&EPA
United States
Environmental Protection
Agency
Industrial Environmental Research
Laboratory
Research Triangle Park NC 27711
EPA-600/7-79-244b
November 1979
EPA Alkali Scrubbing
Test Facility: Advanced
Program, Fourth
Progress Report;
Volume 2. Appendices
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-6OO/7-79-244b
November 1979
EPA Alkali Scrubbing Test Facility:
Advanced Program, Fourth Progress Report;
Volume 2. Appendices
by
Harlan N. Head and Shih-Chung Wang
Bechtel National, Inc.
50 Beale Street
San Francisco, California 94119
Contract No. 68-02-1814
Program Element No. EHE624
EPA Project Officer: John E. Williams
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
NOTICE
This report was prepared by Bechtel National, Inc. as an account of work spon-
sored by the Environmental Protection Agency (EPA). Neither the EPA nor Bechtel,
nor any person acting on behalf of either:
a. Makes any warranty or representation, expressed or implied, with respect
to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or
process disclosed in this report may not infringe privately owned rights;
or
b. Assumes any liabilities with respect to the use of, or for damages re-
sulting from the use of, any information, apparatus, method or process
disclosed in this report.
ii
-------
CONTENTS
Notice iT
Illustrations iv
Tables viii
Appendices
A Converting Units of Measure A-l
B Scrubber Operating Periods B-l
C Properties of Raw Material C-l
D Database Tables D-l
E Test Results Summary Tables for the Venturi/Spray E-l
Tower
F Graphical Operating Data from the Venturi/Spray F-l
Tower Tests
G Average Liquor Compositions for the Venturi/Spray G-l
Tower Tests
H Test Results Summary Tables for the TCA H-l
I Graphical Operating Data from the TCA Tests 1-1
J Average Liquor Compositions for the TCA Tests J-l
K Fifth TVA Interim Report of Corrosion Studies K-l
L Test Data for Waste Solids Dewatering and L-l
Characterization
M Particulate Mass Loading Test Results M-l
iii
-------
ILLUSTRATIONS
Figure
F-l Operating Data for Venturi/Spray Tower Run 801-1A F-2
F-2 Operating Data for Venturi/Spray Tower Run 802-1A F-3
F-3 Operating Data for Venturi/Spray Tower Run 803-1A F-4
F-4 Operating Data for Venturi/Spray Tower Run 804-1A F-5
F-5 Operating Data for Venturi/Spray Tower Run 805-1A F-6
F-6 Operating Data for Venturi/Spray Tower Runs 806-1A,
-IB,-1C, and-ID F-7
F-7 Operating Data for Venturi/Spray Tower Rune 807-1A
and 808-1A " _ F-8
F-8 Operating Data for Venturi/Spray Tower Run 809-1A F-9
F-9 Operating Data for Venturi/Spray Tower Run 810-1A F-10
F-10 Operating Data for Venturi/Spray Tower Run 811-1A F-ll
F-ll Operating Data for Venturi/Spray Tower Run 812-1A F-12
F-12 Operating Data for Venturi/Spray Tower Run 814-1A F-13
F-13 Operating Data for Venturi/Spray Tower Run 815-1A F-14
F-14 Operating Data for Venturi/Spray Tower Run 816-1A F-15
F-15 Operating Data for Venturi/Spray Tower Run 817-1A F-16
F-16 Operating Data for Venturi/Spray Tower Run 818-1A F-17
F-17 Operating Data for Venturi/Spray Tower Run 819-1A F-18
F-18 Operating Data for Venturi/Spray Tower Run 819-1A F-20
F-19 Operating Data for Venturi/Spray Tower Run 820-1A F-21
F-20 Operating Data for Venturi/Spray Tower Run 820-1B F-25
F-21 Operating Data for Venturi/Spray Tower Run 820-1C F-27
F-22 Operating Data for Venturi/Spray Tower Runs 822-1A
and 822-1B F-29
F-23 Operating Data for Venturi/Spray Tower Run 823-1A F-31
F-24 Operating Data for Venturi/Spray Tower Run 824-1A F-33
F-25 Operating Data for Venturi/Spray Tower Run 825-1A F-35
F-26 Operating Data for Venturi/Spray Tower Run 826-1A F-37
F-27 Operating Data for Venturi/Spray Tower Run 851-1A F-39
F-28 Operating Data for Venturi/Spray Tower Run 852-1A F-40
F-29 Operating Data for Venturi/Spray Tower Run 853-1A F-41
F-30 Operating Data for Venturi/Spray Tower Run 854-1A F-42
F-31 Operating Data for Venturi/Spray Tower Run 855-1A F-43
F-32 Operating Data for Venturi/Spray Tower Run 856-1A F-44
F-33 Operating Data for Venturi/Sprav Tower Run 857-1A F-45
F-34 Operating Data for Venturi/Spray Tower Run 858-1A F-46
iv
-------
Figure Page
F-35 Operating Data for Venturi/Spray Tower Runs 859-1A,
-IB, -1C, and -ID F-47
F-36 Operating Data for Venturi/Spray Tower Run 860-1A F-48
F-37 Operating Data for Venturi/Spray Tower Run 861-1A F-49
F-38 Operating Data for Venturi/Spray Tower Run 862-1A F-50
F-39 Operating Data for Venturi/Spray Tower Run 863-1A F-51
F-40 Operating Data for Venturi/Spray Tower Run 864-1A F-53
F-41 Operating Data for Venturi/Spray Tower Run 865-1A F-54
F-42 Operating Data for Venturi/Spray Tower Run 866-1A F-55
F-43 Operating Data for Venturi/Spray Tower Run 867-1A F-56
F-44 Operating Data for Venturi/Spray Tower Run VFG-1Q F-57
1-1 Operating Data for TCA Runs 590-2A and -2B 1-2
1-2 Operating Data for TCA Run 591-2A 1-3
1-3 Operating Data for TCA Run 592-2A 1-5
1-4 Operating Data for TCA Run 593-2A 1-7
1-5 Operating Data for TCA Run 594-2A 1-9
1-6 Operating Data for TCA Runs 618-2A and -2B 1-10
1-7 Operating Data for TCA Run 619-2A 1-11
1-8 Operating Data for TCA Run 620-2A 1-12
1-9 Operating Data for TCA Run 621-2A 1-13
1-10 Operating Data for TCA Runs 622-2A and -2B 1-14
1-11 Operating Data for TCA Run 623-2A 1-16
1-12 Operating Data for TCA Run 624-2A 1-17
1-13 Operating Data for TCA Run 701-2A 1-18
1-14 Operating Data for TCA Run 702-2A 1-19
1-15 Operating Data for TCA Run 703-2A 1-20
1-16 Operating Data for TCA Run 704-2A 1-21
1-17 Operating Data for TCA Run 705-2A 1-22
1-18 Operating Data for TCA Run 706-2A 1-23
1-19 Operating Data for TCA Run 707-2A 1-24
1-20 Operating Data for TCA Run 708-2A 1-25
1-21 Operating Data for TCA Run 709-2A 1-26
1-22 Operating Data for TCA Run 710-2A 1-27
1-23 Operating Data for TCA Run 711-2A 1-28
1-24 Operating Data for TCA Run 712-2A 1-29
1-25 Operating Data for TCA Run 713-2A 1-30
1-26 Operating Data for TCA Run 714-2A 1-31
1-27 Operating Data for TCA Run 715-2A 1-32
1-28 Operating Data for TCA Run 716-2A 1-33
1-29 Operating Data for TCA Run 717-2A 1-34
1-30 Operating Data for TCA Run 718-2A 1-36
1-31 Operating Data for TCA Run 719-2A 1-37
1-32 Operating Data for TCA Runs 801-2A and -2B 1-38
1-33 Operating Data for TCA Run 802-2A 1-39
-------
Figure Page
••^..m. ' * •
1-34 Operating Data for TCA Run 803-2A 1-40
1-35 Operating Data for TCA Run 804-2A 1-41
1-36 Operating Data for TCA Run 805-2A 1-42
1-37 Operating Data for TCA Run 806-2A 1-43
1-38 Operating Data for TCA Run 807-2A 1-44
1-39 Operating Data for TCA Run 808-2A 1-45
1-40 Operating Data for TCA Run 809-2A 1-46
1-41 Operating Data for TCA Run 810-2A 1-47
1-42 Operating Data for TCA Run 811-2A 1-48
1-43 Operating Data for TCA Run 812-2A 1-49
1-44 Operating Data for TCA Run 813-2A 1-50
1-45 Operating Data for TCA Run 814-2A 1-51
1-46 Operating Data for TCA Run 815-2A 1-52
1-47 Operating Data for TCA Runs 816-2A and 817-2A 1-53
1-48 Operating Data for TCA Runs 818-2A and -2B 1-54
1-49 Operating Data for TCA Run 819-2A 1-55
1-50 Operating Data for TCA Run 820-2A 1-56
1-51 Operating Data for TCA Run 821-2A 1-57
1-52 Operating Data for TCA Run TFG-2A 1-58
1-53 Operating Data for TCA Run TFG-2B 1-59
1-54 Operating Data for TCA Run TFG-2C 1-60
1-55 Operating Data for TCA Run TFG-2D 1-61
1-56 Operating Data for TCA Run TFG-2E 1-62
1-57 Operating Data for TCA Run TFG-2F 1-63
1 Venturi/Spray Tower System (C-101) K-39
2 Turbulent Contact Absorber System, TCA (C-201) K-40
3 Typical Assemblies of Corrosion Test Specimens K-41
4 Erosion-Corrosion of Components Immediately Below
Adjustable Plug in Venturi (Looking Upward) K-42
5 Flooded Elbow: Blisters in Neoprene Lining on North
Wall (Left) and Heavy Scale Overhead K-42
6 Pitting Corrosion of Type 316 Mist-Eliminator Vane in
Spray Tower After Approximately 18,500 Operating Hours K-43
7 Pits 12 to 78 Mils Deep on Type 316 Deflector Rate on
Venturi/Spray Tower Fourth Manway Door K-43
8 Closeup of Solids Deposited in Outlet Duct from the
Venturi/Spray Tower Reheater K-44
9 Upper Area: Transition Section from Expansion Joint to
Cylindrical Stack; Lower Area: Corroded Shields That
Cover Expansion Joint K-45
10 Comparative Corrosion of Type 316L Specimens Exposed
at Test Locations 1014 in the Venturi/Spray Tower
System and 2014 in TCA System K-46
vi
-------
Figure Page
11 Photomicrograph of Type 316L Specimen After Exposure
at Test Location 2014 in TCA System K-46
12 Specimens After Exposure in Venturi/Spray Tower System K-47
13 Specimens After Exposure in TCA System K-48
14 Type 304, Schedule 10 Pipe that Failed with Corrosion
Rate Greater than 420 Mils Per Year K-49
15 Blisters in Neoprene Lining of 6-Inch Slurry Feed Line K-50
16 Worn Rubber Pinch Valve Used in 4-Inch Process Slurry
Line to Bull Nozzle K-50
vii
-------
TABLES
Table Page
E-l Summary of Forced-Oxidation Limestone Tests on the
Two-Loop Venturi/Spray Tower System E-2
E-2 Summary of Forced-Oxidation Limestone Tests on the
Two-Loop Venturi-Spray Tower System with and With-
out MgO Addition E-12
E-3 Summary of Limes tone/MgO Tests on the Venturi/Spray
Tower w4J:h Bleedstream Oxidation E-16
E-4 Summary of Forced-Oxidation Tests on the Two-Loop
Venturi/Spray Tower System E-20
E-5 Summary of Flue Gas Characterization Tests with Lime
on the Venturi/Spray Tower System E-30
H-l Summary of Limestone Testing with MgO Addition on the
TCA System H-2
H-2 Summary of Lime Testing with MgO Addition on the TCA
System H-4
H-3 Summary of Limestone Tests with Low Fly Ash Loading
on the TCA System H-7
H-4 Summary of Limestone Grind and Type Tests on the TCA
System H-9
H-5 Summary of Automatic Limestone Feed Control Tests on
the TCA System H-ll
H-6 Summary of Limestone Tests with High Fly Ash Loading
on the TCA System H-12
H-7 Summary of Ceilcote Support Plate Packing Tests on the
TCA System H-13
H-8 Summary of Forced-Oxidation Limestone Tests with Air
Eductor on the TCA System H-14
H-9 Summary of Forced-Oxidation Limestone Tests with Air
Sparger on the TCA System H-22
H-10 Summary of Flue Gas Characterization Tests on the TCA
System H-26
I Corrosion Tests Conducted in the Venturi/Spray Tower
System of the Alkaline Wet-Scrubbing Process for Sulfur
Dioxide Removal from Stack Gas at Shawnee Steam Plant K-31
II Erosion-Corrosion of Specimens Tested Below the
Venturi at Test Location 1011 K-33
viii
-------
Table Page
in Corrosion Tests Conducted in the TCA System of the
Alkaline-Wet-Scrubbing Process for Sulfur Dioxide
Removal from Stack Gas at Shawnee Steam Plant K-34
IV Composition of Alloys Tested in the Alkaline Wet-
Scrubbing Systems for Sulfur Dioxide Removal from
Stack Gas at Shawnee Steam Plant K-36
V Durometer Hardness of Neoprene Protective Linings
and Coverings in Alkaline Wet-Scrubbing Systems for
Removing Sulfur Dioxide from Shawnee Steam Plant
Stack Gases K-37
VI Compilation of Corrosion Data for Tests Conducted in
the Venturi/Spray Tower and TCA Scrubber Systems K-38
L-l Results of Long-Term Lamella Settler Tests Made
During November 1977 L-6
L-2 Summary of Lamella Testing on Unoxidized Limestone
Slurry with High Fly Ash Loading from Runs 714-2A
and 714-2B L-9
L-3 Summary of Lamella Testing on Oxidized Limestone
Slurry with Low Fly Ash Loading from Run 809-1A L-10
L-4 Summary of Lamella Testing on Oxidized Limestone
Slurry with High Fly Ash Loading from Runs 803-2a,
804-2A, and 818-2A L-ll
L-5 Summary of Lamella Testing on Oxidized Lime Slurry
with High Fly Ash Loading from Run 862-1A L-12
L-6 Summary of Solids Concentration Profiles of Lamella
Settler Hold Tank L-13
L-7 Laboratory Cylinder Settling Tests L-14
L-8 Settling anf Funnel Test Results for the Venturi/Spray
Tower L-15
L-9 Settling and Funnel Test Results for the TCA L-22
L-10 Filter Leaf Test Results for Test Blocks 2,3, and 8 L-28
L-ll Filter Leaf Test Results for Test Block 5 L-29
L-12 Filter Leaf Test Results for Test Block 6 L-30
L-13 Filter Leaf Test Results for Test Block 7 L-31
L-14 Operating Variables During Particle Size Distribution
Testing with the Hydroclone L-32
L-15 Results of Two-Hour Hydroclone Test: Solids Analyses
at 18 gpm Feed Rate L-33
L-16 Same: Solids Analyses at 15 gpm Feed Rate L-34
L-17 Same: Solids Analyses at 12 gpm Feed Rate L-35
IX
-------
APPENDIX A
CONVERTING UNITS OF MEASURE
A-l
-------
Appendix A
CONVERTING UNITS OF MEASURE
Environmental Protection Agency policy is to express all measurements in
Agency documents in metric units. In this report, however, to avoid undue
costs or lack of clarity, English units are used throughout. Conversion
factors from English to metric units are given below:
To Convert From
To
Multiply By
scfm (60°F)
cfm
°F
ft
ft/hr
ft/sec
ft2
ftc/tons per day
gal/mcf
gr/scf
1n.
in. HoO
Ib
Ib-moles
Ib-moles/hr -
Ib-moles/hr ft2
lb-moles/min
psia
nm3/hr (0°C)
n»3/hr
°C
m
m/hr
m/sec
$
nr/oetric tons per day
1/m3
1/min
l/mln/m2
gm/m3
cm
mn Hg
gm
gm-moles
gm-moles/min _
gin-moles/mi n/m'
gm-moles/sec
kilopascal
1.61
1.70
(°F-32)/1.8
0.305
0.305
0.305
0.0929
0.102
0.134
3.79
40.8
2.29
2.54
1.87
454
454
7.56
81.4
7.56
6.895
A-2
-------
APPENDIX b
SCRUBBER OPERATING PERIODS
6-1
-------
DO
ro
SCRUBBER OPERATING PERIODS
I.
PUIMPI U>. !
Eftll
lt*>3M
j
! ;
(J0UBM i
:
i
• i :
IP.-.!....
. .!.._..
i
i
i
"t" "
1
"~ 1
---I--
_ . ...
- 4
...J
7/6X4
i
. ._j . . .
.i
_....l......
i —
. :.. .
1
IS!
•- - •! -
BW
-tflST.
, , /»te .
^inJm, f.istroidw.
U/22 I I'
TCHJ
'-I
H/25
^4;-,
11/21 lil/28 Ml
1974,
1
-------
SCRUBBER OPERATING PERIODS
CO
co
-------
SCRUBBER OPERATING PERIODS
CD
I
-P*
-------
SCRUBBER OPERATING PERIODS
no
en
•^"i
11/7 I 1/9 I '/
-------
SCRUBBER OPERATING PERIODS
CD
I
1/21 I 1/2.7. [1/23 | 1/24 M/2S
I 1/27 M/28 I 1/21 II/3O | 1/31 I Z/l I 2/Z I 2/3 12/4
-------
SCRUBBER OPERATING PERIODS
CO
i
•-si
• i i ' "I -
.._... . ._.._. ..
: r?! ;
( ." i , i
~ ' \ '. i
Z/5 iZ/6 12/7 12
• t
;
;
.
/8|:
i . .
2-1^
:
... ,...., . ...
•- ;• • i • •
... t
i
1
1
2 llo |Z//
• -
! "
/ J2//ZI2
;
//3|:
i
• i - — j
" ' l
"-••"$
- '• i • - •
.....|. . .
l/iy. \2liS
I2-/I
_ i ....;::;
1 '
... . . ' .
( . : i
: . ." I :
: - !
fe I2-//7 I2//8 (2/19
-------
SCRUBBER OPERATING PERIODS
DO
I
. , SAMfeM
I I Soi-lB
U
H
;
"
.
-
•
-
•r
i
.. "/.r
2/20
•
•
,' .~
_ ... .
. _.
;."
r. r .
' " r
1 ,
|2/2
1
t
~~T "
|
!
1
: <
i
• --i -
,
.. ...
,
.- ..1 - -
>
:
. ...j...
I |2/.
l
1
i
t
•••--t—
. .;....
.. ., ..
. _ . ...
i
j
i
•
-,
i
-- --
2Li|2
_L
1
— -"
-
'
/*
— •-
•
H;
i
i
i
!
1
!
1
r ~"
i
,
i '
1"
'
1/214-
\
1
1
"T
J -
.._,.—-
"T
j
i
i
Z/25
- •-
- — j
..„
—
-
- -
Iz
....
"."'
*-/*
- r -
- —
- ,
— -
4>|
_..-.
2/
. . [ .! .
• Ml*
I
i
i
!
1
. ,
!
27 12
AL
_|
---
.
t
—
/2£
..
n:
-—
•-
V
...
f
i
4
i
_ .j...
L.
i
j--- -
_.= 1
'
i
i
i
- 1
3/2
i
i
j j
f.G'(.Hf
T8STiM(S
i.
i
j.
i
i
:;..
;
i
j..
i
.. _ : . . .
13/3
j i
L"t
& i
1
M.C-
~ •
------
i
...
.
l3/
-----
1
.
4 13
SE ilME
6
-------
SCRUBBER OPERATING PERIODS
DO
<£>
3/7 I 3/8 I 3/9 |3/|0 13/11 I 3/12 | 3/13 j3/|i| | 3/lS | 3/16 |3//7 |3/|g
-------
SCRUBBER OPERATING PERIODS
;5AME AS 853-|A EXCEPT
.AT&"H*O
l6oC/2 1&.5U VENTURI
.
CLILAMIM6 '
• LAR UMESTONE
R^ACTI\/ltY TESTS
• LAB RLTER LEAF
|3/3o|3/3l
__
3 /22 ,'3/Z2 !3/2//|3/25
-------
SCRITBRER OPERATING PERIODS
DO
I
/225
-------
SCRUBBER OPERATING PERIODS
M- I Rr ' ,
At* EpucirpR bti :
-------
SCRUBBER OPERATING PERIODS
co
i
. .., 857-J
162/4 135
i TOSMRSE/L !
T/I917/20 \T/Z\n/22
l7/2Sl7/26l"7/27
-------
SCRUBBER OPERATING PERIODS
ro
i
-------
SCRUBBER OPERATING PERIODS
CO
i
151% SPMC S 4 4.5 »He>VEJ
8/2DJ8/2J 8/Z2
-------
SCRUBBER OPERATING PERIODS
03
I
I2ifcairafc*i '5*3 •I'-*?'
1 "
i ;
i
B/Zl
..- .
: -
UiJ/i
_
. i .
......
:. ..1
-
:
. -
. . 1 . .
_
AtTOt
HXCKf
TIM*
. (....
h^
~
-
. . i
'• • :
iA-nc u
COH1XO
r%l.tt
USI N« 1
LTfcST
SIDINC
?-aplO
i
REMOUK
AT 0-2
EMERY
ewrar
FROM'
'"1 .
8/28 l8/2f 18/30 18/3)
rrms o
01 FK9I
GOHoKr
PtfSITiO
014811
;' "
T^
-• • r
. j
i
....
rim A
l^ttTI
»l PPRI
• • 1
1
i
•4 •
1
•»/•
1
i
^
i
._,....
uuloue;
cAi-m
Bo-rtnoM
jUMSBE
" -T
....} .-
'
•O.R;. .
&IHII46-
;-
•-
-
••••
i
. ..j
i.._.
i
i:
i
- - 1 —
...j .
i
*
- 1
9/2. I 9/3 19/4 19/5
i
: .'.r.' j. .' 2o>
- -
'
"."";. .
—
9/6
-U.
....
, zopto- |i SAME >iS 80S
] %fa \ EXCEPT H0|ltl
)'/2!
-------
SCRUBBER OPERATING PERIODS
03
I
-------
SCRUBBER OPERATING PERIODS
03
I
I—•
00
R?/J 110/2 110/3 110/4 110/5
-------
SCRUBBER OPERATING PERIODS
DO
on IPHS SAI ie A$
CU X. 1 fl(J0K IN
10/21 110/22 110/23
-------
SCRUBBER OPERATING PERIODS
CO
ro
O
ISJ i.VJ NJVfo 1IM 9XJ. ~iou
/0/26|lO/27llO/Z8
10/31 ill/1 Ml/2- 111/3 |ll/4
11/5 hl/6 Ml/7 hl/8 I
-------
SCRUBBER OPERATING PERIODS
en
i
ro
-------
SCRUBBER OPERATING PERIODS
CO
E INSTALLED
12/5 1)2/6 llZ/7
mi
-------
SCRUBBER OPERATING PERIODS
CO
I
CO
;S1P
-------
SCRUBBER OPERATING PERIODS
CO
ro
//6 I//7 I//a
1977
-------
SCRUBBER OPERATING PERIODS
ro
01
.1, SAMe.A$8&ilA
I. JI EXCEPT
P-W
1 KATE).
-------
SCRUBBER OPERATING PERIODS
DO
ro
cr>
l/z»f |i/25h/2fc I 1/2.7
JLU4E/F«fdSH
-4J-URJRY. 3OP« o a.ffmt
9**?*
Loan,
pHCoNFR.
•-- TOTMU
INTEllMAU Ooi/U-
COMERIMD-: 04.
-------
SCRUBBER OPERATING PERIODS
ca
i
£! CLEANED PL'iJfeMpJ
-- o i - -Hitf *Y .KO? zju4&
SH|._1|--4|' ^
t-< . I .— LI. • •
P >H
H <;
2 Si' - ,
wg;—-j --h -; - - T--I
> CO
FUW
2/8 IV? I2//0
-------
SCRUBBER OPERATING PERIODS
CD
I
no
oo
CLEANED PLUGGED !
JLURRV
12/2
-------
SCRUBBER OPERATING PERIODS
DO
I
ro
3/15 ! 3/16 | 3/17 I 3/18 | 3/19 j 3/20 | 3/21 [3/22 |3/23 |3/24
1978
-------
SCRUBBER OPERATING PERIODS
CO
i
CO
o
3/25 I 3/26 I 3/27 I 3/28i 3/291 3/30 I 3/31 ! 4/1 I 4/2 I 4/3
1978
-------
SCRUBBER OPERATING PERIODS
CO
I
GO
4/14 4/15 4/16
4/19 4/20 4/21 4/22 4/23
1978
-------
SCRUBBER OPERATING PERIODS
CO
i
CO
ro
4/30 | 5/1 I 5/2
1978
-------
SCRUBBER OPERATING PERIODS
r.ft
DO
I
CO
co
1978
-------
SCRUBBER OPERATING PERIODS
DO
CO
6/3 I 6/4 | 6/5 | 6/6 (6/7
5/29 | 5/30 I 5/31
5/24 5/25 5/26 5/27 5/28
1978
-------
SCRUBBER OPERATING PERIODS
DO
I
en
6/14 I 6/15 6/16
6/8 6/9 6/10
1978
-------
APPENDIX C
PROPERTIES OF RAW MATERIALS
01
-------
The following is a summary of the properties of the raw materials used from
December 1976 to June 1978.
C.I
COAL*
Supplier:
Type:
Analysis:
Several
Eastern (Southern Illinois) high sulfur.
9.4 to 12.4 wt% total moisture
2.3 to 5.5 wt% sulfur
0.03 to 0.27 wt% chloride
13.0 to 16.3 wt% ash
Approximate Ash Analysis:
54 wt% SiOo
23 wt% AL203
12 wt% FeoOo
3 wtX CaO
1 wt% MgO
1 wt% S03
3 wt% K20
1 wtt Na?0
3 wt% Ignition loss
Note: During the coal miners' strike in the first quarter of 1978, any
available coal was burned. Coal types included lignite and low
sulfur western coals. Coals from more than 2 different sources
were used.
C-2
-------
C.2
LIMESTONE
C.2.1 Supplier:
Type:
Analysis:
Grind; Fine:
Grind; Coarse:
Fredonia Quarries, Fredonia, Kentucky
Fredonia Valley White
96.8 wt% CaC03
0.9 wt% MgC03
2.3 wt% Inerts
96 wt% less than 325 mesh
89 wt% less than 30 microns
88 wt% less than 27 microns
58 wt% less than 6 microns
40 wt% less than 3 microns
81 wU less than 200 mesh
60 wt% less than 30 microns
31 wt% less than 6 microns
21 wtt less than 3 microns
C.2.2
Supplier:
Type:
Analysis:
Grind:
Longview Lime Company, Longview, Alabama
Longview
97.5 wt% CaC03
1.2 wt% MgCOo
1.3 wt% Inerts
75 wt% less than 200 mesh
59 wt/6 less than 30 microns
27 wt% less than 6 microns
16 wt% less than 3 microns
C-3
-------
C.3
LIME
Supplier:
Type:
Analysis:
Linwood Stone Co., Davenport, Iowa (through 9/75)
Mississippi Lime Co., Alton, Illinois (after 9/75)
Pebble Lime, unslaked
97.0 wt% CaO total
95.5 rt% CaO available
0.28 wt% MgO
0.47 wt% Inerts
C.4
MAGNESIUM OXIDE
Supplier:
Type:
Analysis:
Basic Chemicals, Ft. St. Joe, Florida
MAFOX PG (pollution grade)
97.6 wt% MgO
1.5 wtt CaO
0.5 wt% Si02
0.4 vrt% R0
C-4
-------
APPENDIX D
DATABASE SUMMARY
D-l
-------
The NOMAD database system can be used to print reports of selected data. The
run summary table reports for the period December 4, 1976 through June 19, 1973
are presented in this appendix.
The following codes and abbreviations are used in describing the operating con-
ditions and the system configuration:
t Alkali type
L = lime
LS = limestone
t Fly ash and MgO addition
Y = yes
N = no
• Spray tower header configuration
1 = lowest nozzle bank
2 = second lowest
3 = second highest
4 = highest
t Mist eliminator system configuration
1-3P/OV = one three-pass, open-vane mist eliminator
t Mist eliminator wash, bottom/top
C = continuous
I = intermittent
S = sequential
• Dewatering system
CL = clarifier
CE = centrifuge
F = filter
i.e., CL/CE = clarifier and centrifuge in series
• Alkali addition point
DNC = downcomer
EHT = effluent hold tank
• TCA total bed height is given in inches for 3 beds
D-2
-------
• TCA sphere type
FOAM = 1 5/8-inch solid nitrile foam spheres
The analytical point designations are as follows:
1815 = venturi inlet
1816 = spray tower inlet
1825 = spray tower outlet
1851 = venturi outlet
2816 = TCA inlet
2825 = TCA outlet
D-3
-------
VST RUN DEFINITION
RUN
NO.
801-1 A
802-1A
803-1A
804-1A
805-1A
806-1A
8C6-1B
806-1C
806-1D
807-1A
808-1A
809-1A
810-1A
811-1A
812-1A
814-1A
815-1A
816-1A
817-1A
818-1A
819-1A
819-1B
820-1A
820-1B
820-1C
821-1A
822-1A
822-1B
823-1A
824-1A
825-1A
826-1A
851-1A
852-1A
853-1A
854-1A
855-1A
856-1A
857-1A
858-1A
859-1A
859-18
859-1C
859-10
START
DATE
01/04/77
01/24/77
02/04/77
02/10/77
02/18/77
02/23/77
02/25/77
02/27/77
03/01/77
03/03/77
03/06/77
08/12/77
P8/18/77
08/25/77
09/02/77
09/08/77
09/15/77
09/28/77
10/18/77
10/26/77
11/01/77
12/08/77
03/01/78
04/04/78
04/13/78
04/19/78
04/25/78
05/05/78
05/12/78
05/23/78
05/30/78
06/09/78
03/10/77
03/15/77
03/18/77
03/25/77
06/21/77
06/28/77
07/07/77
07/13/77
07/20/77
07/25/77
07/28/77
08/02/77
START
TIME
1420
1550
1400
1210
1620
1440
1130
0815
1500
1630
1015
1510
1355
1245
1108
1620
1320
10G5
1110
1155
1655
1032
2030
1230
1230
1545
1440
0740
1630
1435
1900
1335
1450
1422
1550
1525
1510
1300
1416
1355
1*40
1000
0800
0750
END
DATE
01/15/77
02/04/77
02/10/77
02/18/77
02/23/77
02/25/77
02/27/77
03/01/77
03/03/77
03/06/77
03/09/77
08/18/77
08/25/77
09/02/77
09/08/77
09/15/77
09/28/77
10/04/77
10/26/77
11/01/77
12/08/77
12/15/77
04/04/78
04/10/78
04/19/78
04/25/78
05/05/78
05/10/78
05/23/78
05/30/78
06/09/78
06/19/78
03/15/77
03/18/77
03/25/77
04/01/77
06/28/77
07/07/77
07/12/77
07/20/77
07/25/77
07/28/77
08/02/77
08/C5/77
END
TIME
1255
0805
0730
0205
0800
1130
0815
1415
0800
1015
0330
0820
0735
0410
0752
0746
0730
0820
0727
0735
0850
0739
0800
0505
0815
0750
0740
0455
0800
0800
0800
1925
0750
1550
0815
1315
1300
0815
2150
0810
1000
0800
0750
1330
HOURS
ON
STRM
263
256
138
151
112
45
45
54
41
66
65
137
162
184
141
136
306
142
188
141
840
126
462
137
134
136
232
85
205
159
229
246
110
74
161
166
158
209
128
162
115
70
120
72
FACT
OR
TIME
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
D-4
-------
VST RUN DEFINITION
RUN
NO'.
860-1A
861-1A
862-1A
863-1A
864-1A
865-1A
866-1A
867-1A
START
DATE
START
TIME
END
DATE
HOURS FACT
END ON OR
TIME STRM TIME
08/05/77
10/06/77
10/11/77
12/16/77
01/20/78
01/25/78
02/14/78
02/21/78
1330
1125
1300
1615
1309
1008
1030
1430
08/11/77
10/11/77
10/18/77
01/20/78
01/25/78
02/14/78
02/21/78
02/27/78
0537
0825
0720
1241
0755
0835
0855
0820
133
117
162
779
115
254
159
137
T
T
T
T
T
T
T
T
D-5
-------
VST SYSTEM CONFIGURATION
NO. OF
RUN SCRUBBER
NO. STAGES
801-1*
802-1*
803-1*
804-1*
805-1*
806-1*
8C6-1B
B06-1C
806-10
807-1*
8C8-1*
809-1A
810-14
811-1*
812-1*
814-1*
815-1*
816-1*
817-1*
818-1*
819-1*
819-16
B20-1A
B20-1B
820-1C
821-1*
822-1*
822-1B
823-1*
824-1*
825-1*
626-1*
851-1*
852-1A
853-1*
854-1*
855-1A
856-1A
857-1A
858-1*
859-1A
859-18
859-1C
859-10
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
S.T.
HEADER
CONFIG
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
NO. OF
HOLD
TANKS
1
1
1
I
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
3
3
3
3
3
3
3
3
H.E.
SYSTEH
CONFIG
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OW
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
H.E.
HASH
B/T
I/I
I/I
I/I
I/I
I/ 1
I/I
I/I
I/I
I/I
I/I
I/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
c/s
c/s
c/s
c/s
c/s
c/s
c/s
c/s
c/s
c/s
I/I
I/I
I/I
I/I
I/I
I/I
I/I
I/I
I/I
I/I
I/I
SPARGER NO. OF
DE- OX ID HOLE HOLES
MATER CONFIG DIAH., IN
SYSTEM FLAG INCHES SPARGER
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F/L
CL
CL
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F/L
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.300
0.300
4
0.125
0.125
0.125
0.125
1 0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
130
130
130
130
130
130
130
130
130
130
130
40
40
40
40
40
40
40
1
1
1
1
1
1
1
1
1
1
1
130
130
130
130
40
40
43
43
40
40
40
40
SPARGE
TANK ALK
AGIT AOON
ATOR PT.
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
r
Y
Y
Y
Y
Y
Y
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
DNC
DNC
QIC
DNC
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
PRESCRUB
ALKALI
ADDITION RUN
POINT NO.
DNC
DNC
ONC
DNC
DNC
DNC
ONC
ONC
DNC
ONC
ONC
DNC
801-1A
802-1A
803-1A
804-1A
805-1*
806-1A
806-1B
806-1C
806-1D
807-1*
80B-1A
809-1A
810-1A
811-1A
812-1*
814-1*
815-1A
816-1A
817-1*
818-1A
819-1A
819-1B
820-1*
820-1B
820-1C
821-1*
822-1*
822-1B
823-1*
824-1A
825-1*
826-1A
851-1*
852-1A
853-1*
854-1A
855-1A
856-1*
857-1A
858-1A
859-1A
859-1B
859-1C
859-10
-------
VST SYSTEM CONFIGURATION
RUN
NO.
960-1A
861-1*
862-1 ft
863-1A
86*-lA
865-1A
866-1*
867-1A
NO. OF
SCRUBBER
STAGES
2
2
2
2
S.T.
HEADER
CONFIG
1234
1234
1234
1234
1234
1234
1234
1234
NO. OF
HOLD
TANKS
3
3
3
H.E.
SYSTEM
CONFIG
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
H.E.
HASH
B/T
I/I
I/I
I/I
I/I
I/I
I/I
I/I
I/S
OE-
yATER
SYSTEM
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/F
CL/f
SPARGER
OXID HOLE
CONFIG OIAM..
FLAG INCHES
0.250
0.300
0.300
NO. OF
HOLES
IN
SPARGER
40
1
1
1
SPARSE
TANK
AGIT
AT OR
Y
Y
ALK
AODN
PT.
EHT
EHT
EHT
EHT
EHT
EHT
EHT
PRESCRUB
ALKALI
ADDITION
POINT
DNC
DNC
DNC
ONC
RUN
NO.
860-1A
861-1A
862-1A
863-1A
864-1 A
865-1 A
866-1A
867-1A
o
II
-------
VST OPERATING CONDITIONS
l
00
RUN
NO.
801-1*
802-1*
803-1*
804-1*
805-1*
806-1*
806-1P
806-1C
806-10
807-1*
808-1*
809-1*
810-1*
811-1*
812-M
814-1*
815-1*
A16-1 *
817-1*
818-1*
819-1*
819-1"
820-1*
820-16
820-1C
821-1*
822-1*
822-1B
823-1*
824-1*
825-1*
826-1*
851-1*
852-1*
853-1*
854-1*
855-1*
856-1*
857-1*
858-1*
859-1*
859-1*
859-1C
859-10
ILK
TYPE
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
L
L
L
L
L
L
L
L
L
L
L
L
FLY
ASH
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
H
N
N
MGO
N
N
N
N
N
N
N
N
N
N
N
N
N
•H
N
N
N
N
H
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
I*
N
N
N
N
H
N
N
N
N
N
PRESCRUB
PH VENTURI
CONTR PH CONTR
POINT POINT
5.50
5.59
5.50
8.00
8.00
8. OP
8.00
8.00
8.00
8.00
8.00
4.50
5.00
5.00
5.00
5.00
4.5!>
4.50
4.50
4.50
4.50
4.50
4.50
5.00
5.50
5.50
5.50
5.50
5.50
5.50
5.50
5.50
4.50
4.50
4.50
5.20
4.50
5.0D
5.50
5.50
5.50
5.50
5.50
5.50
GAS
RATE
ACFM
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
35000
35000
35000
3SOOO
35000
35000
35000
35000
35000
35000
18000
35000
18000
26500
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
25000
GAS
VEL
FPS
6.7
6.7
6.7
6*7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
9.4
4.8
9.4
4.8
7.1
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
VEN
LIQ
RATE
6PM
400
400
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
(00
600
600
600
600
600
600
600
600
600
600
160
600
600
600
600
600
600
600
600
600
600
S.T.
LIQ
RATE
6PM
1300
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
14BO
1400
1400
1400
1400
1400
1400
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
1600
600
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
1400
VEN
L/6
6*L/
M*CF
19.9
19.9
29*9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
21.4
21.4
21.4
21.4
21.4
21.4
21.4
21.4
21.4
21.4
41.5
21.4
41.5
28.2
29.9
8.0
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
29.9
S.T. PRESCRUB
L/6 SOLID VEN NOM X
GAL/ RECIRC SOLIDS
MACF NOM X RECIRC
64.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
49.8
49.8
49.8
57.0
57.0
57.0
57.0
57.0
57.0
110.8
57.0
110.8
75.2
29.9
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
69.8
8.0
8.0
8.0
7.8
8.0
8.0
7.0
8.4
8.4
7.6
8.8
9.6
10.0
15.2
6.0
8.2
10.5
8.0
5.6
13.3
14.1
14.7
15.2
15.0
15.0
15.0
15.0
7.3
7.8
7.8
15.2
7.2
7.6
7.3
7.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
8.0
15.0
15.0
15.0
15.0
SOLIDS
DISCH
RAN6E
X
72-88
37-55
38-52
80.92
84-92
82-92
81-91
82-89
82-89
83-91
82-89
82-88
78-86
55-71
80-90
80-89
79-87
80-90
82-88
80-88
74-88
65-80
73-83
75-83
62-88
75-90
70-86
72-90
64-83
69-86
64-77
52-57
RUN
NO.
801-1A
802-1*
803-1*
804-1*
805-1A
806-1A
806-1B
806-1C
806-10
807-1A
808-1*
809-1A
810-1A
811-1*
812-1*
814-1A
815-1A
816-1*
817-1*
818-1*
819-1A
819-18
820-1*
820-1B
820-1C
821-1A
822-1A
822-1B
823-1A
824-1A
825-1A
826-1A
851-1A
852-1*
853-1A
854-1*
855-1A
856-1A
857-1A
858-1A
859-1A
859-18
859-1C
859-10
-------
VST OPERATING CONDITIONS
RUN
NO.
860-1*
861-1A
862-1*
863-1A
864-1H
865-1*
866-1*
867-1A
*LK
TYPE
L
L
L
L
L
L
L
L
FLY
ASH
N
N
Y
Y
Y
Y
Y
Y
HGO
N
N
N
N
*
N
N
N
PH
CONTR
POINT
8.00
8.00
8.00
7.80
7.80
7.80
7.80
7.80
PRESCRUB
VENTURI
PH CONTR
POINT
5.50
5.50
5.50
5.50
GAS
RATE
ACFH
25000
25000
35000
35000
35000
35000
35000
GAS
VEL
FPS
6.7
6.7
9.4
9.4
9.4
9.4
9.4
VEN
LIO
RATE
GPH
600
600
600
630
600
60G
600
600
S.T.
LIQ
RATE
GPH
1400
1400
1400
1600
1600
1600
1600
1600
VEN
L/G
GAL/
HACF
29.9
29.9
21.4
21.4
21.4
21.4
21.4
S.T.
L/G
GAL/
NACF
69.8
69.8
49.8
57.0
57.0
57.0
57.0
SOLID
RECIRC
NOM X
7.0
7.2
17.3
10.4
9.5
10.1
9.9
11.8
PRESCRUB
VEN NOM X
SOLIDS
RECIRC
15.0
15.0
15.0
15.0
SOLIDS
DISCH
RANGE
X
74-89
82-90
82-89
80-89
81-88
76-84
78-84
83-88
RUN
NO.
860-1A
861-1A
862-lA
863-1A
864-1A
865-1A
866-1A
867-1A
UD
-------
VST OPERATING CONDITIONS (CONTINUED)
RUN
NO.
801-1*
802-1A
803-1A
804-1A
805-1A
806-1 A
806-1B
806-1C
806-10
807-1A
808-1A
809-1A
810-1A
811-1A
812-1A
814-1*
815-lA
816-1A
817-1A
818-1A
819-1A
819-1B
820-1A
820-1B
820-1C
821-1A
822-1A
822-1B
823-1 A
824-1A
825-1A
826-1A
851-1A
852-1A
853-1A
854-1A
855-1 A
856-1A
857-1A
858-1A
859-1A
859-1B
859-1C
859-10
VEN
D.P.
IN.
H20
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
6.2
7.3
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
2.6
4.7
9.0
9.0
9.0
9.0
9.0
9.0
9.P
9.0
9.0
S.T.
D.P.
IN.
H20
2.8
2.7
2.6
2.9
3.0
7.0
6.8
6.3
6.0
4.6
5.3
4.5
1.3
2.4
4.5
2.9
3.1
2.7
2.5
2.8
3.2
3.C
2.8
M.E. SYSTEM
0. P. RANGE
IN.H20
0.29-0.35
0.29-0.32
0.30-0.34
0.31-0.36
0.32-0.38
0.58-0.76
0.58-0.70
0.55-0.66
0.57-0. 6fi
0.18-0.86
0.24-0.82
0.52-0.6P
C. 58-0. 66
0.43-0.72
P. 42-0. 56
C. 41-0. 52
0.14-0.23
0.39-0.62
0.17-0.34
0.39-0.54
0.24-0.3?
C. 23-0. 29
0.24-0.30
0.24-0.30
0.32-0.36
0.31-0.36
0.31-0.35
0.31-0.35
0.30-0.34
0.28-0.32
0.30-0.31
C. 30-0. 32
EFFLU
RES
TIME
MIN
19.4
18.Q
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
13.4
13.4
13.4
13.4
13.4
13.4
13.4
16.8
14.7
14.7
14.7
14.7
14.7
14.7
14.7
14.7
14.7
11.2
11.2
11.2
11.2
18. P
18.0
18.0
18.0
18.0
18.0
18.0
18.0
SPARGE
TANK
RESID
TIME
MIN.
17.0
17.0
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.7
11.3
11.3
8.8
8.8
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
42.0
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
11.3
VENTURI
DESUP TANK
RES TIME
MIN.
7.0
7.0
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
17.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
SPARGE
TANK
LEVEL
FEET
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
14.0
14.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
OXID
AIR
RATE
SCFM
400
400
400
400
400
250
150
100
50
150
150
150
150
150
150
210
210
210
210
210
150
210
210
210
110
210
110
210
150
150
150
150
150
150
150
150
150
150
100
RUN
NO.
801-1A
802-1A
803-1A
804-1A
805-1A
806-1A
806-18
806-1C
806-1D
807-1A
808-1A
809-1A
810-1A
B11-1A
812-1A
814-1A
815-lA
816-1A
817-1A
818-1A
819-1A
819-1B
820-1A
820-1B
820-1C
821-1A
822-1A
822-1B
823-1A
824-1A
825-1A
826-U
85 1-1 A
852-1A
853-1A
854-1A
855-U
856-1A
857-1A
858-1A
859-1A
859-1B
859-1C
859-10
D-10
-------
VST OPERATING CONDITIONS (CONTINUED)
RUN
NO.
860-1A
861-1A
862-1A
863-1A
864-1A
865-1A
866-1A
867-lA
VFN
D.P.
IN.
H20
9.0
9.0
9.P
5.6
9.0
9.0
9.0
9.0
S.T.
D.P.
IN.
H20
2.8
3.2
6.4
5.0
6.3
6.0
7.4
M.E. SYSTEM
D.P.RAN&E
IN.H20
0.30-0.33
0.27-0.32
0.55-0.64
0.06-0.61
0.48-0.68
0.56-0.78
0.61-0.75
0.66-0.82
EFFLU
RES
TIME
MIN
12.6
18.0
18.0
14.7
14.7
14.7
14.7
14.7
SPARGE
TANK
RESID
TIME
MIN.
11.3
11.3
11.3
8.8
VENTURI
DESUP TANK
RES TIME
MIN.
4.7
4.7
4.7
4.7
SPARGE
TANK
LEVEL
FEET
18.0
18. 0
18. C
14.0
OXIO
AIR
RATE
SCFM
150
150
210
210
RUN
NO.
860-1A
861-1A
862-1A
863-1A
864-1A
865-1 A
866-1A
867-lA
o-n
-------
VST ANALYTICAL RUN SUMMARY (GASES)
RUN
NO.
eoi-iA
802-1A
803-1A
804-1A
805-1A
806-1A
806-1B
806-1C
8C6-1C
807-1A
808-1A
809-1A
810-1A
811-1A
812-1A
814-1A
815-1A
816-1A
817-1A
818-1A
819-1A
819-1B
820-1*
820-1B
820-1C
821-1A
822-1A
822-1B
823-1A
824-1A
825-1A
826-1A
851-1A
852-1A
8S3-1A
854-1A
855-1A
856-1A
857-1A
858-1A
859-1A
859-18
859-1C
859-1D
AVG
S02
IN
PPM
3*81
3439
3145
3221
3426
3340
2820
3236
3103
3348
2831
2435
2657
2570
2341
2401
2493
2352
2478
2594
2996
2977
2279
2412
2820
1720
2758
2378
2507
2627
2458
2731
3267
3328
3430
3215
2370
2515
2662
2773
2964
2720
2656
2693
MIN
S02
IN
PPM
2780
2780
2640
2460
3000
3000
2520
3000
2700
2920
264 C
2060
1840
2200
1960
1920
1860
1980
192C
1840
2320
2680
1280
1760
2320
1720
2360
1920
2320
2320
1400
2000
2920
2960
2640
26*0
14RO
2240
2480
2360
2760
2560
2320
2480
MAX
S02
IN
PPM
3920
4060
3520
3840
4130
3840
3320
3480
3320
3720
3080
2720
3480
3240
2900
2640
3260
2760
3080
3080
3600
3280
3240
2920
3520
1720
3300
2840
2960
2840
2860
3240
3840
3720
3920
3680
3080
2880
2840
3100
3240
3000
3360
3040
AVG
S02
OUT
PPM
1177
1142
999
861
702
816
658
771
583
651
601
416
424
377
172
198
307
330
403
34 C
408
427
80
148
256
1340
259
220
139
285
135
272
676
904
720
531
384
302
391
432
223
222
198
233
HIN
S02
OUT
PPM
P20
630
620
500
430
660
540
660
460
480
480
250
160
180
90
80
120
200
200
16C
160
150
10
60
100
1340
40
80
20
120
30
90
440
540
380
240
120
180
280
280
130
180
110
140
MAX
S02
OUT
PPH
1680
1800
1900
1180
1000
1000
880
840
680
780
840
520
660
700
300
400
540
680
640
470
660
580
520
280
450
1340
600
320
240
540
300
560
960
1200
920
880
640
460
480
560
440
280
440
329
Ave
S02
REN
X
62
63.
64
70
77
73
74
73
79
78
76
81
82
83
92
91
86
84
82
85
84
84
96
93
89
14
89
89
93
87
93
89
77
70
76
81
82
86
83
82
91
91
91
90
HIN
S02
REH
X
52
50
37
64
69
70
71
70
77
75
67
76
75
75
88
83
75
72
76
81
77
79
82
89
83
14
80
86
91
78
87
79
72
61
73
73
77
79
81
80
85
90
85
87
MAX
S02
REM
X
74
78
77
80
84
77
77
76
82
82
81
87
90
92
95
95
93
89
88
91
93
94
99
96
96
14
98
95
99
95
99
95
83
80
84
90
91
92
88
88
95
92
95
94
AVG
MAKE
PER
PASS
NMOL
/L
6.8
6.4
544
6.0
7.0
6*4
5.5
6.3
6.5
7.0
5.7
5.2
5.8
5.7
5.7
5.B
8.0
7.4
7.5
7.5
7.4
7.6
8.6
8.3
7.2
4.1
7.8
4.0
6.2
11.1
7.9
7.0
7.0
5.2
5.8
5.9
6.1
7.2
6.6
6.5
6.5
MIN
MAKE
PER
PASS
HHOL
/L
5.3
5.2
3.3
4.7
5.7
5.5
5.0
5.8
5.6
6.3
5.0
4.7
4.4
5.0
4.9
4.9
6.2
6.0
6.3
5.5
4.2
5.7
7.5
7.3
6.2
3.8
6.7
2.4
4.9
10.6
6.8
5.9
6.4
3.6
5.2
5.4
5.3
6.8
6.3
5.7
6.2
MAX
HAKE
PER
PASS
MMOL
/L
7.9
7.8
6.4
7.8
8.4
7.2
6.2
6.8
7.1
7.7
6.3
5.7
7.6
6.9
6.8
6.4
9.9
8.8
8.8
8.8
10.5
9.2
11.1
9.8
8.4
4.7
8.9
4.7
7.4
12.3
9.1
7.7
7.7
6.3
6.6
6.2
6.7
7.7
7.1
7.6
7.2
AVG
02
IN
X
6.1
6.2
6.6
7.1
6.3
5.3
5.4
5.9
6.2
6.1
8.2
9.1
7.7
8.5
7.5
7.3
8.4
8.8
6*9
6.5
7.3
8.5
7.2
6.5
6.7
6.0
6.6
7.4
8.2
7.3
8.5
8.8
5.9
5.5
5*1
5.3
10. a
9.5
9.1
6.8
7.8
10.3
9.0
8.1
MIN
02
IN
X
4.0
4.5
5.3
6.1
3.8
5.0
4.2
4.8
6.0
4.2
5.3
6.2
5.8
7.5
6.7
6.0
7.2
8.0
5.5
5.0
2.4
6.5
6.0
5.7
5.0
6*0
5.6
5.0
6.4
6.0
6.0
7.0
5.2
4.0
4.0
4.5
9.5
7.8
8.0
5.2
7.0
9.5
8.0
7.0
MAX
02
IN
X
8.5
8.5
7.8
9.5
7.7
6.0
6.6
6.8
6.7
8.3
19.2
10.5
8.8
10.6
8.8
8.5
10.6
10.8
8.9
7.8
9.0
10.0
8.3
9.0
9.9
6.0
10.0
10.0
10.0
10.0
10.0
10.0
6.7
8.2
7.0
6.1
11.5
15.1
11.5
8.1
8.6
11.1
10.3
9.2
AVG
BOIL
LOAD
MEGA
MATT
143
143
131
139
147
132
136
148
144
134
144
137
117
126
143
122
143
136
130
144
144
143
130
130
136
126
147
139
112
138
139
139
131
135
136
146
104
136
134
142
137
112
130
142
MIN
BOIL
LOAD
MEGA
WATT
100
100
93
92
125
50
100
148
124
110
120
68
94
94
100
92
95
95
82
108
103
106
74
SO
96
126
96
102
192
96
93
94
50
93
59
120
95
105
10
115
98
86
97
125
MAX
BOIL
LOAD
NEGA
UATT
165
152
164
153
151
160
150
150
150
149
152
154
155
154
153
152
156
154
151
154
156
155
158
154
155
126
158
158
138
154
154
157
152
159
156
150
112
152
151
154
152
153
150
152
-------
o
co
VST ANALYTICAL RUN SUMMARY fGASES)
RUN
NO.
860-1 A
861-1A
862-1A
863-1A
864-1A
865-1A
866-1A
867-1A
AVG
S02
IN
PP*
2265
2708
2637
2902
2187
228C
2030
2196
HIN
S02
IN
PPM
1960
2080
2080
2160
160C
MOP
1160
840
MAX
SO 2
IN
PPM
2700
3200
3080
4COO
2580
3C40
3260
3320
AVG
S02
OUT
PPM
120
215
385
333
106
251
91
261
HIN
S02
OUT
PPH
80
90
180
20
40
20
10
10
MAX
S02
OUT
PPH
200
440
640
880
250
620
300
680
AVG
S02
REM
X
94
91
84
87
94
89
95
88
MIN
S02
REM
X
92
85
77
71
87
77
89
76
MAX
S02
RCM
X
96
96
92
99
98
99
99
99
AVG
MAKE
PER
PASS
MMOL
/L
5.7
6.6
8.2
7.0
6.7
6.5
6.4
MIN
MAKE
PER
PASS
MMOL
/L
5.0
5.2
6.5
5.2
4.6
3.9
2.8
MAX
MAKE
PER
PASS
MMOL
XL
6.6
7.7
9.4
8.3
8.3
10.2
9.2
AVG
02
IN
X
8.4
8.6
7.6
9.1
6.7
9.0
MIN
02
IN
X
7.5
8.0
5.5
4.5
5.0
8.5
MAX
02
IN
X
10.5
9.8
9.1
12.5
8.5
13.0
AVG
BOIL
LOAD
MEGA
UATT
U3
133
139
134
96
88
57
66
MIN
BOIL
LOAD
MEGA
UATT
92
99
105
8
60
2C
52
65
MAX
BOIL
LOAD
MEGA
UATT
153
154
154
156
130
156
62
68
-------
RUN
LITUID ANALYTICAL DATA
CONCENTRATIONS IN LIQUID* PPM
RUN
NO.
801-1A
802-1*
803-1*
S04-1*
805-1A
806-1A
806-10
806-1C
8C6-1D
8C7-J*
AMALY
TIC^L
POINT AVG
1815 4.t>7
1816 5.76
1825 5.61
18S1 3.94
1815 4.^6
1816 5.55
1*25 5.29
1851 4.36
1?15 5.0"
1816 5.57
1825
1851 4.43
1815 5.07
1816 5.79
1825
18^1 4.43
1815 4.92
1816 6.36
1825
1851 4.36
1815 4.62
1PU 6.16
1825
1851 3.65
1815 4.53
1816 6.08
1825
1851 3.76
Ifil5 4.49
1816 6.01
1825
1851 3.67
1815 4.53
1816 6.16
1825
1851 4.23
1815 4.48
1816 6.28
1825
1851 4.34
PH
•1IN
3.fi3
5.43
5.19
3.4?
4. DC
5.27
4.20
S.9S
4.16
4.66
3.79
4.79
5.12
3.8£
4.65
5.^9
4,04
4.48
6.?6
3.54
4.45
5.95
3.58
4.31
5.97
3.3f
4.4f
6.12
4.11
4.41
6.21
4.25
CA+»
MAX AVG MIN MAX
4.95 1254 1015 1567
6.12 842 278 13DC
5.98 1075 61P 1297
4.4C 1483 111'1 1667
5.33 16C7 128P 2110
5.95 130B 1025 1610
5.95 1324 1015 1535
4.98 1876 1510 2315
5.79 2094 1725 2560
5.83 1674 1455 1940
1683 1430 2080
4.99 2264 1920 2595
5.4P 2277 2010 2719
5.99 1663 1520 1B90
1669 148C 1870
4.75 2453 219C 292C
5.28 2231 1970 2495
6.20 663 374 1480
«.18 378 1385
4.68 2378 2150 2540
4.79 2060 1920 2315
6.25 392 335 *50
389 325 440
3.82 2203 2025 2490
4.61 2202 1910 2440
6.24 615 453 T06
632 459 736
4.00 2314 2015 2574
4.57 1905 1880 1955
6.15 560 360 694
563 366 721
4.03 2044 1975 2135
4.61 2027 1860 2140
6.20 308 293 335
304 290 341
4.36 2252 21CO 2360
4.57 1908 181G 2005
6.35 153 137 169
165 155 175
4.49 2030 I960 2125
AVG
615
350
396
673
700
486
483
702
784
549
534
78'4
875
582
576
897
1104
460
450
1112
1224
393
385
1232
124P
384
378
1267
117C
315
310
1189
1192
397
376
1204
1020
333
341
1032
HIM
420
158
364
634
586
401
379
503
639
455
443
659
587
485
519
829
899
409
389
1021
1121
367
367
1111
1145
345
350
1161
1151
213
217
1167
1151
367
324
1145
899
324
333
973
MAX
723
438
418
722
861
609
601
873
859
589
585
853
1011
641
637
971
1251
561
565
1243
1325
419
407
1313
1313
409
401
1331
1207
365
359
1231
1269
453
411
1273
1079
343
349
1101
AVG
65
221
3fi9
41C
24
197
273
462
24
264
333
311
22
132
173
386
13
67
8C
334
16
93
101
350
15
101
86
250
15
101
180
276
129
116
107
698
553
158
124
99C
S03=
MIN
11
45
260
147
0
33
90
45
0
90
67
22
0
45
79
22
0
22
22
45
0
33
45
11
0
67
11
0
11
56
67
22
11
90
67
260
192
124
124
554
MAX
814
407
565
588
124
508
701
882
67
1334
1537
531
90
248
316
836
67
180
226
565
33
226
135
497
45
180
203
52C
22
135
452
441
294
158
158
949
995
226
124
1492
AVG
2158
1575
2016
2535
2159
2229
2282
2545
1904
2257
2277
2334
1928
1974
1995
2298
1950
815
744
2363
2059
733
707
2330
2U42
1423
1543
2429
2250
1277
1192
2604
2277
684
664
2601
2931
559
402
3063
H1N
1819
768
1326
2106
1915
1904
1938
1807
169u
1916
1807
207B
1711
1666
1713
1937
!789
525
444
1949
1931
434
559
2101
1855
968
1076
2012
2012
670
506
2285
969
548
517
1522
2463
349
364
2701
MAX
?508
?428
2468
2809
2633
2627
?740
3020
2195
?914
3004
2697
?513
2424
2359
2788
2272
1883
166f
3012
2337
901
906
2573
2194
1772
1949
2864
2581
1702
1691
?020
2933
813
801
3319
3622
856
441
3966
AVG
2359
ma
1329
2773
3405
1979
1955
3494
4677
2839
2756
4728
5360
3204
3150
5529
6025
1745
1687
6202
5970
1125
107D
6108
6481
1114
1C88
6580
553B
97C
904
5569
5273
993
974
5469
4317
693
786
4480
CL-
MIN
1373
265
11C7
2282
2481
1240
1329
2260
3988
?659
2397
3611
4121
2836
2747
4742
5052
1196
1C63
5872
5717
1C19
975
5850
5694
975
975
58C5
5335
930
886
54C6
4609
930
886
5140
3900
531
731
4010
MAX
3168
1506
14B4
3257
4697
2747
2747
4697
•5894
3190
319?
5827
62C4
79CO
3877
6293
6470
290?
2792
66C3
6381
1196
11 = 2
660*
7C46
1?4C
1258
7179
5761
1041
93 :)
5978
5539
1196
1240
5717
4697
797
842
4830
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA (CONTINUED)
RUN
NO.
801-1A
802-1A
803-1 A
8C4-1A
805-1A
806-1A
806-18
806-1C
806-10
807-1A
ANALY TOTAL IONS,
TICAL
POINT AVG MIN
IBIS
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
6552
4163
5270
8001
8046
6310
6418
9208
9705
7710
7703
10642
10715
7691
7703
11808
11636
3940
3762
12709
11667
2817
2731
12568
12344
3706
3795
13203
11238
3295
3217
12053
11286
2574
2501
12611
11101
1969
1894
11986
5337
1594
4025
7559
6493
5249
5127
7732
8738
7012
6496
9101
9927
7199
7044
10792
10079
2861
2745
12246
11300
2649
2573
12128
11479
3122
3031
12304
10906
2507
2434
11745
10224
2388
2278
11882
10336
1838
1893
11661
PPM
MAX
7375
5864
6177
8367
9720
7774
7788
10725
11254
9598
9956
11948
11897
8692
8734
12800
12312
7009
6650
12957
12139
3086
2904
13248
13042
4140
4280
13825
11708
3960
3914
12798
12334
2823
2865
13379
11749
2148
1896
12744
PERCENT
SULFATE
SATURATION
AVG MIN MAX
99
75
101
120
107
113
117
133
104
124
126
130
105
107
109
127
97
33
29
119
93
23
22
109
95
56
62
115
99
53
50
117
103
18
18
123
134
9
8
144
88
30
63
104
94
92
100
103
96
103
98
117
93
88
.90
111
88
18
16
94
89
12
16
98
91
32
37
102
90
21
24
103
45
16
16
74
112
6
7
127
126
126
128
129
138
139
145
152
119
164
175
152
136
133
133
157
107
100
86
149
102
32
31
118
101
77
78
136
113
72
73
139
131
22
21
156
165
14
9
183
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
2.6
4.4
-0.4
-5.7
0.8
2.0
-0.2
-4.8
2.3
-0.5
-1.1
-2.6
1.2
0.5
0.6
-4.4
0.8
12.9
12.4
-5.3
1.6
9.8
11.8
-2.9
-0.3
1.7
0.5
-4.3
0.2
-0.7
1.5
-2.6
6.4
11.1
9.9
-0.4
-2.1
6.3
.13.3
-7.4
-14.5
-3.8
-12.1
-9.6
-12.3
-12.5
-13.2
-14.9
-11.9
-14.5
-14.6
-14.5
-9.1
-6.9
-6.8
-9.9
-3.6
0.8
4.4
-7.5
-0.3
4.6
6.9
-6.2
-4.9
-9.3
-9.0
-8.4
-3.9
-14.7
-12.1
-8.1
1.7
7.3
2.6
-2.9
-4.7
-6.5
8.7
-12.3
11.2
14.4
8.3
-1.1
9.5
13.4
6.7
8.1
7.8
8.0
5.4
5.8
10.6
5.0
7.7
0.4
4.6
19.3
18.3
-2.6
4.6
12.9
16.6
2.1
4.6
9.0
10.3
-0.4
2.9
14.5
14.5
0.4
14.3
14.0
13.7
5.2
3.1
14.4
17.9
-4.7
D-15
-------
RUN SUHMARY
LIQUID ANALYTICAL DATA
CONCENTRATIONS IN LIOUIT, PPM
ANALY
RUN TICAL
NO. POINT AVG
808-1A 1*1^ 4.53
1816 6.33
1825
18?1 3.56
809-1A 1?15 4.5*5
1816 5.72
!B25
1B51 3.34
810-1A 1815 5.09
lf»16 5.81
1825
1B51 4.23
811-U IKl* 5.50
1816 6.02
1825
10*1 4.59
812-1A 1815 5.58
!ft!6 5.92
1B25
1851 4.84
814-1* 1815 5. fin
1816 5.^5
1825 5.88
ISM 4.57
815-1A 1815 5.61
1816 5.83
1825 5.63
1851 4.61
816-1A 1815 5.50
1816 5.74
1825 5.60
1851 4.52
817-1A 1815 5.56
1816 5.91
1825 5.78
1851 4.66
818-1A 1815 5.55
1816 5.9C
1B25 5.76
1851 4.70
PH
H1N
4.41
6.33
3.32
4.40
5.57
2*82
4.83
5.4P
3.70
5.25
5.77
3.62
5.15
5.39
4.43
5.32
5.69
5.77
4.04
4.94
5.62
5.00
3.85
5.25
5.?0
5.27
4.18
5.29
5.77
5.57
4.36
5.27
5.82
5.6C
4.2fl
CA**
MAY AVG KIN MAX
4.64 1566 1415 1715
6.33 220 220 220
210 210 210
3.92 1670 1500 1P50
4.69 2830 2095 3489
5.85 1916 1705 1950
1915 1740 2780
4.09 2P57 2385 3779
5.73 1973 1140 2385
5.99 1455 1245 1775
1473 1275 1*15
5.07 2039 1620 2584
5.74 1492 1125 1880
3.10 1262 1015 1690
1261 1040 I'.IO
5.06 1558 1090 1955
6.23 1531 132P 1745
6.05 1213 1042 1375
1236 1022 1370
5.40 1668 1430 1950
6.1? 1524 1370 1790
6.19 1281 1140 1440
6.08 1241 1065 1375
4.95 1584 1385 1900
6.33 2013 1445 2540
6.04 1565 1240 1835
5.90 1609 1245 2035
5.74 2165 1660 2599
6.17 2361 2150 2525
5.87 1767 1610 1850
5.79 1790 1620 1975
5.08 2475 2245 2705
5.79 3332 2970 3560
6.04 1979 1680 2180
6.00 1984 1725 2220
4.91 3560 3199 3939
5.75 3616 2980 4300
6.04 2071 190C 2340
5.98 2084 1895 2275
5.70 3836 323C 4500
AVG
1114
266
266
1104
1294
711
733
1283
1141
639
644
1145
1032
594
593
1044
1137
7B8
788
1133
1386
866
855
1340
1614
1095
1C91
1560
1950
1173
1199
1933
1560
831
795
1574
1774
903
914
1745
"IN
975
266
266
967
1C87
611
630
924
977
544
537
974
567
312
309
799
1C12
6C7
617
»92
1027
612
6A2
1132
1297
929
914
1224
1564
974
1074
1764
1374
719
687
1339
1499
812
827
1399
MAX
1197
266
266
1191
1459
789
992
1544
1342
719
784
1324
1169
757
76?
1249
1389
101?
1014
1322
1509
1022
992
1464
2059
1409
1352
1904
2274
1344
1377
2144
1934
947
867
1814
1994
989
972
1949
AVG
19
45
45
325
35
98
167
149
25
88
110
280
44
1Q8
124
473
67
109
148
342
28
126
127
332
42
125
137
434
26
129
147
349
24
92
95
284
28
100
120
312
S03=
"UN
0
45
45
214
0
33
67
0
0
13
33
113
U
56
67
243
5
67
67
22
4
73
79
158
5
0
45
45
11
90
101
158
0
45
33
79
4
39
67
45
MAX
45
45
45
429
101
217
746
443
88
191
214
814
113
169
203
938
237
147
294
621
67
226
248
633
90
361
280
746
45
1*0
260
508
45
226
180
520
67
J58
293
610
AVG
2469
931
973
2807
1834
2002
2113
2116
2171
2119
2133
2425
2551
2277
2276
2627
2692
2518
2508
2872
3000
2561
2596
3219
2667
254C
2584
2881
2597
2460
2422
2861
1945
1874
1948
2418
2010
1942
1931
2447
S04=
HIM
2227
931
973
2609
1668
1792
1895
1775
1836
1860
1919
2023
2134
2C32
1932
2141
2483
2300
2290
2106
2549
2310
2311
2607
2310
2302
2316
2019
2404
2180
1432
2483
1747
1525
1753
1876
1715
1765
1545
1900
MAX
9913
931
973
3338
2004
2131
2503
2480
2652
23B8
2424
2727
3074
2608
2737
3202
29C5
2806
2936
3407
3348
3062
2990
3695
2960
2934
3058
3453
2913
2773
2890
3298
2109
2133
2797
2877
2174
2120
2172
2883
AVG
4257
310
310
4J68
7147
3562
3740
7C01
4952
265?
2679
4983
3601
2149
2134
3649
4056
2528
2564
4112
4442
2761
2720
4439
6060
3832
3818
6310
7651
4616
4628
7665
8701
4391
4404
8839
9452
4S3B
4876
9579
CL-
HIN
3511
31C
?in
3?55
6204
3235
3279
6248
39 ?0
2215
2C82
3988
3190
1694
1817
3146
3368
1950
1950
3545
4121
2570
2481
4157
4609
P925
2836
452D
6913
4254
4254
6825
8261
3900
3767
8509
8243
4387
4405
8154
MAX
535?
310
M?
500P
8509
3811
6764
8331
6260
3545
3456
6^37
4298
2481
25?6
434?
4564
3057
3146
4609
5273
7357
2947
5273
7622
4653
4857
7431
8420
4919
4963
8376
9041
4830
4963
9306
10769
5406
5247
10725
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA (CONTINUED)
RUN
NO.
808-1A
8G9-1A
810-1A
811-1A
812-1A
814-1A
81--1A
816-1A
817-1A
818-1A
ANALY TOTAL IONS*
TICAL
POINT AVG MIN
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825.
1851
1815
1816
1825
1851
1815
1816
1825
1851
9786
1850
1880
10630
13318
8307
8787
13587
10321
7055
7143
11037
8868
6493
6489
9513
9636
7263
7350
10275
10576
7715
7657
11113
12619
9303
9392
13264
14857
10313
10340
15556
15893
9301
9376
16982
17273
10042
10133
18267
9110
1850
1880
9896
11831
7604
7885
12480
8806
6220
6247
9799
7795
5823
5738
8660
8940
6204
6269
9213
9968
7297
7323
10655
10820
7925
7939
10595
14013
9436
9136
14578
15018
8480
8233
16280
15270
9219
9423
16206
PPM
MAX
10615
1850
1880
11274
15322
8683
13357
15963
11987
8?08
8396
12701
9458
7C20
7519
10417
10254
8015
809ft
11147
11274
8274
7993
11841
14741
10702
11062
15131
15590
10643
10782
16621
16508
10247
10335
17659
19170
10951
10*01
19989
PERCENT
SULFATE
SATURATION
AVG MIN MAX
98
24
24
115
96
106
113
111
95
103
104
111
102
105
106
106
104
101
102
116
104
102
102
115
103
102
IC'6
118
102
103
101
115
103
98
103
131
106
100
100
132
92
24
24
108
83
95
101
101
73
93
93
91
87
90
88
92
91
80
80
87
92
86
85
103
87
90
90
90
91
92
62
98
93
84
93
103
91
92
80
110
109
24
24
132
116
113
132
127
109
115
117
131
146
146
135
125
118
119
129
138
122
131
124
137
115
119
127
139
112
128
121
133
115
114
151
145
120
112
110
171
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
5.9
17.9
14.1
-1.6
5.1
5.6
4.4
3.4
3.8
6.C
5.6
1.7
5.2
4.0
3.8
-0.5
1.8
2.C
1.6
-1.6
4.3
3.5
1.8
-2.1
5.7
5.5
6.0
1.5
6.1
3.3
4.6
2.8
6.3
3.9
1.5
3.4
9.1
2.7
3.1
5.1
1.1
17.9
14.1
-4.0
-6.1
-3.0
-8.9
-6.1
-7.3
-5.5
-14.1
-13.3
-6.6
-13.5
-13.3
-14.1
-11.3
-6.2
-4.9
-13.7
-12.1
-12.5
-8.5
-10.7
-14.8
-0.5
-4.4
-10.5
-9.2
-3.4
-1.2
-2.6
-1.7
0.1
-4.3
-5.8
5.2
-2.3
-1.8
-2.9
14.2
17.9
14.1
2.6
11.9
11.8
10.6
11.7
11.6
14. 0
14.1
9.5
14.6
14.5
14.1
13.4
12.0
9.1
7.1
13.5
12.2
11.7
9.7
6.3
14.8
13.2
14.8
13.4
14.6
10.7
14.8
7.7
14.6
12.8
6.5
14.1
14.4
8.2
8.2
10.6
D-17
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA
CONCENTRATIONS IN LIQUID* PPM
O
i
00
RUN
NO.
819-1*
819-18
820-1A
820-10
820-1C
821-1A
822-1A
822-1B
823-1A
824-1A
ANALY
TICAL
POINT AVG
Iftl5 5.45
1816 5.86
1B25 5.68
1851 4.49
1815 5.45
1816 5.47
1825 5.71
1851 4.40
1815 5.56
1816 6.05
1825 6.79
1851 4.80
1815 5. IB
1816 5.89
1825
1851 5.PO
1815 4.76
1816 5.87
1825 5.69
18?1 4.58
1815 4.00
1816
1825 9.10
1851 5.46
1815 5.15
1816 5.74
1825 5.59
1851 4.86
1815 5.06
1816 5.53
1825 5.40
1851 4.66
1815
1816 5.25
1825 5.15
1851 4.85
1815
1816 5.24
1825 5.15
1851 4.80
PH
«UN
5.07
5.56
5.32
4.12
5.16
5.78
5.45
3.78
4.58
5.40
6.79
3.36
4.91
5.66
4. £9
4.68
5.66
5.57
4.48
4.00
9.10
5.46
4.30
5.60
5.30
4.00
4.5"
5.40
5.20
4.00
.94
.84
.40
.90
.80
4.50
CA**
MAX AVG WIN MAX
5.98 3521 2460 4509
6.12 2202 1700 2975
6.02 2215 1670 3029
4.83 3722 2700 5110
5.79 3475 2729 4490
6.00 2356 1985 2825
5.99 2338 2000 2749
4.71 3704 3009 4509
6.40 617 522 902
6.89 569 156 786
6.79 569 274 930
5.66 672 561 802
5.41 735 646 880
6.10 638 508 922
5.91 761 698 912
4.94 941 820 1214
6.03 613 234 974
5.90 627 285 992
4.70 978 894 1204
4.00 674 674 674
9.10 554 554 554
5.46 724 724 724
5.60 713 588 832
6.00 663 482 900
6.10 711 564 890
5.50 744 614 842
5.50 740 652 1044
6.30 782 532 1136
6.10 859 586 1160
5.10 756 646 1112
5.70 881 640 1150
5.70 893 652 1128
5.30 952 630 1234
5.50 605 506 778
5.50 643 514 928
5.10 711 574 982
AVG
2275
1241
1239
2290
2455
1361
1332
2460
9422
5551
4046
9315
9425
5566
9279
9294
5534
5459
9217
9599
2980
9639
10466
6098
6181
10466
9190
5985
5870
9243
5870
5830
5902
6125
6116
6237
KIN
1659
782
719
1664
2324
1212
1182
2194
8119
3879
2929
7979
8499
4459
7599
8159
4989
4969
7939
9599
2980
9639
9460
5180
4760
9460
7680
4720
4580
8360
5170
5020
5050
5220
5300
5500
MAX
2854
1644
1637
2844
2629
1502
1497
2704
11539
6559
5719
11119
10239
6369
10199
10059
6319
6039
10019
9599
2980
9639
11640
7240
7320
11460
10420
6720
6720
10160
6450
6280
6470
7540
7420
7460
AVG
27
110
123
353
25
118
126
325
5D
1435
1228
429
950
1419
1584
5583
1559
1809
6275
113
283
1130
735
1684
2053
1148
411
3279
3479
997
5446
5503
5933
5173
5605
5888
S03=
MIN
0
45
33
11
11
67
22
135
11
554
260
45
33
780
407
4466
972
1108
4862
113
283
1130
57
226
509
226
57
961
1300
113
1561
1402
1742
2431
2940
3506
MAX
90
203
214
701
56
169
226
520
226
4387
3912
1040
1877
2259
2962
6672
2307
3573
7633
113
283
1130
4207
3053
3279
2544
1018
4184
4410
1809
8481
8029
8594
9838
10178
10178
AVG
2183
2126
2157
2497
2446
2352
2416
2845
35289
20131
14624
35350
31S30
18596
31232
26473
16871
16765
26277
29452
11617
29262
31348
18700
18407
31340
28339
17352
17026
28294
16628
16653
16833
17495
17127
17*21
S04 =
NIN
1844
1738
1712
1591
2180
2157
2170
2440
28208
13972
8120
31121
28391
15815
27811
23859
14258
13518
23982
29452
11617
29262
26732
14987
14677
26856
24184
12516
12245
24166
12712
12506
13176
14717
13373
13692
MAX AV6
2484 10892
2710 6150
?623 6135
3037 10993
2576 10432
2619 6045
2795 5963
3184 10480
43308 2765
25842 1384
21396 1698
43672 2769
34224 4168
20255 1830
34078 4237
30382 4435
18843 2352
18894 2352
29257 4753
29452 6647
11617 1553
29262 6603
36468 6871
21813 3517
21618 3512
33511 6938
30567 5752
19765 3324
19823 3247
32498 5825
20248 2566
19389 2545
20019 2597
21323 2653
21773 2681
21934 2729
CL-
MIN MAX
8509 13118
5008 8110
4875 8420
8863 13251
9395 11434
5495 6913
5362 6913
9863 11966
1861 3634
709 1684
1019 2082
1817 3589
2836 6293
1373 2836
2747 6337
3988 5052
2041 2570
2041 2526
4254 7223
6647 6647
1553 1553
6603 6603
39C5 8165
2751 4171
2796 4171
3994 8254
5236 6346
2751 3816
2574 3728
5192 6346
2263 2840
2263 2840
2263 2929
2263 2929
2352 2973
2352 3106
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA CCONTINUED1
RUN
NO.
819-1A
819-1B
820-1A
820-1B
820-1C
821-1A
822-1A
822-1B
823-1A
824-1A
ANALY TOTAL IONS,
TICAL
POINT AVG MIN
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
19448
12129
12170
20426
19356
12532
12469
20371
48468
29152
22279
48880
47119
28168
47433
47027
27070
27157
47810
46785
17074
47635
50480
30833
31039
50986
44777
30896
30654
45463
31582
31611
32408
32267
32386
332D1
15744
10023
9950
17132
17454
11459
11419
17960
39465
21471
16845
43687
42301
23437
40267
43439
24320
24360
44861
46785
17074
47635
47010
25051
24780
47518
38897
23535
23474
41085
26603
27553
28500
28542
28474
29025
PPM
MAX
22874
15325
15591
23914
21396
13631
13712
22305
59431
36326
30027
58388
50069
32213
51035
49727
29389
29ft30
51191
46785
17074
47635
57322
34651
34807
55566
48549
35251
35436
50798
34095
34305
35690
37544
37818
38748
PERCENT
SULFATE
SATURATION
AVG MIN MAX
101
99
101
118
108
109
112
130
121
97
89
132
125
101
135
145
91
94
150
112
91
119
118
100
104
123
122
111
121
124
121
123
131
86
90
99
1
1
1
1
1
1
80
85
80
83
97
DO
04
17
01
27
46
08
13
85
121
1
1
1
1
1
23
32
37
30
12
91
19
00
75
86
108
1
11
77
86
102
94
99
96
69
58
77
120
119
122
155
130
122
128
139
169
147
116
165
153
148
152
215
154
154
204
112
91
119
143
152
138
149
177
168
174
193
166
169
174
117
127
170
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
7.2
0.6
0.6
5.6
12.0
7.1
6.1
10.7
0.3
-1.6
-5.4
-1.8
3.0
3.9
0.4
0.5
6.8
5.0
-2.7
3.7
-6.0
1.8
4.7
1.7
2.7
3.6
5.1
0.3
-0.1
3.9
-3.9
-4.8
-6.1
-5.3
-5.8
-5.8
-9.0
-9.4
-14.9
-7.9
7.7
0.3
-3.6
1.6
-10.8
-15.1
-14.8
-14.7
-2.3
-3.9
-8.7
-10.0
-2.2
-1.2
-12.7
3.7
-6.0
1.8
-2.7
-12.7
-5.3
-4.5
-2.9
-11.6
-12.7
-5.0
-11.2
-13.2
-14.7
-14.5
-14.4
-16.8
15.0
10.7
11.6
14.9
15.0
14.9
14.3
14.9
12.8
12.2
8.8
9.6
9.6
13.9
8.6
7.5
13.2
9.6
3.8
3.7
-6.0
1.8
14.2
10.2
15.0
12.9
11.6
8.9
11.5
14.7
6.4
4.2
2.5
7.0
10.1
10.0
D-19
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA
CONCENTRATIONS IN LIBUIDt PPM
ro
O
ANALY
RUN TICAL
NO. POINT AV6
825-1A 1115
1816 5.45
1B25 5.37
1851 5.11
826-1A 1815
1816 5.35
1825 5.29
1851 5.02
851-1* 1815 4.43
1816 7.88
1825
1851 3.60
852-1A 1815 5.63
1816 7.83
1825
1851 4.28
853-1A 1815 4.80
1816 8.03
1825 5.48
1851 4.92
854-1 1815 5.05
1816 8.02
1825 5.64
1851 3.82
855-1A 1815 4.71
1816 8.11
1825 5.61
1851 3.60
856-1A 1815 5.10
1816 8.07
1R25 5.41
1851 3.64
857-1A 1815 5.38
1816 8.03
1825 5.54
1851 4.27
858-1A 1815 5.51
1816 7.98
1825 5.40
1851 3.64
PH
MIN
5.10
5.00
4.70
5.10
5.00
4.70
4.11
7.65
3.30
5.04
6.57
3.87
4.19
7.57
5.16
3.37
4.62
7.70
5.31
3.03
4.44
7.99
5.31
3.32
4.37
7.82
5.25
3.05
4.71
7.83
5.11
3.45
5.33
6.90
5.02
2.98
MAX AV6
6.00 655
6.90 693
7.00 75*
5.60 705
5.50 741
5.20 805
4.63 1447
8.25 1152
1145
4.03 1541
6.11 1577
8.28 867
848
4.56 1971
5.37 1569
8.29 1243
6.02 1206
5.65 1744
5. SO 1664
8.21 1086
6.12 1042
4.50 1819
5.14 1046
8.30 853
6.21 917
4.36 1202
5.50 1277
8.30 958
5.68 964
4.64 1455
6.21 1782
8.28 1210
6.70 1219
6.62 1953
5.75 2443
8.45 984
5.66 988
4.41 2611
CA**
BIN MAX
538 792
546 860
566 940
614 1040
610 1046
666 1152
1355 1570
1000 1360
928 1278
1300 1675
1405 1990
747 1037
632 1075
1650 2425
1115 1790
1065 1440
1005 1415
1080 2095
1345 1950
766 1445
800 1460
1420 2210
884 1285
795 922
842 1026
1140 1280
964 1605
830 1160
832 1130
1207 1638
1582 2005
1042 1345
1042 1330
1710 2195
1895 3354
845 1117
850 1115
2060 3400
AV6
6550
6404
6613
6353
6314
6388
1141
704
740
1167
1203
714
747
1306
1355
865
904
1349
1314
891
925
1337
304
78
176
290
565
224
272
565
838
446
466
863
1063
300
332
1064
MIN
5230
5300
5600
5270
5530
5000
1040
632
667
1038
1119
627
599
1229
1119
667
739
1079
1071
721
755
955
236
44
71
249
425
127
141
446
737
365
385
735
80S
257
285
803
MAX
7520
6990
7760
8300
7360
7740
1240
790
788
1378
1323
837
851
1395
1479
1011
1035
1463
1507
973
1015
1559
372
121
419
375
766
369
424
760
924
519
528
947
1227
350
399
1214
AV6
2618
2739
3047
2917
3030
3380
39
76
222
194
22
54
277
980
35
62
228
313
33
58
229
384
24
35
217
314
91
57
233
448
64
88
332
505
20
47
212
427
S03=
MIN
905
1131
1538
565
509
735
8
22
64
8
0
22
56
723
0
32
22
22
0
0
45
22
0
11
27
226
11
11
113
57
11
22
67
67
0
22
49
316
MAX
4693
4693
5089
4184
4750
5145
88
112
336
336
56
147
520
1379
316
124
429
995
192
147
474
1007
56
64
475
386
304
102
392
937
158
147
497
927
45
85
452
576
AV6
21049
20909
21215
18978
18993
19047
2502
1932
1978
2920
2718
1374
1435
3102
2683
1933
2132
2997
2598
1557
1605
3075
1986
1515
1728
2088
1952
1629
1763
2113
1987
1T61
1823
2116
2057
1595
1710
2144
S04=
MIN
17360
18295
17775
16476
15529
16116
2180
1450
1672
2469
2369
1107
1092
2761
2285
1526
1602
2280
2189
1077
1152
2681
1720
1356
1509
1875
1628
1461
1448
1692
1836
1627
1657
1420
1767
1151
1264
1764
MAX
24282
24267
23904
22226
24059
24729
2852
2296
2354
3592
3050
1593
1775
3492
2899
2421
2701
3418
?917
2305
2342
3805
2331
1647
1982
2545
2608
1852
2106
2333
2272
1970
2022
2563
2567
1939
1954
2434
AWG
3475
3378
3509
3899
3848
3921
3705
2383
2355
3802
3961
2254
2264
4487
4190
2671
2609
4198
4325
2860
2835
4456
989
461
569
1088
2063
880
837
2111
3627
1840
1815
3701
5146
1243
1259
5270
CL-
MIN
2973
1420
2751
2973
2973
2929
34* X
2130
2176
3373
3567
2038
2038
4343
3767
2481
2399
3722
3456
2082
2082
3412
RP1
244
244
826
1373
531
531
1462
2969
1462
1396
3102
4165
1019
1063
4165
MAX
4038
3994
3994
4526
4482
4526
3951
2531
2529
4128
4564
24X7
2437
4742
4675
3102
2947
4764
4963
3057
3057
4919
1418
621
976
1420
3106
1487
1397
3106
4210
2348
2082
4210
6736
1373
1471
7312
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA tCONTINUED*
RUN
NO.
825-1A
826-1A
851-1A
852-1A
853-1A
854-1A
855-1 A
8Lb~lA
857-1A
858-1A
ANALY TOTAL 1QNS»
TICAL
POINT AVG WIN
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
34566
3435C
35364
73097
33169
33790
9066
6367
6566
9853
9759
5404
5712
12138
10117
6921
7224
1087B
10213
6597
6781
11364
4420
2980
3648
5057
6036
3798
4115
6781
8404
5408
5721
9244
10854
4232
4566
11642
29809
31209
32059
28178
28345
28213
8851
5966
6117
9172
9209
4892
4763
11073
9291
6203
6439
10064
8687
5186
5482
9499
3779
2707
2915
4726
4888
3129
3316
5900
7546
4843
4950
7692
9350
3576
3901
9984
PPM
MAX
37911
37432
38967
37121
37205
38984
9513
6861
7215
10867
10430
6023
6516
12939
10727
8064
8416
11780
11364
7P14
8126
12579
4990
3321
4320
5780
7511
4780
5102
8094
9180
5978
6170
10451
13232
4846
5135
13838
PERCENT
SULFATF.
