BASELINE CHARACTERIZATION AND
  EMISSIONS CONTROL TECHNOLOGY
ASSESSMENT OF HD GASOLINE ENGINES
                     by
                 Karl J. Springer
                FINAL REPORT
              Contract EHS 70-110
                  Prepared for
          Environmental Protection Agency
              Office of Air Programs
        Mobile Source Pollution Control Program
                 November 1972
        SOUTHWEST RESEARCH  INSTITUTE
        SAN ANTONIO    CORPUS CHRISTI     HOUSTON

-------
EMISSIONS RESEARCH LABORATORY

-------
                                                AR-844
       SOUTHWEST  RESEARCH INSTITUTE
       Post Office Drawer 28510, 8500 Culebra Road
               San Antonio, Texas 78284
   BASELINE CHARACTERIZATION AND
   EMISSIONS CONTROL TECHNOLOGY
ASSESSMENT OF HD GASOLINE ENGINES
                       by
                   Karl J. Springer
                  FINAL REPORT
                Contract EHS 70-110
                    Prepared for
            Environmental Protection Agency
                Office of Air Programs
         Mobile Source Pollution Control Program
                   November 1972
                        Approved:
                        John M. Clark, Jr.
                        Technical Vice President
                        Department of Automotive Research^

-------
                              FOREWORD

       This project was initiated by the Characterization and Control
Development Branch,  Division of Emission Control Technology, Environ-
mental Protection Agency,  2565 Plymouth Road, Ann Arbor, Michigan
48105.  The engineering effort on which this report is based was accomplished
by Southwest Research Institute, 8500 Culebra Road,  San Antonio, Texas,
under contract number EHS 70-110.  The author, Mr. Karl J.  Springer,
was the Project Leader of the research and development work.  This project,
authorized by Modification  No.  3 to EHS 70-110, began on March 1,  1972,
and was completed November 10, 1972.

       The principal engineers associated with this project were Mr.
Robert McFarland,  who assisted with baseline data and Mr. Clifford D.
Tyree,  responsible for laboratory control technology evaluation.

       The Project Officer cognizant of this project was Mr.  John J.
McFadden of the Characterization and Control Development Branch,
Division of Emission Control Technology, Environmental Protection
Agency,  2565 Plymouth Road,  Ann Arbor, Michigan 48105.  This project
was identified within Southwest Research Institute as  No. 11-2877-01.
                                   11

-------
                             ABSTRACT

       Six 1972 spark-ignited gasoline engines, used in trucks
above 6, 000 Ibs. gross vehicle weight, were  subjected to baseline
exhaust emissions tests.  Two groups of three engines, representing
various cylinder configurations and displacements were tested by the
current 1972 Federal test procedure,  a nine-mode constant speed
engine dynamometer test method.  The concentrations  were then con-
verted to mass emissions for the nine-mode schedule using the 1974
Federal Test Procedure applicable to heavy-duty gasoline engines.
Each engine was also tested by an experimental three-speed and multi-
load schedule with expressions of emissions on a grams per bhp-hour
basis.  The emissions of interest were unburned hydrocarbons,  oxides
of nitrogen, carbon monoxide and aldehydes.  One popularly used V-8
engine from each manufacturer's group was subjected to a limited
series of laboratory tests to demonstrate control device effectiveness.
This part of the study was restricted to the use of light-duty items or
laboratory-type approaches because of the apparent lack of technology
for gasoline engines in heavy-duty service.  The experimental multi-
modal test procedure was employed to evaluate various control strate-
gies such as basic spark timing, carburetion (air-fuel  ratio),  air
injection, exhaust gas recirculation and an oxidation catalyst  singly and
in combination.  Substantial reductions in all emissions were  effected
on both engines with a combination of  exhaust gas recirculation, air
injection and an oxidation catalyst with some increase  in fuel  con-
sumption and loss in maximum power.
                                111

-------
                       TABLE OF CONTENTS

                                                               Page

FOREWORD                                                     u

ABSTRACT                                                     iii

LIST OF ILLUSTRATIONS                                        v

LIST OF TABLES                                               vii

I.      INTRODUCTION                                          1

       A.  Previous Projects                                     1
       B.  Assistance by the Manufacturer                        2
       C.  Project Reviews                                      3

II.     OBJECTIVE AND APPROACH '                             4

       A.  Baseline Data                                         4
       B.  Control  Technology                                    4

in.    EQUIPMENT, INSTRUMENTS, ENGINES,  PREPARATION
       AND PROCEDURES                                       5

       A.  Exhaust Sampling and Analysis                         5
       B.  Dynamometry and Related Facilities                    8
       C.  Engines                                             13
       D.  Preparations                                        14
       E.  Fuels                                               14
       F.  Experimental Procedures                            14
       G.  Calculational Procedures                             20

IV.    RESULTS                                               30

       A.  Baseline Results                                     30
       B.  Control Technology Assessment                       39

V.     SUMMARY AND CONCLUSIONS                           94

VI.    RECOMMENDATIONS                                    98

 LI.ST  OF REFERENCES                                        99

 APPENDIXES
                                iv

-------
                      LIST OF ILLUSTRATIONS
Figure                                                         Page

   1      Emissions Measuring Equipment Used With Nine
          Mode FTP and Experimental 23 Mode Procedure         9

   2      Baseline Emissions  Tests Equipment and Facilities     10

   3      Dynamometer and Related Instruments and Equipment
          Baseline Tests                                        11

   4      Engine Under Stationary Dynamometer Baseline
          Emissions Tests                                      12

   5      Effect of Spark Timing on Emissions Engine 2-3,
          23 Mode Test                                         46

   6      Carburetor Rods, Jets,  and Their Location (Engine 2-3) 48

   7      Effect of Air-?uel Ratio on Emissions Engine 2-3,
          23 Mode Test                                         49

   8      Exhaust Manifold Air Injection Equipment               51

   9      Effect of Light Duty  EGR and Air Injection on Emissions,
          Engine 2-3, 23 Mode Test                              52

  10      Light Duty EGR Equipment                             53

  11      Laboratory EGR System                               54

  12      Effect of Laboratory Cold EGR on Emissions Engine 2-3,
          23 Mode Test                                         57

  13      Oxidation Catalyst Test Set-up Engine 2-3               58

  14      Effect of Oxidation Catalyst on Emissions Engine 2-3,
          23 Mode Test                                         61

  15      Effect of Oxidation Catalyst on 1972  Standard Engine
          Without Air and With Fuel Rich Mixture Engine 2-3,
          23 Mode Test                                         62

  16      Various Views of Oxidation Catalyst and Air Injection
          System  Engine 1-3                                    72

-------
                 LIST OF ILLUSTRATIONS (Cont'd)

Figure                                                          Page

  17      Laboratory Set-up for EGR Engine 1-3                   74

  18      Effect of Basic Spark Timing on Emissions Engine 1-3
          23 Mode Test                                           76

  19      Effect of Air-Fuel Ratio on Emissions Engine 1-3, 23
          Mode Test                                              77

  20      Effect of Laboratory Cold EGR on Emissions Engine 1-3,
          23 Mode Test                                           79

  21      Light Duty Exhaust Manifold Air Injection System         82

  22      Effect of Oxidation Catalyst on Emissions with Slightly
          Modified Air Injection System Engine  1-3, 23 Mode Test  84

  23      Effect of Combination of Hot EGR (Sch A),  Oxidation
          Catalyst,  Modified Air Injection on Emissions Engine 1-3,
          23 Mode Test                                           88
                                  VI

-------
                         LIST OF TABLES

Table

  1.    Fuel Inspection Results                                    15

  2.    Current Federal Nine-Mode Constant Speed Procedure
       for Heavy Duty Gasoline Trucks                            16

  3.    Experimental 23 Mode-Emissions  Test Schedule (Heavy
       Duty Gasoline Engines)                                    18
              i
  4.    Explanation of Nine-Mode FTP Concentration Computer
       Printout Sheets                                            21

  5.    Explanation of Nine-Mode FTP Brake Specific Computer
       Printout Sheets                                            24

  6.    Explanation of Experimental 23 Mode Brake Specific
       Computer Printout Sheets                                  27

  7.    Nine-Mode FTP Emission Results Concentrations per FTP  31

  8.    Nine-Mode Emission Results per 1974 FTP Calculation
       Procedure                                                32

  9.    Experimental 23-Mode Procedure Dry corrected Emission
       Results                                                   34

 10.    Comparison of Average Nine-Mode and 23 Mode Results,     38
       Six Engine Baseline

 11.    Plan of Test,  Engine 2-3                                  42

 12.    Engine 2-3, 23-Mode Emission Reductions                  65

 13.    Engine 2-3 Nine-Mode 1972 FTP Emission Reductions
       (Concentration Basis)                                      66

 14.    Engine 2-3 Nine-Mode 1974 FTP Emission Reductions
       (Mass Basis)                                              66

 15.    Analysis of Nine  Mode FTP HC Results,  Engine 2-3         68

 16.    Plan of Test,  Engine 1-3                                  70

 17.    Effect of Basic Spark Timing on Emissions 23-Mode
       Test, Engine  1-3                                          72
                                vn

-------
                      LIST OF TABLES (Cont'd).

Table                                                           Page

  18.   Tailored EGR Schedules  for Engine 1-3                    80

  19.   Comparison of Emissions "With and Without Light-Duty
       Air Injection System, Engine  1-3,  23-Mode Test            81

  20.   Effect of Exidation Catalyst on Emissions, Engine 1-3,
       23-Mode Test                                             85

  21.   Effect of Various Control Combinations on Emissions,
       Engine 1-3, 23^Mode Test                                 86

  22.   Effect of "Best Combination"  on Emissions,  Engine 1-3,
       23-Mode Test                                             90

  23.   Engine 1-3 Nine Mode FTP Emission Reductions (Concen-
       tration Basis)                                             92
                                 Vlll

-------
                          I.  INTRODUCTION

       According to statistical information' '  ,  all trucks in 1970 comprised
about 17 percent (18, 747, 781)  of the total vehicles registered and burn
approximately 28 percent of the gasoline consumed in the United States.
From sales data(^), approximately 44 percent of the trucks and buses sold
in 1970 were above 6, 000-lb gross vehicle weight (GVW).  This estimate
includes diesel vehicles which are a relatively small number.

        The Environmental Protection Agency (EPA) has  sponsored two
programs, one at the Bureau of Mines under Inter Agency Agreement 0129
and the other  at Southwest Research Institute to characterize baseline emis-
sions from 15 heavy duty vehicle engine candidates and investigate the
effectiveness  of control technology.   The effort described in this report by
SwRI includes six (6) HDV engines supplied by two of the seven manufacturers
who cooperated  in the overall effort.   The engine selection rationale con-
sidered engines with low  emission levels,  distribution of the application
range greater than 6, 000-lb gross vehicle weight (GVW),  high annual sales
volume, diversified combustion chamber designs and availability of advanced
emission control devices.

A.      Previous Projects

        Southwest Research Institute's Emissions Research  Laboratory has
conducted a considerable amount of research with HDVs  beginning in June
1967.  Past efforts included acquisition  of baseline emissions data from
150 gasoline and LPG fueled spark-ignited engine-powered trucks and buses
using three experimental road-like chassis dynamometer procedures.  To
acquire the emissions,  a special truck version of the constant volume
sampler (CVS) was used, which permitted expression of contaminants on a
mass basis.   The results of the survey are contained in the SwRI final
report^ ' which  concluded that the three proposed experimental variable-
speed cycles were not recommended for use in testing emissions from heavy-
duty vehicles  powered by spark-ignited engines.   The findings of these
earlier studies were summarized in AIChE and SAE papers' '  ' which
described the  preparations and baseline data results,  respectively.

        The second major work in this program compared hydrocarbon (HC),
carbon  monoxide (CO),  and nitric oxide  (NO) emissions while driving in traffic
to chassis dynamometer emissions by the Federal nine-mode constant speed
cycle (FTP) for six trucks of various sizes and makes.   Using a CVS, the
current Federal cycle was submitted to  a number of modifications to
investigate what improvements might be made  to make the Federal pro-
cedure agree  more with road operation'  '„
*Superscript numbers in parentheses refer to the List of References at the
end of this report.

-------
       The third in this series of projects,  sponsored by the Environmental
Protection Agency, was completed in April, 1972.  The first of the three-
phase project was a broad emission characterization study of four 1969
trucks under a wide variety of engine speeds and power levels.  Emission
rates of hydrocarbons, carbon monoxide,  and nitric oxide were expressed
in mass units of grams per minute, per pound of fuel and per bhp-hr.  In
addition to the steady-state emission maps, a number of transient accelera-
tions and decelerations were studied using a variety of simulated vehicle
inertias.  The second phase was a four-vehicle study of the effect of four
different road routes on emission rates.   The road routes were sufficiently
different to be distinct,  yet were considered representative of actual truck
driving.  The three phases of this project generated a large body of data
that is summarized in the report'") and included  in some  detail  in a number
of appendixes.

       The precedent for the operation of gasoline engines on a 23-mode
test procedure, with raw exhaust emission measurements expressed on
a mass basis, was established in the project completed in April 1972(°).
This present  effort utilizes the equipment, instrumentation, and general
test approach of the earlier project.

B.     Assistance by the Manufacturer

       Several meetings were held,  beginning in January 1972,  with
representatives of two H. D. engine manufacturers involved in the SwRI
studies.  In attendance at these meetings were Mr. John  J. McFadden
and Dr. Jose Louis Bascunana representing the  EPA and  Mr. Karl
Springer from SwRI.  The objective  of these meetings was to obtain the
assistance, advice, and general support of the manufacturers in the project.
As a result of these meetings, agreements were  obtained as to  engine
displacement and selection of the three engines per manufacturer.  Through
the courtesy of the manufacturers,  1972 model engines were furnished for
test.  In the  case of one manufacturer, the engines were new and in the
case of the other,  the engines were 125 hour certification engines. Also
furnished by the manufacturers were the necessary exhaust piping, muffler,
engine mounts, intake air cleaner,  etc.

       The major area of need for assistance from the manufacturers was
in control  technology hardware,  data, and advice.  Here, the manufacturers
were unable  to furnish more than selected items  now used or previously
used on light  duty car engines.  The general lack of help  seemed to reflect
the low priority given to emission control from gasoline engines in heavy
duty service (above 6, 000-lb GVW).  The manufacturer's  inability to furnish
any specific  or advanced concepts was taken to be a genuine and sincere
expression of the  current state-of-the-art as of that.time.  The manufac-
turers were quite helpful otherwise in assisting SwRI engineers in the
course of the laboratory effort in furnishing technical assistance and  special

-------
parts when requested.  The efforts of the manufacturers must be commended,
because without the help given,  this project would have been much more
difficult to perform.  The unqualified thanks of SwRI go to both manufacturers.

C.     Project Reviews

       A number of meetings, discussions and status reviews were held
during the  course of this  project with the Project Officer.  They occurred
on March 7th and 30th, June 1st,  July 17th and August 16,  1972. These
meetings,  held on site in the Emissions Research Laboratory,  were helpful
in overall project management.  Monthly progress reports and letter reports
were issued to keep the Project Officer fully informed with complete data
for analysis.  Telephone  reports were also made to augment the reports
and correspondence.

-------
                     II.  OBJECTIVE AND APPROACH

       The objective of this project was to obtain basic emissions data
from  six currently-produced gasoline-fueled engines and to investigate
potentialities for emissions  control with two  of the more popular engines.

A.     Baseline Data

       The approach used with the six engines,  three each from two man-
ufacturers, was to measure their emission levels or rates using current
and experimental test procedures. All engines were 1972 models and were
operated on the stationary dynamometer test bed.  The test procedure included
both operations by the current nine-mode procedure described by the FTP(?)
for expression as concentration and in brake specific emissions terms
according to the method specified by the California ARfi(^» 9).   An experi-
mental 23-mode engine test procedure with expression in grams per bhp-
hour (brake specific) was also employed as specified by the Project Officer'*").

B.     Control Technology

       Two popularly used engines were subjected to a stepwise series of
experiments to evaluate the effectiveness of various  control approaches
singly and in combination.   For purpose of evaluation, the primary test
procedure was the 23-mode EPA experimental method with nine-mode tests
made of the best combination.  Methods of control and parameters inves-
tigated included basic ignition  timing, air-fuel ratio (main jet size variations).
exhaust gas recirculation (EGR),  oxidation catalysis, and exhaust manifold
oxidation by air injection among  others.

-------
             III.  EQUIPMENT,  INSTRUMENTS, ENGINES,
                   PREPARATIONS AND PROCEDURES

       This section contains a brief description of the instruments,  equip-
ment and facilities, engines,  preparations and procedures used to conduct
this  project.

A.     Exhaust Sampling and Analysis

       Two basic types of exhaust sampling techniques were used during
this  program.  The most familiar set of instruments used was the nondis-
persive infrared (NDIR) sampling train for raw exhaust gases specified in
the Federal Register^7) for the nine-mode cycle (FTP).  This system is
described first.  Another technique used was a variation of the continuous
NDIR system in which raw exhaust was also analyzed by flame ionization
detector (FID)  and  chemiluminescence (CL)  instruments.

       1.  Nine-Mode Continuous Sampling, Analysis, and Instrumentation

       The exhaust gas sampling and  analysis system, for the FTP  nine-
mode cycle,  meets the requirements and specifications established in the
Federal regulations'^) for heavy-duty vehicle exhaust sampling.  A com-
ponent description  of the  system is detailed  in the above  referenced  Federal
regulations.  Nominal full-scale concentration levels for the five NDIR ana-
lyzers are as follows:

           (1)  Low-Range HC - 1000 ppm hexane
           (2)  High-Range HC  - 10,000 ppm hexane
           (3)  CO - 11 percent
           (4)  CO2 - 16 percent
           (5)  NO - 4000 ppm

Although nitric oxide was not included in the current Federal regulations
relating to gasoline HDVs at the  time  this  project was  done, this contaminant
was  important  from a research standpoint.

       The output  of each analyzer is fed to strip-chart recorders.  The
concentrations from each trace can be obtained from the continuous  traces
by hand as specified in the nine-mode FTP.  The average concentrations
are then transferred to computer cards  for further processing to obtain
composite values for HC, CO, and NO.  This method was used as a  back-up
to the real time computer system normally used.  The computer system was
designed and assembled by SwRI.  This  computer utilizes a Data General
Super Nova,  8K central processor, and  a Computer Products Series RTF
7410 multiplex.  The computer program was also prepared by Institute
personnel.  This computer  system was very helpful during this program
to determine nine-mode FTP results immediately after completion of the

-------
tests.  The reliability and repeatability of the on-line computer has been
shown to be equal or better than manual chart reading and computer re-
duction of data.

       The NDIR cart was subjected to a  calibration according to EPA
requirements.  Both static and dynamic gas simulator tests were run ini-
tially on this cart by Mr. Matt Macocha of EPA during the period of
September-November,  1971.  Frequent calibrations of all NDIR,  CL,  and
FID instruments were made to assure  optimum accuracy.  One of the  EPA
checks was to name an unknown contaminant to •£ 1 percent, a difficult
requirement since the basic detector is only specified to i 1 percent by the
manufacturer.  Suffice to say  that no tests were made until initial cali-
brations were satisfactorily completed.

       2.   Experimental 23-Mode Instrumentation

       The use of direct stream, raw  exhaust, emission  sampling and
analysis instruments has ample precedent in the case of NDIR type analyzers
in which a fairly dry, clean  sample is  analyzed.  To measure CO and  CO2-
by NDIR, the usual continuous NDIR cart used for nine-mode  FTP work was
used.  HC by NDIR was of secondary importance since it  is known to grossly
understate the HC concentrations in most  modes of engine operation.  The
23-mode method was to use  an FID  on  the direct tailpipe raw  exhaust that
has not been cooled below  the  dew point of the  water vapor contained there-
in.  Condensation of water causes severe  operational problems and it  also
is indicative of possible losses of some unburned hydrocarbons by con-
densation.  For gasoline engine exhaust, the industry-accepted practice
is to hold the sample, sample  lines, and FID analyzers at about 160° F
and, of course, no ice-water condensate trap was employed.  Good oper-
ability at this temperature with an SwRI design HC analyzer had been found
on another project dealing with off-road sources for EPA  (Contract EHS
70-108).

       In a previous project dealing with the 23-mode test*"), it was found
that the Beckman Model 400 FID, widely used  with diluted gasoline exhaust,
was unsuited for raw gasoline  engine exhaust.   Rather than attempt to
modify the instrument with uncertain results,  it was decided to use an
SwRI design FID and operate same at 160° F.  The basic design and theory
of operation was discussed in an SAE paper.  Please refer to reference
11 for further details and description of the  HC instrument.

       To improve time response, the SwRI FID oven was located adjacent
to the  engine exhaust pipe.  A  fairly short stainless steel sample  line, heated
by a cylindrical heater,  was controlled to maintain  a 160° F gas temperature
while oven temperature was  held  at 160° F.  The sample probe was of stand-
ard design for auto exhaust and located adjacent to the probes used for the
CO,  CO2,  and NOX samples.

-------
       To monitor the HC sample bypass flow, a small rotameter was
connected to the effluent from the FID.  Since the water vapor was still
in the exhaust and as it tends to condense in the rotameter at room temper-
ature,  a small ice  trap was added before the rotameter but after the sample
was  split from the  main stream and forced through the sample capillary.
This is standard laboratory practice when a flowmeter is used to  help
monitor  sample bypass flow.

       A Thermal  Electron Corp. (TECO) Model 10A  chemiluminescent
NOX-NO analyzer,  furnished  by EPA, was used to measure NOX.  The TECO
instrument analyzed a sample obtained via a  separate  line from the  exhaust
pipe.  Since  water  vapor has  a sizeable positive interference on the NDIR
NO reading,  a bone dry sample, commonly achieved by a chemical drying
agent such as Aquasorb or Drierite has been standard practice.  This has
always been  a controversial step  in sample preparation and the recent trend
has been, where possible, to use the chemiluminescent method which does
not require it.

       The TECO and other commercial chemiluminescent analyzers,  however,
were not designed to handle raw,  undiluted, exhaust and suffer from opera-
tional difficulties if the majority of the water vapor is not removed.  The
current  chemiluminescent analyzers operate at room temperature and do
well with highly diluted exhaust such as from a constant volume sampler or
with atmospheric samples.  Raw  exhaust contains the  water vapor from
combustion along with the  intake air humidity and removal via an  ice-
water-type trap is  necessary to prevent filling  or coating the sample lines
and capillary,  leading to the reaction chamber, with water.

       NO2 is readily absorbed by water and the efficiency depends on
residence and contact area.   As the lesser of two evils,  an ice-water-type
trap with minimal residence time and water-to-sample contact time was
used to prevent the sampling  lines and other tubing,  capillary, etc. , within
the instrument from becoming water logged.  In practice,  the same trap
used for the  NDIR was employed.   No chemical drying agent such as Aqua-
sorb or  Drierite was used.  On several occasions,  the effect of the  trap on
NO? was checked by flowing a known concentration of NO^ span gas  through
the system at various times during the run with the trap wet and the fiber-
glass particulate filter "dirty".  From this, it  was found that on an  average
about 10 to 15 percent of the NO£ was lost, making all measurements of
NO2 subject  to this error.  One solution would  be to heat the sample line,
pump,  etc. ,  from point of sample to entrance of the sample into the reaction
chamber.

       An analysis of side-by-side NDIR and CL data  from a previous
project'"' revealed extremely close results and good correlation. The con-
clusion of such tests  was that either system was satisfactory and  the CL
was  preferred since it eliminates the difficult-to-resolve question of the

-------
effect of chemical drying agents on NO readings.  The CL is not,  however,
without certain drawbacks as mentioned earlier.

        Figure 1 shows several views of the instruments used for the nine-
mode FTP and the  23-mode procedure with stationary-operated engines.
The tall cabinet in  the upper right and middle right view houses the NDIR
NO and the CL NOX instruments.  Shown in the middle right view is the
NDIR cart for HC,  CO, and CO2 analysis.   The CO and CO2 analyzers in
this cart were used both ways,  for nine and 23 mode testing.  The  lower
right view shows the oven containing the heated portion of the HC instrument.
The pump, filter, valves and detector, etc. , are located in the oven with
flow control  module and electrometer located to the right of the oven.

        Shown in the extreme  right side of the lower right view is the glass-
ware used to bubble exhaust through reagent for collection of aldehydes.
Several runs on each engine,  by the 23-mode procedure,  included measure-
ment of aliphatic aldehydes by the 3-methyl-2-benzylthiozolone hydrazine
(MBTH) method(l^« *•*).  This is a wet chemical method which is the popularly
used technique for  aldehyde determination.  Its precision and adequacy for
raw gasoline exhaust determination has not been thoroughly researched.
The method was selected as the best available for a first approximation.

        The lower left view in Figure  1 shows the heated sample line used
for both HC  and aldehyde sample transfer.  It was felt important to locate
instruments  and glassware as close as practical to the exhaust  system.   All
tests were made with samples obtained at a point representing average
exhaust system length and the sample lines length kept to a minimum.
Usually the sample lines were less than 36 inches. Other views of the
instruments  will be shown later in the report.

B.      Dynamometry and Related Facilities

        The two stationary all-electric engine dynamometers used in this
project were completely equipped for constant speed motoring-absorbing
and could perform  the nine-mode FTP and the 23-mode experimental
schedules satisfactorily.

        1.   Baseline Engines

        The six baseline engines were operated in  Cell 3 of the U.  S. Army
Fuels and Lubricants Research Laboratory at SwRI.  The dynamometer and
several typical engine installations are shown in Figures 2 to 4. This Eaton
Dynamatic dynamometer is capable of 300 hp absorbing from 2, 000 to 5, 000
rpm and 50 hp motoring.

        2.   Control Technology Engines

        Both  control technology engines were then  operated in the Emissions


                                     8

-------
FIGURE 1.  EMISSIONS MEASURING EQUIPMENT USED WITH NINE MODE
          FTP AND EXPERIMENTAL 23 MODE PROCEDURE
                                  9

-------
FIGURE 2.  BASELINE EMISSIONS TESTS EQUIPMENT AND FACILITIES
                                 10

-------
FIGURE 3.  DYNAMOMETER AND RELATED INSTRUMENTS
          AND EQUIPMENT BASELINE TESTS
                          II

-------
                                                          ,
FIGURE 4.  ENGINE UNDER STATIONARY DYNAMOMETER
              BASELINE EMISSIONS TESTS
                            12

-------
Research Laboratory on a similar but larger Eaton Dynamatic dynamometer.
This unit has capability to handle 500 hp absorbing (2, 000 to 5. 000 rpm)
with 200 hp motoring.  This dynamometer facility will be shown in the
various views of engines and control systems later  in this report.

       3.   Related Facilities

       As  important as the actual emissions measurements are the measure-
ments of engine speed, power output and fuel consumption.  The calibrations
of the Standard Electric  Time Co. speed systems were made by a calibrated
strobotac (General Radio)  and the hydraulic  loading readout system by dead
weight test.  Fuel flow was measured by a Flo-Tron or weigh scale.  Only
weigh scale readings for the time (stop watch) to consume a known mass of
fuel were used to compute mass emission rates  with the  baseline engines.
A weigh scale calibrated Flo-Tron was used for the control technology engines,

       A complete dynamometer installation was provided for measurement
and control of engine operating  parameters including inlet and outlet water
temperature,  inlet air temperature, exhaust temperature, oil pressure,
exhaust  backpressure and intake manifold vacuum.  The  latter pressure is
critical  to the nine-mode test and was periodically calibrated against a
mercury column.  Inlet air humidity was measured using a  Bendix Model
566 wet-dry bulb temperature measuring instrument.  The Bendix unit
was periodically checked against a sling psychrometer.  A conventional
liquid-in-glass mercury barometer was used to  measure barometric  pres-
sure and the observed reading suitably corrected.
 C.
Engines
        In all, a total of six engines were obtained through the courtesy of
 the manufacturers.  Two six cylinder in-line engines and four V-8 engines
 were used in the program.   The engines were coded at the request of the
 manufacturers and with the concurrence of the Project Officer.  The charac-
 teristics of the engines are listed below.
Engine
 Code

  1-1
  1-2
  1-3
  2-1
  2-2
  2-3
                Test Engine Description

    Adv.Flywheel Power( 1)   Peak Torque
    Bhp    @   rpm       Lb - Ft       rpm
                                  GVW Application
                                  Min - Max, Ibs
    132
    217
    152
    110
    230
    175
3500
3200
3600
3800
4000
4000
239
398
278
185
360
290
2000
1800
2200
1600
2400
2400
 6,200 -
23,000 -
16,000 -
 6,200 -
21,000 -
 6,200 -
24,000
80,000(2)
50,000(2)
18,000
64,000(2)
26,000
(l)SAE J-245 (net)
(2)Gross Combined Weight
                                   13

-------
Engines 1-3 and 2-3 were used in the control technology assessment portion
of the project.  All engines were truck or truck version 1972 model year
engines and had been built under the provisions of the 1972 certification
regulations.  Engines 1-1,  1-2, and 1-3 were the  125 hour certification
engines.  All engines were furnished to SwRI by the manufacturers along
with necessary engine mounts,  clutch-flywheel where desired and exhaust
piping.

D.     Preparations

       The six engines subjected to baseline emissions measurements were
provided by the manufacturers in ready-to-run condition.  Since engines
2-1, 2-2, and 2-3 were new,  a 25 hour break-in was given these engines
before starting the emission test series.   The variable  speed and load run-
in schedule was in accord with the  manufacturer's recommendations.  Once
the engine was run-in or  checked to make certain it was operating properly,
the basic  timing and idle  speed were checked to make certain their adjust-
ments were within the EPA factory sticker tune specifications.  If not,
adjustments were made.  No adjustments were made to the idle air screws.
These engines and carburetors were furnished with the  usual plastic idle
air screw adjustment limiters.

E.     Fuels

       The leaded premium fuel used during all baseline and control tech-
                                                                  I t->\
nology emissions tests met the requirements of the Federal Register\D'.  A
typical fuel analysis of the fuel used and purchased locally is given in Table 1.
Also shown on Table  1 is an inspection of the low lead Indolene clear motor
fuel used  in all control technology experiments involving the oxidation catalyst.

F.     Experimental Procedures

       All the engines were subjected to two basic laboratory stationary-
operated engine procedures.

       1.   Nine-Mode FTP Schedule

       The 1970  FTP (nine-mode 2, 000 rpm constant speed procedure) is
adequately described in the Federal Register(^).  The test schedule is listed
in Table 2.  The procedure is 20 minutes in length and consists of the Table
2 schedule being run  four times. The weighting factors, listed in the last
column, are used to calculate the concentration results.

       Please note that in reality,  only six modes, of which only three are
power-producing,  are included in this 2, 000 rpm constant speed procedure.
The 16-inch condition is repeated four times for 35.6 percent of the weight.
The other power-producing modes,  Modes  3 and 7, the  10-inch and 3-inch
                                  14

-------
TABLE 1.  FUEL INSPECTION RESULTS
                              Leaded
                                                                 Clear
°F
°F
°F
°F
Gravity,  deg API (D287)

Distillation Range (D86)
    Initial Boiling Point, ° F
    5% Point, ° F
    10% Point,  °F
    20% Point,  ° F
    30% Point,  °F
    40% Point,  °F
    50% Point,  °F
    60% Point,  ° F
    70% Point,
    80% Point,
    90% Point,
    95% Point,
    End Point

    % Recovery
    % Residue
    % Loss

Octane No. ,  Research (D1656)

Total, % wt (D1266)

Reid Vapor Pressure, psi (D323)

Hydrocarbon Composition (D1319)
    Olefins, %
    Aromatics, %
    Saturates,  %

Lead (Organic)  g/gal (D526)

Phosphorus, Theory

Oxidation Stability (D525)

Existent Gum, mg (D381)
59.3
88
116
127
150
175
200
220
235
254
276
305
327
340
98. 0
1.0
1. 0
103.4
0. 004
9-1
0.4
27. 3
72. 3
3.271
0.0
600+
0.6
58. 0
86

128



220



315

409
98.0
1. 0
1. 0
98. 3
0. 01
9.2
3.0
30. 0
67. 0
0. 01
0.0

0.2
                   15

-------
     TABLE 2.  CURRENT FEDERAL NINE-MODE CONSTANT SPEED
            PROCEDURE FOR HEAVY DUTY GASOLINE TRUCKS
Sequence      Manifold        Time in Mode,     Cumulative     Weighting
 Number      Vacuum             sec           Time, sec       Factors
   1            Idle                70           70 (1:10)        0.036
   2          16 in.  Hg             23           93 (1:33)        0.089
   3          10 in.  Hg             44           137(2:17)        0.257
   4          16 in.  Hg             23           160(2:40)        0.089
   5          19 in.  Hg             17           177 (2:57)        0.047
   6          16 in.  Hg             23           200(3:20)        0.089
   7            3 in.  Hg             34           234 (3:54)        0. 283
   8          16 in.  Hg             23           257(4:17)        0.089
   9            Closed              43           300(5:00)        0.021
               Throttle
   Engine Speed 2000 ±100 rpm.
   An initial 5-min idle, two warmup cycles and two hot cycles constitute
   a complete dynamometer run.
                                  16

-------
modes,  account for another 54 percent of the schedule.   The three power
modes,  16-inch,  3-inch, and 10-inch vacuum, represent a total of 89. 6 percent
of the cycle weight.  The idle (3. 6 percent weight), 19 inch (4. 7 percent weight)
and the  closed throttle (2. 1 percent weight) represent the remaining 10.4
percent of the cycle weight.

       2.   Experimental 23-Mode Schedule

       The  experimental 23-mode schedule is listed on Table 3 and is taken
directly from the preliminary procedure, reference 10,  provided  by the
Project Officer.  A copy of this reference is  included as Appendix Y.  Note
that modes  7, 9, and 10, at 1200 rpm engine  speed,  and modes  18, 20, and
21,  at 2300  rpm engine speed, carry a zero weighting factor.  Modes  7, 9,
10,  18,  20 and 21 were measured to obtain emission data that may be  of use
later.  The  23-mode schedule and procedure  is quite similar to the 1500-
2500 rpm schedule studied earlier in the basic project and described in detail
in the final  report(").

       Although a 230 minute long, ten minutes per mode, test was described
by the preliminary procedure, earlier work indicated that three minute long
modes were quite adequate for an engine mapping-type procedure.  As des-
cribed in the final report(^) dealing with procedural development,  the  first
minute  is devoted to changing speed and load, the second minute for stabiliza-
tion and only the time average of the third minute emission concentration
used.

        When measuring aliphatic  aldehydes,  a three-minute  sampling  period
is needed and the three-minute schedule is extended to six minutes, with the
third, fourth, and fifth minutes given over to wet collection of aldehydes.
The sixth minute and first and second minutes of the next mode were used
to wash down the fritted bubblers  and exchange the bubbling reagent and
holders.

        Note that 12 minutes are allocated to mode 12.   The additional nine
minutes are provided to allow the HC analyzer and sampling  system to purge
after  the very high HC concentration closed throttle (CT) raw exhaust  samples
have been analyzed.  This procedure was found to be quite acceptable  with
regard  to HC hang-up and  is felt a necessary part of measuring the very high
CT conditions.

        One item that would have been helpful and is  felt necessary for future
23-mode procedure work is a dual range CO or two different CO instruments.
A 0-11 percent CO instrument is necessary under the WOT conditions,while
at optimum  combustion efficiency,such as about  50+25 percent power, a
much lower, say 0-1 percent CO instrument could be employed for improved
accuracy.   The situation is somewhat similar to the nine-mode NDIR  HC
instruments where two are needed, one for CT and selected other modes on
                                  17

-------
   TABLE 3. EXPERIMENTAL 23 MODE EMISSIONS TEST SCHEDULE
                     (Heavy Duty Gasoline Engines)
Mode
  Engine
Speed, rpm
 Power
Out,  %*
Mode
Time
Cumulative
   Time
Weighting
 Factor
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
   Idle
   1200
   1200
   1200
   1200
   1200
   1200
   1200
   1200
   1200
   Idle
   1200
   2300
   2300
   2300
   2300
   2300
   2300
   2300
   2300
   2300
   Idle
   2300
  0
  2
  8
 18
 25
 50
 75
 82
 92
100
  0
  0 (CT)**
100
 92
 82
 75
 50
 25
 18
  8
  2
  0
  0(CT)**
  3
  3
  3
  3
  3
  3
  3
  3
  3
  3
  3
 12
  3
  3
  3
  3
  3
  3
  3
  3
  3
  3
  3
     3
     6
     9
    12
    15
    18
    21
    24
    27
    30
    33
    45
    48
    51
    54
    57
    60
    63
    66
    69
    72
    75
    78
 0.07
 0.06
 0.06
 0. 05
 0.03
 0.06
 0.00
 0.04
 0. 00
 0. 00
 0. 07
 0. 12
 0. 025
 0. 055
 0. 035
 0.06
 0. 06
 0. 00
 0.065
 0.00
 0.00
 0.08
 0.06
 *Observed at the flywheel,  percent of maximum at a given engine rpm.
#*Power out is zero.  Engine requires motoring in this mode.
                                 18

-------
occasion,while all others are read on a 0-1000 ppm scale.  A multirange unit
like a 315 B Beckman is only good to a five times factor,  making say 0-1 and
0-11 percent impossible by merely the range gain amplification.  Either
stacked cells or two separate instruments is the answer in this regard.

       3.   Engine Test Method

       The specific test procedure followed for a baseline engine,  assuming
the engine has  been proof tested with power,  torque,  fuel rate,  etc. ,  as
expected and any run-in or break-in completed, was essentially as follows:

       First,  replicate nine-mode tests were made,  at least three times
with one hour shut down between tests.  The full 20 minute schedule was
followed.  Then, the engine power readings and fuel consumption rates were
determined in  replicate.  These measurements are necessary to convert
the nine-mode  concentrations to grams per bhp-hour using the carbon
balance method specified in the California ARB Procedure'  ' ''.  It is not
possible to measure the fuel accurately during the fairly busy nine-mode
schedule (see Table 2 for mode times) and therefore, such measurements
are normally obtained at the  conclusion of the test.

       Next, NO NDIR and both NDIR HC analyzers were switched out and
the NO-NC>2 CL and heated FID were switched into the sampling and analysis
system.   The 23-mode procedure calls for operation at specific percentages
of maximum power at 2300 and 1200 rpm. As soon as the engine was
thoroughly warmed up, the maximum observed flywheel power output of the
engine was determined by operating alternatively at WOT at  1200 rpm and
2300 rpm.

       In actual operation, the 23-minute procedure was  preceded by a  10-
minute operation at 2000  rpm, half-load to warm  up the engine.  During the
last few minutes,  the analyzers were zeroed and spanned, ice-water  traps
drained and filters renewed.  The engine then began the initial idle mode
of the 23-mode test.  In practice, the test was  not difficult since the first
minute of each 3-minute mode was allocated to adjust engine speed and load,
the second minute was  devoted to engine-emission stabilization, and the
final minute the emissions were continuously recorded and integrated to
determine modal concentrations.

       More than 3 minutes may be used at the center idle,  mode 11,  to do
maintenance on the sampling and analysis equipment.  Normally, as soon
as the first closed throttle was  complete,  Mode 12, the HC  system was
purged with zero N£ while other instruments were spanned and zeroed.
Then the HC instrument was spanned and zeroed,  water traps were drained,
filters replaced, and all instruments rechecked for zero and span before
starting Mode 13.   At any mode during the test, the instruments could be
zeroed and spanned,  if desired, as long as it was done during the first 1-1/2
                                   19

-------
minutes of the mode.  In practice, the ice-water traps were drained after
the 5th and 17th modes of the test.

G.     Calculational Procedures

       The emission results were calculated in three ways:

       1.   Nine-Mode FTP - Concentrations

       The calculations of the final result of ppm n hexane HC, and percent
CO followed the nine-mode procedure as specified in detail by the Federal
Register* '.   In effect, the raw NDIR readings in ppm are adjusted by a
dilution factor

       Dilution Factor = 	14. 5	
                         COz % + 0.5 (CO% +  10. 8 HC % n hexane)

and then multiplied by the appropriate weighting factor.  These were listed
earlier in Table 2.

       The on-line process  computer was normally used with manual strip
chart-computer reduction as an alternative.  The computer print-out is so
arranged to list as-measured raw concentrations, the adjusted, weighted
and sum composite values.  Since this is a standard method, the reader is
referred to Reference 7 for  complete details.   Table  4 is an explanation of
the nine-mode FTP concentration computer print-outs.

       Although not covered by current Federal regulations, NO during the
nine-mode FTP was measured by NDIR.  The results were treated the same
as the CO and HC,  i. e. ,  adjusted for dilution and application of the weighting
factor.  Since water vapor or inlet air humidity has a measurable effect on
NO formation in combustion engines, this reading is normally  presented both
on an observed and corrected basis.  The conventional correction basis is 75
grains of water per pound of dry air absolute humidity and is determined by
multiplying the observed NO by the correction factor

       Correction Factor (K) = 0.6272 + 0. 00629H -  0.0000176H2

       where H = absolute humidity of the air

       This expression is identical to that in the current heavy-duty gasoline
truck surveillance project (Contract EHS 70-113). The factor  came from
results of an AMA project described in Reference 14.

       2.  Nine-Mode ARE - Brake Specific

       This method,  described in References  8 and 9 utilizes the carbon
                                   20

-------
                 TABLE 4.  EXPLANATION OF NINE-MODE
         FTP CONCENTRATION COMPUTER PRINTOUT SHEETS
1.   Column Explanation

Column     Column Title

    1      FEDERAL MODE


    2      AS MEASURED HC


    3      AS MEASURED CO


    4      AS MEASURED


    5      AS MEASURED NO

    6       DILUTION FACTOR


    7      ADJUSTED HC


    8      ADJUSTED CO


    9      ADJUST ED NO


    10       WEIGHTING FACTOR

    11       WEIGHTED HC

    12       WEIGHTED CO

    13       WEIGHT ED NO

2.  Line Explanation

1st Line
    (X) -  (XX) - 72

    ENGINE (X) -  (X)

    RUN (X)
           Explanation
Mode number and inlet vacuum (inches of
mercury)

Measured hydrocarbon emissions, ppm or
n-hexane

Measured carbon monoxide emissions in
percent

Measured carbon dioxide emissions in
percent

Measured nitrogen oxide emissions in ppm

Dilution factor for each mode calculated
by equation shown at bottom of printout

Measured HC times the dilution factor
(PPM-hexane)

Measured CO times the dilution factor
(percent)

Measured NO times the dilution factor
(PPM)

Weighting factor assigned to each mode

Adjusted HC times weighting factor

Adjusted CO times weighting factor

Adjusted NO times weighting factor
Date in month, day and year

SwRI engine identification number

Run Number.  Runs numbered sequentially -
The first run for a given day in run 1.
                                    21

-------
          TABLE 4 (CON'T).  EXPLANATION OF NINE-MODE
         FTP CONCENTRATION COMPUTER PRINTOUT SHEETS
    K = (X.XX)
    HUM = (XXX) GR/LB
Line Startin
SUM -
I COMPOSITE
AVERAGE SUM - (COMPOSITE
VALUES FOR CYCLES 1 AND 2)

AVERAGE SUM - (COMPOSITE
VALUES FOR CYCLES 3 AND 4)

FOUR CYCLE COMPOSITE


CORRECTED NO
Humidity correction factor for cycle
composite NO.   K = . 6272 + . 00629 H
— . 0000176H.  Where H  = absolute
humidity in grams/lb DA

Absolute humidity in grams/lb DA during run

Sumation of each weighted emission type

SUM (cycle 1) + SUM (cycle 2)
              2
SUM (cycle 3) + SUM (cycle 4)
              2
Composite value for each emission using
formula shown

Composite NO times K
                                  22

-------
balance method to establish the exhaust mass  rate.  It is necessary to know
precisely the fuel consumption rate as well as CO, CO2, and HC, the
principal carbon-bearing products of combustion.  Since it is desired to
express  the emission rate on a brake specific basis  in terms of grams  of
contaminant per brake horsepower-hour,  it is also necessary to accurately
measure or know the power output at the flywheel.  With the modal con-
centrations (raw) from the nine-mode test and the fuel rate  and power output
modally, the determination of mass  rates by the  1974 FTP  is a straight-
forward  calculation.  A computer was  used and the print-out sheets are
explained on Table 5.

       All data presented in this report use the latest density, correction
factor for NO£ and weighting  factors per Reference 9-  The correction  factor

             K • 0. 634 + 0. 00654H - 0. 0000222H2

where H is the grains of water per pound  of dry air was used to correct
observed NO to NO at 75 grains humidity,  standard.

       Reference 9 also changed the weighting factors from  those historically
used with the California and Federal nine-mode test for weighting the emis-
sion concentrations.  Because of the importance of weighting factors on the
final result,  the current ARB weighting factors are listed along with the
FTP weighting factors.

          ARB Weighting Factors for  Nine-Mode Mass Emissions

     Mode         Vac, in Hg            Previous*         Current

       1               Idle                 0.036              0.232
       2              16                  0.089              0.077
       3              10                  0.257              0.147
       4              16                  0.089              0.077
       5              19                  0.047              0.057
       6              16                  0.089              0.077
       7               3                  0.283              0.113
       8              16                  0.089              0.077
       9              C.T.                0.021              0.143

     *Currently used in the FTP'  ' and contained in  earlier ARB proposals' '.

       In essence, the latest California ARB factors give substantially more
weight to closed throttle and  idle modes and less  weight to the 10-inch  and
3-inch modes. Recall that neither the idle or closed throttle are power
producing, with the net effect that cycle power is less when weighted making
the denominator smaller and the quotient  larger.
                                   23

-------
                TABLE 5.  EXPLANATION OF NINE-MODE FTP
                BRAKE SPECIFIC COMPUTER PRINTOUT SHEETS
1.   Column Explanation

Column       Column Title
   1
   7

   8
  10


  11

  12


  13


  14


  15
MASS MODE
              AS MEASURED HC
              AS MEASURED CO
              AS MEASURED
              AS MEASURED NO
              TOTAL CARBON
FUEL CONS.
ADJUSTED (MASS) HC
              ADJUSTED (MASS) CO
ADJUSTED (MASS)
WT. FACT.
WEIGHTED (MASS) HC
WEIGHTED (MASS) CO
WEIGHTED (MASS)
HP
                                      Explanation
Mode number and inlet vacuum
(Inches of mercury)

Measured hydrocarbon emissions,
ppm or n-hexane

Measured carbon monoxide emissions
in percent

Measured carbon dioxide emissions
in percent

Measured nitrogen  oxide emissions
in ppm

The percentage of exhaust gas that  is
carbon containing gases

Engine fuel consumption in Grams/Hr.

Hydrocarbon emissions in Grams/Hr.
calculated from measured HC

Carbon monoxide emissions in Grams/Hr.
calculated from measured CO

Nitrogen  dioxide  emissions  in Grams/Hr.
calculated from  measured NO

Weighting factor for each mode

Hydrocarbon emissions in Grams/Hr.
times the weighting factor

Carbon monoxide emissions in Grams/Hr.
times the weighting factor

Oxides of nitrogen emissions as NO? Grams/Hr.
times the weighting factor

Engine horsepower  from dynamometer
                                        24

-------
            TABLE 5 (CONT. ) EXPLANATION OF NINE-MODE FTP
                BRAKE SPECIFIC COMPUTER PRINTOUT SHEETS
 2.   Line Explanation
 1st Line
        - (XX) -72

     ENGINE (X)-(X)

     RUN (X)


     K = (X.XX)
     HUM = (XXX) GR/LB


 Line Starting

 SUM - CYCLE COMPOSITE
AVERAGE SUM -(COMPOSITE
VALUES FOR CYCLES 1 AND 2)
AVERAGE SUM -(COMPOSITE
VALUES FOR CYCLES 3 AND 4)

FOUR CYCLE COMPOSITE
CORRECTED
            Explanation
 Date in month, day and year

 SwRI engine identification number

 Run number. Runs numbered sequentially.
 The first run for a given day  in run 1.

 Humidity correction factor for cycle
 composite NO?.  K =  . 634 + . 00654 H
 —. 0000222H2\  Where H = absolute
 humidity in grams/lb  DA

 Absolute humidity in grams/lb DA
 during run
Grams/BHP-HR for cycle,  sumation of
each weighted emission divided by the
sumation of horsepower times weighting
factor,  i. e.

        2—  Emission x W. F.
        y- H.P. x W.F.

SUM (cycle 1) +  SUM (cycle 2)
                 2
Grams/BHP-HR

SUM (cycle 3) + SUM (cycle 4)
                 2

Composite of all four cycles in Grams/BHP-HR
using formula- shown

Four cycle composite NO2 in grams/BHP-HR
times the humidity correction factor, K .
                                       Z5

-------
       3.   Experimental 23-Mode Calculations

       This experimental procedure and its calculational method was
provided by the Project Officer for use in this project^10).  The calcula-
tional methods followed fairly closely those established for the 23-mode
procedure used in Reference 6.  The engine speeds were slightly lower,
the power levels changed and the weighting factors were different but the
method of calculation,  using the carbon balance technique,  remained the
same.   As a consequence of correspondence between Mr. Mel Ingalls of
Southwest Research Institute and Mr. John Bozek of Environmental Protec-
tion Agency, the calculation procedure for the 23-mode data was clarified.
As confirmed by letter from Mr. Ingalls to Mr. Bozek on April 17, 1972,
all data was expressed on a dry basis.

       Table  6 is an explanation of the computer print-out sheets and
illustrates how the final grams of HC,  CO,  or NO2 were determined from
the raw concentrations, fuel rate and power output data.  Note that the
print-out includes aldehydes so that this emission could be  expressed
on a brake specific basis of grams of formaldehyde per bhp-hour.  The
colorimetric determination of aliphatic aldehydes is in terms of the simplest
aldehyde, formaldehyde.

       Beginning with engine 2-3,  the  last baseline and the first control
technology engine,  the  computer print-out included air-fuel ratio (AFR)
by the  Spindt calculation method. This is listed on the computer print-out
where  fuel in grams per hour  once was.  This addition to the print-out
information necessitated the addition of Q£ measurement by a Beckman
polarographic  method.   The Spindt Calculation is included in the explanation
of the 23-mode computer print-out, Table 6.  For additional description of
this method, please refer to Reference 15.  The air-fuel ratio computed by
this method agrees with the air-fuel ratio calculated by one other method
and was felt reliable enough for purposes of this project.  All of the cal-
culational methods used in this project were discussed in detail with the
Project Officer and his approval obtained for  their use. Changes in print-
out format, factors,  corrections, etc., were  effected when requested to
conform with the latest procedures and methods available to EPA and SwRI.
                                   26

-------
        TABLE  6.   EXPLANATION OF EXPERIMENTAL 23 MODE
            BRAKE SPECIFIC COMPUTER PRINTOUT SHEETS
Column

Upper table
   1
   2
   6
   7  *
   10
   11
   12
Column Label
MODE
SPEED
DYNAMOMETER LOAD
HP
             MAN. VAC.
FUEL RATE LB/HR
FUEL RATE GM/HR
              DRY CONCENTRATION
                     ALDE
DRY CONCENTRATION
         HC

DRY CONCENTRATION
         CO
DRY CONCENTRATION
         C02

DRY CONCENTRATION
          NOV
       Explanation
Mode number (1-23)
Engine speed in rpm
Measured dynamometer load in
ft-lbs
Horsepower calculated from dyna-
mometer load and speed using
equation:
       HP = (ft-lbs) x rpm
                5252
Measured manifold vacuum in inches
of Mercury

Measured Ib/hr of fuel used
Fuel rate in grams per hour cal-
culated from equation:
       GM/HR- 453.6 x Ibs/hr
Measured aldehyde emission concen-
tration as formaldehyde (ppm)
corrected to a dry (water from
combustion removed) basis by the
equation:
  ALDE = ALDE (as measured wet)xKj
where K1= (100+  . 925 (CO%+ CO2%)
                   100
Measured hydrocarbon emission
concentration (ppmC) corrected to
a dry basis as above.
Measured carbon monoxide emission
concentration, % by volume.
Measured dry with water of com-
bustion removed.
Measured carbon dioxide emission
concentration, % by volume.
Measured dry.
Measured oxides of nitrogen emission
concentration as NO (ppm).
Measured dry.
                                      27

-------
  TABLE  6. (Cont'd) EXPLANATION OF EXPERIMENTAL 23 MODE
          BRAKE SPECIFIC COMPUTER PRINTOUT SHEETS
Column
Column Label
Lower Table
   1           MODE
   2           CALCULATED GRAM/HR
              ALDE
   6
   7
   10
   11
              CALCULATED GRAM/HR
              HC
              CALCULATED GRAM/HR
              CO
              CALCULATED GRAM/HR
              NO,
WT. FAC.
WT. HP

BRAKE SPECIFIC
ALDE
              BRAKE SPECIFIC
              HC
BRAKE SPECIFIC
CO

BRAKE SPECIFIC
NOo
     Explanation
Mode number (1-23)
Calculated aldehyde emission concen-
tration as formaldehyde in grams/hr
ALDE(gm/hr) = 2. 16xALDEx
                   10000
                fuel flow(grams/hr)
                total carbon
where Total Carbon=
       C O2 %+ C O%+ HC(ppm)
                    10000
Calculated hydrocarbon emission
concentration in grams/hr
HC(gm/hr) =
       HC xfuel flow(grams/hr)
      10000    total carbon
Calculated carbon monoxide  emission
concentration in grams/hr
CO= 2.02xCOxfuel flow(grams/hr)
                total  carbon
Calculated oxides of nitrogen emission
concentration as NO£ in grams /hr
NO2 - 3. 32 x NO x fuel flow(grams/hr)
             1000    total carbon
Weighing factor for each mode
Weighted horsepower. HP (Column 4)
times weighting factor (Column 16)
Aldehyde,  gm/hr,  (Column 2)
divided by  HP (Column 4, upper
table) for the individual mode.  "R"
in table indicates indeterminate value.
HC, gm/hr,  (Column 3) divided by
HP (Column  4, upper  table)  for the
individual mode

CO, gm/hr,  (Column 4) divided by
HP (Column 4, upper table) for the  in-
dividual mode.
NO2, gm/hr, (Column 5) divided by
HP (Column 4, upper table) for the
individual mode.
                                       28

-------
 TABLE  6 . (Cont'd) EXPLANATION OF EXPERIMENTAL 23 MODE
         BRAKE SPECIFIC COMPUTER PRINTOUT SHEETS
             CYCLE COMPOSITE
             HC,  CO, NO2, ALDE
             BSFC
    Explanation
Summation of emission for each
mode times weighting factor divided
by summation of weighted  horse-
power for each mode.

     23
    /    Emission   x W. F.
    TTi	(i)      (i)
     23
                                                 H.
         HP   x W. F.
    i = 1    (i)      (i)
Summation of fuel flow (Ibs/hr)
times weighting factor for each
mode divided by summation of
weighed horsepower for  each mode.

   T~   Fuel flow (Ib/hr) x W F
   i = 1                  (i)      (1)
                                                  23
                                                       HP   x W F
                                                         (i)      (D
 *  For engine 2-3, this column was replaced with air-fuel ratio by the Spindt
    calculation  formula  and all control technology data includes AFR by
    this  method.
FB (I) = (CO(I) + C0? (I) )
              TC(I)
AFR = FB<9. 8831
1 +
V

CO(I)
2(CO2
1 +
0,(I) "\
(i) ' co2(i)y
CO(I) .
co2 (i)
                                                     16.8
                                                  3.5 +
                                                         C02(I)
                                   29

-------
                           IV.  RESULTS

       The results of this project are presented in two segments;  the
first, covering the six baseline engines and the second,  the control
technology experiments with two engines.

A.     Baseline Results

       The baseline results for all six engines are described by the type
of test conducted namely, FTP concentration,  FTP mass and 23-mode
mass.

       1. Nine-Mode FTP Concentration

          Table 7 is  a complete  listing of the nine-mode results in terms of
ppm n hexane,  percent CO and ppm NO observed and corrected. The replicate
run data for each engine is  listed by engine in  the order tests were run.  An
average of the three run results  is shown and may be directly compared to
the current 1972 limits of 275 ppm n hexane and  1. 5 percent CO.   For a
given engine, the test repeatability was judged normal and  satisfactory.

          Different engines had different emissions behavior with  the
range in HC from 88  to 234 ppm n hexane, the range in CO from 0. 31 to 1. 42
percent, and the range in corrected NO from 1322 to 2174 ppm.  Engine 1-1,
1-2, and 1-3 results  compare favorably with certification  results.   Little
more can be  said about these results,  except to compare them to proposed
standards of  160 ppm n hexane, 0. 8 percent CO and 2,000 ppm NO (corrected)
 published in the October 5,  1971 Federal Regster. *  '

       2. Nine-Mode FTP Mass Emissions
          Table 8 summarizes the replicate runs made on the six baseline
engines in the order tested.  It is difficult to make many comments on the
results relative to the 1973 California and 1974 Federal limits of 40 grams of
CO per bhp-hour and 16  grams of HC + NO2 (corrected).  The range of CO was
14. 8 to 69. 2 grams per bhp-hour and the range of HC + NO2 was  14. 6  to 21.3
grams per bhp-hour.  Most engines appear to have little problem in meeting
the CO and are nearly there on HC + NO2«  Generally, the manufacturers try to
have a fairly good margin between the engine emissions rate and  the limits.

          What action will be taken by the manufacturers to meet 1975 Cali-
fornia limits of 25  grams CO  and 5 grams HC + NO2 per bhp-hour is unknown
at this time. It would seem that substantial improvements will be necessary
to meet the  apparently stringent  5  gram standard. Just as the nine-mode FTP
concentration run-to-run repeatability was good,  so  was the repeatability good
for the mass calculations. The fuel rate and power levels are fairly constant
so that only raw emission concentrations have  an effect on run-to-run
repeatability. The  FTP mass rates "track" the concentrations as would be
expected.

                                  30

-------
                 TABLE 7. NINE-MODE FTP EMISSION RESULTS
                           CONCENTRATIONS PER FTP
1-1
1-1
1-1
1-2
1-2
1-2
2-2
2-2
2-2
1-3
1-3
1-3
2-3
2-3
2-3

Date
3/6/72
3/6/72
3/6/72

3'21/72
3/21/72
3/21/72

4/6/72
4/6/72
4/6/72

4/14/72
4/14/72
4/14/72

4/24/72
4/25/72
4/25/72

5/12/72
5/12/72
5/12/72

Run
1
2
3
Average
1
2
3
Average
2
3
4
Average
2
3
4
Average
1
2
3
Average
1
2
3
HC
ppm Hex
90
95
80
88
112
99
106
106
228
233
240
234
162
164
170
165
117
124
114
118
111
110
126
CO
%
0.35
0.29
0.29
0.31
0.39
0.40
0.52
0.44
0.71
0.71
0.70
0.71
1.42
1.43
1.42
1.42
0.36
0.30
0.27
0. 31
0.66
0.65
0.67
                                                   2104
                                                   2281
1939

1173
1227
1177

1192
2024

1902
1980
2641

2174

2052
2153
2163

2123

1313
1364
1290

1322

1517
1578
1488

1528
                     Average     116     0.66

            1972 Limit (Fed)      275     1.5
1803

1411
1398
1432
1414         1601

  No  Standard
                        60
                        57
                        70
                       101
                       113
                       103
116
112
106
                        36
                        51
                        32
          120
          124
          122
                                     31

-------
            TABLE 8.  NINE-MODE EMISSION RESULTS
             PER 1974 FTP CALCULATION PROCEDURE
                                 Grams/bhp-hr
1-1
1-1
1-1
1-2
1-2
1-2
2-2
2-2
2-2
1-3
1-3
1-3
2-3
2-3
2-3
Obs.
Date
3/6/72
3/6/72
3/6/72

3/21/72
3/21/72
2/21/72

4/6/72
4/6/72
4/6/72

4/14/72
4/14/72
4/14/72

4/24/72
4/25/72
4/25/72

5/12/72
5/12/72
5/12/72

mit (Cal.
mit (Cal.
Run
1
2
3
Average
1
2
3
Average
2
3
4
Average
2
3
4
Average
1
2
3
Average
1
2
3
Average
)
)
HC
3.
3.
2.
3.
3.
2.
3.
3.
7.
7.
7.
7.
5.
5.
5.
5.
4.
4.
4.
4.
3.
3.
3^
3.


28
41
76
15
24
88
10
07
16
36
46
33"
62
61
88
70
42
71
45
53
22
23
63
36


CO
17.
13.
13.
14.
17.
16.
21.
18.
32.
32.
32.
32.
69.
69.
68.
69.
18.
15.
13.
15.
31.
31.
31.
31.
40
25

3
5
5
8
0
6
2
3
8
7
2
6
3
4
9
2
3
3
9
8
2
1
_9
4


NO;
15.
14.
14.
15.
13.
14.
17.
15.
12.
13.
13.
13.
9-
9.
9.
9.
14.
13.
14.
14.
10.
10.
10.
10.


Corr.
j_ NO?
6
7
8
0
4
1
8
1
7
1
3
0
1
6
2
3
4
8
5
3
2
1
2
2


14
14
14
14
12
13
17
14
13
14
14
14
10
10
9
.6
.3
.5
.5
.6
.2
.5
.4
.6
.1
.3
.0
.0
.4
.9
10.1
12.1
12.6
11.9
12.
11.
11.
11.
11.


2
2
1
_3
2


Corr.
HC+NO?
17.
17.
17.
17.
15.
16.
20.
17.
20.
21.
21.
21.
15.
16.
15.
15.
16.
17.
16.
16.
14.
14.
15.
14.
16
5
9
7
3
6
9
0
6
5
7
5
8
3
6
0
8
8
5
3
4
7
4
3
_0
6


 60
 57
 70
101
113
103
116
112
106
 36
 51
 32
120
124
122
                                32

-------
          The analysis made using the FTP procedure indicated that it is very
sensitive to fuel rate,  especially HC results.  Low fuel rates occur at idle,
CT,  and 19 inch vacuum modes where HC are generally high. A small error
in fuel rate can make a severe error in the HC results.  Since only three modes
actually produce  measurable power, the 16,  10, and 3 inch modes,  the cycle
composite  is quite dependent on precise power measurements.

        3.  Experimental 23-Mode Mass Emissions

           Table 9 contains summary data for  the many replicate runs  made
to determine baseline  emissions from the six  engines by the experimental
23-mode procedure.  The  overall run-to-run repeatability seemed satisfactory
for HC, CO, and NO?.  A  comparison against a target or desired  level is not
possible since, at this writing, none exist.

           Measurement of aldehydes was attempted and though the overall
run-to-run results look good,  the modal concentration repeatability was not
very good.  The problem of trying to measure aldehydes by MBTH was of
continual concern during this project.  Calibration of the  entire  system using
bags of air + trace quantities of formaldehyde have given  routine precision of
± 10 to 15  percent normally.  Some if not most of the lack of repeatability must
be due to the engine and the remainder to the sampling, gas washing and colori-
metric analysis.   It is uncertain whether the MBTH approach is satisfactory,
but it is the best  known method for measurement of repetitive samples.

           The following is an engine-by-engine  summary of the general
operation and experience regarding the  23-mode test.

           (a)   Engine 2-1:  Testing of this engine began on March 6, 1972
with the running of the nine-mode Federal test.  Prior to making the tests,  a
25 hour break-in at various speeds and  loads (according to a schedule used
by the manufacturer) was  completed.  The basic timing and engine idle speed
was then adjusted to that specified by the manufacturer,  namely 4° BTDC and
700  rpm.  Three runs were then made with satisfactory run-to-run  and mode-
to-mode agreement.  Generally speaking plus  or minus ten percent of the mean
is acceptable with plus or  minus five percent of the mean excellent test re-
peatability.  There is  no hard  and fast rule since test repeatability is dependent
on engine,  procedure and  exhaust contaminant.

           Eight runs were made using the 23-mode procedure of -which seven
were used. The  large number of runs were possible because of the delay
in receiving additional engines for test.  This allowed certain instruments
to be checked for repeatability.  HC,  CO, NO2>  and aldehydes exhibited mode-
to-mode variability (one run had to be discarded), but on an overall test brake
specific basis, the run-to-run repeatability looked good.  Little more can be
                                  33

-------
           TABLE 9.  EXPERIMENTAL 23-MODE PROCEDURE
                  DRY CORRECTED EMISSION RESULTS
1-1
1-1
1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
2-2
2-2
2-2
2-2
2-2
1-3
1-3
1-3
1-3
1-3
Average

3/29/72
3/29/72
3/31/72
3/31/72
4/3/72
4/3/72

Average

4/7/72
4/10/72
4/10/72
4/11/72

Average

4/17/72
4/17/72
4/18/72
4/18/72
4/18/72

Average

4/27/72
4/28/72
4/28/72
5/1/72
5/1/72

Average
Run
2
3
1
2
1
1
2

1
2
1
2
1
2

1
1
2
1

1
2
1
2
3

2
1
2
1
2
HC
1
1





1







1
1
1
1
1
1
1
2.
1.
9-
9.
9.
9.
9.
0.
8.
8.
9.
9.
9.
9.
9.
1.
3.
2.
3.
2.
1.
2.
13.
1
1
1
1
1
3.
2.
2.
2.
3.
13.
13.
1
2.
17
02
50
16
11
50
88
05
62
75
35
05
98
44
20
98
61
68
12
85
91
16
28
34
35
61
56
69
34
03
88
CO
53.
49.
40.
46.
46.
47.
51.
47.
46.
45.
46.
46.
49.
43.
46.
58.
41.
42.
44.
46.
80.
85.
95.
94.
93.
89.
39.
35.
32.
36.
35.
0
2
7
4
4
7
3
8
1
6
5
6
2
5
2
6
6
4
6
8
7
3
0
7
4
8
6
6
3
1
3
N02Obs.
12.
12.
13.
13.
11.
10.
10.
11.
13.
14.
14.
14.
12.
13.
13.
10.
13.
14.
12.
12.
9.
9.
6.
6.
7.
7.
11.
11.
11.
10.
11.
0
4
4
4
2
2
9
9
8
6
8
8
1
7
9
5
3
5
8
8
4
3
9
6
1
9
1
7
7
8
6
Aide.


0.

0.


0.
0.
0.


0.

0.
0.
0.
0.

0.
0.
0.
0.


0.
0.
0.
0.



-
130
-
125
-
-
127
206
200
-
-
221
-
209
295
289
256
-
280
226
182
177
-
-
195
196
176
190
-
-
                                                         0. 750
0. 206
0. 200
-
-
0. 221
-
0.
0.
0.
0.
0.
0.
661
685
678
678
679
679
35
37
39
37
85
91
                  0.677

                  0.675
                  0.675
                  0.675
                  0.674

                  0.675

                  0. 757
                  0. 756
                  0. 756
                  0. 756
                  0. 756

                  0. 756
                     116
                     114
                     104
                     109
                      46
                      55
                     101
                     104
                      96
                                91
                                97
                               106
                               118
                               111
                       13.10   35.8
11.4
0.187
0. 730
                                   34

-------
             TABLE 9.  EXPERIMENTAL 23-MODE PROCEDURE
                DRY CORRECTED EMISSION RESULTS (Cont'd)

                                                           Cycle
                         	Grams/Bhp-Hr.	   Weighted   Humidity
Engine    Date    Run   HC     CO    NO?Obs.   Aide.     BSFC     gr/lbd.a.

 2-3     5/11/72    1   10.27   28.4    10.5      0.272    0.655        98
                                                  0.254    0.614        80
                                                  0.261    0.630       101
                                                           0.620        95
                                                           0.642        92
                                                  0.259    0.627        98

         Average         9.06   30.4    10.7      0.262    0.631
2-3
2-3
2-3
2-3
2-3
5/15/72
5/16/72
5/16/72
5/17/72
5/17/72
1
1
2
1
2
8.41
8.73
8.19
9.37
9.41
30.1
29.6
33.2
27.9
33.1
11.3
10.3
10. 7
10. 7
10.6
                                     35

-------
said regarding the results other than the revised experimental procedure
was operable and acceptable data was obtained.

          (b)   Engine 1-1:  Testing of engine 1-1 was begun on March 21,
1972 by running the nine-mode tests.  A full break-in was not required  on
this engine because it had been used previously by the manufacturer for
emission test purposes.  A short run of about 8 hours, however, was made to
make sure everything was in order before testing began.  Timing and idle
speed were adjusted as specified to 6° BTDC at 600 rpm.  Three nine-mode
runs were  made with fair repeatability and no problems were encountered.

          Further testing of engine 1-1  utilizing the experimental 23-mode
procedure  was begun on March 29,  1972.  As noted in a letter dated April 7,
1972, to the Project Officer, Mr.  John McFadden, the low rpm portion of
the 23-mode cycle was performed  at 1300 rpm instead of 1200 rpm,  because
the engine  would not hold steady loads at high power levels at the 1200 rpm
speed.  There was no appreciable  vibration or noticeable malfunction of the
engine i. e. misfiring,  surging, etc. and no explanation can be offered at this
time as to  the difficulty encountered.

          Although the overall brake specific results in Table 9 were
repeatable from run-to-run, the individual mode repeatability was sometimes
much less  than the summary table would indicate.  It was felt that this may
be due to this specific engine,  however, whatever the reason, we were  con-
cerned about some of the more-to-mode agreement for this engine.  This
phenomenon is expected during certain modes i. e. C. T.  and idle, and light
loads, especially at low speed. These modes have always been difficult to
run and obtain highly repeatable values, ± 5 percent of the mean for example.

       (c) Engine 1-2:  After a short run-in,  similar to engine 1-1,  testing of
engine 1-2 began on April 6, 1972.  The nine-mode runs went smoothly with
no problems.   Summary Tables 7 and 8 show good repeatability for  both the
Federal Test Procedure concentration and mass results.  Run 2 NO and N©2
were low and Run 4 HC was  high,  but investigation has shown the runs were
made properly and the values represent actual engine operation at that
time and not a chart  reading error or computation error.

       The usual mode-to-mode variability of certain modes  of the  23-mode
procedure  were experienced.  When the calculations were made of the run
composite, the variations in mode concentrations apparently have a self-
compensating effect so that cycle results are quite comparable.

       (d)  Engine 2-2:  Baseline  runs for engine 2-2 began with the nine-
mode test procedure on April 14,   1972.  The three runs used went smoothly
with no problems.  The major point of interest with the 23-mode test was the
difference  in emission levels on different days.  During a single day the mode-
to-mode repeatability was good but the gross difference in weather between
the 17th  and 18th of April are felt to have influenced the emission levels of

                                    36

-------
the engine.  Both changes in barometer and inlet air humidity were signifi-
cant as a result of a cold front.

        On mode 13, the maximum power, 2300 rpm condition, CO went
off scale and was greater than 11 percent full scale of the instrument.  This
occurred during each test.  Since the instrument is routinely spanned to
11 percent CO at 100 percent chart deflection, this value was entered for the
CO.  Mode-to-mode repeatability appeared  good for all the tests run including
aldehydes which were more repeatable than usual.

        (e) Engine 1-3:  Testing of engine 1-3 began on April  24, 1972 when
the nine-mode FTP tests were begun.  The  results were quite  repeatable.
The 23-mode results per Table 9 also show good repeatability  on a run-to-
run basis.   The computer print-outs of the various tests did not show a
good modal repeatability as the run-to-run results might have  indicated.
Several modes of the nine-mode tests look suspicious  and steps were taken
to check the strip charts for possible errors in reading.

        The 23-mode results were acceptable on a mode-to-mode basis
although some strange points were evident.  Specifically, Run  2 on April 27,
1972,  shows modes 9  and 14 (the 92 percent power modes) to have very
high CO concentrations.  This has happened before,  with engine 1-2 made by
the same manufacturer,  and is felt to represent a transition point on the
carburetor.  Several times the various emissions would exhibit a string of
high or low readings on a particular run. This is felt to represent actual
engine performance as no errors were made in reading the emission levels.

        (f)  Engine 2-3:  The nine-mode testing of engine 2-3 began on May 12,
1972 with no problems.   The run-to-run repeatability  was very good.  The
modal repeatability was felt to be satisfactory also.   The overall 23-mode
results also showed good run-to-run repeatability as seen in Table 9.  The
computer print-out sheets showed good modal repeatability as  well.   As with
all the engines tested, the modal repeatability was not as good as the run-to-
run repeatability on this engine, and also as usual, aldehyde measurement
showed more variability than the other emission  measurements.

        4.   Comparison of Nine-Mode and 23-Mode Emissions

            Table 10 is a comparison of the average results  obtained by the
nine-mode and 23-mode test procedures for the six baseline engines.  To
facilitate the comparison, a comparison ratio (CR) was computed by dividing
the 23-mode by the nine-mode brake specific emission rates.  CR values
greater than one indicate the  23 mode results  were greater than the nine-
mode.  From Table 10,  HC ratios ranged from 1. 8 to 3. 3,  CO ratios ranged
from 0. 97 to 3. 2 while NOY ratios varied from 0. 77 to 0. 96.  Although the
                         j£
two procedures result in essentially equivalent NOX, the CO and HC range
of variation does not justify direct comparison of the procedures.
                                  37

-------
     TABLE 10.   COMPARISON OF AVERAGE NINE-MODE AND
                         23 MODE RESULTS
                         Six Engine Baseline

             Brake Specific Emission Rates, Grams per bhp-hour
Engine  	HC	  	CO	 	NQ2	
Code    9 Mode  23 Mode CR  9 Mode   23 Mode  CR  9 Mode  23 Mode  CR

2-1       3.15    10.05  3.3     14.77    47.8   3.2    14.48   11.92  0.82
1-1       3.07     9.20  3.0     18.27    46.2   2.5    14.42   13.94  0.96
1-2       7.33    12.85  1.8     32.6     46.8   1.4    14.00   12.78  0.91
2-2       5.70    12.61  2.2     69.2     89.8   1.3    10.11     7.87  0.77
1-3       4.53    13.10  2.9     15.8     35.8   2.3    12.22   11.38  0.93
2-3       3.36     9.06  2.7     31.4     30.4   0.97   11.20   10.69  0.95

           Several other analyses were made to establish correlation between
the two procedures with inconsistent results.   No clear cut trends of agree-
ment between procedures or prediction of say  23 mode from nine-mode
results was evident from the data for the six 1972 baseline  engines.  Al-
though beyond the scope of this project,  there are probably several  good
reasons for this difference.  One likely reason for the higher HC by the
23 mode test was the  use  of a lightly heated (160°F) FID for analysis instead
of the NDIR sensitized to  a paraffin, n hexane, used in the nine-mode.  A
factor  of 1. 8 is used in the mass calculation of nine-mode HC concentrations
to compensate for this difference.  The lightly heated FID also eliminates
the cold trap required for NDIR analysis,  where some HCs are lost.

           One obvious reason for higher CO by the 23 mode procedure is
that several high power conditions are included in the 23 mode that  are not
in the nine-mode schedule.  These conditions, all typically at intake mani-
fold vacuums less than 2. 5 in.  Hg. (adjacent to and including WOT operation),
are producers of substantial quantities of CO.  A third possible reason for
the lack of agreement in HC and CO may be the large number of modes and
weighting factors used in the 23 mode test relative to the nine-mode proce-
dure.  The origin of the 23 mode test schedule operating  speeds, loads,
and weighting factors was from a  computer analysis of the original  1961
Ethyl truck and bus survey data.  The computer analysis and subsequent
formulation of the test schedule was performed by EPA's Procedural
Development Branch, Division of  Emission Control Technology.

           The nine-mode test procedure was reportedly arrived at by the
State of California Motor Vehicle Pollution Control Board,  now known as
the Air Resources Board, in conjunction with the Automobile Manufacturers
Association and certain gasoline truck manufacturers. A direct comparison
of the modes and weighting factors is not obvious.  While the specific origin
of and  basis for the 23 mode test is known, the nine-mode procedure is
mostly unknown.   Although both procedures are engine exercises,  the nine-
mode test is  recognized as much easier to design around than the 23 mode

                                  38

-------
test.  Neither include transients (acceleration-deceleration) and this is a
shortcoming of simplistic engine speed-load emissions mapping procedures.

       5.   Computer Print-out of Modal Data

            Appendixes A through F to this report contain computer print-
outs for  every run summarized in Tables 7,  8 and 9.  One appendix is
devoted to the baseline results for each engine and follows the chronological
schedule of test, i. e. , engine 2-1  is covered by Appendix A while Appendix
F contains data  for the last engine tested, number 2-3.  Each appendix is
subdivided into three sections,  the first containing nine-mode concentrations,
the middle section the California calculation of the nine-mode test in mass
per bhp-hour, and the final section listing all the 23-mode run data obtained.
To  find a specific print-out for a given engine, locate the proper section of
the respective appendix and then match up date and run number to that listed
in the text summary table.

            There is a substantial amount of data in these six appendices
starting with raw, as-measured concentrations and  ending up with weighted
modal results.  There are many -ways this data may be useful and accordingly,
full details are  shown.  For some print-outs, such as the Federal FTP mass
and the 23 mode test, engine operating parameters of observed flywheel hp,
fuel consumption, intake manifold vacuum are listed.

            In the case of the 23-mode, grams of emissions per hour,  are
computed and shown. This is the  best method for expression of mass  rate
for all modes.  A cycle weighted brake specific fuel consumption (BSFC)
is  shown based  on modal fuel and power readings.  The  same weighting
factors used for emissions -were used for BSFC.   Modal air-fuel ratio was
calculated and printed by the computer for Engine 2-3.  The  reader is
referred to Appendixes A through  F for the full data and particulars re-
garding  the baseline test series.

B.      Control  Technology Assessment

        The intent of the control technology phase of this project was not
one of design and development, rather of screening,  confirmation,  eval-
uation and assessment both of laboratory run experiments at  SwRI and data
available from the manufacturer.  In addition to the meetings held on
January 13 and  14,  1972,  with the two manufacturers, two additional
separate meetings were held on March 7 and 15,  1972.

        The specific objective of these meetings was to obtain advice and
as  many devices and equipment, parts, ideas, etc. ,  as  possible to make
the in-depth study of future control technology as meaningful  as possible.
Some of the specific methods discussed were:
                                  39

-------
           Exhaust Gas Re circulation (EGR) Internal-External
           Spark Retard plus Oxidation Catalyst
           Spark Retard plus Manifold Reactor
           Lower Compression Ratio (add head gaskets)
           Derate  Engine by Using Smaller Carburetor
           Electronic Fuel Injection (Open-Closed)
           Capacitor Discharge Ignition
           Variable Venturi Carburetor

       Of course, there are many other possibilities and not all items on the
above list were to be accommodated within the time and money constraints
of the project.  For example, electronic fuel injection holds promise,  but
requires development.  Capacitor discharge will do little to reduce emis-
sions from a new engine, but should go far in maintaining low emissions
due to the improved durability of the equipment and lack of  wear, etc.

       Little in the way of data or experience was provided by the manufac-
turers with regard to making substantial improvements in emissions from
their engines.  The discussions  also covered the usual concern about the
relationship of laboratory engine results to driveability and durability.  It
was  emphasized that this control technology project had to  begin with
laboratory studies which -would have to be followed by studies of other
aspects.

       From the control technology standpoint and the availability of test
results,  etc. , the meetings were not nearly as productive as hoped. Little
was  offered in the way of assistance by one manufacturer and only limited
assistance was promised by the  other.  The representatives of both companies
were sincere in wanting to be of help,  but, since their major concern was
passenger cars,  they plainly could not offer much at that time in the program.

       The general lack of technology in the industry required SwRI to
respond quickly with control approaches that required little or no design and
development.  Within the desired time constraints, this limited the items
for test to those normally used for light duty engines, such as oxidation
catalysts,  EGR,  manifold air injection, etc.  As soon as the full impact of
these findings with the manufacturer was felt, the staff of the Emissions
Research Laboratory, on the advice and consent  of the Project Officer,
began a series of contacts with the control equipment supply industry.
Manufacturers and suppliers of EGR valves and control equipment, oxidation
catalysts,  oxidation-reduction catalysts, fuel injection systems, and turbo-
chargers were contacted and where available  samples obtained for  considera-
tion.

       The time constraints of the project precluded the operation of many
items since additional development would be necessary to adapt most of
these components to the engine.   Essentially no time or effort was  available
for such studies and optimization so that of all the items considered,  only a


                                  40

-------
popularly-used commercially-available precious metal type oxidation catalyst
was selected for evaluation.  A pair of platinum-type honeycomb catalytic
reactors, as well as technical information and support^ were obtained from
the reactor manufacturer.  These reactors were of a size that could be used
with both control technology engines.

        1.   Engine 2-3 Control Technology Results

            Conversations with the Project Officer on April 28, 1972, resulted
in the test plan shown on Table 11 for the control technology assessment of
engine 2-3.  The test plan was not considered a rigorous  parametric study
in the classical sense in that one parameter is not always varied over the
entire range of conditions at a time to determine effects singly.  Engine timing
experiments, Step 1, were parametric in nature as was step 5.  Only one
catalyst and one air pump system were  considered.   Clearly, there were
too many dimensions of possible interest to investigate each singly, much
less in all the possible combinations and permutations to  meet the time and
financial constraints of the project.

            The plan was to explore possibilities of gross emission effects
due to gross changes in engine operation.  This approach was somewhat
unconventional, but with only two months to complete the  tests with engine
2-3, there was no alternative.  As specified by the Project Officer, the
experimental 23-mode test procedure was the primary basis for comparison
of HC,  CO, and NOX emissions performance.  A shortened version of this
procedure was used in which mode times were reduced to approximately
1. 5 minutes.  This is sufficient time to obtain stable engine and emissions
performance under most all operating modes.

            (a)   1972 Versus 1973 Version Tests  -

            Prior to starting Step 1, the engine was  operated in its  1973
California version with a different distributor, carburetor, carburetor air
cleaner assembly and water thermostat.  These items were furnished by
the manufacturer and their installation and adjustment specifications strictly
adhered to.  Repeated 23-mode runs were made with the  1973 version of
the engine with emission rates of CO substantially higher and NOX  substan-
tially _lower than the 1972 basic engine.   These results are summarized
below and the computer run sheets included in Appendix G.

Engine 2-3.  Experimental 23 Mode Mass Emission Rates,  grams per bhp-hr
                         (Army  Laboratory)

                                        CO         HC
        1972 Baseline Engine           30.4         9.06      10.69
        1973 California Configuration   70.77       10.09       5.82
        1972 Engine (Retest)            33.37        8.54      11.57

                                    41

-------
              TABLE 11.  PLAN OF TEST, ENGINE 2-3

                                     Description

            Convert Engine to 1973 California version and vary basic timing,
            i.e.,  say 10° and 5° advanced, standard and 5° and 10° retarded
            timing.

            Install larger and smaller carburetor jets to modify engine air-
            fuel ratio at standard timing.

            Install air pump system and run engine at  standard timing and
            one extreme each side of standard.

            Install standard EGR system and run at standard timing and
            one extreme advanced and retarded timing.  Use standard
            engine with the air pump off.

            Investigate modified EGR, i. e., other flow rates at various
            modes.

            Install catalytic reactors, clean fuel system,  and run with and
            without air pump  at standard timing advanced and/or retarded
            (operate  on clear fuel unleaded) run longer modes and  sample
            exhaust before and after catalysts.

            Carburetor modification - derate engine by running with two
            large  barrels of 4 barrel carburetor blocked.  Standard engine
            otherwise.

            Combine  best EGR with best air pump  - catalyst-ignition timing
            found  in Steps 2,  3, and 4.

            Investigate other  combinations of the above or  control  approaches
            as they develop.
            The higher CO and lower NOX with the 1973 engine on the 23-mode
test are unexplained although the run-to-run agreement for each series of
tests was satisfactory and the changes were real.  Several runs were made
with the engine returned to its 1972 standard  configuration to verify the
large differences in CO and NOX.   The baseline (six tests) and retest data
were in agreement.

           Although the 23-mode test schedule was  established by  the Project
Officer as the test procedure for use in control technology assessment, it was
felt of interest to determine  what the engine would emit on the nine-mode
schedule both in concentration by the current FTP and in mass by the 1974

                                      42

-------
FTP.  It is the latter which applies to gasoline engines in heavy duty service
in California beginning in 1973 and nationwide beginning in 1974.   These
results are summarized below:

          Engine 2 -3,   Nine-Mode FTP Concentration Results

                                    HC. ppm n Hex.   CO, %    NO*, ppm

1972 Standard Engine (Baseline)           116          0.66         1601
1973 California Configuration               88          0.78          971

   *Corrected to 75  grains humidity
                               •*

    Engine 2-3, Nine-Mode 1974 FTP Mass Results, grams/bhp-hr

                                    CO      HC     NOY*     HC + NQX

1972 Standard Engine                31.4    3.36     11.20      14.56
1973 California Configuration        33.73   2.57      6.59       9.15

   *Corrected to 75 grains  humidity
            Based on the nine-mode schedule, the difference in emissions
 between the 1973 and 1972 engines were much less than earlier shown on the
 23-mode except in NOX.  The only good explanation is that an engine cali-
 brated for a schedule incorporating only six different modes  (nine-mode
 FTP) may result in a quite different conclusion if operated on a schedule
 comprising many more modes such as the 23-mode schedule where 21
 different modes are employed.  Note, only 15 different modes are used in
 the calculations since some modes had a zero weighting factor.  Of course,
 weighting factors, choice of power levels  and, to a much lesser extent,
 engine rpm play important parts in establishing an engine's total  emis-
 sion rate.

            It may be noted that the 1973 California configuration brought
 the engine's HC+NOX well below the 1973 California and 1974 Federal limit
 of 16 grams per bhp-hr without materially changing CO which was below
 the 1973 limit of 40  grams per bhp-hour.  To this end, the 1973 version
 is considered an improvement^over the 1972 engine.  The 23-mode procedure,
 an experimental method, yields a much different conclusion in terms of
 CO and NOX.  Run data for  this series of tests are included in Appendix G
 of this report for further analysis on a mode-by-mode basis, etc.  The
 conclusion from this series of tests was to utilize the 1972 standard engine
 as the basis for control technology assessment.  In effect, these  experi-
 ments indicate that changing back from 1973 to 1972 would be an important
improvement in exhaust pollution from this engine,  based on the 23-mode
tests.
                                43

-------
            The arrangements for use of Cell 3 of the U. S. Army Fuels
and Lubricants Laboratory called for release of this facility on June 1,
1972.  Accordingly, the test efforts were transferred to the Emissions
Laboratory on June 1, but not before all items of equipment, dynamometer,
etc., were checked and recalibrated. Power curves were run at several
speeds with engine 2-3 to ensure the new facility dynamometer power and
speed read-outs would be identical to that previously used.  After several
days of work, the physical installation was completed and the dynamometer
in operation.  Power, speed, fuel, manifold vacuum and other physical
operating characteristics were replicated and operation of the engine was
found to be essentially identical to the previous location.

            Before continuing with the control technology phase of the project,
several more days  were used to rerun the 1972 and 1973  engine version
23-mode tests discussed earlier.   These results are summarized below and
show close to the same magnitude of difference between 1972 and 1973
engine s.

Engine 2-3. Experimental 23 Mode Mass Emission Rates, grams per bhp-hr
                        (Emissions Laboratory)

                                        CO        HC        NO..
        1972 Baseline Engine            56.20      7.01      8.60
        1973 California Configuration    72.40      8.22      6.61

            The 1973 version of the engine  repeated the tests made earlier
in the Army Laboratory with CO 72. 4 versus 70. 77, HC 8. 22 versus 10. 09
and NOX 6. 61 versus 5. 82.  Trendwise the 1972 engine was still better than
the 1973 engine per the 23-mode test, but the 1972 engine data were not as
close to earlier 1972 data as desired.

            The same instruments,  sampling system and fairly similar
exhaust piping, muffler,  etc. , were used.  The same emissions test fuel,
exhaust restriction and calibration, span and zero gases were used.  The
engine was not damaged or altered in making the move and to date, no really
good explanation for the differences in 1972 emission rates has been found.

           In the  last part of Appendix G may be found the 23-mode computer
print-out sheets.  Comparing the modal data for these runs against that from
the earlier data,  also in Appendix G, obtained in the original installation,
reveals that the differences are predominately  in the light load portion of
the schedule.   This is, of course,  one of the big contributors of HC and
is the most difficult part of the 23-mode schedule to operate.

           In summary, no  really satisfactory explanation of the  difference
in Army Lab 1972 and Emissions Lab 1972 data could be found.  The good
repeatability for the 1973 version of the engine indicates that the test loca-
tion, procedure,  etc., was not necessarily the cause.
                                 44

-------
           (b) Step 1 - Effect of Timing

           The intent of this series was to determine what effect gross
changes in basic  engine spark timing would have on emissions and perfor-
mance.  In running these tests, the 1972 engine was used and the basic
distributor timing set at 25°BTDC, 16°BTDC, standard timing (4°BTDC),
4°ATDC and  12°ATDC.  The results are summarized on Figure  5 and
are 23-mode composite data on a grams per bhp-hour basis.   Setting the
timing later and later resulted in a nearly uniform decrease in NO^, the
greatest reduction occurring between 15°BTDC and 4°ATDC.  This same
range had the opposite effect on CO,  however, with about a 35 percent
increase in CO between 15°BTDC and 4°ATDC range.

       HC increased greatly between 4°ATDC and 12°ATDC indicating a
loss in combustion efficiency. Settings of 25°BTDC and 12°ATDC represent
the approximate advance and retard limits of the engine as far as engine
operation was concerned.  Cycle weighted BSFC is  also plotted on Figure
7 as an indication of the effect of timing on fuel consumption and economy.
Note the effect of retarded timing on cycle BSFC with a significant loss in
economy of operation  shown at 4 and 12°ATDC.

       Appendix  H contains tabular,  computer print-out, data for modal
analysis and  plots of the data. Figures H-l,  H-2, and H-3 show the effect
of power on the mass  rate,  grams per hour for HC, CO and NOX as NO2.
Also plotted are the 1973 California configuration modal results (from
data in Appendix  G) for comparison to the  1972 standard engine. By over-
sight,  one run at 12°ATDC was made with the distributor vacuum advance
line disconnected.  The run was valid otherwise and the results are plotted
for general information.  Both 1200 rpm, broken line,  and 2300 rpm, solid
line data are plotted.   Also shown are closed throttle (CT) and idle  results.

       Figures H-4 and H-5 of Appendix H are similar plots of engine intake
manifold vacuum and fuel consumption.  Other plots of the data in the
Appendix H computer print-outs could be made such as power versus emis-
sions on a brake  specific or concentration basis.  Plots of air-fuel  ratio
versus certain of the  emissions would also be informative. In summary,
retarding the spark 4 to 8 degrees from manufacturers standard timing
of 4° BTDC would reduce both HC and NOX with an increase in CO.  Assuming
performance is not jeopardized too much,  this might be considered in con-
junction with other approaches, especially one that  reduces CO.

       The importance of the closed  throttle mode on HC production and its
effect on the  23-mode  result is dramatic.  The two  closed throttles are
given 18 percent  of the weight (12 percent at 2300 rpm and 6 percent at
1200 rpm).  Any device or approach that can substantially reduce concen-
trations, nominally 30,000 to 90,000 ppmC,  during these modes can have
a noticeable influence  on the final results.
                                 45

-------
                                                                    1.2
   16


,  12


cq   8
M

O   4

    0
                                               1.0


                                               0.8


                                               0.6

                                               0.4
                                                                        0-
                                                                        A
                                                                        cq
                                                                        u
                                                                   80
    10
o.
cq   8
M
                                                                    70   M
                                                                        i

                                                                    60   cq
                                                                        ao
                                                                    50   O


                                                                    40
               I
 BTDC   28    24
I	I
                                               I
                   20    16    12    8    4     0    4
                      Basic Spark Timing,  Degrees
                                          12   ATDC
        FIGURE 5.  EFFECT OF SPARK TIMING ON EMISSIONS
                      ENGINE 2-3s 23 MODE TEST
                                   46

-------
            (c)  Step 2 -  Effect of Air-Fuel Ratio

            The usual way to investigate the effect of air-fuel ratio is to run
tests with the main metering system modified to admit more or less fuel for
a given air flow requirement.  Several main metering jet and metering rod
combinations shown in Figure  6 were furnished by the manufacturer and
experimented with.  The  air-fuel ratio was determined for each of the 23
modes using the "Spindt Method"  of calculation.  From the modal air-fuel
ratios,  an overall "weighted air-fuel  ratio" for the entire  23-mode test
was computed using the modal weighting factors.

            Figure 7 is a summary plot of the 23-mode results with the
various jet-rod combinations.  Also shown are the various size jets that
were larger or smaller than the standard 0. 073 inch jet, 0. 0368 inch rod,
combination.  Note the plots of NOX,  CO and HC show that the mixture has
an important effect on emissions.  The  trends of lower NOX and higher HC
and CO as air-fuel mixture becomes richer with fuel was as  expected. The
dramatic increase in CO  was not unexpected based on our  experience  with a
number of in-service gasoline trucks.  On the fuel lean side,  the  1972
engine was not too far from its "lean  limit" as noted by the attempted opera-
tion of the engine with very  small jets (0.064 inch).  Weighted BSFC seemed
little affected by the change in air-fuel ratio except  at the  rich mixtures.

            Appendix I contains the computer sheets listing the modal results
for this series of experiments.  The gram per hour  emission rate has been
plotted against percent power for the  several modes included in the 23-mode
test.  Grams per hour was selected as the primary  expression since all
modes have such a rate.  Grams per  bhp-hour is not applicable or appro-
priate where no usable load is  obtained  as  in idle, closed throttle  and very
light load,  i.e., 0-2 percent power.   Concentration  results,  on the other
hand, may be misleading since they do not include the air flow and thereby
lack the direct contribution to  the cycle result where mass rate is important.

            Appendix Figures 1-1, 1-2,  and 1-3 portray HC, CO and NOX as
NO2 in this  way and are similar in appearance,  but not in trend, to those
in Appendix H for the effect of timing.  Figures 1-4 and 1-5 show manifold
vacuum and fuel consumption as a function of the power output.  Time has
not permitted further graphing and analysis of the results, although more
could be done in this  regard. In summary, this series of experiments con -
firmed the effect of air-fuel ratio on carbureted gasoline engines; namely,
that richening the mixture with fuel reduces NOX at the great expense of
increasing CO and HC, as well as fuel consumption.  As with the  study of
spark timing, this is another item which should be considered with after-
treatment approaches such as air injection with or without catalysis.

            (d) Step 3 - Effect of Exhaust Manifold Air Injection

           Engine 2-3 was fitted  with the factory exhaust manifold reaction

                                 47

-------
                                                           ,
                                                              ic J«ts - 3,089

                                                               Rods - 0.051
                                                             STANDAH0
                                                            Main J*te * O.Oti
                                                               Rod* • a', osa
                                                            M*j£ Jets - 0. 0*4
                                                               K04» *• 0. 02?
                                                                                         i
Main Jets • 0.075

   Roda - 0,8 JS
         !••
          *
FIGURE  6.   CARBURETOR RODS,  JETS,  AND  THEIR  LOCATION
                                   (ENGINE  2-3)

                                         48

-------
                                                                    -i 0.9
    11 I—
                                         •0-
                                            -0
                                                                       0.8
                                                    0.7   «

                                                          ,0
                                                          ,—(

                                                          O

                                                    0.6   fc.
                                                          en
                                                                      0. 5
p.

PQ

M
 (M
g
   10
 OH

rfl

PQ


 60
O
ffi
           1
         0.080
        14
   1
                        1
 0.075              0.073
            Jet Size,  inches

I      I     I      I     I
                                                   250




                                                   200




                                                   150




                                                   100




                                                   50




                                                   0
                                            0.068
                                                     1
14.5        15        15.5        16

  "Weighted Air-Fuel Ratio" - 23 Mode
                                           16.5
        FIGURE 7.  EFFECT OF AIR-FUEL RATIO ON EMISSIONS

                       ENGINE 2-3, 23 MODE TEST
                                                                             i
                                                                             a,
                                                                            ,B
                                                                            CQ

                                                                             be


                                                                            d
                                                                            u
                                     49

-------
equipment,  as  shown in Figure 8.  This involved replacing exhaust manifolds
and installing air pump, belt,  pulleys and required lines, fittings and injection
tubes, so that air is admitted  on the exhaust valve tulip.  Several 23-mode
runs were made at various basic injection timing settings including standard
(4°BTDC), advanced settings of 16 and 25°BTDC and a retarded  setting of
4°ATDC. The computer print-outs for this series  of tests are included
as Appendix J.

            The grams per bhp-hr 23-mode results for HC, CO and NOX
and weighted BSFC are depicted on Figure 9.  Also shown are the standard
engine emissions versus timing for comparison. The brake specific NOX
emission values show little variation with timing that are not  due to timing
alone.  And, relative to the engine run without air, the influence of air
injection on HC is somewhat disappointing.  Air injection did  seem to reduce
CO, however,  especially at the standard 4°BTDC and at 4°ATDC.

            Part of the explanation may lie in the large weighting given idle,
closed throttle and light loads where exhaust oxidation would have a limited
effect.  Recall that the air injection acts as a diluent as well as a source
for oxygen and that the diluent effect, which reduces concentrations, does
not reduce emissions on a mass basis.  Appendix J contains modal plots,
Figures J-l through J-5, of the run results for HC, CO, and  NOX, manifold
vacuum and fuel consumption as a function of power level.  Please refer
to these plots for further insight on the effect of exhaust manifold oxidation
by injected air.

            (e)  Step 4 - Effect of Light Duty EGR System on Emissions

            This series of experiments required an experimental intake
manifold furnished by the manufacturer that had been machined and prepared
for exhaust gas recirculation from the exhaust heat crossover back to a
central point in the intake manifold directly below the  carburetor.  The
EGR is routed  completely internal within the intake  manifold and all that
shows is a valve and the valve control vacuum hose that connects to the
distributor vacuum line.  Photographs of this system are shown in Figure
10.  The system as used was the same as used in light duty vehicles and
was installed and operated according to manufacturer's recommendations.
The EGR rate was essentially zero,  from 0 to 2 inches intake vacuum and
constant at approximately 1  lb per minute above 8 inches of vacuum.  The
EGR rate increased in a nearly linear fashion between 2 and 8 inches of
^O vacuum.

           As with other similar studies,  a series of 23-mode experiments
was made at basic timing of 25, 16, and 4 (standard) °BTDC and 4°ATDC.
The 23-mode composite results are also plotted on Figure 9 along with the
standard engine without light duty EGR for  comparison.  Note that EGR is
most  effective  on reducing NOX at advanced settings where maximum NOX
was produced.  To optimize the EGR as far as basic timing is concerned,
it seems that a 4°ATDC or 8°  retard from standard,  results in the lowest

                                 50

-------
r
      FIGURE 8.  EXHAUST MANIFOLD AIR INJECTION EQUIPMENT

-------
O
ffi
   20
   16
   12
             Legend

       O STD 1972 Engine

       A STD Plus EGR

       D STD Plus Air Inject
    8  I—


    4


    0

Ji
cq
oo
20
16
12


~~

EJ- 	
A
^s-^>

_^D
-•""^ r\



                      I
I
I
I
I
I
    BTDC  28     24   20    16    12    8     40

                        Basic Spark Timing,  Degrees
                                        1.0 ^
                                           a
                                           cq
                                                                      O
                                                                      fe
                                                                      cq
                                                                   0.4
                                                                   100
                                                                    80 •?
                                                                      (X
                                                                      CQ
                                                                    40


                                                                    20
                                   12  ATDC
 FIGURE 9-  EFFECT OF LIGHT DUTY EGR AND AIR INJECTION
            ON EMISSIONS, ENGINE 2-3, 23 MODE  TEST
                                   52

-------
Ui
00
                                       FIGURE  10.  LIGHT DUTY EGR EQUIPMENT

-------
Ul
                                      FIGURE 11.   LABORATORY EGR SYSTEM

-------
NOX of about 4 grams per bhp-hr.

            This is not necessarily the best operating point for CO,  however,
as shown on Figure 9,  since this gives the maximum CO.  HC, like CO,
was  adversely affected, i. e. , increased by EGR throughout the range of
timing studied, and ,  like CO, 4° ATDC was not the best setting for HC. It
may be that in combination with other control approaches,  the 4°ATDC
will  emerge as a possible operating point.

            Appendix K contains the tabular computer print-out sheets and
graphed results on a  modal basis for the series of tests on the light duty
EGR system.   Please refer to these for additional detail or if a more thorough
analysis is desired.

            (f) Step 5 - Effect of Laboratory EGR on Emissions

            This step was originally intended to involve tests at a given
basic timing,  such as standard, with a flow of exhaust modified from the
light duty flow schedule.  The light duty valve recirculates exhaust based
on signal pressure from the distributor manifold  vacuum line.  On inspec-
tion of the flow capacity, it was found that  even operating at maximum
signal pressure the EGR rate would not give the desired flow for  this step
of the project.

            To investigate EGR more fully, a laboratory EGR system was
prepared that split-off some of the exhaust from the tailpipe at a  point
downstream of the muffler.  The exhaust then passed through a simple
two-pass  single large tube air-to-water-heat exchanger and then through
a flow measuring  section thin plate orifice, a manual,  gate type,  control
valve and then to the  intake manifold.

            The system shown in Figure 11 was designed to permit EGR at
a specified flow in percent of carburetor intake air flow rate at 5, 10,  15,
and 20 percent.  These tests were made with the  air injection system in-
operative.  The heat  exchanger was a low pressure drop simple two-pass
unit  made hurriedly from 2-inch steel exhaust pipe with a total length of
18 ft.  The outlet temperature was on the order of 95 to 100°F and  repre-
sented what might be possible with a good air-to-air heat exchanger on a
moderately cool day.

            The return of the exhaust into the intake manifold was through
two 3/4" pipe openings (1. 05 inch ID opening in manifold).   It is known that
the distribution and mixing,  etc. , of recycled exhaust with the carbureted
fuel-air mixture is tricky and requires substantial effort to perfect.  In
the very short time available,  it was decided to add another 3/4" pipe
opening directly across from the one already machined in the experimental
manifold used as an access for internal machining for the factory EGR.  The
system was leak-checked and found satisfactory for a preliminary evaluation


                                  55

-------
of EGR on the engine by the 23-mode schedule.  It was a laboratory system
used strictly for basic experimental purposes.

           The results, all obtained at standard timing of 4° BTDC with
standard carburetor, etc. , are plotted in Figure 12 for EGR at various
percentages of total engine requirement defined as:

           Percent EGR =      EGR (SCFM) x 100%	
                           Total Flow Requirement (SCFM)

                        _  	EGR (SCFM) x 100%	
                           Carburetor Air (SCFM) + EGR (SCFM)

           The results are reduced to the 23-mode values, plotted in
Figure 12, using the carbon balance method that has been employed through-
out this project to determine exhaust mass  rate.  Recall that carbon bearing
compounds, such as HC,  CO, and CC>2 and  fuel input are necessary measure-
ments for this  computation method.  It can  be shown,  though it is not neces-
sarily obvious, that this method will determine the mass of exhaust products
exhausted into the atmosphere even though some of the exhaust is recirculated.
The method is valid if the recirculated exhaust is admitted after the  carburetor
and throttle plate.  It should be understood  that EGR can reduce the mass
of exhaust products emitted to the atmosphere.  For example, at wide open
throttle and constant speed, the mass  flow rate of emissions can be less
even though the concentrations of HC and CO are not reduced.

           From Figure 12 the laboratory  EGR was found to  be quite effec-
tive on reducing NOX.  At about 10 percent  EGR, the benefits of increased
EGR are more  than offset by the apparent steep increases in emission rates
of HC and CO.  Though 10 percent EGR was not necessarily optimum, it is
probably in this vicinity that best NOX control results under the 23-mode
schedule. Above 10 percent EGR, the engine,  at 1200 rpm, would not run
when the power level was about 75 percent (15 percent EGR) and 50 percent
load (20 percent EGR).

           It is interesting to follow the effect of EGR on brake  specific fuel
consumption  and on maximum power output. These results are summarized
below.  The cycle weighted BSFC results are also plotted on  Figure 12.
The BSFC and  power loss at 10 percent EGR is substantial relative to no

                      Overall BSFC          Power Output,  Max bhp, Obs
Percent EGR       23-Mode Weighted      1200 rpm         2300 rpm

     0                   0.648                  52               108
     5                   0.681                  50                 99
    10                   0.750                  47                 88
    15                   0.915                  42                 78
    20                   1.075                  35                 67
                                  56

-------
                                                                1.1
                                                                i.o
                                                                0.9
                                                          0.8
                                                                0.7
                                                                      cQ
                                                                      U
                                                                      h
                                                                      CO
                                                                      cq
      10
                                                       -1 0.6
   cx
   fi
   ffl
   WJ
  U
  ffi
      20 I—
      16
12
                                                         80



                                                         60



                                                         40



                                                         20



                                                       -1 0
                                                                      cu
bO

6
u
                         I
                                        I
                         5          10         15

                            Percent Cold EGR
                                                  20
FIGURE 12.  EFFECT OF LABORATORY COLD EGR ON EMISSIONS

                    ENGINE 2-3, 23 MODE TEST
                                  57

-------
(Jl
00
                                FIGURE 13.  OXIDATION CATALYST TEST SET-UP

                                                     ENGINE 2-3

-------
EGR.  The maximum power could be restored by eliminating EGR at WOT.
This will help BSFC only slightly however, since BSFC is a weighted value
per the 23-mode test.

            The results of this series of tests are included in Appendix L.
both in tabular and graphical form.  Please refer to this Appendix for ad-
ditional details.  In conclusion, no tests were made to optimize for best
performance taking into account fuel economy,  brake specific fuel consump-
tion, and driveability aspects such as roughness, misfiring, etc.  It does
point toward the possible benefits of EGR and illustrates what EGR might do
for emissions from this size and make engine on a 23-mode  or engine
exercise type test schedule.

            From the modal results in Appendix L., it is possible to select
an EGR schedule that is optimum for NOX that, in combination with other
systems to  remove CO and HC, could be driveable.  The time limitations of
this project have prevented this from being done on an engine. The results
may be predicted, however, from data at various timing, air injection,
carburetor  settings with and without oxidation catalyst.  Some combination
effects may be seen from factory EGR plus catalysts and air injection at
modified spark timing to allow a reasonable prediction.

            (g)  Step 6 - Effect of an Oxidation Catalyst on Emissions

            This series of tests were made with Indolene clear, a well known
American Oil Company low lead fuel that is a laboratory standard fuel for
operation of devices such as catalytic mufflers.  To prepare for these tests,
a new  fuel pump and fuel handling system up to the carburetor was installed
and the carburetor bowl drained.  A gallon of Indolene clear was run through
the engine before the catalysts were installed.  The exhaust  system was
replaced with new pipe such that the inlet of each of the two catalytic devices
were located twenty inches from the exhaust manifold outlet  flange.  The
dual exhausts were then joined together into a single exhaust.  The conven-
tional  stock muffler was removed.

            Samples were obtained from the exhaust at a point five feet
downstream for analysis.  A common sample of the gases as they entered
the devices  was obtained at a point one inch before each catalyst and these
two samples "Teed" together to obtain a common sample for analysis.  Thus,
by alternatively sampling the inlet and exit gases,  it was possible to deter-
mine relative effectiveness of the catalyst.

            Inlet and outlet temperatures and pressures were also measured
and recorded.  The manufacturer required that the exit temperature never
exceed 1800°F.  This temperature was closely monitored at each condition
to make certain the catalyst was not damaged.  The manufacturer felt that
for the catalyst to be effective,  a minimum inlet temperature on the order
of 800°F would be needed.  There are a number of operating modes in the


                                 59

-------
23-mode schedule where this was not possible even with the catalysts close-
mounted.

            Figure 13 illustrates the installation and  sampling arrangement
for this step of the project.  Additional air for oxidation was provided by
the exhaust manifold air injection system normally used for such purposes.

            Figure 14 shows the "before" and "after" HC,  CO and NOX for
the series of tests made with the oxidation type  catalyst.  It is difficult to
make a direct comparison between the results on Figure 14 and other
treatments such as the standard engine with air injection alone,  or light
duty EGR as were described on Figure  9.  This is because fuel and exhaust
systems were different, as was  the point at which the exhaust was obtained,
especially the "before"  sample.  Incidentally, audible detonation or knock,
though intermittent, was experienced on the Indolene Clear at 17 and 25°
BTDC when operating at part to  WOT throttle position at 1200 and 2300 rpm
(above 50 percent power).  The knock was not excessive though it was worse
at 1200 than at 2300 rpm.  An accurate indication of the catalysts effective-
ness is, however,  portrayed by  Figure 14 as to its dramatic reduction of
both HC and CO.   BSFC, computed  on a cycle weighted basis,  shows a
minimum at 16°BTDC.

            Figure 15 is a bar chart representation of the influence of the
catalyst on emissions when non-standard carburetor jets and rods (0. 075
and 0.028) were employed to richen the mixture. Also, the  effect of the
catalysts  on emissions without air injection is shown.   This  test, made at
standard timing,  indicates the need for supplemental air for adequate
catalyst operation with this particular engine.  In any event, CO reduction
was judged poor.

            Richening the mixture lowered NOX, but in  doing so, increased
CO substantially while having the same effect on HC.  It seems that the
catalyst is capable of removing a certain amount of CO under the conditions
experienced and purposely increasing fuel to air to quench NO formation is
not adequately compensated for by the catalyst as tested.  Possibly more
surface area, i. e. , two in series with additional air injection may have
helped, though the  temperature release can become excessive.

            Appendix M contains the tabular and graphed results of the
exhaust emissions, etc. , for this series of tests.  Computer print-outs
for the "before" and "after"  test series are included.  The "after"  results,
i. e.,  the emission rates from the engine after passing  through the catalyst
devices, are plotted against percent power per the 23-mode  test.

           In summary, it appears that an oxidation catalyst of the type
tested has  great promise in reducing tailpipe emissions from engine  2-3  on
the experimental  23-mode test procedure.  Though a sweeping statement
regarding the use of catalysts on trucks and their durability cannot be made,

                                 60

-------
•?  12
«   8

so



-------
10
8
6
4
2
0
-


7.15

8.10

NOX as NO2

4.98
5.14



8.22

8.86


100
* 80
o
K
a, 60
ffl
!H
a 40
CO
£
s 20
o
0

—

-






.


43





0, J.XllXllg. ~7 J-* J. J-'NJ






18




86










CO


53
















54









42












u
8

6

4
2
0










9.23















0.87










8.88









HC




0.15
5.45






1.12

       Before After      Before After     Before  After
       With Air Inject   With Air Inject.    Without
        St'd.  Mix.         Rich Mix      Air Inject-St'd. Mix.

     FIGURE 15. EFFECT OF OXIDATION CATALYST ON 1972
STANDARD ENGINE WITHOUT AIR AND WITH FUEL RICH MIXTURE
                   ENGINE 2-3,  23 MODE TEST
                               62

-------
the improvements in emission concentrations and mass rates tend to agree
with the extensive light-duty experience with this commercially available
material.  Whether it is sufficiently durable in truck service and whether
lead sterile fuel is available are factors that remain to be seen.  There
were no obvious engine malfunctions or problems due to the  catalyst that
might affect driveability since no changes are  necessarily needed to the
carburetor and distributor or the engine to obtain the improvements noted.
There are controls that must be applied to prevent the item from being run
on fuel containing lead at excessive temperatures (i. e. , with excessive CO
and HC,  etc.), and in isolating the items such as reactor and adjacent
piping that experience high temperatures from the vehicle or the environ-
ment.
            (h)  Step 7 - Derating by Carburetor Restriction

            This item,  of low priority, was considered of interest since the
effect of a power reduction on emissions might more than compensate for
the power loss that may be associated with some controls.  Incidentally,
in several steps of this phase, the engine power output was unintentionally
derated because of the  control device characteristics.

            One fairly simple way to intentionally derate the engine was to
operate engine 2-3 with only the front two,  small, Venturis of the four
barrel Rochester carburetor.  A plate was made that effectively blocked
off the rear two Venturis, which normally are not in use,  and a 23-mode
test was run.   The engine appeared to run fine at 1200 and at 2300 rpm
with little derating of power at 2300 rpm noted.  No doubt, that the engine's
high speed power was  reduced, but at the two speeds used in the 23-mode
test schedule,  only about 8 percent loss in peak power was found at 2300
rpm.   The tests of this item were terminated at this point since time and
funds did not permit further testing.  Operation on  only one barrel was
considered, but would require a special mixing section between the car-
buretor and the intake manifold to improve mixture distribution.

            The results of the single run are compared below with a standard
engine with  unmodified carburetor.   Only CO seemed affected to any extent,
however, this result has not been verified by sufficient replication.
                         grams per bhp-hr
                            23-mode
                         HC
 CO
NO,
BSFC*   Max. Power, hp
 Standard Engine
  Carburetor Standard    7.01   56.2   8.6
Standard Engine
  Rear Barrels  of Car-
  buretor Blocked        7. 97

  *Weighted per 23-mode test.
**Observed flywheel.
32.4   9.3
                                  63
                0.621
         0.609
                 @ 1200
                   2300
           1200
           2300
                      53
                    114
 53
105

-------
For further details on this single test, please refer to Appendix N.

            (i)  Step 8 -  Combination Tests

            The test plan called for combination of the best features of exper-
iments in previous steps and then performing emissions tests.  A natural
adjunct of this  step would be optimization of the control combination(s).   The
limited time and funds prevented this from being done and only the one best
overall combination,  with slight variation, was tested.   The test series
involved 23-mode tests, then nine-mode tests, then additional 23-mode
tests with aldehyde measurement (extended tests).   Then the engine was
returned to original condition as closely as possible and a 23-mode,  nine-
mode series performed.

            The combination tested was standard 4°BTDC spark timing,
standard carburetor jets, standard, light-duty EGR,oxidation catalyst and
manifold air injection.   For comparison, the results are shown in Table
12.  Samples were obtained before and after the oxidation catalyst.  No
optimization or calibration was made of the control engine.  A 4°ATDC
alternative to the standard 4°BTDC was tried.  The slight improvements
in emissions hardly justified the loss in fuel economy, i. e. , higher brake
specific  fuel consumption.

            The second entry on Table 12 summarizes the results of a series
of runs made after the  engine was returned to its original,  standard,  1972
configuration for direct comparison to the tests made on  6-15,  16-72.  The
standard engine did not change  materially during the two  months of experi-
mentation.  Appendix P contains the run results for the two 23-mode tests
made on 8-3-72 with the engine returned to standard configuration.

            Using the last, 8-3-72, test made on the standard  engine as a
basis for reference,  the following comparison is offered.  Roughly a 70
percent reduction in  HC (from 7. 31 to 2. 13 grams  per bhp-hour), a 68 per-
cent reduction in CO (from 51.4 to 16.61 grams per bhp-hour),  a 30 per-
cent reduction in NO2 (from 9- 0 to 6. 24 grams per bhp-hour),  and a 58
percent reduction in  aldehydes  (from 0. 262 to 0. 110 grams per bhp-hour)
was obtained.  This was achieved with only a nominal change in cycle
weighted BSFC from 0. 622 to 0. 668 or a 7. 4 percent change (loss) and
essentially no  change in top end power at 2300 rpm.

            More could be done to improve control effectiveness given
additional  time and funds.  A different EGR schedule, tailored to the 23-
mode test,  would have  shown more improvement in NOX for example or  a
reduction catalyst may well have  made an even greater reduction in NOX.
An advanced technology oxidation catalyst might have done more to reduce
CO, HC, and aldehydes as well.
                                  64

-------
        TABLE 12.  ENGINE 2-3, 23-MODE EMISSION REDUCTIONS

                                                                   Hp. Obs.
                                    Grams/blip-hour,  average	     @
 Configuration   Date         Runs  HC    CO  NO2  Aide.  BSFC  2300 rpm

 Standard 1972   6-15,16-72     2    7.01 56.20  8.60  0.262  0.621     114

 Standard 1972   8-3-72         2    7.31 51.40  9.00  N/A   0.622     109

 Controlled*     7-28,8-1,2-72                               0.668
 Before Cat.                    4   13.08 28.99  6.20  N/A             110
 After Cat.                         2.13 16.61  6.24  0.110

 Controlled**   7-28-72       1                      N/A   0.827      97
 Before Cat.                        8. 33 29. 08  4. 32
 After Cat.                         1.67 18.92  4. 23

 *1972 Standard Engine with oxidation catalyst and  Light Duty Air
  Injection and EGR system.
**Same as *,  but 4°ATDC Basic Timing.
            In conclusion, the extent of control is far from optimum and
 appears to be a minimal level that could be achieved using commercially
 available devices.  Though the engine was never installed in a truck and
 the resulting driveability assessed,  it is unlikely that a serious impair-
 ment will result since the light duty EGR schedule was adhered to and timing
 was unchanged.  Only negligible changes in power output  and brake specific
 fuel consumption resulted based on the 23-mode  test.

            For  additional details, modal and individual 23-mode run results,
 please refer  to Appendix O.  The tabular data in Appendix O for the four
 runs made with the best combination on 7-28, 8-1,2- 1972 show satisfactory
 test repeatability.  The graphed results for the best combination, after
 catalyst, are shown in Figures 0-1 through 0-3 for HC, CO and NOX,  and
 are included  for  further consideration if desired.

            Tests were also made using the nine-mode FTP with the results
 expressed in concentration and grams per bhp-hour. These results are
 summarized  in Tables 13 and 14.  The first two  entries in both tables, for
 Standard 1972, show good agreement even though over two months had
 elapsed between tests of this configuration.

            Comparing the Table 13 concentration results with the controlled
 engine to those with the most recent test series in standard configuration,
 the emission controlled engine must be termed an improvement with regard
 to CO and NO, but a penalty regarding HC.  This same conclusion may be

                                  65

-------
TABLE 13.  ENGINE 2-3 NINE-MODE 1972 FTP EMISSION REDUCTIONS
                        (Concentration Basis)

                                      	Concentrations,  Average	
                                       HC                    NO, ppm
Configuration    Date       Runs     ppm Hex.    CO,  %      Corr.

Standard 1972    5-12-72      3          116       0.66         1601

Standard 1972    8-4-72       3          117       0.57         1660

Controlled*      8-2-72       3          129       0.09          641

Current Federal Limit                   275       1.5          None
Proposed Federal Limit                  160       0. 8          2000

*1972 Standard Engine with oxidation catalyst, Light Duty Air Injection,
  and EGR System.
 TABLE 14.  ENGINE 2-3 NINE-MODE 1974 FTP EMISSION REDUCTIONS
                              (Mass Basis)

                                         Grams/Bhp-Hour, Average
Configuration
Standard 1972
Standard 1972
Controlled*
1973 California
1975 California
Date
5-12-72
8-4-72
8-2-72
Limit
Limit
Runs
3
3
3

CO
31.4
22. 1
4. 7
40
25
HC
3.
2.
2.

36
87
86

N02
11.
9.
6.

20
74
26

HC +
14.
12.
9-
16
5
N02
56
61
12

*1972 Standard Engine with oxidation catalyst, Light Duty Air Injection
 and EGR System.
reached from the data in Table 14.  Although the nine-mode CO and NO results
seem fairly consistent with the 23-mode, HC definitely was not.  Incidentally,
the nine-mode overstates the reduction made in CO relative to the 23-mode
test while the nine-mode seems to understate the  HC improvement relative
to the 23 mode.  Had the nine-mode FTP been used to evaluate the control
technology assessment instead of the 23-mode test, it is unlikely that the
same optimization of the final emissions control system would have been used.


                                 66

-------
It appears that the catalyst and air pump did little if anything to reduce HC
even though it is known by the 23-mode test mode-by-mode results that
it was  doing a job.

           To try and understand more about what causes these apparent
inconsistencies,  a mode-by-mode analysis of nine-mode FTP results in
standard and control equipped configuration was made.  Table 15 lists the
dilution factors and weighting factors for the average  standard and the
average control equipped run.  Also listed are the average CO2 raw  con-
centrations which have the major influence on the dilution factor.  The air
pump dilutes the exhaust sufficiently to cause the modal difference shown,
and when multiplied by the appropriate FTP weighting factor and  summed,
the air pump can be seen to change  the overall dilution factor from near
unity (1. 1) as normal, to 1.7.

            The dilution factor is not,  however, the only reason since it
affects CO and NO also.  It then reverts to the ability of the control system
to show the large reductions  throughout the nine-mode test,  especially those
with a large dilution and weighting factor.  Data to substantiate this are
also listed on Table 15.   Note the raw, adjusted (for dilution) and weighted
HC values  for standard and controlled. For discussion,  consider the
weighted HC for each engine  configuration.

            Modes  1,  3,  7, and 8 (Idle, 10-inch,  3-inch, and the  last 16-
inch Hg intake manifold vacuum) were lower with the controlled engine.
Modes 2,  4,  and 6,  all 16-inch, modes 5 and 9, the 19-inch and closed
throttle, were substantially higher in some cases with the controlled  engine.
The modes in which the controlled engine was better than standard amount
to 66. 5 percent of the cycle weight.  Even so,  the rather poor performance
of the  controlled engine, i. e. , HC worse than standard due to EGR,  etc. ,
caused the HC to remain about the same overall.

            A history effect may  also be noted by looking at the repeated
 16-inch condition,  modes 2,  4, 6, and 8.   Apparently the catalyst and air
injection system, which depend heavily on available heat energy in the ex-
haust stream,  were adversely affected by the prior conditions.  Only after
the 3-inch, near wide open throttle condition was the catalyst effective on
hydrocarbons.  The 19-inch,  mode 5,  was quite interesting since apparently
the EGR spoiled normal combustion with insufficient heat energy available
from the mode or previous mode to effect any clean-up.  When using the
light duty EGR system,  employed in the 23 mode runs,  it would be necessary
to develop a different rate controller component to preclude operation under
those conditions of  the nine-mode schedule where EGR had an adverse effect.
For further analysis of  the data along  these and other lines,  please refer to
Appendix O and P.   Appendix O contains nine-mode concentration and mass
results with the "best combination" while concentration and mass results by
the FTP are included in Appendix P.
                                  67

-------
00
                                 TABLE 15.  ANALYSIS OF NINE MODE FTP HC RESULTS
                                                     ENGINE 2-3

                                            Standard 1972
Controlled
Mode
1
2
3
4
5
6
7
8
9
Intake
Vac, in Hg.
Idle
16
10
16
19
16
3
16
Closed
Throttle
Wt.
Fact.
0. 036
0.089
0.257
0.089
0.047
0.089
0.283
0. 089
0.021
Raw
co2,%
13.32
13.35
13.51
13.48
13.52
13.46
13.90
13.59
8. 14
Dil.
Fact.
1. 032
1.073
1. 063
1. 065
1.063
1.067
0.998
1.056
1.354

Raw
209
81
49
44
30
42
78
35
1935
HC, ppm n
Adjusted
216
87
52
47
32
45
78
37
2620
TOTAL
Hex.
Weighted
7.78
7.74
13.36
4.18
1.50
4.01
22.07
3.29
55.02
118.95
Raw
co?,%
9.09
8. 79
10.67
9.00
7.02
9.03
13.15
9.25
4.74
Dil.
Fact.
1. 585
1.605
1.350
1.592
1.868
1.583
1.088
1.640
2.873

Raw
23
190
13
56
647
72
12
14
320
HC, ppm n
Adjusted
36
305
18
89
1299
114
13
23
919
Hex.
Weighted
1.30
27.15
4.63
7. 92
56. 82
10.15
3.68
2. 05
19.30
133.00

-------
          In summary of the nine-mode FTP experiments,  the
emission results appear quite  cycle dependent.  The findings here do
not necessarily conflict with earlier reported data which showed that
the 1973 standard version to give higher emission results than the
1972 standard version by the 23-mode test,  yet represented an improve-
ment by the nine-mode FTP.   It means that it depends on how one goes
about reducing emissions.  On one procedure it may help and on another,
it may not.

          (j)  Step 9 - Other Methods

          Time and financial limitations constrained this research to
the previous items listed.  However,  several other promising control
approaches applicable to  the gasoline truck above 6,000 Ibs. were seriously
considered.  Turbocharging was considered seriously enough to request
engineering and performance data from the manufacturer, who provided
turbochargers appropriate for engines 2-3 and 1-3.  Time and funds
precluded their inclusion in the test program.

          Electronic fuel injection was also investigated with representa-
tives of a leading component company.  Such a system, though under active
development for use on engines similar to numbers 2-3 and 1-3, was not
available for our test.  There  are programs in progress to bring electronic
fuel injection to a reality in the future and this method and its potential
for control should not be  overlooked.  Electronic fuel injection with closed
loop control,  seems to be the ultimate and its potential emissions benefit
could be substantial.

          The third major item,  and one that was nearly included, was a
reduction catalyst for NOX control.   This  item was disclosed at the  EPA
suspension hearings in April of 1972 with  dramatic performance on NOX
claimed on the light-duty test.  Used in combination with an oxidation
catalyst, the strict 1976 light-duty standards were  claimed to be met.  Re-
peated attempts to obtain samples for evaluation resulted in an impasse
regarding the rights-in-data clause of the manufacturer's Non-Disclosure
Agreement.  This point could not be resolved in the time remaining under
the project and accordingly the item was not evaluated. Had there been at
least a month of test time available for engine-catalyst optimization,  this
issue could have been resolved.   The short time frame for  testing under
this project made this impossible.  These three major items should defi-
nitely be included in any future control technology assessment project.
They all have potential for heavy-duty trucks.

        2. Engine 1-3 Control Technology  Results

          Tests were conducted on this engine following the preliminary
plan of  test shown on Table 16. This schedule was  revised  some from that
originally provided the Project Officer by  letter dated  July  18, 1972 in that


                                 69

-------
               TABLE 16.  PLAN OF TEST, ENGINE 1-3
                                 Des cription

1.         Vary basic timing i. e.  say  10°  advanced,standard and 10°
          retarded timing.

2.         Install larger and smaller carburetor jets to modify engine
          air-fuel ratio at standard timing.

3.         Run laboratory EGR system at standard timing at say 5,  10,
          and 15 percent total intake air flow as EGR.

4.         Operate exhaust manifold air  injection system at standard,
          advanced, and  retarded basic spark timing with standard
          carburetor.

5.         Install oxidation type catalytic reactor,  clean fuel  system,
          and run with air pump at standard timing, advanced and/or
          retarded.  Operate on clear fuel (unleaded), run longer modes
          and sample  exhaust before and after catalysts.

6.         Combine best EGR or catalyst - ignition timing found in Steps
          2,  3,  4,  and 5.
                                 70

-------
the reduction catalyst alternative was deleted with its non-avail-
ability. Discussions with the engine manufacturer were successful
in obtaining carburetor jets larger and smaller in size  than standard.
Also furnished by the engine manufacturer were cylinder heads and
associated air pump valve and tubing for exhaust manifold oxidation
experiments.   The work plan was a simplified, abbreviated, series
that was similar in  scope to that used for engine 2-3.

          Before starting the test program,  the engine heads were
removed and replaced with the factory-furnished standard light-duty
heads normally used to inject air into the exhaust stream as it leaves
the combustion chamber.  The heads were all new with new valves,
springs, etc.  The air pump delivery hoses and tubing for  connection
of the pump to  the injection tubes were installed and connected.  The
vacuum-operated distribution valve, which is intended to prevent possible
exhaust backfiring during  closed throttle, was also installed and connected
as specified by the manufacturer.

          The  laboratory exhaust gas recirculation system was identical
to that used with engine 2-3.  One major difference was the way in which
the recirculated exhaust was introduced into  the engine. As pointed out
with engine 2-3, this is very important in order to  maintain even mixture
distribution, etc.  In the short period of time available, it was decided to
use a separate plastic distribution block under the  carburetor much as the
positive crankcase ventilation system uses.  To simplify the design, it was
decided to use  the same type of plastic block as is used for the PCV and
locate both between the carburetor and the intake manifold.  To facilitate
connection of the EGR and PCV hoses, a 3/4 inch thick aluminum block
was inserted between the two plastic blocks.   The plastic block has  a
nicely formed passageway communicating from the common inlet to each
of the  two openings  (barrels) and was well suited for even  distribution of
the EGR to each throat of the intake system.

          It was during the reassembly of the carburetor on the taller
stack of items  that one ear of the bottom flange of the carburetor broke
off. It was felt that a replacement carburetor should be obtained from
from the manufacturer and after some conversation with the manufac -
turer's representative, it was decided to use a 1973 carburetor,not  a
1972 unit.   They are identical except in jet size. The change in jets was
so slight, according to the manufacturer, that it would  be  within the normal
carburetor production tolerance.

          The  pair  of oxidation catalysts were installed as with engine
2-3.  The inlets were positioned 20 inches from each engine bank's
exhaust manifold flange.   The dual exhausts were then  connected into a
single exhaust pipe  and stock muffler. The sample probes were positioned
as with engine  2-3 with provision for sampling before and after the catalysts.
When the catalytic reactors  were not to be tested,  they were removed and
short,  straight pipes inserted in their place.

                                 71

-------
           All operation was with leaded emissions test gasoline except
when the catalytic reactors were installed necessitating the use of low
lead, Indolene clear, fuel.  Figures 16 and 17 show various views of
the engine prepared for test.  Some of the test items and instruments
are also shown.

           (a)  Step 1 -  Effect of Basic Spark Timing on Emissions

           The following, Table 17, lists the 23-mode results at various
basic spark timings:

    TABLE 17.  EFFECT OF BASIC SPARK TIMING ON EMISSIONS
                    23-MODE TEST,  ENGINE 1-3
Date
8-17-72
8-17-72
Run
2
1
Timing
30°BTDC
15°BTDC
Prams per bhp-hr
NO2
HC CO Obs.
15.7
8.7
61. 1
72.7
17.9
13.6
' Weighted
BSFC
0.669
0.679
Max.
1200
rpm
56
57
Bhp.
2300
rpm
113
115
8-18-72
8-17-72
8-17-72
1
4
3
TDC*
5°ATDC*
10°ATDC*
8.5 110. 1
9.8 167.8
9.5 187.7
5.5
4.6
4.6
0.855
1.061
1. 143
 8-16-72    2   6° BTDC  9.4  71.3    8.7   0.720      53      110
 8-16-72    3   6° BTDC   8.9  72,8    8.7   0.717      53      110

            Average     9.3  72.1    8.7   0.719      53      110

                                                        46       99
                                                        42       87
                                                        35       79

 * Engine operational difficulties encountered

           The two runs made on 8-16-72 at 6° BTDC  represents the standard
 engine  as far as the control technology laboratory studies are concerned.
 The first tendency is to compare the average with earlier tests on engine
 1-3 that were presented under the baseline portion of the results.   Such
 a comparison should be avoided  since the heads and carburetor were new
 and different from those used as baseline.  Thus  the lower HC and NO2
 and higher  CO reported from the modified engine 1-3  than baseline has no
 basis for comparison.

           The data listed in Table 17 are plotted  in Figure 18 and illustrate
 the trade-off between NO2 and CO with timing.  As timing is adjusted later
 and later,  NO2 decreased almost linearly.  CO seemed to take-off upward
 after operation at the factory standard of 6° BTDC.  The question from
 these curves is, which is most important,  CO or NO2?  In one case,  a
 change in timing of 11°  from 6°  BTDC to 5° ATDC brought NO2 down to
 half while the same timing change almost doubled CO by the 23-mode test.
                                  72

-------
FIGURE 16.  VARIOUS VIEWS OF OXIDATION CATALYST
            AND AIR INJECTION SYSTEM
                      Engine 1-3
                         73

-------
                  Hot" EGR
FIGURE 17.  LABORATORY SET-UP FOR EGR
                 Engine 1-3

                     74

-------
HC seemed to be little affected by timing.  Operational difficulties were
encountered at one or more modes atTDC,  5 and 10° ATDC resulting in
less than complete 23 mode data.  Looking back at Table 17,  BSFC was
degraded as was top end power at 2300 and 1200 rpm.  Cycle weighted
BSFC is plotted on Figure 18 for graphical representation.  The question
from this is:  Can the excessive CO be reduced by an oxidation catalyst?
Some experiments along these lines will be discussed later.

          For more details in terms of computer print-outs and graphs
of the results, please refer to Appendix Q.  It may be noted from the
computer print-outs that several modes were not operable at retarded
spark timing.  The engine refused to operate at  75 and 82 percent load
at 1200 rpm with TDC timing. When the timing was  retarded still further
from standard,  to 5° ATDC and 10° ATDC, the engine would not run at
75, 82 and 92 percent power, 1200 rpm and 75 percent power at 2300 rpm.

          (b)  Step 2 -  Effect of Air-Fuel Ratio  on Emissions

          To  investigate this effect,  the main fuel jets were replaced with
smaller and larger items and thereby change the air-fuel ratio.  As with
engine 2-3,  the emissions and BSFC behavior of engine 1-3 was plotted
against 23-mode cycle weighted air-fuel ratio.   The  carburetor main jet
size in inches is also indicated.  The standard size,  0.056 inch, is shown
with two richer jets, 0.060 and 0.065 inch, and  one leaner jet, 0.051 inch,
on Figure 19.  A fairly good plot results  from this method of presentation.
Attempt to operate with larger and smaller jets  than those shown were
made with unsatisfactory engine operation resulting.

          Figure 19 illustrates that the standard engine could  be made to
produce less NO but again at the expense of a dramatic increase in CO and
a  small increase in HC.  This approach may have some merit in reducing
NO2>  if rich enough jets  are used.  However,  something like an oxidation
catalyst will have to destroy CO and HC.   The remaining point is whether
this approach, which increases weighted BSFC from the  reference 0.719 to
0.789 for the  0.060 inch jets, as shown in Figure 19, is worth it.  Maximum
power  at 2300 and 1200 rpm seemed little affected by the 0.060 inch jets.
An opportunity to compare a larger jet with a catalytic reactor will be given
later in this section. For further details and modal  data, both on a tabular
and a  graphical basis,  please refer to Appendix R.  The engine would not
run in  mode 6 with 0. 051 jets, and in modes 13 and 14 with 0. 065 jets.

          (c)  Step 3 - Effect of Laboratory EGR on Emissions

          This step of the project involved using the laboratory system
previously described to recirculate a part of the engine's exhaust back into
the intake system below the carburetor throttle plate.  The system was
normally controlled to recirculate exhaust at a fixed percentage of the engine
                                 75

-------
                                                   .-O
                                                               1.2


                                                               1.0
   20


   16



k  l2
M
bO   n
    8

O
25   4


    0
O,  12
bJO
U
   16  r   O,
                                               •O	O
                                    -0	o-
                                                               0.8
                                                               0.6
                                                                   t,
                                                                   CO
                                                               200
                                                               160
                                                               120
                                                                   cq
                                                                80
                                                                  O
                                                                  u
                                                               40
                      I
   BTDC   30    25   20   15    10   5     0    5
                     Basic Spark Timing, Degrees
                                                      10    15   ATDC
   FIGURE 18.  EFFECT OF BASIC SPARK TIMING ON EMISSIONS
                    ENGINE  1-3, 23 MODE TEST
                                  76

-------
   10
 I
 0.

cq

 00
 Ik
 (M
O
                                                                0. 70
                                                                 —, 400
   20
   15
 M

o"
K
10
                                                                   300
                                                                   200
                                                                   100
                                                                      Pu

                                                                     ffl

                                                                      taO

                                                                      *>

                                                                     O
            J	
            0.065
                    I
                               I	\	L
                             0.060            0.056       0.051
                           Jet Size Inches
                            I      I     I     i      I     i      I
         13
                14         15         16         17

                 "Weighted Air-Fuel Ratio" - 23 Mode
18
     FIGURE 19.  EFFECT OF AIR-FUEL RATIO ON EMISSIONS
                    ENGINE 1-3.  23 MODE TEST
                                   77

-------
inlet flow.   The temperature of the recirculated exhaust was generally
100 to 110°F.  A strict 23-mode schedule was performed in that the
maximum power was first determined using a given fixed EGR rate.  Then,
the various power points were calculated from the maxiumu per the usual
test procedure.

          During the running of the 23-mode test, the dynamometer operator
was instructed to maintain certain power output and speed and vary throttle
setting to do so.  The test engineer would adjust EGR rate to obtain the
desired fixed percentage EGR by measuring both the carburetor inlet air
and exhaust recycle at the same time and performing necessary calculations.
It generally required about five  minutes to establish the condition properly
before exhaust emission measurements could be made.

          Figure 20 depicts the HC,  CO, and NO^ emission and cycle weighted
BSFC results obtained at 5,  10, and 15 percent EGR.  From engine 2-3, it
was found that 10 percent EGR was about optimum for NO reduction,  yet
without seriously jeopardizing engine performance.  Accordingly, the EGR
rates were selected to bracket  10 percent.   Recall that  a constant rate of EGR
was employed with the exception of closed throttle and idle modes where NO
is negligible.  Certainly, a constant EGR rate is not optimum for  top-end
performance or NOX reduction for that matter.  The three constant levels
depicted along with zero EGR for reference makes a somewhat complete
laboratory study of cooled EGR.  The engine was standard otherwise with
standard size jets and spark timing.

          Cooled EGR has a substantial effect on NOX formation and  results
in significant NOX reductions.  Recall that EGR  can reduce exhaust volume
so that when multiplied by reduced emission concentrations,  the result can be
substantially lower NOX.  This  assumes little or no maximum power output
is lost.  For additional details, data and graphs covering this series of
experiments, please refer  to Appendix S.  There are many ways the modal
data given in Appendix S may be used.  One way is to  try and derive the best
schedule of EGR, tailored to produce minimum NO, without loss in maximum
power, with acceptable increases in CO and HC,  assuming an oxidation
catalyst, and without seriously  impairing fuel economy.  It is difficult to
obtain a large decrease in NOX  by EGR without increase in fuel consumption.
The steady increase in weighted BSFC,  Figure 20,  points up the fuel and
inherent operating  cost penalty  associated with EGR.  As a fairly rapid
approximation, the EGR schedules shown in Table 18 were selected for test
later  in the project.

          These schedules will be discussed more in a  later section where both
cooled EGR and hot EGR will be run at 6°  and TDC timing.  Hot, or uninten-
tionally cooled EGR seems to be the  currently accepted method for light-duty
vehicles.   The use  of hot EGR will undoubtedly lower the charge density and
thereby degrade top-end performance.  The engine will necessarily run as
if it is operating on a very hot day.   The water of combustion in the recirculated
                                 78

-------
                                                      —1 1.4
    10  r-
     6
 a.
j3
cq
     4  -
     Z  -
     0 I—
    24 i—
n   20  —
Sf
cq   16
O   iz
ffi   ^
                                          I	I
                    4    6     8    10   12


                      Percent Cold EGR
14   16
   FIGURE 20.  EFFECT OF LABORATORY COLD EGR ON

           EMISSIONS ENGINE 1-3,  23 MODE TEST
                               79

-------
 exhaust will remain in the recycle and this should help.   The EGR will
 be monitored and adjusted to give a mass percent EGR.

      TABLE 18.  TAILORED EGR SCHEDULES FOR ENGINE 1-3
Mode     Speed     Percent Load
  1
  2
  3
  4
  5
  6
  7
  8
  9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
                            Percent "Hot" EGR
                            Sch.  A       Sch. B
 600
1200
1900
1900
1900
1900
1900
1900
1900
1900
 600
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
 600
2300
  0
  2
  8
 18
 25
 50
 75
 82
 92
100
  0
  0(CT)
100
 92
 85
 75
 50
 25
 18
  8
  2
  0
  0(CT)
 0
10
10
10
10
10
10
10
 0
 0
 0
 0
 5
10
10
10
10
10
10
10
10
 0
 0
 0
10
10
10
10
10
10
10
 0
 0
 0
 0
 5
 5
 5
 5
10
10
10
10
10
 0
 0
Weight Factor

   0.070
   0.060
   0.060
   0.050
   0.030
   0.060
   0.000
   0.040
   0.000
   0.000
   0.070
   0. 120
   0.025
   0.055
   0.035
   0.060
   0.060
   0.000
   0.065
   0.000
   0.000
   0.080
   0.060
           (d)  Step 4 - Effect of Factory Air Injection on Emissions
           Through the courtesy of the manufacturer, a light-duty air
 injection system was obtained and utilized in this study.  Although air in-
 jection by itself had only a slight effect on engine 2-3, it was uncertain
 what it would do on engine 1-3.  In any event, supplemental air or oxygen in
 the exhaust stream was necessary for oxidation catalyst operation.  The
 light-duty exhaust manifold air injection system is shown in the drawing in
 Figure 21.  It was also shown as installed on the engine in  Figure  16
 photographs.

           The test series involved operation with the complete light-duty
 system at several basic  spark timings namely,  TDC, standard (6° BTDC) and
 15° BTDC.  From Step 1, effect of timing  on emission rates, it was shown
 that this was the range of interest as far as engine operability and emissions
                                  80

-------
performance was concerned.  Table 19 lists the 23-mode results when
operating with and without the air injection system operative.
    TABLE 19.  COMPARISON OF EMISSIONS WITH AND WITHOUT
               LIGHT-DUTY AIR INJECTION SYSTEM
                      Engine 1-3, 23-Mode Test
Basic                             Grams per bhp-hr.     Weighted
Timing       Configuration      HC      CO      NO2     BSFC

   15°        with air          10.4     45       10.6    0.667
BTDC       without air         8.7     72       13.6    0.679

   6°         with air           9.8     60        8.3    0.712
BTDC       without air         9.3     72        8.7    0.719

TDC         with air           9. 9     64        6.5    0.768
             without air         8.6     110        5.5    0.855

          No really gross or consistent improvement on HC and CO may
be found by such a comparison when operating with the air system.  In all,
air injection as a control item on this engine,  subjected to the 23-mode
test,  lacks justification from an emissions reduction standpoint.  It will
be necessary,  however, to utilize an air pump or something similar to
provide supplementary oxygen for the oxidation catalyst. For further details,
modal results both tabular and graphical, please refer to Appendix  T to this
report.

          (e) Step 5 - Effect of Oxidation Catalyst on Emissions

          Before beginning the experiments with the two precious metal
catalytic reactors, the manufacturer of the engine and the catalyst were
contacted to  make certain the light duty air injection system would deliver
the proper amount of air for optimum catalyst performance.  In discussions
with a representative of the engine manufacturer, it was learned that the
vacuum-operated valve, item 2 in View A of Figure 21, could be replaced
with a simple "tee" fitting.  The vacuum-ope rated valve acts somewhat as
a wastegate  so that under  some engine vacuum conditions, more or less of
the air is wasted and not injected.

          There are a number of reasons for this valve in the light-duty
system and there may be justification for its use in heavy duty.  But, it was
decided to eliminate  the valve with the concurrence of the manufacturer.
Trial runs revealed operation to be satisfactory with no backfiring during
the closed throttle conditions,  etc.   Sufficient O2 in the exhaust was achieved
                                  81

-------
                                   VIEW A
                                          -A
FIGURE 21.  LIGHT DUTY EXHAUST MANIFOIX> AIR INJECTION SYSTEM




                                 82

-------
to promote satisfactory catalysis.  Please refer to Figure 16 which shows
a one-half inch pipe tee used in place of the vacuum valve.  The air from
the pump is accordingly simply distributed to each bank of the engine.

          Figure 22 is a graph of the exhaust emissions measured before
and after the catalyst.  As with engine 2-3,  the  catalysts have little effect
on NOX, as  expected,  an important effect on CO, and a substantial effect on
HC.   The catalyst must be judged an important item of emissions control and
performs a  very vital role in lowering CO and HC while not affecting NOX.
It did not  seem to matter where the timing was set,  although the TDC CO
point does not agree in trend with earlier curve of CO versus timing namely,
Figure 18.  Exactly why CO behavior is erratic at TDC is unknown, but it is
apparently not a good  engine operating point as mentioned earlier.

          The run  results made with catalyst treatment are listed on Table  20
and are those plotted on Figure 22.  Of interest was the duplicate runs made
at 6° BTDC (standard timing) with the light duty air injection system including
vacuum-ope rated distribution valve listed on Table 20.  Higher CO and HC
by the 23-mode test, were found when the vacuum valve was used.  The data
points on  Figure 22 were obtained with the simple pipe Tee substituted for
the waste gate.  Weighted BSFC, plotted on Figure 22, shows the familar
increase with retarded timing.

          The run  results seem to indicate that better emissions  control can
be achieved with catalyst when the full delivery  of the air pump is utilized.
It may be thought that the effect is one of more exhaust dilution.   But, this
is not the case when the calculations are based on the  carbon balance method
as are the 23-mode and Federal nine-mode mass methods.

          From Figure 22, it can be seen that most any timing within the
TDC to  15°  BTDC range may be selected for about equivalent emission
improvement.  This is the important conclusion to be drawn from the fairly
brief series of tests.  The "before" and "after"  catalyst data are  published
in tabular form,  as computer print-outs,  in Appendix U.  The "after" modal
grams per hour data are graphed against power level and included in Appendix
U for further  study.

          (f)  Step  6 - Effect of Various Combinations on Emissions

          A few combinations were experimented with to determine how well
various control approaches might work overall. Because of interactions, it
is not possible to simply add the benefits of control devices.   One combination
tried under this step, shown in summary on Table 21,  was to look quickly at
richer jets, 0.063 inch, the modified light-duty air injection with oxidation
catalysts but no EGR.  Two basic timing settings of 6° BTDC (standard) and
an advanced,  15° BTDC were tried.  Although the bigger jets at standard
timing with the catalyst gives some  reduction in NO2» the CO is unacceptably
                                  83

-------
            Legend

        A Before Catalyst

        O After Catalyst
    12
*   10
ft
cq
"Sb    8
 (VI
g    «
it)
h 12
i
cq 8
M
U 4
ffi 4
0

_ A 	 ., — • 	 -A


—

^J 	 -0
1 1 1 1 1 1 1 1 1
   BTDC   16         12          8         4
                   Basic Spark Timing, Degrees
       1.0
                                                              0.9   '
                                                                    ft
                                                                    cq
                                                              0.8  ^B
                                                              0.7
       0.6
                                                                   O
                                                                   cq
                                                               80
                                                               60  n
                                                                   i
                                                                   ft
                                                                   43
                                                               40  cq
                                                                   uo
                                                               20  O
                                                                   U
0   ATDC
   FIGURE 22.  EFFECT OF OXIDATION CATALYST ON EMISSIONS
        WITH SLIGHTLY MODIFIED AIR INJECTION SYSTEM
                     ENGINE l-32 23 MODE TEST
                                  84

-------
   TABLE 20.   EFFECT OF OXIDATION CATALYST ON EMISSIONS
                      Engine 1-3, 23-Mode Test
 Date
8-24-72
8-25-72
8-24-72
8-25-72
Run

2
1
2
1
Spark
Timing
Light
6°
BTDC
AVERAGE
6°
BTDC
Sample
Point
Grams per
HC CO
bhp-hr
NO 2
Duty Air Injection System Intact
Before Cat.
Before Cat
After Cat.
After Cat.
10.37 98.7
10.48 96.8
10.42 97.6
2.29 61.1
3.13 59.9
7.48
6.32
6. 90
6. 78
6.63
                        Weighted
                         BSFC
                         0.745
                         0.752

                         0.749
              AVERAGE
2. 71
60.5
6. 70
8-25-72
8-25-72
8-28-72
           Vacuum Operated Air Injection Distribution Valve
                    Replaced by Simple Pipe "Tee"
TDC

6°
BTDC
15°
BTDC
Before Cat.
After Cat.
Before Cat.
After Cat.
Before Cat.
After Cat.
10.
0.
9.
1.
9.
1.
08
98
72
43
19
44
52.
21.
79.
49.
52.
24.
6
2
7
6
1
2
6.
6.
6.
6.
10.
10.
43
37
14
22
61
59
                         0.818
                         0. 782
                         0.695
                                  85

-------
TABLE 21.  EFFECT OF VARIOUS CONTROL COMBINATIONS ON EMISSIONS
                        Engine 1-3,  23-Mode Test
Spark Grams per Bhp-Hr Weighted
Date
0.063

8/31/72

8/31/72

0.056

8/28/72

0.056

8/30/72

8/29/72

8/30/72


Run Timing Catalyst HC
inch (rich) Jets, Modified LD Air Injection,
No EGR
1 15°BTDC Before 8.68
After 1.70
2 6°BTDC Before 10.91
After 2.14
inch (St'd) Jets, Modified LD Air Injection,
Cold EGR Per Schedule A Rate
2 6°BTDC Before 11.73
After 1.13
inch (St'd) Jets, Modified LD Air Injection,
Hot EGR Per Schedule A Rate
1 TDC Before 13.49
After 2.11
1 6°BTDC Before 12.72
After 1.87
2 15°BTDC Before 11.51
After 2.23
0.056 inch (St'd) Jets, Oxidation Catalyst,
CO NO 2
Oxidation Catalyst

140.8 4.60
83.5 5.27
211.3 2.97
156.6 3.28
Oxidation Catalyst

105.3 2.50
63.8 2.41
Oxidation Catalyst

174.2 1.60
134.3 1.63
149.4 2.51
112.2 2.51
116.5 2.84
73.3 2.54
Hot EGR
BSFC


0. 759
0. 759
0.853
0.853


0.855
0.855


0.993
0.993
0.862
0.862
0. 766
0. 766

Per Schedule A Rate, But No Air
8/31/72

3 6°BTDC Before 10.40
After 5.48
205.4 2.18
169.8 2.09
0.852
0.852
                                   86

-------
high,  about double the standard or unmodified engine,  and the BSFC
is also increased.

      •3,1   The results of another combination tried is also shown on
Table # tor the system.  Here the  engine was operated with standard
0.056 inch jets, the modified light-duty air injection system and with
EGR on a cold and hot basis.  The EGR schedule used was Schedule A
from Table 18.  Schedule A was designed to give the maximum rate of
EGR and the  maximum NO2 reduction without serious engine problems.
The exhaust was first recirculated through the heat exchanger with the
very low NC>2 values resulting per the 8-28-72 runs.  CO was not parti-
cularly better than unmodified and this caused great concern over this
approach.  The catalyst was apparently unable to overcome the increased
CO by the Schedule A EGR  rate.

          To study the Schedule A under the  more conventional approach
of recirculating the exhaust -with little or no  cooling, i. e. internal EGR
as with light-duty gasoline  engines, the piping was  close connected between
the engine's  exhaust and the reentry plate located below the carburetor.  It
may be helpful to look back at the  Figure 17 photographs that show only a
control valve and thin plate orifice with thermocouple for gas temperature
measurement in a relatively short length of pipe.  To manually operate the
valve, the mass flow of the EGR was instantly computed and compared to
the mass flow of air into the engine.  The rate was  then adjusted as closely
as possible to that given for Schedule A in Table 18 and determined on a
mass basis.

          The  results are  summarized on the bottom half of Table 21 and
are for the engine with standard jets, modified air  injection, oxidation
catalyst and  hot EGR according to rate Schedule A.  Three  spark timings
were run to determine this effect.  Basically the same effect on emissions
with this combination was found as with cold  EGR,  namely very low NOX,
high CO and  low HC.

          Figure 23 shows the before and after  catalyst  23-mode results
for hot EGR  (Schedule A) versus the three timing settings studied, TDC,
6° BTDC (standard) and 15° BTDC.  Although 15°  BTDC timing looks  best,
it was decided  that this  combination had to be improved upon because
essentially no reduction in CO was obtained.   As with Figure 22, the cycle
weighted BSFC increased as basic spark timing was retarded.

          Before stopping this series of tests, a run was made to simu-
late operation with the air pump inoperative  as with a broken belt.  The
results of this  run are listed on the bottom of Table 21 and may be compared
to Run 1 on 8-29-72  when the air pump was operative. Note the great need
for air to oxidize the HC and CO in this test  configuration.   For more data
of a detailed nature, please refer to Appendix V for all the tests summarized
                                  87

-------
ft
A
cq

M
             Legend

       A  Before Catalyst


       O  After Catalyst
    4  i—
                   Basic Spark Timing, Degrees

A
a.
A
cq
M
*
O
K

16
12
8

4
0

—
- A 	 A 	 	 *
_



1 1 1 1 1 1 1 1 1
BTDC 16 12 8 4 0
1. 0



0.9  •?
     o.
     A
     cq

0.8  ^
     T—C


     u
                                                              0. 7
0.6
                                                                  cq
                                                              200




                                                              160




                                                              120




                                                               80



                                                               40
                                                          ATDC
  FIGURE 23.  EFFECT OF COMBINATION OF HOT EGR (SCH A),

       OXIDATION CATALYST, MODIFIED AIR INJECTION ON

               EMISSIONS ENGINE 1-3, 23 MODE TEST
                                  88

-------
on Table 21.  The series of tests with hot EGR versus timing made on
8-29-72 and 8-30-72, are graphed in Appendix V also.

          (8)  Step 6a - Effect of Best Combination on Emissions

          Clearly, a better overall reduction was needed than was found
with hot EGR rate Schedule A.  Engine 1-3 is extremely sensitive to CO
because  of a number of factors, one of which is the carburetor action on
approaching and operating at wide open throttle.  In trying to develop the
best compromise, the maximum or top end power should be preserved as
much as possible.  In this engine,  operation at less than two inches Hg
intake manifold depression was  disasterous on CO in standard or modified
condition.  Accordingly, Schedule B tailored the EGR to get out of the
high CO modes as quickly as possible and, if need be, take the NOX penalty.

          Using Schedule B, also listed on Table 18, fairly good reductions
in all emissions were effected and they are shown on Table 22.  First,  the
catalyst did a good job in lowering HC and CO for the best combination as
shown by the average before and after results for the three runs made on
9-5 and 9-6, 1972.  The resulting HC, CO, NO2 and aldehydes may be
directly compared to the standard, unmodified engine runs made on Septem-
ber 7 and 8,  1972 shown next.

          HC was reduced from 8. 52 to 1. 31 grams per bhp-hr or 85 per-
cent. CO was reduced from 65. 9 to 19. 2 grams per bhp-hr or 71 percent.
NOX was reduced from 8. 34 to 4. 09 grams of NO2 per bhp-hr or 51 percent.
Aliphatic aldehydes were also reduced from 0. 278 to 0. 131 grams of for-
maldehyde per bhp-hr for a 53 percent change.  Cycle weighted brake
specific fuel consumption was increased from 0. 738 to 0. 831 Ibs fuel per
bhp-hr or 13 percent increase in fuel consumption.  In doing so, the "best
combination" control strategy reduced top-end power at 2300 rpm from
108 to 95 hp or 12 percent with  no effect on power at 1200 rpm.

