EXHAUST EMISSIONS  FROM UNCONTROLLED

VEHICLES AND RELATED  EQUIPMENT  USING

      INTERNAL  COMBUSTION ENGINES

                        by
                    Charles T. Hare
                    Karl J, Springer

                   FINAL REPORT
                      PART 3
                   MOTORCYCLES
                Contract No. EHS 70-108

                     Prepared for

        Characterization and Control Development Branch
           Mobile Source Pollution Control Program
                        and
                National Air Data Branch
         Office of Air Quality Planning and Standards
              Office of Air and Water Programs
              Environmental Protection Agency

                     March 1973
            SOUTHWEST RESEARCH  INSTITUTE
            SAN ANTONIO    CORPUS CHRISTI     HOUSTON

-------




z
                                        EMISSIONS RESEARCH LABORATORY

-------
                                                   AR-879
          SOUTHWEST RESEARCH INSTITUTE
          Post Office Drawer 28510, 8500 Culebra Road
                 San Antonio, Texas 78284

EXHAUST EMISSIONS FROM  UNCONTROLLED

VEHICLES AND RELATED EQUIPMENT USING

      INTERNAL  COMBUSTION ENGINES

                          by
                     Charles T. Hare
                     Karl J. Springer <•

                     FINAL REPORT
                        PART 3
                     MOTORCYCLES
                 Contract No. EHS  70-108

                      Prepared for

        Characterization and Control Development Branch
           Mobile Source Pollution Control Program
                          and
                 National Air Data  Branch
          Office of Air Quality Planning and Standards
              Office of Air and Water Programs
              Environmental Protection Agency

                      March 1973
                          Approved:
                           John M. Clark, Jr.
                           Technical Vice President
                           Department of Automotive Research

-------
                             ABSTRACT

       This report is Part 3 of the Final Report on Exhaust Emissions
from Uncontrolled Vehicles and Related Equipment Using Internal
Combustion Engines, Contract EHS 70-108. Exhaust emissions from
seven motorcycles were measured using three separate procedures for
each bike.   The motorcycles tested were a Harley-Davidson FLH (IZOOcc),
a Honda CL.350K3, a Honda SL.100, a Kawasaki 125F6,  a Suzuki T250, a
Triumph T120R (650cc), and a Yamaha DT1E (250cc).  Although two of
the procedures used for testing were based on those specified in Federal
Law for automobiles, it should be noted that motorcycles are currently
exempt from Federal emissions regulations.

       The first procedure used for the motorcycle tests was the Federal
"7-mode" direct sampling procedure (applicable to 1970 and 1971 model
year light duty vehicles), modified where necessary.  The exhaust con-
stituents measured for  the 7-mode tests included hydrocarbons,  CO, CC>2
and NO, all by NDIR.  The motorcycles were also  tested on the Federal
"LA-4" bag sampling procedure (applicable to 1972 and newer light duty
vehicles),  modified  as necessary.  This procedure currently specifies
measurement of hydrocarbons by FIA,  CO and CO2 by NDIR, and NO and
NOX by chemiluminescence.   The final procedure used was a series of
steady-state conditions designed to cover the range of operating  conditions
experienced by each motorcycle.  The  exhaust products measured during
the steady-state tests included: total hydrocarbons by FIA;  light hydro-
carbons by gas chromatograph (2 of the 7 machines only); hydrocarbons,
(2 of the 7  machines only), CO, COz, and NO by NDIR;   NO and NOX by
chemiluminescence; Q£ by electrochemical analysis;  total aliphatic
aldehydes (RCHO) and formaldehyde (HCHO) by the MBTH and chromo-
tropic  acid methods, respectively; particulate by an experimental dilution-
type sampling device;  and exhaust smoke (2-stroke machines only) using a
PHS full-flow smokemeter.

       The motorcycles were operated on a modified automotive chassis
dynamometer,  and the emissions results are used  in conjunction with
statistics on motorcycle  population and usage to estimate national emissions
impact.
                                11

-------
                              FOREWORD

       The project for which this report constitutes part of the end product
was initiated jointly on June 29,  1970 by the Division of Motor Vehicle
Research and Development and the Division of Air Quality and Emission
Data, both divisions of the agency known as NAPCA.  Currently,  these
offices are the Characterization and Control Development Branch of MSPCP
and the National Air Data Branch of OAQPS, respectively,  Office of Air
and Water Programs, Environmental Protection Agency.  The contract
number is EHS 70-108, and the project  is identified within Southwest
Research Institute as  11-2869-01.

       This report (Part 3) covers  the motorcycle  portion of the  characteri-
zation work only,  and the other items in the characterization work have been
or will be covered by  six other parts of the  final report. In the order in
which the final reports have been or will be submitted,  the seven parts  of
the characterization work include:   Locomotives and Marine Counterparts;
Outboard Motors; Motorcycles; Small Utility Engines;  Farm, Construction
and Industrial Engines; Snowmobiles; and Gas Turbine "peaking"  Power-
plants.   Other efforts which have been conducted as separate phases of
Contract EHS 70-108, including: measurement of gaseous emissions from
a number of aircraft turbine engines; measurement of crankcase  drainage
from a number of outboard motors; and investigation of emissions control
technology for locomotive diesel engines; either have been or will be
reported separately.

       Cognizant  technical personnel for the Environmental Protection
Agency are currently  Messrs, William  Rogers Oliver  and David S.  Kircher,
and past Project Officers include Messrs.  J. L. Raney, A. J.  Hoffman,
B.  D. McNutt, and G.  J. Kennedy.  Project Manager for Southwest Re-
search Institute has been Mr.  Karl  J. Springer, and Mr.  Charles T. Hare
has carried the technical responsibility.

       The offices of the sponsoring agency (EPA)  are located at 2565
Plymouth Road, Ann Arbor, Michigan 48105 and at Research Triangle Park,
North Carolina 27711; and the contractor (SwRI) is  located at 8500 Culebra
Road, San Antonio, Texas  78284.

       The assistance of several individuals and groups has contributed to
the success of the motorcycle portion of this project.   To begin,  of course,
appreciation is expressed to Harley-Davidson Motor Co. ; American Honda
Motor Co. ,  Inc. ;  Kawasaki Motors  Corp. , U. S. A. ; U. S.  Suzuki  Motor Corp. ;
Triumph Motorcycle Corp. ; and Yamaha International  Corp. for supplying
motorcycles on a  loan basis for test purposes.  Individuals within these
companies who have provided technical  assistance include Messrs.  Lance  ,.
Presnall and Nick Hirsch of Harley-Davidson, Brian Gill and Chet Hale of
Honda, Dennis David of Kawasaki,  Mike Petler of Suzuki; E. W.  "Pete"
Colman of Triumph, and Leo Lake,  Dennis  Stefani, and Isao Shirayanagi
                                  111

-------
of Yamaha.  Mr. Roy Kessler of the Motorcycle Industry Council (MIC)
has also been very helpful.

       Mr. Lake, in his capacity as chairman of the SAE Motorcycle
Committee, has also been instrumental in promoting communication
by scheduling meetings of  his committee at the contractor's facility.
These meetings have provided an excellent forum for presentation of
progress reports to the motorcycle industry and a good opportunity
for exchange of technical information.

       The SwRI personnel involved most deeply in preparation for and
conduct of the motorcycle  tests included Russel T.  Mack, lead technician,
and Jim Chessher, Gene Hoyt,  John T.  Jack,  Wm. P. Jack, Joyce
McBryde,  Del Ray O'Neill, and Joyce Winfield.  The contributions of all
these people were necessary and  are sincerely appreciated.
                                 IV

-------
                        TABLE OF CONTENTS
ABSTRACT                                                        ii

FOREWORD                                                       iii

LIST OF ILLUSTRATIONS                                          vii

LIST OF TABLES                                                  ix

I.        INTRODUCTION                                            1

II.       OBJECTIVES                                               2

III.      INSTRUMENTATION, METHODS, AND CALCULATION
         TECHNIQUES                                               3

         A.  Road Testing and Dynamometer Simulation               4
         B.  Federal "7-Mode" Cycle Gaseous Emissions
             Measurement Procedure (Applicable to 1970
             and 1971 Model Year Light Duty Vehicles)                7
         C.  Federal "LA-4" Cycle Gaseous Emissions
             Measurement Procedure (Applicable to Light
             Duty Vehicles of 1972 Model Year and Later)             8
         D.  Steady State Emissions Measurement Procedures        10
         E.  Special Study of Crankcase or "Blowby" Emissions
             from One 4-Stroke Machine                            17
         F.  Estimation of Unmeasured Emissions                   19
         G.  Motorcycle Noise Measurement Procedure              22

IV.      EMISSIONS TEST RESULTS                                 24

         A.  Gaseous Emissions                                    24
         B.  Smoke Emissions (2-stroke engines only) and
             Particulate Emissions                                  42
         C.  Results of Noise Tests                                 45

V.       ESTIMATION OF EMISSION FACTORS AND NATIONAL
         IMPACT                                                   48

         A.  Analysis of the  Motorcycle Population                   48
         B.  Development of Emission Factors                       52
         C.  Estimation of National Impact                           55

-------
                   TABLE OF CONTENTS (Cont.)

                                                                 Page

VI.      SUMMARY                                                57

LIST OF REFERENCES                                             59

APPENDIXES

         A.   Motorcycle Road Test and Dynamometer
             Simulation Data

         B.   Shift Points Used for Motorcycle 7-Mode Tests
             and Motorcycle 7-Mode Emissions Data  (1970
             Federal Light-Duty Vehicle Procedure)

         C.   Motorcycle LA-4 Emissions Data (1975 Federal
             Light-Duty Vehicle Procedure)

         D.   Gaseous Emissions Data from Steady-State
             Tests on Motorcycles

         E.   Reproductions  of Speed and Smoke Opacity Traces
             for the 2-Stroke Motorcycles Operated on the LA-4
             Route
                                 VI

-------
                       LIST OF ILLUSTRATIONS

Figure                                                            Page

   1        Modified Automobile Chassis Dynamometer Used
           for Motorcycle Emissions Tests                           5

   2        Variable Inertia Simulation System Used for
           Motorcycle Emissions Tests                               5

   3        System of NDIR Instruments Used for 7-Mode
           Tests on Motorcycles                                      5

   4        Motorcycle Operator Following Strip Chart
           Driving Aid During Emission Test                          9

   5        Instrument Cart Used for Analysis of Bag Samples          9

   6        Constant Volume Sampler Connected to Honda SL100
           Motorcycle During LA-4 Emissions Test                   9

   7        Technician Removing Dilute Sample Bags from
           Constant Volume Sampler                                 9

   8        Overall View of Gaseous Emissions Analysis
           System Used for Steady-State Motorcycle Tests            13

   9        Detailed View of Continuous Analysis/Readout
           System Used for Steady-State Motorcycle Tests            13

 10        Configuration of Special Exhaust Systems Used for
           Motorcycle Gaseous Emissions Tests                     14

 11        Overall Front View of Particulate Sampler Used
           for Motorcycle Tests                                     16

 12        Detail View of Controls and Readouts Used
           on Particulate Sampler                                   16

 13        Rear View of Particulate Sampler Set Up for
           Tests on Kawasaki 125F-6                                16

 14        First View of Smoke Measurements Being
           Taken on Kawasaki 125F-6 Motorcycle                    18

 15        Second View of Smoke Measurements Being
           Taken on Kawasaki 125F-6 Motorcycle                     18
                                 vii

-------
                   LIST OF ILLUSTRATIONS (Cont. )

Figure                                                            Page

 16        Bag Sample of Blowby Gases Being Taken from
           Honda SL100 at Idle                                      20

 17        Overflow Bag and Other Parts of Continuous Blowby
           Analysis System Used on Honda SL100                    20

 18        Noise Measurement on Honda SL100 Motorcycle
           from  Side 1 During Right-to-Left Acceleration Run        20

 19        Noise Measurement on Honda SL100 Motorcycle
           from  Side 1 During Left-to-Right Acceleration Run        20

 20        Idle Noise  Being Measured from the Rear of the
           Kawasaki 125F-6 Motorcycle                             23

 21        Idle Noise  Being Measured from the Left Side of
           the Kawasaki 125F-6  Motorcycle                         23

 22        Envelopes  of Road-Load Exhaust Emissions from
           the Seven Motorcycles Tested                            36
                                 Vlll

-------
                              LIST OF TABLES

Table                                                            Page

   1        Description of Test Motorcycles                          3

   2        Nominal Fuel Tank Capacities for Various Sizes
           of Motorcycles                                         21

   3        Summary of Average Motorcycle 7-Mode Trip
           Composite Results                                      25

   4        Summary of Results of Federal Light-Duty Vehicle
           Emissions Test Procedure for 1972 and Beyond as
           Applied to Motorcycles                                  27
                                           e
   5        Data on NOX Emissions from 4-Stroke Motorcycles
           Supplied by Yamaha Motor Co.                           28

   6        Summary of Constant-Speed Gaseous Emissions Data
           for the Ha r ley-David son FLH Motorcycle, Average
           Values for 3  Runs                                      29

   7        Summary of Constant-Speed Gaseous Emissions Data
           for the Honda CL350K3  Motorcycle, Average Values
           for 2 Runs                                             30

   8        Summary of Constant-Speed Gaseous Emissions Data
           for the Honda SL100 Motorcycle, Average Values
           for 8 Runs                                             31

   9        Summary of Constant-Speed Gaseous Emissions Data
           for the Kawasaki 125F-6 Motorcycle,  Average Values
           for 5 Runs                                             32
                             i
 10        Summary of Constant-Speed Gaseous Emissions Data
           for the Suzuki T250 Motorcycle,  Average Values for
           4 Runs                                                 33

 11        Summary of Constant-Speed Gaseous Emissions Data
           for the Triumph T120R Motorcycle, Average Values
           for 3 Runs                                             34

 12        Summary of Constant-Speed Gaseous Emissions Data
           for the Yamaha DTl-E Motorcycle, Average Values
           for 2 Runs                                             35

 13        Data on Light Hydrocarbon Emissions From a Honda
           SL100 Motorcycle                                      38
                                    IX

-------
                       LIST OF TABLES (Cont.)

Table                                                             Page

  14       Data on Light Hydrocarbon Emissions from a
           Kawasaki 125F-6 Motorcycle                             38

  15       Conditions and Weighting Factors Used for Cycle
           Simulation                                               39

  16       Cycle Composite Aldehyde Emissions  from Motorcycles    39

  17       Crankcase Vent Emissions From a Honda SL100
           Motorcycle                                              40
                   —                       e
  18       Mass Emissions From the Crankcase  Vent of a
           Honda SL100 Motorcycle                                 41

  19       Exhaust Emissions From a Honda SL100 Motorcycle
           With and Without Blowby Recirculation                    41

  2.0       Summary of Results of the Crankcase  Emissions
           (Blowby) Study Conducted on  the Honda SL100              42

  21       Motorcycle Smoke Test Results and Supplementary
           Data                                                     43

  22       Particulate Emissions Data from Seven Motorcycles       44

  23       Summary of Weighted Particulate Mass Emissions
           from Seven Motorcycles                                  45

  24       Summary of Noise Test Results on Three Motorcycles      46

 .25       Summary of Motorcycle  Registration and Sales Data        48

  26       Motorcycle Population Statistics  Calculated By
           Assuming a Series of Retirement Rates                    50

  27       Breakdown of U. S.  Motorcycle Population According
           to Engine  Size and Type                                   51

  28       Distribution of U. S. Motorcycles by Engine Size           51

  29       Typical Mass Emissions From Motorcycles as
           Functions of Engine Size and  Type                         52

  30       Emission  Factors for Motorcycles (Dec. 31, 1972)         54
                                  x

-------
                       LIST OF TABLES (Cont.)

Table                                                             Page

 31        National Impact Estimates for Motorcycle Emissions
           (Dec. 31, 1972)                                          55

 32        Comparison of Motorcycle National Impact Estimates
           With EPA Nationwide Air Pollutant Inventory Data          56

 33        Summary of Seasonal, Regional,  and Urban-Rural
           Variation of Motorcycle Emissions                        56
                                  XI

-------
                         I.  INTRODUCTION

       The program of research on which this report is based was
initiated by the Environmental Protection Agency to (1) characterize
emissions from a broad  range of internal combustion engines in
order -to accurately set priorities for future control, as required,
and (2) assist in developing more inclusive national and regional air
pollution inventories. This document,  which is Part 3 of what is
planned to be a seven-part final report, concerns emissions from
motorcycles and the national  impact of these emissions.

       Prior to the work reported here,  very little well-documented
motorcycle emissions research had been made public, although
doubtless some unpublished work had been done.  The results which were
available were also generated by procedures originally developed for
passenger cars,  some of which were valid for motorcycles and others
which were not.  Several procedures were used for motorcycle testing
in the subject program to gather the most useful results, but little
consideration has been given  to the potential usefulness of these pro-
cedures for anything except research purposes.

       Due to arrangements within the contract, the motorcycle testing
was performed during three essentially separate time intervals.  Some
of the 7-mode tests were performed on five  motorcycles (all except the
Honda SL.100 and Kawasaki  125F-6) during April and May 1971.  At that
point the personnel involved were assigned to on-site testing of aircraft
turbine engines until about September 1971,  so the remainder of the
testing on the same five machines  was accomplished from September
1971 through early January,  1972.   The third section came after the
most recent contract modification, extending from August through
October of 1972,  and it included all testing on the Honda SL100 and  the
Kawasaki 125F-6.  All the tests were performed in the Emissions
Research Laboratory at SwRI except the road tests and noise tests.

-------
                                                                    2.

                          II.  OBJECTIVES

       The objectives of the motorcycle part of this project were to
obtain exhaust emission data on a variety of motorcycles,  and to use
these data along with available information on number of machines in
service and annual usage to  estimate emission factors and national
impact.  The emissions to be measured included total hydrocarbons
(FIA); CO, CO2, NO and hydrocarbons (NDIR); NOX and NO ( chem-
iluminescence); O2 (electrochemical) ; light hydrocarbons (gas chromato-
graph); aldehydes (wet chemistry); particulates (gravimetric analysis);
and smoke for 2-stroke  machines only ( PHS light extinction smokemeter).
These exhaust constituents are essentially the  same as those  measured
during all tests on gasoline-fueled engines tested under this contract.

       In order to obtain comprehensive data,  it became necessary to
operate the motorcycles on modified versions of cyclic procedures
originally designed for automobiles, as well as steady-state procedures
designed specifically for the motorcycles.  The modified cyclic procedures
gave useful results for constituents which could be  analyzed continuously
and which did not degrade with time in bag samples, but they could not
be used to measure constituents which required relatively lengthy sample
collection periods or which decomposed or settled out with time.  To
meet the objective of obtaining good emissions data, it was necessary
to develop representative steady-state procedures which could be weighted
by mode to derive composite emissions of difficult-to-measure constituents
such as aldehydes and particulates.  This development became a
secondary objective of the project.

-------
III.  INSTRUMENTATION,  METHODS, AND CALCULATION TECHNIQUES

        This report section covers the conduct of the road tests and dyna-
mometer simulation, all the emission measurements,  calculation of
unmeasured constituents, and the noise tests.  It includes photographic
documentation of all the studies as well as descriptions,  and is broken
into seven major subsections for clarity.  In brief, the test procedures
were chosen to yield as much useful data and as many  comparisons to
other emission sources as possible. The steady-state tests permitted
acquisition of data on emissions which require an extended sampling
period (aldehydes, particulate,  and light hydrocarbons),  in addition to
providing an assessment of the  stability of emissions which can be  mea-
sured continuously.  The 7-mode tests were included to attempt compari-
son to motorcycle work done previously, and they could also be useful
in determining emissions variations and average concentrations during
transients.  The LA-4  (1972 and later Federal) tests were included
because this procedure is the current Federal standard for light-duty
vehicles, and thus is probably the most reliable way to estimate national
emissions impact of motorcycles.

        The seven motorcycles tested were chosen to represent a variety
of sizes and types, including both 2-stroke and 4-stroke machines.   De-
scriptions of the bikes  are given in Table 1, and it should be noted  that
the five larger machines were 1971 models and that the two smaller ones

          TABLE  1.  DESCRIPTION OF TEST MOTORCYCLES
Manufacturer  Model    Cyls.
Nona.
Disp., Wt. ,
cm3 lbf
Engine
Type
Chassis
Type
Nominal
Max hp
at rpm
Harley-
  Davidson
Honda
Honda

Kawasaki

Suzuki
Triumph
Yamaha
FLH
CL350K3
SL100

125F-6

T250
T120R
DT1-E
2
2
1
2
2
1
1200   697   4-stroke
 350   355   4-stroke
 100   220   4-stroke

 125   248   2-stroke

 250   339   2-stroke
 650   417   4-stroke
 250   279   2-stroke
street
street
 dual-
purpose
 dual-
purpose
street
street
 dual-
purpose
*57 @ 5,000
 33 @ 9,500
   11.5 @
   11,000

*15 @ 7,500
 32 @ 8,000
 50 @ 6,500

 23 @ 7,000
   *approximate - not from manufacturer's data
were 1972 models.  Although the machines tested were some of the most
popular types, no attempt was made to correlate exactly with the national

-------
population.  A much larger number of motorcycles would be necessary to
form any kind of statistical sample of the population.

       A.  Road Testing and Dynamometer Simulation

       The reason for conducting road tests on the motorcycles, including
accelerations and decelerations, is to make sure that the subsequent dyna-
mometer inertia and road load settings will permit the machines to
operate as normally as possible.  The same comment applies, of course,
to speedometer calibrations.  Since the subject work is perhaps the first
fairly comprehensive study of motorcycle emissions to be widely circu-
lated, care has been taken to document the process  used in setting up
the motorcycles for dynamometer operation.  Making the dynamometer
simulation data available in this manner  will allow the process to be
judged properly in retrospect,  and  if errors are found, the emissions
data can be corrected for  the errors and still be usable.

       The dynamometer  used was an old Clayton model C-49 unit, having
7-inch diameter rolls about 80 inches long.  The actual inertia of the rolls
is not known, but they are partially hollowed out rather than being solid.
The unit was modified to reduce the roll  spacing to  12 inches on centers,
preventing the tire of the motorcycle  from sinking too far  down between
the rolls.  The inertia system was  fabricated especially for motorcycles,
consisting of six steel discs which could  be selectively coupled to the
rolls. For tests on the smaller machines  (Honda  SL100 and Kawasaki
125F-6),  the inertia wheels  turned  at the same rotational speed as the
rolls, but they were driven at twice the roll speed for the  five larger
machines.  The dynamometer and the inertia wheels are shown in Figures
1 and 2,  respectively (the inertia system was covered by a guard when in
operation).  Referring to Figure 2,  the three larger wheels were 20 inches
in diameter,  and were designated numbers 1, 2, and 3 in order of de-
creasing thickness.  The smaller wheels were 16  inches in diameter,
and were designated 4, 5, and 6 in  order of decreasing thickness.  Wheels
1 and 4 were 1/2 inch thick, 2 and 5 were 3/8 inch thick,  and 3 and 6
were 1/4 inch thick.  The water brake power absorption unit is under
the plate at the right end of the dynamometer in Figure 1,  and the white
console contains speed (mi/hr) and power absorption (hp) readouts.

       In the case of the dynamometer as well as  some other equipment
items used during the subject study, time and financial constraints com-
bined to prevent equipment from being optimized.  Another item which
was a compromise was the blower used for engine cooling. To simulate
the real situation properly, the blower should provide airflow over the
engine proportional to road speed, but the blower  used for this project
was not so controlled.  During idles,  the blower was shut  off, and it was
unrestricted during other conditions.   The most important function of the

-------
Figure 1.  Modified Automobile
Chassis  Dynamometer Used for
 Motorcycle Emissions Tests
Figure 2.  Variable Inertia
Simulation System Used for
Motorcycle Emissions Tests
            Figure 3.  System of NDIR Instruments Used for
                     7-Mode Tests  on Motorcycles

-------
                                                                    6.

blower during the subject tests was to provide sufficient cooling air to
prevent engine damage,  and any  side-effects on emissions which may
have occurred will simply have to be accepted as experimental error
until further tests are run using  more sophisticated equipment.

       Data taken during the road test and dynamometer simulation opera-
tion are given in Appendix A,  pages A-2 through A-8.  The first step for
each motorcycle was to  calibrate its speedometer.  All subsequent work
was then performed at true speeds rather than indicated speeds.  The
motorcycles were weighed with full liquid levels, and these weights (plus
an assumed  150 pound rider) were used later to determine power require-
ments for simulated uphill conditions  (steady-state tests).  Inlet vacuum
was recorded next (five  machines only), on a level course in the indicated
gears.  These data were of limited value, so they were not acquired for
the last two bikes tested (Honda SLlOO and Kawasaki 125F-6).

       The coasting times (or "rundown" times, as they are commonly
called) were measured on a flat course, the process requiring two tech-
nicians.  Taking the data on page A-3 for the Honda CL350K3 as an
example,  Operator R rode by Operator D (who was standing beside the
road) at a true 40 mph and pulled in the clutch in view  of Operator D.
Operator D started a stopwatch when the  clutch was disengaged, and
continued watching the motorcycle from the rear.  When a true 20 mph
was reached, Operator R touched the  rear brake pedal, causing the tail-
light to flash, and Operator D stopped the watch.   Operator R turned
the bike around and repeated the procedure in the other direction, and
then the operators changed places and repeated the two runs.  The 20
mph and 40 mph speeds  were chosen only as a matter of convenience,
because each of the five larger bikes had at least one gear  in which it
would accelerate well at wide open throttle from 20 mph to 40 mph.  It
was considered desirable to run  the accelerations  and  the rundowns between
the same two speeds.  For the two smaller motorcycles, 25  mph and 45 mph
proved to be more convenient endpoints.  The one-gear accelerations were
run in a manner  similar to the coasting tests, with the rider beginning
the acceleration  in view of the stationary observer and tapping the rear
brake when the speed reached the true end value.  The accelerations were
limited to one gear to eliminate the effect of shifting variations.

       The data  gathered in the road test were used to set up the dyna-
mometer for both constant-speed and  transient operation.  The inlet
vacuum tests were repeated with the bike on the  dynamometer and in all
cases the vacuum readings indicated that dynamometer friction was just
about equal to level road resistance; so it was not necessary to add any
additional dynamometer load for the "road load" settings (resulting in the
blank columns at the bottom right of the test data sheets).  An additional
indication of the accuracy  of the  road load simulation was provided by the
acceleration and rundown tests, as will be explained shortly.

-------
                                                                     7.

       The next step was to determine which inertia wheel (or combination
of wheels) was necessary to properly simulate road performance during
transient conditions.  This procedure was of the trial-and-error type,
and in all cases the last wheel or combination of wheels listed on the
data sheet was the  one used during the 7-mode and  LA-4 cycles.  Looking
at the  data for the Honda CL350K3 again, wheel number 4 was tried first,
resulting in both acceleration and deceleration times which were too
short.  This outcome  meant that the wheel did not have enough inertia,
so a wheel having higher inertia (no. 2) was tried.  In  this second trial,
the deceleration time  was  a little short and the acceleration time was a
little bit high.  This outcome meant that the inertia was about right, but
that the dynamometer friction was a bit greater than road load between
20 mph and 40 mph.  If, as an example, the acceleration time had been
low and the deceleration time had been high,  dynamometer friction would
have been lower than road load over the speed range investigated.  This
reversal occurred  markedly only for the Suzuki T250 (although it occurred
to a lesser extent for  the Honda SL100 and the Kawasaki 125F-6), and it
was later discovered that the apparently greater "road load" for the
Suzuki had been due to a dragging front brake.  A similar but opposite
problem seemed to be occurring with the Kawasaki 125F-6, but in this
case the restraints were simply snubbed down too tightly, creating an
artificial additional amount of dynamometer friction.

       Three of the motorcycles tested (Honda SLlOO, Kawasaki 125F-6,
and Yamaha DT1-E) were  of the "dual purpose" type, and were fitted
with one variety or other of semi-knobby rear tires as standard equip-
ment.  These "dirt" tires  were replaced with street tires to reduce
dynamometer friction and  to prevent tire disintegration,  so the effective
overall gear ratios of the three machines  may have been changed slightly
as a result.

       B.   Federal "7-Mode"'Cycle Gaseous Emissions Measurement
            Procedure (Applicable to 1970 and 1971 Model Year
            Light Duty Vehicles)

       The major reasons for running the motorcycles on the 7-mode
cycle'1) were to permit  correlation with earlier  emissions tests and to
obtain data on average emission concentrations during certain transient
conditions.  It was  discovered quite early in the  tests that use of the
empirical equation relating exhaust volume to vehicle mass was not prac-
tical because  it gave inaccurate (low) results for motorcycles.  The effect
of this problem was that calculation of emissions on a  mass basis from
7-mode results had to be eliminated,  which was  no great loss since the
other measurement procedures gave good results to fill in the gap.

       As required by the 7-mode procedure, shift points were stan-
dardized for each motorcycle according to what was considered its normal

-------
                                                                     8.

operation.  These shift points are outlined on pages B-2 through B-5 of
Appendix B, and show considerable variations from one motorcycle to
another,  as a function of engine size, gearing, and so forth.

        The 7-mode procedure (which applied to light-duty vehicles up
through the 1971 model year, excluding motorcycles) specified direct
exhaust sampling for hydrocarbons,  CO, CO2, and NO (1971 only),  so
these constituents were the ones measured (all by NDIR analysis).  The
instrumentation system used is shown in Figure 3, along with a teletype
terminal  and on-line computer (left) used for processing of information
from other types of emissions tests.  The system had the high flowrates
and fast response required by law for certification work, and data analysis
was performed by hand-integrating the strip c*hart readouts and processing
the results by  computer from that point (see Appendix B, pages B-6
through B-37 for computer printouts).  To help the operator drive the
cycle correctly,  he watched a strip chart driving aid with a pen to follow
the speed-time trace as shown in Figure 4.   A similar driving aid was
used for the LA-4 runs.  The fuel used for the 7-mode tests as well as
all the  other procedures was standard emissions test fuel(^), similar to
the brand-name product "Indolene 30. "
        C.  Federal "LA-4" Cycle Gaseous  Emissions  Measurement
            Procedure (Applicable to Light Duty Vehicles of 1972
            Model Year and Later)
        This newer procedure*  ', which uses constant-volume sampling,
was much more readily adapted to use in motorcycle testing than was the
older 7-mode procedure.  Calculations were more direct and less time-
consuming, and the composite mass-based results were quite believable.
The major drawback of the bag sampling procedure is that it provided no
data on individual modes,  which made it more useful for determination of
impact  than for characterization studies.  The instrumentation specified
for this procedure is NDIR analysis for CO and CO£, FIA analysis for
total hydrocarbons, and chemiluminescent analysis for NOX.  The instru-
ment cart used for the bag analysis is shown in Figure 5,  and the constant
volume sampler (CVS) is shown in Figure 6 as connected to the Honda
SL100 during an LA-4 emissions test.   Figure 7 is a more detailed view
of the CVS, with the air inlet at upper left, filtration system inside  the
stainless  steel box,  and pressure and temperature readouts on the panel
and shelf  in front of the technician.

        For the motorcycle tests, the positive-displacement blower used
to pull air/exhaust mixture through the CVS was run more slowly than it
would have been for automobile tests to provide reasonable emission
concentrations for measurement.  The total volume flowrate through
the system was about 93 CFM,  of which a small fraction was removed
to fill the  sample bags.  The calculation procedure used to arrive at
grams per mile from the raw data was essentially that which becomes
applicable to light-duty vehicles of 1975 and later model years(3).  The

-------
 Figure 4.  Motorcycle Operator
 Following Strip Chart Driving Aid
    During  Emission Test
 Figure 5.   Instrument Cart Used
 for Analysis of Bag Samples
Figure 6.  Constant Volume Sampler
Connected to Honda SLJOO Motor-
cycle During LA-4 Emissions Test
Figure 7.  Technician Removing
Dilute Sample Bags from Constant
        Volume Sampler

-------
                                                                     10.

only exceptions made to the 1975 procedures were that only one background
bag was taken during each phase (rather than two),  and that the humidity
correction factor was assumed to be 1. 0 in all cases.  The exceptions
probably did not have a significant effect on the overall results.

        The major difference in calculation procedure  between the 1972
and 1975 versions of the Federal light-duty vehicle test procedure is the
inclusion of emissions measured during the transient hot phase (bag 3,
as noted in the Appendix) in the latter procedure.  This change tends to
reduce the importance of the cold start to  some extent, but since motor-
cycles warm up rapidly (they have air-cooled engines  which are not as
bulky as automobile engines) the change probably means little as far as
motorcycle emissions are concerned.  Both the 1972 and 1975 procedures
make use of the same basic principles of measurement,  namely; dilution
of sample to slow down reactions and prevent condensation of water;
determination of volume concentrations of the time-averaged dilute  sample;
and use of the concentrations with total diluted exhaust volume flowrate
to determine mass emitted per mile.   This procedure contrasts sharply
with the older 7-mode calculations, which required calculation of an
"average" concentration based on defined intervals within the cycle, and
use of an empirical exhaust volume flowrate to determine mass emitted
per mile.

        D.   Steady State Emissions  Measurement Procedures

        The inclusion of steady state emissions measurements in addition
to the two cyclic procedures was deemed necessary for several reasons.
First,  the stability of the emissions was of interest,  so  sampling over a
period of time was desirable from that standpoint.  In addition, due to the
lack of reliable continuous  methods for analysis of some  exhaust constituents,
more or less  extended sampling periods were required (aldehydes,  light
hydrocarbons, and particulate).

        Development of reasonable operating conditions for the motorcycles
was undertaken with the idea in mind that the resulting procedures should
be useful for measurement of gaseous  emissions,  particulates, and smoke.
The dynamometer setup did not include provision for "motoring", or
simulation of downhill closed-throttle operation,  so the range of operation
was limited to level road and uphill conditions.  As has already been
shown  in the discussion on  road testing and dynamometer simulation, the
dynamometer friction was quite similar to level road resistance, so
"road load" conditions were run with no additional power absorption.
Uphill  conditions were defined in terms of grade, which is normally
expressed as a percentage  (% grade   100 X tangent of angle with hori-
zontal).  The additional power (above  road load) required to overcome a
grade is given by

      Power   (speed) (weight of machine + rider) sin (arctan '°_<**-	)}

-------
                                                                    11.

and the rider weight is assumed to be 150 Ibf.  It was decided that each
machine should be run over the range of its gradeability in gears
reasonable for the speeds and grades involved, but that the motorcycles
should not run  at their maximum outputs for long periods  of time.  The
latter consideration led to the arbitrary limit on power absorption of
75% of power available over road load at any speed/gear condition.  If,
for example, a certain motorcycle would maintain 40 mph in 3rd gear
while pulling a maximum indicated power over  road load of 10 hp, then
the maximum power over road load required for any sampling condition
would have been 7. 5 hp.

       The effect of this  limitation on power oufput was that the number
of possible conditions was restricted by available power,  especially for
the smaller motorcycles. In order to "map1' the engines  somewhat more
broadly, additional conditions were added at higher engine speed and
relatively high loads.   These latter conditions are thought to represent
to some  extent the type of usage which motorcycles might undergo in the
off-road situation rather  than the on-road situation.  For the five largest
motorcycles, the  high speed conditions  decided upon were 0. 6 and 0. 8
times maximum rated rpm with road load, one-third of power available
over road load, and two-thirds of power available over road load (total
of six conditions).  The gear  chosen for each engine rpm was that which
would bring road speed closest to 30 mph for the given engine speed.
These  conditions were abbreviated "0. 6 Max RL",  "0.6 Max 1/3",  and
so forth.

       For the two smaller motorcycles,  the conditions chosen were 75%
of power available over road  load at 20 mph, 30 mph,  and 40 mph (abbre-
viated  "20H",  "30H",  and "40H").   Gears chosen in this instance were
the lowest (numerical) gears  which could be used without exceeding rated
rpm.  For the  Honda SL100,  the'"5% grade" conditions could not be
achieved at 40  mph or 50 mph in 5th gear (considered normal for high-
way operation), so the grades corresponding to 75% of power available
over road load were substituted (3. 0% and 2.4%,  respectively).   The
schedule for the Kawasaki 125F-6 was limited even more  than that for
the small Honda because  the Kawasaki would not pull much power in
addition to road load in the higher (numerical) gears.  The test conditions
used for all the motorcycles are given in Appendix D,  pages D-2 through
D-28, along with the  gaseous  emissions data developed during the steady-
state runs.

            1.  Gaseous Emissions

            The foregoing discussion applies to all the steady-state emis-
sions measurements,  but some additional consideration should be given
to each type of analysis.  The gaseous emissions measured on a continuous
basis during steady-state tests included hydrocarbons by NDIR (last 2
bikes only) and total hydrocarbons by FIA; CO,  CO^,  and  NO by NDIR;

-------
                                                                        12.

NO and NOX by chemilurninescence; and O^ ^Y electrochemical analysis
(6 of the 7 motorcycles).  Batch samples were taken over a 3-minute
period for aldehyde analysis,  (MBTH method^4' for RCHO and chromotropic
acid method^ ' for HCHO), and bag samples were taken concurrently for
light hydrocarbon analysis (last 2 motorcycles only).  The chromatograph
employed for the light hydrocarbon analysis used a 10 ft by 1/8 inch column
packed with a mixture of phenyl isocyanate and Porasil  C preceded by a
1 inch by 1/8 inch precolumn packed with 100-120 mesh Porapak N.

        The majority  of the equipment used for steady-state gaseous emis-
sions tests is  shown in  Figure 8, with most of the continuous analysis
instrumentation at left.  The oven in the foreground just to the right of
the motorcycle operator contains the FLA detector as well as plumbing
for the wet chemistry sampling system.  The plastic bag at far right  is
being filled for subsequent gas chromatograph analysis.  Figure 9 is  a
more detailed view of the continuous analysis/readout system, and the
insulated containers in  the foreground are water traps.

        Figure 10 shows the special exhaust systems fabricated for the
test motorcycles to prevent leaks and obtain representative exhaust samples.
The pipes were welded  to the  original muffler shells, and were made with
fairly large diameter tubing formed into smooth bends  (where necessary)
to keep backpressure to a minimum.   The systems shown were used for
LA-4 and  7-mode tests as well as steady-state tests.

             2.  Particulate Emissions

             The contract under which the subject work was performed
calls for measurement of exhaust particulate by  "isokinetic  sampling
probes for either glass  fiber filtration or an equivalent level of measure-
ment effort as specified by the Project Officer. "  The problem with this
requirement at the time the project began was that neither a "standard"
method for particulate measurements  on mobile sources nor a good
definition of "particulate" was available.  In effect, a certain amount  of
latitude in particulate measurement was granted to the contractor by
default,  so an original system was designed to meet project objectives.
This system withdrew exhaust "isokinetically" through a probe of 0. 305
inch inside diameter,  diluted it with a larger flow of prepurified dry
(compressed) air,  and then filtered the dilute mixture.   The term "iso-
kinetic "  is qualified because the best that could be hoped for was to match
the bulk flow velocity in the exhaust pipe at the probe tip, rather than the
instantaneous velocity.

       Total exhaust sample flow was obtained by subtracting the known
dilution air flow (metered through a critical orifice) from the total flow
of dilute mixture (measured by a positive-displacement dry gas meter).
Particulate weight was obtained by  subtracting the filter's original weight
from its weight after sampling.  As required by the constraints of the

-------
                                                                   13.
     Figure 8.  Overall View of Gaseous  Emissions
     Analysis System Used for Steady-State
                 Motorcycle Tests
Figure 9.  Detailed View of Continuous Analysis/Readout
System  Used for Steady-State Motorcycle Tests

-------
                                                                               14.
10A.  Harley-Davidson FLH      10B. Honda CL350K3
      IOC.  Honda SL100
       10D.  Kawasaki 125F-6
10E.  Suzuki T250
        10F.  Triumph T120R
                                                        10G.  Yamaha DT1-E
                  Figure 10.  Configuration of Special Exhaust Systems
                     Used for Motorcycle Gaseous Emissions Tests

-------
                                                                     15.

sampling system, then,  "particulate" was defined for the purposes of this
project as everything which was retained at 85 ±5UF on a filter having
0. 45 micron mean flow pore size,  exclusive of water and particles
obviously not combustion-derived (metal bits, etc.).  The extremes in
temperature at the filter were 77° F and 92° F,  with only  some 15 readings
of about 200 being outside  the 80° F-90°F range.

        Particulate was measured during some of the same steady-state
conditions which have already been described.  Conditions during which
samples were taken for  all the motorcycles included idle  and the four
"road load" conditions.  Samples were also taken during two of the high
load conditions on the Honda SL100 and Kawasaki 125F-6, during the four
"10% grade" conditions for the other five machines,  and during two of the
"20% grade" conditions (in addition) for the  Yamaha DTl-E.  Most of the
samples were taken over a 5-minute period, and each condition was
repeated four times or more  as necessary to obtain reasonably repeatable
results.

        Unused filters were kept in a dessicated chamber, and were dried
out again following use to  establish a stable baseline.  The balance used
to weigh the filters (nominal weight 500 mg) had an accuracy of *0. 1 rag
over the range of measurements taken, and the instrument "zero" was
checked between each two  independent weighings.  The filters were
weighed a minimum of four times both before and after use, and the
last two weights had to be  within 0. 2 mg of each other.  The last two
weights were averaged to  obtain the values used in computations.  During
the sampling period,  temperatures and pressures were recorded through-
out the  system,  permitting calculation of exhaust flow rate to 3 significant
figures.

        The particulate sampler is shown in Figures  11 through 13 with
Figure  11 being an overall view showing the dilution air cylinder at left,
readouts and controls on the top shelf and back panel, filter holder at
back right of the top shelf  and pump and dry gas meter on the second
and third shelves, respectively.  Figure 12 shows more detail  of the
readouts and controls, with critical flow element upstream pressure
gauge at left, rate-setting flowmeters at center, temperature readouts
at lower left and gas volume counter,  pressure gauges,  and timer on
the back panel.  Figure  13 shows a back view of the sampler as attached
to the Kawasaki 125F-6 motorcycle, with heated exhaust and sample
lines necessary to prevent condensation of water prior to entering the
sampler.

            3.  Smoke Emissions (2-stroke machines only)

            This  section on smoke  emissions is included under the steady-
state measurements heading as a matter of convenience,  and not because

-------
                                                                           16.
Figure 11.  Overall Front View
of Particulate Sampler Used for
     Motorcycle Tests
Figure 12.  Detail View of Controls
and Readouts Used  on Particulate
          Sampler
              Figure 13.  Rear View of Particulate Sampler
              Set Up for Tests on Kawasaki 125F-6

-------
                                                                     17.

the smoke measurements were taken during steady-state conditions.
The fact is that the smoke tests were conducted by continuous monitoring
of smoke opacity on a strip-chart recorder while the motorcycles were
being operated over the first 505 seconds of the "LA-4" route.  The
rationale for this decision was  that smoke as seen by the public should
be the basis for evaluating the machines, scTthe LA~^4 was adopted as
being representative for the purposes of this project.

       Actual measurement of the smoke opacity was  performed by
attaching a PHS full-flow light-extinction smokemeter to the end of a
straight section of tailpipe.   Figures 14 and 15 are two views of the setup
as used on the Kawasaki 125F-6, which was similar to that used for
the Yamaha DT1-E.  The Suzuki T250 used a slightly different system
since it had twin exhausts,  and the collector pipe was  3 inches in diameter
rather than the 2 inches used for the single-cylinder machines.  This
difference in diameters means that the opacity readings for the Suzuki
are based on a longer optical path  length and are therefore not directly
comparable to those for the other two machines.

       It should also be noted that the PHS smokemeter was used as  a
research tool only on the motorcycle smoke, not because it is recommended
for such use.   It probably gives reasonably accurate results on "white"
smoke, but some research into the matter would be necessary before it
could be recommended as a rigorous quantitative technique.

       E.  Special Study on Crankcase  or "Blowby" Emissions from
            One 4-Stroke Machine

       At the time when the first attempt was made to estimate the national
impact of motorcycle emissions under the subject contract'"', one area
in which data were totally lacking was crankcase "blowby" emissions.
The assumptions were made that only hydrocarbons were emitted from
the vent (other than air), and that they amounted to 20% of the exhaust
hydrocarbons.   This  latter figure was developed during studies on  auto-
mobiles  some time ago(?» 8), and it was  the best-supported generalization
available.

       When tests began on the two smaller motorcycles, it was deter-
mined that blowby should be investigated from the four-stroke machine
in a limited way.  This special study was conducted using several comple-
mentary measurement techniques,  including bag sampling of the blowby
gases with subsequent analysis on an instrumentation system designed
for low concentrations; continuous  sampling with analysis by the same
instrumentation used for steady-state exhaust samples; and rerouting
the blowby gases into the air cleaner to  simulate a  "controlled" system
with "before and after" measurement of exhaust concentrations.  In
order to permit computation of blowby emissions on a  mass basis,  blowby

-------
                                                             18.
 Figure 14.   First View of Smoke Measurements
 Being Taken on Kawasaki  125F-6 Motorcycle
Figure 15.   Second View of Smoke Measurements
Being Taken on Kawasaki 125F-6 Motorcycle

-------
                                                                     19.

 rate was measured using a wet test meter.  To avoid using an inordinate
 amount of time on this sub-study,  sampling was limited to just 3 conditions;
 idle,  20 mph road load, and 40 mph road load.  Figure 16 shows a bag
 sample being taken during an idle condition and Figure 17 shows the
 motorcycle set up for continuous sampling. In the latter configuration,
 the sample line ran up behind the saddle to a tee,  one side of  which
 went to the analyzers and the other to the bag at lower right.   The
 sample rate was adjusted so that the bag filled very slowly,  providing
 another  check on the backpressure being exerted against the blowby
 gases  in addition to the gauge near the fuel tank which teed into the
 sample line at the end of the  standard vent hose.   Data taken during the
 crankcase emissions  study will be presented in section IV. A. 4.
                                             t
       F.  Estimation of Unmeasured Emissions

       The subject contract was limited by time  and financial  constraints
 to measurement of those emissions which were considered most significant
 and for which reliable techniques were available.  According to these
 criteria, it was decided to  estimate emissions of sulfur oxides (SOX)
 and evaporative hydrocarbons rather than attempt to measure  them.

            1.   Evaporative Losses of Hydrocarbons

            Evaporative losses of hydrocarbons for which motorcycles
 are responsible include spillage during  fueling operations (including
 mixing of oil and gasoline for 2-stroke machines  which do not  have
 injection pumps), losses from the fuel tank and carburetor while run-
 ning,  and losses from the fuel tank and carburetor while  the machine
 is parked.  Spillage losses are simply not within the scope of this con-
 tract,  but other investigations (not specifically on motorcycles) are
 filling this need.  Running losses from the fuel tank and carburetor are
 quite possibly  significant, but no information  is available from which
 they can be estimated intelligently.  Evaporation while the machine is
 not in  use is the only category of evaporative  loss which can be
 estimated using available data, so all further  discussion  here will
 concern  this type of loss alone.

       Losses from the carburetor during the cool-down period of an
 automobile (called the "hot soak") are quite high because the engine is
 enclosed and has a large heat capacity,  and because the carburetor sits
 on top of the engine.   None  of these three conditions holds for motor-
 cycles, however, since their carburetors are side-draft and mounted
 behind the engine,  and since the engine is much smaller and less enclosed.
 Carburetor hot-soak losses are therefore probably small, and the rather
 small float chambers  mean that diurnal breathing losses from  the car-
buretor can probably be neglected, also.  Elimination of the other
evaporation processes, then, has left diurnal  loss from the fuel tank

-------
                                                                           20.
 Figure 16.  Bag Sample of Blowby
 Gases Being Taken from Honda
        SL100 at Idle
Figure  17.  Overflow Bag and
Other Parts of Continuous Blowby
Analysis System Used on Honda
            SL100
Figure 18.  Noise Measurement on
Honda SLlOO Motorcycle From Side 1
During Right-to-Left Acceleration
             Run
Figure 19.  Noise Measurement
on Honda SLlOO Motorcycle from
Side 1 During Left-to-Right
      Acceleration Run

-------
                                                                    21.

as the only significant evaporation loss which can be estimated from
reasonable assumptions.

       Diurnal breathing losses are primarily functions of fuel vapor
pressure, vapor space in the tank,  and the diurnal temperature swing.
The standard low and high temperatures for evaporation loss measure-
ments have been pretty well established at 60° F and 84° F,  respectively,
and several studies have been conducted to determine the effects of fuel
Reid vapor pressure (Rvp) and other variables.  Reasonably accurate
estimates of diurnal losses can be made by assuming a typical Rvp for
the fuel and dividing the numbers  developed for cars at that Rvp by the
applicable ratio of fuel tank volumes. For example, if 30 g/day tank
hydrocarbon loss were determined to be representative for  a car with a
15 gallon tank, the comparable  value for a motorcycle with  a 2. 5 gallon
tank would be (30)/(15/2. 5) g/day or 5 g/day if Rvp and the temperature
extremes were held constant.  Based on the results of investigations
directed specifically toward evaporation(9, 10) and the assumption that a
summer fuel Rvp of 9. 0 psi is typical'^),  the factor to be used for motor-
cycle evaporative emissions is  (2. 0 g hydrocarbons)/(gallon tank volume
day).  It might also be noted that the nominal average molecular weight
of the hydrocarbons evaporated from standard emissions test  fuel with an
Rvp of 9. 0 is about 58 g/g mole'9), which means that the average molecule
evaporated is near butane in structure.  The evaporative emission factor
developed by this analysis must be considered conservative.

       In order to arrive at a usable loss  per motorcycle,  it is necessary
to make  some assumption on fuel  tank volumes for various sizes of
motorcycles. To this end,  the  data given in Table 2 were developed from
available statistics.  The actual computation of evaporative  emissions
factors and impact and the discussion on their seasonal and  regional
variations is deferred until section V, where all the remaining factor
and impact calculations will be  done.

            TABLE 2. NOMINAL FUEL TANK CAPACITIES
              FOR VARIOUS SIZES OF MOTORCYCLES

           Displacement, cm3       Nominal Fuel Capacity, gal

                under 140                       2. 0
                140 -  199                        2-5
                200  299                        3- °
                300  439                        3-2
                440  699                        3-6
                700 and over                    4. 0

-------
                                                                     22.

            2.  Oxides of Sulfur (SOX)

            Instrumentation for measurement of sulfur oxides in the ex-
haust of internal combustion engines  has not been developed to the same
point as that for other common pollutants, so it has become more or less
accepted practice to calculate sulfur  oxide emissions based on fuel sulfur
content.  The assumption is usually made for convenience that all the sulfur
oxidizes to SO2, and thus the mass emission rate of SC>2 is taken to be
2. 00 times the  rate at which sulfur is entering the engine in the form of
fuel (2. 00  is the ratio  of the molecular weight of SO2 to the atomic weight
of S).  This technique  is fairly accurate for  4-stroke engines (where sub-
stantially all  the fuel is being burned), but it sJiould be modified for 2-
stroke engines  to reflect the fact that a substantial fraction of the  fuel
is not being burned (that is, some of  the fuel sulfur is being emitted with-
out being oxidized).  This modification is made by assuming that the
fraction of fuel sulfur  going to  SO2 is the same as the fraction of the fuel
burned,  which can be determined from hydrocarbon mass emissions.
Emission rates will be calculated and included in section V, based on
assumed fuel sulfur contents'  '  of 0. 043%  by weight for the regular
fuel used in 2-stroke engines and 0. 022% by weight for the premium 'fuel
used in 4-stroke engines.

        G.   Motorcycle Noise Measurement Procedure

        The procedure and instrumentation used for motorcycle noise
measurements were basically those specified by SAE Standard J986a(^',
although additional measurements not included in J986a were included
also.  The  procedure specifies measurement of peak noise levels  during
acceleration from 30 mph in the lowest numerical gear  such that the
vehicle's engine does not over speed within 50 ft following the onset of
the acceleration.  This acceleration is intended to be a  "worst case"
condition,  that is,  to  represent the loudest operation of the vehicle.

        In addition to the acceleration test, noise measurements were also
taken during a 30 mph constant-speed "driveby"  at the same 50 ft  distance
from the vehicle path,  and idle noise  was measured all around the motor-
cycles at a distance of 10 ft.  These procedures are documented in
Figures 18 through  21, with Figure 18 showing the Honda SL100 leaving
the test  section after a right-to-left run with measurement on  the  "first
side".  Note that the right and left references are from  the viewpoint
of the person taking the measurements.  Figure 19 shows the Honda
SL100 entering the test section for a left-to-right run with measure
ment on the first side (measurements were taken from both sides of the
strip to cancel out directional effects, if present).  Figures  20 and 21
show noise measurements being taken at idle on the Kawasaki  125F-6
from the rear and from the left side,  respectively (noise measurement
at idle is referred to the motorcycle rather than the observer).

-------
                                                                           23.
Figure 20.  Idle Noise Being
Measured from the Rear of the
Kawasaki 125F-6  Motorcycle
Figure 21.  Idle Noise Being
Measured from the Left Side of
the Kawasaki 125F-6  Motorcycle
        The area used for the noise tests was the abandoned airstrip at
Hondo,  Texas, which the contractor uses on a rental basis as the need
arises.  The instrumentation used for the tests consisted of a General
Radio Type 1565-A sound level meter with windsc reen,  and a General
Radio Type 1562-A sound level calibrator.  Ambient noise levels during
the tests were in the  range  of 44 to 48 dbA, and they were also measured
on the  "C" scale (flat response) as 52 to  74 dbC.  The three motorcycles
tested were the  Honda SL100,  the Kawasaki 125F-6,  and a privately-
owned  Yamaha 175 which was included to provide a wider data base.
The other motorcycles were not tested for noise because the directive
on noise evaluations was added to the contract with the last modification,
after the first five motorcycles had been returned to their suppliers.

-------
                                                                   24.

                   IV.  EMISSIONS TEST RESULTS

        The gaseous emissions results which are summarized in this section
 are given in detail in Appendixes B (7-mode results),  C (LA-4 results),
 and D (steady-state results).  Exceptions include results for aldehydes
 and light hydrocarbons  and results of the blowby measurements  on one
 machine, which are presented only in the text.  Reproductions of recorder
 traces showing speed and smoke opacity versus time for the 2-stroke
 motorcycles operated on the LA-4 route are given in Appendix E.  Par-
 ticulate results are presented in text only.

        A.   Gaseous Emissions

        Due to the variety of tests run on the m6torcycles, the  gaseous
 emissions results will be presented in four parts.  These parts are 7-
 mode  results, LA-4 results, steady state results, and crankcase or
 "blowby" results on one motorcycle.

            1.  Results of 7-Mode Tests

            As mentioned earlier, the 7-mode procedure was used for
 Federal certification of 1970 and 1971 model year light duty vehicles
 (excluding motorcycles and certain other vehicles).  Its primary use-
 fulness in this study is for determining average emission concentrations
 during transient conditions.  The procedure as written(l) includes an
 empirical equation for exhaust flowrate in ft^/mile which, it is assumed,
 was developed from experimental data on automobiles.  This equation
 gives erroneously low values for light vehicles such as motorcycles, so
 it was not used, and thus the 7-mode  results will be reported in concen-
 trations only and not in g/mile.  It should be noted that all hydrocarbon
 concentrations given on the 7-mode printouts (Appendix B) and those
 given in text are in ppm hexane (ppm  C^), which means they should be
 multiplied.by 6. 00 to convert to ppmC if comparison to numbers  expressed
 in that unit  is desired.   The average test results are presented in
 Table  3, representing a total of 32 runs on the seven motorcycles.
 Several features of these data are worthy of note, beginning with the
 quite reasonable consistency in hydrocarbon concentrations within the
4-stroke group (considering that the Triumph  may have had faulty piston
 rings)  and the even better consistency within the 2-stroke group.  The
perhaps unexpectedly low CO concentrations for the two smallest bikes
 seem to be due to operation at high rpm for a  substantial portion  of the
cycle,  and the high NO concentrations for the  same two machines are
due to  the high average load factor required of the small engines  in order
to stay up with the speed-time schedule.  It can be noted also that hydro-
carbon concentrations from the 2-stroke machines were higher than those
from the 4-strokes by about a factor of 3, that CO concentrations from
the 2-strokes were lower than those from the 4-strokes by about  a factor

-------
                                                                    25.
            TABLE 3 .  SUMMARY OF AVERAGE MOTORCYCLE
                 7-MODE TRIP COMPOSITE RESULTS
    Motorcycle
 Harley-Davids on FLH
 Honda CL350K3
 Honda SL100
 Kawasaki 125F-6
 Suzuki T250
 Triumph T120R
 Yamaha DT1-E
No. Runs
 Made

   5
   6
   3
   3
   5
   5
   5
                                         HC,
1350
1330
1520
4810
5940
2400
5180
CO,  %

8.31
9.20
4. 84
1.67
4.43
9.13
2.92
                     NO (NDIR),
209
164
711
235
 90
260
107
Note:  All concentrations on a dry basis
of 2. 5,  and that NO concentrations from  the 2-strokes were lower than
those from the 4-strokes by about a factor of 2. 3.  Care should be taken
not to generalize these observations since they stem from such a small
sample of machines.