SATURATION
AVG MIN MAX
104
111
119
105
110
119
94
81
81
111
104
49
50
130
97
77
81
114
99
58
57
121
106
100
102
118
94
94
96
108
98
91
93
107
107
86
89
115
89
91
98
84
90
93
90
59
60
98
90
43
33
103
82
56
58
85
82
35
37
104
91
97
88
113
80
89
84
87
90
83
84
75
96
60
62
101
130
139
154
157
171
188
102
107
98
128
117
58
71
159
105
98
101
132
118
96
97
165
123
107
113
129
126
113
110
121
110
100
102
132
131
103
102
136
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
-4.1
-5.3
-4.9
-2,3
-2.7
-3.4
9.5
8.4
7.4
4.3
9.7
12.2
6.9
-0.1
12.3
15.1
11.2
8.9
11.8
13.3
10.4
5.3
12.3
9.5
5.9
5.2
10.6
11.4
8.1
6.1
9.9
8.4
3.7
6.4
11.6
8.5
3.2
8.0
-11.4
-14.9
-11.9
-17.5
-18.3
-13.8
5.7
1.5
4.9
0.5
0.9
7.9
-9.3
-8.5
5.1
8.6
5.5
-10.2
2.2
9.5
2.0
-8.6
-1.1
0.0
-4.8
-9.2
1.7
6.1
1.4
-4.0
-1.4
-8.5
-15.2
-4.8
4.8
-1.6
-5.3
-2.5
5.4
2.6
7.0
14.0
8.1
6.2
14.3
10.7
9.5
6.4
14.7
18.0
14.3
3.7
18.8
19.4
17.2
15.6
15.2
16.5
19.2
13.6
14.5
15.6
13.9
12.4
14.8
18.0
14.2
15.8
14.2
13.6
11.9
13.7
14.4
14.1
11.2
13.5
D-21
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA
CONCENTRATIONS IN LlOUIOt PPM
ro
ro
RUN
NO.
859-1A
859-1B
859-1C
859-10
860-1*
861-1A
862-1A
863-1A
864-1A
865-1A
ANALY
TICAL
POINT
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1B16
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
AVG
5.49
8.10
4.59
5.49
8.01
4.02
5.60
8.01
4.56
5.36
7.93
4.60
5.52
8.04
3.78
5.49
7.83
5.86
3.26
5.54
8.01
5.78
4.30
5.60
7.81
4.89
4.24
5.59
7.84
4.30
5.58
7.82
4.53
PH
NIN
5.29
8.00
4.37
5.12
7.78
3.17
5.23
7.70
4.44
4.89
7.42
4.41
5.36
7.90
3.40
5.20
6.79
5.12
2.89
5.17
7.66
5.17
4.00
4.90
5.95
3.79
3.40
5.41
7.53
3.92
5.41
7.45
4.08
CA»+
MAX AVG NIN MAX
5.66 2116 1910 2345
8.29 1350 1217 1507
1340 1170 1567
4.77 2332 2110 2584
5.65 2007 1830 2160
8.32 1441 1335 1552
1466 1430 1547
4.64 2180 1855 2400
6.41 2317 1905 2825
8.19 1437 1382 1500
1424 1350 1477
4.6A 2497 2175 2925
5.58 2265 2125 2560
8.12 1229 1042 1445
1203 1030 1517
4.75 2324 2100 2480
5.75 2799 2310 3479
8.21 1489 1230 1725
1507 1277 1637
4.35 2811 2210 3660
5.98 2689 2355 3270
8.20 1791 1420 2000
6.37 1789 1570 1970
4.29 2825 2340 3695
5.71 3244 2739 3960
8.36 1484 1195 1755
7.46 1461 1185 1690
4.52 3456 2970 4399
7.04 3003 2600 3850
8.16 1962 1680 2380
5.31 2002 1675 2450
4.89 3207 2580 4339
5.78 3214 2920 3629
8.16 2196 1990 2355
2148 2010 2490
5.91 3328 2879 3649
5.90 2667 2340 3199
8.14 1807 1620 2070
1840 1575 2110
5.66 2869 2230 3489
AVG
957
569
588
936
1045
595
614
1016
944
602
602
948
1013
594
576
1028
1145
596
620
1134
1833
1030
1082
1845
1877
687
716
1884
2342
1310
1315
2339
2442
1420
1405
2439
1609
993
997
1599
H6*»
NIN
772
473
511
797
964
509
582
909
867
529
528
849
824
550
474
919
1007
483
529
974
1564
964
967
1579
1354
499
514
1449
1849
1157
1149
1459
2224
1332
1320
2239
1444
902
902
1469
NAX
1112
656
661
1019
1122
670
664
1129
1009
679
697
1044
1064
668
622
1084
1249
682
702
1259
2054
1107
1224
2029
2259
954
994
2209
2949
1492
1569
2884
2630
1484
1474
2640
1854
1107
1102
1834
AVG
99
78
194
837
33
63
304
514
87
51
256
922
90
54
86
762
22
39
49
265
38
91
116
265
29
85
181
455
36
BO
353
471
26
84
208
340
66
91
359
544
S03=
NIN
67
45
67
610
0
11
248
226
16
22
4
746
45
33
33
678
0
11
11
169
11
22
67
33
0
22
33
203
4
22
56
22
8
22
56
56
11
33
22
11
NAX
192
101
429
1062
56
128
361
757
180
90
497
1108
113
79
180
859
45
67
79
395
90
124
158
542
67
135
339
678
237
147
882
1368
36
167
441
576
169
203
735
1029
AVG
1856
1222
1380
2127
2140
1772
1880
2339
1912
1715
1771
1995
2126
946
881
2271
1852
1317
1374
2097
2227
1972
2131
2504
2255
1782
1890
2632
2579
2398
2638
2929
2499
2332
2439
2793
2195
2116
2314
2509
S04 =
HIN
1695
880
903
1980
1982
1670
1722
2092
1712
1562
1459
1760
1986
606
560
2004
1721
1111
1162
1883
1960
1445
1508
1146
1963
1468
1520
2266
2161
1973
1990
2052
2305
2075
2137
2592
2109
2022
1867
2234
NAX
2057
1698
2123
2369
2239
1932
2052
2496
2096
1889
2219
2292
2351
1420
1751
2543
2109
1565
1654
2473
2379
2492
2690
3042
2660
2107
2356
2955
2925
4088
5043
5850
2667
2534
2732
3091
2281
2291
2598
2800
AVG
4537
2785
2745
4517
4390
2566
2516
4312
4872
2731
2687
4991
4877
2954
2912
4930
6515
3060
3063
6417
8150
4512
4513
8163
9031
3191
3153
9140
10013
5362
5296
10072
10920
5937
5929
11059
8029
4451
4449
8087
CL-
HIN MAX
4298 4875
2681 2925
2614 2880
4165 4875
4165 4609
2348 2836
2348 2614
3722 4697
4099 5938
2481 3102
2508 2969
4099 6160
4742 5052
2836 3146
2809 3102
4786 5074
5406 7888
2437 3545
2419 3678
5052 7977
6958 8996
4121 4830
4033 4830
7418 9041
7489 10858
2526 4033
2481 4033
7622 11389
8863 12763
4254 6390
3825 6301
9041 12187
10193 11538
5503 6257
5717 6204
10370 11715
7268 9041
3722 4875
3767 4875
7090 9139
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA CCONTINUED)
RUN
NO.
859-1A
859-18
859-1C
859-1D
860-1A
861-1A
862-1A
863-1A
864-1A
865-1A
ANALY TOTAL IONS,
TICAL
POINT AVG MIN
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
lfl«51
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1851
1815
1816
1825
1R51
9695
6072
6317
10885
9777
6535
6872
10523
10275
6619
6826
11505
10520
5863
5744
11462
12496
6593
6706
12884
15187
9532
9768
15838
16746
7350
7522
17888
18556
11425
11919
19610
19713
12286
12428
20580
15090
9733
10225
16147
9422
5602
5452
10594
9380
*087
. 6493
9442
9265
6427
6544
10531
10230
5234
5287
11090
10740
5572
5779
10818
13352
8282
8533
14698
14320
6066
6199
15632
16467
10232
10361
17787
18544
11495
11905
19553
13989
8799
9193
14619
PPM
MAX
10152
6794
7330
11168
10308
7074
7145
10969
11703
6992
7168
12986
10998
6805
7184
11972
14508
7320
7703
15440
16712
10454
10711
17785
19473
8910
9540
21198
21622
14200
14380
22734
20658
12722
13006
21457
16310
10419
11088
17611
PERCENT
SULFATE
SATURATION
AVG MIN MAX
95
63
69
114
102
90
95
117
102
87
89
110
110
47
43
117
101
69
72
114
97
90
94
111
109
87
90
131
107
102
112
126
106
102
106
121
102
98
107
120
88
47
46
105
97
86
89
102
96
80
72
104
98
28
30
103
93
57
59
105
93
60
69
57
94
74
75
107
89
80
84
91
95
90
96
108
95
91
91
103
102
89
104
130
108
98
105
126
112
95
112
118
126
71
90
136
109
86
91
128
108
120
122
143
131
98
106
144
130
175
214
240
116
112
123
137
116
108
118
137
PERCENT
IONIC
IMBALANCE
AV6 MIN MAX
10.3
9.0
5.5
2.6
11.8
10.8
7.2
7.3
9.7
8.1
3.6
1.3
8.8
8.P
7.1
0.1
7.0
9.5
10.4
3.3
5.6
4.8
4.9
3.8
7.7
4.0
2.4
4.5
7.0
6.2
2.7
4.1
5.7
8.1
4.3
2.5
3.2
5.2
0.1
-0.6
0
-0
-15
-8
8
.9
.6
.0
.6
.4
7.5
1
3
.6
.7
5.7
2
-6
-7
7
0
.0
.0
.8
.4
.5
-0.6
-5
-2
5
4
-5
-1
-4
-2
-6
2
-3
-2
1
-11
-13
-8
-9
2
4
1
-1
-8
-4
.9
.9
.8
.0
.7
.8
.3
.8
.0
.5
.8
.3
.4
.9
.7
.4
.4
.0
.7
.4
.9
.9
.2
-8.1
-11
.8
14.9
13.9
13.1
12.2
14.6
12.5
13.0
14.3
14.6
14.8
9.8
9.4
11.4
10.4
12.9
4.6
11.4
14.6
14.3
5.9
12.8
11.2
11.4
13.1
12.2
9.4
11.0
11.2
14.8
13.9
19.4
14,8
14.0
13-9
9.4
9.0
13.0
12.6
9.5
11*0
D-23
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA
CONCENTRATIONS IN LIQUID* PPM
RUN
NO.
866-1*
867-1*
ANALY
TICAL
POINT *VG
1815 5.56
1816 7.84
1825
1851 4.56
1615 5.55
1816 7.82
1825
1851 4.38
PH
MIN
4.95
7.40
4.00
5.40
6.77
4.04
MAX
7.75
9.02
4.90
5.90
9.12
4.68
AVG
2330
1647
1576
2478
1768
1240
1238
1854
CA»»
HIN MAX
2010 2980
1445 2050
1400 1775
2070 3039
1540 2245
1080 1455
1085 1410
1620 2050
AVG
1701
882
876
167%
1800
905
909
1793
MIN
1549
742
732
1484
1539
814
772
1579
MAX
1884
969
977
1904
2174
992
999
2019
AVG
51
83
164
467
41
78
274
373
S03=
NIN
11
33
33
40
0
45
67
33
MAX
214
147
508
1402
90
124
689
768
AVG
2364
2004
2046
2730
2706
2218
2320
3094
S04=
MIN
2103
1732
1731
2204
2459
2074
1978
2710
MAX
2650
2293
2476
3387
3190
2413
2505
3388
AVG
8077
4259
4256
8058
6692
3367
3357
6797
CL-
MIN MAX
7179 9484
4077 4609
4077 4520
7090 9306
6027 7241
3013 3634
3013 3678
6204 7090
o
I
ro
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA (CONTINUED)
PERCENT
SULFATE
PERCENT
IONIC
RUN
NO.
ANALY TOTAL IONS* PPM SATURATION IMBALANCE
TICAL
POINT AVG MIN MAX AV6 HIN MAX AVG MIN MAX
866-1A
867-1A
1815
1816
1825
1851
1815
1816
1825
1851
15003
9185
9214
15910
13473
8048
8342
14384
13917
8461
8381
14791
12390
7409
7561
13427
16672
10087
10118
16991
14814
8590
9163
15098
98
92
92
117
91
86
89
106
90
85
R5
100
84
81
78
97
1
1
1
1
1
1
1
09
02
05
42
02
00
98
14
-2.4
0.9
•3.6
-6.9
2.2
0.9
-3.5
-3.8
-12.4
-5
-12
-13
-2
-5
-13
-9
.1
.5
.5
.1
.1
.0
.1
9.5
10.5
3.9
5.2
10.8
5.8
4.5
1.6
D-25
-------
no
RUN SUHHARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS* VT X
SOLIDS
ANALY C02 S02 S03 CAO ACID INSOLUBLES IN SLURRYt UT X
RUN TICAL
NO. POINT AVG MIN NAX AV6 NIN MAX AVG WIN MAX AV6 HIN MAX AV6 HIN MAX AVG MIN WAX
801-1A 1815 0.6fl 0.02 2. SO 1.74 0.18 16.28 14.61 2.17 40.09 13.12 4.20 36.68 7.95 5.62 10.00 14.9 10.3 22.6
1816 S.OO 1.87 9.13 32.69 7.60 39.45 7.24 0.97 46.43 41.77 36.47 44.01 0.22 0.16 0.31 5.9 3.7 10.0
802-1* 1815 1.72 0.16 6.32 0.55 0.00 1.75 15.54 5.02 29.48 13.82 6.85 24.23 5*70 0.54 10.08 14.6 10.9 16.8
1816 9.03 2.69 15.28 28.14 19.54 35.47 7.41 2.14 12.97 42.17 36.86 45.41 0.25 0.11 0.57 5.9 4.6 8.0
803-1* 1815 1.54 0.44 4.07 0.56 0.18 1.09 16.02 9.46 22.40 13.64 8.09 18.80 7*28 4.31 10.46 14.9 11.3 17.8
1816 8.ft7 1.49 13.39 27.13 19.90 32.57 7.33 3.05 17.19 41.87 37.72 44.44 0.23 0.?5 0.27 5.1 2.4 7.1
804-1A 1815 1.17 0.10 1.92 0.42 0.00 0.98 16.24 5.52 29.57 13.64 5.90 23.38 7.78 6.15 11.11 14.9 12.0 17.0
1816 9.91 5.61 16.50 28.26 22.26 31.85 6.32 1.38 11.44 42.94 40.28 46.32 0.46 0.24 0.89 7.4 5.9 10.0
80S-1A 1815 1.33 0.33 3.11 0.30 0.01 1.44 18.55 12.76 24.05 15.51 10.18 19.06 6.45 5.46 8.44 14.4 1C. 9 16.7
1816 11.11 6.12 15.89 28.36 23.16 35.77 4.68 1.46 13.75 43.59 40.96 46.17 0.61 0.22 1.23 14.5 7.4 17.6
806-1* 1815 0.64 0.22 0.90 0.21 0.01 0,53 21.00 14.97 33.23 15.54 10.95 24.08 7.03 5*24 8.82 14.6 13.2 15.8
1816 6.80 4.78 9.90 33.54 28.95 36.91 4.27 0.15 8.97 42.30 41.22 43.63 0*48 0.33 0.62 15.2 14.1 16.0
B&6-IB 1815 0.43 0.22 0.66 0.28 0.15 0.36 17.87 8.78 30.59 13.12 6.98 21.34 7.15 5.95 8.35 15. C 13.0 16.4
1816 6.22 5.50 6.86 32.98 24.13 36.19 8.49 4.21 20.31 43.07 41.42 44.15 0.66 0.64 0.68 14.5 13.9 15.5
806-1C 1815 0.30 0.05 0.53 0.51 0.01 1.27 21.44 15.37 27.81 16.01 11.63 20.25 6.35 5.74 6.95 14.7 14.0 15.9
1816 6.54 4.34 9.65 32.09 29.46 35.76 8.55 4.07 12.41 43.09 41.62 45.12 0.25 0.04 0.45 14.2 13.3 15.0
806-10 1815 1.18 0.76 1.87 6.57 3.07 11.37 16.32 13.76 20.05 19.13 15.16 22.00 3.70 2.53 4.87 14.4 13.6 16.3
1816 8.52 7.72 9.94 31.88 27.14 35.47 6.58 2.79 11.20 44.16 41.83 45.66 0.43 0.16 0.69 15.9 15.4 15.5
807-1A 1815 1.86 1.10 2.91 22.93 21.29 25.29 5.33 2.20 10.75 26.50 24.21 27.96 4*85 4.20 5.43 14.6 12.9 15.8
1816 8.63 7.09 11.14 33.74 31.82 36.90 2.26 0.31 4.42 42.29 40.94 44.08 0.55 0.52 0.59 17.1 16.0 17.8
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA (CONTINUED)
PERCENT PERCENT
SUL^ITE STOICHIOMETRIC IONIC
ANALY OXIDATION RATIO IMBALANCE
RUN TICAL
NO. POINT AVG MIN MAX AV6 MIN MAX AVG HIM MAX
801-1A 1815 87.6 22.1 98.8 1.10 1.00 1.66 3.2 -7.6 8.4
1816 14.6 2.0 83.0 1.19 1.06 1.40 4.1 -3.6 8.5
802-1A 1815 94.9 78.8 100.0 1.23 1.01 1.85 1.9 -7.9 7.9
1816 17.4 6.1 32.7 1.40 1.10 1.84 2.0 -4.1 8.2
803-1A 1815 95.8 91.7 98.2 1.17 1.05 1.50 -0.2 -7.3 7.3
1816 17.6 7.4 34.8 1.41 1.05 1.72 4.0 -4.0 7.6
8C4-1A 1815 96.5 86.0 100*0 1.14 1.01 1.31 2*9 -6.7 7.8
1816 15.1 4.1 24.5 1.44 1.22 1.88 2.7 -2.9 7.1
8C5-1A 1815 97.9 90.1 99.9 1.14 1.03 1.37 3.5 -2.3 7.6
1816 11.6 4.3 32.2 1.52 1.23 1.95 3.0 -6.7 7.9
806-1A 1815 98.6 96.8 100.0 1.06 1.02 1.07 -1.0 -4.3 3.0
1816 9.3 0.3 19.9 1.27 1.19 1.40 3.1 -2.7 7.6
806-1B 1815 97.6 95.8 99.3 1.06 1.01 1.13 -1.5 -5.6 3.2
1816 17.1 8.5 40.2 1.23 1.20 1.25 0.7 -1.3 3.9
806-1C 1815 96.9 91.4 99.9 1.03 1.00 1.05 0.9 -4.4 3.8
1816 17.3 9.5 25.2 1.25 1.15 1.41 1.5 -1.9 7.8
806-10 1815 67.5 50.1 83.7 1.09 1.05 1.14 2.3 -2.1 5.0
1816 14.2 6.2 22.5 1.33 1.29 1.40 1.8 -1.1 5.8
807-1A 1815 15.4 6.5 28.4 1.10 1.06 1.16 1.3 -5.8 6.5
1816 5.0 0.7 9.3 1.36 1.27 1.49 0.4 -4.4 5.4
D-27
-------
RUHi SUHHARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS* UT X
SOLIDS
ANALY C02 S02 SOS CAO ACID INSOLUBLES IN SLURRY* UT X
RUN TICAL
NO. POINT AV6 NIN HAX AV6 MIN MAX AV6 KIN MAX AVG KIN MAX AVG NIN WAX AVG NIN WAX
B08-1A 1815 0.26 0.05 0.52 0.40 0.17 0.72 25.62 14.92 30.49 19.29 11.46 23.83 5.47 4.94 6.00 15.1 14.3 15.9
1B16 5.10 2.80 7.05 32.77 26.60 38.36 6.50 2.19 13.34 39.73 37.04 41.88 0.49 0.48 0.50 15.5 14.5 16.2
809-1A 1815 0.44 0.00 1.04 0.68 0.18 1.44 39.63 25.24 50.00 28.49 20.71 33.97 0.47 0.20 0.73 14.8 12.9 16.1
1R16 6.51 3.41 9.35 28.34 23.88 33.17 10.56 2.37 23.06 41.68 37.97 49.38 0.08 0.02 0.13 7.9 7.3 8.4
810-1* 1815 1.12 0.09 3.80 0.81 0.14 2.20 41.91 33.75 65.77 31.59 27.14 45.85 0.53 0.28 0.98 14.9 12.2 17.5
1016 6.19 3.02 12.9ft 27.92 23.02 32.93 9.44 2.94 14.04 42.29 37.38 44.94 0.14 0.00 0.26 8.4 6.5 14.6
811-1A 1815 1.04 0.17 2.84 1.27 0.05 9.62 50.29 41.97 65.74 37.18 30.24 49.02 0.68 0.40 1.86 14.7 12.4 16.3
1816 9.51 5.13 12.18 27.64 22.44 33.29 11.41 4.52 17.96 44.63 40.23 50.00 0.18 0.11 0.40 8.0 6.9 9.1
812-1A 1815 5.54 0.49 11.38 0.87 0.15 2.20 42.55 34.36 67.46 39.02 30.71 58.22 0.60 0.26 1.01 16.3 14.6 19.5
<=> 1816 17.96 9.84 27.88 21.89 14.54 29.31 9.14 3.12 13.56 47.71 42.70 51.80 0.07 0.03 0.10 6.9 5.6 10.1
ro :
CD ;
814-JA 1815 4.13 1.07 8.93 0.53 0.00 1.80 40.31 34.58 51.93 33.30 28.37 39.58 0.31 0.25 0.37 14.6 12.4 15.9
1816 15.16 6.06 24.42 23.56 18.09 28.61 11.05 4.83 24.82 46.69 42.25 57.99 0.11 0.07 0.16 8.2 6.1 9.2
815-1A 1815 8.29 1.33 20.24 0.89 0.08 3.61 33.80 20.17 43.53 35.21 30.00 41.19 0.61 0.32 1.34 14.8 12.8 17.0
1816 16.46 6.01 23.84 20.18 12.97 28.98 8.18 0.22 16.78 44.95 39.43 50.29 0.18 0.07 0.40 8.4 6.0 9.9
816-1A 1815 4.36 1.40 9.66 0.70 0.08 2.17 38.87 33.79 43.25 33.41 30.53 36.51 0.57 0.26 0.77 14.8 13.2 16.6
1816 13.13 4.51 16.74 22.17 19.18 27.87 10.06 6.57 17.02 43.42 39.02 4S.62 0.19 0.15 0.29 7.8 5.0 9.5
817-1A 1815 2.61 1.48 4.23 0.51 0.04 1.35 22*49 11.00 29.12 19.56 10*84 23.99 6.67 5.00 13.55 16.0 14.5 19.4
1816 12.45 9.66 15.32 24.33 19.67 28.04 7.82 3.52 14.05 42.77 40.99 45.75 0.56 0.40 0.84 8.9 7.8 9.8
818-1A 1815 3.18 1.67 5.42 0.43 0.08 0.86 26.71 21.12 31.15 23.34 20.03 26.68 4.88 3.17 7.20 14.9 13.7 16.0
1816 12.98 5.94 16.92 23.69 15.61 31.70 7.52 3.95 11.53 42.73 38.85 45.75 0.49 0.34 0.69 9.5 8.6 10.9
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA CCONTINUED)
PERCENT PERCENT
SULFITE STOICHIOMETRIC IONIC
ANALY OXIDATION RATIO IMBALANCE
RUN TICAL
NO. POINT AVG MIN MAX AVG MIN MAX AV6 MIN MAX
808-1A 1815 97.B 94.3 99.3 1.02 1.00 1.03 3.1 -0.9 8.*
1816 13.7 5.1 27.7 1.20 1.09 1.30 -2.0 2.3
809-1A 1815 97.B 93.3 99.4 1.02 1.00 1.06 -1.5 -7.9 6.1
1B16 21.7 5.8 37.2 1.27 1.10 1.50 2.9 -2.8 8.4
810-1A 1815 97.6 92.5 99.6 1.05 1.00 1.18 0.1 -7.7 7.2
1816 21.1 ft.3 30.6 1.35 1.13 1.67 1.9 -7.7 8.2
811-1A 1815 97.2 78.9 99.9 1.04.1.01 1.09 -1.5 -8.2 4.5
1816 24.4 13.9 37.4 1.39 1.17 1.66 0.8 -7.1 6.9
812-1A 1815 97.6 94.4 99.5 1.24 1.02 1.46 3.5 -6.4 8.4
1816 24.9 9.3 37.3 1.96 1.37 2.70 -1.6 -8.4 5.5
814-1A 1815 98.4 95.1 100.0 1.19 1.05 1.41 -2.1 -8.0 6.6
1816 26.0 12.8 46.0 1.74 1.19 2.39 -2.1 -8.2 8.4
815-1A 1815 96.7 87.8 99.7 1.49 1.06 2.66 0.4 -8.3 6.7
1816 24.5 0.7 42.0 1.98 1.23 2.81 1.3 -7.6 6.4
816-1A 1815 97.8 92.8 99.8 1.21 1.06 1.51 -0.1 -7.3 5.9
1816 26*4 17.9 37.7 1.65 1.17 1.89 0.4 -6.5 7.0
817-1A 1815 96.7 90.7 99.8 1.23 1.09 1.46 -0.1 -8.2 7.8
1816 20.4 9.8 34.8 1.60 1.44 1.85 0.2 -8.5 7.8
818-1A 1R15 98.1 96.5 99.7 1.22 1.11 1.40 0.7 -6.7 7.1
1816 20.7 10.1 ?5.8 1.65 1.25 2.00 0.3 -6.9 7.0
D-29
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS* UT X
SOLIDS
ANALY C02 S02 S03 CAO ACID INSOLUBLES IN SLURRY* UT X
RUN TICAL
NO. POINT AV6 MIN MAX AV6 MIN MAX AV6 MIN MAX AV6 MIN MAX AV6 MIN MAX AVG MIN MAX
819-1* 1815 3.41 0.86 8.71 0.48 0.00 3.32 26.34 13.15 36.37 23.39 16.45 28.87 4.55 1.92 8.67 15.0 11.8 17.4
1816 13.12 7.53 20.54 23.59 16.28 30.10 7.70 1.95 15.IB 43.36 39.81 46.31 0.49 0.15 1.01 10.0 7.1 13.0
819-lfi 1815 2.90 1.92 4.48 0.41 0.17 1.21 25.16 18.43 29.73 22.26 17.69 25.07 4.99 2.89 8.C1 15.2 13.5 16.7
1816 12.78 9.49 15.79 23.87 20.26 28.68 6.89 4.71 11.41 42.55 40.96 44.32 0.50 0.37 0.73 9.6 8.5 10.5
820-1* 1815 1.19 0.10 3.96 0.38 0.08 2.08 25.26 19.51 30.35 19.88 13.65 26.86 5.60 3.22 9.77 14.7 11.4 18.8
1816 11.59 2.42 19.02 20.49 14.88 31.85 10.76 3.82 19.15 39.29 35.11 44.77 0.51 0.04 0.65 5.8 2.2 8.5
820-16 1815 1.87 1.10 2.72 1.62 0.08 4.56 23.68 17.96 28.41 20.14 15.43 24.13 5.75 4.36 7.89 14.6 11.3 18.7
1816 11.36 6.67 16.16 24.82 18.83 29.66 6.47 2.33 10.30 40.56 38.90 42.11 0.60 0.50 0.70 8.3 7.5 9.6
O
' 820-1C 1815 4.46 3.02 6.12 15.13 12.12 19.03 10.45 7.85 13.40 25.23 22.38 28.86 5.70 4.53 6.98 15.2 13.9 17.6
O 1816 11.92 8.78 14.46 24.80 22.80 27.58 7.73 3.69 10.52 41.57 39.84 42.53 0.73 0.64 0.80 10.5 9.4 11.7
821-1* 1815 2.47 2.47 2.47 0.09 0.09 0.09 14.99 14.99 14.99 13.36 13.36 13.36 9.28 9.28 9.28 16.3 16.3 16.3
1816
322-1* 1815 3.28 0.20 10.40 1.18 0.20 12.00 21.00 6.90 29.33 19.28 10.40 27.30 6.42 4.80 8.40 14.4 12.0 17.9
1816 13.92 7.00 24.60 22.61 12.50 28.90 7.65 3.38 17.70 41.59 39.60 45.90 0.58 0.50 0.70 7.9 6.5 10.3
822-1B 1815 1.11 0.10 4.00 0.45 0.20 1.10 22.19 18.45 26.28 16.67 12.70 19.90 6.23 4.30 8.90 13.3 10.3 15.2
1816 12.46 9.20 15.70 22.09 18.10 26.40 8.12 3.40 13.90 40.30 37.90 42.90 0.43 0.30 0.70 5.6 4.6 7.6
823-1A 1815
1816 15.29 7.70 19.20 1.51 0.40 3.20 11.69 6.65 16.80 29.06 23.70 33.90 4.38 3.00 5.80 13.3 10.6 15.6
824-1* 1815
1816 10.74 7.60 15.90 7.46 2.90 10.70 8.67 4.33 12.10 2S.83 22.80 28.50 5.49 4.70 6.80 14.1 12.9 16.5
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA (CONTINUED)
PERCENT PERCENT
SULFITE STOICHIOHETRIC IONIC
ANALY OXIDATION RATIO IMBALANCE
RUN TICAL
NO. POINT AV6 MIN MAX AVG MIN MAX AVG MIN MAX
819-1A 1815 97.7 85.9 100.0 1.24 1.05 2.10 0.7 -8.1 7.8
1816 20.7 6-2 40.6 1.66 1.31 2.17 1*3 -7.2 7.2
819-1B 1815 98.0 93.5 99.2 1.21 1.12 1.43 2.5 -6.9 8.1
1816 18.8 13.9 31.1 1.64 1.41 1.80 1.3 -5.7 7.2
820-1A 1815 98.1 88.2 99.6 1.08 1.01 1.26 1.1 -7.1 8.2
1816 29.7 11.9 50.7 1.63 1.09 2.24 -2.5 -8.3 5.8
820-1B 1815 92.3 79.1 99.5 1.13 1.07 1.19 -1.4 -8.1 8.3
1816 17.3 6.4 26.0 1.57 1.30 1.95 -0.4 -8.1 7.2
820-1C 1815 35.8 27.8 46.9 1.28 1.19 1.39 -4.0 -8.0 3.1
1816 19.8 10.2 26.1 1.56 1.40 1.75 -1.8 -8.5 7.0
821-1A 1815 99.3 99.3 99.3 1.30 1.30 1.30 -2.7 -2*7 -2.7
1816
822-1A 1815 93.1 31*5 99.0 1.27 1.01 1.86 -3.5 -8.0 4.5
1816 21.0 11.6 38.7 1.83 1.29 3.10 -3.1 -7.8 6.5
822-1B 1815 97.6 93.8 98.8 1.09 1.01 1.33 -4.3 -8.3 3.4
1816 22.5 10.8 34.8 1.65 1.45 1.91 -1.6 -7.4 4.9
823-1A 1815
1816 86.1 73.3 95.1 3.17 1.79 4.39 0.3 -5.9 7.2
824-1A 1815
1816 48.6 24.4 75.7 2.12 1.71 2.94 -1.8 -7.7 5.1
D-31
-------
RUN SUHKARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS. MT I
SOLIDS
»«ALV C02 S02 SOS CAO ACID INSOLUBLES IN SLURRY* UT X
RUN TICAL
NO. POINT AV6 KIN MAX AVG HIM MAX AV6 KIN MAX AVG MIN MAX AV6 WIN MAX AVG MIN MAX
825-1*
1B16 6.71 3.30 10.90 13.44 fi.OO 17.70 10*79 7.48 16.70 27.43 24.60 31.90 5.05 4.30 5.80 14.7 13.3 16.1
826-1* 1815
1816 8.06 3.90 13.20 15.25 10.00 22.60 7*67 3.75 12.90 28.65 22.40 32.10 5.07 3.80 6.20 15.2 12.8 17.7
851-1* 1B15 0.24 0.11 0.51 C.54 0.36 0.73 22.18 17.46 28.52 17.30 13.74 22.13 6.07 5.70 6.44 15.2 13.9 16.5
1816 3.65 3.14 4.41 35.12 3C.89 39.05 7.26 3.37 14.68 43.29 41.28 45.41 0.35 0.11 0.73 5.9 5.6 6.3
852-1* 1815 0.57 0.11 1.78 3.34 0*01 15*91 19.65 10*12 32.98 18.42 9.16 25.99 5.89 5.85 5.92 15.6 11.5 17.7
1816 3.28 2.86 4.23 35.67 33.66 36.91 6.73 2.71 12.99 42.66 37.95 44.63 0.39 0.37 0.42 9.1 6.4 10.6
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA (CONTINUED)
PERCENT PERCENT
SULFITE STOICHIOMETRIC IONIC
ANALY OXIDATION RATIO IMBALANCE
RUN TICAL
NO. POINT AVG MIN MAX AVG MIN MAX AVG MIN MAX
825-1A 1815
1816 39.* 25.3 62.6 1.45 1.22 1.79 -1.5 -8.0 8.1
826-1A 1815
1816 28.ft 11.7 48.9 1.58 1.25 2.23 -1.3 -8.5 6.5
851-1A 1815 97.0 95.2 97.9 1.02 1.01 1.03 5.8 3.9 8.4
1816 14.1 6.9 27.6 1.13 1.10 1.17 6.5 3.3 7.7
852-1A 1815 84.8 36.1 99.9 1.04 1.02 1.10 5.4 1.6 7.4
1816 12.9 5.9 23.6 1.12 1.10 1.16 6.0 3.6 8.2
853-1A 1815 96.2 92.6 99.9 1.05 1.01 1.19 5.1 1.1 7.5
1816 16.3 7.0 38.8 1.13 1.10 1.19 5.1 -8,3 8.5
854-1A 1815 96.2 86.0 99.4 1.03 1.00 1.09 0.6 -7.2 6.1
1816 12.0 4.8 ?3.7 1.15 1.13 1.18 4.5 -C.2 7.8
855-1A 1815 98.5 97.2 99.6 1.01 1.00 1.02 -0.8 -5.2 6.0
1816 17.6 6.8 26.0 1,14 1.06 1.18 -0.7 -7.9 7.5
856-1A 1815 97.5 94.8 99.1 1.01 1.00 1.05 0.6 -5.2 7.7
1816 12.2 6.3 22.5 1.16 1.13 1.20 2.5 -6.2 7.9
857-1A 1815 96.9 87.6 99.3 1.00 1.00 1.02 1.2 -6.5 7.6
1816 10.6 4.0 20.1 1.13 1.10 1.16 6.0 2.1 8.4
858-1A 1815 97.8 91.5 100.0 1.02 1.00 1.07 -1.5 -7.7 2.5
1816 13.5 4.1 35.7 1.12 1.09 1.14 4.1 -6.1 7.5
D-33
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS* UT X
SOLIDS
ANALY C02 SO2 S03 CAO ACID INSOLUBLES IN SLURRY, UT X
RUN TICAL
NO. POINT AVG HIN MAX AVG MIN MAX AV6 HIN MAX AV6 HIN MAX AVG MIN MAX AVG MIN MAX
8S9-1A 1815 0.95 0.35 1.87 8.15 5.86 11.40 36.07 25.41 54.94 34.34 26.10 40.87 0.11 0.05 0.19 14.1 12.6 15.6
1816 4.43 3.13 4.95 37.67 34.74 39.55 4.88 1.04 15.65 43.75 41.67 47.07 0.11 0.02 0.20 7.2 6.8 7.6
859-16 1815 0.17 0.00 0.46 0.51 0.00 1.64 43.75 29.95 57.72 32.28 21.94 40.40 0.39 0.28 0.49 14.6 13.7 16.1
1816 4.24 3.47 5.11 34.75 34.02 35.83 6.32 2.57 9.45 42.86 42.14 43.68 0.08 0.02 0.14 7.6 7.3 7.8
859-1C 1815 1.04 0.36 1.60 10.95 4»34 15.20 29.63 23.13 42.69 31.33 21.63 40.61 0.34 0.07 0.55 15.2 12.9 16.8
1816 4.33 3.57 5.34 34.83 32.21 36.94 11.13 7.05 14.32 43.77 42.48 44.99 0.22 9.03 0.30 7.3 6.9 7.7
859-10 1815 2.95 2.25 4.15 28.24 23.16 31.74 16.68 10.76 24.70 41.42 38.25 43.18 0.32 0.29 0.35 14.2 13.8 14.6
1816 4.89 3.96 5.55 37.87 36.19 39.45 5.34 1.43 9.91 44.69 40.54 47.39 0.03 0.02 0.03 7.1 6.6 7.5
8SO-1A 1815 0.20 0.00 0.88 0.65 0.00 1.80 47.07 27.50 69.82 33.88 20.36 49.23 0.40 0.25 C.56 15.5 12.4 26.7
1816 5.05 4.67 5.44 36.54 34.56 38.47 5.15 2.17 10.97 44.16 40.68 45.21 0.05 0.02 0.08 7.C 6.3 7.7
861-1* 1815 0.21 0.00 0.44 0.65 0.06 2.17 44.14 43.16 45.27 31.93 31.01 33.29 0.22 0.02 0.32 14.3 13.3 16.5
1816 4.41 3.14 5.80 33.92 29.68 36.39 9.36 5.50 17.04 42.39 41.17 44.02 0.06 0.01 0.16 7.3 7.0 7.9
862-1A 1815 0.29 0.00 0.91 9.50 0.19 1.66 23.37 8.02 28.98 17.04 6.61 20.00 6.35 5.21 10.22 14.9 13.8 15.9
1816 2.97 2.37 3.65 33.97 31.85 36.54 9.33 6.84 11.80 39.95 38.82 41.34 0.93 0.49 1.52 17.2 12.7 19.7
863-1A 1815 0.26 0.05 2.02 0.74 0.03 6.42 26.49 16.60 34.00 19.78 12.10 25.07 5.23 2.25 8.21 15.3 13.3 17.7
1816 2.95 1.19 6.49 31.34 25.69 37.60 10.41 2.51 17.83 38.58 34.00 42.11 0.55 0.02 0.84 10.4 8.7 12.1
864-1A 1815 0.19 0.05 0.38 0.31 0.09 0.71 21.40 13.61 27.89 15.48 10.77 19.92 7.33 5.12 9.38 15.9 13.8 17.6
1816 3.27 2.69 3.86 27.56 25.31 32.42 11.17 8.01 14.01 36.49 34.49 38.56 0.93 0.49 1.20 9.5 9.0 10.1
865-1* 1815 0.30 0.11 0.60 2.50 0.36 9.41 22.56 16.37 28.36 18.69 13.64 21.96 5.92 4.23 8.51 15.4 13.7 17.2
1816 2.59 1.86 3.59 28.04 23.88 31.85 12.45 9.02 16.34 36.47 35.37 38.03 0.88 0.58 1.64 10.1 8.6 12.2
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA (CONTINUED)
PERCENT PERCENT
SULFITE STOICHIOMETRIC IONIC
ANALY OXIDATION RATIO IMBALANCE
RUN TICAL
NO. POINT AVG MIN MAX AVG MIN MAX AVG MIN MAX
859-1A 1815 77.2 68.0 91.9 1.04 1.01 1.08 2.1 -5.8 7.8
1816 9.0 2.1 25.8 1.16 1.11 1.18 3.9 -3.2 7.5
859-1B 1815 98.6 96.6 100.0 1.01 1.00 1.02 3.2 -3.9 7.0
1816 12.6 5.4 17.7 1.16 1.12 1.19 6.1 3.1 8.5
859-1C 1815 68.5 57.4 81.1 1.04 1.02 1.07 -0.7 -7.0 4.8
1816 20.3 13.5 25.4 1.15 1.13 1.17 -0.1 -7.2 7.2
859-1D 1R15 31.9 22.5 46.fl 1.10 1.08 1.14 3.0 -4.3 7.0
1816 10.0 2.8 17.4 1.17 1.14 1.19 3.5 0.0 6.1
860-1A 1815 98.3 95.8 100.0 1.01 1.00 1.02 0.2 -7.2 6.4
1816 10.0 4.4 20.2 1.18 1.16 1.20 4.9 0.9 7.5
861-1A 1815 98.2 94.1 99.8 1.01 l.CO 1.02 0.5 -5.0 3.9
1816 18.0 11.4 31.5 1.16 1.11 1.20 1,2 -3.3 6.8
862-1A 1815 97.2 90.9 99.1 1.02 1.00 1.07 -0.8 -7.5 7.7
1816 18.0 13.8 22.9 1.11 1.09 1.13 -0.3 -5.6 7.6
863-1A 1815 96.7 72.7 99.8 1.02 1.00 1.16 1.2 -8.4 8.1
1816 20.9 5.1 35.7 1.11 1.04 1.25 0.2 -8.3 7.4
864-1A 1815 98.1 94.8 99.6 1.02 1.00 1.03 -0.1 -5.7 5.6
1816 24.5 18.4 30.1 1.13 1.10 1.16 1.0 -5.2 7.4
865-1A 1815 87.8 59.9 98.4 1.02 1.01 1.04 1.7 -6.1 6.6
1816 26.3 18.5 35.0 1.10 1.07 1.14 -0.3 -4.0 4.4
D-35
-------
RUN SUMMARY
SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS. UT X
SOLIDS
RUN
NO.
866-1*
867-1H
ANALY
TICAL
POINT
1815
1816
1815
1816
AVG
0.34
3.39
0.19
3.05
C02
MIN
0.11
1.32
0.08
2.31
MAX AVG
0.88 2.36
6.44 27.35
0.43 0.38
4.12 30.85
S02
MIN
0.08
23.52
0.08
28.10
MAX
10.04
31.49
1.07
33.66
AVG
24.87
11.50
28.78
9.53
S03
MIN
20.71
7.85
23.46
6.66
MAX
33.97
15.83
31.85
12.25
AVG
19.95
36.45
21.43
37.29
CAO
MIN
15.60
33.36
16.09
35.81
ACID INSOLUBLES
MAX AVG MIN MAX
24.62
38.28
23.95
39.59
4.93
0.77
4.31
0.75
2.51
0.53
3.03
0.50
7.03
1.10
5.74
0*95
IN SLURRYt UT
AVG MIN MAX
15.5
9.9
14.5
11.7
14.2
8.7
12.9
7.9
16.9
11.1
15.6
14.6
O
i
CO
-------
RUN SUMMARY
SOLIDS ANALYTICAL DATA CCONTINUEDJ
RUN
NO.
8^6-lA
867-1A
ANALY
TICAL
POINT
1815
1816
1815
1816
PERCENT
SUL^ITE
OXIDATION
AVG
90.4
25.2
98.4
19.8
MIN
62.9
16.7
96.0
14.1
MAX
99.5
T2.1
99.7
25.9
STOICHIQMETRIC
RATIO
AVG
1.02
1.14
1.01
1.12
1
1
1
1
MIN
.01
.05
.01
.09
MAX
1.05
1.28
1.03
1.17
PERCENT
IONIC
IMBALANCE
AVG
0.2
0.3
3.0
-0.8
MIN
-7.6
-7.3
-4.4
-6.7
MAX
6.3
5.8
7.6
3.5
D-37
-------
TCA RUN DEFINITION
RUN
NO.
TFG-2A
TFG-2B
TFG-2C
TFG-2D
TFG-2E
TFG-2F
590-2A
590-26
591-2A
592-2A
593-2A
594-2A
618-2A
618-2B
619-2A
620-2A
621-2A
622-2A
622-2B
623-2A
624-2*
705-2A
706-2A
707-2A
708-2A
709-2A
710-2A
711-2A
712-2A
713-2A
714-2A
714-2B
715-2A
716-2A
717-2A
718-2A
719-2A
801-2A
801-26
802-2A
B03-2A
8Q4-2A
805-2A
806-2A
START
DATE
02/28/77
02/04/77
02/10/77
02/15/77
02/19/77
02/23/77
01/24/78
02/02/78
03/27/78
04/05/78
04/21/78
05/02/78
02/06/78
02/13/78
02/17/78
03/02/78
03/17/78
05/08/78
05/12/78
05/19/78
06/08/78
01/04/77
01/14/77
03/04/77
03/09/77
03/15/77
03/17/77
03/24/77
03/28/77
06/15/77
08/30/77
09/07/77
10/07/77
1C/14/77
10/20/77
11/24/77
12/01/77
06/24/77
C6/28/77
07/C1/77
07/08/77
07/15/7?
07/22/77
07/28/77
START
TIME
1330
0530
1310
1730
1505
1515
1347
1255
1345
1220
1135
1710
0900
1240
1400
1200
0935
1830
1400
1600
1235
1210
1350
1350
1450
0000
1405
1349
1550
1305
1200
2000
1439
1300
1408
1200
1705
1145
1715
1308
1401
1042
1250
1305
END
DATE
03/03/77
02/10/77
02/14/77
02/19/77
02/23/77
02/28/77
01/26/78
02/06/78
04/05/78
04/21/78
05/02/78
05/06/78
02/13/78
02/17/78
03/02/78
03/06/78
03/27/78
05/12/78
05/19/78
05/31/78
06/19/78
01/14/77
01/04/77
03/09/77
03/14/77
03/17/77
03/24/77
03/28/77
04/02/77
06/24/77
09/07/77
09/09/77
10/14/77
10/20/77
11/21/77
11/30/77
12/09/77
06/28/77
06/30/77
07/07/77
07/15/77
07/22/77
07/28/77
08/02/77
END
TIME
1807
0530
1025
1505
1515
0750
1010
0900
1220
0730
0825
1955
1240
0735
0815
2145
0810
1400
1600
0520
1735
0812
0530
0730
2400
0737
0744
1135
1300
1145
2020
0800
0735
0325
0820
0625
0755
1715
1600
1135
1042
0820
0820
0800
HOURS
ON
STRM
76
128
93
93
96
112
45
92
207
293
260
99
162
88
306
106
239
91
125
271
269
236
339
113
128
56
162
93
117
202
201
36
161
135
747
143
183
102
47
142
165
166
140
115
FACT
OR
TIME
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
D-38
-------
TCA RUN DEFINITION
RUN
NO.
807-2A
808-2A
809-2A
810-2A
811-2A
812-2A
813-2A
814-2A
815-2A
816-2A
817-2A
818-2A
818-2B
819-2A
820-2A
821-2A
START
DATE
08/02/77
08/10/77
08/17/77
08/24/77
09/09/77
09/16/77
09/23/77
09/29/77
12/09/77
12/14/77
12/16/77
12/23/77
12/3G/77
01/06/78
01/13/78
05/31/78
START
TIME
1505
1140
1525
1410
1157
101P
2205
1000
0950
1315
1430
0740
1210
1401
1200
1655
END
DATE
08/10/77
08/17/77
08/23/77
08/29/77
09/16/77
09/22/77
09/29/77
10/04/77
12/14/77
12/16/77
12/23/77
12/30/77
01/05/78
01/13/78
01/24/78
06/08/78
END
TIME
0810
0510
2050
2355
3738
0735
0735
0910
1115
1430
0740
1210
0740
1200
0805
0735
HOURS
ON
STRM
185
162
149
130
164
141
130
119
75
48
161
131
140
164
259
182
FACT
OR
TIME
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
D-39
-------
TCA SYSTEM CONFIGURATION
TCA
RUN NO.
NO. BPOS
TFG-2A
TFG-2R
TFG-2C
TFG-2D
TFG-2E
TFG-2F
590-2A
590-2B
591-2A
592-2A
593-2A
594-2A
618-2A
618-2R
619-2A
620-2A
621-2A
622-2A
622-28
623-2A
624-2A
705-2A
706-2A
707-2A
T08-2A
709-2A
710-2A
711-2A
712-2A
713-2A
714-2A
714-2B
715-2A
716-2A
717-2A
718-2A
719-2A
801-2A
801-26
802-2A
803-2A
804-2A
805-2A
806-2A
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
TCA
TOT
RED
HGT
15. 0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15. P
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
21.0
30.0
22.5
15.0
15.0
15. 0
15.0
15.0
15.0
15.0
TCA
SPHERE
TYPE
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FDAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
f-OAM
FOAM
FOAM
FOAM
FOA*
FOAM
FOAM
FOAM
NO. OF
HOLD
TANKS
1
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
1
1
1
1
1
3
1
1
1
3
3
3
1
1
1
1
1
1
1
1
1
M.E.
SYSTEM
CONFIG
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
M.E.
WASH
B/T
I/I
I/I
C/I
C/I
C/I
C/I
I/I
I/I
I/S
I/S
I/S
I/S
I/I
I/I
I/S
I/S
I/S
I/S
I/S
I/S
I/S
I/I
I/I
I/I
I/I
I/I
I/I
C/I
C/I
c/s
C/I
C/I
C/I
C/I
I/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
D?> OXID ALK
WATER CONFIG ADDN
SYSTEM FLAG PT.
CL
CL
CL
CL
CL
CL
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL/CE
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL
LAM
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL
EHT
EHT
EHT
EHT
EHT
EHT
DNC
DNC
EHT
EHT
EHT
EHT
DNC
DNC
DNC
DNC
DNC
EHT
DNC
DNC
DNC
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
2 EHT
EHT
EHT
EHT
EHT
EHT
EHT
RUN
NO.
TFG-2A
TF6-2B
TF6-2C
TFG-20
TFG-2E
TF6-2F
590-2A
590-2B
591-2A
592-2 A
593-2A
594-2 A
618-2A
618-2B
&19-2A
620-2 A
621-2A
622-2 A
622-2B
623-2A
624-2A
705-2A
706-2A
707-2A
708-2A
709-2A
710-2A
711-2A
712-2A
™ ^
713-2A
™ » fc ^
71%-2A
714-2B
715-2A
7U-2A
717-2A
718-2A
719-2A
801-2A
801-2B
802-2A
™ • ^
803-2A
w •%
80^-2*
* » ^
805-2A
806-2A
D-40
-------
TCA SYSTEM CONFIGURATION
TCA
RUN NC.
NO. REDS
807-2A
808-2A
809-26
810-2A
811-2A
812-2A
813-2A
814-2A
815-2A
816-2A
817-2A
818-2A
818-2B
819-2A
820-2A
821-2A
3
3
3
3
3
3
3
3
3
3
3
3
3
T
3
3
TCft
TOT
BED
H6T
15.0
15. P
15.0
15.0
is. r
15.0
15.0
15. C
15. P
22.0
22.0
22.0
22.0
22.0
22.0
15.0
TCA
SPHERE
TYPE
FOAM
FOAM
FOAP
FOAM
FOAM
FOAM
PQAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
FOAM
NO. OF
HOLD
TANKS
1
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
M.E.
SYSTEM
CONFIG
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
1-3P/OV
l-3?/OV
1-3P/OV
M.E.
WASH
B/T
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
C/I
I/S
DE> OXID ALK
WATER . CONFIG ADDN
SYSTEM FLAG PT.
CL
CL
CL/F
CL/F
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL
CL/CE
3 EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
EHT
4 EHT
RUN
NO.
807-2A
808-2A
809-2A
810-2A
811-2A
812-2A
813-2A
81*-2A
815-2A.
816-2A
817-2A
818-2A
818-28
819-2A
820-2A
821-2A
D-41
-------
TCA OPERATING CONDITIONS
O
i
-e»
ro
RUN
NO.
TFG-2A
TFG-2B
TF6-2C
TFG-20
TFG-2E
TF6-2F
590-2A
•590-2B
591-2A
592-2A
593-2A
594-2A
618-2A
618-2R
619-2*
620-2A
621-2A
622-2A
622-2B
623-2A
624-2A
705-2A
706-2A
707-2A
708-2A
7C9-2A
710-28
711-2A
712-2A
713-2A
714-2A
714-2B
715-2A
716-2A
717-2A
718-2A
719-2A
801-2A
801-2B
802-24
803-2A
804-2*
805-2*
806-24
ALK
TYPE
US
IS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
L
L
L
L
L
L
L
L
L
LS
LS
SL
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
FLY
ASH
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
y
y
y
HGO
Y
N
N
N
N
N
N
N
Y
Y
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
ft
N
N
N
N
N
PH
CONTR
POINT
7.00
7.00
7.00
7.00
7.00
7.00
7.00
7.00
7.00
5.80
5.75
5.00
5.00
5.30
5.39
GAS
RATE
ACFM
30000
30000
30000
20000
30000
30000
30000
3COOO
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
39000
30000
30000
30000
30000
3COOO
3COOO
30000
30900
30000
30000
27000
30000
18000
30000
3COOO
30000
30000
3COOO
30000
30000
6AS
VEL
FPS
12.5
12.5
12.5
8.4
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
11.3
12.5
7.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
TCA
LIQ
RATE
GPH
1200
1200
1200
12
600
1200
1200
1200
1200
1200
900
1200
1200
1200
1200
900
1200
900
900
1200
900
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
120C
1000
1000
1000
1200
1200
1200
1200
1200
1200
1200
1200
1200
TCA
L/6
GAL/ i
NACF 1
49.8
49.8
49.8
0.7
24.9
49.8
49.8
49.8
49.8
49.8
37.4
49,8
49.8
49.8
49.8
37.4
49.8
37.4
37.4
49.8
37.4
49.8
49.8
49.8
49.8
49.8
49.8
49.8
49.8
49.8
49.8
41.5
46.1
49.8
83.1
49.8
49.8
49.8
49.8
49.8
49.8
49.8
SOLID
RECIRC
NOH X
15.0
15.0
15.0
15.0
15.0
15.0
13.8
14.7
14.4
15.0
14.8
15.1
7.8
7.5
8.0
8.1
8.1
8.6
8.0
8.2
8.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0
14.9
15.2
15.0
14.4
14.7
14.4
14.8
14.6
14.6
15.3
14.9
15.0
1S.O
14.4
SOLIDS
DISCH
RANGE
X
50-55
30-39
32-42
35-42
37-43
34-42
62-70
56-60
54-60
51-59
52-62
53-54
60-65
55-63
49-62
52-60
48-62
37-58
37-61
53-65
35-49
38-42
37-43
37-41
38-48
35-40
36-43
38-42
32-40
30-42
33-41
31-45
36-40
35-41
34-45
34-45
32-38
33-48
30-50
26-39
32-44
TCA
D.P.
IN.
H20
6.6
9.2
8.6
4.8
4.9
6.8
11.4
10.5
10.6
8.9
7.2
8.0
11.0
13.3
9.4
8.2
10.8
6.6
6.7
7.0
6.5
8.0
6.6
7.0
6.4
6.4
6.6
6.7
8.2
8.4
11.2
14.4
9.6
7.4
3.3
7.1
7.1
e.4
8.4
8.3
8.2
8.2
M.E. SYSTEM
D.P. RANGE
IN.H20
0.44-0.50
0.56-0.60
0.49-0.60
0.17-0.24
0.49-0.56
0.43-0.49
0.40-0.48
0.42-3.52
0.45-0.60
0.52-0.60
0.49-0.66
0.51-0.56
0.40-0.52
0.46-0.58
0.28-0.56
0.46-0.62
3.50-0.64
0.50-0.59
0.51-0.60
0.54-0.68
0.63-0.78
0.43-0.52
0.44-0.59
0.45-0.57
0.44-0.49
0.44-0.49
0.47-0.55
0.50-0.62
0.48-0.61
0.44-0.50
0.33-0.46
0.44-0.55
0.34-0.44
0.17-0.52
0.40-0.50
0.13-0.20
0.47-0.51
0.47-0.51
0.47-0.56
0.40-0.52
0.40-0.46
0.37-0.46
0.31-0.40
RUN
NO.
TFG-2A
TFG-2B
TFG-2C
TFG-2D
TFG-2E
TFG-2F
590-2A
590-2B
591-2*
592-2A
593-2A
594-2A
618-2A
618-29
619-2A
620-2A
621-2A
622-2A
622-28
623-24
621-2 A
705-2A
706-2A
707-2A
708-2A
709-2A
710-2A
711-2A
712-2A
71 3-2 A
714-2A
714-2B
715-2A
716-2A
717-2A
718-2A
719-2A
801-2A
801-2B
802-24
803-2A
804-2A
805-2A
806-2A
-------
TCA OPERATING CONDITIONS
o
CO
RUN
NO.
807-2*
8C8-2A
809-2«
810-2A
811-2A
812-2A
813-2A
814-2«
815-2A
816-2A
817-2A
818-2A
818-2B
819-2*
820-2A
821-2A
«LK
TYPE
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
FLY
4SH
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
V
Y
Y
MGO
N
N
N
N
S1
N
N
N
N
N
N
N
N
N
N
Y
PH
CONTR
POINT
5.40
5.4C
5.3P
5.30
5.90
GAS
RATE
ACFM
30000
30000
30000
30000
30000
30000
30000
30000
30000
30000
2300C
25COO
25000
20000
20000
30000
CAS
VEL
FPS
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12*5
12.5
12.5
8.4
10.4
10.4
8.4
8.4
12.5
TCA
LIQ
RATE
5PM
1200
1200
12 CO
12GO
1200
1200
1200
1200
1000
1000
1000
1000
1000
1000
1000
1200
TCA
L'G
SAL/
HACF
49.8
49.8
49.8
49.8
49.8
49.8
49.8
49.8
41.5
41.5
62.3
49.8
49.8
62.3
62.3
49.8
SOLID
RECIRC
MOM t
14.9
14.8
14.1
15.0
14.6
15.0
15.0
14.6
14.9
15.2
14.4
14.8
14.3
12.9
13.8
14.9
SOLIDS
DlSCH
RANGE
X
28-44
24-64
80-89
84-91
35-50
32-44
35-44
33-42
35-41
38-42
31-48
38-42
35-42
32-42
32-42
78-80
TCA
O.P.
IN.
H20
8.5
8.2
8.4
8.6
8.1
8.0
9.6
9.6
11.9
13.0
6.6
8.5
8.2
7.4
6.9
7.8
*.E. SYSTEM
O.P.RANSE
IN.H20
0.34-0.44
0.44-0.50
0.35-0.43
0.35-0.45
0.30-0.47
0.30-0.50
0.47-0.58
0.47-0.55
0.44-0.54
0.40-0.48
0.15-0.26
0.26-0.36
0.24-0.35
0.11-0.26
0.11-0.21
0.54-0.62
RUN
NO.
80 7-2 A
808-2A
809-2A
81C-2A
811-2A
812-2A
813-2A
814-2A
815-2A
816-2A
817-2A
818-2A
818-28
819-2A
820-2A
821-2A
-------
TCA OPERATING CONDITIONS (CONTINUED)
RUN
NO.
TFG-?A
TFG-2B
TF6-2C
TFG-20
TFG-2E
TFG-2F
590-2A
590-28
591-2A
592-2A
593-2A
594-2A
618-2A
618-2R
619-2A
620-2A
621-2A
622-2A
622-2B
623-2A
624-2A
705-2A
706-2A
707-2A
708-2A
709-2A
710-.2A
711-2A
712-2A
713-2A
714-2A
714-2B
715-2A
716-2A
717-2A
718-2A
719-2A
801-2A
801-26
802-2A
803-2A
804-2A
805-2A
8C6-2A
EFFLU TCA LOU PH OXID EDUCTOR BLEED
RES TANK RES AIR CI»CUL OXID
TIME TIME RATE RATE TANK
MIN MIN. SCFM GPM PH
12.0
12.0
12.0
12.0
24.0
12.0
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
3.0
4.1
4.1
3.0
3.<5
12.fi
12.0
4.1
4.1
4.1
12.0
12.0
12.0
12. U
4.1
4.1
14.4
14.4
14.4
12.0
12.0
12.0 600 1590
15.4 530 1590
23.5 485 1600
23.5 *65 1600
23.5 410 1600
23.5 470 1600
23.5 290 1200
RUN
NO.
TF6-2A
TFG-2B
TFG-2C
TFG-2D
TFG-2E
TFG-2F
590-2A
590-2B
591-2A
592-2A
593-2A
594-2A
618-2A
618-2B
619-2A
620-2A
621-2A
622-2A
622-2B
623-2A
624-2A
705-2A
706-2A
707-2A
708-2A
709-2A
710-2A
711-2A
712-2A
713-2A
714-2A
714-2B
715-2A
716-2A
717-2A
718-2A
719-2A
801-2A
801-2B
802-2A
803-2A
804-2A
805-2A
806-2A
D-44
-------
TCA OPERATING CONDITIONS (CONTINUED)
RUN
NO.
807-2A
8D8-2A
809-2A
810-2A
811-2A
812-2A
813-2A
814-2A
815-2A
816-2A
817-?A
818-2A
818-2B
819-2A
820-2A
821-2A
EFFLU TCA LOW PH
RES TANK RES
TIME1 TIME
MIN MIN.
23.5
23.5
15.7
15.7
23.5
15.7
23. •>
15.7
14.4
14.4
14.4
14.4
14.4
4.1
2.9
2.9
1.9
1.9
2.9
1.9
4.1
OXID EDUCTOR
AIR C1RCUL
RATE RATE
SCFM GPM
475
200
300
300
270
350
310
145
170
1600
1600
1600
1600
1600
1600
1600
1200
BLEED
OXIO
TANK RUN
PH NO.
8Q7-2A
808-2A
809-2A
810-2A
811-2A
812-2A
813-2A
814-2A
815-2A
816-2A
817-2A
818-2A
818-2B
819-2A
820-2A
5.35 821-2A
D-45
-------
TCA ANALYTICAL RUN SUMHA9Y fGASES)
O
-P«
Cr>
RUK
NO.
TF6-2A
TF6-2E
TFG-2C
TFG-2D
TFG-2E
TTG-2F
590-2*
590-2B
591-2A
592-2*
593-2*
594-2A
618-2A
618-2P
619-2A
620-24
621-24
622-2A
622-2B
623-2A
624-2A
705-2A
706-2A
707-2A
70B-2A
709-2A
710-2A
711-2A
712-2A
713-2*
714-2A
714-2B
715-2*
716-2*
717-2*
718-2A
719-2A
801-2A
801-2B
802-2A
8C3-2A
804-2*
805-2*
8C6-2A
AVG
S02
IN
pp»
3C84
3274
3260
3778
3296
3000
2066
2442
2386
2885
2810
2871
2138
1763
1813
1692
2035
2606
2554
2563
2841
2812
2772
3007
3092
3314
34S1
3284
3028
2678
2675
3130
2978
2684
2860
3234
3061
2782
2810
2888
2820
3933
3105
2965
HIN
S02
IN
PPH
2640
2560
2760
3160
1180
2520
1960
2000
124P
22BO
2400
2080
1520
1240
320
640
56"
236 P
224C
208C
2060
2400
2200
2720
2760
2800
2520
284C
2400
2200
2040
2720
2480
2060
18CP
2760
2740
1920
2600
2520
176P
2440
2800
268 C
MAX
S02
IN
PPM
3440
3600
4080
4340
4300
3840
2200
2920
3400
3640
3480
3480
3C40
2840
3460
3660
3080
3000
2840
2880
3320
3320
3600
3680
3760
3720
3920
3680
3320
3040
3960
3460
3580
3200
3740
3520
3400
3520
2920
3200
3080
3600
3520
3680
AVG
S02
OUT
PPH
312
409
570
767
1525
724
620
516
181
120
208
213
251
69
107
166
B3
208
380
212
462
394
466
759
1449
1362
1436
1114
836
452
321
320
404
213
362
703
390
744
825
624
985
1015
906
807
HIN
502
OUT
PPH
70
120
360
580
1240
500
460
400
40
60
120
80
120
20
5
20
10
70
220
60
90
200
280
600
1080
920
860
800
540
320
120
180
260
110
100
620
320
260
680
540
420
480
560
680
HAX
S02
OUT
PPM
1340
700
1040
900
1940
1080
700
740
420
280
480
320
520
180
510
740
200
360
560
400
680
540
760
1140
2020
1620
1840
1360
1050
700
860
440
600
330
650
860
480
1140
900
700
1500
1320
1280
1080
AVG
S02
REH
X
89
86
80
77
41
73
66
76
92
95
91
91
87
96
94
91
96
91
83
90
82
84
81
72
48
54
53
62
69
81
87
89
84
91
86
75
85
71
67
75
61
62
71
69
NIN
S02
REN
X
56
76
72
75
-81
68
60
69
85
91
84
87
81
93
84
78
93
87
77
83
77
79
73
66
40
47
47
58
64
74
76
86
81
88
81
72
83
64
66
73
46
54
60
67
MAX
S02
REH
X
97
95
86
80
55
78
75
83
96
98
95
96
92
98
99
97
99
97
89
97
95
91
88
77
58
64
64
69
76
87
94
93
89
95
95
78
68
85
71
80
74
eo
80
73
AV6
HAKE
PER
PASS
HHOL
/L
14.5
15.0
13.9
***»
17.0
11.6
7.3
9.9
11.6
14.6
18.2
14.0
9.9
9.0
9.0
10.7
10.3
16.8
15.1
12.3
16.4
12.6
11.9
11.5
7.9
9.6
9.7
10.9
11.1
11.5
12.3
16.1
14.0
13.0
8.4
10.4
10.0
11.6
9.2
10.1
11.7
11*0
HIN
HAKE
PER
PASS
HNOL
/L
10.1
12.9
12.1
»***
-10.3
10.2
6.3
8.2
6.2
11.4
15.2
10.4
7.4
6.5
1.6
4.4
2.9
14.6
14.1
10.7
13.9
10.8
9.7
10.1
7.1
8.5
8.3
10.3
9.0
9.8
10.0
13.2
11.1
11.0
7.6
8.3
9.8
9.9
6.9
8.5
9.9
10.1
MAX
HAKE
PER
PASS
HHOL
/L
16.3
16.9
16.2
»***
22.8
14.0
8.1
11.4
15.9
18.8
22.7
16.9
13.2
14.0
15.3
20.1
15.1
19.2
16.6
14.0
13.6
15.4
15.0
12.8
8.9
11.2
10.8
11.5
12.3
13.5
16.5
18.5
16.2
14.2
9.3
11.9
10.2
13.0
10.8
12.8
13.7
13.2
AVG
02
IN
X
9.1
8.1
8.2
7.8
7.4
7.2
8.9
7.6
6.3
8.2
7.9
9.3
8.0
8.8
8.0
7.3
8.1
7.1
10.3
10.2
8.4
7.0
9.0
6.8
7.0
6.5
7.9
7.6
6.3
8.6
7.5
7.0
7.8
7.6
9.7
7.5
8.7
6.9
7.7
9.3
HIN
02
IN
X
7.9
5.8
6.3
6.7
4.5
5.7
8.0
6.0
5.6
5.4
6.0
8.1
5.1
7.0
6.0
4.2
6.2
2.5
9.1
7.0
6.0
5.8
8.0
5.3
7.0
5.7
6.4
6.0
6.0
7.4
5.8
5.5
4.8
3.0
9.6
6.0
7.0
5.2
6.2
7.5
HAX
02
IN
X
10.2
9.5
9.2
9.2
8.5
9.2
9.8
10.0
7.5
10.0
10.0
10.0
9.8
10.0
10.0
10.0
10.0
8.5
12.0
12.5
11.4
8.2
11.8
10.5
7.0
8.4
10.4
11.5
6.6
9.4
9.2
9.9
10. C
10.0
9.8
8.5
13.0
8.5
9.0
12.5
AVG
BOIL
LOAD
HE6A
VATT
145
126
141
138
147
142
99
99
142
137
148
146
83
69
73
113
85
128
133
123
140
144
143
141
144
130
136
148
138
137
136
150
138
136
141
141
146
109
133
126
138
138
125
127
HIN
BOIL
LOAD
MEGA
MATT
124
93
102
92
125
100
77
44
124
96
111
96
20
52
58
70
68
98
96
96
94
106
100
112
129
93
59
146
50
100
95
148
99
1Q5
82
103
115
95
115
84
102
97
86
97
HAX
BOIL
LOAD
HE6A
WATT
150
150
149
153
151
160
114
142
155
155
158
158
154
123
116
146
149
156
156
V54
157
162
152
152
152
159
156
150
150
152
154
152
154
153
156
152
154
149
148
149
154
154
153
150
-------
TCA ANALYTICAL RUN SUMMARY (GASES)
RUN
NO.
807-2A
808-2A
809-2A
810-2A
811-2A
812-2A
813-2A
814-2A
815-2«
816-2*
817-2A
818-2A
818-20
819-2A
820-2A
821-2A
AVG
S02
IN
PPM
2643
2862
3151
2940
2747
2996
2898
2589
2897
2871
3050
2988
3320
2742
2438
2482
MIN
S02
IN
PPH
2080
2440
2480
2680
2120
2220
2360
2100
2520
2640
2840
2880
2880
2160
1680
1560
MAX
S02
IN
PPH
3320
3520
3800
3200
3320
3840
3280
3080
3160
3000
3200
3080
4100
3060
3120
2800
AVG
S02
OUT
PPM
416
773
682
463
334
513
536
616
263
251
580
421
547
573
445
4T3
MIN
S02
OUT
PPM
160
400
360
280
200
300
380
380
200
140
500
390
420
330
130
100
MAX
S02
OUT
PPH
700
1480
1100
860
560
960
760
840
400
360
680
500
760
800
1000
600
AVG
S02
REM
X
83
70
76
82
86
81
79
73
90
90
78
84
81
76
80
82
MIN
S02
REM
X
76
53
60
70
81
71
74
68
86
87
76
82
79
69
64
76
MAX
S02
REH
X
91
82
85
88
90
87
83
82
92
94
82
86
84
86
91
93
AVG
MAKE
PER
PASS
MMOL
/L
11.6
10.6
12.7
12.9
12.6
12.9
12.2
10.1
16.6
16.5
10.2
13.4
14.4
8.9
8.2
10.8
NIK
MAKE
PER
PASS
MMOL
/L
8.8
9.C
8.2
11.7
10.0
10.0
9.4
£.3
14.6
15.8
9.7
12.7
12.6
7.6
6.5
7.7
MAX
MAKE
PER
PASS
MHOL
/L
13.5
11.7
14.0
14.0
14.3
15.3
13.6
12.3
17.5
17.1
13.8
14.0
17.3
10.1
9.3
11.9
AVG
02
IN
X
7.6
8.9
6.7
8.2
7.1
8.2
7.5
9.5
7.4
7.2
6.7
6.7
7.2
9.3
7.7
MIN
02
IN
X
6.2
6.0
5.5
6.5
5.5
7.5
5.6
8.5
6.5
6.6
2.6
3.0
3.0
6.5
6.0
MAX
02
IN
X
8.5
14.5
8.0
11.0
8.5
9.5
8.6
12.5
8.5
8. 0
10.0
10.0
9.9
12.2
10.0
AVS
BOIL
LOAD
HEGA
WATT
133
136
119
138
126
142
145
135
151
131
131
144
148
119
116
139
HIN
BOIL
LOAD
MEGA
WATT
96
88
94
94
92
95
116
95
140
106
92
120
132
8
60
93
MAX
ROIL
LOAO
MESA
WATT
153
154
152
155
154
154
155
154
155
151
154
156
155
152
152
154
o
I
-------
RUN
LIQUID ANALYTICAL. DATA
CONCENTRATIONS IN LIQUID* PPM
0
CO
ANALY
RUN TICAL
NO. POINT AVG
TFG-2A 2816 5.41
2825 5.23
TFG-2B 2816 5.75
2825 5.19
TFG-2C 2816 5.85
2*25 5.30
TFG-20 2816 5.83
2825 5.3fi
TFG-2E 2816 5.72
2825 5.07
TFG-2F 2816 5. 70
2825 5.19
590-2A 2816 5.07
2825 4.87
590-26 2816 5.28
2825 5.07
591-2A 2816 5.47
2825 5.30
592-2A 2816 5.40
2825 5.18
593-2f 2816 5.45
2825 5.24
594-2A 2816 5.36
2825 5.14
618-2A 2816 6.97
2825 4.97
618-2E 2816 6.97
2825 5.76
619-2A 2816 6.94
2825 5.77
620-2A 2816 7.19
2825 5.84
621-2A 2816 7.04
2825 5.62
622-2A 2816 6.95
2825 5.54
622-2S 2816 6.85
2825 5.48
623-2A 2816 7.04
2825 5.37
624-2A 2816 7.03
2825 5.16
PH
HIM
5.21
4.90
5.62
4.77
5.71
5.08
5.70
5.16
5.65
4.95
5.57
5.00
4.94
4.73
5.02
4.82
5.23
5.07
5.10
4.92
5.20
5.00
5.10
4.90
6.40
4.75
5.73
5.16
5.21
5.14
6.68
4.79
6.65
5.15
6.50
5.20
5.90
5.20
6.45
4.70
6.70
4.90
MAX AVG
5.67 238
5.62 316
S.83 1835
5.45 188*
6.11 1622
5.75 1736
5.91 1394
5.53 1415
5.81 1146
5.27 1183
5.90 1633
5.44 1674
5.16 1465
4.95 1521
5.48 1455
5.33 1545
5.75 620
5.67 674
5.64 605
5.41 660
5.70 556
5.80 619
5.60 557
5.40 650
7.67 1620
5.50 1924
7.37 1551
8.20 1662
8.08 569
7.00 696
8.16 628
7.36 727
7.75 660
6.41 799
7.20 622
6.70 724
7.10 707
6.00 970
7.90 510
5.79 670
7.30 522
5.60 861
CA*»
MIN NAX
133 440
159 618
1425 2175
1590 2120
1055 2270
1185 2475
1220 1710
1255 1650
885 1530
932 1545
1190 1990
1160 2225
1350 1540
1390 1650
1220 1670
1315 1800
582 726
588 780
419 762
435 868
400 734
408 842
352 664
384 834
1500 1915
1665 2175
1375 1905
1350 2150
100 708
116 960
524 746
580 810
528 850
575 1090
220 1076
292 1070
636 844
826 1052
158 900
356 1000
206 962
330 1332
AVG
13346
10284
696
702
573
573
466
470
470
487
563
608
356
316
389
392
5372
5300
9735
9645
10301
10126
10175
10006
361
373
382
378
3124
3113
2733
2725
2686
2694
5280
5274
2665
2674
2742
2671
2641
2587
M6*<
MIN
7639
8079
631
633
345
333
330
318
322
431
465
459
350
306
304
305
4199
4399
9199
8819
9480
9000
9400
9060
319
337
347
342
2599
2579
2329
2349
2139
2229
3310
3120
2380
2230
2320
2230
2140
2100
>
MAX
12139
12498
759
779
781
785
539
540
534
569
647
1089
364
325
450
430
6209
5839
10379
10520
11600
11760
10760
10600
429
414
444
424
3999
4229
3289
3139
3124
3049
8160
7780
2960
3030
3400
3370
3180
3160
AVG
7889
7653
115
149
143
177
89
164
107
236
80
163
768
942
251
497
2008
2773
4376
5095
4536
5595
5371
6420
83
861
83
424
407
1103
330
914
312
1025
938
2D92
465
1301
411
1414
478
1777
S03=
MIN
3844
4297
67
67
67
45
33
56
22
45
33
33
508
848
113
226
904
1379
3110
2827
2657
3449
1640
2714
22
271
11
11
158
214
248
237
147
294
565
1018
113
498
181
633
204
1221
MAX
12213
10856
203
271
203
237
158
294
294
644
158
441
927
1017
395
870
3222
4127
5880
6729
7803
10404
7859
8255
135
1323
169
1017
1492
1956
418
1922
452
2148
1470
2601
1153
1922
746
4071
882
2330
AVG
27818
28651
1909
2026
1371
1752
1797
1925
1153
1388
1868
1923
1827
2160
1967
2014
19296
18974
31128
30477
31193
30179
30554
30109
1985
2435
1993
2161
10778
10842
9861
10057
10185
10084
17207
16801
8852
9137
9022
8972
7963
8205
S04=
MIN
20544
21314
962
927
617
1098
1306
1531
554
776
1121
1103
1311
1740
1733
1490
17036
17052
28443
24186
27359
25876
27392
26761
1786
1930
1787
1994
9210
9054
8865
8308
8051
3052
12019
11584
8034
8250
7740
5848
6799
6996
MAX
34713
37075
2454
2388
2256
27C2
2486
2697
2066
2269
2307
2346
2174
2389
2168
2290
21792
21810
34998
35673
36693
36445
33121
33422
2214
2650
2191
2622
12778
13642
11719
12461
11437
11814
26352
25066
10044
10158
11918
11641
9113
9595
AVG
3284
3374
3769
3790
3421
3436
2546
2539
2536
2536
3317
3502
1875
1801
1858
1851
1400
1414
2526
2550
3819
3853
3574
3648
2327
2350
2400
2381
2155
2159
1883
1882
160C
1600
2236
2285
1491
1526
1616
1616
2014
2014
CL-
MIN
2570
2614
3190
3323
2215
2304
1905
1772
2189
2233
2836
2969
1772
1772
1595
1595
1152
1196
2127
2082
3106
3151
3062
3106
1861
2171
2215
2127
1728
1772
1329
1506
1285
1240
1598
1598
1331
1287
1021
932
1598
1598
MAX
4121
4431
4343
43fl7
4631
4609
3080
3057
2969
2925
3944
5983
1950
1861
203B
1994
19C5
1950
3589
3816
4482
474fl
4571
465e*
2659
2605
2659
2659
2481
2481
2393
2393
2082
2082
3239
3417
1731
1775
2130
2130
2840
2884
-------
RUN SUMMARY
LIOUTD ANALYTICAL DATA tCONTINUEO)
RUN
MC.
TFG-2A
TFG-2B
TFG-2C
TFG-2D
TFG-2E
TFG-2F
590-2A
590-2B
591-2A
592-2A
593-2A
594-2A
618-2A
612-28
619-2A
620-2A
621-2A
622-2A
622-2R
623-2A
624-2A
ANALY TOTAL IONS*
TICAL
POINT AVG WIN
2816
2825
2916
2825
2816
2825
2816
2R25
2616
2825
2816
2825
2*16
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
49720
50*25
8414
8642
7219
7763
6394
6614
5536
5956
7609
8017
6407
6861
6037
6414
28837
29276
48479
48534
50530
50500
50354
50954
6497
8064
6537
7139
17162
18050
15559
16433
15578
16338
26374
27269
14263
15693
14391
15432
13717
15547
39540
40606
7281
7476
4492
525?
5746
6101
4332
4895
5953
6277
5824
6260
5411
5980
24037
24892
44848
43054
46318
45671
46326
46367
6204
7464
6262
6224
14711
15700
13874
14966
12698
14344
18634
19354
13162
13854
12085
12510
11883
13782
PPM
MAX
55236
58890
9826
9688
10118
10885
7422
7493
6923
7136
8719
12260
6839
7267
6661
7310
32605
32592
52378
54977
57037
59078
54018
56372
6974
8691
7083
8390
20696
21972
17797
18443
17498
18036
39655
39455
15290
16566
17876
1P705
16332
17746
PERCENT
SULFATE
SATURATION
AVG HIM MAX
37
51
102
109
76
99
98
105
59
71
102
104
109
132
113
118
104
112
105
113
93
102
92
107
121
154
118
13C
85
102
94
109
103
120
97
109
98
132
72
94
68
112
17
22
51
49
35
64
67
80
26
39
55
54
79
106
104
94
92
89
73
64
68
66
59
68
110
133
102
115
15
17
82
94
74
86
36
47
88
116
23
52
23
44
77
110
141
130
128
156
148
162
115
127
133
135
129
148
127
130
123
126
138
158
129
143
112
136
136
170
133
163
114
143
116
122
128
149
170
170
114
149
130
148
1?7
181
PERCENT
IONIC
IMBALANCE
AVG WIN MAX
-0.6
-2.7
1.9
1.3
2.3
-0.6
-0.2
-2.9
1.6
-2.9
-1.1
-2.9
-3.5
-12.6
7.9
5.4
-3.0
-6.3
0.7
-0.5
0.8
-1.1
-0.2
-3.5
4.6
-6.4
1.3
-3.9
-2.1
-6.6
-2.9
-8.1
-2.8
-5.7
4.4
0.6
7.3
1.7
3.8
-4.8
4.5
-5.4
-9.8
-13.4
-5.1
-7.8
-3.3
-5.2
-4.8
-10.3
-7.5
-8.1
-13.6
-14.9
-6.8
-15.0
-3.3
-9.9
-8.8
-13.1
-9.7
-14.3
-8.9
-11.3
-5.8
-12.1
-5.9
-14.5
-5.1
-11.7
-15.1
-14.9
-10.6
-14.5
-12.9
-14.4
-3.9
-12.1
-2.5
-11.6
-8.6
-14.2
-1C. 9
-16.8
8.4
8.0
7.5
4.9
8.3
2.5
4.8
0.4
8.9
7.5
5.5
6.0
-0.4
-11.1
12.6
13.8
3.7
1.6
12.7
13.2
14.8
6.9
8.8
6.0
14.0
5.2
13.7
7.2
5.9
3.6
9.2
8.7
11.3
6.6
11.7
13.4
12.0
9.0
14.9
9.2
12.4
7.5
D-49
-------
RUN SUHHARY
LI8UID ANALYTICAL DATA
CONCENTRATIONS IN LIQUID, PPM
tn
O
AMALY
RUN TICAL
NO. POINT AV6
705-2A 2816 5.85
2825 5.20
706-2A 2316 5.55
2825 5.07
707-2A 2816 5.59
2825 5.21
708-2A 2B16 5.21
2825 4.92
709-2* 2816 5.34
2825 4.97
710-2* 2816 5.41
2«25 4.93
711-2A 2816 5.65
2fl25 5.02
712-2A 2816 5.85
2825 5.16
713-2A 2816 5.73
2825 5.26
714-2A 2816 5.76
2825 5.31
714-2B 2816 6.13
2825 5.77
715-2* 2816 5.74
2825 5.22
716-2A 2816 5.72
2825 5.24
717-2* 2816 5.90
2825 5.39
718-2A 2816 5.79
2825
719-2* 2816 5.76
2825 5.24
801-2A 2816 5.87
2825 5.21
801-28 2816 5.74
2825 5.09
802-2A 2816 5.76
2825 5.07
803-2A 2816 5.05
2825 3.79
804-2A 2816 5.06
2825 3.86
DH
HIN
5.66
4.92
5.17
4.65
5.43
5.00
5.02
4.68
4.89
4.63
5.16
4.57
5.43
4.96
5.64
5.00
5.60
5.14
5.46
3.62
6.03
5.70
5.52
5.00
5.53
5.C3
5.58
4.70
5.62
5.54
5.02
5.63
4.89
5.46
4.95
5.71
4.95
4.71
3.29
4.85
3.29
CA*»
MAX AVG WIN MAX
5.95 1244 677 1875
5.43 1277 689 1910
6.00 1719 1320 2310
5.58 1798 1305 2330
5.79 1406 1125 2155
5.45 1426 1150 2070
5.40 1368 1190 1545
5.33 1534 1370 1790
5.54 1229 1050 1405
5.12 1317 1055 1535
5.77 1325 1060 1677
5.28 1459 1215 1700
5.83 1243 1020 1570
5.07 1587 1485 1690
6.04 991 618 1390
5.40 1003 618 1445
5.92 96S 782 1300
5.40 980 795 1252
6.04 988 264 1540
5.79 1007 258 1685
6.19 306 260 374
5.R7 317 204 391
5.98 1402 1095 1670
5.58 1414 1035 1717
5.95 1391 1180 1725
5.49 1424 1240 1755
6.12 1238 452 1905
5.87 1260 459 1930
5.95 1494 1165 1880
6.04 1130 1015 1269
5.49 1187 1012 1470
5.97 953 866 1080
5.66 1002 874 1106
5.90 987 930 1065
5.29 1150 1070 1260
5.97 1068 1010 1200
5.29 1153 1068 1255
5.29 1159 1030 1355
4.33 1252 1087 1470
5.33 1344 920 1930
4.65 1469 1067 2190
AVG
633
639
687
703
551
548
453
470
411
402
443
441
486
472
436
427
372
375
493
481
254
294
427
415
414
414
441
437
453
415
414
372
568
378
361
382
382
478
477
553
556
M6+ +
niN
524
539
542
556
475
479
325
331
345
346
360
285
452
467
290
299
307
306
288
258
189
214
371
365
366
357
329
329
384
369
322
277
306
357
307
332
321
409
413
459
423
HAX
714
738
837
831
637
655
559
575
449
477
519
524
551
478
542
561
416
440
642
699
392
380
565
499
481
496
696
688
506
519
549
448
435
420
392
490
486
555
561
630
639
AVG
139
236
125
234
100
121
403
829
311
625
305
725
93
158
93
134
133
149
164
166
120
116
123
192
142
211
135
173
124
166
272
109
319
ieo
595
101
331
141
510
64
351
S03=
MIN
45
67
22
45
11
11
248
463
45
260
56
350
45
158
33
56
22
33
56
45
22
79
33
67
56
113
45
45
56
79
79
45
79
102
362
34
204
33
180
11
79
HAX
384
497
350
859
192
226
680
1337
633
1121
667
995
147
158
147
271
452
260
407
316
178
147
203
357
214
452
260
395
180
260
429
237
678
351
1074
158
452
463
1085
158
678
AVG
128C
1304
2301
2450
1904
1913
2222
2380
2089
2154
2087
2252
1524
1989
1273
1299
1995
2066
1638
1720
551
662
1800
1892
1963
2109
1689
1758
2001
2080
2177
2299
2457
2133
2326
1987
2207
2164
2267
2079
2347
S04=
MIN
420
284
1944
1867
1404
1470
1604
1834
1821
1836
1710
1569
1170
1979
741
738
1610
1634
536
560
359
622
1464
1532
1711
1831
688
713
1795
1933
1822
2133
2149
1959
2223
188C
1805
1867
1919
1685
1760
HAX
3029
3045
2754
3170
2421
2193
2805
3333
2680
2606
2659
2720
1979
1999
2249
2156
2580
2785
2775
2747
722
695
2085
2378
2114
2621
2661
2793
2324
2210
2380
2457
2665
2400
2446
2285
2541
2665
2522
2467
2828
AVG
2856
2902
3230
3323
2825
2854
1971
2013
1671
1700
1729
1686
2184
2270
1990
1980
1146
1152
1757
1741
761
930
2307
2223
2107
2099
2125
2095
2366
1524
1501
966
932
1137
1132
1469
1454
1850
1840
2319
2353
CL-
MIN
1861
1994
1728
2526
2082
2105
1598
1644
1506
1506
1063
1107
2038
2215
1506
1373
886
797
753
753
531
531
1595
1595
1595
1551
1347
1329
1905
1123
1196
799
799
1C63
975
1321
1331
1750
1684
1573
1595
HAX
3678
3722
4653
4431
4099
3855
2304
2393
1905
1950
2260
2149
2348
2326
23C4
2504
1772
1772
2623
2597
1373
1418
3279
2836
2659
2535
3235
2969
3013
2127
1950
1462
1119
1287
1287
1677
1598
1994
2038
3368
3722
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA (CONTINUED)
RUN
NO.
705-2A
706-2A
707-2A
708-2A
709-2A
710-2A
711-2A
712-2A
713-2A
714-2A
714-2B
715-2A
716-2A
717-2A
718-2A
719-2A
801-2A
8C1-2B
802-2A
803-2A
8C4-2A
ANALY
TICAL
POINT
2816
2825
2P16
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2R25
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
TOTAL IONS,
AVG WIN
62CR
6406
8125
8572
6848
6926
6515
7325
5813
6305
5994
6667
5636
6576
489?
4949
4664
4777
5209
5284
2075
2415
6175
6257
61?8
6368
5744
5838
6565
5412
5650
4795
5179
49C8
5657
5098
5623
5899
6455
6503
7219
4246
4349
6102
7216
5604
5729
5508
6529
5142
5187
4836
5132
5002
6435
3414
3249
3960
4041
2016
1933
1585
1710
5015
5071
5474
5850
3976
3866
6019
5002
5088
4517
479C
4654
5375
4800
4865
5501
5983
5377
5816
PPM
MAX
8537
8892
9996
10049
9417
8862
6951
8225
6519
7530
6894
76P1
6369
6718
6362
6889
5689
5816
6849
7538
3011
3082
7436
7313
6906
6992
7423
7720
7441
6120
6448
5373
5844
5335
6327
5685
6263
6543
7039
7711
8533
PERCENT
SULFATL
SATURATION
AVG MIN MAX
62
64
118
126
98
99
118
130
109
117
110
124
79
113
62
64
96
100
75
80
19
21
100
106
109
117
89
93
111
104
111
108
118
103
121
100
114
104
113
101
118
16
11
97
99
66
70
86
103
88
90
84
89
57
110
33
36
73
75
17
18
13
18
75
8?