          The data listed on Table 22 is a summary of the individual run
results  included in Appendix W. In addition to the before and after catalyst
"best combination" tabular results, a series  of graphs are included that
show the average HC,  CO, NO2 intake vacuum, and fuel rate versus power
level for 1200 and 2300 rpm.  For clarity only, the "best combination" and
standard engine results  are graphed.  The standard engine results are
included in Appendix X.

          Listed at the bottom  on Table 22 are the results of the runs made
on August 16, 1972 with the engine in the standard condition prior to the
series of tests with control devices, etc.  Note the fairly good agreement
between the HC,  CO, NO2, power and BSFC between the beginning and
ending tests.  This indicates the engine did not change or deteriorate
materially during the test period.  Recall that engine 1-3 used for control
technology was modified from that used for baseline testing in that air


                                 89

-------
TABLE 22.  EFFECT OF "BEST COMBINATION" ON EMISSIONS

                    Engine 1-3, 23-Mode Test

                                                                 Max.
                           Grams Per bhp-hour	   Weighted   Hp Obs.  at
Date
Run Catalyst
HC
0,056 inch Jets (Standard), Modified
(6°BTDC), Hot
5-5-72 1 Before 11.77
)-6-7Z 1 Before 11.08
)-6-72 2 Before 10.89

1-5-72
1-6-72
J-6-72
AVERAGE 1
1 After
1 After
2 After
AVERAGE
1. 25
1.19
1.34
1.41
1.31
Standard Engine with 0.05
'-7-72
1-7-72
i-S-72

1 None
2 None
3 None
AVERAGE
Previously Run Standard
-16-72 2 None
-16-72 3 None
8. 14
9. 01
8.41
8.52
Engine
9.4
8.9
CO
NO 7
Aide.
BSFC
1200
Light-Duty Air Injection, Standard Timing
EGR Per Schedule B
56.9 3.94 --- 0.846 50
49.1 3.60 --- 0.833 52
44.2 4.40 --- 0.813 52
50. 1
23.1
18.4
16.1
19.2
6 Jets
70.9
67.2
59.6
65.9
with 0
71.3
72.8
3.
4.
3.
4.
4.
and 6
8.
8.
8.
8.
.056
8.
8.
98
03
70
53
09

0.
0.
0.
0.
0 BTDC
27
32
43
34
Jets
7
7
0.
0.
0.
0.
and
-

130
135
129
131
Timing
285
283
265
278
0.
0.
0.
0.
0.

0.
0.
0.
0.
6° BTDC
IB —
0.
0.
831
846
833
813
831

740
736
738
738
Timing
720
717
51
50
52
52
51

52
52
52
52

53
53
2300
95
95
95
95
95
95
95
95

108
108
108
108

110
110
 AVERAGE             9.3     72.1    8.7               0.719      53   110
                               90

-------
injection cylinder heads and other changes were incorporated.

          It was also important to assess the "best combination" con-
trol system by the Federal nine-mode test procedure.  This was done
in a series of tests and expressed in concentration and mass terms
on Table 23.

          Some fairly respectable reductions in HC, CO and NO con-
centrations  were achieved by the "best combination" relative to the stan-
dard engine.  HC was reduced from 109. 7 ppm to 54. 4 ppm n hexane  or
50 percent.   CO was  reduced from 0.44 to 0.06 percent for a 86 percent
reduction.  NO, corrected, was reduced from 1597 to 624 for a  61 per-
cent improvement. All this was achieved with the standard engine with
modified light-duty air injection, an oxidation catalyst,  and tailored hot
EGR.  These levels may be directly compared to the current and pro-
posed Federal limits listed on Table 23.

          Only during the  higher power modes, the 3 inch and 10 inch
intake vacuum levels, was any EGR allowed.  The manual control
system recirculated  5 percent during the 3 inch conditions  and 10 percent
of the airflow (mass basis) during the 10 inch  mode. All other times, idle,
closed throttle, 19 inch and 16 inch, the EGR  valve was  shut-off.

          Table 24 shows  a summary of the "best combination"  control
engine relative to the unmodified engine in terms of grams per bhp-hour
using the 1974 Federal Test Procedure calculational method.  Note that HC
was  reduced  48 percent from an average of 3. 99 to 2.07 grams per  bhp-
hour.  CO was reduced 85 percent from 24. 1 to 3. 6 grams per bhp-hour.
NO2 was also reduced by 54 percent from 12. 92 to 5. 92. HC+NO2 was
7. 99 with the controlled engine relative to 16. 91 grams per bhp-hour  with
the standard engine.  These levels may be compared with the  1973 Califor-
nia and 1974 Federal standards  of 40  grams of CO and 16 grams of HC+
NO2 Per bhp-hour.  Appendix W contains the nine-mode  concentration and
mass emission results for the engines  equipped with the  "best combination"
of control technology.  The results for the two  runs made in standard con-
figuration are included as Appendix X.   It is interesting to observe the
dissimilarity in nine-mode results of engine 1-3 and 2-3. Recall engine
2-3,  run with the "best combination" of light-duty air injection,  light-duty
EGR, oxidation catalyst and standard otherwise was not as effective on the
nine-mode test as it was on the 23 mode test.  The light-duty EGR valve
and its schedule resulted in sufficiently higher HC that could not be reduced
by the oxidation catalyst.   With engine  1-3, the manual control,  laboratory
EGR system was not used in those modes of the nine-mode procedure where
the reductions in NOX were outweighed by increases in HC and CO.

          Of course,  the laboratory EGR with manual control tailored for
optimum improvement is nothing more than a laboratory approach, a gadget
                                  91

-------
 TABLE 23.  ENGINE 1-3 NINE MODE FTP EMISSION REDUCTIONS
                     (CONCENTRATION BASIS)
Configuration
"Best-Combination"
Standard
Date

9-1-72
9-5-72
9-8-72
Current Federal Limit
Proposed Federal Limit
         Concentrations,  Average
       HCCT)NO7 ppm
Runs   ppm Hex    %	     Corr	
          54.5

        109.7

        275
        160
                             0.06

                             0.44

                             1.5
                             0.8
 624

1597

none
2000
  TABLE 24.  ENGINE 1-3 NINE MODE FTP EMISSION REDUCTIONS
                    (BRAKE SPECIFIC BASIS)
Configuration

"Best Combination"

Standard
Date
9-1-72
9-5-72
       Grams per bhp-hour,average
                  NO-,    HC + NO.
 1973 California and 1974 Federal Limit 40
 1975 California Limit                25
         Runs  CO   HC

          3    3.6   2.07     5.92     7.99

9-8-72    2   24.1   3,99    12,92    16.91
                   	_Z

                   5.92
                                    16
                                     5
                                 92

-------
or means to an end.  It demonstrated control possibilities but is, of
course, not a proven scheme.  No really good idea was obtained about
driveability, although the final system could run smoothly in all steady
state modes regardless  of test schedule.  Durability along with drive-
ability for the entire system  remains to be demonstrated and, of course,
its applicability to engines in general. In defense of the control system,
it employed proven oxidation catalysts, light-duty air  injection and a
fairly simple to automate EGR schedule.  No drastic power derating or
increase in fuel consumption resulted.  The final strategy for both
engines 1-3 and 2-3 were almost similar in final design.   The only
significant difference was in  the EGR rate schedule employed.  The
tailored schedule  employed  with engine 1-3 was found superior overall
for both 23 and nine-mode tests to the light-duty EGR  system rates.

          Much the same comment regarding advanced or additional
control items for study  with  engine 1-3 can be made as with engine 2-3.
The advanced oxidation  and oxidation-reduction catalysts, turbochargers,
automated EGR valves,  fuel injection, etc.  were clearly  beyond the scope
of this project but are not beyond the realm of possibility for effecting
even greater  reductions than found in this initial project.  Such items may
effect the same level of control without driveability, fuel and power
penalties associated with the currently discussed "best combination".
The words "best combination" have always been with quotes because with
the fast moving field of  emissions technology, this is  expected to be short-
lived.   Another such study is bound to result in a further advance in
knowledge and far surpass the performance of the work done so far.
                                  93

-------
                 V.  SUMMARY AND CONCLUSIONS

       The following key points summarize the important findings during
this project.  Where appropriate, conclusions are presented.

       (1)  Six 1972 spark-ignited gasoline-fueled engines, three each
from two manufacturers, were subjected to a series of baseline exhaust
emission tests.  The engines included small six cylinder and large V-8
displacement sizes representative of engines popularly used in vehicles
rated over 6,000-lb gross vehicle weight. The nine-mode Federal test
method, in terms  of concentration of hydrocarbons,  carbon monoxide,
and nitric oxide was performed.   The emission results were then conver-
ted to mass units of grams of contaminant per blip-hour using the California
ARB procedure  for 1973.  The latter procedure requires the accurate
measurement of flywheel power output and fuel consumption at each mode
to permit calculation of brake specific emissions using a carbon balance
method.

       (2)  The six engines were also subjected to an experimental EPA
three-speed, multi-load operating schedule which included a much wider
variety of operation than the nine-mode procedure.   Instrumentation dif-
ferences must also be accounted for as follows.

           (a)   The CL method eliminates the troublesome chemical
           drier used in non-dispersive  infrared (NDIR) analysis  of
           nitric oxide and measures both nitric oxide and nitrogen
           dioxide.  It is  compatible with the light-duty regulations.
           There is one drawback and that is removal of the water of
           combustion from the exhaust  sample. Currently an ice
           trap, which removes on the order of eleven percent of the
           NO2, is used but could be eliminated by preparation of a
           heated CL.   On engines evaluated in this and previous
           projects, NO£ in raw gasoline engine exhaust has  been
           less than a few percent.

           (b)   The heated FID method is considered a vast improve-
           ment over the  NDIR hydrocarbon analyzers used in the
           Federal nine-mode test.   The NDIR method grossly under-
           states exhaust hydrocarbons  since they are sensitive to just
           normal paraffins and an ice trap is employed in the sample
           system.  Although the FID system cannot be considered an
           absolute or total method, it is substantially better than NDIR
           and  is consistent with the light-duty regulations.   There are
           some  slight drawbacks,  such as the need for extended purge
           following a high HC  level as occurs during closed throttle
           operation.

       (3)  The baseline emissions phase of the project required measure-
ment of oxygenates.  The best known method for repetitive samples is the


                                  94

-------
MBTH method, a wet collected colorimetric procedure that expresses
aliphatic aldehydes as formaldehyde.  Although the run-to-run repeatability
seems satisfactory, the mode-to-mode repeatability was unacceptable.
Generally only two of every three demonstrated acceptable "t 20 percent
repeatability.  The data thus  reported must be judged in terms of the
method and its precision.   Certainly more needs  to be done to develop a
precise measurement of oxygenates on repetitive samples.

       (4)   The experimental EPA test method resulted in run-to-run repeat-
ability as good as the nine-mode Federal Test.  It is longer and more inclu-
sive and easier to reduce and calculate in terms  of a final answer.  Pre-
cautions must be taken to obtain as accurate power and fuel rate measure-
ments as when measuring exhaust contaminants.  Measurement of flywheel
power and fuel rate at light loads and lower engine speed is more difficult
than at the higher loads and speed.

       (5)   Engines generally operate on the experimental EPA procedure
without problem, although one of the six engines  refused to operate at the
lower engine speed.  The exact selection of engine  speeds, power levels,
and their respective weighting factors were beyond the  scope  of this project.
These rely on available road data from the operation of vehicles above
6, 000-lb GVW.  It is difficult to comment on those  used in the experimental
procedure without substantial additional data.

        (6)  Two engines, one popular V-8  engine from  each group of three,
were selected for evaluation of emission control technology.   This phase of
the study,  intended to rely mostly on  manufacturer's data and items
developed for engines in heavy duty operation, was limited to factory-
furnished light-duty items such as air injection (both engines) and EGR
(one engine).  This was supplemented by SwRI with a commercially-available
platinum-type oxidation catalyst reactor and a laboratory manually-controlled
EGR system.  In addition to a study of these devices, the effect of basic
spark timing and carburetor main jet size  (air-fuel ratio) was studied.
All these were studied singly and in combination  to determine emission
reduction.   The goal was to obtain gross reductions in HC, CO and NOX
without an increase in fuel consumption nor decrease in power available.

       (7)  Gross reductions with the first engine exhaust emissions were
achieved based on the experimental EPA test schedule.  Hydrocarbons were
reduced by 70 percent, carbon monoxide by 68 percent,  oxides of nitrogen
were lowered by 30 percent and oxygenates were reduced by 58 percent.
Fuel consumption,  in terms of weighted brake specific  fuel consumption,
was increased by 7.4 percent while maximum power was unchanged.  Factory
light-duty EGR and air injection, standard 1972 engine  trim,  and basic spark
timing were retained.  A commercially-available platinum-type oxidation
catalyst played a key role in effecting the HC and CO reductions.  Drive-
ability and durability aspects have not been specifically determined,  though
                                  95

-------
all the components have been proven in light-duty service.  The platinum
catalyst depends on lead-free gasoline for operation.  Driveability should
not be any more affected than light-duty vehicles with the same equipment,
though this has  yet to be established in a truck.

       (8)  Operating the first control-equipped engine on the Federal nine-
mode procedure failed to give the same degree of emissions control as with
the 23-mode EPA procedure.  Relative to the experimental procedure,  the
nine-mode tended to understate the HC and overstate the CO and  NOX.  For
example,  the 70 percent reduction in HC by the 23 mode test may be compared
to no change in  HC by the nine-mode test.  A  similar level of reduction in
CO by the 23-mode test was found to give about a  90 percent CO reduction
by the nine  mode.  NOx, reduced 30 percent based on 23-mode data,  was
reduced by  almost 60 percent.  The light-duty EGR schedule, creating
excessive HC,  and the inability of the catalyst to reduce HC during the
19- and 16-inch modes is felt to be the major reason.  Had the control-
equipped  engine been experimented with on the nine-mode  schedule, a
different  combination of control devices would have been used in  the 19-
and 16-inch intake vacuum  modes.  From this it may be concluded that the
type of test procedure can influence the design and development of an emis-
sions control strategy.

       (9)  Based on the experimental EPA test procedure, HC was reduced
by  85 percent,   CO by 71 percent, NOX by 51 percent and oxygenates by 53
percent with the second engine  studied.  The engine was operated with
standard  1972 trim (carburetor, distributor and basic spark timing), but
with light-duty air injection system.  The air injection vacuum operation
distribution valve was replaced with a simple pipe "Tee" and the same
platinum-type commercially-available oxidation catalysts  employed.  Since
no  light-duty or heavy-duty EGR system was available from the manufacturer,
a manually-controlled laboratory EGR system was employed.  An EGR
schedule  was tailored to minimize NOX while not seriously affecting HC,
CO, power, and fuel consumption.  These reductions had penalties in top-
end performance at 2300 rpm (13 hp or 12 percent) with no loss in power
at 1200 rpm.  Weighted brake specific fuel consumption was increased by
 13  percent.  As with the first engine studied,  no assessment of driveability
or  durability can be given.   These were laboratory studies confined to
engines operated on stationary  dynamometers under constant speed-load
engine "mapping"-type conditions.

       (10)  Operation of the second control-equipped engine on the nine-
mode  Federal schedule involved re-tailoring the EGR so that five percent
was recirculated in the Scinch mode and ten percent was  recirculated in the
10-inch mode.   No EGR was used at any other mode and the HC, CO, and
NOX reductions were on the same order of magnitude as obtained on  the 23-
mode test.  The key to this was modifying the EGR schedule specifically
for the nine-mode  test.  The oxidation catalyst seemed to  do a better job
on HC from this engine than on the  first engine.   The catalyst supplier

                                   96

-------
indicated that this was not surprising since the catalyst will preferentially
accelerate oxidation of the olefins, aromatics, and certain paraffinic hydro-
carbons.

       (11)  The objectives of the six engine baseline study were achieved
and the merits of the experimental test procedure  demonstrated.  Likewise,
the goals of the two engine control technology assessment portion of the
project were met in that gross reductions in exhaust emissions were
demonstrated.  The substantial reductions did not  come without a known
fuel consumption penalty and an unknown driveability and durability penalty.
Only two engines were involved in this limited assessment and much
caution must be  taken in control technology potentialities of all engines.
It is generally true that each manufacturer's engine and even different
displacements of a  given make will respond differently to emission control
strategies.  However, limited laboratory demonstration has been made of
control potentialities.
                                   97

-------
                     VI.  RECOMMENDATIONS

       This project must be termed a success since substantial re-
ductions in emissions were demonstrated even though limited to three
months of laboratory work, two months on one engine and one month on
the other.

       There were many items uncovered or made known during the
last few months that could not be included in this time and fund-limited
project.  Advanced oxidation catalysts, newly announced oxidation-reduction
catalysts, improved exhaust recirculation valves and control modules,
turbochargers, to name a few, are still waiting to be considered in depth.
And, the hurried nature of the tests conducted under this project could
stand some replication and refinement as well as  demonstration with
additional engine makes and sizes.  For example, the light-duty EGR
system on one engine reduced NOX,  but more could have been achieved
using a schedule  tailored for the heavy-duty test procedure.

       It is recommended that consideration be given to a long range project
to continue research and development on a long term planned basis  of con-
trol technology for heavy-duty gasoline engines.  The intent of such a project
would not be to do the manufacturer's job for him, but to demonstrate proof
of principle and to  evaluate the state of the art.  In a way, the effort could act
to provide stimulation to the engine  manufacturers and those who manufacture
control equipment. Those advantages would accrue in addition to the basic
objective, namely, determine potential ways to reduce emissions from heavy-
duty engines.  In closing, the work reported herein represents a good start
on what should be a long-range program.
                                  98

-------
                      LIST OF REFERENCES

1.      1971 Motor Truck Facts, Automobile Manufacturers Association, Inc.

2.      Springer, Karl J,, "An Investigation of Emissions from Trucks Above
       6000-lb GVW Powered by Spark-Ignited Engines, "  Final Report to the
       U.  S. Public Health Service,  under Contract PH 86-67-72,  March 1969.

3.      Springer, K. J., Williams, G.  L., Olsen, R. W.,  and Mills, K. D.,
       "Emissions from Gasoline Powered Trucks Above  10,000-lb GVW
       Using PHS Proportional Sampling Techniques, " AIChE Paper No. 53C,
       presented at the Sixty-First Annual Meeting,  Los Angeles,  California,
       December 1968.

4.      Olsen, R. W. and Springer, K. J. , "Exhaust Emissions from Heavy-
       Duty Vehicles," SAE Paper Nfo. 690764, presented at the National
       Combined Fuels and Lubricants and Transportation Meetings, Houston,
       Texas,  November 4-7,  1969.

5.      Tyree,  C. D. and Springer, K. J., "Studies of Emissions from
       Gasoline-Powered Vehicles Above 6,000-lb Gross  Vehicle Weight,"
       Final Report to the National Air Pollution Control Administration
       under Contract  PH 86-67-72, July 1970.

6.      Springer, K. J.  and Tyree,  C.D., "Exhaust Emissions from Gasoline-
       Powered Vehicles Above 6,000-lb Gross  Vehicle Weight," Final Report
       to the Environmental Protection Agency under Contract EHS 70-110,
       April 1972.

7.    ~ Federal Register, Vol.  36, No. 219, Department of Health, Education
       and Welfare, November 10,  1970.

8.      "California Exhaust Emission Standards  Test and Approval Procedures
       For Engines in  1973 and Subsequent Model Gasoline-Powered Motor
       Vehicles over 6,001 Pounds Gross Vehicle Weight", State of California,
       Air Resources Board - Proposed  November 18,  1970.

9.      "Staff Discussion of Proposed Revision to the Heavy-Duty Gasoline
       Powered Vehicle Test Procedure",  State of California, Air Resources Board,
       amended January 19, 1972.

10.    Letter John J.  McFadden to Karl  J. Springer dated February 17, 1972,
       with attachment titled "Test Procedure for Heavy Duty Motor Vehicle
       Engines" dated  February 17,  1972.

11.    Springer, Karl  J. and Dietzmann,  Harry E., "Diesel Exhaust Hydro-
       carbon Measurement -  A Flame lonization Method," SAE Automotive
       Engineering Congress,  Detroit, Michigan (January 1970).

                                 99

-------
12.     Sawicki,  E.,  et al.,  "The 3-Methyl-2-benzothiazolone Hydrazone Test, n
       Anal.  Chem.. 33. pp.  93-96  (1961).

13.     Hausen,  T. R.,  "Determination of Aliphatic Aldehydes:  3-Methyl-2-
       benzothiazolone Hydrazone Hydrochloride Selected Methods," Anal. Chem.,
       33, p. F-l (1961).

14.     Krause,  S. R., Ethyl Final Report to AMA titled "Effect of Engine Intake-
       Air Humidity, Temperature,  and Pressure on Exhaust Emissions. "

15.     Spindt, R. S. , SAE paper 650507 titled "Air-Fuel Ratios from Exhaust
       Gas Analysis."

16.     Federal  Register.  Vol. 36, No. 193,  Environmental Protection Agency,
       October  5, 1971.
                                 100

-------
            APPENDIX A
EMISSION RESULTS FROM ENGINE 2-1
          TABULAR FORM

-------
            ENGINE 2-1
NINE MODE FTP EMISSION RESULTS
      CONCENTRATION BASIS

-------
         3-Ob-72
                         ENGINE  2-1
                                             RUN i
                                                                               K = .933
                                                                                            HUM =  b8  GR/I.B
CYCUt  1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ifa HG
7 3 HG
8 Ifa HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
fc Ib'HG
7 3'HG
B Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 IS'HG
fa Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
Q 1 IM«_
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11 'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
AVERAGE
CONCENTRATION AS MEASURED DILUTION A D
HC CO C02 NO FACTOR HC
111 2
10
30
80
70
78
31
7b
180
111 2
83
28
75
7*
78
*fl
78
1010
5*
8*
20
75
73
b2
*n
70
13*
___fPYPt P
5*
85
2b
71
70
77
31
73
17*
,*lb 12.b30 11?
.185 13.150 2252
.1*3 13.350 208*
.231 13.150 23nb
.513 1*.Q70 811
.111 13.150 2378
.500 13.7*0 22b3
.?b* 1*.010 2*1*
.335 b.210 72
.*15 12.b30 117
.187 13.180 22fc3
.1*3 13.*bO 2150
.208 1?.180 2*28
.588 IT. 110 1*3
.205 13.170 2*11
,b!2 13.710 221*
.225 13.110 2*5b
.2bl b.SIO 85
.170 13.310 111
.1H1 13.120 22b7
.1** 13.300 211C
.188 13.1*0 2*0b
.517 1*.020 1*0
.205 13.120 2*1*
.5b2 13.b70 2328
.217 13.8*0 2*15
.212 b.180 1?
.170 13.310 111
.17b 13.880 2318
.1*7 13.2bO 213*
.115 13.800 235*
,*hl 13.110 lOlfa
,18b 13.100 2370
.515 13.720 2321
.222 13.180 2*75
.258 b.7*0 1*
SUM 	 (COMPOSITE VALUES FOR CYCLES
nllu 	 .rfflUDnOTTlT WAI 1 1C O ff"lU f \t f I CO
AVERAGE aun~~i™v^uriru
FOUR CYCLE COMPOSITE






\j i. \ t. vnL.k/i*sj run. u'v*t_i'i'
- REPORTED VALUES -



1.038
1.025
1.078
1.02*
1.007
1 ,02b
1.033
1.011
1.150
1.038
1.02*
l.Obl
1.02*
1.001
1.02*
1.02b
1.022
l.BSb
l.(178
1.028
1.083
1.027
1.010
1.021
l.OSb
1.03*
1.7B2
1.078
1.031
1.085
1.038
1.01*
1.030
1.031
1.023
1.831
1 AND
3 AND
HC
CO
NO

12*
12
32
82
70
80
*0
77
1111
12*
85
30
77
7f
80
*1
80
1875
SB
8b
32
77
7*
b*
*1
72
IbfaS
58
88
28
7*
71
71
*0
75
1783


0.35*(
0.3S*(
0.35*( 2

JUSTED
CU NO
2.507
.110
.15*
.2*5
.Sib
.lib
.517
.2fa1
.bS3
2.507
.111
.153
.213
.581
.210
.b28
.230
.*8*
.183
.11*
.I5b
.113
.522
.211
.582
.22*
.520
.183
.182
.IbO
.202
.*b8
.112
.bl*
.227
.*?2


Ib.lbl)
.*07)
IbO.lll)

121
2301
22*b
23b2
817
2**0
2338
2*bl
1*0
121
2317
2211
2*85
1**
2*78
2353
2510
158
120
2330
228*
2*72
1*1
2*8*
2*12
2*17
173
120
2*73
231b
2**3
1030
2**1
2*02
2533
172


t 0.
+ 0.
+ 0.

WEIGHTING
FACTOR
,03b
.081
.257
.081
.0*7
.081
.283
.081
.021
,03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021


bS*( 87.027)
fa5*( .322)
bS*C 2202. BIS)
CORRECTED NO
WEI
HC
*.**B
8.21*
8.301
7.213
3.312
7.12*
ll.*OS
b.815
*0.13l
37 I J 3
1 f . X 3C
*.**8
7.5fa3
7.b1*
b.B33
3.*82
7.110
ll.bOl
7.015
31.372
2.015
7.fa8S
S.SbS
b.857
3.*b5
S.fa71
11.721
b.**l
3*.1b2
Q u a ~i Q
D t • T r a
2.015
7,802
7.251
b.SS?
3.337
7.051
11.383
b.b*8
37.**3
Q Q C •} L.
0*1 * 3 to
Ib.lbl
o") n a "3
o / * U C r
= 10.
= .
= 2187.
= 20*0.
li (1 T E D
CO NO
.010 *.373
.017 205.535
.0*0 577.232
.022 210.223
.02* *2.1fa2
.017 217.188
.Itfa bbl.783
.02* 211.01*
.01* 2.1*8
.010 *.373
.017 20b.l17
.031 510.778
.011 221.203
.028 **.37D
.011 220.511
.178 bb5.7b8
.020 223. *11
.010 3.313
.007 *.307
.017 207. *10
.0*0 587. ObS
.017 211.175
.025 **.bl1
.011 221. lOfa
.IbS fa82.b3b
.020 222.221
.011 3,b31
.007 *.307
.Olb 220.10*
.0*1 515. IbS
.018 217.381
.022 *8.*33
.017 217.281
.17* b71.7S2
.020 225. TO?
.010 3.bl*
.325 3211 . *53
,*07 aibO.111
«322 2202.215
22b PPM
352 PERCENT
507 PPM
53b PPM
        DILUTION FACTOR  =  1* . 5/CCOS + O.5*CO + 1D.8*HCJ

-------
         3-Ub-7e
                         ENGINE  p-1
                                                                                     .17*
                                                                                                      fa8  Gri/i.8
CVCLt 1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
PUDE
1 IDLE
2 Ib'HG
3 1C 'HG
* Ib'rlG
S 11'HG
b Ifa'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
S Ib'HG
3 1THG
* Ib'HG
5 11'HG
b Ifa'HG
7 3'HG
8 Ifa'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

AVERAGE SUI
AVERAGE SUf
FOUR CYCLE


CUNCEN TKA TIUN AS
HC CO COe
81
bb
38
78
7b
83
*8
73
178
81
88
21
73
75
7b
**
7b
12*
55
83
3b
sa
83
83
*7
73
ioe
55
73
a?
bl
7b
fa?
*5
7*
131
_ __ f r" V f~ 1 £

.Ifa7 IS.hSO
.152 1 * . ] * 0
.JHO 13.**0
. i b * l*.lbO
.*32 l*.3bO
.IbS 13.110
.Sb2 13.100
.185 if. 070
,?33 fa.*00
C OMPOST IF)
.Jfa? 13.bSG
,l*b 13.110
.131 13.* *0
.170 13.110
.131 1*.1*0
.180 13.710
.571 13.77(1
.181 13.130
.211 fa. 310
COMPOSITE)
.155 13.320
.1*1 13.870
.131 13.250
.171 13.120
.5*5 I*.0b0
.155 13.780
.*1* 13.fa70
.17b 13.820
.21* fa. 1*0
.155 13.32D
.Ifa3 13.b*0
.137 13.0*0
.151 13.h30
.**3 13.120
.152 13.720
.532 IS.SfaO
.173 13.720
.£22 b.350
pnMPn*iTTP ^ _
LUnrUOJ, ! C, J "
P T T r~ U A i IICC

^•"•™ C COMP 05 1 TE VALUES
COMPOSITE - REPORTED




MEASURED
NO
17
2018
1885
2215
S7b
222b
21**
2281
81
17
£10*
Hbl
2113
813
2188
2H7
£255
81
101
£15fa
llbO
22b3
885
£25*
2201
£301
15
101
2210
H3b
227(1
B7b
22**
2188
2331
103
f; t'lO r V P 1 p Q
r UK LTULCO
VALUES -


UILU1IUN AD
f-ACTOW HC
1.0*1
1.013
1.071
1.012
.181
1 .02*
1.011
1.018
1.115
1.0*1
1.02*
1.071
1.02*
i.no*
1.031
1.D28
1.028
1.155
1.078
1.033
1.085
1.021
1.005
1.0*0
1.038
1.037
2.008
1.078
1.051
1.10*
1.052
1.011
1.0*b
1.0*5
l.U**
1.1*2
1A Nil
A tNU
3 A W fl
HIM u
HC
CO
NO
85
8V
3*
71
76
85
*1
7*
1873
85
10
31
75
75
71
*5
78
180b
51
8b
31
8*
83
Bb
*1
7b
1811
51
77
3D
73
77
70
*7
77
1808


0.35*(
0.3S*(
JUST
CD
.175
.15*
.131
.Ibb
.*S7
.172
.573
.188
.**b
175
!iso
. 1*1
.17*
.**!
.187
.587
.11*
.*2B
.lb?
.15*
.151
.18*
.5*8
.Ibl
.513
.182
.*30
.lb?
.171
.151
.1S1
,*52
.151
,55b
.181
.*31


15.V*b)
.211)
0.35*( £000.2Sfa)
E 0 WEIGHTING
NO FACTOR
102
20*5
2011
£2*2
Bb?
2271
218*
2322
155
102
£155
2100
22*7
81b
2272
2251
2318
17*
101
£228
2128
2328
81Q
23*3
2285
2385
HI
101
2322
2137
2381
813
£3*b
2P87
2**2
200


+ O.b5*(
+ 0.bS*(
t 0,bS*(
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
,03fa
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021


1*.3Q3)
.281)
2080.587)
CORRECTED MO
w e
HC
3.051
7.7bfa
8.BU7
7 . n £ fa
3.533
7.5b2
13.831
b.fal5
31.325
Q "3 ^ 3 11
T r • 3 C T
3.051
B.021
7.181
b.bSb
3.5*0
7.025
12.C03
b.1S3
37.132
Q a Q t, a
" 3 • T D "
2.133
7.b32
10.0*3
7.50b
3.122
?.b80
13.808
b.?35
38.035
S 7 • H S 5
£.133
b.82fa
7.faS1
b.*fa£
3.b*l
b.235
13.301
b.877
37.1b8
11.111
Q C ~) U t.
T3 . r T b
1* . 303
= 1*
=
= 2052
= 1118
I b H 1
CU
.QOb
.01*
.U3b
.U15
.020
.015
.ifaa
.01?
.001
3 Q IL
. CH*
.OOb
.013
.038
.Olfa
.021
.017
.Ibb
.017
.001
^ n a
. Ju a
.QOb
.01*
.031
.Olfa
.02fa
.01*
.1*5
.Olfa
.001
.OOb
.015
.031
.01*
.021
.01*
.157
.Ulb
.001
3 Q 3
.Sid
.211
E 0
NO
3. fab*
182.001
518.810
111.52b
HU. 728
202.811
blB.l*!
20b.b1b
3.257
S.bfa*
111.771
531. b77
111.150
38.3b8
202.23*
b31.2Se
20b.212
3.b5*
3.118
118.25*
5*b.7b8
207.1*1
*1.820
£08.558
b*b.b!8
212.302
*.00b
SOfaS . 3 9 3
3.118
20b.bb2
5*1.1*7
212. 58b
*1.172
208.812
b*7.11S
ei7.3fa1
*.201
2011. 781
2000. 25b
.281 CUOU.3B/
.808 PPM
.212 PERCENT
.*71 PPM
.158 PPM
        DILUTION  FACTOR = l*.5/CCO£tf).5*C(n-10.S*HC)

-------
        3-ofa-7a
                        ENGINt. 2-1
                                             RUN  3
                                                                               K  =  .S81
                                                                                            HUM  =   70   GR/LB
CYCLE 1
CYCLE a
CYCLE 3
CYCLE
FEDERAL
MODE
1 I OLE
a Ifa'HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
Z Ib'HG
3 10'HG
t Ib'HG
S 11'HG
b Ifa'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
3 Ib'HG
3 10'HG
t Ib'HG
5 11'HG
b Ib'HG
7 3'HG
B Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10 'HG
t Ib'HG
5 11'HG
b Ib'HG
.7 3'HS
8 Ib'HG
1 C.T.
AVERAGE
CUNCtNTKATIUN AS
HC CO C02
*7
75
27
fab
73
73
t3
7*
523
*7
83
22
bB
7b
b7
*3
70
fa*3
*1
87
ai
70
70
78
35
ba
70*
______ /PVf"l L'
*i
71
30
73
?a
71
*0
73
75*
f r* v r i F
.151
.1*1
.135
.170
.t37
.18S
.570
.202
13 100
i>«.asD
13.7*0
lt.32D
It.f 70
It. 320
it.aio
It. 380
.ait fa. bio
ppUQI-lOTTL" *
Lunr us 1 1 t J "
.151 13.100
.171
.13*
.173
.tb5
.IbS
.bOt
.aot
.ati
r n Mi
L u n?
.1 7b
.Ibl
.138
.IBS
,*30
.183
.tai
.Ib3
it.aio
IS.fcSO
it.ofao
It. 3*0
i*.aoo
It. 150
it.abo
5.830
is.tio
It. 010
13.510
It.DbO
It. 310
It. 170
13.180
It. 010
.203 fa.7tO
COMPOSI 1 E) ••
.I7fa 13.*10
.IbS
.138
,lb3
.*58
.151
.551
.202
13.150
13.300
13.810
1*.130
13.780
13.820
it.oto
.118 h . 0 1 D
f rnADf\ t* T TC1 \_
SUM— -(COMPOSITE VALUES
AVERAGE oun~™~ V-L-unrua i i c v«i_uco
FOUR CYCLE COMPOSITE - REPORTED












MEASURED D1LUI1UN A
NO FACTOR HC
IS
2103
ma
22te
lib
22b2
aatt
33b3
130
15
22b8
aoe?
33o*
itb
3328
2315
33b8
11
10t
228b
2102
2355
Itl
2318
3173
aast
115
lot
21b2
aoa?
aasa
825
230b
aisR
assi
it
FOR CYCLES
FOR C Y C L b S
VALUES -



1.113*
1.0U7
i.uta
1.002
.182
i.noi
.117
.lib
1.170
1.03t
1.002
1.055
1.030
.181
1.010
1.000
1.00*
a. is*
l.Ofa*
l.Olb
l.ObS
i.oao
.113
1.011
1.017
1.018
1.107
I.Ob*
i.oa?
1.010
1.033
i.no*
1.0*0
1.03b
1.030
a, oit
1 AND
3 A NO
HC
CO
NO

ts
75
2H
fah
72
73
*3
7t
1028
tq
83
23
fal
75
fa8
*3
70
It02
52
88
31
71
70
71
3b
b3
13*3
sa
81
33
75
?a
7*
*1
7*
1571


0.3S*C
0.35*(
0.35*t

D J U S T E D
CO NO
.ISfa
.150
.1*1
.170
,*21
.185
.5fa8
.aoi
.*22
.ISb
.171
.1*1
.I7b
.tbO
.Ib7
.bOt
.205
.Stt
.187
.I7a
.1*7
.IbB
.*17
.185
,*17
.Ibb
.387
.187
.173
.150
.IfaS
.*bO
.IbS
.SbS
.30b
.*1S


75.353)
.303)
aoto.ssi)

18
2117
2087
22tb
811
22b3
2338
2353
35b
18
3273
2131
33t1
13b
3353
3215
2378
111
111
2333
3331
3*03
1*3
23*3
3301
333b
211
111
3330
aaio
3355
831
3311
33*t
3tOS
117


+ 0.
+ 0.
+ 0.

WEIGHTING
FACTOR
.03fa
.081
.as?
.08S
.Ot7
.081
.283
.081
.oai
.03b
.081
.357
.081
,0t7
.081
.383
.081
.031
,03b
.081
.357
.081
.0*7
.081
.383
.081
.031
.03b
.081
.357
.081
.0*7
.081
.383
.081
.031


bS*( 81.815)
b5*C .287)
b5*( 2087.335)
CORRECTS.!) NO
W E I
HC
1.7*1
fa. 711
7.372
S.8B*
3.3b1
b.501
13.13*
b.558
31.51*
nj on
• r D U
1.7*1
7.*OS
5.1fab
b.171
3.53*
fa. 023
13.170
fa. 257
Sl.tSl
•y n T 3 T
r o . f C f
1.87b
7.8fa1
7.1*0
b.3S*
3.2b8
7.017
10.070
S.bll
38.300
78.213
1.87b
7.331
8.t05
fa. 705
3.311
b.57S
ll.faOl
b.fa35
33.1b3
U C C 'J'j
tri 3 • 3 r r
75.353
8 1 • 8S5
= 71.
s .
= 2070.
= 2U33.
G H T E D
CU NO
.OOb 3.53b
.013 18B.315
.03b 53fa.*87
.015 HI.BfaS
.030 *3.373
.Olb 201. *3B
.Ibl b33.3t3
.018 201. t37
.001 5.378
.OOb 3.53b
.015 303.338
,03b Stl.733
.Olb 301.015
.023 t3.113
.015 301.387
.171 b3b.113
.018 311. bb3
.011 *.17*
.310 aQbO.731
.007 3.183
.015 30b.75b
.038 575.537
.015 313.751
.030 **.311
.Olb 308.530
.1*1 fa2S.ao8
.015 307.010
.008 *.faOfa
.37* 2081. fa?l
.007 3.183
.015 117. bOb
.031 5b7.881
.015 301.518
.033 38.1*5
.015 313.537
.IbO fa35.027
.018 31*. 087
.001 *.13*
.303 30*0.381
.387 3087. 335
570 PPM
213 PERCENT
83b PPM
031 PPM
        DILUTION HACTOR
                             . S/ CC02+Q . S*CO+1D . 8*HC }

-------
            ENGINE 2-1
NINE MODE FTP EMISSION RESULTS
      BRAKE SPECIFIC BASIS

-------
                        ENGINE 2-1
                                            RUN
                                                                              K  =   .94
                                                                                           HUM  =
                                                                                                      GR/LB
CYCLE  I
CYCLE 2
CYCLE 3
CYCLE *
MASS CONCENTRATION AS MEASURED TOTAL
MODE HC co ens NO CARBON
1 IDLE 11* 2.415 12. b3
2 Ib HG 90 .185 13.95
3 10 HG 30 .1*3 13.35
* Ib MG 80 .239 13.95
5 IS HG 70 .513 1*.07
b Ib HG 78 .191 13.95
7 3 HG 39 .500 13.7*
8 Ib HG 7b .2b* 14.01
* C.T. 980 .335 b.21
1 IDLE 111 2.415 12. b3
2 Ib HG 83 .187 13.98
3 10 HG 88 .li*3 13. tb
* Ib HG 75 .ins 13.98
5 19 HG 7* .588 l*.ll
b Ib HG 78 .205 13.97
7 3 HG *0 .hi? 13.79
8 Ib HG 78 ,2?S 13.99
9 C.T. 1010 ,2bl b.59
1 IDLE S* .170 13.31
2 Ib HG 8* .189 13.92
3 10 HG 20 .I** 13.30
* Ib HG 75 .18B 13.94
5 19 HG 73 .517 It. 0?
b Ib HG b2 .anS 13.93
7 3 HG 40 ,5b2 13. b7
8 Ib HG 70 .21? 13.8*
9 C.T. 13* .292 b.98
1 IDLE 5* .170 13.31
2 Ib HG 8S ,17b 13.88
3 10 HG 2b .147 I3.2h
4 Ib HG 71 .195 13.80
5 19 HG 70 ,4bl 13.99
b Ib HG 77 .181. 13.90
7 3 HG 31 .595 13.72
8 Ib HG 73 .22? 13.98
9 C.T. 974 .258 b.74
AVERAGE SUM — -(COMPOSITE VALUES
AVERAGE SUM— — — CCOMPOS I TE VALUES
FOUR CYCLE COMPOSITE - REPORTED



117
??52
2084
?3nb
891
?37H
221)3
?*l*
72
117
?2h3
2150
2428
943
2419
2294
245b
85
111
22H7
?110
24nb
S4Q
2414
2328
2*15
S7
111
2398
?134
235*
lOlb
2370
2321
2475
94
15.174
14.S32
13.52S
14.275
14.bS9
14.225
14.282
l*.3Sh
7.b03
15.174
14.257
13.h33
14.21,1
14.778
14.259
14.445
14.299
7.942
13.538
i*.2ao
13.*hb
l*.20l
14. bib
1*.H2
It. 275
1».133
8.281
13.538
14.148
13. "MS
1«».072
14.527
1*. Ib9
1H.3S7
14.281
8.050
FOR CYCLES 1 AN
PnP r VP I F ^ 3 AM
FUEL
CONS.
Ib 31
5970
8b2b
59?0
4b22
5970
1284S
5970
1732
Ib39
5970
8b2b
5970
4h23
5970
12848
5970
1732
Ib39
5970
8b2h
5970
*b22
597Q
12848
5970
1732
lb3S
5970
SbBb
5970
»b28
5970
128*8
5970
1732


VALUES - HC 0.35C 3.S)



CO 0.
Noa n.

3SC 32)
3SC IS. 4)

ADJUSTED (MASS)
HC CO N02
14
41
21
3b
24
35
38
34
241
1*
38
!•<
34
25
35
3R
35
238
7
38
1*
3*
25
28
39
32
211
7
39
1»
33
2*
35
38
33
22b


+ 0
+ 0
+ o

527
157
184
202
327
Ib2
909
222
154
527
158
183
17b
371
173
1100
HO
115
42
Ibl
18b
IfaO
330
174
1022
185
123
*2
150
Hi
Ib7
21b
158
107b
187
112


.b5( 3
.t>5(
.b5C 15
CORRECTED
4
314
441
320
S3
331
b7b
333
5
4
3J5
*52
337
98
33b
b77
340
b
4
31b
449
33b
99
337
bSb
339
7
*
33b
455
332
107
332
b92
344
7


.2) =
15) =
.7) =
NOS =
«T.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


3.281
17.3
1S.S79
i*.e>2?
WEIGHTtD CMASS)
HC CO N02CK)
3.2
3.1
3.0
2.8
1.*
2.7
*.3
?.b
3*. 5
3C
, 3
3.2
2.S
2.8
2.b
).*
2.7
*.3
2.7
3*.0
3C
. 3
l.b
2.1
2.0
2.*>
1.*
2.2
*.»
2.5
30.2
31
. 1
l.b
3.0
2.7
2.5
1.*
2.7
*.3
2.5
32.*
3.3
3.5
3.2
(MASS)
CMASS)
CMASS)
CMASS)
122
12
27
Ib
11
12
103
17
22
3 1
C 1
122
12
27
1*
21
13
12*
15
Ib
22
10
12
27
12
I1"
13
IIS
1*
18
1 c
1»
10
IS
28
13
17
12
122
1*
Ib
15
22
15



1.0
24.1
b*.9
2*. 7
5.3
25.5
7b.*
25. 7
.8
ic a
Ib . e
1.0
2*. 2
bb.4
3b.O
S.b
25.9
7b.5
2b.2
.1
15. S
1.0
2*.*
bb.O
25.8
S.b
2b.O
78. b
2b.l
1.0
15. b
1.0
25.1
bb.9
25.5
b.i
25.5
78.2
2b.S
1.0
15.8
IS.*
15.7



HP
0
18
32
18
8
18
SO
18
0
0
18
32
18
B
18
SO
IB
0
0
18
32
18
B
18
50
18
0
0
18
32
18
8
18
50
18
0






-------
                        ENGINE ?-l
                                                                                                 h8  GR/LH
CYCLE 1
CYCLE ?
CYCLE 3
CYCLE *
MASS
MOOE
1 IDLE
2 ib HG
3 10 HG
* ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
a ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 19 HG
t Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
AVERAGE SUM
AVERAGE SUM
FOUR CYCLE


CniMCENTRATIflN AS MEASURE"
HC cn cne NO
Bl .Ib7 13. bS 97
8b .15? l*.l* 2018
32 .130 13. ** 1885
78 .Ib* l*.lb ?21S
7b ,*32 l*.3b 87b
83 .IbP 13.99 222b
*8 .5b? 13.90 21**
73 .185 1*.07 2281
978 .233 b.*0 81
81 .Ib7 13. b5 97
88 .l*b 13.99 310*
29 .139 13.** 19bl
73 .170 13.99 2193
75 .439 l*.l* 813
7b .180 13.79 2188
** .571 13.77 2197
7b .189 13.93 2255
92* .219 b.31 89
55 .155 13.32 101
83 .1*9 13.87 215b
3b .139 13.25 19bO
82 .179 13. 9g 3?b3
83 .5*5 l*.0b 885
83 .155 13.78 225*
*7 .*9* 13. b7 2201
73 ,17b 13.82 23(11
902 .21* b.l* 95
55 .155 13.32 101
73 ,lh3 13. b* ?210
27 .137 13.0* 193b
b9 .151 13. h3 2270
7b ,**3 13.92 87b
b7 .152 13.72 22**
*5 .532 13. 5b 2188
7* .173 13.72 2339
931 .222 b.35 103
TOTAL FUEL
CARBON CONS.
13. 91)*
1*.385
IS.bOS
1*.*08
1*.S7*
1*.2*«
l*.5l*
1*.33*
7.h89
13.90*
l*.23l
13.blO
1*.239
l*.bbO
1*.05?
1*.389
1*.201
7.527
13.53*
1*.109
13.*28
1*.1B8
I*.b95
1*.02S
1*.215
1*.075
7.328
13.53*
13.882
IS.POb
13.«Sb
1*.**5
13.9**
1*.1*1
13.973
7.577
. — (COMPOSITE VALUES FOB CYCLES 1 AND 2
//•nuonOTTC U A 1 1 1C" C CnU C V C \ F ^ 3 A f\jn li
Ib39
5970
8h2b
5970
*b22
597H
128*8
5970
1732
Ib39
5970
8b2b
5970
*b22
5970
128*8
5970
1732
Ib39
5970
8b2b
5970
*b22
5970
128*8
5970
1732
Ib39
5970
8b2b
597H
*b22
5970
128*8
5970
1732


COMPOSITE - REPORTED VALUES - HC o.ssc 3.5)


CO 0.35C
N02 0.35(
1*)
1*.3)
ADJUSTED (MASS)
HC CO N02
10
39
22
35
2b
3R
*b
33
238
10
*0
20
33
2b
35
*2
35
230
7
38
25
37
28
38
*b
33
230
7
3*
19
32
2b
31
**
3*
230


+ 0.bS(
+ n.bS(
+ O.b5(
*0
127
Ib?
137
271
1*2
1005
ISb
lOb
*0
12*
178
1**
2Bo
IS*
1030
Ibn
102
38
127
180
152
3*b
133
902
151
102
38
1*2
181
131
28b
131
97b
1*9
103


3

1*
CORRECTED
*
270
397
305
90
310
b30
315
b
*
293
*13
305
85
309
bSl
315
7
*
303
*18
31b
92
319
bfaO
32*
7
*
31b
*20
325
93
319
bbO
332
8


.*) =
13) =
.8) =
N02 s
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


3.*11
13.5
I*.b39
1*.289
WEIGHTED (MASS)
HC CO NOg(K)
2.*
3.0
3.2
2.7
1.5
2.9
5.2
2.5
3*.0
3c:
• 3
2.*
3.1
2.9
2.5
1.5
2.7
*.B
2.7
32.8
3M
. *
1.7
2.9
3.7
2.9
l.b
2.1
5.2
2.b
32.9
3C
• s
1.7
2.b
?.8
2.5
1.5
2.*
5.0
2.b
32.9
3-J
• 3
3.5
311
. *
(MASS)
(MASS)
(MASS)
(MASS)
9
10
2*
11
IS
11
11*
ie
15
1 4
JL T
9
10
2b
11
Ib
ie
lib
ie
is
1 4
L ~
9
10
27
12
20
10
102
12
IS
1 3
JL 3
9
11
27
10
Ib
10
110
11
IS
1 "5
1 3
i*




.9
21.*
58.3
23.5
5.2
23.8
71.2
2*. 3
."»
1 u |
A* . 1
.9
22. b
bO. 7
23.5
*.*
23.8
73. b
2*. 2
1.0
1 u U
I* . T
.9
23.3
«»!.»
2*. 3
5.3
2*. 5
7*,b
25.0
1.1
1 li fl
1* . B
.9
2*. 3
bl.7
25.0
5.3
2*.b
7*.b
25.5
1.1
1*,9
1*.3
1* . 8



HP
0
18
32
18
8
18
50
18
0
0
18
32
18
8
18
50
18
0
0
18
32
18
8
18
50
18
0
0
18
32
18
8
18
50
18
0






-------
        3-Ob-7a
                        ENGINE ?-l
                                            RUN 3
                                                                                   .SB
                                                                                          HUM
                                                                                                 70  GR/LH
CYCLE 1
CYCLE 8
CYCLE 3
CYCLE t
MASS
MODE
1 IDLE
a ib HG
3 10 HG
t Ib HG
5 IS HG
fa Ib HG
7 3 HG
8 Ib HG
S C.T.
1 IDLE
a Ib HG
3 10 HG
t Ib HG
5 1? HG
b Ib HG
7 3 HG
B Ib HG
S C.T.
1 IDLE
a ib HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
B Ib HG
S C.T.
1 IDLE
a Ib HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
S C.T.
AVERAGE
CONCENTRATION AS MEASURED
HC co cna NO
*7 .151 13. SO SS
75 .US It. 85 8103
37 .135 13.74 1SS8
bb .170 If. 3? R8ta
73 .*37 1*.*7 Sib
73 .186 lt.3J 88b8
t3 .570 it. ai 88t*
7* .aoa 1*.3B ?3b3
saa ,8i* b.bs 130
*7 .151 13. SO S5
83 .171 it. as sabs
88 .13* is. bs aoa7
b8 .173 It. Oh 830*
7b ,*b5 1*.3* Stb
b7 ,ib5 it.ao asae
t3 .bo* it. is aai5
70 ,8ot it.ab ashs
bts .ats 5.aa si
fS ,17b 13. tS 10*
87 .ibs it. os aasb
as .138 i3.si 8108
70 .Ib5 It. Ob a35S
70 ,t80 It. 31 S»S
78 .183 It. 17 a318
35 .tBS 13. S8 8173
ba ,lb3 It. OS 888*
70t .303 b.7* 115
*S ,17b 13. *S lot
7S .IbB 13. S5 81b8
30 .138 is. ao ?oa7
73 ,ib3 is. as aasa
?a .tsB it. 13 sas
71 .15S 13.78 33ob
to .551 13. 8a 8188
73 .aoa it.ot asss
75* .1S8 b.Ol St
TOTAL
CARBON
it.ioa
It. i»80
13. sot
lt.5t,l
It.SBb
It.SSt
i».8ab
l*.bba
7.tb8
it.ioa
It. 551
13.808
lt.30b
It. 887
It.t37
It. 800
It.StO
b.7ba
13.71S
It. 353
13.b7S
It. 301
It. Sob
It.t37
It. 507
It. 380
7.703
13.71S
it.aos
13.370
it.ua
It.bbb
It.Olb
It. tit
it.sai
7.0P2
SUM — (COMPOSITE VALUES FOR CYCLES 1 AN
FUEL
CONS.
lb3S
5S70
Bbab
5s?n
tbaa
5S70
lasts
5S70
1738
lb3S
SS70
sbab
5S70
tbaa
5S70
lasts
5S70
1738
lb3S
SS70
Bb8b
5S70
tbaa
5S70
lastB
SS70
i73a
lb3S
SS70
Bbab
5S70
tb88
SS70
188t8
SS70
1738


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.3SC 2.b)






CO 0.
woa o.

3S( 1»)
3SC It.b)

ADJUSTED CMASS)
HC CO NOB
b
33
18
as
at
aa
to
33
131
b
37
15
31
85
30
to
31
178
b
3S
80
38
at
35
33
88
171
b
3b
ai
33
85
33
3S
33
801


+ 0
+ 0
+ 0

35
18*
IbS
Itl
878
153
SS8
Ibb
100
35
ita
IbS
l»b
8S8
138
105S
IbS
IBS
*8
ita
17b
13S
8bS
153
875
137
98
*8
1*3
1BO
13S
asa
13?
SS8
170
SS


.bsc e
.bSC
.bSC It
CORRECTED
*
888
tio
305
St
307
btb
31S
10
t
30S
tao
31"
S8
380
b38
383
8
t
31b
t*0
386
SB
31B
b3S
31b
S
*
308
*3t
380
8b
38b
b»7
38b
8


.S) =
13) -
.S) =
Noa =
WT.
FACT.
.asa
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.83a
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.838
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.23?
.077
.1*7
.077
.057
.077
.113
.077
.1*3


8.7b3
13. S
It. 773
it. sas
WEIGHTED (MASS)
HC CO N08(K)
l.t
a.b
8.7
8.3
l.»
8.5
t.S
8.5
18.7
8 • t
l.t
8.8
a. a
a.*
1.5
a. 3
t.b
a.t
as. t
?o
• o
1.5
3.0
8.1
8.*
1.3
a. 7
3.8
8.1
8t.t
a^
• f
l.S
8.B
3.1
8.b
l.»
8.5
».*
8.5
88.7
3n
• u
a.b
a. s
(MASS)
(MASS)
(MASS)
(MASS)
B
10
as
11
Ib
ia
113
13
1*
1 U
JL~
8
11
85
11
17
11
iao
13
18
1 4
JL T
10
11
8b
11
IS
18
SS
11
13
I 5
1 3
10
11
8b
11
17
11
118
13
It
t ti
X T
1*
• ^
1 3



.S
aa.a
bO.3
S3.S
5.3
83.7
73.0
8t.b
l.t
1 U U
It , t
.S
83.8
bl.B
8t.b
S.b
8*.b
78.1
8*.S
1.1
i u ?
* T • *
1.0
8*. 3
b*.7
85.1
S.b
8*. 5
78.8
a*. 3
1.8
1 U Q
1*» <*
1.0
33.8
b3.8
et.b
t.1
85.1
73.8
85.1
1.1
1 li Q
1* . *i
It.b
1*.S



HP
0
IB
38
18
8
18
50
18
0
0
18
38
IB
8
18
50
18
0
0
18
38
IB
8
18
SO
IB
0
0
18
38
18
8
IB
SO
18
0






-------
                 ENGINE 2-1
EXPERIMENTAL 23 MODE EMISSION RESULTS
           BRAKE SPECIFIC BASIS

-------
PROJECT, 11-2877-01   CONTROL TECHNOLOGY
* ' * •-' V I— *.
3-08-72 RUN 2

MODE
1
?
3
if
5
K
7
a
9
10
11
12
13
If
15
lb
17
1«
11
20
21
??
23

DYNA.
SPEED LOAD
700
1200
1200
1200
1200
1200
1200
1200
1200
1?00
700
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2300
0.0
2.7
10.8
2f.3
33.8
b7.5
101.2
110.7
12* .2
.135.0
0.0
0.0
lbl.0
IfS.l
132.0
120.7
80.5
fO.2
21.0
12.1
3.2
0.0
0.0
t
HP
0
1
2
b
8
15
23
25

1
0
0
ENGINE 2-1
MAN. FUEL RATE
STATIONARY DYNAMOMETER

VAC. LB/HR GM/HR ALDE.
17.5 f.O 1810
11.1 5.7 2bOf
11. f b.O 2717
18.3 b.1 3130
17.2 7.b 3fS2
12. b 1.1 fSOf
f.1 15. f b185
3.3 lb.2 73fB
2.2 18.5 8380
0.0 23.3 lOSfal
17. b f.O 1805
21.5 f.O 1823
.1 ff.O 11158
2.3 3b.O Ib330
3.f 31.8 Iff2f
f.7 21.0 13132
10. b 20.7 Ifl2
lb.7 If.f b501
18.2 12.5 Sb70
20.2 10. f fbIS
21.2 1.1 f!28
17. b 3.7 IbSb
2f.8 3.8 1737
CALCULATED GRAM/MR NT. WT.
MORE
L
2
3
f
5
b
7
8
1
10
11
12
13
If
15
IK
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
n.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
l.b
fO.5
*5.7
5b.7
51.3
feb.O
21.1
33.1
51.0
22f .8
1.1
1b7.l
337.1
155. f
Rf .1
f fl.f
35. b
77.1
b3.f
fb.3
31.8
l.f
551.7
COMPOSITE








CO
37
52b
5f 1
52b
2fO
, 81
131
138
, 17R
11721
35
125
1*085
f520
If f 9
bf2
208
111
221
270
357
2b
8f
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
7.0 .070 0.0
5.1 .ObO .0
R.3 .ObO .1
21.1 .050 .3
135.8 .030 .2
lbl.1 .ObO .1
251. b 0.000 0.0
33b.f .OfO .1.0
ff7.5 0.000 0.0
lf.1 0.000 0.0
3.0 .070 0.0
.1 .120 0.0
llf.5 .025 1.8
b03.1 .055 3. fa
75b.f .035 ?,0
723.1 .ObO 3.2
bb2.3 .ObO 2.1
37f.f 0.000 0.0
217. b ,0b5 .8
81. f 0.000 0.0
38.5 0.000 0.0
2.7 .080 0.0
.7 .ObO 0.0
12.170 GRAM/BHP HR
52.155 GRAM/BHP HR
11.1b2 GRAM/BHP HR
0.000 GRAM/BHP HR
.750 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
b82
2f72
2b?1
2832
2513
2121
581
bOI
1007
f030
7f2
381b5
21fl
IfBb
875
533
518
1701
Ib20
If53
Ifff
72b
17531
CONCENTRATION


1
1
1





10


b
2









CO
.130
.510
.510
.300
.520
.130
.130
.130
.150
.fOO
.130
.250
.070
.IfO
,7fO
.350
.150
.210
.280
,f20
.bfO
.100
.130
























C02
12.71
If .05
If. 05
If .05
If. 31
If .18
13.77
13.77
If. 05
8. If
13.33
3.20
11.01
13.33
If .05
If .05
13. f8
If ,05
If. 05
If .18
If .18
12.51
3.5b
NO
151
101
Ifb
330
1787
IbSO
15b3
1125
2300
80
b8
11
510
1737
2350
2fOO
eioo
2500
lfa?S
770
f20
b3
7
SPECIFIC GRAM/BHP-HR


b5.
IP.
10.
7.
f .
1.
1.
2.
7.


f.
a.
i.
•
i.
f .
f.
8.
28.







HC
R
b8
5f
21
bl
28
2b
27
08
21
R
R
71
fO
f7
12
01
37
11
20
25
R
R





CO

853.
822.
If.
31.
5.
5.
5.
b.
380.


111.
bl.
25.
12.
5.
10.
17.
f7.
252.







R
2
3
7
2
3
7
5
3
0
R
R
8
7
1
1
1
q
f
1
i
R
R





N02
R
l.b
3.f
f.O
17. b
11.0
11.2
13.3
15.8
.5
R
R
2.8
1.3
13.1
13.7
18.8
21.2
17.1
If.f
27.3
R
R



































-------
3-08-72  RUN  3
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENGINE 2-1
                                                STATIONARY DYNAMOMETER
DYNA.
MODE SPEED LOAD
i
2
3
4
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
11
20
21
?2
?3
?nn
1200
1200
1200
1200
1200
1200
1200
1200
1200
700
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2300
n
2
10
24
33
b?
101
110
124
135
0
0
Ibl
1*8
132
120
80
to
21
12
3
0
0
.0
.7
.8
.3
.8
.5
.2
.7
.2
.0
.0
.0
.0
.1
.0
.7
.5
.2
.0
.1
.2
.0
.0
HP
0
1
2
b
8
15
23
25
28
31
0
0
71
b5
58
53
35
18
13
b
1
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
17. h i*,n ism
11.8 S.7 2b04
11.4 b.O 2717
18.2 b,1 3130
17.2 7.b 3452
12. h 1.1 f504
4.1 15.4 fa185
3.3 lb.2 7348
2.2 18.5 8380
P.O 23.3 lOSbl
17. b 4.0 1805
21.4 4.0 1823
1.0 44.0 11158
2.3 3b.O Ib330
3.4 31.8 14424
4.7 21.0 13132
10.7 20.7 1412
lb.7 14.4 bSQI
18.2 12.5 5b70
20.2 10.4 4b1?
21.2 1.1 4128
17.7 3.7 IbSb
24.fi 3.8 1737
CALCULATED GRAM/MR HT. WT.
MODE
i
?
3
*
5
b
7
8
q
10
11
1?
13
14
15
Ib
17
18
11
2D
?1
22
?3
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.n
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
n.n
0.0
0.0
0.0
HC
12.
38.
42.
53.
57.
b3.
27.
30.
fl.
225.
1.
811.
331.
144.
80.
43.
31.
bl.
41.
35.
2b.
11.
588.
5
8
q
5
0
3
4
b
2
7
5
5
7
1
1
1
8
7
2
7
4
4
3
COMPOSITE












CO
28
515
515
485
205
81
131
140
180
11740
3b
100
13118
4038
1149
571
201
Ibb
145
184
224
2b
b?
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.5 .070 0.0
3.4 .ObO .0
1.4 .ObO .1
24. b .050 .3
55.8 .030 .?
175.2 .ObO .1
274.2 0.000 0.0
344.3 .040 1.0
4B2.3 0.000 0.0
15.2 0.000 0.0
3.1 .070 0,0
,8 .120 0.0
213.0 .025 1.8
b24.3 .055 3.b
813.8 .035 2.0
78b.7 .ObO 3.2
b74.0 .ObO 2.1
402.1 0.000 0.0
23b.7 .Ob5 .8
12.8 0.000 0.0
41.5 0.000 0.0
2.7 .080 0.0
.1 .ObO 0.0
11.020 GRAM/BHP HR
41.177 GRAM/BHP HR
12.413 GRAM/BHP HR
0.000 GRAM/BHP HR
.750 LB/9HP HR
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
I
I





DRY
HC
81*.
2357
2413
2b?3
2477
2038
547
575
831
4055
bib
41548
2131
1435
817
481
4b2
152b
1232
1011
130
871
17bbb
SPEC


b2.
17.
1.
7.
4.
1.
1.
1.
7.


4.
2.
1.
*
•
3.
3.
b.
18.







CONCENTRATION

t
1.
1.
1.
•
•
•
•
*
10.
»
•
5.
1.
•
*
*
*
*
«
*
•
•
IFTC
HC
R
83
40
b3
31
10
1R
21
73
32
R
R
82
23
31
83
10
Ib
87
33
72
R
R





CO
100
550
480
200
440
130
130
130
150
f<*0
130
250
IbO
180
580
310
150
180
180
280
310
100
100
C02
19.82
14.05
14.05
14.18
14.31
14.18
13.77
13. b3
13.11
8.14
13. Ob
4.84
11.01
14.05
14,05
14,05
13.48
13.11
13.11
14.05
14.05
12.47
3.35
NO
33
b3
IfaS
370
730
1700
IbSO
1150
2350
83
b8
12
555
18b2
2500
2bOO
2150
2b50
1787
BbO
440
b3
1
GRAM/BHP-HR
CO
R
834.5
208. b
87.3
2b.S
5.3
5.7
5.5
b.3
380. b
R
R
117.4
b2.3
11.1
10.8
5.1
1.4
11.4
32. b
158.7
R
R





N02
R
5.5
3.8
4.4
7.2
11.4
11.1
13. b
lb.3
.5
R
R
3.0
l.b
14.1
14.1
11.1
22.8
18.7
lb,5
21.4
R
R



































-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
3-Q9-72 RUN 1              ENGINE 2-1           STATIONARY DYNAMOMETER

MODE
1
2
3
*
5
b
7
8
9
10
1]
15
13
1*
15
Ib
17
18
19
20
21
22
23

DYNA.
SPEED LOAD
700
1200
1200
1200
1200
1200
1200
1200
1200
1200
700
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2300
0.0
2.7
10. 8
2*. 3
33.8
b7.5
101.2
110.7
12*. 2
13*. 0
0.0
0.0
lbl.0
1*8.1
132.0
120.7
80.5
*0.2
29.0
12.9
3.2
0.0
0.0
MAN. FUEL RATE
HP
0
1
2
b
8
15
23
25
28
31
0
0
71
b5
58
53
35
18
13
b
1
0
0
VAC. LB/HR GM/HR
17. b *.
20.2 5.
19.7 b.
18. b b.
17.3 7.
12.7 9.
5.0 IS.
3.* Ib.
2.2 18.
0.0 23.
17. b *.
21. b *.
.9 **.
2.5 3b.
3.5 31.
*.7 29.
10.9 20.
17.2 1*.
18.7 12.
20.* 10.
21.3 9.
17.9 3.
25. 1 3.
CALCULATED GRAM/HR
MODE
i
2
3
*
5
b
7
P
q
10
11
12
13
1*
15
Ib
17
18
11
?0
21
22
23
CYCLE




ALDE
.3
.*
.*
.5
1.3
1.*
1.8
1.8
5.8
*.*
.*
1.0
11.?
11.*
*.o
3.0
2.1
1.2
1.0
.7
.h
.3
1.7
HC
lfa.2
3*. 5
*0.b
51.*
53.1
58.8
17.7
27.9
*9.5
23b.7
lb.8
715.2
330.8
lOb.5
52.5
31.8
30.1
71.8
b2.2
*2.2
35.1
10.3
**7.5
COMPOSITE








CO
**
*9*
510
*S2
211
8b
108
1*7
189
1137*
31
111
121b2
2793
58*
*0b
217
173
172
209
28*
*0
113
HC
CO
N02
ALDE
BSFC
0 1810
7 2faO*
0 2717
9 3130
b 3*5?
9 *50*
* b985
2 73*8
5 8380
3 105fa9
0 1805
0 1823
0 19958
0 Ib330
8 1**2*
0 13132
7 9*12
* b509
5 Sb70
* 4b9«5
1 *128
7 IbSb
8 1737
ALDE.























WT. WT.
N02 FAC.
3.0 .
b.* .
9.0 .
29.0 .
bb.* .
212.8 .
323.8 0.
*11.* .
5*9.8 0.
19.* 0.
3.3 .
.8 .
32b.b .
75*. b .
87*. 7 .
79*. 2 .
bSCI.b ,
371.8 0.
228.7 .
88. h 0.
*1.0 0.
2.7 .
.7 .
9.*95
*0.711
13.358
.130
.750
070 0
ObO
ObO
050
030
ObO
000 0
0*0 1
ooo n
000 0
070 0
120 0
025 J
055 3
035 2
ObO 3
ObO 2
000 0
ObS
000 0
000 0
080 n
ObO 0
GRAM/8HP
GRAM/BHP
GRAM/BHP
GRAM/BHP
LB/BHP
HP
.0
.0
.1
.3
.2
.9
.0
.0
.0
.0
.0
.0
.8
.b
.0
.2
.1
.0
.8
.0
.0
.0
.0
HR
HR
HR
HR
HR
11
11
10
11
25
19
Ib
15
*3
35
11
30
**
57
18
15
13
11
11
10
10
9
55
BRAKE
ALDE.
R
,7
.2
.1
.2
.1
.1
.1
.2
.1
R
R
.2
.2
.1
.1
.1
.1
.1
.1
.*
R
R





DRY CONCENTRATION
HC
111*
20*2 1
2330 1
2505 1
22*3
1801
331
*99
792
*0*9 9
1109
*5b88
2791 S
979 1
508
332
*20
1507
153*
12b*
1222
793
31195
CO
.150
.*50
,*SO
.090
,**0
.130
.100
.130
.150
.b30
.100
.350
.080
.270
.280
.210
.150
.180
.210
.310
,*90
.150
.390
C02
12.22
13.77
13.91
13.91
13.91
13. *8
12.9*
12.9*
13.18
8.0*
11.72
b.73
11. *8
13. b3
13. b3
13. *8
12.9*
13.33
13. b3
13. b3
13.77
12. *7
8.bO
NO
b3
115
155
*25
8*5
19b2
1825
2212
2bSO
100
bb
15
830
2087
2550
2500
2bSO
2350
1700
800
*30
b3
1*
SPECIFIC GRAM/BHP-HR
HC
R
55.88
lb.*5
9.2b
b;89
3.82
.7b
I. 10
1.7*
7.73
R
R
*.fa9
i.b*
.91
.bO
.85
*.07
*,90
?.*8
2*. 88
R
R





CO
R
801.5
20b.8
81.*
27.3
S.b
*.7
5.8
b.7
371.5
R
R
172.5
*3.1
10.1
7.7
fa. 2
9.8
13.5
37.1
201.5
R
R





N02
R
10.*
S.b
5.2
8.b
13.8
i*.0
lb.3
19.*
.b
R
R
*.b
11. b
15.1
15.0
17.9
21.1
18.0
15.7
29.1
R
R



































-------
3-09-72  RUN  2
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENGINE 2-1
                                                STATIONARY DYNAMOMETER
DYNA.
MODE SPEED LOAD
1
?
3
t
5
b
7
8
9
in
11
12
13
1*
15
Ib
1?
18
19
20
21
22
23
700
1200
1200
1200
1200
1200
1200
1200
1200
1200
700
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2300
0
2
10
2*
33
b7
101
110
12*
135
n
n
Ibl
1*8
132
120
80
*0
30
12
3
n
0
.0
.7
.8
.3
.8
.5
.2
.7
.2
.0
.0
.0
.0
.1
.0
.7
.5
.2
,0
.9
.2
.0
.0
HP
0
1
2
b
8
15
23
25
28
31
0
0
71
b5
58
53
35
18
13
b
1
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
17.7 *,0 1810
20.2 5.7 2bO*
19.7 b.O 2717
18.5 fa. 9 3130
17.3 7.b 3*52
12.7 9.9 *50*
5.0 15.* b985
3.* lb.2 73*8
2.3 18.5 8380
0.0 23.3 105b9
17.7 *.0 1805
21. b *,0 1823
.9 **.0 19958
2.5 3fa.O Ib330
3.5 31.8 1**2*
*.7 29.0 13132
10.9 20.7 9*12
17.0 1*.* bS09
18.5 12.5 5b70
20.2 10.* *b95
21.0 9.1 'U2S
17.8 3.7 IbSb
25.0 3.8 1737
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
H
q
10
11
12
13
1*
15
Ib
17
1R
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
n.o
0.0
n.n
n.o
n.o
0.0
n.o
n.o
n.o
n.o
0.0
n.o
0.0
n.o
o.n
n.n
0.0
n.o
n.n
n.o
0.0
HC
15.
35.
*3.
5*.
58.
h5.
33.
29.
tfa.
229.
9.
bfa3.
3*2.
132.
bB.
32.
29.
fa*.
53.
38.
32.
12.
*25.
*
8
0
*
1
8
0
b
3
0
2
if
8
3
9
9
2
*
9
*
9
9
b
COMPOSITE












CO
*2
*32
*bb
*25
195
95
155
205
181
1153b
*1
119
13fe*0
3*52
987
522
255
232
?OP
1*1
2b7
39
82
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
3.5 .070 O.n
b.3 .ObO .0
10. n .obo .1
28.3 .050 .3
b5.8 .030 .2
197.2 .OfaO .9
287.9 0.000 0.0
3b8.8 .0*0 1.0
397.5 0.000 0.0
17.3 0.000 0.0
3.0 .070 n.n
.8 .120 0,0
23b.b .025 1.8
7*0.* .055 3.b
877.1 .035 2.0
812.1 .ObO 3.2
b99.5 .OfaO 2.1
*12.1 0.000 0.0
2*2.7 ,0b5 .9
90.7 0.000 0.0
**.9 0.000 n.O
3.5 .080 0.0
.R .ObO 0.0
9,159 GRAM/BHP HR
*b.39b GRAM/BHP HR
13.372 GRAM/BHP HR
0.000 GRAM/BHP HR
.7*8 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
1121
217*
2*93
2718
2522
210*
b*7
552
773
*127
b85
*38bb
293*
1231
b91
3Sfa
*lb
1*01
13**
1152
1118
1007
29299
CONCENTRATION


1.
1.
1.
^
t
.
w

10!
.
,
5.
1.
.
.
.
.
,
.
.
.
•
SPECIFIC


57.
17.
9.
7.
*.
1.
1.
1.
7.


*.
2.
1.
.
.
3.
*.
b.
23.







HC
R
98
*1
80
5*
2b
*3
17
b3
*3
R
R
8b
0*
19
b2
83
bB
10
80
30
R
R





CO
150
300
3*0
050
*20
150
150
190
150
290
150
390
780
590
*90
280
180
250
250
210
*50
150
280
C02
12.9*
1*.31
1*.18
1*,31
1*,31
1*.05
13. *8
13. *8
13.77
8.3*
13.18
7.28
11.01
13. *8
13.91
13.91
13.18
13.77
13.77
13.77
13. *8
12.71
8.75
NO
77
lib
175
*25
8bO
1900
1700
2075
2000
9*
b8
Ib
blO
2075
2b50
2b50
3000
2700
1825
820
*faO
83
17
RRAM/BHP-HR
CO
R
700.2
189. n
7b.S
25.3
b.l
b.7
8.1
b.*
37*. 0
R
R
193.5
53.2
17.1
9.9
7.2
13.2
15.*
25.0
189.5
R
R





N02
R
10.3
* , 1
5.1
8.5
12. R
12.*
l*.b
1*.0
.b
R
R
3.*
11.*
15.2
15.*
19.8
23.*
18.5
lb.1
31.8
R
R



































-------
3-10-72 RUN 1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
            ENGINE 2-1           STATIONARY DYNAMOMETER

MODE
1
2
3
4
5
b
7
8
9
10
11
1?
13
1*
15
Ib
17
IB
19
so
31
22
93

DYNA,
SPEED LOAD
700
1200
1200
1200
1200
1200
1200
1200
1200
1200
700
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2300
0.0
2.7
10.8
24.3
33.8
b7.S
101.2
110.7
121.2
135.0
o.n
0.0
lbl.0
148.1
132.0
120.7
80.5
40.2
29.0
12.9
3.2
0.0
0.0
1
HP
0
1
2
b
8
15
23
25
28
31
0
0
71
b5
58
53
35
18
13
b
1
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
17. b 4.0 1810
20.1 5.7 2b04
19.7 b.O 3717
18.5 b.9 3130
17.3 7.b 3452
12. b 9.9 4504
4.8 15.4 b985
3.2 lb.2 7348
2.2 18.5 8380
0.0 23.3 105b9
17. b 4.0 1805
21.4 4.0 1823
.9 44.0 19958
2.2 3b.O Ib330
3.4 31.8 14424
4.4 29.0 1-1132
10. b 20.7 9412
17.0 14.4 t,509
18.4 12.5 !ib?0
20.2 10.4 
-------
3-13-72  RUN 1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
            ENGINE 2-1
                                                STATIONARY DYNAMOMETER

MODE
1
2
3
if
5
b
7
8
s
10
11
12
13
If
15
Ib
17
IB
11
20
21
22
29

DYNA.
SPEED LOAD
700
1200
1200
1200
1300
1200
1200
1200
1200
1200
700
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
700
2300
0.0
2.7
10.8
2».3
33.8
b7.S
101. 2
110.7
12*. 2
135.0
0.0
0.0
lbl.0
1*8.1
132.0
120.7
80.5
fO. 2
21.0
12.1
3.2
0.0
0.0

HP
0
1
2
fa
a
15
23
25
28
31
n
0
71
bS
58
53
35
18
13
b
1
0
0
MAN. FUEI RATE

VAC. LB/HR GM/HR ALDE,
17.8 f.O 1810
20.0 5.7 2bQf
11. f b.O 2717
18.3 b.1 3130
17.3 ?.b 3f52
12.5 1.1 fSQf
f.8 IS.f b185
3.1 lb.2 73fR
1.1 18.5 8380
0.0 23.3 105b9
17.1 f.O 1805
21. b f.O 1823
.1 ff.O 11158
2.1 3b,0 Ib330
3.2 31.8 Iff2f
f.2 21.0 13132
10.2 20.7 IflB
lb.1 If.f b5Q1
18.3 12.5 5b70
20.2 10. f fb15
21.2 1.1 f!28
17.8 3.7 IbSb
2f.1 3.8 173?
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
if
5
b
7
R
q
10
11
12
13
If
15
Ib
17
18
I1!
20
21
22
23
ALDE
0.0
n.o
0.0
0.0
0,0
0.0
n.O
0.0
0,0
0.0
n.o
n.o
0.0
o.o
0.0
n.o
n.o
0.0
0.0
0.0
o.o
0.0
0.0
HC
10.2
ff .5
fl.3
fe2.7
b8.2
7*. 2
30.1
27.3
M-f .f
211.7
8.3
bb7.8
3b0.2
lbb.1-
70.1
3f.1
23.7
70. 1
bO.7
fO.f
3f.8
10.8
f35.1
CYCLE COMPOSITE












CO
20
535
5f5
481
223
feS
7f
78
127
1071b
20
115
1275f
f3S?
1f8
317
213
Ib8
170
205
270
2b
112
HC
CO
NO?
ALDE
BSFC
N02 FAC, HP
2.3 .070 0.0
5.7 .ObO .0
8.3 .ObO .1
21.1 .050 .3
51. b .030 .2
lbl.7 .OhO .1
2bS.8 0.000 0.0
311.8 .OfO 1.0
f53.3 0.000 0.0
21.0 0.000 0.0
2.1 .070 0.0
.7 .120 0,0
21f.O .025 1.8
Stl.S .055 3.b
blb.O .035 2.0
b37.b .ObO 3.2
fb7.7 .ObO ?.l
321.8 0.000 0.0
181. f .ObS .8
71.7 0.000 0.0
fb,3 0.000 0.0
2.7 .080 0.0
.7 .ObO 0.0
l.flfa GRAM/8HP HR
f7.bSO GRAM/BHP HR
10.2fO GRAM/BHP HR
0.000 GRAM/BHP HR
.750 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
DRY
HC
731
2b72
2831
3050
2101
232f
573
f If
707
3b33
513
CONCENTRATION


1
1
1





1

o foils
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
D.O
I
I





3018
1588
702
373
337
1535
1513
1233
122f
851
305fl
5
2









CO
.070
.510
.550
.IbO
,f70
.100
.070
.070
.100
.170
.070
.350
.210
,050
,f70
.210
.150
.180
.210
.310
.f70
.100
.310
























C02
le.if
13.77
13.77
13,77
13.11
13.77
13.18
13.18
13.18
8,bO
12.71
b.73
11.13
13.33
13.11
13.77
13.18
13.77
13.77
13.11
13.11
12.82
8.75
NO
50
lOf
Iff
310
bbO
IbOO
1525
1700
2175
101
b3
13
5fO
1575
2100
2050
2000
2100
13b2
bbO
flO
b3
Ib
SPECIFIC RRAM/BHP-HR


72.
11.
11.
8.
f .
1.
1.
1.
b.


5.
2.
1.
*
*
f.
f.
7.
2f.







HC
ft
18
18
21
85
81
30
08
5b
8b
R
R
11
57
21
bb
b7
02
78
Ib
70
R
R







8b7
220
8b
21
f
3
3
f
350


180
b7
Ib
7
b
CO
R
.f
.1
.7
.0
.2
.2
.1
.5
.0
R
R
.1
.1
.f
.5
.1
1.5
13
3b
111







.f
.3
.b
R
R





N02
R
1.3
3-f
3.8
b.7
11.0
11.5
12.3
lb.0
.7
R
R
3.0
8.5
12.0
12.1
13.3
18.3
If. 3
12.7
32.8
R
R



































-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
3-13-72 RUN 2              ENGINE 2-1           STATIONARY DYNAMOMETER
DYNA.
MODE
i
2
3
4
5
b
7
8
q
10
11
1?.
13
14
15
Ib
17
18
19
20
21
22
23
SPEED LOAD
700
1200
1200
1200
1200
1200
1200
1200
1200
1200
700
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
7nn
2300
0
2
10
24
33
b7
101
110
124
135
0
0
Ibl
148
132
120
80
40
29
12
3
n
0
.0
.7
.8
.3
.8
.5
.2
.7
.2
.0
.0
.0
.0
.1
.0
.7
.5
.2
.0
.9
.2
.0
.0
HP
0
1
2
b
8
15
23
25
28
31
0
0
71
bS
58
53
35
18
13
b
1
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
17.3 4.0 1810
19.8 5.7 2b04
19.3 fa.O 2717
18.2 fa. 9 3130
17.2 ?.b 3452
12.3 9.9 4504
4.7 15.4 fa985
3.1 lfa.2 7348
2.0 18.5 8380
0.0 23.3 105fa9
17.7 4.0 1805
21.7 4.0 1823
.9 44.0 19958
2.2 3fa.O Ib330
3.3 31.8 14424
4.3 29.0 13132
10.2 20.7 9412
lb.7 14.4 b509
18.2 12.5 Sfa70
20.1 10.4 4b95
21.1 9.1 4128
17.7 3.7 IbSb
24.9 3.8 1737
CALCULATED RRAM/HR WT. WT.
MODE
1
2
3
if
5
b
7
8
q
in
11
12
13
14
15
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
n.o
n.o
0.0
n.o
0.0
0.0
0.0
n.o
n.o
n.n
n.o
n.o
0.0
n.n
0.0
n.n
0.0
0.0
o.n
n.n
0.0
n.o
HC
11.
31.
*5.
59.
bS.
70.
30.
30.
53.
248.
11.
700.
3R8.
187.
89.
*2.
21.
82.
b3.
»s.
37.
11.
431.
4
7
8
4
7
2
3
3
4
8
2
4
5
9
7
2
8
7
1
3
b
7
7
COMPOSITE












CO
14
439
492
473
20b
45
105
109
8b
112b4
14
85
13551
4b99
1254
bb9
30b
270
233
284
307
2b
75
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.4 .070 0.0
S.9 .ObO .0
8.1 .ObO .1
20.8 .050 .3
50.8 .030 .2
Ibl. 9 .ObO .9
245.0 0.000 0.0
308. b .040 1.0
423.8 0.000 0.0
17.3 0.000 0.0
2.9 .070 0.0
.8 .120 0.0
230.3 .025 1,8
577.4 .055 3.b
?2b.2 ' .035 2.0
b91.3 .ObO 3.2
514.4 .ObO 2.1
348.7 0.000 n.O
205.2 .Ob5 .8
80.0 0.000 0.0
37.8 0.000 0.0
2.b .080 0.0
.7 .ObO 0.0
9.883 GRAM/BHP HR
51.324 GRAM/BHP HR
10.858 GRAM/BHP HR
0.000 GRAM/BHP HR
.750 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
817
2375
2b52
2943
2838
2213
585
5b3
879
4421
832
4b523
3220
1729
882
44b
303
1732
1531
1354
1288
893
290bt>
CONCENTRATION


1
1
1





9


5
2









CO
.050
.300
.410
.IbO
.440
.070
.100
.100
.070
.910
.050
.280
.5bO
.140
.blO
.350
.210
.280
.280
.420
.520
.100
.250
C02
12.82
14.05
14.05
14.05
14.18
13.91
13.33
13.48
13.fa3
8.43
13.33
7.18
10. fab
12.71
13.48
13.48
12.82
13.18
13.33
13.48
13.48
12.47
8.54
NO
51
lOb
141
310
bbO
153?
1425
1725
2100
93
bS
17
575
IbOO
2150
2200
2150
2200
1500
720
390
bO
15
SPECIFIC KRAM/BHP-HR


b4.
18.
10.
8.
4.
1.
1.
1.
8.


5.
2.
1.
.
.
4.
4.
8.
2b.







HC
R
31
57
70
52
55
31
20
88
07
R
R
51
90
55
80
b2
b9
97
03
b8
R
R





CO
R
711.0
199.4
85.2
2fa.7
2.9
4.5
*.3
3.0
3b5.2
R
R
192.2
72.4
21.7
12.7
8.7
15.3
18.4
50.3
217. fa
R
R





N02
R
9.b
3.3
3.7
b.b
10.5
10. b
12.2
14.9
.b
R
R
3.3
8.9
12. b
13.1
14. b
19.8
lfa.2
14.2
2b.R
R
R



































-------
            APPENDIX B
EMISSION RESULTS FROM ENGINE 1-1
          TABULAR FORM

-------
            ENGINE 1-1
NINE MODE FTP EMISSION RESULTS
      CONCENTRATION BASIS

-------
        3-21-72
                               1-1
                                            RUN 1
                                                                               K  =  .141
                                                                                            HUM  =   bO   GK/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE 4
FEDERAL
MODE
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 H'HG
fa Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
fa Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ifa'HG
7 3'HG
8 Ib'HG
1 C.T.
CUNCtNlHAl IUN AS
HC CO C02
Ifa7
S8
31
bl
3b
24
47
40
24U2
Ib7
40
31
35
42
32
31
28
233? 1

41
37
33
42
38
31
27
23U2

47
3b
3b
45
31
40
30
2352
i r* u r- i C
.114
.131
.13b
.14b
.147
.143
.808
.Ib5
.8bfa
C QMI
.114
.144
.13b
.147
.Ibl
.145
,fa78
.158
.Din
f n MI
V U HI
.218
.147
.141
.148
.18fa
.154
.751
.Ib3
.HI
r DM£
Uunr
.218
.151
.142
.148
.113
.141
.b83
.Ibb
14.320
13.170
12.b80
13. 2 fad
13.440
1 3 . i d 0
13.330
13.210
7.480
14.320
13.110
i2.kiSn
13.14(J
14.210
13.350
13.300
13.230
8.010
14.140
13.10U
I2.fa8n
13.240
14.210
13.220
13.300
13.2bO
7.580
14.140
13.070
12.b20
13.100
14.170
13.U70
13.15(1
13.110
.128 7.120
^•M»JOnCTTIr>_
AVERAGE SUM 	 (COMPOSITE VALUES
AVERAGE SUM r riiwnotTC UAinirc
FOUR CYCLE


COMPOSITE


Ol fu V W|_ VC.V7
- REPORTED




MEASURED OILUIION A
NO (-ACTOR HC
78
200b
B2b4
17 J Q
1715
2238
2055
1730
71
78
1787
2384
I8fab
1228
1138
1314
11«S
18
8b
1741
2501
2025
1327
2114
1554
2015
71
8fa
1715
2450
117b
12b3
208b
ISlb
2118
14
FOR CYCLES
PHP /*Vf*i F^
run A*TLU.C.O
VALUES -


.1b7
1.01U
1.134
l.OBf!
1 , 0 7 0
1.081
1.052
i.nai
1.380
.1b7
l.Olb
1.13b
1.014
1.011
1.078
l.ObO
1.087
1.314
.173
l.Olb
1.134
1 . 0 8 b
1.011
1.087
1.057
1.084
1.378
.173
1.011
1.131
1.017
1.013
1.100
1.071
l.Olb
1.327
1 AND
3 AND
HC
CO
NO
Ibl
b3
44
bb
31
2b
41
43
3315
Ibl
44
44
38
42
34
41
30
30bS
140
54
42
3b
42
41
41
21
3172
140
52
41
40
4b
43
43
33
3122


0.35*C
0.35*(
0.35*C
D J U S 1 E D WEIGHTING WEI
CO NU FACTOR HC
.Ifal
.ise
.154
. 158
.157
.I5b
.850
.178
l.HS
Ibl
!lS8
.155
.Ibl
.171
.ISfa
.711
.172
1.327
1.185
.Ibl
.IbO
.Ifal
.188
.Ib7
.802
.177
1.255
1.185
.Ibb
.Ib2
.Ib2
.US
.Ib4
.732
.182
1.232


114.303)
.388)
2011.031)
75
2187
25b7
1851
1121
t!437
21b2
1870
18
75
1151
2701
2042
1242
2088
1477
21b1
121
84
1101
2844
2111
1341
2218
Ib42
2185
101
84
1172
2711
21b8
1271
2214
Ib24
2322
125


+ D.b5*C
* D.bS*C
+ O.b5*(
.03b
,fi81
.257
.081
.047
.081
.283
.081
.021
.03b
.081
.257
.081
.047
.081
.283
.081
.021
.03b
.081
.257
.081
.047
.081
.283
.081
.021
.03b
.081
.257
.081
.047
.081
.283
.081
.021


110.
•
2025.
5.813
S.b27
11.3b3
5.875
1.810
2.32b
13.111
3.848
bl.bil
5.813
3.103
11.310
3.401
l.llfa
3. Obi
11. b18
2.701
b4.358
5.043
4.781
10.780
3.110
1.115
3.fa77
Il.bb3
2. bOfa
bb.b21
5.043
4. Sib
10.531
3. Sib
2.142
3.817
12.127
2.127
bS.SfaO


311) = 111.
31b) =
317) = 2020.
G n 1 E D
CD NO
.035 2.715
.013 114. bll
.040 bS1.b34
.014 Ib4.b17
.007 10.2b4
.014 21b.Sb1
.241 fell. 740
.Olb lbfa.414
.025 2.058
t 0 b 210^ OD£
.035 2.715
.014 174.373
.040 b1b.23U
.014 181.724
.008 58.3fal
.014 185.850
.203 418.115
.015 113. OOb
.028 2.705
'471 1 Q 1 ? fl 7 7
• •? r i. l"i,J«Urr
.043 3.012
.014 Ifal.Sbl
.041 730.117
.014 115.755
.001 b3.Q28
.015 204.537
.227 4fa4.721
.Olb 114.482
.02b 2.28fa
IL ri C PnPO LQL.
• ~U3 CUCB«b"O
.043 3.012
.015 175.538
.042 717.204
.014 112, lib
.001 bO. 128
.015 204.145
.207 451. b2b
.Olb 20b.bb1
,02b 2.b20
a o u pnPl Q3Q
• -•CD CUCJ.**1JO
.388 2011.031
a Q L a n.3 c 71 1 7
• 3 1 B C U-C 3 • 3 4. /
70S PPM
313 PERCENT
320 PPM
                                                                                 CORRECTED NO s
        DILUTION FACTtIR

-------
         3-51-7E
                                                                               K =  .121
                                                                                           HUM  =   57  GH/LB
CYCLE 1
CYCLE g
CYCLE 3
CYCLE
FEDERAL
MUOE
1 IDLE
2 Ib'HG
3 iO'HG
t Ib'HG
5 il'HG
b Ib'HG
7 3'HS
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
t Ib'HG
5 il'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
t Ib'HG
S il'HG
b Ib'HG
7 3'HG
8 ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 iO'HG
t Ib'HG
S il'HG
b Ib'HG
7 3'HG
8 Ifa'HG
1 C.T.
A M F D A P (T Qllt.
CUMCtNTHATIUN AS
-(C CO COS
lit
tB
3?
31
3b
37
38
21
2071

S3
38
38
38
3b
31
31
2113
Ibl
52
3b
32
15
35
32
35
2121
ibl
18
to
31
tt
37
to
32
2211

.R5b 15.210
.Ibl Id. 170
. 1 S ii 1 3 . i '" 0
.Ibh 11.150
.171 IS.Obn
.ibb it. arm
.B80 11.32L1
.171 It. 210
.780 8.130
.85b IS.Pin
.ibi itliao
.115 13.720
.Ibl 11.350
.180 is.ann
.151 11.320
.122 it.no
.Ifal 11.380
.87b 8. 110
COMPOSITE)
.808 15.550
.155 11.5BD
.117 13.83U
,lb5 11.340
.111 15.310
.Ibb 11.330
.8b« 11.170
.170 If.btO
.817 8.300
POMPflSTTF I™.
l,UrlrUOl ItJ
.808 15.550
.IbS 11.210
.lib 13.73d
.IfaS 11.250
.187 15.110
.Jfab 11.27(1
,81fa 11.410
.171 11.310
.Bb8 S.bll)
rnMWfiQT7P t«
LUrlrUoi Itj"
OTTC U A t iiCC
AV LK AbC, 3 UN) 	 \.uur>ruo.Lit. v nuut.o
AVERAGE SUM — i"~CCO^POSITE V Al_U£ S
FOUR CYCLE COMPOSITE - REPORTED






MEASURED OJLUUUN A D
NO F'ACIOR HC
80
I1b3
£ b 0 !f
8288
1111
<2ei5b
Ib31
2117
lib
80
20?1
281*
22fa7
1375
2tlt
18bO
2Slt
102
77
?131
2115
23tb
1118
2315
1830
2b71
81
77
1120
2810
222t
1371
22tb
1783
2337
111
P no P V P 1 F*J
run UTLL.CO
C (~\O PVPI F ^
r UK L T LLCO
VALUES -


"15
1.028
1.071
l.Olh
. 15b
» . 0 1 2
.180
l.OOb
1.318
.115
1.013
1.018
1.002
.Ufa
1.001
,173
i.OQO
1.211
811
UOOb
i .CfO
1.003
.138
1.003
.171
.182
1.31b
.811
i.noi
1 . 0 1 7
1.001
.lib
1.007
.17b
i.nos
1.2b7

3A Nfi
ft INU
HC
CO
NO
lot
11
tn
35
31
37
37
21
2712
lot
51
to
38
3b
3b
33
31
2781
its
52
3'f
32
12
35
31
3t
2715
115
18
12
31
12
3?
31
32
2812


0.35*(
0.35*C
JUST
CO
7«1
.Ibb
.lol
.Ibl
.Ifa3
.IbS
.8b2
.175
.1.051
.781
.Ib3
.152
.Ibl
.170
.IbO
.817
.Ifal
1.13B
.?2b
.15b
.153
.IbS
.182
.Ib7
.813
.Ib7
1.115
.72b
.Ib7
.153
.170
.177
.Ib7
.71b
.171
1.100


18.02b)
.107)
0.35*( 210b.bSS)
t D *EiGHIING
NO FACTUK
73
2018
271b
2311
1318
2281
IbOfa
2tb3
2fat
73
2017
2150
227i
1300
2121
1801
2Slt
132
bl
2152
3032
2353
1358
2353
177b
2b23
107
bl
1138
2113
2215
1217
22b3
1710
£313
lit


+ 0.bS*(
+ O.b5*(
+ 0.bS*(
.03b
.081
.ci?
.081
.047
.081
.283
.081
.021
,03b
.081
.257
.081
.017
.081
.283
.081
.021
.03fa
.081
." 1
.081
.01?
.081
.283
.081
.021
.03fa
.081
.257
.081
.017
.081
.283
.081
.021


ll.bSS)
.388)
2115.710)
COKRECTED NO
V^ E
HC
3.757
1a3S2
10.210
3.075
l.bl?
3.331
10.535
2.517
58.b2b
IB . i13
3.757
t.777
10.23b
3.381
l.bBI
3.218
1,351
3.02b
58.151
17,101
5.211
l.bSb
1.fa82
2.85b
i.ist
3.12b
8.710
3.0bO
58.703
18.008
5.211
t»312
10.7fa5
2.781
1.15b
3.317
11.015
2.8Sb
SI.Dbl
101.308
Q 8 n 3 u
TO . UCb
11 . fa58
= 11
I G H T
CU
.028
.015
.011
.015
.008
.015
.211
.Olb
.022
.028
.015
.031
.Olt
.008
.Olt
.251
.015
.021
.02b
.Olt
.031
.015
.001
.015
.238
.015
.023
.02b
.015
.031
.015
.008
.015
.225
.015
.023


t 0
NO
2.b3b
171. b33
718. S3b
20b.37fa
fa3.370
203. 2bb
»Sf .t03
211. Ibl
5.518
3 n Q 3 Q3 "3
C U DC * *1 3 t
2.b3b
182.151
758.010
202. IbO
bl.122
215. 7b3
Sli.lSt
223.727
2.782
a. tig
Hl.Sli
771.117
aoi.tit
b3.818
201. fib
502. b8b
233. t87
z. ass
sut. an
a. tig
i7a.tif
756.270
111.7b2
bO.Itt
201. 3S1
112.325
208. 5b7
3.034
2017. 2b1
9 1 11 L> U C C
ci.Uta.bdb
.388 exva.r'Tu
.087 PPM
= .315 PERCENT
a 2132
= 1171
.ObO PPM
.711 PPM
        DILUTION FACTO* = lt.5/(C02+0.5*C(H10.B*hCJ

-------
        3-21-72
                        ENGINE 1-1
                                            HUN 3
                                                                              K  =  .181
                                                                                           HUM  =   70   GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.

1 IDLE
a Ib'HG
3 10'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ifa'HG
9 C.T.
CUNCEN1KAI1UN AS
HC TO CO,?
13?
38
*b
*1
35
37
26
23
.92(1 13.8*0
.1*9 12.S9Q
.1*1 12.191
.150 12.7.U
.IbO 13.3bO
.1*9 12.b7|)
.915 12.b7o
.Ibb 12.b8o
2100 .772 7.510
133 .9?u 13.8*0
5*
37
39
35
3b
*3
31
.1*8 12.590
.1*0 12.150
.152 12.590
.IbO 13.370
.1*9 12.blO
1.118 12.b9o
.Ib7 12.bBO
2*b9 .198 7.*80
102 1.081 13.5hO
28
39
21
19
38
*3
17
22b8

.150 ia.510
.1*3 la.obo
.150 12.500
.15* 13.3*0
.1*9 12.*90
1.112 la.bao
.Ib3 12.580
.8b5 7.b30
i P r n M u n c T i ir t
102 1.081 13.5faO
3*
23
20
22
23
3fa
23
.150 12.520
.1*3 11.920
.1*9 12.570
.Ih9 13.320
.152 12.5*0
1.200 ia.e*n
.Ib8 12.580
21*7 .821 7.**0
AVERAGE SUM 	 (COMPOSITE VALUES
A V F B A P C" QIIM 	 f f- f\ ll/DClOTTC' WAI IICQ
A VtK Abt OUT
FOUR CYCLE


l~ — ~ll»W'rut?AIU »«j_wt.w
COMPOSITE - REPUR'iei)




MEASUkED UIiUIIUN A
NO FACTOR HC
81
2030
311*
2bQ2
Ih33
2h?b
IbSl
2800
279
81
2352
3231
2532
1713
2bbl
Ib98
2805
l*b
115
2375
3273
aseo
lb*B
2b23
1713
2937
15*

115
2*8b
31b5
2797
lb*7
3(lb9
1775
2921
1*9
FOR CYCLES
Fnp rvriF^
run i* T i» u ^o
VALUES -


1.00*
1.1*1
1.178
1.130
1.07b
J .13*
1.102
1.13*
J .*27
1.00*
1.1*0
1.183
1.1*1
1.075
1.1*0
1.091
1.138
1.*1S
1.020
1.1*9
1.191
1.151
1.079
1.1SQ
1.097
1.1**
1.379

1.020
1.1*8
1.207
1.1*5
1.080
1.1*7
1.092
1.1*3
l.*2b
1 AND
3 A ND
HC
CO
NO
13*
*3
5*
*b
38
*2
28
2b
299b
13*
b2
**
**
38
*1
*7
35
3*9*
10*
32
*b
2*
21
**
*7
19
3128

10*
39
28
23
2*
2b
39
2b
30bl


0.3S*(
0.35*(
0.3S*(
0 J U S 1 E i) WEIGHTING ft E
cu ivo FACTOR HC
.92*
.170
.Ibb
.170
.172
.Ifa9
1.009
.188
1.101
.92*
.Ib9
.Ibb
.173
.172
.170
1.219
.190
.28n
1.103
.172
.170
.173
.Ibb
.171
1.219
.I8b
1.193

1.103
.172
.173
.171
.182
.17*
1.310
.192
1.171


112.978)
.*7b)
2b08.**0)
81
2317
3bb8
29*1
1757
2978
1820
3175
398
81
2b81
3821
2889
18*2
3033
1852
3193
207
117
2730
3898
2970
1778
3017
1879
3359
212

117
285*
3819
3202
1778
3520
1938
3338
212


+ 0.bS*(
+ 0.bS*(
+ 0.bS*(
.03b
.089
.257
.089
.0*7
.089
.283
.089
.021
.03b
.089
.257
.089
.0*7
.089
.283
.089
.021
,03b
.089
.257
.089
.0*7
.089
.283
.089
.031

.03b
.089
.as?
.089
.n*7
.089
.283
.089
.021


101

273b
*.
3.
13.
*.
1.
3.
7.
2.
b2.
*.
5.
11.
3.
1.
3.
13.
3.
73.
3.
2.
11.
2.

3.
13.
1.
fas.

3.
3.
7.
2.
1.
2.
11.
a.
b*.


.9b7) =
.538) =
.075) =
807
8b(]
925
12*
770
735
799
321
913
807
*78
a*b
9faO
7b8
b51
a?a
1*1
379
-j n -3
/U J
7*7
8b*
938
151
9fa*
890
3*5
730
b97

327
7*7
*7*
133
038
117
3*8
ias
339
288
b 07
978
9b7
105

Bb91
I 6 H 1 E D
CO NO
.033 2.927
.015 eob.187
.0*3 9*2. bbl
.015 2bl.73fa
.008 82.572
.015 2bS.O?b
.285 515.02*
.01? 282. SbS
.023 8.358
Bf&b 25b?«10b
.033 a. 937
.015 238.577
.0*3 982.085
.015 257.123
.008 8b.5S3
.015 2fa9.898
.3*5 52*. 070
.017 28*. 200
,00b *.339
. *97 2b*9. 773
.0*0 *.22*
.015 a*a.95S
.0** 1001.907
.015 3b*,29*
.008 83.580
.015 2b8.531
.3*5 531. b!9
.01? 398.915
.025 *.*bl

.52* c?00.*8b
.0*0 *.ea*
.015 253.978
.0** 981.538
.015 28*.97b
.009 83.587
.Olb 313.313
.371 5*8.519
.017 297. 07b
.025 *.*b2
. 551 2771 . bb3
.*7fa 2b08.**0
.538 £73b.Q75
.821 PPM
.sib PERCENT
.*02 PPM
                                                                                 CORRECTED  NO =  2fa*0.9bS   PPM
        DILUTION FACTOR = 1*.S/(C02+0.S*CO+10.B*HC}

-------
            ENGINE 1-1
NINE MODE FTP EMISSION RESULTS
      BRAKE SPECIFIC BASIS

-------
        3-ai-?a
                        ENGINE l-l
                                            RUN  1
                                                                             K =  .95
                                                                                          HUM =  bO  GR/LB
CYCLE l
CYCLE 3
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
3 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
3 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
3 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
3 Ib HG
3 in HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
AVERAGE
CONCENTRATION AS MEASURED
HC co coa NO
Ib7
58
39
bl
3fa
3*
*7
*0
3*03
Ib7
*0
39
35
*3
33
39
38
3333 1
1** 1
*9
37
33
*a
38
39
37
3303
t r v(" i F
1** 1
*7
3b
3b
*5
39
*0
30
3353
.99* l*.3a
.139 13.17
.13b 13. b8
.l*b 13. ab
.1*7 13.**
.1*3 13.33
.808 13.33
.Ib5 13.39
.8bb 7.*B
mMDrlQTTF\«
Lliwruol if *
.99* I*. 33
.1** 13.11
.13b 13. b5
.1*7 13.1*
.Ib9 l*.ai
.1*5 13.35
,b78 13.30
.158 13.33
.OJO 8.PJ
rnMDHQ T TP \
LUHrUOl 1 C j "
.318 l*.l*
.1*7 13.10
.1*1 13.b8
.1*8 13. a*
,18b 1*.31
.15* 13.33
.759 13.30
,lb3 13. 3b
.911 7.58
/"nMDrtCTTP^.
HJMrUallEJ"
.318 l».l*
.151 13.07
.1*3 ia.b3
.1*8 13.10
.193 1*.17
.1*9 13. H7
.b83 13.15
.Ibb 13.11
.938 7.93
r* nun no T TCT \ _
SUM— (COMPOSITE VALUES
AVERAGE ou^~~" vuu^ruai t c. v«i_uco
FOUR CYCLE COMPOSITE - REPORTED









78
aont,
33h*
1710
1795
2338
3055
1730
71
78
1787
338*
18bb
1338
1938
139*
1995
98
Bb
17*1
3509
aaas
1337
311*
155*
3015
79
Bb
1795
?*5n
197b
13b3
t?08b
151fa
3118
9*
FOB CYC
TOTAL FUEL
CARBON CONS.
15. *9* Ib3*
13.373 7150
13.85R 10*51
13.*?a 7150
13.b3b 5509
13.3R9 7150
1*.189 1*303
13.*98 7150
10.9*0 1*01
15. *9* Ib3*
13.397 7150
13.838 10*51
13.335 7150
1*.*3* 5509
13.530 7150
1*.030 1*303
13.*18 7150
11.539 1*01
15.51* Ib3*
13.300 7150
13.8bl 10*51
13. *3* 7150
1*.*H 5509
13.*15 7150
1*.101 1*303
13.*53 7150
10.977 1*01
15.51* Ib3*
13.373 7150
13.801 10*51
13.387 7150
l*.*ia 5509
13.abl 7150
13.87b 1*303
13.308 7150
11.388 1*01


VALUES - HC 0.35( 3.3)



CO 0.35( 17)
N03 0.3S( 13.3)

ADJUSTED (MASS)
HC CO NOa
19
33
3*
35
Ib
1*
51
33
333
19
33
3*
30
17
18
*3
Ib
30H
Ib
38
3a
19
17
33
*3
Ib
317
Ib
37
33
31
19
33
*5
17
313


+ 0
+ 0
+ 0

ai3
150
333
157
13P
IS*
lb*5
177
33*
313
15b
33*
159
130
155
1397
170
3*8
359
IbO
331
159
1*3
Ibb
15SS
175
335
359
Ib*
33*
Ibl
1*9
Ib3
1*33
18n
331


.bS( 3
IbS(
.bS( 13
CORRECTED
3
35b
bll
301
3*1
397
b88
30*
3
3
319
b*5
333
15b
3*0
*?a
353
*
3
311
b77
358
Ib8
37*
533
35b
3
3
331
bb*
353
IbO
373
519
378
*


.a) =
17) a
,*) =
NO? =
WT.
FACT.
.333
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.333
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.333
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.333
.077
.1*7
.077
.057
.077
.113
.077
.1*3


3.337
17.0
13.33B
is. baa
WEIGHTED (MASS)
HC CO N03CK) HP
*.*
3.b
5.0
3.7
.9
1.1
5.8
1.8
*7.5
3C
. 3
U8
5.0
l.b
1.0
1.*
*.9
1.3
*3.7
31
• X
3.8
3.3
*.8
l.S
1.0
1.7
*.8
1.3
*S.*
33
• C
3.8
3.1
*.7
l.b
1.1
1.7
5.0
1.3
»*.7
33
• C
3.3
3.3
(MASS)
(MASS)
(MASS)
(MASS)
*9
ia
33
13
7
ia
IBb
i*
33
| T
1 f
*9
13
33
13
7
ia
158
13
35
1 K
i o
bO
ie
3*
13
8
13
17b
13
3*
1 0
A «
bO
13
3*
13
8
13
Ibl
1*
33
1 7
1 f
17
17



,b 0
37.* 30
89.8 *3
33.3 30
13.7 11
30. b 30
77.7 bb
33.* 30
.* 0
| a a
13.1
.b 0
3*.b 30
9*. 8 *3
35. b 30
8.9 11
3b.a 30
S3.* bb
37.3 30
.b 0
IP 7
1C . t
.7 0
33.9 30
99. S *3
37. b 30
9.b 11
38.8 30
59.1 bb
37.* 30
.5 0
1 7 Ik
1 J . *
.7 0
3*. 7 30
97. b »3
37. 3 30
9.1 11
38.8 30
58. fa bb
39.1 30
.5 0
1 ^ 11
1 3 « t
13.3
13»t




-------
        3-S1-75
                        ENGINE l-l
                                                                                          HUM
                                                                                                 57  GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
MASS CONCENTRATION AS MEASURE"
MODE HC CO C02 NO
1 IDLE 11* .BSb 15,a9
2 Ifa HG *8 .mi 13.97
3 10 HG 37 .ISO 13.39
* Ib HG 3* .Ibf, 1*.15
5 19 HG 9b .171 15.05
b Ib HG 37 .Ibb l*.an
7 3 HG 38 .880 l*.3a
8 Ib HG a9 .17* 1*.29
9 C.T. 8071 .780 8.13
1 IDLE 11* ,85b 15.a9
2 Ib HG 53 .Ibl 1*.18
3 10 HG 38 .1*5 13. 7a
» Ib HG 38 .Ibl 1*.35
5 19 HG 38 .180 15.30
b Ib HG 3b .159 1*,3?
7 3 HG 3* .952 I».T!
8 Ib HG 3* ,lb9 1*.3R
9 C.T. 81*3 ,87b S.*l

1 IDLE Ibl .808 15.55
a ib HG sa ,is5 i*.as
3 10 HG 3b .1*7 13.83
* Ib HG 3a .Ib5 It. 3*
5 19 HG *S .19* 15.31
b Ifa HG 35 .Ibb 1*.33
7 3 HG 33 ,8bS 1*.*7
8 Ib HG 35 .170 l*.b*
9 C.T. BIB* .8*7 8.30

1 IDLE Ibl .808 15.55
2 Ib HG *8 .Ib5 1*.B3
3 10 HG *0 .l*b 13.73
* Ib HG 31 .Ib8 1*,?5
5 19 HG ** .187 15.19
b Ib HG 37 .Ibb I*.a7
7 3 HG *0 .81b !*.*!
B Ib HG 33 .171 I*. 3*
9 C.T. 2219 ,8b8 S.bl
AVERAGE SUM— (COMPOSITE VALUES
AVERAGE SUM--- (COMPOSI TE VALUES
FOUR CYCLE COMPOSITE - REPORTED



80
abo*
aasa
1*11
aasfa
Ib39
a**7
19b
80
P021
asi*
?3b7
1375
e*i*
18bO
asi*
102

77
2139
2915
33*b
1**8
23*5
1830
ab71
81

77
i9ao
asio
aaa*
1371
22f t>
1783
2337
11*
TOTAL
CARBON
ib.2b9
13.580
1*. 353
is.ato
1*. *0b
is.a*i
1*,*95
11.1*7
Ib.ab9
1*.398
13.90b
i*.5sa
is.*ai
1*.51S
15.3b9
iT.SSb
ll.bOO

lb.532
l*.*9l
l*.01b
1*.5*0
15.553
1*. 53*
15.373
1*. f>*8
11 . **1

lb.53B
1*.**7
13.919
1*.*51
15.*2S
1* ."* 7b
15.ab9
l*.5*b
11.875
FOH CYCLES 1 AN
c no r*Vf*i PQ ^ AM
FUEL
CONS.
7150
10*51
7150
5509
7150
1*303
7150
1*01
Ib3*
7150
10*51
7150
5509
7150
1*303
7150
1*01

Ib3*
7150
10*51
7150
5509
7150
1*303
7150
1*01

Ib3*
7150
10*51
7150
5509
7150
1*303
7150
1*01


VALUES - HC 0.35( 2.8)



CO 0.
Noa o.

35( 17)
3S( 13.9)

ADJUSTED (MASS)
HC co NOB
la
31
IB
i*
an
39
15
asi
la
SB
31
ao
15
19
3*
18
280

17
28
29
17
17
19
32
18
8B1

17
2b
32
17
17
20
*0
17
283


+ 0
+ 0
+ 0

17*
Ib*
333
Ib7
125
Ibb
IbbS
173
198
17*
iba
220
IbO
130
158
1733
Ib7
21*

Ibl
15*
221
Ib*
139
IbS
Ib31
IbS
210

Ibl
IbS
221
IfaB
135
Ibb
IS**
170
207


.b5( a
.b5(
,bS( 1*
CORRECTED
3
329
bbS
377
Ib9
37?
511
*01
8
3
333
70?
370
IbS
395
575
*09
*

3
350
722
383
170
383
SbS
*27
3

3
31b
700
3b5
IbS
3b8
55*
381
*


.9) =
Ib) =
.a) =
N02 B
KT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.233
.077
.1*7
.077
,057
.077
< 113
.077
.1*3

.232
.077
.1*7
,077
.057
.077
.113
.077
.1*3

.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


2.883
Ib.b
1*.071
13.152
WEIGHTED tMASS)
HC CO N02CK)
a. 9
a.o
*«5
1.*
.a
1.5
*.*
1.8
2 a
• "
a, 9
a.?
*.s
l.b
.8
1.5
3.9
1.*
*0.0
20
• ff
all
*.3
1.3
1.0
1.*
3«b
1.*
*o . a
?Q
• T
*.o
a.o
*.B
1.3
1.0
1.5
*.b
1.3
TO.*
2n
» H
2.8
2.9
(MASS)
(MASS)
(MASS)
(MASS)
*0
13
3*
13
7
13
189
13
28
i 7
I f
*0
12
32
12
7
12
19b
13
31
I j
X '
37
12
33
13
8
13
18*
13
30
i j
j. '
37
13
33
13
8
13
17*
13
30
1 U
1 D
17
Ib



25.3
17,8
29,1
9.b
28, b
57.7
30.9
1.2
I -a t.
A. a • o
.fa
25.7
103.8
28,5
9,3
30. »
b*,9
31.5
,b
1 |L 3
IT , C
.b
27.0
IDb.l
29.5
1,7
29.5
b3.9
32.9
.5
1 It £
IT . S
.b
2*. 3
103.0
28.1
".3
28.*
ba.7
29. f
.b
1 ? fi
i y % 8
13.9
1*,2



HP
0
20
*3
20
11
20
bb
20
0
0
80
»3
20
11
20
bb
80
0

0
20
*3
80
11
20
bb
20
0

0
80
*3
80
11
20
bb
80
0






-------
        3-21-7?
                        ENGINE 1-1
                                            RUN 3
                                                                                   .18
                                                                                           HUM  s   70   GR/LH
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
2 Ib HG
3 10 HG
* Ih HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ifa HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
AVERAGE
CONCENTRATinw AS MEASURED
HC CO C02 NO
133 .120 13.8*
38 .1*1 12.51
»b .1*1 12.11
*1 .150 12.71
35 .IbO 13. 3b
37 .1*1 12. b7
25 .115 12. b7
23 .Ihb 12. bB
2100 .772 7.51
133 .120 13. B*
5* .1*8 12.51
37 .1*0 12.15
31 .152 12.51
35 .IbO 13.37
3b .1*1 J2.bl
*3 1.118 12. bl
31 .Ib7 12. b2
2*H .118 7.*8
102 1.081 13. 5b
28 .150 12.51
31 .1*3 12. Ob
21 .150 12.50
11 .15* 13.3*
38 .1*1 12. *1
*3 1.112 12. b2
17 ,lb3 12.58
22bS ,8bS 7.b3
frvrt c f" riMQn Q T TF ^ •
102 1.081 13. Sb
3* .150 12.52
23 .1*3 11.1?
20 .1*1 12.57
22 .Ibl 13.32
23 .152 12.5*
3b 1.200 12. b*
23 .Ib8 12.58
21*7 .B21 7.**
SUM---(CriMPOSITE VALUES
eilU 	 f f nUDi-IO T TC1 U A, 1 IIE7C
FOUR CYCLE COMPOSITE - REPORTED






81
2030
311*
?b02
Ib33
2b2fa
IbSl
2800
271
81
2352
3231
2532
1713
2bbl
IbIB
2805
l*b
115
2375
3273
2580
lb*8
2b23
1713
2137
15*
115
2*8b
31b5
2717
lb*7
30b1
1775
2121
1*1
FOR CYC
TDTAL FUEL
CARBON CONS.
1*.10* Ib3*
12.780 7150
12.381 10*51
12.10* 7150
13.558 5501
12.851 7150
13.bl2 1*303
12.871 7150
10.550 1*01
1*.10* Ib3*
12.7K. 7150
12.330 10*51
12.78* 7150
13.5b8 5501
12.718 7150
13.85* 1*303
12.820 7150
10.3*5 1*01
1*.7S1 Ib3*
12. bio 7150
12.2*5 10*51
12.b73 7150
13.515 5501
12.b80 7150
13.778 1*303
12.7bl 7150
10.1** 1*01
1*.751 Ib3*
12.707 7150
12.088 10*51
12.7*1 7150
13.513 5501
12.717 7150
13.871 1*303
12.773 7150
10.5BO 1*01


VALUES - HC 0.3S( 3.3)



CO 0.3S( 30)
NOB 0.35( 17. S)

ADJUSTED (MASS)
HC CO N02
Ib
23
*2
25
15
22
28
1*
301
Ib
33
3*
2*
15
22
*B
11
3bl
12
17
3b
13
8
23
*8
10
31*
12
21
21
12
10
1*
*0
1*
307


+ 0
+ 0
+ 0

20*
Ib8
2*0
Ib8
131
Ib7
11*2
IBfa
207
20*
Ib7
2*0
172
131
IbB
2331
188
5*
2*2
171
2*7
171
127
170
2332
18*
22*
2*2
171
250
Ibl
131
173
2*18
HO
220


.b5( 3
.b5(
.bS( 18
CORRECTED
3
377
873
*71
220
*85
S7b
Sib
12
3
*3b
101
*70
231
*1*
582
511
7
*
***
127
*83
223
*11
510
5*b
7
*
*b*
101
521
223
573
b07
5*3
7


.n) =
23) «
.1) =
Noa =
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


3.102
21.?
17.77S
17.*77
WEIGHTED (MASS)
HC CO N02(K)
3.7
1.8
b.2
1.1
.1
1.7
3.2
1.1
*3.1
31
. 1
3.7
2.5
5.0
1.8
.1
1.7
5.*
1.*
51.7
3k
* °
2.8
1.3
5.3
1.0
.5
1.8
5.*
.8
**.1
31
« 1
2.8
l.b
3.2
.1
.b
1.1
*.s
1.1
»3.1
2.1
3.3
3.0
(MASS)
(MASS)
(MASS)
CMASS)
*7
13
35
13
7
13
211
1*
30
I q
1 T
*7
13
35
13
7
13
2b3
1*
8
an
CU
Sb
13
3b
13
7
13
2b3
1*
32
ap
cc
Sb
13
37
13
8
13
282
IS
31
a 3
24
20
22



.7
21.0
128.3
3b,1
12. fa
37.3
bS.l
31.8
1.8
17 n
X f * U
.7
33. b
133.7
3b.2
13.2
38.0
b5.8
*0.0
.1
1.0
3*. 2
13b.3
37.2
18.7
37.8
bb.7
*2.1
.1
in a
1 f . B
1.0
35. 8
133.5
*0.1
12.7
**.!
b8.b
*1.8
.1
18.3
17.2
18.1



HP
0
20
*3
20
11
20
bb
20
0
0
20
*3
20
11
20
bb
20
0
0
20
*3
20
11
SO
bb
20
0
0
20
»3
20
11
20
bb
20
0






-------
                 ENGINE 1-1
EXPERIMENTAL 23 MODE EMISSION RESULTS
           BRAKE SPECIFIC BASIS

-------
       PROJECT 11-2877-01  CONTROL TECHNOLOGY
RUN 1              ENGINE 1-1           STATIONARY DYNAMOMETER

MODE
1
3
3
f
«;
h
7
B
9
10
11
li?
13
It
IS
Ifa
17
in
is
30
21
22
53

DYNA,
SPEED LOAD
boo
1200
1200
1200
1200
1200
1200
1POO
1200
1200
bOO
1200
2300
2300
2300
2100
2300
2300
2300
2300
2300
boo
2300
0.0
f.2
17.0
3R.2
53.0
lOb.O
15R.O
i?f.o
1S5.0
212.0
0.0
0.0
218.0
201.0
179.0
Ib3.5
109.0
Sf.5
3S.3
17.5
f.f
n.o
0,0
MAN. FUEL RATE
HP
0
1
f
9
12
2f
3b
fO
f5
f8
0
0
S5
88
78
72
f8
2f
17
8
2
0
0
VAC. L8/HR GM/HR
17.7 3.
IS. 5 b.
18.7 b.
17. f 7,
ib.2 s.
11.3 11,
b.B 18.
2.b 21.
.8 28.
0.0 28.
17. b 3.
22. f f.
1.8 57.
2.2 ffa.
3.0 fO.
f.O 3b.
10.3 2b.
15. S IS.
17.7 15.
1S.S 13,
21.1 11.
18.0 3.
25.0 5.
CALCULATED GRAM/HR
MODE
1
3
3
f
5
h
7
8
q
10
11
13
13
If
15
Ib
17
18
IS
20
?1
22
23
CYCLE




ALDE
.fa
1.5
1.3
f.b
3.3
7.*
s.o
13.9
8.f
b.2
.9
3.2
20.5
8.5
«. 2
*.2
5.5
3.*
7.4
2.7
l.s
.b
3.S
HC
25.8
10.8
17.3
37.3
f?.?
70.5
110.3
85.2
27S.I
278.7
21. 5
800.7
3S0.5
228,3
fO.2
2b.7
23.3
IS. 7
If. 7
lb.3
If. 2
25. f
8f5.2
COMPOSITE








CO
115
30
31
f7
58
82
587
8fb
752f
10283
85
12b
15Sb2
7f51
1785
7b2
250
210
If3
133
157
71
If7
HC
CO
N02
ALDE
BSFC
5 1579
f 2903
8 3098
9 3S93
1 f!37
8 533f
2 82fb
1 9553
1 12737
8 130bf
5 1597
0 179b
b 2bl27
1 20929
8 1B507
7 IbbSS
5 11998
1 8b73
5 702b
2 5997
3 5135
5 1597
5 2f8fa
ALDE.























WT. WT.
N02 FAC.
1.7 .
fa. 2 .
15.3 .
80. S .
lbb.0 .
f25.b .
5bS.2 0.
b5f,2 ,
fSf.O 0.
If3.8 0.
l.S .
.b ,
fbO.S .
8fb,7 .
SIS.b .
8SS.1 .
12fb.3 .
b32.5 0.
f?8.3 .
180.3 0,
8f.f 0.
2.0 ,
1.2 .
8,b23
fb.081
13.823
,20b
,bbl
070 0
ObO
ObO
050
030
ObO 1
000 0
OfO 1
000 0
ooo n
070 0
120 0
025 2
055 f
035 2
ObO f
ObO 2
ooo n
ObS 1
000 0
000 0
080 n
ObO 0
GRAM/BHP
GRAM/BHP
GRAM/RHP
GRAM/BHP
LB/BHP
HP
.0
.1
.2
.f
.f
.5
.0
.b
.0
.0
.0
.0
.f
.8
.7
.3
.9
.0
.1
.0
.0
.0
.0
HR
HR
HR
HR
HR
27
33
27
92
S3
93
75
9f
H7
37
fO
101
bO
29
29
Ib
27
23
b3
29
23
25
f5
BRAKE
ALDE.
R
l.b
.3
.5
.3
.3
.2
.f
.2
.1
R
R
.2
.1
.1
.1
.1
.1
,f
.f
1.0
R
R





DRY CONCENTRATION
HC
2352
519
778
IblO
IbSl
1913
1S75
12fO
3372 f
359b b
2721
SfOf3
2ffal f
IbSO 2
305
220
2fb
28f
2b9
372
38f
2258
20917
CO
.520
.070
.070
.100
.100
.110
.530
,b!0
.500
.570
.390
,f20
.980
.730
.b70
.310
.130
.150
.130
.150
.210
.310
.180
COB
13. b3
13.77
13.77
15. 2b
If .05
If .18
If .05
13.18
10.55
S.93
If. 05
fa. 30
11. 8*
12.59
13.33
13.33
12. f7
12. 3f
12,71
13. f8
13. b3
13. b3
3.88
NO
fS
BS
207
1052
1730
3f80
3070
2870
1797
55S
53
13
875
1887
2100
2225
3950
2750
23b2
1237
b88
S3
S
SPECIFIC GRAM/BHP-HR
HC
R
11.19
f ,f7
f.27
3.9f
2.91
3. Of
2. If
b.2b
5.75
R
R
f .09
2.59
,51
.37
,f9
.83
.85
2.13
7.f3
R
R





CO
R
30.5
8.1
S.f
f.8
3.f
lb.1
21.3
IbS.S
212.3
R
R
Ib7.2
8f .7
22.8
10. b
5.2
8.8
8.3
17. f
82.2
R
R





N02
R
fa.f
f.O
9.3
13.7
17. b
15.7
lb.5
11. I
3.0
R
R
f.8
S.b
11.7
12. b
2b.l
2b.S
2f .9
23. b
ff .2
R
R



































-------
3_2q.7g  RUN  2
PROJECT 11-5877-01  CONTROL TECHNOLOGY
            ENGINE 1-1           STATIONARY DYNAMOMETER
MODE
1
?
3
4
5
h
7
8
q
10
11
1?
13
1*
15
Ib
17
19
1"
20
21
?3
?3
DYNA.
SPEED LOAD
boo
1200
1200
l?nn
1200
1200
i?on
i?on
1POO
1200
boo
I2nn
2300
2300
2300
2300
2300
2300
2300
2300
2300
boo
2300
o.n
* .1
lb.5
37.1
51.5
103.0
15*. 5
lbl.0
181.5
20b.O
0.0
n.n
210.0
113.0
172.0
157.5
105.0
52.5
37.8
lb.8
*.2
o.o
0.0
HP
0
1
*
8
12
2*
35
31
*3
*7
0
n
IP
85
75
bl
*b
23
17
7
S
0
0
MAN. FUEL RATE
VAC. LB/HR GM/HR ALOE.
17.1 3.5 1571
11.7 b.* 2103
18. h b.8 3018
17.8 7.1 3513
lb.5 1.1 *137
11.8 11.8 533*
b.8 18.2 8g*b
3.3 21.1 1553
.3 28.1 12737
0.0 28.8 130b*
18. n 3.5 1517
22.3 *.0 171b
.7 57. b 2bl27
1.2 *b.l 20121
3.0 *0.8 18507
*.1 3b.7 Ibb21
10.5 2b.S 11118
lb.0 H.l 8b73
17. b 15.5 702fc
20.2 13.2 5117
21.3 11.3 5135
18.0 3.5 1517
2*.1 5.5 H*8b
CALCULATED GRAM/HK WT. WT.
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
It
.15
n
17
18
11
20
2J
2?
23
CYCLE




ALOE
.1
1.1
1.7
8.b
3.3
5.3
5.J
13. b
b.O
17.7
.7
1.1
2b.O
i.n
7.5
3.2
5.0
*.3
1.*
2.2
3.0
.8
3.2
HC
2*. 5
7.7
18.7
*l.b
*8.b
b5.2
111.3
100. *
207.8
211. b
38.3
777.3
*15.9
1*1.*
37.*
25.8
23.3
22.2
17. b
18.1
15.1
25.0
875.2
COMPOSITE








CO
7b
30
31
52
bn
55
358
b50
bb?b
102*3
78
122
Ib27b
7171
1257
52b
250
180
1*2
157
18*
bl
228
HC
CO
N02
ALOE
8SFC
NOa FAC. HP
1.7 .070 0.0
8.2 .ObO .1
11.8 .ObO .2
1*.fa .050 .*
173.7 .030 .*
*71.2 .ObO 1.*
b07.8 0.000 fl.O
bSI.S .0*0 1.5
*18.7 0.000 0.0
1b.7 0.000 0,0
2.1 .070 0.0
.7 .120 0.0
**1.0 .025 2.3
703.1 .055 *.b
101.1 .035 2.b
1010.1 .ObO *.l
12b2.1 .ObO 2.8
fa*1.b 0.000 0.0
*l.l.O .ObS 1.1
17*. 3 0.000 0.0
b5.2 0.000 0.0
?.l .080 0.0
1.2 .ObO 0.0
8.752 GRAM/BHP HR
*5.581 GRAM/BHP HR
l*.b*8 GRAM/BHP HR
.200 GRAM/BHP HR
,b8S LB/BHP HR
31
2*
33
ISb
52
b3
*1
12
3*
10*
21
b2
7b
31
2fc
12
2*
b3
33
23
38
32
*7
BRAKE
ALDE.
P
1.2
.5
1.0
.3
.2
.1
.*
.1
.*
R
R
.3
.1
.1
.0
.1
.*
.?-
.3
l.b
R
R





DRY
HC
22bb
3bO
771
Ib25
lb*7
Ib77
11*b
l*bb
25bO
3703
3*71
538b2
2b22
1052
282
208
2*b
32*
325
*17
*12
22b3
H711b
CONCENTRATION
CO C02








*
b


5
2









.350
.070
.070
.100
.100
.070
.310
,*70
.070
,**0
,350
.*20
.080
.b*0
.*70
.210
.130
.130
.130
.180
.250
.310
.350























1*.05
13. *8
12.51
13.77
13.77
13. *«
13.11
13.33
11. 3b
1.78
13.7?
b.b*
11.13
12.82
13. *8
13.18
12. *7
12. *7
12.8?
13. b3
13.77
13.11
*.b*
NO
*8
lib
2*5
1112
1775
3b50
3200
2100
1850
370
58
1*
838
1575
2050
2b50
*000
2850
2287
1212
538
58
11
SPECIFIC GRAM/8HP-HR


8.
*.
*.
*.
2.
3.
2.
*.
b.


f .
1.
•
•
•
•
1.
2.
8.







HC
p
17
17
11
13
77
15
bO
80
20
R
R
52
b?
50
37
51
17
nfc
*b
11
p
R







32
1
b
5
2
10
Ib
15*
217


177
8*
Ib
7
5
7
8
21
100







CO
R
.1
.1
.1
.1
.3
.1
.8
.2
.b
R
R
.n
.8
.7
,b
.*
.8
.b
.*
.3
R
R





N02
R
8.8
5.2
11.2
.1. * . 8
20.0
17.2
17.1
11.5
2.1
R
R
*.8
8.3
12.0
15.8
27.*
P8.3
2*. 8
23.7
35.*
R
R



































-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
3-31-75 RUN 1              ENGINE 1-1           STATIONARY DYNAMOMETER

MODE
i
2
3
4
5
b
7
H
q
10
11
1?
13
If
15
Ih
17
1R
11
?0
21
22
23

DYNA.
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
f .1
lb.5
37.2
51.8
103.5
155.2
.170.0
190.5
207,0
0.0
0.0
212.5
195.5
l?f.O
159.0
10b.3
53.2
38.3
17.0
f .3
o.n
o.o
i
HP
0
1
f
9
12
2f
35
sq
ff
f7
0
0
93
8b
7b
70
f?
23
17
7
2
0
0
MAN. FUEL RATE

VAC. L8/HR GM/HR ALDE.
18. 0 3.5 1579
20.3 b.f 2903
18. b fa. 8 3018
17. b 7.9 3513
lb.7 9.1 f!37
11. b 11.8 533f
b.5 18.2 B2fb
3.3 21.1 9553
.3 28.1 12737
0.0 28.8 130bf
18,0 3.5 1597
22.5 f.O 179b
.8 57. b ?fa!27
1.3 fb.l 20929
3.0 fO.8 18507
f.8 3b.7 Ibb29
11.0 2b.5 11998
lb.5 19.1 8b?3
18.0 15.5 7Q2h
20.3 13.2 5997
21. f 11.3 5135
18.0 3.5 1597
25.3 5.5 2f8b
CAICULATED GRAM/HR WT. WT.
MODE
i
2
3
f
5
b
7
8
q
10
11
12
13
If
15
Ib
17
18
19
20
21
2?
?J
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
n.O
O.n
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
HC
31.7
7.0
15.5
fO.7
50.*
bb.f
llf .1
108.0
181. f
278.7
f8.3
8b7.0
fOf .2
1B9.9
ff .0
32.3
2f .5
21.1
17.0
lb.9
13.5
2f .f
872.2
COMPOSITE








CO
fb
f2
fb
75
75
77
318
7f B
5123
8Sbb
57
85
Ib7f0
b85b
I7f2
78f
257
180
If2
lif
15f
122
201
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
1.9 .070 0.0
h.9 .ObO .1
If. 9 .ObO .2
90.5 .050 ,f
177.8 .030 .f
f91.8 .ObO l.f
b3f.8 0.000 0.0
b81.7 .OfO l.b
577.8 0.000 0.0
iff. 7 0.000 0.0
2.1 .070 0.0
.7 .120 0.0
390.1 .025 2.3
917.8 .055 f.7
928. f .035 2.7
lObO.f .ObO f.2
1203. b .ObO 2.8
bOf.l 0.000 0.0
fOf.3 .ObS 1.1
I7f.q o.ooo o.n
b?.7 o.ooo o.n
1.9 .080 n.o
1,2 .ObO n.O
9.3fb GPAM/BHP HR
fb.fBf GRAM/BHP HR
lf.R35 GRAM/BHP HR
0.000 GRAM/BHP HR
.b78 LB/8HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
29fb
339
b75
Ibf2
17bb
17f9
2029
IbOf
2189
3517
f283
51502
2580
13bb
327
258
250
307
31f
389
373
2220
2f593
CONCENTRATION









3
5


S
2









CO
.210
.100
.100
.150
.130
.100
.280
.550
.ObO
.350
.250
.250
.290
.ffO
.bfO
.310
.130
.130
.130
.130
.210
.550
.280
























C02
If. 18
13.91
13.33
If .18
If ,18
13.77
If .18
13. f8
12.09
10.78
13. f8
5.27
11.13
12. f7
13. Ob
12. 9f
12.09
12. f7
12.82
13. b3
13.91
13.77
f.27
NO
Sf
101
195
1100
1875
3900
3fOO
3050
2100
550
57
12
750
1987
2075
2550
3700
2bSO
2250
1212
5b3
53
10
SPECIFIC GRAM/BHP-HR


7.
f .
f .
>».
2.
3.
2.
f .
5.


f .
3.
•
•
•
•
1.
2.
7.







HC
R
fl
09
79
2b
81
22
78
17
89
P
R
3f
2?
58
fb
53
90
01
2.7
27
R
R





CO

ff.
12.
8.
b.
3.
9.
19.
117.
181.


179.
80.
22.
11.
5.
7.
a.
15.
82.







R
1
3
8
3
2
n
3
7
1
«
R
q
1
9
3
5
7
5
3
7
R
R





N02
R
7.3
3.9
10. b
15.0
20.8
17.9
17.5
13.3
3.1
R
R
f.2
10.7
12.2
15.2
25.9
25.9
2f.l
23.5
3b.f
R
R



































-------
3-31-78  RUN 2
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENGINE 1-1
STATIONARY DYNAMOMETER
DYNA.
MODE
1
*
3
t
5
b
7
8
q
10
11
18
13
If
15
Ifa
17
18
IS
20
21
22
23
SPEED LOAD
bOO
12013
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
hOO
2300
0.0
t.l
lb.5
37.2
51.8
103.5
155,2
170.0
1*0.5
207.0
0.0
0.0
212.5
1^5.5
I7t,0
151.0
10b.3
53.2
38.3
17.0
f .3
0.0
0.0
HP
0
1
t
8
12
2*
35
31
ft
t?
0
0
13
8b
7b
70
t7
P3
17
7
2
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE,
18.0 3.5 1571
20.2 b.t 2103
18. b b.8 3018
17.7 7.1 3513
Ib.b 1.1 t!37
11. b 11.8 533t
b.b 18.2 82tb
3.3 21.1 1553
.3 28.1 12737
0.0 28.8 ISObt
18.0 3.5 1517
22.5 t.O 171b
.8 57. b 2bl27
1.3 tb.l 20121
3.0 tO. 8 18507
t.8 3b.7 Ibb21
11.0 2b.5 1199R
Ib.t 11.1 8b73
18,0 15,5 702H
20.2 13.2 5117
21.3 11.3 5135
18.0 3,5 1517
25.2 5.5 2t8b
CALCULATED GRAM/HR WT. WT,
MODE
i
3
3
t
5
b
7
a
q
10
U
I?
n
i*
15
Ib
17
18
11
so
?!
22
?3
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
o.n
o.o
".n
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
O.n
0.0
0.0
o.o
o.o
0.0
HC
32. b
5.1
18.8
f3.2
51. b
bl.8
118.8
100.2
2?8,1
278.1
3t.b
832.5
31'*.'+
171.1
3b.8
25.0
Ib.t
15.3
13.0
13.1
.11.8
28. b
87fa.O
COMPOSITE








CO
b8
f3
ti
fa?
bO
78
til
590
5201
8217
57
It
Ib311
7027
223b
b18
257
180
If?
133
155
81
1st
HC
CO
N02
ALOE
BSFC
N02 FAC, HP
1.5 .070 0.0
7.0 .ObO .1
18. t .ObO .2
It. 3 .050 .t
Ib5.5 .030 .t
t31.2 .ObO l.t
b!7.7 0.000 0.0
703.8 .OtO l.b
SbO.1 0.000 0.0
17t.5 0.000 0.0
2.0 .070 0.0
.7 ,120 0,0
tbl.t .025 2.3
13b.l ,055 t.7
118.1 .035 2.7
1023.1 .ObO t.2
120t.t .ObO 2.8
bSO.l 0.000 0.0
tlS.O .ObS 1.1
182.2 0.000 0.0
85,2 0,000 0.0
2.1 .080 0,0
l.t .ObO 0.0
9.0*7 GRAM/BHP HR
tb.btt GRAM/BHP HR
lt.77t GRAM/BHP HR
0.000 GRAM/BHP HR
,b78 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
i
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
I
I
0.0
0.0
o.o
0,0
0.0
0,0
0,0
o.o
0.0
I
I





DRY
HC
2111
282
783
Ib13
173b
1801
20tt
Itfl
2712
3t31
30t3
55b27
2510
132t
283
202
Ib7
223
2tl
218
322
2527
22855
CONCENTRATION









3
5


5
2









CO
.310
.100
,100
.130
.100
.100
.350
,t20
.010
.030
.250
.310
,ito
,5bO
.850
,280
.130
.130
.130
.150
.210
.310
.250
























C02
13.91
13. b3
12.71
13.77
13. b3
13. t8
13. b3
13.18
11. bO
10.78
13. t8
b.13
11. 2f
12.71
13.33
13.18
12.01
12. t?
12.82
13. t8
13.77
13. t8
3.15
NO
t2
100
230
1112
Ifa75
3350
3200
3050
1175
b50
53
It
100
2075
2125
2500
3700
2850
2325
1250
700
5b
11
SPECIFIC GRAM/BHP-HR


b.
t.
5.
t.
2,
3.
2.
5.
5.


t.
2.
•
•
•
*
•
1.
b.







HC
R
28
18
01
3b
15
35
58
tq
88
R
R
2t
10
t8
3b
35
bb
78
7b
3t
R
R







ts
12
7
5
3
11
15
119
173


175
82
21
10
5
7
8
17
83







CO
R
.1
.8
.1
.1
.3
.h
.2
.5
.7
R
R
.3
.1
.f
.0
.5
.7
.5
.1
.5
R
R





N02
R
7.t
t.1
11.1
if.o
18.2
17. t
18.1
12.1
3.7
R
R
5.0
10.1
12.1
It. 7
25.9
27.1
2t.1
2t.S
t5.8
R
R



































-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
1-03-72 RUN 1
ENGINE 1-1
STATIONARY DYNAMOMETER

MODE
1
3
?
1
5
h
7
a
q
10
11
I?.
13
11
.15
Ih
17
18
11
20
21
?2
23

DYNA,
SPEED LOAD
bOO
1200
1200
120n
1200
i?no
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
1.1
lb.5
37.2
51.7
103.5
155.0
lbl.5
110.0
207.0
0.0
1.0
212.0
IS5.0
17*. 0
151.0
lOb.O
53.0
38.2
17.0
1.2
n.o
0.0
»
HP
0
1
1
8
12
21
35
31
13
17
0
0
13
85
7b
70
Ib
23
17
7
2
0
0
MAN. FUEL. RATE

VAC. LB/HR GM/HS ALDE.
18.2 3.5 1571
20.3 b.1 2103
18.5 b.8 301R
17.5 7.1 3513
lb.5 1.1 1137
11.5 11.8 5331
b.5 18.2 821b
3.2 21.1 1553
.3 28.1 12737
0.0 28.8 130b1
18.2 3.5 1517
22.5 1.0 171b
.8 57. b 2bl27
1.2 Ib.l 20121
3.0 10.8 18507
l.b 3b.7 Ibb21
10.8 2b.5 11118
lfa.3 11.1 8b?3
17.1 15.5 702b
20.3 13,2 5117
21.3 11.3 5135
18.0 3.5 1517
25.2 5.5 218b
CALCULATED GRAM/HR rtT. WT.
MODE
1
2
3
i
5
b
7
S
q
ID
11
12
13
11
15
Ib
17
Ifl
11
20
21
22
23
CYCLE




ALOE
.a
1.2
2.2
1.2
3.1
7.9
11.0
".7
in. q
^.2
1.3
*.7
17.1
11.1
10. *
b.1
1.1
5.3
3.1
2.1
3.2
1.2
^.7
HC
3b.3
1.3
21.2
41.0
57.1
b7.8
127. L
102.2
252.1
2R0.8
17. b
125. b
131.8
185.1
31.5
21.5
11.0
17.3
15. b
ib.2
11.8
30.8
1b2.1
COMPOSITE








CO
112
11
33
75
7fa
55
118
bb2
b383
8012
bl
105
lbR15
7107
21bO
b18
lib
131
111
131
13b
58
12P
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
l.fa .070 0,0
1.8 .ObO .1
lb.1 .ObO ,2
71.0 .050 .1
151. b .030 .1
112.1 .OhO 1.1
511. b 0.000 0.0
Sbb.b .010 1.5
121.1 0.000 0.0
152. b 0.000 0.0
1.1 .070 n.n
.b .120 0.0
31b,7 .025 2.3
752.8 .055 1.7
731. fa .035 2.7
737.3 .ObO 1.2
1011.1 .ObO 2.8
111.5 0.000 0.0
311.8 .Ob5 1.1
117.3 0.000 0.0
b8.1 0.000 0.0
2,0 ,080 0,0
1.5 .ObO n.n
1.17b GRAM/BHP HR
11.157 GRAM/BHP HR
12.111 GRAM/BHP HR
.221 GRAM/BHP HR
,b71 LB/BHP HR
35
2b
13
78
11
15
11
fa?
b2
3fa
55
115
50
11
3fa
21
11
3fa
2b
22
31
17
10
BRAKE
ALDE.
R
1.2
.b
.5
.3
.3
.3
.3
.3
.1
R
R
.2
.2
,1
.1
.1
.2
.2
.3
1.7
R
p





DRY
HC
3100
152
81b
1182
2013
1711
22b8
152b
3107
3513
1227
b2113
2731
13faO
211
171
115
251
285
3fafa
311
2705
22733
SPEC


1.
5.
5.
1.
2.
3.
2.
5.
5.


1.
2.
*
•
*
*
•
2,
7.







CONCENTRATION









3
1


5
2









CO
.520
.100
.070
.150
.130
.070
.110
.110
.810
,180
.280
.350
.210
.870
.810
.280
.100
.100
.100
.150
.180
.250
.150
























C02
13.11
11.05
12,11
11,18
11,05
13.18
11.05
13. b3
11.18
11.01
13.18
5.50
11.01
12.31
13.18
13.18
12.22
12.17
12.71
13.33
13.18
13.18
3.15
NO
11
70
215
1b3
1587
3200
2750
2550
15b3
575
50
12
bb3
Ibb2
Ib88
1800
3250
2150
1125
1000
550
53
11
IFIC GKAM/BHP-HR
HC
R
78
bl
77
10
87
51
bl
81
11
R
R
fa5
1?
52
31
11
75
13
18
Ib
P
R







13
8
8
b
2
11
17
117
170


181
12
28
10
1
b
fa
18
73







CO
R
.7
.8
.8
.1
.3
.1
.1
.0
.0
w
R
.1
.b
.3
.0
.2
.0
.b
.1
.1
R
R





N02
R
5.0
1.5
1.3
12.8
17.5
H.1
H. b
1.7
3.2
R
R
3.7
8.8
1.7
10. b
22. b
21.2
20.1
11.8
3b.1
R
R



































-------
H-03-72 RUN 2

MODE
1
j>
3
if
5
b
7
8
q
10
11
12
13
1*
15
IS
17
IS
11
20
21
?2
23

DYNA.
SPEED LOAD
bOO
l?oo
1200
1200
1200
1200
l?np
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bon
2300
n.o
*.l
lb.5
37.2
51.7
103.5
155.0
Ibl. 5
lln.n
207.0
0.0
n.o
212.0
115.0
17*. 0
151. n
lOb.O
53.0
38,2
17.0
*,2
0.0
n.n
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENGINE 1-1 STATIONARY DYNAMOMETER

HP
0
1
H
8
12
2*
35
31
*3
*7
0
0
13
85
7b
70
*b
23
17
7
2
n
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALOE.
18.0 3.5 1571
20.? b.* 2103
18. B fa. 8 301R
17.5 7.1 3513
lb.5 1.1 *137
11.5 11.8 533*
fa. 5 18.2 B2*b
3.5 2.1.1 1553
.2 28.1 12737
0.0 28.8 130b*
18. n 3.5 1517
22.5 *,0 171b
.8 57. fa 2bl27
1,2 *fa.l 20121
3.0 *0.8 13507
*.b 3b.7 If,fa21
in. 8 2b,5 11118
lb.3 11.1 flb73
18.0 15.5 702b
20.3 13.2 5117
21.3 11.3 5135
18.0 3.5 1517
25.2 5.5 2*8b
CALCULATED GRAM/HR WT. HT.
MODE
1
?
3
4
5
b
7
8
q
10
.11
1?
13
1*
15
Ib
17
18
11
20
21
22
23
ALDE
0.0
0.0
o.n
0.0
0.0
0.0
o.o
0.0
0.0
n.n
o.n
0.0
o.o
o.o
o.n
o.o
n.o
0.0
n.o
n.n
o.o
o.o
o.o
HC
*3.5
7.1
18, fa
*7.fa
55. fa
71.2
11?.*
11.2
228.*
27*. 1
3*. 2
870.0
*57.*
1R7.0
3b.1
25.1
21.3
11.1
15.*
lb.0
1*.0
Pb.7
881.8
CYCLE COMPOSITE












CO
bi
30
33
52
*3
5*
*8b
71b
bll*
8331
100
137
Ib031
bSl*
1371
*
-------
            APPENDIX C
EMISSION RESULTS FROM ENGINE 1-2
          TABULAR FORM

-------
            ENGINE 1-2
NINE MODE FTP EMISSION RESULTS
      CONCENTRATION BASIS

-------
          i-b-72
                       ENGlNt 1-a
                                         RUM-?
                                                                              K =1.083
                                                                                           HUM = 101  GH/LB
CYCLt' 1
CYCLt 2
CYCLE 3
CYCLE 4
FEDERAL
MODE
1 IDLE
3 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10 'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
AVERAGE
CUNCENTRAtlUN AS MEASURED DILUTION A
HC CO CO? NO FACTOR HC
113b 1.420 ll.bbO SO
15 .h70 13.730 1083
bl .210 13.280 2550
8b .710 13.71Q 1105
171 1.810 13.130 332
88 .740 13.BOn 1143
43 .340 13.3*0 2*38
83 .7bO 13.b70 ICIb
3027 1.870 4.340 123
113b l.*30 ll.bbQ 80
154 .810 13.5bo lObl
?o .330 is.nsn 2540
13 .770 IS.faao llbl
108 1.850 13.081.) 347
88 .830 13.570 106b
*b .*bO 13.1*0 3*?b
Ba .BRO 13.410 1013
3b85 2.310 *.bbO Ibl
1130 1.470 11.510 144
155 .130 13.470 lllb
71 .300 13.0bn P4m
11 .710 13.550 1083
125 1.770 13.0bO 351
11 .130 13.4bC 1370
44 .440 13.140 331b
77 .750 I3.2«l) 1037
3818 1.870 4.140 151
1120 1.470 11. blO 144
14b .840 13.430 1081
b3 .330 13.000 2530
88 .810 13.4b() 1102
115 1.870 12.110 351
10 .780 13.t3n 1211
45 .410 13.050 2470
82 .870 13.47n 1158
3210 2. 081) 4.430 114
SUM 	 (COMPOSITE VALUES FOR CYCLES
AVERAGE oun-"" v.i-ur'ir uoi i c: VHU-CO rur\ (.TH-^J
FOUR CYCLE COMPOSITE - REPORTED VALUES -






l.Obb
l.Oritj
1.078
l.Olb
1.011
l.Olb
1.07Q
i.oab
l.bl?
l.Obb
1.023
1.015
1.038
1.037
1.030
1.081
1.03S
] .480
1.071
1.021
1.011
1.033
1.030
1.034
1.018
l.ObO
l.?8b
1.071
1.035
1.100
1.031
1.038
J.042
1.010
l.OSb
l.bO?
1 AND
3A MPl
I* nJU
HC
CO
NO

1211
17
bb
87
182
81
45
84
5137
1211
158
77
1b
111
11
50
85
5455
1300
151
77
14
131
14
48
83
5033
1300
151
bl
11
111
11
41
85
5387


0.35*(
D.3S*(
0.35*(

D J U S T E D
CU NO
l.bll
.faS3
.22b
.803
1.845
.7Sa
.3b4
.771
3.174
1.614
.111
.353
.713
1.0GO
.845
.417
.880
3.430
1.575
.I4b
.327
.81b
1.833
.152
.483
.718
3.340
1.575
.870
.353
.841
1.141
.813
.447
.101
3.34a


33H.414)
,b83)
1885. 074J

85
1105
3741
1122
338
Ilb3
2b08
1134
301
85
1014
2783
1H3
35b
1111
2b75
1133
238
154
1148
3bb4
1118
3bl
1314
2b30
1011
370
154
1127
3772
1145
3b4
1270
2b12
1200
313


+ 0.
+ 0.
t 0.

WEIGHTING
FACTOR
,03b
.081
.357
.081
.047
.081
.283
.081
.031
.03b
.081
.as?
.081
.047
.081
.383
.081
.021
.03fa
.081
.257
.081
.047
.081
.283
.081
.021
.03b
.081
.257
.081
.047
.081
.283
.081
.021


b5*( 227. 8bb)
b5*C .730)
bS*C 1811.574)
CORRECTED NO
WEI
HC
*3.faia
B.b33
lb.100
7.773
8.574
7. Ibl
13.714
7.485 .
107.877
3 S 1 ^ 1 Q
ce 1 • 3 1 T
is.bia
14.024
11.701
8.501
s.aia
B.ObS
14.0bb
7.557
114.551
yjc a n a
C 3 3 • 3 U O
43. lib
14.181
11.113
8.3b2
b.OSO
8.377
13.b71
7.2b5
105. b15
r| a I T | Q
CG b • f X H
43. lib
13.451
17.808
8.135
S.blO
8.345
13.880
7.5b2
111.025
p a a n i u
CC T • U X t
228.414
227. Bfab
= 228.
=
= 1814.
= 2051.
b H 1 E D
CU NO
.055 3.071
.Obi 18.302
.058 70b.4b5
.071 11.875
.087 15.102
.Ob7 103.403
.103 738.035
.Obi 100.038
,0b7 4.384
•b37 18b1.474
.055 3.071
.081 17.348
.ObS 714.870
.070 10b.21S
.081 lb.74b
.075 11.572
.141 757.117
.078 100. 72b
.072 5.005
,057 5.554
.084 102. Ibl
.084 fa84.b24
.073 11.522
.08b lb.181
.085 lib. 114
.137 744.423
.071 17.838
.070 S.bb4
.057 5.554
.077 100.327
.ObS 712.338
.075 101.872
.011 17.124
.072 113.034
.12b ?bl.8?2
.080 10b.712
.070 b.547
.b82 1885.074
• 730 1819.574
058 PPM
713 PERCENT
411 PPM
bse PPM
        DILUTION FACTQH = i*.s/ccoa+a.s*co+io.8*HC)

-------
                       ENGINE 1-B
                                                                              K =1.113
                                                                                           HUM  =  113   GR/LB
CYCLt 1
CYCLE 3
CYCLE 3
CYCLE
FEDERAL
MODE
1 IDLE
a ib HG
3 10 HG
* Ifa HG
S 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
3 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.

