVER
C
Start
LINDEX = 0
LINEX = 0
LINBX = 0
YES
YES
YES
NO
C
NO
C
NO
C
TE = TE+DT
AS = 0.
RPMX = 0.
LINDEX = 1
I
Return
LINBX = 1
Return
LINBX = 1
I
R etu rn
239
-------
FLOW DIAGRAM -- DRIVER (Cont'd)
YES
NO
YES
Z = -1
YES
KO = KA/10
KA = KO
AS = 0
KO = KA/110
KA = KO
1
240
-------
FLOW DIAGRAM -- DRIVER (Cont'd)
i
AS = 0
A = AB
A = A/RADW
LINEX = 1
c
I
A = 0
AA = 0
V = VR
VT = V
LINDBX = 1
Return
) ( Return )
1
AS = AS + KA * (AR-A)
AS = AS + KA * (-AR-A
AS = AS + KA * (-A1T
241
-------
PROGRAM LISTING — DRIVER
30
3?
40
5U
60
IF(TI.LE.TF) GO
TE=TE*D1
SUflKOUTINE I)R|VER GO TO 32
LINBX=1
RETURN
IF(V.EO.VT) GU 10 50
IF(Z.EO.l) GO TO .15
GU TO 130
Z = -l
IF(CS.E0.1.) "0 TO 40
KO=KA/10.
KA = KO
GO TO 130
AS*0.
KO=KA/10.
KAcKO
GO TO 130
JF(CR)60.80,120
IF(V.LE.VR) On TO 70
AA=A/RADM
LINRX=1
RETURN
70 A=0.
80
90
100
110
120
130
1411
Vl =
RETURN
IF(V-VR)9U,10n.HO
AS»AS»KA»(AK-A )
GO TO 130
AS=AS»KA»(-A)
GO TO 130
AS=AS»KA»(-AR-ft )
GO 10 130
IF(V.LT.Vlt) GO TO 90
LINBX=1
RETURN
IMAS.GE.O. > GO TO MO
AS=n.
GO TO 160
IF(AS.LE.l. ) 00 TU 160
00020
00030
00035
00038
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00160
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00516
00520
00530
00540
00550
00560
00570
00560
242
-------
PROGRAM LISTING -- DRIVER (Cont'd),
AS*1. 00590
160 CONTINUE 00600
RETURN 00610
END 00620
243
-------
Section 12
PARAMETRIC DESIGN PROGRAMS
-------
Section 12
PARAMETRIC DESIGN PROGRAMS
The parametric design programs are employed to determine the component
sizes and cycle conditions for a given design power requirement.
MAIN PROGRAM - EEFF
EEFF calculates the power and cycle efficiency for a system employing
a simple reciprocating expander The intake ratio, piston speed, and inlet
pressure are variable, and parametric runs are made by providing appro-
priate input data.
The program iterates on the condenser temperature, TCOND. The iter-
ation accuracy is set internally by ERROR = . 02 and the number of itera-
tions limited by ITER1 = 100. The condenser temperature is determined by
scaling from a condenser with a specified heat rate QCONDT, and inlet tem-
perature, TCOST.
EEFF employs the following additional subroutines:
SUPPT DOME
SATP PUMP
ENGINE
It should be noted that the argument list and COMMON of subroutine ENGINE
must be modified for use with EEFF.
EEFF is currently set up for a Rankine cycle employing a regenerator.
/
NOMENCLATURE -- EEFF
FORTRAN Variables in COMMON:
The variables NND and IND (used in the COMMON of EEFF) are in the
COMMON of MAINSYS. listed and defined in Section 13.
FORTRAN Variables in READ Statements:
FORTRAN
Variable Definition Units
AP Piston area in?
DPRES Pressure increment psi
DR Intake ratio increment
DS Piston speed increment ft/min
245
-------
FORTRAN
Variable Definition Units
EFFBOI Boiler effectiveness ft/min
EFFREG Regenerator effectiveness
NP Number of pistons
NQ Logic variable = 1, bypasses TCOND scaling
PB Boiler pressure psi
PEND Final inlet pressure psi
PSTART Initial inlet pressure psi
QCONDE Condenser design heat rate Btu/hr
REND Final intake ratio
RSTART Initial intake ratio
SEND Final piston speed
SP1 Piston stroke
SSTART Initial piston speed
TB Boiler temperature
TCOST Initial guess at condenser temperature
(also condenser design temperature)
Other Selected FORTRAN Variables:
FORTRAN
Variable Definition Units
EFF Cycle Efficiency
EFFOVC Overall efficiency
H4 Inlet enthalpy condenser Btu/lb
H8 Enthalpy pump exit Btu/lb
H9 Enthalpy pump inlet Btu/lb
HBOIL Boiler heat rate Btu/hr
HP Cycle design power hp
HPUMP Pump power hp
HSUB Condenser enthalpy outlet Btu/lb
P4 Condensing pressure psi
PH Pressure pump exit psi
ft/min
in.
ft/min
°F
0 F
246
-------
FORTRAN
Variable Definition
P9 Pressure pump inlet
PSUB Condenser pressure at outlet
QCONDT Condenser heat rate
QREG Regenerator specific heat rate
RPM Expander rpm
TCOND Condensing temperature
TSUB Condenser temperature outlet
VSUB Condenser specific volume outlet
WNET WSHAFT - WP network
WP Pump work
WSHAFT Expander shaft work
Units
psi
psi
Btu/hr
Btu/lb
rpm
°F
op
ft?/lb
Btu/lb
Btu/lb
Btu/lb
247
-------
FLOW DIAGRAM -- EEFF
C
Start
Set
ERROR = 0. 02
IND = 1
NND = 1
READ
boiler conditions
CALL SUPPT
READ
condenser and engine
conditions
I
Set
IND = IND + 1
R = RSTART
PSPEED = SSTART
PI = PSTART
TCOND = TCOST
Set
ITER1 = 0
HI = HB
CALL SUPPT
(A)
248
-------
FLOW DIAGRAM -- EEFF (Cont'd)
NO
^ 1TEK1 S 1UU ^ *\
^^^^^ ? .X"^
J^YES
Set
Set
CALL
J
SATP
P3 = PCOND
NND = NND+1
TSUB = TCOND-20
\
CALL
j
NC2 = -1
,
L
SATP
.
.
>
CALL ENGINE /
\
t
Calculate
QREG, H4
Set P4 = PCOND
,
-
CALL DOME ^
,
-
Calculate
QCOND, QCONDT
I
249
-------
FLOW DIAGRAM -- EEFF (Cont'd)
YES
Set
TCOND
NO
Calculate
TCONDP
L
ITCONDP - TCQND <; ERROR
TCOND
9
Define
TCOND
ITER1
Calculate
H8. P8, H9, P9,
QBOIL, HBOIL,
WNET. EFF,
EFFOVL, HP.
HREG, RPM
Print
properties around cycle
efficiencies,
heat rates
250
-------
FLOW DIAGRAM — EEFF (Cont'd)
Calculate
PSPEED
PSPEED * SEND
Set
PSPEED -- SSTART
I
Calculate
R
Define
PSPEED
R
Calculate
PI
YES
251
-------
PROGRAM LISTING -- EEFF
20
30
40
onoio •
noo^o
QUO.10
00040
00050
00060
00070 •
ooobo •
00090
ooion
ounn
00120
0(113(1
00140
00150
00160
00170
OU180
00190
00200
00210
00220
OU230
00240
00250
00260
00270
00280
00290
003UO
00310
0032D
00330 +
00340
00350
00360
003HO
00390
00400
00410
00420
00430
00440
00450
00470
00460
00490
1)0500
00510 166
00541
00542
00543 +
00550 170
00560
00570
00560
00590
00600
00610
58
59
Nb bFFICIFNCY CALCULATION
COMMON NN[I, INP
RfcAL HP. 1MEP
FILF-NAMF F ILF2
ERRORsO.O?
INO = 1 >NND=1
Kb A II IN DATA KOILER PRESSURE. TEMPERATURE. INTAKE RATIO,
AND PISTON SPEED, CONDENSER TEMPERATURE
RbAnLINE,AP,PB,T8.NP
CALL SUPPTCPR.TM.HB.SB.VB.l)
REA'.l<"FILE2".200)LINE,EFFREO,bFFBOI
RtAu<"FILE2",?00>LlNE,NO,TCOST,OCOt»DE
HbAlX-F lLE2".2flfl)LINE,RSTART.REND»SSTART,SEND
REAn("FILfc2M.?OU)LI»lE,PSTART.PEND
RF-An
-------
PROGRAM LISTING -- EEFF (Cont'd)
OU620
00630
00640
00650
00660
0 II6 7 0
OU680
00690
00700
00710
00720
00730
00733
00735
00740
00750
00760
00770
OU780
00790
OOBOO
00810
OUB20
00830
OOB40
00850
00860
OOR70
00880
00890
00900
NET POWER OUTPUf
HNF T=WSHAFT-HP
EFF=WNET/Q8UIL
EFFOVL=tFF»EFFBOI
400
410
200
600
RPM=6.»PSPEEn/SPl
CONTINUE
PKtNT:"uCONn,OCONDT,TCOND".OCONn.QCONnT,TCnND
PH I N T:"HP.HPUMP,H8.P8.H9.P9".WP.HPUMP.H8.P8.H9,P9
PRIHT:«PSUB.TSUB,MSUB,VSUB",PSUB.TSUB.HSUB,VSUB
PH|NT:"H4,H4",P4,H4
PR I NT :" 0801 L. HBO IL", 0801 L. HBO IL
PR|NT:"oREG".OREG
PR[NT:"WNFT.EFF.EFFUVL.HP.RP«".WNET,EFF.EFFOVL.HP.RPN
PRINT: " "
PRINT: " "
PRINT: " "
PSPEFl)aPSPEfcn*OS
IF (PSPfEn.LE.SfcNO) GO TO 20
PSPFFD-SSTART
If (R.Lt.RENO) UO TO 20
PSPfFD»SST»RTi RnRSTART
P1=P1«OPPES
IF(P1 .LH.PEND) UO TO 20
CUNT INUK
EMD
253
-------
MAIN PROGRAM - ECOMP
ECOMP calculates the power and cycle efficiency for a compound recip-
rocating expander with an energy accumulation between the first and second
stages. It is analogous to EEFF, but with two stages rather than one (refer
to the preceding description of EEFF for further details).
ECOMP employs the following subroutines:
SUPPT PUMP
SATP
ENGINE
FORTRAN Variables in COMMON:
The variables NND and IND, used in the COMMON of ECOMP, are in the
COMMON of MAINSYS, listed and defined in Section 13.
FORTRAN Variables Input through READ Statement:
FORTRAN
Variable Definition
API Piston area, stage 1
AP2 Piston area, stage 2
DPRES Inlet pressure increment
DR2 Intake ratio increment, stage 2
DS Piston speed increment
NP1 Piston number, stage 1
NP2 Piston number, stage 2
NQ Logic variable: = 1, bypass TCOND scaling
PEND Final inlet pressure
P] Boiler pressure
PSTART Initial inlet pressure
yC'ONDE Condenser design heat rate
HI START Initial intake ratio, stage 1
R2START Initial intake ratio, stage 2
R2END Final intake ratio, stage 2
SEND Final piston speed
SP1 Piston stroke, stage 1
Units
in.3
in?
psi
ft/min
pai
psi
psi
Btu/hr
ft/min
in.
254
-------
FORTRAN
Variable
SP2
SSTART
TAMB
TCOST
Definition
Piston stroke, stage 2
Initial piston speed
Ambient air temperature
Initial guess at condenser temperature
(also condenser design temperature)
Other Selected FORTRAN Variables:
FORTRAN
Variable*
H5
H6
H7
HPUMP1
HPUMP2
P5
P6
P7
WP1
WP2
Definition
Enthalpy, condenser pump outlet
Enthalpy, boiler pump inlet
Enthalpy, boiler inlet
Pump power, condenser pump
Pump power, boiler pump
Pressure, condenser pump outlet
Pressure, boiler pump inlet
Pressure, boiler inlet
Pump work, condenser pump
Pump work, boiler pump
Units
in.
ft/min
op
°F
Units
Btu/lb
Btu/lb
Btu/lb
hp
hp
psi
psi
psi
Btu/lb
Btu/lb
*See subroutine EEFF for other variables.
255
-------
FLOW DIAGRAM -- ECOMP
Start
I
Set
ERROR = 0. 02
IND = 1
NND = 1
1
READ
boiler conditions
condenser and
engine conditions
1
Set
IND = IND+ 1
Rl = Rl START
R2 = R2 START
PSPEED - SSTART
P2 = PSTART
TCOND = TCOST
Set
ITER1 = 0
H2 = HI
I
CALL SUPPT
1
NC2 = 1
1
CALL ENGINE
256
-------
FLOW DIAGRAM -- ECOMP (Cont'd)
CALL
V
J
SATP
>
Define
P3, TSUB
Set
NND = NNEH-1
-
CALL
t.
.
NC2
-
.
SATP
>
-
-- -1
,
CALL SUPPT
t. >
,
,
CALL ENGINE
v >
.
,
Calculate
QCOND
QCONDT
1
,®
257
-------
FLOW DIAGRAM -- ECOMP (Cont'd)
YES
TCONDP
TCOND
L
Calculate
TCONDP
TCONDP - TCOND I s ERROR
TCOND
NO
1
YES
t
NC2 = 1
Print
"FLOW2 > FLOW1"
CALL PUMP
T
TCOND = TCONDP
ITER1 = ITER1 + 1
FLOW1: FLOW2
258
-------
FLOW DIAGRAM -- ECOMP (Cont'd)
1
Calculate
H5. P5, H6
I
CALL PUMP
1
Calculate
H7, P7, QBOIL,
HBOIL
I
Calculate
WNET. EFF
EFFOVL, HP,
RPM
Print
properties around cycle,
efficiencies, heat
rates
PSPEED - PSPEED + DS
PSPEED = SSTART
259
-------
FLOW DIAGRAM -- ECOMP (Cont'd)
R2 = R2+DR2
260
-------
PROGRAM LISTING -- ECOMP
00010
OU020
00030
0 11040
00050
00060
OH070
01)080
00090
onion
00110
00120
00130
00140
OU150
00160
00170
001HO
00190
00200
00210
00?20
00230
00240
OH250
00260
00270
OD280
00290
00300
0 0 3 1 0
00320
00330
00340
00350
00360
00370
OII3HO
00390
00400
0 U 4 1 0
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
•
•
•
•
•
20
«
4
30
40
*
»
58
59
166
*
*
COMPOUND ENGINE PROGRAM
COMMON NND.IND
REAL NP1.NP2.IMEP1.IMEP?
FILENAME FILE3
ERRUR=.0.02
READ B01UR PRESSURE:, TEMPERATURE. HO ILER EFFECTIVENESS.
PISTON AREA STROKE AND NUMBER FIRST AND SECOND STAGE.
CONDENSER TfcMHERATIIRE. AMBIENT TEMPERATURE, I NLET PRESSURE
SFCOND STAGE.
REAO("FILEJ".200)LINE.P1,T1,EFFBOI
CALL SUPPT(Pl.Tl.Hl.Sl.Vl.l)
READ("FILE3".200)LINE,AP1,SP1.NP1,AP2,NP2
READ<"F1LE3",20U)LINE.NO.TCOST.UCONOE.TAK8
REAIX"FILt3",200)LINE,PI
REAIK"F1LK3".20U>L1NE,R1START
REfll)("FlLb3".?Ou)LINE,R2START,R2END.DR2
PEAD("FILH3M.20U)LINE.PSTART.PEND,DPRES
REAn<"FILt3".200)LINE,SSTART.SENO.DS
JND=IND*1
R1«R1START;R2=R2START|PSPEED=SSTARTJP2=PSTART
TCOND=TCOST
ITER1=0
H2«H1
CALL SUPPT(P2.T2,H2.S2.V2.3)
NC231
CALL ENGINE»(OCONJ)T/OCONDE>
GO TO 59
TCONOPsTCOND
CONTINUE
IF(ABS«TCONDP-TCOND)/TCOND).LE. ERROR) GO TO 166
TCOND=TCONDP
ITER1=ITER1*1
00 TO .10
CONTINUE
CALL ENUINE
-------
PROGRAM LISTING -- ECOMP(Contrd/
300
00600
00610
00620 310
00630 170
00640
00650
00660
00670
00680
00690
00700
00710
00720 •
00730 •
00740 •
00750
00760
00770
00780
00790
00800 400
00810
OOR20
00830
00840
00850
00860
00870
00860
00890
00900
00910
0(1920
OU930
00940
00950
00960
00970
410
PKINT:"FLUH2>FLOW1"
00 TO 410
CONTINUE
CALL PUMP(PCOND,PI.VSU8.FIOW2,PSPEED.MPUHP1.WP1)
H5=HSUB*WP1
P5=PI;P6»PI
H6=«FLOW1-FLOW2)«H!*FLOW2«H5)/FLOW1
CALL PUMP(PI,P1. VSUB,FLOM1,PSPEED.HPUMP2,WP2)
H7=H6»HP?
P7 = P1
QROIL*H1-H7
HBOIL=FLOW1.0bOIL
NET POWER OUTPUT
MNET=KSMAFTl»WSHAf T2-WP1-WP2
EFFaWNET/OBOIL
EFFGVL=EFF«EFrflOI
HP=((WSHAFTl-WP2)»FLOWl*(HSHAFT2-UPl)»FLOW2)/2545.
PPM=6.«PSPEEn/SPl
CONTINUE
PRlNT:"UCONU,UCONDT.TCOND",OCOND.OCONDT.TCOND
PRINT! "WP1.HPDMP1 .MS. P5,H6,P6',UPt. HPUHP1,H5.P5,H6, P6
PRlNTJ"WP2.HPU«P2,H7,P7",WP2,HPt)MP2.H7,P7
PR1NT:"PSU8,TSU8, VSUB, HSUfl" . PSUB. TSUB. VSUB. HSOB
PRINT:"080IL.HBU!L",Of)OIL,HBOIL
PRINT:«WNET,EFF.EFFOVL.HP.RPM".HNET,EFF.EFrOVL.HP.RPH
PSPEEH>PSPEtn«nS
IF(PSPEtD.LE.SEND) 00 TO 20
PSPEED»SSTART
600
IF(«2.LE.R2kND)00 TO 20
PSPEFD«SST4HTiR2«K2START
P2'P?«DPRES
1F(P?.LF.PEMD UO TO 20
FORMATS)
CONTINUE
END
262
-------
MAIN PROGRAM - TSIZE
TSIZE calculates the turbine rotor diameter, blade height, tip clear-
ance, cycle efficiency, and properties around the cycle. The boiler condi-
tions, turbine horsepower, and efficiency are specified by the user.
The following parameters are set internally:
GAMMA =1.02
GASC = 3. 72
DS = 1. 3
NS = 60
TSIZE employs the following subroutines:
SUPPT
SATP
NOMENCLATURE -- TSIZE
FORTRAN Variables in COMMON:
The FORTRAN variables in the COMMON of TSIZE are in the COMMON
of MAINSYS.
FORTRAN Variables Input Through READ Statements:
FORTRAN
Variable Definition
EB Boiler effectiveness
EPM Pump mechanical efficiency
EPTH Pump thermal efficiency
ER Regenerator effectiveness
ETM Turbine mechanical efficiency
ETTH Turbine thermal efficiency
HPT Turbine power
NOZANG Nozzle angle
NS Logic variable
= 0 - saturated boiler outlet
i 0 - superheated boiler outlet
PBO Boiler pressure
PC Condenser pressure
TBO Boiler temperature
Units
hp
radians
atm
atm
°C
263
-------
Other Selected FORTRAN Variables:
FORTRAN
Variable
AREAE
AREANZ
BLADEHGT
CEFFNOEB
CYCLEEF
MACHD
NOZCSS
ROTCSS
ROTOR DIA
ROTORSP
SPOUTV
TIPCLEA
VELTSS
Definition
Nozzle exit area
Nozzle throat area
Blade height
Cycle efficiency, not including EB
Cycle efficiency
Design Mach Number
Nozzle coefficient
Rotor coefficient
Rotor diameter
Rotor speed
Spouting velocity
Tip clearance
Tip velocity
Units
in?
in?
in.
ft
rpm
ft/sec
in.
ft/sec
264
-------
FLOW DIAGRAM -- TSIZE
C
Start
READ
ETTH, ETM, ER, EPTH,
EPM, EB, NOZANG, TBO
PBO, PC, HPT, NS
CALL SUPP
STO = SBOV
CALL SATP
CALL SUPP
Calculate
DELTAHTI
DELTAHTA, FLOWRATE,
HTOA. TURBWORK
CALL SUPP
CALL SATP
265
-------
FLOW DIAGRAM -- TSIZE (Cont'd)
Calculate
DE LTHRVI
DELTHRVA
HRVOA
1
CALL SATP
Calculate
DELTAHCA, DELTAHPI,
DELTAHPA, PUMPWORK,
HPOA, HRLOA, DELTAHBA,
CYCLEEFF, CEEFNOEB
I
Set
GAMMA, GASC, DS. NS'
1
Calculate
TEMPI, HEAD, VOLFRATE,
ROTORDIA, ROTORSPD,
BLADEHGT, TIPCLEAR
I
Print the Rankine cycle
design parameters^
Calculate
AREANZ, MACHD,
VELTSS, SPOUTV,
ROTCSS, NOZCSS,
AREAE
266
-------
FLOW DIAGRAM -- TSIZE (Cont'd)
Print
the nozzle and rotor
parameters
Stop, End
267
-------
PROGRAM LISTING — TSIZE
00010
00020
OU030
00040
00050
00060
00070
oooao +
00090 *
00100
00110
00120 •
00130 •
00140
00150 •
111)160 •
00170
00180
00190
00200 •
00210 •
00220 •
00230
00240
00250 +
00260 +
00270
002BO
00290
00300
00310
00120
00330 • '
00340 •
00350
00360
00370
00-180
00390
00400
00410 •
00420 •
00430
00440
00450
00460
00470 •
004HO •
00490
00500
00510 *
00520
01)530
00540
00550
00560 •
OH570 •
00580
00590 •
00600
THE PURPOSE OF IHt PROGKAh IS TO FIND RANK1NE CYCLE
EFFICIENCY. ROTOR OIAMETFR. TURBINE BLADF HEIGHT. TIP
CLEARANCE. AND OTHER VARIABLES OF INTEREST FOR A
TURHINE DRIVEN AUTOMOHILF. STEADY-STATE CONDITIONS
ARE ASSUMED.
COMMON NND. 1 Nil, NPSTFP, NT STEP, NL 1 NE , P< 25 ) , T ( 25 ) , VL 1 0 ( 25 ) ,
VVAI'(?5),HLIU(25).HVAP(2>>),PTAB(36).TTAB(20),VTAB(35,20).
HTAH(35.?0).S1AU(35.20)
RFAL MACHO, NOZCSS, NOZANG
INf) = l;NND = l
REAU INPUT PAHAMETEHS
INPUT EFFICIENCY FACTORS
READ: ETTH.feTh.ER.EPTH.EPH, EH. NOZANG
INPUT PRESSURE AND TEMPERATURE VALUES ( CENT I GRADE AND
AIM) ANIi TURRINh HORSEPOWER
READ! TuO.PHO.Pt.HPI
1H(I=TMO«9/5*3?.OKP(PC. 1TU.HTnA.STO, VTU.3)
FINh OIHPUT CONOITIi.NS AT VAPOR S 1 HE OF REGENFRATOR( SA TURATE
0 VAPOR)
CALL S.A )P(Pt. TCI, vRvOl. . VRVOV.HRVOL.HRVOV.l)
NMn=Nro»i
DELIH»
-------
PROGRAM LISTING -- TSIZE (Cont'd)
00610
00620
00630
00640
006*0
00660
00670
00680
00690
01)700
00710
00720
00730
00740
00750
00760
011770
00780
OH790
00800
00810
00820
OU830
00fl40
OOR50
00860
00870
00880
00890
00900
00910
00920
00930
00940
009!>0
00960
00970
009HO
00990
01000
01010
01020
01030
01040
OlObO
01060
01070
01080
01090
01100
OHIO
01120
01130
01140
011^0
01160
01170
01180
01190
01200
01210
CYClELFt *<( TIIRRWORK-PUMPHORl6»100 . )/BOlLHEAT
CEFFNOEH=CYU.EEFF/E«
CALCUIATF. VARTOUS TuRHlNE PARAMETERS
ASSUMt SPFCIFIC HEAT ANP RATIO OF SPECIFIC HEATS HAVE
BEEN PREVIOUSLY CALCULATED. OS AND NS HAVE BEEN CHOSEN
TO MAXIMIZE TURrtlNE EFFICIENCY.
RAMMA=1.02J GASC=3.7?J US=1.3; NS=60
ThMPIcTHO+460.0
HE ATicC GAMMA/ «jAH»A-l . ) ) »G ASC»TEMP I • ( 1 . - { PC/PBO )•• ( ( OAMMA-1 . )
/GAMMA))
VOLFRATh=f LOWRA TE« VTO/3600.
PUT»».5)/HEAD»».25
POTOPSPI»«(NS»(HtAn>««.7»>)/VOLFRAT.E,»«.5
TIPCLfcA«=.02»ULADfcHGT
PHIKT:"SIMMARY OF IMPORTANT RANKINE CYCLE TURHINE DESIGN PA"
."RAMET6PS"
PRINT 1
IF (NS.NE.O) Pk 1 NT : "EXPANSI ON FROM SUPERSATURATED CONDITIO"
,"NS"
IF (NS.bO.U) PKINT!"EXFANS|ON FROM SATURATED CONDITIONS*
PRIfJT 1
PRlNT:"BOILfcR PHESSURt = " ,KBO. "PSI A 80.ll.tR OUTLET TEMPERAT"
PRINT I
PRINT: "CONDt-NSEk PR6SSUKE«'',PC."PSIA TURBINE HORSEPOWFR = " .
HPT
PRINT1
PRlNT:"CVCLfc FFF I C IEHC Y»" . C YCLEEFF , " CYCLE EFF 1C IENCY ( I DE"
,"AL 80ILFR)«",CFFFNOt8
PhlNTl
PKlNTt"KOTOR D I AhtTfcR = " . ROTORPI A, "FT ROTOR SPEED=", ROTOHSP
n,"kPM"
PRINT1
PRrNT:"BlADt HE IGHT«" . Bl AUEHGT . " I N T I P CLEARANCE*" . T I PCLEA
P-, "IN"
1 FORMAK1HO)
t AHZ=(1./3?.2»».5)«FLOWRATE»<(TEMPI...S)/PBO)»«GASC/GAHMA
(] . *( ( GAMMA- 1. )/?. )»»((&AMMA*1. )/( 2 .•( GAMMA-1 .))))•( 1 . 736 0 0 )
MACHP=( ((PRO/PC )••« Oft HMA-1 .) /GAMMA)-!. )•(?./( GAMMA-1 .)))••.
5
VELlSSc(ROTURSPU«6.?8*ROTnRbIA)/(2.<»60. )
SPOUT V=(?.»3?.2»7 78. »f)El TAHTI )»».5
CV = SPUUTV»COS(NUZANG) J CT = SPOUJ V»S I N( NOZANG.)
Cl<=(CT«i:T«
NOZCSScI (ETTH«SPOUTV)/(2.»Vf-LTSS«(l.*ROTCSS) )»< VELTSS/SPOUTV
) )/COS(NOZANR)
ARF 4Et=AHE AN2» (1. /MACHO )•( (2. /(GAMMA*!. ))•(!. »(MACHD»«2)»
( (UAMMA-1. )/2. )))••< (GAMhA*!. )/( 2. • (GAMMA-1 .)))
PhINT 1
PRINT:PAPEA NOZZLE THROATSU.AREANZ,HSOIN MACHSS»".MACHDJ PRINT i
PRIuT:"TIPVELSS«",VELTSS."FT/SEC SPOUTVEL»", SPOUT V, "FT/SEC" I
PRINT 1
PRU'T:"KOTOk COfcF SS = " . ROTCSS, " NOZZLE COEF SS«".NOZCSS
PHINT 1
PPINT1"AREA NOZZLE EX I T«", AREAE. "SOI N«
STOP
END
269
-------
SUBROUTINE - BLSIZ1
The subroutine BLSIZ1 calculates the length of vapor generator tubing
required to raise the working fluid enthalpy from HFIN to HFOT. A cross-
flow configuration is assumed, and the working fluid is single-phase. The
working fluid flow rate and the combustor gas inlet temperature are specified;
a number-of-transfer-units (NTU) calculation for the heat exchanger surface
is employed.
Hydraulic diameters and flow areas are calculated in a subroutine GEOMCO.
The COMMON of BLSIZ1 and GEOMCO must be identical for proper transfer
of information. The tube length L (1) is iterated to an accuracy of 1%.
BLSIZ1 uses the following subroutines:
HT1PB
HTPF
HTGTB
HTGTF
HTGTM
HTTOC
HTTIC
HTGR
FCA
The subroutines HTTIC and HTTOC are blank; they have been included to
allow for a water jacket in the tube walls. Appropriate heat transfer coeffi-
cient correlators can be used, if desirable, to construct these subroutines.
NOMENCLATURE -- BLSIZ1
FORTRAN Variables in COMMON:
There is no COMMON block in BLSIZ1.
FORTRAN Variables Input through READ Statements.*
FORTRAN
Variable Definition
DCOIL Coil diameter
HFIN Working fluid inlet enthalpy
HFOT Working fluid exit enthalpy
LI Initial guess tube length
PPF Working fluid pressure
*See COMMON of MAINSYS for the remainder of these variables.
270
-------
FORTRAN
Variable
TAIN
TFIN
TFOT
WA
WAI
WF
Definition
Inlet combustion gas temperature
Working fluid inlet temperature
Working fluid outlet temperature
Combustion gas flow rate
Reference gas flow rate
Working fluid flow rate
Other Selected FORTRAN Variables:
FORTRAN
Variable
ANTU
CA
CF
COILN
EFF
HEIGHT
TAOUT
TMF
TUBEL
Definition
Number of NTU's
Heat capacity, combustion gas
Heat capacity, working fluid
Number of coils
Heat exchanger effectiveness
Coil height
Outlet combustor gas temperature
Mean working fluid temperature
Tube length
Units
op
°F
°F
Ib/hr
Ib/hr
Ib/hr
Units
Btu/hr°F
Btu/hr°F
in.
in.
271
-------
FLOW DIAGRAM -- BLSIZ1
Start
READ tube dimensions, fluid
and air properties, and
flow rates
I
1= 0
I
Calculate CPA, Q
1
Calculate
CA, CF, CA1, TAOUT
Calculate
CPA2, CA2, CA,
TAOUT2
|TAOUT2| - TAOUT : TAOUT
- 100
Calculate CMK,
CMAXM, CMINM
CRAT, EFF
TAOUT = TAOUT2
272
-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
CMAXM = CMIX
YES
Calculate
GAMA, ANTU
Calculate
GAMA, ANTU
J
Calculate
AU, TAOUT
Set PI= 22.11.
CALL GEOMCO
273
-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
1
Calculate
TMA, GA
274
-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
I
Calculate
TAA, TWA
CALL HTGR
Calculate
HTOT, UNIV, U,
TUBEL, COILN,
HEIGHT
Print
tube length, gas outlet
temperature, and other
selected items
Calculate
TUBELN, CONV
275
-------
FLOW DIAGRAM -- BLSIZ1 (Cont'd)
Print
"LOOP 100 TIMES"
276
-------
PROGRAM LISTING — BLSIZ1
100
200
250
56
280
?60
270
Ib
20
SUBROUTINE BLSIZI
SINGLE PHASI- Ullll)
CrtOSS FLOW
REAL l,f«PCYL
REAL LI
REAIM21,200)LINE,DO(1 ).DK1 >.NSO(1 ) , NS I ( 1 > , X2L U >
FORMAK Id.SFlU.*)
REAn(21.lHO)LINE.FNU(l),FHO(l),FTO(l)
READ<21,in
REAU(?l,\On)LINE,WF,TFIN,IFOT,HFlN.MFOT
REAn1.,lon)LlNE.PPf
REAn<21,?5n)LINE,NM(l ),NMO(1 ),NMI(1)
KEAU<21.100)UNE.N*(1).L(1 >.HA1,L1
I=0
FORHAK 16,3110)
CPA=FCA(TAIN)
Qeut MHFOT-HriN)
CA=WA»CPA
CA1=CA
CF=0/(TFni-TF|N)
TAOUT=TAIN-<0/CA)
CPA2»FCA( rAOUT)
CA2=UA»CPA2
)270,270,260
TAOUT2-TA|N-(lv/CA )
IF(ARS(TAOIIT2-TAOUT)-IAUUT/100
TAOUT=TAOUT2
GO TO 2AO
CONTINUE
CK1X=CA
CUN=CF
CMAXM«AMAX1 (CA.CF)
CMINH'AHINI (CA.CF)
CRAlcCHAXH/CHINH
EFF = 0/(CM|NM«( TilN-lFIN) )
IF(CHAXH.EO.CMIX) 00 TO 15
GAMA«-(AL06<1.-EFF))/CRAT
ANTUa-(ALOG(l.-GANA))»CRAT
nn 10 20
CONTINUE
GAMAc-( ALOHtl
ANTU=-(ALOG(1
CONTINUE
Au=ANTU»CH|NM
TAOUTsTA|N-'(0/CA)
-(EFF/CKAI ) ))»CRAT
-GAMA))
CALI GEOMCO(l)
FLUID SIDE
TMF=(TFIN+TFOT)/2.
RF = hF/(ACI(1 ) )
MI=NSI <1 )
GO in (.in,40),MI
30 CONTINUE
CALL HT1PH(HTl,l.GF,PPF.TMF)
WKI 1 E ( 6, 3 5 ) h T I
35 FORMAT («M HT1PH ,r1'j.5)
GO TO 5U
00020
noaao
00040
00740
00245
00250
00260
00270
00280
00290
00300
00310
(10320
OH3JO
00340
00350
00360
00370
00380
00390
00400
00402
01)410
00411
0041?
00413
00414
00419
00416
00417
00418
00419
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
ooison
00610
00620
00630
00640
00650
00660
00670
00680
00690
277
-------
PROGRAM LISTING -- BLSIZ1 (Cont'd)
40
45
50
55
60
65
7u
7
HPI IEn
TALL HTGTFCHTU.I.UA.THA)
WPITE(6.7V)HTu
FiiRHAI (ftll HTuTf .El">.5)
GU 10 911
ri)NTlNU>
CALL HTC.TM(HTu.1.WA, TriA)
HPI TF(A.R'i)HTi.
FuRMAI <8M HTliTM
CUNTINUt
CALL HTinC(HTIl»TN«)
FORMAT (ftH HTIOC .E15.5)
f»LL HTlir1 )ANTU,AH.TAOUT
FORMAT (i7H ANTU.AH.TAOUT ,3Ei5.5)
Urt! IE(6,3il?)TMF,GK,HTI
FURMAT (14H THF.GF.HT1 .3tl5.5)
UKllF(6,103)TMA.GA,HTU
FORMAT (14H THA.GA.HTO .SEl1*.1?)
MPIIF(6.3fl4)HII1.HTI2.HTR
FORHAI (17H H T 1 1 , HT 1 2. H TR .3E15.5)
MKI IF(6.30S)U.U|NV
FORMA I (1QH U.IIINV .2E15.5)
HRI lE(6.^n(S)TUBtL
FOKHAI (9H TMBEL .E15.5)
HKI IF(6,3n7)COILN
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
OOROO
00810
00820
00830
00840
00850
OOR60
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
nioio
01020
01030
01040
01050
01060
01070
01080
01090
011(10
OHIO
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01?30
01240
01250
01260
01270
01280
01290
278
-------
PROGRAM LISTING — BLSIZ1 (Cont'd)
307 FORhAT (9H COILN .E15.5)
WtniE<6.3n8)HF:IGHT
308 FORMA1 (10M HtlGHT .E15.5)
TUBtLNrTIIBEL/l?.
CONV=(TU8FlN-L(l))/TU8ELM
IF(AHS(CONV).LUO.ni) GO TO 310 , «
L(l )=L(1)-(L(1)-T1IRFLN)*.« , *
WA«kAl»l(l)/Ll „!',,„
IFU.LT.inO) 00 TO 56
311 FORMAK15H LOOP 100 TIMES) f)H«n
310 RETURN 014nn
END ni"n
279
-------
SUBROUTME BISC2
Subroutine BLSIZ2 is similar to BLSIZ1 except that the working fluid is
tiro-phase. Refer to the section on BLSIZ1 for details.
BLSIZ2 uses the following subroutines:
FCA
GEOMCO
SATP
HT2PB
HTPF
HTGTB
HTGTF
HTGTM
HTTOC
HTTIC
HTGR
280
-------
FLOW DIAGRAM -- BLSIZ2
READ tube dimensions, fluid
and air properties, and
flow rates
Calculate CPA
Calculate
CA, Q, CA1, TAOUT
Calculate
CPA2, CA2, CA, TAOUT2
TAOUT
TAOUT2
TAOUT2 - TAOUT| : TAOUT/100
281
-------
FLOW DIAGRAM -- BLSIZ2 (Cont'd)
Calculate
EFF. CMIN, ANTU, AU,
TAOUT, TMA, PI
CALL GEOMCO
Calculate GF. X, TJ
Print TTF, HTI
Calculate TMA, GA
282
-------
FLOW DIAGRAM -- BLSIZ2 (Cont'd)
Calculate TAA, TWA
283
-------
FLOW DIAGRAM -- BLSIZ2 (Cont'd)
CALL HTGR
Calculate
HTOT, UINV, U, TUBEL.
COILN, HEIGHT
1
Print
tube length, gas outlet
temperature, and other
selected items.
Calculate
TUBELN, CONV
Calculate L (1), WA
NO
1
Print
"Loop 100 Times"
284
-------
PROGRAM LISTING -- BLSIZ2
SUBROUTINE BLSIZ2
> TUO PHASE FLUID
> CROSS FLOW
REAL L.NPCYL
REAL LI
RFAD(22.10n>LINE,DOm,|jm).NSO(1),NSI(1),X2L(1)
REAU(2?,?On )LINE,FN(I(1).FHO(1 ),FTO(1)
READ(22.2nfl)LINEftN|(l).FHl(l),FTim
RFAD(22,200)LINE.HS(1).BH(1),UT<1 )
READ(2?.?nn)LINE,urOIL.MA.TAlN
READ(2?,2nO)LINk,wF.XlN.XOUT,HFr., TTF
READ<2?.?>>0>LINE.NH(l),NMO
REAO(22,2nO)UNff,ltM(l), l(i),WAl*Ll
WK1TE(6.20)TTF
20 FORMAT (6H TTF ,bl5.i>)
CPA=FCA(TA!N)
56 CA=WA«CPA
Q=WF»(XOUT-«IN).HFO
CA1=CA
TAOUT=TAIN-(0/CA)
280 CPA2=FCA(TAOUT)
CA2=HA«CPA?
CA«(CA1»CA?)/2.
TAOUT2«TAIN-(0/CA)
IF(ABS(TAOUT2-TAOUT)-UOUT/100. )270,270.260
260 TAOUT»TAOUT2
00 TO 280
270 CONTINUE
EFF = 0/(CA«(TA|N-TTF»
CM|N»CA
ANTLte-ALOG(l.-EFF)
AU"ANTU»CH|N
TAOUT=TAIN-(0/CA)
TMAa(TAIN*TAOUT)/2.
PI-22./7.
CALL GEOMCO(l)
» FLUID SIDE
GF«WF/(AC1(1»
X»(XIN*XOUT)/2.
TI=(TMA*TTF)/2.
WRITE(6.24)TI
24 FORMAT (5H II .E15.5)
CALL SATPCPPF. TIF,OFL.PFV,HFL.HFV,0 )
UMI TE(6,?">)T(1?H)
25 FORMATJ9H T(12R) .E15.5)
GO 10(30,40),MI
30 CONTINUE
CALL HT2PH(HTI,l.(iF,TTF,T|,X.PPF.nFL.urv.HFlf HFV)
WRITE(6.31)TTF
31 FORMAK6H TTF ,E15.5)
WHI TE«S,3-J)HTI
3*> FORMAT
-------
PROGRAM LISTING -- BLSIZ2 (Cont'd)
50
60
65
70
80
85
90
95
96
97
300
301
302
303
304
305
306
CONTINUE
AIRSIUE
TMA=(TA|N»TAOUT
GArKA/(ACU(l)»l
)»J2.
MIsNSOM >
60 Tn<60.70.80),«l
CONTINUE
CALL HTGTR(HT0.1.GA, TNA)
WRITE(*.6'?>HTO
FORMAT <8H HTGTB ,E15.5>
00 TO 90
CONTINUE
CALL HTOTF < HTU. 1 , UA , TMA )
WRITE «S.75)HTO
FORMAT <8H HTGTF ,E15.5>
GO TO 00
CONTINUE
CALL HTGTM(HTU.1»UA.THA>
WRITE (6,H5)H1.0
FORMAT <8n HTGTM ,E15.5>
CONTINUE
CALL HTTOCtHTll, THA )
WRITE <6.95)HTU
FORMAT (8H HTTOC ,E15.5>
CALL HTTIC(HTJ?.TMA)
WRITE <6.96)HTI2
FORMAT <8H HTTIC ,E15.5)
RADIATION
TAA=TMA
TWA=(TMA*1TF >/2.
CALL HTCR(HTR, TAA,THA)
WRITE (6,97)HTR
FORMAT (7H HTGR ,E15.5)
HTOT=HTO*HTR
*(1./(HTI2«(DM1
U=1./UINV
TUHEL»AU»lJINV/(f'I»DO(l) )
COILN«TUHEL/(PI»DCOIL )
HEIGHT=(COILN»DO(1)+(C01LN-1.
WRITE(6,30ft)CA,tFF
FORMATdOH CA.FfF ,2E15.5)
WRITEC6.301 )ANTil, AU, TAOUT
FORMAT (17H ANTn, Alt. TAOUT .
WRITF(6.3n?)OF,HTI
FORMATdOH GF.Hfl 2E15.?)
WRITE(6,303)TMA.GA,HTO
FORMAT (14M TMA.GA.HTO
WRITE(6,304)HTI1,HTI2.HTR
FORMAT (17H HT 1 1 , HT 12 , HTR
WRITE(6,305)U,UINV
FORMAT (10H U.U1NV
WHI TE(6,306)TUBFL
FORMAT (9M TUbEL *E1».5)
WWI TE(6,307) COILN
3E15.5)
.3E15.5)
.2E15.5)
00580
00590
00600
00610
00615
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
onnoo
00«10
OOR20
00830
OOR40
00850
00860
00870
00880
00690
00900
00905
00910
00915
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
(11050
01060
01070
01080
01090
01100
286
-------
PROGRAM LISTING — BLSIZ2 (Cont'd)
307 FURMAT<8M TOILN ,F15.5) OHIO
HRITE<6,308)HEIGHT 01120
308 FORMAT (10H HFIGHT .E15.5) 01130
10U FORMAT ( I6,2F10.4,2110,FIO.4) 01140
200 FO»MAT = L(1 )-(L(l>-TUHELN)«.S 01159
WAoHAl»L(l)/L1 01160
IF< I.l.T.inO) GO Til 56 01161
URITE(6.311) 0116?
311 FORMAT(15H LOOP 100 TIMES) 01163
311 FORMATU5H LOOP 100 TIMES) 01163
310 RETURN 01164
END 01170
287
-------
SUBROUTINE CONDSZ
The subroutine CONDSZ calculates the condenser size required to con-
dense the working fluid. The condensing temperature and flow rate and the
air temperature and flow rate are input and a NTU calculation is carried out
for a particular heat exchanger design. A cross-flow configuration is assumed.
CONDSZ uses the following subroutines:
SATP
FCA
GEOMC2
HT2PC
HTAC
The subroutine GEOMC2 is similar to GEOMCO, and calculates hydraulic
diameters and flow areas. The COMMON for CONDSZ must be consistent
with the COMMON'S for all the subroutines employed.
The present subroutine is written for a louvered fin on a flattened tube
heat exchanger.
NOMENCLATURE -- CQNDSZ
FORTRAN Variables in COMMON:
There is no COMMON block in CONDSZ.
FORTRAN Varuthles in Argument List:
FORTRAN
Variable Definition Units
TAIN Inlet air temperature °F
TTt Condensing temperature °F
WA Air flow rate Ib/hr
W F Working fluid flow rate Ib/hr
X Average quality
XIN Inlet quality
XOIT Outlet quality
288
-------
Other Selected FORTRAN Variables:
Definition
FORTRAN
Variable
ANTU
CA
EFF
SECTNS
TAOUT
THCO
TUBEL
TUBNC
WCO
WCOND
Number of NTU's
Air heat capacity
Heat exchanger effectiveness
Number of flowpaases
Outlet air temperature
Tube height
Tube length
Number of condenser tubes
Tube width
Frontal width
Units
Btu/hr
op
in.
in.
in.
in.
289
-------
FLOW DIAGRAM -- CONDSZ
C
Start
I
CALL SATP
1
Calculate RHOL, RHOV, HFG
Print HFG, RHOL, RHOV
Calculate
CPA, CA. CMIN, Q,
EFF, ANTU
I
Print CA, EFF, ANTU
Calculate AU, TAOUT, TMA
Print AU, TAOUT, TMA
290
-------
FLOW DIAGRAM -- CONDSZ (Cont'd)
1
Set PI - 22. II.
CALL GEOMC2
Print tube length, air outlet
temperature and other
selected items
Calculate GF, X, TI
Print GF, X, TI
CALL HT2PC
Calculate GA
CALL HTAC
Print GA, HTI, HTO
291
-------
FLOW DIAGRAM -- CONDSZ (Cont'd)
Calculate UBNV, U, TUBEL
Print UINV. U, TUBEL
Calculate SECTNS
292
-------
PROGRAM LISTING -- CONDSZ
•
•
50
60
100
110
120
130
140
150
160
170
SUBROUTINE CONDS7(TTF.X.UA,MF,XQII1.XIN.TA!N>
CONDENSER SIZING
CROSS FLOW
REAl L.NPCYL
CALL SATP(PPF,TTF,VL, VV, HFL. HF.V. 0 )
RHOL=1./VL
RHOVal./VV
HFG=HFV-HFL
WRI1E«S.50)HFG
FORMAT (6H HFG ,E15.t>)
HRI1E(6,60)RHOL.RHOV
FORMAT (12H BHOL.RHOV .2F15.5)
CHA=FCA( TAIN)
CA=UA»CPA
CM|N=CA
•(XIN-XOUT)»HKO
= 0/(CM1N»
ANTlic-ALOG(l.-EFF)
WKI1E(6.100)CA,EFF.ANTU
FORMAU14H CA,EFF,ANTU .JE15.5)
TAOUT=TAIN*(0/CA)
TMA=(TAIN*TAOUT)/2.
MR I TE( 6.1 in) AO. TAOUT.TMA
FORMAT (1SH AH. TAOUT , TMA .3E15.5)
PI*22./7.
CALL GEOMC?(4)
WRITE (ft f 120 )ACO(4).DHO(4)
FORKftT(16H ACO(4),nHO(4) ,?F15.5)
WR ME (6,1. 10 )AO [ (4).DHIM ), TuRfcC
FORMil (22H ACI (4).UHI(4).TURNC , 3E15.5)
FLUID Sinb
X=( X IN*XOIIT
Tlr( THA+TTF
WRITF (6.140 )GF,X,TI
FORMAT ant* OJ.X.TI
CALL HT?PC(MTI.4.0F.TTF. T I , RHOV. RriOL . X )
AIRSIDE
GAsWA/( ACO(4 )»WCONn«TUBNC)
CALl HTAC(HTO,4.GA,TNA)
MRITE(6.15n>GA.HTI.MTO
FORMATUJH GA.HTIjHTO .3E15.5)
UINV=(1 ,/HTI )»(1./HTO)
= AU»tl|NV/(2.»(THCO»UCO)»TUBNC)
WHITE I 6, 160 )U|NV,U,TU8EL
FORMAUHH UINV.U.TUBEL .3E15.5)
SECTNS=TUHFL/WCUND
URITE(6,l7n )SECTNS
FORMAI (9H SECTNS .E15.5)
RETURN
ENP
00020
00030
00040
00240
00250
00255
00256
00260
00264
00265
00266
00267
00270
002HO
00290
00300
00305
00310
00315
00316
00320
00330
00340
00345
00346
00350
00360
00363
00364
00365
00366
00370
OU380
00390
00400
00405
00406
00410
00420
00430
00440
00445
00446
00450
00460
00470
00475
fl047«
00480
00485
00486
00490
00500
293
-------
SUBROUTME RGSIZE
The subroutine RGSIZE calculates the regenerator size required to raise
the gas enthalpy from HAIN to HAOUT. The gas flow rate, liquid flow rate,
and inlet temperature are input and a NTU calculation is carried out for a
particular heat exchanger design.
RGSIZE uses the following subroutines:
FCWV
FCWL
RGEOMC
HT1PB
HTWTM
The subroutine RGEOMC is similar to GEOMCO, and calculates hydraulic
diameters and flow areas. HTWTM is similar to HTGTM, and calculates
heat transfer coefficient for a ball-matrix heat exchanger. The COMMON
of RGSIZE must be consistent with the COMMON'S for all subroutines em-
ployed.
RGSIZE is written for a ball-matrix or round-tube heat exchanger.
NOMENCLATURE -- RGSIZE
FORTRAN Variables in COMMON:
There is no COMMON block in RGSIZE.
FORTRAN Variables in READ Statements:*
FORTRAN
Variable Definition Units
HAIN Inlet gas enthalpy Btu/lb
HAOUT Exit gas enthalpy Btu/lb
LT Tube length per liquid flow pass ft
NFSECT Number of gas flow sections
PPF Fluid pressure psi
PPG Gas pressure psi
TAIN Inlet gas temperature °F
TAOUT Exit gas temperature °F
TFIN Inlet fluid temperature °F
WAT Gas mass flow rate Ib/in.
WFT Liquid mass flow rate Ib/hr
*See MAINSYS for the remainder of these variables.
294
-------
Other Selected FORTRAN Variables:
FORTRAN
Variable
ANTU
CA
CF
EFF
SECTNS
TFOUT
TUBEL
Definition
Number of NTU's
Gas heat capacity
Liquid heat capacity
Heat exchanger effectiveness
Number of liquid flow passes
Liquid exit temperature
Tube length
Units
Btu/hr
Btu/hr
op
in.
295
-------
FLOW DIAGRAM -- RGSIZE
C
Start
READ tube dimensions, gas and
fluid properties, and flow
rates
I
Calculate
WA, WF, Q, CPA1,
CPA2, CPA, CA, CPF,
CF, CF1, TFOUT
Calculate
TFAV, CF, TFOUT2
Calculate
CMAXM, CMINM, CRAT,
EFF, ANTU, AU,
Set
PI = 22. II.
I
CALL RGEOMC
T
TFOUT =
TFOUT2
TFOUT2 - TFOUT
296
-------
FLOW DIAGRAM -- RGSIZE (Cont'd)
Calculate
TMF, GF
Set NPH = 1
CALLHT1PB
i
Set NPH = 3
Calculate TMA, GA
I
CALL HTWTM
Calculate
UINV, U, TUBEL,
SECTNS
Print
tube length, liquid outlet
temperature, and other
selected items
c
Return, End
297
-------
PROGRAM LISTING -- RGSIZE
SUBROUTINE KGSIZE
• REGENERATOR SIZINU
• SINGLF PHASE FlUll)
• CROSS FLOW
REAL L.HMVO
REAL LT.NFSECr
READ(21,?n
100 FORMAU I6.5F10.4)
RE A IK21 . 100)LINE,FNO(1),FHO(1>.FTO(1)
RtAD<21.100)LINE.FNI(l).Frtt
ANTU«-(ALnn«l.-EFF)/(l.-FFF/CRAT))/(l.-l./CRAT))
PI=?2./7.
CALL RGbOHC(l)
FLUID SIDt
TMF«:(lF|N*TFOuT)/2.
GF«WF/(ACI(1 ))
NPH = 1
CALL nllPHfHTI .l.UF.PPF. THF )
FORMAT <8'l HT1PH
GAS SIOE
TMA=( TA |N»TAOUT)/?.