101
IPS
18
18
101
96
93
95
1C2
98
116
94
94
R7
93
°6
95
162
166
153
155
147
134
143
177
143
142
131
149
107
116
118
11C
136
141
124
141
27
26
118
133
121
136
145
170
132
115
129
120
136
114
127
107
134
126
129
112
137
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
4.5
2.6
1.6
-0.7
-3.4
-4.1
-3.0
-7.3
-0.3
-6.3
5.9
0.1
9.2
9.9
4.0
2.8
4.2
3.0
8.0
6.5
9.0
1.2
3.1
1.8
3.1
0.3
3.4
2.4
3.6
3.2
1.9
3.9
-2.5
2.8
-5.7
2.6
-3.3
-0.1
-6.2
5,4
-0.8
-4,
.7
-8.1
-12
.9
-13.8
-12.3
-11.6
-12
-14
-10
-14
-7
-6
2
7
-ID
-9
-5
-10
-12
-1C
0
-6
-2
-D
-2
-11
-8
-14
-11
-14
-14
-12
-14
-4
-11
-2
-10
-10
-12
*"* n
.0
.2
.4
.9
.1
.6
.4
.5
.7
.5
.0
.0
.5
.4
.5
.4
.9
.8
.3
.4
.2
.4
.5
.7
.4
.8
.7
.0
.6
.9
.9
.5
.0
».5
-14.8
14.9
14.1
15.0
10.4
2.5
1.7
3.4
-1.8
14.0
10.1
19.2
12.1
13.0
12.2
16.4
16.0
11.3
11.8
14.2
13.7
17.2
10.0
13.7
14.4
12.5
10.6
14.2
14.9
11.6
14.5
11.7
12.9
4.6
11.2
-1.2
10.6
6.9
7.5
4.1
13.7
13.8
D-51
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA
CONCENTRATIONS IN LIQUID* PPM
I
on
ro
ANALY
RUN TICAL
NO. POINT AVG
805-2A 2816 5.30
2825 4.59
806-2A 2816 5.35
2825 4.82
807-2* 2816 5.47
2825 4.80
808-2A 2816 5.11
2825 4.71
809-2A 2816 5.24
2825 4.73
810-2A 2816 5.44
2825 4.83
811-2A 2816 5.83
'925 5.16
812-2A 2816 5.57
2825 5.09
813-2A 2816 5.34
2825 4.59
814-2A 2816 5.36
2825 4.98
815-2A Z'-ifc 6.26
2825 5.33
816-2A 2816 6.26
2825 5.36
817-2A 2816 5.84
2825 5.23
818-2A 2816 6.17
2825 5.43
818-2B 2816 6.14
2825 5.43
819-24 2816 5.57
2825 5.17
820-2A 2816 5.68
2825 5.33
821-2A 2816 5.34
2825 5.12
PH
HIN
4.74
4.03
5.25
4.70
5.16
3.78
4.91
4.45
5.02
4.52
4.83
4.07
5.60
4.86
5.33
4.86
5.19
4.24
5.16
4.70
6.00
5.19
6.04
5.16
5.79
4.99
5.99
5.25
5.50
5.23
5.07
4.36
5.29
5.00
5.10
4.90
CA»»
MAX AVG HIN MAX
5.57 1122 940 1470
4.98 1297 1017 1687
5.49 1340 1105 1565
4.92 1461 1\75 1732
5.81 1282 957 1605
5.04 1479 1250 1900
5.27 1832 1570 2105
4.96 2026 1740 2250
5.81 1725 1400 1945
5.04 1921 1535 2165
5.71 1585 1395 1785
5.25 1780 1445 2195
6.06 966 777 1152
5.69 1129 900 1325
5.87 1155 897 1387
5.67 1354 1085 1592
5.45 1085 927 1395
4.73 1229 1085 1577
5.75 1226 1060 1352
5.40 1308 1125 1490
6.41 1227 1050 1470
5.46 1254 1040 1530
6.42 1026 980 1120
5.61 1068 1035 1120
5.89 1053 945 1260
5.54 1209 1090 1385
6.35 1115 1035 1200
5.61 1150 1070 1290
6.40 1180 1035 1475
5.67 1189 1050 1525
6.07 1300 1080 1530
5.48 1433 1130 1725
6.06 1411 1200 1725
5.60 1548 1335 1900
5.90 640 488 874
5.50 684 530 924
AVG
539
551
519
543
510
496
513
524
646
631
754
750
393
392
406
416
394
351
411
402
458
439
415
433
406
388
453
437
464
449
379
380
369
363
5852
5928
HIN
372
452
439
471
470
340
416
452
549
499
562
629
288
254
335
307
178
201
372
381
395
389
379
389
367
324
360
363
403
333
326
324
320
318
4820
4650
MAX
639
650
610
594
591
560
594
620
733
754
904
882
562
452
499
528
637
439
517
442
529
524
472
469
441
454
543
490
612
590
430
425
617
406
6360
6470
AVG
188
647
433
872
123
462
622
1104
447
970
95
567
62
427
155
637
91
530
432
737
126
222
90
272
155
470
111
211
112
223
329
669
260
597
1496
2030
S03=
HIN
11
294
192
576
0
11
22
316
33
350
5
248
11
101
33
158
22
316
180
327
90
135
11
22
67
119
67
101
56
99
11
45
22
204
90
656
HAX
474
1062
701
1153
361
1017
1967
2046
949
1583
531
1402
169
993
723
1605
452
1130
904
1187
158
395
158
588
350
802
203
361
180
373
1153
1673
915
1277
2895
3573
AVG
2334
2676
2186
2244
1948
2327
2111
2263
2194
2427
2283
2531
2166
2563
2015
2209
1807
1898
2218
2133
2128
2231
2084
2133
2096
2311
1994
2039
2211
2164
2055
2195
2006
2129
20731
20482
HIN
2078
2182
1966
1984
1669
1784
1689
1623
1696
1391
2317
1942
1722
1783
1763
1068
1295
634
1792
1678
1962
2128
1902
1953
1909
1921
1797
1810
2015
2008
1777
1626
1550
1585
17395
17099
HAX
2606
3090
2353
2732
2452
2974
2859
2797
2692
2891
2614
2958
2778
3262
2549
2707
2026
2581
2858
2663
2239
2414
2217
2307
2270
2719
2141
2281
2341
2336
?728
2866
2474
2632
24153
24080
AVG
1581
1574
1961
1905
2116
2089
2922
2919
2957
2988
3052
3013
1303
1268
1712
1694
1657
1495
1655
1635
1564
1442
1233
1211
1311
1294
1545
1491
1556
1528
1628
1596
1806
1772
2605
2615
CL-
HIN
1307
1307
1506
1462
1506
1462
2260
2260
2659
2792
2747
2792
952
842
1196
1240
1063
1107
1418
1240
1285
1152
1107
1063
1107
1152
1373
1373
1373
1373
1376
1331
1595
1551
1819
1775
HAX
2087
2127
2393
2393
28PO
2925
3456
3589
3235
3279
3323
3213
1861
1905
2348
2260
2614
2082
195P
1905
1950
1950
1373
1329
1506
1506
1729
1684
1772
1861
1950
1905
2969
2171
3905
3861
-------
RUN SUMMARY
LIQUID ANALYTICAL DATA (CONTINUED>
RUN
NO.
805-2A
806-2A
807-2A
808-2A
809-2A
810-2A
811-2A
812-2A
813-2A
814-2A
815-2A
816-2A
817-2A
813-2A
818-2B
819-2A
820-2A
821-?A
ANALY
TICAL
POINT
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
281&
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
2816
2825
TOTAL IONS,
AVG MIN
5931
6907
6580
7161
6137
7C10
8167
9005
6173
9101
7975
8851
5016
5900
5547
6412
5145
5613
6067
6334
5608
5692
4947
5214
5123
5775
5323
5436
5634
565P
5794
6380
5967
6519
31465
31881
5420
6323
5650
6343
5594
6158
7729
8389
7234
B004
7440
8117
4591
5380
5029
5312
4063
4285
5307
5662
5227
5317
4874
5054
4807
5232
4898
5160
5296
5425
5027
5356
5100
5647
25298
25238
PPM
MAX
6909
7891
7334
8063
6857
8044
8991
9819
9448
10408
8474
9433
5485
6424
7082
7302
6535
6772
6610
7200
6203
6475
5095
5414
5463
6363
5643
5789
6123
5851
6744
7624
7691
7621
33673
34807
PERCENT
SULFATE
SATURATION
AVG MIN MAX
1C4
126
110
115
97
123
123
135
116
134
109
127
102
127
103
119
92
103
115
115
107
114
100
103
102
120
97
102
109
108
113
124
115
126
108
113
90
104
93
1C4
90
101
98
106
94
85
93
99
90
93
89
66
76
41
99
100
99
101
91
95
94
109
83
93
99
95
97
85
89
104
92
91
124
142
127
132
114
149
152
161
144
166
127
161
139
158
130
140
119
139
148
138
116
127
107
115
115
135
1C5
115
124
134
131
159
146
155
156
158
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
7.6
-0.6
2.7
0.3
7.1
0.8
-1.9
-4.7
4.2
-2.8
8.1
3.4
1.3
-7.7
2.0
-3.5
3.6
-0.7
-4.2
-6.2
10.4
9.0
9.1
7.2
5.2
-1.0
8.8
7.3
7.7
5.8
2.5
-1.2
5.2
1.5
-4.8
-4.7
0.7
-6.0
-8.9
-7.6
-6.0
-6.5
-13.5
-14.1
-9.4
-13*2
-6.6
-13.3
-10.0
-14.5
-7.5
-13.8
-13.8
-12.1
-14.5
-14.3
2.5
1.2
2.5
1.2
0.0
-9.8
3.1
3.3
2.3
-4.9
-13.0
-11.2
-5.5
-14.7
-14.1
-10.4
11.3
3.6
13.4
7.7
14.6
11.4
4.7
5.8
13.6
14.8
14.8
14.0
12.2
2.7
9.8
14.9
11.6
11.5
8.9
6.4
13.9
12.7
14.4
13.8
12.8
8.8
12.2
14.9
14.6
14.0
14.0
14.7
13.8
14.8
4.6
2.9
D-53
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS* UT X
SOLIDS
ANALY C02 S02 S03 CAQ ACID INSOLUBLES IN SLURRY, UT X
RUN TICAL
NO. POINT AVS KIN MAX AV6 HIN MAX AVG HIN MAX AVG HIM MAX AV6 WIN MAX AVG HIN MAX
TFG-2A 8816 5.52 3.11 9.02 24.10 19.54 28.99 4.67 0.98 8.11 31.79 29.42 35.49 3.04 2.63 3.53 15.8 13.5 18.9
TFS-2B 2816 7.91 1.74 14.55 20*53 14.69 27.65 4.38 0.65 8.84 31.93 24.66 37*29 4.09 3.47 4.76 15.4 14.4 16.7
TF6-2C 2816 3.93 2.51 6.58 23.88 15.92 27.69 3.71 1.50 5.92 28.96 21.95 32.27 5.50 4.98 6.25 15.4 14.5 16.7
TFG-2D 2816 3.83 2.80 6.49 23.95 19.54 26.42 3.67 0.19 5.72 29.33 26.30 31.17 3.88 3.72 3.99 14.0 12.8 19.5
TFG-2E 2816 3.71 2.72 5.47 21.64 18.09 24.31 3.65 0.46 7.74 27.30 25.24 29.27 5.18 4.19 6.08 14.5 12.6 15.1
TFG-2F 2816 3.93 2.82 4.78 23.14 19.54 29.31 5.60 2.26 10.18 29.72 25.56 33.20 4.37 3.37 5.37 15.1 12.9 16.2
590-2A 2816 1.55 1.19 1.98 10.09 9.04 11.58 9.95 7.99 12.63 17.78 17.32 18.32 6.86 6.56 7.12 13.8 13.2 14.5
590-28 2816 2.58 1.24 4.51 14.58 12.55 17.01 8.32 7.05 11.67 22.03 19.25 23.89 5.59 4.73 6.86 14.5 13.5 15.
-------
RUN SUMMARY
SOLIDS ANALYTICAL DATA tCONTINUED)
RUN
NO.
TFG-2A
TFG-2B
TFG-2C
TFG-2D
TFG-2E
TFG-2F
590-2A
590-2B
591-2A
592-2A
593-2*
594-2A
618-2A
618-2B
619-2A
620-2A
621-2A
622-2A
622-2B
623-2A
624-2A
PERCENT
SULPITE
ANALY OXIDATION
TICAL
POINT AVG WIN MAX
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2R16
2816
2816
2816
2816
2816
13.2
14
11
10
11
16
43
31
43
23
25
18
27
30
22
28
28
22
13
13
14
.2
.1
.9
.6
.2
.9
.3
.8
.1
.2
.4
.5
.1
.7
.2
.3
• 3
.6
.5
.4
3.4
3.0
4.2
0.7
1.7
7.9
35.6
24.9
25.3
o.n
13.9
11.0
15.2
15.5
8.4
22.1
20.0
13.8
4.9
3.5
-2.5
22.0
25.5
16.4
19.0
24.6
27.9
52.8
37.8
75.2
44.0
37.5
25.8
39.7
38.8
42.7
37.0
41.3
35.8
18.7
25.1
25.6
STOICHIOMETRIC
RATIO
AVG HIN MAX
1.31
1.56
1.22
1.21
1.22
1.21
1.13
1.18
1.30
1.55
1.74
1.35
1.08
1.06
1.05
1.05
1.05
1.08
1.06
1.08
1.04
1.15
1.08
1.12
1.14
1.15
1.15
1.09
1.09
1.18
1.24
1.39
1.23
1.05
1.03
1.01
1.02
1.01
1.04
1.01
1.01
1.02
1.59
2.20
1.50
1.37
1.31
1.25
1.17
1.35
1.61
2.16
2.16
1.46
1.15
1.08
1.12
1.07
1.26
1.15
1.16
1.31
1.07
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
1.2
2.5
1.3
3.1
4.0
1.8
-0.1
0.6
-2.8
-3.8
-2.9
-3.6
0.8
3.1
2.6
4.7
o.e
-1.8
2.0
-2.2
1.6
-4.4
-2.9
-8.5
-1.7
-1.3
-3.2
-0.8
-4.6
-6.6
-7.9
-8.4
-7.9
-4.9
-4.7
-5.8
0.9
-7.1
-6.2
-7.3
-7.8
-6.7
5.0
8.3
7.3
6.4
7.5
8.2
0.4
7.4
2.7
3.5
7.8
5.1
7.3
8.5
7.7
8.3
8.0
4.5
8.4
4.6
8.2
D-55
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS* tIT X
SOLIDS
ANALY C02 S02 S03 CAO ACID INSOLUBLES IN SLURRYt UT X
RUN TICAL
NO. POINT AV6 MIN MAX AV6 HIM MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX
705-2* 2816 2.92 0.93 5.28 36.21 23.52 40.36 6.87 0.93 22.84 41.42 36.68 47.01 0.62 0.20 1.07 14.7 9.6 15.9
706-?A 2816 3.67 1.26 7.93 33.33 27.14 36.91 9.A1 1.44 19.60 40.53 35.44 44.59 1.09 0.19 7.05 14.6 13.5 16.0
707-2A 2816 4.00 2.88 5.06 21.81 18.09 24.25 5.25 4.19 9.42 28.81 24*62 31.54 4.71 3.62 5.50 14.9 13.5 15.7
708-2A 2816 2.66 1.25 4.07 19.73 15.84 23.13 S.10 2.13 13.32 25.23 22.13 28.98 5.75 4.48 6.50 15.1 14.1 15.9
709-2* 2816 3.00 1.48 4.75 20.22 17.30 23.52 6.74 1.90 12.82 27.34 25.00 30.71 4.70 4.32 5.08 14.1 13.1 14.9
710-2A 2816 2.99 1.82 5.67 21.45 16.32 27.73 4.40 0.07 10.74 26.62 23.09 30.58 5.17 4.82 5.46 14.7 13.0 15.6
711-2* 2816 4.47 2.36 5.62 22.39 19.12 26.06 4.48 1.59 7.31 29.37 25.55 33.86 5.04 4.26 6.43 14.3 9.0 15.9
712-2A 2816 4.01 2.66 5.34 22.99 18.35 26*06 6*19 1.61 12.12 30.11 28*08 31.74 4.35 3.69 4.98 15.0 13.0 16.3
713-2A 2816 5.05 3.61 6.93 21.50 18.50 24.61 6.10 3.91 9.17 28.88 25.97 30.99 4.58 4.12 4.86 14.9 13.9 16.5
o
en 714-2A 2816 6.41 3.53 8.80 20.01 13.87 24.97 4.82 -0.54 14.35 29.91 23.17 36.16 4.37 0.44 6.24 15.2 14.1 16.5
CT>
714-2P '.816 9.58 8.74 10.41 21.08 20.23 22.74 1.11 0.21 1.73 32.59 31.20 34.73 3.78 3.78 3.78 15.3 14.2 17.0
715-2* 2816 3.67 1.94 4.82 20.05 16.54 26.00 6.52 4.26 9.12 27.06 24.62 28.89 4.93 4.11 5.86 15.0 14.2 15.7
716-2A 2816 2.88 0.20 6.29 20.59 16.48 23.96 8.40 5.19 12.43 27.28 25.25 29.41 4.66 3.98 5.57 14.4 13.0 15.5
717-2A 2816 4.52 2.03 7.62 21.24 12.83 26.40 6.73 3.03 16.38 28.80 22.31 33.57 4.39 2.92 6.48 14.8 13.1 22.4
718-2* 2816 5.37 2.97 8.16 18.76 14.24 23.88 6.43 3.10 8.95 27.34 24.98 29.10 4.70 3.69 5.54 14.3 13.1 15.3
719-2A 2816 2.68 0.55 4.96 20.85 18.13 24.25 6.36 4.16 10.86 26.36 24.62 28.49 4.76 4.04 5.37 14.8 13.5 16.7
801-2A 2816 3.40 1.32 6.20 10.84 7.39 13.74 14.98 10.39 18.61 24.31 21.41 26.86 5.05 4.79 5.30 14.5 12.9 15.4
801-2P 2816 3.42 2.03 4.60 7.44 4.82 11.94 15.32 11.72 19.09 21.88 19.47 24.69 5.06 4.77 5.35 14.7 12.3 16.0
802-2A 2816 2.9R 1.87 4.03 9.08 6.09 10.89 14.26 10.11 17.25 22.16 20.20 24.69 5.18 4.88 5.43 15.3 14.5 16.0
803-2A 2816 0.48 0.15 0.87 1.29 0.59 2.12 15.24 4.99 25.84 12.65 5.80 20.27 7.54 4.94 10.83 15.1 14.1 16.4
804-2A 2816 0.63 0.15 1.88 0.82 0.00 1.44 14.80 3.40 29.77 12.10 2.89 24.00 8.12 5.35 10.96 15.1 13.3 17.0
-------
RUN SUMMARY
SOLIDS ANALYTICAL DATA (CONTINUED)
RUN
NO.
705-2A
706-2A
707-2A
708-2A
709-2A
710-2A
711-2A
712-2A
713-2A
714-2A
714-2B
715-2A
716-2A
717-2A
7I8-2A
719-2A
801-2A
801-2B
80 2- 2 A
803-2A
804-2A
PERCENT
SULFITE
ftNALY OXIDATION
TICAL
POINT AVG MIN MAX
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2916
2816
2fll6
2816
2816
2816
2816
2816
2«16
2816
12,
.8
18.9
16.2
16
20
13
n
17
18
15
3
20
24
20
21
19
52
62
55
88
93
.6
.6
.9
.9
.7
.4
.1
.9
.7
.5
.4
.6
.6
.5
.8
.6
.7
.0
1.8
3.3
12.8
7.5
6.2
0.2
4.8
4.8
12.6
-1.9
0.8
13.2
16.0
8.5
11.1
13.4
37.7
48.1
42.9
65.6
79.5
43.7
36.3
28.6
40.1
35.1
34.5
22.9
34.6
25.3
33.2
6.4
29.1
34.3
45.2
31.8
30.8
65.5
72.3
68.7
96.6
100. 0
STOICHIOMETRIC
RATIO
AVG MIN MAX
1.10
1.13
1*23
1.16
1.18
1.18
1.25
1.21
1.28
1.41
1.64
1.22
1.16
1.25
1.34
1.15
1.22
1.27
1.22
1.06
1.07
1.C3
1.04
1.16
1.08
1.08
1.10
1.13
1.13
1.19
1.15
1.5*
1.09
1.01
1.10
1.16
1.03
1.08
1.13
1.12
1.01
1.03
1.21
1.35
1.31
1.23
1.32
1.40
1.33
1.31
1.44
1.65
1.68
1.30
1.41
1.55
1.53
1.33
1.42
1.47
1.30
1.21
1.15
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
2.9
-0.5
3.1
4.0
4.0
3.5
3.1
1.8
-2.3
2.9
3.6
1.0
-1.2
-1.0
-1.7
0.8
-0.1
1.2
1.9
1.7
1.5
-8.1
-7.6
-0.9
-1.2
0.2
-7.6
-1.5
-3.4
-8.5
-4.5
1.8
-7.1
-8.5
-7.8
-8.3
-5.1
-5.3
-3.9
-3.6
-8.4
-7.7
7.9
8.4
6.8
8.2
7.1
8.3
7.9
8.3
5.0
7.4
5.2
7.6
7.0
8.5
8.1
7.5
7.8
6.7
7.5
8.3
8.4
D-57
-------
RUN SUMMARY - SOLIDS ANALYTICAL DATA
CONCENTRATIONS IN SOLIDS* UT X
SOLIDS
ANALY C02 S02 S03 CAO ACID INSOLUBLES IN SLURRY* UT X
RUN TICAL
MO. POINT AV6 MIN MAX AVG HIM MAX AVG HIN MAX AV6 HIN MAX AV6 KIN MAX AV6 HIN MAX
805-2A 2816 1*80 0.24 5.33 1.16 0.15 6.81 17.64 6.70 28.01 16.07 9.76 24.60 6.55 5.25 9.69 15.1 13.8 16.7
806-2A 2816 1.52 C.4H 3.36 6.30 4.70 13.60 14.37 9.84 21.67 19.67 16.58 22.74 6.15 5.88 6.30 14.4 13.5 15.0
807-2A 2816 2.56 0.83 4.40 0.68 0.00 1.80 19.60 13.75 25.43 17.47 11.18 23.97 5.55 4.14 7.22 14.8 13.5 16.0
808-2A 2816 5.72 3.37 7.46 1.07 0.17 2.53 16.46 6.73 28.25 19.78 13.11 30.1C 5.00 3.86 5.57 14.9 12.6 16.1
809-2A 2816 8.61 7.53 10.23 0.78 0.26 2.35 23.54 15.41 35.18 29.03 24.17 35.52 5.21 4.14 5.86 15.6 14.0 17.1
810-2A 2816 4.25 0.99 6.75 0.68 0.09 2.69 25.54 22.07 32.94 23.45 IS.37 30.36 3.91 3.12 4.76 15.1 13.7 17.5
811-2A 2816 7.75 4.18 9.82 0.84 0.32 2.17 18.93 12.96 26.57 23.49 19.82 25.55 4.33 3.21 5.21 14.8 13.5 15.9
812-2A 2816 7.45 5.06 12.21 1.13 0.31 2.15 16.32 6.35 20.89 22.29 15.04 27.14 5.63 3.67 9.07 14.4 10.1 16.7
? 813-24 2816 1.54 0.93 3.22 0.94 0.17 1.80 22.11 4.52 27.68 17.81 5.52 20.70 6.23 4.07 11.47 14.9 14.1 1«5.5
tn
00 814-2A 2816 1.92 0.73 4.16 7.31 2.62 11.03 14.97 10.53 17.95 18.54 15.67 20.36 6.49 5.73 7.84 14.7 14.3 15.0
815-2A 2816 3.86 2.53 5.79 14.82 11.93 17.39 12.09 7.79 15.75 26.02 23.79 27.72 4.84 4.07 5.31 14.9 14.2 15.6
816-2A 2816 4.7* 3.74 5.69 10.22 8.44 13.04 13.59 9.80 15.44 24.24 23.36 25.74 5.19 4.80 6.07 15.2 13.8 16.0
817-2A 2816 2.93 1.87 3.74 1.18 0.28 3.44 22.31 13.25 24.83 20.14 13.64 22.59 5.25 3.97 8.08 14.6 13.2 17.7
818-2A 2816 4.30 3.19 5.58 7.21 4.70 9.23 17.91 14.39 21.04 25.17 23.41 26.44 4.82 3.87 6.11 14.9 14.1 16.3
818-2B 2816 4.26 2.19 5.87 19.80 17.01 22.86 7.71 5.35 10.87 28.42 25.53 31.34 4.16 3.57 4.68 14.3 13.4 15.?
819-2A 2816 3.92 1.48 6.57 1.17 0.18 2.76 21.72 17.71 26.51 21.20 15.67 26.43 4.70 2.99 6.53 12.9 10.7 14.7
820-2A 2816 6.96 3.45 9.79 1.30 0.36 2.17 18.44 10.11 22.36 23.34 13.20 26.86 4.77 2.97 7.02 13.8 11.7 15.6
821-2A 2816 3.66 1.00 9.60 0.86 9.20 2.10 20.89 10.48 27.23 19.53 14.50 24.20 6.76 5.20 11.50 14.9 13.4 16.1
-------
RUN SUMMARY
SOLIDS ANALYTICAL DATA CCONTINUEO)
RUN
NO.
805-2A
806-2A
807-2A
808-2A
809-2A
810-2A
8H-2A
812-2A
813-2A
814-2A
815-2A
816-2A
817-24
818-2A
818-2B
819-2A
820-2A
821-2A
PERCENT
SULFITE
ANALV OXIDATION
TICAL
POINT AVG MIN MAX
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
2816
92.0
58. C
96.1
91.8
96.1
96.9
94.4
92.2
94.3
62.9
39.3
51.6
93.9
66.5
23.9
93.7
91.7
94.8
69.3
36.7
91.3
81.9
86.8
90.1
82.7
85.1
85.2
48.7
29.8
37.6
82.1
55.5
15. 8
86.1
84.6
83.1
98
78
100
99
98
99
98
97
99
84
49
58
98
78
32
99
.8
.7
.0
.1
.5
.5
.3
.5
.1
.6
.8
.9
.6
.2
.9
.1
98.0
98.9
STOI
AVG
1.23
1.12
1.23
1.63
1.68
1.31
1.74
1.89
1.15
1.15
1.23
1.33
1.24
1,29
1.24
1.31
1.64
1.35
CHIOMETRIC
RATIO
MIN MAX
1.02
1.03
1.09
1.37
1.44
1.06
1.28
1.44
1.06
1.05
1.14
1.25
1.14
1.22
1.11
1.11
1.32
1.06
2.20
1.26
1.37
2.26
2.08
1.49
2.08
3.32
1.60
1.36
1.35
1.42
1.42
1.38
1.34
1.56
1.97
2.28
PERCENT
IONIC
IMBALANCE
AVG MIN MAX
2.5
2.0
-0.7
0.3
3.1
-2.1
-1.8
1.4
-2.9
-4.3
-1.3
-0.9
-1.3
3.4
0.8
-C.2
1.9
-2.6
-5.3
-8.2
-8,2
-8.1
-3.7
-7*8
-8.0
-8.1
-7.8
-7.4
-7.6
-6.0
-6.7
0.1
-2.8
-8.5
-3.5
-8.3
7.1
5.R
4.6
7.5
8.5
6.5
7.4
8.4
8.4
-0.9
4.5
3.6
3.0
6.5
4.5
5.5
7.3
6.4
D-59
-------
APPENDIX £
TEST RESULTS SUMMARY TABLES FOR
THE VENTURI/SPRAY TOWER SYSTEM
E-l
-------
Table E-l
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
6P*-tf -Pupate
FlvAeh
W.O Addition
5». Rate, acfm at 300°F
ter.v Tower G.. Vel. . ft/aec6 125°F
Vfnturi Liquor Rate, opm
Sprty Tower Liquor Rate, gpm
Spray Tow*r L/C. lal/Mcf
Veniuri Percent Solid. Reclrculated
Spray Tower Percent Solid*
&eetrculated
Vrnturi Oxidation Tank Residence
Time, rnin.
Venturi Drtnipereaturation Tank
Ele.ldence Time. rnln.
ipray Tower Effluent Residence Time.
«in.
Solid* DlfDo.el Svatem
.to.chiornetric Ratio In Venturi Inlet
Hurry, molet C»/mole SOz
itolchiometric Ratio la Spray Tower
[alet Slurry, mole* Ca/mole SOz
Dvcralt Av|. % Limettoae Utilization,
100 x mole* SO* aba. /mole Ca added
Overall Percent SOz Removal
UvtrMf SQ? M.kr-p.r-jMua-moU/i
Veaturl Inlet pH R.n.e
Percent Sulflte Oxidlied in Venturi
InUt Slurry
Percent Sulflte Oxidised In Spray
Tower Inlet Slurry
Av|. Air Stolchlotnetrlc Ratio
lb-atom«OKyi«n/lb-mo>l« SOz absorbed
Calculated Avg. % Gypeum Saturation
In Venturi Inlet Liquor 0 50°C
Calculated Avg. % Gypaum Saturation
In Spray Tower Inlet Liquor 3 SO°C
Total Dliaolved Sol id • in Vrnturi Inlet
..iquor, ppm
Tout Dlaiolvet) Solldi tn Spray Tower
nlet Liquor, Dpm
Total ApRan|«, Excluding Miat
Elimination Syatem, in. HjO
Mlit Elimination Syitem AP Rang*,
In. HzO
Milt Elimination
Syatem Configuration
Mitt Eliminator
Waah Scheme
801-1A
1/4/77
1/15/77
Y..
No
6.7
400
1300
65
12.3- 16.8
4. 9 - 6. 7
17
7
19.4
Cl»r (Her I Ciller
1.02 - 1.17
1. 12 . 1.28
91
2900 - 3900
58 - 66 1
5.5-5.9
88 - 98
7 - 19
4.7
100
75
5600 - 7300
3200 - 5600
10.6 - 11.6
0. 14 - 0.22
)*p«l». optn-vtne. 316L SS
chevron ml«t eliminator.
Top waih*d ••qutnllally with
mftkvup w«t*r. E*ch nosilc
(6 total) on 3 minut*« (»t
0.53 |pm/iq.ft. 1 with 7
tnlnutv, off betwften nocsl*..
Bottoir w»ih«d intermittently
with mftkaup water at 1. *
fpm/«o,. ft. for 4 minute*
• very hour.
802 -1A
1/24/77
2/ 4/77
Y«.
No
6.7
400
1400
70
12.4 - 16.8
4.6-7.6
17
7
18
CUrifler 1 Filter
1.03 - 1.37
1.22 - 1.52
83
3000 - 4000
52 - 67
L 6-? _
5.3 - 5.75
91 - 99
10 - 22
4.7
110
110
7600 - 9400
5300 - 7500
10.4 - 11.2
0.20 - 0. 34
3'pan, open-vane, 316LSS
chevron mi.t eliminator.
Top wached eequentially with
makaup water. Each noaile
(6 total) on 3 mlnutea (et
0.53 gpm/K|.ft. 1 with 7
mlnutee off between nosalee.
Bottom waehed Intermittently
with makeup water at 1. 5
fpm/eq. ft. for 4 minute*
every hour.
803-l.A
2/ 4/77 ^
2/10/77
Ye.
No
25. 000
4.7 3|
600
!0
1400
70
11.4 - 16.9
4. 5 - 6. 3
11.3
4.7
18
CUrtfter I Filter
1.07 - 1.23
1.33 - 1.60
87
2900 - 3400
62 - 72
5.6 "j
4.5-5.1
I 4.1-4.5 H
5.S - 5.»
94 - 98
10 - 22
4.7
105
120
9200 - 10,600
7000 . 8000
10.6 - 11.3
0. 20 - 0. 30
3-pa
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
tun Number
Oxidicer Design
Absorbent
Scrubber Intern* It
System Changes before
Start of Run
Method of Control
Run Philosophy
Result*
80I-1A
Octagonal sparger ring with
on bottom side. Sparger ring
made of 3 Inch 316 L S. S.
pip« with 21.5 inch tide* and
ocated 6 inches from tank
bottom. Oxidation tank dia-
meter 1* 8 ft.
1 with clarified liquor and
added to *pray tower EHT.
rour spray headers. Top 3
leaders sprayed downward.
iottom header sprayed up-
System modified for two
•erlti ic rubber operation
with Independent flurry re-
ctrculation loop for venturl
Mist eliminator w»s not
cleaned prior to the run.
Venturi Inlet pH controlled at
4. 5 ± 0. 2. Venturl r .circu-
lated alurry solids controlled
at 15 + 1%. Clartfted liquor
returned to apray tower EHT.
First two-etage oxidation teat
with Itmeetone scrubbing.
Test condition* chosen to
achieve complete aulflte oxi-
dation and satisfactory SC>2
removal.
Overall SOj removal average
only 62% and limestone utili-
sation 91%. Sulflte oxidation
averaged 93%. Filter cake
• olldi averaged 81 wt.%. Th
milt eliminator was 2% re-
stricted at the end of the run.
802- 1A
Octagonal sparger ring with
30 1/8 inch diameter holei
n bottom aide. Sparger ring
me.de of 3 inch 316L S. S.
ipe with 21. 5 inch sides and
ocated 6 inches from tank
ottom. Oxidation tank dia-
meter is 8 ft.
% with clarified liquor and
dded to spray tower EHT,
"our spray header t. Top 3
leaders •prayed downward.
Bottom header sprayed up-
Jo change*. No cleaning.
Venturt inlet pH controlled at
5.0 + 0. 2, Venturt rectrcu-
lated slurry solids controlled
at 15 + 1%. Clarified liquor
returned to spray tower EHT.
To observe if a higher apray
tower stotchlometry (higher
controlled venturl inlet pH of
5. 0) Improves the overall SOj
removal.
The overall SOj removal aver
aged only 60% (cf. 62% (or
Run 801 -IA) at an overall
limestone utilisation of 83%
(cf. 91% for Run 801-1A). Sul
flte oxidation averaged 95%
and filter cake solids 86 wt.%
The mist eliminator was 10%
restricted at the end of the
run.
803- IA
Octagonal tpargcr ring with
130 1/8 inch diameter holes
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Start-of-Run Date
End -of -Run Date
On Stream Hour*
FlvA.h
MfO Addition
Gal Rate, acfm at 300 F
Venturl Liquor Rate, mm
V.nturl L/C, tal/Mcf
Spray Tower Liquor Ratt, ipm
Spray To.., L/C. »l/Mcf
Spray Tower Percent Solids
Reel reflated
VtMituri Oxidation Tank Roeidvnce
Tim*. min.
Venturl D»euperMtvra,tton Tank
H*»idl«nc« Time, min.
Spray Towar Effluent Reeidence Time,
min.
Solid. Dl.oo.,1 9v«.m
Stolchlometrlc R«tio In Venturi InUt
Slurry. mole* Ca/moloSOj
Stolchlometrlc »«tio In Spray Tower
Inlvr Slurry. mole* Co /mole SOj
Overall Av|.% Llmoltane Utlliaatlon,
lOOxmoUi SOj ib*. /male C. *(e. C>elu4In| Ul.t
Elimination Syatem. In. HjO
Ulit Elimination Syatem AP Rang..
In. H20
Utat Elimination SyBtom Configuration
Ulat Eliminator Waahlng Scheme
805. IA
Z/18/77
2/23/77
112
Y.i
No
29.000
6.7
600
30
1400
70
13.6 - 17.6
II.)
4. 7
18
Clarilier . Filter
1.04 - 1.2!
1. 3» - 1.73
87
7
97 • 99
5 - 16
3.7
OS
29
11.600 - 12,100
2000 - 4400
10. 1 - 10. 7
0.23 - 1.22
3-paaa, oaan-vane, 316L SS
chevron mlat eliminator.
Top wnahon aoquentltlly with
makeup water. Each noaali
(6 total) on 3 minute* fat
0. S3 (pm/aq. ft. ) with 7
minute* off between noaalca.
Bottom waaKad intermittently
with makeup water at 1. 9 >
fpfn/fq,, ft. for 4 mlnuttf
every hour.
806- 1A
2/23/77
2/29/77
Ye.
No
29. 000
600
30
MOO
70
14. 1-16.0
11. 3
4.7
18
Clarltier . Filter
1.02 - 1.08
1. 1 - 1.4
99
6. 5
97 . 100
0 - 20
— -
2.9
78- 90
99
20
11,200 - 12,000
2600 - 3000
10. 7-11.9
0.23 - 0.30
3-paii. open-vane. 316L SS
chevron mlat eliminator.
makeup water. Each noeale
(6 total) on 3 mlnutea lot
0.93 tpm/iq. ft. ) with 7
minutea off between noailee.
Bottom waahed Intermittently
with makeup water at 1. 9
|pm/tq. ft. for 4 minute*
every hour.
806-1B
2/29/77
2/27/77
Y..
No
29. 000
600
30
1400
70
13.9 - IS. 1
11.3
4.7
IB
CUrmarl. Filter
1.02 - 1.08
1.2 - 1.29
99
5.9
96 - 99
10 - 20
1.7
76 - 87
95
99
11.500 - 12.900
3300 - 4100
11.9 - 12. 1
0. 30 - 0. 37
3-pa*«, open-vane, 316L SS
chevron mljt eliminator.
makeup water. Each noeal«
16 total) on 3 minute* (at
0. 93 enm/*q. fl. I with 7
mlnutai off between noiale*.
Bottom wa*h*d Intermittently
with makeup water at 1. 5
ipm/iq. ft. for 4 minute*
every hour.
106. 1C
2/27/77
3/ 1/77
94
Y..
No
25.000
6.7
600
30
1400
12 .
13.3 - 19.0
11.3
4.7
18
CUrlfler a: Filter
1.01 . 1.07
I.1S - 1.35
96
6.9
»4 - 09. 5
10 - 24
1. 0
100
90
10.900 - 11. roo
2500 - 4000
10. 8 - 12. 7
0.37 - 0.61
3-pa**. op«n- vane, 116L SS
chrvron ml.t eliminate,.
Top waihed •equentlally with
makeup water. Each noa«le
(6 total) on 3 mlnutai let
0. 53 ipm/tq. ft, ) with 7
mlnutei off botwou nona!...
Bottom weihed Intermittently
with makeup water at l. j
ipm/aq. n. for 4 mlnutea
every hour.
E-4
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Oxidiaer D*«ign
Absorbent
Scrubqter Internal"
Syftem Change* before Start of Run
Method of Control
Run Philosophy
Result*
805-1A
made of 3 inch 316L SS pipe
with 21. 5 inch aidei and lo-
cated 6 inches from the tank
meter Is 8 ft.
% with clarified liquor and
added to spray tower EHT,
Tour spray headers. Top 3
ward*. 7 nozzles/header.
No change!. No cleaning.
Venturi inlet pH controlled at
at 15 + \%. All clarified li-
• olldfl in spray tower loop.
mum percent solids In spray
tower loop on SO 2 removal.
Same teat condition* a* Run
804- 1A except all clarified
loop.
• tone utilization 87% (cf. 71%
removal and 88% utilization
for Run 804-1A). Reclrcu-
lated solids in spray tower
for Run 804-1 A). The mtst
eliminator waa 40% restrictet
at the end of the run.
806- 1A
made of 3 inch 116L SS pipe
with 21.5 inch sides and lo-
cated 6 inches from the Unk
meter is 8 ft.
% with clarified liquor and
added to spray tower EHT.
Four spray headers. Top 3
wards. 7 nozzles /header.
Mist film in* tor cleaned. No
other changes.
Venturi inlet pH controlled at
at 15 _t 1%. All clarified li-
quor returned to oxidmtion
tank.
er air flow to sparger (250
scfm cf. 400 scfm for Run
805-1A) on •ulftte oxidation
at 4. 5 venturi inlet pH. All
for Run B05-IA.
(cf. 98% for Run 805- 1A).
The »c rubber was not shut
down at the end of the run.
60b-lB
made of 3 inch 316L SS pipe
with 21. 5 inch sidea and lo-
ated 6 inchea from the tank
meter ia 8 ft.
> with clarified liquor and
dded to ipray tower EHT.
"our spray headers. Top 3
ward*. 7 nosclea/header.
No shutdown. )
Venturi inlet pH controlled at
at IS + 1%. All clarified li-
quor returned to oxidation
tank.
still lower air flow to sparge
!150 scfm cf. 250 «cfm for
Run 806- IA) on sulfite oxida-
tion. All other test conditions
(cf. 99% for Run 806-1A).
The scrubber was not shut
down at the end of the run.
80fe-lC
30 1 /8 inch diameter holes
made of 3 inch 3UL SS pipe
with 21. 5 inch sidea and lo-
ated 6 inches from the tank
meter Is 8 ft.
% with clarified liquor and
dded to spray tower EHT.
"our apray headers. Top 3
wards. 7 noziles/header.
No • hut down. )
Venturi inlet pH controlled at
at 15^ 1%. All clarified li-
quor returned to oxidation
tank.
•till lower air flow to iparger
(100 scfm cf. 1*0 scftn for
Run 806- IB) on sulfite oxida-
tion. All other test conditions
(cf. 98% for Run 806- IB 1.
The scrubber wa» not shut
down at the end of the run.
E-5
-------
Table E-l .(continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Start-of-Run Date
End-of-Run Date
3n Stream Hours
Fly Ash
s4gO Addition
Gas Rate, acfm at 300°F
Spray Tower Gas Vel. , ft/sec @ 125°F
Venturi Liquor Rate, gpm
Venturi L/C. gal/Mcf
Spray Tower Liquor Rate, gpm
Stray Tower L/G, gil/Mef
Spray Tower Percent Solid*
Recirculated
Venturi Oxidation Tank Residence
Residence Time, min.
Spray Tower Effluent Residence Time,
min.
Solids DIaposal System
Slurry, moles Ca./mole SO2
Stoichiometrlc Ratio in Spray Tower
Inlft Slurry, mol«s Ca/mol« SOj
Overa.lt Avg. % Lime* tone Utilisation,
lOOx mo Us SO2 aba. /mole Ca added
Inlet Oj Concent rat ion, vol. %
Overall Percent SOz Removal
Avg. SO2 Make-Per-Pass. m-molc/1
Venturi Inlet pH Range
Venturi Outlet pK Range
Spray Tower Inlet pH Range
Spray Tower Outlet pH Rangp
Percent Sulflte Oxidized in Venturi
Inlet Slurry
Percent Sulfite Oxidized in Spray
Tower Inlet Slurry
Air Flow Rate to OxidUer, acfm
Avg. Air Stoichiometrlc Ratio.
Ib-atoms oxygen/lb-mol« SO2 absorbed
Solids In Sludge Discharged, %
Calculated Avg. % Gypsunt Saturation
in Venturi Inlet Liquor @ 50°C
Calculated Avg. % Gypsum Saturation
in So ray Tower Inlet Liquor @ 50°C
Total Dtnolved Solids in Venturi Inlet
Liquor, ppm
Total Diiaolved Solids in Spray Tower
Lnlet Liquor, ppm
Total AP Range, Excluding Miat
Elimination System, in. H2Q
Venturi AP, In. H2O
Mist Elimination System AP Range.
in. H20
Mist Elimination System
Configuration
Mist Eliminator Washing Scheme
806-1D
3/1/77
3/3/77
41
Yes
No
25.000
6.7
600
30
1400
70
15.4 - 16, J
11. J
4. 7
18
Clarifier t Filter
1.05 - 1. 14
1.3 - 1.4
91
6. 0 - 6-4
77 - 83
b-5
4.45 - 4.6
4.2-4.4
6. 1-6.25
50 - 84
8 - 22
50
0. SO
74 - 83
105
15
10,200 - 12. ZOO
2400 - 2800
10.4 -11.0
0,64 - 0.78
Top washed sequentially with
makeup water. Each noztle
(6 total) an 3 minutes (st
0.53 gpm/aq. ft. ) with 7
minutes off between nozzles.
Bottom washed intermittently
with m*k*up water at 1. 5
gpm/sq. ft. for 4 minutes
every hMir.
807-1A
3/3/77
3/6/77
66
Yes
No
25.000
6, 7
600
30
1400
70
1 fc - 1 7. 1
11.3
4. 7
18
Clarifier & Filter
1.06 - 1. 14
]. 27- I. 40
91
4. 2 - 8. 3
74 - 83
7.0
4. 35-4.6
4.25 - 4.35
• 7-29
3-10
0
66 - 81
135
8
10,400 - 1 1,800
1840 • 2140
10.4 - 11.0
0. Z6 - 0.40
Top washed sequentially with
makeup water. Each nozile
(6 total) on 3 minutes (at
0.53 gpmltq. ft. ) with 7
minutes off between nozzles.
Bottom washed Intermittently
with makeup water at 1, 5
gpm/sq. ft, for 4 minutes
every hour.
808- 1A
3/6/77
3/9/77
65
Yes
No
25,000
6.7
600
30
1400
70
14,3 - 15.9
14.8 - 16.2
11. 3
4.7
18
Clarifier b FllUr
1.01 - 1. 04
1. 10 - 1.30
98
5.5 - 7.5
70 - 81
4. 3 - 4.6S
3. 3 - 3.9
..
94 - 99
6 - 25
150
1. 70
78 • 86
100
23
9400 - 10,400
1690 - 1B90
10.5 - 11.1
9
0.45 - 0. 70
Top washed sequentially with
makeup wat«r. Each noitle
(6 total) on 3 minutes (at
0. 53 gpm/sq. ft.) with 7
minutes off between nozzles.
Bottom washed intermittently
with makeup watar at 1 . 5
gpm/sq. fi. for 4 minutes
evsry hour.
809-1A
6/12/77
8/18/77
137
No
No
25. 000
6. 7
600
30
1400
70
1 13.5 - It, 1 1
7.3-8.4
H.3
4. 7
13.4
Ctar. I Fit. /Lamella Settle.
I. 00 . 1.05
I. IT - 1.42
98
8.5 - 10_*
77 - 86
5. 3
4.4-4.7
2.9-3.8
5.5 - 5.85
96 - 99
5 - 36
150
1.8?
72 - 88/27 - 43
95
105
11.800 - 14,800
7800 - 8700
11.6 - 12.0
9
0.29 - 0. 35
Top washed sequentially with
makeup water. Each not.l,
<6 total) on 4 min (at 0. 53
gprn/sq-ft, ) with 7b min. off
between noailef. Bottom
wa.ahed continuously with di-
luted clarified liquor
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Absorbent
Method of Control
Rrsulta
BOfc-ID
30 1/3 inch diameter holes
made of 3 inch 316L SS pipe
ottom. Oxidation tank dia-
meter It 8 It.
Bottom header sprayed up-
returned to oxidation tank.
•cfm cf, 100 »clm lor Run
806-1C) on lulfite oxidation.
All other test condition! tame
as for Hurt 806- 1C.
Sulflte oxidation in the venturi
(nl«t tturry averaged 67% (cf.
97% for Run 806-1C) but
The miat eliminator was 50%
reatrictea1 at the find of run
and heavy mud wa« built up on
the trap-out tray rim con-
stricting gas flow.
807- 1A
30 1 /8 inch diameter holes
made of 3 inch 316L SS pipe
bottom. Oxidation »ank dia-
meter ia 8 ft. (Air flow turned
off.)
Bottom header aprayed up-
tank wa> changed from a top
tank entry to a bottom tank
vent solid* from aettling out
in the tank. The miit elimi-
nator was cleaned.
returned to oxidation tank.
air sparging.
With no air sparging, the sul
Cite oxidation in the venturi
Inlet alurry dropped to 18%
and 135% venturi Inlet liquor
gypaum aaturatlon, Th«
•crubber waa not »hut down
at the. end of the run.
808-1 A
130 1/8 inch diameter holes
mad* of J inch JlfcL. SS pipe
bottom. Oat da lion tank dia-
meter is 8 ft.
lot torn header (prayed up-
returned to oxidation tank.
an effect on the sulflte oxida-
806-1B.
Sulfite oxidation averaged 97%
vt. 98% for Run 8%, IB. The
revlaed flow pattern In the
to affect the level of »ulfite
oxidation. The miat elimina-
tor was about 35% restricted
at the end of the run.
B09-1A
0 1/4 inch diameter holei
made of 3 Inch MfcL SS pipe
bottom. Oxidation tank dia-
meter ia 8 ft. Tank ilurry
evel waa 18 ft.
lottom header *p rayed. up-
Cleaned reheater outlet duct
No other changes.
tion to spray tower EHT.
•olid* controlled at 15 + 1%.
All clarified liquor returned
•to ipray tower EHT.
achieve complete aulttte oxi-
removal.
Sulflte oxidation averaged 99%
and overall SO, removal
averaged. 82%. Llmeitone
miit eliminator wa* 0. 5%
restricted.
E-7
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Start -of-Run De'«
End-of-Run Date
On Stream Hour*
Fly A eh
M|0 Addition
Gaa Rat*. acfmtl 300°F
Spray Tower Gae Vet. , fl/«ec € 12S°F
Vrfnturl Liquor Rate, gpm
Venturl L/C, gat/Mef
Spray Tow%r Liquor Rate, gpm
Spjray Tower L/C, fal/Mcf
Spray Tow«r Percent So lid •
Recfrcutated
Venturl Oxidation Tank Re aid* nee
Time, min.
Venturl Deaup*rea>hiratlan Tank
Residence Tim*, mln
Spray Tow»r Effluent Residence
Tlma, mln.
Solid* Diapoial Syaiem
Stolchiometrte Ratio In Vettturl Inl*t
Slurry, molee Ca/molc SO^
Stoleblametrlc Ratio In Spray Tow* r
Inlet Slurry, mole* Ca/mole SOZ
Ov«r*U Avg . % LLme«taB« UtUiaatloa,
100 x mo lea 3O2 «(>•. /mole, C» eddwd
Inlet Oi Concent ration, vol. %
Overall Percent SO2 Removal
Venturl Inlet pH Range
Venturi Outlet pH Range
Spray Towvr Inl«t pH Ranf*
Spray Tower Outlet pH Rang*
Percent Sulflte Oxldlacd in Venturl
Inlet Slurry
Percent Sulflte OxMtwad fn Spray
Tower Inlet Slurry
Air Flow Rite to OxldUer, »cfm
Av|. Air Siotchiometrtc Ratio,
lb with 76 mln. off
betwvvp noaalei. Bottom
wteh*d contlnuou.Vr wilh di-
luted clartn*d Honor (about
^ Rpm makeup waiar plue 10
fpm cU rifled liquor) through 4
noailee at 0. 3 gpm/iq.ft.
81 1*1A
8/25/77
9/ 2/77
184
No
No
25. 000
600
30
1400
7. 0 - 9. 0
11.3
4.7
13.4
CUrifier
1. 01 - I. 07
1.2! - 1. 55
96
7.5 - 9. 1
5.3-5.7
4.4 - 4. 8
5.8-6.0
94 - 100
16 - 34
150
1.65
10%
10$
9500 • 9300
5900 - 7000
11.3 - 11.9
9
0. 30 - 0. 34
chevron mi it eliminator.
makeup wattr. Etch noaile
(6 total) or* 4 min. (at 0. 53
gpm/eq. ft. 1 with 76 min. off
between noaaU*. Bottom
wteh*4 eontlBUOualy with di-
luted clarified liquor (about
5 gpm makeup water plu» 10
gpm clarified liquor) through 4
no* ale* at 0. ) gpm/aq. (t.
812- 1A
9/02/77
9/08/77
141
No
No
25, OM
6. 7
600
30
1400
6. 0 - 7. 9
11. 3
--
13.4
Ctarifler 1 Filter
1.02 - 1.46
1.37 - 2.49
61
6. 7 - 8.Z
1950 * 2750
5.2-6.0
4.4-5.2
5.8-6,1
--
95 - 99
19 - Jl
150
1. 70
80 - 92
105
100
9200 - 10,200
6700 . 8000
11.1 - 12.7
9
0.31 - 0.36
Chevron milt eliminator.
makeup water. Each nozale
(6 totaU on 4 mln. (at 0. 53
gpm/cq. ft. i with 76 min. off
between noealei. Bottom
waihed contlnuoualy with di-
luted clarified liquor (all avail-
able makeup water at about
5 gpm phii about 10 gpm eUrl-
ried liquor) through 4 noastei
at 0. 3 fpm/eq. ft.
814-1A
9/1S/77
136
No
25.000
6. 7
600
30
70
7. 5 - 9. 2
e.e
4. 7
13.4
Clartflcr t filter
1.05 - 1,35
1.50 - 2,06
81
b, 0 - 8.5
2100 - 2800
8» - 96
• *•"
5. 3 - 5.9
4. 2 - 4. a
5.8-6.1
96 - 100
13 - 41
ISO
1.65
84 - 92
J05
100
10,100- 10.900
7300 . 8100
11.4 -12.5
9
0. 32 - 0. 38
chevron miat eliminator.
Top waah*d eequ. „( la lly with
m»k*up water. Each no.ale
(6 total! on 4 mln. (at 0.51
gpm/eq. ft. | with 76 min. off
between noaaUe. Bottom
waehed continuously with di-
luted clarified liquor (all avail
able makeup water at about
i gpm plue about 10 gpm cl»rl-
Hed liquor) through 4 noaalea
at 0. J gpm/.q. ft.
Note: Run 813-1A aborted.
E-8
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Oxidiser Deilgn
'
Start of Run
Method of Control
Keiuhs
810-1A
o »pray tower EHT.
leader* sprayed downward!.
to ipray tower EHT. Venturi
Iquor returned to ipray lower
EHT.
tfriitki.
Sulflte oxidation averaged 98%.
83% and overall lime .ton*
uttlliation avenged 96%. The
itricted.
81 1-1A
w»s 18 ft.
to apray lower EHT.
header! Bprayed downwards.
other change*.
lion to «pr»y tower EHT. Ven-
clarifled liquor returned to
•pray tower EHT.
racterUtici.
857, and overall limestone
utilisation averaged %%.
restricted.
812-1A
8 ft.
leader* (prayed downward.
ook auction directly from oxl-
• tion tank.
to ipray tower EHT, Venturt
EHT.
Ing without the detuperikturi-
tion tank.
with 93% SO removal .nd 81%
lime • tone utilization. There
814-1A
4 ft.
leader* aprayed downward.
notzlei/header.
l
to tpray tower EHT. Venturi
EHT.
mkined high at 98% with 91%
SO. removal and 93% lime-
stone utllUatlon. The mitt
Note: Run 813-1A aborted.
E-9
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Hun Number
Starl-of-Run Dlts
End-o/-Run Date
On Stream Hour*
Fly A.h
MgO Addition
Gai Rate, acfm @ 300UF
Vcnlurl Liquor Rate, gpm
Venturl L/G. gal/Mef
Spray Tower Liquor Rate, gpm
Venlurl Percent So ltd « Rectrculated
Spray Tower Percent Solid*
RrclrcuUted
Tim*, min.
Spray Tower Effluent Residence
Solid! Dlipoaal System
Stoich iom« trie Ratio in Venturt Inlet
Slurry, mole. Ci/molr SO2
Stolchiometrlc Ratio In Spray Tower
Intel Slurry, mole* Cm/mole SO;
100 K mole* SO2 abi. /mole Ci added
Average SO7 Make-Per-Pa»i,m-moWl
Venturi Inlet pH Range
Spr*y Tower Inlet PH flange
Spray Tower Outlet pH Range
Inlet Slurry
Percent Sulflte Oxldlaed In Spray
Tower Inlet Slurry
Air Flow Rate to Oxldicer, icfm
lb-mtomi oxyjen/lb-molr SOjabaorbcd
In Venturl Intel Liquor @ 50°C
Ln Spray Tower Inlet Liquor @ SO°C
Tola! Dliiolved So lid • in Vvnturl
nlel Liquor, ppm
Total DU.olved Solid, in Spray Tower
Inlet Liquor, ppm
TotaUP Range, Excluding Mill
Elimination Syitem, In. H;O
'enluriap . 3
5.65 - ft.O
5.4 - 5.9
92 - 100
15 - 37
210
1. 70
105
105
1 1, 200 - 14,200
7900 - 10. 700
14. 8 - 17. 3
9
O. 58 - 0, 76
hevron mitt elimination.
pm/fq.rt. 1 with 7f, min. off
utcd Urftttd liquor (all avail-
. 4 gpm/iq. ft.
fllf -1A
9/2H/77
10/ 4/77
142
No
No
35.000
600
21
1400
50
13. 4 - 16. Z
' 6.S - 8.8
11. 3
4. 7
13.4
Clarlfler L Filter
1.06 - 1. 36
1. 52 - 1. 85
8)
7.44
5.2 - 5. S
5.6-5.9
5.3 - 5.8
95 - 100
18 - 3t
210
I. 80
100
10S
14, 500 - 15. 500
«800 - I0.f>00
15. 6 - 16.0
0. 58 - 0. 70
chevron mlit elimination.
waihed continuously with di-
luted clarified liquor <«U»vall-
• t 0. 4 gpm/*q. fl.
HL7-1A
10/26/77
188
Y«.
No
35.000
1,4
1,00
21
50
IS. 1 • 16.4
8.0 - 9. 7
11. 3
4. 7
lh. 8
Cl.rifitr t Fllt.r
1. 10 - 1. 33
1.46 - 1. 74
A2
5. 5 - (t. S
77 - 89
7.1,
5. 3 - 5. B
5. 6 - 6. 0
94 - 99
13 - 28
210
1,75
105
too
15.500 - lb, 300
H. 800 - 9, 800
14. t . Ib.O
"
0. 55 - 0, 66
chevron milt eliminator.
wlih diluted c I* rifled liquor
a> ". 4 J|pm/»q. fl.
S18-1A
10/26/77
141
35. OOO
9.4
600
21
lf-00
c?
14.0 - 15. ft
8. 7 - 1(1. 4
11. 3
4. 7
14. 7
Clarifttr S. Filter
1. 11 - 1. 35
1. 32 - 1.95
81
5. 5 - 7 7
Si - ?B
7. 5
1 *••* - ?,»
5. t, . 6.0
97 - 99
!Z - 26
210
1. 70
105
100
15. 700 . 19. 100
t. 500 - 10, 700
14. 1-15.9
0. 57 - 0. 6fi
chevron min eliminator.
between noiclei. Bottom
nonlei with diluted clarified
fed liquor) at 0.4 gpm/pq. ft.
E-10
-------
Table E-l (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS ON
THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Absorbent
Scrubber Inter nil*
Start of Run
Method of Control
Run Philosophy
Result.
B15-1A
with 21.5 inch side, and lo-
14 ft.
headers aprayed downward.
7 no«sl«» /header.
S. 5 * 0. 2 by UmeitoM tddU
• pray tower EHT.
To observe whether complete
factory SO, removal could be
achieved af the full flue gas
venturi Inlet pH of 5. 5.
with 86% SO removal and fc7%
Actual venturi inlet pH varied
between 4. 9 and 6. 3, with wide
tower •tolch. ratio. MUt
eliminator was 3% restricted.
816-lA
with 21. 5 inch ildei and lo-
18 rt.
•traders sprayed downward.
7 noazlei /header.
raised from 14 ft to 18 ft level.
No cleaning.
5.^10.2 by Umeston« »ddt-
•pray tower EHT.
To teit whether the Increased
which improves limestone dis-
solution, would provide a
occurred much les» frequently
stone utiHtation 83%. Mist
eliminator was about 3% re-
817-1A
hrough an open elbow J Inches
leader* sprayed downwird.
No cleaning.
5.5 + 0. i by Unw stone add\-
mttt eliminator wath returned
to oxidation tank.
To obtain reliable mist elimt-
tlnuoui bottom wash with di-
luted clarified liquor, and to
moval obtainable at the level
obtained by returning excess
inlst ellm. liquor to oxld, tank.
Sulflte oxidation averaged 97%
with 82% lime. tone utilia.tton
of the run.
B1S-IA
through an open elbow 3 Inches
• lurry level was 18 ft.
headers sprayed downward.
No changes.
No cleaning.
5. S •* 0. 2 by Umeiion* addl-
mlst eliminator wash returned
To observe whether the SO
• Ion alandird (B4% removal @
2800 ppm) at 35, 000 acfm g»s
liquor rate.
Sulftte oxidation averaged 98%
with 81% limestone utilisation.
was 2% restricted at the end
of the run.
E-ll
-------
Table E-2
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
ON THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
WITH AND WITHOUT MgO ADDITION
Run Number
On Stream Hour.
Fly A ah Loading
MgO Addition
Spray Tow*r Ga« Vel. , ft/*ec @ 125°F
Venfurl Liquor Rate, gpm
Venturl L/C, gal/Mcf
Sprav Tower L/C, gal/Mcf
Vcnturi Percent Soltdi Reclrculated
Rectrculated
Venturl Oxidation Tank Residence
Time, min.
Venturi Deaup«raaturatlon Tank
Residence Time, mln.
Spray Tower Effluent Reaidence
Time, mln.
Slurry, molca Ca/mole SO,
Stoichiometric Ratio in Spray Tower
Intel Slurry, mole. Ca/mole SO
Overall Avg. % Limestone Utilisation,
100 x moles SO. aba. /mole C» added
Inlei Oj Concentration, vol. %
Average SO2 Make-Per-Paia. m-mol*/l
Venturi Outlet pH Range
Inlet Slurry
Percent Sulfltc Oxidised In Spray
Tower Inlet Slurry
Avg. Air Stoichtometric Ratio,
ID-atoms oxygen/lb-mole SO^ absorbed
Solldi in Sludge Discharged, %
In Venturi Inlet Liquor 6 50°C
Calculated Avg. % Gyp mum Saturation
In Spray Tower Inlet Liquor @ 50°C
Inlet Liquor, ppm
Total Dissolved Solid* in Spr»y Tower
nlet Liquor, ppm
Total A P Range, Excluding Min
Elimination System, in. H.O
Miit Elimination System AP Range,
In. H,O
Mlil Elimination
Milt Eliminator
Wash Scheme
819-1A
11/1/77
—~ ^ —
High
No
4. 8 - 9.4
600
21 - 42
57 - 111
13. 0 - 16. 9
8. 1 - 11.9
11.3
4.7
14.7
CUr. b Fll. /Lamella Settler
1.05 - 1.43
1. 32 - 1.98
81
5. 9 - 8. 7
78 - 94
3. 5 - 9- 5
5.2-5.7
4. 3 - 4. 7
' 5.4-6.0
96 - 100
10 - 32
1.45 - Z.80
S3 - 91
100
too
16,800 - 21,800
10,200 - 14,000
5.8 - 15.9
0. 18 - 0.86
-pass, open -vane, 31f>LSS
Top waahed sequentially with
makeup water. Each nozzle
6 total) on 3 mln. <»l 0. S3 Rpm/
q. ft. ) with 7 min. off between
ozales. Bottom waahed con-
Inuously using 4 nozzle* with
1 luted clarified liquor (all
va.lable makeup water plus
ecesaary clarified liquo%) at
. 3 gpm/sq. ft.
819-1B
12/15/77
1Z6
High
No
4. 8 - 9. 4
600
21-42
57 - 111
13. 8 - 16. fe
8. 6 - 10. 5
11.3
4. 7
14.7
1. 1Z - 1. 30
1. 49 - 1. 80
83
6. 8 - 10. 0
77 - 93
4. 6 - 10. 3
96 - 100
15 - 22
1.45 - 2.80
62 - 89
105
110
17,500 - 21,400
11, 500 - 13.600
10.8 • 14.3
0. 24 - 0. 82
-pass, open-vane, 316LSS
Top waihed sequentially with
makeup water. Each nozzle
6 total) on 3 min. (at 0. 53 gpm
q. ft. ) with 7 min. off between
nozzlea. Bottom washed con-
nuously ming 4 nozzle* with
lluted clarified liquor (til
vallable makeup water plus
eceasary clarified liquor) at
. 3 gpm/sq. ft.
820- 1A
High
Yei
9.4
600
21
57
12. 1-16.8
3.8 - 8.2
11.3
4.7
14.7
1. 01 - 1. 17(*'
.88- ..«">'
92'"
6.0-8.3
1300 - 3200 ~~
4.0 - 5. 7
96-100
15 - 45
1.70
82 - 88
110
100
44.500 - 52.500
26,400 - 32.40D
14.0 - 17. J
0. 52 - 0.68
3-pata. open-vane, 316L SS
Tap waahed lequentially with
makeup water. Each noxcle
6 tot»U on 3 min. (ml 0. SJgprti/
•q. ft. } with 7 mln. ofl between
nosglei. Bottom waihed eon-
inuoualy with diluted clarified
iquor (all available water plui
neceiaary clarified liquor)
hrough 4 nozilea at 0. 4 gprn/
•q.ft.
al Total ,toich. ratio for Ca fc
MS la 1.03-1. 19 i. vg. alkali
utili.ation - 90%).
bl Total •toich, ratio fur Ca (,
Ml i, 1.24-1.78 lavg. alkali
utilisation = <,(.%>.
820-IB
4/4/78
1 37 -
High
Ye, ^^
600
21
57
13. 4 - 15. k
7.6-8.9
11.3
4.7
14.7
1.02 - 1. 1»
-------
Table E-2 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
ON THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
WITH AND WITHOUT MgO ADDITION
tun Number
Oxidizer Design
Absorbent
Scrubber Internals
System Changes Before
Start of Run
Method of Control
Run Philosophy
Results
819-1A
A single 3-inch diameter
316L SS pipe which extends to
and discharges air downward
hrough an open elbow 3 inches
'rom bottom of tank. Oxidation
ank diameter is 8 ft. Tank
slurry level was 18 ft.
with makeup water and added
to apray tower hold tank.
Four spray headers. Top 3
headers sprayed downward.
Bottom header sprayed upward.
The outlet duct from the Bcrub-
the mist eliminator, and the
trap-out tray were cleaned.
No other changes.
5. 5 + 0, 2 by lime stone addi-
tion to spray tower EHT.
ratio 5 1, 7. ) Venturi reclrcu-
lated alurry solids controlled
at 15 ± 1%. Clarified liquor
in excess of mist eliminator
wash returned to oxidation
tank. Venturi plug position
fixed to give 9 in. HZO pres-
sure drop at 35, 000 acfm gas
rate.
ability test with forced oxida-
sion standards (l.Z Ib SO
anej 0. 1 Ib partlculate per
10 Btu) and to give reliable
scrubber and miat eliminator
operation.
Sulfite oxidation averaged 98%
run averaged 86% at 2950 ppm
inlet SO , which was higher
than the 83% removal required
However, the standard was
frequently exceeded for
hours allowed by EPA regula-
tions. Average outlet mass
loading was 0. 042 gr/icf dry
(0. 021 - 0. 063 range) which
was better than the 0. 052 gr/
scf dry (at 30% excess air) re
quired to meet the standard.
Mist eliminator was 3% re-
stricted at the end of the run
(2% at the beginning).
819-1B
A single 3-inch diameter
16L SS pipe which extends to
nd discharges air downward
Trough an open elbow 3 inches
rom bottom of tank. Oxidation
ank diameter is 8 ft. Tank
lurry level was 18 ft.
with makeup water and added
o spray tower hold tank.
rour sprays headers. Top 3
leaders sprayed downward.
Bottom header sprayed upward.
No changes. No cleaning.
chiometric ratio controlled at
.6. Venturi recirculited
5+_ 1%. Clarified liquor in
excess of mist eliminator wash
returned to oxidation tank.
Venturi plug position fixed to
;ive 9 in. H.O pressure drop
at 35, 000 aclm gas rate.
ability test 819-1A. Spray
venturl inlet pH to reduce pH
and atoicMometry fluctuations.
Sulfite oxidation averaged 98%.
30OO ppm inlet SO,. The miat
eliminator was 3% restricted
at the end of the run.
820- 1A
A single 3-inch diameter
16L SS pipe which extends to
nd dtcharges air downward
hrough an open elbow 3 inches
rom bottom of tank. Oxidation
ank diameter Is 8 ft. Tank
lurry level was 18 ft.
with makeup water and added to
spray tower EHT. MgO dry fed
o spray tower EHT.
Four apray headers. Top 3
leaders sprayed downward.
iottom header sprayed upward.
Hauck reheater, and fan
damper. Switched from lime
o limestone.
5. 5 ^ 0. 2 by limestone addition
rate to the spray tower EHT.
solids controlled at 15 + 1%.
All clarified liquor in excels of
mist eliminator bottom wash
returned to the oxidation tank.
Effective liquor Mg ion cone.
>otalppm Mg++-ppm Cl' 12. 92
in spray tower controlled at
5000 ppm.
to see If good sulfite oxidation
could be achieved and whether
the spray tower could be oper-
ated in « gyp9um-un**tur«ted
mode, (cf Run 818-1A. )
Gypsum saturation in spray
100%. Average sulfit* oxidation
was 98%. SO, removal avcr-
inlet SOg concentration. The
effective Mg+t ion concentra-
tion was 5150 ppm in spray-
tower and 8410 ppm in venturi.
The scrubber was not shutdown
at the end of the run.
820-1B
single 3-inch diameter
1 6L SS pipe which extends
ank and discharges air down-
ward through an open elbow
inches from bottom of tank.
Oxidation tank diameter is
ft. Tank alurry level was
8 ft.
with makeup water and added
o spray tower EHT. MgO
ry fed to spray tower EHT.
•*our spray headers. Top 3
leaders sprayed downward.
iottom header sprayed up-
No shutdown. )
chiometric ratio controlled at
1.6. Venturi recirculated
15 1 1%. All clarified liquor
m excess of mist eliminator
Bottom wash returned to the
oxidation tank. Effective
liquor Mg ion cone, (total
ppm Mg + + - ppm Cl~/2.92
in spray tower controlled at
5000 ppm.
MgO addition except that the
150 scfm. The purpose waa
to observe whether near com-
plete sulfite oxidation could
be achieved at the lower air
rate.
Gypsum saturation In the
aged 1 05%. Ave rage sulfite
oxidation MIS 92%. SO2 re-
ppm average inlet SO2 con-
centration. The effective Mg"1"4
ppm in the spray tower and
8035 ppm in the venturi. The
mist eliminator was entirely
clean at the end of the run.
E-13
-------
Table E-2 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
ON THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
WITH AND WITHOUT MgO ADDITION
Kun number
Start-of-Rim Date
[nd-of-Hun Date
On Stream Hours
Fly Ash Loach no
McjU Addition
Venturi L/G. gal/Mcf
Spray Tower Liquor Rate, at n.4 (Tpn/sq.'t,
Ca K Mq is 1.72-1.33
(avn. aHal i utiliza-
tion - 7FP,).
b) Total stolen, ratio for
Ca ,'. MI is 1.14-1.61
(avq. alkal i utiliza-
tion = 64-.).
E22-1B
4/25/78
5/5/7B
232
High
Yes
35,000
600
21
1600
57
12.5 - 16.1
6.6 - 9.4
11.3
4.7
14.7
ClaHfler & Filter
(c)
0.96 - 1.56
W
1.10 - 2.01
(O
79
5.6 - 7.2
2200 - 3300
83 - 99
8.4
4.7 - 5.7
4.4 - 5.3
5.5 - 6.0
5.3 - 5.9
94 - 99
la 11
210
1.45
90 - 90
125
100
«,100 - 53,900
27.000 - J4.600
14.0 - 17.4
9
0.43 - 0.56
-pass, open-vane, 316L SS
nevron mist eliminator.
op washed sequentially with
q.ft.) with 7 »1n. off between
1.4 9pffi/sq.ft.
Kg Is 0.99-1.59 (a«J alkali
utilization • 78%).
d) Total stokh. ratio for Ca ft
Ho. 1s 1.J3-Z.14 (a«9. alkali
utilization . 59«).
W2-1R
5/5/78
5/10/7B
85
Ml9h
Yes
35,000
600
21
1600
57
11.4 - 15.2
4.6 - 6.6
11.3
4.7
14.7
Clarlfler & Filter
(e)
0.99 - 1.17
(f)
1.06 - 1.36
(e)
93
5.0 - 8.0
1900 - 2900
85 - 95
-7.2
4.7 - 5.4
4.2 - 5.1
5.45 - 5.6
5.3 - 5.5
96 - 99
210
1.70
60 - 89
130
110
41.300 - 48.100
26,500 - 35.300
13.9 - 15.6
9
0.41 - 0.52
3-pass. open- wane. 3161 SS
Top washed sequentially with
6 total) on 3 min. (ato.53 gpn/
q.ft.) with 7 .in. off between
iquor) through 4 nozzles at
0.4 gpm/sq.ft.
Mg s .01-1.19 (avq. alkali
utl 1x tlon • 91%).
f) Tot 1 to.ch. ratio for Ca &
Hg s .30-1.60 (avg. alkali
uti ti tton • 69t).
Note: Run 821-1A aborted.
E-14
-------
Table E-2 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
ON THE TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
WITH AND WITHOUT MgO ADDITION
Run Number
Oxidizer Design
Absorbent
Scrubber Internals
System Changes Before
Start of Run
Method of Control
Run Philosophy
Results
82n-lC
A sinqle 3-inch diameter
316L SS pipe which ex-
tends to the center of
the oxidation tank and
discharges air downward
throuqh an open elhlow
3 inches from bottom of
tank. Oxidation tank
diameter is 8 ft. Tank
slurry level was 18 ft.
Limestone slurried to
60 wt*. with makeup water
and added to spray tower
EHT. Mqfl dry fed to
spray tower EHT.
Four spray headers. Top
3 headers sprayed down-
ward. Bottom header
sprayed upward. 7 nozzles/
header.
Cleaned downcomer, venturi
return liquor pipe, Hauck
reheater shell , I.l). fan
and damper. No other
changes.
Spray tower limestone
stoichiometric ratio con-
trolled at 1.6. Venturi
recirculated slurry solids
controlled at 15 £ 11. All
clarified liquor Tn excess
of mist eliminator bottom
wash returned to the oxi-
dation tank. Effective
liquor Mq++ ion cone.
(total ppn Nq++ - ppra
CT/2.92) in spray tower
controlled at BOin ppm.
Same as previous two-staqe
forced oxidation test with
Mgfl addition except that
the air flow rate was re-
duced to zero. The pur-
pose was to determine the
base case sulfite oxida-
tion and S02 removal when
oxidation is not forced.
liypsun saturation in the
spray tower inlet liquor
averaged 907.. Averaqe
sulfite oxidation was 36*..
S02 removal averaqed 91*.
at 2750 ppm average inlet
502 concentration. The
effective Mq++ ion con-
centration was 47(10 ppm
in the spray tower and
7815 ppm in the venturi.
Tile mist eliminator was
entirely clean at the
end of the run.
822-1A
single 3-inch diameter 316L SS
ipe which extends to the center
f the oxidation tank and dis-
harges air downward through an
pen elbow 3 inches from bottom
f tank. Oxidation tank diameter
s 8 ft. Tank slurry level was
8 ft.
imestone slurried to 60 wt*
1th nukeup water and added to
pray tower EHT. MgO dry fed to
pray tower EHT.
our spray headers. Top 3 headers
prayed downward. Bottom header
prayed upward. 7 nozzles/header.
No changes. No cleaning.
Spray tower limestone stoichio-
metric ratio controlled at 1.6.
Venturi recirculated slurry
solids controlled at 15 + IX.
All clarified liquor in excess
of mist eliminator bottom wash
returned to the oxidation tank.
iffective liquor Mg++ ion cone.
! total ppm Mg++ - ppm Cl~/2.92)
In spray tower controlled at
5000 ppm.
The purpose of the run was to
observe whether S02 removal ef-
ficiency could be improved when
the spray tower bleed, which has
high liquor 503° concentration
is introduced directly to the
venturi scrubber, instead of the
oxidation tank (cf. Run 820-1A)
Average sulfite oxidation was
97*. S02 removal averaged 91X at
2750 ppm average inlet S02 con-
centration. The effective Mg-n-
ion concentration was 4895 ppm
1n the spray tower and 8110 ppm
1n the venturi. The scrubber was
not shut down at the end of the
run.
822-18
A single 3-inch diameter 316LSS:
jipe which extends to the center
of the oxidation tank and dis-
charges air downward through an
open elbow 3 inches from bottom
of tank. Oxidation tank diameter
is 8 ft. Tank slurry level was
18 ft.
Limestone slurried to 60 wtJ,
with makeup water and added to
spray tower EHT. MgO dry fed to
spray tower EHT.
Four spray headers . Top 3 headers
sprayed downward. Bottom header
sprayed upward. 7 nozzles/header.
(No shutdown.)
Spray tower limestone stlochio-
metric ratio controlled at 1.6.
Venturi recirculated slurry
solids controlled at 15 * 1*.
All clarified liquor in excess
of mist eliminator bottom wash
returned to the oxidation tank.
Effective liquor Mg++ ion cone.
(total ppm Mg-H- - ppm CT/2.92)
in spray tower controlled at
5000 ppm.
The run was made at the same
conditions as Run 822-1A except
the spray tower recirculation
slurry was turned off for 30 min.
every 8 hours to determine the
S02 removal by venturi alone.
Average sulfite oxidation was
981. S02 removal averaged 90%
for venturi and spray tower and
29% for venturi alone at 2400
ppm average inlet 502 concentra-
tion. The effective Mg++ ion
concentration was 4845 ppm in
spray tower and 7220 ppm 1n the
venturi. The mist eliminator
was entirely clean at the end
of the run.
Note: Run 821-1A aborted.
E-15
-------
Table E-3
SUMMARY OF LIMESTONE/MgO TESTS ON THE VENTURI/SPRAY
TOWER WITH BLEEDSTREAM OXIDATION
Run Number
Start-of-Run Date
End-of-Run Date
Fly Ash Loading
MgO Addition
Gas Rate, acfm 0 300°F
Spray Tower Gas Vel . , ft/sec 8 125°F
Venturi Liquor Rate, gpm
Spray Tower Liquor Rate, gpm
Spray Tower L/G, gal/Hcf
Effluent Hold Tank Residence Time, mi
Oxidation Tank Level, ft
mole S0j absorbed
Avg. * Limestone Utilization, 100 x
moles SO. abs./mole Ca added
2
Inlet SO? Concentration, ppm
Percent S02 Removal
Venturi Outlet pH Range
Spray Tower Outlet pH Range
Inlet Slurry
Percent Sulfite Oxidized in Oxidation
Tank
Air Flow Rate to Oxtdizer, scfm
oxygen/lb-mole SO? absorbed
Solids Disposal System
Calculated Avg. X Gypsum Saturation in
Scrubber Inlet Liquor 3 50°C
Oxidation Tank 0 50<>C
Inlet Liquor, ppm
Tank, ppm
Total Ap Range, Excluding Mist
Elimination System, in. H20
in. H?0
System Configuration
823-1A
5/12/78
205
High
18,000
4.8
42
1600
111
11. 0 - 15.6
11.2
18
1.63 - 3.88'a'
36<"
4.95 - 5.20
5.95 - 6.65
78 - 94
96 - 99
no '
1.55
Clarifier 4 Filter
120
115
29,400 - 33,800
27,100 - 31,300
11.3 - 12.6
0.14 - 0.23
hevron mist eliminator.
op washed sequentially with
ekeup water. Each nozzle
6 total ) on 3 min. (at
.53 gpm/sq.ft.) with 7 min.
ff between nozzles. Bottom
ashed continuously with di-
uted clarified liquor (all
vaUable makeup water plus
ecessary clarified liquor)
hrough 4 nozzles at 0.3 gpm/
q.ft.
ra) Total stoich. ratio for Ca &
Mg is 1.66-3.91 (avg. alkali
utilization = 36%}.
824-1A
5/23/78
5/30/78
159
High
35,000
21
1600
12.9 - 15.3
IS
1.53 - 3.73(b)
38
80 - 96 "
5.80 - 6.00
24 - 74
95 -99
210
1.60
Clarifier I Filter
85
90
28,500 - 36,100
26,900 - 34,500
14.6 - 17.6
0.39 - 0.62
chevron mist eliminator.
makeup water. Each nozzle
(6 total) on 3 min. (at
0.53 gpm/sq.ft.) with 7 m1n.
off between nozzles. Bottom
washed continuously with di-
luted clarified liquor (all
available makeup water plus
necessary clarified liquor)
through 4 nozzles at 0.4 gpm/
sq.ft.
(b) Total stoich. ratio for Ca &
Mg is 1.55-3.75 (avg. alkali
utilization = 38U).
825-1A
5/30/78
6/9/78
229
High
Yes ~
18,000
4.8
600
42 -
1600
111
13.4 - 16.0 ~"
11.2
18
1.20 - 1.92'c)
64
1 6.0 - 8.5 "1
1 2200 - 2800 1
92 - 98
4.0 ~
4-7 - 5-4 _^
5.3 - 6.0
27 - 51
95 - 99
110
1.60
Clarifier 4 Filter "
i 82 - 88
105
115
31,300 - 37,900
31,700 - 37.600
10.0 - 13.7
9
0.17 - 0.34
3-pass, open-vane, 316L SS
chevron mist eliminator.
op washed sequentially with
makeup water. Each nozzle
(6 total) on 3 mtn. (at
°;" gpm/sq.ft.) with 7 m1n.
off between nozzles. Bottom
washed continuously with dl
luted clarified liquor (all
available makeup water plus
"?ces"r> clarified liqbur)
through 4 nozzles at 0.3 gpn,/
TcTTotal stoich. ratio for r. i
fc.uw.ir "*"f
E-16
-------
Table E-3 (continued)
SUMMARY OF LIMESTONE/MgO TESTS ON THE VENTURI/SPRAY
TOWER WITH BLEEDSTREAM OXIDATION
Run Number
Oxidizer Design
Absorbent
Scrubber Internals
System Changes Before
Start of Run
Method of Control
Run Philosophy
Results
R23-1A
A single EHT was used for both
the venturi and the spray tower.
A slurry stream was taken from
the scrubber downcomer to the
oxidation tank with a 30 gpm re-
cycle from the oxidation tank
back to EHT. Final system bleed
taken from oxidation tank to
clarifier. Oxidizer is a single
3-inch diameter 316L 55 pipe
which extends to the center of
the oxidation tank and discharges
air downward through an open
elbow 3 inches from the bottom
of the tank. Oxidation tank dia-
meter is 8 ft. Tank slurry level
was 18 ft.
Limestone slurried to 60 wt%
with makeup water and added to
EHT. MgO dry fed to EHT.
Four spray headers. Top 3 headers
sprayed downward. Bottom header
sprayed upward. 7 nozzles/header.
Modified the system for bleed
stream oxidation. Used a common
tank EHT (D-101) for both ven-
turi and spray tower. Installed
an overflow line from oxidation
tank (0-108) to EHT (0-101). No
cleaning.
Scrubber inlet slurry pH con-
trolled at 5.2 - 5.3. Recircu-
lated slurry solids controlled
at 15 + 1%. All clarified liquor
in excess of mist eliminator
bottom wash returned to the EHT.
Effective Mg++ ion concentration
(total ppm Mg-H- - ppm Cl"/2.92)
in scrubber inlet liquor con-
trolled at 5000 ppm.
The purpose of this run was to
observe whether near complete
sulfite oxidation and good
quality solids could be obtained
with the bleed stream forced
oxidation.
Average sulfite oxidation in the
oxidation tank was 98%. SO? re-
moval averaged 94'i at 2600 ppm
average inlet $02 concentration.
The effective Mg++ ion concen-
tration was 4990 ppm in the
scrubber inlet liquor. Filter
cake solids averaged 83%. The
mist eliminator was entirely
clean at the end of the run.
824-1A
A single EH1 was used for both
the venturi and the spray tower.
A slurry stream was taken from
the scrubber downcomer to the
oxidation tank with a 30 gpm re-
cycle from the oxidation tank
back to EHT. Final system bleed
taken from oxidation tank to
clarifier. Oxidizer is a single
3-inch diameter 316L SS pipe
which extends to the center of
the oxidation tank and discharges
air downward through an open
elbow 3 inches from the bottom
of the tank. Oxidation tank dia-
meter is 8 ft. Tank slurry level
was 18 ft.
Limestone slurried to 60 wt£
with makeup water and added to
EHT. MgO dry fed to EHT.
Four spray headers. Top 3 headers
sprayed downward. Bottom header
sprayed upward. 7 nozzles/header.
Cleaned I.D. fan and replaced
I.D. fan outboard bearing. No
other changes.
Scrubber limestone stoichiometric
ratio controlled at 1.9. Recircu-
lated slurry solids controlled at
15 + 1*. All clarified liquor in
excess of mist eliminator bottom
wash returned to the EHT. Ef-
fective Mg++ ion concentration
(total ppm Mg++ - ppm CT/2.92)
in scrubber inlet liquor con-
trolled at 5000 ppm.
The purpose of this run was to
observe whether the solids
quality would deteriorate with
reduced solids residence time
in the oxidation tank (increased
gas rate and solids production
rate).
Average sulfite oxidation was
97X. SOj removal averaged 88" at
2600 ppm average inlet S02 con-
centration. The effective Mg++
ion concentration was 5215 ppm
in the scrubber inlet liquor.
Filter cake solids averaged 853;.
The mist eliminator was entirely
clean at the end of the run.
825-1A
single EHT was used for both
.he venturi and the spray tower.
ystem bleed stream was taken
rom the scrubber downcomer and
ent to the oxidation tank for
xidation before being discharged
o the clarifier. Oxidizer is a
ingle 3-inch diameter 316L 55
ilpe which extends to the center
of the oxidation tank and dis-
charges air downward through an
open elbow 3 inches from the
bottom of the tank. Oxidation
tank diameter is 8 ft. Tank slurry
eve! was 18 ft.
Limestone slurried to 60 wt*
with makeup water and added to
EHT. MgO dry fed to EHT.
Four spray headers. Top 3 headers
sprayed downward. Bottom header
sprayed upward. 7 nozzles/header.
Cleaned trap out tray, lower part
of spray nozzles and venturi plug.
*0 other changes.
Scrubber solids limestone stoichi-
metric ratio controlled at 1.4. Re-
circulated slurry solids controlled
at 15 + 1%. All clarified liquor ir
excess of mist eliminator bottom
wash returned to the EHT. Effective
^t+ 'on con<:entration (total ppm
Mg -ppmCr/2.92) in scrubber inlet
liquor controlled at 5000 ppm.
The purpose of this run was to
observe the effect of stopping the
30 gpm recycle from the oxidation
tank to the EHT on oxidation tank
pit and sulfite oxidation (cf. Run
823-1A).
Average sulfite oxidation in the
oxidation tank was 973,. S0£ re-
nova 1 averaged 955 at 2500 ppm
average inlet SO? concentration.
The effective Mg*+ ion concentra-
tion was 5380 ppm in the scrubber
inlet liquor. Filter cake solids
averaged 85£. The mist eliminator
*as 0.5% restricted at the end of
the run.