       All the concentration data referring to 7-mode tests which are
reported in both Appendix B and the text are on a "dry" basis, that is,
as measured after  the sample had been run through water traps.  In
terms  of effect, measurements on a dry basis are higher than those on
a wet basis from perhaps  10 to 20% (carburetted engines only), depending
on completeness  of combustion and fuel-air ratio.

       In order to  extract data on concentrations during transients from
the computer  printouts in Appendix B, it  is necessary only to examine
the "concentration  as measured" columns opposite the particular con-
dition of interest (0-25 mph accel,  30-15 mph decel, 15-30 mph accel,
or 50-20  mph decel).  Concentrations of  CO2 are included, so the
emissions can be converted back to a wet basis, if desired.  It should
be noted that for  research purposes these time-averaged concentrations
are really no  substitute for continuous recorder traces which actually
show concentration as a function of time.

       Other data have been developed for a range of motorcycles on the
7-mode procedure(^> ^^), and in general the results show reasonable
agreement with those of this study.  Since the  7-mode results have been
included primarily  for examination of transients, however, these other
data will not be repeated here.  As a general conclusion, the 7-mode f
procedure is much  less adaptable to motorcycle testing  than the newer
"LA-4" procedure.

-------
                                                                    26.

            2.  Results of "LA-4" Tests

            The procedure called the  "LA-4" is so named for the speed-
time trace used, which was developed on a driving route called "LA-4"
(Los Angeles-4).  The main differences between this procedure and the
7-mode are; (1) the LA-4 trace is non-repeating and much more random,
containing a number of small accels and decels but very little cruising
time, and (2) time-averaged bag samples  of diluted exhaust are used to
determine mass emissions on the  LA-4 rather than mathematical inte-
gration of exhaust concentrations during a few parts of the driving
schedule.  The latter  feature, especially, makes the newer procedure
quite readily adaptable to testing  of a variety of vehicles.

       The driving schedule and the type  of sampling specified for  1972
procedures and 1975-1976 (and presumably later)  procedures are identical,
but detail refinements are being made as time progresses.  The procedure
used for the subject tests is most  similar to that currently specified for
1975 certification with minor exceptions as  explained in section III. C.

       The computer  program used to analyze the data gathered in this
study printed out results in terms of grams per mile, as shown at the
bottom of each table in Appendix C.  These data are important to later
sections of the report, so they are presented in detail in Table 4.  The
major features of these  data are essentially the same as those already
described for the 7-mode data, with the additional variable of exhaust
mass flow inherent in the values.  From the accuracy standpoint, these
LA-4 data are  considered to be very good, since there are few oppor-
tunities for error in the procedure.  Repeatability from run to run  for
nearly all categories appears to be satisfactory, and the only major
deficiency in the data  appears to be the size of the sample, which limits
analysis for variation in emissions due to engine size and type.
                             i
       Trends which were perhaps not so obvious  in the 7-mode concen-
tration data include a  definite  size effect on emissions of hydrocarbons
and CO (larger machines emitting larger amounts), but a reversal  of the
downward trend in NOX from larger to smaller machines somewhere above
the 100 to 125cc class represented by the  two smallest motorcycles tested.
The only available earlier NOX dataU3) simply are not reasonable,  but
some information obtained from Yamaha Motor Co. (15) on NOX emissions
from 4-stroke  motorcycles indicate the same overall trends as  data taken
in the subject study.   The NOX data from Yamaha are shown in Table 5,
and they agree quite well in nominal levels with those taken in the subject
study as well as in trends,  but it is not known how many individual motor-
cycles or tests the Yamaha data represent.

       The reason for higher NOX from small motorcycles is probably that
they must operate at higher engine speeds and loads than larger machines
in order to stay with the speed-time trace. Support for this assertion

-------
                                                             27.
 TABLE 4.  SUMMARY OF RESULTS OF FEDERAL LIGHT-DUTY
VEHICLE EMISSIONS TEST PROCEDURE FOR 1972 AND BEYOND
                AS APPLIED TO MOTORCYCLES
NOX as NOz,
Motorcycle
Harley-
Davidson FLH


Honda
CL350K3


Honda SL100




Kawasaki
125F-6



Suzuki T250



Run
1
2
3
Average
1
2
3
Average
1
4
5
6
Average
1
3
4
5
Average
2
3
4
Average
Triumph T120R 1



Yamaha
DT1-E


2
3
Average
3
4
5
Average
HC, g/mi
4. 86
5.86
5.92
5.55
3.86
4.09
4. 17
4. 04
2.17
1.58
2.26
2. 13
2.04
12.5
8.87
8. 84
8.91
9.78
18.7
19.7
23. 7
20.7
5.36
5. 33
5.57
5.42
16.9
17.1
15.5
16.5
CO, g/mi
70.6
80.2
79.9
76.9
46.2
45.7
47.6
46.5
27. 3
15.5
25.8
19.8
22.1
6.76
8.43
8. 22
7.48
7. 72
34.0
29.3
41.0
34.8
46.3
46.5
45.5
46.1
28.5
27.8
22.5
26.3
g/mi
0.128
0. 120
0. 127
0. 125
0.0643
0.0494
0.0432
0.0523
0. 322
0. 384
0.265
0.353
0. 331
0. 194
0. 149
0. 154
0. 154
0. 163
0. 0364
0.0334
0.0441
0.0380
0. 101
0. 104
0. 117
0. 107
0. 0419
0.0339
0. 0577
0. 0445
Fuel Usage
mi/gal


-
24


-
38
_

-
-
80
-


-
68
-


33
-


34

-
-
45

-------
                                                                    28.
         TABLE 5.  DATA ON NOX EMISSIONS FROM 4-STROKE
          MOTORCYCLES SUPPLIED BY YAMAHA MOTOR CO.

                                         NOX Emissions
     Displacement, cm          g/Kmfcs supplied)    g/mi (converted)

             50                      0.33                 0.53
            125                      0.20                 0.32
            250                      0. 08                 0. 13
            350                      0.06                 0.10
            500                      0. 10                 0. 16
            650                      0.08                 0. 13
 comes from examination of NOX data at road load conditions in Tables 6
 through 12, where the small machines show a very rapid increase in NOX
 with speed and the larger machines show  relatively small increases.  The
 higher overall mass rates  for the  small bikes are confirmed by the  steady-
 state data, also.

        The other strong trends appearing in the LA-4 data are considerably
 higher hydrocarbons for the 2-strokes tested than for the 4-strokes, due to
 short-circuiting of unburned fuel-air mixture,  and slightly lower CO and
 NOX for the 2-strokes than for the 4-strokes.   The reason for the difference
 in CO is not clear at this point, but at least part of the difference in NOX
 is probably due to dilution  of the intake charge by exhaust gas (a form of
 EGR, or exhaust gas  recirculation).  To really tie down variation in
 emissions due to engine size and type, however,  a much larger data base
 would be required.

            3. Results of Steady-State Tests

            The steady-state gaseous emissions tests were by far the most
 exhaustive of the  three types of tests  performed,  and they generated an
 extremely broad spectrum  of data.  The complete raw data are given
 in Appendix D, (except those on aldehydes and light hydrocarbons),  and
 they are .summarized in more useful form in Tables 6 through 12.   For
 the five largest machines,  aldehydes  have been calculated in mass units
 only for  those modes which will be used to make up a  composite "cycle"
 for use in  developing emission factors.

       The mode-by-mode data can be used to "map" emissions from
 each engine to some extent for research purposes, but such an analysis
 is really beyond the intended scope of the present effort.  A more com-
pact way of analyzing  some of the constant-speed data is shown in Figure
 22, which  consists of  "envelopes" for the major emissions.   The highest
and lowest values at each speed have been plotted separately for 2-strokes
and 4-strokes, forming the outlines shown.  A greater number  of motor-

-------
 TABLE 6.
   SUMMARY OF CONSTANT-SPEED GASEOUS EMISSIONS DATA FOR THE HARLEY-DAVIDSON
               FLH MOTORCYCLE, AVERAGE VALUES FOR 3 RUNS*
                              Mass Emissions,  g/hr
                                                   Mass Emissions,  g/mi
                                                               Concentration
Mode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Condition
Idle
20 RL
30 RL
40 RL
50 RL
20 5%
30 5%
40 5%
50 5%
20 10%
30 10%
40 10%
50 10%
20 20%
30 20%
0.6MaxRL
0.6Maxl/3
0. 6Max2/3
0. 8MaxRL
0. 8Maxl/3
0. 8Max2/3
Speed
mi/hr
-
20
30
40
50
20
30
40
50
20
30
40
50
20
30
23
23
23
30
30
30
HC
136
193
181
159
123
135
91
85
73
121
67
46
94
75
99
211
84
203
93
199
306
CO
1190
3540
3860
3850
3940
4490
3660
3480
2200
3790
2570
428
4070
2330
4010
4300
2250
9590
3900
7630
16300
NOX
as NO2
1.59
3. 26
3.41
3. 32
4.91
4. 51
5.33
7. 77
14. 1
6. 01
12.7
117.
22. 5
23. I
34.2
3.75
58.4
32. 5
9. 07
21. 2
32. 8
RCHO as
HCHO HC
1. 32
3.24 9.
4.45 6.
3.40 3.
2.76 2.
6.
3.
2.
1.
2.11 6.
1.51 2.
2.10 1.
2.20 1.
3.
3.
7.
2.
6.
3.
7.
10.

64
02
97
47
76
02
13
46
06
25
14
89
73
31
02
79
76
33
10
9
CO
-
177.0
129.0
96.3
78.7
224. 0
122.0
87. 1
44. 1
189.0
85.6
10. 7
81.4
116.0
134.0
144.0
74.9
320.0
110. 0
273.0
581.0
NOX RCHO as HCHO,
as NO^ HCHO ppm
-
0.16 0.16
0.11 0.15
0.08 > 0.08
0.10 0.06
0.23
0. 18
0. 19
0.28
0.30 0.10
0.42 0.05
2.92 0.05
0.45 0.04
1. 15
1. 14
0. 12
1.95
1.08
0.32
0.76
1.17
26
47
55
46
38
34
21
13
15
22
13
18
16
18
15
35
33
40
19
19
14
RCHO,
ppm
59
71
92
75
56
49
34
24
26
39
28
35
31
34
32
65
59
64
33
35
32
22
Idle
210   1530
0.81
3.08
                                                                                           58
                                                                                         150
 *2 runs for .aldehydes.

-------
   TABLE 7.
      SUMMARY OF CONSTANT-SPEED GASEOUS EMISSIONS DATA FOR THE HONDA CL350K3
                   MOTORCYCLE,  AVERAGE VALUES FOR 2 RUNS
                            Mass Emissions, g/hr
                                                  Mass Emissions g/mi
                                                             Concentration
Mode
1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
Condition
Idle
20 RL
30 RL
40 RL
50 RL
20 5%
30 5%
40 5%
50 5%
20 10%
30 10%
40 10%
50 10%

20 20%
30 20%
0. 6MaxRL
0.6Maxl/3
0.6Max2/3
0. SMaxRL
0.8Maxl/3
0. 8Max2/3
Speed
mi/hr
-
20
30
40
50
20
30
40
50
20
30
40
50

20
30
30
30
30
28
28
28
HC
19
78
235
222
173
115
129
146
146
123
135
162
186

204
226
288
192
157
396
265
280
CO
211
1300
2400
2920
2930
2640
3500
4420
4600
3690
5630
5160
5900

5020
6100
4270
3910
3160
4080
5120
7200
NOX
as NO2
0.48
1.30
1.45
2. 11
4. 17
1.48
3.01
5.59
26.3
3.24
4.83
11.4
20.9

5.82
4.59
2.46
21.5
79.3
3.71
28.6
44.3
RCHOas
HCHO HC
0.49
0.98
3.45
4.86
4.77
_
-
_
-
1.98
2.74
3.81
3.86

_
-
_
-
-
_
_
-
-
3.89
7. 84
5. 54
3.45
5.74
4.30
3.65
2.92
6.16
4.49
4.05
3.72

10. 2
7. 54
9. 59
6.40
5.24
14.2
9.47
9.99
CO
-
65.3
80.0
73.0
58.6
132.0
117.0
110.0
92.0
185.0
188.0
129.0
118.0

251.0
203.0
142.0
130.0
105.0
146.0
183.0
257.0
NOX RCHOas HCHO, RCHO,
as NO2 HCHO pp™ PPm
-
0.07 0.05
0.05 0. 12
0.05 0. 12
0.08 0.10
0.07
0. 10
0. 14
0. 53
0.16 0.10
0.16 0.09
0.28 0.10
0.42 0.08
n
0:29
0.15
0.08
0.72
2.64
0. 13
1.02
1. 58
31
29
64
64
86
40
56
34
32
32
32
37
34

31
37
47
64
45
75
78
59
61
57
134
162
149
82
109
78
68
63
67
71
63

67
74
100
115
91
142
138
109
22
Idle
14
279
0.73
0. 52
                                                                                          31
                                                                                          60

-------
             TABLE 8.  SUMMARY OF CONSTANT-SPEED GASEOUS EMISSIONS DATA FOR THE
                       HONDA SL100 MOTORCYCLE,  AVERAGE VALUES FOR 8 RUNS*
                 Speed,
                               Mass  Emissions, g/hr
Mode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Condition
Idle
20 RL
30 RL
40 RL
50 RL
Idle
20 5%
30 5%
40 3 . 0%
50 2.4%
Idle
20 H
30 H
40 H
Idle
mi/hr
--
20
30
40
50
--
20
30
40
50
--
20
30
40
--
N0xas
HC
23.
36.
33.
46.
64.
21.
37.
52.
56.
77.
16.
41.
61.
78.
2
4
5
8
8
0
9
2
4
0
3
7
5
5
CO
259
674
546
713
576
273
609
1004
1069
1276
287
788
1219
1150
NO
0.
1.
6.
15.
50.
0.
16.
25.
25.
46.
0.
19.
32.
40.
RCHOas
2_ HCHO
17
57
18
3
2
20
9
3
7
5
22
4
9
8
0.
0.
0.
0.
1.
-
1.
1.
1.
1.
0.
0.
1.
1.
16
34
67
80
22
-
08
01
06
38
18
83
38
97
                             Mass Emissions,  g/mi
                                                    Concentration
HC
1.
1.
1.
1.
1.
1.
1.
1.
2.
2.
1.
82
12
17
30
89
74
41
54
08
05
96
CO
33.
18.
17.
11.
30.
33.
26.
25.
39.
40.
28.
7
2
8
5
4
5
7
5
4
6
8
N0xas
NQ? ''
0.078
0
0
1
0
0
0
0
0
1
1
.206
.383
.00
.843
.845
.643
.930
.970
.10
.02
RCHOas
HCHO
0
0
0
0
0
0
0
0
0
0
0
.017
.022
.020
. 024
.054
.034
.026
.028
.042
.046
.049
HCHO,
ppm
47
26
35
30
33
45
30
39
29
34
22
30
44
RCHO,
ppm
53
37
55
48
55
77
49
49
49
56
46
56
73
                           17.0
280
0.21
* 4 runs for aldehydes.

-------
               TABLE 9. SUMMARY OF CONSTANT-SPEED GASEOUS EMISSIONS DATA FOR THE
                      KAWASAKI 125F-6 MOTORCYCLE, AVERAGE VALUES FOR 5 RUNS*
                                 Mass Emissions,  g/hr
                    Speed,
Mode   Conditions   mi/hr
1
2
3
4
5
6
7
8
9
10
11
Idle
20
30
40
50
Idle
20
20
30
40
Idle

RL
RL
RL
RL

5%
H
H
H

--
20
30
40
50
--
20
20
30
40
--
HC
100
171
185
364
863
106
507
980
1612
1640
CO
33
78
200
500
646
100
431
768
1492
1588
NOxas
NO?
0.034
0. 054
1.25
4.48
28.8
0.066
20.4
34.9
23.0
19.9
RCHOas
HCHO
0.49
1.71
2. 21
3.09
7.71
0.56
4.31
6.47
9.64
8.40
                             Mass Emissions,  g/rni
                                             Concentration
                              104
100    0.061
0. 57
HC
-
8
6
9
17
-

25
49
53
41
-
. 55
. 17
.10
.3
-

.3
.0
.7
.0
CO
-
3
6
12
12
-

21
38
49
39
-
.90
.67
. 5
.9
-

.6
.4
.7
. 7
NO as

0
0
0
0


1
1
0
0
--
.027
.042
.112
.577
--
n
.02
.74
.767
.498
RCHOas
HCHO

0
0
0
0


0
0
0
0
--
.086
.074
.077
.15
--

.22
.32
.32
.21
HCHO,
ppm
123
103
110
84
142
116

118
97
107
86
RCHO,
ppm
175
155
156
148
220
210

195
176
190
167
120
                                                                                                          213
* 3 runs for aldehydes.

-------
22
            TABLE 10. SUMMARY OF CONST ANT-SPEED GASEOUS EMISSIONS DATA FOR THE
                    SUZUKI T250 MOTORCYCLE,  AVERAGE VALUES FOR 4 RUNS*
                              Mass Emissions,  g/hr
                                                   Mass Emissions, g/mi
                                                               Concentration

Mode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Condition
Idle
20 RL
30 RL
40 RL
50 RL
20 5%
30 5%
40 5%
50 5%
20 10%
30 10%
40 10%
50 10%
20 20%
30 20%
0.6MaxRL
0.6Maxl/3
0. 6Max2/3
0. SMaxRL
0. 8Maxl/3
0. 8Max2/3
Speed
mi/hr
-
20
30
40
50
20
30
40
50
20
30
40
50
20
30
28
28
28
24
24
24

HC
166
374
379
478
810
375
522
748
982
524
922
1540
1790
1270
1630
341
1360
3240
231
1560
4030

CO
95
263
510
947
1690
433
1030
1760
2420
682
1850
2820
3370
1900
3000
554
3200
5540
467
4420
6320
NOX
as NO2
0.05
0.40
0.76
1.08
2. 16
0.87
1. 33
2.0-1
1.70
1.36
2.26
2.49
3.38
2. 12
1.96
0.64
2. 18
2.84
0.53
3. 15
12.00
RCHOas
HCHO
0.60
2.24
2.80
4.09
5.73
_
-
_
-
2.25
3.33
5. 10
6.02
_
-
_
-
-
_
-
-
HC
-
18. 7
12.6
11.9
16.2
18. 7
17.4
18. 7
19.6
26.2
30. 7
38.6
35. 8
63.2
54. 5
12. 0
57. 8
114.0
9.4
63.7
164. 0
CO
-
13.2
17.0
23. 7
33.8
21.6
34. 3
44. 0
58.3
34. 1
61.8
70.5
67.3
94. 8
100.0
19.4
112.0
194.0
19.1
181.0
258.0
NOX RCHOas HCHO,
as NO2 HCHO
-
0.020 0.11
0.025 0.09
0.027 0.10
0. 043 0. 12
0. 044
0.044
0.050
0.034
0.068 0.11
0.075 0.11
0.062 0.13
0.068 0.12
0.106
0.065
0. 022
0.077
0. 100
0.022
0.129
0.592
Ppra
38
48
56
57
53
55
48
42
46
48
44
39
52
45
44
98
74
54
84
66
58
RCHO,
ppm
125
147
154
165
132
141
123
96
119
96
87
94
96
119
96
208
167
138
178
150
171
       \
'Idle
160
117
0.06
0. 76
 *2 runs for aldehydes.
68
163
                                                                                                              u>

-------
           TABLE 11.  SUMMARY OF CONST ANT-SPEED GASEOUS EMISSIONS DATA FOR THE
                   TRIUMPH T120R MOTORCYCLE, AVERAGE VALUES FOR 3 RUNS*
                             Mass Emissions, g/hr
                                Mass Emissions,  g/mi
                                                 Concentration
Mode
1
Z
3
4
5
6
7
8
9
10
11
1Z
13
14
15
16
17
18
Condition
Idle
20 RL
30 RL
40 RL
50 RL
20 5%
30 5%
40 5%
50 5%
ZO 10%
30 10%
40 10%
50 10%
ZO Z0%
30 20%
0. 6MaxRL
0.6Maxl/3
0.6Max2/3
Speed
mi/hr
-
20
30
40
50
20
30
40
50
20
30
40
50
ZO
30
^
-
-
HC
ZZ4
150
Z71
Z09
173
73
100
81
94
64
78
77
85
58
70
_
-
-
CO
799
2480
Z170
2350
2850
1850
2620
2680
2590
1950
Z910
Z5ZO
ZZZO
I960
Z960
_
-
-
NOX
as NOz
O.ZO
0.49
Z. 01
2.24
4. 18
4.07
5.41
17.90
43.00
8.91
14. 10
37.20
75.60
58.9
54.6
—
-
-
RCHOas
HCHO
0.98
1.45
Z. 37
2.33
2.31
_
_
_
-
1.05
1.38
1.98
1.91
_
-
_
-
-
HC
-
7.51
9.04
5.22
3.45
3.67
3.35
2.03
1.88
3.20
2.60
1.92
1.69
2.89
2.34
_
-
-
CO
-
124.0
71.2
58.7
57. 1
92.6
87.2
67. 1
51.8
97.4
97.1
62.9
44.6
97.9
98.6
—
-
-
NOX RCHOas HCHO, RCHO
as NOz HCHO ppm pj>m
-
0.02
0.07
0.06
0.08
0.20
0. 18
0.44
0.86
0.44
0.47
0.93
1.51 %
2.94
1.82
_
-
-
-
0.07
0.08
0.06
0.05
..
-
-
-
0.05
0.05
0.05
0. 04
_
-
_
-
-
34
42
44
43
36
25
23
26
32
21
19
23
15
16
21
_
-
-
104
95
104
94
72
55
49
51
51
43
39
45
37
39
41
_
-
-
19    0. SMaxRL
20    0.8Maxl/3
21    0.8Max2/3

22       Idle
           \
 #2 runs for aldehydes
238   798
0. 22
1.20
31
                                                                      128
                                                                                     Oo

-------
22
            TABLE 12. SUMMARY OF CONSTANT-SPEED GASEOUS EMISSIONS DATA FOR THE

                    YAMAHA DT1-E MOTORCYCLE, AVERAGE VALUES FOR 2 RUNS
                             Mass Emissions,  g/hr
                                                  Mass Emissions, g/mi
                                                               Concentration

Mode
1
2
3
4
5
6
7
8
9
10
11
1Z
13
14
15
16
17
18
19
20
21


Condition

20
30
40
50
20
30
40
50
20
30
40
50
20
30
0.
0.
0.
0.
0.
o.
Idle
RL
RL
RL
RL
5%
5%
5%
5%
10%
10%
10%
10%
20%
20%
6MaxRL
6Maxl/3
6Max2/3
SMaxRL
8Maxl/3
8Max2/3
Speed
mi/hr
-
20
30
40
50
20
30
40
50
20
30
40
50
20
30
27
27
27
29
29
29

HC
135
256
139
188
479
215
334
628
905
364
499
892
1310
603
1130
191
419
852
137
578
1030

CO
137
144
428
286
1660
255
813
2340
3000
897
1610
2970
3340
2220
3260
262
1400
2410
439
2830
4160
NOX
as NO2
0.04
0.81
0.66
1.92
2.67
1.00
2. 14
3.02
4.37
1.86
2.68
4. 12
10.80
3. 10
6.68
0.72
2.39
10.30
1.08
4.48
10. 30
RCHOas
HCHO
0. 62
2.27
2.45
3.25
5.87
_
-
-
-
4. 24
5.64
9.03
12. 1
_
-
_
_
-
_
-
-
HC
-
12.8
4.6
4. 7
9.6
10. 8
11. 1
15.7
18. 1
18.2
16.6
22. 3
26.2
30.2
37.7
7.1
15.5
31.6
4.7
19.9
35.6
CO
-
7. 2
14. 3
7.2
33. 3
12.8
27. 1
58.4
60. 0
44. 8
53. 7
74. 3
66.9
111. 0
109. 0
9.7
51.7
89. 1
15. 1
97.6
143.0
NOX
as NO2
-
0.040
0.022
0.048
0.053
0.050
0.071
0.076
0.087
0.093
0.089
0. 103
0.217
0. 155
0.223
0.027
0.088
0.381
0.037
0. 154
0.356
RCHOas HCHO, RCHC
HCHO
-
0.11
0.08
0.08
0. 12
_
-
-
-
0.21
0.19
0.23
0.24
_
-
_
-
-
_
-
-
ppm
35
119
126
102
124
110
98
117
126
119
120
118
122
130
134
123
106
123
118
98
124
ppm
156
196
190
171
195
180
175
183
200
172
179
196
199
195
201
193
173
198
172
173
197
Idle
129
152
0.04
0. 74
                                                                                          103
                                                                                         205
                                                                                                               OJ
                                                                                                               ui

-------
        ZOO
        too
         50
         2.0
     cO
     Z   5.0
     O
     uJ
         2.0
     _f
     o   i-o
     O
         O.I
        0.05
        0.02
                       2D    30   4Q    SO
        22.  ENVELOPES  OF  ROAD - LOAD  EXHAUST  EMiSSlOMS

FROM  THE   SE^tN  MOTORCYCLES TESJED (FOUR.  A-s  AMD THREE.  2-s)

-------
                                                                    37.

cycles in each category would doubtless make the ranges even wider
(especially the inclusion of larger 2-stroke machines), but even with only
a few machines represented,  some trends can be observed.  Note that
although the hydrocarbon and CO envelopes overlap for the Z-stroke
machines, the shading of the  hydrocarbon envelope prevents ambiguity.
The emissions plotted in Figure 22 are those measured during road load
conditions only, and while the average emissions from all seven motor-
cycles do fall within their respective envelopes, all areas of the envelopes
should not be  construed as having equal weight with respect to the machines
tested or the motorcycle population.

       To complete the presentation of gaseous emissions  concentration
data, Table 13 and 14 contain concentrations of light hydrocarbons
measured in the exhausts  of the Honda SL100 and the Kawasaki 125F-6.
Light hydrocarbon data were  taken only for these last two machines due
to a variety of technical problems encountered when the analysis was
attempted earlier on the five  larger bikes.  Although no comparable
data are available on other motorcycles,  the concentrations given in
Tables 13 and 14 fall into  the general ranges which might be expected
after examining light hydrocarbon emissions from other  engines tested
under the subject contract. Propane and butane were omitted from
Table 13 because no measurable amount of either compound was found
in the exhaust of the Honda SL100.

       No attempt will be made to compute light hydrocarbons on a
mass basis because the resulting data would be of little significance.
Aldehydes, however, are a different matter, since they can be of interest
in national impact studies.  Aldehydes were measured,  of course, only
during steady-state conditions,  so a method of computing aldehyde mass
emissions which approximate those which might be observed during a cy-
clic procedure like the LA-4  remains  to be derived. Individual  mode mass
emissions of aldehydes are shown in Tables 6 through 12, calculated on
the same basis as the other mass emissions, and these mode data can be
weighted to make a very rough approximation of a cyclic procedure.
The mass  data are expressed "as HCHO"  (formaldehyde) simply because
the assumption of some molecular weight  is necessary for  calculations
and because the importance of the molecule lies in the carbonyl  group
and not in the  remaining structure.  The obvious shortcomings of this
procedure are that no transients or closed throttle conditions (other than
idle) can be included,  but emissions on the composite cycles were found
to agree  fairly well with the LA-4 after some trial-and-error experi-
mentation.  Table 15 shows the  conditions and weights used in an attempt
to simulate road operation. The average  speed on both composite cycles
is 28 miles per hour,  somewhat higher than that for the LA-4 (19. 7 mi/hr).
Comparison of fuel consumption and hydrocarbon  emissions from the com-
posite cycles to the  LA-4 (averages) shows fairly good overall agreement,
with hydrocarbon emissions a fraction of one percent lower and  fuel con-

-------
                                                               38.
   TABLE 13.  DATA ON LIGHT HYDROCARBON EMISSIONS
FROM A HONDA SL100  MOTORCYCLE (AVERAGES FOR 3 RUNS)
                    Concentrations of Light Hydrocarbons, ppm
/lode
1
2
3
4
5
7
8
9
10
11
12
13
14
Condition
Idle
20 RL
30 RL
40 RL
50 RL
20 5%
30 5% -
40 3.0%
50 2. 4%
20 H
30 H
40 H
Idle
CH4
1550
440
233
236
221
187
286
190
289
232
301
352
1550
C2H6
57
18
23
22
39
14
19
17
26
26
25
59
62
C2H4
345
141
115
109
166
85
, 106
93
159
120
137
302
336
C2H2
751
156
111
68
49
55
71
50
72
62
93
205
951
C3H&
164
72
65
71
104
47
59
47
84
78
82
165
187
 TABLE 14.  DATA ON LIGHT HYDROCARBON EMISSIONS FROM
  A KAWASAKI 125F-6 MOTORCYCLE (AVERAGES FOR 3 RUNS)
Mode
                     Concentrations of Light Hydrocarbons,  ppm
Condition    CH4   C2H£  C2H4
                                               C2H2   C3H£  C4HiQ

1
2
3
4
5
6
7
8
9
10
11

Idle
20 RL
30 RL
40 RL
50 RL
Idle
20 5%
20 H
30 H
40 H
Idle
I
1620
78
110
61
106
2150
127
88
127
160
2470

81
23
20
9
15
71
15
35
13
15
109

446
97
87
71
76
556
82
82
79
91
681

71
5
7
2
7
27
6
4
9
6
21

659
39
49
21
42
808
90
23
40
54
821

143
41
51
41
63
126
53
65
78
103
158

958
323
335
343
395
1010
441
484
508
714
1090

-------
                                                                   39.
                TABLE 15. CONDITIONS AND WEIGHTING
                FACTORS USED FOR CYCLE SIMULATION
                         % Time at Condition
Condition

   Idle

20 mph   road load
30 mph   road load
40 mph   road load
50 mph   road load
5 Larger
Machines

   20

   15
   15
   15
   15
20 mph   r. 1.+ 10% grade
30 mph   r. 1.+ 10% grade
40 mph - r. 1. + 10% grade
50 mph - r. 1. + 10% grade   5
2 Smaller
Machines

   ZO

   20
   20
   20
   20
                         Distance (mi)/hr
                          at Condition
5 Larger
Machines

   0.0

   3.0
   4. 5
   6.0
   7. 5

   1. 0
   1.5
   2.0
   2.5
2 Smaller
Machines

   0.0

   4.0
   6.0
   8.0
  10.0
         Total  Average Speed -
                         28 mi/hr    28 mi/hr
sumption about 12% lower on the composite cycles than on the LA-4.  This
agreement gives  a  degree of confidence in the data computed over the
composite  cycles.

       Based on  the foregoing analysis,  composite values for aldehyde
emissions  from the seven motorcycles have been calculated and are pre-
sented in Table 16.  Although there is no really accurate way to measure
the differences at this point, it appears that aldehyde emissions from 2-
strokes are somewhat higher than those from 4-stroke machines of simi-
lar size.  A weighting procedure similar  to the  one used for aldehydes
will be used later to calculate particulate emissions on a distance-traveled
basis.

              TABLE 16.   CYCLE COMPOSITE ALDEHYDE
                   EMISSIONS FROM MOTORCYCLES
                                          RCHO as HCHO
         Motorcycle

         Harley-Davids on FLH
         Honda CL350K3
         Honda SLlOO
         Kawasaki 125F-6
         Suzuki T250
         Triumph T120R
         Yamaha DT1-E
g/hour
2.91
2.83
0.638
3.04
3.20
1. 80
3.76
g/mile
0. 104
0. 101
0.023
0. 109
0. 114
0.064
0. 134

-------
                                                                    40.

            4.  Results of Special Study on Crankcase "Blowby"
               Emissions (1 Motorcycle)

            The results of the  study of blowby emissions (test procedures
described in section III. E. ) were not surprising,  that is,  substantial amounts
of hydrocarbons were measured,  but only negligible amounts of other con-
taminants.  Measurements at the crankcase vent  of the Honda SL100 yielded
the data shown in Table 17, including both bag samples and continuous sam-
ples (no justification could be found for separating the  two).  These same
data expressed on a mass basis are found in Table 18, assuming gas
densities as calculated at 29. 0 in Hg and 70°F.

    TABLE 17.  CRANKCASE  VENT EMISSIONS FROM A HONDA SL100
         MOTORCYCLE (CONCENTRATIONS AS MEASURED)
Flow
Condition ft3/hr Run
Idle 4.18 1
(Avg. ) 2
3
4
Avg.
HC,
CO,
C02,
ppmC % %
42,
96,
58,
64,
65,
400
500
400
500
400
1.
1.
1.
0.
1.
24
70
11
80
21
0.
0.
1.
1.
1.
97
74
31
15
04
NO,
ppm
5.
16.
7.
3.
8.
2
5
4
8
2
NOX,
PP
8.
23.
8.
7.
12.
m
8
4
4
7
1
02,

17.9
16.7
18.2
18.1
17.7
20 RL      7. 08
1
2
3
4
5
Avg.
60,600
85,800
76,800
47,400
68,800
69,900
0.96
1. 32
0.86
0.63
0.95
0.94
1.12
0.60
1.26
0.85
1.05
0.98
8.4
10. 8
9.5
14. 0
4. 3
9.4
14.2
16. 8
12.9
17. 8
8.0
13.9
17.7
18.1
18.4
18.8
17.9
18.2
40 RL      13.07     1     89,900  0.87   1.15   61.0   71.2   17.3
            (Avg. )
2
3
4
5
6
80,
I 80,
' 77,
59,
57,
500
000
600
400
400
0.
0.
0.
0.
0.
50
20
25
30
22
0.
0.
0.
0.
0.
70
90
85
85
75
22.
43.
36.
29.
26.
2
7
3
6
8
28.
46.
40.
33.
29.
3
7
2
8
7
18.4
19.3
19.2
19.2
19.1
                    Avg.   60,900   0.39   0.87   36.6   41.6   18.8


       In addition to measuring the composition of the blowby gases them-
selves, measurement of exhaust emissions with and without blowby "recir-
culation" was also attempted.  The results of this sub-study are shown
in Table 19,  and while they represent independent measurements,  they,-
do agree quite well with steady-state exhaust emissions presented in
Table 8 and Appendix D.  Table 20 summarizes the results given in the
preceding parts of this report section,  supporting the generalization

-------
                                                                   41.
    TABLE 18.  MASS EMISSIONS FROM THE CRANKCASE VENT OF
                A HONDA SL100 MOTORCYCLE
                Mass Emissions, g/hr
Mass Emissions, g/mi
Condition
Idle
20 RL
40 RL
*Composite
HC
4.30
7.60
15.5
10. 1
CO
1.61
2.47
1. 88
2.06
NOX
0.00263
0.00520
0.0292
0.0143
HC

0. 380
0.388
0.421
CO

0. 124
0. 0469
0.0859
NOX

0.000260
0.000731
0.000595
*for this purpose only,  composite assumed as  20% Idle and 40% at each
  other condition (time-weighted)
        TABLE 19.  EXHAUST EMISSIONS FROM A HONDA SL100
   MOTORCYCLE WITH AND WITHOUT BLOWBY RECIRCULATION

                               Wet Concentrations
Condition
Idle- stock
Idle-recirc.
20 RL- stock
20 RL-recirc.
40 RL-stock
40 RL-recirc.
Idle- stock
Idle-recirc.
20 RL-stock
20 RL-recirc.
40 RL-stock
40 RL-recirc.
HC,
ppm C
12,700
15,600
7,700
8,250
6, 100
6,250
Mass
HC
18. 1
21.9
31.9
33.6
46.7
48. 7
CO,
%
9.40
9. 58
8. 37
9. 12
4.69
4.47
Emissions,
CO
271
272
700
751
725
703
C02,
%
6.90
6.71
7.55
7.02
9.86
9.80
g/hr
NOX
0. 185
0. 163
1.22
0.964
11.0
13.2
NO,
ppm
31
25
89
71
433
511
Mass
HC
_
1.59
1.68
1.17
1.22
NOX,
39
35
89
71
433
511
02,
%
4.3
4.4
3.4
3.7
4.4
4.6
Emissions, g/mi
CO
-
35.0
37.5
18. 1
17.6
N0y
0.061
0.048
0.275
0.330
made earlier about the significance of blowby hydrocarbons,  CO, and
NOV in the total emissions picture.   Using the composite figure for HC
   5C

-------
                                                                    42.

TABLE 20.  SUMMARY OF RESULTS OF THE CRANKCASE EMISSIONS
(BLOWBY) STUDY CONDUCTED ON THE HONDA SL100 MOTORCYCLE

                   *Blowby as % of
                 Exhaust Emissions            % Control of HC in
Condition        HC       CO      NOX       Blowby by Recirculation

Idle             18.5      0.62    1.55                  12
20 RL          20.9      0.37    0.33                  76
40 RL          33.1      0.26    0.19                  87

*data from Table 18 compared to data from Table 8


 from Table  18 (0. 421 g/mi) and comparing fo the exhaust HC number
 generated on the LA-4, it appears that crankcase HC from the Honda SL100
 tested was about 21% of exhaust HC.  This finding supports very well the
 estimate made in an earlier  report'"' that crankcase hydrocarbons could
 be estimated at "about 20%"  of those from 4-stroke motorcycle exhaust.

        B.  Smoke Emissions (2-stroke engines only) and Particulate
            Emissions

        As described in section III. D. 3. ,  measurements of smoke opacity
 were taken by continuous recording during the first 505 seconds of the
 "LA-4" driving  route.  Figures E-l through E-3 (Appendix E) are scaled-
 down reproductions of the recorder traces of speed and smoke opacity for
 the three 2-stroke bikes.  Both speed and opacity were plotted at 3-second
 intervals except where a smaller interval was necessary to describe the
 curve properly.  Note that the exhaust pipe extension used on the Suzuki
 was 3 inches in diameter and that those for the other two motorcycles
 were 2 inches in diameter due to existing exhaust system configurations.
 This difference in  optical path length of the light beam undoubtedly made
 the Suzuki's  smoke density'copoparatively higher,  but it certainly was not
 the entire cause of the higher density readings for the Suzuki.  All the
 machines  tested used automatic oil injection systems,  and the oils were
 supplied by the manufacturers and were those recommended for use in
 the motorcycles tested.  Fresh fuel was used for all runs, because it
 had been  observed earlier that fuel some days  old could cause higher -
 than-normal smoke readings  (at least for the Yamaha).

        In addition to the measurements taken during the LA-4 runs, a
 modification of the Federal smoke test procedure for diesel engines was
 tried on the Suzuki and the Yamaha,  consisting of two accelerations and
 a lug-down (deceleration).  Table 21 gives the results of the  modified
 Federal procedure as well as pertinent operating data for each motor-
 cycle.  The "a factor" is the  average of the 15 highest 1/2-second
 opacity readings during the two accelerations,  and the "b factor" is the
 average of the 5 highest 1/2-second opacity readings during the decelera-

-------
                                                                    43.

          TABLE 21.  MOTORCYCLE SMOKE TEST RESULTS
                      AND SUPPLEMENTARY DATA

	SUPPLEMENTARY DATA	

SUZUKI T250: Max.  Speed   8000 rpm, Inertia wheel 2, road load,
               3-inch pipe

     1st acceleration: 3000 to 6000 rpm, gear 2,  times 6. 0 sec and
                      6.5 sec
     2nd acceleration:  2500 to 6000 rpm, gear  2, times 9. 0 sec and
                       8.5 sec
     deceleration: 6000 to 3500 rpm,  gear  2, times  7. 0 sec and 6. 5 sec

YAMAHA DT1-E: Max Speed  7000 rpm,  Inertia wheel 2,  road load,
                  2-inch pipe

     1st acceleration: 2500 to 6000 rpm, gear 3,  times 5. 5 sec and
                      6.0 sec
     2nd acceleration:  2500 to 6000 rpm, gear  4, times 11.0 sec and
                       11.0 sec
     deceleration: 6000 to 3500 rpm,  gear  2, times  6.5 sec and 6. 5 sec

	RESULTS	

SUZUKI T250; "a factor"  - 8.69% opacity, "b factor"  20.49% opacity

YAMAHA DT1-E: "a factor"  1.92% opacity,  "b factor" =  1.61% opacity


tion. The results in Table 21 are averages of two runs rather than the
normal 3 runs (for heavy-duty vehicles).  It should again be noted that the
opacity values for the two  motorcycles are not  directly comparable due to
the difference in exhaust pipe diameters.

       Particulate emissions from the seven motorcycles are summarized
in Table 22,  generally representing 3 or 4  runs per  data point (range 1 to
7, average about 3.2 runs per data point).  The interesting  features of
these data include the fact that the g/mile rates are  relatively uniform for
the 4-stroke machines  over the four road load conditions, while those for
the 2-stroke machines  tend to increase with increasing speed.  The in-
crease in particulate emissions with power level  is even more dramatic
for 2-strokes (much  more so than for 4-strokes), and the most plausible
explanation for these observations lies in the oil injection systems used
on the 2-stroke engines.  These  systems meter oil to various points in
the engine (depending on the motorcycle) at a rate which increases with
both engine speed and throttle opening, and it is apparent that their effects

-------
             TABLE 22.  PARTICULATE EMISSIONS DATA FROM SEVEN MOTORCYCLES
4-stroke motorcycles

Condition
Idle
ZORL
30RL
40RL
50RL
*20 10%
30 10%
*40 10%
50 10%
Average
mg/SCF Exhaust
Average Rate,
g/hour
Average Rate, g/mi
H-D Honda Honda Triumph H-D Honda Honda Triumph H-D Honda Honda Triumph
FLH CL350K3 SLlOO T120R FLH CL350K3 SL100 T120R FLH CL350K3 SL100 T120R
2.56
2.69
3.28
4.52
4.44
3.05
3.37
2.35
4.07
1.52 4.
0. 50 2.
0.14 1.
1.67 1.
2.04 3.
1.02 3.
1.88
0, 94 4.
4.02
23 4. 64
44 13.4
69 12.0
94 30.8
06 15.2
17 5.74
20.0
00 12.2
13. 1
*These conditions were actually "20H" and
2- stroke


Condition
Idle
20RL
30RL
40RL
50RL
**20 10%
**30 10%
40 10%
50 10%
20 20%
30 20%
motorcycles
Average
Kaw.
125F-6
8.54
4.76
7.04
8. 18
16.5
16.7
28.5
--
--
--
--


mg/SCF Exhaust
Suzuki
T250
14. 3
5.48
13. 2
8. 75
19.6
12. 1
27.8
44.0
49.2

--
**These conditions were actually
Yamaha
DT1-E
2.64
6. 24
6. 08
10.7
9.57
14.0
13.2
16.3
19.4
20. 1
25.7
"20H" and
1.61
3.46
4.46
5.75
6. 15
4.63
5. 10
3.96
8. 11
"40H" for

0.
0.
0.
1.
1.
0.
2.
1.
6.
344 0.
242 0.
101 0.
41 0.
84 1.
902 1.
17
42 3.
93
the Honda


Average Rate,
Kaw.
125F-6
0. 664
1.49
2.83
4.85
16.4
17.4
41.0
—
-_
--
--













Suzuki
T250
1.90
2.34
6.72
6.08
23.9
7.96
29.8
66.8
86. 5

--
373 1.22
632 5. 75
588 7.68
917 21.4
93 13.7
63 3. 93
19. 8
06 15.1
19. 0
SLlOO

g/hour
Yamaha
DT1-E
0.282
2.04
2.19
5.72
8. 10
9.68
11. 7
21. 1
33. 1
19.9
39.0
--
0. 173
0. 149
0. 144
0. 123
0.232
0. 170
0. 099
0. 162


__
0.012 0.
0.003 0.
0.035 0.
0.037 0.
0.045 0.
0.072
0. 035 0.
0.139


Average Rate,
Kaw.
125F-6
-
0. 074
0. 094
0. 121
0. 328
0.872
1.37
__

--
--
Suzuki
T250
-
0. 117
0.224
0. 152
0.478
0.398
0.995
1.67
1.73
--
--
-
032 0.
020 0.
023 0.
039 0.
081 0.
0.
077 0.
0.


g/mi
-
287
256
536
275
197
661
378
380



Yamaha
DT1-E
-
0. 102
0.073
0. 143
0. 162
0.484
0.389
0.528
0.662
0.993
1.30












"30H" for the Kawasaki 125F-6.

-------
                                                                    45.

on particulate are visible in the data.  The filters used for gravimetric
analysis (white when unused) turned a light yellow to brownish-yellow
after a sample of 2-stroke exhaust had been collected, indicating re-
tention of oil particles.  Most filters used for 4-stroke exhaust, however,
turned tan to light brown after use.   Notable exceptions to the latter rule
were some of the filters used to collect samples from the Triumph and
the Honda  SL100.  The Triumph samples were dark brown to black, and
this coloring must  have been caused by combustion of lubricating oil
(it was later shown that the engine had defective rings), although the
exhaust did not smoke noticeably.  Filters  used during higher speed and
load conditions on the Honda SL100 turned a distinct reddish color, even
when commercial pump gasoline.was used in place of emissions test fuel.
Filters used during low speed conditions turned a  tan color, much like
the other 4-stroke  bikes.
                                          e

        Overall,  the particulate rates in g/mile were somewhat higher
for  2-strokes than for 4-strokes (the Triumph, which was probably atypical,
maybe an exception).  In order to determine particulate rates  which repre-
sent real operation to at least  some extent, it is necessary to  use a com-
posite schedule again as was done for aldehydes.  The results of this
analysis are shown in Table  23, and are considered reasonable except on
the  Triumph,  as  explained earlier.  Particulate emissions for the 2-
stroke bikes seem to be related to the smoke levels discussed earlier,
and are probably functions of oil rate.

     TABLE 23.  SUMMARY OF WEIGHTED PARTICULATE  MASS
              EMISSIONS FROM SEVEN MOTORCYCLES

Motorcycle              Particulate g/hour      Particulate g/mi

Harley-Davidson FLH          4.38                   0.157
Honda CL350K3                 1.18                   0.042
Honda SL100             '      0.888                  0.032
Kawasaki  125F-6               5.25                   0.187
Suzuki T250                   15.8                    0.564
Triumph T120R                10.4                    0.372
Yamaha DT1-E                 6.54                   0.234


        C.   Results of Noise Tests

        Noise tests were conducted on the Honda SLlOO, the Kawasaki
125F-6 and a privately-owned Yamaha 175 (not included in any other
tests).  The tests consisted  of accelerations patterned after those required
in SAE Standard  J986a(12),  constant-speed "driveby" tests at  30 mph,
and measurements at idle with the machines stationary.  Procedures
and documentation were given in section III. G. ,  and results are sum-
marized in Table 24.  Various standards are currently being enforced on

-------
                                                                    46.
             TABLE 24.  SUMMARY OF NOISE TEST RESULTS
                       ON THREE MOTORCYCLES
             (All noise measurements in dBA except where noted)
                                         Motorcycle
Acceleration Tests

Ambient before accel.
                       i
Gear used for accel.
Acceleration noise  left
Acceleration noise  right
Ambient after accel.

Driveby Tests

Ambient before driveby
Gear used for driveby
Driveby noise   left
Driveby noise   right
Ambient after driveby

Idle Tests

Ambient before idle test
Idle noise   left
Idle noise   front
Idle noise   right
Idle noise   rear
Ambient after idle test
                            Honda SL100
 45 (55dBC)
   3
 82.8
 83.5
 44 (60dBC)
 45 (60dBC)
 62.5
'63.0
 64.8
 65.5
 44 (55dBC)
                Kawasaki
                 125F-6
44 (68dBC)
   3
86. 8
84.8
44 (64dBC)
44 (60dBC)
69. 5
67. 2
68.0
68.2
44 (65dBC)
              Yamaha
                175
47 (64dBC)
   3
83. 2
83.2
45 (72dBC)
44 (52dBC)
4
73.0
72.0
44 (55dBC)
45 (6ldBC)
4
75.8
73.5
44 (55dBC)
44dBA, 70dBC
4 (3)
74.0 (77.2)
73.0 (78.8)
44dBA, 60dBC
45 (60dBC)
69.5
69.2
69.8
70.8
45 (63dBC)

-------
                                                                     47.

motorcycles as well as other vehicles, and the noise levels from the motor-
cycles tested would be within some limits and not within others.  The SAE
standard (which has little bearing on regulations) for light-duty vehicles
during the acceleration test is 86dBA,  to give just one example.

       All the measurements are given in  dBA (to correlate with human
ear response), and in addition, the ambient measurements are also given
in dBC (flat response   no frequency dependence).  The slightly different
format for driveby tests on the Yamaha 175 is an attempt to  avoid con-
fusion due to the use of two different gears.  It is apparent that in this
case the use of a lower (numerical) gear, which increased the engine speed,
did increase the noise level.

-------
                                                                     48.
 V.  ESTIMATION OF EMISSION FACTORS AND NATIONAL IMPACT

       To develop reasonable motorcycle emission factors,  it is neces-
sary to know the motorcycle population to such an extent that available
emissions data can be extrapolated logically.  A good description of
the population is also necessary to  estimation of national  impact, because
both the number  of motorcycles  in service and their distribution over
the range of available sizes and  types are direct inputs to the impact
calculation.  Consequently, this report section will be broken up into
three parts, covering analysis of the motorcycle population, develop-
ment of emission factors, and estimation of national  impact as logically
separate items.

       A.  Analysis  of the Motorcycle Population
                                          ,f

       The population of motorcycles in use in the United States is
undergoing rapid changes in both composition and overall size.  The
tremendous growth of the industry since  about I960 parallels that
which has  occurred in other recreation-oriented fields, and keeping
up with the statistics has been a problem.  In that at  least some motor-
cycles are registered for street use,  some reliable (if usually outdated)
statistics are available.  On the other  hand, so many bikes are now
used exclusively off-road (and unregistered) that total population statistics
are largely a matter  of speculation.

       A  summary of some of the more  comprehensive registration
and sales data is given in Table  25, noting that it comes from several
fairly diverse sources.   Where possible, data from Alaska and Hawaii
      TABLE 25.
           SUMMARY OF MOTORCYCLE REGISTRATION
                  AND SALES DATA
                    Total
    Year      Registrations'^)

    1972        3, 765,000(a)
    1971        3,325,507
    1970        2,814,700
    1969        2,295,000
    1968        2,100,000
    1967        1,953,000
    1966        1,753,000
                               Change in
                             Registrations

                                439,493
                                510,807
                                519,700
                                195,000
                                147,000
                                2CO,000
  Industry
  Sales(17)

1, 800, 000(a)
1, 584,800
1, 130, 100
  671, 700
  48l,000(b)
  389,
  342,
(a) estimate
                       derived from data given in Reference 18
                           (c) extrapolated
have been excluded from the figures,  restricting the analysis to the
contiguous states plus the  District of Columbia.   These exclusions

-------
                                                                      49.

were not possible, however,  for the sales data.  One note of explanation
on the sales data is that they are based on import figures with an allowance
added for motorcycles of domestic manufacture.

        The outstanding fact in evidence from the data in Table 25  is that
motorcycle sales are far outstripping new registrations.  The causes of
this phenomenon are that many motorcycles are being sold for off-road
use  only (and are never registered), and that a substantial number of older
motorcycles are being retired from service.  It remains to make  a reasonable
estimate of the current (December 31,  1972) motorcycle population using
the available facts as basis, proceeding on a more  or less trial-and-error
basis.

        To begin, ranges can be established for quantities which are known
to exist, for example, it might be assumed t'hat the percentage of  motor-
cycles in the country which is not registered is between 10% and 30%.  It
could also be assumed that the  average age of a motorcycle in service is
between 2 and 5 years, and that the average life of  a motorcycle is between
3 and 7 years.  In addition, the percentage of motorcycles  of a given year
which is still in  service is probably a function of motorcycle age.  A range
for this quantity which could be assumed is that 10% to 20% of the motor-
cycles sold in a given year retire from service in every year that passes.
That is, 80% to 90% of sales for year k would still be in  service in year k  + 1,
60% to 80% would still be serviceable in year k + 2, and  so on. Put another
way, the percentage of machines sold in any given year still in service would
decrease linearly to zero over a period of 5 to 10 years.  This longevity
function is obviously not entirely correct, but is probably a good enough
approximation to yield useful results.

       In order to calculate values for all the other quantities, it is really
necessary only to assume a value for the  constant in the  longevity function.
The results of calculations performed in this manner are given in Table 26,
with the assumption (where necessary) that sales increased linearly from
60,000 in I960 to 389,000 in 1967.  It was also assumed  for calculations
that as of the end of 1972, the average age of motorcycles sold in 1972 was
0. 5 year, the average for those sold in 1971 was 1. 5 years,  and so forth.
Examining the statistics in Table 26, it is at first evident that the  last
assumption yields an impossible situation, namely that the calculated pop-
ulation is smaller than the number of registrations. Progressing upward
from the bottom of the table,  the combination of statistics becomes more
plausible, at least up to about the third line (assumption  of 10% per year
retired).  Although the number  is not presently a known quantity, the per-
centage of machines currently in the population which are even capable of
off-road operation would place some kind  of upper limit on the unregistered
percentage.  The limited amount of information available on this point" ™
indicates that the figure may be near 40%, but better information should be
available from the Motorcycle Industry Council (MIC) before long.

-------
                                                                      50.

    TABLE 26.  MOTORCYCLE POPULATION STATISTICS CALCULATED
             BY ASSUMING A SERIES OF RETIREMENT RATES

  Percent of         Calculated
 Original Number     Population      Percent       Average     Average
 Retired per Yr.     12/31/72     Unregistered   Age, yr     Life,  yr

        8.3           5,398,000         30.3         2.31         6.0
        9-1           5,223,000         27.9         2.20         5.5
      10             5,022,000         25.0         2.07         5.0
      11-1           4,796,000         21.5         1.94         4.5
      12-5           4,544,000         17.1         1.81         4.0
      J4. 3           4,260,000         11.6         1.66         3.5
      16- ?           3,931,000          4. 2         1.51         3.0
      20             3,544,000              *        1.36         2.5
        Having presented the available data, it becomes necessary to make
an assumption based on best judgement,  and that assumption is that there
were 5 million motorcycles in use in the United States as of 12/31/72.  If
it is shown later that this assumption is erroneous, it should be a relatively
simple matter to correct subsequent calculations.  It should be noted that
this  estimate does not include minibikes  or bicycles with auxiliary engines,
but that it does include scaled-down motorcycles intended for use by young
people  (Yamaha Mini-Enduro, Honda  SL70, etc. ).

        Attention now must  be directed toward the composition  of the motor-
cycle population according  to size and type of engine used.  Data currently
available on this point are given in Table 27, although it is anticipated that
more comprehensive information will be available shortly from the MIC
statistical survey.  Since no data to the contrary have been  found, it will
be assumed for calculation purposes that the current motorcycle population
is 60% 4-strokes and 40% 2-strokes.  It is  not quite so simple to arrive
at the compositions of the 2- and 4-stroke populations  by size,  however,
but supplementary information regarding sales  trends  can be very helpful.

        Until the past few years,  it has been traditional that  street riders
prefer  4-stroke machines,  since no large,  fast 2-stroke machines have
been available (except competition bikes).  Likewise it has been customary
that dirt riders prefer 2-strokes because of their lighter weight and greater
simplicity.  The market now offers such a  variety of machines, however,
that these old distinctions are no longer valid.  Put another way, there is
now more of an equality of  offerings among 2-strokes and 4-strokes and
there is little justification for supposing that sales breakdowns by engine
size should be greatly different for the two engine types.  Based on this
generalization, some of the data from Table 27, and the population model
from Table 26 (10% retirement per year), a distribution of the  U.S.  motor-

-------
                                                                     51.

cycle population by size (both 2-stroke and 4-stroke) has been calculated
and is given in Table 28. This distribution will be used in conjunction
with emissions test data and motorcycle usage information to develop
emission factors and impact estimates in the following report subsections.
It would be desirable to use a distribution having a better  category break-
down for the  larger machines, but the most reliable data simply are not
broken down so accurately.