(3AnhA/('ACO(l)»LT)
CALL HIWTM(HTii.l.GA.TMA,PPG)
FORMA I (RH HTliTH
Ual./UlNV
= AU*UINV/(P|«OU(D)
08020
00030
00040
00050
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00338
00340
00350
00360
00370
00371
00372
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00520
00530
00540
00550
00560
00640
00650
00660
00678
00680
00690
00700
00730
00740
00750
00820
00825
00830
00840
00980
00990
01000
01020
01030
01040
298
-------
PROGRAM LISTING — RGSIZE (Cont'd)
SFCTNS=IUREL/(IT«1?.) 01050
MHITE(6.300)CA.CF.FFF 01060
300 FORMAT (13H CA.CF.FFF .3E15.5) 01070
WKI TEU.ani )ANTII. All.TAOUT 010RO
301 FORMAT (J/H ANTII. AH. TAOUT .3E15.5) 01090
HklTE(6.30?)TMF.OF.HTI 01100
302 FORMAT <14H THF.GF.HTI ,31-15.5) OHIO
MRITE<6.3U3)THA,GA.HTO 01120
303 FORMAT (14H TMA.OA.HTO .3F15.S) 01130
WRlTE(6.30«)HTIl,HTI2,HrR 01140
304 FORMAT (17H HT 11,HT12.MTR .3E15.5) 01150
3U5 FORMAI (10H U.IIINV .7E1S.5) 01170
MKITE(6,3nShCTNS 01200
307 FORMATdOH SECTNS .E15.9) 01210
WKlTE(6.30B)TKOHT 01220
30d F(lRMAT(9H TfODT .F15.5) 01230
RETURN 01240
END 01250
299
-------
Section 13
TOTAL SYSTEM MODEL
-------
Section 13
TOTAL SYSTEM MODEL
MAIN PROGRAM - MANSYS
The total system model is entitled MAINSYS. To permit study of the sys-
tem steady-state and transient behavior, MAINSYS uses the following sub-
routines:
COMBST
COND
DRIVER
ENGINE
PUMP
REGEN
SATP
SUPPT
TRANSM
VAPORG
MAINSYS reads the following data files:
File 38 Data Input
File 39 Data Initial
File 11 Transient Start
File 31 Route
The Transient Start File 11 supplies initial values for starting the program
from a transient condition. Since the data in the file vary according to the
particular transient start condition, a listing is not included here.
NOMENCLATURE -- MAINSYS
FORTRAN Variables in COMMON:
The FORTRAN variables listed below appear in the COMMON of MAINSYS.
FORTRAN
Variable Definition
AP Piston area
B Number of hydrogen moles in reaction
CH Unburned hydrocarbon emissions
CHR Molecular weight of fuel
CO Carbon monoxide emissions
CO2P Carbon dioxide in products
CO2S Carbon dioxide stoichiometric
DCS Hydraulic diameter of shell-tube
flow passage
Units
in.2
moles
grams
grams of fuel
lb moles
grams
grams of fuel
moles
moles
in.
301
-------
FORTRAN
Variable
DCT
DTH
EQUIV
F
FS
H2OP
H2OS
HP
HR
HTFLAM
HTIN
LHV
LHVT
LCS
LCT
MAIR
MFLUED
MFUEL
N2P
N2R
N2S
NBENDA
NBENDG
NO
NP
O2 P
Definition
Hydraulic diameter of tube flow
passage
Integration time step
Equivalence ratio
Fuel air ratio
Stoichiometric fuel-air ratio
Water vapor in products
Water vapor stoichiometric
Unburned hydrogen in products
Heat rate of combustor at design
Enthalpy of products of combustion at
flame temperature
Enthalpy of products of combustion at
air temperature
Lower heating value of fuel
LHVT = (LHV) (MFUEL) '
Length of combustor shell
Length of combustor tube
Mass flow of combustor air
Mass flow of fluid
Mass flow of fuel
Nitrogen in products
Nitrogen in reactants
Nitrogen stoichiometric
Equivalent turbulent friction length due
to bends in airflow paths
Equivalent friction length due to bends
in gas-flow paths
Nitrogen oxide emissions
Number of pistons
Oxygen in products
Units
in.
sec
moles
moles
moles
10s Btu/hr
Btu/lb
Btu/lb
Btu/Ib
Ib
ft
ft
Ib/sec
Ib/sec
Ib/sec
moles
moles
moles
grams
grams of fuel
moles
302
-------
FORTRAN
Variable Definition
O2R Oxygen in reactants
O2S Oxygen stoichiometric
PO Ambient pressure
SP1 Reciprocating expander stroke
SSA Shell wetted area
STA Tube-air wetted area
STG Tube-gas wetted area
TO Ambient temperature
WS Combustor shell weight
WT Weight of combustor tube
YEXT External time step
ACI(I) Inner-flow cross-section area for
fluid pass I
ACO(I) Outer-flow area per unit length for
fluid pass I
BH(I) Tube outside dimension in direction
of gas travel for rectangular tube for
fluid pass I
BT(I) Tube inside dimension in direction
of gas travel for rectangular tube for
fluid pass I
CTF Fluid energy storage capacity per
unit length
CTFY(I) Fluid energy storage capacity per
unit length for fluid pass I
CTT(I) Tube energy storage capacity per
unit length for fluid pass I
CW Specific heat of working fluid
DHI(I) Inside hydraulic diameter for fluid
pass I
DHO(I) Outside hydraulic diameter for fluid
pass I
DK1) Tube inside dimensions in direction
or perpendicular to gas flow for rectan-
gular tube for fluid pass I, or
in.
in.2
in.2
in.2
Ib
Ib
sec
in.2
in.
in.
in.
Btu/in. °F
Btu/in. °F
Btu/in. °F
Btu/lb. °F
in.
in.
in.
303
-------
FORTRAN
Variable
DO(I)
DS(I)
DYYY(I)
EF
EFY(I, J)
EG
EG Y(I, J)
FHI(I)
FHO(I)
FNI(I)
FNO(I)
FRAC
FT 1(1)
FTO(I)
GVZ(I, J, K)
HF(I, J, K)
HFINl(I)
HFIN2(I)
HGINl(I)
Definition
Tube inside diameter for circular
tube for fluid pass I
Tube outside dimension in direction
perpendicular to gas flow for rectan-
gular tube for fluid pass I, or
Tube outside diameter for circular
tube for fluid pass I
Sphere diameter for ball-matrix con-
figuration for fluid pass I
Stability time step for fluid pass I
Fluid-transport parameter (= mass
flow rate x specific heat)
Fluid-transport parameter for fluid
pass I, node J
Gas-transport parameter (= mass flow
rate x specific heat)
Gas-transport parameter for fluid
pass I, node J
Inside fin height for fluid pass I
Outside fin height for fluid pass I
Number of fins inside for fluid pass I
Number of fins per inch outside for
fluid pass I
Ratio of actual to stability step size
Inside fin thickness for fluid pass I
Outside fin thickness for fluid pass I
Specific volume of fluid for fluid pass
I, node J
Fluid enthalpy for fluid pass I, node J,
at time K
K = 1, present
K = 2, future
Fluid enthalpy at entrance of fluid
pass I
Fluid enthalpy at exit of fluid pass I
Gas enthalpy at entrance of fluid pass I
Units
in.
in.
in.
in.
sec
Btu/sec °F
Btu/sec °F
Btu/sec °F
Btu/sec °F
in.
in.
II in.
in.
in.
ft3/lb
Btu/lb
Btu/lb
Btu/Ib
Btu/lb
304
-------
FORTRAN
Variable
HGIN2(I)
HGT
HGTY(I, J)
RTF
HTFY(I, J)
J2E(I)
J3E(I)
LSTEP
MWZ(I. J)
NCLY(M)
VCRY(M)
NCY(M)
N CYCLE
NFSECT(3)
NLUMP
NM(D
NMI(I)
ft
Ib/sec
Definition
Gas enthalpy at exit of fluid pass I
(Heat transfer coefficient x perimeter)
between gas and tube
(Heat transfer coefficient x perimeter)
between gas and tube for fluid pass I,
node J
(Heat transfer coefficient x perimeter)
between tube and fluid
(Heat transfer coefficient x perimeter)
between tube and fluid for fluid pass I,
node J
Index to locate liquid-vapor interphase
Index to locate end of superheat
Total length of tube for fluid pass I
Counter of timesteps
Fluid mass flow rate of fluid pass I,
node J
Sequence number for the first fluid pass
for component M
Sequence number for the last fluid pass
for component M
.Number of fluid passes for component M
Logic variable to bypass geometric
constants and initialization within com-
ponent program after first run
= 0 - initialize geometric constants
^ 0 - bypass initialization
Number of flow sections for tube and shell
fluids
Maximum number of lumps for any fluid pass
Tube metal for fluid ^j
pass 1 v If value = 1, then steel
Inside additional sur-/If value = 2,then copper --
face metal for fluid ,
pass I J
Units
Btu/lb
Btu/sec-in. °F
Btu/sec-in. °F
Btu/sec-in. °F
Btu/sec-in. °F
305
-------
FORTRAN
Variable
NMO(I)
NPH
Definition
Units
NFHY(I, J)
N PR INT
NSI(I)
NSO(I)
NSS
NTRANS
NX2MAXU)
NX2Z(I)
NXN
NXO
If value = 1, then steel
If value = 2, then copper
Outside additional^
surface metal for \
fluid pass I I
Nature of fluid phase
1 - subcooled
2 - saturated
3 - superheated
Nature of fluid phase for fluid pass
I, node J
Logic variable for printing
0 - print
1 - bypass prints
Type of heat transfer surface inside
for fluid pass I
1 - bare
2 - finned or tape
Type of heat transfer surface outside
for fluid pass I
1 - bare
2 - finned
3 - ball-matrix
Logic variable for optional use of iter-
ation program
0 - bypass iteration program
1 - use steady-state iteration program
Logic variable for optional transient
start
0 - start from end point values
1 - start from given distribution
Maximum number of lumps required
for fluid pass I
Number of lumps in fluid pass I
Required number of distance lumps at
future time
Required number of distance lumps at
present time
306
-------
FORTRAN
Variable
PGV(I)
RFA
RM(I)
RW
RWV(I, J)
TGl(I)
TG2(I, J. K)
TG2AVG(I)
TGINl(I)
TGIN2(I)
TIME
TT(I J, K)
TUBROW(I)
VAPLl(I)
VAPL2(I)
VAPL3U)
VOL(I)
X2UD
X2T(I)
Definition
Definition
Gas pressure at inlet of fluid pass I
Ratio of fuel to air
Ball-matrix porosity for fluid pass I
Density of working fluid
Density of working fluid for fluid pass
I, node J
Inlet gas temperature for fluid pass I
Exit gas temperature for fluid pass I,
node J, at time K
K = 1 - present
K = 2 - future
Average exit gas temperature for fluid
pass I
Temperature of gas at inlet of fluid
pass I
Temperature of gas at exit of fluid
pass I
Real time
Tube temperature for fluid pass I,
node J, at time K
K = 1 - present
K = 2 - future
Number of gas passes for fluid pass I
Fluid volume of pass I occupied by
subcooled phase
Fluid volume of pass I occupied by
boiling phase
Fluid volume of pass I occupied by
superheat phase
Volume per unit length for fluid pass I
Geometric spacing between concentric
coils for fluid pass I
Longitudinal pitch for fluid pass I
[Note: This variable is no longer used. ]
Units
lb/ in.2
lb/ft3
lb/ft3
UF
°F
sec
op
in.
in.3
in.3
in?
in.
in.
307
-------
FORTRAN
Variable
CTAB(L, M)
HLIQ(N)
HTAB(L, M)
HVAP(N)
IND
NLINE
NND
NPSTEP
NTSTEP
P(N)
PTAB(L)
STAB(L, M)
T(N)
TTAB(M)
VLIQ(N)
Definition
Superheated working fluid specific heat
at pressure PTAB(L), temperature
TTAB(M)
Saturated working fluid liquid phase
enthalpy at pressure P(N)
Superheated working fluid enthalpy at
pressure PTAB(L), temperature
TTAB(M)
Saturated working fluid vapor phase
enthalpy at pressure P(N)
Logic variable for superheated inter-
polation program
£ 1 - read superheated fluid tables
> 1 - don't read tables
Number of saturated fluid temperature
steps
Logic variable for saturated inter-
polation program
s 1 - read saturated fluid table
> 1 -don't read table
Number of superheated fluid pressure
steps
Number of superheated fluid tempera-
ture steps
Saturated working fluid pressure
Pressure of superheated working fluid
Superheated working fluid entropy at
pressure PTAB(L), temperature
TTAB(M)
Saturated working fluid temperature at
pressure P(N)
Temperature of superheated working
fluid
Saturated working fluid liquid-phase
specific volume at pressure P(N)
Btu/lb
Btu/lb
Btu/lb
lb/in.2
lb/in.3
Btu/lb °F
ft3/lb
308
-------
FORTRAN
Variable
Definition
Units
VTAB(L, M) Superheated working fluid specific volume ft3/lb
at pressure PTAB(L), temperature
TTAB(M)
o ,
VVAP(N) Saturated working fluid vapor-phase ft /lb
specific volume at pressure P(N)
FORTRAN Variables in READ Statements:
FORTRAN
Variable
AF
CD
DISP
KO
M
NBURNR
NPCYL
NTCOMP
RADW
W
FORTRAN
Variable
AS
CS
DIST
Constant FORTRAN Variables*
Definition
Vehicle frontal area
Air drag coefficient
Maximum displacement
Acceleration sensitivity
Rotational moment of inertia pf
rotating components
Number of burners
Number of cylinders
Number of heat exchangers
Tire radius
Vehicle weight
Initialization FORTRAN Variables*
Definition
Accelerator setting (OsASsl)
Logic variable for driver'action during
wheel slip
+1 - accelerator settings
0, -1 - accelerator setting held
constant
Distance along route
Units
ft?
in.
lb ft sec:
ft
lb
Units
miles
:See COMMON for the remainder of these variables.
309
-------
FORTRAN
Variable
DT
HWCI
HWRI
HWVI
INE
LINBX
LINDEX
LINEX
MGCI
MWCE
MWCI
MWRE
MWRI
MWVE
MWVI
NST
PGRI
PWCI
PWRI
Definition
Time step for vehicle integration
Enthalpy of working fluid at condenser
inlet
Enthalpy of working fluid at regenerator
inlet
Enthalpy of working fluid at vapor gen-
erator inlet
Logic variable to read data
Logic variable: when =0, MAINSYS reads
new line of data from ROUTE
Logic variable: when =1, vehicle idling
Logic variable: when ^0, vehicle deceler-
ating; = 0, vehicle accelerating
Mass flow rate of gas at condenser inlet
Mass flow rate of working fluid at con-
denser exit
Mass flow rate of working fluid at con-
denser inlet
Mass flow rate of working fluid at re-
generator exit
Mass flow rate of working fluid at re-
generator inlet
Mass flow rate of working fluid at vapor
generator exit
Mass flow rate of working fluid at vapor
generator inlet
Logic variable to control printing inter-
val during transients
0 - print last timestep
1 - print every time-step
Pressure of gas at regenerator inlet
Pressure of working fluid at condenser
inlet
Pressure of working fluid at Regener-
ator inlet
Units
sec
Btu/lb
Btu/lb
Btu/lb
Ib/sec
Ib/sec
Ib/sec
Ib/sec
Ib/sec
Ib/sec
Ib/sec
lb/in.3
lb/in.3
lb/in.a
310
-------
FORTRAN
Variable
PWVI
R
RFUEL
RPME
RPMP
RPMX
RPUMP
TIMEX
V
VT
Z
FORTRAN
Variable
TIM(M)
FORTRAN
Variable
AR
CR
G
KF
LR
Definition Units
Pressure of working fluid at vapor Ib/in.
generator inlet
Engine intake ratio
Reference fuel flow rate for emission Ib/sec
calculations
Engine rpm rpm
Pump rpm rpm
Transmission rpm rpm
Variable displacement ratio
Time sec
Vehicle speed mph
Tire speed at periphery mph
Logic variable used during wheel slip:
initially set Z = l; reset internally
Transient Start FORTRAN Variables*
Definition Units
Starting time for transient start for sec
component M
ROUTE FORTRAN Variables*
Definition Units
Reference acceleration ft/sec3
Logic variable
+ 1 - indicates acceleration
0 - cruise at constant speed
-1 - indicates deceleration
Grade #
Maximum friction coefficient (traction
limit)
Next marker position miles
•"See COMMON for the remainder of these variables
311
-------
FORTRAN
Variable.
Definition
TI Maximum idle time
VR Reference vehicle velocity (speed limit)
Other Selected FORTRAN Variables:
FORTRAN
Variable Definition
A Vehicle acceleration
A A Linear acceleration of vehicle wheel
CWP Specific heat of working fluid
DA Aerodynamic drag
DG Grade drag
DIFF Per unit enthalpy difference
DR Rolling and mechanical resistance
FM Maximum tractive effort
FT Tractive effort
HGRE Enthalpy of vapor at regenerator exit
HGRI Enthalpy of vapor at regenerator inlet
HWCE Enthalpy of working fluid at conden-
ser exit
HWEI Enthalpy of working fluid at engine inlet
HWPE Enthalpy of working fluid at pump exit
HWRE Enthalpy of working fluid at regener-
ator exit
HWVE Enthalpy of working fluid at vapor
generator exit
IX Local logic variable
JS Variable to denote cumulative number of
timesteps
KA Accelerator sensitivity (changed inter-
nally)
KO Accelerator sensitivity (initial value)
MGI Mass flow rate of gas at inlet
Units
sec
mph
Units
ft/sec3
ft/sec8
Btu/lb °F
Ib
Ib
Ib
Ib
Ib
Btu/lb
Btu/lb
Btu/lb
Btu/lb
Btu/lb
Btu/lb
Btu/lb
Ib/sec
312
-------
FORTRAN
Variable Definition Units
MGRE Mass flow rate of gas at regenerator Ib/sec
exit
MGRI Mass flow rate of gas at regenerator Ib/sec
inlet
MGV Gas flow rate for each burner Ib/sec
MGVI Mass flow rate of gas at vapor gen- Ib/sec
erator inlet
MWE Mass flow rate of working fluid at exit Ib/sec
NCL Number of the first fluid pass
NCR Number of the last fluid pass
NX2 Required number of lumps
PACI Pressure of air at condenser inlet
PGCI Pressure of gas at condenser inlet
PGVI Pressure of gas at vapor generator
inlet
PWEE Pressure of working fluid at engine exit
PWEI Pressure of working fluid at engine
inlet
PWPE Pressure of working fluid at pump exit
PWPI Pressure of working fluid at pump inlet
TAUX Auxiliary torque
TE Cumulative idle time
TENET Net torque at inlet of transmission
TGCI Temperature of gas at condenser inlet
TGVI Temperature of gas at vapor generator
inlet
TWPI Temperature of working fluid at pump °F
inlet
TX Temperature of working fluid °F
TX1 Subcooled temperature of working fluid °F
WN Horizontal component of vehicle weight Ib
lb/in.2
lb/in.3
lb/in.3
lb/in.a
lb/in.3
lb/in.3
lb/in.3
ft-lb
sec
ft-lb
°F
°F
313
-------
FLOW DIAGRAM -- MAIN SYS
I = 1 + 1
C
Start
1
READ NTCOMP
NCYfor all NTCOMP
1
Define
NCLY, NCRY For All
NTCOMP
I = 1
YES
/
i
* Initializ e
I
I = 1
T
Do 10
10 Continue
Do 20
READ design data for all fluid
passes for thermal
component I
20 Continue
READ design data for remaining
components
READ Initialization Boundary Data
For Thermal Components
314
-------
FLOW DIAGRAM -- MAINSYS (Cont'd)
READ stored distribution values,
for transient start
READ initialization values for remaining
components
READ logic variable values
READ Route (file 31)
1
CALL DRIVER
Print ambient pressure and temper-
ature data
Do 30
For thermal component I, READ
initial boundary values for each
fluid pass J
Does
I =NTCOMP
YES
Does
NTRANS =0
30 Continue
Do 36
36 Continue
315
-------
FLOW DIAGRAM -- MAMSYS (Cont'd)
(B
Define combustor inlet parameter
values
CALL COMBST
1
Print combustor results
Print detailed results from combustor
Define vapor generator input
parameter values
I
CALL VAPORG
I
YES
Find whether vapor generator exit
flow is in saturated condition
I
Print
Message
Define expander inlet parameter
values
I
f
Stop
316
-------
FLOW DIAGRAM -- MAINSYS (Cont'd)
CALL ENGINE
Print Engine results
Define regenerator inlet parameter
values
I
CALL REGEN
Define condenser inlet parameter
values
CALL COND
i
Define feedpump inlet parameter
values
I
CALL PUMP
Reset cycle conditions
Obtain transmission inlet parameter
values
i
CALL TRANSM
317
-------
FLOW DIAGRAM -- MAINSYS (Cont'd)
Print transmission results
Compute vehicle motion
i
r
Print vehicle motion results
Is
integration or
iteration
necessary
Print detailed distribution for each
fluid pass
C
Stop, End
318
-------
PROGRAM LISTING — MAINSYS
AP,R.CH,CHK,CO
co2P.co2s.nrs. OCT. DTH
F: OIIIV.F,FS.H?OP.HPUS
HP.MK.HTFLAM,HT1N,LHV
LHVT.LCS.LCT.MAIR.MFLUID
MFUEL.N2P.N2R.N2S.MBENDA
NRFNOG»NU.NP,02P,05?R
02S.PO.SP1.SSA.STA
STO.TO.US.WT.YEXT
ACldOlt AOUdO).HH,CW,nHK10).DHO<10>
DIMO), 1)0(10). nS(10),DVYY(10)*EF
EFYClO.ll ) , Fli. EGV ( 10 . 11 ) , FH I ( 1 1) ) , FHO ( 10 )
FN|(10).FNU(10 >.FHAC.FT I (lll),FTO(in>
UVZ(10,11.2>.HFd0.11,2),HFINl.(lfl).Hr IN2(10).HGIN1(10)
HG|N2(10),HR1,HG7Y<1II,U >.HTF,HTFY(10,11)
J?E(lfl>. J3t( 10). ld.0>, ISTEP.MWmO.ll.)
NCY(3).NCLY<.O.NCRYm.NCYCLE,NFSFCT(3)
NLUMP.NM(ll) ) ,NMI (1 il ),NhO(lfl ).NPH
NPhYdll.ll I.NPHINT.NSS.NSI (lO).NSO(in)
NTRANS.NX2MAX(lfl),NX?Zdn),NXN,NXO
PGVd 0 ). RFA, HM(10 ) . PH. KUY( 10,11 )
TR1 ( 10 ) , 1G2< 10 . 11, V ) . T02 AVG( 10 ) . TG I Nl < 10 ) . TG I N2(10 >
IMF . TTdO. 11.2). TURRObdO ). VAPLK10 >.VAPL2(10 )
VAPI j(in ), vntdo >. Kir.do ). x2L(in ),x?r
CTAR(69,27),HL10(l/>8 ),HTAH(69.27 ),HVAP(128), 1NO
Nl I NF. NNU, NPSTtP.N [STEP, IM 1?H)
PTAR(7ll ),ST*H(6Q.27),T<12B).TTAB<33), VLIQ(128)
VTAR(6r>,27 ) , VVAPd ?R ) '
RI-Ai i , LHV.I.HVT.I i:S.LCT.MAl«.MFLUID,MFUEL.MHZ.N2P.N2R,N2S,NO
REAL nMVI.MliVh.MHCI .MrtCE.MWRI.MWRh.MWEf MWP.MWEE
Rt-AL 'Mnv.MOvl ,MGCI,MG«I.MC;Rfc,MBI,MGE
Kt-Al KF.LK,KO,KA.M
OlMtNSION TM(3)
INTfGEH CK.Z
SLOMP=10
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CUMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
CUMMON
COMMON
COMMON
COMMON
CUM- ON
W| AL>(.™,1H>LINE, (NCYd ), U1.N1COMP)
NCI Yd ) = \
DO 10 I=?.NTCUMP
NI:LY( i > = NCLY( 1-1 >»NCY( 1-1 )
III NCRYC I-1)=NCLY( I )-l
NCP»«NTCOMP)=NCLY(NTCOMP)+NCY(NTCOMP)-1
00 ?fl I=1,NTCOMP
J1=NCLY(I)
J?=NCKY(I)
RFAD< J«.15)LINE». J=J1. J2)
I-OLINEf (NM( J), Jajl, J2 )
li)L!NF. (Xllit J), J = J1. J2 )
RF-AD(3R.1S)LINF.(X?L.( J). J»J1.J2)
RbAb(Jf*.l^)L INE,(X?T( J), JaJl.j?)
OF An (JR. !•>)•! . INE.(DS(J). J»J1.J2)
WEAO)LlNE,(Fm< J).J=J1. J?)
»EAD
-------
PROGRAM LISTING — MAINSYS (Cont'd)
R(EAD(J8,l>>)LlNE,(FNU(J), J=J1. J2 ) 00610
READ(3B.1'>)LINF,(FTI(J), JsJl, J2> 00620
READ<3R.1->>LINF. 00680
RkAD(3R.15)L(NE.(TUBROWtJ),J=J1,J2) 00690
RFAD(3A.1H)LINE.NFSEC1(I> 011700
20 CONTINUE 00710
REAU(,.<8,2?)LINE.SP1,NI>,AP 00720
READ)LlNF.SSA.STA,STG 00760
KEAIMJfi.lSH INE.WS,WT,DCS.DCT 00770
RtADOfl.lR)LlNE.NBFNDA,NBENDG 00780
READ<3R.l5)llNF,LHV.LCS.LCT 00790
READ(.$ft.tS)LlNE. 4F . CO, W, RADW, KO 00800
READ(3fl,1*)L!NE.M 00810
• INITIALIZATION 00820
NTRANS=n 00830
READ(^9,1S)LINE.PMVI,HWVI.HUV|.HWVE 00840
RE&ij(-i9,i«m INE.PWCI.HWCI.MHCI.HWCE.MGCI ooaso
REAU(39,ll>)LlNE.PHRI.HWKI,HMR|,hWHE.PGR| 00860
READ(39.l'»)LlNE.PHVE.PMCE 00865
00 JO I=l.NTCuMP 00870
J1=NCLY(I) 008HO
J2=NCRY(I) 00890
RtAD(J9.l^)LlNE,(HF|Nl(J),JsJl,J2) 00900
HFA(J(J9,1S)LI'»F,(MFIN2(J). J=J1,J?) 00910
ird.EQ.3) GO TO 25 00920
nE. (TRINUJ). J=J1,J2) 00930
hE.(lGIN2( J),JsJl. J2) 00940
(50 TO 30 00950
2-> CONTINUt 00960
READ(39,1>>)L I NE , ( HR 1 Nl ( J ) , J = Jl. J2 ) 00970
Kb A I) (.f 9, !•>)(. INE, (HGIN2(J), J = J1, J2 ) 00900
30 niNTlNllfc 00990
|F(NTKANS.FU.O) GO TO 39 01000
32 CONTINUE 01010
DO 36 1=1.NTCUMH 01020
J1=NCLY(|) 01040
.l? = NCRY(l) 01050
»FAD(l.l,ini )T|M( I > 01060
101 MiRMATMEl^) 01070
nil 33 J = J1.J2 01080
33 REAndl ,in2)NX??( J) 01090
102 r()RMAT( 111)) 01100
no 35 1K = J1 . J? OHIO
MI=MX27(|lO 01120
HO .54 J = 1.MI 01130
34 Ht-40(11 ,101 )Mf ( IK,.I*1 ,1),7T( IK, J,1),T02( IK,J,1).MUZ< IK,J*1) 01140
IV(1K.NF.J2)MwZ(IK*1,1)=MWZ(1K,M|»1) 01150
If( IK.Nt.J?)MF(U*l,l,l)»HF
-------
PROGRAM LISTING — MAINSYS (Cont'd)
\*)
IB
19
411
50
55.
6U
59
61
613
Rt-AHO9,ltt)L!NEfLlNUEX.LINEX.LlNBX
REAFM39,IS)LINE,MFUEL.MAIR,MFLUID,RFUEL
REAU(J9,15)LINE.PU,TO
REAnLINE»AS.DIST,V,VT
REAU(39.15)LINE,RPMX.CS
REAn(J9,l8)LINE,Z
KAsKO
FORMA I ( I6.5F12.5)
FORMATUA.5112)
IF(NLUHP.EO.IO) GO
IF(LINDEX.FO.l) GO
TE = 0.
READ(Jl.5H)LlflE.LK.G,lI.AR,VR.KF.CR
FORMAT! 16.6.F8.2, 12)
CALL l)RIVtR(TJ, I E, AR, UT, D I S F . LR, V, VT, Z, CS, K A, CR. VR, RADH, AS,
7A.LlNI)EX,LlNEit,LINRX.KPMX.KO.AM
CONTINUE
IFCLINBX.NE.O) GO TO 19
CONTINUE
WRITE(6,61)PO, TO
FORMAT(32H1AHAIENT PRES (PSIA). TENP (F) .2E15.5)
TO
TO
59
55
62
6J
201
20?
203
204
20*
20r>
207
20U
FORMATtBH
TGCI=TO
PACI=HO
11 »\- .E15.9)
MGV^Mf UtL*MAlW
RFAsMFHEL/MAIK
HH=LHV»RFUEL»J600.»l.fc-6
HRITE(6.6?)
FORhAT(2H )
FORMAT(4AX,22H »•••• COMBtlSTOH •••»•)
MK!TE(6,62)
CAL1 rOMRST(PACI,PACE.TG.TSC,TAC,TTC.CPC.TFLAME)
WKITE(6,2H1)
FORMATM9H •• FLOWS (LBS/SEO)
WWI TE(6.9fl?)MAlR»HFUEL
AIR
FORMAKinx.lQH
UR|1E(6.6?)
WIM IF«*.?03>
FORMA )(2flH »• TEMPERA 1 URES
UR1U(A,?U4)TTC.TSC
FORhAKinx.lQH TUBE
WRI TE(6,?U5)TAC.TG
FORhATdiU.lOM AIM
WRITER. ?il6)TFLAMb
FORMAUinXflOH FLAME
. E15.5,5X, 10H FUEL
• E15.5.5X.10H SHELL
. F15 .5. 5X, 10H GAS
.£15.5)
UKITE<6,?07>
FORMAT(3nn •• EMISSIONS (GM/GH OF FUEL))
UR!TE«S,?l)fl)NO.CO,rH
FORMATdnX.lOH NO . E15.5, 5X, 10H CO
710H CH .E15.5)
IF(NPRlNT.NE.n) GO TO 69
,E15.5)
.E15.5)
.E15.5)
,E15.5,5X.
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
015&0
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
321
-------
PROGRAM LISTING — MAINSYS (Cont'd)
64
65
66
67
68
69
200
WRITE(6,64)H,H20S.C02S.02S ,
FORMATdBH », H20S, C02S. 02S .4E15.5)
WKITE(6.
CONTINUE
PGV1=PACE
TOVIsfG
MGV1=MOV«FLOAT(NBURNR)
CONllNtlk
LSTFPaJ
JS=0
IF(NTRANS.NE.O) T|MF»TIM(1)
IX = 1
NCL=NCLY( IX)
HF(NCL,l.l)=HWVI
T(ilNt(MCL*1 )sT(?VI
Mi;|=HGVl/iLOAT(NrSFCT(|K)i
URITE(6,?10)
210 FORMAT(2Ml ,4SX,?HH ••••• VAPOR GENERATOR •••••)
CALL VAPOWO(Mol,MWF.PbVI.POVE.PMVI.P«VE, TOVI.JS.NST)
riMt=TfMFX
NCR=NCRY(IX)
NX2=NX?Z(NCh)
HWVE=HF(NCff.NX2»l.l)
NSS=1
PwEI=PWVE
HwFlaHHVE
CALL SATP(PWEI.1HEI.VML,VWV.MLfHV,l)
If (HHfcl.OKHV) GO TO &00
wHI1E(6,14)
14 FuRMAF(45H VAPOR UFNERATOR EXIT IN SATURATION CONDITION)
srop
500 CALL SOPPMPHEI,TwFI.HWtl.SWEI.VWtI.3)
PMEE=PGRI
WR!TE(6.5U1)
501 FORMA T(2Hi ,4ex.ivH ••••* ENGINE •••••>
URITE(6.6?)
CALL EN6INE(R.RPME,PHtI,TMEI,HWEI.SMEI,VWEI,PWEE,TMEF.
7HHEF.SWEE.VHEE.XWEE.HHEE.TOROE)
WRI1E(6.502)RHHE.K
502 FORMAK24H tNOI^E SPEED* STROKE ,2615.5)
UKITF(6.503)PuEI.HUEI
50J FORMAK24H INLET PRES, ENTHALPY .2E15.5)
v4finE(6.5Q4)PMEE.HUEE
!>04 FORMAT(24M EXIT PRES. ENTHALPY ,2E15.5)
MKITE(6,505)NWEt
505 FORMAT(24't MASS FLOW (L8S/SEC)
-------
PROGRAM LISTING — MAINSYS (Cont'd)
51U
515
516
525
•>26
•>0b
CON1INUE
NCL = NCI.Y( J>
NfR=NCRY< J)
IF (NTHANS.EQ.U) 60 TO 526
HO 52^ 1 I=NCL,NCR
wmTE<6,515)TGKI I )
FORHATC6H TGI ,F1?,5)
HO 525 JJsl.NI.UNP
H«IlF<6.51MHF.TG2=MHRI/FLOAT(NFSECT( IX))
MGI=N(JRI/FI OAT(NFSFCT< IX))
HKITE(6,5H7)
FORNATC2H1 .46X.24M ••••• REGENERATOR •••••)
CALI KEUFNJMGI.MGt.PGHI.PGRfc.PWRI.PWRE.HGRI. JS.NST)
T1MF=T1MEX
JS = 0
MGRE=MGb«n.OAT(NFSFCT( IX) )
HiiPt =H01N?( NCI )
HwRt=HF (NCR.NX2*!.! )
MwRt-=MWZlNrK.NX2*l )»FLOAT(NFStCT< IX
PUVI=PWRE
MwCI=MGKF
PwCI=HfiF
HF(NCL.l .1 >=HWCI
MhZ(NCL.1 )=MWCI/FLOAT(NFSFCT( IX))
MGI=Mr!CI/FI (JAT(«MFSFCT(IX) )
OAT(NFSFCT( IX))
FoRHAT(i»Hi .47X.?2H •a*** CONDENSER ••»••)
CAI I CONn
-------
PROGRAM LISTING -- MAINSYS (Cont'd)
520
55(1
600
601
602
60J
604
605
606
607
608
609
17U
180
CWP=FCWL.Lt.0.01) GO TO 550
TXs(TXJ*TX)/2.
GO 10 520
THP|=TX1
PWPE"HWVl*
WHITE(6.6nl )
Fl)RMAT(2Hl .47X.22H ••••• FEED PUHP •••••)
MK1TE«S.6II?)RPUMP.RPMP
FURMAT(?OM STKOKE, SPEED .2E15.5)
URIlE(6.6n3)PwPI,TMHI
FuRMAT(20H INLET PRFS. TEMP .2E15.5)
WKI1F(6.6H4)PMPE
FDRMAK20H EXIT PRFS .E15.5)
WKI TE«S.6n5)MWP,HKlMP
FORhAT(20H tLOW. POWER .2E15.5)
HHPF=HHCE
HWRIsHWPE
NMRIeMUP
TAUX=0.
RPMX=1?28.
TENtT=TOROE-TAUX
URI1E(6,6?>
WRITE(6«6Q«)
FURHAT(48X,25H ••••• TRANSMISSION •••••>
CALL TRANSMCR.RPMX.TENET.RPME.TOROX. INE)
WKITE(6,6n7)RPHX.H. TENET
FORHAT<30H INPUT SPEED, STROKE. TORQUE .3E15.5)
NKI1E(6.60B)RPHE.TOMQX
FORHAT(30M OUTPUT SPEED. TORQUE ,2E15.5)
VEHICLE MOTION
TIME=TIME*OT
T]MEX=T1MEX*OT
IF(LINEX.NF.O) GO TO 180
KF=.5
Ve90.
AA = 0.
VT=00.
MN=W»COS(
DGaU«SIN(ATAN(.01«G)>
nK:(U/5l).)»(l.«ll.4E->3*V/1.47)«(1.2lOE-5*(V/1.47)«*2»
Fr=TOKOX/RADU-M«AA/HAUU
IFPA-DR-DG)/(H/32.2)
AA=(TORUX.FH*RAOU)/M
V=V*(1.5/l.47)»A»DT
IF
-------
PROGRAM LISTING — MAINSYS (Cont'd)
irm.LT.u.)-
RPMX>(44./3.14)»VT
D1ST=DFST*<1. 5/3600. )»V«DT
URITE<6,62)
WRITE(6,611)
611 FORMAH47X.27H ••••• VEHICLE NOTION •••••)
MRITE(6.612)V.DIST
612 FORMAK43H VEHICLE SPEEU(MPH), DISTANCE TRAVELEO(MI) .2E15.5)
MRITE(6,62)
WR|1E<6,62>
IF(RPHX.LT.O.) RPNXcO.
DirF=ABS«HWRF-HWVI >/HWVI )
IF(NLUMP.EO.IO) 00 TO 615
IF GO TO 2000
HgVI=/2.
NCYCLfc=l
6lb WR|TE(6.614)
614 FURMAT(44H ENfl-PO|NT DISTRIBUTION AFTER THIS ITERATION)
HO 1500 I=1.N1COMP
JlaNCLY(l)
J2*NCRY(I>
DO 1500 JsJl*j2
J3=NX2Z(JJ»1
HFIN1(J)=HF(J,1.1)
HriN2(J)sHF(J, J3,l)
TGlM(J)sT61( J)
TGIN2(J)'T62AVO(J)
WR|TE(6,1510)I.J,HFIN1(J).HFIN2(J).T6IN1(J)»T01N2(J),H9IN1(J)
7,HGIN2
-------
DATA RLE-DATA INPUT
The Data Input File 38 supplies geometric and design data f<
tern components. Figure 4 indicates the arrangement of the datz
Reference
No.
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
UC120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
NTCOMP
NCY(l)
Following
BH(1)
BT(l)
Did)
DOd)
L(D
NMd)
XlG(l)
X2UD
X2T(1)
DSd)
FHKD
FHOd)
FNKD
FNOd)
FTI(l)
FTO(l)
NMKD
NMO(l)
NSKD
NSOd)
RMd)
TUBROW(l)
NCY(2)
Data Refer to
BH(2)
BT(2)
DI(2)
DO(2)
L(2)
NM(2)
X1G(2)
X2L<2)
X2T(2)
DS(2)
FHK2)
FHO(2)
FNN2)
FNO(2)
FTK2)
FTO(2)
NMI(2)
NMO(2)
NSK2)
NSO(2)
RM(2)
TUBROW(2)
NCY{3)
Vapor Generator
BH(3)
BT(3)
DI(3)
DO(3)
U3)
NM(3)
X1G(3)
X2L(3)
X2T(3)
DS(3)
FHK3)
FHO(3)
FNK3).
FNO(3)
FTK3)
FTO(3)
NMK3)
NMO(3)
NSK3)
NSO(3)
RM(3)
TUBROW(3)
NFSECT(I) for Vapor Generator
Following Data Refer
00260
00270
BH(4)
BT(4)
BH(5)
BT(5)
to Condenser
BH(6)
BT(6)
Figure 4. Arrangement of Data in Data Input File (Sheet 1 of 3)
326
-------
Reference
No.
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
Following
DI<4)
D0(4)
L(4)
NM(4)
X1G(4)
X2L(4)
X2T(4)
DS(4)
FHK4)
FHO(4)
FNK4)
FNO(4)
FTI(4)
FTO(4)
NMI(4)
NMO(4)
NSK4)
NSO(4)
RM(4)
TUBROW(4)
NFSECT(I) for
Data Refer to Condenser (Cont1
DI(5)
DO(5)
L(5)
NM(5)
X1G(5)
X2L(5)
X2T(5)
DS(5)
FHK5)
FHO(5)
FNH5)
FNO(5)
FTK5)
FTO(5)
NMK5)
NMO(5)
NSK5)
NSO(5)
RM(5)
TUBROW(5)
Condenser
Following Data Refer
00490
00500
00510
00520
00530
00540
00550
BH(7)
BT(7)
DI(7)
DO(7)
L(7)
NM(7)
X1G(7)
BH(8)
BT(8)
DI(8)
DO(8)
L(8)
NM(8)
\
X1G(8)
DI(6)
DO(6)
L(6)
NM(6)
X1G(6)
X2L(6)
X2T(6)
DS(6)
FHK6)
FHO(6)
FNI(6)
FNO(6)
FTK6)
FTCH6)
NMI(6)
NMCK6)
NSK6)
NSO(6)
RM(6)
TUBROW(G)
to Regenerator
BH(9)
BT(9)
DI(9)
DO(9)
U9)
NM(9)
X1G(9)
d)
BH(10)
BT(10)
DI(IO)
DO(10)
U10)
NM(10)
XIG(IO)
Figure 4. Arrangement of Data in Data Input File (Sheet 2 of 3)
327
-------
Ref. No.
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00735
00740
00750
00760
00770
00772
00775
Following Data Refer to Regenerator (Cont'd)
X2U7)
X2T(7>
DS(7)
FHK7)
FHO(7)
FNI<7)
FNO(7)
FTK7)
FTO(7)
NMI(7)
NMO(7)
NSI'(7)
NSO(7)
RM(7)
TUBROW(7)
X2L(8)
X2T(8)
DS(8)
FHK8)
FHO(8)
FNN8)
FNO(8)
FTK8)
FTO(8)
NMK8)
NMO(8)
NSK8)
NSO(8)
RM(8)
TUBROW(8)
X2L(9)
X2T(9)
DS(9)
FHK9)
FHO(9)
FNK9)
FNO(9)
FTH9)
FTO(9)
NMK9)
NMO(9)
NSK9)
NSCK9)
RM(9)
TUBROWO)
X2L(10)
X2T(10)
DS(10)
FHI(IO)
FHO(IO)
FNI(IO)
FNO(IO)
FTI(IO)
FTO(IO)
NMI(IO)
NMO(IO)
NSI(IO)
NSO(IO)
RM(10)
TUBROW(IO)
NFSECT(I) for Regenerator
Design
SP1
DISP
NBURNR
SSA
WS
NBENDA
LHV
AF
M
Data for Remaining Components
NP
NPCYL
STA
WT
NBENDG
LCS
CD
Following Data Are
00780
00790
00800
R1L
R1U
GRRE
RPM1L
RPM1U
AP
STG
DCS
LCT
W
Read from TRANSM
R2L
R2U
DCT
RADW K
RPM2L G:
RPM2U G:
Figure 4. Arrangement of Data in Data Input File (Sheet 3 of 3)
328
-------
PROGRAM LISTING — DATA INPUT
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
0031.0
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
3
3
.965
.5
.930
1.315
26.
1
1.J15
2.26
0.
.09375
0.
0.
0.
0.
n.
n.
0
l
1
3
.39
5.5
3
1.515
1.44
.146
.206
4.16667
1
1.515
.664
0.
n.
0.
.465
0.
14.
0.
.01)25
0
?
1
2
0.
1.
30
.3
.29
.5
.550
8. 33333
1
.55
.R5
n.
.0625
n.
3
0.
0.
.V30
1.315
17.
1
1.315
2.23
0.
.120
.356
16.
10.
.0312
.012
1
2
2
2
0.
5.9
.75
.72
.146
.206
4.16667
1
.75
.664
0.
0.
0.
.465
0.
14.
0.
.0025
2
1
2
0.
1.
.3
.29
.5
.550
a. 33333
1
.55
.85
.0625
0.
4
0.
0.
.930
1.315
35.
1
1.315
1.42
0.
0.
0.
0.
0.
0.
0.
0
0
1
1
0.
a.9
.765
.72
.146
.206
4.16667
1
.765
.664
0.
0.
0.
.465
0.
14.
0.
.0025
2
1
2
0.
1.
.3
.29
.5
.550
8.33333
1
.55
.85
.0625
0.
.3
.29
.5
.550
8.33333
1
.55
.B5
.0625
0.
329
-------
PROGRAM LISTING -- DATA INPUT (Cont'd)
00600 0. 0. 0. 0.
00610 0. 0. 0. 0.
00620 fl. 0. 0. 0.
00630 0. 0. 0. 0.
00640 0. 0. 0. 0.
00650 1111
00660 1111
00670 1111
00680 3333
00690 .35 .35 .35 .35
00700 4. 4. 4. 4.
00710 4
00720 3. 4 15.3
00730 4.78 5
00735 2
00740 454. 374. 374.
00750 6.8 3.15 4. 7.
00760 75 30
00770 201Af>. .708 1.415
00772 24. .5 4600. 1. .03
00775 11.9
00780 0.065 370. 0.065 435. 1.
00790 .26 550. .155 660. .584
00800 2.79
330
-------
DATA RLE - DATA INmAL
The Data Initial file 39 supplies all the system components with the ini-
tialization data required to start the program. Figure 5 indicates the arrange
ment of the data in Data Initial.
Reference
No.
00010
00020
00030
00035
00040
00050
00060
00070
00100
00110
00120
00130
00160
00170
00200
00210
00280
00290
00300
00310
00320
PWVI HWVI MWVI MWVE
PWCI HWCI MWCI MWCE MGCI
PWRI HWRI MWRI MWRE PGRI
PWVE PWCE
Following Data Refer to Vapor Generator
HFIN2(1) HFINK2) HFIN1(3)
HFIN2U) HFIN2(2) HFIN2(3)
TGINl(l) TGINK2) TGIN1(3)
TGIN2U) TGIN2(2) TGIN2(3)
Following Data Refer to Condenser
HFINK4) HFINK5) HFIN1(6)
HFIN2(4) HFIN2(5) HFIN2(6)
TGINK4) TGINK5) TGINK6)
TGIN2(4) TGIN2(5) TGIN2(6)
Following Data Refer to Regenerator
HFINK7) HFINK8) HFIN1(9) HFINl(lO)
HFIN2(7) HFIN2(8) HFIN2(9) HFIN2(10)
HGINK7) HGINl(B) HGIN1(9) HGINl(lO)
HGIN2(7) HGIN2(8) HGIN2(9) HGIN2(10)
Miscellaneous
FRAC
LINDEX LINEX LINBX
Initial Data for Remaining Components
MFUEL MAIR MFLUID RFUEL
PO TO
R RPME
Figure 5. Arrangement of Data in Data Initial File (Sheet 1 of 2)
331
-------
Reference
No.
00330
00340
00350
00360
00370
00380
00390
Initial Data
RPUMP
YEXT
IND
NPRINT
AS
RPMX
Z
for Remaining Components (Cont'd)
RPMP
TIME
NND
NSS
DIST
CS
TIMEX DT
NCYCLE
INE NST
V VT
Figure 5. Arrangement of Data in Data Initial File (Sheet 2 of 2)
332
-------
PROGRAM LISTING -- DATA INITIAL
00010
00020
00030
0003b
00040
OOObO
00060
00070
00100
00110
00120
00130
00160
OH170
00200
00210
00200
00290
0 0 31) 0
00310
00320
0033(1
00340
003b(l
003)0
OU370
00300
OU390
5UO.
-91.7
-43.
1190.
43.
-13.33
121.67
77.
'.5
0
,0123
14.7
.147
.434
QUO.
0
1
n.
o.
1
-91.7
43.
-124.
24.5b
-43.
2'J.O
3330.
-13.33
-69.66
121.67
14H.34
-1 It 7 .
60.b
bO .
n
05.
20(10.
?OuO.
U.
II
1
0 .
1.
2.05
2.Ob
2.Ob
2b.O
12H.7
1BV6.
U90.
-69.66
-126.
148.34
-107.
*U.
51.b
0
2.Ob
0.
0
U
0.
2.05
2.Ob
2.05
17.
25.
•98.b
-90.
51.b
43.
,0173
1.
II
0.
333
-------
DATA RLE - ROUTE
The Route file 31 supplies the route profile for use in the DRIVER model.
334
-------
PROGRAM LISTING -- ROUTE
Reference
No.
00010
00020
00030
00040
o ii n 5 n
00060
00070
OOObO
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
LR
(mi)
.65
.65
.65
.A5
.65
1.2
1.2
1.93
1.93
1.93
1.93
2.3
2.3
?,98
2.98
2.9B
3.65
3.65
3.65
3.65
G
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
n.
0.
0.
0.
0.
0.
0.
n.
.05
.05
TI
(sec)
1.
0.
0.
0.
n.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
0.
0.
0.
0.
AR
(ft/
secs)
0.
10.
6.
3.
3.
-5.
3.
10.
6.
3.
3.
-in.
3.
2.23
-in.
3.
-10.
8.8
3.
-10.
VR
(mi/hr)
0.
40.
50.
60.
60.
25.
?5.
40.
50.
70.
70.
50.
50.
80.
50.
50.
0.
65.
65.
0.
KF
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
CR
0
i
1
i
0
-1
0
1
1
1
u
-1
0
1
-1
0
-1
1
0
-1
335
-------
Section 14
INDEX
-------
Section 14
MDEX
INDEX OF PROGRAMS
Program Page
BLSIZ1 270
BLSIZ2 280
CGEOMC 157
COMB1 208
COMB2 213
COMB3 . • 219
COMBST 205
COND 125
CONDSZ 288
DISTR 86
DOME 43
DRIVER 237
ECOMP 254
EEFF 245
ENERGY 226
ENGINE 35
FCA 25
FCG 25
FCMC • 25
FCMS 25
FCWL 25
FCWV 25
FDA 25
FDG 25
FOWL 25
FDWV 25
FKA 25
337
-------
INDEX OF PROGRAMS (Cont'd)
Programs page
FKC 25
FKG 25
FKM 25
FKS 25
FKWL 25
FKWV 25
FPRS 25
FPRS1 25
FPRS2 25
FRMC 25
FRMS 25
FVA 25
FVG 25
FVWL 25
FVWV 25
FYWL 25
GEOMCO 89
HT1PB 110
HT2PC 163
HT2PB 112
HTAC 165
HTGR 115
HTGTB 117
HTGTF 119
HTGTM 121
HTPF 123
HTWTM 202
INTSTE 105
ITERAT 95
MAINSYS 301
338
-------
INDEX OF PROGRAMS (Cont'd)
Program Page
PDROP1 99
PDROP2 101
PDROPA 103
PDROPR 200
PHASE 107
PROP 3
PROPST 6
PUMP 49
KEGEN 167
RGEOMC 194
RGSIZE 294
STEPSC 160
STEPSI 92
STEPSR ; 197
SATP 10
SUPPT 14
TRHT 228
TRANSM 231
TSIZE 263
TURBIN 45
VAPORG 53
INDEX OF DATA FILES
Data File Pages
04 Saturated Fluid Properties 2, 3, 344, 387, 406
07 Superheated Fluid Properties - Pressure and
Temperature 2, 6, 346, 390, 407
08 Superheated Fluid Properties I - Specific Volume,
Enthalpy, Entropy, and Specific Heat 2, 6, 347, 390, 407
09 Superheated Fluid Properties II - Specific Volume,
Enthalpy, Entropy, and Specific Heat 2. 6, 368
339
-------
INDEX OF DATA FILES (Cont'd)
Data File Pages
11 Transient Start File 2, 53, 301
13 Output File from VAPORG. REGEN, and COND ... 2, 53
15 Output File from ITERAT 2, 95
31 Route File 2, 301, 334
38 Data Input File 2, 301, 326
39 Data Initial File 2, 301, 331
340
-------
APPENDIX I
-------
Appendix I
WORKING FLUD THERMODYNAMJC PROPERTES
FOR CP-34, WATW, AND FC-75
The computer tabulations which make up this appendix present the thermo-
dynamic properties of the three fluids under investigation:
• CP-34 -- Figures 6, 7, 8, and 9.
• Water -- Figures 10, 11, and 12.
• FC-75 -- Figures 13 and 14.
Table 3 lists their respective temperature and pressure ranges in both the
saturated and the superheated states.
Table 3
RANGE OF FLUID PROPERTY TABULATIONS
Saturation
Fluid
CP-34
Water
FC-75
Temperature
Range
-55. 0°F
to
580. 0°F
l'sO. 0°F
to
550. 0°F
20. O'C
to
227. 06°C
Number of
Temperature
Steps
128
115
25
Figure
No.
6
10
13
Superheat
Pressure
Range
0. 1 paia
to
600. 0 psia
10. 0 psia
to
1000. 0 pela
0. 004 atm
to
40. 0 atm
Temperature
Range
175. O'F
to
600. 0°F
200. O'F
to
840. 0°F
110. 0«C
to
300. 0»C
Number of
Pressure
Steps
69
41
35
Number of
Temperature
Steps
27
33
20
Figure
No.
7.8,8
11.12
14
The tabulations of the superheated fluid properties are interpreted in the
following subsections.
FLUID: CP-34
The saturated fluid properties of CP-34 are listed in Figure 6.
The reading program for subroutine PROPST names the following four
pressure values:
PTAB(l) = . 1
PTAB(2) = . 3
PTAB(3) = . 5
PTAB(4) -- 2.
These values together with those in the CP-34 superheated pressure and
temperature tabulation (Figure 7) comprise the pressures and temperatures
341
-------
for which CP-34 superheated fluid properties are given in Figures
8 and 9. *
The first six lines of Figure 7 contain a total of 65 pressure values to
be added to the previous list of four pressure values. Each pressure cor-
responds to a pressure block of 27 lines in Figure 8 or 9. (The last block
of Figure 8 is repeated as the first block of Figure 9 to satisfy the interpo-
lation program requirements. )
The remaining three lines of Figure 7 list 27 temperature values, cor-
responding to the 27 lines in every pressure block. Each line of a block in
Figures 8 and 9 then gives the specific volume, enthalpy, entropy, and spe-
cific heat values that correspond to both the pressure for the block and the
temperature for that particular line in the block.
For example, to find the CP-34 fluid properties that correspond to pres-
sure 320. 0 psia and temperature 480. 0°F, first find 320. 0 psia in Figure 7.