AVERAGE
A U C D A P C
CONCENTRATION AS
HC CO CUB
101 1
Ibl
8?
iua
ISO 1
1*
5*
87
3713 a

US
bO
ia
13b 1
11
so
8S
ais* i
13*5 1
120
b*
88
118 1
88
*1
88
3575 2
13*5 1
117
b2
1U
10* 1
87
*3
81
3b23 2
.280 ia.31U
.71(1 13.7*0
.270 13.210
.710 13.800
.8*0 13.380
.780 13.B30
.*an 13.350
.7SO 13.7*0
.170 *.730
.280 13.310
.800 13.b50
.250 13.170
.870 13.510
.810 13.030
.780 IS.bOO
,*10 13.S8Q
.850 13.*70
.7*0 *.a30
COMPOSI TE )
.510 11.810
.100 13.*50
.2bO 13.P3CI
.710 13.5*0
.750 13.0*0
.720 13.fa30
.5*0 13.010
.810 13.520
.100 *.fabO
fnMUnQT re i
UUnruoiitJ"
.510 11.810
.110 13.*20
.250 13.030
.8bO 13.*70
.sao 13.020
.7*0 13.500
,3bO 13. Oho
.780 13.**0
.aio *.b?o
rnmiLinQTTC'i —

SUM""™ CCQMPOS I TE VALUES
eiiu 	 / f nunr"! n T TC UAI itro
AVtKAut auri 	 ^uunru
FOUR CYCLE COMPOSITE




o 1 1 & V "i_ ut *j
- REPORTED


MEASURED DILUTION A
NO F4CTOR HC
1*
1103
2518
1171
3?a
10t>*
asri?
1137
133
1*
iaia
2**3
HbS
337
llbl
2*17
1137
128
13b
1102
2538
108b
3*2
1113
2*81
lib*
151
13b
1133
2b**
1188
353
1178
2b01
12118
113

FOR C YCLES
F n (? rvn F Q
rUrt UTUU^O
VALUES -


1.0*1
i.aib
1.071
1.01*
1.010
1.012
l.ObS
1.01H
l.*b*
1.0*1
1.023
1.085
1.037
1.027
1.031
1.071
1.037
1.7*3
1.03*
1.03*
l.Olb
1.033
1.033
1.031
1.081
1.031
1.515
1.03*
1.03b
1.017
1.03b
1.033
1.038
1.011
1.0*2
l.*17
iA Kin
AINU
HC
CO
NO
1*b
Ibt
1*
103
151
15
57
81
5555
1*b
118
bS
1*
1*0
1*
5*
88
5111
1311
12*
70
11
122
11
53
11
5*lb
1311
121
b8
13
107
10
*7
8t
5*23


0.35*(
0.3S*(
0.35*(
D J U S T
CU
1.332
.722
.211
.801
1.858
.7HO
,**7
.80S
3.178
1.332
.818
.271
.813
1.1*1
.803
,*31
.881
3.031
1.5b2
.130
.385
.81b
1.807
.7*1
.58*
.118
3.181
i.sba
,i*a
.37*
.811
1.871
.7fa8
.313
.813
3.308


227.5*2)
.blO)
1885.837)
E D WEIGHTING
-10 FACTOR
S8
1121
2717
1187
325
1077
2fab1
1151
115
18
12*0
2b51
lllb
3*b
1115
2b7*
1171
223
1*1
1131
2771
1122
353
ll*b
2b82
1200
2*1
1*1
1173
2100
1231
3b3
1223
2831
1251
287


+ 0.bS*C
+ 0.b5*C
+ O.b5*(
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.35?
.081
.0*7
.081
.283
.081
.031
.03b
.081
.357
.081
.0*7
.081
.283
.081
.031
.03b
.081
.357
.081
.0*7
.081
.383
.081
.031


a3b.H1)
.735)
1151.737)
CORRECTED NO
HEIGHT
HC CO
3*. 051
l*.5bl
2*. 12*
1.3U2
7.118
8.*70
lb.271
7.810
llb.b*7
238.3*2
3*. 051
10.*70
lb.73b
8.*0b
fa.Sb3
8.33b
IS. IS*
7.8*3
101.17*
3i< T u i
e.lb . • T i
SO.OBb
11.038
18.028
8.01*
5.737
8.0b3
1*.111
8.077
113.738
237.8*2
50.08b
10.78*
17. *7*
8.218
5.0*7
8.0*0
13.280
7.511
113.875
•3 -an q n L.
C Jt « 3 TO
327 • 5t2
23b * 1 1 9
= 333.
.0*8
.Ob*
.075
.071
.087
.070
.127
.072
.Qfa7
k U 1
• bol
.0*8
.073
.070
.071
.Oil
.071
.13*
.078
.Ob*
.OSb
.083
.073
.073
.085
.Obb
.IbS
.082
.Ob7
T |T ft
. rbO
.OSb
.03*
.070
.071
,U88
,0b8
.111
.073
.Obi
.7UO
. bSQ
E D
NO
3.532
11.757
b18.218
105. b38
15.371
15.87b
755. *1*
103.121
*.oio
1880 • ^Ib
3.532
110.3*7
b81.*35
10b.**3
Ib.2b3
106.3*1
7Sb.BQl
10*. 106
*.b83
1 SQn 757
1 a >U « r a r
S.Ob*
101. 3bb
712.110
11.813
lb.518
101.175
751.038
10b.838
5.051
1107.130
S.Ob*
10*.*38
7*5.110
101.530
17.083
108. 8b7
803. 31b
113.012
b.D3S
3 n i i ^3 ik
CUll * 3CT
i 885 • 8 3 7
t aC a 1 a -»
• ? 2 S XT3"i»rcr
117 PPM
= .713 PERCENT
= 1133.
= 2152.
8bb PPM
8*8 PPM
        DILUTION FACTOR = i*.5/CC02t0.5*COtlO.8*HC)

-------
          t-b-72
                       ENGINE 1-H
                                         RUN-t
                                                                              K  =1.088
                                                                                          HUM
                                                                                                103  GK/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE t
FEDERAL
MODE
1 IDLE
2 Ib'HG
3 10'HG
t Ib'HG
5 11'HG
fa Ifa'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
t Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
t Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
t Ib HG
S 11 HG
b Ifa HG
7 3 HG
8 Ib HG
1 C.T.
CONCENTRATION AS
HC CO C02
IttO
35t
88
101
ito
18
bl
10
.170
.fata
.200
.7bO
l.bSO
.fabO
.130
.710
ll.lbO
13.750
13.010
13.b?D
13.120
13.720
13.310
13.b70
31b3 1.850 t.2to
IttO .170 ll.lbO
its
81
102
153
17
S3
8b
,b30
.290
.810
1.870
,8tO
,t3o
.710
13.t50
13.0to
IS.tlO
12.120
13.500
13.050
13.500
2555 1.720 t.300
1159 1.510 11.7bO
127
bb
12
its
13
53
87
.8bO
.230
.770
1.720
.710
.tto
.810
13. too
12.930
13. tOO
1H.8SD
13.tlO
13.070
IS.tbo
2B32 1.870 t.SbO
1151 1.510 11.7bO
Itl
75
9t
150
81
tl
81
.870
.310
.810
1.800
.770
.t70
.780
2175 2.030
r f v f i c r* n UL
AVERAGE SUM 	 (COMPOSITE
AWITDAPC QNM — ^r~nuonoTTC
A V t K A wt OUr
FOUR CYCLE


13.210
13.020
13.3bO
12.820
13.2bO
13.0bO
13.170
t.sto
VALUES
WAI 1 I C C
r™~™p^i»uiirwoj.ic. v *• ^ w L- *•*
COMPOSITE - REPORTED






MEASURED OILUIIUN A
NO FACTOR HC
88
1002
2571
1133
332
1195
2t81
115b
12t
88
iSfat
2t8b
112b
322
1137
25t7
1273
151
18b
llbS
2703
1258
372
1230
25tfa
lilt
lit
18b
It3t
2t27
Ilt3
t!5
1530
25tO
1178
227
FOR CYCLES
FOK CYCLES
VALUES -


1.098
1.003
1.011
1.02t
1.D21
1.02t
l.Ofa?
1.027
l.blO
1.018
1.0t2
1.012
1.035
1.03t
1.03t
1.088
1.037
1.831
1.053
1.038
1.105
l.Ott
i.ota
l.Otb
l.OSb
1.031
1.73b
1.053
l.Ott
l.Olt
l.Otb
i.ots
1.055
l.OSb
1.0b2
I.b92
1 AND
3 A Mf>
M WU
HC
CO
NO
1582
355
9b
103
Itt
100
bS
12
S3tS
1582
151
88
lOb
1SB
100
58
81
tb7B
1221
132
73
Ib
151
17
58
10
tllb
1221
15b
82
98
157
9t
53
Bb
5035


0.3S*(
0.35*(
0.3S*(
D J U S I £ D WEIGHTING
Cll tiO f-ACTOR
1 Obb
|fat2
.218
.778
l.bl?
.b7b
,t59
.721
3.12b
l.Obb
.b5b
.317
.831
1.13t
.8b8
.tb8
.811
3. Itl
1.510
.893
.25t
.BOt
1.795
.7t2
.t78
.Btl
3.2tb
1.590
.108
.331
,8t7
1.880
.813
.511
.821
3.t35


251.208)
.bS7)
lltl.OOt)
97
1005
2B15
llbO
3t2
I22t
2bt7
1187
210
17
Ib21
271b
llbb
333
117b
2772
1320
27b
lib
1201
2188
131t
388
128b
27bb
12tO
337
lib
It17
2b55
1195
t33
Iblt
2759
1252
38t


+ O.b5*(
+ 0.faS*(
+ O.b5*(
.03b
.089
.257
.081
.Ot7
.081
.283
.081
.021
.03b
.081
.257
.089
.Ot7
.081
.283
.081
.021
.03b
.081
.257
.081
.Ot?
.089
.283
.089
.021
.03b
.081
.257
.081
.Ot7
.089
.283
.081
.021


229.051)
.727)
2012.121)
WEI
HC
Sb.ltS
Sl.blO
2t.b8t
1.205
b.7b8
8.13t
IS.tlS
8.22*
112. 2tO
P ? "3 n 9 Q
C / f • U c 1
Sb.ltS
13.ttl
22.7t2
1.311
7.t37
8.12b
lb.325
7.93t
18.231
3 ii i 'a Q o
C T X • 3 O O
ta.itb
11.73*
18.751
8.551
7.111
S.bSb
lb.2l*
s.ota
103.231
a 3 1 a t a
ccb • d± o
ta.itb
13.8t7
21. oat
8.7*8
7.3b*
8.358
15. Ob*
?.bS1
105.721
33i o n i
C 3 1 • OU JL
259.208
221.059
= 231.
=
* 1987.
G H 1 E 0
CO NO
.038 3,*8o
.057 89.*72
.OSb 723. tlB
.Obi 103. 2bS
.080 lb.051
.ObO 108. Itl
.130 7t1.089
.ObS 105.fa3b
.Obb t.tOO
1,31 iQn^i 7 *i "3
• DCl. -LTUj»'3J
.038 3.*80
.058 It*. 171
.081 fa17.112
.075 103. 7SS
.011 15.faS2
.077 10*.b22
.132 78t.52t
.073 117. ttS
.Obb S.SQb
.057 7.053
.071 107. btl
.ObS 7b7.1Sb
.072 llb.12b
.08* 18.2*3
.Obb ll*.*8o
.135 782.7*7
.075 110.385
.Ob8 7.072
*70S 2032*502
.057 7.053
.081 133.270
.087 b82.273
.075 10b.37*
.088 20.373
.072 It3. blO
.It* 780. 8b2
.07* 111.311
.072 8.0b7
.bS7 19*1. OOt
.727 2012 .921
bll PPM
702 PERCENT
755 PPM
        DILUTION FACTOR = It.S/CCOB+0.5*CO+1D.8«HC)

-------
            ENGINE 1-2
NINE MODE FTP EMISSION RESULTS
      BRAKE SPECIFIC BASIS

-------
                        ENGINE 1-2
                                                                                K  =  1.07
                                                                                             HUM = Ifll  GR/LH
CYCLF 1
CYCLE 2
CYCLE 3
CYCLE 4
MASS
MODE
1 IDLE
3 lb HG
3 in HG
4 lb HG
5 19 HG
b lb HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 lb HG
3 10 HG
* ib HG
s 19 HG
b ib HG
7 3 HG
s ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 lb HG
5 19 HG
b ib HG
7 3 HG
8 lb HG
9 C.T.
I IDLE
2 ifa HG
3 10 HG
4 lb HG
5 19 HG
b lb HG
7 3 HG
8 lb HG
9 C.T.
AVERAGE
CnNCENlHATjnN AS "F-ASUKEO
HC CO C02 NCI
113b 1.420 U.bb 80
95 .b70 13.78 inR3
bl .210 13.28 ?550
8b .790 13.79 U05
179 1.81H 13.13 332
88 .740 13.80 11*3
42 .340 13.34 2438
82 ,7bO 13. b7 109b
3037 1,870 4.3* 123
113b 1.420 11. bh 80
154 .890 13. 5b 10b9
70 .330 13.05 2540
93 .770 13. b2 lib!
108 1.850 13.08 347
88 .830 13.57 108b
4b ,4bO 13.14 247b
82 .850 13.49 1093
3b8S 3.310 4.hb !(,!
1130 l.*70 11.59 144
155 .920 13.47 lllb
71 .300 13. Ob 2441
91 .790 13.55 1083
135 1.770 13. Ob 351
91 .920 13. 4b 1270
4* .**0 13.9* 239b
77 .750 J.3.32 1037
2818 1.870 4.14 151
1120 1.470 11.59 144
14b .8*0 13.43 1089
b3 .230 13.00 2520
88 .810 13. 4b 1103
115 1.870 12.91 351
90 .780 13.43 1219
45 .410 13,05 3*70
82 .870 13.47 11.58
3390 3.080 4.43 194
TOTAL
14.307
14.553
13.55b
14.b73
15.133
14.b35
13.725
14.519
9.479
14.307
14. Mb
13.3Sb
14.490
15.0*7
1*.485
13.b50
14.429
10.950
14.270
14.557
13.437
14.438
14.9b5
14.478
13.428
14.053
9.053
14.270
14.428
13.398
14.3b5
14.904
14.307
13.509
14.429
10.0b3
SUM---(COMPOSITE VALUES FOR CYCLES 1 AN
oiiu rOnUOnCTTET WAIIlCC CnD i~ V <• i t Q "3 AM
FlltL
CONS.
3f.l74
13284
19227
13284
9788
13284
?b904
13284
2883
307*
1328*
19227
13284
9788
13284
2b904
13284
2883
3074
13284
19227
13284
9788
13284
2b904
13284
2883
3074
13284
19227
13384
9788
1328*
2b90*
13284
2883


FOUR CYCLE COMPOSITE - REPORTED V4LUFS - HC 0.35( 7.2)






CO 0.
NO8 0.

35( 32)
3S.( 18. b)

ADJUSTED (MASS)
HC CO N03

94
93
84
125
8k
89
81
994
2b4
151
109
92
7b
87
98
82
1048
2bl
153
nn
90
88
90
95
79
9b9
3bl
J45
98
88
82
90
97
82
1018


+ 0
+ 0
+ n

bib
1235
b02
1445
33bS
1357
134b
1*05
1149
bib
Ib34
bb9
142b
2431
1519
1831
1581
1229
b40
Ib9b
8b7
14b8
3339
1705
1781
1433
1203
b4D
15b3
b72
1513
3*81
14b3
Ib49
Ibl8
1304


.bS(
IbSC
. bS ( 1
CORRECTED
b
328
1301
332
71
344
15B7
333
13
b
333
1214
353
75
331
Ib20
334
1.4
10
338
llbO
331
7b
387
1594
335
lb
10
333
1310
338
77
37b
Ib33
354
18


7.1) =
34) =
8.7) =
Noa s
WT.
FACT.
.333
.077
.147
.077
.057
.077
.113
.077
.143
.332
.077
.1*7
.077
.057
.077
.113
.077
.143
.233
.077
.147
.077
.057
.077
.113
.077
.1*3
.233
.077
.1*7
.077
.057
.077
.113
.077
.1*3


7. Ib3
33.8
18.704
IB.SbS
WEIGHTtD (MASS)
HC CO N02(K)
bl.l
7.3
13.7
b.5
7.1
b.b
10.0
b.3
142.3
7.0
bl.l
11. b
lb.0
7.1
4.3
b,7
11.1
b.3
149. H
711
. 4
bO.*
11.8
lb.1
7.0
5.0
b.9
10.8
b.l
138. b
71
• 4.
bO.*
11.3
14.5
b.8
4.b
b.9
10.9
b.3
1*5. b
73
• C
7.2
7.1
(MASS)
(MASS)
(MASS)
(MASS)
143
95
88
111
135
104
15H
108
lb»
143
12b
98
110
139
117
207
122
17b
1*8
131
137
113
133
131
301
110
173
3 u
3 ~
1*8
120
99
117
1*1
113
18b
135
173
33
3*



1.3
35.3
17b.S
35. b
4.1
3b.S
179.3
25. b
1.8
| 3 L.
1 C * O
1.3
2*. 8
178.5
27.2
4.3
25.5
183.1
25.7
2.0
19 "J
J. c • (
2.4
2b.D
170.5
35.5
*.3
39.8
180.1
35.1
3.3
13 L.
ic • b
3.*
35. b
177.8
3b.l
*.»
38.9
184. b
37.3
3.b
13.9
13. b
12.7



HP
0
38
7b
38
11
38
130
38
0
0
38
7b
38
11
38
130
38
0
0
38
7b
38
11
38
120
38
0
0
38
7b
38
11
38
120
38
0






-------
                       ENGINE  1-?
                                                                                 1.01
                                                                                          HUM =  H3  GR/LB
CYCLE 1
CYCLE
CYCLE 3
CYCLE *
MASS
MOOE
1 IDLE
2 Ib HG
3 10 H6
* Ib HG
5 11 HG
h Ib HG
7 3 HG
8 lh HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
R Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
8 ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S H HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
AVERAGE
CONCENTRATION AS MFASUHtn TOTAL
WC CO CO? NO CARBON
101 i.28o 12.31 i*
Ibl .710 13.7* 11(13
87 .570 13.21 2518
102 .710 11. Rn 1171
1.50 l.R*0 J1.28 322
1* .780 13. B3 JOb*
5* .*20 13.35 2507
B7 .710 13. 7* 1137
3713 2.170 *.72 133
1Q1 1.280 12.3] 1*
115 .800 13. b5 1212
bO .250 13.17 2**3
12 .070 13.51 JlbS
13b 1.810 13.03 337
11 .780 13. bn Jlbl
SO ,*10 13.2* 2*17
85 .850 13. *7 1137
21B* 1.7*0 *.21 12B
13*5 1.510 11.81 13b
120 .ion 13. *5 1102
b* .2hO 13.03 2528
88 .710 13.5* lORb
118 1,750 13.0* 3*2
88 .720 13. b3 1113
*1 .5*0 13. ni ?*81
88 .810 13.52 lib*
3575 2.100 *.hb 151
13*5 1.510 11.81 13b
11.7 .110 13. *2 1133
b2 .250 13.03 2h**
10 .BbO 13. *7 11R8
10* 1.820 13.02 352
87 .7*0 13.50 1178
*3 ,3bO 13. nb 2b01
81 .780 13.** 1208
3b23 2.210 *.b7 112
1*.572
i*.be*
13.57*
1*.700
15.282
1*.712
13.82R
I*.b2*
lO.IBb
1*,572
1*.57*
13.*85
1*.551
15.nb7
1*.*78
13.7**
1*.*12
1.113
1*.773
i*.*8n
13.351
1*.»25
1*.H7
1*.**S
l3.bB3
1*.50S
in.b21
1*.773
l».*5b
13.3*7
1*.*27
1*.1S2
1*.33*
13.*bb
1*.307
10.713
SUM 	 (COMPOSITE VALUES FOR CYCLES 1 AN
BIIU ^i-nunnOTTC' UAIllCe IT n D /" V /* I C C "3 AM
-FUEL
CONS.
307*
13?8*
11227
1328*
178R
1328*
2b10*
1328*
2883
307*
1328*
11227
1328*
1788
1328*
2b101*
1328*
2H83
307*
1328*
H227
J32R*
1788
1328*
2b10»
1338*
28B3
307*
1328*
11227
J 328*
1788
1328*
2b10*
1 328*
2883


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.35C 7.1)




CO 0.
N02 0.
35( 32)
3S( 12. b)
ADJUSTED CM*SS)
HC CO N02
207
158
133
100
10*
12
113
85
1075
207
113
12
11
15
10
lOb
85
1011
30?
Ill
11
88
8*
87
10*
87
10*R
302
lib
Ib
81
7*
B7
13
81
10*5


+ O.b5(
+ O.b5(
•f O.b5(
5*5
1303
773
l**2
23B1
1*23
Ib51
1*50
1150
5*5
1*73
720
Ib03
2*80
l**b
Ib21
1583
1102
b35
Ibb8
75b
1»70
2320
133B
21*5
lb*b
1151
fa35
Ib81
727
IbOO
2*07
1385
1»53
I»b3
1112


7

13
CORRECTED
7
333
118*
351
bB
311
Ibll
3*3
12
7
3b7
115b
353
73
35*
Ib23
3*8
13
1
33b
1208
332
75
3*0
Ib20
35*
1*
1
3*b
12b5
3b3
77
3b2
1725
372
17


.5) =
33) =
.1) =
N02 =
«T.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


7.3b*
32.7
12.1bO
1*.120
WEIGHTtD CMASS)
HC CO N02(K)
*8.0
12.2
11. b
7.7
5.1
7.1
12. B
b.b
153.7
7 M
. *
»8.0
8.7
13. b
7.0
s.»
b.1
11.1
b.5
1**.S
bo
. 0
70.1
1.2
l*.b
b.7
».8
b.7
11.8
b.7
1*1.1
7L
. b
70.1
8.1
1».S
b.1
».S
b.7
10.5
b.3
1*1.5
7C
• 3
7.1
?|-
. :>
(MASS)
(MASS)
(MASS)
(MASS)
127
100
11*
111
13b
110
187
112
Ib*
•a |
3 i
127
113
10b
123
1*1
111
183
122
158
ap
DC
1*7
128
111
113
131
103
2*2
187
IbS
•3 U.
3*
1*7
130
107
123
137
107
Ib*
113
171
3p
.3t
32
3 ^
d 3



1.5
25. b
17*. 1
27.1
3.1
2*.b
183.0
2b.*
1.7
i a L
1 c • o
1.5
as. 2
170.0
27.2
».l
27.2
183.*
2b,8
1.1
13 ~J
1C. /
2.2
25.8
177. b
BS.b
».2
2b.2
183.0
27.3
2.0
1 2 • 8
2.2
2b.b
185.1
28.0
*.*
27.1
11*. 1
28.7
2.*
1 3 t
1 3 • 3
12. b
13.1



HP
0
38
7b
38
11
38
120
38
0
0
38
7b
38
11
38
180
38
0
0
38
7b
38
11
38
120
38
0
0
38
7b
38
11
38
120
38
0






-------
          l-b-72
                       FNGINF; \-?
                                                                              K = 1.07
                                                                                                      GK/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE i
MASS
MODE
1 IDLE
2 Ifa HG
3 10 HG
1 Ih HG
s 19 HG
b Ib HG
7 3 HG
R It, HG
1 C.T.
1 IDLE
a ib HG
3 10 HG
1 Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 19 HG
b It HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
A U C D A P C
A V t K A ot
AVERAGE wv' 	 wv" wv» it- *-i."«-v
CONCENTRATION AS MEASURED TflTSl.
HC r,n co2 NO CARBON
1110 .'170 ll.lt>
351 ,t,>to 13.75
88 .200 13.09
IHl .7bO 13. b7
1*0 l.bSO 13.1?
18 .bbO 13.7?
bl .130 13.31
90 .7)0 13. b7
31b3 1.H50 1.81
1110 .970 11. Ib
115 ,b3H 13.15
81 .290 13.01
108 .RIO 13.19
153 1.870 18.92
97 .810 13.50
53 .130 13.05
8b .790 13.50
2555 1.720 1.30
1159 1.510 11. 7b
127 .BbO 13. *0
bb .230 12.93
92 .770 13.10
115 1.720 18.88
93 .710 13.11
53 .110 13.07
87 .810 13. Ib
2838 1.R70 1.3b
f P V f\ £ PnMDnCTTF\«
1159 1.510 11. 7b
119 .R70 13.29
75 .310 13.02
91 .810 13. 3b
150 1.800 12.82
89 .770 13. 8b
19 .170 13. Ob
81 .780 13.17
2975 2.030 1.31
QI IM^MV ( pnMpn ^ t TF UAI nr^
5U"lVL'-'m~'-J3i It VAwUCO
CUM 	 r rr\t4on
t>1.5
•<.7
15.8
7.1
5.9
7.2
12.8
b.7
135.7
7.1
bl.5
11.5
17.1
7.3
b.l
7.0
11.8
b.l
138.2
7,2
8.1
7.1
(MASS)
(MASS)
CMASS)
CMASS)
108
90
85
108
125
91
191
101
Ib2
aO
e ™
102
91
183
lib
111
120
195
113
Ib3
•a |
3 4,
ISO
123
99
111
131
103
199
117
Ib8
32
150
15fa
138
117
137
113
212
116
17b
31
30
33



1.5 0
23.0 38
180.8 7b
2b.S 38
1.1 11
28.0 38
181.1 120
27.1 38
1.8 0
13 p
1C . 0
1.5 0
37.3 38
173.9 7b
8h.S 38
1.0 11
2fa.7 38
189.9 180
30.1 38
8.1 0
13.3
3.0 0
27. S 38
191.7 7b
89.9 38
1,7 11
29.1 38
189.1 180
88.8 38
8.9 0
13.7
3.0 0
31.0 38
Ib9.8 7b
87.8 38
5.2 H
3b.8 38
188.7 180
28.5 38
3.8 0
13.1
13.0
13.5




-------
                ENGINE 1-2
EXPERIMENTAL 23 MODE EMISSION RESULTS
           BRAKE SPECIFIC BASIS

-------
*-r)7-72
   PRO.JECT 11-2877-ni  CONTROL TECHNOLOGY
i              ENGINE 1-2            STATIONARY DYNAMOMETER
DYNA.
MODE
1
3
3
1
5
b
7
8
1
10
11
13
13
14
15
lb
17
in
11
2P
21
22
23

MODE
1
2
g
M.
5
b
7
8
q
10
11
13
13
1 4
15
lb
17
18
11
20
31
32
23
CYCLE




SPEED LOAD
550
l?no
1200
1POO
I2on
1200
1200
1300
1200
1200
550
1200
2300
2300
2300
23nn
3300
2300
2300
2300
2300
550
2300

ALOE
2.3
3.8
4.8
5.b
7.)
b.b
23.5
H.5
32.7
21.7
4.P
4.3
44.0
33.1
72.1
11.4
13.3
7.1
8.5
14.3
4.1
3.3
8.1
0
7
30
b7
13
187
28)
308
345
375
0
n
370
340
303
278
185
13
bb
21
7
0
0
CALCUI
.0
.5
.0
,b
.1
.5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.n
.0
.5
.b
.b
.4
• Q
.0
HP
0
2
7
15
31
43
b4
70
71
8b
0
0
Ib3
141
133
133
81
41
31
13
3
0
0
MAN. FUEI RATE
DRY CONCENTRATION
VAC. LB/HR GM/HR ALOE.
18.5 b.8 3071
20.0 12.4 5b43
11.0 14.1 b40P
17.4 lb.2 7353
lfa.4 18,1 8210
11.0 23.1 1083?
1.2 33.1 153b8
1.0 3b.O Ib331
.8 41.3 18720
0.0 4b.1 21312
18.5 b.8 3071
22.5 b.3 2840
.1 10.0 40824
1.5 75.7 34347
3.4 70.1 31784
5,3 b2.2 2821*
10.5 4b.b 21133
lb.0 33. b 15223
17.0 30.1 13fa40
11.0 35.1 11314
20.2 23.3 10124
18.5 b.8 3071
24.5 7.1 3231
ATED RRAM/HR WT. WT.
HC
455.
3*5.
153.
143.
171.
115.
1b.
13.
348.
438.
2b8.
12b8.
813.
411.
115.
157.
81.
158.
145.
130.
IbO.
453.
1418.
5
5
8
0
S
0
5
8
1
7
5
5
7
*
1
2
2
0
b
5
3
5
3
COMPOSITE












CO
537
5052
3152
3303
331b
788
353
371
b530
1731
b?7
b27
21337
1 3 b 4 8
1711
1274
423
1)30
1?11
15bO
1120
433
457
HC
CO
N02
ALOE
RSFC
N02 FAC. HP
3.4 .070 0.0
8.8 .ObO .1
17.0 .ObO .4
40.3 .050 .8
85.5 .030 ,b
551.4 .ObO 2.b
410.5 0.000 n.f.i
831.4 .040 2.8
b3b.O 0.000 0.0
543.5 0.000 0.0
3.7 .070 0.0
1.3 .130 0.0
bb5.7 .025 4.1
113.5 .055 8.2
1705.5 .035 4,b
Ib21.4 .ObO 7.3
1417,1 .ObO 4.q
4b4.4 0.000 0.0
300.8 .Ob5 1.1
138.7 0.000 0.0
70. b 0.000 P.O
3.5 .080 n.O
1.4 .ObO 0.0
11.171 GRAM/BHP HR
S8.fa20 GRAM/RHP HR
10.414 GRAM/BHP HR
.215 GRAM/BHP HR
.b75 LB/BHP HR
44
4b
41
SO
54
37
81
b4
78
12
7b
71
82
70
14b
2b
38
31
41
83
32
43
7b
BRAKF
ALOE.
R
2.2
.7
.4
.3
.3
.4
.3
.3
.3
P
R
.3
.2
.5
.1
.2
.2
.3
1.1
1.5
R
R





HC
18b87
8332
3384
27bb
2803
2341
718
bb4
2510
2881
110b8
51114
3b21
1888
508
773
504
14b8
1527
Ib40
23bO
11303
27807
SPECIF
HC
R
181.15
32.21
1.2b
8.01
4.55
1.50
1.33
4.43
5.00
R
R
5.53
3.7b
.87
1.31
1.00
3.10
4,11
10.07
41. 4b
R
R





CO
1.010
B.bOO
2.3bO
3.110
1.870
.470
,130
.130
2.400
3.240
1.300
1.270
4,2bO
3.100
.310
.310
.130
.520
,b70
.170
1.340
.810
.420
























C02
1.b4
11.01
11.48
11.84
11.24
12.34
11.24
11. 3b
11.24
10.78
10.25
S.lb
11.12
12.47
13.48
13.48
12.14
13.48
13.48
13,18
13.71
10.25
3.81
NO
43
b8
lit
235
420
2000
1100
1750
1400
1100
4b
14
813
12b2
2250
2400
2b50
1300
150
535
300
44
8
TC RRAM/BHP-HR
CO

1117.
313.
142.
108.
18.
5.
5.
82.
113.


131.
11.
13.
10.
5.
27.
44.
120.
512.







R
t
1
b
0
4
5
3
8
7
R
H
1
7
b
5
2
1
3
3
t
R
R





NOP
R
5.1
3.5
3.b
4.0
12.1
7.b
11.7
7.1
b.3
R
R
4.1
b.l
12.1
13.3
17.5
11.5
10.3
10.7
21.8
R
R



































-------
tt-in-72  RUN  I
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENGINE 1-2
                                                STATIONARY DYNAMOMETER
DYNA.
MODE SRF.e:n LOAD
1
P.
3
4
5
S
7
R
q
in
u
IS
1?
14
IS
Ife
.17
.18
11
20
21
22
23
550
l?oo
l?on
l?nn
12(10
1?0"
l?no
,i?no
i?oo
i?no
550
1200
2300
2300
5300
2300
23(10
2300
2300
2300
2300
550
2300
0.0
7.5
30.0
b7.fa
13.9
197.5
281.0
30R.H
345.0
375.0
0.0
0.0
370.0
3*0.0
303.0
278.0
185.0
12.5
bb.b
21. b
7.4
0.0
0.0
HP
0
?
7
15
21
43
b4
70
71
Rb
0
0
Ib2
141
133
122
81
41
21
13
3
0
0
MAN. FUEL RATE
VAC. LB/HR GM/HR ALOE.
18.5 b.8 3071
20.? 12.4 5b43
11.3 14.1 b40n
17.5 lb.2 7353
lb.4 18.1 8210
11.5 23.1 1083?
3.H 33,1 153b8
1.2 3b.O Ib331
1.0 41.3 18720
O.n 4b.1 2121?
18.5 fa. 8 3071
22.5 b.3 2840
.1 10.0 40824
1.7 75,7 34347
4.S 70.1 31784
5.5 b2.2 28218
10.7 4b.b ?1133
lb.2 33. fa 15223
17.4 30.1 13b40
11.1 ?5.1 11314
20.4 22.3 10124
18.5 b.8 3071
24.7 7.1 3231
CALCULATED GRAM/HP WT. WT.
MODE
1
3
•?
4
b
i.
7
R
q
10
11
13
13
1*
IS
Ib
17
18
11
20
?]
22
?3
CYCLE




ALOF
l.b
2.5
?.b
5.1
8.8
f.,8
*.?
23.3
12. 4
11.0
2.3
4.1
30.3
45.1
*b.3
1?. *
Ib.R
1.1
R.b
10.3
5.3
».l
8.1
HC
425. b
30b.l
2?b.2
174.1
118.1
225.1
128. b
157.7
47b.b
bbl.7
283.0
15b8.1
1111. 2
448.0
1R7.4
114.2
117.4
1«2.1
170.1
144.2
201.3
482.1
15b3.4
COMPOSITE








co
424
1883
112b
1100
1102
b40
277
288
2152
84 1R
b23
505
21222
4541
1413
808
480
13b
1015
1253
18ib
380
351
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
3.0 .070 0.0
1.4 .ObO .1
18.1 .ObO .4
52.7 .050 .8
102.4 .030 ,b
b01.4 .ObO 2.b
728. b 0.010 O.n
R7b.4 .040 ?.8
1008.7 0.000 0.0
557.5 0.000 0.0
4.0 ,070 n.O
1.0 .120 0.0
71b.4 .025 4.1
1830.8 .055 R.2
1100.1 .035 4.b
H54. fa .ObO 7.3
1730.7 .ObO *.1
b37.3 0.000 0.0
345.8 .OfcS 1.1
14b.O 0.000 0.0
bb.b 0.000 0.0
3.b .080 0.0
1.7 .ObO n.O
13.hl3 GRAM/BHP HR
41.bl4 GRAM/RHP HR
13.282 GRAM/BHP HR
.281 GRAM/HHP HR
.b75 LB/BHP HR
32
31
27
48
fa2
35
21
7b
40
33
41
18
57
10
10
2b
41
32
35
51
30
71
51
BRAKE
ALOE.
R
1.5
.4
.4
.4
.2
.1
.3
.?
.1
R
R
.2
.3
.3
.1
.2
.2
.3
.8
l.b
DRY
HC
18841
814b
5077
3072
30fa4
2414
137
1105
3214
43R7
11003
b8331
4538
1130
7Rb
514
b42
1381
1417
1557
2507
17170
22410
CONCENTRATION
CO C02
*
2.
2.
1.
1.
•
*
•
1.
2.
1.
1.
4.
•
•
*
•
•
•
•
1.
•
•
SPECIFIC


178.
32.
11.
1.
5.
2.
2.
b.
7.


b.
3.
1.
•
1.
4.
5.
11.
b2.
R
R










HC
R
130
480
140
bbO
450
350
100
100
010
730
200
010
2bO
170
310
180
130
350
440
b70
120
700
250























10.78
11.72
11.72
11.01
10.81
11. 3b
11.01
11.24
11. bO
10.78
1.fa4
4.45
11,84
13,fa3
12.14
12,47
11. 3b
11.01
11. 3b
11.48
11.24
8.13
2.1b
NO
40
75
122
280
475
2000
IbOO
1850
2100
1100
47
14
875
2375
2400
2b50
2850
1450
113
475
250
40
8
GRAM/BHP-HR
CO

b5 1018.
11
27
27
27
nn
24
05
8?
R
R
11
01
41
14
45
51
8b
12
11
R
R





?80.
123.
88.
14.
4.
4.
37.
18.


131.
30.
11.
b.
5.
23.
34.
Ib.
5bO.







R
7
1
0
b
q
3
1
4
2
R
R
0
b
3
b
1
1
8
7
5
R
R





N02
P
5.5
2.b
3.4
4.H
14.0
11.3
12.5
1?..R
b.5
R
R
4.4
12.3
14.3
lb.1
21.4
15.7
11.1
11.3
20. b
R
R



































-------
               PROJECT 11-2877-01   CONTROL  TECHNOLOGY
4-10-72 RUN 2              ENGINE  1-2            STATIONARY DYNAMOMETER

MODE
1.
2
3
4
5
b
7
8
q
10
11
12
13
14
15
lb
17
18
19
20
21
2?
23

SPEE
55n
l?nn
1200
1200
1200
l?no
1200
1200
1200
1200
550
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
550
2300
OYNA,
0 LOAD
n.O
7.5
30.0
b?.b
13,1
187.5
281.0
308.0
3*5.0
375.0
0.0
0.0
370.0
3*0.0
303.0
278.0
185.0
12.5
bb.b
21. b
7.*
0.0
0.0
MAN. PUEI RATE
HP
0
2
7
15
21
*3
b*
70
79
Pb
0
0
lb?
I4q
133
122
81
*1
21
13
3
0
0
VAC. LB/HR GM/HR
18.5 b
20.2 12
11.3 1*
17.5 1 b
lb.5 18
11.5 23
3.1 33
1.2 3b
1.0 *1
0.0 4b
18.5 b
22.5 b
.1 10
1.7 75
4.5 70
S.b b2
10.7 4b
lb.2 33
17.4 30
19.2 25
20.4 22
18.5 b
24.7 7
CALCULATED GRAM/HR
MODE
I
2
3
4
5
h
7
R
q
10
u
12
13
14
.15
lb
17
IR
19
20
2 1
22
?3
CYCLE




ALDE
P.S
2.8
3.2
3.b
5.3
h.B
13.0
23.7
lb.1
21.1
2.b
4.4
23.*
39.5
21.8
1?.*
10.9
11. b
15.3
5.3
5.3
?.b
12. b
HC
411.2
212.1
211.*
Ib7.1
1 lb.1
211.1
qq.s
12b.4
*51.5
535.7
2b4.2
1*31.1
857.1
418.3
135.7
157. b
111.5
lbl.1
155.8
1*2.1
138.7
381.0
1591.8
COMPOSITE








CO
*17
Ib42
1871
lib?
1820
b22
399
403
2017
9352
59?
481
2117b
sqQi
1223
704
485
800
152
1P41
Ib43
328
352
HC
CO
NO?
ALDE
HSFC
N02
?.7
10.8
11.*
51.3
lib. 7
b!3.0
107.0 0
1015.1
1358.7 0
bOO.O 0
3.8
1.0
744.0
17q4. b
2170. b
2238.4
1840.8
b!4.b 0
437. b
1 75.1 0
77.2 0
3.1
1.3
12.b80
42.415
14.540
,25b
,b75
.8 307)
.* 5b*3
.1 b*00
.2 7353
.1 8210
.1 10832
.1 153bfl
.0 Ib331
.3 18720
.1 21212
.8 3P71
.3 28*0
.0 40R24
.7 34347
.1 31784
.2 28218
.b 21133
.b 15223
.1 13b*0
.1 11314
.3 10124
.8 3071
.1 3231
WT. WT
ALDE.























•
FAC. HP
.070 0.
.ObO
.ObO
.050
.030
.ObO 2.
.000 0.
.040 2.
.000 0.
.000 0.
.070 0.
.120 0.
.025 4.
.055 8.
.035 4.
.ObO 7.
.ObO 4.
.000 0.
.Ob5 1.
.000 0.
.000 0.
.080 0.
.ObO 0.
GRAM/BHP
GRAM/BHP
GRAM/BHP
GRAM/BHP
LB/BHP
n
1
4
8
b
b
0
8
0
0
0
0
1
2
b
3
q
0
q
0
0
0
0
HR
HR
HR
HR
HR
45
35
32
31
31
3b
40
72
45
57
SO
71
44
80
42
25
27
42
b3
27
31
42
14
BRAKE
ALDE.
Q
l.b
.5
.2
.?
.?
.2
.3
.2
.2
R
R
.1
.3
.?
.1
.1
.3
.5
.4
l.b
R
R





DRY CONCENTRATION
HC
18878 .
7142 2.
*b!2 2.
3088 1.
30b1 1.
2501
bSb
823
2758
3112 2.
11010 1.
5h207
3445 4.
1818 1.
5bO
b78
b*7
1333
1381
1559 .
1711 1.
13bll
esbis
SPECIFIC
HC
a
170.44
30.85
10.82
1.1*
5.13
1.55
1.80
5.73
b.25
R
H
5.21
2.81
1.02
i.ai
1.47
4.11
5.1*
11.03
42.81
R
R





CO
130
210
020
800
410
350
130
130
blO
falO
230
130
210
270
250
150
130
310
420
b70
050
580
280
coe
J 1 . n l
12.3*
11.48
11.48
11.13
11.72
1.13
10. *3
10.55
1.37
10.55
4.5*
11.84
13. *8
12.82
11.12
11.2*
11. *8
11. bO
11. bO
11.84
9.03
2.37
NO
37
81
127
330
550
2100
1800
2150
2500
1050
48
12
100
2350
2700
2100
3000
1*50
1175
575
300
43
7
GRAM/BHP-HP.
CG
a
158.0
272.1
127.4
84.8
14.5
b.2
5.7
25. b
101.1
R
R
130.7
31. h
1.2
5.8
b.O
11.7
32. b
95.7
507.0
R
R





N02
p
b.3
2.8
3.8
5.4
14.3
14.1
15. b
17.2
7.0
9
R
4.b
12.1
lb.4
18.4
22.7
15.2
15.0
13.5
23.8
R
R



































-------
4-11-72  RUN  1
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENRINE 1-
                                                STATIONARY DYNAMOMETER


MODE SPEED
i
?.
3
4
S
b
7
R
9
in
11
12
13
1*
15
lb
17
18
I*
20
21
2?
23

MODE
i
3
3
4
5
b
7
R
q
in
1)
12
13
1*
15
Ib
17
18
iq
PO
21
?2
?3
CYCLF




550
1200
1200
1200
1?00
1200
1200
1200
1200
1200
550
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
550
2300
C
ALDE.
0.0
0.0
n.n
0.0
n.o
n.n
n.o
0.0
n.o
n.n
n.o
0.0
n.o
".0
n.o
n.o
n.o
n.o
n.n
n.o
n.o
0.0
o.n
DYNA.
LOAD
0.0
7.b
30.4
fa8.5
95.0
190. n
285. 0
312.0
350.0
380.0
0.0
0.0
370.0
340.0
303.0
278.0
185.0
92.5
bb.b
29. b
7.4
0.0
0.0

HP
0
2
7
Ib
22
43
b5
71
80
87
0
0
Ib2
149
133
122
81
41
29
13
3
0
0
MAN. FUEL RATE

VAC. LB/HR RM/HR ALOE.
18.0 b.8 3071
20.? 12.4 5fa43
IS. 2 14.1 b400
17. b lb.2 7353
lb.2 18,1 8210
11.0 23.9 10832
2.b 33. S 1538R
2.2 3b.O Ib339
2.1 41.3 18720
0.0 4b,9 2129?
18.0 b.8 3071
22.9 b.3 2840
1.9 90.0 40824
2.7 75.7 34347
4.7 70.1 31784
5.8 b2.2 28218
11.3 4b.b 21133
lb.3 33. b 15223
17.7 30.1 13b40
19.2 25.1 11394
20.2 22.3 1012*
18.«t b.8 3071
21.7 7.1 3239
ALCULATED GRAM/HR WT. WT.
HC
41fa.O
24b.3
I7b.0
172.8
195.7
232.0
101.2
145. 9
3bl,4
SlS.fa
255.8
14bb.O
1021.4
445.9
188.9
143.0
91.0
Ib2.b
1H3.7
140.7
184.1
411.5
1772.5
TOMPOSTTE








CO
4b7
1859
1925
1925
1775
574
2b4
397
3428
9109
520
510
2194b
4898
1889
123b
bb7
1154
1208
1401
1775
509
571
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
3.1 .070 0.0
11.0 .OhO .1
18.8 .ObO .4
45.7 .050 .8
109.4 .030 .7
579.3 .OfeO 2.b
73b.S 0.000 0.0
934.4 .040 2,9
9nq.4 o.ooo n.o
451.5 0.000 0.0
3.b .070 0.0
1.0 .120 0.0
b9b.8 .025 4.1
1840.1 .055 R.2
1922.0 .035 4.b
1900.9 .ObO 7.3
14b0.9 .ObO 4.9
SbS.O 0.000 0.0
3fal.l .ObS J..S
157.0 0.000 n.O
80.3 0.000 0.0
4.0 .080 n.O
1,4 .ObO 0.0
13.118 GRAM/BHP HR
44.55b GRAM/BHP HR
12. SIS GRAM/BHP HR
0.000 GRAM/BHP HR
,b74 LB/BHP HR
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRY
HC
1889b
b317
3953
3391
3385
2858
77b
1114
2705
3b29
11133
b3291
4137
1931
848
724
579
1338
1505
1582
2284
Ib478
30705
CONCENTRATION

1
2
2
1
1



1
3
1
1
4
1






1
1

CO
.050
,3bO
.140
.870
.520
.350
.100
.150
.270
.150
.120
.090
.400
,050
.420
.310
.210
.470
.550
.770
.090
.010
.490
























C02
11.01
11.48
11.84
12.22
12.34
12.71
11. bO
12.22
12.47
11. 3b
11,13
4.84
11,72
13. b3
13.77
13.91
13.18
11.92
11.84
11.72
11.24
9.b4
2.05
NO
42
85
127
270
570
2150
1700
2150
2050
950
48
13
850
2400
2bOO
2900
2800
1400
1000
525
300
48
8
BRAKE SPECIFIC GRAM/RHP-HR
ALDE

0.
o.
o.
0.
0.
0.
0.
0.
0.


0.
0.
0.
0.
0.
0.
0.
0.
0.







•
T
0 141.
0 25.
0 11.
0 9.
0 5.
0 1.
0 2.
n 4.
0 5.
I
I
n fa.
0 2.
0 1.
0 1.
0 1.
n 4.
n s.
0 10.
0 5b.
I
I





HC
R
84
34
04
02
34
55
05
52
98
R
R
30
99
42
17
12
01
bl
8b
81
R
R





CO

1070
277
123
81
13
4
5
42
104


135
32
14
10
8
28
41
108
547







R
.5
.1
.n
.8
.2
.0
.b
.9
.9
R
R
.4
.9
.2
.2
.2
.5
.4
.1
.7
R
R





N02
R
b.3
2.7
2.9
5.0
13.3
11.3
13.1
11.4
5.2
R
R
4.3
12.4
14.5
15. b
18.0
13.9
12.4
12.1
24.8
R
R



































-------
           APPENDIX D
EMISSION RESULTS FROM ENGINE Z-2
          TABULAR FORM

-------
            ENGINE 2-2
NINE MODE FTP EMISSION RESULTS
      CONCENTRATION BASIS

-------
         4-14-72
                        ENGINE 2-8
                                       RUN g
                                                                              K =1.180
                                                                                           HUM = lib  GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE 4
FEDERAL
MODE
1 IDLE
2 Ifa'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
S Ib'HG
1 C.T.
1 IDLE
2 Ifa'HG
3 10'HG
4 Ib'HG
5 11'HG
fa Ifa'HG
7 3'HG
B Ib'HG
1 C.T.
1 IDLE
2 Ifa'HG
3 Id'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HQ
B Ifa'HG
1 C,T.
1 IDLE
8 Ib'HG
3 10'HG
4 Ifa'HG
5 11'HG
fa Ib'HG
7 3'HG
3 Ib'HG
1 C.T.
AVERAGE
A VPB AKP
CONCENTRATION AS MEASURED DILUTION
HC CO COS NO FACTOR
171 1.050 13.0bO
80 1.480 IS.llbO
80 1 . ft 1 0 13.180
bi i.ano I3.i8o
18 .850 13.440
57 1.300 13.180
102 1.230 IS.ObO
58 1.450 13.0bO
1741 .882 5.750
Ibb 1.010 IS. 820
75 1.410 IS. 470
80 1.120 12.510
35 1.380 IS. bin
i .esu ig.140
53 1.450 12.470
107 I.b30 12.470
b2 1.510 12.3*0
1857 ."48 S.lbO
180 .170 12.710
Bfa 1.510 12.510
13 1.200 12.710
73 1.520 12.510
2fa .250 13.0bO
bfa 1.550 12.510
118 1.380 12.470
71 1.470 12.510
1853 .803 5.750
180 .810 12.510
12 1.520 12.S10
11 1.270 12.510
71 1.510 12.470
22 .250 12.820
fa2 1.520 12.210
114- 1.410 12.230
71 1.520 12.220
1773 .770 5.500
SUM 	 (COMPOSITE VALUES FOR
KiiM.--rrnMpnsTTF VAI LIFS FOR
84
384
12ob
420
157
435
1104
420
73
10
4Qfa
1251
435
183
441
1800
441
111
143
441
1351
413
250
508
1147
538
IbS
210
523
13b1
552
320
552
1181
582
217
CYCLES
r.Yri FS
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l
l
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
^
.052
.044
.050
.043
.Ob7
.044
.052
.047
,71fa
.074
.014
.015
.081
.101
.014
.082
.018
.718
.083
.07b
.081
.080
.017
.071
.011
.081
.771
.011
.078
.088
.087
.118
.105
.110
.111
.851
AND 2)-
AND ill-
A D
HC
188
84
84
b4
11
51
107
fel
3128
178
82
88
38
10
58
lib
b8
3111
115
13
101
71
21
71
121
85
321fa
118
11
11
77
25
bi
127
71
321fa


J U S '
CO
1.10S
1.545
1.144
1.357
,2b7
1.357
1.214
1.518
i.sas
1.084
1.542
1.227
1.411
.277
1.587
1.7b4
1.74fa
l.faSI
1.050
1.711
1.217
l.bfl
.27*
I.b73
l.SOb
1.581
1.428
.810
l.faSI
1.382
1.728
.280
l.bBO
l.Sbb
I.b88
1.431


( E D WEIGHHNG
NO FACTOR
88
401
lEbb
438
Ib8
454
2003
440
131
17
444
1371
470
203
491
1148
413
111
155
483
14fal
532
274
548
2125
582
211
231
Sb4
1410
bQO
358
blO
2201
b4b
403


.03b
.081
.SS7
.081
.047
.081
.283
.081
.021
,03b
.081
.857
.081
.047
.081
.883
.081
.021
.03fa
.081
.857
.081
.047
.081
.883
.081
.081
.03b
.081
.257
.081
.047
.081
.883
.081
.081


W E
HC
b.782
7.435
21.585
S.bbS
.103
5.215
30.3fa3
5.405
bs.bae
• 141.114
fa. 417
7.301
22.523
3.3bb
.4b1
S.lbl
32.7bS
fa. Obi
fa7.001
i c i n h u
' 1 3.1 •DOT
7.017
8.234
85.843
7.015
1.341
fa. 331
3b.m
?.b08
bl.208
• lfal.042
7.124
8.888
25.453
b.SbS
l.lSb
b.100
35.824
7.018
bl.217
| i •} CQt.
• lor. bob
• 150.081
i (.a a i u
I G H I
CO
.040
.138
.814
.181
.013
.121
.3bb
.135
.033
1 , 2bO
.031
.137
.315
.133
.013
.141
.411
.155
.034
Ilt 1 T
. T D f
.038
.152
.333
.14b
.013
.1*1
,42b
.1*1
.030
1.421
.038
.14fa
.355
.154
.013
.150
.443
.150
.030
1.473
1.3b4
1 li K 1
E D
NO
3.188
35.b8fa
325.315
31.005
7.87b
40.411
Sfab.774
31.141
8. 754
10b0.224
3.471
31.525
354.452
41.838
1.5J1
43.784
551.113
43.810
4.005
i n Q i t. ti a
AU~ J. . DT J
5.575
48.118
375.417
47.377
18.814
48.711
bQl.883
51.773
b.875
1118. 37fa
8.311
50.183
382.107
S3. 313
Ib.Blb
54.308
bSS.041
57.524
8.478
185b.1S5
1075.134
1 33 U t-t-L.
        FOUR CYCLE COMPOSITE - REPORTED VALUES -
                                                    HC
                                                    CO
                                                    NO
0.35*C  150.081} + O.b5*(  Ib8.314) s   lbl.135  PPM
0.35*C    1.3fa4) + O.b5*(    1.451) =     1.420  PERCENT
0.3S*C 1075.134) + 0.fa5*C 1284.bbb; =  1178.blD  PPM
                       CORRECTED NO s  1313.340  PPM
        DILUTION FACTOR = i4.5/(COE+a.s*co+io.R*HC)

-------
         4-14-72
                       LI-.GINK  <;-?
                                                                               K = i. j 11
                                                                                             HUM  =  us   GH/LS
CYCLE 1
CYCLt 2
CYCLE 3
CYCLE 4
FEDERAL
MODE
1 IDLE
2 Ifa'HG
3 IO'HG
4 Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 1 0 ' HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
a ib • HG
1 C.T.
1 IDLE
2 Ib'HG
3 IO'HG
4 Ib'HG
S 11'HG
fa Ifa'HG
7 3'HG
8 Ifa'HG
1 C.T.
1 IDLE
2 Ib'HG
3 IO'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
B Ib'HG
1 C.T.
AVERAGE
CUNCF.NTnAl ION AS
hC Co CU2
1«4
18
102
«4
35
80
125
84
.RIB 13.180
1 . " 5 u 1 3 . i 8 0
l.JbO 13.480
1.45P 13.330
.2SS 13.770
I.Sao 13.18U
1.410 13.18(1
1.480 13.180
1811 .7bO b.820
ISO .815 IB.ObCI
HI
81
75
31
80
lib
75
l.bSO 12.140
l.lbO 13.100
1.520 12.140
.2bn 13.480
1.531 12.140
1.450 J2.820
l.bfaO 12.820
1711 .fahO b.300
180 .740 13.0bO
1.3
15
75
31
75
lib
80
1.737 12.710
1.230 ir.1'40
1.510 12.820
.280 13.330
i.b30 12.820
1.450 12.140
1.5BS 13.0faO
1841 .130 b.1311
184 ,b40 13.330
18
102
84
31
7.1
lib
80
1.840 12.820
1.P30 IS.ObO
1.700 12.710
.280 13.330
I.b30 12.710
1.4SO 12.710
l.bSO 12.710
1833 .700 b.470
SUM 	 (COMPOSITE VALUES
AVERAGE oupi™~™^uU
HC
CO
NO

lit
101
104
8h
3h
83
121
87
21b7
111
13
14
71
33
84
123
71
2H3V
112
11
101
71
33
71
122
83
3110
113
103
107
81
33
7b
124
85
3020


0.35*(
0.35*(
0.3b*(

u J U S 1
CO
.8b7
1.SU1
1.187
1 . 48b
.2b5
1.571
1.458
1.532
I.H2
.HbS
l.bfa?
1.221
1.511
,2fab
l.blB
1.538
1.7S3
1.128
.788
1.841
1.30fa
l.bBJ
.301
1.723
1.525
I.b41
1.571
.fa70
1.127
1.214
l.BOb
.301
1.738
1.550
1.73b
1.153


Ib2.511)
1.3b8)
1148.100)

t D
nO
123
435
1345
410
2ns
510
2014
510
12b
114
517
I4b0
5bb
32b
5b5
2087
583
118
282
585
1414
b33
310
b48
21bl
b8fa
218
321
b42
1531
bSI
43b
bbl
2174
702
224


t 0.
+ 0.
+ 0.

l^tlGHl ING
FACTOR
.03b
.081
.257
.081
.047
.081
.283
.081
.021
,03fa
.081
.257
.081
.047
.081
.283
.081
.021
.03fa
.081
.257
.081
.047
.081
.283
.081
.021
,03fa
.081
.257
.081
.047
.081
.283
.081
.021


fa5*( lb5.25B)
bS*( 1.4bb)
faS*( 1270.087)
CORRECTED NO
W E
HC
b.lb?
1.027
2fa.B24
7.fab3
1.712
7.3bO
3b.58b
7.737
b2.302
b.878
8.304
24.075
7.023
1.541
7.483
34.821
7.041
bl.b?8
i u a Q t, n
J. 3 B * 8 D U
b.SIb
8.774
25.121
7.0fa7
1.5bS
7.057
34.518
7.407
bS.311
i t, il C 1 11
J. O T » 3 A T
b.13fa
1.134
27.573
7.141
1.5fa5
b.73b
35.103
7.585
b3.421
i (-. L. n n i
A t»b • U U 1
IbS.SlS
I i c -3 u u
A. O 3 • C 3 O
= Ifa4
= 1
= 1227
= 13b3
I 1, 11 I
cu
.U31
.134
.305
.132
.012
.140
.413
.13b
.025
1 '-4 ?fl
J. * -3 C O
.031
.148
.314
.142
.012
.144
.435
.15b
.024
t •* il t
* . ' U *
.028
,lb4
.33fa
.150
.014
.153
.431
.147
.033
1U C L
» T 3 o
.024
.171
.333
.Ibl
.014
.155
.431
.155
.024
1.3b8
E D
NO
4.430
38.bB5
345. SSI
43,fa07
1.b34
45.351
Sbl.Sbb
45.401
2.b3b
i i nt* i Qtt
J. A U 3 . A D ~
b.112
45.111
375.181
50.380
15.340
5D.32fa
510.748
51.87S
4.1b2
10.153
52.077
383.102
Sb.34b
18.320
S7.b75
bll.41S
bl.012
4.57b
I 3CC EC Q
XC93.93O
11.572
57.135
315.488
57.151
20.410
51.583
blS. 210
b2.480
4.70b
| J Q U U 1 C
ACOT,OX3
1148.100
i a 1 n «i n t
1.4bb Acru.uor
.211 PPM
.431 PERCENT
.311 PPM
.Sib PPM
        DILUTION FACTOR =  14 . ?/(LU2tO.5*CO+10.8*HC)

-------
         f-if-72
                                                                               ^ =l.ulb
                                                                                            MLM = 10b
CYCLt 1
CYCLE 2
CYCLE 3
CYCLt f
FEDERAL
MODt
1 IDLE
2 Ib'HG
3 10'HG
f Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
a Ib'HG
3 10'HG
f Ib'HG
5 11'HG
fc Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

1 IDLE
a Ib'HG
3 1 R ' HG
f Ib'HG
S 11'HG
fa Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
a Ib'HG
3 10'HG
f Ib'HG
5 11'HG
b Ib'HG
7 3'HG
H Ib'HG
1 C.T.

A VERAGE
AVERAGE
CUMCKNIkAl ION AS
«c co cue
ISO
1U
bl
n
a?
hb
120
Vb
. >• 1 0 13.fc30
1.230 1 3 . 1 lu
.130 13.110
1.230 IS.'.lli
.211) It. 180
l.?7i] 13.110
l.tlQ 13.b30
1.5.20 13.77d
MEASURED ulLU 1 IUN i
NO FACTUW HC
in
f h*
If H*
soa
210
t13
2011
f-0"
18(jb .bfu S.3HO 12";
HI 1.1-50 l^.fBD
17
118
80
31
75
125
85
17b8

1 . 5 b" 0 1 3 . 1 8 0
1. IbO l?.*8n
1.520 1 3 . t 8 0
. a s a i * . o s o
l.*80 13.330
1.8*0 1 ? . 1 8 0
l.bbll 13.330
. t 7 U 5.770
i f r riMDnc T T t \
13n
im
ift*
*13
2S1
t13
IBdS
52*
188

17S .17U 13.1BO If3
"3
HI
75
31
71
lib
80
1.770 12.1*0
1.3fo IB.Obfi
i . b 3 n 12.1*0
.30(1 13.b30
1.700 12.1tO
l.b'10 13.180
1.700 13.180
1788 .bio s.bfn
170 .770 13.180
13
13
BO
31
75
iao
H*
l.bbO 12.1tO
i.2on i3.nbo
1.550 12. ltd
.250 13.*80
l.SSf) 12.1t(J
1.521) 12.82U
l.tSO IP.IfO
17*0 .b20 5 . 7 S n

SUM — *•" C C OKPOS I TE VALUES
SUM---CCOHPOSITE VALUES
FOJR CYCLE COMPOSITE - REPORTED









tbf
I 388
533
abs
523
11*7
508
257
17(1
f 13
If 82
ssa
271
552
?QR5
518
273
R\U f V P 1 f-' '/
127
Sb
3111

1U3
17
13
71
33
7*
111
8e
seia
171
17
IB
at
33
71
127
SS
3118



0.3S*(
U.35*C
U . 3 S * (

D J U S 1
Cu
.sos
i . 2 2 n
.ua
1.221
.213
i.ebo
l.*13

1.211
1.071
1 .SfaS
1.178
1.53B
.287
1.517
1.87*
l.bBI
1.213

1.015
l.B*3
i.tos
1.708
.315
1.7>S
l.b3S
1.7tb
1.123
.813
1.735
i.afaf
I.b28
.2bb
i.bai
1 . b 0 8
1.707
.I5b



178.b21J
1.31S)
1125.312)

c u
13
fbij
If *7
sot
213
tyi
eoib
sot
237
133
*53
Itb7
til
25b
SOS
HOO
S33
3tO

ISO
tB3
ItSb
5t8
278
5*7
2002
sea
*73
171
515
isba
SBO
217
580
2173
b2b
502



+ 0.
+ n.
+ 11.

«EIGH 1 IN&
.03b
.oai
.257
.081
.0*7
.081
.283
.081
.021
,03fa
.081
.as?
.081
.0*7
.081
.283
.081
.031

.03b
.081
.as?
.081
.Of?
.081
.283
.081
.031
.D3fa
.081
.as?
.081
.Ot7
.081
.283
.081
.021



faS*C IbS.tjBa)
bs*C i.tasj
bs*c iaot.i2i)
COkRECTED NO
h E
hC
b.b7B
7.1t3
23.111
fa. 275
1.285
5.827
3t.0t3
fa.b2t
71.788
1 U J 3 U 3
i D 3 * 3 Q 3
?.01fa
8.717
Sl.h12
7.20b
l.*85
b.BtO
3b.03t
7.b17
b7.173
1 Q "3 R h fl
X 1 3 • D D U
b.SIf
B.bll
33.188
b.115
i.sai
b.bQB
33.75S
7.313
faS.127
11_ U t. "J 1
O t • 3 3 J,
b.f 5t
B.bS3
as.isb
7.t80
l.Stl
7.01fa
35.118
7.821
b7.1S1
1 b 7 • 2 4 1
1 7 8 • b2 1
Ibb.RBS
= 170
= 1
= 117b
s 1281
I 6 H
CU
.018
.1111
.231
.101
.010
.113
.too
.13*
.025
1 1 K 7
X • J. 3 r
.031
.131
.3U3
.137
,01.t
.135
.530
.150
.oas

.037
.Ibt
,3bl
.152
.015
.158
.tb3
.155
.oat
.021
.15*
.325
.its
.012
.1*5
.tS5
.152
.020
1 . 1 38
ia i c
• 31 3
l.*83
.3ft
.tat
.538
.7US
1 E i)
NO
3.331
to.isi
371. Btl
ft. 81?
1.118
t3. S28
570. SOb
t*. 8b1
*.1b1
t. ?7S
to. 351
37b.1BB
tt.toi
12.02b
ft. SSI
537. bag
*7.t*8
7.1t3
1 | 1 C -J 1 Q
1113. rlH
5.388
ts.ooo
37t.l02
t8.781
13.07*
ta.b73
sbb.bai
tb.ttl
1.13b
b.tSt
tS.BbS
t01.3tt
51. bis
13.1t!
Sl.b35
blS.OIt
55.737
10.537
1352. 2db
112S. 312
laut.iai
PPM
PERCENT
PPrt
PPM
        DILUTION FACTOR =  l*.b/CC02 + 0.5*CO+.10.S*HC)

-------
            ENGINE 2-2
NINE MODE FTP EMISSION RESULTS
      BRAKE SPECIFIC BASIS

-------
         *-i*-?a
                        ENGINE ?-2
                                       RUN 2
                                                                              K  =  i.o9
                                                                                          HUH s lib  GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
a Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ifa HG
•» C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
" C.T.
1 IDLE
a ib HG
3 10 HG
4 Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
•» C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
R Ib HG
9 C.T.
AVERAGE
CONCENTRATION AS MEASURE"
HC cn coa NO
179 l.OSD 13. Db 84
80 1.4HO 13. Ob 38*
80 1.090 13. IH )aob
bl 1.300 13.18 *?0
18 ,?SO 13.** 157
57 1.3(10 13.18 *35
102 1.S30 13. Ob 190*
58 l.*SO 13. Ob *PO
17*1 ,B8a 5.75 73
ibb 1.010 la.sa 90
75 l.*l(1 ia.47 *0b
80 l.laO 12.59 1259
35 1.380 ia.b9 i»3S
9 .350 ia.9* 1S3
53 l.*50 ia.*7 4*9
107 i.bso ia.*7 isno
ba 1.590 12.3* **9
1857 .948 S.9b 111
180 .970 ia.71 143
8b 1.590 13.59 *49
93 i.ano ia.7i 1351
73 1.520 ia.59 *93
ab ,25n 13. ob aso
bb 1.550 12.59 508
118 1.380 12. *7 1947
79 l.*70 ia.S9 538
1853 .803 5.75 Ib8
180 .810 13.59 210
93 i.sao ia.59 sas
91 1.270 ia.59 13b9
71 1.590 12. *7 552
aa .aso i2.se 320
ba i.sao ia.29 ssa
11* l.»10 12.33 1989
71 i.5?o 12. aa ssa
1773 .770 5.50 317
TOTAI.
CARBON
14.303
l*.hab
l*.3Sb
l*.S*b
13.709
l*.5*a
14.400
14.573
R.512
I4.no9
13.9bl
13.79b
If .108
is.aoo
13.977
i*.aib
13.997
8.91*
13.87*
14.273
l*.0in
14.189
13.338
14.?11
13.977
14.145
8. 554
13.59*
I4.ao9
13. ''SB
14.137
13.09*
13.877
13.7b3
13.817
8.18S
SUM«-(COMPOSITE VALUES FOB CYCLES 1 AN
AIILI ff-minnotTC ttAlMC'O ETDU P V f 1 C Q 3 AM
FUEL
CONS.
2b33
Ilb72
1780b
Ilb72
8749
Ilb72
?*970
llb?a
270b
2b33
Ilb7a
1780b
llb?a
87*9
Ilb72
2*970
Ilb72
a?0b
2b33
Ilb7a
1780b
Ilb7a
87*9
llb?a
a*9?o
iib?a
270b
ab33
Ilb72
1780b
Ilb7a
87»9
llb?a
3*970
Ilb72
270b


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.3SC 5.3)






CO 0.
Nna o.

3S( b7)
35( 8.*)

ADJUSTED (MASS)
HC CO N02
3b
b9
107
53
12
49
191
SO
598
3*
b8
112
31
b
48
203
5b
b09
37
7b
128
faS
18
59
aas
70
b33
38
82
125
b3
Ib
Sfa
aas
bS
b33


+ 0
+ 0
+ 0

390
238b
a?3i
2107
3aa
2108
*308
as*b
5bb
383
assi
a9ao
23flb
335
2**b
578*
ab78
581
372
ab27
3081
252b
331
2572
*98o
a*so
513
317
2522
3273
2b52
337
2583
51b7
259*
51*


.bSC 5
.bSC
.bSC 9
CORRECTED
5
ina
»97
11?
33
lib
109b
112
8
b
113
539
119
40
ia*
11150
ia*
11
9
iaa
57(1
135
s*
139
1155
1*7
18
1*
1*3
580
151
71
IS*
1198
Ib3
2*


.8) =
71) =
.b) =
Noa =
NT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.asa
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.aaa
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.aaa
.077
.1*7
.077
.057
.077
.113
.077
.1*3


S.fa22
b9.3
9.J42
lo.noi
WETRHTtl) (MASS)
HC CO NOa(K)
8.3
5.3
15.8
*.l
.7
3,8
21. b
S.1'
85.5
S_
• c
7.8
s. a
Ib.*
a.*
.*
3.7
22.9
*.3
87.1
ST
« •*
8.b
5.8
18.8
5.0
1.0
*.s
25,7
5.*
''O.S
50
• *»
8.7
b.3
18.*
*.9
.9
*.3
as. a
s.o
90.5
5ft
. °
5.3
5.8
(MASS)
(MASS)
(MASS)
(MASS)
91
18*
*0l
iba
18
Ib2
*87
181
81
L ?
b c
89
183
*a9
178
I1)
188
bS*
aob
83
T 3
ft.
8b
aoa
453
19*
It
198
Sb3
189
73
•Jft
fit
7*
19*
*81
20*
11
199
58*
20D
7*
•5 a
re
b7
71



i.a
7.8
73.0
8.b
I.''
8.9
123.9
8.b
1.1
8 a
. J
1.3
8.7
79.3
•(.a
a. s
9.b
118. b
^.b
l.b
Br
.3
a.i
9.*
83.8
10.*
3.1
10.7
130.5
11.3
2.5
a 3
9.3
3.1
11.0
BS. a
11.7
*.o
11. t
135.*
la.b
3.*
9.8
8.*
9.b



HP
0
a*
ba
2*
3
a*
103
s*
0
0
a*
ba
a*
3
a*
103
a*
0
0
a*
ba
a*
3
a*
103
a*
0
0
a*
ba
a*
3
B*
103
2*
0






-------
         *-i*-?3
                      ENGINE S-2
                                       RUN 3
                                                                                  1.09
                                                                                           HUM  =  118   GR/LB
CYCLE 1
CYCLE a
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
3 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
* C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
•» C.T.
QllM
1 IDLE
3 Ib HG
3 10 HG
* Ib H6
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
CONCENTRATION AS MEASURED TOTAL
HC CO C03 NO CARBON
18* .815 13.18
98 l.*50 13.18
103 l.lbO 13. *8
8* l.*50 13.33
35 .P55 13.77
80 1.530 13.18
125 l.*10 13.18
8* l.*8D 13.18
1891 ,7bO b.82
180 .815 13. Ob
89 1.590 12.9*
89 l.lbO 13.10
75 1.520 12.9*
31 .350 13. *8
80 1.539 12.9*
lib l.*50 13.83
75 l.bbO 12.82
1719 .bbO b.30
180 .7*0 13. Ob
93 1.737 12.71
95 1.230 12.9*
75 1.590 12.83
31 .380 13.33
75 I.b30 13.83
Ufa l.*50 12.9*
BO 1.585 13. Ob
18*1 .930 b.13
ff»ypi c rnMDflQTTF^.
IB* ,b*0 13.33
98 1.8*0 12.83
103 1.330 13. Ob
8* 1.700 13.71
31 .280 13.33
71 I.b30 12.71
lib l.*50 13.71
80 I.b30 13.71
1833 .700 b.*7
f^tjfl I- f i*\u nn e* T T er \ _
AVERAGE SUM 	 (COMPOSITE VALUES
AVERAGE SUf *»
2.b 0
10.1 2*
8*.0 b2
11,0 3*
3.? 3
11.0 2*
128.1 103
11.3 2*
1.7 0
a 3
" • d
3.8 0
11.3 3*
85. 7 b3
13.3 3*
*.» 3
13. b 2*
133, b 103
13.3 2*
1.8 0
a B
" » 8
*,* 0
13.* 3*
88.3 b2
12. b 2*
*.9 3
13.0 2*
133.3 103
13. b 2*
1.9 0
10 • 0
9.0
9 4 9




-------
         *-i*-72
                      ENGINE  2-2
                                       RUM  *
                                                                             K = l.OR
                                                                                          HUM
                                                                                                10b  GR/LB
CYCLE
CYCLE
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
8 Ib HG
3 10 HG
» Ib HG
5 19 HG
b Ib HG
7 3 HG
8 It, HG
9 C.T.
1 IDLE
g Ib HG
3 10 HG
* Ib HG
S 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S IS HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
" C.T.
AVERAGE
CONCENTRATION AS MEASURED
HC CO COS Nf)
iBo ,*9o 13. bs qo
90 1.S30 13.91 *b*
89 .930 13.91 1*1*
71 l.a*n 13.91 508
27 ,?10 1*.18 210
bb 1.270 13.91 *93
120 l.*10 13. b3 2011
75 1.5?mjns^e*Ttr ntliiC'C IT *1 U r V T t C C ^ Ad)
FUEL
CONS.
2b33
Ilb72
1780b
Ilh7?
87*9
Ilb72
R*970
Ilfe72
270b
2b33
Ilb72
1780b
Ilb72
87*9
Ilb72
2*970
11B72
270b
2b33
Ilb72
I780b
Ilb72
87*9
Ilb72
2*970
Ilb7?
270b
2b33
Ilb72
1780b
Ub72
87*9
Ilb72
2*970
Ilb72
270b


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.35( b.l)






CO 0.
N02 0.

35( b*)
35( 8.8)

APJUSrED (MASS)
HC CD Noe
3b
7*
115
59
18
55
213
h?
bbl
37
81
2Sb
b7
20
b3
222
71
b!9
35
79
118
bS
21
hi
210
b?
b39
3*
80
125
b9
21
bS
?2*
72
b2*


+ 0
+ 0
+ 0

18?
1903
22*0
190b
257
19b3
*bB8
2332
*38
379
8*15
2809
237b
3*7
a3*3
b!2*
2595
*39
3bO
2818
3325
2b23
380
372*
538*
2b78
*08
290
2bb2
300b
2507
321
2508
5299
2b21
3*9


.bSC
,bS(
.bS(
CORRECTED
S
118
572
129
»?
125
1099
128
1*
8
115
575
127
51
128
ioao
135
20
9
121
Sbb
138
55
138
108*
132
28
11
130
bio
1*7
59
1*7
1177
158
30


S.8) «
72) =
9.*) =
N02 =
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
,077
.057
,077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


5.881
b8.9
9.185
9.900
wEIf.HTtD (MASS)
HC CO NOa(K)
8.3
5.7
lb.8
*.S
J.O
*.2
2*.l
*.7
9*.b
50
• D
8.b
b.2
37.7
5.1
1.8
*.9
as.i
5.5
BB.S
bli
* T
B.I
b.l
17.*
5.0
1.2
*.7
33.7
5. a
91.3
5-j
* f
7.9
b.l
18.3
5.3
1.2
5.0
25.3
5.b
89.2
5Q
.*>
b.l
5.8
(MASS)
(MASS)
(MASS)
(MASS)
*2
1*7
329
1*7
15
151
530
180
b3
5b
8B
18b
*13
183
eu
180
b92
200
b3
7 ^
83
217
489
202
2B
210
b08
aob
58
•5(1
f T
b?
SOS
**a
193
18
193
599
aoa
so
L. Q
b™
b*
T 3
fC



1.3
9.1
8*.0
10.0
2.*
9,b
12*. 2
9.9
e.o
8Q
• ~
1.8
8.9
8*.S
9.8
2.1*
9.9
115.3
10.*
2.9
87
* r
2.0
".3
83.2
10.7
3.1
10. b
123.*
10.1
*.o
9.0
a.*
10.0
89.7
11.3
3.*
11.3
133.0
ia.a
*.3
9,8
8.8
9.*



HP
0
2*
b2
2*
3
2*
103
2*
0
0
2*
bg
a*
3
2*
103
2*
0
0
2*
ba
a*
3
2*
103
a*
0
0
a*
ba
2*
3
a*
103
a*
a






-------
                ENGINE 2-2
EXPERIMENTAL 23 MODE EMISSION RESULTS
           BRAKE SPECIFIC BASIS

-------
4-

MODE
1
2
3
t-
5
b
7
8
q
in
11
12
13
14
15
lb
17
IP
19
20
21
22
23
17-72 RUN 1

DYNA,
SPEED LOAD
550
1200
1200
1?00
1200
1200
1POO
1200
1200
120P
550
120H
2300
2300
2300
2300
2300
2300
2300
2300
2300
550
2300
0.0
5.2
20.8
4b.8
bS.O
130.0
195.0
213.0
23q.o
?bn.n
0.0
0.0
Sin.n
285.0
254.0
232.0
155.0
77.5
55.0
24.R
b.2
0.0
0.0
1
HP
0
I
5
11
15
30
45
49
55
59
0
n
13b
125
111
102
b8
34
24
1L
3
0
n
ENGINE 2-2
MAN. FUEL RATE
STATIONARY

VAC. LB/HR GM/HR ALDE.
17.5 5,8 2b31
17.7 11.7 5289
lb.8 14,1 b378
15,3 15.4 b981
14.5 17.1 7775
12.3 22.4 10170
7.0 27.2 12329
5.R 30.0 13b08
3.4 32.1 14579
0.0 48.5 22009
17.5 5.8 2b31
22.8 5.8 Sb54
.5 100.7 45fa59
3.4 b2.7 2B459
5.0 59.4 2b957
b.O Sb.3 25515
11.2 41.3 18711
15.5 31.9 144h5
17.0 27.8 I?b24
18.5 23.9 10859
19.7 20.7 9385
17.5 5.8 2b54
24,5 fa.l 2758
CALCULATED SRAM/HR WT. WT,
MODE
i
2
3
4
5
b
7
8
q
in
11
12
13
.14
15
lb
17
18
19
20
PL
22
23
CYCLE




ALDE
1.4
1.4
1.1
3.2
7.1
3.1
5.1
b.4
S.b
10.8
1.4
3.5
34. b
15. b
lb.7
17.9
17.2
b.9
k.5
4.b
3.4
1.1
7.3
HC
b2.4
7.0
11.4
29.1
35.9
131.4
227.0
258.5
r?bl.O
bOb.l
55.8
1143.1
1.199.8
438.9
3R7.3
385.8
209.1
15fa.O
122.9
RO.l
45.8
b7.b
1411.1
COMPOSITE








CO
251
38
132
Ib9
154
bbl
1245
1580
1933
2327b
252
183
54339
3323
4853
5587
2387
21b2
Ib30
10b4
558
189
78
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.5 .070 0.0
9.9 .ObO ,1
22.1 .ObO .3
45.5 .050 .5
84.3 .030 .4
229.8 .ObO 1.8
448.5 0.000 0.0
523. b .040 1.9
b05.2 0.000 0.0
47,7 0.000 0.0
2.B .070 0.0
.4 .120 0.0
75.1 ,025 3.4
1477. b .055 b.9
1339.3 .035 3.9
112b.7 .ObO b.l
h75,0 ,ObO 4,1
2b0.8 0.000 0.0
Ib9.9 ,0b5 l.b
94.9 0.000 0.0
50.3 0.000 0.0
2.7 .080 0.0
.5 .ObO 0.0
11.914 GRAM/BHP HR
80.724 GRAM/BHP HR
9.412 GRAM/RHP HR
,22b GRAM/BHP HR
.757 LB/BHP HR
40
18
21
32
b5
23
31
35
43
44
39
b3
bb
37
43
49
fa3
33
35
28
24
27
b2
BRAKE
ALDE.
R
1.2
.4
.3
.5
.1
.1
.1
.2
.2
R
R
,3
.1
.2
.2
.3
.2
.3
.4
1.3
R
R





DRY
HC
3709
187
2bl
b2b
70?
2089
2982
3073
28b3
5275
3310
44273
490b
22b8
21bO
2274
Ib45
1589
1417
IQbS
b9b
3545
2S5b4
DYNAMOMETER
CONCENTRATION
CO








1
10


11

1
1

1





.740
.050
.150
.180
.150
.520
.810
.930
.050
.030
.740
.350
.000
.850
.340
.b30
.930
.090
.930
.700
.420
.490
.070























C02
14.53
14.05
14,42
14.79
15.09
15.43
15,09
14,94
14, bb
8,bO
14,53
5.50
7.18
13. b3
13.48
13.18
13. b3
13.48
13.48
13. b3
13.77
.1 3 . 0 b
2.3?
NO
44
80
isa
295
500
1100
1775
1875
2000
125
SO
5
93
2300
2250
2000
IbOO
800
590
380
230
43
3
SPECIFIC RRAM/BHP-HR


5.
2.
2.
2.
4.
5.
5.
4.
10.


8.
3.
3.
3.
3.
4.
5.
7.
lb.







HC
p
88
40
72
42
43
09
31
78
20
H
R
84
52
48
80
08
bO
10
37
8b
R
R







31
27
15
10
22
28
32
35
391


400
2b
43
55
35
b3
b?
97
205







CO
H
.8
.9
.8
.4
.3
.0
.5
.4
.8
R
R
.3
.b
.b
.0
.2
.7
.7
.q
.7
R
R





N02
a
8.4
4,7
4.3
5.7
7.7
10.1
10.8
11. I
.8
R
R
.b
11.8
12.0
11.1
9.9
7.7
7.1
8.7
18.5
R
R



































-------
1-17-72 RUN 2
               PROJECT 11-2877-ni  CONTROL TECHNOLOGY
ENGINE 2-2
STATIONARY DYNAMOMETER

MORE
1
?
3
1
5
b
7
fl
9
10
11
1?
1?
If
15
lb
17
18
11
20
21
22
23

DYNA.
SPEED LOAD
550
1200
1200
1200
1?00
1200
1200
I2nn
1200
1200
550
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
550
2300
0.0
5.2
20.8
1b.8
b5.n
130.0
.195.0
213. Cl
239.0
2bO.O
0.0
O.Q
310.0
285.0
251.0
232.0
155.0
77.5
55.8
21.8
b.2
n.O
0.0

HP
0
1
S
11
15
30
15
19
55
59
0
0
13b
125
111
102
b8
34
21
11
3
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
17.5 5.8 2b31
17.7 11.7 5289
lb.7 11.1 b378
15.3 15.1 b98l
11. b 17.1 7775
12.0 22.1 10170
7.0 27.2 12329
5.9 30.0 ISbOR
3.1 32.1 H579
0.0 18.5 22009
17.5 5.8 2b31
22.8 5.8 2bS1
.5 100.7 15b59
3.1 b2.7 28159
5.0 59.1 2b957
b.2 Sb.3 25515
11.2 11.3 1871J
15.7 31.9 111b5
17.0 27.8 12b21
18.5 23.9 10859
19.7 20.7 9385
17.5 5.8 2bS1
21.5 b.l 275P
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
*
5
b
7
R
q
10
11
12
1?
1*
15
lb
17
1"
11
20
21
?2
29
ALDE
I. 2
1.8
2.5
3.7
b.8
a.b
1.9
5.1
''.i
10.8
1.3
2.9
IP. ?
13.0
13.7
12.5
11. b
11.8
s.o
3.8
i.o
J.O
5.7
HC
b3.9
b.7
13.8
30.1
38.5
155.7
231.0
2b0.5
273.1
b!2.9
b8.8
1290. b
1.1.91 .1
112.5
3b3.2
350. b
193. fa
152.1
110.7
b?.b
17.2
55.5
1322.0
CYCLE COMPOSITE












CO
328
10
J13
185
201
729
15bl
2227
2739
21519
133
23R
51049
5021
1939
5573
2271
2371
1727
1211
115
119
87
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.5 .070 0.0
10. b .ObO .1
23.9 .ObO .3
19.8 .050 .5
93.0 .030 .1
253.1 .ObO 1.8
189. b 0.000 0.0
571.8 .010 1.9
b52.1 0.000 0.0
18.3 0.000 0.0
3.1 .070 0.0
.1 .120 0.0
71.7 .025 3.1
1117.1 .055 b.9
1323.5 .035 3,9
1103. b .OhQ h.l
b71.0 .ObO 1.1
253.1 0.000 0.0
Ib5.8 ,0fa5 l.b
91.1 0.000 0.0
SO.b 0.000 0.0
2.7 .080 0,0
,b .ObO 0.0
12.1b2 GRAM/BHP HR
85.280 GRAM/BHP HR
9.317 GRAM/BHP HR
.182 GRAM/BHP HR
,75b LH/BHP HR
32
21
21
33
5b
21
27
27
13
13
33
bO
3b
32
3b
35
51
57
27
21
28
21
13
BRAKE
ALDE.
R
1.5
.5
.3
.5
.1
.1
.1
.2
.2
R
R
.1
.1
.1
.1
.2
.3
.2
.1
1.5
R
R





DRY
HC
3503
IbB
292
597
b88
2211
2780
283b
2780
52b5
3723
57007
1910
2223
2050
2109
1533
1591
1307
933
712
2930
21153
SPEC


5.
2.
2.
2.
5.
5.
5.
5.
10.


8.
3.
3.
3.
2.
1.
1.
b.
17.







CONCENTRATION

•
*
*
•
•
•
*
1.
1.
in.
i.
*
11.
i.
i.
i.
•
i.
i.
•
»
•
*
IFIC
HC
R
bb
90
81
59
21
18
35
00
32
R
R
80
31
27
15
85
18
S3
22
39
R
R





CO
890
050
150
180
180
520
930
200
380
110
IbO
520
000
310
380
bbO
890
230
010
850
310
390
070
























C02
13.18
13.18
13.33
13.18
13. b3
13.91
13. b3
13.33
13.18
7.91
12.71
5.50
7.28
13.77
13. b3
13.18
13.77
13.77
13.77
11.05
13.77
13.33
2.2b
NO
12
80
152
295
500
1100
1775
1875
2000
125
50
5
93
2300
2250
2000
IbOO
800
590
380
230
13
3
GRAM/BHP-HR


33
30
.17
13
21
35
15
50
113


398
10
11
51
33
h9
70
111
153







CO
R
.9
.1
.3
.7
.5
.n
.8
.2
.2
R
R
.1
.3
.1
.9
.5
.9
.7
.5
.0
R
R





N02
R
8.9
5.0
1.7
b.3
8.5
11.0
11.7
11.9
.8
R
R
.b
11.1
11.9
10.9
9.9
7.5
b.8
8.1
18.7
R
R



































-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
4-18-72 RUN 1              ENGINE 2-2           STATIONARY DYNAMOMETER
DYNA.
MODE
i
2
3
<*
5
b
7
P
q
10
11
12
13
14
15
lb
17
18
.19
20
21
22
23
SPEED LOAD
550
1POO
1200
1200
1200
1200
1200
1200
1200
1200
550
1?00
2300
2300
2300
2300
2300
2300
2300
2300
2300
550
2300
n.
•5.
20.
4b.
b5.
130.
195.
213.
239.
2bO.
0.
0.
310.
285.
254,
232.
155.
77.
55.
24.
b.
0.
n.
0
2
8
8
0
0
0
0
0
0
0
0
0
0
0
0
0
5
8
8
2
0
0
HP
0
1
5
11
15
30
45
49
55
59
0
0
13b
125
111
102
b8
34
24
11
3
0
n
MAN. FUEL PATE

VAC. LB/HR GM/HR ALDE,
17.5 5.8 2b31
17.7 11.7 5289
lb.8 14.1 b378
15.3 15.4 b981
14.7 17.1 7775
11.8 22.4 10170
7.0 27,2 12329
5.8 30.0 13bOP
3.4 32.1 14579
0.0 48.5 28009
17.5 5.8 2b31
22.8 5.8 2b54
.5 100.7 45bS9
3.4 fa2.7 28459
4.9 59,4 2b957
b.2 5b,3 25515
11.0 41.3 18711
15.5 31.9 144b5
lb.9 27.8 12b24
18.5 23.9 10859
19. b 20.7 9385
17.5 5.8 2b54
24,5 b.l 2758
CALCULATED GRAM/HR WT. WT,
MODE
i
2
3
4
5
b
7
8
q
10
11
12
13
14
15
lb
17
18
19
20
21
22
23
CYCLE




ALDE
1.1
2.1
2.2
3.8
b.9
5.0
5.b
b.4
9.1
10. b
'.<>
2.9
15.2
10.1
13.2
10.5
15.9
^.5
5.1
4.7
4.b
.9
5.7
HC
80.0
7.1
12.5
35.0
44.2
142.7
248. b
2b0.7
2bS.3
bib. 5
77.7
1342.5
1283.1
502.0
4 Y 3 . S
420.1
P41.3
178.4
132. fa
85.1
423.4
b5.5
1454.9
























COMPOSITE












CO
399
40
94
209
230
882
2370
2504
2418
24189
475
225
54P38
b!80
b090
b845
P9P?
2938
2154
17bl
821
375
188
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.1 .070 0.0
10.8 .ObO .1
20.2 .ObO .3
41. b .050 .5
b4.8 .030 .4
184.1 .ObO 1,8
295.5 0.000 0.0
357. b .040 1.9
484. b 0.000 0.0
34,1 0.000 0.0
2.3 .070 0.0
.3 .120 0,0
b3.8 .025 3.4
1085.9 .055 b.9
99H.8 .035 3.9
807.5 ,ObO b.l
493.1 .ObO 4.1
175.3 0.000 0.0
112.2 .QbS l.b
b2.4 0.000 0.0
3b.9 0.000 0.0
2.2 .080 0.0
.4 .ObO 0.0
13.283 GRAM/8HP HR
95.013 GRAM/BHP HR
b.B95 GRAM/BHP HP
.177 GRAM/BHP HR
.75b LP/BHP HR
39
25
22
35
59
34
32
34
43
42
38
59
29
24
34
29
57
45
27
29
34
22
43
BRAKE
ALDE.
R
1.8
.5
.4
.5
.2
.1
.1
.2
.2
R
R
.1
.1
.1
.1
.2
.3
.2
.4
1.7
R
R





DRY
HC
4535
180
270
712
815
2090
3073
29b5
2727
5328
439b
S89R4
5257
2b09
2440
2504
18bS
1815
1530
1133
bb71
35bO
23447
CONCENTRATION

1.
•
•
•
•
•
1.
1.
1.
10.
1.
•
11.
1.
1.
2.
1.
1.
1.
1.
•
1.
•
SPECIFIC


5.
2.
3.
2.
4.
5.
5.
4.
10.


9.
4.
3.
4.
3.
5.
5.
7.
155.







HC
R
97
b4
28
97
80
58
3b
8b
38
R
R
45
02
98
13
55
2b
43
84
93
P
R





CO
120
050
100
210
210
b40
450
410
230
350
300
490
000
590
bbO
020
120
480
230
IbO
b40
010
150
C02
13.33
13.33
13. b3
13.91
14.05
14.05
13.48
13.77
13,48
8.14
12.82
5.27
7.18
12.94
12.94
12.94
13.18
13. Ob
13.18
13.18
13.48
13. Ob
l.fs
NO
3b
83
131
255
3bO
813
1100
1225
1500
89
37
4
79
1700
IbSO
1450
1150
538
390
250
175
3b
2
GRAM/BHP-HR
CO
R
33. b
19.7
19.5
15.5
29.7
53.2
51.5
44.3
407.2
R
R
399.5
49.5
54.7
b7.4
43.0
8b.b
88.1
Ib2.1
302.2
R
R





N02
R
9.1
4.3
3.9
4.4
b.2
b.b
7.3
8.1
.b
R
R
.5
8.7
8.9
7.9
7.3
5.2
4.b
5.7
13. b
R
R



































-------
4-18-72 RUN H
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENGINE 2-2
STATIONARY DYNAMOMETER


PYNA.
MODE SPEED LOAD
i
?.
3
t
5
b
7
R
q
10
11
12
13
14
15
lb
17
IS
is
20
21
22
23
550
l?no
1200
1200
1200
1200
1200
1?00
1200
1200
550
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
550
2300
0.0
5.2
20.8
4b.8
b5.0
130.0
l^S.O
213.0
23S.O
2bO.O
0.0
0.0
310.0
285.0
254,0
232.0
155.0
77.5
55. R
24.8
b.2
0,0
0.0

HP
0
1
5
11
15
30
45
4q
55
5S
0
0
13b
125
111
102
b8
34
24
11
3
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
17.4 5.8 2b31
17.0 11.7 528S
lb.4 14.1 b378
15.3 15.4 bq81
14.7 17.1 7775
11.4 22.4 10170
7.0 27.2 12329
b.3 30.0 13bOR
4.2 32.1 1457S
0.0 48.5 2200q
17.5 5.8 2b31
22.5 5.8 2b54
.q 100.7 45bsq
3.q b2.7 2845q
5.3 5S.4 2bS57
b.b Sb.3 25515
11. 0 41.3 18711
15.5 31. q 144fa5
17.0 27.8 12b24
18.4 23. q 1085S
IS. 5 20.7 S385
17. b 5.8 2b54
24.4 b.l 2758
CALCULATED GRAM/HR WT. WT.
MODE
1
2
q
4
5
h
7
8
q
10
11
12
1?
If
15
lb
17
1R
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
O.n
o.o
0.0
0.0
0.0
0.0
o.n
0.0
o.n
n.n
0.0
n.o
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
HC
7S.S
11.2
17.0
31.5
3S.7
Ib4.q
254 .1
r>q4.5
30S.7
bh8.7
71.8
1305. S
1387.4
Slb.l
470.2
470.2
253.4
113.5
141.1
101.0
47.0
b7.0
13b0.2
COMPOSITE








CO
353
5b
124
181
200
S3B
20bl
2bb5
3128
24bOb
505
223
53814
b07b
b034
b88b
28SO
2S10
2130
1740
P38
378
171
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.1 .070 0.0
13.2 ,ObO .1
20. « .ObO .3
38.0 .050 .5
52. q .030 .4
155.3 .ObO 1.8
28q.l 0.000 0.0
3oq.7 .040 i.q
355.7 0.000 0.0
31. b 0.000 0.0
2.1 .070 0.0
.4 .120 0.0
bb.3 .025 3.4
10b?.8 .055 b.q
S85.7 .035 3.S
75b.4 .ObO b.l
487.7 .ObO 4.1
Ib5.b 0.000 0.0
10R.2 .Ob5 l.b
bl.b 0.000 0.0
3S.8 o.ooo n.n
?.4 .080 0.0
.4 .ObO 0.0
13.33fa GRAM/BHP HR
q4.b54 GRAM/BHP HR
b.5q8 GRAM/BHP HR
0.000 GRAM/RHP HR
.75b LR/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
I
I





DRY
HC
4410
281
3bO
b32
723
2380
30b4
323b
317S
s?q?
4408
58047
572S
2728
2bl3
278b
iq84
iqe?
Ib45
13bl
725
3bl3
24037
CONCENTRATION

*
*
•
•
•
•
1.
1.
1.
10.
1.
•
11.
1.
1.
2.
1.
1.
1.
1.
•
1.
•
SPECIFIC


q.
3.
2.
2.
5.
5.
b.
5.
11.


10.
4.
4.
4.
3.
5.
5.
q.
17.







HC
R
41
5R
S5
b7
55
70
05
b7
2b
R
R
22
13
23
b3
73
70
77
30
31
R
R





CO
q?o
070
130
180
180
b70
230
450
sso
5bO
380
4qo
000
5SO
bbO
020
120
480
230
IbO
b40
010
150
























C02
13.18
13.18
13.33
13.77
is, qi
13.77
13.33
13,18
13. Ob
7.S4
12.71
5.50
7.28
13.18
13. Ob
12.82
13.33
13.18
13.33
13.33
13.77
12. q4
2.32
NO
35
100
132
230
2SO
b?5
1050
1025
1100
83
35
5
83
1700
Ib50
1350
1150
513
380
250
185
3S
2
GRAM/BHP-HR


47
?b
Ib
13
31
4b
54
57
414


sqb
48
54
b?
42
85
87
IbO
308







CO
R
.4
. J.
.S
.4
.b
.2
.8
.3
.2
R
R
,»
.7
.2
.8
.b
.8
.2
.2
.b
R
R





N02
R
11.1
4.4
3.b
3.b
5.2
b.S
b.4
b.5
.5
R
R
.5
8.b
B.q
7.4
7.2
4.q
4.4
5.7
14.7
R
R



































-------
*-

MODE
i
2
3
*
5
b
7
8
9
10
11
.12
13
1*
15
lb
17
18
19
30
21
22
23
l«-72 RUN 3

DYNA
SPEED LOAD
SSO
1?00
1?00
1200
1200
1?00
1200
1200
1200
1200
550
1200
2300
2900
2300
23PO
?300
2300
2300
2300
230P
SSO
2300
0.0
S.2
20.8
*b.8
faS.O
130.0
19S.O
213.0
239.0
2bO.O
0.0
0.0
310.0
285.0
25*. 0
232.0
155.0
72.5
55.8
2*.R
b.2
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENGINE 2-2 - STATIONARY
•
HP
0
1
5
11
15
30
*5
*9
55
59
0
0
13b
125
111
102
b8
32
- 2*
1 I
3
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
17. b 5.8 Sb31
17.2 11.7 5289
lb.* l*.l b37B
15.3 IS.* b981
1*.S 17.1 777«5
11.* 22.* 10170
7.0 27.2 12329
b.3 30.0 13bOB
*.2 32.1 1*579
0.0 *8.5 22009
17. b 5.8 2b31
22.* 5.8 2b5*
.9 1CP.7 *5b59
3.8 b2.7 28*59
5.b 59.* 2B957
b.b 5b.3 25515
11. 0 *1.3 18711
15.5 31.9 l**bS
17.0 27.8 12b2*
1R.S 23.9 10851
19.* 20.7 9385
17.5 S.8 2b5*
2*. 3 b.l 2758
CALCULATED GRAM/HR HT. WT.
MODE
1
2
3
*
5
b
7
8
q
10
11
12
13
it
iS
lb
17
18
19
20
S'.
22
?3
CYCLE




ALPE
0.0
0.0
n. n
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.n
o.n
n.o
0.0
0.0
0. n
0.0
0.0
0.0
0.0
0.0
o.o
0.0
HC
b2.7
7.*
12.9
25.*
30.0
1*0.5
?32.3
2bS.O
2RO.*
b50.3
f*b.Q
125b.7
12*b.7
*5fa. 3
*11.0
3R7.*
2^*. 1
172.*
131.7
8b.8
*0.0
bl.O
1315.5
COMPOSITE








CO
351
55
150
178
Jb*
8b7
19«?
25b8
25bl
23911
*38
22b
5fS52
SbOb
b32*
bl 9R
2923
3010
2329
17*?
8*7
3b5
181
HC
CO
N02
ALDE
BSFC
N02 FAT. HP
2.2 .070 0.0
12. S .ObO .1
eO.9 .ObO .3
*0.b .OSO .5
b?.7 .030 .*
15S.9 .ObO 1.8
2H5.2 0.000 0.0
305. b .0*0 1.9
392.7 0.000 0.0
37.5 0.000 0.0
2.0 .070 0.0
.3 .120 0.0
bb,2 .025 3.*
1175. b .OSS b.q
9b1.2 .035 3.9
877.2 .O'-O fc.l
53b.2 .Obn tf.l
179.0 0.000 n.o
117.1 ,0b5 l.b
faS.* 0.000 0.0
*1.3 0.000 0.0
2.5 .080 0.0
.5 .ObO 0.0
12.350 GRAM/BHP HR
93.*22 GRAM/BHP HR
7.118 GRAM/8HP HR
0.000 GRAM/BHP HR
,75fa L9/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3b*2
192
289
521
555
209*
2907
3023
29b3
5757
37**
58297
5078
238*
2271
2273
181?
1759
1531
Ilb8
bll
3273
21979
DYNAMOMETER
CONCENTRATION

1





1
1
1
10
1

11
1
1
1
1
1
1
1



CO
.010
.070
.130
.180
.150
.b*0
.230
,*50
.3*0
.*80
.230
.520
.000
.*50
.730
.800
.120
.520
.3*0
.IbO
,b*0
.970
.150
























C02
13.91
13. b3
13.77
1*.05
1*.1B
1*.31
13.91
13.77
13.77
8.*3
13.33
5.9b
7.09
13.18
12.9*
12.9*
13.18
13. Ob
13.18
13.33
13. b3
12.9*
2.2b
NO
39
98
138
250
3S5
700
1075
1050
1250
1GQ
3*
5
81
1850
IbOO
155D
1250
550
*10
2b5
190
*0
3
SPECIFIC GRAM/8HP-HR


b.
2.
2.
2.
*.
5.
5.
S.
10.


9.
3.
3.
3.
3.
5.
S.
8.
1*.







HC
R
2?
7?
3P
02
73
21
*5
1*
95
R
R
IP
bb
70
81
*5
*3
39
00
7*
R
R







*5
25
lb
11
29
**
52
*b
*02


*01
**
5b
bl
*3
9*
95
IbO
311







CO
R
.9
.3
.b
.0
.2
.b
.8
.9
.5
R
R
.8
.9
.9
.0
.1
.8
.3
.*
.8
R
R





N02
R
10. S
*. *
3.8
*.3
5.2
b. *
b.3
7.2
.b
R
R
.5
9.*
8.b
8.b
7.9
S.b
*.8
b.O
15.2
R
R



































-------
            APPENDIX E
EMISSION RESULTS FROM ENGINE 1-3
          TABULAR FORM

-------
            ENGINE 1-3
NINE MODE FTP EMISSION RESULTS
      CONCENTRATION BASIS

-------
          *-2*-72
                               1-3
                                            RUN i
                                                                              K = .831
                                                                                           HUM s  3b  GR/L8
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 19'HG
b lh ' HG
7 3'HG
8 Ib'HG
9 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
B Ib'HG
9 C.T.
1 IDLE
2 Ib'HG
3 IQ'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.
AVERAGE
CONCENTRATION AS
HC CO C02
*23 .700 ll.*80
102 .310 13.770
87 ,350 13.580
55 .280 13.770
2b .150 13.280
*9 .300 13.*80
33 .?50 13.180
39 .310 13.t>30
109b .170 5.b80
*23 .700 ll.*BO
3*9 .500 13.580
71 .310 13.*80
35 .180 1.3.180
13 .3*0 13.*80
39 .220 13.0bO
21 .270 13.180
31 .350 13.*80
11*3 .IbO 5.520
278 .520 11.8*0
bb .390 13.*8o
75 ,*00 13.*80
39 .380 13.*BO
17 .**0 13.180
39 .3bO 13.*80
21 .270 13.180
35 .*10 13.530
1105 .2*0 S.RbO
278 .520 11.8*0
92 .390 13.8*0
75 .390 13.330
39 .310 13.*80
22 .180 IS.ObO
S3 .320 13.0bO
bl .210 13.100
31 .3bO 13.*80
10*0 .210 5.800
fr-ypl (r PflMDflQTTP^™
SUM"-(COMPOSITE VALUES
oiiu 	 //TmnneTTF WAI iico
AVERAGE cnjn™~~ -it-'TT-uo i ic vHv.ui.'j
FOUR CYCLE COMPOSITE - REPORTED




MEASURED DILUTION A
NO FACTOR HC
9]
1059
?573
1229
3*9
12JI
1*73
1229
9*
91
113*
2b97
12*1
3b3
Ib59
19*7
.1325
8b
90
1150
2739
1283
3b3
1313
19h8
1313
7*
90
1217
2791
1313
3b3
1301
1988
13b9
75
FOR CYCLES
FHP PVPI FQ
r U ~ U T L L. C o
VALUES -


1.180
1.033
1.0*7
1.038
1.0B3
l.ObO
1.087
1.0*9
2.087
1.180
1.021
1.057
1.090
l.Obl
.1.097
1.087
1.059
2.122
I.lb9
1.055
1.05*
1.057
1.081
1.058
1.087
1.053
2.021
I.lb9
1.02b
l.Obb
l.ObO
1.101
1.092
1.093
1.059
2.0b3
1 AND
^ A NO
HC
CO
NO
*99
105
91
57
28
52
3h
*1
2287
*99
35b
75
38
1*
*3
23
33
2*25
325
70
79
*1
18
n
23
37
223*
325
9*
80
*1
2*
58
b7
33
21*b


0.35*(
0.35*(
0.35*(
D JUSTED
CU NO
.82b
.320
. 3bti
.291
.Ib3
.318
.272
.325
.355
,82b
.510
.328
.19b
.3bl
.2*1
,?9*
.371
.339
,b08
.*11
.*21
,*02
.»75
.381
.29*
• *32
,*85
.bOB
,*00
,*lb
.329
.198
.3*9
.229
.381
.*33


130. 3b?)
.333)
1739. 5b*)
107
109*
2b9*
127b
378
1283
IbOl
1289
19b
107
1157
2852
1352
385
1821
2117
1*0*
182
105
1213
288fa
1357
392
1389
21*0
1382
150
105
12*8
297*
1392
*00
1*21
2172
1*50
155


* D.
* 0.
* o.
WEIGHTING w E :
FACTOR HC
.03b
.089
.257
.089
.0*7
.089
.283
.089
, .021
.03b
.089
.257
.089
.0*7
.089
.283
.089
.021
,03b
.089
.257
.089
.0*7
.089
.283
.089
.021
,03b
.089
.257
.089
.0*7
.089
.283
.089
.021


b5*( 110
b5*(
bS*( 1871
17.
9.
23.
S.
I.
*.
10.
3.
*8.
17.
31.
19.
3.
„
3.
b.
2.
SO,
11.
b.
20.
3.
m
3.
b.
3.
*b.
11.
8.
20.
3.
1.
5.
18.
2.
*5.


971
379
*10
081
32*
b21
151
b*0
028
urm
b U j
971
702
29b
39*
fa*8
809
*bl
923
925
i a Q
1 C T
703
19b
310
b70
8b3
b?3
*bl
279
90b
nk3
uoe
703
*00
5*1
b80
138
151
Rb2
921
058
II CC
fas
3b7
-» C n
.258) = 117
,3bb) =
,b93) =
CORRECTED NO =

1825
ISlb
I G H T E D
CO NO
.030
.029
.09*
.02b
.008
.028
.077
.029
.007
.030
.0*5
.08*
.017
.017
.021
.083
.033
.007
.022
.037
.108
.03b
.022
.03*
.083
.038
.010
_
.022
.03b
.107
.029
.009
.031
.ObS
.03*
.009
.333
t L. t.
.abb
.29b
.355
.**8
.b38
3.8bb
97.373
b92.3*7
113. 53b
17.772
11*. 215
*53.08b
11*. 70*
*.119
i (. i i n I 7
J. D 1 1 • U X r
3.8bb
103.008
732.979
120.3**
18.105
Ib2.0**
599.018
12*.91b
3.832
1 O L Q 111
X DO O * ili.
3.789
107. 9b2
7*1.725
120.7*8
18.*3b
123. bb2
b05.*79
123. OB7
3.1*1
1 Q II t QL Q
X O T f • "D 1
3.789
111.115
7b*.*17
123.888
18.779
12b.*53
bl*.711
129.017
3.2*9
1 QQ C IL 1 ?
18*13. *1 f
1739. 5b*
1871 . b93
PPM
PERCENT
PPM
PPM
        DILUTION FACTOR a 1*.S/fC02+0.5*COtlO.8*HC)

-------
          *-2S-72
                        ENGINE 1-3
                                            RUM 3
                                                                              K  =
                                                                                           HUM  =   51   GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
3 Ib'HG
3 10'HG
* Ib'HG
5 11 'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 H'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
3 Ib'HG
3 10'HG
* Ib'HG
5 H'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
CONCENTRATION AS
HC CO C03
**1 ,*10 U.bOO
11* .300 13.110
107 .310 13.580
71 .370 13.880
37 ,130 13.180
bl .350 13.500
*3 .31" 13.*00
50 .370 13.710
13*5 .110 t-.03n

**1 ,*10 11, bOO
71 .370 13,*80
8* .300 13.*80
53 ,3bO 13.b30
2f> .130 13.180
*1 .380 13,b30
35 .210 13.180
*1 ,?50 13.720
1231 .110 b.310
*lb .530 11.130
82 .330 13.*50
75 .310 13.250
*1 ,2bO 13,*80
2b .120 13.120
50 .250 13.*80
33 .200 13,180
** .310 13.b30
1151 .180 S.lbO
*lb .530 11.120
78 .380 13.*80
71 .350 13.*80
53 .280 13.550
2b .130 13.180
*b .270 13.*80
33 .330 13.180
*3 .310 13.h30
1185 .300 b.030
f /"> W r* 1 IT /•nuOrtOTTCTA

AVERAGE SUM~~™(C ("IMPOST TF VALUES
A U C D A f (T Q1IM 	 /fnuDfiOTTC: \/Ai IICC
A V t K A L» t 3 « r
FOUR CYCLE



•i~— ~-^l,urir
X r r o » ~ ~ T
3.181
135. *30
733.115
lib. 082
17.233
13b,181
5b7.3**
118.857
*.SO*
3.181
110. 17b
730. ObO
121.8*8
lb.02b
lib. 351
512. 5b3
117. *7b
*.*85
i an 3 i (. i>
1 oU c » loo

PPM
PERCENT
PPM
PPM
        DILUTION FACTOR = l*.5/(C02+0.5*CO+10.8*HC)

-------
          *-35-7a
                        ENGINF 1-3
                                            RUN 3
                                                                              K = .810
                                                                                           HUM =  3?  GR/LB
CYCLE 1
CYCLE a
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
a Ib'HG
3 10 'HG
* Ib'HG
5 H'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

1 IDLE
a Ib'HG
3 10 'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
3 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
a Ib'HG
3 10 'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
HC no coa
37* .530 ll.bno
10* .330 13.550
13 ,37n 13.*80
57 ,3in 11.530
37 .13n 13.130
*b .310 13.*RO
*1 .HO 13.150
*0 .350 13.1*0
137a .180 S.BbO

37* .530 ll.bOO
bb ,3hO 13.550
73 .330 13.580
*1 .180 13.730
17 .IbO 13.18P
*0 .180 13.b30
aa .3*0 13.180
31 .350 13.730
HSb .350 S.BbO
*38 ,*80 13.330
b8 .300 13.*80
71 .300 13.*80
*0 ,330 13.550
17 .1*0 13.180
37 .350 13.700
aa .IbO 13.330
31 ,a80 13.770
1135 .170 5.810
/f*V/*l K PnMDnQTTF^ —
*38 ,*80 13.330
7* .330 13.770
7* .380 IS.bbO
*1 .330 13.770
18 .130 13.330
*0 .380 IS.bbO
11 .IbO 13.*00
31 .370 13.770
1108 .170 5.S3P
^^"V(»l c «*nuDnQTTC\
AVERAGE SUM 	 (COMPOSITE VALUES
AVERAGE SUM r~n*.nnn*-rr ll*l nets
FOUR CYCLE


1"~~ ^ uunr ua 1 1C VHUUC.O
COMPOSITE - REPORTED


MKASHRED (
NO
80
lion
3bnb
11B8
307
1B33
1738
13bO
17

80
1117
3733
1877
331
13bn
1831
1338
17
10
13*1
38*3
137b
3b3
ias*
lias
1351
103
10
ieob
3711
1381
3*5
1381
aoba
1351
113
FOH CYCLES
VALUES -


JILUTInw A
FACTOR HC
1.183
1.053
1.057
1.051
1.017
1.0fa3
1.011
1.038
1.180

i.isa
1.05*
1.0*1
1.0*7
i.oia
1.05*
1.088
1.0*1
a. oos
1.181
1.058
1.058
1.058
1.013
1.0*b
1.071
1.0*0
3.017
1.181
1.035
1.0*5
1.0*0
1.081
1.0*7
1 .07*
1.0*0
a.iai
1 AND
•3 ft Mr\
HC
CO
NO
**a
101
18
bO
*1
*1
*s
*1
2518

**a
70
77
*3
11
*a
3*
33
3317
*11
7e
75
*3
11
31
3*
sa
aabi
*ii
77
77
51
11
*a
ao
33
3351


0.35*C
0.35*C
0.35*C
D J 11 R T E p WEIGHTING
co NO FACTOR
.b3b
.a*3
.ass

.132
.233
.207
.357
. 35b

,b3b
.37*
,3*b
.188
.175
.110
.abi
,3b*
.501
.538
.317
.317
.3*3
.153
.abi
.173
.an
.3*3
.538
.331
.313
.331
.130
.313
.173
.asi
,iba


iao.i*8)
.373)
17*1.3**)
15
1158
57515
1358
337
1301
181b
iais
112

15
1178
285b
1337
351
1327
1183
1313
11*
101
1313
3008
1*55
317
13*3
3078
1*05
aob
101
13*8
aiib
13*1
373
1**7
aais
1*05
338


•f O.b5*(
+ 0,bS*(
+ 0.bS*(
,03b
.081
.357
.081
.0*7
.081
.283
.081
.oai

.03b
.081
.as?
.081
.0*7
.081
.383
.081
.oai
,03b
,081
.357
.081
.0*7
.081
.383
.081
.031
.03fa
.081
.257
.081
.0*7
.081
.383
.081
.031


110.
.
1883.
15
1
35
5
1
*
ie
3
sa

is
b
11
3

3
b
a
*8
17
b
11
3

3
b
3
*7
17
b
11
*

3
S
a



aio) =
abi) =
501) s
W E
HC
.112
.7*3
,3b8
.371
.107
.35*
.bbO
.bSI
.88b
1 Q a
.na
.11*
,b71
.811
.873
.751
.77b
.a?a
.bb3
c ^ g
. 3 J8
.b78
.*0*
.303
.7bb
.873
.***
,730
,8b1
.b**
in 3
* rue
,b78
.Bib
,8b8
.537
.115
.731
.775
,870
.531
"J I Q
* r J. T
.If8
• ? 1 0
113

1835
I G H
CO
.033
.oaa
.073
.oao
.OOb
.oao
.051
.033
.007
3C 3
. C 3 c
.033
.oa*
.081
.017
.008
.017
.07*
.033
.011
.011
.oas
.088
.oaa
.007
.033
.0*1
.oab
.007
3 L 3
.eb i
.011
.oai
.075
.oai
.OOb
.oab
.0*1
.oas
.008
.373
3L 1
. ebl
.b81
.2b5
.101
TED
NO
3,*0*
103.035
708.053
111.13*
15.83b
115.755
S3b.bb*
115.35*
*.033
1 *J 1 ^ Q C Q
3.*0*
10*.83b
73*. 0*1
118.150
lb.*7S
118.1*3
SbO.B3B
ia3.1bB
*.083
1 ^ ail T 3 D
1 ro T . re a
3.b33
llb.Sfal
773.1*0
131.538
18.b*5
111.510
588.01*
135.038
*.330
i o"} o Cn L
iO ro.SUo
3,b33
111.081
7*1.338
111.3*7
17.53*
188.7*1
b8b.7*7
135.083
5.007
17*1.3**
18 82 » 509
PPM
PERCENT
PPM
                                                                                 CORRECTED NO
        DILUTION FACTOR s 1*.q/CCOa+0,S*CO+10.H*HC)

-------
            ENGINE 1-3
NINE MODE FTP EMISSION RESULTS
      BRAKE SPECIFIC BASIS

-------
          1-21-72
                        FNGINE 1-3
                                            RUN 1
                                                                                   .8*
                                                                                           HUM =  3b  GR/LB
CYCLE I
CYCLE
CYCLE 3
CYCLF 1
MASS
MODE
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
S IS HG
fa Ib HG
7 3 HG
R Ib HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
S IS HG
b Ifa HG
7 3 HG
8 Ib HG
S C.T.
Q 1 I1J_ __ __
1 IDLE
2 Ifa HG
3 10 HG
1 Ib HG
S IS HG
b Ib HG
7 3 HG
8 Ib HG
S C.T.
AVERAGE
CONCENTRATION AS MEASURE"
HC co coa NO
4as .700 11.48 si
108 .310 13.77 10SS
87 .350 13.58 2573
55 .280 13.77 J2as
2b .150 13. 28 31S
IS .300 13.48 J211
33 .aSO 13. )8 1473
ss .310 is. bs iaas
losb .170 s. be si
123 .700 11.48 SI
34S .500 13.58 1131
71 .310 13.48 2bS7
35 ,)80 13.18 lail
13 .340 13.48 3b3
3S .230 13. Ob JbSS
ai .a?n is. is isi7
31 .350 13.48 1335
1143 .IbO S.Sa 8b
a78 .sao 11.84 so
bb .3SO 13.48 1150
75 .400 13.48 a73S
3S .380 13.48 1283
17 .440 13.18 3b3
3S .3bO 13.48 1313
21 .270 13.18 ISbB
35 .410 13.53 1313
1105 .240 S.Bb 74
278 .520 11.84 SO
S2 .3SO 13.84 1217
75 ,3SO 13.33 a7Sl
3S .310 13. 4H 1313
22 .180 13. Ob 3b3
53 .320 13. Ob 1301
bl .210 13.10 1S88
31 ,3bO 13.48 13bS
1040 .aiO 5.80 75
TOTAL
CARBON
ia.b37
14. ISO
14.024
14.10S
13.458
13.833
13.4fafa
13.S82
7.034
12.b37
14.457
13.8b7
13.3SP
13.834
13.322
13.473
13.8fa3
b.S14
12.bfaO
13.S41
IS.Sfal
13.SQ2
13. H38
13.882
13.473
13.S78
7.2S3
12.bfaO
14.32S
13.801
13.83a
13.2b4
13.437
13.37b
13.873
7.133
SUM— (COMPOSITE VALUES FOR CYCLES 1 AN
(Miu ffftitf^nc-T'TF- tf ai iice c no i- V r> i ET C ra AM
FUEL
CONS.

S2b3
13518
S2b3
b754
S2b3
!Sbl3
S2b3
22fal
2115
S2b3
13S1R
S?b3
fa754
S2b3
!Sbl3
S2b3
aabi
2115
S2fa3
13518
S2b3
b7S4
S2b3
lSb!3
S2b3
aabi
ans
S2b3
13518
S2b3
b7S4
S2b3
!Sbl3
S2b3
22bl


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.35( 4.S)






co o.
N02 n.

35( 17)
35( 13.8)

HC
7b
72
SI
3S
14
35
52
28
380
7b
242
75
2b
7
2S
33
22
404
SO
47
78
as
s
28
33
as
370
50
bl
7S
aa
12
3S
S7
22
35b


+ 0
+ 0
+ 0

USTEO (MASS)
CO N02
237
IDS
b81
371
152
lOb
73b
115
110
237
h17
blO
asi
33S
30S
7S1
17a
lOfa
175
523
78?
511
140
485
7S4
54S
ISO
175
SOS
772
IIS
185
lib
b22
18b
131


.bS( 4
.b5(
,bS( 14
CORRECTED
S
aso
823
2b8
58
2bS
712
270
10
S
241
873
285
SS
383
S41
2S4
S
5
esi
880
284
bO
2S1
SSI
2BS
8
S
2bl
S08
2S2
fal
2S8
Sb8
303
8


.2) =
IS) =
.8) =
N02 =
HT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.asa
.077
.147
.077
.057
.077
.113
.077
.143
.asa
.077
.147
.077
.057
.077
.113
.077
.143


4.422
18.3
14.117
IS. ISO
WEIGHTED (MASS)
HC CO N02(K)
17.7
5.5
13.3
3.0
.8
2.7
s.s
a.i
54.4
4.7
17.7
18. b
11.0
2.0
.4
a. 3
3.7
1.7
57.7
Si
« 1
11. b
3.b
11.5
a. a
.5
a. a
3.7
I.*
sa.s
»n
. 0
11. b
I.S
11.7
2. a
.7
3.0
10. S
1.7
50. S
u q
i.s
4.2
(MASS)
(MASS)
(MASS)
(MASS)
55
31
100
as
s
31
83
38
Ib
i 7
J. r
SS
50
SO
IS
IS
ai
so
3b
15
i n
IB
41
40
115
3S
as
37
so
42
21
3 n
c u
41
3S
113
38
11
34
70
37
1 R
ID
17
IS



i.a
17.7
121 .0
20. fa
3.3
20.7
80.5
20.8
1.4
t a "j
i C • r
1.8
18. b
128.3
21. S
3.4
as.s
10b.3
22. b
1.3
14.8
1.8
IS. 5
ias.i
81.''
3.4
22.4
107.5
22.2
1.1
1 U L
i T « b
1.2
20.1
133.4
aa.s
3.5
22. S
10S.4
as. 4
1.1
i c n
X 3 • u
13.8
14.8



HP
0
aa
53
aa
4
aa
bS
aa
0
0
ea
53
aa
4
aa
bS
aa
0
0
22
S3
22
4
22
bS
22
0
0
aa
S3
22
4
aa
faS
aa
0






-------
          f-?5-72
                        ENGINE  1-3
                                             RUN f
                                                                                    .11
                                                                                            HUM  =   51   GR/LB
CYCLE 1
CYCLE
CYCLE 3
CYCLE f
MASS
MODE
1 IDLE
?. lb HG
3 10 H6
f Ih HG
5 19 HG
b lb HG
7 3 HG
a ib HG
S C.T.
1 IDLE
2 lb HG
3 10 HG
f lb HG
5 IS HG
b lb HG
7 3 HG
8 Ifa HG
S C.T.
1 IDLE
2 lb HG
3 10 HG
f lb HG
5 IS HG
b lb HG
7 3 HG
S lb HG
S C.T.
1 IDLE
2 ib HG
3 10 HG
f lb HG
5 IS HG
b lb HG
7 3 HG
8 lb HG
S C.T.
AVERAGE
CONCENTRATION AS MFASUREO
HC CO COB NO
ffS .fSO 11. bd 77
II* .300 13. SI ID'S1*
107 .310 13.58 18h7
71 .370 13. 8R 12fl
37 .130 13.18 321
fel .250 13.50 U52
f3 .210 13. HO 1738
50 .270 13. 7S 12*7
12f5 .ISO b.D3 87
f»S .fSO 11. bO 77
71 .270 13. fS 1117
8f .300 13. f8 2bf7
53 ,2bO 13. b3 1377
2b .130 13.18 321
fS .280 13. b3 1187
35 .210 13.18 187b
fS .350 13.72 1313
123S .ISO b.2S S3
fib .530 11. S2 77
82 .330 13. fS 1*38
75 .310 13.25 2b5b
fS .2bQ 13. f8 122S
2b .120 13.12 33f
50 .250 13. fR IS**
33 .200 13.18 ISfl
ff .310 13. b3 127f
115S .180 5.Sb 1P8
fib .530 11. SR 77
78 .280 13. f8 1170
7S .350 13. *8 2b55
53 .280 13.55 12S8
2b .120 13.18 312
fb .270 13. f8 1232
33 .230 13.18 1S25
fa .310 13. b3 125S
1185 .300 b.02 IDS
TOTAL
CARBON
12.575
If .333
If .flOb
If .?27
13.350
13.81b
13.b5b
If .llf
7.5b5
12.575
13.827
13.871
13.Sf7
13.338
13.Sb3
13.f28
If. 123
7.818
12.8SS
13.8bS
IS.bfl
13.7S3
13.2b8
13.78f
13. fib
13.S88
7.3S2
12.8SS
13.8ff
13. SIS
13.887
13.328
13.800
13.ffb
13.S85
7.500
SUM — (COMPOSITE VALUES FOR CYCLES 1 AN
*i i iu ff*niAnnoTTc \i 1 1 t \c a c: nQ i~ vr- 1 C C a AM
FUEL
CONS.
2115
S2b3
13S18
S2b3
b75f
S2b3
ISblS
S2b3
22bJ
2115
S2b3
13518
S2b3
b75f
S3b3
ISblS
S2b3
32bl
2115
S2b3
13518
S2b3
b75f
S2b3
ISblS
S2b3
22bl
2115
S2b3
13518
S2b3
fa75f
S2b3
ISblS
S2b3
22bl


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.35C 5.0)






CO 0.
N02 0.

35( 15)
35( 12. S)

ADJUSTED (MASS)
HC CO N02
82
sn
112
50
20
f f
b7
35
ff!2
82
51
88
38
If
35
55
35
387
7f
5S
80
3b
1»
3b
52
31
383
7»
5b
83
38
If
33
52
30
38b


+ 0
* 0
+ 0

Ibb
3S2
bOf
355
133
33S
bOS
358
115
Ibb
3b5
SSI
3fS
133
375
b20
fb*
111
17b
ff 5
b21
353
123
33S
5S1
f!5
111
17b
378
bS7
377
123
3bb
b78
flS
122


.fa5( f
.b5(
.b5( If
CORRECTED
f
22b
SS8
2b8
5f
25b
82S
272
S
f
2f8
85b
282
5f
2bl
S10
28b
S
f
31S
87f
27f
Sb
300
8Sf
280
11
f
2bO
asb
287
52
275
S32
277
11


.b) =
lb) =
.3) =
N02 -
WT.
FACT.
.232
.077
.If7
.077
.057
.077
.113
.077
.If3
.232
.077
.If?
.077
.057
.077
.113
.077
.If3
.232
.077
.If?
.077
.05?
.077
.113
.077
.If3
.232
.077
.1*7
.077
.057
.077
.113
.077
.If3


f .712
15.3
13.8f7
12.5S8
WEIGHTED (MASS)
HC CO N02(K)
18. S
b.l
Ib.f
3.8
1.2
3.f
7.S
2.7
57.5
53
. C
18. S
».o
13.0
2.S
.8
2.7
b.2
2.7
55.3
f . 7
17.1
f .b
11.8
2.7
.8
2.8
5.S
2,f
5f.7
11 L
f .fe
17.1
f.3
12.2
2.S
.8
2.b
5.S
2.3
55. 2
u t.
T • b
5.D
»r
» b
(MASS)
(MASS)
(MASS)
(MASS)
3S
30
8S
27
B
2b
bS
28
lb
1 i:
X 3
3S
28
87
2?
8
2S
70
3b
lb
1 C
13
fl
3f
SI
2?
7
2b
b?
32
lb
i C
X 3
fi
2S
101
2S
7
28
7?
32
17
1 f*
i O
15
1 ti
X °



1.0
17. »
87. S
20.7
3.1
IS. 7
S3.b
20. S
1.2
nQ
• B
1.0
1S.1
125. S
21.7
3.1
20.1
102. B
22.0
1.3
1 U 1
If , 1
1.0
2f .fa
128.5
21.1
3.2
23.1
101.0
21. b
l.b
i » »
If . f
1.0
20.0
125. S
22.1
3.0
21.1
105.3
21.3
l.b
l 11 3
J.T » 3
la.'*
1 ft -a
IT « S



HP
0
22
53
22
»
22
bS
22
0
0
22
S3
22
»
22
bS
22
0
0
22
53
22
f
22
bS
22
0
0
22
S3
22
t
22
bS
22
0






-------
                         fcNL-INE  J-3
                                             RUN 3
                                                                                                    32   GR/Lb
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
2 lb HG
3 10 HG
1 lb HG
5 11 HG
b lb HG
7 3 HG
8 lb HG
1 C.T.
1 IDLE
2 Ifa HG
3 10 HG
1 lh Hvi
5 11 HG
fa lb HG
7 3 HG
8 lb HG
1 C.T.
1 IDLE
2 lb HG
3< 10 HG
* lb HG
5 11 HG
b lb HG
7 3 HG
8 ib HG
1 C.T.
1 IDLE
2 lb HG
3 10 HG
* lb HG
5 11 HG
b lb HG
7 3 HG
8 lh HG
1 C.T.
CONCENTRATION AS MFASUREn
HC CO C02 NO
37* ,53n 11. bO
10* .230 13. 55
13 .270 13.18
5 ? .210 13.53
37 .120 13.1?
*b .210 13.18
11 olIO 13.15
10 .250 13.1*
1272 .180 5.8b
37* .530 11. bn
bb .2bO 13.55
73 .330 13.58
11 , 1«0 13,72
17 0lbO 13.18
10 0180 13. h3
22 .210 13.18
31 .ISP 13.72
115b .250 5«Rb
138 ,,*BO 12.22
b8 .300 13.18
71 ,300 13.18
10 .230 13.55
17 .1*0 13.18
37 C25C 13. 7n
22 .IbO 13.33
31 .280 13.77
1125 .170 5.81
t f V f" 1 P fnMDnQTTFla
138 g180 12.22
7* t!20 13.77
7* .280 13. bh
*1 .23P 13.77
18 d20 13.33
*0 .280 13. bh
11 .IbO 13. *0
31 .270 13.77
1108 .170 5.53
r f n ?*i e~ *»«nnrtoT»r\_
AVERAGE SUM— -(COMPOSITE VALUES
AVERAGE SU'' »»-"•«••«•« ,,n,itr«
FOUR CYCLE



1 — "— ^UIJ'-'KUO I ' C. V « UUCi1
COMPOSITE - REPORTED



80
1 100
2bOb
) 188
307
1223
1738
12bO
97
80
1117
2723
1277
321
12bO
1821
1338
17
10
12*1
28*3
137b
3b3
128*
1125
1351
102
10
12
N02
•i
21*
8*1
cbS
52
271
8Hb
2 72
10
1
217
871
282
51
280
882
2*52
10
5
275
121
30b
bl
282
928
215
11
5
2b2
893
28?
57
301
989
215
12


.1) =
11) =
.9) =
HOI s
FACT.
.232
,077
,1*7
.077
.057
.077
.113
.077
.113
,.232
.077
a»7
,.077
.057
.077
.113
,077
a*3
.232
.077
.117
.077
.057
.077
.113
.077
.113

!o>7
• I*7
.077
.057
.077
.113
.077
.1*3


1.1*1
13.1
11.515
11.135
WEIGHTED (MASS)
HC CO N02(K) HP
15.8
5.8
11.1
3.2
1.2
2.b
7.3
2.2
51. 1
Sn
. U
15.8
3.7
11.2
2.3
.5
2.2
3.1
1.7
51.1
1 r 3
17. b
3.8
11.0
2.2
.5
2,0
3.9
1.7
51.0
1.3
17. b
1.0
11.3
2.7
.b
2.2
3.3
1.7
Sb.l
1.1
*.b
* . *
(MASS)
(MASS)
(MASS)
(MASS)

2*
78
22
7
22
bl
25
lb
I '4
JL J
12
27
IS
11
1
H
80
3b
22
3b
31
87
21
8
2b
53
21
15
1 4
A,"
3b
33
80
21
7
21
S3
28
lb
H
1*



1.0 0
18.7 22
12*. 1 53
20.* 22
3.0 *
21.1 22
1S.S bl
21. 0 22
1.1 0
1.0 0
11.1 22
128.1 S3
21.7 22
3.1 1
21.5 22
99.7 bl
22.5 22
1.1 0
i n i
11.1
1.1 0
21.2 22
135.* S3
23. b 22
3.5 1
21.7 22
101.8 b9
22.7 22
l.S 0
I U. Q
1 T e "
1.1 0
20,2 22
131.3 S3
21.7 22
3.3 1
23.* 22
111.7 bl
22.7 22
1.7 0
15.0
13.9
11.9




-------
                 ENGINE 1-3
EXPERIMENTAL 23 MODE EMISSION RESULTS
           BRAKE SPECIFIC BASIS

-------
4-

MODE
i
2
3
*
5
b
7
R
q
ID
11
IS
.U
1*
15
lb
17
1R
19
20
21
22
21
27-72 RUN 2

DYNA,
SPEFD LOAD
(, 00
1200
1200
1200
i?nn
i?nn
12(10
12HO
1200
l?no
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
19.0
42.0
59.0
117.5
I7b.0
192.5
21b.O
235.0
0.0
0.0
255.0
P34.5
209.0
191.0
127.5
b4.0
4b.O
20.0
5.0
0.0
0.0
1
HP
0
1
4
10
13
27
40
41+
4q
54
0
n
112
103
92
R4
5b
28
20
q
2
0
0
ENGINE 1-3
MAN. FUEL RATE
STATIONARY

VAC. L8/HR GM/HR ALOE.
18.5 4.9 222«
19. P q.2 4155
18.5 9.5 4314
17.1 10.8 4892
lb.2 12.0 5424
11. b lb.1 7283
3.4 23.9 10841
1.1 24.8 112bl
.b 27.7 125faO
0.0 35.1 15931
18.5 4.9 2228
22.4 5.2 2375
.5 bb.O 29938
1.4 55. b 25220-
l.b 4q.4 22388
3.4 47.4 21503
11.8 33. b 1S249
15.5 24.1 10929
17.0 21.1 9Sbb
18.4 1B.O 81b5
19.1 IS. 2 b902
18.5 «*07 2i27
24.4 407 2134
CALCULATE" PRAM/HR WT. WT.
MODE
1
?
3
4
5
b
7
R
q
in
11
12
13
I*
15
Ik
17
IB
JO
20
21
22
23
CYCLE




ALDE
1.3
2.1
2.8
5,0
5.4
8.b
31. b
8.5
b.b
fe.3
I.1*
2.7
22.0
9.0
9.'*
b.3
b.B
4.1
5.5
5.?
2.2
1.0
b.4
HC
133.3
53.1
43.2
53.5
73.0
125.8
114.2
131.3
223.2
391.5
b7.9
1443.7
577.3
380.3
hi. 8
41.4
ISO. 5
93.0
53.7
19.*
10.9
77.3
902.3
COMPOSITE








CO
180
172
97
9b
82
108
441
b32
3197
10732
202
105
18)95
5749
472
b33
1077
738
444
242
205
91
89
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.4 .070 0.0
13.2 .ObO .1
22.9 .ObO .3
4b.3 .050 .5
b8.2 .030 .4
33b.2 .ObO l.b
414.1 0.000 0.0
452.9 .040 1.8
345.4 0.000 H.O
lbl.9 0.000 0.0
1.7 .070 0.0
.3 .120 0.0
342.4 .025 2.8
944.9 .055 5.b
1293.1 Q035 3.2
1114.1 .OfcO 5.0
952.9 .ObO 3.4
355.7 0.000 0.0
190.3 .ObS 1.3
83.4 0.000 0.0
48.1 0.000 0.0
1.5 .080 0.0
.3 .ObO 0.0
i&.5b2 GRAM/BHP HR
3:-).felO GRAM/8HP HR
11.093 GRAM/BHP HR
,19b GRAM/BHP HR
.719 LB/BHP HR
35
32
40
b3
b2
75
188
49
38
31
41
51
59
2b
28
20
31
25
40
42
21
29
fa7
BRAKE
ALDE.
R
1.9
.b
.5
.4
.3
.8
.2
.1
.1
R
R
.2
.1
.1
.1
.1
.1
.3
.fe
1.0
R
R





DRY
HC
7793
1743
1348
1459
1795
23bl
14bS
Ib3b
273b
4215
4152
58470
3358
2405
39b
278
17bl
1248
855
340
22b
4807
2051R
DYNAMOMETER
CONCENTRATION









1
5


5
1









CO
.520
.280
.150
.130
.100
.100
.280
.390
.940
.720
.blO
.210
.240
.800
.150
.210
.520
.490
.350
.210
.210
.280
.100
























C02
11.72
13.18
13.18
13. Ob
13. Ob
13.33
13.48
13.48
13.18
11.01
12.59
3.5b
11.84
13.91
14.18
14.18
14.18
14.05
14.79
14.05
14.05
12.47
2.70
NO
24
130
215
380
505
1900
IbOO
1700
1275
525
31
3
BOO
1800
2500
2250
2800
1438
913
440
300
28
2
SPECIFIC GRAM/BHP-HR


4b.
9.
5.
5.
4.
2.
2.
4.
7.


5.
3.
•
•
3.
3.
2.
2.
5.







HC
R
4q
95
58
41
b9
84
98
52
29
R
R
17
70
b7
49
23
32
b7
21
00
R
R







150
22
10
b
4
11
14
b4
iqq


Ib2
5b
5
7
19
2b
22
27
93







CO
R
.9
.4
.0
.1
.0
,n
.4
.8
.9
R
R
.9
.0
.2
.b
.3
.3
.1
.7
.b
R
R





N02
R
11.5
5.3
4.R
5.1
12.5
10. 3
10.3
7.0
3.0
R
R
3.1
9.2
14.1
13.3
17.1
12.7
9.4
9.5
22.0
R
R



































-------
4-28-72 RUN
1
DYNA.
MODE SPEED LOAD
1
2
3
5
b
8
9
10
11
IP
13
14
15
1*>
17
18
19
20
21
22
23
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
feOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
4
18
41
57
115
172
188
211
230
n
0
250
?3!7
205
187
125
b2
45
2P
5
0
0
.0
.b
.4
.4
.5
.0
.5
.5
.5
. 0
.0
.0
.0
.0
.0
.5
.0
.5
.0
.0
.0
.0
.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENGINE 1-3 STATIONARY DYNAMOMETER
HP
0
1
4
9
13
2b
39
43
48
53
0
0
101
101
90
82
55
?7
20
q
2
0
0
CALCULATED GRA»
MODE
i
2
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib
17
18
IS
20
21
22
23
CYCLE




ALDE
.q
i!a
2.1
3.1
b.2
••.0
27.5
10.4
lb.7
5.8
.1
2.3
13.8
1.0
fe. 7
11.0
4.0
2.1
5.3
3.4
l.b
1.3
3.1
HC
151.
58.
41.
b3.
74.
130.
138.
144.
215.
4b1.
80.
1542.
b45.
373.
71.
51.
218.
111.
74.
2b.
11.
9*.
882.
b
0
0
3
b
4
2
3
4
3
4
4
8
1
1
5
0
5
S
0
3
8
8
COMPOSITE












CO
Ib2
110
85
73
81
lOb
28?
452
1118
10534
2bO
81
18545
3337
47b
b44
1155
883
588
290
152
b9
107
HC
CO
N02
ALDE
HSFC
MAN. FUEL RATE
VAC. LB/HR GM/HR ALDE.
18.5 4.9 2228
19,2 9.2 4155
18.5 9,5 4314
17.0 10.8 4892
15,7 12.0 5424
11.8 lb.1 7283
4,2 23.9 10841
1.0 24,8 112b.l
.7 27.7 125bO
0.0 35.1 15931
18.5 4.9 2228
22.5 5.2 2375
.b bb.O 29938
1.5 55. b 25220
1.8 49.4 22388
3.5 47.4 21503
11.0 33. b 15249
15.5 24.1 10929
lb.9 21.1 95bh
18.3 18.0 81b5
19.3 15.2 b902
18.5 4.7 2127
24.5 4.7 2134
VHR WT. WT.
N02 FAC. HP
1.4 .070 0,0
14.8 .ObO .1
24.2 .ObO .3
4b.5 .050 .5
82.1 .030 .4
323.5 .ObO l.b
444.7 0.000 0.0
410.8 .040 1.7
415.4 0.000 0.0
200.5 0.000 0.0
1.7 .070 0,0
,2 ,120 0,0
320.5 .025 2.7
1194.7 .055 5.5
122b.2 .035 3.1
1071.8 .ObO 4,9
141.1 .OfeO 3.3
353.2 0.000 0,0
117. b .ObS 1.3
89.7 0.000 n.O
45.7 0.000 0.0
l.b .080 0.0
.3 .ObO 0.0
13.fa85 GRAM/BHP HR
35.581 GRAM/BHP HR
11.701 GRAM/BHP HR
,17b GRAM/BHP HR
.733 LB/BHP HR
25
28
31
50
71
53
Ib4
bl
10
30
25
41
37
25
20
34
18
18
37
27
15
38
44
BRAKE
ALDE.
R
1.7
.5
.4
.5
.2
.7
.2
.3
.1
R
R
.1
.1
.1
.1
.1
.1
.3
.4
.7
R
R





DRY
HC
8102
1112
1515
1740
1853
247fa
1522
180b
2410
5148
50b3
fa9318
37b3
2281
453
331
2097
158b
1133
452
225
5718
21594
SPEC


55.
11.
b.
5.
4.
3.
3.
4.
8.


5.
3.
.
.
3.
4.
3.
2.
5.







CONCENTRATION
CO C02
•
s!
.
.
5.
1,
9
.
.
.
.
.
.
.
•
IFIC
HC
R
17
b5
b9
b8
Ib
00
35
4b
93
R
R
10
70
79
b3
98
3b
80
97
15
R
R





470
180
130
100
100
100
180
280
b40
720
810
180
350
010
150
210
550
580
440
250
150
210
130
11.72
13.33
13. Ob
13.18
13.18
13.48
13. b3
13. b3
13. b3
11.24
12.71
3.5b
11.72
14.18
14.05
13.91
13.91
13.77
13.91
13.91
13. b3
12.22
2.13
NO
24
147
225
385
b20
1850
1725
1850
1725
bb3
32
3
5b3
2200
2350
2125
2750
1412
900
470
275
29
3
GRAM/BHP-HR
CO
R
104.1
20.2
7.8
b.2
4.0
7.2
10.5
23.1
200.4
R
R
Ib9.4
33.1
5.3
7.8
21,1
32.2
29.8
33.1
bl.2
R
R





W02
R
14.1
5.7
4.1
b.3
12.3
1.1.?
11.4
10.3
3.8
R
R
2.9
11.9
13.7
13.1
17.3
12.9
10.0
10.2
20.9
R
R



































-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
4-2S-72 KUN 2              ENGINE 1-3           STATIONARY DYNAMOMETER

MODE
i
2
3
>f
5
h
7
8
9
in
11
12
13
I*
15
lb
17
IS
19
20
i?l
22
?3

DYNA.
SPEED LOAD
bOO
1200
i?nn
1200
1?00
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2?00
2300
2300
bOO
2300
0.0
4.b
18.4
*1.4
57.5
115.0
172.5
188.5
211.5
230.0
0.0
0.0
250.0
P30.0
205.0
187.5
125.0
b2.5
45.0
20.0
5.0
0.0
0.0
1
HP
0
1
4
q
13
2b
39
43
48
53
0
0
109
ini
90
82
55
2?
?0
9
2
0
0
VAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
18.5 4.9 2228
19.3 9.2 4155
18.5 9.5 4314
lb.9 10.8 4892
lb.0 12.0 5424
11.9 lb.1 7283
4.3 23.9 10841
1.1 24.8 112bl
.b 27,7 125bO
0.0 35.1 15931
18.5 4.9 2228
22.5 5.2 2375
.b bb.O 29938
l.b 55. b 25220
1.8 49.4 22388
3.5 47.4 21503
11.0 33. b 15249
15.5 24.1 10929
17.0 21.1 qqbib
18.3 18.0 81b5
19.2 15.2 b902
18.5 4.7 2127
24.5 4.7 2134
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
M.
&
b
7
8
q
10
11
15
.n
if
15
Ib
17
18
19
pn
SI
22
?3
CYCLE




ALDE
1.?
1,7
2.4
3.8
b.?
10.3
31. «
9.5
11. I
5.9
I.*
2."
12.2
8.2
10.2
8.8
b.b
b.3
5.3
3.*
1.1
1.0
3.3
HC
192.1
5b.4
52.4
b9.1
82.3
144.9
140.8
159. b
230.3
4Pb.3
9b.?
1380.0
702. b
?97.i
53.4
59.4
245.0
122.2
74.3
28. q
U.I
lib. 4
952.3
COMPOSITE








CO
179
143
92
81
85
80
254
437
1359
10f-91
240
7b
18773
IbOl
477
757
1142
8*f8
582
321
149
100
85
HC
CO
M02
ALDE
BSFC
N02 FAC. HP
1.7 .070 n.O
15.1 .ObO .1
24.9 .ObO .3
43.3 .050 .5
81.1 .030 .4
351.0 .ObO l.b
470. b 0.000 0.0
488.0 »040 1.7
520,,'' 0.000 0.0
187..7 0.000 0.0
1.9 .070 0.0
.3 .120 0.0
317.2 ^025 2.7
1427. b .055 5.5
1201.0 .035 3.1
1088.8 .ObO 4,9
750. b .OfaO 3.3
857. i 0.000 0.0
14q0S .Ob5 1.3
75.4 0.000 n.O
37.4 0.000 0.0
1.3 .080 0.0
.3 .ObO 0.0
13.337 GRAM/8HP HR
32.310 GRAM/6HP HR
Il.b79 GRAM/8HP HR
.190 GRAM/BHP HR
.733 LB/BHP HR
27
23
31
44
b8
85
175
51
57
28
52
53
32
23
30
27
30
43
37
28
18
29
3b
BRAKE
ALDE.
R
l.b
.b
.4
.5
.4
.8
.2
.2
.1
R
R
.1
.1
.1
.1
.1
.2
.3
.4
.9
R
R





DRY
HC
9511
Ibb8
1503
1722
1955
25b9
Ib77
184b
2532
5053
5b92
S4941
4045
17b2
339
39b
2384
1775
1134
510
22b
7253
2?570
CONCENTRATION










5


5










CO
.440
.210
.130
.100
.100
.070
.ISO
.250
.740
.500
.700
.150
.350
.470
.150
.250
.550
.blO
.440
.280
.150
.310
.100
























COS
9.b4
11.92
12.09
11.92
12.59
12.59
12.59
12.59
12.82
10.55
11.84
3.81
11.48
14.31
14.05
14.05
14.05
15.09
14.05
14.05
13.91
12.22
2.70
NO
25
135
215
325
580
1875
Ib88
1700
1725
588
33
4
550
2550
2300
2187
2200
1125
b88
400
230
24
2
SPECIFIC GRAM/BHP-HR


S3.
12.
7.
b.
5.
3.
3.
4.
9.


b.
2,
•
•
4.
4.
3.
3.
5.







HC
R
b3
4b
31
27
51
57
71
7b
25
R
R
42
^5
59
72
47
4b
77
30
Ob
R
R







13b
21
8
b
3
b
10
28
203


171
15
5
9
20
31
29
3b
b?







CO
R
.1
.8
.b
.5
.0
.5
.1
.1
.4
R
R
.5
.9
.3
.2
.9
.0
.5
.7
.8
R
R





N02
p
14.4
5.9
4.b
b.2
13.4
11.9
11.3
10.8
3.
-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
5-01-72 RUN 1              ENGINE 1-3           STATIONARY DYNAMOMETER


DYNA,
MODE SPEED LOAD
1
2
3
4
5
b
7
R
q
10
11
12
13
14
15
Ib
17
18
iq
20
21
??
23
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1?00
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
hOO
2300
0.0
4.b
18.4
41.4
57. S
115.0
172.5
188.5
211.5
230.0
0.0
n.o
250.0
230.0
205.0
187.5
125.0
b2.5
45.0
20.0
5.0
O.P
n.n

HP
0
1
4
q
13
2b
39
43
48
53
0
0
109
101
90
82
55
27
20
q
2
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
18.8 4.9 2228
19.2 1.2 4155
18.5 9.5 4314
lb.9 10.8 4892
15.8 12.0 5424
12.0 lfa.1 7283
3.b 23.9 10841
l.b ?4.8 ,U2bl
.fa 27.7 125bO
0.0 35.1 1593J.
18.9 4.9 2228
22.4 5.2 2375
.b bb.O ?9938
1.4 55. fa 25220
1.9 49.4 22388
3.4 47.4 21503
11.0 33. b 1S249
15.5 24.1 10929
17.0 21.1 95fab
18.3 18.0 91b5
19.3 15.2 b902
18.8 4.7 2127
24.5 4.7 2134
CALCULATED CRAM/HR WT. WT.
MODE
i
2
3
4
5
b
7
R
q
10
11
12
13
14
15
Ib
.17
18
19
20
21
22
2?
CYCLE




ALDE
0.0
n.o
0.0
0.0
n.o
n.o
0.0
n.o
n.o
o.n
n.n
n.o
0.0
0.0
n.o
0.0
n.o
0.0
0.0
0.0
n.o
n.o
n.O
HC
lbl.0
51.7
43.2
53. b
b8.5
131.7
127.3
133.7
21 7. j
434.5
94.2
1431.9
b02.5
321.3
bl.b
59.3
210.8
104.0
bl.7
38.0
11.0
148.4
8?3.b
COMPOSITE








CO
150
130
17
74
82
108
440
414
1^9b
10854
245
82
18559
29fa9
5fa5
84b
137b
1094
fa79
439
17b
fa3
9P
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.1 .070 0.0
9.2 .ObO .1
14.9 .ObO .3
31.7 .050 .5
55.4 .030 .4
247.5 .ObO l.b
303.8 0.000 0.0
34h.8 .040 1.7
318.2 0.000 0.0
111.9 0.000 0.0
1.7 .070 0.0
.4 .120 0.0
302.7 .025 2.7
1151.5 .055 5.5
llbl.4 .035 3.1
1043.3 .ObO 4.q
908.1 .ObO 3.3
328.0 0.000 0.0
182.3 .ObS 1.3
98.1 0.000 0.0
43.4 0.000 0.0
l.b .080 0.0
.4 .ObO 0.0
13.025 GRAM/BHP HR
3b.0b3 GRAM/BHP HR
10.802 GRAM/BHP HR
0.000 GRAM/BHP HR
.733 LB/8HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
9084
Ib8b
1348
1458
Ib83
2473
Ib35
Ib32
2552
4b74
5213
531b7
34b9
1994
39b
39b
2043
1421
1079
b81
22b
85b9
Ib911
CONCENTRATION









1
5


5










CO
.420
.210
.150
.100
.100
.100
.280
,250
.IbO
.780
,b70
.150
.290
.890
.180
.280
.fabO
.740
.520
.390
.180
.180
.100
























C02
11.24
13.18
13.18
13. Ob
13. Ob
13.33
13.48
13.33
13.33
10.89
11.13
3.35
11. bO
14.18
14.18
14.05
13.91
14.05
14.18
14.18
14.05
11.24
2.59
NO
19
90
140
2bO
410
1400
1175
1275
1125
3b3
28
4
525
2100
2250
2100
2bSO
1350
850
530
270
28
3
SPECIFIC RRAM/BHP-HR


49.
10.
5.
5.
5.
3.
3.
4.
8.


5.
3.
.
•
3,
3.
3.
4.
5.







HC
R
15
27
b7
21
nj
23
11
50
27
R
R
50
27
fal
72
85
80
54
34
01
R
R





CO

123
23
7
fa
4
11
9
41
20b


Ib9
29
b
10
25
40
34
50
80







R
.7
.1
.9
.3
.1
.2
.b
.3
.5
R
R
.5
.5
.3
.3
.1
.0
.4
.2
.4
R
R





N02
R
8.7
3.5
3.4
4.2
9.4
7.7
8.1
b.b
2.1
R
R
2.8
11.4
12.9
12.7
Ib.b
12.0
9.3
11.2
19.8
R
R



































-------
               PROJECT 11-3877-01  CONTROL TECHNOLOGY
5-01-72 RUN 5              ENGINE 1-3           STATIONARY DYNAMOMETER

MODE
i
2
3
*
5
b
7
p
q
in
11
12
13
1*
15
Ib
17
18
11
20
21
32
33

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
faOO
2300
0.0
*.b
18.*
*!.*
57.5
115.0
172.5
18P.5
211.5
230.0
0.0
0.0
250.0
230.0
205.0
187.5
125.0
b2.5
*S.O
20.0
5.0
0.0
0.0
>
HP
0
1
*
1
13
2b
31
*3
*8
53
0
0
101
101
10
82
55
27
20
q
2
0
0
MAN. FUEL RATE

VAC. LB/HR GM/HR ALDE.
18.7 *.1 2228
11.2 1.2 *155
18.5 1.5 *31*
lb.8 10.8 *812
15.8 12.0 5*2*
12.0 lb.1 7283
3.* 23.1 108*1
l.b 2*. 8 112bl
.b 27.7 125bO
0.0 35.1 15131
18.8 *.1 2228
22.* 5.2 2375
.b fafa.O 21138
1.* 55. b 25220
1.1 *S.* 22388
3.* *?.* 21503
11.0 33. b 152*1
15. b 2*.l 10121
lb.1 21.1 ISbb
18.* 18.0 81fa5
11.3 15.2 b102
18.8 *.7 2127
2*. 5 *.7 213*
CALCULATED GRAM/HR WT. WT.
MODE
1
2
1
*
5
b
7
8
1
in
11
12
13
1*
15
Ib
17
IP
11
20
21
22
23
CYCLE




ALDE
0.0
n.o
n.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
HC
Ib7.8
*S.S
*3. 1
57.0
70.1
128.3
12b.b
131.5
2P8.0
*27.b
18.1
1383. b
bll.1
333.3
70.0
bb.7
211.8
107.3
72.7
3*. 3
JO. 8
Bb.b
10*. 7
COMPOSITE








CO
Ib
115
8b
7b
8*
77
*07
*22
2053
11305
207
82
18217
30*h
*b8
831
1300
108*
710
*32
173
53
105
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
l.S .070 0.0
11.5 .ObO .1
20.1 .ObO .3
*b.* .050 .5
77.7 .030 .*
330.2 .ObO l.b
*07.h 0.000 0.0
*S1.1 .0*0 1.7
"*21.7 0.000 0.0
1*0.3 0.000 0.0
1,1 .070 0.0
.3 .120 0.0
301.3 .025 2,7
118*. 2 .055 5.5
1221.8 .035 3.1
1085.3 .ObO *.1
135.0 .ObO " 3.3
325.1 0.000 0.0
20b.8 ,0b5 1.3
18.* 0.000 0.0
*5.8 0.000 0.0
1.7 .080 0.0
.5 .ObO 0.0
12.881 GRAM/BHP HR
35.318 GRAM/BHP HR
Il.b2b GRAM/BHP HR
0.000 GRAM/BHP HR
.733 LB/RHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
i
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
8711
15b8
13*5
1510
Ib78
2355
1572
1572
237*
*553
5558
**2fal
358b
205b
*5*
*5*
210b
1*71
1137
b25
227
*1B1
17371
CONCENTRATION









1
5


5










CO
.250
.180
.130
.100
.100
.070
.250
.250
.IbO
.IfaO
.580
.130
.2*0
.130
.150
.280
.b*0
.7*0
.550
.310
.180
.150
.100
























C02
10.55
12.82
12.1*
12.71
12.71
13. Ob
13. Ob
13. Ob
12.1*
10.55
11, *8
3.0*
11.72
1*.*2
1*.31
1*.31
1*.31
1*.18
1*.31
1*,*2
1*.31
11. bO
2.2b
NO
2*
110
185
370
SfaO
1825
1525
Ib25
1*50
*50
32
3
525
2200
2*00
2225
2800
1350
175
5*0
210
21
3
SPECIFIC GRAM/8HP-HR


*7.
10.
b.
5.
*.
3.
3.
*.
8.


5.
3.
.
.
3.
3.
3.
3.
*.