  TABLE 27.  BREAKDOWN OF U.S.  MOTORCYCLE POPULATION
              ACCORDING TO ENGINE SIZE AND TYPE
            1969 Sales Data <2°)
                  1971 Sales Data*19)
Displacement
cm
Under 100
100-139
140-199
200-299
300-439
440-699
700 and over
Displacement
cmr
0-50
51-90
91-190
191-290
over 290
unclassified
* Janua ry - May
% of
2-strokes
16.7
38.8
12.0
21.1
8.2
3.0
0
% of % of
4- strokes total. ,
41.9 33.0
2.4 15.4
9.0 10.1
2.2 8.9
21.0 16.3
15.9 11.4
7.6 4.9
%of Totallmports forYear^17)
1969
22.9
21.4
22.7
9.4
21.9
1.7

1970 1971 1972*
15.0 8.2 5.7
27.1 24.7 20.0
22.1 26.9 31.3
6.7 7.2 9.2
27.4 30.1 31.0
1.7 2.9 2.8
i
                                                Displacement,
                                                     cm3
                                                   49-100
                                                  120-250
                                                  305-360
                                                  440-750
                                                  Over 750
                                                        % of Market for
                                               Year  2-strokes 4-strokes
             1970
                                                         38
                                                         40
                                                         40
               62
               60
               60
TABLE 28.  DISTRIBUTION OF U.S.  MOTORCYCLES BY ENGINE SIZE

       Displacement, cm3    % of Population    Number in Service
            0-50
           51-90
           91-190
          191-290
          over 290
10
24
28
 8
30
  500,000
1,200,000
1,400,000
  400,000
1,500,000

-------
                                                                      52.
       B.  Development of Emission Factors

       The end products required in this subsection are characteristic
emission rates for each of the motorcycle size categories listed in
Table 28, which can then be  combined to yield characteristic emission
rates for the entire motorcycle population.  Data acquired during the
testing phase of this program, indicate that emission rates are not simple
functions of engine displacement or motorcycle size,  and thus another
approach will be used in estimating rates for each category.  If composite
emission rates from the machines tested (such as LA-4 data and  composite
aldehydes and particulates) are plotted as  functions of engine displacement,
envelopes can be drawn indicating the range of values to be expected.
Points within these envelopes which are thought to be  representative of
each category can be chosen, and the emission rates at those points can
be assumed as typical for the respective categories.  This type of analysis
is certainly not rigorous, but is really the only realistic approach to be taken
since so few data are available.  At some  later date,  when emissions data
on a much  larger number of  motorcycles (perhaps 100 or more) are avail-
able, a good statistical analysis can be made.  Mass emissions calculated

   TABLE 29.  TYPICAL MASS EMISSIONS FROM MOTORCYCLES
            AS FUNCTIONS  OF ENGINE SIZE AND TYPE
 Engine
  Type

 4-stroke
                                           Emissions in g/mile
   Engine
Disp. , cm'

    0-50
   51-90
   91-190
  191-290
  over 290
 *HC   CO   NO,
        Parti-
RCHO  culate
2.2
2.3
2.6
3.4
4.8
19.
21.
24.
32.
46.
0.53
0.35
0.32
0. 17
0.11
0.015
0.021
0.026
0.044
0.079
0. 020
0. 025
0. 030
0. 045
0. 070
0.013
0.015
0.017
0.022
0.031
 2-stroke
    0-50
   51-90
   91-190
 191-290
 over 290
 5.
 7.
10.
18.
25.
5.
7.
12.
30.
50.
0.24
0.20
0.16
0.04
0.04
0.095
0. 10
0. 11
0. 13
0. 14
0. 12
0. 15
0. 19
0.35
0. 55
0.020
0.022
0.025
0.043
0.057
 *includes 20% increase for 4-strokes to account for crankcase losses,  but
  does not include evaporative losses
 t calculated from fuel consumption

by the process above are given in Table 29, which also includes values for
SO  based on fuel consumption and an allowance for crankcase hydrocarbon
emissions from 4-strokes based on test results given in section IV. A.4.
The estimates for HC,  CO, and NO* are based on  LA-4 results, and those
for RCHO and particulate are based on a composite of steady-state

-------
                                                                      53.

conditions.  The fuel consumption used to calculate SOX was that observed
in LA-4 runs.

        Several items of information are available on distances traveled by
motorcycle riders annually, and the averages seem to range from about
3000 to 5000 miles per year.  One source^?) estimated about 3900 miles
per year for California riders based on a  sample corrected for brand-name
ownership and preference for street or dirt riding. Data from the Depart-
ment of Transportation^1) include an estimate of 3605 miles per year for
1970, presumably based on street and highway travel only.  An EPA report(22)
issued some time ago estimated 5000 miles per year based on 3 references
and another source estimated 4700 miles per year based on a survey of
magazine subscribers, but it is not known whether this latter sample was
corrected for composition or not.

        Some of the dynamics of the mileage situation which are presently
occurring are that an increasing number  of riders are making long tours,
which tends to increase average mileage.   On the other hand, many riders
are entering motorcycling as a second or  third sport, and  consequently
participate at a  level lower than that of the real enthusiast. Perhaps the
best way of judging the number of miles a rider may cover in a year is
to look  at the  distance capabilities of his  motorcycle.  It is doubtful that
many riders would attempt much of a trip on less than a 350cm3 machine
these days, due to both rider comfort and safety considerations.  Almost
all street machines of 350 cm3 displacement or more have  performance
and comfort which is acceptable for long  trips, but as a general rule it
would be expected that for street machines annual mileage  would still be
positively related to motorcycle size.

        For the purposes  of this report,  the annual mileage assumptions
which will be  used are  2500 mi/yr for the 0-50 cm3 category, 3000 mi/yr
for the  51-90  cm3 category, and 3500,  4000, and 5000 mi/yr for the other
categories in  order of increasing displacement.   When weighted by the
population estimates in Table 28, these assumptions yield an average for
all motorcycles of 3770 mi/yr,  which is considered a reasonable result.
These mileages and the average will be assumed applicable to off-road as
well as  highway usage.

        Based on all the foregoing analysis and qualifications,  emission fac-
tors for motorcycles in the United States have been calculated and are
presented in Table 30.  Evaporative emissions were calculated using the
method described in section III. F. 1. , assuming that they occurred only
during the  riding season in each part of the country,  and the results are
shown in Table 30.  For this purpose, it was assumed that the U. S. was
divided into three regions.  The north region was assumed to be between
49° and 43° north latitude and to have a 6-month riding season, the central
region between 43° and 37° and to have an 8-month riding  season,  and the
south region between 37° and 31° and to have a 10-month riding season.

-------
                                                                   54.

TABLE 30.  EMISSION FACTORS FOR MOTORCYCLES (DEC. 31,  1972)
          Pollutant
   Exhaust Hydrocarbons
Engine Type    g/mile   g/unit year
 4-stroke
 E-stroke
   Crankcase Hydrocarbons   4-stroke
                              2-stroke

   Evaporative Hydrocarbons  4-stroke
                              2-stroke
   Total Hydrocarbons


   CO


   NOX as NO 2


   RCHO as HCHO


   Parti culates


   SO  as SO2
  4-stroke
  2-stroke

  4-stroke
  2-stroke

  4-stroke
  2-stroke

  4-stroke
  2-stroke

  4-stroke
  2-stroke

  4-stroke
  2-stroke
 2.9
16.

 0.6
 3.5
16.

33.
27.

 0.24
 0. 12

 0.047
 0. 11

 0.046
 0.33

 0.022
 0.038
 10,900
 59,400

  2,200
                            1,360
                            1,360
 14,500
 60,800

123,000
103,000

    918
    434

    177
    431

    172
 .  1,260

      84
     145
Based on estimated 1972 registration dated?), about 13% of the motor-
cycles are in the north region, 46% in the central region, and 41% in the
south region.  The final units in which the emission factors  have been
expressed,  g/mile and g/motorcycle year, are used because they  can
be related easily to available population statistics for the purpose  of
computing national impact.  These units are considered more practical
than fuel-based units because motorcycle fuel is not easily separated
from that sold for use in other vehicles.  The factors do depend to some
extent on the composition of the motorcycle population,  but  calculation
of new Actors based on later population data  would be a relatively simple
matter.
        Note that the g/mile estimates in Table 30 are for the U.  S.  motor-
 cycle population weighted by size and mileage.   In other words  they are
 the g/unit year estimates divided by 3770 miles (except HC  where the
 "g/uni?year" figure includes evaporation and the "g/mile"  figure does-not).

-------
                                                                    55.
If factors or impact on a more limited basis are desired,  calculation should
start with data given in Table 29, then the size distribution and mileage
for the new sample can be used properly in arriving at a new result.

        C.  Estimation of National Impact

        The emission factors from Table 30 need only to be multiplied by
the estimated motorcycle population to compute the national impact of
motorcycle emissions.  This step has been taken and the results appear
as Table 31.  Placing these results in perspective, Table 32 shows

          TABLE 31.  NATIONAL IMPACT ESTIMATES FOR
             MOTORCYCLE EMISSIONS (Dec.  31,  1972)
Engine Type    Units in Service
4-stroke
3, 000,000
2-stroke
2, 000,000
Total
5,000,000
  Pollutant

Hydrocarbons
CO
NOX as NO2
RCHO as HCHO
Particulates
SOX as SO2

Hydrocarbons
CO
NOX as NO2
RCHO as HCHO
Particulates
SOX as SO2

Hydrocarbons
CO
NOX as NOz
RCHO as HCHO
Particulates
SOX as SO2
Total Emissions,
   ton/yr	

    47,900
   407,000
     3,040
       585
       569
       278

   134,000
   227,000
       957
       950
     2, 780
       320

   182,000
   634,000
     4,000
     1,540
     3,350
       598
motorcycle emissions as percentages of EPA National Inventory Data,
but it should be noted that the inventory data are for 1970, not 1972.  The
changes foreseen in the near future which affect motorcycle emissions and
their importance include the rapidly expanding motorcycle population,
reduction of other source emissions due to control programs already in
force,  and the  probable advent of Wankel engines in motorcycles.  The
first two considerations will tend to emphasize the importance of motor-
cycles as compared to other sources, but the last will probably have the
opposite effect if 2-stroke engines are the type most replaced by the  Wankel.
The extent to which these factors and others will change the impact of

-------
                                                                      56.
            TABLE 32.  COMPARISON OF MOTORCYCLE NATIONAL
                IMPACT ESTIMATES WITH EPA NATIONWIDE
                    AIR POLLUTANT INVENTORY DATA
 Contaminant

    HC
    CO
    NOX
    SOX
 Particulates
                  1970 EPA Inventory Data
                     106 tons/yr*23)
All Sources

   34.7
  147.
   22.7
   33.9
   25.4
Mobile
Sources

  19. 5
111.
  11.7
  1.0
  0. 7
Motorcycle Estimates
    as % of	
              Mobile
              Sources
All Sources

   0. 524
   0.431
   0.0176
   0.0018
   0.0132
               0.933
               0. 571
               0.0342
               0.060
               0.479
motorcycle emissions is difficult to predict, but the overall direction of
change expected is toward motorcycles becoming more significant in the
nationwide air pollution picture.

        As mentioned in the previous subsection, registration figures
indicate that about 13% of motorcycles are in the north region, 46% in the
central region, and 41% in the south region.  It has also been estimated
that about 65% of total motorcycle mileage is accumulated in urban/sub-
urban (rather than rural)areas^9, "'.  Combining these numbers  with the esti-
mates made earlier about length of the  riding season in the three  regions,
mass emissions from motorcycles  can  be categorized as shown in Table  33.
The longer  riding season in  the south region gives it a little more weight

           TABLE 33.   SUMMARY OF  SEASONAL, REGIONAL,  AND
          URBAN-RURAL VARIATION OF MOTORCYCLE EMISSIONS
           Percentage of Annual Nationwide Emissions by Season
 Region

 North
 Central
 South

 Seasonal
 Subtotals

 Totals
Urban /Suburban
Dec.-
Feb.
0.0
0.0
3. 1
3.1

Mar.-
May
2.
10.
9.
21.

0
5
3
8

Areas
Jun.-
Aug.
3.
10.
9.
22.
65.0
0
5
3
8

Sep.-
Nov.
1.
7.
9.
17.

0
0
3
3

Dec.-
Feb.
0.0
0. 0
1. 7
1. 7

Rural Areas
- Mar.
May
1.
5.
5.
11.

1
6
0
7

- Jun.-
Aug.
1.6
5.6
5.0
12.2
34.9
Sep.-
Nov.
0.5
3.8
5.0
9.3

                                                Regional
                                                Subtotals

                                                    9.2
                                                   43.0
                                                   47.7
                                                   99.9
in the overall emissions picture than is indicated by population statistics
alone,  and the seasonal effect reduces mass emissions in the other two
regions slightly from those which would be expected based on motorcycle
distribution.  According to this analysis, the midsummer months account
for 35% of motorcycle emissions, while spring accounts for about 34%,
fall for 27%, and winter for 5%.

-------
                                                                   57.

                             VI.  SUMMARY

        This report is the end product of a study on exhaust emissions
from motorcycles, and it is Part 3  of a planned seven-part final report
on "Exhaust Emissions from Uncontrolled Vehicles and Related Equip-
ment Using Internal Combustion Engines, " Contract No. EHS 70-108.
It includes test data, documentation, and discussion on studies which
characterized in detail emissions from  seven motorcycles (four 4-stroke
machines and three 2-strokes), as well as  estimated emission factors
and national emissions impact.  As a part of the final report on the
characterization phase of EHS 70-108, this report does not include in-
formation on aircraft turbine emissions, outboard motor crankcase
drainage, or locomotive emissions  control technology.  As required by
the contract, these three latter areas have been or will be reported on
separately.

        Emission measurements on  the seven motorcycles were performed
with the machines operating on a modified automotive chassis dynamometer
in the Emissions Research Laboratory.  Road tests were conducted both
on the Institute grounds and on a nearby test course, and noise measure-
ments were  taken at the abandoned Hondo (Texas) airbase which the
Institute rents as necessary.  Exhaust emissions were measured during
the "7-mode" (1970-71 Federal Light Duty  Vehicle) Procedure, the
"LA-4" (1972 and later Federal L. D. V. ) Procedure, and a series of
steady-state conditions developed specifically for each motorcycle.

        Exhaust constituents measured during one or more of the three
procedures were total hydrocarbons by  FIA; NO and NOX by chemilumi-
nescence; hydrocarbons,  CO, CO2,  and NO by  NDIR: QZ by electrochemical
analyzer; light hydrocarbons by gas chromatograph; aldehydes  by wet
chemistry; and particulates by an experimental dilution-type  sampling
device.  In addition,  crankcase or "blowby'1 emissions from one motor-
cycle were characterized,  and fuel  evaporative losses  and SOX emissions
were calculated rather than being measured.  Sound level measurements
were conducted on 3 motorcycles using fairly standard instrumentation
during acceleration,  constant-speed operation,  and idling. Emission
factors and national impact were calculated for hydrocarbons,  CO, and
NOX from data developed on the 1975 Federal Procedure (LA-4); for SOX,
particulates, and aldehydes,on the basis of a composite of steady-state
conditions.   Expressing  motorcycle emissions as percentages of 1970
national totals from all sources, motorcycles are estimated to account
for about 0. 5% of hydrocarbons, 0. 4% of CO, 0. 02% of NOX,  0. 002% of
SOX,  and 0. 01% of particulates.  As percentages of 1970 national totals
from  mobile sources only,  motorcycles are estimated to be responsible
for 0. 9% of hydrocarbons,  0. 6% of CO, 0. 03% of NOX,  0. 06% of SOX>  and
0. 5% of particulates.  The impact of motorcycle emissions has been
estimated for three regions, based on registration data, with the result

-------
                                                                    58.

that about 9% of motorcycle emissions are estimated to occur in the north
region, 43% in the central region, and 48% in the south region.

       The air pollution impact of motorcycles  on individual metropolitan
areas is not known at this time.  Nationwide and regional emissions are
only rough indicators of the actual air quality impact of any source on
an urban area.

       It should be recognized that the subject study is only a first step
toward a real understanding of motorcycle emissions, and that tests on a
great many more  machines are needed to obtain an accurate baseline
emissions  estimate.  It has likewise been impossible in the subject study
to gain any knowledge at all about emissions variability from one machine
to another  of the same type or about variatio^ in emission levels with
age.  Additional attention to possible control technology ideas and the
development of a better-suited chassis dynamometer specifically for
motorcycle operation are two more items which have been entirely neg-
lected thus far.  These comments give some indication of the direction
in which future motorcycle emissions work should proceed in order to
maintain a  reasonably  quantitative evaluation of a potentially important
emission source.

-------
                                                                    59.

                        LIST OF REFERENCES

 1.     Federal Register, Vol. 33, No. 108, June 4,  1968.

 2.     Federal Register, Vol. 35, No. 219, November 10,  1970.

 3.     Federal Register, Vol. 36, No. 128, July 2,  1971.

 4.     Sawicki, E. ,  et al,  The 3-Methyl-3-benzothiazalone Hydrazone
        Test, Anal. Chem.  33:93. 1961.

 5.     Altshuller,  A. P., et al, Determination of Formaldehyde in
        Gas Mixtures by the Chromotropic Acid Method,  Anal.
        Chem.  33:621. 196l.
                   "•                      f f

 6.     Hare,  C. T. and Springer,  K.  J. ,  "Emission Factors and
        Impact Estimates for Light-Duty Air-Cooled Utility Engines
        and Motorcycles, " Quarterly Progress Report No. 6,
        Contract EHS 70-108,  January 1972.

 7.     P.  A.  Bennett,  et al, "Reduction of Air Pollution by Control
        of Emissions  from Automotive Crankcases, "  Paper No.  142A
        presented January I960 at the SAE Annual Meeting.

 8.     G.  M.  Heinen, "We've Done the Job   What's Next?" SAE
        paper 690539, 1969.

 9.     D.  T.  Wade,  "Factors Influencing Vehicle Evaporative
        Emissions, " SAE paper 670126, 1967.

10.     P.  J. Clarke, et al, "An Adsorption Regeneration Approach
        to the Problem of Evaporative  Control, " SAE paper 670127,
        1967.

11.     Petroleum Products Survey No. 73, U. S. Department of the
        Interior, Bureau of Mines,  January 1972.

12.     SAE Standard J986a, Sound Level for Passenger Cars and
        Light Trucks.

13.     Contract CPA 22-60-91, final report by H. J. Wimette and
        R.  T. Van Derveer,  " Report on the Determination of Mass
        Emissions from Two-Cycle Engine Operated Vehicles, "
        January 1970.

 14.    Report File  No.  1297,  BSA Motorcycle Division,  Umberslade
        Hall, submitted to C. T. Hare  by Mr.  Trevor Winship,  March
        1972.

-------
                                                                      60.

                    LIST OF REFERENCES (Cont.)

15.      Personal communication from Mr. Isao Shirayanagi of
         Yamaha International Corp. to C. T.  Hare, September 20,  1972.

16.      Department of Transportation registration figures, FHA
         Table VM-1.

17.      Information from Mr. Roy M. Kessler, Director of Legislative
         Activities,  Motorcycle Industry Council, Inc., which referenced
         statistics from the Department of Commerce, Bureau of the
         Census.

18.      Data obtained by personal communication from a motorcycle
         manufacturer,  referencing Department of Transportation as
         original source.

19.      Private communication from a motorcycle manufacturer.

20.      Communication to Mr. Jeff Raney of EPA from Mr. Leo
         Lake of Yamaha International Corporation.

21.      1972 Automobile Facts and Figures,  data used referenced
         Department of Transportation,  Federal Highway Administration
         as original source.

22.      J. L.  Raney and G. D. Kittredge,  "Measurement and Control
         of Air Pollution from Aircraft and Other Off-Highway Propulsion
         Systems," prepared for International Clean Air Congress.

23.      1970 EPA Air Pollution Inventory Estimates, Annual Report
         of the Council on Environmental Quality.
                           t
24.      M. L. Raiss and J. A. Haley, "Motorcycle Safety, " Final
         Report to U. S. Department of Transportation, May 1968.

-------
       APPENDIX A

  Motorcycle Road Test and
Dynamometer Simulation Data

-------
SOUTHWEST  RESEARCH  INSTITUTE
            DATA SHEET
                      ROAD TEST
SUBJECT
 DVOAMOME/TER. SIMULATION! DATA.
                          SHEET NO	OF	SHEETS
                          PROJECT  "-MfcS-Ol	
                          DATE  */*'/-"	
 MQTQR.CLVCLE.  H ARLEY - D A\M DSD M  F L. H    VOE>C-HT  AS TESTED   CoSl
           TEMPERATURE 78  °F  CORRECTED ATM. P RESS.  2-8. ^\  Ln H
                 CAUI&RATIO/O ,
                                             INLET
                 INDICATED
ACTUAL RUN i
1 O >O
ZV 20
iO i >
4O 'i ^
SO Ld
RUM 2
>0
7-
"^ »
4 /
t. ^
^VERAC-E
10
20
1 I
4 1
r, 2
TROE
SPEED
20
2>O
4O
5O

G-EAR
2.
3
3
4

RUMl
IO.3>
?.s
9.6
ft. 2

RUMZ i
10.5
().b
•)-9
b.i

<\yEK.AC.e.
10.4
9.(o
*).&
^4
4-0"X-TO-20'Vt)y CQASTlOC-
OPER.ATOR
R
R.
D
D
Dl RECTlOM
A
B
A
B
T IMt , sec.
2S.O
2S.S
2S.G
23.7
          AVERAC-E. TIME.  24.4
                      -T 0-
                                                                 TIMES
                                        OPERATOR.  DIRECTION)  T1N1E, -s.«c.
                                   S.IMULATIOM  DATA
   IWERTIA
             2
             4
40-2O COASTIMC- TIMES,
R.ON 1 RUM 7. ROM 3  COM^EIOSUS   RUM 1
                                               2O-40 ACCELERAT IQIO TIMES., s«c.
                                                       Z  RUM^.
                  il.O
                  2t.£
                  Z5.7
—
2.S
^~^^~1
                                              S.Q,
                       INLET  VACUUM, Ln
SPEED,
"%*
20
30
40
50
LOAD-O LOAC>= K\»@ "
GEAR
2
3
3
4-
RvjM 1
tO-4
<).t
*).fc
8.4
RUMZ.
»o.i
/•V
Q Q
8.4
AMG. RUN 1 RUM z AM
10,3
9.C.
9- 1
6-4 A-2
'/tr LOMi- XV* "%y
t. ROM1 ROM 7 AMt.





-------
SOUTHWEST RESEARCH INSTITUTE
           DATA SHEET
SUBJECT
      SHEET NO

      PROJECT
                                                      OF.
-SHEETS
               S\NA\JLATIQM DATA
                                         DATE  4/20/71
                                         py HARE-
MOT OR.C/C.LE-  HONDA
                       "SSO
VOE»C-HT  AS TESTED  555
          TEMPERATURE.  72  °F  CORRECTED  ATM. PRESS,. 2&.<>\
41 4 I
55 52
-TO-20mVkv COAST l\3C- T
10R DIRECTION! TIME
A 22
B 24
A 21.
£> 25
AVERAC-E. TIME 23.



2O
32.
4-2
52
IMES
, sto
.O
.&
5
,2
4

TROE
SPEED C-EAR RUM I RUM 2 AVER-AC-t.
^o ., 3 6,1) 8.3 &.(c
30 4- 5.) 1.7 G.4
40 4 6.5 i.5 .c.i
SO 5 3.0 5.S 5.2

20 ""^-T 0-40"%^ ACCELERATION) 11MLS
OPERATOR DIRECTION) Tl ME, 5>=- V>\a@ ^ LOAD- Kl
NM&. RUN 1 RUM Z \\ICf. RUM1 R»J»
8.0
(b.O
4.0
3.5 A-3
^ %
JZ AMC-.




                                                               PC-A

-------
SOUTHWEST RESEARCH INSTITUTE
             DATA SHEET
SUBJECT  MOTORCYCLE  R.QA.D TEST
 DyjOAt^OHETER SIMULATION!  OAT A.
 MOTORCYCLE  HOKJDA  SL-lOO
         SHEET NO
         PROJECT
         DATE
         BY
                                                            OF
-SHEETS
                                      UEIC-HT  AS TESTED  2.2.Q
 A.MBIEWT  TEMPERATURE  9Q  °F  CORRECTED ATM. PRESS.  2.9.2.0 In
                 CM-lSRATIOK), ">'«•
                                           tMLET VACUUM, in
                 INDltATED
ACTUA
1 0
2.0
2.O
40
50
L RON i
10. s
2.2.0
33.0
' 44.0
55.0
R.UN2
n.o
2.2,0
33.0
43.5
55.0
AVERAGE
l\.0
Z2.0
33.0
44.0
5£.0
TWOE
SPEED
 20
 30
 4O
 SO
                                           G.EAR.
                                                           Ro^4•2.
   45 mX*-IO-2.5m%v COASTllOG. TIMES      Z5m%^-T0-45M%«. ACCELERATIOM TIMES
OPERATOR D\REC.TtOtsJ' T\ME , s«c-
J
0
D
D
A
B
A
B
»8,5
13.7
n.7
15.0
OPERATOR. D'
J
0
0
D
IRECTIO
A
B
A
E,
ro TlME,s«o
9.4
10.4
9.0
9,8
                                             AVERAGE TIME
                                                      4- .
                                                                9.6
                     DYNAMOMETER.
                                              DATA
                  45-2.5 CO AST I M& TIME S^ sec.    25 - 4S ACC.ELERA1 IQKJ T> M E &, s^o.
IWERTIA
                        S.  RUM t RUMS COWSEMsUs  RPH 1 RUH 7. RUN 3  CONSENSUS
G>
4
5TQ,
4-i Q)
11. 1
I4.S
IS.G
l(o.9


I4.S
is.t
l(».7


IS. I
14.8
n.o
LOUJ
LO^
UOW)
l(».9
                                                      9.1
                                                        9.1

                                                        9.4
                                                                    LOuJ
                             LOVA)
                             9.4
                        INLE.T VACUUM, iv\  Ha
     SPEtD
      zo
        G.EAR    RUM i- ROMZ
                                    RUNl R.UM 2.
              RUMI Rwioa  AVCV.
      40
      SO
                                A-4
                                                                        PC-

-------
SOUTHWEST RESEARCH INSTITUTE
             DATA SHEET
SUBJECT  MOTORCYCLE  ROAD TEST
                                DATA.
  SHEET NO
  PROJECT
                                                            OF
-SHEETS
                                                    (b/2.2,/72-
                                                 BY
 MOTORCYCLE.
                                          VJEIG-HT  AS TESTED  2.48  Ib4
            TEMPERATURE  90  °F   CORRECTED ATM. PRESS.  2.9.2.0 In Ka
SPEEDOMETER
                                 'c /V\y
IMLET VACUUM, I*
INDIC.ATED
ACTUAL ROM 1 RUN 2
\ O
ZO
SO
40
SO
11.0 12.0
2.1.0 2.1.0
30.0 31.0
40. S 4-1.0
so.o so.s
AVERAGE
IZ.O
Zl.O
SO.S
41.0
50.0
45 "% -TO- 25"%. CO/SSTINJG. TIMES
OPERATOR
J
J
D
D
A>
DIRECTION T\ME,*«c.
A
B
A
B
^ERA&E TIME
18.0
14.5
18.0
15.0
ife,4
TROE


SPEED &EAR RUN1 RUM^ AVERA&E
20 ,,
2>O
40
SO











25m%lf-TO-4Sw%(- ACCELERATIOM TIMES
OPERATOR D^RECTlO»O
J A
0 B
0 A
D B
AMERAGE TIME
TlME,s«c
10.2 10.
12.5 '2.
10.2 %
10-8 H-
10.9

0
5
B
2

                                                 G-EAR. 	4^

                                                 DATA
                     4-5-2.5 COASTING
                                              25-45 ACC.EUERAT lOfO T» M E S, s«c.
                   R.ON 1 RUM t- RUM 3  COMSEMS-Os   RUM 1
                                                           RUM
      TOO
                      11. 0
                                         LOU)
                      II. X   12.1  '3.0    LOU)
                      13.6   I4,G>         LOU)
                      lfe.3   H.O  H. I    »G-8

                         IMLE.T  VACUUM, I* I
                                               9.3   9.2.   9.0
                                               9.G,   9.5  	
                                               9.2.  	 	
                                              i\.3  n.&  —
                                              10.5  10.9  H.O
                     LOVV]

                     to. B
     SPEED
      20
                      UOAS>- O
           GEAR   RuM 1  ROM 2.
                                    RUM1
                                                      RUKJl ROMZ  AVCV.  .
   40
   50
                                    A-5
                                                                        PC-<

-------
SOUTHWEST  RESEARCH INSTITUTE
            DATA SHEET
SUBJECT ^OTO^lVC-lE- ROAD TEST
 DYMAMOME-TER  SIMULATION!  DATA.
SHEET NO..
PROJECT

DATE
                                                           .OF.
                           .SHEETS
                                             gy  HARE-
 MOTOR-C.VC.LE.   SOZlUK.\  T-Z5OR
VOE\C-HT  AS TESTED
AMB\EK)T TEMPERATURE  "78
                                   CORRECTED ATM. PRESS. 28-9
                                                                   It.,
   SPEEDOMETER.
                              i /v\if
                 INDICATED
AC! UAL
» O
2.0
3O
40
so
RON 1
9
19
31
42-
52
RUM 2
i i
0.1
31
42
52
AVER.AC-E
1O
20
31
42
52
     IWLET VACUUM, tw
TROE
SPEtD
20
30
40
SO

C-EAR
3
4
4
S

ROMl
1-8
1.5
2.0
2.0

ROM 2.
1-8
t-B
2.0
2.0

AVERAC-t
1-8
l.fc
2.0
2.0
OPERATOR
R
R.
D
D
DIRECTION! '
A -
B
A
B
( It-IE , sec.
22., 1
Z2.Q.
2>, 2
21.^
                  COftSTUOG-TIMES      ZO^-TO-AO^X^ ACCtLtRATlOM TIMES
          AVER.AC-E TIME  22.0
OPERATOR. DVRECTIOM
R.
R.
D
D

A
B
A
B
AVERAGE TIME
TlME.^c.
5.S
5 « CD
S.fe
5.5
S.Co
  INERTIA
                    ovrOAMOMtTER  •=.! MO«-AT I OM  DATA
                     40-20 COAST I Wa TIMESxt«c.    2O-40 ACCELERATION) TIME ^
                    RON i.  R.UM 1. ROM
                    24.S  24.2.
                                      24.4
 ROM 1  HOM 2. R.UM3

 S.2  5,^  -
                          5.2.
                       IN LET . VACOUM, !-
SPEED,
^/V**-
20
2)0
40
50
UOAD-0 UOAD= V*e *^ LOAO- V«« %
C-EAR
5
4
4
5
RUM i
i.fe
1,3
v.S
2.0
ROU 2.
1.8
1.5
i.g,
2.O
*MG.
1,7
1.4
i.G
2.0
RONl RUM 2. ^&. ROMl RUM 7. A»&.



A-6
                                                                      PC-

-------
SOUTHWEST  RESEARCH INSTITUTE
            DATA SHEET
SUBJECT t^OTQK. CYCLE: R.OA.D TEST
                S\MQLAT IQNA  DATA
SHEET NO.
PROJECT  u~
DATE
                                                       -OF-
.SHEETS
                                                4/30/7
                                          py  HARE.
MOTOR.tYC.LE.
                           \1OR.
                                     \OE\C-HT AS  TESTED  4 17
           TEMPERATURE JB2_°F  CORR.EC.TED ATM. PRESS. 2O
4-0
SO

C-EAR
2
3
3
4

RUN i
7.0
5.9
4.0.
4.3

ROM 2
/ ft
W ' /
fe.4
5.3
3-2

AMERAfrt
7.O
fc.2
S-0
3.8
                                   20 "%*• -^ °' 40""%,. ACCt LER ATI 0 M TIM E S
OPERATOR. DIRECTION) TIME, s«e
*.
K
D
D

A
B
A
B
AMER.AGE TIME
3. 1
3.^
3.t
3.3
3.3
                                  i MO LAT I OM  DATA
40-20 COASTIfOG- Tlf^ES, t>«c-
1MERHA V^HE:F.LC.^ I^ON
i
1 ANb S
1 A^b . »
21-0
COUSE
\7.
2\.
20.
osos
0
0
8
2O-40 ACCELERATION •nMES/5«t
RuM 1
i.O
4.0
4.0
*u

4
5
>N 7. ROM 3
- —
.0 -
.2 3.4
CONS>I
3.
4-
3.
rwsys
0
0
5
                     1NUET  VAC-OUK,
SPEED,
""%*
20
30
40
SO

GEAR
2.
3
3
;4
u
RUN i
-7.0
fc.S
4.5
3.4
1^\& ~ C
ROMt
7.0
fc.S
4-5
3.Q>
, UOAO= h^@ *h LOAD-- Kt« %
KM&. RUNl RUM 2. ^&. ROM1 RUM T. AV&.
7,0

-------
SOUTHWEST RESEARCH INSTITUTE
           DATA SHEET
SUBJECT  '^OTOK.C-Vt-lfc  ROAD TES.T AMD
 DVMAMOME.TER  S\MQLAT»QM  DATA
SHEET NO

PROJECT

DATE
py HftRE.
                      OF
-SHEETS
              A/ZO /7\
 MOTORCYCLE.  YAMAHA  DT 1 -
  VOE\C-HT AS  TESTED  2.1 9
 AMB\EKJT TEMPERATURE, 72  °F   CORRECTED  ATM.  P R£SS.  26.9(b  in
                CAUISRATIOM,
       IMLET VACUUM, u
INDICATED •
AtlUAL RON 1
\ O IT.
2.0 22.
50 35
4-0 45
SO £.3
40"Vk-TO-20mV(tt.
OPE R.A-YOR Di RECn
R A
R. &
D A
D 5
AVER AC- EL
ROM 2 AVERAC-E
1 ) >2
22 22
33 S3
44 44
53 53
COASTlOG- T1M.ES
riOM "t »ME , sec.
\9,B
\9. O
4-0
SO

C-EAR.
3
4-
4
5

RUN i
2.5
2.2
2.8
2.2

RUN 2 '
2.5
2-5
3.0
2.6

AVERAC-e.
2.5
2.4
2.9
2.4-
20 "">(*-"
                                              >,. ACCtLtR ATION) TIMES
OPERATOR O\R.EC~UOM Tl
*.
R.
D
D

A
B
A
6
AMERAGE TIME
ME, s® "^^
"Vv*
2-0
2>0
40
50
C-EAR
3
4-
4-
S
RON i
2.3
2.4
2.3
1.7
ROM!
2.S
2.3
2.2
I. ft
AW6. RUNri RUM 2. AM&.. ROM! RUN) i AM&.
2.4
2.4
2.2
I - B A-8
                                                                 PC-4

-------
                APPENDIX B

Shift Points Used for Motorcycle 7-Mode Tests
   and Motorcycle 7-Mode Emissions Data
 (1970 Federal Light-Duty Vehicle Procedure)

-------
W
i
                            B-».  OMt   CLYtLt   OF  THE   FEDERAL   1-HODE  EHlSSlOMS  TEST
                        PR.OCE.bUK.E-   SfvOVOVKJG.   S-tM FT   PQlKJlS   USfb   FOR.  TESTS
                        OF  Tt\t   SUZ.UKI    TZ5O-R,   K ^ R L t V - D iVvH D SOM  ? U V\ ,   A lO D
                                      T\2OR

-------
to
I
                F\GrOR.E- B-2.
                      OF
Of
    S^-M FT  PQIMTS
            MOTOR. CLY
                                                                                   EHlSSlOMS  TEST
                                                                                      TESTS

-------
                                             M3N 'OIVJdflB  NOIltfHOdaOO STOH1NOO OIHdVHD  ISlUVHJONIOMQJ3bR51
                                                                         On
                                                                                                                    -on
bo
                     -/- DECLUTCH AMD
               FI&OR.E B-3.  ONE CYCLE.  OF  TftE   FEDER.AU  7-MODE  EMISSIONS TEST
                     PROCEDURE.  ShO\Mlts)&  SHIFT   POlWlS   OSEL>   FOR  TES7S
                     OF TViE   HONDA   SL-100  MOD  ^A\AJASA \t\   \2.S F-fc  MOTORCYCLES

-------
                                                                NOIlVHOdbOO SIOkUNOO OIHdVdS  ISittgHJ ONIQt)O3fH5l
                                                                                  -On
to
I
     DECLUTCH  AND
                  FT
      -4.  ONt  CLV^Lt  Of
PROCE.DUR.E.   SHOVOMOG.   SfM FT   PQHOTS
OF T»\t   YM^fK HA,   D~\ i-L.      MOTOR. Q.Y
                                                                                            EMlSSIOMS  TtST
                                                                                               T ESI S.

-------
 HARLEY
MODE
                   RUN
                                                          6 - COLD CYCLE
                                                                                       1.0000
                                                                                                      647.
             CONCENTRATION  AS  MEASURED
              HC     CO    C02    HOIK)
DILUTION
 FACTOR
.ADJUSTED
HC     CO   NO
WEIGHTINO
 FACTOR
 WEIGHTED
HC     CO      NOIH.I
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 90-20
••CYCLE
1 IDLE
2 0-29
3 30
4 30-19
3 15
6 l^^SO
7 -.Ttt-20

••CYCLE
1 IDLE
2 0-25
3 30
4 30-13
5 15
6 15-30
7 30-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-13
5 15
6 15-30
7 30-20
AVERAGE
!••
1618.
1374*
329.
2610*
167**
1100.
4814.
2*»
3306.
174*.
406.
2798.
1516.
1064.
4298.


3.720
3.710
3.390
3.660
3*7*0
3.6*0
4.610
1* f rf}UO(\
kt CUWV
3.770
3.760
3.720
3.860
3.770
3.630
3.500
1 r ^MMBA

7.660
6*420
6.720
U?40
7.170
7.740
6.430

6.290
7.070
9.150
8.110
6.660
7.690
6*420


169.
481.
2*7.
2*7.
161.
383.
141.

69.
300.
93.
62.
69.
277.
100.


1.260
1*233
1*336
1*027
1.336
1.336
1.079

1.234
1*343
1.266
1.110
1*421
1.346
1.131


2291.
169*.
439.
2886.
2237.
1470.
9195.

4081.
2289*
514.
3106.
2154.
1*1*.
4664.


4.669
4.574
4*7*4
3*780
**999
5.132
3.896

4*654
5*052
4.711
4.265
5.338
5*164
3*961


236.
593.
330.
253.
241.
511.
152.

83.
403.
117.
91.
98.
373.
113.


0*042
0.244
0*118
0.062
0.050
0.459
0.029

0*042
0*2**
0.118
0.062
0.050
0.455
0*029

3*»
2632.
1567.
412.
2814.
1302.
842.
3.830 -
3.560
3.860
3.770
3.860
3.860
6.290
7.370
7.580
6*540
7.200
8.070
3351. 3.760 5.900
81.
118.
101.
90.
93.
115.
111.
1.312
1.334
1.499
1.26*
1*37*
1.329
1.2*8
3494.
2118.
999.
3999.
1790.
1119.
4*32.
5.026
4.751
9.6*5
4.768
5.334
5.130
4.693
106.
137.
146.
113.
127.
132.
138.
0.042
0.244
0.118
0.062
0.050
0*455
0.029

287*.
1358.
397.
2586.
1217.
603.
3.830
3.670
3.930
J.470
3.880
3*830
6*200
7*320
7.290
6.350
7.070
7.870
3236. 3*620 5.480
93.
163.
93.
65.
93.
148.
106.
1.292
1.329
1.497
1.332
1.404
1.361
1.34*
371*.
2069.
994.
3*49.
1709.
1093.
4390.
4.930
5.130
9.864
4.624
5.449
9*213
4.866
120.
216.
139.
119.
130.
201.
142.
0.042
0.24*
0.118
0.062
0.050
0.455
0.029
•»"••• — (CYCLE COMPOSITE )••»•—— —————•••—•—•• 	 ——•—-••—•- • —•——••——
SUM np CYCLES 1 "A. • •-•• •-!-•••-• •••••••_ •• .. tr^ *••.!• ..• — -ran ... . . >- j • • •LiBBB-a
96.244
413.406
51.660
178.974
111.676
668.994
150.682
1672.062
171.415
558.716
60.677
192.576
107.730
632.748
141.063
1884.932
145.069
516.828
70.741
220.669
89.506
509.204
128.556
1660.597
156.010
503.966
70.144
213.842
65.460
497.340
126.170
1652.935
1722.632
0.196
1.116
0*359
0.234
0.2*9
2.335
0.112
4.805
0.193
1.232
0.555
0.265
0.267
2.349
0.114
4.962
0.211
1.159
0.666
0.295
0.266
2.334
0.136
5.069
0.207
1.251
0.694
0.286
0.272
2.372
0.141
5.226
5.021
10.005
144.722
38.949
15.731
12.096
232.931
4.413
456.851
3.577
98.365
13.899
5.643
4.903
169.935
3.282
299.607
4.465
38.428
17.341
7.057
6.393
69.546
4.018
147.251
5.048
52.725
16.431
7.023
6.330
91.664
4.132
183.557
272.317
HARLEY
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 19
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-29
3 30
4 30-15
5 15
6 15-30
7 30-20
SUM — • 	
AVERAGE
HARLEY
CYCLE
NUMBER
1
2
3
«
6
7
t.m— —
RUN 1
CONCENTRATION AS MEASURED DILUTION
HC CO CO2 NO IK) FACTOR
6»»
2677* 3*630 5*950 69* ]
11*6. 3*650 6.670 242.
485. 3.930 7.350 61*
25*6. 3.630 5.110 69.
1*01. 3.880 7.140 69.
891. 3.910 7.250 130.
3726. 3.730 5.660 110.
7»»
3336. 3.830 9.940 93.
1685. 3*460 7.790 350.
872. 3.930 7.490 105.
3037. 3.810 6.0*0 93.
1573. 3.680 7.490 93.
939. 3.9*0 7.090 175*
3918. 3*610 5.5*0 91*
•— 	 ^CCYCLC COMPOSITE)— — — — — «

RUN 1
1.348
•47*
.473
.483
.366
.426
• 233
.239
.278
.394
.291
.302
.439
.241

B - COLD CYCLE
A D J U S
HC CO
3606.
1669.
71*.
3776.
1*17.
1270.
4594.
4408.
2154.
1216.
3923.
20*9.
1391.
4665. '
.163
.677
.791
• 661
.311
• 576
• 624
.748
•424
.461
• 921
• 059
.670
k*731

TED WEIGHTING
NO(K) FACTOR
93.
356.
119.
102.
94.
185.
139.
119.
447.
146.
120.
121.
251.
113.

0.042
0*244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0*062
0.050
0*455
0*029

B - COLD CYCLE
CONCENTRATION A5 DETERMINED WEIGHTING W E
HC CO NO(K) FACTOR HC
1672.062 4.805 458.651
1884.932 4.962 299.607
1660.597 5.069 147.251
1652.935 3.226 183.557
1689.718 9.974 204.427
1956.139 5.201 262.712
———-I TRIP gOMOOStTF !--•- — -i — -.
0.0873
0.0675
0.0675
0.0675
0.3230
0.3250
146.305
164.931
147.032
144*631
549.158
635.745
-• . . iTi7.g)«
I G H
CO
0.420
0.435
0.443
0.437
1.811
1.690
1.5*0
TED
NOCK)
40.149
26.215
12.664
16.061
66.439
65.381
K - 1.0000
W E I
HC
151.568
412.354
84.343
234.161
95.685
578.165
133.240
1689.718
185.165
525.717
143.505
243.231
102.474
614.947
141.097
1956.139
1822.929
W
G H
CO
0.216
1.385
0.683
0.352
0.265
2.537
0.134
5.574
0.199
1.079
0.646
0.305
0.252
2.980
0.137
5.201
5.387
847.
TED
NO(K)
3.906
87.076
14.086
6.346
4.722
84.336
3.933
204.427
4.842
109.199
17.279
7.446
6.058
114.606
3.277
262.712
233.570
                                                 B-6
DILUTION FACTOR • 14.5/IC02+O.S*CO+10.8»HC)

-------

MODE
••CYCLE !••
1 IDLE
2 0-29
3 30
4 30-19
9 15
6 19-30
7 90-20
SUM"—--—
••CYCLE 2«»
1 IDLE
2 0-25
3 30
4 30-13
3 19
6 13-30
7 50-20
SUM--"——
••CYCLE 3»»
1 IDLE
2 0-23
3 30
4 30-15
5 15
6 15-30

KUN Z




- COLD
CYCLE
CONCENTRATION AS MEASURED DILUTION ADJUSTED
HC CO C02 NOIK) FACTOR HC CO NOIK)
1993. 6.390 7.710
1120. 6.600 9.130
1090. 3.»90 7.950
3929. 9.620 7.660
1039. 7.660 6.900
868. 6.490 9.720
4442. 6.560 6.030
103.
190.
166.
149.
117.
206.
139.
1.114
1.063
1.200
1.015
1.078
1.044
1.027
2175.
1190.
1260.
3583.
1119.
906.
4365.
7.119
7.016
7.190
9.706
8.299
6.736
6.742
116.
201.
199.
151.
126.
219.
142.
WEIOHTING
FACTOR
0.042
0.244
0.118
0.062
0.090
0.459
0.029
"™ " «---——
2332.
1049.
99.
3296.
1339.
723.
3639.
— ICYC

2971.
960.
346.
2927.
1119.
695.
T.880
6.010
8.120
7.260
8.410
7.060
7.610
LE COMP

8.110
4.330
9.780
7.810
8.350
8.390
7,110
6.310
8.020
6.930
7,980
9.430
6.290
OS I TE ) —

• 6.740
10.890
7.760
6.470
7.850
6.910
7 90-20 3536. 7.900 6.060
5UM™~™'™™—r™™w"— (CYCLE COMPOS T TE I ~*~»
117.
144.
121.
127.
117.
231.
134.


117.
232.
137.
114.
121.
118.
131.
1.068
1.076
1.194
1.030
1.062
1.055
1.033


1.068
1.031
1.111
1.071
1.095
1.046
1.046
2492.
1111.
63.
3393.
1443.
762.
3762.


2746.
990.
384.
3139.
1226.
727.
3707.
8.420
6.636
9.698
7.478
8.931
7.450
7.867


8.664
4.468
10.871
8.366
9.149
8.780
6.283
125.
155.
144.
130.
124.
243.
138.


125.
239.
192.
127.
137.
171.
137.
0.042
0.244
0.118
0*062
0.030
0.455
0.029


0.042
0.244
0.118
0.062
0.050
0.455
0.029
••CYCLE 4»»
1 IDLE
2 0-25
3 30
4 30-13
5 19
6 19-30
7 30-20
SUM— — "••
AVFRAGE SUM
2768.
1926.
331.
2241.
991.
833.
3971.
8.040
8.160
9.540
8.290
8. 580
8.890
7.680
6.800
8.450
7.980
7.120
e.oio
7.650
5.470
129.
133.
141.
143.
129.
124.
161.
1.050
1.022
1.104
1.059
1.088
1.119
1.066
2906.
1560.
387.
2374.
1034.
929.
4234.
8.442
8.345
10.536
8.783
9.335
9.919
8.189
111.
136.
I -SI.
191.
140.
138.
171.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

                                                                                  K -  1.0000
                                                                                                    847.
                                                                                       WEIGHTED
                                                                                     HC     CO      NOU)
91.390
290.518
146.733
222.148
55.799
412.508
132.403
1353.502
104.667
279.960
7.75Z
207.945
72.166
347.139
109.104
1124.756
115.368
241.711
45.386
194.395
61.304
330.932
107.520
1096.618
122.069
380.798
45.742
147.213
51.734
422.921
122.791
1293.272
1217.037
0.299
1.711
0.848
0.393
0.412
3.065
0.199
6.887
0.393
2.107
1.144
0.463
0.446
3.389
0.228
8.133
0.363
1.090
1.282
0.518
0.457
3.994
0.240
7.948
0.394
2,036
1.243
0.544
0.466
4.513
0.237
9.396
8.091
4.913
49.284
23.514
9.379
6.307
97.899
4.143
195.441
9.251
37.884
17.054
8.110
6.213
110.911
4.017
189.444
S.25C
58.413
17.970
7.571
6.626
56.187
3.983
156.005
5.688
33.138
18.375
9.393
7.017
62.955
4.978
141.598
170.622
HARLEY
                   RUN  2
                                                           - COLO CYCLE
                                                                                     1.0000
                                                                                                    647.
mmm •• '•
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
9 19
6 19-30
7 50-20
SUM— —
••CYCLE
CONCENTRATION AS MEASURED
HC CO C02 HOIK!
6»»
3462. 7.850 6.320 69.
1217. 8.100 8.790 138.
293. 10.440 7.490 69.
2476. 8.430 6.700 74.
1231. 8.870 7.550 91.
722. 6.730 7.960 104.
2687. 8.210 6.670 87.
——(CYCLE COMPOSITE)-" • • ' »• —
7*»
1 IDLE 3556. 7.790 6.470 81.
2 0-29 1995. 6.470 8.930 448.
3 30 94. 8.920 8.610 129.
4 30-15 3079. 7.800 6. 520 88.
3 19 1231. 8.870 7.640 93.
6 15-30 792. 8.970 8.390 119.
7 50-20 3925. 7.940 6.230 105.
SUM- ..... — — (CYCLE COMPOSITE)— • 	 	 	
AVERAGE
HARLEY
CYCLE
NUMBER
1
2
3
4
6
7
SUM—-

RUN 2
CONCENTRATION AS DETERMINED
HC CO NOU)
1353.502 6.887 195.441
1124.756 8.133 189.444
1096.618 7.948 156.005
1293.272 9.396 141.598
1170.641 9.429 110.899
1421.092 8.641 209.797
— — (THIP COMPOSITE*™- —---—-
DILUTION
FACTOR

1.036
1.024
1.112
1.067
1.089
1.106
1.060

1.022
1.044
1.121
1.054
1.081
1.056
1.004
*"

A D J U S
HC CO

3589. 8.139
1246. 8.297
328. 11.419
2641. 8.995
1340. 9.659
798. 9.659
2848. 8.704

3634. 7.921
2042. 6.760
60. 9.553
3248. 8.228
1331. 9.594
836. 9.472
3941. 7.973


TED
NO(K)

71.
141.
76.
78.
88.
115.
92.

82.
468.
144.
92.
100.
129.
109.


WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.090
0.499
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029


W E
HC

190.769
304.199
38.741
163.802
67.030
363.485
82.612

152.663
498.457
7.146
201.379
66.580
380.959
114.305
1421.092
1295.866
I G H T
CO

0.341
2.024
1.371
0.957
0.482
4.395
0.252
9.425

0.332
1.649
1.127
0.510
0.479
4.310
0.231
8.641
9.033
E 0
NO(K)

3.004
34.494
9.061
4.695
4.410
52.358
2.674
110.899

3.477
114,224
17.072
5.755
5.030
57.180
3.057
205.797
158.348
- COLD CYCLE
WEIGHT INS
FACTOR
0.0875
0.0875
0.0675
0.0875
0.3250
0.3290

W E
HC
116.431
98.416
99.954
113.161
380.458
461.894
— 1268.276
I G H
CO
0.602
0.711
0.695
0.822
3.063
2.808
8.703
TED
NOIKl
17.101
16.576
13.690
12.389
36.042
66.884
162.644






                                                 B-7
DILUTION FACTOR «  14.5/(C02+0.3»CO*10.8»HCI
                                                                                                        DM

-------
HARLEY
                  RUN
                                                        - COLO CYCLE
CONCENTRATION AS MEASURED DILUTION ' A D J U S
MODE
••CYCLE !••
1 IDLE
2 0-25
3 30
4 30-13
3 19
6 19-30
7 51-20

••CYCLE 2«»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— "—••••••
••CYCLE 3»«
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20

••CYCLE 4*»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20

aun— — — — — — •
AVFR4GF SUM
HC

3463.
1314.
138.
3697.
1317.
820.
4769.
-— *• t fV
•—• («iT
3182.
1848.
231.
2688.
1345.
607.
CO

6*710
6.650
6.860
6.680
8.080
6.680
7.170
CLP fAMC
\.UC tUWr*
8.210
9.400
9.090
8.350
8.870
9.140
C02

7.200
9.690
10.150
6.890
8.670
10.610
S.970


6.470
7.600
8.820
7.480
7.880
8.520
3333. 7.530 7.000
NOIK)

93.
216.
141.
102.
117.
295.
116.


105.
217.
117.
97.
113.
271.
117.
FACTOR

1*014
1.004
1.055
1.019
1.026
0.977
0.966


1.034
1.014
1.065
0.996
1.053
1.038
1.007
HC

3512.
1319.
145.
3769.
1351.
801.
4702.


3292.
1874.
246.
2677.
1416.
898.
3379.
CO

6.806
6.680
7.261
6.810
8.290
6.528
7.069


6.496
9.534
9.681
8.316
9.341
9.492
7.589
TED
NOIK)

94.
218.
148.
103.
120*
288.
114.


108.
220.
124.
96.
119.
281.
117.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.090
0.455
0.029


0.042
0.244
0.118
0.062
0.050
0.455
0.029
W E
HC

147.531
322.079
17.185
233.681
67*563
364.660
136.368
1269.069

138.302
457.351
29.030
165.991
70.827
381.345
98.005
^ •*!./«•& A

2723.
1731.
28.
2839.
1231.
833.
3133.

8.410
6.010
9.540
8.310
8.590
8.730
8.240
ri c rnuo
• 6.560
8.570
8.390
6.600
8.180
8.680
6.250
net TC i -
105.
208.
117.
108.
113*
108.
125.

1.097
.003
.099
.049
.050
.039
.054

2880.
1737.
30.
2978.
1293.
866.
3303.

8.997
6.040
10.487
8.718
9.022
9.077
8.667

111.
208.
128*
113.
118.
112.
131.

0.042
0.244
0.118
0.062
0.050
0.455
0*029


2935.
1674.
770.
2078.
1601.
914.
2649.
•— | ^y
— 1 I. T
OF ft
8.550
8.610
10.400
8.140
9.200
8.540
8.250
rLF f nuo
• kC WU^r
rLFS 1-4
6.560
8.970
7.780
6.680
7.290
8.880
6.180

—
117.
184.
129.
111.
117.
212.
117.


1.035
0.987
1.049
1.115
1.064
1.025
1.101


3038.
1653*
808.
2318.
1704.
937.
2917.


6.852
6.502
10.916
9.083
9.795
8.759
9.085


121.
181.
135.
123.
124.
217.
128.


0.042
0.244
0.118
0.062
0.050
0.455
0.029

~~ -—
120.992
423.987
3.632
184.663
64.651
394.109
95.767
1287.824

127.628
403.367
95.388
143.765
85.227
426.544
84.605
1366.528
13J1. a(.9
I G H 1
CO

0.285
1.630
0.836
0.422
0.414
2.970
0.205
6.785

0.356
2.326
1.142
0.515
0.467
4.319
0.220
9. 347

0.373
1.961
1.237
0.540
0.451
4.130
0.291
8.947

0.371
2.074
1.288
0.563
0.489
3.985
0.263
9.036
B.524
                                                                                 1.0000   W •   847.
                                                                                               NOIK)
                                                                                                3.962
                                                                                               53.434
                                                                                               17.559
                                                                                                6.447
                                                                                                6.002
                                                                                              131.168
                                                                                                3.316
                                                                                              221.911

                                                                                                4.563
                                                                                               53.704
                                                                                               14.703
                                                                                                9.990
                                                                                                5.950
                                                                                              128.060
                                                                                                3.419
                                                                                              216.392

                                                                                                4.669
                                                                                               50.947
                                                                                               15.176
                                                                                                7.024
                                                                                                5.934
                                                                                               51.097
                                                                                                3.821
                                                                                              136.667

                                                                                                5.087
                                                                                               44.336
                                                                                               15.980
                                                                                                7.679
                                                                                                6.228
                                                                                               98.935
                                                                                                3.736
                                                                                              181.985
                                                                                              189.739
                                                                                                    PETRO-CMEM
                                                                                                   COMPUTING. INC
HARLEY
MODE
••CYCLE
1 IDLE
2 0-Z5
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30- IS
5 15
6 19-30
7 90-20
AVERAGE
HARLEY
CYCLE
NUMBER
1
2
3
4
6
7
SUM—-
RUN 3

CONCENTRATION AS MEASURED DILUTION
HC CO C02 NOIK) FACTOR
3682. 7.690 6.030 57.
1743. 6.900 9.460 199*
716. 10.660 7.390 61.
2593. 8.290 5.940 63.
1515. 9.200 7.200 105.
642. 7.970 9.100 144.
3512. 8.370 5.930 98.
3587. 8*140 6.260 93*
1488. 8*900 7.670 104*
867. 10.400 7.490 109.
2992. 8.110 6.240 98.
288. 9.090 7.680 117.
1190. 9.430 8.270 108.
3139. 8.500 6.090 125.

RUN 3
CONCENTRATION AS DETERMINED
HC CO NOIK)
1289.069 -6.785 221.911
1340.856 9.347 216.392
1287.824 8.947 138.667
1366.528 9.036 181.985
1434.423 8.430 140.313
1496.784 9.576 111.564
	 -(TRIP COMPOS I TEI— — 	
1.040
0.980
1.074
1.125
1.079
1.036
1.042
1.020
1.071
1.064
1.071
1.196
1.019
1.056



A
HC
3832.
1708.
769.
2917.
1634.
872.
3661.
3661.
1595.
922.
3207.
333.
1172.
3315.

WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250
- COLD
CYCLE
K > 1.0000
D J U S T E D WEIGHTING
CO NOIK) FACTOR
8.170
6.763
11.455
9.328
9.928
8.257
6.726
6.309
9.111
11.066
6.693
10.914
9.610
8.976

- COLD
WEI
HC
112.793
117.324
112.684
119.571
466.187
486.454
•~ ~ 1415.016
59.
191.
87.
70.
119.
149.
102.
94.
111.
111.
105.
139.
110.
132.