It is the fifty-first pressure value in the tabulation. To fifty-one must be
added the four pressure values named directly in subroutine PROPST. Since
the total is then fifty-five, the fifty-fifth block of 27 lines in Figure 8 or 9 is
then found.
Figure 8 contains only thirty-three pressure blocks; the thirty-third
pressure block is repeated in Figure 9; therefore the twenty-third pressure
block in Figure 9 corresponds to pressure 320. 0 psia. The pressure blocks
in Figures 8 and 9 have been sectioned off and labeled in order to facilitate
this process. The temperature of 480. 0°F is the fifteenth temperature,
corresponding to the fifteenth line of the 320. 0-psia pressure block, which
gives the following values:
VTAB(51,15) = 0.29749**
HTAB(51,15) = 106.18000
STAB (51, 15) = 0. 02190
CTAB (51, 15) = 0. 37468
FUJIP: WATER
Figure 10 is the computer tabulation of the saturated fluid properties
of water.
* Figure 9 is a continuation of Figure 8. The listing was divided for com-
puter storage purposes.
**The nomenclature and dimensions correspond to those used in the reading
program of subroutine PROPST, listed in Volume II, page 6.
342
-------
The reading of the superheated water property tabulation (Figure 12) is
very much like that of the CP-34 listings. The pressure and temperature
values, however, are read solely from Figure 11, and the specific volume,
enthalpy, and specific heat are given in a single tabulation (Figure 12).
Each of the forty-one pressures in Figure 11 corresponds to a block of
seventeen lines in Figure 12. The superheated tabulations for water vary
from those for CP-34 in that each line of a pressure block in the water tables
contains the fluid properties corresponding to the pressure value of that block
and to two consecutive temperature values.
For example, find the water fluid properties that correspond to a pres-
sure of 60. 0 psia and a temperature of 420. 0°F. Since 60. 0 psia is the ninth
pressure value in Figure 11, the ninth block of seventeen lines is located.
The 420. 0°F temperature is the twelfth temperature in Figure 11. Since
each line of Figure 12 contains values corresponding to two consecutive tem-
perature values, the values corresponding to the twelfth temperature are on
the right-hand side of the sixth line of the pressure block. Thus, the fluid
properties corresponding to pressure 60. 0 psia and temperature of 420. 0°F
are:
VTAB(9,12) = 10.628
HTAB (9,12) = 1342. 1
STAB (9, 12) = 1. 8260
FLUID: PC -75
The saturated fluid properties of FC-75 are given in Figure 13.
The reading of the superheated FC-75 fluid property tabulation (Figure
14) is almost identical with that of the water table. Each of the thirty-five
pressure blocks is made up of ten lines, and each line contains the enthalpy,
entropy, and specific volume values corresponding to two consecutive tem-
perature values.
The significant difference between the listings for superheated water and
FC-75 is that the pressure and temperature ranges are included as the first
five lines of the FC-75 superheated fluid properties in Figure 14, instead of
comprising a separate file. The finding of fluid properties to correspond to
a given pressure and given temperature is identical with the process used
for superheated water.
343
-------
n
n
n
n
n
n
0
n
M
n
n
n
i<
n
n
'i
n
n
n
'i
n
n
(i
n
1
1
1
1
1
">
7
?
;«
3
3
4
4
S
4
6
7
8
fl
9
in
11
P
(psia)
. 11 1 ? 3 9
. 01 497
. II ? fl 4 3
.Hx'4'94
.H >?/?
. II40W9
. « 4 1 •• ?
.0^.112
.11 77M
.H9496
.1 14411
. 1 >9hn
. 1 ^«4n
. *x " 1 H n
. ?40r » ft .MI
. f* ^ 6 1 II
.7 » H i n
. H-« w>0
.9. .3*0
. 1 Nfl.lO
. ? J4-'i
. 4 /ft), n •
,6»« M. .•
.VI 1 111
. 1 -*4 ml
. 4 4 4 ii ii
. / •> 3 n n
. •' -M u 0
.4 '.9 nU
. H « ii ii n
. .S .Ml 1. il
.H/>?|ill
. .^ •> H n i)
.94?n 0
. 4/6nO
. '-"64IH1
. mi 9 1. n
.HI 4i u
. 6f ?n U
.6xOiin
.ft sn i. n
c
-s-,.
-4-i.
-4->.
-Hi.
- v>.
- Ml.
-/•>.
-?•!.
-1 '>.
-1-1.
- >.
il .
4.
1 '1 .
' *>•
•x...
?•>.
* " *
3 >.
4'i.
4'>.
4 '1.
4 4.
ft II .
ft-'.
7 u.
7 ..
H 1.
H-I.
9.1.
9-^.
1 ll '< .
i '" "> .
\ 1 '.
1 I >.
1 ? " .
1>> >.
13-1.
1 .Ii.
I 4 il .
1 4->.
I 4 n.
1 ''•»•
1 6.1.
I6i.
1 7 0 ii
no .1
i.i n n
UOii
u :i n
(I '1 II
(I ll ll
U'lil
III) 1
II ll ll
no u
u 0 u
n >i n
u .1 .)
i> -i n
u 'i n
fi 4
1 4 39
1 44?
1446
l4hP
1 4 >i 4
I 44h
1 4''?
1 4n6
14/1
1474
14/9
14*3
14A7
14^?
14'<6
I 4 H n
J ?. 3
I'ii'ft
14.1?
1 4 .» 7
144?
1 447
144?
1447
1 46?
1567
] 4 72
14/7
1 4"M?
1">'<7
1 4^3
14wfl
1 6 n 3
L6n9
161.4
WAP
(ft3/lb)
41.64. il HI) OH
3? 71 . uli U On
?4»'» . M n u n u
?ii6.S. 1" n II >ll)
1 h 4 4 . P !> il 0 H
l.*3 / . n n 111)11
l U p. / . u M u n ii
HhH . .MI II •! U
7 3 H. 4 ii ll rt II
ft 0 .-i . H n II J M
4 fl I . *< ii n >1 0
4 1 v . f n u 1 n
.•>4* I . fin II 1 1.1
?4" ] . .Ml II -III
?. } 3 . H 0 11 1 0
1 H ? . ft H H '.1 U
l 4f' . fi n n ilu
1 3 4 . 1 U U U II
1 1 ft . •> u n fi il
101 ..(1 II H'lll
8 '/.Mr u J.i
7f>. 7? U On
67. 19 ii On
4 1> . u 3 n '1 n
4 :•' .Ml n '1 n
4 '• . *J4u U u
4ii . 7?nUii
3 * . I MI 0 u
3 v . / 2 u il u
? i . 7 7 ii -J H
?*>.76Uilll
? 3 . 1 1 (Ml il
?n. 7Hli:Hl
1 H . 7 .1 0 0 U
1 ^ . 9 ? ,| il u
1 4 . ,M ii U 0
1 ,> . « H U II u
1 ? . ft 1 fl 0 u
1 1 . 4«U lu
1 n . 4 7 n .) u
0 . 4 6 2 il 0
M . 7 •> H 1 il
M . u 1 w ii u
7 . 3 6 ?. n n
6 . / 6 9 :1 u
HLIQ
(Btu/lb)
-? 1 -J. Mil
- ? 1 1 . 9 0
-?H9. J|i
-? II K . II n
- 7 n 6 . '> II
-?il4 . In
-9 H?. in
-? n 0. 7 n
- 1 9 H . 9 il
-197.1 .1
-1 wH.
-11
-1 -.
- V
-V
— ,1
-/
-('
-••>
-4
-4
— .»
-X
-1
— •!
K
1
x
1
-1 / 4. H n no 'I .
-1 / I.'H
-1 /i .->H
- 1 r>9 . A i.
I'Oil
nmi
.. un
->
f,
/
- 1 ft N . 1 n ii n il -H
- 1 r«6 . 'M.
- 1 *4 . "^ 'i
-1 »i3. 1 "'
-161 . 4 ll
-ll". /'•
-1 4f . 'in
-] 1ft. 3n
—144.6"
- 1 4 ? . •> "
-141 . 'x n
-1 49 .'ill
-147. Hi.
-1 46. 'In
- 4 4 . MI
- 4 ? . i n
- 4II.8H
- -jo. on
- J 7 . ? i)
-I,l5.4n
n un
n i) i u o
1' n 0
n no
nun
mi n
u u il
n u n
non
nun
liOO
nun
On')
nun
nun
Dun
OH II
n u u
,
I •
1 1
1 f
1 )
1 -1
1 •>
1 ..
1 /
Li
I1'
?!(
??
?3
24
?•>
?n
?7
?n
. 14 ii ll ..
.Mm- n •
. Ill !• II 1'
. ifV ' I1 ''
,'>1 •.H"
. '/n n.i
,gx-,n-'
. 1 1 •» n ,.
. X"9 1 0 n
.40,' f>"
./. 1 -vn '
. 7f» >0'-
.«*••. HI •
. n /"»•! •
. l ^n.,
. / 4 i 0 ••
. .\ ^ -i c ••
9 4 | A f\ ' *
. •» 1 IHI.
. 4 4 w II .
. si,'.n.-
. von-
..t '.'0-
. xw / n ..
. XH/U
. ? / / o ,
. JH | >'l ii
. V9-t n .1
. 1 y mi '
. .Mil '>..
. SM I il '•
. 4 3 ii n u
. /| ^ i. II H
.44-1 •> 11
. ^1? .1 ll !•
. 7 II ' 0 i'
. /Ml On
. '<7 ii 0 ii
. 9 7 u n h
. n H U 0 .i
. 19u O.i
. .) 1 II 11 I'
. 4 3 u n i.
.I7n0n
. V n n 0 u
. «4 n o -I
Figure 6 . CP-34 Saturated Fluid Properties -- Pressure. Tem-
perature, Specific Volume Liquid, Specific Volume
Vapor, Enthalpy Liquid, and Enthalpy Vapor
344
-------
p
(psia)
17.71 OH a
1 3 . 8 7 0 M 0
15.11 Oi'O
1 6 . 4 4 0 li fl
17.H6000
19.3/oun
2n .99000
2?. 7 iin no
24.5 M)nn
26.470HO
28.520UO
.in. 7 n nun
3 1 . n 'i n u n
35.44000
jp.omon
4 n . 7 ? n it ii
4 3 . 5 H n ii n
46.59000
49.7*>nuo
*> 3 . M n o n o
5 ii ii n
9 fi . ,< M o n n
1 u 1 . ft n n n n
1 u 7 . 5 ii n 11 n
I 1 J . 4 ,| Oil f.
1 1 9 . 5 •! n n n
1 2 5 . 9 on n n
132. 5 HO 00
I39.4imno
1 4 6. 5 HO ii 0
153.9.jonn
161. 611000
16 9. 5*1 no a
177.7onnn
i«6.2nnno
l95.0uQnn
2 II 4 . I u 0 n i)
2 1 3 . 4 'i n n n
223.1UOUO
2J3.1 nn uo
T
<°F)
17'>. on u OH
1 H ii . 0 II (1 0 H
iK->.oflooo
1 9 n . u o o n ii
iy>.00u0n
? n n . u fl 0 n n
£ 0 5 . 0 fl (1 fl n
? 1 'i . o o it n u
2 \ ii . o n H n n
? ? n . o o ii n H
•> ? ** . o o n n !)
?. * o . n o u n o
iM*i.uniinu
' 4 o . u i) u n o
? 4 •> . n o r> u ii
2 s h . o fl u n i)
251.1TOOOU
2 vii . o 'in flu
?')^.nooon
"t 0 H . H Oil flu
^fl*>.ufliinii
M ".uOiiOn
.j T» . o o ii n u
S?H . || 111) I) II
^ ? •> . u o u n n
> 3 n . u n -j n u
s <-?.ui)iion
.* 4 n . o o 0 n n
.Mi.onnnu
35n.UOUfln
.^s.nouno
3 ft u . o o u o n
i * •» . u o o n n
5 7 n . 0 0 u 0 U
•i7l>.0 00 OH
jftii.ooonn
.i « *> . o u u n n
< 9 1) . o o n n o
.1 9 •> . o n u o n
4 o u . u o u o n
4 o •> . u o u n u
4 1 II . 0 0 U 0 II
VLIQ
6
O.OKS62
0.01A68
0.01674
n.016«l
n. 016^7
0.016V4
n . ft 1 7 ii o
n.f)l7ir7
0.01714
o.ni??i
fl.017^8
0.017.^5
0.01/4?
0.017-.0
0.017S7
n.ni7
0.01772
0.017nO
0.017*8
fl.017vfr
O.OIM'.1?
fl . .1 1 * 1 3
O.niH/M
n . n i * .> n
0.018 -W
0. 01 848
U . fll 8 1 7
0.01U66
0.01H76
0.018M6
0.01HV6
0.019H6
0.01916
0.019?7
0.019.S8
0.01949
0.01960
0.01972
0.019H3
fl. 01996
il.OZOUR
WAP
(ft3/lb)
6.23300
•j.747flfl
'j . :i 0 7 0 0
4.90HOO
4 . •> 4 4 0 U
4.21300
6 . S) 1 1 0 H
3.63500
3.38300
J . 1 5 1 0 II
2.9390-0
2.74400
?.i.»6*>0ti
?. 40000
?. 24700
2 . 1 II 7 0 0
1 .V7700
1.H5700
1.74900
1.04200
1 .54600
1.457DU
1 .v)7400
1.29700
1 .22500
1 .15801.1
l.U950u
1.03700
11.08170
0.93040
il.M8230
« . H 3 7 3 0
M.7949U
H.75520
u.71780
D.68270
0.64960
fl. 61840
0.58890
n. 16120
H.53500
n. 51020
0.48680
0.46460
n. 4 4 360
0.42370
0.40490
O..S8700
HLIQ
(Btu/lb)
-133.6UOOO
-131.80000
-130.00000
-128.10000
-126.30000
-124.40000
-122.60000
-120.70000
-118.80000
-116.90000
-1 15.00000
-113.00000
-111.10000
-109.111000
-107.1(1000
-105.20000
-103.211000
-1U1.1HOOO
-99.12000
-V7.flMOOO
-95.020011
-92.95000
-90.86000
-b8. 76000
-H
6M. 28000
6 9 . 4 8 0 fl 0
70.680 OH
71.88000
73.0700(1
74.26000
75.45000
70.63000
77.80000
78.98000
8 0 . 1 4 U 0 0
81.30000
82.46000
83.61000
84.75000
85.88000
Figure 6 . CP-34 Saturated Fluid Properties (Cont'd)
345
-------
p
(psia) (
243
254
264
276
2H7
?yy
311
374
337
34f
3ft 4
37H
397
407
477
438
454
470
4b7
5U4
521
5o9
547
576
SWi
6] 6
637
6:>y
6M
7 u 4
727
751
776
807
.4 n
. P.i
.9-1
. 1 ••
• / •'
• *fl (l
.9:)
.5i|
.4..
. 70
.4.1
.4-,
. 'in
.1 i
.7.'
.?•)
.1 -I
.4.1
. 1 ••
.1 M
. 6-1
. 4HiO
n n n
OnO
niiO
nun
Onil
nun
nn n
on u
OiiH
n u u
nun
n -I n
•1 u 0
n h n
n n u
ll nil
in. n
n n n
M n 0
ii u ii
0,1(1
OlMl
n n u'
n n i)
mi n
iinn
ll ll ll
n M n
nrifl
414
4 7 M
4?4
4. Vi
1 .< •>
4 4 n
44'i
14,i
45 >
46> i
4
4 1 II
l>1 '.
4V |
')?•)
4.ti-
4 V.
»>4-i
54->
4S i
44S
46n
'-,6-,
47-i
47->
4-1.1
T
.uniin,.
. n 0 -I fl H
. 0 0 n I) n
. u i ii n n
. u 0 !i n u
. u il n n u
. II •! (J il U
. ft .1 n o ii
. n fl n i u
. n n u o H
. u n u n ii
. o n n -i n
. u n ii n u
. 0 0 ii il M
. u n n nn
. fl i u n ..
. o >i .j n H
. u n u n n
. II -1 n 0 >i
. U '1 (I 0 n
VLIQ
(ft3/lb)
...
ii .
0.
n.
n.
u .
n.
n.
.1.
0.
il.
0.
II.
II.
n.
n.
n .
0.
n.
n.
•I.
.1.
n.
n.
•i.
n.
o.
n.
n.
o.
.1.
ii.
n.
u .
ii 2 fl /> 1
n?n ^4
n 2 o 48
il 2 fl ^ 2
li 2 '1 7 6
n 2 1) n
fl21 (|6
n2iy2
071 .»8
ii21 '~*^
.1 2 1 / 3
H?!**!
n 2 2 in
n22^n
n72<>n
02272
fl 2 7 v 4
n 2 3 i 0
11 } "\ *l 4
i'73/n
n 2 •'< * *
n 2 4 /? A
n 7 4 „ ]
0749 '>
0 25 i3
M7574
H26 1 9
H26 / 'I
U 2 7 '* 7
ii J 7 w 4
1 • c M / %j
f i ) o J O
03 I n4
I' 3 * 1 5
WAP
(ft3/lb)
n . 3 7 ii n u
fi . ^5,}9ii
'1 . 3.)H5n
n . -> 2 3 9 1)
0 . ,1 1 H 0 U
H . /> 9 6 8 ii
U.7H42U
ii. '/ 7 22 n
H. 2 6 il 7 il
'i . 7497u
('. ? 39 2 u
.1.77921.1
(1 . 7 1. 9 6 u
M ,21li5ii
n . 7 ii 1 7 n
ii. i y 32 ii
n. 184 111
n . 1 7 7 4 o
ii . 1699M
li. 1627 I
" . 1 ^58(1
n. 1491 u
II.1476H
:i. 1364 ll
«. 1 3illir
n . 1 238 o
.' . 1 1 75n
.1 . 1 1 ] 4 ii
".10 43 u
i. . ii902v
.' . n 931 H
-I . nK69 ii
ii. u 8(| 26
n . u 777v
HLIQ
(Btu/lb)
-.il
-•e.*
-76
-23
-/»1
-LH
-1 •>
-1^
-1 n
-M
-5
-7
n
7
5
8
11
14
J ^*
1 0
2'
/">
/»«
31
31
.44
.^7
41
44
4H
'>?
->6
^1
r>8
,?9nin)
. 7 /i n n o
. 7411 OH
. / 1 n u •«
. I 4 n n o
.5^0 nil
.9r>fliin
. 3 4 il 0 U
. 7 i. ft U fl
. II .> 7 U 0
. 34 6 ii n
. V>3iHI
.n 7 ? o y
.871 H ii
. 5 iJ 4 II 0
. Sy7i|il
. 7 / n n n
. n / n o o
.•) >niin
. S / 0 ll •!
. H i nun
. H 't fl H 0
.8 'nun
. 4 •) n n ii
. 4 ^ ll M U
.6 /"I 111
. a 7 fl u n
. 7 i ll H U
. 7 -A Ii n 0
. 4 :•» n n ii
.4 Ml Inl
.9 s fi n n
. W SH |i i|
. i MI n o
HVAP
(Btu/lb)
87
8H
By
9u
91
9>
9 1
94
9->
9r>
97
9n
9v
I0>i
ini
i n^
io.>
10-
i n^i
i »i
10^>
i n;
i n ^
10"
i nv
i IL
1 1 i
1 1 ><
ii •
n ..
1 1 .
1 1 ••
1 li's
l'i/
. Id HO >•
. I7u0i
.23 n Hi-
. 3. Mini.
. 4 .'llO .
.4IIUO-
• *> 7 u n ••
. /. r* u n ••
. •> ^i o n •
. ^ v u f i >
. / 1 n fl
. 7 1 u II
.69uni
. 7 fl u n
. 6 (J 'I M "
. •> 0 fl 0 '•
. 4ii n n ..
. 3 n ii ii <
. 20 U '1 11
. ii u ii 0 ii
. KM .1 fli-
. *>i) n n i>
. ^'111 II ')
. w ii ii n n
. 4(Ulfl|i
.ill Oil"
. 1 0 n II ••
. /iiuii'1
.^ii-ni-.
. •> n >.i u •
. / u n n
. / n n n •
. 2 il ii H "
. •> fl II ft "
Figure 6 • CP-34 Saturated Fluid Properties (Cont'd)
i.n
?*. u
47. U
1 4 II . 1"
?•>(! .11
4 v n . .1
t /S. H
4-jn.n
^f,n.n
^
77
4«
IS ••
?6H
4 4 n
xn-i
4611
S7u
II
u
u
il
n
M
ll
u
"
7.0
?V.O
i>n.n
1 Oil. II
? 7 >i . n
4 6 n . n
7^'j.n
4 7 n . n
•5H1.0
9.11
31.U
O.U
4«O.U
•jPO.il
11
,»3
70
IMfl
?^0
500
775
4VIO
Figure 7 . CP-34 Superheated Fluid Properties -- Pressure
and Temperature
346
-------
VTAB
(ft3/lb)
m
809. 491 MO
841 .3^0110
873.29000
9U5.149f)0
937.0H6IIO
9o8.9H.inn
loon.RHo no
I03?.7nonn
1064.67000
io96.57ono
112.8.46000
1160.36000
1173.H8PO
11M5.H76MO
119R. 63400
1211 .39200
1224.150HO
12J6.9M6HO
1249.662HO
1262.41POO
12/5.1 7400
12H7. 9301.0
i3oo.6HR()fl
1313.44600
i.i?6. 2ii4oo
133R.962HI1
13-31 . 7 /u (in
269.739(iO
2bn.379no
2vi . m 7nn
301.6o5uO
3 12.293 n II
3 2 ? . 9 ? 9 li n
3j3.56'i(IU
344.?mon
3!?4.836nil
365.471 Pit
376.1 II SOO
3hA.74niiO
390.99340
395.P46PO
399.^11020
4 II 3. 7b360
4 II R . 0 II 7 II 0
41?. 26040
41(S.«>13HO
420.7N720
HTAB
(Btu/lb)
3H.90/40
37.12»4U
4.Ub6f>50
5n.22.^fl
57.08^40
A4.15c*7ll
71 .41f»?ll
7h.H6o7ll
Af>. 4949I)
«>4.^9'>6fl
1 (iy.?A^llil
llH.38r>OU
1 1.1. 72.^60
117. U6/20
1? n. 4 Oil ft it
1? V. 7JV4II
1 ? 7 . II 7 n 0 U
I3n.'j?'j60
1 3 1 . V 7 .1 ? il
137.4?.tRO
1 4 (1 . o 6 n 4 il
144.3loOi)
1 47.86100
1^1 .40600
1 64. 9^10 H
ISA. 49 »i 00
1 ft t . ii 4 1 0 lj
3 -i . R 9 .> ? n
3 /. 1 1 2 0 'i
4.^. bS4 0 H
S.i. 21 1 R n
S / . 0 7 H 3 W
64. 146? H
7l.4flri3ll
7H.HS/3U
Rft.4Hlj9||
94.?b71 'i
1 ll?.2S^IUi
1 1 ?H
1?0.^9.jfln
1?.»./.^4H
I ? 7 . II 7 1 0 0
1 3n.«J1 rt6ll
13^.96f»?(l
137.41 i« H
STAB
(Btu/lb °F)
.1 1)9*4
.1JHH5
.1?H43
.13798
.14748
,lb
.17569
.164^7
.19418
.2U331
.212,16
.21593
.219SO
,2?3iiR
.?26^5
.230??
.?3372
.23722
.24073
.244*3
.24773
.25116
.2545R
.25HH1
.26143
.?64n6
.063?.H
.092/i9
.10248
.1l2n3
.121^3
.130M9
.14048
.14974
.15902
.16R23
.17736
.1H642
.18999
.19356
.19714
.20071
.20428
.2077M
.21128
.21479
CTAB
(Btu/lb °F)
.2.4416
.i>5323
.26201
.27051
.27H71
.28662
.29425
.30158
..10863
.3153H
.32185
.32602
.33032
.33261 0. 1 psia
.33491
.337?o
.3395U
.34156
.34363
.3456V
.34776
.349*2
..1516-?
. <534*
.3553?
.3571->
.j5H9h
.24419
.25326
.26204
.27053
.27H74
.2«66'>
.2V427
.3016U
.30H64
• 3154U 0. 3 psia
.32186
.32H03
.33033
.33262
.33492
.33721
.33951
.34157
.34364
.34570
Figure 8 . CP-34 Superheated Fluid Properties I -- Specific
Volume, Enthalpy, Entropy, and Specific Heat
347
-------
VTAB
(ft3/lb)
HTAB
(Btu/lb)
STAB
(Btu/lb °F)
CTAB
(Btu/lb °F)
4 41.7 * n 4 n
44 H . il.vSMl
4b4.?UftMl
4 Ml .54 0 (III
14-i.h614n
1 4 4. .MI 9 n i;
I * 7 . '"> 4 ? n
1
. V 4 4 6 II
. .1 4 7 7 /
?32-«7
. S b 9 ^ .1
0. 3 psia
161.7M9nn
1 ft H . 1 7 6 (I (I
l 7*.*>ft3iin
MI . H 7 9 n li
< / . U 9 H 7 H
*» >i. e. (i n n n
1 H 7. .<,} 4 Mil
1 V *<. 7 1 ft i) u
?llll.l II? Mil
? IJ ft . 4 M ft [I II
6'i.l ,}S7ri
71..) g ,»:t n
?!«<.?>? n n
' ^ s. ft .14 n n
? .t ?. 'i i ft u n
n
? J 7 . 1
j n'. ? 4 •> n n
1 t r . 3 7 si n M
1 1 %. 7 ii i Hi)
1 1 /.I'4/6i'
1 '/> >i. 0 H ft 4 II
?.44. / /gnu
?47 . < \l ftp
? 4 «*."". 4 ? 0
?^/». 4 W f, n
? *> a . > -19 4 l)
2 ft I' . " "14 n
2 ft 7 . 7 •> 1 •» 9
2 7 H . .5 tl 4 u u
14 I.
1 4 7.h4rt?n
1*>| ..«9 5411
1 bd . V M159
1 S M . 4 H .> 7 v
, l'71 ?1
, 0 HII M ?
, n g n 4 n
, n g 9 w r>
, 1 H 9 -16
,11«"2
, 1 .17 ft 7
,lt»ft 1ft
,1 ftb.MI
,1 74 <«S
, 1 M1 4 9
IHb/7
1 H H i\ 4
./'/M70
. .« '1 1 ft ?
. ,S \ H 3 4
? b ? 7
.-S4S7L
. <477rt
0. 5 psia
40 .344»»0
4 1 . g 4 R .Ml
4 3 . b b 1 .Ml
". 77
4 >.4474H
S.I.H16,i
46. 7^>S1 0
4 O . g') 6 4 U
b4.
*» -I . U 5 0 9 M
7 1 . 3 2.1H n
7 ^.777?'i
'> H . *> ^ 1 ft 4
b o. '-M n H ft
1 1 -I. 31 VI).'
1IM.99 16,i
.•" 4 4 S ?
, H b 7') 8
, lift71 4
, 0 7 6 ft ft
, n V •> -> 3
,1 04*8
.1 1417
,132^?
,14513
,1487?
'/> 7 II 7 «
.Ml 177
t.tl)MHil
2. 0 psia
.^3274
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
348
-------
VTAB
5V
15-t.43h7«J
161.9840(1
3 H . 7 0 0 0 u
3*. 931 00
43.38400
5H. fl520.il
5n.92bOn
64.00400
71.27400
7 H . 7 3 0 0 •)
8^. 36-30 n
94.1720'!
1 0 2 . 1 4 u 0 il
11 1'. 270 O'l
ll.i. 67 HOD
111.89(1011
12u. 2300(1
12 ^.59iiim
1 ? ft. 9 8 n Oil
1 <(-.3»tuU')
1.1 *. bid flu
I W.26'100
1 4 u. 7 3 H OH
14 4. 220 OH
14 7.7 3 H OH
15 1.26 II O'l
1 5 4 . 8 1 u 0 tl
15n.37uOO
lftl.95iifl!J
1 H . 5 5 6 fl tl
lh.79/0'1
4.>. 2580H
5 '•> . 8 1 6 0 0
A 4 M O \J II il
*l • •OiTTlllI
71 .174011
7H. 635011
STAB
(Btu/lb °F)
.15230
.155x7
.15944
.162V4
.16645
.16995
.17346
.1 76W6
.18039
.183K1
.187?4
IO ll A. f±
* ** o o
.194H9
O.f!2872
0.1138.^5
0 . 0/»7v5
0.057S1
0.00703
O.l- 76t>0
O.OH502
O.P95P7
0.1 U456
0.11377
o.i 2?yi
H.131W7
0.13558
0.1^916
0.14274
0 . 1 4 6 .1 P
M.149M5
U.153-<8
0 . 1 *>6^0
n. 16040
0 . 1 6 3 rt 9
0.16736
0.1 70h2
0.1/426
0.17769
0.18110
0. 18450
0.01651
0.02615
0.03577
0.04534
0.05487
0.06435
0.07377
0.08313
CTAB
(Btu/lb °F)
.33504
.33733
.33962
.34168
.34374
.34580
.34786
.34992
.35175
.35358
.35541
.357P4
.35907
0.2447]
ll.?5373
0.26247
U.?7092
0.27908
U. 28697
0. 29456
0.30187
U.30889
0.31563
0.32207
0.3282.3
J. 33061
0.33295
0.33524
0.33748
0.33968
0.34183
0.04394
U. 34600
I).34rt0l
11.34998
11.3519(1
(1.35377
II.3556D
0.35738
0.35912
H.24511
n. 25408
•1.26278
•1.27121
0.27935
0.28720
0.29478
n.30207
2. 0 psia
3. 0 psia
5. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
349
-------
VTAB
(ft3/lb)
2 1 . 2 1. 3 H n
23.1 59 nn
2 3 . 6 5 3 II n
2 3 . 9 il 9 II n
24. lift i! n
2 4. 4 2 2 ii n
24.fi/9HO
2 4 . o .1 5 n n
2^. 1 v 2 in'
2K . 4 4HH II
2^. 7 ii 4 III)
5 .'* M n n
2 ft. 21 7in)
2 ft . 4 7 3 n 0
2 ft . 7 2 9 n ll
2ft . yf<5nn
1 1 . 4VPI.O
1 1 . Mg3iirt
12.3'i7('0
1 9 . *i21 M ii
1 3 . 2 M 9 II n
1 * . ii -1 9 n li
1 f- . 'i n M || I)
1* .ft ''2 Ml
it- . fc /ftt n
1 7 . Il '1 11 I* I)
1 7 . ? 4 3 n ii
1 7 . 4 ^ 7 ill)
1 7 . 6 1 II 0 ()
17.7^400
1 7 . 9 / 7 f l 0
1 « . 1 6 I M 0
1 H . 3 4 4 li II
1 ft . 5 V fl f i n
1 H . 7 1 1 u II
1H.HU4IIO
1 9 . n 7 H ll (1
I9.2ftlnn
9.221 411
HTAB
(Btu/lb)
fl ft. 2 7 5 nn
9 <\ . Ii 8 7 II H
Iii2. u ft n nu
11. H. 2 UU II I'
1 13. 4 9 n fin
1 1 ft.H1 III) ll
1 2 0. 15 'in. I
12 3. 5? I'll n
1 ?M . y i ii n ii
i 3 u. 3 in nil
1 3. 1.7 4 -in n
1 3 / . 2 n M n -1
1. 4 n . 6 7 :\ H n
1 4 4. 1ft • ill -1
1 4 /. 6 7 -inn
1 *i 1 .2'l.n II ')
1 r> '1 . 7 5 O n It
1 5 M. 31 Him
i 6i .« 9 n OH
3 n . 4 1 1 n .1
S n . ft (S i fl 'i
43.1310!!
4 w. HI 4 (in
5*. 704n!i
6,^ . 79 i (i ii
71.11741111
7h.ri4nfln
Wft . 1 H ; '! •'
>)4. Ill) 1 n n
1 H 1 .VH n II n
1 1 u . 12 n II M
11 t. 4 2 M nn
1 1 * . 7 4 ,i n n
1 9 u. IIM iinn
J 2 S. 45:' n n
] 2ft . »«3i> n i.
1 3 n . 2 4 o H "
133. 6 flil fl n
1 3 7 . 1 3 .1 0 "
1 4 M. ft nun u
1 4 t . II 9 i) II ii
1 4 7. ft Oil Oil
1 51 . 13 nun
1 5 4. 6 Hll 0 l>
1 5 •«. 2 5 ;i Hi-
1 ft 1 . H 4 n n h
3 ii . 2 6 ft fl I"
STAB
(Btu/lb°F)
n.iiii A5
(1.1 1079
0 . 1 1 9 n ft
11. 12346
il.t27"5
U . 1 oil ft?
n. 13419
n . 1 6 7 7 3
n . l 4 1 / 7
n.] 4479
il . 1 4 * •/ 9
0 . 1 5 1 /H
U . 1 <•> S ? ft
(1 . 1 :J M / 2
n . 1 1-, 2 1 ft
0. 1 65'..9
n . i r»9nn
u . 1 7 ? -1 n
0 . OOH«2
u . n in i. H
n. 027 711
') . 110729
n . P 4 ft »» 3
U .Ii'^ft31
n.nf>5;4
n . n 7 •> 1 1
n . i; M 4 4 1
ll . tr;3'i3
il . in 2 7 ft
0.111*5
il.ll 546
il.1 IP n 5
ii • 1 2 ? ft 3
il . 1 2 6 1 9
0.12974
n . i o .1 2 7
D.13679
0 . 1 4 0 3 0
n. 143 79
H.14727
11.151173
H . 1 5 4 1 7
•I . 1 5 7 6 II
(1 . 1 ft 1 n 2
0.16442
n . u i 2 ii 1
CTAB
(Btu/lb°F)
II . .til V H tf
ii . .> 3 ,s 1) 9
n . VS'J.S/
M..i.i7hl
"1.0 19ft ]
11.341 96
ii..1440ft
H. 14ft1l
l> . .\ 4 H 1 2
u . * 5 II U 9
•1.^5201
•i ,.^3HH
r. ..7li
•i . .•»*> 74*
•i . .*» •> v 2 1
I . /(4^k) J
n . ^5444
n . 2 r. o 1 1
M . 2715M
'i . 2 79ftX
l] . ? H / 4 5
n . 2Vt)llll
U. 3 1) 22 /
Il..1il9?ft
H..H5Q7
i! .32^39
u. o 2 it 5 2
ii. 0 3 n 9 ii
0 . 3 3 .1 2 o
n . 3 3 •> 5 1
n . 3 3 7 7 4
U..1399.1
H . 3 4 2 n ij
0 . 3 4 4 1 (t
0.34623
0.34H24
H.o5|i?li
" . 35211
"1 ..l539«
(l. 35 58 J
n .0^7 5 H
n.35931
H.254H1
5. 0 psia
7. 0. psia
9. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
350
-------
VTAB
(ft3/lb)
9.58440
9.94660
1 0 . 3 II 8 (1 0
10. 66900
11 .02900
11.36900
11 .74800
1 2 . 1 II 7 fl 0
1?. 46600
1?. 82400
1?. 96800
13.111(10
13.25400
13.39700
13.54000
13. 68,1 00
13.82700
13.97000
14.112110
14.25500
14.398110
1 4.54)00
14.68400
1 4. 82 7 it n
14.97000
7.22140
7.521 DO.
7.81970
8.11750
8.41450
8.71100
9.0U690
9.30230
9.59730
9.8s»lVO
10.1d600
10.48000
10.59800
10.71500
10.83200
10.950HO
11 .067110
11 .185110
11 .3021)0
11 .41900
11 .5361(0
] 1 .6*>300
11 .7711(0
HTAB
(Btu/lb)
43.00401)
49. 69500
56.5910M
63.68600
7D.97300
78.44500
86.0950(1
93.91500
1 0 1 . 9 0 (I 0 it
110.0400U
1 1 A . 3 4 il 0 fl
I1h.66.l00
120.01000
123.3700(1
126.760 Oil
1 3 il. 17 u On
133.61 00 U
137.06UOO
14u. 53HOII
144.03000
1 4 7.54 UO n
1 5 1 . fi 7 II IHJ
154.62HOD
1 5 n. 19 HO u
161.78l)0u
3 II . 1 1 Y II II
3 00
49. 5 74 (Hi
5ft. 4 7M OH
63.58000
7u.b72nii
7*. 35 1) Oft
8 * . 0 0 4 0 0
93.82900
101.8200H
109.961)00
1 13.26000
116.59000
1 IV. 9300(1
123.30000
I2b. 69HOO
1 3 0 . 1 1 II 0 0
133.54000
136.99000
1 4 0 . 4 7 U 0 II
143.96000
147. 481)00
STAB
(Btu/lb °F)
0.02165
0.03124
0.04079
0.05029
0.05973
0.1)6910
0.07840
0.08763
0.09679
0.105H6
0.10947
0.11306
0.1 J664
0.12020
0.12376
0.12729
0.130M]
0.1343?
O.U7M1
0.1 4129
0.144/5
0.14820
0.15163
0. 15504
0.15844
-O.OU2S5
0 . 0 0 7 J 3
0.01679
0.026.<9
0.035M5
0.04546
0.05490
0.064^8
0.07359
0.082H3
0.09199
0.10107
0.1U467
0.10827
0.111*5
0.11542
0.118^7
0.122'JO
0.1261(3
0.129^4
0.13303
0.13651
0.13997
CTAB
(Btu/lb °F)
0.26343
U. 27179
0.27988
0.28769
0.29522
0.30248
0.30945
0.31614
0.32255
0.32867
0.33104
0.33337 . _
0.33564 9.0P8ia
0.33788
0.34U06
0.34220
U. 34430
0.34635
0.34835
0.35031
0.35222
f>. .15409
0.35591
0.35768
0.35941
0.24o33
0.25518
0.26377
0.27209
0.28015
0.2H794
0.29545
0.30 268
0.30964
0.31631
0.32271
0.32882 H.Opsia
0.33119
0.33351
0.33578
0.33801
0.3401V
0.34233
0.34442
0.34647
0.3484;
0.35042
0.35233
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
351
-------
VTAB
(ft3/lb)
11 .HUH no
1 ? . 0 n 5 n n
1?. 2390(1
n. ni6?n
ft . 3 4 3 7 0
ft.597HO
A.RM i n
7.1 ii 3ft n
7 . 3 *> 5 •> n
7. 6 n AH u
7.R'>7MI
H .1 -I flll II
M . S '> 8 1 0
8. A i' 7 /O
B.H'J/MI
8.0->ft7H
0 . I) ') ft 4 ll
9. ?->l>1->(l
0.3'>r>dO
0.4 ^4 4 II
9.5-^300
0 . A '; 3 3 n
. 9 . 7 *> ? ft ll
9.H'>?uil
0.9'i1 30
1 (1.0 i1 HO
1 n . i •> n u n
1 H . ? 4 9 «u»
1 0 . 3 1 8 ill)
n . o i ft ? o
5 . 4 i n .Ml
"?. 7ui /n
5 . o / ? 3 n
ft . M ? V I)
A.3M4II
ft . »> M o n n
6.7')8?n
7.0J59U
7 . ?^3?n
7 . 4 5 0 ? 0
7 . A 1- ft H 0
7. 76340
7 .8401)0
7 ,9J>650
P.01790
R. 09 9. MI
HTAB
(Btu/lb)
1 51 .('1 n 00
IbUllSn!!!
161 .7? n On
- 1 3 .> . 6 1 u 0 ll
* h . ? 5 1 0 U
4 •/ . 7 4 / n u
4 0 . 4 5 4 0 It
S,,. 3640H
ft 3 . 4 7 ? fl U
7 u. 77 LOU
7n. 2540U
Hl».91.l(lii
0 < . 7 4 0 0 i)
1 n 1 . 7 4 u (I U
1 dU. f«8iifln
113.10 u 0 ll
\ 1 ft . 5 1 n fl n
1l9.h6nflO
1 ? 3 • 2 3 u ft ii
l?fi.ft?nftn
1 \ n . U4n0 ii
1 3 * . 4 7 ii n ii
1 3 ft. 930 fil
1 4" . 40 ofl ii
14 >. 9 Oil On
. 14 7.4 I u OH
1 s u . 9 5 u 0 n
1 54 . 50 ii 0 n
1 5 * . 0 7 tl 0 i)
1 A 1 . ft 6 H (1 U
-1 V<. ft On flli
.^ o . 1 1 '/ n M
4 ; . M / fi ii
4 '/ . 3 3 2 0 0
5n.?5i»nu
ft ^.3650 '.l
7 '1 . 6 7 U 0 il
R5.H2?On
9.1.65/0'!
1 U 1 . A 5 II 0 0
1 H 9 . H 1 0 0 !•
11 < . 1 Hi 0 «i
1 1 h . 4 4 u 0 0
119. 7 H u OH
1 ? t . 1 A U ft 0
1 ?ft .55ii 00
STAB
(Btu/lb °F)
11.14342
0 . 1 4 A K 5
o!l53ft7
- il . 2 ft 3 ft 5
U.Oli 5.ii5
0.0127?
0.02234
0.03191
0.0414?
0 . II •> H M 7
H.OftO?6
0 . Of.9-58
D.07HH?
II. (IM79R
0 . 0 V 7 (l A
0.101)67
0 . 1 u 4 ? 7
0 .1 07*5
0.1 114?
0 . 1 1 4 w 7
n . 1 j H->I
0.1?2ll4
0.12555
n . i ? 9 n 4
0 . 1 ^ 2 •> 2
0.135Q8
0.13043
II . 1 4 ? •* 6
0 .l4ft,»R
0.1 4«>is8
-0 ,?o3^5
-ft . 11 II 114,6
0 .OuO?2
(I.01HM5
n.(l?H4.1
0.03705
0.0474]
0.06612
0 . 0 ?5.t7
0 .OH454
On ii z JL 7
• 1 f V \* O
0 . n 9 7 ? 4
0 . 1 II IM 4
0.1044?
0.1 0799
0. 11 154
CTAB
(Btu/lb °F)
.,..-,5419
n. 35601
u.35951
U . 4 5 4 9 0
u . ? 5 5 5 >?
u .? 6 4 1 (l
•l.?7?39
il.?HI!4?
il .SHttlft
n.2^567
H.3H2H9
(I . Ill 9 H 3
0.31649
n.3??ft7
H.32H97
0.33133
0.33365
11.3350?
II.33M14
H..< 4 03?
II.. > 4 ? 4 ft
ll . .S 4 4 54
0 . 3 4 ft 5 9
H.34H5H
0.3*5.154
0.35244
.1.35430
II. 35ft 1 ?
(1.3'3/b9
ll.359ftl
H.4558J
n ,25V>94
H.26444
II . 272711
H.2HH7U
0 . ?Hn44
'l .29590
n . 3 n 3 1 u
u.3l 002
0.31667
u . < 2 3 0 4
n.32012
H.3314H
U.33379
n.33r.U6
0.33b2B
n.34045
11. 0 psia
13.0 psia
15.0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
352
-------
VTAB
(ft3/lb)
8.18570
8.27210
8.35840
8.44470
R. 53090
fl. 61710
8.70330
8.7d950
8.87560
8.96170
0.01620
4.H1990
5.01640
5.21200
5 . 4 II 6 9 0
5.60110
5.79480
5.9M790
6.1H070
6.37300
6. 565 II fl
6.75660
6.8.1320
6 . 9 1) 9 h fl
6.98620
7. 06? 70
7.13910
7.21550
7.29190
7.36820
7.44440
7.52070
7.596VO
7.67310
7.74930
7.82540
7.90150
0.01620
4.29850
4.47530
4.65120
4.32640
5.00090
5.17480
5.34830
5.52130
5.69390
5.86610
HTAB
(Btu/lb)
129.97000
I3.t.40unu
136.8600(1
140.34000
14.>. 8300(1
147.35000
ISn. 881100
154.44000
15rt.OHifl(i
161 .600011
-135.60000
3»>.97.inil
42.4870M
4V. 21 ft 00
5h. 135DH
6.1.257UU
7ii.56rtOfl
7n. 06100
«*>. 73100
9 .* . 5 7 u n n
1 " 1 . 5 7 II 0 U
1 U v . 7 3 H 0 (I
11 t.U.lilftu
11 6. 36 n On
1 1 y . 7 1 n n n
i y * . o 8 o o o
li">.48l>00
'i?v.yn«iftc
13^.33iiOii
1 3 ft . 7 9 1' fl n
1 4 li. 2 7 u no
14.*. 77011 U
1 4 7 . ? •• -i n 0
1 5 1- . h ? n fl M
1 5 4 . 3 7 U 0 Ci
157.95HOO
16] .t»400(l
-133.60UOU
3S. 83200
42.35600
4«^.08bnu
56.02000
6.>.14VOO
70.46600
7/. 965011
85.64tiflO
9 1.48300
101.49001!
STAB
(Btu/lb °F)
0.11508
0.11861
0.12212
0.125*2
fl. 12910
0.13256
0.136U1
fl. 13944
0.14286
0.14627
-0.26385
-0.00356
0.00614
0.01578
0.02537
0.0349U
0.04437
0.05377
0.06310
0.07235
0.08152
0.09QM
0.09423
0.097H3
0.10141
0. 10498
0.104>>4
0.11208
0.11561
0.11912
0.12261
0.12610
0.12956
0.13301
0.13645
0.139H7
0.14327
-0.26385
-0.00632
0. 00338
0.01304
0.02264
0.03218
0.04165
0.05106
0.06040
fl. 06966
0.07883
CTAB
(Btu/lb °F)
U. 34258
0. 34467
(1.34671
0.34870
0.351165
0.35255
II. 35441
0.35622
0.3579V
11.35971
fl. 45373
U. 25632
0.26479
0.27301
0.28098
fl.28869
0.29614
U. 3 033 I
0.31021
0.31685
0.32320
0.32927
H.33163
H. 33393
H.33619
•J. 33841
0.34058
0.34271
0.34479
n.34683
n.34882
U.35076
M. 35266
0.35452
i). 35633
n. 35809
H.35981
0.45571
0.25672
0.26514
fl. 27333
0.28127
0.2889*
fl. 29637
0.30352
H.31U41
0. 31702
0.32336
15. 0 psia
17.0 psia
19. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
353
-------
VTAB
(ft3/lb)
6.03HIIO
ft.l'lft70
ft. 1 7540
IS. 2 44 HO
ft. 3 1 250
A . i M 1 1 n
ft. 4 4 95 II
ft .51800
4HO
6. 7L'3i n
ft. 79150
ft.859HO
ft . 9 L> 8 n n
ft . 9 9 ft 3 0
7 . 0 ft 4 •> (I
ii. m ft? n
n . o i ft 4 9
4 . n .5 7 2 n
4.19720
4 . 3 •> ft 4 n
4 . 5 i 5 n n
4 . ft 7 .11) 0
4 . H .1 0 4 II
4.9f»750
5 . 1 4 4 1 II
5 . 3 n n 4 n
5 . 4 •> ft /l 0
S.-318M
s . 5 x o 9 0
* . 6 4 .1 1 11
5. 7 M 5? (1
S . 7 o 7 4 1)
5.H/>9''0
*• . K J 1 ^, ft
•V.9S3M1
ft . n i *> >> fi
ft . n / 7 5 n
ft. 139 40
ft . 2 -1 13 0
ft.2ft32ll
ft.325no
ft . 3 H ft w n
n . n i 6 ? o
II .111 ftlQ
3 . ft / 5 /• II
3 . rt ;> 2 ii i)
3 . 9n8l ii
HTAB
(Btu/lb)
i n«.65(ini>
1 1 V. 95 II On
n h. 2« no ii
1 1 v.641'0"
1? i.lll.iO-i
1 ?ft.4lilfli'
1 /> o . h ? ii n i!
1 .S >. ffti'fiii
1 3h. 7?. / ii ii n ii
4 / . * ? ii n ii
>-> , . 7 ft n 0 ii
S/» . ^1 Hft n
H /.h9 iflu
ft i . 4Hi' n H
-i ^ . 6fl n n »
-1 ?4 . 4.Su n ii
A .•./•2-,pu
4 .. . vft '» n ••
h^ . v n •> n i>
6.t . II 4 ii 0 it
7 ii . ,>ft >n i.
7 7 . oft»0 "
«->.k>4^n»
9 U jOfillu
. 1 II 1 . 4 1 (1 fl
I n vi. b 7 -inn
| 1 /» . HH M fl n
l 1 ft . ? 1 •• n n
n *< . *>ft'i n ii
}? •>. 9« on i'
i ? (j . j> 4 n n M
i <>y . 71?' OH
i ^ 1.1 9» n n
i ,*<> . ft 6 11 n ii
14". ] 4 ii On
1 4 .1 . r> 4 .• n "
1 4 7. 1ft n On
1 SH . ft 9 ii or
1 »i« . 7Si. n M
!«>/.•> ^n O.i
i ft i . 4 2 n n M
-1 3 1 . ft 'i ii n ii
- 1 9 4 . 4 3 !• 0 M
4/. II 9^0 i.
4 't . b 4 1 0 'i
V>. 7Hv0.i
STAB
(Btu/lb °F)
n .OH7«M
0 .n«yl*>4
0 ,nusi*>
0.098/3
0 . 1 U ? .1 0
0 . 1 lib* ft
0 . 1 U940
N.I l?v^
0.1 1645
n.ii9-->4
0 . 1 ? .< a 3
0.1?6r«g
0.1 .1034
0.1 i.W8
0 . 1 .^ 7 >» 0
n . 1 A u h j
-0.?o3H'j
- 'I . ? '« 9 7 0
fl . 0 U 0 H 0
u . n i ni is
o . n ? ii 1 7
il . Ii <> 9 / ?
ii . p .s 9 ; n
i) . n 4 «« /» ?
n.O1??-^
0.0ft7>'2
11 . 0 7 ft -» 1
O.UM'i'jl
n.dnoj ?
Ii . ii«?71
n.ovft'M
n . ii 9 g ^ 9
0.1 SI345
n.i U699
0.11. O'i?
0.11 404
n. n 7e.3
0.12102
0.12449
0.1?794
0.1.513«
0 . 1 3 4 A n
o.l,jM?n
-0.263«l>
-0.249/0
-O.OII13P
0 . 0 fl 4 .> (1
il.ni 7'i?
CTAB
(Btu/lb°F)
11.3294 .}
M . 3 .i 1 7 7
H.J340H
"I. 3363,1
:i.33H^6
11.^41171
!'. 342«4
•1.04491
•i. 3469^
il.34H94
'L.^riHrt
'i.3^>277
M.3S4AJ
u.3r>ft43
•I.3&H19
:'.3I>991
n.4t>ftft7
ILAbbOII
il . 2 6 b b il
'i.27,Jft'»
.i.?815'J
•'.2hV?l
• i ,79ft6'l
il . Ml 3 7 4
n . 3 1 i ft i
M.J1 /2'l
•i. 32353
.'1.32956
U. 331 92
.i. .13422
ii.33f>4/
'i . j 3 H ft ».»
ii . J4 nH'>
il.3429h
".34504
n.^470/
U . 3 4 9 0 5
11.351199
0.35289
0.^5473
n.35ft54
0 . 3 5 M 3 n
H.36U01
H . 4 5 7 fl 4"
u.45469
0.2ft586
11.2/397
U.281H4
19. 0 psia
21. 0 psia
23. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
354
-------
VTAB
(ft3/lb)
4 . 1 1 3 H o
4.7S«.1il
4 . 4 ii ? 6 n
4 . *> 4 ft *> 1)
4 . 6 H 9 9 (1
4 . 8 .1 .} 0 0
4.9 /*/0
S.ll ^?/|)
5 . •' i9 '0
* . 14 ft 7 0
i-.9'i i . ? ft 04 II
*>. i! 7?o
S . .W 4 |i 0
s.4.^0 /o
S . 4 rt 7 *> 0
t».l>441 U
•> . 6" nnfi
t>.ft'»74P
*> . 7 1 4 n I)
s. 7/OftO
s.M^in
n . n 1 ft ? n
n . ui * 4 v
3 . 3 / 1 1 n
<.5iiftuo
*.ft4i vn
*. 7/6.io
3. 910 HO
4. 04370
4.1/611)
4. *i>84U
4.4404Q
4 . s /?uo
4.67460
4. ft/770
4. 7?97fl
4. 7H71 il
4.8 >4'>ll
4.8n6WO
4.9.i9lO
4.9v1 *fl
s . n 4 3 ** n
s . n wfr i H
^. i4H.>n
s . ? n n i> n
s .?•>?/ n
*> . j (i 4 H n
HTAB
(Btu/lb)
ft ^ . 9 3 1 n n
7 n. p 6 II Oil
7 / . 7 7 1 0 M
Hh.45f>0u
9 S . .i 0 V 0 ii
1 HI .6? Mill"
1 0''. 44unii
1 1 ^.HiM'fl"
1 1 ft . 1 Sil 0 i:
1 I*. 49iHl »
1 P^.H/iiiflil
i?h.?ftunn
I?w.68il0l'
1 M . 1 J ii 0 n
l .^f». (>9iin |i
J 4 -t . (1 7 il 0 M
1 4 .1 . •> 7 II 0 M
i 4 ; . u 9 ii n i<
1 h ;i . ft .1 ii 0 'I
1 S4 . 1 9 ii ft ii
is '. 7 ft ii nn
1 ftl . J 6 ii 0»
- M < . 6 n ii (I i'
- i i? 4 . 4 t ft n ii
41 ,9-JVfl'l
4 « . / 1 «i n ii
i." . 6 7 ? n ii
f\/ . H9 1 PII
/• .15/0
/ / . ft 7 > n .