E-17
-------
Table E-3 (continued)
SUMMARY OF LIMESTONE/MgO TESTS ON THE VENTURI/SPRAY
TOWER WITH BLEEDSTREAM OXIDATION
Run Number
5tart-of-Run Date
End-of-Run Date
On Stream Hours
Fly Ash Loading
MgO Addition
Gas Rate, acfm @ 300°F
Spray Tower Gas Vel., ft/sec @ 125°F
Venturi Liquor Rate, qpm
Venturi L/G, gal/Mcf
Spray Tower Liquor Rate, gpm
Spray Tower L/G, gal/Mcf
Percent Solids Recirculated
Effluent Hold Tank Residence Time, min
Oxidation Tank Level, ft
Stoichiometric Ratio, moles Ca added/
mole S02 absorbed
Avg. % Limestone Utilization, 100 x
moles S02 abs./mole Ca added
Inlet Oj Concentration, vol. %
Inlet 503 Concentration, ppm
Percent 502 Removal
Average S02 Make-Per-Pass, m-mole/1
Scrubber Inlet pH Range
Venturi Outlet pH Range
Spray Tower Outlet pH Range
Percent Sulfite Oxidized In Scrubber
Inlet Slurry
Percent Sulfite Oxidized in Oxidation
Tank
Air Flow Rate to Oxidizer, scfm
Avg. Air Stoichiometric Ratio, Ib-atoms
oxygen/lb-mole SO? absorbed
Solids Disposal System
Solids in Sludge Discharged, %
Calculated Avg. % Gypsum Saturation in
Scrubber Inlet Liquor 9 50°C
Calculated Avg. % Gypsum Saturation in
Ixidation Tank 9 506C
Total Dissolved Solids in Scrubber
Inlet Liquor, ppm
'otal Dissolved Solids in Oxidation
Tank, ppm
otal !.f Range, Excluding Mist
limination System, in. H?0
lenturl aP (nominal), in. H20
11st Elimination System /iP Ranc-,
in. H20
list Elimination
System Configuration
list Eliminator Wash Scheme
S26-1A
6/9/78
6/19/78
246
High
Yes
26,500
7.1
600
28
1600
75
14.6 - 15.8
11.2
18
1.10 - 2.18(a)
Si"'
7.5 - 8.5
2200 - 3300
82 - 96
6.3
5.1 - 6.6
4.8 - 5.2
5.1 - 5.5
5.1 - 5.8
14 - 44
93 - 99
210
2.0
Clarifier 8 Filter
80 - 88
105
115
29,100 - 37,100
29,000 - 36,800
12.2 - 14.4
9
0.39 - 0.54
3-pass, open-vane, 316L SS
chevron mist eliminator.
Top washed sequentially with
makeup water. Each nozzle
(6 total) on 3 min. (at
0.53/gpm/sq.ft.) with 7 min.
off between nozzles. Bottom
washed continuously with di-
luted clarified liquor (all
available makeup water plus
necessary clarified liquor)
through 4 nozzles at 0.4 gpm/
sq.ft.
(a) Total stoich. ratio for Ca 1
Kg is 1.11-2. 19 (avg. alkali
utilization • «1«)
E-18
-------
Table E-3 (continued)
SUMMARY OF LIMESTONE/MgO TESTS ON THE VENTURI/SPRAY
TOWER WITH BLEEDSTREAM OXIDATION
Run Number
Oxidizer Design
Absorbent
Scrubber Internals
System Changes Before
Start of Run
Method of Control
Run Philosophy
Results
826-1A
single EHT was used for both
he venturi and the spray tower.
ystem bleed stream was taken
Vom the scrubber downcomer and
ent to the oxidation tank for
xidation before being dis-
harged to the clarifier. Oxi-
izer is a single 3-inch dianie-
,er 3161 SS pipe which extends
o the center of the oxidation
ank and discharges air down-
ard through an open elbow 3
nches from the bottom of the
;ank. Oxidation tank diameter
s 8 ft. Tank slurry level was
8 ft.
imestone slurried to 60 wt%
ith makeup water and added to
HT, MgO dry fed to EHT.
our spray headers. Top 3
leaders sprayed downward. Bottom
eader sprayed upward. 7
ozzles/header.
leaned venturi scrubber walls
n guide vanes area. No other
hanges.
Scrubber solids limestone
stoichiometric ratio controlled
at 1.4. Recirculated slurry so-
lids controlled at 15+1*. All
clarified liquor in excess of
mist eliminator bottom wash re-
tupjed to the EHT. Effective
Mg iojji concentration (total
>pm Mg -ppm CT/2.92) in scrub-
>er inlet liquor controlled at
5000 ppm.
The purpose of this run was to
observe whether the waste solids
quality would deteriorate with
reduced solids residence time in
the oxidation tank (increased
gas rate and solids production
rate) and without the 30 gpm re-
cycle from the oxidation tank to
the EHT.
Average sulfite oxidation in
the oxidation tank was 965!. SO,
removal averaged 89? at 2750
ppm average inlet S0? concentra
tion. The effective Mg ion
concentration was 4970 ppm in
the scrubber inlet liquor. Fil
:er cake solids averaged 84%.
The mist eliminator was 0.1%
restricted at the end of the ru
E-19
-------
Table E-4
SUMMARY OF FORCED-OXIDATION TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
S'art-of-Run Date
End-of-Run Dite
Fly A ah
MgO Addition
Spr.y Tower G. • V«I.. ft/.ec S I25°F
Vrnturi Liquor Rate, gpm
Venturi L/C. gal/Mcf
Recirculaled
Time, min.
Residence Time, mln.
Spray Tower Effluent Reeldence Tim*.
mtn.
Stolchlometric Ratio in Venturi Inlet
Slurry, mole* C*/mote SO;
Stoichlometric Ratio in Spray Tower
Inlet Slurry, molea Ce/moU SO;
Overall Avg. * Lime UtilUatlon. lOOx
molea SOj aba. /mole Ca added
Overall Prrcent S02 Removal
Venturi Inlet pH Range
Spray Tower Inlet pH Rang*
Spray Tower Outlet pH Range
Percent Sulflte Oxidized in Venturi
Inlet Slurry
Tower Inlet Slurry
Air Flow Rate to OxidUer, acfm
Avg. Air Stoichlometric Ratio,
Ib-atonu oxygen/lb-mole SC>2*b«orb*d
Sollda In Sludge Discharged, %
in Venturi Inlet Liquor @ 5Q°C
in Spray Tower Inlet Liquor @ 50°C
Total Dlnolved Sollda In Venturi Inlet
Liquor, ppm
Inlet Liquor, ppm
TotalAp Ranfe, Excluding Mitt
Elimination Syatem, in. H^O
VenturiAP, ii>. HjO
Miat Elimination Syatem AP Range,
in. H2O
Mlat Elimination Syatem Configuration
Miat Eliminator Waihlng Scheme
B51-1A
3/10/77
3/15/77
Yea
No
600
30
UOO
5. 6 - 6. 3
11. 3
4. 7
18
1.01 - 1.03
1.09 - 1.17
98
2700 - 3900
74 - 82
-_
4.4-4. 65
95 - 99
7 . 22
150
1.45
74 - 88
95
80
6900 - 9200
5900 - 6800
10.3 - 11,2
9
0. 24 - 0, 10
3-paaa, open-vane, 316L SS
chevron mi*t eliminator.
Top washed lequentlally with
makeup water. Each nozale
(6 total) on 4 minutca (•* 0. 53
|pm/iq. ft. ) with 76mlnutei
off between noziU*. Bottom
waihed intermittently with
makeup water at 1. 5 gpm/eq.
ft. for 6 minute* every 4
houre.
852- 1A
3/15/77
3/18/77
Yei
No
mln. (-1601
1400
6.4 - 10. 1
42
17.7
18
Clarifter d Filter
1.02 - 1.07
1.10 - 1.15
96
3000 - 3800
64 - 76
66 - 100
6 - 20
1.S5
65 - 80
lot
SO
9200 - 10.400
3500 - 4400
3. ) . 4.7
I. 7-3. 5 (Plug 1*10% open
0.23 - 0.29
3-paaa, open-vane, 116L SS
thevron miat •Umlnater.
Top waahed aaquentially with
makeup water. Each noK»le
(6 total) on 4 mlnutei (at 0. $3
gpm/iq.ft. t with 76 minute •
off between nozxlee. Bottom
waahed Intermittently with
makeup water at 1 . 5 |pm/aq.
ft. for 6 minute* every 4
houra.
853-1A
3/25/77
Ye*
6. 7
600
30
1400
13. 9 - 16.5
5.9 - 6.9
11. 3
4. 7
18
t.Ol - 1. 10
1.09 - 1, 19
95
Tz - 82
4. 3 - 5.2
7. 7 - 8. 3
4.2-5.6
94 - 99
8 - 20
150
1. 40
73 - 83
100
80
9400 • 10,600
6200 - 7700
6.1 - 7.0
4,4-5.0fPlujlOO*OD.n
0.24 - 0. 30
3-paai, open-vane, 316LSS
chevron miat eliminator.
Top waihed leouentially with
makeup water. Each nomi\m
(6 toal| on 4 mlnutea (at 0. 53
fpm/aq, ft. ) with 76 minutea
off between noatlei. Bottom
waahed intermittently with
makeup water at 1.5gpm/eq.
ft. for 6 mtnutea every 4
854- 1A
3/25/77
4/ 1/77
Yi-i
6. 7
600
70
13.8 - U.6
5. 5 - 6, 7
11. 3
4.7
ia
1.00 - 1.07
1.14 - I.U
97
2800 - 3500
4'5 - »•»
74 - 90
4.8-5.4
3.2 4.4 " '
7. 8 - 8. 3 I
5. 3 - 5.9
92 - 99
5 - 17
150
1.40
75 - 83
100
55
9000 - 11.000
5500 - 7500
10.2 - 11.2
9
0. 24 - 0. 30
3-paaa, open-wane, 316LSS
chevron miat eliminator.
Top waahed sequentially wtth
makeup water. Each noaiU
(6 total) on 4 mtnutea {at 0. 55
•pm/aq. ft. ) with 76 minute*
off between n,..U*. BottOfB
w»«h*d intermittently with
maktup water at 1. 5 gpm/*,,
f*. for 6 mlnutee every 4
houra.
E-20
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Absorbent
Scrubber Internals
Method of Control
Run Fhiloiophy
Jtrmv.lt*
8S1-1A
wi,h2l. 5 ,„=„.,„„ ..a
meter i« 8 ft.
• pray tower hold tank.
Four »pr«y header*. Top 3
prior to the run. Installed
slurry loops.
tower EHT.
oxidation ind satisfactory SO
removal.
with 78% S02 removal. Inde-
852- 1A
I,* !....„«„ .Id....*
meter is 8 ft.
• pray tower hold tank.
EHT.
removal in the vcnturi scrub
her with minimum • lurry flow
and 100% open plug.
83% and SO2 removal 70%. 0.
cf. 70°70 for Run 852-1A. Sul-
854-1A
1th 21.5 inch sides and
eter is 8 ft.
ar»y tower hold tank.
'our spray headers. Top 3
No cleaning. No changes.
5.2 +0.2 and spray tower in-
let pH at 8. 0 jt 0. 2 by separate
EHT.
9br<, with 82% SO2 removal
was 79% (cf. 78% for Run
m»lned 1% restricted.
E-21
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Rlirt Numfwr
Start-of-Run Date
End-of-Run Date
Fly Ash
MgO Addition
Ga« Rate, acfm @ 300QF
Spray Tower L/G, aal/Mcf
Venturi Percent Solid* Reclrculsted
Recirculated
Tim*, min.
Residence Tim*, min.
Spray Tower Effluent Residence
Stoiehiometric Ratio in Venturi Inlet
Slurry, moles Ca/mole SO2
Sioirhiometric Ratio in Spray Tower
Overall Avp. % Lime Ulilizatlon.
100 x mole* SO2 ab§. /mole Ca added
Venturi Inlet pH Range
Venturi Outlet pH Range
Spray Tower Inlet pH Range
Spray Tower Outlet pH Range
Percent Sulfite Oxidized in Venturi
Inlet Slurry
Percent Sulfite Oxidized in Spray
Tower Inlet Slurry
Avg. Air Stoichiomelrlc Ratio,
Calculated Avg. & Gyp»um Saturation
in Venturi Inlet Liquor @ 50°C
Calculated Avg. «H Gypsmm Saturation
in Spray Tower Inlet Liquor @ 50°C
Liquor, ppm
Total Dissolved Solids In Spray Tow«r
In]pl Liquor, ppm
Total AP Range, Excluding Mi.t
Elimination System, in. HO
Venturi *P (nominal), in, H2O
Mist Elimination System 4P Range,
in. H20
Miit Elimination
Mitt Clfminator
Wa«h Scheme
RS5-1A
n/21/77
b/Z8/77
158
No
25, 000
fi. 7
30
1400
12.9 - 16.4
6. 8 - 7. 7
n. 3
4. 7
1ft
1. 01 - 1, 01
1.11 1.1*.
9H
5.5 - 11.5
1600 - 5100
5, 2
4.4 - 5.0
97 - 99
n - 23
1.90
105
95
3800 - 4900
Z700 - 3300
11,6 - 12.2
0. 32 - 0. 3b
3-paas. open-vane. 31<>LSS
Top washed sequentially with
makeup water, tach nozzle
(6 total) on 4 mtn. (at 0. 53
Spm/»q.ft. 1 with 76 min. att
between nozzle*. Bottom
washed intermittently with
makeup water through 10
nozsle* at 1, 5 gpm/aq. ft. for
rt$*,-iA
ft/28/77
7/7/7?
209
No
6. 7
fa 00
JO
1400
70
14, 1 - JK 4
7.5-8.2
11, 3
4,7
18
1, 00 - 1. 04
1,14 1. 18
98
7,8 - 8. 5
2300 - 2700
6. 0
95 - 99
6 - 18
150
1.65
95
90
5100 - 7400
3100 - 4500
11.5 - 12,7
9
0. 31 - 0.36
3-pa,«, open-van*. 3 1 bL SS
Top washed aequentUlly with
makeup water. Each noczlr
6 total) on 4 min. (at 0. 53
Uprrt/aq. ft, ) <*ith 7*> min. off
tetwc*n noxzlei. Bottom
washed intermittently with
makeup water through 10
nozzles at 1. 5 gpm/sq. ft. for
t> min. every 4 hour*.
8F7-1A
7/7/77
nwm
128
No
25.000
6. 7
600
30
1400
70
. ... 13.4... It. 2
7. 3 - 8.4
1 1. 3
4.7
18
1. 00 - 1. 02
99
a. i - «j. 3
2500 - 2800
t. 0
*. 1 - 5.7
7. g - ft, 3
95 - 99
5 - 17
1.65
100
90
7500 . 9)00
5000 . 5800
11.4 - 12.0
9
0. 31 - 0. 35
3-pa,««, open-vane, 316L SS
Top washed sequentially with
makeup water. Each nozzle
(f> total) on 4 min. (at 0. 53
gpm/iq. ft. 1 with 7ft min, of/
between nozzles. Bottom
washed Intermittently with
makeup water through 10
noisles at 1. 5 gpm/aq. ft. for
(> min. every 4 houra.
858-1A
7/13/77
7/20/77
hZ
No
_^ . ^ No
25. 000
600
30
1400
70
6. R - B. (L
13. 9 - If,. 5
11.3
4. 7
fi
Clarif er fc FiU«r
1 . 00 - 1 , 04
1. 10 - 1,15
<)8
*.(, - 7.8
2400 . 31QO
?? - 8T
6,_0
5. 3 - 5 7
5. 3 -<..*.
6 - 21
r- n 7Z - 90
110
85
9300 - )2. ZOO
3700 - 4700
U.4 . 11.6
9
0-31 - 0.35
J-pa,s. op,n-van« 31hL SS
Chevron mi>( eliminator.
Top wa.hed sequentially »ith
makeup w.,«r, E,ch
16 tot.l| on 4 min. (., Q 55
«P"i/.q. ff, w((h 76 mlf)
between no .!... BotlQ|n
wa.hed Int rmi.t«n,iy w,(h
makeup wa *r through 10
no».1e..« . 5 tpm/il|. ft> fe
" mm- *very 4 hours.
E-22
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Oxiriiz?r Dcsipn
Absorbent
System Changes Before
Start of Run
Method of Cunt rol
Run Philosophy
Results
855- 1A
Ociagnnal spargt-r ring with
made of 3 inch MM. SS pipe
with 21. 5 inch aides and lo-
18 ft.
agitator in the oxidation tank.
from 130 1/fi in. ho It- 9 to 40
1/4 in. holes. The flue gas
was changed from with- fly-
ash to fly -a sh- free.
Venturi inlet PH controlled
inlet pH at 8.0 0. 2 by sepa-
trolled at 15 _4 1%. Clarified
tower EHT.
Sulfite oxidation averaged 98"
with 83% SO. removal and 98"
lime utilization. The average
solids in the discharge cake
was Tj^o. Vacuum filler had
due to low solids production
rate (no (ly asril and high fil-
tration rate. The scrubber
was not shut down at the end
of the run.
85f-iA
"iclagonal sparger ring with
marie of 5 inch Mt,L SS pipe
8 ft.
spray tower hold tank.
(No shutdown. !
Venturi inlet pH controlled at
let pH at 8. 0 ^ 0. 2 by separate
at 15 ^ 1%. Clarified liquor
racteristics.
Sulfite oxidation averaged 97%
with 8B% SO, removal and 98^
Ume utilization. Average
solids in the discharge cake
w*8 83%. The vacuum filter
The mist eliminator was 0, 5%
restricted at the end of the ru
857-1A
ctagynal sparger rinp with
madt- of 3 inch MOL SS pipe
8 fi.
pray tower hold tank.
No cleaning. One -half of Iht
d off with adhesive 30 the
Venturi inlet pH controlled at
ft at 8, 0 +• 0. 2 by separate
at 15 _* \%. Clarified liquor
racteristics.
Sulfile uxidation averaged 47%
with 84% SO, removal and 99?
lime utilization. Average
solids in the discharge cake
was 78%. The miat eliminate
of the run.
R^S- 1A
ctagonal sparger rin^ with
rr.ade of 3 inch 3UL SS pipe
8 ft.
•lo cleaning. No changes.
let pH at fi. 0 * 0. 2 by separate
al 8 ± 1%. All clarified liquor
and sludge characteristics.
Sulfitt- oxidation averaged 9~%
with 83% SO, removal and 98%
lime utilization. Average
solids in the discharge cake
was 81%. Filter cloth was
The mist eliminator was 0. 5%
restricted »t the end of the run.
E-23
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP-VENTURI/SPRAY TOWER SYSTEM
Run Number
Start -of- Run Date
Fly Ash
Mj*O Addition
G*s Rate, acfm $ 300°F
Venturi Liquor Rate, gpm
Venturi L/G, gal/Mcf
Spray Tower Liquor Rat*, gpm
Spray Towtr L/C. gal/Mcf
Venluri Percent So lid • Recirculated
Spray Tower Percent Solids
Recirculated
Time. min.
Venturi Doupersaturation Tank
Residence Time, min.
SloichiomttrLc Ratio in Vrnturi Inlet
Slurry, moles Ca/mole SOZ
Inlet Slurry, mo lei Ca/mole SO?
Overall Avg. % Limp Utilizaiion,
100 x moles SOg ab». /mole Ca added
Inlet Oj Concentration, vol. %
Venturi Outlet pH Range
Spray Tower Inlet pH Range
Percent Sulflte Oxidized in Venturi
Inlet Slurry
Percent Sulfitc Oxidised in Spray
Tower Inlet Slurry
Air Plow Rate to Oxldlzer, »cfm
Avg. Air Stolchlometric Ratio
Ib-atoms oxygen/lb-rnoleSO^ absorbei
Solidi in Sludge Discharged. %
Calculated Avg. % Gypium Saturation
tn Venturi Inlet Liquor @ 50«C
in Spray Tower Inlet Liquor & 50°C
Total Diiiolved Solids In Venturi Inlet
Liquor, ppm
Lnlet Liquor, ppm
Total »P Range. Excluding Mi»t
Elimination Syitem, In. HjO
VeniurtAP (nominal), in. H2O
Mill Elimination System aP Range.
in. H20
Mist Elimination
System Configuration
Mist Eliminator
Wash Scheme
359- 1A
7/25/77
115
No
No
25. 000
1400
70
12. 6 - 15.6
6. 8 - 7.6
11.3
4.7
18
1,01 - 1.06
1. 13 - 1. 18
97
7. 0 - 8. 6
5.4 - 5.6
68 - 84
2-18
135
1.20
64 - 83
95
r,0
9500 - 9900
5600 - f>700
11.5 - 12.0
9
0. 30 - 0. 34
Top washed sequentially with
makeup water. Each noazle
(6 total) on 4 min. (at 0. 53
gpm/sq. ft. ) with 7f> min. off
Between noxales. Bottom
waahed Intermittently with
makeup water through 16
noKcle* at 1.5 Rpm 'sq.ft. for
<> min. every 4 hour*.
fl5^-!B
7/25/77
No
No
25, 000
600
30
1400
70
13. 7 - 15. 3
7, 3 - 7. 8
11, 3
4,7
18
Clarlfier & Filter
I. 00 - 1. 03
I.1Z - 1. 19
99
9. 7 - 10. S
2400 - 3000
5.4 - 5.7
97 - 100
6 - 18
ISO
l.SO
10S
90
9400 - 10, 000
6100 - 7000
11. 5 - 12. 9
9
0.28 - 0.32
3-paia, open-vane. 316LSS
Top wa»hed sequentially with
makeup water. Each nocste
(6 total) on 4 min. (at 0. 53
gpm/sq. ft. 1 with 7f> min. off
Between notttei. Bottom
waihed Intermittently with
makeup water through 10
noazlei at 1. 5 gpm/aq. ft. for
< min. every 4 hour*.
ft59-lC
120
No
No
25,000
600
30
1400
70
34, 0 - Jfc. 2
f>. 9 - 7. 7
11.3
4. 7
18
Clarifier b Filter
1. 02 - 1. 07
1.13 - 1. 17
9ft
6.4
5. 3 - 5. 7
4.4 - 4. 7
58 - 79
14 - 26
100
1. 0
64 - 77
105
90
9100 - 11, 100
6400 - 6900
11.6 - 12.4
9
0. 30 - 0, 31
3-pass, open-vane, 316L SS
chevron mist eliminator.
Top washed sequentially with
makeup water. Each noixle
(h total) on 4 min. (at 0.53
gpm/«q. ft. ) with 76 min. off
befween nozsle*. Bottom
washed Intermittently with
makeup water through 10
nozcles at 1. 5 fjpm/sq. ft. for
(• min. every 4 hour*.
859-lD
a/2/77
72
No
No
. 25.000
600
30
1400
70
14. 1 . 14. A
6. (i - 7. 5
1 1. 3
4.7
18
1.08 l.M
1.15 - 1.11
90
7. 0 - 9.0
5.3 . 5.6
4.4 - 4.8
7. •) - 8. 1 '
ZZ - 98
3 - 17
0
0
115
50
10,000 - 10,500
5200 - 6ZOO
11.5 - 1Z.O
9
0.30 - 0,32
3-p»... op«n-v«n«. 3UL 55
eh.vron ml.l ellmln.!,,,.
Top w.,h,tl.lly wllh
m«ko,p w,«r. E.^ „;.,,,"
(*> tot»l| on 4 mln. (at 0 55
n"n/>q. (I.I wllh 76 min. on
b«h«" n°««U.. Bottom
wtihtd Imermltumly vlth
m»keup ».l«r through 10
"««l««tl.!|pn,/.,.ft. ,or
A min. «v«ry 4 hourl.
' .
E-24
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Absorbent
Scrubber Internals
System Changes Before
Star! of Run
Method of Control
, —
Run Philosophy
Results
859-1A
bottom side. Sparger i-ing
made of 3 Inch 3!M, SS pipe
om. Oxidation tank diameter
was IS ft.
wlih makeup water and added
7 nozzles/header.
No cleaning. No changes
culated slurry solids controlled
at H _+ 1%. All clarified liq-
EHT.
8S9-1A through 85Q-1D) to
test ihe effect of air flow rate
lo the sparger on sulfite oxida
for complete oxidation.
At 135 scfmiir flow, sulfite
oxidation averaged 76% and
solids in the filter cake aver-
aged 74%. SO, removal aver-
aged 9Z% and time utilization
averaged 97%. The mist elim
nator was not inspected at the
end of the run.
859-1B
oltom side. Sparger ring
made of 3 inch 316L SS pipe
om. Oxidation tank diameter
was 18 fl.
with makeup water and added
spray tower hold lank.
Four spray headers. Top 3
7 nozzles/header.
(No shutdown. 1
culated slurry solida controller
at 15 + 1%. All clarified Hq-
EHT.
Ing air rate. Test conditions
identical to Run ft5?-lA.
At 150 scfm air flow, sulfite
oxidation averaged 99% and
solids in the filter cake aver-
aged 78%. SO, removal aver
aged 92%. Lime utilization
averaged 99%, The mist eli-
minator was not Inspected at
the end of the run.
8S9-1C
mttom side. Sparger ring
made of 3 inch 31bL SS pipe
om. Oxidation tank diameter
was 18 ft.
with makeup water and added
spray tower hold tank.
Four spray headers. Top 3
7 nozzles/header.
(No shutdown. )
culated slurry solids cantroUec
at 15 ± 1%, All clarified liq-
EHT.
air rate on sulfite oxidation.
At 100 scfm atr How, sulfite
oxidation averaged o9% and
solids in the filter cak aver-
aged 71%. SO- removal aver-
aged 92%. Lime utilization
averaged 96%. The mist eli-
minator was not inspected at
the end of the run
859-1D
Octagonal sparger ring with
ottom side. Sparser ring
made of 3 inch 316L SS pipe
om. Oxidation tank diameter
was 18 ft.
with makeup water and added
pray tower hold tank.
Four .pr.y h..d«,,. Top 3
No shutdown. )
culated slurry solids controlled.
at 15 + 1%. All clarified liq-
EHT.
of sulfite oxidation (no air
flow to the air sparger) of ihe
scrubber system.
With the air sparger turned
off. sulfite oxidation averaged
30%. Solids in the filter cake
averaged 55%. SO removal
averaged 93%. Lime utiliza-
tion average 90%. The migr
eliminator was clean after 24
hours. It was not inspected
at the end of the run.
E-25
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Start-of-Run Date
Fly A eh Loading
rfgP Addition
Oaa R*t«. acfmG 300°F
Spray Tower Gae Vel. ( ft/eec 0 125°
Venturl L/C, gal/Me/
Spray Tower Liquor Rate. «pm
Vanlurl Percent So lid I RecircuUted
Rtclrculated
Time, mln.
Raeldenee Tim*, mln.
Sprey Tower Effluent Reildenc*
Time, mln.
Slurry, molt* Ce/mole SO2
Stolehtometrlc R»tlo in 9p»y Tower
talet Slurry. mo lei C«/mol« SO2
100 x molee SO2 abe. /mole Ce added
inlet SOz Conc.ntr.tion. ppm
Overall Percent 3O2 Remove)
Aver... 502Mak.-P.r-P....m-mol./
Venturi Inlet pH Renje
Sprey Tower Outlet pH Re me
Percent Sulflte Oxldlaed In Venturl
Inlet Slurry
Tower Inlet Slurry
Ur Flo* Rtte to Oxldtser, •cfm
Ib- « torn* OKygen/lb-moleSO2*bBOrbe<
Calculated Avg. % Gypeum S»tur*tlC
Total Dleeolved Solid* In Venturl
Inlet Liquor, ppm
Tott) D(i»olv.d Solid* In Spr»r Tftw.r
Inlet Liquor, ppm
EllmlAAtlon Syitem, In. H2O
In. H2O
Syetem Conflfur»tlon
Mlit Eliminator
W«*h Scheme
84.0-1A
8/ 5/77
133
Low
No
zs.ooo
6.7
30
1400
70
1Z.4 - 16,5
6. 3 - 7. 7
11.3
4.7
12.6
1. 00 - l.OZ
1. 16 ' t.ZO
99
7.7-8.5
5. 3 - 5,7
97 - 100
5 - 15
150
1.75
100
70
10, 700 - 14. 400
5900 - 7300
11.5 - 12.2
0. 30 - 0. 33
dWvron mill eliminator.
makeup water. Each itatale
6 total) on 4 mln. (at 0. 53
|pm/«q. ft. > with 76 mln, off
etwevn noeelee. Bottom
w**h*d Intermittently with
makeup water through 10 noailei
t 1. 5 fpm/eq. ft. for f> mln.
very 4 houri.
8M-IA
10/ 6/77
10/11/77
117
Low
No
30
1400
7. 0 - 7. 5
11.3
4.7
U
1. 00 - I, OZ
1.1Z - l.ZQ
99
8.0-9.3
97 - 99
13 - Z5
150
1.50
95
90
14,400 - 16, 000
8,600 - 10.400
10.9 - 13.5
0.27 - 0. 32
chevron mitt eliminator.
makeup water. Each noeile
6 total) on 4 mln, (at 0.53
gpm/iq.ft. ) with 76 mln. off
jetween no «»!«•. Bottom
waehed Intermittently with
makeup water through 10
noeilei at 1. 5 §pm/»q, ft. fr>r
mln. every 4 hour*.
8U-1A
10/11/77
Hifh
3%, 000
9. 4
Zl
1400
r4. 3 - 15. fe
15. 5 - 19. 1
11.3
4.7
18
1.00 - 1,05
1,09 - 1.11
98
6. 1 - 9.1
"575
5. 3 - 5. 7
7,8-8.2
95 - 99
U - 22
112
1,65
105
8^
H, 100 - 18,500
6.200 - 8.400
14.5 - 16. Z
0, 55 - 0.64
3-pae*. open-v»ne. 316LSS
chevron mi»t eliminator.
makeup water. Each noade
6 total) on 4 mln. <*t Q. 5J
gpm/»q.ft, } with 76 mln. of/
between no««l«,. Bottom
waihed Intermittently with
makeup water through 10
naiilei at t. 5 gpm/tq. ft. for
i mln. every 4 hour*.
863-1A
12/16/77
779
High
18.000 - 35.000
4.8-9.4
21 - 42
1600
57 - 111
8. 9 - U. 9
11.3
4.7
14.7
1.00 - 1. 05
1.04 - I. 1ft
98
7.2 - M.5
4 - 10
5.2 - 6. Q
7.5 - 8.j "
4.9-5.3 ™
93 - 100
10 - 32
210
1.40 - Z.75
105
100
17. ZOO . 19.800
10.200, 12.600
4.9 - 16.2
0.06 - 0.61
3-paa.. open-van.. 316L S3
chevron mlet eliminator.
Top wa.hed ee^MMIilly with
makeup w.,,r. Each noa.l.
6 tot«l>on4rr,in. (at 0.51
Ipm/.q.f,.,wtth76mlB off
between nonto.. Bottom
we.hed intermittently «(ni i0
»•«!•• with m.k.«p „».,.•
The notil*. areon 6 mln
«v.ry4hour. (.tl.Sgpm/ao..
E-26
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
Oxidl*er Design
Absorbent
Scrubber Internal*
System Change i Before
Start of Run
Method of Control
Run Philosophy
Results
860- 1A
0 1/4 inch diameter hole* on
( 3 Inch 31&L SS pipe with 21.5
rom tank bottom. Oxidation
lurry level was 18 ft.
Lime ilaked to 20 wt. % (lurry
with makeup water and added
ower hold t»r\k.
7no,.leB/header.
No shutdown. )
Venturi inlet pH controlled at
at 15 ± )%. All clarified liquor
returned to ipray tower EHT,
occur at 7 ft k leu spray tower
EHT level (12,6 mln. residence
time). Previous oxidation teata
were mtd« at 10 ft 9 In, level.
Pump suction point wai lowerec
during April-June 1977 boiler
• •me ai Run 859-1B.
Spray tower bleed pump oper-
ated without cavlUtlon problem.
Overall SO. removal averaged
95% and aulflte oxidation aver-
aged 99%. Overall Ume -utilisa-
tion averaged 99%. Miat elimi-
nator wai 0. 5% restricted.
861-1A
316L SS pipe which extend* to
and discharge* air downward
from bottom of tank. Oxidation
• lurry level was 18 ft.
Lime alaked to ZO wt% I lurry
with makeup water and added)
•pray tower hold tank..
ward. 7 nozzle t /header.
Octagonal sparger ring with
40 1/4 Inch diameter holes
diameter pipe that discharges
air downv-ard 3 Inches from
bottom of oxidation tank
through an elbow. The areaa'
above the mitt eliminator, out-
let gai duct to reheater, and
trap-out tray were cleaned.
Venturi Inlet pH controlled at
fled liquor returned to apray
tower EHT.
could be * tW«v*d with a stagl
3 Inch air plp« (ef. Run
857-JA with an air sparger
ring).
Avera.ge sulflte oxidation re-
mained high at 98% let, 97%
for Run 857- 1A) with 99%
lime utilisation and overall
S02 removal of 9*%. The mlt
eliminator wa« 1% restricted
at the end of the run.
862- 1A
• Ingle 3 Inch dUmctcr
16L 55 pipe which extend* to
nd discharges air downward
rom bottom of tank. Oxidation
lurry level was 18 ft.
Lime slaked to 20 wt% slurry
with makeup water and added
pray tower hold UnX.
ward. 7 no**lesfheader.
The flue gas was changed from
ow fly a«h loading to high fly
Venturi Inlet pH controlled at
tied liquor and excess of mist
eliminator wash water re-
tm-Md to o»ld^tion frnk.
•c*Ungby Increasing spray
Also, to observewhethemear
complete aulflte oxidation coul
be achieved ustng the 3 ir.ch
air pipe at a higher. ga.« r«.t«
(35. 000 acfm) and higher air
now rate to oxldlier (210 scfm
Sulflte oxidation averaged 971
with 98% UTT.C utl\li»tlon and
and overall SO- removal of
85%. The apr*y tower Inter-
nals showed a alight gt>ln In
white scale at the end of the
run, but the scale probe showe
cycling seal* formation and •
dissolution throughout the run
The milt eliminator waa 1.5%
restricted at the end of the run
863-1A
• ingle 3 - inch dlamete r
6L SS pipe which extend* to
urry level wa* 18 ft.
ime slaked to 20 wt. % slurry
Ith makeup water and added to
wer hold tanV.
m»a\ei/he*der.
leaned outlet duct from >pray
tower to the ID fan, fan damper,
ie mist eliminator- No other
bangei.
Venturi inlet pH controlled at
ill ctar. Uqwor and excess of
ME waeh water returned to
sorav tower EHT and oxid. tank
Test conditions wer* selected to
(1. 2 Ib SO, and 0. 1 Ib particu-
late per 106 Btu) and to give
reliable ic rubber ftnd mist
eliminator operation.
Sulfite oxidation averaged 97%.
SO- removal lor eutlrt run
averaged 88% at 2950 ppm inlet
SO,, which waa higher thanthe
84% required to meet the emis-
sion standard. However, the
standard was frequently ex-
ceeded for periods greater than
the 3 hours allowed by EPA re-
|ularlons. Average outlet mass
loading was 0. 04 b gr/scf dry
0.034-0,059 range) which was
better than 0.052 gr/scf dry (at
30% excess air) required to
meet th* standard. The mlai
elimlnsuor was entirely clean
at the end of the run.
E-27
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
End-of-Run Dele
Fly Aih Loading
Gae R«t«. acfm @ 300°F
Venturi L/C. gal/Mcf
Reclrculated
Time, mLn.
Venturi Deaupereaturatton Tank
Residence Time, mln.
Spray Tower Effluent Hold Tank
Rcaidence Time. mln.
Slurry, mole* Ca/mole SOj
Inlet Slurry, mole* CWmole SO2
Overall Avg.% Lime Ullllaalion.
100 « molt* SO2 aba. /mole Ca added
Inlet OZ Concentration, vol. %
Overall Percent SOj Removal
Spr»y Tower Inlet pH Range
Inlet Slurry
Tower Inlet Slurry
Ib-atom* oaygen/lb-mole 5O2 absorbed
in Venturi Inlat Liquor 0 50°C
In Spray Tower Inlet Liquor 6 SO»C
Total Dleeotved Sollda in Venturi Inlet
Liquor, ppm
Total Diaeolved Solida In Spray Tower
Inlet Liquor, ppm
Elimination Syatem. In. r^O
diet Elimination Syatem 4P Range,
In. H2O
iyatem Configuration
rliet Eliminator
Wa »h Scheme
864- 1A
1/20/78
1/25/78
115
High
9.4
600
1600
57
15.2 - 16.6
9. 1 - 9. 9
II. J
4.7
14.7
Clartfler 4 Filter
1.00 - 1.03
1.11 - 1. 15
99
5.35 - 5.75
97 - 99
18 - 30
1.75
100
100
18,900 - 20,300
11.900 - 12, 700
13.9 - 16.7
0.48 - 0.68
chevron miet eliminator.
Top waihed aequcntially with
makeup water. Each noaale
(6 total) on 4 mLn. (at 0. 53
gpm/aq. ft. ) with 76 min. off
between noaale •. Bottom
wifhed Intermittently uilng
10 noxale* with makeup water.
The noialea are on 6 mln.
• very 4 hour! tat 1.5 gpm/iq.
ft. 1
865-1A
1/25/78
High
No
9.4
1600
14.0- 16.8
9.0 - 11.2
6. 3
4.7
14. 7
1.01 - 1.04
1. 07 - 1.13
9S
6.8
5.3-5.9
80 - 98
18 - 34
2.10
100
95
14,200 - 15,900
9300 - 10, 100
13.8 - 16.2
0.56 - 0. 78
hevron tniat eliminator.
Top waihed eequentielly with
makeup water. Each no»le
6 total) on 4 min. (at 0.53 gpm/
q. ft. ) with 76 mln. off be-
ween noiilea. Bottom waehed
ntermittently with makeup
water through 10 nozilei 91.5
pm/aq. ft. for 6 minute* every
houra.
Sfct-lA
2/14/78
159
High
9.4
1 14.3-16.7
8.7 - 11.1
6.3
4. 7
14.7
1.01 - 1.03
l.OS - 1.25
98
5.0 - 8.4
7.0
5.1 -5.9
81 - 99
20 - 31
2.9!
9!
90
14, 100 - 15,900
8600 - 9800
15.3 - 17.6
9.0
0.61 - 0.75
chevron miat eliminator.
Top waehed lequentlally with
makeup water. Each nocale
(6 totallton 4 min. (at 0. 53
gpm/iq. ft. ) with 76 min. off
between noatlea. Bottom
waahtd Intermittently with
makeup water through 10
noaalea @ 1.5 gpm/eq. ft. for
6 minute* every 4 houri.
867-IA
2/21/78
2/27/78
137 ~
High
UJUlfl
-ii
600
21 ~~~ ~
1600
".» - u-»
9.8 - 13.8
8.8
4.7
14.7
1.00 - 1.02
1.10 - 1.14
99
». 5 - 9. «._ ~
1400 - 3200 ""
*" ' **
t.5
* » - * «
4- 05 - 4. 7
L ?. 5 - 8. 1 — J
97 - 99
16 - 2]
1.80
90
85
' "— ^__
1Z.900. u. inn
1S.4- 17.2
. »• '<> - 0. .2
chevron mlet eliminator.
Top waahed .e,».n,Ul|y „,„
makeup w.r. E.,.,, »JJ»»
(t total) on 4 ml». (a, 0. £
gpm/ao/fi. ) .in, 7S mu "
between noa.l... Bottom
waehed Intermittently will.
makeup water throufh 10
f0"1" •«•»•«»/.,. ft. fc,
6 mlnutea every 4 knar..
E-28
-------
Table E-4 (continued)
SUMMARY OF FORCED-OXIDATION LIME TESTS ON THE
TWO-LOOP VENTURI/SPRAY TOWER SYSTEM
Run Number
OxidUer Design
Absorbent
Scrubber Internals
System Changes Before
Start of Run
Method at Control
Run Philosophy
Result*
864- JA
IfaL SS pip* which extends to
nd discharge* air downward
trough «n open elbow 3 inches
rom bottom of tank. Oxidation
ink diameter IB 8 ft. Tank
lurry level w* • Id ft.
Lime iltked to 20 wt. %
'our spray headers. Top
headers sprayed downward.
nozzles/header.
Jo changes. No cleaning.
5. 5 + 0. 2 and spray tower inlet
pH at 7. 8 + 0. 2 by separate
• lurry •olid" com. at 15+ 1%
ind tpray tower's at 8-11%, Al
elsr. liquor and excess of ME
tower EHT and oxid. tank.
Thi
with 18 ft oxidation tank level
for comparison with the suc-
ceeding runs, in which the oxi-
dation tank level was dropped
to am low «s 10 ft to observe th
effect on sulflte oxidation.
Sulflte oxidation averaged 98%
at 18 ft oxidation tank level and
1.75 air stoichiometrtc ratio.
Average SO^ removal was 94%
• t 2250 ppm average Inlet SO^
concentration. The scrubber
ivai not Inspected (no shutdown
H the end of the run.
865-1A
16L SS pipe which extends to
nd discharges air downward
i rough «n open elbow 3 inches
rom bottom of tank. Oxidation
ank diameter ia 8 ft. Tank
lurry level was 10 ft.
Lime slaked to 20 wt%
pray tower hold tank.
7 nozzlei/header.
to 10 ft from 18 ft. No ctean-
ng.
5. 5 i 0. 2 and spray tower inle
pH »t 7. 8 _+ 0, 2 by separate
slurry solid* cont. at 15 _+ 1%
and spTay tower's »t B-H%.Al
clar. liquor and excess of ME
tower EHT and oxid. tank.
b h
file oxidation could be achieved
with 10 ft Blurry level in the
oxidation tank. Other teat con-
864-lA.
Sulfite oxidation averaged 89%
at 10 ft oxidation tank level an
2. 1 air stolchtometric ratio,
SO- removal for the run aver-
aged 89% at 2300 ppm lnl«t SO
concentration. The mist ellmi
end of the run.
866-1A
ifcL 55 pipe which extends to
nd discharges *ir downward
iro ugh an open elbow 3 Inches
rom bottom of tank. Oxidation
nk diameter is 8 ft. Tank
lurry level was 10 ft.
Ime slaked to 20 wt%
lurry with makeup water and
pray tower hold tank.
note lea /header.
leaders cleaned. No other
changes.
5. 5 _* 0, 2 a,tid spray tower Inlet
pH at 7. 8 ^ 0. 2 by separate
slurry solids cont. at 15 _+ 1%
and spray tower's at ft-l}%.AH
clar. liquor and excess of ME
tower EHT and oxid. tank.
ilete sulfite oxidation could be
achieved at 10 ft slurry level
in the oxidation tank and with
350 scfm.
Sulflte oxidation averaged 90%
at 10 ft oxidation tank level and
2.95 air stolchlometric ratio.
SO, removal for entire run
averaged 94% at 2200 ppm ln\e
SO concentration. The mist
at the end of the run.
867-1A
A single 3-inch diameter
3HL SS pipe which extends lo
and discharges air downward
through an open elbow 3 inches
from bottom of tank. Oxidation
tank diameter i* 8 ft, T»nk
slurry level was 14 ft.
Lime slaked to 20 wt%
slurry with makeup water and
and spray tower hold tank.
Four spray h«»der«. Top 3
raised to 14 ft from 10 ft.
Spray tower slurry nozzles
cleaned.
5. 5 + 0. Z »nd spray lower inlet
pH ii 7. 8 ± Q.2 by separate
slurry solids cont. at 15 ^ 1%
and »pr»y tower1' *[ 8-11%. All
cUr. liquor and excess of ME
tower EHT and oxid. tank.
oxidation tank level (14 ft) and
lower air rate (210 scfm) on
sulfite oxidation.
Sulflte oxidation averaged 98%
at 14 ft oxidation tank level and
1. BO air stoichlome^rtc ratio.
SO2 removal for entire run
averaged 89% at 2)00 ppm inlet
SO- concentration. The mist
at the end of th« run.
E-29
-------
Table E-5
SUMMARY OF FLUE GAS CHARACTERIZATION TESTS WITH
LIME ON THE VENTURI/SPRAY TOWER SYSTEM
Run Number
Siarl-of-Run Dare
End-of-Run Date
On Stream Hours
Gas R»te. acfm @ 330°F
Spray Tower Ga* Ve!., fpa @125°F
Venturi Liquor Rate, gpm
Venturi L/C , gal/mcf
Spray Tower Liquor Rate, gpm
Spray Tower L/G, gal/mcf
Effluent Reildence Time, mtn.
Solid* Disposal System
Stoichiometrlc Ratio, moles C»
added /mole SOj absorbed
Avg % Lime Utilization, 100*
mole* SO^ aba. /mole Ca added
Inlet SO2 Concentration, ppm
Percent SO; Removal
Scrubber Inl«t PH Range
Scrubber Outlet pH Range
Inlet QI Concentration, vol %
Percent Sulfur Oxidized
Loop Closure, % -Solids Diachg.
Calculated Avg % Sulfete Satur*Io
in Scrubber Inlet Liquor @ 50°C
Total Dissolved Sollda, ppm
Total AP Range. Excluding Miit
Elimination System, in- HjO
Venturt AP, in. H^
Mlat Elimination System
AP Range, In. HgO
Miit Elimination
System Configuration
Absorbent
Mitt Eliminator
Washing Scherne
Scrubber Internal!
System Changei Before
Start of Run
Method of Control
Run Philosophy
Result*
VFG-1P
11/27/76
12/4/JA
157
55,000
9.4
min. (^140)
5
MOO
50
7,5-9, 1
12
Clarlfier t> Filter
1. 10-1. 16
88
2600-3800
58-72
7.85-8. 15
4.5-4.85
5-7.3
2-16
55-60
55
6900-8000
5,7-9.3
1.4-S. 7 (Plug 100? open)
0.35-0.42
3-paas, open-v&ne, J16L SS
chevron mist eliminator.
Lime slurrled to 20 wt,%
with makeup water and
added to «c rubber downcom«r.
makeup water, Each nocale
6 toUU on 4 mtn. (at 0. S
washed with makeup water at
1 hours.
•prayed downward*. 7 no*«u«y
No change a. No cleaning.
c rubber inlet liquor pH
ontrolled at 8. 0 ^ 0. 2.
'o observe the effect of «pray
owe r- only operation (min.
lug 100% open } on flue gas
haracteri sties at the inlet
cf. Run VFG-1C).
et SO 2 concentration 1200
pm. Sulfate saturation aver-
ted 55%. Mist eliminator
as entirely clean at the
nd of the run after a total
)47 hours of operation with-
ut cleaning.
VFG-IQ
fc/lf./77
(•/20/77
70
35, 000
9. 4
0
0
1400
50
14. 4 - 15.5
Id
Clarifier
1. 10 - 1. 15
89
2200 - 2700
fit - 69
7. 7 . 8. J
8.5 - 9. 2
1 - 17
10
1000 - 1E>00
6.6-7.2
2,2-2.8 (Plug 100% open)
0.62 - 0.6ft
3-pan, open-vane, J16LSS
c ran tor.
Lime slurrled to 20 *t% with
EHT.
makeup water. Each noxale
(6 total) on 4 min. (at 0.53
gpm/sq. ft. ) with 76 min. off
washed Intermittently with
for 6 mln. every 4 hours.
headers iprayed downward.
No changes. No cleaning after
air/slurry testing durinf April-
June 1977 Boiler No, ] 0 outage
• I 8, 0 + 0.2.
To determine th# paniculate
removal efficiency of spray
venturil when operating with
ly lih-O** flue ga».
2. 5 in. H,O pressure drop and
a believed to hav* «i(inl/lcant.
y affected
-------
APPENDIX F
GRAPHICAL OPERATING DATA FROM THE
VENTURI/SPRAY TOWER TESTS
F-l
-------
If
8i'
' •/ ...
. ,
; "
•o HH»
t Iti I i. I no I MI I Ml (111 I 114 I i'i 1
CAktNOAH O*V I1»TJ
fill ;;[ -w i...^^-~~
\ X.yv
« 5 * % 10
r '" .
ill!
*s «•
si
5 „ *
s ill
m..
/•-^-/-^
Gas Hate 25,000 acf m 9 300° F
Spiay Tower Git Velocity B.7 ft/»c
Liquor Rale to Ventun = 400 gpm
liquor Rite to Spray Tower = 1300 gpm
Venluri L/C '- 20 gjl/Mcl
Spray Tower L/G = 65 (jal/Mct
No, of Spray H«(*in =• 4
Rasidenct Times
Spny Tower Hold Tank = 19.4 mm
OxidilionTgnk = 17 mm
Oetupertatufition Tank - 7 mm
Sol'dift0c «» t i n" I'M I . » I '.. I
Figure F-l. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 801-1A
F-2
-------
Gai Rate = 26,000 aclm P 300° F
Spray Tower Gis Velocity = 6.7 ft/sec
Liquor Rate to Venturi = 400 opm
Liquor Rate to Spray Tower = 1400 jpm
Venturi L/G = 20 gal Met
Spray TDWM L/C = 70 B»l/Mcf
No of Spriy Haiders = 4
Residence Times:
Spriy Tower Hold Tank = 18 min
Oxidation Tank = 17 min
Disup>rtaluration Tank = 7 min
Solids fiecircul*ted, Venturi Loop - 124168*1%
Solids R«ircul*tBd, Spray Tower Loop - 4,6-7,6wt%
Venturi Prtsture Drop = 9 in. HjO
Total Prwiuft Dtop. Excl Mill Elim.
= 10.4 11.2 in. HjO
Mist Ehm. Pressure Drop • 0.20-0.34 in. H^O
Air F low Rate to Ox idirer = 400 scfm
Diichtrga (Clirifier& Filttr) Solids
Concentration = 82-90 wt %
Limestone Addition to Spray Tower EHT
Clarified Liquor Returned to Spray Tower EHT
s-
tsT
40 *0 IK) '*> TOO 240 IK 3W
, M I i » I < » I i >• I i n I i 10 I i Ji I 11 I a t I IT f7« I j.s I M I !
< .4
Ifil „
3> u "•*
hi*
in . .
« .• ••
1000
..1 "•
}l| ;:
-1°
- »«»
1 000
* 9 1) • '01AV DISSOLVIO SOLIDS
. * .•••....••• • a """""<"
^ •• * CMlOfllDS ICI 1
• • O MAGNESIUM!*.,")
• A
* V C*LCIU« (C«"l
7 4 A i4 NOTt SrECIlSMHOU AVERAGE
^ CONCENTHATiONSANE LtSS ^
4l A A*4^AA*A ^LOTTID
•Da D°°ao9ga DD°D° QoaaaafifeD°Ol59
AA^OOA^ O^OO^^A^^^^^^ ^
"O00o0ooooo0oooooo0oo°oo0o0ooooo0
4000
1000
'000
.«»
4.000
1000
JOM
VOOO
0
40 ea uo tio »a )«a no uo
TIST TIMt twu t ;•••< 1 I'
Figure F-2. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 802-1A
F-3
-------
G« flm • 25,000 icfm • 300° F
Spay Tnm Gn V«oe,ty - ft 7 ft/He
Liquor. "«• <° Vmtufi • 600 win
Liquor Rlti to Spmy Tow«c • 1400 fpin
VitnuriL/G-ttid/Mef
St>nvTo«irL/G>ra|il/Mcf
No.otSpnyNMdm-1
RlMinciTiimi:
Spny TUMI HoU Tmk • II min
0>id«lonTint-1t.3nihi
DtwpcrMumtion tank • 4.7 min
SoMflKiitulMd. Vnmiri (Me • 13.4-ltlMK
1 SllKltciil«Ml,SpilvTllMrLMw4.ML3MK
Vmuri rnrnn Drop * I in. H.O
Toal rnmm Drip, E»d MM film.
•10.1-11.3 in. H.O
Mitt Eltoi. Fnwn D»p • 0 JM 30 in. H,0
1 AkFliwIIMiuOiUiai-MOKfm
Ctnewitrrto*-7745*1*
it UnwtmAddttioii to Spray TMwEHT
CtonfMUquw (Uturwd to Spr* T««r EHT
TOT YMf. hwn
I M I w I I/M I i/ii I 1/12 I 1/1> I VM I x/ii I 2/w I 1/iT I i/u I i/it I i/ie I mi I uu I im I
CALINOM OAV im
D •ULFATf tlO/h
A CNiomiof ten
O MAaiMMUW IH|*'I
0 CALCIUM IC«")
MOTI mcilt WHOM AVf *UM»
CONCf NTftATKNM AMC LIU
FHAM Hi PIM ANI MOT
FVOTTIO
I » t M I VT I 1« I » I VW I Vlt I I/T1 t VII I VI4 I .VII I 1/M t 1/17 | }/)• I l/t« I t/» I l/l* I 1/23 I I/H I
CALEMOAH DAY I It 77)
Figure F-3. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 803-1A
F-4
-------
!}
51
-I «.OM
- 3 WO
Gw Roto - 25,000 ocfm * 300° F
Spray Towtf Get Volocity - 6.7 ft/K
liquor Ritt ID Vinturi * 600 gpm
Liquor Ritt to Spny Tower « 1400 gpm
Venturi L/C - 30 pjl/Mcf
Spray Towtr L/G = 70 9^/Mcf
No. of Spnv HMttert = 4
Rwidtnci Tirnti:
Spray Towir Hold T»nk * 18 mm
Oxidotion Tank *• 11.3 min
DnupMttluration Twik * 4.7 min
Solidt Roeirtulitod, Vonturi Loop " 13.2 16.6 wt %
Solidi Roeirtulittd, Spny Towtr Loop - 5.9-8-9 wt*
Vtnturi Pronurt Drop - 9 in. HjO
ToulPnwraDrop, Excl. Mnt Elim.
. 3S1t 2m. H20
Mtst Elim. Pnoura Drop - 019 0.37 in. HjO
Air Flow Ratito0xidiz*r*400ictm
Diiehwi. ICIvrfitr & Filttf) Solidi
Conctntration>7991wt*
LimMQM Addiinn to Spnv Towtr EHT
dtrifrtd Liquor Ritumtd 10 Spray Ttwwr EHT tnd
Oxidation Ttnk
Tf IT TIME, town
I i/M I MI I ini I I/M \ I/is I 1/11 I im I 1/11 I i/i» I 1/10 1 1/11 I 1/11 I i/jj I I/M I i/» I j/» I I/IT I i/a ) ft I
CALCMDAMOAVI1ITT)
A
if-
8 "
o « 5
II
5
11.000
11,000
10.000
0.000
..J
I.OU
.000
too.
1,000
1,000
0
* 0 • TOTAL DISSOLVED K>ILD01
* * ^ O (ULFATE l«04-|
*•()•••.» A CHLOftIM (Cl 1
• O MAOMCSIUM IMf**l
0 CALCIUM IC***I
r IfOtl OFtCIKWHOKAVfHMC
AAA COMCINTNATIONS AJIt LIK >
A . A » * A TMAMMOpp* AN! NOT
AA * ** * W.OTTCO
1 AA *
A
00
&DD8S8a9DaaS d6g^2fi6
bo ooooo°°°o GOOOO°OO
O
1_ 1 U »J 1 1 — .... i . | L i ,
11.00*
11001
10.000
,.«
•.000
s.ooo
4.000
1000
i.oao
t.ooa
«
I 1/11 I 1/12 I 1/11 I 1/14 I 1/11 I 1/10 I 1/17 I 1/11 1 1/10 I 1/M I
CALtNDAH DAY I
Figure F-4. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 804-1A
F-5
-------
ill
!j ••
- IPWAV TOWN IDLE'
G« Km - K.OOO Kim » JOQ" F
„ Sony Town Go VMocity 6.7 tj/ne
Liquor Rm M Vmturi - 100 upm
n Utpor RIM nlpnyToMf 1400 ipm
VmuriL/G- 30 Hi/Me)
" fenvTowK L/6 • » pl/Mri
„ Hi. «TlHiyr1ll EHT
ChrifM LiqiMi ««un«IW 0>Mrtoil TiM
MOT! VtCtUPMOM AVtHAOC
UMCklWTIUTKMMMII (.•«
THAN IN MMI AM NOT
KOTTID
oooooo0000000
I i/M I VM I fit I >/» I t/a I t/M I >/» I i« I v» I IM I vi In t j/i t w t M I vi I in I M I M I
CALMDAMMVIttmr
Figure F-5. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 805-1A
F-6
-------
Is
•I
S\'
H
G» R.H • 25.000 idm * 300° F
Spray Tomf GK Vflocitv * (.7 fl/M
bquor Rltf to Vtnturi • 600 gpm
Liquor Rata to Spray TowMr - 1400 0pm
Vnituti L/C • 30 «il/Mcl
Spray Tomr UG • 70 nl/Mct
No. ofSpnyHndtn>4
Rasidtnca Timti:
Spray Town Hold Tint - 11 mm
OxidltkinTHik.1l.3min
Dafupanaturation Tink - 4.7 min
Solidl RacinuUtad, Vtnturi loop • 13.2 It« wt %
Solid! Racirtulind, Spray Tonar Loop * 13.3- 16.3 wt
Vinturi PratNjra Drop = 9 in. H.O
Ton Prraun Droo. Eicl. Min Elim.
• 10.4-IJ.71«. H20
Mill Elim. Pmnn Drop - 0.23-0 71 in HjO
Air Flo« Bin to 0»Minr • 250 >rim 1806-IAI,
ISO Kfn IMW-IBI, 100 tdm IS06-IC),
SO Kfm 1101 101
0*0*1* (Qtrifmt Filur) tali*
Connnimwn- 74-90 in It
Linmton. Addition to Spray TOMT EHT
CuvifM LiquorRttumtd to Oxidation Tank
II
I 1/34 I i/n I I/M I I/IT I
Tt>T TtMI Mun
ll3/1 I til I l/> I S/4 I 3/* I W I J/7 I W I !/• I fid I 3/11 I 1/12 I lm I 1/14 I
CALINOAR DAV (1W1
.DO OOot>OOOoOOoOOOOOoQoOoO
• TOTAL CHMOLV10 ML ID*
O IULFATE aOf'l
•ft CMLOHIOI icn
O MAQNIttUM (li,**l
0 CALCIUM Id** I
NOT!- iMCIfS WHOM AVIMAOC
CONCINTHATIOIM ANf LEU
THAM HO M*> AMI MOT
PLOTTED.
2.000
D 40 M IN 1M 2M 140 1ID
TtIT TIMI. Myn
I 1/2* 1 Z/H I ]/7f I I'll I l/» I 1/1 I )/l I VI 1 ]/4 1 VI 1 !/• t VT 1 3/1 ) M 1 MO I 1/11 I l/(3 I 3/1) I 1/14 I
CALENDAR P»V MI77I
Figure F-6. OPERATING DATA FOR VENTURI/SPRAY TOWER
RUNS 806-1A, 806-1B, 806-1C, & 806-1D
F-7
-------
I » I M I » I V> 1 » I » I I/» I > " I V
Gil Rill ' 25.000 Kim • 300° F
Spriy Tmn GH Vilocity • 6.7 Wm
Liquor Rm to Vinturi - 600 gpm
Liquor Hall lo Sony Towtr -1400 ipm
Vinturi l/G = 30 on/Met
Spny Toon L/C • TO gil/Mct
No. of Spray Huotri • 4
Rnidtncl Timit:
Spny Towir Hold Tink * II min
OxidttionTink » 11.3 min
OouptmtuTition Tink • 4.7 min
Solidl Rlcirculltld, Vinturi Loop • 13.4-159 wt %
SolMi RKirtulitrt, Spriy Town Loop • IVH7.1 wt %
Vinturi Praiun Drop • 9 in HjD
Tonl Prniun Drop, E»l. Min Elim.
• 104-11.1 in. HjO
ttM Elim. Prmin Drop-0.21.0.70in. H20
Ail Flow Dm lo Oiidinr * 0 Kfm IM7 IAI,
ISO idm (MI-IA)
Ouchir|l(CllTil«»*FilnrlS<>IMi
ConcintnrHHi - 66»8«tX
limnUM AMition » Sony TOMI f HT
Clvrlii< li«ior Rltunwd to 0>id«kin Tink
Fiaure F-7 OPERATING DATA FOR VENTURI/SPRAY TOWER
riy nnuc on7_lfl X, flnfi-lA
RUNS 807-1A & 808-1A
F-8
-------
!i "[
G« M»- 25,000 Kfm» 300° F
Stny To«* G.I \Modtv • 17 fttec
L*w> dm » Vnurl • HI •»
LiQMf KmtoSroTMNf- IMOw
Vtntllil/G-MHAW
Sun '»•• L/G • 70 pl«M
Ho.olS*., IM«-<
S*1V To«« HoU Tank - U4 mta
i Twit • 4.7 irin
SoMi RMkaibM. Vimri Low - US-Ill M X
IoMill«keuMW.SpnyT<«i loop - 7.34.4 «« *
VtM*l f~n Oco» • I «. H 20
TMH tnmn On«. Eld. MM Elta.
- II.H10 k. HjO
«U Elm. tnmn Drat • I.2M.K In. HjO
»»Fte«Hmi«O.MIi«-l
., DhdwillCMtetFlNr/limiiSiMvlMUi
Climmil«i • 7MJ/17-48 m %
" liMMlAMMMIilpIf T
-------
i:
(•*•-»*§•*••«•;
.« I** TOT I. MM*-1.711*1
i*» Mi • VMM • Mill pm
MtMlMtTMK.MMp.
MMX LM« • 1U-U J « «
•*, *•» Tn» UM • (Mil « »
iDn*-lh.H.O
o™». IM. Mi bta.
k.HjO
tan dn» • UMU9 h HJ)
iKlMlkB-IWM*
III IK l,M
-------
•COIN HUM »1I • 1*
INO HUH HI I*!
fl-
,00 tprayToMia«VllM*y-I.Ttttec
UWiK KM M VMvl • W «•
* U«wllMil>lpnyTowr-lNi|*ii
• US
jb.iflpiyHafcn-4
feny TOOT HlM Twt • 114 mki
OlHMMTMk- 11.1 nil
MHi AidraihM, VMurl Low • 1U-IU M %
MMt RKkMkM, Itray TlMf Uof • 7M.O HI K
Vmwl town Oral -1 ta. H.O
TMI town Orat. E«d. Mkl Eta.
• 11.3-11.1 k.H]0
MW Elta. town Drw • 0.3M.J4 k. H,0
Ak Flm DM tt OiHIai • 1M Khi
Dk(M|l(Ckf«hi)MUi
CmaMi«ln-3M2MK
Ll«i»ll ill AMklM u Siny TIOT EHT
ChrtW Lk«f (Mm* • Imr T»«« EHT
I W» I t/» I 1/11 I t/1
MB MO
CA4.INOAH OAV IWT>
I •/• I *4 I «/io I i/ii I •/!! I uia I
l.i! -
III! -
|,| ...
| i::
9:;
,*•••
D tUfATt (t04*l
0 CALCIUM (C***l
MOTI VtCIIIWNOli AVIKAOI
COMCCNTAATIONt AMI HBt
THAN M M* ANI MOT
PIOTTIO
I I/M t tin I I/H I IVM I wo I
I I/I I t/1 I t/| | 1/4 I M I M I 1/7 I
CALf NOAM DAY (IfH)
M I M I •/» I ./.. I Ml | VII I
Figure F-10. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 811-1A
F-ll
-------
I!
d-
H* nun in u tm HUM m i* ;
8:
h
GB Bin- 26,000 Kf«» 300 °F
Spny Tomi On Vtloeity • 1.7 ft/He
LiQUOr Hott n Vvntun - 600 |pn
Liquor Roll u Spny Tow - 1400 own
VmwIL/G-Mpl/Mcl
No. of tpnyHMo.no 4
KHidMoTlMl:
Spay ToMt Hold Tank • 114 mto
0»H«lon Toik - 11.3 min
DMponttuntfori Ton* • - min
MWi Kwlrtulmd, Vninirl Low - 14.6-lUm*
SolMl IlKlreiliM. Sony ToMt LM> • U-TJ M»
Vnturl Prmm Drop - 1 In. M,0
Totll Pnwn Drop. E«L Kin W
• ll.l-12.Jln. HjO
Mto EKm. Pruwn Drop • 0.31-O.N In. H.O
Air Flow Rm n Oiidlnr • ISO ictm
DNchorii (Clorlfior a FDnrl MMl
Cowntntlon-IMiMK
Umomni Addition U tony TMT EHT
CtorifiM Liouw KmnM to Stray TOMT EHT
.\vt\t»\t»\vr\ti»\9/t\ •/!• I tni I m> I tm I «/M I *nt I i/w I i/u 1 I/M I wtf I tim I i
ll!
a *fi
2-
-
NOTI DHCIUWHOM AVINAOf
N oWIUMf 3^
'tOMANILCM ^J.-~
lMllW4lDI«ll.»l>wlMlMllVwl>V1ll oVUl.Vll 1 W14 1 .VM 1 W*t 1 .V1T 1 tVIt 1 .Vlf | Ml 1 Wli I
Figure F-ll. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 812-1A
F-12
-------
Ss f
G« Rnt * 25,000 nlm » 300° F
Stan Towtr Gn Vilocilv • 6.7 lilac
Liquor Ritl to Vtmuri - 600 gpm
Liquor Ratl to Spnv Towot ^ 1400 gpm
VBituri L/G " 30 nl/Mct
Spnv Towor L/C - 70 gil/Mef
No ol Spnv Hndin * 4
Rnidtnct Tirrwt:
Spnv Towir Hold Tink • 13.4 Mn
Onidnion Tint-8.8 ruin
OMuptmlurttion T«nk • 4.7 min
Solidl RKircuIlM, Vtnluri Loop • 13.7-15.9 wt X
Solittl RKinulittd. Spnv Tomtr Loop • 7.5-9.! M
Vtnturi PrHwre Drop - 9 in. HjO
Tptil Prtuurt Drop, E«cl. Mnt Elim.
•II.4.115m. HjO
Mill El.m. Pnaun Drpp • 0.32-0.31 in. H,0
Air Flow Hit. to Oi.dil* - ISO Htm
Dhiluni {Chrifior » F.lltr) Solidl
Conttntntion • 84-92 wl %
LimMont Addilun » Spny Towit EHT
CkrifM Liqiiot RtlUflMH tq Spnv Tomr EHT
I tvii I t/M I »/H I t/ti [ •/« I Ml t wi I
ivtt I t/n I IVM I m I WM I MT I tat I
til
• TOTAL CHMOLVID tOUM
I «/to I i/i< I •/»
>»i I t/u I im I •/*• I «/i7 I ft/ii'l .;»
1 ivn I wi I ,v« I M. I .v» I M, I .
Figure F-12. OPERATING DATA FOR VENTURI/SPRAY TOWER 814-1A
F-13
-------
to »«• • * >
• -.„. ........ ••*
I tVIt t •/.» I *•>. I is*. I *dt I Ml t Ml I
TIITTMt.k.
Ml I *m I
Figure F-13. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 815-iA
F-14
-------
G« ««• 3S.MO «ctm» 100° F
Spray Town CM Vtlocity - 8.4 ft/Me
Liquor RM to Vmturi - 600 gpm
Liquor Ritt to Spray TOMI-1*00 |pm
Virnuri L/G - 21 pl/Mcf
SprqyTo—fL'G-Moil/lid
Nt.olSonyHnMn-4
KfUml HUM:
Surly To«« Hold Tor* • 13.4 fflin
OlNJMion link • 11.3 min
OiuwMintkw Tink • 4.7 min
SgMi nocirculiM. Vinton loop • 114-16.! wt X
Stllik RKifculrad. Sony Tome Loon • 8.H.I «n S
Vmyri Pmun Drop • 9 In. HjO
Total fnmun 4 Drop, Eld. HIM Elin
• 15.8-H.O In. MjO
MM Elim. Prawn Drop - O.SW.70 in. HjO
Ak Flow Rail to Oiidizw - 210 Kfm
Dtetaio ICMflu > Filurl Solktt
C«nc«mntia«i • 1141 wt %
UirMon AMItion to Spny TOMt EHT
CkrilM liquot Rotumd to Spny TmMr EHT
'.'.I
YOTALCHMOLVIDKII.IM *1 '*^»
CHk.OltKM<^
• I f/M I 1W1 1 1M | IM | \Vt I IM I Wl I 101 I 1M | 1M | WH I 11/11 1 Wit I W1J I 14-H I WM I W»
Figure F-14. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 816-1A
F-15
-------
Gil flit. • 36.000 icfm » 300° F
Spray Towtr Gil Vilocrty • 9.4 ft/Me
liquor RIII to Virtturi • 600 gpm
Liquor Rill to Sony Tonnr • 1400 «m
Vinturi L/0 • 21 pi/Mel
Surly Tomr L/G • SO plfMef
No of Sony Hudiri • 4
Rnidtnc* Tinrn:
Sptly TUMI Hold Tink • 16.1 min
Oxid«tion Took • 11.3 min
DMupifajturitUR Tink - 4.7 mrn
Solidl Rir.raillt.tl, Vinturi Loop • 15.1 16.4 M %
Solldl BKrtuHlrt. Sony Tow loop - I.M.7 M »
Vwtwi Prnuri Drop • 9 m. HjO
Totil Pronun Drop, Excl. Milt Elin.
• U 6 1«0 in H;0
Mio dim. Prnuri Drag • O.S64.H in. H?0
A> f\m Dm to OiUlw * 110 Kin
DiKMroo ICktrliK t Firt.l Solidl
ConoMtltion - li« M K
Limttoi* ArMltion to Sony Tom* EHT
Ckrlliid liquor RMurMOl to O.tfMar. TMt
TUT IIME.hauii
I wtt I iom I 10^1 I <0'» I lo/ii I ia/» I io*» I lovM I wn I IO/M I io/it I io/v I 10/11 i n/i I 117 I no I
H5 -
nit -
Figure F-15. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 817-1A
F-16
-------
>y* \r
Gai Rite - 35,000 actm 0 300° f
Spray Towti Gai Velocity •= 9.4 fi/j«c
Liquor Rate to Ventun - 600 gpm
LiQuof Riti to Spray Towtr - 16QO gpm
Ventun L/G = 21 gal.'Met
Spny Tower L/G = 57 gal/Mel
No of Spray Headers > 4
Rejidenct Timer
5pr>v Tower Hold Tank = 14.7 mm
Oxidation Tink = 11 3 mm
QKupnaturatiort Tank - 4.7 mm
Soldi Recircubted. Ventuf. Loop - 14 0 15.8 wt %
Solidi RecKCutatMf. Spray TOMIM Loop - 87 WA wl
Vtnlun Preisurv Drop = 9 in. HjO
Tolil Preuurt Drop. Excl. Milt Elim.
- 14.1 15.9 in. H20
MiA Elim. Praiturt Drop = 0.57-0.68 in. H20
A ! ,01. I „„ I ,,„ I n l I ,,','V n"'
IM 1« 400 «40 Ma"
, I M. I M. I M ,, I II,., I n.u I n ,, I u „ ]
Figure F-16. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 818-1A
F-17
-------
:t . r.
..I
iiii»
Figure F-17. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 819-lA
F-18
-------
5s
G» Rala - ia.OOD-35.DIIO «ttm 9 300° F
Spray Towti Gil VilocKy 4.8-9.4 ft/He
Liquot Rite 10 Vmtun 600 jgm
Liquor Ratt to Spray TooMr - 1600 gpm
VatitunL/G-21-42 gal/Mcf
Sony Tovm L/G - 51 111 gtUMd
No. ol Spray Hndm - 4
Rltidtnct Timts:
Sony Tower Hold Tan I - 14.7 mm
Omdiiion Tank - 11.3 mm
Otfupimlurahon Tank - 4.7 min
Solidi Rtcirculated, Venturi Loop -- 13.0-16.9 wr %
Solid! Ricirculated. Spray Town Loop = 8.1 II 3 wt %
Vamuti Kasure Drop = 3.0-9.3 in. H^O
Total Prxtura Drop, E.[l. Miat Elim.
• S.8 15.9 .n. HjO
MIR Elim. Prnnure Drop = 0.18-0.116 in. HjO
A
-------
IJ _;—--_-=.---
G>i Rue . 18.00035.000 idm » 300° F
Sony Tour Gil Vilot.iy . 4.19 4 H/IIC
Liquor R,l, to V«ntuti • 800 gpm
Liquor Rui to Spny Town . 1600 gprn
V.nlun L/D • Zl 42 gil/Mcf
SprivTo»it L/C -SJI1I gil/Mcf
No of Sony Hudm . 4
Htulina Timii
S«'«y Toon Hold Tlnk • 14.7 m.n
0-Klmon Tmli • II 3 mm
OtupirBturitnn Tmt • 4.7 min
Soldi Diciculind, Vimuii Loop • 13B U.6 M X
Solull BK.tulmd, Sptly Toon Loop • t 6 10 S .1 X
Vtmun !>,,•„, Ofop . 5.59.1 ,„ H,0
Tolil Pria,,, Drop. E.d Mill f Im
• 10 I 14.3 in. HjO
Mill Urn Prn.ni Drop - O.J40 12 m H.O
A* flow 10 Oiidup . 210 iclm
DiKrwoi tclKifiv a F.lt.l Solrdi
Cone.nlr««iii • 1249 wl %
UrntBOBj Addition In Sony Tomr EHT
Chgun RtlurnM to 0>idalnn Tink
I IM I iint I ui>i I ttnt I i»/ij I iiru I it/w I iifM I iiif I ii/wj I itfrt I iiw I 11111 I itm I ii/n I iim I nrm \
jiif
I'll
fi! :
ii!
.
I1!!
liii
ill!
--T1
V
IIMI I 'Mi I"J" I iMiliM* I it'tVhi/NTtritl ii'wl 1111 I H7jl iMih/M I n»lr»Ml IM
Figure F-18. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 819-1A
F-20
-------
It«»5V*OHtffCl.MMD
n
\ i,
'I-
SlS?
f.ji »
lit! -
*jis«
7*0 J» )M M MO Mi
I I I'D I VI* I I/I* I VI* I 1//I I 1/3 I l* I » I M I tfJ I « I M I l/>0 I 1/11 I 1/11 I I/.) ! *M I VI* ! I/.. | »t> I )... I Vtt | VN I VJt
CALfNOAN D*» (WWl
Figure F-19. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 820-1A
F-21
-------
5'
f\.
la -
[I '
:
li "
r - !»•*» 'OMIK Mlf 1
I i« I wi I « 1 MI I M I w* I w» I v»i I */i Ivil « I *M|« | «• |VT|M|«* I i
I I 1.x I „» I ) >- 1 1 » I Ml I » I ll» I » I !». T 4,. lululwlululull^lul,
CMINOMIMT IMW
Figure F-19 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 820-1A
F-22
-------
J£ .,„
MOOt
MOOS
o o o Q o o o o o o o o o
• TOTAL DllUKVOSOLIOI
Figure F-19 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 820-1A
F-23
-------
00° O
o a
* CMLMIM ICI I
O KHf*Ti m,-)
0 CALCtUM'Ct"!
Cu n«i . 35,000 irtm • 300° F
Liquor Aiti w Yirtlur, • GOQgom
MMB Liquor Riti 10 Spray To«Mr - 16QQ|M
-let Vtnlur, I/O - Z1 pl/Mct
Spr.y To«« L/B - S7 til/Mri
u«» No. of Spny Hndvi • 4
,„. ««*!•"<• TiMt:
S»tiV To«« HoU Ttcik • 14.7 mit,
« Oiiid«ioitTir>k>11.3ntin
OnuM>*tintiori Tink • 4.7 mta
"~ Solirli Dttralitid, Vmwi Loot . 1J MM M K
.„ SoiMt RKitniimn, spny To«KU«p. 1.1-«.»«!«
Vtntixi Brmtiri Drop -1 in. H-0
"" rotilPTMtw.Drop.E.d.lllnilta,.
,m •l4.H7.3iti.HjO
Mill film. rVnun Crop . «,«. o.ll Hi. M.O
'« »»Flo»RmtoO«idiM..ZIOic(iil
• Lim«MMA*|rliM>|lw,,Tm-,eHT
ClKrIM Liquor RitwniC to OiMMlM THk
oD O
.***•
00o
MJ I tin I V» ) J/» I i<» I M» I I/A i MI I I/A I MI I »M
CA1IHOMOAV t
Figure F-19 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 820-1A
F-24
-------
so
• 5
3500
3 ax
2 WO
2000
1500
Mil
\SPHAV rO
-\^
VENTUfllINLET
I 4» 1
1 4/.0 1
I 2*0 2*
4,jT.::r.'= >
CAUNDASOAV (197iJ
440
21 I «'23
Figure F-20. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 820-1B
F-25
-------
'.KcmHvtt ign IHC HUM no til
•2?
43.000 -
3-
14.000
»,000
8II """
\l\ ».«
™Jr
DO a
a a
a
Do
• TOTAL DinoivfDfOLioi
O MAOWll'UM (Mf**l
A CMlOAIDf rCI'J
O IULFATI
NOri »ICICSWHOH AVIMAOE
COWCINTflATIONIAHt ll«
THAN MO HHH AAI MOT
o o vo
0 o
4* »
•jNr
"•£>**»
^feooOo
\ 44 t «n I «• t »» 1 4,'» I 4/11 I *m I «/n i 4/M 1 «/t» I «ni I WIT t 4/11 I «/<• I «!• t 4411 4/a I «/a 1
CMIMDAMDAV ItlTI)
^TtJW
—' •
Gn RIM - 35.000 ittm • 300° F
Spriy TOMr Gil V.teeity - M ft/Mt> II* .
Liquor Riti to Vwturi- «0|pi»
Liquor Riti to Sony To*w - 1MB ...
Vmturi L/G • "~
Doidinci Timi:
Spny Toww HoU T.nk - U.J mhi
Oxid*lionTMk>t1.3mm
Oiuimatuntion T»k - 4.7 mjn
Soli* RMlrculMMl. Vmtufi Loop • 13.4
SoWl RMhoiliM, Sprn To«w l^,.
VwturiPr«»,!Dro|.-»in.H,0
ToW ftmun Drop, fid. Ml« ||lm
•14.7 18.9m.HjO
MM Elim. PT.W,, fl,,, • QJ|
Conetntntion > 71 • M M K
LiiDtttom ind M|Q
-------
11
i'
s*
iff'
¥ HUM MC 1C tW HUN HO TCi
SPRAV TOWFH IMLE'
"A
2|>s '•«
S:M „
H S - "
if I | '°
A
w^
-v^
^vV.
40 BO 170 160 700 ?40 ?BO J?0 ICO 4OI
TtST TIME hourl
I 4r14 I 4 15 I 4'16 I 4(11 I 4HB I 419 1 4/20 I 4.21 I 4'22 I 4/23 I 4,74 1 4/2S I 4'?fi I 4 27 I 4.7t I 479 1
CALENDAR DAY H978t
I S. I s, |
Figure F-21. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 820-1C
F-27
-------
GIN HU* 00 1C EMO*U*iMOK
jrfSwTp
12.000
31.000
»,000
I».ODO
ill-
*r.
t.ooo
•.on
4.000
1.000
O O
a
o
a ° o
D
a
ooo
°0
1«.ooo
•|*y*
-^TiJwx,
• TOTAL DIUOLVtD SOLIDS
O MACMHIUM lt*f"
* CMLONIDf ten
O (UlfATt 1*04'!
0 CALCIUM 1C*" i
• IULFITI IK]')
MOTE VtCICfWHOU AVERAGE
LONCf MTHATJOWI AMI LIU
THAN MOw*. AMI NOT
nomo
>"
Jt.MI
WHO
»OM
li.UO
»ooa
MQOO
no MO
TfiT THHI houfl
4 4/M I 4/11 i 4/1f I 4/17 I 4/11 1 4/11 I 4/» I 4^1 I 4/» I 4*» I 4/2i I 4^f I U» I 4JZT I 4/M I •/» I 4.» I In I S.I
Gil Dm • 35,000 Kim • 300° f
Spriy TOHII Gil Vtlocity • S.« tt/tK • 1K* F
Liquor Rill to Vwluf i • 600 gpm
Liquor Bill to Spray Towr - 1600 urn
Vmturi l/G • 21 glf/Mcf
Spny To«.r L/C • 57 pl/Mcf
No. of Sony Mutton • 4
Rnidinci Tirwi:
Spny Tomr Hold Tmk - 14.7 mm
0•>
Figure F-21 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 820-ir
F-28
-------
I «QIN RUN mi*
END RUN 1221* ] BtOIN RUN *tt IB '. tNO HUN 13MB
.
I 4m I to? I */» I 4/B ! tot I B/i I 1/1 I M I SM I •« I v« I ifl 1 M I fc» I •/«• I m I ini I vu I VM I
Figure F-22. OPERATING DATA FOR VENTURI/SPRAY TOWER RUNS 822-1A & 822-1B
F-29
-------
;i«o BUI mn
a a
a
(MM
UK
o o
00
0° . „ °
o °°o ° c
o
822 - 1A
Gil Riti - 35,000 iclm * 300° F
Sony Towir GM Vilocity - 1.4 ft/tot • 12S* F
Liquor Riti to Vinturi - (00 ipm
liquor Riti to Spriy Towir - 1100 ipm
Vinturi L/G - 21 gtl/Mcl
Sptiv Towtr L/G - S7 t«l/«c(
No. of Spriy Hi«d«n • 4
Rtiidinci Timn:
Spriy Towir Hold Tink • 14.7 min
Oud.tion Tink • M.3 win
Diiupimturition Tink * 4.7 mi*
Solidl Riclrculitid, Vtntvri Loop > 12.f • 11.1 *t K
Solldt Rtcirculmd. Spriy Town L»p - I.I • 1.4 «t )|
Vtntuii Pnnuri Drop - I In. HjO
Totil Prraur* Drop, E>cl. Mitt Ellm.
•14.0 -17.4 in. HjO
Mitt Elim. Prinuri Drop • 0.42 • LSI In. H.O
Air Flow to Oxidiiir - 210 wtm
OiKkirti (ClirHiir & Filtv! Solidt
Concintration • 10 • 10 wt *
Liminoni and Dry M|0 Addlthm to Spray TMNT ENT
Clirlllid Liquor Rlturnid to 0>M«tl*ii Twk '
<«, 822 • IB
IM Gu Riti • 36.000 icfm • 300° F
Spriy Towtr Gil Vilocity • 1.4 ft/we •> 12S* t
MM liquor Riti to Vinturi - (00 tpn •
Liquor R«t« to Spray Towti - 1IM «•<•
Vinturi L/G - 21 |il/Mcl
m Spriy Towir L/G - 57 H'/Mcf
No. of Spriy Hudin • 4
RnMintiTirnif.
MB Sproy Tooir Hold Tink • 14.7 mt»
0 Edition Tink -1 1.3 nin
"*" Dlwptmturition THk - 4.7 win
^ , Solidt Ricirralitid, Vnturi Lnp « 1 1.« .
Solidl Ricirculitid. Spray T«
-------
ENDRUNI23-U 1
- BOILER OUT APE
V
\ STAAV TOWER
/OUTLET
, °o o
O 00.
0000
m
TEVTTME.IWV*
I U» I |/14 I ft/It I 6/11 I 1/17 I i/1| I Wit I 1/10 I Ml I Ml I VD I I/W
CALIMOAH DAY lltW
I V7I I M» I W7 I W» I HI 1 MB I Hit
Figure F-23. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 823-1A
F-31
-------
t 31.000
37.000
M.OOO
Jl.OOO
34.000
MOOD
92.000
31.000
30.0W
Jl.O
M.OOO
21.000
24.000
i nx"
§ 1 22.000
*1
§ f 21.000
Si
o 3 20,000
a I nooo
a o
D DQ
0
.0
TOTAL DIMOLVED tOLlDt
*%-
4\ CHLORIDC IIS* F
Liquor Riti to Vonturi - 600 |pm
Liquor Rttt to Spriy Towir - 1500 opm
Vinturi L/G • 42 gil/Mcf
Spfiy TowirL/G- 111 gtl/Mct
No. of Spriy Hudirs 4
Effluint Hold Tink Ruidonci Tinit * 11.2 wiA
Oxidition Tink Livil • 11 ft
Ptrcint Solid! Rtcirculitid • 11.0 - 15.S m ^
Vinturt PTinurt Drop * 3 in. HjO
Totil Prinun Drop, End. Mitt Etim.
- II 3 12.6 in. H20
Mill Elim. Pruiufi Drop * 0.14 - 0.23 in. H.O
Air Flow Rin to Oxidinr - 110 Kfm
Oitcriirgi (CUtifiH & Film) Solldt
Concintntion * 79 -17 ml %
Limeitoni ind Dry MgO Addition to EHT
Clirifiid Liquor Riturnid to EHT
Ritycli Slurry Flow from Oxidation Tink
to EHT - 30 turn
iMlvnlvalutlMol""1
Figure F-23 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 823-1A
F-32
-------
1.600
1.0*0
Tin THH. taw,
VllMlv)lt/4lMlMlvTlMl«tl<
CALHPAfl PAY (Wit
Figure F-24. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 824-1A
F-33
-------
'BEGIN RUN n+iA
END RUN 82«."
*! ^
** 3i-"»j-
37,000 U
31000 U
36.000 p
34000 |-
1
33.000 I-
32.000 )-•
1
31,000 H
30.000 |-
28.000 f-
28.000 j-
77.000 •
2i°*) X.
22.0W
S ? 21.000
5 *
s ;
2 * 20.000
S*
5 2 19'°°°
(A 2
o -*
5 5 '>'000
O z
1 17.00.
14.000
18.000
14.000
11.000
12.000
aooo
7.000
6.000
sooo
4.000
3.000
7.001
von
•
•
•
• •
• •
• •
•
e
• •
• •
•
•
•
r'
0Q
0 a
a a
D a
a „
O aB
a °
a a
a
a
i
^
0
0 OC0 0 0
.OQo 0 0 00
' ° 0 0
o
• .4 »ii»»»***4i*
> 4*k
•
iooo Oo^ooooooo^o0*
Ga> Ran - 15,000 Kim » 3M* f
Spray Towir Gil V«lnerty • M ft/we 9 12f *f
Liquor Half to Vtnluri - CM ff«
Liquor Rait 10 Spfly T*«nt * 1CN tfm
Vtnturi L/G • 21 fal/Mcl
Son, Town UG * bl gtMMcf
No of Spray Headtrl • 4
Eltluent Hold Tank Rnitfm* T'rfM • 11.2 mfe
Oxidation Tank Ltvrt * tilt
Percent Sloidi Ric»£»lau< * 1ZJ - t&.3 m %
Vtnlun Priuurl Ota» • f w. HjO
I t>l»l C««M«i« OOP. Ext I *«n tlim.
-• 146 17 Sin. HjO
Mitt Elim Prto«r> Or«» - ».3t • t.tj in. H-0
A,( Floo Rate fo 0>Mi2tr > 2tt Kin
Oncharfl. (Cltrilr.r ft FiHiO MMt
Concinteitu* » t(-f(*t%
Limtniini & Diy M|0 AMition to EHT
CUritito) Liquor Rtturnitl fa> EHT
Ricycli Slurry Flow from OxMMic* Tamk
lo EHT - 30i»»
A C»*OH(Of (Ci "I
O SUL'ATC (3D4*t
0 CALCIUM te#**'
NOtt
/•rM*£«MTKA
OT AKC NOT
CALCIUM te#**' lJi'Ctn
m iwcii»*»Ho«*viR«.of ^^T
COMCtKTHATWMt *«t U« "H ••"•
M.OTT60
.000
• on
5.000
400 *»
rt I M ^ vw 1 wn
Figure F-24 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 824-1A
F-34
-------
is
V
A-
' HOIN HUMPS 1A
4.1
3.000
I.UO
2.000
1MM02402M320M0400
TISTTIMI.hom
| I/I I t/2 I t/t I «/4 I 6/6 1 •« I »fl | •/• I «/» | |/io I i/11 I U1I I */13 I «/M t Vn I «/lf I t/1? I «/H |
CALENDAR OAVMtni
Figure F-25. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 825-1A
F-35
-------
*g
ll
o
c
il
I i
."i
1 1
M
o »-
jl
I
1 — = ^^ ' 1
3S.OOO
37,000
W.OOO
36,000
34.000
13,000
33,000
31.000
M.OOO
».ooo
M.OOO
27.000
2f.OOO
28,000
24.000
23.000
22,000
21.000
20.000
1»,000
1I.MO
17.000
U.OOO
16,000
14.000
13,000
12000
n,uuv_
a*
7.000
4.000
S.OOO
4.000
3.000
2.000
1.000
0
_•
* •.