CYCLE
G H
CO
0.993
0.817
0.782
0.790
2.739
3.112
6.837
0.042
0*244
0.118
0.062
0.050
0.455
0.029
0.042
0*244
0.118
0.062
0.050
0.455
0.029

TED
NOIK)
19.417
18.934
12.133
15.923
45.601
36.258
148.269
W E
HC
160.953
416.884
90.791
180.910
81.747
396.952
106.183
1434.423
153.793
389.186
108.865
198.856
16.655
533.290
96.135
1496.784
1469.603
I
w «
G H T
CO
0.343
1.650
1.351
0.578
0.496
3.797
0.253
8.430
0.349
2.223
1.305
0.539
0.525
4.372
0.260
9.576
9.003
847.
E D
NOIK)
2.491
46.639
10.271
4.395
5.665
67.887
2.962
140.313
3.967
27.201
13.164
6.513
6.766
50.062
3.82,8
111.564
125.938
                                            B-8
DILUTION FACTOR -  14.3/
-------
 HASLEY-OAVIDSON FLH RON  4
                                                            S - COLO CYCLE
MODE
»»CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-?0
SUM 	
••CYCLE
1 IDLE
2 0-2*
3 30
4 30-15
5 15
6 15-30
7 50-'0
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NOIK) FACTOR
2516. 7.960 6.970
1832. 5.810 8.660
367. 5.580 9.580
2749. 5.640 8.050
1981. 7.740 8.430
1336. 7.190 9.260
4550. 6.640 3.910
77.
84.
201.
273.
90.
106.
262.
1.060
1.070
1.133
1.047
1.004
1.014
1.023
ADJUSTED
HC CO NOIK)
2669.
1961.
438.
2880.
1989.
1354.
4664.
8.444
6.220
6.327
9.909
7.772
7.291
6.807
81.
89.
227.
286.
90.
107.
268.
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029
?»• """" "
1922. 9.060
1612. 8.460
281. 9.590
1479. 7.910
2455. 9.320
149. a.flO
7.460
8.540
8.630
7.390
8.040
8.77Q
103.
255.
129.
114.
112.
183.
3617. 7.770 6.030 124.
1.030
0.999
1,056
1.124
0.944
1.099
1.047
1981.
1610.
296.
1663.
2318.
163.
3789.
9.339
8. 453
10.128
8.783
8.803
9.432
8.139
106,
254.
136.
128.
109.
200.
129.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
3»*
2365. 9.500
1966. 9.650
909. 11.200
1176. 10.230
1588. 9.920
1119. 8.720
6.640
7.540
7.650
7.070
7.720
8.620
3014. 8.080 6.650
103.
1S6.
99.
99.
103.
343.
133.
1.039
1.000
1.018
1.077
1.007
1.021
1.039
2459.
1967.
926.
1267.
1599.
1143.
3133.
9.878
9.697
11.411
11.024
9.992
8.911
8.401
107*
136.
100.
106.
103.
390.
138.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

2231. 9.280
1877. 9.250
207. 10.410
1630. 8.880
1878. 10.030
230. 8.270
6.820
7.670
8. 140
6.910
7.750
B.460
3272. 7.630 6.230
103.
222.
129.
114.
117.
287.
141.
1.045
1.012
1.068
1.105
0.980
1.128
1.060
2332.
1900.
221.
1802.
1840.
259.
3468.
9.701
9.364
11.124
9.821
9.831
9.336
8.300
107.
224.
137.
126.
114.
324.
149.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC
112.110
478.575
51.779
178.579
99.465
616.473
135.271
1672.294
83.216
393.030
39.021
103.132
115.942
74.269
109.884
914.497
103.289
480.092
109.283
78.574
79.978
520.322
90.863
1462.424
97.961
463.674
26.102
111.771
92.038
118.148
100.584

I G H T
CO
0.354
1.517
0.746
0.366
0.388
3.317
0.197
6.889
0.392
2.062
1.199
0.544
0.440
4.291
0.236
9.162
0.414
2.356
1.346
0.683
0.499
4.054
0.243
9.599
0.407
2. 285
1.312
0.608
0.491
4.248
0.240
A.Rl 1
E D
NOIK)
3.431
21.943
26.893
17.734
4.518
48.911
7.789
131.222
4.459
62.173
16.077
7.949
3.289
91.217
3.767
190.933
4.498
38.094
11.902
6.614
5.187
159.491
4.010
229.799
4.522
54.840
16.266
7.817
5.734
147.428
4.334
l«fl.33i
                                                                                                              PETROCHEM
                                                                                                             COMPUTING. INC
MAULEY-DAVIDSON  FLH RUN  4
                                                            S - COLD CYCLE
                                                                                    K «  1.0000
                                                                                                       847,

MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLF
1 IDLE
? 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
CONCENTRATION AS MEASURED
HC CO C02 NOIKI
6«»
1995. 9.390 6.210 103.
1863. 9.240 7.540 185.
392. 10.560 7.650 129.
1583. 8.680 6.710 126.
2322. 10.220 7.560 117.
97. 9.140 8.390 187.
3761. 7.490 5.820 169.
2865. 9.5-0 6.410 129.
2413. 9.960 7.110 195.
1105. 10.520 7.850 117.
1566. 8.860 6.810 137.
2683. 9.910 7.870 129.
87. 8.590 8.660 383.
3797. 7.740 5.650 143.
DILUTION
FACTOR

1.110
1.023
1.08S
1.136
0.959
1.109
1.064
1.017
0.986
1.013
1.121
0.922
1.111
1.064
AVERAGE SUM OF CYCLES 6-7 	 	 	
HARLEY-DAV1DSON FLH RUN 4
CYCLE
NUMRER
1
2
3
4
6
7
SUM 	
CONCENTRATION AS DETERMINED
HC CO NOIK)
1672.254 6.889 131.222
914.497 9.162 190.933
1462.424 9.599 229.799
1010.282 9.594 240.944
995.840 10.044 181.630
1229.301 9.717 280.044

WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3230
0.3250

A D J U S
HC CO

2215. 10.425
1906. 9.453
425. 11.466
1798. 9.863
2218. 9.763
107. 10.144
4001. 7.969
2914. 9.663
2380. 9.827
1120. 10.664
1755. 9.934
2474. 9.139
96. 9.545
4042. 8.239
TED
NOIK)

114.
189.
140.
143.
111.
207.
179.
131.
192.
lie.
its.
118.
425.
194.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
0.030
0.455
0.029
S - COLD CYCLE
M E
HC
146.322
80.018
127.962
88.399
323.648
399.522

I G H
CO
0.602
0.801
0.839
0.839
3.264
3.198
9.506
TED
NOIK)
11.481
16.706
20.107
21.082
99.029
91.014
219.423
W E
HC

93.031
465.091
50.227
111.532
110.915
48.983
116.057
122.404
980.917
132.182
106.870
123.718
43.986
117.220
1229.301
1112.570


1 G H T
CO

0.437
2.306
1.393
0.611
0.488
4.615
0.231
0.405
2.397
1.258
0.615
0.456
4.343
0.238
9.717
9.880


E D
NO
-------
HARLEY DAVIDSON FLH RUN 5
                                                           5 - COLD CYCLE
                                                                                        1.0000
                                                                                                       647.
MODE
••CYCLE !••
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20

••CYCLE 2»»
1 IDLE
2 0-25
3 30
* 39-1S
5 15
6 15-33
7 50-20
••CYCLC 3»«
1 IDLE
2 0-25
3 30
4 30-15
5 1?
6 15-30
7 50-20
»»CYCL<: <.»*
1 IDLE
? 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVFRAGF ^UK-
CONCENTRATION AS MEASURED DILUTION ADJUST
HC CO C02 NOdtl FACTOR HC CO

1791. 8.490
1323. 5.970
465. 7.020
2034. 5.280
2114. 8.110
224. 6.650
3912. 5.280


7.410
9.520
9.370
7.540
8.340
9.440
6.180


77.
284.
143.
149.
116.
309.
128.


1.067
1.040
1.083
1.171
0.967
1.114
1.111


1911.
1376.
903.
2382.
2088.
249.
4348.


9.058
6.212
7.606
6.185
8.011
7.413
9.868

E 0
NO (10

82.
295.
194.
174.
114.
344.
142.

WEIGHTING
FACTOR

0.042
0*244
0.118
0.062
0*050
0.495
0.029


2546. 7.910
2250. 6.440
266. 8.950
1435. 7.A90
2276. 8.530
1356. 7.010
7.000
9.060
8.750
7.860
8.480
9.420
3167. 7.000 6>580
90.
274.
117.
105.
117.
283.
133.
1.098
0.969
1.073
1.102
0.991
1.007
1.074
2693.
2217.
285.
1981.
2170.
1366.
3401.
8.369
6.348
9.604
8.255
8.135
7*063
7.918
95.
270.
129.
115.
111.
285.
142.
0.042
0.244
0.118
0.062
0.090
0.455
0.029

2172. 8.950
1809. 8.440
199. 9.500
1302. 7.900
1878. 8.840
1521. 8.020
7.090
8.030
8.480
7.140
8.190
6.620
3093. 7.460 6.460
103.
200.
130.
109.
90.
184.
150.
1.042
1.020
1.079
1.160
0.990
1.019
1.071
2264.
1846.
203.
1910.
1860.
1945.
3314.
9.329
8.616
10.253
9.166
8.756
8.147
7.994
107.
20*.
140.
126.
89.
186.
160.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

2957. 8.630
2293. 8.720
281. 9.130
1552. 7.960
2381. 8.630
359. 8.150
.6.730
7.610
8.070
7.230
8.480
8.560
2102. 7.270 6.560
103.
231.
157.
125.
130.
354.
160.
1.018
1.003
1.120
1.129
0.943
1.113
1.163
3011.
2301.
314.
1746.
2246.
399.
2445.
8.788
8.752
10.231
S.956
8.143
9.074
8.456
104.
231.
175.
140.
122.
394.
106.
0.042
0.244
o.ne
0.062
0.090
0.455
0.029

W E
HC

80.263
339.928
99.493
147.742
104.417
113.619
126.102


113.137
941.162
33.682
98.068
108.937
621.718
98.643

95.088
450.603
24.071
93.668
93.013
703.077
96.124

126.474
561.566
37.159
108.274
112.337
181.874
70.908
1414.174
I 6 H T
CO

0.380
1.515
0.897
0.383
0.400
3.373
0.170
7.121

0.391
1.548
1.133
0.511
0.406
3.214
0.218

0.391
2.102
1.209
0.568
0.437
3.707
0.231

0.369
2.135
1.207
0.555
0.407
4. 128
0.245
a. 050
E D
NOtK)

3.450
72.111
18.283
10.822
5.729
156.734
4.126
271.258

3.999
69.901
14.819
7.175
5.579
129.793
4.142

4.509
49.817
16*557
7.841
4.457
85.093
4.661
172.898

4.409
56.572
20.761
8.720
6.133
179.341
5.397
299.214
HARLEY DAVIDSON FLH RUN 5
                                                           S - COLO CYCLE
                                                                                    K > 1.0000
                                                                                                       847.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
••CYCLC
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-70
AVERAGE
HARLEY
CYCLE
NUMBER
1
2
3
4
6
7
CONCENTRATION AS MEASURED
HC CO C02 NO IK)
6»*
2410. 8.740 6.210 130.
2354. 8.870 6.760 246*
606. 9.780 8.040 157.
1264. 8.500 6.740 146.
2010. 8.630 8.040 143.
511. 8.440 7.950 358.
2009. 7.150 6.360 195.
T»»
3173. 7.810 5.960 143.
213. 8.740 6.910 230.
225. 10.030 7.940 170.
1495. 8.170 6.630 161.
2804. 9.280 7.180 157.
214. 8.840 8.120 272.
2407. 6.560 5.830 211.

DAVIDSON FLH RUN 5
CONCENTRATION AS DETERMINED
HC CO NOIK)
967.526 7.121 271.258
1614.949 7.384 231.367
1555.646 8.649 172.898
1198.595 9.048 281.333
1321.011 9.594 299.473
682.927 10.199 266.789
DILUTION
FACTOR
1.099
1.055
1.067
1.173
0.998
1.139
1.197
1.090
1.299
1.098
1.176
0.976
1.135
1.238


A
HC
2650.
2484.
646.
1*63.
2006.
382.
2406.
3*61.
268.
2*7.
1758.
2738.
242.
2980.


WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250
0 J U S T E D WEIGHTING
CO NO IK) FACTOR
9.613
9.362
10*439
9.979
8.614
9.619
8.564
8.919
11.010
11.019
9.608
9.062
10.036
6.123

S - COLD
W E I
HC
84.658
141.308
136.119
104.877
429.328
221.951
— — ma. 91,3
142.
259.
167.
173.
142.
408.
233.
199.
289.
186.
189.
US.
308.
261.
CYCLE
Q H
CO
0.623
0*646
0.756
0.791
3.118
3.313
4.9J.4
0.042
0.244
0.118
0.062
0.050
0.435
0.029
0.042
0.244
0.118
0.062
0.090
0.455
0.029


TED
NOIK)
23.735
20*24*
19.128
24.616
97.326
86.705
9*7.7*0
W E
HC
111.333
606.264
76.327
91.972
100.321
265.001
69.789
1321.011
149.379
65.472
29.169
109.006
136.911
110.591
86.437
682.927
1001.969
I G H T
CO
0.403
2.284
1.231
0.6X8
0.430
4.376
0.248
9.594
0.357
2.686
1.300
O.S95
0.453
4.566
0.235
10.195
9.895
E D
NOtKI
6.005
63.356
19.774
10.768
7.137
185.656
6.774
299.473
6.551
70.698
22.038
11.739
7.665
140.513
7.577!
266.785,
283.129'
                                                    B-10
OILUTION FACTOR • 14.5/
-------
        HONOA CL350K3      RUN-1                     B - COLO CYCLE          1C • 1.0000  W -
                                                                                      505.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM——-
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
1"
334.
430.
332.
790.
387.
443.
2277.

555.
561.
463.
1936.
272.
387.

2.810
4.690
2.390
3.150
4.170
5.240
1.590
LE COMPO
1.620
5.360
6.490
2.050
2.600
5.S60

4.800
5.220
7.580
3.990
4.040
4.890
1.520

4.210
4.390
4.090
1.480
4.180
4.470
1887. 1.540 1.810

46.
102.
214.
58.
46.
117.
57.

35.
84.
46.
30.
50.
85.
66.
DILUTION
FACTOR

2.201
1.805
1.587
2.259
2.216
1.815
3.037

2.580
1.889
1.850
3.154
2*511
1.890
3.139
ADJUSTED
HC CO NOIK)

779* 6.185
776* 8<469
527. 3.794
1784. 7.116
857. 9.241
804. 9.511
6915. 4.829

1432. 4.180
1059. 10.125
856. 12.010
6108. 6.467
683. 6.529
731. 10*513
5925. 4.835

101.
184.
339.
131.
101.
212.
173.

90.
158.
85.
94.
125.
160.
207.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029
3** '
379.
493.
571.
1921.
300.
470.
2.530
5.630
7.130
1.870
3.220
6.170
3.700
4.250
3.620
1.370
4.280
4.040
1805. 1.470 1.710
35.
104.
42.
37.
57.
76.
66.
2.698
1.908
1.B58
3.310
2*333
1.899
3.299
1022. 6.925
940. 10.745
1061. 13.251
6359. 6.191
700. 7.513
892. 11.721
5955. 4.850
94.
198.
78.
122.
133.
144.
217.
0.042
0.244
0.118
0.06Z
0.050
0.455
0.029

405.
469.
704.
1777.
235.
756.
3.020
5.440
7.040
2.480
2.590
5.780
3.060
4.060
3.400
1.490
4.480
4.100
1795. 1.480 1.840
35.
82.
46.
35.
57.
73.
53.
2.895
1.989
1.887
3*118
2.405
1.857
3.201
1172. 8.745
933. 10.825
1329. 13.291
5542* 7.734
565. 6.229
1404. 10.735
5760. 4.749
101.
163.
86.
109.
137.
135.
170.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

32.727
189.471
62.193
110.655
42.881
365.865
200.554
- 1004.349
60.147
258.578
101. ioe
378.700
34.154
332.974
171.825

42.947
229.581
125.227
394.316
35.001
406.260
172.720

49.256
227.724
156.835
343.615
28.260
638.919
167.042
• 1110.897
I G H T
CO

0.259
2*066
0.447
0.441
0.462
4.327
0.140
8.145
0.175
2.470
1.417
0.401
0.326
4.783
0.140

0.286
2.621
1.563
0.383
0.375
5.333
0.140

0.367
2.641
1.568
0.479
0.311
4.884
0.137
0.71O
E D
NOIK)

4.252
44.944
40.083
8.124
5.097
96.628
5.020
204.155
3.793
38.717
10.045
5.868
6.278
73.133
6.009
143.846
3.966
48.431
9.211
7.594
6.650
65.693
6.315
147.862
4.256
39.815
10.247
6.767
6.854
61.694
4.932
167.608
                                                                                          IW
        HONOA CL350K3
                         RUN-1
                                                  B - COLD CYCLE
                                                                       K = 1.0000
                                                                                       505.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
AVERAGE

CYCLE
NUMBER
1
2
3
4
6
7
SUM— —
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NOIK) FACTOR
6**
57. 3.020 3.030 34.
838. 5.010 4.200 194.
704* 7*130 3.280 46.
1701. 3.340 1*600 34.
757. 3.930 5.490 46.
437. 5.770 3.940 77.
1701* 1*370 1*640 85.
....... ( CYCLE COMPOS I TE 1 — — —
457. 3.000 3.230 34.
509. 5*650 4.030 94.
680. 6*980 3*340 46.
1679. 2.130 1*440 34.
231. 2.090 4.830 69.
365. 5*840 4.050 87.
6666* 1*470 1*700 71.
-_.-—( CYCLE COMPOSITE!———
SUM OF CYCLES 6-7 	 •
HONOA CL350K3 RUN-1
CONCENTRATION AS DETERMINED
HC CO NOIK)
1004.349 B.145 204.155
1337.490 9.714 143.846
1406.054 10.705 147.862
1611.653 10.390 134.569
1488.256 10.620 193.264
1445.121 10.615 195.569
	 (TRIP COMPOSITE)——-—

3.151
1.905
1.906
2.839
1*752
1.987
3.483
A
HC

179.
1596.
1342.
4829.
1326.
868.
5926.
2.775 1266.
1.958 996.
1.916 1303.
3.357 5637.
2.367 546.
1.968 718.
1.505 10032.




0 J U S
CO

9.S16
9.545
13.593
9.482
6.888
11.465
4.772
8.327
11.063
13.379
7.152
4.948
11*498
2.212


TED WEIGHTING
NOIK) FACTOR

107.
369.
87.
96.
80.
153.
296.
94.
184.
88.
114.
163.
171.
106.



0*042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
0.050
0.455
0.029


W E
HC

7.543
389.596
158.381
299.427
66.342
395.110
171.854
1488.256
S3. 280
243.201
153.809
349.538
27.345
326.999
290.945
1445.121
1466.699
I G H T
CO


0.399
2.
1.
0.
0.
5.
0.
10.
329
604
587
344
216
138
A7ft
0.349
2.699
1.578
0.443
0.247
5.231
0.064
10.615
10.617
E 0
NOIK)

4
90
10
5
4
69
8
193

.499
.192
.348
.985
.031
.619
.587
.2&4
3.963
44.913
10.404
7.078
6.168
77.942
3.098
155.569
174.417
B - COLD CYCLE
WEIGHTING
FACTOR
O.OB75
0.0875
0.0875
0.0875
0.3250
0.3250

W E
HC
87.880
117.030
123.029
141.019
483.683
469.664
	 1422.308
I G H
CO
0.712
0.850
0.936
0.909
3.451
3.449
10.310
TED
HOIK)
17*863
12.586
12.937
11.774
62.811
50.560
168.534










                                          B-ll
DILUTION FACTOR • 14.9/1C02+0.5«CO+10.8«HCI

-------
        HONDA CL350K3
                          RUN-2
                                                     - COLD CYCLE
                                                                             1.0000
                                                                                          505.
MODE
••CYCLE !••
1 IDLE
2 0-25
3 30
4 30-15
3 15
6 15-30
7 30-20
••CYCLE 2»»
1 IDLE
2 0-25
3 30
4 30-13
5 15
6 15-30
7 30-20
••CYCLE 3»»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 4»»
1 IDLE
2 0-25
3 30
4 30-19
5 15
6 15-30
7 50-20
IVFR.r.F SUM
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NO (1C) FACTOR

307. 2.180
522. 6.550
384. 6.680
3068. 4.030
509. 7.890
541. 8.350

9*630
8.500
8.390
5.130
7.200
7.640
4058. 3.610 4.800

57.
320.
125.
65.
77.
178.
78.

1.312
1.175
1.193
1.386
1.241
1.169
1.J19
A D J U S
HC CO

402.
613.
438.
4253.
632.
632.
5355.

2.860
7.697
7.975
5.567
9*749
9.764
4.763
TED
NO(K>

74.
376.
149.
90.
95.
208.
102.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

1063. 4.120
1023. 8.690
560. 9.740
2807. 4.770
410. 4.400
810. 8.810
8.180
6*940
6.470
4.360
8.600
7.040
3447. 2.970 5.300
57.
118.
69.
55.
105.
123.
101.
1.273
1.170
1.213
1.483
1.289
1.176
1.379
1353.
1199.
679.
4163.
528.
953.
4756.
5.245
10.168
11.823
7.074
3.674
10.369
4.098
72.
13 1.
83.
81.
135.
144.
139.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

1021. 3.370
969. 8.240
827. 10.800
2920. 5.130
404. 5.170
535. 8.960
8.600
7.140
5.770
4.430
8.390
6.970
2977. 2.530 5.660
69.
144.
53.
49.
109.
132.
149.
1.273
1.178
.202
.428
.270
.203
.429
1300.
1141.
994.
4172.
513.
644.
4256.
4.291
9.708
12*981
7.329
6.569
10.801
3.617
87.
169.
63.
70.
138.
159.
213.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

937. 3.430
796. 7.750
1035. 10.930
3692. 5*480
383. 4.930
570. 8.770
8.600
6.710
5.490
4.410
8.470
7.050
2916. 3.650 5.840
77.
131.
57.
55.
105.
191.
176.
.280
.266
.201
.301
1.277
1.203
1.340
1199.
1008.
1243.
4806.
491.
463.
3909.
4.390
9.818
13.127
7.134
6.297
10.552
4.893
98.
m.
•68.
71.
134.
181.
235.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

16.917
149.677
34.099
263.723
31.608
287.859
155.300

36.846
292.644
80.215
258.116
26.439
433.771
137.942

54.601
278.577
117.299
258.664
29.667
293.458
123.452

50.378
246.074
146.683
298.015
24.590
312.065
113.385

I G H T
CO

0.120
1.878
0.941
0.346
0*487
4.442
0.138

0.2ZO
2.481
1.395
0.438
0.283
4.717
0.118

0.180
2.368
1.531
0.454
0.328
4.914
0.104

0.184
2.395
1.549
0.442
0.314
4.801
0.141
o. A^n
E D
NO(K)

3.141
91.756
17.610
5.587
4.781
94.711
2.985

3.046
33.689
9.883
5.057
6.771
65.866
4.041

3.690
41.398
7.317
4.340
6.925
72.404
6.178

4.139
46.660
8.078
4.439
6.706
82.669
6.843
1 A7.71A
        HONDA CL350K3
                         RUN-2
                                                     - COLD CYCLE
                                                                             1.0000
                                                                                          505.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 13
6 15-30
7 50-20
SUM 	
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM.....
AVERAGE
CYCLE
NUMBER
1
2
9
4
6
7
mii»» •
CONCENTRATION AS MEASURED
HC CO C02 NO IK)
765. 3.280 8.820 46.
571. 8.050 7.400 196.
839* 11.330 5.310 46*
2912* 4*350 4*630 46*
316* 4*550 8*710 109*
768* 9.300 6.650 116.
2860. 2.360 5.790 328.
965. 3.310 11.540 69.
979. 7.470 7.270 133.
979. 11.070 5.400 49.
2816. 5*110 4.490 33*
313. 4.140 8.820 103.
755. 8*790 6.840 130.
2996. 2.870 5.640 146.

HONDA CL350K3 RUN-2
CONCENTRATION AS DETERMINED
HC CO NOCK)
939.186 8.334 220*573
1285.975 9.655 128.361
1151.721 9.883 142.455
1191.193 9.829 159.557
1147.777 10.030 134*187
1275.540 9.550 137.703
	 fTBtn «-/>un*r«vri 	 	 _ 	
DILUTION
FACTOR
1.284
1.204
1.219
1.442
1.280
1.195
1.441
.018
.202
.209
.437
.291
.209
.406

A
HC
982.
687.
1023.
4201.
404.
918.
4122.
982.
1176.
1183.
4048.
404.
909.
4213.

D j u s T E D WEIGHTING
CO NO IK) FACTOR
4.213
9.693
13.840
6.564
5.824
11.117
3.401
3.371
8.979
13.384
7.346
5.346
10.546
4.036

59.
236.
56*
66.
139.
138.
472.
70.
159.
59.
76.
135.
156.
205.

0*042
0*244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0*062
0.050
0.455
0.029

- COLD CYCLE
WEIGHTING
FACTOR
0*0875
0*0875
0.0875
0*0875
0.3250
0.3290
.... i
W E
KC
83.928
112.522
100.775
104.229
373.027
414.550
ino.ni
-------
HONDA  CL350K3
                   RUN-3
                                                          B  - COLO CYCLE          K  . 1.0000   W •
                                                                                                    505.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
6 15-30
7 50-20
SUM 	
••CYCLE
1 IDLE
2 0-25

4 30-15
5 15
6 15-30
7 50-20
••CVCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
»»CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NO FACTOR
!••
3940. 1.610
2507. 6.670
1007. 7.480
929. 3.920

9.590
8.570
8.390
5.840
332. 6.960 8.020
1165. 8.010 8.150
2876. 3.270 5.340

46.
113.
1*1.
79.
93.
129.
133.

0.989
0.992
1.097
1.647
1.222
1.081
1.438
ADJUSTED
HC CO NO (PC)

3899.
2487.
1104.
1530.
405.
1259.
4136.

1.593
6.618
8.205
6.456
6.510
8.659
4.703

45.
112.
154.
130.
113.
139.
191.
WEIGHTING
FACTOR

0.042
0.244
0.116
0.062
0.050
0.455
0.029
2»»
1245. 2.750
7349. 6.970
2663. 10.270
2168. 4.500
8.080
7,530
6.710
5.050
2066. 5.080 6.460
1988. 9.070 8.100
3766. 2.860 5.680
69.
137.
69.
70.
97.
167.
172.
1.342
0.765
0.984
1.503
1.095
0.980
1.297
1671.
9622.
2623.
3260.
2264.
1950.
4885.
3.692
5.332
10.115
6.767
5.567
8.896
3.710
92.
104.
67.
109.
106.
163.
223.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
3««
1461. 2.810
7289. 8.300
2632. 10.890
2136. 4.090
1720. 4.560
1813. 8.450
7.850
7.410
6.150
4.960
9.000
7.440
3756. 2.800 5.710
»—~——— ( CYCL F COMPOS t TF i —
69.
169.
69.
70.
121.
177.
146.
1.338
0.746
1.004
1.557
1.085
1.064
1.296
1953.
5436.
2643.
3326.
2084.
1929.
4877.
3.761
6.193
10.937
6.368
4.951
8.993
3.635
i-92»
126.
69.
109.
131.
168.
189.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
4»«
1431. 2.950
6818. 7.890
2843. 11.350
2236. 4.930
1587. 3.680
1693. 8.750
8.040
6.650
5.770
4.220
9.620
6.590
3794. 2.690 5.910
69.
234.
69.
70.
121.
146.
168.
1.310
0.798
0.998
1.593
1.100
1.133
1.277
1876.
5444.
2839.
3562.
1746.
1916.
4845.
3.867
6.300
11.337
7.855
4.050
9.917
3.435
90.
186.
66.
111.
133.
165.
214.
0.042
0.244
0.116
0.062
0.050
0.455
0.029

W E
HC

163.763
606.996
130.355
94.870
20.297
573.024
119.963
1709.289
70.206
1371.932
309.515
202.151
113.205
887.281
141.680
3095.974
62.134
1327.105
311.919
206.216
104.241
878.017
141.440

78.792
1328.422
339.117
220.900
87.337
873.069
140.530
77*O. 1?7
1 G H T
CO

0.066
1.614
0.968
0.400
0.429
3.939
0.136
7.952
0.159
1.301
1.193
0.419
0.278
4.048
0.107
7.503
0.157
1.511
1.290
0.394
0.247
4.092
0.105

0,162
1.937
1.337
0,467
0.202
4.512
0.099
7.700
f. D
NOIKI

1.912
27.359
18.252
6.067
5.669
63.450
5.547
130.275
3.690
25.975
8.019
6.527
5.315
74.535
6.470
130.334
3.879
30.769
8.177
6,758
6.569
85.719
5.497

3,799
45.592
8,133
6.915
6.658
75,291
6.222
litQ.lt»fl
HONDA  CL3SOK3
                   RUN-3
                                                          B  - COLD CYCLE
                                                                                  K  '  1.0000
                                                                                                    505.

MODE
»*CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— 	
AVERAGE
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6«.
1189. 2.980 7.660 81.
1345. 8.470 7.240 212.
1659. 10.370 5.600 93.
5390. 4.800 5.000 345.
1458. 4.390 9.040 153.
1408. 6.570 7.290 196.
4618. 2.990 6.470 207.
7»«
1789. 3.150 8.080 105.
1566. 7.230 7.570 175.
1775. 11.640 5.580 105.
5018. 5.430 4.940 109.
1487. 3.170 9.920 177.
1394. 8.250 7.440 309.
4925. 3.210 6.330 192.
	 ( CYCLE COMPOS I TE ) 	
SUM OF CYCLES 6-7 	
DILUTION
FACTOR

1.387
1.121
1.152
1.096
1.131
1.101
1.119

1.251
1.123
1.088
1.109
1.105
1.109
1.094

HONDA CL350K3 RUN-3
CYCLE
NUMBER
1
2
3
4
6
7
SUM--
CONCENTRATION AS DETERMINED
HC CO NO(K)
1709.289 7.552 130. Z75
3095.974 7.503 130.334
3051.075 7.799 147.370
3064.169 8.339 152.613
1971.347 8.691 212.972
2036.692 8.472 246.070
	 (TRIP COMPOSITE)— 	 — -
WEIGHTING
FACTOR
0.0875
0.0675
0.0875
0.0875
0.3250
0.3250
A D J U S
HC CO

1649. 4.133
1506. 9.590
1912, 11.955
5911. 5.264
1690. 4.969
1558. 9.489
5169. 3.347

2238. 3.941
1760. 8.162
1932. 12.674
5565. 6.022
1644. 3.595
1546. 9.152
5387. 3.511

TED
NO(K)

112.
237.
107.
378.
173.
217.
231.

131.
196.
114.
116.
195.
342.
210.


WEIGHTING
FACTOR

0.042
0.244
0.118
0,062
0.090
0,455
0,029

0.042
0.2*4
0.118
0,062
0.050
0,495
0,029


W E
HC

69.264
368.096
225.698
366.503
62.519
709.341
149.923
1971.347

94.026
429.454
228.056
345.038
82.227
703.638
156.251
2038.692
2005.020
I G H T
CO

0.173
2.316
1.410
0.326
0.248
4.317
0.097
8.691

0.165
1.996
1.495
0.373
0.175
4.164
0.101
6.472
a. 682
E 0
NO(K)

4.718
58.019
12.652
23.456
8.659
98.743
6.720
212.972

5.518
47.991
13.490
7.219
9.787
155.971
6.091
246.070
229.521
a - COLD CYCLE
W E
HC
149.562
270.697
266.969
268.114
«40.687
662.575
	 2258.607
I G H
CO
0.460
0.656
0.662
0.729
2.689
2.733
8.372
TED
NO(K)
11.399
11.404
12.894
13.353
69.216
79.973
196.2*1






                                                B-13
DILUTION FACTOR -  14,5/(CO2+0.5«CO+10.8»HCI

-------
HONDA  CL350IC3
                 RUN-4
                                                     _ - COLO CYCLE
                                                                               1.0000
                                                                                             505.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20

••CYCLE
1 IDLE
2 0-25
3 30
4 30-13
5 15
6 15-30
7 50-20

••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— — — — —
AVFRAGF
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NOIKI FACTOR
!»•
483.
651.
378.
3097.
827.
819.
3799.


1.890
6.270
8.310
4.610
5.890
8.150
2.520
•i e /-/\»_.n;

8.780
8.400
7.840
5.170
8.600
7.090
5.560


50.
• 125.
93.
62.
93.
172.
96.


1.415
1.184
1.169
1.340
1.165
1.203
1.327

ADJUSTED
HC CO NOIK)

683. 2.674
771. 7.428
441. 9.714
4150. 6.178
964. 6.866
985. 9.807
5043. 3.345


70.
148.
108.
33.
108.
206.
127.

WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029


1231.
1150.
868.
2969.
114.
809.
3551.


979.
1007.
895.
2868.
840.
822.
3332.

1007.
982.
1021.
2805.
812.
716.
2.610
8.560
8.410
3.710
7.420
8.640
2.890
•i p muoi
• UC CUMKl
2.690
8.150
11.260
5.090
3*160
8.670
2.790
"1 F fFMtOt
»UC vWflr*
2.950
8.100
1.490
4.920
4.010
9.110
7.710
7.090
6.350
4.710
7.680
7.300
5.380
\CfTPl __
Jo I 1 1 1 ~™
8.080
7.230
6.030
4.550
9.660
7.310
5.810

7.880
7.130
5.770
4.730
9.110
7.010
3132. 2.520 5.880
46.
95.
57.
49.
97.
119.
119.


69.
158.
57.
47.
112.
134.
74.

54.
413.
57.
57.
117.
925.
86.
1.401
1.149
1.261
1.483
1.259
1.160
1.360


1.383
1.165
1.148
1.422
1.193
1.156
1.342

1.388
1.184
1.903
1.418
1.209
1.175
1.377
1725. 3.658
1322. 9.841
1095. 10.610
4405. 5.505
143. 9.344
938. 10.027
4830. 3.931


1354. 3.721
1173. 9.497
1027. 12.930
4080. 7.241
1002. 3.772
951. 10.030
4472. 3.744

1398. 4.096
1163. 9.595
1943. 2.836
3979. 6.980
981. 4.848
841. 10.706
4315. 3.472
64.
109.
71.
72.
122.
138.
161.


95.
184.
65.
66.
133.
139.
99.

74.
489.
108.
80.
141.
1087.
118.
0.042
0.244
0.118
0.062
0.050
0.455
0.029


0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

28.706
188.202
52.144
257.323
48.204
448.428
146.250
1169.262

72.471
322.605
129.228
273.154
7.178
427.204
140.073
1371.916

56.877
286.337
121.279
252.965
50.135
432.717
129.689
*
58.727
283.836
229.325
246.755
49.091
382.858
125.160
1 47*5 T*i A
15 I 3 • f 3*»
1*11.794
I G H T
CO

0.112
1.812
1.146
0.383
0.343
4.462
0.097
8.357

0.153
2.401
1.292
0.341
0.467
4.962
0.113
9.292

0.196
2.317
1.529
0.448
0.188
4.564
0.108
9. 4 no
• 3 VTF
0.172
2.341
0.334
0.432
0.242
4.871
0.100
6 »A9S
a.a&i
E D
NO

2.971
36.137
12.829
5.151
3.420
94.175
3.695
160.381

2.708
26.650
8.486
4.508
6.108
62.839
4.694
119.994

4.008
44.926
7.723
4.145
6.684
70.540
2.880
140 «910

3.149
119.373
12.802
5.014
7.073
494.614
3.436
265*687
                                                                                                 PETRO-CHEM
                                                                                                COMPUTING.INI
HONDA
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 13-30
7 50-20
SUM- 	
AVERAGE
HONDA
CYCLE
NUMBER
1
2
3
4
6
7
CIIU-- —
CL350K3 RUN-4
CONCENTRATION AS MEASURED
HC CO C02 NOIK)
703. 3.020 8.040 46.
785. 8.760 7.190 91.
895. 10.530 5.800 46.
2614. 6.570 5.200 46.
513. 2.360 10.370 129.
819. 9.170 6.920 111.
3019. 2.970 5.780 139.
937. 3.140 8.080 57.
990. 8.520 7.130 141.
1396. 11.440 5.770 57.
3996. 3.020 4.800 51.
403. 2.560 10.260 117.
941. 14.000 6.880 106.
3945. 2.700 6.170 144.
	 -ICYCLE COMPOSITE)-— — — 	
CL350K3 RUN-4
CONCENTRATION AS DETERMINED
HC CO NOIK)
1169.262 8.357 160.381
1371.916 9.292 115.994
1330.001 9.309 140.910
1375.754 8.495 645.463
1187,737 9.837 111.231
1438.479 10.812 114.283
— —- — / TP I D rnuonc i TP i ««»___J»_M.

DILUTION
FACTOR
.406
.167
.205
.282
.197
.170
.377
1.359
1.163
1.115
1.364
1.210
0.973
1.230

WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250

A
HC
988.
916.
1078.
3351.
614.
958.
4158.
1274.
1152.
1557.
5453.
487.
915.
4855.


— 1
6 - COLD
CYCLE
K " 1.0000 W -
D J U S T E D WEIGHTING
CO NOIK) FACTOR
4.247 64. 0.042
10.228 106. 0.244
12.690 55. 0.118
8.424 58. 0.062
2.827 154. 0.050
10.732 129. 0.455
4.091 191. 0.029
4.270
9.915
12.762
4.121
3.099
13.627
3*323
B - COLD
W E I
HC
102.310
120.042
116.375
120.378
386.014
467.505
t13.A57
77.
164.
63.
69.
141.
103.
177.

CYCLE
G H
CO
0.731
0.813
0.814
0.743
3.197
3.513
O.A1*
0.042
0.244
0.118
0.062
0.050
0.455
0.029


TED
NOIK)
14.033
10.149
12.329
56.478
36*150
37.142
U E
HC
41.528
223.657
127.276
207.814
30.727
436.122
120.610
1187.737
53.520
281.127
183.767
338.086
24.398
416.764
140.813
1438.479
1313.108
I G H T
CO
0.178
2.495
1.497
0.522
0.141
4.883
0.118
9.837
0.179
2.419
1.505
0.295
0.154
6.200
0.096
10.812
10.324
505.
E D
NOIK)
2.717
25.927
6.941
3.657
7.726
59.108
5.553
111.231
3.255
40.039
7.503
4.314
7.083
46.946
5.139
114.28$
112. iS7
                                             B-14
DILUTION FACTOR  - 1*.5/IC02+0.5»CO+10.8»HC)
                                                                                                 flftsf

-------
 HONDA CL350K3
                    RUN
                         5                                  S - COLD CYCLE
MODE

1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 5C-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM——
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
AVERAGF
CONCENTRATION AS MEASURED
HC CO C02 NOIKI

428.
482.

4.930
7.040

7.750
7.910
509. 6.640 8.730
1S34. 4.930 6.020
814. 8.390 7.720
763. 9.380 7.410
3769. 3.840 5.010

64.
138.
170.
108.
104.
148.
128.
DILUTION A D J U S
FACTOR HC CO

1.358
1.213
1.150
1.429
1.133
1.121
1.318

581.
584.
585.
2193.
922.
856.
4967.

6.695
8.541
7.641
7.048
9.508
10.523
5.061
TED WEIGHTING
NO(K) FACTOR

86.
167.
195.
154.
117.
166.
168.

0.042
0.244
0.118
0.062
0.050
0.455
Or029

889.
861.
814.
1761.
874.
779.
4.850
8.480
9.490
6.000
7.320
9.190
7.680
7.150
7.430
5.360
8.270
7.570
3402. 4.050 5.420
•"••«•»" / fyft p ("("IMOrtC f YC" 1 «w
77.
109.
117.
90.
117.
168.
161.
1.310
1.176
1.110
1.412
1.124
1.114
1.304
1164.
1013.
904.
2488.
984.
868.
4436.
6.355
9.980
10.541
8.477
8.244
10.245
5.281
100.
128.
129.
127.
131.
187.
209.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

1617.
1435.
728.
1560.
979.
754.
4.740
8.140
9.950
6.820
6.070
8.590
7.400
7.120
7.400
5,210
8.600
7.530
3410. 4.330 5.380
90.
124.
117. i
90.
130.
154.
136.
1.259
1.138
1.101
1.407
1.142
1.147
1.291
2035.
1633.
802.
2195.
1118.
864.
4403..
5.968
9.264
10.962
9.596
6.934
9.854
5.591
113.
141.
128.
126.
148.
176.
175.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
4«*
1176.
1173.
837.
1543.
872,
711.
4.670
7.980
7.520
7.150
4.960
9.110
7.370
7.230
7.370
5.400
9.140
7.650
3321. 4.190 5.470
90.
147.
117.
86.
143.
178.
163.
1.321
1.161
1.204
1.362
1.154
1.117
1.300
19934
1362.
1006.
2102.
1006.
794.
4318.
6.169
9.266
9.061
9.742
5.725
10.182
5.448
118.
170.
140.
119.
165.
198.
211.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

                                                                                        l.OQOO
                                                                                                      505.
                                                                                         WEIGHTED
                                                                                        HC     CO      NO(K)
                                                                                      24.411
                                                                                     142.697
                                                                                      69.120
                                                                                     135.979
                                                                                      46.126
                                                                                     389.493
                                                                                     144.071
                                                                                     951.906

                                                                                      48.928
                                                                                     247.260
                                                                                     106.690
                                                                                     154.273
                                                                                      49.219
                                                                                     395.150
                                                                                     128.655
                                                                                    1130.179

                                                                                      85.509
                                                                                     398.517
                                                                                      94.642
                                                                                     136.095
                                                                                      55.921
                                                                                     393.574
                                                                                     127.710
                                                                                    1291.970

                                                                                      65.2S5
                                                                                     332.355
                                                                                     119.005
                                                                                     130.354
                                                                                      50.327
                                                                                     361.566
                                                                                     125.226
                                                                                    1184.111
                                                                                    1139.541
0.2S1
2.084
0.901
0.437
0.475
4.788
0.146
9.114

0.266
2.435
1.243
0.525
0.412
4.661
0.153
9.698

0.250
2.260
1.293
0.594
3.346
4.483
0.162
9.392

0.259
2.261
1.069
0.604
0.286
4.b32
0.157
9.270
9.369
  3.650
 40.655
 23.085
  9.573
  5.893
 75.551
  4.892
163.502

  4.237
 31.302
 15.335
  7.884
  6.588
 85.218
  6.088
156.656

  4.759
 34.436
 15.210
  7.851
  7.425
 80.365
  5.093
155.162

  4.994
 41.650
 16.635
  7.434
  8.253
 90.523
  6.146
175.637
162.739
 HONCA CL350K3
                    RUN   5
                                                           S - COLD CYCLE
                                                                                   K - 1.0000   W
                                                                                                      505.
MODE
••CYCLE
1 IDLE
2 0-25
•» 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
CONCENTRATION AS MEASURED DILUTION A D
HC CO C02 NO (1C) FACTOR HC
6**
846. 4.590 11.720
713. 9.330 11.080
839. 10.400 9.640
2195. 6.710 7.330
609. 4.330 15.090
584. 8.550 12.400
3040. 3.900 8.950
	 (CYCLE COMPOSITE) 	
566. 4.260 12.910
632. 8.320 10.690
993. 10.100 10.830
1987. 6.970 7.630
784. 8.270 11.120
636. 8.110 12.550
3045. 4.090 9.200

SUM OF CYCLES 6-7 — 	 —

103.
149.
117.
99.
157.
171.
218.
103.
141.
117.
97.
153.
184.
277.



0.971
0.877
0.920
1.110
0.809
0.837
1.022
0.926
0.921
0.850
1.093
0.900
0.838
0.997

""' ™ "*™ ™

821.
626.
772.
2437.
492.
489.
3107.
524.
582.
644.
2172.
706.
533.
3037.


JUSTED
CO NOtIO

4.458
a. 191
9.576
7.452
3.505
7.163
3.987
*»<»«w
3.946
7.668
8.758
7.621
7.447
6.800
4.080



100.
130.
107.
109.
1Z7.
143.
222.
95.
129.
99.
106.
137.
154.
276.

WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

34.511
152.745
91.167
151.146
24.648
222.639
90.129
766.987
22.023
142.126
99.635
134.704
35.300
242.657
88.100
764.549
765.768
I 6 H T
CO

0.187
1.998
1.130
0.462
0.175
3.259
0.115
7.328
0.165
1.871
1.033
0.472
0.372
3.094
0.118
7.127
7.228
E D

4.201
31.920
12.713
6.817
6.354
65.190
6.463
133.660
4.007
31.708
11.739
6.575
6.839
70.202
8.014
139. 136
136.399
HONDA CL350K3      RUN  5
                                                           S  - COLO CYCLE
CYCLE
NUMBER
CONCENTRATION AS DETERMINED
HC CO NO(K)
1 951.906
2 1130.179
3 1291.970
4 1164.111
6 766.987
7 764.549
SUM 	 ( TR I P
9.114
9.698
9.392
9.270
7.328
7.127
COMPOSITE)-
163.502
156.656
155.162
175.637
133.660
139.138
WEIGHTING
FACTOR
0.0875
0.087S
0.0875
0.0875
0.3250
0.3250
W E
HC
83.291
98.890
113.047
103.609
249.271
248. 478
896.589
: s H
CO
0.797
0.848
0.821
0.811
2.381
2.316
7.977
TED
NOIIC!
14.306
13.707
13.576
15.368
43.439
45.219
145.618
                                                      B-15
DILUTION FACTOR - 14.5/(CO2+0.5«CO+10.8»HC)
              OflJ

-------
HONDA CL350K3
MODE
••CYCLE I«»
1 ICLtf
2 0-2 S
-) 30
4 30-15
5 15
6 15-30
1 50-JO
"CYCLE 2*«
1 IDLE
2 0-75
3 30
4 30-15
5 15
6 15-30
7 50-20
»*CYCLE 3«»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
RUN 6
S - COLO CYCLE
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NOCK) FACTOR

524.
497.
435.
1182.
479.
585.

3.630 9.030
6.270 8.610
5.860 9.330
4.750 6.120
7.780 8.140
8.790 7.880
3085. 3.760 5.230

77.
176.
197.
88.
90.
163.
133.

1.270
1.180
1.139
1.483
1.155
1.123
1.387
ADJUSTED WEIGHTING
HC CO NO(K) FACTOR

665.
586.
495.
1753.
553.
657.
4279.

4.612
7.402
6.674
7.048
8.990
9.875
5.244

97.
207.
224.
130.
104.
183.
184.

0.042
0*244
0.118
0.062
0.050
0.455
0.029

671.
663.
527.
1381.
354.
510.
3.750 8.370
7.140 7.940
9.060 7.940
5.940 5.430
6.320 S.790
8.700 7.230
2840. 3.870 5.430
51.
137.
103.
64.
103.
152.
120.
1.321
1.1R5
1.112
1.465
1.175
1.195
1.389
886.
786.
586.
2024.
416.
609.
3947.
4.956
8.467
10.075
8.707
7.430
10.399
5.379
67.
162.
114.
93.
121.
181.
166.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

1791.
406.
694.
1585.
247.
461.
266.
3.820 7.180
6.170 7.430
9.690 7.530
6.430 5.370
5.940 8.910
8.370 8.050
3.680 5.840
64.
113.
90.
65.
103.
130.
172.
1.315
1.323
1.104
1.408
1.193
1.138
1.819
2355.
537.
766.
2232.
294.
524.
484.
5.024
8.167
10.705
9.054
7.090
9.531
6.697
84.
149.
99.
91.
122.
148.
313.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
SUM—————— t CYCLE COMPOS I TE > ——————————————————————
*»CYCLF 4*«
1 IDLF
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVFRAGF CUM

1834.
221.
346.
1752.
253.
409.

4.920 7.650
7.190 7.790
9.910 7.270
5.910 5.120
5.860 8.730
8.580 7.890
2518. 4.180 6.010

64.
128.
90.
63.
103.
122.
188.

1.199
1.247
1.103
1.454
1.215
1.148
1.340

2199.
275.
933.
2548.
307.
469.
3374.

5.900
8.969
10.936
8.597
7.120
9.856
5.601

76.
159.
99.
91.
125.
140.
251.

0.042
0.244
0.118
0.062
0.050
0.455
0.029

K • 1.0000 W »
W E
HC

27.965
143.170
58.467
108. 745
27.677
299.031
124.116
•70 a i 7 1
IQw* 1 '•*
37.251
191.860
69.152
125.513
20.811
277.370
114.474
836.435
98.937
131.138
90.474
138.384
14.742
233.865
14.039
726.582

92.377
67.267
110.171
158.023
15.370
213.783
97.862
754.861
TT A. . 7A^
I G H T
CO

0.193
1.806
0.787
0.437
0.449
4.493
0.152
8. •» i o
• J A7
0.208
2.066
1.188
0.539
0.371
4.731
0.155
9t f<. ?
»£O£
0.211
1.992
1.263
0.561
0.354
4.336
3.194
8.914

0.247
2. IBS
1.290
0.533
0.356
4.484
0.162
9.263
A. 9t9
505.
E D
NO 1 1C)

4.109
50.700
26.478
8.096
5.200
83.319
5.350
183.255

2.831
39.645
13.515
5.816
6.055
82.667
4.836
ice *1 1 o
1 3 ? • JOo
3.535
36.499
11.733
5.675
6.147
67.359
9.077
140.027

3.223
38.963
11.720
5.682
6.257
63.77D
7.306
1 ^ A O9 1
1 JO* 7^ 1
164.ti94
HONDA CL350K3
                   RUN
                                                          S - COLD CYCLE
                                                                                      1.0000
                                                                                                     505.
MODE
••CYCLE 6
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
••CYCLE 7
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— — -
AVERAGE S
HONDA CL3
CYCLE
NUMBER
1
2
3
4
6
7
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
••
190. 4.500 7.460 64.
721. 7.610 7.410 161.
1133. 10.320 6.610 77.
1798. 6.660 4.990 57.
1402. 5.120 B.970 103.
931. 8.770 7.830 162.
2722. 4.360 5.480 86.
1317. 4.450 7.650 64.
293. 7.510 7.480 125.
880. 10.400 6.640 77.
1897. 6.280 4.590 59.
1531. 5.190 9.140 103.
251. 7.590 8.410 154.
2538. 4.010 8.7SO 131.

50K3 RUN 6
CONCENTRATION AS DETERMINED
HC CO NOCK)
789.175 8.319 183.255
836.435 9.262 159.366
726.582 8.914 140.027
754.861 9.263 136.921
1181.576 9.297 156.537
747.567 6.928 148.556
DILUTION
FACTOR
1.462
1.208
1.115
1.413
1.111
1.096
1.367
1.283
1.255
1.133
1.482
1.083
1.162
1.074


A
HC
277.
871.
1264.
2540.
1558.
1021.
3723.
1690.
367.
997.
2812.
1658.
291.
2726.


WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250

D J U S T E D WEIGHTING
CO NO IK) FACTOR
6.580
9.200
11.516
9.410
5.691
9.618
S.964
5.711
9.426
11.790
9.312
5.620
8.821
4.308

S - COLD
W E I
HC
69.052
73.188
63.576
66.050
384.012
242.959
93.
194.
85.
80.
114.
177.
117.
82.
156.
87.
87.
Ill*
178.
140.

CYCLE
G H
CO
0.727
0.810
0.779
0.810
3.021
2.901
o.no
0.042
0.244
0.118
0*062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
0.050
0.455
0.029


TED
NO(K1
16.034
13.594
12.252
11.980
50.874
48.280
1K4.A1 A
W E
HC
11.669
212.686
149.193
157.515
77.923
464.602
107.983
1181.576
70.994
89.740
117.719
174.398
82.905
132.731
79.077
747.567
964.571
I G H T
CO
0.276
2.244
1.358
0.583
0.284
4.376
0.172
9.297
0.239
2.300
1.391
0.577
0.261
4.013
0.124
8.928
9.113
E 0
NOIKJ
3.930
47.493
10.139
4.993
5.72*
80.843
3.411
156.537
3.4i>0
38.285
10.300
5.424
5.577
61.437
4.081
148.556
152.546
                                                  B-16
DILUTION FACTOR • 14.5/(C02+0.5»CO+10.8*HC)

-------
      SL.-10T
                              8-23-72
                                                          fl - COLO CYCLE
r-'OOE
"CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
S 15
6 15-30
7 50-20
AVERAGE
CONCENTRATION AS MEASURED
HC CO C02 NOIK)
312. 6.870 10,040
709. 3.790 11,690
2007. 2.160 13.04C
971, 5.990 8.300
606. 7.850 9.370
740. 3.360 12.500
3679. 7.330 7.400
70.
909.
832.
239.
153.
1168.
141.
DILUTION
FACTOR
1.010
1.010
0.890
1.174
1,039
0,968
0,964
A 0
HC
820.
716.
1786.
1140.
629.
716,
3547.
JUS
CO
6.940
3.829
1.922
7.036
3.159
3,252
7.067
TED
NOIK)
70.
918.
740.
280.
159.
1130.
135.
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029
?«»
854.
735.
3389.
1476.
771,
8.240 9.040
4.890 10,990
2.780 12,530
5.250 6,200
?.650 8.930
755. 3.550 11.370
5613. 4.770 4,140
70.
640.
698.
190.
117.
972.
202.
1.029
1.019
0,824
1.391
1,029
1,002
-1.151
879.
749.
2795.
2054.
793.
757.
6466.
8.434
4,983
2.292
7.306
8.903
3.559
5.494
72.
652.
575.
264.
120.
974.
232.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

1105,
1052.
3938.
2245.
895,
396,
7.95C 9.260
6.930 9.330
4.380 11.450
5.950 6.230
3.980 8.920
4.510 11.700
6552. 4.730 3.900
81.
473.
460.
129.
141.
909.
214.
1.004
1.040
0.810
1.246
1.015
0,971
1.086
1110.
1094.
3191.
2799.
909.
870.
7121.
7.989
7.212
3.549
7.418
9.120
4.382
5.140
81.
' 492.
372.
160.
143.
183.
232.
0.042
0.244
0.118
0.062
0.050
O.ft55
0,029
ft»»
1105.
1063.
3182.
2126,
1021,
925.
9.050 9.150
4.940 10.980
4.920 11.000
5.560 5.750
9.090 8.710
3.880 11.050
4398, 4,850 4.490
93.
626.
393.
141.
141.
893,
178.
1.009
0.993
0.858
1.339
1.009
1.036
1.243
1115.
1055.
2730.
2849.
1031.
958.
5466.
8.123
4.906
4.222
7.445
9. ISO
4.021
6.028
93.
£21,
337.
188,
142,
925.
221,
0.042
0.244
0.118
0.062
0,050
0,455
0,029
SUM OF CYCLES 1-4 ~— — 	 	
W E
HC
34,455
174.795
210.83ft
70,718
31,495
325,923
102,871
- 951,100
36,931
162,758
329,837
127,355
39,678
344,465
187,515
- 1248,5*2
46,640
267,169
376,566
173,544
45,450
396.132
206,512
- 1512,015
46,835
257,430
322,219
176,674
51,556
436,249
158,541
— 1449,705
- 1290.341
I G H T
CO
0.291
0.93ft
0.226
0.436
0.407
1.479
0.204
3.931
0.356
1.215
0.270
0.452
0.445
1.619
0,159
4.519
0.335
1.759
0.418
0.459
0.456
1.993
0.149
5,573
0.341
1.197
0.498
0.461
0,459
1,829
0.174
4. 962
t.759
E D
NOIK)
2.970
224.103
87.401
17.406
7.951
514.438
3.942
858.214
3.027
159.136
67.933
16.393
6.021
4ft3.471
6.748
702.731
3.418
120.124
43.936
9.972
7.160
401.880
6.745
593.287
3.941
151.718
39.796
11.706
7.119
421.157
6,416
641 .856
£99.022
HONDA SL-100
                   RUN 2
                              8-23-72
                                                          0 - COLD CYCLE
                                                                                  K  »  1.0000   W =
                                                                                                      0.

MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6*«
979. 8.340 8.930 70.
933. 6.500 10.260 598.
3369. 5.370 10.390 315.
2225. 4,830 5.910 153.
1070. 9.310 8.390 117.
950. 4.770 11.440 924.
6037. 4.440 9.270 227.
1189. 9.310 8.080 61.
1080. 6.450 10.100 501.
4034. 4.920 11.000 420.
2815. 4.750 6.200 176.
1274. 9,430 8.080 117.
1076. 4,960 11.110 787.
6234. 4.620 4.720 165.

SUM OF CYCLES 6-7 	
DILUTION
FACTOR

1.024
0.998
0.342
1.351
1.021
0.976
0.805
1.0.14
1.000
0.813
1.248
1.023
0.982
1.045


HONDA SL-100 RUN 2 8-23-72
CYCLE
NUMBER
1
2
3
4
6
7

CONCENTRATION AS DETERMINED
HC CO NOtK)
951.100 3.981 853.214
1248.542 4.519 702.731
1512.015 5.573 593.287
1449.705 4.962 641.856
1408.431 5.579 614.634
1656,093 5.666 542.903

WEIGHTING
FACTOR
0.0875
O.OB75
0.0875
0.0875
0.3250
0.3250

A D J U S
HC CO

1002. 8.541
931. 6.492
2837. 4.523
3007. 6.528
1092. 9.506
927. 4.657
4860. 3.574
1229. 9.629
108,0. 6.453
3283. 4.004
3514. 5.929
1303. 9.648
1057. 4.875
6520. 5.041


TED
N01KI

71.
597.
265.
206.
119.
902.
182.
83.
501.
341.
222,
119.
773.
172.