HC
R
12
*5
03
3*
88
21
05
3d
1*
R
R
bb
31
78
81
87
12
bl
12
13
R
R







101
20
8
b
2
10
1
*2
215


Ib?
30
5
10
23
31
3b
*1
71







CO
R
.2
. *
.1
.*
.1
,3
.8
.5
.1
R
R
.1
.2
.2
.1
.8
.b
.0
.*
.0
R
R





NO?
R
11.0
*. 8
*.1
5.1
12. b
10.3
10.5
8.7
2.7
R
R
2.8
11.8
13.7
13.2
17.1
11.1
10.5
11.2
20.1
R
R



































-------
            APPENDIX F
EMISSION RESULTS FROM ENGINE 2-3
          TABULAR FORM

-------
            ENGINE Z-3
NINE MODE FTP EMISSION RESULTS
      CONCENTRATION BASIS

-------
                      2-3
                                       RUN-1
                                                                               K  =1.139
                                                                                                       GK/LB
CYCLE 1
CYCLE 3
C\V.
FEDERAL
MODE
> IDLE
3 Ib'HG
3 AO'HG
4 Ib'HG
5 19 HG
b Ib'HG
7 3'HG
? Ifa'HG
S C.T.
1 IDLE
i Ib'HG
3 ID'HG
4 Ib'HG
5 19'HG
'j Ib'HG
? 3'HG
3 Ib'HG
9 C.Tc
i IDLE
'£ Ib'HG
3 10 'HG
4 Ifa'HG
5 19'HG
b Jb'HG
7 3'H6
8 Ib'HG
9 C.T.
i IDLE"
? Ib'HG
3 1 0 ' HG
4 Ib'HG
5 19'HG
b Ib'HG
7 3 ' HG
B IfaUIG
9 C.T.
CONCENJRATIQN AS
HC CO C02
IbS 1.
b9
44
39
31
44
lOb 1.
35
18b3 1.
IbS 1.
Sb
44
39
27
3S
107 1.
35
185? 1.
144
bl
44
39
2b
39
lOb 1.
35
1731 1.
144
bi
Hf •
44
30
44
98 i.
35
1809 1.
f r*\i f> t c
blO 14.3LO
330 13.750
300 13.580
210 13.b30
310 13.910
330 13.840
580 14.310
370 13.770
MEASURED DILUTION A
NO FACTOR HC
103
87b
1340
918
439
lObO
1905
1108
470 7.150 103
P ftlulprt C T TC 1 — , , r- _ , __.___,
blO 14.3bO 103
340 13.b30
220 13.840
230 13^10
320 14.050
220 13,830
700 '^',310
280 Is. 030
530 8.890
fnMDAQTTF^
LUMrU3 1 i t } m
740 14.7bO
250 13.770
330 13.9JQ
340 13.9Iu
340 14.050
340 13.840
590 14.350
380 13.910
390 9.070
PflMPnQTTF>»
LUFir UO i 1 t i m
740 14.7bO
3faO 13.840
340 13.830
250 13.830
350 13,910
350 13.9bO
440 14.430
280 14.050
390 9.010
**rtuQrte»TTrr\_
AVERAGE SUM— (COMPOSITE VALUES
AWCDAPC OMU_ — —//•rskioneTTE' u .. i lire
AVtKAot DU~
FOUR CYCLE


i 	 vuuriru-3
COMPOSITE


1 1 n ¥ *1_ wt • ?
- REPORTED


854
IbOb
1089
478
1054
2033
1223
129
90
1037
Ib77
1145
4b3
Ilb4
3098
1338
135
90
1035
Ibl8
1071
439
11 !*
Hi*
135S
Sb
FOR CYCLES
FDP P V I'M p~ Q
rUr\ l> T L> L. •- 3
VALUES -


.945
1.040
l.OSb
1.052
1.032
l.OSb
.953
1.040
1.4bS
.945
1.050
i ,03b
1.031
.1 ,022
i-040
.949
1.019
1.244
.949
1.039
1.030
1.030
1.031
1.03b
.950
1.039
1.352
.949
1.033
1.037
1.03b
1.031
l.OSb
.951
1.019
i.a»4
.' AND
3 AMD
H tNU
HC
CO
NO
ISb
-)*
4a
"1
32
4b
101
3b
2728
15b
59
4(
40
28
3b
102
3fa
3309
137
kl
4~
4J
37
40
101
3b
21b7
l->
fa3
4b
4b
31
45
93
3b
2350


0.3S*(
0.35*C
0.35*(
D J U £ T E D WtlGHTt
CO MO t- ACTOR
1 53S
.23'
.211
• fcSi
.31?
„ 528
i.s:. 3
.28,.
3. '54
J.533
c2S2
.228
s 227
^225
.239
I.bl4
.SES
1.^0;
.703
.3bO
.337
.247
.345
.249
-.511
.288
l.blS
,702
.C'-^
.249
.259
.358
.357
1.370
.385
i.?a=i


Ilb.b84)
.b93)
1333.385)
97
"11
1415
9bb
453
1098
ISlfa
1153
149
97
S97
Ibb4
Uf'S
4 8 >J
109b
1930
lE'ifa
IbO
85
1077
1738
1180
473
1305
1994
1374
ISb
85
1059
Ib77
1110
453
1324
2031
1383
119


t O.b5*(
+ 0.bS*(
+ 0,bS*C
,Q3b
.089
.257
.089
.047
.089
.283
.089
.021
.03b
.089
.257
.089
.047
.089
.283
.089
.031
.03b
.089
.as?
.089
.047
.089
.383
.089
.021
.03b
.089
.357
.089
.047
.089
.383
.089
.031


108

1453
KG N E
S.blH-
b .348
11.944
3.fa53
1.504
4.057
38.589
3.339
57.394
5. bit
5.333
11.714
3.579
1.397
3.338
28.744
3.175
48.493
ill nQU
4.918
S.fa39
Il.b53
3.57?
1.348
3.594
38.505
3.30fa
45.500
4.918
5.b09
11.733
4.058
1.453
4.018
3b,377
3,175
47.347


.307) = 111
.bib) =
.550) = 14J1
j G H
CO
.U55
.031
.054
.030
.010
.020
.43fa
.035
.045
L ^ T
, b t f
.055
.023
.059
.030
.011
.030
.457
.035
.040
Tn a
.709
.035
.033
.Obi
.033
.013
.033
.438
.03b
.034
.035
.034
.Ob4
.033
.013
.033
.388
.035
.03b
,b20
,b93
.174
.bSfa
.107
1 t 0
NO
3. ^04
81.099
3b3.?59
85.989
31.39b
97.727
513.798
103.553
3.139
1 3 ~3 3 Q L 3
IC/C.Bbd
3.504
79.801
437.559
99, 939
?i .958
97.E20
54b,138
110.939
3.3b9
1391 .707
3.073
95.857
444.081
105.004
33.234
107.380
5b4.183
113. 40b
3.28b
1458.393
3.073
94.343
431. Obi
S8.77b
31.3b8
108.938
574. b47
114. 19S
3.507
1448. 70b
1333.385
1453. 550
FPM
PERCENT
PPM
        DILUTION FACTOR = 14.5/CC03+0,S*r0+10.8*HC)

-------
         s-12-72
                    2-3
                                       RUN-2
                                                                              K =1.137
                                                                                           HUM  =  12*   GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
2 Ib'HG
3 10 'HG
* Ib'HG
S IS'HG
b Ib'HG
7 3'HG
8 Ib'HG
S C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
S IS'HG
b Ib'HG
7 3'HG
8 Ib'HG
S C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 IR'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.
1 IDLE
2 Ib'HG
3 10'HG
» Ib'HG
S IS'HG
b Ib'HG
7 3'HG
8 Ib'HG
S C.T.
AVERAGE
A UCD A PC
CONCENTRATION AS MEASURED DILUTION ADJUST
HC CO C02 NO FACTOR HC CO
15*
72
*3
*3
33
3S
S7
35
1.210 13.b30
.210 12.820
.210 12.710
.210 12.710
.210 13. ObO
.210 12.710
1,5*0 13.*70
.250 12.9*0
1131 1.300 8.310
IS* l.aio 13.b30
b2
3S
38
27
3t
10?
31
.210 12.S*0
.210 12.920
.210 12.820
.210 12.9*0
.210 12.820
1.570 13.330
.250 12.9*0
188b 1.3*0 8.*5D
Ibl 1.^50 13.b30
5S
35
38
85
33
88
2fa
.210 12.S*0
.210 12.820
.210 12.820
.210 12.S*0
.210 12.820
1.370 13.330
.250 12.9*n
1837 1.2*0 B.*SO
Ibl l.*5fl 13.b30
**
35
35
ab
33
7S
ab
.210 12.820
.210 12.710
.210 12.710
.210 12.9*0
.210 12.820
1.300 13.330
.250 12.820
1737 1.050 8.300
SUM— (COMPOSITE VALUES FOR
10
78*
1213
881
38b
SIS
1883
1005
US
so
SbS
1*88
IQbO
**S
SOS
1S*7
lib*
158
15b
IDbO
151*
S8b
***
S80
1870
1037
157
15b
S7S
1*38
1008
*b3
1025
1885
13*1
l*b
CYCLES
r- 
-------
          5-12-72
                    2-3
                                       RUN-3
                                                                              K  =1.133
                                                                                           HUM  =  122   GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
B Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
B ib'HG
3 10'HG
1 Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
4 Ifa'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.
AVERAGE
CONCENTRATION AS MEASURED DILUTION A
HC CO C02 NO FACTOR HC
182 1.05C1 13.330
71 .180 12.340
S3 .180 12.340
53 .180 12.1bO
44 .180 12.340
41 .180 12.220
101 1.420 IS. 710
48 .210 IS.lbO
Hb3 l.lbO 7.blO
182 l.OSO 13.330
b2 .210 12.220
45 .200 12.210
44 .200 12.220
35 .200 12.220
44 .200 11.120
105 1.480 12.590
44 .230 12.220
1841 1.200 8.050
151 .100 13.480
b* .210 12.010
44 .180 12.520
43 .210 12.400
35 .210 12.470
44 .210 12.470
111 1.770 13.0bO
47 .250 12.140
1888 1.230 8.320
151 .100 13.480
hi .210 12.b50
35 .110 12.400
31 .110 12.710
31 .IbO 12.710
43 .110 is.bso
102 1.3RO 13.180
31 .230 12.780
1812 1.010 8.440
SUM---CCOMPOSITE VALUES FOR
m in 	 fff\itai*eiwc u A i i ie*o erno
80
87*
138b
851
311
881
2001
1217
111
BO
778
1531
1b4
458
1037
1834
1188
100
10
817
Itfb
103
380
1071
1817
1137
145
10
1033
1211
1117
410
1100
1877
1038
12
CYCLES
P Vf*t CO
A VERAGE oun™*~~ v^upiruaiic. » «L.WC.»J r ur% v* i uui--j
FOUR CYCLE COMPOSITE - REPORTED VALUES -









1.032
1.151
l.lbl
1.178
I.lb2
1.173
1.071
1.177
1.40b
1.032
1.170
l.lbb
1.172
1.173
1.202
1.071
1.171
1.3b3
1.021
1.182
1.14fa
1.15S
1.150
1.141
1.031
l.lOb
1.321
1.021
1.131
1.157
1.121
1.131
1.134
1.037
1.121
1.321
1 AND
3A kjfS
RlN v
HC
CO
NO

188
12
b2
b2
51
57
117
57
27bl
188
73
52
52
41
53
113
52
2501
155
7b
SO
SO
40
51
114
52
2415
15S
bl
40
44
35
41
lOb
44
2434


0.3S*(
0.35*(
0.35*(

D J U S T E D
CO NO
1.084
.201
.201
.212
.201
.211
1.521
.247
I.b31
1.0B4
.24b
.233
.234
.235
.240
l.SIb
,2b1
I.b3b
.12b
.248
.20b
.243
.241
.241
1.825
,2?fa
l.b2S
.12b
.238
.220
.214
.181
.215
1.431
.258
1.440


133.551)
.bbS)
145b.442)

83
1013
IbOl
1b7
454
1033
214b
1433
Ib7
83
110
1714
1130
537
124b
1178
1311
13b
13
IQbl
IfaSfa
1043
437
1230
HSb
1581
112
13
Ilb8
1414
12bl
4b4
1247
1147
Ilb3
122


+ 0.
+ 0.
+ 0.

WEIGHTING
FACTOR
,03b
.081
.257
.081
.047
.081
.283
.081
.021
.03b
.081
.257
.081
.047
.081
.283
.081
.021
.03b
.081
.257
.081
.047
.081
.283
.081
.021
.03b
.081
.257
.081
,047
.081
.283
.081
.021


bS*( 121.235}
fa5*C ,b77)
b5*( 1411.184)
CORRECTED NO

b
8
15
5
2
5
33
5
57
\ -3 Q
i J"
b
b
13
4
1
4
32
4
52
1 3 ^
1C /
5
b
12
4
1
4
32
4
52
i ac
id 3
5
b
10
3
1
4
21
3
51
1 | i
i JLb
133
121
B
=
S
S
WEI
HC
.7bl
.14b
.817
.557
.403
.115
.040
.021
,17b
Q 11 U
• H TT
.7bl
.457
.482
.511
.130
.705
.050
.58b
.bis
3C ^
• C^r
.513
.734
.154
.421
.811
.418
.385
.b24
.387
U. fl Q
• *r Ho
.513
.140
.407
.118
.b47
.338
.131
.810
.101
n a a
• Hoe
.551
a nc
* edb
125.
»
1432.
Ib22.
G H
CO
.031
.011
.054
.011
.010
.011
.430
.022
.034
L (1 C
. OT 3
.031
.022
.OfaO
.021
.011
.021
.452
.024
.034
(.Oil
• DOT
.033
.022
.053
.022
.011
.021
.Sib
.025
.034
130
. faa
.033
.021
.OSb
.011
.001
.011
.405
.023
.030
L. 1 L.
• bl b
.bbS
I.T ^
,b?7
54S
b?3
224
Ib8
TED
NO
2.172
10.121
413. bl?
8b.OB8
21.35b
11.1b3
b07.445
127.511
3.515
1444.587
2.172
81.021
4bl.071
100.581
25.257
110.817
551.815
123.813
2.8b2
14b8.218
3.334
14.387
425.717
12.844
20.532
101.417
553.451
141.311
4.023
1445. 184
3.334
103.178
383. Bbb
112.203
21.781
110.177
550.143
103.542
2.553
1313.184
14Sb.442
1411.184
PPM
PERCENT
PPM
PPM
        DILUTION FACTOR = 11.S/(COB+O.S*CO+10.8*HC)

-------
            ENGINE 2-3
NINE MODE FTP EMISSION RESULTS
      BRAKE SPECIFIC BASIS

-------
          s-12-72
                     2- 3
                                       RUN-1
                                                                              K  =  1.10
                                                                                           HUM  =  1?0   GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ifa HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
B Ib HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 IS HG
b Ifa HG
7 3 HG
8 Ib HG
S C.T.
AVERAGE
CONCENTHATION AS MEASUKED TOTAL
HC CO C02 NO CARBON
IbS l.blO lt.3b 103
fal .230 13.75 87b
** .200 13. SR 13*0
3* .210 13. b3 "US
31 .210 13. SI *3S
** .220 13.8* lObO
lOb 1.580 It. 31 1S05
35 .270 13.77 1108
18b2 l.*70 7.15 102
IbS l.blO lt.3b 103
5b .2*0 13. b3 B5t
t* .220 13.8* IbOb
31 .220 13. SI 108S
27 .220 It. 05 *78
35 .220 13.80 lOSt
107 1.700 1*.31 2033
35 .280 It. 05 1223
1857 1.530 8.8S 12S
Itt ,7tO It.Vb SO
fal .250 13.77 1037
*» .230 13. SI Ib77
3S .2*0 13. SI 11*5
2b .2*0 1*.OS *b3
3S .2tO 13.8* lib*
lOb l.SSO 1*.3S 20S8
35 .280 13. SI 1238
1731 1.2SQ S.07 125
If* .7*0 l*.7b SO
bl .2bO 13.8* 1025
** .2*0 13.82 IblS
** .250 13.8? 1071
30 .250 13. SI t3S
** .250 13. Sb 11S3
S8 l.**0 1*.*2 2135
35 .280 It. 05 125S
180S 1.3SO S.01 Sb
ifa.ita
lt.055
13.828
13. ass
It. 153
1*.108
ifa. not
1*.07B
iO.hHl
Ifa. It8
13.S30
lt.108
1*.172
lt.2SS
1*.058
Ib.l2b
It.SbB
12.*2b
15.b5b
l*.08b
1*.188
1*.1S2
It. 318
1*.122
lb.05*
1*.228
12.22S
IS.bSfa
l*.lbb
1*.108
It. 118
1*.1S2
1*.258
IS.Sfab
It.3b8
12.35*
SUM — (COMPOSITE VALUES f-OR CYCLtS 1 AN
FUEL
CONS.
1771
830H
12S3S
8308
SS2t
8308
21b5fa
8308
1771
1771
8308
12S3S
8308
5S2*
8308
21b5b
8308
1771
1771
8308
12S3S
8308
5S2*
8308
PlfaSb
8308
1771
1771
8308
12S3S
8308
5S2*
8308
21b5b
8306
1771


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.3SC 3.*)






co o.
N02 0.

35C 33)
35C S.fa)

AOJUSIED (MASH)
HC co woe
?n
tt
t*
25
I*
28
155
??
335
20
3b
**
25
12
22
155
22
28b
18
3S
*3
25
12
25
15*
22
271
18
3S
*t
28
1*
28
It*
22
280


+ 0
+ 0
+ 0

357
275
378
25*
178
2b2
tSl"
32?
ts&
357
28S
*08
2bl
18*
2b3
*b!2
327
*to
IbS
2S8
*2t
28t
201
285
*332
330
377
IbS
308
**5
2S7
211
2St
3St5
327
*03


-bS( 3
.bS(
.bS( 10
COKKECTED
*
172
tlb
182
bl
207
85b
217
b
*
IbS
*8S
212
bb
207
SOb
235
fa
3
203
508
223
fat
227
S*0
2*0
b
3
200
*S3
2QS
bl
231
Sbl
2*2
5


.1) =
30) =
.5) =
NOB =
Ml .
fACT.
.232
.077
.It?
.077
.057
.077
.113
.077
.It3
.232
.077
.It7
.077
.057
.077
.113
.077
.1*3
.232
.077
.It7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


3.220
31.2
10. ISt
ll.lbl
KEIGHTtO (MASS)
HC CO N02CK)
».S
3.*
fa. 5
l.S
.8
2.2
17.5
1.7
t7.S
3U
• D
*.s
2.8
h.*
l.S
.7
1.7
17.5
1.7
*n.s
3p
. c
t.l
3.0
b.t
l.S
.7
l.S
17. t
1.7
38.7
31
• 1
*.l
3.0
b.t
2.2
.8
2.1
lb.2
1.7
»0.1
31
.1
3.*
3.1
(MASS)
(MASS)
(MASS)
(MASS)
83
21
Sb
20
11)
20
H88
25
71
a a
j 3
83
22
faQ
20
10
20
521
25
b3
•au.
J T
3S
23
b2
22
11
22
*SO
25
5*
3 1
JA
3S
2*
faS
23
12
23
**b
25
58
a Q
c^
33
30



.s
13.2
bl.2
1*.0
3.5
lb.0
Sb. 7
lb.7
.8
Ha
• C
.S
13.0
71. S
lb.3
3.7
15. S
102. t
18.1
.S
in fi
1 U • U
.8
15. fa
7*.b
17.1
3.b
17.5
10b.2
18.5
.S
in R
ID . a
.8
15.*
72.*
lb.1
3.5
17.8
108. b
18. b
.7
10 . *
S.b
10. S



HP
0
23
t8
23
S
23
8b
23
0
0
23
*8
23
S
23
Bb
23
- 0
0
23
*8
23
S
23
Bb
23
0
0
23
*8
23
S
23
8b
23
0






-------
         S-ia-7a
                    2-3
                                       RUN-2
                                                                                  1.10
                                                                                           HUM
                                                                                                 la*   GR/LB
CYCLE 1
CYCLE S
CYCLE 3
CYCLE *
MASS
MODE
1 IDLE
g Ifa HG
3 10 HG
* Ifa HG
S IS HG
fa Ib HG
7 3 HG
8 Ib HG
S C.T.
1 IDLE
a ib HG
3 10 HG
* Ib HG
5 IS HG
b Ifa HG
7 3 HG
8 Ifa HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
S C.T.
c t IM
1 IDLE
2 Ifa HG
3 10 HG
* Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
S C.T.
AVERAGE
CONCENIRATION AS MEASURED
HC CO COS NO
15* 1.210 13. b3 SO
72 .210 12.82 78*
*3 .210 12.71 1313
*3 .210 12.71 881
33 .210 13. Ob 38b
3S .Sin 12.71 SIS
S7 l.S*0 13. *7 1883
35 .250 12. S* 1005
1S31 1.300 8.31 IIS
IS* 1.210 13. fa3 90
fa2 .210 12. S* SbS
3S .210 12. S2 1*88
38 .210 12.82 IDbO
27 .210 la.S* **S
3» .210 12.82 SD5
102 1.570 13.33 1S*7
31 .250 12. S* Ufa*
188b 1.3*0 B.*S 158
Ibl l.*50 13. b3 15b
SS .210 12. S* IDbO
35 .210 12.82 151*
32 .210 12.82 S8b
25 .2.10 12. S* ***
33 .210 12.82 S80
88 1.370 13.33 1870
2fa .250 la.S* 1037
1837 1.210 8.*5 157
Ibl l.tSQ 13. fa3 15b
** .210 12.82 S75
35 .210 12.71 1*38
35 .210 12.71 1008
2b .210 12. SI *b3
33 .210 12.82 1025
7S 1.300 13.33 1885
2b .250 12.82 13*1
1737 1.050 8.30 l*fa
KlTAL
CARHDlM
15.0Qb
13.108
12.Sbfa
12.Sbb
13.3Ufa
12.Sb2
15.115
13.228
ll.bSB
is.ciofc
13.217
13.172
13.071
13.17S
13.0b7
is.nio
13.223
11.827
15.25*
13.21*
13.0b8
13.0bS
13.177
13.0bb
1*.7SS
13.218
11. b7*
15.25*
13.078
12.S58
12.S58
13.178
IS.Obb
1*.715
13. OSS
11.22b
SUM— (COMPOSITE VALUES FOR CYCLES 1 AN
FUEL
CONS.
1771
8308
12S3S
8308
ssa*
8308
21b5b
8308
1771
1771
8308
1213S
8308
5S2*
8308
aifaSfa
8308
1771
1771
8308
12S3S
8308
5S2*
8308
aibSb
8308
1771
1771
8308
12S3S
8308
SS2*
8308
21b5b
8308
1771


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.35C 3.*)






CO 0.
N02 0.

35C 33)
35C S.7)

ADJUSTED (MASS)
HC CO N02
20
*S
*(,
30
Ib
?7
ISO
2*
31b
20
*2
*1
2h
13
23
1SS
21
3U5
20
*0
37
22
12
23
13S
18
301
20
30
38
2*
13
23
12b
18
2Sb


+ 0
+ 0
+ 0

28B
2bS
*23
272
IBS
272
**57
317
3S8
288
2b7
*17
270
1S1
270
*57b
317
*05
3*B
2b7
*20
270
1S1
270
*051
317
380
3*0
2bS
*2*
272
1S1
270
38bS
320
335


.b5( 3
.b5(
.bS( 10
CORRECTED
*
Ib5
*02
187
57
ISfa
asb
210
b
*
202
*8S
22*
b7
1S1
S33
2*3
8
fa
221
*S8
208
bb
207
SOS
21b
B
b
20b
*77
215
bS
21b
S21
288
8


.1) =
30) =
.3) =
N02 =
Ml.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3


3.230
31.1
10.071
11.11*
hEIGHItO (MASS)
HC CO N02(K)
*.fa
3.8
b.8
2.3
.S
2.1
17.0
1.8
*5.2
3C
. 3
*.b
3.2
b.l
2.0
,7
1.8
18.0
l.b
*3.b
311
* T
*.7
3.1
5.5
1.7
.7
1.7
15.7
1.*
*3.0
33
. C
*.7
2.3
5.5
l.S
.7
1.7
1*.2
1.*
*2.3
31
f -I
3.*
31
• X
(MASS)
(MASS)
(MASS)
(MASS)
b7
21
b2
21
11
21
50*
2*
57
•33
J C
b7
21
bl
21
11
21
517
2*
SB
a'a
J J
7S
21
b2
ai
11
21
*58
a*
5*
a \
J X
7S
ei
b2
ai
11
21
*37
25
*8
•an
3w
33
3 n
3 U



.8
12.7
ss.i
i*.*
3.3
15.1
101.2
lb.1
.S
93
• *~
.8
15. b
71.3
17.2
3.8
1*.7
105.*
18.7
1.1
in P
i U • C
1.*
17.0
73.2
lb.0
3.8
15. S
102.7
Ifa. 7
1.1
in 3
iU . C
i.*
15.8
70.1
Ib.S
3.S
lb.7
10*. 1
21.7
1.1
in a
X Ll • 9
S.7
in 3
1 U . 3



HP
0
23
*8
23
S
23
8b
23
0
0
23
*8
23
S
23
8b
23
0
0
23
*B
23
S
23
8b
23
0
0
23
*8
23
S
23
8b
23
0






-------
          5-12-7?
                    Z-3
                                       RL1N-3
                                                                              K = 1.10
                                                                                           HUM = 122  GR/LH
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE 4
MASS
MODE
1 IDLE
2 Ib HG
3 10 HG
4 Ifa HG
5 19 HG
fa Ib HG
7 3 HG
S Ib HG
9 C.T.
1 IDLE
S Ib HG
3 10 HG
4 Ib HG
5 IS HG
b Ifa HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
Z Ib HG
3 10 HG
* Ib HG
S 19 HG
b Ib HG
7 3 HG
B Ib HG
9 C.T.
1 IDLE
Z Ib HG
3 10 HG
4 Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.

AVERAGE
AVERAGE
CONCENTRATION AS MEASURED 101AL
HC CO COB NO CARBON
182 1.D50 13.33 BO
79 .180 12. 34 87*
S3 .180 12.34 138b
53 .180 12. Ib 821
44 .180 12,34 391
49 .180 12.22 881
109 1.420 12.71 2004
48 .210 12. Ib 1217
19b3 1.11.0 7.bl 119
182 1.050 13.33 80
b2 .210 12.22 778
45 .200 12.29 153S
44 .200 12.22 9b4
35 .200 12.22 458
44 .200 11.92 1037
105 1.480 12.59 1834
44 .230 12.22 1188
1841 1.200 8.05 100
151 .900 13.48 90
b4 .210 12.09 897
44 .180 12.52 144b
43 .210 12.40 903
35 .210 12.47 380
44 .210 12.47 1071
111 1.770 13. Ob 1897
47 .250 12.94 1437
1888 1.230 8.32 145
151 .900 13.48 90
bl .210 12. bS 1033
35 .190 12.40 1291
39 .190 12.71 1117
31 .IbO 12.71 410
43 .190 12. bS 1100
102 1.380 13.18 1877
39 .230 12.78 1038
1842 1.090 8.44 92
14.577
12.b05
12.577
12.397
12.5fa8
12.453
14.248
12.422
10.890
14.577
12.497
12.539
12.4b8
12.458
12.1b8
14.183
12.498
11.238
14.543
12.3fa9
12.748
12.b5b
12.718
12.728
14.950
13.341
11.5R9
14.543
12.92b
12. has
12.942
12.903
12.88b
14.fa70
13.052
11.519
FUEL
CONS.
1771
8308
12939
8308
5924
8308
21b5b
8308
1771
1771
8308
12939
8308
5924
8308
21b5b
8308
1771
1771
8308
12939
8308
5924
8308
21fa5b
8308
1771
1771
8308
12939
8308
5924
8308
21b5b
8308
1771
ADJUSTED (MASS)
HC CO N02
24
Sfa
59
38
22
35
179
35
345
24
45
50
32
18
32
173
32
313
20
4b
48
30
18
31
174
32
312
20
42
39
27
15
30
Ib3
27
30b
258
240
374
244
171
243
43faO
284
381
258
282
417
2fa9
192
27b
45b5
309
382
221
285
3b9
278
198
277
5179
317
380
221
273
393
24b
148
247
4115
29b
339
3
191
473
183
bl
195
1011
270
b
3
172
527
213
72
235
930
2b2
5
4
200
487
197
59
232
912
299
7
4
220
439
238
b2
235
920
219
S
HI.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143

SUM 	 (COMPOSITE VALUES FOR CYCLES 3 AN
FOUR CYCLE COMPOSITE - REPORTED VALUFS -






HC 0.
CO 0.
N02 0.



35( 3.8)
3S( 32)
35( 10.5)



+ 0
+ 0
* 0



.bS( 3
.bS(
.bS( 10
CORRECTED


.5) s
32) =
.e) =
Noa =


3.b25
31.9
10.890
11.334
WEIGHTfcD (MASS)
HC CO N02(K)
5.5
4.3
8.7
3.0
1.3
2.7
20.2
2.7
49.3
4.0
5.5
3.4
7.4
2.4
1.0
?.5
19. b
2.4
44.8
31
• t
4.b
3.b
7.1
2.3
1.0
2.4
19. b
2.5
44. b
31
• b
4.b
3.3
5.7
2.1
.9
2.3
18.4
2.1
43.7
3.4
3n
. K
3.5
(MASS)
(MASS)
(MASS)
CMASS)
bO
18
55
19
10
19
493
22
54
a 1
3 A
to
22
bl
21
11
21
51b
24
55
3C
51
22
54
21
11
21
585
24
54
^ c
33
51
21
SB
19
8
19
4b5
S3
48
29
^3
dc
32




.7
14.7
b9.b
14.1
3.5
15.0
114.3
20.8
.9
in u
l ii • t
.7
13.2
77.5
lb.4
4.1
18.1
105.1
20.2
.7
in *»
AU . 3
.8
15.4
71. b
15.2
3.3
17.9
103.1
23.0
1.1
10.3
.8
17.0
b4.b
18.3
3.b
18.1
103.9
lb.9
.7
10.0
in c
10*3
10.2




HP
0
23
48
23
9
23
8b
23
0
0
23
48
23
9
23
8b
23
0
0
23
48
23
9
23
8b
23
0
D
23
48
23
9
S3
8b
23
0







-------
                 ENGINE 2-3
EXPERIMENTAL 23 MODE EMISSION RESULTS
           BRAKE SPECIFIC BASIS

-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
5-11-72 RUN 1              ENGINE 2-3            STATIONARY  DYNAMOMETER

MODE
i
e
3
4
5
b
7
8
1
10
11
12
13
If
15
Ib
17
IS
11
20
21
?2
53

DYNA,
SPEED LOAD
faOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
?300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
4.4
17. b
39. b
55.0
110.0
IbS.O
180.4
202.4
?20.Q
0.0
0.0
235.0
21b.2
192.7
l?b.2
117.5
58.8
42.3
18.8
4.7
0.0
0.0
MAN. FUEL A/F
HP
0
1
4
S
13
25
38
4i
4b
50
0
0
103
95
B*
77
51
2b
19
8
2
0
0
VAC. LB/HR RATIO ALDE.
18.5
19.1
18.8
17.3
lh.2
9.8
b.4
f.7
1.7
0.0
18. b
23.0
1.8
3.4
5.3
b.8
11.2
Ib.b
17.8
19.4
20.7
18.5
24.9
CALCULATED GRAM/HR
MODE
1
2
3
4
s
b
7
8
9
10
11
12
13
1*
15
Ib
17
18
I*
20
21
22
23
CYCLE




ALDE
.7
1.5
2.b
5.4
5.8
9.2
12.3
9.9
14.7
10.5
.9
t.b
18.3
18.1
ib.n
10.3
19.7
S.b
8.1
*.2
2.3
.9
3.b
HC
43. b
24.3
39.7
57. S
b9.9
74. b
133.8
137.1
lhb.8
349.0
4b.fa
952.0
3bb.4
2bl.3
217.1
?10.7
54. b
37.5
27.3
18.2
13.2
48. b
899.0
COMPOSITE








CO
2b5
77
H3
85
94
147
280
50b
393
89b5
41b
Ib8
4375
33b2
3087
1579
414
298
258
20b
173
209
174
HC
CO
N02
ALDE
BSFC
N02
2.0
8.4
19.5
50.5
71.4
Ib9.1
438.5
523.1
b45.b
131.8
2.1
.3
1.140. b
1000.4
89b.b
8b5.2
b80.4
189.0
101.3
49.1
24.0
1.7
.3
10.274
28.372
10.530
.272
.b55
t.3
7.5
7.9
9.2
10.0
IS. 2
20.1
21.8
24.2
31. b
4.3
4.1
50.9
47.8
43.4
39.5
27.9
19.2
lb.5
It. 3
12.1
*.3
t.2
WT.
FAC.
.070
.obn
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.OfaO
0.000
.ObS
0.000
0.000
.080
.ObO























WT.
HP
0.0
.1
.2
.5
.4
1.5
0.0
l.b
0.0
0.0
0.0
0.0
2.b
5.2
3.0
4.b
3.1
o.n
.1 .2
0.0
0.0
0.0
O.CI
25
27
44
77
75
7b
8b
b4
87
55
32
Ibb
57
58
5b
38
bO
59
bS
38
25
33
81
BRAKE
ALDE.
R
1.5
.b
.b
.5
.4
.3
.2
.3
.2
R
R
.2
.2
.2
.1
.2
.3
.4
.5
1.1
R
R
DRY CONCENTRATION
HC
3349
955
1457
1788
1952
133b
2027
1914
2m
3955
3509
73417
2453
1821
Ib48
Ifa98
SbO
SfaO
470
358
308
3bl?
43892
SPECIF
HC
R
24. Ib
9.88
b.40
5.57
2.9?
3.55
3.33
3. hi
fa. 94
R
R
3.5b
2.7b
2.57
2.73
I.Ob
1.4b
1.4?
a. 21
b.39
R
R
CO
1.010
.150
.150
.130
.130
.130
.210
.350
.250
5.030
1.550
,b40
1.450
l.lbO
l.lbO
.b30
.210
.220
.220
.200
.200
.770
.420
C02
13. b2
13.15
12.90
12.55
12.35
12.10
13.40
13.25
13. b3
10.80
12.73
b.28
13.77
13.77
13. b3
13. fa3
12.71
12.71
12.59
12.47
12.59
13.33
4.45
NO
47
100
215
470
bOO
913
2000
2200
2500
450
48
b
2300
2100
2050
2100
2100
850
525
290
Ib9
37
f
1C GRAM/6HP-HR
CO
H
7b.7
20. S
9.4
7.5
5.8
7.4
12.3
8.5
178.4
R
R
42.5
35.5
3b.b
20.5
8.0
11. b
13.9
25.0
84.0
R
R
MJ2
R
H.4
t.8
5.b
5.7
b.7
11. b
12.7
14.0
2.b
R
R
11.1
10. b
10. fa
11.2
13.2
7.3
. 5.5
b.O
11. b
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
   5-15-72  RUN  1
                  PROJECT  11-2877-01   CONTROL TECHNOLOGY
                              ENGINE  2-3
                  STATIONARY DYNAMOMETER
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
lb
17
18
iq
20
21
22
23
SPEED
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
DYNA.
LOAD
0.0
4.5
17. q
40.3
Sb.O
112.0
IbS.O
184.0
20b.O
224.0
0.0
0.0
235.0
21b.O
iq2.5
l?b.O
117.5
58.8
42.3
18.8
4.7
0.0
0.0
HP
U
1
4
q
13
2fa
38
42
47
51
0
0
103
qs
84
77
51
2b
iq
8
2
0
0
MAN.
VAC.
18.5
iq. 1
18.7
17. f
lb.2
14.0
15.5
4.0
2.5
0.0
iq.s
23.0
2.5
4.3
b.7
?. q
11.5
lb.7
18.0
iq.s
20.8
18.8
25.0
FUEL A/F
LB/HH RATIO ALDE.
3.
7.
7.
q.
10.
11.
21.
22.
24.
2fa.
3.
3.
4q.
*5.
40.
3b.
27.
18.
lb.
12.
10.
2.
3'
8
2
7
0
1
3
0
7
2
7
8
7
8
5
3
q
b
5
4
0
1
8
q
as
40
48
qs
b?
b3
83
7b
?q
b4
50
131
52
58
55
53
4b
57
bO
3b
3b
40
85
DRY
HC
3071
?2q
1122
I45q
1850
1287
ibqs
Ib41
iqes
3748
3074
b275S
2108
i sqs
1880
1585
505
471
415
28b
235
2bOb
35bfal
CONCENTRATION
CO C02
.qso
.150
.150
.150
.150
.150
.350
.470
.350
s.?qo
1.480
.580
i.sqo
1.450
i.sqo
.550
.220
.210
.210
.180
.180
.880
.440
is. qi
13. Ob
13. Ob
13. Ob
12. q4
12.71
13. qi
13.77
14.05
10.7?
13.48
b.30
13.48
13.48
13.48
13.77
12. q4
12.82
12.82
12.82
12.71
13.48
4.84
NO
44
qs
185
420
750
1025
2000
2200
2450
bOO
48
b
2350
2250
2200
2850
2350
1325
850
400
217
+ f
4
         CALCULATED GRAM/HR
MODE ALDE.     HC      CO     N02
                                FAC
       WT.  BRAKE SPECIFIC GKAM/HHP-HR
        HP  ALDE.     HC     CO    NU8
1
2
3
4
5
h
7
8
q
10
11
12
13
14
15
Ih
17
18
iq
20
21
22
23
1.0
2.1
? . 7
b.2
5.0
5.3
11. 1
11.7
12.8
q.8
1.2
3.b
lb.5
17.1
14.4
13.3
q.5
8.0
7.3
3.2
2.8
.8
3.b
34. b
17.1
2q . 5
44.4
b3. q
50. b
112.3
117.4
148. q
2b7.7
34.4
?q2.i
311.5
218.0
225.3
183.1
47.8
30.3
23.5
11. q
8.4
22. q
707.4
212
75
80
q2
105
nq
4b8
b?q
531
8355
334
148
4?4h
4007
384q
1283
421
273
241
152
i2q
15b
17b
1.7
8.0
lb.1
42.5
Sfa.l
133.8
43q. 3
522.4
bio.q
142.3
1.8
.3
1152. q
1022.0
875.2
ioq3.o
?3q.fa
283.0
Ib0.2
55.4
25.7
1.4
.3
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
0.0
.1
.2
.5
.4
1.5
0.0
1.7
0.0
n.o
0.0
n.o
2.b
5.2
3.0
4.b
3.1
n.o
1.2
n.o
0.0
0.0
n.o
R
2.1
.7
.7
.4
.2
.3
.3
.3
.2
R
R
.2
.2
.2
.2
.2
.3
.4
.4
1.3
R
R
R
17.52
7.21
4.83
5. 00
i.qe
2 . qs
2.?q
3.1b
5.23
R
R
3.03
2.30
2. fa?
2.38
.qs
1.18
1.2?
1.45
4. Ob
R
R
R
72.8
iq.s
10.0
8.2
4.7
12.2
lb.2
11.3
Ib3.2
R
R
4b.l
42.4
45.7
lb.7
8.2
10. fa
13.0
18.4
b2.8
R
R

7
3
4
b
5
11
12
13
2


11
10
10
14
14
11
8
b
12


R
.8
. S
.b
.7
.2
.4
.4
.0
.8
R
R
.2
.8
.4
.2
.4
.0
.fa
.7
.5
R
R
CYCLE COMPOSITE
                  HC      8.410
                  CO     30.073
                  N02    11.308
                  ALDE     .254
                  BSFC     .b!4
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
  LB/BHP HR

-------
S-lb-72 RUN 1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
            ENGINE 2-3           STATIONARY DYNAMOMETER

MODE
1
5
3
4
5
b
7
8
q
10
11
12
13
If
15
Ib
17
18
11
20
21
25
23

OYNA.
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOD
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
n.o
4.5
17.9
40.3
Sb.O
112.0
ifaa.o
184.0
20b.O
224.0
0.0
0.0
235. 0
21b.O
112.5
17h.O
117.5
58.8
42.3
18.8
f .7
0.0
0.0
MAN. FUEL A/F
HP
0
1
4
q
13
2b
38
42
47
51
0
0
103
95
84
77
51
2b
iq
8
2
0
0
VAC. LB/HR RATIO ALDE.
18.8
11.2
19.0
17.5
lb.3
11.1
b.3
*.5
3.0
0.0
19. f
23.0
2.b
4.4
b.4
7.7
11.8
lb.8
18.0
19.9
20.9
18.7
2*. 9
CALCULATED GRAM/HR
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
I*
15
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
1.2
2.5
4.2
*.*
5.9
1.4
12.0
10. 7
in. 9
7.8
.9
4.1
lb.5
lb.3
17.2
7.0
12.0
b.4
7.3
3.1
2.3
1.0
3.7
HC
44.2
23.0
34. b
57.5
70.7
77.7
120.5
132.8
1**.*
319. b
3b.l
7R8.0
311.8
237.1
228. b
172.0
47.5
31.1
25.4
12.2
9.5
34.4
7*0.0
COMPOSITE








CO
251
72
74
85
98
14b
378
730
590
1030*
277
120
5275
40b9
3502
1182
32*
217
200
1*1
128
181
Ib3
HC
CO
N02
ALDE
BSFC
N02
l.b
8.3
13.5
39. b
85.2
18*. 8
388.1
*77.2
572.1
ISb.b
l.b
.2
1028.5
191.5
855.1
878.0
fa*1.2
214.7
132.8
*2.0
25.3
1.*
.2
8.730
21. bl5
10.2faO
.2bl
.b30
3.S
7.1
8.0
1.1
10,3
15. b
20.5
22.5
24.2
32.7
3.b
3.b
50.3
*b.2
*1.7
35.8
27.1
18.1
Ib.b
12.*
11.3
3.b
3.8
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO























WT.
HP
0.0
.1
.2
.5
.*
1.5
0.0
1.7
0.0
o.n
0.0
0.0
2.b
5.2
3.0
4.b
3.1
0.0
1.2
0.0
0.0
0.0
0.0
50
42
faS
b3
73
78
83
b7
b7
42
*1
155
52
5*
b3
2q
59
*7
58
33
27
*2
13
BRAKE
ALDE.
R
2.*
1.0
.5
.5
.4
.3
.3
.2
.2
R
R
.2
.2
.2
.1
.2
.2
.*
.*
1.1
R
R
DRY CONCENTRATION
HC
3872
8*1
1231
178b
189*
131b
180*
1802
1927
3b17
3*1*
b*831
21b8
1707
1820
1528
SO*
493
*3b
280
2*1
311*
*0380
SPECIF
HC
k
22. *b
8.*b
b.25
5.53
3.C*
3.1*
S.lfa
3.07
b.25
R
R
3.11
2.51
2.71
2.23
.^2
1.21
1.37
l.*8
*.fa3
R
R
CO
1.010
.130
.130
.130
.130
.130
.280
.*10
.390
5.900
1.300
.*10
1.770
l.*50
1.380
.520
.170
.170
.170
.IbO
.IbO
.810
,**0
C02
13.11
12.9*
12.71
12.4?
12.22
12.*?
13.48
13.18
14.05
10.81
13. b3
b.30
13.48
13.48
13.48
13.77
12.82
12.82
12.71
12.71
12.71
13.48
4.8*
NO
41
11
145
370
b88
1000
1750
1150
2300
bSO
45
b
2100
2150
2050
2350
2050
1025
b88
5SO
192
38
3
TC GRAM/BHP-HR
CO
, «
70.1
18.0
q.a
7.7
5.7
9.8
1?.*
12.5
201.3
R
R
51.3
*3.0
*1.5
15.3
b.3
8.4
10.8
17.1
b2.2
R
R
MO ?.
R
: 8.1
3. '-1
4.3
fa. 7
7.2
1 0 . .1
11.3
12.2
3.h
R
R
10.0
10.5
10.1
11.4
12.5
8.3
7.2
5.1
12.3
R
R
























GRAM/BMP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/8HP HR

-------
S-lb-?2 RUN 2
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENGINE 2-3
STATIONARY DYNAMOMETER

MODE
1
2
3
*
5
b
7
8
1
10
11
12
13
It
IS
Ib
17
18
IS
SO
21
22
23

DYNA.
SPEED LOAD
bon
1200
1200
1200
1200
1200
1200
1?00
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
*.s
17. q
fO.3
5b.O
112.0
IbS.O
18*. 0
20b.O
?2*.0
0.0
0.0
235.0
21b.O
192.5
17b.O
117.5
SB. 8
*2.3
IS. 8
*.?
0.0
0.0

HP
0
1
*
q
13
2b
38
*2
M-7
51
0
0
103
15
8*
77
51
2b
IS
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.5 3.7 1*.S
11.3 7.1 Ib.*
18.1 7.3 Ib.*
17.* 8.7 lb.3
lb.1 10.5 Ib.*
11.2 13.* lb.5
b.5 20.8 15.1
*.1 21.5 15.0
3.1 23.2 1*.1
0.0 32.1 12.1
11.2 3.3 13.1
23.0 3.7 1*.3
2.b 50.5 l*.l
*.5 *5.1 1*.2
fa. 5 *1.2 1*.2
7.* 31.3 l*.b
12.1 25.8 lb.2
lb.1 Ib.* lb.3
18.1 15.8 lfa.3
11.8 13.1 lb.3
20.1 11.3 lfa.3
18. b 3.7 1*.*
2*.1 3. fa 20.2
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
*
5
b
7
9
q
10
11
12
13
If
15
Ib
1?
18
11
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
33.3
Ib.S
28.1
53.1
b5.7
?* .0
113.5
127.3
138.3
315.1
3b.7
755.1
317. S
252.5
2*0.1
217.5
*i.*
25.7
21.8
12. b
8.7
31.3
5b8.2
COMPOSITE








CO
225
74
?b
10
Ifa
1*3
*20
b07
58*
10218
375
20?
532*
*b83
37?i+
1571
373
23b
221
1*5
125
233
15*
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.3 .070 0.0
b.* .ObO .1
10.* .DbO .2
*1.3 .050 .5
88.3 .030 .*
Hb. 3 .ObO 1.5
*22.b 0.000 0.0
*53.5 .0*0 1.7
fa03.* 0.000 0.0
173.0 0.000 0.0
1.5 .070 0.0
.2 .120 0.0
1013.8 .025 2. fa
ISfa.* .055 5.2
8*0.5 .035 3.0
133.8 .OfaO *.fa
751.1 .ObO 3.1
222.1 0.000 0.0
1*1.1 .Ob5 l.P
51.7 0.000 0.0
28.8 0.000 0.0
l.b .080 0.0
.3 .ObO 0.0
8.11* GRAM/BHP HR
33.2*7 GRAM/BHP HR
10. fab? GRAM/BHP HR
0.000 GRAM/BHP HR
.b20 L8/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
31*1
b?3
1121
171*
1710
15b5
Ifa13
ISfaS
18b*
3fa28
3b11
fa*2b8
2171
188*
1118
1818
Sbl
*bO
*0*
281
22*
28*3
3*1b3
CONCENTRATION

1.
•
•
*
•
*
•
•
•
5.
1.
•
1.
1.
1.
•
•
.
•
*
•
1.
•
SPECIFIC


Ib.
b.
5.
5.
2.
2.
3.
2.
fa.


3.
2.
2.
2.
•
1.
1.
1.
*.







HC
R
08
88
77
13
81
Ib
03
1*
Ib
R
R
01
b7
8b
82
Ib
00
18
53
21
R
R





CO
050
150
150
150
130
ISO
310
**0
310
8*0
870
870
800
730
550
fa50
210
210
210
IfaO
IbO
050
*70
























C02
1*,31
12.1*
12.1*
12. S*
12.71
12.51
13. b3
13.b3
13. b3
10.55
13. Ob
fa. 82
13. b3
13. b3
13.7?
1*.05
13. Ofa
13. Ob
13. Ofa
13. Ob
13. Ob
13.77
5.1b
NO
3b
71
125
*20
725
1250
1100
2000
2*50
bOO
*5
5
2250
2150
2100
2350
2faOO
1200
788
*00
225
*b
5
GRAM/8HP-HP


72
18
1
7
5
10
1*
12
200


51
*1
**
20
7
1
12
17
bO







CO
R
.*
.b
.7
.5
.fa
.1
.*
.*
.2
R
R
.7
.5
.8
.*
.2
.2
.*
.7
.fa
R
R





N0c>
R
fa. 8
2.5
*.5
b.1
7.7
11.0
10.8
12.8
3.*
R
R
10. b
10.1
10.0
12.1
1*.8
B.b
7.b
7.3
1*.0
R
R



































-------
5_17_?2 RIJN
PROJECT 11-2877-01  CONTROL TECHNOLOGY
            ENGINE 2-3           STATIONARY DYNAMOMETER

MODE
1
a
3
*
5
b
7
R
q
10
11
12
13
1*
IS
Ih
17
Ifl
11
20
21
22
23

DYNA,
SPEED LOAD
bOO
120n
1200
1200
1200
1200
1200
1200
1200
1200
ton
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
*.s
17.1
*0.3
5b.O
112.0
IbS.O
18*. 0
20b.O
22*. 0
0.0
0.0
235.0
2lb.O
112.5
I7fa.0
117.5
58.8
*2.3
18.8
*.7
0.0
0.0
»
HP
0
1
*
q
13
2b
38
*2
*7
51
0
0
103
SS
8*
77
51
2b
iq
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.7 *.* 1*.5
11.2 7.7 Ib.*
18.8 7.8 lb.5
17.* 1.* Ib.*
lfa.5 10. Q Ib.*
10.3 15.* lb.8
b.2 20.5 15.2
*.1 21.8 15.2
2.8 23.8 15.0
0.0 32.7 12.*
11.2 *,3 13.1
23.0 *.2 15.1
2.b 50.5 1*.3
*.b *5.1 1*.*
b.* *0.b 1*.5
7.5 38.* l*.q
11.7 27.3 Ib.b
Ib.b iq.O lb.5
17.8 lfa.7 Ib.b
11.8 13. b Ib.b
21.0 11. b Ib.b
18.8 *.l 1*.5
2*.1 *.0 20.7
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
1*
15
Ib
17
18
H
20
ei
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
51.5
20.8
30.*
58.0
b3.8
82. b
118.5
118.0
132. 1
327.1
*b.1
S12.8
318. b
2**.1
225.8
IB*. 8
*2.1
32.0
2* .2
l*.l
1.1
*2.b
71b.O
COMPOSITE








CO
283
112
82
qs
105
Ifab
517
5f8
383
q?15
*32
125
**32
37bO
2113
1117
321
2*2
201
15*
132
23b
15b
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.7 .070 0.0
8.* .ObO .1
11.7 .ObO .P.
51. b .050 .5
71. b .030 .*
115.5 .ObO 1.5
*2*.5 0.000 0.0
*85.3 .0*0 1.7
b*2.b 0.000 0.0
118.1 0.000 0.0
1.1 .070 0.0
.2 .120 0.0
1205.8 .025 2.b
101*.? .055 5.2
8*b.l .035 3.0
1*3.7 .ObO *.b
bSl.1 .ObO 3.1
2*2.8 0.000 0.0
133. b ,0b5 l.i-f
50. b 0.000 0.0
2*.? 0.000 0.0
1.7 .OBO 0.0
.3 .ObO 0.0
1.3b8 GRAM/BHP HR
27. 8b? GRAM/BHP HR
10.725 GRAM/BHP HR
0.000 GRAM/BHP HR
.b*2 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3857
785
1120
1712
18*8
1508
1807
Ib15
1751
3b82
3b3b
fa*150
2105
17b2
1817
1528
**8
*81
*1*
217
22*
3*00
3102fa
CONCENTRATION

1








5
1

1
1
1








CO
.050
.210
.150
.150
.150
.150
.310
.310
.250
,*00
.bbO
.**0
,*50
.3*0
.IbO
,*10
.170
.180
.170
.IbO
.IbO
.130
.*20
























C02
13. *8
12.1*
12.82
12.82
12.82
12. *7
13. b3
13. b3
13.77
10.81
13. Ob
b.Sb
13. *8
13. *8
13. *8
13.77
12.71
12.71
12.71
12.71
12.71
13. *8
5.50
NO
38
15
130
*80
b25
1075
1150
2100
2550
b?0
*5
*
2*00
2200
2050
2350
20SQ
1100
b88
320
IBS
*0
5
SPECIFIC GRAM/BHP-HR


20.
7.
b.
*.
3.
3.
2.
2.
b.


3.
2.
2.
2.
•
1.
1.
1.
*.







HC
R
31
*3
30
11
23
01
81
82
*1
R
R
10
51
b8
*0
83
2*
31
72
*3
R
R







101
20
10
8
b
13
13
8
181


*3
31
3*
15
b
1
10
18
b3







CO
R
.7
.1
.7
.2
.5
.b
.0
.1
.8
R
R
.1
.8
.b
.5
.*
.*
.1
.7
.1
R
R





N02
R
B.R
2.1
S.b
S.b
7.b
11.1
11.5
13.7
3.1
P
R
11.7
10.7
10.0
12.2
12.7
1.*
7.2
b.l
12.0
R
R



































-------
5-17-72 RUN 2
PROJECT 11-2877-01  CONTROL TECHNOLOGY
            ENGINE 2-3           STATIONARY DYNAMOMETER

MODE
1
2
3
*
5
b
7
8
q
10
11
12
13
It
15
Ib
17
18
1=1
20
21
22
23

DYNA.
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOU
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOQ
2300
0.0
4.5
17. q
40.3
Sh.O
112.0
IbB.Q
18*. 0
20b.O
224.0
0.0
0.0
235.0
21b.O
192.5
l?b.O
117.5
58.8
*2.3
18.8
f .7
0.0
0.0

HP
0
1
«f
9
13
2b
38
42
47
51
0
0
103
95
84
77
51
2b
19
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.8 4.1 14.3
19.2 7.4 lb.4
18.7 8.0 lb.4
17.5 8.8 lb.3
lb.7 9.b lb.4
10.4 14.8 lb.7
5.5 20.8 15.1
4.5 21.7 15.0
2.8 23.7 14.9
0.0 32.7 12.?
19.2 3.9 13.9
23.0 3.8 13. b
2.b 49.9 14.0
4.b 45.2 14.1
b.5 42.2 14.2
7.7 37. q 14. q
12.1 2fa.3 lb.3
17.1 17. b lb.4
18.0 lb.3 lb.5
iq.7 13.3 lb.5
20.8 11.5 lb.4
18.9 3.8 14.5
24.8 3.8 18. h
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib
17
18
iq
20
21
22
23
CYCLE




ALOE
1.0
2.8
3.3
3.9
5.5
8.b
11.7
10.0
10. b
7.7
1.1
3.1
18.0
18.1
lb.7
10.5
10.8
5.8
b.7
3.8
2.*
.9
3.7
HC
42.4
22.5
39.5
57.1
bb.l
83.0
120.1
131.3
15b.fa
35b.8
47.0
esb.q
3bO.S
297.2
252.3
195.8
5*. 8
31.1
2b.7
IS. 9
11.0
42.8
72b,2
COMPOSITE








CO
272
bb
71
79
qq
155
37b
b07
529
1Q277
42b
185
5493
f813
3915
1304
323
207
192
1*8
127
215
14b
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
1.5 .070 O.D
7.7 .ObO .1
lb.2 .ObO .2
3b.8 .050 .5
fa2.5 .030 .4
190.9 .ObO 1.5
441.1 0.000 0.0
4b4.5 .040 1.7
b09.0 0.000 0.0
190.9 0.000 0.0
l.fa .070 0.0
.2 .120 0.0
1103.4 .025 2.b
914. b .055 5.2
891.2 .035 3.0
1030.0 .ObO 4.b
b77.5 .ObO 3.1
189.7 0.000 0.0
130.3 ,0b5 1.2
bO.b 0.000 0.0
28.7 n.ono n.n
l.b .080 0.0
.2 .ObO 0.0
9.40b GRAM/BHP HR
33.104 GRAM/BHP HR
10,b44 GRAM/BHP HR
.259 GRAM/BHP HR
.b27 LB/BHP HR
39
52
5b
bO
78
78
81
bS
b5
41
4b
128
55
bl
59
39
57
44
55
39
28
37
98
BRAKE
ALDE.
R
2.7
.8
.H
.4
.3
.3
.2
.2
.2
R
R
.2
.2
.2
.1
.2
.2
.4
.5
1.1
R
R





DRY
HC
3531
898
14bO
190b
2018
Ib24
1808
1923
2092
409b
409b
75952
238b
2158
1927
1577
b!8
51b
477
348
281
3744
42105
CONCENTRATION

1








5
1

1
1
1








CO
.120
.130
.130
.130
.150
.ISO
.280
.440
.350
.840
.840
.810
.800
.730
.480
.520
.180
.170
.170
.IbO
.IbO
.930
.420
























C02
13.91
13.18
13.18
12.94
12.94
12.82
13.77
13.77
13.77
10.78
13. Ob
b.73
12.94
12.94
12.94
13.18
13.18
13. Ob
12.94
1 3 . 0 b
13. Ob
13. b3
5.27
NO
38
93
180
370
575
1125
2000
2050
2150
bbO
41
b
2200
2000
2050
2500
2300
950
700
400
220
41
4
SPECIFIC GRAM/BHP-HR


22.
9.
b.
5.
3.
3.
3.
3.
b.


3.
3.
2.
2.
1.
1.
1.
1.
5.







HC
R
01
b?
20
Ib
24
13
12
33
97
R
R
50
14
99
54
07
21
44
93
35
R
R







fa4
17
8
7
b
9
14
11
200


53
50
4b
Ib
b
8
10
17
bl







CO
R
.3
.4
.5
.8
.1
.8
.4
.2
.8
R
R
.t
.9
.*
.9
.3
.0
.*
.9
.7
R
R





N02
R
7.5
4 .(]
4.0
4.S
7.5
11.5
11.0
12.9
3.7
R
R
10.7
9.7
10. b
13.4
13.2
7.4
7.0
7.4
13.9
R
R



































-------
               APPENDIX G




               ENGINE 2-3




COMPARISON OF 1972 TO 1973 CALIFORNIA




     CONFIGURATION EMISSION RATES

-------
              ENGINE 2-3

   EXPERIMENTAL 23 MODE RESULTS
           (Army Lab Tests)

 1973 CALIFORNIA VERSION OF ENGINE

1972 RETEST OF 1972 STANDARD ENGINE

-------
         PROJECT 11-2877-01  CONTROL TECHNOLOGY
RUN 1  iq?3 CALIFORNIA VERSION OF ENGINE 2-3  PER MANUF. SPECS.


0 Y N A .
MOI1E S^EED LOAD
1
t?
3
4
5
h
7
8
H
10
11
12
13
14
15
Ib
17
18
11
?0
21
2?,
23
bnn
IrMlO
1200
1?00
1200
1200
1200
l?no
ienn
1 ? 0 1.1
bOO
1200
3300
2300
2300
2300
2300
23"0
2300
2300
2300
bOn
2300
0.0
*.3
17.2
38.7
53.8
107.5
1 b 1 . 0
.177.0
117.8
215.0
0.0
0..0
25b.O
235.5
201.1
11?. 0
128.0
b4.0
*fa.O
21.0
5.0
n . o
0.0
MAN. FUEL A/F
HP
0
i
4
q
12
25
37
40
45
4q
0
0
112
103
qg
84
5b
28
20
q
2
0
0
VAC. LB/HH RATIO
18.0 *
11.2 7
18.5 8
17.1 10
Ib.* 10
10. b 15
fa.* 21
5.0 22
3.0 2*
0.0 32
18.2 *
22.7 3
.1 b*
3.3 51
5.3 *8
b.8 4fa
10.3 31
15.1 21
17.8 18
11.2 IS
20.5 12
18.0 *
24.8 3
CALCULATED GRAM/HR
MODE
1
2
3
4
5
I-
7
R
rl
10
11
12
13
14
15
Ib
17
IS
11
20
?1
2?
23
CYCLE




ALOE
0.0
0.0
o.O
O.P
0.11
n.o
n.O
n.o
n.o
0.0
0.0
0.0
n.o
n.o
fi.fi
o.o
n.o
o.o
o.o
0.0
o.o
o.o
0.0
HC
41. 7
lb.3
?7.0
38. S
4 b. 4
7*. 3
1. 1 5 . 1
1 S 7 . 0
1 b b . 0
333. U
48.8
787.1
552.3
355.2
323.4
3.1.3.5
37.3
1*.*
8.1
b.l
3. a
31.8
bbl.O
COMPOSITE








CO
172
b8
71
8b
q4
141
inifa
813
1348
12b1
377
1*1
21533
7534
7735
7023
314
215
IbO
104
85
17b
83
HC
CO
Iv02
ALOE
BSFC
.7 15.0
.1 15. b
.* 15. b
.1 1S.B
,1 15.8
.1 lb.1
.7 1*.S
.7 1*.S
.b 14.5
.5 12.5
.7 14.1
.8 15.0
.8 12.1
.2 13. b
.5 13.5
.5 13. b
.2 15. b
.* 15.8
.3 15. R
.* 15.1
.7 Ib.?
.7 15.2
.1 31.7
wT. wT
ALOE.























•
N02 FAC. HP
1.7
8.4
14.0
24.0
34.4
121.1
238.4 0
212.5
33b.l 0
218.1 0
2.U
.2
438.8
b!4.2
537.3
477.2
550.1
188.7 0
13. U
4b.O 0
21.7 0
1.8
•*
8.8*3
70.b08
b.042
0.000
.b78
.070 0.
.ObO
.ObO
.050
.030
.ObO 1.
.000 0.
.040 1.
.000 0.
.000 0.
.070 0.
.120 0.
.025 ?.
.055 5.
.035 3.
.ObO 5.
.ObO 3.
.000 0.
,0b5 1.
.000 0.
.noo 0.
.080 0.
.ObO 0.
GRAM/BHP
GRAM/BnP
GRAM/BHP
GRAM/BHP
LB/8HP
0
1
2
4
4
S
0
b
0
0
0
0
8
7
2
0
4
0
3
0
0
0
0
HR
HR
HR
HR
HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
I
I
0.0
o.o
o.o
0.0
o.o
o.o
o.o
o.o
0.0
I
I





DRY CONCENTRATION
HC
3310
b32
113
118*
121fa
13*8
2388
2272
221*
3803 5
3318 1
b5277
3238 fa
2*00 2
23*8 2
23*5 2
3bO
203
l*b
118
7b
2fa*1
23872
CO
.580
.130
.130
.130
.130
.130
.770
.fa*0
.810
.2*0
.300
.580
.250
.520
.780
.bOO
.150
.150
.130
.100
.100
.580
.ISO
C02
13. *8
13.7?
13.7?
13. b3
13. b3
13.18
lf.05
1*.OS
13.7?
11.2*
13. Ob
7.00
10. fab
12,1*
12.1*
12.1*
13. *8
13. *8
13. *8
13. *8
13. b3
13.18
3.15
NO
35
18
155
220
210
725
1100
1275
1350
750
41
S
775
1250
1175
1075
IbOO
800
*bO
270
ISfa
37
*
SPECIFIC GRAIi/BHP-HR
HC
H
Ib.bl
b.88
*.*0
3.77
2.1*
4.24
3.88
3. fa?
fa. 78
R
R
4.13
3.44
3.52
3.73
.b?
.51
.44
.bb
l.*5
R
R





CO
K
bl.O
18.2
1.8
7. fa
5.7
27. b
22.1
21.8
188.7
R
R
112.1
73.0
8*. 2
83. S
5. fa
7.7
7.1
11.3
38. b
R
R





N02
R
8.5
3.b
2.7
2.8
5.3
b.5
7.2
?.*
*.*
R
R
3.1
fa.O
5.8
5.7
1.8
fa. 7
*.fa
5.0
1.1
R
R



































-------
                 PROJECT 11-2877-01  CONTROL TECHNOLOGY
5-53-7? RUM 5  1173 CALIFORNIA VERSION OF ENGINE 2-3  PER MANUF,  SPECS.
DYNA.
MODE
i
s
3
H
5
K
7
R
i
10
11
15
13
It
15
ih
17
18
11
an
51
25
53
SPtfc'D LOAD
hno
1500
15CJO
1500
ison
1 5 n LI
150U
1500
1?00
1500
bOO
150H
2300
5300
2300
5300
5300
5300
2300
2300
5300
f»OU
5300
0.0
f .3
17.?
38.7
53. R
107.5
lbl.0
177.0
1^7.8
515. Li
0.0
0.0
5Sfa.O
2J5.5
201.9
IIP. o
158.0
bf.O
fb.Q
5.1 .0
5.0
n.n
o.o
HP
0
I
f
q
15
25
37
fO
fS
f 1
0
0
112
103
15
8t
5b
28
20
1
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.5 4.7 15.8
IS.f 7.1 lb.5
18.3 B.f Ifa.b
lb.8 10.1 Ib.b
15.8 10.1 lfa.5
10.3 15.1 Ib.f
b.3 21.7 If. 7
5.0 52.7 If. 7
3.0 2f.b If. 5
0.0 32.5 12.5
18.3 f.7 If. 8
22.8 3.8 lb.1
.1 bf.8 12.2
3.f 51.2 13. f
S.f f8.5 13. S
h.8 fb.5 13.7
10. f 31.2 15.5
15.8 21. f 15.1
17. b 18.3 15.1
11.3 IS.f lb.0
50. f 12.7 Ib.f
17.5 f.7 15.5
5f.8 3.1 21.5
CALCULATED GHAM/HK WT. W1.
MOOR
I
2
3
f
5
b
7
8
S
in
11
15
13
if
IB
Ib
17
18
11
?0
51
25
i?3
CYCLE




ALDF
0."
0.0
0.0
0.0
0.0
n.o
o.o
P.O
o.o
0.0
f .1 . 0
0.0
n.o
n.n
o . n
o.o
o.o
o.o
n.o
n.o
n.o
o.o
n . o
HI:
bf .b
15. f
57.3
11.1
5f .0
b8.8
1 f V . 5
15t. 7
170.0
33b.3
31.5
7 0 3 . b
b R 3 . 0
fSS.8
f 0 8 . b
230.3
Si. 7
15. f
11. b
5.7
3.2
ft. 8
bSS.b
CO^POSITF








CO
bb
5b
51
70
7b
111
b33
bbf
llbf
U3t
5fa7
71
20501
8588
7705
bfOO
30b
511
158
103
85
85
7h
HC
CO
N02
ALPE
BSFC
N05 FAC. HP
1.5 .070 0.0
5.0 .ObO .1
8.2 .ObO .2
18.5 .050 .f
33.8 .030 .f
115.8 .ObO 1.5
2fi.l o.noo 0.0
30f.7 .OfO l.fa
3fl.7 0.000 0.0
21f.1 0.000 0.0
1.1 .070 0.0
.3 .120 0.0
f33.8 .025 ?.8
510.1 .055 5.7
fSf.O .035 3.2
ff5.7 .ObO 5.0
377.1 .ObO S.f
18.0 0.000 0.0
fb.O .ObS 1.3
11. f 0.000 0.0
s.f o.ono o.o
.1 .080 0.0
.2 .ObO 0.0
8.151 GRAM/BHP HR
b8.b23 GRAM/BHP HR
5.088 GRAM/BHP HR
0.000 GRAM/BHP HR
.b78 L8/8HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
bKAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





OKY
HC
flSO
5bO

-------
         PROJECT 11-2877-01  CONTROL TECHNOLOGY
RUN 1  iq?3 CALIFORNIA VERSION OF ENGINE 2-3  PER MANUF. SPECS.

MODE
1
2
3
«*
S
h
7
8
q
in
11
12
13
14
15
1^
17
18
19
20
21
22
23

DYNA,
SPEED LOAD
bOO
IPOO
i?on
isno
1200
IPOO
1200
1200
12nn
l?no
bno
12nn
2300
2300
2300
2300
2300
2300
2300
3300
2300
bOO
2300
0.0
4.3
17.2
38.7
53.8
107.5
1 fa ). . 0
177.0
197.8
215.0
0.0
n.o
25k. Q
23K.S
209.9
19?. 0
128.0
b4.Q
4t«.n
2.1.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
4
q
12
25
37
4n
45
49
0
n
112
103
92
84
5b
28
20
q
2
0
0
A/F
DKY CONCENTKAflON
VAC. LB/HR RATIO ALDE.
18.3 4
19.3 7
18.5 8
17.3 10
lb.2 10
10.8 15
b.4 21
5.0 22
3.1 24
0.0 32
18.3 4
22.9 3
.1 b4
3.4 bl
5.5 48
b.7 4fa
10. b 31
lb.0 21
17.5 18
19.5 15
20.5 12
18.3 4
24.8 3
CALCULATED GRArt/HR
MODE
1
2
3
4
S
b
7
8
q
in
11
12
13
14
15
ib
17
18
19
? o
?1
2?
?3
CYCLE




ALDfc
n.o
0 . 0
n.n
0.0
o.o
O.o
0.0
0.0
0.0
0.0
n.n
o.o
0.0
o.o
0.0
n.o
n.o
o.o
o.o
o.o
n.n
0.0
n.o
HC
70.3
27.8
30.5
55.5
70.2
100. fa
185.4
200.7
2J0.5
41fa.2
bl.l
q 8 2 . i
929.8
b08.3
S34.&
515.8
155. B
59.4
38.8
20.7
5.8
49.8
SOS. 8
COMPOSITE








CO
225
b8
73
88
97
143
883
884
1458
9358
234
105
20K03
88fa9
7719
7209
373
P59
220
134
112
252
78
HC
CO
N02
ALDE
BSFC
N02
1.7
11.2
U.8
28.3
4b. 4
151.7
277.8 0
333.4
373.5 0
24b.9 0
2.0
.1
4SO.O
547.8
559.0
495.5
b!2.3
213.1 0
120.5
50.9 Q
25.3 0
1.9
.4
12.50b
73.085
b.339
0.000
.7
.9
.4
.1
. 9
. 9
.7
.7
.b
.5
.7
.8
.8
.2
.5
.5
.2
.4
.3
.4
. ?
.7
•q
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
.000
.040
.noo
.000
.070
.120
.025
.055
.035
.ObO
.ObO
.000
,0b5
.000
.000
.080
.ObO
14.9
15.7
15.7
15.7
lb.2
lb.1
14. b
14.5
14.4
12.5
14.8
13.1
12.0
13.3
13.4
13.4
15.5
15.7
15.7
15.7
15.8
14. b
25.3
WT.
HP
0.0
.1
.2
.4
.4
1.5
0.0
l.b
0.0
0.0
0.0
n.o
2.8
5.7
3.2
5.0
3.4
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
o.o
0.0
o.o
0.0
o.o
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
48bl
1071
1098
lbS9
19Q9
1849
2713
2798
2713
4bl8 5
4053
890bb
5488 b
4240 3
3891 Z
3888 2
1521
832
b42
405
135
3389
37482
CO
.770
.130
.130
.130
.130
.130
.b40
.falO
.930
.140
.770
.470
.020
.ObO
.780
,b90
.180
.180
.180
.130
.130
.850
.180
COS
13.33
13. b3
13.48
13.33
13.18
12.94
13.48
13.48
13.18
10.78
12.82
b.OS
10.78
12.71
18.82
12.82
13.48
13.33
13.48
13.48
13.33
13.18
4.27
NO
35
130
127
2SS
380
840
izes
1400
1450
825
39
3
800
1150
1225
1125
1800
900
bOO
300
179
39
5
SPECIFIC GRAM/BHP-Hft
HC
K
28.35
7.7fa
b.28
5.71
4. in
5.04
4.9b
4.bb
8.47
R
R
8.29
5.90
5.82
b.13
2.78
2.12
1.93
2. 25
2.b3
K
R
CO
K
b9.5
18, b
9.9
7.9
5.8
24. n
21.9
32.3
190.5
K
R
183.8
8b.O
84.0
85.7
b.b
9.3
10.9
14. fa
51.2
R
R
N02
K
11.4
3.0
3.2
3.8
b.2
7.b
8.2
8.3
5.0
R
R
4.0
5.3
b.l
5.9
10.9
7.b
b.O
5.5
11. b
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BMP HR
GRAM/BHP HR
,b?8 LB/BMP HR

-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
5-?b-72 Rl'N 1              ENGINE 2-3           STATIONARY DYNAMOMETER

MODE
1
2
3
*
5
b
7
B
9
in
11
12
13
1*
15
lb
17
1^
19
20
?1
?2
23

OYMA.
SPEED LOAD
bOO
1?00
1200
1200
1200
1200
1?PO
1200
1200
1200
bOO
1200
2300
230n
2300
2300
2300
2100
2300
2300
2300
bOO
2300
0.0
4.7
19.0
42.0
59.0
J1H.O
17b.O
193.0
Plb.O
P35.0
o.o
o,.o
2*0.0
221.0
197.0
iflo.o
120.0
bO.O
43.0
19.0
4.8
0.0
n.o

HP
0
1
4
10
13
27
40
4*
49
54
0
0
105
97
8b
79
53
2b
19
8
2
0
0
MAN. FUEL A/F

VAC. L8/HR RATIO ALDE.
19.2 4,0 14.5
19. b 7.5 15.0
19.3 7.9 15.0
18.4 9.2 15.2
17.0 10.0 15.2
10.2 15.2 15.7
b.O 20.1 15.1
4.5 21.8 15.1
2.8 24.2 15.0
0.0 31. b 12.4
19.5 4.3 13.7
23.4 4.1 12.8
2.9 50.9 1*,5
4.0 *7.8 I*.*
5.5 4,3.4 l*.b
7.4 39.5 14.7
11.3 27. S Ifa.S
Ib.b 19.2 Ib.S
18.2 lfa.5 lb.4
20.0 1*.3 lb.3
21.2 12.1 lb.1
19.2 4.3 14.1
25.1 4.2 11.4
CALCULATED GRAM/HR WT. WT.
MODE
1
?
3
4
5
b
7
R
9
10
11.
12
13
1*
15
Ib
17
18
19
20
?l
22
23
CYCLE




ALDE
Q . 0
0.0
0.0
0.0
o.o
n.O
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
n.o
n.O
0.0
O.n
n.O
n.o
HC
51.3
23. b
37.5
79. b
92.0
98.3
1*4.8
lbl.4
1E1.3
3t>1.4
^
-------
R(iN
PROJECT 11-2877-01  CONTROL TECHNOLOGY
            ENGINE 2-3           STATIONARY DYNAMOMETER
DYMA.
MODE
i
?
3
t
5
h
7
e
q
10
11
18
13
It
15
If)
17
18
11
so
21
?P
33

MODE
1
2
3

-------
5-3n-72 RUN P.
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENGINE 2-3
STATIONARY DYNAMOMETER

MODE
1
2
3
t
5
S
7
8
q
I"
11
IP
13
It
IS
Ih
17
J«
19
20
21
22
?3

UVM.
SPEED LOAD
boo
1?00
1800
1200
1200
i?oo
1200
1200
1200
1 ? n LI
bOO
l?nn
2300
2300
2300
2300
2300
2^00
2300
?300
2300
bOO
2300
0.0
t.3
17.2
38.7
53.8
107.5
lbl.0
,1 77.0
117.0
215.0
0.0
0.0
2Sb.Q
235. S
209.9
.1.92.0
128.0
fat.n
tb.O
2.1 . n
5.0
n.o
n.o

HP
0
1
if
9
12
25
37
to
t5
tq
0
0
112
103
92
81
5b
28
20
9
2
0
0
MAM. FUEL A/F

VAC. L8/HR RATIO ALDE.
18.5 t.7 14. t
19. b 7.9 i*.7
19.0 B.t 15.0
18.0 10.1 15.2
Ifa.S 10.9 lb.0
10.? 15.9 ife.q
S.b 21.7 15.3
t.O 22.7 IS. 3
2.7 2t.b 15.1
0.0 32.5 12. b
19.2 t.7 13.8
23.3 3.8 lt.1
2.9 bt.8 It. 2
t.n 51.2 It. 3
5.9 «t8.5 It.t
7,5 tb.5 It.b
11.5 31.2 lb.5
lb.7 21. t Ib.t
18.0 18.3 Ib.t
20.0 IS.t lb.2
21.3 12.7 lb.1
IS. 7 t.7 it. 3
25.0 3.9 21. b
CALCULATED GRAM/HP WT. WT.
MODE
1
e?
3
t
S
h
7
R
H
in
U
15
1 3
Jt
15
lb
17
18
14
an
31
?S
23
CYCLE




ALOE
n.O
0.0
0.0
0.0
n.O
0.0
n . D
0.0
n.o
0.0
n.o
0.0
n.o
0.0
n.n
n.o
n . o
0.0
n.o
o.o
n.O
O.n
0.0
HC
5b.2
28.9
3b.9
71. t
70.2
73.2
130.8
138.9
157.5
3 0 t . b
53.'-"
728.9
t77.7
31 b.t
2bt.8
255.8
*2.8
31.0
8*. 8
lb.0
7.4
57. t
b37.1
COMPOS lie








CO
378
28t
Ib3
115
9?
113
1R1
219
281
90e?b
bt5
2bl
btb8
t823
t2bO
2982
391
2b8
192
15b
112
t2t
131
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.7 .070 0.0
7.9 .ObO .1
It. 7 .ObO .2
bO.7 .050 ,t
9«t,7 .030 .t
182.8 .ObO 1.5
tS8.9 0.000 0.0
50t. 3 .QtO l.b
htl.7 0.000 0.0
IbS.S 0.000 0.0
1.9 .070 0.0
.2 .120 0.0
1S37.0 .025 ?.8
1125.1 .055 5.7
9f,5.fa .035 3.2
102b.9 .ObO 5.0
7tq.8 .ObO 3.t
299. b 0.000 0.0
Ib7.t ,0b5 1.3
b3.t 0.000 0.0
27. b 0.000 0.0
l.b .080 0.0
.t .ObO 0.0
8.t22 GRAM/HHP HR
38.529 GRAM/8HP HR
11.315 GRAM/BHP HR
0.000 GRAM/BHP HR
.b?8 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
t229
1193
Itl8
22b3
1909
131t
1893
1921
2037
tObb
t058
b5380
2*77
2Clt8
1821
1819
398
t21
392
309
18b
H151
3t33t
CONCENTRATION

1.
•
•
*
*
•
•
9
•
5.
S.
1.
1.
1.
1.
1.
*
•
•
•
•
1.
•
SPECIFIC


29.
9.
8.
5.
2.
3.
3.
3.
b.


t.
3.
2.
3.
•
1.
1.
1.
3.







HC
R
tt
39
07
71
98
55
tt
50
20
R
R
2b
Ob
88
Ot
7b
11
23
7t
bl
R
R





CO
tio
580
310
180
130
mo
130
ISO
180
9bO
too
IbO
bbQ
550
tso
050
180
180
150
150
130
520
350
























C02
It. OS
It. 18
It. 18
1». 05
13.18
12.71
13.91
13.91
It. 05
13.33
13. Ob
7.5b
13.33
13.33
13. t8
13.77
12. 9t
12. 9t
12. 9t
13.33
13.33
13.33
5.75
NO
3S
98
170
580
775
988
3175
2100
2500
b25
t3
b
2tOO
2200
2000
2200
2100
1225
750
370
195
3t
b
GRAM/BHP-HR


289
tl
13
7
t
t
5
b
183


57
tb
tb
35
7
q
9
17
51







CO
R
.0
.5
.0
.9
.b
.9
,t
.2
.7
R
R
.7
.8
.3
.5
.0
.b
.5
.0
.a
R
R





N02
R
8.0
3.7
b.9
7.7
7.t
13. b
12.5
It. 3
3.2
R
R
13.7
10.9
10.5
12.2
13. t
10.7
7.8
b.9
12. b
R
R



































-------
                  ENGINE 2-3




                 9 MODE FTP




1973 CALIFORNIA VERSION OF ENGINE RESULTS




           CONCENTRATION RESULTS




       CALIFORNIA ARE MASS RESULTS

-------
         5-31-7?   73 VERiilON ENGINE S-J   RUM-i   ARMY LAB
                                                                                K =  .181
                                                                                              HUM
                                                                                                     72  GR/LH
CYCLE  1
CYCLE  8
CYCLE 3
CYCLE *
FEDERAL
H'JDF
I IDLE
2 Ib HG
3 in HG
* Ifa HG
5 IS HG
b Ib HG
7 3 HG
B j> HG
1 C.T.
i jr.LE
2 Ib'HG
3 in ' HG
* Ib'HG
5 ll'HG
t Ib'HG
7 3 ' nG
8 It- ' HG
1 C.T.
1 IDLE
2 Ib'HG
3 IC'HG
* Ih'HG
S ll'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 Id'HG
* Ib'HG
5 ll'HG
b Ib'HG
7 3'HG
8 Ih'HG
1 C.I.

AVERAGE
AVERAGE
CONCENTRATION AS
HC rn coa
22B
as
28
1~>
1'
RS .
17 2.
30
155
22H
35
3U
3U
Ib
17
^107 2.
35
108
75
53
35
3S .
35
30
lOb 2.
35
8b7
75
2b
21
Ib
13
17
81 2.
2b
828
r /-• y r+i c

530 13.530
IbO 13.330
IbO 13.*80
lit) 13.*8r
1?0 13.500
Ibn 1 3 . * b 0
280 13.250
150 12.1*0
**0 7.*10
c f i MP n Q T ~l P 'k
uu Nr uo l l t j —
530 13.530
180 13.180
150 13.180
150 13.020
13C 13.HSO
130 12.820
110 13.*50
IbO 13.1*0
*5n b.110
mKiWnQTTFI
UUrlrUo J. 1 1 ) ~
580 I3.*80
200 13.*00
ISO 12.*80
15n 12.820
130 13.200
130 12.1*0
ObO 13.300
200 13.*80
**P 7.850
COMPOSITE)—
580 13.*80
?1P 13.180
180 12. IbO
1*0 12.710
130 13.1*0
130 12.1*0
t>80 13.180
ISO 13.330
*30 7.730
pnwDnQTTC^
L-U"rUol 1 b ^ —
JiU t i™""™ C C 0 MP E'8 i ic v«i_iic.s?
8U>. 	 (COMPOSITE VALUES
FOUP CYCLE COMPOSITE






- REPORTED



MfcASUHED DILUTION A
NO FACTOR HC
77
5*2
1218
b*3
SbS
b.l?
15*b
837
85
77
582
11*1)
sns
g*?
*JO
1*R8
b!2
SI
77
55?
b2h
*31
251
*bR
IbOS
752
bB
77
b!3
lObl
*2B
22*
522
1501
b78
b7
"OR c Y ri_ t s
FOR CYCLES
VALUES -



1.033
1.078
I.Ob?
1.0b7
l.nbs
l.Obl
1.01)0
1.111
I.b7*
1 .033
1.010
1.011
1.105
1.072
1.12*
.181
1.01*
1.787
1.0*7
1.070
1.151
1.121
1.010
1.112
1.00*
l.ObS
l.blO
1.0*7
1.081
1.101
1.133
1.017
1.113
1.013
1.071
l.b*0
1 A Klh
1 » nlL*
3 AND
HC
CO
NO

235
*2
30
18
18
g*
17
33
1511
235
38
33
33
17
11
Klb
38
Ib22
71
57
*0
31
38
33
lOfa
37
131b
71
28
23
18
1*
11
10
28
1358



0.35*<
0.35*(
0.35*(

D J U S T E D
CO NO
.5*7
.172
.171
.203
.128
.171
2.281
.Ib7
.737
.5*7
.lib
.Ib*
.Ibb
.131
.l*b
2. Ibb
.175
.80*
,b07
.21*
.173
.Ib8
.1*2
.1*5
2.0b8
.213
.708
.b07
.221
.200
.151
.1*3
.1*5
2.107
.Ib2
.70S



10.811)
.77b)
1002. *1,7)

80
58*
1300
bBb
283
faSt.
15*7
130
1*2
80
b3*
12**
558
251
*bl
1*72
bbl
105
81
510
723
*12
27*
521
Ibll
801
101
81
fab8
118b
*82
2*b
581
1520
732
110



+ 0.
+ 0.
+ 0.

WEIGHTING
FACTOR
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021



bS*C 80.530)
b5*( .?*b)
b5*( 122.332)
CORRECTED NO
W E
HC
8.*7b
3.7*1
7.b78
l.bl*
.853
2.013
27.*bl
2.1b7
33.57*
88. *58
8.*7b
3.31*
8.*1*
2.1*1
.80b
1.700
21.1*1
3.*07
3*.0b8
13 . Ib*
slots
10.357
3.*12
1.713
2.170
30.113
3.317
21.313
81.227
2.827
2.520
S.IBb
I.bl3
.b70
l.bBS
25.511
2.*18
28.523
no 3 3
. b S3
10.811
80.530
s 8*
=
= 150
= 131
I G H
CO
.020
.015
.0**
.018
.OOb
.015
.b*5
.015
.015
.020
.017
.0*2
.015
.007
.013
,b!3
.Olfa
.017
.022
.011
.0**
.015
.007
.013
.585
.011
.015
. 731
.022
.020
.051
.01*
.007
.013
.bib
.Ul*
.015
.753
,7*b
.128
.75b
.310
.785
E D
NO
2.8b3
51. lib
333.181
bl.O**
13.300
58.228
*37.b7b
82.78b
2.188
1 Of *f , 8 b2
2.8b3
Sb.*38
311.717
*1.b**
12.187
tl.OOS
*lb.*12
51.571
2.21*
IbO . 1 32
2.102
52.5*»
185.8*0
*3.80b
12.851
*b.32S
*55.1fal
71.2fa*
a. 211
873. 711
2.102
S1.*21
30*. 721
*g.8S8
11.5*8
51.72b
*30.231
b5.135
2.308
S 70 • 8b5
10QS • ^S7
122.332
PPM
PERCENT
PPM
PPM
        DILUTION  FACTOR  = m..5/CCOR+ll.5*CO+]t'.R*HC)

-------
        5-31-72    7? VERSION ENGINE 2-3  RU*-?   AM1Y  LAB
                                                                                   = 1.004-
                                                                                              HUM  =  7b  GR/LB
CYCLE 1
CYCLE a
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
2 i^'HG
3 ir, 'HG
* It-'HG
5 11* HG
b H ' HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 JO'HG
* Ib'HG
S I'.'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Jb'HG
3 IC'HG
* Jh'HG
S 11 'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 TDLE
3 Ib'HG
3 10'HG
4 Ib'HG
S 19'hG
fa Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

A V£ RAGE
A u P u A r F
CONCENTRATION AS
HC CO C('2
IS
^3
31
2!i
Hi
13
o q p
?b
833
IK
*CI
31
2h
ab
aa
102 c'
35
831
281 1
H*
13
18
IP
13
81 1
c5
831
28). i
en
eb
21
a)
2b
18 2
3*
714
.4bO 13.770
.250 13.b30
.ibn ia.7io
.IbO 12.1*0
.ISO 13.480
,15r IS.libn
.310 13.b30
.ail'- 13.b30
.*bO 7.430
P fi |w P l"1 C! T T f-* "\ •
i.Unri,ioj Iry*
,4bO 13.770
.?ln 13.770
.Ifafi 1.3.180
.15D 13.180
.14P 13.480
.160 13.480
.Ibu 13.770
.220 13.b70
,*30 7.780
rriMPn^TTP \ ~
l/UnrUOi 't/™
.1*0 13.770
.210 13.770
.ifao ie.7*o
.15H 13.180
.ISO 13.b30
.150 13.330
,*30 13.580
.210 13.770
.*30 7.720
rriMPn^ TT P ^»
LUnrUoJ. i C /
.1*0 13.770
.250 13.4RD
.£10 J3.480
.180 .13.220
.JST 1H.V70
.alP 13.750
.470 13.*80
.250 13.770
.430 7.C5D
r nuofia t T r ^ _

SUM**—— ( COMPOS I TE VALUES
eitxi — 	 f /• f.titrtn e T TC: n A 1 litre
A V t. " A w t o >-* i~i — — — v u W i1' r u o l i c v « t, W n *J
FOUR CYCLE COMPOSITE - REPORTED









MEASURED DILUUON ADJUSTED
NO FACTOR HC CO NO
id
511'
faia
405
22R
»?n
Ib31
72(1
R8
10
58b
B90
*b*
a^n
5b8
1*82
??*
05
in
5b7
ssa
*rs
251
5]7
1521
?H*
IPS
10
51?
1117
5P8
2S1
bb3
] 3)4
780
15
pnu p v f" l K c
r UK CTLLuo
VALUES -



1.028
1.051
1.131
1.111
l.ObS
1 . 1 II 3
.17*
i!nst
l.bl*
i.oaa
i.o*a
1.011
i.oia
l.ObS
1.0b7
.Ibl
1.0*1
.I..b31
.110
1.0*1
1.130
1.012
1.057
1.081
1.008
1.0*3
l.b*2
qso
ilosi
l.ObS
1.088
1.0*b
1.0**
.178
1 .0*1
1.785
1A Mfl
AINU
3 AND
HC
CO
NO

1P1
*5
35
?8
11
14
87
?7
1*11
101
*2
3*
28
aa
23
91
37
1355
278
*b
IS
20
13
1*
ID
2fa
13b*
278
85
28
23
22
27
1b
35
1*17


0.3S*(
t'.35*(
t'.35*(

.473

IlSl
.178
.IbO
.IbS
2.251
.aai
.77S
.*73

!l75
.lb*
.ISO
.171
2.01*
.231
.701
1.121
.211
.181
.lb*
.151
.ifaa
!.**!
.211
,70b
1.121
.abs
.aa*
.lib
.157
.an
2.417
.2bO
.7b8


71.785)
.7?a>
873.78*)

13
baa
bia
*so
a**
4b3
1581
751
1*1
13
blO
171
507
a*b
faOb
l»3b
711
155
81
511
fa24
**2
2b5
551
1533
818
Ibl
81
b32
1110
552
2b2
b12
128b
812
170


+ 0.
+ 0.
+ 0.

WEIGHTING
FACTOR
,03b
.081
.257
.081
.0*7
.081
.283
.081
.021
,03fa
.081
.257
.081
.0*7
.081
.283
.081
.021
.03fa
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.25?
.081
.0*7
.081
.283
.081
.021


bS*( 8*. 001)
fa5*( .737)
bS*( 877.822)
CORRECTED NO
W E I G h 1 E D
HC CO NO
3.b27
*.021
1.001
2,*73
.10*
1.27b
a*. s*a
a.*38
ai.b33
-57 a P 1
f r . T 1 1
3.b2?
3.701
8. blO
2.52b
1.305
2.010
27.178
3.2b1
28.455
D i L 1* O
01 * oti
10.017
*.07B
3.775
1.750
.51b
1.250
25.378
2.321
"3 "3 H1H
r f m D X 3
10.017
7.5*0
7.117
2.033
1.032
2.*17
a?. is*
3.1*1
ai.?bb
S Q » BO 5
*y a ? DC
f 1 • f D9
Q u n n a
B T • U U "
= 82.
.017
.033
.0*b
.Olb
.006
.1115
,b37
.020
.Olb
.017
.011
.0*5
.015
.007
.015
.512
.021
.015
.0*1
.011
.0*b
.015
.007
.01*
.*OB
.011
.015
cgc
. 383
.0*1
.02*
.05?
.017
.007
.020
,b8*
.023
.Olb
B D Q
• Ban

531 PPM
3.331
55.355
177.8*7
*0.051
!!.*»?
*1.220
»*1.752
b7.511
3.131
3.331
5*. 33*
2*1. *10
*5.071
11.5**
ss.iba
tOb.505
70.*11
3.253
3.204
5a.55b
lbO.271
31.373
12,*70
*1.720
433.700
72.777
3.551
3.208
5b.271
305.772
*1.170
12.335
bl.fa21
3fa3.B12
72.2Sa
3.5fal
gp Q nil
TCo • uj. L
O 1 "3 OS 3
off* DCC
= .7*1 PERCENT
= 87b.
a 871.
*D1 PPM
541 PPM


        DILI'TIOU FACTOR  -  I V .^/ C CG5 + C' . S*CC +
                                              J . H*HC3

-------
         5-1LI-7P
                   73 VER ilDhi EMdNK 2-1   RUN-1   AkMY LAB
                                                                                K  sl.0b3
                                                                                              HUM s  14  UR/LB
CYCLE  1
CYCLE
CYCLE 3
CYCLE
FEDERAL
M.liiF
1 IDLE
2 Ih'HG
3 in'HG
4 Ib'riG
5 11 'HG
b Ih'hG
7 1 'HG
8 Ib'riG
1 C.T.
1 IDLE
2 Ib'HG
3 10 'HG
4 Ib'HG
S IH'HG
b Ib'HG
7 3'HG
R Ib'HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 j.b HG
S 11 HG
b Ib HG
7 3 HG
8 Ib riG
1 C.T.

2 Ib'HG
3 jJl'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'iG
8 Ib'HG
1 C.T.
CUMCfcN THAT KIN 48
>tc cn coa
21b
h3
4b
3S
2h
3-
UK
If-
.370 12.710
.1.8n 12.140
.15n 12.140
.<
3;t
31
2b
27
11.1
35
.150 13.770
.ISO 13.lJ.rj
.1.50 13.110
.130 14.050
.130 13.800
2.bDO 11.48(1
.150 13.1bO
110 .350 7. BIO
/ f \t f 1 !L' /» (1 (L* Ll 11 Q T T LT t
AVERAGE SU". 	 (COMPOSITE VALUES
AVERAGE SU^1" ~ — ( C OMPOS I Tf VAL'JES
FflMR CYCLE COMPOSITE - REPORTt.K






bl2
13?h
b7.l
218
bSl
1 3*4
70S
71
83
587
141?
b31
330
b22
1428
725
82
«3
517
1.1S7
b15
215
b8!
13^2
700
18
FOR CYCLES
cnu pvfi PQ
rUK UTLUtlo
VALUES -


1.017
1.1 '17
1.110
i.oaa
1.013
1.101
1.024
1.08!
l.b!7
1.017
l.QbS
1.0S5
1.0b7
1.04fa
l.ObS
.113
1.055
I.b07
1.013
1.0b7
1.055
1.055
1.050
1 .Obi
1.000
1.0b3
l.fa*2
.1.013
1.0*4
1.034
1.034
1.025
1.044
.173
1.03D
.1 . b 1 7
1 AND
3 A W D
HC
CD
NO
325
70
SI
38
28
17
111
11
Ifa38
325
b2
43
37
?1
3fa
113
13
Ib73
Ib7
38
3b
33
27
33
114
37
1481
Ib?
40
35
32
27
28
110
3fa
1471


0.3S*C
(J.35*C
0.35*(
D .1 U S T E D
CO NO
.40b
.11!
.Ibb
.22!
.33b
.Ib5
a.bbi
.174
,b71
,40b
.IbO
.148
.IbO
,13b
.IbO
2.582
.158
.bll
,44b
.IbO
.158
.158
.13b
.131
2.381
.170
.511
.44b
.157
.155
.155
.133
.I3b
?.S30
.155
.Sbb


1C8.428)
.884)
1031.811)
b8
b5I
150b
773
312
710
1370
813
132
b8
b52
1311
71b
312
bib
1335
744
127
8*
fa2b
1*10
bb8
3*fa
bb5
1*21
771
135
84
b23
1*03
711
302
711
1325
721
158


+ 0.
+ 0.
+ 0.
WEIGHTING WEIGH
FACTOR HC cu
.03b
.081
.257
.081
.0*7
.081
.283
.081
.oai
.03b
.081
.as?
.081
.0*7
.081
.283
.08!
.021
.Q3b
.081
.257
.081
.0*7
.081
.283
.081
.oai
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021


bS*( 11.
bS*(
bS*( 1028.
ll.bia
b.207
13.121
3.310
1.32*
3.331
33. bO*
3.488
34.311

sl*1b
11. lib
3.323
1.37b
3.223
32.034
a.na

b.oao
3.418
1.220
2.1ia
1.283
a. 151
32.277
3.312
31.271
b.oao
3.532
1.03b
2.85*
1.253
2.508
31. lib
3.210
30.811


5*1) » 17
824) =
132) = 1021
CORRECTED NO = 101*
.015
.018
.0*3
.020
.Olb
.015
.753
.Olb
.014
qn o
• TU 1
.015
.01*
.038
.01*
.OOb
.014
.731
.01*
.013
.Olb
.01*
.0*1
.01*
.OOb
.012
,b7*
.015
.012
one
* OU D
.Olb
.01*
.0*0
.01*
.OOb
.012
.71fa
.01*
.012
U 11 II
. Ot*
.88*
.83*
.*57
.845
.411
.218
r E D
NO
2.4*1
57.133
387. Ob3
b8,773
l*.bbb
b3.11*
387. bOl
72.371
2.780
2.**1
57.117
351.520
b3.705
l*.b*7
bl.110
377.bfab
bb.223
a.bbb
i n n k 7 o P
4. U U B « r O C
3. 028
55.725
382.108
5!.4faO
lb.281
51.202
*0».31b
faR.bO*
a. aas
1052.353
3.028
55.482
3b0.fa45
b3.!80
14.215
b3.11S
375.0*7
b».ltl
3.328
1003 .110
1031.811
1028 . 132
PPM
PERCENT
PPM
HPM
                  FACTOH =

-------
        5-30-72   73 VERSION ENGINE 2-3  RUN-1  ARMY LAB
                                                                              K s 1.05
                                                                                           HUM
                                                                                                  S4   GR/LB
CYCLE 1
CYCLE 3
CYCLE 3
CYCLE 4
MASS
MODE
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
S IS HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 IS HG
fa Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 IS HG
b Ifa HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
AVERAGE
CONCENTRATION AS MEASURED
HC CO C02 NO
21b .370 12.71
b3 .180 12. S4
4b .150 12. S4
35 .210 13.18
2b .310 13. ao
34 .ISO 13. Ob
lib 2. bOO ia.74
3b .IbO 13.20
IbS .400 7.30
21b .370 12.71
58 .150 13.48
41 .140 13. b3
35 .150 13.48
a8 .130 13.77
34 .ISO 13.50
114 2. bOO 13.18
31 .150 13. b3
1041 .380 7.71
IbS .440 13.11
3b .150 13.48
34 .150 13. b3
31 .150 13. b3
2b .130 13.72
31 .130 13. 4b
114 3. 380 13.18
35 .IbO 13.52
107 .3bO 7,b7
ffvfi c p nMDftQ T TP \ •
IbS .440 13.11
38 .ISO 13.77
34 .ISO 13.11
31 .150 13. SI
3b .130 14.05
27 .130 13.80
113 a.bOO 13.48
35 .150 13. Ib
110 .350 7.81
SUM- — (COMPOSITE VALUES
AVERAGE oun-— -vuunruoi i c VMI.UHO
FOUR CYCLE COMPOSITE - REPORTED






b2
588
1357
710
288
b45
1338
747
78
fa2
b!2
132b
b71
218
b53
1344
70S
71
83
587
1412
b33
330
faaa
1428
725
82
83
517
1357
bSS
ass
bflS
13b2
700
SB
FOR CY(
TOTAL FUEL
CARBON CONS.
13.400 1S07
13.188 aia?
13.140 13530
13.438 8137
13.538 bObl
13.347 8137
15.4bS 11Sb7
13.3S1 8127
8.742 1S07
13.400 1S07
13.faS3 8137
13.814 13530
IS.bfaB 8127
13.130 bObl
13.b87 8127
15.103 11Sb7
13.813 8127
1.314 1S07
14.528 1S07
13.bb1 8137
13.817 13530
13.813 8127
13.878 bObl
13.b23 8127
15.b83 ISSb?
13.718 8127
1.010 1107
14.528 1S07
13.1bl 8127
14.017 12530
14.0S3 8137
14.208 bObl
13.15S 8127
Ib.aoa ISSb?
14.148 8127
S.143 1107


VALUES - HC 0.3S( 3.3)



CO 0.3S( 37)
N02 0.35( 7.0)

ADJUSTED (MASS)
HC CO N03
45
43
47
23
13
23
151
24
227
45
37
40
22
13
22
151
20
333
33
23
33
20
12
30
154
23
207
23
24
33
11
12
17
147
22
205


+ 0
+ 0
+ 0

lOb
224
aas
257
280
18 b
bb45
ISfa
17b
lOb
180
357
180
114
180
b4b2
178
15S
117
180
375
178
115
157
5118
111
154
117
17b
2b1
175
112
153
b343
174
147


.b5( a
.b5(
.bS( 7
CORRECTED
3
120
430
143
43
131
5fa2
150
b
3
121
311
132
43
121
541
138
5
4
lib
4as
124
48
133
512
143
b
4
US
400
133
42
133
S4b
133
7


.b) =
35) =
.0) =
N02 -
WT.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143


2.825
35.8
b.171
7.34b
WEIGHTED (MASS)
HC CO N02(K)
10. b
3. a
7.0
1.8
.7
1.7
17.1
1.8
33.5
33
• c
10. b
2.1
5.1
1.7
.7
1.7
17.1
1.5
33.3
31
. 1
5.4
1.8
4.1
l.S
.7
1.5
17.4
1.7
21. b
8^
« 7
5.4
1.8
4.8
1.5
.7
1.3
lb.7
1.7
ai.3
HL
• D
3.2
8*
• 0
(MASS)
(MASS)
(MASS)
(MASS)
as
17
4B
20
Ib
14
751
IS
as
ta o
3 O
as
14
38
14
7
14
730
14
23
9k
do
27
14
40
14
7
12
b?8
IS
22
27
14
40
13
b
12
717
13
ai
37




.7
1.3
b3.2
11.0
2.4
10.1
b3.S
11. b
.a
71
» A
.7
1.3
SB. 7
10.2
2.5
1.1
b2.0
10. b
.8
b. 8
.8
8.1
fa2.5
1.5
2.7
1.5
bfa.B
11.0
.8
71
.1
.8
8.1
58.1
10.2
2.4
10.3
bl.7
10.3
1.0
fa . 8
7.0
7.0



HP
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0






-------
        5-31-73   73 VERSION ENGINE 2-3  RUN-1  ARMY LAB
                                                                              K  =   .SS
                                                                                           HUM  =   72   GR/LB
CYCLE
CYCLE 2
CYCLE 3
CYCLE 4
MASS
MODE
1 IDLE
2 lb HG
3 10 HG
* lb HG
5 19 HG
b lb HG
7 3 HG
8 lb HG
S C.T.
1 IDLE
2 lb HG
3 10 HG
4 lb HG
5 IS HG
b lb HG
7 3 HG
B lb HG
S C.T.
1 IDLE
2 lb HG
3 10 HG
4 lb HG
5 11 HG
b lb HG
7 3 HG
B lb HG
S C.T.
1 IDLE
2 lb HG
3 10 HG
4 lb HG
5 IS HG
b Ih HG
7 3 HG
8 lb HG
1 C.T.
AVERAGE
CONCENTRATION AS MEASURED
HC CO COS NO
228 .530 13.53 77
3S .ltd 13.33 542
88 .IhO 13.48 IS 1 8
17 .ISO 13. 48 bH3
17 .120 13.50 2b5
22 .IbO 13. 4b bia
S7 2.280 13.25 154b
30 .150 12. S4 837
S5S .440 7.41 BS
228 .530 13.53 77
35 .180 13.18 582
30 .ISO 13.18 1140
30 .150 13.02 505
lb .130 13.45 2*2
17 .130 12.82 410
107 2. ISO 13.45 1*88
35 .IbO 13.14 fal2
SOB .450 b.Sl 5S
75 .580 13.48 77
S3 .200 13.40 552
35 .150 12.48 b28
35 .ISO 12.82 43S
35 .130 13.20 251
30 .130 12. S4 *b8
lofa 2.nbo 13.30 ibns
35 .200 13.48 752
8b7 .440 7.85 b8
75 .580 13.48 77
2b .210 13.18 b!3
21 .180 12. Sb IDbS
lb .140 12.71 425
13 .130 13.14 224
17 .130 12. S4 522
8S 2.080 13.18 1501
2b .150 13.33 b78
828 .430 7.73 b7
TOTAL
CARBON
14.30b
13.532
13.b70
13.b8B
13.b3B
13.b44
15.b35
13.122
8.881
14.30b
13.3S8
13.3b2
13.202
13.5S7
12.Sb8
15.7Sb
13.338
8.341
14.141
13.bS7
12.bb8
13.008
13.3b8
13.102
15.474
13.718
S.22b
14.141
13.418
13.1b3
12.8b7
13.284
13.088
15.3SB
13.508
S.054
SUM 	 (COMPOSITE VALUES FOR CYCLES 1 AN
FUEL
CONS.
1S07
8127
12530
8127
bObl
8127
!S5b7
8127
1S07
1SQ7
8127
12530
8127
bObl
8127
!SSb7
8127
1S07
1S07
8127
12530
8127
bObl
8127
!SSb7
8127
1S07
1S07
8127
12530
8127
bObl
8127
!S5b7
8127
ISO?


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.3SC 2.7)






CO 0.
N02 0.

35( 33)
35C b.8)

ADJUSIED (MASS)
HC CO N02
33
25
28
11
B
14
131
20
221
33
23
30
20
B
12
144
23
224
11
34
37
24
17
20
145
22
1S4
11
17
22
11
fa
11
122
17
18B


+ 0
+ 0
+ 0

143
1S4
2Sb
228
108
1S3
S7b4
188
1S1
143
221
284
187
117
IbS
54S4
1S7
208
15B
240
300
IBS
US
Ib3
52b2
23S
184
158
257
34b
17S
120
Ib3
5354
182
183


.fa5( 2
.faSC
.bS( b
CORRECTED
3
108
371
127
3S
121
b42
172
b
3
117
355
103
3fa
65
b!4
124
4
3
IDS
20b
SI
38
Sb
b74
14B
5
3
123
338
8S
34
108
b35
135
5


.3) =
32) =
.3) =
NOS =
WT.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143


2.454
32.7
b.482
b.41b
WEIGHTtD (MASS)
HC CO N02(K)
7.b
l.S
4.1
.8
.5
1.1
14.8
1.5
31.7
2.7
7.b
1.8
4.S
1.5
.4
.S
lb.2
1.8
32.1
2.8
2.5
2.b
5.5
1.8
1.0
l.S
lb.4
1.7
27.7
Si~
. 3
2.5
1.3
3.2
.8
.4
.S
13.8
1.3
2b.S
2|
• i
2.7
S^
• 3
(MASS)
(MASS)
(MASS)
(MASS)
33
15
44
18
b
15
hSl
14
27
"3 U.
JT
33
17
42
14
7
13
b21
IS
30
•a "3
3 3
37
IS
44
IS
7
13
5S5
18
2b
33
dc
37
20
SI
14
7
13
bOS
14
2b
•3-3
33
33
33
dc



.8
8.3
54.5
S.8
2.2
S.3
72. b
13.3
.S
71
. 1
.B
S.O
52.2
7.S
2.0
b.b
faS.3
S.5
.b
be
. b
.8
8.4
30.3
7.0
2.2
7.4
7b.l
11.4
.7
b.O
.8
S.5
4S.7
fa.S
l.S
8.3
71.8
10.4
.7
b*
. b
b.B
b.3



HP
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0






-------
         5-31-73    73  VERSION  ENGINE  2-3   RUN-2   ARMY  |_AB
                                                                                   l.OQ
                                                                                            HUM  a   7b   GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE 4
MASS
MODE
1 IDLE
2 Ib HG
3 10 HG
4 Ifa HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
"1 C.T,
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 11 HG
b Ib HG
7 3 HG
a ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
e i IM_____
1 IDLE
Z Ib HG
3 10 HG
4- Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
AVERAGE
CONCENTRATION AS MEA8UHED TOTAL FUEL
HC CO C02 NO CAHBON CONS.
18 ,4bO 13.77
43 .250 13. b3
31 .IbO 12.71
25 .IbO ia.1»
18 .150 13. 48
13 .150 13. Ob
81 Z. 310 13. b3
Bb .RIO 13. b3
833 ,4bO 7.43
18 .4bO 13.77
40 .BIO 13.77
31 .IfaO 13.18
Bb .150 13.18
2b .140 13. 48
ZZ .IbO 13.48
102 2,lbO 13.77
35 .220 13. b7
831 .430 7.78
281 1.140 13.77
44 .210 13.77
13 .IbO 12.74
18 .ISO 13.18
12 .ISO 13. h3
13 .150 13.33
81 1.430 13.58
25 .210 13.77
831 .430 7.72
_______ fPVPI p pnMOnQTTF^»
281 1,140 13.77
80 .250 13.48
2b .210 13.48
21 .180 13.22
21 .150 13.77
2b .210 13.75
18 2.470 13.48
34 .250 13.77
714 .430 7.05
-• «« f f* VP 1 F PnMDflQTTF^"
SUM 	 (COMPOSITE VALUES
AVERAGE oun--- ^ uunruoi i c VHUUC.O
FOUR CYCLE COMPOSITE - REPORTED






10
512
b!3
405
228
420
Ib31
720
88
10
58b
810
4b4
230
SfaB
1482
754
15
10
Sb7
552
405
251
517
1521
784
103
10
517
1117
508
251
bfa3
1314
780
15
FOR CYCL!
14.33b 1107
13.12b 8127
12.103 12530
13.127 8127
13.b41 bObl
13.224 8127
lb.03b HSb?
13.8b8 8127
8.710 1107
14.33b 1107
14.023 8127
13.373 12530
13.358 8127
13.b4B bObl
13.bb4 8127
lb.040 115b7
13.12B 8127
1.107 1107
15.213 1107
14.028 8127
12.114 12530
13.341 8127
13.713 bObl
13.414 8127
IS.lOb 115b7
14.007 8127
1.047 1107
15.213 1107
13. Bib 8127
13.718 12530
13.423 8127
13.143 bObl
13.188 8127
Ib.OSb HSb?
14.057 8127
8.338 1107


VALUES - HC 0.35( 2.3)



CO 0.3SC 33)
N02 0.35( b.O)

ADJUSIED (MASS)
HC CO N02
14
27
33
17
1
1
117
Ib
115
14
25
31
17
12
14
134
22
188
38
28
14
12
b
8
125
Ib
181
38
51
2b
14
10
Ib
121
21
lib


+ 0
+ 0
+ 0

124
215
314
200
135
18b
Sb14
241
SOS
124
24b
303
184
12b
112
5323
251
182
281
24b
314
184
133
182
3742
24fa
183
281
217
387
220
132
24b
b081
212
111


.bS( 2
.b5(
.bS( b
CORRECTED
4
115
117
83
34
8b
bbl
140
b
4
113
277
14
34
112
bOO
14b
7
4
101
178
82
37
103
bS4
151
7
4
117
331
102
3b
128
532
150
7


.5) =
32) =
.0) =
N02 =
wr.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143


2.435
32.7
5.115
b.012
WEIGHTtD (MASS)
HC CO N02CK)
3.3
2.1
4.8
1.3
.5
.7
13.3
1.3
27.1
2q
* J
3.3
1.1
4.b
1.3
.7
1.1
15.2
1.7
2b.1
23
. 3
8.8
2.1
2.0
.1
.3
.7
14.1
1.2
27,1
eii
. 4
8,8
3.1
3.8
1.1
,b
1.3
14. b
l.b
28.0
21.
. o
2.3
2C
* •>
(MASS)
(MASS)
(MASS)
(MASS)
21
23
4fa
15
8
14
b43
H
21
•3U
3~
21
11
45
14
7
15
bOl
20
2b
32
JC
b7
11
4b
14
8
14
423
11
2b
a t
CD
b7
23
57
17
8
11
bB7
22
28
a D
JO
33
Q a
JC



.1
a. a
21.0
b.4
1.1
b.b
74.7
10.8
.1
So
• o
.1
8.7
40.7
7.2
1.1
8,b
fa?. 8
11.2
.1
bi
.1
.1
8.4
2b.l
b.3
2.1
8.0
73.1
11. b
1.0
S^
• '
.1
1.0
41.8
7.1
2.1
1.8
bO.l
11. 5
1.0
b^
. 3
b.O
b .0



HP
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0
0
23
48
23
10
23
85
23
0






-------
             ENGINE 2-3




  EXPERIMENTAL, 23 MODE RESULTS




       1972 STANDARD ENGINE




1973 CALIFORNIA VERSION OF ENGINE

-------
b-15-72 RUN' 1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
  1S72 VERSION OF ENGINE  2-3        PER MANUF. SPECS.
DYNA.
MODE
1
2
3
f
5
b
?
S
S
10
11
12
13
If
15
Ib
17
18
IS
50
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1SOO
bOO
1200
2300
2300
2300
2300
2300
230LI
2300
2300
2300
hOO
2300
0
f
18
fl
57
115
172
188
211
?30
0
0
2bO
asn
?13
1S5
130
b5
fb
20
5
n
0
.0
.b
.f
.f
.5
.0
.5
.b
.b
.0
.0
.,0
.0
.2
.a
.0
.0
.0
.8
.8
.2
.0
.0
HP
0
1
f
q
/3
2b
3S
f3
f8
53
0
0
llf
105
S3
85
5?
28
20
S
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.2 f.2 15.2
1S.B b.5 15.7
1S.O 7.5 15.5
17. f 8.5 15.7
lb.5 10.2 15. S
S.2 15.5 17.2
5.2 21.0 15.5
S.f 22.5 15.5
1.1 2f.2 15.2
0.0 32.2 12. b
18.5 f.O If. fa
22.2 3.7 lfa.0
0.0 faf.S 12.1
3.0 SI. 0 13.5
f.f ff.5 If. 5
5.8 f2.0 If.b
S.f 31.2 lfa.8
15.7 IS. 8 lb.8
17.2 17.0 lb.8
IS.b 13.0 Ifa.f
21.0 10.7 lfa.3
18.0 3.b 15.1
2f.O f.O 17.8
CALCULATED GRAM/HR WT. WT.
MODE
1
"d
3
f
S
b
7
8
S
10
11
12
13
If
15
Ib
17
18
IS
20
21
22
23
CYCLE




AI.Dt
0.0
0.0
0.0
0.0
n.o
O.D
0.0
0.0
O.G
0.0
0.0
n.o
0.0
0.0
f .) . 0
0 . 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
27.
IS.
10.
30.
f8.
f3.
HS .
SB.
110.
2f5.
27.
fafl.
53f .
351.
PSO.
2P2.
bO.
3b.
2f .
10.
7.
20.
f53.
b
3
1
1
5
8
5
3
S
2
f
8
7
f
3
1
7
7
B
1
1
;
2
COMPOSITE












CO
IS?
f3
87
72
88
If2
203
f03
5S3
S722
3bS
l?fa
2251S
8b5b
37fO
3380
332
20S
180
13f
S5
153
10?
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.2 .070 0.0
3.8 .ObO .1
10.0 .ObO .3
31.5 .050 .5
85. f .030 1.1
1SS.1 .ObO l.fa
f87.5 0.000 0.0
SOS. fa .OfO 1.7
SSS.fa 0.000 0.0
270. b 0.000 0.0
2,1 .070 0.0
.5 .120 0.0
SfaS.3 .025 2.8
718.5 .055 5.8
lObB.S .035 3.3
SfO.O .OfaO 5.1
falB.5 .ObO 3.f
312.1 0.000 0.0
150.7 .OfaS 1.3
fl.8 0.000 0.0
IS. 7 0.000 0.0
1.8 .080 0.0
.f .ObO 0.0
b.72b GRAM/BHP HR
Sb.555 GRAM/BHP HR
8.535 GRAM/BHP HR
0.000 GRAM/BHP HR
.falO LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
20S3
Slf
f2f
10S5
Iffl
812
1333
1380
lf?f
2858
2275
51707
3118
2f35
IBbS
172b
SSf
532
fl8
228
IS?
183f
300b8
CONCENTRATION










5
1

b
2
1
1







CO
.7fO
.100
.180
.130
.130
.130
.150
.280
.3SO
.blO
.520
.700
.500
.S70
.380
.300
.150
.150
.150
.150
.130
.b?0
.350
COS
13. f8
13.77
If .05
13.77
13. f8
12.82
13. SI
13. SI
If. 05
11.13
13.33
?.b5
10.25
12.82
13. f8
13.33
12.71
12.82
12.82
13.18
13.33
13. b3
B.b8
NO
50
5f
12b
3fS
7bS
888
2188
2138
2fOO
S50
S3
11
1000
1500
2fOO
2200
1700
13fa3
7bb
285
IbS
f?
8
SPECIFIC GRAM/BHP-HR


18.
2.
3.
1.
1.
2.
2.
2.
f .


f .
3.
2.
2.
1.
1.
1.
1.
3.







HC
R
3b
fl
IS
35
b?
27
28
2S
b?
R
R
70
35
bB
bU
07
as
21
11
11
R
R





CO
R
fO.b
50. b
7.b
2.5
S.f
5.2
S.3
12.3
185.0
R
R
1S7.7
82. b
fO.l
3S.b
5.8
7.3
8.8
If .7
fl.S
R
R





N02
R
3.b
2.f
3.3
2.f
b.l
12. f
11.7
12, f
5.1
R
R
5.0
b.S
11. f
11.0
10. S
11.0
?.f
f.b
8.7
R
R



































-------
b-lh-72 RUN 1
PROJECT 11-3877-01  CONTROL TECHNOLOGY
  1972 VERSION OF ENGINE  2-3        PER MANUF. SPECS.

MODE
i
2
3
f
5
h
7
8
q
10
11
1?
13
If
15
lb
17
18
19
an
21
22
23

UYNA
SPEED LOAD
bOO
12(10
1200
i?on
i?no
120(1
1200
1200
12no
1200
bOO
1200
2300
2300
2300
23fin
2300
2300
2300
2300
2300
bOO
2300
n.o
f .b
18. f
fi.f
57. S
115.0
172.5
iSB.b
21.1. b
P30.0
0.0
0.0
2faO.O
239.2
213.2
1S5.0
130.0
b5.0
fh.R
20.8
5.2
0.0
0.0
•
HP
0
1
f
9
.13
2b
39
43
fB
53
0
0
llf
105
93
85
57
38
20
q
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.1 f.Q 15.5
19. b 7.3 lb.0
18.5 7.b lfa.2
17.3 8.7 lfa.3
ib.n 9.9 ib.s
9.0 lfa.3 lb.7
f.,7 20.7 15.5
3.0 22.7 15.5
1.5 2f.b 15.2
O.n 32.0 12. b
18.7 3.b lf.1
22. f f.O 15.9
0.0 bS.O If. 7
2.b 50.2 13. b
f.3 fS.O If. 5
5.2 f2.b If.b
9.2 31.5 lb.7
;5.f 19. S lfa.7
17.0 17.2 Ib.b
19.1 13.3 lb.5
20.5 11.5 Ib.f
18. f 3.7 15.2
2f.l 3.9 17.7
CALCULATED GRAM/HR WT. WT.
MOPIE
1
2
3
4.
S
b
7
9
q
10
11
12
13
If
15
lb
17
18
19
20
21
22
23
CYCLE




ALDF
0.0
0.0
0.0
0.0
n.O
0.0
0.0
0.0
0.0
0.0
O.D
0.0
0.0
n.fj
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
HC
28. b
8.5
15.8
33.7
ff .e
f3.5
75.0
93.3
llf .0
?32.9
?f .8
b78.3
58f .2
3t2.b
224.7
198. fa
f 7.b
37.3
2*. 5
10.8
7.f
20.1
599.1
COMPOSITE








CO
155
b3
b?
77
89
1*8
17f
2b3
729
95f2
522
251
22285
7738
3551
3293
28b
210
158
SI
79
181
lib
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.9 .070 0.0
5.0 .ObO .1
11.8 .ObO .3
35. b .050 .5
bf.f .030 .f
Ib3.f .ObO l.b
f2f.O 0.000 0.0
f92.9 .OfO 1.7
5f8.2 0.000 0.0
25b.fa 0.000 0.0
l.b .070 0.0
.f .120 0.0
533.2 .025 2.8
732.8 .055 5.8
1071.8 .035 3.3
9f8.2 .ObO 5.1
587.8 .OfaO 3.f
29q.l 0.000 0.0
139. b .ObS 1.3
fS.f 0.000 0.0
20.2 0.000 0.0
2.0 .080 0.0
.5 .ObO 0.0
7.291 GRAM/BHP HR
55.839 GRAM/BHP HR
8.bS8 GRAM/8HP HR
0.000 GRAM/BHP HR
.b33 LB/8HP HR
0
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
21bb
355
bl8
llffa
1300
773
1130
1289
If8f
2711
2f02
S0b91
3fiO
2fOb
Ifab2
15f 7
f3?
538
f09
2f2
188
172b
f079f
CONCENTRATION










5
2

b
2
1
1







CO
.580
,130
.130
.130
.130
.130
.130
.180
,f70
.500
.500
.930
.ffO
,fa90
.300
.270
.130
.150
.130
.100
.100
.770
.390
























coa
12. 9f
13.b3
13.33
13.18
12. 9f
12. 9f
13.91
13.91
13.91
11.13
13. Ob
7.Sfa
10. f3
IS.Ofa
13. b3
13.fa3
12. 9f
12.82
12.82
13.33
13.18
13. f8
7.5fa
NO
f3
b3
IfO
3bS
570
875
1925
2050
2150
900
f8
9
938
1550
2387
2225
Ib25
1300
700
305
155
51
11
SPECIFIC GRAM/BHP-HR


8.
3.
3.
3.
1.
1.
2.
2.
f.


5.
3.
2.
2.
•
1.
1.
1.
3.







HC
P
11
75
Sb
37
bb
90
17
3b
f3
R
R
13
27
fl
33
8f
31
20
19
2f
R
R







bO
IS
8
b
5
f
b
15
181


195
73
38
38
5
7
7
9
3f







CO
R
.0
.9
.2
.8
.b
.f
.1
.1
.b
R
R
.7
.9
.0
.b
.0
.f
.7
.9
.8
R
R





N02
R
f .8
2.8
3.8
f .9
b.2
10.8
11. f
11.3
f.9
R
R
f.7
7.0
11. S
11.1
10.3
10.5
b.8
5.0
8.9
R
R



































-------
                 PROJECT 11-2877-01   CONTROL TECHNOLOGY
b-13-72 RUN 1  1173 CALIFORNIA VERSION OF ENGINE 2-3  PER MANUF.  SPECS.
DYNA.
MODE
1
2
3
f
5
b
7
8
1
10
11
12
13
If
15
lb
17
18
11
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1?00
1200
1200
faOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
f .
17.
31.
Sf .
108.
Ifal.
177.
118.
222.
0.
0.
250.
23fa.
210.
112.
128.
faf.
fb.
21.
5.
n.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
f
1
12
25
37
fO
fS
51
0
0
101
103
12
8f
5fa
28
20
1
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.5 f.7 15.1
11.2 7.1 lfa.2
18.5 8.f Ifa.f
Ib.f 10.1 Ifa.fa
15.0 10.1 Ifa.f
1.S 15.1 lb.2
5.5 21.7 lf.1
3.5 22.7 lf.1
2.7 2f.b If. 8
0.0 32.5 12.3
18.5 f.7 15.3
22.0 3.8 17.2
0.0 bf.8 12.2
3.0 51.2 12.8
f.1 f8.S 13.,fa
b.O fb.S 13.7
10.0 31.2 15.1
15.3 21. f 15.8
IS.b 18.3 lb.2
18.7 15. f lfa.1
20.5 12.7 Ib.l
18.0 f.7 15. fa
2f.7 3.1 17,2
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
fa
7
8
1
10
11
12
13
If
15
lb
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
n.o
o.o
o.o
o.o
n.o
n.o
o.o
o.n
HC
Sf .1
7.8
7.8
2.f
35.8
50.3
73. f
bl.3
77.1
25S.1
33.0
731. fa
515. b
352.8
308. b
311.5
55.7
35.0
If. 3
8.2
5.8
38.0
552.0
























COMPOSITE












CO
l?f
70
7fa
12
11
Ibfa
13f
lOfaf
lOfaO
10071
2bl
132
21053
12100
70f 7
b288
38f
3U3
188
13fa
llf
181
12f
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.8 .070 0.0
S.b .ObO .1
8.5 .OfaO .2
21.2 .050 .f
f2.f .030 .f
If7.1 .OfaO 1.5
315.2 0.000 0.0
35f.f .OfO l.fa
ff2.0 0.000 0.0
21f.8 0.000 0.0
2.2 .070 0.0
.f .120 0.0
f17.2 .025 2.7
385.3 .055 5.7
b53.8 .035 3.2
bSS.b .ObO 5.0
551.7 .ObO 3,f
115.7 0.000 0.0
7f.3 .ObS 1.3
37.0 0.000 0.0
21.5 0.000 0.0
2.2 .080 0.0
.f .ObO 0.0
7.18f GRAM/BHP HR
71.521 GRAM/BHP HR
fa.3f1 GRAM/BHP HR
0.000 GRAM/BHP HR
.b80 LB/BHP HR
0
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
b.o
I
I
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
I
I





HC
3503
212
2b1
b?
153
111
10b3
17f
115
300f
21b5
52f3b
2178
2508
2l1f
2282
528
f81
230
157
135
2f78
37122
CO
.550
.130
.130
.130
.130
.150
.b?0
,7fO
.b70
5.780
.850
,f70
fa. 020
f ,5fO
2.f80
2.280
.180
.210
.150
.130
.130
.blO
.f20
























C02
12.71
13.33
12. If
12. If
12. If
12. If
13. f8
13. b3
13. f8
11.01
12. Sf
fa.bf
10. fab
11.72
12. If
12. If
13.18
13.33
13.18
13.33
13.18
13. Ob
7. If
NO
35
faf
88
182
3fO
810
1375
1500
1700
750
ff
8
8bS
825
IfOO
1512
1575
825
3bO
215
150
ff
1
SPECIFIC GRAM/BHP-HR
HC
R
8.50
2.01
.2b
2.10
2. Of
2.00
1.71
1.72
5.11
R
R
f.71
3.fl
3.3b
3.70
.11
1.25
.71
.81
2. fab
R
R





CO

7fa.
11,
10.
8.
b.
25.
2b.
23.
118.


112.
12f.
7fa.
7f.
b.
10.
1.
If.
51.







R
3
7
3
0
7
f
3
f
b
R
R
3
8
b
8
8
a
f
8
1
R
R





N02
R
fa. 2
2.2
2.f
3.f
b.O
8. fa
8.8
1.8
f.2
R
R
f.S
3.7
7.1
8.2
1.8
7.0
3.7
f.O
1.8
R
R



































-------
                 PROJECT 11-2877-01  CONTROL TECHNOLOGY
b-13-72 RUN 2  1973 CALIFORNIA VERSION OF ENGINE 2-3  PER MANUF.  SPECS.

MODE
1
2
3
t
5
b
7
8
9
10
11
12
13
It
15
Ib
17
18
19
20
21
22
23

DYNA.
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
H30I1
2300
2300
2300
2300
2300
bOO
2300
0.0
t.o
17.0
39.0
St.O
108.0
lbl.0
177.0
198.0
222.0
0.0
0.0
252.0
23b.O
210.0
192.0
128.0
' bt.O
1i tb.O
21.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
t
9
12
25
37
to
ts
51
0
0
110
103
92
at
Sb
28
?o
H
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALOE.
17.5
19.2
18.5
Ifa.S
15.2
10.0
S.b
3.5
2.9
0.0
18.3
22. Cl
0.0
3.3
s.o
fa.O
10.0
15.2
lfa.9
18.9
20.5
12.9
23.9
CALCULATED GRAM/HR
MODE
1
2
3
t
5
b
7
8
9
10
11
12
13
It
15
Ib
17
.18
19
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
O.U
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
t?.l
5.5
12.9
27.5
38.1
St.t
9t .3
90.1
110.7
271.2
39. b
755.0
tSb.2
357.5
312.8
293.8
t7.7
27.7
lt.0
b.t
t.t
tt.8
53b.S
COMPOSITE








CO
280
b?
72
88
97
Itl
875
875
893
929t
383
1S9
20239
10935
bb53
59b3
317
220
Ib3
105
bl
21b
108
HC
CO
N02
ALOE
BSFC
N02
2.0
b.l
10.5
27.8
t9.0
It8. 2
320.1
353.5
t3fo.7
225.9
2.0
.3
518.0
tit. 9
bbO.2
702. t
Sbt.S
Ib3.9
72.3
2b.S
lt.1
1.9
.5
8.105
73.193
b.527
0.000
,b79
t.7
7.9
8.t
10.1
10.9
15.9
21.7
22.7
2t.b
32.5
t.7
3.8
bt.8
51.2
ts.s
tfa.S
31.2
21. t ;
IB. 3 in;.
15. t
12.?::,,
t.7
3.9
WT.
FAC.
.070
.ObO
.OfaO
.050
.030
.ObO
0.000
.oto
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
15.2
15. b
lb.1
lb.2
lfa.3
Ib.t
It. 9
15.0
It. 8
12.5
It. 8
9.0
12.3
13,1
13.7
13.8
1 b . D-J^V*
•'-1 fa'-; jfJ!"*^ .
'^gij-g^'H^/
iV> 2 !•;'>?•
ifa Jt*'"*y^
IS.t "
18.7
WT.
HP
0.0
.1
.2
.t
.t
1.5
0.0
l.b
0.0
0.0
0.0
0.0
2.8
5.7
3.2
5.0
3.t
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
: o
"t,: 0
*': o
-*• o
l» 0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
31b2
215
t?t
822
1033
1011
139t
12b9
ltS2
3089 5
2719 1
5St20
28b2 5
2503 3
22t2 2
2170 2
tss
382
225
12t
101
2928
35258
CO
.930
.130
.130
.130
.130
.130
.btO
.blO
.580
.2tO
.300
,t70
.780
.790
.3bO
.180
.150
.150
.130
.100
.070
.700
.350
C02
13. Ob
13.91
13.77
13. t8
13.18
13.18
13.77
13.77
13.91
11. 2t
13. Ob
b.bt
10.89
12.22
13.18
13.18
13.33
13.18
13.18
13.33
13.18
12. 9t
7.75
NO
to
73
lib
250
too
830
It25
1500
1725
775
t2
b
SOO
875
It25
15b3
Ib25
faBO
350
ISt
98
38
9
SPECIFIC GRAM/BHP-HR
HC
R
5.99
3.33
3.09
3.09
2.20
2.5b
2.23
2.t5
5.35
R
R
t.50
3.tb
3. to
3.t9
.85
.99
.b9
.70
2.00
R
R
CO
R
73.2
18.5
9.9
7.8
5.7
23.8
21. b
19.7
183.2
R
R
183. t
105.8
72.3
70.9
5.7
7.9
8.1
11. t
28.1
R
R
N02
R
b.7
2.7
3.1
t.o
b.O
8.7
8.7
9.7
t.s
R
R
t.7
t.o
7.2
8.t
10.1
5.8
3.b
2.9
b.t
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                 PROJECT 11-2877-01  CONTROL TECHNOLOGY
b-15-7? RUN 1  1973 CALIFORNIA VERSION OF ENGINE 2-3  PER MANUF. SPECS.

MODE
1
2
3
4
5
b
7
8
9
10
11
18
13
] 4
IS
Ib
17
18
It
20
21
22
23

OYINA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1POO
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
faOO
2300
0.0
4.3
17. g
38.7
53.8
107.5
Ibl.Q
177.0
197.8
222.0
0.0
0..0
258.0
235.0
209.9
192.0
128.0
fa4.0
4b.O
51.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
4
9
12
25
37
40
45
51
0
0
113
103
92
84
5b
28
20
9
2
0
0
A/F
DRY CONCENTRATION
VAC. L8/HR RATIO ALDE.
17.8
19.5
11.4
lb.7
15.5
10.5
5.4
3.4
2.b
0.0
18.3
22.0
0.0
3.0
4.7
5.9
S.8
15.5
17.0
19.0
20.2
18.0
24.0
CALCULATED GRAM/HR
MODE
1
2
3
4
S
b
7
8
9
10
11
12
13
14
15
Jb
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
P.O
0.0
0.0
0.0
0.0
Q.n
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
p.tl
0.0
n.o
0.0
n.n
HC
52.9
S.fa
19.3
28.0
34.3
54. fa
92.7
Rb.4
lib. 9
282.3
tS.O
743.5
5S8.S
433.1
392.1
348.1
100. S
tO. 3
23.2
10.4
8.2
30.4
502.8
COMPOSITE








CO
173
48
b2
83
72
lOb
979
919
721
8821
248
131
20301
9b87
52b7
47bb
283
213
124
73
41
lib
94
HC
CO
N02
ALDE
BSFC
N02
l.fa
4.8
4.7
22.8
33.3
128. b
293.0
339.1
429.2
215.1
1.9
.3
Sbl.5
SbS.l
753.0
713.1
549.1
195.3
102.3
41.8
17.5
1.7
.4
8.5b9
b4.484
b.9bO
0.000
.b72
4.2
7.4
7.5

-------
          APPENDIX H




           ENGINE 2-3




EFFECT OF TIMING ON EMISSIONS




     (23 MODE MASS RESULTS)

-------
         ENGINE 2-3
EFFECT OF TIMING ON EMISSIONS
        TABU:LAR DATA

-------
b-lb-72 RUN 3
PROJECT 11-3877-01   CONTROL TECHNOLOGY
  1172 VERSION OF  ENGINE  2-3     TIMING 25  BTDC

•MODE
1
2
3
|+
5
b
7
8
9
10
11
12
13
It
15
lh
17
18
11
20
21
22
23

DYNA.
SPEED LOAD
750
1200
iRon
I2nn
1200
1200
1200
1200
1200
1200
750
1200
2300
2300
2300
2300
2300
2300
5300
2300
2300
750
2300
0.0
5.0
20.0
tb.n
bt.O
128.0
i*»a.n
210.0
23b.O
25b.O
0.0
0..0
2bb.O
2*5.0
218. 0
200.0
133.0
b7.0
t8.0
21.0
s.o
n.o
0.0
MAN. FUEL
HP
0
1
5
11
15
29
ft
18
St
58
0
0
Ufa
107
95
88
SB
29
21
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
20.0 3
20. fa 5
19.5 b
18.0 8
Ifa.S S
10.1 It
fa.O 20
t.O 21
1.8 2t
.3 32
20.8 3
22. t 3
.t fat
2.t 50
t.f tt
5.8 tl
10.1 29
15.7 19
17.7 15
20.0 13
21.2 9
20.2 3
2t.l t
CALCULATED GRAM/HR
MODE
1
2
3
t
5
b
7
8
9
10
11
12
13
It
15
Ik
17
18
19
20
21
22
S3
CYCLE




ALDF
0.0
n.o
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
O.P
0.0
0.0
n.o
0.0
0.0
0.0
0.0
n.o
0.0
0.0
HC
173.2
177.7
30.1
5b.3
75.0
105. fa
ISt.l
Ifa2.9
189.1
3f3.3
35. *
t21.5
falfa.9
355.7
281.7
25t.O
110. t
fa?. 8
ft. 8
50.7
291.7
H2.2
829.0
COMPOSITE








CO
Ifal
130
81
b8
bb
lOb
173
bS5
828
99t3
33b
27b
22t91
7253
39tt
3t01
tto
281
19t
IfaS
13t
203
It2
HC
CO
N02
ALDE
BSFC
N02
2.t
t.2
12.0
92.7
2tt.f
5t9.7
917. t 0
702.8
785. b 0
t92.3 0
2.b
.fa
780. b
lots.t
lSbt.8
ItSl.O
Itt7.0
582.3 0
238.7
78.1 0
11.8 0
1.7
.t
8.010
5t.573
It. 589
0.000
.582
.8
.7
.9
.0
.8
.8
.5
.2
.5
.2
.fa
.7
.2
.0
.5
.2
.8
.0
.5
.2
.2
.b
.2
WT.
FAC.
.070
. OfcO
.ObO
.050
.030
.ObO
.000
.oto
.oon
.000
.070
.120
.025
.055
.035
.OfaO
.Qbn
.000
.OfaS
.000
.000
.080
.ObO
13.5
15. b
15. b
15.7
15. 1
17.0
15.3
It. 9
It. 8
12. fa
It.t
19.3
12,1
13.8
It. 5
It.h
Ib.b
Ifa.b
Ifa.t
Ifa.t
Ib.t
15.1
17. t
WT.
HP
0.0
.1
.3
.5
.t
1.8
0.0
1.9
n.o
0.0
n.o
0.0
2.9
5.9
3.3
5.3
3.5
0.0
l.t
0.0
n.o
n.o
n.o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
139t3
9b39
13SS
2170
2305
200^
23t2
2tfa2
2397
3878 5
323t 1
33faOO 1
3btO fa
2t57 2
20^2 1
2022 1
lOfat
102t
8tl
1121
92tt
3729
55tb3
CO
.btO
.350
.180
.130
.100
.100
.130
.520
.520
.5faO
.520
.090
.570
,t80
.tso
.3tO
.210
.210
.180
.180
.210
.890
.t70
COS
11. 8t
12.71
13.77
13.b3
13.33
12. t?
13.77
13.77
13.33
10.55
13. Ob
8.93
10.25
12. 9t
13.33
13.33
12.71
12.71
12. 9t
12. 9t
12.09
13.18
b.73
NO
58
fa8
163
1075
22bS
3150
t20Q
3200
3000
lb?5
71
13
1387
2175
3500
3550
t200
2b50
1350
520
113
tt
8
SPECIFIC GRAM/BHP-HR
HC
R
155.55
fa. 59
5.3b
5.13
3.bl
3.51
3. to
3.51
5.87
R
R
5.30
3.31
2.95
2.90
1.89
2.31
2.13
5.52
133.23
R
R
CO
R
llt.l
17.7
b.S
*.5
3. fa
3.9
It.S
IS.t
170.0
R
R
113.1
b?.b
tl.3
38.8
7. fa
l.fa
9.2
17. S
fal.l
R
R
N02
R
3. fa
2.b
8.8
lb.7
18.8
20.9
It. fa
It.b
8.t
R
R
fa. 7
9.7
Ifa.t
lfa.9
2t.a
19.8
11. t
8.5
S.t
R
R
























GHAM/BHP HR
GRAM/BHP HR
GRAM/8HP HR
GRAM/BHP HR
LB/BHP HR

-------
b-lb-72 RUN 5
PROJECT 11-2877-01 CONTROL TECHNOLOGY
1972 VERSION OF ENGINE 2-3 TIMING
DYNA.
MODE
1
2
3
H
5
b
7
8
q
10
11
12
13
It
15
lb
17
18
11
eo
21
22
23
SPEED LOAD
735
1200
1200
IROO
1200
1200
1POO
1200
1200
1200
73S
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
73S
2300
0
5
20
t5
b3
12b
181
207
332
252
0
0
2bS
2tt
217
iqq
133
bb
t8
21
5
0
n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
..0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
5
10
It
29
t3
t?
53
58
0
0
lib
107
95
87
58
?q
21
q
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
19.8 3.8 15.5
21.0 5.9 15.8
19.2 7.2 15. fa
18.0 8.3 15. b
lfa.5 9.9 15.8
10. t 15.1 it. fa
b.t 19.9 15.2
t.3 21. t 15. t
5.0 23.7 15.3
.1 32.3 12. b
20.3 3.7 It. 8
22. t 3.8 lb.1
.3 bb.O 11.9
2.7 tq.5 It. 3
t.S tt.O It.b
fa. 2 tl.b It. 7
10.0 29.7 lb.7
15.9 19.5 lb.8
17. fa lb.7 lb.7
20.1 12. fa lb.5
21.1 9.t Ifa.b
19.9 3.5 15. t
2t.O t.t 17.5
CALCULATED GRAM/HR WT. WT.
MODE
I
2
3
t
5
b
7
8
q
10
11
12
13
It
15
lb
17
18
IS
20
21
22
23
CYCLE




ALOE
n.O
0.0
n.n
0.0
o.n
0.0
n.d
0.0
n.o
0.0
n.o
n.o
n.n
0.0
n.o
n.n
0.0
0.0
0.0
0.0
0.0
0.0
O.fJ
HC
?9.
33.
18.
51.
fa9.
92.
132.
135.
150.
310.
2t.
513.
1037.
33b.
275.
253.
102.
b3.
t3.
18.
St.
23.
83t.
8
b
fa
t
1
b
3
7
3
1
3
3
3
5
1
1
1
t
q
5
s
b
t
COMPOSITE












CO
15=;
80
fa9
b9
fat
103
223
20t
22b
98t7
2t7
229
23170
5003
3730
31tf
318
20?
177
132
99
153
153
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1,7 .070 n.O
3.b .OfaO .1
9.9 .ObO .3
79.0 .050 .5
Ib9.3 .030 .t
t73.0 .OfaO .1.7
fa?2.5 0.000 0.0
8bl.fa .OtO 1.9
1028.5 0.000 0.0
t28.2 0.000 0.0
1.9 .070 0.0
.5 .120 0.0
731.2 .025 2.9
1330.2 .055 5.9
ltfab.0 .035 3.3
ItSB.b .OfaO 5.2
1271.7 .OfaO 3.5
521. t 0.000 0.0
281.9 .ObS l.t
b7.9 0.000 0.0
lb.8 0.000 0.0
1.8 .OPO 0.0
.t .ObO 0.0
7.908 GRAM/BHP HR
t8.339 GRAM/BHP HR
It.b21 GRAM/BHP HR
0.000 GRAM/BHP HR
.593 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
O.Q
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
2t87
1779
815
19t3
21bb
1819
2155
201t
201t
3b07
2159
tQ2t8
bOQ5
2309
205fa
1999
973
929
750
t2b
lfa?8
2087
51730
Ifa BTDC
CONCENTRATION










5
1

fa
1
1
1







CO
.btO
.210
.150
.130
.100
.100
.180
.150
.150
,fa70
.090
.890
.btO
.700
.380
.230
.150
.150
.150
.150
.150
,fa70
,t?0
C02
13. t8
13.77
It. 05
13.91
13.77
13.18
It. 31
It. OS
It. 05
11.01
13.fa3
S.faO
10.09
13. t8
13.33
is. te
12.59
12.71
12.71
12. 9t
12.71
13.18
b.73
NO
tl
58
130
900
IbOO
2800
3300
3850
tiso
1500
5E
11
1275
2750
3300
3tOO
3fa50
2300
itso
t70
155
t8
7
SPECIFIC GRAM/BHP-HR


29.
t.
5.
t.
3.
3.
2.
2.
5.


8.
3.
2.
2.
1.
2.
2.
2.
25.







HC
R
t3
08
00
80
21
Ob
87
8t
39
R
R
9t
15
90
90
75
19
09
02
09
R
R





CO
R
70.2
15.2
fa. 8
t.5
3.b
5.2
t.3
t.3
171.0
R
R
199.7
tfa.8
39.3
Sfa.l
5.5
7.2
B.t
It. 3
t5.3
R
R





N02
R
3.2
2.2
7.7
11.8
Ib.t
15. fa
18.2
19. t
7.t
R
R
b.3
12. t
15. t
Ib.t
21.8
18.0
13. t
7.t
7.7
R
R



































-------
b-!9-72 RUN 5
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG. 5-3,  1972 VERSION,  TIMING f ATDC
OYNA.
•MODE
1
2
3
t
B
b
7
8
9
in
11
12
13
It
15
Ib
17
18
19
20
21
22
23
SPEED LOAD
b80
1200
1200
1200
1200
1200
1200
1200
1200
1200
b80
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
b80
2300
0
3
If
33
tb
11
137
Itq
Ib7
182
0
0
222
20t
182
Ib7
111
5b
to
18
tt
0
0
.0
.b
.5
.0
.0
.0
.0
.0
.0
.0
.0
..0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
3
8
11
21
31
3t
38
t2
0
0
97
89
80
73
t9
25
18
8
19
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
Ifa.b 5.5 15.3
18.5 ?.b 15. f
18.0 7.9 lb.1
lfa.1 9.b lb.2
15. f 10.5 Ifa.t
18.0 17.1 lb.1
f.b 21.5 15.2
3.0 22.9 15.1
1.7 24.5 15.1
.3 32.1 12. b
17.3 5.1 It. 9
20.9 5.8 15.9
.7 bf.3 12.1
2.b 50.5 13. b
t.t tt.5 It.t
5.1 t3.2 It.t
8.8 31. b Ib.t
;fa.O 19.3 Ib.t
17. t 17.5 Ib.b
19.2 13.0 Ib.t
20.7 10.5 lb.1
lb.5 t.8 15.5
23. b 5.7 17. t
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
t
5
b
7
8
q
10
11
12
13
It
15
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
HC
15.
5.
9.
21.
2t.
15.
35.
t7.
57.
18fa.
lb.
t?0.
tba.
258.
117.
108.
13.
12.
8.
3.
3.
b.
587.
8
t
9
2
s
b
1
1
3
7
0
3
5
b
3
8
3
1
3
2
7
S
9
COMPOSITE












CO
152
85
b8
fat
70
112
199
t3b
58t
9281
19fa
2bl
21700
8305
3595
3b90
ISb
135
123
90
50
57
Ib9
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
t.t .070 0.0
7.2 .ObO .0
9.2 .ObO .2
2t.l .050 .t
3t.t .030 .3
lOt.b .OfaO 1.2
250.5 0.000 0.0
277. b .OtO l.t
332.1 0.000 0.0
17b.3 0.000 0.0
t.i .070 0.0
1.1 .120 n.o
333.5 .025 2.t
tS7.8 .055 t.9
B33.8 .035 2.8
559.2 .ObO t.t
35b.3 .ObO 2.9
Ib0.3 0.000 0.0
85.8 .OfaS 1.1
29.5 0.000 0.0
12.0 0.000 0.0
t.3 .080 0.0
.8 .ObO n.O
b.227 GRAM/BHP HR
bb.Sbl GRAM/BHP HR
b.23t GRAM/BHP HR
0.000 GRAM/BHP HR
.78fa LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
I
I





DRY
HC
921
233
387
bbt
721
282
53t
b?7
7?t
221t
1055
25t91
271b
1805
883
BtO
120
181
13b
72
lot
tto
27t27
CONCENTRATION










5


b
2
1
1







CO
.tto
.180
.130
.100
.100
.100
.150
.310
.390
.tso
.btO
.700
.310
.870
,3tO
.tio
.070
.100
.100
.100
.070
.180
.390
COS
It. 05
It. 53
13.77
13. t8
13. b3
13.91
It.bfa
It. 53
It. S3
11. bO
It. S3
11.01
10.55
12. 9t
13.77
13. b3
12. 9t
12. 9t
12. 9t
13.18
13. t8
13.77
8.93
NO
78
93
107
227
300
570
1150
1200
1350
b30
82
19
590
9b3
1*38
1300
975
720
t25
200
102
83
ie
SPECIFIC GRAM/BHP-HR


b.
3.
2.
2.
•
1.
1.
1.
t.


t.
2.
1.
1.
*
•
•
*
*







HC
R
b3
00
81
37
75
12
38
5D
t9
R
R
?b
89
t7
t9
27
t9
t?
tl
19
R
K





CO
R
103. t
20. t
8.5
b.b
s.t
b.t
12.8
15.3
223.2
R
R
223.2
93.0
ts.i
50.5
3.2
5.5
7.0
11. t
2, fa
R
R





N02
R
8.7
2.8
3.2
3.3
5.0
8.0
8.2
8.7
t.2
R
R
3.t
S.I
8.0
7. fa
7.3
b.5
• t.9
3.7
.b
R
R



































-------
                 PROJECT 11-2877-01  CONTROL TECHNOLOGY
b-19-72 RUN 1  1972 VERS. ENG. 2-3  TIM. 12  ATDC  DIST. VAC. CONNECTED

MODE
i
2
3
f
5
b
7
8
9
10
11
12
13
1*
IS
Ib
17
18
IS
20
21
22
23

DYNA.
SPEED LOAD
SbO
1200
1200
1200
1200
1200
1200
1200
1200
1200
SbO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
SbO
2300
0.0
a.*
10.0
22.0
31.0
bl.O
92.0
100.0
112.0
122.0
0.0
0.0
17*. 0
ifao.o
1*3.0
131.0
87.0
ff.o
31.0
lf.0
3.f
0.0
0.0

HP
0
1
2
5
7
If
21
23
2b
28
0
0
7b
70
b3
5?
38
19
If
b
1
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
13.0 5.0 Ifa.b
18.0 7.5 lb.2
17. S 8.3 lb.3
lb.2 10.0 lb.5
If.b 10. b Ib.S
b.8 18.8 15. f
3.1 22.5 15.3
2.b 23.0 15.2
l.f 25.2 If. 9
.3 32,5 12. b
If.S f.b If.b
20.7 5.2 lb.8
.b faf.8 12.1
2.7 f7.5 lf.5
3.5 ffa.fa If. 2
f.f f5.3 If. 3
7.7 35.8 15.3
.15.0 20.5 lb.3
lb.5 18.8 lb.5
18.3 1S.S Ib.f
19.7 13.2 lb.3
13.5 f.8 15.5
23. f 5.5 12. f
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
9
10
11
12
13
If
15
Ib
17
18
19
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
253. b
3.b
*.l
b.8
8.1
B.b
If. 8
IS.b
35.3
Ib9.3
22.5
530.3
35f.S
bS.b
88. f
77.8
15.1
7.8 ,
5. fa
3.1
l.b
10. f
b07.2
COMPOSITE








CO
95
SO
5b
b9
73
121
2faO
220
7b9
9553
30b
22fa
25083
2f 75
3838
3f59
229
99
91
75
f5
b5
If?
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
3.8 .070 0.0
b.2 .OfaO .0
7.5 .ObO .1
'13.9 .050 .3
18.3 ,030 .2
122.8 .ObO .8
189. D 0.000 0.0
212. f .OfO .9
935.3 0.000 0.0
' lib. 3 0.000 0.0
*3.fa .070 0,0
.5 .120 0.0
170.9 .025 1.9
387.7 .055 3.9
329.1 .035 2.2
295.5 .ObO 3.f
277.2 .ObO 2.3
97.8 0.000 0.0
59.8 .Ob5 .9
27.3 0.000 0.0
13.2 0.000 0.0
f.fa .080 0.0
.8. .ObO 0.0
8.f9f GRAM/BHP HR
b7.fa87 GRAM/BHP HR
S.SfaS GRAM/BHP HR
0.000 GRAM/BHP HR
1.0f9 LB/B.HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRY
HC
15110
If?
If9
199
223
Iff
207
215
fSf
1933
Ib21
289ffa
20b?
f5S
bf2
577
133
111
88
58
37
b?8
29273
CONCENTRATION










5
1

b

1
1







CO
.280
.100
.100
,100
.100
.100
.180
.150
.f90
,fOO
.090
.falO
.370
.850
.380
.270
.100
.0?0
.070
,070
.050
.210
.350
























C02
11.72
13. b3
13. f8
13.18
13.18
If. 18
If. 05
If, 18
If. 18
11. 2f
13.77
S.37
10.55
If .05
13.91
13.91
If. 18
13.18
13.18
13.18
13. fB
13.91
8.75
NO
b9
75
81
122
152
b2Q
795
880
913
fOO
77
9
300
810
720
bbO
735
f20
280
155
90
91
12
BRAKE SPECIFIC GRAM/BHP-HR
ALOE

o.
o.
0.
o.
0.
o.
0.
0.
0.


0.
0.
o.
0.
o.
0.
0.
0.
0.







w
I
0 b.
0 1.
0 1.
0 1.
0
0
0
0 1.
0 fa.
I
I
0 f.
0
0 1.
0 1.
0
0
0
0
0 1.
I
I





HC
R
bl
81
35
If
b2
70
b8
38
0?
R
R
bb
9f
fl
3b
fO
fO
fl
SO
09
R
R







91
2f
13
10
8
12
9
30
3f2


289
35
fal
bO
b
5
b
12
30







CO
R
.2
.5
.?
.3
.b
.f
.b
.0
.?
R
R
.8
.3
.3
.3
.0
.1
.?
.2
.0
R
R





IN 02
R
11.2
3.3
2.8
2.b
8.8
9.0
9.3
9.2
f.2
R
R
2.2
S.5
5.3
5.2
7.3
5.1
f.f
f.5
8.9
R
R



































-------
                 PROJECT 11-2877-01  CONTROL TECHNOLOGY
b-lb-72 RUN f  1172 VERS. ENG. 5-3  TIM. 12  ATOC  DIST. VAC.

•MODE
1
2
3
f
5
b
7
8
1
10
11
12
13
If
15
lb
17
18
11
20
21
22
23

DYNA.
SPEED LOAD
535
1200
1200
1200
1200
1200
1200
1200
1200
1200
535
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
535
2300
0.0
3.0
10.0
23.0
33.0
fas.o
18.0
107.0
120.0
130.0
0.0
0.0
1?8.0
lbf.0
lfb.0
13f.O
8^.0
fS.O
32.0
If .0
f.o
0.0
0.0

HP
0
1
2
5
8
15
22
2f
27
30
0
0
78
72
bf
51
31
20
If
b
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
13.8 5.0 IS.f
13.3 12.5 lb.1
12.0 13.0 lb.1
11. S 13,8 lfa.1
8.5 17.3 lfa.3
fa. 3 11.8 15.2
3.0 23.3 21.1
2.2 2f.S 15.0
.1 25. f If. 8
0.0 31. fa 12. b
0.0 5.2 20.8
21.0 5.5 11.8
.f faS.5 11.1
2.b 51.2 13. fa
3.3 f7.2 If. 2
f.5 fb.O If. 3
7.8 3fa.O 15.2
,1.5 21.5 lb.7
11.1 27.5 lfa.8
If.f 22.5 Ib.b
Ifa.S 17.5 lfa.5
If. 2 f.O IS.f
23.2 5.5 18.1
CALCULATED GRAM/HK WT. WT.
MODE
1
2
3
f
5
fa
7
8
q
10
11
12
13
1*
15
Ib
17
18
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
13.8 ',
5.1 •
2.5
2.1
2.2
7.8
13.1
2f.n
33.2
152. t
lfa.5 .
bSS.ii
fOf .8
230. 8
112. b
1fa.7
1^.2
12.1
1.2
5.7 ,
3.2
fa.1
535.2
COMPOvSITE








CO
135
ff •-
f b
4-1
51
Ib3
11?
bOi!
8bh
insb
180
202
53f21
7771
f!37
357b
233
10f
1?
71
bl
Sf
133
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
f.8., .070 0.0
13. 21 .OfaO .0
17. I'M .ObO .1
20. f .050 .3
b2.3 .030 .2
151. b .OfaO .1
23b.b 0.000-' 0.0
23fa.1 .OfO 1.0
2f2.7 0.000 0.0
112.3 0.000 0.0
f.8. .070 n.O
.1 .120 0.0
12b.2 .025 1.1
2f5.fa .055 f.Q
3bS.7 .035 2.2
333.2 .ObO 3.5
2b0.2 .OfaO 2.3
12.3 0.000 . 0.0
7f.1 .ObS .1
ffa.1 0.000 0.0
22.1 0.000 n.O
f .1 .-• .080 0.0
1.1 .ObO 0.0
8.585 GRAM/BHP HR
8S.fa80 GRAM/BHP HR
S.flf GRAM/BHP HR
0.000 GRAM/BHP HR
1.132 LB/B.HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
I
I





DRY
HC
871
118
5fa
f3
37
12fa
171
315
f2fa
1802
1020
3f011
23f3
1555
718
blf
Ifa7
118
Ifa
73
53
Sf3
25237
CONCENTRATION










5


b
2
1
1







CO
,f20
.050
.050
.050
.050
.130
.130
.310
.550
.210
.550
.520
.710
.faOO
.fSO
.270
.100
.050
.050
.050
.050
.210
.310
























C02
13.77
12. If
12. If
12. If
13.33
If. 31
If. 31
If, 18
If. 18
11. f8
13,91
1.03
10,25
12. If
13. *>3
13. b3
If. 05
12. If
12. If
12. If
IS.Ofa
13.11
8.13
NO
10
11
111
127
320
735
17S
138
138
foo
10
If
220
500
780
720
bSQ
270
235
180
110
IB
15
SPECIFIC GRAM/BHP-HR


7.
1.
*
•
•
*
•
1.
5.


5.
3.
1.
1.
•
•
•
*
1.