M-i. J6.)0 "
9 ^.^'?l On
i ii i . ?4iinn
1 ii » . 4 1 ii 0 u
1 / » /'II OM
1 * . II ft II II II
1 ". 4 1 ii 0 n
/ /• . / 9 II (1 il
'• . 1 9 n On
'•> w . (• i u n n
^ .) . tl 6 (i 0 il
-^ ft . b ? ii 0 u
4 M . U Oil 0 II
4 .> . *> 0 il 0 II
4 /.(I 111 flu
si-.»>7iinii
^4.1 <.lOl|
S 7 . 7 n -i II (i
STAB
(Btu/lb °F)
1 1 . 0 ? / 4 8
O.O.S697
0 . 0 4 ft .» 9
0.0'3'>74
fl.Oh^.il
n. n?4^o
0 . o u .* .MI
n . OH*W?
o . oyo-j?
o . o y 4 1 1
il . 0 V 7 '• 9
0.1 II 1^5
U.1 0479
II. 1IIMJ?
0.11 1^4
II .1 I'..t4
0.1 1HM.J
0.1i??oO
ll.lys/^
n. 1^919
n.u?M
n . i .> ft ii ?
-0.?63>^5
-O.P49/1
-fl.Oll ^48
il . 00ft /I
il . 01 'JrtS
0.0i"»«1
n . n .1 4 w i
il . 044 <4
II . 0 •> W 0
0 . 0 ft ? v 7
U. 0/717
0.fiHl?H
'I.0d4rf9
n . o H H •> o
o .oy?n9
H.09I>67
0.099?3
1.1 U?/fl
n.l O6.n
11.1 U^M?
0.113.13
1.11 6H1
0.1?0?H
0. 12374
0.1^718
O.l.illftO
CTAB
(Btu/lb °F)
0.28947
M.79684
M.3II 39'^
II.31H81
U. 31 739
Ii. 3237 II
n.3?y7d
•i. 33207
n.33437
n.33662
".3388? 23. 0 psia
n. 3 4 II 9 b
h. 343119
n.34«>16
11.34/19
0.34917
II. 3*111
fi. 3530 H
n.3?>484
•I.3S664
•i.3SH4ll
•i. 36011
-L4570/
ii.4*65'j
H.2662v)
1.2743H
1.28^14
•1.28973
.I.7970H
•1. 10417
•i. 31 111 H
U..H7S7
".37387
"••»Z9»» 25.0 psia
n.33272
M.33451
.1.33676
H.33H96
•1.34111
n.34322
•1.34*29
u.34731
u.34929
H. 3*122
•1.3*311
n.3*49*
H.3567*
il.3*8*0
Figure 8 • CP-34 Superheated Fluid Properties I (Cont'd)
355
-------
VTAB
(ft3/lb)
HTAB
(Btu/lb)
STAB
(Btu/lb °F)
CTAB
(Btu/lb °F)
">
n
n
,5
i
i
i
i
4
4
4
4
4
4
4
4
n
fi
. .1 0 A 9 0
.01670
. 01 ft 4 9
.1 17(10
.7.^H40
. ft 1 .1 < H
. 7 171 11
. K ft n 4 it
. 9 * * » U
. 1 ii 0 l/ H
. "» •> fl | n
,7/ft^O
. .^/"? / n
. \ / 4 1 II
. 4 •> .1 1 n
.4/1 Mi
.57040
.SftHUO
.M 7sn
.ft'.fti. 0
. ; i 4 /» n
. 7n7Wf|
. X 1 1 Ul
,H'»«/n
. 9 II Hn II
.9'jAoO
. U 1 ft *> 0
.0 1 *4»rf
Ift
1 .
- 1 3 .4 .
41 .
4 «.
*>->.
7.1.
7/.
Hi.
0
i>
n
1
1
1
9
1 f
J 7
1 *
1 \
1 .1
14
1 4
1 S
^.
1 .
* .
'.
i .
K.
/• .
^ •
•' .
'.
H .
•*.
» .
^ •
>' .
1^4.
1(>
1 ft
-11
-1 ?
/.
1 .
1.
4 .
,.1 H I)
On
ft II HO II
4 .1 .1 n H
N ?r> n n
^91 0 n
71 in.i
u o .» n n
H ; v n •'
X7I
1 < •
Ift.i
.1 3 ii
ft*>n
"yH".
^4 n
72ii
I7i'
'j 4 n
OQi.
4<7H
9411
44 'I
gfti,
•> II ,1
lift II
It 4 ii
?4,l
on n
4.1i.
0 I!
n i-
Oi>
On
On
0 Ii
(in
0 ii
OH
OH
fld
Hi-
0»
dn
On
0>i
nn
0»
On
H U
On
n
-Ii
-n
n
0
n
0
n
n
0
0
0
n
n
n
n
n
0
n
n
u
0
q
n
-0
-0
. i
,^
4
111
. 7 6 3 « 6
.74971
.Ob
.0
.0
.0
ft
/
/
IhO
1
f)
9
H9
40
. 0 H 3 M 7
• n
* u
* u
U
9
9
ft
n
.097
.1
.1
.1
.1
.1
. 1
.1
.1
.1
. 1
« f
(1
U
0
I
1
1
?
2
h3
'/?
h'O
3 A
Uv1
4
44
7wA
1
4
8
1
0
?fi
6
A
2
o
.749
46
42
Hfl
3?
74
1 b
Mft
71
'I.. 1 A II 2.1 5>S 0 psia
H. 40821
II •£*^r*T
II *J O ii Ik ||
ii ') 0 7 ~? ^
•I.3U439
n . 3 1 1 ? 1
».. il/70
:1.324n4
•i . J 3 U 0 •>
"..*J23M 27. 0 psia
n.3.^4AA
H . 3 3 ft 9 U
I". 3091 0
n.34 120
d.34330
0 . 34y42
u. 34744
H. .14941
U . 3 0 1 3 4
0.30322 .
n.oOOOo
n . ;s o 6 8 A
I) . ,V>rtAl
•1. .56031
0 . 4 5 n 4 II
(>.40A3«l
I- . '1 I A H I
*. O-i ft'Ml
.<. i ; 41 n
3 . .< •> 71 (•
1. 4 / 31 II
.1 . *> < R .1 H
» . 7 .IM P
1.^1 7 (-0
3 . 9 > 1 / II
1. 9 / 7 /Ml
4 . n 7 7 All
4'•. 4f»i. n n
*• -» . 4 3 / P 'I
ft v. r fi 1 0 n
ft ^. 4 v n n
77.47/On
O.i
0.01213
0.0?l/7
0 . ? 7 4 9 /
fi.?H?74
«.?9/57
4.113
4 . 7 n 4 4 0
4 . 7 4 9 7 fl
1 II1 .H 7 n nn
1 HO.7bun d
11 /-.07'inii
11 b. 9 o u n ii
11^.^6non
1 27. A 4 n (I U
0.040A8
o.o>>no4
0.00933
0.06B»>3
H . 0 H1 7 8
H . 0 U H 4 H
1?y.47uO n
i 3(i.38iinn
n.1 n? 71
0.3114 I
H.31794
U.32471
3 3 U 7II
33203
.13481
33704
33924
341.16
34.149
U.34'704
n..14706
29. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
356
-------
VTAB
(ft3/lb)
4
4
4
4
4
4
4
0
n
0
?
?
3
<
1
*
3
3
3
A
*
3
»
«
*
3
n
n
0
?
2
?
p
3
T»
3
*
3
•*
3
.340^0
.3H540
.43060
.47570
.52090
.566110
. 6 1 1 U 0
.Olft2n
.01649
.OlftHl
. 8 n 520
.91570
. 0 ? 5 S il
. 1 S4^
. 2 4 3 ? 0
.351 ^0
.4^91 P
.5ftft40
.67310
. 7 i ft i» (i
. 7->A«0
. Mil 1 '>ll
.8441 n
. « n ft h U
. 9/»9 1 n
. 9 / 1 /' 0
. ') 1 4 1 i)
. ii»>is',n
. n v ft w n
. 1 * 1 , U
. 1 M3MI
.9?e>*0
.?f,Hnn
.310 * 11
. Dl ft "i
. iM 6 1 y
. n 1 6r>0
. ft?8nrt
. 7 .> 2 2 0
. n 35 Mil
.93870
.04110
. \ 4 U U
. ?44f^0
. < 4 5 .' n
.44650
. 4 H ft ; n
.52690
HTAB
(Btu/lb)
-1
-1
-i
1
1
l
i
1
i
i
i
i
1
1
-1
-l
-1
1
1
1
1
1 11
\.' r
4 S
5u
54
61
3.1
21
14
4-%
5'.
ft'/»
fto
7/
8'>
9?
nil
il y
I ^
!•>
1w
2''
2*>
2l<
5/^
3ft
^vi
4 >
4r>
4 >i
S >
5/
61
.^.^
?4
14
4h
5'»
ftV
fty
77
Hi
9V
on
nv
1 /•
15
. J 7 u 0
.90)10
. 4 4 u 0
. II If il •'.
. 1 7 .) 0
. Ml il P
. 4 3 U P
,y5'iO
,.>4nO
.v)l ^0
.49)10
.H450
.3790
.OR'>0
. "J 5 7 0
.99-jO
.1 7ufl
.49u 0
.H3nP
. 1 9 u II
. 5 7 u 0
.91nP
. 40 MO
. MSnP
. 3 1 ii 0
. « 0 u fl
.01 -iO
.h ViO
. 3 8 n 0
.94nn
.52 'III
.1 Inn
. 6 0 U 0
.42>lO
.95uO
.2100
.2010
.37-tO
U
n
II
il
il
il
M
u
U
n
h
H
u
u
ti
n
u
.1
'i
•i
•i
u
ii
i:
-i
•i
ii
u
•i
u
u
•i
u
H
u
n
.28n(il)
.99^0
.K6VO
.yli'P
.Ii9n0
.41 "P
.75-iO
u
0
'.
|i
M
n
STAB
(Btu/lb °F)
u
0
0
0
0
-n
-0
-0
0
0
0
0
0
0
0
0
fl
0
I)
0
0
n
0
n
0
0
n
n
n
ii
5
78
45
(•5
^7
n 2
19
•'>9
yfi
--'?
r>4
*5
.09043
. Ow4
. P V 7
.1 ul
nil
55
.18
. 1 il 4 6 0
.1 U1
.111
.1 1~>
• 1 \ o
.1
-------
VTAB HTAB
(ft3/lb) (Btu/lb)
STAB CTAB
(Btu/lb °F) (Btu/lb °F)
.?
.1
.<
3
:\
.1
j
4
4
0
II
II
?
7
?
V
7
^
:t
T
•^
3
3
,\
\
\
•*
•\
.<
*
.t
t
<
\
n
n
n
?
7
7
7
P
,ft47?0
. 6 X 7 ) il
. 7 ft 7 v f|
. MM 7 1 H
. « 4 7 H "
. rt H 6 u 0
.9^711
. 9 o 6 r> n
. '1 il 6 /" II
.lit 6 HI)
. n 1 6 ? n
.111 649
.01 6*u
. 4 / n v ii
. S 6 9 / n
f o O / • |i
7jk C 4 f 1
r» " . » n
. ft ft 7 ;- n
. 9'jHf l|
..1S46P
. 1 S (1 7 H
. ? 4 •> S 0
• ?Hj *» f)
. ^ <> 1 s n
. .<',94"
. <97.M1
.4.i«52ll
. 1 7 *n il
. s 1 n H o
. SIRS n
. *> i ft 6 n
.ftvjun
. ft ft 1 Ml
. fty9?n
. 7 .1 ft 8 II
.rtl 190
. 016?ll
. '1 I ft A 9
. n I ft* n
. t.tnun
. 4 ^>4H n
. s i PIUI
. 6 1 n s n
. 1 fi?sn
i
i
i
l
i
1
1
1 '.
?".
* •
\».
4 *.
4'>.
•>• .
1 1
.H
7H
7
?
/
.s
t
4
/
1
1 S s.*H
1
-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
I
-1
-1
-1
^7 .
< < .
-'I.
1 4 .
4' .
S»>.
AV.
7/.
«4.
"* •
II .. .
" ' •
1 ' .
1 ".
1-.
7 -•.
7'-.
/'^ .
» ' •
• •
^ J •
4 ..
4r .
^•1 .
s.^.
/!„".
^.
46
h
4
W
n
7
*>
114
II
*
?A
1
H
•i n n
iO-i
•i n >i
.ip-i
u (' 1
n n •)
ii 0 l
i n it
•in
HI <
•in i
•inn
m-
n n i
sp..
/ 0 n
/H.
1 ""
n
M
o
n
t)
II
11
n
-n
-0
-n
-n
n
n
n
•
•
•
•
•
•
.1
.1
b
H
y
y
9
n
I
1
J
•/
/
y
.?6
,?4
. ?
.n
.0
.n
.(>
,\
n
M
1
S",)? ii . .ti 7.^3
hO|i ii.^39S1
747 ii.MlftS
60? ii . .* 4 .~t / »j
9Sft 'i..<4SBn
ft>>u M. .14977 33. 0 psia
•In* i'..tS16V
tS*> H..SS.SS7
7u1 i'..>SS4|(
H4ft ",^S7lM
^«B II . jl^HW?
7 y 9 M . ,1 6 (| 6 'I
^ftft 'I.4S9IIM
971 •>.4S7I>1
Sftft 'I.45SSM
7.t? ll.?7ftPl
1 .17 "1 . />H,lfth
ft 99 "i.P^Hl
%>i99 ii . .Mi S3 il
f'9*1' O.P4S"^f "..11P04
/
f<
h
J
n
M
h
/
;
i
i.
i
/
','
H
?
1
S
7
4
7
>
*
1
rt
/
ft
n
s
i. n •'
•I n -i
n fi >
n n
g
ft
•^
9
fi
V 1 . 4 V
1 4.
4/.
h 1 .
ft/».
6-*.
7/.
us
W
"
1
if
ii
S
ft
S
7
h
n n^
•inn
i< n n
.1 n n
/ n "
X 0 ,1
10"
tv n n
i nil
0
n
u
i)
n
n
n
n
n
n
0
11
n
u
U
n
o
-n
-n
-n
-n
n
n
n
n
. n
S
4r,fl n..n>>S1
. 0 ft .< v P n . .t ? 4 7 ^
.0
fl
!n
.n
.0
/
7
t<
8
.119
• U
• n
.1
.1
.1
.1
. i
.1
;]
A r.
9
9
II
U
II
1
1
1
/*
?
6
.?4
.?
.n
• 0
.0
. n
. n
^
.»n3 ".. t. "t(l An
'•ft 6 i' . Ji 3^99
"?« 'i..v^s?ft 35. 0 psia
<«7 H.j374ri
746 'i.,5,?9ftft
1 "3 i- . .t41 79
4>>P n . ;t4vtHH
^1? 'i..t4S°.t
1ft4 'i.,1479.>
S ] S ii . .t 4 V 9 II
Hn4 'i . .9?1
971 il.4b"90ft
S66 ".4S/H1
M7S H.P7637 37. 0 psia
u
l
?
^
*>9*» il . P8.t9h
7»>7 H.P91.39
*>!? 'I.P98SR
46P U . .i 0 S S )
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
358
-------
VTAB
(ft3/lb)
7.794M
9.8M510
7.9/5HQ
3.116670
3.1 H730
3.13R30
3.1743 0
3.71020
3 . 9 4 6 1 n
3 . ? M 1 9 0
3. U770
3.35 3 ' i 0
3.3H930
3.4/»5lill
3.46070
3.4V630
3 . 5 3 1 V 0
3 . •> h 7 1> U
3 . 6 H 3 1 0
0.0 1670
0. n 1649
n . n i 6 ft P
7.7H510
?.?946(l
9 . 3 8 3 5 0
?.4/lftO
9 . 55920
9.64630
9 . 7 .1 3 0 0
9 . H I 9 .Ml
9.9U530
7 . 9 3 9 h 0
7.9/390
3 . 0 U A 1 0
3 . H4??0
3 . II 7 ft 4 0
3.11040
.'.14440
3.1 7R50
3.71250
3.7-1640
3.7H0.10
3.31470
3 . 3 4 H 1 0
3 . 3 M 1 . 1 1 'inn
1 3 J . f, 0 I- 0 0
1 4 ».1 1 i;nn
1 4/1.64 ii 0 |i
J *" . 1 MiiPn
1 5 4 . / K U 0 u
J *>/. 3 3 '-Pi-
1 ft i> . 9 3 n on
-i 4 >.5«Ji.r»n
- 1 7 1 . 4 7 i! 0 U
-1 1 4 . v5»n ii
4 / . H 2 1 0 0
st . n4 i o n
ft '<> . II 4 > 0 o
*w.474fli'
7'.. on /MI ii
«4 . / 1 Ii Oil
W '.60^ 0.-
i M h . f-5ii n .1
1 'I » . MH M 0 ii
\ 1 ' • 1 >$ 00 n
1 1 *».»,? u fi n
l IM.HQI, n>i
1 ? V . 7 »i » o it
1 7 4 . ft 9 ii P II
1 7 *. 1 7 ii OH
1 3 ^ . 5 7 u 0 u
13ft.U4llOi:
1 3 w. 5^ U OH
1 4 \ . U 4 U 0 H
14ft.57uOn
i •=» !• . 1 7 n n ii
1 *> 3 . f) V •! 0 H
1 5 7 . 7 7 » 0 n
1 60 ,H7iiOn
-1 3 3. 5 9 n Of-
-1 74 . 47nPii
STAB
(Btu/lb °F)
0.04399
0.05330
0.06753
0.07166
0 . II / 5 v 9
0.07H91
0 . II M 2 5 1
0. (IN 6 n 9
O.IIH966
0.0937?
0.096/6
0.1 0"78
0.1 U3/9
0.1 U729
0.11 076
0.114-A3
0.1 1767
0.12110
0.12451
- 0 . 2 ft 3 » 6
-0.24971
-" .23566
- 0 . II 0 5 1 7
0 . 0 II 4 * II
0.011 73
0 . 0 ? A 7 9
O.OJ377
0.0 4 7ft 7
0 . II 5 1 V 9
0.06172
0.07036
0 . 0 / 3oQ
0.077ftl
O.UM71
0 . P tl 4 n P
(1 . ObH.s7
0 .09143
0 . 0 V547
0.09H99
0.10750
0 . 1 II M) 0
0 .1 (1^4 ft
0.117^4
11.11639
0.1 19H?
0.12.123
-0 ,?63n6
- 0 . ? -\ Q 7 1
CTAB
(Btu/lb °F)
U. 31224
0.31070
0.37490
fl.33»R4
U. 3331 5
•1.33541
U. 43 762
H. 33980
0.34193
n.34402
0.34606
'1.34R06
H.. >5 II 02
".35193
•I.3538U
•1.35562
M. 357411
'i .35914
M. 36118 J
0.46153
M.45V09
•1.45766
•1.27673
U.7H431
•I.7916B
n.>»98H4
•1.30576
n.31745
u. J1HR9
ii..>?50rt
-1.33101
•i.3333u
ii. 33556
1.337 77
H. 33994
•1.34207
•1.34415
"1.34619
•1.3481''
1.35014
-.35705
-.35391
•1.35573
•1.35751
J. 35924
'I.36U93
•1.46137
u. 45903
37. 0 psia
39. 0 psia
41. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
359
-------
VTAB
(ft3/lb)
n
n
9
7
9
9
?
9
9
"
7
9
9
9
9
*
<
.S
*
*
1
1
.^
n
n
n
n
•s
9
7
7
9
'
\
7
?
7
9
9
9
9
<>
'
?
?
. n 1 6 * n
. in 7 1 4
. i /7?n
. <4ft SM
. 4 v» Q vi (1
. •> i 3 1 M
. o ^ c * o
. ft 7H i n
. 7^n 1 n
. / * ? MI
. M ^ "j • i n
. i '"> fl 1 n
. •< flMI
. "1 S ? vi u
.11" 9 .Ml
.117(0
.Moon
. 1 H9xfi
.91440
. ''4 ft M»
. n 1 ft ? ft
. II 1ft 4V
. II 1 ft Mil
.'11 M 4
. n / n MI
. 1 ') 1 ''I.
. > v?^"
. S | >MI
.
1 -<
?<•
?*!
9u
.<^
;si>
.T>
4;
4»
Sll
S >
*>/
ft ii
<.^
?-1
1 4
M^
«J4
ft1
ft"
7'.
H4
ox
nii
1?
T>
1 h
9y
?*>
?*
W
<*>
3y
4^
4n
.1 ft n ft il
.7?] nn
. g ? w n n
. j 1 / n ..
. HH i
. 6 1 •>
.91 .•»
. v 7 ii
.77n
. ] Ii »
.440
.81 II
. ?n u
. M "
.04.1
.•jftn
.47'"
.4ft n
.VHn
.91 M
. (1 ft II
,ft?:i
.?1
. M "
. SO"
,49i
. g*>.i
.l
.?1 I
. /«!
.0?]
n •
nn
n -i
(•»
n'i
On
Pll
On
n "
n..
n <•
p..
nn
n i1
n o
ri.<
nn
nn
n '•
n ••
i, ••
M"
n .
c .
p
n
n
n •<
n..
.4? >n .
!ft9n
. 0?:'
. A 7 -
. 7 3 1.
.13"
.9411
. 97i.
. 4 3 H
. g ii ii
. 4fln
.91H
.44)1
Oh
n ti
0"
Ou
n i.
n M
nn
mi
np
fi'i
nu
nn
STAB CTAB
(Btu/lb °F) (Btu/lb °F)
u
n
n
n
0
n
u
0
0
n
n
n
0
i)
ft
n
n
0
0
n
'i
n
- n
- u
-n
-n
ii
•i
•i
n
n
n
n
i)
•i
u
n
n
n
n
n
0
n
n
•
•
m
m
•
•
•
•
•
•
n
0
n
(i
n
n
n
0
n
n
?109 '..4S761
n.V g •; 7 ' ..*>? ft
6
7
/
0
>
r,
I ? -1.331 1 /
7S n.^334t>
^7 n . 1347 L
/ g v 7 K.A^/9'/ 41.0 psia
. n ,•>
."n
<
7
.nvn
•
•
•
•
»
•
•
•
•
»
•
•
•
•
•
•
•
n
w
flM
1
1
1
i
1
1
i
n
u
n
i
i
i
fc
4
7
1
4
^
1
h
•ift «i . ^4 iiftW
' 4 -1 . 3 4 y 7 I
/M n.34429
'4 '".34 ft 3 2
7 ft " . 3 4 n 3 1
/»H .i.39ll?6
77 i..35?17
s>- n. «S 4 O.i
7? n.3SSM«>
1ft ii.35 7ft ^
''Ml '..SSvy.iS
^
?r \
..
7
;>
n
n
n
f.
*
•
;
n
i
<-
%
j
»^
1
/
1
1
.04.
•
n
'.1 i.3M"3
.'7 ''.4fti»l
/? .1.4 ft U 4 3
^^ I.4SH71
••S -i. 4^/49
u 7 .1 . ?P49*
/I il . ?9??r>
in i.?gv»5ft
•ii 'i . .>n*?.i
' ? • : . 3 1 X H rt
' •' -« 4 . ,1 ] 9 9 i
. n r 1
•
•
•
•
n
u
n
7
>
7
II*
1
s
M
7
. ii f. "
•
•
•
•
•
•
n
n
n
1
1
1
'4 1.33134 43« ° Psia
/ -l.333ft/»
1 ° ".33(>H/
/g ii . S3M) /
%g l..)4'i?.t
J ft -I . .1 4 / 3 •>
M vii? .1.^444^
v
V)
(1
1.
•1
>
ft
H
•I ft 'l . A 4 ft 4 9
^g n.34144
11 '1.351139
V? ^
/
lift 'I..19419
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
360
-------
VTAB
(ft3/lb)
.1 . n n n 9 n
j.n*? vi
3.0^320
n . n 1 6 ? n
n . n i. 6 4 9
n . n iftun
n.ni 714
1 .9/350
P.nsiftn
7 . 12 8 9 (1
2 . 2 H S 7 0
? . 2H?nn
7. 3 s 7*0
7.4 1330
7 . 1 1) 8 4 ft
? . s .1 rt .1 n
?.5ftR?n
7.59R1 n
?.*?7<>n
7 ,ftb77n
V . ft M 7 4 II
? . / 1 7 j n
7.746HII
7.7/640
' . H IJ 6 II 1)
? . H •> 5 S 0
7.Hft5i n
7.Hy4ftO
9 V /* 4 1 1 0
^ V *) ^ ''J f)
n.ni6?n
n . n 1 6 4 9
n .n i 6no
n.ni 714
1 .8H47U
1 .94970
? . n .1 4 1 n
7.1 117^11
?.lbi2n
2 . 2 5 4 U 0
"> • 3 2 6 5 II
7 . 3 9 8 ft 0
7 . 4 ? 7 3 (I
? . 4 S ft H il
7.4M47II
9 . S 1 3 3 0
2 .541 9n
HTAB
(Btu/lb)
1 4" . y 9 n nil
1 5 / . i 5 ii n H
1ft". 75uOH
- j .\ \.59nnii
-1 74 . 4?ii nn
-n i.95nO'j
- 1 ii i . 1 6 n n u
5-1.47/nn
ft 1 . 7 n i n I-
6u. i nin-i
7 * . 6 R n 0 0
Mi.4?ftni'
y/.33.»ni
1 n ii . 4 il u H "
1 n>. . fti n n ii
1 1 i .94i,nn
1 i'..20i-n'i
1 1 .-1 . 6 ft u n o
1 ?'-». USi'nn
i ?-i . 47n n n
1 7 ».. 9 « n On
1 */ . jft '' n "
1 «-.».HVini.
1 -1^ . .1 in n n
1 4 * . »'4 n n ••
1 4». .^HilOH
1 4U. y *.ill i>
l s > . s ii M n i-
!•» /. Ii9ynn
u ".f>9 .nn
- 1 > * . S 9 u n n
-194. 47 II n ii
- 1 1 4 . *•»!! nn
- 1 n *» . 1 6 ii 0 n
*>4.jli'jnn
t> I . SRfi n ii
ftf».99^nll
7^.^7^0n
84 . j.i n n ii
09.24.inn
1 ii ii . ^1 ii nn
i n •« . •> 3 ii n n
1 1 i.K6nnu
1 is. ^ in nn
11x.S8nnn
1 ? 1 . ynii 0"
1 7 •> . 3 0 M n ii
STAB
(Btu/lb °F)
u.li.n-35
n.i 1 4. in
n . 1 1 7 4 .1
n.i2n*5
• 0 •rr)iirtp
~ n ? *j o 7 ?
• n •?»*^fto
-n .221ft6
n.onnso
n . n i n ->5
n. n ^ni 4
n . n 2 ° 6 4
n . n .« y n 7
0 . 0 4 M 4 n
n . 0'37ft5
0 . 0 ft 6 rt 0
n . n 7 n 4 4
0 . » 7 4 il 6
u . n / 7 <"> 7
O.OR176
o.no4 ^
n . n 8 M 4 n
n.n9i94
IJ . n 9 5 4 7
n . nyn ?9
n . 1 11 7 4 8
n . 1 ii S -J 7
n . i o 9 4 3
n . 1 i 7 .A 8
n . 1 1 ft.
0.1 19/3
-n.?o3«<7
-0 .74^72
- II . 7 .1 S ^ 6
-0.221*6
-n.nnn/>«>
n .no943
II. II 19.1?
n . o 2 R *» 3
O.H37U6
O.n47.s0
n . ns6->5
n . n 6 s 7 1
U . 069.^5
n . u 7 ? 9 R
0 . n 7ft^9
n . n H H 1 8
U.08.176
CTAB
(Btu/lb °F)
.1. 3559ft
n. 3*77.1
u. .1*046
•1.36114
n.4631 4
n . 4595H
0. 4580ft
u.4*Ms
ti. 28530
n . 29256
H.2996.J
ij.30647
u. .11310
n.31V4rt
') . 32S6?
•i.331«>ij
•i . 3 3 3 7 H
•1.33607
•1.33H22
0 . 3 4 u 3 o
•I .34249
i: . vl 4 4 5 ft
H.34659
U.34H57
n . .i*>osi
U.3*»241
n . 3542o
n.. 1*6 OH
D.J57H4
H. 3*957
H.36124
H.46304
U . 4 6 1 5 6
H. 4593ft
il . 4 5 H P h
0.28564
O. 29786
0.7999U
I'. 3067?
(1.3133?
H.3196H
n . 325RO
H.33167
n.33394
n.33ftlrt
0.33837
H. 34 052
H.3426J
43. 0 psia
45. 0 psia
47. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
361
-------
VTAB
(ft3/lb)
7.57040
7 . 6 7 7 .1 n
7 . 6 1 r) N H
7.6*41 H
7 . 7 4 n Ml
7. 7 f> 91 II
7 . 7 v 7 4 0
?. H ^56 H
n . n i ft p n
n . n i ft 4 4
II.'M (SHU
H . u1 7 1 4
1 . H o 3 ii 'i
1 .H/540
1 . 4471.0
7 . 111 8 1 n
P.'llHMi
7 . 1 'i H 7 P
P . 7 X H 4 II
7 . /» M / / n
^ . « * S ft n
P.. 1 1.1 I'll
.' . S i 0 '• n
> . 4 M fl |i il
3 . 1 M> u
7 . 4ft?VMI
? . 4 •-» n > n
7.1)1 ' /n
7 . i4Mi n
P. S/ 3/11
?.1^4sn
7 . ft .» ft / H
7 . ft 4 .1 «j n
7 . ft« 1 ) n
7. 7iin?u
n . n i ft?n
II . IJ 1 6 4 9
II . 1 I fthli
n .0 i 71 4
1 . 'ft 4 7 H
1 . H SS 7.1
1 . w ,|ft i .1
i .w ;5Mi
7. "4i i n
7.1 i .1 4 n
? . 1 "7 j|i
HTAB
(Btu/lb)
1 7 .« . 8 .1 n n n
1 .17. 29 ill n
1 1*1. /f> n n n
1 .1 s» .? ft n n ii
14^. 7 *•! II n
1 4ft . 01 ii II ii
1 4 vi . H ft i n .1
1 5 1.4 Li Pi'
i 5 / . ii 7 ii n n
1 ft M . ft. i i n ii
-1 j.t. 5 9 n nil
- \ •> j . 4 p ,i n .1
-1 1 4. 95'. II n
-i n'.. 16. in n
54 . 7.1 1 0 n
ft 1 . 4 7 l n n
6 »t. HH. < on
7ft • 4 7 -ifl n
« 4 . ? .1 1 P "
47.15 ^Pil
1 n n.?. 3 it'i
1 ii * . 4 5 •• fi ii
1 1 1 . 7H- on
1 1 '. . 1 .1 i l> •
11 < .HI
171.40 in-
i />•.., 1 7
1 7 -1 . 7ft » n ii
1 * ' . i"7 -> 0 ..
1 ,1'i.r 9 HI
i i*. 1 9 n .
1 4 ->. 7 1 HI.
i 4«,.i's-n.
i 4 •/ . n n . n '"
i s i . .1 7 i n ••
1 *ift . 4ft I II H
1 6".t»7 »nn
- » i «. 59 tin n
-i?6 <7
-P.24'»/P
- n . ? 3 '» ft 6
-0 ,P?1 ^ft
- n . ii u i « H
n . n (i M ,t 4
II . 11 1 7 9 4
n . n ? / 4 7
" . H Jft 40
n . n 46 /»5
n . n •> 5 s n
n . n ft 4 1 • 7
') . Hr>M ,1
n . p 7 1 4 .1
'I . n 75^5"
II . P / 4 1 4
il.P*7/P
n . ii H ft v h
n . n h 4 - ,s
II . P4 1 if
(I ,|l«/ftr»
n . 1 /i n » H
.) . 1 u i * 7
0.1 n 7. 1 4
0 . 11 'i 7 9
0.11 477
0.11 7P4
-n.pft.5»i7
- n . 7 4 g / ?
-n.?.55ft6
-n ,??i ftft
- n . |) u I rt 8
n.nn7«i
ii.Ol 74?
ii ,n^ft45
n. 136.19
1) . II 4 5 7 3
0.05499
CTAB
(Btu/lb °F)
11.34470
11.34672
n .34n7u
n. .15 n 64
H.35253
n.'35M9
•1.. 15796
U .»>59ftH
0 . .1 6 1 3 5
M . 4ft366
n. 46184
.1.4601(1
0.45897
M.28598
H.79317
n. 3 U II 17
n.. IP 696
u. 31. 154
U . .11 V 8 8
H.3259H
0.33184
n.3.1411
0.. 1.1633
fi . .1 3 H 5 2
H. 3 4 U 6 7
•1.34277
0.34483
n.,14ft85
il . 3 4 M fl 3
n . v>5(17 7
11.35^65
u . 3 5 4 5 n
n . 35ft 31
n.35nO/
n. 3597 H
n. 36146
" .464?H
H.46187
M.4599?
U . 4 59 PO
li .7861 5
".2933^
U..10H31
n . 3 0 7 II 9
n . VM36^>
II. .11998
0.32607
47. 0 psia
49. 0 psia
50. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
362
-------
VTAB
(ft3/lb)
7.25D30
2.2/740
? . 3 il 4 5 n
? . 3 n 6 0
7.3S8SO
7.3*550
7.41240
7.439.^0
7.40610
7 . 4 V ? V II
'.51070
7. s/ifta 0
7.57310
? ,5v9Mi
7 . 6 V 6 4 0
? . 6 5 3 H 0
0.01670
0.fM*40
0.01 6HO
0 . II 1 7 1 4
n.m 7>>ii
1 .sj 1 70
1.57160
1 .6 7 ^ II
? . 1 799H
? . 7 |J 2 3 0
0.01670
0.01649
0 . 01 6HO
0.0171 4
n. 01750
HTAB
(Btu/lb)
j 0^.4 in nu
1 11 .740 mi
i is. 09 u on
1 1 *. 4 7 H Oil
i ?i .86 u rni
1 ?i . ?HuOii
1 7 ".7? HO II
i .« 7 . i M ii n ii
1 3 *» • 6 6 u P Ii
1 * v . 1 6 u n fi
1 4 v . 6 H n 0 n
1 4ft . 71 i| On
1 4 »». 7 7 HP U
1 s \ . 3 4 u n H
i 5 f» . y 3 o n n
i ft 'i . 54 i.i n n
- 1 4.1.50111*11
-i '4.41 imn
-i i 4. y 4 no n
- 1 us. ] 5i' n ii
- v s . h 1 7 n ii
ft'1 .8790"
6«.7R7flii
/ 1 . y 1 4 (i 'i
* 1 . 7 0 4 II n
U 1 .65^011
•J « . 7 5 .' H ••
i ii M . o n n n n
1 1 1 . 34 KM H
1 i ... 7 il H 0 .1
1 1 H . H H i, n n
1 71 .49.11)11
1 ?4 . ^l IP M
1 ' « . .1 6 u II H
1 * 1 . P 5
II . Oft «?p
O . 0 ft ft M 4
0 . o 7 n « 6
0.0 74116
0 . 0 7 7ft5
O.PK1 7?
n . n H 4 7 n
n . Ofcirf >?
O.OV1 *4
0 . 0^5.45
0.1)98*4
0 . 1 II ? 4 ]
n . 1 ii 5 7 7
U.1HV71
0 . 1 1 7 /> 4
-H.263H8
-0.24973
-0.73568
-0. 22167
-0.7(1769
CTAB
(Btu/lb °F)
n. .13192
n.33419
u . 3 3 o 4 1
il .330.6)1
H . 3 4 Ij 7 4
H.34?A4
(I.3449U
•1.3469?
n.34889
0.35083
11.3527?
M.35456
0.35636
II.35H13
n.35984
•1.36151
0.46707
U . 4 6 3 1 /
H.4625H
U.46126
0.46003
fl.?949?
'J . .1 0 1 7 ?.
0.30M35
U.3147V
•i.32ini
U. 32701
'".3377H
'•.335112
".33771
'•.3393H
i.. 34149
H.34J5/
'). 3 4 56 u
'1.34 76 il
0.34955
0.35147
0.35334
11.35516
I). 35695
U.35H69
0.3603V
"J.36205
0.4685?
H.4669M
'1.46574
0.46151
0.46216
50. 0 psia
60. 0 psia
70. 0 psia
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
363
-------
VTAB
(ft3/lb)
1 .?79HP
.4 1540
1
1
1
1
1
1
1
1
1
1
1
1
II
n
n
n
n
n
1
1
1
1
1
1
1
1
1
1
1
j
i
1
1
1
1
1
1
1
.
.
.
.
.
.
.
.
.
.
6?6
646
665
7'.s
7<^4
744
7fi3
7*3
Mil?
y
II
7
4
1
7
h
3
0
0
0
0
n
n
0
n
n
HTAB
(Btu/lb)
AH
67
75
y ]
1 1.
1 1
1 7
?1
?4
?7
131
134
1 1h
14 '
•
•
•
•
•
•
•
•
•
.
•
•
•
•
23
73
.19
•n
18
*•) Q
Q "\
30
7ll
11
54
99
47
96
47
HI)
I fin
P n
-Mill
i n n
• fin
inn
.in.,
•inn
i n n
i. n M
unn
>in n
U M II
7n 14*>.55nnu
. 8 •/ ? •/ n
•
s 4
.1 /H
3^6
41 4
4 S]
449
4**
4 H.I
5.11
518
4
n
1
y
n
4
4<>
5/»
^r.
S>;
- < \
- 74
- 1 4
- il*i
•
•
.
•
•
•
•
.
49 - g *i .
1?
70
Af\
9?
58
40
94
1 5
on
f.H ~H/I.*)J
7
1
7
• •
>.
-
1
t,
1
S
y
3
*
. 5 .^ 5 H
•
•
•
553
570
507
)
u
H
n
•1
U
!l
H
n
it
n
n
i)
n
u
n
u
.sn
4
.611 4*
•
6?1
/
n
n
n
* /
71
H '
g..
g •
1 M /
1 1 ••
l 1 »
11 /
1 ?»
1 V4
1?7
1 1 i
1 3-4
1 3"
1 4 1
1 4-.
14M
1 *iy
1 SS
•
•
•
.
•
•
.
.
.
.
•
•
•
•
•
.
•
•
•
•
1 ^
*5
71
7?
hj
1 7
*
gil
jn
/?
16
6?
1 1
6n
1 ?
66
^?
79
J«
yg
•inn
•j n n
:lO'l
u nu
K nu
.in n
. n n
•inn
-.rut
/PL
• n.'
•/•«••
j u ,i
..ni>
in n
M n >i
•i n n
n n <
n M '•
•mo
u n n
•1 n n
U II -i
unn
' II ,1
.nu
• ui'
i n n
(|:i
•i ll u
STAB
(Btu/lb °F)
-n
n
n
n
0
n
n
n
n
n
n
n
n
n
U
0
-i)
-n
-n
-n
• n
-n
n
n
n
n
n
n
0
0
n
n
n
n
n
n
n
n
n
n
n
it
.00118
. n*j5^ n
. n*>9<>6
."69^1
. n 6 6 s 3
.O7ni5
.07.174
.n/7.*?
. fi H 0 M H
. PH443
.08796
.091 48
. ny4y8
. n y H 4 5
.1 in y?
.Hi5.<7
. 1 U 8 M 0
. ?f>.1Hfl
.?4^ /4
• t » I ^ O
• c c I o o
,?n7?n
. 1 y .1 7 ?
.nil4«H
. (1 1 4 S 4
. |i?4i«9
. n> *i4
. n 4 ? « 9
. 0 5 •> 1 4
.ot,?ii
.II5-J46
. p 6 i ii y
.n^ft/?
. n 7 n «?
. o 7 ,1 y l
.n/7<»8
. OP1 ll 3
. n H 4 -7 7
. nhmiQ
. nyi "»9
.Oy5"8
. 0 9 M '> 5
. 1 0 9 i. 0
CTAB
(Btu/lb °F)
H..1P9A9
l| L < i~ Q Q
M S ? ? II y
i . * o y Q Q
"..13367
•'. 33804.
O. 34 HI 7
o.34??6 70. Opsia
0 . ,1 4 4 3 2
•'I . .< 4 6 3 A
•I . .)4H35n? 1
'i . .1521?
" .,S539/
'1 .,15*» 7^
" .;15755
•J . 3 5 9 7 7
'i . .1 6 U 9 <»
". 16259
•t.47l 74
n . 4 ft H n u
H.4A499
n 4 8 /*
il . 3 111 II
'1.31724
u.3?.1?l
i) . 3?yon
•i . ,1 3 4 5 y
0.33676 80. 0 psia
0.. 1389 ||
'1.34100
•1.1430 A
M . )4*j08
•I.347U7
'1.3490?
f) ^ < ^ i| Q O
1 *S *) ? 7 *V
•' • o ^ 4 o 2
•1 » ,^ *? f> 4 1
n. .15816
M. J5987
'i. 1615.1
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
364
-------
VTAB
(ft3/lb)
1 .63870
0.0162(1
0 . 1) 1 6 4 9
0.016HO
0.01714
0.01749
0 .017R8
1 .01270
1 .05470
1 .09610
1 .1.37110
1.17740
1.21730
1 .2332U
1 . 2 4 9 n 0
1 ,?o4ftH
1 . 2H05P
1 . ? y 6 2 M
1.31190
1.32740
1 . 3 4 3 n 0
1 .35H50
1 .3741-0
1 .3*940
1 .4.1480
1 .42020
1 .43550
1 . 4 5 0 H n
ft . 0 1 6?0
n .111 649
i) . ii 16/1 n
0.01714
n. oi 749
n . n i 7 h B
H .9H(I46
P .9 <91 4
n. 9/71 4
1 . 0 1 4 Ml
1 . 051*0
1 . OHfliill
1 .1 02511
1.116911
1.1313 M
1 .1 4560
1 . lr>9^o
1 .1 /420
1 . 1HR30
1 .2U250
HTAB
(Btu/lb)
159.M u ll n
-133.571'OU
- 1 ? A . 4 i) ,| n il
-1 1 4. 93 n Oil
-1 0^.14 n Oil
-94. 006 Oil
- H 4 . 5 1 V> 0 n
ftfr.57MOil
74.31 70.)
fl 2. 2H'»0.i
9-1.24 <0 i
y* . 4?4n n
1 M * . 7 4 ii ii •
1 1 n . 1 1 u n -i
1 1 3 . 5 0 ll n M
11*. 91 M 0"
1 2".33nP'i
1 2 ,•>. /Hiin-i
1 2 / . 25n ii i
\ M'. 74nn.i
134.25iill'i
1 < / . 7 7 .. fi i
1 4 1 . .\?< ill II
1 A 1.M ifl.i
1 .f 7 «n •
1 5"..}0 ip.-
- 1 3 \. S7 ill.'
-1? j. 4. In Hi-
-1 1 4. * 3 III-
- I .. .14-11"
-VJ , . ll II if) »
-*1 /n ..
*-..«« '0..
7»./6*0«i
H i . f>9 i n -i
H-J. 7* -inn
9 / .9 7MOii
1 II * . .»•' .1 0 ii
1 H-J. h5
0 . fi H 5 ii 7
IJ.l'MMlfl
O.OV2HH
0 . l!0ljtjl>
0 . (i V / 1'
- il . >» 2 1 '« 9
-II.2M771
-0.1 9W4
-0 .IMI 1 4?
II . II n X.t4
0 . M 1 7uA
0 . 0 2 7 r> 1
0.0 oft w2
11. P 4622
n . n 4 o 1
0.053*>9
'1 . 0 5 7 2 4
ll . II 6 0 M P
0 . II h 4 »> 0
O.I16M1 J
0. 0 71 ft9
0 .0 /5*>6
CTAB
(Btu/lb °F)
".36315 80. 0 osia
n.4751?
ii . 3 7 Y 3 2
n.3«97rt
(I . 4 H 6 4 /
•1.42047
0.46562
H.30651
H.31 25JJ
n . 31 H5>7M
n . 3 0 H 3 3
ll . 3 1 4 1 6
U. 31^94
".3256i? 100. 0 psia
ii . ,> 3 1 1 *»
H.3365.S
u . .1306?
M. 34 069
ll . 3 4 2 7 3
ii . 3 4 4 7 3
ii. J4*6V
it . 3 4 H 6 1
H. 3 5 M 51
n.35237
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
365
-------
VTAB
(fta/lb)
1 •
1 .
1 .
1 .
1 .
0 .
o .
n.
M.
n.
n .
i' .
r
11 .
" .
".
11 .
n .
1 .
i .
1 .
1 .
1 .
1 .
1 .
1 .
1 .
i .
1 .
1 .
1 .
i .
» .
n.
•' m
n.
".
h.
P.
" .
n.
n.
n .
".
n .
i'.
?1 ft60
74470
?5H70
7 H A n n
3
0
0
i)
it
n
n
•i
H
H
>
V
"050
lft?o
Ift49
1 ft XII
1714
1 7^9
1 7HH
i H «n
44 iH
70*4
1 4?9
4841
1
1
1
1
1
-1
-1
-1
-1
-
-
-
HTAB
(Btu/lb)
37
4..
4 1
4-<
* 1
t, ,
3 >
? i
1 1
n •.
w-.
•^ M
7 »
7 %
* I
>> j
w /
.47,iO..
. 9 7 «, ft il
.54 n flu
. 1 ? n Oil
. / 3 '• n i1
.
•
.
•
•
•
•
.
•
.
•
•
yn
^h
09
')?
) 5
n 0
40
r>4
1 9
1ft
Vft
5"
On
.nn
STAB
(Btu/lb °F)
n
n
n
0
0
0
-n
-n
-0
-ii
-n
-n
-n
i)
n
n]
. n i •> « n
. f ' ? 4 » ft
. n ,> 4 s i
CTAB
(Btu/lb °F)
ii.
n.
n.
n.
n .
ii.
o .
n.
ii.
n .
n.
0.
n.
n.
S577? 100. 0 psia
35942
3611 u
,*A431
16n?l
3 7 il 4 3
T844i>
.* 9 8 5 ?
4 1 ft 5 0
43324
4697?
.M 5 0 3
•14U
3?ft9i)
33231)
o«?|iQ 1 ir.. r-H<: On '1. M 1ft 4 II. 33 7 5<>
<4
n
n
0
'(
n
M
1
1
1
1
i
i
1
0
0
0
0
n
0
0
7
7
H
H
8
^(54^
•i ft » 0
' J\\ n
\s?n
48^0
1140
745M
i7bll
'1040
1 3 4 0
/*63rt
W1 H
•> 1 VO
* A 7 II
/ 740
1670
1 ft49
1 AHO
1713
1749
1 7RH
1ft 30
* e o A
tnr>u
ft?4?
0376
Oil ft 19
V
1R55
1
1
i
i
i
1
1
1
1
1
i
1
i
1
I
-1
-1
-1
-1
-
-
-
1
1
1
«»«
1
1 -
1 w
•? «
Or
<-•
.^ \
W
4
1 1
4 /
^ 1
v,.
t .
« .
> 1
1 -1
M I.
VI
H<|
/ «
7 •>
h i
q><
9/
(l>.
n >•
1 •>
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.
.
•
•
•
•
.
•
•
•
•
•
•
•
•
?7
) •)
ss
cl
5i.
n n
i p
\ ft
ft?
- ii
7'v
ft l'
?
t i O
*> r)
3V
97
1 <
99
511
ft4
ft?
ft?
76
04
44
ft4
<"">
. n n
•Oi
.- n-i
. i, M
.. i« n
, n n
"• n n
,. 0 i.
II M
(l 1.
. (• .,
1 H •
• |, .1
. ().,
. r .i
O.I
.(III
> II .
. nn
•.III!
/ n ..
•ifM
I do
•On
»ni.
n 0 'I
•nn
• on
.. nu
0
u
n
o
0
u
n
0
n
n
u
H
II
1)
0
-n
-0
-n
-u
-n
-u
-n
n
n
n
n
n
n
0
.f'47 S4
. II 5 I -. 3
. H 5 4 -,9
. (I5M s4
. n ft i ^ 7
. 0 ft 5 'i H
.0(,91R
.117? 7ft
. 0 / ft \ J
.n/ ), ft
. n h ,\ M*
. 0 H f. •* 9
.noil *7
.nv < ,4
,09/ ^1
. ?ft 6.*
34559
3475?
3494?
.* 5 1 7 v
3531?
35492
3 5 ft ft M
3 5 M 4 u
3ft u DM
3ftl73
36^34
•5ft490
3 5 5 4 H
36542
37R8M
395H3
413??
4317ft
44g?? 120. 0 psia
3176?
3?.?9^
3?H?5
3 3349
3386?
34U63
34?61
Figure 8 • CP-34 Superheated Fluid Properties I (Cont'd)
366
-------
VTAB
(ft3/lb)
0
0
11
0
II
1
1
1
1
1
1
1
0
0
n
0
0
11
0
0
n
H
n
0
n
M
0
n
n
n
0
0
II
I)
0
0
0
0
0
•
•
•
•
•
.
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.
•
.
•
•
•
•
•
•
•
•
•
•
.
•
*
•
93085
94310
95529
96744
97954
9V160
003f>l)
0 1. 5 ft 0
027SH
0 ,1 9 4 11
051 :m
0631 0
074 VII
n 1 620
01649
111 6hO
•11712
H1749
II 1 7 h 8
1118.111
6981 0
72923
7^968
7rt9h6
818W5
13058
84215
85306
8r,512
87652
HH787
8V917
91042
9/M63
932HO
94393
955u2
96607
9/709
9 n 8 0 7
1
1
1
1
1
I
1
1
1
1
1
I
-1
-1
-1
-1
-
-
-
HTAB
(Btu/lb)
!->
?y
?*
?i»
S3
\t\
4h
4.\
4 /
'jl
S4
5n
3 1
21
1 "
I' **
94
fcin
7 >
7 '
. ft 9 Ii
,15ii
.62'i
.11 .i
.Mi'
.161-
.70..
.27-1
.H5n
.45"
. n 7 n
.70.1
. .1 4 .1
.56..
. 38 i
.91
.04-1
.VW.t
. Ml »
.'•42
.1 *l
Mil
n h
n .1
(li<
(I.)
It 1
nu
on
ii.i
n>,
n n
on
Ou
n it
n n
n.i
OM
0 H
On
n .1
On
S.I . HP /»0 "
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
HN
>
nt.
1 l
1 h
1 «
2 >
21?
2v
3.'
<*
iw
4.1
47
S.i
s/l
15>*
,26n
0..
.^6->P •
. !> Ilil
.40-
,m-
,2H.!
. X4,i
. 22i.
. 7«,i
. /5-i
,7H..
.34.,
. •v 1 n
,50il
.11H
.73..
.07 -i
. »2'i
Cil
r, ii
n ..
0
n.
n !•
0"
n..
i >.
n
n •!
O-
On
On
On
On
STAB
(Btu/lb °F)
0
ii
0
0
0
n
n
n
0
0
0
-0
-n
-0
-0
-0
-n
-0
0
0
ii
0
0
II
n
0
n
0
0
n
0
n
0
0
n
0
0
0
»
•
.
•
•
•
.
.
•
.
•
•
.
.
•
•
.
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
II 5 « ft 3
I>66i6
07044
Ii / 4 ill
0/756
081 "9
08460
ObHl 0
nyi*i7
n 95- j 3
263^1
24«J 77
23571
221 *8
20774
19376
1 7 « 7 7
n n n * 6
P 1 0 1 5
0201 0
029-3
O.)9'i2
047/5
Mfti5
05 II I 4
II H 3 '« 1
0-^746
061 n9
Ii ft 4 7 0
Oftrt^9
H 71 "7
075/^2
M 7Hi;6
Oh2«fl
0 » 5 u P
II (1 9 4 ft
092 )3
CTAB
(Btu/lb °F)
ii
0
n
n
Ii
II
U
il
-I
0
II
II
II
II
II
ll
M
n
M
n
u
d
u
i)
>i
u
n
n
"
u
i
n
Ci
n
n
n
n
n
.34457
..14650
. 14n3w
. 3 5 n 2 5
.35209
.'*•»»" 120. Opsia
. .1 5 •> ft 6
. 55739
. .< 5 9 1| 9
. i6h75
. 1ft23«
..16396
..16551
. .1 4 8 9 H
. 16H41
.-17291
.4577-1
.40W79
.42*75
.44724
.11 95 j
. .1 2 4 5 H
. .1 2 9 6 rt
.33474
. .1397.)
.34169 ,««
.14362 PSia
.34554
.34742
.34928
..15111
.35291
,3546V
. *564/»
. .> 5 n 1 3
.3598IJ
. .16144
..>6304
.36460
.36613
Figure 8 . CP-34 Superheated Fluid Properties I (Cont'd)
367
-------
VTAB
(ft3/lt>)
n
n
n
n
n
n
M
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
(i
n
n
n
n
n
M
n
n
n
n
n
it
n
n
n
n
n
n
n
n
n
n
0
•
•
•
•
•
•
•
•
.