WEIGHTING
FACTOR

0.042
0,244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0,062
0.050
0.455
0.029


W E
HC

42.113
227.375
334.873
186.453
54.627
422.033
140.953
5;. 650
268.676
387.398
217.877
65.179
431.214
189.096
1656.093
1532.262
I G H T
CO

0.358
1,584
0.533
0.404
0.475
2.119
0.103
5.579
0.404
1.574
0.472
0.367
0.482
2.213
0.146
5.666
5.622
E D
NOIK)

3.011
145,734
31.310
12.821
5.973
410.483
5.300
3.518
122.316
40.334
13.776
5.985
351.966
5.004
542.903
578.768
B - COLD CYCLE
W E
HC
83.221
109.247
132.301
126.849
457.740
53B.230

I G H
CO
0.348
0.395
0.487
0.434
1.813
1.841
5.320
TED
NOIK)
75.093
61.489
51.912
56.162
199.756
176.443
620.857






DILUTION FACTOR  •  14.5/(C02+0.5«CO+10.8»HCI
                                                  B-17

-------
HONDA SL-100
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
*»CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
»*CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
**CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— ••
AVFRAGF
PUN 4 8-24-72
COMCE?4TRATION AS MEASURED
HC CO C02 NO(IC)
1»«
854.
647.
3059.
1849.
654.
934<

7.760 9. 480
4.190 11.640
1.690 13.420
2.950 3.140
7.480 9.920
3.970 11.920
5224. 4.270 4.850

117.
678.
956.
569.
193.
1031.
430.
8 - COLD CYCLE
DILUTION A D J U S
FACTOR HC CO

1.015
0.969
0.825
1.243
0.994
0.972
1.148

867.
636.
2524.
2308.
649.
908.
5996.

7.878
4.147
1.394
3.683
7.437
3.659
4.903
TED
NO ( 1C I

118.
671.
789.
710.
191.
1002.
493.
K = 1.0000 W •
WEIGHTING W E
FACTOR HC

0.042
0.244
0.116
0.062
0.050
0.455
0.029
2»«
1063.
1021.
3152.
2146.
1063.
976.
6*620 10.150
4.490 11.450
3.090 12.720
5.250 6.780
7.200 9.590
3.210 12.220
5544. 5.070 4.530
129.
605.
802.
410.
214.
996.
305.
0.992
0.979
0.620
1.236
1.011
0.974
1.110
1055.
1000.
2586.
265.6.
1075.
951.
6156.
6.571
4.399
2.535
6.492
7.281
3.128
5.632
128.
592.
656.
507.
216.
970.
336.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
3*«
1232.
1066.
3432.
2504.
1175.
1031.
8.450 9.040
5.230 10.990
4.130 11.800
4.510 6.010
8.950 S.500
4.110 11.950
5203. 4.390 4.670
129.
636.
669.
323.
227.
1117.
233.
0.993
0.982
0.825
1.321
1.017
0.959
1.138
1223.
1047.
2832.
3309.
1196.
988.
5924.
8.394
5.139
3.408
5.961
9.110
3.941
5.568
128.
624.
552.
426.
231.
1071.
265.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
4*»
1189.
1144.
3013.
2203.
1161.
1050.
8.870 8.710
5.480 10.820
4.180 11.650
4.970 6.760
6.550 9.040
3.480 12.260
5322. 4.360 4.380
117.
672.
542.
305.
178.
1024.
267.
1.004
0.980
0.853
1.247
0.995
0.956
1.154
1194.
1121.
2570.
2746.
1155.
1004.
6145.
8.913
5.370
3.566
6.199
8.509
3.329
5.611
117.
658.
462.
360.
177.
979.
308.
0.042
0.244
0.118
0.062
0.050
0.455
0.029


36.414
204. 555
297.912
143.150
42.456
413. 160
173.966
— 1311 .642
44.315
244,112
305.225
164.697
53.750
432.766
176.605
— 1423.472
51.405
255.586
3J4. 185
205.217
59.805
449.914
171.809
_ 1 ft O 7 - QO A
™ i?£ * «y*i*f
50.183
273.560
303.355
170.376
57.775
457.131
178*208
- 1490*592
- ii.ifl.An7
I G H T
CO

0.330
1.011
0.164
0.228
0.371
1.756
0.142
L. C\C\f*
*» • uvo
0.275
1.073
0.299
0.402
0.364
1.423
0.163
ft t 002
0.352
1.253
0.402
0.369
0.455
1.793
0.161
It. • "7flR
**• / oo
0.374
1.310
0.420
0.384
0.425
1.515
0.162
4. 593
4.447
0.
E 0
NO(IC)

4.968
163.740
93.103
44,052
9.595
456.091
14.319
•70 ft ft Q 7
' 0? *D7£
5.377
144.650
77.661
31.436
10.620
441.634
9.825
7 3 T t*r>7
1 £ I »>*»U r
5.382
152.468
65.142
26.471
11.553
437.443
7.693
7e t. . \ 77
( 2O • 1 / 1
4.938
160.692
54.569
23.586
8.857
445.812
6.940
707.399
743.719
                                                                                                  Oil/
HONDA SL-100
                 RUN  4
                           8-24-72
                                                     B - COLD CYCLE
                                                                               1.0000
                                                                                               0.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
HONDA S
CYCLE
NUMBER
CONCENTRATION AS MEASURED
HC CO C02 MOIK)
896. 3.650 8.820 93.
941. 6.7JO 10.050 464.
3573. 5.39.0 10.550 406.
2286. 5.490 6.080 199.
1021. 9.900 7.850 141.
934. 4.730 11.000 754.
5600. 4.900 4.330 231.
1189. 7.760 9.480 117.
1098. 5.720 10.370 662.
3105. 3.990 11.800 626.
2322. 4.930 6.290 229.
1161. 9.090 8.820 180.
1047. 3.950 12.090 1203.
5645. 9.0)0 4.420 378.

L-100 RUN 4 6-24-72
CONCENTRATION AS DETERMINED
HC CO NO IK)
1 1311.642 4.006 785.892
2 1423.472 J..002 721.407
3 1527.924 (..788 756.177
4 1490.592 *.593 707.399
6 1466.744 p. 657 536.046
7 1506.372 4.846 791.502
DILUTION
FACTOR
1.248
1.004
0.848
1.286
1.042
1.008
1.111
0*990
1.005
0.845
1.287
0.991
0.954
1.112

A D J U S
HC CO
1116. 4.557
945. 6.762
3032. 4.540
2940. 7.009
1064. 10.325
942. 4.771
6447. 5.446
1177. 7.683
1104. 5.753
2625. 3.373
2989. 6.347
1151. 9.016
999. 3.769
6281* 5.996

TED WEIGHTING
NO IK) FACTOR
116.
466.
344.
255.
147.
760.
256.
115.
665.
529.
294.
178.
1147.
420.

0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
0.050
0.455
0.029

8 - COLD CYCLE
WEIGHTING W E
FACTOR HC
0.0675
0.0675
0.0675
0.0875
0.3250
0.3250
114.766
124.553
133.693
130.426
483.192
490.221
I G H
CO
0.350
0.350
0.419
0.401
1.838
1.575
A.O3*
TED
NO(K)
6S.765
63.123
66.165
61.897
174.215
257.238
A.O1 .An*
W E
HC
46.968
230.697
357.847
182.269
53.243
428.703
186.974
1486*744
49.446
269.476
309*804
185.343
57.577
454.573
162.151
1508.372
1497.558
I G H T
CO
0.191
1.649
0.535
0.434
0.516
2.171
0.157
5.657
0.322
1.403
0.396
0.393
0.450
1.714
0.162
4*846
5.251
E D
NOUI
4.877
113.755
40.662
15.868
7.352
346*084
7.446
536.046
4.869
162.471
62.459
18.278
8.926
522.303
12.197
791.502
663.774
DILUTION FACTOR  - 14.5/(C02+0.5*CO+10.8«HC)
                                               B~18

-------
HONOA SL-100
                   RUN 5
                              8-24-72
                                                          8 - COLD CYCLE
                                                                                 K a 1.0000
MODE
••CYCLE 1»»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
*»CYCLE 2«»
1 IDLE
2 0-25
3 30
4 30-15
S 15
6 15-30
7 50-20
"•CYCLE 3«»
1 IDLE
2 0-2J
3 30
4 30-15
5 15
6 15-30
7 50-20
*»CYCLE 4»»
1 IDLE
2 0-25
3 30
4 30-15
S 15
6 15-30
7 50-20
AUFRAGF SUM
CONCENTRATION AS MEASURED
MC CO C02 NOU)
1317. 8.760 8.820
1274. 3.840 11.520
2288. 2.320 13.170
2054. 3.460 7.260
1745. 7.760 9.480
1983. 3.400 12.290
4257. 5.260 5.110
2096. 7.480 9.590
1869. 3.940 11.260
2799. 1.590 13.420
2200. 4.190 7.130
1731. 6.870 10.040
1487. 2.860 12,670
4383. 5.280 5.040
70.
780.
982.
507.
178.
686.
564.
141.
736.
1053.
437.
243,
920,
609,
DILUTION A D J u S
FACTOR HC CO
0.991
0.978
0.863
1.293
0.951
0.923
1.175
0.929
0.950
0.841
1.249
0.944
0.923
1,168
1305.
1246.
1974.
2657.
1459.
1462,
5003.
1948,
1777.
2354.
2749.
1635.
1372.
5119.
8.686
3.758
2,002
4.476
7.380
3.140
6,181
6,955
3.746
1.337
5.237
6.491
2.640
6,167
TED
69.
763,
847,
655.
169.
633.
662.
131.
699.
885.
546.
229.
849.
711.
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
9.050
0.455
0.029
" •-—
2008.
1822.
2512.
2064.
1644.
1494.
7.390 9.810
4.730 11.000
1.870 13.420
4.420 7.360
6.790 10.150
2.430 12.740
4470. 5.170 4.770
141.
816.
993.
378.
239,
1282,
496.
0.925
0.945
0.849
1.228
0.946
0.931
1.190
1857.
1723,
2134.
2536.
1355.
1391.
5320.
6,836
4.473
1.588
5.431
6,426
2,263
6.153
130.
f 771.
843.
464.
226.
1194.
590.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

2008.
1800.
2377.
5024,
1601.
1444.
8.240 9.040
4.440 11.920
2.910 12.720
4.480 7.200
7.130 10.150
3.210 12.450
4479, 4.790 4,730
133,
930.
659.
313.
315.
1275.
487.
0.945
0.901
0.866
0.975
0.938
0.928
1.212
1899.
1622.
2058.
4900.
1903.
1340.
5429.
7.794
4.002
2.520
4.369
6.694
2.980
5.806
125.
838.
570.
305.
295.
1183.
590.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
MC
54.851
304.J27
233.007
164.747
82.988
665.228
145.090
- 1650.141
81.857
433.650
277.822
170.485
Si. 766
624.634
143.469
- 1BJ8.707
78.020
420.422
251.818
157.260
77.797
633.115
154.268
- 1772.723
79.776
395.946
242.922
303.820
75.156
610.123
157.446
- 177A.AO1
I G H T
CO
0.364
0.916
0.236
0.277
0.369
1.428
0.179
3.772
0.292
0,914
0.157
0.324
0.324
1.201
0.178
3.393
0.287
1.091
0.187
0.336
0.321
1.029
0.178
3.432
0.327
0.976
0.297
0.270
0.334
1.356
0.168
*-*fl3
E D
NO(K>
2.915
196.261
100.005
40.665
8.465
288.279
19.222
645.816
5.506
170.768
104.518
33.864
11.481
386.458
20.629
733.227
5.478
188.290
99.544
28.800
11.309
543.275
17,120
893.819
5.284
204.572
67.347
18.928
14.787
538.717
17.119

HONDA SL-100
                   RUN  5
                             8-24-72
                                                         B - COLD CYCLE
                                                                                 K < 1.0000
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
CONCENTRATION AS MEASURED
HC CO C02 NO IK)
6»«
979. 8,140 8,500 93.
1052. 5.610 10.620 695.
2318. 3.790 11.800 565.
1892. 4.970 6.560 234.
1444. 9.200 8.680 165.
1274. 3.180 11.760 1276.
4345. 5«070 5.110 745.
.... 	 (CYCLE COMPOSI TE )- — 	 	
7»«
1703. 7.660 9.700 120.
1509. 5.500 10,800 811.
2437. 3.280 13.300 782.
2084. 4.170 6.930 431.
1487. 7.660 9.700 222.
1339. 4.730 12.600 1215.
4615* 4.290 4.890 682.
DILUTION
FACTOR
1.064
0.995
0.895
1.307
0.977
0.984
1.175
0.9>>3
0.935
0.825
1.287
0,957
0.883
1.210
AVERAGE SUM OF CYCLES 4-7 — 	
HONDA SL-100 RUN 5 8-24-72
CYCLE
NUMBER
i
2
3
4
6
7
SUM- 	
CONCENTRATION AS DETERMINED
HC CO NO
-------
KAWASAKI 125^-6
                RUM 1
                         8-23-72
                                                  B - COLO CYCLE
                                                                          1.0000  W
MODE
"CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM—
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— — •
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
1«»
5072.
5257.
3089.
4799.
3699.
3703.

0.220 4.180
1.000 4.840
1.070 10.370
1.910 6.160
0.230 8.500
1.760 8.940
7340. 3.900 3.060

46.
216.
58.
50.
117.
219.
101.
DILUTION ADJUSTED
FACTOR HC CO NO(K)

1.484
1.316
1.018
1.179
1.149
1.049
1.119

7529.
6918.
3145.
5658.
4253.
3885.
8213.

0.326
1.316
1.089
2.252
0.264
1.846
4.364

66.
284.
59.
58.
134.
229.
113.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029
W E
HC

316.228
1688.147
371.128
350.815
212.671
1767.864
238.205

5739.
4799.
3182.
3879.
4261.
3960.
2.400 4.400
1.080 8.330
1.560 10.310
2.070 5.730
0.470 8.820
1.140 9.260
8343. 3.310 2.130
70.
277.
93.
85.
70.
164.
142.
1.229
1.031
0.998
1.323
1.061
1.027
1.133
7053.
4951.
3176.
5134.
4524.
4070.
9454.
2.949
1.114
1.557
2.740
0.499
1.171
3.750
86.
285.
92.
112.
74.
168.
160.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

6751.
5691.
3651.
4160.
4326.
4098.
3.610 3.900
1.880 7.830
1.620 10.150
2.330 5.790
1.910 8.080
1.460 9.120
7786. 3.230 2.150
93.
325.
105.
96.
93.
258.
137.
1.115
0.972
0.972
1.266
1.057
1.015
1.191
7532.
5532.
3552.
5269.
4576.
4162.
9273.
4.027
1.827
1.576
2.951
2.020
1.482
3.847
103.
315.
102.
121.
98.
262.
163.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

6970.
6005.
4083.
4587.
4424.
4285.
3.180 4.110
1.880 8.090
1.480 10.260
2.730 6.100
1.320 7.580
1.860 8.820
7 50-20 7607. 3.220 2.090
93.
288.
117.
97.
81.
218.
137.
1.096
0.934
0.940
1.167
1.113
1.008
1.216
7640.
5612.
3341.
5355.
4927.
4321.
9256.
3.485
1.756
1.392
3.187
1.470
1.875
3.918
101.
269.
110.
113.
90.
219.
166.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

296.237
1208.208
374.789
318.342
226.202
1852.021
274.178
— 4549*981
316.353
1349.851
419.165
326.686
228.812
1893.867
268.937
— 4803.674
320.899
1369.329
453.353
332.049
246.383
1966.245
268.450

I G H T
CO

0.013
0.321
0.128
0.139
0.013
0.840
0.126
1.
0.123
0.271
0.133
0.169
0.024
0.533
0.108
1 .416
0.169
0.445
0.185
0.182
0.101
0.674
0.111
1 A*7 1
1.0 ' 1
0.146
0.428
0.164
0.197
0.073
0.853
0.113
Ion
• V 1 f
1 .71 1
E D
NO(K)

2.868
69.362
6.966
3.655
6.726
104.553
3.277
197.41 2
3.613
69.738
10.953
6.975
3.716
76.699
4.666
176.363
4.358
77.086
12.054
7.538
4.918
119.233
4.732
229.923
4.281
65.673
12.991
7.021
4.511
100.033
4.834
199.346
?nn.7Ai
KAWASAKI  125F-6
                RUN 1
                        8-23-72
                                                 B - COLD CYCLE
                                                                         1.0000
                                                                                        0.
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM-—-
KAWASAKI
CYCLE
NUMBER
1
2
3
4
6
7
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NO IK) FACTOR
6»*
3938. 3.280 3.970 58.
3870. 1.990 7.760 277.
3416. 1.340 10.260 93.
4412. 2.820 5.720 86.
4309. 1.080 8.500 70.
4266. 1.830 8.840 268.
7662. 3.120 2.000 129.
	 (CYCLE COMPOSITE)-——
7»«
7043. 3.090 3.970 93.
6237. 1.760 7.850 304.
4621. 1.450 10.370 105.
5202. 2. 580 6.180 96.
4621. 1.420 8.390 70.
4526. 2.170 8.680 216.
7369. 3.150 1.990 130.
— 	 (CYCLE COMPOSITE) 	
125F-6 RUN 1 8-23-72
CONCENTRATION AS DETERMINED
HC CO N0«)
4945.061 1.583 197.412
4549.981 1.416 176*363
4803.674 1.871 229.923
4956*711 1.977 199.346
4494.977 2.125 228.131
5146.981 2.042 197.220

1.470
1.121
0.991
1.219
1.058
1.009
1.225
»»__..—».

1.105
0.937
0.901
1.107
1.029
0*989
1.258
— — — —

ADJUSTED
HC CO NO ( K 1

5789. 4.822
4338. 2*230
3388. 1.329
5378. 3.437
4562. 1.143
4306. 1.847
9387. 3.822
._—«___«—..

7782. 3.414
5847. 1.650
4165. 1.307
5763. 2*858
4-795. 1.461
4478. 2.147
9272. 3.963
•— — — 	 	 —
8 - COLD
WEIGHTING W E I
FACTOR
0*0875
0.0875
0*0875
0.0875
0.3250
0.3250
SUM 	 (TRIP COMPOS I TE 1 	 — — •
HC
432.692
398.123
420.321
433.712
1460.867
1672.768
._-._ 4818.486

85.
310.
92.
104.
74.
270.
158.
___-.__

102.
285.
94.
106.
72.
213.
163.
	
CYCLE
G H
CO
0.138
0.123
0.163
0.173
0.690
0.663
1.953
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029
—„--__.

0.042
0.244
0.118
0.062
0.050
0.455
0.029
	

TED
NO(K)
17.273
15.431
20.118
17.442
74.142
64.096
206.506
w e
HC

243.154
1058.560
399.799
333.451
228.135
1959.642
272.233
4494.977

326.883
1426.778
491.526
357.315
237.761
2037.816
268.899
9146.981










I G H T
CO

0.202
0.544
0.156
0.213
0.057
0.840
0.110
2.125

0.143
0.402
0.154
0.177
0.073
0.977
0.114
2*042










E D
NO(K)

3.581
79.767
10.884
6.499
3.706
123.109
4.583
228.131

4.316
69.543
11.168
6.594
3.601
97.253
4.743
197.220










DILUTION FACTOR > 14<5/(C02+0.5*CO+10.8*HC)
                                                                                          a&r
                                          B-20

-------
 KAWASAKI  125F-6
                   RUN 3
                              8"2*'72                     B - COLD  CYCLE           < » 1.0000   w •     0.
MODE
"CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
*»CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
»«CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
jWIn
*«CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
IVFBir.F
CONCE
HC
1«*
5326.
4877.
3192.
4206.
3954.
3686.
8352.
	 1 CYC
2*»
6001.
5087.
3369.
4451.
4212.
4039.
MRAT10N AS MEASURED
CO C02 NOUI
0.220 4.450
1.220 8.020
1.220 10.480
2.250 8.640
0.240 8.520
0.490 9,130
3.560 3,170

2.480 4.450
1.180 8.020
1.070 10.480
2.070 8.84Q
0.660 8.520
0.820 9.130
7799. 3.970 3.170
93.
264.
129.
108.
105.
237.
146.

117.
241.
129.
122.
97.
196.
198.
DILUTION
FACTOR
1.406
1.043
0.998
0.999
1.123
1.085
1.037

1.191
1.028
0.989
0.987
1.081
1.043
1.067
A 0
HC
7488.
5088.
3176.
4203.
4440.
4003.
8668.

7149.
5229.
3333.
4395.
4554.
4212.
8323.
JUSTED
CO NO IK)
0.309
1.272
1.217
2.248
0.269
0.531
3.695

2.954
1.213
1.056
2.044
0.735
0.855
4.239
130.
275.
128.
107.
117.
257.
151.

139.
247.
127.
120.
104.
204.
211.
WEIGHTING W £
FACTOR HC
0.042
0.244
o.iie
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029
3*«
6668.
5711.
3922.
4731.
4260.
4094.
3.180 3.680
1.9SO 6.720
1.110 9.960
1.840 6.910
1.320 8.520
1.690 9.210
7824. 3.430 2.390
129.
340.
137.
136.
105.
187.
150.
1.162
1.045
0.983
1.120
1.052
1.001
1.154
7752.
5973.
3655.
5301.
4482.
4100.
9036.
3.697
2.039
1.091
2.061
1.388
1.692
3.961
149.
355.
134.
152.
110.
187.
173.
0.042
0.244
0,118
0.062
0.050
0.455
0,029
4««
6624.
5958.
4277.
•5163.
4424.
4228.
2. 650 4.960
1.610 3.780
1.190 10.890
1.280 10.770
1.520 8.820
0.910 9.470
7558. 3.320 3.440
129.
243.
141.
136.
105.
273.
157.
1.078
0.905
0.900
0.853
1.009
1.000
1.093
71*7.
5392,
3850.
4407.
4467,
4230,
8263,
2.859
1.457
1.071
1.092
1.535
0,910
3.629
139.
219.
126.
116.
106.
273.
171,
0,042
0,244
0.118
0.062
0.050
0,455
0.029

314.537
1241.608
374,739
260.637
222.043
1821.493
291.394

300.269
1276,081
393.377
272.53?
227.735
1916.779
241.530
— 4^28.314
325.608
1457.526
454.928
328.697
224.116
18.65.791
262.048
— 4918.716
300.174
1315.847
454.413
273.255
223.368
1924.902
239.630
— 4731.613
I 6 M T
CO
0,012
0,310
0.143
0.139
0.013
0.242
0.107
0.969
0.124
0.296
0.124
0.126
0.036
0.389
0.122
1.220
0.155
0.497
0.128
0.127
0.069
0.770
0.114
1.664
0.120
0.355
0.126
0.067
0.076
0.414
0.105
1.266
i .nn
E 0
NOIKI
5.492
67.210
15.194
6.692
5.896
117.053
4.394
221.933
5.854
60.455
15.062
7.470
5.244
93.015
6.131
193.234
6.299
86.772
15.391
9.448
5.523
85.223
5.023
214.183
5.845
53.667
14.960
7.197
5.301
124.290
4.977
216.261
511 -4na
KAWASAKI 125F-6
                   RUN  3
                              8-24-72
                                                         8 - COLO CYCLE
                                                                                 K * 1.0000
                                                                                                      0.

MODE
»*CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20

••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
KAWASAKI
CYCLE
NUMBER
1
2
3
4
6
7

CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6«»
3479. 2.960 4.610 153.
3447. 1.560 8.530 269.
3213. 0.650 20.540 235.
4104. 1.170 8.720 227.
4034. 2.510 8.080 190.
3975. 0.970 8.990 268.
7261. 3.620 3.930 288.

6642. 2.910 4.560 252.
6020. 1.670 8.080 533.
4621. 1.2QO 10.540 277.
5302. 1.230 8.960 266.
4654. 1.290 8.390 239.
4458. 1.540 8.870 402.
7155. 3.360 2.930 297.
SUM OF CYCLES 6-7 	
125F-6 RUN 3 S-24-72
CONCENTRATION AS DETERMINED
HC CO NO)K>
4486.503 0.969 221,933
4628.314 1.220 193,234
4918.716 1.864 214,163
4731.613 1.266 216,261
4145.632 1.470 272,775
5006.503 1.601 385*013

DILUTION
FACTOR

1.479
1.112
1.011
1.055
1.059
1.053
1.059

1.099
0.940
0.898
0.947
1.031
1.003
1.175

A D J U S
HC CO

5148. 4.232
3835. 1.735
3249. 0.657
4331. 1.234
4272. 2.658
4186. 1.021
7695. 4.048

7302. 3.199
5662. 1.570
4153. 1.078
$024. 1.165
4799, 1.330
4471. 1.544
8409. 3.948

T E 0
NOCK)

226.
299.
237.
239.
201.
282.
305.

277.
501.
248.
253.
246.
403.
349.

WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0,029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

216.254
935.756
383.496
268.574
213.607
1904.783
223.160
4145.632
306.708
1381.547
490.154
311.512
239.959
2034.755
243.866
5008.503
4577.068
I G H T
CO

0.177
0.423
0.077
0.076
0.132
0.464
0.117
1.470
0.134
0.383
0.127
0.072
0.066
0.702
0.114
1.601
1.535
E 0
NO(K)

9.510
73.025
28.049
14.855
10.060
128.423
8.851
272.775
11.636
122.319
29.381
15.745
12.322
163.483
10.122
365.013
328.894
B - COLD CYCLE
WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250

W E
HC
392.569
404.977
430.397
414.016
1347.330
1627.763

I G H

0.084
0.106
0.163
0.110
0.477
0.520
1.463
TED

19.419
16.907
18.741
18.922
88.652
125.129
287.772









DILUTION FACTOR -  14.5/(C02+0.5»CO+10.8»HC)
                                                  B-21

-------
KAWASAKI 125F-6
MODE
••CYCLE !••
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 2»»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 3«»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— «— «•
••CYCLE 4«»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— — — — — — •
1VFBAC,F SUM
RUN-6 8-24-72
CONCENTRATION AS MEASURED
HC CO C02 N01KI

5072.
4976.
3970.
4577.
4083.
3990.

0.450 5.100
2.430 6.160
0.170 9.669
1.260 6(36p
0.200 7.290
0.540 8.750
&715. 3.130 2.440

58.
ioa.
137.
89.
70.
288.
108.
DILUTION
FACTOR

1.342
1.137
1.033
1.215
1.228
1.087
1.288
6 - COLD CYCLE
ADJUSTED
HC CO NO ( K>

6807.
5659.
4102.
5561.
5017.
4340.
8649.

0.604
2.763
0.175
1.531
0.245
0.587
4.031

77.
122.
141.
108.
86.
313.
139.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

6178.
5663.
4440.
4712.
4293.
4191.
2.310 '..250
1.320 7.770
1.430 9.920
1.710 7.550
0.330 8.579
0.710 9.856
6415. 3.340 2.510
81.
214.
93.
89.
58.
238.
115.
1.200
0.996
0.939
1.074
1.084
1.055
1.305
7417.
5645.
4172.
5063.
4655.
4425.
8373.
2.773
1.315
1.343
1.837
0.357
0.749
4.359
97.
213.
87.
95.
62.
251.
150.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

6178.
5767.
4704.
4714.
4571.
4349.
2.400 4.450
1.450 7.590
1.520 9. 920
1.910 6.87Q
0.760 8.570
0.830 8.910
6463. 3.210 2.253
93.
331.
105.
103.
70.
318.
120.
1.176
0.997
0.920
1.122
1.044
1.034
1.338
7269.
5749.
4327.
5292.
4772.
4497.
8649.
2.824
1.445
1.393
2.144
0.793
0.858
4.295
109.
330.
96.
115.
73.
328.
160.
0.042
0.244
0.113
0.062
0.350
0.455
0.029

6462.
6086.
4971.
4789.
4871.
4591.
2.680 4.280
1.670 7.560
1.350 10.040
1.720 6.350
1.040 8.600
1.300 8.730
6323. 3.280 2.200
105.
264.
109.
105.
70.
300.
122.
1.150
0.968
0.901
1.125
1.008
1.011
1.359
7437.
5895.
4481.
5390.
4911.
4642.
9393.
3.084
1.617
1.217
1.936
1.043
1.314
4.457
120.
255.
98.
118.
70.
303.
165.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

K c 1.0000 '.-.' *
W E
HC

285.931
1380.890
434.063
344.614
250.869
1974.914
250.831
— 4972 .315
311.528
1377.398
492.335
313.924
232.766
2013.659
242.839
~ 4984.452
305.334
1402.952
510.684
328.108
238.644
2046.262
253.824
~ 5062 .810
312.355
1438.564
528.820
334.208
245.570
2112.465
249.213
- 5221.199
- *ft£.5.1O&
I G H T
CO

0.025
0.674
3.020
0.094
0.012
0.267
0.116
1.211
0.116
0.321
0.158
0.113
3.017
0.341
0.126
1.195
3.118
0.352
0.165
0.132
0.039
0.390
3.124
1.324
0.129.
0.394
0.143
0.120
0.052
0.598
0.129
1C t T
.567
1 _•»?£.
0.
E 0
NO(K)

3.269
29.971
16.704
6.704
4.330
142.550
4.034
on? 5 •a *i
£\J 1 I 3 3 3
4.084
52.053
10.312
5.929
3.144
114.352
4.353
194.227
4.596
80.523
11.399
7.169
3.654
149.623
4.657
261.622
5.075
62.402
11.595
7.327
3.529
138.039
4.808
232.778
73i-r>A.n
                                                                          osu
KAWASAKI
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
AVERAGE
KAWASAKI
CYCLE
NUMBER
1
2
3
4
6
7
SUM 	
125F-6 RUN-6 8-24-72
B - COLD CYCLE
CONCENTRATION AS MEASURED DILUTION
HC CO C02 NO IK) FACTOR
4671. 2.910 4.060 46.
4498. 1.660 7.280 302.
3810. 1.440 9.920 97.
4879. 1.680 6.960 98.
4131. 1.510 8.180 62.
4154. 1.480 6.680 224.
7081. 3.220 2.150 116.
6034. 2.970 4(040 105.
5761. 1.570 7.450 261.
4888. 1.120 10.52Q 109.
5869. 1.560 7.700 105.
4971. 1.430 8(670 70.
4848. 1.640 9. 040 213.
7267. 3.500 3.040 117.

125F-6 RUN-6 B-.24-72
CONCENTRATION AS DETERMINED
HC CO NO(K)
4972.315 1.211 207.535
4984.452 1.195 194(227
5082(810 1(324 261(622
5221.199 1.567 232.778
4728.828 1.805 216.928
5187.887 1.649 187.360
	 ( TR I P COMPOS I TE ) — ' 	
1.373
1(118
0(982
1(107
1.082
1.042
1.271
1.201
1.002
0.886
0.978
0.982
0(960
1.145

ADJUSTED WEIGHTING
HC CO NO(K) FACTOR
6413. 3.995
5029. 1.856
3744. 1.415
5404. 1.861
4471. 1.634
4331. 1.543
9000. 4.092
7276. 3.569
S778. 1.574
4132. 0.992
5742. 1.526
4885. 1.405
4656. 1.575
8346. 4.008

63.
337.
95.
108.
67.
233.
147.
126.
261.
96.
102.
68.
204.
134.

0.042
0.244
0.118
0.062
0.053
0.455
0.029
0.042
0.244
0.113
0.062
0.050
0.455
0.029

B - COLD CYCLE
WEIGHTING W E
FACTOR HC
0.0875
0.0875
0.0875
0(0875
0.3250
0.3250
435.077
436.139
444.745
456.854
1536.869
1686.063
	 4995.750
I G H
CO
0.106
0.104
0.115
0(137
0.586
0.535
1.586
TED
NOIK1
18.159
16.994
22.891
20(368
73.501
60.892
209.808
K » 1.0000 W *
W E
HC
269. 3S6
1227.183
441.816
335.099
223.564
1970.759
261.018
4728.328
305.627
1409.876
511.238
356.056
244.276
2116.774
242.037
5187.387
4958.357
I G H T
CO
0.167
0.452
0(166
0.115
0.081
0.702
0.113
1.805
0.149
0.384
0.117
0.094
0.070
0.716
0.116
1.649
1.727
0.
E D
NOtK)
2.652
82.394
11.248
6(730
3(355
106.271
4.275
216.928
5.300
63.373
11.400
6.370
3(439
93.089
3(886
187(360
202(144
DILUTION FACTOR • 14(5/(C02+0(5«CO+10.8»HC)
                                                                          OJU
                                   B-ZZ

-------
 SUZUKI
                 RUN
                                                   B - COLO CYCLE
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 I OLE
t 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
••CYCLE
1 IDLE
Z 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM- 	
••CYCLE
1 IDLE
2 0-2!
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE



CONCENTRATION AS MEASURED
HC CO CO2 NOIIO
!•«
8462. 2.730 3.970
7047. 4.190 5.460
6969. 5.650 4.720
8261. 4.080 3>490
7172. 3.090 6.180
6268. 5.630 5.880
.8186. 3.690 2.980
2«»
7827.
6714.
5429.
5677.
5949.

2.910 4.480
3.410 6.790
4.880 6.740
4.120 5.730
2.520 7.080
5427. 4.560 7.180
7173. 4.010 3.950
"———""—(CYCLE COMPOSITE)——"-
69.
69.
69.
81.
81.
81.
105.

117.
117.
117.
117.
105.
117.
117.



DILUTION A D J U S
FACTOR HC CO
1.001
0.956
0.962
1.003
0.937
0.937
1.068

1.007
0.920
0.963
1.041
0.982
0.946
1.058
8477.
6737.
6704.
6288.
6721.
5877.
8749.

7887.
6182.
5232.
5913.
5842.
5136.
7590.
2.734
4.006
5.435
4.093
2.896
5.278
3.944

2.932
3.140
4.703
4.291
2.474
4.315
4.243
3«»
7581.
6615.
5566i
5831*
5739.
5363*
3.140 • 4.480
4.300 6.390
5.800 6.530
4.010 5.810
2.910 7.0*0
5.150 6.900
6724. 4.210 4.200
—————— ( CYCLE COMPOSITE)
129.
117.
117.
117.
117.
117.
117.
1.018
0.924
0.939
1.027
0.986
0.949
1.068
7720.
6115.
5226.
5991.
5663.
5093.
7186.
3.197
3.975
5.446
4.120
2.871
4.991
4.499

TED
MOIKI
69.
65.
66.
81.
75.
75.
112.

117.
107.
112.
121.
103.
110.
123.

131.
106.
109.
120.
115.
111.
125.

WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.05C
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029
4««
7301.
6006.
5704.
5906.
5756.
5008.
3.160 4.480
3.940 6.480
5.530 6.650
4.090 5.670
3.170 6.920
5.290 6.810
5490. 4.160 4.460
153.
117.
153.
153.
117.
117.
117.
1.039
0.970
0.930
1.028
0.984
0.975
1.162
7586.
5831.
5310.
&076.
5669.
4805.
6384.
3.304
3.824
5.148
4.207
3.122
5.160
4.837
158.
113.
142.
157.
115.
114.
136.
0.042
0.244
0.118
0.062
0.050
0.455
0.029


W E
HC
356.043
1643.985
791.158
513.887
336.098
2674.078
253.740
6568.992
331.289
1508.570
617.484
366.609
292.112
2336.940
220.134
5673.140
324.272
1492.194
616.751
371.449
283.178
2317.567
208.407

318.615
1422.907
626.603
376.734
283.470
2222.892
185.139
58J3.079

I G H T
CO
0.114
0.977
0.641
0.253
0.144
2.401
0.114
4.648
0.123
0.766
0.555
0.266
0.123
1.963
0.123
3.920
0.134
0.969
0.642
0.255
0.143
2.225
0.130

0.136
0.933
0.607
0.260
0.156
2.348
0.140
4.41&

E 0
NOIKI
2.903
16.096
7.833
5.036
3.795
34.556
3.254
73.479
4.952
26.288
13.307
7.555
5.155
50.381
3.590
111.232
5.517
26.392
12.964
7.453
5.773
50.560
3.626

6.676
27.709
16.807
9.759
5.761
51.932
3.945
Iomega
                                                                                            ftflj
                                                                                             PETRO-CHEM
                                                                                            COMPUTING tMi"
SUZUKI
                 RUN  2
                                                   8 - COLD CYCLE
                                                                           1.0000
                                                                                        489.

MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM——
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 13-30
7 50-20
SUM— 	
AVERAGE
SUZUKI
CYCLE
NUMBER
1
2
3
4
6
7
SUM—-
CONCENTRATION AS MEASURED
HC CO C02 NO((CI
6«»
6969. 3.710 5.360 93.
6334. 5.330 6.890 93.
5531. 5.130 7.110 117.
5157. 4.030 6.450 117.
5635. 3.250 6.830 93.
5397. 5.010 6.440 105.
6569. 4.270 4.230 129.
7**
7134. 3.370 4.560 141.
6598. 4.520 5.690 144.
5983. 5.910 6.100 141.
6232. 4.150 5.170 129.
5773. 3.520 6.860 117.
5515. 5.420 6.630 117.
6947. 3.750 4.160 125.
SUM OF CYCLES 6-7 	
RUN 2
CONCENTRATION AS DETERMINED
HC CO NOtK)
6568.992 4.648 73.479
5673.1*0 3.920 111.232
5613.820 4.502 112.287
5436.363 4.584 122.594
5486.118 4.6S5 99.754
5796.73* *.752 123.852
.— — (TRIP COMPOS I TE 1 	 — 	
DILUTION
FACTOR

0.983
0.884
0.926
1.033
0.997
0.981
1.077

1.039
0.961
0.934
1.037
0.976
0.947
1.071

A D J U S
HC CO

6854. 3.649
5601. 4.713
5125. 4.753
5328. 4.163
5619. 3.240
5296. 4.917
7076. 4.600

7415. 3.502
63*3. 4.347
5590. 5.522
6*65. 4.305
5635. 3.435
5227. 5.137
7*40. 4.016

T E 0
NOCK)

91.
82.
108.
120.
92.
103.
138.

146.
138.
131.
133.
114.
110.
133.

WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

287.902
1366.801
604.757
330.337
280.959
2410.131
205.227
5486. 118

311.447
15*8.419
659.737
400.883
281.754
2378.709
215.732
5796.73*
5641.426
I G H T
CO

0.153
1.150
0.560
0.258
0.162
2.237
0.133
4.655

0.147
1.060
0.651
0.266
0.171
2.337
0.116
4.752
4.703
E 0
noim

3.842
20.068
12.792
7.494
4.636
46.889
4.030
99.754

6.155
33.793
15.547
8.298
5.710
5C.464
3.382
123.852
111.803
B - COLD CYCLE
WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250
W E
HC
574.786
496.399
491.209
475.681
1782.988
1883.938
— 3705.004
I G H
CO
0.406
0.343
0.393
0.401
1.512
1.544
4.602
TED
NO (1C)
6.429
9.732
9.825
10.726
32.420
40.252
109.386






                                         B-23
DILUTION FACTOR •  14.5/(C02+0.5«CO+10.8'HC>

-------
SUZUKI
                   RUN-3
                                                           B - COLD CYCLE
                                                                                        1.0000
                                                                                                      489.
MODE

••CYCLE !••
             CONCENTRATION  AS
              HC     CO    C02
MEASURED
  NO IK)
DILUTION
 FACTOR
 ADJUST
HC     CO   N
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 30-20
••CYCLE 2»»
I IDLE
2 0-25
3 30
1 30-15
3 15
6 15-30
7 50-20
••CYCLE 3»«
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
7676.
6546.
6966.
7614.
6427.
5616.
2.720
2.320
3.400
3.420
2.650
2.600
5.050
5.570
4.860
4.980
7.080
7.610
7842. 3.340 4.260
37.
57.
57.
61.
69.
69.
72.
0.986
1.050
1.028
0.972
0.944
0.968
1.006
7571.
6878.
7161.
7403.
6072.
5438.
7896.
2.682
2.437
3.495
3.325
2.503
2.317
3.363
56.
59.
58.
59.
65.
66.
72.
0.042
0.244
0.116
0.062
0.050
0.455
0.029

8082.
6695.
3583.
6256.
6053.
5474.
7077.
•» ICYC
•~™ \ t. 1 1
7751.
6152.
5480.
5770.
5756.
5395.
7077.
2.950
2.910
3.420
3.370
3.000
2.790
3.320
ic fnuoQt
i»c mnru.
3.040 '
3.020
3.400
3.370
3.090
2.850
3.370
4*800
5.040
6.200
6.360
6.830
7.560
4.520

4.720
5.270
6.410
6.870
6.090
7.340
4.440
93*
93.
93.
93.
93.
9J.
10$.

117.
117.
105.
105*
9J.
93.
105*
0.966
1.056
1.040
0.979
0.975
0.976
1.048

0.992
1.080
1.033
0.980
1.046
0.993
1.053
7610*
7072.
5807.
6128.
5903.
5346.
7*23.

7692.
6645.
5664.
5658.
6025.
5361.
7453.
2.850
3.074
3.557
3.301
2.925
2.685
3.462

3.016
3.262
3.514
3.304
3.234
2.832
3.549
89.
98.
96.
91.
90.
90.
110.

116.
126.
108.
102.
97.
92.
110.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029
SUM— — .—.. (CYCLE COMPOS I TE ) ------ .—.——— .—-.—..———————————
••CYCLE 4»«
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 13-30
7 50-20
5UM —•..—..••
1UFP1KF CUM

7581.
6882.
5635.
5946.
5791.
5421.
6819.
— tCVf

3.040
3.010
3.500
2.810
3.230
2.690
3.340
i e miMoru

4.690
4.870
6.470
6.980
6.120
7.330
4.330
E f TC * __

117.
117.
105.
117.
105*
93.
103.


1.007
1.050
1.013
0.979
1.036
0.997
1.084


7634.
7227.
5711.
5822.
6002.
5409.
7396.


3.061
3.160
3.547
2.731
3.347
2.684
3.623


117.
122.
106.
114.
106.
92.
113.


0.042
0.244
0.118
0.062
0.050
0.435
0.029

	 1 k T^lvW ^wnr**^ « 1 b f 	
                                                                                                           COMPUTING, INC
SUZUKI
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 IS
6 13-30
7 30-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 30-20
SUM— —
AVERAGE
SUZUKI
CYCLE
NUMBER
1
2
3
4
6
7
SUM-—
RUN-3
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6»»
5548. 3.140 4.720 46.
4461. 3.040 4.460 57*
4836. 3.520 6.800 69.
5450. 3.460 6.990 69*
5309. 3.180 6.680 69.
5079. 2.780 7.320 69.
7390. 3.460 3.630 93.
7»«
7525. .140 4.640 105.
6635. .120 4.260 93.
5825. .670 5.650 105*
5958. .470 6.690 105*
3739. .040 5.430 81.
3440. 2.880 7.250 69.
6726. 3.360 4.260 93.
SUM OF CYCLES 6-7 — 	 ...... 	
RUN-3
CONCENTRATION AS DETERMINED
HC CO NO(K)
6307.731 2.694 63.324
6061.974 2.963 93.866
5920.371 3.095 105.026
6095.250 2.963 105.564
5340.891 3.367 72.342
6190.595 3.218 87.598
———(TRIP COMPOSITE) 	

DILUTION
FACTOR
1.180
1.342
1.052
0.992
1.035
1.021
1.086
1.011
1.116
1.037
0.962
1.102
0.995
1.096
—————————
WEIGHTING
FACTOR
0.0875
0.0875
0.0375
0.0875
0.3250
0.3250
B - COLO
CYCLE
ADJUSTED
HC CO NO(K)
6549. 3.707
5990. 4.0»2
5087. 3.703
5410. 3.434
5497. 3.292
5168. 2.839
6031. 3.760
7610. 3.175
7406. 3.463
6043. 3.807
5736. 3.341
6329. 3.352
5415. 2.867
7374. 3.684

B - COLD
W E I
HC
551.926
530.422
516.032
533.334
1800.769
2011.943
	 5946.449
54.
76.
72.
66.
71.
70.
101.
106.
103.
106.
101.
89.
68.
101.
CYCLE
G H
CO
0.235
0.259
0.270
0.261
1.094
1.046
3.167
K « 1.0000 W •=
WEIGHTING WEIGHT
FACTOR HC CO
0.042 275.099 0.155
0.244 1461.677 0.996
0.118 600.338 0.436
0.062 335.447 0.212
0.030 274.857 0.164
0.455 2360.545 1.292
0.029 232.924 0.109
0.042 319.643 0.133
0.244 1807.715 0.850
0.118 713.120 0.449
0.062 355.668 0.207
0.050 316.453 0.167
0.455 2464.119 1.304
0.029 213.873 0.106
	 — 6190.595 3.218
	 3865.743 3.293
TED
NO(K)
5.540
6.213
9.189
9.236
23.511
28.469
64.161
489.
E 0
NOIK)
2.260
13.676
8.565
4.246
3.572
32.068
2.931
72.342
4.460
25.337
12.654
6.268
4.466
31.254,
2.957
67.598
79.970
                                                 B-24
DILUTION FACTOR • 14.5/1C02+0.5»CO+10.8»HC)

-------
SUZUKI
MODE
••CYCLE
1 IDLE-
2 0-25
3 30
4 30-15
5 15
ft 15-30
7 50-20
SUM 	
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
••CYCLE
1 [OLE
? 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-?0
AVERAGE
T250 RUN-4
CONCENTRATION AS MEASURED
HC CO C02 NOIKI
8526. 2.970 3.500 35.
8366. 3.200 4.920 51.
7179. 6.110 4.540 60.
6756. 5.270 4.490 58.
8606. 4.120 5.020 64.
7586. 4.730 5.610 64.
8831. 3.800 2.360 77.
12016. 3.750 3.050
10116. 4.600 4.160
8B65. 6.020 3.470
8556. 6.020 3.390
8925. 4.160 5.050
8017. 5.890 5.570
6439. 3.710 2.900
.— ___— _ f CYCLE COMPOSITE)——" 	
103.
87.
86.
81.
77.
77.
87.
- COLD CYCLE
DILUTION ADJUSTED WEIGHTIN
FACTOR HC CO NOU) FACTOR
1.021 8710. 3.034 56. 0.042
0.932 7798. 2.982 47. 0.244
0.94* 6782. 5.772 56. 0.118
1.005 6792. 5.298 58. 0.062
0.885 7620. 3.648 56. 0.050
0.896 6803. 4.242 57. 0.455
1.050 9280. 3.993 JO. 0.029
0.809
0.833
0.903
0.915
0.864
0.844
1.045
9732.
8*37.
8006.
7(31.
7717.
6769.
8822,
3.037
3.136
5.437
5.510
3.597
4.973
3.878
83.
72.
77.
7*.
66.
65.
90.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
3»» 	
12711. 3.560
10951. 4.760
8986. 6.640
8674. 6.160
9977. 4.400
8584. 5.650
3.100
4.200
4.080
3.940
4.870
5.060
8613. 4.230 3.090
103.
95.
90.
90.
77.
77.
89.
0.779
0.767
0.847
0.884
0.812
0.845
0.999
9904.
8626.
7617.
7674.
8106.
7255.
8608.
2.774
3.749
5.628
5.450
3.575
4.775
4.227
80.
74.
76.
79.
62.
65.
88*
0.042
0.244
0.118
0.062
0.050
0.455
0.029

10039. 3.700
9644. 3.000
8506. 6.620
8339. 6.300
9394. 4.360
8219. 5.740
3.200
3.810
4.190
4.180
5.010
5.650
8675. 4.350 2.760
103.
91.
90.
90.
90.
90.
90.
0.912
0.866
0.866
0.887
0.836
0.833
1.013
915».
6J«0.
7391.
7401.
7857.
6850.
8793.
3.375
4.334
5.752
5.591
3.646
4.78*
4.409
93.
78.
78.
79.
75.
75.
91.
0.042
0.2*4
0.116
0.062
0.050
0.455
0.029

K - 1.000
IG WE
HC
365.635
1902.820
800.300
421.152
381.041
3095.559
269.136
— 7235.848
406.760
2058.812
944.800
465.581
385.868
3079.893
255.863
— 7619.582
416.006
2104.876
898.868
475.833
405.338
3301.111
249.655
~ 7851.691
384.703
2040.024
872.189
458.907
392.872
3116.994
255.022

'0 W •
I G H T
CO
0.127
0.727
0.681
0.328
0.182
1.930
0.115
4.093
0.127
0.936
0.641 •
0.341
0.179
2.262
0.112
4.601
0.116
0.914
0.664
0.337
0.178
2.172
0.122
4.507
0.141
1.057
0.678
0.346
0.132
2.176
0.127

489.
E D
NO(K)
2.359
11.599
6.688
3.615
2.833
26.115
2.346
55.560
3.503
17.702
9.165
4.597
3.329
29.581
2.637
70.517
3.370
18.259
9.002
4.937
3.128
29.611
2.579
70.890
3.947
19.249
9.22S
4.952
3.763
34.131
2. 645
Afi.721
SUZUKI T250
                   RUN-4
                                                           - COLO CYCLE
                                                                                K - 1.0000
                                                                                                  469.
MODE
••CYCLE
1 IDLE
? 0-25
t 30
4 30-15
5 15
6 15-30
7 50-20
*»CYCI.E
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGF

SUZUKI
CYCLE
NUMBER
1
2
3
4
6
7
SUM 	
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6»*
5161. 4.020 3.230 103.
5329. 3.140 4.130 90.
5281. 7.180 4.450 103.
5303. 6.000 4.770 103.
6957. 4.540 5.050 10).
6210. 5<500 5.880 98.
7490. 4.530 2.450 91.
7*»
9046. 3.890 3.130 117.
8793. 5.160 4.460 107.
7747. 7.150 4.130 103.
7825. 6.140 4.130 117.
8885. 4.790 4.600 103.
7962. 3.880 5.220 103.
8527. 4.740 2.280 98.
SUM OF CYCLES 6-7 	

T250 RUN-4
CONCENTRATION AS DETERMINED
HC CO NO(K)
723S.846 4.093 55.560
7619.582 4.601 70.517
7851.691 4.507 70.890
7520.713 4.712 77.919
6072.442 5.716 101.360
7307.987 5.045 93.401
	 -(TRIP COMPOS I TE 1 	
DILUTION
FACTOR

1.340
1.164
1.053
1.074
0.977
0.945
1.132
0.976
O.B7»
0.902
0.926
0.873
0.865
1.046


A D J U S
HC CO

6920.
6203.
5371.
5696.
6800.
5871.
8481.
8835.
7710.
6989.
7249.
7765.
6888.
8921.



5.390
5.983
7.575
6.445
4.437
5.199
5.129
3.799
4.524
6.450
S.688
4.186
5.087
4.959

~ rrt
TED WEIGHTING
NO(K) FACTOR

138.
104.
108.
110.
100.
92.
107.
114.
93.
92.
108.
90.
69.
102.

i n rvri P


0.042
0
0
0
0
0
0
0
0
0
0
0
0
0


.244
.118
.062
.050
.455
.029
.042
.244
.lie
,06i
.050
.495
.029


W E
HC

290.649
1513.730
657.460
353.212
340.027
2671.363
245.977
6072.442
371.110
1881.277
824.745
449.471
386.264
3134.400
Z58.717
7307.987
6690.215

I G H T
CO

0.
1.
U.
0.
0.
2.
0.
s,
0.
1.
0.
0.
0.
2.
0.
5.
5.


226
460
893
399
221
365
148
716
159
103
761
352
209
314
143
045
380

E D
NO(K)

5.800
25.564
12.823
6.860
5.034
42.157
3.119
101.360
4.799
22.892
10.965
6.720
4.500
40.546
2.973
93.401
97.3SO


WEIGHTING
FACTOR
0.0873
0.0879
0.0875
0.087!
0.3250
0.3250


6
6
61
6
19'
23

W E
HC
33.136
66.713
87.022
58.062
73.543
73.096
»3.575
I G H
CO
0.358
0.402
0.394
0.412
1.857
1.639
5.063
T

E D
NO(IC)
4.861
6.170
6.202
6.817
32.942
30.355
87.350








                                                 B-25
DILUTION FACTOR  • 14.5/(C02+0.5»CO+10.8«HC)

-------
SUZUKI T?50
                  RUN-5
                                                         S - COLD CYCLE
                                                                                     1.0000
                                                                                                   489.
MODE
••CYCLF
1 IDLE
7 0-75
? 30
4 30-11;
5 15
ft IS-'O
7 50-20
••CYCLF
1 IDLF
2 0-2 •>
3 30
4 30-15
5 15
6 15-30
7 50-20

••CYCLE
1 IDLE
2 0-75
3 30
4 30-15
5 15
6 15-30
7 50-?0

••CYCLE
1 IDLF
2 0-75
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— — — -
AVERAGF
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
!•»
8805. 2.610
9011. 2.870
8152. 5.980
7957. 5.610
9712. 3.780
7840. 4.840

3.130
3.«70
3.300
3.270
4.450
5.040
7440. 4.000 2.690

77.
77.
77.
77.
77.
77.
88.
DILUTION
FACTOR

1.039
0.964
0.960
0.988
0.861
0.910
1.139
ADJUSTED
HC CO NO U )

9155.
8689.
7831.
7865.
8367.
7137.
8477.

2.713
2.767
5.744
5.545
3.256
4.406
4.557

80.
74.
73.
76.
66.
70.
10D.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

6387. 3.190
8057. 3.590
6993. 5.960
6760. 5.100
7518. 3.730
6561. 4.180
6452. 4.240

2.790
3.630
3.560
3.660
4.840
5.960
3.370

81.
77.
77.
77.
77.
77.
89.

1.078
1.026
1.028
1.071
0.978
0.957
1.163

9046.
8269.
7195.
7244.
7353.
6285.
7509.

3.440
3.684
6.132
5.465
3.648
4.004
4.934

87.
79.
79.
82.
75.
73.
103.

0*042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

384.544
2120.181
924.070
487.664
418.397
3247.551
245.852
— 7826.263

379.952
2017.877
849.038
449.141
367.673
2859.340
217.774
_ TlAl-OOt

6085. 2.570
5983. 3.420
5419. 5.490
5355. 5.430
5610. 3.440
5161. 3.750
6092. 4.420

3.130
3.900
4.840
4.420
4.910
6.030
3.160

77.
77.
90.
89.
77.
77.
77.

.319
.201
.079
.122
.142
1.075
1.213

8030.
7186.
5847.
6010.
6410.
5551.
7392.

3.391
4.107
5.924
6.094
3.931
4.034
5.363

101.
92.
97.
99.
87.
82.
93.

0.042
0.244
0.118
0.062
0.050
0.455
0.029

337.292
1753.519
690.001
372.657
320.538
2526.151
214.378
	 rill. e /. ft

5505. 2.280
5409. 2.910
4991. 5.190
4575. 4.900
4923. 2.820
4679. 4.010
3.020
4.090
5.500
5.890
5.750
6.040
5819. 4.870 3.350
77.
77.
103.
89.
77.
77.
84.
.434
.273
.075
.091
.162
.107
.201
7698.
6887.
5366.
4994.
5721.
5179.
6990.
3.271
3.705
5.580
5.349
3.277
4.439
5.650
110.
98.
110.
97.
89.
85.
100.
0.042
0.244
0.118
0.062
O.OSO
0.455
0.029
331.757
1660.645
633.253
309.684
286.064
2356.768
202.732
CO A A M/M.

I G H T
CO

0.113
0.675
0.677
0.343
0.162
2.304
0.132
4.110

0.144
0.899
0.723
0.338
0.162
1.821
0.143
4.253

0.142
1.002
0.699
0.377
0.196
1.835
0.155
f^ AQO

0.137
0.904
0.658
0.331
0.163
2.019
3.169
4.789
E D
NO(K)

3.362
18.117
6.728
4.719
3.317
31.895
2.907
73.048

3.669
19.284
9.348
5.115
3.765
33.563
3.004
77.751

4.268
22.567
11.459
6.193
4.399
37.689
2.709
89 .267

4.640
23.924
13.068
6.024
4.474
36.764
2.926
QO O f.'l
7 y • o *t '
63.482
SUZUKI  T750
                  RUN-5
                                                         S  -  COLD CYCLE
                                                                                 K « l.OOCO    W =
                                                                                                   489.
MODE
••CYCLE
1 IDLF
2 0-25
3 10
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLF
2 0-25
•? 30
4 30-15
5 15
6 15-30
' 50-20
S"M 	
AVERAGE
SUZUKI
CYCLE
NUMBER
1
2
1
4
6
7
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6*»
3487. 7.440 3.040 77.
3926. 3.700 4.910 77.
4291. 5.470 5.800 103.
4171. 5.010 5.510 89.
4426. 2.820 6.050 77.
4562. 3.960 6.000 77.
5920. 4.030 2.660 90.
7**
5350. 2.060 3.060 77.
4861. 3.170 3.460 80.
4991. 5.360 5.500 103.
4839. 5.120 9.340 99.
5121. 3.010 6.310 77.
4779. 4.180 6.050 77.
5967. 3.090 3.090 66.