HC
R
f8
11
31
21
53
58
18
21
13
R
R
11
20
7fa
bS
fl
bl
fab
13
82
R
R







bf
20
S
7
11
8
2f
31
30f


300
108
bf
bO
b
5
b
12
3f







CO
«
.3
.1
.3
.1
.0
.fa
.5
.b
.2
R
R
.5
.2
.?
.1
.0
.3
.1
.1
.1
R
R





N02
R
11.3
7.8
3.1
8.3
10.2
10. fa
1.7
8.1
3.8
R
R
l.b
3.f
5.7
5.7
fa. ?
f.7
5.3
7.7
12. b
R
R



































-------
           ENGINE 2-3




EFFECT OF TIMING ON EMISSIONS




       GRAPHED RESULTS

-------
                                                             1037<
                                                                       © 2300
                   LEGEND
o
o
i—>
X!
M
3
0
E
(0
a
cti
^
o
4  -
                              1200 rpm
                              2300 rpm
           ^•-25° BTDC, 6-16-72
           •-16° BTDC, 6-16-72
           '•-4° BTDC Standard
           (•-4° ATDC,  6-19-72
           ^>-120 ATDC, 6-19-72

           ^-4° BTDC,  1973 Calif. Version
           c -12" ATDC, 6-16-72
                Dist. Vac. Discon.
                                                                      1200
                                                                      1200
                                                                    A 2300
                                                                    02300
                                                                    30091200
                                                                   1200Q "uu
                                                                       01200
                                                                      1200
                 10    20    30    40   50    60   70    80
                  Power,  Percent Maximum at Given rpm
                                                         90    100   C.T.
        FIGURE H-l.  EFFECT OF POWER ON HC EMISSION RATE

                      ENGINE 2-3,  23 MODE TEST

-------
                                         Approx.  9036-23,421
o
o
o
I— I
X
N
CO
fi
n)
h
O
                   LEGEND
                                1200 rpm
                                2300 rpm
          C -25°  BTDC,  6-16-72
           -4° BTDC Standard
          @ -4° ATDC, 6-19-72
          is> -12°  ATDC,  6-19-72

          X-- -4° BTDC, 1973 Calif.  Version
           • -12°  ATDC,  6-16-72
                  Dist. Vac. Discon.
                                                                 1200
                                                                       0  2300
      O  1200
         §1200
         2300
0)
53



,111 J_ — 1 	 1 	 1 	 1 	 1 	 1
           0    10    20    30    40   50    60    70    80    90
                Power,  Percent Maximum at Given rpm

      FIGURE H-2.  EFFECT OF POWER ON CO EMISSION RATE
                    ENGINE 2-3, 23 MODE TEST
100  C.T.

-------
   16


   15


   14


   13


   12

   11

   10
o
o
X!
o   7
W
O
     4
       LEGEND

	1200 rpm
	2300 rpm
 ©-25° BTDC, 6-16-72
 0-16° BTDC, 6-16-72
 <• -4°  BTDC Standard
 0-4°  ATDC, 6-19-72
 &-12° ATDC, 6-19-72

 S5--40  BTDC, 1973
       Calif.  Version
 0-12° ATDC, 6-16-72
       Dist.  Vac.  Discon
                                                                   1200
                                                                   1200
                                                                  2300
                                                                  2300
         10   20    30   40    50    60    70    80
            Power,  Percent Maximum at Given rpm
                                                             90   100   C.T.
     FIGURE H-3.  EFFECT OF POWER ON NO* (AS NQz) EMISSION RATE

                        ENGINE 2-3, 23 MODE TEST

-------
                   LEGEND
   25
K  20
£
a
u
>  15
ti
*-4
0
• H
s
3
JS  10
                              1200 rpm
                              2300 rpm
0-25° BTDC, 6-16-72
0-16° BTDC, 6-16-72
^-4° BTDC Standard
 •••-4° ATDC, 6-19-72
£—12° ATDC, 6-19-72

^-4° BTDC, 1973 Calif. Version
k-12" ATDC, 6-16-72
       Dist. Vac. Discon.
2300
2300
2300
1200
1200
          (U
          >—«
          T)
                10   20    30   40    50   60    70    80
                     Power, Percent Maximum at rpm
                                                 90    100   C.T.
      FIGURE H-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER

                       ENGINE 2-3,  23 MODE TEST

-------
2  4
X
3
O
ft
                    LEGEND
                                   1200 rpm
                                   2300 rpm
         &-25° BTDC, 6-16-72
         ©-16° BTDC, 6-16-72
         <->-4° BTDC Standard
         0-4° ATDC, 6-19-72
         £-12° ATDC, 6-19-72

         ^-4° BTDC, 1973 Calif.  Version
         (3-12° ATDC, 6-16-72
               Dist. Vac. Discon.
                                                                          1200
                                                                          2300
                                                                          1200
                10   20    30    40   50    60    70    80
                  Power,  Percent Maximum at Given rpm
90
100  C.T.
     FIGURE H-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER

                      ENGINE 2-3, 23 MODE TEST

-------
               APPENDIX I




               ENGINE 2-3




EFFECT OF AIR-FUEL RATIO ON EMISSIONS




         (23 MODE MASS RESULTS)

-------
                ENGINE 2-3




EFFECT OF AIR-FUEL RATIO ON EMISSIONS




              TABULAR DATA

-------
h-20-72 RUN 1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.  2-3,  PER MAN. SPECS.,    CARB.  JETS .080 RODS .051
OYNA.
MODE
1
2
3
t
5
b
7
R
q
10
11
12
13
1*
15
Ifa
17
18
iq
20
21
22
23
SPEED LOAD
ban
1200
1200
1200
1200
1200
1200
1?00
1200
1200
b80
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
h80
2300
0
t
17
sq
5*
108
Ifa2
177
iqq
21b
0
0
25b
23b
210
1S2
128
bt
fb
20
5
0
0
.0
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
..0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
t
q
12
25
37
to
ts
tq
0
0
112
103
q2
8t
Sb
28
20
q
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.0 3.5 It.q
iq.5 b.8 It. 5
18,8 8.0 It. 3
18.2 8.8 It.t
17.1 S.5 It.t
12.2 It. 3 15.2
7.0 23.2 12.7
5.t 27.5 11. fc
3.8 30.5 11. t
.3 3b.5 11.0
18.3 3.3 It. 5
22.8 3.5 lfa.1
.b 71. t 11.1
2.7 fa?. 7 10. b
t.q bo.o 10.8
fa. 7 50.3 12.1
11.7 30.0 It. 5
17.0 H.8 It. 7
18. b Ifa. 5 It. 7
20.3 13.5 It. 8
21.7 10.8 It. 8
18.5 3.t It. 7
2t.7 3.b 17.3
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
>f
5
b
7
a
q
10
11
12
13
It
IB
lb
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
n.o
o.n
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
HC
30.
19.
32.
t8.
bl.
81.
17b.
2t2.
278.
t2?.
St.
b?3.
b5b.
b35.
St2.
tit.
155.
15.
bO.
33.
2t.
27.
582.
1
2
2
5
0
5
2
t
t
2
3
8
0
t
8
5
5
5
7
0
b
1
2
COMPOSITE












CO
285
tqb
723
b73
febl
Ibt
blt5
loqos
12b21
Ib57<*
370
233
32t<+2
3tl3t
2qi02
1727t
20b3

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
b-21-72 RUN 5   ENG. 2-3, PER MAN. SPECS.,   CARB. JETS .075 RODS .038
DYNA.
MODE
1
2
3
4
5
b
7
R
S
10
11
12
13
14
1?
lb
17
18
11
20
21
22
23
SPEED LOAD
bOO
1200
1200
l?no
1200
1200
i?on
1200
1200
1200
hOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
4
18
41
57
113
170
185
208
22fa
n
n
258
237
21P
114
121
faS
4fa
21
5
0
0
.0
.5
.0
.0
.0
.0
.n
.0
.0
.0
.0
,0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
1
13
2b
31
42
48
52
0
0
113
104
13
85
5b
28
20
1
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.3 3.8 14.4
11.7 fa. 8 15.2
11.2 7.8 15.0
18.1 8.5 14.1
17.3 10.0 14.8
12.4 15.0 14.8
7.2 25.5 13. b
5.1 22.7 13. fa
3.3 24.5 13. b
.3 32.5 12.1
11.0 3.8 14.8
22.5 4.0 lfa.3
.b fafa.S 11.7
3.0 53.3 12.1
5.2 47.5 13.1
fa. 3 44.5 13.2
11.7 21.4 If. 8
lb.8 11.5 14. b
18.5 lb.4 14.7
21. b 12,4 18.0
22.3 10.2 14.8
18.3 3.5 15.3
24.5 3.8 17.1
CALCULATED GRAM/HR WT. WT.
MODE
1
3
3
4-
5
b
7
R
S
10
11
12
13
14
.15
lb
17
18
1H
20
21
22
2}
CYCLE




ALDE
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.n
0.0
0.0
0.0
^0.0
HC
21.
15.
17.
4b.
57.
11.
Ibb.
140.
147.
254.
22.
b3b.
Sfa4.
370.
314.
212.
14b.
17.
84.
21.
11.
11.
S8b.
1
b
2
2
1
2
1
8
5
5
5
1
8
5
4
b
3
1
0
3
8
5
1
COMPOSITE












CO
187
17?
235
171
252
374
4100
3475
3853
11085
212
177
258tb
13427
10101
1112
8b2
1fa3
fa.18
340
211
112
111)
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.5 .070 0.0
4.b .OfaO .1
b.1 .ObO .2
35.4 .050 .5
55.2 .030 .4
241.8 .ObO 1.5
Ib4.4 0.000 0.0
171.8 .040 1.7
215.1 0.000 0.0
157.8 0.000 0.0
1.7 .070 0.0
.4 .120 0.0
410.1 .OPS 2.8
403.4 .055 5.7
445.7 .035 3.2
433.4 .OfaO 5.1
814.2 .OfaO 3.4
321.7 0.000 0.0
Ib2.* .Ob5 1.3
41.1 0.000 0.0
13.3 0.000 0.0
1.7 .080 0.0
.3 .ObO 0.0
8.121 GRAM/BHP HR
103.030 GRAM/BHP HR
b.!4b GRAM/BHP HR
0.000 GRAM/BHP HR
.fa42 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
2487
750
722
1822
1123
20b8
2310
2275
2211
3080
1115
4b413
3240
2531
2401
2353
Iblb
Ifa41
Ib75
7bfa
b21
1720
41137
CONCENTRATION







2
2
2
b


7
f
4
3







CO
.770
.420
.410
.350
.420
.420
.120
.780
.870
.b40
.130
.fa40
.340
.540
.120
.fafaO
.470
.810
.falO
.440
.470
.410
.310
C02
13.33
14.31
14.31
14. fab
14. bb
14.71
13.48
13. fa3
13. b3
10.81
14.18
7.14
1.b4
11.72
12.01
12.34
14.05
14.05
14.05
14.18
14.18
13.33
7.75
NO
37
fab
88
420
SbO
IbSO
713
875
175
575
45
8
710
830
1025
1050
27QO
IfaS?
175
330
12?
45
7
SPECIFIC GRAM/BHP-HR


IS.
4.
4.
4.
3.
4.
3.
3.
4.


5.
3.
3.
3.
2.
3.
4.
3.
1.







HC
R
20
18
It
31
53
28
33
10
13
R
R
00
57
31
44
fall
41
17
11
03
R
R





CO
R
171.1
57.3
11.2
11.3
14.5
105. b
82.2
81.1
214.7
R
R
228.8
121.4
117.4
108.2
15.3
33.8
30.7
37.0
13b.3
R
R





N02
R
4.4
1.7
3.8
4.2
1.4
4.2
4.3
4.5
3.1
R
R
3. fa
3.1
4.8
5.1
14.4
11. fa
8.1
" 4. fa
b.l
R
R



































-------
fa-21-72
RUN 1
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3, PER MAN. SPECS,, CAR6. JETS
DYNA.
•MODE
1
a
3
M.
5
b
7
El
q
10
11
12
13
If
15
lb
17
18
11
80
21
ee
23
SPEED LOAD
bOO
1200
1200
1?00
iaoo
1200
1200
1200
iaoo
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
t
17
31
5t
108
Ifa2
177
111
2lb
0
0
250
230
205
188
125
b3
45
20
5
0
0
.0
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
»0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
t
1
ia
25
37
to
ts
tl
0
0
101
101
10
82
55
28
20
1
2
0
0
MAN. FUEL A/F
,0b8
RODS .038
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.0 3.5 lb.3
18.8 b.b 17. a
18.5 7.3 17.3
15.1 1.3 18.8
ia.8 10.8 18.5
b.b 17.0 17.3
2.3 ai.t 17.1
l.t 22.3 lb,7
.8 83.8 lb.1
.3 30.5 13.3
18.0 3.t lt.1
22.1 3.8 lb.0
.b b2.8 la.t
2,t tb.7 It. 8
3.0 t2.5 lb.0
3.1 tO. 7 lb.0
7.3 32. t 17.3
11.3 23.0 11.7
It.b 18.5 11.8
17.1 13. b 11. t
11.8 11.3 20.0
17.0 3.3 lb.3
at. 7 3.1 is.o
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
t
5
b
7
8
S
10
11
12
13
It
15
Ib
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
71.
10.
IS.
tl.
ft.
31.
to.
ta.
St.
ne.
33.
770.
t77.
187.
58.
57.
23.
31.
tf.
t3.
32?.
55.
512.
0
a
i
7
b
t
t
1
7
B
2
2
8
9
2
2
2
b
1
a
3
b
t
COMPOSITE












CO
int
ts
bi
81
15
its
18t
217
2bS
7bt8
182
111
eoi5?
235b
533
583
351
3t1
280
170
aas
It
81
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.1 .070 0.0
3.t .ObO .1
5.1 .ObO .2
8.0 .050 .t
1.1 .030 .t
51.0 .ObO 1.5
171. b 0.000 0.0
273.5 .OtO l.b
tOb.l 0.000 0.0
son. 2 o.ooo o.o
l.t .070 0.0
.t .120 0.0
505. t .025 2.7
12t3.0 .055 5.5
1018.5 .035 3.1
112.5 .ObO t.S
38t.O .ObO 3.3
tb.2 0.000 0.0
37.7 .OfeS 1.3
lt.1 0.000 0.0
10.1 0.000 0.0
2.1 .080 0.0
.2 .ObO 0.0
7.171 GRAM/BHP HR
32.01t GRAM/BHP HR
8.771 GRAM/BHP HR
0.000 GRAM/BHP HR
.bt2 L8/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
foots
t5b
572
1232
1237
557
575
511
750
2t35
3*33
blS53
2825
1305
tot
fib
187
t!3
578
771
t288
tfa70
t?lfa7
SPECIF
HC
R
10. ta
3.81
t.b8
3.ba
1.27
i.ni
I.Ob
1.20
3.10
R
R
t.3b
1.87
.fas
.bi
.tl
I.t3
2.2t
t.13
103.81
R
R





CO
.tto
.100
.130
.130
.130
.130
.130
.150
.180
t.710
.130
.tto
5.100
.810
.180
.210
.150
.180
.180
.ISO
.210
,310
.350
























coa
12. t?
13.18
ia.3t
12.23
13.33
is. ta
13. b3
13.11
It. 53
12. t7
It.bb
7.18
10. fob
13.77
13.18
13,18
12.22
10. bb
lO.bfa
10.78
1.03
11.72
b.13
NO
28
tb
b8
71
76
31S
770
1150
lb?5
7b3
.8
8.1
t.l
R
R
t.b
12.3
12. 2
12.1
7.0
1.7
1.1
1.7
5.0
R
R



































-------
b-20-72

MODE
1
5
3
*
5
b
7
B
9
10
11
IS
13
If
15
Ib
17
IS
11
20
21
22
S3

RUN 2
DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
*.o
lb.0
3b.O
50.0
0.0
0.0
n.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
PROJECT 11-2877-01
ENG. 2-3, PER MAN.
MAN. FUEL
HP
0
1
f
8
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CONTROL TECHNOLOGY
SPECS., CARB. JETS .Ofat RODS
A/F
.038

DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.0
15.3
11.0
7.0
S.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
CALCULATED GRAM/HR
MODE
1
2
3
4
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
IS
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
b2.3
101.*
3137.3
110. *
13.8
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
COMPOSITE








CO
fl
231
181
257
118
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HC
CO
N02
ALOE
BSFC
N02
.1
.f
.2
*.o
8.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
250. fS8
fS.lbS
.53f
0.000
2.290
2.8
7.3
l.b
13. b
15.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
Ib.f
23.7
23.8
21. f
20. f
0.0
0.0
n.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
WT.
HP
0.0
.1
.2
.f
.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC CO
b*73 .210
8f387 .310
t2888 .180
3137 .210
b?0 .ISO
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

12
b
2
1
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C02
.3f
.21
.2b
.bf
.55
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
NO
28
3
1
20
38
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SPECIFIC GRAM/BHP-HR
HC CO
R R
18fa.27 253.2
858.11 fl.b
23.15 31.3
3.83 17.3
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0,0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
0.00 0.0
























N02
R
.f
.1
.5
.7
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                ENGINE 2-3




EFFECT OF AIR-FUEL RATIO ON EMISSIONS




            GRAPHED RESULTS

-------
4
3 h
2 f-
1 f
               LEGEND
                      1200 rpm
                      2300 rpm
      ©-14. 1 "Weighted" A/F Ratio
          0.080 Jets,  0.051 Rods

      ©-14.63 "Weighted" A/F Ratio
          0.075 Jets,  0. 038 Rods

      <3>-15. 5 "Weighted" A/F Ratio
          0.073 Jets,  0.038 Rods
          1972 Standard Engine

      Q-16.55 "Weighted" A/F Ratio
          0.068 Jets,  0.038 Rods

&  1200



    2300
O

3  2300


$  1200


  2300
                                                                    O   1200
       0    10    20   30    40    50    60    70    80    90~

                Power, Percent Maximum at Given rpm

     FIGURE 1-1.   EFFECT OF POWER ON HC EMISSION RATE
                    ENGINE 2-3,  23 MODE TEST

-------
o
o
o
i-H
XI
0
ffi
en
E
o
   16
   14
    12
    10
     6 I-
     4 t-
                            Approximately 17, 274 -34, 134
                     LEGEND
                                 -1200 rpm
                                  2300 rpm
0-14. 1 "Weighted" A/F Ratio
   0. 080 Jets,  0. 051 Rods

0-14.63 "Weighted" A/F Ratio
   0.075 Jets,  0. 038 Rods

O-15.5 "Weighted" A/F Ratio
   0.073 Jets,  0. 038 Rods
   1972 Standard Engine

S-16.55 "Weighted'!A/F Ratio
   0. 068 Jets,  0. 038 Rods
                                                                    2300
1 1 1 1 1
	 ,.l .. 1 1 1 	 ~J
                                                                            1200
                 10    20    30    40    50    60   70    80
                  Power, Percent Maximum at Given rpm
                                                    90   100   C.T.
        FIGURE 1-2.  EFFECT OF POWER ON CO EMISSION RATE
                      ENGINE 2-3, 23 MODE TEST

-------
 16


 15 r

 14
             LEGEND
o
o
X!
 13


 12


 11


 10


  9


  8
                          1200 rpm
                          2300 rpm
  0-14. 1 "Weighted" A/F Ratio
     0.080 Jets,  0.051 Rods
. C? -14. 63 "Weighted" A/F Ratio
     0.075 Jets,  0.038 Rods

- 0-15. 5 "Weighted" A/F Ratio
     0.073 Jets,  0. 038 Rods
     1972 Standard Engine

  (3-16.55 "Weighted" A/F Ratio
     0.068 Jets,  0.038 Rods
                                                                        1200
               10   20   30    40    50    60    70

                 Power, Percent Maximum at Given rpm
90
                                                           100  C.T.
  FIGURE 1-3.  EFFECT OF POWER ON NQs (AS NCfc) EMISSION RATE
                     ENGINE 2-3, 23 MODE TEST

-------
    26  r
    24
    22
    20  t-
    18
ffi
2   14  t-
u
rt

T3   12
r_4
o
m
• l-l
I   10
ni
•4-1
C
     4  -
                                               LEGEND
                       1200 rpm
                       2300 rpm
0 -14.1 "Weighted" A/F Ratio
    0. 080 Jets,  0. 051 Rods
                                           14
       63 "Weighted" A/F Ratio
      075 Jets,  0.038 Rods

      .5 "Weighted" A/F Ratio
      073 Jets,  0. 038 Rods
                                            1972 Standard Engine
                                                  "Weighted" A/F Ratio
                                                  Jets, 0. 038 Rods
2300


1200
              0   10    20    30    40    50   60    70    80    90

                         Power, Percent Maximum at Given rpm
                              ...i	i
                              100   C.T.
        FIGURE 1-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                         ENGINE 2-3, 23-MODE TEST

-------
    8 r-
o
i-H
X
IH

-------
                  APPENDIX J




                   ENGINE 2-3




EFFECT OF EXHAUST MANIFOLD AIR INJECTION




                 ON EMISSIONS




           (23 MODE MASS RESULTS)

-------
                 ENGINE 2-3




EFFECT OF EXHAUST MANIFOLD AIR INJECTION




               TABULAR DATA

-------
b-3

MODE
1
3
3
4-
5
b
7
8
q
in
11
13
13
14
15
lb
17
18
11
30
31
33
33
3-73

RUN 3
DYNA
SPEED LOAD
bOO
1300
1300
1300
1300
ipon
1300
1300
1300
1300
bOO
1300
3300
3300
3300
3300
3300
3300
3300
3300
3300
hno
3300
o.n
5.0
30.0
4b.n
b4.0
138.0
H3.0
3 1 o . n
? 3 b . 0
35b.o
0.0
0.0
3b3.0
341.0
315.0
117.0
131.0
fab.O
47.0
31.0
5.0
o.n
0.0
PROJECT 11-3877-01 CONTROL TECHNOLOGY
ENG. 3-3, 1173 VERSION, 35 BTDC W/AIR INJECTION
MAN. FUEL
HP
0
I
b
11
15
3q
4
R
b.R
1.1
13.7
14. b
11.8
30.1
14.8
8.1
b.3
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
.bl.3 LB/BHP HR

-------
b-30-72
    PROJECT 11-2877-01  CONTROL TECHNOLOGY
1    bNU. 2-3, 1972 VERSION,  TIMING Ib BTOC  rt/AIR  INJECTION

MODE
1
2
3
4
5
b
7
H
q
in
1.1
l?
13
1*
15
Ib
1?
18
1^
20
21
52
23

MODE
1
3
3
4
5
b
7
8
q
10
11
ie
13
i*
15
Ifa '
17
18
11
20
21
25
23
CYCLF.





vSPFED
bOO
1200
1200
ipno
1200
1200
1?00
l?no
1200
1200
bOO
1?00
2300
2300
8300
230M
2100
2300
2300
2300
2300
bnn
2300
C
ALDb.
n.n
0.0
n.o
n.o
0.0
0.0
n.o
0.0
n.O
0.0
0.0
0.0
0.0
0.0
0.0
o.n
O.Ci
0.0
0 . 0
n.o
0.0
0.0
0.0
OYixA,
LOAD
0.0
b.O
eo.n
45.0
b3.0
ldb.0
189.0
2 0 7 . 0
232.0
252.0
0.0
n.O
2 b 0 . 0
239.0
213.0
195. n
130.0
b5.0
47.0
21.0
5.0
0.0
0.0
»
HP
0
1
5
10
14
?S
43
4?
53
58
0
0
114
105
93
85
57
28
21
S
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
1 9 . n 3.0 1 b . 0
20.8 5.9 lb.0
19.1 7.4 lb.3
18.1 8.b lb.1
lb.5 9.9 lfa.2
10.5 14. S Ifa. 5
5.5 20.8 15.4
3.8 22.2 15.3
1.8 24.1 15.2
.2 31.9 15. q
19.5 2.9 14.7
23.5 2.7 lb.5
.4 fa3.2 12.7
2.P 4q.2 14.^
4.8 H5.0 14. H
b.l H2.2 14. t
10.5 30.1 lb.3
lb.0 19.5 lb.4
17.9 lb.1 lb.5
19. b 13.4 Ib.h
21.2 11.0 1 b . b
19.n 2.8 lb.3
25.2 2.9 20. b
ALCULATED GRAM/HR wT. wT.
HC
85.3
b?.q
25. b
58. b
7>.H
111.3
Ib2.9
Ibl.fa
185.8
349.2
42.2
544.0
b25.8
339. fa
304. q
288.5
105.4
59. fa
3b.5
18.4
ie.fa
42.0
b52.9
COMPOSITE








CO
123
131
87
71
b5
inn
451
933
1040
9502
282
8?
2 0 n 3 b
5b9b
5h25
5101
3b9
241
198
13R
113
102
94
MC
CO
NO?
ALDE
ast-c
N02 FAC. HP
1.2 .070 0.0
3.9 .ObO .1
13.2 .ObO .3
81.0 .050 .5
18b.7 .030 .4
542.3 .ObQ 1.7
b b 7 . 4 n . 0 0 0 0.0
73t.d .010 1.9
781.4 0.000 n.O
4 It. 3 0.000 n.O
1.5 .070 0.0
.3 .120 n.n
8b5.1 .025 ?.8
1278.8 .055 5.8
1444.4 .035 3.3
13b9.7 .ObO 5.1
1733.9 .ObO 3.4
7 lb.0 0.000 0.0
331.9 ,0b5 1.3
118.9 0.000 0.0
40.3 0.000 0.0
18.1 .080 0.0
.4 .ObO 0.0
7,q38 GRAM/HHP HR
54.975 GRAM/BHP HR
15.922 GRAM/flHP HR
o.ooo GHAM/BHP H*
.588 L8/8HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
n
0
0
n
n
n
BRAKE
ALOt.
I
0.0
0 . 0
0.0
0 . 0
O.n
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
I
I





DRY
HC
899b
3b?4
1073
21b4
2423
2248
2552
2449
2S2b
4127
501b
b8739
3723
2337
227H
2 3fl 7
1039
89fi
b53
4114
39^
4 8 n 3
4^lbq
SPEC


49.
5.
5.
5.
3.
3.
3.
3.
b.


5.
3.
3.
3.
1.
2.
1.
2.
5.







CONCciNTRATION

•
•
•
•
•
•
•
»
•
5.
1.
»
5.
1.
I.
? .
*
»
•
•
*
•
•
IK1C
Mf.
H
5)
bl)
70
41
87
77
42
50
Ob
R
W
50
2b
27
38
85
09
73
00
75
R
K





CO
b40
350
180
130
100
100
350
7 0 0
700
bbO
bbO
440
S 0 0
f^40
OHO
020
I hii
I «ii
lef.'
Ibn
ISP
5 nil
350
GK«
c:

95.
1H.
fa.
4.
3.
10.
19.
19.
IhS.


17b.
54.
b 0 .
59.
b.
8.
9.
15.
51.































w
fi
K
3
IJ
q
5
5
4
7
fa
0
R
R
n
4
3
7
5
5
fa
0
7
R
R





C02
12.82
13.77
13.77
14.05
13.b3
13.33
14.18
14.31
13.91
11.13
13.48
b.91
1 0 . 7 8
13.18
12.94
'I ^ . 0 b
! ^ . 1 *
i. -i .Hb
i .1 . ) S
1 :<.l*
1 :* . 1 «
1^.48
4 . h4
/ bHP-MK
N02
R
2.9
2.9
7.9
13.0
18.8
15.5
15.5
14.7
7.2
R
R
7.b
12.2
15.5
lb.0
30.b
25.2
lb.1
12.9
18.4
R
R





NO
39
b4
Ibfa
900
1750
3300
3150
3350
3200
1475
54
q
1550
2b50
32SO
3 3 M n
5150
3 r1 S 0
1HJ8
788
^£5
br?b
q































-------
b-?
3-72
RUN 1
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3, 197? VERSION, WITH FACT. AIR INJECTION
OYNA.
MODE
i
a
^
4
5
b
7
8
9
in
11
12
13
If
IS
lb
1?
IB
11
SO
?.l
22
23
SPEED LOAD
b80
1?00
l?no
1200
1200
1200
1200
1200
1?00
1?00
b80
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
b8fl
2300
0
4
IB
fo
55
110
IBS
18n
202
220
0
0
2fb
22b
20?
185
123
b?
ff
20
5
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
,0
.0
.0
HP
0
1
4
9
13
25
38
f 1
f b
50
0
0
108
99
RB
81
5f
27
11
9
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR PATIO ALDE.
18.0- 3.8 22. b
19. b 7.0 ?3.f
IR.b 8.5 22. b
17.5 9.3 22.2
lb.7 10.2 21.5
10.3 If. 9 20.0
5.5 21.0 18.1
f.2 22.3 17.7
2.3 23. fa 17.1
.3 32.2 13.9
18.5 3.5 21. f
22.7 3.3 28.?
.b bb.l 12.1
3.1 f8.3 15.?
f.8 f3.7 15.7
5.9 41.9 15. b
10.5 28.9 18.9
15.5 20.1 20,8
17.2 17.5 21. R
i«.1 If. 8 ?3.2
21.0 10.7 24.9
18. n 3.5 ?2.n
2f.S 3.3 3?. 9
CALCULATED RRAM/HR WT. WT.
MODE
1
?.
3
if
S
b
7
9
q
10
11
IS
13
If
15
Ib
1?
IS
19
20
21
22
?3
CYCLE




ALOE
n.n
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0'. 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
?1.
is.
2b.
fs.
53.
h8.
71.
77.
82.
152.
11.
832.
483.
81.
?7.
Ib.
38.
f?.
39.
30.
If.
17.
If52.
B
3
9
4
9
ft
2
0
3
5
b
s-
9
3
b
b
9
8
7
4
b
7
d
COMPOSITE












CO
37
If
17
18
19
25
112
213
2bO
7950
b8
Sb
?05b5
2f99
13f7
121?-
3f f
2bf
?1?
I9f
llf
59
25
HC
CO
NO?
ALDE
BSFC
N02 FAC. HP
1.5 .070 0.0
5.2 .ObO .1
17. J .ObO .2
50.9 .050 .5
bb.b .030 .f
179.9 .ObO 1.5
371.9 0.000 0.0
flf.8 .OfO l.b
527. f 0.000 0.0
2faf.8 0.000 0.0
2.0 .070 0.0
.2 .120 0.0
531.9 .0?5 2.7
101f.2 .055 S.f
871.5 .035 3.1
b?9.f .ObO f.9
b73.9 .ObO 3.?
3f3.8 0.000 0.0
195.9 .QbS 1.3
80.8 0.000 0.0
18,7 0.000 0.0
1.9 ,ORO 0.0
.1 .ObO 0.0
9.l8b GRAM/RHP HR
33.7b3 GRAM/BHP HR
9.13R GRAM/RHP HR
0.000 GRAM/BHP HR
.bf7 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
i
0,0
v 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
Ib28
f33
K51
1022
115b
1111
999
947
958
159b
723
39097
2bf 3
532
1^5
121
3f3
5f 8
f 91
fl2
259
10^0
58597
SPECTF
HC
R
lfa.73
b.5f
f .97
f .29
2.7H
2.10
1.87
1.7R
3.03
R
R
f .f 9
.82
.3J
.20
.72
1.7fa
2. Ob
3.f7
h.b7
R
R





CO
.100
.020
.020
,020
.020
.020
.070
.130
..ISO
f .120
.210
.130
5.5bO
.810
,f70
.ffo
.150
.150
.130
.130
.100
.180
.050























C02
9. If
8,93
9.25
9.37
9.78
10.78
11.84
12.22
1?.22
11.01
9.bf
2.99
10.55
13. »8
13. 48
13. 48
11. 3b
10.25
9.bf
8.93
8.f8
9.50
.13
NO
25
ff
125
345
430
875
1412
1537
1850
83S
37
3
875
2000
1850
1500
1?87
1188
730
330
100
35
5
JC GKAM/HhP-HR


15
f
2
1
1
3
5
5
158


190
25
IS
15
b
9
11
22
52







CO
R
.b
.1
.0
.5
.0
.0
.2
.b
.2
R
R
.1
.3
.2
.0
,f
,7
.0
.1
.0
R
R





NO?
R
5.7
f .?
S.b
5.3
7.2
9.9
10.1
11. f
5.3
R
R
4.9
10.2
9.9
8.4
12.5
,12.7
10.2
1,2
8,b
R
R



































-------
h-?b-7?
    PROJKCT 11-2877-01  CONTROL TECHNOLOGY
3   ENG. 3-3, 197? VERSION, TIDING  4 ATDC w/AIR INJECTION


DYNA
MODE SPEED LOAD
1
r>
3
^
5
h
7
H
q
1 n
11
15
13
14
15
1>
17
IK
19
?n
21
55
53

M Q |) r
1
2
3
4
5
k
,>
H
q
in
11
15
13
14
15
Ib
17
l«
19
5n
5 ).
55
53
rvci




bon
IPnri
1500
) ?nn
1500
15nn
1500
15nn
15on
1 5 H n
bno
1 5 r j n
5 3 0 n
2 3 o n
530H
5 3no
5300
S3nn
23nn
53011
5300
K n r i
23nn

: ALDE
n.n
n.n
n.n
n.n
n.n
n.n
n.n
n.n
n.n
n.n
n.n
n.n
n.n
n.o
n.n
n.o
n ,• '-'
n.n
n . o
n.n
n.n
n.n
n.n
n.n
3.0
14.0
3 ] . n
43.0
8h.P
i a i . f i
141. n
IbR.n
172. n
n.n
n.n
2ln.o
113.0
172.0
1SB.O
105. n
53. n
38,r.
17.0
4.0
n.n
n.n
CALCULAl
HC
5.1
3.7
7.7
17.3
1.1.3
18.4
38.0
R5.3
5n4.b
53.7
5.1
1 n i . 4
151.1
b. 7
2.8
2. b
5.1
l.b
1.8
b.2
5.0
3. fa
1814.2
F cn^pnsiTF








*
HP
0
1
3
7
10
50
21
35
3b
31
0
n
15
R5
75
bi
4f>
53
17
7
f
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO
lb.5 5.2 21.7
18. R 5.4 22.1
18.3 8.3 22.7
Ib.b 1.2 21.8
lb.2 10.0 21.4
1.8 15.5 11.1
5.5 20.5 17.3
3.4 S2.b 17.3
5.7 25.5 Ib.R
.2 32.5 13.1
17.5 5.3 20. b
20.3 b.4 23.1
.5 b4.7 13.0
3.2 48.0 15.1
4.7 44.4 15.4
b.O 41. b 15.7
1.7 21.7 11.3
15.1 19.3 51.2
17.2 17.2 52.3
11.5 14.0 24.]
51.P in.? 25.5
lb.5 b.O 2 1 . »
53.2 b.2 51.0
ED GRAM/MK HI. W
CO
bP
b8
104
108
Uh
157
555
547
54S
5?lb
51
S?
J Sb44
157b
43n
35b
5 4 n
171
Ibb
145
1J5
5b
514
HC
CO
N05
ALOE
HSFC
N02 FAC.
5. 1 .070 n
7.0 .ObO
l.h .ObO
27.1 .050
35.1 .030
81.1 .ObO 1
255. e o.n on n
287.1 .040 1
3in.b o.ono n
173.2 0.000 0
b.b .070 0
3.0 .150 n
518.5 .055 2
b43.0 .055 4
517.1 .035 ?
450. b .ObO 4
331.5 .ObO 2
154.3 n.nno n
1 5 . b . 0 b 5 .1
30.1 0.000 0
11.7 o.ono 0
b.i .080 n
.5 .obo n
b.b4b GRAM/rtHP
32.118 GRAM/BHP
b.SOh GRAM/BHP
0.000 GRAM/rtHP
.R11 LH/BHP
DRY CONCENTRATION
ALDE.























1.
HP
.0
.0
. ?
.4
.3
.5
. n
.3
.0
.n
.n
.0
.3
.b
.b
.2
.a
.n
.1
.0
.0
.0
.n
HR
HR
HR
HR
HR
0
0
0
0
n
0
0
0
0
0
0
(1
0
0
0
0
0
0
0
0
0
0
0 i
BRAH.E
ALOE.
i
0.0
0.0
0.0
0.0
n.o
rj.n
n.n
0.0
o.n
1
I
o.n
o.n
0.0
0.0
0.0
0.0
o.n
0.0
0.0
I
I





HC
21b
144
lib
418
438
212
513
1041
5351
572
12
3403
72b
45
11
11
50
114
120
8?
ew
135
?b811
SPECIF
HC
K
5.41
5.42
2.44
1.17
.14
1.51
2.b5
5.fa7
1.37
R
R
1.40
.08
.04
.04
.13
.41
.51
.83
2.84
R
R





CO
.130
.130
.130
.130
.130
.100
.150
.150
.310
3.010
.130
.150
5.110
.420
.150
.130
.100
.100
. l n n
. ion
. 1 0 0
. 1 n o
.150
























C02
1.78
1.37
1.37
1.13
10.01
11.01
12.34
12.34
12.51
12.47
10.55
8.54
11.24
14.05
1 4 . (.1 5
13.7?
11 .24
10.55
1.37
8.75
ft. 43
1. 78
1.15
NO
fa5
81
73
204
245
425
115
10b3
1075
555
88
28
505
1287
lion
1000
840
bbO
350
130
b2
75
2
1C GKAM/RHP-HK
CO

18.
35.
15.
11.
b.
7.
7.
15.
145.


202.
15.
5.
5.
5.
7.
10.
11.
b5.







H
b
b
3
B
5
b
7
1
4
R
R
7
1
7
2
5
4
0
5
5
R
R





M05
K
10.2
3.0
3.1
3.7
4.5
7.b
8.1
8.b
4.4
R
R
3.2
7.b
b.i
b.5
7.5
b.b
5.7
4.2
fa. 7
R
R



































-------
                 ENGINE 2-3




EFFECT OF EXHAUST MANIFOLD AIR INJECTION




             GRAPHED RESULTS

-------
  o
  o
  X
   o
   0)
   PH
   01
   g
  O
               LEGEND
          		1200 rpm
          	2300 rpm
           O 25° BTDC, 6-23-72
           O 16° BTDC, 6-30-72

           0 4° ATDC,  6-26-72
           0 4° BTDC Standard
                                                  Approx.  832-2, 426
                                                                 2300

                                                                 1200
                                                                 2300
                                                                   1200
                                                        .Q-—-O
                                                                       0 1200
                                                                          1200
           
-------
                                            Approx.  9502-22, 054
               LEGEND
                          1200 rpm
          	2300 rpm
          O 25° BTDC, 6-23-72
          O 16° BTDC, 6-30-72
          0 4° ATDC,  6-26-72
          0 4° BTDC Standard
                       20    30    40   50    60   70   80    90
                          Power, Percent Maximum at Given RPM
100  C.T,
FIGURE J-2.  EFFECT OF POWER ON CO EMISSION RATE - AIR INJECTION
                      ENGINE 2-3,  23 MODE TEST

-------
         LEGEND
1734
                    1200
                    2300 rpm
       O 25° BTDC, 6-23-72

       O 16° BTDC, 6-30-72
       0 4" ATDC, 6-26-72
       0 4° BTDC Standard
                   20    30    40   50    60   70   80    90
                      Power,  Percent Maximum at Given RPM
                         100  C.T.
FIGURE J-3.  EFFECT OF POWER ON NOX (AS NO2) EMISSION RATE -
                         AIR INJECTION
                   ENGINE 2-3,  23 MODE TEST

-------
            LEGEND
   25
ffi
£
"a
o
>
0
• i-H
ti

•S
   20 -
   15
                    1200 rpm
                    2300 rpm
         O 25° BTDC, 6-23-72,

         O 16° BTDC, 6-30-72,

         0 4» ATDC, 6-26-72,
         0 4° BTDC Standard
                                                                2300
                                                                1200
                                                                1200
                                                                      ©
                                                                      0
               10    20    30   40    50    60   70    80   90   100
                        Power, Percent Maximum at Given RPM
                                                                     C.T.
    FIGURE J-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                     ENGINE 2-3,  23 MODE TEST

-------
   7 f
   5  -
o
<—<
X

I
<0
CO
    1  H
              LEGEND
                         1200 rpm
                         2300 rpm
          O 25° BTDC, 6-23-72
          O 16° BTDC, 6-30-72


          0  4° ATDC, 6-26-72

          0 4° BTDC Standard
          T)
                                                                 2300

                                                                 1200
           0     10    20    30   40    50    60   70    80   90   100  C.T.
                        Power, Percent Maximum at Given RPM

      FIGURE J-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER
                      ENGINE 2-3,  23 MODE TEST

-------
              APPENDIX K




               ENGINE 2-3




EFFECT OF FACTORY EGR ON EMISSIONS




        (23 MODE MASS RESULTS)

-------
               ENGINE 2-3




EFFECT OF FACTORY EGR ON EMISSIONS




             TABULAR DATA

-------
b-?.7-7? RUN 3
PROJECT 11-2877-01   CONTROL TECHNOLOGY
ENG. 2-3, iq72  VfcHSlON,  TIMING 25 RTI'C

MODE
i
2
3
4
5
b
7
8
q
10
11
12
13
14
1.5
Ib
1 7
18
19
20
21
22
23

SPEE
bnn
i?nn
1200
lr>on
I2no
l?nn
1?00
1200
1200
i?nn
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
DYNA.
0 LOAD
0.0
5.0
20.0
4b.O
b4.0
128.0
192.0
210.0
23h.O
25b.n
n.n
n.o
2b4.0
243.0
21h.O
198.0
132.0
b b . IJ
48.0
21.0
5.0
0.0
n.o
I
HP
0
1
5
U
15
?9
44
48
54
53
0
0
lib
inb
05
B?
58
29
21
q
2
0
0
MAN. FUEL
A/r
VAC. LR/HR RATIO
20. q 5.5
18.8 7 . [1
14.0 8.7
11.3 10.5
10.0 11.5
b . b J 4 . f
3.7 20.5
3.0 22.0
1.4 25.4
.3 31.8
20. q s.5
21.0 b . 0
.b b3.S
2.5 5n.3
4.0 44.0
4.8 42.2
8.1 3 n . n
13.1 20.4
14.2 18.4
lb.4 15.0
17. b 12.7
20.8 5 . b
23.5 5.8
CALCULATED C,KAM/HK ^T.
MODE
i
?
^
4
t,
b
7
H
q
10
ll
12
1 3
14
15
Ib
17
18
iq
20
21
22
23
CYCLfc




ALDF-
n.n
0 . r/
n.n
n.n
n.o
n.o
o.n
o.o
o.n
o.n
n.o
o.n
0 . 0
o.o
n.n
o.o
o.o
O.o
n.O
n.o
0 . 0
n.o
n.n
HC
44.4
142. 1
842.3
4 .11 . 1
299. f
1P1.S
ISfa.l
Ib5.3
ISfa. 8
350. b
44.2
41.8
2 4 1) . H
Ibl.S
I 4 2 . 4
140. b
bq.4
31.0
28.7
5b.5
140.3
7.S
b43.9
COMPaSITE








CO
]bl
224
?b9
?33
354
?09
524
5b3
1434
11 124
34 1
23b
2 1 1 b 5
8b87
5P3b
487h
407
245
?2b
248
270
qq
?qn
HC
CO
N02
ALOE
HSFC
M02 FAC.
13.? .070
10.2 . 0 b (1
1 n . o .ObO
37.7 .050
51.1 .030
b 5 . b .ObO
l 7 5 b . 3 n . n n n
248q.9 .040
2508.7 0 . 0 n n
I07b.7 o.onn
13.1 ,n70
lb.4 ,i?n
808.7 .He1 5
804. q .055
381.3 .035
8 b 7 . b . n b 0
4 ? q . 7 . n b o
q?.5 o.ooo
b 1 . 0 . 0 b 5
22.2 0.000
11.5 o.nnn
5.2 .080
.7 .ObO
42.7
47.?
45.8
47. q
48.2
45. n
42. q
42. q
40. b
33. ^
44.2
48. 1
12. b
13.8
14.3
14.4
15.8
lb.4
lb.4
lb.3
Ib.b
15.3
2(1.2
|Ai

0




1
fl
1
fl
0
n
n
?
5
3
5
^
0
1
n
n
n
n
DKY COf«CfcN|KA TICiiM
ALOE.























r.
HP
.0
.1
.3
.5
.4
.8
.0
. 9
.n
.0
.0
.n
. q
. q
.3
.2
.5
.0
.4
.n
.0
.0
.0
0
n
0
n
u
0
0
n
0
0
n
n
0
n
0
n
u
0
n
n
0
n
11
HKAKF
ALOF .
i
0.0
0 . n
0.0
0 . 0
0 . 0
o.n
0.0
ll. ll
o . o
I
I
o.o
0.0
0 . n
0.0
0.0
n . o
0 . 0
O.n
n.n
I
I
HC
834
l q ? n
9*98
3571
2383
H?r>
78?
771
Hlb
143?
812
b**
1 4 n q
1 1 4^
1 1 n K
113'-.
724
*bl!
4h}
1150
SH^q
1+54
H b i.1 5 i
SPfCIF
ht.
t-
1 V 4 . 3 H
1*4. 33
jq.u
?n . 4q
4. 1 b
3. bb
3.44
3 . 4b
5. sq
k
R
? . rift
1.^2
1.51
1 .be1
1.20
i.n?
1.3b
b.lf
b4. (Ib
K
k
CO
.150
.150
.150
.100
.100
. .:i 7 o
.130
.13U
.HIM
? . ? 5 f J
. 3 1 0
. J H U
b . 1 3 n
.-}. ilM!
1. . H 4 0
1 . q 4 f)
. •? 10
. 1 b U
. i 8f|
.250
. '-> 1 0
. 2KII
. 5 ft 0
C02
4.45
3.95
3.35
3.b8
3.81
4.3b
4.45
4.45
\i t u,
3.'5fi
U> 1 Q
' * J- *
3.^5
111 . bb
I * . i .1 b
13.48
1^.33
.n . 4 1
1 J (+ W
1 - *
1. 3 . ) «
13.4 X
12.71
14. JH
?il i
« T r?
NO
74
41
34
99
122
134
2b5fl
3500
3 3 0 0
13db
77
Ik
1425
1 725
?3MO
2100
IdbO
4 35
£H5
IJb
80
90
q
1C. \3 K A M / r> h P - H K
CO
K
iqb.2
58.8
22.1
J. ^ . 4
•M
11. q
11.7
2b.b
1 HO. 2
R
R
183.1
81. b
53.2
5b.2
7.0
H.S
1 ll . 8
27.0
123.5
R
R
M]?
K
«. q
2.2
3. fa
3.5
2.?
4 o.n
51. q
4b.5
18.4
K
P
7.0
7.^
in. 4
in.o
7.4
3.4
2. q
2.4
5.2
R
K
























b.92U GRAM/hHP H*
b2.334 GRAM/BHP
10.82? GRAC
'./BMP
O.onn GKAM/BriP
.b3q Lf
VRHP
HR
HK
HR.
HH





















-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
h-28-?2 RUN I   ENG. 2-3, Ib BTDC W/EGH, OIST. VAC. FOR SIGNAL

MODE
1
a
3
t
5
b
7
8
9
in
11
15
13
I1*
15
Ib
17
18
1s*
20
21
a?
as

MODE
i
2
3
t
5
h
7
8
q
in
11
1?
13
It
IS
Ib
17
18
iq
en
ai
22
as
CYCLE





DYNA
SPEED LOAD
bnn
IPOO
laoo
1200
1200
iano
1200
i?oo
1200
l?no
boo
i?no
asno
2300
2300
«?ano
2300
23oo
230H
3300
a 3 o o
bOO
ason

ALDE
0 . (I
n.o
0.0
0.0
n . o
o.n
0.0
0.0
0.0
0.0
0.0
O.D
n.o
o.n
0 . u
0.0
0.0
0.0
o.n
0.0
n.o
0.0
0.0
0.0
5.0
20.0
45.0
b3.0
125.0
188.0
205.0
230.0
?50.0
0.0
0.0
2b4.0
R43.0
21b.O
198.0
132.0
fab.O
48.0
ai .n
5.0
n.o
0.0
CALCULAT
HC
9b.l
1 0 2 b . fa
538.3
28* .b
121.4
94.8
143.2
151.0
173.1
327.7
be. 9
ini4.s
b33.3
327.2
277.7
252.1
188.4
80.7
31.0
37.0
98.9
57. b
7b7.3
COMPOSITE








•
HP
0
1
5
JO
14
29
43
47
53
57
0
0
lib
lOb
95
R7
58
21
21
q
2
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO
18.5 4.9 15.2
15.0 8.2 15.9
13.4 9.0 15.7
10.1 11.0 15. R
9.2 12. fa 15.7
b.O Ib.S 15.)
3.7 20.4 15.0
3.1 21.7 15.1
1.8 23.8 14.9
.3 31.8 12.7
18.5 5.0 14.2
23.1 5.1 15.1
.5 fa3.0 12.5
2.9 48.2 J4.P
4.2 43.1 14.3
4.9 41.3 14.3
8.1 29.8 14.3
13.0 20.0 15.5
14. b 15.3 Ib.?
lb.5 14.5 lb.2
18.0 lfa.5 lb.2
IB. 5 4.8 15.7
24.7 5.0 18.1
ED GRAM/HK KT. w
CO
241
2b3
?57
aoi
170
?8b
554
524
R51
9418
548
223
20372
54?3
5123
4743
3543
704
182
203
?78
124
IbO
HC
cn
NO?
ALDE
BSFC
N02 FAC.
2.1 .070 n
1.8 .OfaO
4.b .ObO
12.4 .050
21.8 .030
b 3 . 1 .ObO 1
4?9.3 0.000 n
541.1 .040 1
711.1 0.000 0
341.2 0.000 0
3.4 .070 0
1.2 .120 0
750.9 .025 ?
lObb.S .055 5
724.J ,03b 3
542.5 .ObO 5
382.0 .OfaO 3
172. fa 0.000 0
45,7 .Ob5 1
23.0 0.000 0
13.8 0.000 , 0
l.b .ORO 0
.b .ObO 0
14.054 GWAM/BHP
b2.4b7 GRAM/BHP
7.008 GRAM/BHP
0.000 GRAM/BfiP
.b23 LB/rtnP
DRY CONCENTRATION
ALDE.























T.
HP
.1)
.1
.3
.5
.4
.7
.0
.9
.n
.0
.0
.0
.9
.9
.3
.2
.5
.0
.4
.0
.0
.0
.0
MR
HR
H»
M«
HR
n
0
0
0
0
0
0
0
0
o
0
0
0
0
0
n
n
n
0
0
0
u
0
BRAKE
ALOE.
I
0.0
0 . 0
0.0
0.0
o.n
o.n
0.0
0. 0
0.0
I
I
0.0
0.0
o.n
0.0
o.n
0.0
o.n
0.0
0 . 0
1
I





HC
b!97
37057
18b53
?qqb
3034
1873
2299
2270
2384
38b5
4334
bl?0?
3780
2342
2212
2 U 8 3
a 170
1273
b20
774
1799
3fa54
40805
SPECIF
HC
R
898. fab
117.80
27.b8
8.44
3.32
3.33
3.22
3.29
5.74
«
R
5.48
3.07
2.94
2.91
3.2b
2.79
1.48
4.02
45.18
R
R





CO
.770
.470
.440
.280
.210
.280
.440
.390
.580
5.500
1.870
,b?0
b . 0 2 0
1.9*0
2.020
1 . 9 1 Q
2 . n 2 0
.550
,1«0
.210
.250
.390
.420
























C02
12.94
9.25
11.84
12.94
13.77
14.31
14.18
14.18
14.05
11.13
13.33
7.23
1 0 . b b
1 3 . 4 8
13.33
13.33
13.33
1 3 . b 3
1 3 . b 3
13.48
13.18
1 3 . 0 b
7.5b
NO
40
19
48
105
Ifa4
375
2075
2450
2950
1212
71
23
1350
2300
1737
1350
1325
820
27b
145
75
31
9
ic GKAM/BHP-HR


230
5fa
19
11
10
12
11
Ib
Ib4


17b
51
54
54
bl
24
8
22
12b







cn
R
.2
.1
.fa
.8
.0
.9
.2
.2
.9
R
R
.2
.4
.2
.7
.3
.4
.7
.0
.8
R
R





NO?
H
1.5
1.0
1.2
1.5
2.2
10.0
11. b
13.5
b.O
R
R
b.5
10.0
7.7
b.3
b.b
b.O
2.2
2.5
b.3
R
R



































-------
b-?7-72 RUM ?
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENfi. 2-3, 4 BTDC W/EGR, t>IST. VAL. FOR SIGNAL

MOPE
1
P
?
4
t;
K
7
8
q
in
11
.1?
13
it
m
ih
17
1«
iq
2n
2.1
i?P
?3

MOi)E
1
?
}
4
t,
h
7
M
q
10
1.1
1?
13
l1*
IB
lb
.17
.!«
19
20
?.l
??
?3
rvCLE





SPEED
bOO
l?on
IPno
1 ? n o
IPO o
l?no
l?nn
12nn
l?oo
l?nn
bOO
IP.rm
?3nn
?3nn
r>^nn
2 3 nil
a^no
g 3 (.1 0
2 3 n o
? 3 M n
? 3 n o
bOO
23nn
C
ALDE.
n.n
0.0
n.o
n.n
o. n
n . n
n.o
O.n
n.n
".n
n.n
n.o
n.n
.n.n
O.n
n.o
fi.n
n.n
n.o
0.0
n.D
o.n
n.o
DYNA,
LOAP
0.0
4.0
17.0
39.0
54.0
1 0 P . 0
.1 b?,0
177.0
1S1.0
Plb.O
n.o
o.n
P'M.n
?21.0
isq.n
18?. n
l??.0
bl.O
ft. 0
1P.O
?.n
n.o
0.0
•
HP
n
1
t
q
1?
25
37
to
t5
tq
0
0
lob
97
R?
HO
53
?7
19
R
e
n
0
MAM. F
DEL
A/F
DRV CONCENTRATION
VAC. LB/HR RATIO ALOE.
13.9
.13.4
9.9
7.7
b.9
5.2
3.b
2.7
1.8
.3
14.2
14.1
.5
2.8
3.8
4.7
7.S
.11.5
13.8
15.2
Ib.h
13.9
20.0
AU.ULA.TF.P KH4M/HH
HC
3ft. 3
^tO.7
131.0
i?7.5
IS.f
PO.l
31.1
3S.t
53. 8
inq.3
3(11.3
3 1 1 . 2
?no.?
us.e
1 o <* . 5
RS.7
37.2
8.0
ID.t
It. 2
3=1. b
291.3
7?3.b
COMPOSI fF








CO
3 1 S
?7f
?ts
.188
20?
199
224
bbl
787
87b3
373
35?
20J1^
51b9
snss
4241
1027
19?
187
15b
194
330
411
HC
CO
N02
ALOE
BSFC
N02
2.1
?.l
4.4
12.0
b.5
bl.7
207.4
393.8
443.9
207.3
2.3
2.2
477.7
783.0
573.9
40b.b
178. h
59. b
12.8
17.7
9.9
2.3
.5
8.417
b2.101
5.412
n.nno
.75.3
8.3
8.b
11.1
13.7
15.0
17.2
19. b
21.3
22.7
29.7
8.2
8.3
bl.7
44.3
42.4
39.1
31.5
21.5
18.4
15.5
13. b
B.2
8.7
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
o.nno
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.OhO
0.000
.Oh5
0.000
o.ooo
.080
.ObO
lb.8
17.5
17.5
15.3
15.3
15.4
15.3
15.?
15.1
12. P
lb.2
lb.4
12. b
14.?
14.?.
14.3
15.1
lb.3
lb.3
Jb.?
lb.1
lb.4
18.9
WT.
HP
0.0
.1
.2
.t
,4
1.5
0.0
1 .b
0.0
n.o
n.n
n.o
?.7
5.3
3.1
•K8
3.2
o.o
1.3
0.0
0.0
0.0
o.o
0
0
0
0
0
0
0
n
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
n.o
o.n
o.n
0.0
0.0
0.0
0.0
I
I
HC
11990
11070
3348
bai
323
3b8
504
589
7bO
1348
10923
11007
1213
892
879
7b9
380
109
Ib9
27b
8b5
10348
20bl3
SPFCTF
HC
R
372.73
33.73
3.08
1.24
.82
.84
.97
1.18
2.22
R
R
1.89
1.19
l.?b
1.13
.70
.30
.54
1.71
18.09
K
R
CO
.550
.440
.310
.210
.210
.180
.180
.490
.550
5.350
.b70
.blO
b.020
1.980
?. . 0 ? 0
1.800
.520
.130
.150
.150
.210
.580
.580
coa
11.3B
11.13
12.22
13.77
14.05
14.05
14.18
13.91
13.91
11.13
11.72
11.48
10.78
13. 4R
13.33
13.33
14.05
13.18
13.33
13.48
13.18
11. bO
8.bO
NO
21
20
34
82
41
340
1012
1775
1887
770
25
23
870
1825
1387
1050
550
245
b3
104
b5
25
4
1C GRAM/RHP-HR
CO
R
299.3
fa3.1
21.1
lfa.4
8.1
b.l
lfa.4
17.3
177. b
R
R
189.0
53.4
58.3
53.2
19.2
7.2
^.7
18.7
88.7
R
R
N02
R
2.3
l.l
1.4
.5
2.5
5.b
9.7
9.8
4.2
R
R
* .5
8.1
b.b
5.1
3.3
2.2
.7
2.1
4.5
R
R
























6PAM/HHP HR
GRAM/8HP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
- r> 9 - 7 ?
CT 11-2877-01  CONTROL TECHNOLOGY
9-3,  1972 VFRSION,   TIMING   4  ATDC  */EGH
0 Y N A .
M0t'i£ i>PE>0 LOAD HP
1
f.
3
4
q
h
7
K
q
K
1 1
I?
13
If
15
I1*
17
IK
19
?n
21
cV
?'•»

innp.
i
2
3
f
5
H
?
a
9
.1 0
1 1
12
13
14
15
1^
17
1H
.1 9
 r>*< . fci
n.n b4 7 . 1
».FI 33.?
n.n 14.5
rs.M 30.4
O.I' 73.7
n.n 7H.7
n.n 77.4
".0 1^1.3
o . n 2 n o . FI
n.n ?4..i
n . n K ^ n . 7
n.n 4 H 8 . 9
n.o i. s R . b
"._" 133.1
n.n l?2.1
n.o 9 b . «
".(1 2-1
n . 0 2.1
n . n 4.4
n.n 29. o
n.n 19. o
n.n f .3 o . 5
rnNiPusriF




n n
r« 1
0 3
F.» 7
0 9
0 is
(i 2B
n in
0 34
n 3 7
n n
n n
n 9n
n m
n 74
n bj<
n 45
P 23
F' lb
n 7
'.1 2
n p
n fi
1*1 AN. FUFt
A/F
VAC. LH/HR RATIO
lfa.5
13.0
7.t
fc. f
5.9
4 . b
3.0
2.7
l.R
.2
lb.7
22. n
.5
2. R
3.9
4.4
b. 5
9. 9
I 1 .fl
14.4
lb.0
l.b.5
2f.2
T60 r,kAM/HK
CO
2Mb
299
1 19
1 44
249
287
449
525
I n 5 R
8745
424
200
209-bb
4997
517b
492b
3 1 "H 7
119
I0b
119
123
139
1 FJ H
HC
CO
NO 2
ALOE
BSFC
Nfia
3. 1
3.n
10.1
15.3
19.3
52.9
151.9
99. b
2h4.2
131.9
2.5
.7
2H3. R
f 2 7 . H
257.8
19b . I
101.7
4b.2
31.3
17.7
10.5
2.7
.9
4.7
q.H
IH.2
.15.5
lb.3
18.7
21 .2
22.1
24.0
30.3
H.I
4.4
bf.l
47.1
44.4
f 3.0
3f . 7
25.2
22.3
17.7
If . J
f .0
*.l
WT.
FAC.
.070
.Obn
.ObO
.050
.osn
.nbn
(i . 0 n n
.1.1411
0 . o n o
n . n n o
.070
.120
.025
.055
.035
.ObO
.OKO
0.000
,0b5
0.000
n.noo
.080
.ObO
15.3
13.1
15.8
15.4
15.2
15.3
15.1.
15.1
If .9
12. R
If .5
15.5
12.5
If .f
1H.3
If .3
If .4
lb.3
Ib.f
lb.3
lb.3
15.3
18.0
wr.
HP
n.n
. n
. 2
.3
.3
1 . 1
n.o
1 .2
n.n
n.n
n.n
n.n
2.3
f .h
2.b
•* . I
2.7
n.n
.' . i
n.o
n.n
n.n
n.n
DRY CONCFNTRATION
ALOE.
0
n i
0
n
0
n
0
n
n
n
n
0 '
0
n
0
n
n
0
0
0
n
n
n c
WHAKF
ALOE.
I
0.0
n.n
o.n
o.n
o.n
n.n
o.n
o.n
0.0
I
I
0.0
0.0
O.n
o.n
IJ.O
o.o
0.0
n.n
0.0
I
I
HC
1984

735
3P7
b2b
129b
1207
llbl
2280
2518
2491

2>f 3
1154
1029
971
948
25
2ti
7f
b] H
1515
^B25b
SPFCIF
HC
R
944.11
11.19
2.19
3.30
3.9R
2.75
2.55
4.74
5.40
P
P
5.20
1.92
l.%0
l.Rfi
2.15
.09
.13
,b3
lb.54
R
R
CO
.700
.470
.130
.150
.250
.250
.350
. 390
.740
5. f 50
1 . 3 n u
. 7 n o
b . n 7 1.1
1 . 8nn
1 . 9 w n
1 . 9 f n
1.550
.070
.070
.inn
.130
.550
.3511
























C02
13.77
11. bO
If. OS
If .bb
If ,bb
If .53
If ,hb
If .53
If . f 2
.11. bO
13.91
H.75
in.bb
I 3 . b 3
1 3 . ^R
I?.1*"
13.77
1 3 . 4 H
13. f*
1 3 . f «
13.48
13.77
9.03
NO
bS
28
b7
98
117
280
720
f SO
1125
500
b5
15
bOO
938
bUO
4 70
3DO
Ib5
12b
90
b8
b5
18
TC 1-.KAH/HHP-HR
CO

f 35.
*U.
21.
2b.
1.5.
lh.
17.
31.
23b.


232.
bO.
b9.
72.
711.
5.
b.
17.
70.


»
8
n
7
b
5
1
3
1
3
R
R
f
f
9
b
9
2
5
0
1
R
R
N02
H
f . 3
3.f
2.3
2.1
2.9
5.5
3.3
7.8
3.b
R
R
3.1
5.2
3.5
2.9
2.3
2.0
1.9
2.5
b.O
R
R
























9.7b3 GRAM/BHP HR
HO. 339 GRAM/&HP HR
3.413
o . n n o
.89?
GRAM/OHP HR
GRAM/BHP HR
LB
/RtHP HR







-------
               ENGINE 2-3




EFFECT OF FACTORY EGR ON EMISSIONS




           GRAPHED RESULTS

-------
  **f V7
8r
6_
 i
 i
sL
i r
O
1— 1
X

i
:l I!

N 41-
* \

1
1
O j ': I
hrl ' I '
^ j If!
h •

& : S^f,
e>- i1;!
a
'
h t, !
0

j 1
i r
1 Jill

2h






. -\V
-J\»
! \»
*
i. ih
                0
                9
                    \
                                   LEGEND
                                1200 rpm
                                2300 rpm
                             O 25° BTDC, 6-27-72
                             O 16° BTDC, 6-28-72
                             O 4° BTDC, 6-27-72 Standard
                             0 4° ATDC, 6-29-72
                                                      0 1014'
                                                        (1200)
                                                      O- 2300

                                                      O2300
                                                                   ,2300
                                                                   '1200
                                                                   2300
                                                                  O1200
                                                                    1200
10    20   30   40    50    60    70    80   90
        Power,  Percent Maximum at Given RPM
                                                            100  C.T.
  FIGURE K-l. EFFECT OF POWER ON HC EMISSION RATE - FACTORY EGR
                        ENGINE 2-3, 23 MODE TEST

-------
16
          LEGEND
14
12
 10
                     1200 rpm
                     2300 rpm
O  25° BTDC, 6-27-72
O  16" BTDC, 6-28-72
O  4" BTDC, 6-27-72 Standard
0  4° ATDC, 6-29-72
                                                   20,96*
                                                   20, 82f
                                                             021,165
                                                              >20,372
                                                              ^20,113
             10
                                  	i	
                                   60
                                                                   | 1200
                                                                   f 2300
20   30   40    50    60    70    80   90
   Power, Percent Maximum at Given RPM
100
C.T.
  FIGURE K-2.  EFFECT OF POWER ON CO EMISSION RATE - FACTORY EGR
                       ENGINE 2-3, 23 MODE TEST

-------
                                                2490
I6r
14*-
                                          1756
                                                   ^2509
                                                   M850
                                                   \
             LEGEND
                      1200 rpm
                      2300 rpm
15-   Q 25° BTDC, 6-27-72
O  16°  BTDC,  6-28-72
O  4° BTDC, 6-27-72 Standard
0  4° ATDC, 6-29-72
                                                                      1200
                                                                      2300
             10    20
                 30   40
50
70
80   90   100  C.T.
                      Power, Percent Maximum at Given RPM
  FIGURE K-3.  EFFECT OF POWER ON NOX (AS NOz) EMISSION RATE - FACTORY
                          ENGINE 2-3,  23 MODE TEST

-------
            LEGEND
 26


 24


 22
 20 -
60
a
JJ16
•312
ri
nt
4-1
ti
   8


   6


   4 -


   2 -

   0
                     1200 rpiin  ;
                     2300
O   256 BTDC,  6-27-72
O   16C BTDC,  6-28-72        ;
O   4° BTDC, 6-27-72 Standard !
0   4C ATDC, 6-29-72
^2300
0^2300
©2300
®1200
61200

©1200
<3>2300
                                                                    ^1200
         )     10    20    30   40   50    60   70    80   90   100   C.T.
                       Power, Percent Maximum at Given RPM

          FIGURE K-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                                 FACTORY EGR
                           ENGINE 2-3,  23 MODE TEST

-------
        f.r
          L
o 5
i— i
X
O
ffi
DH
T)
e
 O 3r
•i-*
4-1
 a  ;
 to   i
 c   ;
 o
O   ,
-< 2 ?"
 o   t
          LEGEND   ,
	--	1200 rpm
  '1  "''•"  .      2300 irpm
 O   25°- BTDC, 6-27-72
 O.  16! BTDC, 6-28-72
 O   4" BTDC, 6-27-72 <
 ,0   4° ATDC, 6-29-72
                                                                2300

                                                                1200
         0    10   20    30    40   50    60    70    80    90
                       Power, Percent Maximum at Given RPM
                                                          100   C.T.
    FIGURE K-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER - FACTORY EG!
                            ENGINE 2-3, 23 MODE TEST

-------
                 APPENDIX L




                  ENGINE 2-3




EFFECT OF LABORATORY EGR ON EMISSIONS




           (23 MODE MASS RESULTS)

-------
                 ENGINE 2-3




EFFECT OF LABORATORY EGR ON EMISSIONS




               TABULAR DATA

-------
7-18-72 RUN-1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
EN6. 2-3  1172 VERSION W/EGR MANIFOLD -NO E6R

MODE
1
2
3
4
5
b
7
R
q
10
11
12
13
1*
15
lb
17
18
IS
20
21
22
23

DYNA
SPEED LOAD
bOQ
1200
1300
1200
1200
1200
1?00
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
4.0
18.0
40.0
5b.O
112.0
IbS.O
184.0
20b.O
224.0
0.0
0.0
244.0
224.0
200.0
.183.0
122.0
bl.O
44.0
20.0
5.0
0.0
0.0
•
HP
0
1
4
q
13
2b
38
42
47
51
0
0
107
qs
88
80
53
27
iq
q
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.5 3.b lb.7
iq.4 7.3 Ib.b
18.4 8.1 Ib.b
17.2 1.2 lb.5
lb.4 10.2 lb.5
10.5 14.1 lb.5
4.5 21.4 lb.2
3.5 22.4 lb.0
2.0 24.5 15.7
.b 2fa.2 15.3
17.5 3.b 15.7
22.5 3.8 15. q
.8 bq.O 12.2
3.3 48. q 14. h
5.0 42.8 15.2
5.8 41.2 15.7
11. q 30.1 lb.2
Ib.b iq.b lb.7
18.0 Ib.q lb.8
iq.s 14. b ib.q
20.3 12.5 17.2
17.7 3,b 17.1
24.7 3.b 18.3
CALCULATED SRAM/HR WT. WT.
MODE
1
2
3
4
q
b
7
B
q
10
11
12
13
It
15
lb
17
18
IS
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
41.5
17.4
21.4
42.3
51.*
b4.4
85.2
81.8
lOb.b
142.0
28.0
738.1
733.8
238. 1
13b,4
qs.o
fib. 7
38.4
23.4
15.7
8.0
3.5
542. b
COMPOSITE








CO
103
73
81
q2
102
122
182
2iq
551
125b
147
113
2b241
5171
2bbl
13b7
354
iqs
170
isq
112
108
q5
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
l.fa .070 0.0
5.4 .ObO .1
10. b .ObO .2
35.2 .050 .5
54. b .030 .4
173.8 .ObO 1.5
35b.2 0.000 0.0
420.3 .040 1.7
420.5 0.000 0.0
45q.2 0.000 0.0
i.q .070 o.o
.5 .120 O.o
37b.O .025 2.7
725. 1 .055 5.4
725.3 .035 3.1
b75.0 .ObO 4.8
b78.0 .ObO 3.2
231. q 0.000 0.0
108.0 ,0h5 1.3
b4.4 0.000 0.0
2b.8 0.000 0.0
1.8 .080 0.0
.5 .ObO 0.0
7.bOq GRAM/BHP HR
41.52fa GRAM/BHP HR
7.87fa GRAM/BHP HR
0.000 GRAM/BHP HR
.b54 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
o.o
I
I
0.0
0.0
o.o
o.o
0.0
o.o
o.o
0.0
0.0
I
I





HC
3420
721
800
131b
1531
1385
1230
124?
13b8
1758
245q
555bq
414b
lb«0
104b
730
812
sis
417
320
188
287
40310
SPECIF
HC
R
11. Ob
5.21
4.b3
4.02
2.52
2.22
2.14
2.27
2.77
R
R
b.87
2.44
1.5b
1.11
I.b2
1.44
1.21
1.80
3.bS
R
R





CO
.420
.150
.150
.150
.150
.130
.130
.150
.350
.770
.b4Q
.420
7.340
1.800
1.010
.520
.180
.150
.150
.130
.130
.440
.350

























12
13
13
13
13
13
13
13
13
13
13
7
q
13
13
13
13
13
13
13
13
1?
7
coa
.71
.48
.48
.48
.48
.48
.77
.77
.77
.77
.48
.00
.13
.*>3
.??
.77
.77
.b3
.48
.33
.!«
.14
.75
NO
31
b8
111
350
410
1125
1550
1750
Ib25
1712
51
12
b40
1537
Ib75
15b3
2100
1087
580
315
iqo
44
11
1C GRAM/BHP-HR


80
11
10
7
4
4
5
11
24


245
52
30
17
b
7
8
14
51







CO
R
.1
.7
.0
.1
.8
.7
.2
.7
.5
R
R
.b
.7
.4
.1
.b
.3
.8
.7
.0
R
R


































N02
R
5.1
2.b
3.1
4.3
b.8
1.3
10.0
8.1
1.0
R
R
3.5
7.4
8.3
8.4
12.7
8.7
S.b
7.3
12.3
R
R



































-------
7-19-72 RIJN-1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG. 5-3  197? VERSION W/EGR MAN NO EGR
                                                             TIMING

MOHh
1
a
3
t
5
b
V
8
9
in
11
1?
13
It
15
lb
17
IS
19
20
21
32
23

MODE
I
a
3
t
5
b
7
8
9
in
11
.12
13
It
15
Ib
17
1«
19
20
ai
ae
23
CYCLE





SPEEU
bOO
lann
1200
1200
1 ? n o
i?nn
1PPO
1200
1200
i?oo
bOO
1200
2300
2300
2300
2300
2300
P30P
2300
a3nn
2300
bno
230U
c
ALDE.
P.O
o.o
o.o
0.0
o.n
n.o
o.n
n.o
o.o
P.O
o.o
n.o
O.P
o.o
o.o
n.o
o.n
o.o
o.o
n.o
o.o
o.o
n.n
DYNA,
LOAD
0.0
5.0
18.0
tl.O
58.0
115.0
173.0
189.0
212.0
230.0
0.0
0.0
2tt.O
22t.O
200.0
183.0
122.0
bl.O
tt.O
20. n
5.0
n.n
o.o
t
HP
0
1
t
9
13
2b
to
f 3
t8
53
0
0
107
98
R8
SO
53
?7
19
9
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
17.3 3.2 17.1
IS. 1 7.t Ih.t
18. b 8.2 Ib.t
17.3 11.3 17.3
15.8 13.2 17. t
^.R lt.1 17.0
3.9 21. b Ib.b
2.8 22. t lb.5
1.2 2t.7 lb.2
.5 31.9 13. t
17.8 3.t lb.1
22.8 3.2 lb.1
.2 b2.8 13. n
3.0 t8.8 It. 3
t.t t3.3 15.5
5.t t2.1 15. b
in. 9 3Q.2 lb.2
Ib.t J.9.t Ib.P
17.5 17.7 lb.8
19. h 12.8 17.0
en.b 12.3 17.1
18.3 3.2 17.3
et.8 3.t 21.5
ALr.UlftTFD GRAM/HR WT. WT.
HC
87.7
11.5
2t.t
3b.9
t?.3
tt.8
fab. 5
faS.b
95. b
25.5
27. b
b32.7
t30.3
2tl.2
87.0
Sb.b
b3.b
35.3
27. t
.10.1
b.8
3fa.7
753.2
COMPOSITE








CO
t]
7t
82
122
its
130
192
199
?19
9277
ts
S2
18023
bb25
lbS2
It2b
303
203
Ibl
115
ISb
57
85
HC
CO
N02
ALDE
RSFC
N02 FAC. HP
1.3 .070 0.0
fa. 2 .ObO .1
Ib.t .ObO .2
t2.8 .050 .5
82.8 .030 ,t
151. .9 .ObO l.fa
352.0 0.000 0.0
377.7 .OtO- 1.7
512. b 0.000 0.0
21t.b 0.000 0.0
1.8 .U70 0.0
.t .120 0.0
S5b.5 .025 2.7
70t.t .055 S.t
7b3.b .035 3.1
7t8.8 .ObO t.8
bSS.S .ObO 3.2
2bl.2 0.000 0.0
tbt.9 .Ob5 1.3
tb.7 0.000 0.0
25. fa 0.000 0.0
1.5 .080 n.Q
.t .obo r?.o
7.287 GRAM/BHP HR
t2.22S GRAM/BHP HR
9.032 GRAM/BHP HR
n.OOO GRAM/BHP HR
.b51 LB/BHP HR
0
0
0
n
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RRAKF
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
u.o
0.0
0.0
I
I
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
n.o
I
I





PRY
HC
7783
tb7
SOI
Sib
1005
SOb
910
8b5
lltb
291
2tlt
5t31b
2503
Ifa77
b3t
712
fa3b
5?7
tte
230
IfaO
3235
ttSbS
SPFC


10.
5.
3.
3.
1.
1.
1.
1.
*


t.
2.
•
1.
1.
1.
1.
1.
3.







CONCFNTRATION










5


5
2









IFI
HC
R
ot
st
st
57
71
b8
52
S7
t9
P
R
03
tb
ss
21
IS
32
t2
15
13
R
R





CO
.180
.150
.150
.150
.150
.130
.130
.130
.130
.ato
.210
.390
.ISO
.2RO
.falO
.530
.150
.150
.130
.130
.180
.250
.250
























C02
11. S2
13. t8
13. t8
12. t7
12. t7
12.71
13.18
13.18
13.18
11. 2t
13. Ob
b.fat
11.13
12. St
13. h3
1 3 . t 8
13. t8
1P.94
12. St
13. Ob
12.82
12. ?2
t ,t5
NO
3t
7b
182
320
530
925
itso
1500
1850
738
t8
11
975
It75
Ifa75
Ibfa2
1987
1175
2287
320
180
39
7
P. GRM/HHP-HR


b5
20
13
in
t
t
t
t
17b


Ib8
b7
IS
17
5
7
8
CO
R
.1
.0
.0
.8
.s
.s
.b
.5
.5
R
R
.7
.5
.3
.8
.7
.b
.3
13.2
71







.2
R
R





N02
R
S.t
t.o
t.b
b.2
5.8
8.S
8.7
10. b
t.l
R
R
5.2
7.2
8.7
9.3
12. t
S.8
2t.l
5.3
1J .7
R
R



































-------
7-}
S-72
RUM-?
PRUJECT 11-2877-ni CONTROL TECHNOLOGY
ENG.2-3 1S72 VERSION -STD W/EGR-MANIFOLO NO-EGR
QYNA.
MODE
1
?
3
4
5
b
7
S
q
IP
11
12
13
If
15>
lb
17
IP
IS
20
21
22
23

NODE
1
2
3
f
5
b
7
8
q
10
11
1?
13
If
15
lb
17
18
IS
20
21
22
23
CYCLE




SPEED
bOO
120(1
1200
leou
1200
1200
1200
1500
1200
1200
bOO
1200
2300
2300
2300
230n
2?00
2300
2300
2 3 0 0
23UU
bOO
2300
C
ALOE.
0.0
o.n
o.o
o.o
0 . 0
n.n
0 . n
0.0
o.o
o.o
o.o
o.n
o.o
o.o
o.n
o.o
U.P
o.o
0 . 0
O.n
0.0
0.0
0.0
LOAU
0.
5.
18.
fl.
58.
115.
173.
18S.
212.
230.
0.
0.
2f8.
228.
203.
l8b.
12f .
b2.
45.
20.
5.
0.
0.
ALCUL.A
HL
2b.f
13.2
?3.f
ff .3
^0.5
Sb.b
71.1
bb.7
88. fa
2f7.1
21. *
777.1
431. b
?fl.8
Sf .0
113.0
b5.7
3b.l
ef .2
10. b
7.0
?5.3
"3b.7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
HP
0
i
f
q
13
?b
f 0
f 3
f P
53
0
n
IDS
100
8S
81
54
2?
?0
q
5
Q
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALOE.
18.2 3.3 Ib.S
IS. 5 7.1 17.0
18.8 7.5 lfa.8
17.5 S.O Ib.t,
Ib.fa S.8 lb.8
S.8 15.7 17.2
f.O 21. b Ib.S
2.S 22.5 Ib.b
1.3 23. S lb.0
.5 31.2 13.3
18.2 3.2 Ib.S
22. S 3.5 IS. 8
,S fa2.8 13.0
2.S fS.b If. 5
f.f ff.3 15.4
5.5 f2.2 15.4
11.1 2S.7 lb.3
lb.4 IS.b lfa.8
17.7 17.4 Ib.S
11.5 13. S 17.0
20.4 12.7 17.1
18.3 3.4 17. b
24. S 3.5 25.4
TED C-KAN/HR WT. WT.
























COMPOSITE












CO
78
bf
78
80
87
Iff
223
200
32 b
8378
Ifa
17
1831?
5477
iS5f
ISbO
353
203
171
12b
115
7fa
73
HC
CO
NU2
ALDE
BSFC
N02 FAC. HP
1.8 .070 0.0
f.7 .ObO .1
11.0 .ObO .2
45.3 .050 .5
bb.f .030 ,f
lfb.1 .ObO l.b
34.8 0.000 0.0
3S8.3 .040 1.7
478.8 0.000 0.0
245.5 0.000 0.0
l.b .070 0.0
.4 .120 0.0
fa07.b .025 2.7
782.3 .055 5.5
780.1 .035 3.1
718.4 .ObO 4.S
fa5b.7 .ObO 3.3
2bl,5 0.000 0.0
15b.8 ,0b5 1.3
52.8 0.000 0.0
21.0 0.000 0.0
1.7 .080 0.0
.3 .ObO 0.0
8.18b GRAM/BHP HR
41.4b3 GRAM/BHP HR
8.2bb GRAM/BHP HR
0.000 GRAM/BHP HR
.b3S LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
o.o
0.0
0.0
0.0
o.o
0.0
0.0
I
I
0.0
0.0
o.o
0.0
o.o
0.0
o.o
0.0
o.o
I
I





HC
238b
538
S08
IffaO
1515
1021
SbS
87b
1152
2S07
2021
50331
2535
Ibb7
fa80
8b?
b?7
531
410
221
151
2012
fb3fO
SPECIF
HC
R
ll.Sfa
5.70
f .73
3.81
2. lh
1.80
i.55
1.83
f .70
R
R
3.S7
2.4?
I.Ob
1.3S
1.21
1.33
1.23
1.21
3.17
R
R





CO
.350
.130
.150
.130
.130
.130
.ISO
.130
.210
4.880
.440
.310
5.350
1.870
.700
.740
.180
.150
.150
.130
.130
.310
.180























coa
ia.sf
12. S4
12. S4
13.18
13. Ob
12.71
13. Ob
13.18
13.7?
11.48
12.82
f .Sf
11.13
13.48
13.77
13.77
13. b3
13. Ob
13.18
12.14
13. Ob
12.22
3.04
NO
50
58
128
f50
bOO
800
ite
1575
1875
870
ffa
7
1075
Ib25
1700
IfaSO
2037
1175
800
330
200
f2
5
1C GRAM/RHP-HR


Sb
IS
8
b
S
5
f
b
1SS


IbS
54
22
24
b
7
S
If
52







CO
R
.f
.0
.5
.b
.5
.b
.b
.7
.4
R
R
.if
.1
.0
.1
.5
.5
.1
.4
.3
R
R





N02
R
f.l
2.7
f.B
S.C!
S.b
.1
1.2
s.s
4.7
R
R
S.b
7.8
8.8
8.8
12.1
S.b
8.0
b.O
13.2
R
R



































-------
7-3b-7?
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG-2-3  1172-VERSION-S  EGR STD TIMING

MODE
i
p
3
4
5
b
7
a
q
in
11
12
13
14
15
Ib
17
IS
11
20
21
2?
?3

MODt
i
P
3
M.
S
b
7
8
q
10
11
12
13
14
IS
Ib
17
18
11
20
21
22
23
CYCLE





SPEED
bOO
1POO
i?no
1 ? o n
1200
1200
1200
i?no
1200
l?nn
bon
1200
2300
2?00
c? ? 0 0
2300
2? 00
2*nc
2300
2 3 n n
r?300
bOU
2300
C
ALDE.
o . u
0.0
P . fi
0.0
0 . n
0.0
0.0
0.0
n.n
o.o
n.n
n . n
n.n
n.n
r'.C
0.0
0.0
n.n
n.n
o.n
o.o
0.0
o.o
DYfM
•
LOAD HP
0.
5.
18.
40.
55.
110.
Ib5 .
180.
202.
P20.
n.
n.
?25.
507.
18?.
Ibl.
113.
5b .
41 .
IP.
5.
n.
0.
ALCUI.A
HC
58. b
17.8
23.7
4b . 1
51.7
38.4
42.1
4b. 3
70.5
2Pfa.l
42.5
751.7
4-13.1
1 1 5 . 1
70.7
41.7
11.1
2b.t
3 U . 7
13.0
15.8
35.8
fa71.2
COMPOSITE








0 0
[I 1
n 4
n q
0 13
0 25
0 38
0 41
0 4fa
n so
n n
f! 0
0 11
n qi
0 81
0 74
0 41
0 25
0 Ifl
n R
0 2
0 0
0 0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.4 3.3 Ib.b
11.3 7.5 15.1
18.8 7.8 lb.3
lb.8 1.1 17.4-
15.0 1.1 IS. fa
7.1 lb.5 17.8
3.4 20.3 17.3
2.4 21.3 17.2
1.3 22.1 Ib.b
.5 P8.b 13.5
18.7 3.5 15.1
23.3 3.b lh.3
.1 58.2 13,1
2.8 44.4 15.4
3.1 41.7 15. b
4.b 40.5 15.8
8.2 32.3 17.2
14.7 11.7 18. b
lb.1 17.1 18.7
13.1 13.8 18.5
11.4 13.0 18.4
18.4 3.4 lb.2
?5.2 3.4 20. n
TED RRAM/HR WT. WT.
CO
Ifa3
185
7b
82
97
117
142
141
153
b?55
420
128
1523fa
1408
1127
884
282
304
27b
180
Ibl
232
101
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.2 .070 0.0
5 . fa .ObO .1
10.0 .ObO .2
28.0 .050 .5
23.8 .030 .4
12. fa .ObO 1.5
210.0 0.000 0.0
30b.O .040 l.b
314.1 0.000 0.0
ibfa.s o.o nn n.o
1.5 .070 0.0
.5 .120 n.n
24b.3 .025 2.5
bSO.8 .055 5.0
4-73. b .035 ?. 8
435.7 .ObO f.4
275.0 .ObO 3.0
73.8 o.oon n.n
5fa.2 .ObS 1.2
20.1 o.ooo o.n
17. IJ 0.000 0.0
1.4 .080 0.0
.4 .ObO 0.0
7.513 GRAM/BHP HR
30.315 GRAM/BhP HR
5.442 GPAM/BriP HR
0.000 GRAM/BHP HR
.bfil LB/BHP HR
0
n
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
0
n
0
0
0
BRAKE
ALDE.
T
0.0
n.n
o.o
o.o
o.o
o.o
0.0
o.n
o.n
I
I
o.o
o.o
o.o
o.o
o.o
o.n
D.D
0.0
0.0
I
I





HC
5387
751
141
1502
Ib23
bbO
faOO
fa28
121
2108
31b7
57123
2802
8bS
557
317
103
3hfi
318
2b2
341
331b
47011
SPECIF
HC
R
15.58
5.77
5.13
4.75
1.53
1.12
1.13
1.53
4.sn
R
R
4.40
1.28
.87
.b7
.22
1.08
1.15
I.b4
7.23
R
R





CO
.740
.310
.150
.130
.130
.100
.100
.100
.100
4.300
1.140
.410
4.S80
.520
. t*n
.350
.130
.210
.210
.180
.180
1.010
.350

























12
14
13
12
11
12
12
12
13
12
12
b
11
14
It
14
13
12
12
12
12
13
5
C02
.47
.05
.11
.14
.12
.71
.14
.14
.48
.01
.47
.30
.12
.42
. *?
.31
.48
.22
.22
.47
.47
.18
.75
NO
33
72
120
270
115
480
100
1250
15b3
b45
43
11
480
14b2
1125
1050
770
310
2bO
122
110
41
1
1C RRAM/RHP-HR


Ibl
18
1
7
4
3
3
3
134


154
IS
13
11
5
12
15
22
77







CO
R
.b
.4-
.0
.7
.7
.8
.fa
.3
.4
R
R
.b
.5
.1
.1
.7
.H-
.4
.8
.2
R
R


































N02
R
4.1
2.4
3.1
1.1
3.7
5.b
7.4
8.5
3.3
R
R
2.5
7.2
5.8
5.1
S.b
3.0
3.1
2.5
7.8
R
R



































-------
7-24-72

MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib
17
18
19
20
21
22
23

RUN-2
DYNA,
SPEED LOAD
hOO
1200
1200
1200
1200
1SOO
1?00
1PQH
1200
1200
bOO
1200
2300
230U
2300
230U
2300
23UO
2300
2300
2300
bOO
2300
0.0
4.0
11.0
39.0
54.0
107.0
Ibl.O
175.0
197.0
214.0
0.0
0.0
2U2.0
I8b.0
lbfa.0
152.0
101.0
51.0
3b.O
lb.0
4.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG.2-3 1972 VERSION-10 -EGR STD TIMING
»
HP
0
1
3
q
12
24
37
40
45
49
0
0
88
81
73
b?
44
22
Ib
7
2
0
0
CALCULATED GRA'
NODE
1
2
3

-------
7-24-72

MODE
1
2
3
4
b
t,
7
8
q
10
11
12
13
14
15
Ib
17
18
1^
20
Hi
22
23

KUN-1
DYNA.
SPEED LOAD
bOO
1200
1200
1200
1?00
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
hnn
2300
0.0
4.0
15.0
35.0
48.0
Ib.O
144 .0
157.0
177.0
H2. 0
0.0
0.0
202. n
ISb.O
lbb.0
152. 0
101.0
51.0
3b.O
Ib.O
4.0
n.n
0,0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG.2-3 1S72 VERSION-10 »EGR STD TIMING

HP
n
i
3
8
11
2?
33
3b
40
44
0
0
88
81
73
b?
44
22
Ib
7
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.5 3.5 15. b
11.7 ?.b 15.7
H.O 8.1 15.1
18.1 8.7 lb.2
17.2 10.0 lb.4
5.2 18.0 17.3
l.fl 21.4 17.1
1.3 22.4 lb.7
.1 21.8 lfa.5
.4 28.7 13.8
18.7 2.8 14. S
23.3 3.4 15.2
1.0 53.2 13. b
2.2 44.8 15.1
2.b 42.1 15.7
3.3 40.0 lb.1
8.1 30. fa 17.2
13.1 20.5 18. b
15.1 17.8 18.1
17.3 15.5 18. b
18.8 13.7 18. b
18.5 2.8 15.1
2b.2 2.3 17. b
0
0
0
n
0
0
0
0
0
0
0
0
0
0
(I
0
0
0
n
0
0
0
0
CALCULATED GKAM/HR WT. WT. BRAKE
HQoE
1
?.
3
4
q
b
7
8
q
10
11
12
13
14
15
Ib
17
18
11
20
21
22
23
CYCLE




ALDF
O.G
0.0
0.0
n.o
n.n
o.n
n.n
o.o
n.O
0.0
0.0
o.o
n.n
n.o
n.fi
0.0
0.0
0.0
o.o
o.o
0.0
n.o
o.o
HC
45.3
20.3
23.0
42.7
5 L.4
30.1
45.1
47. b
50.3
118.4
28.1
712.4
323.4
128.3
72.7
31. b
13.7
40.3
37.2
48.1
31. S
34.b
302. b
COMPOSITE








cn
280
274
151
84
qq
12b
222
225
21fa
b531
27fa
IfaO
11323
273b
11 3
4fa3
211
?74
238
210
153
112
bO
HC
CO
N02
ALDE
BSFC
N02 f-AC. HP
1.4 .n70 0.0
fa. 8 .OfaO .1
11. 1 .ObO .2
35.0 .050 .4
CP.1 .030 .3
37.3 .OfaO 1.3
iuq.3 o.ooo n.o
133.0 .040 J.4
147.0 0.000 n.O
130.8 0.000 0.0
1.3 .070 0.0
.5 .120 n.n
140.5 .025 2.2
222. b .055 4.5
217.1 .035 ?.5
1.73.2 .ObO 4.Q
124.8 .ObO 2.7
b7.b 0.000 0.0
43.5 .ObS 1.0
11.7 0.000 0.0
12.7 0.000 0.0
1.2 .080 0.0
.3 .ObO 0.0
7.27b GRAM/BHP HR
31.443 GRAM/BHP HR
2.731 GRAM/BHP HR
0.000 GRAM/BHP HR
.753 LB/8HP HR
ALiit.
I
o.o
o.o
o.n
o.n
o.o
o.o
o.o
o.o
o.o
I
I
0.0
0.0
0.0
0.0
0.0
O.n
0.0
0.0
0.0
I
I





DRY
HC
4252
8b1
iQb
153?
1578
482
bl?
b42
705
24b7
3354
b300fa
2215
157
545
311
131
534
5b8
834
b23
3158
4b035
SPEC


22.
b.
5.
4.
1.
1.
1.
1.
4.


3.
1.
1.
.
.
1.
2.
b.
17.







CONCENTRATION

1.
*
*
*
9
*
m
•
9
4.
1.
.
3.
1.
.
.
.
.
.
.
.
1.
•
TFIC
HC
R
2b
72
34
hR
37
37
33
24
52
R
R
bb
58
00
51
31
81
3b
87
18
R
R





CO
300
580
310
150
150
100
150
ISO
150
020
b30
700
840
mo
J50
180
100
.180
180
180
150
090
350

13
14
14
4.3
13
18
13
13
13
11
13
b
12
14
14
14
13
12
12
11
12
13
7
C02
.18
.05
.05
.11
.b3
.14
.Ob
.48
.b3
.12
.18
.b4
.47
.05
.18
.05
.18
.01
.01
.12
.01
.Ob
.28
NO
41
88
131
380
410
180
450
540
b20
410
48
12
210
500
490
410
3faO
270
200
103
7b
42
12
<;RAM/BHP-HR
CO
R
300.3
4b.5
10.5
1.0
5.7
b.7
b.3
5.3
148.1
R
R
128.0
33. b
13.0
b.1
4.8
12.3
15.1
21.1
87.4
R
R


































N02
R
7.5
3.2
4.4
4.8
1.7
3.3
3.7
3.b
3.0
R
R
l.b
2.7
3.0
2.b
2.8
3.0
2.8
2.8
7.3
R
R



































-------
7-25-72 RUN2
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.2-3  1172 VERSION-IS  EGR STD TIMING
DYNA.
MODE
1
2
a
4
5
b
7
9
1
10
11
13
13
1*
IS
Ih
17
18
19
20
PI
55
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
4.0
15.0
33.0
4b.O
11.0
137.0
0.0
0.0
182.0
0.0
0.0
177.0
Ib3.0
145.0
133.0
81.0
44.0
32.0
14.0
4.0
0.0
0.0
HP
0
1
3
8
11
21
31
0
0
42
0
0
78
71
b3
58
31
19
14
b
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.3 3.0 15.2
IB. 4 7.2 Ib.B
17.2 7.8 17.7
14.0 l.b 18. b
13.3 l.fa 18.7
b.3 lb.5 17.5
1.8 20.8 17.0
0.0 0.0 0.0
0.0 0.0 0.0
.5 27.7 13.2
18.5 2.7 14. b
23.3 3.1 15.9
.1 54.5 13.0
1.1 45.5 14. b
2.3 43.4 15.0
2.* 41.3 15.8
5.2 35. b lb.5
8.7 27.5 17.8
1.5 25.1 18.8
14.3 18.7 18.7
17.9 14.5 18.3
18.3 3.2 15. b
25.2 3.b 18.0
CALCULATED GRAM/HR WT. WT.
MODE
1
8
3
4
5
b
7
8
q
10
11
IP
13
If
15
IS
17
18
IS
20
61
22
23
CYCLE




ALDE
O.D
n.o
n.o
0.0
0.0
0.0
n.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
2S.4
43.7
lbl.3
lfab.7
13b.5
35.0
b2.3
0.0
0.0
233.0
33.9
b83.5
412.3
197.5
143.0
Sb.fa
38b.l
484.0
575.4
bbS.b
3bS.l
33.8
b28.4
COMPOSITE








CO
243
88
144
132
133
177
211
0
0
7170
355
103
15742
423b
21bO
4b5
415
401
47b
354
225
17b
bl
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.4 .070 0.0
3. fa .ObO .1
4.2 .ObO .2
7.5 .050 .4
8.3 .030 .3
25.5 .ObO 1.2
22.2 0,000 O.n
0.0 .040 0.0
0.0 0.000 0.0
3b.8 0.000 0.0
1.2 .070 0.0
.3 .120 0.0
14. b .025 1.9
75.0 .055 3.9
70.3 .035 2.2
71.1 .ObO 3.5
55.4 .ObO 2.3
21.5 0.000 0.0
Ib.b .Ob5 .1
10.7 0.000 0.0
7.3 0.000 0.0
1.3 .080 0.0
.4 .ObO 0.0
14.434 GRAM/BHP HR
54.104 GRAM/BHP HR
1.111 GRAM/BHP HR
0.000 GRAM/BHP HR
.115 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
o.o
I
I





DRY
HC
3172
171b
5b51
4513
3735
518
Bb2
0
0
3045
420b
b3177
3475
1418
1132
443
3383
5017
b!03
148fa
b870
34bO
45111
CONCENTRATION

1.
•
•
•
•
*
•
0.
0.
4.
2.
•
5.
1.
1.
*
•
•
•
•
•
•
*
SPECIFIC


47.
47.
22.
12.
1.
1.
0.
0.
5.


b.
2.
2.
•
1.
25.
41.
108.
208.







HC
R
82
05
11
11
be
11
00
00
bO
R
R
35
77
25
17
11
12
Ob
57
42
R
R





CO
300
180
250
180
180
150
150
000
000
fafO
180
470
500
510
IbO
180
180
210
250
250
210
810
250
C02
13.
13.
11.
11.
11.
12.
12.
0.
0.
11.
12.
b.
11.
13.
14.
1*.
13.
12.
11.
10.
11.
13.
7.
Ob
Ob
bO
3fa
3b
51
82
00
00
48
51
21
bO
11
31
*2
b3
22
bO
81
48
b3
01
NO
44
45
44
b2
b8
131
13
0
0
145
43
1
31
171
lb?
18b
14b
fa?
53
4b
41
41
ID
GRAM/BHP-MR
CO
R
1b.8
42.0
17.5
12. b
8.5
7.0
0.0
0.0
172.4
R
R
203.1
59.3
4b.b
8.0
10. b
21.2
34.0
57.8
128.7
R
R


































N02
R
4.0
1.2
1.0
.8
1.2
.7
0.0
0.0
.1
R
R
.2
1.1
1.1
1.4
1.4
1.1
1.2
1.7
4.2
R
R



































-------
7-25-72

MODE
1
2
3
*
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
IS
20
21
22
23

RUN-1
DYNA.
SPEED LOAD
bOO
1200
1200
1200
1300
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
3.0
12.0
28.0
31.0
0.0
0.0
0.0
0.0
15*. 0
0.0
0.0
152.0
1*0.0
125. 0
11*. 0
7b.O
38.0
27.0
12.0
3.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG.2-3 1172 VERSION-20 -EGR STD TIMING
I
HP
0
1
3
b
1
0
0
0
0
35
0
0
b?
bl
55
50
33
17
12
5
1
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.5 3.1 1S.1
11.2 7.2 15.7
18.7 7.b 15. b
15.8 1.1 lb.8
1*.8 1.7 lb.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
.5 25.3 13.*
11.0 3.* 1*.5
23.3 3.3 15.0
1,0 *1.7 13.2
1.7 *3.b 1*.3
1.8 *3.Q 1*.S
2.0 *1.8 1*.1
3.1 3b,5 15.8
8.3 28.1 17.2
8,1 2b.* 17.5
10.8 23.* 17.1
Ib.b 15.* 18.*
18.5 3.3 15.8
25.2 3.* 30. b
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
*
5
b
7
8
9
10
11
12
13
1*
15
Ib
17
18
11
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
31.0
18.8
21.0
8b.5
118.0
0.0
0.0
0.0
0.0
208.1
*3.5
b*8.7
fOO.8
228.0
222.8
171.0
122.2
183.8
1303.8
1238.0
1321.1
*1.5
11.8
COMPOSITE








CO
311
127
IbB
If
118
0
0
0
0
SbBb
1*3
201
113bO
*525
3837
25**
12*
bib
737
710
503
227
157
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.3 .070 0.0
*.2 .ObO .0
fa. 3 .ObO .2
1.0 .050 .3
1.* .030 .3
0.0 .ObO 0.0
0.0 0.000 0.0
0.0 .0*0 0.0
0.0 0.000 0.0
17.5 0.000 0.0
1.* .070 0.0
.* .120 0.0
32.3 .025 1.7
*3.0 .055 3.*
31.8 .035 1.1
*0.t> .ObO 3.0
3*. 3 .ObO 2.0
17.3 0.000 0.0
1*.0 ,0fa5 .8
1.7 0.000 0.0
*.5 0.000 0.0
1.* .080 0.0
.b .ObO 0.0
20.712 GRAM/BHP HR
78.010 GRAM/BHP HR
,8fa8 GRAM/BHP HR
0.000 GRAM/BHP HR
1.075 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DRY
HC
*20*
831
88*
2803
3b*8
0
0
0
0
3021
*323
bOb**
21bS
1833
1783
l*3b
78b3
1115
13121
1*788
22313
*802
532
CONCENTRATION

1.
•
•
*
•
0.
0.
0.
0.
*,
2.
•
*.
1.
1.
1.
•
•
*
•
•
1.
*
BRAKE SPECIFIC
ALDE

0.
0.
0.
0.
0.
0.
0.
0.
0.


0.
0.
0.
0.
0.
0.
0.
0.
0.







•
I
0 27.
0 7.
0 13.
0 13.
0 0.
0 0.
0 0.
0 0.
0 5.
I
I
0 b.
0 3.
0 *.
0 3.
0 27.
0 51.
0 110.
0 235.
OlOOb.
I
I





HC
R
*1
b?
52
2*
00
00
00
00
1*
R
R
02
72
07
51
71
12
27
58
15
R
R





CO
bbO
280
350
150
180
000
000
000
000
070
180
130
IbO
800
520
010
310
350
310
*20
*20
010
350

13
1*
1*
12
13
0
0
0
0
12
12
7
12
13
13
1*
12
11
11
10
1
12
b
C02
.Ob
.18
.05
.1*
.Ob
.00
.00
.00
.00
.22
.71
.00
.22
.11
.11
.05
.1*
,bO
.01
.78
.1*
.1*
.Sb
NO
*1
57
80
88
88
0
0
0
0
7b
*3
12
72
10*
Ifa
18
88
53
*5
35
23
*0
8
GRAM/BHP-HR
CO
R
185.3
bl.*
l*.b
13.2
0.0
0.0
0.0
0,0
Ibl.b
R
R
170.7
73.8
70.1
51.0
27.8
*1.8
b2.*
135.2
382. fa
R
R


































N02
R
b.2
2.3
1.*
1.1
0.0
0.0
0.0
0.0
.5
R
R
.5
.7
.7
.8
1.0
1.0
1.2
1.1
3.*
R
R



































-------
                 ENGINE 2-3




EFFECT OF LABORATORY EGR ON EMISSIONS




             GRAPHED RESULTS

-------
       1322V  04238
   8 r
o
o
X
?-i
g
E
ni
h
O
                                       922
                                               LEGEND
                                           O  20% EGR
                                           O  15% EGR
                                           Q  10% EGR
                                           A   5% EGR
                                           0  No EGR
1200 rpm
2300 rpm
           0     ib    20    30    4Q     50    60    70   80   90    100
                     Power, Percent Maximum at Given RPM

      FIGURE L-l.  EFFECT OF POWER ON HC EMISSION RATE -
           LABORATORY EGR, ENGINE 2-3, 23 MODE TEST
               1200
               2300
            ^-1200
               1200
            O-1200
            &  2300
            0L1200
            O-2300
             E>2300
                                                                         6 2300
            	i
             CT

-------
                                                         20887
 O 20% EGR
 Q 15% EGR
 O 10% EGR
    5% EGR
 0 No EGR
                                                                 2300
                                                                 1200
             20    30    40   50    60   70   80    90
            Power, Percent Maximum at Given RPM
100  CT
FIGURE L.-2.  EFFECT OF POWER ON CO EMISSION RATE -
     LABORATORY EGR,  ENGINE 2-3, 23 MODE TEST

-------
  10


   9


   8
             LEGEND
                           ;rpm
       JE2GR
O 10% EGR
A 5% EGR
0 No EGR
                                                                         2300
                                                                         1200
     10
                    20    30   40    50    60   70    80    90
                    Power, Percent Maximum at Given RPM
                                                      100   CT
FIGURE L-3  EFFECT OF POWER ON NOX (AS NO2) EMISSION RATE
          LABORATORY EGR,  ENGINE 2-3, 23 MODE TEST          "

-------
             LEGEND
                       1200 rpm
                      |2300 rpm
  25 t
bO
ffi
a
13
i— i
0
<+H
•a
0)
3
  20
   15
   10
         
-------
o
I—I
X!
 o
M
 JH
 (U
 P.
 o
Pn
I
M
d
o .
U '
            LEGEND
                     12QO rpm
                     2300 rpm
          O 20% EGR
          O 15% EGR
          D 10% EGR
          A 5% EGR
          0 No EGR
                                                                         2300
                                                                         1200
               10    20    30    40    50   60    70    80    90
                    Power, Percent Maximum at Given RPM
100  CT
    FIGURE L.-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER -
            LABORATORY EGR, ENGINE  2-3,  23 MODE TEST

-------
                  APPENDIX M




                   ENGINE 2-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




            (23 MODE MASS RESULTS)

-------
                   ENGINE 2-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




                TABULAR DATA




               BEFORE CATALYST

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
7-14-72 RUN-a   ENG. 2-3  19?2 VERSION  8-CATALYTIC W/AIR STD 25 3TBC
DYNA.
MODE
i
2
3
H
5
b
7
8
9
10
11
12
13
14
IS
lb
1?
18
19
20
21
22
23
SPEED LOAD
bOO
1200
iano
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
s.
."•' 0 .
4b.
b4.
128.
1^2.
210.
?34.
25b.
0.
0.
270.
2*8.
221.
203.
135.
b8.
49.
22.
5.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
5
11
15
29
ft
48
53
58
0
0
118
109
9?
89
59
30
21
10
2
0
0
MAN. FUEL A/F
DKY CONCENTRATION
VAC. LB/HR RATIO ALDE.
19.5 2.7 2b.b
21.7 5.1 25.5
19.3 7.2 24.3
17.4 8.5 23.7
15.5 10.2 22.4
9.7 15.1 20.8
5.5 20.2 17.9
3.8 21.5 17.5
1.9 23.8 17.1
.3 31.3 14.2
20.0 2.7 23.3
23.7 2.7 35. b
.5 b2,5 14.1
2.2 S2.b 11.9
4.2 45.4 lb.0
S.b 41.7 lb.0
10.1 28.7 19.5
15.5 19.3 21.8
17. b lb.4 23. b
19.5 13.4 24.9
20.5 12.2 25.3
19.5 2.7 13.7
25.1 2.b 133.9
CALCULATED GRAH/Hk wT. WT.
MODE
1
2
3
1
5
b
7
8
9
10
11
12
13
If
IS
lb
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
n.o
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
Ib.O
b8.8
35.*
58.9
74.7
103.3
132.1
12S.1
141.5
304.7
51.8
811. b
590.9
272.7
lt.fa.5
132.0
118.0
72.8
85.5
129. fa
IbS.l
131.0
1122.0
























COMPOSITE












CO
4b
71
73
85
b?
91
PbH
b52
309
8923
5b
bS
177bl
10181
415b
3990
295
175
Ib2
138
129
37
32
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.4 .070 0.0
4.7 .ObO .1
25. b .OfaO .3
125.0 .050 .5
27b.9 .030 .*
595.2 .ObO 1.8
881.0 0.000 0.0
905.3 .040 1.9
1101.8 0.000 0.0
520.5 0.000 n.O
2.0 .070 0.0
2.1 .120 0.0
1130.9 .025 3.0
703.8 .055 b.O
13Sfa.4 .035 3.4
1240.7 .ObO 5.3
ISbO.l .ObO 3.5
581.9 0.000 0.0
280.4 ,QbS 1.4
97.8 0.000 0.0
55.1 0.000 0.0
1.5 .080 0.0
.b .ObO 0.0
9.383 GRAM/BHP HR
53.797 GRAM/BHP HR
13.fa97 GRAM/BHP HR
0.000 GRAM/BHP HR
.5b7 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
o.o
0.0
0.0
0.0
o.o
0.0
0.0
0.0
o.o
I
I





HC
1053
2530
985
1409
15b7
Ibl3
1793
Ib29
Ibb3
3303
3893
3?bl9
3253
1/Qb
1141
981
1051
841
10b3
1891
2587
9212
14307
SPECIF
HC
R
bO.22
7.75
S.bl
5.11
3.53
3.01
2.bl
2.b5
5.21
R
R
5.00
2.51
1.72
1.48
2.00
2.45
3.98
13.45
75.42
R
R





CO
.150
.130
.100
.100
.070
.070
.180
.420
.180
4.790
.210
.ISO
4.840
3.1bO
1.410
1.480
.130
.100
.100
.100
.100
.130
.020
























C02
7.85
8.14
8.84
8.93
9.50
10.43 c
12.09
12.09
12.34
10.25
8.bO
l.bb
10.43
1 1 . b I.J
12. SS
12.^9
11. 3b
M. H3
9.03
8.b(l
8.34
7.5b
.03
NO
27
52
215
900
1750
2800
3faOO
3550
3900
1700
ft
29
1875
132S
2800
2800
3fa50
202b
1050
430
EbO
32
2
1C GRAM/BHP-HR


b2
IS
8
4
3
b
13
5
152


150
93
42
44
5
5
7
14
58







CO
K
.5
.9
.0
.b
.1
.1
.b
.8
.b
R
R
.2
.7
.9
.9
.0
.9
.b
.4
.*
R
R





N02
K
4.1
S.b
11.9
18.9
20.4
20.1
18.9
20. b
8.9
R
R
9.b
fa. 5
14.0
14.0
23.0
19.5
13.1
10.2
25.2
R
R



































-------
V-13-75

MODE
1
2
3
4
5
b
?
B
S
in
11
12
13
I1*
15
Ib
17
18
IS
20
21
2?
23

RUN-2
OYNA.
SPEED LOAD
bOO
1200
12DO
1500
1500
I2no
1200
1POO
1300
1POO
bOO
1200
2300
2300
2300
2300
5300
2300
2300
2300
2300
bOO
2300
0.0
5.0
51.0
4b.O
fa4.0
129.0
193.0
212.0
535.0
258.o
O.Q
0.0
272.0
250.0
223.0
204.0
13fa.O
faS.Q
49.0
52.0
5.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3 1972 VERSION B-CATALYTIC W/AIR Ifa BTDC
MAN. FUEL
HP
0
1
5
11
15
59
44
48
53
59
0
0
119
109
98
89
bO
30
21
10
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
19.0
50.5
19.1
17. b
lb.4
9.3
5.5
3.8
2.3
.3
19.5
53.3
.5
3.0
5.0
fa. 2
10.1
lb.0
17.5
19.8
21.5
19.0
24.9
CALCULATED GRAM/HR
MODE
1
B
'i
4
5
b
7
8
S
ID
11
12
13
14
15
Ib
17
IB
IS
80
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
n.o
0.0
n.n
0.0
0.0
0.0
n.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
bS.O
21. 4
57.0
bO.7
71.0
80. b
113.7
122.0
134.0
27b.2
5b.O
788.0
5b7.3
177.1
117.9
18.1
15.7
b5.5
50. S
29.9
38.0
s.9
1247.7
COMPOSITE








CO
44
77
95
105
78
93
319
705
529
9015
51
115
i?b?a
5b8b
3931
302b
•*01
521
Ibb
137
105
35
28
HC
CO
N05
ALDE
BSFC
N02
1.5
4.8
10.2
bS.S
153.7
354.3
b8b.?
737. b
870.2
481.8
2.0
.8
900.2
999. b
1018.2
999.2
970.3
412.7
215.9
58.3
21.4
l.b
.b
8.537
42.bbl
10.995
0.000
.5bO
3.3
5. fa
7.0
10.2
U.I
15.1
20.2
21.9
53. b
32.0
3.3
5.8
b2.1
47.5
44.1
41.0
28.0
18.8
lb.9
12.9
9.4
3.3
2.8
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.OfaO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.OfaO
0.000
.OfaS
0.000
0.000
.080
.OfaO
23.9
24.8
24.5
24.2
23.4
21.1
17.9
17.5
17.2
14.3
24.3
32.?
13.9
15.5
15.9
lb.1
19.5
21.9
23.4
25.4
2b.2
2b.l
44.2
WT.
HP
0.0
.1
.3
.5
.4
1.8
0.0
1.9
0.0
0.0
0.0
0.0
3.0
fr.O
3.4
5.4
3.b
0.0
1.4
0.0
O.Q
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
4094
734
74fa
llfaS
1289
1227
1512
1538
1585
2902 4
1557
39880
3138 4
1177 1
83b 1
733 1
840
738
b!3
443
754
334
44533
CO
.130
.130
.130
.100
.070
.070
.210
.440
.310
.b90
.150
.280
.840
.870
.380
.120
.180
.130
.100
.100
.100
.100
.050
C02
8.24
8.48
B.bO
B.faS
8.93
10.25
11.84
11.92
12.22
10.25
B.faO
2.1b
10.43
12.34
12.71
12.71
11.24
9.93
9.14
8.48
8.24
8.34
.03
NO
2b
50
85
380
840
Ib25
2750
2800
3100
1525
3b
12
1500
2000
217J
2250
2b50
1475
790
2bO
127
27
b
SPECIFIC GRAM/BHP-HR
HC
R
18.73
S.b2
5.77
4.8b
2.73
2.58
2.52
2.53
4.fa9
R
R
4.7b
I.fa2
1.21
1.10
l.Sb
2.09
2.35
3.10
17.37
R
R
CO
R
b?.0
19,8
10.0
5.3
3.2
7.2
14. b
10.0
152.9
R
R
148.4
51.9
40.2
33.9
b.7
7.4
7.7
1*.2
4b.S
R
R
N02
R
4.2
2.1
fa. 2
10.5
12.0
15. b
15.2
Ifa. 4
8.2
R
R
7.b
9.1
10.4
11.2
lb.3
13.9
10.1
b.l
9.8
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
7-12-72

MODE
1
2
3
1
5
b
7
R
9
10
11
18
13
1*
15
Ib
17
18
19
20
21
28
S3

RUN 1
DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
lano
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
s.o
19.0
18.0
59.0
117.0
17b.O
192.0
21S.O
23*. 0
0.0
0.0
2b3.0
2*1. 0
21b.O
197.0
132.0
bb.O
17.0
21.0
5.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3, 1972 VERSION, B-CATALYTIC W/AIR STD
MAN. FUEL
HP
0
1
1
10
13
27
10
11
19
S3
0
0
115
lOb
95
8b
58
29
21
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.5
19.5
18.1
17.5
15.7
8.8
1.9
3.b
2.0
.3
18.9
23.0
.5
2.8
1.8
b.2
9.3
15.8
17.2
19. f
21.0
18.5
25.0
CALCULATED GRAM/HR
MODE
1
2
3
1
S
b
7
8
1
10
11
18
13
14
IS
Ib
17
18
II
20
21
22
23
CYCLE




ALDE
0.0
n.n
0.0
0.0
o.o
0.0
0.0
0.0
o.n
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
n.o
0.0
0.0
HC
15,8
11.0
21.1
33.2
17.1
19.1
51.1
51.2
72.0
ib8.9
10.7
919. b
191.1
9*. 8
38.5
29.5
28.5
39.2
31.0
20.5
13. b
15.2
15b3.0
COMPOSITE








CO
bl
72
80
8*
97
135
273
151
352
782b
71
12b
18980
faSlb
3098
1780
337
2b8
Ib3
112
123
3b
35
HC
CO
N02
ALDE
BSFC
N02
1.8
5.0
13.*
30.3
73.5
171.5
111.2
IbS.b
b09.7
317.9
2.8
1.3
b22.1
189.8
712.3
719.9
539.1
253.5
139.5
Ifa.fa
18.9
1.9
.1
9.211
13.317
7.019
0.000
,b!2
3.7
7.0
7.7
8.3
10.1
lb.0
20. b
22.1
23.8
31.5
3.7
3.7
b3.8
51.1
13. b
12.0
28.8
19.8
17.1
13.5
11.3
3.7
3.5
WT.
FAC.
.070
.ObO
.QbO
.050
.030
.ObO
0.000
.010
0.000
0.000
.070
.180
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
23.7
25.1
21.8
21.2
23.1
20.9
18.5
18.2
17.1
13.9
22.1
30.0
13.8
15.2
lb.0
lb.3
19. fa
22.3
23.1
25.7
2b.b
21.0
13.8
WT.
HP
0.0
.1
.3
.5
.1
l.b
0.0
1.8
0.0
0.0
0.0
0.0
2.9
5.8
3.3
5.2
3.5
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
o.o
0.0
o.o
o.o
o.o
0.0
I
I
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
89b
308
bll
802
979
737
b91
fall
8bB .
1813 1.
b38
37979
2b88 5.
fa02 2.
273 1.
211
25b
113 .
381
292
223
851
1501b
SPECIFIC
HC
R
9.b2
5,55
3.1b
3.19
1.85
1.29
1.17
1.17
3.1b
R
R
1.27
.90
.11
.31
.19
1.3b
1.51
2.23
fa. 19
R
R
CO
180
100
100
100
100
100
180
280
210
IbO
210
250
110
050
090
falO
ISO
150
100
100
100
100
050
C02
9.11
8.75
8.75
8.93
1.37
10. fab
12.22
12.22
12.71
11.01
9.b1
2.bl
10.13
12.71
12.91
13.18
11. bO
9.93
9.b1
8.bO
8.31
9.11
.Ob
NO
30
13
102
220
IbO
770
ifabs
1750
2218
lies
so
is
1025
938
1535
1575
11b2
8b3
580
200
91
32
1
GRAM/BHP-HR
CO
R
b3.0
18.3
8.7
7.2
5.1
b.8
10.3
7.2
llb.1
R
R
lbl.8
fel.7
32.7
20. b
S.8
1.3
7.9
15.1
Sb.l
R
R
N02
R
1.1
3.1
3.2
5.5
b.1
10.3
10. b
12.1
b.5
R
R
5.1
l.b
7.5
8.3
9.3
8.8
b.8
5.1
8.b
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
7-12-72  RUN-a
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG. 2-3, 1972 VERSION  B-CATALYTIC W/AIR 3TD

MODE
1
2
3
4
<;
b
7
8
s
10
11
12
13
If
15
Ib
17
ia
11
20
?.\
2i
23

DYNA,
SPEED LOAD
bno
1200
1200
12HO
1200
1200
l?no
isnn
I2on
I2on
faon
1200
2300
2300
2300
2300
23HO
23on
a?nn
2300
^300
bOQ
2300
0.0
5.0
19.0
42.0
59.0
117.0
17h.Q
192.0
215.0
23M-.0
0.0
0.0
2b3.0
241.0
21b.O
197.0
132.0
fab.O
47.ci
21.0
s.n
o.o
o.o
>
HP
0
1
i+
10
13
27
4o
44
49
53
0
0
115
lOb
95
8b
58
gq
21
9
2
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO
18.5 4.0 23.7
19. b 7.1 25.3
18.8 7.4 24.8
lb.8 8.3 23.7
15.7 10.0 22.7
9.8 15.1 20.9
4.8 21.4 18.3
3.8 22.0 17.7
2.4 23.1 17.5
.3 31.5 15.0
19.0 3.9 22. S
23.0 3.b 31. ?
.5 b3.0 17. 8
2.7 51.3 15.2
4.7 45.4 lfa.1
fa.O 41.2 lb.4
11.0 28.8 20.0
15. b 18. b 22.0
17.5 lfa.1 23. b
19.2 13.9 25.3
21. 0 11.2 2b.9
18.5 3.9 25.2
24. H 3.5 4b.3
CALCUI ATED GRAM/HR 4T. n
MODE
1
2
3
4
5
b
7
8
9
in
11
12
13
It
15
Ib
1?
18
11
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
n.o
0.0
n.n
0.0
0.0
n.n
n.n
n.O
n.o
0.0
" . 0
0.0
0.0
0.0
0.0
0.0
o.o
n.o
n.o
o.o
HC
24.i
15.0
20.2
35.8
4fa.2
53.0
57.7
Sb.fa
fa8.8
17b.S
11.5
94b.s
523.5
97.1
43.5
28.5
3*. 3
?18.7
30.1
?1.7
13.1
?0.5
1507.0
COMPOSITE








CO
39
75
53
SB
b*
87
223
441)
3*8
7893
fa3
75
18431
fa892
3281
1840
228
Ib5
155
its
85
41
73
HC
CO
N02
ALOE
BSFC
N02 FAC.
1.7 .070 0
*.a .obo
8.8 .ObO
32.1 .050
75.4 .030
ISb.b .ObO 1
f42.5 0.000 0
452.2 .040 1
581. b 0.000 0
331.8 0.000 0
2.2 .070 0
.9 .120 n
b32.4 .025 3
489.9 .055 S
782.4 .035 3
778.7 .ObO S
579.8 .ObO 3
2b4.9 0.000 0
134.8 ,0b5 1
57.1 0.000 0
19. fa 0.000 0
2.1 .080 H
.8 .ObO 0
9.211 GRAM/BHP
43.227 GRAM/BHP
7.27b GRAM/BHP
0.010 GRAM/BHP
,b07 LB/BHP
DRY CONCENTRATION
ALDE.























r.
HP
.0
.1
.3
.5
.4
.b
.0
.8
.0
.0
.0
.0
.9
.8
.3
.?
.5
.0
.3
.0
.0
.0
.0
HR
HR
HR
HR
HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
I
I





HC
1259
405
541
908
1027
8b5
785
727
838
1970 4
bb8
384b8
288b 5
bOO • 2
300 1
210
304
2b72 .
397
303
217
lOlb
41bOO
CO
.100
.100
.070
.070
.070
.070
.150
.280
.210
.350
.180
.150
.030
.110
.120
.b?0
.100
.100
.100
.100
.070
.100
.100
























C02
9.14
S.bO
8.84
9.37
9.93
11.01
12.94
12.47
12.47
11. 3b
10.09
2.b4
10.43
IB. 22
13. Ob
13. Ob
11.48
9.93
9.37
8.b8
8.34
S.bO
.Ib
NO
2b
39
71
245
505
770
1813
1750
21fa2
1112
38
11
1050
913
Ifa25
1785
1550
975
530
240
98
31
7
SPECIFIC GRAM/BHP-HR
HC
R
13.12
4.bb
3.73
3.42
1.98
I.f4
1.29
1.40
3.31
R
R
4.55
.92
.4b
.33
.59
7.57
1.48
2.3b
5.18
R
R







fa5
12
5
4
3
5
10
7
147


IfaO
bS
34
21
a
5
7
15
39







CO
R
.4
.2
.8
.7
.2
.5
.0
.1
.b
R
R
.0
.3
.7
.3
.9
.7
.5
.8
.0
R
R





N02
R
4.2
2.0
3.3
5.b
5.9
11.0
10.3
12.0
b.2
R
R
5.5
4.b
8.3
9.0
10.0
1.2
b.5
b.2
B.q
R
R



































-------
              '" PROJECT 11-2877-01  CONTROL TECHNOLOGY
7-11-72 RUN-3 ENG.2-3 72-VER. B-CATA. W/AIR STD. J.-0.075 R.-0.038

MODE
1
2
3
1
S
b
7
R
9
10
11
IS
13
It
15
Ib
17
18
11
SO
?.l
ss
S3

DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
I2on
1200
1200
hOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
230U
0.0
5.0
18.0
11.0
58.0
115.0
173.0
18S.O
212.0
230.0
0.0
0.0
2b2.0
23". 0
213.0
]ss.o
130.0
bS.O
17.0
21.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
if
S
13
2b
10
13
1+8
53
0
0
lib
10B
S3
85
57
28
21
q
2
0
0
A/F
VAC. LB/HR RATIO
18.0
IS. fa
18. S
17.8
lb.7
11.8
b.O
11.2
2.8
.3
18.5
22.5
.5
2.1
H-.5
S.8
11.2
lb.1
17.5
IS. 8
21.0
18.0
21.1
CALCULATED 6RAM/HR
MODE
1
2
3
1
c;
b
7
8
s
10
11
15
13
11
15
Ib
1?
IB
IS
20
21
22
?3
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
n.o
0.0
n.o
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
HC
17.0
11.8
12.3
28.5
35.8
b3.1
bO.2
8*. 7
b3.7
171.0
8.2
718.7
1fa2.8
17B.1
73.2
11. s
2S.1
23.0
23.8
11. »
8.8
10.2
lbbb.2
COMPOSITE








CO
Sb
b8
17
121
233
322
1585
2827
250S
S17fa
Sb
121
1112?
HlbO
8108
bS25
b72
Ibl
37fa
230
183
5b
18
HC
CO
N02
ALDE
BSFC
N02
2.0
b.b
12.0
53.2
80. b
2b1.2
202.1
Ibl.b
2b1 .5
18S.7
2.2
.b
187.5
Ib2.5
270. S
2S0.8
bSO.1
311.2
21S.8
bO. 8
11.0
2.5
.5
8.881
85.5Sb
1.175
0.000
.b75
3.1
7.1
7.S
s.o
1.1
11.3
81.9
31.1
25. b
32.3
3.1
3.7
bl.1
58.0
1-7.1
17.0
30.3
20.3
18.3
13. S
12.7
3.S
3.1
WT.
FAC.
.070
.ObO
,ObO
.050
.030
.ObO
0.000
.010
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
22.7
23. f
22.7
21.8
20.7
IS. 2
lb.1
IS.b
15.7
13.8
21.3
28.8
13.7
13. P
If.*
If .fa
17, b
20.1
20. b
22. S
23.3
23.1
38.1
WT.
HP
0.0
.1
.2
.5
.1
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.S
5.8
3.3
5.1
3.f
0.0
1.3
0.0
0.0
0.0
0.0
DRY CONCENTRATION
ALDE.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
I
I
HC
S2b
3*8
332
711
8bS
1115
85S
7bS
780
1855
182
30510
2521
107S
538
303
271
282
320
180
lib
55b
fsiso
CO
.ISO
.100
.130
.ISO
.280
.280
1.120
1.270
1.520
1.S30
.280
.250
5.210
1.510
3. ObO
2.3bO
.310
.280
.250
.180
.ISO
.ISO
.070
coa
S.50
1.37
S.SO
S.S3
10. 55
11.01
12.11
12.82
12.51
10.78
10.01
3.5b
10.55
11.18
12.51
13.18
18. *7
11.01
10.81
1.78
1.37
1.50
.2b
NO
33
5S
98
YOU
510
IfOO
870
150
175
b20
31
8
800
300
faOO
blO
1825
1150
810
290
205
11
1
SPECIFIC SRAM/BHP-HR
HC
R
10.31
2.SS
3.01
2.70
2.11
1.S2
l.Sb
1.32
3.25
R
R
1.03
I.b8
.78
.fS
.52
.81
l.lb
1.21
t.Ol
R
R
CO
R
SS.8
23. b
13,0
17. b
12.2
10.1
bS.S
51.8
171. b
R
R
lbS.3
112. S
SO.l
7b.1
11.8
lfa.2
18.2
25.0
83.1
R
R
N02
R
5.8
2.1
5.7
b.l
10.1
5.1
3.8
5.5
3.b
R
R
1.2
l.b
2.1
3.»
11.1
10.1
10.7
b.b
IB. 7
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
7-13-72

MODE
1
2
3
4
5
b
7
B
9
10
11
12
13
It
15
Ib
17
18
IS
ao
21
22
23

RUN 3
DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
l?no
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
t .0
lb.0
37.0
51.0
loa.o
153.0
Ib7.0
188.Q
20*. 0
0.0
0.0
23b.O
217.0
I9t.0
177.0
118.0
59.0
t2.0
1S.O
5.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3 1972 VERSION B-CATALYTIC W/AIR t ATDC
>
HP
0
1
t
8
12
23
35
38
t3
t7
0
0
103
95
85
78
52
2b
18
B
2
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO
lb.5 t.fa 22. f
18.7 7.b 2t.B
18.2 7.8 2t,9
Ib.t 9,8 23. b
15. t 10.0 23.1
7.8 17. b 19.8
f.l 22.3 17.7
3.0 22.9 17.7
1.8 2t.t 17.1
.3 31.5 It.t
17.0 H.2 21.8
22.0 t.t 57.0
.5 bt.3 13.7
2.t 53. fa It. 8
t.2 tb.O lfa.0
5.5 t2.7 lfa.1
9.3 30.8 19. t
15.5 18.5 22. t
lb.9 18.0 23.2
18.9 lt.0 21.5
20.2 12.2 2b.2
lb.5 t.5 22. S
2t.l t.b 3t.9


ALDE.























CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
t
S
b
7
B
S
10
11
I?
13
It
15
Ib
17
18
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
n.o
0.0
0.0
0.0
n.o
0.0
n.o
0.0
0.0
n.o
0.0
0.0
0.0
0.0
n.o
0.0
n.o
n.o
n.o
0.0
0.0
HC
21.3
It. 5
18.5
27.7
31.1
23. S
25.0
27.3
3b.2
80. B
8.9
22.1
375.0
t7.2
2t.l
20.5
20.0
23. fa
20.0
13.7
9.b
21. S
200b.b
COMPOSITE








CO
Sb
79
82
Sb
S7
SB
21t
25b
312
b573
70
325
isoto
5b87
1510
131b
2tt
171
17t
Iff
133
Sb
51
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.8 .070 0.
b.S .ObO
8.t .ObO
23.0 .050
3t.3 .030
139.9 .ObO 1.
308.3 0.000 0.
357.7 .OtO 1.
151.8 0.000 0.
2t5.5 0.000 0.
3.1 .070 0.
1.8 .120 0.
t3b.t .025 2.
302. b .055 5.
SOb.b .035 3.
t37.0 .OfaO t.
370.2 .ObO 3.
It2.0 0.000 0.
90.1 .ObS 1.
35. fa 0.000 0.
18. t 0.000 0.
3.0 .080 0.
.b .ObO 0.
fa.3tl GRAM/BHP
t2.fa32 GRAM/BHP
5.327 GRAM/BHP
0.000 GRAM/BHP
,72b LB/BHP
0
1
2
t
3
t
0
5
0
0
0
0
b
2
0
7
1
0
2
0
0
0
0
HR
HR
HR
HR
HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
1002
370
t5t
581
btb
343
30b
323
t23
B?t
tbt
38t
2012
290
158
its
Ibb
278
232
192
its
1023
5b083
CONCENTRATION










3


t
1









CO
.130
.100
.100
.100
.100
.070
.130
.150
.180
.520
.180
.280
.790
,730
.tso
.t70
.100
.100
.100
.100
.100
.130
.070
C02
9.50
B.bO
S.bO
9. It
9. 25
11. 3b
12.22
12.09
12.71
11. 8t
9. fat
3.13
10. fab
13.18
13.18
13. ta
11. ta
9.78
9.37
8.75
8.2t
9.3?
.09
NO
to
50
fa2
its
215
bOS
1137
1275
1587
800
t8
10
70S
5bO
1000
950
925
SOS
315
ISO
Bt
t3
5
SPECIFIC GRAM/BHP-HR


15.
5.
3.
2.
1.
•
•
*
1.


3.
•
*
•
«
•
1.
1.
t.







HC
R
89
Ob
28
bb
02
72
71
8t
73
R
R
fa3
50
28
2b
39
91
09
faS
39
R
R





CO
R
8b.7
22.5
11. t
8.3
t.2
b.l
fa. 7
7.3
ltl.0
R
R
17t.5
59.8
17.8
17.0
t.7
b.b
9.5
17.3
bl.O
R
R





N02
R
7.1
2.3
2.7
2.9
b.O
8.8
9.t
10.5
5.3
R
R
t.2
3.2
b.O
S.b
7.2
5.5
t.9
t.3
B.t
R
R



































-------
7-14-7?

MODE
1
3
3
4
5
b
7
8
9
10
11
1?
13
14
15
Ib
17
.18
19
20
91
22
23

RUN-2
DYNA,
SPFED LOAD
brio
1200
1200
1200
I2nn
l?nn
1200
i ? n o
1200
1200
bOO
1200
23HO
2300
2300
2300
2 3 0 f)
2^no
2300
2 3 Off
23nn
bOO
2300
0.0
5.0
18.0
41.0
58.0
115.0
173.0
189.0
212.0
530.0
0.0
"0 . 0
2bO.O
23^.0
213.0
1^5.0
130.0
bS.O
47.0
21.0
5.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3 1972 VERSION B-CATALYTIC W/0
»
HP
0
1
4
9
13
2b
40
43
48
53
0
0
114
105
93
85
57
28
ei
s
2
0
u
MAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
18.0 3.b 15.3
19.2 7.3 lfa.3
18.7 7.4 lb.4
17.0 S.fa lb.7
15.1 10.2 lfa.7
8.4 Ifa.b lb.2
4.7 20.7 15.3
3.b 21.3 15.2
2.2 23. b 15.0
.3 31.7 12.9
18.5 3,b 13. b
22.5 4.5 14.7
.5 b2.1 13.2
3.0 47.5 14.4
4.8 44. b 14.4
b.O 41.9 14. b
1.8 2^.5 lb.7
15.4 ?b.b 17.0
lb.8 17.0 17.1
19.1 13.3 17.2
20.5 11.4 17.2
13.0 3.b lb.3
24.5 3. fa 18.8
CALCULATED GRAM/HR WT. WT.
MOOE
i
?.
3
4
5
b
7
%
9
10
11
12
13
14
15
Ib
17
18
1^
20
21
22
23
CYCLE




ALOt
a.o
n.o
n.n
0.0
n.o
0.0
0 . 0
0.0
0 . 0
n.n
n.n
0.0
n.o
0.0
n.O
0.0
0.0
0.0
n.o
0.0
n . 0
0 . 0
0.0
HC
38.1
11.2
s.s
32.2
fO.3
42.5
7b.l
73.1
1P4.8
??4.7
41.5
5 0 b . fa
505.2
i??. 2
180.3
172.7
27.1
30.7
15.8
7.4
3. fa
51.1
S3b.3
CflMPUSlTE








CO
181
fa4
51
b8
71
112
4Sb
b39
573
8785
840
59b
Ib32b
5901
5fa38
4529
201
185
118
fa4
S5
82
79
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.8 . 13 7 0 0 . n
5.7 .ObO .1
7.1 .OfaO .2
37.8 .050 .5
73.7 .030 .4
207.7 .OfaO l.b
409.9 0.000 0.0
471.8 .040 1.7
591.3 0.000 0.0
330.1 0.000 0.0
1.9 .070 0.0
.8 .120 0.0
82b.3 .025 2.8
781.5 .055 5.8
727.9 .035 3.3
743.4 .QbO 5.1
585. fa .ObQ 3.4
3fa3.9 0.000 0.0
149.8 .ObS 1.3
47.5 0.000 0.0
22.9 0.000 0.0
2.1 .080 0.0
.5 .ObO 0.0
5.775 GRAM/BHP HR
54.155 GRAM/BHP HR
8.210 GRAM/BHP HR
0.000 GRAM/BHP HR
.bl? LB/BHP HR
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
I
I





DRY
HC
3271
4b2
37b
9b3
1143
7b4
1179
lOSfa
1441
2bSb
40b5
35735
2994
1280
1408
141?
273
337
2fa9
Ib3
93
1807
38343
AIR
STD
CONCENTRATION










5
4
2
4
2
2
1







CO
.770
.130
.100
.100
.100
.100
.350
.470
.390
.140
.070
.080
.790
.110
.180
.840
.100
.100
.100
.070
.070
.350
.280
























C02
13. Ob
13.48
13.18
12.82
12. S4
13.33
14.05
13.77
14.18
ll.faO
11. bD
S.faB
ll.faO
13.33
13.48
13.fa3
13.33
13. Ob
13. Ob
13.18
13.18
13. b3
7.5b
NO
4b
70
85
340
b30
1125
1912
2112
2450
1175
5b
17
1475
1700
1712
1837
1775
1200
770
315
17b
53
11
SPECIFIC GRAM/5HP-HR


9.
2.
3.
3.
1.
1.
1.
2.
4.


4.
1.
1.
2.
•
1.
•
,
1.







HC
w
8.1
30
44
04
b2
92
b9
Ib
28
R
R
4*
b9
93
02
48
08
77
80
bb
R,
R







55
12
7
5
4
11
14
11
Ifa7


143
Sfa
bO
53
3
b
5
7
25







CO
R
.8
.3
.2
.4
.3
.5
.8
.8
.2
R
R
.4
.4
.4
.0
.5
.5
.7
.0
.3
R
R





N02
R
5.0
1.7
4.0
S.b
7.9
10.4
10.9
12.2
b.3
R
R
7.3
7.5
7.8
8.7
10.3
12.8
7.3
5.8
10.5
R
R



































-------
                   ENGINE 2-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




                TABULAR DATA




               AFTER CATALYST

-------
7-l*-72

MODE
1
2
3
*
5
b
7
8
S
10
11
IS
13
If
15
Ib
17
18
19
20
21
22
23

RUN-2
DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
20.0
tfa.O
b*.0
128,0
192.0
210.0
23*. 0
25b.O
0.0
0.0
270.0
2*8.0
221.0
203.0
135.0
bB.O
*9.o
22.0
5.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3 1S72 VERSION A-CATALYTIC W/AIR STD 25 BTDC
HAN. FUEL
HP
0
1
5
11
IS
29
**
*8
S3
58
0
0
118
109
9?
89
59
30
21
10
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
19.5
21.7
19.3
17.*
IS. 5
9.7
s.s
3.8
1.9
.3
20.0
23.7
.5
2.2
*.2
S.b
10.1
15.5
17. b
19.5
20.5
19.5
25.1
CALCULATED GRAM/HR
MODE
1
2
3
*
5
b
7
8
S
10
11
12
13
It
IS
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
O.D
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
3.*
1.9
9.2
IS. 3
18.1
25. a
33.5
3b.*
53.2
200.2
20.0
2.0
2b8.3
8b.3
32.*
31.1
51.0
2*.0
2*. 5
19.9
*7.3
23.2
3.1
COMPOSITE








CO
22
58
S3
8b
bS
92
?b
82
88
5190
15
33
1*032
3bi*
*S2
287
118
90
81
71
bb
b
20
HC
CO
N02
ALDE
BSFC
N02
1.3
*.9
2b.S
127.7
282.1
b02.1
850.1
9*1.*
103b.3
*91.0
3.*
2.7
87*. S
795. fa
l*3b.b
13b8.8
1381.*
575.0
287. b
10*. 9
53.9
l.b
.3
l.Olb
22.b?0
1*.178
0.000
.5fa7
2.7
5.1
7.2
8.5
10.2
15.1
20.2
21.5
23.8
31.3
2.7
2.7
b2.5
52. b
*S.*
*1.7
28.7
19.3
Ib.*
13.*
12.2
2.7
2.b
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
27.*
1*.8
25.0
2*.l
22.9
21.0
18.2
18.1
17. b
1*.S
2b.2
5*. 9
13.8
15.2
lfa.5
lb.8
20.1
22.5
23.8
25.2
25.8
27.5
85.9
WT.
HP
0.0
.1
.3
.5
.*
1.8
0.0
1.9
0.0
0.0
0.0
0.0
3.0
b.O
3.*
5.3
3.5
0.0
1.*
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
220
bb
2*b
357
370
398
**S
*50
b!3
21bb 2
13**
b2
1553 *
5*0 1
217
219
*35
270
30*
28*
728
1501
b3
CO
.070
.100
.070
.100
.070
.070
.050
.050
.050
.780
.050
.050
.020
.120
.150
.100
.050
.050
.050
.050
.050
.020
.020
cos
7.85
7.9*
a.bo
8.8*
9.37
10. *3
12.09
11.92
12.3*
12.3*
B.O*
3.b2
12.22
13.77
13. b3
13.18
11.01
9.78
9.1*
B.bO
8.*3
7.75
2.3?
NO
5fa
SI
21*
900
1737
2800
3*00
3500
3 bOO
IbQO
b8
25
1525
1500
2900
2900
3550
1950
1075
*SO
eso
31
2
SPECIFIC GRAM/BHP-HR
HC
R
l.bb
2.01
l.*5
1.2*
.88
.7fa
.7b
.99
3.*2
R
R
2.27
.79
.33
.35
.Bb
.81
1.1*
2.07
51.58
R
R
CO
R
50.9
11. b
8.2
*.7
3.1
1.7
1.7
l.b
88.7
R
R
118.7
33.3
*.7
3.2
2.0
3.0
3.8
7.*
29.9
R
R
N02
R
*.3
5.8
12.2
19.3
20, b
19.*
19. b
19.*
8.*
R
R
7.*
7.3
1*.8
15.*
23.*
19.3
13.*
10.9
2*.b
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
7-13-72
RUN-2
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3 1S72 VERSION A-CATALYTIC W/AIR Ifa
DYNA.
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib,
17
18
19
20
21
22
23
SPEED LOAD
bno
1200
1200
120Q
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
feOD
2300
0
5
21
4b
b4
129
193
212
232
258
0
0
272
250
223
204
13b
b8
49
22
5
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
5
11
15
29
44
48
53
59
0
0
119
109
98
89
faQ
30
21
10
2
0
0
MAN. FUEL A/F
BTDC
DRY CONCENTRATION
VAC. LB/HR RATIO ALOE.
19.0 3.3 25.8
20.5 5. fa 25.7
19.1 7.0 25.1
17. fa 10.2 24.5
lb.4 11.1 23.9
9.3 15.1 21.3
5.5 20.2 18.3
3.8 21.9 18.0
P. 3 23. fa 17.8
.3 32.0 14.4
IS. 5 3.3 23.3
23.3 2.8 44.1
.5 b2.1 14.3
3.0 47.5 lb.1
S.O 44.1 Ib.fa
fa. 2 41.0 lb.8
10.1 28.0 20.3
lb.0 18.8 22.7
17.5 Ifa. 9 23.8
19.8 12.9 25.9
21.2 9.4 27.2
19.0 3.3 27.2
24.9 2.8 58.3
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
•)
8
q
10
11
12
13
14
15
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
n.o
n.o
n.o
0.0
0.0
0.0
0.0
o.o
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
o.o
HC
2b,
b.
7.
lb.
Ifa.
23.
29.
34.
41.
188.
137.
lb.
24S.
29.
21.
IS.
32.
17.
11.
7.
S.
1.
17b.
1
4
1
0
7
0
1
5
2
0
9
8
3
fa
3
8
7
5
7
4
8
4
3
COMPOSITE












CO
18
faO
74
S3
23
27
31
82
88
SfaSD
32
72
14590
5bl
385
3fa7
230
89
84
b9
53
19
3fa
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
^ 1.8 .070 0.0
5.7 .ObO .1
12.2 .ObO .3
80. fa .050 .5
135.8 .030 .4
359.1 .ObO 1.8
704.2 0.000 0.0
757.7 .040 1.9
910.8 0.000 0.0
383.0 0.000 0.0
1.7 .070 0.0
3.9 .120 0.0
b48.5 .025 3.0
1127.8 .055 b.O
1181.0 .035 3.4
1042. b .ObO 5.4
1058.8 .ObO 3.b
423.5 0.000 0.0
248. b .ObS 1.4
bl.2 0.000 0.0
23.0 0.000 0.0
1.8 .080 0.0
.8 .ObO 0.0
1.497 GRAM/BHP HR
17.373 GRAM/BHP HR
Il.b57 GRAM/BHP HR
0.000 GRAM/BHP HR
.5faO LB/BHP HR
0
0
0
0
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
1451
21b
194
303
298
345
377
423
473
199fa 2
8b25
fa!3
143b 4
192
145
142
28?
199
141
108
188
75
4950
CO
.050
.100
.100
.050
.020
.020
.020
.050
.050
.970
.100
.130
.IbO
.180
.130
.130
.100
.050
.050
.050
.050
.050
.050
























C02
8.04
8.34
8.54
B.faB
8.93
10.25
11.84
12.09
12.22
12.22
8.34
4.45
11.92
13.77
13.48
13.18
11.01
9.fa4
9.14
8.48
8.04
8.04
3.02
NO
31
57
100
4bO
730
Ib25
2750
2800
3150
1225
32
43
1125
2200
2425
2250
2800
1450
soo
270
132
30
7
SPECIFIC GRAM/BHP-HR
HC
P
S.bS
1.49
1.52
1.14
.78
.fab
.71
.78
3.19
R
R
2.09
.2?
.22
.22
.55
.59
.55
,7b
4.50
R
R







52
15
5
1


1
1
95


122
5
3
4
3
3
3
7
24







CO
R
.S
.5
.1
.5
.S
.7
.7
.7
.8
R
R
.5
.1
.S
.1
.S
.0
.9
.2
.2
R
R





N02
R
5.0
2.5
7.7
9.3
12.2
lb.0
15. b
17.2
fa. 5
R
R
5.4
10.3
12.1
11.7
17.8
14.2
11. b
fa. 3
10.5
R
R



































-------
7-12-7P
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG. 2-3  1972 VERSION, A-CATAL.YTIC w/AlR STO
oYNA. MAN. FUEL
'•'ODE
i
?
3
t
5
t.
7
a
s
in
11
i ?
L3
It
IS
lb
1?
1 *
IS
2'i
t3 1
r>r>
r> -t
SPfcFD LOAD HP
b o i:. n.o o
.1 1? n f i S . 0 1
1 2 0 1 ' 1 S . 0 4
12rni 4P.O 10
l?ni. SS.o 13
1 ? n n 117.0 27
1 ? n i ' 1 7 b , 0 4o
1 ? (1 i .1 1 S r> , 0 44
12 nn 21^.0 4S
12m- ?34.o 53
hen' n.o 0
I2ni (..n o
2=mr 2b?.o 115
?3nr- ?t i .0 inb
53nii ?lb.O S5
23flL. JHV.O 8fa
a 3 n n i32.o 58
c'rini; h^.O 2S
rfim 1 7.o 21
t'?n.' 21.0 S
2^0ii b . 0 2
b n ii n.o o
r>3f«> 0.0 0
A/F
VAC. L8/HR RATIO
18.5
11.5
18.4
17.5
15.7
8.8
4.S
3. fa
2.0
.3
18 J.S
23.0
.5
2.8
4.8
b.2
1.3
15.8
17.2
IS. 4
21.0
18.5
25.0
CALCULATED GRAM/HR
M 1 ! | , h
J
2
^
t
L,
b
7
B
N
1 r.
l 1
1?
! 3
1 >+
1 <.
Lb
17
l«
J q
•.'• -».! 4S
• i . n s . i fa b
'.i li'. t 7S
f'.n H.7 82
• i . ' 1. f3 . 4 87
'••.'• 7S.fc 5154
• ." c.H IS
"•.i' 3ii.b 27
",M H-.J.O 14401
".i! S. ? 339
f 1 . i ' b . b 2 0 b
»." b.1 201
n.l' B.b 235
'i. i- b.ti S2
11 .' ^ . 3 34
"." ^.1 2S
• '.' 2.b 25
M.I' 3.5 8
n.r mi.O b5
rrt-pf -i IK HC
CO
N02
ALOE
6SFC
N02
1.8
5.5
14.1
27.0
77.7
lS4.fa
427.8
4b0.7
bit. 8
251.4
3.1
1.3
448. S
1011,3
823.5
802.4
fa23.2
287.4
17fa.8
50.7
20,7
2.1
.8
.7M7
lfa.5S3
8,b02
0.000
,b!2
3.7
7.0
7.?
8.3
10.1
lb.0
20. b
22.1
23.8
31.5
3.7
3.7
b3.8
51.4
43. fa
42.0
28.8
IS. 8
17.4
13.5
11.3
3.7
3.5
WT.
FAc.
.070
.OfaO
.ObO
.050
.030
.OfaO
0.000
.040
0.000
0.000
.070
.120
.025
,055
.035
.OfaO
.OfaO
0.000
.Ofa*.
0.000
0.000
.080
.obn
2b.O
25.8
25. b
25.0
23.5
21.1
11.1
18. H
18.0
14. fa
24.5
35.7
13.8
lb.4
lb.7
17.0
20.^
23.1
24.1
25. R
27.4
2fa.2
5S.8
wT


ALOE.