.
•
.
•
•
•
.
•
•
.
•
.
•
•
•
•
•
•
•
.
•
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
oi6?n
n]649
Ol6nn
ni7i?
01749
017H8
n i R ^ n
698111
7 ? 9 '/ 3
7l>9f,n
7H9SA
RiRgs
«30'iR
H4?l»>
H *> 3 * 6
H651 ?
M 7 6 "* ?
Hh7K 7
"991 7
U| n4?
9 * 1 * 3
9.^?M.
94 VM
955 ii V
9 ft An 7
9 77> ' 9
9 •< * n 7
II 1 A V 0
0 1*4*
U1
II 1 7ln
II 1 7 /
II 1 R ^ n
II 1 « 1 h
6f*J"4
6 '•» H / g
7 ,> 7 n ?
7*> 4 ' *>
7n5 i l
7 7AM
7K74S
7gfl?9
R .1 W •vS
H i QM
H til? *
rt 4 (I h ii
HTAB
(Btu/lb)
-1 * >
-1 ?i
-1 1 1
-ins
-g*
-M-l
- i *
7 '
H '1
H <
Q-,
II .
n •<
1 1
1 T
1 ri
1? '
1 ••>••
1 '>'<
1 * '
1 V.
1 S ••*
\ 1 *
1 1 /
I •>
1 S-4
1"
- 1 \ -
- 1 •» 1
- 1 1 1
. 1 ,, .
_ 1 .,
- - 1
. / s
— f; '
/•<•
M ;
W '
1 •! 1
1 -I 7
1 1 1
1 M
1 1 s
I'l
1 ''•I
1 ' 1
1 ^ ^
.•36"
. .^Hii
.VI "
.114"
.g? >
.40 .
. t 4 '
. h ,\ \
. UR-
.•/t> •
.^^
.(Jilt
. 4 il n
v r* 1 '1
.^«i.
. /4n
.';?••
. / 3 -i
. '-''j.i
. 7s ,
n
n
n
n
p
ii
n
n
n
n
*»
n
0
i)
n
n
n
0
i\
n
u
n
n
ii
n
.1
n
n
ii
n
u
u
n
n
i,
u
u
u
ii
•I
. j 4 ' il n
.01 .•
. 'Ill ..
. 11 .
• * * I1
. <7 .
. (j 9 M
. '>•»
. '/ 4 i
.70,.
.!.?•!
,'M w
. 4l> »
^4-
.^Q/
. V,>d
. /4 ^
. h R »
.sin
.^An
.4IIH
.KMl
...3u
. f. ' ..
. J4 n
.MA.,
.41'.
n
n
n
n
n
n
n
(i
n
ii
n
n
n
0
n
n
n
n
M
n
i)
n
n
n
n
n
n
u
M
n
n
n
u
M
n
ii
H
f i
n
1.1
n
n
•I
•t
n
i.
n
u
u
u
ii
n
STAB
(Btu/lb °F)
-0
-il
-0
-n
-n
-i)
-n
n
0
n
n
n
n
n
n
n
n
n
n
0
n
n
n
n
n
n
n
-n
-n
-n
-n
-u
-n
-n
-n
n
n
CTAB
(Btu/lb °F)
.?6391 II . 3 4 8 9 (5
.74977
.
.
?3*>
??1
71
MR
./>H774
•
•
".36(141
H..17?91
H.4I»77il
11.40979
1V376 n.lZrt?1?
17i
n*>7
l»61
OA4
(lf)H
071
n ;^>
n;^
OH?
nns
IIH-l
nv?
?6<
?40
?»*•'
?i<1
?n ;
19 *
1 7g
1 A»-
OlIM
h'S
"?
/b
4*.
14
hi
4A
.•9
/»
•9
<7
1?
«A
«R
JR
•'.A
•'.X
g?
g7
*»?
M
»\
i-\
78
/n
>3
.ni 7v.3
n . n ? 7 n n
n
0
n
u
n
n
n
n
n
.
.
•
.
.
.
.
.
.
o.jo
n4u
II 4 4
n4M
11^1
n ^s
flSW
('6?
n*>A
^1
06
.*H
iiH
76
«?
>tfc
nH
-•H
M.33474
H.33973
n.34169 5giin
M . :i 6 3 4 4
I. ,.S 6 3 H 4
». >A4Ml
'I . .)6(>t3
•> . .1 4 ? 6 6
i.. 4 S.I 4 5
n. 4547^
'• . 4*» /?!
•I . 46 114, 1
,i . 4A47M
n .444H9
i . 4A^SA
'•.,^''632
"..J3117 140. 0 psia
ii . 13 A H6
" . .<> 4 n rt M
n . }4<'7g
'• . .> 4 4 6 7
n..s465i
" . J4h39
'i . 3 S i| 2 II
i« . 3 5 ^ n u
•1.35376
n . .>^V5(i
Figure 9 . CP-34 Superheated Fluid Properties II -- Specific Volume,
Enthalpy, Entropy, and Specific Heat
368
-------
VTAB
(ft3/lb)
n
n
n
n
n
"'
n
n
n
n
n
n
n
u
n
n
n
n
n
n
n
n
ii
n
n
n
n
n
n
n
n
0
••
n
n
n
n
n
t\
n
n
u
n
n
ii
n
n
•
•
•
•
•
•
•
•
.
•
•
•
»
•
•
•
•
rt •> 1 .* 3
H f, 1 * 1
rt n ? ft 5
9n
VI
"1
Cl
n 1
11 1
n i
ft/
V15
1M
M9
ft<|H
ft79
71 •<>
74;
7H6
R,m
R7ft
Ha 1
S'HI
? 74
. ft>J9(i 4
. 7 n 9 4.1
. M9/5
•
•
•
•
•
•
7 ^
J 1
7->
7ft
7 7
/H
II n II
(t/ll
n^ i
04?
n 4 *>
f!43
HTAB
(Btu/lb)
1 Vi
1 .1>J
1 4 S
1 1««
1 TI
1 i 4
i-»7
-1 .* <
- ) V .1
-1 1 4
- 1 H •»
-04
-M1
- 7 ^
-ft v»
7^
M/
•v>.
1 >|4
1 II /
1 1 M
1 1 1
1 1 /
1 7|
y i
?••
< <*
.97HUO
.55HI.IO
. 1 5 M n 11
. 7 7 II n 0
. 39 uno
•
•
•
.
•
.
.
.
•
•
.
•
.
•
•
•
•
.
.
ft
•
•
. / .j n .> ft < -, .
•
•
.
.
•
.
•
•
•
•
.
•
.
•
•
.
.
.
.
.
M.I
«1
H I
«/•
^ <
M<»
n 1
II 1
•n
ni
in
n i
ni
ni
57
5v
n ;''•>
n i n
OV1
vn*
041
vl 1
M «
ft4 7
ft /H
1\V
M7
7Hft
fl.-»M
P /ft
31 9
951
51 >>
«y
4 ^
4n
e,.
•
•
•
•
u 4 n n
71UO
:s ft ii n
2?'in
7«.in
111 on
9fti»n
4440
6^ -»n
39ft n
V54ft
i»tll(l
5930
n 9 ii n
5? ii II
97iin
4 iiin
v?'in
4?ii n
9 1 ii n
4«illl
n .1 n n
ft n n n
tv.in
hh ii (1
4?. «n
ii ft ii n
n
u
ii
u
u
n
n
u
n
n
u
n
n
n
M
II
II
II
II
,1
II
II
STAB
(Btu/lb°F)
n
n
n
n
n
0
-n
-0
-n
-n
-n
-ii
-n
• n
n
n
n
u
n
u
n
n
n
n
n
u
. M ft 9 n h
.M 7<"» 9 7
. II H 0 1 9
. f»rt4nn
.ii
.0
• r
H749
V ii -l h
ft41 4
4<>V9
CTAB
(Btu/lb°F)
n'tft"?4 140. 0 psia
•i. SftS2ft
".3h67o
Ii . 4H4?R.
II . 455Q6
./>.>*> 9 4 n.4542/
. ?
.?
. l
. 1
. 1
.H
.M
. ft
.H
."
.n
.ft
.0
.11
.11
• n
. if
?1 V3
n7*4
9.1v 4
/9/9
ft^/9
(7 |4
ftu/7
64.*H
II . 4 *i ft 3 1
1 1 . 4 H V 7 H
'1.46429
n.44313
n. 461 45
n.3?'*l H
u . 33/>75
"1.33/42
'" . 3 4 ? |1 H
""!4^J 150. 0 psia
n. 3 45 7 7
•'.34759
si) 2
n
u
ii
ii
H ^. 71 "OH
47
- < A
- V>4
- 14
- «*»
-04
.^4
-7 *
-ft/
7f
^'>
vs
. n 7 ii n ii
•
•
•
vJft'lO
2 I u 0
7 6un
l(
0
u
ft
n
n
:|
0
0
. n
-II
-n
.'.'
.n
.n
71 -.4
751 n
/«»»3
. (1M?1 4
. o
Mbo4
.fU<9i2
ii . 35V66
f'. fl^? Ins.
6 n
J950
372M
67«n
uv4n
II
,,
ft
n
D
n
u
ft ? u n u
n ft n n
n
-n
- n
-n
-n
0
0
n
0
n
. r
t •}
.1
.1
.II
.II
. H
.(I
.P
U7vft
93v7
7994
65^0
H 4 1 n
1 391
?3^6
.s 3 n 6
3 A •< 3
il . 461(49
n . 4 ft s 2 'l
,i.46hP5 160. 0 psia
n.45962
".33H1.4
•'.33444
".33(187
n. ."14 33 4
" • 3 4 5 1 2
.5?nnu n.n4"->7 n.34ft9o
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
369
-------
VTAB
(ft3/lb)
0.67969
0.6H9.S7
0 .699nll
I) . 7 0 8 S 8
0 . 7 1 8 1 U
0.72756
0.7 1698
II . 746^6
0. 75569
U. 76498
0.77423
0.7H344
0.79262
0.01618
0 . 0 I 6 1 /
0.01678
0.01711
0.01747
0 . 0 1 7 H 6
0. 01828
0.01876
0.019^7
0.55847
n . •> H 3 n «
n . 6 u 7 u A
0.61 6^4
0 . ft f 5 0 2
0.6 ?4
n . (S4448
n . *> •} * c 7
n . <, * 7 / y
n . 6 / 1 M Ct
0 . '» i n - »•
0 . A\H9M^
0 ,6^H/7
n . 7 n 7 A, 5
0. 71 At4Q
n . 7->5X«
0 . 7 14 n 4
0 . 7 4 7 / A.
o . n i M &
n . n i A\4 7
0 . 0 1 6 7 *
0 . H 1 7 1 1
0. 01 74 7
O.ni /H5
0.01 8^8
0.018/4
HTAB
(Btu/lb)
114.00IKUI
1 1 / . 5 ll ii 0 u
1 ? 1 . 0 I n 0 U
1 "> 4 . b •» .1 0 U
1 7 •» . 0 9 u 0 M
1 11 . At5'iO II
1 1*>.7 tiilifl
1 * * . h .1 l 0 'I
1 4 ' . 4 4 n n il
1 4 A, . u / n 0 0
1 4 K. /i mm
1 5 ^ . 3 7 -i n n
1 5 7 . 0 4 i.l 0 (I
- 1 3 .1 . 3 4 ,i 0 0
- 1 > 4 . 1 * n n n
-1 1 4. /-jiinn
- 1 04 . 9Hn |M|
- >J 1 . H !'i /• 0 H
- » » . 4 2 1 n n
- 7 1 . ^ 9 a II ii
- *>•> . 3 9 > n -I
-i ii . 7"i / n i)
H*. 1 Villll
gd.hM/nn
1 1. , . 1 •> 1 11 .1
1 II '. . ft 1 ' II U
1 1 -i . MM i 0 ll
11 >.*?7 n,,
1 i / . ,. i n .,
i <•-.». i , n n
I ~> *\ . ', 4 i II ii
| 9/.rW .H,
1 •<<.','/ i ll il
1 * 4 . ^A« . n .1
l * .. 4't.in-i
1 4 -. us 11 n,,
1 i .. / ?H"I.
1 4 J . ,\ 7 • " ••
1 5 * . Ii 1 u 0 M
' 5 6 . 7 1 U O H
- 1 1 1 . 3 1 u n H
- 1 '' 4 . 1 H M " "1
- 1 1 4 . / Til It II
- 1 n i . v 7 ii n n
-9i.r*rtiMii
-HI. 41 ^On
- 7 »".fc»8oO u
- f\ / . .1 7 ^ 0 0
STAB
(Btu/lb °F)
0.044-^9
0.047V9
0 . 0 ^ 1 t , 7
0 . 0 «) *> %j 3
0.058v 7
0.067->9
0.06619
n. 06077
0 .U7333
O.ll76»i7
0 .OHH 19
n . ii H 3 * o
O.OM7.17
-0.76418
-0 .75ilu4
-i . ?35w
• u ? v i M y
— n ? f i / w y
- 11 . 1 9 4 i| 0
-fl .1 7^97
- 0 . 1 6 •> « 1
-0.151/7
.1 . ll 1 ? .i 2
0.1171 72
n . M j i s /
0 .II .15 n 4
II .II tH M(l
n . ii 4 9 1 ^
•I . 0 4 A» '» 4
'I . (i 4 «J u 3
0 . II b ^ '. 0
II . O1* /V5
0 . ll f> 0 r»H
II . 0 r> 4 4 9
0 . 0 h*< •• h
'I . 0 7 1 * S
0 . H / S i 9
0 . 0 7 * / 2
(>. OH273
O.OH57?
-0. 764^0
-0 . ?5M i'6
-0 . ?3A»n 1
-0. ??'••!
- 0 . X 0 R 'i 7
- l) . 1 9 4 n 3
-1 . 1 MM Ml
-U. 16504
CTAB
(Btu/lb °F)
0.34867
0.35042
n.35214
n . ^5385
0.35554
H.35771
!i. 3604o
0.36205
0.3636U
0.36512
H.36661
11.36807
n.45394
n.45383
U.45416
0.45625
n.45962
0.46491
".4688H
0.4579d
0.4776U
"1 . 3 3 r» 7 II
11.341)39
n.34466
0.. 14637
0 . 3 4 H 0 9
M.34979
0.35149
H..1S316
Ii., 15482
"'.35647
(1.35M1K
". .15970
M.36179
".36283
0. 16436
•1.36586
u.36732
0.36H75
0.453*2
'1.45358
n.45524
0.45789
0.45970
0.46497
U.46U66
0.47337
160.0 psia
170. 0 psia
180. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
370
-------
VTAB
(ft3/lb)
n . n i g v 7
n . S iS*i9
n . '> 7 ? / s
'i . b'lft 74
n.s J1)*/
n . ft ii 4 'j *
n .
II . ft'ift4S
ii . ft *>4w?
n . A ; 3 .s s
ii . ft •* 1 7*i
n .ft in i n
i«.ft-vH4]
ft . n fti H
n .n ft4 ;
II . n ft 7 u
" . 'i 711
n . ;i / 4 7
n . n 7 h s
ft . .1 H /• 7
n . il R 7 4
n . ,i v - .'
!• . 1 lV»n 4
H . M 1 1 I /
.. . S , 1 > »
... -M j v. ;
n .1-.1 • -«
n . s ~ ;i .' .*
n . S ft R /' i
«• . S7 7 ) N
l« . «»M11 /
'•.•>**• J
n ,6'i?1 h
'i . *> 1 n • *
n . ft *4 / 4
n .M?/ ;
n . '>*> n / ^>
ft . * •> « 7 ^
o . n i * i H
n. n i *4 /
HTAB
(Btu/lb)
-*)•-. 7«>7n!i
x>..»>7inn
9 i . (i 7 i n u
'i .-» . h 7 ii n M
n '. n?ti nil
i 1. 1 3 u nn
i *.. r4n n ii
^H . 1 Rnfl n
> \ . / ^ ii ii n
-» / . / w n n u
< i.MH., 0"
•><> . 4min.i
< * . ;i g it n n
4 1 . 7 ? H 11 II
1 is . .\fy ii n n
1 4w. n? n n n
i *> /* . ft *> n n ii
i i*..>H,mn
- 1 < > . < 1 n n n
- 1 V -\ . \ ft n 0 II
- 1 1 4. /? II H II
- i n i . gft ii n n
- w ^ . f< s *i n ii
- i i. /in/n-i
- 7 s . •> 7 7 n i;
- * * . j ft " n n
-i.-. 7571111
•i 1 . ><'jg fl u
-v ^ . *> 4 > H II
i •> . i mi n n
i -..ft/.imi
i -i .. l 7 1' nil
i i ' . ftH u n ii
1 * -> . s 1 •> n n
i i •> . /•> n " u
' ' » . .*?!• n n
i -ii. ig on u
i > . 4 M -I n u
1 > 1 . ii «.) ii n ii
1 w . / 1 n n u
i -> i . .tS'inn
i 4 -> . n ;1 n 0 ')
i i • .* 7 n 01)
i • ' . ^ *> u n n
\ - - . n 4 n o u
- 1 < < . ?9n n u
- 1 -M . i 4 n nil
STAB CTAB
(Btu/lb °F) (Btu/lb °F)
- '1 . 1 b 1 / R ii . 4 7 4 1 o
n.nin^i n.33«H9
ll.lllyft O.J419M
n . n ,•» \\ 4 n . !5 4 7 ft 7
1I.H3711 n.-'MwiSX
n.n4Hi<5 ".35(190
n . !1 44-jR " . 3*5? ft II
n.n4ri>*A ll.3b4?Z
n.n'jsr*? n.^^744
>).nb(>''5 ii. 35 VH 2
11 . OO/* -^7 il . 3ft hb9
n.nftft47 ii.sft?i3
ii. n 7 on 4 n.:sft3ft4
O.H73nO i'.3ftSl.>
O.n77l4 ".36 ft ft ||
n. no ii ^5 'i..ifthn4
') . MM 4 | b ii . 36944
-'l.?ft4/»? |l.4''?Hft
-fl . ?^>n iirt it . 4S/?34
-M.'3'»-'.5 n.4S»>ii»
-n . ?i»/-i4 ii . 4t>ft77
-il.?ll^-i»> ".46!HH
-n. ly4,ift n.46479
-H.lM-.i4 H.46H4M
-n. !/»•»•< A n.47.>?l
-II . 1 •> 1 7Q n. 47447
•i . no -<«jft ii . .S4»1 1
.1 . Ii 1 « ;A r . 3 4 oft 7
" . n / / > 9 'I.3474/
n.i'ji^g ".3490.J
f) . n 3*> ' R •• • f5 uft n
'I.H39X4 >'.35?1H
n. 047^7 "..^376
>i . H 4 ^/>9 •• • 3(>l?3?
U.PSii^H 'i.^bfthrt
n.n|j4.i(i ".35H43
n. 0^7 70 (i.3b997
n . 'l ftl »? " . 361 S||
(i . nft4 w3 ii . 36.^11 U
T.nnH^l ".1644^
n . n 7? i A 'i . ^ft^94
" . 0 7S*7 ii . .>ft7 < 7
n.n/ui4 ii..>6H/n
H . ONi'r.'j " . ^7'1 Ib
-n.7ft4?4 11.4*5391.
- H . 7 •, n i 1 -i . 4 S 4 9 4
180. 0 psia
190. 0 psia
200. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
371
-------
VTAB
(ft3/lb)
n.ni 67R
n.n j 71 1
n.01 74ft
n.ni 7H5
n.mR?7
n . n i « 7 3
n.ni 9?ft
n . 4 'i 9 .1 7
n.4H1 ft?
n .«> u 3 1 7
n .511 ft?
n . 5 1 9 u A
n.^647
11 . 5 4 4 ft 1
n . s •> ? 6 9
ii .5*n /n
o . 5 * A f- f>
n . 57ft5ft
n .5M44U
n .5V?? 1
'i . 5 *Q9ft
n . ft -i 7* 7
(I .ft I 5^4
n . ft /> ? <•• I
n . MI ft i H
n . n i ft 4 7
n. n j ft /n
n . n 1 /ii
n.ni 7 4 h
n.ni 7 -«t.
n . n i «/ J
n . in « / •>
n . n i 9yi
n.4 s?41
n . 4 -, 4 n M
0 . 4 / 5 (| n
n . 4 >i 3 1 9
n ,4>M?9
n . 4>»9^n
H.*>.I 7?4
0.5151 1
n .s^?wn
n . 5 < n * 4
n .*> \R^i
II . *> A 5 V 9
n . i >> 3 4 9
n . 5M »n
n.56R47
HTAB
(Btu/lb)
- 1 1 1 . 7 o n n n
-in 4. 9 4. in ft
-91. A 4 Mill
-H 1 . j9 inn
-7 4.5ft>/Qil
- ft •' . 3 ft * 0 U
-'•»". 75r» n il
MI. 4 linn
^ t. uncoil
1 0 1 .ftVuOil
i n i . i 9 n o ii
i n ^ / n n n n
i i s.s Vi mi
ll->. / 7" n u
1 1 V. J?lifl||
1 9y . 9i| ii n n
9*. 4Hl!(tU
3 " . n 9 u n n
< ". 70t'nn
W.O 1"4iiOn
4 -,..>?.• no
•> ^. II 'I :i n -I
^'>.71 -I||:|
- S ^. 9 ft H 111!
-191.1 f H (1 II
- i i i . ft 9 ii n o
-1 "1 . -. 751 II -i
•« % . H i •» n ii
vv.46.snn
i Hi . i9u no
i IM. 7 n. i n«i
in * . ? 3 n n n
1 1 i .77-. n;.
i i -i . 3 ' M n n
11 . M^.inii
i > ' . 4 / n n u
1 ' t . U 7 ii II II
1 9 «.« . f» ft M H II
i \>.31 ••nil
I % -» . y 5 h (i n
i 4 ii . ft i n nn
i 4 4. 9 H n nn
STAB
(Btu/lb °F)
-l!*?2?!l6
- ii . ? n R n A
-n.194H9
-n.1 HO n 7
-II. 1 66 M?
- n . i b 1 H l
n . n n ft 7 ft
n . n i fthi
n . n ?ft/^9
n . n 3 n 1 1
n . n 3 3 j t
n . n A 7 ft H
n . n 4 1 4 3
n . n45ift
n . 04>M6
n . 059^4
•i .n5ft<">
•i . 05^ H4
ii . n 6 3 * 5
n . Oft7n5
II . II 7iifi?
n .n74i 7
.1 . !l 7 7 7 n
1.11 Hi /I
-0 . 9ft496
- n . ? •? n 1 3
-n . ?3ft u fl
-11 • ???II9
- n . ? u H 1 1
-ll . 1 93^7
- n . 1 4 n i o
-n . 16M'*
- U . 1 5 I w 4
n.nnsio
n.n 15 n?
n . n 2 4 / 4
n . o?8*»fl
n.n3?4n
n . n 3 ft i R
n .n.jv.95
II. 114 200. Opsia
II . 3549^
11.3564ft
(1.35797
0. 35946
u.36(l95
'1 . 3 6 ?. 4 3
H.363H9
" 9 »J 0 V *J \J
II v O n o 7 v
H.36HL6
M . 36953
11 . 3 7 H H «
n . 4S3?3
I' . 45j7ij
H . 454 n 7
ii.457ni
n . 4599n
II. 4? 4 8M
H.46»19J
n. 47994
n.47775
ii . j 4 4 59
H.J4736 o i n n
fciw» V |j91.T»
M ^ .* O II T ^i
H . J51 9ft
il. <5.>3o
n . t«S4 77
n . ^ 5 ft ? l
i' . .15/64
". ^5vnH
• • . *ftil5 <>
11 .
-------
VTAB
(ft3/lb)
0
0
0
0
n
n
n
0
n
n
n
n
0
n
n
n
it
n
n
n
n
n
0
n
ii
n
o
n
n
0
0
0
0
0
n
n
n
n
n
n
n
0
0
n
n
0
0
»
•
•
•
•
•
•
•
•
•
•
•
.
•
•
.
•
.
•
•
•
•
•
.
9
•
•
•
.
•
•
•
•
•
•
•
•
•
.
.
,
•
•
•
•
•
•
575HO
5H3?7
5VO4
0 1 9 p 3
1 ? R y 6
4403?
4b7?R
4h5|5
4 /2Q?
4H06?
4 >\ R ? 4
4V5/9
5 H 3? 7
5 111 c> 9
*>lfll'5
5?53ft
5.tM
4i»5M
433^7
441 ??
44879
456?6
4 6 3 ft 6
47099
\
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
i
]
1
I
I
. i
- 1
-1
- 1
-
-
-
_
-
-
1
1
1
I
1
1
HTAB
(Btu/lb)
4;
51
5'i
3 ^
94
1 J
|1 •!
94
M4
73
ft/-
Sil
3K
9 1
On
04
O/
1 I
1 4
1 H
> >
•>^
7
4 -i
4 /
S I
», -^
^ \
•>•»
1 4
(I <4
W4
ft.l
7 <
^^
5 n
.^ »
41
0,|
(1 *
n 7
1 "
i -i
1 «
.96HII
. 6 6 1) 0
.37ilO
. 2 6 u 0
.lino
.f>7uO
.9l(,0
.bivn
.3710
.5iii»n
.3-5XO
.74WH
. 7 I •> 0
.9040
,h7-lO
. ? n u o
. Mirn
. 3 n n n
.87nO
.45l.iO
. Il 5 ii (1
.65HO
. ? R « n
. 9 ? w n
. 57(10
.^3,10
. h 0 II (1
. 3 ii u n
. n ?ii n
. ?4 :iO
.10.10
. 6 S H 0
. 9 U 0 0
. H 0 H 0
.o-»vO
.5440
. 34 1 0
.7470
. 71hO
. M40
. 1 5 ,• 0
. /ll.iO
,?6lid
.8300
II
II
II
II
II
II
0
II
0
II
II
II
II
II
M
II
11
II
II
II
II
II
II
n
II
11
II
,1
II
II
II
II
fl
n
II
II
n
II
II
II
II
II
II
II
. 4tiinu
. i) n n n
II
STAB
(Btu/lb
0
0
1)
-11
-0
-0
-II
-0
-11
-n
-it
-0
-u
0
I)
1.1
0
IJ
fl
n
n
0
u
n
0
n
M
H
n
-n
-n
-o
-n
-'i
-n
-n
-n
-0
-it
0
0
ii
0
n
. n
ii
.07?
.0/6
. 0 7-J
.?64
.23"
.?
.?OH
. 1 94
.1 Mil
.I6f»
.151
.137
°F)
77
31
*3
?H
1 5
1 fl
n
13
15
14
n9
VH
75
.01*46
. 0?3
'•M
CTAB
(Btu/lb °F)
U.36rt97
f . 3 7 u 3 0
0.37163
H.4529H
n .45336
H.455119
M . 44/l«j
'. .46021
n . 4 6 4 5 7
u.46ti6r>
1 1 4 7 ? 9 f
i' . 4 7 7 6 3
ii . 4H6R6
il. t493«
o . 3 5 ? y 7
.02/in ''.35352
» 0 3 0
.034
.03H
.04?
.04S
.049
.05.1
.n-,7
• "n U
.064
.071
'M
73
->6
99
"9
>7
„?
/•7
43
.07497
,0/M
. ?h4
.?5ll
. ?36
.???
.2lM
.1V4
.1HI1
.16*
'* 0
S(l
1 7
1 3
14
1.6
1R
1 7
1 3
.15?!.?
.137
.1)1 1
.021
• U ' *
. 02^
.033
.037
.04(1
76
w5
•n
*5
•»li
\?
11
«H
1?' .61 ii fill II . 041ft?
11 .35482
•I.35M6
il .35 752
".35b87
ii . S60?5
".36162
'1.36301
'1.3643V
n . 36577 "
M « . i O / 1 %1
t' » «Sort4 /
'•. »711l
.. .3723V
'1.45410
n . 4540 1
'1.45552
'1.45674
n.46003
il.464H]
H.46R79
u.47327
0.47704
H.4H791
•I. 15154
1.1.35406
H . 3551H
H.35637
•1.35761
ti.35«H7
H.3601 5
n . .^^14lS
210. 0 psia
220. 0 psia
230. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
373
-------
VTAB
(ft3/lb)
HTAB
(Btu/lb)
STAB
(Btu/lb°F)
CTAB
(Btu/lb °F)
n . 4 7 R ? 4 i > s. 2,5 o n ii
n.^fi? 7 7
n . nb? n?
n
it
n
(i
n
h
n
n
n
n
n
n
n
n
n
n
n
i.
^
•i
••
u
ii
•i
n
ii
,490ft4
. 5 ti ft h ft
.11 .1ft 4
. S'-» H Sft
.4^/4
.«3
.0
.>.)
.n
.n
• '
. •!
."
. n
. n
.n
. 1
.4
.4
.4
. 4
.4
. 1
. 4
. 4
.4
14.'
161
4
7
7
1 ft4ft
1 ft/
1 7I
1 74
1 7>
i «;'
I H /
1 g/
10,
-M /
u 4 1
1 1 /
i u">
x*c. r
\ U(
•n i
Iflv
•;4 '
*'•> f
;
1
ft
4
ft
S
.<
i
?
g
7
4
1
II
0
•y
7
ft
il . 4 ft *J 1 M
•1
"
II
|l
"
1)
n
n
n
u
n
0
.4
. 4
. 4
. 4
• •
• *
. '1
.n
."
.<>
. >i
.n
/ft ..
.. ?„
. Of
V ft >
..TV,
1 l^ '
1 * 1
I ft*
I ft '
I 71
i / 4
1 7*
«j
4
1
/
H
II
7
ft
>
II
4
1 i X —
1 % 'J
1 4 ^
!«/.
1 •>••.
1 I*.
- 1 "1 1 .
-]?'».
-114.
- 1 '14 .
-•M.
-•< J.
- 7 ^.
— ** •
-'» ' .
- < .
*" "' •
** * •
i .; ^.
i i- .
n -.
i ' ».
117.
i > ' .
i > i .
!••>«.
> < •.
i » > .
• i'*.
1 4 ».
1 " ' •
1 - '.
!•••!.
- M ».
- 1 '4.
-11".
- 1 '• 1 .
-•M.
^>? I
'>4'l
?4-i
9TI
ftRi-
??!'
1' "i'l
ft 4 1
H«J|i
704
jSn
4 1ft
.<4l
74ft
71 /
7Si'
ft?l
1 <"
/ft..
,\ •> -1
vv4
1 1 n
7 S ,t
4 ;.-
Jftll
H7,i
•> ).i
.1 1-1
?1 -i
Oft n
MM
«7-
.13 >
0
n
n
n
(i
n
n
n
n
n
0
n
n
n
n
n
0
•>
n
u
n
O
n
ii
n
n
n
M
n
u
i
p
(i
n
0
ii
;i
H
II
M
n
M
II
(1
II
II
II
II
II
•II
II
U
II
II
II
M
II
II
H
II
II
.1
.1
II
|l
,.
II
U
'1
'1
II
(I
II
II
n
ii
n
n
-n
-n
-ii
-n
-n
-n
-n
-:i
-n
-n
it
n
M
n
n
•i
n
n
:i
•i
il
n
il
n
'1
,)
U
-n
-u
-d
-ii
-a
. Ohi
.07H
.071
.077
. ?ft 4
,?bO
.?>1ft
.;><>?
. ?u M
. I W1
.IK"
. Iftft
.1 *>•>
.•u/
.nio
. r VH
.IV 4
. 1" V •
. n^i
. 'i i •>
. 0 ^w
.04 S
.04 7
. M l> -i
. 0',4
. I'jrt
. I'ft 1
. "6*>
. Oft*
ftO
13
ftR
>?
^3
1 9
16
16
1 9
/1
?n
16
i;6
7fl
46
%•>
P4
1 }
w4
7^>
*»3
^g
•' 1
/?
w
is
ftH
•>9
*1
. P 7 y «. 3
. n 7->
. ?b 1
. ? *> II
. ?v1"!>
.???
1O ^
7 1
^'7
>4
V?
1 R
1 9
?1
ii.;<6i>43
1 1 • *^ ft ^> 7 ft
h% f\ H n A A«3i/« U pSlci
9 J \* " II O *
•i . 1 7 (1 6 •?
•i. .1719?
'i . i 7 ,1 1 7
•i . nr>?n9
" . 4 S 4 6 ,<
". 4 5451)
.1 . 4b66?
'i . 4596?
...4ft494
•'.46HH?
n. 4 7. 11 M
".t771w
n .4HM44
!• . .l^jMy
• i..sSSOi»
.. \Sft9 1 240. 0 psia
n . ^b^nii
n . •I'JVl 1
i. . .>h Il3il
i' ..161 49
M. 16? 7.1
'" . <63« /
-•..165?.)
i . V1 ft ft 5 1
• . ,^ft 7 7ft
'• . 16k/U.>
' . .1 / 1 1 ? /
•i . .171 52
i'. .•>7'>7ft
n. 17^97
|J . 4 5 ^ 7 6
'i . 45J5?.
'I . 4 4 .1 «> /
ii. 45671
'1.4ft04j „ « «
i..4643w 250.0 psia
II . ll I H .• >
" . ' I '• .' *
i. . 'i I Q» |
il . Ift^ ! P
0 .
.; 4 •» n i
. 1 •> ^n M
'. n 7»-on
• 0 . i x M -»3
•0 .1 hft/»fl
• n . 1 s •» i n
n.
ii. a 7 y 7 x
U.47H1. ?
n . n I
M n
ii . .14 0 J 1
•i. .1 s 7 g .1
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
374
-------
VTAB
(ft3/lb)
n. 3*1 65
O..S9R96
il . 4 0 ft 1 o
0 . 4 1 3 2 7
n. 4^029
0 . 4 ? 7 2 4
i'. 4^4 111
u .44090
n .44 7ft 4
" . 4S431
•1.46093
M . 4 ft 7 4 9
n . 4 / 4 o n
(1 . 4 H 0 4 ft
n . 4 S ft h H
n. 11 61 7
H . 0 ft 4 ft
n.ll ft77
0 . n 7 1 II
n . n i 7 4 S
n . n 7^3
n.ii R?S
n .n H/I
'i . II 9^2
0 . II 0;-, |l
n . 3 4 ft 9 ^
» . .< ft S 7 <
II. W 3-1
" . .1 » " I a
I-. <><7-.M
•• . ,1-'4 1 H
n .4 i "S
«'.4 i /•. *
n.4 i 4'. s
'1 . 4 ;» 1 1 ft
0.4 •'772
n . 4 1 4 •/* 2
II . 4 4 0 ft ft
II . 44 7 ii 4
'i . 4*73 Jb
n . 4 4 0 /. ft
II .4o590
0 . HI ft 1 7
n .u i ft 46
II . (1 I ft 7 «
o . n 1 7 HI
0.01 74S
0.01 7 H 3
HTAB
(Btu/lb)
i iv.ftft'ino
i o *. . 2 5 ii n o
i ii*.«6"fli'
il i.47,ini.
11 7. u*n On
1 2 ... 7 3 u 0 "
? 4 . J 7 u 0 u
'•i . U ?HO i)
M . 7 •) n 0 l,
S •> . ,1 fl U 0 II
< *J . U H il 0 il
4 ' . 7 i -in n
1 n . S •! n 0 II
->•• . 2 Sun "
S < . 9 7 .1 On
- < •> . i g .1 n n
- '4 . y>ii 0 I;
- i4.ftiiinn
- I 04 . n6u 1 1'
-O/i . 7690)1
- M 1 . ^ ? * n ii
-7 %.S1 ynn
- ft ' . .) 3 'i 0 -'
-Si. /4^0"
- v.. 7? >n.i
••> J.S S^fln
o ,s<>.,nii
1 -i/. M il"
l 1-1.71 i nil
I 'i ' . .^ 6 " il n
i I .• . * V i 0 ••
1 i •. . s <,.nM
i > .//•""
1 > '.93.1(1-1
I '•> 7 . ft 1 ii rt ii
1 < ) .29. .On
1 M. **.ino
1 .«•» . ftn.l 0 n
1 \s . 4H ii * n
1 4-». 1 Linn
1 4 -j . M 7 i n n
l s % . ft ? .1 n n
-1 S %. 1 7-inn
- I 91. Ii S-i 00
-1 i ». 7 Si, nu
- 1 0 4 . p5«i U ii
- w « . 7'57nil
- K 4 . 3 1 -i n ii
STAB
(Btu/lb °F)
fl.022'J7
0.02675
1 . 0 3 0 * 0
(I . 0 3 4 4 3
0.03H/2
n . 041 99
il . 1) 4 S 7 3
>I.04*4S
•1 . 0 1> 3 1. 4
0 . fi s is •< 0
0 . 0&044
0 ,0h4n6
n . Oft765
•1.071??
'1.07477
-H .2ft4 >7
-11.2-jO --4
- n . "> 3 ft ? 0
- 0 . 2 2 2 .•" 1
- 0 . 2 i) H V 4
- fl . 1 * 4 > 7
-0 . lull; 7
- 1 . 1 o ft •; 3
-d . 1 -,7 i 4
-0.1 37'>6
U .0)1 7 16
n.m 7-^fl
".121->2
11 . n 2 *J J 2
0 .11^9^9
•l . 0 3 « 1 4
il . n.ift**;
•I. 04117 3
0.0444R
1) . 0 4 •* v 1
0 . Osl 91
0 . 0 S • j -, 9
0 . 0 s 0 ^ 4
0 . Oft?M7
0. Oft647
0.07 U !i 5
n . n 7 3 ft n
-0.26439
- 0 . ? s 0 > 6
i!:???51
- 0 . 2 II * 2 7
- 0 . 1 9 4 ,10
CTAB
(Btu/lb °F)
n . 3 5 U 7 M
U.3b97l
'l. 360 72
U. 301 79
M. 3 6 2, H 9
11.36404
H.36S2H
n . 36 ft 39
n. 3675*
u . 36nfl I
n. 3 7 n 02
n.37123,
".37243
n. 37362
•1.3747*
II. 4S.SH.S
H . 4S43H
M.4S4H7
n . 4S.63 I
H . 4*>96/'
-1 . 4 ft 4 rt 4
" . 46ri29
".47?93
H.47791
u . 4bo42
n .3 «S 9ll >
•1 . ,* (Ml 0 S
n . 3 6 u 7 /
11 . .161 5 ?
n..)ft24ii
l'.36 3 3 •>
n. .5ft 4 34
n . J6S4H
'i . 3 h ft 4 H
i'. 36761
'i. ff>rt 7s
H.369HM
n.37lU->
II.3722U
i). 1733s
u . j 7 4 5 n
n.37564
0 . 4 s 2 7 7
n. 45333
u..Sft3l9
n . 4 S S 3 rt
n.46(i92
n.4642.)
250. 0 psia
260. 0 psia
270. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
375
-------
VTAB
(ft3/lb)
n
n
n
n
n
n
n
ii
n
n
n
0
n
n
n
n
n
n
n
n
n
d
ii
n
n
it
•i
•i
(i
n
i
.
n
i
0
n
n
n
n
n
n
P
n
n
n
n
n
•
•
•
.
•
•
.
V
•
•
•
•
•
•
•
.
•
•
»
.
•
•
•
•
•
.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.
•
•
0 1 H?5
tt 1 fl 7 1
019??
Il 19HO
I) ? 0 4 R
.^5*9
.1 ft ? / *
* ft 9 ft 5
.17 6 4 7
.1 M ^ i 9
.1/19H?
W6.S7
4 u 7 M •>
4il9/">
4 1 5^9
4 ->1 K7
4 '/ R II 9
4 .S 4 ? ft
44 ll.tR
/J4fti«3
H 61 7
II ft ift
n ft; ;
II 7 1.9
n 7 1*>
n 7» *
n K ^4
II X ; |l
II 0 ,' 1
•. Q i W
r .» H >l 7
» ^ ? 1 v
*<4ft/l 7
v. 1/7
^•jw<«7
Iftft'.ft
~\ 1 * i. ft
.W947
»5 *H ^ 1' 1
^ U p n 7
.1 9 H /» 7
4 U 4 4 (|
4 1 H 4 7
41ft49
49?4ft
4 v R .} 7
"161 7
_
-
-
-
-
1
1
I
1
1
1
1
I
1
I
1
1
1
1
1
-I
-1
-1
. 1
-
-
-
-
-
-
-
1
I
1
i
I
1
1
I
1
1
1
1
I
1
-1
HTAB
(Btu/lb)
7 \
ft"
•» 'i
^ i
9ft
HI
fi-
ll •
1 '
1"
1 <
•> \
?/
\ ••
< ^
^ »
,' -4
\ *
n i
0/1
M 1
7 %
A -
1
s •
»-
w ;
11 i
M 1
•i <
i •
i .
i j
•> \
?*
< .
* 1
I/
4 1
4s
4-J
•j.'
< <
.91..
. ;•» ? i
. /4u
. 7 H
•?k>"
!^/
.^?
. h"S i
.•>il"
. !•>•!
,n'n
. 4 9 ii
.1 7.,
. u 7 ••
.*>7 •
• c **
. ol '
. /•»-
.',.1 ,
.^s
. 1ft •
.!•->.
.^•il
. 'M •
. / 1 .
. v> I /
.*> 1 '
. >1
. / < •
. ' * •
. ?s-
. .' i
. 111..
. ft 1 •
. ^ 4
. lin'i
.ft 7.
. -3 ^ ' '
. U 4 -i
. 74"
.44-'
.!'»•'
.R9,|
,ft;>,.
. J f ii
.1.1 '
,9Q.i
. 14 i
H II
n >i
nn
fin
n,.
n !
on
DM
nu
On
nil
n n
nu
n u
nn
nn
nn
On
n n
nit
n •)
n ii
nn
n M
0 < i
n .,
T.I
:> n
n,.
n
n .1
n ,,
n >.
n '
p •
n
ii •>
nil
n "
n.i
0'»
O'l
nn
Oil
n,i
On
nil
STAB
(Btu/lb
-n
-n
-n
-u
"."
n
n
n
n
n
n
n
n
n
u
•}
0
n
n
n
-0
-ii
-•i
-n
-n
-o
-0
-fl
-n
-0
-1
n
n
n
n
n
n
n
•i
0
n
•»
n
:i
n
n
n
-n
.inn
.166
.1 5?
.1.18
.l?3
. n •/. n
.H? 4
.n?R
.Ml
°F)
.Ml
f* 7
1 R
1)1
ftB
19
1?
n1
H7
. n .1 •» 7 n
.0.59
. 04 \
.047
. n t> (i
.054
.0'>a
.061
. OftS
•>0
Hi
7?
4]
;i7
70
. ii ft R w n
.07?
.?ft4
.?*>\\
47
41
i»P
. ? .1 ft V 5
.???
.?I)M
.1*^4
. 1 K H
.1 ft6
.^0
.»3
13
H.iij
.1?.^
.1)14
. n i*
.IV?
. n?ft
.n in
. 0 J4
.P j»*
.04?
,n4l>
70
v*ll
*9
^4
7"j
« J
47
.•9
-.7
•<«5
. 0 4 9 *> 5
.Ob 1
A II T "
. iiftn
.064
. Oft7
.071
i">
«3
•>7
19
79
16
.?ft44?
CTAB
(Btu/lb °F)
!|
1)
U
II
II
"
II
II
•1
I.I
n
u
n
u
M
u
u
M
1)
II
fl
1)
11
il
II
M
H
11
11
'1
II
|>
"
.1
|.
II
|l
II
61>
. 5 0 9 0 ?
!'.16?MH
..*6j4.t
..1641 7
«-<6499 270. 0 psia
. ,< ft *) A M
,.S6ftR?
. .167Rv't
..S6rtt7
...16994
..1710?
..17? 1 U
. 1 7 6 ?. u
.,1741?
. "1 7 •> 4 i
..l7ftSl
.4|>.17n
. 4 S .S 7 H
,41>S74
. 4*>ft HO
.4ftU 7
,4ft4S|
.4ftt)W4
. 4 7 V 7 h
.47 7 7n
.4Hftl I
. Mi JM u
..1647^
•^fesn" 280. 0 psia
• *^ f> O 'I ^
• \^ 6 ^ / 1
..1674M
. ^d^/
. .1 6 9 ? ,t
. .1 7 u 1 M
.i711ft
. *72lM
..S7J7.1
..1742J
. J7*>30
. i76 t!?
. .5 7 7 4 fl
.<'».« OH 990 0 nsia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
376
-------
VTAB
(ft3/lb)
0.01646
0. 01677
n. ni 7 ii 4
n. in 744
n . n 1 7 H .5
0.018P4
n.niR/n
o . n 1 9 v i
n . « 1 o ; »i
n.n?(M«s
n. M747
n . 3 7 4 4 4
n.33l?7
0.3 1797
0.34456
n . 3M 1-4
n. 1^742
n.363/1
n. J6992
n. 376n5
n..irt7ii
n. 5H811
n . « y 4 n *>
n . 1^w97
n. 4'n 5 ;«>
o.4Mb2
n .01 M 7
o . n i * i *
0 . o i ft / *
n . n i 7 n y
n .01 7*4
0 . 0 \ 7 n ?
0 . 0 | R?4
n . m « 7 n
o . n i v ? n
1). 34778
0.34RQ*
n.s-js..^
n. 361 07
n.3(!)7fil
HTAB
(Btu/lb)
-i?4.iionnu
-114.^.61100
-1 H4.82UOO
-y4.73jno
-R4.?9f>0u
-7 J.49400
-ft?. 312 00
- S ii . 7 3 f< 0 il
-3^.73^00
-?ft. 27^00
96.78HOD
1 "') . 4(SiiOU
i o 4 . 1 4 n o n
1 0 1 . 8 1 ii 0 0
11 1 . r> n n o o
1 1 •> . 1 9 ii n i)
1 1 x . B 8 (1 0 0
i 7 ?. 58 uon
i ?*.?9non
1 * 'i . (i l ii n u
l J i . 7 4 ii n n
U 7. 4 8 il On
14 i .?in no
l 44.99000
14-.. 76 il 00
lk>^.i>3HOO
- 1 * 1 . i J H n n
- 1 ' * . 9 8 ii 0 0
-1 1 4. 55(1011
- 1 '1 4 . H 0 II 0 U
-94.72100
-«4. 28-300
- 7 1 . 4 8 4 0 H
- ft '..JO/ 0 0
-c"'. 7 5jflO
- .* « . 7 4 1 0 H
-?i. 28^011
9^.1>UOO
y^.HBlOll
1 i o i.58onn
l n / . 2 H ii n o
1 1 ii. 98||00
1 1 4 . 6 9 U U U
1 1 ,-s . 4 0 0 0 II
1 ?->.!? ill) II
1 7i.Ht>ilOO
1 7 ^ . b * (1 0 0
I 3 1 . 3 2 II 0 |l
STAB
(Btu/lb °F)
-0.25030
-0.73627
-0.222^9
-0.708,32
-0.19436
-0.1H03A
-0. 166.14
-0.15226
-0.1 J810
-0.123H1
0.01359
Q.Ol7ftO
0.021*>8
•1.02551
0.02941
0. 0^327
O.OJ710
0.040^0
0.044*7
0 . (1 4 rt 4 1
0.05712
O.U1?1^!
0. 0^947
n.06.n n
0.0h«.70
0.0 70 -"i
-0.76415
-11.2511 13
-0.7J* >0
-0. 7 2 2- 12
-0.70»-<5
- n . 1 9 4 .1 9
-0 . 1 HII 40
-0.16ft <8
-0.1-37 ^
-n.i.iHM
-0.12316
0.fll7-->9
n . o i h .1 3
0.070 ^3
U.024V9
0.02HV1
0.03209
0.035-)4.
0.03976
0 . 0 4 3 n 4
0.04779
0 . 0 5 1 11 2
CTAB
(Btu/lb °F)
0.45370
H.t5503
0.45662
11.45904
H.4642U
II.46H79
0.47309
11.47763
0.48553
0.50830
II. .56735
0.36738
0.36761 290. 0 psia
il. 36HOI
H. 36853
0.36917
0.. 16988
n. 37067
U.37155
0.37245
0. 37339
ii.. 17433
n. 37531
i'.vS7632
0.37731
.1.37830
n. 45 431
D.45398
n.4538?
H.45585
0.45969
n.46494
fi.46H63
11.47309
n.47766
n. 48577
H.50K06 300. 0 psia
11.371)14
•1.36990
0.3699U
11.37009
n. 17044
ft. 37093
0.37153
n. 37220
11.37296
0. 57377
0. 57463
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
377
-------
VTAB
(ft3/lb)
0. 3/788
n. 37869
0.3H444
0.39014
0.39578
n. 0161 7
0.01645
0.01676
0 . 0 1 7 II 9
fl. 01744
0.017H?
0.01823
0.01869
0.01919
0.01977
0 . 0 '1 0 4 3
n. 27756
0.2<)438
0.2V101
0.2^749
n . 3 n 3 M ?
0.310 ii.l
0.31613
0.32212
0 .328112
n. 33383
M. 3 3956
n. 34521
o . Vi o n n
0.35633
0.3o1 *n
n.3r>721
0.0161*
0.0 1*45
0.01*76
" . 0 1 7 U P
0.01743
0.017H1
0.01823
n.OIM^H
n. 01019
0.01976
n . o '' o 4 1
n . o x 1 v o
0.2M ?1
0.7h7Jv
n . p / 4 ] P
H .2*041
HTAB
(Btu/lb)
137. 0700 II
14H.83000
1 4 4 . 6 0 0 0 M
1 4 H. 3 8 (I mi
1 5 2 . 1 7 U 0 n
-133.09001)
-123.9500M
-114.b?un«
-104.78 « OU
-94.694HU
-84.2ft.jOll
-73. 46«OU
-6^.?9^0ll
- •> " . 7 2 y 0 II
-3^.74600
-26.304011
94.917011
9 n . 6 7 7 0 H
10/».4300rt
1 n is . ] P. i) o n
10y.92uOn
11 ^ 67 00 II
1 1. / . 4 ? u 0 ii
121.1 700H
1 ? 4 . V 3 U 0 II
l?H.f>9iinii
1 3 '/_ . 4 6 II 0 n
1 3ft. 24 II Oil
1 411.02 U OH
1 4 .* . H 1 il n M
1 4 / . 6 1 () 0 u
IV1..42UOH
-1 VJ.U'SflOil
- 1 2 A . 9 2 U " i)
- 1 1 4 . 4 9 0 II U
- 1 II 4 . 7 5 0 0 (I
- « 4 . 6 7 U 0 0
-Hi.24200
-7.*.45linn
-62.28300
-50.72400
-3H.751 OH
-7*>.3/?30ii
-1 i. 3690M
9 7. 40 7 nil
1 01 .22000
lfll».0?uno
inn. 82 ii nn
STAB
(Btu/lb °F)
0.0b472
0.058.59
0.06?<13
0.065*4
0.06923
-0.20449
-O.?5ll.)7
-0.23634
-0.22236
-U. 20841
-0.19445
-0.18046
-0.16645
-0.15238
-0.13823
-0.12397
II . 0 U 9 7 2
0.013H3
0.017H9
0.021«0
0.02SM6
0.02979
0.93367
0.03752
0.041.M
0.04512
0.04HM7
0.052S9
0.05629
0.05995
0.063-19
0.067?0
-0.26453
-0.2biln2
-n.23639
-0.22242
-0.20846
-0. 194^0
-0.18U13
-0.166S?
-0.15246
-0.138.13
-0.124H8
-0 .1 OV"4
0.011 15
0.01548
0.019-,5
0.023S6
CTAB
(Btu/lb °F)
0.37551
0.37642
0.37736
U.37831
0.3792b
0.45345
0.45395
11.45561
U. 45687
0.45880
0.46395
t). 46826
11.47312
0.47778
U. 48531
0.50753
II. 3 765 U
U. 37555
0.37497
0.37468
(1. 37463
H.37475
0.37505
0.37546
0.37598
0.37660
0.3772H
0.37800
0.37874
11.37956
0.38039
«. 38121
0.45305
1). 45361
0.45428
0.45575
H.45990
U. 46441
0.46842
11.47309
11.477H7
0.48488
0.50713
0.53051
0.38216
U. 38083
n. 37992
0.37936
300. 0 paia
320. 0 psia
340. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
378
-------
VTAB
(ft3/lb)
n
n
n
n
0
n
. 7 M 6 •> n
.;g?.4s
. S II 4 li J
..!/»> 7 I
. \ .) 1 4 S
. S S6/7
HTAB
(Btu/lb)
i
i
"..HI VJ
n
n
i)
n
n
n
(i
n
n
n
n
n
n
n
n
n
•
•
•
•
•
•
•
•
•
•
•
•
.
•
.
n
ii
n
M
II
n
u
n
u
n
'i
n
u
7
>
7
1616
16-1^
167b
I 7 n a
177
1918
19/4
7040
-M 1 H
91 '^
46>-l>
•> .1 7 1
•j W ,s H
-
-
-
-
-
1
1
.<
4
4
».
•s
?
1
u
o
^ •
•' .
'.
I .
'• •
^ •
'» .
" •
->.
.<.
** •
•1.
•1 .
-H4.
-
-
7
6
%.
>.