T250 RUN-5
CONCENTRATION AS DETERMINED
HC CO NO(K)
7628.263 4.110 73.048
7141.296 4.253 77.751
6214.540 4.409 89.287
5800.906 4.385 93.643
5203.371 4.769 97.719
5636.235 4.598 '7.646
DILUTION
FACTOR
1.806
1.316
1.101
1.158
1.164
1.123
1.310
1.467
1.408
1.068
1.104
1.066
1.090
1.308


A
HC
6299.
5175.
4724.
4830.
5244.
5125.
7755.
7853.
6846.
5332.
5345.
5565.
5209.
7809.


WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3290
0.3250
D J U S T E D WEIGHTING
CO NO(K) FACTOR
4.408
4.877
6.022
5.802
3.340
4.448
5.279
3.053
4.464
5.727
5.655
3.269
4.556
4.044

S - COLO
W E I
HC
684.973
624.863
543.772
507.579
1691.095
1896.776
139.
101.
113.
103.
91.
86.
117.
113.
112.
110.
109.
83.
83.
112.

CYCLE
G H
CO
0.359
0.372
0.385
0.383
1.556
1.494
4.552
0
0
0
0
0
0
0
0
0
0
0
0
0
0


T

.042
.244
.118
.062
.050
.455
.029
.042
.244
.118
.062
.050
.455
.029


E D
NO»K>
6.391
6.803
7.812
8.211
31.758
31.735
92.712
W E
HC
264.589
1262.735
557.502
299.506
262.231
2331.904
224.902
5203.371
329.839
1670.560
629.287
331.420
278.260
2370.400
226.468
3836.235
5519.803
I
0
1
0
0
0
2
0
4
0
1
0
0
0
2
0
4
4
G H T
CO
.185
.190
.710
.359
.167
.024
.153
.789
.128
.089
.675
.350
.163
.073
.117
.598
.694
E D
NOIK)
5.842
24.765
13.382
6.390
4.560
39.359
3.419
97.719
4.747
27.493
12.986
6.780
4.182
38.192
3.263
97.646
97.683
                                                  B-26
DILUTION FACTOR  •  14.5/IC02+0.5»CO+10.8*HC>

-------
 SUZUKI T250
                 RUN-6
	 	 	 —.._________ 	 	 	 a *-ULL> LILLE. K a 1.0000 K 489.
MODE
••CYCLE 1««
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 2«»
1 IDLE
2 0-75
3 30
4 30-15
5 15
6 15-30
7 5C-20
»*CYCLE 3*«
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15- JO
7 50-20
«»CYCLE 4«»
1 IDLF
2 0-25
3 30
4 3C-15
5 15
6 15-30
7 50-20
AVERAGF SUM
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6845.
6740.
5557.
5248.
5908.
5331.
5874.

6956.
6864.
5523.
5140.
1.990
9.930
6.020
5.310
1.910
3.160
4.640
:LE COMPO
3.360
3.500
5.400
5.450
5.750
6.690
5.240
6.050
7.560
7.960
4.240

4.840
5.810
6.910
6.820
5715. 3.070 7.190
531H. 4.360 7i440
5700. 4.600 4.520
51.
58.
77.
77.
51.
64.
85.

77.
77.
90.
84.
64.
67.
92.
DILUTION A 0
FACTOR HC
1.025
0.76S
1.017
1.008
0.973
0.947
1.123

1.032
0.968
0.930
0.960
0.973
0.943
1.117
7020.
5161.
5653.
5294.
5751.
5053.
6600.

7182.
6647.
5141.
4937.
5562.
5019.
6369.
JUSTED
CO NO(K)
2.041
7.604
6.124
5.356
1.859
2.995
5.213

3.490
3.389
5.027
5.234
2.988
4.114
5.140

6735.
6681.
5623.
5126.
5627.
5152.
3.330
3.830
5.500
5.090
3.520
4.400
5.270
6.040
7.000
7.600
7.180
7.630
6391. 4.910 3.680
77.
81.
90.
99.
64.
72.
79.
1.020
0.955
0.916
0.924
0.965
0.941
1.112
6873.
6385.
5152.
4739.
5433.
4852.
7108.
3.398
3.660
5.040
4.706
3.399
4.144
5.460
52.
44.
78.
77.
49.
60.
95.

79.
74.
83.
80.
62.
63.
102.
e
78.
77.
82.
91.
61.
67.
67.
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

6790.
6745.
5609.
5239.
5837.
5438.
3.660
4.210
5.270
5.470
3.820
4.960
5.390
6.100
7.000
7.530
7.490
7.500
6507. 4.600 3.750
77.
77.
90.
77.
77.
77.
87.
0.996
0.936
0.923
0.910
0.923
0.914
1.108
6765.
6314.
5182.
4770.
53S9.
4973.
7214.
3.646
3.941
4.869
4.981
3.527
4.536
5.100
76.
72.
83.
70.
71.
70.
96.
0.042
0.24'i
o.iia
0.062
0.05C
0.455
0.029

WEIGHT
HC CO
294.859 0.085
1259.420 1.855
667.156 0.722
328.254 0.332
287.553 0.092
2299.154 1.362
191.416 0.151
- 5327.816 4.603
301.670 0.146
1621.895 0.827
606.738 0.593
306.094 0.324
278.131 0.149
2283.701 1.872
184.714 0.149
- 5582.944 4.062
288.667 0.142
1558.116 0.893
608.042 0.594
293.874 0.291
271.660 0.169
2208.000 1.885
206.133 0.153
- 5434.495 4. 136
284.137 0.153
1540.634 0.961
611.557 0.574
295.787 3.308
269.475 0.176
2263.111 2.064
209.228 0.147
- 5473.931 4.386
- riA*/._'7O7 A.3O7
E D
NO IK)
2.196
10.837
9.244
4.816
2.462
27.601
2.769
59.949
3.339
18.194
9.387
5.003
3.114
28.771
2.981
71.290
3.300
18.390
9.732
5.675
3.089
30.357
2.548
74.093
3.222
17.567
9.81Z
4.347
3.554
32.044
2.797
71 H A 7
r 3 • JO /
AC _*7

4.182
21.954
10.87*.
6.4C2
3.903
34.352
3.C86
84.753

3.859
20.56C
10.663
5.719
3.582
33.246
3.371
81.303
82.879


DILUTION FACTOR  « 14.5/IC02+0.5»CO+10.8«HCI
                                             B-27

-------
TRIUMPH
               RUN
                                              B - COLD CYCLE
                                                                    1.0000
                                                                                567.
CONCENTRATION AS MEASURED DILUTION ADJUSTED
MODE
••CYCLE
1 IDLE
2 0-23
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
"CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 30-20
i*t m»— •••
SUM™" •
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 30-20
SUM—
AVFRAGF
MC
!»•
1063.
720.
416.
4761.
730.
672.
7521.
CO C02

7.480 6.950
5.220 9.520
7.760 9*300
3.700 6.090
8*620 8*080
6.310 9.890
3*520 4.740
NO(K)

153.
532.
227.
203.
198*
610.
485.
FACTOR

.224
.123
• 063
.029
• 100
.092
0.991
MC

1302.
808.
4*2.
4902.
803.
707.
7457.
CO

9*161
5.863
8.255
5.869
9.484
6.644
3.490
NO(K)

187.
597.
241.
209.
217.
642.
480.
WEIGHTING
FACTOR

0.042
0.244
0.116
0.062
0*010
0.455
0.029
•"•• ••• it T CLE COMPOS ITE |— ™™~~~™— ™»"' »-»—••—•--—»•-—"•»•—•->•-»-»—--——»»•»—--—
2»«
3283.
1436.
1009.
3904.
1103.
937.

8*830 4.880
7.740 8.610
8.910 8*530
6.520 5.300
9.540 7.580
6*790 9.580
7634. 4.020 4.640
*ou^> f v«un«» wpk

215.
598.
239.
231.
210.
724.
448.

1.129
1.093
1*030
0.970
1.070
1.036
0*973

3707.
1484*
1039.
5731.
1183.
971.
7431.

9.971
7.998
9.179
6.329
10.213
7.039
3.913

242.
617*
246.
224.
224.
750.
436*

0.042
0.244
0.118
0.062
0.050
0.455
0.029
•_———_— lv.Tt.Lc tOM~V3 i I C 1 '• _-.-—_-.—— __—_— —-_-—-—.._ - . — — — 	 —
3»«
3892.
1752.
937.
5361.
1317.
1024.
7042.
9.090 ' .880
7.620 .030
9.660 .110
6.920 .990
9*540 .390
8.170 .810
5.630 .710
239.
551.
264.
242.
219*
433.
283.
1.067
0.984
1.039
1.018
1.067
1*035
1.026
4111.
1724.
973.
5456.
1405.
1060.
7226.
9.702
7.499
10*039
7.046
10*184
8*461
5.777
255.
542.
274.
246.
229.
448*
290.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
.— - — ( CYCLE COMPOS I TE ) ——-----— ---------- .------ — — ____________
4»»
2335.
1537.
1063.
4777.
1601.
1147.
8199.

9.270 6*470
8*330 7.480
9.700 7.750
7.690 5.500
9*900 7.230
8.940 8.280
5.190 3.540

239.
440.
239.
239.
226.
399.
290.

1*064
1.089
1.094
0.999
1.042
1.036
0.967

2484.
1675.
1121.
4775.
1669.
1188.
7931*

9.864
9.078
10.230
7.687
10.320
9.266
5.020

254.
479.
252.
238.
235.
413.
280.

0*042
0*244
0.118
0.062
0.050
0.455
0.029

W E
HC

54.685
197.353
52.224
303.946
40.160
321.951
216.279
1186.600

155.704
362.099
122.659
355.355
59.152
441.972
215.519
i TI y . AA?
1 I Ac .4O£
172.678
420.751
114.909
338*453
70.298
482.528
209.560
1809.180

104.354
408.712
132.294
296.089
83.450
540.958
229.999
1795.859
1 A?A.n?li
I G H T
CO

0.384
1.430
0.974
0.363
0.474
3.023
0.101
6.7S2

0.418
1.951
1.083
0.392
0.510
3.202
0.113
7it7«
• O ' 3
0.407
1.829
1.164
0*436
0.509
3.649
0.167
8.385

0.414
2.215
1.207
0.476
0.516
4.216
0.145
9.191
n.nnn
E D
NOIK)

7.870
145.822
26.497
12.959
10.892
292.247
13.946
512.237

10.196
150.790
29.054
13.903
11.241
341.503
12.647
CiQ 4*7
2O7 • J<9 '
10.713
132.325
32.375
15.278
11.476
204.037
8.421
414.628

10.681
117.002
29.744
14.813
11.780
188.179
8.135
380.337
&&O.1 1*
TRIUMPH
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-13
5 IS
6 15-30
7 50-20
SUM--
AVERAGE
TRIUMPH
CYCLE
NUMBER
1
2
3
4
6
7
Clltlai ••
RUN 1

CONCENTRATION AS MEASURED DILUTION
HC CO C02 NOIK) FACTOR
6*»
2333. 9.780 5.890 169.
1130* 8.430 8*500 429.
647. 9.900 8.080 202.
4875* 6.890 4.960 192.
1316. 10.530 6.950 177.
892. 9.330 8.200 386.
8248. 5.040 3.260 238.
2498. 9.660 6.200 302.
1607. 9.070 7.660 361.
893. 10.200 7.290 214.
5267* 7.020 5*280 206.
1746. 10.710 6.740 202.
1197. 9.850 7.880 318.
7547. 5.610 3.550 257.

RUN 1
CONCENTRATION AS DETERMINED
HC CO NOIK)
1186.600 6.752 512.237
1712.462 7.673 569.337
1809.180 8.385 414.628
1799.159 9.191 380.337
1526.630 9.430 333.643
1811.654 9.817 312.530
_______ I TO t D rnuDAc t re 1 __________
1.090
1.040
1.056
1.060
1.063
1.048
0.987
1.059
1.040
1.085
1*001
1.037
1*031
0.999



A
HC
2543.
1175.
683.
5170.
1399.
935.
1142.
2604.
1672.
971.
9274.
1810.
1193.
7944.


B - COLD
CYCLE
K « 1.0000 W »
D J U S T E D WEIGHTING
CO NOIK) FACTOR
10.662
8.771
10.496
7.308
11.196
9.783
4.975
10.235
9.440
11.073
7.030
11.107
10.162
5.607

B - COLD
WEIGHTING WEI
FACTOR HC
0.0879
0*0875
0.0875
0.087S
0.3250
0.3250
103.827
149.840
158.303
137.137
496.154
588.787
179.
442.
213.
203.
188.
404.
234.
319.
375.
232.
206.
209.
328.
256.

CYCLE
G H
CO
0.590
0.671
0.733
0.804
3.064
3.190
0*042
0.244
0.118
0.062
0*050
0.455
0.029
0.042
0.244
0.118
0.062
0.050
0.455
0.029
-

TED
NOIK)
44.820
49.817
36.280
33.279
114.934
101.572
W E
HC
106.829
286.690
80.634
320.601
69.967
425.572
236.133
1526.630
109.367
408.136
114.650
327.042
90.542
543.119
218.776
1811.654
1669.142
I G H T
CO
0.447
2.140
1.233
0.453
0.559
4.451
0.144
9.430
0.429
2*303
1.306
0.435
0.555
4.623
0.162
9.817
9.624
567.
E D
NOIK)
7.555
107.901
25.175
12.626
9.410
184.160
6.613
353.643
13.439
91.684
27.413
12.791
10.475
149.275
7.450
312.330
333.086
                                        B-28
DILUTION FACTOR • 14.5/IC02+0.5»CO+10.9«HC1
IUU

-------
 TRIUMPH
                   RUN
                                                          B - COLO CYCLE
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
••CYCLE
1 IDLE
2 0-25
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20

CONCENTRATION AS MEASURED
HC CO C02 NOIKI
895. 5.700 4.880
1109. 6.080 5.130
375. 4.730 5.770
3257. 4.370 4.730
1147. 6.410 5.490
848. 5.400 5.700
7469. 2.270 3.450
	 -(CYCLE COMPOSITE) 	
4905.
2203.
6.260 3.360
5.710 5.130
979. 9.37O 9.220
4899. 4.870 4.340
1659. 6.420 3.510
1128. 5.540 5.820
7425. 2.770 3.480
69.
267.
141.
124.
93.
429.
364.

141.
451.
165.
145.
121.
357.
310.
DILUTION A
FACTOR HC
1.667
1.547
1.697
1.389
1.459
1.556
1.146

1.230
1.399
1.617
1.201
1.703
1.478
1.125
1492.
1716.
636.
4526.
1674.
1319.
8560.

6033.
3082.
1583.
5887.
2826.
1667.
8356.
0 J U S T E 0
CO NO(K)
9.503
9.411
8.031
6.073
9.356
8.405
2.601

7.700
7.988
6.688
5.852
10.936
8.190
3.117
115.
413.
239.
172.
135.
667.
417.

173.
630.
266.
174.
206.
527.
348.
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

5580.
3023.
1105.
4727.
2300.
1407.
6.010 • 3.070
5.910 4.690
6.710 5.340
4.800 3.840
6.870 4,880
5.960 5.760
7176. 3.380 2.730
153.
371.
157.
157.
141.
316.
193.
1.198
1.329
1.466
1.278
1.342
1.413
1.191
6686.
4017.
1620.
6041.
3088.
1988.
8549.
7.201
7.854
9.839
6.134
9.224
8.423
4.027
1'S3.
493.
230.
200.
189.
446 1
229.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
4*«
5298.
2744.
1231.
4719.
2541.
1941.
7179.

6.280 3.120
5.950 4.790
6.630 5.310
5.290 4.050
6.930 4.640
6.340 5.450
2.660 3.400

177.
460.
165.
169.
165.
335.
371.

1.210
1.351
1.456
1.229
1.336
1.353
1.161

6411.
3708.
1793.
5802.
3396.
2626.
8338.

7.599
8.041
9.657
6.505
9.261
8.578
3.089

214.
621.
240.
207.
220.
453.
430.

0.042
0.244
0.118
0.062
0.050
0.455
0.029


W E
HC
62.674
418.847
75.131
280.663
83.712
600.555
248.247
1769.832
253.418
752.029
186.901
365.011
141.308
758.747
242.332
2699.749
280.812
980.341
191.199
374.571
154.412
904.783
247.944

269.281
904.903
211.587
359.782
169.801
1194.980
241.824

»7^8.055
I G H T
CO
0.399
2.296
0.947
0.376
0.467
3.824
0.075
8.387
0.323
1.949
1.025
0.362
0.546
3.726
0.090
8.024
0.302
1.916
1.161
0.380
0.461
3.832
0.116

0.319
1.962
1.139
0.403
0.463
3.903
0.089

8.716
E D
NOCKJ
4.831
100.840
28.249
10.685
6.787
303.818
12.098
467.311
7.284
153.956
31.500
10.803
10.306
240.135
10.117
464.104
7.699
120.313
27.165
12.440
9.466
203.206
6.668

8.996
151.696
28.360
12.884
11.026
206.243
12.497

447. S7fl
                                                                                                         COMPUTING INC
TRIUMPH
                   RUN
                                                          8 - COLD CYCLE
                                                                                      1.0000   W •   567.

MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM—
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
TRIUMPH
CYCLE
NUMBER
1
, 2
3
4
6
7
SUM— —
CONCENTRATION AS MEASURED
HC CO C02 NO IK)
6»»
5004. 6.160 3.280 93.
2434. &.370 5.270 308.
1021. 6.540 4.640 93.
3458. 4.740 3.400 81.
2481. 7.300 4.820 141.
1535. 6.010 5.720 377.
6941. 3.590 2.230 134.
— ——(CYCLE COMPOSITE) 	
7**
4854. 6.620 3.580 141.
3000. 6.250 5.100 323.
1359. 7.210 5.020 141.
4389. 5. 080 3.030 133.
3043. 7.570 4.480 129.
2063. 6.520 5.400 267.
6390. 2.790 2.970 340.
——-(CYCLE COMPOSITE)——-—-
SUM OP CYCLES 6-7 	
RUN 2
CONCENTRATION AS DETERMINED
HC CO NO(K)
1769.832 .387 467.311
2699.749 .024 464.104
3134.065 .171 386.960
3352.160 .280 431.704
2946.934 .466 382.061
3462.061 .456 324.825
— — -(TRIP COMPOSITE)——
DILUTION
FACTOR

1.232
1.308
1.608
1.525
1.300
1.396
1.258
_________

1.195
1.264
1.436
1.406
1.255
1.331
1.287

A 0 J U S
HC CO

6167. 7.592
3184. 8.333
1642. 10.521
5275. 7.231
3226. 9.493
2143. 8.393
8735. 4.518
— — — —

5801. 7.911
3794. 7.904
1952. 10.358
6172. 7.144
3819. 9.502
2747. 8.682
8224. 3.590

TED
HOIK)

114.
402.
149.
123.
183.
526.
168.
— —

166.
408.
202.
187.
161.
355.
437.

WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029
— — -- — -

0.042
0.244
0.118
0.062
0.050
0.455
0.029

W C
HC

259.040
776.949
193.830
327.076
161.328
975.378
253.330
2946.934

243.653
925.774
230.388
382.702
190.987
1250.054
238.500
3462.061
3204.497
I G H T
CO

0.318
2.033
1.241
0.448
0.474
3.818
0.131
9.466

0.332
1.923
1.222
0.442
0.475
3.950
0.104
8.456
8.461
E C
NO(K)

4.814
98.315
17.655
7.661
9.168
239.555
4.890
382.061

7.077
99.675
23.903
11.597
8.096
161.786
12.690
324.825
353.443
B - COLD CYCLE
WEIGHTING
FACTOR
0.08TS
0.0875
0.0875
0.0875
0.3250
0.3250

W E
HC
154.860
236.228
274.230
293.314
957.733
1125.169
— 3041.556
I C H
CO
0.733
0.702
0.714
0.724
2.751
2.748
8.375
TED
NO(K)
40.889
40.609
33.859
37.774
124.170
105.568
382.870






                                                 B-29
DILUTION FACTOR - 14.5/
-------
TRIUMPH
MODE
                   RUN
                                                          B - COLD CYCLE
                                                                                       1.0000
                                                                                                      567.
             CONCENTRATION   AS   MEASURED
              HC     CO    C02     NO(IC)
DILUTION
 FACTOR
 A 0
HC
JUSTED
  CO   NOtK)
WEIGHTING       WEIGHTED
 FACTOR        HC     CO      NO IK)
••CYCLE !••
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 2«»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 3««
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 4»»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVFRAftF *IIM

2317.
1032.
374.
3536.
1487.
999.

7.790
7.990
6.760
7.760
8.760
8.510

6.920
6.200
9.410
7.790
6.830
8.450
8600. 4.920 4.760

69.
378.
165.
132.
89.
410.
184.

1.068
1.089
1.098
0.936
1.131
1.051
0.876

2922.
1124.
411.
3310.
1682.
1050.
7953.

6.481
8.704
7.429
7.264
9.911
8.952
4.321

75.
411.
181.
123.
96.
431.
161.

0.042
0.244
0.116
0.062
0.050
0.455
0.029

2066.
1406.
695.
5741.
1503.
1066.
7606.

3937.
2195.
1147.
5351.
2362.
1573.
9.540
9.200
8.870
8.560
10.020
9.000
5.740
*l C ("f%MC
.Lt tOWr
9.430
9.090
9.620
9.530
10.320
9.310
6.150
7.260
8.390
7.230
7.170
8.190
5.250

• 5.860
6.600
8.190
7.430
6.410
7.440
7881. 6.140 5.220
113.
166.
129.
113.
113.
230.
179.

141.
444.
141.
124.
117.
211.
180.
1.102
1.08)
1.051
0.818
1.050
1.045
0.887

0.977
1.072
1.018
0.806
1.026
1.051
0.863
2277.
1923.
940.
4700.
1578.
1135.
6751.

3650.
2354.
1166.
4316.
2425.
1653.
6801.
10.518
9.971
9.325
7.008
10.525
9.413
5.095

9.222
9.792
9.796
7.688
10.597
9.786
5.298
124.
179.
135.
92.
118.
240.
158.

137.
476.
143.
100.
120.
221.
155.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

3607.
2146.
1169.
5150.
2707.
1711.
9.660
12.190
9.900
9.290
10.340
9.580
5.950
7.700
8.180
6.580
7.010
8.490
8759. 6.260 4.980
141.
257.
141.
132.
117.
203.
187.
0.988
0.899
1.005
0.863
0.960
0.958
0.780
3563.
1931.
1196.
4448.
2598.
1639.
6839.
9.544
10.969
9.958
8.024
9.926
9.182
6.449
139.
231.
141.
114.
112.
194.
146.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

105.955
274.330
48.500
205.235
84.119
478.158
219.063
1415.364
95.670
371.623
111.034
291.421
78.943
516.839
195.601
1661.535
161.707
574.588
137.829
267.638
121.270
752.355
197.242
2212.631
149.681
471.215
141.137
275.799
129.941
746.193
198.3*2
2112.311
1850.460
0.356
2.123
0.876
0.450
0.495
4.073
0.125
8.501
0.441
2.432
1.100
0.434
0.526
4.233
0.147
9.366
0.387
2.379
1.155
0.476
0.529
4.452
0.153
9.535
0.400
2.676
1.175
0.497
0.496
4.177
0.137
9.611
9.253
3.155
100.481
21.397
7.661
4.808
196.241
4.686
338.432
5.232
43.899
16.003
5.736
5.935
109.459
4.606
190.874
5.791
116.226
16.943
6.202
6.007
100.919
4.504
256.595
5.851
56.431
16.737
7.069
5.616
88.531
4.234
184.471
242.593
TRIUMPH
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 JO-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM——
AVERAGE
TRIUMPH
CYCLE
NUMBER
1
2
3
4
6
7
SUM—-
RUN 3

CONCENTRATION AS MEASURED DILUTION
HC CO C02 NO(K) FACTOR
6«»
30e9. 9.540 5.580 93.
1754. 9.690 6.680 127.
812. 10.230 7.940 133.
4942. 9.090 7.110 124.
3091. 10.400 6.990 105.
1528. 9.870 7.600 157.
8243. 7.970 4.480 219.
7»»
3228. 9.780 6.200 129.
2104. 9.950 6.280 154.
1189. 9.480 7.840 161.
3965. 10.240 7.580 118.
3135. 9.560 5.820 117..
1971. 10.540 6.980 126.
8215. 7.860 4.890 213.
— 	 -{CYCLE COMPOSITE)——— 	
SUM OF CYCLES 6-7 — 	
RUN 3
CONCENTRATION AS DETERMINED
HC CO NO(K)
1415.364 8.501 338.432
1661.535 9.366 190.874
2212.631 9.935 256.595
2112.311 9.611 184.471
2016.014 9.986 143.753
2303.927 10.241 140.724
— — — (TRIP COMPOSITE) — — 	
1.059
1.080
1.040
0.893
0.996
1.022
0.834
0.994
1.071
1.045
0.853
1.036
1.006
0.819
WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250

A
HC
3272.
1895.
649.
4217.
2693.
1561.
6882.
3211.
2255.
1243.
3385.
3250.
1987.
6732.
'—•-»••


B - COLD
CYCLE
D J U S T E D
CO NO IK)
10.107
10.470
10.647
7.756
9.736
10.089
6.654
9.728
10.665
9.914
6.743
9.911
10.626
6.441

B - COLD
W E I
HC
123.844
145.384
193.605
184.827
659.204
748.776
— 2051.642
96*
137.
138.
105.
98.
160.
182.
128.
169.
168.
100.
121.
127.
174.
CYCLE
G H
CO
0.74J
0.819
0.634
0.841
3.245
3.328
9.813
K > 1.3000 W -
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
0.050
0.455
0.029
««_«•_


>__«
W E
HC
137.453
462.441
99.722
261.462
144.668
710.666
199.579
2016.014
134.866
550.290
146.736
209.898
162.513
904.371
195.250
2303.927
2159.970
I G H T
CO
0.424
2.554
1.256
0.430
0.486
4.590
0.192
9.996
0.406
2.602
1.169
0.542
0.495
4.636
0.186
10.241
10.114
567.
E D
NO(K)
4.138
33.483
16.333
6.560
4.915
73.020
5.302
143.753
5.339
40.277
19.869
6.246
6.065
57.813
5.062
140.724
142.239
TED
NO(K)
29.612
16.701
22.452
16.141
46.719
45.735
177.363
                                                B-30
DILUTION FACTOR • 14.5/(C02+0.5»CO+10.8*HC)

-------
 TPIUMPM T120H
MODE
••CYCLE
1 IDLF
2 0-?">
1 30
4 30-15
5 15
A 15-30
7 50-20
••CYCLE
1 IDLE
? 0-25
3 30
4 30-15
S 15
A 15-30
7 50-20
HUM-----
••CYCLE
1 IDLE
2 0-25
3 30
4 30-11;
5 15
A 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
ft 15-30
7 50-?0
AVFftAGF
CONCENTRATION AS MEASURED
HC CO C02 NOIK)
966. 9.780 7.000
107B. R.650 8.050
391. 7.620 9.370
416. 6.600 7.820
3666. 9.940 7.940
304. 7.900 8.780
4502. 5.370 4.840
68.
141.
157.
116.
77.
222.
144.
DILUTION A 0
FACTOR HC
1.121
1.070
1.065
1.253
0.869
1.110
1.170
1083.
1154.
416.
521.
3188.
337.
5269.
JUSTED
CO NOIK)
10.964
9.263
8.122
8.271
8.298
8.772
6.285
76.
151.
167.
145.
66.
246.
168.
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029
?••
6015. 8.950
4943. 8.640
281. 8. BIO
1169. 7.850
4443. 9.910
2200. 8.960
4.640
6.550
8.850
7.710
7.690
8.310
4847. 6.16P 4.710
-—»"•—«• (CYCLE COMPOS T TE 1 ™««-
103.
192.
138.
121.
77.
217.
113.
0.928
0.894
1.069
1.124
0.831
0.956
1.113
5586.
4421.
300.
1114.
3693.
2103.
5395.
8.312
7.729
9.421
8.825
8.237
8.566
6.857
T»»
6068. 8.950
5079. 8.160
1488. 9.950
1346. 8.560
5001. 10.220
2902. 9.410
4.770
7.160
8.340
7.430
7.250
8.700
4842. 4.170 5.960
103.
303.
143.
114.
86.
222.
350.
0.917
0.866
0.971
1.101
0.812
0.876
1.092
5969.
4403.
1445.
1482.
4128.
2944.
9289.
8.214
7.074
9.668
9.428
8.303
8.249
4.555
95.
171.
147.
136.
64.
207.
125.

94.
262.
138.
125.
69.
194.
382.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029
4*»
7291. 9.280
6047. 8.290
2083. 10.290
1787. 8.830
4881. 10.450
2852. 8. 810
4.110
6.850
8.230
6.970
6.820
8.360
4421. 4.010 5.660
129.
225.
134.
114.
81.
222.
469.
0.872
0.827
0.928
1.089
0.837
0.919
1.165
6359.
5003.
1933.
1946.
4087.
2609.
5153.
8.094
6.856
9.549
9.615
8.750
8.062
4.674
112.
186.
124.
124.
67.
203.
546 1
0.042
0.244
0.118
0.062
0.050
0.455
0.029
<;IIM OF rvn FC i-& --—---——— 	 -._..___..__._ 	 _ 	
W E
HC
45.486
281.697
49.163
32.325
159.445
153.590
152.826
- 874.556
234.647
1078.964
35.460
81.483
184.663
957.042
156.483
- 2728.746
233.909
1074.389
170.617
91.923
206.400
1157.612
153.382
- 3088.236
267.092
1220.733
228.102
120.654
204.355
1187.496
149.443
- 351 7. *Sl*.
I G H T
CO
0.460
2.260
0.958
0.512
0.414
3.991
0.182
8.780
0.349
1.885
1.111
0.547
0.411
3.897
0.198
9 .402
0.345
1.726
1.140
0.584
0.415
3.753
0.132
8 .097
0.339
1.673
1.126
0.596
0.437
3.668
0.135
7 O7 7
' . V 1 1
ft . 11 ii
E 0
NO(K)
3.201
36.845
19.748
9.013
3.348
112.161
4.881
189.208
4.018
41.910
17.414
8.434
3.200
94.399
3.648
173.024
3.970
64.095
16.396
7.765
3.493
88.556
11.087
195.3 84
4.725
45.421
14.673
7.697
3.391
92.434
15.853
ml Qft
• i "n
1 B5..&44.
                                                                    IUU
TRIUMPH T120R
            RUN-4
                                      S - COLD CYCLE
                                                        .0000
                                                                 567.

MODE
••CYCLE
1 IDLE
?. 0-25
3 30
4 30-15
5 15
6 15-10
7 50-20
••CYCLE
1 IDLE
? 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE

TRIUMPH
CVCLE
NUMBER
1
2
3
4
6
7

CONCENTRATION AS MEASURED
HC CO C02 NOIK)
6««
6229. 8.780 3.250 129.
4328. 9.410 6.060 187.
1431. 9.390 7.940 134.
1347. 8.980 6.680 117.
4824. 10.630 6.050 103.
3497. 10.620 6.690 190.
4368. 4.400 6.140 367.

4607. 10.48C 5.500 117.
3742. 9.910 6.620 218.
1681. 10.510 8.310 143.
1585. 9.240 6.170 143.
5336. 11.060 6.320 103.
3250. 10.410 7.370 206.
4460. 6.100 4.720 178.
SUM OF CYCLES 6-7 	

T120R RUN-4
CONCENTRATION AS DETERMINED
HC CO NOIK)
874.596 8.780 189.208
2728.746 8.402 173.024
3088.236 8.097 199.384
3377.878 7.977 184.198
3314.073 9.37« 147.042
3028.965 9.413 174.794

DILUTION
FACTOR

1<091
0.939
1.022
1.148
0.874
0.919
1.110

0.922
0.928
0.942
1.159
0.823
0.901
1.152


A 0 J U S
HC CO

5706. 9.581
4064. 8.837
1463. 9.601
1547. 10.313
4220. 9.299
3213« 9.760
4850. 4.886

4250. 9.66?
3474. 9.201
1984. 9.908
1838. 10.716
4392. 9.105
2929. 9.384
5137. 7.027


TED
NO (1C)

140.
175.
137.
134.
90.
174.
407.

107.
202.
134.
165.
84.
185.
205.


WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029


W E
HC

239.661
991.788
172.662
95.913
211.005
1462.369
140.666
3314.073

178.527
847.777
187.002
113.976
219.646
1333.035
148.999
3028.965
3171.519

I G H T
CO

0.402
2.156
1.132
0.639
0.464
4.441
0.141
9.378

0.406
2.245
1.169
0.664
0.455
4.269
0.203
9.413
9.396

E 0
NOIK)

5.912
42.852
16.168
8.331
4.505
79.453
11.318
169.042

4.533
49.389
15.903
10.283
4.239
84.493
5.946
174.794
171.918

j *•""•" -•---_ 	 	 ___
WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250

W E
HC
76.923
238.765
270.220
295.564
1077.074
984.413
	 2942.561

I G H
CO
0.768
0.735
0.708
0.698
3.048
3.059
9.017
TED
NOIK)
16.555
15.139
17.096
16.117
54.738
56.808
176.656






DILUTION FACTOR - 14.5/
-------
 TRIUMPH T120R
                    RUN
                                                            S  -  COLD  CYCLE
                                                                                         1.0000
                                                                                                 W •
                                                                                                        567.
MC3E
••CYCLE 1»»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE 2*»
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLF 3«»
i I.OLF
2 0-25
3 30
4 30-15
5 15
6 15-?0
7 50-20

CONCENTRATION AS MEASURED
HC CO C02 NO(K)

1415. 8.220
1271. 7.830
261. 6.860
362. 6.550
2915. 8.420
387. 7.770

7.430
7.880
9.980
9.170
8.540
9.010
4999. 5.100 5.120

51.
152.
143.
112.
77.
184.
155.
DILUTION ADJUSTED
FACTOR HC CO NO(K)

1.109
1.101
1.059
1.129
0.912
1.089
1.109

1570.
1399.
276.
408.
2658.
421.
5546.

9.120
8.622
7.264
7.399
7.679
8.462
3.656

56.
167.
151.
126.
70.
200.
171.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

2789. 10.030
2315. 9.210
285. 9.060
855. 8.370
4675. 9.910
2427. 8.830
6.670
7.400
8.840
8.410
7.560
8.570
4625. 5.200 5.460
77.
168.
117.
105.
77.
228.
147.
0.986
0.999
1.060
1.072
0.825
0.929
1.110
2751.
2314.
302.
917.
3859.
2254.
5136.
9.895
9.206
9.604
8.977
8.181
8.204
3.775
75.
167.
124.
112.
63.
211.
163.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

4358. 10.470
3249. 9.760
1161. 9.630
1032. 5.790
4358. 10.430
2758. 9.240
3602. 5.970

6.530
7.240
8.680
7.870
7.180
3.190
5.060

77.
153.
130.
106.
77.
239.
121.

0.880
0.927
0.983
1.220
0.847
0.918
1.214

3836.
3014.
1141.
1239.
3695.
2532.
4376.

9.216
9.055
9.467
7.067
8.843
8.485
7.252

67.
141.
127.
129.
65.
219.
147.

0.042
0.244
0.118
0.062
0.050
0.455
0.029

••CYCLE 4»»
1 IDLE
Z 0-?f
3 30
4 30-15
5 15
6 15-30
7 50-20
AVPDAT.P <;IIM
3798. 10.400
3112. 9.720
239. 10.050
1201. 8.750
4542. 10.400
2849. 8.480
6.300
7.380
8.480
7.670
7.000
8.080
4255. 4.300 4.210
77.
195.
129.
113.
77.
235.
112.
0.929
0.929
1.053
1.086
0.847
0.941
1.323
3529.
2892.
251.
1305.
3850.
2683.
5631.
9.665
9.034
10.588
9.509
8.819
7.986
5.691
71.
181.
135.
122.
65.
221.
148.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
np rvri PC i— L. ••-»——.——— —••••••••—•••••••—— —•—••— •-•——.••••
W E
HC

65.941
341.502
32.615
25.353
132.931
191.785
160.845

113.566
564.657
35.651
56.859
192.972
1026.013
148.970

161.126
735.493
134.686
78.097
184. 751
1152.468
126.905


148.250
705.742
29.711
80.924
192.509
1220.781
163.319
9AK1 -£.nO
I G H T
CO

0.383
2.103
0.857
0.458
0.383
3.850
0.164

0.415
2.246
1.133
0.556
0.409
3.732
0.167

0.387
2.209
1.117
0.438
0.442
3.861
0.210


0.405
2.204
1.249
0.589
0.440
3.633
0.165
fl.K^A
E D
NOIKI

2.376
40.840
17.869
7.844
3.511
91.184
4.967

3.190
40.977
14.635
6.982
3.178
96.386
4.734

2.846
34.635
15.081
8.021
3.264
99.869
4.263


3.005
44.222
16.036
7.614
3.263
100.696
4.298
1 71 _£.**
                                                                                                             COMPUTING. INC
TSIUMP4
".03 F
••CYCLE
1 IDLE
2 0-25
•< 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-?5
3 30
A 30-15
5 15
6 15-30
7 50-20
AVERAGE
TRIUMPH
CYCLE

T120R
RUN 5
CONCENTRATION
HC CO
1776.
1869.
1317.
822.
2824.
2831.
3682.
4124.
3409.
265.
1388.
4309.
2965.
4962.
SUM OF CYC
T120R
11.000
9.590
10.200
8.790
11.100
10.430
4.850
LE COMPOS
10.450
9.940
11.160
9.630
10.840
9.970
5.960
LE COMPOS
RUN 5
CONCENTRATION AS
HC CO



AS MEASURED DILUTION
C02 NOIK) FACTOR
5.500
6.350
8.240
6.440
6.670
6.990
5.400
ITE> —
6.050
7.050
7.850
7.090
6.300
7.660
4.980


90.
235.
134.
119.
90.
181.
262*
103.
203.
130.
125.
103.
252.
179.


DETERMINED
NOIK)
950.976 8.201 168.614
2140.692 8.661 170.086
2573.529 8.665 167.931
2541.239 8.688 179.137
2290.772 10.160 183.910
2635.110 9.509 189.391
1.122
1.101
0.982
1.236
0.949
0.950
1.228
0.921
0.923
1.057
1.073
0.885
0.914
1.088



A
HC
1993.
2058.
1293.
1016.
2681.
2689.
4523.
3801.
3148.
280.
1490.
3815.
2712.
5401.


WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250
S - COLD
CYCLE
K - 1.0000 W i
D J U S T E D WEIGHTING
CO NO (PC) FACTOR
12.347
10.563
10.018
10.872
10.540
9.908
5.958
9.633
9.179
11.797
10.554
9.599
9.122
6.488

S - COLD
W E I
HC
83.210
187.310
225.183
222.358
744.501
856.410
101.
258.
131.
147.
85.
171.
321.
94.
187.
137.
134.
91.
230.
194.

CYCLE
G H
CO
0.717
0.737
0.758
0.760
3.302
3.090
0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.118
0.062
0.050
0.455
0.029
« MH.

TED
NOIKI
14.753
14.882
14.698
15.674
59.770
61.552
W E
HC
83.726
502.336
152.644
63.037
134.080
1223.754
131.192
2290.772
159.675
768.135
33.056
92.402
190.795
1234.387
136.657
2635.110
2462.941
I G H 1
CO
0.518
2.577
1.182
0.674
0.527
4.508
0.172
10.160
0.404
2.239
1.392
0.654
0.479
4.150
0.188
9.509
9.833
                                                                                                       567.
                                                                                                       NOIKI
                                                                                                        4.242
                                                                                                       63.161
                                                                                                       15.530
                                                                                                        9.125
                                                                                                        4.273
                                                                                                       78.240
                                                                                                        9.335
                                                                                                      183.910

                                                                                                        3.988
                                                                                                       49.741
                                                                                                       16.216
                                                                                                        8.321
                                                                                                        4.560
                                                                                                      104.912
                                                                                                        9.651
                                                                                                      189.391
                                                                                                      186.651
DILUTION FACTOR » 14.5/
-------
YAMAHA
                   RUN   2
                                                          - COLD CYCLE
                                                                                    1.0000
MODE
••CYCLE 1»«
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM 	
««CYCLE 2»"
1 IDLE
2 0-25
3 30
4 30-15
4 15-30
7 50-20
**CYCLE 3»*
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
»*CYCL£ 4»»
1 IDLE
2 0-25
3 30
<• 30-15
5 15
6 15-30
7 50-20
AVERAGE SUM
CONCENTRATION AS MEASURED
HC CO C02 NO IK I
7612. 2.010 5.310
5762. 0.790 7.120
3028. 1.660 10.420
6471. 2.360 5.520
7885. 4.100 4.700
5015. 4.160 7.290
0129. 4.380 3.030

8469. 3.640 3.970
6391. 3.200 6.630
3368. 1.550 10.830
6530. 1.320 6.930
5652. 0.450 7.780
4528. 2.120 8.130
8732. 4.320 3.080

8742. 4.010 3.770
7317. 3.940 6.650
3794. 1.430 10.890
6003. 2.360 6.620
5566. 0.880 8.080
4779. 2.680 8.540
8315. 4.680 2.860

8780. 4.210 3.700
6401. 3.140 6.720
4605. 2.420 10.480
5480. 2.250 7.280
5517. 0.510 8.180
4579. 2.550 7.500
7860. 4.450 3.250
OF CYCLES 1-4 	 	 	 	
81.
85.
141.
113.
9.3 .
111.
113.

141.
171.
161.
160.
117.
158.
156.

165.
176.
153.
139.
117.
142.
138.

157.
166.
169.
150.
129.
148.
147.

DILUTION ADJUSTED
FACTOR HC CO NO IK)
0.997
1.055
0.991
1.059
0.949
0.980
0.961

0.970
0.958
0.951
0.990
1.027
1.029
0.988

0.952
0.877
0.923
1.015
0.997
0.964
1.022

0.948
0.953
0.870
1.012
0.999
1.056
1.038

7593.
6081.
3001.
6854.
7489.
4917.
8778.

8221.
6123.
3203.
6466.
5808.
4662.
8630.

6330.
6421.
3503.
6094.
5554.
4607.
8502.

8327.
6104.
4007.
5547.
5616.
4839.
8161.

2.005
0.833
1.863
2.499
3.894
4.079
4.211

3.533
3.066
1.474
1.307
0.462
2.183
4.269

3.821
3.457
1.320
2.395
0.878
2.583
4.785

3.993
Z.994
2.105
2.277
0.509
2.694
4.620

80.
89.
139.
119.
88.
108.
108.

136.
163.
153.
158.
120.
162.
154.
f
157.
154.
141.
141.

136.
141.

148.
158.
147.
151.
128.
156.
152.

WEIGHTING w E
FACTOR HC
0.042
0.244
0.116
0.062
0.050
0.455
0.029

0.042
0.244
0.116
0*062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

319.913
1483.914
354.123
424.981
374.472
2237.658
254.570
— 544B.632
345.302
1494.246
376.065
400.922
290.428
2121.659
250.283

349.878
1566.818
413.407
377.834
277.700
2096.189
246.573

349.766
1489.615
472.841
343.949
280.823
2201.840
236.692

I C H T
CO
0.084
0.203
0.219
0.154
0.194
1.656
0.122
2.835
0.148
0.748
0.173
0.081
0.023
0.993
0.123
2.291
0.160
0.843
0.155
0.148
0.043
1.175
0.138

0.167
0.730
0.249
0.141
0.025
1.226
0.134
2.617
E D
NO(K)
3.393
21.890
16.499
7.421
4.416
49.527
3.191
106.290
5.748
39.960
18.072
9.823
6.012
74.033
4.471
153.142
6.603
37.687
16.671
8.748
5.837
62.284
4.092

6.254
36.630
17.352
9.414
6.449
71.166
4.426
IfcOiOlt
YAMAHA

MOUE
»»CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
RUN 2
CONCENTRATION AS MEASURED
HC CO COZ NOCK)
6»«
6162. 4.430 3.700 61.
4455. 3.540 7.290 140.
3493. 2.140 10.790 117.
5944. 2.950 5.930 117.
4817. 1.250 8.O80 105.
4652. 3.260 8.500 127.
6941. 4.560 3.130 127.
- COLO CYCLE
DILUTION
FACTOR

1.153
1.045
0.927
1.048
1.042
0.956
1.122
A D J U S
HC CO

7106. 5.110
4656. 3.700
3239. 1.984
6234. 3.094
5022. 1.303
4451. 3.119
7792. 5.141
TED
NO IK)

93.
146.
108.
122.
109.
121.
142.
WEIGHTING
FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029
SUM — -— 	 < CYCLE COMPOSITE!-- 	 — - —
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
YAMAHA
CYCLE
NUMBER
1
2
3
4
6
7

8677. 4.550 3.700 141.
6982. 3.210 6.400 166.
4820. 1.790 10.170 153.
6530. 2.640 8.090 139.
5583. 1.160 8.290 117.
4940. 2.760 8.480 132.
7569. 4.620 5.840 132.
SUM OF CYCLES 6-7 	
RUN 2
CONCENTRATION AS DETERMINED
HC CO NO(K)
5446.632 2. 835 106.290
5280.910 2.291 158.142
5328.402 2.666 141.925
5375.529 2.673 153.695
4706.044 3.177 124.943
5406.917 2.625 133. 4Z3

0.944
0.932
0.891
0.880
0.973
0.953
0.688
6198. 4.299
6512. 2.994
4295. 1.595
5751. 2.325
5433. 1.128
4710. 2.651
6723. 4.103
133.
154.
136.
122.
113.
125.
117.
0.042
0.2*4
O.IIB
0.062
0.050
0.4SS
0.029
- COLD CYCLE
K • 1.0000 W •
W E
HC

298.541
1136.279
382.315
386.534
251.113
2025.290
225.969
4706.044

344.339
1589.027
506.966
356.596
271.662
2143.454
194.968
5406*917
5056*481
I G H T
CO

0.214
0.902
0.234
0.191
0.065
1.419
0.149
3.177

0.180
0.730
0.186
0.144
0.056
1.206
0.119
2.625
2*901
429.
E 0
NO(K)

3.924
35.708
12.805
7.608
5.473
55.290
4.134
124*945

5.595
37.779
16.089
7.990
5.693
J7.274
3.400
133.423
129.164

WEIGHTING
FACTOR
0*0875
0*0875
0.0875
0.0875
0.3250
0.3250

W E
HC
476.755
462.079
466.235
470.358
1J29.464
1757.248
	 5162.141

I G H
CO
0.246
0.200
0.233
0.233
1.032
0.853
2.801

TED
NO(K)
9.300
13*837
12*416
13.446
40*607
43.362
132*974










                                               B-33
DILUTION FACTOR - 14.5/
-------
 YAMAHA
 MODE
                    RUN
                                                           B - COLO CYCLE
                                                                                        1.0000    W
                                                                                                       429.
              CONCENTRATION  AS  MEASURED
              HC     CO    C02    NO(K)
DILUTION
 FACTOR
 A D
HC
JUS
  CO
TED
 NO(K)
WEIGHTING
 FACTOR
••CYCLE
1 IDLE
Z 0-23
3 30
4 30-13
3 15
6 15-30
7 30-20
••CYCLE
1 IDLE
2 0-23
3 30
4 30-13
5 15
6 15-30
7 30-20
••CYCLE
1 IDLE
2 0-29
3 30
4 30-15
S 19
6 15-30
7 30-20
••CYCLE •
1 IDLE
2 0-25
3 30
4 30-15
5 19
6 13-30
7 50-20

!••
7490.
5440.
3229.
6613.
3949.
4380.

2.150
1.420
1.880
2.740
1.000
2.530

9.610
7.420
10.600
4.290
7.810
8.250
9220. 3.190 2.790

189.
183.
190.
76.
23.
45.
64.

0.981
1.035
0.964
1.132
0.984
1.017
1.010

7350.
5632.
3115.
7490.
3854.
4455.
9321.

2.110
1.470
1.814
3.103
0.984
2.993
3.225

185.
189.
183.
86.
22.
45.
64.

0.042
0.244
0.118
0.062
0.050
0.455
0.029

9296.
7031.
3651.
6172.
5808.
4996.
8562.
3*«
8823.
7132.
4924.
6741.
5756.
5189.
3.140
2.740
1.800
2.600
0.730
2.260
3.230
'i f ^nuc
>kC (.UMP
3.180
2.160
1.780
2.330
1.000
2.570
3.880
7.340
13.040
5.640
8.080
8.570
2.950
>Qe TTP ) w • i
UD j rc '
• 3*640
7.640
11.560
5.580
8.500
8.220
8213. 3.130 3.190
93.
104.
105.
94.
69.
96.
106.

129.
151.
117.
229.
105.
63.
127.
0.936
0.888
0.810
1.069
0.989
0.960
1.049

0.982
0.882
0.8)6
1.026
0.952
0.959
1.067
8702.
6262.
2960.
6977.
5722.
4798.
8982.

8668.
6297.
3783.
6919.
3484.
4979.
8766.
2.939
2.433
1.439
2.770
0.719
2.170
3.409

3.124
1.907
1.488
2.397
0.992
2.466
3.340
87.
92.
85.
100.
67.
92.
111.

126.
133.
97.
235.
100.
60.
135.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029
«•• (CYCLE COMPOSITE) - —
9395.
7316.
4920.
6911.
5896.
5362.
3.230
2.730
2*490
2*810
1.890
2.700
3.580
7.630
11.600
5.360
8.390
8.610
6855. 3.230 2.860
129.
13*.
117.
117.
93.
117.
103.
0.945
0*897
0.829
1.019
0.923
0.9ZO
1.219
8879.
6274.
4062.
7042.
5444.
4936.
8360.
3.092
2.338
2.096
2.863
1.745
2.485
3.963
121.
119.
96.
119.
85.
107.
128.
0.042
0.244
0.118
0.062
0.050
0.455
0*029

 WEIGHTED
HC     CO      NOIKL)
AVERAGE SUM OF CYCLES 1-4	'•
                                          308.741
                                          1374.255
                                          367.651
                                          464.385
                                          292.707
                                          2027.094
                                          270.314
                                          5105.151

                                          365.486
                                          1928.105
                                          349.316
                                          407.814
                                          286.105
                                          2183.479
                                          260.478
                                          9380.786

                                          364.067
                                          1536.484
                                          446.504
                                          429.029
                                          274.248
                                          2265.812
                                          254.218
                                          5570.364

                                          372.943
                                          1531.029
                                          479.430
                                          436.646
                                          272.221
                                          2245.94$
                                          242.465
                                          5980.681
                                          5409.246
                                        0.088
                                        0.358
                                        0.214
                                        0.192
                                        0.049
                                        1.180
                                        0.093
                                        2.176

                                        0.123
                                        0.993
                                        0.172
                                        0.171
                                        0.035
                                        0.987
                                        0.098
                                        2.183

                                        0.131
                                        0.465
                                        0.175
                                        0.161
                                        0.047
                                        1.122
                                        0.096
                                        2.199

                                        0.128
                                        0.575
                                        0.242
                                        0.177
                                        0.087
                                        1.130
                                        0.114
                                        2.457
                                        2.254
                                             7.790
                                            46.229
                                            21.633
                                             5.336
                                             1.131
                                            20.826
                                             1.876
                                           104.824

                                             3.656
                                            22.939
                                            10.046
                                             6.211
                                             3.398
                                            41.956
                                             3.224
                                            91.032

                                             5.322
                                            32.530
                                            11.547
                                            14.574
                                             5.002
                                            27.509
                                             3.931
                                           100.419

                                             5.120
                                            29.088
                                            11.401
                                             7.392
                                             4.293
                                            49.007
                                             3.713
                                           110.017
                                           101.573
YAMAHA
MODE
••CYCLE
1 IDLE
2 0-23
3 30
4 30-19
5 15
6 15-30
7 30-20
SUM— -
••CYCLE
1 IDLE
2 0-25
3 30
4 30-13
5 15
6 15-30
7 50-20
AVERAGE
YAMAHA
CYCLE
NUMBER
1
2
3
4
6
7
•• in 	

RUN 3

CONCENTRATION AS MEASURED
HC CO C02 NO(K)
(••
5847. 3.370 3.640
5139. 2.740 7.560
4330. 2*730 10.700
6251* 2.990 3.400
9122. 2.320 8.180
4751. 2.660 8.230
7709. 3.370 2(990
7»«
9886. 3.370 3.700
7124. 2.760 7.310
5004. 2.740 10.770
7022* 2.660 5.650
5904* 2*520 7.780
5127. 2.960 8.170
7334. 3.540 3.050
SUM OF CYCl

RUN 3
141.
150.
129.
176.
105.
64.
121.
129.
138.
129.
140.
105.
85.
104.


CONCENTRATION AS DETERMINED
HC CO NO(K)
5105.151 2.176 104.824
5380.786 2*183 91.032
9970.364 2.199 100.419
5580.681 2.497 110.017
9048.533 2.738 106.579
5578.675 2.687 101.190
—__•_«! TOT D rAMonctrrl •_________

DILUTION
FACTOR
1.245
1.001
0.866
1.062
0.975
0.986
1.113
0.902
0.883
0.826
0.968
0.940
0.954
1.138



A
HC
7283.
5146.
3790.
6642.
4993.
4689.
8998.
8924.
6304.
4139.
•943.
5553.
4899.
8346.

WEIGHTING
FACTOR
0.0873
0.0875
0.0879
0.0875
0.3250
0.3250
B - COLD
CYCLE
D J U S T E 0
CO NO(K>
4.198
2.743
2.364
3.177
2.262
2.625
3.758
3.042
2.442
2.264
2.828
2.370
2.826
4.028
B - COLD
U E I
HC
446.700
470.818
487.406
488.309
1640.773
1813.069
__•_• *«4.v-n-va
179.
150.
111.
187.
102.
63.
134.
116.
122.
106.
138.
98.
81.
118.
CYCLE
G H
CO
0.190
0.191
0.192
0.214
0.889
0.873
4.AK9
K - 1.0000 W =
WEIGHTING
FACTOR
0.042
0.244
0.118
0.062
0.050
0.4S5
0.029
0.042
0.244
0.118
0.062
0.050
0.499
0.029
TED
NO(K)
9.172
7.965
8.786
9.626
34.638
32.873
W E
HC
305.918
1255.637
442.533
411.814
249.698
2133.588
249.342
9048.533
374.836
1538.381
488.012
430.501
277.653
2227.239
242.054
5578.675
5313.604
I G H T
CO
0.176
0.669
0.279
0.196
0.113
1.194
0.109
2.738
0.127
0.596
0.267
0.175
0.118
1.285
0.116
2.687
2.712
429.
E D
N0«)
7.377
36.650
13.184
11.594
5.118
28.741
3.913
106.579
4.891
29.800
12.580
8.983
4.937
36.925'
3.432
101.150
103.865
                                                  B-34
DILUTION FACTOR * 14.5/(C02»0.5»CO+10.8»HC)

-------
 YAMAHA OT1E
                  RUN
                                                      - COLD CYCLE
                                                                            1.0003
                                                                                         429.
MOCIF
••CYCLE
1 IOLE
2 0-?5
3 30
5 15
6 15-10
7 50-20
SUM 	
••CYCLE
1 IDLE
? 0-?5
•> 10
4 10-15
5 15
ft 15-30
7 50-70
SUM 	
••CYCLE
1 IOLF
? 1-21
4 10-15
5 15
6 15-30
7 50-20
••CYCLE
I IDLE
? 0-75
1 10
4 30-15
5 15
6 15-30
7 50-20
AVFRAGF
CONCENTRATION AS MEASURED
HC CO C02 NO(KI
6462. 1.360 5.630 51.
6210. 0.930 6.950 77.
3950. 3.820 9.420 125.
3501. 2.410 B.680 fle.
5593. 0.430 8.140 77.
4873. 2.360 8.570 85.
68fll. 5.250 3.530 82.
«6«5. 3.990 3.700
3223. 3.320 6.000
5043. 2.260 10.970
4384. 2.040 9.440
5980. 0.700 6.480
5260. 2.310 S. 750
6889. 5.360 3.490
— --— {CYCLF COMPOSITE) —
90.
102.
103.
84.
77.
90.
88.
DILUTION ADJUSTED
__ ^ACTOR HC co NOIKI
1.091 7050. 1.483 55.
1.026 6376. 0.954 79.
0.929 3672, 3,551 116.
1.061 3714. 2.557 93.
1.007 5633. 0.433 77.
0.965 4706. 2.279 82.
1.067 7343. S.602 87.
0.961
0.876
0.826
0.954
0.948
0.930
1.065
8353.
7208.
4167.
4183.
5671.
4893.
7319.
3.837
2.910
1.867
1.946
0.663
2.149
5.710
3«»
8407.
7871.
5776.
4741.
5873.
4.350 3.580
3.870 6.650
1.850 11.440
2.560 8.510
0.550 8.500
5275. 2.980 fl.390
6497. 5.250 3.540
91.
113.
117.
98.
90.
107.
95*
0.977
0.648
0.779
0.972
0.959
0.930
1.100
8217.
6679.
4502.
4610.
5632.
4910.
7146.
4.251
3.284
1.441
2.489
0.527
2.773
5.775
86.
89.
85.
80.
71.
83.
93.
f
88.
95.
91.
95.
86.
99.
104.
WE 1 GHT 1 NG
FACTOR
0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.116
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

8211.
73S6.
521?.
4993.
6300.
5510.
4.400 3.620
4.230 6.610
2.000 11.720
2.680 R.900
1.150 8.680
3.430 8.460
6490. 5.120 4.800
103*
118.
117.
103.
90.
113.
100.
0.987
0.868
0.790
0.927
0.902
0.899
1.009
8105.
6412.
4118.
4631.
5668.
4954.
6549.
4.343
3.672
1.580
2.485
1.038
3.084
5.166
101.
102.
92.
95.
81.
101.
100.
0.042
0.244
0.118
0.062
0.050
0.455
0.029
SUM OF CYCLES 1-4 	 . 	 	
W E
HC
296.137
1555.820
433.345
230.307
281.681
2141.474
212.966
- 5151.732
350.861
1758.857
491.756
259.380
233.581
2226.568
212.643
- 5583.848
345.130
1629.879
531.241
285.853
281.649
2234.179
207.255
- 5515.189
340.450
1564.594
436.007
287. 140
284.419
2254.289
189.923
— *Aiii.4Qa
I G H T
CO
3.062
0.232
0.419
0.158
0.021
1.037
0.162
2.094
3.161
0.710
0.220
0.120
0.333
0.977
0.165
2.389
0.178
0.601
0.170
0.154
0.026
1.262
0.167
2.760
0.182
0.696
0.166
9.154
0.051
1.403
3.149
>-"iAi
C D
NO (1C)
2.337
19.291
13.713
5.788
3.877
37.353
2.537
84.900
3.635
21.817
10.043
4.969
3.651
38.097
2.716
34.934
3.735
23.399
10.760
5.908
4.316
45.318
3.030
96.470
4.275
24.996
10.909
5.923
4.063
46.231
2.926
Ql -4C1A
                                                                                           COMPUTINGJNC
YAMAHA OTIE
                 RUN
                                                     - COLO CYCLE
                                                                         K •= 1.0000   W
                                                                                         429.

MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
! 50-20
AVERAGE
YAMAHA
CYCLE
NUMBER
1
2
3
4
6
7

CONCENTRATION AS MEASURED
HC CO C02 NO IK)
6»»
4423. 4.400 3.560 51.
470?.. 3.990 5.330 76.
3189. 7.140 11.460 103.
3208. 2*560 8.910 98.
4924. 0.970 8.750 90.
4364. 3.200 ft. 690 105.
5961. 5.320 4.800 96.
	 	 	 ( CYCLE COMPOSI TE ) — — — -
7575. 4.120 4.390 103.
7111. 3.330 6.330 136.
5001. 2.250 11.480 103.
4933. 2.500 9.450 103.
5996. 1.130 8.680 90.
5383. 3.020 8.620 110.
6420. 5.410 3.560 100,
SUM OF CYCLFS 6-7 	
DT1E RUN 4
CONCENTRATION AS DETERMINED
HC CO NOIK)
5151.732 2.094 84.900
5583.848 7.389 84.934
5515.189 2.760 96.470
5406. B26 3.024 99.321
4441.963 3.362 94.818
5380.794 2.751 103.403

DILUTION
FACTOR

1.376
1.123
0.906
1.061
0.996
0.966
1.043

0.991
0.925
0.805
0.904
0.922
0.909
1.098

A D J U S
HC CO

6086. 6.054
5283. 4.463
2891. 1.940
3406. 2.718
4906. 0.966
4217. 3.092
6219. 5.550

7507. 4.083
6578. 3.080
4027. 1.811
4462. 2*261
5530. 1.042
4895. 2*746
7053. 5.943

TED
NOIK)

70.
85.
93.
104.
89.
101.
100.

102.
125.
82.
93.
83.
100.
109.

WEIGHTING
FACTOR

0.042
0.244
0.116
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

255.637
1289.271
341.149
211.209
245.304
1919.033
180. 358
4441 .963

315.301
1605.034
475.212
276.694
276.521
2227.492
204.537
5380.794
4911.379
I G H T
CO

0.254
1.394
0.228
0.168
0.048
1.407
0.160
3«362

0.171
0.751
0.213
0.140
0.052
1.249
0.172
2.751
3.056
C D
NOIK)

2.947
20.333
11.018
6.452
4.463
46.172
2.904
94.813

4.287
30.696
9.787
5.777
4.150
45.518
3.165
103.403
99.110
- COLD CYCLE
WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250

W E
HC
450.776
488.586
482.579
473.097
1443*638
1748.758
	 5087*436

I G H
CO
0.183
0.209
0.241
0.264
1.092
0.894
2.885
T E 0
NOIK)
7.426
7.431
3.441
3.690
33.816
33.606
96.414






DILUTION FACTOR • 14,5/(C02*0.5«CO+10.6»HCI
                                             B-35
                                                                                           flfU

-------
YAMAHA OTIE
                   RUN
                                                            - COLO CYCLE
                                                                                       1.0000
                                                                                                      429.
CONCENTRATION AS MEASURED DILUTION ADJUSTED
MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-10
7 50-20
••CYCLE
1 IDLE
? 0-25
3 30
4 30-15
5 15
6 15-^0
7 50-20
••CYCLE
1 IDLE
2 0-?5
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE ,
1 IDLE
2 0-25
•? 30
« 30-15
5 15
6 15-30
7 50-20
AVFRAC.F '
HC
1"
7997.
7332.
3503.
3443.
7090.
5080.
CO

2.600
2.070
2.230
1.910
0.450
2.800
C02

4.640
6.750
10.410
6.410
7.680
8.410
8562. 4.990 3.210
NOIK)

51.
67.
103.
94.
157.
77.
74.
FACTOR

0.994
0.923
0.947
1.108
0.931
0.947
0.969
HC

7954.
6770.
3316.
3815.
6606.
4815.
8303.
CO

2.586
1.911
2.112
2.116
0.419
2.654
4.639
NO664
                                                                                             0.108
                                                                                             0.466
                                                                                             0.249
                                                                                             .0.131
                                                                                             0.020
                                                                                             1.207
                                                                                             0.140
                                                                                             2.324

                                                                                             0.157
                                                                                             0.735
                                                                                             0.157
                                                                                             0.141
                                                                                             0.047
                                                                                             1.186
                                                                                             0.145
                                                                                             2.570

                                                                                             0.165
                                                                                             0.850
                                                                                             0.191
                                                                                             0.140
                                                                                             0.057
                                                                                             1.292
                                                                                             0.153
                                                                                             2.851

                                                                                             0.173
                                                                                             0.861
                                                                                             0.215
                                                                                             0.157
                                                                                             0.064
                                                                                             1.214
                                                                                             0.131
                                                                                             2.618
                                                                                             2.641
 2.130
15.095
11.512
 6.459
 7.314
33.210
 2.061
77.803

 2.970
19.104
10.823
 6.166
 3.368
39.563
 2.326
64.324

 3.369
22.392
 9.991
 6.979
 3.231
38.171
 2.709
66.865

 3.894
22.874
11.690
 6.028
 3.702
41.833
 2.968
92.993
85.496
                                                                                                           COMPUTING "INC
YAMAHA
                   RUN   5
                                                            - COLD CYCLE
                                                                                   K > 1.0000
                                                                                                      429.
MODF
••CYCLC
1 IDLE
2 0-55
•J 30
4 30-15
5 15
6 1S-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
AVERAGE
YAMAHA
CYCLE
NUMBER
1
2
3
4
6
7
CONCENTRATION AS MEASURED
HC CO C02 NO(K)
6«»
6289. 4.690 3.200 90.
7296. 3.790 6.620 105.
3127. 2.020 11.400 103.
3344. 2.710 8.550 103.
6995. 1.760 6.270 103.
5166. 3.490 8.450 111.
7360. 5.040 3.490 113.
7»»
947;. 4.540 3.450 129.
6687. 4.730 5.970 115.
3536. 2.300 11.360 129.
3651. 2.820 8.450 127.
7067. 2.480 7.850 117.
5681. 4.020 9.270 133.
7658. 5.410 3.470 124.

DTIE RUN 5
CONCENTRATION AS DETERMINED
HC CO NO(K)
5376.261 2.324 77.803
5653.610 2.570 84.324
5852.537 2.851 86.865
5660.247 2.618 92.993
5150.991 3.092 98.480
5517.310 3.423 111.813
DILUTION
FACTOR
1.000
0.873
0.918
1.072
0.868
0.919
1.038
0.908
0.818
0.887
1.050
0.667
0.863
1.003

A
HC
8290.
6375.
2872.
3587.
6071.
4748.
7645.
8612.
7109.
3139.
3635.
6127.
5018.
7686.

D J U S
CO
4.690
3.311
1.855
2.907
1.527
3.208
5.235
4.126
3.871
2.042
2.962
2.150
3.550
5.430

TED WEIGHTING
NOtKl FACTOR
90.
91.
94.
110.
89.
102.
117.
117.
94.
114.
133.
101.
117.
124.

0.042
0.244
0.118
0.062
0.050
0.455
0.029
0.042
0.244
0.113
0.062
0.050
0.455
0.029

- COLD CYCLE
WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3250
0.3250
W E
HC
470.422
494.690
512.097
497.021
1674.072
1793.125
I G H
CO
0.203
0.224
0.249
0.246
1.004
1.112
TED
NOIK)
6.807
7.378
7.600
8.136
32.006
36.339
OR _ 9AO
W E
HC
348.207
1555.513
338.901
222.413
303.591
2160.649
221.715
5150.991
361.704
1734.756
370.515
237.791
306.390
2283.234
222.917
5517.310
5334.151
I
G H T
CO
0.197
0.808
0.213
0.180
0.076
1.459
0.151
3.092
9.173
3.944
3.241
3.133
3.107
1.615
0.157
3.423
3.257
E D
NOIK)
3.780
22.386
11.163
6.850
4.470
46.425
3.404
96.480
4.924
22.965
13.517
6.271
5.372
53.453
3.609
111.313
135.146
                                                        B-36
DILUTION FACTOR >  14.5/IC02+0.5»CO*10.8*HC)

-------
YAMAHA OTIE        RUN-6

             CONCENTRATION  AS  MEASURED  DILUTION
WE          HC     CO    C02    NOIK)     FACTOR
                                                        AD
                                                       HC
S - COLD CYCLE

JUSTED
  CO   NO(K)
WEIGHTING
 FACTOR
»«CYCLF
1 IDLE
? 0-75
3 30
4 30-1 5
5 15
6 15-30
7 50-20
SUM 	
••CYCLE
1 IDLE
7 0-?5
•) 30
4 30-15
5 15
A 15-30
7 "iO-?0
»*CYCLF
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
SUM— —
••CYCLE
1 IOLF
2 0-?">
3 30
4 30-15
5 15
6 15-30
7 50-20
Al/ERAGF
5093* 1.380 5.630
5082. 1.240 7.290
4047. 1.380 11.240
3742. 1.540 8.730
4975* 0*360 8.000
4361. 2*830 8.690
5741. 5.030 3.560
	 (CYCLE COMPOS TTPI 	
?••
7030.
6982.
4821.
447Q.
5862.
4984.

3.750
3.150
1.810
2.040
0*600
2.230

4.190
6.350
11.860
9.420
8.520
8.860
5909. 5.170 2.810
51.
30.
104.
90.
64.
90.
73.

77.
93.
104.
98.
77.
89.
85.
1.226
1.082
0.889
1.070
1.069
0.978
1.181

1.061
0.937
0.806
0.949
0.957
0.944
1.231
6247.
5499.
3599.
4006.
5322.
4268.
6781.

7463.
6546.
3889.
4245.
5610.
4705.
7275.
1.692
1.341
1.227
1.649
0.385
2.769
5.941

3.981
2.953
1.460
1.937
0.974
2.105
6.365
62.
32.
92.
96.
68.
88,
86.

87.
83.
93.
73.
84.
104.
0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.350
0.455
0.029

7302.
6966.
4770.
4756.
5879.
5229.
6243.
•«•««« / fvr
4.160
4.220
1.420
1*930
1.070
3.530
9.330
i e muof
3.810
6.040
12.090
9.390
8.700
8.480
3.750
^ f TC 1
90.
120.
117.
93.
77.
105.
85.

1.052
0.925
0.807
0.90&
0.930
0.912
1.102

7685.
6444.
3852.
4312.
5469.
4770.
6880.

4.378
3.904
1.146
1.749
0.995
3.220
5.873

94.
111.
94.
84.
71.
95.
93.

0.042
0.244
0.118
0.062
0.053
0.455
0.029

4»*
7310.
71*0.
4890.
4842.
6477.
5395*
4.350
4*580
0*820
2.370
0.890
3*980
3.740
6.270
12.510
8.300
9.000
8.440
6320. 5.210 3.610
90.
127.
117.
100.
90.
100.
91.
1.049
0.891
0.796
0.985
0.881
0.891
1.111
7675.
6362.
3895.
4771.
5712.
4812.
7027.
4.567
4.081
0.653
2.339
0.784
3.549
5.793
94.
113.
93.
98.
79.
89.
101.
0.042
0.244
o.iie
0.062
0.050
0.455
0.029

K ' 1.0000 W •
W E
HC
262.396
1341.943
424.791
24B.428
266.131
1942.081
196.662
4682.434
313.476
1597.246
458.984
263.206
280.506
2141.069
210.986
5265.477
322.798
1572,466
454.637
267.373
273.497
2170.754
199. 52C
5261.045
322.364
1552.517
459.683
295.830
285.631
2189.490
203.791
5309.299
I G H T
CO
0.071
0.327
0.144
0.102
0.019
1.260
0.172
2.097
0.167
0.720
0.172
0.120
0.02R
0.957
0.184
2.351
0.183
0.952
0.135
3.109
3.049
1.465
0.170
3.065
0.191
0.995
0.077
3.144
3.339
1.615
0.167
3.232
429.
E D
NOIK)
2.627
7.921
10.916
5.975
3.423
40.079
2.500
73.444
3.433
21.275
9.901
5.770
3.684
38.233
3.035
85.333
3.978
27.088
11.151
5.228
3.582
43.589
2.716
97.334
3.968
27.614
10.99S
6.109
3.966
40.583
2.934
96.173
                                                                                    5129.5
                                                                                                           COMPUTING. INC
YAMAHA  DTIE
                    RUN-6
                                                           S - COLD  CYCLE
                                                                                       1.0030
                                                                                                      429.

MODE
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 15
6 15-30
7 50-20
••CYCLE
1 IDLE
2 0-25
3 30
4 30-15
5 1»
6 15-30
7 50-20
AVERAGE
CONCENTRATION AS MEASURED
HC CO C02 NOCK)
6«
4096. 4*900 3.360 77.
4217* 3*560 6.610 123.
2682. 2.690 11.130 112.
2706. 2.580 8.570 100.
4890. 1*840 8.600 103.
4063* 4*150 8*270 126.
5345. 5.320 3.6*0 110.
— 	 ( CYCLE COMBOS I TE 1 ----- — --
7**
7011. 4.640 3.500 103.
6706. 3*930 6.990 132.
4689. 2.930 11.200 117.
4521. 2.700 8.570 119.
6192. 1.230 8*500 103.
9377. *.2«0 «.250 114.
6290. 5.380 3.440 108.
SUM OF CYCLES 6-7 	
DILUTION
FACTOR

1.416
1.120
0.943
1.134
0.979
0.984
1.179

1.082
0.817
0.979
0.917
0.8«
1.122

A D J U S
HC CO

5803. 6.376
4723. 3.987
2529. 2.537
3069. 2.926
4790. 1.802
3998. 4.084
6542. 6.277

7591. 5.023
6170. 3.416
3834. 2.396
4428. 2.644
5681. 1.128
4813. 3.831
7057. 6.036

TED WEIGHTING
NOCKI

109.
137.
105.
113.
100.
124.
129.

111.
121.
95.
116.
94,
102.
121.

FACTOR

0.042
0.244
0.118
0.062
0.050
0.455
0.029

0.042
0.244
0.118
0.062
0.050
0.455
0.029

W E
HC

243.750
1152.605
298.531
190.314
239.524
1919.422
189.742
4133.893

318.627
1505.686
452.525
274.570
284.384
2190.183
204.666
5230.544
4682.219
I G H T
CO

C.267
0.973
0.299
0.131
3.393
1.8S3
0.182
3.852

3.211
0.082
0.282
0.163
C.C56
1.743
3.175
3.514
3.683
E 0
N0«l

L.582
33.613
12.466
7.333
5.045
56.423
3.764
122.933

<..6tJ
29.637
11.291
7.227
<..72S
46.434
107.51/.
115.224
e _ rni n rvn P
YAMAHA DTIE RUN-6
CYCLE
NUMBER
1
2
3
4
6
7

CONCENTRATION AS DETERMINED
HC CO NOIK)
4682.434 2.097 73.444
5245.477 2.351 83.333
5261.049 3.069 97.334
5309.299 3.232 96.178
4133. »«3 3.8S2 122.933
5230.944 3.514 107.314

WEIGHTING
FACTOR
0.0875
0.0875
0.0875
0.0875
0.3290
0.3290


W E
HC
409.713
460.729
460.341
464.563
1343.515
1699.926
	 4838.789

I G H
CO
0.183
0.205
0.268
0.282
1.251
1.142
3.334

TED
NOIK)
6.426
7.466
8.516
9.415
39.9J3
34.942
105.721










DILUTION FACTOR « 14.5/IC02+0.5»CO+10.8*HC)
                                                       B-37

-------
               APPENDIX C

     Motorcycle LA-4 Emissions Data
(1975 Federal Light-Duty Vehicle Procedure)

-------
HARLEY-DAVIDS0N FLH
RUN 1    10/29/71
    M0T0RCYCLE
VO IS
•069207
INPUTS AND RESULTS F0R BAG  1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
48
41 .46
1 .4
1 .8
.05
1 1293
1
90
704.736
40.2548
5.90932
1460.12
16.0046
9342.61
RESULTS F0R BAG 3
56
193.77
1 .5
1 .8
.05
11017
1
90
682.721
188.137
6.122
1 103.15
13.494
9380.88
RESULTS F0R BAG 2
48
41 .46
1 .4
1 .8
.05
18872
1
90
1173.58
40.2548
8.16967
1157.88
4.42033
8166.81
4.85681
•127829
70.6268
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              1150
                              10047.
                              13.5
                              15
                              1 .12
                              114
                              104

                              1.15781
                              9538.28

                              12.2988
                              .577697
                              211 .157
                              1200
                              8566.6
                              5
                              6
                              .7
                              1 12
                              104

                              1.15781
                              8202.13

                              22.1902
                              .3253
                              315.998
                                  C-2

-------
HARLEY-DAVIDS0N FLH  M0T0RCYCLE
RUN 2     10/30/71
VO IS
•069207
INPUTS AND RESULTS  F0R  BAG 1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
43
1 17.01
1
1 .5
.05
1 1 140
1
59
694.472
1 14.78
5.6442
1414.62
16.2658
9996.72
RESULTS F0R BAG 3
43
74.89
1
1 .5
.04
1 1304
1
59
701 .006
73.4628
6.24784
1363.88
13.7401
8985.69
RESULTS F0R BAG 2
43
1 17.01
1
1 .5
.05
18935
1
59
1 178.35
1 14.78
6.73122
1463.39
5.22284
9909.5
5.86092
.120296
80.2381
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               CO-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                              1450
                              10539.5
                              16.5
                              17.5
                              1 .22
                              1 10
                              77

                              1.00949
                              10091.2

                              16.0428
                              .617603
                              228.892
                                   65
1400
9426,
14
15
1 .1
1 13
77
                              1 .00949
                              9047.4

                              15.6129
                              .526613
                              207.679
                              1500
                              10372.6
                              5
                              6.5
                              .84
                              1 11
                              77

                              1 .00949
                              10007.2

                              28.1591
                              .336481
                              384.985
                                   C-3

-------
HARLEY-DAVIDS0N M0T0RCYCLE
RUN 3     1 1/1/71
VO IS
.069207
INPUTS AND RESULTS F0R BAG  1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
30
49.8
.4
.6
.06
1 1003
1
65
684.045
48.7544
5.13815
1575.84
17.5168
10840.1
RESULTS F0R BAG 3
28
66.51
.2
.4
.05
1 1229
1
65
696.873
65.1 136
5.29289
1477.29
16.1756
10664.2
RESULTS F0R BAG 2
30
49.8
.4
.6
.06
18905
1
65
1171 .19
48.7544
7.06234
1424.25
5.28496
9182.04
5.91885
.127109
79.9125
                              HCE     i
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              1600
                              11418-1
                              16
                              18
                              1 .36
                              1 10
                              73

                              •990688
                              10879.4

                              17.6028
                              .642916
                              244.477
                              1500
                              11236.3
                              15
                              16.5
                              1 .31
                              11 1
                              73

                              •990688
                              10717.

                              16.8115
                              .604823
                              245.019
                                   01
1450
9578.
4.5
5.8
.83
112
73
                               .990688
                               9223.89

                               27.2396
                               .332113
                               354.558
                                  C-4

-------
H0NDA CL350K3 M0T0RCYCLE
RUN 1     10/29/71

VO IS            .069207

INPUTS AND RESULTS  F0R BAG  1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DP
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
40
33.14
.8
1
.04
1 1446
t
90
708.072
32. 1766
8.981 41
1064.45
6.71 134
7191.11
AND RESULTS F0R BAG 3
43
41 .46
1
1 .2
.03
1 1384
1
90
701 .796
40.2548
9.65212
991 .455
6.92432
6516.87
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MA.SS
C0-MASS

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
1 100
7534.46
6.4
7.6
.66
1 15
104

1 -15781
7219.71

12.3081
•297991
167.878

1030
6834.52
6.8
8
.63
1 17
104

1 . 1 5781
6552.95

1 1 .3624
.304722
150.789
INPUTS AND  RESULTS  F0R  BAG 2
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
40
33-14
.8
1
.04
18858
1
90
1 162.55
32. 1766
12.9127
903.098
2.47744
4907.71
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
940
5131
2.6
3.4
.45
1 17
104

1 .15781
4937.39

17.1448
.180606
188. 109
3.85518
6.43244 E-2
46.1661
                                  C-5

-------
H0NDA CL350K3 M0T0RCYCLE
RUN 2     10/30/71
VO IS
,069207
INPUTS AND RESULTS F0R BAG  1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
30
66.51
1 .5
2
.04
10701
1
59
664.772
65.2425
8.4801 1
1223.54
6.73585
7594.13
RESULTS F0R BAG 3
25
41 .46
1 .5
3.5
.06
1 1237
1
59
698.069
40.6699
9.38429
1 127.66
5.87296
6692.84
RESULTS F0R BAG 2
30
66.51
1 .5
2
• 04
18813
1
59
1 168.71
65.2425
13.1795
922.276
2.15175
4757.
4.08537
4.94039 E-2
45.6895
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              1250
                              7907.4
                              7.5
                              8.5
                              .69
                              1 12
                              77

                              1 .00949
                              7651.68

                              13.2824
                              .244819
                              166.445
                                   16
1150
6947,
7.5
9
.64
1 12
77
                              1 .00949
                              6729-18

                              12.8548
                              .224149-
                              154.03R
                                   65
950
4953.
3
4
• 44
1 12
77
                              1 .00949
                              4817.29

                              17.6017
                              .137492
                              183.298
                                   C-6

-------
H0NDA
RUN 3
VO IS
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DP
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM

NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
CL350K3 M0T0RCYCLE
1 1/1/71
.069207
AND RESULTS F0R BAG 1
57
1 17.01
.2
.5
.05
1 1142
1
65
693.904
114.553
8.83843
1 149.45
6.05657
7059.38
AND RESULTS F0R BAG 3
45
100.12
.5
.7
.05
1 1206
1
65
690.607
98.018
9.38782
1 159.79
4.57456
7086.24
AND RESULTS F0R BAG 2
57
1 17.01
I
.2
.5
.05
18877
1
65
1 175.63
1 14.553
12.576
947.532
2.03976
5049-74
4.16625
4.31677 E-2
47.6195
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
1200
7413.67
5.3
6.5
.68
109
74

.995322
7160.98

13-0249
.226552
161.505
     67
1200
7413.
4.2
5.2
.59
115
74
.995322
7173.82

13.0797
.170303
161.349
     75
1000
5312
1 .6
2.5
.45
109
74
.995322
5155.19

18.1907
.129268
195.73
     C-7

-------
HONDA SL-100 M0T0RCYCLE
RUN 1     8/15/72
VO IS
7.55355E-2
INPUTS AND RESULTS F0R BAG  1
HCD
C3DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C-3DM
NOD
N3XD
C32D
RPM
P
R
V/»IX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
V'MIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
30
3
0
. 1
.05
1 1925
3*8
57
814.429
2.94477
1 2 . 62 1 9
610.377
38.9079
3375.79
RESULTS F9R BAG 3
25
8
. 1
.3
.03
12182
3-8
57
820-385
7.85271
15.0104
512.666
43.22
2383.82
RESULTS F0R BAG 2
30
3
0
. 1
.05
18187
3.8
57
1237.72
2.94477
18-2832
437.641
9.50547
3160.33
2. 16681
.321742
27.2928
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C3E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               N0E
                               N0XE
                               C32M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               638
                               3487
                               32
                               39
                               . 66
                               106
                               70

                               .97704
                               3378.5

                               8. 1 1778
                               1.6768
                               90.6457
                               536
                               2465
                               32.3
                               43- 5
                               .6
                               1 1 4
                               70

                               .97704
                               2391 .15

                               6.86812
                               1.37626
                               64-4777
                               466
                               3246
                               8-4
                               9.6
                               • 37
                               108
                               70

                               .97704
                               3163.12

                               8.84561
                               .62257
                               128-966
                                    C-8

-------
H0NDA SL-100 M0T0RCYCLE
RUM A     8/18/72
VO IS
7.55355E-2
INPUTS AND
HCD
C0DM
NOD
•\'0XD
C02D
RPM
P
R
VillX
COD
DF
HC-C
M0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
CGD
DF
HC-C
N3X-C
C0-C
INPUTS AND
HCD
C3DM
NOD
N3XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N3X-C
C0-C
HC - WM
N0X-WM
C0-4M
RESULTS F0R BAG 1
36
2
•A
1 -2
.04
1 1430
3.8
52
758.627
1 -96641
1 6.3988
489. 195
44.9732
1946. 51
RESULTS F0R BAG 3
31
2
.3
1
.04
10855
3.3
52
720.464
1 .96641
13- 1982
388.703
48.855
1643-49
RESULTS Fi3H BAG 2
36
2
. 4
1 .2
.04
18987
3-8
52
1 2 62 • 3 7
1 .96641
24.7759
321 .453
1 5. 6484
1750. 58
1 .57857
.384441
15-473

HCE
C0EM
N0E
N0XE
C02M
T
H

X
C0E

HC-MASS
N0X-MASS
C0-MASS

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
CO-MASS

HCE
C0EM
N0E
N0XE
C02M
T
H
K
C0E
HC-MASS
N0X-MASS
C0-MASS




523
2004
18.8
46. 1
.57
120
70

.97704
1948.35

6.06034
1 .8054
48.6859

413
1 691
23.9
49.8
.53
120
70

.97704
1645.35

4.57316
1 .86257
39.0389

356
1 794
10.8
1 6-8
. 33
1 1 9
"~i r\
70
.97704
1752. 47
6.62662
1 .04532
72-3602



                                   C-9

-------
HONDA
RUN 5
VO IS
INPUTS
HCD
C0D.VJ
NOD
N0XD
C0?D
RP^
P
R
VM I X
C3D
DF
HC-C
M0X-C
C3-C
INPUTS
HCD
C0DH
NiOD
N3XD
C02D
.tPtf
P
R
VMIX
C0D
DF
HC-C
N3X-C
C3-c
INPUTS
HCD
03 DM
NOD
N9XD
C92D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C3-C
HC-MM
N0X-WM
C0-'.-,tvl
SL-100 M0T0RCYCLE
8/21/72
7.55355E-2
AND RESULTS F0R BAG 1
40
25
. 6
1 .4
.03
1 1386
3.8
62
753.361
24.4993
15.3007
647.614
34.8915
2549.85
AND RESULTS F0R BAG 3
30
31
.3
1 .3
.03
1 1260
3.8
62
745.025
30-3792
1 4-4651
588-074
26.5899
3319.37
AND RESULTS F0R BAG 2
40
25
.6
1 .4
.03
18890
3-8
62
1254. 19
24.4993
19.6669
462.034
8-77119
2390.22
2.26225
.265025
25.7623
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
HCE
CO EM
N0E
N0XE
C02M
T
H

K
C2JE

HC-MASS
N0X-MASS
C3-MASS
            685
            2654
            20. 1
            36.2
            .55
            121
            93

            1.09242
            2572.75

            7.9672
            1 .55522
            63-3341
            616
            3452
            19.3
            27.8
            . 53
            121
            93

            1-09242
            3347.65

            7.15466
            1 . 1 7207
            81.5353
            500
            2993
            7.9
            10. 1
            .34
            1 19
            93

            1 .09242
            2913.47

            9-46285
            .65086
            119.512
C-10

-------
H0MDA SL-100  M0T0RCVCLE
RU\' 6      8/22/72
VO IS
7.55355E-2
INPUTS  AMD  RESULTS F0R BAG  1
HCD
C00M
NOD
N0XD
C02D
RPtf
P
R
VMIX
C0D
OF
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM
MOD
\'0XD
C02D
RP'^
P
p
V/MIX
C0D
DF
HC-C
M0X-C
C0-C
IMP UTS
HCD
C0D-M
NOD
M0XD
C02D
RPM
P
R
VtflX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-//M
C0-WM
34
0
0
.3
• 05
11717
3.8
63
776.868
0
14.264
749 .384
42-221
2213.25
AMD RESULTS F0R BAG 3
36
2
0
• 4
• 04
1 1600
3.8
63
767.737
1 .9593
1 6.0955
514.237
37.0249
2275- 46
AND RESULTS F0R BAG 2
34
0
0
.3
.05
18953
3-8
63
1258.8
0
20-5205
400.657
13.7146
2197.04
2. 1332
.353499
19.7856
                                HCE
                                C0EM
                                M0E
                                M0XE
                                C02M
                                T
                                H

                                K
                                C0E

                                HC-iMASS
                                N0X-MASS
                                C0-MASS
                                HCE
                                C0EM
                                N3E
                                N0XE
                                C32M
                                T
                                H

                                K
                                C0E

                                HC-'IASS
                                N0X-MASS
                                C0-MASS
                               HCE
                               C0EM
                               M0E
                               N3XE
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               i^0X-MAS
                               C0-MASS
                               781
                               2288
                               19. 6
                               42-5
                               . 64
                               120
                               81

                               1 .02902
                               2213.25

                               9.50687
                               1 .82801
                               56. 6888
                               548
                               2350
                               22- 1
                               37-4
                               .55
                               121
                               Rl

                               1.02902
                               2277.3

                               6.44743
                               1.58429
                               57.6009
                               433
                               2260
                               10-2
                               1 4
                               .39
                               1 19
                               81

                               1.02902
                               2197-04

                               8-23601
                               .962152
                               91 .1835
                                   C-ll

-------
KAWASAK
RU\' 1
VO IS
INPUTS
HCD
C0 DM
NOD
N0XD
C32D
RPM
P
R
VMIX
C0D
DF
HC-C
M0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N'3XD
C02D
RPM
P
•y
VMIX
C3D
DF
HC-C
N0X-C
C-/J-C
IX'PUTS
HCD
C0DM
NOD
NtfXD
C32D
PP /]
P
71
VMIX
COD
DF
HC-C
N3X-C
cy-c
HC- ••/;"]
NOX-WM
C'J-V/M
I 125F-6 M0T0RCYCLE
8/15/72
7.55355E-2
AND RESULTS. F0R BAG
24
5
0
.9
.06
13145
3.8
57
907.368
4.90794
12.81 52
3377.87
19.2702
1051 .85
AND RESULTS F0R BAG
32
5
. 1
.9
.06
1 1796
3.8
57
790.26
4.90794
1 1 .7189
3770-73
22.4768
1 630.03
AND RESULTS F0R SAG
24
5
0
.9
.06
19726
3.8
57
1351 .98
4.90794
19. 6028
2017.22
7.24591
291 . 1 12
12.506
•193601
6.76201



1
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
3
HCE
C0EM
N0E
•M0XE
C02M
T
H

K
C0E

HC-MASS
NOX-rtASS
C0-MASS
2
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
iM0X-MASS
CW-MASS



             3400
             1089
             8.4
             20. 1
             . 6
             100
             70

             .97704
             1056.37

             50.051
             .925255
             31.467
             3800
            1 685
             1 4. 1
             23.3
             . 6
             1 17
             70

             .97704
             1 634. 5^

             48.6611
             .939929
             42.4701
             2040
             304
             4.2
             8. 1
             .45
             104
             70

             .97704
             295.77

             44.536
             .518388
             12-9763
C-1Z

-------
KA'.MSAK
RUM 3
V/0 IS
IMP UTS
HCD
CO DM
NOD
N0XD
C02D
RPM
P
K
I/MIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS
HCD
C3DM
MOD
N0XD
C02D
RPM
P
R
V/1IX
C0D
DF
HC-C
N0X-C
co-c
INPUTS
HCD
C0DM
MOD
N0XD
C02D
RPM
p
R
'/MIX
CdD
DF
HC-C
N3X-C
ca-c
HC-'/JM
•M0X-VM
C0-/JM
I 125F-6 M0T0RCYCLE
8/17/72
7.55355E-2
AND RESULTS F0R BAG 1
24
3
.2
1.9
• 03
1 1449
3« 8
66
761 .73
2-93605
1 4.203
2927.69
15.7338
1 481 .87
AMD RESULTS F0R SAG 3
25
2
.7
5-1
.05
1 1387
3.3
66
757.605
1 .95736
1 4.5777
2786.71
1 4.9498
1 580.31
AMD -RESULTS FOR BAG 2
24
3
.2
1 -9
•03
19043
3-8
66
1269. 17
2.93605
23.8312
1 507.01
6.77973
590.073
8 • 8 72 6 1
. 149485
8.42585
HCE
C0EM
N0E
M0XE
C02M
T
H

K
C0E

HC-MASS
M0X-MASS
C0-MASS
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-^ASS
M3X-MASS
CJ-MASS
HCE
C0EM
M0E
M0XE
C02M
T
H

K
C0E

HC-'MASS
M0X-MASS
C0-MASS
2950
1532
1 1 .8
17.5
.5
120
80

1 .02407
1484.6

36.4177
• 664723
37.2159
2810
1 632
12.8
19.7
.48
120
80
1
34. 4764
.628183
39.4733
1 530
610
5-7
8.6
.35
1 19
80

1 .02407
592.886

31 .2334
.47724
24.6913
    C-13

-------
KAWASAK
RUN A
VO IS
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
\'0X-C
C0-C
IMP UTS
HCD
C0DM
MOD
M9XD
C32D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
IMPUTS
HCD
C0DM
MOD
MOXD
C02D
KHM
P
o
I \
Vr1IX
C3D
DF
HC-C
M0X-C
C'3-C
HC-WM
N0X-WM
C0-WM
I 125F-6 M0T0RCYCLE
8/18/72
7.55355E-2
AND RESULTS F0R BAG 1
41
9
0
.6
.04
1 1305
3.8
61
751 . 63
8.82267
13.5123
2962.03
1 7. 1444
1 508.76
AMD RESULTS F0R BAG 3
26
2
. 4
2
.03
1 1285
3-S
61
750.3
1 .96059
14.3264
2885. SI
1 6.4396
1441 .57
AND RESULTS F0R BAG 2
41
9
0
. 6
• 04
18954
3-8
61
1262.36
8-82267
23.7787
1480.72
6.62523
606.338
8-84154
. 154077
8-22138
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
.M0X-MASS
C0-MASS
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
HCE
C0EM
M3E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
3000
1 564
10.3
17.7
.54
120
79

1 .01916
1516.93

36.3564
.711291
37.3889
2910
1487
12. 7
18.3
.5
120
79

1.01916
1443-39

35-3532
.680844
35.6606
1 520
632
4.7
7.2
.35
1 19
79

1.01916
615.29

30.5242
.461643
25.2566
     C-14

-------
KAWASAKI 1
RUN 5
VO IS
INPUTS AND
HCD
C3DM
NOD
N3XD
C32D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C'J-C
INPUTS AND
HCD
C0DM
NOD
N'JXD
C02D
oPM
R
VM I X
C0D
DF
HC-C
NC3X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02Q
RPM
P
R
VMIX
CGD
DF
HC-C
•M3X-C
C0-C
HC-WM
N0.X-WM
C0-WM
25F-6 M0T0RCYCLE
8/21/72
7.55355E-2
RESULTS F0R BAG 1
26
1 1
0
• 4
•05
1 1258
3.8
66
749.023
10.7655
13.2361
2985.96
1 b-4302
1 403.87
RESULTS F0R BAG 3
35
44
0
• 4
• 04
1 1 137
66
740.972
43.062
14. 172
2717.47
1 6.2282
1365.24
RESULTS F0R BAG 2
26
I I
0
• A
.05
13990
3.8
66
1265. 63
10.7655
21 .4996
1 565.21
6.9186
532.407
3.90624
. 154423
7.48465
 HCE
 C0EM
 N0E
 N0XE
 C02M
 T
 H

 K
 C0E  ' '

 HC-MASS
 N0X-,V1ASS
 C0-MASS
 HCE
 C0EM
 NOE
T
H
C0E

HC-MASS
NI3X-MASS
C0--MASS
HCE
N3XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
 3010
 1461
 10. 1
 lb.8
 .57
 120
 83

 1 .03907
 1413.82

 36.5229
 .650414
 34.669
2750
1461
1 1 • i
1 6. 6
• b3
120
33

1 .03907
1405.26

32.8816
. 6767
33-3526
 1 590
 559
 4.9
 7.3
 .41
 1 19
 o3

 1 .03907
 542-671

32-3494
 .492776
22-2162
     C-15

-------
SUZUKI
RUN 2
VO IS
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
T250 M0T0RCYCLE
1 1/16/71
.069207
AND RESULTS F0R BAG
12
8
.2
.4
.03
1 1 147
1
62
692.261
7.83979
6.41858
6239.87
4.06232
6920.27
AND RESULTS F0R BAG
13.5
8
• 1
.4
.04
11 133
1
62
691 .391
7.83979
6.3661
6538.62
4.26283
7392.4
AND RESULTS F0R BAG
12
8
.2
.4
.03
18865
1
62
1171 .57
7.83979
12.165
3538.99
1 .83288
2358.05
18.6825



1














3














2















3.63705 E-2
34.0069

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
6250
7177
1 .9
4.4
.77
1 1 1
75

1
6926.89

70-5393
.152308
157.947
6550
7657
1 .7
4.6
.71
1 1 1
75

1
7399.01

73.8238
.159625
168.511
3550
2438
.9
2.2
.51
11 1
75

1
2365.24

67.707
.1 163
91.0835
   C-16

-------
SUZUKI T250  M0T0RCYCLE
RUN 3      11/17/71
VO IS
                 •069207
INPUTS AND RESULTS  F0R BAG 1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
COD
DF
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
COD
DF
HC-C
•M0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
63
50
• 1
.4
.05
1 1200
1
56
685.475
49.0956
6.87216
6646. 17
3.75821
6057.03
AND RESULTS F0R BAG 3
21 .5
1 7
. 1
.4
• 02
1 1068
1
56
682.125
16.6925
6.69654
6981 .71
3.85973
6396.14
AND RESULTS F0R BAG 2
63
50
.1
.4
.05
1 9024
1
56
1 168.38
49-0956
12.7704
3741 .93
1 .73132
2047.79
19-6952
3.34441 E-2
29-2985
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
6700
6294
1 .5
4. 1
.67
1 17
75

1
6098.98

74.3959
.139525
136.889
7000
6614
1 .7
4.2
.66
1 13
75
1
6410.
34
77.7699
.142593
143.847
3ROO
2151
1 .6
2.1
.46
1 15
75

1
2093-05

71.3946
.109557
78.8839
                                 C-17

-------
SUZUKI T250 MOTORCYCLE
RUN A     11/18/71
VO IS
.069207
INPUTS AND RESULTS FOR BAG  1
HCD
CODM
NOD
N0XD
C02D
RPM
P
R
VMIX
COD
DF
HC-C
NOX-C
CO-C
INPUTS AND
HCD
CODM
NOD
N0XD
C02D
RPM
P
R
VMIX
COD
DF
HC-C
NOX-C
CO-C
INPUTS AND
HCD
CODM
NOD
N0XD
C02D
RPM
P
R
VMIX
COD
DF
HC-C
NOX-C
CO-C
HC-WM
NOX-WM
C0-WM
30
8
.1
.5
.03
1 1338
1
52
703.617
7.86563
5.58284
8075.37
5.28956
7895.66
RESULTS FOR BAG 3
30
17
.1
.6
.06
1 1 159
1
52
692.509
16.7145
5.3724
8375.58
5.91168
8828.69
RESULTS F0R BAG 2
30
8
.1
.5
.03
18923
1
52
1 172.28
7.86563
10.5952
4372.83
2.34719
2940-1
23.6797
4.41298 E-2
40.9727
                              HCE
                              C0EM
                              N0E
                              NOXE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              NOX-MASS
                              CO-MASS
                              HCE
                              C0EM
                              NOE
                              NOXE
                              C02M
                              T
                              H

                              K
                              COE

                              HC-MASS
                              NOX-MASS
                              CO-MASS
                              HCE
                              C0EM
                              NOE
                              NOXE
                              C02M
                              T
                              H

                              K
                              COE

                              HC-MASS
                              NOX-MASS
                              CO-MASS
                              8100
                              8165
                              2.5
                              5.7
                              .8
                              1 12
                              55

                              .914077
                              7902.12

                              92.7866
                              .184254
                              183.166
                              8400
                              9131
                              2.4
                              6.4
                              .77
                              1 12
                              55

                              •914077
                              8842.29

                              94.7167
                              .202674
                              201.577
                              4400
                              3029
                              1 .2
                              2.8
                              .53
                              1 13
                              55

                              .914077
                              2947.22

                              83-7106
                              . 13622
                              1 13.635
                                  C-18

-------
TRIUMPH T120R  M0T0RCYCLE
RUN 1      11/3/71
VO IS
                 .069207
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
RESULTS F0R BAG 1
12
17
.2
.4
.04
1 1264
1
53
716.257
16.709
9.09799
1289.32
13.144
6613.65

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS

1 300
6835
12
13.5
.68
104
60

.934143
6628.52

15.0805
.476308
156.181
INPUTS AND  RESULTS  F0R BAG 3
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C

INPUTS AND  RESULTS  F0R BAG 2
13
25
.8
1
.05
1 1424
1
53
727.722
24.572
9.56069
1388-36
1 1 .6046
6293.72
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
1400
6506
1 1 .5
12.5
.63
103
60

.934143
6315.72

16.4988
.427255
151 .005
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C

HC-WM
N0X-WM
C0-WM
12
17
.2
.4
.04
18849
1
53
1200.7
16.709
12.3388
1238-97
5.03242
4894.71

5.35761
.100541
46.2665
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
1250
5042
4.7
5-4
.47
103
60

.934143
4910.07

24.2931
.305706
193.768
                                  C-19

-------
TRIUMPH T120R M0T0RCYCLE
RUN 2     11/4/71
VO IS
.069207
INPUTS AND RESULTS F0R BAG  1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
14
33
.1
.4
.05
11265
1
45
719.548
32.5203
9.1083
1287.54
14.6439
5982.9
RESULTS F0R BAG 3
18
58
.2
.3
.05
11410
1
45
728.81
57.157
9.287
1483.94
13.7323
6277.77
RESULTS F0R BAG 2
14
33
.1
.4
.05
18887
1
45
1206.4
32.5203
1 1 .7607
1187.19
5.23401
5064.1
5.32806
•103888
46.4587
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS



                                               1300
                                               6190
                                               13.5
                                               15
                                               .74
                                               103
                                               43

                                               .869263
                                               6011.85

                                               15.1288
                                               .496075
                                               141.935
                                               1500
                                               6506
                                               13
                                               14
                                               • 66
                                               103
                                               43

                                               •869263
                                               6328.78

                                               17.661
                                               .471181
                                               150.848
                                               1200
                                               5221
                                               4.7
                                               5.6
                                               .51
                                               103
                                               43

                                               •869263
                                               5093.86

                                               23.3883
                                               .297273
                                               201.425
                                 C-20

-------
TRIUMPH T120R  M0T0RCYCLE
RUN 3      11/5/71
VO IS
                 •069207
INPUTS AND RESULTS  F0R BAG 1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N3X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
9.5
17
.2
• 3
• 04
1 1310
1
57
707.493
16.687
8.79133
1441 .58
14.7341
6277.5
AND RESULTS F0R BAG 3
1 1
25
.2
.4
.04
1 1447
1
57
719-778
24.5397
9-09149
1440.21
14.144
5967.21
AND RESULTS F0R BAG 2
9.5
17
.2
.3
.04
18887
1
57
1185.52
16.687
1 1 .4809
1291 .33
5.72613
5056.38
5.57469
.1 17234
45.5089
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
1450
6506
13.5
15
.75
1 10
64

.950841
6292.29

16.6551
.536825
146.429
1450
6190
12
I 4.5
-73
109
64

.950841
5989.05

16.9282
.524273
141-608
1300
5221
5.4
6
.53
110
64

.950841
5071.61

24.9994
.349587
197.636
                                 C-21

-------
YAMAHA DT1-E M0T0RCYCLC
RUN 3     11/18/71
VO IS
.069207
INPUTS AND RESULTS F0R BAG  1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
28.5
17
.1
.6
.06
1 1 157
1
50
695.317
16.7254
6.56878
5875.84
3.89134
5485.35
RESULTS F0R BAG 3
20
25
.1
.5
.04
1 1 160
1
50
695.504
24.5962
6.70257
5782.98
3.5746
5971 .4
RESULTS F0R BAG 2
28-5
17
.1
.6
.06
18993
1
50
1 183.67
16.7254
12.3327
3123.81
3-04865
2100.08
16.8677
4.19346 E-2
28.5438
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                               HCE
                               C0EM
                               N0E
                               N0XE
                               C02M
                               T
                               H

                               K
                               C0E

                               HC-MASS
                               N0X-MASS
                               C0-MASS
                              5900
                              5690
                              2.4
                              4.4
                              .9
                              109
                              61

                              .938262
                              5499.53

                              66.7174
                              .137494
                              125.749
                               5ROO
                               6190
                               2.5
                               4
                               .82
                               109
                               61

                               .938262
                               5992.32

                               65.6807
                               -126337
                               136-929
                               3150
                               2174
                               1 .9
                               3.6
                               .56
                               109
                               61

                               .938262
                               2115.45

                               60.3809
                               .183375
                               81.9568
                                  G-22

-------
YAMAHA DT1-E M0T0RCYCLE
RUN A     \1/18/71
VO IS
                 •069207
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
RESULTS F0R BAG 1
31
17
.2
.8
.03
1 1 124
1
63
698.855
16.6541
6.57688
6173.71
3.72164
5560.28
RESULTS F0R BAG 3
32
8
.2
.6
.04
11159
1
63
697.358
7.83721
7.06171
5272.53
4.08497
5668-85

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS

HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS

6200
5788
2.4
4.4
• 86
106
62

•942418
5574.4

70.4563
.132753
128.1 16

5300
5886
2.8
4.6
.8
109
62

.942418
5675.58

60-0428
.145401
130.338
INPUTS AND RESULTS F0R BAG 2
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
31
17
.2
.8
.03
19126
1
63
1 199.45
16.6541
12.8621
3271 .41
1 .8622
2002.86
HCE
C0EM
N0E
N0XE
C02M
T
H

K
C0E

HC-MASS
N0X-MASS
C0-MASS
3300
2081
2.1
2.6
.51
107
62

.942418
2018.22

64.0774
. 1 14007
79.2053
17.1464
3.38626 E-2
27.8117
                                  C-23

-------
YAMAHA Uil-fcJ M01WKCYULt
RUN 5     11/19/71
VO IS
.069207
INPUTS AND RESULTS F0R BAG  1
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
INPUTS AND
HCD
C0DM
NOD
N0XD
C02D
RPM
P
R
VMIX
C0D
DF
HC-C
N0X-C
C0-C
HC-WM
N0X-WM
C0-WM
8.5
8
.4
• 8
.05
1 1 139
1
37
704.604
7.90439
7.4943
5092.63
4.00675
4373.41
RESULTS F0R BAG 3
7.5
8
.2
.4
.05
1 1055
1
37
698.058
7.90439
7.70947
4593.47
9.25188
5074.34
RESULTS F0R BAG 2
8.5
8
.4
.8
.05
18862
1
37
1 193.13
7.90439
13.7579
3142.12
3.65815
1482.52
15.5018
5.76552 E-2
22.4764
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              HCE
                              C0EM
                              N0E
                              N0XE
                              C02M
                              T
                              H

                              K
                              C0E

                              HC-MASS
                              N0X-MASS
                              C0-MASS
                              5100
                              4507
                              7.8
                              4.7
                              • 84
                              106
                              41

                              .862218
                              4380.26

                              58.5968
                              .131836
                              101.598
                              4600
                              5221
                              6.4
                              9.6
                              .77
                              107
                              41

                              •862218
                              5081.22

                              52.3623
                              •30159
                              116.786
                              3150
                              1523
                              2.7
                              4.4
                              .51
                              106
                              41

                              •862218
                              1489.85

                              61.2203
                              •203819
                              58.3184
                                  C-24

-------
              APPENDIX D

Gaseous Emissions Data from Steady-State
          Tests on Motorcycles

-------
CO^AS,T^^JT - S»PE£D
   D>\<. 10/4- h\
TtS-T   O/NT A  HARLEV -
   2.9.24   j.^ U        U
                                                                                            FUH
G4
                                                                                                              72.
1NU
M.I.

1






S
fc
7
8
9
10
II
U
13
14
15

* V
»7
IB
O
20
21

11
N INO, _ _
C A'4 "
V««Q\T.VO»A
HI*

2O R,L

oO Kl_

4O K\-
50 RL_
ZO S'A
30 SX
40 SX
50 57.
20 1 0%
30 10%
40 10%
50 10%
20 207.
30 20%

0.&t"lAX, K L
O.feMox. 3
Q.tfU*. ,3
(X&MW.RU
j.
O.BM«. |

Ii\«-



	
1

*)
£-


4
1
2
3
4
1
2
3
4
I
2
1

1
1
1
1
1


t«aut
*V»W\
'
	
oqnfj

~ , qr\
2. to 7«
0,A *>f\
b««C.
* '
IZ,000

,200

Qi^OO
7At\l\
/*tOQ
5,400
8,000
5, GOO
4,200
3,400
9/000
3, tOO
2,000
3,200
3,200
3,200
t *x o f\r\

I,fc00
3,700
2,500
3,300
3,100

24,400
1
CO •/

4,9(b
7 Ad
.TO
ft ")E*
D>£i>
. .. -
7.U^
8.39
8.7 \
8.55
7.17
5.25
8.71
6.13
0.5)
t.7.7
5.40
5.0,9
Q tf\

O.ib
9.02
4.&>B
7.02
9.fcfc

8.07
SO 1 R
CQu V
^* ' *•
S.feO

.65
C* cr\
(Q»oU
Ga«=


7S
8.t9
9.44
9.44
tic
• ->_>
12. t6
7.80
9.b3
8.50
7.30

' D

NO Vbw
»Vy rr
57

(oO
/ID
(OvJ

foo
85
74
82
\2]
202
fc3
150
	
24O
\87
27B
.. _
3
S7

Zo
C..
Mn fct»
*,
78
c r\
SO
> c
T-O
CO
o^.
fel
£4-
(bl
93
190
SI
\2D
145?
20,9
IBS
30t
4.0
^•Q
927
>Si
91
120
\07

23
\_.
NO l'l>~
' "^
28

37

52
2.Q
^7
5C,
45
51
87
\&S
41
1 1 (o
1375
2£>
890
\39
&&
I \<0
97

2
•p.u*.
0 */
u«, /%
(o.fc

.2

.2
2. A
3.T-
3.2
3.2
3.2
3.0
2.9
3.0
2.9
3.)
2.S
2.C.
2.3
•3 ft

2.1
1 • O
2.1
\,<0
1.4

S. )
i^y,.^
. . .

7fe
—if
it

77
~l~7
/ /
17
71
71
71
71
70.
75
75
75
75
75
-j c
/^
7&
75
75
75
75

'-*
LM^'V
. 1
* '
US

24O

3OO
7. O C
O2t>
340
310
345
350
40O
250
350
430
4&0
445
415
A 1 1Z
4^t>
f500->
fSOOt
4SO
T5&01
'500 •>

zzo
p-a R^«,

^
2.72
4 A I
•94-
7C O.
iSo
7v r\
* 1 VJ
..7,90
&.75
7.42
7.fc5
7.31
7.77
7. 90
G.80
\0.fcS
8.»e
» 0.2O
&^r\
. 6vJ
10-68
23.33
12-89
20.41
30. fc2
/•
3.1to
U
             SOO*F,

-------
CONSTANT - S. PEED  E M\S.S»&A) S.  T &S.T   DATA MA
                                                                   RLEY -
                                                                                  S0fx) f LH
                                                                        ^v,  £4-
                                                                                                         73
JSVIN rvjo, ... -~
1
M.U
\
l
\ 3
5
fc
I 7~
&
}
10
u
11
\4
IS
l<0
17
1 &
19
2T>
XI
•10.
v»ix\vov\
1A\«-
0 RL
O RL
O RL
SO RL
ZO S%
^0 S%
40 5>%
SO £>%
ZO 10%
BO I OX
40 lOX
50 VOX
2O 20?
50 20
O.&MM. RL
O.GM.x. i
0.tMix. |
O.&MM.RL
o.ftH»v. 3
o.8M«. |
lA\t
i^cul-


1
z
3
4
I
2.
3
4
'
z
3
A
1
z
1
I
1
I
1
1


r.\£t*t
*]pMA


2
i")70
2-t^Q
2420
24fcO
2970
2(o9&
2420
24-foO
2970
2fc<)0
33(>0
33fcO
53fcO
4460
4480
4480
	
^7 w»
U|f>


	


	
	
4.1
6.0
8.3
10.1
fo.3
9.3
\2.Q
ISO
\0.7
1S.9

13.9
2S.6

n.Q
Si.\


FIA>
C,V>I>~C.
9,600
7,400
7X000
7,20O
5,400
6,200
3,, 200
3,400
2,800
2,750
1,400
1,600
2,T£0
2,\00
£,<>00
6,SOO
2,-)00
3,500
3,GOO
4,100
4,500
22,000
N D i R
o,V.
4,&l
6.2Z
6.51
9.»S
8.53
8,55
7.-bO.
!A(o
4.fc7
6.71
4.81
1.15
7.C>0
3.14
5.(o7
9.00
4.61
7.7 fe
7-30
B.OC,
9.W
7. GO
M^y.
£.&6
&.49
6>.»R
fc.33
Co. 4.3
fc.75
7.18
7-95
}.fel
7.95
7.45
11. 4B
6.a\
\0.41
9.22
G.49
10.21
b.13
9,4ft
6,2,1
^,9£
5.4S
NO>K
S3
SG
49
.4?
fc7
42
76
81
»B7
7&
»19
lOfol
n9
I (ol
340,
50,
^ 11
1 94
78
l \A
\<»4r
4.2-
C..L.
NJO^H.-
35
45
45
45
~
33
34
32
31
£6
2>&
Q>9
es
\94
85
<7.l
2.7
3.Z
2.8
3.6
2.3
2.0
2.1
I.&
1.7
(b.O
"[»»|p»tfa'\iiv«i,0F
UUi
15
75
7S
7B
16
75
74
74
74
74
74
74
74
74
74
73
73
73
74
74
74
74
r*U*.;t
i2>S
145
I &5
235
290
245
32S
33S
550
285
390
-400
4\0
360
485
5^0
500
1S06+
440
1SOO*
1500->
30 S
F-tl R..-U,
iy>~A.
2.57
8.44
7.4Z
7.10
7. 2>\
e.76
&.O3
&. \
-------
- S,PtED
                                     T V? £-T   D/VTA  HAKLEV-
                                                                                              ,. y
(NV
M.U
\

_
^
3




6
7
ft
9
10
II
U
13
\4
is

17
1 B
1 (V
19
20
Zl

7.2.
N "NO, _
C.«iiW
— , .


/.O KL.
30 RL
y| f\ p-l
40 Kl_
C.r\ o 1
£»VJ K,l—
20 £%
SO SX
40 52
50 B/^
20 102
30 10/J
40 1 0/£
50 10%
ZO 2070
30 20£

O.bnw.KL
O.GMM. §

O.ftl*1»v. RL
_^
0.8 M*x. f

HI*.