•
HP
n.
•
•
*
•
.1.
n.
1.
n.
0.
0.
n.
?.
5.
3.
5.
3.
n.
1.
0.
o.
n.
".
GRAM/BMP
GRAhi/BHP
GRAM/BHP
GRAM/BHP


-------
7-12-72
RUN-?
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG. 2-3 1172 VERSION A-CATALYTIC W/AIR 8TD
DYNA.
MODE
1
2
3
4
5
t,
7
R
q
10
.11
1?
13
i1*
15
it
i?
18
1<»
20
21
s?
2=1

HODE
1
g
3
H
5
h
7
R
q
10
11
12
13
If
15
Ib
17
18
H
30
21
2?
23
CYCLE




SMEED LOAD
bon
ieoo
1200
1200
i?on
I2on
i?no
1200
i?on
1200
hoo
1200
^ori
23oo
5?oo
2900
2300
£300
2?00
2300
2300
bOO
2300

ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
n.o
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
n.o
0.0
n.o
o.o
0
s
11
*2
sq
117
l?b
1S2
215
53*
0
0
2fa3
2*1
21h
117
132
bb
*7
21
5
0
0
CALCUl.
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
*
10
13
27
*0
*t
^q
53
0
0
115
lOb
15
8b
58
2q
21
R
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.5 f.O 2b.t
1s*. b 7.1 gf.9
18.8 7.t 25.7
lb.8 8.3 g^.S
15.7 10.0 23.3
^.8 15.1 21.3
t.s 21. t is. q
3.8 22. Q 18. f
2.H 23.1 18.?
.3 31.5 iq.3
iq.o 3.q 25.i
23.0 3. fa 38. b
.5 B3.0 1H.O
2.7 51.3 15. f
f.7 ^5.4 Ib.b
b.O fl.2 17.2
10.0 28.8 21.0
15. b 18. b 23."+
17.5 lb.1 2*.b
1^.2 13. q 35.7
21.0 11.2 27.5
18.5 3.q 28.1
2f,8 3.5 bl.5
ATED GRAM/HR NT. WT.
HC
7.
if.
*.
7.
I.
10.
13.
11.
1*.
qi.
2.
fe*.
1*0.
23.
8.
5.
8.
b.
*.
3.
2.
* .
128.
*
b
2
2
1
1
S
b
0
5
*
7
2
5
2
7
7
1
3
1
*
8
b
COMPOSITE












CO
q
51
lb
17
iq
25
32
33
3f
tqsb
8
12
1359^
2bOS
152
If3
122
88
81
73
b3
23
S5
HC
CO
N02
ALDE
8SFC
M02 FAC. HP
l.q .070 0.0
5.7 .ObO .1
10.7 .ObO .3
3b.O .050 .5
88.3 .030 .4
IfaB.b .ObO l.b
ffa7.b 0.000 0.0
fSS.f .OfO 1.8
bOt.b 0.000 0.0
2q?.fa 0.000 0.0
2.3 .070 0.0
.q .120 n.o
t8b. 3 .025 2.^
47b.t .055 5.8
82f.q .035 3.3
SSb.O .ObO 5.2
bbl.3 .ObO 3.5
27^.1 0.000 n.o
1*1.1 .ObS 1.3
58.8 0.000 n.O
23.7 0.000 D.O
2.2 .080 0.0
1.2 .ObO 0.0
.9*1 GRAM/BHP HR
iq.SqO GRAM/BHP HR
?.bO? GRAM/BHP HR
0.000 GRAM/BHP HR
.faO? L8/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
3f5
127
108
175
iqa
Ib3
173
1*3
Ibb
1007
121
2231
?aq
1*8
5*
*0
72
70
5*
*3
sq
212
2733
CO
.020
.070
.020
.020
.020
.020
.020
.020
.020
2. b90
.020
.020
3.7SO
.810
.050
.050
.050
.050
.050
.050
.050
.050
.100
























C02
8.3*
8.8*
B.faS
9.1*
q.78
11.01
12.3*
12.3*
12.3*
12.1*
q.os
S.3S
12.22
13,77
13. b3
13.18
10.78
R.fa*
q.03
8,b8
8.1*
7.85
3.03
NO
2fa
*7
8*
2fa5
575
820
1800
1712
2150
387
35
q
825
qoo
IbSO
182S
IfaSO
S50
530
2*5
115
30
8
SPECIFIC GRAM/BHP-HR
HC
R
* .0*
.qfa
.75
.b8
.38
.3*
.2b
.2^
1.71
R
R
1.22
.22
.nq
.07
.15
.21
.21
.3*
1.10
R
R







**
3
1
1




S2


118
2*
1
1
2
3
3
7
28







CO
R
.^
.fa
.7
.*
.^
.8
.7
.7
.3
R
R
.0
.7
.fa
.7
.1
.0
.9
.q
.7
R
R





N02
R
5.0
2.5
3.8
fa. 5
b.3
11. b
10.*
12.3
5. fa
R
R
*.2
*.S
8.7
S.S
11.*
S.5
fa.S
b.*
10.8
R
R



































-------
7-13-72

MODE
1
2
3
f
5
t>
7
8
q
in
11
ia
13
if
IS
Ifa
17
18
II
20
21
22
S3

RUN 3
DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
I2on
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
f .0
lb.0
37.0
51.0
102.0
153.0
Ib7.0
188.0
20f .0
0.0
0.0
23b.O
217.0
Hf .0
177.0
118. Q
sq.o
f2.0
iq.o
5.0
0.0
0.0
PROJECT 11-2877-01 CONTROL TECHNOLOGY
EN6. 2-3 1972 VERSION A-CATALYTIC W/AIR f ATDC
MAN. FUEL
HP
0
1
f
8
12
23
95
38
H*3
f7
0
0
103
qs
85
78
52
2b
18
8
2
0
0
A/F
VAC. LB/HR RATIO
lb.5
18.7
18.2
Ib.f
15. f
7.8
f.l
3.0
1.8
.3
17.0
22.0
.5
2.f
f.2
5.5
S.3
15.5
ib.q
is. q
20.2
lb.5
2f.l
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
lb
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
n.o
0.0
0.0
0.0
n.o
n.o
0.0
0.0
0.0
n.o
0.0
0.0
n.o
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
b.O
f.o
f.f
b.f
b.b
5.7
7.8
b.S
7.2
aq.o
2.5
.7
119.2
30.0
lb. 3
15.8
13.5
B.b
fa.s
3. fa
2.f
f.f
2f0.7
COMPOSITE








CO
23
fO
f2
50
50
71
8b
88
qo
ff72
q
32
13905
f!02
310
20f
178
122
12b
102
93
2f
73
HC
CO
N02
ALDE
B3FC
N02
3.f
7.f
q.f
87.5
33.0
Iff. 3
317.2
37b.2
f52.7
205. b
3.f
1.1
370. b
317. q
Sbl.2
soq.o
3q?.b
ifq.o
lOb.l
3b.3
iq.b
3.3
.q
1.03f
27.178
5.72f
0.000
.72b
f.fa
7. fa
7.8
1.8
10.0
17. b
22.3
22. q
2f.f
31.5
f.2
f.f
bf.3
S3. b
ffa.O
f2.7
30.8
18.5
18.0
lf.0
12.2
f.S
f.fa
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OfO
o.ono
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
2f .2
25. f
25. f
2f.2
23*8
20.1
18.5
18.3
17.8
If. 7
23. q
33.0
13.8
if.q
ib.s
lb.7
20.3
22. q
83.8
25.0
2fa.l
2f.7
51.3
WT.
HP
0.0
.1
.2
.f
.3
l.f
0.0
1.5
o.n
o.o
0.0
0.0
2.b
5.2
3.0
f.7
3.1
0.0
1.2
0.0
0.0
0.0
0.0
DRY CONCENTRATION
ALDE.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
I
I
o.o
0.0
o.o
0.0
o.o
o.o
o.o
0.0
o.o
I
I
HC
2bO
101
108
130
133
80
qa
7f
81
fib
lib
23
bfl
182
lOb
110
107
qq
77
50
37
188
fbf?
CO
.050
.050
.050
.050
.050
.050
.050
.050
.050
2.3bO
.020
.050
3.700
1.230
.100
.070
.070
.070
.070
.070
.070
.050
.070
C02
8. S3
B.bO
B.faO
8.q3
q.03
11. 2f
11. 8f
11. 8f
12. 3f
12.82
8.8f
b.30
11.12
13. f8
13. fB
13.33
11.01
q.bf
q.if
8.75
8.3f
8.75
3.fS
NO
ft
Sb
b8
lb?
200
blS
1125
1300
1525
bbO
fB
10
bOO
580
1100
10b3
950
520
3bO
152
90
f3
S
SPECIFIC GRAM/BHP-HR
HC
R
f .sq
1.21
.7b
.57
.2f
.22
.17
.17
.8f
R
R
1.15
.32
,iq
.20
.2b
.33
.37
.f3
1.11
R
R
CO
R
f3.8
11. f
s.q
f.3
3.1
2.5
2.3
2.1
qs. q
R
R
13f .5
f3.2
3.7
2.b
3.f
f.7
b.S
12.2
f2.f
R
R
N02
R
8.1
2.b
3.2
2.8
b.2
q.i
q.q
10.5
f.f
R
R
3.b
3.3
b.b
b.b
7.7
5.8
5.8
f.f
q.o
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/8HP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
7-lt-72  RUN-3    ENG.2-3 72-VER. A-CATA. W/AIR STD. J.-0.075 R.0.038

MODE
1
2
3
t
5
b
7
B
9
10
11
12
13
If
15
lb
17
18
19
30
21
S2
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1HOO
1200
1200
too
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
n.o
58.0
115.0
173.0
18S.O
212.0
230.0
n.o
0.0
2b2.0
239.0
213.0
195. 0
130.0
bS.O
t7.0
21.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
t
9
13
2b
to
t3
t8
53
0
0
115
105
93
85
57
28
21
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.0
19. b
18.9
17.8
lfa.7
11.8
b.O
t.t
2.8
.3
18.5
22.5
.5
2.1
t.5
5.8
11.2
Ifa.t
17.5
19.8
21.0
18.0
2t.t
CALCULATED GRAM/HR
MODE
1
2
3
t
5
b
7
8
q
10
11
12
13
1*
15
lb
17
18
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
.8
2.5
l.b
1.*
2. fa
3.3
b.3
3.2
3. fa
fa. fa
.9
1.0
lt.1
fa. 7
10.7
11.0
9.0
t.o
fa. 7
2.0
t.7
.9
.8
COMPOSITE








CO
21
3b
38
tl
t3
318
its
158
252
7005
8
11
ISbOb
112b5
tSfaS
2731
111
83
77
fab
12t
20
95
HC
CO
N02
ALDE
BSFC
NO 2
2.t
7.8
12.1
t3.3
77.3
2*9.7
18* .9
233.9
Bbfa.l
191. t
2.7
.8
tOb.9
19t.9
310.7
319.3
bb9.5
301.2
201.1
faO.S
35.7
2.7
.fa
.its
S3.90b
5.138
0.000
,fa58
3.9
7.1
7.9
9.0
9.9
It. 3
21.9
23. t
25. b
32.3
3.9
3.7
fat. 9
58.0
t7.1
t7.0
30.3
20.3
18.3
13.9
12.7
3.9
3.9
WT.
FAC.
.070
.OfaO
.OfaO
.050
.030
.ObO
0.000
.oto
0.000
0.000
.070
.130
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.OfaO
2t.9
2t.2
23.5
22.3
21.2
19.3
lb.7
Ib.h
Ib.B
lt.1
2t.2
35.5
13.7
lt.0
It. 8
15.1
18.2
20. fa
21.1
23.2
23.7
5t.9
St. 5
WT.
HP
0.0
.1
.2
.5
.t
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.9
5.8
3.3
5.1
3.t
0.0
1.3
0.0
0,0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
38
71
ta
35
bO
59
85
tl
t3
70
ts
35
80
tl
77
79
82
t9
87
31
7b
tt
lb
CO
.050
.050
.050
.050
.050
.280
.100
.100
.ISO
3.700
.020
.020
t.350
3.t20
I.b30
.970
.050
.050
.050
.050
.100
.050
.100
C02
8.75
8.93
9.37
9.93
10.55
11. 2t
13.33
13. t8
13.77
11.92
9.03
b.OS
12.22
12.71
13.77
It. 31
12. t7
11.13
10.78
9.bt
9.25
8.8t
3.fa8
NO
35
faS
9b
320
550
1337
755
900
9b3
blS
tl
8
b90
3bO
b?5
b90
1837
1100
790
280
175
tl
t
SPECIFIC SRAM/BHP-HR
HC
R
2.22
,39
.15
.19
.13
.lb
.07
.07
.13
R
R
.12
.Ob
.11
.13
.lb
.It
.32
.22
2.13
R
R
CO
R
31. fa
9.3
t.t
3.2
12.1
3.8
3.7
5.2
133.3
R
R
ISb.O
107. fa
t8.9
32.0
1.9
2.9
3,8
7.1
5b.7
R
R
N02
R
b.8
2.9
t.b
5.8
9.5
t.7
S.t
5.5
3.b
R
R
3.5
1.9
3.3
3.7
11.8
10. b
9.8
b.b
lb.3
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
7-lf-72
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG. 2-3  1172 VERSION  A-CATALYTIC W/0 AIR STD

MODE
i
2
3
*
S
b
7
8
q
10
11
i?
13
If
IS
Ib
17
18
IS
20
21
2?
23

MODE
1
2
3
t
S
b
7
8
S
in
11
12
13
If
15
Ib
17
18
IS
20
21
22
23
CYCLE





UYNA
SPEED LOAD
bOO
1200
1200
i ? 0 L
1200
12«j'i
1200
i 2 o n
1200
1200
bOU
1200
2300
d -iOO
2300
(HMO
2 3 ii 0
230M
2300
2 3IM?
2 J 0 0
hOO
2300

AL.HE
••• . o
n.o
o.n
0 . f."
•">. 0
!.) . 11
U . ' '
O.M
11 . 0
" . 0
1 . o
•'. 0
1.0
'1 . 0
0. ri
0 . 0
I • . 0
0.0
I'.'J
' -' . 0
'.n
n.o
o.o
o.o
5.0
1R.O
fl.O
58.0
11S.O
173.0
18S.O
212.0
230.0
0.0
n.o
2 fa 0 . 0
23S.Q
213.0
1 S c, . Q
130.0
bS.O
f 7.0
ell .0
S.O
0.0
0.0
CALCULA1
HC
H.O
3.2
5.3
b.8
7.2
1.0.1
2H7.2
33.2
Sf .1
2-fb.b
30.3
.fa
3Rl.b
IS. 3
.121.1
133.2
l.f
f . b
3.2
1.2
.b
3.5
1.2
rnMHOsiTF:








MAN. FUEL
HP
0
1
f
R
13
2b
fO
f3
f8
53
0
0
llf
105
S3
85
5?
28
21
4
2
0
D
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALOE.
18.0
19.2
18.7
17.0
15.1
S.f
f .7
3.b
2.2
.3
18.5
22.5
.5
3.0
f.8
b.O
1.8
15. f
lb.8
19.1
20.5
is.o
2f .5
EO GKAN/HN
CO
13
2b
2b
35
38
58
bb
100
153
11 '4 2
f!2
3f
18f ff
fSSl
3537
3b70
fO
25
ef
fb
fO
5
8
HC
CO
N02
ALDE
BSFC
N02
1.7
b.l
7.3
50.1
7 l.f
22S .fa
f Uf . b
fbS.5
55f .8
28f.O
1.8
1.2
hlB. 8
178.7
888.8
801.1
518.2
231.1
If 1.1
(A 3 ^*
"3 n Q
2.0
.7
1.121
3.b
7.3
7.f
l.fa
10.2
Ib.b
20.7
21.3
23. b
31.7
3. fa
f . 5
b2.1
f7.5
|i ^ L
fl.1
21.5
17.7
17.0
13.3
11. f
3.b
3.b
WT.
FAC.
.070
. OfaO
.Ofr>0
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
17. f
17.2
17.2
17. fa
17.5
Ib.b
15.3
15.8
15.5
13.0
15.3
18.8
12.1
If .7
If .8
If .7
17.0
17. f
17. f
17. b
17.7
18.2
eb.b
WI.
HP
n.o
.1
.2
.5
.f
l.b
o.o
1.7
n.o
o.o
n.o
o.o
2.8
5.8
3.3
5.1
3.f
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
I
I
o.o
o.o
o.o
o.o
o.o
o.o
Q.O
o.o
o.o
I
I
HC
b83
123
10
112
112
111
f573
f b?
712
2882
2b2b
35
2278
107
8H
1085
Sf
75
55
2b
Ifa
2b2
bl
CO
.050
.050
.050
.050
.050
.050
.050
.070
.100
5.210
1.770
.100
S.fSO
1.510
1.300
l.fBO
.020
.020
.020
.050
.050
.020
.020
C02
12. f?
12.82
12.82
12. 3f
12.22
13. Ob
13.11
13. f8
13.11
11. 2f
12.22
11. 8f
11.13
13. f8
13. b3
13.11
13.33
12. If
13. Ob
13. Ob
le.if
12. f?
8.3f
NO
to
71
85
f30
570
1188
1875
1175
2200
1000
fB
22
1112
20fa3
118?
1187
1800
llbg
720
285
188
f 5
11
SPECIFIC GRAM/BHP-HR
HC
R
2.77
.57
.72
.55
.f 2
7.52
.7?
1.12
f .bl
R
R
3.35
.15
1.30
l.Sb
.1?
.Ib
.Ib
.13
.21
R
R
CO
R
22.8
b.4
3.8
2.1
2.2
1.7
2.3
3.2
17f .0
R
R
Ib2.0
f3.1
37.1
f3.0
.7
.1
1.2
5.0
18. f
R
R
N02
R
5.3
1.8
S.f
S.f
8. fa
10.2
10.8
11.5
S.f
R
R
S.f
l.f
1.5
1.5
10.5
8.f
b.l
f .7
11. f
R
R
























GRAM/BHP HR
f2.312 GRAM/BHP HR
3.855
0.000
GRAM/BHP HR
GRAM/8HP HR
.^1? LB/BHP HR

-------
                   ENGINE 2-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




               GRAPHED RESULTS

-------
      LEGEND
                1200 rpm
                2300 rpm
O  7-14-72 w/air 25" BTDC
O  7-13-72 w/air 16° BTDC
A  7-12-72 w/air Standard
0  7-13-72 w/air 4° ATDC
D  7-14-72 w/air 0.075 Jets  0.038 Rods
O  7-14-72 w/o air Standard
       10
20   30    40    50   60    70   80    90
  Power,  Percent Maximum at Given RPM
100  C.T.
    FIGURE M-l.  EFFECT OF POWER ON HC EMISSION RATE -
                  AFTER OXIDATION CATALYST
                   ENGINE 2-3,  23 MODE TEST

-------
                                         Approx. 9142-18,444
     O
     O
     LEGEND
		--- 1200 rpm
	2300 rpm
 7-14-72 w/ air 25°  BTDC
 7-1.3-72 w/ air 16°  BTDC
  5-
o
o
o
i-H
X
h 4
g
PH  i
2  i
S3-
d  :
fc
o  I
      A 7-12-72 w/ air Standard
      0 7-13-72 w/ air 4° ATDC
      O 7-14-72 w/ air 0. 075 Jets 0. 038 Rods
      O 7-14-72 w/o air Standard
             10
           20   30    40    50    60   70   80
              Power, Percent Maximum at Given RPM
Too  C.T.
         FIGURE M-2.  EFFECT OF POWER ON CO EMISSION RATE -
                       AFTER OXIDATION CATALYST
                         ENGINE 2-3, 23 MODE TEST

-------
16

15

14

13

12

11

10
  i
 9-
§  8
           LEGEND
                      1200 rpm
                      2300 rpm
       O  7-14-72 w/ air 25° BTDC
       O  7-13-72 w/ air 16° BTDC
       A  7-12-72 w/ air Standard
       0  7-13-72 w/ air 4° ATDC
       O  7-14-72 w/ air 0.075 Jets
               0. 038 Rods
       O  7-14-72 w/o air Standard
3
O
0)
   7.
CO
S  5
ri
SH
O
              10    20    30   40    50   60    70   80    90    100   CT
                         Power, Percent Maximum at Given RPM
       FIGURE M-3.  EFFECT OF POWER ON NOX (AS NOz) EMISSION RATE
                                 AFTER OXIDATION CATALYST
                                  ENGINE 2-3, 23 MODE TEST

-------
  25f
  20-
M
E
  15-
O   !
t6   v
>   J
£ lot
• H   :
n)
nj
•w
                                                                2300
                                                                      I
                                                                1200 r
              LEGEND
              rpm
         2300 rpm
      O   7-14-72 w/ air 25° BTDC
      O   7-13-72 w/ air 16° BTDC
      A   7-12-72 w/ air Standard
      0   7-13-72 w/ air 4° ATDC
      O   7-14-72 w/ air 0.075 Jets,  0. 038 Rods
         -i7-14-72 w/o air Standard
10   20    30    40    50   60    70   80   90
         Power, Percent Maximum at Given RPM
                                                               100   C.T.
         FIGURE M-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER -
                              OXIDATION CATALYST
                            ENGINE 2-3,  23 MODE TEST

-------
  8 -
           LEGEND
                     1200 rpm
                     2300 rpm
     O  7-14-72 w/ air 25° BTDC
     O  7-13-72 w/ air 16° BTDC
     A  1-12-12-fit air Standard
     0  7-13-72 w/ air 4° ATDC
     D  7-14-72 w/ air 0. 075 Jets,  0.038 Rods
     O  7-14-72 w/o air Standard
O
ffi
§3 .
o
On
  2 I
                                                               2300
                                                               1200
              10   20    30    40    50   60    70    80    90
                       Power, Percent Maximum at Given RPM
100  C.T.
       FIGURE M-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER -
                            OXIDATION CATALYST
                         ENGINE 2-3,  23 MODE TEST

-------
                APPENDIX N




                ENGINE 2-3




EFFECT OF ENGINE DERATING ON EMISSIONS




          (23 MODE MASS RESULTS)

-------
PROJECT 11-2877-01   CONTROL TECHNOLOGY
ENG.2-3  1972-VERSION- STD-TIM-STD-4BBL-W/REAR PLUG

Moot
i
2
3
4
5
b
7
8
q
10
11
12
13
1*
15
Ib
17
IP
19
20
21
22
P. 3

MODE
1
?
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib
17
18
19
20
21
22
23
CYCLE





SPEEL
MiO
l?nn
l?nit
1200
l?nn
IPOO
.1 ? o n
l?no
l?nn
i?no
hOP
1200
2 3 on
a 3 on
e^nn
£300
5 ? o r,
2300
231.1(1
23TO
2 3 C D
MIO
i? 3 n o
c
ALOF.
n.O
''. 0
(1 . t-l
n.O
o.o
o.o
n.n
0.0
o.o
n.o
0.0
n . o
n.O
n.o
n.O
0.0
0.0
n.O
n.o
n.n
n.o
n.O
n.o
DVNA
LOAD
n.o
5.0
1^.0
42.0
59.0
117.0
1 7 b . 0
193.0
215.0
23*. n
n.o
n.o
240.0
?£J .0
197.0
180.0
1 2 n . 0
fa n.O
43.li
19.o
5.0
n.o
n.o

MAN. FUEL A/F
DKY CONCENTRATION
^P VAC. LB/HR RATIO ALDE.
ri
1
4
10
13
27
40
44
49
53
n
0
105
97
8h
79
53
Hb
19
8
2
0
0
18.3 3.1 18.8
20.3 b.7 lfa.3
19.1 7.3 Ifa.b
18.2 7.9 Ib.b
17.2 9.2 lfa.5
11.2 1*.0 Ib.B
5.7 20.9 15.7
3.9 21.7 lb.0
2.0 23.7 15. R
.5 2b.l 15.4
18.7 3.4 15. b
23.3 3. fa 18.2
2.3 51.7 14. b
3. fa 47. b 14.7
5.8 42.3 14.9
fa. 9 38.0 15.1
11.4 28.2 lfa.4
lb.9 18.3 Ib.b
18.2 lb.5 lb.7
20.1 13.5 lfa.8
21. 3 10. b lb.8
18.3 3.3 Ib.*
25.2 3.5 22.9
ALCULATEP GRAM/HR /IT. WT.
HC
*3.4
1* . b
?3 . 4
41.9
53.5
7?. 1
107.3
90.8
103.9
1. 3 * . 7
48.4
701.7
318.4
? 1 3 . 0
145.4
l^fa.fa
35. b
P3.1
19.1
8.7
4.1
39.2
'8b*.S
COMPOSITE








CO
24b
1.7?
73
71
81
12b
239
25*
387
1388
3*4
122
5(141
4831
3279
2184
3*3
225
P03
129
109
335
10S
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.2 .070 0.0
5.1 .ObO .1
13.5 .ObO .3
35.2 .050 .5
fab. 3 .030 .4
229.2 .ObO l.b
4*8.3 0.000 0.0
499.0 .0*0 1.8
573.0 0.000 0.0
SSfa.S 0.000 0.0
1.7 .070 0.0
. b .120 a . u
1080.1 .025 ?.b
354.9 .055 5.3
fa84.2 .035 3.0
772.0 .ObO *.7
bSfa.9 .DbO 3.2
231.* 0.000 0.0
1*1.9 .ObS 1.2
*2.3 0.000 0.0
is.* o.ooo n.o
1.5 .080 0.0
.* .ObO 0.0
7.973 GRAM/BHP HR
32.405 GRAM/BrlP HR
9.33b GRAM/BHP HR
O.OOO GRAM/BHP HR
.b09 LB/8HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
a
0
0
0
a
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
I
I
0.0
o.o
o.o
0.0
o.o
0.0
0.0
0.0
0.0
I
I





HC
4145
b71
9b8
15bO
1730
1502
Ifa30
1298
1354
Ibfa?
4515
48753
2080
1478
1138
12bl
377
37*
343
205
115
3595
*bb23
1.
.
.
*
*
.
.
*
•
*
1.
.
1.
1.
1.
.
.
.
.
.
.
1.
•
SPECIFIC


12.
5.
4.
3.
2.
2.
2.
2.
2.


3.
2.
1.
1.
.
.
1.
1.
1.







HC
R
81
38
3b
97
70
b?
07
11
52
R
R
03
20
fa9
8b
bB
88
02
05
90
R
R





CO
IbO
390
ISO
130
130
130
180
180
250
850
590
420
b30
bbO
270
930
IBO
180
180
ISO
150
520
280
























C02
11.84
13.48
13.48
13. Ob
13.18
12.94
14.05
13.77
13.fa3
13.fa3
12.34
fa. 05
13.48
13.18
13. b3
13.77
13.33
13.18
13.18
13.18
13.18
11.84
3.b2
NO
as
70
Ifa9
395
bfS
1438
2050
2150
5250
2075
ffa
12
2125
1787
Ibl2
2000
2000
11SS
7b5
300
154
HB
7
GRAM/BHP-HR
CO

150.
Ifa.
7.
fa.
4.
fa.
5.
7.
2b.


48.
49.
38.
27.
fa.
8.
10.
15.
49-.







R
4
8
3
0
7
0
8
9
0
R
R
0
q
0
7
5
b
8
5
9
R
R





N02
R
4.5
3.1
3.7
4.9
8. fa
11.1
11.4
11.7
10.4
R
R
10.3
8.8
7.9
9.8
11.9
8.8
7.5
5.1
8.4
R
R



































-------
                   APPENDIX O

                   ENGINE 2-3

EFFECT OF "BEST COMBINATION" ON EMISSIONS

Factory Exhaust Manifold Air Injection (Light Duty)
  Factory Exhaust Gas Recirculation (Light Duty)
       Standard 1972 Carburetor-Distributor
         Oxidation Catalyst (Platinum Type)
           Basic  Spark Timing as noted

-------
                  ENGINE 2-3

EFFECT OF "BEST COMBINATION" ON EMISSIONS

           TABULAR 23 MODE DATA
        BEFORE AND AFTER CATALYST

-------
7-28-72 RUN-1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.2-3   1972 VERSION-  8-CATA M/AIR W/EGR 4 ATDC

MODE
i
2
3
4
5
b
7
8
9
10
11
12
13
14
15
lb
17
18
19
20
21
22
23

i)YNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
4.0
15.0
33.0
4b.O
92.0
138.0
151.0
lfa9.Q
184.0
0.0
0.0
222.0
204.0
182.0
lbb.0
111.0
55.0
40.0
18.0
4.0
0.0
0.0

HP
0
1
3
8
11
21
32
35
39
42
0
0
97
89
80
73
49
24
18
8
• 2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALOE.
Ifa.S 4.0 21.5
10.0 11.2 21.7
8.7 12. b 20. b
fa. 9 14.8 19.4
b.l 15.1 19.4
4.4 18.7 19.0
2.9 21.2 18.2
2.3 22.3 18.4
1.4 23.4 17.9
.3 29.2 14.7
17.0 5.0 21.3
21.1 5.8 23.5
.b b3.0 13.4
2.b 50.8 Ib.O
3.b 41.8 ib.8
4.2 42.8 17.3
fa.b 34. b 18.5
10.0 25.2 20. b
12.4 20.9 22.9
15.3 Ib.b 24.3
17.0 15.5 22.4
Ifa.S 4.0 23.3
24.4 3. fa 31,3
CALCULATED GKAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
B
9
10
11
12
13
14
IS
lb
17
18
19
20
21
22
23
CYCLE




ALDE
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
18.8
543.1
138.5
27.7
11. b
14.0
14.8
22.7
24. b
55.3
4. fa
229.1
307.9
34.9
17.8
lfa.2
7.3
12.8
32.9
fa?.?
25.5
21.4
1589.8
COMPOSITE








CO
97
404
304
lib
117
99
158
85
254
4812
205
25b
ISSbO
1175
524
4fa2
179
lOb
190
24b
141
81
31
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.8 .070 0.0
2.8 .ObO .1
4.8 .OfaO .2
13.0 .050 .4
19.2 .030 .3
71.8 .OfaO 1.3
84.3 0.000 0.0
280.2 .040 1.4
337.8 0.000 0.0
217.7 0.000 0.0
4.1 .070 0.0
2.3 .120 0.0
297.4 .025 2.4
510.5 .055 4.9
341.2 .035 2.8
30b.l .ObO 4.4
157.2 .ObO 2.9
49.9 0.000 0.0
3b.7 .OfaS 1.1
13.7 0.000 0.0
17.1 0.000 0.0
2.5 .080 0.0
.4 .ObO 0.0
8.327 GRAM/BHP HR
29.082 GRAM/BHP HR
4.323 GRAM/BHP HR
0.000 GRAM/BHP HR
.827 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
109b
IQbOO
2575
482
200
200
189
2fa9
293
b45
214
79fa7
1719
210
123
lOb
58
121
350
835
3bb
1130
SISfa?
SPEC


594.
40.
3.
1.
.
,
*
*
1.


3.
.
,
.
.
.
1.
8.
14.







.
.
.
.
.
.
.
.
2.
.
.
4.
.
.
.
.
.
.
.
•
.
•
IFIC
HC
R
23
41
b8
10
bb
47
bb
b4
32
R
R
17
39
22
22
15
S3
88
59
58
R
R





CO
280
390
280
100
100
070
100
050
150
780
470
440
300
350
180
150
070
050
100
150
100
210
050
C02
10.
8.
10.
11.
11.
12.
12.
11.
12.
12.
10.
7.
11.
13.
12.
12.
12.
10.
9.
9.
9.
9.
•
09
43
09
48
72
09
22
92
47
59
09
85
48
48
94
59
34
78
93
03
93
14
09
NO
31
17
27
b8
100
310
325
1000
1212
7b5
57
24
500
925
713
bUS
375
142
117
51
7»
3H
4
6RAM/6HP-HR
CO
R
441.7
88.8
15.4
11.1
4.7
5.0
2.5
b.b
114.5
R
R
IbO.l
13.2
b.b
b.4
3.7
4.4
10. S
31.2
80.4
R
R


































N02
R
3.1
1.4
1.7
1.8
3.4
2.7
8.1
8.7
5.2
R
R
3.1
5.7
4.3
4.2
3.2
2.1
2.1
1.7
9.8
R
R



































-------
7-28-7?

MODE
1
2
3
H
5
b
7
8
9
10
11
12
13
It
15
Ib
17
18
19
20
21
22
23

RUN-2
DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
boo
2300
0.0
5.0
18.0
fl.O
S7.0
115.0
172.0
189.0
212.0
230.0
0.0
0.0
250.0
230.0
SQ5.0
187.0
125.0
fa2.0
fS.O
20.0
s.o
0.0
0.0
PROJECT 11»28
-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-1-75  RUN-1 ENG.2-3 72-VER. B-CATA. W/AIR-W/EGR 4 BTDC

MUUE
1
2
d
4
b
b
7
8
q
10
11
12
in
It
15
lb
J.7
18
IS
RD
21
22
23

l> YIN A
SPEED LOAD
bon
1200
1500
1200
1200
1200
1200
1200
1200
1200
faOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
4i.o
b?.0
115.0
172.0
181.0
212.0
230.0
0.0
0.0
252.0
232.0
2 U 7 . 0
189.0
12b.O
b3.0
45.0
20.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
4
q
13
2b
39
43
48
53
0
0
110
102
91
83
55
28
20
S
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/rlR RATIO ALDE.
18.2 3
13.5 8
10.1 11
8.3 13
7.3 14
5.2 Ib
3.1 20
2.7 21
1.8 23
.3 29
18.7 3
23.0 3
.b b3
2.b 48
3.9 42
4.5 42
7.7 31
12.4 20
13.8 19
IS.b 15
17.0 13
18.2 3
24.7 a
CALCULATED GRAM/HR
HODE
.1
2
3
if
S
b
?
8
q
10
u
12
11
It
15
Ifa
17
19
1H
20
21
22
23
CYCLE




ALOE
0.0
0.0
o.n
0.0
n . n
n.o
0.0
0.0
n.o
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
n.o
HC
43.1
111U.1
452.4
80.3
35.*
2?.3
tU. 7
43.3
53. 4
1 0 3 . fa
17. ?
992.0
b59.7
122. b
45.9
31.*
9.3
39. 4
bb.b
78.8
Ifb.b
2b.6
1445.3
COMPOSITE








CO
89
159
22?
Ib7
115
92
15b
210
222
4219
9b
50
19228
2175
1199
1042
Ib2
179
228
22fa
208
54
12
HC
CO
N02
ALDE
BSFC
N02
.1.5
1.7
3.9
10.1
lb.0
71.0
313.3 0
422.2
bU8.2 0
4U7.9 0
2.0
.8
583.3
824.0
bOb.l
459.0
203.4
b4.7 0
4b.2
19. fa 0
10.0 0
1.7
.3
13.535
31.393
5.74b
0 . 0 D 0
,bb?
.fa
.fa
.5
.3
.4
.9
.5
.9
.4
.5
.2
.b
.3
.9
.8
.1
.7
.9
.4
.8
.7
.b
.2
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
.000
.040
.000
.000
.070
.120
.025
.055
.035
.OfaO
.ObO
.000
.Ob5
.000
.000
.080
.ObO
23.1
19.9
21.0
20.3
19.9
19.4
18.7
18.5
18.2
15.3
23.2
25.4
13.3
15.9
17.1
17.4
18.8
21.5
22.2
23.0
H4.1
24.0
32.5
WT.
HP
0.0
.1
.2
.5
.4
l.b
0.0
1.7
0.0
0.0
0.0
n.o
?.s
5. fa
3.2
5.0
3.3
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
o.n
0.0
o.o
o.o
o.o
o.o
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
2437
25419
8441
1457
b25
421
528
540
fa30
109b 2
1153
39931
3147 4
729
302
213
81
445
754
1055
213b
1518
47535
CO
.250
.180
.210
.150
.100
.070
.100
.130
.130
.210
.310
.100
.540
.b40
.390
.350
.070
.100
.130
.150
.150
.150
.OdO
coa
8.75
fa. 21
8.b8
10. fab
11. 3b
11.72
11.92
12.22
12.34
11.84
9.14
2.48
8.84
12.47
12.34
12.59
12.47
10.55
9.93
9.37
8.b8
8.93
.Ob
NO
2fa
12
ee
55
85
330
1225
1588
21fa3
1300
3R
10
838
1475
1200
938
535
220
IbO
79
44
29
3
SPECIFIC GRAM/BHP-HR
HC
K
971.75
109.99
8.57
2.72
1.04
1.03
1.00
1.10
1.97
R
R
S.98
1.21
.51
.38
.17
1,*3
3.33
8.99
fafa.94
R
R
CO
K
139.0
55.3
17.8
8.8
3.5
4.0
4.9
4.b
80.3
R
R
174.2
21.4
13.2
12. fa
2.9
fa. 5
11. fa
25. 8
94.9
*
R
N02
R
1.5
1.0
1.1
1.2
2.7
8.0
9.8
12. b
7.8
R
R
5.3
8.1
fa. 7
5.5
3.7
8.3
2.3
2.2
4.b
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BhP HR
GRAM/BMP HR
LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-1-72   RUN-2  ENG.2-3  72-VER.  B-CATA. W/AIR-W/EGK 4 BTOC

MODE
1
?.
3
4
5
h
?
«
9
10
11
12
13
14
15
Ib
17
18
19
20
21
22
23

UYNA,
SPEED LUAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
fcfin
2300
0.0
5.0
18.0
41.0
57. 0
115.0
172.0
i89.o
212.0
230.0
0.0
0.0
252.0
232-0
207.0
1B9.0
12b.O
b3.Q
ts.o
20.0
5.0
n.o
0.0

HP
0
1
4
9
13
2b
39
43
48
53
0
0
110
ioe
91
83
55
28
20
9
2
0
0
MAN. FUEL A/F

VAC. LB/HK RATIO ALDE.
18.2 3.3 23.7
13.5 8. fa 23.8
10.0 11.3 22.4
8.4 13.5 20. b
7.3 14,fa 20.1
5.3 Ifa. 9 19.3
3.3 20.7 18.5
2.8 22.5 18.2
1.8 23.8 17. fa
.3 29.9 15. b
IB..? 3.5 22. 5
23.4 3.7 29. b
.fa b4.3 14.1
2. fa 48.8 17.0
3.9 42.8 17.2
4.5 41.8 17.4
7.8 31.2 18. b
12.4 20.9 21. fa
13.8 19.2 22.9
15. b 15.9 23.7
17.0 13.7 23. b
18.2 3.8 23.9
24. fa 3.4 38.9
CALCULATED GRAM/HR WT. WT.
MUUE
i
2
.9
*
5
b
7
8
9
10
11
15
13
IH
15
Ifa
17
18
19
20
21
22
2-1
CYCLE




ALOE
0.0
0.0
O.n
n.o
0.0
0.0
0.0
0.0
i) . 0
0.0
n.o
0.0
0.0
0.0
0.0
n.o
0.0
u.o
0.0
0.0
n.o
n.o
D.O
HC
57.3
1071.0
•+28.2
7b.l
3H.S
31. b
43.8
47.0
b3.4
114.1
18.7
10b2.7
487.0
83.8
41.5
2b.8
9.S
3B.U
55.1
bf .7
14.5
18. b
1440. b
COMPOSITE








CO
49
158
192
Ib9
153
121
199
248
303
4490
lib
75
18444
Ib82
1408
1222
298
273
2fa9
27b
312
b9
58
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
1.3 .070 0.0
l.fa .ObO .1
3.9 .ObO .2
10.2 .050 .5
15.5 .030 .4
72.1 .OfaO l.fa
323.5 0.000 0.0
421.7 .040 1.7
539.7 0.000 0.0
398.7 0.000 0.0
1.9 .070 0.0
.5 .120 0.0
553.4 .025 2.8
1051.1 .055 5. fa
fa09.1 .035 3.2
472.3 .ObO 5.0
214.8 .OfaO 3.3
73.2 0.000 0.0
52.2 .OfaS 1.3
21.4 0.000 0.0
10.2 0.000 0.0
2.2 .080 0.0
.4 .ObO 0.0
13.441 GRAM/BHP HR
31.023 GRAM/BHP HR
• fa. 283 GRAM/BHP HR
0.000 GRAM/BHP HR
.fafa? LB/BHP HR
0
0
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
D
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3570
24fa44
8115
13fa4
b8S
494
579
574
7bl
1211
1142
429bO
2fa29
493
280
18b
84
422
b22
853
1528
975
50134
CONCENTRATION

•
•
*
•
•
•
•
•
*
2.
•
•
4.
•
*
•
•
•
•
•
•
•
•
SPECIFIC


937.
104.
8.
3.
1.
1.
1.
1.
2.


4.
*
•
,
•
1.
2.
7.
*3.







HC
R
52
11
12
Ofa
20
12
09
31
17
R
R
41
82
4fa
32
17
38
80
39
15
R
R





CO
150
180
180
150
130
100
130
150
180
3bO
350
150
430
490
470
420
130
150
150
180
250
180
100
























C02
8.b8
b.30
8.fa8
10. fab
11.13
11.84
12.22
12.22
12.71
11.92
9.14
2.32
10.55
12.47
12.59
12.71
12.34
10.35
9.b4
9.25
9.b4
8.84
.19
NU
25
11
22
55
80
340
1287
1550
1950
1275
35
fa
900
18b2
1237
988
570
245
177
85
49
34
4
GRAM/BHP-HR


138
4fa
18
11
4
5
5
fa
85


lb?
Ifa
15
14
5
9
13
31
142







CO
R
.3
.fa
.0
.7
.9
.1
.7
.3
.4
R
R
.1
.fa
.5
.8
.4
.9
.fa
.5
.fa
R
R





N02
R
1.4
.9
1.1
1.2
2.7
8.2
9.8
11.1
7. fa
R
R
5.0
10.3
fa. 7
5.7
3.9
2.7
2.7
2.4
4. fa
R
R



































-------
               PROJECT 11-2877-01  CONTROL TECHNOLOGY
H-2-72  RUN I  ENG.2-3 72-VER. B-CATA. W/AIR-W/EGK 4 BTDC

MODE
1
2
3
>+
S
b
7
S
1
10
11
12
13
If
IS
Ib
17
IS
11
en
si
S3
53

l"i(JDE
1
?
3
4
S
b
7
8
4
10
11
1?
13
It
15
Ib
1.7
13
1^
20
21
22
23
CYCLE





OYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
12QO
23-10
2300
2300
2300
2300
2300
2300
5300
2300
b 0 0
2300

ALOE
n.ti
0.0
0.0
0.0
0.0
0.0
n.o
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
n.o
n.o
0.0
5.0
18.0
41.0
57.0
115.0
172.0
189.0
t>12.0
230.0
0.0
0.0
252.0
232.0
207.0
181.0
I2b.0
b3.0
45.0
20.0
5.0
0.0
0.0
CALCULAF
HC
72. 1
lltb.O
b20.0
H2.2
37.0
21.?
*3.i
4b.3
S8.4
114.1
18.7
851.0
4 3U. 8
82. 4
t7.S
32.8
10.1
3^.2
mi. s
84.2
lbb.1
24. £
1470.&
COMPOSITE








•
HP
0
1
4
1
13
2b
31
43
48
53
0
0
110
102
11
83
55
28
20
q
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.0 3. fa 23.7
13.5 8.0 20.8
10.1 11. b 21.1
8.3 13.5 20. b
7.4 14.1 20.2
5.2 17.3 11.4
3.2 20.7 18. fa
2.7 22.1 18.4
1.8 23.8 17.1
.3 30.3 15.0
18.5 3. fa 23.2
22.1 3.7 2b.3
.b fai.4 13.7
2.7 41.1 lb.8
3.1 43.0 17.0
4.5 41.5 17.3
7.7 31.2 18.8
12.4 51.1 51.7
13.7 11.3 52. fa
15. b 15.1 23.4
17.0 13. fa 24.4
18.0 3. fa 24.5
24. b 3.3 34.0
ED GRAM/HR WT. WT.
CO
b5
124
117
ISO
117
Ifa
157
214
258
482b
135
7fa
14177
1410
1074
1037
238
112
18b
204
214
48
13
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.4 .070 0.0
1.4 .ObO .1
2.7 .OfaO .2
8.3 .050 .5
12.7 .030 .4
faS.3 .OfaO l.fa
302.1 0.000 0.0
413.0 .040 1.7
512.7 0.000 0.0
341.4 0.000 0.0
2.1 .070 0.0
.b .120 0.0
511.8 .025 2.8
17b.fa .055 S.fa
fal?.5 .035 3.2
411.1 .ObO 5.0
211.2 .ObO 3.3
72.5 0.000 0.0
47.3 .ObS 1.3
11. b 0.000 0.0
1.2 0.000 0.0
1.7 .080 0.0
.5 .OfaO 0.0
13.247 GRAM/BHP HR
2S.b2fa GRAM/BHP HR
b.015 GRAM/3MP HR
0.000 GRAM/8HP HR
.bfab LB/8HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
DRY
HC
4052
27198
1143S
Ifall
fa31
437
SSb
5b8
b87
1174
1087
34243
2272
4b1
315
224
12
311
bb3
1085
234fa
1311
450b2
CONCENTRATION
























CO
.180
.150
.180
.130
.100
.070
.100
.130
.150
2.440
.310
.150
3.110
.420
.350
.350
.100
.100
.100
.130
.150
.130
.020
























C02
8.54
5. Ifa
8.34
10.43
10.81
11.48
11.12
12.01
12.47
11.48
1.03
3.08
10.78
12.22
12.47
12.47
11.12
1.13
1.37
1.03
8.34
S.bO
.13
NO
S3
10
15
44
bb
2SO
1175
152S
2100
1075
37
7
813
Ifa75
1225
1025
540
230
155
7b
31
28
S
SPECIFIC GRAM/BHP-HR


0.01003.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





150.
1.
2.
1.
1.
1.
1.
2.


3.
*
•
•
*
1.
3.
1.
75.







HC
k
13
74
84
84
13
10
07
21
11
R
R
10
81
53
40
2n
35
01
b2
75
R
R







108
47
Ib
1
3
4
5
5
11


135
14
11
12
4
7
1
23
17







CO
R
.fa
.1
.0
.0
.?
.0
.0
.3
.8
R
R
.?
.7
.8
.5
.3
.0
.4
.3
.8
R
R





NQ2
R
1.2
.7
.1
1.0
2.5
7.7
l.b
12.2
fa. fa
R
R
4. fa
l.fa
fa. 8
b.O
3.8
2.b
2.4
2.2
4.2
R
R



































-------
7-28-72
RUN-1
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG.2-3 1S72 VERSION- A-CATA W/AIR W/EGR
OYNA.
MODE
1
2
3
*
S
b
7
8
s
10
11
12
13
If
15
Ib
17
18
IS
20
21
22
23
SPEED LOAD
bOD
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
If
15
33
4b
S2
138
151
ifaq
184
0
0
222
204
182
Ifab
111
55
40
18
4
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
3
8
11
21
32
35
3S
42
0
0
S7
89
80
73
4S
24
18
8
2
0
0
MAN. FUEL A/F
4 ATDC
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
lb.5 4.0 22.4
10.0 11.2 23.5
8.7 12. b 21.2
b.S 14.8 IS. 5
b.l 15.1 IS. 5
4.4 18.7 IS. 2
2.S 21.2 18.3
2.3 22.3 18.4
1.4 23.4 17. S
.3 2S.2 15.1
17.0 5.0 21.8
21.1 5.8 25.4
.b b3.0 13.8
2.b 50.8 lb.1
3. fa 41.8 lb.8
4.2 42.8 17.3
b.b 34. b 18.5
10.0 25.2 20.7
12.4 20. S 22. S
15.3 Ib.b 24. b
17.0 15.5 22. b
lb.5 4.0 23. S
24.4 3.b SO. fa
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
8
s
10
11
12
13
If
IS
Ib
17
18
IS
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
3.
ss.
IS.
4.
3.
b.
».
7.
7.
Ib.
1.
37.
107.
7.
5.
5.
4.
5.
5.
ie.
3.
5.
3b2.
5
3
4
b
1
0
7
2
0
b
3
b
5
3
0
7
4
8
S
2
7
7
4
COMPOSITE












CO
7
S3
22
82
bO
73
80
34
117
354fa
bS
S2
13512
332
140
147
128
IDS
S4
33
28
8
3S
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.3 .070 0.0
3.0 .ObO .1
5.0 .ObO .2
13.4 .050 .4
1S.O .030 .3
81.4 .ObO 1.3
123.8 0.000 0.0
312.0 .040 1.4
31b.S 0.000 0.0
173.1 0.000 0.0
4.5 .070 0.0
2.b .120 0.0
31S.4 .025 2.4
4b3.b .055 4.S
310.2 .035 2.8
2S4.0 .OfaO 4.4
155.4 .OfaO 2.S
50.1 0.000 0.0
34. S .Ob5 1.1
14. S 0.000 0.0
IS.b 0.000 0.0
2.7 .080 0.0
.3 .ObO 0.0
I.b71 GRAM/BHP HR
18.S23 GRAM/BHP HR
. 4.230 GRAM/BHP HR
0.000 GRAM/BHP HR
.827 L8/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
1S1
1132
350
80
S3
83
bO
8b
84
IS! 2
57
1240
faOS 3
45
3fa
3S
34
53
fa3
14S
52
2S3
S271
CO
.020
.050
.020
.070
.050
.050
.050
.020
.070
.020
.150
.150
.7SO
.100
.050
.050
.050
.050
.050
.020
.020
.020
.050
























C02
S.fa4
S.50
10.25
11.48
11.48
11.72
12. OS
12. OS
12.71
13.18
S.S3
8.34
12.34
13. SI
13. b3
13.33
12.34
10.55
10. OS
S.14
S.S3
S.14
3.20
NO
3?
18
27
bS
Sb
340
470
1125
1150
bOO
bO
2b
545
850
fa?S
blO
370
140
113
55
83
41
3
SPECIFIC GRAM/BHP-HR
HC
K
b4.88
5. fa?
.b2
.30
.2S
.15
.21
.18
.3S
R
R
1.11
.08
.Ob
.08
.OS
.24
.34
1.55
2. OS
R
R







57
b
10
5
3
2
1
3
84


13S
3
1
2
2
4
5
4
Ib







CO
K
.S
.5
.S
.?
.5
.5
.0
.0
.4
R
R
.0
.7
.8
.0
.b
.5
.4
.2
.3
R
R





N02
R
3.3
1.5
1.8
1.8
3.S
3.S
s.o
8.2
4.1
R
R
3.3
5.2
3.S
4.0
3.2
2.1
2.0
l.S
11.2
R
R



































-------
7-28-72 RUN-2
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.2-3   1972 VERSION A-CATA W/AIR W/EGR f BTDC

MODE
1
2
3
f
5
h
7
8
9
10
11
12
13
If
15
Ib
17
18
19
20
21
22
23

DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
fl.O
57.0
115.0
172.0
189.0
212.0
230.0
0.0
0.0
250.0
230.0
205.0
187.0
125.0
b2.0
fS.O
20.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
f
9
13
2b
39
f3
f 8
53
0
0
109
101
90
82
55
27
20
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.5
10,9
8.9
7.5
b.9
5.0
3.3
2.7
1.8
.3
18.0
23.0
,b
2.b
3.8
f.5
7.5
11.8
If .f
15.2
lfa.5
17.5
2f.7
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
8
9
10
11
12
13
If
15
Ib
1?
18
19
20
21
22
23
CYCLE




ALDE
n.o
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
10.1
12fa.7
32.2
9.8
7.5
10. b
If .9
18.1
21.9
bb.O
b.7
85.0
222.5
15.3
9.7
8.3
b.2
7.8
b.b
If. 3
21.5
5.3
2fi.e
COMPOSITE








CO
15
20
57
58
8b
100
IbO
173
182
28ff
17
83
1587f
Ib2
IfB
150
f8
39
33
32
29
17
39
HC
CO
N02
ALDE
BSFC
N02
1.2
3.1
7.8
lf.1
20.7
Ib5.0
322.7
532.3
bG1.7
307.5
1.7
.5
b09.0
928.2
b22.0
548.8
232.8
77.5
81. b
22.1
lf.1
1.5
.3
1.810
18.278
fa. 850
0.000
,b71
2.9
10.1
12. b
13.7
If. 8
18.0
20.5
22.7
2f.S
29.2
3.2
3.b
b3.7
ffa.l
f2.1
f 1.8
31.3
21. b
19.1
lb.2
if.o
3.2
3.2
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
2f.b
23.7
21. b
20. b
20.2
19.5
19.2
18. b
18.2
IS. 5
2f.b
35. b
13.8
17.1
17.0
17. f
19.1
21.8
21. f
2f.l
2f.7
25.5
5b.9
WT.
HP
0.0
.1
.2
.5
.f
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.7
5.5
3.1
f.9
3.3
0.0
1.3
0.0
0.0
0.0
o.o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
o.o
I
I
HC
b?5
25f5
S7f
171
12S
151
188
211
2f3
713
fOb
310f
1152
95
bb
Sb
52
82
80
179
297
318
b239
CO
.050
.020
.050
.050
.070
.070
.100
.100
.100
1.520
.050
.150
f .070
.050
.050
.050
.020
.020
.020
.020
.020
.050
.050
C02
8.b8
8.93
10.09
10.78
11.01
11. fB
11. bO
11.92
12.22
12.71
8.75
5.50
10.78
12. 9f
12. 9f
12.71
11.92
10.25
10.55
9. If
8.75
8.bO
3.08
NO
25
IS
f2
7f
103
70f
1225
1875
2013
1000
31
b
950
1738
1275
1113
590
SfS
300
83
59
27
2
SPECIFIC GRAM/BHP-HR
HC
R
110. 8b
7.83
l.Of
.58
.fO
.38
.f2
,f5
1.2b
R
R
2.03
.15
.11
.10
.11
.29
.33
l.bf
9.80
R
R
CO
R
17. fa
13.8
b.2
b.b
3.8
f.l
f.o
3.8
Sf.l
R
R
IfS.O
l.b
1.7
1.8
.9
l.f
1.7
3.7
13.3
R
R
N02
R
2.7
1.9
1.5
l.b
fa. 3
8.2
12.3
12. f
5.9
R
R
S.b
9.2
b.9
b.7
f.3
2.9
f.l
2.5
b.5
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BKP HR
GRAM/BHP HR
LB/BHP HR

-------
                PROJECT  11-2877-01  CONTROL TECHNOLOGY
8-1-72   RUN-1  ENG.2-3  72-VER.  A-CATA,  W/AIR-W/EGR 4 BTOC

MODE
1
2
3
t
5
b
7
8
q
in
11
1?
13
11
15
Ib
17
18
11
20
21
22
23

MODE
i
2
3
4
5
b
?
B
q
10
1]
1?
13
If
Ib
Ib
17
18
IS
20
21
22
c?3
CYCLE





DYNA
SPEED LOAD
bOO
1?00
1200
1POO
1300
1200
1200
12flO
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
23(10
2300
2300
bOU
2300

ALOE
.1
3.4
5.b
H-.5
?.i
4.1
2.0
2.8
2.4
1.3
.2
l.b
1.8
b.5
.1.8
2.1
l.M
.5
1.4
1.0
1.7
.4
3.b
0.0
5.0
18.0
41.0
57. 0
115.0
172.0
181.0
212.0
230.0
n.o
0.0
?sa.o
532.0
207.0
181.0
12b.O
b3.0
45.0
20.0
5.0
0.0
0.0
CALCULAT
HC
11. fa
lib. 5
71.3
.14.1
8.4
7.7
14.1
IB. 5
18.0
47.0
3.1
108.3
221.8
2b.S
8.b
b. 3
&»1
8.3
12.0
ifa.o
37.7
fa.1
247.0
COMPOSITE








•
HP
0
1
4
1
13
2b
39
43
48
S3
0
0
110
102
11
83
55
28
20
1
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
18.2 3.b 23. q
13.5 8.b 23. b
10.1 11.5 22.3
8,3 13.3 30. S
7.3 14.4 20.1
5.2 lb.1 11. fa
3.1 20.5 18.1
2.7 21.1 18. b
1.8 23.4 18.3
.3 21.5 15.7
18.7 3.2 24.0
23.0 3.b 35.4
.b b3.3 14.0
2. fa 48.1 lb.2
3.1 42.8 17.2
4.5 42,1 17. fa
7.7 31.7 18.1
12.4 20. S ei.fa
13.8 11.4 22.4
15, b 15.8 23. b
17.0 13.7 24. b
18.2 3.b 24. b
24.7 3.2 S2.1
ED GRAM/HR WT. WT.
CO
7
44
55
5b
24
27
31
33
3'S
2831
7
2B
i4ibi
413
Ibl
150
11B
10
81
31
28
7
38
HC
CO
N02
ALOE
6SFC
N02 FAC. HP
3.0 .070 0.0
2.b .ObO .1
1.1 .OfaO .2
12.0 .050 .5
b.2 .030 .4
71.1 .ObO l.b
355.0 0.000 0.0
4b2.3 .040 1.7
571.8 0.000 0.0
30b.2 0.000 0.0
2.0 .070 0.0
1.1 .120 0.0
537. fa .025 2.8
715.0 .055 5. fa
582.8 .035 3.2
412,7 .OfaO 5.0
225.4 .ObO 3.3
5b.3 0.000 0.0
41,1 ,0b5 1.3
20.3 0.000 0.0
15.7 0.000 0.0
1.8 .080 0.0
.2 .OfaO 0.0
2.017 GRAM/BHP HR
lfa.741 GRAM/BHP HR
'5.fa31 GRAM/BHP HR
,10b GRAM/BHP HR
,bb7 LB/BHP HR
22
37
48
37
23
28
12
Ib
13
21
b
27
24
18
b
b
7
3
7
b
12
11
43
BRAKE
ALOE.
R
3.0
1.4
.5
.2
.2
.1
.1
.0
.1
R
R
.1
.1
.0
.0
.0
.0
.1
.1
.8
R
K





DHY
HC
faSfa
3375
1305
2b8
143
lib
181
181
201
510
244
3143
1242
Ib3
57
43
43
13
137
20b
541
37S
bSfa?
CONCENTRATION










1


3










CO
.020
.050
.050
.050
.020
.020
.020
.020
.020
.520
.020
.050
.710
,150
.050
.050
.050
.050
.050
.020
.020
.020
.050
























C02
8.84
B.bO
1.37
10.78
11.13
11.48
11.12
12.01
12.34
12.14
1.03
5.50
11. bO
13.48
12.14
12.82
12.22
10.55
1.13
1.25
8.84
8.84
3.20
NO
50
18
50
faS
32
325
1375
1700
2037
1000
37
12
875
1325
1175
1000
580
110
143
71
b8
30
2
SPECIFIC GRAM/BHP-HR


128.
17.
1.
•
•
•
•
*
•


2.
•
•
•
•
*
•
1.
17.







HC
K
23
33
51
b4
21
3b
3b
3?
10
R
R
08
2b
OS
08
01
30
fal
82
20
R
R







38
13
b
1
1



53


128
4
1
1
2
3
4
3
12







CO
K
.4
.4
.0
.8
.U
.8
.8
.7
.1
R
R
.4
.8
.7
.8
.1
.3
.5
.b
.8
R
R





N02
R
2.3
2.2
1.3
.5
2.7
1.0
10.7
12.0
5.8
R
R
4.1
7.0
fa. 4
fa.O
4.1
2.0
2.1
2.3
7.2
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-1-72  RUN-2 ENG.2-3 72-VER. A-CATA. W/AIR-W/EGK 4 BTDC

MODE
1
?
3
4-
5
b
7
8
9
10
11
12
13
14
IS
Ib
17
Itf
19
20
21
22
23

DYNA.
SPEED LOAD
bOO
i?00
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
S.O
18.0
*1.0
57.0
115.0
172.0
189.Q
212.0
230.0
0.0
n.o
252.0
232.0
207. 0
189.0
I2b.0
b3.0
45.0
20.0
5.0
0.0
0.0
t
HP
0
1
4
9
13
2b
39
43
48
53
0
0
110
102
91
83
55
28
20
9
2
0
0
HAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
18.2 3.3 24.8
13.5 8.b 24.9
10.0 11.3 23.3
8.4 13.5 21.0
7.3 14. fa 20.3
5.3 lb.9 19.7
3.3 20.7 18.9
2.8 22.5 18.5
1.8 23.8 18.1
.3 29.9 15.4
18.7 3.5 24.0
23.4 3.7 3b.O
.b b4.3 13.8
2.b 48.8 Ib.b
3.9 t2.8 17.0
4.5 41.8 17.3
7.8 31.2 19.0
12.4 20.9 21.7
13.8 19.2 22.8
15. b 15.9 24.1
17.0 13.7 24.9
18.2 3.8 24.9
24. b 3.4 52.3
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
>f
5
b
7
8
9
10
11
12
13
14
IS
Ib
17
18
19
20
21
22
23
CYLLE




ALDE
1.0
3.5
?.b
4.4
2.9
3.4
».3
3.1
2.9
3.0
.3
1.7
12.2
5.3
3.5
1.7
2.1
1.1
1.4
1.2
1.8
.4
4.1
HC
22.5
177. b
91. b
18.4
H.I
6.7
lfa.7
18.4
22.1
fal.S
».?
137.0
210.1
18.5
8.4
b.l
S.3
b.9
8.5
10.3
23.5
3.8
197.8
COMPOSITE








CO
7
18
21
57
bO
bb
78
85
87
3101
18
58
15072
332
295
291
IbS
23b
123
109
100
28
lib
HC
CO
N02
ALDE
8SFC
N02 FAC. HP
1.5 .070 0.0
2.2 .ObO .1
5.0 .ObO ,2
12.0 .050 .5
lb.1 .030 .4
70.9 .ObO l.fa
33b.3 0.000 0.0
4fa5.fa .040 1.7
514.9 0.000 0.0
307.0 0.000 0.0
2.0 .070 0,0
.5 .120 0.0
540.2 .025 2.8
955.8 .055 S.b
594.0 .035 3.2
489.7 .OfaO 5.0
251.2 .OfaO 3.3
b4.1 0.000 0.0
49.2 .ObS 1.3
23.1 0.000 0.0
12.7 0.000 0.0
2.3 .080 0.0
.4 .ObO 0.0
2.227 GRAM/BHP HR
IS.SOfa GRAM/BHP HR
'b.238 GRAM/BHP HR
.114 GRAM/BHP HR
.fab? LB/BHP HR
28
37
fa?
3b
23
24
2b
1?
Ib
15
7
27
31
15
11
b
8
5
7
7
12
10
49
BRAKE
ALDE.
R
3.1
1.9
.5
.2
.1
.1
.1
.1
.1
R
R
.1
.1
.0
.0
.0
.0
.1
.1
.8
R
R





DRY
HC
1351
4043
1741
324
154
133
217
220
257
b?0
271
4789
114fa
112
58
42
45
77
97
133
332
195
SlfaO
SPEC


155.
22.
1.
•
•
•
•
•
1.


1.
»
•
•
•
•
•
1.
10.







CONCENTRATION










1


4










CO
.020
.020
.020
.050
.050
.ObO
.050
.050
.050
.bbO
.050
.100
.070
.100
.100
.100
.070
.130
.070
.070
.070
.070
.ISO
























C02
8. be
8.43
9.50
10. bb
11.13
11. bO
12.09
12.09
12.47
12.94
8.93
5.27
11.72
13.33
13.18
13. Ob
12.09
10.43
9.93
9.25
8.b8
8.75
3.31
NO
28
IS
28
b3
83
32S
1312
lfa?S
1800
1000
34
5
888
1750
1225
1025
bSO
215
170
90
54
35
3
IFIC GRAH/BHP-HR
HC
R
38
28
9?
70
33
43
43
4b
18
R
R
90
18
09
07
10
25
43
17
73
R
R







15
5
fa
4
2
2
2
1
59


13b
3
3
3
3
8
fa
12
45







CO
R
.5
.2
.1
.fa
.5
.0
.0
.8
.0
R
R
.b
.3
.3
.5
.0
.5
.3
.5
.7
R
R





N02
R
1.9
1.2
1.3
1.2
2.7
8. fa
10.8
10. b
5.8
R
R
4.9
9.4
b.b
5.9
4. fa
2.3
2.5
2.b
5.8
R
R



































-------
    PROJECT 11-2877-01  CONTROL TECHNOLOGY
1 ENG.2-3 72-VER. A-CATA. W/AIR-W/EGR t BTDC
MODE
i
2
3
1
5
b
7
8
q
10
1.1
ia
13
it
is
ib
17
18
1H
20
21
?e
23
DYNA.
SPEED LOAD
bOO
1200
1200
1200
1200
120(3
1200
1200
1200
iaoo
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
faOO
2300
0
S
18
tl
57
115
172
189
212
«J30
0
0
252
232
207
189
12b
fa3
ts
20
5
D
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
t
9
13
2b
39
t3
t8
S3
0
0
110
102
91
83
55
28
20
9
2
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO ALDE.
18.0 3.b 2t.7
13.5 8.0 25.1
10.1 11. b 22.9
8.3 13.5 20.9
7.t lt.1 20.3
5.2 17.3 19.8
3.2 20.7 18.8
2.7 22.1 18. fa
1.8 23.8 18.1
.3 30.3 15. t
18.5 3. fa 2t.O
22.9 3.7 3t.O
.b b2.t It. 2
2.7 t9.1 17.0
3.9 t3.0 17.2
t.5 tl.S 17. t
7.7 31.2 19.0
12. t 21.1 21.8
13.7 19.3 22.7
15. b 15.9 23.8
17.0 13. b gt.8
18.0 3.b 25.1
2t.b 3.3 53.3
CALCULATED GRAM/Hht WT. WT.
MODE
1
a
3
^
b
fa
7
8
S
10
11
12
H
It
1'j
lb
17
18
19
20
ai
aa
23
CYCLE




ALDE
.a
3. fa
s.t
5.0
2.8
t.7
3.2
3.t
3.b
5.t
.5
l.fa
a.b
b.2
3.0
?.t
1.2
1.3
1.8
1.5
l.t
.t
3.3
HC
dJ.
180.
Mb.
1?.
11.
9.
lb.
17.
19.
5->.
t.
Itt.
15t.
19.
S.
?.
fa.
8.
10.
IS.
3b.
5.
257-.
u
V
t
t
b
t
9
9
b
3
7
8
9
2
•»•
0
2
0
5
5
5
7
7
COMPOSITE












CO
8
17
22
23
2t
29
32
8b
88
3b»S
18
27
11380
173
152
Itfa
t9
38
37
32
29
8
Ifa
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
l.b ,U7U 0.0
2.0 .ObO .1
t.l .OfaO .2
10.5 .050 .5
13. b .030 ,t
, b3.8 .OfaO l.fa
30 t.t 0.000 0.0
t51.2 .OtO 1.7
555. t 0.000 n.O
277.3 0.000 0.0
2.1 .070 0.0
.5 .120 0.0
SbS.t .025 2.8
953.0 .055 S.b
635. fa .035 3.2
t93.2 .OfaO 5.0
2tO,3 .OfaO 3.3
59. b 0.000 0.0
tb.7 .OfaS 1.3
20.8 0.000 0.0
10. t 0.000 0.0
1.9 .080 0.0
.t .ObO 0.0
2.390 GRAM/BHP HR
12.893 GRAM/BHP HR
•b.2t2 GRAM/BHP HR
.109 GRAM/BHP HR
.fabb LB/BHP HR
19
to
ts
to
22
31
18
18
19
2b
13
2?
22
17
9
8
5
b
9
9
9
9
38
BRAKE
ALDE.
R
3.2
1.3
.5
.2
.2
.1
.1
.1
.1
R
R
.1
.1
.0
.0
.0
.0
.1
.2
.b
R
R





DRY CONCENTRATION
HC CO C02
121t
t30b
1737
302
198
132
200
211
225
bOO 1
2bO
539t
Btl 3
112
b3
t8
51
8t
lit
195
513
302
bt32
.020
.020
.020
.020
.020
.020
.020
.050
.050
.870
.050
.050
.ObO
.050
.050
.050
.020
.020
.020
.020
.020
.020
.020























B.St
8.2t
9. 25
10.55
10.89
11.01
11.72
11.72
12. 3t
12. t7
8.93
5.b3
12.22
12. 9t
12. 9t
12. 9t
11.72
10.09
9.50
9.03
B.bO
8.5t
3.13
NO
25
It
22
55
70
270
1150
IbOO
1925
875
35
b
925
lb?5
1275
1025
bOO
190
153
79
tt
30
3
SPECIFIC SRAM/BHP-HR
HC
R
158. lb
23. t3
1.8b
.89
.3b
.to
.tl
.to
1.09
R
R
i.to
.19
.10
.08
.11
.29
.53
1.77
Ifa.bb
R
R





CO

It
5
2
1
1

2
1
fa8


103
1
1
1

1
1
3
13







R
.8
.t
.5
.8
,1
.8
.0
.8
,b
R
R
.1
.7
.7
.8
.9
.t
,9
.?
.1
R
R





N02
R
1.7
1.0
1.1
1.0
2.t
7.7
10. t
11.5
5.3
R
R
5.1
9.t
7.0
b.O
t.t
2.2
2.t
2.t
t.7
R
R



































-------
    LEGEND
   -__	1200 rpm
  	2300 rpm
   O 4°ATDC
   D 4°BTDC
     (Factory Standard)
                                                     © 2300
                                                               B2300
\
                                                               Q 1200
                                                               0 1200

h
1 1 1 J-
0 10 20
30 40

i
50
- — ~a ^^^^

60 70 80 90 100 CT
            Power, Percent Maximum at Given RPM
FIGURE O-l.  EFFECT OF POWER ON HC EMISSION RATE -
  "BEST COMBINATION",  ENGINE 2-3,  23 MODE TEST

-------
8  r
         LEGEND
                  1200 rpm
                  2300 rpm
        o
        a
4° ATDC
4° BTDC
(Factory Standard)
6  h
5 . -
4  -
3  -
2  -
                                                               14124
                                                               13512
                                                                     2300
                                                                     1200
       0    10   20   30    40    50   60    70    80    90
                  Power, Percent Maximum at Given RPM

  FIGURE 0-2.  EFFECT OF POWER ON CO EMISSION RATE -
    "BEST COMBINATION", ENGINE  2-3^ 23 MODE TEST
                                                 100   CT

-------
o
o
X
O
ffi
J-i

-------
   25
00
ffi
o
td

          r—I
          T>

          t-t
      0    10   20    30   40    50    60    70    80   90   100

                Power,  Percent Maximum at Given RPM


FIGURE 0-4. MANIFOLD VACUUM AS A FUNCTION OF POWER -

    "BEST COMBINATION", ENGINE 2-3, 23  MODE TEST
                                                                      CT

-------
o
ffi
ex

CQ
T3
a
 e
 o
 O
u
     5  l-
            LEGEND
                      1200 rpm

                      2300 rpm
            O 4° ATDC

            a 4° BTDC

              (Factory Standard)
                                                                        0 2300


                                                                        § 1200
                             I
10    20   30    40    50   60    70   80    90

      Power, Percent Maximum at Given RPM
                                                                 100
CT
      FIGURE 0-5. FUEL CONSUMPTION AS A FUNCTION OF POWER -

          "BEST COMBINATION",  ENGINE 2-3, 23 MODE TEST

-------
                 ENGINE 2-3




EFFECT OF "BEST COMBINATION" ON EMISSIONS




      TABULAR NINE-MODE FTP DATA




 CONCENTRATION AND CALIFORNIA ARB MASS

-------
                 ENGINE 2-3

EFFECT OF "BEST COMBINATION" ON EMISSIONS

    GRAPHED RESULTS OF 23 MODE TESTS
              (AFTER CATALYST)

-------
           B-2-7t?   RUN-3 S-3 *8TDC bl)0 RP.-I W/AJH EGR  OXIDATION CATALYST
K =1.051
             HUM =   10   GR/LB
CYCLE  1
CYCLE
CYCLE 3
CYCLE *
FEDEKAL
MuOE
1 IDLE
3 Ib'HG
3 10 'H6
* Ib'HG
S IS'HG
b Ib'HG
7 3'HG
R Ib'HG
1 C.T.
1 IfLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
h Ih'HG
7 3'HG
8 Ifa'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

AVERAGE
* \/e p A per
CUMCENrRATTUN AS
HC CO COS
21 .050 8.7SO
• 231 .050 fi.hOO
13 .050 10.*30
*1 .050 8.8*0
573 .050 7.000
b3 .nso H.a*o
* .070 13.0bO
* .050 1.1*0
313 .ObO *.130
ai .osn s.7sn
113 .050 H.H»0
* .osn in.bbo
*8 .050 8.130
b2S .osn b.83o
b2 .050 8.930
* .n7o 12.1*0
1 .050 S. 1*0
215 .050 *.S10
* .080 8.8*0
111 .020 8.8*0
* .050 in. 510
37 .050 8.130
510 .050 7. OHO
50 .050 1.030
* .070 13.0bD
b .020 1.180
21fa .ObO *.S80
* .050 8.8*0
88 .050 8.8*0
* .050 1 0 . 5 S (1
*0 .050 8.8*0
588 .050 h.110
51 .020 8.130
* .070 12.1*0
1 .050 1.1*0
301 .ObO *.5bO

SUM. 	 (COMPOSITE VALUES
QiiM___/r*nManQTTcr WAI IICTQ
A V £ T ** l» t «j w n ~ 	 vt*urirwtJ4ii— » ••* t. w t_ *•*
FOUR CYCLE COMPOSITE - REPORTED




MEASURED DILUTION A 0 J U S T E 0
NO FACTOR HC CO MO
b*
b*
157
It)
57
b*
I*b3
112
b3
b*
10
210
1b
b*
b*
1551
108
b5
70
10
110
17
71
7?
1571
10R
bb
70
10
117
103
7.1
77
1571
117
b8

FOH CYCLES
F n p r v r i P q
run l* T l»^^o
VALUES -


1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2

1
3



,b*8
.b32
.385
.b2b
.817
.b23
.10?
.581
.7*8
,fa*8
.b!3
,35b
.blO
.128
.b07
.117
.580
.131
,b38
.bl?
.37b
,b!2
.870
.512
.107
.577
.1*1
.b35
,b!8
.371
.b28
.115
.S>12
.117
.580
.150

AND
AND
HC
CO
NO
35
310
18
80
1D87
102
*
b
805
HS
182
S
77
1205
100
*
1*
Bb?
7
171
b
bl]
110*
80
*
1
871
7
1*2
5
b5
112fa
8.2
*
1*
888



n.35*(
0.3S*C
0.35*C
.(182
.082
.Obi
.nsi
.015
.081
.077
.071
.IbS
.U»2
.081
.Ob8
.080
.nib
.080
.078
.071
.1*7
.033
.1.132
.Obi
.081
.01*
.080
.077
.032
,17b
.082
.081
.Obi
.081
.Olb
.032
.078
.071
.177



lll.SIb)
.071)
bOa.381)
105
10*
217
l*b
IDS
10*
Ibll
177
173
105
1*5
285
155
123
103
17*2
171
111
115
1*5
2bl
ISb
133
123
17*8
170
11*
11*
l*b
270
Ib8
13b
12*
17b*
185
201



* 0.
* o.
* 0.
WEIGHTING H E
FACTOR HC
.03fa
.081
.257
.081
.0*7
.081
.283
.081
. .021
.03fa
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.357
.081
.0*7
.081
.283
.081
- .021
,Q3b
.081
.25?
.081
.0*7
.081
.283
.081
.021



b5*( 101
bS*C
bS*C *>33
1.2*b
3*. 721
*.b27
7.011
51.087
1.101
1.253
,5b3
' lb.101
1.2*b
lfa.22b
1.31*
fa. 87?
5b.b*l
8.8b8
1.2faS
1.2bb
18*207
,23b
15.170
l.*l*
5.308
51. Bb?
7.08*
1.253
.8*2
18.38*
.235
12. fa?*
l.*01
S.71S
52.135
7.317
1.2bS
1.2fab
lB.b*8



.101) = 107
.072) =
.IS*) * fa23
CORRECTED NO = bS*
I G ri
CO
.003
.00?
.018
.007
.00*
.007
.022
.007
.003
ri -y a
. U r *1
.003
.007
.017
.007
.005
.00?
.022
.00?
.003
n T o
.U r T
.001
.003
.018
.007
.00*
.007
.032
.003
.00*
• Ofal
.003
.00?
.018
.007
.005
.003
.022
.00?
.00*
.075
.071
.072
.181
.07*
.10*
1 c. 0
NO
3.717
1.218
55.885
13.02*
5.083
1.2*fa
*58.300
15.7b3
- 3.b3b'
c TII nan
3 r T 9 u JU
3.717
13.12*
73.210
13.755
5.800
1.155
*13.888
15.111
*.012
i -j fi ^ ^ a
fa JO, 73e
*.127
12.1*8
b?.180
13.117
b.2*2
10.101
*1*.b38
15.155
*.0?7
b21. 113
*.120
12.1b3
bl.312
1*.131
b.312
11.0*7
*11.212
lb.*S?
*.313
b38.?lb
b02.381
b33.15*
PPM
PERCENT
PPM
.510 PPM
        DILUTION  FACTOR

-------
CYCLE 1
CYCLE 5
CYCLE 3
CYCLE *
8-S-7? KUN3 3-3 tKTDC fanDBPM W/AIP EGR
FEDKWAL
1 IDLE
S Ib'riG
3 10'HG
* Ib'HG
5 11'HG
h Ih'HG
7 3'HG
8 Ib'HG
9 C.T.
1 IDLE
e ife ' HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'rtG
7 3'HG
8 Ib'HG
1 C.T.
AVERAGE
CONCENTRATION AS
HC CO CU?
32 .020
253 .(12(1
22 .020
88 .020
b93 .020
lOb .020
17 .070
ei .020
3fa* .0*0
32 .030
31b .020
17 .03P
** .030
bl* .020
102 .020
17 .070
17 .030
333 .0*0
8 .030
131 .030
13 .050
' fal .020
b88 .050
87 .050
17 .070
17 .050
8.130
8. 7 5 1)
in.sso
8.130
7.000
8.13U
13.0bU
1.?50
*.bOO
H.13U
8.750
10.780
1.350
7.om
3.130
13.330
1.370
*.750
1.370
8.130
in. sso
8.130
fa. 820
R.130
13.330
9.370
3*1 .0*0 *.7SO
8 .020 1.370
188 .020
13 .020
bb .020
fabb .030
71 .020
13 .070
13 .030
8.8*0
10.780
1.030
7.000
1.1*0
13.180
1.370
337 .0*0 *.720
•_ « _ • f P V f* 1 f PflMDAQTTP'l™
SUM-— (COMPOSITE VALUES
AVERAGE aun---ii.uriruai i c vnuuco
FOUR CYCLE COMPOSITE - REPORTED






OXIDATION CATALYST
K =1.051 HUM a 10
MEASURED DILUTION ADJUSTED WEIGHTING
NO FACTOR HC CD NO FACTOR
51
R3
IbH
77
b*
58
15*b
112
b*
51
b*
183
1b
b*
70
1.518
123
(•.8
77
17
181
97
77
77
1552
117
79
77
17
111
103
77
77
15*0
130
80
FOR CYCLES
F OR CYCLES
VALUES -


l.fclb
l.bOS
1.370
l.bOS
l.Sbl
l.bDl
l.lOb
1.5b2
3.892
l.blfa
I.bl2
1.3*3
1.558
1.8*7
I.b03
1.083
1.5*3
2.827
1.5**
1.517
1.3b1
l.falO
1.911
I.b02
1.083
1.5*0
3.823
1.5**
I.b03
1.3*3
1.591
1.87b
1.572
l.Olb
1.5**
2.8*1
1 ANO
HC
CO
NO
52
*0b
30
1*1
1215
170
11
33
1053
52
3*8
23
bl
1282
Ib3
18
2b
1*1
12
201
18
18
1315
131
18
2b
9fa2
12
301
17
105
13*1
112
1*
20
157


0.3S*(
0.35*(
0.35*(
.032
.032
.037
.032
.037
.f!32
.077
.031
.lib
.P32
.032
.027
.031
.037
.033
.07fa
.031
.113
.031
.033
.DBS
.033
.Olb
.080
,07b
.077
.113
.031
.033
.037
.033
.038
.031
.077
.031
.11*


155.710)
.0*5)
51b.387)
82
133
233
13*
130
13
1701
175
185
83
103
3*b
150
118
113
lfa*5
188
193
119
155
359
ISb
1*7
133
IbBl
180
323
119
155
3b7
Ib*
1**
121
IbBB
301
337


+ 0.bS*(
+ O.b5*(
t O.b5*(
.03b
.089
.357
.089
.0*7
.089
.383
.089
.031
.03b
.089
.357
.089
.0*7
.089
.383
.089
.031
,03b
.081
.257
.081
.0*7
.089
.383
.089
.031
.03b
.089
.857
.089
.0*7
.089
.383
.089
.021


13*. 189)
.OSb)
bib. 087)
CORRECTED NO
W E
HC
l.Bfal
3b.l**
7.7*b
12.5b9
bO.673
15.108
5.320
3.919
33.110
i tm IL L. R n
J. of » b 3U
l.Bfal
30.995
S.Sfal
b.101
bO.353
1*.S*5
•5.313
3.33*
19.7fa7
| u < g a n
A T D • T J U
.**s
18. blS
*.S75
8.7*1
fal. 791
13.»07
5.313
3.331
20.308
1 3 u. 3 3 C
13* . 3ca
.**S
Bb.799
*.*8*
9.3*8
58.732
9.930
*.032
1.78b
30.105
155.790
13* . 989
= 1*3
=
a b09
a b*0
6R/L8

I G H T E 0
CO NO
.001
.003
.007
.003
.003
.003
.033
.003
.003
nil ik
. UT b
.001
.003
.007
.003
.003
.003
.031
.003
.003
.001
.003
.018
.003
.00*
.007
.031 •
.007
.002
n L. J
• u b *
.001
.003
.007
.003
.003
.003
.032
.003
.002
nuc
,u"»a
.0*5
n c L.
« Uab
,3b9 PPM
3.9bb
11.857
59.50*
10.918
S.b33
8.3fa7
*83.782
15.571
3.887
2.1fab
9.18*
faS.OIS
13.311
5.557
1.983
*bS.»37-
lb.7S2
*.037
can 3 1 Q
3 ~U » J L T
*.281
13.78*
bb.513
13.900
b.91b
10.981
*7S.8b2
lb.0*0
*.b82
. \ p QC O
blc .Has
*.381
13.827
b8.b31
1*.S89
b.789
10.770
*77.b91
17.859
*.7?3
L. 1 O P 1 ^
D 4 1 « C X f
5Sb.387
bib * 087
.053 PERCENT
.113 PPM
.103 PPM


        niLUTION FACTOR = l*.S/CCOa+0.5*CO+10.8*HC)

-------
          8-2-72  RUN1  3-3 4BTDC bOMRPM W/AIR HGR OXIDATION CATALYST       K  =  i'°*      HUM  s   q°
CYCLE I
CYCLE S
CYCLE 3
CYCLE
MASS
MODE
1 IDLE
d Ifa HG
3 10 HG
4 Ifa HG
5 19 HG
b Ib HG
7 3 HG
H Ib HG
9 C.T.
1 IDLE
2 Ifa HG
3 10 HG
4 Ifa HG
5 19 HG
b Ib HG
7 3 HG
8 Ifa HG
9 C.T.
1 IDLE
3 Ib HG
3 10 HG
4 Ib HG
5 19 HG
fa Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
Z Ib HG
3 10 HG
4 Ib HG
5 19 HG
b Ifa HG
7 3 HG
8 Ib HG
9 C.T.

AVERAGE SUM
AVERAGE SUM
FOUR CYCLE



CONCENTRATION AS HEASUrtED
HC CO CO?. NO
fas .sen 9.4i
521 .340 8.ai
35 .180 10.95
7b .080 9. Ob
b!2 .070 7.18
bO .100 9.21
ai .140 13.20
ai .100 9.37
320 .110 4.73
fas .aao 9.4i
17b .080 8.78
13 .100 10.78
48 .100 9.14
b42 .070 7.23
fab .090 9.25
13 .130 13.33
17 .070 9.37
318 .110 4.b9
8 .070 9. 25
138 .070 8.93
8 .100 10.78
57 .070 9.03
715 .090 7.00
70 .090 9.18
17 .130 13.18
Ifa .070 9.19
317 .100 4.39
s .070 9. as
103 .070 9.14
8 .070 10.78
50 .070 9.14
fa71 .070 7.09
73 .070 9.14
13 .110 13.18
13 .070 9.19
325 .090 4.bl
__ ^ i* v p i c pnMonQTTP^.

fPrtMDflCTTC U A 1 IIFQ
— — — lUUnKUoiTt VALUud
COMPOSITE - REPORTED



S2
77
14b
103
b4
77
1482
103
fa9
S2
90
210
100
b4
77
14b3
103
73
77
74
224
103
b4
77
1510
109
73
77
103
237
103
77
77
14fa3
117
73
TOiAL
CARBON
H.700
9.113
ll.lbS
9.282
7.911
9.375
13.3b3
9.493
S.18b
9.700
9.050
10.894
9.392
7.993
9.411
13.474
9.458
5.143
9.3S9
9.149
10.889
9.1fa2
7.8b2
9.34fa
13.338
9.277
4.832
9.329
9.321
10.859
9.2fa4
7.885
9.389
13.304
9.274
5.051
FUEL
CONS.
Ib34
5539
9897
5539
3178
5539
185bO
5539
994
Ib34
5539
9897
5539
3178
5539
185bO
5539
994
Ib34
5539
9897
5539
3178
5539
IBSfaO
5539
994
Ib34
5539
9897
5539
3178
5539
IBSfaO
5539
994
ADJUS1EO (MASS)
HC CO N02
1?
342
33
49
abb
38
32
13
bb
12
.Ufa
13
31
27b
42
19
11
bh
2
90
8
37
312
4S
2fa
10
70
2
bh
8
32
292
4?
20
8
b9
75
417
322
97
57
119
393
118
43
75
99
184
130
5fa
107
3fa3
S3
43
25
8b
184
85
73
108
3bb
84
42
35
84
139
85
57
84
310
84
3b
3
Ib
43
21
9
IS
b83
30
4
3
18
b3
30
8
IS
bfa9
30
5
4
IS
b8
31
9
IS
b98
ZZ
5
4
30
73
20
10
IS
b?8
33
5
WT.
FACT.
.232
.077
.147
«077
.057
.077
.113
.077
.143
.333
.077
.147
.077
.057
.077
.113
.077
.143
.333
.077
.147
.077
.057
.077
.113
.077
.1»3
.232
.077
.147
.077
.057
.077
.113
.077
.143


VALUES - HC 0.35( 3,b)



CO 0.
Noa o.

35C 9)
3SC 5.7)

+ 0
+ 0
* 0

.bS(
.bS(
.bSC
CORRECTED
2.7) a
b) •
5.9) =
NOB =
3. 048
7.4
5.848
b.O9B
WEIGHTED (MASS)
HC CO N02(K) HP
2.7
3fa.3
4.9
3.8
15.1
2.9
3.b
1.0
9.5
4.3
2.7
9.0
1.9
3.4
15.7
3.3
3.3
.8
9.5
BQ
.9
.4
b.9
1.2
3.9 '
17.8
3.5
3.^
.8
10.1
2O
* T
.4
S.I
1.2
3.5
Ifa.b
3.b
3.2
.b
9.9
8*
.b
3*
. b
3. 7
(MASS)
(MASS)
(MASS)
CMASS)
17
33
47
7
3
9
44
9
b
17
8
37
9
3
8
41
fa
b
b
7
37
7
4
B
41
7
b
b
b
19
7
3
b
35
7
5
g
T
fa



.7 0
1.3 7
b.3 30
• i.b :7
.5 9
1.3 7
77.3 81
l.S 7
.b 0
SL
• B
.7 0
1.4 7
9.3 30
1.5 7
.5 9
1.3 7
75. fa 81
l.S 7
.7 0
S^
. f
1.0 0
1.1 7
9.9 30
I.b 7
.5 9
1.2 7
78.9 81
1.7 7
.7 0
bn
• "
1.0 0
I.b 7
10. S 30
I.b 7
.b 9
1.3 7
?fa.b 81
1.8 7
.7 0
5.9
5<«
.7
5.9




-------
          a-s-75  HUH-?  2-3 teroc ban WPM  W/AIH FGR  OXIDATION CATALYST
HUM
                                                                                              10  GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE 4
HASH
MODE
.1 IDLE
2 Ifa HG
3 10 HG
4 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 ib HG
S IS HG
h Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
S Ifa HG
3 10 HG
4 Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
S Ifa HG
3 10 HG
4 Ib HG
5 11 HG
b Ifa HG
7 3 HG
8 Ib HG
S C.T.
AVERAGE
CUiNCEMTRATION AS rtEASUKEO TOTAL
HC CO C'lg NO CAKBON
HI . n 5CI H.7S
231 .050 S.bO
13 .050 10.43
41 .050 fl.84
573 .050 7.00
b3 .050 8.84
4 .070 13. Ob
4 .050 1.1*
ai3 .ObO 4.13
21 .nSO 8.75
113 .050 8.84
4 .050 10. bb
48 .050 8.93
b25 .050 b.82
b2 .050 8.13
4 .070 12.14
1 .050 1.14
215 .050 4.51
4 .020 8.84
111 .020 8.84
4 .050 10.51
37 .050 8.13
510 .050 7.01
50 .050 1.03
4 .070 13. Ob
b .020 1.18
21b .ObO 4.58
4 .050 8.84
88 .050 8.84
4 .050 n.55
40 .050 8.84
586 .050 b.ll
51 .020 8.13
4 .070 12.14
1 .050 1.14
301 .QfaO 4.5b
_ — — /" C V r 1 F mMDflQTTt'^M
SUM 	 (COMPOSITE VALUES
AVERAGE sun-- — luunruai I c VHL.UCO
FOUR CYCLE COMPOSITE - REPORTED




b'4
b4
157
in
57
b4
14b3
112
b3
b4
10
21H
Ib
b4
b4
1551
IDS
b5
70
10
110
17
71
77
1571
108
bb
70
10
117
103
71
77
1571
117
b8
B.823
8.108
in. 414
8.143
7.bb1
8.158
13.134
1.114
5.30fa
8.823
1.012
10.714
1.032
7.545
1.047
13.014
1.200
4.151
8.8b4
8.180
10.5b4
1.020
7.777
1.134
13.134
1.20b
4.1bO
B.814
8.185
10.b04
8.133
7.515
1.QOS
13.014
1.200
4.145
FOR CYCLES 1 AN
c no P v r* i F Q 3 AM
FUEL
CONS.
Ib34
5531
1817
5531
3178
5531
IBSbO
5531
114
Ib34
5531
1817
5531
3178
5531
IBSfaQ
5S31
114
Ib34
5531
1817
5531
3178
5531
18SbO
5531
114
Ib34
5531
1817
5531
3178
5531
185bO
5531
114


VALUES - HC 0.35C 2.b)


CO 0.
N02 0.
35C 4)
3SC b.n)
ADJUSTED (HASS)
HC CO N02
4
IbO
1.3
33
25b
42
b
3
51
4
75
4
32
284
41
b
fa
b4
1
74 •
4
25
2bO
33
>>
4
b4
1
51
4
27
2bb
34
fa
fa
b5


+ D.bS(
+ 0.bS(
+ a.bsc
11
b3
15
b3
42
b2
200
bl
23
11
b2
13
b2
43
be
202
bl
20
7
25
15
be
41
bl
200
24
24
11
fa2
14
b3
42
25
202
bl
24


2

b
CORRECTED
4
13
41
11
8
13
bBb
22
4
4
18
b4
20
1
13
738
22
4
4
18
51
20
10
Ib
741
22
4
4
18
bl
21
10
Ib
748
23
S


.2) a
4) =
.3) =
N02 -
wr.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.its
.232
.077 ••
.1*7
.077
.057
.077
.113
.077
,1»3
.232
.077
.1*7
.077
.057
.077
.113
.077
.143


2.3S2
3.8
b.147
fa. 410
WEIGHTtO (MASS)
HC CO N02CK) HP
1.0
12.4
1.1
2.5
14. b
3.2
.7
.2
8.5
eg
• o
1.0
S.8
.b
2.»
lb.2
3.2
.7
.5
1.1
Su
• T
.2
S.7
.b
l.S
14.8
2.5
.7
.3
1.2
83
• e
.2
4.S
.b
2.1
15.1
2. fa
.7
.5
1.3
By
* C
2.b
89
• e
(MASS)
(MASS)
(MASS)
(MASS)
4
S
14
S
e
s
23
S
3
u
T
4
S
1»
5
2
5
29
5
3
2
2 •
1»
S
z
S
23
e
3
u
T
4
S
1»
5
2
2
23
S
3
H
»
k
T



.1 0
1.0 7
7.2 30
l.f 7
.* S
1.0 7
77. b 81
1.7 7
.fa 0
S3
• f
.S 0
l.» 7
1.5 30
1.5 7
.5 S
1.0 7
83.4 81
1.7 7
.fa 0
ba
• c
1.0 0
' l.» 7
8.7 30
1.5 7
.5 1
1.8 7
83.7 Bl
1.7 7
.b 0
ba
• =
1.0 0
l.» 7
1.0 30
l.b 7
.b 1
1.2 7
84. S 81
1.8 7
.b 0
bQ
• J
fa.O
b^
• 3




-------
           H-3-72   RI.IN3  a-3 tBTUC MiriRpM H/ATR KGK OXIDATION CATALYST
                                                                                K = 1.0*
HUM =  10  GR/LB
CYCLE l
CYCLE 2
CYCLE 3
CYCLE *
MflOE
1 IDLE
2 Ifa HG
3 lu HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
U lh HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ifa HG
1 C.T.
1 IDLE
Z Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
Z Ifa HG
3 10 HG
* Ib HG
S 11 HG
b Ifa HG
7 3 HG
8 Ifa HG
1 C.T.
AVERAGE
CDNCENVKATION AS MEASuwtD
HC Co cue MO
He .020 8.13
3S3 .030 8.75
aa .o?n 10.55
88 .020 8.13
bia .oao 7.00
IClb .020 8.13
If .070 13. Ob
31 .020 1.25
3b* .P*n *.bn
33 .020 8.13
21fa .020 8.75
17 .020 10.78
** .020 1.25
hi* .030 7.01
ioa .nan 8.13
17 .070 .13.33
17 .030 1.37
333 .0*0 *.75
a .oao 1.37
131 .020 8.13
13 .050 10.55
bl .030 8.13
b88 .050 fa.Sa
87 .050 8.13
1? .070 13.33
1? .050 1.37
3*1 .0*0 *.7S
f PVPl C PflMDDQTTP^.
8 .020 1.37
138 .030 8.8*
13 .020 10.78
bb .020 1.03
bbb .020 7.00
71 .020 1.1*
13 .070 13.18
13 .020 1.37
137 .0*0 *.7a
/"PI/PI t pnMDftQTTP%.
SUM 	 (COMPOSITE VALUES
AVERAGE sUM-'-ltunruoi i c v«i_uc,-i
FOUR CYCLE COMPOSITE - REPORTED






51
83
IbH
77
b*
58
15*b
112
b*
51
b*
1H3
Ib
b*
70
is is
122
b8
77
17
181
17
77
77
1552
117
71
77
17
111
103
77
77
15*0
130
80
TOTAL
CARBON
8.185
1.0*3
10.51*
1.0*5
7.7b8
I.Ofa*
13.1*8
1.213
5.033
8.185
1.003
10.818
1.318
7.8bO
I.OfaO
13.*18
1.*08
5.150
1.311
1.011
10. bl*
I.Olfa
7.bl3
1.07*
13.*18
1.*38
5.158
1.311
1.0b3
10.81*
i.iai
7.731
1.237
13. 2b*
i.*n*
s.ia*
FOR CYCLES 1 AN
crtD f*Vf*t PQ 3 AM
FUEL
CONS.
IfaS*
5531
1817
5531
3178
5531
ISSbO
SS31
11*
Ifa3*
5531
1817
5531
3178
5531
ISSbO
5531
11*
Ib3*
5531
1817
5531
3178
5531
ISSbO
5531
11*
Ib3*
SS31
1817
5531
3178
5531
ISSbO
5531
11*


VALUES - HC 0.3SC 3.5)



CO 0.
Noe a.

3SC 5)
3SC S.I)

ADJUSIED (MASS)
HC CO NOa
b
Ib7
aa
58
3Db
70
2b
1*
78
b
1**
17
28
303
b?
as
11
bl
a
8b
13
*0
310
57
as
11
71
a
ia*
13
*3
ais
*b
ao
8
71


+ n
+ 0
+• 0

7
as
38
as
17
as
aoo
a*
Ib
7
as
37
2*
ib
35
lib
a*
ib
7
35
1*
35
*3
b2
lib
51
Ifa
7
35
37
35
17
2*
118
2*
Ifa


.bSC 3
• bS (
.bSC b
CORRECTED
3
1?
52
Ib
1
12
725
a3
*
3
13
Sb
11
1
1*
fa17
3*
*
*
20
51
30
11
Ifa
713
23
5
*
30
bO
31
10
IS
715
35
S


.0) ~
3) =
.i) =
NOS =
WT.
FACT.

.077
.1*7
.07?
.057
.077
.113
.077
.1*3
.asa
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.333
.077
.1*7
.07?
.05?
.07?
.113
.077
.1*3
.333
.077
.1*7
.077
.05?
.077
.113
.07?
.1*3


3.1b5
3.8
b.OO3
b . SfaQ
WEIGHTtD (MASS)
HC CO N02(K) HP
1.5
13.1
3.3
*.S
17.5
S.*
3.1
1.0
11.1
3-)
• 7
l.S
11.1
3.5
2.3
17.3
5.2
3.1
.8
1.1
33
. 3
.3
b.b
1.1
3.1
17.7
*.*
2.1
.8
10.1
3n
»u
.3
l.fa
1,1
3.3
Ifa. 8
3.5
3.3
.b
10.1
3.0
3.5
3n
. 0
(MASS)
CMAS3)
(MASS)
CMAS33
Z
Z
b
a
i
2
33
a
a
3
Z
5
2
1
2
33
2
Z
Z
2
1*
2
2
S
32
S
3
3
i
S
2
1
2
22
2
Z
2
3



.7 0
1.3 7
7.7 30
1.3 7
.5 1
.S 7
81.1 81
1.7 7
.b 0
bm
.0
.7 0
1.0 7
8.3 30
l.S 7
.5 1
1,1 ?
78.8 81
1.8 7
.fa 0
SQ
• o
1.0 0
l.S 7
B.b 30
1.5 7
.fa 1
1.2 7
80.5 81
1.8 7
.7 0
b.O
1.0 0
l.S 7
8.1 30
l.b 7
.b S
1.2 7
80.8 81
2.0 7
.? 0
b.l
S.S
b.l




-------
              APPENDIX P




               ENGINE 2-3




STANDARD 1972 ENGINE EMISSION RATES




            TABULAR DATA




     EXPERIMENTAL, 23 MODE MASS




    NINE-MODE FTP CONCENTRATION




   NINE-MODE CALIFORNIA ARE MASS

-------
8-3

MODE
1
2
3
4
b
b
7
8
q
10
11
12
13
14
IS
Ib
1?
18
11
20
21
22
23
-72

RUN-1
UYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.U
19.0
42. 0
58.0
llb.fl
175.0
1S1.0
214.Q
533.0
0.0
0.0
250.0
230.0
205.0
18b.O
125.0
fas.o
45. Q
20.0
S.O
0.0
o.o
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG.2-3 1S72 VERSION 4 BTDC STAT.ERL
MAN. FUEL
HP
0
1
4
10
13
27
40
44
49
53
0
0
109
101
90
81
55
28
20
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.2
19.4
19.0
17.9
lb.4
10.7
5.7
3.8
2.3
.3
18.3
22.0
.fa
2.7
4.8
fa. 3
11.1
lfa.3
18.0
IS. 8
20. b
18.3
24.9
CALCULATED GRAM/HR
MODE
1
2
3
u
b
b
V
8
q
in
11
ie
13
if
is
ib
17
18
IS
20
21
22
23
CYCLE




ALUE
o.n
0.0
0.0
o.o
o.n
n.o
0.0
n.o
n.n
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
n . o
0.0
o.n
0.0
0.0
HC
b3. 7
.I*. 4
16.1
37. fa
41. fa
f>4.H
qb.O
H4.7
3b.4
211.8
38.2
717. fa
4Sfa.S
187.9
170.3
1=15.1
•if .1
33.0
?l.b
10. fa
7.5
•IS. 8
&39.fa
COMPOSITE








CO
549
221
135
70
84
101
358
349
221
8070
3bO
124
21b32
4237
4348
4301
279
185
Ifaf
118
103
34 4
102
HC
CO
N02
ALOE
BSFC
N02
1.3
8.0
10.4
32.8
bb.O
201.0
414.9
482.2
5b7.S
2S7.S
1.7
.3
514.2
93fa.4
805.4
720.2
fa27.2
278.4
132.4
4 fa. 2
24.8
1.7
.4
7.31fa
53.947
8. 597
0.000
.fa23
3,5
7.5
7.5
8.1
8.3
14.5
20.2
21.8
23.0
30. fa
3.3
3. fa
fa4.5
48.5
44.8
41.7
28.4
18.4
ifa.3
13.5
11.7
3.5
3.8
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.OfaO
0.000
.QbS
0.000
0.000
.080
.ObO
14.9
15.5
15. b
lb.2
lb.3
lb.7
15.3
15.5
15.5
13.1
14.5
lb.3
12.4
14. b
14.4
14.3
15.9
lb.1
lb.2
lb.4
lfa.4
14.9
19.8
WT.
HP
n.o
.1
.3
.5
.4
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.7
5.5
3.1
4.9
3.3
0.0
1.3
0,0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
b523
834
758
1407
1507
1300
1518
13b8
1324
25fab
38b4
54958
2bSO
1299
1290
158b
587
541
400
23b
190
3809
38328
CO
2.780
.470
.280
.130
.ISO
.100
.280
.250
.ISO
4.840
1.800
.470
b.310
1.4SO
I,b30
1.730
.150
.150
.ISO
.130
.130
I.b30
.3bO
C02
12.82
14.05
13.91
13.48
13.33
12.94
14.05
13.91
14.05
11.72
12.94
b.54
10. bb
13. b3
13. b3
13.48
13.77
13.48
13.48
13.48
13.33
13.18
8.05
NO
40
104
131
370
720
1212
1975
2100
2350
1087
51
7
S13
1950
1837
17b2
2050
1375
738
310
190
49
8
SPECIFIC GRAM/BHP-HR
HC
R
17.00
4.1b
3.92
3.14
2.45
2.40
2.17
1.97
3.98
R
R
4.17
1.87
1.90
2.40
.99
1.19
1.10
1.21
3.41
R
R
CO
R
193. fa
31.1
7.3
b.3
3.8
8.9
8.0
4.5
151. b
R
R
197. fa
42.1
48.4
52.8
5.1
b.7
8.3
13.5
47.2
R
R
N02
R
7.0
2.4
3.4
5.0
7.b
10.4
11.0
11. b
S.b
R
R
4.7
9.3
9.0
8.8
11.5
10.1
b.7
5.3
11.3
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
8-3-7?
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.2-3   1972 VERSION  4 BTDC STAT.ERL

MOOt
1
2
3
4
fi
fe
?
S
q
10
11
IS
13
1*
IS
Ib
17
18
IS
en
21
?c!
S3

DYiNA
SPEED LOAD
boo
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1POO
2300
2300
2300
2300
2300
2300
2300
23flC
230C
hon
2300
0.0
5.0
1=1.0
42.0
Sfl.O
llb.O
175.0
191.0
214.0
233.0
0.0
0.0
250.0
2JO.O
205.0
18h.O
125.0
63.0
45.0
a o . o
5.0
0.0
0.0
MAN. FUEL
HP
0
1
4
10
13
2?
40
44
49
S3
0
0
109
101
so
81
55
28
20
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.2
IS. 5
1S.O
17. S
Ib.S
10.8
S.7
3.8
2.3
.3
18.5
22.0
.b
2.7
4.8
b.3
11.0
lfa.4
18.0
IS. 8
20. b
18.3
24. S
CALCULATED GRAM/HR
MODE
i
2
M
1
c,
fr
7
P
*(
in
11
1?
13
i1*
1R
Ib
17
IP
1H
20
21
2?
23
CYCLE




AIDE
0.0
0. 0
I'.d
u . c
n.li
0.0
0.0
n.o
n.n
n.o
o. u
0.0
0.0
0.0
n.o
0.0
n.f
n.o
n.O
n.fi
O.ti
0.0
n.n
HC
5fa.5
J b.8
22. ?
3b.S
Ht .b
h?.8
ss.o
97. b
).('?. 9
2?5.1
t2.b
717.4
4>Jii.3
1*3.1
lb?.b
.1 8 0 . fa
52.4
2^.5
IB. 8
.10.0
7. fa
4-3.1
S'-fb.S
COMPOSITE








CO
303
IBS
138
S3
57
99
353
2S3
223
81S5
52f
12f
21b07
3591
39bl
34-22
28b
188
144
SI
82
187
102
HC
CO
NO?
ALOE
BSFC
N02
1.5
8.3
12.3
32.5
fa4.0
214.5
424.5
504.1
572. S
28b.4
l.S
.3
5Qb.S
1007.7
874.2
8Sfa.7
b?4.3
270.3
144. b
4S.5
27.0
1.7
.4
7.300
48.S38
• S.4bfa
0.000
.b22
3.5
7.b
7.7
8.0
8.4
14.3
20.1
21.7
23.0
30,7
3.7
3. fa
b4.5
48.2
44. S
41.4
28.5
18.5
lfa.3
13.4
11. S
3.5
3.8
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
15.1
15.5
IS. 5
lb.1
lb.3
lfa.7
15.2
15. b
15.5
13.1
14.1
lb.2
12.4
14.7
14. b
14.5
lb.1
lb.3
lfa.4
lfa.5
lfa.5
15.5
is.s
WT.
HP
0.0
.1
.3
.5
.4
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.7
5.5
3.1
4.9
3.3
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
5200
702
S28
13Sb
1572
1378
158?
1413
14b9
2708
3998
55004
2892
12b7
12b5
1471
555
475
343
222
188
3959
38129
CO
1.380
.390
.280
.100
.100
,100
.280
.210
.ISO
4.880
2.440
.470
b.310
1.230
1.480
1.380
.ISO
.150
.130
.100
.100
.850
.3faO
C02
12.71
13.91
13.91
13.48
13.18
12. S4
14.18
13.91
13.91
11. bO
12.94
fa. 55
10. fab
13.77
13. b3
13.77
13.48
13.33
13.33
13.33
13.18
13.33
8.10
NO
U
lot
1S1
370
b8Q
1313
2050
2200
2350
103?
S3
b
ROD
2100
1S87
2200
2150
1313
795
330
200
t?
8
SPECIFIC GRAM/BHP-HR
HC
R
14,74
5.23
3.85
3.3b
2.5b
2.48
2.24
2.21
4.23
R
R
4.48
1.82
1.87
2.22
.9b
1.07
.95
1.15
3.49
R
R
CO
R
lfaS.4
31.9
S.b
4.3
3.8
8.8
fa. 7
4. fa
153.9
R
R
197.4
35.7
44.1
42.0
S.2
b.B
7.3
10.4
37.4
R
R
N02
R
7.2
2.8
3.4
4.8
8.1
10. b
11. b
11.7
5.4
R
R
4.b
10.0
9.7
11.0
12.3
9.8
7.3
5.7
12.3
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BMP HR
GRAM/BHP HR
LB/BHP HR

-------
                   RUN 1  3-3 *BTI)C
                                           E.R.L STU.ENG.
                                                            STA.
                                                                                K  =1.031
                                                                                             HUM =  8*  GR/LB
CYCLE L
CYCLE i
CYCLE 3
CYCLE *
FtnirKAL
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S IS HG
b Ib HG
7 3 HG
R Ib HG
9 C.T.
1 IDLE
2 Ib'HG
3 Id'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.
1 IDLE
2 Ib'HG
3 10 'HG
t Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.

CUftCEN 1 NATION AS
HC CO C02
i*,a
43
*S
to
2b
to
75 1
35
1712
its
7b
*9
**
£b
tn
?b 1
35
Ifabl
89 1
80
*8
**
31
t*
80 1
35
Ifa2*
89 1
71
t8
tt
31
**
77 1
25
Ib03
t 	 f r* nian ri
AVERAGE SUM— — -vuunru
AVERAGE SUM— — — C C 0 MP C
FOUR CYCLK COMPOSITE




.800 IS.tSri
.ISO 13.77n
.180 13. 77 II
.180 13.770
.180 13.770
.180 I3.b30
.110 1*.310
.180 1 * . 1 5 LI
.950 8. 130
p n M P n Q T TPI _
dlPlfUOj, ICJ"
.800 13.*30
.181) 13.770
.180 13.91U
.180 13.910
.180 13.910
.180 13.770
.IbO 14.31P
.18U 1*.05Q
.980 8.9*0
mMPn*5TTFi
L. U n n U 3 1 IC.J
.170 1*.180
.180 13.910
.180 i*.osn
.180 lt.050
.180 lt.050
.180 It.OSn
.200 1*.310
.210 it.osn
.900 9.1i)0
rnMpriQTTF i
V* O n r U 3 I 1 r. ) ~
.170 lt.180
.180 13.910
.180 It. 050
.180 13.9faO
.180 lt.050
.180 It.OSO
.200 1*.*20
.190 It.OSO
.850 9.070
pnMDnQTTC" ^
CUMrOS J Tt ) "*
IICO
Silt V AUUt o
OTTIT V i 1 i IP Q
O Jl I t VMLUC.O
- RtPOKTED


MEASURED DILUTION A D J
NO FACTUH HC
105
J 135
.1377
95b
393
1085
1939
1371
129
105
103b
1599
1185
501
123b
1939
1*31
1*7
IbS
1185
Ifa7b
1224
5*2
130b
.1939
1389
Ib8
IbS
1195
1702
1202
501
13Qb
1982
I*fa8
127
p n p -rvn F Q
r UK U T L.LCO
VALUES -


1 . (1 1 3
1.039
1.0*2
1.0*3
1.0**
1.05*
.970
.997
1.387
1.033
1.0*0
1.032
1.032
1.03*
1.0*3
,9b8
1.023
1.292
.97fa
1.029
1.022
1.022
1.023
1.022
.Sb7
1.022
1.283
.97b
1.030
1.022
1.029
1.023
1.022
.SfaO
1.023
1.292

^ Awn
3 HI1U
HC
cn
NO
153
97
51

57
*2
73 1.
35
2375 1.
153
79
51
*5
it
*2
7* 1.
3b
21*fa 1.
87 1.
82
*S .
*s
32
*5
77 1.
3b
2083 1.
87 \.
73
*9
*S
32
*5
7* 1.
2b
2070 1.


0.3S*C lOfa
0.35*(
0.35*( 1391
U S T E D WEIGHTING WEIGHT
CD NO FACTOK HC CO
82b
187
188
188
18S
190
0?7
179
318
82b
187
18b
18b
1Mb
188
123
18*
?fafa
1*2
185
18*
18*
18*
18*
IbO
215
15*
1*2
185
18*
185
18*
18*
152
19*
098


.577)
.*91)
.278)
108
1179
1*35
997
*10
11*3
1881
13bb
179
108
1077
IfaSO
1223
518
1289
1878
l*b*
190
Ibl
1220
1718
1251
55*
1335
1875
1*19
21b
Ibl
1331
1739
123b
513
1335
1903
1502
Ib*


+ 0.bS*(
+ 0.b5*C
•f O.b5*(
.03b
.089
.257
.089
.0*7
.089
.283
.089
.021
.Q3b
.089
.257
.089
.0*7
.089
.283
.089
.021
.03b
.089
.357
.089
.0*7
.089
.283
.089
.021
.03b
.089
.357
.089
.0*7
.089
.383
.089
.021


S9.
.
1*81.
5.503
8.597
13.13*
3.713
1.37b
3.751
20.5S2
3.105
*9.8b7
5.503
7.035
13.99*
*.0*2
1.2b3
3.713
30.830
3.18b
*S.Ob3
3.12b
7. 329
13. bO*
t.003
l.*Sl
t.002
31.891
3.183
*3.7*7
3.12b
fa. 509
12. bO*
t.028
l.*Sl
t.002
20.931
2.27b
*3.*80


905) = 103.
515) =
•US) a 1**9.
.030
.017
.0*8
.017
.009
.017
.305
.Olb
.038
If QC
. T O3
.030
.017
.0*8
.017
.DOS
.017
.318
.Olfa
.037
.0*1
.Olfa
.0*7
.Olb
.009
.Olb
.338
.01S
c i a
. 31B
.0*1
.017
.0*7
.Olb
.DOS
.Olb
.32b
.017
.033
c 1 a
.513
C 1 C
E D
NO
3.90*
10*. 919
3fa8.833
88.73b
19.385
101.735
532. 3b2
121. blB
3.757
3. SO*
95. 8S*
*3*.017
108. 8b2
3*. 339
ll*.72b
531. »35
130.253
3.988
i u, a j u, i g
i~ 3 r » T i o
S.7Sb
108. Sb2
**0.085
111.335
2fa.0bl
118. 7S*
530.573
12fa.297
*.S2b
i u 1 3 n 9 D
if r c • UC B
S.79b
IDS. 553
*»b.912
110.032
2*. 089
118.79*
538. SOb
133. b7b
3.**S
'If SO. 803 '
1 a Q 1 3 1 B
1391 . e78
1 u a 1 u • c
• bib iTBA.TJ.9
3*0 PPM
507 PERCENT
8b7 PPM
                                                                                   CORRECTED NO =
        DILUTION  FACTOR =
                                      .5*CO + 10. 8*HC)

-------
         8-4-7?
                   RUN
                                           E.M.L STO.ENG.    ST4.
                                                                                K =1.031
                                                                                             HUM =  8*  GR/LB
CYCLE
CYCLE 3
CYCLE *
FhOtKAL
MO OF.
.1 IDLE
?. J h HG
3 IP HG
4 1> HG
5 11 HG
b lh HG
7 3 HG
H lh HG
1 C.T.
1. IDLE
S Ib'HG
3 IP'HG
4 Ib'HG
B H'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
5 Ib'HG
3 10'HG
4 Ib'HG
5 IS'HG
b .Ib'HG
7 3'HG
8 Ih'HG
1 C.T.
1 IDLE
a Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
i C.T.
* WC U A PC
A V t n AlsC.
AVERAGE
CUNCEN IKA I IUH A3 MEASURED DILUTION
HC CO COrf NO FACTOR
Ha? .BIO ip.aao
lari .180 la.OHO
faa .isr.1 I3.obo
41 .180 ia.140
3b .180 13. 3*0
44 .180 ia. 130
80 1.0=10 I3.b3l)
4 a .aio i a . i a n
a*** 1.100 b.bbl)
+a? .810 i?.22o
71 .180 13.nbO
*'S .180 13.180
*5 .180 13.180
31 .ISO 11.330
*5 .180 13.180
7b 1.300 H.b30
tO .180 13.330
5372 1.010 b.75Q
ISfa 1.010 13.*80
70 .180 13.P50
*5 .180 13.1*0
*5 .180 13. 1*0
31 .180 14.030
37 .ISO 13.180
7b 1.300 13.b30
3b .180 13.9*0
3318 1.150 b.7bO
ISb 1.010 13.*80
7b .180 13.180
45 .180 13.180
*0 .180 13.180
31 .180 13. fOO
tO .180 13.180
79 1.330 13.b30
3b .180 13.330
aaas 1.0*0 b.7io
QnM*»™~fTnMPf1QTTP U i 1 MP^i FflW
OUn**|,L,Urlrll3.1 ' n. VMLUC.W rU"
SUM- — (COMPOSITE VALUES F0(*
RO
14-f 4
Itb3
1031
450
1117
aato
) san
133
SO
1170
ibas
J.313
583
1313
eisn
itas
153
130
iass
1751
isia
ben
1531
ai*3
1518
Ib8
130
1350
1784
1313
bOO
1444
3011
15*5
131
p YPI F -
A U
HC
*73
1*1
bB
5*
*S
*1
81
*b
3b35
473
8?
53
*1
33
*1
77
*3
3*81
IbO
73
*b
*b
33
38
77
37
3*lb
IbQ
83
*1
**
33
**
71
31
3312



J U S
cu
.818
.ai?
.117
.111
.aoi
.auo
1.1U8
.eas
I.b3b
.418
.117
.lib
.lib
.11*
.lib
i.aia
.11*
I.b03
1.035
.I8b
.185
.185
.18*
.185
i.eib
.18b
l.bIS
1.035
.115
.lib
.lib
.113
.lib
i.ssa
.11*
1.5*3



" E D WEIGHTING
NU FACTOR
100
1701
IbOS
11*3
523
13*0
307*
Ib53
118
100
1383
17b1
1*31
b37
1*07
3.150
1750
32*
133
13*0
1812
1*3*
b35
1S82
B171
lb*7
a*a
133
l*bb
ii*a
1*30
b*3
1S?3
2117
IbbS
11*



.03b
.081
.as?
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.857
.081
.0*7
.OBI
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.oai



w E 1
HC
17.033
12.580
17.*81
*.833
1.1b8
*.3*1
23.011
*.0bb
?b.332
> i u i L. u n
* J. D 1. • b a U
17.033
7.703
13.70b
4.3bO
1.570
*.3bO
21.715
3.83*
73.277
i ti ^ c c a
1*7. "o
5.753
b.**5
11.111
*.13S
i.fsa
3.36*
81.710
3.302
71.7*3
. 1 3 Q Oli(«
• IcM.MTb
5.753
?.3*b
12. SSI
3.877
l.Sfaa
3.877
aa.ab?
3.*S3
?i.aas
mo C C
• °"
• t c IL L no
• ia* . OUT
- 130.151
G H 1
CO
.032
.011
.051
.018
.010
.018
.31*
.020
.03*
C 1 L
. 3 i D
.032
.018
.050
.017
.001
.017
.371
.017
.03*
C (. 7
* 3D r
.037
.017
.0*8
.Olb
.DOS
.Olb
.3**
.017
.03b
c ao
* 33T
.037
.017
.050
.017
.001
.017
.377
.017
.038
C 1 C
.575
C IL 1
.3*1
.557
E D
NO
3.510
151.38*
*12.*10
101. b18
2*. 515
110.315
S8fa.171
1*7.150
*.1S*
| C |1 3 U. a (.
•L3~Ce~3D
3.5SO
11*. 080
*s*.5aa
127.223
2S.*82
125.188
b08.571
15S.7fa3
*.b1b
Ib23» 121
».7

-------
                   RON 3 ?-:) tBTIJC
                                           t.H.L STO.ENG.
                                                                                  =1.031
                                                                                             HUM  =   8*  GR/L6
CYCLK
CYCLE 2
CYCLE 3
CYCLE *
FtuitKAL
MUOE
I IDLE
? Ib'HG
3 irj'HG
f Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 TOLE
a Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'MG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
a Ib'HG
3 10'HG
* Ib'HG
5 H'HG
b Ib'HG
7 3'HG
B Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
M- Ib'HG
5 11'HG
b Ib'rtG
7 3'HG
8 Ib'HG
1 C.T.
AVERAGE
CllNCtN 1 RA TIUN AS
HC CO CO*
272 1.3HH 13.0bO
so .eio 1 3 . ? i fi
* 8 . a 2 n 1 3 . a 2 f i
*b .3*0 13.180
28 .2*0 13.330
* a .2*0 is.iao
80 1.380 13.b30
35 .250 13.250
18fa8 1.200 8.220
?72 1.380 iS.Ofad
77 .230 13.110
*B .210 13.330
** .220 13.330
31 .230 13.330
*0 .220 13.180
77 l.*SO 13,*80
31 .250 13.1RO
1813 1.250 1.0*0
151 1.1*0 13.*80
77 .220 13.180
*8 .210 13.330
** .210 13.180
31 .210 19.310
* 1 .210 13.180
80 1.450 13.310
32 .250 13.0bO
1772 1.150 1.200
151 1.1*0 13.*80
77 .820 13.180
*8 .210 IS.OhO
** .280 13.180
31 .220 13.330
*1 .250 13.180
77 l.*3(J I3.*80
35 .250 13.130
1750 1.07(1 1.170
SUM 	 (COMPOSITE VALUES
AVERAGE 3UI"l---luunru3 j i c. vxuuco
FQUN CYCLE COMPOSITE - REPORTED






HEASUKEO DIU'lflON A
NO FACTUK HC
105
i3'*n
j mi?
1 * 0 b
Sbn
1387
21?1
1530
115
105
1332
1125
i*es
b3B
1501
P011
1551
131
150
13b1
11*7
l*0b
b7*
1531
2077
1*10
1*2
150
1388
11b8
1*10
b28
1***
2121
Ibl8
115
FOR CYCLES
F MR CYCLES
VALUES -



1.032
1.082
1.08*
l.HSb
1.07b
1.087
l.OOb
1.081
1.338
1.032
1.010
1.075
1.075
1.07b
1.088
1.015
1.087
1.2*8
1.080
1.08*
1.075
1.088
1.072
1.088
1.081
1.017
1.8*1
1.020
1.08*
1.017
1.087
1.07b
l.OBb
l.Olfa
1.087
1.251
1 AND
3A MPl
ft NU
HC
CO
NO

281
87
52
5H
3D
*b
81
38
2*11
281
8*
S2
*?
33
**
78
3*
22b2
Ib2
83
52
*8
33
*5
88
35
8118
Ib2
83
53
*8
33
*S
78
38
2188


0.35*(
0.3S*(
0.35*C

D J

,
,
m
^
^
1.
*
1.
1.
•
-
m
*
•
1.
•
1.
1.
m
^
•
»
*
1.
•
1.
1.
,
»
.
*
.
1.
.
1.


lib

Ib17

D 3 f E D
CO NO
*?5
227
23R
2bl
258
abi
381
370
bOb
*85
251
22b
837
237
231
*71
272
SSI
Ib8
231
28b
?2B
585
228
*80
27*
*27
Ib2
831
230
231
237
272
*52
272
338


.*38)
.bSO)
.071)

108
1*50
18*0
1527
b02
ISO?
2135
IfaS*
IS*
108
1*51
2070
1532
b7fa
Ifa38
8130
IbIS
Ib3
153
1*8*
8013
1581
788
Ifa7*
8181
Ib3*
17fa
153
1S05
2151
lfa2Q
b?b
ISfaS
815*
1758
1**


T 0.
+ 0.
+ 0.

WEIGHTING
FACTOR
,03fa
.081
.857
.081
.0*7
.081
.883
.081
.081
.03b
.081
.857
.081
.0*7
.081
.883
.081
.081
.03b
.081
.857
.081
.0*7
.081
.883
.081
.081
.03fa
.081
.857
.081
.0*7
.081
.283
.081
.021


faS*( 108.311)
fa5*( .fa**)
bS*C 17fal.*38)
CORRECTED NO
W E
HC
10.110
7.70*
13.3b7
*.**7
l.*lb
f .Obi
88.787
3.3b7
S8.*8S
•111.7**
10.110
7.*fa7
13.2b3
*.810
1.5b8
3.872
88.11*
8.111
*7.*17
113 n a a
11 3 « Oil
5.83b
7.*30
13.2b3
*.851
1.5b2
3.1b1
83. lib
3.12*
*b.lb2
i n D ?9i
J. U O • re 1
5.83b
?.*30
13.53*
*.2S7
l.SbS
3.1b*
22.130
3.385
*5.157
i n D n L i
J.U D • U O X
llb.*22
108.311
= 111
I G rt 1
CO
.051
.080
.Obi
.083
.018
.083
.313
.08*
.03*
tup
• b T c
.051
.088
.058
.081
.011
.021
,*lfa
.08*
.033
(.CO
.OSB
.0*8
.021
.058
.020
.011
.080
,*11
.08*
.030
L 11 L
.DTD
.0*8
.081
.051
.081
.011
.02*
.m
.08*
.088
.faSO
E 0
NO
3.103
121.037
*72.8SO
135.117
28.311
13*. 183
faO*.l*3
1*7.808
3.831
i t c Q "331
XD^D* r e A
3.103
181. IbS
531.810
13b.3*5
3l.7b5
1*5.871
b08.88*
150.833
3.*38
I T ac IL i j
± r 4 3 » T J r
S.SOb
138.107
537. IbS
13b.018
33.153
1*1.001
bOO.150
1*5. *SS
3.faSS
» T(i -» a a i
A r T J t 1 Jl
S.SOb
133.1*1
55*. 871
I**.lb8
31.7b5
131.51*
faOI.Sbl
15b.*11
3.080
ilia a 11
X / r o » T 3 3
* ^ t 1 11 *^ •*
.b** XTDX.TJC
.808 PPM
= ,fa*b PERCENT
= 1738
= 1713
.101 PPM
,*bb PPM
         DILUTION  FACTOR = 1*.5/(CU8+O.S*C(H10.8*HC)

-------
         8-4-72   RUN 1 2-1 tHTDC bOORPM  F.R.L STD.ENG.   STA.
                                                                              K = 1.03
HUM =  84  GR/LB
CYCLF 1
CYCLE
CYCLE 3
CYCLE 4
M4S8
(•iiliiK
1 )DIE
? Ib HG
3 11) HG
* Ib HG
5 IS HG
b IS HG
7 3 HG
8 Ifa HG
1 C.T.
.1 IDLE
e ib HG
3 10 HG
4 Ib HG
5 11 HG
b Ib HG
7 3 HG
B Ib HG
1 C.T.
1 IDLE
e ib HG
3 10 HG
4 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ih HG
5 It riG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
AVERAGE
CONCEN IKu flUN AS MeASUWED
HC LO C02 NO
!•*« .800 15.48
43 .18(1 13.77
41 .180 13.77
4(1 .180 13.77
2fa .18H 13.77
40 .180 13. b3
75 1.110 11.31
3S .180 14.42
1712 .ISO R.13
1*8 .800 13.48
7b .180 13.77
41 .180 13. 11
44 .180 13.11
Hb .180 13.11
fO .180 13.77
7b l.lbO H.31
35 .180 14.05
Ibbl .180 8.14
81 1.1711 14.18
80 .180 13.11
*8 .180 14.05
44 .180 14.05
31 .180 14.05
44 .180 14.05
80 1.200 14.31
35 .210 14.05
Ib24 .100 1.10
___— —ffvPt c mMDflQTTf^-
81 1.170 14.18
71 .180 13.11
48 .180 14.05
44 .180 13. Ib
31 .180 14.05
44 .180 14.05
77 l.?0n 14.42
2S .110 14.05
Ib03 .850 1.07
t f V (* 1 C f*OMDnQTTP^H
SUM---CCOMPOSITE VALUES
AVERAGE SUH---tuuni'uai i c v»i_uea
FOUR CYCLE COMPOSITE - REPORTED






105
1 135
1377
15b
313
1085
H31
1371
1B1
1115
UJ3b
1511
1185
501
123b
1131
1431
147
IbS
1185
Ib7b
1224
542
130fa
1131
1381
IbB
IbS
1115
1702
1202
501
130b
1182
14b8
127
TOTAL
CARBON
14.440
14.050
14.003
13.113
13.178
13.853
15.501
14.b3B
10.121
14,440
14.032
14.143
14.138
14.118
13.113
15.552
14.2fa8
11.714
15.44b
14.17b
14.282
14.278
14.2b3
14.278
15. Sib
14.218
11.754
15.44b
14.1fa7
14.282
14.188
14.Bb3
14.278
15.703
14.2b7
U.bSl
FOR CYCLES 1 AN
FUEL
CONS.
1543
7L73
11815
7173
b084
7173
1871b
7173
1581
1543
7173
1181S
7173
b084
7173
1871b
7173
1581
1543
7173
11815
7173
bQ84
7173
1871b
7173
1581
1543
7173
11815
7173
b084
7173
I871b
7173
1581


VALUES - HC 0.35C 3. fa)



CO 0.
NOH o.

3SC 1H)
3SC 8. a)

AOJUS1ED (MASS)
HC CO N02
1.7
51
+ b
•?e
ir?
22
18
11
2b1
17
42
45
24
12
22
11
11
243
10
44
43
24
14
24
104
11
237
10
31
43
24
14
24
100
14
23b


+ 0
+ 0
+ o

173
18b
301
18b
158
188
2711
178
271
173
18b
30b
184
157
18b
2832
183
2b1
23b
184
303
183
155
183
2121
213
24b
23b
184
303
184
15S
183
2S01
113
234


.bSC
.bSC
.b5C
CORRECTED
4
112
388
Ib3
57
187
781
223
b
4
17fa
44b
200
72
210
778
231
7
5
ill
4b3
204
77
218
77fa
231
8
5
201
471
202
71
218
788
245
b


2.4) =
ao) =
8.8) =
NO? =
WT.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.07?
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143


a.4bl
19. •>
8.579
8. SOB
WEIGHltD (MASS)
HC CO N02(K) HP
4.0
3.1
b.b
1.7
.7
1.7
11.1
1.4
38.4
a^
. /
4.0
3.2
b.5
1.9
.7
1.7
11.2
1.5
34.8
He
. 3
2.2
3.4
b.3
i.a
.8
1.8
11.8
l.S
33.1
Bu
. T
2.2
3.0
fa. 3
l.B
.8
1.8
11.2
1.0
33.8
eii
. 4
2.b
2.4
CMASS)
(MASS)
CMASS}
CMASS}
40
14
45
14
1
14
307
14
40
1 Q
X"
40
14
45
14
1
14
320
14
38
1 Q
JL ~
55
14
45
14
9
1*
330
Ifa
35
an
cu
55
14
45
14
1
1»
328
IS
33
an
cu
11
20



.1 0
14.8 2b
57.1 51
12.5 2b
3.2 15
14.4 2fa
88.2 88
17.2 2b
.1 0
8n
.u
.1 0
13.5 2fa
bS.b 51
15.4 2b
4.1 15
Ifa. 2 2fa
87.1 88
18.4 2b
.1 0
Be
. 9
1.3 0
15.3 2b
b8.1 51
15.7 2b
4.4 15
lb.8 2b
87.7 88
17.8 2b
1.1 0
8^
. r
1.3 0
15.5 2b
bl.2 51
1S.S 2b
4.0 15
lb.8 2b
81.0 88
18.1 2b
.8 0
8.8
8.2
s. a




-------
                       3 i>-3 t^TOC bOOKPM  U.K.I. STO.ENG.
                                                            STA.
                                                                               K  =  1.03
                                                                                             HUM  =  84  GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE 4
MASS
finoE
I I l.i I.. E
a IB HG
3 10 HG
4 ib HG
5 1R HG
b Ib HG
7 3 rlG
8 ib HG
* C.T.
1 I OLE
a Ib HG
3 10 HG
4 Ib HG
5 I1* HG
b Xb HG
7 3 HG
R Ib HG
^ C.T.

1 IDLE
a Ib HG
3 JLO HG
4 Ib HG
5 19 HG
b Ib HG
7 9 HG
8 Ib HG
* C.T.
J. mLt
?. ifa HG
3 10 HG
4 Ib HG
S 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
AVERAGE
CUNCe'N IHATION AS Mh'A3U*£r>
HC co cne *in
4?7 .810 12. Sf1
let) .180 12.09
be ,ieo n. ob
41 .18U 12.94
3b .ISO 15.31*
44 .180 12.12
80 l.OSO 13. b3
42 .210 13.18
2 4 4 1 1.100 S.Sfa
•+37 .810 12.22
71 .180 13. Ob
49 .180 13.18
45 .180 13.18
31 .IBO 13.33
45 .180 13.18
7b 1.300 13. b3
40 .180 13.33
2372 l.OSO b.7S

ISfa 1.010 13.48
70 .180 13.85
45 .180 13.14
45 .180 13. It
31 .180 14.03
37 .180 13.98
7b 1.200 13.fa3
3b .180 13. q4
2318 1.150 b.7b
15b 1.010 13.48
7b .180 13.18
45 .180 13.18
40 .180 13.18
31 .180 13.40
tO .180 13.18
78 1.320 13. b3
3fa .180 13.33
2288 1.040 b.79
ffVPI C f*nMQi"lQTTF^«
SUM---CCOMPOSITE VALUES
AVERAGE SUN---lLunruoi 1 c vsuuco
FOUR CYCLE COMPOSITE - REPORTED






10
1444
).4b3
1031
4sn
1117
2040
152U
133
10
1170
Ib25
1313
582
1212
ei3o
ibas
152

130
13S5
1751
1312
bao
1531
2143
1518
Ih8
130
13SO
1784
1313
bOO
1444
2011
1545
131
rui AL
CARBON
13.4S1
12.400
13.307
13.173
12.551
13.148
14.80b
13.435
10.300
13.491
13.335
13.413
13.401
13.543
13.409
15.012
13.553
10.402

14.bS8
14.10b
14.1b1
14.1fa9
14.243
14.200
14.112
14.151
10.413
14.bS3
13.443
13.41)1
13.403
13.bl3
13.403
15.034
13.541
10.301
FOR CYCLES 1 AN
K no PVPlPQ 1J AM
FUEL
CONS.
1543
7173
11815
7173
b084
7173
18?1b
7173
1581
1543
7173
11815
7173
b084
7173
1871b
7173
1581

1543
7173
11815
7173
b084
7173
lB71b
7173
1581
1543
7173
11895
7173
b084
7173
1879b
7173
1581


VALUES - HC 0.35C 3.8)



CO 0.
N02 Q.

35C 21)
35( 1.3)

Aojusreo (MASS)
HC CO N02
53
75
bO
21
11
2b
lit)
24
407
53
4fa
47
2b
15
Sb
103
23
391

18
38
41
25
14
20
103
20
382
18
44
43
23
IS
23
105
21
381


+ tl
+ 0
+ n

187
210
325
118
17b
118
2715
22b
343-
187
19fa
332
195
Ib3
115
3288
113
33b

215
IBS
305
184
155
184
3055
184
354
215
114
333
195
iba
195
3334
192
334


.b5(
.b5(
.bS(
COKRECTED
3
277
434
IBb
73
202
8bO
2b1
7
3
201
478
333
87
221
885
28b
B

5
an
410
334
88
358
817
3b1
9
5
331
535
233
sq
357
871
273
7


3.3) =
32) =
q.s) =
N02 =
WT.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.asa
.077
.147
.077
.057
.077
.113
.077 .!
.143

.333
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143


3.471
ei.b
9.bb9
1.128
WEIGHItO CMASS)
HC CO N02CK) HP
13. a
5.8
8.8
a. a
1.1
2.0
13.4
1.9
58.3
4.0
13.3
3.5
b.9
3.0
.9
8.0
11. b
1.8
Sb.O
3^
. 7
4.1
3.0
b.O
1.1
.8
l.b
11.7
l.S
54. b
33
• e
4.1
3.4
b.3
1.8
.9
1.8
11.9
l.b
54.5
3 a
• 3
3.8
3^
. 3
CMASS)
(MASS)
(MASS)
(MASS)
43
Ib
48
IS
10
IS
31b
17
49
3 n
eu
43
IS
47
IS
q
is
373
IS
48
ap
cc
50
14
45
14
9
14
345
14
SI
1
e A
so
IS
47
15
9
IS
377
IS
4b
pp
c c
21
a a
eta.



.8 0
21.4 3b
b3.8 51
14.4 8fa
4.1 IS
IS.b 2b
17. 3 88
20.7 2b
1.0 0
91
.1
.8 0
lb.1 2b
70.3 51
18.0 2b
4.1 15
17.7 3fa
100.1 88
22.0 ab
1.1 0
O l»
T.O
1.1 0
lb.8 ab
72.1 Si
is.o ab
S.O IS
is.i ab
101.3 SB
20.7 ab
1.2 0
qn
.0
1.1 0
18.4 ab
77. a SI
18.0 ab
S.I IS
11.8 ab
18.4 88
20. H ab
1.0 0
So
• "
9.3
90
* 8




-------
          «-*-72    KUN 3 S-3 *rtT'.>C  bOflRPM   K.R.I. STO.ENG.
                                                             STA.
                                                                                 K = 1.03
HUM =  8*  GR/LB
CYCLE  1
CYCLE
CYCLE 3
CYCLE *
•A « » S
Mil fit
1 I OLE
?. .!> HG
-1 ID HG
* Lb HG
ft .11 HG
h Ib HG
? 3 HG
8 Ib HG
1 C.T.
! IDLE
2 Ifa HG
3 10 HG
* Ifa HG
5 11 HG
b Ib HG
7 3 HG
» Ib HG
1 C.T.
i IDLE
2 Ib HG
3 10 HG
* Ifa HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
» 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
H Ib HG
1 C.T.
AVERAGE
CUNCKNfHA flUN AS lEAS'JKEO
HC CO C02 NO
272 1.380 13. Ob
HO .210 13.21
*8 .220 13.22
*b .2*0 13.18
28 .2*0 13.33
*2 .2*0 13.18
80 1.380 13. b3
35 .250 13.25
18b8 1.200 8.22
?72 1.380 13. Oh
?7 .23(1 13.11
*8 .210 13.33
** .220 13.33
31 .220 13.33
*0 .220 13.18
77 l.*50 13. *8
31 .250 13.18
1813 1.2SH 1.0*
1S1 1.1*0 13. *8
77 .220 13.18
*B .210 13.33
** .210 13.18
31 .210 13.31
*1 .210 13.18
80 l.*50 13.31
32 .250 13. Ob
1772 1.150 1.20
/•f»wf*j f fnMDflQTTF^-
151 1.1*0 13. *8
77 .220 13.18
*8 .210 13. Ob
** .220 13.18
31 .220 13.33
*1 .250 13.18
77 l.*30 13. *8
35 .250 13.18
1750 1.070 1.17
/ f* u r* I C (TIMOnQTTF^.
SUM— -(COMPOSITE VALUES
AVERAGE su"i---li-unruai i c v«i-'jto
FOUR CYCLE COMPOSITE - KEPOKTED




jns
13*0
).b18
l*0b
SbQ
1387
2.121
1530
115
ins
1332
.1125
1*25
b?8
1S01
2011
1551
131
150
I3b1
11*7
l*0b
b7*
1531
2077
1*10
1*2
ISO
1388
11b8
1*10
fa28
1***
?121
Ibl8
115
IUTA-L
CARBON
1*.73*
1.3. SOb
1 .3 . * 1 2
13.*70
13.SUU
13.*bS
15. nib
13.538
ll.*37
1*.73*
13.*23
13.512
13.51H
13.583
13.**3
15.013
13.*b3
12.2*8
1*.712
13.*B3
13.512
13.*3B
13.b33
13. *3*
l*.12b
13.3*5
12. 2b*
1*.712
13,*83
13.322
13.**8
13.583
13. *7*
1*.113
13.*b3
12.130
FOR CYCLES 1 AN
irnQ f* v P i P Q ^ A Nl
FUEL
CONS.
15*3
717.3
11815
7173
bOB*
7173
1871b
7173
1581
15*3
7173
11815
7173
b08*
7173
1871b
7173
15B1
15*3
7173
11815
7173
bOB*
7173
1871b
7173
isai
15*3
7173
11815
7173
faOS*
7173
1871b
7173
1581


VALUES - HC 0.35{ S.8D


CO ii.
Nue o.
3SC 25)
3BC 10. 0>
ADJUSTED (MASS)
HC CO N02
n
*b
+ b
2b
1*
2*
108
2Q
280
31
**
*5
25
15
23
10*
18
25*
18
**
*5
25
15
a*
101
11
2*8
18
**
*b
25
IS
2*
10*
20
2*8


* 0.
f 0.
f 0.
212
225
312
258
217
258
3*71
2b8
337
212
2*8
371
23*
111
237
3bb?
2fa1
328
2*0
23fa
371
22b
181
22b
3b88
271
301
8*0
23b
371
237
111
2fa1
3b21
2b1
283


bSC S
S.5C
bSC ID
*
23b
*17
2*1
83
2*5
877
2fa1
S
*
23b
SSI
250
13
2fab
872
27b
b
S
2*2
Sbb
2*1
100
a?3
BbB
2bb
fa
S
2*5
583
2b*
13
855
883
28b
5


.b) =
as) =
.3) =
Ml.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.238
.077
.1*7
.077
.057
.077
.113
.077
.1*3


S.bbb
as.o
1°,*J°2
WEIGHUD ChASS)
HC CO N02CK) HP
7.1
3.5
b.7
2.0
.8
1.1
12.2
l.S
*0.1
an
. 1
7.1
3.*
b.7
1.1
.1
1.8
11.8
1.*
3b.3
a «i
. 7
*.2
3.*
fa. 7
2.0
.1
1.8
18.3
1.*
35.5
?t
. b
*.2
3,*
b.8
2.0
.1
1.8
11.8
l.b
35.*
21
«B
2.8
2.b
(MASS)
CMASS)
CMASS)
b8
17
58
80
12
20
318
21
*8
b8
11
55
18
11
18
*1*
81
*7
-|L
C O
5b
18
55
17
11
17
*17
81
*3
Sb
18
Sb
18
11
81
*01
21
*0
as
25


.8 0
18.2 2b
73.1 51
11.1 2b
*.7 IS
1B.1 2b
11.1 88
20.7 2fa
.8 0
Q 1
". r
.B 0
18.8 2b
82.2 51
11.2 2b
5.3 15
20.5 2b
18. b BB
21.8 2b
.8 0
in s
JLu • c
1.2 0
18. b 2b
83. 2 SI
11.8 2b
S.7 IS
81.0 2fa
18.1 88
SO. 5 8b
.1 0
in 3
10.8
1.8 0
18.1 2b
85.8 51
80.3 2b
5.3 IS
11.7 2b
11.8 BB
88.0 2fa
.7 0
10.*
10.0
10.3



-------
                                           /ttI"
                                                    OXIDATION CATALYST
                                                                                  =1.051
                                                                                            HUM
                                                                                                    10   GR/LB
CVClh 1
CYCLE 5
CYCLE 3
CYCLE *
K r i 5 r K A I.
MUlJf
1 IDLE
? .lb HG
3 10 MR
t lb HG
5 IS HG
h ) b HG
7 3 HG
K lb HG
1 C.T.
.1 IDLE
3 lb 'HG
3 10'HG
* Ib'HG
5 11'HG
b Ih'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
3 Ib'HG
3 10 'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
3 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3 ' HG
8 Ib'HG
1 C.T.
AVERAGE
LU'-JCf N 1
HC
bS
531
35
7b
hl3
hi)
31
31
330
bS
17b
13
*8
b*3
bb
13
17
318
8
138
8
57
715
70
17
lb
317
8
103
8
SO
b7.l
73
13
13
335
*• p y /• | LT
KATIuw A.S
c n c o f
.330
. 3*n
.180
.nan
.070
.100
.1*0
. 1 0 U
H.tlO
8.310
10.150
1.0 Ml
7.180
1.310
1 3 . 3 H 0
1.370
.110 *.730
r OMPO*? T TPI
U ij >" t U 3 1 1 C.J™
.330 1.*1P
.080
.100
.100
.070
.010
.130
.070
8.780
1.0.780
1.1*0
7.330
1.350
13.330
1.370
.110 * . fa 1 M
P HMD fl *J T T CT A M
I. U n r U 3 1 t C > *
.070 1.350
.070
.100
.070
.010
.010
.130
.070
.100
r nMi
v> um
.070
.070
.070
.070
.070
.070
.110
.070
8.130
10.780
1.0^0
7.000
1.180
13.180
1.110

1.350
1.1*0
10.780
1.1*0
7.010
1.1*0
13.180
1.110
.010 *.blO
r-nuone T TC i _
SUM 	 (COMPOSITE VALUES
AVERAGE ourt"™™(.Lunruoiin. v *u " ^ -*
FOUR CYCLE COMPOSITE - REPORTED








Mf-AMjKFp) uJLUTIOH ADJUST
'JO KACiOk HC CO
Sr,
77
l*b
ins
b*
77
1*83
103
bl
53
10
310
100
b*
77
1*^3
103
73
77
7*
22*
103
b*
77
1510
101
72
77
103
237
103
77
77
I*b3
117
73
FOR CYCLES
VALUES -


1.513
I.b31
1.301
1.579
1.8*1
l.SSS
1.011
1.53b
2.83b
1.512
l.bOl
1.337
l.Sbl
1.832
1.5*8
1.081
1.531
2.850
l.SbO
1.511
1.338
1.581
1.855
1.551
1.013
l.Sbl
3.033
l.SfaO
l.Sbl
1.3*0
1.571
1.8*7
l.Sfa?
1.01*
l.Sbl
3.817
1 AND
HC
CO
NO
18
H*5
*b
130
1137
13
33
33
10*
18
383
17
75
1170
103
1*
St>
lOfa
12
220
11
11
132fa
101
11
35
Ifal
12
Ibl
11
71
1231
11*
1*
20
1*1


0.35*(
0.35*(
0.35*(
.333
.551
.33h
.13fa
.131
. IS1"
.153
.15*
.311
.333
.121
.13*
.157
.128
.131
.1*1
.108
.313
.101
.HI
.13*
.111
.Ib7
.1*0
.1*2
.110
.303
.101
.101
.01*
.110
.121
.UO
.130
.110
.2bl


lbO.053)
.181)
57fa.7b3)
c. 0 WEIGHTING
NO FACTOR
71
135
111
Ib3
118
12U
Ifal7
158
115
71
1*5
281
157
117
111
1582
158
208
120
118
300
lb*
111
120
IfaSl
171
218
120
Ibl
317
Ib3
1*2
121
IbOl
18*
211


t 0.bS*(
+ 0.b5*C
+ 0.bS*(
.03b
.081
.357
.081
.0*7
.081
.283
.081
.021
.03b
.081
.357
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021


12*. 5*0)
.12*)
b07.71*)
CORRECTED NO
W E
HC
3.538
75.18*
11.77*
lO.faSi
S3.15b
8.30*
b.*83
2.870
18.112
i an 7 ft a
X"U • r O c
3.538
25.208
*.»fa7
fa. 703
5*. 177
1.01*
3.178
2.328
11.030
131.322
11.5*0
2.751
S.ObO
b2.333
1.713
5.2bO
2.23*
20.18*
,**1
1*.31*
2.75*
b.llB
58.255
10.180
*.02b
l.Slb
11.7b1
||Q CUL
i «1 a • 3«D
lbO.053
i 3u c tt n
A C T « 3 T (J
= 13b
£
= Sib
= bB7
I G H T E 0
CO NO
.012 2.830
.0*1 11.112
.Obi *1.113
.011 l*.*7fa
.OOb 5.538
.01* ID.bSb
.0*3 *57.*11
.01* 1*.0?7
.007 *.01S
3 1 U CLQ 3Q7
• CJtb SO " » 3 ™ r
.012 2.830
.011 12.811
.03* 72.1b5
.01* 13. lb*
.OOb S.*81
.012 lO.bOl
.0*0 **7.71*
.010 l*.10b
.007 *.3b8
.l*fa 58*. 128
.00* *.325
.010 10.*78
.03* 77.015
.010 l*.Sb*
.008 5.571
.012 10. b8*
.0*0 *b7.173
.010 15.220
.OOb *.58*
lac L n Q L 3 ^
• J. 3 3 oU1,bC3
.00* *.32S
.010 1*.31*
.02* 81.517
.010 1*.*03
.OOb fa.bSS
.010 10.738
.03* *53.121
.010 lb.3*2
.005 *.**0
i i a un c occ
• A X 3 bU 3 » "OD
.181 57b.7b2
13U L. n ^ i a IL
• 1 c T b U / • 7lT
.Ibl PPM
.1** PERCENT
.133 PPM
.221 PPM
        DILUTION  FACTOR  =  l1».5/(COe
                                             0.8*HC)

-------
                 APPENDIX Q




                   ENGINE 1-3:




EFFECT OF BASIC SPARK TIMING ON EMISSIONS




            (23 MODE MASS RESULTS)

-------
                 ENGINE 1-3




EFFECT OF BASIC SPARK TIMING ON EMISSIONS




               TABULAR DATA

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-17-72 RUN-2 EN6.1-3 72-VERSION  30 BTDC

MODE
1
2
3
f
5
b
7
8
9
in
11
12
13
If
15
Ib
17
18
19
20
21
22
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
20.0
ff.O
b2.0
123.0
185.0
202.0
22b.O
?fb.O
0.0
0.0
258.0
237.0
212.0
19f.O
129.0
b5.0
fb.O
21.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
5
10
If
28
f2
fb
52
5b
0
0
113
lOf
93
85
Sb
28
20
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
1B.B
20.5
18.0
lb.2
15.0
10.1
5.0
3.9
i.«*
.3
18.8
22.5
1.3
2.3
2.7
f.2
10.3
15.3
lb.2
17.8
18.7
18.7
2f.3
CALCULATED GRAM/HR
MODE
1
2
3
if
5
b
7
8
9
10
11
12
13
If
IS
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
n.o
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
HC
Ib3.8
35b.3
9b7.8
b38.1
59* .8
153.8
ISb.O
152.7
181.0
3ft. 8
129.0
81f .2
f81.8
287.8
189.8
197,7
182.0
318.2
f92.7
847.5
138f ,f
215.7
7f2.0
COMPOSITE








CO
55f
2fO
101
98
111
152
195
201
303
1039b
589
97
1872b
9387
fb52
3f83
953
331
2b8
281
251
f52
llf
HC
CO
N02
ALDE
BSFC
N02
1.7
12. f
12f .1
211.0
310. f
790.3
113b.O
1182.3
1175.7
239.0
1.9
1.5
5b9.9
If78.3
1120. f
1258. b
Ib97.7
737. b
Sf9.8
27f.f
IfS.S
2.1
.8
15.b87
bl.081
17.8bf
0.000
.bb9
3.5
b.9
«».2
10. f
11.8
lb.3
21. f
22.2
2f.S
3f .f
3.5
3.7
bS.f
Sf.5
f8.7
fS.S
33.8
22.7
21. f
18. f
15. f
3.f
f.2
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
lfa.5
18.2
11.1
19. f
19.5
19. b
IS. 2
19.1
18.7
If.f
lb.2
20.8
If.f
lb.0
17.7
17.9
17.9
18.5
18. b
19. f
19.9
17.0
23.9
WT.
HP
0.0
.1
.3
.5
.f
1.7
0.0
1.8
0.0
0.0
0.0
0.0
2.8
5.7
3.2
5.1
3.f
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
15522
15570
291J8
170bf
If078
2bf9
2098
199f
2172
3833
12fa87
52581
280b
1778
1195
1330
Ifa20
f082
bfa95
12817
23381
20053
3b871
CO
2.bOO
.520
.150
.130
.130
.130
.130
.130
.180
5.720
2.870
.310
S.fOO
2.870
l.fSO
l.lbO
.f20
.210
.180
.210
.210
2.080
.280
C02
10.89
11. bO
9.50
10.78
11.13
12. 3f
12.71
12.82
12. If
11. 8*
11. f8
5.27
11. bO
12.22
12. 3f
12.59
13. Ob
12.59
12. 3f
11.13
9.25
10.25
5.50
NO
f9
Ib3
1125
1700
2213
flOO
fbOO
fbSO
f2SO
800
55
29
1000
2750
2125
2550
fSSO
2850
2250
1250
7fO
bO
12
SPECIFIC GRAM/BHP-HR
HC
R
311.88
211.79
faS.f?
fl.99
S.f7
3.b9
3.31
3.50
b.lt
R
R
f .2b
2.77
2. Of
2.33
3.22
11.18
2f.fb
98. Ib
b32.23
R
R
CO
R
210. f
22.0
S.8
7.8
S.f
f.fa
f.f
5.9
185.0
R
R
Ib5.7
90. f
50.1
fl.O
lb.9
11. b
13.3
30.5
llf. 7
R
R
N02
R
10.8
27.1
21.0
21.9
28.1
2b.9
25. b
22.8
f.3
R
R
5.0
If .2
12.1
If .8
30.1
25.9
27.3
29.8
bb.f
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-17-72  RUN-1  ENG.1-3  72-VERSION  15 BTDC
OYNA.
MODE
1
Z
3
*
5
fa
7
8
q
10
11
12
13
1*
15
Ib
17
18
19
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
5.
20.
45.
b2.
12*.
18b.
303.
228.
248.
0.
0.
2b2.
2*1.
215.
117.
131.
bb.
47.
21.
5.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
5
10
14
28
42
4b
S2
57
0
0
115
lOb
9*
8b
57
29
21
9
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
19.1 3.5 lb.2
20.2 7.4 17.9
19.5 8.0 17.9
17.7 9.5 18.5
15.7 11.0 19.0
10.3 lb.3 19.4
4.0 22.2 19.0
2.4 23.5 18.7
1.8 2b.8 17.1
.3 34.4 13.9
18.9 3.3 15.0
22.8 3.5 19.5
1.3 bb.2 11.5
2.3 bO.l 15.2
2.5 53.0 Ib.b
2.7 49.1 17.5
10.2 33. b 17.7
15.1 23.3 18.2
lb.4 20.7 18. b
18.2 17.2 18.9
19.8 13.5 19,3
18.9 3.4 lb.1
24.3 3.8 22.3
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
8
S
10
11
12
13
14
15
lt>
17
18
IS
20
21
22
23
CYCLE




AIDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
bi.e
43.4
bS.l
85.8
8fa.9
123.1
137.3
Ifa4.0
233.0
37b.7
54.1
725.7
581.7
440.0
18b.7
llb.b
175.7
S3.?
b2.2
St. 8
315.3
40.3
b?4.0
























COMPOSITE












CO
b82
235
218
135
lib
175
23b
29fa
1102
11493
877
121
18913
13071
fa717
3724
801
215
222
18b
151
532
88
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.9 .070 0.0
b.3 .ObO .1
17. 4 .ObO .3
bO.8 .050 .5
111.4 .030 .4
3b5.8 .ObO 1.7
SSfa.5 0.000 0.0
b21.8 .040 1.9
593.2 0.000 0.0
Ib2.2 0.000 0.0
1.3 .070 0.0
.5 .120 0.0
444.9 .025 2.9
814.8 .055 5.8
b28.5 .035 3.3
580. b .ObO 5.2
2992.0 .ObO 3.4
448. S 0.000 0.0
273.5 .OfaS 1.3
lib. 2 0.000 0.0
34.8 0.000 0.0
1.7 .080 0.0
.b .ObO 0.0
8.707 GRAM/BHP HR
72.b7b GRAM/BHP HR
13.b44 GRAM/BHP HR
0.000 GRAM/BHP HR
,fa?9 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
b038
1829
2539
2b95
2280
213b
17bl
2015
2771
439b
b031
534bb
325b
2577
1134
708
1550
1153
850
893
b313
3852
3852b
CONCENTRATION

3.
•
•
•
*
•
•
*
1.
b.
4.
*
5.
3.
2.
1.
*
*
*
*
•
2.
•
SPECIFIC


37.
14.
8.
b.
4.
3.
3.
4.
b.


5.
4.
1.
1.
3.
3.
3.
5.
143.







HC
R
98
25
34
14
34
23
54
47
fa5
R
R
07
17
98
35
Ob
24
02
9b
99
R
R





CO
330
490
420
210
150
150
150
180
120
b40
840
470
240
790
oeo
120
350
180
150
150
150
520
250
C02
11.72
13.48
13.48
13. Ob
12.71
12.47
12.59
12.71
13. Ob
11.13
11.24
5.88
11.24
11.92
12.47
12.34
12.94
12.71
12.59
12.47
11.48
11.84
5.75
NO
55
80
205
575
880
1912
2150
2300
2125
570
42
10
750
1438
1150
10fa3
7950
Ibb2
1125
570
210
49
10
GRAM/BHP-HR
CO
R
205.5
47. b
13.1
8.2
b.2
5. fa
fa. 4
3b.5
202.8
R
R
Ifa4.8
123.8
71.3
43.2
14.0
10.2
10.8
20.2
fa9.1
R
R





N02
R
5.5
3.8
5.9
7.9
12.9
13.1
13.4
11.4
2.9
R
R
3.9
7.7
b.7
b.7
52.2
15.5
13.3
12. b
15.9
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-lb-?2 RUN-2 ENG.1-3 72-VERSION  fa BTDC

MODE
1
?.
3
f
5
b
7
d
q
in
11
12
13
I1*
15
lb
17
1*
I1*
20
21
52
53

DYNA,
SPEED LOAD
bOO
12flU
1500
1200
12QO
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
19.0
4-2.0
58.Q
llb.O
17f.Q
190.0
213.0
232.0
0.0
0.0
252.0
232.0
207.0
181.0
12b.O
b3.Q
fS.O
20. U
5.0
0.0
0.0
•
HP
0
1
f
10
13
27
fo
f3
f 9
53
0
0
110
102
91
83
55
58
20
q
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
17. f f.3 If. 9
19.8 7.8 IS. 8
19.0 8.f 15.9
lfa.8 10.3 Ifa.f
lfa.2 10.5 Ib.b
10.7 IS. fa lfa.9
3. fa 22.8 Ib.S
2.1 2f.S lb.3
1.8 2fa.9 If. 9
.f 3f.2 12. f
17.3 3.5 lf.1
22.0 f.l 17.5
1.3 fafa.3 12. b
2.3 faO.2 13.2
2.5 S3.f If. 5
2.8 f9.f 15.5
10.5 32.5 15. fa
15.2 23.0 lb.1
Ib.f 20. b lb.3
17.7 17.5 Ib.f
18.9 lfa.3 ib.fa
17. f f.O If.f
2f.l f.fa 9.f
CALCULATED GRAM/HR WT. HT.
MODE
]
d
.3
f
9
b
7
8
q
IP
11
15
13
I1*
)5
lb
1?
18
1^
?U
21
22
2?
CYCLE




ALDE
0.0
0.0
0.0
0.0
O.I)
0.0
0.0
o.o
o.n
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
50.4
31.7
5b.b
b3.8
b8.7
110.5
125.3
lfl.7
197. f
3b0.1
43.0
SOb.f
58b.3
393. b
lbd.1
7b.l
Iff .f
bf .f
fl.O
27.2
35.2
ff .1
« 7 0 . 9
COMPOSITE








CO
f27
129
Ifl
91
109
109
205
252
173f
10fb2
SO.H
111
1&159
13153
b750
31fb
770
397
217
18b
173
f 59
131
HC
CO
N02
ALDE
B3FC
N02 FAC. HP
2.2 .070 0.0
7.3 .ObO .1
22.7 .ObO .3
59.8 .050 .5
b9.1 .030 ,f
270.7 .ObO l.b
ffl.2 0.000 0.0
S5f.9 .OfO 1.7
515.8 0.000 0.0
IfaS.l 0.000 0.0
1.8 .070 0.0
.5 .120 0.0
fff.2 .025 2.8
7b7.2 .055 5. fa
581.8 .035 3.2
539.7 .OfaO 5.0
939. fa .OfaO 3.3
3f2.5 0.000 0.0
2fl8.f .OfaS 1.3
110.3 0.000 0.0
b2.7 0.000 0.0
3.0 .080 0.0
.b .ObO 0.0
9.3b3 GRAM/BHP HR
71.iOfa GRAM/BHP HR
S.bbf GRAM/BHP HR
0.000 GRAM/BHP HR
.720 LB/6HP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3793
12fO
202f
18f2
1917
20f9
IfaOS
170fa
2flf
f019
f219
51519
3352
2fOfa
99f
f7f
132b
819
571
ff2
blS
3b32
flb23
CONCENTRATION

1







1
5
2

5
3
2






1

CO
.590
.250
.250
.130
.150
.100
.130
.150
.050
.780
.ffO
.350
.IfO
.980
.050
.970
.350
.250
.150
.150
.150
.870
.310
























COS
12.71
13. f8
13.18
13.18
12. S»
12.82
12.9*
13. Ofa
13. b3
11.13
12.71
b.38
11.72
12. f?
12.71
12. 9f
13. Ob
12. 9f
12.82
12.71
12.71
12.71
5.50
NO
f9
8b
2fS
520
580
1512
1700
2012
1900
SbS
53
10
7faS
Ifl2
1075
1012
2bQO
1313
875
5fO
330
7f
9
SPECIFIC GRAM/BHP-HR


27.
13.
b.
5.
f.
3.
3.
f.
fa.


5.
3.
1.
•
2.
2.
2.
3.
Ifa.