Mil
4i>ll
1 OH
•y '< n
1 0 ll
li 1 n
M \ n
"6ll
u 7 li
M9||
46l.i
72n
^4^
i>7l
nn
mi
nu
n ii
nu
n n
n i.
II M
tin
nu
I'M
n n
n n
flit
4 .^ ,j II H
?71
nu
-'ii! . M gnu
-
-
-
1
1
1
i>
1
,.
g
n
n
1.
^ .
* •
.4 ^
U .
*.
7.
/^•j
j4 ii
4 i) /
(I -1 4
94 ^
h^.i
(S7.I
II . 7 /»">,>» HI .^1 •!
n
n
n
u
'•
ii
i>
n
n
fi
n
i.
h
n
n
n
i'l
n
0
n
•
•
.
•
.
•
•
•
•
•
•
•
•
•
•
•
•
»
9
m
7
9
7
7
7
7
«
1
J
<
n
•
•I
n
(i
n
n
f|
1!
I)
7174
76U7
-. 7SQ
rung
w V,1
Jft' .<
n 4 n M
u g y *>
1 4 »6
1 0 4 ||
1 61 f,
1.6 IS
1 6 /•?
1 7nfl
I 71 1
I 7 •» il
1 »>1
: ** /
1 .. i 7
19 '.i
1
1
1
1
I
1
1
1
1
1
-1
-1
-1
-1
-
-
1
1
•.>
7
.<
<
<
4
•> .
J .
S.
'• .
ti.
4 .
•<.
^.
4*.
4
<
7
1
H
9
ri
^.
9 .
• •
A .
1.
•-».
•) •
.^b.i
11, i
111 i
h4 i
f>7n
hill
^4 n
IQ.i
II .* •)
HHH
V9n
fiSii
4 jn
nn
MM
nu
g ,.
n.i
ll'l
(I'l
n,i
n»
id.
n n
nn
n»
n ii '
n n
n n
n n
!l II
U H
II"
n n
6 9 -in n
ol •>
19y
n-
n.i
- 7.%.4i->n»
-
-
6
s
V.
H .
•i (y y
71 4
n -i
n ii
- .1 h . 7 s 9 n n
STAB
(Btu/lb °F)
n
n
0
n
it
u
n
-n
-n
-0
-n
- n
-il
-U
-n
-n
-n
-n
-n
-n
n
n
M
n
n
n
n
n
ii
u
o
n
n
n
-0
-n
- ii
-n
-n
-n
-n
-n
-n
-u
.n?7'?i
.n jy?u
. n 4 .1 n ?
. 0 4 6 M H
. n b u *> s
. n «o ? 4
.7M->7
. ? "j •! 4 ft
. 7.3644
.7?,»47
. ?'!><•> I
.19416
.1 M !)•>')
. 1 o 6 * 9
. 1 S 7 •> 4
.!.*«*:?
. 1 ?4 1 H
. 1 H V 7 7
. 1 n < » 7
.ni <"»
. n i 7 /?
.n 7 1. MI
. 1) ,•> 4 .< .5
. n?^.Mi
.n v<:>;s
. n ,5 7 1 ?
.04-ly7
. Il 44 79
. n 4rt->6
. n1?7 tl
. Il»jhil2
. n h o / n
. n 6 .M 6
. 764h?
.?Vr»n
. ? J i 4 8
.???'>?
.7nrti7
. 1 VI 6 ?
. 1 M n «>6
. 1 r>6*6
. 1 b?f>?
.1 .} H S ]
CTAB
(Btu/lb °F)
ii . .*7«97
M . ,l7VHf>
n. 37931
ii!.)Hul,t 340. 0 psia
il . .1 H II ft 6
lj • * i ti O \* J.
'I ^ 'i^>»C*O
I". 4*? 7 17
(i . 4«>4l g
(i . 4 ^ "7 7 1
•'.4 6 OS 7
II .4646,1
II.46H63
U.4777l>
.1.4777^
M.4846.^
1 .S06?!!
n .l>?V?»fJ
,. •> 4 n 1/4
H !
u . ,>879 7
'1.^8^04
•1 . 3 M S 7 •>
'i . Mi i">h
n . »»H,*94
H ,.S844/»
H . ,
II . .^ H «> S .S
ii . 4 "j > 4 M
•I. 4^.»4*>
n.45444
K.4I7S8*
".<6nSM 380> o psia
H . 46 \B/>
•l.4hM?6
n . 4 779 J
n . 4 7 73*>
tl . 4 H 4 6 6
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
379
-------
VTAB
(ft3/lb)
n . n •? n ,> H
n . n 7 1 1 6
n . n ; 1 9 1
n . ? 3 4 1 7
n . ? 3 ^ 6
n . 9ft8r.ft
•i . 7 7 3 t"? v7
n . 7 -»H »• vj
ii .9 )4r6
0.91077
n . 74^ /?
i'.?'»1 1)5
«• . 7^676
» .7ft 1 >6
H . Pftft.1*?
0.77179
0. 7/61 4
n . 7 H I) y l
n. n i 615
0 . HI 6 4 4
n . ii 1 6 / 4
II . H 1 7 n 7
HTAB
(Btu/lb)
•1 >. 4 4'i flu
- •. . 1 II 4 7 il
- '.ft*> ^7 n
I o ' . s 4 -i n ii
1 0 i . 4 6 I II II
1 1 'i . A ft ii nn
1 1 4 . 7*5 .ill i;
1 1 ". I * HI"
1 9 x . |i II n H ,i
19-. .»• ; .1 n i.
1 7'». 74 ,i II .1
1 S S. on, Mill
1 W. 4 7 -. 'In
1 4 i . 3 4 ii n ii
i 4o . 7?'-n n
i. 4 >•! . b 9 ,i n n
- t "* ' . v5" . HPiill >l
- I 1 1 . 4H .' Il ii
- 1 HI . ft 6 il ft n
-«j.^.-. /n 'n i'
- 1 -. . 4 H | n ..
- • . • 5 / 4 ••
- '. /!••« '
1 n 1 . ' 9 ii 0 !•
1 M -i . ] w.in.,
1 n • . i. 6 -i n ••
11 i . M n n ••
11 /. n 4 -MI "
17- . >»6;i nn
1 7 4 . »' 7" n i'
17 \ . 7 * <\ n i.
1 .1 '.nrtnlli
1 3-i. -181.11 !•
1 4 n . 4rtu On
1 4 1 . ^ H .1 n n
1 4-^.7 8 il Oil
- 1 3 > . '> 7 I fi n
-.17 1. X 9. . It n
-1 1 t..) 7 MO n
- 1 M 1 . 0 4 '1 0 U
STAB
(Btu/lb °F)
-n. 124 79
-n.] H9H9
- n . 1 n 4 n 6
-II . IWM16
n . n i 4 y D
n . o 19 ii 5
n . n 7. 3 1 4
n . « 2 7 1 7
n.n;n is
n . n js-iB
n .i' jnw7
i) . n 4 ? M ?
n . n 4 ft ft 3
n . nsiMi
n.ns4i5
n . n •? 7 -1 5
o . n r> 1 *> 3
-'l.?6466
- II . 7 S ("i 5
-1 .?J6*>3
- 'I . 7 7 ? >i 7
-'1 .?l|Hft?
- U . 1 V 4 ft 8
-n .1 nn 7?
- n . 1 ft ft 7 4
- ii . i s 7 ; n
-n .ijH*n
-ft . 1 74 19
-0.1 l».i?
- 11 . ] II 4 .-• U
- '1 . II V H .S ?
•1 . fl 1 7 1 8
n . o ) ftni
ft . n?H-/7
II . (1 7 •> '1 6
n . 07<»i n
n . n j 3 n 8
n . o j7ui
n .041) 9 n
II . 11 4 4 / 4
II .O48'i 5
n . n s 7 1 2
n .ns ft n5
il .09^75
-II.P647H
inn:?j""«
-n.?7.?ft?
CTAB
(Btu/lb °F)
i:S:i
n . s 5 1 9 J
U. J9.ll?
Ii . 39n9n
H.OHV41
fl . .< H 8 3 1)
II.3H757
H..S87II]
H.3R673
i). 38664
H.38h69
il . 3 8 6 H ft
n.38714
n.38747
n. J878y
'1 . 45?.] 2
n . 4 5 J79
n . 4 5 3 4 8
11.45696
ii.4587(l
fl. 46435
(1.46888
ll.47?«4
(1 . 4 7 7 6 y
11 . 4 8 1 9 4
1) . ^ 0 4 4 4
O.S2733
H.S381 n
n . 4 fl l^ft
H.39M33
ii . v>9l>8ll
H.. 193.94
II . 3 9 9 5 3
M.39153
IJ . v> 9 1) 8 4
ii. 39 H 38
n. 39 ni 2
II. 39 00 II
11.3900?
n. 3 9 n ?n
II.3V047
11.453711
II.453H3
H. 49391
11.45/711
380. 0 psia
400. 0 psia
420. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
380
-------
VTAB
(ft3/lb)
0.01742
0.01779
0.01820
0.01865
0.01935
0.01971
0.02035
0.02111
0.02146
0.02185
0.02228
0.2 H 68 7
0. 21290
0.218r>9
M.22428
0.2297(1
0 . ? 3 4 9 8
n. 24013
0.24515
0.250HR
o!2^965
n . 2 e> 4 ,s 2
n. 01615
11 . 0 1 6 1 4
n. 01674
0.017H7
0.01741
0.01779
0.01820
0.018f>4
O.IM914
n . 01 9 ;n
n . 'i / o vi 3
o . n > i n 9
0.02144
n . n >\ n2
n.ni»224
O.U72/2
•I .I98|i H
n. ? H 393
«.PilQ»i5
n . 2 i 4 9 8
0 . 2 2 It ^ 3
0.99S S4
n.2 ^ ii it 1
0.2J51 7
0 .? . ? 3 3 0 il
-5 '1.7 0200
-3M. 76601!
-2*. 3 9 000
-13.516011
-*. 2.040 «l
-/•• . 77rt2n
v. 7 729 H
in t. 81 0 nit
1 II /. H 9 II 0 II
1 1 1 . 9 0 IJ 0 il
1 1 '). 9 0 ii 0 u
1 1 U . 8 7 il 0 0
1 2 A . 8 3 U (I «
127.78(100
131 .72MOO
1.T>.f6iiOH
I 4. 1.5 ? II 00
1 4 7. 46(10 U
- 1 3 '' . 8 9 (| 0 0
- 1 2 4 . 7 6 M 0 0
-111.34000
-1 il 4. 6 1 H "II
-94.54 iOn
-84.1 V'Oil
-/ t.,<61 fi»
- 6 '•" . 2 2 n 0 n
• •> 'i . ftQft n n
- j . . 76 v o n
- 2* . 4 Or»n fl
-1 i . *> 5 1 0 0
-M.24h7li
- -".836711
' . ft 9 / 7 il
•1 . 3 8 9 3 H
1 il i.b4 •) On
11 'i.f)4ijl)il
114.70000
11^.74 n n«i
1 2 • .1 5 u Oil
1 2ft . /5'i 0 'I
1 ?n . 74nO u
1 3 4 . 7 1 0 0 II
1 3 H . 6 A II P H
STAB
(Btu/lb °F)
-0.20868
-0.19474
-0.18079
-0.16680
-U.15278
-0.13869
-0.12450
-0.11015
-0 .1IJ4 44
-0.09847
-0.092-J3
0.01455
n . n 1 8 / 9
n. 02296
0.02/05
0.031 M 9
0 .0350 /
0 .039 Oil
0.042*9
0.046/3
0.05429
0 ,058h2
-0.26474
-0.?5 II ft 3
-0.2366?
-0.222ft7
-'l.?U*73
- II . 1 9 4 H 0
- I) . 1 H 11 M 5
-0 .10688
-0.1 "p2*6
-0 .I.A878
-0.1^460
-0.1 HI27
-0.10447
-U.09«ft2
-0.0927"
-U.OH667
0.016S9
0.020*4
0.025H2
1.02911
0.04315
0.03713
0 . 0 4 1 'i ft
0.04494
0. 04877
CTAB
(Btu/lb °F)
'1.46027
II. 46361
n.46«45
II. 4 73 Oft
".47744
H.48432
H.50419
H.52ft33
il .5374 r»
11.549211 ,0_ _
u.->6249 420. Opsia
0.40714
11.40431
n.40045
U.39H27
n.39f»62
11.49540
0.3945(1
M.39187
( I T rt T O *
ii / Q < J O
'1.39313
•1.45271
0.45355
H . 4 5 4 7 4
H.45557
0.45962
H . 46.189
H.46H1 /
ii . 4 7 4 H U
n.47794
•1.48262
0 . S 0 .1 4 4
n.52l>6>> 440. 0 psia
n.53597
II . *) 4 8 1] 9
n. •? 6 1) 5 4
H.57H Jfi
i- . 4 1 2 n
II.40HOH
H . 4 U 4 H 7
II . 4 M 2 4 1
fl.4«ll1>5
0 . .1 9 ^ 1 u
U. 3 9 « (It
n. 39/22
11.39667
Figure
CP-34 Superheated Fluid Properties II (Cont'd)
381
-------
VTAB HTAB
(ft3/lb) (Btu/lb)
STAB CTAB
(Btu/lb °F) (Btu/lb °F)
n!?4«M7
n.n IM "s
n.n 1644
n . n i A 7 4
n. in 7 n A
n.ni 741
n . n i. 7 / H
o . n i HI 9
n.ni«<.4
n .ni y i 4-
n. DIP/I*
n . n ? n \ ^
n . n^i i- /
n . n v 1 1 1
n . n ; 1 • o
n . n .' •' v n
n . (]•/ "> h 7
n. l/i 4? 4
n .ion?i
n . 1 JS'y II
n.Pni
" . ? 1 1 / 1
«l . ? \ A '•> *>
0 . ? ? 1 4 7
i) . ? y A i '
n . ? i n . •
n • ? .» *> t /
n . fi i ^ i s
n .n i A 1 «
n . in 6 4
n..i, ;,.!•
n . ii i ' ^ h
r, . ii ' « ' M
n . n i M • s
n.n 19 i ^
n.n 11*7
n.n 'n * n
n . n ; i • *>
n . n /» 1 4 o
n . ii »i /ft
n . n -"?i ;
II . n /» 7 fi 4
II . iiM 1 ft
n . 1 / 7 j A
n . 1 M .« i 4
M . 1 HHft 7
14/
- M '
- I? *
-1 1 .1
-1 n »
-94
-H 4
- / 4
-ft '
-S i
— 4 i
- v».
-1 4
--,
- ••
-(
1 " •
1 ->M
1 1 *
1 1 /
1 ->\
1 -''.
1 5» '
1 * *
1 4 '
1 4 1
14-'
-1 S •
- 1 » '
- 1 1 -*
- 1 .1 1
- t 1
-*
_ >1 !
- «
- '>.
-1 *
- «
- -'
'
^
1 «
1 H /
1 1 '
1 1 ^
. /.'liinn
. M ' n ii
. MS"n n
. M - n n
. ..» 1 •» n 'i
. HR n n H
. '»1 / n n
. M ., n n
. 44 .>r n
. / n ^n n
. ft 9 ii n D
. 77in »
. <• ? i n n
. '.Ml 'ill H
.?9.M(,
. MW ^ < n
.<•.:' ^-H
. ,' «* . ? n
. II On (I n
. .S Ml
. ft < 1 1' .1
. /, « .• n ,i
. 7?.iO n
.74-011
.74 • n n
. /4 • H ••
. / 4 . • M -I
. i / i1 -i
,ftO (• .,
.S« .1 "
. *>*• i n n
. 40 ; n n
. «' in n
. i w • n i.
. t. M ,n..
. / ' i n M
.4 «<•• n n
.f.1 tHu
. S * On
. 94 y.< ii
. *»S 4 0 II
. 1 9 /HH
.1.1 inn
. Xft il II II
. 11 -III II
. ,s n n n ii
I'MZl
-0 . ?A4 7ft
- il . ? b n ^ rt
- n . ? ,t A n /
- fl . ? •£ •> 7 ?
-II .?||M/H
- n . 1 y 4 * A
- n . 1 H n y ?
-n . 1 ftfty^
- H . 1 '.> ? u 4
- Il . 1 .} M ^ 7
-n . 1 ?4 71
- n . 1 1 n 4 n
-0 . 1 II 4n1
- 11 . 0 '* i / 7
- (I . (l «• -> K 6
- n . n » A * 6
11.014 *S
O.OIH71
n . n ? •> 1 1
0 . n ? 1 1 4
n.n.n M
n.n.v>/7
II . 0 J '' ^ S
n.n/> n 7
O.'M /•• 4
H . 1"? "I -4 7
n . fl y 4 r. A
-n . ?r,4 .?
-n .?*>'•/?
- 11 . ? 4 - / P
-\\.?v > n
-il.pi. to 4
— n 1 1< 4n?
- II . 1 .1 * < A
-II. lir"l il
-n.n ••••?
- II . 1 II 4 7 4
-II. II V v?
- n . n v * i .1
-n . HM ?.,«>
-n . fih" *A
n.nift ^;<
n . n ? n i o
n.nysis
,'i;j9606 440.0 psia
H . 4^370
n.4«i36i.
0 . 4 «j 4 0 7
II. 4S594
ii. 4ft 021
n . 4 ft 4 il 7
n . 4 ft rt n 4
M.4720li
n.4777i?
•1 . 4 H ? (1 ,t
n. Mi .121)
ii . '.> ? 4 4 ?
"• ^ssn 460. 0 psia
11 . *>46l 1
u.S'SH'jy
(i.S74l5rt
II . 4?3Jll
".41721
H.41P.61
M . 4 n y o 7
'' . 4II6..5^>
M.4IJ4?'J
n.40262
M . 4 U I3f>
'1.4111142
".,5997.1
.1 . j9921
•..45274
•1.4 54 « 4
'i . 4542P
u . 4">5Hb
•I . 4 A 1) ? 1
II A IS \ A U
1 1 • M i I * J "1 ~
!l.4ftH.lh
II. 47?9i|
n. 47772
n.4Hi i / 480. 0 psia
M .M>?5?
M. 52461
0 .Sj,J4n
n. I?4r>l?
n.S5«srty
n . h7j? AJ
M . b9?8M
u . 4 2 b J /
n . 4 2 1 H 0
H. 41 h A 4
Figure
CP-34 Superheated Fluid Properties II (Cont'd)
382
-------
VTAB
(ft3/lb)
n. 19397
n. 199 ii 7
n . ? n 4 ii i
n . ? u H H n
n . ? i .< 4 ft
n.Pi flu]
r. . s ? •> 4 ft
n . n i ft l 5
n .01*4 \
n . HI 6 / 3
o . n l 7 n 5
0 .'11 7411
n.117 /7
0 . '1 l H 1 R
0." 1 v.-y
n. 'il 9i 1
n .u i 9ft 6
n. n? n? 9
n.o/M i-2
0 . U /> 1 ^6
0 . H 1 1 7 3
n . n p ? 1 3
n . ii??s9
n . i) -f ^ 1 1
n . 1 r>51 4
n.i 71 13
n .1 /67H
D.1MP15
n . i A 7 3 n
n . i -• ? >• s
0.1971.4
n . ? n i r8
'i . 2 u ft ? «
Ii . ? I 0-ft 1
n . ii i ft i 4
o . n i 643
n . n 1 6 1 3
n. ni 7 n 5
O.ni740
n. 01777
n.oiHi 7
n.ui8M
n. ni 9j o
n . ni 9ft5
n . n v n ? 7
n . M ••> 1 n n
n . 11^1 .\3
n.M21 70
HTAB
(Btu/lb)
1 P u . 4 5 u n u
l?4.57iinn
1 3 / . 7 3 il n U
1 .1 6 . 7 8 U n |l
1 4 -I . H 2 II 0 U
1 4 4 . H 5 II 0 I."
-13?. 7(> n nn
-1 ?.). 6 6 ii nn
- 1 1 4 . ? 5 u on
- 1 0 4 . 5 2 Oil (l
-9'i U
- 8 a . ft 6 4 " H
-7 ? . 3n6nO
- 6 •; . l 9 u n n
-5.1.67600
- 3 1 . 7 7 6 0 il
-Pft.45iinn
-1 <.6 5d nij
-« . 37H n n
- 1 . (I 0 .1 7 a
'S . 484611
M.].nn9'i
1 .*.M950n
1 0 ft . 3 1 U 0 H
1 in. (• 9 iinn
1 1 4.9HHO'i
11 ^.? 2 II I) M
1 ?. s. 4 nil Oil
1 P / . 5611 0 n
1 3 I .ftHn n n
1 3-1. 78(1 0 u
1 3w.H6uO«
143.V3nn.l
-l"V;.75ii{iii
- 1 P < . 6 3 il ft n
-11 4.22"n«i
-in4.49nnn
-94.44000
- H 4 . U 4 2 0 Ii
-73.2870 n
-6^. 16 /nn
-51.1.669 nn
-.*«. /770H
-?ft.4640'i
-1 .1.681 nn
-H . 41H4 II
- '<. 05 "JO ii
STAB
(Btu/lb °F)
0.029.J2
n . n 3 3 4 1
n . I) 3 7 4 4
n . n 4 1 4 1
0.045 S3
0.049PO
0 .053112
-'I.204M6
-0.2^77
-H.23676
- il . P 2 2 H 2
-'i .?UHn9
-0.19498
-H .lHln4
-"I .167119
-11.15309
-n * 1 39 n 5
-0.12491
- 0 . 1 1 11 * 5
-0 . 1 i) 4dft
-il . 0 99 i| 7
-0.09319
- 0 . n h 7 ? 3
- n . n H 1 1 7
n.014P8
n . n i H 7 /
n . n ?. 3 1 *
n.n?7.>8
0 . 031*>5
il . 11.1564
ii . n;<9ft7
" . 0 4 3 6 3
0 .04754
0.05140
-fl.?64«JO
-0.25 ll «1
-0.236*1
-0.22287
-0.20H95
-I1.195H4
-0.1811]
-0.16716
-n. 15317
-0.1 >9l4
-n.l2Sn2
-0.11077
- 0 . 1 II 5 11 1
-D.099P1
CTAB
(Btu/lb °F)
0.41306
n . 4 1 n n a
U.4II776
0.40596
0.4 H 4 55
0.40347
(1.40264
0 • 4 b ?. 1 2
11.45194
II.453I>4
0.45619
0 . 4*>tt 79
0.46364
0.46863
n.47262
0.47 7to 4
0 . 4 W712
i
0.50218
0.52267
0., 5:3;? 4 7
0/V5/4 453
ni 56975
/H./SHH42
/ 11^44243'
V. 43303
0.426nH
H . 4 2 ii 8 2
11.41674
U.41 -1SM
U . 4 1 1 0 7
H.4n9ll
0.40757
11.40634
"I.4523U
il . 4 5 6 II t>
H.45.376
0.45541
0.45904
0.4ft 432
H.46H11
0.47281
0.47/3M
II.482U9
11.40459
H. 52154
ii. 531 ft U
M.54249
480. 0 psia
500. 0 psia
520. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
383
-------
VTAB
(ft3/lb)
n . n ? ? i fi
n. n -MM 5
n . n ; 3 r. 5
P . 1 *> 9 / 9
n . i ^5*)ft.
P .1 /1 c 5
fi . 7 ft ? 7
n. "I? 6
«! «n?i
ii . y 5 <> 1
« • 1 y9»?9
n .111 61 4
n.-i | ft4?
n .•• 1 ft / 3
ii . n 1 7 |i 5
n.n i ?.% 9
ii .1' 1 7 /ft
fl . " 1 8 1 7
•' .H 1 KM
n .n i 9 1.9
n . -i i 9' 4
H . " •* n /ft
'i . ii / n u H
n . » ' i o 1
n . 0 y 1 » 7
n. "!-»•». ^
u . .• y ? • 1
n . ii / Ji n
ii . fl •> V M
d . c M/1 ~
ii . 1 *> 4 >• 7
n . 1 ». n *, <
H . -.S> /
•i . / nw 3
"I . /5 / M
n . /< n 4 4
Cl . M4t;4
n . 1 i9 si
n.niM 4
n . u i ft i ^
n . IM ft / ?
n . ii i 7i- 4
•i . II 1 7 M»
n . n i 1 1 *
n . in « i o
ii . il 1 «r- 0
HTAB
(Btu/lb)
t.'.ll**'*
1 \. 7R/n i.
1 •/. 74/nn
i !••». i 6'ini'
11 •>.•-'« n n i-
11 / . v l .1 is n
1'.> •> . 1 H n n ..
1 •> ^ . 4 i •( r. ii
I 3 •» . / 4 '•' n ii
l.» -.m-in.i
1 i ' . S 9 i " ii
- 1 M . 7 •> n f- »
- i y s. 5 y i.o-
-) 1 4. 19nn,.
- 1 IM . 4 7 i" h ..
- o 1 . 4 1 / n ••
-H4.nlyp i
7, r * m .
•\ . f ft Mil •!
-f x. 15. M' M
-') .ftftlM"
- ^ • . > 7«P i
-'•>'• .47/0 .
- 1 •>. 71 /in.
- .45rt.ii,
- ^.lijfio-,
.-1 . 35 i.ft ••
' . V 3 / 7 '-•
l % . f 7 •> n •
1 •< . r> P << Ii •
•» T. ?y 70 n
1 1 x . n ft u f| ,1
1 1 •».5?iinr
i ? n . h9.i n ii
i ?•• . iriiiifi h
1 ? 1.4 ft uni.
i « ^ . ft 7 '• n i-
1 W . hft.i II Ii
i 4 >. ii?-inii
- 1 J / . ft 8 •! n !•
- i ? •>. s ft -in H
- 1 1 4. 1 ft i, Hi'
- 1 n a . 4 4 ., n n
-O 1 . ,1H-<0 H
-H » . 99*. n ii
- 7 * . i 4 •; P n
-ft '. l 3^n n
STAB
(Btu/lb °F)
- o . n « 7 4 ?
-n . fin 1 *R
-n . n /5/n
O . n i ft 'i H
fl . n ?1 n 7
il . 0 •/ 5 1 3
0 . n •/ y r- H
P.n.,3^4
'•linJiwJ
II . 0 4 5 rt 9
•I . Ii 4 9 7 9
-M . ?h4'J5
- n . ? «, n M 5
-II . ? Jft.lft
- n . ? i* ? u i
-u . ? n 9 n n
-n. iy 5,1 9
- n . 1 m 1 y
- "'. 1 ft 7 x 3
-II. 153^5
- II . 1 ,S 0 v .}
-" .1 ?51?
- fl . 1 J fl f9
- 0 . 1 |i 5 | A
- n . n o y , ft
-o . n ^ s^i
- U . II h 7 n 0
- n . H H 1 •> ft
-H . 07S-J4
-n.o />'/.'«
ii . n i H ., 4
n.nv.i4?
n.n? 7/7
n . n ,>?n?
n .i:.%ft ] 7
(1 . P4 U/»4
U . fl 4 4 /» 5
II . T 4 * .1 9
-1.?ft4«y9
- n . ? 5 o •> n
- ii . ? .} ft * n
-H.??9-<7
-fl ,?ii9n5
-n . i 9si 5
-II .1 H1 ^3
- n . 1 ft 7 » n
CTAB
(Btu/lb °F)
M * ^ ^) X r) t
11 • ^ O / / 1
n . 5B709
H.ft091?
I) . 4 4 7 0 M
U.4379V
n. 4 3 H H?
H . 42449
...4?(l??
(.' . 4 1 4 ? 1
•I . 4 1 ? 1) d
P . 4 1. II 4 U
M . 4 5 ? H ft
n. 45352
)'. 45404
'1.45439
n . 45974
'1.46364
n .46*35
n.47272
M.477H4
(1.4 n j> 2 1
M. 49515
i'.5?ll H2
M.53114
M. 541 H9
u . *» 5 1 1 .i
n .>>65H^>
n.k«H279
H. ft 045 i
H . ft3?99
n. 4511ft
n . 441 II 9
n. 4 3 35 M
|) g 4 £ / ' *
ii >l O "\ A 1
U.4199U
11.41711
U.414H7
11.45227
n.45175
H . 45^.^9
n.45594
H.459B7
U. 4 ft 38 9
H.467H9
II . 4 7?ft9
520. 0 psia
540. 0 psia
560. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
384
-------
VTAB
(ft3/lb)
n . u 1 9 n R
n . n 1 9 h ?
n . 070?4
n . nvnwis
n.n2i 29
n.021ft4
o . n 2 2 u .5
n.n?246
n . n /» 2 y 5
n. 07.157
o . n ? 4 2 n
0 .14459
n . 1 •; n 5 n
n . i r> ft u u
H.1 M 1 7
n . 1 ftMi9
H.1 /n ?v
0.1 /5.M
n . 1 79ftB
n. in ft] 4
0.01*42
n . o 1 ft 7 2
n.ni7"4
P.017.SR
n.ul 775
0.01M5
0 . (I 1 RhQ
0.0 19 1,7
n . TM 9 M
n . ii •> n •» ^
o . ii / n *. 4
n .n?i 2ft
0 . n v 1 M
P. U^ 2 no
n. 0^242
0. ii 7?*M
n . ii ? 34 ft
n. 02412
0 . n > 4 v 3
0 . 1 4 n M 4
n.1 46S7
n.i 51 vn
». 1^697
n . i fti *9
n . iftft25
n.1 7nft3
n.niftis
n.oift42
HTAB
(Btu/lb)
- 5 II. 6 5. J nil
- .1 M . 7 7 V n i)
-2ft.489fifi
- 1 .* . 7 4 ? n n
- H . 4 9 7 .1 n
- >.1567n
> . 2 8 7 ft n
/.h5ri7n
i ^ . sft'/n n
m. 4 ftft n n
/ 5 . ft n ft n n
1 1 n. 4 2 u nn
1 1 *> . M 3 u n u
1 10. 5. inn n
i ? < . v .1 n n n
1 9 1.2 7 nnn
I <<3.55nn n
i .«* . HO no n
j 4 i . u i o n n
- 1 1 > . 6 S u n n
-1 7 i.b.tiiPii
-1 14. 13.1 Pit
- 1 0 1 . 4 1 n n ii
-94.o6.)00
-•».«. y 7 .5 ft "
-7 «. 21 n n«i
-ftv.] 7 in ii
-t>,«.64f>n-.
- In . 7H»n n
- 9 * . S 0 1 (i i-
-1 ». 7 7 ii On
- ".^ .1 4 1 1I
- ,\ m ? 0 M 4 II
•'.2? ^7 n
/.77ftl"
1 i.4ftftnii
1 y . A .1 v n u
?•> . 4 2'j n n
1 1 . b 4 9 0 '1
11 1. 42 n n ii
1 1 H . U 6 U P II
1 2 1> . "j9nnn
1 7 7 . II 7 it ft II
1.11 .39 n on
1 is . / n ii o M
i .i9.97i»nn
-l.iv. M non
-12.^.50 H On
STAB
(Btu/lb °F)
-0.15.13.1
- n . i .1 9 .1 1
-0.125V 2
-o.ni ni
-0.1(|5?H
- n . o 9 9 s o
-U.093ft7
-0.08777
-n.nai7h
-II. 075^7
- n . n o 9 .1 7
0.01671
n.n 21 06
0 . 02*>H3
0 . 0 .3 M1 7
I1.P344I1
O.H.JHK5
U.n4?ftl
n . n 4 6 ft o
-0.2ft5u3
-II .?bn^4
-0.2.16W5
- n . 2 2 3 ii 2
- n . ? u y 1 1
- 0 . 1 V 5 2 1
- n . i H 1 .< H
-0.lh7.t7
-O.lb.141
- n . i j 9 4 n
-n. 12^. 12
-11.111 13
-n . 10540
-0.099f>4
- 0 . fl «y .1 M 3
- " . 0 f « 7 1> 5
-O.OHlvfl
-0.07^^0
- H . 0 f > 9 f, A
-O.nft3l2
n.ni9?n
n . n 2 .1 H 3
H . 0 2 H v 9
H . 0 •> 7 ft 1
0 . II Jh«3
0 .04006
n.n 45 iii
-U. 26507
CTAB
(Btu/lb °F)
n.47772
n.48737
u.49444
(i » v r n u H
ll ^i ? Q 1 \
II. 5 3 9. 10
II.54VRU
H.56.572
0.*>812l
M. ft OH 7 n
n.h2H.lH
ii . 4r>97ii
11.45479
II.4445M
II . 43o 7o
n.43092
H . 4 2ft 31
".42272
I'. 41981
(i .45165
n. 45.161
n . 452.49
11.45497
H . 4l>rt3v
n . 4ft S4tf
II . 4 ft H 2 -t
...47V7«
n . 4 7hO il
H .
-------
VTAB HTAB
(ft3/lb) (Btu/lb)
STAB CTAB
(Btu/lb °F) (Btu/lb °F)
,01906 -«
0.01672
0.01704
0.01738
n.m 775
0.01815
n
n
n.
n.02021
n.n<»nv2
n.02124
0.112158
n.n?iv6
n.02?t<6
0 . 0 2 3 4 0
n.024U4
n. i .*i 4 3
,14749
, 1 4 3 U .1
,14819
, 1 •? 3 n 5
(i
0
n
n
n
n.1*210
•114.09 un n
•1H 4. JHilOil
- o t. j 3 7 n n
- * ? . 1 1 n fin
-1.t.79nftn
- M . 5 71 4 li
t . 1 *S 4 1 U
7.69M70
. ^ . 2 0 | 0 n
11 .6115011
11 1. f< 4 ill) it
11 f» . 4 H U P II
1 ? 1 . 1 5 M (i U
I 2-.. 7 tin On
i '4 •<. it g n n M
- 11 . ? II 9 1 6
•0.18136
• U . 1 6 7 4 4
-n. 1.^949
•0.09978
• 0 . 0 V 3 u 8
•0 .IIH81 2
•O.OH218
• 0 . (i ; 61 3
-n,
- 'i. n tt .4 4 ^
0.0 1 6W2
0.02174
n. n 2 6.4 4
n. n .1 n 7 H
n. n 4. 141
n.45351
".45424
n.45817
n.46342
n.47241
n.47732
M.4820V
11.49459
M.50829
H.S2776
u.53778
0.54724
H.S7487
n.59.131
U.ftId9ft
n.49554
H.47467
i'.46(132
".44V96
n.4421V
H.43MH
".43142
600. 0 psia
Figure 9 . CP-34 Superheated Fluid Properties II (Cont'd)
386
-------
Line
No.
n o ii i o
00020
00030
00040
0005(1
00060
00070
00080
oonvo
00100
00110
Oil 120
001.50
00140
00150
00160
00170
00180
OU190
00200
0 0 ? 1 0
00220
ii o 2 6 n
00240
00250
00260
no? /o
oo2bo
00290
0 0 3 1) 0
OU310
00370
U0330
0 0 3 4 n
00350
003hO
00370
00380
00390
00400
OU410
00420
00430
011440
00450
(1U460
P
(psia)
1. 04*7. 4 3
101 1.75
978.9M
946. 8R
915.66
RM5.23
855. 5h
826.69
798.55
771.15
744.47
718.60
693.23
66H.65
644.73
621 .AH
598.87
576.9(1
555.55
534. Rl
514.67
495.12
4/6.14
4W.73
439.R7
4??. 55
405.76
3H9.49
373.7?
35fl.4r>
34.-J.67
329.369
315. b?u
3 1' 2 . 1 4 3
289.201
776.694
264.611
252.94?
241 .677
230. PO/
220.321
210.211
2U0.467
191.0811
1B2.040
1 73.339
T
(°F)
550.H
546. n
542.0
538.0
534.0
5.10.0
^26.0
522.0
S18.0
514. n
510.0
5 II 6.0
5 1. 2 . n
4v«. n
4W4.0
490. 0
4 h 6 . n
4 8 2 . 0
471.0
474.0
470.0
466. n
4h2.0
45*. 0
454.0
440 .0
446.0
442.0
4o*.0
434.0
4^0.0
426.0
4 •/ 7 . 0
4 1 H . n
414.0
410.0
41)6.0
4112.0
•*9fl.O
394. fl
39M.O
1 {< 6 . 0
3 H 2 . 0
^;H.O
3 7 4 . 0
3 7 0 . 0
VLIQ
(ft3/lb)
.02176
.02163
.02151
.021411
.02129
.U2118
. 0 2 1 0 7
.02U97
.02HR6
.II2U76
. U 2 It 6 7
.02U57
.02)1 4 K
. il 2 039
.U2U3D
.02u21
. 0 2 U 1 3
. U 2 u 0 4
.01V96
.01VRH
. 0 1 9 8 0
.111973
. 0 1 y h t>
.0195H
.M195U
.01943
.111936
.01929
.UH23
.H19]6
.01909
.U1903
.01H97
.111 t)90
.01 o84
,ni«7»
.01H72
.Ii1 *f>7
.U1061
.01M55
,01tJ50
.01rt44
,0ln39
.1)1 d34
.OIH29
."1«23
WAP HLIQ HVAP
(ft3/lb) (Btu/lb) (Btu/lb)
0.424 )2
.44 ii IK
.45661?
.4737X
.49155
.51004
.52926
.l>492'»
.57-106
.59173
,rtl4?9
.63779
.66228
.*R;H?
.71445
.74224
./7124
.M015?
.M3315
.86621
.•J On 7 6
.93nR9
.97469
1 .01 425
1.0S567
1 .OQ9u5
1 .1445?
1 .19217
1.2421^
1 .29460
1.34905
1.41)75
1.4<>R2
1 .5320
1 .5991
1.6f>97
1 .7441
1.8223
1 .9114 R
1 .991 7
2.0^3 <
2.1P01
2.2M21
2.3900
2.5H39
2.6244
549.5
544.4
539.3
534.2
529.2
524.3
519.3
514.4
509.6
504.7
499.9
495.1
4W0.3
4rt5.6
4 rt 0 . 8
476.1
471 .5
4ftft.8
462.2
457.5
45?.9
44H.4
443.8
•439.3
4.14.7
4 J 0 . ?
425.7
421.3
416.8
412.4
4 II 7 . 9
403.5
399.1
394.7
390.3
3R6.0
3«1 .6
377.3
372.9
368.6
364.3
360.0
355.7
351 .4
347.2
342.9
1191.2
1192.5
1193.7
1194.8
119*>.9
1196.9
1197.8
119H.6
1199.4
1200.2
1200.8
1201.4
1202.11
1202. *»
1202. V
1203.3
1203.7
1204.0
1204.2
1204.4
1204.6
1204.7
1204. fl
1 2 0 4 . 8
1204. M
1204.7
1204.6
1204.5
1204.3
1204.1
1203.9
1 2 II 3 . 6
1203.3
1202.9
1.202.6
1202.1
1201 .7
1201 .2
12QU.7
1200.2
1199.6
1199.0
1190.4
1197.7
1197.0
1196.*
Figure 10 . Water Saturated Fluid Properties -- Pressure, Tem-
perature. Specific Volume Liquid. Specific Volume
Vapor, Enthalpy Liquid, and Enthalpy Vapor*
*This file is not used when CP-34 is the working fluid.
387
-------
Line
No.
00470
0 II 4 H 0
01)490
o u5nn
01151 Ii
0 115^0
0 0 5 j 0
OH540
1) 1) 5 h n
Oli5M)
OU57U
OU5bO
00590
OU600
01)61 u
0 u 6 / 0
11 U 6 J 0
011640
fl065n
OOAftf
00670
tl U A b n
OH6YO
0 ( > 7 u 0
On MO
ou'2fl
0 U 7 .1 n
0"! 740
n M 7 in
(111760
ii n 7 7 n
0 n 7 M 0
on 7no
0 U 8 u II
0 U H 1 0
00820
0 0 * J "
OOH4U
01)850
00860
008/0
lll)8Hfi
0 I) R 9 II
OU9l|0
0091 0
00920
U 0 9 3 0
00 940
P
(psia)
1 A4.96P
1^6.917
1 49.1 79
141.744
1 .) 4. 6 II 4
177.751
121 .177
1 14. R7 1
1 n 8 . 8 3 ?
11-3.045
9/.*j06
9? . <*P5
M7. M7
MV.793
7/.r>67
7 1.751
6 9 . d 3 8
6S.K?1
M .194
57.55U
54.1183
5 ii . 7H6
4 / . t> 5 3
44.67M
41 .M56
39. 1 79
^(S.^44
34.74J
<1 .972
? 9 . p. 7 5
77.797
75.M83
7 4 . h 7 9
77.379
PH.779
1 M . 9 1 ?
1 /. 186
1 '> . 5 9 ?
14. 1?3
12.770
1 1 .526
1 H.385
0.340
R.3H4
7.511
A. 7159
5.99?6
5.3361
T
366 . 0
367.0
358.0
354.0
350.0
346.0
342.0
3 ,) H . 0
1^4.0
^30.0
3 2 6 . n
32?. 0
318.0
31 4. n
3 1 U . 0
3 II * . 0
3 II ? . 0
?9H . P
794.0
? 9 I.I . 0
7h6 . 0
7H? . H
?78.0
774.0
? 7 11 . 0
766.0
767.0
75«.0
754.0
750.0
746.0
742.0
738.0
734.0
730.0
??5 . n
720.0
715.0
710.0
? II 5 . 11
7 II 0.0
1<>5.0
1 9 0 . 0
1 n 5 . n
1 H I) . 0
175.0
170.0
165.0
VLIQ
(ft3/lb)
.01 H1 H
. f ' 1 « 1 3
.111 10 9
. HI HO 4
.ill 799
.Ml 794
.Ml/90
.11! 7 H5
.01/81
.111 776
.01 772
,M1 76M
.U1764
.ii 1759
.01 755
.01 /SI
.1-1 747
.01 743
.111 /39
."1 736
.(•1732
.('172H
.n1 7246
. Ul /210
.(11/175
.1)17141)
. (i 1 7 1 II 6
.01/07?
. U 1 7 0 3 9
. 0 1 7 0 II 6
.011974
.(Jlo94?
. Uln91 U
. H16BHU
.Iilh849
.1116812
.U16775
.016740
.016705
.016670
. H 1 o 6 3 7
.111 6604
.01 '.5 72
.0.16541
.1)16510
.dl64tfO
.016451
.H 16423
WAP HLIQ HVAP
(ft3/lb) (Btu/lb) (Btu/lb)
2.7519
2.8868
3.0298
3 . 1 h 1 ?
3.341H
3.51??
3.6931
3.8H53
4.0M96
4.3U69
4.5382
4.7H46
5.0471
5.327?
5.626H
5.945?
6.?H64
6.6513
7.0419
7.4603
7.9089
R.3907
8.01(7
9.46?
10.H60
10.703
11.395
17.142
12. "4H
1 3 . H 1 9
14.761
15.78H
16.H84
18.H8?
19.381
21.166
73.14H
25.:S55
27.H16
30.564
33.639
37.086
41). 957
45.313
50.225
55.77
62.06
69.18
338.7
334.4
330.2
32A.O
321.8
317.6
313.4
3 M9. 2
305.0
300.8
?96.6
2V?.5
2H8.3
?84.2
?Hll . 0
275.9
271.8
267.7
263.5
259.4
255.3
251 .2
247.13
243.03
23H.95
234.87
230.79
276.7?
222.65
218.59
214.53
210. 4H
206.42
? 0 ? . 3 H
19H.33
193.78
188.23
183.19
178.15
173.12
168.09
163.06
158.04
153.0?
148.00
142.99
137.97
132.96
1195.6
1194.8
1194. U
1193.2
1192.3
1191.4
1190.5
1189.6
118H.7
1187.7
1186.7
1185.7
1 184.7
1I8J.6
118?. 5
1181.4
1180.3
1179.2
11 78.0
1176. H
1175.6
1174.4
1173.2
1171 .9
117U.6
1169.3
1 16M.O
1166.7
1165.4
1164.0
1162.7
1161 .3
1159.9
115M.5
1157.1
1155.3
1153.4
1151.6
1149.7
1147.9
114/>,0
1144.0
1142.1
1140.2
113H.2
1136.2
1134.?.
1132.2
Figure 10 . Water Saturated Fluid Properties (Cont'd)
388
-------
Line
No.
ou95n
OU960
00970
00980
00990
010UO
01010
01020
01030
01040
010-30
01060
01070
01000
01090
011UO
OHIO
01120
01130
01140
01150
P
(psia)
4.7414
4.2f)3369
.U16343
.1)16317
.1)16293
.1116270
.1116247
.016225
.016204
.U16184
.U16165
.016147
.016130
.1)16114
.1116099
.016085
.016(172
.016060
.016050
.1)16041
.1)16033
WAP HLJQ HVAP
(ft3/lb) (Btu/lb) (Btu/lb)
77.29
8ft. r>2
97.07
109.14
123.0
138.94
157.33
1 78.60
203.26
231.94
265.39
304.50
350.4
4 1) 4 . 4
468.1
543.6
633.3
740.3
H68.4
1022.1
1207.6
l?7.9f«
122.95
117. 9h
112.95
107.95
102.95
97.96
92.96
87.97
82.97
77.98
72.99
67.999
63.008
5B.U18
53.027
48.037
43.045
38.052
33.057
28.060
11311.2
112H.2
1126.1
1124.0
1122.0
1119.9
1117.8
1115.7
1113.6
1111.5
1109.3
1107.2
1105.1
1102.9
110U.8
1D98.6
1096.4
1094.3
1092.1
1089.9
1087.7
Figure 10. Water Saturated Fluid Properties (Cont'd)
389
-------
Line
No.
(i u o i n i ii.
Dun?" 9n.
ouujn ?«n.
nuiMn 650.
n n n 5 n ? n n .
Ouuon 4iifl.
ouu/n 6 n n.
mi n H n Run.
!•>. 7|i. 25. JO. .15. 40. 50. 6U. 70. 80.
inn. 1)0. l?l). 140. )6U. 180. ?00. ?20. 240. 261).
Jim. .120. .14U. .160. 400. 440. 4AO. 520. SAO. 600.
/(ID. 750. Mflli. «->0. 40n. 950. lOlin. .0 .0 .0
?2I1. 240. ?60. ?rtO. 3nu. 320. 340. 360. 380.
4?n. 440. 460. 4*0. 5*10. 5?0. 540. 560. 560.
*?0. 640. 660. 6*0. 7)10. 720. 740. 760. 780.
8?o. B4n. .n .0 .n .0 .0 .0 «o _
PTAB,
(psia)
TTAB(op)
Figure 11. Water Superheated Fluid Properties — Pressure
and Temperature*
L.ne
No.
VTAB
.-/
ft7.h
nil a ^i .*
hh . ^4
b >.44
4.S. 77
41 .,•>?
1 1 ft V . *>
1 4 S - . .> ? . 11 ft 7
' 4 .1 » . 4 ? . | .) 1 1
1 1
1 .1 (M . H 't.') o 8 7
1 .> 7 -i . 1 .J. •' •> 1 h
i .«"> . . V "> . "I J 4 6
i M• .b ?.'ltft<,
!/">/.> 1 .'
1 / S . 4 1 . 9.»* 7
1 - 4 • . ft i . 9 1 7 v1
l.-7,.K 1 . M V4 V
1 :MI i. i i . H /11)
1 ] H.I . .) 1 .H<4ftS
I.
7ft,
71,
ft1',
ftf>,
64,
ftl ,
54,
5?,
47,
44,
4?,
41),
,17
,/H
,39
,00
,ft1
,2?
,44
, H 4
,ft4
4]
IIP
144.V
14?.V
1 4 II V
1 .1H 4 ,
1 ,>ft 4 ,
1 * 4 -),
1 19 .>. 7
1 174.n
1 IS<«. n
7.1H«9
7 . n 7 ft ^
7 . 'I ft 0 .^
7.'VSft
7. 0n74
1 .
1 .
1.9491
1
1
1
1
1 . fl j .1'
1 .Hn7i
10.0 psia
Figure 12. Water Superheated Fluid Properties -- Specific Volume,
Enthalpy, and Entropy* (continued on following pages)
*This file is not used when running with CP-34, as the working fluid.
390
-------
Line
No.
VTAB HTAB STAB VTAB
(fta/lb) (Btu/lb) (Btu/lb°F)
HTAB STAB
(Btu/lb) (Btu/lb °F)
OU170
nuiun
00190
nu2on
00210
ou2?n
00240
00240
00250
OH260
On??o
0"280
OU290
nti3nn
on3io
Oil 320
00330
OU340
00350
OM360
0 M 3 7 0
003bn
0 li 3 9 0
o n 4 u n
OU410
0 M420
0 U 4 3 0
0 114 40
00440
0 u 4 6 n
OU4/0
OU4MO
0 o 4 w n
00500
0 U510
00520
OU5.»0
OU540
Ou540
00560
00570
OU580
011590
0 1) A U 0
0 u * I P
00620
OU630
00640
38. M
51.557
49.964
48.37H
46.775
45.18(1
4.3.584
41 .98h
411.387
3ft. 786
37.18?
35.575
33.963
32..<44
30.717
2V.U78
27.421
.01664
3H.654
37.458
36.?61
35.064
33.H65
32.666
31 .466
3H.264
29.U6II
?7.H53
26.64.1
24.42H
74.206
?2.976
?1.732
? n. 471
. li 1 6ft 4
3 II . 9 0 2
29.954
2f. 996
28.036
27.077
26.116
25.15.S
24. 190
?3.224
22.256
21 .284
20.307
19.323
1l4o.6
145 *.\
1 4 .H . ?
1 4 1 .1 . 3
1 3 9 3 . ft
1 3 7 4 . (I
1 054.6
1.134.?
1 31 h . II
1296.9
1?77. H
1^5^.H
1 V 3 '/ . 4
1 ?? 1 .11
n1 n / . o
1 ] H .1 . II
1 1 6 .1 . 9
1 68.09
1 45^.9
1 4 3 ' . 9
141 J.I
139.1.4
1 J 7 < . K
1^54.3
1 3 1 4 . y
1 si 1 -j . 6
1 ?9/,.4
1 2 7 / . .1
1^5-, ..J
12^.2
1??-i.1
1201 .11
1181.7
1 1 *>>.?
H.H.11
145^. H
14 ^.7
141 ^.9
1,^9.^.1
1 3 7 S . •>
1 ,»54.ll
1334.6
1 J 1 •• . 3
129n .n
1 27^.8
125/.7
12.jH.-i
1 2 1 v . 3
1 .7928
2.0719
?.0^>63
9.0403
?.0^38
? . 0 U 7 0
1 .9H96
1 .9717
1 .9^32
1 .9.J4I)
1 .9142
1 .8935
1 . 8 / 2 U
1 .8494
1 .8^58
1 . 8 II 0 7
1 .7/41
.2040
P.0401
7.0Z44
? . 0 U h 4
. M v ? (I
.0/^1
.9-777
.9jU/
.9^-12
.9u2il
. 8 fl 2 1
.6'11 3
1 .8 >97
1 .8l7i|
1.7^30
1 . 7 o 7 h
1 . 7 'Ml 6
.2940
?.ni54
1 .9-V97
1 .9^37
1 .9f>7i?
1 .900J
1 .9.>2y
1.9149
1 .8V63
1.8/71.
1.8-i7]
1 .8.1*2
1 .8145
1 .7916
.n
5 U. 76H
49.167
47.573
4-3.978
44.382
42.784
41 .187
39. 487
37.984
30.37V
34.770
33.155
31 .43?
2 9 . 8 9 v
28.252
26.584
.n
38.056
36.854
35.662
34.46^
33.266
32.H66
3II.H64
2V. 662
2M.4S7
2/.24'>
2 0 . U 3 6
24.M1 H
23.59?
?2.356
21 .104
. ll 1 ft 7 n
.U
30.433
29.47'>
28.4lh
27.457
26.59h
25.635
24.672
23.707
22.74H
21.770
20.796
19.U16
18.H28
.0
1443.1
1423.*
1403.4
13H3.8
1364.3
1344.9
1325.6
1306.4
12H7.3
126H..>
124V.4
1231). 4
1711.5
1192.4
1173.5
1154.2
.0
1442.9
1 4 2 .1 . H
1403.?
13H3.5
1364.li
lJ44.h
1325.?
1306.11
128h.<>
1267.H
124*. 7
1229.7
12HI.O
119] .4
117^.1.
188.24
.(I
1442.7
1422. «
1 4 0 3 . n
138.^.3
13A3.7
1344.3
1324.9
1305.6
12H6.4
1267.3
124H.1
122H.9
1209.6
.11
2.0641
2.0483
2.0321
2.0155
1 .9983
1.9807
1.9625
1.9437
1 .9242
1 .9041)
1 .8829
1 .8609
1 .H37B
1.8134
1.7876
1.7601
.H
2.H323
P.0165
9.0003
1 .9836
1.9664
1 .9488
1.9305
1.911 7
1 .8921
1.8718
1 .8406
1 .8284
1 .8052
1. .7«05
1 .7543
..1241
.H
2.0(176
1 .991b
1 .9755
1.9488
1 .9417
1.9?40
1 .9057
1 ,8«68
1 .8*72
1 .8468
1 .8255
1.8032
1 .7796
10. 0 psia
15. 0 psia
20. 0 psia
25. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
391
-------
Line
No.