•
•
• •
• (
* . » »
* •
• -. ' «
•
£
• »
•
• •
•
-
•
.
Q
0 0
O D
D .
DO OD o a
a a a
a a
Q • TOTAL DISSOLVED SOLIDS
P D ° MAGNESIUM (MI**)
D A CHtOHrOt ICI-)
Q a SUIFATE (S04*|
D D O ^ CALCIUM (C«**>
Q V SULFITC ISO,-)
K NOTE SKCIEtWHOSE AVERAGE
n CONCENTRATIONS ARE LESS
. THAN KM ppm ARE NOT
PLOTTED
-
~
r J
0
o °°' °o°°
-o 0»o « oo00 ° °°
0°
0 O
•
• . »4***»*»*» A
f A A*A*»A*A*A*** . •'• "•*"
•**••* •
* •
_ ••••._
A**AA»AW... KJSAOddOAO^AAVA^dO
VVvQVVvgOvvOA WV VVVV
I 1 1 1 1 1 1 ' ' ' ' 1
30.000
37.000
"000
36.000
34.000
33.000
31.000
31.000
30.000
20.000
21.000
37.000
M.OOO
21.000
24.000
23.000
22.000
21.000
20.000
11.000
10.000
17.000
11.000
15,000
14.000
13.000
12J0H
Vooo
7.000
e.ooo
1.000
4,000
3.000
2.000
1,000
0
G» Ri»-18,000 Kfm» 300° F
Spny Tomr Gu Vilocity - 4.1 ft/He • 12J° f
Liquor Riti to Vinturi - 600 nun
Liquor Riti to Sony Towtr - 1600 Km
Vinturi L/G • 42 gd/Md
Spray Towtr L/G- 111 pl/Mcf
No. of Spray Hndin - 4
Efttutnt Hold T«nk Rttidtnc* Tin* - 11.1 Mi*
Oxidition Tink Ltvtl -11ft
Pircint Solids Rtcirculaud < 13.4-18.8MX
Vinturi Prmun Drop - 9 in. H^O
Totil Prnturt Drop. End. Mitt Elim.
- 10.0-13.7 in. HjO
Milt Elim. Prrouri Drop • 0.17 0.34 in. H,0
Air Flow Riti to Onidiitr - 110 trim
OiKhirp (Clarifiir & FilMr) Solidl
Conctntrnion - 82 - U wt %
Limmom & Dry MfO Addition to EHT
CUrifiid Liquor Ritumtd to EHT
Ricytli Slurry Flow from Oxidation Twk t» EHT » (
I S/31 I I/I I 1/2 I I/J I 1/4 I l/s I M
I 1/7 I I/I I I/I I 1/10 I 1/11 I 1/12 ! 1/11 I 1/14 I •'» I 1/11 I 1/17 I 1/11 I
CALCMDAftOAr tltm
Figure F-25 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 825-u
F-36
-------
{ acqiN RUN d IA
ENORUNtM 1AJ
\ SWIAY TOWCR OUTLET
45
3.UO
3,000
2.500
2,000
- OXIDATION TANK
oooooo
O A • v/ V
j O OOO O O O
'—vmrum OUTLET
120
200 240
TilT TIME. tol»t
I 0/10 I 9/11 I 6/12 t 6/13 | e/14 I 6/16 I «/16 I 6/1T I 6/16 I «/16 I
-------
is •;
|« »«.
37,000
M.OOO
36.000
14,000
13.000
32.000
31.000
30,000
M.OOO
2t ODD
^
I) —
?t 10.000
g§ 10000
o J
5 5 ,0.000
i1
5 17.000
10.000^
.«*
t.000
1,000
0,000
*,000
4.000
3.000
J.OM
1.000
a
•
• *
•
• •
•
' • •
• •• .
. . • • • ••
• 0) •
. • •
0) »
• •
•
•
( •
^ * X
f. .. • ° :
a
O ° On * TOT*L OlSiOLVID IDLIOI
Q DO QQ p O o MAGHeWUM (%**)
A cHLomos icrt
D0DQ D WLFATEfiO/l
ODD 0 CAtCIU-oHC.**!
rm WLFltl l»,'J ^
MOTE .VfCIESWHOoUAVEriAOE
CONCENTRATION* AMI LEU
0 TMA»»OOf»mAM*»OT
HOTTIO
o ° o °
0 ° °° ooo°o°o - ° oo n ° °
oo«o o ~oo Ooo o o
o oo
. . .»A .
AA. &••* AAA.A *
*. ;»•**»•*••. ^ * * *»AAA
• • •. .. • '*S»A*
• • •
• "• • • g •
"
»««>oo»o«»o«»«»0^o00**000*00*0* ,
' ,• , ", o,,:,,, .r«.w..:i?r.:.'-.'-'-'-'1-1-1-1-1
M.OM
17.000
M.OOO
M.OOO
M.tMO
M.800
12.000
11.009
10.000
».ooo
^»
12.000
21.000
20.000
'0.000
10.MO
I7.HO
^0
o.ooa
0,000
7,000
•.000
1,000
4,000
3,000
2,000
1.000
0°
Got Row * 28,900 Kim • 300° F
Spt»y Tomr Got Velocity * 7.1 fttac • IIS* F
Liquor Roto to Vonturi * BOO |pm
Liquor Roto to Spray Towtr • HDD op«
Vonturi l/G-28 o»l/Mcf
SpnyTomrUG-7Sgil/Mcf
No. of Sptoy Hoodon • 4
EHIuont Hold Tonk RniilMct Timo • 11.2 mm
Oxidttion Tonk Lovol • II ft
Potcom Solidi RnitculiM - U.I • 15.0 wt %
Vonturi Prawiro Drop • t in. HjO
Toul Pntun Drop, Excl. Min Elim.
• 12.2 14.4m. HjO
Mitt Elim. Prawn Drop • 0.38 • 0.64 in. M,0
Air Flaw Roto to OxMiH - 210 trim
Oiichoto. (Clwifitr ft Film) Solicil
Concomntian • 10 • H M »
Linwtono Mid Dry M|0 Addttion to EHT
Cloriliod Liquor Rltumd to EHT
Roeyclo Slurry Flow from Oxidotioa Tonk m EH
Figure F-26 (continued). OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 826-1A
F-38
-------
Gn Rate - 25,000 acfm @> 300° F
Sony Tower Gai Velocity = 6.7 ft/we
Liquor Rale to Wnturi = 600 gpm
Liquor flite to Spray Towei • 1400 9pm
Vtmuri L/C - 30 gal/Met
Spf«V Tower L/G - 70 aaf/Mcf
No. ol Spray Headers = 4
Residence Timei;
Spray Tower Hold Tink = 18 mm
Oxidation Tank • 11.3 min
Dsiupersaturation Tink * 4.7 min
Solids R (circulated, Veniuri Loop * 13,9-16.5wt %
Solids Recirculated, Spray Tower Loop - 5.6-6.3 wt %
Venturi Pressun Drop = 9 in. HjO
Total Pfiuun Drop, End. Mist Elim.
» 10.3-11.2 in. HjO
Mist Elim. Pressure Drop = 0.24-0.30 m. HjO
Air Flow Rate to Oxidizer * ISO sctm
Diichirg*
-------
ft
H
?!
Gil Rill * 25.000 iclm d 300° F
Spray Tower Gal Velocity = 6.7 tt/HC
Liquor Rite to Vinturi * 160 gpm
liquor Rue to Spiav To*er » 1400 gpm
Vtmuri l/G • 8 gal/Mel
Spray Toxar L/G * 70 gal/Mcf
No. of Spray Headari - 4
Spray Towar Hold Tank - 18 mm
• Oxidation Tank" 42 min
Deluplrialiiretion Tank < t7.7 min
Solid! Rteireulatld. Vantun loop - t4.6-t7.a*n%
> Solidi RKiiculatid. Sprav Tomr Loop • (.4-10.1 n *
Venlim Cumin Drop • I 7 3 5 u H jO IP|U| 100% Opm)
Total Priitura Drop. Excl Mill Elim.
. • 3.3 4.7 in. HjO
Mm Elim. Prenure Drop < 0.21-0.24 in. H.O
Air Flow Rill to Oxidizer • ISO actm
i> Dneharie ICIarilin & Filtar) Solidl
Conclnlralion * 6S M M K
Lima Addition Id Vanturi DowncomiT It Spnv Towaf EHT
i u> ClKi(i«l Liquot RiturnU to Oiidalim Tank d Sany Tomr EHT
i I MZ I vn I M* I »"• I "» 1 J/"
CALlHOAHOAV iH7II
Figure F-28. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 852-1A
F-40
-------
GaiBite-- 25,000 icfm@300°F
Spray Tower GatVilocilv ~- 6.7 tt/iec
Ltfluof Rail 10 Vffltun= 600 gpm
Liquor Rate to Spray Towtr * 1400 gpm
Venturi L/G - 30g«l/Mcf
Spriy Tower L/C = 7Q gal/Met
No. ol Spray Headers = 4
Rtudertci Timer
Spray Tower Hold Tank - 16 mm
Oxidation Tank =113 mm
0«»jp«riaturation Tank = 4.7 mm
Solidi Ricirculited. Ventun Loop - 13.9 16.5 wt %
Sol'di Rttircvltwt. Sp'ty Tower Loop ; 5.9 6.9 wt %
Veniun Pnisure Drop = 4450 in. H,Q (Plug 100% Open)
Total Preaure Drop. Excl, Min Elim
-- 6.1-7.0 in. H20
Mut Elim Prenure Drop ~- 0 24 0 30 m. HjO
Atr flow Ra« to Oxdtw -- IfrOiclm
Oitcharga IClarifier & Filter) Solidi
Concentration x 73 83 wt \
Lim« Addition to Vinturi Oowncomei & Spnv Tower EHT
Clarified Liquor Returned to Spray Tower EHT
t I »'» I )'3< I tin I vn I I
I tin I J/M t sir I i/ie I M» I I/M 1 i
CALENOAHDAV ( 1«TJI
ll!::
-
ns -
11,009 f
f.
..oooh •
• TOTAL OIMOIVID JOltW
• — * cmomoi ici )
,.j "",
51}
Iff '"
1 1000
1000
a
V O MAONEWUM in,**!
0 CALCIUM tC."l ^
* * A A * NOTE VtCIESWHOU AVEWAOI
_ . . . ^ * *^A COMCEMtMATkOIW Ant IIW
4 * * A 1 NAN MO M» AME NO I
°o° DaDanaDO ° °o
.060
1 1 i 1 | 1 1 ! • , 1
^~
»m
4000
1000
ion
J,'It ! )/X I J/Jl I l.'lt I 1/71 ) )/74 I )/M I )/M I ;
Figure F-29. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 853-1A
F-41
-------
Gil RIII • 25.DOO iclm (• 300° F
Spny TaMftr Gil Vilocitv - 6.7 tt/iac
Liquor Rate 10 Vinturi - 600 gpm
Liquor Rill to Sony Towtr * 1400 gpm
Viniun L/G • 30 gil/Mcl
Spray Town L/G - 70 gal/Mcf
No. ol Spny Hiadlrt : 4
RttidffnciTimit:
Spnv Towir Hold link - 18 rrtin
Omdltion Tink • 11.3 min
Oituplrtttuntior Tink -4.7 min
Solidt RKinuliUd, Vinmri Loop • l3.H8.6wt S
Solid! RKinulitid. Smiv Tmnt Loon * S 5-1.7 wt»
Vinturi Prettun Drop - 9 in. HjO
Total Priturf Drop. Excl. Milt Elim.
• 10.2ll.2in. H20
Min Elim. Pntwrt Drop • 0.24 0.30 in. NjO
Air Flow RtiBtoOxidlitr- 150 Kfm
> Dnehirn (Clirifiar 1 Filtirl Solid!
m Concintration - 75-83 wt S
Limt Addition to Vtnturi Oowncomv & Spray Towr EHT
m Cliriliid Liquor Ritgrmd u Sony Tmmr EHT
Figure
F-30. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 854-1A
F-42
-------
Gil Rat* - 25,000 idm C 300° F
Spray Tomr Gn Vtlocttv - 6.7 H/MC
UHOOT flm to Vintuii - 600 gpm
Liquor Rale to Spray Towtr - 1400 gpm
Vinturi L/6 • 30 gal/Mel
Spray Tower L/C - 70 gtl/Mcf
No. of Sony Hudan * 4
Rnidinca Timt;
Spray Towvr Hold Tank - 18 mm
Oxidation Tank - 11.3 min
Datupawturation Tank - 4.7 min
Solidi Racircwlaltd, Vtntufi Loop = 12.9-16.4 wt K
Solidt RacirculMad, Spray Towtr Loop * 6.87.7 wt %
Vinturi Prtttura Drop < 9 in. HjO
Total Prauura Drop, Excl. Miit Elim,
= )i.H2.2in. H20
Mitt Elim. Prmure Drop - 0.32-0.36 in. H20
Air Flow Rata to Oxidizar " 150 tcfm
Onchiffff (Clirifitr & Fittar) Solidi
Concintntion - 62 88 wt %
Lima Addition to Vinturi Downcomar & Spray Tower EHT
Clarifiad Liquor flaturnad to Spray Towtr EHT
ill!:;
Ilif "
5123 <•
Ihi "
l!
s
hi* '"
i3l! "
*
«ooo
6,000
1 I
gl- "»
ill ""
S 1000
•
• ••••. • • *
• ••*•* a
" 0
'
D DD n a D D 0^
. 0^2*Xj4**fiift ft2 ^O
tiii.iii,
0 40 80 UO 1M 700 240 290 3ZO MO
TOIAlOiSSOLVfOSOtiUS
CMLOBIOI 1C! 1
SULFAIE ISO,")
CALCIUM
-------
s§'
3-
Gat Rata - 25,000 acfm • 300 °F
Spray Tow Gaa Valocity • (.7 (Iraac
Liquor Rat* to Vanturi - 600 Bpm
Liquor Ratato Spray Towm • 1400|pffl
Vanturi L/C- 30jal/Mrf
Spray To»ar L/G • 70 galAM
Ho. of Spray Haaoari-4,
RatidantoTimai:
Spray Towtr Hold Tank • II min
Oxidation Tank -II.3 mm
Onupanaliiratlon Tank • 4.7 mm
Sollda Ratircutaad. Vanturi Loop • 14.2-18.4 w X
Solidt Raciriulnad, Spray Tovar Loop • 7.5-12 wt X
Vanturi ftanuit Drop • I ». H,0
Total Praaaura Drop. E Sony ToMrCHT
, m ChrHlad Liquor RalurrMt to Spray Towar EHT
I .1. I
I I III 1 7IZ t 1I\ I Tl* I 71* I
4 1 7/11 1 >in 1 im 1
ll\\ ^
IHi •
31 -
Si 3
• TOIAl OltlDLVlD KM.IDC
O MMNf HUM IM|"l
A CHIODIHICI-)
Q tUlFATI IM)4*I
0 C*ICIU*»HJ")
NOT! IKCIflffHOMAVEflAGE
CONCIMTHATtOMt Mf (.€«
THANlMppm AHt NOT
>oooooooooooo°oo0000ooooo
I Ml I Ml I r/l I TA I T/l I F« I 7A I M I ItT I M I 7Jt I "10 I 7/11 I 7'H I Ml I >/M I 7/» I »/U I 7/1T I
Figure F-32. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 856-1A
F-44
-------
N E*7 IA ihO KlMi H-7 I
•
?l
Gil Rll«-26,000 idm» 300 "F
Spriy Toww Gil Vltocity • 6.7 tl/K
liquor Rill 10 Vinmri • GOO «pm
Liquor R«« to Spray Towtr - 1400 gprfl
V«iti;riL/G-30gil/Mcf
Sony Toon L/C - TO Jtl/Mcl
No ol Spriv Hwlift - 4
Rtlidtnei Timttr
Sptly ToMt Hold Tlnk • 18 mm
Oxl.lonT.uk-11.3 min
OnurMTMtufMiori Twk - 4.7 min
Solrdl R.cicu»l«). Vmuri Loop > 13.4.16 2 WI %
SolMt R.c«cuklid, Sony TOMT Loop - 7 3-J.4 M X
Vinluri Prtnurt Drop • 9 «. H20
Toul Ffnuri Drop. End. Kin illn.
-11.412.0m. H20
MM Elim. PTIBUI Drop • D 31 0.35 in. H,0
A. Fto» Rill lo Oiiiilir • ISO Kim
Ouch** (CkrKitr Ind FH|«I SolMi
Canotmrition • 70-86 wt %
Lrm ArJdittoo lo Vinluri Doxnconr a Sony To.tr EHT
CkrHM Liquor Riturrrld 10 Sony Tom EHT
I M I 71 I T'IO I ?m I 7/11 I. r/ii I 7/i« I r/ti I ' u I -..,, | ,,„ I f.,i | ,..70 I 1/11 t »» I ,,n I I'M 1 »'» I 7
CALENDAM [MV H»7H
Knit
III? ,
5i:l „
Mil ,.
fill"
i II
lUMIM,'*!
A CHLMiOf icri
Q MM'ATE [»/)
0 CALCIUMICl")
NOTE fMCIItHNOMAVEffAOt
COMCIMTMATWN* AHf LEU
THAN tMiv* ARC NOT
ftOTTtO
boooooo0o°o00000
I 7/1 I im I '
* I J/1* t M« I 7/17 I 7/» I >/!• I 7/N I f/11 I tflt I 7/13 I 7
C A 1,1 HO AH OAV (1iJ7)
Figure F-33. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 857-1A
F-45
-------
.iK^., —
I 7/2] I >/M I 1/H 1 T/N I 7/17 t 7/a I 1/n I '/» I 7/11 I
m« I r/17 I Ml I >/!• I T/X> I 7/11 I 7TO I 7/2] >
CMINO*HDAV I
Gil dm • 36.000 .tlm » 300 °F
Spciy Tome Gu Vilocity • 67 ft/Me
liquor Rittio Vinturi • GOO Dpm
Liquor Ritt to Spiv Towrif - 1400 flprn
Vtr.tu., l/G-30»ll«d
Spri»To«if U/G"70»il/Mcf
Bo. otS|»iyH«iiff4
RtlkrinciTimir.
Spriy Town HoM Tinl • II milt
Onidti.ion link -11.3 min
OiupirMtiKltion Tank • 4.7 min
Sol«l< fltt.tulll«d. Vinturi Loop - 6.J J.6 wi %
Solidi Rnicuritid.Sgov Tovir Loop • 13.« 18.5«t *
V«nl»i «,!««(Drop-Sin. H,0
Totil Prinuri Drop, E«d MiK Elim.
-11.4-1l.trrr. HjO
Mill Elrm. Prnwi Drop • 031(1.35 in. H,0
Air Flgw Dm to 0>Uinr • 160 Kim
iu» Dkehun (Ctarlli« ind Fllwrl SolUt
Gonetrrmiori»72-W wrt H
UnHMdltbntoV«ituriDo«no>fMraSenyT«»ir[HT
CI»*M Linuor Ritmnid to 0»k)«lon Tint
9 «o *> "• '" inTiM.ipn
, , i 1 I . I T/» 1 >rii I »'» 1 »"* ' !'M ' 7/* ' "*"
I »/!• 1 Mi 1 M« 1 "" ' "" ' "" ' CkLIMOMD*''iW1)
Figure F-34. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 858-1A
F-46
-------
i!!?
if?'
I'll
HSi
~ •- *
• * -1
ill!
5 = 5!
Gil Ron - !5,000idm » JOO °F
Spny Town Gu Vilocity - 6.7 ft/Mt
Liquor Ritito Vmturi - 600 flpm
Liquor Ritl to Spny Tovwr • 1400 opm
Vtnturi L/G • 30 yil/Md
Sprly Town L/G • 70 gil/Mcl
Ho of Sprly HMOKI • 4
Rtlidtnci Tirnn:
Spny Town Hold Tlnk • 18 min
0 «idit«>n Tin* • 113mm
Oiupmiturition Tlnk - 4.7 min
SoWi Ritireukuil. Vtnruri Loop - IZ.S-ie.2 wt %
Solldl Ricf ci*tM. Spny Tow> Loop • 6 S 7 S wt«
Vmturi Priuuri Drop, - 9 in. HjO
Totil Prmri Drop. E.tl. Min Elim.
Mitt Elim. Prnun Drop - 0.21-0.94 in. H.O
ClKifM Liquor Rltumid to Sprly Towir EHT
Liim Addition to Vmturi Oowncomw A Spriy Towr EHT
RUN 859 - 1A
A. Flow Rltlto 0«idiw - 135 «Hm
Dtetiargi (Clifili. ind Filw) SoWt
Conontntuif 64-83*1*
RUN 859-IB
Air Ftow Rltl !0 Oxidfitr - TSOlcfm
DiKhiroi (CbrHw ind Filtir) SolUt
Conuntrttion» 69-86 wl S
RUN 859 • 1C
Ai Flow Rill to 0«Hi* • 100 idn
DlKhivgl ICHrKiir ind FiHir) SoMi
Concintritian" M-77wt K
RUN 869-ID
Air Flow Rltl to Oxidilir • 0 Kfm
OiKhnii ICItriflir l«d Filnrl Solid!
!.n
5515
ii*
i||
ill
Figure F-35. OPERATING DATA FOR VENTURI/SPRAY TOWER
RUNS 859-1A, 859-1B, 859-1C, & 859-1D
F-47
-------
Lw,.
Ou ««ti • 25X100 oefffl » 300° F
,„ Sony TOM GuVolodly 6.7 H/mc
Moot Htlo • Vlolwi • lOOipm
» LMwItttowSiroyTm*. t4tt|*ii
VonwIUG-lOiol/Mtl
" bnyTo«>L/G-70pl/llcf
tt) Ho. ot afray Mw>fan • 4
taUmtTMi:
« Sony TOMI HoH Til* -1II mta
• 4.7 into
. J.VM«IUM-1
MU, ftMnhM. Sony To»» Low • il-7.7 * «
j,' VomvlftowrtDn>>-l>>.H2a
Two) Frown Or.». End. »* Him.
•ll.HMta.HjO
„ ««lEll«.ft—mOr.,-O.JM.33ta. H.O
Mi Fbw Mi U 0>Ulw IN ttlm
>° Okc>oi(oiaH«vtFlnilIoMi
" LiHOAMMioUVMUrlDmiiioMiorilinyToOTrEKT
, „ CkilTW Lhmor MvMd to Sony To«w EHT
I
I M 1 M I M I M I tVW I i/11 I MI I Wll I W4 I •/» I -VW I M7 I WW I l/« I WO I 4VJ1 I Ml I Ml I kVM I
CALfNOAN D»V (HT7)
ii>
8 B«
»*»»»»*
A CNLOMtMtri-J
a «H.*^TI ua,pt
0 CALCIUM K***l
MOTI vtautmpMw
1 - 1 --- -- . .1 _
I •» I •/) 1 M 1 M I tVM I .Vlt I .VII I iVll I 4V1« I VW I .VW I Wi; I «!• I 4VW I VM C.VI1 I «/n I m I M* I
CM.IMMH MV Ittni
Figure F-36. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 860-1A
F-48
-------
:
Gai Rite = 25,000 aefm & 300° f
Spray Tower Gat Velocity = 67 ft'itt
Liquor Rat* to Spray Tower = 1400 gpm
Vinturi L/G * 30 gal/Mi I
Spray Towtr L/G : 70 pl/Mct
No ot Spray Hwdtrt * *
Rendertee Timu
Spray To«wr Hold Tank = IB mm
Oxidation Tank - II 3 mm
Otiupwsituraiion Tank = 4.7 mm
Solid! Ricirculatid, Venturt loop ' 13.4 14.9 wi %
So I id t Rectrculated, Spray Towtr Loop = 7.0 7 5 wt %
Vintun Preuuri Drop = 9 m. HjO
Total Prasiure Drop. E.cl Mm Etim.
- 10.9 13.5 .n. H20
Mi« Elim. Pitiwrt Drop = 0.27-0.32 in. HjO
Air Flow Ran to Omdirtf > t50 ufm
Diichirflt (Clanlitt & Film) Sclidt
Concantrilion = 82 90 wt %
Lima Addition to Vtntun Oawncomar & Spray Tow«r E
CUrifiad Liquor Rtturnad to Spray Towtr €HT
1M 40Q
IISMHOSI *VIR*0(
Figure F-37. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 861-1A
F-49
-------
It
G.i R«i • 34.000 icl.n » 300° F
Spnv Towit Gil Vilocily * 9.4 tt/MC
Liquor Riti to Vintuci * 600 gpm
Liquor Riti to Spriy Towtf - 1400 gpm
Vinturi 1/G . 21 ml/Met
Sp.lV Towir L/G - 50 oil/Me!
No. ot Spt.y Hndlri " 4
Amdinct Timit:
Spr>y To«n» HoM Tink - 18 mm
Oxidilion Tank • 11.3 min
Ditupirnlurstion Tlnk - 4.7 min
Solidi flicrrcuittid. Vmluii Loop • 14.3-15.tMK
Soldi RtcicuUIKl. Spiiy To«r Loop - 15 5 19 I wf %
Vinlun Piiiiuri Drop • 9 in. HjQ
Totil Prmun Drop. Excl. Mitf Elim.
• 14 S-162 in. H20
Mill Elim Prinux Drop- 0660,64 in. HjO
Air Flow Rill to Oxiditlr • 210 Ktm
DiKlurgt ICUrillK t Film) Solidi
Connntriticn • 12-88 wt %
Limi Addition to Vlnnni Dowuonur t Spny Tomt EHT
Clififild Liquor RMurnfld to Oxidition Tink
till I 10/13 I 10/1* I I0 I to/n I to/it t K
\li\ -
• TOTALDIUDIVEDKK.M
-------
l\
I'
fl.
r V
I 11/11 I < I 11 IJ I .1/11 I U-1. > U:» I UK I 11/11 I '1 » I 11« I .1 » I 11 11 I VI I I/I I I/I I t/4 I
Figure F-39. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 863-1A
F-51
-------
G» Rile = 18.000 35,000 00 gpm
Ventun L/G - 21 -4? (jal/Mcf
Spriy Tower L/G = 57 111 g»l/Mct
No olSpt.v HwdBfi*4
fliudtnct Timii:
Spny TOWN Hold Tank = 14.7 mm
QxtdktionTintL =• 11.3 mirt
Dttupernlurtl ion Tint ^ 4.7 mm
Solidt ReciiculatMl.VtnluT) Loop * 11.117.? «%
Soldi Ric«cut»ttd, Spny Towir Loop - 8.9-11.9
Vintur) Pritwrt Drop • 2.2-8.9 in. HjO
Total Pirauri Drop, Excl. Miit Elim.
-4.9-16.2 in. H20
Miit Elim. Prtttutt Drop - 0.06-0.61 in. HjO
Air Flow Ritito Qtttitiut * ZlOtcfm
OiKht^i (Clwiiiw ft f iftr) SotMi
Conuntrition - 80-89 wt %
Lirtif Addition to VtOturi Oownoonwr tnd
Spriy Tnvw tHT
CUrifitd Liquof Ritumid la Sprty TOMT CHT
•nd Oxidation T«nh
Figure F-39 (continued), OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 863-1A
F-52
-------
Git Rate 35,000 acf m I? 300° F
Spfiy Tow* Gai Vilocity = 9 4 ft /MC
Liquor Rilf to Vinturi - 600 gpm
Liquor Rale to Sony Tow*r = '600 gpm
VenturiL/G * 21^1,'Mc)
Sprty Towtr L/G = 57 (pl/Md
No.of Spray Hwlfri-4
Reiidenct Timer
Sorty Towtr Hold Tank = 14.7 min
OxKiat
-------
TUT TMf .**•*•
i* I w I I* I >* I V I i« I » I im I «m I tin \ vu I n« I
CAlMMftMvlWW
r*=2
I'll
ill!
MM
..«:tv
Hi!
IIH
H
G« Riti - 35.000 ictm e 300° F
Sony Tomr G« Velocity • 9.4 ft/tic 9 125° F
Liquor Riti to Vintuii = 600 ppm
Liquor Rltt to Sony Towir * 1600 jpm
Vinturi L/C • 21 gil/Mcf
Spny Tomr L/G • 57 gll/Mcf
No ol Spray Hwllri * 4
flnidtnci Timti:
Spny Towtr EHT * 14.7 mm
Oxidation Tink - 6.3 rntn
DHuptfWuntion Tank - 4.7 min
Solidi RKirculMtd. Vioturi Loop • 14.0 16.1 «l %
Solidt R«icul««l, Spny Town Loop - 9.0 11.J UK X
Vinturi Prraun Drop • 9.0 in. HjO
Toul finun Oreo, E.d Mill Hlitn
• 13.8 16.2 in. HjO
Mitt Elim. Crmiri Drop • 0.56 • 0.71 in. H20
tut *" FUw Rl" '" 0«'01"' * 2W2<0 K"4
0 c
mil i
•' £
^
I V* I i >i I "*• I . n I "» I "Ji I » ' I "I I M I *« I M T*M I in I M I M I »w I *v.i I v» I *n> I »• I
CALIMOAM D«v iw»
Figure F-41. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 865-1A
F-54
-------
Gu B.I. • 35,000 ufm « 300° F
Spray Towar Gal Valocity • 9.4 ft/He » 125° F
Liquor ftata to Vanturi - 600 gpm
Liquor Rata to Spray Towar = 1600 gpm
Vanturi L/G • 21 gal/Mel
Spray Towar UG - 57 gaUMct
No. ol Spray Haadari • 4
ftttidaaca Timat:
Spray Towar EHT • 14.7 min
Oxidation Tank = 6.3 min
Datupartaturation Tank * 4.7 min
Solidi nacirculatad. Vanturi Loop - 14.3 167 M %
Solidi RacircuKtad. Spriy Towar Loop • 1.7 11.1 wt *
Vanturi Pranura Drop = 9.0 in. HjO
Total Pranira Drop. End Mitt Eta.
• 1S.3 176 in. H20
Min Elim. Prattura Drop • 061 0.76 in. HjO
Air Flow Ratt to Oxtfizar • 350 trim
Ditcharga ICIarifiai S Filtar) Solidi
*" Concantration • 7» »4 wt \
ooo Lima Addition to Vanturi Downcomar and Spray Towar EHT
Claiifiad Liquor Ratutnad to Sony Towar EHT and Oiidation Tank
1 s/3 I */« 1 »/* 1
!!l!:;
Mi -
IV
fllj -
iff .-
Ill-
DIIIOLVf 0 iOLIDl
••"/•.••
4 CMLDMIDtlCr)
O IULFATI IK>4->
OTE VtCIItWHOU AVIRAOI
** * *
"oooo°0o0o00oo0oooo5oo
M » l» 100 JOO TW Jjo^ ^^ HO in W 40, 4411
I ,,» I ,:t \ 2,7 | ;..« I tit I »•» I ;;< I > v I in .7?* l^'« I J» I MT I }'» I 3, I r, I 1/3 I » I
CALENDAR OAV (1171)
Figure F-42. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 866-1A
F-55
-------
Gil RM • 35.000 «cfm * 300° F
Sony Town Gil V.lotity • 9.4 ft/He • m° F
Liquor Riti to Vinturi » 600 gpm
Liquor Riti to Spny ToiMf * 1600 flpm
Vintun L/G • 21 gtl/Mcf
Spny Town L/G • 57 gil/Mrt
No. ol Spny HiUm • 4
Rnidinci Tirrwi:
Spny Tomr EHT • 14.) min
Oxidition Tink- B.B min
DnupirWurltion Tlntt K 4.7 min
Sohdl Rtcrcuuilid. Vinturi Loop • 13.3 15.1 «rl S
Solktl RKirciilmrl. Spny Torn Loop - 9.1 13.8 WI %
Vinturi Prwn Drop • 9.0 in. H20
TDUI Piiourl Crop, Eld. MM El™,
• 1S.4 • 17.2 in. Hj°
MW Elim Prnun Drop • 0.36 - 0.12 in. HjO
Air f to« Bill n OxMinr * 210 Kfni
Diickni (C»i(«r & f ««) SolnH
Ccncnnritioil • U M W %
Ltrm Addftieit w VMiwi OnmcomM *nd Spny TOMT EHT
Ckc«M Liguu «««in«( n Spray Tnrir EHT ml 0«W«len r«*
I U I W I I. I M I W I Ml I 1/11 I
Jill ::
5s!5 „
jj
Sill "
Sj'S ..
tfil ..
rOIftL DlMOlVID »LlO» "I
^Tf"77 M I » I M I « I » I M. I y» I ^» I
Figure F-43. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN 867-1A
F-56
-------
H IMH (iASHMPlH
9g" »»
JK/V,
5 j
160 200
I *1> I .'.I I *.ff I .'10 I .'2. I *» I .
is*
f't
s.
l I 6M 1 *» I «M I 67> I **• I 6» I S30 I >1 I 77 I 7) I ,. I 71. I
CALENDAR DAT H977I
G.i flu, - 35,000 idrn » 300° F
Spny Towtr Gis VHocily - 9.4 H/m
Liquor ftiti to Vinturi ^ 0 gpm
Liquor Riii to Spriy Towtr = 1400 gpm
Vtntud L/C • Q gil/Mct
Spi»y Towti i;0 •- 50 B*l/Mcl
No. ol Spriy HHdtrt = 4
EHT Rttidinei Tim* ^ Ifl min
Ptrcn. HjO
Lira Addition ID EHT
Figure F-44. OPERATING DATA FOR VENTURI/SPRAY TOWER RUN VFG-1Q
F-57
-------
Appendix G
AVERAGE LIQUOR COMPOSITIONS FOR
THE VENTURI/SPRAY TOWER TESTS
G-l
-------
The values in these tables are averages for steady-state operating periods
Percent sulfite oxidized is measured in the bleed stream from the scrubber
system.
Calculated Percent Gypsum Saturation = (activity Ca++) x (activity SO*51)/
(solubility product at 50°C). Estimated solubility product for CaSO «2H 0
at 50°C is 2.2 x 10"5 (ref. Radian Corporation, "A Theoretical Descrip-
tion of the Limestone-Injection Wet Scrubbing Process, NAPCA Report
June 9, 1970).
6-2
-------
f
CO
Percent
Run Solids
No. Discharge*
801- 1A 81
802-1A 86
803-1A 81
804-1 A 85
805-1 A 81
806-1 A 84
806-1B 82
806- 1C 79
806- ID 79
Percent
Sulfite Sample Point
Oxidized
93 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
95 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
96 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
99 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
67 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
PH
5.75
-.
4.60
3.95
5.55
-_
4.95
4.30
5.70
__
5.00
4.35
5.80
._
5.05
4.45
6.15
__
4.95
4.35
6.15
__
4.60
3.65
6.10
4.55
?.75
6. on
a.5f
3.65
6.15
-.
4.55
4.25
Liquor Species Concentration, mg/1 (ppm)
Ca++ | Mg++ | Na+
885 370 26
1080 400 29
1250 615 A3
1480 675 61
1325 495 61
1415 545 52
1635 730 76
1880 715 73
1660 550 62
1670 540 58
2120 790 115
2300 800 115
1660 580 64
1670 575 69
2280 875 130
2450 900 120
550 435 64
575 420 74
2230 1135 135
2350 1130 135
390 390 40
380 390 41
2060 1225 165
2205 1230 165
615 385 35
630 380 35
2200 1250 190
2?15 1265 190
y-,0 315 40
565 310 37
l'-'~5 1170 185
2045 1190 190
310 400 41
305 375 41
2030 1190 205
2250 1205 205
if
31
34
54
64
46
38
75
73
60
58
105
105
69
68
120
125
97
109
180
185
38
38
170
175
31
31
16
170
30
30
175
180
33
33
185
180
so3-
230
390
29
410
215
300
24
475
150
190
21
310
130
175
22
385
92
102
16
325
93
99
16
350
101
86
15
250
101
180
15
275
115
107
130
700
*v
1640
2020
2150
2535
2230
2300
2170
2545
2180
2210
1900
2330
1970
2000
1930
2300
735
710
1980
2400
735
700
2060
2330
1425
1545
2040
2430
1275
1190
2250
2605
685
665
2280
2600
Cl"
1220
1330
2360
2770
2060
2290
3550
3580
2880
2810
4730
4840
3200
3150
5360
5530
1545
1585
6120
6200
1125
1090
5970
6110
1115
1090
6480
6580
970
900
5540
5570
995
975
5275
5470
Total
4380
5280
6510
8000
6430
6940
8260
9340
7540
7540
9780
10800
7670
7710
10720
11810
3520
3575
11800
12730
2810
2740
11670
12560
3710
3800
12340
13200
3290
3210
11240
12060
2580
2500
11300
12610
Calculated Percent Percent Error
Gypsum Saturation In Ionic
g 50°C Imbalance
75 6.3
100 3.4
100 4.1
120 -1.4
110 2.6
115 1.4
110 1.0
135 -1.2
120 2.5
125 2.6
105 3.1
130 -0.1
105 1.3
110 1.5
105 1.7
130 -1.8
25 11.6
25 11.5
95 0.7
120 -3.5
20 10.3
20 12.6
95 1.9
105 -0.7
55 2.8
60 1.0
95 -1.6
115 -2.7
50 1.4
45 5.0
100 0.5
115 -0.5
15 13.1
15 11.3
105 7.2
125 3.6
-------
cr>
Percent
Run Solids
No. Discharged
807-1A 74
808- 1A 82
809- 1A 80/35
810-1A 46
811-1A 45
812-1A 86
814-1A 88
Percent
Sulfite Sample Point
Oxidized
18 Spray Tower Inlet
Sorav Tnwpr Outlpt
JHf nj ' UWCI VIU I I C L
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Sprfly Tower Outl ct
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
PH
6.30
4.50
4.35
6.25
4.5S
3.55
5.7
—
4.5
3.4
5.8
—
5.1
4.2
5.9
—
5.5
4.6
5.9
—
5.6
4.8
6.0
—
5.6
4.6
Liquor
Ca++
155
1910
2030
265
1565
1670
1815
1915
2830
2860
144S
1475
1870
2040
1260
1260
1490
1560
1215
1235
1530
1630
1280
1250
1515
1260
Mg"
335
1020
1030
225
1115
1105
710
735
1295
1285
640
645
1140
1145
595
590
1030
1045
775
785
1120
1140
870
865
1405
1355
Species Concentration, mg/1
NaT
37
215
215
40
210
200
70
75
110
110
65
70
100
105
70
70
100
10
70
70
100
105
80
80
130
135
K+
34
155
175
33
150
155
45
45
65
70
30
30
60
60
30
30
50
55
35
35
50
50
40
35
65
60
S03~
155
555
985
105
19
325
100
170
35
150
90
110
25
280
110
125
45
475
110
140
60
360
120
120
25
310
so4-
560
2930
3065
845
2470
2805
2000
2015
1835
2115
2120
2135
2170
2425
2280
2275
2550
2630
2480
2495
2690
2980
2530
2595
3030
3230
(Ppm)
Cl" 1 Total
695 1970
4315 11100
4480 11990
260 1770
4255 9790
4370 10630
3560 8300
3740 8695
7150 13320
7000 13590
2655 7045
2680 7145
4950 10315
4980 11035
2150 6495
2135 6485
3600 8865
3650 9425
2530 7215
2565 7325
4070 9620
4125 10390
2760 7680
2720 7665
4385 10555
4340 10690
Calculated Percent
Gypsum Saturation
& 50°C
10
135
145
25
100
115
105
110
95
110
105
105
95
110
105
105
105
110
100
100
105
120
100
100
105
100
Percent Error
In Ionic
Imbalance
9.9
1.6
-1.3
21.9
6.3
1.1
6.1
6.6
5.5
4.8
6.0
6.8
4.1
3.8
4.8
5.2
5.7
1.1
2
3
1
-1
5
4
6
-7
(a) The liquid ionic imbalance for the spray tower inlet liquor averaged +22% for this run. Analysis of some selected samples showed an average
of about 210 ppm liquor 003°. Since the total dissolved solids concentration was low, Inclusion of C03= would have improved the Ionic imbalance.
-------
Percent
Run Solids
No. Dischargee
815-1A 87
816-1A 86
817-1A 86
818- 1A 86
819-1A 87
819-1B 86
820-1A 85
820- IB 82
820-1C 63
Percent
Sulfite Sample Point
Oxidized
96 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
92 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
36 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
PH
5.8
5.6
5.6
4.6
5.7
5.6
5.5
4.5
5.9
5.8
5.5
4.7
5.9
5.8
5.6
4.6
5.85
5.7
5.45
4.5
5.9
5.7
5.5
4.45
6.05
5.55
4.85
5.90
5.20
4,95
5.90
5.70
4.80
4.60
Liquor Species Concentration, mg/1 (ppm)
Ca"
1565
1605
2015
2165
1780
1790
2360
2460
1990
1985
3355
3560
2055
2085
3610
3830
2200
2220
3520
3710
2350
2330
3455
3695
5SO
615
675
640
705
755
615
625
925
965
Mg"
1095
1090
1615
1560
1175
1200
1955
1935
830
795
1535
1575
905
920
1790
1790
1240
1245
2275
2310
1360
1330
2455
2460
5630
9350
9260
5595
9435
9350
5510
5450
9330
9260
Na
95
100
145
140
115
105
195
185
85
90
195
180
105
105
210
170
150
150
275
280
155
150
270
300
50
185
195
65
195
205
70
70
170
165
K
45
45
70
70
50
45
80
85
50
55
135
120
85
100
175
185
150
150
280
285
140
145
245
255
30
145
150
50
140
130
75
75
135
150
so/
125
140
40
455
125
140
25
350
85
90
25
300
105
125
25
330
110
125
25
350
120
125
25
325
1375
50
420
1400
950
1565
1545
1710
5585
6280
so/
2540
2570
2665
2925
2535
2490
2595
2890
1875
1890
1945
2425
1940
1955
2030
2455
2125
2155
2180
2505
2345
2405
2460
2850
20360
35015
35100
18700
31630
31285
16930
16865
26355
26215
cr
3830
3820
6060
6010
4640
4630
7650
7665
4360
4410
8730
8810
4790
4885
9450
9580
6130
6135
10890
10970
6020
5935
10440
10490
1400
2735
2740
1780
4095
4180
2360
2350
4420
4575
Total
9295
9370
i2610
13325
10420
10400
14860
15570
9275
9315
15920
16970
9985
10175
17290
18340
12105
12180
19445
20410
12490
12420
19350
20375
29425
48095
48540
28230
47150
47470
87105
27145
46920
47610
Calculated Percent Percent Error
Gypsum Saturation In Ionic
0 50°C Imbalance
105 6
105 7
105 6
120 3
105 3
105 5
100 7
115 4
100 5
100 3
105 6
130 5
100 3
100 3
105 9
130 7
100 1
100 2
100 8
115 7
110 8
110 7
105 12
130 12
100 1.0
__
130 0.6
140 -0.7
105 6.2
• _ — —
130 4.3
140 3.4
90 8.5
95 7.8
145 9.1
150 14.4
-------
CD
I
CT>
Percent
Run Solids
No. Dischargee
822-1A 85
822- IB 85
823- 1A 83
824- 1A 85
825- 1A 85
826- 1A 84
851-1A 81
852-1A 73
853-1A 78
Percent
Sulfite Sample Point
Oxidized
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Scrubber Inlet
Spray Tower Outlet
Venturi Outlet
Oxidation Tank
97 Scrubber Inlet
Spray Tower Outlet
Venturi Outlet
Oxidation Tank
97 Scrubber Inlet
Spray Tower Outlet
Venturi Outlet
Oxidation Tank
96 Scrubber Inlet
Spray Tower Outlet
Venturi Outlet
Oxidation Tank
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
83 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
pH
5.75
5.60
5.20
4.85
5.55
5.40
5.05
4.65
5.25
5.05
4.85
6.30
5.25
5.15
4.75
5.90
5.45
5.35
5.05
5.65
5.35
5.30
5.00
5.45
7.90
4.45
7.80
5.65
8.05
5.50
4.80
Liquor Species Concentration, mg/1 (ppm)
Ca++ j Mg** ] Na* j K* ] S03= ] S04= j Cl~ ] Total
665 6100 95 75 1685 18700 3515 30835
710 6180 95 80 2055 18405 3510 31035
715 10465 195 150 735 31350 6870 50480
745 10465 190 155 1150 31340 6940 50985
780 5985 95 75 3280 17350 3325 30890
860 5870 95 75 3480 17025 3245 30650
740 9190 185 155 410 28340 5750 44770
755 9245 190 160 995 28295 5825 45465
880 5870 95 95 5445 16630 2565 31580
895 5830 90 95 5505 16655 2545 31615
950 5900 95 95 5935 16835 2595 32405
655 5820 95 95 65 19900 2535 29165
605 6125 105 110 5175 17495 2655 32270
645 6115 105 105 5605 17125 2680 32380
690 6270 105 110 6035 17075 2750 33035
505 6160 105 110 105 21000 2700 30685
655 6570 105 115 2615 21050 3475 34585
690 6405 110 115 2740 20900 3470 34430
755 6615 105 120 3020 21250 3510 35375
625 6645 100 120 220 23185 3570 34465
685 6300 120 125 2890 18995 3880 32995
725 6350 115 125 3030 18955 3820 33120
795 6410 120 125 3405 19035 3925 33830
665 6515 120 125 230 21265 3955 32875
1150 705 59 60 76 1935 2385 6370
1145 740 59 66 222 1980 2355 6570
1445 1140 125 105 39 2505 3705 9070
1540 1165 120 110 195 2920 3805 9860
850 700 60 74 56 1345 2235 5330
850 745 61 76 277 1435 2265 '5710
1575 1205 140 135 22 2720 3960 9760
1970 1305 140 150 980 3100 4485 12140
1235 845 61 81 68 1970 2675 6940
1210 905 61 79 235 2160 2615 7270
1565 1350 150 135 35 2680 4195 10110
1730 1350 145 130 310 3000 4205 10870
Calculated Percent Percent Error
Gypsum Saturation In Ionic
e 50°C Imbalance
100 4.2
105 6.0
125 5.6
130 5.1
110 5.2
120 6.0
130 5.8
130 5.4
120 6.2
125 6.4
135 6.4
115 6.0
85 4.7
90 5.3
95 7.8
90 4.5
105 0.3
110 -0.9
125 0.8
115 -0.3
105 2.8
110 3.3
120 3.6
115 3.4
80 8.5
80 7.6
95 9.9
110 5.8
50 11.7
50 7.2
105 10.1
130 3.8
80 13.2
85 12.4
100 12.5
115 10.7
-------
Percent
Run Solids
No. Discharged
854- 1A 79
855-1A 75
856-1A 83
857-1A 78
858- 1A 81
859- 1A 74
859- IB 78
859-1C 71
859-10 55
Percent
Sulfite Sample Point
Oxidized
96 Spray Tower Inlet
Spray Tower Outlet
Venturi inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
76 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
99 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
69 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
30 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
PH
8.00
5.65
5.05
3.80
8.10
4.70
3.05
8.05
5.00
3.65
8.05
5.40
4.25
8.00
5.40
5.50
3.65
8.1
5.50
4.60
7.95
5.55
4.2
8.0
5.5
4.55
8.00
5.45
4.60
Liquor Species Concentration, mg/1 (ppm)
Ca"" ] Mg++ | Na*
1070 885 64
1040 920 62
1650 1295 150
1820 1335 155
845 75 17
915 175 18
1045 305 $3
1200 290 37
945 215 19
965 270 21
1280 565 43
1460 570 44
1210 445 29
1230 470 30
1780 840 55
1955 860 55
985 300 29
990 335 31
2445 1060 62
2610 1065 61
1350 570 35
1340 590 35
2115 960 69
2330 935 72
1440 595 57
1465 610 52
2010 1045 92
2170 1190 91
1445 595 47
1415 595 49
2330 950 90
2580 990 100
1265 595 51
1250 585 51
2295 1005 92
2350 1005 92
K | S03
82 63
82 235
130 35
135 385
18 35
20 215
35 24
37 315
23 57
23 235
43 36
43 475
32 88
34 330
49 64
48 505
30 47
31 210
59 20
63 425
30 78
32 195
59 99
60 840
39 63
40 295
68 33
68 515
33 48
35 260
51 82
54 930
31 53
32 67
55 85
53 755
S04" | Cl" | Total
1530 2855 6560
1610 2835 6790
2590 4285 10140
3075 4455 11360
1505 460 2955
1730 570 3645
1985 990 4415
2090 1090 5060
1625 860 3745
1765 840 4120
1950 2060 5975
2105 2140 6835
1760 1840 5405
1825 1805 5725
1990 3630 8410
2115 3700 9240
1595 1245 4230
1710 1260 4570
2060 5145 10850
2145 5270 11640
1220 2785 6070
1380 2745 6320
1855 4535 9690
2125 4520 10880
1775 2565 6535
1890 2515 6865
2140 4390 9780
2330 3995 10360
1710 2755 6635
1740 2645 6740
1900 4950 10355
1970 5095 11720
1015 2975 5985
945 2930 5860
2155 4890 10575
2250 4925 11430
Calculated Percent Percent Error
Gypsum Saturation In Ionic
@ 50°C Imbalance
55 13.2
55 11.5
100 12.0
125 8.1
95 8.8
100 9.9
105 12.6
120 10.3
90 10.2
95 10.1
95 11.7
110 10.7
90 8.4
95 8.1
100 10.4
110 10.0
85 8.4
85 6.1
110 11.7
120 10.8
60 9.1
70 7.3
95 11.0
115 7.6
90 10.8
95 9.2
105 12.0
115 20.9
90 7.6
90 6.3
105 9.6
110 8.8
50 7.5
45 9.1
115 9.1
120 4.7
-------
o
CO
Percent
Run Sol Ids
No. Dischargee
860-1 A 82
861- 1A 86
862-1 A 86
863-1 A 85
864-1 A 85
865-1 A 80
866- 1A 81
867- 1A 86
VFG-IQ
Percent
Sulflte Sample Point
I Oxidized
99 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturl Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturl Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturl Inlet
Venturl Outlet
97 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturl Inlet
Venturi Outlet
89 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
90 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
98 Spray Tower Inlet
Spray Tower Outlet
Venturi Inlet
Venturi Outlet
9 Spray Tower Inlet
PH
8.1
.-
5.5
3.8
7.9
5.8
5.5
3.3
8.0
5.8
5.5
4.3
7.8
5.1
5.6
4.35
7.8
—
5.55
4.2
7,8
--
5.6
4.5
7.8
—
5.5
4.5
7.8
—
5.55
4.4
8.02
Liquor Species Concentration, mg/1 (ppm)
Ca~
1490
1510
2800
2810
1810
1790
2625
2775
1485
1475
3200
3425
1955
2000
3000
3200
2200
2130
3205
3340
1805
1840
2665
2870
1635
1575
2345
2470
1235
1240
1745
1860
415
Mg**| Na+| K*
595 55 35
620 55 35
1145 100 65
1135 105 55
1030 90 40
1065 90 45
1830 165 75
1845 155 80
685 70 40
700 70 40
1885 190 120
1890 195 120
1310 165 145
1315 165 145
2340 315 265
2345 310 280
1425 165 150
1405 165 130
2445 325 280
2440 330 285
990 145 125
1000 140 125
1610 270 245
1595 280 255
885 180 130
875 165 130
1705 215 260
1670 210 290
905 120 115
915 130 115
1790 215 245
1790 220 250
14 19 22
so,-
40
50
20
265-
100
120
35
320
85
180
30
455
80
350
35
465
80
200
25
345
90
355
65
545
as
145
40
435
75
230
40
380
21
S04* 1 Cl" 1 Total
1320 3060 6595
1375 3065 6710
1850 6515 12495
2100 6420 12890
1970 451u 9550
2130 4565 9805
2225 8280 15235
2605 8065 15845
1780 3180 7325
1885 3140 7490
2245 9015 16685
2630 9095 17810
2380 5365 11400
2605 5310 11890
2580 10000 18535
2900 10055 19555
2335 5970 12325
2440 5905 12375
2500 10930 19710
2800 11060 20600
2115 4465 9735
2320 4475 10255
2195 8015 15065
2510 8085 16140
2005 4240 9160
2040 4255 9185
2360 8075 15000
2720 8040 15835
2215 3375 8040
2335 3365 8330
2685 6700 13420
3100 6850 11450
180 620 1290
Calculated Percent
Gypsum Saturation
$ 50°C
70
70
100
115
90
95
95
115
85
90
105
130
100
110
105
120
100
105
100
115
"5
105
100
120
90
90
95
115 .
85
85
90
105
10
Percent Error
In Ionic
Imbalance
9.3
10.7
7.2
4.9
5.0
4.0
4.0
5.0
4.0
3.0
8.0
6.0
6.0
5.0
7.0
6.0
8.0
5.0
6.0
4.0
5.0
1.6
3.9
2.1
1.4
-2.2
-1.3
-4.1
0.9
-1.0
1.9
-2.4
6.0
-------
APPENDIX H
TEST RESULTS SUMMARY TABLES
FOR THE TCA SYSTEM
H-l
-------
Table H-l
SUMMARY OF LIMESTONE TESTING WITH MgO ADDITION
ON THE TCA SYSTEM
Run Number
Cnd-uf-ftun Unr
Sn Stream Hours
FlyA.hL...d.n,
Gai R*'e, »cfni & iO(r°K
AIR \ Llmeitone UtllUitlon. 1 00*
Percent SO? Removal
Avg. SO7M.kf -Pfr-Pm.mmolif /I
Scrubber Inlet pH Range
Sr rubber Out lei pH R»n«e
Sollrft Diipoial Syaiem
in Scrubber Inlet Uquor & «0°C
Total D'i..ol«nlf> for
ewaiirlnii lolidi «nd »iih
quor- Sitlflle onldatlcn «ver-
cri 4S*, (uridy itair ond«-
idaiion in prrviuui Run
0-2AI. SO; rrmova! »>«r-
*rf .'41 with .n inln SO,
Ire fling problemt.
Sfr-;p
Ijt.fTjt
12
High
51.001
U.S
1 t. S - IS.
o obierve the effect of th*
00 ppm e/ffctlve Mi** Ion
d |ypium »tur*tion. Teti
1-ZA. Run 50L-2A i. .imilar
Run 5fl3-2B(m»d» In April
7M fitcep- ih«t th* latter »»i
r inl.t liquor averaged 105^-
file axidetion ai madt wilV, intern.l
downcomer and with limraton*
Cyp.um laturatlon in ihe icriib.
ber inlet liquor avrragrd 105%.
Sulfite- oxidattm averaged 21%,
S02 removal ivera^d 49% ».
2050 ppm ..*r.»e inlrt SO,
concentration. Theeff,c.[v%
BH70ppm. The mtai ellmlntiar
«a« I*", ret'rlcted at rh* end
of Ihe run.
Mg i. 1.2, -1. ,,4 (,Vp
alkali uttHzallon - (,
-------
Table H-l (continued)
SUMMARY OF LIMESTONE TESTING WITH MgO ADDITION
ON THE TCA SYSTEM
1 un Number
Start -of -Run Date
End-of-Bun Oat*
On Strwm Hours
Fly A-,h Loading
MgO Addition
Gas Rate, acfm P 3QO°F
Gas Velocity, fps » 125°F
Liquor Rate, gpm
l/C. 9*l/Mcf
Percent Solids HedrculatPd
Effluent Residence Time. m1n.
added/mole 502 absorbed
Inlet SO? Concent rat ion, ppm
Percent SO? Removal
Avg- S02 Hake-Per-Pass, m-mole/1
Scrubber Inlet pH Range
Scrubber Outlet pH Range
Percent Sulfite 0*1d1z«]
Solids Disposal System
SoMds In Sludge Discharged, t
In Scrubber Inlet Liquor 9 50°C
Total AP Range Excluding Mist
Elimination System, in. H20
Mlit Elimination System
Af> Range, In. H20
HUt Elimination
Sy&tm Conftgurat'on
Absorbent
Scrubber Internals
System Changes Before
Start of Run
Method of Control
Run Philosophy
Results
593-2A
4/21/78
b/2/78
260
High
Yes
30,000
12.5
900
37
14.0 - 15.6
4.1
1.27 - 1.92Ca}
63<"
2300 - 3400
89 - 97
18.8
5.3 - 5.6
5.0 - 5.4
10 - 37
CUrtfler & Centrifuge
52 - 62
65
46.300 - 54,300
6.6 - 7.8
0.49 - 0.66
chevron mist eliminator.
makeup Mater. Each noule
(6 total) on for 3 ,'7a
99
High
Yes
30,000
12.5
1200
50
13.9 • 16.3
4.1
1.15 - L.33lbt
81(b)
2200 - 1500
89 - %
13.8
5.15 - 5.55
4.9 - 5.4
10 - ?f.
CldHfier i Cfr,trifugre
53 - 54
90
46,bOO - 54.000
7.2 - 8.8
0.51 - 0.56
hevron mist eliminator.
makeup water. Each nnzzle
6 total) on for 3 min. (O.S5
ictween nozzles. Bottom washed
ntens ittently with makeup
water. The nozzles (2 total)
1.6 gpm/sq.ft.).
Limestone slurrted to 60 wt
to £KT, MgO dry fed to EHT.
Three beds {4 grids) with
nominally 5 Inches/bed of
nitrile foam spheres from
Hun &9-J-2A,
and 1.0. fan damper. Mo other
changes .
Limestone stoichiometric ratio
controlled at 1.2. Effective
Kg>* ion concentration (total
pern Mg++ - ppm CT/2.92) con-
trolled at 9000 ppm. Hold tank
(0-?04) *i'.tt internal down-
cOMer was used.
To observe the effect of the
900Q ppm effective Mg+* ion
concentration or $02 removal
and gypsum saturation. Test
conditions Mere the same as
ternal dowi comer was used. The
purpose of the run was to ob-
serve if it cnuld be operated
in the gypsum unsaturated mode
scrubber inlet liquor averaged
903. Si-lfite o»ida'.ion aver-
aged 18t. $02 removal averaged
933 at 2850 ppm average inlet
$02 concentration. The ef-
was 8950 ppff. The mtst elimi-
nator was H restricted at
the end of the run.
(b) Total stoich. ratio for Ca
* Mg is 1.24-1.42
-------
Table H-2
SUMMARY OF LIME TESTING WITH MgO ADDITION
ON THE TCA SYSTEM
iphrrvi from RllA .,]O.2A.
fflucn- h-ld tinK (P-id^i ,r,H
onom bar uritf. -N<> ..(hrr
h»rt«r..
fHn.Tir holri lank.
i MR ' ' - ppni C\~ '1. tl i
rr..Itf(| ii i(lHO ppm. Hold
H-4
-------
Table H-2 (continued)
SUMMARY OF LIME TESTING WITH MgO ADDITION
ON THE TCA SYSTEM
Run Number
Si.rl-or-Run D»'e
End -of -Run D«tf
On S're«m Hours
Flv Alh Lending
MfjO Addilton
G». R«ie, »tfm ** iOO"F
G»i velocity. fp» @ liV-T
,/C. g»l/Mrf
50? mbm. /mol* C. »rfd*d
bile- 0, Concent r»(i"n. vol. <*r
Inlet SO> Conc«ni-«n,in, ppm
Percent 5O2 Rtmov.l
Scrubber Inlet pH R-nRr
Scrubber Outlet pH R»nge
Percent Sulfite Oxiditrri
Solid! in Sludge Oi»th»T(*d. %
CllcuUl'd: Av(. "o Cypium S»lunlfon
in Scrubber Inlrt Li
100
r?T c,,nlrpll*d *i
1000 ppm. Hnld l»nV iD-2*>4)
neil.
"n obirrvp ihc effret of the
2000 ppm effeclive Mg** ion
Ibl Tol.l .tilled, r.ilo (or C.
«. MR ii 1, OS- 1. 10 (*v>g.
f2I-if\
1/1Z 'TK
i/j9' rs
12S
High
Yd
50,000
1Z. 5
000
7. 3 - 8. 7
4. I
(cl
o*>(c>
4. 2 - S. 1
;zoo - )ooo
BO - 90
fi.BS - T.05
5.2 - 5. 9
10 - 17
]7 - 47/t-O - fl
95
1 3.200 - 11. 100
fa. 2 - l.i
0. SI - 0. (.0
«r.
6 iDUHonfor 4mi». 10. SS
o downcomcr. MgO dry fed ID
:HT
r*Uy >• tncne*/bed o! llrrilt
fo.m fphere* from Run f>iJ-JA
Scrubber inlet pH rontrolled •
7. 0 .0.2. Effective liquor
(rolled »t 2000 ppm. Hold link
comer w* i uteri.
To obierve the effect of ihe
2000 ppm effective MB** inn
-z:=:r"p -
ki Tol.l iWich. rilio f,,r c»
t. Mfl Ii 1. 00.1. IS Uvg.
^^^-^A
5/n'7H
•;./»). '78
271
H,^h
Ye>
30,000
1Z. 5
i;nn
iO
7.4 - 0.0
3. 0
..0, . ,.,,"»
041"'
T.O . 9.0
2200 - Z900
fln - 9^
t>.l - T.4.
5,0 . 5. S
f. • ZZ
51 - d5
7fl
U.OOO - It,. 700
fa.* - T.t>
O.S4 - 0. t-B
fcLSSttovTonmUnUmLM.
toUll on fc.T 4 mln. (0. 5?
,.„ 4 „„„,,„. 5 „„,.,.„.,.
ith mikeup *it*r .nd >ddcd
o downcom«r. MgO dry fed to
rally 5 incltei/bed of nil rile
fo«m ipherel from Run 622-2B.
• * 10. S inchei n ih< end of
Scrubber in If I pH controlled •!
7. 0 t 0. Z. Effective liquor
ppm Mg" - C!"/2, 92; «,nlru!!*(
11 1000 ppm. Hold t*nk tD-2041
uied.
To obierve the effect of ihc 2QOQ
rcnlr.lioiv. The *ff*-c(iv* Mg**
(dl Tol.l »1oich. ritio for C» t,
Mg '• !. 01-1. 1 J ftvg. ilkili
H-5
-------
Table H-2 (continued)
SUMMARY OF LIME TESTING WITH MgO ADDITION
ON THE TCA SYSTEM
Bun Ntnber
Starl-of-Hun gate
End -of -Bun Date
On Stream Hours
Fly Ash Loading
MgO AudUlon
Gas Ktce, acfp » 300°F
Gas Velocity, fps * 125°F
Liquor Rite, gp*
l/G, sal/Mcf
Percent Solids Recirculated
Effluent Reitdence Time, "In
Sto1chio«etr1c Ratio, me let Ca
added/nioU SO-, absorbed
Avg. t LtM Ut Dilation. lOQx
imlM SO; ibs./nolt Ca added
Inlet Oz Concentration, vol. i
Inlet SOj Concentration, pp*
Percent S02 Rewval
Avg. SO; Make-Ptr-Piif , K-mole/I
Scrubber Inlet pH Hinge
Scrubber Outlet pH ling*
Percent Sulftte Oxtdtrid
Solids Diiposil Syiten
Solids In Sludge DfichargwJ. 1
C+lcul»t«d A.vg. % GypsuM Sttunctoti
In Scrubber Inlet Liquor » SO°C
Tout D1»olv«d Solid*, ppn
Totil «? RtnQe Excluding Mist
EllRlAttian SyitH, 1n. HjO
M1*t EH*1n«tlOn Syttew
AP Range, in. H20
Mtit CllMfrmtlon
SysteB Conftguntion
Mist EltMlnator
Hashing Schim
Abtorb^t
Scrubber Internal!
Syitea Change* B«for»
Start of Run
Mtthod of Control
Run Philosophy
Result i
b24-2fl
6/S/78
S/I9/7S
?69
High
*«s
JO. 000
12. S
9OO
}7
'.6 - B.4
3.0
0.98 - 1.04**'
99<"
5.9 - B.S
2400 - 3400
75 • 89
16.4
6.7 - 7.3
4.9 - 5.4
e • n
Clarifier
35 • 49
6S
11,900 - 15.500
5.9 - 7.0
0.63 - 0.78
Tnree-ptsi, apen-yane, 3161 SS
chevron ntst eHnlnatar.
op Mtihed sequent 1*Hy wtUi
Mkeup Mter. Each noizle (t
total) on for 4
-------
Table H-3
SUMMARY OF LIMESTONE TESTS WITH LOW FLY ASH LOADING
ON THE TCA SYSTEM
Run Number
End -of -Run Dale
On Stream Houri
C*e Rate, acfm 0 300°F
Gae Velocity. fp«@ U*°F
Liquor Rite, gpm
L/C. gal/mcf
Percent Solid* Recirculated
Effluent Residence Time, mln.
Stolchiometric Ratio, mole* Cm
added/mole SOZ abeorbed
Avg. %Lime«ton« UtllUation.lOOx
mole* S02ab*. /mole Ca added
Inlet SO2 Concentration, ppm
Percent SOz Remove,!
Scrubber Inlet pH Rang*
Scrubber Outlet pH Range
Inl«t OZ Concentration, vol. •,
Percent Sulfur OxldUed
Solid! Dlfpoial Syitcm
Loop Cloaure. % Solid* Di*chg.
in Scrubber Inlet Liquor @ 50°C
Tout Dlaaolved Solid*, ppm
Total AP Range Excluding Milt
Elimination Syetem. in. HjO
Mlat Elimination Syatem
AP Range, in. H2O
Mlet Elimination
Syatem Configuration
Abeorbent
Mlat Eliminator
Waehtng Scheme
Scrubber Internal!
Start of Run
Method of Control
Run Philosophy
Reault*.
70 1 - 2A
1 1 ;24/7i.
12/ b/7(.
277
30. 000
12.5
1200
50
7.5-8.5
4. 1
1. 14 - 1. 28
fll
2100 - 3300
81 - 92
5. S5 - 6.0
5. 0 - 5.4
7. 5 - 10
2-22
Clarifter *• Centrifuge
31 - 43<"
45
4600 - 7800
7. 7 - 9. 1
0.42 - 0.56
1th makeup water and added
o EHT.
^ »..h.d ..,v,.n,l.lly w.,h
>«n/*q. fl. » with 7 minute*
'op bed 5 In, new nttrlle foam
height eitim»t«d tob« IS Inch*
CUrifter dumped.
5O2 »b»orbed.
Trt«b.erve the performance
Hy »ih-free Hue g*i with
run of thi» i*rUs.
• I an average SO; inlet con-
rvntrailon of 2700 ppm. Sul
Some calcium lulflte vcale
formed in lower part of TCA
rcatrlcted at the end of the
trlrBge cake lolld* 44 - 52%
702 - 2A
12 / t..'7tj
12/n/7t,
1M
10, 000
12.5
1200
50
14. J - lr>. 1
4. 1
1. 07 - 1.25
86
2t>00 - 3400
74 - 88
5. f - *>. 1
5. 0 - 5. 5
8 - 10.5
1 - 11
cnt. (till 12/10)/ Cltrifter
Ji-42'b)
20
J400 - 6600
7.5-8.0
0.45 - 0.50
th makeup witer and added
o EHT.
gpm/eq. ft. 1 with 7 minute*
•d total tctual bed height wai
No other change*.
SO; absorbed.
lated O5% cf. with 8% for
701-2A.
The SO; removalaveraged
8m and limeitone utiliiatlon
concentration of 1000 ppm.
run. No •ulflt* Dealing.
fuge cake .olid. 52 - t>4%.
Clarkfler underflow eollda -
i6%.
701 - 2A
12/11/7L
12/20'7t
lr.S
30, 000
U. 5
1200
50
7.5 - 8.;
4. 1
I. 05 - 1. IB
90
2bOO - 3)00
*b - 82
1.5 - 5. 85
4. * - 5. 1
7. S - 9. 5
1 - 13
Clariflcr li Centrifuge
41 - 55 (el
25
4600 - 6800
6. 3 - 7. 9
0.43 - 0. 49
with makeup water and added
lo EHT.
tpm/*q. ft. ) with 7 minute*
Estimated total actual bed
height wa* 1) inch**.
No other change*.
SOi abiorbed.
t 1. 1 cf. 1. 2 for Run 701-2AI
701-2A.
ai an average inlet SO^ con-
centration of 2950 ppm (cf.
Run 701-2AI. Sulfatc ••tura-
ttrlcted at the end of th* run.
No *ulfite ecallng.
704 - 2A
17/7 I /7i.
1 ' 4/77
124
JO, 000
12.5
uoo
50
7. 5 - 8. 9
12 13 tank*,)
1. 03 - 1. 17
91
2200 - 3ZOO
68 - 06
5.4-5. 95
4.8-5.2
8 - 10.5
I • Z4
Clarifier i Centrifuge
40 - 4* «>
65
5000 - 9000
7.0-9.0
0.40 - 0. 54
with makeup water and added
to EHT.
gpm/«q, ft. 1 with 7 mlnui**
waah*d Intermittently with
Estimated total tctual bed
h*ighi w«« U inch**.
SO2 ab*orbed.
pH ai a 1. I *(oichiom»tric
703- 2AI. SOZ removal aver-
let SO; concentration of 2700
ppm for Run 703-2AK The
ml*t eliminator wa» 1% re-
»i rictcd at the end of the run.
H-7
-------
Table H-3 (continued)
SUMMARY OF LIMESTONE TESTS WITH LOW FLY ASH LOADING
ON THE TCA SYSTEM
Run Number
Surl-of-Run Date
End -of- Run Date
On Stream Houri
Fir Aen
M|O Addition
Ga# Rale. *c(m 9 JOO°F
Liquor Rat*. Ipm
L/C. gal/Kfcf
Effluent R«aldenc« Time, mln
Stolchlometric Ratio, mole* Ca
added/mole SO2 abaorbed
Avf. % Limeatone Utilization 100
mole a SO2 aba. /moU Cm added
InUt SOj concentration, ppm
PercentSOf Removal
Scrubbar Inl«t pH Rani*
Scrubber Out I.I pH Range
InUt O> Concentration, vol. %
Percent Sulfite Oxldtied
Solid* Di «p*«al System
Loop Cloeufe, % Solid* DiechB..
CaleuUtedAvg. %SulfaleSaruretlo
In Scrubber InUt Llcjuor 9 WC
Toul Dieeotved Solid*, ppm
TouliaP Ra»ge Euhidinf Mtet
ClbnlMtlon 9y»t«n. In. H2O
U)it elimination Syatam
^PKanie, in. H]O
Syttcm Canfl|uratlen
Utet EllmlMfor
Wajhlnf Schema
y*l«m Chanfaa Bffar*
Slarl of Run
4 ,thod of Control
tun Philoeophy
l*eulta
70^-2A
I/ 4/77
1/14/77
236
No
No
10,000
1200
50
12 (} tankel
l.OS - 1. 18
90
2500 - UOO
80 - 88
5.75 - 5,95
5. 1 - 5. 35
9 - 12
4 - 17
CUr|fl.r
32 - 40
60
4400 . 8100
8. 5 - 9. 7
0. 4J - 0. 52
3 aai n 3 f,L S3
chevron mitt eliminator.
% with makeup water and add-
ed to ft rat t«nh In arrlea.
Top waahed aaquVntUlly with
makeup water. Each noiate
(6 total) on ) minulra (at 0.55
Upm/aq. ft. ) with 7 mlnutea
waahed lni*rmitt*ntly with
makeup w*t«r »t l.s ^ptn/aq.
S inch* a apherei/bed. All
b«da warn nltrfl* foam
E»lua other uaed apheret in
ttottom two beda. Total ac-
tual bad hi. estimated to be
15-1/2 inchaa.
No c lea nint. Added 1500
ua*d nltrlle foam apherra lo
each of mMdle and bottom
b«da.
Stoichiometrt Ratio , I
SO; *baorb«d.
hi(h»r 19% lolidiracircuUied
ef, 9% (ot Run 704-ZAt on
•crabber inlet pH and SO2
removal.
The acrubber Inlet pH av*r-
04.2AK SO2 removal aver-
ted 84*; (c(, 77*; for Run
04-2A). The miat elimtna-
or w«a 1% reatrtcted at tKa
nd o( Ihe run.
TO" 2A
1/14/77
2f 4/77
J31
No
No
JO. 000
UOO
50
12
1.05 - 1.2
89
2400 - }iGO
74 - 88
5.4 - 5. 7
4. 9 - 5. 15
9 - 12
10 - 26
Clarfflcr
31 • 41
120
7200 - 9dOO
7.7 - 10.5
0.44 - 0. $9
chevron miat eliminator.
% with makeup water and add
ed to EHT.
Top waih«d avquentially with
makeup water. Each nocale
(6 total) on 3 minute* <•! 0.55
tpm/aq,. fl. 1 with 7 minutea
waihed Intermittently with
make-up water at 1. S |t>m/aq.
$ Inchea apherei/bed. All
fc.*d* worn nitril* foam
No cleaning. No changca.
SO2 abaorbrd.
•lnglr*lank optratlon on pH.
•tolchiomctTy and SOz remov-
al compered with three -tank
operation during Run 705-2A.
All other condition! the earn*,
The tc rubber Inlet pH aver-
05-2A). and 5O2 removal
vcraged 81% Icf. 84% for
Run?05-2AI. Stoich. ratioa
w«r* approx. thetkmafor
Runa705-2A »-,t) 7Qh-2A (90%
nd 89'., reao*«tfv«lyt. Miat
liminstor waa cleaned (8% re
irlctedl after 1 15 operating
louri 10 allow outlet partleu-
ate aampllnf, Ii wa* 1% re-
tricted «t the «nd ot th* run.
H-8
-------
Table H-4
SUMMARY OF LIMESTONE GRIND AND TYPE TESTS
ON THE TCA SYSTEM
— ' - — -[-
Run Number
gt.rt-of-Run Date
Enet-af-Run Date
On Stream Hour*
Fly Ash
MgO Addition
Ga» Rate, acfm @ 300°F
Ga« Velocity, fp« <3> 12S°F
L.quor R.te. gpm
L/C, gal/Mcf
Sfoichiomelfic Ratio, moles C»
Added/mole SO2 absorbed
Avg. ?„ Limestone Utiliiation, 100*
mole* SO aba. 'moVe C* added
Inlet SO2 Concentration, pprn
Percent S02 Removal
Scrubber Inlet pH Range
Scrubber Outlet pH Range
Percent SulfHe Oxidized
Solid* Diapoaal Syatefh
Solids in Sludge Discharged, %
Calculated Avg, % Gypium Sal'n.
in Scrubber Inlet Liquor @ 50°C
Total Dissolved Solidi, opm
TotalAP Range Exludlng Mi.(
Elimination Sy» tern, in. HZO
Miit Elimination System
£P Range, in. H2O
Cortligurttion
Absorbent
Miff Eliminator
Waihing Scheme
Syitem Changea Before
Method of Control
tun Philosophy
Re.ult*
p
707-2A
3/4/7T
3/0/77
113
YM
No
30. 000
12. 5
1200
SO
13 5 - 1%. 5
1. Ifi - I. 30
81
2700 - 5500
^t> - ?7
5. 4 • *,. B
5. 1 - 5.3
6.11
J> - 20
ClariHer
18 - 42
100
5800 - 8200
fi. 0 • 7. 2
0. 4S - 0. 57
<>—<•' •<>»>">•""•
Fine Fredonia White lime-
Hone (96% O2S me. hi
Top waahed BequenttaHy with
gpm/it). ft. ) with 7 minutes
off between nozxlei. Bottom
5 nchea. sphere*/be<1. All
10 b* 15 inchea.
5O absorbed.
\ining the iiandard Hme*. 0 - 6.7
0. 44 - 0.49
atone (faS% ($25 meah)
Top washed a«quentia.Uy with
gpm/cq. ft. 1 with 7 minutes
off between nozzles. Bottom
5 inchet iph«rei/bed. All
to be 1$ inches.
SO abaorbcd.
/erent type of Hmeitone
SO. removal. Operating con-
708-2A.
an average SO_ removal of
i of 85% and a gypaum salura-
limestone). Milt eliminator
was leas than 2% restricted.
blems.
1
710-ZA
5/17/77
3/24/77
162
Ye*
No
30, 000
12. 5
1200
50
14.3 - 15. 1
12
1. 10 - 1. 12
83
2900 - )QOO
48 - hO
5.Z - 5.0
4. 6 - 5.2
5. 3 - 7. 7
8 - 24
Clarifier
38 - 48
110
5200 - 6800
6. 0 - 6. 7
0. 47 - 0. 55
atone (69% <3Z5 meahl
Top washed sequentially *"h
gpm/sq. ft. ) with 7 minute§
off between nbzzlea. Bottom
5 inchei ipherei/bed. All
to be 15 inches.
No cleaning. No change*.
SO absorbed.
FredonU lime it one (cf. Run
conditions same aa for Run
708 -2A.
r*mov»t, 83% limestone ulili-
ration (cf. 49, 87 and 115%.
H-9
-------
Table H-4 (continued)
SUMMARY OF LIMESTONE GRIND AND TYPE TESTS
ON THE TCA SYSTEM
K i.n Numb*- r
-,.- ri ->( Hun D«i«
Knd-ur-Huri 1).,,
wn Sirr.m H»urt
Tly A.h
MgCJ Adriinun
G»« R»i«, «cfm to/ JOO-'F
G«i Velocity. (p§ ^ US"F
l,«Hwr R»t», npn-,
L/C. M,/Mc,
tffLueni Hc«>denc* Tim*, rmn.
Sotchi.mttr.r R.lio mol.i C.
* m * i * *
A-.f. ^. Ltmvirone irtilii* (ion. 1 00*
niul.i SO Aba. V^le C* «dd--rf
Inlf SO; Concrnirauon. ppm
P*rc*ni SO^ Rrmoval
Sr rubber Inlrt pH R»«l|«
S, rubbrr Oitil.t pH R»nge
lVr>*ni Sulfii* O»idiji*et
^UH. D..PU..I Sy.r.m
c'Tl"w'IAM'\K">iulS*"c
elimination Syitcm. in. H^O
Mm Elimin«iion Syit«m
AP R»nB». in. HjO
Mlit C(»nt»iinnSy^*m
C:unii|ur*(ion
AL.^b.r.,
^::hlcni;™7.r.
S.Tyhb.7 U.err,*^
"I 1 - 1A
• 2 4
1 28-7?
*1
Yr.
N'o
10. ->uO
12. S
1100
53
n
1. 17 - 1. i3
SO
2tOO - »-'OQ
5« - -^
V 4 - S *">
4- a - 5.1
10 20
C!*rif-.«T
IS - 40
,0
c. 1 - n. 8
J. ^J - 3, r.2
Fin* FrvduniA Whu* Urrn--
*nd *dd*d to CHI
Too wttHtd •*qu«nnallv with
sr-1"-1*.'"'^:-
l.';:h;:,r."" ,^
"o(»l •ctual b*d h*. *»iim*(»d
a b» M inch**.
S *bto|rb«*'
^ so1,1""^.? »^^4«
i+« ? 1 0 / A ,
10V r«*p«f.i-«IV- l->r Mur.
IJ iA, Ih« n-.i«t tl;rr.i&»Uf
"12 -JA
' 2* "
4 2 '77
1 1~
'i-.
No
J '. 000
U'. 5
1200
50
12 i) tanVi
1. 1- - 1.2'
S *
2'SO - } ^u
•4 - ?4
S. " - r . C
5.0-5.4
5. " • ". 5
10 - 2»
CUrifier
V - 4)
rO
<.t • 7.1
1 4* - 'X 1 1
Fton* F^nr**h"h*.iir*"i d
• ori Added u (ir«( EHT,
Top wuhrd irqurntiallT *»'h
i!rfcr-".'.r,'.min.
o b« 1 1 incK*i
l»«*«d. No Jth.* r cK*K{e*.
*C2 .b .arb«d
b*f uiL*t pH could b* *chi*v«4
•*jn* »* iif RUB Tlf^2A.
4^ for Run 71 1 -2A. Lime
ifl 7 1 1 , i A . . M l • t « I iir < n* ! j i-
KUic'-ior, ••• 13\.
H-10
-------
Table H-5
SUMMARY OF AUTOMATIC LIMESTONE FEED CONTROL TESTS
ON THE TCA SYSTEM
Run Number
End-of-Run Date
On Stream Hours
Fly Ash
MgO Addition
Gas Rat*, acfm @ 300°F
Ga» Velocity, fpi @ 12S0F
Liquor Rate, gpm
L/C, gal/Mcf
Percent Solids Recirculated
Effluent Residence Time, mln
Stoichiometric Ratio, moles Ca
added/mole 5O2 absorbed
Avg. % Limestone Utilisation, lOOx
moles SO.abs. /mole Ca added
Percent SO2 Removal
Avg. SO7 Make-Per-Pass, mmole/l
Scrubber Inlet pH Range
Scrubber Outlet pH Range
Percent Sulfite Oxidized
Solids Disposal System
Calculated Avg. % Gypsum Saturation
in Scrubber Inlet Liquor
-------
Table H-6
SUMMARY OF LIMESTONE TESTS WITH HIGH FLY ASH LOADING
ON THE TCA SYSTEM
Dun Numferr
Start-of-P-Un Date
End -o(- Run Dal*
On Stream Hour.
Fly A.h
MgO Addition
tia*Raie. aetm 0 100°?
Cai Velocity. h>. * lIi°F
L/C, gal/Mcf
Percent Solid* Reclreulated
Effluent ft<*ldence Time, mln.
Stolchlometrlc Ratio, mole* C»
added /mo I. SO abeorbed
Av|. % Lime .ton. UHHittion, 100.
mole* SOz ab*. Jmolt Ce added
Jilet O2 Concentration, vol. %
[•let SO; Cone* nl rat Ion, pptn
Percent 9O2 Removal
Av|. SO^Uake-IHr-Pa*.. hi-mele/1
Scrubber Inlet pH *•>••
Scrubber Oull.t »H K*n«<
P*rctnt Sulflte Ovldiaed
Solid! Dlepoeal Sy.tem
Solldi In Sludge Dl.char|>d. %
Calculated Avg. % Gyp.um Saturation
in Scrubbet btlet LiaMkr « SO»C
ToUl Di. .clved Solid*, pom
ToUl iP JUnge EBcludlnf Miel
Elimination System, Ui. H,O
Ml*l Elimination Sy*tem
A P Ran«e. in. H,0
yiil tUmtBetton
Sy.tem Configuration
An*orbeni
Miit Eliminator
WeanU| Scheme
Scrubber Int. rue I.
Syalem ChM|*i B«for*
•Url of Run
Method o/ Control
Run PhllotophT
K<*ulU
m-ZA
10/ 7/77
10/14/77
If.)
Y*»
No
Id. 000
12. *
JOOO
41
14.4 • H. 6
1. 16 - 1. 30
SI
7. * - 9. 4
1100 . 1400
•I - 90
11.1
V6S - S.»
».O - 5.4
14 - Zfl
ClarifUr
W - 42
100
1100 -7100
10.0 . U.S
0.44 - 0. 15
>•*»•», Df*n-wftn*, J16L U
cWvron tnlvt •llmlMtor.
Llm**ta>a* •larrtod M *0 wt%
with m»k«up w«t»r »Bd •dded
to rir« hold l**k.
Top *>«h«d M^ittnlUltr *ltb
m«h*qp««t*r. behiMMU
(6 total) on 1 ml*, (kt 0. »*
lpm/»q. ft. 1 with ? mU. off
b*tw*«» noulct. Bottom
•••kad CMttawntilr w»b *l-
t«Md c*i-
fpn>/^. ft.
namlMUf 1. 9 i*c4i««'W4 of
nitrite foam mfkmrft (rorn
Mwi 814- ZA ptu* •MtttoMl
rph«r...
A U-lach dl«iVMt*r pip* eon-
Mctlo* b«t«**ii *• nr«l *«d
MeoBd hold »••* w*f modlfUd
lo Bllaw overflew fpam Hr«t
hoW Unk to enter bottom of
••toad hold utik. Nitrite focm
•pherei «dded to lucre*** he*
hvlflhi rrom 1
9O- eml*»loa •tandardl. Aim,
to meei EPA p*rtie«Ute emie-
•Ign *ttnd*rd (0.012 |r/dry
icf *i >0% VMC*->» »ir).
SO, removal iutr«|td HI
•1 1000 ppm *ver*|e InUt 3Oj
utlilMiion *a> 11%. Av*r*.f*
outUi pirilcuUt* ma** load-
ml»t *Un>iTWtor vat entlr«ly
'lfc-2A
10/14/77
111
Ye.
No
17.000
11. 3
1000
4h
11. « - 19. t
1.09 - 1.24
sii
b. } - B. 9
1100 - )100
•& - 96
14.0
5-6-5. 95
5.0 - 5. 5
It - J4
CUrlfler
)) • 41
101
5500 - (.800
12. B - 16. I
0. 14 . 0. 44
>.ptl*. DpBD-MIW, JH1. M
ch*vron ml*t tlim(n*tor.
LHMetOM ilnrrUd to 60 wt%
with m*he«p «t»r ud >dd«d
U, Orel bold tank.
Top washed •^iMtntUlly with
nwkeop w»ter. Each ou«al«
(6 tottl) on } mln. (*l 0. **
g^/.o.ft. 1 with 7 mln. off
between aoi*lei. Bottom
«eke%. Average
outlet p*rtlcul*le m*» lo«d-
ml»t *(ifnltiatar wat entirfly
717-2A
10/ZO/77
747
Ye»
No
20.000 . 10.000
1.4 - 11. S
1000
42 . 62
H.7 - 15.7
1. 10 - 1. la
11
S.B - a. i
1200 - 1400
10 - 94
t.9 - ii. a
1. 7 - 6. 1
5.1-5.7
12 - 12
ClariOer
11 • 41
9D
4400 - 7000
I.I - 11.4
0, 17 - 0.12
}-pat», DP«H-V»M, JltL. K
chevron ml*! *llmlaator-
Lime. tone .tart- led to 60 wrft
with makeup water tnd added
to flr*t hold tank.
Top wa.hed ieqv*nltallr wlft
nwkeuf, water. Each oo.al.
(6 n>lal> on 1 mi*, (at O. SI
tym/tq. ft. ) with 7 mU. off
Mtwee-n BO* ale*. Bottom
w«aw*d coatlmxni.lr wltb dl-
haMd eU rifled ^i»r (all avall-
abla tnakevp water phi* MC*I-
|pm/»q.ft.
•allT 7.4 Ucwia/tod of «Urlle
foam *cthere« from XM T16-ZA
2Z. 5 inch*, cctval total b*d
h*I|ht).
CUBMd DM AM damper, out-
let duet from tfc* •cmbtMr to
r«k.»l*r. bottom bar |rU. and
•crttbWr wall* below the
bottom frld. Total ctatle bed
helfhl redveed from 30 to ZI. S
Inch**.
Llm**Wne *loltn lame trie ratio
mole SO, tbearWd by a«to-
Thl* wa. • one-moth n li-
ability M*t. Te*t eondllkie..
minion *tand*rd*0.21ba SO,
and 0. 1 Ib particular per
O6 Btul and to |lv« reliable
•crubber and mtat elimln«u>r
operation.
'or the entire rua, SO, r«*
moval averaged 17% atllOO
ilfher than the 11% removal
required to me*t the cml**loa
*rd *ai frequently vscvcded
hour* allowed by EPA regvU.
loading wa« 0. 041 gr/*cf dry
0. «<-- 0. 0^4 range) which wai
better than H» 0.0(2 (r/.