HC
R
71
03
faS
19
17
15
2b
Ob
79
R
R
31
87
79
92
b2
33
08
10
08
R
R







112
32
9
8
f
5
5
35
197


Ifaf
129
7f
38
13
If
11
21
79







CO
R
.9
.5
.5
.2
.1
.2
.8
.b
.f
R
R
.5
.5
.5
.0
.9
.f
.0
.3
.2
R
R





N02
R
b.f
5.2
b.2
5.2
10.2
11.1
12.8
10. b
3.2
R
R
f.O
7. fa
fa.f
b. 5
17.0
12. f
10. fa
12. b
28. b
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
S-lb-72  RUN-3  ENG.1-3 72- VERSION  b BTDC

MODE
1
?
q
4
5
b
7
R
1
IP
11
ItJ
13
It
15
lb
17
18
11
?0
r!l
c!2
23

DYNA
SPEED LOAD
buo
1200
1200
1200
1200
1200
120D
1200
1200
1200
bOO
1200
2301)
23(10
2300
2300
2300
2300
c>300
2300
2300
bnti
2300
n.u
5.0
11.0
*2.0
58.0
llb.O
1?*. 0
HO.O
213.0
232.0
0.0
0.0
252.0
23?. 0
207.0
181.0
12b.O
b3.0
*5.0
20.0
5.0
n.o
o.o
MAN. FUEL
HP
0
1
*
10
13
a?
*o
*3
*1
53
0
0
110
102
11
83
55
28
20
1
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
1?.*
11.1
11.5
17.1
15.5
10.7
3.7
2.2
1.8
.*
17.5
22.0
1.3
2.2
2.5
2.7
10.5
15.3
lb.*
18.2
IS. 2
17. b
2*.0
CALCULATED GRAM/HK
MODE
1
g
3
*
5
b
7
8
q
10
u
12
13
1*
15
Jh
17
18
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
o.o
n.o
0.0
0.0
o.o
0.0
o.o
0.0
0.0
0.0
0.0
0.0
n.u
0.0
0.0
0.0
o.o
0.0
o.o
0.0
o.o
HC
50. fa
28. b
** . 3
b?.l
82.3
US. fa
133. b
1*7.7
212.8
370. a
*3.8
7**. 5
511.2
- 311.1
1*2.8
78.5
lbl.0
71.7

aiia
27.2
*2.*
783. fa
COMPOSITE








CO
31*
71
15
3*
*0
5b
112
Ibb
1817
10U50
357
as
1852*
135*1
fa*00
*oa*
870
2S5
2bb
11*
1*3
*2b
11
HC
CO
N02
ALDE
bSFC
N02
2.0
7.3
13.5
55.3
St. 5
311.7
*88.*
553.7
520.5
177. 3
2.5
.b
*2b.5
750.8
S50.7
*1fa.O
181.*
3fa3.7
230.7
11.8
*7.8
2.3
1.0
8.122
3.8
?.?
8.0
S.b
11.*
15.8
23.1
a*.o
eb.7
3*. 2
3.8
*.l
bb.2
bO.2
52.1
so. a
32.5
23.0
ao.?
17.5
i*.s
3.8
f.o
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.oas
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
15.1
15.1
15.7
lb.5
lb.8
17.0
lb.5
Ifa.*
1*.1
12.5
1*.7
17.*
13.1
13.1
1*.S
15.2
15.5
lb.1
lb.2
Ifa.b
lb.1
1*.S
18.*
WT.
HP
0.0
.1
.3
.5
.*
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.8
S.b
3. a
5.0
3.3
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
*33b 1.
1101 !
IblO
aoi*
2081
aibb .
Ib81
1713
2578 1.
*100 5.
3770 1.
*7113
331* 5.
aaia 3.
8bl 1.
*73 1.
1*51
883
b7l .
*5?
500
35bl 1.
*3?07
SPECIFIC
HC
R
as.o*
10.21
fa. 11
b.ai
*.S1
3.3h
3.*0
*.37
7.00
R
R
5.3b
3.85
1.58
• ^5
a. ia
a.fao
a.*i
3.3*
ia.*a
R
R
CO
300
ISO
180
050
050
050
070
100
010
500
520
280
1*0
130
110
200
310
180
180
ISO
130
770
250
C02
12.71
13.18
13. *8
la.aa
12.82
ia.?i
ia.i*
12.1*
13.33
11. a*
ia.s*
b.ii
11.3fa
11.8*
12. *7
12. *7
12.82
12.51
12.51
12.22
11.12
12.3*
5.50
NO
SI
85
155
500
720
1700
1850
2025
1100
510
b*
12
720
1325
1000
100
2700
1350
ISO
*70
2b5
5?
lb
GRAM/BHP-HR
CO
R
b8.1
22.0
3.5
3.0
2.1
a. B
3.8
37.3
181. b
R
R
Ib7.1
133.*
70. b
*8.b
15.8
10.7
13.5
aa.i
bs.a
R
R
N02
R
fa.*
3.1
5.8
7.1
11.8
12.3
12.8
10.7
3.3
R
R
3.1
7.*
b.l
b.O
17.1
13. 8
11.7
11.*
21.8
R
R
























GRAM/BHP HR
7S.7ba GRAM/BHP HR
8.73*
0.000
.717
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                  PROJECT 11-2877-01
  8-18-72 RUN-1 ENG.1-3 72-VERSION
                    CONTROL TECHNOLOGY
                      TDC   bOO RPM
DYNA.
MODE
1
2
3
f
S
b
7
8
1
10
11
12
13
If
15
Ib
17
18
19
20
21
82
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
f .0
lb.0
3b.O
50.0
100.0
0.0
0.0
I8f.0
200.0
0.0
0.0
22b.O
208.0
185.0
170.0
113.0
S7.0
fl.O
18.0
5.0
0.0
0.0
HP
0
1
f
8
11
23
0
0
f5
fb
0
0
11
11
81
7f
fl
25
18
8
2
0
0
MAN. FUEL
A/F
VAC. LB/HR RATIO
Ifa.S
1^.5
18.8
lb.1
15. b
10.7
0.0
0.0
1.1
.f
Ib.b
21. b
l.f
2.2
2.f
2.5
10. f
If .1
15.7
17.2
18.3
Ifa.f
23.7
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
8
i
10
11
12
13
If
15
Ib
17
18
11
20
21
22
23
ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
fS.O
2fa.1
f2.0
fl.f
fb.7
b?.7
0.0
0.0
Iff .3
213.2
31.1
555. 1
SOf .5
f03.7
If0.3
8b.2
b8.7
2f.S
21.1
10.3
7.0
37. f
7bl.2
CO
f32
177
222
105
115
135
0
0
2f28
1058f
517
Ifaf
18323
171fO
82b8
b321
883
303
238
207
185
380
130
N02
3.0
8.8
lb.3
3f .0
fb.2
lfl.0
0.0
0.0
32b.1
12f.1
2.f
1.0
332.0
387.2
3bb.7
318. b
558. f
llf.8
If2.0
77.2
fb.7
3.1
.8
f.7
7.7
8.b
10.2
11.0
If. 3
0.0
0.0
27. fa
3f.2
f.O
f.S
bb.3
bf .2
Sb.l
53.1
33. f
23.7
22.3
11. f
17.2
f.l
f.b
WT.
FAC.
.070
.OfaO
.ObO
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
17.0
17.7
18.1
18.8
11.2
11. b
0.0
0.0
Ib.f
If. 2
lb.3
11.1
If.f
If.f
15. b
lb.1
17.7
18.5
18.7
11.0
11.3
17.3
23.3
WT.
HP
0.0
.1
.2
.f
.3
l.f
0.0
0.0
0.0
0.0
0.0
0.0
2.5
S.O
2.8
f.5
3.0
0.0
1.2
^ 0.0
0.0
0.0
0.0
DRY CONCENTRATION
ALOE.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
Q.O
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
305f 1.
1072
If13
1112
1118 .
131b
0 0.
0 0.
17fl 1.
3235 S.
3270 2.
33572
2825 5.
233b 5.
8bf 2.
535 1.
bl3
21f
2b1
151
115
2881 1.
3b530
SPECIFIC
HC
R
21.38
11. fl
5.03
f .00
2.1fa
0.00
0.00
3.f3
b.f2
R
R
5.10
f .f3
1.73
l.lb
1.31
.18
1.1?
1.31
3.22
R
R
CO
fSO
350
310
150
150
130
000
000
fSO
780
IfO
flO
080
IfO
520
IfO
310
180
150
150
150
fSO
310
C02
12.71
13. f8
13.33
13, Ob
12.82
12. 3f
0.00
0.00
13. f8
11.01
12.71
8.f8
11. f8
11. f8
13. Ob
12. If
13. Ob
12.71
12.71
12.71
12.51
12.51
b.05
NO
fa2
lOb
175
215
3b5
825
0
0
1188
fis
bl
11
SbO
b?S
fa80
515
1500
705
5f5
3 tO
230
71
12
GRAM/BHP-HR
CO
R
113.1
bO.b
12.8
10.1
5.1
0.0
0.0
57.7
231. b
R
R
185.1
117.0
102,1
8f .1
17.1
12.1
13.2
2fa.3
8f.7
R
R
N02
R
l.b
f.5
f.l
f.O
b.2
0.0
0.0
7.8
2.7
R
R
3.f
f.3
f.5
f,3
11.3
7.8
7.1
1.8
21.3
R
R
























CYCLE COMPOSITE
HC     B.SIb
CO   110.072
N02    S.Sfl
ALDE   0.000
6SFC    .855
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
  LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-17-72  RUN-*  EN6.1-3 72-VERSION   5 ATDC
DYNA.
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
Ib
1?
18
19
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
120U
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
f
IS
33
fb
SI
0
0
0
182
1
1
198
182
Ib2
0
99
so
3b
Ib
f
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
3
8
11
21
0
0
0
f2
0
0
8?
80
71
0
f3
22
Ib
7
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
If.S f,0 18.5
19. f b.3 18.8
18.2 8.8 19.1
lb.8 10. f IS. 5
15.1 11.5 19.9
10.8 15.1 20.1
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
.3 3f.2 If. 8
15.0 f.2 17.7
20. q f.f 18.7
1.3 70.1 13.2
2.0 bq.8 12. b
2.5 57.8 if.q
0.0 0.0 0.0
10,9 32.5 17,3
If.S 2f.b 17.8
15. b 22.7 lb.1
Ib.q 20.1 20.0
17.8 18. f 19. 1
If.q 7.3 17.5
23.0 b.7 23.2
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
9
10
11
12
13
If
15
Ib
17
18
IS
20
21
22
23
CYCLE
ALDE
U.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
HC
23.
1*.
22.
28.
33.
58.
0.
0.
0.
2b2.
28.
300.
ff9.
f8f.
IfS.
0.
ffa.
Ib.
12.
b.
5.
ff.
801.
u
5
8
7
8
1
U
0
0
2
2
9
7
b
5
0
0
b
1
f
0
b
7
COMPOSITE
CO
123
88
77
71
80
107
0
0
0
lOiqfa
2f2
1*2
2D38f
2fa9Sf
9702
0
falB
30b
2f2
Iff
13f
f90
19f
HC
N02 FAC. HP
5.1 .070 0.0
5.9 .ObO .1
15.5 .ObO .2
2f.3 .050 .f
3b.3 .030 .3
97.7 .ObO 1.2
0.0 0.000 0.0
0.0 .OfO 0.0
0.0 0.000 0.0
123. b 0.000 0.0
f.7 .070 .0
l.f .120 .0
233. fa .025 2.2
lfb.1 .055 f.f
325.0 .035 2.5
0.0 .ObO 0.0
f07.8 .ObO 2.b
lbf.8 0.000 0.0
119.5 .ObS 1.0
bb.l 0.000 0.0
ff.l 0.000 0.0
9.0 .080 0.0
l.f .ObO 0.0
9.80b GRAM/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
DRY
HC
1770
fa99
782
821
852
109b
0
0
0
2888
218f
201b8
2f29
2b98
870
0
f22
iqs
151
qi
75
1858
25870
CONCENTRATION

*
•
*
*
•
»
0.
0.
0.
5.
»
•
5.
7.
2.
0.
•
•
*
•
*
1.
*
SPECIFIC


15.
b.
3.
3.
2.
0.
0.
0.
b.
2fb.
O.OlSlb.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I

5.
b.
2.
0.
1.
•
•
*
2.



HC
R
87
bb
80
22
79
00
00
00
31
CO
f70
210
130
100
100
100
000
000
000
SbO
930
f?0
fSO
f30
870
000
280
180
150
100
100
010
310
C02
13.33
13. f8
13, f8
13.33
12. 9f
12.71
0.00
0.00
0.00
11. 2f
13. fa3
10.89
11. fB
9.93
12.71
0.00
13.18
13. Ob
12.71
12.71
12. f?
12.59
b.91
NO
118
85
IbO
210
275
555
0
0
0
flO
110
29
380
2fS
585
0
1125
590
fSO
280
200
113
If
GRAM/BHP-HR
CO
R
9b.f
22.3
9,f
?.b
5.2
0.0
0.0
0.0
2fS«2
f7 2119.8
97
19
08
05
00
Ob
7b
77
92
83
R
R

b20.0
235.1
338.2
13b.8
0.0
1H.2
If .0
IS.f
20.5
?b,5
R
R

N02
R
b.f
f.S
3.2
3,5
f.7
0.0
0.0
0.0
3.0
fl.2
b.3
2.7
1.8
f .fa
0.0
9.f
7.5
7.b
9.f
25.2
R
R


























CO Ib7.83f GRAM/BHP HR












N02
ALDE
BSFC
•f.bOS GRAM/BHP HR
0.000 GRAM/BHP HR
l.Obl LB/BHP HR



















-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-17-72 RUN-3 ENG.1-3 72-VERSION  10 ATDC

MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
Ib
17
18
1*
20
21
22
23

DYNA
SPEED LOAD
bOO
1200
1200
1200
1POO
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
3.0
12.0
28.0
39.0
77.0
0.0
0.0
0.0
lSf.0
0.0
0.0
180.0
lfab.0
IfS.O
0.0
90.0
fS.O
32.0
lf.0
f.O
0.0
0.0
MAN. FUEL
HP
0
1
3
b
9
18
0
0
0
35
0
0
79
73
b5
0
39
20
If
b
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
12.5
18.8
17. f
15.2
If. 9
10. fa
0.0
0.0
0.0
.3
13.0
20. f
1.3
'1.8
2.3
0.0
11.0
If. fa
15.3
Ib.b
17.7
13.0
23.3
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
B
9
10
11
12
13
If
15
lb
17
18
19
20
21
22
23
CYCLE
ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
n.o
o.o
0.0
0.0
0.0
0.0
0.0
0.0
HC
15.0
22. fa
If. 7
18.5
19.0
33.8
0.0
0.0
0.0
220.3
Ib.b
3f9.7
38f.7
ffb.8
173.3
0.0
f?.0
13.2
10.9
fa.O
f.9
20.1
519.0
COMPOSITE
CO
lOf
95
S3
107
113
If3
0
0
0
10f27
121
172
19291
2bb01
119b7
0
720
251
21f
Ifb
137
15f
If9
HC
N02
5.5
5.9
15.1
2f .9
27. f
73.9
0.0
0.0
0.0
10fa.9
b.l
l.f
227.8
IfO.O
301.7
0.0
358.0
138.8
111.0
b3.5
fl.l
5.S
1.2
9.fb5
CO 187.fa?f









N02
ALDE
BSFC
f ,fa35
0.000
I.lf3
3.5
fa.s
10.0
11.1
11.8
If. 7
0.0
0.0
0.0
3f.2
3.8
f.o
fab. 2
b8.7
58.3
0.0
33.1
2f .0
22.9
20.0
18. f
3.8
f.2
WT.
FAQ.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
18. b
18. fa
19.1
19.9
19.9
19.9
0.0
0.0
0.0
If. fa
17.9
19.0
If.f
13.5
15.2
0.0
18.0
18. b
18.8
19.0
19.3
18.2
20.8
WT.
HP
0.0
.0
.2
.3
.3
1.1
0.0
0.0
0.0
0.0
0.0
0.0
2.0
f.O
2.3
0.0
2.f
0.0
.9
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
o.o
o.o
o.o
o.o
0.0
0.0
0.0
I
I
0.0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
I
I
HC
1231
1008
flf
fSS
ffO
b23
0 0.
0 0.
0 0.
239f 5.
130f
23752
2131 5.
2f90 7.
1030 3.
0 0.
f09
I5f
I3f
83
72
1523
2950f
SPECIFIC
HC
R
33. Of
5.3fa
2.89
2.13
1.92
0.00
0.00
0.00
b.2b
R
R
f.88
b.15
2. fa?
0.00
1.19
.fa7
.78
.97
2.80
R
R
CO
f20
210
130
130
130
130
000
000
000
blO
f 70
580
290
3fO
520
000
310
150
130
100
100
580
f20
C02
12. f7
12.82
12.59
12.22
12.22
12.09
0.00
0.00
0.00
11.01
12. 9f
9.37
11.13
9.78
12.09
0.00
12.71
12.59
12.59
12. f?
12.22
12. 3f
?.fb
NO
135
79
128
IBS
191
fio
0
0
0
350
IfS
28
380
235
SfO
0
938
f90
fio
2fa5
183
135
21
GRAM/BHP-HR
CO
R
139.0
3f.O
lfa.7
12.7
8.1
0.0
0.0
0,0
29b.3
R
R
2ff .7
3b5.9
18f.b
0.0
18.3
13.1
15.3
23.8
78.1
R
R
N02
R
8.b
5.5
3.9
3.1
f.2
0.0
0.0
0.0
3.0
R
R
2.9
1.9
f.7
0.0
9.1
7.0
7.9
10.3
23.5
R
R
























GRAM/BHP HR
GRAM/BKP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                 ENGINE 1-3




EFFECT OF BASIC SPARK TIMING ON EMISSIONS




             GRAPHED RESULTS

-------
   0   1384.4

       'to
                     LEGEND
                           1200 rpm
                          -2300 rpm
8 h
1  _
                  O 10°ATDC 8-17-72 Run 3
                     5°ATDC 8-17-72 Run 4
                   0 0°,  TDC 8-18-72 Run 1
                     6°BTDC 8-16-72 Runs 1 and 2
                     15°BTDC 8-17-72 Run 1
                  O30°BTDC 8-17-72 Run 2
              20   30    40    50   60    70   80    90   100
  HH              ^_      	
                 Power, Percent Maximum at Given Rpm

   FIGURE O-l.  EFFECT OF POWER ON HC EMISSIONS RATE
                  ENGINE 1-3, 23 MODE TEST
A- 2300
£L 1200
W 2300
  - 1200
   2300
  - 2300
   1200
                                                                -
                                                              A-
                                                              Q-
                                                                -  2300

-------
 16
    r
  14
  12
o
.-H

X
0
ffi
(0
s
d
h
O
   8  -
  4  -
    ID
    ^H
    "0
            LEGEND
            1200 rpm
            2300 rpm
  OIO°ATDC 8-17-72 Run 3
  D5°ATDC  8-17-72 Run 4
   0 0°,TDC  8-18-72 Run 1
  A6°BTDC  8-16-72 Runs  1 and 2:
   Q 15°BTDC 8-17-72 Run 1
  O30°BTDC 8-17772 Run 2
                                                             17940-
                                                             26954
   10   20   30    40    50   60   70    80    90   100  CT
           Power,  Percent Maximum at Given Rpm


FIGURE Q-2.  EFFECT OF  POWER ON CO EMISSION RATE
               ENGINE 1-3, 23 MODE TEST

-------
                            0^2992
16
15
14
13
1Z
11
        LEGEND
OIO°ATDC
DS°ATDC
0 o°,TDC
A6°BTDC
ft 15°BTDC
O30°BTDC
              1200 rpm
              2300 rpm
                                                 0
 10
             20   30  40    50   60   70   80    90   100  CT
                 Power,  Percent Maximum at Given Rpm
 FIGURE Q-3. EFFECT OF POWER ON NOX (AS NOz) EMISSION RATE
                 ENGINE 1-3, 23 MODE TEST

-------
26 r
                        LEGEND
'O
                             1200 rpm
                             2300 rpm
                    OIO°ATDC 8-17-72 Run 3
                    Q 5°ATDC  8-17-72 Run 4
                    0 0°,TDC  8-18-72 Run 1
                    A 6°BTDC  8-16-72 Runs 1
                    Q 15°BTDC 8-17-72 Run 1
                    O 30°BTDC 8-17-72 Run 2
                                           and 2
                                                              1200
                                                            - 1200
           20
                   30    40   50    60    70    80   90'   100
                   Power, Percent Maximum  at Given Rpm
CT
    FIGURE Q-4.
               MANIFOLD VACUUM AS A FUNCTION OF POWER
               ENGINE 1-3,  23 MODE TEST

-------
         LEGEND       -.     -:  ;-
       	-1200 rpm   -I J!';_ '•'•'
       	2300 rpm       \' . \
       OIO°ATDC  8-17-72, Run 3
       d 5°ATDC   8-17-72 Run; 4'
       000,TDC    8-18-72 Run 1
       A 6°BTDC   8-16-72 Runs 1 and 2
       ^ 15°BTDC  8-17-72 Run!   :
       O30°BTDC  8-17-72 Run 2

I—I
T3
1
10
1
20
1
30
1
40
1
50
|
60
/
70
|
80
1
90
(
100
/
CT
              Power, Percent Maximum at Given Rpm
FIGURE Q-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER
                ENGINE 1-3,  23 MODE TEST

-------
               APPENDIX R




                ENGINE 1 - 3




EFFECT OF AIR-FUEL RATIO ON EMISSIONS




         (23 MODE MASS RESULTS)

-------
              ENGINE 1- 3




EFFECT OF AIR-FUEL RATIO ON EMISSIONS




             TABULAR DATA

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-18-72  RUN-3  ENG.1-3  72 VERSION STD TIMING D.ObO JETS
DYNA.
KODE
1
2
3
4
5
b
7
8
S
10
11
12
13
1*
15
lb
17
18
IS
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
4
18
40
55
110
IbS
180
202
220
0
0
244
224
200
183
122
bl
44
20
5
0
0
.0
.0
.0
• 0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
9
13
25
38
41
4b
50
0
0
107
98
88
80
53
27
19
9
2
0
0
HAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.8 4.7 lb.0
19.9 7.4 lb.0
18.9 7.9 15.8
17. b 10. b lb.0
lb.2 11.3 lb.2
12.5 15.1 15.9
8.1 20.7 15.3
b.5 22.5 15.0
3.2 2fa,7 14.7
.4 37.1 11. b
17.7 4.3 14.7
21.9 4.3 17.5
1.3 72.4 11.5
23.0 faS.S 11. b
3.3 55.2 13. b
5.0 50.8 13. b
11.4 35.9 13.5
15.9 24. b 14.2
17.1 21.3 14.4
18.7 17.7 14.9
20.3 13.1 15.5
17.7 4.3 14.7
23.8 5.0 19.0
CALCULATED GRAM/HR NT. WT.
MODE
1
2
3
i*
5
b
7
8
q
10
11
12
13
14
IS
lb
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
47.
25.
43.
58.
bS.
110.
152.
Ifa3.
187.
3b7.
42.
712.
587.
57b.
200.
198.
25b.
151.
109.
b5.
80.
40.
797.
3
fa
3
2
9
5
b
2
4
b
8
9
b
7
2
1
4
4
9
7
3
0
b
COMPOSITE












CO
454
151
181
125
135
303
829
10b4
2338
15425
582
142
29220
27243
10118
9188
b349
2944
2194
1354
353
5bb
133
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
3.2 .070 0.0
8.8 .ObO .1
23.8 .ObO .2
faO. 5 .050 .5
104.5 .030 .4
333.0 .ObO 1.5
532.0 0.000 0.0
505.4 .040 l.fa
438.2 0.000 0.0
77.1 0.000 0.0
2.7 .070 0.0
.7 .120 0.0
182.8 .025 2.7
2bS.2 .055 5.4
580.7 .035 3.1
523.7 .ObO 4.8
502.7 .ObO 3.2
2bl.9 0.000 0.0
180.3 .ObS 1.3
83.4 0.000 0.0
23.8 0.000 0.0
3.0 .080 0.0
.9 .QbO 0.0
10.245 GRAM/BHP HR
157. b34 GRAM/BHP HR
b.5S7 GRAM/BHP HR
0.000 GRAM/BHP HR
.789 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3257
lObO
Ib92
Ib92
1780
228b
2380
2385
239b
3957
3391
42745
3095
3177
1259
1350
2455
201b
Ib80
117?
1794
29b9
33847
CONCENTRATION

1.

.
.
,
t
.
.
1.
8.
2.
.
7.
7.
3.
3.
3.
1.
1.
1.
.
2.
•
SPECIFIC


28.
10.
b.
5.
4.
4.
3.
4.
7.


5.
5.
2.
2.
4.
5.
5.
7.
3b.







HC
R
01
S3
37
25
40
05
97
Ob
31
R
R
50
88
29
47
80
fa7
70
51
bfa
R
R





CO
550
310
350
180
180
310
b4Q
770
480
220
280
420
b20
430
ISO
100
010
940
bbO
200
390
080
280
C02
12.82
13.48
13.48
13. b3
13.48
13.b3
13.77
13.91
13.77
9.50
12.82
7.00
9.37
9.37
12.47
12.47
12.34
12.71
12.94
13. Ob
12.71
12.09
5.9b
NO
bb
110
280
530
850
2075
2500
2225
Ib88
250
b4
12
290
440
1100
1075
1450
1050
830
450
IbO
bb
11
GRAM/BHP-HR
CO
R
IbS.S
44.0
13.7
10.7
12.0
22.0
25.9
SO.b
30b.9
R
R
273.5
277.7
115.5
114. fa
118.8
110.2
113.9
154.5
lbl.0
R
R





N02
R
^.7
5.8
b.b
8.3
13.3
14.1
12.3
9.5
1.5
R
R
1.7
2.7
.b
.5
.4
.8
.4
.5
10.9
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-21-72 RUN-1 ENG.1-3 72 VERSION b BTDC  0.0fa5 JETS
DYNA.
MODE
1
2
3
f
5
b
7
8
9
10
11
12
13
If
15
lb
17
18
19
20
21
22
23
SPEED LOAD
bOQ
1200
1200
1200
1200
1200
1200
1200
1200
1200
bQO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
4.
lb.
3b.
49.
<*9.
1*8.
Ifa2.
182.
1*8.
0.
0.
0.
0.
189.
1?2.
115.
57.
41.
18.
5.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
4
8
11
23
34
37
42
45
0
0
0
0
83
75
50
25
18
8
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.9 4.5 14. b
20.2 b.b 15.2
19.5 8.3 15.5
18.3 9.4 15.8
17. b 10.1 15.5
14.0 lb.4 13.4
10.3 22.3 12.8
8.8 24.0 12.7
7.1 2b.b 12.5
.3 43.2 10.4
18. b 4.2 13,7
22.5 4.3 18.3
0.0 0.0 0.0
0.0 0.0 0.0
b.l 59.5 11.4
7.9 53. fa 11.3
12.3 41.5 11.3
lb.4 29.0 11.9
17.8 25.2 12.3
19.4 19.4 12.9
20. b 15.9 13. b
18.4 4.1 14.1
24.1 4.3 19.5
CALCULATED GRAM/HR WT. WT.
MODE
i
2
3
4
5
b
7
8
9
10
11
12
13
14
15
lb
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
b8.b
45.0
59.9
71.7
81.8
lb?.9
241.7
2b8.1
304.0
747.0
b4.3
892.8
0.0
0.0
b!3.0
537.3
434.4
280.9
232.9
lbl.1
140. fa
49.8
b83.9
























COMPOSITE












CO
888
474
287
223
294
35bO
blfa9
b8?8
82bl
22189
1053
147
0
0
23989
22838
17575
10712
8251
5205
3170
859
12b
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.0 .070 0.0
b.l .OfaO .1
lb.1 .ObO .2
45.0 .050 .4
faB.fa .030 .3
92.8 .OfaO 1.4
9b.7 0.000 0.0
90.2 .040 1.5
80. b 0.000 0.0
32.8 Q.OOO 0.0
1.9 .070 0.0
.5 .120 0.0
0.0 .025 0.0
0.0 .055 0.0
187.1 .035 2.9
154. b .OfaO 4.5
89.7 .ObO 3.0
47.8 0.000 0.0
39.4 .OfaS 1.2
30.0 0.000 0.0
19.4 0.000 0.0
1.9 .080 0.0
.7 .ObO 0.0
18.719 GRAM/BHP HR
29b.47fa GRAM/BHP HR
2.529 GRAM/BHP HR
0.000 GRAM/BHP HR
.954 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
4983 3.
2147
2195
2274
2477
3572
3901
4048
4132
7181
5303
54019
0
0
4134
4154
4259
3803
3529
3051
3153
4290
338Sfa
1.
•
•
•
3.
4.
5.
5.
10.
4.
•
0.
0.
8.
8.
8.
7.
fa.
4.
3.
3.
•
SPECIFIC


49.
lb.
8.
7.
7.
7.
7.
7.
lb.


0.
0.
7.
7.
8.
11.
12.
20.
b4.







HC
R
27
38
72
31
42
15
24
31
51
R
R
00
00
41
13
fa3
25
97
44
CO
190
120
520
350
440
750
S30
140
5bO
5bO
300
440
000
000
010
740
530
180
190
880
520
fafaO
310
C02
11.13
12.94
13. Ob
12.94
13.18
11.72
11.01
10.89
10.43
7.5b
10.89
5.9b
0.00
0.00
9.78
9.fa4
9.50
10.85
10.78
11.48
12,34
11.92
5.9b
GRAM/BHP-HR
CO
R
519.2
78.4
27.1
2b.2
157.4
182.4
185.8
198.7
490.5
R
R
0.0
0.0
289.8
303.2
349.0
429.1
459.5
fabO.3
21 1447.9
R
R





R
R





N02
R
b.b
4.4
5.5
b.l
4.1
2.9
2.4
1.9
.7
R
R
0.0
0.0
2.3
2.1
1.8
1.9
2.2
3.8
8.9
R
R





NO
«
e?
178
»30
bSS
SIS
f?o
no
330
95
H
V
0
0
380'
3bO
2faS:
1SS:
180
171
131
SO
11































-------
              PROJECT 11-2877-01  CONTROL TECHNOLOGY
.18-72 RUN-2 ENG.1-3 72-VERSION   CARB.JETS 0.051

!30E
1 1
I
1 3
f
1 5
b
7
1 8
1 S
ID
'11
12
13
1*
15
lb
17
18
IS
20
21
22
23
DYNA.
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1800
1200
1200
1200
bOO
1200
2300
2300
eaoo
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
11.0
57.0
0.0
170.0
185.0
208.0
22b.O
0.0
0.0
2*0.0
221. Q
197.0
180.0
120.0
fao.o
13.0
19.0
5.0
0.0
0.0
HP
0
1
1
9
13
0
39
12
18
52
0
0
105
9?
8b
79
53
2b
IS
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.5 1.0 lb.5
19.3 b.3 18.7
18. b 8.1 19.1
Ib.S 10.0 19.8
11. b 11. b 20.1
0.0 0.0 0.0
2.0 21. 7 18.8
1.9 25. 1 18.0
l.b 27.3 lb.7
.1 30.3 15. 1
17. b 3.9 lb.1
22.2 3.9 20.1
1.3 bO.l lb.1
2.2 55.2 lb.3
2. 3 52. 1 18.1
2.5 48.1 19.0
2.b 13.3 20.7
11. b 25.5 22.1
12.9 23.0 22.3
It. 8 20.1 22.7
15.9 18.5 23.0
17.1 1.1 17. b
23.8 1.1 21.9
; CALCULATED GRAM/HR WT. WT.
jOOE
! 1
2
3
*
5
fa
7
8
R
10
11
12
13
If
IS
lb
17
18
IS
20
El
22
23
'OLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
HC
11.2
3*. 8
fl.O
S0.1
bfa.7
0.0
701.8
159.1
108.9
257.9
38.2
bb?.3
370.M
212.0
127.8
18.2
157.1
23.3
28.8
fa3.7
2b3.7
38.0
712.0
COMPOSITE








CO
325
S*
90
99
120
0
331
153
1511
5152
399
137
7983
b718
13faO
1555
700
320
288
2bO
292
325
103
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
3.b .070 0.0
5.1 .ObO .1
25. b .ObO .2
13.1 ,050 .5
57. fa .030 .1
0.0 .ObO 0.0
521.7 0.000 0.0
b!7.b .010 1.7
bll.8 0.000 0.0
380.7 0.000 0.0
2.7 .070 0.0
7b.O .120 0.0
983.7 .025 2. fa
82b.1 .055 5.3
757.9 .035 3.0
b93.1 .ObO 1.7
bb3.8 .ObO 3.2
105.2 0.000 0.0
79.0 .OfaS 1.2
11.3 0.000 0.0
25.9 0.000 0.0
3.1 .080 0.0
.8 .ObO 0.0
8.b50 GRAM/BHP HR
11.115 GRAM/BHP HR
9.739 GRAM/BHP HR
0.000 GRAM/BHP HR
.770 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3217
15b1
138U
1332
1159
0
7717
5125
1519
2812
307b
11187
2112
1288
770
291
951
220
303
712
3281
290?
31985
CONCENTRATION

1




0



2
1

2
2
1






1

CO
.270
.210
.150
.130
.130
.000
.180
.250
.850
.780
.590
.120
.250
.020
.300
.170
.210
.150
.150
.150
.180
.230
.250
























C02
12.71
12.17
12.09
11.72
11.21
0.00
11. 3b
12.09
12.17
11.92
12.31
b.38
13. Ob
13. Ob
12.91
12.82
11. bO
10.78
10.78
10.55
9.93
12. ?1
5.39
NO
Bb
b9
2bO
315
380
0
1737
2075
2050
1250
bb
1112
Ib87
1512
1375
1275
1212
300
250
115
97
71
11
SPECIFIC GRAM/BHP-HR


30.
9.
5.
5.
0.
18.
10.
8.
5.


3.
2.
1.
•
2.
•
1.
7.
120.







HC
R
18
9fa
38
12
00
15
87
bO
00
R
R
53
19
18
bl
99
89
53
bb
15
R
R







82
21
10
9
0
8
10
32
99


7b
b9
50
19
13
12
15
31
133







CO
K
.7
.9
.b
.2
.0
.5
.7
.5
.8
R
R
.0
.1
.5
.?
.3
.2
.3
.3
.5
R
R





N02
R
1.5
fa. 2
l.fa
1.1
0.0
13.5
11. fa
12.9
7.1
R
R
9.1
8.5
8.8
8.8
12. b
1.0
1.2
5.0
11.8
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-18-72 RUN-1 ENG.1-3 72 VERSION STD TIMING O.OSb STD JETS
DYNA.
MODE
1
2
3
f
5
b
7
8
1
10
11
12
13
If
IS
Ib
1?
18
11
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
5
IS
f2
58
lib
l?f
110
213
232
0
0
252
232
207
189
I2b
b3
45
20
5
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
f
10
13
27
fo
f3
fl
53
0
0
110
102
11
83
55
28
20
9
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17. f f.l lb.2
11.1 7.8 lb.5
11.3 8.8 Ib.f
17.0 10.0 17.1
15.1 11.0 17.5
10.7 IS. 7 18.0
3.7 23.0 17. f
2.2 2f.3 lb.7
1.8 2b.8 15. f
,f 3f.2 13.0
17. f 3.7 15.3
22.0 f.l 18. b
1.3 fab. 3 13.0
2.3 faO.2 13.7
2.5 53.2 15.0
2.8 fl.8 15.8
10.5 32.5 lb.5
15.3 23.0 17.2
Ib.f 20.7 17. b
18.0 17.5 18.0
11.1 IS.f 18.5
17.5 3.1 lfa.0
2f.l f.3 21. b
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
It
15
Ib
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
51.
30.
50.
b5.
75.
11*.
121.
Iff.
205.
3b5.
ff.
77f .
581.
312.
152.
77.
152.
b7.
f5.
28.
31.
f3.
828.
3
3
3
8
7
1
7
1
0
f
1
7
3
2
8
3
7
1
1
2
1
3
3
COMPOSITE












CO
37f
105
120
b2
?b
88
IbO
218
1775
1025f
f fl
101
18353
133Sb
b582
3512
811
355
2f 1
110
158
ff2
110
HC
CO
N02
ALDE
bSFC
N02 FAC. HP
2.2 .070 0.0
7.f .ObO .1
18.0 .ObO .3
57.8 .050 .5
81.7 .030 ,f
210.1 .OfaO l.b
fbS.b 0.000 0.0
555.3 .OfO 1.7
518.1 0.000 0.0
172.7 0.000 0.0
2.2 .070 0.0
.b .120 0.0
f3b,0 .025 2.8
758.1 .055 5. fa
5b?.2 .035 3.2
518.3 .ObO 5.0
Ifaf.f .ObO 3.3
352.1 0.000 0.0
211.1 .ObS 1.3
105.1 0.000 0.0
55.2 0.000 0.0
2.b .080 0.0
.8 .ObO 0.0
1.1f7 GRAM/BHP HR
72.183 GRAM/BHP HR
8.70f GRAM/BHP HR
0.000 GRAM/BHP HR
.711 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
f015
1170
1857
1128
1111
2108
Ibf2
17f1
2f1b
fObO
311f
f17bf
333f
23f1
928
f7f
1313
851
b21
fSO
558
351fa
f2bb5
CONCENTRATION

1.
•
•
•
•
•
*
•
1.
5.
1.
•
5.
3.
1.
1.
•
*
41
»
»
1.
•
SPECIFIC


2fa.
11.
b.
5.
f.
3.
3.
f.
b.


s.
3.
1.
*
2.
2.
2.
3.
If.







HC
R
5b
58
8fa
71
3f
2b
3f
21
81
R
R
3f
8fa
bl
13
77
fb
21
22
21
R
R





CO
fSO
200
220
010
100
080
100
130
070
bfO
180
320
IfO
IbO
ISO
oio
37Q
220
170
ISO
IfO
820
280
C02
12.71
13.33
13.33
13.00
12.88
12.77
12. If
13.00
13. f8
11.11
12.83
b.bS
11. Sf
12. Ib
12.51
12.71
12. If
12.77
12.71
12. f?
12.32
12.53
5.50
NO
51
8b
200
510
bSO
IbO?
1775
2011
1SOO
578
SS
11
7*3
13b1
1038
S57
2t50
133E
"U3
SOS
298
bb
13
GRAM/BHP-HR
CO
R
11.7
27.7
b.5
5.8
3.3
f.o
5.0
3b.5
113. f
R
R
lfab.3
131.5
72. fa
f3.f
If .8
12.1
12. fa
21.7
72.1
R
R





N02
R
b.5
f.l
b.O
b.2
11.0
11.7
12.8
10. b
3.3
R
R
f.o
7.5
b.3
b.3
17.5
12.8
11.2
12.0
25.2
R
R



































-------
                ENGINE 1-3




EFFECT OF AIR-FUEL, RATIO ON EMISSIONS




            GRAPHED RESULTS

-------
  8 r
g  5
X
 3
 0
 h
 On
 CO
 s
 nt
 fn
O
            LEGEND
                    1200 rpm
                    2300 rpm
          O 0.051 Jets, 8-18-72 Run 2
           0 0. 056 Jets, 8-18-72 Run 1
           DO. 060 Jets, 8-18-72 Run 3
           A0.065 Jets, 8-21-72 Run 1
  O-
  M
 / \-
 I  \

1  I
                                                            O
                                 L
I
J_
                                                                  V 1200
                                                                     2300
                     Q- 2300
                         1200
                  i. 2300
                  I- 1200
                 £>. 2300
                 D-1200
          10    20    30   40    50   60    70   80    90   100
                     Power, Percent Maximum at Given Rpm

        FIGURE R-l.  EFFECT OF POWER ON HC EMISSION RATE
                      ENGINE 1-3, 23 MODE TEST

-------
I6r
14-
       LEGEND
             1200 rpm
             2300 rpm
O 0.051 Jets
^ 0.056 Jets
Q 0. 060 Jets
A 0.065 Jets
                                                     29220

                                                      22189
                                                      18353
 0
  of
  •3
   10    20    30   40    50   60   70    80    90
          Power,  Percent Maximum at Given Rpm
100  CT
    FIGURE R-2.  EFFECT OF POWER ON CO EMISSION RATE
                 ENGINE 1-3,  23 MODE TEST

-------
  14

  13


  12


  11


  10
o
_j
X
o
ffi
a.
CO

I
^
O
  LEGEND
           1200 rpm
           2300 rpm
O 0. 051 Jets, 8-18-72 Run 2
O 0.056 Jets, 8-18-72 Run 1
P 0. 060 Jets, 8-18-72 Run 3
A 0.-065 Jets, 8-21-72 Run 1
           10   20    30    40   50    60    70   80    90   100
                  Power,  Percent Maximum at Given Rpm
                                                                  ©
                                                 CT
      FIGURE R-3.  EFFECT OF POWER ON NOx (AS NOz) EMISSION RATE
                      ENGINE 1-3, 23 MODE TEST

-------
                       LEGEND
                                1200 rpm
                                2300 rpm
                         . 051 Jets, 8-1 $-72 Run 2
                         ;. O56 Jets, 8-1&-72 Run 1
                         L_060 Jets, 8-18-72 Run 3
                         ;. 065 Jets, 8-21-72 Run 1
2300

1200
                                                            J
     10   20    30   40    50    60    70    80    90   100    CT
           Power., Percent  Maximum at Given Rpm
FIGURE R-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                ENGINE 1-3, 23 MODE TEST

-------
               LEGEND
o
r-H
X
o
a
 05
-d
 fi
 3
 o
OH
                       1200 rpm
                       2300 rpm
             Oo. 051 Jets,  8-18-72 Run 2
             O 0.056 Jets,  8-18-72 Run 1
             Q 0.060 Jets,  8-18-72 Run 3
             A 0. 065 Jets,  8-21-72 Run 1
                                 I
                                 I
I
I
           10    20    30   40   50    60    70   80   90
                   Power, Percent Maximum at Given Rpm
                                                     100   CT
FIGURE R-5.
                    FUEL CONSUMPTION AS A FUNCTION OF POWER
                      ENGINE 1-3,  23 MODE TEST

-------
               APPENDIX S




                ENGINE 1 - 3




EFFECT OF LABORATORY EGR ON EMISSIONS




         (Z3 MODE MASS RESULTS)

-------
                ENGINE 1 - 3




EFFECT OF LABORATORY EGR ON EMISSIONS




               TABULAR DATA

-------
               PROJECT  11-2877-01   CONTROL  TECHNOLOGY
8-22-7? RUN-1 EN6.1-3  72-VERSION    STO  TIMING  STD  JETS  S %EGR

MODE
1
2
3
f
S
b
7
8
S
10
11
1?
13
I1*
IS
lb
17
18
IS
20
21
22
23

DYNA.
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1500
1200
HOO
1200
2300
d300
2300
2300
3300
2300
2300
2300
2300
bOO
2300
0.0
4.0
17.0
37.0
S2.o
10*. 0
155.0
1?0.0
190.0
207.0
0.0
0.0
223.0
20S.O
183.0
Ifa7.0
112.0
Sfa.Q
4o.Q
18.0
4.0
n.o
0.0

HP
0
1
4
8
12
24
35
39
43
4?
0
0
98
10
80
73
49
25
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
lfa.1 3.9 17.8
19. b 7.5 18.0
18.1 8.8 18.3
lfa.8 9.9 19.0
15.4 11.0 is. 5
10. fa 15.2 20.3
3.8 22.0 19.7
2.5 23.2 19. fa
2.2 24.5 18.2
.5 33.2 13.7
lfa.9 4.0 lb.5
21.9 4.4 24.7
1.7 fa4.0 13.1
2.b 54.1 14.1
2.8 50.1 lb.1
2.8 47.4 17.1
10. fa 31. b 17.7
15.1 22.7 18.3
lb.4 20.3 18.8
17.9 15.9 19.2
19.0 14. a 19. fa
17.3 4.2 lfa.9
23.9 4.7 23.3
CALCULATED GRAM/HR WT. WT.
MODE
1
e
3
«t
b
b
7
B
S
in
11
12
13
If
IS
lb
17
in
i'H
20
21
22
23
CYCLF




ALOE
0.0
0.0
0.0
0.0
o.Q
O.fJ
11.11
n.n
'I. G
0.0
>).0
0.0
o.o
0.0
0.0
U.O
0.0
n.u
l.fl
U . o
0.0
0.0
0.0
HC
49.7
59.8
53. i
55. fa
bS.d
97.5
92. U
108.8
154. ?
358.3
42.3
510.0
faU9.9
393. fa
111.3
b2.2
13fa.9
47.9
33.5
19.0
82.5
43.5
S32.4
COMPOSITE








- CO
253
135
84
37
42
faO
Ib7
175
?b«*
1190b
431
199
20934
12553
541b
30b3
b30
301
225
182
Ib4
433
133
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
2.5 .070 0.0
S.b .OfaO .1
lfa.4 .OfaO .2
30.8 .050 .4
48. b .030 .4
183.9 .ObO 1.4
292.2 0.000 0.0
424.3 .040 l.b
477.9 0.000 0.0
59.9 0.000 0.0
2. fa .070 0.0
.9 .120 0.0
214.7 .025 2.4
4b8.fa .055 4.9
332.5 .035 2.8
338.3 .OfaO 4.4
734.9 .ObO 2.9
288.1 0.000 0.0
177.3 .ObS 1.1
78.7 0.000 0.0
42.2 0.000 0.0
2.7 .080 0.0
.5 .OfaO 0.0
8.9fa9 GRAM/BHP HR
78.442 GRAM/BHP HR
fa.fa84 GRAM/BHP HR
0.000 GRAM/BHP HR
.781 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3b90
2231
Ifa71
1499
148b
Ib3fa
1110
12Sb
1787
4170
3235
22823
3b78
254b
fa89
381
1230
580
451
317
1524
3149
39800
CONCENTRATION










b
1

b
4
1






1

CO
.930
.250
.130
.050
.050
.050
.100
.100
.440
,8bO
.b30
.440
.250
.020
.fabO
.930
.280
.180
.150
.150
.150
.550
.280
























C02
11.84
12.22
12.22
11.92
11.72
11. 3b
11.84
11.92
12.22
10.25
11.92
b.21
10.89
11. bO
12.34
12.22
12.47
12.22
12.22
11.84
11. bO
11.92
4.84
NO
Sb
fa3
155
250
350
930
10fa3
1475
IbfaS
210
faO
12
390
913
fa20
b2S
1988
1050
720
395
235
59
7
SPECIFIC GRAM/BHP-HR


fas.
13.
fa.
5.
4.
2.
2.
3.
7.


fa.
4.
1.
•
2.
1.
1.
2.
47.







HC
R
42
72
57
24
10
bO
80
5fa
58
R
R
25
38
39
85
79
95
91
41
09
R
R







148
21
4
3
2
4
4
17
251


214
139
fa7
41
12
12
12
23
93







CO
R
.1
.fa
.4
.fa
.5
.7
.5
.7
.7
R
R
.4
.8
.fa
.9
.8
.3
.8
.1
.b
R
R





N02
R
b.l
4.2
3. fa
4.1
7.7
8.3
10.9
11.0
1.3
R
R
2.2
5.2
4.1
4. fa
15.0
11.7
10.1
10.0
24.1
R
R



































-------
                   PROJECT 11-2877-01  CONTROL TECHNOLOGY
  8-22-72  RUN-2 ENG.1-3 72 VERSION b BTDC  10% EGR

MODE
1
2
3
t
5
b
7
8
1
10
11
12
13
It
15
Ib
17
18
11
20
21
22
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
eaoo
2300
bOO
2300
0.0
*.o
1S.O
35.0
*s.o
Ib.O
itt.o
157.0
177.0
112.0
0.0
0.0
205.0
181.0
IbS.O
ist.o
103.0
51.0
37.0
Ib.O
t.o
0.0
0.0
MAN. FUEL
HP
0
1
3
8
11
22
33
3b
to
t*
0
0
10
83
?t
fa?
ts
22
Ib
7
2
0
0
A/F
VAC. LB/HR RATIO
17.0
11.8
11.2
18.1
lb.1
8.b
2.3
2.1
1.1
.5
17. t
22.0
l.fa
2.2
2.7
2.8
7.8
13.7
15.2
lfa.3
18. t
17. t
23.1
CALCULATED GRAM/HR
MODE
i
2
3
t
5
b
7
8
q
10
11
12
13
1*
15
Ib
1?
18
11
20
21
22
23
ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.D
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
*2.S
23.1
35.1
HI. 2
55.5
11.0
101.3
117.1
ISO.O
322.1
*0.1
b13.?
5*5. b
b?.l
258.3
2*5. fa
107.2
to. fa
2b.1
3*. 8
20b.2
38.*
8b2.5
CO
272
115
107
12
102
Ib?
307
511
2511
122S8
212
Ib3
21328
25928
9t2t
89bt
5b5
Ifat
107
ito
lit
318
15
N02
2.3
t.2
12.1
18. b
27.3
tt.7
120.3
172.1
123.3
32.7
2.5
.*
10.3
b2.5
133.1
127.3
172.7
97.3
b8.8
t8.9
25.3
2.8
.fa
t.a
fa.'s
8.0
9.t
10. S
15.8
22.1
23.0
25. S
31. b
t.t
t.3
fa3.9
faS.S
SI. 2
t8.7
3t.l
23.7
21.1
11.3
1S.O
t.3
t.b
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.oto
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
18.1
18.5
18. t
18.5
18.9
19. t
18.1
17.3
IS. 8
13.0
Ib.S
18. t
13.9
13. t
15.0
15.0
17.7
18.8
18. t
19. t
SO.l
17.7
23.8
WT.
HP
0.0
.1
.2
.t
.3
1.3
0.0
l.t
0.0
0.0
0.0
0.0
2.2
t.b
2. fa
t.o
2.7
0.0
1.1
0.0
0.0
0.0
0.0
DRY CONCENTRATION
ALDE.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
3318
1133
ItSb
Ifa25
IbSS
1802
1397
Ib30
2b3b
ttlfa
3107
ttfaQ2
33tl
tl9
179t
179*
158
t11
357
502
3faS?
2730
38fal3
CO
1.050
.280
.210
.150
.150
.150
.210
.350
1.730
8.320
1.120
.520
b.SOO
8.010
3.2tO
3.2*0
.250
.100
.070
.100
.100
1.120
.210
COS
13. t8
It. OS
It. OS
13.7?
13. tfl
IS. 71
13.f 8
13.91
It. OS
10.89
It. OS
?.5b
11.01
9. fat
12.71
12.71
13. t8
13. Ob
12.59
12. t?
11. bO
12. t?
5.27
NO
St
b5
its
185
sts
sts
500
720
515
135
51
8
Ib?
11?
280
280
tbS
3bO
275
213
135
bO
9
SPECIFIC GRAM/BHP-HR
HC
R
25.30
10. *8
fa. 15
5. Ob
t.Sl
3.08
3.21
t.70
7.3t
R
R
b.O*
.81
3.51
3. fat
2.38
1.82
l.bfa
t.97
117.73
R
R
CO
R
12fa,3
31.2
11.5
9.3
?.fa
9.3
It. 3
b2.3
279. t
R
R
237. fa
313.3
128.1
133.9
12.5
?.t
. b.b
20.0
bS.O
R
R
N02
R
t.b
3.5
2.3
2.5
2.0
3.7
t.8
3.0
.7
R
R
1.0
.8
1.8
1.9
3.8
t.t
t.2
7.0
It.t
R
R
























CYCLE COMPOSITE
HC    lO.lOb
CO   It3.8b2
N02    2.111
ALDE   0.000
BSFC    .881
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
  LB/8HP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-23-78  RUN-1  ENG.1-3 72-VERSION   fa BTDC 15% EGR STD.TIMING +JETS

MODE
1
2
ji
4
5
b
7
P
q
10
11
12
13
14
15
lb
1?
1«*
11
20
21
22
23

MODE
1
2
3
4
5
b
7
8
Q
It
1]
1£
1?
If
15,
lb
17
18
11
20
?J
2£
23
CYCLF





DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
ieno
1200
I2on
bOO
12(i(i
2300
2nun
2300
£3GC
2300
2300
2300
2300
2300
fepO
2 3 0 n

ALOfi
c.o
0.0
O.P
n.o
n.O
f ' . 0
0.0
0 . (1
n . o
n.o
n . u
0 . 0
n.o
0.0
0 . 0
0 . 0
O.D
n.n
n.i,
n.r.
'• . 0
0.0
n.o
row




0.0
3.0
11.0
25.0
35.0
70.0
105.0
115.0
121.0
1*0.0
0.0
0.0
1H8.0
13b.O
121.0
111.0
74.0
37.0
27.0
12.0
3.0
0.0
0.0
CALCULAT
HC
51.0
41.2
72.1
b8.2
bO.2
163. b
Ibl.fa
153.8
171.1
531.3
48. b
b42.1
853.8
1331.4
4D2.7
3bl.4
105b.4
113.7
78.1
100.8
251. b
43.0
8S4.7
KC'SITE




.
HP
0
1
3
b
8
lb
24
2b
21
32
0
0
faS
bO
53
41
32
lb
12
5
1
Q
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.5 4.4 15.4
11.3 8.3 lb,1
18.2 8.8 17.0
lfa.5 1.7 17.5
15.2 10.1 17.8
7.8 lfa.1 18. b
2.0 22.1 lb.0
2.0 23.5 15.7
1.1 24.0 15.4
.4 31.5 12.0
17.5 4.2 15.2
22.3 4.5 lb.7
1.5 51.8 12.0
1.7 bl.O 11.4
2.7 48. fa 14.0
2.8 47.8 14.3
2.8 42.4 lb.1
11.5 2b.Q 18.0
13.0 23.8 18.3
15.4 11.8 18. b
17.0 17.4 18.8
17.4 4.2 lb.2
23.8 4.7 22.4
ED GRAM/Hk WT. WT.
CO
701
Ibb
Ib3
8b
qq
171
1014
Ibll
2548
13187
bOO
313
2b223
28245
11842
107bO
4117
280
25?
218
221
458
117
Ht
CO
N02
ALDE
BvSFC
N02 FAC. HP
2.0 .070 0.0
7.0 .OfaO .0
7.7 .ObO .2
10.2 .050 .3
12. b .030 .2
20.4 .QfaO 1.0
33.1 0.000 0.0
33.1 .040 1.1
32.3 0.000 0.0
12.4 0.000 0.0
2.1 .070 0.0
.4 .120 0.0
2b.O .025 l.fa
21.5 .055 3.3
34.3 .035 1.1
3b.1 .OfaO 2.1
35.7 .ObO 1.1
38.4 0.000 0.0
33.8 .Ofa5 .8
2fa.O 0.000 0.0
18.8 0.000 0.0
2. fa .080 0.0
.b .ObO 0.0
24.351 GRAM/BHP HR
251.111 GRAM/BHP HR
.IfaO GRAM/BHP HR
o.ooo GRAM/BHP HR
1.251 LB/BHP HR
0
0
Q
0
0
0
0
0
0
0
0
0
Q
0
Q
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
I
I





DRY
HC
4424
15bO
2533
207b
ISIfa
3113
2217
2151
25b8
7057
3114
435Q8
b!03
1114
3111
2?fa2
8258
1228
111
1404
4114
3281
H222
CONCENTRATION

2.

.

•

t
1.
1.
1.
2.
1.
1.
10.
4.
4. 9
1.
*
9
*
9
1.
*
SPECIFIC


faO.
21.
11.
7.
11.
b.
5.
fa.
lb.


13.
22.
7.
7.
32.
7.
b.
11.
117.







HC
R
18
02
13
53
48
73
85
10
8b
R
R
17
41
faQ
44
fab
02
bO
18
55
R
R





CO
bOO
310
280
130
130
150
770
120
800
ObO
440
050
28Q
J50
540
070
510
ISO
ISO
ISO
180
730
280
























C02
11.12
13.77
13.33
13. Ob
12.82
11.12
13.77
13. b3
13.48
8.13
12.82
8.43
1.50
1.14
12.22
12.22
12.51
12.47
12.47
12.22
11.12
12.47
5.88
NO
45
80
81
14
101
104
145
140
131
41
53
S
5fa
48
80
85
84
125
120
101
10
faO
q
GRAM/BHP-HR


241
b4
IS
12
11
45
bl
8b
437


404
474
223
221
12?
1?
21
41
CO
K
.b
.8
.1
. 4
.2
.fa
.3
.4
.3
R
R
.fa
.2
.5
.4
.0
.3
.8
.4
N02
R
10.2
3.1
1.8
l.fa
1.3
1.4
1.3
1.1
.4
R
R
.4
.4
.fa
.8
1.1
2.4
2.1
4.1





















174. fa 14.3







R
R





R
R













-------
                ENGINE 1-3




EFFECT OF LABORATORY EGR ON EMISSIONS




             GRAPHED RESULTS

-------
                                0 1058.4
                                                            932.4
  8 r
o 5
o
i — i
X
L<
3
O
ffi
CO
s
nJ
*-i
a
 LEGEND
•	1200
      2300
                   rpm
      O 0% EGR,  8
          Runs 2 and
      Q 5% EGR,  8
          Run 1
      A 10% EGR,
          Run 2
      O 15% EGR,
          Run 1
                   rpm
           -16
           8-
     Ti
           10
        20    30    40   50     60   70    80   90   100  CT
           Power, Percent Maximum at Given Rpm
  FIGURE S-l.  EFFECT OF LABORATORY EGR ON HC EMISSION RATE
                     ENGINE 1-3,  23 MODE TEST

-------
                                                            18342-
                                                            28245
16 r
            1200 rprn
            2300 rprn
    O 0%EGR, 8-16-72, Run|s 2and 3
    D 5% EGR, 8-22-72, llun 1
    A 10% EGR, 8-22-72, Run 2
    0 15% EGR, 8-23-72, Run 1
        10
20    30   40    50    60   70   80    90
   Power, Percent Maximum at Given Rpm
100   CT
    FIGURE S-2.  EFFECT OF LABORATORY EGR ON CO EMISSION RATE
                       ENGINE 1-3, 23 MODE TEST

-------
  16 -


  15 -


  14


  13


  1Z


  11
  10'
o
2  9
X
en
s
o
           LEGEND
         1200 rpm
         2300 rpm
O 0% EGR,  8-16-72, Runs 2 and 3
D 5% EGR,  8-22-72, Run 1
A 10% EGR, 8-22-72, Run 2
0 15% EGR, 8-23-72, Run 1
                                                       G
    £     10    20    30   40    50    60   70   80   90   100   CT
    *"*            Power, Percent Maximum at Given Rpm

  FIGURE S-3.  EFFECT OF LABORATORY EGR ON NOX (AS NOz) EMISSION RATE
                         ENGINE 1-3,  23 MODE TEST

-------
26


24


22
  LEGEND
	- 1200 rpm
	2300 rpm
O 0% EGR,  8-16-72, Runs 2 and 3
D 5% EGR,  8-22-72, Run 1
A 10% EGR, 8-22-72, Run 2
   15% EGR, 8-23-72, Run 1
    2300
V-  1200

    1200
20
         10    20    30   40   50    60    70   80    90    100   CT
                 Power, Percent Maximum at Given Rpm
     FIGURE S-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                     ENGINE 1-3, 23 MODE TEST

-------
8r-
       LEGEND
     	1200 rpm
     	 2300 rpm
     O 0% EGR, 8-16-72,  Runs 2 and 3
     D 5% EGR, 8-22-72,  Run 1
     A 10% EGR, 8-22-72, Run 2
     0 15% EGR, 8-23-72, Run!
0 L
                  _L
                J_
10   20    30  40    50     60   70    80   90   100
      Power, Percent Maximum at Given Rpm
                                                              CT
  FIGURE S-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER
                  ENGINE 1-3, 23 MODE TEST

-------
          APPENDIX T





           ENGINE 1-3




EFFECT OF EXHAUST MANIFOLD




  AIR INJECTION ON EMISSIONS




    (23 MODE MASS RESULTS)

-------
          ENGINE 1-3




EFFECT OF EXHAUST MANIFOLD




 AIR INJECTION ON EMISSIONS




       TABULAR DATA

-------
                PROJECT 11-3877-01  CONTROL TECHNOLOGY
8-2*-72 RUN-1 ENG.l-3 72 VERSION  15 8TDC [faOO RPM STD JETS W/AIR

MODE
1
2
3
*
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
11
20
21
22
23

DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
20.0
**.o
b2.\0
i2*.b
185. 0
203.0
227.0
2*7.0
0.0
0.0
2b2.0
2*1.0
215.0
117.0
131.0
bfa.O
*7.0
21.0
5.0
0.0
0.0
»
HP
0
1
5
10
1*
28
*2
*b
52
Sfa
0
0
115
lOb
1*
8b
57
21
21
S
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.1 3.1 18.2
20.* b.3 23.8
11.* 7.* 22.1
17.7 1.1 23.5
15.1 10. fa 22.8
10.1 lb.2 22,1
3.1 22.* 20. b
2.3 23.8 20.1
1.1 25.7 18. b
.* 33.5 15.3
18.7 3.0 18.0
23.0 3.* 30.0
1.* bfa.O l*.b
2.3 58.5 15.*
2.5 52.0 17.0
2.7 *8.7 18.2
10.0 33.1 20.1
1*.8 23.2 22.3
lb.3 20.* 23.3
17.1 17.* 2*. 8
11.3 1*.S 2fe,5
18.5 3.8 20.1
23.1 *.2 38.1
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
*
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
37.8
22.8
*2.5
fal.5
83.7
135.5
1*2. fa
1**.S
17fa.fa
211.5
*0.0
880.7
333.1
1*8.3
2b.b
31.0
108.2
bl.7
53.7
bl.l
3*1. b
38.8
18**. 3
COMPOSITE








CO
bOO
127
12*
85
b8
102
18*
112
885
8?2b
b22
77
15*1*
8107
2077
1271
*75
31*
25*
175
155
510
1*
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.2 .070 0.0
5.7 .ObO .1
20.1 .ObO .3
80.7 .050 .5
130. fa .030 .*
*0*.l .OfaO 1.7
5*8.5 0,000 0.0
fa25.8 .0*0 1.1
bBB.1 0.000 0.0
210.* 0.000 0.0
1.* .070 0.0
.5 .120 0.0
507.3 .025 2.S
120.5 .055 5.8
735.7 .035 3.3
738.* .ObO 5.2
1235.0 .ObO 3.*
*b0.5 0.000 0.0
2b8.5 .OfaS 1.3
12b.7 0.000 0.0
52.1 0.000 0.0
2.* .080 0.0
.5 .ObO 0.0
1D.*OS GRAM/BHP HR
**.7*2 GRAM/BHP HR
10. b2* GRAM/BHP HR
0.000 GRAM/BHP HR
,bb7 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
o.o
I
I





HC
330*
7bl
12*2
Ib**
17*b
1871
15b*
1523
181*
2153
3b08
*1*08
177fa
8*3
150
217
821
b?2
555
70*
*570
250*
5*511























CO
2. bOO
.210
.180
.100
.070
.070
.100
.100
,*70
*.2faO
2.780
.180
*.070
2.280
.580
.350
.180
.ISO
.130
.100
.100
I.fa30
.020























cos
1.37
.25
.50
.50
.78
.13
10.81
11.13
11.8*
10. *3
1.1*
2.13
11.72
12.71
12.71
11. la
11.2*
1.13
1.37
8.13
8.0*
1.25
.Ib
NO
33
57
18*
575
820
IbBB
1813
1187
2225
8b3
31
7
815
1575
1250
1237
2850
133?
835
**0
205
4b
5
SPECIFIC GRAM/BHP-MR


11.
1.
fa.
5.
*.
3.
3.
3.
5.


2.
1.
.
.
1.
2.
2.
fa.
151.







HC
R
17
31
11
11
78
37
12
*1
31
R
R
10
*1
28
*5
81
*1
bl
b*
b8
R
R







111
2?
B
*
3
*
*
1?
15*


13*
7b
22
1*
8
10
12
11
70







CO
R
.3
.2
.5
.8
.b
.*
.1
.1
.b
R
R
.3
.8
.1
,7
.3
.1
.*
.0
.b
R
R





NQ2
R
5.0
*.b
8.0
1.2
1*.3
13.0
13.5
13.3
5.1
R
R
*.*
8.7
7.8
8.b
21.5
15.1
13.0
13.8
23.8
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-23-7? RUN-3 ENG.1-3 72-VERSION  W/AIR TOC
DYNA.
MODE
i
2
3
4
5
b
7
H
9
in
11
12
13
14
IS
lb
1?
1H
19
20
?1
?2
23
SPEED LOAD
hOO
1200
1?OU
1200
1200
1200
1200
1200
1200
i 2 0 0
bfiO
1200
2300
?300
2300
2300
2300
2300
2300
2300
R300
bon
2 3 0 0
0
4
17
38
53
105
158
172
193
210
0
0
232
213
190
17*
lib
5fl
4?
19
5
n
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
H
12
24
3fa
39
44
48
0
0
102
93
83
7fa
51
25
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
lb.2 3.2 21. b
19. fa b.8 25.1
18.8 8.3 25.0
lb.8 9.4 24.5
1S.1 10.5 24.0
10.4 15.3 23.1
2.0 23.8 20.5
1.8 24.7 19.7
1.7 27.4 18.0
.3 31.8 15.9
lb.5 3.4 20. fa
21.5 3.8 30.7
1.3 b4.3 IS. 3
2.2 59.5 15.2
2.4 54.3 lb.4
2.b 50.5 17.9
10.5 31.2 20.7
1*.8 21.4 22.3
15.8 20. b 23.4
17.4 17. fa 25.1
18.5 15.2 2fa.8
lb.7 3.4 21.7
23.4 4.0 42.8
CALCULATED GRAH/HP wT. wT.
MODE
i
2
.3
t
S
b
7
H
q
in
U
1?
1 •)
14
is
lb
.1?
It!
.14
20
?|
2P
e-)
CYi;LE




ALOE
n.n
n.o
n . n
0.0
n.o
n . o
f . "
n.n
0.0
n . n
n . u
o.n
n . n
o . n
o.u
0.0
o . o
(< . o
0 . 0
0.0
n.u
0.0
n.n
HC
23.
13.
33.
*3.
52.
H7.
b7.
b2.
f>5.
mi.
;?i.
740.
1^4,
1*8.
41.
7.
?4.
ib.
.). ?.
14.
35.

1730.
9
9
7
2
5
b
1
0
7
4
1
8
4
b
9
0
3
7
7
7
B
q
R
COMPOSITE












CO
80
84
1.17
112
121
130
32S
552
1351
SISfa
183
98
13209
13303
R7faS
1575
502
2bb
232
IfaS
152
138
4b
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
2.8 .070 0.0
fa.O .ObO .1
lfa.7 .ObO .2
37.5 .050 .4
53. fa .030 .4
175.2 .OfaO 1.4
359.3 0.000 0.0
380.1 .040 l.fa
345.0 0.000 0.0
Ifa4.5 0.000 0.0
2.S .070 0.0
.8 .120 0.0
328. b .025 2.5
45b.9 .055 5.1
457.7 .035 ?.9
349.8 .ObO 4. fa
fa 8 8 . 0 . 0 fa 0 3.0
233.1 0.000 0.0
158.3 .OfaS 1.2
81.5 0.000 0.0
39.3 0.000 0.0
3.1 .080 0.0
.fa .OfaO 0.0
9.845 GHAM/BHP HR
b3.782 GRAM/BHP HR
fa. 523 GRAM/BHP HR
0.000 GRAM/BhP HR
.7fa8 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
o.u
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
187b
43fa
871
1015
1138
13fa2
?5b
704
727
1085
1940
3l95b
933
1151
2bO
42
205
190
200
180
477
1737
53b29
CONCENTRATION


a
*
*
*

*
9
*
2.
*
*
3.
4.
1.
.
V
*
,
*
.
,
•
SPECIFIC


15.
8.
4.
4.
3.
1.
1.
1.
2.


1.
2.
.
.
.
.
.
1.
lb.







HC
K
20
b7
98
33
bS
87
SB
49
11
R
R
b2
02
50
09
48
bb
9b
77
37
R
R





CO
310
130
150
130
130
100
180
310
740
730
700
210
700
020
770
470
210
150
130
100
100
520
070
C02
10.89
9.50
9.50
9.78
10.09
10.55
11.84
12.34
12.94
12.59
11.01
4.03
12.71
12.34
13.48
13.33
11.72
10.89
10.43
9.b4
9.03
11.01
.19
NO
faS
57
130
2faS
350
820
1212
1300
1150
530
b8
10
SfaO
840
855
fa35
1750
800
S4Q
300
157
70
fa
GRAH/BHP-HR
CO
R
91. fa
30.2
12.9
10.0
5.4
9.0
14.0
30. b
107.5
R
R
130.0
142. b
b9.3
20.7
9.9
10.5
12. b
19.9
b9.3
R
R





N02
R
fa. fa
4.3
4.3
4.4
7.3
10.0
9.7
7.8
3.4
R
R
3.3
4.9
5.5
4.b
13.5
9.2
8.b
9.8
17.9
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
y-23-72 RUN-a ENG.1-3 72-VERSION  STD. TIMING + JETS W/AIR
DYNA.
MODE
1
2
3
if
S
b
?
B
H
in
11
12
13
14
IS
ib
17
IS
IS
an
21
2?
23
SPEED LOAD
bOO
1200
1200
1 ? 0 0
I2nr>
laoo
1200
1200
1200
1200
bOO
1200
23no
a 3 (i o
2300
2300
2300
2300
2300
asoo
2300
bOO
2300
0
5
1R
N-J
57
114
171
187
aio
228
0
0
asn
230
205
188
125
b3
45
20
5
n
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
• 0
.0
.0
.0
.0
.0
.0
HP
0
1
4
9
13
2b
39
43
48
52
0
0
109
101
90
82
55
28
20
q
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.5 3. fa 19.8
ao.o b.s 24.0
19.2 7.3 24.2
17.3 9.5 24.1
15.8 10.8 23.9
10.5 15.0 22.9
3.1 22.7 20.9
1.9 23.9 20.1
1.7 27.3 18.0
.3 31.9 15.5
17. b 3.5 19.3
22.3 3.5 30.7
1.3 b?,3 14.9
2.2 59.8 14.8
2.4 53.5 lb.2
2.5 50.2 17.2
10.0 33.2 19.9
14.9 22.5 21.8
lb.2 20.2 23.0
17.5 17.8 24.2
19.2 14.0 2fa.3
17.4 3. fa 20.2
24.0 3.5 45.1
CALCULATED GRAM/HR WT. WT.
MODE
1
a
3
if
S
b
7
3
S
10
11
ia
13
if
is
lb
IV
1«
14
an
21
aa
as
rvcLfc




ALDE
0.0
0.0
0.0
0.0
0.0
n . n
o.o
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
n.o
0.0
0.0
0.0
0.0
HC
38.
23.
32.
59.
72.
111.
103.
109.
lib.
181.
34.
8b2.
215.
247.
b*.
17.
48.
3U.
28.
21.
110.
34.
1S31.
5
b
2
8
4
7
0
1
1
4
0
a
3
0
3
5
1
1
1
q
8
1
4
COMPOSITE












CO
400
113
104
89
100
93
238
335
ISgfa
faS12
519
95
14QOb
12fal9
5018
17bO
545
291
238
Ib9
189
501
32
HC
CO
Noa
ALOE
BSFC
N02 FAC. HP
1.9 .070 0.0
5. fa .ObO .1
lb.1 .ObO .2
b4.7 .050 .5
94. fa .030 .4
278.8 .ObO l.b
435.8 0.000 0.0
504.2 .040 1.7
49b.b 0.000 0.0
213.8 0.000 0.0
2.0 .070 0.0
.5 .120 0.0
449.7 .025 2.7
fa30.b .055 5.S
585.1 .035 3.1
475. fa .OfaO 4.9
959.2 .OfaO 3.3
319.3 0.000 0.0
205.0 .OfaS 1.3
103.0 0.000 0.0
40.0 0.000 0.0
2.3 .080 0.0
.b .ObO 0.0
9.842 GRAM/BHP HR
bQ.338 GRAM/BHP HR
8.303 GRAM/BHP HR
0.000 GRAM/BHP HR
.712 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
2735
7fal
93fa
1350
14bl
Ib9b
1137
1185
1234
1901
25b3
38b27
113?
14b3
383
105
375
313
309
2bl
1539
2432
49082
CONCENTRATION

1








3
1

3
3
1






1

CO
.410
.180
.150
.100
.100
.070
.130
.180
.810
.380
.940
.210
.fafaO
.700
.480
.520
• 210
.150
.130
.100
.130
.770
.050
C02
9.93
9.25
9.37
9.50
9.fa4
10.09
11.13
11.48
12.34
11. bO
9.78
3.04
12.34
12.22
12.94
13. Ob
11.48
10.43
9.93
9.50
8.54
9.fa4
.13
NO
41
54
141
440
575
1275
1450
1 fa 5.0
ifaoo
b?5
46
7
715
1125
1050
855
2250 ,
1000
b80
370
lb?
49
fa
SPECIFIC GRAM/BHP-HR


20.
7.
fa.
5.
4.
2.
2.
2,
3.


1.
2.
•
*
•
1.
1.
2.
50.







HC
R
fab
84
38
Sb
29
fa4
55
40
48
R
R
97
45
72
21
88
09
43
50
59
R
R





CO
R
98.7
25.4
i.s
?.?
3. fa
fa.l
7.8
31.8
125.0
R
R
127.9
125.3
55.9
21.4
10.0
10. b
12.1
19.3
8b.3
R
R





NOg
R
4.9
3.9
fa. 9
7.3
10.7
11.2
11.8
10.3
4.1
R
R
4.1
fa. 3
fa. 5
5.8
17.5
11. b
10.4
11.8
18.3
R
R



































-------
           ENGINE 1-3




EFFECT OF EXHAUST MANIFOLD




   AIR INJECTION ON EMISSIONS




       GRAPHED RESULTS

-------
                                                              £|rr 1844.3
       LEGEND
     --		1200 rpm
     	2300 rpm
     ONo air 6°BTDC, 8-16-72, Runs 2 and 3
     n Factory Light Duty Air Injection,  TDC,
          8-23-72, Run  3
     A Factory Light Duty Air Injection,  6°BTDC
          8-23-72,Run 2
     ^ Factory Light Duty Air Injection,  15°BTDC,
          8-24-72, Run  1
       10    20    30    40    50    60   70    80   90    100
                  Power,  Percent Maximum at Given rpm
O--776

O--740.8
CT
FIGURE T-l.  EFFECT OF EXHAUST MANIFOLD AIR INJECTION
                     ON HC EMISSION RATE
                  ENGINE 1-3, 23 MODE TEST

-------
                                                           0 18342
  16r
  14
  12
o
o
o
o
EC
ni
M
O
  LEGEND
	1200 rpm
	2300 rpm
O No air  6°BTDC, 8-16-72, Runs 2 and 3
D Factory Light Duty Air Injection,  TDC,
    8-23-72, Run 3
A Factory Light Duty Air Injection,  6°BTDC,
    8-23-72, Run 2
O Factory Light Duty Air Injection,  15°BTDC,
    8-24-72, Run l'
                                                 I
                                              I
 I
          10
        20    30   40    50   60    70    80    90
         Power, Percent Maximum at Given Rpm
100  CT
    FIGURE T-2.
         EFFECT OF EXHAUST MANIFOLD AIR INJECTION
              ON CO EMISSION RATE
            ENGINE 1-3, 23 MODE TEST

-------
14 r
 12 -
 10 -
o
o
I—I
X 8
!-
d
o
£
!H

-------
           LEGEND
  26

  24

  22 f

M
E 20
a
I18

% 16
>
2
"o 14 '
a
rt
  12
a
4J
£  10


   8


   6


   4


   2-1-
     U-
                   1200 rpm
                   2300 rpm
          O No air 6°BTDC, 8-16-72,  Runs 2 and 3
          Q Factory Light Duty Air Injection, TDC,
              8-23-72, Run 3              ;
          A Factory Light Duty Air Injection, 6° BTDC,
              8-23-72, Run 2
          O Factory Light Duty Air Injection, 15°BXDC,
              8-24-72, Run 1
A-  2300
     2300
     2300
                                                                    - 1200
                                                                     • 1200
      i     10    20    30   40    50   60    70    80   90   100    CT
      i
                  Power, Percent Maximum at Given Rpm

       FIGURE T-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                       ENGINE 1-3,  23 MODE TEST

-------
     r,—
o  6
r«H
X
o
ffi
u  5
            LEGEND
                   1200 rpm
                   2300 rpm
                air 6°BTDC,  8-16-72,  RunsJ2and,3
          Q Factory Light Duty Air Injection!, TDC,
           .   8-23-72, Run 3               :
          A Factory Light Duty Air Injection, ^°BTDC,
              8-23-72, Run 2    (         .  "l '' ;
          O Factory Light ;Duty Air- Injection, 15° BTDC,
              8-24-72, Run 1
0
J,
0) '
»— i
T3
1— 1
^ 1
,
10 20 30
Power,
|
40
Percent
1*
I
50 60
Maximum
|
70
at
|
80
Given
1
90
Rpm
|
100
|
CT
        FIGURE T-5.
FUEL CONSUMPTION AS A FUNCTION OF POWER
  ENGINE 1-3, 23 MODE TEST

-------
                 APPENDIX U




                  ENGINE 1-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




          (23 MODE MASS RESULTS)

-------
                  ENGINE 1-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




               TABULAR DATA




             (BEFORE CATALYST)

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-2*-?2 RUN-2 ENG.1-3 72 VERSION fa BTOC O-CAT STD TIM W/AIR BEFORE
DYNA.
MODE
1
2
3
*
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
11
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
23QO
2300
2300
2300
bOO
2300
0
5
11
*2
51
118
177
11*
217
23b
0
0
2*2
223
118
182
121
bl
**
11
5
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
*
10
13
27
*0
**
50
5*
0
0
lOb
18
87
80
53
27
11
8
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.5 *.0 17. b
11.8 fa.b 20. fa
11.5 7.1 20.5
18.3 8.5 20.2
Ifa. fa 10.2 11.1
10.0 lb.0 11.5
2.3 23.2 18.0
1.1 2*.b 17.2
l.b 27.1 15.1
.3 32.5 13.3
17.5 3.1 lb.8
22.1 *.2 2fa.7
1.3 fab.1 12.1
2.2 bO.2 12. b
2.* 5*. 3 13.7
2.5 52.1 1*.*
10.1 32. b 17.1
1*.7 23. b 11.8
15.7 21.8 20.1
17. b 18.1 21.1
18.7 15.8 22.1
17.7 *.l 17.*
23.8 *.S 35. b
CALCULATED GRAM/HR NT, WT,
MODE
1
2
3
*
5
fa
7
8
i
10
11
12
13
14
15
Ifa
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
33.
11.
20.
3b.
50.
10*.
88.
57.
*s.
137.
31.
boa.
518.
3b5.
Ibb.
118.
53.
25.
20.
11.
*2.
30.
1105.
0
1
0
1
1
8
7
0
0
8
0
8
S
1
2
1
3
3
b
5
3
7
1
COMPOSITE












CO
353
lOb
113
133
88
1*
23*
388
lb?1
7bO*
512
121
22371
17171
IfaOl
b8*5
38*
203
113
111
158
5bb
3b
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
l.b .070 0.0
b.* .ObO .1
10.3 .ObO .3
32.8 .050 .5
7*. 3 .030 .*
210.5 .ObO l.b
*2*.b 0.000 0.0
505.2 .0*0 1.8
*11.7 0.000 0.0
172.0 0.000 0.0
2.1 .070 0.0
.b .120 0.0
23fa.7 .025 2. fa
*01.S .055 5.*
183.8 .035 3.0
3b0.1 .ObO *.8
788. fa .OfaO 3.2
2*1.7 0.000 0,0
172.5 .OfaS 1.3
72.1 0.000 0.0
*5.7 0.000 0.0
2.2 .080 0.0
.1 .ObO 0.0
10.3b8 GRAM/BHP HR
18.b51 GRAM/BHP HR
7.*81 GRAM/BHP HR
0.000 GRAM/BHP HR
.7*5 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
2111
383
fa*l
1001
1152
1572
118
fa23
503
1*10
2201
23551
2183
22*1
1052
751
*2l
253
21b
13fa
5*2
1137
5318fa
CO
l.lbO
.180
.180
.180
.100
.070
.130
.210
.130
*.070
1.800
.250
fa. 370
5.2*0
3.010
2,1*0
.150
.100
.100
,070
.100
1.770
.050























C02
10. bb
10,01
10.01
10.25
10. *3
lO.fafa
11. bO
11.12
13.18
11.72
10.55
*.8*
10.78
ll.Sfa
12. *7
12.71
11. *8
10.55
10.25
l.b*
1.03
1.78
.33
NO
31
bb
100
270
515
1313
1*38
Ibb2
1387
5bO
**
8
*10
7bO
1875
b85
1875
750
5*5
2bO
17b
*2
8
SPECIFIC GRAM/BHP-HR
HC
R
1.7*
*.bO
3.85
3.72
3.81
2.11
1.21
.11
2.5b
R
R
*.10
3.7*
1.12
l.*1
1.01
.15
1.07
1.38
11.32
R
R







12
2b
13
b
3
5
8
33
1*1


211
175
110
85
7
7
10
1*
72







CO
R
.*
.1
.1
.5
.5
.8
.8
.1
.0
R
R
.2
.1
.8
.1
.2
.b
.0
.3
.0
R
R





NO?
R
5. fa
2.*
3.*
5,5
10.8
10.5
11.*
8.3
3.2
R
R
2.2
*.2
11.3
*.s
1*.1
1.3
1.0
8.8
20.1
R
R



































-------
8-25-72 RUN-1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.1-3   1S72 VER B Q-CAT W/AIR b BTDC

MODE
1
2
3
f
5
b
7
8
S
10
11
12
13
If
IS
lb
17
18
IS
20
21
22
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
s.o
18.0
fl.O
58.0
115.0
173.0
18S.O
212. 0
230.0
0.0
0.0
2*2.0
223.0
1S8.0
182.0
121.0
bl.O
ff .0
is.o
5.0
0.0
0.0
MAN. FUEL
HP
0
1
f
S
13
2b
fo
f3
f8
53
0
0
I0b
SB
87
80
S3
2?
IS
8
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.5
1S.S
IS. 2
17.8
lb.0
10.2
2.1
l.B
1.7
.3
17. b
22.0
1.3
1.7
2.3
2.f
10.1
If.b
15. S
17.5
18.8
17.5
23.8
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
lb
17
18
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
32. S
11.2
2f .2
38.3
ffa.S
8S.5
51.7
3S.7
33.0
llf .0
2b.8
713.8
fbf .2
307.5
If3.fa
S5.3
3S.S
22.1
15. f
3S.O
51.1
2fa.2
1873. S
COMPOSITE








CO
381
137
Ifb
117
US
Ibl
2b8
508
Sb5
751S
f73
133
22f03
15885
SSbl
b?75
f3f
1S8
17S
112
lOf
f2b
fO
HC
CO
N02
ALDE
BSFC
N02
2.7
5.S
lf.0
fl.7
bf .8
201. b
3bb.5
f3b.O
f07.f
155.2
2.0
.7
2f0.1
f38.b
3S1.3
3f0.1
7b7.f
27b.O
lfa?.8
78. S
f3.S
2.2
.fa
lO.fSO
Sb.753
b.32f
o.ooo
.752
3.S
7. fa
8.2
s.f
10. S
15.3
2f.2
25.8
27.5
33. f
f.O
f.3
fab.f
5S.1
Sf.S
51.7
32.7
2f.O
21.3
18.1
iS.f
f.O
f.f
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
17.7
20.7
20.5
20.2
20. f
IS. 7
18.0
17.0
15.7
13. f
17.2
27.8
12.2
12.8
13.7
If. 3
17. b
iS.b
20.0
20.8
22.1
17.8
fO.f
WT.
HP
0.0
.1
.2
.5
.f
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2. fa
S.f
3.0
f.8
3.2
D.O
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
23fO 1
3fb
70f
SSI
103f
IfSb
585
ff2
37S
1231 f
18SS 1
27130
2bSS b
!Sb7 5
S2S 3
b28 2
33f
22b
173
fS3
bSb
17fS 1
f?b3b
CO
,3fO
.210
.210
.150
.130
.130
.150
.280
.550
.020
.bbO
.250
.ffO
.030
.ISO
.210
.180
.100
.100
.070
.070
.flO
.050
C02
11.01
10. f3
10.55
10.78
10. fab
11.01
12.22
12.71
13.77
12.22
11.01
f ,fS
10.78
11. S2
12.71
13.18
12.22
11.01
10.78
10.25
S.37
10. SB
.2b
NO
58
55
122
325
f30
S88
1250
Ifb2
Ifl2
SOS
f2
8
f20
8f5
7b3
b75
1S38
850
570
300
180
ff
f
SPECIFIC GRAM/BHP-HR
HC
R
S.78
5.88
f .OS
3.5f
3.fl
1.31
.S2
.b8
2.17
R
R
f .38
3.15
l.bb
1.20
.75
.83
.80
f.bS
23.35
R
R
CO
R
11S.S
35. f
12.5
S.O
b.l
b. 8
11.8
1S.S
IfS.l
R
R
211. f
Ib2.7
llf.S
85.0
8.2
7.f
S.3
13.5
f7.f
R
R
N02
R
5.2
3.f
f.S
f .s
7.7
S.3
10.1
B.f
3.0
R
R
2.3
f.S
f.S
f.3
If.S
10.3
8.7
S.5
20.0
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
8-25-72
RUN-3
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG.1-3 1972 VER B O-CAT W/AIR MODI TDC
DYNA.
MODE
1
2
3
f
5
b
7
8
9
10
11
12
13
If
15
ib
17
18
IS
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
f
Ib
37
52
103
155
Ifa9
ISO
20b
0
0
222
20f
182
Ifa?
Ill
5b
fo
18
f
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
f
8
12
2f
35
39
f3
f?
0
0
97
89
BO
73
f9
25
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
Ifa. 7 3.8 17.9
20.0 7.b 22.2
19.1 8.5 21.3
17.5 9.b 20.8
15.9 10.7 20.8
10. f 15. fa 20.2
1.8 23.5 18, f
1.7 25.0 17.5
l.fa 27. f 15. S
.3 32.8 13. b
Ifa. 8 3.9 17.3
22.0 f.2 27.2
1.3 b5.7 13.2
2.1 58.3 If. 2
2.3 5f.2 15.2
2.f 51.5 15.8
10.5 32.0 IS. 7
If. 9 23.5 20. S
15.7 21. fa 20.7
17.2 18. b 20.7
18.3 Ifa. 5 20. S
lb.7 3.8 lb.8
23.7 f.fa 25.5
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
9
10
11
12
13
If
15
Ib
1?
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
HC
27.
If.
20.
28.
32.
75.
30.
27.
is.
85.
2b.
bbS.
If fa.
37.
13.
11.
50.
2b.
20.
12.
15.
2b.
1S98.
9
9
b
7
b
8
9
0
2
b
7
5
8
b
3
7
f
f
3
3
3
9
7
COMPOSITE












CO
301
95
115
111
122
133
182
277
fafl
bb32
f52
IfS
15575
7f?9
3059
Ib53
3bO
217
Ifb
129
117
f55
37
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.f .070 0.0
fa.O .ObO .1
17. f .OfaO .2
38. b .050 .f
faO.l .030 .f
185.5 .ObO l.f
32f.8 0.000 0.0
391.1 .OfO 1.5
395. f 0.000 0.0
lSf.8 0.000 0.0
2.8 .070 0.0
l.f .120 0.0
193,8 .025 2.f
flO.7 .055 f.9
3bb.8 .035 2.8
320.8 .OfaO f.f
fa99.f .OfaO 2.9
21f.f 0.000 0.0
171. S .OfaS 1.1
83.5 0.000 0.0
51.8 0.000 0.0
2.f .080 0.0
.b .ObO 0.0
10.079 GRAM/BHP HR
52.58f GRAM/BHP HR
fa.fSf GRAM/BHP HR
0.000 GRAM/BHP HR
.818 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
19faS
f!3
Sfl
fa79
701
1153
3ff
295
212
S17
1895
2faU5
792
21f
7f
fa?
3b8
2fb
ISfa
135
18f
IBlf
5fb21
CONCENTRATION

1.
.
,
•
*
.
,
,
*
3.
1.
*
f.
2.
.
.
.
,
.
.
,
1.
*
SPECIFIC


Ib,
5.
3.
2.
3.
*
•
*
1.


1.
•
•
•
1.
1.
1.
1.
8.







HC
R
3f
fa3
fO
7f
22
87
70
ff
B2
R
R
51
f2
17
Ifa
Of
08
Ib
Sb
72
R
R





CO
050
130
150
130
130
100
100
150
350
520
590
280
IbO
110
850
f?0
130
100
070
070
070
520
050
cos
10.89
S.37
9.93
10.09
10.25
10.55
11.72
12.22
13.33
12. 3f
10.78
f ,5f
11. 8f
12. Sf
12. Sf
12. Sf
10. f3
S.78
S.37
S.lf
8. S3
S.93
.is
NO
51
50
138
275
390
850
1088
1288
1313
500
59
Ib
315
70S
fa20
555
1538
bOO
500
275
188
f8
5
GRAM/BHP-HR
CO
R
103.8
31.5
13.1
10.3
5. fa
5.1
7.2
If. 8
IfO.S
R
R
lbQ.2
83.7
38. f
22. fa
7,f
8.9
8.f
Ifa.f
fa7.0
R
R





N02
R
fa.b
f.8
f.fa
5.1
7.9
S.2
10.1
S.I
3.3
R
R
2.0
f.fa
f.fa
f.f
If .f
8.7
S.8
10. b
2S.fa
R
R



































-------
8-25-72
MODE
1
2
3
f
5
fa
7
8
q
10
11
12
13
If
15
lb
17
18
11
2n
21
22
23
RUN-2
PROJECT 11-2877-01 CONTROL TECHNOLOGY
ENG.1-3 1172 VER B O-CAT W/AIR MODI fa BTDC
DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
f .
18.
fo.
Sb.
111.
Ib7.
182.
20f .
222.
0.
0.
23tt.
217.
Hf.
177.
118.
51.
f2.
11.
5.
0.
Q.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
f
1
13
25
38
f2
f?
51
0
0
103
IS
85
78
52
2b
18
8
2
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO ALDE.
17.7 f.l 18.1
20.0 7.2 21.3
11. f 8.1 21. f
18.2 1.2 21.1
lfa.2 10.8 20.7
10.8 15.7 11, q
2.7 23. b 18. S
1.1 2f.S 18.1
1.7 2fa.7 Ifa.f
.3 33.7 13.5
17. fa f.O 17.3
22.8 f.f 27. f
1.3 fafa.7 13.2
1.1 fab.f 12.5
2.f 53.3 15.0
2.5 50.2 15.7
10. f 32.0 11.5
If. 8 23.0 20.5
lb.0 21.3 21.1
17. fa 18.3 22.1
18.5 lb.0 23.1
17.5 f.O 18.2
23.8 f.S 38.3
CALCULATED GRAM/HR WT. WT,
MODE
1
S
3
f
S
b
7
8
q
10
11
12
13
If
15
lb
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
30. f
10.7
22.5
33.7
fO.O
77.7
53.1
f8.5
37.2
107.8
2b.f
faff .3
Ifa8.3
205.7
18.7
10.2
57. f
28.5
22.7
15.0
33.5
21.5
11fS.7
























COMPOSITE












CO
3?f
117
111
108
13
131
23b
2fl
72b
7258
53b
llf
15551
20313
3f37
1517
fOS
20b
ifo
11
8f
f 71
31
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.1 .070 0.0
b.3 .ObO .1
17.7 .OfaO .2
fl.2 .050 .5
71.7 .030 .f
2fl.8 .ObO 1.5
358.1 0.000 0.0
fll.2 .OfO 1.7
fSl.1 0.000 0.0
17q.f 0.000 0.0
2.2 .070 0.0
2.0 .120 0.0
23b.7 .025 2. fa
151. b .055 5.2
f25.1 .035 3.0
335.1 .ObO f.7
711.3 .ObO 3.1
271.2 0.000 0.0
181.3 ,0b5 1.2
8b,8 0.000 0.0
53. b 0.000 0.0
2.f .080 0.0
.8 .ObO 0.0
q.711 GRAM/BHP HR
71,b?7 GRAM/BHP HR
b.lfl GRAM/BHP HR
0,000 GRAM/BHP HR
,782 LB/BHP HR
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
1170
33f
fall
820
8fa7
1200
SSI
528
fOf
1137
1828
2f07f
101
1155
111
bl
f21
271
221
Ibb
fOS
1830
51113
CONCENTRATION
CO C02
1.


t
]

t
.
^
3.
1.

f!
5.
1.
.

,
,
.
,
1.
•
SPECIFIC


11.
5.
3.
3.
3.
1.
1.
.
2.


1.
2.
.
.
1.
1.
1.
1.
IS.







HC
R
75
f7
bl
13
Ob
fl
17
80
12
R
R
fa3
lb
22
13
11
10
2f
80
32
R
R





200
180
150
130
100
100
130
130
310
710
8fO
210
IbO
b?0
010
f?0
150
100
070
050
050
fSO
050
10. bb
1.13
1.78
1.13
10,f3
10.78
11.72
11.12
12.71
12.22
10. Sb
f ,8f
12.01
11.13
13.33
13. Ob
10. bb
10.01
1,bf
l.lf
B.b8
l.faf
.11
NO
fl
51
IfS
3bO
520
1125
1200
1375
1S7S
570
fS
22
385
270
7faO
bOO
1800
BOO
550
210
115
ff
b
GRAM/BHP-HR
CO
R
128.1
27.1
11.8
7.3
5.2
fa. 2
5.8
15. b
If3.1
R
R
150.5
21f.b
fO.S
20. b
7.8
8.0
7.b
10.1
38.2
R
R





N02
R
b.1
f.3
S.f
b.2
1.5
l.f
10.1
10.3
3.5
R
R
2.3
1.7
5.0
f.3
15.5
10. S
1.1
10. *
2f.S
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
S-PH-72 RUN-) ENG.1-3 72 VERSION  15 8TDC  bOO RPM B W/AIR MOD  O-CAT

MODE
i
?.
3
4
9
b
7
P
q
in
11
1?
13
14
15
lb
17
IS
11
20
21
?2
23

OYNA
SPEFD LOAD
bOO
1200
1200
1 13 0 n
1?00
1 ? (i n
1200
1 2 0 0
1200
1200
BOO
1200
2300
?100
2300
2300
2300
23CO
2 3 nn
2300
2300
bOO
2300
0.0
5.0
20.0
44.0
fa2.0
123.0
185.0
P02.0
22b.O
24b.U
0.0
0.0
25b.O
23b.O
210.0
H2.0
128.0
b4.0
4b.O
20.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
5
10
14
28
42
4b
52
5b
0
0
112
' 103
12
84
5b
28
20
1
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
20.2
20.1
11.1
18. b
lb.5
10.4
4.0
2.0
l.b
.3
11.3
23.0
1.3
2.1
2.3
2.5
10.3
14.1
lb.3
18.0
H.l
11.0
24.4
CALCULATED RRAM/HR
"OOE
1
2
3
4
S
H
7
q
q
in
11
12
1.3
1*
IS
lb
17
18
11
20
21
22
23
CYCLE




ALOE
n.o
n.o
n.n
n.o
0.0
n.o
o . o
n.o
0.0
0.0
n . o
0.0
n.o
u.o
n.o
0.0
n . 0
0.0
" . o
0.0
n.o
n.o
n.n
HC
21. t
14.1
3b.l
55.1
bS.b
11 2 . 0
KI3.7
lOb.O
17.8
23.0
32.1
732. &
220.1
lOb.U
25. *
21.5
18.5
44.4
30.8
23.2
71.5
3 7. a
17b1.2
COMPOSITE








CO
47t
180
411
205
If
15
183
118
10t 5
inbfaf
75b
83
15187
10214
2b42
1071
405
205
13b
lib
151
b83
17
HC
CO
N02
ALDE
B8FC
N02
1.3
5.8
lb.3
81.1
155.8
4bl.7
Sib. 3
7b4.7
7b5.2
220.8
1.4
.8
345.2
b31.b
705.0
702.1
1330.3
415.8
28b.b
134. fa
bl.7
1.7
1.0
1.181
52.054
IQ.falS
0.000
.bis
4.0
7.1
8.5
1.7
10.1
lb.1
22. b
24.5
2b.7
34.1
3.8
3.8
bb.3
51.1
52.3
48.7
32.4
23.2
20. fa
17.1
14.8
3.7
4.0
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
,0b5
0.000
0.000
.080
.ObO
18.3
21.1
21.1
20. b
20.7
20.2
11.5
18.1
17.0
13.1
Ib.b
32.0
13.4
14.0
15.7
lb.7
11.5
20.7
81.7
22.4
23.5
17.5
4b.5
WT.
HP
O.I]
.1
.3
.5
.4
1.7
0.0
1.8
0.0
0.0
0.0
0.0
2.8
5.7
3.2
5.0
3.4
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
144b
443
975
1373
1372
lb?l
1148
1082
1040
228
2520
2bfa07
lllb
b!2
150
12b
738
438
321
283
IQbO
2b8b
43044
CO
1.510
.280
.550
.250
.100
.070
.100
.100
.550
5.240
2.870
.150
4.300
2.120
.770
.310
.150
.100
.070
.070
.100
2.400
.020
cos
10.55
1.78
S.78
10.43
10.43
10. fab
11.13
11.13
12.22
10.01
10.01
3.45
11.12
12.71
13.18
12.51
10.78
10.25
1,b4
1.37
8.75
1.25
.01
NO
2b
54
132
bbO
1012
2075
1187
2350
2450
bbO
33
1
5fa5
1112
1250
1237
3000
1475
100
415
280
37
7
SPECIFIC KRAM/BHP-HR
HC
R
12.35
7,81
S.Sfa
4.41
3.18
2.45
2.30
1.81
.41
R
R
l.lb
1.03
.28
.2fa
1.7b
1.58
1.53
2,fa4
3b.21
R
R
CO
R
157.8
81.1
20.4
b.b
3.4
4.3
4.3
20.2
IBS. 7
R
R
142. fa
18.8
28.7
12.7
7.2
7.3
b.7
13.2
fe^.2
R
R
N02
R
5.0
3.b
8.1
11.0
lb.4
14.1
Ib.b
14.8
3.1
R
R
3.1
fa. 2
7.7
8.4
23.7
17.7
14.2
15.4
31.8
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                  ENGINE 1-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




                TABULAR DATA




              (AFTER CATALYST)

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-2f-72 RUN-2 ENG.1-3 72 VERSION b BTDC O-CAT3TD TIM W/AIR AFTER

MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
lb
17
18
IS
20
21
22
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
is.o
fs.o
ss.o
118.0
177.0
ISf .0
217.0
23b.O
0.0
0.0
2f2.0
223.0
1S8.0
182.0
121.0
bl.O
ff.O
IS.O
5.0
0.0
0.0
1
HP
0
1
f
10
13
27
fO
ff
50
Sf
0
0
lOb
SB
87
80
53
27
IS
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.5 f.O 18.8
IS. 8 b.b 21.2
1S.S 7.1 21.1
18.3 8.5 20.7
Ib.b 10.2 20.8
10.0 Ib.Q 1S.S
2.3 23.2 18.2
l.S 2f.b 17. f
l.b 27. S 15.3
.3 32.5 13.5
17.5 3.S 17.7
22.1 f.2 27.0
1.3 bb.S 12. f
2.2 faO.2 13.0
2.f Sf.3 If. 2
2.5 52.1 15.3
10.1 32. b 18.0
If. 7 23. b 20.2
15.7 21.8 20.7
17. b 18.1 22.1
18.7 15.8 23.2
17.7 f.l IS.f
23.8 f.S fO.S
CALCULATED GRAM/HR WT. WT.
MODE
i
2
3
4
5
b
7
8
q
10
11
12
13
If
15
lb
17
18
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
b.3
10. S
*.3
B.f
12.0
25.3
2b.2
2b.3
25.7
102.5
S.b
If7.7
f 57. f
301. S
58.5
b.S
If .1
8.3
7.2
f.S
2f.2
b.S
30.0
COMPOSITE








CO
lb
12
13
15
18
27
S2
S3
fbO
55b7
73
25
1SS81
13102
5237
1085
51
f2
fO
3b
33
21
152
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.1 .070 0.0
7.0 .ObO .1
11.7 .OfaO .3
32.3 .050 .5
b8.2 .030 .f
2f7.3 .OfaO l.b
flS.2 0.000 0.0
fSO.S .OfO 1.8
381.2 0.000 0.0
203.7 0.000 0.0
2.5 .070 0.0
.b .120 0.0
307.1 .025 2. fa
505.0 .055 5.f
fS3.f .035 3.0
3b8.Q .ObO f.8
7Sf.S .ObO 3.2
217. S 0.000 0.0
151.7 .ObS 1.3
b3.S O.QOO 0.0
37. S 0.000 0.0
S.b .080 0.0
1.0 .ObO 0.0
2.287 GRAM/BHP HR
bl.ObS GRAM/BHP HR
b.77b GRAM/BHP HR
0.000 GRAM/BHP HR
.7fS LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
3S8
3fS
132
22f
2fa2
37f
288
28b
282
108b
38S
5S2b
2571
1811
35S
3?
Ill
7S
72
50
2S7
30f
718
CONCENTRATION










2


5
3
1









*
•
•
•
•
•
•
•
*
•
•
•
*
*
*
*
•
•
•
•
•
•
•
SPECIFIC


S.
.
.
.
*
.
.
*
1.


f.
3.
.
.
.
.
.
.
11.







HC
R
17
SS
8R
89
Sf
b5
SS
52
SO
R
R
32
OS
b7
08
27
31
37
Sf
Ob
R
R


































CO
050
020
020
020
020
020
050
050
250
S20
250
050
SbQ
S80
5SO
310
020
020
020
020
020
050
180
C02
11. 3b
S.S3
S.S3
10.25
10. OS
10. fab
11. f8
12. OS
13.b3
12. SS
11.98
7.00
11. 2f
12.22
13. f8
13.33
11. bO
10.25
S.S3
S.lf
8.75
8.8f
f .bf
NO
3S
70
IDS
2bO
fSO
1100
1387
Ibl2
12b2
bSO
S3
8
520
S13
838
bfO
1787
b30
fbO
215
IfO
52
7
GRAM/BHP-HR
CO
R
10. b
3.0
l.b
l.f
1.0
2.3
2.1
S.3
103.2
R
R
188.5
137.2
bO.f
13. b
1.0
l.b
2.1
f . 3
15.0
R
R





N02
R
b.l
2.7
3.f
5.1
S.2
10. f
11.1
7.7
3.8
R
R
2.S
5.2
5.2
f.b
If. 2
8.2
7.S
7.7
17.3
R
R



































-------
8-25-72 RUN-1
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.1-3   1S72 VER A O-CAT W/AIR b BTDC
DYNA.
MODE
1
2
3
f
S
h
7
8
9
10
11
12
13
If
15
lb
17
18
11
20
21
22
23
SPEED LOAD
bQO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
5.
18.
fl.
58.
115.
173.
189.
212.
230.
0.
0.
2*2.
223.
1S8.
188.
181.
bl.
ff.
IS.
5.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
f
S
13
2b
fO
f3
48
53
0
0
lOb
S8
8?
80
S3
27
I*
B
2
0
0
HAN. FUEL A/F

VAc. LB/HR RATIO ALDE.
17. S 3.9 18.8
IS. 9 7.b 21.1
IS. 2 8.2 20.8
17.8 S.f 20.5
Ib.O 10. S 20.7
10.2 15.3 20.0
2.1 2f.2 18.2
1.8 25.8 17.2
1.7 27.5 Ib.O
.3 33. f 13.8
17. b f.O 18.3
22.0 f.3 30. b
1.3 bb.f 18, b
1.7 59.1 13. f
2.3 Sf.5 If. 3
2.f 51.7 15.1
10.1 32.7 17.7
If.b 2f.O 19.7
15.9 21.3 20.3
17.5 18.1 21.2
18.8 15. f 22. fa
17.5 f.O 18.7
23.8 f.f ff.O
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
9
10
11
12
13
If
15
Ib
17
18
19
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
HC
b.3
3.1
b.O
s.o
11.2
22.1
23. b
21.7
21.1
SS.7
b.O
ISf.S
f03.7
20*. S
SS.f
7.2
11.3
8.1
b.5
f.3
33. fa
f.7
fOS.S
























COMPOSITE












CO
15
3f
35
fO
f7
b3
129
129
178
bOfS
15
25
lSS8b
11887
5811
IfaSO
f9
fo
38
3f
31
b
118
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.3 .070 0.0
b.7 .OfaO .1
If. 8 .ObO .2
fO.2 .050 .5
b3.3 .030 .f
1S2.1 .ObO l.b
352. b 0.000 0.0
f32.f .OfO 1.7
f01.7 0.000 0.0
185.5 0.000 0.0
2.5 .070 0.0
,7 .120 0.0
321.3 .025 2. fa
5f8.0 .055 5.f
f57.7 .035 3.0
Sfl.S .ObO f.8
753.8 .ObO 3.2
238.3 0.000 0.0
IfS.l .ObS 1.3
b5.3 0.000 0.0
37.1 0.000 0.0
2.7 .080 0.0
.f .ObO 0.0
3.128 GRAM/BHP HR
59.8S9 GRAM/BHP HR
b.b27 GRAM/BHP HR
0.000 GRAM/BHP HR
.752 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
f21
S3
170
225
2f2
353
258
238
2fO
103b
fll
7929
2315
1255
371
f5
93
81
b9
51
f33
305
I25ffa
CONCENTRATION










3


5
3
1








CO
.050
.050
.050
.050
.050
.050
.070
.070
.100
.2fO
.050
.050
.SbO
.falO
.800
.520
.020
.020
.020
.020
.020
.020
.180
C02
11.72
10.25
10.55
lO.bfa
10.55
11.01
11. S2
12.71
If. OS
13. Ob
12. f?
7. OS
11. f8
12.71
13. b3
If .05
12.22
10.89
10.25
9.78
8.93
11. bO
f .7f
NO
f?
bO
127
305
fio
S2S
Ilb2
If25
1375
bQS
51
8
555
1012
8b3
bfO
1875
720
fbS
235
Iff
52
f
SPECIFIC GRAM/BHP-HR


2.
1.
•
*
*
•
*
•
1.


3.
2.
•
•
•
•
•
•
15.







HC
R
73
f5
9fa
85
8f
bO
50
ff
82
R
R
81
OS
fa8
OS
21
30
3f
51
3b
R
R





CO
R
2S.b
8.b
f.3
3.5
2.f
3.3
3.0
3.7
115.0
R
R
18f.8
121.7
b?.Q
21.2
.s
1.5
2.0
*.l
If. 3
R
R





N02
R
5.8
3.b
f.3
f.8
7.3
8.9
10.0
8.3
3.5
R
R
3.0
S.b
5.3
f.3
If. 2
8.9
7.5
7.S
Ib.S
R
R



































-------
8-25-72 RUN-3
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.1-3   1972 VER A O-CAT W/AIR MODI  TDC
DYNA.
MODE
1
e
3
4
5
b
7
8
9
10
11
12
13
14
IS
Ifa
17
18
19
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
4
Ib
37
52
103
155
ifa9
ISO
2bO
0
0
222
204
182
Ib7
111
Sb
40
18
4
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
8
12
24
35
39
43
59
0
0
17
89
80
73
49
25
18
8
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
Ifa. 7 3.8 19.1
20.0 7.b 22. b
19.1 8.5 22.1
17.5 9. fa 21. b
15.9 10.7 21.4
10.4 IS. fa 20.3
1.8 23.5 18.5
1.7 25.0 17.7
l.b 27.4 Ifa. 2
.3 32.8 13.5
Ifa, 8 3.9 18.3
22.0 4.2 27.2
1.3 fa5.7 13. b
2.1 58.3 14.7
2.3 54.2 15.9
2.4 51.5 Ifa. 5
10.5 32.0 19.2
14.9 £3.5 20.8
15.7 21. fa 20.8
17.2 18. fa 21.1
18.3 lb.5 21.5
lb.7 3.8 17. fa
23.7 4. fa 33.9
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
8
S
10
11
12
13
If
IS
Ib
17
18
11
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
s.
5.
5.
b.
8.
15.
1*.
12.
10.
b4.
5.
105.
81.
S.
10.
9.
If.
9.
7.
5.
?.
5.
13.
2
0
5
4
4
9
0
8
b
5
2
3
S
8
1
b
5
0
3
0
3
0
1
COMPOSITE












CO
15
37
40
44
49
fa?
91
93
133
5370
21
24
11771
2372
189
185
54
45
42
38
35
15
131
HC
CO
N02
ALDE
8SFC
N02 FAC. HP
2.8 .070 0.0
b.b .ObO .1
17.8 .ObO .2
37. fa .050 .4
5fa.4 .030 .4
Ifa9.fa .ObO 1.4
289.2 0.000 0.0
371.8 .040 1.5
SfaS.b 0.000 0.0
152.4 0.000 0.0
3.2 .070 0.0
1.3 .120 0.0
237.2 .025 2.4
481.2 .055 4.9
404.5 .035 2.8
334.2 .OfaO 4.4
fa24.1 .ObO 2.9
195.8 0.000 0.0
138.5 .ObS 1.1
73.5 0.000 0.0
45.7 0.000 0.0
2.8 .080 0.0
.fa .ObO 0.0
.978 GRAM/BHP HR
21.208 GRAM/BHP HR
b.374 GRAM/BHP HR
0.000 GRAM/BHP HR
.818 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
349
13b
137
147
173
242
155
139
113
fa?5 2
349
4342
43b 3
53
54
53
108
82
70
S3
85
331
303
CO
.050
.050
.050
.050
.050
.050
.050
.050
.070
.780
.070
.050
.100
,b40
.050
.050
.020
.020
.020
.020
.020
.050
.150























COS
11. »8
9.37
9.b4
9.93
9.93
10. fab
11.72
12.22
13.18
12.71
11.72
7.37
12.71
13.77
13. Ob
12.71
10.78
9.fa4
9.37
8.93
S.faB
11.24
4.fa4
NO
57
54
135
2bO
350
775
9b3
1213
1175
480
faS
Ifa
380
790
bSO
550
IfOO
S35
400
235
IbO
Sb
4
SPECIFIC GRAM/BHP-HR
HC
R
5.43
1.49
.?b
.71
.b8
.fO
.33
.24
1.09
R
R
.84
.11
.13
.13
.30
.37
.fl
.b3
4.19
R
R







40
11
5
4
2
2
2
3
90


121
2fa
2
2
1
1
2
4
19







CO
R
.f
.0
.2
.1
.8
.fa
.f
.1
.4
R
R
.1
.5
.f
.5
.1
.8
.f
.8
.8
R
R





N02
R
7.2
f .9
f.*
4.7
7.2
8.2
9. fa
8.4
2.b
R
R
2.4
5.4
5.1
f.fa
12.8
8.0
7.9
9.3
2b.l
R
R



































-------
8-25-72 RUN-2
PROJECT 11-2877-01  CONTROL TECHNOLOGY
ENG.1-3   1978 VER A O-GAff W/AIR MODI fa BTDC
DYNA.
MODE
1
2
3
*
5
b
7
8
S
10
11
12
13
1*
IS
lb
17
18
19
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOQ
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
*.
18.
*0.
5b.
111.
Ifa7.
182.
20*.
222.
0.
0.
23fa.
217.
I1"*.
177.
118.
59.
*2.
19.
5.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
*
9
13
25
38
*2
*?
51
0
0
103
IS
85
78
52
2b
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.7 *.l IS. 2
20.0 7.2 22.0
11.* 8.1 22.0
18.2 9.2 21.5
It. 2 10.8 8i.«f
10.8 15.7 20.*
2.7 23. b 18. b
1." 2*. 5 18.2
1.7 2b.7 Ib.S
.3 33.7 13.7
17. fa *,0 18.2
22.8 *.* 27.1
1.3 fab. 7 13.5
1.9 fafa.f 13.1
a.* 53.3 15.8
2.5 50.2 lfa.8
10.* 32.0 18.9
It. 8 23.0 20.8
U.O 21.3 21, b
17. b 18.3 22.8
18.5 lb.0 23.8
17.5 *.0 18.9
23.8 *.5 *5.2
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
*
5
f,
7
R
1
10
11
12
13
If
15
lb
17
18
IS
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
b.8
3.7
5.9
8.2
10. fa
20.1
20.1
21.1
19. fa
78.8
s.o
13t».8
90.5
11*. 9
b.b
7.3
15. fa
1.3
7.7
5.3
17.3
5.2
*3.fa
























COMPOSITE












CO
lb
13
15
17
20
27
92
9*
130
S57b
15
2fa
12102
15*0*
252
7*
53
*2
*2
37
3*
7
Ifa9
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.7 .070 0.0
7.1 .OfaO .1
17. S .OfaO .2
*3.8 .050 .5
fa9.0 .030 .*
228.9 .ObO 1.5
339.1 0.000 0.0
395.9 .0*0 1.7
*58.b 0.000 0.0
191. fa 0.000 0.0
2.7 .070 0.0
1.9 .120 0.0
2b8.* .025 2.b
212.0 .055 5.2
*59.0 .035 3.0
378.2 .ObO *.7
7b0.7 .OfaO 3.1
238.2 0.000 0.0
Ifa2.1 .Ob5 1.2
75.* 0.000 0.0
**.b 0.000 0.0
2.9 .080 0.0
.b .ObO 0.0
l.*27 GRAM/BHP HR
*9.fa03 GRAM/BHP HR
b.215 GRAM/BHP HR
0.000 GRAM/BHP HR
.782 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
BRAKE
ALDE.
I
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0,0
0.0
I
I
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
*20
112
15b
200
219
302
222
228
213
820
338
5392
*7b
b21
37
*0
120
88
75
57
205
320
93b
CONCENTRATION










2


3
*









CO
.050
,020
.020
.020
.020
.020
.050
.050
.070
,870
.050
.050
.150
.120
.070
.020
.020
.020
.020
.020
.020
.020
.180
COS
11. 3b
9.78
9.b*
10.09
10,09
10. bb
11.72
11.92
13. Ob
12.9*
11.92
7.28
12.71
12.09
13. *8
12. *7
11.13
9.93
9.37
8.93
8.5*
11.01
*.ll
NO
50
fa*
1*2
320
*30
1037
1125
1287
1500
bOO
5*
23
*2S
3*5
775
fa25
17fa2
b85
*75
2*5
159
S3
f
SPECIFIC GRAM/BHP-HR


*.
1.
•
•
*
*
*
•
1.


•
1.
•
•
.
*
«
•
7.







HC
R
09
**
90
83
79
S3
51
*2
55
R
R
88
21
08
09
30
3b
*2
b*
92
R
R





CO
R
1*.7
3.7
1.8
1.5
1.1
2.*
2.3
2.8
109.9
R
R
117.1
Ib2.1
3.0
.9
1.0
l.fa
2.3
*,5
IS.b
R
R





N02
R
7.7
*.*
*,8
5.*
9.0
8.9
9.5
9.8
3.8
R
R
2,b
2.2
5.*
*.9
1*.7
9.2
8.8
9.1
20.*
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-28-75 RUN-1 ENG.1-3 72 VERSION  15 BTDC  faOO RPM A W/AIR MOOO-CAT

MODE
1
2
3
t
5
b
7
8
q
10
11
12
13
1*
15
Ib
17
18
19
20
21
22
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
20.0
ff .0
B2.0
123.0
185.0
202.0
22b.O
2fb.O
0.0
0.0
25b.Q
23b.O
210.0
192.0
12U.O
bf .0
fb.O
20.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
5
10
If
28
f2
fb
52
5b
0
0
112
103
92
8f
5b
28
20
9
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALOE.
20.2
20.9
19.9
18. b
lb.5
10. f
f.o
2.0
l.b
.3
19.3
23.0
1.3
2.1
2.3
2.5
10.3
If. 9
lb.3
18.0
19.1
19.0
2f.f
CALCULATED GRAM/HR
MODE
i
2
3
»f
5
b
7
8
q
10
11
12
13
If
15
Ib
17
18
19
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
n.o
0.0
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
5.0
3.9
fa. 9
12.1
If .9
2b.b
2S.7
3b.7
f3.0
IbS.O
S.b
118.0
108.1
33. fa
?.f
7.3
30. b
15.7
11.1
51.7
83. b
S.b
lb3.Q
COMPOSITE








CO
Ib
13
15
17
19
b8
90
97
13b
b728
If
10
12389
5222
18f
7f
5f
f2
39
35
31
b
123
HC
CO
N02
ALDE
BSFC
N02
1.7
b.fa
18. f
83. f
If7.f
flS.fa
SfaS.l
fa?3.9
718.9
258.1
1.8
.7
37b.l
777.2
772.8
72fa.S
1280.2
f22.7
23b,7
llf .3
59.1
2.2
2.8
I.f37
2f ,2fl
10.587
0.000
.b95
f.o
7.1
8.S
9.7
10.9
lfa.1
22. b
2f.S
2b.7
3f.l
3.8
3.8
bb.3
59.9
52.3
f8.7
32. f
23.2
20. b
17.1
If. 8
3.7
f.o
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
19.1
22.7
21.5
21.1
21.3
20.5
19. f
19.0
17.1
13.7
17. f
30.7
13.7
if. 5
Ib.b
17.7
19.1
21.0
22.1
23.3
2f.5
18.0
51. b
WT.
HP
0.0
.1
.3
.5
.f
1.7
0.0
1.8
0.0
0.0
0.0
0.0
2.8
5.7
3.2
5.0
3.f
0.0
1.3
0.0
0.0
0.0
0.0
0
0
0
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
I
I
HC
325
118
18f
291
310
39fa
332
382
ffb
1750 3
f!7
f?70
587 3
188 1
fO
fO
229
151
llf
bOl
1079
39f
3f85
CO
.050
.020
.020
.020
.020
.050
.050
.050
.070
,f70
.050
.020
.330
.f50
.050
.020
.020
.020
.020
.020
.020
.020
.130
C02
11.72
9.faf
10.25
10.55
10.25
10.78
11. 3b
11. f8
12. f?
12. f?
12.71
b.f?
12. 9f
13.77
12. 9f
12.09
11.01
10.09
9.faf
8.93
8.5f
11. Bf
3.10
NO
3f
bO
If8
bOS
925
I8b3
1900
2113
2250
810
fl
9
blS
1313
1275
1200
2900
1225
738
fOO
230
f8
18
SPECIFIC 6RAM/BHP-HR
HC
R
3.f3
1.51
1.20
1.05
.95
.70
.79
.83
2.99
R
R
.9b
.32
.08
.09
.5f
.5b
.55
5.91
38.17
R
R
CO
R
11.8
3.3
1.7
l.f
2.f
2.1
2.1
2.b
119.7
R
R
110.5
50.5
2.0
.9
1.0
1.5
1.9
f.o
If. 3
R
R
N02
R
5.8
f.O
8.3
10. f
If .8
13. f
If.b
13.9
f.b
R
R
3.f
7.5
8.f
S.b
22.8
15.1
11.8
13.1
27.0
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                 ENGINE 1-3




EFFECT OF OXIDATION CATALYST ON EMISSIONS




             GRAPHED RESULTS




             (AFTER CATALYST)

-------
  200>_
o
o 150
X
o
ffi
CO
s
nJ
M
O
   100
A
                  LEGEND
                         1200 rpm
                         2300 rpm
         O TDC,  8-25-72 Run 3
         Q 6°BTDC,  8-25-72 Run 2
         A 15°BTDC, 8-28-72 Run 1
                                                    A
                                                    /
                                                    /
            10    20   30   40    50    60   70    80    90
                    Power,  Percent Maximum at Given Rpm
                                                                 A- 2300
                                                             1200

                                                          A- 1200
                                                          Q- 1200

                                                          Q. 2300
                                                          0- 2300
                                                    100   CT
       FIGURE U-l.  EFFECT OF POWER ON HC EMISSION RATE
              AFTER CATALYST, MODIFIED AIR INJECTION
                     ENGINE 1-3, 23 MODE TEST

-------
  16
  14
  12
  10
o
o
o
I— I
X
3
O
ffi
00
E
Rt
f-i
O
   LEGEND
	1200 rpm
	2300 rprn
OTDC,  8-25-72 Run 3
Q6°BTDC, 8-25-72 Run 2
A15°BTDC, 8-28-72 Run 1

           10    20    30   40    50   60    70    80    90    100
                 Power, Percent Maximum at Given Rpm
                                              CT
        FIGURE U-2.  EFFECT OF POWER ON CO EMISSIONS RATE
               AFTER CATALYST, MODIFIED AIR INJECTION
                      ENGINE 1-3,  23 MODE TEST

-------
16 r-
 . LEGEND
_	1200 rpm
	2300 rpm
OTDC, 8-25-72 Run 3
D6°BTDC, 8-25-72 Run 2
Al5°BTDC, 8-28-72 Run 1
        10   20    30   40    50    60    70   80   90    100
                 Power, Percent Maximum at Given Rpm
                       CT
FIGURE U-3.  EFFECT OF POWER ON NOX (AS NO2) EMISSION RATE
            AFTER CATALYST, MODIFIED AIR INJECTION
                   ENGINE 1-3,  23 MODE TEST

-------
             LEGEND
26'-

24-

22-
 0-
                    1200 rpm
                        rpm
O TDC, 8-25-72 Run 3
D 6°BTDC, 8-25-72 Run 2
A 15°BTDC, 8-28-72 Run 1
        10   20    30   40    50   60    70    80    90
                Power,  Percent Maximum at Given Rpm
£y- 2300
Q-
 t- 1200
                                                   0-- 1200
                                              100    CT
   FIGURE U-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                  ENGINE 1-3, 23 MODE TEST

-------
                LEGEND
o
>—i

x
O

ffi  5
M
D
CX

CO
t3
C
d
O
CO
C!  o
o  3
u
^^
a>
d
tn
                        1200 rpm

                        2300 rpm
               O TDC, 8-25-7^ Run 3    •

               n 6°BTDC, 8-25-72 Run 2

               A 15°BTDC,  8-28-72 Ruii 1
                                                      a—@
                                                                    2300

                                                                    1200
                     _L
      I
           10    20   30   40    50   60    70    80   90

                   Power, Percent Maximum at Given Rpm
100  CT
       FIGURE U-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER

                        ENGINE 1-3, 23 MODE TEST

-------
                   APPENDIX V




                   ENGINE 1-3




EFFECT OF VARIOUS COMBINATIONS ON EMISSIONS




             (23 MODE MASS RESULTS)

-------
                   ENGINE 1-3





EFFECT OF VARIOUS COMBINATIONS ON EMISSIONS




                 TABULAR DATA




               BEFORE CATALYST

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-31-72 RUN-1 ENG.1-3 72 VER. 15 BTOC AIR MODI.O.ObS JETS O-Cat B

MODE
1
2
3
4
5
b
7
8
q
10
11
is
13
14
15
Ib
17
18
11
SO
21
a?
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
faOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
hOO
2300
0.0
5.0
18.0
41.0
58.0
115.0
173.0
189.0
212.0
230.0
0.0
0.0
2*8.0
228.0
203.0
I8b.0
124.0
b2.0
45.0
20.0
5.0
0.0
0.0
»
HP
0
1
4
1
13
2b
40
43
48
53
0
0
101
100
81
81
54
27
20
1
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
11.7 3.1 18.4
20.1 7.0 22.5
11,1 8.1 21.1
18.7 1.2 21.4
17. fa 10.4 20. 0
13.1 15.8 17.8
8.4 22. b Ib.S
7.3 23.8 Ifa. 7
4.7 27.2 15.8
.5 41.4 11.5
11. fa 4.0 17.2
23.0 4.0 31.1
1.8 7b.7 11.8
3.3 bO.S 13.7
5.2 55. 2 13.8
b.S 50.8 14.0
11.3 38.7 15.3
Ifa. 2 2b.2 lb.1
17.7 21.8 17.1
11.4 17.0 11.2
20.5 13.1 22. b
11.8 3.1 11.7
24.1 4.2 245.1
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
Ifa
17
18
11
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
3b.3
12.0
23.3
44. q
bO.3
121.5
110.1
11.1
138.8
b32.0
34. fa
851.2
575.4
188.2
114. fa
8fa.7
21.2
b.S
10.1
fa. 3
2b,5
21.1
17fa.l
COMPOSITE








CO
540
252
372
275
732
1831
3fa74
3135
4025
22354
757
18
3b317
15170
12487
1832
2112
IfaO
757
285
231
411
43fa
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.3 .070 0.0
5.3 .OfaO .1
11. b .ObO .2
58.2 .050 .5
11.1 .030 .4
2fa7.5 .ObO l.fa
28b.l 0.000 0.0
213.3 .040 1.7
221.8 0.000 0,0
25.0 0.000 0.0
.3 .070 0.0
.5 .120 0.0
70.8 .025 2.7
4b5.2 .055 5.5
342.1 .035 3.1
330.8 .ObO 4.1
225.1 .OfaO 3.3
17fa.l 0.000 0.0
127.1 ,0b5 1.3
fa4.8 0.000 0.0
33.0 0.000 0.0
1.1 .080 0.0
3.1 .OfaO 0.0
8.b84 GRAM/BHP HR
140.821 GRAM/BHP HR
4.517 GRAM/BHP HR
0.000 GRAM/BHP HR
.751 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
2418
377
857
1153
1482
2225
2512
254
Ib44
falfaS
2488
31754
3034
1128
754
faOl
17fa
71
127
13
403
1828
4518
CONCENTRATION
CO
1.
•
•
•
*
1.
2.
2.
2.
10.
2.
•
1.
4.
4.
3.
1.
•
*
*
•
1.
•
SPECIFIC


10.
5.
4.
4.
4.
4.
»
2.
12.


5.
1.
1.
1.
*
*
*
•
12.







HC
R
54
bfa
71
55
b3
81
4fa
8b
03
R
R
30
88
21
Ob
31
24
51
71
01
R
R





840
310
520
350
810
bbO
480
480
3bO
800
bio
180
500
740
070
420
230
520
470
210
180
550
100























coa
10.01
1.50
1.78
10.25
10.55
11.24
11.24
11.24
12.01
b. ''I
10.01
3.35
8.54
11. bO
12.34
12.71
13.33
12.47
11.12
11.24
1.3?
1.3?
.33
NO
2b
50
11
450
faBO
1475
1175
1125
820
73
b
5
113
840
b80
700
5b5
580
480
210
151
35
4
GRAM/BHP-HR


220
10
21
55
fal
12
11
83
425


335
151
140
120
55
35
38
32
101







CO
R
,b
.5
.4
.2
.7
.1
.1
.1
.4
R
R
.1
.1
.5
.?
.1
.4
.4
.b
.2
R
R





N02
R
4. fa
2.8
b.2
b.1
10.2
7.2
b.S
4.7
.5
R
R
.7
4.7
3.1
4.1
4.2
b.S
b.4
7.4
15.1
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-31-78 RUN-2 ENG.1-3 72 VER. B b BTDC 0.0b3 JETS MODI.AIR O-Cat

MODE
1
2
3
f
5
b
7
a
s
10
11
12
13
If
IS
Ib
17
18
IS
20
21
22
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
o.o
f.o
17.0
38.0
53.0
105.0
158.0
172.0
1S3.D
210.0
0.0
0.0
23b.O
217.0
ISf .0
1?7.0
118.0
ss.o
f2.D
1S.O
5.0
0.0
0.0
1
HP
0
1
f
S
12
2f
3b
3S
ft
f8
0
0
103
SS
85
78
52
?b
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.5 f.O 17.3
20.2 7.2 22. b
1S.O 8.f 21.7
18.0 S.S 21.1
17.7 10.2 IS. 7
13.8 15.2 17.5
S.S 21.5 13. S
8.0 23.0 lb.0
f.S 27. f 15.1
.5 fO.8 11,2
18. B f.l !•».!
22.2 f.l 30. b
1.8 7b.O 11. fa
2.0 80.0 11.1
f.S 57.2 13.5
fa. 5 51. S 13.7
11.8 37. fa 1S.1
lfa.1 2b.2 Ib.S
17.5 22. S 17. S
1S.1 18.2 18. S
20.2 IS.f 20.7
18.5 f.O 18.5
23. S f.S 2S.1
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
S
10
11
12
13
If
15
Ifa
17
18
IS
20
21
22
23
CYLLE




ALDE
0.0
0.0
Q.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
38.2
S.I
2*. 7
3b.2
38.3
103.0
ISbfa.l
1SS.S
f5.7
Sfb.8
31.8
738. S
f33. 3
2f5.7
110.1
SO. 2
15. S
b.8
8.0
fa. 2
f.2
2S.8
1855.1
COMPOSITE








CO
780
70
1*2
112
553
1815
3023
38fb
28S2
21351
7fO
Iff
357Sf
f2827
137H-1
11101
2fOO
7RO
f 81
105
71
Slf
15
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
l.b .070 0.0
b.b .ObO .1
23.0 .ObO .2
51.5 .050 .f
fS.7 .030 .f
lb?.0 .ObO l.f
210.5 0.000 0.0
233.7 .OfO l.b
lbb.2 0.000 0.0
2fa.3 O.OOD 0.0
2.2 .070 0.0
1.2 .120 0.0
fal.S .025 2.b
f2.0 .055 5.2
288. S .035 3.0
251.5 .ObO f.7
170.8 .ObO 3.1
122.1 0.000 0.0
87.5 .OfaS 1.2
55.0 0.000 0.0
32.5 0.000 0.0
2.2 .080 0.0
.b .ObO 0.0
10.S08 GRAM/BHP HR
211. 3f8 GRAM/BHP HR
2.S72 GRAM/BHP HR
0.000 GRAM/BHP HR
.853 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 .
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
Sfalf
2bl
bS2
853
BSfa
1822
2fbS7
201fa
520
52ffa
2015
25SOS
2323
1252
faSO
faO?
130
73
Sf
8f
bO
1780
f8bl2
CONCENTRATION

2.
9
*
*
•
1.
2.
2.
1.
10.
2.
*
S.
10,
f.
3.
*
•
»
•
*
1.
•
SPECIFIC


S.
b.
f.
3.
f.
f3.
f.
1.
11.


f.
2.
1.
1.
•
•
•
•
1.







HC
H
Sf
3b
17
Ib
2S
38
07
Of
fO
R
R
IS
5S
30
Ib
31
2b
ff
75
S2
R
R





CO
bfO
100
180
130
bfO
SSO
3bO
fOO
b30
IfO
320
250
500
800
2bO
700
S70
f20
280
070
050
520
020

S
S
S
S
10
10
10
10
12
7
S
3
8
7
11
12
12
12
11
11
S
S

C02
.50
.25
.50
.S3
.OS
.f3
.55
.55
.f?
.OS
.25
,b8
.75
.5b
.S2
.OS
.Sf
.3f
.72
.01
.S3
.If
.23
NO
33
57
177
3bS
350
8SQ
1000
888
570
7fa
fl
13
100
faf
5f5
510
f20
3S5
310
222
IfO
3S
S
GRAM/BHP-HR
CO
K
77.0
Sb.b
12.8
fS.7
7S.fa
83.7
S7.S
bS.b
ffS.O
R
R
Sfb.S
fS0.7
lfal.7
If3.2
fb.f
30. b
2b.l
12.7
32.3
R
R


































N02
R
7.2
S.S
s.s
f.l
7.0
5.8
S.S
3.8
.5
R
R
.b
.f
3.f
3.2
3.3
f.7
f.8
b.b
If. 8
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-28-72 KUN-2 ENG.1-3 72 VERS STO.TIME + JETS 8 W/AIR TAILORED EGR O-Cat

MODE
1
2
3
1
5
b
7
8
1
in
11
12
13
11
15
Ib
17
18
11
20
21
22
23

MODE
1
2
3
1
5
b
7
8
q
10
11
12
13
11
IS
Ifa
17
18
11
20
21
22
23
CYCLE





DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300

ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
n.o
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
o.n
0.0
n.o
0.0
1.0
18.0
10.0
Sb.O
lSb.0
Ifa7.0
182.0
201.0
222.0
0.0
0.0
220.0
202.0
180.0
lt>5.0
110.0
55.0
10.0
18.0
1.0
0.0
0.0
CALCULAT
HC
31.8
15.1
22.3
35.8
15.5
Ib.b
31.1
13.3
182.8
182.5
21. fa
830.5
IfaB.O
182.1
138.1
17.1
311.5
15.3
2?.0
25.3
112.1
33.5
1881. b
COMPOSITE









HP
0
1
1
1
13
3b
38
12
17
51
0
0
Ib
88
71
72
18
21
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
18.1 1.1 18.3
11. b 7.b 22.8
11.1 8.1 22.1
17.1 1.5 21.1
15.0 11.3 21.1
1.1 21.2 17.7
1.8 25.1 Ifa. 7
1.7 2b.1 15.5
.5 33.3 13.2
.5 31.1 12.3
18.5 1.2 18.0
22.3 1.3 32.1
1.7 b2.1 13. fa
1.7 faO.S 13.2
2.1 Sfa.8 13.3
2. fa 52.0 11.2
3.0 13.1 17.0
13.3 21.2 11.8
15.0 21.1 11.5
Ib.b 18.7 11.1
17.8 Ifa. 2 11.1
18.0 1.0 Ifa. fa
21.0 1.1 22.8
ED GRAM/HR WT. WT.
CO
183
111
lib
115
105
510
711
Ifa17
10701
llSSb
b5b
130
11201
1517b
HOIb
b130
8fa8
217
151
138
170
1b5
11
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.5 .070 0.0
7.2 .OfaO .1
13.8 .OfaO .2
21.0 .050 .5
10.7 .030 .1
lfal.2 .OfaO 2.1
181.7 0.000 0.0
135.3 .010 1.7
fal.1 0.000 0.0
112. fa 0.000 0.0
2.1 .070 0.0
.8 .120 0.0
Ibl. 3 .025 2.1
11.8 .055 1.1
11.1 .035 2.8
130.1 .OfaO 1.3
188.2 .ObO 2.1
113.7 0.000 0.0
15. b .ObS 1.1
58.3 0.000 0.0
21. U 0.000 0.0
2.5 .080 0.0
.1 .OfaO 0.0
11.733 GRAM/BHP HR
105.315 GRAM/BHP HR
2.503 GRAM/BHP HR
0.000 GRAM/BHP HR
.855 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
U
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
2215
113
582
818
872
517
113
111
111?
Ifall
1831
27131
131
1011
815
282
1187
371
211
251
1338
1151
Ifalll
CONCENTRATION

1.
*
*
•
*
m
*
•
5.
b.
2.
•
3.
1.
1.
2.
•
•
•
•
•
1.
*
SPECIFIC


Ib.
5.
3.
3.
1.
1.
1.
3.
3.


1.
2.
1.
•
7.
1.
1.
3.
fal.







HC
R
50
13
11
55
31
02
01
12
bO
R
R
71
07
75
bfa
01
88
51
21
13
R
R





CO
520
150
150
130
100
280
120
130
SfaO
710
020
210
130
500
120
020
250
100
070
070
100
310
050
























C02
10.01
1.25
1.37
l.bl
l.bl
11.81
12.51
12.11
10.01
7.fa5
l.fal
3.15
11.72
11.01
11.01
11.81
11.01
8.81
8.81
B.bO
8.18
1.03
.23
NO
IB
51
101
200
235
SbS
b20
IbS
205
100
31
8
285
Ib3
l?fa
231
330
280
2b5
180
101
11
7
GRAM/BHP-HR


121
28
12
8
11
11
31
221
287


117
180
178
15
18
10
8
17
17







CO
R
.1
.3
.fa
.2
.3
.fa
.fa
.7
.0
R
R
.1
.b
.8
.1
.0
.3
.8
.5
.2
R
R





N02
R
7.1
3.1
3.2
3.2
1.7
1.8
3.3
1.1
2.8
R
R
1.8
1.1
1.3
1.8
3.1
1.7
5.5
7.1
Ib.b
R
R



































-------
                   PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-30-72 RUN-! EN&.1-3 72 VER. TDC STD JETS AIR MODI. E6R TAILORED B O-Cat

MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
11
15
Ib
1?
18
19
20
21
22
23

SPEED
bOO
1200
1200
1200
1?00
1200
1200
1200
1200
1200
bOf
120d
2300
2300
23PO
2300
230G
2300
2300
2300
2300
bDO
2300
OYNA,
LOAD
0.0
4.0
lb.0
3b.o
51.0
101.0
152.0
Ibb.O
I8b.0
202.0
0.0
0.0
205.0
189.0
IbS.O
15*. 0
103.0
51. n
37.0
lb.0
4.0
0.0
0.0
I
HP
0
1
4
8
12
23
35
38
42
4b
0
0
10
83
74
b7
45
22
Ib
7
2
0
0
PiAN.
VAC.
17.4
11.5
19.0
17.0
15.7
8.b
2.0
.b
2.0
.5
17.4
21.7
1.8
1.7
1.7
1.7
2.9
i.s
11.8
If .8
17.5
17.2
23. b
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
ft
q
10
11
12
13
It
15
Ib
1?
18
19
20
21
22
23
ALDfc.
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
o.o
O.D
0.0
c.o
0.0
0.0
HC
24.4
12. 2
lb.7
28. B
34.4
72.8
14.2
137.8
lt.1
117. fa
24.3
803. S
lfal.0
171.7
180.3
205.1
in4.i
198.7
10t. 3
b4.S
38.0
51.3
20b3.2
CO
399
114
11?
Ill
103
14fa
371
99fa8
573
9bl9
39fa
124
17309
17185
17375
18271
9b5
370
2bO
219
124
227
41
FUEL
LB/HR
4.4
7.9
8.4
9.b
11.3
lb.4
24.7
33.4
2b.3
3*. 7
4.3
4. fa
b3.b
b2.7
bO.O
bO.O
44.9
28. b
25.3
21.3
lb.9
4.1
4.8
WT.
N02 FAC.
3.
7.
11.
32.
39.
79.
133.
31.
3b8.
85.
2.
1.
117.
lot.
54.
47.
107.
58.
45.
3b.
37.
3.
•
1 .070
7 .ObO
b .ObO
3 .050
2 .030
2 .ObO
5 0.000
9 .040
4 0.000
8 O.OQQ
9 .070
7 .120
b .025
3 .055
5 .035
3 .ObO
b .ObO
5 0.000
9 .Ob5
0 0.000
2 0.000
9 .080
S .ObO
A/F
RATIO
19.0
22.4
22.0
21.3
ei.s
21.0
lb.9
12.9
lb.3
13.1
18.5
28.2
13.1
13.0
12.9
12.9
lb.8
21. fa
22.9
22.7
23.3
20.1
39.9
INT.
HP
0.0
.1
.2
.4
.3
1.4
0.0
1.5
0.0
0.0
0.0
0.0
2.2
4.b
2.b
4.0
2.7
0.0
1.1
0.0
0.0
0.0
0.0
DRY CONCENTRATION
AIDE.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALOE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
1343 1
32b
431
b?3
fa78
1007
ifae
1522 5
154
1205 4
1437 1
27579
954 4
957 4
1055 5
1152 5
blO
140«>
811
595
432
1158
50b31
CO
.090
.150
.150
.130
.100
.100
.210
.450
.310
.880
.IfaO
.210
.840
.740
.030
.080
.280
.130
.100
.100
.070
.blO
.050
COS
9.78
1.37
1.fa4
10.01
1.13
10.01
18.51
11.13
12.71
11.13
10.25
4.11
11. 3b
11.01
10.78
10.01
ll.faO
8.93
8.75
8.75
B.bO
9.37
.23
NO
51
bl
10
230
232
330
4bO
lOb
1212
2bb
52
18
200
175
9b
80
110
125
10?
100
127
b4
4
SPECIFIC GRAM/BHP-HR
HC
R
13.40
4.57
3.4b
2.95
3.15
.41
3.fa3
.33
2.55
R
R
1.88
2.07
2.45
3.04
2.31
8.89
b.43
1.21
21.70
R
R
CO
R
124.4
32.1
13.5
8.8
b.3
10.7
2b2.8
13.5
208.4
R
R
192.8
207. fa
23b.2
270.9
21.4
Ib.b
lb.0
31.3
71.0
R
R
N02
R
8.4
3.2
3.9
3.4
3.4
3.8
.8
8.7
1.1
R
R
1.3
1.3
.7
.7
2.4
a.b
2.8
5.1
ei.3
R
R
























 CYCLE  COMPOSIiF.
HC    13.48fa
CO   174.200
N02    l.bOl
ALDE   0.000
BSFC    .993
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
  LB/BHP HR

-------
                   PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-29-72 RUN-1 ENG.1-3 72 VER. STD TIM.+JETS MODI.AIRfEGR TAILORED B O-Cat
uYNA.
MODE
1
2
3
4
5
b
7
8
9
10
11
12
13
14
IS
Ib
1?
18
IS
20
21
22
23
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
5
18
41
58
115
173
189
212
230
0
0
222
204
182
lb?
Ill
5b
40
18
4
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
9
13
2b
40
43
48
S3
0
0
9?
89
80
73
49
25
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.8 4.0 17.5
19. b 7.4 22.3
18.9 8.3 21.9
17.5 9.4 21.4
lfa.1 10. b 21.5
S.S 15.8 20.8
2. fa 23. fa IS. 2
2.0 25.5 17.1
1.0 2S. 3 13.0
.5 34.8 13.1
18.4 4.1 18.1
22.5 4.3 30.4
1.7 fal.8 13.4
1.7 bO.O 13.1
1.7 5S.O 12.8
2.1 SS.fa 12.3
2.9 42.5 lb.0
11.1 25.2 18.0
13.4 22. b 18.0
15. b 19. b 18.1
18.0 15.4 18. b
17.9 4.0 lfa.5
24.0 4.4 18.4
CALCULATED GRAM/HR f)T. WT.
MODE
1
2
3
H
5
b
7
8
9
10
11
12
13
14
15
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
32.
fa.
23.
3b.
4fa.
SI.
bS.
84.
147.
157.
27.
792.
Ib?.
203.
242.
418.
155.
100.
51.
S4.
frb.
33.
1930.
7
1
8
b
7
4
2
4
7
2
1
t
b
2
9
0
b
b
4
2
5
0
5
COMPOSITE












CO
bOO
105
101
85
9b
138
188
5fa3
9733
10259
55b
109
148bb
lb!97
17892
21888
948
253
Ib2
142
lib
375
18
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.9 .070 0.0
5.8 .ObO .1
14.0 .ObO .2
3fa.4 .050 .5
5fa.7 .030 .4
241.1 .OfaO l.fa
420.3 0.000 0.0
335. fa .040 1.7
43.8 0.000 0.0
121.8 0.000 0.0
2.1 .070 0.0
.8 .120 0.0
154.2 .025 2.4
SI. 7 .055 4.S
bl.3 .035 2.8
51.3 .OfaO 4.4
118.2 .ObO 2.S
53.1 0.000 0.0
52.3 .OfaS 1.1
44.9 0.000 0.0
2b.b 0.000 0.0
2. fa .080 0.0
.fa .ObO 0.0
12.71b GRAM/BHP HR
149.3fa8 GRAM/BHP HR
2.508 GRAM/BHP HR
0.000 GRAM/BHP HR
,8b2 LB/BHP HR
Q
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
2255
177
fa22
8b9
983
1337
702
939
17SO
Ib07
1704
2fa410
938
1140
13bb
22SS
S2S
802
44S
541
808
IBfaS
44311
CONCENTRATION

2.
•
•
•
•
•
•
*
5.
5.
1.
*
4.
4.
4.
5.
*
•
*
•
•
1 .
*
SPECIFIC


5.
5.
3.
3.
3.
1.
1.
3.
2.


1.
2.
3.
5.
3.
4.
2.
b.
37.







HC
R
38
7S
91
52
48
bS
S5
05
SS
R
R
72
27
OS
72
20
10
94
87
Sb
R
R





CO
050
ISO
130
100
100
100
100
310
840
ISO
730
180
120
500
980
SfaO
280
100
070
070
070
050
020
COS
10.25
S.50
S.fa4
S.S3
S.S3
10.25
11. 3b
12.47
10. OS
10.78
S.78
3.fa8
11.48
10. fab
S.S3
8.fa8
11.13
8. S3
8.84
8.75
8.34
S.03
.13
NO
38
50
110
2bO
3bO
IQfaS
13b3
1125
IbO
375
40
8
2bO
155
104
85
213
127
138
135
S8
45
4
GRAM/BHP-HR
CO
R
S2.1
24.4
S.I
7.2
5.3
4.7
13.0
200.9
1S5.2
R
R
152. S
181.3
224.5
2SS.3
IS. 5
10.3
S.2
18.0
fab. 4
R
R





N02
R
5.1
3.4
S.S
4.3
S.2
10. b
7.8
.S
2.3
R
R
l.b
1.0
.8
.7
2.4
2.2
3.0
5.7
15.2
R
R



































-------
                PROJECT 11-2877-01  CONTROL  TECHNOLOGY
P-30-72 (?UN-2 EiNG.1-3 72 VER. B STD JETS  15  BTDC  MODI.AIR  Q-Cat EGR  TAIO.

MODE
1
 0 . 2
2b3.0
30. b
871.2
2Q4.3
253. fa
341.2
41.3
173, f
3b.7
41.3
58.3
421.1
33.3
1700.7
COMPOSITE
CO
bfS
lib
Iff
117
121
Iff
108
1272
811
12788
b38
10f
Ib882
18bbS
203f2
b!2f
1008
301
2f3
172
23?
5fb
f2
HC
N02 FAC. HP
l.b .070 0.0
7.5 .ObO .1
14.1 .ObO .3
b2.4 .050 .5
38.4 .030 .4
213.0 .ObO l.fa
241.8 0.000 0.0
247.8 .040 1,8
779.2 0.000 0.0
127.8 0.000 0.0
1.7 .070 0.0
.5 .120 0.0
218.1 .025 2. fa
121.8 .055 5.2
58.1 .035 3.0
137.0 .ObO 4.7
189.4 .ObO 3.1
125.2 0.000 0.0
82.1 .OfaS 1.2
57.3 0.000 0.0
21.8 0.000 0.0
1.1 .080 0.0
.4 .OfaO 0.0
11.513 GRAM/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I

DRY
HC
23b4
888
770
105b
1242
1530
1110
1183
10b7
2517
2074
30b47
114fa
14b8
1111
311
121fa
3bO
447
bB4
5507
2097
40b42
CONCENTRATION

1








b
2

4
5
5
1





1

CO
.140
.250
.180
.130
.130
.100
.410
.700
.470
.250
.140
.180
,blO
.350
.100
.110
.350
.150
.130
.100
.150
.700
.050
























C02
8.84
8.b8
9.03
1.50
1.50
9.93
11. 3b
11.84
11. bO
1.03
9.b4
3.08
11.13
10.55
9.50
12.01
11.01
1.78
9.b4
1.25
8.48
1.50
.33
NO
21
58
107
420
540
900
820
830
2500
380
34
5
370
213
102
2bO
400
370
270
202
115
3b
3
SPECIFIC GRAM/BHP-HR


30.
7.
4.
4.
3.
2.
2.
1.
4.


1.
2.
4.
•
3.
1.
2.
7.
lib.



HC
R
01
02
81
4b
18
48
3b
18
80
R
R
18
b?
02
b4
35
42
25
01
34
R
R



171
33
12
1
5
22
28
17
233


Ifa3
Ufa
231
71
11
12
13
SO
108



CO
R
.2
.1
.0
.4
.3
.1
.3
.fa
.2
R
R
.3
.4
.4
.0
.5
.0
.2
.7
.0
R
R

N02
R
b.b
3.3
b.3
fa. 4
7.8
b.l
S.5
15.4
2.3
R
R
2.1
1.3
.?
1.8
3.7
4.8
4.5
b.l
13. b
R
R


























CO llfa.ffaO GRAM/BHP HR









N02
ALDE
BSFC
2.844 GRAM/BHP HR
0.000 GRAM/BHP HR
,7bb LB/BHP HR






















-------
                   PROJECT  11-2877-01  CONTROL TECHNOLOGY
  8-31-72 RUN-3  ENG.1-3 72  VEH. B STD TIM + JETS HOT TAID EGR O-CatNO AIR

MODE
1
2
3
f
5
b
7
8
S
lu
11
12
13
If
15
lb
17
18
11
20
21
22
23

DYNA,
SPEED LOAD
boo
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
u.o
5.0
18.0
fi.o
58.0
115.0
173.0
189.0
212.0
230.0
0.0
0.0
230.0
212.0
18S.O
1?3.0
115.0
58.0
fi.o
18.0
S.O
0.0
0.0
MAN. FUEL
HP
0
1
f
9
13
2b
fO
f3
f8
S3
0
0
101
S3
83
7b
SO
25
18
8
2
0
0
A/F
VAC. LB/HR RATIO
17.8
19.8
19.0
17.2
lb.0
1.7
2.b
1.1
1.1
.5
17.1
22.5
1.7
1.7
l.b
2.1
2.7
10.7
12.1
15.3
17.1
17.8
23.8
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
lb
17
18
IS
20
21
22
23
ALDE
0.0
0.0
n.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
35.0
2b.8
?5.0
fO.O
f2.fa
7b.5
70.9
121.7
13b.f
293.3
37. b
b73.1
f f2.1
f70.f
500.8
fa?1.5
lbl.2
SI. ?
8. fa
15.3
5H.1
35.1
blf.b
CO
f80
175
IfS
SS
108
If?
23b
Ifaff
231f
11S11
7fb
8f
2110S
22281
23713
27ff3
bSOB
277
202
15f
157
501
89
N02
2.3
12. b
13.5
5f .3
71.5
207.2
387.8
321.8
fIS.f
122.4
1.9
.b
Ib7.0
8fa.l
f?.b
fl.8
bb.8
fl.3
30.7
fl.3
2fa.f
2.*
.b
3.8
7.b
8.2
1.7
10. b
15.9
23.3
25. b
27.3
3*. 3
3.9
3.9
b3.f
bl.9
faO.2
bl.t
fb.O
25. b
21. f
20.3
IS. 8
3.9
f.3
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
If .1
lb.5
lb.5
17.1
17. f
18.0
17.2
IS. 5
15.0
12. f
If. 3
20. f
12. f
12.2
11.1
11.3
If. 5
17.1
17.2
17. f
18.0
15.2
19.7
WT.
HP
0.0
.1
.2
.5
.f
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.5
5.1
2.1
f.S
3.0
0.0
1.2
0.0
0.0
0.0
0.0
DRY CUNCENTRATION
ALDE.
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
o.o
0.0
o.o
0.0
o.o
o.o
0.0
I
I
HC
30b1 2.
1083
Ifl .
122f
1191
13bf
911
15b9 1.
I7gt> 1.
3303 b.
3ffO 3.
f0302
2721 fa.
2993 7.
3251 7.
ff21 8.
llbl 2.
1005
112
200
991
2855 2.
35058
SPECIFIC
HC
R
23. ff
b.07
f .27
3.21
2.91
1.79
2.82
2.82
5.58
R
R
f .fO
5.07
b.OS
8.97
3.20
3.bl
,f8
1.9f
27.35
R
R
CO
U8U
350
280
150
150
130
150
050
f50
bfO
380
250
ffO
020
b20
8fO
320
150
130
100
130
020
250
C02
12.71
13. fB
13.77
13.18
13.18
12.59
13.33
13.77
If .05
10.55
12. f7
b.30
11.01
10.55
1.78
8.8f
12.59
12. f?
12. f7
11.92
11.72
12.01
7.37
NO
bl
ISf
155
500
b?0
1112
1500
1250
1900
flS
53
11
310
IbS
93
82
IfS
13b
120
ib3
132
58
10
GRAM/BHP-HR
CO
R
153.1
3b.2
10. b
8.2
5. fa
fa.O
38.1
f7.8
22fa.7
R
R
201. b
2fO.O
28b.5
3b2.2
121.2
10.9
11.3
19. b
71.9
R
R
N02
R
11.1
3.3
5.8
b.O
7.9
9.8
7.5
10.3
2.3
R
R
1.7
.9
.b
.b
1.3
l.b
1.7
5.2
12.0
R
R
























CYCLE COMPOSITE
HC    lO.fOl
CO   205.f2f
N02    2.l7b
ALDE   0.000
BSFC    .852
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
  LB/BHP HR

-------
                   ENGINE 1-3




EFFECT OF VARIOUS COMBINATIONS ON EMISSIONS




                  TABULAR DATA




                AFTER CATALYST

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-31-72 RUN-1 ENG.1-3 72 VER. IS BTDC AIR MODl.O.OfaS JETS O-Cat  A
DYNA.
MODE
1
2
3
4
5
b
7
8
q
10
11
15
13
14
15
lb
17
18
IS
20
21
22
23
SPEED LOAD
bOO
1800
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
5.
18.
41.
58.
115.
173.
isq.
212.
230.
0.
0.
2*8.
228.
203.
I8b.
124.
b2.
45.
20.
5.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HP
0
1
4
q
13
2b
40
43
48
53
0
0
101
100
as
81
54
27
20
q
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
11.7 3.q iq.l
20. ^ 7.0 23.2
11.1 8.1 22.3
18.7 9.2 21.8
17. b 10.4 20. b
13.1 15.8 18.1
8.4 28. b lb.5
7.3 23.8 lb.2
4.7 27.2 15. b
.5 41.4 11.5
19. b 4.0 17.9
23.0 4.0 31.5
1.8 7b.7 12.2
3.3 bQ.5 14.3
S.2 55.2 14.4
fa. 8 50.8 14.5
11.3 38.7 15.1
lb.2 2b.2 Ib.q
17.7 21.8 18.1
11.4 17.0 20.4
20.5 13. 9 23. b
iq.s s.q 20.3
24.1 4.2 41.4
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
R
q
10
11
12
13
14
15
lb
17
18
iq
20
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.n
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
fa.l
3.2
5.8
10.3
If .0
30.5
51.0
52.2
48.4
501.0
5.8
83. q
314.0
75.1
52.8
42.2
"=1.7
3.5
3.3
3.2
14. q
5.0
117.3
























COMPOSITE












CO
15
bb
3b
80
85
14b
511
b72
1221
iqs?q
20
52
31533
qsss
72iq
sqso
1773
184
82
72
bq
lb
22b
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
1.7 .070 0.0
b.3 .ObO .1
12. q .ObO .2
sq.7 .oso .5
q2.S .030 .4
288.4 .ObO l.b
272. q o.ooo o.o
254.3 .040 1.7
17b.2 0.000 0.0
37.1 0.000 0.0
l.b .070 0.0
.5 .120 0.0
103.5 .025 2.7
b04.2 .055 5.5
424.5 .035 3.1
405.0 .OfaO 4.1
240.2 .OfaO 3.3
Ib7.q 0.000 0.0
132.5 .ObS 1.3
72.1 0.000 0.0
35. q o.ooo o.o
2.5 .080 0.0
.4 .ObO 0.0
l.faqq GRAM/BHP HR
83.523 GRAM/BHP HR
5.2fa8 GRAM/BHP HR
0.000 GRAM/BHP HR
,75q LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
411
q?
Ib2
2bl
334
548
707
b90
592
41b2
412
32b7
2022
433
332
283
82
38
40
45
217
314
2fal8
CO
.050
.100
.050
.100
.100
.130
.350
.440
.740
q.soo
.070
.100
8.010
2.730
2.25Q
1.180
.740
.100
.050
.050
.050
.050
.250
























C02
11.12
9. fa*
10.25
10.43
11.13
12.71
13.77
13.77
14.31
8.bO
12.71
b.b4
1.b4
13. Ob
13.48
13.48
14.05
12. q4
12. oq
10.78
1.14
11.01
3.74
NO
34
58
101
455
fabS
15b3
1138
1013
bSO
113
34
b
IbO
1050
8o5
820
blO
555
410
305
158
47
3
SPECIFIC GRAM/BHP-HR
HC
R
2.77
1.40
1.10
I.Ob
l.lb
1.21
1.21
1.00
q.ss
R
R
3.b3
.75
.sq
.52
.18
.13
.17
.37
b.78
R
R





CO

57.
8.
8.
fa.
5.
12.
15.
25.
3b8.