VTAB
(fta/lb)
HTAB STAB VTAB HTAB STAB
(Btu/lb) (Btu/lb °F) (ftVlb) (Btu/lb) (Btu/lb °F)
n o 6 b n
HIJ660
n n 6 / o
OU6HO
no*yn
n n 7 n n
Ob7io
fli'720
n u 7 .HI
nil 7 4n
ri it 7 •> n
OH 7*0
II II / / 0
o n 7 n o
o i) 7 9 o
OOHuO
n n R i n
on « 20
n nM.in
» i« « 4 n
o n R v it
oiiflftn
oiiM/o
n n n MII
onH9n
0 n on "
0"9i n
n u o 2 n
0
On 1)40
0"9*»n
Oi«9ftO
mi v /n
0 liyMO
on 090
ni n n o
omm
ni 020
ni n in
n i n 4 n
n i n b o
ni o/>o
010 /n
« i 'i . . r.
0 i n w n
0 11 n o
0 11 l n
on?"
IH.3^11
1 7. .124
.M1693
.Olt>64
'5. /S]
P4.WS2
?4. 152
2 i. 152
2?.5M
21 . 749
2H.945
?0. [40
IV. )31
1r.->24
17.710
1".«o?
1 *.H67
1^.232
1 1 . .1 R 4
."1693
. n In 6 4
"2.064
'1 ..17V
>".t»92
? n . 0 0 ft
1 y . .11 n
1h.ft29
1 7.*™
1 7. 248
1 ft.b54
IS.rtSM
1S.]«)H
1 4.4b.<
1 .<.741
1 .< . M 1 «;
1 P.7R4
.n]/>9.<
.111664
1^.299
1R.699
1H.U9M
1 7.496
16.H9.5
l< .290
l^.ftfl^
1*>.ti7y
14.470
1 .'^.ttSy
1 ? 0 n . n
1 1 flu. 4
?OR.4»>
1*8. li»
1 4 5 '/ . '»
1 4 .} V . b
1 41 /-.6
1 JS 9 -> . V
137.5.^
1 J^J. 7
1 ,S .^ 4 . ?
1 J 1 4 . «
1?9*i. *.
! V 7 ^ . .<
r^/.i
1 ? 3 / . »
1 ?1'».4
1 i g •« . y
1 1 7 w . 1
?n rt . 4ft
1 (S H . 1 .}
1 4I>^.4
14^^.^
1 4 1 ,> . 4
1.^9^. ^
1 3 7 .^ . H
1 J«> S.4
1 .S M . T
1 ^ 1 4 . •>
1 x y •> . •>
1 ^ 7 •> . H
1 V S r . T
1 V M . \
1 /I / .r-
1 10/.H
11 77. /
"> I) « . 4 /
1 ft * . 1 4
1 4 f , > . S
1 4 i/.l
1 «1 /.^
1 .^?.0
H 7 /- . 7
1 >) *» S . I
KM.I.ft
1 v» 1 4 . 1
1^94. /
i ; ;•>. *
1 .7674
1 .711 /
..S5.i3
.2940
1 .9W5?
1 .V/O1?
1 .9Mb
1 .947U
1 ,9.in u
l.9l?ft
1 .flv4ft
' ,H/ftU
1 . H •> ft 7
1 .ft 36>>
1 .Mlb7
1 ,7vJ7
i .7707
1 .7162
1 . 72UI
..»•> 13
.i'940
1 .97H1
1 ,9(,?4
1 . 0 4 6 J
1 .929H
1 .iil?W
l . H v«>a
1 .H/ 7-1
i .H>,87
1 .fl.»9o
1 .«192
1 . 7vR2
1.7/61
1 ,7->2«
1 .7281
1 .7 ill 7
..^.\3
.2940
1 .9f>32
i .
1 .Hf>24
1 .H4l/
1 .8^4^
1 ,8u4J
17.R29
1 6.R14
.' II 1 6 7 H
.U
?b.35l
24. b^^
23.752
22.V51
22.10'.
21.347
2 U . •> 4 .<
19.737
lh.iJ2y
1^.1 1 M
1 / . A n v
16.481
lb.651
14. HI (1
13.9S4
.H1ft77
.0
21 .722
21 .H3ft
2H..H9
iy.662
1R.974
lH.2Pb
1 7.b94
1 6 . «> 0 2
16.207
1 ', . b n w
1 4.806
14.H9H
13.JR2
12.654
1 1 .909
.01*77
.0
lrt.999
1H..<9M
17.797
17.!9b
16.b92
lb.9RH
lb..iR2
14.77b
14.l6b
13.b5»?
1 1911.2
1 1 7 II . b
lriH.25
.n
1442.5
1422.6
1402.7
1 .^83.0
1.16.5.4
l.<44.0
1.S24.6
1 3 il b . 2
1 2 H f , . |,
126ft. 7
124/.b
122^.j
1 2 U H . 7
1 IMV.H
11 6';. 0
1 HH.2ft
.(•
1442.3
1422.4
. 1 4 0 2 . •>
13R2.H
l.lft 1.2
1343. ft
1324.2
1 3 M 4 . M
12flb.«7
126h.2
124ft. M
1227.4
1 2 II 7 . 7
11H7.M
1167.5
1«».?7
.11
1442.1
1422.1
1 4 11 V . 3
1382. b
1.162.9
134.S.3
1.123.V
1 3 0 4 . 4
12d'>.|i
126*>,6
1.7547
1 .72fll
.1241
.U
1.9M74
1 .9715
1.9553
1 .93R6
1 .9214
1 .9037
1 .HM53
1 .8664
1 .R467
1 .8262
1 . H U 4 H
1 .7H23
1 ,7bRft
1 . 7.134
1 . 7 H64
..124(1
.H
1.9703
1 .9544
1 .9.181
1.9214
1 ,9n42
1 .RM65
1 .6ftRl
1 .H491
1.8294
1 .8088
1.7M73
1 .7ft46
1 .7407
1 .7152
1 .6H77
.3240
.0
1 .9554
1 .9396
1.9233
1 .9065
1 .8893
1 .8715
1 .8531
1 .«341
1.R1.43
1.7936
25. 0 psia
30. 0 psia
35. 0 psia
40. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
392
-------
Line VTAB HTAB STAB VTAB
No. (fta/lb) (Btu/lb) (Btu/lb °F)
HTAB STAB
(Btu/lb) (Btu/lb°F)
01130
01140
01150
01160
01170
01 180
01190
01200
01210
0122n
012 Ji»
01240
01250
0 1 2 & it
01270
01280
01290
01300
01310
01320
01330
01340
01350
01.160
01370
01380
01390
01400
0141 0
01420
0 1 4 3 n
01440
01450
01 46fl
01470
01480
01490
01500
01510
01520
01530
01540
0155"
01560
01570
015bO
01590
0 1 6 0 li
13.244
12.ft24
1 1 .096
1 1 . l*y
1 II. /HM
. n1 ft 9,1
. t.> 1 6 6 4
15.42H
1 4.V4 7
1 4.4ft".
13.y8/>
1 .5 . 4 0 o
1 .i . il 1 5
1 '/ . *>2y
1 2 . i. 4 1
1 1 .55?
i 1 . lift (l
1 l! .5ft 4
1 n . lift'/'
9.553
0 . 0 .1 4
.n1 77ft
.nioO?
. 1(1 oft 1
1 2 . K 4 H
17.446
1 2 . Ii 4 ,1
1 1 .640
1 1 .Alft
1 II . H J 1
1 U.425
1 .1. ..1 7
9 .6 lift
0.193
8.7/6
8 . 3 •> 4
7 . 9 V 4
7 . 4 n 3
.01.776
. -H602
,i'l6ft3
11.005
1 l. .059
1 n . .11 3
9.9ft7
9.620
0.271
« .OP?
125-j.o
12!o .4
121 •• . 7
1 1 0-,. 7
1 17' .4
7 li H . 4 >t
168.15
1 4 5 1 . M
1451.7
1 41 i .n
1391.9
1 .> 7 .' . 7
135'.5
1 3 3 x . v
1 .M ^4
1 29.1.9
1771.3
125 -I. 7
1 2 5-« .y
121-1.9
1 1 y •* . 5
749.1 /
7 II 8 . 5 fi
1 o8.1 /
•"45 .4
1 4 * . ;<
1 1 1 .3
139 .4
137 .6
105 .9
1 .) 3 / . 1
1 .1 1 ' . ft
1 ^9o. il
1*7^.3
125 <.5
1 2 *>,5
121 ).1
1192.2
749.19
•> V M . «5 7
1.08.711
1 451. n
1 4 3 -i . y
141-1.9
139'i.9
1371 .1
1 6 5 l . 3
1331.6
1
1
1
1
1
.
.
1
1
1
1
1
1
1
1
1
1
l
1
1
1
.
.
.
1
1
i
1
1
1
1
1
1
1
1
1
1
1
•
.
.
1
1
1
1
1
1
1
.7*1.111
. 7 6 II H
. 7.17..1
.7123
. 6 >j 5 5
•>5jJ
/9in
.9 i«4
.^227
. 9||ftO
. H o n i
. 8 / •*!
.8055
. * A 7 4
. Hi 80
. 7 vO|l
.7/87
. 7 •> 7 .1
. 7.14V
.711 n
.6*S5
40VH
.'5 i3
O Q A ||
Q i U i
. 9 u ? 4
. H n ft \
.8097
.*->?6
. ••< 1 5 u
. « 1 ftn
. /*7y
. 7/n ^
. 7 •> 7 H
. 7.) ft?
. /i!4
.6*92
. 6 ft 3 1
4H9fl
3 5 .> .1
^9j9
. Oiiny
. H rt K ?
.Ho9n
.8-)?4
. 8 > 5 >1
.Hi7ft
. 790j
17.934
1 ? . .) 1 1
11.679
1 1 . II .1 0
. il 1 7 0 W
,iil677
. il
1 5 . 1 8H
14.7(lo
14.2?4
1 U/41
1.S.257
12.777
IX .285
1 I .797
11.300
1 H . H 1 7
1 ii . J 1 4
9. 8 1| 9
9.295
8. /69
. n 1 7 0 9
.HI 677
. n
17.047
1 7 . ? 4 ',
1 1 . M i>
1 1 . 4 3 <;
1 1 . II 3 1
1 '1 . ft2M
1 n.221
Q . 8] 2
o . 4 u n
8 . 9 h l>
8.566
8.140
7.705
7.257
. II 1 7 0 0
.1)1677
. U
1 -I . H32
1 U . 4 8 6
1 " .1 4 II
9.793
9.446
9.097
8.746
1246.2
1226.6
1206. H
1 18
-------
Line
No.
01610
016?0
01630
01640
01650
111660
01670
01680
01690
D17UO
01710
01720
01730
01 740
01 750
01760
01770
01 7MO
01 790
01800
01810
018?0
01830
01840
oi8r>n
111 H6H
018/n
01880
111890
n 19 no
01910
0 192"
n 1 9 3 n
n 194 li
I1 1 9 •> 0
01 960
II I 9 7 0
019*0
01990
0 2 U II 0
0201 n
02020
0 2 0 .1 0
02040
02050
02060
H V || 7 n
0 2 i) M 0
VTAB
(ft3/lb)
8.
R.
7.
7.
7.
6.
6.
.0
.11
.11
9.
9.
9.
R .
«.
R.
7.
7 .
7.
6.
6.
6.
5.
5.
.U
.U
. H
8.
P.
P.
7.
7.
/.
6.
6.
6.
ft.
5.
5 .
5.
.H
• Ii
. II
.11
7.
7.
7.
ft .
570
217
860
5011
133
759
374
1 7?6
1692
166.)
62?
319
016
71?
407
10]
794
4«*>
174
86(1
54?
?1H
8H5
541
1 7?6
1 69?
1660
547
2/7
Ol.i7
7 Oft
464
19?
917
64?
3ft T
0«?
797
5d 5
?ll5
1/^6
1 7?6
1692
1663
6M7
443
? on
955
HTAB
STAB
VTAB
HTAB
STAB
(Btu/lb) (Btu/lb °F) (ft3/lb) (Btu/lb) (Btu/lb T)
101 1
129V
127V
1 ? 5 '.'
12V
121 1
1 1 8^
?49.
7U8.
1 68.
1 45 u
1 4 3 u
141..
1 09 n
1 37i«
1 o5u
133n
131 1
1 291
1271
1 ?5 1
123"
120^
1 Ifl/
749.
7 II 8.
1 f.8.
145"
143"
14l.i
i 3 9 u
1 .< 7 n
1 0 5 11
1 33"
1 31 1>
129..
i 27 n
l ?4w
12?'*
1207
?90 .
749.
7 li 8.
168.
1 44.•
. 1
• ' '
."
.1)
. 1
. S
. 0
. 1
./
.«
. V
. f
4"
?i
5<«
?ft
.9
. /
. *"*
. >j
,
1
1
1
1
1
1
•
•
.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
•
•
•
1
1
1
1
1
1
1
1
•
•
.
•
T
\
1
.7004
.7006
.7099
.718?
.6V51
.6/04
.6437
afl98
1 5 j 3
) rt * Q
f *i "^ O |l
. 8 / f ' 2
. 8 •> 4 ll
.80/4
. 8 / ii ?
.RU?l>
. 7 n 4 ?
.7651
.7452
.7244
. 7u?4
.6/0(1
.ft^3U
. 6 2 6 6
40-yH
*533
?939
.ri/?H
. 8 •> 7 11
. 84 lib
.8241
.8069
. 7^U1
. 7 7 (1 7
. 7*>1 6
.7016
.7106
.6rt83
.6646
.6391
1609
41198
<533
29o9
.8609
.*8289
.8122
8. 594
8.039
7.681
7.317
6.947
6.568
. I) 1 7 4 5
. II 1 7 0 9
. I1 1 6 7 7
.1)
9.471
9.16H
8.864
8.560
8.754
7.948
7.640
7.330
7.01H
6.70?
6..1H1
6.U53
5. 715
.01745
.01709
.111677
.0
8.41?
8.14?
7.8/?
7.600
7.328
7 . n u 5
6.780
6.5H3
6.723
5.940
5.65?
5.356
5.051
.01745
.01709
. 0 1 6 7 7
.11
7.565
7.32?
7.078
6.833
1 3 II ?
1.28?
126?
1242
12?l
1 711 U
?69.
??8.
18M.
. U
1440
14?0
1 4IIU
108(1
136.)
] .< 4 il
1 0?l
1 101
1?61
1240
122(1
11 9«
?69.
??8.
1»8.
.11
144(1
14211
140(1
138(1
136(1
134(1
13?i(
1 3 (I ll
1280
12611
1239
1 ?1 H
1196
269.
??8.
188.
.)'
1439
1419
1099
1379
.n
.7
• O
.?
. 7
. 7
7?
83
35
.6
.4
.4
.'>
.6
.(1
.11
.2
.2
. H
.11
.*
74
85
37
.2
. U
.0
.0
.1
.2
.3
.4
.3
.0
.4
. 3
.4
76
87
39
.M
.6
.5
.5
1 .7706
1 .7504
1.7292
1 .7068
1 .6830
1 .6574
.437?
.3819
. *?4fl
.0
1.8781
1 .86?2
1 .8458
1 .8289
1 .8114
1.7934
1.7747
1 .7553
1 .7349
1 .7136
1 .6909
1 .6667
1 .6405
.4371
.0818
.0?40
.U
1 .8649
1 .8489
1.83?5
1.8156
1 .7981
1.7800
1 .7612
1 .7417
1.7212
1.6996
1.6767
1.6521
1.6?54
.4371
.3818
.3240
.'I
1 .8531
1.8371
1.8?06
1.8Q36
70. 0 psia
r
80. 0 psia
90. 0 psia
100. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
394
-------
Line VTAB HTAB STAB VTAB HTAB STAB
No. (ft3/lb) (Btu/lb) (Btu/lb°F) (ft3/lb) (Btu/lb) (Btu/lb°F)
02090
02 In 0
02110
02120
02130
02140
02150
02160
02170
021HO
0 2 1 v 0
022DO
02210
112220
02230
02240
02?50
112760
02270
022KO
02290
023UO
0231 0
02320
l>2330
02340
0235 0
02 360
ii 2 3 / 0
n^3«0
U2390
H24 00
U2410
02420
0 ? 4 3 0
02440
>»24^n
W 2 4 6 0
024/0
02480
0?49fl
025(10
0251 0
07520
02530
02540
02550
6.
6.
6.
5.
5.
5.
5.
4.
4.
.II
.)'
.n
. II
6.
6.
6.
6.
6.
5.
5.
5.
5.
4.
4.
4.
4.
.0
.U
.0
.H
6.
6.
5.
5.
5.
5.
5.
4.
4.
4 .
4.
4.
3.
.u
.0
.11
.1.1
710
464
716
9ft7
715
460
2 110
93*
6'»1
1/66
1776
160?
lt>63
9H3
7ft1
5^9
316
093
8ftP
64?
414
1H4
9*>0
71?
46A
714
1 7*5
1776
Ift92
1663
3962
192M
9HR7
78411
57P4
371 7
1637
953H
7414
525R
3 U 5 4
II7R6
0474
J 765
1776
1692
1663
1 06'/
1 34'/
1 3?1'
1 3 II -i
1 2Hw
126"
1 ??/
120'.
790.
?49 .
•>li»».
1 ftM.
1 44 /
1 47'J
1 4il"
1 JH '
1 3 6 •-.
1 J 4 -
1 J2 .
i 3 n . .
1 XH-
1 !'6 •
1 i"i /
1 •/•> >
\ 2 n »
•71*11 .
•?49.
?|IM.
1 ftS.
1 A 4 «
1 4,> •
1 4 1
1 .«*"
1 ,}ft >
.•»4>-
Or.
.Mli
2«/
2* /
124 ••
122*
1 7 ill
?9il .
V49 .
"> MM.
1 6K.
.•>
.5
.0
.6
.5
.1
.4
.5
4?
27
61
?V
. *
. •>
. 1
. Il
.9
.4
.9
.M
.6
. 1
. ?
. «
• ^
44
9w
ft ^
3)
. 1
. i*
. *
.'>
. 1
• i)
.?
.<>
• "^
. u
^J
. I
.4
41)
n
ft 5
33
1
1
1
1
1
1
1
1
1
.
•
.
.
1
1
1
1
1
1
1
1
1
1
1
1
1
•
.
•
.
1
1
1
i
1
1
1
1
1
1
1
1
1
.
.
•
•
.7949
.7/71
.7-3P6
.7J94
. 7 1 9 3
. ft vR 1
. 6 / * ft
.ft 'ilf>
.6^55
4 6.* 9
lliyH
^5,S?
^'M9
. H-70^
. •< .» 4 4
. H 1 P 1
.8u1 4
.7ri41
. 7 ft 6 2
.7-476
. 7 / P .)
. 7 u H ]
,6rtft /
. 6 o 4 u
. 6 3Oft
.613]
46 >0
in-/ 7
^0?
/ •) 19
.fMM
.^;-?4ft
.Mi) 83
. 7 9 1 '>
.7741
. 7i62
. 7 J7ft
. 7 i B '/
. * w 7 M
.6 /67
. 6 •> 3 3
.62H6
.6nl5
4 ft 3 9
4n v7
^5,52
2939
ft.
6.
6.
5.
5.
5.
H.
4.
4.
. .1
. II
. II
. H
6.
6.
6.
6.
5.
5.
5 .
5.
5.
4.
4.
4 .
4.
.'1
. !l
. 'I
. ':
ft .
ft.
5.
5.
5.
5 .
5.
4 .
4.
4.
4.
3,
.11
. n
.H
. li
.H
5>t7
340
092
H41
5HP
331
OftP
799
519
1 741?
1 7 0 M
1*77
«72
650
4?H
2 II 5
9»1
755
CL «) O
" f f^
?«;9
liftP
H.I?
591
343
Oh. 3
1/45
1 711*
li.7/
794 ft
n y n •<
HH64
6«1 ^
475'
?ft 7w
059-1
H4Rii
6341
41 6 ^
193"
9ftlv
1 7R/
1 /4^>
I 7 0«
1677
1359.5
1 3 3 v . ft
1 .11 w . ft
1 2 9 v . 5
1279. .1
1 25*1 . ^
1 2 3 M . n
l'/l ft. 5
1194.2
2ft9.77
? ? H . H »/
1 HH.41
.H
1 4 .3 -v . 4
1419. 1
1.39W.O
1379...
1 .35 H . »/
1 33».o
1 -J 1 rt . «J
1 294 . /
1 2 7 M . .•>
125/.7
1.2 3ft. ft
1214.7
1191 .w
269.7'*
?2H.91
1 » « . 4 .>
. I'
1439...
1 4 1 M . 7
139^.5
1 <> 7 * . 4
1 J5,'..4
1.13H..*
1 3 1. rt . 1
1297. y
1777.4
1 <"5ft . ^
1735. 1
1212.9
311.2ft
2 ft 9 . » 1
2 ? H . w .}
1 «8.4ft
. n
1.7H61
1 . 7o8fl
1 .7491
1.7294
l./uBH
1 .6M7II
1.6ft38
1 .6^89
1 .6116
.43/1
.3H1B
.37411
. U
1 .8474
1 .8263
1 . dl)9H
1.7978
1 .7/5?
1 . 7 5 7 (I
1 . 7 .> H 1
1 . 7183
1 . ft w 7 5
1 .6/56
1.6571
1.6267
1.5WBH
.13/1
. 3H1.H
. 0?.t9
. n
1 .8.175
1 .« J 65
1 .7999
1 .7i?9
1.7ft53
1.7471)
1.7?RU
1. 71181
1 .6H72
1 .6ft5il
1 .6412
1 .6154
. 49 M ?
.4371
..^18
.3239
.H
100. 0 psia
110. 0 psia
120. 0 psia
02560
5.4746 1 44 ".4 1
5.3H71 143H.? 1.K151
140. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
395
-------
Line
No.
025/0
02580
02590
02600
02610
02620
02630
02640
02650
02660
II26/0
f 1 2 6 (J 0
02690
II 2 7 0 0
02710
II 2 7 2 n
02740
02740
02750
0276M
02770
027HO
H 2 790
1128(10
0 2 8 1 fl
02820
02840
02840
02840
02861'
02870
028MO
02*5VO
029UO
02910
02920
02940
02940
02940
02960
02970
Q29HO
02990
03000
03010
03020
04040
04040
VTAB
(ft3/lb)
5.2995
5.1238
4.9/»74
4.7701
4.5917
4.4119
4.2302
4. 046 H
3 . 8 4 8 7
3 . 6 6 S 6
3. 4 '.61
3.2467
.HI /65
.01726
.11169?
.01663
4.7H43
4.6?94
4.475ti
4.4190
4 . 1 6 3 H
4. 0
104/.1
1 4 2 * . "
1 4 H n . 4
1 28i. h
1 X6«i . M
1 ? 4 4 . 2
1 ??H . ;>
1 1 9/./
p ij f\ 4 u
Q 4 Q "^ Ij
7 li H. 6«
1 '< 8 . 3 *
1447.0
1 4 P / . :'
1 406.*
1 4 M r, . 4
146*). 2
1 J4i . •*
1 .>?'). 4
.Ml 4 . M
2*4.''
i"S ' . '»
V 1 ... 4
/ 1 / . 4
3 •> ? . 3 2
?*vi).Bi2
? 4 «j . .w
?nH . 7 t
1 r H . 4 /
i *» A o » *^
^ 4 x ^ » ^
1 4 l| » . W
148', .4
4 6 •> . 1
4 4 4 . -S
4 ? 4 . rt
.MM.?
? ^ ' . 0
? 6 n . 2
1 '<- < 7 . 6
1/1 > . rt
'^'.14
'9 '1 . 4 6
049.4 <
1 . 8 o 7 1
1 .7*07
1.7739
1 .7464
1 .7484
1.7196
1 . 7 ii 0 II
1.6/94
1 .6-j74
1 .6.541)
1 ,6ii85
' .5rt04
.4649
.40v7
.454?
.2949
1 ,8u7ri
1 . 7^1 V
1 .7/55
1 .7485
1 .7410
1 .7229
1 ,7.| 39
1 .6*41
1 .6632
1 .6409
1 .616V
1 .5V06
.4lol
.4648
,40v7
.45)2
.2948
1 .7944
1 .7/84
1 .7o19
1 .7-J49
1 .7^74
1 .7M90
1 ,6-yOO
1 .6o9V
1 .6187
1 ,6,>60
1 .6014
1 .5/44
.51nO
.46.t8
,40v6
5.2117
5.0457
4.858H
4.6H1 f|
4 . 5 li 2 «
4.3213
4.1485
3.9426
3.7627
4.5669
3.3629
.111787
.111745
. i» 1 / 0 rt
.'11*77
.11
4.71.65
4.4423
4.3975
4.2420
4 . 0 h 5 4
3.9V75
3.7680
3. 6 n 6 2
3.4413
3.2/2«l
3.IIW67
2.9127
.111 787
.111 /45
. 0 1 7 0 H
.U1677
.U
4.1771
4.0494
3.9012
3.7621
3.6221
3.4*07
3.3475
3.1970
3.0434
2.R900
2.7404
2.5616
.01787
.01/44
. 0 1 / 0 8
1417.9
1397.6
1 4 7 / . 4
1357.2
1437.0
1316.7
1796.1
1274.3
1254.1
1 ? 3 2 . 1
1209.2
311.29
269. «5
228.97
188.50
.H
1437.4
1417.0
1396.7
14 7*. 4
1356.0
1335.7
1314.2
1294.4
1273.4
1251.6
1229.1
12H5. 3
311.33
?69.8g
229.01
188.54
.0
1 436.6
1416.1
1394.7
1374.3
1354.9
1334.4
1314.7
1292.6
1271.2
1249.il
1225.9
12U1.4
311 .36
269.92
229.05
1.799U
1.7824
1 .7652
1 1 .7474
1.7291
1.7099
1.6H9W
1 .6686
1.6459
1 ,6?15
1 .5948
.490?
.4370
.3818
.3239
.11
1 .7999
1.7837
1.7671
1 .7499
1 .7320
1.7135
1 .6941
1.6738
1 .6522
1.6291
1.6041
1 .5764
.490?
.4370
.4817
.3239
.0
.7H65
.7702
.7535
.7362
.7183
.6996
1.6801
1.6595
1 .6376
1.6140
1 .5882
1 .5496
.4901
.4370
.3817
140. 0 psia
160. 0 psia
180. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
396
-------
Line
No.
VTAB
(fta/lb)
HTAB STAB VTAB
(Btu/lb) (Btu/lb°F) (ft3/lb)
HTAB STAB
(Btu/lb) (Btu/lb°F)
I) .> II ':> n
n j i) ft n
Ii .< n 7 n
o .1 n « n
u .•> u v ii
(1 0 1 H fl
n .n i n
(i .U ? n
fi * i < n
n .M 4 n
ii .01 n
n .* i ft n
n s i / n
n ,s 1 M n
n .1 1 v u
fM?nn
li.i?1 ii
n * ? / n
1) .t ? s> H
II.S?4fl
II.S?sn
n^?f>n
n .J ? 7 n
n^?nn
n >s ? y n
H ^ 5 U H
H Ml i'
II M/MI
II.MJII
II .1 <4 1
M .> Vi n
n .M ft n
II .M / ,i
I) .M •»!•
fi i \ . i.
|l.>4'in
n* 4 i M
n.>4/n
ii.H.»n
n .s 4 4 u
i< * 4 s n
(M4ftf1
Ii ,)4 / n
Ii.<4i- n
n ^ 4 w n
II <•> II II
II .^ 1 >'
\\^/ II
. ii 1 ftOV °i- •» . 7/v
. n i f , ft .s 1 1 * . 4 /
^.HlSft 1 44r . ]
* . h y 1 4 1 'i ?>.-.)
."S . "l ft ft 1* 1 1 II < . II
.1 . 4 4 1 .S 1 .% * 1 . '-,
S . .< 1 "•• I" 1 • ft -1 . "
.1 . 1 >i 7 4 1 .-. 1 , . <4
\ . II b >' « ' i />'.•.
? . i) v 7 1 1 . ui . *>
"> . 7»M1 1 /•«,.. n
7 . ft '> K 1 1 •> / . -v
' . '; 11 '. 1 > < i . 7
'•> . .t h 0 H 1 / 1 i . 1
. 1-1 -i1 1 <^V. .S,.
. h 1 / f- s Vw -I . h •>
. !• 1 7?'> ••><••). 4 /.
. h 1 »,'' ,» u •* . H/>
. I'ldft.t 1f.'<.bl
^ . 4 '> ^ ft 1 4 4 -.. . ^
.< . ,V> r. 4 1 a y i . 7
.1 . ? >*>> 1 4 H ... |
^ . 1 / 1 " 1 .t •< 1 . ••>
< . 1 1' ft ' 1 . ' . W
' . M fi w 4 1 0 -1 ' . l
7 . 7 • 1 ii 1 o? i . >
' . ft •> fi '> 1 ^ lj < . u
^ . l> ^ 7 II 1 /• 7 -^ . .1
V . ,i'*«M 1 > ') » . -1
? . > t> l- v i :M i . /
' . i '-4 n i ^ ,i • . .^
. i. ' .-i 1 Ii < .> 7 . 4 1
. •! I / ' ') •"•'!. ft.'.
. . 1 / '", -><> -i.S 1
. i. 1 i.e.1 1 J i * . ^f-
. ' 1 *> .* 1 f. ,'< . l>f,
< . 1 / " 4 1 /i 4 1 . b
• . H'.A. 1 1 4 '•>»./'
->.«'.» ^ t /111 ,.,•>
'•> . Ml^'l 1 ,>M ' . '»
? . >4>'" 1 Oft 1 .M
7.ft41l 1.M'.1*
' . H - 1 h 1 ,n , . 1
•S . 4 1 w ; 1 /"M . V
' . . 1 '.' n 1 yS s. ,i
v . n n n •< 1 v ? i . *
i.»y^fth 1^il ' . 4
!^.!l
i . 7 •. ft ;<
i . 7 '1 0 »<
1 .7.^7
i . 7 I •* u
1 .ftvftf)
1 . ft / V ^
1 . ft •> 7 t
i . ft ^ h /,
1 .ft l?4
1 . 1 1 7 .•»
1 . S , «) .<
.••1 ''•
. ift i7
. " 'I /ft
. <•*> .i1!
. ' W ,) K
1.7/1/4
1 . 7 , «j .\
1 . 7 )H/
1 . 7x] ft
1 . 7 11 'Mi
1 .ft )1^
1 . 6«ir'H
1 . ft 4 b .1
1 .'V «0s
1 .b/41
1 . 4 1 '> ,\
. i 1 "J V»
. 4ft %7
. Ill Vft
. ^'J.)1
. >> v ,> f-
1 . 7»,1 4
1 . 7lS/>
1 . 7/»fft
1 . 7 1 1 .*
. ft y 3 b
. ft ^H V
. ft >4"?
.ft i? 1
. *> ->H ^
.->--,1 M
. •> i?»
. ii n- 7 7
. n
:^ . s n 4 i
;< . ^ / « .^
.< . 1 ^ .vi
? .
? . r> h 4 1
? . 4.^6')
. n 1 H.^ft
. u 1 7 R 7
.111/44
. m / n >\
. n 1 ft 7i.
.'i
J . 1 M 7 1
J.'ViV'
.» . 1 / <> •'
$ . n ft 4 ',>
? . W4ft 1!
? . H .•» 0 S
P.711 I
v . r> ii o y
?.4f'."?M
i> . ^ S.^',
^ . 1 'y ft '->
. n 1 -H -^ r,
. ii 1 7 H 7
. li 1 1 4 1
. " 1 / fl *
. II t ft 7 '>
. u
* . 1 1 R ,N
* . I1 1 3 7
? . Q (i n •)
? . Rll?4
/• . ft y •> ?
? . S h ft ft
? . 4 / ft n
'f . .5('?''
•f . ? 4 ft V
? . 1 /"4 ^
1 . 9 ^ 'i 1
. '1 1 H.Ki
]MH.l>y
1 4 A •> . I-
1 4 1 -j . V
1 . y n . "
1 V 4 r, . 1
1 y?:>.*
.^ S ,< . ^ H
.< 1 ] . .S ty
?'!** ,^'ftft."
1 /> 4 o . /
i * l y . .•>
.VJ.I.M
.'* 1 1 . i -1
^/ii.i.n
? s * . i i
1 * H . >. ,
. H
1 4 .M . >
141 i. ,
1 W/. -
1 ."» 7 V . 1
1 .> '> \ . i
1 .s n y . i.
1 '/ H / . v
1 <">'!.'•
1 ?41 .1"
1 ? 1 •> . M
i l> .1 . ft S
. II
1.7/44
1 .7'> HI
1 . 7 4 1 ,1
1 . 7 u *• V
1 . ft ><7 1
1 ,6ft74
1 .ft4ft*>
1 . ft '•> 4 ?
1 .ft H (I I
1 . •> / .1 7
. •> 4 1 S
. J9M1
. 1 !S ft W
. H
. "
1 . 7 ft 3 4
1 .7471
1 . 7 .< 0 >»
1 . 71 ?rt
1 . ft y 4 ft
1 .ft /S7
1 .ft'i'i?
1 . ft.* 4 ft
1 . ft 1 7 U
1 . S n 1 ,\
1 . •> r. I.I 1
.?4 1 S
. 4 y n n
.4 s ». Q
. *rt1 6
...•»»
. i-
1 . 7 *i r* 4
1 . 7 s7li
i . 7 ^ n n
1 . 7 u ?S
1 .ftH4/*
1 . ft 4 S (|
1 . ft y .< ft
1 .ft i: 06
1 .S/S4
1 .^474
.•>414
180.0 psia
200. 0 psia
220. 0 psia
240. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
397
-------
Line VTAB HTAB STAB VTAB HTAB STAB
No. (ft3/lb) (Btu/lb) (Btu/lbT) (ftVlb) (Btu/lb) (Btu/lb°F)
03530
035HO
03590
036(10
0361 U
036^0
n 36 3 II
036 4 II
036'jll
03660
1(36/11
036HH
03691!
03700
0 3 7 1 II
03720
0373H
037411
03750
037ftO
037/0
037Hfl
n j 7 4 n
038 nil
»3rt i n
II OH/ |l
U38on
(1 3 A 4 Ii
n 3 H •> n
0 3 8 ft o
. H1H1 II
.1(1 764
.Hi 7?^
.H1601
.U166P
P.
?.
P.
P.
P.
P.
?.
P.
P.
P.
1 .
. U
.11
.11
.11
.1)
.11
? .
P.
?.
P.
P.
P.
?.
P.
1 .
1 .
1 •
. li
92??
8256
7 28 .1
6 o n ?
5312
4309
32P4
?P4ft
117?
011*3
H M 7 II
1*64
1 n 1 n
1/64
1 /?5
1ft91
166?
7li9'>
61 44
528ft
4371
344«S
?*>n7
1 *>51
1)57'
Qb59
8 SH1
7.>7ft
1 rtftj
"> \) H . 0 II
1 t H . 6 U
144s
t 47 >
1 4 U '
1 ^H i
1 06 •'
1 .1 1 '
1 ^1 «
1 P 4 n
1 ?7'J
1 74
1 2 ? •>
1/5.
Vi7.
741) .
?49.
P l« M .
1 6rt .
1 4 4 >
1 4 7/>
1 4 i| i
1 *M ,
1 ^ /
1 4j { M
101 •
1 V •)«
t ^7 '
1 > 4 /
1>?^
W5.
038 /n . HIM u <^7 .
03MHO
03890
II 3 9 u U
039) !•
039PO
039 Ml
03940
fl39'>0
039ftO
039/0
U 3 9 H (i
039911
0 4 0 H II
.n
.n
. il
.1'
p.
P.
?.
l'm
7 .
P.
1 .
1 .
1 7 ft 4
1 /"*>
1691
1.ft62
525 1
44d 7
3 *> l> ft
1H77
094*>
0(144
9119
8161
•>
1 4; I
1 411 ii
1 .•» /«
1 .»S .
1 JO/
lot-
1 P9 '
1/6-«
. /
. u
.3
. S
.(•
. h
.'
.4
. il
.4
,«j
1 1
4ft
7n
5H
9S
6*>
. H
. 1
.3
.5
.5
.3
• *
.7
.w
• ^
>
•
1 3
49
7o
6/*
9>v
7n
• *
• •)
.4
.4
.3
. n
.<*
. 4
. 7
1
1
1
1
1
1
1
1
1
1
.1
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
.
.
.
.
.
.
1
1
1
1
1
1
1
1
46.)7
4 0 ^ S
'} Q \ 7
.7n?l
. 7359
.7192
. /u 1 9
.6139
.*651
.6453
.6^44
. ft « 1 9
. '> / 7 4
. 5-jnp
^6ft6
HI •}<)
460ft
•I 1144
O'»3i'
/9o7
. 74J5
.7^73
. 7 i 0 5
.6431
.6/5u
. 6 •; ft 1
.6 JM
. ^ 149
.•»9?(l
.50711
.5091
46ft
4D44
%5 JO
.'907
. 7o*>5
.7192
. 7 || ? 3
. 6 H 4 H
. 6ft66
,f>47t)
.ft/74
.ft n 5 9
.5^2 /
.01786
.01744
. (I I / 0 H
.H1676
.11
P.B74I)
P. 7 7 7 u
2.6794
? .5HOtf
? . 4 8 1 P
2.3H01
P.P771
P . 1 7 1 3
P.(ift1«
1 .9471
1 . 8p4n
. I) 1 h ? 6
. U 1 / R 6
.01744
.01707
. 'lift 76
.H
2.664*7
? .574 )
2 . 4 h ? 9
2.3909
P.297H
? . P 0 3 1
2 . 1 H 6 '.
P. OH 7 n
1 . 9 u 3 /
1 .794H
1 . 6781-
. U 1 ft 3 5
.11178ft
. 01 7 4 4
.01707
.'It 676
. n
P. 483 n
P . 3 9 8 v
2.31?/
P.P26.'
2 . 1 3 8 H
2.0497
1 .9581.
I.fl64^
1 . 766b
311.46
2 7 0 . H .>
1MH.7P
.0
1433.4
t 4 1 2 . ft
1391 .9
1 o 7 1 .1
1 o*jii . 1
1324.11
130/.4
1 28*>.0
1 P62.4
1 P 3 M . />
1 ? 1 /» . 2
353.6r,
311.4"
2/0.07
P29.Pi
1*8.7*
.il
1 4 3 2 . '>
141 1 .7
i 39 n. 9
J . 3
1 ? 0 rt . ft
3 •> 3 . 6 9
3ll.5v
2/0.1 1
229. PH
1 H H . 81
.H
1431.7
I 4 1 u . *
13M9.9
136M.9
1347. /
132ft. P
1 0 II 4 . P
1281.4
1257.7
•
1
1
1
1
1
1
1
I
1
1
1
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
•
•
•
.
.
•
1
1
1
1
1
1
1
1
4900
•* 1 0
J n •* A
• • r O ••
.7441
.7776
.7106
.6430
.6/46
.6554
.605(1
.ft 1 33
S 'i 0 Q
• / t\ 4 t
*> ^ ** »5
541 4
4rtv9
1 {ft8
*816
\?07
u
. / 3 5 5
.7189
.7 Ml 4
.6»«*l
.6656
.646P
. 6 /> l> /
. ft il 3 /
. 5 7 C H
. •> 4 3 1>
. *> / 3 h
S4i4
4ft49
4
-------
Line VTAB HTAB STAB VTAB HTAB STAB
No. (ft3/lb) (Btu/lb) (Btu/ib°F) (ft3/lb) (Btu/lb) (Btu/lb °F)
04010
04020
04030
04040
04050
04060
04070
040HO
04090
041UO
04110
04120
U4100
04140
04150
U4lt>0
04170
04100
04190
0 4 2 0 U
U4210
04220
0420U
04240
04250
04?60
042/n
042«n
f)4?90
04.1110
P431 0
0432"
04330
04340
IJ43->0
04360
n 4 3 7 n
043HO
114390
044110
04410
0442(1
04430
P 4 4 4 »
04450
H4460
04470
044*0
04490
1.71*4
1.6079
.01863
. U 1 « 1 0
.01764
.017?5
.01691
.01662
2.363H
2.2843
? . 2 II 4 1
2.1L-31
2.0411
1.9577
1.8775
1 .7848
1 .6936
1.5974
1.494U
. U 1 8 6 3
.Illb09
.111764
.01/71
.U1691
.0166?
?.??15
9.146.1
?. 11704
1 .9V39
1 .9161
1 .8.^7 It
1 .7561
1 .*7?4
1 .5n*iO
1 .49311
1 .393.1
. H1860
. 0 1 M 0 9
.HI/64
.017?4
.('H691
.111662
P.0950
?.0?.17
1 .9->17
1 .8789
1 .8115 U
1 .7297
1.65?5
124?.?
121*. 9
375.15
30?. 52
290.77
?49.66
•> u 9 . n .1
1 6 H . 7 4
1441 .4
142H.-3
109V.5
\ it 7 n . 4
1057.?
lo.lo. 7
1 Jl.).7
1291 . I
1267.5
1*4,>. *>
lirl >.•>
375.17
.1o2.5>>
?9fl.8U
?49.7u
PU9.II/
16^,79
1 44-.*
141 •.*
1 J^-.5
1077.4
1 ^ ... U
1 .vS - . .S
1 v> 1 /•' . '<>
1 2 !J v . ,\
1?6-> ..1
1 /- .1 •« . ».<
1. 2 1 .' . n
.^ 7 i . ? n
H?.SH
P9II.H4
?4«.74
? 09.1 ?
1 6H.fi ^
1 4 3 ; . rt
141«.7
1 397.6
137'. .3
1 .15 <». a
131>.1
131 .6
1 ,5->72
1 .5i-ft6
.5605
.519H
.4605
.4094
,.S5oO
.^9,»7
1 .7279
1.7116
1 .6V46
1 .6771
1 .65H«
1 .6096
1.6192
1 .5*75
1 .5739
1 .547rt
1 .5184
. k> 6 o rj
,'>l57
.4605
.1UV4
.^5^9
.V906
1 . 7 2 0 H
1 . 7 u 4 4
1 .6074
1 .6o97
1 .6'»10
1 .60?"
1 .6114
1 .5«M
1 .5654
1 .5oHh
1 . 5 II P 6
.^604
.bl.57
.46.55
.4093
.0529
.?9 t6
1 .7141
1 .6976
1 .6*05
1 ,66?R
1 .6443
1 .6247
1 . 6 u 4 0
1 .66?7
1.5406
.U183-J
.U1786
."11/44
.01707
.01676
.0
2.324]
2.2440
P.1637
2.0H20
1 .9996
1 .9154
1.829u
1.7097
1.6462
1 .546ri
.Ulb9o
. 0103*7
.01786
. U 1 7 4 A
. U 1 7 0 7
. U 1 6 7 6
.U
2.1H4U
?.1 HR5
?.0320
1 .955?
1 .876H
1 ,7*J6H
1 .7147
1 .6294
1 ,5o9y
1 . 4 4 4 ,S
.111*19.1
.H1H35
.0 1785
. I1 1 7 4 3
.111707
.111676
.11
2.0594
1 .9H7H
1 .9154
1.84?1
1 .7676
1 .6934
1.6129
1232.3
1204. M
343.71
311.55
270.14
?29.?9
188.85
.0
1430.9
1 4 1 U . U
10B9.II
1367.8
1346.5
1324.H
1J02.5
1279.5
1255.2
1229.0
096.91
353.74
311. 5h
270.18
229.34
188.91)
.'II
1430.1
1409.1
138*. 1!
1066.7
1345.?
1320.0
1 3 0 il . 8
1277.5
1?5?.H
1226.2
396.9?
353.76
311.6?
270.22
229.38
1H8.94
.11
1429.3
140H.?
1387.11
1365.6
1344. U
1021.9
129W.1
1.5433
1.5127
.5413
•48y9 300. Opsia
.4367 K
.vS8!5
.3237
.U
1 .7198
1.7H32
1.6859
1.6680
1.6493
1.6295
1.6085
1.5859
1.5612 320. Opsia
1.5036
.5915
.5413
.4898
.4367
.0815
.3207
.0
1.71?/
1.696U
1.6787
1.6606
1.6418
1.6?19
1 .6006
1.5777 340. Opsia
1 ,55?5
1.524?
.5914
.541?
.4898
.4367
.0814
.3236
.ii
1 .7II59
1.6H91
1-6717 360. Opsia
1 .6536
1.6346
1.6145
1 .5931
Figure 12. Water Superheated Fluid Properties (Cont'd)
399
-------
Line
No.
U45 IIP
M4510
0 4 5 .*> n
(14540
U4550
045/0
II45MO
VTAB
(ft3/lb)
HTAB STAB VTAB
(Btu/lb) (Btu/lb °F) (ft^/lb)
HTAB STAB
(Btu/lb) (Btu/lb °F)
1.57?ft
1.4H9P
1 . 4 u II1
1.3034
. I11 H ft ?
. M 1 h 0 9
. H 1 7 ft 3
.U17?4
,i'1ft91
. n 1 ft ft?
J' .5 / . u
1.5314
1 .4454
1.5.Mil 1.35?"
1 .4v9ii
749.7*
? II 9. 1ft
. 4 0 V .1
.(II 7fl5
.11174 *
.111 67ft
.11
4 1.5ft9«
3 1.5441
>. 1 1 .515?
.94 .5914
31.3.7« .541? 360. 0 psia
311.65 .4897
?/11.75 .4366
] MM.9R
U 4 6II 0
0461 "
II 4 6/0
II 4 ft .1 0
n 4 ft 4 0
II 4 ft /I-
n 4 ft v n
u 4 / n o
U 4 71 n
047/0
ii 4 /JO
n 4 7 4 M
it 4 75H
Q47oli
1 .8151
1.6161
1.547?
i.4u?ft
1 .?416
. II 1 Mft?
.Ml MO 9
.n1 76.1
1 4 1 - . <
1 4 1 / . ,1
109 ,. 7
1 ,17 1 . ?
l?rt >.ft
1 ? 3 l . ?
419.04
3,19.67
7V it . 94
1 .7.11ft 1 .H47'-
1 .ft "Mi 1 . 7H7*-i
1 . ft o 7 h 1 . 7 1 6 /
I . ft -1 9 4 1.i
1 . ft L 1 3
1 . 5 4 ?
]„. 4399
l.?841
1.1970
. H 1 M 9'/
. "11 H 3 .1
1 4?7. 'I 1
1 '4 0 6 . 4 1
1 !«•>. n 1
1>41.4 1.6/1.1
131 9. ,1 1 .Ml II 9
1/9*>./ 1.5/H9
1 ? 7 1 . ? 1
1 / 4 •.> . 1 1 . '
1?1f>.5 1.4«;7*
400. 0 psia
.ulftft<>
?l.9. 74
1 r- rt . 9 7
.iil7* <
. Ii 17 0 f.
.111675
.u
311.71
? 7 0 . 3 1
. 4 .< * ft
1M9.I. 7
0477"
ii 4 7 '•. h
n 4 / v ii
U 4 P ' II
048 Hi
(14840
0 4 H "> 0
II 4 HO Ii
I) 4 M 7 0
II 4 «« 0
II 4 H w n
049111
U 4 9 ? 0
n 4 9.5 n
. ft44S
1 .5' <*>
1 . 4f,l 4
1 ,.S«77
1 .19M
1 . I 1 1 .5
. u 1 >\ M
. 0 1 7 ? 4.
. nlft9|i
1 4
1 .•* 7 .I
1 vl5., . I
1 0 'i •« . '
1 Si <.7
1 ? •> j . 0
IX?--. 1
419.07
.1/5.31
749.9.)
? H 9 . .11
1 .
1 .
1 .
1 .5->4 I
>fll. 1.49?*
J9U l.4?9^
1 4?ft . II 1
1 4 H 4 . ft 1
1->61 . 1 1 .ft^Pft
1 1 Ih.'J 1 .ft'. 9]
1 ^ 6 . II 1
1 .??74
1.1517
1 .'
.Ill
,4ft )3
. 4 0 v ?
. ° 9 \ 5
.111 7P5
.0174?
. I11 7 0 ft
. i) 1 6 7 5
.0
9 1.541H
i^:l ;:«?P 440.0 psia
397.0? .5911
31 1 . 7 n
'7U.4i|
? 7 9 . 5 H
.U
. -.813
..1735
04940
049^0
il 4 9 r> 0
049/0
1.5571
1.5073
1.4467
1 4 1
141
.6/97 ].529H
.41«6
J.w
1 . ft -»5.1
1 .ft/ /II
1 1.6713
14.i?. / 1.654? 480. 0 psia
1JR|.H 1.6363
H 1.6176
Figure 12. Water Superheated Fluid Properties (Cont'd)
400
-------
Line
No.
04980
114990
05UOO
05010
ri 5 o 7 o
05030
05040
05050
05060
115070
05080
O50yn
n 5 1 n n
05110
n 5 \ -i o
05100
1)5141)
'>5150
n 5 1 o 0
1151.70
n5iMO
115: 90
052u"
nh2io
II522P
n 5 ? o ii
D5740
u 5 2 •? n
H5260
05270
05280
II52VO
05300
II 5 3 1 II
05.370
n 5 3 o n
n 5 3 4 o
05350
05360
05570
053HO
05390
054(10
0541 0
05470
0543(1
05440
05450
VTAB
(fta/lb)
1 .3324
1.2731
1.2115
1.1468
1 .0777
1 .01121
. II 1 ,9 7 4
.01861
.01H08
.01767
.01723
.01690
.H1661
1 . 4 3 3 II
1.3819
1.330]
1.2773
1 .223?
1 .1675
t .11194
1 .048]
.9820
.9090
.(11924
.U1061
.111 HO 7
.U1762
.111723
.016911
.Hi 061
1 .3266
1 .27*7
1 .2301
1 .1H05
1 .1295
1 .0768
1.0217
.9632
.8997
.8286
.111923
.fll860
.01807
.01762
.U1723
. n 1 6 fl 9
.01661
1 .2343
HTAB
STAB
VTAB
HTAB
STAB
(Btu/lb) (Btu/lb °F) (ft?/lb) (Btu/lb) (Btu/lb °F)
1347.6
1324.7
1 JOn. :«
1275.7
124H.6
1 ? 1 rt . H
419.00
375.36
332.79
291. PH
'50. "J.
'H9.41
169.15
1433.'>
1 4 1 1 . 8
13HV.^
1367.8
1 3 4 'j . 1
1 J?l.»*
129/. 4
1271.5
124.s.>j
121?. 1
419.1?
.1 / 5 . 4 n
3.12.85
291.15
2511.09
2 fi 9 . 5 0
X.9.24
1 4 3 1 . «
1 41 ii.n
1 .18 K. '1
1 3 6 •> . ft
1342.6
1 .J1P.H
U'9j,9
1267.3
123«,1
120^.2
419. IS
.175.41.
302.91
291.22
250.17
?09.5H
169.33
1 4 3 il . 3
1 .6078
1 .5873
1 .5052
1 .5410
1 .51.39
1 .4d28
.M?8
.5661
.51^4
.46.^2
.10^1
.35^7
.2904
1 ,*O9V
1 .6-?3l)
1 .6J53
1 .6168
1 . 5 y 7 j
1 .5765
1 .553';
1 .5^9u
1 . 5 1| 0 y
1 .4r>«2
. M '} 6
.5659
.5153
.46.S1
,40yO
.3526
.29o4
1 .6608
1 .6438
1 .6^61)
1.6073
1 .5«75
1.5662
1.5431
1 .5i75
1.4U84
1 .4->4n
.M^S
.5658
.5152
.4630
.4090
.35V6
.29o3
1 .6^23
1 . 3 II 3 Ii
l.?426
1 .1796
1 .1129
1 . 0 4 G 9
.(Hy61
.01891
.01833
.01784
.01742
.01706
.01675
.0
1 .4075
1 .3*>61
1 .3038
1.2504
1 .1956
1 .1388
1.0792
1.0157
.9466
.0196(1
.U1H91
.11833
.01784
.01742
.01706
.01675
.0
1.3027
1.2545
1 .2H54
1 .1552
1.1034
J .0496
.9930
.9322
.8653
.01960
.01890
.U1832
.01784
.111742
.111705
.01*74
.0
1.2119
1336.2
1312.9
1280.5
1262.4
1234.1
441.54
397.05
353.95
311.84
270.48
229.66
189.75
.11
1422.7
1400.9
137H.Q
1356.5
1 330.6
1 309.8
1284.7
1257.8
1228.3
441 .55
397.09
354.00
.111.91
270.55
229.74
189.33
.11
1421.0
1399.0
1376.8
1354.2
13311. K
1306.6
1280.9
1250.1
1272.2
441.57
397.13
354.0ft
311 .97
270.63
229.82
189.42
.n
1419.3
t.5977
1.5765
1.5534
1.5279
1.4990
.6404
.5-910
.5409
.4895
.4364
.3812
.3234
.11
1.6615
1 .6442
1.6262
1 .6072.