&,»*


|

2.
_
•5


I
2.
3
4
1
Z
3
4
1
2,
i
l
1
1
i
1
I
I
_

fr»3u.
*V~



/.i 7U
Zfe90

Z4ZO

24 toO
2970
2.690
2420
240,0
2970
2Q>9 0
2420
24£>0
2970
2




	




4.1
6.0
6.3
»0.\
6,3
9.3
12.Q
is,7
10,7
15.9

13.9
25.S


17.8
33.1


Fl*
HC,^-C
nA t\F\
,400
It T\t\f\
\ \ i UOU
6/900
8"> r» ft
;ZU VJ
e eftft
i>,i>l)U
5,300
3,150
3,000
2/850
3/GOO
2,150
1,400
2,700
2,700
2,500

/ooo
3,100
3,500

, /DO
3,500
3, tOO

Z.O/T \J\J

CO, •/.
7n
,1 /
8*7
.0 /
9.03
Q IQ
7. 1/
8 Oft

540
8.09
.
b-42
7.93
9.96
8oa

ND » R
co,,'/.
5-D i
6.4Z
r icr
IO'-3-J
C. M

7.47
7.81
8-70
9.25
7.98
9.4S
1U8
8.33
10.87
9.44
err
9."fc4
B.33
8-/n
. 10
6,33
7.Q>4
_ -.,


HO,VI>«
A Q
AV

5x>
63
c.r\
k>U
-j>*
/4
70
99
\39
1G>5
BB
191
1248
209
232
20Z

(oo
247
tbO
i i r>
1 1 U
\2>5
1 2 I
r a
loo
C.,
t^O t*!***

2.O

4(o
46
A"7
T- /
(_*)
VoZ
60
71
107
134
75
\Q>2
1251
IBS
2fe9
259

47
22,2
195
~i Q
If
121
107
i Q
^7
U.
NO,H-
1 £T
1 tD
a r\
OO
33
IX
34
erv
oU
SI
67
\04
131
70
15B
1251
IBS
2fc9
2S9
i d
iO
222
1S£L
"7 >\
/4
life
10Z

1 o
T>.\.*.
o., y.
^1 n
/• O

5. 1
4.8
2
^•O
2 1
s.z
3.0
3.1
3.1
3.0
2.G
2-9
2.7
2.9
2.4
2.5
3O
. ^
2.7
2.1

. 1
2-?
i. 8
Sr
.(o
T.*V"«J
l-Ui
~7>l
/4
"7/1
/4
73
-ia
/_>
"74.
'*r
74
74
74
74
74
74
74
74
74
74
~IA
/4
74
7S
7<

75
75
— y/r
fL>
U*-.,«t
F,U..tl
1 1 ^r
1 OO

Z3O
290
SI £•
1 o
"iL. 1C
oZa
275
350
380
380
300
42S
4-35
4£0
325
490
A r\f\
400
'500-v
1
50O*
1500-«
1SOO^
d *5 r\
3 ZO
p-a R^«/
iv>~/v,*

3. l C>

• S3
7.G5
7 "7 "7
• 1 /
7C2
• ±>O
8.16
7.4Z
7.G5
7.3\
8.90
7.4Z
7-90
10.88
8.59
ll.Uo
&/\ O
.05
9.&>0
I9.t>0
q /LA
7. 10 U
1841
32.fefc
•Z 1. -2
D. _>C>
SOO'F,

-------
  -  S.P&ED   EVULSIONS.  T
10/13/71   A
DATA    HONPPv.   C.L. 2>SO
                                                         wt>.  7Z
rvvjiN
M.K
\
1 n
r_ 3
4
_
^

It
17
i A
1 o
_
I 7
_2;0
I
1-L
INO. 	 t
\ , \ s
6 A Q \ \ ^0 W
IA\«.
2.0 R.U
2>O R\_
40 RV.
t- r\ o *
5O IS\_
2.Q SX
40 5>%
50 S%
20 1QX
2>o 10?;
40 10%
so i ox
20 20/£
30 202
0.6 KUi.RL
0.fcM»»,3
r»f M.. *


0.tt'"\»x.RL
O.&Mn. s
Ii\t
I
&«
2
2



\
\
1
	
r*3U,
^m
MOO
5600
4300
4800
£• *) f\r\
i> i\)U
3600
4300
4800
5200
3500
4300
4&00
5200
3BOO
4300
570O
S700
C~7 /\r\
O / UU

74> OO
7400
1300
D»w
V,|p
	
	
	
	


3.1
&,"s
7-9
4.5

9.2
1 1.0
7.1
*9-0
	
7.4
.
i f-< \


\I>-C
4, (oOO
e.,%00
14,000
14,000
5f) t\F\
, ZDV)
9,000
7,200
fc.fcoo
\j fcOw
>D 1 OC
G.SOO
7,200
7,400
10,40O
28,000
10,000
f r\r\r\
(0,000

IQ>,000
_8,400
3,400
h
o,V.
2.52
7.t3
9-78
0.7fc
9Q~T
. o7
»0.73
10.41
10.73
8.37
\UO
10.5*
\0.70
U.Sfc
11.39
\3.94
10.00
9.\4

•75

\\.45
8.18
9.11
4.01
4 D 1 R
coa,y.
"a.95
7.5\
G.32
fc.l&
c cxft
(O. 7lJ
Gi47
G.47
t.47
7.9b
&.\8
t.is
&75
G.47
G.47
5.3Q>
5.7fc
7.9&
9f A
. 1
Si
\
401
32 (o
5Q>
"P.U*.
0., V.
4.S
2.7
2--1)
2.Q,
2T>
. o
2.3
2.3
>-9
l.fc
l.B
1.&
1.5
l.S
1.9
1-9
4.7
2.7
. „
i • o

.4
2.C,
4-«b
•\.^.^
S«U\
74
74
74
74
~7>l
/•r
74
74
74
74-
74
74
74-
74-
74
74
74
74
—/A
/4

f4
74
74
74-
Uvo/F
F.V,..£l
V IO
US
135
ISO

225
115
ZOO
30O
375
2>IS
ZfcO
390
485
380
40O
\SO
37S
^
SOOT

4- vO
335
'soot
20O
EM R.iv
lb-A^
O.b&
2.59
3.%5
S.2Q>
5r\ r\
, VJ U
A. 29
5.97
8.03"
B.30
5.05
7.3)
fe.90
lO.fcS
7. 10
IO.OO
S.2fc
7.77
82 r\
,oO

Q>. ' 1
9.42
12.69
l.ZO
would  wo"t   f>i»l 1  «f V t
          SOO'f,  ou\
                                                              looi
                                            vo t>-{.\\  a J

-------
        S.  T E.S.T   O/VT A   HON
                                                                                  C.L35OK.3
                  lO/>S/7t
                                               ,4.  64-  «f
t»4. 73,
t\800
4300
j«f\f\
5200
3600
4300
4800
5200
3800
4300
4800
5200
3800
4300
e~7nr\
S /UU
5700
S700
~if r\r\
ftoVJU
7600
7600
i *?f\fi

D»«,
hjp


	
	

	
E.I
4.G
6.5
7,9
4.5
6.G
9,2
*U.O
7.1
*9.0

7.4
12.1


9.Q>
\fe.7


FlAv
HC.V^C.

,fcoo
10,600
24,600
i o r\t\t\
14,800
10, 800
8,200
£,800
£,000
8,400
7, r r\r\
A, loUVJ

co, V.
3c\r
i\AO
8-62
\0.\9
if\ \A
IU" 'T-
11.17
11.57
IO.&8
7.4|
7.2C,
\\.5C,
9.97
9.IG
»0.t9
11.74
Q 2 R
W
VQ, 1 \Q
o qc
7.7 =
o.B3
8.77
2-7-7
. ' /
S D 1 R
wi//.
& 4.4.
•T-T
G.74
5.35
5-]C

5.89
6,17
G74
8-44
10.34
6,3\
7.34
7-49


NO,^-

55
4)
35
a.e;
D-D
77
5fc
£3
105
399
67
70
*b4
325
70
70
~T~I
1 1
322
7(ol

O5
169
322
£T >.
iiT-
t.
t^O y|-~
Ar\
4-vJ
41
30
> T
4-Z
(b9
39
55
92
414
69
76
1 14
3I&
61
ftl
r o
io/
27O
822
C. ft.
OO
Ifc3
285
xr 9
— >\
SI
52
35)
5

2.6 2.9 2-1 .3 2.0 1-6 1-9 \.7 1.3 2.2 1.9 1.7 1.5 2.0 1-9 Zft • 0 l.ft 1.3 - uo l.(o 1.3 3c: . o l.tat.»^ j.u* -j / /vo 70, 76 -, 76 76 76 / (0 / fc 78 78 78 76 76 76 "7R 76 77 "7"1 f / 77 77 7-7 / / U.-,'F r.Wt 1 O 125 I 10 \c.r\ 1 3U 200 125 175 ZOO 375 150 260 390 460 2OO 2>50 "7 R^ ^-O—> 275 40)0 _/ ^ OWJ-i 28S T500-» •9^.f> fi.*l R^«x IV-A^ i. 0 1 2.80 4.80 5O I •/I 4.54 5.90 7.3) 7.77 5.16 7.00 9.6 1 10. G£ VO.OO ft. 91 . . . 7.31 8.03 .54- 11.14 15.31 OQ "> ' 7 f. e • ON iux U u 1


-------
o
-J

MODE.
1
2
3
4
5
d>00
1000
liOO
DYMO
K|>
	










».o
z.o
\<1
1.2.
	
Z.i
2.5
2.1


FIA HCX
^-c.
^/(oOO
9350
&2.00
5500
(ol 00
2.0,000
0,100
S8SO
1300
(bOSO
Kc,flOO
52>00
ssoo
5S80
»2,(oOO
NDIR
KC,
^•*cfc
300
413
314
25?
295
114
3d»3
346
40fc
315
419
2^1
z?l
2.82
43?
w>,
%
%03
9-38
5.1G
4-98
3.21
10.44
4.4S
fe.43
1.79
4.5G
10.11
5.\S
S.lfc
4.12.
9.90
cfc,
%
H
n
52.
1 80
407
1010
17
(o\l
491
30ft
990
11
51S
G4S
938
4C,
C.U
NO,
W"*
2.4
H
2-» 9
449
nso
2-3
(o!9
S2.1
344
lO&O
ZG
591
(blS
1020
32
NOx,
»»K
31
81
225
4&3
HBO
32
12Z
S21
344
I0(o0
, 2.2
599

3.36
0.
-------
d
00

MODE
1
2
3
4
5
6
7
8
9
10
I I
12
I 3
14
15
CONDITION
IDLE
ZO Rl_
30 RX-
4-0 RL
50 R\-
1DLE
20- sy0
30-5%
40- 3.0X
50- 2.4#
VDLE.
2.0 H
30 H
40 H
IDLE.
frtAR
	
3
4-
5
5
	
3
4
5
S
	
2.
3
4-
	

ENGINE
Rpn
1200
4300
5400
5Q>00

	
	
	




	
KO
z.o
».l
\.2_


z.z
i.5
i.\
	
H* KC.,
J>V^C.
24,400
8BSO
(b4&0
fcOZO
7.100
I8/2>00
970
59 ZO
5800
5? 10
u,aoo
52SO
S810
fc^OO
lO^fcOO
ND\R
HC,
»>^cfc
845
432
292
1?3
330
H
58
117
2&4
413
1250
40
495
153
l(bl
IZ30
40
43fc
1Z&
\\S2
40
c>u
^0,
^•H
iZ.
112
i84
492
I2fe0
2.1
509
(»90
&8
\740
38
449
T9(o
\zzo
38
NOX/
)>H
34
\1Q>
288
49t
»Z10
3Q>
522
G90
8fc&
n40
41
500
1%
»2ZO
43

oa>
%
	
	
	




	
	
	
	
	




	
	
	
FUEL R-ATE
Wh,
0.119
1,44
\.1&
2.20
Z-82
0.10 1
1.O7
a.. 10
3.43
2..8G
0.73fc
2.G4
3.19
3. 81
o.fcoz
Mi*
32Q,
C>S2
609
<)97
\ZBO
ilB
941
\4IO
)5(oO
1750
334
1200
\12_0
\l(bO
2-73
SL-100
          RUN
                  8/31/12
                                             C.ONSTMJT-
               VIET BULB TEMPERATURE ,°
               DRY BULB TEHPEKATURE, °F
                             PRESSURE, Xyv V
\SS\ONS  TEST  DATA
 (08
 1G
                                                                    2.9.13

-------

MODE
1
2
3
4
5
7
4o&
327
2.72
274
43,1
3»7
282
3 Mb
21 Z
244o
272
250
2SI
4S7
w>,
%
9.3?
B.Z3
fc.lG
4.7 \
232.
9.1 1
4.12.
5«t7
5. BO
4.48
9.259
UbO
40
C.U
NOj
H>«»
2-9
too
2ZO
5I\
1320
38
&10
595
743
J240
3d
Q>3t
703
\I80
3?
NOx,
U»"
38
«05
2Z4
SIS
1330
4€T
8»5
5?5
7fc4
1240
4fc
40
703
1160
44.

°»,
%
	


	
	


	
	
	


	
	
	




	
FUEL RATE
*-/h*
0.0.39
1.49
1.90
2.45
2.99
0.t>2C>
2.23
3.05
3.55
4.2\
0.6)02
2.75-
3.90
3.9&
0.613
Vw
290
(b7
-------

MODE
1
2
3
4-
5

	
	






	
i.o
2.0
\-2.
1.1
	
2.2.
2.5
2.\
	
FIA HC,
*>v*»c.
\5, 100
9 ZOO
1000
5(000
7400
14, -?00
6> BOO
S800
S400
saoo
nx»oo
49SO
5350
0>500
\\,800
ND\R
HC.,
^Cfc
5(o(o
395
Z8I
2-48
2.85
5J\
3(b5
3ZB
2.48
Z(ol
S4b
2.99
IZQ>
ZSB
507
W),
%
9.2-7
b.u
5.5B
5.24
2.S7
9.59
5.41
5.0(p
G.ll
4.04
9-4(o
4.3.1
5.05
4.99
9.fc&
^,
%
.l
973
J2
C.U
NO,
w>»*
24
9»
28B
500
154Q
30
512
807
5fc9
U70
38
823
8?0
J020
33
NO*,
»>H
50.
97
292.
500
1540
40
5ZO
fc07
80l
102X)
40

Oz,
%
	
	


	


	


	
	
	


	


	
	
FOEL RATE
•Sk
0.553
1.51
1.%
2.1,5
3.\7
0.545
1-99
3.2.1
3.17
3.60
0.52&
2.78
3.&4
4.09
0.545
VK^
251
G>&£
B90
\2IO
1440
247
901
\4feO
\440
\710
243
\2.
         9/S/-72.
Vs)ET BULB TEMPER./VTORE , *F
DRY BULB TEMPERATURE, °F
               PRESSURE,  lw \\%   29.IC>
                         74

-------
d
I

MODE
1
2.
3
4-
5
J
50-Z.4J?
VOLE.
ZO ^
30 H
4^> H
IDLE


crEAR
	
3
4-
5
5
	
3
4-
5
5


2.
3
4-


cN&lNE
RPn
noo
4200
5200
5400
(bSOO
noo
4100
SlOO
5300







	
	


\.o
2.0
1.2.
I. -2.


i.Z
2.5
2.\


F|A HC,
»>>-c.
\4/fcOO
6400
(blSO
5\00
5«)50
\ 1^00
4-6 €0
5100
SSfcO
S3 2.0
\\,ooo
5300
5400
fcZOO
\\/\00
NDIR.
HC,
^•*Cfc
4t7
43
291
2-70
(o50
351
3|H
57
i55
43Q>
145
1510
0(cO
955
fc3
C.L.
NO,
^>m
28
133
390
G>9S
1540
42
lOfcO
84S
995
lOfcO
42
(b35
lOfeO
93t
3?
NOx,
)>K
38
140
394
100
1640
49
lOfcO
8£0
,50
fc43
\OQ>0
951
44-

°*.
%






	
	


	
















FUEL K.ATE
Vbvh,
0.507
1-59
2.00
2.fc3
3,3ft
o.sifc
2.05
3.27
3.11
3.99
O.S25
2,18
3.84-
3.81
O.Slfc
VK/
230
12Z
90S
n9o
1^30
230
928
»480
1440
»&10
238
»ZfcO
1140
HfcO
2.34
o.bou't ISYo »$ ^owtv JT -SPEE.D tMlSS\ONS TEST DATA
           RUN     7
           D/KTE.   9/S/1Z
VOET  BULB
DR-V  BULB TEKPEKATURE,
11
                                                                             . 09

-------
d
I
          MODE
             1
6
           to
           1 1
           12.
           I 3
           14
           ts
   CONDITION
    IDLE
                2.0  RL.
                50  RL-
                40
                50
                1DLE
               zo-
30-5%
               40- 3.0%
    \DLfc.
    2.0
    iO H
   40 H
    IDLE
        &-EAR.
                             EN&lMt
              12-00
                4-100
                 5100
                 5500
                 Q>SOO
                 12.00
                 42.00
5000
                 5300
                 «>400
              1100
              5500
              (olOO
              6700
               1100
                    1.0
2..0
                    1.2
      2.2
      2,S
                            FIA
            14,0,00
                           8500
                           ^300
             5300
52.00
                           52,00
             5300
            t\, 100
       4-(»00
       5100
             (bSOO
            11,440
                                                        ND\R
                                  HC,
              Sit
                    SOB
                    I
            37
           363
                                  1710
                        47
                                   939
1020
                 MOO
            591
                  824
                 1200
                 1000
                   44
                 7S%
                              o.v/ailabl<-
                                C.ONSTKWT-
                                                                  load
                                                    FUEL RATE
                0.492
                1.90
                                             2..B3
                                 3.49
                           0.492.
                                 2.13
3.27
                      3.22
                4.13
                           O.S25
                      2.7S
                      3.73
                      4.SJ
                      0,492
                                                                VH*
                 2.2.3
                            72.2
                 8G>2
                            2.^3
                                 J240
\4ftO
                      I4(o0
                      »2SO
                                              SP&E.D
                                                                       \SS\OWS  TEST
          RUN
                      VJET BOLB
                      DRY BULB
                                                   PRESSURE,

-------
d

MODE
1
1
3
4-
5
d
7
8
9
\0
1 \
\2
\ 3
14
15
JJNDVYION
IDLE
ZO RL
50 RL.
40 RL
50 Rl-
tDLt
20- sy0
30- 5%
4JO-3.0?
50-2.4%
\OLE.
2.0 H
30 H
4-0 H
IDLE


GEAR
	
3
4-
5
5
	
3
4
5
S
	
2.
3
4


ENGINE
Rpn
\00
4300
5100
5300
(cSOO
UOO
4000
5100
5300
G500
liOO
SfcOO
.2
>.i


2.2.
2.5
2.\


FIA HC,
^-c.
14>00
8i50
(pOOO
5050
5900
\2,400
58SO
5500
5000
fc350
I 1,000
5050
55 2.0
&800
» 1, ZOO
NDtR
HC,
»>HCfe
43Z
384-
2-7 \
2Z&
Zfcl
41 &
3l(b
Z70
23?
\4t
53?
*7l
I9(o
245
S35
«>,
%
B.61
7-0?
4.25
4.25
2.91
5.14
4-70
4-93
4.25
S.18
9.Sfc
4.3C»
5.3ft
5-»9
9.35
Cflk,
%
1.21
8.40
10.37
10.37
ll.Ofc
1.04
9.97
m
10,19
9.»7
1.05
10. \&
9.fc4
%fc(o
7.0Z
NO,
H>"
58
\fc\
572.
ftBC.
IfciO
5«
7(o4
95(,
»3iO
116
46
123
8t5
949
57
C.U
i^O,
l?t>Hl
Z9
143
£53
651
IfcIO
37
B2.9
97
I3fc0
ft47
39
&5I
900
849
38
NO*,
^|>w
3^
\51
570
8fcZ
\(o&0
4(p
850
9&7
tifeO
ft^l
" 4b
80.2.
910
5t>0
47

oa,
%
" 	
	
	


	
	
	
	
	




	
	
	
	
FUEL RATE
*-/b.
0.57&
1.55
2.07
2.83
3.55
0.4U
2.10
3.4<^
3.27
4.G>2
0.5^5
2.75
3.73
4.39
O.S36
VK*
2St/L
703
93?
1280
It 10
209
954
1570
1480
ZlOO
247
1250
»(o90
»990
243
                       %about
                     S.U-100
1S%
avai
                            load
                                                TEST
           RUN
                    9/6/72.
VIET  BULB TEMPERATURE. , *F   _

                PRESSURE, \.w YW   Z9.DO

-------
ti
I

MODE
1
2
3
4
5
,
%
9.01
7.68
4.13
4.5fe
2.43
9,21
4.SI
4. BO
4.&0
fc.2>
9.21
4.S7
5.77
5,44
9.44
&*,
%
(p.73
7.53
10.05
9.93
11. Ofc
(b.&fc
9-75
9.fc4
9.74
8.(bO
fc.79
9.7S
&.7J
9.0&
fc.70
ISO,
IPH
58
\I3
351
(btfe
ifcOO
7S
&B9
943
8bl
792
d>9
719
645
770
5?
C.U
^0,
frH
2-1
100
2>0b
550
1520
35
821
8&9
&47
(o75
37
d>4^
7?>9
fc7&
33
NO*,
»>K
37
105
310
555
1520
44
831
900
fcS8

4S
&78
7feO
GB9
40

oaj
%




	
	
	
	
	
	
	
	
	


	
	
	
FUEL. RATE
>b~/h.
0.507
1.53
1-90
2.5B
3.27
0.4&3
Z,\0
3.2\
3.17
4.53
0.439
2.fc&
3,90
4.17
0/H>7
»A*
230

-------

MODE
1
Z
3
4-
5
400
fi>500
6100
2.0OO
4500
&OOO
GSOO
GSOO
ZOOO




OYhiO
h|>
	








	
\.\
3.5
3.3
2.2.






RA ftd,
^^C
11,100
32,100
2(p,800
39, 200
52,000
R2,900
44,2-00
I40
I0,ft00
Q>380
0.400
1290
9»»0
I\,100




to,
v«
3.44
O.l?
1,31
3,44-
M4
4-00
M>
2.SZ
3.14
3.88
3.59




<**,
%
3.84
93~
t4
31
G8
10
542
too
44ft
411
31 1
2.ZO
100




C.U
f^O,
Ip^wt
4.1
23
52.
54-


9.0




234
108
S.S




NO*,
>K
1,5
2t
58
2
* 13





**,
%
9.1
5.4
4.0
5,|
Q>,&
»0.3
(o.i
1-7
8,4
&.3
lO.l




FUEL RATE
*Vh,
0.451
1,52
2..0O
3.2.1
5.6)4-
0.4S2
3.13
S.B9
l.&Z
9.04-
0,445




*A*
205
4>9l
90S
14(«>0
25CoO
ZO5
142-0
2.G10
3S40
4»00
2.0 Z




Vk^^^)^S^K.\
                                                                               TEST
RUN
          9/19/11.
VJET BULB
                                                            , * F
                                                                    2.9.21

-------


MODE






4-
5
(/000
,
%
3t -t
.lOJ

.53
Iy| 2
• T-.5
3.00
1.53
4.0G
2.06
2.71
3.31
3. 75
4f\O
.00




IR
<**.,
%
3-70
« 17
9A^\
• T-I
9CX
.3
5.75
£.40
3 A /•
.volo





ISO,
IPH
/ Q
(oO
or\
80
\rvi
ul
»o?
39)
95
(bo?
sit
3>4
224
i i >i
\ i 4




C.
1^0,
^•H

.4

2-7

45
105
2?&
3.Q
4<)^
440
23)
u?

•4




U
NOx,
>!>"*

• 9

33

50
MB
29&
(0
527
4fc7
2S7
141

10





°*,
%

.5

5.2

4.1
4.5
(p.Q>
10.2
&,4
7.5
7.6
1.9
ft T
9«7





FUEL
M.,

0.459

1.50

• 90
2.99
4.&L
0.44S
3.13
(b.Ol
ft. (ofc
9-4

/»?/12_ MOTORCYCLt VOET BULB TEMPERATURE: , *F DR.V BULB TEHPERATORE, °F l*v \\ TEST (b9


-------

MODE
I
2.
3
4-
5
YKO
h^
	


	
	
	
— —
1. 1
3.5
3.3
2.2.






FIA \\C.,
*>v-c
75^00
30, 300
24,%W>
3\,400
47,.iOO
84, 2.00
4-1, ftOO
48, ^00
G>9, 300
(b3xBOO
71,fcOO




ND\R.
HC,
bH^fc
85(bO
5090
32BO
3000
4S\0
~nw
/
%
3.fc3
0.40
1,52
2. 42
\.13
4,43
i.fcZ
2.fc3
3.92.
3.2H
59
7G
93
»37
555
IDS
442.
S30
ZZ£
2L7D
9fc




cu
NO,
^Ht
2.7
25
40
79
447
S.I
3B4
404
liG
iiB
5,0




NOx,
>K
8.9
2.0
47
81
4
    % \u 5.G 4.2 4-7 fc.9 \0.7 fc.t B-9 8.4 ft.l \O.G FUEL R-ATE »bVh, 0.439 1.42 I.B4 2.72 4.13 0,451 3.feB 4G ft35 \230 2.450 2.0S k(o70 i-130 4090 3540 2.0S l2SF-t MOTORCYCLE C.ONST^^)T-SPeE.D tM\SS\OMS TEST D/sTA 9/\9 /72. BULB TEMPERATURE ,*F Dft.y BULB TEMPEKATUREX °F ATM OS P+A ERIC. PRESSURE, IA \\%
    -------
    d
    I
    I—'
    00
    
    MODE.
    1
    2.
    3
    4
    5
    6
    7
    8
    9
    10
    I 1
    12.
    I 3
    »4-
    \5
    CONDVHON
    IDLE
    2.O RL.
    30 RU
    40 RL
    50 RL
    IDLE
    £0- 5%
    2.0 H
    50 H
    40 H
    \DLE.
    
    
    
    
    (s-EAR.
    	
    3
    4-
    5
    5
    	
    3
    2.
    3
    4-
    	
    
    
    
    
    
    ENGINE
    RPI"1
    2.000
    4500
    5200
    5X00
    /
    %
    3.25
    0.43
    I.Q>0
    3.1ft
    2.72
    4.00
    t.£4
    I.Q>\
    2..B2.
    3.07
    3.&7
    
    
    
    
    &*.
    %
    4-Z(p
    9.Q>7
    9.5»
    7-90
    7.0Z
    3.82
    7.fc9
    7,34
    (o.l 3
    5.90
    S.2X)
    
    
    
    
    MO,
    IPH
    fc4
    6>2.
    &(b
    141
    354
    59
    70
    840
    4St
    474
    M3
    
    
    
    
    C.U
    NO,
    I?H
    4,1
    30
    48
    \2.4
    3\S
    fe.4
    GtZ
    712.
    370
    3fcl
    fc.4
    
    
    
    
    NO*,
    »>K
    7.8
    34
    51
    132.
    347
    IG
    G32
    751
    397
    384
    »9
    
    
    
    
    
    oa,
    %
    10.7
    5.5
    4,3
    5.2.
    7.Z
    10.3
    7-3
    7.8
    8,5
    8.8
    10. 2.
    
    
    
    
    FUEL RATE
    *~/h.
    0.410
    1.50
    £.10
    5.33
    5.b4
    0.439
    5.2.1
    5.3)
    7,fcO
    fc.tS
    0,439
    
    
    
    
    Vw
    t8Q>
    G>7?
    954
    ISIO
    2SfcO
    \99
    \4foO
    Z4IO
    3450
    3700
    \99
    
    
    
    
               K,A\\)ASAK.t   125F-G   MOTORCYCLE.  CONSTANT- SPEED  t^\SS\OMS  TEST
               RUN
                          /2-0/7Z
    V)ET BOLB TEMPERATURE. ,*
    
    
    DRY  BULB TEMPERATURE, °F
    
    
                    PRESSURE, in \
    
    -------
    
    MODE
    1
    Z
    3
    4
    5
    
    2.
    3
    4-
    	
    
    
    
    
    EN&1NE
    RPK1
    ZOOO
    4500
    5000
    5000
    Q>2.0&
    4400
    2.100
    6000
    (blOO
    (bZOQ
    ZOOO
    
    
    
    
    DYNO
    v>^
    
    
    	
    	
    	
    	
    — —
    1. 1
    3.5
    i.3
    3.2.
    	
    
    
    
    
    F|A HC,
    J>V^C
    lfc/800
    S8,400
    32, ft 00
    43^X00
    (b3,ZOO
    97>00
    55, ZOO
    5G, 800
    72.^400
    72,000
    99,^00
    
    
    
    
    ND\R
    HC,
    H»*C/
    %
    2.8»
    I.fc4
    1.13
    0,93
    Z.IG
    4.0&
    2.. 37
    1,48
    2.4C,
    2.&1
    4.\5
    
    
    
    
    C*,
    %
    4. S3
    9.54
    9.7»
    9.15
    •?,08
    i.93
    7.0.8
    7.7S
    5.53
    3&
    SfcZ
    4SO
    »17
    
    
    
    
    CV-
    NO,
    V>^M
    5,0
    30
    70
    2.40
    54ft
    8.G
    4V
    720
    3G3
    350
    fc.&
    
    
    
    
    NOx,
    »>H
    \0
    38
    B\
    2-90
    5B4
    >B
    (oOl
    792
    443
    384
    ,~Z2L
    
    
    
    
    
    ^,
    %
    ll.ff
    5.&
    4.4
    (b.2
    8.0
    \0-fc
    1.0
    l.t.
    9-1
    ft-9
    \0.5
    
    
    
    
    FUEL RATE
    ftv^
    0.4i\
    l.fel
    2..12.
    3.33
    5.B9
    o,4ZB
    3.21
    4.fc3
    7-fcO
    1.S1
    0.439
    
    
    
    
    */H*
    HI
    15G
    1010
    ISIO
    ZfclO
    iH
    J480
    2.»00
    3450
    3430
    199
    
    
    
    
    12.SF-Q>   MOTORQ.YCLE.   C.ONST^^JT-SPBE.D  t«v\\SS\OWS   TEST  DATA
    VOET BULB TEMPERATURE. , * F
    Dfi-Y BULB TEMPERATURE, °F
                                                             
    -------
                     9/26/71
                                                                                     T2SO
    Wit
    -K 70
    rsv
    M.U'
    \
    2
    3
    	 4
    
    fe
    ._?
    a
    }
    10
    il
    u
    11
    M
    15
    It
    n
    IB
    . '*
    20
    71
    72
    N INO. 	
    C«v\^v^J«v\
    Idlt-
    ZO RL
    iO RL.
    40 RL
    c. r\ o i
    QVJ KU-
    20 &'/.
    50 B%
    40 &'/>
    50 5'/
    20 »OX
    50 10%
    40 10%
    50 10'/,
    20 202
    30 20fc
    O&tV.iU.'
    O.G.MM. 2
    O.IoM-x. J
    O.&M.x. RL-
    0.8MM. 3
    0.8M«. 1
    14l«_
    
    G«a*
    —
    2.
    3
    4
    
    2
    3
    4
    5
    2
    3
    4
    5
    2
    3
    2
    2
    Z
    I
    1
    1
    •---
    t*au«
    *y>VM
    1400
    3600
    4400
    4UO
    r t\f\t\
    oUvu
    afcoo
    4400
    4UO
    5000
    2>8(iO
    4400
    4G.OO
    SOOO
    3600
    4^00
    5400
    MOO
    b400
    7200
    1200
    1200
    1400
    Dy»,
    W|p
    	
    	
    	
    	
    
    a. i
    4-G
    Co.4
    7-8
    4-4
    fc.S
    9.0_
    11. 0
    (o.9
    *8.S
    8.t
    *V2.0
    n.i
    v.s.s
    —
    F»^
    HC,>»»>«C.
    7^^200
    &4/4-00
    4B,000
    .Hi*??
    A o AAn
    *t i, *tl)v
    4\ , d>00
    47^400
    44'?>00
    5O,400
    49, bOO
    Si/BOO
    (pl,(oOO
    0)0,000
    57, tOO
    (j>l,foOO
    4l,bOO
    49, (oOO
    T?, 000
    29,bOO
    4&.GOO
    (siCo,400
    d.8.000
    1
    CO, V.
    \.63
    V.S?
    Z.8C»
    4.5Cp_
    •i4-
    2.20
    4.45
    5.4B
    
    a.^&
    5.11
    5.7fc
    S.87
    5.03
    (o-O
    5. SO.
    0>.t3
    6.43
    2.<)9
    S.7&
    4-»2>
    2.0,7
    MD \ R
    co,;/.
    5.4S
    7.5(p
    7.72,
    fc. 97
    &r o
    
    6.S4-
    7-L2.
    t.13
    S.il
    t.97
    5. 85
    4-93
    4-93
    6,45
    4,65
    7.42
    &.18
    4.01,
    &.97
    4-h-
    78
    31
    Col
    83
    /O
    st
    ...IL.
    96
    114
    72
    Si
    _^..
    1 25
    _8S
    28
    83
    B5
    ft(,
    81
    E>7
    \o&
    S
    »5
    24-
    2^
    i ^
    •*•/
    30
    _3I_
    33
    23
    30)
    1Q,
    _28
    33
    2&
    2.\
    1\
    24
    20
    •Li
    2?
    48
    7
    L.
    fvio,vi>-
    4
    9
    14
    17
    \ c>
    i 7
    21
    22
    25
    15
    30
    26
    23
    28
    IB
    I 1
    IS
    V3
    10
    14
    10
    33
    4
    v,u*.
    0., •/.
    %9
    1.2
    5.5
    .4.8
    A ^
    ^o
    S.S
    &. 1
    5.0
    5.2
    5.1)
    S.J
    I5
    \(o&
    2(oO
    tbs
    225
    2^0
    Z40
    200
    ^00^
    25 O
    F-a 3
    10.00
    2.70
    \0.42
    I6.I4
    3.00
    1 4. 00
    2 0.4 I
    	 •
    o
    I
                                                                        \ood
                   ^^«^ov
    

    -------
                                                              S.  T
                                                                                              SU2QVC
    T2.SO
                          9/2-9/71
                                  »wj>.  73
    INVn
    M.U <
    \
    2.
    2>
    4
    s
    

    2> \4 15 »fc n ift . l^ _20 21 12. 4 IMO. o*4\\£ov\ T4VJL 20 RL. 50 R.V- 4-0 R\- 50 R.I- 20 S'/. 3>0 &'/ 40 S,'/, so 5V, 20 iox 10 VO'/. 40 IOX SO VOX. 20 20# "iO 20'( O.fcMat.RL 0,brU<. i o.t,n.». | O.&H.VRU O.B»U*. 3 O.ftMw.l li\t WM>« &«»* 2 3 4 5 2. S 4 5 2 3 4 S 2 5 Z 2L •2. \ 1 1 K^tt>« ^y>wv 400 2>600 4400 4(»00 5000 5WO 4AOO 40)00 5000 3ftOO 4400 4&>tO &C-CG ie&o 4400 5400 5400 G4tfc 12co 12 6t naoc 14 00 }y »« Kjp 3.1 4.C, C>.4 1.8 4.4 (b.S _s.o n.o *G.O *ft.O &.G V»2.0 n.i *»B.O Fl^ IC.V^C 12,600 52,800 4S,(oOO 4\,(oOO 40,bOO 4\/(t.OO 4-0/000 •H/800 4V,bOO 4.1,toOO 5^,000 G>2,400 5% 2 00 'G4,8C)0 0,4,800 43,700 (oWUO IS, 200 2>\,700 41,2tO •71,700 1S,200 h o,V. 2.03 1.97 M4- 4.13 4-81 2.14 3.72 4.94 G.ll 3.2B 5.22 5,44 5.13 4.74 5,97 3.(o4 5,\t, t.C-3 3.22 Q..8B 5.0V 2.75 < D 1 R co,;/, 5.44 7.55 1.71 1.33 1.25 6.4 & 7.10 G>.G>7 5.44 « G>0> 12 &b 9C, 5R 74 IOC, 13 70 90 101 118 <)<) IJ4 \ 03 \ 1 I 65 71 \ 10 5t i i •:. \ 1 4 c. w,f v»- (o 18 28 33 30 29 ?>8 40 29 4-3 41 _34 30, ^7 11 2Z 78 19 20 2b 5& 7 L. NO,Vh- 6 >2 v? 24- 21 23 28 31 \9 32 30 .?.! 29 73 IS 1C, ib & \G \ 2 3S G "P.U*. o., y. 9.t 0 295 2. »O 2SO 270 ?.\Z \4C 3c:o 320 i 8£ 495 ICtO fu«l R«.i<, tfe~/W o.i » 2.33 2.93 4.2r; 1.00 3.00 3.91 5.83 7.90 3.57 7.10 10.00 io.ee 7.55 9.G>0 2.bC »o.88 20.41 2.\l \2.2S -i-l.-2.-2. 0.1 1 o i NJ 14 would v*1 y>oi\l »ol tu-l ft oi.lv


    -------
                        <)/Z9/7l
                                                        S>   TG.S.T
    SOZU VC\   T 2GO
    INUI
    M,i«.
    \
    2
    3
    4
    £
    

    %ZOO 3fc,000 44/000 42,400 4%bOO 4%bOO 48,000 52, 000 13 2) 29 3t 23 24 17 17 2B 2^ n 25 9 14 \ i & 10 0 225 125 '620 440 2.(oG F.»l R^«x a~/W 0.71 2.3-f 2.25 3.&8 fc.80 2.^5 4.0\ &.?7 l.^o 3.57 fc.tl •).fcO \0-fcS 1.53 \o.oo 10.42 16.84 2.\2 ZZ.2"? 0.78 b I to to vuiull i s \


    -------
                                                                                      A
                                                                          . 20
                T25O
    Wtt
    t/ c V-t.
    r\wr
    M 1 (
    *
    V
    2.
    3
    4
    5
    00
    5000
    3800
    4400
    G400
    5400
    S400
    1200
    1200
    72 CO
    \400
    D,*,
    Wb
    i
    	
    	
    	
    	
    	
    3. 1
    4,G
    fe,4
    1.6
    4.4
    (b.S
    »\.o
    fc.9
    *6.5
    b.t
    Nb.o
    — -
    Fl*
    C bb*«C.
    ' " ^*
    7-l,bOO
    62,^00
    43,200
    4l,(oOO
    44, bOO .
    44,000
    43,200
    4(o,200
    S0,400
    4B-bOO
    52,000
    to, boo
    G>4, 000
    fc4,BOO
    44r&00
    52,000
    1-1,400
    12,000
    41, ZOO
    (cO,BOO
    (.%too
    r
    o »/
    
    *2 1 ^>4
    l.?7
    3.2(,
    4.4k
    5.28
    2.11
    4-fcl
    S.lbl
    t.12.
    z.^8
    5.21
    5.SG,
    4.20,
    5.39
    G.SC,
    3.25
    5,21
    2.34
    •4 D 1 R
    CO. V
    *-Va, /»
    5.32
    1.13
    1.57
    G.98
    fo.41
    1.S7
    fc.e.9
    5.8C,
    5.SS
    fc.9B
    5.8G
    5.0(o
    5. IB
    4.80
    1.13
    4.93
    1.13
    5.0G,
    S.4£
    
    NO fcb
    I\U, r r1*
    74
    0>S
    65
    B3>
    48
    t&
    10.
    91
    31
    63
    ^1
    1 II
    k3
    B2
    \ O
    Q>4
    92
    5G
    t.
    MO W"
    >,"•
    9
    \ Q
    o &
    33
    27
    25
    32
    40
    28
    38
    40
    -*}•
    2>1
    25
    24
    2 1
    2S
    *^ O
    Ct/ i
    7
    L.
    wn t>l»«
    "VlU/rr
    (p
    12
    \7
    0
    1G
    21
    23
    28
    14
    30
    28
    _n
    19
    14
    IQ>
    10
    &
    13
    (o
    •P. I...
    0 V
    "J"/ /•
    9.3
    5.B
    4-9
    4.4
    4.4
    5.6
    4.S
    (b.O
    S.4
    G.G
    fo.O
    "li
    7.4
    (o.9
    (o,0
    5.3
    1.1
    A. 3
    4.4
    9-1
    l.^.v.-
    . 1 4
    
    18
    IB
    IB
    11
    17
    17
    11
    77
    71
    17
    17
    .37
    17
    &0
    BO
    19
    79
    19
    19
    1?
    U..,«r
    , j
    
    90
    1 IS
    130
    US
    its
    ISO
    l(oO
    200
    OS
    100
    225
    500
    MO
    125
    ais
    250
    290
    300
    295
    9S
    RM R^,
    Ib^/
    /V\^
    O.
    to « _j w
    7 • lo v
    I2.5G
    ft. 59
    10,42
    1.10
    9.24
    15-31
    2.40
    12.25
    0,71
    U
    I
    ts)
                  uuoi  v>«tov A« i    '
                                                   l'lX\C«.\t>\J!>i
                                             500°
    

    -------
          0/VTA   TRIUMPH  T
    2.9.14
    r\v
    M.U
    I
    1
    
    
    
    
    s
    

    i O>* *>*- 4O RV_ 50 Rl_ 20 5% 2>0 S% 4O S% SO 5% 2Q 10£ 30 107, 40 1 0* SO 'O/o 20 20^ 30 Z0/0 T\ i « dit- •MWHM* &«*«• z 3 2 2 3 3 2 2 3 •3 2 2. '• - _ 6,5U. *y,w 1200 2450 •a t,(sr\ ioUvj 4200 2450 2, tOO 2>£00 4200 2450 2>fcOO 3500 4200 2.4 SO 3fcOO 1 Z.DO DyW, k|> 3.B 4.9 (0,8 6,3 4.8 7.1 %b \ o r\ 1 Z«U 7.7 11. £ 1 HC,H>-*C &4.800 15,200 I a (Af)f) 1 3, V) vW i A 4. r\f\ i U/" UU \l,fcOO fc,000 fc,400 4,800 3,000 5,600 3,(bOQ 5,000 2 ft f\f\ I CUv 3,200 2,600 43, bt)U , co, •/. •7.53 9.42 <\ 7.* 7" /4 1 f\ ~T) \v> (^ b,94 8.15 6.94 8.4C, G.93 7.58 9.5& 5.45 •87 4,44 6.03 >9& SD 1 R CQi.Vo 5.09 7,67 -7 TA /. » U 7ft2 iUO 8.40 8.57 8.22 8.5b 9.72 9.14 8.76 vo.43 10. 74 10.74 %&2 fo.40 MO,H>- 8(0 71 i i i i > \ ^ r\ 07 15? 14& . 174 32.4 0,05 233 304 fc74 _ /o c.. MVI- 15 19- 20> 70 1 12 1&9 \SI 350 5&9 355 355 41 1 4Q>7 1495 1004 ,,, 17 \_. N0,kt- 11 14 *j i •^-1 /- / 5v> 105 m 131 318 541 34. t 318 355 A"3 O *Ti/ HIS 9S& 'P.U*. o., '/. 5,fc 2.3 \ fl I, D 1 T '• f 1,3 1.7 1.5 1.4 I. 1 1.3 1.4 1.2 « f\ \,0 1,4 1.2 n ft 0 T*^^v^ u»a 77 78 7ft 78 76 7fc 7t 7t 7t 77 77 77 -7—7 / / 70, 7t -.. 1(0 uvn/F F.U.*1 IOO 125 175 \ vO 22£ I 30 215 25O 4IS 170 270 350 4.80 200 575 ,. _ ^U F-cl (M«7 lb-A^ I.3B 2.54 4t *" . 1 c> 4C\I\ .90 5.21 3.58 5, 10 6. 12 7.21 4-12 6. OS 7.21 8/^.n . VDV 5.56 7.42 . . _. I C. R. i. too


    -------
                      M/4/71
                                                   £»  TE.S.T   D/YTA   TR1OMPK    T 12O R
    T,v.b.  59
    K  72  «F-
    rvwi
    M.U
    i
    
    2.
    3
    4
    5
    tQ>
    7
    *
    9
    \ 0
    I |
    u
    r,.
    i i
    i .A
    I 4
    \5
    Hu
    1 8
    [ 20
    21
    ia
    SJ INOi ^^^
    C.a;W
    Til
    i.A\4_
    20 RL
    50 RU
    40 K.L
    SO RL
    20 S%
    30 SX,
    40 S%
    SO 57.
    20 1070
    30 10%
    40 \0?£
    t f\ \ r\V
    
    o f\ 9f\y
    
    50 20X
    
    
    - 	 —
    TA\«.
    
    >«».*•
    
    
    i
    z
    5
    5
    2
    2
    3
    3
    Z
    2
    3
    
    
    
    
    2
    
    
    	
    	
    *ai««
    *^«
    o r\n
    
    2450
    3fcOO
    3500
    4200
    2450
    3fcOO
    3500
    4200
    24SO
    2>tOO
    3500
    A oi\ri
    ^t^Ovj
    
    -c*tSO
    3C>00
    
    
    
    \2>00
    D7*,
    WJ>
    
    
    	
    	
    	
    	
    3,3
    4-9
    6.8
    8-3
    4.8
    7.|
    9-8
    \~) r\
    
    7*7
    • /
    1 \.S
    
    
    
    	 	
    FlAv
    W^H^C.
    
    54,400
    2l
    .04-
    £.28
    t.43
    G.59
    7. 57
    8,09
    7.57
    8.fc2
    9.77
    8.09
    8.44
    9.77
    1 1 r\o
    1 1 -OZ
    
    9. /7
    9.37
    
    
    
    4.57
    
    NO, H>~
    
    ot
    C.4
    \ 08
    lit
    145
    \OI
    137
    282
    5 GO,
    22O
    282
    7»4
    
    
    
    
    £26
    
    
    
    123
    C,
    MOf/H-
    
    15
    23
    50
    52
    39
    8&
    99
    225
    49&
    \(o9
    207
    G6G
    
    1/7^
    O ylri
    o^S
    S40
    
    
    
    \t
    u.
    MO,M*-
    
    13
    n
    40
    51
    33
    84
    94
    2.U
    488
    U4
    2lfc
    fcSB
    
    \2 ^-S
    -7 -i/-
    • 75
    493
    
    
    
    12
    •P.\.*.
    o., V.
    
    4.7
    1.3
    \.^
    0.9
    o.&
    0.7
    0.8
    O.fc
    0.5
    0.8
    0.7
    0.7
    Or
    • lo
    
    .0
    o.t
    
    
    
    3^
    T^i,.v.-
    3-Ui
    
    78
    7k
    7t
    78
    78
    7(o
    7
    
    i3O
    390
    
    
    
    ISO
    Fu.l R^ty
    lb-A^
    
    .20
    3.01
    4.41
    4.4?
    5.57
    3.G3
    5.21
    5-97
    
    -------
    CONST AMT - S.PE tD  fcH\SSIC5/OS,
       DaA<. >\ /6/7I  A
    S-T   D^TA
    T 120R
                                                     t. y
    Wit
       . 58
                                                       t^j>. 70
    ISVI
    M,l«.
    \
    
    
    
    
    4
    s
    
    17
    IB
    _..!'
    Z-Q
    ai
    •2.2
    N INO, 	
    Ce«4vA.C«VA
    Til*.
    
    ZO R.L
    
    50 RL
    40 RL
    50 R1_
    20 SX
    SO 5%
    4-0 5%
    SO 5%
    20 lOX.
    30 i <>y0
    40 \oX
    50 10X
    20_20X
    30 20X,
    
    	 	 .
    ._. . . ..
    IAU
    
    &««.*
    	
    
    2.
    
    
    3
    3
    2
    2.
    3
    3
    2
    2
    3
    3
    2.
    2.
    
    
    •
    	 "
    t«au«
    *y>vw
    \300
    
    2.450
    n./^ PvfN
    otouvj
    3500
    420O
    Z450
    3fcOO
    3500
    4200
    2450
    3feOO
    3500
    4200
    2450
    3lbOO
    
    
    
    J200-
    Oy»«
    *IP
    	
    
    
    
    
    	
    	
    3.3
    4.9
    v
    HC,»»|>««(L
    40,000
    
    ZZ,«VOV)
    a i Lt\(\
    il/toV)vJ
    2l,tOO
    10,^00
    B,000
    7, (oOO
    5,000
    5,400
    fe,2.00
    5,000
    3,%too
    1
    co, V.
    »o.n
    1 f\ ~1A
    \0' H
    \r\ t\r\
    
    \O.S3
    ^.tl
    V0.82
    10- «7
    7.95
    5.2.7
    9-07
    8.33
    fe.8l
    4.4?
    _Mt
    7.7G
    
    	
    	
    8.5&
    v»D« R
    co,;/.
    5.9Z
    
    •SZ
    Gyl A.
    •*+*T
    fc.99
    7.BZ
    t.'99
    7.49
    9.71
    7.&2
    5.77
    (o.OC,
    6.99
    7.&2
    10.27
    9.80,
    
    	
    .._.
    5.02
    
    NO,H>«»
    85
    
    71
    Ob
    "7
    92
    \2&
    H4
    151
    452
    B32.
    I(o7
    223
    4W
    	
    73B
    7%l
    130
    
    125
    
    ItoO
    ZOO
    2SS
    225
    250
    330
    375
    380
    320
    375
    475
    230
    390
    
    
    
    170
    F.M R*U,
    *-/*+
    2,\2
    
    . o 1
    4f i
    >(0 2.
    5.00
    
    -------
    CONSTANT - S.PEE.D
       D^t. 10/1/71
                                          T & S-T
                                             2.9-31
    YAMAHA   DT1-E-
    M
    INWIN INC. ?
    M.Jt.
    \
    2.
    3
    4
    5
    0 RL
    40 Rl-
    so KI_
    20 5%
    30 5%
    40 5%
    SO S%
    2O 10/£
    30 107.
    40 10%
    SO \0%
    20 20*/o
    30 202
    O.GM«.RU
    ^
    2_
    __
    0.&fi<«'. §
    IAU
    >«*.*•
    
    
    2
    2>
    4-
    5
    2
    3
    4
    S
    2
    3
    4
    5
    2
    3
    3
    3
    3
    2
    2
    2
    
    
    ;£'
    300
    4100
    5000
    5300
    4900
    4100
    5000
    4900
    4-100
    5000
    5300
    4900
    4100
    SOOO
    4500
    45.00
    4500
    GOOO
    (bOOO
    \300
    Dyv.,
    ^
    
    
    	
    	
    
    
    	
    2.9
    4.3
    7.4
    4.1
    5.2
    8.4
    10.2
    fe.3
    9.3
    
    
    5.b
    9.2
    
    12.9
    
    
    FIA,
    It^f^C
    10,400
    44,000
    2S,(bOO
    2*2,400
    3fc,ODO
    27,200
    32,000
    34,400
    41, tOO
    32,000
    35, 200
    4-1 , (oOO
    47,200
    35,200
    44, BOO
    32,000
    33, UO
    40,000
    20,600
    28,000
    35,200
    1£,200
    ND 1 R.
    CO,'/.
    3.S9
    2.01
    3.W
    1-97
    t.w
    1.21
    4.12
    6.71
    fc.78
    3.14
    5.84
    6.GS
    5.B9
    7.^6
    fe.78
    5.12
    S.SJ
    2.S2
    S.I 2
    C..C.2
    4.19
    CQi//.
    4.31
    6.44
    8.1 \
    \0.70
    7.18
    10.52
    8.65
    1.03
    G.89
    9.97
    7.95
    6.73
    7,11
    7.49
    G.89
    a.i i
    7.2fc
    IO.S2
    7.49
    7.1ft
    4.19
    NO>K
    50
    7C,
    (bl
    1 14-
    1 12
    77
    9G>
    9&
    v\G
    78
    97
    98
    Ifc2
    \\9
    I4&
    85
    97
    105
    97
    40
    C.. \_.
    MQ,,H-
    7
    40
    31
    to,
    57
    3&
    54
    50
    G9
    50
    54
    57
    114
    G>2
    87
    30
    53
    »23
    73
    8
    NOxVt-
    6
    40
    30
    0
    235
    37S
    SOO
    2DO
    32S
    ^00*
    410
    50O
    14O
    2ZS
    425
    4-1 O
    425
    50O+
    \7S
    f \ R •!«
    lk-A*
    o.st
    l.&B
    1.91
    2,53
    5.32
    2.17
    4.04
    fc.S3
    8.30
    3.35
    5.05
    &.S9
    10.2O
    5.90
    2.27
    8.03
    2.2G
    \O.G>5
    O.SB
    0«*V
    

    -------
          -SPEED  £M\£S.ISNS,  T E £-T  DfVT-A
    
            h\  *
                                                                      Y AHA HA   PTJ-E
    
    M.U
    \
    l
    
    
    4
    s
    fc
    7
    ft
    9
    10
    U
    U
    13
    (4
    IS
    -Ti
    IB
    19
    22
    » — «
    C.«AvW
    XU«.
    20 R\_
    •a fv r> v
    iO RL.
    40 RL
    50 RL-
    20 S%
    30 SX
    40 SX
    so s%
    20 10%
    30 v6x'
    40 10£
    50 \0/£
    20 20ft
    30 2C#
    O-GMw. i
    O.t«1w.|.
    oAh»*. i
    I4U-
    HMiMMiM
    &«a*
    	
    2
    
    
    4-
    5
    2
    3
    4
    S
    2
    i
    4
    S
    2.
    a,
    3
    3
    3
    2
    2
    2
    — -
    E.au«
    +lf**
    12>00
    4\00
    c f<(\r\
    a v\)v
    5300
    4900
    4100
    5000
    5300
    4900
    4100
    5000
    5300
    4900
    4100
    SOW
    4500
    4500
    4.500
    (oOOO
    fcOOO
    t>000
    \w
    Dr«,
    ^
    	
    	
    
    
    	
    	
    2.9
    4,3
    G.I
    7.4
    4.1
    5.2
    8.4
    \0.2
    6.3
    9.3.
    5.8
    9.2
    7.7
    	
    Fl/\
    Ht.W^C.
    76,000
    51,000
    ") \ V/VJ
    20,800
    32,&DO
    2G,400
    26, BOO
    3(b,000
    44,000
    32,000
    33,fcOO
    42,400
    4(b,400
    39,200
    4t,400
    2s,tOO
    S0,400
    39/200
    23,200
    •28,000
    2.2,000
    78,400
    
    CO, V.
    3.48
    0.74
    3CA
    .3*T
    1.34
    5.15
    1.85
    2.90
    &.I4
    7.24
    4.S»
    5.12
    7.24
    5.91
    .2»
    4.29
    5.43
    5.^7
    4.U
    G.74
    4.77
    N D I R
    to,,'/.
    4-.\9
    8.27
    ft ttf\
    7.O«J
    10. t2
    7.49
    lO.'lt
    9.27
    7.fe4
    6.15
    9.10
    8.12
    fc.73
    6.89
    7.34
    6. 59
    8.93
    7.
    23
    \60
    21
    50
    5
    V.\a*.
    o., V.
    9.9
    6.2
    J G*
    ti>O
    2.7
    2.7
    3.4
    3.4
    4.3
    4.8
    3.7
    4.1
    4.5
    5.3
    4,1
    S.O
    3.1
    3.9
    4.t
    3.0
    9.4
    T.,4.^
    i.l.t
    74
    74
    "7 A
    I 4-
    74
    74
    74
    74
    74-
    74
    74
    74
    74
    74
    74
    74
    74-
    74
    74-
    74
    74
    74
    74
    U.i.,°F
    f.^A
    110
    125
    1 AC
    inta
    \(oO
    250
    210
    24-0
    32S
    450
    300
    340
    3feO
    '500*
    505
    4 BO
    375
    250
    360
    550
    410
    210
    F-il fM«x
    'b-Av-
    0.65
    1.95
    
    .02
    3. OB
    5.00
    2. Ok
    3.38
    
    7.90
    4.33
    5.00
    7.20
    10.00
    5.98
    9.42
    1.75
    4.53
    7.7&
    K91
    12.25
    O.t\
    PJ
    GO
    SOO'F,
                                          * o
    

    -------
                 APPENDIX E
    
    Reproductions of Speed and Smoke Opacity
       Traces for the 2-Stroke  Motorcycles
           Operated on the LA-4 Route
    

    -------
    w
          50
          40
        t 30
        «J
        a.
    
        °
        ui
          ZO
          10
                        60
    IZO
    1 80
    
      TIME,
    Z4O
    30O
    41O
    4 BO
                  t-t.  SMOKE  OPACITY  AWO   SPEED  AS-  A  FUNCTION  OF TIME  FOR THE K.AVO A SA YL\
    
           MOTORCYCLE   OPERATED  OVER.  THt   FIR.3^   SOS  SECONDS   OF  T~HE.   UA-4-  ROOTE. £z.-iMtrt PIPE)
    

    -------
    FVG-URE. E-2,  SMOK.E  OPACITY  AMD  SPEED  A^>  A  FONCTION4  OF  TIME  FOR. THE  SOZ.OM TiSO
                      OPERATED   QV E-R.  Tt\e   FIR.ST   SOS  S-ECONiDS   O^ Tt\E   LA-4-  ROOTt (j,-iwcH  PIPE)
    

    -------
    w
        50
        40
      t 30
      o
    
      £
      •if
      o  10
          0
                    n
                 60
    12D
    180
    24O
    300
    420
                                                                                                     _LL
    F\G-URE t-3.  SMOK.E OPACITY  AWO  SPEED  As.  A  FONtTION  OF  T»ME  FOR  -rt\t  YAMA rtA
    
    
     MOTORCYCLE   OPERATED  Q\)£R.  Tftt   FIRST   SOS  SECONDS   OF  T1\H  UA-4  ROOTE. Lz-
                                                                                                              PIPE)
    

    -------