2qo.
15.
81.
73.
32.
b.
4.
8.
31.







R
b
7
5
4
b
1
b
2
8
R
R
3
7
2
1
7
8
2
2
b
R
R





N02
R
5.5
3.1
fa. 4
7.0
11.0
b.1
5.1
3.b
.7
R
R
1.0
fa.l
4.8
5.0
4.4
fa. 2
fa. 7
8.2
lb.4
R
R



































-------
                  PROJECT 11-2877-01  CONTROL TECHNOLOGY
  8-31-72 RUN-2 ENG.1-3 72 VER. A b BTDC O.Ofai JETS MODI.AIR O-Cat

MODE
1
2
3
4
5
b
7
B
q
10
11
12
13
If
15
Ifa
17
18
IS
20
21
32
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
12C10
iann
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
4.0
17.0
38.0
53.0
105.0
158.0
172.0
193.0
210.0
0.0
0.0
23fa.O
217.0
194.0
177.0
118.0
59.0
*2.0
19.0
5.0
0.0
0.0
I
HP
0
1
4
9
12
24
3b
39
44
48
0
0
103
95
85
78
52
2b
18
8
2
0
0
MAN.
VAC.
18.5
20.2
19.0
18.0
17.7
13.8
s.s
8.0
4.9
.5
18.8
22.2
1.8
2.0
*.3
fa. 5
11.8
lb.1
17.5
19.1
20.2
18.5
23.9
CALCULATED GRAM/HR
MODE
1
S
3
4
5
b
7
8
q
10
11
12
13
It
15
Ib
17
18
19
20
21
2?
23
ALDE
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.P
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
5.0
2.8
5.7
8.1
8.S
22.0
34.9
33.2
22.3
398.4
4.b
83.3
30b,3
374.9
SI. 2
43.8
1.0
4.8
3. fa
3.0
2.8
5.3
43.1
CO
b
14
Ib
18
18
58
2fa9
548
1451
18450
23
53
31322
38839
8479
b844
1029
38
35
32
30
7
b?
FUEL
LB/HR
*.o
7.2
8.4
•i.s
10.2
15.2
21.5
23.0
27.4
40.8
*.l
*.l
7b.O
80.0
57.2
51.9
37. b
2fa.2
22.5
18.2
15.4
*.o
*.3
WT.
N02 FAC.
2.
7.
24.
51.
se.
202.
228.
20b.
132.
34.
3.
1.
71.
4b.
354.
288.
177.
114.
9fa.
b4.
3b.
2.
•
1 .070
0 .ObO
3 .ObO
7 .050
8 .030
4 .ObO
7 0.000
0 .040
5 0.000
8 0.000
0 .070
1 .120
3 .025
4 .055
0 .035
9 .OfaO
2 .ObO
b 0.000
5 .Ob5
8 0.000
3 0.000
9 .080
5 .ObO
A/F
RATIO
18.2
22.9
22.1
21.9
20.4
17.8
lb.2
15.9
15.1
11.4
18. b
29.9
11.9
11.2
14.3
If. 3
15.2
17.0
17.9
15.7
21. b
19.2
39.5
WT.
HP
0.0
.1
.2
.4
.4
1.4
0.0
l.b
0.0
0.0
0.0
0.0
2.b
5.2
3.0
4.7
3.1
0.0
1.2
0.0
0.0
0.0
0.0
DRY CONCENTRATION
ALDE.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
328
80
14b
183
202
383
471
428
252
37b4 8
282
31bO
1582 8
1933 9
303 2
282 2
75
51
42
38
37
311
908
CO
.020
.020
.020
.020
.020
.050
.180
.350
.810
.b30
.070
.100
.010
.910
.480
.180
.420
.020
.020
.020
.020
.020
.070
C02
11.92
9.25
9.b4
9.b4
10. f3
11.92
12.94
13. Ob
13.18
8.48
11.24
fa.fa4
9.b4
S.faO
12.82
12.94
13.b3
12.71
11.92
10.55
9.25
10. fab
'3.95
NO
42
bO
I8b
350
3bO
10b2
930
800
450
99
55
12
111
72
b30
5bO
440
370
340
250
145
52
3
SPECIFIC GRAM/BHP-HR
HC
R
3.09
1.48
.94
.74
.92
.97
.85
.51
8.30
R
R
2.9b
3.95
,bO
.5b
.18
.19
.20
.3b
1.27
R
R
CO
R
15. b
4.1
2.1
1.5
2.4
7.5
14.0
32.9
384.5
R
R
303.1
408.7
99.8
88.3
19.9
1.5
1.9
3.8
13.9
R
R
N02
R
7.7
b.3
b.O
4.4
8.4
b.3
5.2
3.0
.7
R
R
.7
.5
4.2
3.7
3.4
4.4
5.2
7.8
Ib.b
R
R
























CYCLE COMPOSITE
HC     2.140
CO   ISb.bSb
N02    3.280
ALDE   0.000
BSFC    .853
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
  LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-28-72 RUN-2 ENG.1-3 78 VERS.STD.TIME.* JETS A W/AIR TAILORED EGR O-Cat

MODE
1
2
3
4
5
b
7
8
9
10
11
12
13
It
15
Ib
1?
18
19
20
21
22
23

DYNA
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
4 .0
18.0
40.0
Sb.O
I5b.0
1B7.0
182.0
204.Q
222.0
0.0
0.0
220.0
202.0
180.0
IbS.O
110.0
bS.Q
40.0
18.0
4.0
0.0
0.0
HAN. FUEL
HP
0
1
4
9
13
3b
38
42
47
51
0
0
Ifa
88
79
72
18
24
18
8
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.1
19. fa
11.1
17.1
15.0
1.9
1.8
1.7
.5
.5
18.5
22.3
1.7
1.7
2.*
2.b
3.0
13.3
15.0
Ib.b
17.8
18.0
24.0
CALCULATED GRAM/HR
MODE
1
2
3
4
5
b
7
8
9
10
11
12
13
If
15
Ib
17
18
19
20
21
22
23
CYCLE




ALDE
n.o
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
b.S
4 .8
5.5
1.1
11.2
19. 4
11.1
18.7
121.7
117.3
5.9
11.8
84 .1
100.3
71.1
12.4
41.5
J2.3
8.7
1.5
51.5
5.5
107.2
COMPOSITE








CO
17
38
39
45
53
12b
181
453
7929
7720
17
30
Ilb27
12718
9423
1537
373
49
45
40
88
17
149
HC
CO
N02
ALDE
BSFC
N02
2.9
8.1
13. b
2b.b
35.9
Ifaf .3
172.9
110.2
72.0
148.7
2.8
.8
172.9
95.8
lOb.O
140.2
174.5
104 .b
82. b
51.0
25.7
3.0
.8
1.130
b3.750
2.412
0.000
.855
4.1
7. fa
8.1
9.5
11.3
24.2
25.4
2b,9
33.3
34.4
4.2
4.3
b2.1
bO.S
Sb.8
52.0
43.4
24.2
21.4
18.7
Ifa. 2
4.0
4.4
WT.
FAC.
.070
.ObO
.OfaO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.OfaS
0.000
0.000
.080
.ObO
11.7
23.3
23.0
22.5
22.4
17.8
lfa.1
15.8
13.4
13.5
11.0
33.0
13.7
13.5
13.8
14.9
18.0
11.5
11.4
11. fa
11. fa
17.3
33.2
WT.
HP
0.0
.1
.2
.5
.4
2.1
0.0
1.7
0.0
0.0
0.0
0.0
2.4
4.9
2.8
4.3
2.9
0.0
1.1
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
I
I
HC
38b
128
141
201
212
217
213
208
1210
1178
348
312
4faO
553
39fa
fa8
225
102
71
95
513
321
2174
CO
.050
.050
.050
.050
.050
.070
.100
.250
4.1bO
3.840
.050
.050
3.150
3.470
2.faOO
.420
.100
.020
.020
.020
.050
.050
.ISO
C02
11.01
9.14
1.37
1.50
1.fa4
12.22
12.71
13.33
11.72
11.72
11.24
fa. 38
12.22
11. bO
11.72
12.59
10.55
9.03
8.75
8.48
8.34
10.43
3.b8
NO
53
bS
105
178
205
555
580
370
230
450
50
8
285
159
178
233
285
gfaO
225
154
89
52
5
SPECIFIC GRAM/BHP-HR
HC
R
5.25
1.34
.11
.68
.54
.50
.45
2.bl
2.31
R
R
.87
1.13
.10
.17
.8b
.51
.50
1.20
21.43
R
R
CO
R
41.4
l.b
5.0
4.2
3.5
4.8
10.1
170.1
152.2
R
R
120.7
143.8
111.5
21.3
7.7
2.0
2.b
5.1
50.1
R
R
N02
R
8.8
3.3
2.9
2.8
4.b
4.5
2.7
1.5
2.9
R
R
1.8
1.1
1.3
1.9
3.b
4.3
4.7
b.S
14.7
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                   PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-30-72  RUN-1  ENG.1-3 ?g VER. TDC STD JETS AIR MODI. EGR TAILORED A

MODE
1
?
3
4
5
b
7
8
q
It)
11
ie
13
it
15
lb
17
18
11
20
21
22
23

DYNA.
SPEED LOAD
bOO
1200
1200
i?no
1200
1?OC1
1200
1200
1?00
i20Ci
bOO
leoo
2300
2300
2300
2300
2300
230CI
2300
2300
2300
faOO
2300
0.0
H.O
lb.0
3b.O
51.0
101.0
152.0
lbb.0
I8b.0
2U2.C
0.0
0.0
205.0
181.0
Ib8.0
15*. 0
103.0
51.0
37.0
lb.0
*.o
0.0
P.O
MAN. FUEL
HP
0
1
*
8
12
23
35
38
*2
tb
0
0
10
83
7*
b?
*5
22
Ifa
7
2
0
0
A/F
VAC. LB/HR RATIO
17.*
11.5
11.0
17.0
15.7
8. fa
2.0
.b
2.0
.5
17.*
21.7
1.8
1.7
1.7
1.7
2.1
1.5
11.8
1*.8
17.5
17.2
23. fa
CALCULATED GRAM/HR
MODE
1
2
3
f
b
b
7
8
q
10
11
12
13
If
15
lb
17
18
1*
20
21
ae
23
ALDE
U.li
0.0
0.0
0.0
0 . LI
O.I1
n.n
0.0
0.0
n.o
o.n
0.0
o.o
0.0
0.0
0.0
n.o
o.n
0.0
0.0
0.0
0.0
0.0
HC
*.*
3.3
*.3
7.7
1.*
18. b
11.3
110. S
1.2
13.5
*.7
128. b
81.0
13.2
98.*
118.1
13.1
5*. b
27.5
?o.o
?1.7
*.o
17.5
CO
IB
38
*0
*5
52
72
110
87*7
130
8210
18
27
1350*
133*1
131*1
1*758
18*
5b
50
**
3b
8
12b
N02
3.7
7.1
12.2
31.3
37.1
77. fa
171.*
33.1
3*b.2
13.1
3.b
l.b
131.0
108.*
53.7
**.o
111.2
58.5
*b.3
3*.?
21.1
*.3
.5
*.*
7.1
8.*
l.b
11.3
lb.*
2*.?
33.*
2b.3
3*. 7
*.3
*.b
bS.b
fa2.7
bO.O
bO.O
**.1
28. b
25.3
21.3
lb.1
*.l
*.8
WT.
FAC.
.070
.OfaO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
,0b5
0.000
0.000
.080
.ObO
11.8
22.8
22.5
22.1
21.7
20.7
17. b
13.1
lb.5
13.3
11.3
27.7
13.5
13.5
13.3
13.3
17.1
21.2
21.1
22.8
23.8
20.1
*5.*
WT.
HP
0.0
.1
.2
.*
.3
1.*
0.0
1.5
0.0
0.0
0.0
0.0
2.2
*.b
2. fa
*.o
2.7
0.0
1.1
0.0
0.0
0.0
0.0
DRY CONCENTRATION
ALDE.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
2*2
8?
101
173
IB*
2b3
10*
111? *
101
151 *
2fa8
*?*8
*80 3
502 3
5*7 3
b5* *
72
317
223
18*
2*3
213
3b5
CO
.050
.050
.050
.050
.050
.050
.050
.blO
.070
.210
.050
.050
.blO
.5bO
.8*0
.020
.050
.020
.020
.020
.020
.020
.130
C02
10.81
1.3?
1.50
1.78
1.13
10. *3
10.25
11. bO
12.1*
11.8*
11.01
7.18
11.12
11.72
11.2*
10.81
11.13
1.37
1.25
8.8*
8.5*
1.78
*.3b
NO
bl
b3
12
213
218
330
*7S
108
1138
210
b2
18
213
17b
10
73
IB*
128
113
lb
101
b8
3
SPECIFIC GRAM/BHP-HR
HC
R
3.fa2
1.11
.13
.81
.81
.33
2.11
.22
2.03
R
R
.11
1.13
1.3*
1.7fa
.21
2.**
1.70
2.8b
12.38
R
R
CO
R
*2.0
11.0
5.*
*.*
3.1
3.2
230. b
3.0
171. b
R
R
ISO.*
lfal.2
181. fa
218.8
*.l
2.5
3.1
fa. 3
20. b
R
R
N02
R
8.7
3.3
3.8
3.2
3.*
*.1
.1
8.1
2.0
R
R
1.5
1.3
.7
.7
2.5
2.b
2.1
*.1
17.1
R
R
























 CYCLE  COMPOSITE
HC     2.112
CO   13*.315
N02    I.b28
ALDE   0.000
BSFC    .113
GRAM/BHP HR
GRAM/BHP MR
GRAM/BHP HR
GRAM/BHP HR
  LB/BHP HR

-------
                   PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-29-72 RUN-1 ENG.l-3 ?2 VER. STD TIM.+JETS MODI.AIR+EGR TAILORED A O-Cat

MODE
1
2
3
4
S
b
7
8
9
10
11
12
13
14
15
Ifa
17
18
19
20
21
22
23

uY
NA,
SPEED LOAD
bQO
1200
12HO
1200
1200
1200
1200
1200
1200
1200
boo
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
faOO
2300
0
5
18
41
S8
115
1 ?3
189
212
230
0
0
222
204
182
Ifa?
Ill
5b
40
18
f
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
•
HP
0
1
4
q
13
2fa
40
43
48
S3
0
0
97
89
80
73
49
25
18
8
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.8 4.0 18.5
19. fa 7.4 22.8
18.9 8.3 22.4
17.5 9.4 22.3
lb.1 10. b 22.2
9.9 15.8 21.1
2. fa 23. b 18.9
2.0 25.5 17.1
1.0 29.3 13.0
.5 34.8 13.4
18.4 4.1 19.0
22.5 4.3 32.7
1.7 bl.8 13. fa
1.7 faO.O 13.5
1.7 59.0 13.3
2.1 59. fa 12.8
2.9 42.5 lfa.0
11.1 25.2 17.8
13.4 22. fa 18.0
15. b 19. fa 18.3
18.0 15.4 18.8
17.9 4.0 17.3
24.0 4.4 29.8
CALCULATED GRAH/HR *T. WT.
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
IS
Ib
17
18
19
20
21
22
23
CYCLE
ALDE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
P.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HL
5.
b.
5.
9.
10.
22.
207.
19.
115.
112.
S.
14.
93.
110.
142.
237.
23.
27.
IS.
IS.
fa9.
5.
109.
b
3
9
0
9
9
0
2
7
5
1
8
8
2
U
1
5
7
2
1
4-
2
1
COMPOSITE
CO
15
3fa
39
44
20
28
37
92
7997
7fa77
17
12
11915
12412
14104
17891
182
49
4fa
41
34
7
154
HC
N02 FAC. HP
2.3 .070 0.0
5.9 .ObO .1
12.9 .OfaO .2
31.3 .050 .5
51.9 .030 .4
214.8 .ObO l.b
371.3 0.000 0.0
322.4 .040 1.7
47.9 0.000 0.0
149.8 0.000 0.0
2.7 .070 0.0
.8 .120 0.0
171.9 .025 2.4
102.9 .055 4.9
fa9.1 .035 2.8
58.3 .ObO 4.4
130.7 .OfaO 2.9
faO.S 0.000 0.0
53.5 .OfaS 1.1
43.0 0.000 0.0
23.1 0.000 0.0
3.0 .080 0.0
.5 .ObO 0.0
1.871 GRAM/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I

HC
3bb
177
153
205
21S
328
22fa8
210
142fa
1122
313
482
507
597
771
125b
131
228
133
189
82S
2SO
214b
CO
.050
.050
.050
.050
.020
.020
.020
.050
4.880
3.790
.050
.020
3. ISO
3.330
3.7SO
4.faSO
.050
.020
.020
.020
.020
.020
.150























cos
11.84
S.37
S.b4
S.b4
S.b4
10.25
11.48
12. 5S
11. 3b
11.84
11.24
b.30
ii.sa
11. Sfa
10. fab
S.50
10. fab
9.37
8.93
8.75
8.24
10.09
3. Sfa
NO
4fa
50
100
215
315
S30
1225
10b3
178
450
49
8
280
Ib8
113
93
219
ISO
141
128
83
51
3
SPECIFIC GRAM/BHP-HR
HC
R
5.52
1.44
.Sb
.82
.8?
5.24
.44
2.3S
2.14
R
R
.Sfa
1,23
1.78
3,24
.48
1.13
.87
2.43
39. b2
R
R



31
9
4
1
1

2
IbS
14b


122
138
177
244
3
2
2
5
IS



CO
R
.4
.5
.7
.5
.1
.S
.1
.1
.1
R
R
.b
.S
.0
.b
.7
.0
.b
.2
.3
R
R

N02
R
5.2
3.1
3.3
3.9
8.2
9.4
7.5
1.0
2.S
R
R
1.8
1.2
.S
.8
2.7
2.5
3.1
5.5
13.2
R
R


























CO 112.208 GRAM/BHP HR












N02
ALDE
BSFC
2.513 GRAM/BHP HR
0.000 GRAM/BHP HR
.8b2 LB/BHP HR



















-------
                PROJECT 11-8877-01  CONTROL TECHNOLOGY
8-30-72 RUN-2 ENG.l-3 72 VER. A STD JETS 15 BTDC MODI.AIR O-Cat EGR TAID.

MODE
1
2
3
4
5
b
7
8
9
10
11
1?
13
14
15
Ib
17
1«
IS
20
?1
as
23

DYNA.
SPEED LOAD
hOO
120U
1200
1POO
1200
1200
1200
1200
12nn
1200
bDO
1200
2300
2300
2300
2300
2300
2300
2300
2 3 f ! il
2300
bOO
2100
0
5
19
43
bO
120
180
197
221
210
0
0
23b
217
194
177
118
59
42
19
5
0
0
.0
.0
.0
.0
.0
.0
.0
.n
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
10
1*
27
fl
45
SO
55
0
0
103
95
85
78
52
2b
18
8
2
0
0
MAN. FUEL A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALOE.
18.8 4.0 19.3
1*.* 7.7 23.7
IS. 4 8.1 23.2
17.2 9. fa ga. fa
lb.0 10. b gg. 4
S.t lb.0 21.2
2.0- 24.2 17.9
1.9 25.1 17.1
2.0 25.2 17.7
.5 3t.7 13.2
11.0. 3.9 18.7
22.8 4.0 32.0
1.7 b2.fa 13. fa
1.7 bl.l 13.3
l.b 58.7 13.0
2.5 49.1 15.2
3.7 3b.l 18.7
lt.0 22.4 21.3
15.5 20.0 22.2
17.1 17.7 23.2
18.0 15.8 24.1
18.9 4.0 19.2
24.2 4.1 51.7
CALCULATED GRAM/HP WT. WT.
MODE
1
2
3
4
<5
b
?
8
4
10
11
12
13
It
15
Ib
17
IP
li
20
21
22
23
CYCLE




ALDE
O.U
0.0
0.0
0.0
n.o
0.0
0 . 0
0.0
0.0
0.0
n.O
0.0
0.0
0 . o
0.0
0.0
o.o
0 . 0
0 . 0
0.0
0 . 0
0.0
0.0
HC
7.
8.
8.
12.
1^.
2b.
37.
39.
•n.
201.
5.
100.
113.
Ib2.
200.
fa.
50.
11.
Ib.
2b.
197.
5.
209.
b
0
1
0
q
9
7
3
4
a
a
0
4-
1
b
1
4
8~
8
b
1
8
3
COMPOSITE












CO
17
39
to
4?
51
72
184
18b
HI
91fa4
15
28
12bB7
145b7
15485
ins
300
103
9fa
90
82
Ib
95
HC
CO
N05
ALDE
BSFC
N02 FAC. HP
2.1 .070 0.0
7.9 .ObO .1
14.7 .OfaO .3
bO.5 .050 .5
8b.2 .030 .4
188.2 .ObO l.b
259.9 0.000 0.0
24.2 .040 1.8
755.0 0.000 0.0
185.8 0.000 0.0
2.1 .070 0.0
.5 .120 0.0
259.1 .025 2.b
lbl.8 .055 5.2
74.4 .035 3.0
151.5 .ObO 4.7
lfa?.7 .OfaO 3.1
124.9 0.000 0.0
78.7 .ObS 1.2
53.3 0.000 0.0
30. f 0.000 0.0
2.3 ,080 0.0
.5 .OfaO 0.0
2.229 GRAM/BHP HR
73.307 GRAM/BHP HR
2.542 GRAM/BHP HR
0.000 GRAM/BHP HR
.7bb LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





HC
4fa3
20b
20*
2fal
21*
37?
414
427
437
2013 f
382
3b50
blO 3
915 4
llfaS 4
3b
339
lib
17?
287
3429
35b
4439
CO
.050
.050
.050
.050
.050
.050
.100
.100
.100
.540
.050
.050
.380
.070
.450
.350
.100
.050
.050
.050
.050
.050
.100
























C02
11.01
8.93
9.14
9.37
1.3?
10,0^
11.92
12.22
11.92
11,01
11. *8
b.21
11.84
11.^8
10.89
12.82
10.89
9.93
9.50
8.93
8.54
11.13
3.40
NO
39
bl
111
395
510
795
8bO
79
2400
SfaO
42
b
420
275
130
270
340
370
250
180
113
42
3
SPECIFIC GRAM/BHP-HR
HC
R
fa. 99
1.87
1.22
1.09
.98
.92
.87
.82
3. fa?
R
R
1.10
1.71
2.3b
.08
.98
.4b
.91
3.0?
90,00
R
R







34
9
4
3
2
4
4
3
Ib?


122
153
182
15
5
4
5
10
37







CO
R
.3
.3
.7
.7
.b
.5
.1
.8
.1
R
R
.8
.3
.3
.f
.8
.0
.2
.8
.*
R
R





N02
R
b.9
3.4
fa. 2
fa. 3
fa. 9
b.3
.5
15.0
3.f
R
R
2.5
1.7
.9
2.0
3. a
t.8
*.3
fa.*
13. S
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
8-31-72 RUN-3 ENG.1-3 72 VER. A STD TlM * JETS HOT TAID EGRO-Cat NO AIR
DYNA.
MODE
1
2
3
4
5
b
7
8
9
10
11
18
13
14
IS
Ib
17
18
11
50
P.I
22
23
SPEED LOAD
bQQ
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0
5
18
41
58
115
173
189
212
230
0
0
230
212
189
173
115
58
41
18
5
0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
9
13
2b
40
43
48
53
0
0
101
S3
83
7b
50
25
18
8
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17.8 3.8 15.8
19.8 7. fa lfa.1
19.0 8.2 lfa.8
17.2 9.7 17.5
lfa.0 10, b 17. 8
1.7 15.9 18.3
2.b 23.3 17.3
1.9 25, b 15. fa
1.9 27.3 15.2
.5 34.3 12.7
17.9 3.9 15.4
22.5 3.9 21.9
1.7 fa3.4 12.5
1.7 fal.9 12.5
l.b bO.2 12.3
2.1 fal.4 11.8
2.7 4fa.O 15.1
10.7 25. b 17.0
12.9 21.4 17.2
15.3 20.3 17. b
17.9 IS. 8 18.3
17.8 3.9 lfa.0
23.8 4.3 22.2
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
«f
S
b
7
8
q
10
11
12
13
If
15
Ib
17
18
19
20
21
22
23
CYCLE




ALOE
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
HC
30.
3.
4.
7.
7.
IS.
19.
43.
b8.
287.
3b.
11.
811.
421.
442.
541.
4b.
21.
8.
5.
31.
31.
201.
2
7
4
1
9
8
5
7
9
2
0
0
9
8
3
3
5
5
5
5
b
1
2
COMPOSITE












CO
194
2b
27
34
37
57
81
bll
12bl
107b3
398
7
18bfa4
19974
20b88
24355
2993
93
77
78
bl
222
28
HC
CO
N02
ALOE
8SFC
N02 FAC. HP
2.2 .070 0.0
7.5 .ObO .1
13.2 .ObO .2
51.3 .050 .5
78.5 .030 .4
17b.O .ObO l.b
3B0.8 O.QOO 0.0
273. b .040 1.7
390.3 0.000 0.0
151.4 0.000 0.0
1.9 .070 0.0
.7 .120 0.0
197.5 .025 2.5
lOfa.fa .055 5.1
Sb.S .035 2.9
48.3 .ObO 4.5
59.9 .OfaO 3.0
40.5 0.000 0.0
30.5 .ObS 1.2
39. fa 0.000 0.0
24.0 0.000 0.0
2.4 .080 0.0
,7 .OfaO 0.0
5.480 GRAM/BHP HR
lfa9.77B GRAM/BHP HR
2.08b GRAM/BHP HR
0.000 GRAM/BHP HR
.852 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(1
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
o.o
0.0
o.o
o.o
o.o
0.0
I
I





DRY
HC
2547
14b
IbS
213
213
280
245
Sb3
850
3180
303b
5b45
4982
2bbS
2807
3421
31?
235
112
71
521
2404
lOOb?
CONCENTRATION










S
1

5
b
b
7
1






CO
.810
.050
.050
.050
.050
.050
.050
.390
.770
.100
.fabO
.020
,fa70
.130
.500
.b20
.010
.050
.050
.050
.050
.850
.070
C02
13.48
13.48
13.77
13.18
12. 14
12.71
13.18
14.53
14.42
11.01
12.94
9,50
11.48
11.01
10.55
9.b4
13.18
12.59
12.71
11.12
11.72
12.59
8.b8
NO
57
89
148
4b5
b40
140
13b3
10b3
1450
505
48
12
3bS
191
108
12
123
133
121
155
111
57
10
SPECIFIC GRAM/BHP-HR


3.
1.
•
•
•
*
1.
1.
s.


8.
4.
5.
7.
•
•
»
•
If.







HC
R
2b
08
7b
59
bO
49
01
42
47
R
R
Ob
fa3
34
14
92
85
47
fa9
43
R
R





CO
R
22.5
b.b
3.b
2.8
2.2
2,0
14.1
2b.O
204.8
R
R
185.3
215.1
249.9
321.5
59.4
3. fa
4.3
1.1
28. Q
R
R





N02
R
b.b
3.2
5.5
5.9
b. 7
1.1
b.3
8.1
2.9
R
R
2.0
1.1
.7
.fa
1.2
l.fa
1.7
5.0
10.1
R
R



































-------
                   ENGINE 1-3




EFFECT OF VARIOUS COMBINATIONS ON EMISSIONS




               GRAPHED RESULTS




       OF AFTER CATALYST WITH HOT EGR




      PER SCHEDULE A, WITH AIR INJECTION




          AND STANDARD CARBURETOR

-------
   250
   200
§  150

ffi

M
0)
a,

CO

s
o
   100
    50
              LEGEND

                     1200 rpm
                     2300 rpm
 i\   V   i   / •
     /\   i   ' :
  {  i \  i  i

• jw'-V A /
                  20    30     40    50   60    70    80    90

                    Power, Percent Maximum at Given Rpm
                                                                     2300
                    1200
                 (Tj  2300

                    1200
                                                                      2300

                                                                      1200
            100   CT
        FIGURE V-l.  EFFECT OF POWER ON HC EMISSION RATE

       AFTER CATALYST, HOT EGR SCHEDULE A, MODIFIED AIR

                      ENGINE 1-3, 23 MODE TEST

-------
                                            71 17891
16
14
          LEGEND
               ,  8-30-72, Runl
        Q6°BTDC, 8-29-72, Runl
        Al5°BTDC, 8-30-72, Run 2
                                                                 2300
                                                                 1200
               20    30   40    50   60    70   80   90   100
                  Power, Percent Maximum at Given Rpm
CT
    FIGURE V-2.  EFFECT OF POWER ON CO EMISSION RATE
   AFTER CATALYST, HOT EGR SCHEDULE A, MODIFIED AIR
                  ENGINE 1-3,  23 MODE TEST

-------
  8
            LEGEND
o
o
^H
X
t,
g  4
ffi
fc

-------
           LEGEND
24 i-
22
20
         1200 rpm
         2300 rpm
O TDC,  8-30-72, Run 1
D 6°BTDC,  8-29-72, Run 1
A 15°BTDC, 8-30-72, Run 2
                                                              G
- 2300

'/ 1200
         10    20    30    40   50    60   70   80    90   100   CT
                  Power, Percent Maximum at Given Rpm
    FIGURE V-4.  MANIFOLD VACUUM AS A FUNCTION OF POWER
                    ENGINE 1-3, 23 MODE TEST

-------
              LEGEND
X
o

ffi
CD

-0
a

E
3
CO
fl
O

u
                      1200 rpm

                     • 2300 rpm
             O TDC, 8-30-72, Run 1

             Q6°BTDC, 8-29-72,  Run 1

             Al5°BTDC, 8-30-72,  Run 2
                                                           //
                                                          //•
                                           JL
          10  .  20   30   40    50    60    70    80    90

                   Power, Percent Maximum at Given Rpm
100   CT
       FIGURE V-5.  FUEL CONSUMPTION AS A FUNCTION OF POWER

                        ENGINE 1-3, 23 MODE TEST

-------
                 APPENDIX W




                   ENGINE 1-3




EFFECT OF "BEST  COMBINATION" ON EMISSIONS

-------
                  ENGINE 1-3




EFFECT OF "BEST COMBINATION" ON EMISSIONS




             TABULAR 23 MODE DATA




        BEFORE AND AFTER CATALYST

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
9-05-72 RUN-1 ENG.1-3 72 VER.MODI AIR + EGR STD JETS + TIM B 0—CAT

MODE
1
8
3
H-
5
b
7
R
9
in
11
12
13
IV
15
lb
17
18
11
20
21
22
23

DYNA
SPEED LOAD
bOO
1200
1200
1 ? n 0
12 no
1200
l?no
i?no
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2 3 0 0
2300
bOO
2300
0.0
f.o
17.0
3=1.0
55.0
10=1.0
Ibf .0
171.0
201.0
218.0
0.0
0.0
21b.O
199.0
177. D
Ifa2.0
108.0
54.0
39.0
17.0
f.o
0.0
0.0
MAN. FUEL
HP
0
1
<+
s
13
25
3?
11
fb
SO
0
0
95
87
78
71
f 7
2f
17
7
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
18.0
19.7
19.2
I?.?
15.8
9.5
2.3
1.8
1.8
.5
18.3
22.2
1.7
2.5
2.b
2.7
2.b
11.5
13.3
15.9
lb.9
17.9
23. b
CALCULATED GRAM/HR
MODE
1
2
•j
t
b
b
7
8
q
10
11
12
13
If
15
lb
17
18
19
20
21
22
23
CYCLF




ALDE
0.0
0.0
o.o
n.o
n . n
0.0
n.p
n.o
0.0
o.n
n.o
0.0
n . [)
n.o
n.o
n.o
0.0
n.o
o.o
0.0
n.o
0.0
0.0
HC
29.0
15. fa
19. f
30. f
as. fa
71.0
ff .1
31. H
33.2
152. f
P7.2
978.1
lb3.S
52.8
If .1
lf.1
39. fa
83.3
53.8
38.3
Sb.fa
29.8
1897.2
COMPOSITE








CO
397
125
133
79
9f
90
223
589
b22
10038
ssq
121
15515
7faf5
29bf
lf9Q
12fO
382
2b8
ISfa
237
f73
51
HC
CO
N02
ALDE
8SFC
N02
2.0
8.7
If. 7
38.1
59. f
121.1
30b.8
213.0
sts.o
111.0
22. f
1.0
151.1
3fa3.9
339. f
328.5
99.3
78. f
55.1
35.3
33.1
2.1
.8
11.7b5
5b.89f
3.93b
0.000
,8fb
f.2
7.8
8.3
9.3
11.0
15.8
23.7
25.2
2b.l
34 .8
f.3
f.3
b2.8
5f .8
50.3
f8.2
ff .7
25. f
23.5
18.8
17.8
f.2
f.5
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OfO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
20.3
22.9
22.1
21.9
21.1
21.3
19.2
17. f
17. fa
13.7
19.0
32.3
13. b
If. 5
15.1
lb.1
17.0
23.3
21.2
21.1
21.5
18. b
32.3
WT.
HP
0.0
.1
.2
.f
.f
1.5
0.0
l.b
0.0
0.0
0,0
0.0
2.f
f.8
2.7
f.3
2.8
0.0
1.1
0.0
0.0
D.O
0.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
17fa1
f5f
531
781
821
1235
511
383
377
Ifafl
1713
3f2l1
110
335
10
8f
252
bbl
52b
fib
723
113b
52b9f
CO
1.200
.180
.180
.100
.100
.070
.130
.350
.350
5.350
1.870
.210
f.bfO
2.fOO
.810
.ffO
.310
.150
.130
.100
.150
1.520
.070
C02
10.25
10.01
10.01
10. bb
10.55
11.01
12. f?
13.33
13. Ob
11. f 8
10.25
3.20
12. f?
13.33
12. If
12.51
12. f?
8.13
10.25
10.81
10.01
10. fab
.33
NO
37
7fa
121
215
385
570
1087
770
1875
3bQ
f2S
10
275
falS
fa20
510
110
188
Ib3
138
12?
f2
fa
SPECIFIC GRAM/BHP-HR
HC
R
17.05
f .19
3.fl
3.07
3.17
1.18
.78
.72
3. Ob
R
R
1.73
.bl
.11
.20
.8f
3.52
3.15
S.lf
32.21
R
R
CO
K
ISb.S
3f.l
8.8
7.5
3. fa
b.O
If.f
13. b
201.5
R
R
Ibf .0
87.7
38.2
21.0
2b.2
lb.1
15.7
21.0
135. f
R
R
N02
R
1.5
3.8
f.3
f.7
f.1
8.2
5.2
11.1
2.2
R
R
l.b
f.2
f.f
f.b
2.1
3.3
3.2
f.7
18.1
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
S-Ofa-7? RUN-1 ENG.1-3 72 VER.MODI AIR HOT EGR 8Tl> JET3+TIM B 0—CAT

MODE
1
5
3
t
5
b
7
B
q
in
11
1*
13
l*
15
lb
17
18
19
20
51
ae
33

UYNA.
SPfetO LOAD
bOO
1200
1200
1500
1500
1500
1500
1200
1500
1500
bOO
1500
2300
2300
2300
2300
2300
23oo
2300
230P
5300
fa on
s?nn
0
5
18
*1
57
lit
m
187
210
228
0
n
21b
199
1??
iba
108
54
39
17
4
P
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
HP
0
1
4
S
13
2b
39
43
48
52
0
0
95
87
78
71
47
2*
17
7
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
1?.7 4.0 19.3
19.5 7,b 23. b
18. b 8.b 23.5
17.1 9.7 22.5
15.0 11.5 22.5
9.0 lb.4 21.8
1.9 2*.l 19.3
l.b 27. b 15.9
1.8 25.7 17.4
.5 3t.3 13.7
17.9 4.1 19. b
22.0 t.3 31.4
1.7 b2.4 13.5
2.5 54.1 14. b
2.7 49. b 15.7
2.8 47.8 lb.4
2.7 43. b lb.9
12.* 25.5 22.3
13.9 22.* 22. *
ib.O 19. fa 22.9
17.2 1?. * 23. b
17.8 4.0 20. *
23.4 4.4 35. b
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
8
S
10
11
12
13
It
15
It
1?
18
IS
50
51
25
53
CYCLE




ALOE
0.0
0.0
0.0
n.o
0.0
0.0
0.0
0.0
0.0
0.0
n.o
n.o
0.0
0.0
0.0
0.0
0.0
n.o
n.o
0.0
0.0
0.0
(1.0
HC
27.
is.
27.
32.
tb.
««3.
bO.
ti.
38.
lb?.
2*.
85*.
17t.
35.
12.
12.
113.
59.
tb.
31.
bfa.
2fa.
1852.
7
3
3
q
7
b
3
9
4
3
4
1
e
b
3
i
8
3
3
2
3
U
H
COMPOSITE












CO
t43
92
80
59
51
70
237
1821
B49
10090
371
85
ISObO
5945
2291
1153
872
318
280
194
177
258
47
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.2 .070 0.0
b.3 .ObQ .1
17.7 .OfaO .2
31.1 .050 .5
50.0 .030 .*
142. b .ObO l.b
299.5 0.000 0.0
173.9 .0*0 1.7
527.7 0.000 0.0
101.9 0.000 0.0
3.0 .070 0.0
2.2 .120 0.0
127.9 .025 2.*
3bl.l .055 4.8
252.8 .035 2.7
300. * .ObO *.3
109.1 .ObO 2.8
82.5 0.000 0.0
54.8 .Ob5 1.1
45. t 0.000 0.0
31.2 0.000 0.0
3.5 .080 0.0
.7 .ObO 0.0
11.082 GRAM/BHP HR
49.101 GRAM/BHP HR
3.59b GRAM/BHP HR
0.000 GRAM/BHP HR
.833 LB/BHP HR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I





DRY
HC
1781
*3b
b87
790
931
1351
fafaB
488
438
1772
1539
30302
10*0
223
7fa
74
738
489
*35
32b
758
150?
S5721
CONCENTRATION

1






1

5
1

4
1









CO
.*10
.130
.100
.070
.050
.050
.130
.050
.310
.290
.IfaO
.150
.450
.840
.700
.350
.280
.130
.130
.100
.100
.740
.070
C02
10.09
9.b4
9.b*
10. *3
10.25
10.55
11.92
13. *8
12.94
11.01
10. *3
3.7*
12.3*
13. *8
13.18
12.94
12. *7
9.25
9.37
9.14
B.Bt
9.b4
,3b
NO
43
5*
13*
225
300
b20
1000
blO
1813
325
5b
23
230
b80
*70
555
213
eos
155
1*2
107
bl
b
SPECIFIC GRAM/BHP-HR


13.
b.
3.
3.
3.
1.
•
•
3.


1.
•
•
•
2.
2.
2.
*.
37.







HC
R
*1
fat
51
59
59
54
98
80
21
R
R
84
*1
lb
1?
*1
51
71
19
88
R
R





CO
R
80.7
19.5
b.3
3.9
2.7
b.l
*2.b
11. »
193.7
R
R
159.2
fa8.2
29. b
lb.2
18.4
13.5
Ib.f
2b.O
101.0
R
R





N02
R
5.5
*.3
3.3
3.8
5.5
7.7
*.l
11.0
2.0
R
R
1.*
*.l
3.3
*.2
2.3
3.5
3.2
b.l
17.8
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
1-Ofa-?2 RUN-2 ENG.1-3 72 VER.MODI AIR HOT EGR STD JETS+TIM B 0—CAT

MODE
1
e
3
i
5
b
7
8
q
10
li
12
13
11
15
lb
17
18
IS
20
21
22
23

DYNA,
SPEED LOAD
bOO
1?OP
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
11.0
57.0
111.0
171.0
187.0
210.0
228.0
0.0
0.0
218.0
201.0
171.0
lbl.0
101.0
55.0
31.0
17.0
i.o
0.0
0.0
MAN. FUEL
HP
0
1
1
1
13
2b
31
13
18
52
0
0
15
88
78
72
18
21
17
7
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.7
11. b
18.5
lfa.1
lb.2
1.5
2.1
1.8
1.8
.5
18.0
22.0
1.7
2.5
2.7
2.8
2.7
12.5
11.2
lb.0
17.2
17.7
23. b
CALCULATED RRAM/HR
MODE
1
2
3
M.
5
b
7
8
q
10
11
12
13
11
15
lb
17
18
11
2tl
21
22
23
CYCLE




ALDE
0.0
0.0
0.0
0.0
o.n
0.0
n.n
n.n
o.n
0.0
0.0
0.0
o.o
0.0
0.0
o.n
0.0
0.0
n.o
0.0
o.o
0.0
o.n
HC
30.2
13.1
28.1
3S.8
15.3
lofa.i
faS.2
43. fa
11.1
155.8
28. fa
811.1
lbl.1
32.1
13.1
H.1
101.3
51.2
12.1
32.3
bfa.e
28.3
1878.0
COMPOSITE








CO
527
7fa
81
fa5
121
71
Ifa
171
faRO
IfalO
111
5b
11bb7
5378
2318
121
853
301
271
188
177
257
35
HC
CO
N02
ALDE
BSFC
N02
2.1
7.0
17.2
37.1
58.5
151.8
380.0
105.1
511.8
117.1
2.8
.fa
152.8
378.0
332.0
3fa5.1
107. b
81.7
51.1
10.1
31.8
3.3
.?
10.810
11.113
1.317
0.000
.813
1.0
7.b
8.5
l.b
10.5
15.8
23.1
25.3
27.0
33.1
1.1
*.3
fa2.3
53. b
50.2
Ifa. 7
13.1
21.1
21.7
11.0
17.2
1.0
1.1
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.010
0.000
0.000
.070
.120
.025
.055
.035
.OfaO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
18.2
23.2
23.0
22.8
22.7
22.1
20.0
18.1
17.2
13. b
11. b
28.1
13.5
11.8
IS.b
Ib.b
lb.1
21.8
22.2
22.7
21.0
20.1
37.1
WT.
HP
0.0
.1
.2
.5
.1
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.1
1.8
2.7
1.3
2.1
0.0
1.1
0.0
0.0
0.0
n.n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRAKE
ALDE.
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
I
I
HC
1171
317
fa?8
870
12fa
UfaO
fa83
Ifal
130
1B78
IbIS
21581
117
205
85
111
fa72
IbB
108
317
757
Ibll
51170
CO
1.700
.100
.100
.070
.130
.050
.050
.250
.350
5.110
1.830
.100
1.2bO
l.fabO
.700
.380
.280
.130
.130
.100
.100
.710
.050
C02
1.13
1.03
1.11
1.37
1.50
l.fal
11.01
11.12
12.31
11.01
l.bl
1.03
12.22
13.18
13.18
12.71
12.71
1.37
1.37
1.11
8.75
l.bl
.21
NO
11
5b
125
250
3faO
blO
1200
1300
18fa2
380
SO
b
270
710
blO
b?5
215
220
175
132
120
58
7
SPECIFIC GRAM/BHP-HR
HC
R
11.13
b.83
1.21
3.18
1.08
l.b?
1.02
,8b
2.11
R
R
1.78
.3?
.18
.27
2.12
2.25
2.1b
1.31
37.71
R
R
CO
R
bfa.5
20.3
b.1
1.1
2.8
2.S
11.1
11.2
185.0
R
R
153. b
bl.l
21. fa
12.8
17.1
12. fa
15.1
25.2
100.8
R
R
N02
R
fa.l
1.2
1.0
1.5
5.1
1.7
1.5
12.1
2.2
R
R
l.b
1.3
*.2
5.1
2.3
3.5
3.5
5.5
11.1
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
9-05-72 RUN-1 ENG.1-3 73 VER.MODI AIR + EGR STD JETS + TlM A O^
MODE
1
2
^
4
5
b
7
8
q
10
11
12
13
1*
15
Ifc
17
18
IS
50
21
22
23
DYNA
SPEED LOAD
bOQ
I2nn
1POO
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
?3nn
2300
2300
2300
2300
2300
bnO
2300
0.0
4.0
17.0
39.0
55.0
109.0
ifa4.o
171.0
201.0
218.0
0.0
0.0
21b.O
I99.o
177.0
lfe>2.0
108.0
54.0
39.0
17.0
4.0
0.0
0.0
HP
0
1
4
9
13
25
37
41
4b
50
0
0
95
87
78
?1
47
24
17
7
2
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO ALDE.
18.0
19.7
19.2
17.7
15.8
9.5
2.3
1.8
1.8
.5
18.3
22.2
1.7
2.5
2.b
2.7
2. fa
11.5
13.3
15.9
lfa.9
17.9
23. b
CALCULATED GRA.M/HR
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
If
15
Ib
17
18
19
20
?1
22
23
CYCLE




ALDE
.5
1.1
1.2
1.3
2.2
5.1
7.7
fa. 2
b.l
7.3
.9
1.*
9.4
8.b
?.4
5.3
5.0
».o
1.3
1.3
3.2
.4
l.b
HC
b.l
4.8
5.9
9.1
10.8
20.0
19.2
Ib.?
18.8
104.7
5.7
124.3
85.5
10.3
8.8
7.5
b.b
ab.9
14.1
17.2
29.0
4.7
37.7
COMPOSITE








CO
34
1*
15
Ib
19
2b
87
120
127
80b2
23
38
122b9
230b
353
358
Ib7
122
97
82
115
33
IbS
HC
CO
N02
ALDE
8SFC
N02
2.b
11.2
17. f
3b.l
54.7
lOfo.S
291.3
314.9
508.1
140.0
3.0
.9
154.7
404.5
345.5
350. f
10fa.9
71.5
49.9
33.2
29.3
3.b
.fa
1.185
23.053
4.027
.130
,84b
4.2
7.8
8.3
9.3
11.0
15.8
23.7
25.2
2fa.l
34.8
4.3
4.3
b2.8
54.8
50.3
48.2
44.7
25.4
23.5
18.8
17.8
4.2
4.5
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.Ob5
0.000
0.000
.080
.ObO
21. b
23. b
23.5
22. b
23.5
21.4
19.3
17. b
17.9
13.9
19.5
31.9
13.9
15.2
lb.9
18.0
18.1
22.3
20.9
21.7
22.1
19.8
38. b
WT.
HP
0.0
.1
.2
.4
.4
1.5
0.0
l.b
0.0
0.0
0.0
0.0
2.4
4.8
2.7
4.3
2.8
0.0
1.1
0.0
n.o
0.0
0.0
15
15
14
IS
22
37
41
34
32
34
2b
24
25
23
20
14
14
15
b
7
18
12
19
BRAKE
ALDE.
R
i.e
.3
.1
.H
.2
.2
.a
.1
.1
R
R
.1
.1
.1
.1
.1
.a
.1
.2
1.8
R
R
DRY CONCENTRATION
HC CO C02
359
135
15b
225
228
309
322
19b
209
10b8 4.
353
45b? .
495 3.
bO
50
42
40
223
147
212
355
291
9b9
SPECIFIC
HC
R
5.2b
1.52
1.02
,8b
.80
.51
.41
.41
2.10
R
R
.90
.12
.11
.11
.14
1.14
.83
2. 31
lb.53
R
R
100
020
020
020
020
020
050
070
070
070
070
070
520
b70
100
100
050
050
050
050
070
100
210
11.13
9.93
9.93
10.43
10.55
11.01
13.34
13.33
13. Ob
11.92
11. 92
b.b4
12.94
13.91
12.94
12.22
12.22
9. SO-
11. 01
10.43
9.78
11. bO
4.94
NO
4b
95
139
270
350
495
1013
7bO
1700
430
55
10
270
715
595
595
195
179
ISb
ias
108
bb
5
GRAM/BHP-HR
CO
R
15.7
3.9
1.8
1.5
1.1
2.3
2.9
2.8
lbl.9
R
R
129.7
afa.5
4.b
5.1
3.5
5.1
5.7
11.0
fa5.9
R
R
N02
R
12.3
4.5
4.1
4.4
4.3
7.8
5.3
11.1
a. s
R
R
l.b
4.b
4.5
4.9
2.3
3.0
a. 9
4.5
lfa.7
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
1-Ob-72 RUN-1 ENG.1-3 72 VER.MODI AIR HOT EGR STD JETS+TIM A 0—CAT

MODE
1
?.
3
4
5
b
7
e
q
10
11
1?
13
If
15
Ib
1?
18
11
SO
21
22
23

DYNA
SPEED LOAD
bQO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
*1.0
57.0
11*. 0
171.0
187.0
210.0
228.0
0.0
0.0
21b.O
111.0
177.0
Ib2.0
108.0
51.0
31.0
17.0
*.0
0.0
0.0
MAN. FUEL
HP
0
1
t
1
13
2b
31
*3
*8
52
0
0
15
87
78
71
*?
2*
17
7
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.7
11. 5
18. b
17.1
15.0
1.0
1.1
l.b
1.8
.5
17.1
22.0
1.7
2.5
2.7
2.8
2.7
12.*
13.1
lb.0
17.2
17.8
23.*
CALCULATED GRAM/HR
MODE
1
2
3
*
5
b
7
8
q
10
11
12
13
I1*
IS
Ib
17
16
11
20
?1
22
23
CYCLE




ALDE
.5
1.2
1.*
1.5
3.2
5.2
in.*
b.S
5,b
1.2
.8
1.*
e.i
b.1
8.b
7.b
*.s
5.0
2.2
2.1
3.1
.5
1.2
HC
5.7
b.O
7.2
10. *
13.5
2b.S
2*. 3
2b.8
22.3
111.1
5.*
1**. 2
100.1
8.3
b.S
7.5
1S.1
17.3
12. b
11.2
38.0
*.8
28.3
COMPOSITE








CO
7
15
Ib
18
21
28
3b
b!3
3b
7111
7
11
11887
b21
2**
175
230
111
10b
100
11
18
152
HC
CO
N02
ALDE
BSFC
N02
2.1
7.8
18.1
33.0
*1.5
12b.7
281.1
1*5.5
*17.5
12*. 8
3.*
1.1
132.1
311.3
2?2.b
327. b
107.3
78.2
55.3
*2.7
1*.0
*.l
.b
1.3*1
18.352
3.b17
.135
.833
*.o
7. fa
8. fa
1.7
11.5
Ib.*
2*.i
27. b
25.7
3*. 3
*.l
*.3
b2.*
5*.l
*1.fa
*7.8
f3.b
25.2
22. f
11. fa
17.*
*.o
*.*
WT.
FAC.
.070
.OfaO
.OfaO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
20.*
2*. 5
23.8
23.*
23. 0
21.1
1^.*
lfa.1
17. b
13.8
20.3
30.1
13.8
15.*
lfa.7
17. b
17. b
21.8
22.2
23. b
2b.1
21.0
*3.5
WT.
HP
0.0
.1
.2
.5
.*
l.fa
0.0
1.7
0.0
0.0
0.0
0.0
2.*
*.8
2.7
*.3
2.8
0.0
1.1
0.0
n.o
0.0
0.0
IS
15
Ib
Ib
as
3*
5*
35
30
*b
ZZ
25
2*
11
23
20
13
20
10
10
11
1*
1*
BRAKE
ALDE.
R
1.1
.3
.2
.2
.2
.3
.2
.1
.2
R
R
.1
.1
.1
.1
.1
.8
.1
.3
2.3
R
R
HC
351
Ib3
180
235
2fa2
382
273
301
252
12b7 *
321
5533
575 3
*1
31
**
122
1*7
120
11*
387
27*
b?8
CO
.020
.020
.020
.020
.020
.020
.020
.350
.020
.210
.020
.020
.380
.180
.070
.050
.070
.050
.050
.050
.050
.050
.180
coe
11.13
1.3?
1.78
1.13
10.01
lo.fafa
12.22
1*.05
13.18
12.22
11. 3b
b.11
12.82
1*.18
12.1*
12. *7
12.01
l.fa*
l.fa*
8.13
7.1*
10.25
*.S*
NO
S3
b*
1*3
225
210
550
180
SOS
1700
*00
b3
22
230
blO
*7S
570
111
200
151
130
*3
71
*
SPECIFIC GRAM/BHP-HR
HC
R
5.23
1.7*
1.11
1.0*
1.02
.b2
.fa3
.*fa
2.21
R
R
I.Ob
.10
.01
.11
.*2
.73
.73
1.51
21.70
R
R
CO
R
13.0
3.1
1.1
l.fa
1.1
.1
1*.*
.?
153.*
R
R
125.7
7.1
3.2
2.5
*.1
s.o
fa. 2
13.*
5fa.7
R
R
NOg
R
b.S
*.b
3.5
3.8
*.1
7.*
3.*
10.*
2.*
R
R
1.*
*.S
3.5
*.b
2.3
3.3
3.8
5.7
8.0
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
q-Ob-72 RUN-3 ENG.l-3 72 VER.MODI AIR HOT EGR STD JETS+TIM A 0—CAT

MODE
1
2
3
4
5
b
7
R
q
10
11
.12
13
14
15
Ib
17
18
19
20
21
22
23

DYNA,
SPEED LOAD
bOO
1200
12HO
1200
1200
1200
1200
12DO
1200
1200
faon
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
41.0
57.0
114.0
171.0
187.0
210.0
228.0
0.0
0.0
218.0
201.0
I7q.o
Ib4.0
109.0
55.0
39.0
17.0
4.0
0.0
0.0
I
HP
0
1
4
9
13
2b
39
43
48
52
0
0
95
88
78
72
48
24
17
7
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALOE.
17.7 4.0 19.4
19. fa ?.b 23.9
18.5 8.5 23.9
Ib.1' 9.b 23.7
lb.2 10.5 23.8
9.5 15.8 22.4
2.4 23.4 20.1
1.8 25.3 18.5
1.8 27.0 17. b
.5 33.4 13.9
18.0 4.1 20.8
22.0 4.3 29.7
1.7 fa2.3 13.9
2.5 53. fa 15.7
2.7 50.2 lb.5
2.8 4b.7 17.7
2.7 43.4 17.4
12.5 24.4 21.4
14.2 21.7 22.3
lb.0 19.0 23.4
17.2 17.2 24. fa
17.7 4.0 21.0
23. b 4.4 4fa.7
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib
17
1R
19
20
21
22
23
CYCLE




ALOE
.7
1.2
1.*
l.b
3.0
5.0
q.4
7.b
7.2
7.8
1.0
1.2
7.9
8.3
7.8
b.O
3.5
3.7
l.H
1.7
3.b
.4
1.5
HC
5.9
4.4
7.8
11.5
13.4
29.0
25.7
24.0
25.1
112.3
S.7
142.8
85.3
10.5
9. fa
10. fa
17.5
it.s
12.8
13.0
30.1
5.5
bl.4
COMPOSITE








CO
b
Ifa
17
19
21
30
39
39
40
7474
7
11
11082
524
247
179
22b
112
105
97
91
18
138
HC
CO
N02
ALOE
BSFC
N02 FAC. HP
2. fa .070 0.0
8.3 .ObO .1
18.5 .ObO .2
3b.2 .050 .5
5b.8 .030 .4
142.3 .ObO l.b
3b2.7 0.000 0.0
38b.3 .040 1.7
Sbfa.3 0.000 0.0
135.8 0.000 0.0
3.8 .070 0.0
1.1 .120 0.0
17fa.3 .025 2.4
413.2 .055 4.8
331.1 .035 2.7
393.5 .ObO 4.3
111. fa .OfaO 2.9
77.2 0.000 0.0
58. fa .ObS 1.1
37.9 0.000 0.0
29.2 0.000 0.0
4.1 .080 0.0
.b .ObO 0.0
1.412 GRAM/BHP HR
lb.057 GRAM/BHP HR
4.532 GRAM/BHP HR
.129 GRAM/BHP HR
.813 LB/BHP HR
19
14
15
15
27
31
45
37
34
38
2fa
20
21
22
21
Ib
10
15
8
8
19
11
15
BRAKE
ALOE.
R
1.0
.3
.2
.2
.2
.2
.2
.2
.1
R
R
.1
.1
.1
.1
.1
.2
.1
.2
2.1
R
R





DRY
HC
374
114
184
242
258
392
2b8
250
254
1181
324
5198
482
fal
55
faO
109
131
123
135
335
310
1351
CONCENTRATION










3


3











*
•
•
•
*
*
•
»
•
•
•
•
•
•
•
•
•
*
•
*
*
»
•
SPECIFIC


3.
1.
1.
1.
1.
•
»
•
2.


•
•
•
•
•
•
*
1.
17.







HC
R
83
90
22
03
11
fab
5b
52
Ifa
R
R
89
12
12
15
37
faO
75
74
17
R
R


































CO
020
020
020
020
020
020
020
020
020
89Q
020
020
100
150
070
050
070
050
050
050
050
050
150
C02
11. 3b
8.93
9.03
9.14
9.14
9.b4
11.01
11.92
12.34
11.92
10.55
b.Sb
12.82
13.91
12.94
11.92
12.22
9.93
9.37
8.93
8.bO
10.09
4.11
NO
SO
bS
131
230
330
580
1138
1213
1725
430
bS
12
300
720
570
b70
210
210
Ib9
119
98
b9
4
GRAM/BHP-HR
CO
R
13. b
t.2
2.0
l.b
1.1
1.0
.9
.8
143.5
R
R
llfa.l
5.9
3.2
2.5
*.7
*.b
b.2
13.0
51.8
R
R





N02
R
7.3
4.5
3.9
4.4
5.5
9.3
9.0
11.8
2. fa
R
R
1.8
f.7
H.2
5.5
2.3
3.2
3.*
5.1
Ifa. 7
R
R



































-------
                  ENGINE 1-3




EFFECT OF "BEST COMBINATION" ON EMISSIONS




     GRAPHED RESULTS OF 23 MODE TESTS




              (AFTER CATALYST)

-------
500 ^
400
           LEGEND
                    1200 rpm
                    2300 rpm
            -
            O Average of results on 9 -5-72 Run 1
                   and 9-6-72 Runs 1 and 2, "Best Combination"
            Q Average of results of three last runs
                   in standard configuration made               •
                   9-7 and 9-8-72                             I
                                                                     837. 1
                                                                     580.9
350
300
o
ffi
^
OJ
a
0)
S
n)
250
200
150
 100
 50
      •n
                                                                 0_  1200
          10    20   30    40    50   60    70    80    90    100
                   Power, Percent Maximum at Given Rpm
       FIGURE W-l.  EFFECT OF POWER ON HC EMISSION RATE
                       "BEST COMBINATION"
                                  23 MODTT;
                                                                  Q_ 2300
                                                                     CT

-------
  18-..
  16
  14
          LEGEND
                  1200 rpm

                  2300 rpm
O Average of results on 9-5-72 Run 1

     and 9-6-72 Runs 1 and 2, "Best Combination"

Q Average of results of three last runs

     in standard configuration made 9-7

     and 9-8-72.
  12
  10
o
o
o
p — I

X
                                              £
                                                           f
                                                 19
ffi
h
0)
a
CO

5
«;
h
o
                                         /


                                        ti
                                             &
                                                      -6
                                                      j¥.—i
               20    30   40    50   60    70    80   90    100    CT

                  Power,  Percent Maximum at Given Rpm


      FIGURE W-2.  EFFECT OF POWER ON CO EMISSION RATE

                      "BEST COMBINATION"

                    ENGINE 1-3,  23 MODE TEST
                                                            2300

                                                            1200

-------
           LEGEND
o
o
-1
X
o
ffi
0]
E
oj
»H
o
                  1200 rpm
                  2300 rpm
           QAverage of results on 9-5-72 Run 1
                and 9-6-72 Runs 1 and 2, "Best Comb. "
           Q Average of results of three last runs
                in standard configuration made
                9-7 and 9-8-72.
               P
                                            J_
          10    20    30    40    50    60    70   80   90    100   CT
                   Power, Percent Maximum at Given Rpm
                                                                     1200
    FIGURE W-3.  EFFECT OF POWER ON NOX (AS NOz) EMISSION RATE
                         "BEST COMBINATION"
                       ENGINE 1-3,  23 MODE TEST

-------
     LEGEND
            1200 rpm
            2300 rpm
    O Average of results on 9-5-72 Run 1
         and 9-6-72 Runs 1  and 2 , "Best Combination"
       Average of results on three last runs
         in standard configuration made
         9-7 and 9-8-72
                                                GT_2300
                                                <3— 2300
                                                               1200
                                                               1200
    10
20   30    40   50    60    70    80   90    100   CT
  Power, Percent Maximum at Given Rpm
FIGURE W-4.   MANIFOLD VACUUM AS A FUNCTION OF POWER
                ENGINE 1-3,  23 MODE TEST

-------
   8 t-
o
i-H
X  5
 O
InrH
M-l
 CO
-a  4
§
o
   3
 x
S
O
u
             LEGEND
                      1200 rpm
                      2300 rpm
               Average of results on 9-5-72 Run 1
                 and 9-6-72 Runs 1  and 2, "Best Combination"
               Average of results of three last runs
                 in standard configuration made                f-3
                 9-7 and 9-8-72
                          &
                                                                       1200
                                                                     -2300
a.
                                                         I
                                               1
           10    20    30    40    50    60    70    80   90
                    Power, Percent Maximum at Given Rpm
                                         100   CT
      FIGURE W-5.
FUEL CONSUMPTION AS A FUNCTION OF POWER
   ENGINE 1-3,  23 MODE TEST

-------
                  ENGINE 1-3




EFFECT OF "BEST COMBINATION" ON EMISSIONS




       TABULAR NINE-MODE FTP DATA




 CONCENTRATION AND CALIFORNIA ARB MASS

-------
                     1-3
                                       RUN
                                                                              K =1.038
                                                                                           HUM =  Bfa  GR/LB
CYCLE 1
CYCLE 2
CYCLE  3
CYCLE *
FEDERAL
MODF
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
3 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ifa'HG
7 3 ' HG
8 Ib'HG
1 C.T.

1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
Q 1 | M
1 IDLE
2 Ib'HG
3 in'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
B Ib'HG
1 C.T.
<2I IM
AVERAGE
CONCENTRATION A$ MEASURED DILUTION ADJUSTED
HC co co? NO FACTOR HC co NO
*b
3*0
37
30
31
32
21
21
*27
*b
35
31
3*
15
35
31
31
38*

*1
3*
27
27
28
21
28
27
3b*
r r vri F
*i
33
3b
33
5*
35
?1
3b
333
t r vri F
.0*5 11.750
.053 1.b*0
.05* 11.710
.021 iO.HO
.025 8.180
.030 10.350
.nbl 12.830
.032 10.510
r nMP cm T Tfr- ^
U LJ n P U 3 J, IC.J™
.0*5 11.750
.033 10.210
.03* 11.7bO
.031 10.510
.022 1.030
.025 10.b7o
.051 12.280
.023 10.310
.082 b.2bO
COMPOS I TE )
.020 11.530
.022 10.180
.031 11.350
.020 1.180
.020 8.8*0
.020 10.280
.0*8 12.230
.020 10.*20
.070 b.2faO
rriMpni T TF i _
I* U nr U O 4 IC.J™
.020 11.530
.030 10.110
.033 11.550
.020 1.170
.020 B.730
.031 10.120
.0** 13.220
.020 1.770
.Ob* S.b*0
r nuonQT Tfr i _
SUM— (COMPOSITE VALUES
AVERAGE suM"--n-ui"iruai i c. VMLUCO
FOUR CYCLE COMPOSITE - REPORTED









77
10
b?8
*38
152
*13
517
582
11
77
too
5b7
*78
Ibl
513
700
Sbg
81

211
515
*73
5*7
183
532
b15
582
110
311
552
51*
522
1B3
553
b7*
b28
127

FOR CYCLES
FOR CYCLES
VALUES -



1.227
l.**5
1.233
l.*lb
l.bOfa
1.31*
1.12*
1.373
2.087
1.227
l.*02
1.227
1.373
1.515
1.353
1.175
l.*03
2.151

1.253
l.*18
1.373
l.**7
I.b33
l.*05
1.180
1.38b
2.1b8
1.352
l.*28
1.2*1
l.**8
l.b*8
l.*3h
1.181
l.*77
3.*0*

1 AND
HC
CO
NO

5b
*11
*5
*2
50
*S
33
*0
811
5b
*1
*8
*7
72
*7
3b
*3
821

51
*8
3*
31
*b
*1
33
37
781
51
*7
*5
*8
81
50
3*
53
718



0.35*(
0.35*(
0.35*(

.055
.075
.Obb
.0*1
.0*0
.0*2
.078
.0**
.lib
.055
.032
.0*2
.021
.035
.03*
,ot>o
.032
.177

.035
.031
.031
.021
.033
.038
.057
.038
.153
.035
.031
.0*1
.031
.033
.030
.052
.030
.15*



80.501)
.05b)
fa38.577)

1*
130
7bB
b20
2**
fa8?
b71
711
no
1*
Sbl
bib
bS7
270
b13
823
788
112

2b*
730
bOl
713
311
7*7
820
8Q7
338
3b*
788
b*3
75b
303
787
71b
137
305



+ n.
+ 0.
+ 0.

FACTOR
,03b
.081
.257
.081
.0*7
.081
.383
.081
.031
.03b
.081
.257
.081
.0*7
.081
.383
.081
.031

.03b
.081
.357
.081
.0*7
.081
.383
.081
.031
.03b
.081
.357
.081
.0*7
.081
.283
.081
.021



bS*( 57.573)
bS*( .0*3)
b5*( bll.bb?)
CORRECTED NO
W E
HC
2.031
*3.732
11 .b31
3.783
3.3*1
3.171
1.328
3.5*5
18.713
no Q "1 1
< 8 • i t -I
2.031
*.3b1
12.2lb
*.15b
3.37*
*.213
10.301
3.871
17.*11
b? n3 1
O C . U J A
1.8*8
*.210
B.83Q
3.*7B
8.1*1
3.b2b
1.353
3.331
lb.573
C-3 u -1 7
-* 3 • T f "
1.8*8
*.113
ll.SfaO
*.2S3
*.183
*.**3
l.blb
*.731
lb.7b*
fc 1 kt»8
w J. • O O »
80.501
C n C "3 "3
9 f • 3 f J
= bS
=
= b?8
= 70*
I G H
CO
.003
.007
.017
.00*
.003
.00*
.033
.00*
.00*
ObS
.003
.003
.011
.003
.003
.003
.017
.003
.00*
0*b
.001
.003
.010
.003
.003
.003
.Olb
.003
.003
n|i a
. Utc
.001
.003
.011
.003
.002
.003
.015
.003
.003
nil i
a U T X
.OSfa
.518
.0*7
.28b
.0*0
T E 0
NO
3.*00
11.57b
117.373
55.31fa
ll.*77
fal.177
181. 1b8
71.1*2
3.188
bOS 31 b
3.*00
*1.13b
178.772
S8.*30
12.b71
bl.b3*
232.715
70.175
*.03S
fa?l 838
1.508
b*.181
15*.3b3
70.*55
1*.0**
fab. 517
232. Ib2
71.810
5.008
L.QQ QU, Q
D D O M O T O
1.508
70.1**
Ifa5.0*b
b7.351
1*.17S
70.057
325.3*7
83.538
b.*13
7 i n * RK
' X U . ~ O a
b3B.577
I M Q L L T
fa"*1, bo r
PPM
PERCENT
PPM
PPM
        DILUTION FACTOR = 1*.5/(C02+0.S*CO+10.8*HC)

-------
          9-1-75
                     1-3
                                       RUN ?.
                                                                              K =1.038
                                                                                           HUM
                                                                                                   8fa   GR/LB
CYCLE 1
CYCLE 2
 CYCLE  3
 CYCLE  »
FEDERAL
MODE
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'HG
7 3'HG
H Ib'HG
1 C.T.

1 IPLE
2 Ib'HG
3 10 'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
» Ib'HG
S 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
AVERAGE
CONCENTRATION AS MEASURED DILUTION A 0 J
HC co cos NO FACTOR HC
*S .053 l?.QlO
30 .OSb 10.110
31 ,0?2 1?.*?0
2fa .052 10.B7D
27 .052 1.720
31 .flbh 11.73P
2* .11? 13.510
*2 .052 10.3bO
3b? .100 b.200

*5 .053 12.010
32 .0*1 10.720
12 ,0b2 12.0faO
10 .0*7 10.580
12 .0*1 1.300
17 .0*8 11.110
11 ,0b7 13.010
3* .0*5 10.110
318 .087 5.1*0
33 .0** 12.020
23 .0*1 11.330
11 .0*1 lO.lbO
20 .0** 1.750
11 .0*1 1.*?0
21 .Ob3 11.150
H .Obi 12.710
80 .0** 1.350
303 ,0?1 5.810
33 .0** 12.020
28 .0*2 10.710
21 .05* 11.1*0
27 .0** 10.*70
38 .0*2 1.110
27 .0*5 10.b20
25 .Dbb 12.bOH
28 .0*1 10.*00
322 .088 5.8bO
f r v f i P pfiMPn^TTF\™
SUM 	 (COMPOSITE VALUES
ntti- xr-ftuOnoTTer U A 1 1 1C Q
AVERAGE our-— — t uunr- uo * i c v«uwuw
FOUR CYCLE COMPOSITE - REPORTED






101
38b
b28
5b7
175
5*2
bbb
b7*
75

101
*?8
Sfa?
552
170
503
70S
571
72
10?
3b5
*13
552
157
551
b81
582
b?
10?
*1B
537
522
157
Sbl
70S
b2S
51
FOR CYCLES
VALUES -



1.1H2
1.312
l.lSb
1.32?
l.*83
1.221
1.0b3
1.310
2.182

1.H2
1.3*5
1.118
1.3bb
1.55*
1.300
1.110
l.*2b
2.212
1.201
1.27*
1.318
l.*8l
1.525
1.208
1.13b
1.533
2.3*8
1.201
1.3*7
1.201
1.378
l.Sb?
1.351
1.1*5
1.387
2.311
1 AND
BAND
M11U
HC
CO
NO

5*
31
3b
35
*0
3R
2b
58
801

5*
*3
1*
1*
11
22
21
*8
721
*0
21
25
30
21
25
22
123
711
*0
38
35
37
bO
37
21
31
7*7


0.35*(
0.35*(
0.3S*(

•
•
•
•
•
*
•
•
•

•
•
•
*
•
•
•
•
•
•
•
•
•
•
•
•
•
•
»
•
•
*
•
*
•
•
•


U S T E D
CO NO
Ob3
073
083
Obi
077
081
210
0?2
218

Ob3
Obb
07*
Ob*
Ob*
Ob2
07*
Ob*
111
053
Ob2
ObS
ObS
Ob3
0?b
Obi
Ob?
185
053
057
ObS
Obi
Obfa
Obi
0?b
ObS
20*


*S.bb*>

.D1SD
bb?.3S5)


130
SOb
72b
753
2bO
bbb
708
137
lh*

130
b*3
b71
75*
2b*
bS*
782
82b
IbS
128
*b5
faSO
817
231
b75
783
812
l*fa
128
b?l
fa*1
711
2*b
773
807
8fa?
137


+ 0.
+ 0.
+ 0.

WEIGHTING
FACTOR
,03b
.081
.257
.081
.0*7
.081
.283
.081
.021

.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021


bS*( *1.S*7)
b5*( .Obi)
bS*{ b72.5b2)
CORRECTED NO
W E
HC
1.131
3.503
1.213
3.071
1.882
3.311
7.223
5. lib
Ib. 81*
S? ??S
3 C . K C •*
1.131
3.831
S.bl*
1.21b
,87b
l.lb?
S.IbB
*.315
15.305
31 103
l.*2b
2.bQ8
b.*3*
2.b35
1.3bl
2.258
b.HO
10.115
1*.137
lit) kfl^
T D » O O 9
l.*2b
3.358
1.007
3.312
2.711
3.2bS
8.103
3.*Sb
15.bB3
en IL i n
90 • HID
s if g
=
~ b?0
= bib
I G H
CO
.002
TED
NO
».b?7
.007 *5.078
.021
.OOb
.00*
.00?
.051
.OOb
.005
118
. J. AO
.002
.OOb
.011
.OOb
.003
.OOb
.021
.OOb
.00*
O7?
. U r C
.002
.OOb
.017
.OOb
.003
.00?
.020
.OOb
.00*
n L Q
m U D T
.002
.005
.017
.005
.003
.005
.021
.OOb
.00*
f| • Q
.Bb"i
.015
.188
.078
.7*0
.208
I8b.b30
bb.1B2
12.201
51.213
200.***
83.383
3.*3b
bb2.123
*.b77
57.228
l7*.Sb5
b?.U3
12.*13
58.205
221. *»S
?3.*77
3.*b5
(.7? 5(17
D r C . 3 O »
*.b25
*1.31*
lbb.131
72.737
11.250
bO. 015
221.558
?1.*08
3. OSb
Uk i n k i
DDX * UD l
*.b25
51.781
lbfa.78»
b*.087
ll.SbS
hB.BOB
228.512
77.1*8
2.87*
b8* . Ob3
bb?.35S
L* 1 3 C C. a
b 72 . 9bc
PPM
PERCENT
PPM
PPM
         DILUTION  FACTOR  =  1*.S/(C02+0.S*CO+10.8*HC)

-------
          1-5-72
                     1-3
                                       RUN  I
                                                                               K  =  .752
                                                                                            HUM  =   21   GR/L8
CYCLE 1
CYCLE 2
CYCLE  3
CYCLE *
FEDERAL
MHOF
1 IDLE
2 ib'HG
3 10'HG
H Ib'HG
S 11'HG
b Ib'HG
7 3'HG
R Ib'HG
1 C.T.
1 IDLE
?. Ib'HG
3 10'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

1 IDLE
2 Ib'HG
3 10'HG
» Ib'HG
5 H'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
C 1 IM«
1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 IS'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.
Cl IM
AVERAGE
CONCENTRATION AS MEASURED DILUTION ADJUSTED WEIGHTING
HC co co? NO FACTOR HC co NO FACTOR
38 .021
?s ,o?.o
37 .030
21 .020
ao ,o?o
e? ,o2n
?3 .n*i
ss .nao
11.710
10. POO
11.370
1.120
8.850
1.120
12.020
1.150
78
330
572
311
130
*02
587
*51
2b* .073 b.OOn *7
38 ,0ai 11.710
13 .022
10 .021
1 .020
10 .020
32 .0*7
1 .1*3
278 .IJ20
272 .071

28 .020
20 .021
21 .022
11 .020
21 .020
2* .02*
22 .0*3
31 .020
312 .Obb
~fCYr\ F PftMf
28 .020
22 .020
2* .021
21 .020
20 .020
22 .020
20 .103
18 .020
11.000
10.110
1.180
1.750
11.250
12.1bO
7.b30
b.0*0

11.800
10.010
11.1*0
1.*20
8.810
10.720
12.1bO
1.8*0
b.070
11.800
io.no
11.180
1.170
8.830
10.050
12.*00
1.130
377 .070 b.330
/•rvn F rfiMPfmTTF^.
SUM 	 (COMPOSITE VALUES
nil.. 	 . r/*sskinrknvTC- WAi I 1C O
AVERAGE oun---ii.unruo.Lic vnuuc-o
FOUR CYCLE COMPOSITE - REPORTED






78
377
373
*58
ISb
*Q5
b!2
527
52

183
3*8
377
*?8
183
512
b!2
Sb7
110
183
*18
*58
527
251
570
b7*
517
157
FOR CYCLES
VALUES -


1.225
l.*lb
1.270
l.*57
1 ,b33
l.*57
1.501
l.*51
2.21*
1.225
1.315
1.32b
l.S7b
l.*8*
1.282
1.112
l.B2b
2.277

1.225
1.***
1.218
1.53*
l.b*0
1.3*8
1.188
I.*b7
2.252
1.22S
l.*21
1.213
1.*SO
I.b3b
l.*38
1 .Ib3
l.*5b
2.1*1
1 AND
3 AMD
MINI/
HC
CO
NO
*7
35
3*
31
33
3?.
28
*1
bOb
*7
17
13
1*
15
*1
10
508
fall

3*
21
27
21
3*
32
2b
*5
702
3*
31
31
30
33
32
23
2b
807


0.35*(
0.35*(
0.35*(
.02b
.028
.038
.021
.033
.021
.051
.021
.Ifa'
.02b
!o21
.028
.032
.030
.ObO
• J 51
.037
. 1^2

.02*
.030
.021
.031
.033
.032
.051
.021
.1*1
.02*
.021
.027
.021
.033
.021
.120
.021
.150


51.070)
.057)
511. 7bg)
1b
*fa7
727
581
212
58b
70S
bbfa
108
1b
*1b
*15
722
232
511
bSO
1b2
118

22*
502
*8l
733
300
blO
727
832
2*8
22*
712
512
7b*
*11
820
78*
8b1
33b


* O.b5*(
+ 0.faS*(
t 0.faS*(
.03b
.081
.257
.081
.0*7
.081
.283
.nai
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021

.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021


»*.S1S)
.0*7)
b*7.1»7)
W E
HC
I.b75
3.158
8.815
2.723
1.S3S
2.858
7.820
3.bl7
12.71b
I.b75
1.528
3.*01
1.2fa2
,b17
3.b5a
2.832
*5.1B2
13.00*

1.23*
2.570
7.00*
2. 515
l.blB
2.871
7.317
*.0*8
u it n Q"i
T T » U i r
1.23*
B.7^S
7.17*
2.701
1.538
2. Bib
b.SBQ
2.332
lb.151
uu q3^
~ T • T— a
51.070
litt C 1 C
f t • 3 A. a
• *i
s
= bB7
I G H
CO
.001
.003
.010
.003
.002
.003
.017
.003
.00*
.001
.003
.007
.003
.001
.005
.0*5
.003
.003
n7?
. U fC
.001
.003
.007
.003
.002
.003
.01*
.003
.003
nap
t U 3 B
.001
.003
.007
.003
.002
.003
.03*
.003
.003
nc?
e U3 f
.057
flu -J
» wf f
.fad
.051
.7b2
I E 0
NO
3.*38
*l.b01
I8b.7*7
51.73b
1.175
52.111
111.S7b
51.212
2.2b*
bOb 7*8
3.*38
**.121
127. ISb
b*.2*b
10.881
*b.211
112.570
BS.b52
2.*8b
57b 777
B.ObB
**.7B1
125.738
bS.272
1*.10*
bl.*11
BOS. 751
7*. 03*
5.201
(.nil sin
OUT m 3 AU
B.ObB
b3.35b
152. Ib*
b7.SSl
11.303
73.1*7
221.738
77.357
7.051
LOO QBIL
D O ~ . T IS T
511. 7b2
L.VL7 1 II 7
OT f « IT f
PPM
PERCENT
PPM
                                                                                  CORRECTED NO
        DILUTION  FACTOR  =  l*.5/fC02+0.5*CO+10.8*HC)

-------
          1-1-78
                     1-3
                                       RUN 1
                                                                              K = 1.03
                                                                                           HUM  =   8b   GR/LB
CYCLE 1
CYCLE 2
 CYCLE  3
CYCLE 4
MASS
MODE
1 IDLt
5 Ib HG
3 10 HG
4 Ifa HS
B 19 HG
b ik HG
7 3 HG
B Ib HG
S C.T.
1 IDLE
2 Ib MG
3 10 HG
* Ib HG
S IS HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 IS HG
b Ifa HG
7 3 HG
8 Ib HG
S C.T.
Q 1 1 M
AVERAGE
CHNCfcNTR/niON AS MEASURED
HC co cna NO
4b .C14S 11.75 77
3*0 .052 S.b4 SO
37 .05* 11. 7S b28
30 ,02S 10. IS 438
31 .025 8.18 152
32 .030 10.35 493
2S .ohS IP. 83 5S7
2S .032 10. SI 582
42? .OS* b.44 SI
4fa .0*5 11.75 77
35 .023 10. 2S too
31 .03* 11. 7b 5b7
34 .021 10.51 478
45 .022 S.03 IbS
35 .025 10. b7 512
31 .051 12.28 700
31 .023 10. 2S 5b2
384 .082 b.2b 8S
41 .020 11.53 211
3* .022 10.18 515
27 .031 11.35 472
27 .020 S.S8 547
?8 .020 8.84 183
21 .020 10.28 532
28 .048 12.23 bSS
27 .020 10.42 582
3fa4 .070 b.2b 110
41 .020 11.53 211
33 .020 10.11 552
3b .033 11.55 514
33 .020 S.S7 522
54 .020 8.73 IBS
35 .021 10.12 552
2S .044 12.22 b74
3b .020 S.77 b2B
332 ,0b4 S.b4 127
TOTAL
CARBON
11.845
10. OSS
11.884
10.251
S.038
10.415
12.S30
10.573
b.SSS
11.845
10.351
11.83b
10.5b8
S.101
10.733
12.3b4
10.34b
b.7S7
11.5S4
10.23S
11.410
10.02S
8.BSO
10.331
12.308
10.4faS
b.723
11.5S4
lO.lbb
Il.b22
10.02b
B.BOB
10.17S
12.2S5
1.821
b.0b3
SUM 	 (COMPOSITE VALUES FOR CYCLES 1 AN
FUEL
CONS.
IBlb
8410
121fa7
84SO
SS02
84SO
18705
84SO
ISO?
181b
84SO
121b7
84SO
5S02
84SO
18705
8490
ISO?
IBlb
84SQ
121b7
84SO
5SQ2
84SQ
18705
8410
ISO?
181b
84SQ
I2lb7
84SO
5S02
8410
18705
84SO
ISO?


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.35( 2.1)






CO 0.
N02 0.

35( 3)
35( b.O)

ADJUSTED (MASS)
HC CO N02
8
310
41
27
22
28
45
25
12b
8
31
43
30
32
30
51
87
117
7
30
31
25
20
2b
4fa
24
112
7
30
41
30
31
32
48
34
113


+ n
+ 0
+ 0

14
81
112
4S
33
41
202
52
52
14
38
71
34
21
40
ISb
38
47
b
37
b?
34
2?
33
147
33
40
b
34
?0
34
27
35
135
35
41


.bS( 2
.fa5(
.b5( fa
CORRECTED
4
25
213
120
33
133
287
155
8
4
101
114
12?
3b
134
352
153
8
11
142
Ib?
154
40
145
351
157
10
11
153
171
147
41
153
340
180
13


.2) =
3) =
.?) =
N02 =
WT.
FACT.
.232
.077
.I*?
.077
.057
.077
.113
.077
.1*3
.232
.0??
.147
.077
.05?
.077
.113
.0??
.143
.232
.0??
.14?
.07?
.057
.0??
.113
.077
.143
.232
.077
.147
.077
.057
.07?
.113
.07?
.143


2.442
2.1
b.448
b.bSb
WEIGHTED (MASS)
HC CO N02(K)
1.8
23. S
b.O
2.1
1.2
2.2
5.1
1.1
18.0
3c
• 3
1.8
2.4
b.4
a. 3
1.8
2.3
5.7
2.1
lb.7
E3
. 3
l.fa
8.3
4.b
I.*
1.1
2.0
5.2
1.8
15. S
21
. X
l.fa
2.3
b.O
2.3
2.2
2.4
5.4
2.b
lb.1
S3
. 3
2.9
2.2
(MASS)
(MASS)
(MASS)
(MASS)
3
7
Ib
4
2
4
23
4
7
U
T
3
3
10
3
2
3
18
3
7
1
3
10
3
2
3
1?
3
fa
1
3
10
3
2
3
15
3
b
3




.9
1.1
31.4
1.3
1.1
10.3
32.4
11.1
1.2
S3
• f
.9
•8.4
28.4
1.8
2.1
10.4
31.?
11.8
1.2
bu
.T
2.5
10.1
24. b
11.8
2.3
11.2
31. fa
18.1
1.5
bi
.B
2.5
11.8
2fa.3
11.3
2.3
XI. B
38.5
13.1
1.1
bQ
. B
b.O
b.7



HP
0
IB
38
18
3
18
57
18
0
0
18
38
18
3
18
57
18
0
0
18
38
18
3
IB
57
IB
0
0
18
38
18
3
18
57
18
0






-------
          H-l-72
                     1-3
                                       RUN  2
                                                                             K = 1.03
                                                                                          HUM =  Sb  GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
MOUE
1 IDLE
2 lb HG
3 \0 HR
* lb HG
5 11 HG
b lb HG
7 3 HG
B lb HG
1 C.T.
SUM-----
1 IDLE
2 lb HG
3 10 HG
* Ifa HG
S 11 HG
b lb HG
7 3 HG
8 lb HG
1 C.T.
1 IDLE
2 lb HG
3 10 HG
* Ifa HG
5 11 HG
b Ifa HG
7 3 HG
8 lb HG
1 C.T.

1 IDLE
2 lb HG
3 10 HG
* lb HG
S IS HG
b lb HG
7 3 HG
8 lb HG
S C.T.
A U C D A t* C
AVERAGE
A M C D A P F
CONCENTRATION AS MEASURED
HC CO C02 NO
*S .053 12. OS
30 .OSb 10. SS
31 .072 12. *7
?b .052 10.87
?? .052 S.72
31 .Obb 11.73
2* .IS? 13.51
*2 .052 10. 3b
3b? .100 b.20
*5 .053 12. OS
32 .0*S 10.72
12 .Qb2 12. Ob
10 .0*7 10.58
12 .0*1 1.30
17 .0*8 11.11
11 .Ob? 13.01
3* .0*5 10.11
318 .087 S.Sif
33 .0** 12.02
23 .0*1 11.33
11 .0*1 10. lb
20 .0** 1.75
IS .0*1 S.*7
21 .Ob3 11. SS
IS .Obi 12.71
80 .0** S.35
303 .07S 5.81

33 .0** 12.02
28 .0*2 10.71
21 .05* 11.1*
27 .0** 10. *7
38 .0*2 1.11
27 .0*5 10. b2
25 .Obb 12. bo
28 .0*1 10. *0
322 .088 S.Bb
QtlM«««ff*nMDnQTTC WAI HC C
5)U n ™~™^ ^ U nr UO JL I fc VMLUtO
eiiu 	 srnMDncTTc- WAI litre
A V t K A w C o w ri ™ ™ ™ ^ \* u "~ir v w j, it, T n ^ u <— <~>
FOUR CYCLE COMPOSITE - REPORTED






10S
3Bb
b?8
Sb?
175
5*2
bbb
fa7*
75
101
*78
Sb?
552
1?0
503
70S
571
72
10?
3bS
*S3
552
157
sss
bBS
582
b2

10?
*S8
537
522
157
Sbl
705
b25
51
TOTAL FUEL
CARBON CONS.
12.112 IBlb
11.078 8*10
12.575 121b?
10.150 B*1n
1.801 5102
11.821 B*10
13.733 18705
10.*57 8*10
b.blb HO?
12.112 l8lfa
10. Bo* 8*SQ
12.135 121b7
10.b3B 8*10
1.35* 5102
ll.l?b 8*10
13.018 18705
10.112 8*10
b.370 HO?
12.100 I81b
11. *0* 8*SQ
11.030 121b7
S.Slb 8*Sfl
S.532 5S02
12.03b 8*SO
12.7S2 18705
1.*80 8*10
b.21fa 1107

12.100 IBlb
10.782 B*10
12.025 121b7
10.5*3 8*10
1.273 5102
10. bl* 8*10
12.b13 18705
10.*71 8*10
b.21fa HO?
ADJUSTED (MASS)
HC CO N02
7
25
32
??
18
2*
35
37
113
7
27
13
1
8
1*
21
31
103
5
IB
23
11
13
lb
30
77
100

5
2*
32
23
2fa
23
*0
2*
JOS
lb
87
1*1
81
b3
Ifa
5*2
85
SB
lb
78
12b
?fa
52
7*
113
?b
53
13
7*
101
77
51
10
180
80
*1

13
fa?
110
72
5*
72
lib
80
5*
5
18
202
l*b
35
121
301
182
7
5
125
181
l*b
3b
127
33*
IbO
7
S
10
181
151
32
131
33*
173
b

5
130
180
1*0
33
ISO
3*5
Ib8
b
WT.
FACT.
.232
.077
.1*7
.07?
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.0??
.1*3

.232
.077
.1*7
.0??
.057
.077
.113
.077
.1*3


VALUES - HC o.3S( i.s)



CO 0.35( b)
N02 0.35( fa. 3)

+ 0
•t- 0
+ 0

.faS(
.b5(
.bS(
CORRECTED
1.1) =
*) =
b.*) s
Noa =
l.Sbb
*.?
b.33S
b.5*3
WEIGHTED (MASS)
HC CO N02(K)
1.7
1.1
*.B
1.7
1.0
1.1
*.o
2.8
lb.1
2n
• u
1.7
2.1
1.1
.7
.5
1.1
3.3
2.*
1*.7
1L
* D
1.2
1.*
3.3
1.*
.7
1.2
3.*
b.O
1*.*
1 Q
* . ~
1.2
1.8
*.7
1.8
1.5
1.8
*.S
1.1
15.1
1Q
• "
1p
• B
1Q
• "
(MASS)
(MASS)
(MASS)
(MASS)
,
7
21
fa
*
7
bl
7
8
*
b
18
b
3
b
22
b
8
u
T
3
b
lb
b
3
7
20
b
7
H
3
5
lb
b
3
b
22
b
8
U
T
|L
T



1.3
7. fa
21.7
11.2
2.0
1.1
3*.0
1*.0
1.0
ba
* c
1.3
l.b
27.7
11.3
2.0
1.8
37.8
12.3
1.0
bit
.'*
1.2
b.1
2fa.S
12. a
1.8
10.1
37.8
13.3

ba
• 9
1.2
10.0
2b.S
10.7
1«1
11. S
31.0
12.1
.8
bf
• 3
b.3
bu
.*



HP
0
18
38
18
3
18
S?
18
0
0
18
38
18
3
18
5?
18
0
0
18
38
18
3
18
5?
18
0

0
18
38
18
3
18
57
18
0







-------
          q-S-7g
                     1-3
                                       RUN  I
                                                                                  .7b
                                                                                          HUM =  21  GR/LB
CYCLE 1
CYCLE 3
 CYCLE  3
CYCLE *
MASS
MODE
1 IDLE
3 lb HG
3 in HG
* lb HG
5 19 HG
b Ifa HG
7 3 HG
a IB HG
* C.T.
1 IDLE
3 lb HG
3 10 HG
* lb HG
5 11 HG
b lb HG
7 3 HG
8 lb HG
' C.T.

1 IDLE
3 lb HG
3 10 HG
* lb HG
5 11 HG
b lb HG
7 3 HG
8 lb HG
1 C.T.
1 IDLE
3 Ifa HS
3 10 HG
* lb HG
5 19 HG
b lb HG
7 3 HG
8 lb HG
1 C.T.
Ol IM
AVERAGE
CONCENTRATION AS MEASURED
HC CO C03 NO
38 .031 11.79 78
35 .020 10.20 330
37 .030 11.37 572
21 .030 9.9? 399
30 .D20 8.85 130
23 ,n?0 9.93 *02
33 .0*9 12.02 587
28 .020 9.95 *51
2b* .073 b.OO *7
38 .021 11.79 78
13 .022 11.00 377
10 .021 10.91 373
S .020 1.18 *58
10 .030 9.75 15b
32 .0*7 11.25 *oS
* .1*3 13. lb b!2
378 .020 7.b3 527
27S .071 b.O* 52

28 .030 11.80 183
20 .031 10.01 3*8
31 .033 11.1* 377
19 .030 1.*2 "*78
31 .030 8.81 183
3* .03* 10.73 513
22 .0*3 12. lb b!2
31 .020 9.8* 5b7
312 .Obfa b.07 110
38 .020 11.80 183
23 .030 10.11 *18
3* .031 11.18 *S8
31 .030 9.97 537
20 .030 8.83 351
33 .030 10.05 570
30 .103 13. *0 b7*
18 .020 1.13 517
377 .070 b.33 157
TOTAL
CARBON
11.853
10.2*7
ll.*39
9.9h3
8.893
9.9b*
13.01*
10.000
b.358
11.853
11.03b
10.9*3
1.310
9.781
11.332
13.113
7.150
b.*OS

11.850
10.053
11.185
l.fbl
8.853
10.770
12.227
9.813
b.*73
11.850
10. IS*
11.237
10.013
8.872
10.01*
12.525
l.lbl
b.807
SUM— (COMPOSITE VALUES FOR CYCLES 1 AN
« i . .• »*>**>• **«*Awr- Uiiiirre cnn ** w c« i c O 3 * kl
FUEL
CONS.
I8lb
8*10
121t7
8*10
5102
8*10
18705
8*10
1107
I8lb
8*10
131b7
8*10
5103
8*10
18705
8*10
H07

I81b
8*10
131b7
8*10
5103
8*10
1B705
8*10
HO?
iBlb
8*10
131b7
8*10
5102
8*10
18705
8*10
1107


FOUR CYCLE COMPOSITE - REPORTED VALUES - HC 0.3S( 2.1)






CO 0.
N02 0.

35( 3)
35( S.b)

ADJUSTED (MASS)
HC CO N02
b
32
31
19
1»
20
38
2b
Bb
b
11
12
9
7
3b
1*
331
87

5
18
25
18
IS
20
3b
29
19
5
20
28
19
1*
30
33
17
11*


+ 0
+ n
+ 0

b
33
bS
3*
37
3*
153
3*
**
b
3*
*7
37
2*
71
*13
»3
*3

b
3b
*8
3b
37
38
133
35
31
b
3*
*b
3*
37
3*
311
3*
*0


.bS(
.bS(
.b5(
CORRECTED
*
11
302
113
21
11*
301
131
5
*
lb
138
1*0
31
101
210
187
5

1
18
13b
1*2
*1
13»
311
Iba
11
1
138
IbS
1*8
55
151
33*
Ibl
IS


1.8) 8
3) =
b.2) B
NOB =
WT.
FACT.
.233
.077
.1*7
.077
.057
.077
.113
.07?
.1*3
.333
.077
.1*7
.077
.057
.077
.113
.077
.1*3

.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.233
.077
.1*7
.077
.057
.077
.113
.077
.1*3


1.811
3.1
5.170
*.5*b
HEIGHTfcD (MASS)
HC CO N02CK)
1.5
1.7
*.b
1.5
.8
l.b
».3
2.0
13.3
1J
* f
l.S
.8
1.8
.7
.*
2.0
l.b
2».7
13.5
8L
. o
1.1
1.*
3.b
l.»
.S
i.b
*.l
2.2
1*.2
1^
. /
1.1
1.5
».l
l.S
.8
l.S
a.b
1.3
lb.3
ID
. "
S.I
1Q
. 8
(MASS)
(MASS)
(MASS)
(MASS)
2
3
1
3
2
3
17
3
b
2
3
7
3
1
5
*7
3
b
i^
1
3
7
3
2
3
15
3
b
1
3
7
3
3
3
35
3
b
3




.1
7.0
31.7
8.7
l.fc
8.8
3*.l
10.0
.7
57
• '
.1
7.*
30.3
10.8
1.8
7.8
32.8
!».*
.7
Sc
»*
2.2
7.S
20.0
11.0
2.3
10.3
35.1
13.*
1.5
SQ
.8
2.2
10. b
a».e
11. »
3.2
ie.3
37.8
13.0
2.1
bi
• o
S.b
b.2



HP
0
18
38
18
3
18
57
18
0
0
18
38
18
3
18
57
18
0

0
IB
38
18
3
18
57
18
0
0
18
38
18
3
IB
57
18
0






-------
                  APPENDIX X




                   ENGINE 1-3




FINAL EMISSION TESTS IN SAME CONFIGURATION




  AT START OF CONTROL TECHNOLOGY STUDY




                 TABULAR DATA




         EXPERIMENTAL 23 MODE MASS




        NINE-MODE FTP CONCENTRATION




        NINE-MODE CALIFORNIA ARE MASS

-------
 ni T
-07-
DM,, ,  C^R°JECT ll-28?7-01  CONTROL TECHNOLOGY
RUN-1  ENG.1-3 72 VERSION  STD.JETS + TIMING
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
Ib
17
18
iq
20
21
22
23
DYNA.
SPEED LOAD HP
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.
5.
18.
fl.
57.
llf.
171.
187.
210.
228.
0.
0.
2fb.
22b.
202.
185.
123.
b2.
ff .
20.
5.
0.
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
f
q
13
2b
sq
f3
f8
52
0
0
108
qq
88
81
Sf
27
iq
q
2
0
0
MAN. FUEL A/F
VAC. LB/HR RATIO ALOE.
18.1 f.l ifa.g
IS.q 7.5 lfa.3
1S.1 8.3 lb.5
17.1 10,1 17. f
15.8 11.0 17. S
10.1 lb.1 18.5
2.b 23.8 17.5
1.7 25.1 Ib.S
1.5 27.2 15. b
.3 33.1 13. f
17. S f.O 15.1
22.0 f.2 iq.7
1.3 bS.8 13.0
2.1 58. f lf.0
2.3 53.S If.q
2.f 51.3 15.7
10. f 32.1 Ib.b
If. 7 23.2 17.2
lb.1 20.8 17. b
17. b 17.8 18.0
18. q 17.1 18. b
18.0 f.l lb.1
23.8 f.3 2f.7
CALCULATED GRAM/HR WT. WT.
MODE
1
2
3
f
5
b
7
8
q
10
11
12
13
If
15
Ib
17
18
iq
20
21
22
23
CYCLE




ALDE
.8
l.b
2.q
3.1
f.l
8.3
23.3
2b.3
2f .3
15.5
1.3
2.3
15.5
27.2
20.8
13.7
q.f
b.3
5.3
3.5
f.8

3\Z
HC
3S.1
18.5
32.0
51.0
f8.3
77.5
81. f
113.3
Ib7.0
2bb.b
ff .0
7S1. 1
fSl.S
2f3.8
102.8
3f.2
SS.B
fO.S
2f.7
12.8
51. f
38. q
75fa.S
























COMPOSITE












CO
57f
225
118
71
?q
121
ibq
370
18f5
870b
?oq
121
isqqi
112fb
b512
3f8b
fOB
311
23b
i?q
17f
52q
132
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.1 .070 0.0
b.8 .ObO .1
18.0 .ObO .2
Sb.f .050 .5
?q.o .030 .f
22f.5 .ObO l.b
f02.b 0.000 0.0
f7f.S .OfO 1.7
BOS. 5 0.000 0.0
2fq.o o.ooo o.o
2.3 .070 0.0
.5 .120 0.0
fSS.l .025 2.7
723. fa .055 S.f
531.3 .035 3.1
f?q.3 .ObO f.S
qSO.f .ObO 3.2
301.5 0.000 0.0
177.3 .ObS 1.3
81.3 0.000 0.0
fl.O 0.000 0.0
3.0 .080 0.0
1.0 .ObO 0.0
8.13b GRAM/BHP HR
70.S10 GRAM/BHP HR
8.2b7 SRAM/BHP HR
.285 GRAM/BHP HR
.7fO LB/BHP HR
28
2S
f8
fl
fS
faf

IfO
130
?q
50
58
fl
75
58
37
3S
3f
31
2f
3f
31
faf
BRAKE
ALDE.
R
l.f
.7
.3
.3
.3
.fa
.fa
.5
.3
R
R
.1
.3
.2
.2
.2
.2
.3
.f
2.2
R
R





DRY CONCENTRATION
HC CO C02
28bf
730
llfb
Iff3
1228
128q

i2qq
1S20
2S33
3bOO
f3313
27f2
Iff!
blS
200
800
f?q
317
isq
775
2835
32fb8
2.080
.ffO
.210
.100
.100
.100
.100
.210
1.050
f ,7fO
2.870
.350
5.350
3.2SO
l.SfO
1.010
.180
.180
.ISO
.130
.130
1.S10
.280























11. an
12. Sf
13.18
12.71
12. f?
11. S2
12.71
12.71
12. Sf
11. fB
11. bO
5.75
11. 3b
12.22
12.71
12. sq
12.71
12. oq
11. S2
11.72
11. f8
11. 3b
f ,8f
NO
fb
81
1S5
f80
bOS
1125
IfSO
Ib38
17b3
825
Sb
8
780
1288
Sb3
8f5
2550
10b3
b85
3bO
18b
fab
13
SPECIFIC GRAM/BHP-HR
HC
R
lb.17
7.77
S.fS
3.71
2.q?
2.08
2.b5
3.f8
5.12
R
R
f.f?
2.fb
l.lb
.f2
l.b?
1.51
1.28
l.f?
33. fq
R
R







ISfa
28
7
fa
' f
f
8
38
Ib?


l?b
113
73
f3
?
11
12
20
?q







CO
R
.7
.8
.fa
.1
.7
.3
.7
.5
.1
R
R
.3
.b
.b
.0
.b
.f
.3
.f
.b
R
R





N02
R
b.O
f.f
fa.O
b.l
8.b
10.3
11.1
10. b
f.S
R
R
f.2
7.3
b.O
5.S
17. fa
11.1
S.2
S.3
18.7
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
1-07-72 RUN-2 ENG.1-3 72 VERSION  STD.JETS + TIMING

MODE
1
?.
3
4
5
b
7
8
q
10
11
12
13
14
15
Ib
17
18
11
BO
21
22
23

DYNA,
SPEED LOAD
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
41.0
57.0
114.0
171.0
187.0
210.0
228.0
0.0
0.0
24b.O
22b.O
20b.O
185.0
123.0
b2.0
44.0
20.0
"5.0
0.0
0.0
•
HP
0
1
4
q
13
2b
3S
43
48
52
0
0
108
sq
SO
81
54
27
iq
q
2
0
0
MAN. FUEL A/F

VAC. LB/HR RATIO ALDE.
17. q f.O lb.2
11.1 7.4 Ifa.h
11.1 8.2 lb.7
17.2 q,8 17.4
15. q 10.8 17. b
10.1 lb.0 18.1
2.b 23. b 17.4
1.7 25. 4 lb.3
1.5 27.3 15.3
.3 32. q 13.3
18.0 4.0 15.4
22.0 4.2 20.3
1.3 bb.O 12.8
2.2 58.3 13. q
2.3 54.1 15.1
2.4 50. q lb.2
10.4 32.3 lb.1
14.8 23.0 17. b
lb.2 20.8 18.1
17.7 17. fa 18.7
iq.o is.i iq.i
18.0 4.1 lb.0
23. q 4.3 24.2
CALCULATED GRAM/HR WT. WT.
MODE
1
?.
3
4
5
b
7
8
q
10
1.1.
12
13
It
15
Ib
17
18
iq
20
PI
22
23
CYCLE




ALDE
.q
l.b
3.3
3.5
5.1
8.b
17.1
22.2
11.5
17.7
J.f
2.5
17. b
2P.2
21.2
12.4
q.i
5.b
4.q
2.q
3.1
.8
3.5
HC
3b.3
22.2
35.0
31.2
51.2
i3.s
q7.8
130. b
170. b
2qs.b
38.5
874. b
514.4
281.2
107. q
35. S
q?.s
41.4
2b.q
If. 3
77.0
4b.q
873.1
COMPOSITE








CO
108
155
qq
qo
77
in
250
832
2iq2
8b35
535
132
18898
107bb
b083
2b84
427
2fa3
243
20b
158
b7b
lib
HC
CO
N02
ALDE
BSFC
N02 FAC. HP
2.3 .070 0.0
8.b .ObO .1
iq.o .obo .2
53.5 .050 .5
bs.q .030 .4
224.4 .ObO l.b
310.2 0.000 0.0
501.4 .040 1.7
488.3 0.000 0.0
248.5 0.000 0.0
2.b .070 n.O
.5 .120 D.O
40q.O .025 2.7
b?q.5 .055 5.4
53b.b .035 3.2
521. q .OfaO 4.1
q?4.5 .ObO 3.2
3Dq.3 0.000 D.O
175.4 .ObS 1.3
73.2 0.000 0.0
34. q 0.000 0.0
2.5 .080 0.0
.5 .ObO 0.0
1.00? GRAM/BHP HR
fa?. 178 GRAM/BHP HR
8.311 GRAM/BHP HR
.283 GRAM/BHP HR
,73b LB/BHP HR
32
31
5b
47
b2
b8
Ib
122
108
11
54
b2
4b
78
58
33
3b
30
28
20
30
2b
70
BRAKE
ALDE.
R
1.4
.8
.4
.»
.3
.4
.5
.4
.3
R
R
.2
.3
.2
.2
.2
.2
.3
.3
1.8
R
R





DRY
HC
2787
100
1282
1141
1341
1511
118b
1553
2044
3278
3115
4fa7b8
2881
Ib83
b34
2L
830
478
335
211
1281
3423
38087
CONCENTRATION
CO
1.
•
•
•
•
•
•
*
1.
4.
2.
*
5.
3.
1.


•
•
*
•
2.
*
SPECIFIC


11.
8.
4.
3.
3.
2.
3.
3.
5.


4.
2.
1.
•
1.
1.
1.
1.
35.







HC
R
47
50
18
13
sq
50
Ob
5b
b7
R
R
77
84
20
44
Bl
52
31
b3
18
R
R





550
310
180
130
100
100
150
410
300
740
140
350
240
110
770
770
80
. iO
150
150
130
440
250























C02
12.01
13.18
13.33
12.71
12.51
12.01
12.71
13. Ob
13.33
11.48
12.22
5.1b
11.24
12.4?
12.51
12.51
12.22
11.84
11. bO
11. bO
11.13
10.78
4.45
NO
54
81
210
470
520
1150
1425
1825
17b2
830
b3
8
falO
1225
150
125
2500
1075
bbO
325
175
54
b
GRAM/BHP-HR


135
24
1
5
4
b
11
45
IbS


175
108
b7
33
7
1
12
23
72







CO
R
.5
.1
.b
.1
,b
.*
.S
.7
.8
R
R
.4
.8
.4
.1
.1
.7
.b
.5
.1
R
R





N05
R
5.8
4.b
5.7
5.1
8.b
10.0
11.1
10.2
4.8
R
R
3.8
fa.1
5.1
b.5
18.1
11.4
1.1
8.4
lb.0
R
R



































-------
                PROJECT 11-2877-01  CONTROL TECHNOLOGY
1-08-72 RUN-3 EN6.1-3 72 VERSION  STD.JET3 f TIMING

MODE
1
2
3
4
5
b
7
8
9
10
11
12
13
14
15
Ib
17
18
11
20
21
22
23

DYNA,
SPEED LOAD
bOO
1POO
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.0
18.0
41.0
57.0
114.0
171.0
187.0
210.0
228.0
0.0
0.0
24b.O
22b.O
202.0
185.0
123.0
b2.0
44.0
20.0
5.0
0.0
0.0
MAN. FUEL
HP
0
1
4
1
13
2b
31
43
48
52
0
0
108
11
88
81
54
2?
11
1
2
0
0
A/F
DRY CONCENTRATION
VAC. LB/HR RATIO ALDE.
17.1
11.1
11.1
17.1
lb.0
10.1
2.7
1.7
1.5
.3
18.0
22.1
1.3
2.1
2.3
2.4
10.5
14.8
lb.3
17.8
11.0
17.1
23.1
CALCULATED GRAM/HR
MODE
1
2
3
f
5
b
7
8
1
10
11
12
13
If
15
Ib
17
18
IS
20
21
22
23
CYCLE




ALDE
.1
l.b
2.8
3.2
s.n
1.2
23.7
22.0
22.2
15.1
1.3
2.0
14. fa
25.8
11.0
13.2
8.b
4.1
«*.o
3.2
4.3
.7
3.0
HC
47.5
33.1
40.2
Sb.b
b2.5
14.5
81.5
125.5
171.8
301.0
50.0
770.0
532. fa
204.1
51.5
25.1
1b.8
41.2
2b.2
14.8
32.1
37. b
881.4
COMPOSITE








CO
SEfa
25b
155
102
11
118
247
513
2120
1078
B3b
152
18777
8755
41b7
2247
300
301
234
178
15fa
512
133
HC
CO
N02
ALDE
BSFC
N02
2.0
7.5
17.8
52.4
71.3
204.0
371.8
4bb.5
474.4
222.5
2.3
.4
381.4
734.1
520.8
562.5
184.7
324.8
184.1
83.1
41.5
2.8
.8
8.407
51.572
8.433
.2bS
.738
4.0
?.b
8.S
10.0
11.0
lb.1
23.7
25.3
27.5
33.2
4.1
4.2
bb.l
58.2
53.7
51.2
31.1
23.1
20.5
17.7
15.0
4.0
4.3
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
lb.0
lfa.3
lfa.2
lb.1
17.3
18.2
17.4
Ib.b
15.4
13.3
14. b
11.1
13.1
14.5
15. b
lb.2
lb.8
17.4
17.8
18.1
18. b
15.1
23.1
WT.
HP
0.0
.1
.2
.5
.4
l.b
0.0
1.7
0.0
0.0
0.0
0.0
2.7
5.4
3.1
4.1
3.2
0.0
1.3
0.0
0.0
0.0
0.0
33
30
4b
43
bl
72
135
121
120
83
47
53
31
bl
51
35
35
27
24
22
34
24
bO
BRAKE
ALDE.
R
1.4
.7
.3
.4
.4
.b
.5
.5
.3
R
R
.1
.3
.2
.2
.2
.2
.2
.4
2.0
R
R
HC
3851 2
1381
14b?
Ifa85
IfaSI
IblS
1011
141b
2108 1
3458 5
4028 3
45114
30bS 5
1187 2
300 1
141
841
484
331
211
553
2775 1
37515
CO
.110
.520
.280
.150
.130
.100
.150
.350
.230
.030
.330
.4*0
.350
.520
.200
.b40
.130
.180
.150
.130
.130
.870
.280
C02
12.22
13.48
13. b3
13.18
12.14
12.22
12.14
13.18
13.18
11.48
11.24
b.21
11. bO
12.71
12.14
12.71
12.47
12.01
11.84
11.72
11.24
11.24
4.27
NO
41
13
115
470
570
1050
1375
lb?5
lfa?S
750
Sb
b
b75
1287
113
175
2faOO
1150
720
370
210
b2
10
SPECIFIC GRAM/BHP-HR
HC
R
21. b5
1.71
b.04
4.80
3.b3
2.21
2.14
3.75
5.13
R
R
4.14
2. Ob
.58
.32
1.80
1.S2
1.3b
l.bl
15.03
R
R
CO
R
224.2
37.7
10.1
7.b
4.5
b.3
13.1
44.2
174.3
R
R
174.3
88.5
47.1
27.7
S.b
11.4
12.2
20.3
71.4
R
R
N02
R
b.b
4.3
S.b
5.5
7.8
1.5
10.1
1.1
4.3
R
R
3. fa
7.4
5.1
b.1
18.3
12.0
l.b
1.5
11.0
R
R
























GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
GRAM/BHP HR
LB/BHP HR

-------
                     1-3
                                       RUN-?
                                                                              K =1.0faO
                                                                                           HUM =  13  GR/LB
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE t
MODE
1 IDLE
? Ib HG
3 10 HG
* Ib HG
5 11 HG
h Ib HG
7 3 HG
H lh HG
1 C.T.

1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'HG
7 3'HG
R Ib'HG
1 C.T.

1 IDLE
2 Ih'HG
3 10'HG
* Ib'HG
S 11'HG
b Ib'HG
7 3'HG
R Ih'HG
1 C.T.
1 IDLE
2 Ib'HG
3 in'HG
* Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 ih< HG
i C.T.
AVERAGE
AVERAGE
COWTf-NTRiTTUN AS
HC CO CO?
1S3 l.bin
HI .180
18 .IRQ
bb .11(1
b2 .150
bl .210
bl .77n
*8 .1HO
1723 .*20

1? 820
IP. isn
13.770
13.180
12.120
13.0bO
13..] bO
13.180
8.050

113 l.blO 12.820
fab .180
60 .180
*1 .180
55 .ISO
32 .lln
2b .700
2b .210
Ib70 .**0

152 1.700
53 .210
71 .180
*0 .HO
3* .ISO
35 .210
*3 .700
31 .210
IbSO .3*0
f r vn F f*riMf
152 1.700
bl .210
71 .150
*0 .180
52 .150
*0 .200
*0 .b70
*0 .180
12.1*0
13.330
13.0bO
12.750
1?. IbO
13.180
13.180
8.250

12.820
12. 1*0
13.330
12.1*0
12.510
12.820
12.1*0
12.1*0
7.820
12.820
12.1*0
13.180
12.100
12.*70
12.710
12.820
12.700
IbOO .*10 7.810
t f V P 1 F PHMPflflTTF^™
SUM — -(COMPOSITE VALUES
SUM---CCOMPOSITE
V ULUtO
MFASURFP DILUTION
NO FACTOR
117
hi?R
2*5]
72b
212
7b8
1170
son
107

117
737
2b72
7b3
237
820
12b5
180
125

170
771
2b22
8*8
2b5
715
1223
870
133
170
8**
277*
87b
2b1
113
1381
88b
13*
FOR CYCLES
FOR CYCLES
1.0*8
I. 10*
1.038
l.OSb
1.110
l.Olb
l.ObS
1.088
l.*33

1.0*8
1.107
1.07*
1.018
1.125
J .108
l.Obl
1.081
1 . *11

1.0*8
1.107
1.07*
1.101
1.1*2
1.111
1.087
1.101
l.*8*
1.0*8
l.lOb
1.08B
1.113
1.151
1.128
1.011
1.130
l.*88
1 AND 2)-
3 A Mn u A H
AND H ) ™
A r>
HC
202
18
102
7?
bl
b7
b5
52
2*b1

202
73
Bb
5*
b2
35
28
28
2357

151
51
7b
**
31
31
*7
3*
2**8
151
b?
77
*S
bO
*5
**
*5
2381



.1 U S T F P WEIGHTING
CO NO FACTOR
l.bSB
.111
.187
,?0b
.Ib7
.230
.820
.lib
,b02

l.bSB
.111
.113
.118
.Ibl
,2in
.7*1
.221
,b21

1.782
.232
.113
.211
.171
.235
.7bl
.233
.505
1.782
.232
.Ib3
.200
.173
.22b
,73b
.203
.hlO



123
b13
25*5
781
235
8*2
12*b
871
153

123
Bib
2Bb1
838
2b?
108
1353
10b7
17b

178
8b2
2817
1*0
303
881
1330
IbS
117
178
133
3017
175
310
1030
1517
1001
111



,03fa
.081
.257
.081
.0*7
.081
.283
.081
.021

.03b
.081
.257
.081
.0*7
.081
.283
.081
.021

.03b
.081
.257
.081
.0*7
.081
.283
.081
.021
.03b
.081
.257
.081
.0*7
.081
.283
.081
.021



WEIGHT
HC CO
7.283
8.7*3
2b.l*1
b.382
3.235
5.150
18.311
*.hSO
51.831
i ap L 3 i
XJC.DCX
7.283
b.501
22.072
*.781
2.101
3.155
7.8b1
2.520
*1.*17
> ink 5 9 7
* AUO.J^r
5.735
5.220
11.fa03
3.1*7
1.82*
3,*8*
13.231
3.051
Sl.*15
i n "J *» i Q
' A U » » 3 J. *1
5.735
b.OO*
H.8*b
3. Ibl
2.812
*.01b
12.*37
*.022
50.005
_ i n Q Q ^Q
A U O » O w ^
• lll.bOl
• 108.171
,0bl
.018
.0*8
.018
.008
.020
.232
.017
.013
f 35
. ~ 3 3
.Obi
.018
.050
.018
.008
.011
.212
.020
.013
u * n
.Ob*
.021
.050
.011
.008
.021
.215
.021
.011
.Ob*
.021
.0*2
.018
.008
.080
.208
.018
.013
.*27
« T C Q
f. n
NO
*.*15
bl.bIS
bS3.111
70.200
11. Obi
7*. 108
352.731
?7.*17
3.211
1301 73*
*.*15
72. Sib
737.221
7*. 578
12.53b
80. B**
382. Bbb
9*. lib
3.705
I*b3. 757
b.*15
7b.727
733.1*7
83.b77
1*.218
71.1*fa
37b,30b
85.8*b
*.!**
b.*15
83.075
775.31*
Bb.738
1*.5*B
ll.bbB
*21.372
BI.QIb
*.188
138fa.7*5
i c i c u, L. n
IS IS • TDU
        FOUR CYCLE COMPOSITE - REPORTED VALUES -
HC    0.3S*(  lll.bOl)  + 0.bS*(   108.171)  =   112.171  PPM
CO    0.3S*(     ,*27)  + 0.bS*C      .*20)  =      ,*23  PERCENT
NO    0.3S*( 138fa.7*5)  + 0.bS*C  1515.*bO)  a  1*70.*10  PPM
                             CORRECTED NO  =  1558.557  PPM
        DILUTION FACTOR = 1*.5/CC02+0.5*CO+10.8*HC)

-------
                                                                             h  = J.LS
CYCLE 1
CYCLE
 CYCLE  3
CYCLE 4
nASS
"ODE
1 IDLE
2 lb HG
3 10 HG
4 ib HG
5 19 HG
b lb HG
7 3 HG
8 lb HG
9 C.T.
1 IDLE
2 lb HG
3 10 HG
4 lb HG
5 IS HG
b lb HG
7 3 HG
8 lb HG
1 C.T.
1 IDLE
2 lb HG
3 10 HG
4 lb HG
S 11 HG
b Ifa HG
7 3 HG
8 lb HG
1 C.T.
1 IDLE
2 lb HG
3 10 HG
4 lb HG
5 19 HG
b lb HG
7 3 HG
B Ifa HG
9 C.T.
AVERAGE
AVERAGE
CONCFIvlRATJON AS MEASijKfcO TOTAL
HC CO CD2 Nfi CAPhON
113 l.fain 12. B?
81 .180 12.95
18 .180 13.77
bfa .190 13. IP
bP .ISO 12.9?
bl .210 13. Life
fal .770 13. lb
48 .180 13.18
1723 .420 8.05
193 l.blO 12.82
fab .180 12.94
80 .180 13.33
49 .180 13. Ob
55 .150 12.75
32 .ISO 12. lb
2b .700 13.18
2b .210 13.18
Ib70 .440 8.25
IS? 1.700 12.82
S3 .210 12.14
71 .180 13.33
40 .190 12.14
34 .150 12.59
35 .210 12.82
43 .700 12.14
31 .210 12.14
Ib50 .340 7.82
152 1.700 12.82
fal .210 12.94
71 .150 13.18
40 .180 12.10
52 .150 12.47
40 .200 12.71
40 .fa?0 12.82
40 .180 12.70
IbOO .410 7.81
SUM---(COMPOSITE VALUES
SUM- — (COMPOSITE VALUES
FOUR CYCLE COMPOSITE - *EPU*TEO






11?
b2B
2451
?2b
212
7b8
1170
8no
in?
117
73?
2b72
7fa3
23?
820
12fa5
980
125
170
779
2b22
848
2faS
795
1223
870
133
17fl
844
2774
87b
2b9
913
13P1
88b
134
)4.b3S
13.22fa
1 u.nsb
1 3.441
13.13?
13.33b
13.99fa
13.412
10.331
14.h3B
13.191
13.59b
13.293
12.951
13.185
13.108
13.418
111.414
14.b84
13.20?
13.587
13.173
12.777
13.0fa8
IB.bBb
13.183
9.942
14.b84
13.21b
13.407
13.123
1 2.b7b
12.953
13.533
12.923
9.948
FOR CYCLES 1 AN
K)K CYCLtS 3 AN
VALl'ES -



HC 0.
Cu 0.
*>, C1 2 0 .

FUEL
cn;.s.
IBbl
8354
.1 341-48
8354
599?
8354
] 9622
8354
l.99b
1 ftfal
8354
1343P
8354
5993
8354
19522
8354
199R
IBbl
8354
13438
8354
5993
8354
19522
8354
1998
18bl
8354
13438
8354
5993
8354
19522
8354
199R




3b( 4.-)
35( ?i)
35( J1.5)

*i,JUSTfci' (KASSJ
HC CD MiR

(,]
1 f j
44
?J
«)
<~2
it
?bP

45
f *•
53
a 7
C?
3"
1 ~t
343
21
?b
7f.
27
] ?
24
frfr
21
35*

42
77
2S
27
2B
bd
2?
34 '




+ i .b5(
+ f. . *• b (.
-r 1 .(-b(
Ci'nW
413
230
348
239
13S
2Kh
2 IV I.
22H
Ih4
413
23n
359
229
140
243
1985
2fa4
Ib9
435
2bB
3bn
243
142
271
2C17
gfa9
138
435
2b8
304
231
143
2bl
195?
235
Ibb




4

1?
F.CTe:;
5
132
778
150
3?-
IbJ
542
J h5
7
5
155
877
159
3b
172
59Q
203
B
7
Ib4
Bbl
179
41
Ifa9
579
183
9
7
177
9?3
185
42
lib
bbl
190
q




.0) =
23) =
. 4 1 =
MI? =
"T.
FACT.

.077
.147
.077
.05?
.P77
.113
.(,177
.149
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.07?
.1*7
.07?
.057
.077
.113
.077
.1*3
.232
.077
.147
.07?
.057
.077
.113
.077
.143




4. nsn
if. , 9
12.015
ie.bi=
K.E.I&Httu I>ASS)
>• C C'J 'Mj2(*> "P

4!?
14. 9
3.4
1.7
3.2
10.4
2.5
51.5
u L.
t • D
b.l
3.5
12. fa
2.b
l.b
1.7
4.5
1.3
49.1
3 a
* **
4.8
2.8
11.1
2.1
1.0
1.1
7.5
l.b
51.2
4.0
4.8
3.2
11.3
2.1
] .5
2.1
7. n
2.?
49. b
4.0
4.3
4.0
C"»3S)
( "' A S S )
("•ASS)
("ASS)
9b
16
51
IV
b
2U
245
1?
23
9b
18
S3
18
B
19
224
2U
24
3 -3
C 3
101
21
53
11
8
21
228
21
20
101
21
45
18
0
2U
221
1 d
?4
22
23




I . 1 0
1". I 19
114.4 SI
11.5 19
I.* 3
12.3 19
hi . i bti
12.7 19
i.a a
in ?
* "j • "
1.1 0
11.9 19
128. 3 51
1?.3 19
2.1 3
13.3 11
b b » o b d
15. b IS
1.1 a
13 H
JL C • "J
1.7 G
12. b 11
12b.ta 51
13.7 11
2.4 3
13.0 11
bS.4 b8
14.1 19
1.3 0
11.9
1.7 0
13. b 19
135.7 51
14.3 19
3.4 3
15.1 19
74. > b8
14. b 19
1.3 ij
11.3
12. *





-------
          1-8-75
                     1-3
                                       RUN-3
                                                                              K =l.Ubd
                                                                                           HUM
                                                                                                  93  GK/L6
CYCLE 1
CYCLE 2
CYCLE 3
CYCLE *
FEDERAL
MODE
1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
1 C.T.

1 IDLE
2 Ib'HG
3 10'HG
* Ib'HG
5 19'HG
b Ib'HG
7 3'HG
8 Ib ' HG
9 C.T.

1 IDLE
2 Ib'HG
3 10'HG
4 Ib'HG
5 11'HG
b Ib'HG
7 3'HG
8 Ib'HG
9 C.T.
CIIM — — — — «•
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
S 19 HG
b Ib HG
7 3 HG
s ib HG
9 C.T.
Q I I M —
A w C1 D A P F QIIIV
A v r. " ft " t. ou~
AVERAGE SUM
FOUR CYCLE


CONCENTRATION AS
HC CO C02
181 1.
88
H8
bl
58
48 .
*8
30
171*

181 1.
57
bb
39
si
35
35
ab
1711

147 2.
**
b2
30
39
30
*n
35
Ifal*
/•/-yfi c
147 2.
bO
70
**
*2
35
47
31
Ib20
_ f r v n F
/fi-iupr.c
820 12.9*0
210 12.940
190 13.200
210 12.94(1
ISO 12.820
210 12.790
770 12.940
210 12.140
4bO 7.110
rOMPflS T TF1
lyvnruoi ICJ —
820 12.940
210 IP.bbn
200 12.940
?10 12.710
150 12.b8o
210 12.940
770 12.140
220 12.140
410 8.520
COM.POSI TE)
110 12.1bO
210 12.3*0
ISO 12.750
200 12.820
ISO 12.710
210 12.710
740 12.750
210 12.R20
430 S.blO
110 12.1bO
210 12.470
180 12.710
180 12.710
150 12.710
210 1P.710
750 12.710
210 12.710
44n 8. bin

— — — ILUnrUO-L 1C. v«l_vno
	 (COMPOSITE VALUES
COMPOSITE


- REPORTED


MFASURFn nTLUTTON A
NO FACTOR HC
131
784
2573
843
237
778
1211
878
100

131
721
2731
8b4
237
Bbl
12*1
875
111

Ib*
7*7
2731
805
251
85*
1313
9b3
133
Ib*
830
2739
875
27H
8b4
1350
1014
1*8
pfiH rvn FQ
PUR i» 1 1» L c o
FOR CYCLES
VALUES -


1.032
1.103
1.083
1 . 1 0 b
1.111
1.120
1.084
1.101
1.451

1.032
1.130
L.lOb
1.12R
1.132
A .108
.1.085
1.109
1.370

1.084
l.lbl
1.125
1.119
1.130
1.121
1.102
1.119
1.351
1.084
1.1*7
1.12b
1.129
t .130
1.128
.1.104
1.129
1.3bO
1 AMD
L M l"l \J
3 AND
HC
CO
NO
195
17
95
b7
fa5
54
52
33
2488

195
b*
73
*4
58
39
38
29
235b

151
51
70
34
44
34
44
39
2288
159
hi
71
50
47
31
52
35
2204



0.35*(
o.3"i*{
0.35*(
n .1 U S T F n WEIGHTING W F
CO NO FACTOR HC
1.878
.232
.20b
.232
.IbB
.235
.835
.233
.bb8

1.878
.237
.221
.237
.170
.233
,83b
.2**
.5b2

2.288
.244
.Ibl
.22*
.170
.337
.815
.235
.581
2.288
.2*1
.203
.203
.170
.237
.828
.237
.599



114.145)
.*b3)
1*70. b99)
135
8b5
278b
132
2b5
871
1313
17*
1*5

135
815
3020
174
2b8
1b3
13*7
170
152

178
8b7
3072
901
284
9b*
l**b
1077
180
178
952
3085
188
314
175
1490
114*
201



+ 0.bS*(
+ n.b5*C
+ O.b5*(
,03b
.081
.257
.089
.0*7
.089
.283
.089
.021

,03fa
.089
.257
.089
.0*7
.089
.283
.089
.021

.Q3b
.089
.257
.089
.047
.089
.283
.089
.021
,03b
.089
.?57
.089
.047
.089
.283
.089
.021



103.
*
1581.
7.020
8.b43
24.491
b.004
3.050
4.784
14.725
2.9faO
52.238

7.020
5.735
18.759
3.915
2.713
3.*52
10.748
2.5fab
49.4b7

5.738
4.545
17.921
2.989
2.072
3.013
12.470
3.484
48.053
5.738
b.!2b
20.2bQ
4.420
2.231
3.514
I*.b82
3.11*
4b.277



323) = 107
4bb) =
173) = 1542
I G H
CO
,0b8
.021
.053
.021
.008
.021
,23b
.021
.014
tl L 3
,0b8
.021
.057
.021
.008
.021
.23b
.022
.012

.082
.022
.0*3
.020
.008
.021
.331
.021
.012
.082
.021
.052
.018
.008
.021
.234
.021
.013
U -J 1
• " * L
41 L. "3
• T D 3
.4bb
.111
.4b5
.507
T F n
NO
*.8bb
7B.998
71b.07b
82.97b
12.4fa5
77.549
371.488
8b.b43
3.048
1432 107
4.8bb
72.541
77b.207
8b.722
12.b08
85.719
381.091
8b.3*2
3.194
1509 290
b.401
77.1fab
789.412
80.205
13.33b
85.783
409.315
95.871
3.773
« r t t 3 t 3
Ibbl.cbc
b.401
84.741
792.731
87.891
14.7bb
8b.751
421.729
101. 84b
4.228
lbOl.084
1470. b99
1581.173
PPM
PERCENT
PPM
        DILUTION FACTOR = 1*.5/CC02+0.5*CO+10.8*HC)

-------
CYCLE 1
CYCLE 2
CYCLE
CYCLE  *
•»-»-78 1-3 RUN-3
MASS
MODE
1 IDLE
2 Ib HG
3 10 HG
% Ifa HG
5 IS HG
b Ib HG
7 3 HG
8 Ifa HO
S C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S IS HG
fa Ifa HG
7 3 HG
B ib HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
S IS HG
fa ib HG
7 3 HG
a ib HG
S C.T.
1 IDLE
2 Ifa HG
3 10 HG
* Ifa HG
5 IS HG
b Ifa HG
7 3 HG
B Ifa HG
S C.T.
Ol IftJ MB
AVERAGE
CONCENTRATION AS MEASURED
HC CO COS NO
IBS 1.820 le.S*
88 .210 12. S*
88 .ISO 13.20
bl .210 12. S*
58 .150 12.82
*8 .210 12. 7S
*8 .770 12. S*
30 .210 12. S*
171* .*bO 7. Si
IBS 1.820 12. S*
57 .210 12. bb
bb .200 12. S*
3S .210 12.71
51 .ISO 12. b8
35 .210 12. S*
35 .770 12. S*
2b .220 12. S*
171S ,*10 8.52
1*7 2.110 12. Ifa
*» .210 12.3*
b2 .ISO 12.75
30 .800 12.82
3S .150 12.71
30 .210 12.71
*0 .7*0 12.75
38 .810 12.82
IbS* ,*30 S.faS
1*7 2.110 12. Ib
bO .210 12. *7
70 .180 12.71
** .180 12.71
*2 .150 12.71
35 .210 12.71
*7 .750 12.71
31 .210 12.71
Ib20 .**0 B.bS
/ p VP 1 F PflMPfiQTTP1^"
3UM--- (COMPOSITE VALUES
.•11 kj _ *f*fLLtr\f\A*fe uii iieo
AVERAGE oun~~™vwunruoi it iai.uc.9
FOUR CYCLE COMPOSITE - REPORTED






131
78*
2573
8*3
237
778
1211
878
100
131
721
2731
8b*
237
BbS
12*1
875
111
Ib*
7*7
2731
80S
251
85*
1313
Sb3
133
Ib*
830
273S
875
278
8b*
1350
101*
1*8
FOR CY(
TOTAL FUEL
CARBON CONS.
l*.Sb* 18bl
13.2*5 835*
13.*85 13*38
13.21b 835*
13.033 5SS3
13.052 835*
13.7b2 1S522
13.182 835*
10.221 1SSB
l*.Sb* ISfal
12.S32 835*
13.211 13*38
12.Sb2 835*
12.885 SSS3
13.188 835*
13.7*8 lS52a
13.188 835*
10.787 1SS8
1*.*2S 18bl
18.SS8 t3S* *
12.Sfa7 13*38
13.052 835*
12.SQ2 5SS3
12.152 835*
13,533 1S522
IS.OfaS 835*
10.S50 1SS8
1*.*2S 18bl
12.7*5 835*
12.Sbb 13*38
12.S38 835*
12. SOS 5S93
12.SS8 835*
13.511 iSSae
12.SS3 835*
10.880 1SS8


VALUES - HC 0.3S( *.l)



co o.3s( as)
N02 0.3SC 12.0)

K =
1 .OS
ADJUSTED CMASS)
HC CO NOS
25
bO
S5
*2
2S
33
7*
21
3ba
35
*0
73
27
2fa
a*
5*
18
3**
ao
32
bS
21
ao
21
ba
2*
33*
20
*2
78
31
ai
a*
73
aa
3ai


+ u.
+ n.
+ 0.
C
*57
2bB
382
2b8
13S
272
220b
2faS
182
*57
27*
*11
273
1*1
2faS
22DS
2ft
153
550
281
31*
25S
1*1
27*
aisb
271
158
550
278
377
235
1*1
273
218S
27*
Ib3


bS( 3.
S5C 2
bS( ia.
'HRECTEiJ N
5
Ib*
851
177
3b
IbS
570
185
b
5
1SS
S22
IBS
3?
183
585
18*
7
7
ib*
S*Q
171
3S
183
b2S
20*
8
7
181
S*2
188
*3
185
b*8
ai?
*


8) =
5) =
S) =
oa =
HUM =
FACT.
.ase
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
,asa
.07?
.!*•?
.077
.057
.077
.113
.077
.1*3
.asa
.077
.1*7
.077
.057
.077
.113
.077
.1*3


3.8S*
as. ?
ia.581
i j.aai
• 13 GK/UB
wEISHTtO CMASS)
HC CO NOaCK)
S.S
*.fa
13. S
3.2
l.b
2. fa
fl.3
l.b
51.7
S.S
3.1
10.7
2.1
1.5
1.8
b.l

*S*2
3 a
* *i
*.8
8.*
10.2
l.b
1.1
l.b
7.0
l.S
*7.7
3-3
• r
sis
11.5
2.*
1.2
l.S
9.3
1.7
3D
• a
30
• "
(1A3S)
("A33)
(1AS3)
C^ASS)
10b
21
Sb
21
8
21
2*S
21
2b
jt.
C a
lOb
21
bO
21
8
21
250
22
22
128
22
*fa
20
8
21
2**
21
23
128
21
55
18
«
21
2*7
ai
23
at.
CD
as




1.1
12. b
ias.1
13. fa
2.1
12.7
b*.*
1*.2
U7
• '
1.3
11. S
13S.b
1*.2
a.i

bbll
i*.a
1.0
19 3
it • J
l.b
12.7
138.1
13.2
2.2
l*.l
71.1
IS. 7
i.a
13 Q
X C • H
l.b
13. S
138. 1
1*.*
2.*
1*.2
73.3
lb.7
1.3
13 1
1 3 .1
12.0
12 .S



HP
0
IS
51
IS
3
IS
bS
IS
0
0
is
51
IS
3
IS
b8
IS
0
0
is
51
IS
3
IS
bS
IS
0
0
is
51
IS
3
IS
ha
is
0






-------
                 APPENDIX Y




  EXPERIMENTAL 23 MODE TEST PROCEDURE




FOR ENGINES IN HEAVY DUTY MOTOR VEHICLES

-------
    TEST PROCEDURE FOR HEAVY DUTY MOTOR VEHICLE ENGINES






§   85.100  Introduction



   (a)   The procedures described in this subpart will  be the



        test program to determine the conformity of new heavy



        duty engines with the applicable standards  set forth



        in this part.






   (b)   The test procedure begins with a warm engine and con-



        sists of a prescribed sequence of engine operating



        conditions on an engine dynamometer with continuous



        examination of the exhaust gases.   The test is appli-



        cable equally to uncontrolled engines and controlled



        engines equipped with means for preventing, controlling,



        or eliminating gaseous emissions.





   (c)   The test is designed to determine  the brake specific



        emissions of hydrocarbons, carbon  monoxide, and oxide



        of nitrogen when an engine is operated through a test



        cycle on an engine dynamometer.   The test includes,



        in addition to three idle modes, one closed throttle



        and nine power modes at each of two speeds  which span



        the typical operating range of heavy duty engines.



        The procedure  requires the determination of the con-



        centration of each pollutant, the  exhaust flow, and  the



        power output during each mode.  The measured values
                            -1-

-------
85.100





     are weighted and used to calculate the grains of



     each pollutant emitted per brake horsepower hour.





(d)   When an engine is tested for exhaust emissions or



     is operated for durability testing on an engine



     dynamometer, the complete engine shall be used



     with all standard accessories which might reasona-



     bly be expected to influence emissions to the



     atmosphere installed and functioning.
                        -2-

-------
§   85.101  Fuel Specifications



  "(a)   For exhaust emission testing of gasoline fueled engines,



        fuel having specifications  as shown in the table in



        § 85.71(a), or substantially equivalent specifications



        approved by the Administrator shall be used.






   (b)   For durability testing  of gasoline  fueled engines,  fuel



        having specifications as  shown in the  table in § 85.71(b),



        or substantially equivalent specifications approved by



        the Administrator, shall  be used.  The octane  rating of



        the fuel used shall be  in the range recommended by  the



        engine manufacturer.  The specifications of the fuel to



        be used shall be reported in accordance with  5 RR.51(M(3)






   (c)   For exhaust emission testing of engines which  use diesel



        fuels, fuel having specifications as shown in  the table



        in § 85.121(b), or substantially equivalent specifications



        approved by the Administrator shall be used.






   (d)   For durability testing  of engines which use diesel  fuels,



        fuel having specifications  as shown in the table in



        § 85.121(c), or substantially equivalent specifications



        approved by the Administrator, shall be used.   The  octane



        rating of the fuel used shall be in the range  recommended



        by the engine manufacturer.  The specifications of the



        fuel to be used shall be  reported in accordance with



        § 85.51(b)(3).
                             -3-

-------
5  85.102  Dynamometer Operation Cycle





   "(a)(l)  The following twenty three mode cycle shall be



           used in dynamometer operation tests of heavy



           duty engines.
MODE
NO.
1
2
3
4
5
6
"7
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
ENGINE
SPEED*
Idle
Intermedi ate
it
it
it
it
M
n
it
ii
Idle
Intermediate
High
n
ii
ti
n
n
n
M
it
PERCENT
LOAD
0
2
8
18
25
50
75
82
92
100
0
C.T.
100
92
82
75
50
25
18
8
2
WEIGHTING
FACTOR
_J^
6.0
6.0
5.0
3.0
6.0
f\
U
4.0
0
0
*~*~
12
2.5
5.5
3.5
6.0
6.0
0
6.5
0
0

-------
§   85.102
MODE
NO.
22
23
ENGINE
SPEED*
Idle
High
PERCENT
LOAD
0
C,T.
WEIGHTING
FACTOR
<*
^£*****^^ ,«'s*.
6
 * Engine Speed Definition:
 Intermediate
 High
                                 Engine Type

                      Spark Ignition    Compression Ignition
1200 rpm
2300 rpm
Peak torque speed or
60% of rated, whichever
is higher.

Rated speed
      (2)  For each mode the engine dynamometer shall  be

           operated at a constant speed within ± 50 r.p.m.  of

           the specified speed and at the specified torque

           within ± 2 percent of maximum torque at that speed.

           For example, the torque for mode six (6) shall be

           between 48 and 52 percent of maximum torque measured

           at the intermediate test speed.


   (b)  The following equipment shall be used for emission

        testing of engines on engine dynamometers.

      (1)  An engine dynamometer with adequate characteristics

           to perform the test cycle described in  ! 85.102(a)

      (2)  An engine cooling system having sufficient  capacity

-------
S  85.102
          to maintain the engine at normal operating



          temperatures during conduct of the prescribed



          engine tests.



     (3)  A chassis-type exhaust system or substantially



          equivalent exhaust system.

-------
S   85.104  Sampling and Analytical  Systems  for Measuring
           Exhaust Emissions
   (a)   Two separate sampling and analytical  systems  are

        used for emission testing under the  regulations  in

        this part.   One system is used  for the  determination

        of hydrocarbon concentrations.   The  other  system  is

        used for the determination of the  concentrations  of

        nitric oxide, carbon monoxide,  and carbon  dioxide.


        The system used for determining hydrocarbon  concen-

        trations includes a heated sampling  line and  a heated

        flame ionization detector analyzer (FID).  When  emission

        tests involve gasoline fueled engines,  the saisple line

        and analyzer are maintained at  a temperature  of  160°F

        ± 5°F to prevent the water vapor in  the sample stream

        from condensing out and collecting in the  system. When

        emission tests involve engines  which  use diesel  type

        fuels, the  temperature is maintained  at 350°F ±  10°F

        to inhibit  the accumulation of  the lighter weight

        hydrocarbons in the system as a result  of  condensation

        and adsorption effects.  Means  are provided  for  purging

        the system  with air when measurements are  not being  made.


        The system  used for determining the  concentrations of the

        other pollutants includes:

        (1)   a water concending trap which is maintained  at

             36°F ± 4°F,


                              -4-

-------
S  85.104




        (2)  a chemiluminescence (CL) NO analyzer,



        (3)  a nondispersive infrared (NDIR) CO analyzer and,



        (4)  a nondispersive (NDIR) C02 analyzer.



        A converter is used upstream of the chemiluminescence



        analyzer to convert any N02 in the sample stream to NO.



        A bypass system is provided to permit the periodic



        checking of the converter efficiency.  Means are pro-



        vided for back flushing the cooling coil and sample



        line and for introducing air or NO and 02 mixtures



        (for converter efficiency testing) into the analytical



        system.






        Other types of analyzers may be used if they yield



        equivalent results and if they are approved by the



        Administrator.





   (b)  Schematic drawing.  The following (Fig. 6) is a



        schematic drawing of the exhaust gas sampling and



        analytical system which shall be used for testing



        under the regulations in this subpart.





   (c)  Component description.   The following components will



        be used in the exhaust gas analytical system for testing



        under the regulations of this part.



          (1)  Flowmeters (FL1, FL2, and FL3) to indicate the



               sample flow rate through the analyzers.



          (2)  Analyzers to determine hydrocarbon, carbon



               monoxide, carbon dioxide, and nitric oxide




               concentrations.




                               -5-

-------
S  85.104
          (3)  A converter to convert any N02 present in the



               samples to NO. before analysis.






          (4)  Flow control valves (Nl, N2, N3, N4, N5, N6,



               N7, N8, N9, N10, Nil,  N13, and N14) to regulate



               the gas flow rates.



          (5)  Recorders (Rl, R2,  R3, and R4) or digital printers



               to provide permanent records of calibration, spanning,



               and sample measurements.  In those facilities where



               computerized data acquisition systems are incor-



               porated, the computer  facilities printout may be



               used.



          (6)  Manifold (Ml) to collect the expelled gases



               from analyzers.



          (7)  Pump (P2) to transfer  expelled gases from the



               collection manifold to a vent external to the



               test room (optional).



          (8)  Selector valve (V8) to direct purge air through



               the HC analytical system.



          (9)  Selector valves  (VI, V2, V5, V6) to direct



               samples, span gases, or zeroing gas to the



               analyzers.




         (10)  Selector valves  (V3 and V4) to allow the



               sample, span, calibrating, or zeroing gases



               to bypass the converter.
                              -6-

-------
§  85. 104
         (11)  Pump  (PI) to  transfer samples  from  sample




               probe to  analyzers.




         (12)  Filters  (Fl and  F2) to remove  particulate




               matter.




         (13)  Selector  valve  (V9) to direct  N0/02 mixtures  to




               the converter for  efficiency checks.




         (14)  Selector  valve  (V7) to backflush  cooling coil




               with  air.




         (15)  Cooling Coil  (Cl)  to condense  water vapor




               from  sample.




         (16)  Refrigerated  water bath to maintain cooling




               coil  at 32 -  40ct-.




         (17)  Thermometer for  indicating bath temperature.




         (18)  Valve (N12) to drain water from cooling coil.




         (19)  Sample probes to extract exhaust  gas  sample




               downstream of muffler.
                            -7-

-------
§  85.105  Information






   'The following information shall be recorded:



        (a)  General



             (1)  Test number



             (2)  Date and time of day



             (3)  Instrument operator



             (4)  Engine operator



             (5)  Engine Identification - Date of manufacture -



                  Number of hours of operation accumulated on



                  engine - Engine family - engine displacement -



                  timing - maximum observed torque at specified



                  test engine speeds - idle r.p.m.



             (6)  All pertinent instrumentation information such



                  as model name and serial numbers.



             (7)  Recorder charts.   Identify zero traces -



                  Calibration or span traces for each test mode -



                  Start and finish of each test.



             (8)  Ambient temperature in dynamometer testing room,



             (9)  Engine intake, air temperature, and humidity.



            (10)  Barometric pressure.



            (11)  Observed engine torque for each mode.



            (12)  Other data as required by the Administrator.






        (b)  Spark ignition engines



             (1)  Number of carburetors and number of carburetor




                  Venturis or fuel  injection system types.
                            -8-

-------
§  85.105
             (2)  Advertised horsepower.



             (3)  Fuel consumption in gms/hr during each mode



        (c)  Compression ignition engines



             (1)  Advertised rated and peak torque speeds.



             (2)  Exhaust pipe diameter.



             (3)  Exhaust system back pressure.



             (4)  Air aspiration system type.



             (5)  Air inlet restriction.



             (6)  Fuel injection system.



             (7)  Exhaust flow in c.f.m., or intake air



                  flow in c.f.m. and fuel consumption in



                  pounds per hour, for each mode.
                             -9-

-------
5   85.106  Calibration and Instrument Checks

   (a)   Calibrate the analytical assembly at least once every
        30 days.   Use the same flow rate as when analyzing
        s amp1e s .
        (1)  Adjust analyzers to optimize performance.
        (2)  Zero the hydrocarbon analyzer with zero grade air
             and the carbon monoxide, carbon dioxide, and oxides
             of nitrogen analyzers  with zero grade nitrogen.
             The allowable zero gas impurity concentrations
             should not exceed 1 p.p.m. equivalent carbon
             response, 1 p.p.m. carbon monoxide, 300 p.p.m.
             (0.03 mole percent) carbon dioxide, and 0.1 p.p.m.
             nitric oxide.
        (3)  Set the CO and CC>2 analyzer gains  to give  the
             desired ranges.   Select the desired attenuation
             scale of the HC  analyzer and set the capillary flow
             rate by adjusting the  back pressure regulator, to
             give the desired range.  Select the desired scale
             of the NOX analyzer and adjust the phototube high
             voltage supply to give the desired range.
        (4)  Calibrate the HC analyzer with propane (air diluent)
             gases having nominal concentrations equal  to 50  and
             100 percent of full scale.  Calibrate the  CO
             analyzer with carbon monoxide (nitrogen diluent) gases
             and the CC>2 analyzer with carbon dioxide (nitrogen
             diluent) gases having  nominal concentrations equal
             to 10, 25, 40, 50, 60, 70, 85, and 100 percent of full
             scale.  Calibrate the NOX analyzer with nitric oxide

-------
85.106
          (nitrogen diluent) gases having nominal con-



          centrations equal to 50 and 100 percent of full



          scale.  The actual concentrations should be



          known to within ± 2 percent of the true values.



     (5)  Compare values obtained on the CO and C02



          analyzers with previous calibration curves.  Any



          significant change reflects some problem in the



          system.  Locate and correct problem,  and re-



          calibrate.  Use best judgment in selecting curves



          for data reduction.



     (6)  Check the N02 to NO converter efficiency by the



          following procedure:



          (i)  Fill a plastic bag with air (or  oxygen)  and



               NO span gas in proportions which result in a  mix



               in the operating range of the analyzer.   Provide



               enough oxygen for substantial conversion of NO




               to N02.



         (ii)  Knead bag and immediately connect the bag to



               the inlet at valve N13.  Turn selector valve



               N7 as required and close valve V8.   Alternately



               measure the NO and NOX concentration at 1-minute



               intervals by alternately passing the sample throug:



               the converter and the bypass (close valves N6



               and N9 to minimize pump down rate of bag).



               After several minutes of operation, the recording




               of NO and NOX will resemble Figure Ic, Section




                          -11-

-------
§   85.106






                  85.84,  if the converter is efficient.




                  Even though the amount of N02 increases




                  with time, the total  NOX (NO + N02)  remains




                  constant.  A decay of NOX with time  indicates




                  the converter is  not  essentially 100 percent




                  efficient and the cause should be determined




                  before  the instrument is used.




           (iii)   The converter efficiency should be checked




                  at least  once weekly  and preferably  once  daily.




   (b)   HC, CO, CO.,, and  NOV measurements:  Allow a minimum
                  £•        A



        of 20 minutes warmup for the HC analyzer and 2 hours




        for the CO, C02>  and NOX analyzers.   (Power is normally




        left on infrared  and chemiluminescence analyzers; but




        when not  in use,  the chopper motors  of the infrared




        analyzers are turned off and the phototube high  voltage




        supply of the chemiluminescence analyzer is place in




        the standby position.)   The following  sequence of




        operations should be performed  in conjunction  with  each




        series of measurements:




        (1)  Zero the analyzers.  Obtain a stable zero on each




             amplifier meter and recorder.  Recheck after tests.




        (2)  Introduce span gases and set the  CO and C02




             analyzer gains, the HC analyzer sample capillary




             flow rate,  and the NOX analyzer high voltage supply




             to match the calibration curves.   In order to  avoid




             corrections, span  and  calibrate at the same flow




                              -12-

-------
§  85.106
             rates used to analyze the test samples.  Span



             gases should have concentrations equal to



             approximately 80 percent of full scale.  If gain



             has shifted significantly on the CO or CC>2 analyzers,



             check tuning.  If necessary, check calibration.



             Recheck after test.  Show actual concentrations



             on chart.



        (3)  Check zeros; repeat the procedure in subparagraphs



             (1) and  (2) of this paragraph if required.



        (4)  Check flow rates and pressures.



        (5)  Measure HC, CO, C02, and NOX concentrations of



             samples.  Care should be exercised tc prevent



             moisture from condensing in the sample collection



             bag.



        (6)  Check zero and span points.






   (c)  For the purposes of this section, the term "zero grade



        air" includes artificial "air" consisting of a blend



        of nitrogen and oxygen with oxygen concentrations between




        18 and 21 mole percent.
                             -13-

-------
§  85.107  Test Run






   '(a)  The temperature of the air supplied to the engine



        shall be between 68°F and 86°F.   The observed



        barometric pressure shall be between 28.5 inches



        and 31 inches Hq.   Higher air temperature or lower



        barometric pressure may be used,  if desired, but no



        allowance will be  made for possible increased



        emissions because  of such conditions.






   (b)  The following steps shall be taken for each test:



        (1)  Install instrumentation and  sample probes



             as required.



        (2)  Start cooling system.



        (3)  Start the engine, warm it up and  precondition



             it by running it at the lower specified test speed



             and maximum horsepower for  10 minutes or until



             all temperatures and pressures have reached



             equilibrium.



        (4)  Determine by  experimentation the  maximum torque



             at the specified test engine speeds and calculate



             the torque values for the specified test modes.



        (5)  Zero and span emission analyzers.




        (6)  Start the test sequence of  § 85.102(a).  Operate



             the engine for ten minutes  in each mode as follows
                            -14-

-------
S  85.107
        Minute                    Mode Test Sequence

         1st                    Complete engine speed and load
                                 changes

      2nd through 7th           Pass air through sample lines
                                 and analyzers

      8th through 10th          Pass exhaust sample through the
                                 lines and analyzers and continuously
                                 record analyzer response.

        (7)  Read and record the data required for § 85.105

             during the last five minutes of each test mode.

        (8)  Check and reset the zero and span settings of

             the emission analyzers at the end of the first

             CT mode (mode # 12) and at the end of the test

             or more often if required.  If a change of over

             two percent of full scale response is observed,

             make necessary adjustments to the analyzers and

             repeat all test modes since the last zero and

             span.

        (9)  Backflush condensate trap and replace filters

             as required.
                          -15-

-------
§   85.108  Chart Reading






   (a)  Locate the last sixty seconds of each mode and



        determine the average chart reading for HC, CO,



        COo* and NO over the one minute period.





   (b)  Determine the concentration of HC, CO, C02, and NO



        during each mode from the average chart readings



        and corresponding calibration data.
                           -16-

-------
            Figure 6

            Exhaust  Gas  Analytical System
                                                      Open  to  Atmosphere
                              Dotted Lines - Heated
                                                               J
Exhaust Pipe
        	V8  I	,
        Sample Probes

                    V7
                                                             HC-FID
                                                        (includes pump)
                                                                         ~l
                                                HC Span (or Calibrating) Gas

                                                Zeroing Gas
Thermometer
             Cl
         N12     r/
        -C^d-    )H N14
Refrigerated     T
  Ice Bath    _   '  .
              Converter
              Test  Gas
               or Air
                                        V2 N6
                                                Zeroing  Gas
                                                  BYP SS'
                                            V3r5           ?-,V4
                                                 Converter*
i
                                                                                        fFLl
                                                NO Span (or Calibrating) Gas    Ml
^5
..
--

R3

CO
NDI

2
R



R4

CO


NDIR

1

                                                                                        FL3
                                                           C02 Span (or Calibrating) Gas
                                                           Zeroing Gas

                                                              To Outside Vent

                                                              Span  (or  Calibrating)  Gas

-------
                               Office .of  A1r  Programs
                             Ann  Arbor, Michigan   48105

       AFAE                                                            March 27, 1972

       Corrections to the Experimental Heavy-Duty  Test Procedure
       Presently Utilized at Southwest Research Institute  and  the
       Bureau of Mines


       Dr.  Jose L. Bascunana
       Chief, Highway Vehicles Section, CCDB

            In Section 85.102(a)(l)  the weighting  factors  for  mode  numbers
       1, 11, and 22 are revised  to  read  as follows:

            Mode No.      Engine  Speed      % Load     Weighting Factors

               1             Idle             0                 7

              11             Idle             0                 7

              22             Idle             0                 8

            In Section 85.107 paragraphs  (6)  and (7) are revised to read
       as follows:

            (6)  Start the test sequence  of 85.102(a).  Operate  the engine
       for at least three minutes 1n each mode, completing the engine  speed
       and Toad changes during the first  minute.

            (7)  If additional time  \£ required to read and record  the data
       specified 1n Section 85,105,  each  mode may  be extended  to a  maximum
       of ten minutes.

            In Section 85.108 paragraph  (a) Is revised to  read as follows:

            (a)  Locate the third minute  of each node and  determine the
       average chart reading for  HC, CO,  COg  and NO over tha one minute
       period.
                                          John Bozek
                                   Chief,  Heavy Duty Section
                                 Procedures Development Branch

AFAE::JJMcFadden/JBozek:lpm  209, 340, 3/27/72

      FILE

-------