1.5871
1 .5654
1 .5418
1.5154
1 .4853
.6403
,59fl9
.54118
.4894
.4363
.3812
.3734
.0
1 .6524
1.6350
1.6167
1 .5975
1 .5771
1 .5550
1 .5307
1.5U35
1.4/70
.64117
.5908
.5407
.4893
.4363
.3811
.3233
.1)
1 .6438
480. 0 psia
520. 0 psia
560. 0 psia
600. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
401
-------
Line VTAB HTAB STAB VTAB
No. (ft3/lb) (Btu/lb) (Btu/lb°F) (ft3/lb)
HTAB STAB
(Btu/lb) (Btu/lb°F)
II l> 4 ft 0
u •, 4 v n
n •> s u n
ni>s i n
i) '• s .} o
n->«>4n
OS5/0
o i> s H n
u-jftin
i. 1 4 .^ 4
1 . n * »• \
. o g M ?
. r M y 4
. M ?uo n
. n i ' .*
. II 1 HftO
. Ill Mil /
. l» 1 / ? 1
. II 1 ft ft II
1 4 IJ 1 . <
I > S r, . II
1 .« I •,. ,c
1 /O,, . .%
1 , ft • . S
4( 4 . 4M
11V.1 7
"-0.74
•>•<>. ft 7
1 ft J . 4 ?
7]
i ? y
1 . 1 ftf-4
i. i ? n i
1 . n; ?»,
HP
i^^*. i
1 .<*>! .»
1 .
. /Q44
. H1 9*j'
1 .•> 0 ^. .i
1 v- 7 ft. v
441 .
1 .
.64DO
,M
. -1 -i 1
. 4 ft ,i 0
.111 /R i
. n 1 7 4 1
.ii170^
.'H ft 71
. J
.^'>4.1l .5411ft
11?.04 .4flV?
P70.7II ,41ft?
.11
. u
600. 0 psia
ft 5 ft *> n
0*6/0
(I16MI1
O^ft vii
Oi7i n
n •> 7 •"
II -i 7 4 i
n •> 7 o n
H17/0
Ol/iH
1 .
1.1
1 . on ft M
.ul wv
. n
.1-17*1
. - 1 / ? ^
. i.1 ft Mi
1401.0
1.»n ». 1
•• > s /.
41-J.?1
<.•»<. U 4
. 7 /
1 t U . V*
1 .
1. ft II ft b 1. II; fl
. -\ H H fl
. * » 7 1
1 .4ft14 . /173
1417.? 1.6*.<7
1.<94.M t.ft|ft|-
1.4P4.S
1 V 0 7 . ft
441.ftu
. 1.1 M .n
.ill /4 (
. 4IIMH . 1.1 /O"
. .^ S ^ 4 . !> i t 7 *J
.11 ? . 1 '
?7H . 7 J .4^1
'} ^ll . " I . >fl1 0
l-w.*<> ,-•?*?
650. 0 psia
iimnO
n
0 •> « ft I)
oSB/o
n •> «> H «
u i g l'»
i .
1 . n 1 n ?
. /4nO
1 4 II % . 7
1 .^ M i. . Q
.' M . 4
.•» II " . 1
/ M | , II
4r 4 . 4H
1 . ft.) 3 l» 1 . 'i .1 0 1
1 .ft 1*4 .«J'».J?
1 .1 v 7 U . «< 4 g 1
1 . •> 7 7 ft . 'Ml 7 ?
.M 71
1 .
o s g j n
. HlHflft
.••I /ft!
.Ml 7??
.*»!••!
.11 49
. 0 ?. u 4 <
. ill H *> '<
.47
7111 . 44
.111 741
. u I 7 fi 1
1 41 ', .it 1 .fti>4^
in.4 1.ftllft4
* ft -i . 4 1
> 4 ', . ft 1
M.t.-j 1
<*W4 . « 1 , i
'ft ft . •• 1
•M'../ 1.4ft44
441 ,
.4
700. 0 psia
1 ? . P H
? 10 .1 1
Figure 12. Water Superheated Fluid Properties (Cont'd)
402
-------
Line
No.
VTAB
(ft3/lb)
HTAB STAB VTAB HTAB STAB
(Btu/lb) (Btu/lb°F) (ftVlb) (Btu/lb) (Btu/lb°F)
05940
05950
05960
05970
05980
05990
06000
06U10
06020
06030
06040
06050
06060
06070
06080
06090
06100
06110
06120
06130
061411
06150
06160
06170
06180
06190
06200
06210
06220
06230
06240
06250
06260
062/0
062MO
06290
063UO
06310
06320
06330
06340
06350
06360
06370
06)80
06390
06400
06410
.016611
.97^9
.93H6
.90)14
.M6H
.8202
.7773
.7313
.6811
.<«24n
. i'199 /
.0192H
.i'l«5H
. Ml nn4
.01/6H
.Hi/72
,ul6«l)
.I1166H
.9113
. 8 7 *> V
. H 3 'i 6
.8021
.76.10
.7218
.^7/4
. 6 2 M 3
.4717
. ill W9*
.1)1^211
.HI rt4 7
. ii lrtP4
. ill /6n
. (1 1 / 2 1
. II lh8H
. fl 1 ft 5 y
.8542
. «2n4
,/859
. /5»n
./125
.6727
. f>2v6
.5814
. 0 2 U 9 H
.111991
.01919
. 1118*57
1 69.65
1 4 2 '» . 1
1 4 n i . 5
1 37'. .4
1 .15/1. 7
1 33 ' .0
Kl 0 4 . 1
1271.1
124^.2
1 ? fl '* . 7
4c4.4H
419.28
*75.6/
3 31 . 1 9
7*M . 54
7 4 11 . 5 4
7 II 9 . 9 V
1*9.76
1 47,/ . (1
1 J9w. 1
1,<7i.K
1351.7
1 3 ' t- . 6
1 0 '1 .1 . U
12*1.1
1 2 < « . 9
1 2 -1 J . 3
4 fr 4 . 4 M
419.31
1 7 4 . 7 .1
^M.27
v g 1 .6-1
740.64
910.09
^9.88
1 41U.9
1 3 9 1 . f*
1371.1
1^4^.7
1 .1 2 1 . 1!
12.7
1 26-1.9
1 r * ^ • •*
*> 1 1 Q *3
4r>4.4«
419.34
1/4.79
.2932
1 .6242
1 . 6 u 6 4
1 ,5d7h
1 .5o8!
1 .546H
1 .5236
1.4977
1 .4r»8fl
1 .43?b>
.6641
.6149
.4653
.4147
.4627
.40tJ7
.3523
.2931
1 .6159
1 .598U
1 .5/91
1 . 5 4 9 1)
1 .5374
1 .5136
1 .4H69
1 .4558
1 .4182
.663V
.6148
.-J6-J2
. 5 1. 4 6
.4626
.4046
.3522
.2930
1 .6U89
1 .5U99
1 .5/Ob
1 .5404
1 .5283
1 .5u39
1 .4/63
1 .4439
.7131
.6637
.61 46
.56-j]
.H1674
. II
. V5 /3
.91.96
o O it O
• *• •> 11 7
.M4II9
. 7 9 v n
.7547
.7069
.*536
.u 2 M 4 7
.H1946
. i)1 88 *
. U 1 H 3 (i
. II 1 7 8 ?
.U 174 n
.HI 701
.Ol67.>
.U
,n937
.H57°
,H?1P
.7820
. /427
. /nun
.6536
.6013
. II 2 II * I
.11195*
. U 1. 8 8 7
. II 1 H 3 0
.111781
. n 1 7 4 ii
.1117114
.01673
.U
.8375
.8033
.76H1
.7315
,f>929
.6516
.6063
.4546
.U2U39
. 01951
.01886
.01824
189.73
.0
I 4 1 2 . H
1 39 u. fl
I 3 6 o . h
1342.4
131/.3
129H.4
1261.1
127H.2
4H7.9U
441.64
3V7.31
354.31
312.28
2/n ,9M
230.21
1 89.H4
.11
1 41 H. *
138/.5
1 .1 6 3 . M
1339.3
1 3 1 .> . 4
] V85.y
1 254.4
1 2?n . y
4 H 7 . H l\
441 .6h
397.34
354. 3H
312.37
7 7 1 . n /
730.31
1*9.05
.0
140H.4
1 0 8 •> . f 1
J361.U
1 43f>. u
13.U9.6
1281.^
1249.7
1213.3
4M7.B6
441 ,6d
397.40
344.45
.3232
1 .6154
1.5973
1 .5781
1.5577
1.5355
1 .5111
1.4H35
1.4511
.6887
.6395
.5902
.54112
.4889
.4359
.3808
.3231
.0
1 .6M70
1 .5887
1.4692
1 .5484
1 .525*
1 . 5 (1 n 7
1 .4720
1 .4.181
.6HM5
.6393
.49111
.5401
.48*8
.4358
.3807
.3230
.I.'
1 .5990
1.5805
1 .5608
1 .5396
1 .5164
1 .4906
1.460*
1..425U
.6883
.639]
.5899
.5400
700. 0 psia
750. 0 psia
800. 0 psia
850. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
403
-------
Line VTAB HTAB STAB VTAB HTAB STAB
No. (fta/lb) (Btu/lb) (Btu/lb °F) (ftVlb) (Btu/lb) (Btu/lb°F)
06490
06430
06440
06450
06460
06470
06480
06490
1)65)10
06510
065?0
06530
06540
06540
06560
06570
f 1 6 5 H 0
06590
066UO
n*61 0
066?fl
06600
06640
06640
1)6660
066/0
066*0
06690
06 7 li 0
IJ 6 / 1 0
067?0
0 6 7 3 II
(I 6 7 4 0
II 6 7 •> ft
II 6 7*0
M6 7/M
0 6 7 8 0
06790
06RUO
06H10
fl68?0
« 6 8 0 0
06840
06840
06860
06870
n 6 H H n
06890
. 11 1 H 0 4
. h 1 7 5 9
. II 1 7 9 ]
.01688
.01659
.H035
.7713
. 73M1
.70o*
.6675
.69H9
.4869
.43V4
,n9i|K9
.1)1 994
. 1" 191 H
. H I MS 6
. M 1 M 0 4
.111 /5V
.Hi 790
. H 1687
. 111659
.75MI
. /9/9
.6943
. 6 6 ? 1
.6971
,48V 7
.44H4
.4014
. n?ilR«
.H1990
. lil 91 7
. ••! 855
. 0 1 rt 0 3
. n l 7 *> 9
.1)1 7 9 II
.01687
.H165R
. 7179
.••R /5
.'•5o7
• /> ? 4 7
*> 9 n 7
.454?
.41J7
.466R
. |l?l|86
303.34
991 .73
9411.73
9 1 0 . 9 U
1 69.99
141 /. 8
1 394.4
1 3 7 :• . 5
1 0 4 -t . 6
1 3 1. 9 . 4
1?91 .4
1 ?6M . 0
1 ? 9 4 . 3
511 .911
464.4H
4 ] 9 . 3 M
3 7 5 . R 4
3 0 3 . 4 ?
991. R?
950. flo
71 0 .3)1
170.10
141-/.7
1 39 , .11
106/.7
1 34 '.4
1 01 4 . ~\
1 ?H / . II
1 2 5 4 . 1.
i ;>!••. n
511.84
4 6 4 . 4 /<
419.4?
* / 5 . 9 f)
VM . 5 IJ
991 .91
940.93
910.41
1 /0.?2
141 ^.4
1 > R ** . 6
1 36->. n
3 3 w . 3
3 1 / . V
?!)' .5
249.3
21 " . 4
51 1 .7V
.51.45
. 4 6 ? S
. 4 n M 5
. 3 1> 2 ?
.?9oO
1 .61)04
1 ,5rt9?
1 ,56?M
1 .5491
1 .4195
1 .4*44
1 . 4r>59
1 .4o?l.
. r> 6 0 4
.M44
.4649
.4144
.46?4
. 4 0 o 4
.o5?.1
.?9?9
1 .593?
1 .4/4M
1 .5-j5?
1 . 5 o 4 1
1.5111
1 . 4o5o"
1 .4-j47
1 .4^01
. /1 ?6
.*6o3
.6143
.»'64H
.5143
. 4 6 ? 3
. 4)1/13
,."50
,99<»9
1 . 5 n 6 3
1 .5677
1 . 5 -4 7 o
1 . 5 ? 6 0
1 .5u9M
1 .4/64
1 ,445/
1 . 4||H?
. /I ?4
.1)1/81
. H 1 7 3 9
.(11704
.1)1673
.H
.7874
. 754*
.7?in
.6R4P
.6486
. 6 II 8 4
.4641'
. 41 ?6
. n 9 n ? s
.1)1954
. m hP6
.1)1(^99
.Hi 7R1
.01739
. H 1 7 IM
. H 1 6 7 9
.1)
.7497
. /114
. 6 7 « 9
.6449
. 60nR
. 46W6
.4949
. 4744
. n 9 (1 3 /
.•ll 95 ^
. M 1 h 8 4
. n 1 h 9 •
.H17R •
.11173*
. H 1 7 0 ^
.11167''
.H
. 7fl?4
.6799
.64H9
. *08fl
.4799
.4346
.4913
. n 91 44
. i' 9 0 3 *
3 1 9 . 4 5
?71 .16
?30.4?
190.06
.II
1 4 II I: . ?
1 3 8 ? . 4
1 3 5 H . ?
133?. 7
1 0 0 4 . 7
1 976.4
1 '43.6
1 ? II 4 . ?
4 H 7 . 8 o
4 4 1 . 7 H
3^7.44
354.51
3 1 ? . 5 3
271. ?6
930.5?
190.1 /
. n
1403.9
1 38u.ii
1354.0
1329.J
1301.7
1971.4
1937.4
1 196.6
4h7.8l
441.79
397.5)1
3 4 4 . 5 h
019.^1
9/1.34
? 0 0 . 6 'f
190.9H
.H
1401.7
1377.4
359.0
325.9
99 7. f,
? 6 6 . 4
? 3 H . h
536. 6w
4*7.79
.4887
.434H
.3807
.3? 30
.0
1 .5914
1 .5796
1 ,55?6
1 .5311
1 . 5 II 7 4
1 .4M07
1 .4498
1 .4l?H
.6881
.6390
. 4898
. 4 3 9 P
.48M6
.4357
.381)6
.37?Q
.li
1.5*41
1 .56*1
1 .544H
1 . 5 9 '? M
1.49R6
1.4/11
1 . 4 3 H v
1 .3988
,*8/8
. * 3 H H
. V 8 V 6
.5397
,48h5
.4356
.08(1*
. 3 ? 2 R
.1)
1 .5771
1 .547V
1 .5073
1 .5149
1.490U
1 .461 7
1 .4981
.7375
.6876
850. 0 psia
900. 0 psia
950. 0 psia
1000. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
404
-------
Line VTAB HTAB STAB VTAB HTAB STAB
No. (fta/lb) (Btu/lb) (Btu/lb °F) (ftVlb) (Btu/lb) (Btu/lb °F)
06900 H199? 464.49 .66i1
06910
069?0
069,J'i
06940
069t>n
06960
06970
U1917 .96 . ">647
ll 1 H 0 3 V\t . 5 7 . b 1 4 ?
017*56 ? 9 1 . 9 '* . 4 6 /» ?
11 1 7 ? 1) ? (j 1 . 0 * . 4 0 »i ?
01687 ? 1 •) . 5 ? ..<">19
016SH 1 7ll .3.* .>>9^8
..Il9«i?
.(I1H84
. |i IM?H
.Ml 7 8 ii
. n 1 7 3 n
. H 1. / 0 .*
. ll 1 6 7 '/>
.U
441.74
397. ^S
3b4 ,6*>
31?. 69
?71.44
?JO . 7?
190. 3"
.0
.6386
.')895
. •> 3 9 6
.48H4
.43«?5
.3804
. 3 ? ?. 8
.U
1000. 0 psia
Figure 12. Water Superheated Fluid Properties (Cont'd)
405
-------
Line P
No. (atm)
VLIQ
i liters!
1 mole 1
WAP
i liters >
1 mole 1
I mole I I mole I
(i u o i o . n n 31
00020 .113.1
00030 . "4n
0 01) 4 0 .in.
QUO 60
o u o 7 n
0 II 0 H 0
0 II n v 0
0 II 1 ii 0
0 0 11 0
OU120
OII14M
o u 1 •? n
flu 160
0 u 11 n
n (i l H (i
OU190
o n 2 s n
Oil 2 4 II
. 4 0 1 11
1 .n-.o
1 .2W
1 .h/9
2. 2'i 7
4 . r> V ft
r>. S 7 9
6 . 7 V V
Q . H r 7
1 I . r 0 >
1 1. /»)•>
I1*."*!
'H.
41.
Sll.
Ml.
7 i.
Hit .
"'I.
1 on.
1 -i2.6
1 rid.
1 70.
2 | n.
,31^7
.1 ? o H
,41
,40
ft n n . M
120.n
H(S..14
44
•IX,
66
44
1 7
J <.24
1 M.42
H.2 iH
3
7
2 WO
•>tlftt>
1 .4090
1S2H.
3241).
7332.
H 4 4 9 .
10740.
11U40.
1lfl60.
12970.
14090.
1S240.
\ 7810.
IV010.
2 « 3 9 M .
21790.
7.11 •» H.
?lfi40.
262HO.
26flpil.
870 ».
10700
12300
14000
16156,
1 70M ,
1H920,
19160,
19HUO,
20970
2324 il.
0.
26710.
290 .10.
7 '7.0
/ n 7 3
. / H738
2 M 4 V 0
Figure 13 . FC-75 Saturated Fluid Properties -- Pressure. Tem-
perature, Specific Volume Liquid, Specific Volume
Vapor, Enthalpy Liquid, and Enthalpy Vapor*
*This file is not used when CP-34 is the working fluid.
406
-------
Line
No.
nnoin .on* .006 .noe .01 .«? .04
110020 .8 i. ?. 3. 4. •>.
Oiiiun 12. 1.1. M. t-5. 16. in.
0 U 0 4 n H (|. 1 ? I) . 130. 140. 150.
OllObl) 2in. ?2Q. 230. ?40.
.1)6 .On .1 .? .4 .6
6. 7. H. V. HI. 11.
2li. 25. JU. 35. 4U. H. _
1MI. 1/0. 1HO. 140. 2011.'
?«sn. s»7n. ?no. z<>n. 300.
PTAB
(atm)
TTAB
Line
No.
0 ii o o n
OHO 7(i
UUOHO
OU040
001 110
OH] 1 II
OU12H
On 1.1 II
00140
Oiil^n
0 1)1 6 0
OUl 70
Oui»o
0 U 1 V 0
0 0 2 u 0
OU210
0 n 2 2 r.
0 U 2 0 0
00240
00250
007ftO
0 0 2 7 n
002*0
0024H
00300
0 u 3 1 n
00320
00330
OU340
00350
OU360
0 u 3 7 0
UU3HO
Ou340
0 U4 u 0
00410
HTAB
i kcal\
I mole I
1 * •
r 1 •
?.>.
2->.
2/.
r '"* •
V'.
54.
In.
5" .
1 *.
71 .
' >.
?/!
2*.
5''.
34.
3*.
5".
1 " .
7 1 .
2 1.
?'> .
\\\
3x.
5 * .
56.
3".
19.
21.
7->.
7->.
7 / .
2V.
70
08
70
74
r<9
Hi
16
<4
S4
7?
71
77
76
«1
i'3
18
.5ft
•>6
73
/?
73
77
vt
!••>
70
57
*>7
74
73
74
78
f*5
94
STAB
i cal
lmole-°C
67.
77.
R/1.
91.
^T.
1 III
1 1)4
1 uR
67.
* * •
77.
*l .
4 n.
4-..
9Y.
1 •• *
1-7
ftf, .
71 .
7».
"1 .
HI.
4*1.
OK.
1 n '
1 iift
61.
71 .
7'>.
Hll.
R'J.
RU.
94
Hf>
57
5-i
t>5
.il.i
.11
.f»-y
?o
25
1?
!i'
•M
1 I
79
. 57
. 5->
ft7
7?
>r)
v>>!
^
^ n
/ rl
.R4
.H,'
26
3 1
Irt
«9
45
H7
VTAB
)| lite rs i
I mole I
7H.52.
1241.
9ll'lH.
9467.
4fj 76 .
J. H7».i5
In 64 4
1 1 1 II 3
11^12
5271.
S 4 Q 4
v / ^* ft •
6 u 3V.
6 11 1.
6?«4.
6 11 5 ft .
71 ?y .
7 -1 n 2 .
7 74.
.5 ^ 1 h .
4 I •> II .
4o">.
4 -j ? V .
4 7 S ,1 .
S142.
7347.
5')51.
57-ib.
3132.
3796.
3 4 ft 0 .
36^?3.
3 7 R 7 .
J^SII.
42
LI
45
79
04
.5
..1
.2
.0
ft1
18
74
00
43
>;9
•>•»
il
ft7
^1
o3
11 •»
)R
yii
74
16
18
ul
47
•31
U4
•>R
12
66
HTAB
i kcal \
Imolel
77
24
2^
5*0
3 1
.5'»
37
3v
2"
2?
?4
7ft
3 M
.5.)
.5^
37
5 v
9 ii
'.»,/
'4
?^
3'i
3.5
5'*
37
) 4
?'i
?.'S
74
?'•
2^
31
.69
.71
.77
'.95
.118
.24
.43
.65
.71
.71
.73
.79
.97
.10
.26
.45
.67
.7?
.77
.75
.HO
.99
.12
.2.8
.47
.68
.71
.73
.76
.81
.89
.00
STAB
I cal I
lmole-°cJ
7H.49
8H.23
84. H6
8V.. 55
90.71
97.45
1 0 7 . 0 H
1 « 6 . 1 1
110.04
64.75
74.70
7V..49
H4.12
8H.M
97.47
97.71
n»i.34
1 u 5 . 3 7
1 0 9 . 3 II
69.22
74.18
7H.46
H3.60
8R.09
92.45
46.69
100.87
104.84
lllH.7b
6M.81
70.77
7ta.56
8.1.19
87.68
92.04
VTAB
i i liters \
I 1 mole I
H II 3 ft. H 4
M441.69
496.1. J7
O f^ 7 '3 O O
' ** * £ • *. r
1 0 U H 1 . 0 6
IU4H9.9
1UR98.8
11307.6
11716.4
5 557 . H9
5 ft. 111. 4 6
5400.07
644rt.14
6771). 71
6990.27
726-3. H3
7 5 1 M . .1 9
78111.96
401*1.42
42?7. H4
4477.26
4631 .ft9
483ft. 11
5ll40.->3
5244.95
5449. 57
565o. Mil
585R.2?.
3214.74
-537R.77
3541. HI
3705. .55
386H.H9
4037.47
0. 004 psia
0. 006 psia
0. 008 psia
0. 01 psia
Figure 14. FC-75 Superheated Fluid Properties -- Pressure Temperature,
Enthalpy, Entropy, and Specific Volume*
*This file is not used when CP-34 is the working fluid.
407
-------
Line
No.
00420
0 H 4 3 0
0 U 4 4 0
00450
0 U 4 ft 0
0 II 4 / II
0 0 4 H 0
OU4VO
0 0 5 H n
00510
0 052»
n u 5 .> o
OU54U
0 II 5 4 (1
HTAB
1 kcal \
1 molel
< * , n 6 v
STAB VTAB
cal i /liters i
mole-°C| 1 mole I
> 1 . 1 7 41l4.iO
14. VI 0 •< . 0 ft 4 2 7 / . / 3
444 i . ^7
H6.41 4 ft (i 4 . o li
1 g . /ft ft 4 .99 1.56ft . 1R
2 I . / h >
"l . II 4 1 ft •» * . (C 5
2.1.77 74.gl 17 <«'..! 2
HTAB
j kcal i
Imolel
« « . i .5
V, .29
37. 4M
\ • . ftO
•>.-.76
>^. /ft
^4. /g
? 4 . « 1 7 ... ft 2 1 M 1 1 . y 0 2 * . * 4
P7.HM H4.18 1M93.46
P ^ . -v 7 m . ft d 1 -i / 4 . 1 3
^..•0 S
\ * . ' 4 V
3ft. 41 1
J '.' . ft 1 1
>/. go 2 ii 4 /. i ii
» 7 . II R ? M * . .1 ft
'i 1 . I ft 2 2 ? " . " •*
L '!*> . l-» 23'V . 4 P
Ou5ftn 1 g . M i) 61.71 7n<.?4
oii5 / n
0 U 5 H n
?l . 79 C
< ^ . 7 6 1 2 4 . 1 .1
7 .1 . M n 7 1 . h 1 ri ft 4 . 1) I
0 114^0 ">•. .-4 7 ».1 4 0|.S.»i
0 II 6 II n
0 M 6 1 H
00620
0 U 6 3 "
0 U 6 4 0
OU ft 40
0 U 6 ft 0
0116/n
006H'
On6oO
0 u 7 n 0
0 0 7 | n
n . n <
^1.16
* 1 9 % X
W . , 1
11J . /2
•'i .79
2? . /o
'i.»»?
?*..i7
STAB
/ cal I
lmole-°c)
9 6 . 2 «
1 0 H . 4 I
1 H4.44
1 u 8 . 3 7
ft 7 . 5 4
72.49
77.28
HI .91
rt ft . 4 0
O.i. /6
04.UO
9o. 13
I M 3 . 1 6
lu 7. 09
66.26
71.2?
7ft .in)
Hi). 6 4
'/.Ml *,.0'l 0/J6.7,. '".v^S M4.13
it ,, t .. n
/ . ^ ? 9o / . ft n
1 . 1 / '«!.'•? 1 i'2-t. ~>4
<4 . ' 7 v
J i. HO 1 11*4. 4^
<1 . ,16
i v 1 O
» i • i **
^••. S5
< ft . a -j v j . f rt 111 n.. 1 2 3 y . 1 4
t«.- 4
1 v ...7 >
3 1 . - . '
•1^.8- 1 1 ^ 1 . '!'
' -• . 9 ft '> / ? . 1 "
» ..i'l 440.42
^•'.75
2 -.-a
'^.^l
Hg.49
9 .1 . / 3
O7.r<6
1 "1 .*n
1 (i 4 « tJ 2
ft 4 . 5 0
'n.46
S*.r> 7-.hH 47ft. ft/ '«i.M /'>.25
2 •> . "•
> / .w;
» •• . • 1 *
1 /.';rt 6 u 1. -J 1
« ' . 1 4 6 1 1 . 1 )
>ft.47 6'>H.44
007^" »''.i< 9 -i . M 7 6 M 5 . 7 n
Ou 7 so
Ou 740
0 U 7 4 0
Oil ?h 0
0 u 7 7 n
0 ti 7 n ii
0 U 7 v n
OORuO
OORin
Oo82n
008.JO
0 u R 4 n
00840
OU860
OU8/0
0 U 8 H n
< 1 . M 1.
3 ft . 4 i V
3 - . ' •> 1
10."* '
' 1 . " I f
•) •>.'••> 3
' > . U 4 7 1 2 . J v
« * . M / 4 I' . ? 1
••'.11 7 ft 7. 4 /
^.42 1V1 . 62
>/.47 412. "(.
' •«. 34 4.1?. 4 i
2'-. >iH
2 . v ft
< 1 . 'i 7
s * . /> n
3 • . 16
3 y . 1 4
* '. / /
9 • . ' y
» -. i?
2 4 . .1 4
'i."6 7/.uo 4'»?.y-> '^.«g
' / . w .^ ,
VI. 1.2 '
^••.14 v
< 1 . fr 1 4 7 * . < •>
>'>.u3 49*.H1
)|..13 414.?/
^ - . »* 7
*l .118
l.i. ''I
7 g . M H
M '. . 1 7
n 1 . / 3
V2.o/
07.1 i
1 ••! . I.I
1 c5. .'ft
ft4 . y 7
6-; . w3
74. 71
70.. 14
M.i.h4
HM . ? 1
92.44
14. --g 0-4.41 434.72 1'».<7 9^W
^r- ,4ft y<.»jg 5v>4.1o
5 ".ft 6 1
1 0 . M 3 '
L ii ? . •? / 5 / 5 . 6 .j
^ . II 0 i 1* . 3 il
2 I . M 2 ft 7 . u "j 3 2 0 . ft '
9 1. n 1 71.92 3/»ft.'M
i 7 . ,h
:5 •* . / 7
?.. ,M7
•»/. 12
?1.M4
1 nu.4g
1 u4.->3
ft 4 . 4 4
6W.51
74 . 0 il
VTAB
/liters*
1 mole f
4ig->.*6
4359.50
4 5?. LU 4
4686.^7
1607. .>7
1.68VJ.14
1 7 7 n . 01
1 «52 .67
1934.44
? 0 1 ft . 2 1
2 u g / . u H
2179. 75
2261 .4?
2340.29
H 0 3 . 6 n
M4.5/
««5 . 45
026.34
0 ft 7 . 2 V
1 n n i . 1 1
1 n4h . og
lllH^.N?
1 1 V'.76
1 I71.ft4
5 o 4 . 7 g
4 6 3. 'IS
590. Su
6) 7.4ft
644.41
672.07
609.3.1
7 2 ft. 4 x
743.84
7 h 1 . 1 ,.i
4 fi 1 . H 4
422. ?M
447. 7.1
4ft3.1 7
4rt3.ftl
4 n 4 . •)'>
*>?4 .411
544.94
5ft5 . 5h
585.82
321.47
3.17. H.I
354. lh
0. 01 psi«
0. 02 psia
0. 04 psia
0. 06 psia
0. 08 psia
0. 1 psia
Figure 14 . FC-75 Superheated Fluid Properties (Cont'd)
408
-------
Line
No.
00890
009UO
OU910
01)920
00940
00940
00950
OU960
OU97H
OU9HO
00990
0 1 0 II 0
0 1 0 1 0
01020
01040
01040
01050
01060
01070
01080
0 1 0 9 II
0 1 1 11 0
OHIO
01120
01140
0 1 1 4 U
01150
0 1 1 ^ fi
01170
01 1M(
011*f.
012iiO
0121ft
01220
0 1 ? jo
01240
01250
01260
0 1 2 7 n
01280
01290
0 1 3 U 0
01310
01320
01341)
01340
01 35i'
HTAB
1 kcal 1
I mole I
75
27
511
32
34
36
3rt
19
21
24
25
77
Su
42
34
36
3M
19
21
24
?•>
?/
3 'i
32
41
1*
3h
19
?1
7 ^
?•>
M
4/>
14
Sn
3tt
1 *
21
> \
? •>
? '
4 n
I?
J4
36
3«
.67
.94
.1)3
.15
.30
.47
.67
.K5
.84
.85
.89
.95
. 05
.17
.41
.49
.69
.85
.84
.85
.89
.95
.05
.17
.41
.49
.69
.85
.84
. H4
,HH
.1(4
. 16
• •* 1
.48
^8
.84
.*4
.M
.M8
.94
.03
. 15
.40
.48
,*8
STAB
i cal
VTAB
I (liters)
\mole-°C| 1 mole I
76.
81..
8*!
91.
9l.
1 1.9
Mi.
6-7.
7u.
7>>.
84.
$H .
Q 'J
96.
1 .10
r* o
64.
6s».
74.
82!
87.
91.
9*..
99.
5«.
6'».
7 ^.
77.
R.>.
8*.
9D.
94.
9n.
5->.
6 \.
67.
7/>.
77.
81.
»"<•>.
9'l.
94.
««.
64
1 v
91
1 H
1 *
• L "^
7!1
75
6?
04
41
6 I
79
h7
. :\ ">
3 1
4?
29
li'J
9R
2*
46
54
S7
64
5 n
2 I
76
1 ^
49
6?
75
74
01
U6
9 \
6 '
2'i
6'
92
] I)
18
16
4*2.36
37H.71
411 .42
427.77
4 4 4 . 1 .<
4 6 H . 4 o
1 r> * . 6 ••>
1 6 4 . R .>
1 7 4 . 0 n
1 H 9 . 3 o
197.54
2 U * . 7 1
214.89
222. flo
24H .24
78.4?
82.41
86.511
9H.-?9
94.68
9M.77
1 II 7 . 8 •;
1 U * . 9 '»
1 1 1 . 11 )
115.1^
54.94
57.67
6M.49
6 i . 1 2
65.84
6" . 57
71.30
74. il?
76.75
39.16
41.21
44.25
4*? . 29
47.34
49. ja
51 .43
5 j . 47
55.52
57.56
HTAB
| kcal i
I mole)
2^
9M
41
44
4*.
47
4^
?•!
'2
24
29
41
14
^•>
M
4v<
2 II
7 >
2-?
7f.
41
< ^
.S'i
47
•<9
2n
7V
7 f»
Pr,
41
s \
4->
^7
49
?i.
2/»
24
^*,
2-
4 l
4-,
17
Jv
.90
.9fl
.09
.2?
.48
.57
.78
.b4
.84
.06
!on
. 10
. 74
.40
.5*
.80
. U4
. 84
.87
.92
.11(1
.10
.24
.40
.58
.811
.84
.84
. 86
O 1
Q O
. Id
. 24
.49
.58
.79
.84
.81
.85
.91
.98
.119
.22
.49
.57
.79
STAB
1 Cal 1
lmole-°Cl
7H.
84.
87.
92.
96.
I II 0
lii 4
64.
68.
72.
77.
82.
86.
9(1.
94.
9«.
Hi?
61.
66.
71.
7h.
80.
85-.
8V .
94.
97.
I'll
61.
66.
7.1.
75.
79.
84.
8H.
92.
96.
lill)
60.
65.
70.
74.
79.
84.
88.
97.
96.
1 00
VTAB
liters \
mole i
93 370.54
42 386.89
78 4 U 3 . 2 4
02 4 1 9 . 6 U
0. 1 psia
15 445.95
.1H 452.40
.11 468.66
25 1
20 1
99 1
60.74
68.91
77.09
62 1H5.27
11 193.44
0. 2 psia
47 2U1.62
71 2119.80
84 217.97
87 226.15
.80 244.54
92 811.47
87 R4.46
66 8H.>>5
29 92.63
78 96.72
14 1. 0 0 . 8 1
38 ]
104.911
0. 4 psia
51 1 U H . 9 f
54 1
114.08
.47 117.16
14 54.58
08 5 ^ . 4 0
87 59.03
50 61.76
99 64.48
J5 67.21
0. 6 psia
•59 69. vi
72 72.66
75 75.48
.6H 7tt.ll
56 40.18
5? 42.24
30 44.27
94 4ft. t?
43 4 n . ^ 6
79 5.1.41
0. 8 psia
03 52.45
16 54.49
18 56.54
.12 5h.58
Figure 14 . FC-75 Superheated Fluid Properties (Cont'd)
409
-------
HTAB
Line i kcal \
No. 1 mole)
STAB VTAB HTAB
I cal j i liters i / kcal \
lmole-°C| I mole I Imolel
STAB
cal
VTAB
/liters i
I uai \
lmole-°C/ 1 mole I
01370
o 1 3 H n
0 1 3 v n
U 1 4 II II
0141 0
01420
o 1 4 .MI
II 1 4 4 0
0 1 4 •> 0
014t>0
0 1 4 7 H
n 1 4 n n
0 1 4«0
i< 1 5 If (1
u J 5 1 II
U 1 5 7 ii
71
?'.
>]
3d
*/
S4
\r>
S ^
II.
? 1
3.\
?1
77
* v
< /
.n7
.K6
.l"3
. 16
. Ml
.47
. f ft
. *>V
. ^> 3
. /6
.*4
. V4
. " 7
6 '.67
7 * . 2 7
7 1 . . M 2
HI .2?
M.51
Hv.68
Vo.74
97.71
0.
.
1 7.
1 -A.
lv.
2u .
76
4?
?5
Hi
76
111
1M
96
1 U
:>6
;•)
.MI
;i
24. M8
J f. \) "I
? w (Ml
3 » . 1 0
3 3 . 2 3
3 ••> . \ 8
»>.-» A
V>./7
n.
2 v . 6 1
24.75
?/,.^n
?> .^9
.< i . n n
.^.15
Ml
65
69
74
79
*.>
87
91
9^
9V
U.
63
6H
7 S
77
81
80
.2.3
.17
.95
.56
.114
. JH
.01
.7*
.74
.66
. 58
.3.3
.01
.49
.H7
.14
.31).
.32.
,36.
38.
41).
41.
4.1.
45.
4/.
0.
15.
10.
1 /.
IB.
19.
2 IL
HO
71
•>o
33
1 3
90
64
34
H3
•>4
*5
77
79
*0
72
1. 0 psia
2.0 psia
u 1 5 .in
n i s 4 o
0 1 'i •> 0
0 1 5 h n
015/0
nis()n
01 590
Ol^nn
U161 n
0 1 6 '{ ii
ii 1 6 o n
0160ft
01650
01660
U16/0
016*1
01 6V II
01 7 o 0
01710
01720
0 1 7 .5 0
01 740
01750
.01760
017/0
017HO
0 1 7 V il
0 1 8 u 0
01810
01820
3i./ <
S t) m 4 ?
rtrt
9P
.X5
..>6
?
7
1 . Irt
^.1 '
3 1.3? 9 U.
W.I? 94.
3-3
36
? 1 . f»6
22.*>7
<., ,r2 9'. .j.3 ?-3.i" ^-<,/S 9M.28 ?j.45
0.
0.
2 * . « 8
?->.^fl
/>/./!
'W . - <
< | . V*
*4. 11
V . }6
^.••7
'1 .
.1 .
n.
•> •> . 4 (I
7 / . "' '
9v . / 1
31 . * H
* 4 . lift
Si, . >•«
^.-1
n.
D.
'i .
?i. 1 7
7 / . 4 1
V * . •• H
5i . n
0.
U.
A »
6V
/4
7'*
H \
t/
•' 1
'»-»
11 .
II .
".
M>4
7 %
77
HV
rtft
9,i
94
'1.
'I.
') .
f>7
1 >
1 1
M 1
.79
.ft7
. ;j v
.^5
. .16
. 32
.46
.44
. /O
..<9
.h6
..
.62
. 77
./7
.h.i
.67
.21
./O
11
II
1
1
1
1
1
1
1
I
0
0
0
7
8
9
9
I
1
1
0
II
0
5
6
7
7
•
•
H. 1 />
J.. In
1 . f ,)
2 . *>H
.> . ?5
vi. V1
4 . Ml
1.23
•
•
•
.P73
.5-43
. 1 *H
.7111
II . 24
" . 7v
1 . .Ml
.
.
•
.91 7
.527
.OOH
.5ft I
0. 0.
« . n .
2-J.15 67.
2«.66 71.
">' .77 7h.
< .1 . 9 n s n .
3 ,s , i' 6 rt s .
1">.;5 89.
3 / . 4 6 Q .1 .
*".i8 97.
0. H.
0. II.
? 'i . v* 6 f> .
2^ .*>0 71 .
?".".* 7 'J .
i- ./V HO.
^.y7 84 .
v^ . I 7 8 H .
3 7. 4 II 92.
3vj.^? Vft.
U. I).
n. n.
n. 0.
2* . M 7 ii .
/>i.49 74.
3 •• . h 1 7 V .
v3/^.H7 8.1.
\1
94
45
H7
19
42
46
.19
17
07
64
10
47
7.3
7R
72
-Ml
99
46
87
". .
'1 .
1 0 . h ?
11.44
12.^1
I /• . V1
IS *> Q
1 4 4 'J fy
14.^2
Jl.^4
n.
n.
/ .5nl
^.211
8.814
9.517
9.974
1 U . 5 3
11.H5
1 1 .14
0.
0.
0.
6.'2«
6.8M4
7.350
7.7*4
3. 0 psia
4. 0 psia
5. 0 psia
Figure 14 . FC-75 Superheated Fluid Properties (Cont'd)
410
-------
Line
No.
01800
01840
01850
01860
01870
01880
01890
019QO
01910
01920
019JO
01940
01950
01960
01970
019HO
01990
020)10
02010
02020
02030
02040
02050
02060
U2070
02080
02090
021UO
02110
02120
021.50
02140
02150
02160
02170
021HO
02190
02200
02210
02220
022JO
0224 .
'} *V
1 1 •
3.S.
3->.
3S.
0.
0.
0.
0.
0.
24.
31 .
33.
*5.
3 .< .
0.
0.
0.
0.
97
?0
44
23
44
66
*7
12
26
"2
X9
55
77
1)3
?8
77
13
4?
*7
W4
20
94
29
56
tt5
12
STAB
i cal
VTAB
I (liters)
lmole-°C| I
Mn . H3
9H.21
94.22
0.
•1.
'I.
'I.
71.99
7h.62
*l .16
KT.M
RV . 77
9.\.75
0.
'».
n.
" .
7 i.. til
7n. u 5
*'i.h7
H4. u 5
M «< . <> 9
9.1.. 5 4
'».
n .
ii .
H .
7 n . 56
7>i. sn
H .1 . / II
H 4 . f i /»
rf * . n ')
9 <• . y 6
'1 .
i) ,
'I.
0.
il.
74.93
7-^.75
14.21
H H . •> ?
9 ? . M.
" .
0.
0.
(1.
8
8
8
0
0
0
0
5
5
6
6
6
7
0
0
0
0
4
4
5
5
5
6
0
0
0
0
3
3
4
4
4
5
0
0
0
0
0
3
3
4
4
4
0
0
0
0
mole 1
.oin
.475
.010
•
•
•
•
.151
.654
.112
.519
.023
.302
•
•
•
•
.145
.628
.1166
.451
.fill
.1 49
•
•
•
•
.367
.M4
.770
.642
.979
,'H7
•
•
•
•
•
.?10
.665
.010
.329
.61H
•
•
•
•
HTAB
1 kcal \
Imolel
.V,
37
39
0.
i).
n .
26
?"
\ •<
A/
3i
37
3-y
o .
i).
n.
0.
2H
3n
,V.>
34
37
3-<
Ii.
0.
0 .
0.
? 1
3»
3 >
•M
W
3g
0.
n.
u.
0.
2/
3..I
3?
34
A 7
.39
H .
0.
0.
0.
.08
..5?
.56
.09
.J-3
. *>5
.77
.99
. ?5
.49
. 16
.43
.67
.90
.17
.41
.96
.29
.55
.01
. 113
.34
.73
.14
.4.3
.71
.no
.26
STAB
; cal l
lmole-°Cl
VTAB
liters i
mole J
rt«.15 H.?57
97
.2.5 M.692
9o.l8 9.HO
0.
0.
0.
5. 0 psia
0.
0.
0.
6Y.53 4.873
74
7r
. ,<6 5.4UH
.89 5.923
6. 0 psia
KJ..54 6.316
«7
01
.66 6.732
.75 7.116
9',. 72 7.482
0.
U.
I).
u.
0.
1
i .
0.
0.
7.>.74 4.393
7*
H,'
f 7
91
7. 0 psia
.36 4.R64
.h7 5.262
.31 5.6.38
.33 5.947
9->.3l 6.317
II.
0 .
H .
U.
7 1
11
0.
U.
0.
0.
.13 3.615
,H5 4.1190
8. 0 psia
H^.43 4.4f>6
rtft.HO 4.H17
VII
94
0.
0.
0.
0.
77
77
8X
Hn
9 u
9*
0.
0.
II.
0.
,V4 '
'i.l 39
.94 5.44J
0.
0.
0.
0.
.47 2.994
. Jt 7 3.460
9. 0 psia
.00 3.840
.42 4.173
.5ft 4.475
.60
4.761
0.
0.
0.
0.
10. 0 psia
Figure 14 . FC-75 Superheated Fluid Properties (Cont'd)
411
-------
HTAB STAB VTAB HTAB STAB VTAB
Line i kcalt i cal \ i liters i / kcal i / cal 1 i liters i
No. Imolel lmole-°c| I mole I Imolel lmole-° C M mole I
023UH 0. n. ». '). ii. n.
02310 PH.73 74.J< ?.7ir) ?'.97 7(..n7 ?.944
31. IS /••*.,)' 3.lft3 V..SO »1.'>9 <.3i3
Ji.4S H1.>? 3.^11" 31.C.O Kft.nS 3.6'>S 10. 0 psia
02340 V>.7ft -".1ft .*.*ii4 3-*.vl 9n.?3 3.94.1
023^0 3«.'i4 OV.J.H 4,iin/» 3^.10 94.?* 4.P15
023ftO U.
023; n o.
023(10 0,
02390 H.
0 2 4 tl 0 l) .
024in ?n.4Q
02420 .1.i.w9
024.111 3i..i?
0241H V>.66
024-30 W.VS
0 2 4 A H 0 .
024/0 n.
024b" il .
U24VO 'i.
II 2 SUM u.
tl ^ SI n -»-./"?
ii ? s <- n i . . ^ v
i.i t s .1 n i > . / ii
I)?S40 *-..'.ft
I) 2 S •? II W . ^ ft
U ^ *> r, n
ii ^ "> / r> .
r i"> •• ii . .
H << S n 0 i .
!< S ft ' H ,
u /•ft in '.
ll^ft/^h S . • *
fV* MI ^ • . . h
uyftiii > . . i^
11^ ft 'HI */.X7
U ? b t> 0 n .
U?ft/n n.
II <>6H II i| .
II 'ft VP II .
0^7ii>i •• .
0 2 / J ft ».
n^7^fi in .4.1
ti s 7 .1 n < > . -. \
0^71" * •> . ^4
0/7*? n 1 ?./4?
"1.43 3 . n n II
n /..••> 3. «/3
O | i V ft <,ft«r>
i. . n .
" . " .
'i .
:' . • .
/ ». 1. 1 i . • i
/ • . .1 ' ' . » •
>> » . ii ft /^./ ••
». ; . 'jv ^. • . i
o i . r- ^ S , '-' / i
•I .
1 • •
'. «.
u .
• ' •
n . .- .
? / . - ' •..••>
M .-. >-•, --.41
«/.)'. ^ . 7 v
•>].•". ? . v f ;
n . n .
••. n.
,. . 'i .
(I ^
0. •!.
II . ll .
7 / . 14 1 . /IS
«^y.^0 V.lh1?
M n . rt i ? . 4 <1 't
<> 1 . f 7 ? . 7 n '!
H. 0.
•i. n.
n. n.
° . o.
n . n .
2^. /fl 7ft. >S
3^.17 X 1 . 1 7
i •» . s o H r> . ft 9
3 ft . ii ? ft w . w ii
3''. 10 9v>. V8
U . 0 .
0 . fl .
•i . 0.
«. n.
" . ll .
i /•.'!? 8 ii. 7 ft
14 . 1H HS/14
V.7? WV.^M
.1 «• . '1 1 ° .> . ft V
'i. 0.
n. ii.
11 . 0 .
" . II .
"» -» . .1 1 7 «... 1 V
* i . •< ft H n . * 3
* i . ?7 rt1? . nil
« ..ft 3 fly. ^7
1 • . •; 3 9 .1 . 4 ]
I. (I.
•I . fl .
•1 . II .
•1 . 0 .
1 . II .
ll . ll .
3 i . ft, H 79. H M
1«j,14 *<».6S
*S.S.1 Rh.97
.»i.h4 93. I 3
0.
0.
0.
0.
II.
2.9J 1
3.920
^.S 1 1
3 . 7 ft H
n.
n .
I* .
i- .
-' .
•' . 1 •> >
« " 1 «4
' . R / i
.1.1- 1
1..*1 '
n.
n.
M.
'i .
" •
1 .P 1
x» . V. '1
; . * / ?
V . M ,1 0
.i . ft •»?
*».
H.
0 .
II.
n.
n.
1 .Qxft
7.31?
2. Shi
» . fl 1 ->
11. 0 psia
12. 0 psia
13. 0 psia
14. 0 psia
0?7tjO n. n. ii. o. o. i». 15.0 psia
Figure 14 . FC-75 Superheated Fluid Properties (Cont'd)
412
-------
Line i
No. 1
02770
02780
02790
028110
02810
02820
02830
02840
02850
02860
02870
02880
02890
029UO
02910
02920
029.) U
02940
02950
02960
02970
029HO
02990
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
031UO
0311 0
03120
03130
03140
031->fl
03100
03170
03180
03190
03200
03210
03220
HTAB
kcalt
mole)
0.
0.
0.
0.
0.
3 n
32
15
37
U.
0.
0.
U.
0.
0.
29
3?
3'>
37
11.
0.
0.
0.
0.
0.
2M
3?
34
37
0.
0.
0.
0.
0.
0.
2H
31
34
3/
0.
0.
0.
0.
(I.
0.
27
.08
.76
. 23
.58
.M
. 48
.11
.48
.99
.16
.H7
./8
.65
.76
.01
.05
.98
STAB
1 Cal 1
lmole-°C]
n.
0.
n.
o.
n.
7 -s . M
« 1 .89
*ft.51
9:i.79
').
n.
n.
0 .
n.
'i.
7 *> . 1 6
HI. 47
HS.21
9il.^*
» .
n.
n.
n.
c, t
•I.
70.41
MI. n
«*>. 4rf
rt V . «y 7
n.
° .
o.
n.
n.
n.
74.40
HI-. 11
84.98
»**.'» 3
n.
n.
'i .
'>.
o.
n.
7'. 08
VTAB
i i liters i
1 I mole I
n.
0.
ii.
0.
n.
1 .450
1.936
2.22?
? . 4 7 U
(1.
n.
i).
0.
0.
0.
1 .1 1)6
1 .727
? . i) 1 7
2.262
0.
0.
0.
0.
0.
0.
.502
1.361
I .670
1.012
0.
II.
0.
0.
0.
U.
.459
1.022
I. <92
1.636
U.
0.
0.
0.
0.
0.
.425
HTAB STAB
f kcal i | cal \
Imolel lmole-°Ci
0.
0.
0.
n.
o.
31
34
3ft
3-1
n.
0.
n.
n.
n.
n.
31
33
3*
3-1
n.
n.
n.
0.
0.
0.
3 n
33
:sft
3:1
n.
0.
0.
0.
0.
n.
3u
33
3i
3n
•I.
0.
0.
0.
o.
•1.
?y
.46
.HI
.4?
.75
.!«
.87
.32
.66
.
.61
.59
.10
.46
.21
.31
.86
.25
.47
0.
0.
0.
0.
0.
79
84
8*
92
0.
0.
0.
0.
U.
0.
7*
83
8M
92
0.
0.
0.
0.
0.
0.
7n
83
87
9V
0.
0.
0.
0.
0.
0.
77
82
87
9l
0.
0.
0.
0.
0.
0.
75
.37
.31
.68
.87
.86
.96
.39
.61
.III)
.24
.81
.08
.14
.00
. 24
.56
.40
VTAB
1 liters i
1 mole I
0.
0.
0.
0.
0.
1 .
2.
2.
?.
0.
0.
0.
0.
0.
0.
1.
1.
2.
2.
0.
0.
0.
0.
0.
0.
1.
1.
1.
?.
0.
0.
0.
o.
0.
0.
724
081
354
576
4711
883
152
371
004
545
799
027
15. 0 psia
16. 0 psia
18. 0 psia
20. 0 psia
.644
1.
I.
I.
0.
0.
0.
0.
0.
0.
256
517
745
25. 0 psia
.481
Figure 14 . FC-75 Superheated Fluid Properties (Cont'd)
413
-------
Line
No.
03230
03240
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420
03430
03440
03450
03460
03470
03480
03490
03500
03510
03520
03530
03540
03550
HTAB
f kcal t
1 mole I
30
33
36
0.
0.
0.
0.
0.
0.
27
30
33
35
0.
0.
0.
0.
0.
0.
27
30
32
35
0.
0.
0.
0.
0.
0.
27
2V
32
34
.96
.84
.44
.54
.37
.Ufl
.80
.30
.00
.64
.?6
.18
.77
.37
.89
STAB
1 cal
VTAB
\ (liters}
\mole-°C| 1 mole I
7rt
83
88
0.
0.
0.
0.
0.
n.
71
76
HI
86
0.
0.
0.
U.
n.
0.
7 U
75
HII
31
n.
0.
o.
n.
n.
n.
711
7-i
HO
84
.27
.28
.04
.39
.81
.71
.69
.69
.99
.77
.56
.26
.37
.17
.77
.564
.890
1.133
0.
0.
0.
0.
0.
0.
.408
.484
.644
.858
0.
0.
0.
0.
0.
n.
.405
.455
.541
.685
0.
0.
0.
0.
0.
0.
.329
.430
.487
.591
HTAB
j kcal t
I mole I
3?
35
37
0.
0.
0.
0.
0.
0.
28
31
14
37
0.
0.
0.
0.
0.
0.
28
31
34
36
0.
0.
0.
0.
0.
0.
28
31
33
36
.43
.211
.66
.90
.74
.5.1
.04
.60
..S3
.01
.51
.46
,05
.68
.12
STAB
1 cal 1
lmole-«C»
80
85
90
0.
0.
0.
0.
0.
0.
74
79
84
88
0.
0.
0.
0.
0.
0.
73
78
83
87
0.
0.
0.
0.
0.
0.
72
77
82
86
.82
.58
.22
.15
.39
.18
.90
.28
.39
.13
.71
.82
.78
.40
.88
VTAB
1 literal
I mole 1
.726
1.020
1.250
0.
0.
0.
0.
0.
0.
.438
.550
.750
.963
0.
0.
0.
n.
0.
0.
.428
.481
.611
.759
0.
0.
0.
0.
0.
0.
.413
.454
.537
.649
25. 0 psia
30. 0 psia
35. 0 psia
40. 0 psia
Figure 14 . FC-75 Superheated Fluid Properties (Cont'd)
414
------- |