-------
Table H-7
SUMMARY OF CEILCOTE SUPPORT PLATE PACKING TESTS
ON THE TCA SYSTEM
Pun Number
S'irT-uf.Run D..T
End-of-Run Darr
Fly A«h
M|iO Addition
C.a« R»tr. »cfm 10 100'T
Gil Velocity, fp. ifi 125°F
Liquor H»if. gpm
L/C. g.l'Mcf
Effluent Re.ldtnce Tim*, min.
.dded/mole S02 absorbed
mole* SO? aba. /mole Cm added
Inlet SO, Canc*0ir.iton. ppm
percent SO., Hfmov.1
SO2 Mak»-Per-Paa», m-mole/1
Scrubber Inlet pH Range
Si rubber Outlet pH Range
Percent Sulflie Ontdlf <
Solldi Dlipoikl Sy.lrm
Solid! In Sludge Diichirged, %
In Scrubber Inlet Liquor @ ^OaC
Total Dliiolved Solldi, ppm
ToUl 4P R*ngr Excluding Mill
Elimination SyKem, In. HjG
.-.P Ring*, (n. HO
Mlit Eliminator
Syiltm Change* Before
Method of Conirol
Run Phlloiophy
Reiulti
71S-2A
II '24/77
11/10'7?
14)
Yci
Nu
•50, 000
12. S
1200
50
12
1.17 - 1.48
75
<,,<> - o.g
2800 - InOO
71-79
11. 0
5.* - 5. »
14 - 2H
CUHflrr
16 , 40
110
f>000 - 7500
fe.S • 8. 2
0.40 - 0. 10
o effluent hold link.
Top »«»h«d lequentlally with
makeup water. Each noiile
b^l „„.„... ..„„„
able makeup water plui ncce»-
Bprn/pq. Ct.
nchei total height) of egg.
All nitrite foam »ph,r», r«.
Llmeitone itoichLometrlc rat
matlc ItvA tyilem.
•pherfi.
tt$Q ppm inlet SO and 7. 2
H;O pretiure drop under Ihe
dfpo.lt on upprr Uy.ri of
let man toarfinfi w»t 0. 04Z g
-|i.2A
lZ/r/77
U/9/77
IH3
Yei
No
18.000
7. 1
UOO
HI
12
1. 08 - 1.24
8&
* ! . 10-0
2700 - J-400
94 - S8
8. 4
5.6-5.?
^ 0 - * 4
11 . 25
ClaHfler
J5 - *1
105
5100 - 5700
Z. fa - 4, 0
0. 13 - O.JO
ffluenl hold tank.
makeup water. Each notile
.,.™ „..,... .„,„„
I 1. 5 iprn/iq. ft. (of 4 mln.
^..•,0,., „,.,„„/.;,.;„,.
No changei. No cl«»nlng.
Llm..,D,e ,,oich.ome,rlC r.,1
tic fe.d IV. ««m.
with ihtt of thr nitrlle foam
•phere..
30^0 ppm tnl*t SO? and ). 0 In.
»ame op* riling condition*. Th
lei m»i* loading iva> 0. 057
H-13
-------
Table H-8
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS WITH AIR EDUCTOR
ON THE TCA SYSTEM
Run Number
Start-of-Run Date
End-of-Run Date
On Stream Hour*
Fly A ah
MgO Addition
Gas Rate, acfm @ 300°F
2 Make-per-pas 1, mmole/l
Scrubber Inlet oH Rtnae
Scrubber Outlet oH Range
Solids in Sludge Discharged, \
Calculated AVR. % Gypaum Saturation
in Scrubber Inlet Liquor @ SO°C
Total Dlaiolved Solids, ppm
Total AP Range Excluding Mtit
Elimination System, in. H2O
vlisl Elimination System
AP Range, in. H2O
Mist rumination
vlist Eliminator
Washing Scheme
Percent Sulfile Oxidation
OxldiaerlAir Eductor) Inlet pH Range
Air Flow Rste to O*idUer, scfm
Liquor Flow Rate to Ojctdlter. gpm
Avg. Air Sloichtom.tric Ratio,
Ib-atoms oxygen/lb-mole SO2
801-2A/8C1-2B
K/Ztm
r /iO/77
102/47
Yes
No
50. 000
12.5
1200
SO
13.9 - 15.4
12/li. 7
t. 1 '8. 0
1.10- 1.40
80
3. o - 9.8
1<»00 - li-.OO
i,4 • 75
10. !
5.t>5 - D.O
5. 0 - 5. 3
34 45
105
4500 - 5100
n. 7 - 7. 5
0. 47 - 0.51
3-pass, open-vane. 3U,LSS
makeup water. Each nufile
If totall on 1 minutes fat 0. ">5
continuously *ith diluTed cLari-
fied liquir tsll malteuD water
plus necessary clarified Itcaiori
at 0. H gpm /S9- fl.
40-t.5'«S-72
5. 1.5 - r.O
fcOO (Est. t '5 30
15»0
t..4'5. •
802-2A
7/1/77
7/7/77
142
Yes
No
30, 000
12.5
1200
50
14. 7 - 15.9
25. 5
12
1. 14 - 1 . 29
82
. e.5- 8. 5
2700 - 3100
7? . 60
11. 8
5.6-5.9
5.0 - 5. 1
32 - 38
100
4800 . 5200
7. 9 - Q. 0
0.47 - 0. 5c.
3-pass. open-vane. 316LSS
makeup water. Each noctle
If totali on 3 minutes tat 0.55
washed continuously with diluted
clarified liquor (all makeup
water plu* nectsaary clarified
liquor 1 at 0.4 gpm/sq. ft.
43 - i,1
S.c - 5. 9
485
lo 00
4. 5
803-2A
7/8/77
7/15/77
165
Yes
No
30. 000
12.5
i ? no
50
14. 1-15.7
23.5
12
--
1. 02 - 1 . 20
90
7. 5 - 1.4
2800 - 3100
54 - 70
9. 1
4.8-5.3
3.3-4.2
33 - 48
105
5400 - 6400
7. 9 - 8. Q
0. 40 - 0. 52
3-pass, open-vane, 316LSS
makeup water. Each nozjle
In total} on 3 min. (at 0. 55
washed continuously with di-
luted clarified liquor (all
makeup water plus necessary
clarified liquor) at 0. 4 gpm /
sq. ft.
84 - 97
4. 8 - 5. 3
1600
5.2
804 -2A
7/15/77
7/22/77
Hh
Yes
No
30. 000
12.5
1200
50
14. 0 - 16.0
23.5
12
1.03 - 1. 11
93
t. 0 - 7. 8
2500 - 3500
54 - 69
10.4
4.8-5.2
3.4-4.5
30 - 50
105
5600 - 7600
7.S - 8. 8
0. 40 - 0. 4b
3-pas«. open-vane. JlnLSS
Top washed sequentially with
makeup water. Each noaate
(6 total) on 3 min. (at 0. 55
wa>hed continuously with di-
luted clarified liquor (all
makeup water plul necessary
clarified liquor; at 0.4 ipm/
aq. ft.
86-100
4. 8 - 5. 2
410
1600
4.5
H-14
-------
Table H-8 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR EDUCTOR ON THE TCA SYSTEM
Rur. .Nim-iht'r
Oxidari..n C.-nfic »ra t ion
Absorbent
Sc rwhbf r Internals
'
S-ar' of Run
MfhoH of Control
R-.m Philosophy
R.swl-a
8iM -.'A 'S01-2N
Sinn U1 lank configuration with
Penberlliv FLL-1Q Special!.
and off- centered in effluent
slurry level at <-, ft 2 in. for
Run *ni-2A and at 8 ft for Run
K01-2B. 1
o effluent hold tank.
spheres from TCA Run 713-2A.
N
fot- forced oxidation *'irh either
one or two tank operation. In-
trolled at 1<>00 gprn.
Fir,, forced oxidation ,,,„
TCA. One tank oxidation
scheme.
=.i"o dur!nR Run 801-2A. Rais-
ing Run S01-2B ro ensure a
proved sulfite oxidation onlv
10% (10 h3%). Overall SO, re -
mov»l averaged 70% and iTme-
cndof Ihe runs.
*'.ii-iA
Penherthy tTLL-10 Special.
h.,..r.,e.,,^c,.,,«.
t 12 ft. i
Limestone slurried to • -1 «-!~
fHuenr *ioW ^ank.
pher*s from TCA Rur. inM-^IV
lemoved 4 It section -j!" 10 inch
lroll*d ai lf-00 gpni.
S(-*0. 5O, removal a\e raped
averaged 85*.. The mist elimi
end of' the run.
S<1< - 2A
^"l'),"-""lur:rJ'r""ro,1.1"!; |
iPenhcrthv ELL- 10 Special i.
L^mest^ne .h.rried lo ..(1 wi".
ro effluent huld lank.
niirile foam spheres fn»ni TCA
TCA inlet oH rontrolltd at
°!«V but SO, removal dropped
averaged *0^. Scrubber »'a »
14 2 A
Penber'hv PL!.-;.1 Soecial
10 tl fr.im h..-r.,t-r- ..;' -an'^.
Tank *lurrs- lev ,-'. *• 1 » (•.
-9 rpm.
(o ff fluent h»ld r«r,k,
Three beds <4 enH*> «:•*-.
nttrilc loan; jph- r, t fr.mi
tciual).
Tlfluent hold rank a
-------
Table H-8 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR EDUCTOR ON THE TCA SYSTEM
Run Number
Start-of-Run Date
MgO Addition
Liquor Rate, Rpm
L/C, gal/Mcf
Percent Solids RecircuUted
Effluent Residence Time, min
Effluent Tank Level, ft
Low pH Tank Residence Time, mln.
added/mole SO2 abiorbed
Avg. % Limestone Utilisation, lOOx
moles SO2 abs. /mole Ca added
Percent SOz Removal
Average SOz Mak«-Per-Pass. mmole/1
Calculated Avg, % Gypsum Saturation
In Scrubber Inlet Liquor @ 50°C
Total Dissolved Solids, ppm
Total dP Range Excluding Mist
Elimination System, in. HzO
&P Range, In. H2O
System Configuration
Milt Eliminator
Washing Scheme
Percent Sulflte Oxidation
Oxidise r [Air Eductor) Inlet pH Range
b- atoms oxygen/lb-mole SO2 absorbed
805-2A
7/22/77
140
No
11.5
1200
50
14.0 - 16.0
23.5
12
1.04 - 1.33
84
6.8 - 8. 5
2700 - 3400
64 - 79
11.7
5.1 - 5.55
4.1 - 4.7
Clarlfier
26 - 39
105
5400 - 6500
7.7-8.7
0. 37 - 0. 46
chevron mitt eliminator.
Top washed sequentially wilh
makeup water. Each nossle
(6 tout) on 3 mln. (at 0. 55
gpm/sq. ft. ) with 7 mln. off
between nosslee. Bottom
washed continuously with di-
luted clarified liquor (all
makeup water plus necessary
clarified liquor) at 0. 4 gpm/
10 ft.
88 - 98
5.0-5.5
470
1600
4.4
806-2A
7/28/77
115
No
30, Tooo
1Z. 5
1200
50
13.9 - 15.0
23.5
1.03 - 1. 17
91
7. 5 - 9. 2
2600 - 3400
10.9
5.2 - 5.5
4.7 - 4.9
32 - 44
110
7.9 - 8.4
0.31 - 0.40
chevron mist eliminator.
makeup wate r. Each noasle
(6 total) on 3 mln. {at 0.55
gpm/sq. ft. ) with 7 mln. off
between nosales. Bottom
washed continuously with di-
luted clarified liquor (all
makeup water plus necessary
clarified liquor) at 0.4 gpm/
sq. ft.
37 - 79
5.2 - 5.4
1200
2.8
807-2A
8/ 2/77
185
No
12.5
1200
50
1 13.8 - 16.0
23.5
12
2.9
1. 1 - 1. 35
82
6.8-8.4
2000 - 2400
74 - 92
11.8
5.3-5.6
4. 6 - 5. 0
28 - 44
100
8. 2 - 8. 8
0.34 - 0.44
chevron miet eliminator.
Top washed sequentially with
makeup water. Each nossle
(6 total) on 3 min. (at 0. 55
gpm/.q. ft. ) with 7 mln. off
between noiales. Bottom
washed continuously with di-
luted clarified liquor (all
makeup water plus necessary
clarified liquor) at 0. 4 gpm/
sq.ft.
93 - 99
5.0 - 5.2
475
4.3
808-2A
8/10/77
L£2 _
1 la
No
12.5
1200
50
13.7-15.9
23.5
12
1.43 - 1.72
63
7.2 - 10.2
2500 - 3300
62 - 80
10.6
4.95-5.25
4. 5 - 4. 9
Clarlfler
24 - 64
125
7700 - 8700
8.0 - 8. 5
0. 44 - 0. 50
>-pass, open-vane, 316L SS
chevron mist eliminator.
Top washed sequentially with
makeup water. Each noaale
(6 total] on 3 mln. (at 0. 55
ipm/sq. ft. ) with 7 min. off
between nosales. Bottom
washed contlnuouly with di-
luted clarified liquor (all
makeup water plus necessary
clarified liquor) at 0.4 gpm/
sq. ft.
86 - 99
4.85 - 5.05
200
1600
2.0
H-16
-------
Table H-8 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR EDUCTOR ON THE TCA SYSTEM
Run Number
Oxidation Configuration
Absorbent
Scrubber Internals
System Change* Before
Start of Run
Method of Control
Run Philosophy
Reaults
S05-2A
ingle lank configuration with
oopa to TCA and air eductor
Penberthy ELL- 1 0 Special).
Air edwctor mounted vertically
nd off centered in effluent hold
old tank agitator speed at 68
pm.
ZOO gpn\ TCA inlet stream.
Three beds (4 grids) with nomi-
nally 5 inches/bed of nitrite
oam spheres from TCA Run
804-2A (14 inches actual).
>Jo cleaning.
Limestone addition ooint moved
to TCA Inlet line.
TCA inlet pH controlled at 5. 3
+ 0.2.
Slurry flow rate to air eductor
Good oxidation should still be
achieved by maintaining low pH
in the EHT, SO^ removal .houl
increase by increasing the TCA
inlet pH.
SO- removal increased from fc
to 72%. Sulfite oxidation re-
mained high at 93%. Limestone
utilization averaged 84%. The
mist eliminator was entirely
clean at the end of the run.
806 -2A
Single tank configuration with
oops to TCA and air eductor
(Penberthy ELL-10 Special).
Air eductor mounted vertically
and off centered in effluent
10 ft from bottom of tank.
affluent hold tank agitator
speed at 68 rpm.
o the 1200 gpm TCA inlet
stream.
Three beda (4 grids) with
nominally 5 tnchea/bed of
nitrlle foam spheres from
TCA Run 805-2A (14 inches
actual).
Mo cleaning. No changes.
TCA inlet pH controlled at
5.3 4 Q.Z.
Slurry flow rate to air educto
lower eductor liquor feed
rate of 1200 gpm (and a
corresponding lower air rate
Sulfite oxidation averaged
only 58%. SO, removal
averaged 70%, Limestone
utilization averaged 91%. The
milt eliminator was entirely
clean at the *nd of the run.
807-2A
wo tank configuration with
H tank to air eductor (Pen-
erthy ELL-10 Special) to
HT and bacV to TCA. Air
vet at 12 ft. ) EHT agitator
peed at 68 rpm.
effluent hold tank.
hree bedt (4 grids) with
omi rally 5 inches/bed of
itrile foam sphere* fromTCA
un 806- 2A (14 inches actual).
Installation of external down-
eralon to two tank configura-
tion. No. cleaning.
TCA inlet pH controlled at
5.4 + 0. 2.
Slurry flow rate to air educto
including a low pH tank to
feed low pH slurry to air
eductor for better suUite oxi
dation.
Sulfite oxidation improved an
averaged 96%. SO^ removal
averaged 83%. Limestone
utilization averaged 82%. Th
miat eliminator was entirely
clean.
808-2A
Two tank configuration with
pH tank to air eductor (Pen-
berthy ELL-10 Special) to
EHT and back to TCA. Air
level at 12 ft. ) EHT agitator
speed at 68 rpm. Air flow to
eductar controlled by sliding
plate in air intake line.
to effluent hold tank.
Three beds (4 grids) with
nominally 5 inches/bed of
nitrile foam spheres from
TCA Run 807-2A.
Installation of sliding plate in
No cleaning.
Limestone stoichiometric ratio
controlled at 1. 3. Slurry flow
at 1600 gpm. Air flow rate
»cfm.
(Z. 0 compared with 4. 3 for
Run 807-2A) on sulfite oxida-
tion.
Sulfite oxidation remained
high at 93%. SO, removal
averaged 71% (al a scrubber
inlet pH of 5. Li. Limestone
utilization averaged only 63%
(possibly in error due to ana-
lytical problems). The mist
eliminator was entirely clean.
H-17
-------
Table H-8 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR EDUCTOR ON THE TCA SYSTEM
Run Number
Slart-of-Run Date
On Stream Houri
M|O Addition
Gae Rate, ac(m # 300°F
EfOucnt Residence Time, mln
Effluent Tank Level, ft
Low pH Tank Residence Time, min
added/mole SO2 absorbed
mat** SO2 abs. /mole Ca added
AveraBeS02Mak».Per-Pass, m-mole/1
Scrubber Outlet pH Range
Solids in Sludge Discharged, %
Ln Scrubber Inlet Liquor 9 50°C
Elimination System, in. H2O
Mitt Elimination System
a P Range, In. H2O
Ml«i Elimination
System Configuration
n(i»t Eliminator
Washing Scheme
Percent Sutflle Oxidation
Oxidlaer (Air Eductor) Inlet pH Rang*
Air Flow Rate to Oxidlaer, iffm
Liquor Plow Rate to Oxidise r, gpm
Avg. Air Stolchlometrlc Ratio,
a-atome axygen/lb-mole SOj absorbed
S&9-2A
8/23/77
149
Yes
" ~No
12. 5
1200
U.I - 17.!
15.7
1 8
1.52 - 1.68
6)
5.5-7.5
2600 • 1800
13.2
5.0 - 5.4
115
8. 0 - 8. 7
0. 35 - 0.43
3 -pass, open-vane. 316L 55
chevron mitt eliminator.
Top washed sequentially with
makeup water. Each nossle
(6 total) on 3 mln. (at 0. 55
2pm/sq. ft. I with 7 mln, off
between ixottles. Bottom washed
continuously with diluted
clarified liquor (all makeup
water plu« necessary clarified
liquor) at 0. 4 fpm/«q. ft.
93 - 99
4.85 - 5.1 5
300
1600
2.5
810-2A
130
Yes
No
1200
SO
14.0 - 15.9
IS. 7
8
1.9
1. 1 - 1.5
77
2600 - 3200
12.8
5. 35 - 5.65
no
8.2-9.0
0.35 - 0.45
chevron mist eliminator.
Top washed sequentially with
makeup water. Each noaale
(6 total) on 3 mln. (at 0. 55
gpm/sq. ft. ) with 7 min. off
between noxalee. Bottom
washed continuously with di-
luted clarlfler liquor (all
makeup water plus necesaary
clarified liquor t at 0. 4 gpm/
sq.ft.
9b - 9<)
5. 0 - 5,25
300
1600
2.5
811-2A
9/09/77
164
No
12.5
1200
U.5 -15.7
23. 5
12
2,9
1.5 - 1.85
60
6.0-8.0
2300 - 3300
12.4
5. fr - 6. 1
5-0 - 5.3
35 - 50
100
7, 6 - B. 6
0. 30 - 0.47
chevron mist ellmla-ator.
Top washed tequeatlally with
makeup water. Each noasle
(6 total) on 3 mln. (a 0. S5
fpm/sq.ft. 1 with 7 mn. off
between noxales. Bo om
washed coatlnuoualy l*h di-
luted clarlfler liquor all
makeup water plus ne euary
clarified Uquor) at 0. 4 Rpm/
•q. ft.
92 - 99
S. 3 - 5. 6
270
itoo
2.3
6IZ-2A
9/16/77
141
Y"
12. *
1200 |
55
"•• - "-'
8
1.9
1.43 - 2.11
56
7. 6 - 8. 7
75 - 87
12.0
4.9-5.2
Clitmac
32 -44
100
5100 - 6000
7. 6 - 8.4^
0. 30 - 0. 50
3-pasa. open-vane. H6L SS
Chevron mist eliminator.
Top washed sequentially with
makeup water. Each notale
(6 totaH on 3 mln. (at 0. 53
gpm/aq.ft. ) wm, 7 min> off
between nosilta. Bottom
washed continuously with di-
luted clarlfler liquor (all
makeup w.t.r plua n«casa«ry
clarified liquor) at 0.4ipm/
•q.fl.
89 - 97
5-15 - 5.4
350
1600
2.9
H-18
-------
Table H-8 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR EDUCTOR ON THE TCA SYSTEM
Run Number
Oxidi«r De«lgn
Ab-orbent
Sy.tem Changes Before
Surt of Run
Method of Control
Run Philosophy
Result*
809-2A
wo tank configuration with
lurry flow from TCA to
EHT and back to TCA. Air
»nk. (Tank slurry level at 18
ntake Une.
with makeup water and *dded
o effluent Viold t*nk.
oam spheres from TCA Run
Q8-2A.
Addition of 4 ft faction of 10
nch diameter pipe beneath the
No cleaning.
controlled at 1.*. Slurry flow
at 1600 gpm. Air (low rate to
educlor controlled »l 300 acfm.
To observe the effect of de-
for Run 808-2A1 and th« effect
of a 100 scfm air flow rate on
oulfite oxidation.
77% at a ic rubber Inlet PH of
averaged only 63% (possibly in
problem* ). The mist eliminate
S10-2A
wo tank configuration with
HT and back to TCA Air
nk. (Tank .lurry level at 18
make line.
ith makeup water and added
o effluent hold tank.
oim spheres from TCA Run
09- 2A,
No changes. No cleaning.
5. 4 _+ 0. 2. Slurry flow rate
1600 gpm. Air flow rate to
e
-------
Table H-8 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR EDUCTOR ON THE TCA SYSTEM
Run Number
Start-of-Run Date
End - a f- Run Date
On Stream Hour*
Fly A*h
MgO Addition
GaiHate, acfmg 300°F
Gas Velocity, fpi @ 125°F
Llouor Rate, ram
L/C. gal/Mcf
Percent Solid* Recirculatad
Effluent Residence Tim*, mln
Effluent Tank Level, ft
Low pH Tank Residence Time, mln
Stolen lome trie Ratio, molei C»
added/mole SO2 absorbed
Avg. % Lime • ton* Utittcatlon, lOOx
molt* SO2 «bi. /mole Ca added
Inlet Oj Concentration, vol.%
inlet SOj Concentration, ppm
Percent SOg Removal
Av»re|* SO2Mak*-Per-Paii,m-nw>le/l
Scrubber Inlet pH Range
Scrubber Outlet pH Range
Solid • Dlepoeal Syatem
Solid. In Sludge Discharged, %
Calculated Avg. % Gyp«um Saturation
In Scrubber Inlet Liquor 41 50°C
Total Dleaolved Sollde, ppm
Total a P Range Excluding M(*t
EllmlAAtion SyiUrn, in. H2O
Mitt elimination Syatem
ap Range, In. H2O
Mlet Elimination
System Configuration
Mlit Eliminator
Waihlnf Scheme
Pere.nt Sulfite Oxidation
OxidUer (Air Cductor) Inlet pM Range
Air Flow Rate to Oxldtaer, ecfm
.Iquor Flow Rate to Oxtdiier. gpm
Avg. Air Stolehlometrlc Ratio.
b-aiom» oxygen/lb>mole SO; absorbed
81J-2A
9/Z3/77
9/29/77
130
Yei
No
30. 000
12.5
1200
50
14.5 - 15. 5
23. 5
12
1.07 - 1.16
90
7.0-8.3
2400 - 3300
75 - 85
11.9
5.2-5.5
4. 5 - 4. 7
Cla finer
35-44
90
4600 - 5800
8. 6 - 10. 7
0.47 - 0.58
3-paai, open-vane. 316L 55
chevron mlit eliminator.
Top waehed sequentially with
makeup water. Each no»le
(6 total) on 3 mln, (at 0. 55
gpm/jq. ft. ) with 7 mln. off
between noamlee. Bottom
waahed continuously with di-
luted clarified liquor (a 11 make-
up water plu« accessary clari-
fied liquor) at 0. 4 gpm/aq. ft.
91 - 99
5.05 - 5.Z5
310
1600
2.8
814-2A
9/29/77
10/04/77
119
Ye*
No
30.000
12.6
1200
50
14. 3 - 15. 0
15. 7
8
1. 06 - 1. 28
85
8.5 - IV. 0
Z1DO - 3000
67 - 81
10.1
5.2 - 5.5
4. 7 - 5. 2
ClarUier
33-42
115
5400 - 6600
8. 7 - 10.4
0.47 - 0.55
l-paee, open -vane, 316L SS
chevron mitt eliminator
Top wethed •cquentlally with
makeup water. Each nosile
6 total) on 3 mln. fat 0. 5$
;pxn/eq. ft. ) with 7 mln. off
*twMD noccle*. Bottom
washed contlnuoutly with dt-
uted clarified liquor (allmak*-
up water plue ne«e«eary clarl-
led liquor) at 0.4 gpm/aq.ft.
49 - 7J
5. 2 - 5.4
145
1200
1.6
H-20
-------
Table H-8 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR EDUCTOR ON THE TCA SYSTEM
Run Number
OKtdlzer Deiign
Absorbent
Scrubber InUrnali
System Change* Before
Start of Run
Method of Control
Run Philosophy
Refiulti
813-2A
rom bottom of link. T»nk
lurry level at 12 ft. EHT agi-
atur ipeed at 68 rpm.
with makeup water and added
o the 1200 gpm TCA inlet
tream.
81Z-2A (15 inche* actual total
bed height).
Replaced broken effluent tank
agitator •haft. Added nitrile
bed height. Ltmeitone addition
point moved to TCA inlet line.
No cleaning.
TCA Inlet pH controlled at
<>. 3 + 0. 2. Slurry How rate to
gpm. Full air flow to eductor
310 •cfm).
wai in the vertical, top -entry
petition. Both runs were made
with ilngle rank configuration.
Sulfli* oxidation averaged
-------
Table H-9
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR SPARGER ON THE TCA SYSTEM
Run Number
Surt-of-Run Date
Fly Aih Loaiiing
M«O Addition
1 Gas Rate. acfm@300°F
Oaa Velocity, fpi @ U5DF
L/G, |al/Mcf
Percent Solid* Recirculated
Effluent Hold Tk. Residence Time, min
Oxidation Tank Level, ft
Avg. % Limestone Utilisation. 16o»
mo!«i SO2 abs. /mole Ca added
Inlet Oz Concentration, vol. %
Inlet SOj Concentration, ppm
Percent SO, Removal
Scrubber Outlet pH Range
Calculated Avg. % Gyp-urn Saturation
in Scrubber Inlet Liquor & 5QOC
Total AP Range Excluding Mist
Elimination System, in. H?O
Milt Elimination System
dP Range, In. H2O
Mill Elimination
System Configuration
Miit Eliminator
Waihing Scheme
Air Plow Rate to Sparger, acfm
lb-atoms oxygen/lb -mole SO2 absorbed
815-2A
12/9/77
High
No
12.5
42
14.2 - 15.6
14.4
18
80
2500 - 3500
16.5
5. 2-5.45
Clarlfler
110
9. 8 - 14. 0
0. 44 - 0. 54
chevron mist eliminator.
Top washed sequentially -with
makeup water. Each nozzle
(6 total) on for 3 min. (0,55
gpm/aq. ft. ) with 7 min. off
between noialea. Bottom
washed continuously with
diluted clarified liquor (all
available makeup water plu«
necessary clarified liquor)
at 0. 4 gpm/aq. ft. using 2
nozzles.
no
1.0
S16-2A
1Z/14/77
No
30,000
12.5
42
14. 7 - 15. ?
14.4
18
76
6,.6 - 7.8
2650 - 3050
87 - 95
100
10.7 - 15.3
0.40 - Q. 48
3-pa.i. open-vane. 316 L SS
chevron mist eliminator.
makeup water. Each nozale
(6 total) on far 3 min. (0. 55
gpm/iq, ft. I with 7 min. off
between nozzle*. Bottom
waihed continuously with
diluted clarified liquor (all
available makeup water plui
necessary clarified liquor)
at 0. 4 gpm/»q. ft. using 2
noaale*.
5. 6 - 5. 8
180/250
1.40/1.95
817-ZA
1Z/16/77
161 ~ '
High
No
20. 000
8.4
13.6 - 15.2
14.4
18
81
6.0 - 8. 5
2800 - 3200
77 - 81
10.0
5. 0 - 5.4
Clarifier
>1 - 48
100
f>. 5 - 7. Z
0. 16 - 0. 26
3-pan, optn-var*. 316L SS
chevron nnlsi eliminator.
Top waahed sequentially with
makeup water.' Each nossle
(6 total) on for 3 min. (0. 55
gpm/sq. ft. ) with 7 min. off
between nozale*. Bottom
washed continuously with
diluted clarified liquor (all
available makeup water plus
neeeaaary clarified liquor)
at 0. 3 gpm/sq. ft. using 2
noiilei.
130
1.70
818-2A
12/23/77
rn - -
No
25.0QQ
10.4
50
U.2 - 15.4
14.4
18
1.21 - 1.58
77
3.6-9.9
il - 87
13. i
6. 0 - 6. 4
5.3-5.6
Clirtfitr
38 - 42
95
7.9 - t. 2
0. 26 - 0. 36
J-p»... opin-vine. 316L SS
chevron ml.t eliminator.
Top wt.htd itquentUlly with
makeup w«t.r. E.ch nomml.
16 toullon for 3 mil,. (0.55
gpm'.q. (,.) with 7 min. off
between noi»le>. Bottom
w»«hed continuously with
diluted cUrifled liquor (all
iv.il.ble m»k«up water plu.
nece..ary clariried Honor)
»t 0. 3 gpm/*q. ft, u.lnc 2
notile..
l.!5
H-22
-------
Table H-9 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR SPARGER ON THE TCA SYSTEM
Run Number
Oxldiaer Design
Absorbent
Scrubber Internal!
System Changes Before
Sta rt of Run
Method of Control
Run Philosophy
Results
815-2A
• lurry flow fro«i TCA to oxi-
dation tank which overflow*
into EHT and back (o TCA.
316 L SS piping with 21.5 inch
tank bottom. Oxidation tank
diameter is 7 ft with 18 ft
• lurry level.
Limestone aturried to bO wt%
, to the EHT.
Three beds (4 gridsi with
.•.ZOinchti.
Ceilcote plate packing w«e
apherea. Air aparglng eyatem
No cleaning.
Um..,o,« .toichtom«,r,, ,.,,„
returned to EHT.
air sparger. Teat condition*
were selected to achieve near
complete aulflte oxidation.
Sulfite oxidation averaged only
89% with an average Inlet 5O2
Limestone utilization waa 80%
The miat eliminator waa 0. 5%
816-2A
• lurry flow from TCA to oxi-
dation tank which overflows
nto EHT and back to TCA.
316L S3 piping with 21. 5 inch
tank bottom. Oxidation tank
diameter la 7 ft with 18 ft
• lurry level.
Limeatone sturried to 60 wt%
to the EHT.
Three bed) (4 grldi) with
Nitrlle foam spheres added for
22. 5 inchea. No cleaning.
«•"•—•» «°~<** -I-
returned to EHT.
able (180 •efrnwUh V/ST usln
air and 250 • cfm with V/ST
•hut downl In order to improve
aulflte oxidation over Run
R15-ZA.
Average aulfite oxidation in-
age oxidation tank PH of 5. 7,
an inlet S(>2 concentration of
Z850 ppm. Limeaton* utillca-
817-2A
lurry flow from TCA to oxi-
lation tank which overflows
nto EHT and back to TCA.
agonal sparger ring with 40
MfeL SS piping with 21. $ inch
ank bottom. Oxidation lank
3 Hp meter' Oxidation tank
diameter is 7 ft with 18 ft
alurrr level.
Umeitone alurrlrd to 60 «fh
to the EHT,
Three bed* (4 grids) with
nitrile foam apherea from Run
816-2A
(No shutdown, )
returned to EHT.
Dow rate waa reduced to in-
creai« the air atoich. ratio
and to improve aulfite oxida-
tion.
Average aulfite oxidation im-
oxldation tank pH of 5. 5. SOZ
Inlet SO, concentration of 3000
ppm. Limeatone utilisation
818-2A
lurry flow from TCA to oxi-
atlon t»nk which overflow*
nto EHT and back to TCA.
agonal aparger ring with 40
IfcL SS piping with 21.5 inch
ank bottom. Oxidation tank
3 Hp meter. Oxidation tank
diameter la 1 ft with 18 ft
slurry level.
Lime- (i one ilurrled to 60 wt<4
to the EHT.
Three b«da (4 grids) with
nitrile foam spheres from Run
817. 2A.
(No shutdown. )
!iroH.°d.'.T?srr.7a'"">
returned to EHT,
the aame aa in Run 817-2A to
observe whether good sulfite
oxidation could atill be achicvct
at the lower air atoichiometric
Sulfite oxidation averaged 67%
pH of 5. 65. SO, removal was
(ration of 3000 ppm. Limeatone
utilisation waa 77%.
H-23
-------
Table H-9 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR SPARGER ON THE TCA SYSTEM
Run Number
S'art'Of-Run Dale
End-of-Run Dale
FlvA.h Lo.dln.
G.s Ra«*. aefm@ 300°F
Liquor Rate, gpm
L/C. gal/Mcf
Oxidation Tank Residence Time, min.
Effluent HnletTk. Remldene* Ttme.min.
Oxidation Tank Level, ft
Sioichiometric Ratio. molea Ca
added/mole SO, abaorbed
Avff. % Limr.lone Utilization, lOOx
mole* 30^ aba. /mole Ca added
Inlet Oj. Concentration, vol. %
Percent SQ-, Removal
Avg. SO2 Make-Per-Pa«s. mmole/1
Scrubber Outlet pH Range
Solldi Dupoial Sy»iem
Solid* in Slurtge Diacharfied, %
Calculated Avg. % Gypiutn Saturation
in Scrubber Inlet Liquor @ 50°C
Tool Di.iolved Solidi. ppm
Total 4P Range Excluding Mm
Elimination Syitem, in. H?O
Mi«t Elimination Syatem
iP Range, in, H2O
Mist Elimination
Mix Eliminator
Washing Scheme
Percent Sulfite Oxtdited
Oxidation Tank pH Range
Air Flow Rate to Sparger, »cfm
Avg. Air Stoichiometrlc Ratio,
Ib-atami oxygen/lb-mot* SO? absorbed
S18-2B
12/30/77
1/5/78
Hiffh
10.4
1000
50
14.4
18
1. 13 - 1. 15
8!
6.5 - 8.5
U. 5
Cla rifle r
35 - 42
110
7.8 - 8. 5
0.24 - 0.35
1-paai, open-vane, 316LS5
Top waihed icquentially with
makeup water. Each no*«l*
(6 total) on for 3 rr.ln. (0.55
gpm/ «n. ft. 1 with 7 min, off
waihed contlnuouily with
diluted clarified liquor (all
neceaaary clarified liquor) at
0.3 gpm/aq. ft, uiing 2 notzlea
17 - 31
0
819-2A
1/6/78
1/13/78
164
Hl*h
8. 4
1000
4. V
--
17
1. 13 - 1.48
77
7. 3 - 11.3
8.9
S. 0 - 5. 4
Clarlfier
32 - 42
110
6.6 - 8. 3
0. 11 - 0. 26
3-pa»«, open-vane, 316LSS
Top w»*ned lequentlaUy with
makeup water. Each nozzle
(6 total) on for 3 mLn, (at 0. 55
gpm/aq.fu ) with 7 min, off
waihed cont inuou • ly with
diluted clarified liquor (all
neceaiary clarified liquor) at
0, 3 gpm/»q. ft, uaLng 2 noaalei.
90 - 98
5. 35 - 5. 75
130
1.90
S2Q.2A
1/13/78 -
1/Z4/78
_ HiBh
8.4
1000
4. 9
17
1. 32 - 1. 90
62
66 - 92
8.4
5. 0 - 5. 6
CUrifler
32 .42
n;
5100 - 6800
6. 5 - 7. 3
0. 11 - 0.21
3-pin. optn-v«ne. 316L SS
Top w*fhcd Mquentially with
mikeup «il«r. E»ch noxlc
(6 total) on for 3 min. (at 0, 55
gpm/aq. ft, 1 -with 7 min. off
w«»hed continuouily with
diluted eliriri*d Uquor (»11
neceiciry clarified liquor) it
0. 3 gpm/sq. ft. uitng 2 nozelei.
85- 98
4.4-5.9
130
2.0
821-2A
5/31/78
6/8/78
Hi»h
12. 5
1200
SO
4.1
17
1.06 - 1.481'1
7V"
6. 0 - 8.6
74 - 94
10. 5
5.0 - 5. 3
Cl.rlfl.ir (, C.nt, !>.,,.
78 - 80
110
20 onn . ^ mn
7. 1 - 8. 6
0. 54 - 0.62
3-paa». open-van*, 316LSS
lop wiahed •eqticn'Utly with
m«k«up water. Each noiil.
(6 toul) on for 3 min. (0. 55
gpm/iq. ft. ) with 7 min. off
wllhcd Intermittently with
makeup water. The noi.l..
each hour (1.5 Ipm/aq.ft. ),
91- 99
5.1 - 5.6
170
1.65
(a) Total •tolch. ratio for
C» 1, Mg la l.og - 1.50
favg. alkali utilisation
= 78%).
H-24
-------
Table H-9 (continued)
SUMMARY OF FORCED-OXIDATION LIMESTONE TESTS
WITH AIR SPARGER ON THE TCA SYSTEM
Run Number
Oxidizcr Design
Abiorbertt
ycruhber [niernali
SymtcRi Changes Before
St»rt of BU"
Mtihod of Control
R'-iulo
8IH-2H
Two-lank cpnfinuraiion with
dation tank diameter is 7 ft
with 18 ft. slurry level.
,. ihe EHT.
81R-1A.
(No shutdown. 1
controlled *t 1. ) molr» C» /
mole SO2 ab»orbed. Rccircu-
Utrd alurry •ollrta controlled
• I 15 * K. C)» rifled liquor
returned 10 EHT.
Z1%. S02 r*muv*l wai 8Z%
81<*^A
o oxidaiion tanV.
18-2B.
Changed rromiwo-i.nk toon*-
the same hold tankl. Nn clvcn-
"8-
controlled a ( 1 . 5 mole* Ca /
mol* SO2 absorbed. Re-circu-
lated slurry lolld* controlled
if 15 _* 1%.
(UO-2A
o oxidation tank.
819-ZA.
(No .hutdown. 1
,
5.9^0.1. Override: Limesion
stolchiomrtric r»tio to be leu
than or equal to UK Recircu-
»t 15 » 1*..
stone utilization was r-2%. The
clean at rhc end of the run.
821-ZA
Cloned »,id.,io. t.nk ID-2M).
static bed heigbr from 10. 5
inchei to 1^ inches. No
ratio controlled at 1.2. Recir-
cylatrd flurry tolidi controlled
at 15^1^. Effective ^Ja1" iun
cone. (to!«l ppm Mj( -ppm Cl
Hold tank (D-204) w)th exter-
nal downcomer w«« u*ed.
The purpose of thi* run was to
tionand 5OOO ppm effective
H-25
-------
Table H-10
SUMMARY OF FLUE GAS CHARACTERIZATION TESTS
ON THE TCA SYSTEM
Run Number
Sl«rl-of-Run Dtte
End-of.Run Date
On Si ream Hour*
Fly Ash
MpO Addition
Gaa B»te, acfm & 300°F
C». Velocity, fp» @ 125DF
Liquor Rate, uprn
L/C. «»l/Mcf
Percent Solldi Recirculaied
Effluent R*itdenc« Time. min.
added/mole SOZ abaorbe<<
Avg. % Limeitone Utilisation, 100
mole. SOZ aba. /mole Ca added
Inlet SOj Concentration, opm
Percent SO2 Removal
Scrubber Inlet pH Range
Scrubber Outlet pH Range
Inlet Oj Concentration, vol. %
Percen' Sulflte Oxidised
Sol'ui Diapoatl Syitem
Solid. In Sludge DLacharged. %
Calculated Avg.* Cypaum Sat'n.
in Scrubber Inlet Liquor 6 50°C
Total Dissolved Solid*, ppm
Total AP Range, Excluding Miat
Elimination Syatcm, in. H2O
Mia' Elimination Syitem AP
Range, in. HaO
Miat Elimination Sr*t«m
Configuration
Absorbent
rfiat Eliminator Waahing Scheme
Scrubber Intarnata
Syatem Changae Before SUrt of
Run
Method of Control
Run Philoaphy
Reiult*
TFG-ZF
2/23/77
2/28/77
1 12
Yra
No
30. 000
12. S
1200
SO
14. 1 - 16. 2
12 (1 Unkil
1. IS • 1. 25
S3
2500 - JfcOO
70 - 78
5. S5 - 5. 89
4. OS - S. 35
5.7-9.2
9 - 27
CU rifle r
14 - 42
100
6800 - 8600
3.8-7.7
0,41 - 6. 41
)-paai, open v*ne,316LSS
Umeaton* alurrled to 60 wt %
with makeup water and added
to flrai effluent hold tank.
Top waahed aequentially with
makeup water. Eaehnottl«{6
total) on 1 minute* (»t 0. 55
ipm/aq,. ft. (with Tmin.offbet-
weennostlea. Bottom w»ah«d
continuoualy with diluted clari-
Hed liquor (all makeup water
ilut ncctittry cltrldtd llq-
our) at 0. 4 gpm/aq. ft. Top
and bottom waihea off during
flue |Ai eampling.
) beda (4 gridi) with nominal
$ Inche* iphcr«»/b*d, Allbadl
worn nitrite foam apherea
IS lAcn».
(No ahutdown, )
tolchiornetric ratio controll-
d at 1.2 mole* Ca/mole SO2
baorbed.
ontlnuation o( (lu« (*• cha-
C (except all milt eltm.
waahaa off when lamptlng Hue
*•).
'he SOj removal averaged
4% and Hmntone utilization
ancent ration of 3050 ppm.
The miat eliminator wai 1. 5*1
tatricted at the end of the
ontal lection of Howncomcr
rom TCA.
TFG-2A
2/2g/77
I/ 3/77
76
Yei
¥*••
10.000
12. 5
1200
50
13. 5 - 18.0
12
<»>
1.12 - 1. 42
7,"'
2700 • 1300
90 - 98
5.2-5.7
4. 9 - 5. 6
7. 9 - 10.2
8 - 16
Centrifuge
50 - 55
35
42, 000 . $6, 000
5.9-7.3
0.44 - 0. SO
3-p.tt, op«n-vane. 31*L SS
Ltmeatone •lurried to 60 wt
% with makeup wite r and add -
edtoEHT. MgO dry fed to
EHT.
Top waihed ••quentiatly with
makeup water. Each nocile
(6 total) on 3 minute. Ut 0. 55
ipm/aq. ft. Iwith 7 mlnvt**
off between noaalea. Bottom
wmahed int« rminent ly with
makeup water at 1. 5 gpm/aq.
ft. for 4 minutflf ev«ry hour.
Bottom wa»h off during Hue
[*• aampllng
3 bedi (4 grtda) with nominal
5 Inchea •ph«rti/B*4. All
beda worn nitrite foam
td to b* 15 Inche*.
No cleaning, No cha-ngei.
Stoichlometrlc ratio controll-
ed at 1.2 molea Ca/moU SOj
absorbed, Mg ion concantra-
ion in liquor controlled at
,000 + l-
.11 ML - 7V.I.
•
H-2o
-------
Table H-10 (continued)
SUMMARY OF FLUE
ON
GAS CHARACTERIZATION TESTS
THE TCA SYSTEM
R u n Number
S'i ri -of- Run Dair
Enri- of- Hun D»t4-
Cn Si rum Hi>un
Fly A*h
M«O Artditinn
GIB Rale, acfni (* JUO"F
Gaa Velocity, fps & 125°F
Liquor R»ie. Kpm
L/C, gal/Mcf
Effluent Residence Time. mm.
Added /mole SOj absorbed
Avg. % Limeitonc Utilisation. lOOx
Inlet SO2 Concentration, ppm
Prrcent SOz Rrmov»l
Scrubber Outlet pH Range
Percent Sulfiie Oxidized
Solid* Diipoikl System
Solid« in Sludge Diitharged, %
Calculated A vg. % Gyp»um Sat'n,
Total Di»*olved Soltdi, ppm
Tola) AP Range, Excluding Mi»t
EllmiMtfon Sy«t«m. in. H2O
Mitt EHmiMtlon Syitem AP
Ringe. in. H..O
Mitt Elimination Syatem
Absorbent
Scrubber [n<«rn*li
Method of Control
gun Philo»ophy
Reiult*
T KG - 2 i)
21 4/77
Z 10/77
u»
Yi-s
No
30, 000
\i. 5
1200
50
12 (3 i.nkil
1.1-1. 1H
88
J100 - J700
79 - 85
4.8-5.2
fa - Id
CUrlfier
30-19 ,
105
7400 - 9800
8. 6 - 9. fi
0. 56 - 0. 60
*• •ampling.
from Run 70h-2A. Mlddl, fcn
Total actual bed ht. efttimatec
to be 15 inch*-*.
new ioherta/bed.
•b»orbed.
• lie dl»trlbution.
eliminator w»« cleaned »t 8
other 42 hn it wa« 2% re-
stricted.
TfC;-2C
I 10/77
2' 14/77
1)
Yen
No
30, 000
12. •;
1200
50
12 O tankti
1.15- 1. 35
80
2800 - 3<»00
7«i - flb
5. 1 - 5.4
S - Hi
Clarlfler
32 - 42
75
5400 - 94 00
7. 6 - 9, 5
0.4t - O.bO
% wl"tm.ek'up"^r04nd *dd
q. ft.
absorbed.
w»h.
mi»r eliminator w»i 1% re-
T FG 2 D
2 IS 77
£•' l«'77
1. 14 - 1. 3
82
3200 - 4100
75 - 81
5.25 - 5. 55
«, - 16
CU rifle r
35 - 42
95
5800 - 7200
4.6 - 5. 0
0. 17 - 0. 24
pm/«q.f(. i with 7 min, off
•q.ft.
*b»orbed.
o.,,.,.,*. .= ,»«.,.
scrubber *••* not chut down
! t*G - 2 E
2/11/77
2 '21 77
*,
Y, .
N.>
30. 000
12.5
.,00
25
24 (3 tankit
1. 18 - 1.25
82
3000 - -tOOO
50 - 54
5. 0 - 5.2
4 • 23
Clarlfler
37 - 41
55
4900 • S900
4. 7 - 5. I
0. 49 - 0. 5o
gpm/iq. ft. ) with 7 mm. off
iq. ft.
ed.t l.Zmo.e.C./moUSO
•b. orbed.
To 06..,.. ,!,..«..,«„.
• c rubber w* • not ihu< down
-------
APPENDIX I
GRAPHICAL OPERATING DATA
FROM THE TCA TESTS
1-1
-------
; BEGIN ]
.RUN MO-2A ' CNP HUN MO-2A
loEOIN KUN MO 2B
d-
i •••
K m
\\
UNO RUN H»»
100
SM-2A
Gn Ritt - 30,000 trim • 300° F
Ooi VolocKy . 12.5 ft/K • 128 • F
Liquor Rati-l200|pm
L/G • 50 gol/Mcf
3 BXi, S in. oihonifM
Porcont SolMi Rocreutaod - 13.2 -14.1 w x
Toul Praowt Oroo, Excluding Mfe Elim
• 10.2 • 12.5 in. HjO
Milt Elim. •ranura Drop - 0.40 - 0.4t in. HJ)
CoMMltntlon • 62 - 70 M «
LiiMoM Addition to OowMonwr
<° Eirurml Downcoimr m«l
S.6
590 28
. - 12.S Mm 9 12S» F
Liquor Ron - 1200 tpm
3.000 L/G-MiH/Mef
EHT RMHonco Thm - 4.1 mi*
tM 3 Mt. S in. qihirwAot
Nreom Solid, Hodrculmd - 134 - 1UM«
>«o !.«•««, Drop. E«Wi», «.» Bh( *
•M-ILSh. H^J
Dnctafit (Clorrfior ft CMtrKuoo) SolWt
Conewmion * U • • M X
UmoMM Addition to 0
lirtirnti OoMnnnor iMd
0 41 00»0100IOO<>40II0320ll04g0440
TEtTTME.kaMi
I m I 1/M I 1/17 I I/JO I 1/» I 1/10 I VJ1 I J/1 I 1/1 I >/• I » I M I M I 1/7 I M I M I 1/10 I 1/11 I 1/11 |
CALIHOM OAV 110701
fil -
Ijf M
IM „
u
\
" \ \ L ^ A /
- U LvA^ V
u
^J^
u
u
M
=
•••••
• TOTAL DMOOLVED OM.IM
A CHlOfllOE ICn
D WlFATt I104-|
0 CALCIUM ICi"l
NOTE: oKaanmoK AVIHAOE
CONCtNTHATIONI Ml LIU
THAN 109 ppn »E NOT
M.OTTEO
I v» I im I i/n I vat I i/» I im 1 1/1 I M I « I IM I 2» I 2* I
CALENDAR DAY HtW
I 24 I »/io I 2/11 1 1/11 I
Figure 1-1. OPERATING DATA FOR TCA RUNS 590-2A AND 590-2B
1-2
-------
I BEGIN RUM Ml
ENO RUN »I;AI
n.i
8*
!»
:!
si
111
iif
HI
? I
ill
is%
!i
Hi
• 5
• 0
4A
1.900
3.000
1.900
i:
1.0
1.1
1.4
40
JO
20
110
200
440 480
240 2tO 320 MB 400
I I 3/» I 3/30 I 3/31 I 4/1 I 4/2 I 4/1 I 4/4 I 4» I t* I 4/7 I 4/t I 4/1 I 4/10 I 4/11 I 4/11 I 4/13 I 4/14 I 4m
CALENDAR DAY dim
Figure 1-2. OPERATING DATA FOR TCA RUN 591-2A
1-3
-------
; HOm KIM WV2A
MOBUtigMlftj
ITOOO
M.OOO
^r
a a
D D D
D
2"
a°
o "o
D o o o o°oo
O O o O O°O
b • o
o o
o °
4* ~ . •
»*»* « 4i.r •••. ,»'•
Aoa*« *l **.»***** ••*
ftOOO '.AAT^AA.A* *...*.
100 MO
* TOTAL DtNOWf D tDLlDt
O MACNUItMHMi**)
A CHlOAIDf 4*>
0 CAICIUM(C***I
• SULFITt IV,-)
«K>Tf VCCIiSWMMEAVIKAOK
COMCCNTMATKMft ARf Ltd
tHAU ftOJft «*•* **t *«T
7,000
• 000
TfSTTMM.hMrt
I 1 M I Ml* I V» I Wl I 4/1 I 4/7 I tl \ M I 4« I 4* I 4/7 I «/» I
CAlCMOAHDAVMtni
I 4/10 I 4/11 I 4/11 I 4/11 I 4/14 I 4/11 !
Gil AMI * 30,000 Kfm * 300° F
Gu V.locity - 12.5ft/Me* 12S° F
Liquor Riti't 200 gpm
L/G • SO ml/Mcf
EHT Rttidtnct Tim* - 4.1 mm
3 Bub, 5 in, tphmi/bid
taunt Solids ftwircutot* .13.1 tS.7 tt %
Totil Priuurt Drop, Excluding MM Elim.
•7.9-13.3 in. HjO
Milt Elim. Frwun Drop • 0.45 - 0.80 in. H-0
DiKhKgi (Cltrifiw ft Cmtrtfujil Solid*
Connntntion • 54 • 80 ml %
Lirnmom Addition to EHT ind
MtO dry fid to ENT
Extunil Downcomn uwl
Figure 1-2 (continued). OPERATING DATA FOR TCA RUN 591-2A
1-4
-------
Si
s"
fg-
TRANSFORMS BUHNtO OUT
If
it
I
2 D J
Is*
N:
40 SO 120 160 TOD ?«0 ?SO 320 NO 400 440
TEST TMt to«i
I 4« I 4/T I 4/1 I 4/t I 4/10 I 4/11 I 4/11 I 4/13 I 4/14 I 4/15 I 4/1* I 4/17 I 4/18 | 4/18 I 4/M I 4/71 I 4772 I 4/21 I 4/24 I
CALENDAR O*V I1«T«)
-J ft
Figure 1-3. OPERATING DATA FOR TCA RUN 592-2A
1-5
-------
si
it
$*
ll
if
si
O -J
* i-
|i
0
M.OOO
62.000
•HOW
60,000
40000
41.000
47.000
W.OOO
46.000
44,000
43.000
42.000
»«£
M.OOO
17.000
».ODO
3S.OOO
M.OOO
11.000
12.000
31400
10.000
HOOD
21400
27.000
21.000
2MOO
U.OOB
23000
22.000
71.000
20.MO
,2*f
11.000
10,008
1000
1.000
7,000
0,000
s.ooo
4,000
1.000
2.000
1.000
0
-
• •
• • •
-
•. .
• •
• •
•
•
• •• .
• • . .
• • •
f
• •
r • <<
D
•
0
O
.. D
» o° ° a
• • •- a
•
•
Da 0 0
D
a D ° ° a
a a a a
a Q a a
a a
• TOTAL OiaOLVED K>LID|
D
O MAOMtllUM iMf * i
Q
A CHLOMIDE icr ;
Q SULFATE(I04'I
O 0 CALCIUM "|
• SULFITC HQyi
O MOTE SMCICSWMOIE AVtflACE
n CONCEttTRATIOWf A*E LEV
' U THAN WOpiMnAPIilWT
•»LOTTIO
a
ODD
a
^
o
0 o o
000 0 o 0 00 0
O o ° ft °
ft Q O O ** O
o Oo° «° °
0 °
o
OO o •
o o ° m m
• •" • .
• •• • • • «T
• BJ^ HA.
.-....*
* A* • ' 4*
.• **•»* » *A4 •
• " . • • A**»»»»AA»»»*
•A !^ A*
'AiAft«*
^OOO^OOo^OO O^OO**0* O^o^OOO^'OOO000*0
40 M 120 '•* MO 2*0 HO MO 3*0 »00 MO 4*1
TEIT TIMC.IVtft
t 4/1 1 4/7 1 4/1 1 4/0 1 4/10 1 4/11 1 4/12 1 4/13 f 4/14 1 4/1S 1 4/1< 1 4/17 1 4/11 1 *'1t | 4/20 1 4/11 1 4/2? 1 4'73 1 4/94 1
53000
bl.OOO
si onp
t.0.000
4»,yOO
*i,000
47000
46.000
4&.DDO
44.000
43.000
~r
'n.noo
30.000
37.000
M.OD6
tf.OOO
M.OOO
U.OOB
12.000
11.000
30.000
W.OOO
».ooo
27.000
M.OOO
n.000
M.OOO
21.000
22,000
>1.000
».«•
11.000
11.000
10,0*0
t.OOB
•.000
7000
*.ooo
s.ooo
4.000
3.000
2,000
1.000
0
CAICNOAR DAV MtTSl
G« R«t«- 30.000 icfmS 300° f
Git Velocity -12.5 ft/He* 125° F
liquor Rite * 1200 gpm
L/G-50jil/Mc(
EHTR«iif«i»Tiim-4.1fliifl
3 Bull, 5 in. iplw«/bid
Pwnnt Solidi Rocrcultttd - 14.3 -15.7 M %
Tottl Prnuri Drop. Excluding Mot Elira,
« 7.1 • 10.0 in. HjO
Miit Elim. Prrauri Drop - O.S2 • 0.10 in. HU)
DiKhiig* (Clarifiv & Cntrtfunl SelWi
Concentration • 51 - M M %
Limntom Addition to EHT ind
MgO *Y M to EHT
Exttrntl Downcoimr urn)
Figure 1-3 (continued). OPERATING DATA FOR TCA RUN 592-2A
1-6
-------
; BEGIN RUN W3-ZA
END RUN S93 3Ai
90
n
)0
\—- OUTLET
60
55
SO
?«0
TEST TIME. M»|
I 4/22 I J'23 I 4/24 I 4/25 I 4/2S I 4/27 I 4/21 I 4(29 I 4/30 I SI I S/2 I 5/3 I 5/4 I i/i I
CALENDAR DAV IKTtl
400
I S/7 I 5/1 I
5/10 I
Figure 1-4. OPERATING DATA FOR TCA RUN 593-2A
1-7
-------
; MQIN BUN JMJA
(ttOHUHtm
|| „
S7.80P f. ^
«<4
ii
n.ooo
11.000
»,000
M.OOO
2-
ft. 000
4.000
3000
1,000
1.000
J£
a a
a o
a
o a
a a
0 o oo
_ ° o o o o
0 • °° °o oo ° o °o
OB
O 0
• TOTAL DISSOLVED sot IDS
O MAQNfSIUMIM|"l
CMLOHIOi ICI )
D CULFATE l|04'l
0 CALCIUM (lV*l
MOTE VtCJtSWHOSC AVCXAGE
COMCCNTMATIONSARE Ltfl
THAN SOD ppmARI NOT
fLOTTEO
M.OOO
M.OOD
M.OOO
u.on
S3 000
51.000
10.000
M.OOO
3i.on
30000
M.MO
21.000
•I «JBO
3,000
2.000
40 Ml
I 4» I
i?o IM MO 340 no tn
TCtTTMtf.hMi
I 47S I 4 * I «r | 4,'» I 4'» I 430 I »/. I »4 J SI I »« I
CALEMDAM OAY <19T«l
3W 400 440 4SO
I SV I &'7 i 5/B I Sfl I S'lO I
Gil Bit. • 30,000 Kfm •> 300° F
Gil Vitoetly • 12.6 ft/Me »125° F
Liquor Rltf • 100 |pm
L/C • 37 gil/Mcf
EHT Rnidtnci TkM • 4.1 mm
3 Btdi. 5 in. ^him/lMd
Pram Solidi Rwiraibtid » 14.0 -1&.« •» %
Tout PTMUTI Drop, E»dudln| MM EHn.
-6.6-7.lln.H20
Mia Elim. Prawn Drop - 0.48 • O.M in. H.O
Oittlwj. (Cltrtlitr t Ctrrtrrfup) SoMi
Connntritian • 92 • 62 M %
Ummoni Addition to EHT ml
MgOdtyfidtoEHT
ExUrml Downconnr mtd
Figure 1-4 (continued). OPERATING DATA FOR TCA RUN 593-2A
1-8
-------
MOIN HUM BM-ZA
8'
GII RIM • 30,000 id™ • 300° F
Git Vilocity • U.5 It/uc » 125° F
Liquor Rltt • IZQOgpm
L/G • SO |ll/Hcl
EHT Rllidinci Timi - 4.1 min
3 Bidi. S in. iphirn/Bid
Ptrctnt Solidi Ricirculilid -138 15.3 »t V
Totil Prinuri Drop, Excluding Milt Elim.
-7.2-8.Iin. H20
Mitt Elim. PriuurtOrop -0.51 0.56 in. NjO
DiKhun (ClKiliK & Cinlriluill Solid)
Concintntion » S3 - 54 wt %
Limtltoni ind Oiy MgO Addition 10 EHT
Inttrnil Downcomar Uud
\tn\tM\u*\**\vi\tn\vt\ vio I 1/11 I tvu I i/u 1 tvu I vn \ •/» I
CALINDM DA* [1««
1 im I tat I Mi I
r°o oO°oo°c
A CNUMKN KI-)
NOTI VKIU •MOM AVtftAAI
OOMCINTWATOM AM LM
nwMMt^AlltMDT
rvomo
i I vt I M I M I %n I M I M I i/io I w;i 11/1(1 i/ij I i/u I i/i* 1 I/H I tm
CALINBAN DAV mm
« I «Mt t M* I HI I
Figure 1-5, OPERATING DATA FOR TCA RUN 594-2A
1-9
-------
END RUN lit 2AI ; BEGIN HUN »18 2B ! END RUN BIB
I i/r I u I u I iru I 1/11 I 2/11 I 1/11 I i/u I 1/11 I 2/iiTin; I 2/111 vn I wo I MI I 202 I va I ut I
• TOTAL OltOOLVUXOLIDS
A CMLOftlOf (Cl-|
O OULFATf IOOj'1
0 CALCIUM IC<"|
NOTE IPECIES WHOM AVERAGE
CONCENTRATION* ARE LEOO
THAN (Ml*. ARE NOT
PLOTTED
618 • 2A
,00 Gn Rili - XMO icfm • 300" f
Gil VitocKy • 12.5 ft/»c » 125° F
w Liquor Ritt • 1200 IP*
L/C • SO Ml/Mcf
« EHT Rmdinct Ti™ - 4.1 min
3 Bidi. S in. 4>hor«A«l
"> Pornm SolKit RoctaiHtitf - 6.5 -1.1 M %
u Tom Prowro Drop, E«dw»m Mill Eltm.
• 1.6 • 13.S in. H20
,„ MM Elim. rVoouri Drop • 0.40 • O.S2 in. H.O
DhchMfi (thrifty § CmtrHutit SolUt
75 CoMoMration-n-KwtK
Lint Addition to Oowncoinif
70 Indrnl Dommtaimr mid
618-28
G« Ron - 30MO ocfm • 300° F
GM Volocky - 12.5 fttec • 12S° F
Liquor Dm 1200 rim
L/G • « |ll/Mcf
EHT Rooioonco Timo • 4.1 min
41 3 Bodt, S in. •horn/bod
Pmnit SolUt Rwotvlotoo1 - t< • U m «
30°° Toni Proouri Drop, E>cMim MM Eftn.
-11.1-1... i». HjO
MM Ellm. PriMiri Drop - 0.41 - OJI in. M.O
2MO DtahMfo (CkvlfM t ta«rilB|o) SolU, ^
ConcMlntiDn-U-nMK
,.ioo Um AcMMon » Dowocomor
Einmot Oormomw «oMl
240
TEfT TIME. I
I in I 2/1 I M I »/10 I 1/11 I 1/12 I 2/11 I 2/14 I 2/1* I 2/14 I 2/17 I 1/11 I 2/10 I IO» I 2/11 I 2/22 I 2/a I 1/24 I 1/2S I
CALENDAR DAY (,•!•!
Figure 1-6. OPERATING DATA FOR TCA RUNS 618-2A AND 618-2B
1-10
-------
Gil Dili • 30.000 idm 300° f
Gil VKocity - 12.5 fttec » 115° F
Liquof Riti - 1200 gpm
LA! - SO pl/Mrf
EHT Rnidtnct Tim, . 4.1 mill
3 Mi. t m. mtamAri
front SDMI RKrnknd • 7.3 8.1 «t *
Tml Pnwn Drop. EicMim Kin Eta.
•15 11.1 in. HjO
*<* Elim. Pmm Drop • 0.2t • O.SI «i. Hj
OWiV|t (ChrKw t Cwtrctunl SaMl
ConCTimiten « « O M »
Lhn »«it«n to Domaiiw Md M|0 *T
ftdto EHT
Exwml Dimiamr ml
Ml -4
zflj- L_ _
Hi ..L
______^___ 1
^>n iTirmBum IUIMJ
CCMCflNTH.
TMMfHc
•UTYtO
°0
P° .'•
I tm I im I i«» I
Figure 1-7. OPERATING DATA FOR TCA RUN 619-2A
1-11
-------
\- — OUHIT
ai
Gu B.ti - 30.000 icfm • 300 ° F
Git Vflocily - 12.5ft/nc * l?5° f
Liquor Riti - 900 gpm
l/G - 37 |ll /Met
EHTRKldlKI Tint" 4.1 min
3 Bull. 5 in. »t«to/b«l
Pram Soldi RKirciiMid = &H.3 wt *
Tol«l Pi nun Drop. Excluding Mai Elim.
= 7.3-9.0 in. H20
M« Elim. Prnun Drop • 0.4M.S2 in. HjO
Diiclwit Idvifto « dnnituti) SolUt
D>iKMnli«i * 52-n wt %
U™ Addition to Ooimomtf ind
Mf 0 dry M to EHT
Extwml Downcoffltf tmt
MOO
1.0M
z±:
I 1.1 I w I » I «. I in I i/i I » I >/i. I
CAIINOMIUT Illttl
, I »,. I >/if I !',• I v,, I v» I i/,. I M I „, I
HI ::r
Sji "
"
l! -
ii-
5 i
i* ""
• . •
• • .
a M
• TOTAL DrfBLVIO K>HH
O MMMitHMlM***!
A CNLtMIDf tCI 1
O MJLfATC (»4'l
0 CALCIUM ICt"l
• «**,*.»,•.
at M «M •« m
j-i I i.« I » I wt I »T ( M I w I nft I *ir I mTVii f IM I i/it I ii* I au I j/i* I i/it I J» I wt |
Figure 1-8. OPERATING DATA FOR TCA RUN 620-2A
1-12
-------
Gn Riti = 30.000 iciiP e 300° F
Gil Velocity = 12.5 ft/no « 126° F
Liquor Rati .1200gpm
L/C = M gll/Mcf
EHT flnidentt Timt - 3.0 min
3 Bidi, Sin. ipham/bKl
Parian! Solid! Racirculatad " 6.6-9.6 wl %
Totll Prauura Drop, Excluding Milt Elim.
•9.1 l2.6in.HjO
Mill Elim. PriMura Drop - 0.50 0.64 in. HjO
Oiicharge (Clarifiat & Cintrilujl) Solidi
ConnnlnlMn • 48-62 M %
Lime Addition to Dowflcnmtr and
M80 dry ltd 1C. EHT
Extarnil Downcomtf u«td
Is
ii
L\
I „,. I J/>9 1 3/M I .
TEST TlWf heuri
' 3,?: I a/ii I 1/14 I 3in \ jin I i?v \ i/n I in I 3/M I 33*
CALENDAR OAV itBTB!
I t/2 I «/l I 4ft I 4/6 I
.A
tss -
a
V
is* '
Ms •»
« * o
Ii
V
h ::
Sg
a -•
>s
*.
i> TOTAL DISSOlVtDSOLIDS
O MAGNISIUH iM«"l
MOTE triClESWMOSI AVIBAGI
COMCf NTHATIOM1 ARE KS
THAN MC B»" ARE MOT
PLOTTED
1*0 /00 140
i I 3» I >!, I 3« I 3;» I 1» 1 J 3< I
CAllftDAR DAV 119/11
Figure 1-9. OPERATING DATA FOR TCA RUN 621-2A
1-13
-------
!«€OIN RUN (22 2A ! OEQIN BUM 022-20
ENOBUMI22-30!
r- (OILER OUTAOE
M
8~|- 00
70
00
1.0
76
70
c
II i "
56
S.O
3.600
1,000
£ d M«0
s§
2.000
IS
10
I
14
U
I
OO
•o o
O
O
100
M
(0
70
•0
•-0
74
7.0
•4
1.0
is
(.0
3.MO
1:000
l.K»
2MO
TU
110
30
10
10
0
110
100
M
J» Ut MO 400 ^40 io°
5/10 I 1/11 I S/12 I S/11 | 6/14 I 5/16 I 5/1* I 5/17 I 5/10 I S/10 I t^O I 5/21 I 6/22 I 5/23 I 5/24 I SOS I 6/21 I S/27 I
CALENDAR DAY <1*7fl
TTWE.Ii
S/11 I
Figure 1-10. OPERATING DATA FOR TCA RUNS 622-2A AND 622-2B
1-14
-------
-i
i*
i
il
Si
Sg
3 fi
8 I
O -*
> uj
§ *
s
l
40,000
30.000
M.OOO
37.000
31,000
36,000
M.OOO
26,000
24,000
23,000
22,000
21.000
20.000
19,000
10,000
17,000
16,000
W.OOO
14,000
U.OOD
12.000
11,000
10,000
t.ooo
6.000
T.OOO
6,000
5,000
4.000
3.000
2.000
1,000
KOIN RUN 622 2A J BEGIN RUN 622 28 END RUN 622 2B|
i— BOILER OUTAGE '
• .
- *
-
T
.
^0 • i
a
* i
-»
a
-
.
•
0
a a
Q _
O
* • *
D •• •
•
°
-
_ n • TOTAL DISSOLVED SOLIDS
Q U
D O O MAGNESIUM IM|"I
O Q Q 4 CHLORIDE ICI-I
Q — O SULFATE (SO4'>
_ QO DOP 0 CALCIUMIC."!
0 NOTE SKCIES WHOSE AVERAGE
CONCENTRATIONS ARE (.ESS
THAN SOD pgm ARE NO1
PLOTTED
0 0
0
-o
0 °
0
. o oooo
- * A 0 0 000 0 0
-» * V** *AA. ° °° 4 *
"0 o ° 00000 000000000*00
i i i 1 1 1.1 i i i
40.000
M.OOO
31.000
37.000
30.000
^
7.000
M.ODO
X.OOO
24.000
23.000
12.000
HMD
10.000
1.000
11.100
17.000
14.100
11.000
14.000
11.100
11.000
11.000
TftOOD
0.000
WOO
7.000
1.000
5.000
4.010
3.000
MOO
1.010
° 0 *> M t» 100 200 MJ » 3» MO 400 440 4tt
622 2A
Git Roto - 30,000 itfm P 300° F
Gil Volocily - 12.5 It/tec * 125° F
Liquor Rite * 900 gpm
L/6 = 37 gil/Mcl
EHT Rcsidonco Timo = 4.1 min
3 B«di, 5 in. iphires/bld
Porcont Solids Rocirculitod • 7.7 9.5 wt S
Total Pristurc Drop, Excluding Mitt Elim.
-8.3- 7.0 in. HjO
Mitt Elim. Prtlturt Drop = 0.50 • 0.59 in. HjO
Diichirgi (Clint./Cliril. & Contrifugt) Solidt
Concintntion * 37 • 39/52 • 58 wt %
Limi and Dry MgO Addition to EHT
Extirn«l Downcomir Usid
622 • 2B
Gil Dili - 30,000 term » 300° F
Gis Vtlocitv - 125 It/ioc » 125° F
Liquor Ritt * 900 gpm
L/G - 37 jil/Mtl
EHT RnirJinct Timi • 4.1 min
3 Bods. 5 in. tphout/bld
Pircint Solid) Rtcirculitid -7.3 1.7 wt %
Totll Prituiri Drop, Excluding Mitt Elim.
•6.2-7.2 in. H20
Mitt Elim. Pntturo Drop - 0.51 • 0 SO in. HjQ
Oitchwoo (Clint./ClKil. Contrilujo) Solidt
Concintntion - 37 - 47/60 • 61 wt S
limt ind Dry MgO Addition to EHT
Extirnil Downcomor Uttd
.
I tV9 I V1Q I B/11 I fi/12 I 5/13 I S/14 I 5/15 I ft/16 | S/17 [ S/tO | 5/U I EV20 I Ml I
CALENDAR DAY M9W
I 6/23 I S/14 I MS 1
Figure 1-10 (continued). OPERATING DATA FOR TCA RUNS 622-2A & 622-2B
1-15
-------
ni ::
s
*ji -
1 -
\
III "
i*2 .
|. am
• } "~
• • •
6u Rid • 30.000 icfm • 300° F
Gn Velocity • 12.5 ft/m • 125° f
Liquor Rut- 12001pm
L/C = SO gil/Mcl
EHT Rnidince Time * 3.0 min
3 Blot, 5 in. iphiru/bli)
Ptrctnt So I id I RicircullMd • 7.4 • t.O HI *
Toll) Prttturi Drop, Excludin| Mist Elim.
-t.4-7.8in. H20
Milt Elim. Pmlur« Drop - 0.64 • O.U in. MjO
Diuhirgt ICItiifi.r a Ctniriluji) Solidl
Concentration - 53 65 wl %
Limt ind Dry M|0 Addition to EHT
Ejcttrnil Dawncomer uHd
°D°
* CMUMKM Wl~l
O lULf ATI lID/t
0
MOTCMOniVHOMAWnUI
COMCMTftATlOM *M LtM
THAMfNVpiiiAMNOT
a DD
a a oa°
2-
- o °°
Lo ° ° "°"° °" » ^I*4*.
»*",. t»»"**» *
rt/*& „„/>...». .. .««« O.^A.AA/v
>
Figure 1-11. OPERATING DATA FOR TCA RUN 623-2A
1-16
-------
IND.U»P« i«:
GH Rm • 30.000 «cfm • 300° F
,„ GuYKoCitv 12.5 tt/MC » 125° F
LHKIOF Dm • 900 jcm
» US * 37 plfMcf
ta EHT RnidMm Tim* - 3 min
3Bt*, 5 in. tphtm/btd
>t Piroint Solid) flteirtulittd • 7.6 - 8.4 M S
Toul Prmun Drop, Excluding Mm Elin.
s -5.S-7.Oin. H20
o MiflElim. Pnoun Drop-0.63 0.71 ir.H20
Ditclurgi (Cltrifitr) Solidi
' ConcMlmion - 3S 49«tlS
o Lira «nH Dry MfO Addition to EHT
Extimal DownconNf uitd
6 °oo
D0°°° O,
\ OUT LI
O „- 0 0-0
• TOT*l CHtMlvID tOLIOt
O MACKtUUM'l^")
4 CHlOMlM 1C|-|
Q SULFATI !»,'>
0 CALCItJM 1C*")
MOTE rrniia>rMi »v«wun
Q - " O
rilTTWI MM
I uio I vii I «m I wii I wt4 I •/!• I i/i« I VIT I i/ii I •/*• I •/» I «/3i t «nt I MI I «M I wn I tat I Mr t
Figure 1-12. OPERATING DATA FOR TCA RUN 624-2A
1-17
-------
3 f ! BCGIH HUN 701 JA
:| '
|* ,«
4
sfi *
END RUN 701 2A ;
a I
T,,T ,
240 »
p « m
I tin* 111/20 I 11/211 nif I ti/ao I n/» I 12/1 I 12/2 I 12/1 I 12/4 I 12* I 11/0 I 12/7 I 12/0 I 12* 112/10 I wn 111/12 I 12/111
CALENDAR DAY (ItTOl
ll ,000
AAA^AAA A AAA
• TOTAL IMMOLVfO SOL KM
O OUtrATI lOO/l
A CMUMKH ICI~)
0 CALCIUM 2/T I 12/t I 12/1 I 12'tO I 12/11 I 12/12 I 12/13 I
CALENOAH DAY IOTCI
GM Rm - 30.000 Kfm • 300° F
Gil Vilocity* 12.5 It/MC
Liquor R.to • 1200 tpm
UG • SO nl/mcf
EHT Rotidtoco Timo > 4.1 min
3 Buta, 5 in. iphomAtd
(Wcoot Solidl RocirculatMt • 7.5-8.5 wt K
Totil Prmun Drop, Excluding Min Elim.
• 7711 in. H20
Mitt Elim. Pnmun Drop • 0.42-O.W in. HjO
OMwfl ICIvHioca Cmlrifufil Soli*
Conctntntwn'3143wtH
LimoitOM AMition to EHT
Figure 1-13. OPERATING DATA FOR TCA RUN 701-2A
1-18
-------
1 BEGIN RUN 707 2A
f-PUMP PBOBLiMS
i ss
-1
5f
I)!
-I ,00
40 00 120 1»0 200 J40 210 320 300 400 440
TEST TIME, tnun
I 12/7 I 12/1 | 1M I 12/tO I 12/11 I 11/12 I 12/11 I 12/14 I 12'1S I 12/11 I 12/17 I 12/11 I 12/K I 12'20 I 12'2t I 12/21 I 12/23 I 12/24 I 12'25 I
CALENDAR DAY nflTti
MI -
38 s
szs"
II "
h-
!1
II
• TOTAL otnoiveo SOLIDS
D SULFATE I90«'l
A CHLOMIOE ICI~)
O MAONEUUM (I*,**)
0 CALCIUM <ۥ**)
NOTE SPECIES WHOK AVERAGE
CONCENTRATIONS ANE LESS
THAN «00 wm ARE NOT
PLOTTED.
TEST TIME, town
I 11/7 I 1J/S I 12/9 I 11/10 I 12/11 I 12/11 I 1ZH3 I 12/14 I 12/lfi t tS/1« I 11/17 I 12/lt I U/ll | 1.VZO I 12/21 I 11/23 I U/31 I 11/24 I 12/2S I
CALENDAR DAV I1>7«)
GH R«t- 30.000 Kfm* 300° F
GnVilocily-12.Sfi/iK
Liquor Riti- 1200gptn
L/C • SO gil/mcl
EHT Rtsidinct Tinw- 4.1 min
3 Bidi. 4.7 in. iphum/bld
ToM Prtoura Drop. Euluding Min Elim.
• 7.5-t.O in. HjO
Mitl Elim. PiMun Drop - 0.4M.SO in. H,0
Ditcrwoi (Cm. (till !2/10)/Clicifi«f)Snlifc
Conantratim<3M2
-------
; BEGIN RUN 703 7A eWD RUN 703 2A '
at
n
1 U/U 1 Il/« | U/M 1 12/17 1 11/tf | 12/lt t
~ ,.„£,.»- ---"•-
I 12/21 I 12/22 t 12/23 I 12/24 I 11/M I 12/20 I tl/27 I 12/20 I 12/20 I 11/30 I 12/31 1 1/1 I
CALENDAR OAV (WO »T7)
1:
ll «
ft
ii
•.W
1.101
••••
i* »j
»0«
• TOTAL OMBOWKD BOLIOI
O •VOHUHMM,",
A CHLOMDf ICI-I
0 CALCIU* 1C."]
«OTI VKIII mOH AVMAOI
KMMnriurioM A«I am
THAU M> „. AU DOT
HOTTfO
|ooooooooooooooo°oooo
TEST TMf, toun
I 12/14 I 12/lf I 12f1« I 12/1F I 12/W I 12/1* I IZT20 I 12/21 I 12/22 I 12/22 I 11/M I 12/21 I 12/M I 12/ZJ I 12/21 I 12/2ff I 12/20 I 12/21 I 1/1 I
CALINOU1 OAV Utn-IITTI
GiiRM-10.micfm»3«°F
G«Vllocityl2.5rl/t»c
Liquor RM'l 200 |pm
EHT HnUnii Tim - 4.1 «wi.
Pmmt Midi Rwireulmd • 7.M.2 M «
Tom Pmura Dnw. E>eluaiii| Milt Elim
* 6.1-;. 9 in. H20
Mitt Elim. Prawn Drop • 0.41-0.4) in. HjO
DiKta* (CC*if«r « CMthfup) Solid.
Cont.nlr.tion-4t5««l%
LiiMitom Addition to EHT
Figure 1-15. OPERATING DATA FOR TCA RUN 703-2A
1-20
-------
; BEGIN RUM TO*2A
END HUM 704 IA
C 0 '
»£ •
Sf 100
90 .
$1' "•
70
60
66
60
cc
5 §
so
45
4500
4,OOO
al !MO
j ^ 3,000
2.500
2,000
K 2°
a: 2
* | ^
* 0
5,1 ,4
sJ|
*Jo~ "
n; ••
40
f|| »
!«i -
m -.
3 ISO
ip «.
0 « •
iii -
5 * 2
*• ~* o
5
9000
1,000
£ 7,000
1 -f
g S B.OM
if -
So 4.000
o J
0 2.000
1 000
_ !
-
.
•\ fi* ^ A-^-V^'^'V
" J V'x v ^ ri ^
v y v t
\J J
1
, INLEt
Vv-. / , . A ,
-^•v^< /-A ,-v ~^" vX ^ ^ J ^
V L' xs
V^v-^^ ^^,.-~ ^^"V'-^'x
\
•
•
/1 , , v-l ^
r1 1 /jV\ \j\vv ^\r^\^ :
u
• _ , __^ __ i
40 *> WO HO 200 240 2W J20 3tO 400 440 41
TEST TIME, hoon
CALENDAR DAV (W7*-1«771
•
r
• \ r\/\i\r^^ r\
^~~*
r A <^
/ \ j \
/ \ r \
/ * V— ••%.
* J ~^» Jy*~~»''*^-^^*, ^^*
* ft • TOTAL DISSOLVED SOLIDS
* •
9 •• * O SULFATE (SO/)
« • * •• 4 CHLORIDE icri
• * O MAGNC5ILW IMt"!
* •* 00 0 CALCIUM IC***I
TMAN SOD ppm ARE NOT
HOTTIO.
• * o%Sg^8^9cDfig^n " *
' rBeoogooco0000o000o0Sg^§§^8a8a890a80o§0.
0 M W 120 Iff) JOO 240 3*0 yttl MO 400 440
TEST TIMi. houn
00
to
M>
70
ao
6S
C.O
S5
60
4.S
4.500
4.000
3.UO
3.000
2.SOO
3000
10
to
0
1 4
V.
40
90
20
10
1W
100
so
0
t.ooo
1.000
7,000
•.000
5.000
4.000
2.000
1.000
4M
CALENDAR DAY I1«7B1977]
Gil Rite ' 30.000 ictm 0 300° F
Gii Velocity = 12.5 tt/wc
Liquor Rite= 1200 gpm
L/G = SO gil/mc<
EHT Rnidenci Tim< * 12 mm. (3 unki)
3 Bids, 4 in. iplwn/tMd
Pimnt Solidt Ricirculind • 7.3 8.9 wt %
Total Prraurt Drop, EHCIuding Mist Elim.
- 7.0 9.0 in. H20
Mitt Elim. Pnnura Drop = 0.40-0,54 in. H,0
DitchirgilClwiiiit & Cintrifugi) Solidi
Concintration - 40-46 wt H
LiiMltont Addition to E HT
Figure 1-16. OPERATING DATA FOR TCA RUN 704-2A
1-21
-------
: BtGlN RUN 706 JA
END RUN 70S IA <
ai
t °
Oil 14
HI
i J £• '2
40
* f
hi I
all
•IS '
0
t-
2 tu
f]| "°
i|l w
rs" °
LOW
1,000
« J.OOO
2 I t.DOO
B f
» B'°°°
§ 1
82 4.000
2 ^
23 3000
i* '
5 2,000
1000
0
TEST TIME, tawn
1 16 1 1'S 1 17 1 1,1 1 11 1 MO 1 1 It 1 1'W 1 t 13 I t 14 1 1'1§ I 1.11 t t'17 1 1/11 1 I/ It I 1/20 t 1/21 1 1/22 1 1/2J 1
CALENDAR OAV !tt?7)
t^^-^v^~_^ ;
:
r A A i
/ ;\ r-J^
*\ > ^^'^^rf*^
•
• TOTAL OIIJOLVIO SO 1 IDS
^ — O MAOMEtniM (Mf**l
• H * CHLONKH icrt
» D SULFATE ISO4*I
* _ * * • • ^ CAICIUM (C»"l
•> **•**.» WTI "tCIES WHOSE AVEHAOE
• 0 CONCENTRATIONS AHE LESS
• THAN HO ttm ARE NOT
••
-------
I >EGIHRUI".70*2*
BOILER OUT AGI
- MISTEIIM CLEANlNC^^GASFLOyCONTROiPROgLiMS i
ENORUN7IM2* ;
8l-
4500
4.000
3MO
3000
2.SOO
IS
*|
40 W 1M 1*0 200 740 MO 320 3tO 400 440 4M UO
TEST TiME.houn
I 1/tS t "1* I "" I 1/li I "1* I "20 I 1/21 I 1/23 1 1/23 I 1'2« I 1/» I I'M I 1/27 I I'M 1 1/21 I 1/30 I 1'31 I 2/1 I 72 I 21 1 1.4 I
CAlcNOAR DAV 11977)
::P
40
i? Zf »
5 5« «
M
A
o L
_ 5 ts°
1*0
H\ .00
a °
•^
'0.000 • TOTAL DISSOLVED SOLIDS
•.000
1.000
ii '°°°
5*
K i 0.000
Ii ,.000
8?
It •»»
|f u.
O
2.000
1.000
o
O MAGNESIUM IM|"|
A CHLORIDE ICI~I
* D SULFATI (SO/I
-
\ AV-V ^v^^\ /v^^v-x /\ A r '
\r V ^ V \ y \
W
4»
M
20
10
-* 0
\ A-^ 1
\^f^-^\^^~^^^^^\^
ISO
100
o
• — 1 10.000
•• • 1
.. "• ..."
• _ • — • * •
• • w m. " w* *t)~"j»w •
0 CALCIUM < C,"I •••••«• * • • *
NOTE VECIESWHO5E AVERAGE •
CONCENTRATIONS ARE LESS
THAN MO ppm ARE NOT
PLOTTED
S*
3°
D
ood
ooo
0 40 U 1»
Gas Rite - 30,000 ictm fi> 300° F
GHVtJocity12.Sfl/ttc
Liquor R«t« - tZOOgpm
L/G • 50 gal/ Mcf
EHT RniOenc«Timi= 12 mm.
3 Bldt. S m. iphvm/tMd
V
AA
* A ** * *AA*A
****A4 * * *4* ** **A A****
OQnAAAn * * n n* ^ O
aDoo ° dR0aD°8n aaa Dad aDao a° nD§6o
^OvoOoooOA ^0^ D *0^^^^AOOoO^^
_i i i i i | | | { .
4000
7000
*000
SON
4000
3000
7.000
'•* «K> MO » J» 3*JO 400 440 4*0 S»
CALENDAR OAY 1117?)
Pirctni So>idi RitirtulMtd • 13.8 15 5 wt S
Tottl Prawn Drop, Excluding Mitt Elim.
- 7.7 10.5 in. HjO
Mitt Elim. Prtaurt Drop - 0.44-0 59 in. H20
DiKtwit (ClMiftir) Solidl
Connntritian -- 31-41 wt \
Limttton* Addition to EHT
Figure 1-18. OPERATING DATA FOR TCA RUN 706-2A
1-23
-------
jBCGiNjnutt nr M
it' «
:
31
18 MOO
TEST TMN, tam
I i* I JT I i« I l» I i/w I I'M 1 Jrt» I J'tj I 3/u I uil I i/i« I J'lr I i/« I i'i* I >/M I wi I J/M I
CALIMOAAOAV Ilfr7l
if::
3 '"
J §u
fill •>
•.ON
• row
I i
1 - *000
i ^
{I .-
jj ,~
5 2 on
r.««o
a
• TOTAL DIMOIVIO KH.K*
^ O SULFAFI n»4'l
• A CMLOMIM tci-i
. . .« * 0 MAONCBHWM.**)
A
^ ^ V CALCIUM IC»**I
* O NOT! VfClftWHOSC AVEdAOf
CmCIMTMATlONS Mf LIU
THAN MM MM AMI MOT
• A^
• *
D *
*A0^9^0^^^0
5ooOoooooooo°o
•° ' 1 1 1 1 «- 1 L_ 1 1 1
I M I 3J7 I V* I 3* t *W I
TCST TMK. tan
i >"1 I >'" I *"* ' s'» I Kit I 3 I 3/23 I 9/2) I
CALCNDAK DAY IWm
GM Rm-30.000 Kin* 300° F
6nVllocitv12.Sft/llc
Liquor MM* » IZOOfpfli
UG-H^I/Mcl
CHT *
-------
j!
<.CNO RUN IMJft
4,000
?' 3.1
il
° 3600
i.on
IS
S jf ,0
il •
D
-i
» /v
^U'^Y
V ^._ . ,-
, , 1 1 1 1 1 11 1 _L
1JO 160
1/10 I 3/11 ! 1 1} I 113 I 3114 I 3<1S I 1/1* 1 3/17 I 3/11 I J'tt 1 I'M I 3,71 I I'M I 3'13
CALENDAR DAV ll*J7t
I'M I J/» I I'M I J2T I
III ••
lif::
M
E*
1 1 -
3SJ
Jl| »
SK* ,„
'IS
Q
!i» "*
III 1»
pi .
*s5 »
10.900
»ew
•.000
B
| - r00°
* i
U ? •,ooo
?5 ...»
e 1
S S
g; «•«»
j! ..«.
1
J.OOO
l.QOQ
J
i"
J 1 0
\T
t
•
\W/ :
/'V-A^"-"' :
-
• TOTAL DISSOLVED WLKM
• D SOL f ATI 1SO4*I
A CMLOftlOE ICI~)
* O MAGNESIUM (M|**>
0 CALCIUM ic**'i
1 9 ^ »*•*** "O7' VECIESWHOSI AVENAQE
*• ^ CONCENTHArKtWSAME LESS
THAN 900 P*M AAE NOT
• HOTTED
'A
_A n
1 Q D u
jO^ftftaiJ^g^S °
! ^00^05 oo°o
>oooooooooooooooo
__ i,. .J 1 1 1 1 ' ' i i i
w
JO
M
10
a
in
TOO
M
0
i4.no
•.OH
•.no
7.000
1.000
$.000
4.000
3.000
ion
1.000
O
I 1'iq 1 J'll I I'll I 1/t] I 1,14 I I'll I 1/1« I 1/17 I 3/11 I 3/tl I J/JO I 3/71
CALENDAR DAY 111771
J» 1« 400 MO «g
I 3/>J I 1/14 I 1/M ( 3/Jt I MT I
Gu Hill •M.OOO.clm* 300° F
GH Vllocily • 12.5H/IK
liquor Rm- 1200 9E«n
EHT RnidfnclTinii-4.1iTiin
3 8*dl. 5 in sphwn/btd
rVcim Solidi RK«UI«M • 14.H5 9 m K
ToW Ptnun Drop. Euludim »M Eli«i
• S.S-1.2 in H20
Mill Elirtl. Prtnun Dr» • 0.44-0.4S in. H J)
0,«h»> ICIvifiicI Sol.d.
CDncintcnion - 37 43
-------
^—ounir
lm
UN
if
, I J 14 I M' I VII I 1'lf I 1/M I K21 I WI I 3/n I »M I KM | »• I 11' \ in 1 Jtt I I'M I 3/11 I 4/1 I 4/1 | 4/) I
CALENDAR OAV IMTTt
ill "I
s'S
• TOTAL DMOBLVID EOLKM
O SUiFATE UOj'l
* CMUMM icrt
0 CALCIUM «•'*!
NOT! »fCIIStMOH AVENAOE
CONCfNTHATIONO Afll LCK
THAN MO RV* AM NOT
ftOTTIO
"'
-J 1 1 1_
TEST TIME. hMn
I ]/!• I I/I* I 1/17 I U10 I V>0 I 1» I J/21 I VM I »] I J/34 I Iflf I V*
CALENDAR OAV I1O7TI
1 WT 1 im 1 ra 1 I/M 1 i^t I 4/1 1 *j 1
GoiRon-30.000Kirn*300° F
Soi Vtfocity • U.S fl/ioc
Liquor H«o« IZOOgpm
l/G-SOpri/Mcl
E NT HtMtnei Timo • 4.1 mi»
JSiih, Sin. wMm/toO
Forcom Soli* RtticniMid • 13.1 14J wt *
Totol Pnauro Drot. Euhidini MM Elim.
• I.M.7 in. HjO
Mill Elim. Promin Drop • 0.44-0.41 Mi. HjO
Dwh*T|t (CIvifM Midi
Concoirrnlwi • 37-41 M K
LiiMnono AMifion lo EHT
Figure 1-21. OPERATING DATA FOR TCA RUN 709-2A
1-26
-------
40 M.101W2002«01»130J|P40*44*I
TEIT TIME . toun
I 3/1* I 3/H | 3/20 I 1/31 I 3/M I W3 I 3/M I 3/26 I l/» I M7 I Vlt I I/W I 1/30 I 3/11 I 4/1 I «n I 4V3 I M 1 4* I
CALINOAH DAY 11177)
ni::
sif ••
"• * I to
• TOTAL naoiviD
0 CALCIUM fC»**>
won irccm MHOOI AVCHAOI
CONCCNTKATIOfM AHC LEV
THAN MO •»• AMI NOT
PLOTTED.
w 16 m tto » TeaT ^Mc no K» x* 4t» **o
1 1/11 1 3/lt 1 3/» 1 1/11 1 3/II 1 l/}3 1 3/34 I 3734 1 1« 1 VJ7 1 V» 1 3^f 1 j« 1 M, [ 4/, I 44 | 4/3 I 4/4 1 4^
CALENOAM DAY 11177)
Git R.tt • 30.000 Kfm » 300° F
GnVilocity-12.5t1/tK
Liquor Hitf " 1200gpm
UO-50jt(/Mcl
EHT Rnidtnc* Timt • 12 min
3 Bidi. S In. iprnm/DKl
Ptftint Sol* H«cireul.l«) - 14.J-15.1 «n%
Totil PTMITI Drop. EndudiK) MM Elim.
• 6.1X6.7 in. HjO
Min Elim. Prwun Diet • 0.47-0 55 .n. HjO
LinMofM AlUilion M EHT
Figure 1-22. OPERATING DATA FOR TCA RUN 710-2A
1-27
-------
Si
j iMOflUK71ljA_
_J 1 I L_
TtBTTNM.twM
I w« I Wi) 1 1/77 I a/» I wt I i/» I MI I 4/1 I 4/1 I 4/1)4* I 4/v (44 (4/7 I « I 4* I «/io I 4/n I */u I
CALMDAfl DAY 11*771
!i
s -
I -
r*»
k »^ •*
• ••
Q tULPATI H04')
4 CHLMIM BO
6 CALCIUM «•**(
NOTI MCMS WHOM AVf MM
CONCfMTMATIOIWAM LIH
TMANMtlffiiAMNOT
PLOTTtD.
J— L-
4> HUfMBaMMBatM
TEfT riMI, ttnm
\ I M« t W I Ml I W» | vn I Wl I 4/1 I 4A I 4rt I 4/4 I 4/B I « I 4/7 I 44 I 4* I 4/W I 4/11 I
CALINOAH OAV 11*77)
G« RMI-30,000 icfm* 300° F
GH Vtlocny « 12.5 Him
Liquor RIM • 1200 0pm
L/G-Uvl/Mcl
EHTRndmc
-------
Hi
P
j BEGIN HUN 7122*
lENO RUN 712 2A
I 3/21 I 3/30 ! 3/31 I 4/1 I 4/2 I
100 140 W
TESTTIME.hwt
I 4» I 4* I 4/7 I ,„ I „ I ,
CALENDAR DAY 11*77)
4/11 I
K
II
1*
8 g
S£
5
7,000
• 000
5000
4.000
3.00O
2.000
(.000
0
• TOTAL DISSOLVED SOLIDS
1 O SUlFATE (SO,',
t) • & CHLORIOt tCI~)
" • * • ,J 0 CALCIUM ICa**!
* NOTE 9KCIESWHOSE AVtHAGE
CONCENTRATIONS ARE Ll» '
• • THAN SO) ivm ARE NOT
FlOTT/eO
AU
igA *A * **A
-°° fi^a*9?9°0^
i i i i i i i i i i i
TEST TIME.howi
I U29 I 3/3D I 3/31 I 4/1 1 */7 I */3 I «/« I 4/5 I 4/» I 4/7 I «/• I 4/1 I 4/10 I 4/11 1 4/13 i 4/11 I *m I .J/U | 471| I
CAltNOAH DAY 11,177]
G« Rt» - 30.000 ictm » 300° F
G« Vilocitv • 125h;i«
t.to,uar Rate ' 1200 gpm
L/C • SO ill/Mel
f HT Retidtntt Tim4 = 12 min (3 t
3 Bldt. 5 in. iphtifi/bid
Ptrttnt Solidt Riciftulaml • 13l6wt\
Totll Pritura Drop, deluding Min Elim.
• 6272 in. H20
Min Elim Pnsura Dfop • 0.48-0 61 in H j
Oochvgi ICUrilm) Soli*
Concintrnion ' 36-43 Mrt X
Linwttone Addition [o firtt EHT
Figure 1-24. OPERATING DATA FOR TCA RUN 712-2A
1-29
-------
g «> jMq.MRUM7.lK
< § m*mu^^^f(
* e 100
e\>
I 4/11 I VIT I «/W I «/.• I *» I Ml I •« I «/» I «VW I «• I 4>M I •/» I i/lt I «/»t I CM I T/t I 11 I I/I I /M I
CALIHOAHOAVfWI
ijs" 'T
gfi .A
\
Ell
N,
1} 4M,
DaaoD
°°°0 a
ODD a
• TOTAL OlSWLVtO IOLIDS
A CMLOHKH ICI )
D HflfATI IK>4 I
0 CALCHjMlCl")
40 M 170 IM /OD 2*0 ?MI UO MB 400 440 (M
I «1ft I •../ I .... | ..,» | »«. I 1,71 I tUR I •» I i«l t» n/'» I *77 I .» I 4'» | .» t '• I >.'* I M I >.. I
Gil Dm • 30.000 Kim • S00° f
G« VKoclly * 12.5 him
IHOOI dm • 1200 •»
L/C • SO ^/Kkl
EHT KMM«ict Tint • 12 nin
3 Mi. S in
PnM Sol* RKircukM • 1I.VK.I M It
Tool fama Drop, deluding MM El™.
- 1*1.4 ». H.O
MM E»». PMWI drap • 0.4U.SO in. HJ)
- 9«V42 wl %
A<*tlo. to EHT
Oy AuUmMk CvMral
Figure 1-25. OPERATING DATA FOR TCA RUN 713-2A
1-30
-------
0 o o°o O
O °° 00
to no
ni I »! I M I M I W I M I M I VT I M I M I ww I Ml I TO I «l I *t« I « ) «» I «1> I I
CALENDAR DAVIICTI
• «.OM
h-
I :
ft°
OOOOoS°6
• TOTAL otnoLvio KK««
O MMMIMM (*N**I
* Cm.ODIMKI-1
O lULFATI [«>«•)
0 CAiauM tfe">
MOTf «FCC1«*NO« AVtKAGI
ODNCIHTIUTKlNIAIIt 1KB
THAN IMw-AHl MOT
HOTTfO
I Ml I t/l 1 W7 I Wl I IM I M I M I «/T I M V M 1 WW I W11 I ml I Ml I WM I V* I Im I *n I
CALINDMfMV MWI
(m Kin • 30.000 «rft» • 300° F
OB Vdotitv • 11.1 l"«t
14.1 ItJwtH
Mitt Cum
3 Btdl, 5 in. vlmi/M
•M Etui. Hi. in Dtt> • « JM U in. «,0
IvAMMMc Cnml
Figure 1-26. OPERATING DATA FOR TCA RUN 714-2A
1-31
-------
it
^—owrtf i
isoo
1.000
40 >0 1ZO 100 200 240 MO 320 MO 400 440
rCSTTWf.hotn
I 10/1 I Krt I **/W I WIT i 10/11 t 10/13 1 10/14 I Wit I 10/10 t 10/17 t M/11 I 10/1t t 1*70 I 10/21 I 10/22 I tQ/n ) 10/M I 10/21 1 10/M I
CALENDAH OAV lltTTJ
• TOTAL (MStOLVED SOLID*
A CHIOHIOE (cr>
O BUIFATE COO,,1)
0 CALCIUM 1C***}
WOTI trtCICI WHOSE AVERAGE
COMCCNTlATtOM A«t U«
1
1
_J_
i
i
i
i
1
240 TOO 320 JOB 400 440
ti»T rwi. »KH>*
1 tOA I 10/» I '0/10 | 10/11 I ID/12 I 10/13 I 10/14 t 10/16 I 10/11 I 10/17 I 10; 11 1 10,19 I IOTO I 10/21 I 10/22 I 10/71 ) 10/24 1 10/2S t 10/20 I
CALENDAR DAV M»7>
Cat Roto •30.000 (dm »3M*F
GoiVttockv 12.Sft/ioc
Uquor Roto • 1000 |B*n
L/C • 42 pi/Kef
EHT Rttidonco Timo • 14.4 mm (3 TonUI
3 Mi. 75 in. iplwil/bod
Porom Solids RotirnMod • 14.4 156 M H
Totol •mwro Drop. Endudinf Mitt Elim.
• 10.0-12.5 in. H20
Mia Elim Protwi Drop • 0.444.SS in. H,0
OiKhorgo ICkfifiorl Solid.
Concwinuon * 3042 wt H
Limoitono Addition to Ficit Hold Tink
Figure 1-27. OPERATING DATA FOR TCA RUN 715-2A
1-32
-------
; BEGIN HUN 716 M iMD HUN 716 2A j
b°°°0°oo0° °°
V
\ - oimti
*s
3,500
3,000
2,000
1,600
TEST TIME.twurt
I 10/1% ( 10/16 I 10/17 I 10/1B 1 10/19 I 10/» I 10/21 I 10/22 I 10/13 I 10/24 110VR I 10/26 I 10/27 I 10/21 I 10/20 1 >0/30 I 10/31 I 11/1
CALENDAR DAY (1977)
- 1-6
1)1-
ii?;:
£55
*S z »
3.500
3.000
2.500
7.000
1,500
20
•!%
> J ec
Szl
155
5
a
«
I-1
i
-1
a 3
o -1
> »
5
ISO
100
so
0
7.000
6.000
5.000
3.000
2.000
1.000
-
.X^^-^^^*^
-
~
| £ • • TOTAL DISSOLVED SOL (OS
^•0 •• • • * CHLORIDE ten
"•••*• «
W • 9 • » Q SULFATE 1K>4'I
0 CALCIUM 1C***)
NOTE SPfCIESWHOSC AVERAGE
CONCENTflATIO«cluding Milt Elim.
• 12.M6.1 in. HjO
Mitt Elim Prtsuri Drop • 0 340 44 in. H.O
DiicSiigt (Ckcifiir) Solidt
Conctntntion • 3341 M %
LimKoiH Addition to Fro HoU link
Figure 1-28. OPERATING DATA FOR TCA RUN 716-2A
1-33
-------
a'I —
i! -
/ "'i
' U
J.
Ui ::
lif •-
i
Hi
.J-. ----- I - 1 - 1
1 Mil 1 M/n 1 <•>! 1 WM 1 WM i •»*• 1 !•»» 1 MM 1 M,» I »» I W 11 1 n 1 1 u ) 1 11 J 1 II « ( II « | i » . | n , ( n , |
<<
O tLJl* 411 «D.
0 CAICWO"
lOff PtC«*ec<><><>«<>ScH '«»0<>09«»<>«'>C'<>00<><>0"°* J
" »• o*
CMI%b«llOA1 lfll»
Figure 1-29. OPERATING DATA FOR TCA RUN 717-2A
1-34
-------
I' ."V^"' 'YYV~ ''^
** u
I
0°
°°0°0
l '•
It
il
i.l
iii
1 w a"
Hi
WO MO «00
7ll114llM« I 1110 lu«1 1.1*7 I HI, I MM |M« I 11* 1.131 I
CALtMDANOAV H*??l
5*5
!
1^
5 r
1!
; ^
0 CALCIUM 'C
1"
MM MA MB »»
I I n,» I ilia 111 K IK » III M IK 1> I
Gil n.t. ?0.000 30.0M iclm « 300° F
CaiVilocitv - 8.4 1J 5 It /He
Liquor Rite - lOOOjpm
L/C
-------
N RU*. /IB ;_ FND RUN J
i ^
a » '00
to
X - ""
;
70
60
6!,
= 60
If* ^
SO
4.000
JSOO
fl
S a loeo
u»
2000
IS
?-~
i! -
^ *
ill .-
fif::
t - 40
-It
iS » "
«of n
85;
*S* "
8i* "*
S <0°
s * - w
S- -
1 «
1.000
7.000
2
i •«
«l ,m
,, so»
B i-
- | 4000
- ;
i ; J"»
i ^
1 1000
1 000
0
' -s
' f
'
L
.
/ INLIT
' t t P\, I
_VW^-^^ -^Vw^-^
-
.•V, K
J1^ Vj"f^'~ \JV
• ^
\!
r i
\.^~-'^'^'~" ~^^~J"
-
•
0 40 W1MtW2002«02W3203fD400440«
1 1 1 I 1 1 1 I 1 TlltiTl*IE-lT-'* 1 1 1 t 1 1 1 1 i
CALENDAR DAV (1*77)
"\A yr*>vr*\
- V v ,
" r^S\ XA
• / \^v/\
/ ^ V-
_/
"-~r-^\_A.^V-^
~"~"
w
-
• TOTAL DISSOLVED SOLID*
• ** • * CHLOftiona ,
• _ 0 • O SULFATE iso4'i
" 0 CAlCIU«(C«"l
MOTE SECIES WHOSE AVERAGE
COMCINTRATKWSARE USS
THAN «M ppm ARE MOT
^LOTItO
A *A
A A .
"*t???9°0g§oa°*o6**
.0 o o o ««o
40 to l» 110 MO MO MO WO 3«0 »00 440 «
TEST TIME ho*»t
CALENDAR OAV HITlt
00
»
eo
TO
n
66
eo
55
so
4000
3SOO
3000
?soo
1 .000
11
10
s
10
1.4
ia
40
30
20
10
TM
too
W
e
•AM
7.000
•.000
f.000
4.000
3.000
2.000
VOW
0
G.I Rut" 30,000 .dm* 300 °F
GuVdocily* 12.5 h/»t
Liouw R««-1200 Jim
L/C - M gtl/Md
EHT flllidtntl Timi • 12 min
4 Gridi Mth 23 Liyrl (46 in. High) of
Clilcotl Ptalti Sttwoon 2 nd * 3 td Gnd
PtfCtM Solidl Ricirculind * 13.6-15.1 M S
Tottl Ptniuce Orof. Exdudme. Mitt Eiim.
• 6.5 8.? ». H20
Mill Elm. fnawi Oiop > 0.4M.50 in. HjO
OiKtogt IClui'iirl Solull
CoKtmration • 3MC M %
LimMon* Addition to EHT
Figure 1-30. OPERATING DATA FOR TCA RUN 718-2A
1-36
-------
I BEGIN HUN 71tIA
if*
aj
°0 o"
,00°00 Q 00oo O O
VOUOl
OUTLET
3.600
fi .«•
i| !SCO
J.OOO
II
TEST TIME, houn
I 12/3 I 13>4 1 tlrt | 13/fl 1 12/7 I ll/» 1 ufl I 11MO I 12/11 I 12/11 I 11/13 | tl,'14 I 11/tG 1 11/W I U/1T I 11/11 I 11/11 I 12/3O I
CALENDAR DAY 111771
Sji "
ill "
Hi"
™ E 10
a*i »
sS2 »
j*J « 3 ID
i!
**••* »**•••••••. •*,
• TOTAL DISSOLVED SOLIDS
O SULFAU HO,"I
0 CALCIUM Ib" I
NOTE SKCIESWHOSI AViHAQE
COMCEHTMTKMt AM LEB
THAMBOOwmANEMDT
PLOTTfO
-J 1 1 L_
I u/i I »/» I »M I u» I »• I i!/i I i>* I i» I n;« I ij/ii I imi I ii/ij I ,,„. I urn I <»/» 111/111«/» I iim I u/
CALINOAH OAV I1V7T1
Gn Riti = 18,000 ictm » 300° F
Gas Velocity • 7.5 H/MC
Liquor R»tt • 1200 gptn
L/G * 83 g«l/Mcl
EHT R«idflnci Timt ^ 12mm
4 Grid) with 23 Uyon (46 in. High) of
Ct.lcolt Plitit fietwwn 2nd & 3rd Grid
Ptfdffl Solidl Rioculltld ' 14.1 15.5 MI %
Toul Prnutt Drop, Exduding Milt Elim.
• 2.64.0 in H20
Mia Elim. Pnawt Drop • 0.134.20 in HjO
OiKrwn (Ckritin I Soldi
Conomtniion * 3541 wl %
Limntoni Mrlition to EHT
Figure 1-31. OPERATING DATA FOR TCA RUN 719-2A
1-37
-------
tNO; 80128 |fND
3.SOO
3.000
JMO
TEST T IMC. Mwt
I •/» I tVM I «/37 I 8/20 I tilt I MO I T/1 I 7/3 I 7/3 | 7-» I 7/5 I 7lt \ lit I 7/1 I
CALENDAR QAV MI77I
I 7/10 I 7
2 I 7/13 I
II* "
1 -
yl = H
? 5 i
5 0
• ooo
1 s.ooo
gi
•1 -
is -
St '•"•
jji
5
.^x~x— — -^~ -
_ • TOTAL OISWIVED SOLIDS
• • A CMLOBIDf 1CI 1
^•^' •••••** * **• ° «ui'*«i»,'i
0 CALClUUHCV'l
NOTE SKCIESWHOU AVERAGE
CONCENTRATIONS ARC L(SS
Q Q THAN «Op,H«Af.E NOT
BDDD DaaDDD 0 UD DDaQ «TTIO
•&AAAA A A A A »4 A A A o
i'^*«.i2t>itfi^o**""*g
, i j i i i 1 1 1 1 1
1H
100
50
0
t.ooo
M.
4.000
3.000
1.000
1.000
TE1TTIME to-. " ~~
t i/M t «/27 I «/2t I e/M I •'» I 7,<1 I 111 I 7/3 I 1H I 7/S t 7/« I 7/r 1 7/i | 7* I 7/10 I 7/n I 7.11 I 7HJ I
CALENDAR OAV 119771
Gti R.li - 30.000 Kim * 300° F
Gn Vtlocrty * 12.S ft/Me
Liquor flin - 1200 gpm
UG ' M (MfMcl
EHT RtMiiKi Tim - 12 rmn (801 ZAI
- IS.7 niit (801 28)
EHT Lml • S.I 11(101 2A)
• 1.0 ft 1(01 2«l
3 BMi, 5 IK. mlwn/btil
Ait Flow Rm lo 0»«J.i« • 600 IElt.1 Kin. (M1-2AI
• 530 Kfrn M1-2B)
Liquor Flow Rm to 0««liitf • 1590 jpm
Ail EJuclor Oiiclwgtd At 6 It From Bauom ol EHT
hnm Solidi RttinyliM • 13.8-15.1 in K
Tool Proton Orep, ExcMini Mitt Elim.
• 6.7 IS in. H20
Mot Elim. fnun O'w - 047051 m H.O
Linmim /UdKion n EHT
CoKtntntioo • 34-45 wt %
Figure 1-32. OPERATING DATA FOR TCA RUNS 801-2A AND 801-2B
1-38
-------
Is*"
al
700 ?40
WO MO »00
in I 7/3 I 1H I 7/» I 7*» I 7/7 | 7/1 I !* t 1/10 I 7/11 I 7/U ( 7/1} I 7/14 I 7/1t I »/1« I T'lT I T/ll I t/H I J/» t
CALENDAR DAV (1(771
s!
ft
> u
0,000
t.OM
4,000
1.000
1,000
1,000
a
_ •
• ** °
0
NOTE
I.QD ODDDO Daaaa°Da
TOTAL DIUOLVtO SOLIDS
CHLOHIDE (Cl'l
UJLFAFIHO/I
CALCIUM (C«'*1
CONCfNTHATIOMAHE Li«
PLOTTED
• 000
t.MO
4.000
l.OM
VM>
0
HMMOIM130M0400M04M
Git Rill - 30,000 iriin • 300 °F
Gil Vlbcitv- 12.5 ll/ltc
llWOtRiu-IZOOiimi
town Solid. nKkeuktid - 14 T 1S.9 M S
Limmoru Addition to EHT
DMriwn (Clultur) Soldi
CoMtntmiOft • 32-31 wt X
Tom Prnui Dnp. EMudHii MM ElM.
•7*«Oin.H,o
•in Ellin. Front Dtop * 0 47*SI n. H,0
«i Fin Rill» 0>>linc • US «
-------
iStOIN RUN JC32*
°o"o
> OUTLET
,n
!\
1.UO
3.000
TEnTNM.Muri
I Jit I 7/10 I 7/11 I 7/11 I 7/IJ I 7/14 I 7fU I 7/1* I 7/17 I 7/10 I 7/11 I 7/» I 7/21 I W7J I 7/M I 7/M I J/» I J
CALENDAR DAY 11*77)
I 7/17 |
• TOTAL OAKN.VIO KLIOS
V CALCIUM (C*** I
NOTE VCaESWHOtE AVEMAGE
COHCENTHATKNU AHC LIB
THAN MO M>» AHE MOT
PLOTTED
•MO
4.000
IJO 110
10 340 »0 MO MO 400 440 <
I 74 t T/W t 7/11 I 7/12 I 7/1) I 7/14 I 7/tft I 7/lf f 7/17 ! 7/10 \1ltt I 7/M I 7/21 I 7/17 I 7/U I 7/» ] 7/M I 7/» I 7/17 I
CALfMOAn OAV IK7TI
GII flm- 30.000 ie(m» 300 °f
Gil V«tooly 12.5 h/«c
Llgiior Rut -1200 gpm
L/G-Hyl/Mcf
Ptram Salidi Ritircuktid • I4.I-1S.7M%
LinnnofK Addition 10 EHT
Dkch«|ilClvifiir)&llidl
Concmritioii • 3341 M %
ToMftwm Drap. E>d«Hm Kin Elm.
•7J4.I in. HjO
MM din. Pmun Oni • 0.40- 0 52 In. H,0
Air Flow Rill to O.dirn . 4K irfm
Liquor Flow Rm to Oiidii. -1600 ipffl
Ai eductoi DHHHH MII n Ffon Mttorn of EHT
EHT Rmlinci TMM • 21.S »*
EHTLMI-12H
Figure 1-34. OPERATING DATA FOR TCA RUN 803-2A
1-40
-------
M -
i§»
3.000
I,M»
o
\ — ounu
120 1W 200 140 2M 320 MO 400 440
TEST TIMf. how*
, I 7/» I 7/11 1 7/12 I 7/13 I 7/2« I »/» I T/H 1 7/27 I 7/21 I '/» 1 >to | J/ji I 1/1 | W I iVS
CALENDAR DAY 1W77)
••*«
. •
' •-••..
SD°
ooooooo°ooooo°ooooooo
• TOTAL DISSOLVED SOLIDS
O MAGNESIUM IMi**l
D SULFATI (»,*)
0 CALCIUM IC***1
MOTf tHCIESHMOKAVtHAGE
CONCENTKAFKMIS ARE LESS
THAN COO ppm ARE NOT
PLOTTED
3» JW>
1.000
2000
lElTTIMl.tewi
I 7(1* I 7/17 { 7/11 I 7/1* I 7/JO I 7/71 ( 7/71 I 7/23 I 7/24 I T/» l,T/2« I 7.77 t JfM I 7/31 I 7/30 I T/)1 I t/1 I •/} t t/1 I
CALENDAR DAY <1t77l
GilRin-30.000 ictn>»300°F
Gil Velocity-12.S ft/toe
Liquor Roto> 1200 gpm
L/G-SOgol/Mcf
3Bo«l,5m. whrtlftld
Plrcont Solidi Rlciculilod • 14.016.0 wt %
Limotunt Addition to EHT
DridiMio ICtaifiorl SclUi
Coneonrotlon-30-SaiMH
Ton) ProBurt Ofon. bdutting Mid Elm.
• J.8-I.I in. HjO
MM Elm. Prmun Drop • 0.404I.46 in. H^
Air Flow Roll to Oxidinf -
-------
8~J-
S 10
so
ss
§i so
j
45
.0
4,000
l.MO
j"1 «
I.SOO
1.000
_ KHUIafK
/\*to / /» / — iDWCT?*
0 °00 °° 0° 000<10
° ° v_is!y?f,"
L o • «°
: , A f,
NAr/FUnrV
v " ^^A,
u
•
»0
s»
<,
.n
4000
isoa
1.000
/MD
2.000
* . « r T is
if ,,f~~x^^— , ],.
!f f 1
ji tl .,,,,....., 1
* » « to i» IK ion ao no no no •» uo 4n
I 7M I 7/M I 7/« I 7A7 I 7/» I 70» 1 'AD
lEITTtMt. towi
I 7/3, I ^ I W I M I W I W I M I t/7 I M I .V, I
CALCNDAH DAV (19771
l::
-•li
?5"
5
III!
h -
"i
! -
85 LOU
D ->
il '•«"
• TOTAL OlttotvlOIOLIM
O WMMCSIIW IM|" I
A CHLMIOC ICI-I f
NOT[ IMCIE>1*MO*i AVEMAOI
CONCIMTNATKWS Mt[ ItK
THAN Mom. ANE NOT
DOTTED
DOOOOnOoOOo°°°OOO
™ ,,,,TS».. ""
I 7/n I T/M I 7/» 1 7/M I T/77 t 7/n I 7/» I 7/M I 7/3t I I/I I fc7 I «/3
CALIPIOAK OAV ITt77l
Git Urn • 30.000 Kf« 1 300 °F
Gil Vitouly- 12.5 fl/nc
Ptictnt Solidi RiacralMrt • I4»IUM X
LiiiiMtoni Wdition to TCA lnM SVMI
I •It>il<«l Solidi
- »3S wt»
• 7.74.7 to. H20
HW Elini. MMHI Orof » U7«.«f fc. HjO
Mr Fig* ton u Oiidinr ' 470 •)•
LiqinK Fltw PMlll Ortinr • 1N*W<«
Ait E
-------
> END RIM INIA
si'
M L
60 •
5& -
60
3,400
1000
!? -
SI •
TEST TIME tourt
I 7/M I T/N 1 7/11 I |/1 I 1/2 I t/3 I IM I •« I •« I 1/7 I B/> I IJI I 1/tO I tni I 1/11 I 1/13 I 1/14 I I/IS I 1/U I
CALENDAR DAY <1»77>
HI »
5?8
::
sli-
l!
ill „
i. ..«
1 ..
•• •
* * • • °
• • • • 4
••' •
»
•
NOTE
i*|2DD°D°8"*6ft*
»B»2g«i"»OWB"
TOTAL DKSOLVED SOLIDS
MAOMCtlUM (Mt"l
CNLORIOt ICri
tULHTl ISO,*I
CALCIUM
* I a/to I 1/11 I i/ti I i/t) I I/M t •/» I i/it I
Tool Prrauri Drop. E>dudin| MUt El™.
- 7.94.4 in. HjO
-------
JMOHUMUT IA;
1.MO
I.MO
TltT TME. IMM
I IN I M I W I VT I M I M I VI* I Ml I t/ll I V19 | I/M I «/H I WW I V17 I VU I I/If I M» I
CAiMOAII OAV Ilim
hi::
Hf:
Ifl -
!i -
,.j «
•
|i
If
•• *•
**• *
• TOTAL MMOIVCOIOLIM
O MAOMUHJH rM|**)
A GHUMWC (Q-l
wllI V1> Iwi3 I WM I tfW ! WM I V1T I WM I tfW I •/» I
CALfNOM OAV (107)
total •M.MldrnVMO'F
T«tri ftmn ON*, Ei*«* Hta Bta.
•kt Bta. ftMn < 0»f- UML44 h. tut
M NM *• • (MM* • 4n Hta
UMH RMT «Mt M OiHIv 1M mm
Hi S*** DM^ri At M tl Fn. IMMI •< EHT
• hENT
liWl
COMMMIM-»I4M*
EHTlMl-ltll
l»» »H T
Figure 1-38. OPERATING DATA FOR TCA RUN 807-2A
1-44
-------
II
4.(W
3.900
• 2.100
• 1.000
II '
110 100
TIIT TWK. toun
1 I V12 I VII I V14 I VII I t/U I |/I7 I VII I Vtt I MO I Ml ! m I MS t I/M 1 Ml I VM I WT I Hi I MO I
CALfNDAft DAV 111771
111 '
l\£ '••
Hi „
EH
H "
i-
i
|i:
"S
• TOTAL (MfOm.VtDK
O MMMISHJM M|**)
A CHLOMM ,")
6 CAiCHJM l&**1
i
NOTI: OKOUWNOM AVIMWU
OONCMTHATKINI AM liM -
THAN •§»,*» AM MOT
PIOTTIO
40 Wt201«2MMtlMSMMI4MMO
TIVTTHH.tMwl
1/11 I «/« I •/« I 1/14 I •/>• I t/w I in? I •»• I vi« I m I im I •» I w» I M« I m I vm I im I nt I no I
CALiMOM DAY (IfTtt
L/6-iOpl/M
To«l PTMMI Onf . EnWt« HM Eltat.
-i.HUta.HjO
im rii»»illni IHIIHii 11 o
Km » OiMbv • M •«•
At Fhm
• 117-IU M H
A* HMW OM*n4 M II ft FlM kttw ol EHT
IHT HalNMi Tta. • US •*
EHTlMl-lifl
LM »H TMl taMna T*w - U oh
Figure 1-39. OPERATING DATA FOR TCA RUN 808-2A
1-45
-------
I • 1A INO HUH •
n
o o Oo°00
OUTLET
TBTTM.h«vi
nlMilMil
muviTtm
M I M I
jf M
I „
ill -
h -
S» -
- »
*
si ">
lj 3;7XJ*#£«
• TOTAL OMOLVID MUM
* CMUNNM KI-)
0 CALCHWIGB**!
won i
r
\*nt\v»lvmiw\va\vn\v»\v»\v»\vn\v»lvu\vm\v»iltn IM |M IM IM I
COtJMOAH DAY I1W7I
BH RMi - «JH Mta • W* F
Ut-MfMM
IMi.il*. «tmM
NrrM MHi »«>M>lrt • 14.1-17.1 M *
UntlMlAMklMliEHT
DW«|i (ChrMv 1 Flwl WHi
-U4.7ta.HjO
•• Btn. rVMn Bn» • UMM ta. H,0
«* Fh» tai • OiMv M •*>
Uw Fin» KM • OMhv • IM *•
M HMB OMairi • «H FfM IMM ll ENT
(NT IkMMi TIM • )i.7 Mh
ENTlMl*lT)
lM»H TMt taHMi ThB • IJ •!•
Figure 1-40. OPERATING DATA FOR TCA RUN 809-2A
1-46
-------
'MOIN HUNI10-1A END HUN 110 1A!
h •
II '
TI1TTI
CALINDAH DAY (1*77)
TIM I vt I •* I wr I M 1 M I WM I tni 11/12 I
• TOTAL DMKM.VtO IOLIOS
A CMlOAIOf Kl~)
a wirATt ao/i
0 CALCIUM Mi**>
HOTE^ gtCIUIMml AVCMMI
COMCtNTHATIOM AM LItt
« M1201<0200MttlMinMO«t
linil.vMlBniliml.vnlMol.viil vi I « lu \vt \tn\*fn\vj\tm\t^\t
CMIODAfl DAY (H77)
te Rm -3d WO Mint 300° F
rVem SolUt RKkcuiM • 14.0-15 J M %
U™«oni AjMltloii » EHT
Okctaqi (Chrlhi » F»m) Silkh
Tout Pram On>. [«Mh« Mkt Elm.
-l.J-Mta.HjO
•Hn flbn. fnmn Onr • 8.3M.4S to. H.O
Alt Flow ft* to Oitllnr • M Kf»
Llwor Flo. dm to OiUlnr • 1M ijn
At EtfKttr Olictot^ At III FlM MWn cl EHT
ENT taUM TIM • 15.7 ink
EHT lint-lit
UwiHTnkKnUm.Tta-lJ.il
Figure 1-41. OPERATING DATA FOR TCA RUN 810-2A
1-47
-------
Si
I MOM RUN J1UA
tuo BUM nm ;
i I wii I •/« I w« I «m I vw I im I WIT I vw I 9m \vm I
i
= 1
Hi
il?
•h
*
I
A CHLMIOt tC!->
Q MLFATI HO/)
0 CftjCH^* |C»**t
OONCIKTIlATIOfW AM U
THAN •• MM AMI MOT
PLOTTID.
I «n I >m I m I i/w I «™ I «« I »i7 I «/» I »!« I «•» I
CM.CNOAD DAY 11*771
ta MM -MM) Klin* 3^ F
ToM hMm Diw, E«Mta| Mkl En«.
• 7.M.I iv H.o
Mkl EKm hiwi Dnt • 0.3M4? In H.O
AkFInt *mnOi*a,~in*lm
Mi* RKni*M . 11H5. J «l %
IIII miiiin 111 rirr
Ait EductH Oichnrt H II ft From lomm of EHT
EHT HiiUnii TiM - US mill
EHtl.tv«< Mitt
Lo. pH Tnk RiMma Tint - 19 nln
Figure 1-42. OPERATING DATA FOR TCA RUN 811-2A
1-48
-------
MOIM ftUH «D JA
!MO BUN I1MAI
3JOO
3,000
>"7 I t/u I •/!• I VM I MI I »/zi I »/n I t/M I M» I •/» Itvn I t/n I tnt I MB I ion I wi I IM I w* t MA I
hi ••
IK::
i5J
hi "
h5 "
*«i ,
• TOTALOiaOLVCOlOtmt
4 CMLOfllDC ICI~>
D IULF*TI(»4ml
0 CALCHMK^*4)
NOTf: VfCICSWHMC AVEMAOI
CONCINTMTIQM M[ LUi
THAN HO «PM AM NOT
PLOTTtO.
D
TilT TIM1. Iwwt
T I «/1t I t/lt I MB I VII I M> I KB I */H t Mi I Ml I «TT I tot I Mi I t/M | ivi I 1WI I Wl I WM I 1
CALIMOAH DAY (ItTTI
G« fiiti - 30,000 Idm* 300° F
Gu Vilocity * 12.5 II/IK
Liquor ««i - 1200 gpm
L/G-50jll/Mtf
Tool Pmnn Orap, E«rtu«"l MM Elim.
- 7.64.4 m. H.O
MM Elim. Pran4 Orap - O.XHLM In. H jO
Pfnint Solid* R(ciniil«M • 13.I-1B.1 M K
Limoiton* Addition to EHT
OiKlwio ICkriflOT) Solldi
CoiKomntion- 32-44 M«
Liquor Flow Rm » Diktinc • 1100 *MII
Ak Eductof DbcftirvMl ot 0.1 ft Ftoffl BotMM of EHT
ENTLml-IK
Loo IN TMk ««kh«« Tim* - 1.1 HHK
Figure 1-43. OPERATING DATA FOR TCA RUN 812-2A
1-49
-------
H -
M
d' -
IlSIA EMOB
KUMCM
OUTUT
!i
S{
if
iw ™» «• «», M — — -— ™
TtSTTMt.koMn
I M I 001 I Mi I Wl IwlllwillOMlMMlM.lll.VTtwill.Ml tO/W I 10/11 I IWII I
III «
i*(;;
HI
T«
!|{ -
hs •
.. ••••
*
A
A A
• TOTAL DMKM.VEO IOLIW
4 CMLMIOf Kt-)
O KHFATl nO4*)
0 CALCIUM Kl**l
NOTI VCCtOWMMt AVfflAOl
COMCtNTMTION* AMI LUI
THAN HO lop* ADI NOT
PUOT1D
I M4 | «V» I »/» I t/ZJ I •/» I Ml I »» I fO/1 I lOrt I I0n I W4 I W* I IOM I 10/7 I MA I N* I Wl* I 10/11 I 10/12 I
CM. CMMII DAY 11177)
GM «•» • 30.000 Kf in » »> ° F
G«VWoeity-12.S(l/»e
Liquor flitt- TjBOgpm
UG-50901/dd
3 Bold, 5 in. vhom/boH
Poront Sol* RoeireuloM • 14.5-15.5 M X
Li™ IM Addition uTCA Mot mim
Tool fnmm Ont. E«du«n| m* EHnv
• 18-10.7 ill HjO
Milt Elim. Pmiun On» • 0.47-O.St in. HjO
Ait Flow Dm to OxMiwi • 310 icfn
Uajw Flow But to OiUnr • ItOO tpn
Air Eductor OochonjKl it 0.1 ft From Bottom ol EHT
EMT Hm*m* Tim • 215 n*i
EHT L«vtl - 12 It
Ctnclnmiioil • J5-44 wt*
Figure 1-44. OPERATING DATA FOR TCA RUN 813-2A
1-50
-------
si
u
(DUCTON
INLET KftUMfM
"L!T
\° °
A MftUBMN
it
.
I MO I Wl I «W } 1M I MM I Wl I lOM I WT I 1M I 1« I WW I WH I 10/11 I 1«/13 I 1*14 I Wit I 1WH I WIT I 1«/1« I
CALINOAN OAV 11177}
• *)
• o
T,«OO
|i -
*> .«.
8 « '
3 Q
a| i«»
o -<
n -
0 VOW
_ ^ • TOTAL DWOLVf 0 K>LIOS
• 4 CHLOHIDf ICI-I
••••«,• • * Q WLMnn^-t
6 CALCIUMtC.**)
MOTI: anciEtVMOK AVCKACf
OONCf NT1UT10W AMI LIB
THAN •*• IP* ARE NOT
Q 'LOTTID. *
Q
*B*°4°°^A^*jI
oo^ooo* «°o* o
>MO
I.W
4jB(
la*
IMD
VMO
0 W.Mt}01city12.Sft/m
U«uoiRiti-1200|piii
5 in. iph«m/b«d
rmm Soli* RKinuhnd - 14.3 HO «t H
LIlMltoni Addition to TCA inllt Stmm
OUelnrotlCbnflttlSol*
Concntnticn- 33-42 MH
Tottl Pnnwl Drop, E>dud»i| Wit EKm.
-U10.4.n.H20
MM Elim. Pnaun Drop - 0.47456 in HjO
Ait Flon Dm to Oiidiar • I4S idm
liHtiot FlM flm to OxhHm • 1MO|PI«
Air Eductor DbdnfiK it 0.1 It Fno Bottom of EHT
EMT RtntMci Tint - 15.7 mill
EHtlMl-lh
Figure 1-45. OPERATING DATA FOR TCA RUN 814-2A
1-51
-------
!!<••
> OUTLET
ft
3.000
1600
if
TEST T IMC. how*
I 12/10 I 12/11 I 12/12 I 12/13 I 12/14 I 12/1* I 12/1* I 12/17 I 12/t* I 12/1* I 12/20 I 12/21 I 12/22 I 12/29 I 12/24 I 12/2* I 1I/W I
CAUNOANOAV(1fl77)
2/2* ll/W 12/27 12/M
5j8 'J
H| „
li
• TOTAL DISSOLVED SOLIOI
A CHLORIDE 18ft
Oxioation Tank Residonct Timi - 5.2 min
EHT Rotnlora Ttmo • 14.4 min
Figure 1-46. OPERATING DATA FOR TCA RUN 815-2A
1-52
-------
si
I 12/1» I 11'IC I 12/17 I 12/U I 12/19 I 1
TEST TIME, tour*
CALENDAR DAY <1tm II
I I 12O7 I 12W I 12/» I 1
I .,7 I
Got Roto ' 30.000 ?dm « 300° F
Git Velocity * 12.5 h/uc
Liquor Roto * 1000 gpm
L/G • 42 gil/Mct
3 Bids, 7.5 in. sphores/bed
Pvctnt Solidi Rocicculnod • 14.7-15.' wl %
Limonono Addition to EHT
OitctioTgi (Ckrifiot) Solidi
Connnlration • 38-4? wt %
Totsl Piossuro Drop. Excluding Mist Elim.
- 10.7 15.3 in. HjO
Mist Elim. Prassuro Drop * 0.40-48 in. HjO
Air Flow Rite to Spargtr • 180/250 1dm
Oxidotion Tank Livol - 18 ft
Oxidotion Tink flosidonci Tint! = 5.2 ntin
EHT Rosidonco Timo * 14.4 min
Gts Roll = 20,000 ictm « 300° F
Gn Velocity = 8.4 ft/sic
Liquor Rito * 1000 gpm
L/G • 62 gol/Md
3 Bods, 75 in. spnorn/bod
Ptrcont Solids Rocirculitod - 13.6-15.2 wt %
Limistonl Addition to EHT
OiKhorji ICkrrlior) Solids
Conconlrotion • 31-48 wt %
Totll PYnouri Drop, Excluding Mirt Etim.
• 6.5-7.2 in. H20
Mist Eliffl. FTOBuri Drop - 0.16-0.26 in. HjO
Air Flow Roll to Spirjor • 130 scfrn
Ox«J»t»n Tonk Lovol > 18 ft
Oxidotion Tonk Risidfflco Timo - 5.2 min
EHT Rosidmn Timo • 14.4 min
ill
0 »-
1000
I i.ooo
5* 4.0001-
St
II -"•
SE '•
• TOTAL DISSOLVED SOLIDI
A CMLOmOffCr)
D SULfATE ISO.,*)
0 CALCIUM Id")
NOTE SPECIES WHOSE AVERAOE
CONCiNTBATIO** ARE U*
THAN no ppm ARE NOT
BLOTTED
4.0M
3.000
I 12/16 I 12'1« I 12/17 I 1I/1S I 12/11 I 11/M I 11/71 I 11/21 I 12/23 I 12/24 I 11/2B I 12/» I 1:
CALENDAR MY !1»TT 1t7»l
1 1 11/M 1 1J/M 1 1J/JO 1 H/J1 | 1/1 i 1/3 1
Figure 1-47. OPERATING DATA FOR TCA RUNS 816-2A AND 817-2A
1-53
-------
BOtlER OUTAGE
tNO HUB ill J/. ,|fGIN HUH III JB
END RUM IHJB i
~!
8J-
TUT TNHE toun
1/31 I 1/1 I 1/7 I 1/1 I 1
CALENDAR DAY [1177 ItTtl
Gil lilt = 25.000 " 14.4 min
C« Rut • 25,000 icfm • 300° F
Gn Vitotity - 10.* tt/lrc
Liquor Rni • 1000 gpm
L/G • SO |il/Mct
3 Oidi, 7.S in. ipton/bwl
Fvmt Solidi Ruircuktid = 138 Ml M H
Limntom Addition to EHT
OiKhirgi IClKitiv) Solill
Coimitlritnti - &47 wl %
Totil Prnun Drop. Excluding MM Elim.
7.II.S in. HjO
Milt Elim. Prtnuri Drop * 0 240.35 in. HjO
Ail From Ritl to SpKgr - 0 ufm
OiMitbn Tmk Lral • II ft
Oiidatbn Tint Riulona TitM • 5.? min
EHT Rttidmci Timi • 14.4 min
•li
HI:
• TOTAL DIUOLVfO SOLIDS
A CHUwioiicn
D SULfATE IK>n'<
0 CAICPUH* 1C***'
NOTE VCCICI WHOM AVERAGE
COMCCMTftATKWM AMI LEH
TMAIN MO (k)Mi AHf MOT
nomo
TEST TIME.howi
•01 I I/I I 1/7 i 1/3 I TM I
CALENDAR DAY ntrr ISTBI
Figure 1-48. OPERATING DATA FOR TCA RUNS 818-2A AND 818-2B
1-54
-------
IStQIM BUN •» IA
tMDHUMI1»lA'.
S~l
§*'
I
JOJLERLOIT f IRE
3.500
3.000
I 1/7 I I/I 1 I/I I 1/10 I I/It I 1/12 I 1/13 t 1/14 I 1/W 1 I/It I 1/17 I 1/11 { 1/» 1 1/10 I 1/21 I I/a I 1/13 I 1/24 I 1/76 t
J:
CALENDAR DAV <1«l*l
• TOTAL DWOLVED niiot
A CHLOHIOE (Cl~l
D SULFATC (904"]
0 CALCrUM
-------
od(0°o0 ooo.oo „ c
\ OUT LIT
at
1.500
1.000
1.500
40 M 1X»1t03002*}2f03aO
I 1/14 I 1/W I 1/W I 1/17 I 1/W I 1/W I IfflD I 1/W I 1« I 1/33 I 1/34 I 1/ai I 1/M I
CALENOM DAV llffltl
I l/3« I 1/» I l/» I 1/11 I 2/1 I
I
i!:
• • *
..••. * ... . «.
• • •• •
• TOTAL DIMOLVED tOLIOS
A CHLOMIOC ICI~)
D mJLFATEI»4'|
$ CALCIUM ICt**I
MOTE IftCltSWHOUAVlBAOt
COWCf NTRATtONS AHE Lttt
THAN MM MPK ARE NOT
PLOTTED.
TEtTTWE.Iilw*
I 1/-W I I/If I 1/11 I 1/17 | 1/11 t I/It I 1/» I 1/71 I 1/72 I 1/M I 1/W I 1/» I 1/» I 1-77 I 1/» I 1/» I I/J8 I I/J1 I 1W
CALENDAR DAY tl*7t>
Gn Bit. 20.000 Mlm • 300° F
On VifccHY • M tt/m
L/G-RiMMct
3 >-i. 7.5 in. iihifti/M
rntm Solnh B«.tulil«l • II 9 15.7 « K
LiRHUDnt AddRiiR H OiitotiDR Tmt
OilEkVK ICkit.il SoWl
CoiKMratioii • 31-42 M %
Tout Pwuf Drop. EicMiivj MM El«i.
• 6.S-7.3 in. H jO
Mill EINn. fiitwri Dn> - 0.11-0.21 in. HjO
Air F tow Rm to Oxidinr • IX tctrn
Oiltotion Tink Lml - 17ft
OiKtolnn link fliutonctTHm • 4.9 min
Figure 1-50. OPERATING DATA FOR TCA RUN 820-2A
1-56
-------
!M>mjMHt I* I
G« Rra • 30,000 Kim • 300° F
GB Vilocily - 12.S It/m » 125° F
Liquor R«t - 1200 gpm
UG-SOnUMcf
3 Mi, t hi. iphtm/btd
Pwtml Soli* Ricirculind - 13.9 - 15.9 wt *
LinwtloiH & Dry MgO Addition to 0»idotkul Tmk
DMlirgilClllifiw ft Ctfitnfu.ll Solute
Concintntiofi * 71 -10 M K
Toul Praoun Drop, Eiduding Miit Elim.
• 71 • I.S in. HjO
Miit Elim. Pnourt Drop • 0.54 - 0.62 in. HjO
Air Flow Ritt to O.idiitr - 170 iclm
D«idit«inTinkLivtl-17tl
0«id.lion Tink R«udtnc« Tim - 4.1 min
Einrnal Dovncomir umi
I 1/1 I •/* I 14 I M I *n I ti t M I i/io i •/it t 1/11 I 1/11 I t/M I •/» I «m t «m I «^« I i/w I
a suiF*T(iw4'i
0 CAtCIUMIC*'*)
n.m
M,m
»»»»
I *vi I vi \ vi I «M I M I M \ *n I M I M I ww I §/ii I H2 I i/ti I tvi« I tvn I «/w I «/i7 I M* I
Figure 1-51. OPERATING DATA FOR TCA RUN 821-2A
1-57
-------
RUN TFQ Z* JENO RUN TFQ 2A
8 I
Sjj
^ OUTlfT
il
TtlT TIME, tM«n
I 9/1 I 3/2 I 3/3 I 3/4 I M I 3/t I 3/7 I M I » I V10 I VM I IHZ I W1J I Vl« I I/I* | V10, | I/IT I 3/1| I 1/19 I
CALENDAR DAY lltT?)
ill.:
lif:
WflOO
c
f
,• 40MO
1 ,»
10.010
0
•
a
• •• 4
•• • o
TOTAL DUBOIVED 1OIIM '
IULFATE IIO/I
CNLORIOf ICI-I
MAONEIIUM IN|"|
• • IUIHTI (I0,-|
_ NOTt: MCIM1IHOK AVERAGE
Q O CONCENTRATKMI ARE LEV
Q _ Q THAN 100 Mm ARf MOT
4A*,****", ,,,,,,.
-
Tt.OOO
OB.MO
H.OOO
40.000
10.000
IOMO
10.000
A
120 100
I 1/S I J« I 3/1
I » I >» I vii I mi I I'll I ifi4 I i/ii I 1/11 I 1/17 I i/ti I i/n I
CALENDAR DAY IrfTTI
G.I Rm • 30.000 irtm » 300° F
6nVtlocity12.Sft/iK
LwrnRitt- 1200 gum
L/G'50t*VMc<
ENT RnidMCt Tim • 12 min.
3 Bilk, S m,
rVcwiSoli* RicnulMM • 13.5-11.0 M K
TaM Prawn Drop, licMm, MM Elim.
• 5.9 7.3 m HjO
Milt Elim. Pnwra Drop - 0.444.50 in. H,0
DachAtfi ICmtrMiitl) Sol*
C«nenitntKXi-50-6SwtS
LimmoM md MfO Addition to EHT
Figure 1-52. OPERATING DATA FOR TCA RUN TFG-2A
1-58
-------
letGIN RUNTFG 20 ENOMUNTfG 2B;
si
s*
~5
s§"
it
8 I
ii
40 K) 120 100 200 2*0 200 120 100 400 ««0 400
TEST TIME.houn
I I/S I 2/t I 2/7 | 2/0 I 2* | 2/10 I 2/11 I J/12 I 2/13 I 2/14 I 2/18 I 2/1t I 2/17 I 2/11 I 2/1t I 2/10 I 3/2) I 1/21 I 2/23 I 1/24
CALENDAR OAV (1177)
i -
ill
Si*
o I •
P
S> '•-;
»g M-i . »
*\.^4
• TOTAL DlflOOLVED SOLIDS
D SULFATC IOO/1
4 CMlOHIDf «ri
O MAONEWUM tM|**l
0 CALCIUM <ۥ")
WOTI 1
CONCIN
THAN 900 ppm ARC NOT
PLOTTED
CliSHMOU AVERAGE J
XNTRATIONI ARE LEO /
-J - 1
40 M120toaiMldMlMaoM04.jeMo4.jt
I 2* I W I 2/7 I 2/« I 2/» I 2/10 I 2/11 I 2/11 1 2/1} I 2/14 I I/It I 2/1« I 1/17 I Z/i* I Z/H I 2/M I 1/21 I 2/22 I 2/13 I 1/J4
CALENOAH OAV (1177)
Go Rllt • 30.000 iclm • 300° F
G»Vtlotily«12.S It/w
Li«uo>1lU- I200«pm
L/G-S0.il/Md
EHT RuidtnciTiilM - 12 min. (3 tinkll
3 Bidi, S in. iphwti/bid
ftnini Solkh Rttimilitid • 14.S-15.6 m *
Tout rnwn Drop. E»lu*n| Mm Elim.
Mitt Elim. Prwun Drop • 0.5M.60 in. H.O
Concintraiion • 30-39
-------
4 IMGIM K
i!
SI'
51 it
sil"
3.000
1.100
il
I 2/11 I I/ll I 2/11 I 1/1* I 1/11 I 1/1« I 2/17 I 2/11 I 2/1fl I 2/30 I 2/21 I 2/22 I 2/2J I 1/7* I 2/21 | 2/W I 2/2T I l/2t I ]/| I
iii::
Hf::
!!| -
i "
S
!>
• TOTAL DISBOLVID SOLIDS
Q SULfATE ISO,')
4 CHLOniDC /» I 1/17 I 1/20 I 1/1 I
CALf NOAH DAY 1)0771
&• Rm • M.OOO Ktm • 300° F
GH VilMhy • 115 Mm
Li«uor Rm • 1200 urn
L/G-Mlri/Mcf
EHTR«i*iKtTim.-12m,n (3 nnkt)
3B«ti, Sin. iphm/tad
Pinmt Soli* RKirculmd • 14.5-16.3
-------
a I BEGIN BUN TFQ 20 ] END RUN TFG 20
si *~~
I* <°°i.
„?
8g'
ji «
ri
i|
!>
SI
p
4.BOO
4.000
3.BOO
3.000
-
v, /vA/i
•iiy \
4.NO
4.000
J.BOQ
3.0N
"r r
to \- \^- ^\ — . -1 10
.1 1.
I 2/1« I 1/17 I 2/1« I 2/1* 1 2/20 I 2/21 I 2/22 I 2/23 I 2/24 I 2/28 I 2/2> I 2/27 | 2/21 I 3/1 I Irt I 1/3 I 3/4 I
CALENDAR DAY I10T7|
O.OM
7.000
0.000
6.000
4.000
J.OOO
ion
1.000
ft
• TOTAL DIStOLVED IOLIOS
* • D M.MTf »4-|
• « A CHLMIDt
-------
j MOW RUN TM- 2E
*ND RON Tf O
ft
& j
-
TCIT TWKjMMn
I 1/31 I WI I Wl I W* I J« I I« I I/T7 I 2« I 1/1 I 1/3 I W I W I » I M I »lvi I » I
CAUNDAMDAVfltTT)
111:
Hf::
fl
• TOTAL MIOI.VfDIOI.IM
a mnn iio,-i
A CHUMIOflCri
0 CALCIUM (Ca^l
NOTMrtCIUHHOK AVtltADI
COmCMTIUTIOM AKI lOi
THAN MOTH ADI NOT
nomo.
I zno I MI I im I »n I 2/34 I 2/» I
I im I VM I in i in I » I *• I M I M I 1/7 I H I » I i/u I
rAI*MOAHDAVI1f77>
Gi t Ritf 30.000 Kfm* 300° F
G» Velocity- 12.5 rt/»e
liquor Km • 800 ipm
Pram Solidi Rteiftuliwl • 13.H5.1 wt *
Tool frMura Drop, EicMini Mitt Elim.
EHT RlMlmci Tlmt • 24 mln. (3 mki)
3 Bull, S in.
MM Elm. fttovn Oroc • 0.4I-O.S6 in. H,0
OMlinl (CWfiirl Salidl
Conemtmion • 3T-43 «Ht
UlKHttM AMMofl 10 F int EHT
Figure 1-56. OPERATING DATA FOR TCA RUN TFG-2E
1-62
-------
TFO 2f
JENOftUNTFO JF
si
u
II
1.000
1.HO
.
I 2/24 I 2/» I 2/2» I 2/27 I 2/21 I 1/1 I 1/2 I 3/1 I 3/4 I » I H I in I M I » I V10 I 1/11 I VII I »1J I J/14
CALINOAK DAV (1177)
ill
K 7.000
h -
2,000
1.000
• •
• TOTAL DIMOLVf D KH.IM
n tULFATf t«04'l
A CHLOMKX (Cl-|
O MMNUIUM(M|**I
0 CALCIUM <«**>
NOTE: SKCIfSWHOtt AVf NAOE
OONCINTIIATIOMi ARE Lt»
THANMOppmAIIENOT
M.OTTID.
ooo°°o°oooooooo
IX 110
I Vn I 2/M I 2/37 I 2/21 l
TEtT TMt. twyn
CALtMOAII OAV (1«T7|
l ]/K I VII I t/12 I in) I 1/14 I
fin ««M- 30,000 Ktm» 300° F
Liquor R«t- 1200 |pm
UG • M giVMrf
EHT Rtiidtnci Timi • 12 min. (3 ttnkil
3 Bub, 5 in. iphiraVM
PmM SoHdi RvimiliMd • 14.1-112 wt K
Tool Pmum Drw. E>cki4m( MM Elim.
-5.B-7.7ln.H20
MNt Elim. town Drop • 0 «M.«9 in. H jO
Oochntl ICIvHitr) Soli*
CWKHitntm * M42 M K
LimtnoM Additiw to Frt EHT
Figure 1-57. OPERATING DATA FOR TCA RUN TFG-2F
1-63
-------
Appendix J
AVERAGE LIQUOR COMPOSITIONS FOR THE TCA TESTS
J-l
-------
The values in these tables are averages for steady-state operating periods.
Percent sulfite oxidized is measured in the bleed stream from the scrubber
system.
Calculated Percent Gypsum Saturation = (activity Ca*"1") x (activity SO*)/
(solubility product at 50°C). Estimated solubility product for CaSO/
at 50eC is 2.2 x 10-5 (ref. Radian Corporation, "A Theoretical Descrip-
tion of the Limestone-Injection Wet Scrubbing Process, NAPCA Report
June 9, 1970).
J-2
-------
C-i
I
GO
Run
No.
590-2A
Percent
Solids
Discharged
66
Percent
Sulttte
Oxidized
45
Sample Point |
j. Liquor Species Concentration, mg/1 (ppm)
CaT* | Mg"J Na" J tC | S03= j S04= [ Cl" [ Total
TCA Inlet 5.00 1465 355 55 60 770 1825 1875 6405
TCA Outlet 4.85 1520 315 55 65 940 2160 1800 6855
590-2B
58
31
TCA Inlet 5.30 1490 390 45 70 270 2000 1835 6100
TCA Outlet 5.10 1540 400 45 65 470 2080 1885 6485
591-2A
57
43
TCA Inlet 5.50 615 5405 55 80 2000 19275 1375 28805
TCA Outlet 5.30 670 5335 60 80 2775 18885 1405 29210
592- 2A
55
25
TCA Inlet 5.40 605 9730 45 65 4360 31050 2505 48360
TCA Outlet 5.20 660 9640 45 60 5135 30610 2495 48645
593-2A
57
24
TCA Inlet 5.45 535 10295 55 65 4855 30755 3795 50355
TCA Outlet 5.20 605 10085 55 65 5700 29490 3830 49830
594-2A
53
18
TCA Inlet 5.35 555 10175 50 70 5370 30555 3575 50350
TCA Outlet 5.15 650 10005 50 70 6420 30110 3650 50955
Calculated Percent
Gypsum Saturation
9 508C
110
130
120
120
105
115
105
115
85
95
90
105
Percent Error
In Ionic
Imbalance
4.4
-2.3
11.7
9.2
1.8
0.6
5.6
5.3
5.6
6.3
5.2
3.8
-------
Run
No.
618- 2A
618-2B
619-2A
620-2A
621-2A
622-2A
622- 2B
623-2A
624-2A
Percent
Solids
Discharged
63
59
56
56
55
38/55
42/60
59
42
Percent
Sulflte
Oxidized
28
30
23
27
29
22
14
14
15
Sample Point
TCA Inlet 7
TCA Outlet 4
TCA Inlet 7
TCA Outlet 5
TCA Inlet 7
TCA Outlet 5
TCA Inlet 7
TCA Outlet 5
TCA Inlet 7
TCA Outlet 5
TCA Inlet 6
TCA Outlet 5
TCA Inlet 6
TCA Outlet 5
TCA Inlet 7
TCA Outlet 5
TCA Inlet 7
TCA Outlet 5
nH Liquor Species
Ca"| *T
00 1600 360
95 1940 375
05 1535 380
60 1665 375
00 595 3100
8 720 3070
2 630 2735
8 725 2725
05 660 2685
65 800 2695,
Na*
45
45
45
45
45
45
45
45
50
. 50
95 620 5280 40
40 725 5275
95 705 2665
55 970 2675
05 510 2735
40 670 2670
00 520 2640
15 860 2610
40
30
30
30
25
30
30
Concentration, mg/i (ppm)
K+
70
70
80
85
80
85
75
80
80
85
50
50
55
55
60
60
65
70
so3-
85
870
80
450
355
1110
330
915
310
1025
940
2090
465
1300
410
1415
480
1810
so/ 1 cr
1985 2335
2455 2345
1995 2390
2120 2380
10815 2165
10805 2170
9860 1885
10055 1880
10185 1600
10085 1600
17205 2235
16800 2285
8850 1490
9135 1525
9050 1605
8970 1615
7965 2015
8205 2020
Total
6480
8100
6505
7120
17155
18005
15560
16425
15570
16340
26370
27265
14260
15690
14400
15425
13715
15605
Calculated Percent Percent Error
Gypsum Saturation In Ionic
8 50°C Imbalance
120 3.7
155 1.7
120 1.1
130 -0.2
90 -2.0
105 -4.1
95 -2.3
110 -5.1
105 -2.5
120 -2.0
95 5.3
110 5.3
95 7.7
135 6.7
70 3.9
95 1.0
65 4.9
115 2.9
-------
I
en
Run
No.
701-ZA
702-2A
703-2A
704- 2A
705- 2A
706-2A
707-2A
708- 2A
709- 2A
710-2A
711-2A
712-2A
713-2A
714-2A
715-2A
716-2A
717-2A
718-2A
719-2A
Percent
Solids
Discharged
37
38
48
43
36
36
40
40
39
43
38
40
40
36
36
37
38
38
38
Percent
Sulfite
Oxidized
12
7
7
13
11
18
17
14
20
16
15
18
18
17
21
25
22
21
19
Sample Point
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Outlet
TCA Inlet
TCA Inlet
TCA Outlet
pH
5.80
5.20
5.85
5.30
5.65
5.10
5.70
5.00
5.85
5.20
5.55
5.05
5.60
5.20
5.20
4.90
5.35
4.95
5.40
4.95
5.65
5.85
5.15
5.75
5.25
5.80
5.40
5.70
5.20
5.8
5.2
5.9
5.4
5.75
5.75
5.2
Liquor Species Concentration, mg/1 (ppm)
Ca**" j Mg** | Na* [ K* | S03" [ S04~ | Cl"
1680 300 26 74 102 670 3160
1680 295 26 73 120 715 3110
1075 600 29 42 64 460 3040
1080 615 29 43 101 510 3090
1200 545 24 32 140 460 3180
1245 550 25 33 355 585 3220
1510 565 23 24 145 1240 3210
1575 560 23 24 395 1370 3240
1240 630 23 22 140 1280 2860
1280 640 23 22 235 1300 2900
1730 685 29 32 130 2290 3230
1810 700 29 33 240 2450 3340
1410 550 20 39 100 1905 2825
1430 545 21 41 121 1915 2825
1370 455 39 56 405 2220 1970
1690 470 38 57 830 2380 2015
1230 410 39 61 310 2090 1670
1315 400 40 65 625 2155 1700
1340 440 49 53 320 2095 1740
1475 435 48 53 760 2255 1690
1245 485 50 54 93 1525 2185
995 430 43 61 91 1280 2000
1010 420 42 61 129 1310 1995
965 370 23 28 135 1995 1145
980 375 23 30 150 2065 1150
995 495 80 90 135 1735 1765
985 480 85 85 165 1725 1745
1400 420 60 50 125 1820 2290
1415 415 60 50 185 1975 2225
1350 415 50 55 140 1960 2075
1380 415 50 55 200 2080 2170
1240 440 50 55 135 1690 2115
1260 435 50 55 170 1770 2095
1490 • 455 50 75 125 1995 2355
1130 410 35 55 165 2080 1500
1180 410 40 55 275 2185 1495
Total
6010
6020
5310
5470
5580
6020
6720
7190
6200
6400
8130
8600
6850
6900
6520
7480
5815
6305
6035
6715
5635
4905
4965
4660
4775
5270
5270
5065
7325
6045
6350
5725
5835
6545
5375
5640
Calculated Percent Percent Error
Gypsum Saturation In Ionic
9 50°C Imbalance
45 6.1
50 6.3
20 8.6
25 7.3
25 4.9
30 1.4
65 3.9
75 0.9
60 4.9
60 5.1
120 2.8
130 1.1
100 -2.8
100 -2.5
115 1.4
140 6.8
110 3.3
115 0.8
110 8.6
125 7.1
80 10.3
60 4.5
65 3.6
95 5.5
100 4.8
75 7.0
75 7.0
100 3.0
no 2.0
105 3
115 -1
90 4
95 4
110 5
105 5
110 4
-------
I
CT>
Run
No.
801-2A
801 -2B
802-2A
803-2A
804-2A
805- 2A
805- e A
807- 2A
808-2A
809-2A
810- 2A
811-2A
812-2A
813-2A
814-2A
815-2A
Percent
Solids
Discharged
and 40
35
41
40
33
38
36
44
85
88
43
38
40
38
38
Percent
Sulfite
Oxidized
53/63
56
91
93
93
58
96
93
%
98
96
93
95
61
40
Sample Point
TCA Inlet 5
TCA Outlet 5
TCA Inlet 5
TCA Outlet 5
TCA Inlet 5
TCA Outlet 3
TCA Inlet 5
TCA Outlet 3
TCA Inlet 5
TCA Outlet 4
TCA Inlet 5
TCA Outlet 4
TCA Inlet 5
TCA Outlet 4
TCA Inlet 5
TCA Outlet 4
TCA Inlet 5
TCA Outlet 4
TCA Inlet 5
TCA Outlet 4
TCA Inlet 5
TCA Outlet 5
TCA Inlet 5
TCA Outlet 5
TCA Inlet 5
TCA Outlet > 4
TCA Inlet 5
TCA Outlet 5
nU Liquor Species Concentration, mg/1 (ppm)
_ 44 '
Ca
.82 965
. 16 1060
.80 1070
.00 1155
.05 1160
.80 1250
.05 1345
.90 1470
.30 1120
.60 1295
.35 1355
.80 1460
.4 1280
.9 1475
.1 1835
.7 2025
.3 1720
.7 1925
.5 1585
.9 1780
.8 960
.2 1130
.6 1140
.1 1345
.3 1030
.6 1195
.4 1240
.0 1305
TCA Inlet 6.25 1225
TCA Outlet 5.35 1255
816-2A
40
54
TCA Inlet 6.25 1015
TCA Outlet 5.35 1065
817-2A
40
94
TCA Inlet 5.8 1035
TCA Outlet 5.2 1195
818-2A
818- 2B
819-2A
820-2A
40
39
37
37
67
24
94
92
TCA Inlet 6.2 1115
TCA Outlet 5
TCA Inlet 6
TCA Outlet 5
TCA Inlet 5
TCA Outlet 5
TCA Inlet 5
TCA Outlet 5
.45 1140
.2 1170
.4 1175
.55 1290
.2 1415
.65 1400
.3 1540
Mg"
375
365
380
380
480
480
555
555
540
550
520
545
510
490
515
525
640
635
755
750
390
395
410
410
390
355
410
390
460
450
410
435
405
385
455
440
455
445
380
380
360
365
Na+
27
32
42
42
52
53
59
59
80
80
80
80
85
85
95
95
105
105
100
105
65
65
65
65
60
55
70
65
45
45
40
40
40
45
45
45
45
45
40
40
50
50
K+
66
64
41
52
52
53
82
81
85
79
60
60
70
70
70
70
95
95
100
105
65
65
65
65
55
50
55
55
60
60
55
55
60
60
55
60
60
60
60
60
60
60
so3
135
425
110
330
140
510
65
350
190
650
435
870
120
455
625
1100
425
930
95
570
55
425
140
605
60
475
385
735
130
210
90
260
135
455
105
205
110
220
300
705
245
585
so4-
2335
2410
1990
2210
2165
2265
2080
2345
2335
2675
2170
2245
1960
2355
2110
2265
2170
2435
2280
2530
2185
2550
1980
2210
1855
2015
2195
2235
2135
2220
2095
2135
2080
2305
2000
2035
2215
2165
2030
2190
2005
2130
cT
1030
1010
1470
1455
1850
1840
2320
2355
1580
1575
2010
1905
2100
2075
2920
2920
2970
2995
3050
3015
1290
1230
1700
1625
1620
1385
1655
1675
1545
1375
1230
1215
1315
1285
1545
1490
1555
1515
1625
1590
1765
1780
Total
4835
5365
5105
5625
5900
6455
6505
7215
5930
6505
6630
7165
6125
7005
8170
9000
8125
9120
7965
8855
5010
5860
5500
6325
5070
5530
6010
6460
5600
5615
4935
5205
5070
5730
5275
5415
5610
5625
5725
6380
5885
6510
Calculated Percent Percent Error
Gypsum Saturation In Ionic
9 50°C Imbalance
105 4.8
115 1.7
100 3.1
115 0.6
105 1.8
110 0.4
105 6.6
120 3.5
105 9.5
130 5.9
110 6.1
115 8.6
100 8.5
125 4.8
125 3.3
135 4.0
115 6.9
135 5.0
110 8.8
130 11.0
100 2
125 0
100 4
120 5
90 3
110 6
115 2
120 Z
110 12
115 14
100 8
100 10
100 6
120 4
95 9
100 9
110 7
105 8
110 6
125 5
115 7
125 7
-------
C-.
I
Run
No.
TF6-2A
Percent
Solids
Discharged
53
Percent
Sulfite
Oxidized
12
Sample Point pH
Liquor Species
Ca** Mg""^
TCA Inlet 5.40 240 10350
TCA Outlet 5.25 315 10280
TFG-2B
35
11
TCA Inlet 5.70 1845 700
TCA Outlet 5.00 1940 710
TF6-2G
37
11
TCA Inlet 5.85 1620 575
TCA Outlet 5.30 1735 575
TFG-2D
39
11
TCA Inlet 5.85 1395 465
TCA Outlet 5.40 1415 470
TFG-2E
TFG-2F
40
38
14
18
TCA Inlet 5.70 1145 470
TCA Outlet 5.10
TCA Inlet 5.70
TCA Outlet 5.20
1185 490
1635 565
1675 610
Na
62
63
48
50
46
46
44
43
57
59
74
80
Concentration, mg/1
K+
80
82
39
42
40
41
55
56
64
64
71
64
so3-
7890
7660
103
165
145
180
89
165
110
235
80
165
so4=
27820
28650
1920
2170
1370
1750
1800
1925
1155
1390
1870
1925
(ppm)
cr
3280
3370
3880
3950
3420
3440
2550
2540
2535
2540
3320
3500
Total
49720
50420
8540
9030
722»'
7770
6400
6610
5540
5960
7610
8020
Calculated Percent
Gypsum Saturation
& 50°C
35
45
105
120
75
100
95
105
55
70
100
105
Percent Error
In Ionic
Imbalance
7.7
6.4
1.2
-0.1
2.9
0.7
0.3
-1.3
2.7
0.0
-0.4
-1.5
-------
APPENDIX iC
FIFTH TVA INTERIM REPORT OF CORROSION STUDIES:
EPA ALKALI SCRUBBING TEST FACILITY
by
G.L. Crow
H.R. Horsman
March 1979
K-l
-------
EPA ALKALI-SCRUBBING TEST FACILITY—SHAWNEE STEAM PLANT
FIFTH INTERIM EEPORT OF CORROSION STUDIES
G. L. Crow and H. R. Horsman
Tennessee Valley Authority
Division of Chemical Development
Muscle Shoals, Alabama
Summary
The fifth series of corrosion tests was conducted in the EPA
alkali-scrubbing test facility at the Shawnee Steam Plant during the
period October 20, 19?6, to February 27, 1978. Test specimens of IF,
alloys and 5 fiberglass-reinforced plastics (FRPs) were exposed at
several test locations in the venturi/spray tower and Turbulent Contact
Absorber (TCA) systems. In general, corrosion of test specimens appeared
to be slightly less in the fifth series than in previous series of tests.
However, several of the alloys that were less resistant to corrosion in
previous tests were not included in the fifth series of tests.
Corrosion was negligible in the inlet flue gas duct where the
gas temperature remained above the dew point. In areas where water (or
slurry) provided a wet-dry interface, there was appreciable corrosion
of Cor-Ten A and mild steel. Localized attack of Type 316 L stainless
steel occurred under deposits of solids.
Because of corrosion and/or erosion, the Type 3l6L shell
(housing) for the cavity above the venturi needs major repair, prefera-
bly replacement. The bull nozzle requires repairs and/or replacement
occasionally; the erosion-corrosion rate is approximately 185 mils per
year. Major repair is needed for the guide vanes and equipment support-
ing the adjustable plug which controls pressure drop through the venturi.
The Type 3l6L adjustable plug has been in service since 1972 and shows
little evidence of wear. Blisters and sagging due to adhesion losses
are prominent in the neoprene lining of the flooded elbow.
Minor damage to the neoprene lining in both towers was inflicted
while installing, adjusting, and removing hardware. The fourth interim
report mentioned a few blisters in the lining at the top of the spray
tower. Some of these blisters have increased in size and new ones have
K-2
-------
developed, but they have done little damage to the lining because
they were formed between layers of neoprene and do not penetrate to
the carbon steel shell.
The Type 3l6L, chevron-type, open-vane, three-pass, mist
eliminator units have been in service 18,000 or more operating hours.
Little general corrosion was detected, but pitting occurred on the
edges of the vanes in the spray tower. Some pits penetrated 185 mils
into the width of the vane. The performance of the unit is still
acceptable. Pitting was less pronounced on a similar unit in the
TCA system.
Deposits of solids on hardware in the towers promote pitting.
Type 3l£>L stainless steel is more resistant to pitting than Type JO^L.
The three-component spiral nozzles with diffusers of Haynes Stellite
Alloy No. 6 are considerably more durable in the spray tower service
than the original one-piece, spiral nozzle of Type 316 stainless steel.
In the TCA tower, four Type 3^ nozzles disperse the process slurry.
These nozzles have grooves and pits but continue to give good service
after 26,000 hours of operation. The corrosion rates for most alloys
tested in the towers were less than 1 mil per year. However, localized
attack of Type 30^L stainless steel was severe and corrosion rates for
Cor-Ten A and mild steel ranged from 47 to 185 mils per year.
Pitting occurred under deposits of solids in the ducts between
the tower and the induced-draft fan of each scrubber system. In the
duct between the reheater and the induced-draft fan of the venturi/spray
tower system, pits were 50 to 78 mils deep. In the corresponding duct
of the TCA system, pits were only 20 to 30 mils deep. The hardness of
the deposited solids in the TCA duct indicates that, at some time during
the test period, the temperature of the scrubbed gas in the TCA duct was
higher than that in the spray tower duct. (The reported temperatures
for the two ducts, however, do not confirm this.) It is believed that
less condensate in the TCA duct (because of the higher temperature)
accounts for less pitting of the TCA duct.
The induced-draft fan in the venturi/spray tower system has
more nicks and bends on the blades and shrouds than the fan for the TCA
system. The loss in thickness of fan blades since February 1973 vas
6 and 3 mils (approx. 1 and 0.5 mil/yr) for the venturi/spray tower and
TCA fans, respectively. The area on the venturi/spray tower fan that
cracked previously and had been repaired twice appeared to be sound
during the current inspection. Stressed specimens exposed in the fan
housing did not crack during 2-1/2 years of exposure.
K-3
-------
In general, Type 516 stainless steel pipe has given good
service. The loss of corrosion resistance (obvious in the most severe
conditions) due to cold-working (threading, etc.) can be restored by
solution-annealing after fabrication. Neoprene-lined carbon steel
pipe shoved no evidence of deterioration during the first few years
of service, in recent years, blisters have been formed by fluid that
collects between the lining and the carbon steel. The process slurry
corrodes unprotected carbon steel. Limited tests have been made of
plastic pipe for handling process slurry. Freezing slurry caused
breakage of the test pipe, and this resulted in only comparatively
short exposure periods. There was no evidence of chemical attack
or appreciable erosion of the pipe sections.
Some areas of the Hayward strainers were eroded by the slurry;
these areas were repaired occasionally by deposition of weld metal.
Trouble has been experienced with opening and closing knife-gate valves
after the gates have been in one position for an extended period of
operation. Deposited solids bond the gate to adjacent parts of the
valve, and when force is applied to open or close the gate, the
threads on the shaft that operates the gate are stripped.
Tests were made to show the effect (if any) of forced oxidation
of process slurry and flyash content of flue gas on corrosion. Because
of frequent changes in test conditions, a precise evaluation of these
factors was not possible. However, it appears that forced oxidation did
not appreciably alter corrosion. It was not evident from the results of
these tests that variations in the flyash content of the flue gas affect
corrosion rates. The pH level of the process slurry probably complicates
the role of flyash with respect to the corrosion of alloys.
K-4
-------
EPA ALKALI-SCRUBBING TEST FACILITY— SHAWNEE STEAM PLANT
FIFTH INTERIM REPORT OF CORROSION STUDIES
Introduction
The alkali-scrubbing test facility at the Tennessee Valley
Authority's (TVA's) Shawnee Steam Plant is a prototype lime/limestone
vet-scrubbing facility for removing sulfur dioxide and particulates
from the flue gases from coal-fired boilers. The test facility was
built as part of an experimental program sponsored by the Environmental
Protection Agency (EPA) and TVA. TVA constructed the test facility and
is responsible for its operation, maintenance, and modification. Bechtel
National, Inc., the primary contractor for EPA, designed the test facility,
directs the test program, and is responsible for data evaluation and
technical reporting. Input to the program by the utility industry is
provided through the Electric Power Research Institute.
Important parts of this experimental program have been the
evaluation of various materials of construction for use in lime/limestone
wet-scrubbing systems and the identification and solution of corrosion
and erosion problems associated with these materials. At the request of
EPA, the Process Engineering Branch of TVA's Division of Chemical
Development started corrosion studies at this facility in 1972 and has
since completed five series of tests. Results of the first four series
of tests were reported in the first four interim reports: TVA Special
Reports S-465, October 1973; SJ*65A, May 197^; S-^70, March 1976; and
S-VT2, April 1977-
Corrosion Tests
During the fifth series of corrosion tests (10/20/76-2/27/78),
the test facility consisted of two parallel scrubber systems: a Turbulent
Contact Absorber (TCA) system and a venturi/spray tower system. Each
scrubber system was designed to treat about 30,000 acfm of flue gas at
260° to 330°F. During the test period, both scrubbers received flue gas
from the No. 10 boiler at Shawnee Steam Plant. The flue gas from this
boiler contained 2000 to kOOO ppm of sulfur dioxide and 0.01 to 7 grains
K-5
-------
of particulate per standard cubic foot. For the corrosion tests,
specimens of 15 alloys and 5 fiberglass-reinforced plastics (FKPs)
were exposed in each of the scrubber systems at the test locations
shown in Figures 1 and 2. These figures also show some of the features
of the scrubber systems. Detailed descriptions of the systems were
included in the previous interim reports.
During the test period, the onsite inspection engineer made
periodic inspections of the scrubber systems and test specimens. Per-
sonnel from TVA's Corrosion Laboratory also made limited inspections
of the systems and specimens from April 10 to 14, 1978. The onsite
inspection engineer made reports on his inspections and much of the
information in this fifth interim, report was taken from those reports.
Operating conditions listed in this interim report were taken from
Bechtel's monthly reports which list the steady-state operating
conditions.
Test Facility Operation
During most of the test period, both scrubber systems were
operated simultaneously. Operational data for the test period and
accumulative operational data since each system was placed in opera-
tion are included in the following tabulation:
Fifth series Venturi/spray tower TCA
Test period 10/20/76-2/27/78 11/24/76-1/24/78
Run Nos., inclusive VFG-1B - 867-1A 701-2A - 820-2A
Operating hours 8,166 7>632
Idle hours 3,714 2,592
Accumulative Operating
Time Since Startup
Period 9/5/T2-4/10/78a 8/17/72-4/12/78a
Hours 32,370 33,845
Days 1,307 1,410
a Date unit was shut down for inspection in preparation for
fifth interim report.
K-6
-------
Test Specimens
The specimens listed in Tables I, II, and III were tested
in the venturi/spray tower and TCA scrubber systems at the test loca-
tions shown in Figures 1 and 2, respectively. All alloys were not
exposed at all test locations, and FRP specimens were only included
on spool assemblies that were exposed at test locations where tempera-
ture was not expected to significantly affect the plastic-base materials.
Specimens tested on the spool and probe assemblies shown in Figure 3
were prepared as 2-inch-diameter disks. One rack of U-shaped stressed
specimens of six alloys (Fig. 3) was exposed in the inlet cavity of the
induced-draft fan of each scrubber system. The composition of each of
these alloys is given in Table IV.
Exposure Periods
In the fifth series of tests, the longest exposure period for
specimens in the venturi/spray tower system was 8l66 operating hours
(Table I) and the shortest exposure period was 70 hours (Table II). The
longest and shortest exposure periods for specimens exposed in the TCA
system were 7632 and 1500 hours (Table III). Usually, the reason for
different exposure periods was to evaluate the effect of altered oper-
ating conditions on corrosion of the test specimens. Operating condi-
tions in the scrubber systems are frequently changed to study process
technology and process chemistry. To comply with the projected schedule
for facility operation, removal of test specimens after special runs was
not always practical. Consequently, test specimens that were to be
exposed only during runs under special operating conditions and then
removed sometimes remained in the system considerably longer and under
altered operating conditions. Obviously, this interfered with the
evaluation of isolated conditions with respect to corrosion.
Three different spools of specimens were tested (one at a
time) below the venturi at test location 1011 (Fig. 1 and Table II).
The exposure periods were 551*7, 70, and 2226 hours. This is the most
severe test location in the experimental scrubber facility because of
erosion and corrosion. U-shaped stressed specimens were exposed in
the inlet cavity of each induced-draft fan for approximately 2-1/2 years.
Exposure Conditions
The coal used in the No. 10 boiler at Shawnee Steam Plant
during the fifth series of corrosion tests contained an average of 3.3$
by weight sulfur and 15.056 (12.0-15.8$) by weight flyash.
K-7
-------
Definite information is not available as to the chloride content of
the coal. However, the analyses of nine random samples of coal used
at the steam plant (probably in all units) from December 1975 to
July 1977 indicated that the chloride concentration ranged from 0.01
to 0.37$ by weight. Also, the chloride concentration of four monthly
(months not identified) composite samples of coal used at the steam
plant ranged from 0.02 to 0.18$ by weight. The chloride content of
coal is important with respect to corrosion in the wet-scrubber
systems, especially if the slurry pH is low.
The temperature of the inlet flue gas was in the range of 260°
to 330°F. The temperature of the exhaust gas (after being scrubbed and
reheated) was in the range of 235° "to 265°F. The analyses of the gases
at the inlet and outlet of the scrubber systems were as follows:
Component
S02, %
C02, %
02, %
H20, %a
HC1, $a
N2, $a
Flyash, gr/stdft3*
Flue
gas in
0.2-0.4
10-18
3.5-12
8-15
0.01
74
0.01-7
Scrubbed
gas out
0.02-0.10
11-19
4.5-12.5
6-16
_
69
0.005-0.04
Estimated.
Values include operation with and without electro-
static precipitator.
Properties of the liquor in the effluent and clarifier tanks
of the two scrubber systems are included in Tables I and III.
Preparation and Mounting of Specimens
Preparation
Disk-type specimens of alloys and FRPs were 2 inches in
diameter and had a 23/64-inch hole drilled through the center for
assembly on a spool-type or probe-type mount (Fig. 3). Teflon
insulators were used to prevent contact of dissimilar metals. Disk-
type specimens of the five FRPs were made from sheets about 1/8 inch
K-8
-------
thick, and the machined edges of the disks were sealed with resin as
recommended by the manufacturers of the FKPs. Disk-type specimens of
the 15 alloys tested were made from metal stock about 1/8 inch thick
that had "been welded according to the recommendations of the manufacturer
of the respective alloy. After these welds were made, the alloys were
allowed to cool slowly in air to simulate cooling of large equipment
after it has been welded during construction or repair. After the
alloys were welded and cooled, the 2-inch-diameter disks were prepared
so that the weld was across the diameter of the disk. The disks were
smoothed by machining.
Stressed specimens were made by forming a strip of alloy
(about 1/8 by _L by 5-1/2 in.) into a U shape and drilling a 1/2-inch
hole in each end of the strip to accommodate a 1/4-inch bolt (Type 316
stainless steel). This bolt, which was fitted with a Teflon insulator,
was used to apply static stress to the specimen in a rack as shown in
Figure 3. Table IV gives the composition of the alloys tested.
Mounting
Disk-type specimens were mounted in the scrubber systems by
one of four methods. At some test locations, spool assemblies were
bolted to permanent brackets that had been welded in place. In other
test locations, spool assemblies were bolted to an existing pipe by
means of a band-type clamp (Fig. 3). In tanks, spools were suspended
by a 1/8-inch strip or 3-inch-diameter pipe bolted to the top of the
tank. Sleeves of soft butyl rubber (3/8 in. thick and 6 in. long)
were used on these supports to prevent abrasive damage to the Flakeline
coating or neoprene lining of the tank walls. In vessels or ducts,
probe-type assemblies were installed through the wall by means of a
2-inch pipe coupling and companion plug that supported the assembly.
Stressed specimens were installed by bolting the rack to a bracket
that, had been welded at the desired location.
Results of Plant Inspections and Corrosion Tests
During the fifth series of tests, periodic inspections were
made of the scrubber systems and the test specimens. All corrosion
rates were calculated on the basis of weight loss of specimens assuming
that the loss occurred during the period of operation of the scrubber
system rather than during the overall exposure period. Low corrosion
rates determined by weight loss are omitted for test specimens that had
significant penetration by crevice corrosion and/or pitting.
K-9
-------
Durometer A hardness values of rubber linings on equipment
were measured with a Shore instrument, Type A2, ASTM 22^0. Initial
hardness values of equipment linings were not determined, so in
previous reports, hardness values listed in the vendor's specifica-
tions were used as reference values. In this report, however, the
hardness values are compared with those determined during previous
inspections (Table V).
Inlet Ducts for Flue Gas
The flue gas entering the scrubber test facility contained
carbon dioxide, hydrogen chloride, moisture, nitrogen, oxygen, sulfur
dioxide, and flyash at temperatures of 2oO° to 3J00F. The composition
of the gas varied with the source of coal. During a period of limited
supply of coal in early 1978, changes in the source of supply were
necessary to maintain operation of the generating facilities.
Carbon Steel Ducts; The carbon steel inlet gas duct for the
TCA system was observed at one location in a horizontal section and
appeared to be in good condition. Only slight scaling and minor
deposits of dust were noted in the main section of the duct which is
insulated. However, inside an uninsulated flanged joint, a tightly
adhering scale had formed on the surface of the metal. This scale
evidently offered some protection by reducing the quantity of conden-
sate that collected on the cool surface of the metal (heat lost from
bare flanges). This scale, however, does not eliminate condensate
especially during cold weather. '
Stainless Steel Ducts: A section of Type 316L stainless
steel duct is located between the carbon steel inlet duct and the
scrubber in each system. The Type J16L duct in the venturi/spray
tower system had localized attack where the hinges of a small door
were welded to the duct at test location 1002 (Fig. l). This failure
allowed intake of air through the opening. The duct wall at the
bottom of the door is 0.118 inch thick. Further discussion of the
Type 3l£L duct in the venturi/spray tower system is included in the
"Venturi Unit, Inlet Gas Duct" paragraph.
In the TCA system, the Type J16L stainless steel duct had
deposits of solids at three locations—on an emergency cooling spray
header (minor deposit), around the soot blower nozzle (unusually thick
deposit), and at the wet-dry interface produced by the cooling sprays
which are located near the entrance to the absorption tower. A leaking
K-10
-------
valve in the emergency spray system (sprays are located directly above
the soot blower nozzle) caused the accumulation of solids on the spray
header and around the soot blower.
Specimens Tested in Inlet Gas Duct; If the temperature of the
inlet flue gas is maintained above the dew point, corrosion of Cor-Ten A
and mild steel is negligible during operation, but corrosion occurs
during idle periods. In the fourth series of tests, the corrosion rates
for Cor-Ten A and mild steel at test location 1002 in the venturi/spray
tower system were 42 and 28 mils per year, respectively; at test loca-
tion 2002 in the TCA system, the corrosion rate for each of these alloys
was only 3 mils per year. The reason that the corrosion rates were
higher than expected was not obvious at that time. In the fifth series
of tests, the corrosion rates for these two alloys were again unexpectedly
high. Specimens of Cor-Ten A and mild steel at test location 1002 were
perforated and had respective corrosion rates greater than 33 and greater
than 4-5 mils per year. At test location 2002, the respective corrosion
rates for Cor-Ten A and mild steel were lU and 15 mils per year and both
specimens had crevice corrosion. During an inspection after the fifth
series of corrosion tests, the automatic shutoff valves to the emergency
sprays were leaking (greater leak in venturi/spray tower system) and
manually operated valves upstream from the automatic valves had to be
closed to stop the leak. In the fifth series of tests, corrosion rates
for the other alloys exposed at test locations 1002 and 2002 were 1 mil
per year or less (Tables I and III).
Soot Blowers; The soot blowers are used to remove solids
that are deposited on the duct walls at the wet-dry interface. Various
schedules for use of these soot blowers have demonstrated that operating
the soot blowers from one to three times per day is adequate to remove
the solids under present operating conditions. These units are in good
condition and require very little maintenance.
Venturi Unit
Shell; The Type 3l6L shell (housing) that forms the cavity
above the adjustable plug of the venturi unit has been patched several
times because of corrosion and/or erosion and is in need of major
repair. The uppermost plate was originally flat but has long since
become concave from carrying some of the weight of the inlet gas duct
that enters from above.
Inlet Gas Duct; Sections of the 3/l6-inch-thick inlet gas
duct of Type 316L stainless steel that extends inside the cavity above
K-ll
-------
the venturi have been removed as failure occurred during the last 2 years
and only a small section of duct remains inside the cavity. Failure of
this duct was caused by chloride stress-corrosion cracking which was
discussed in the fourth interim report. Loss of the duct section that
extended inside the cavity evidently has not affected performance of
the venturi.
Bull Nozzle; Erosion-corrosion of the 5-inch-diameter, Type
316 stainless steel bull nozzle by the process slurry was severe (approx.
185 mils/yr). Two nozzles have been used alternately in this service.
The original nozzle (a smooth-bend, ninety-degree elbow) was used 265
operating days before repairs were required. Subsequent periods of
service between repairs have been shorter. The second nozzle was fabri-
cated by welding together short sections of pipe to build a ninety-
degree elbow.
Adjustable Plug and Components; The Type 3161 stainless steel
adjustable plug showed little evidence of erosion or corrosion even
though the bull nozzle discharges process slurry onto the top of the
plug. The adjustable plug controls the pressure drop across the venturi.
No repairs have been required for the plug which has been in service
since 1972.
Four equally spaced guide vanes for the 4-inch-diameter shaft
that support and operate the adjustable plug are located immediately
below the plug in the venturi throat (Fig. k)• The support shaft,
shroud for the shaft, flanges, adjustable guide vanes, and shields for
the guide vanes are constructed of either Type 316 or Type 3l£L stain-
less steel. The plastic block-type bearings located between the
adjustable guide vanes and the support shaft are constructed of Rulon
Type ID, a modified fluorocarbon. As of April 1978, all the metal com-
ponents in this area had experienced erosion-corrosion and/or pitting
attack and the Rulon bearings were eroded appreciably.
Erosion-corrosion penetrated through the support shaft for
the adjustable plug in September 1978• The penetration rate was 31 mils
per year based on 3.9 years of operating time. The shaft and guide vanes
were replaced in October with new components constructed of Type 316L
stainless steel.
Specimens Tested Below Venturi; Three identical spools of
specimens were exposed during different periods at test location 1011
in the fifth series of tests. Because of the high velocity of the
gas-slurry mixture in normal operation, the conditions are more severe
at test location 1011 than at any other test location in the two scrub-
ber systems. Exposure periods are usually shorter at this location for
this reason. In the current tests, the three spools were identified
as 1011, 1011A, and 1011B.
K-12
-------
Test conditions were similar and the results were consistent
for spools 1011 and 1011B in the current series of tests except for
Zirconium 702 which had a corrosion rate greater than 75 mils per year
at test location 1011 and only 6 mils per year at test location 1011B
(Table II). A different location of the test specimen on the spool
and channeling of the gas-slurry mixture probably account for the
difference in corrosion rates for Zirconium 702. Cor-Ten A and mild
steel were attacked at extremely high rates. The rates for the other
alloys ranged from 1 mil per year for Haynes 6B to greater than 150
mils per year for Type 30^L. There was little difference in the
resistance of stainless steel Types Jl6L (2.6% Mo) and 317L (3-2% Mo),
and crevice corrosion was common on both alloys.
In general, the erosion-corrosion rates for specimens common
to all previous series of tests at location 1011 were greater than
those in the fifth series except for Cor-Ten A and mild steel which
were attacked at excessively high rates in each series of tests.
Conditions were different for exposure of spool 1011A during
run WG-1Q which lasted only 70 operating hours. Water was used in
the venturi instead of lime or limestone slurry. Run VFG-1Q, was made
to determine the particulate removal efficiency of the spray tower
alone when using lime slurry to scrub flue gas that contained only a
small amount of flyash (about 0.15 gr/stdft3, referred to at the test
facility as "flyash-free" gas). The plan was to remove as little
particulate as possible from the gas at the venturi. To protect the
neoprene lining upstream from the spray tower from damage by the 265°
to 330°F flue gas, 15 gpm of water was dispersed by the humidification
sprays into the inlet duct to cool the gas during the first 2 days.
However, the water sprays plugged and the gas temperature in the
crossover duct (flooded elbow in normal operation) exceeded 200°F and
the unit shut down automatically. After several of these shutdowns,
additional cooling water was added through one of the tangential sprays
in the cavity above the venturi (total cooling water rate was 40 gpm)
for the remainder of the 70-hour test period. The flue gas flow rate
was 35,000 acfm and its particulate mass loading was 0.15 grain per
standard cubic foot. The adjustable plug was completely open which
gave a pressure differential across the venturi of 2.5 inches of water
compared with 9 inches in normal operation.
The data in Table II for alloys Carpenter 20Cb-3; Haynes 6B;
Jessop 7005 Multimet; Nitronic 50; stainless steel Types 304L, 3l£L,
and 317L; and Zirconium 702 show that conditions at test location 1011
were more severe when the flue gas was cooled only with water than
K-13
-------
when it was cooled with process lime/limestone slurry. However,
Hastelloy alloys G and C-2J6 and Inconel 625 were attacked at lower
rates when the flue gas was cooled with only water. Cor-Ten A and
mild steel showed poor resistance in all tests; both had corrosion
rates ranging from greater than 1000 to greater than 3290 mils per
year in the three tests. In the absence of alkaline slurry, the pH
of the cooling water dropped to a low value during the 70-hour test
period. (The pH was not determined but was probably below 2.0 based
on conditions encountered in previous work at Colbert Steam Plant.)
Also, the temperature was above normal because less cooling fluid
was used and at times water sprays became plugged.
Flooded Elbow; A thick, hard scale covered part of the
neoprene lining in the flooded elbow. In previous reports, loss of
adhesion and sagging of the neoprene lining were noted in areas mainly
overhead and on the north wall. The overhead area was sealed with
scale which was not disturbed. The scale thickness that can be
supported without damage to the lining is in question, especially in
areas where some loss of adhesion has occurred. During the inspection
for the fifth series of tests, several large blisters were seen on the
north wall (Fig. 5). Some of the blisters appeared to have been punc-
tured, possibly to release pressure and alleviate further loss of
adhesion.
There was no evidence of corrosion on two stainless steel
probes in the duct; apparently they had been in service only a short
time.
Scrubber Towers
Neoprene Lining: The hardness values determined for the
neoprene linings are given in Table V. With the exception of localized
areas, the tower linings were in good condition. Minor damage has
occurred to the lining in both towers, mainly in the areas of the man-
ways. The damage occurred while installing, adjusting, and removing
hardware.
At the time of inspection, the walls in the TCA tower were
clean from the bottom grid to the mist eliminator. The undersprays
kept the area clean below the mist eliminator, and movement of the
spheres cleaned the areas between the grids. The lining was peeling
at a lap joint on a protruding corner of a window jam located a few
inches above the bottom grid.
A few blisters in the neoprene lining above the mist eliminator
of the venturi/spray tower system were mentioned in the fourth interim
report. The number of blisters has increased and some of the older
K-14
-------
blisters (first detected in Jan. 1976—then less than 1 in. in dia.)
have increased in size. The 1/lj—inch-thick neoprene sheet consists of
several layers. Fluid collected between the uppermost layers to form
the blisters and did not penetrate to the carbon steel shell. Deteriora-
tion of this area of the liner above the mist eliminator was minor as
of April 19T8« However, a blister in the fourth manway door measured
6-1/2 by 2-1/1* by 1-1/2 inches. Its depth or origin (whether between
plies or adjacent to the steel) was not determined.
A thick, hard scale covered some areas of the spray tower.
Unless care is exercised in prying the scale loose, especially if sharp
tools are used, the lining could be damaged. Changes in the modes of
operation affect the amount of scale in the equipment.
Grids: The four grids in the TCA tower are made of Type Jl6
stainless steel, 3/8-inch-diameter rods. These grids have been in
service about 1|—1/2 years (installed Oct. 1973). Two rods of Type 1*09
stainless steel were installed in the bottom grid by error; they were
less resistant to corrosion than the Type Jl6 rods and have been
replaced with rods of Type 316. The three bottom grids support TCA
spheres. Movement of the spheres causes wear of the rods that support
them. The wear usually occurs in two planes on the top half of the
grid rods; however, some of the rods have been turned and have more
than two worn planes. Only a few rods were measured. The greatest
loss in diameter of Type 316 rods was 23 mils, and this occurred on
rods in the bottom two grids (G-l and G-2). Spheres are not installed
on the top grid (G-l*) which showed a loss in diameter of only 3 mils.
It is assumed that the 3-mil loss was due to corrosion and the 23-mil
loss was due to erosion-corrosion. Pitting of the rods and of the
Type 316 rod-support frame also occurred. The depths of pits measured
were 1* to 20 mils. Crevice corrosion was common on the grid rods
under and adjacent to the rubber grommets on the ends.
Spheres; Several combinations of TCA sphere types and bed
depths were employed during the fifth corrosion test reriod. The types
of spheres used were thermal plastic rubber (TPE, both 5- and 6-g),
high-density polyethylene (HDPE, 5-g), and acrylonitrile foam spheres
(6-g). After considerable wear on the surface, the TRP and HDPE spheres
either split in half at the mold seam or dimpled which permitted them
to squeeze through the space between the grid bars. The acrylonitrile
foam spheres had an initial shrinkage rate of 6 to 12$ (0.1-0.2 in.)
of the diameter during the first 1000 hours, but afterwards the
shrinkage rate decreased to 3.1% (0.05 in.) per 1000 hours for the
remainder of 6700 hours of service. Some of the spheres also migrated
from one grid to another.
K-15
-------
Stationary Packing; Forty-six inches of stationary plastic
packing (manufactured by the Ceilcote Co.) was used instead of spheres
to increase contact of gas and scrubber liquor during a 352-hour period.
Minor scale formation was observed along the edges of some of the pack-
ing plates.
Mist Eli'm-i gators; The mist eliminator in each scrubber system
is a chevron-type, open-vane, three-pass unit constructed of Type 316L
stainless steel. A new mist eliminator was installed in the spray tower
on January 30, 1975, and. has been in service approximately 18,500 oper-
ating hours. A new mist eliminator was installed in the TCA tower on
July 19, 1975, and has been in service about 18,000 operating hours.
During these service periods, general corrosion of the vanes was negli-
gible to 1 mil per year. Originally, the vanes were 62 mils thick; now
they are 60 to 62 mils thick. However, pitting occurred on the edges
of the vanes in the spray tower. Some pits penetrated 65 to 185 mils
from the edge into the width of the vanes (see Fig. 6). Pitting was
much less pronounced on the mist eliminator of the TCA system. The
oversprays and undersprays used currently in both scrubber systems have
improved cleanliness of the mist eliminators greatly compared with the
plugged conditions experienced during the original operation of the
scrubber systems. The vanes are distorted on the top because of impact
from heavy chunks of solids that fall from the scrubbed gas outlet duct.
However, performance of the unit is still acceptable. The installation
of a heavy-duty grid a few inches above the mist eliminators would.
provide some protection for the mist eliminators.
Tables I and III show that the specimens of Cor-Ten A and
mild steel exposed near the mist eliminator at test location 2.00k in
the TCA scrubber (Fig. 2) were corroded more than those at the corres-
ponding test location, 1004, in the spray tower (Fig. l) . The Type
3l6L specimens exposed at 200h and 10C4 were corroded about the same
at each test location and much less than Cor-Ten A and mild steel.
Apparently, exposure conditions were only slightly more severe at 20C4
than at 1004. The difference in resistance to pitting attack by the
two mist eliminators was probably due to differences in composition
of the Type 3l£L stocks and history of treatment before and/or after
fabrication of the mist eliminators.
Headers, Support Brackets, and Door Deflector Plates; In
the towers, the spray headers, support brackets, and deflector plates
for the manway doors were specified to be constructed of Type 316
stainless steel. Previous reports have pointed out that some sections
of the spray header have been identified as Type J>0k stainless steel.
Pitting of both alloys has occurred in the tower; Type 30^ is less
K-16
-------
resistant to pitting than Type 316. Deposits of solids on these alloys
inside the towers promote pitting. The depth of pits on headers and
support brackets were not measured during the current inspection. Pits
on the Type 316 stainless steel deflector plates inside the manway doors
of the venturi/spray tower system were measured and ranged from 12 to
78 mils deep (Fig. 7)•
Slurry Spray Nozzles: The main process slurry spray nozzles
in the spray tower are located at four elevations. During the fifth
series of tests, the process slurry that circulated through the spray
tower contained 7 to 17$ "by weight of solids. The original spray
nozzles were one-piece spiral nozzles (Bete TF48FCN) made of Type Jl6
stainless steel. The replacement three-component spiral nozzles
(Bete ST^SFCN) with diffusers of Haynes Stellite Alloy No. 6 (other
components of Type 316 stainless steel) are considerably more durable
than the original nozzles. A set of 27 nozzles with Stellite Alloy
No. 6 diffusers had a service life of 17,250 operating hours (3/15/7^-
12/6/76). Stellite Alloy No. 6 contains 25 cobalt. Because the stainless steel nipples on the
slurry headers were corroded excessively, a few of the nozzles became
loose and were lost. The number of nozzles that were lost could have
been reduced by solution-annealing the cold-worked nipples after they
were threaded.
In the TCA tower, process slurry containing 7 to 16$ by weight
of solids was dispersed through four Spraco 1969F nozzles (full-cone,
free-flowing nozzles made of Type 316 stainless steel) located in quad-
rants above grid G-4. Deep grooves had eroded in the swirl vanes and
some pitting was noted. The diameter of the nozzle orifices increased
an average of kQ mils during approximately 10,800 hours (approx. 450
days) of operation since the end of the fourth series of tests. As of
April 12, 1978, this set of nozzles had been in service approximately
26,000 operating hours and continued to give good service.
Rupture Disks: Rupture disks were provided in the scrubber
towers to protect the neoprene linings (and possibly other equipment)
from damage due to high vacuum that the induced-draft fans might pro-
duce should the inlet gas duct become plugged. The disks were designed
to flex inward and be pierced by sharp, stationary instruments. The
ruptured disks would then admit outside air to decrease the vacuum.
Even though pressures have been low at times, none of the disks have
ruptured in either scrubber tower because the accumulation of solids
on the inside surface of the disks prevents their flexing.
Miscellaneous; A frame constructed of 2- by k-inch wood
(species not identified) is located in an observation port immediately
above the third grid in the TCA tower. The frame, which was installed
K-17
-------
to remedy an operational problem, has been exposed to the lime/limestone
slurry spray for several years and still appears to be sound. Slight
wear has occurred on the hard annular growth rings and more wear has
occurred on the soft rings.
Specimens Tested in Towers; Test locations in the towers
from the bottom upward are identified in Figures 1 and 2 by the num-
bers 1006, 1005, and 1004 in the spray tower and 2006, 2005, and 20C4
in the TCA tower. As shown in Tables I and III, corrosion rates were
negligible to less than 1 mil per year for the following alloys tested
in both towers: AL 6X, Hastelloy C-276, Hastelloy G, Inconel 625,
Jessop TOO, Miltimet, and Zirconium 702. Comparative severity of'
conditions at the test locations is shown by the corrosion rates of
Cor-Ten A and mild steel which were the least resistant alloys tested.
Localized attack of Type JO^L stainless steel was severe. The greatest
corrosion of specimens occurred at test locations 1005 and 2005• The
respective corrosion rates for Cor-Ten A and mild steel were 105 and
185 mils per year in the spray tower and k"T and 96 mils per year with
localized attack in the TCA tower. The lowest corrosion rates, respec-
tively, for Cor-Ten A and mild steel were 1J and 14 mils per year at
2006 in the TCA tower and 22 and 29 mils per year at 1004 in the spray
tower. In this series of corrosion tests, localized attack of Cor-Ten A
and mild steel did not occur in the spray tower but did occur in the
TCA tower except at location 2006. Note that test location 1006 in
the spray tower has been changed since the fourth interim report was
issued; a trapout tray has been installed in the tower (Fig. l) and
test location 1006 is now located below the trapout tray.
Exhaust System
Duct Between Tower and Reheater: The Type 316L stainless
steel duct between the neoprene-lined tower and the reheater in each
scrubber (Figs. 1 and 2) was pitted and contained a tightly adhering
solids deposit. The exterior of the Type 3l£ corrugated expansion
joint located between the tower and the reheater appeared to be in
good condition.
Equipment for Reheating Scrubbed Gases: Scrubbed flue gases
are reheated to 235° to 265"F by external oil-fired heaters. Originally
in-line reheaters were used, but they were not satisfactory because of '
frequent flameouts. Hot combustion gases from the external heaters mix
with and reheat the scrubbed gases. The ceramic linings in the reheater
equipment were in good condition as of April 12, 1978. A patch had
been weldec1 on the carbon steel shell at the bottom of the old in-line
reheater for the TCA system.
K-18
-------
Duct Between Reheater and Induced-Draft Fan: In each scrubber
system, the duct between the reheater and the induced-draft fan contained
a heavy deposit of solids. The deposit in the venturi/spray tower duct
appeared to have been a thick mud-like material that was flowing slowly
down the wall when solidification occurred (Fig. 8). The deposit in the
TCA duct appeared to have been heated considerably above the normal
operating temperature. This tightly adhering scale was difficult to
remove from the Type 316 stainless steel duct. A small area 2 feet
above the cavity of the old in-line reheater was steam cleaned in each
duct for inspection. Pits that were measured in this area of the venturi/
spray tower duct were 50 to 78 mils deep and those in a corresponding area
of the TCA duct were 20 to 30 mils deep. Comparatively small, shallow
pits were found in both ducts several feet downstream.
In each scrubber system, the ductwork downstream from the
reheater is divided. Each branch of the duct contains a fan damper.
The branches of the duct terminate at the inlet ports of the induced-
draft fan. This section is constructed of Type 3l6L stainless steel.
Moderate corrosion was evident on the divider surface. The corrosion
was greater on the welds and in the corners of the unit. Solids
deposited on the TCA divider were harder than those on the venturi/
spray tower divider.
Dampers; The damper consists of a section containing seven
louvers in each branch of the divided gas duct. All louvers in the
TCA damper were in service during operation, but only three louvers
on each side of the divider were being used in the venturi/spray tower
damper. By closing the other louvers, the flow of gas through the
system could be controlled as desired. The active louvers in both
scrubber systems were coated with a thin deposit of solids. The
dampers were in good condition.
Induced-Draft Fans; No changes of importance were noted in
the condition of the induced-draft fan in either scrubber system since
the fourth series of tests was completed. The fan in \,ae TCA system
appears to be in slightly better condition than the fan in the venturi/
spray tower system which has more nicks and bends on the blades and
shrouds. The area where cracks have been repaired twice (third and
fourth interim reports) was checked with penetrant dye and appeared to
be sound. Frequent inspection of this fan should be continued.
Measurements have been made (with calipers) of the thickness
of blades and shrouds of both induced-draft fans after each series of
corrosion tests. The first series ended in February 1973. As of
April 12, 1978, the average losses in thickness of the shrouds and
K-19
-------
fan blades for the venturi/spray tower fan were 1 and 6 mils, respec-
tively. For corresponding components in the TCA fan, the average
losses were 0 and 3 mils.
Stressed Test Specimens; In July 1975, a rack of U-shaped
stressed specimens was installed in the inlet cavity to each fan (test
locations 1016 and 2016, Figs. 1, 2, and 3). Prior to this date, a
crack had occurred in the Type Jl6L induced-draft fan in the venturi/
spray tower system. The purpose of the tests was to determine if
several alloys would crack under static stresses in the scrubber
environment. As of January 1978, after about 2-1/2 years of exposure,
none of the specimens had cracked. This exposure period was similar
in length to the service period of the venturi/spray tower fan when
the first crack was noted. Apparently, cyclic stresses produced by
vibration of equipment were factors in cracking the fan. The follow-
ing tabulation lists the alloys tested in the inlet cavity to each fan
and gives the corrosion rates on the basis of weight loss.
Corrosion rate, mils/yra
Venturi/spray
Alloy tower TCA
AL 6X
Inconel 625
Nitronic 50
Type
Type
Type
316 stainless steel
316L
317L
stainless
stainless
steel
steel
(2
(3
-3*
.2$
Mo)
Mo)
1 Negligible
< 1 Negligible
1D» c Negligible
1 < 1
rj» c Negligible
1 ' c Negligible
a Negligible indicates corrosion rate was less than
0.05 mil/yr.
Crevice corrosion.
c Minute pits.
Expansion Joint and Transition Section; The Type 316L stainless
steel rectangular expansion joint located between the induced-draft fan
and the transition section (from rectangular to cylindrical) in each
system has been repaired several times. Narrow cracks that occurred in
the joints have been sealed by applying a weld bead of Type 3l£L. Larger
corroded areas have been patched by welding a strip of Type 3l6L over
the failed area. It is believed that a corrugated, cylindrical expan-
sion joint would be more durable in this application than the rectangular
expansion joint now in use because the number of welded joints would be
reduced. This change could be simplified by locating the transition
K-20
-------
section between the induced-draft fan and the expansion joint. The
corrosion resistance of Type Jl6L equipment in this service could be
increased by solution-annealing each unit after fabrication. A port
in the transition section of the venturi/spray tower system was
opened (not used in previous inspections) for the current inspection.
Corrosion was noted on the shields (Fig. 9) that were provided to
prevent accumulation of solids inside the convolutions of the expan-
sion joint. Apparently, corrosion of this area is due mainly to
accumulation of condensate. The quantity of condensate produced
during normal operation could be decreased "by insulating the expan-
sion joint and transition section.
Disk-Type Specimens Tested in Exhaust Systems; Disk-type
specimens were exposed below and above the induced-draft fan at test
locations 101k and 1015 in the venturi/spray tower system (Fig. l)
and at test locations 2014 and 2015 in the TCA system (Fig. 2). The
disk-type specimens were mounted at the center of the exhaust stack
or duct with the faces of the disks in a vertical position. The
temperature of the reheated gas in these areas is usually 235° to
265°F. Localized corrosion of specimens in the venturi/spray tower
exhaust system was not appreciable, about 1 mil per year except at
test location 1015 where Zirconium 702, Cor-Ten A, and mild steel
were corroded at rates of 2 to 3 mils per year.
In the TCA exhaust system, localized corrosion occurred on
the bottom half of most test specimens exposed at test location 201k
(below fan). The types of localized attack that occurred in the order
of decreasing frequency were pits, cracks, and attack of veld metal.
The only alloys that showed no localized attack were Hastelloy C-2T6,
Carpenter 20Cb-3, Cor-Ten A, and mild steel. Their corrosion rates,
in the order listed, were negligible, less than 1, 6, and 7 mils per
year.
Figure 10 shows that attack of Type 316L (2.6^ Mo) at test
location 2014 (below TCA fan) was much more severe than at the corres-
ponding test location (1014) in the venturi/spray tower system. The
reason for this difference at similar test locations in the two
exhaust systems is not obvious. Figure 11A shows cracking that
occurred in the severely corroded bottom half of the Type 3l6L (2.6% Mo)
specimen tested at location 201k. Figure 11B shows the structure of the
upper half of the same test specimen where the attack was much less
severe. When the specimens were received at Muscle Shoals for evalua-
tion, specimens from test location 2014 (TCA) had considerably more
solids deposited on or between them than those from test location 1014
(Figs. 12 and 13). This might not have been true throughout the test
K-21
-------
period. Also, as shown in Figures 12 and 13, the probes used to mount
the specimens were bent during the test by the impact from deposits of
solids that fell from the ducts above.
The accumulation of solids on and between specimens at test
location 201U was greater on the bottom half (upstream side) than on
the upper half of the specimens. Thus, more moisture would be absorbed
on the bottom half of the specimens, and as the moisture evaporated from
the solids, a greater concentration of chlorides would accumulate on
the bottom half of the specimens. Unfortunately, any possible variation
in composition of the solid deposits was not investigated. However, the
type of cracking that occurred in the severely corroded area of the
Type 3161 specimen exposed at test location 2014 is indicative of
chloride stress-corrosion cracking (Fig. 11A.). Stresses were implanted
in the specimen when it was stenciled (cold worked) for identification.
Tanks
Effluent Hold Tanks; Effluent hold tanks D-101 and D-201
were full of process slurry needed to complete the tests that were
interrupted for the general inspection. These tanks were not inspected.
Specimens Tested in Effluent Hold Tanks; Tables I and III
show that the corrosion rates for most alloys tested in the effluent
hold tank for each scrubber system were negligible. However, Cor-Ten A
and mild steel had rates of 1 to 8 mils per year and Nitronic 50 and
Type JCA-L stainless steel showed slight localized attack. The following
plastic-base materials showed good resistance to deterioration in both
tanks; Atlac 711, Bondstrand ^000, Derakane 510, and Dion 6694. The
QuaCorr specimen exposed in tank D-101 also appeared to be in good
condition, but the QuaCorr specimen in tank D-201 was only in fair con-
dition (specimen was probably damaged by impact).
Becirculation Tank: During the fifth series of tests, tank
D-1C& was used as a collection and/or recirculation tank for process
slurry used in the venturi section. During some runs, the slurry from
the venturi and the slurry from the spray tower were kept separately.
The neoprene lining on the tank and covering on the agitator were in
good condition.
Oxidation Tank; Tank D-108 is constructed of Type 316 stain-
less steel. The new tank was installed in December 19?6 prior to run
801-1A. The tank is equipped with a constant-speed agitator with two
pitched-blade impellers. During the tests of forced oxidation in the
venturi/spra;y tower system, air was sparged into the process slurry a
few inches above the bottom of tank D-108. The octagonal sparger was
K-22
-------
made of 3-inch Type 316 stainless steel pipe in which 1/4-inch holes
had been drilled. The sparger unit was connected to the air line
(Type 316 stainless steel) inside the tank by a 6-inch-long spool
piece. Inadvertently, the spool piece was made of Type ^>dk stainless
steel (3-in.-dia., Sch. 10 pipe with 0.12-in. wall) which failed in
less than 2500 operating hours. The corrosion rate was greater than
420 mils per year (Fig. IhA and B).
Specimens Tested in Oxidation Tank D-108: A new test location
identified as 1017 (not shown in Fig. 1) was established 6 feet above
the bottom in tank D-108. The original plan was to expose a spool of
specimens at 1017 during consecutive runs in which air was being sparged
into the slurry. The spool of specimens was to be reuoved from the tank
when forced oxidation runs were completed. However, data related to
other areas of investigation at the test facility indicated a need for
more runs without forced oxidation to supply urgently needed informa-
tion. Consequently, runs in the scrubber system were made occasionally
without forced oxidation during the remainder of the exposure period.
Therefore, tests to show the effect of forced oxidation on corrosion
were not isolated as originally planned. The corrosion rates at test
location 1017 were negligible for all alloys except Cor-Ten A and mild
steel during an exposure period of 7211 operating hours (Table l).
The corrosion rates were 11 mils per year with pits 9 mils deep for
Cor-Ten A and 16 mils per year with pits 6 mils deep for mild steel.
These rates are within the range of those obtained for specimens of
Cor-Ten A (7-26 mils/yr) and mild steel (10-35 mils/yr) exposed in
tank D-101 during the four previous series of corrosion tests without
forced oxidation. Aeration of a corrosive medium usually increases
the rate of attack on Cor-Ten A and mild steel. However, in this case,
there was a chemical change (sulfite was converted to the less corrosive
sulfate) along with the physical activity accompanying aeration.
A specimen of Type 304 stainless steel was not included in
the test at 1017 for comparison with the spool piece that failed.
However, in previous tests without forced oxidation, there was severe
localized corrosion of Type 30** specimens at many test locations.
Tank D-109; Tank D-109 has a neoprene lining and is now
used as a desupersaturation tank for the slurry from tank D-108.
(Originally, D-109 was identified D-303 and was used for storage of
clarified process water in the Marble-Bed scrubber system.) At the
time of inspection, the tank was full of dark brown liquor that was
being agitated vigorously. Hardness values of the neoprene lining
near the tank top are given in Table V.
K-23
-------
Tank D-203: The hold tank for clarified water (D-203) has
a neoprene lining. The tank contained some water and was not inspected
thoroughly. The lining and the agitator unit appeared to be in good
condition.
Tank D-204: The recirculation tank D-2Qk has a neoprene
lining. The lining and the neoprene cover on the agitator shaft and
blades were in good condition. Structural supports and fasteners for
the agitator assembly were repaired during the outage to minimize
vibration.
Tank D-208; The mild steel tank D-208 was sandblasted when
received at the test site prior to the application of two coats
(thickness not available) of blue Polypoxy paint (an epoxy base with
2 components). The tank was put in service about April 1975• No
appreciable deterioration of the coating was noted during an inspec-
tion in August 1976. However, in April 1978, the onsite inspection
engineer noted that the coating had failed in some areas. Subsequent
attack occurred of the unprotected A-28j carbon steel. The Type 516
stainless steel agitator assembly showed little evidence of attack.
Pumps
Process slurry is pumped mainly by centrifugal pumps manu-
factured by Allen-Shenaan-Hoff Company. Originally, these pumps were
Hydroseal pumps but were later converted to Centriseal pumps which
use air instead of water for a seal. The closed-loop operation could
not tolerate the quantity of water required by the Hydroseal pumps.
Several Moyno pumps are also used at the scrubber facility.
Neoprene-Lined Centrifugal Pumps; Some of the pumps were
not dismantled for inspection because they had been repaired recently
and were performing satisfactorily. In the past, some pumps that
were performing properly before dismantling developed mechanical
problems after they were reassembled and placed back in service. The
condition of the neoprene linings and impeller covers in the pumps
that were inspected is given in the following tabulation.
K-24
-------
Condition of neoprene
a
Pump Suction lining
G-102 Grooved severely
G-105 Good condition
G-109 Pits 110 mils deep
(old)
G-201 Damaged to depth
of 1/2 inch
G-202 Grooved moderately
G-20513 Good condition
Seal lining
Grooved severely
Good condition
Good condition
(new)
Damaged to depth
of 3/8 inch
Grooved severely
Good condition
Impeller cover
Grooved severely
Good condition
Good condition
(new)
Damaged
Grooved severely
Good condition
a Hardness values are given in Table V.
k Portable pump used as an auxiliary unit at test facility;
records are not kept to show usage.
The log for maintenance performed shows that replacement of
packing and worn sleeves is the most frequent repair required for the
Centriseal pumps. When the sleeve or shaft becomes worn, the life of
the packing is short.
Moyno Pumps; Little wear could be detected on the neoprene
stators removed from Moyno pumps. Some of these units pump against
comparatively high pressure. A small amount of wear on the stator or
rotor reduces performance of the pump below the minimum required in
the slurry addition systems. Consequently, replacement of rotors and
stators is frequently required.
Piping
Most of the original piping in the scrubber systems was either
stainless steel or neoprene-lined carbon steel. Plastic piping is now
being evaluated and unprotected carbon steel pipe is used sparingly.
Stainless Steel Pipe; In general, Type 31.6 stainless sbeel
pipe has given good service. However, the severely cold-worked area
of threaded nipples has less resistance to corrosion than the unthreaded
portion. This had been demonstrated in the spray tower where spray
nozzles became loose and a few of them were lost. The loss of corro-
sion resistance due to cold-working of the stainless steel can be
restored by solution annealing. Type 516 stainless steel is annealed
"by heating the metal to 2000°F, maintaining that temperature for 1 hour
for each inch of thickness, and then quenching the hot metal in water.
This schedule for annealing does not apply to all alloys. A small
furnace could be used profitably at the Shawnee test facility for
annealing pipe fittings, spray nozzles, nuts, bolts, washers, and
other small items that are in the cold-worked condition.
K-25
-------
Type 316 is also susceptible to pitting in the high-chloride
environment of the scrubber systems, especially in stagnant areas (under
deposits of scale and/or sludge). Type 3C>4 stainless steel is attacked
at rates much greater than Type Jl£ under the same scrubber conditions.
Neoprene-Lined Pipe; During the first few years of service,
the neoprene-lined carbon steel pipe showed no evidence of deterioration
(see the second interim report,. TVA Special Report S-465A, May 1974),
and little or no wear occurred to the lining. Currently, blisters that
range from 1/4 inch to 3 inches in diameter were found in some areas
of 4-, 5-, and 6-inch-diameter neoprene-lined pipes and fittings. Since
April 1977, the frequency of blistering has increased greatly. The
blisters are formed by fluid that collects between the lining and the
carbon steel. Some of the larger blisters appear to have been punctured
perhaps to decrease pressure and reduce their size. Figure 15 shows
typical blisters in a 6-inch-diameter, neoprene-lined, slurry-feed
pipe in the venturi/spray tower system (photograph taken 4/12/78).
Plastic Pipe; Three types of plastic pipe (epoxy, poly-
butylene, and polyvinyl chloride) have been tested in service in the
scrubber systems. None of the pipe sections and fittings showed
evidence of chemical attack or appreciable erosion; however, the
service periods were not long enough for a good evaluation in some
cases. Failure of the pipes occurred because of expansion of freezing
slurry during idle periods in severely cold weather.
Carbon Steel Pipe; The process slurry corrodes unprotected
carbon steel pipe, but it is used to a limited extent if more resistant
piping is not available, especially when temporary modifications to the
system are needed.
Strainers
In May 1975.» "two 6-inch Hayward strainers were installed in
the discharge line near pump G-204 in the venturi/spray tower system
and two 8-inch Hayward strainers were installed in the discharge line
near pump G-201 in the TCA system. These are vertical-type, single-
element strainers used in parallel. The strainers reduce the frequency
of plugging of the spray nozzles by the slurry. The two strainers in
the TCA system and one of the strainers in the venturi/spray tower
system werebeing repaired during the outage. The south strainer in
the venturi/spray tower system had been recently replaced with a new
strainer. The cast steel basket support ledge in these strainers had
been eroded severely and was being rebuilt by deposition of stainless
steel weld metal. Erosion had occurred on the outlet throat and other
areas of the unit. The Type 316 stainless steel baskets were not
corroded, but they had been damaged mechanically, probably during
cleaning.
K-26
-------
One of the Elliott Type R filters (flat, dual filters) is
still in use at the test facility. It is in the feed line to the two
bottom headers in the spray tower. Except for moderate erosion and
corrosion of the cast iron housing at each end of the baskets, the
unit was in good condition. One of the two stainless steel baskets
was new.
Valves
Gate Valves; Fabri-Valve knife-gate valves are located
immediately upstream and downstream from the Hayward strainers to
allow switching the flow of slurry from one strainer to the other.
The venturi/spray tower system has 6-inch valves and the TCA system
has 8-inch valves. The wetted parts of the valves are Type Jl6
stainless steel, and the other parts are either cast or fabricated
carbon steel. During operation of the scrubbers, the valves are
either completely open or closed; they are not used to throttle the
slurry flow. The valves in the TCA system were inspected and
appeared to be in good condition. There has been some difficulty
in opening and closing the valves after the gates have been in one
position for an extended period of operation. A hard deposit
adheres to the gates when they are closed and fills the seats
when they are open. These deposits restrict the movement of the
gate, and when force is applied to open or close the valves, some
of the threaded shafts have been stripped.
Rubber Pinch Valve; Figure 16 shows a rubber pinch valve
that had been worn badly. It was used (length of service not available)
'to throttle the flow of process slurry through a l*-inch pipeline to the
bull nozzle in the venturi unit.
Automatic Spray Valves for Inlet Gas Duct; To protect the
neoprene lining from the hot inlet flue gas in the event that flow is
lost in the slurry cooling sprays downstream, the sprays originally
identified as "humidification sprays" in the stainless steel section
of the inlet gas duct now serve as "emergency sprays." These sprays
are activated from the control room if there is a rise in temperature
in the area of the neoprene-lined equipment. During the current
inspection, the emergency sprays in the inlet duct for the venturi/
spray tower system were leaking appreciably. The leak was stopped
during the inspection by closing a manually operated valve upstream.
The leaking was continuous during operation of the scrubber. Leaking
sprays are believed to account for the higher than expected corrosion
rates of Cor-Ten A and mild steel at test locations 1002 and 2002
(refer to "Specimens Tested in Inlet Gas Duct" paragraph). Chlorides
and sulfur (S03) in the flue gas dissolve in the water (or slurry)
that leaks into the duct and produced a corrosive fluid.
K-27
-------
Effect of Forced Oxidation and Flyash Content
During the fifth series of tests, spools of specimens were
installed at various test locations in the scrubber systems to show
the effect of forced oxidation of process slurry and flyash content
of the flue gas on corrosion. The following tabulation gives infor-
mation pertinent to the test made during the indicated periods in
each scrubber system:
Period
Flyash content
of inlet flue gas,
gr/stdft3
Total 0.15 avga2 to 7
operating % of
-------
from Tables I and III on general corrosion (based on weight loss),
pitting, and crevice corrosion for the alloys, and it gives a compara-
tive evaluation for the plastics tested. The alloys and the plastics
are listed in alphabetical order without identifying test conditions
as given in Tables I and III.
On the basis of weight loss only, Cor-Ten A and mild steel
A-2&3 had a wide range in corrosion rates, 1 to more than 185 mils
per year. The maximum rate for Zirconium 702 was 2 mils per year.
None of the other 12 alloys tested had a rate greater than 1 mil per
year. However, each alloy tested showed evidence of localized attack
except Hastelloy C-2"[6 of which 19 specimens were exposed. Of the
286 specimens tested of 15 different alloys, 62 specimens (22$ of
total) were affected by pitting and/or crevice corrosion. Type
stainless steel was the alloy most susceptible to localized attack;
66/0 of the specimens were affected.
Of the five resin-type FEPs tested, all the Bondstrand hOOO
(epoxy) and Derakane 510 (vinyl ester) were in good condition after
the test. The condition of the other plastics was as follows:
Atlac 711 (polyester), 12 good and 3 fair; Dion 6694 (bisphenol
polyester) 16 good, h fair, and 3 poor; QuaCorr (furan), 2 good and
13 fair.
K-29
-------
Acknowledgments
The onsite employees who contributed much to the program
during the fifth series of corrosion tests were R. C. Tulis, Inspection
Engineer; J. M. Cummings, Chemist; and B. E. Shelley, Supervisor,
Operations and Maintenance. S. B. Jackson, Chemical Engineer, of the
Office of Agricultural and Chemical Development, coordinated corrosion
tests with scheduled scrubber operation.
The following firms supplied materials for preparing
corrosion test specimens:
Alloys (sheet and filler metal)
Allegheny Ludlum Steel Corporation
Armco Steel Corporation
Cabot Corporation, Stellite Division
Carpenter Technology Corporation
Chicago Bridge and Iron Company
Eastern Stainless Steel Company
G. 0. Carlson, Incorporated
Huntington Alloys
Jessop Steel Corporation
Metal Goods, Incorporated
Teledyne Wan Chang Albany
United States Steel Corporation
Plastics (fiberglass-reinforced)
Ameron, Corrosion Control Division
Dow Chemical Company
1CI United States, Incorporated
Koppers Company, Inc.
Quaker Oats Company
K-30
-------
TABU I
Corrosion Testa Conducted in the Venturi/Spray Tower System of the Alkaline Wet-Scrubbing Process
for Sulfur Dioxide Removal from Stack Gas at Shawnee Steam Plant
Exposure conditions
Test location, No. (see Pig. 1)
Exposure period
Operating tljne, hr. (daya)
Idle time, hr. (days)
Teat specimens exposed in
Inlet e>sr jjjis and liquor Gas and liquor Gas and liquor
droplets
1002°
1006°
loo6a
1005" iooUc loot
1/VTT-2/27/T8 10/20/76-2/27/78 1/VT7-2/27/78
., 8166 (3to) 8166 (jto) 7211 (300)
371k (155) 371k (155) 261.5(119) 371* C '5) 571U (155) 2815(119)
10/20/76-2/27/78 10/20/76-2/27/78 l/U/77-2/27/78
8166 (JltO) 8166 (jlto) 7211 (JOO)
Temperature, °F
Velocity, n/s
Flow rate, acfn x 103 at 3}0'F
Airflow in forced oxidation, scfffl
Composition, ^ by volume
SO,
COj, (estimated)
02
Hj,0 (estimated)
HC1 (estimated)
N, (estimated)
Flyash, gr/stdft3
Liquor
Temperature, °y
Solids, undissolved, < by wt.
Solids, dlaaolved, % by wt.
pH
Ionic ccmpoflition, ppm
275-350
28.511
lfl-35
0.2-O.k
10-18
3.5-11.5
8-15
0.01
7k
0.01-7
125-130
li.8-9.lt
18-35
125-130
It .8-9 .it
18-35
125-130
it .8-9. It
18-35
125-130
it. 8-9. k
18-35
125-130
It.8-9.1.
18-35
Corrosion rate of metals, nlls/yr*
Al 6X, weld AL 6X
Carpenter 20Cb-3, weld Carpenter 20Cb-3
Cor-Ten A, weld E8018-C3
Hastelloy C-276, weld H«»telloy C-ZT6
Haetelloy a, weld Hastelloy 0
Inconel 625, weld Inconel 625
Jessop 700, weld Comete 32
Mild steel A-283, weld E6012
Multlmet, weld Wlltimet
Hitronic 50, weld Nitronie 50
Type 2U5, weld Type 216
Type JOltL, weld Type 3O3L
Type 5l£L (2.6t Mo), weli Type JlfiL
Type 317L (3-2* Mo),weld Type 509Cb
Zirconium 702, weld Zirconium 702
Evaluation of plasticag
Atlac 711, polyester
Bondstrand 4000, epoxy
Derakane 510, vinyl ester
Dion 669k, blspnenol polyester
QuaCorr, furan resin
< I
1
> 33
< 1
< 1
>"t5
< 1
< 1
1, Cm, Pm
< 1
< 1
< 1, Cm
> 100
< 1
< 1
Keg.
< 1, Cm
>98
< 1
Cm, P7
C6, Pll
<1, C3
< 1, C2
Neg.
Fair
Good
Good
Fair
Fair"
Keg.
< 1, Cm, Pm
21, PIT
Heg.
Heg.
Keg.
Neg.
18, P25
Neg.
Neg.
C3, P22
Neg.
< 1
< 1
Fair
Good,
Good
Good
Fair"
Neg.
< 1
> 105
< 1
< 1
> 185
< 1
< 1
< 1
C12, PJ1
< 1
< 1
Good
Good
Good
Good
Fair"
»eg.
C5, I*
22
Neg.
Neg.
Neg.
< 1, Cm
26
Neg.
C8, P5
C30 Pl3f
< 1, P2
Good
Good
Good
Good
Fair"
Neg.
C6, Pm
29
Neg.
Neg.
Neg.
Neg.
26
Neg.
C2, Pm
C12, P12
< 1, C2
< 1, P7
Neg.
Fair
Good
Good
Good
Fair"
K-31
-------
Exhaust gas
(heated)
Exhaust gas
(netted)
Test specimens exposed In
Effluent --"
liquor
Effluent
liquor
Aerated
liquor5
Liquor
_ln clarlfler
Exposure conditions
Test location, No. (see Fig. 1)
Exposure period
Operating time, hr. (days)
Idle time, hr. (days)
oas
Tempera ture, "F
Velocity, ft/s
Flow rate, acfm x 1C? at 350"F
Airflow in forced oxidation, scfm
Composition, ^ by volume
S02
COj (estimated)
°s
Hj.0 (estimated)
HC1 (estimated)
«s (estimated)
Flyash, gr/stdft3
10ttc 1015° 1006° 1006d 10171 101,c
10/20/76-2/27/78 10/20/76-2/27/78 10/20/76-2/27/78 1/1./77-2/27/78 1/V77-2/27/78 10/20A6-2/27/T8
8166(;1.0) 6166(51.0) 8166(31.0) 7211(500) 7211(500) 8166(5(0)
3711. (155) 3711* (155) 37U. (155) 281.5 (U9) 281.5 (119) 5711, (155)
255-265
51-62
20-1(0
0.02-0.10
11-19
4.5-12.5
6-lfi
69
o.oi-o.ol
255-265
31-62
20-ltO
0.02-0.10
11-19
k.5-12.5
6-16
69
O.OL-O.OU
50-1*00
Temperature, "F
Solids, undiasolved, 4 by wt.
Solids, dissolved, 4 by wt.
pK
Ionic conpositlon, ppn
SO,'
so.-
Ca**
Mg++
Na*
Corrosion rate of petals, mila/yr
AL 6X, weld AL 6X
Carpenter 20Cb-3, weld Carpenter 20Cb-3
Cor-Ten A, weld E8018-C3
Hastelloy C-276, weld Kaatelloy C-276
Hastelloy 0, veld HMtelloy G
Inconel 625, weld Inconel 625
Jesaop 700, veld Comete S2
Mild steel A-285, weld E6012
Multlnet, veld Multiset
Nitronic 50, weld Nitronic 50
Type 216, veld Type 216
Type JOliL, veld Type }C8L
Type J16L (2.6< Mo), weld Type 316L
Type 31T (5. a* :to),veld Type 309Cb
Zirconium 702, veld Zirconium 702
Evaluation of pla«ticsg
1
< 1
1
1
< 1
1
1
1
1
1
1
1
1
1
1
5
1
< 1
1
5
85-130
11-18
10-20
5.^-5.8
50-1.00
650-2600
1*00-2500
200-1600
20-l£o
20-150
600-6000
Neg.
Neg.
1, C5
Nag.
Neg.
Neg.
2, Ck
Neg.
Neg.
Neg.
Neg.
Neg.
Neg.
85-150
11- IS
10-20
5.1.-5.8
50-J.oo
650-2600
1.00-2500
200-1600
20-160
20-150
6oo-£ooo
100-125
12-18
17-50
5-5.5
150-1000
2000-3200
1500-3800
500-21*00
10-550
1.0-500
1100-11,000
Neg.
Neg.
Neg.
Neg.
Neg.
1
Neg.
Neg.
Neg.
Neg.
Neg.
Neg.
Neg.
11, P9
Neg.
Neg.
Neg.
ci, P5
Neg.
Neg.
Neg.
85-100
0-1.0
5-10
lt-6
50-1000
650-5200
1*00-5800
200-21*00
10-5JO
20-JOO
600-11,000
1, 08
Neg.
1, 05
NegT
Neg.
Meg.
Atlac 711, polyester
Bondstrand iooo, epoxy
Deraxane 510, vinyl ester
Dion 669!., bisphenol polyester
QuaCorr, furan resin
Good
Qood
Good
Poor Poor Good
Good
Good
Good
Good
Good
Good
Good
Good
Good
Good
Fair"
Good
Good,
Fairh
The tests conducted at location loll were affected greatly by erosion in addition to corrosion.
Liquor in tank D-103 was sparged with air during the forced oxidation tests.
Results of these tests are given In Table n.
Forced oxidation was used 87* of the 8166-hour (accumulative) operating period; flyash content of inlet flue gas averaged 0.15 gr/stdft3 52* of
period and 2 to 7 gr./stdft3 68' of period. J
Forced oxidation was used <£*• of the 7211-hour (accumulative) operating period; flyash content of inlet flue gas averaged 0.15 gr/stdft3 56* of
period and 2 to 7 gr/stdft3 6k' of period.
0 negligible (Weg.) indicates corrosion rates of less than 0.05 mil per year; < 1 indicates corrosion rates of 0.05 to 0.1*9 mil per year; "c" or "p"
preceding a nuriber indicates crevice corrosion or pits, respectively, during the exposure period to the depth in mils shown by the number; and "Cm"
or "Rn" indicates minute crevice or minute pit. The sign ">" indicates that the specimen failed and the penetration rate In mils per year vas
f greater than the number given.
Attack of weld.
6 Evaluation: Good, little or no change in condition of specinen; fair, definite change, probably could be used; poor, failed or severely damaged.
K-32
-------
TABLE II
Erosion-Corrosion of Specimens Tested Belov
the Venturi at Test Location 1011
Test specimens exposed in
gas and spray
Exposure conditions
Test location, No. (see Fig. 1)
Exposure period
Operating time, hr. (days)
Idle time, hr. (days)
Gas and spray
Temperature, °F
Velocity, ft/s
Flow rate, acfm x 10? at 330°F
Corrosion rate of metals, mils/yr
Carpenter 20Cb-3, weld Carpenter 20Cb-3
Cor-Ten A, weld E8018
Hastelloy C-2?6, weld Hastelloy C-276
Hastelloy G, weld Hastelloy G
Haynes 6B, weld Haynes No. 25
Inconel 625, weld Inconel 625
Jessop 700, weld Comete S2
Mild steel A-28j, weld E6012
Multimet, weld Multimet
Nitronic 50, weld Nitronic 50
Type 30l*L, weld Type J08L
Type J16L (2.6% Mo), weld Type 3l£L
Type 317L (3-2*, Mo), weld Type 309Cb
Zirconium 702, weld Zirconium 702
Evaluation of plastic
Dion 669k, bisphenol polyester
1011
10/20/76-10/26/77
551+7 (231)
3357 (11*0)
100-170
60-110
20-35
5, C2
> 21*50
5, C2
1*. C2
1
U, C2
7, Cl
> 3290
5, Cl
6, C5
> 60
9, Cl
13, C3
>T5
Poor
1011AD
6/16/77-6/20/77
70 (2.9)
18 (0.7)
110
35
120
21*00, C17
< 1, Pi*
2' 2
228
Negligible.
121, -d
2590, C20
1*3
400, Cl*
1160.
1*60, *
258', -d
320, C5
Fair
1011B
11/9/77-2/27/78
2226 (92.8)
1*14 (17.2)
100-170
55-110
18-35
1*, C2
> 1200
6, C2
k, Cl
1
1*, Cl
3, C2
> 1000
3, ci
3, Clo
> 150
1*, C9
1*, CIO
6
Poor
The results of tests conducted at other locations in the venturi/spray-tower system at -which the
attack of alloys was mainly corrosion (negligible erosion) are given in Table I.
Water only (15-20 gpm) was used to cool the inlet gas upstream from test location 1011. When the
cooling water reached the corrosion test specimens, its pH was probably below 2.0 based on earlier
tests conducted at Colbert Steam Plant.
c "C" or "P" preceding a number indicates crevice corrosion or pits, respectively, during the
exposure period to the depth in mils shown by the number; "Cm" or "Pm" indicates minute crevice
or pit. The sign ">" indicates that the specimen failed and the penetration rate in mils per
year was greater than the number given.
d Attack of weld.
e Evaluation: Fair, definite change in condition of specimen but not severe; poor, deterioration
was severe.
K-33
-------
TAEI£ III
Corrosion TestB Conducted in the TCA System of the Alhallne-Wet-Serubbing Process
for Sulfur Dioxide Removal from Stack Oa» at Shawnee Steam Plant
Test specimens exposed in
Gas and Gas and Gas and Oas and
Inlet gas Gas and liquor droplets droplets mi at mist
Exposure conditions
Test location, No. (see Fig. 2) 2002* 2005* 2005 2005 2004b ay*0
Exposure period 11/24/76-1/2I./T8 11/24/76-1/24/78 11/24/76-2/4/77 2/4/77-1/24/78 11/24/76-2/4/77 2/4/77-1/24/78
Operatlng time, hr. (days) 7632 (318) 7«52 (316) 1500 (62.5) 6132 (255-5) 1500 (62.5) 6132 (355-5)
Idle time, hr. (days) 2592 (108) 2592 (108) 228 (9-5) 2364 (98.5) 228 (9.5) 2361. (96.5)
Oas
Temperature, "r 260-310 70-130 70-125 70-125 70.125 70-125
Velocity, n/s 27-1.0 7.5-12.5 12.5 7-5-12.5 7-9 4.7-T a
Flow rate, acfm x 10» at 300'F 18-30 12-20 20 12-20 12-20 12-20
Airflow during forced oxidation, scfm - -
Composition, % by volume
S0e 0.2-0.1. -
CO. (estimated) 10-18 -
Os 4.5-12.0 -
H80 (estimated) 8-15 -
HC1 (eatlmated) 0.01 - ..."
K, (estimated) , 74
Flyash, gr/stdft 0.01-T -
Temperature, *F -----_
Solids, undissolved, * by wt» - -
Solids, dissolved, i by wt.
PH ---._;
lonlc^coaposition, ppa
1C* - ...
Cl- ---__•
Corroalon rate of metals. mlls/yrc
AL 6X, wld AL 6x - < 1 Heg. Keg. Neg. ...
Carpenter 20Cb-3, weld Carpenter 20Cb-3 < 1, Pm Keg. Heg. Keg. < 1 »!:'
Cor-Ten A, weld E8018-C3 Ik, C25 Ik 96, C23 40, CIS 54, C2£ ^ i|i
Kastelloy C-276, weld Hast.lloy 0-27« < 1 Keg. - Keg. H«g .ll
Hastelloy a, weld Hastelloy G - Keg. Heg. Keg. Hag. »!„'
Inconel 625, weld Inconel 625 < 1, Pm - Heg. Keg.
Jessop 700, weld Comete 32 - Keg. Neg. Neg. < 1 ..."
Mild steel A-263, weld E6012 15, C27 13 81, Cl£ 47 56 C25 18 rki
Multimet, weld multlmet - < l Heg. Keg. Neg Itei
Sitronic 50, weld Hltronlc 50 < 1 Cm, FT Heg. Neg. < l .I?'
Type 216, weld Type 2l£ ... N«g. „ ***•
Type 30UL, weld Type 308L 1 C16, P27 C12, P21 C16, P20 CIO, P55 C2o p«
Type 31DL (2.6* Mo), weld Type 3161 < 1 < 1, P3 < 1 Neg. < i b6 N«
Type ?1TL (3.2* Mo), weld Type 309Cb -
-------
Test specimens exposed in
Exhaust gas
(heated)
Exhaust gas
(heated)
Effluent
liquor
Effluent
liquor
Liquor
In clarlfler
Exposure conditions
Test location, No. (see Fig. 2)
Exposure period
Operating times, hr, (days)
Idle tlae, hr. (days)
201k
11/2V76-1/2I./78
7632 (3lfl)
2592 (106)
a,d
2015°
UM/76-1/21A8
7652 (318)
2592 (108)
2008°
U/21/76-2/1./77
1500 (62.5)
228 (9-5)
2006C
2/U/77-1/2V78
6132 (255.5)
256k (96.5)
2015
11/21./76-1/2I./78
7632 (31fl)
2592 (106)
Temperature, "F
Velocity, ft/s
Flow rate, acfm x 1C? at JOO'F
Airflow during forced oxidation, scfm
Composition, < "by volume
SOj.
COS (estimated)
°*
H,0 (estimated)
HC1 (estimated)
N, (estimated)
Flyash, gr/stdft
Liquor
Temperature, "I*
Solids, undlssolved, % by wt.
Solids, dissolved, i by vt.
PH
Ionic composition, ppm
S7t of the 6132-hour (accumulative) operating period; flyaah content of Inlet flue gu vas 2 to 7 gr/stdft3
d loot of the period. '
Tne test specimens were mounted on a horizontal probe with the faces of the dirts In a vertical position; alloys that were corroded
e allowed the greate«t attack on the bottom half of the disk.
Negligible (Neg.) Indicates corrosion rates of less than 0.05 mil per year; < l Indicates rates of 0.05 to o.k9 mil per year; "C"
or "P" preceding a number indicates crevice corrosion or pits, respectively, during the exposure period to the depth in mils
inovn by the number-, and "Cm" or "Pm" indicates minute crevice or minute pit. The sign ">" indicates that the specimen failed
f and the penetration rate in mils per year was greater than the number given.
Attack of weld.
8 Specimen cracked.
h Evaluation: Good, little or no change In condition of specimen; fair, definite change, probably could be used.
1 Specimens crazed.
K-35
-------
CO
TABI£ TV
Congositlon of Alloys Tested in the Alkaline Wet-Scrubbing Systems for Sulfur Dioxide Removal
from Stack Oas at Shannee Steam Plant
Chemical composition, * by welRht
Alloys
a
AL 6X
Carpenter 20Cb-3
Cor-Ten A*
Hastelloy C-276
Hastelloy Ga
Haynes 6B
Inconel 625
Jeasop 7OOC
Mild steel A-283a
Multijnet
Nitronic 50
Type 216 *
Type 30kL
Type 3l6La
Type 317La
Zirconium 702a
C
0.027.
o.o6b
0.09
0.002
0.02
0.9-l.k
O.lb
0.03
0.13
0.08-0.16
o.o6b
0.069
0.03
0.03
0.022
0.015
Cr
20.32
19-21
0.72
15-87
21.72
28-32
20-23
21.00
_
20-22.5
20.5-23.5
19 -5k
18-20
17-05
18.61
Hi
2k. 17
32.5-35.0
0.03
Bal.
Bal.
3.0b
Bal.
25.00
_
19-21
11.5-13-5
6.77
8-12
13.05
13.62
-
Fe Cu
Bal.
Bal. 3-k
Bal. 0.29
5-96
18.68^ 1.77
5-OOb
Bal.
Bal.
Bal.
Bal.
Bal.
Bal.
Bal. 0.18
Bal. 0.1*5
Mo
6.k2
2-3
16.32
6.69.
1.5b
8-10
4.5
_
2.5-3-5
1.5-3.0
2.31
2.55
3.16
Hn
I.k6
2.00b
O.kO
O.k9
1.30
2.0b
0.5b
1.70
O.k5
1.0-2.0
k. 0-6.0
8.21
2.00b
1.55
1.62
-
i3i
0.56
1.00b
0.39
< 0.01
o.3k
2.0b
0.5b
0-50
1.0b
i.ob
0.23
1.00b
o.6k
0.60
-
p
0.023.
0.035"
0.09
0.012
0.021
o.oi5b
_
0.012
-
o.okb
0.023
0.0k5
O.Okl
0.021
-
s
0.00k
0.035b
0.022
0.010
0.011
0.015b
_
0.016
-
0.03b
0.005.
0.030"
0.003
0.009
-
Al Ti
- N, 0.03
- Cb + Ta,
- Co, 1.8k;
- Co, 1.57;
- Co, Bal.;
O.kb O.kb Co, l.ob;
Cb, 0.30
_ _ -
- Cb + Ta,
w, 2-3
- N, 0.2-0.
- H, 0.358
_ - _
_
0.012 0.00k B, O.OOOS
- U, 0.05;
Others
8 x C (K max.)
W, 3-51; V, 0.25
Cb + Ta, 2.3; W, 0.5k
W, 3-5-5-5
Cb + Ta, 3.15-k.l5
0.75-1.25; Co, 18.5-21; H, 0.1-0.2;
k; Cb, 0.1-0.3; V, 0.1-0.3
; Cb, 0.02; Co, 0.17; N, 0.065
Hf, < 0.10; Zr + Hf , > 99-2
a Analysis was supplied with the material.
b Maximum.
0 Nominal analysis.
d Cr + Fe, O.lOt by weight.
-------
TABIE V
Durometer Hardness of Neoprene Protective Linings and Coverings
in Alkaline Wet-Scrubbing Systems for Removing Sulfur Dioxide
from Shawnee Steam Plant Stack Gases
(Exposure period 8/17/72-V12/78 )
Durometer A haixiness
Location of area of lining
or covering tested
Previous
Current
Venturi/Spray Tower System
Accumulative operating time: 31,370 hr. or 1307 d&ys (9/5/72-U/10/78)
Crossover duct from flooded elbow to spray tover
North wall 18 in. above bottom, 1 ft from tower
South wall 18 in. above bottom, 1 ft from tower
Spray tower walls
6 in. above cone-shaped bottom (elev. 371 ft)
6 ft above trapout tray (elev. 387 ft)
11 ft above trapout tray (elev. 392 ft)
3 in. below mist eliminator (elev. UdO ft)
3 in. above mist eliminator (elev. 1*01 ft)
1 ft belov stainless steel duct (elev. 1*06 ft)
Tanks
D-lOl*
Above liquid level
Below liquid level
Agitator blades
D-109 (orig. D-303)
Above liquid level
E-401 (reslurry tank)
Above liquid level
Pumps
G-102 (clarifier underflow)
Suction side of cuing
Seal side of casing
Impeller
G-105
Suction side of casing
Seal side of casing
Impeller
G-109
Suction side of casing
Seal side of casing
Impeller
5i(-6oc
53-62*
52-56*
1.6-50
65-72
66-7ld
6l*-72d
60-66°
61
57
73
55
75
75
55
82
1*6-50
1*8-53
U8-52
1.1-1*6
1*0 i»5
1.2-1.5
67-70
67-73
67-71
61-67
61-67
65-69
66-69
63-67
60
65
62-65
1.8-52
61-63
61-63
62
62
62
53
75
75
57
57
56
56
56
57
72
77
77
77
55
55
55
55
55
55
Turbulent Contact Absorber
Accumulative operating time: 33,81(5 hr. or 11(10 days (8/17/72-l*/12/78)
Scrubber tower
1* in. above inlet gas duet (elev. 376 ft)
2 ft below bottom grid (elev. ?78 ft)
6 in. above bottom grid (elev. ?80 ft)
3 ft above second grid (elev. 386 ft)
2 ft below mist eliminator (elev. 1*03 ft)
1 ft above mist eliminator (elev. 1*06 ft)
1* in. above top of tower in duct (elev. 1*08 ft)
Tanks
D-203
Above liquid level
Below liquid level
D-201*
Below liquid level
Bottom, agitator blades
55-62.
-
58-60d
57-61*
55-61*
1.5-534
53-65
6l-66c
72-75°
60-66!
60-70
68
90
60
72
72
72
72
82
82
1*0
1(0
36-1*5
1*6-1.8
U7-50
1*7-51
Ul*-50
1*3-1*5
1*7-51
69-70
61-63
52-61
72
72
69
66
56
66
66
72
72
56
56
Exposure period relates mainly to neoprene linings in towers and tanks; it is assumed that the
, liners in pumps have been replaced since operation began 8/17/72.
A Shore A2 D2240 Durometer was used to determine hardness values of the linings under prevailing
atmospheric conditions. The ASTM Standard D22l*0-68 specifies that tests for hardness of rubber
c be made at 7J°F (note variations in test temperature).
See third interim report, 8-1*70 (March 1976).
a See second Interim report, S-WJ5A (May 197U).
f See first interim report, S-l*65 (October 1973).
See fourth interim report, S-l*72 (April 1977)•
K-37
-------
TABLE VI
Compilation of Corrosion Data for Tests Conducted
in the Venturi/Spray Tower and TCA Scrubber Systema
(Test period: 10/27/76-2/27/78)
Alloy
AL 6X
Carpenter 20Cb-3
Cor-Ten A
Hastelloy C-276
Hastelloy G
Inconel 625
Jessop 700
Mild steel A-28?
Multiset
Nitronic 50
Type 216
Type JOltL
Type 316L (2.6< Mo)
Type 317L (3-2* Mo)
Zirconium 702
Corrosion
Number
of tests
21
23
22
19
19
15
16
23
l£
23
11
21
23
18
16
On basis
of wt. loss,
mils/yr
Neg. to 1
Neg. to 1
1 to > 175
Neg. to 1
Neg. to < 1
Neg. to < 1
Neg. to 1
1 to > 185
Neg. to < 1
Neg. to 1
Neg. to 1
Neg. to 1
Neg. to 1
Neg. to 1
Neg. to 2
Specimens pitted v
Number
of
1
k
1
0
1
2
1
1
1
7
1
lit
3
2
1
Depth
Min.
-
-
_
-
m
_
-
-
m
_
m
3
-
-
in mils
Max.
8
m
9
_
8
7
7
6
7
7
8
35
8
7
2
Specimens with
Crevice corrosion
Number
of
0
k
6
0
0
0
2
8
0
5
0
13
3
3
0
Depth
Min.
m
5
_
-
_
_
m
-
m
—
7
2
1
-
in mils
Max.b
6
26
_
-
_
m
_
8
30
6
2
-
Pitting
or crevice
corrosion
1
5
7
0
1
2
3
S
9
1
7
l
13
6
5
1
Plastics
Atlac 711 » polyester
Bondstrand kOOO, epoxy
Derakane 510, vinyl ester
Dion 6691*, bisphenol polyester
QuaCorr, furan resin
12
15
15
16
2
Evaluation,0 number of
Fair
3
0
0
k
13
specimens
Poor
^— •— •—•
0
0
o
3
0
Data compiled from Tables I and III but do not include erosion-corrosion data in Table II.
D The numerical value shows the depth of penetration by pitting or crevice corrosion in mils during
test period. Minute penetration, "m."
c Good, little or no change in condition of specimen; fair, definite change—probably could be used-
poor, failed or severely damaged.
K-38
-------
TOP OF STACK
LEGEND:
N
LOCATION OF TEST
-7— SPECIMENS
° (SPOOL)
a.CARBON STEEL ASTM A- 283
b TEST 1013 WAS CONDUCTED IN
CLARIF1ER TANK D-102 NOT SHOWN
C. TEST 1017 WAS CONDUCTED IN TANK
D-108 NOT SHOWN.
CHAMBER FOR MIXING
HOT GAS WITH SCRUBBER
GAS, 731 "00..67^" 1.0.
CATWALK
(TO POWER
BUILDING)
o
DUCT-40" Dl A.
(TYPE 3I6LSS)
I.D.FAN
(TYPE 3I6L SS)
PRESSURE
SAFETY
VALVE (PSV,
24" BUTTERFLY)
BLOOM
•REHEATER
(TYPE 316 L SS)
— NIXMIXXBXN
.-SCRUBBER
TYPE 3I6LSS
( A TO B)
SCRUBBER TOWER
LOWER
ACCESS DOOR
SPOOL'
.
NEOPRENE LINED ,v _.
CARBON STEEL)10"6
VENTURI SECTION
(TYPE 3I6L SS)
OOWNCOMER
,4'DIA.,TYPE
3I6L SS)
HOLD TANK
(O-IOI FOR
SCRUBBER
EFFLUENT,
FLAKELINE
IO3 COATING
ON CARBON
STEELO )
GAS INLET DUCT(40"DIA., IOGA.
CARBON STEEL«)
EL. 397.'-
NEOPRENE LINED
(CARBON STEEL,
B-C-D)
RECIRCULATION —•
TANK (D-104,
NEOPRENE LINED
CARBON STEEL)
FIGUEE 1
' GROUND LEVEL
EL. 345'-0"
Venturi/Spray Tower System (C-101)
K-39
-------
2015
~\
LEGEND:
N LOCATION OF TEST
^7- -SPECIMENS.
0 (SPOOL)
0 CARBON STEEL ASTM A-283
b TEST 201 3 MAS CONDUCTED IN
CLARIFCR TANK D- 202 NOT SHOWN
2016
1
2014
CHAMBER FOR MIXING
HOT GAS WITH
SCRUBBER GAS
73VO.D.,67>2*I.O.
MIST ELIMINATOR (OPEN VANE
SLURRY SPRAY HEADER —
GAS INLET DUCT (40"
DIA.. 10 GA. CARBON ~\ J
STEEL) o
EL 397- 10" -^». ^-^
TYPE 316 L S.S •
( A TOB)
ACCESS DOOR-w
2002 r\
SPOOL
^
— ^ if
^
'"\,
X;
J
d
,
i
pj^^S^l
MIXER.
(Y-204p^j
RECIRCULATION -•
TANK (D-204,
NEOPRENE LINED
CARBON STEEL)
n*
-i— J i M
It
0
I
'T I.D. FAN
L(TYPE 316 LSS)
iff
. S DUCT-40"DIA
T ^(TYPE3I6LSS)
PRESSURE SAFET
VALVE, 24"^
1 BUTTERFLY
if-
. I. !
y k
a Hi
^y^L-
3(
1
-el"
>-6"
3' 9- "
3 *2
-BLOOM ]
REHEATER »• n"
I05S'V47"O.D 8J° 13-
PE 316 LSS)
\2004
V2005
s:-
iiio?
... —t
°\\
r
ao'-o"
b'-l==
\2006b
POOL
GRIDS
~(BALL SUPPI
, f
•"""
MIXER
i/Y-201)
1
b
eg
•
6'- ll'SO INSIDE
, -RUBBER LINING
17'-
^ SCRUBBER
/ STRUCTURE
SCnUoBCn TOWER
5-7" SO INSIDE
(NEOPRENE LINED
CARBON STEEL) G
)RT)
n!
' DOWNCOMER (4'OIA.,'
TYPE3I6L SS)
HOLD TANK
- - 0-201 FOR
SCRUBBER
EFFLUENT, 22
FLAKELINE
103 COATING
ON CARBON
STEEL")
6"
15
0"
\ '-6"
4-
••i-
0^0
a
TOP OF STACK
FIGURE 2
GROUND LEVEL
EL. 345'-0
Turbulent Contact Absorber System, TCA (C-201) (Mobile Bed)
K-40
-------
STRESSED
(U-Bend)
SPOOL
(Disk)
PROBE(Disk)
FIGUEE 3
Typical Assemblies of Corrosion Test Specimens
K-41
-------
Erosion-Corrosion of Components Imnediately
Below Adjustable Plug in Venturi (Looking Upward)
FIGURE 5
Flooded Elbow; Blisters in Neoprene Lining on North Wall (Left)
and Heavy Scale Overhead (Inside Spray Tower Looking East)
K-42
-------
FIGURr.
Pitting Corrosion of Type 316 Mist-El |«»j nator
Vane in Spray Tower After A
18,500 Operating Hours
FIGUK:
Pits 12 to ?8 Mils Deep on IVpe 316 Deflator Plat*
on Venturi/Spray Tower Fourth )%n*»y Door
K-43
-------
FIGURE 8
Closeup of Solids Deposited in Outlet Duct
from, the Venturi/Spray Tower Reheater
K-44
-------
FIGURE 9
Upper Area; Transition Section from Expansion Joint to Cylindrical Stack
Lower Area; Corroded Shields That Cover Expansion Joint
K-45
-------
FIGURE 10
Comparative Corrosion of Type 3l6L Specimens Exposed
at Test Locations 1014 in the Venturi/Spray Tower
System and 2014 in TCA System
m
.
A. Chloride Stress-Corrosion Cracking
of Bottom Half of Specimen (5OX)
B. Typical Structure of Top Half
of Specimen (150X)
FIGURE 11
Photomicrograph of Type ^IcL Specimen After Exposure
at Test Location 20lh in TCA System
K-46
-------
IOOS
/OOt>
10(3
FIGUKE 12
/o/r
Specimens After Exposure in Venturi/Spray Tower System
K-47
-------
2.00Z
FIGURE 13
Specimens After Exposure in TCA System
K-48
-------
A. Type Jl6 Flanges Forming Spool Piece
B. Closeup Showing Perforations in Pipe
FIGUEE lU
Type 304, Schedule 10 Pipe That Failed with Corrosion
Rate Greater Than 420 Mils Per Year
(Venturi/Spray Tower System)
K-49
-------
FIGURE 15
Blisters in Neoprene Lining of 6-Inch Slurry
Feed Line in Venturi/Spray Tower System
FIGURE 16
Worn Rubber Pinch Valve Used in 4-Inch Process Slurry
Line to Bull Nozzle (Venturi/Spray Tower System)
K-50
-------
APPENDIX L
TEST DATA FOR WASTE SOLIDS
DEWATERING AND CHARACTERIZATION
L-l
-------
This appendix contains detailed data for the following types of solids
dewatering tests:
• Lamella settler tests
t Laboratory settling and funnel tests
• Laboratory filter leaf tests
• Hydroclone tests
Lamella Settler
Table L-l presents the results of a long-term Lamella settler test made during
venturi/spray tower Run 819-1A in November 1977. The Lamella feed was limestone
bleed slurry with forced oxidation and high fly ash. Table L-l gives flow rates
and solids concentrations for the Lamella feed, overflow, and underflow.
Tables L-2 through L-5 present test results obtained with different alkali type,
oxidation, and fly ash loading:
• Table L-2 - Limestone, no oxidation, high fly ash
• Table L-3 - Limestone, oxidation, low fly ash
• Table L-4 - Limestone, oxidation, high fly ash
• Table L-5 - Lime, oxidation, high fly ash
Some of these Lamella tests were made with either of two types of flocculents
Superfloc 1204 or Nalco 8861.
Table L-6 presents solids concentration profiles within the Lamella settler hold
tank. Solids concentrations were obtained at nine vertical positions within the
tank, with position 1 being at the top of the tank.
L-2
-------
Table L-7 presents laboratory cylinder settling test results using bleed
slurry samples taken from TCA limestone Runs 714-2A and 714-2B. These slurries
were unoxidized and had high fly ash content.
The cylinder settling tests were used to obtain preliminary estimates of the
maximum feed rate for the Lamella settler at differing slurry solids concentra-
tion, mass loading, flocculent concentration, and type of flocculent (if any).
The estimated maximum feed rate is that at which the Lamella would be expected
to have an underflow solids concentration greater than 40 weight percent and
an overflow solids concentration less than 0.5 weight percent.
Laboratory Settling and Funnel Tests
Tables L-8 and L-9 present laboratory settling and funnel test data for the
venturi/spray tower and TCA systems, respectively, for the period November 1976
through June 1978. The data cover:
t Limestone versus lime alkali
• Forced oxidation versus low (natural) oxidation
• Initial slurry solids concentrations of 8 and 15 weight percent
• High versus low fly ash loading
• MgO additive for some tests
The test results include the initial solids settling rate, the ultimate settled
solids concentration, and the funnel test cake solids concentration.
L-3
-------
Laboratory Filter Leaf Tests
Tables L-10 through L-13 present filter leaf test results. The best of these
results are presented in Table 22-6. The filter leaf cycle t-jme is the sum Qf
the form (or submergence) time and the dry time, plus the cake discharge time.
The initial slurry samples were obtained from the clarifier underflow of either
the venturi/spray tower or the TCA. Test results presented in the tables in-
clude the cake solids concentration and thickness, the dry solids loading han-
dled by the filter leaf, and the filtrate loading.
The filter leaf test blocks referred to in Tables L-10 through L-13 are as
follows:
Block 2:
(Table L-10)
Block 3:
(Table L-10)
Block 5:
(Table L-ll)
Block 6:
(Table L-12)
Block 7:
(Table L-13)
Block 8:
(Table L-10)
Lime, high fly ash, two-scrubber-loop forced oxidation
Lime, high fly ash, no forced oxidation
Lime, low fly ash, two-scrubber-loop forced oxidation
Lime, low fly ash, no forced oxidation
Limestone, high fly ash, one-scrubber-loop
forced oxidation
Limestone, high fly ash, two-scrubber-loop
forced oxidation
Hydroclone
Tables L-14 through L-17 present hydroclone rec-lts for three two-hour tests
made during venturi/spray tower limestone Run 819-1A in November 1977. The
bleed slurry fed to the hydroclone was oxidized and had high fly ash content,
L-4
-------
The three tests were conducted with nominal hydroclone feed rates of 18, 15,
and 12 gpm.
Table L-14 summarizes the operating data for all three tests. The data given
include flow rates and solids concentrations for the hydroclone feed, overflow,
and underflow.
Tables L-15 through L-17 list solids compositions measured during the tests
with 18, 15, and 12 gpm feed rates, respectively.
L-5
-------
Table L-l
RESULTS OF LONG-TERM LAMELLA
SETTLER TEST MADE DURING NOVEMBER 1977
Date Feed
gpm 1 wt%
11/01 9.0 14.5
8.0 15.6
11/02 9.0 14.2
9.0 15.5
9.0 14.2
11/03 9.0 15.0
8.0 16.6
9.0 15.8
11/04 8.5 15.5
9.0 15.1
11/05
11/06
11/07
11/08
11/09
11/10
11/11
11/12
11/13
14.7
15.0
15.4
15.2
15.4
14.5
15.6
15.0
14.1
14.2
16.3
15.0
14.9
15.2
14.3
14.5
15.8
14.6
15.3
15.1
14.3
16.4
13.0
14.4
15.2
14.0
14.2
15.8
Overflow
gpm* 1 wt%
__
4.6
4.8
6.0
5.4
5.4
4.4
5.4
5.2
5.8
5.9
5.4
5.7
5.8
5.8
5.6
5.6
5.6
5.8
5.8
6.0
5.8
5.8
--
5.8
5.8
5.8
5.8
6.0
5.9
5.8
6.0
5.6
5.6
5.8
--
--
5.7
0.45
0.06
0.08
0.07
0.06
0.09
0.08
0.08
0.04
0.07
0.11
0.07
0.09
0.05
0.05
0.05
0.06
0.08
0.10
0.05
0.06
0.08
0.06
0.08
0.06
0.09
0.15
0.18
0.15
0.14
0.09
0.07
0.11
0.07
0. 12
0.07
0.10
0.08
Underflow
gpm 1 wt%
_ _
3.4
4.2
3.0
3.6
3.6
3.6
3.6
3. 3
3.2
3. 1
3.6
3.3
3.2
3.2
3.4
3.4
3.4
3.2
3.2
3.0
3.2
3.2
--
3.2
3.2
3.2
3.2
3.0
3.1
3.2
3.0
3.4
3.4
3.2
..
--
3.3
40
62
36
45
40
40
39
38
40
38
32
40
35
41
41
41
40
41
37
37
42
36
46
47
44
39
41
37
40
45
42
38
42
37
40
40
39
41
L-6
-------
Table L-l (continued)
RESULTS OF LONG-TERM LAMELLA
SETTLER TEST MADE DURING NOVEMBER 1977
Date Feed
gpm 1 wt%
11/14 9.0 15.0
11/15
11/16
11/17
11/18
11/19
11/20
11/21
11/22
11/23
11/24
11/25
11/26
13.0
15.4
14.2
14.8
15.2
14.9
15.3
15.9
14.9
15.2
16.2
14.9
16.2
15.5
14.5
14.7
15.2
13.9
16.1
15.3
14.0
15.4
15.3
14.8
15.5
15.5
14.5
14.1
15.5
14.0
15.2
15.2
14.0
14.4
13.4
11.8
, 15.6
16.7
Overflow
gpm*
5.7
5.7
6.0
6.1
5.8
5.7
5.8
5.9
5.8
5.9
5.7
5.6
5.9
5.9
5.8
6.3
6.2
5.9
5.6
5.6
7.0
6.0
5.9
5.8
5.8
5.7
5.7
5.6
5.6
5.8
5.8
5.8
5.8
5.7
5.7
5.9
6.0
6.1
5.8
1 wt%
0.09
0.08
0. 18
0.12
0.01
0.08
0.10
0. 10
0.07
0.08
0.09
0.10
0.10
0.09
0.16
0.08
0.08
0. 13
0.05
0.07
0.13
0.08
0.07
0.14
0.07
0.09
0.73
0.05
0.07
0.10
0.13
0.06
0.11
0.08
0.09
0.14
1.29
0.21
0.12
Underflow
gpm 1 wt%
3.3
3.3
3.0
2.9
3.2
3.3
3.2
3.1
3.2
3.1
3.3
3.4
3.1
3. 1
3.2
2.7
2.8
3. 1
3.4
3.4
2.0
3.0
3.1
3.2
3.2
3.3
3.3
3.4
3.4
3.2
3.2
3.2
3.2
3.3
3.3
3.1
3.0
2.9
3.2
39
28
37
45
45
37
40
40
42
42
44
44
41
38
52
54
49
40
40
42
41
41
41
44
38
41
40
39
36
38
37
42
42
43
39
37
30
45
43
L-7
-------
Table L-l (continued)
RESULTS OF LONG-TERM LAMELLA
SETTLER TEST MADE DURING NOVEMBER 1977
Date Feed
gpm | wt%
11/27 9.0 16.4
11/28
11/29
]
16.6
17.4
16.3
15.7
14. 1
Jb.2
, 15.4
' 15.9
Overflow
gpm*
5.5
5.5
5.2
5.3
5.3
5.6
5.7
5.8
5.7
| wt%
0. 10
0. 12
0.22
0.08
0. 10
0.29
0. 12
0. 11
0.04
Underflow
gpm | wt%
3.5
3.5
3.8
3.7
3.7
3.4
3.3
3.2
3.3
43
40
39
39
37
37
40
39
41
* Overflow rate determined by difference between feed and underflow.
L-8
-------
Table L-2
SUMMARY OF LAMELLA TESTING ON UNOXIDIZED
LIMESTONE SLURRY WITH HIGH FLY ASH LOADING
FROM RUNS 714-2A AND 714-2B
I
ID
Duration,
hrs.
46
23
22
16
1
Lamella Feed
gpm 1 wt%
3. 0 15 - 17
2.0 15 - 16
30-40 7-9
35-46 7-8
49 7
Flocculent
Type j ppm
none
none
Overflow
5pm wt% solids
2.0 0. 1 - 4. 5
1. 0 0. 05 - 0. 7
Superfloc 1204 8-12 23-33 0.6-4.3
Nalco 8861 10-11 37-40 0.1 -0.7
Nalco 8861 7
42 1.4
Underflow
gpm
1.0
1.0
5.5-7
7
7
wt% solids
26 - 35
38 - 39
26 - 29
33 - 37
35
-------
Table L-3
SUMMARY OF LAMELLA TESTING ON OXIDIZED
LIMESTONE SLURRY WITH LOW FLY ASH LOADING
FROM RUN 809-1A
I
t—•
o
LAMELLA FEED
gpm
6
7.5
8
10
10
10
11
12
12
12
12
wt%
12,4
13.8
16.1
12.9
12.8
15.3
13.8
14.7
14.8
13.8
"
UNDERFLOW
gpm j wt%
3.5 27.8
3.6 27.3
3.5 33.2
4.0 30.3
3.5 40.1
3.9 35.5
4.1 22.4
4.0 40.7
4.5 37.8
4.6 43.2
3.6 39.6
OVERFLOW
gpm*
2.5
3.9
4.5
6.0
6.5
6.1 .
6.9
8.0
7.5
7.4
8.4
wt%
0.11
0.07
0.13
0.06
0.10
—
0.45
0.24
0.25
0.38
0.70
* Determined by difference between Feed and Underflow.
-------
Table L-4
SUMMARY OF LAMELLA TESTINO ON OXIDIZED
LIMESTONE SLURRY JITH HIGH FLY ASH LOADING
FROM RUNS 803-2A, 804-2A, AND 818-2A
Duration,
hrs.
26
24
24
26
18
22
19
1
1
18
36
8
8
5
10
Lamella
gpm I
3.0
4.0
5.7
9.2
10
12
10
24
22
10
20
17
20
18
20
Feed
wt%
14-16
15
13-16
14-17
15-17
15
14-16
14
15
15
15
15
16-17
14
15
Overflow
gpm J
2.2
2.8
4.2
6.6
7.0
8.5
6.7
17
15
5-6
11-14
9.6
12-14
10-12
13
wtt
.
0.01
0.02
0.09
0.03
0.21
0.06
1.2
0.8
0.03
0.3-0.
0.20
0.3-0.
0.45
0.3-0.
Underflow
gpm 1 wt%
0.8
1.2
1.5
2.6
3.0
3.5
3.3
7
7
4-5
7 6-9
7.4
6 6-8
6-8
6 7
41-48
38-43
39-46
37-46
43
35-48
34-56
39
41
38-60
42-57
38-46
38-43
41-45
34-46
L-ll
-------
Table L-5
SUMMARY OF LAMELLA TESTING ON OXIDIZED
LIME SLURRY WITH HIGH FLY ASH LOADING
FROM RUN 862-1A
ro
Duration
hrs.
24
73
22
Lamella
gpm |
5.0
10.2
38-41.5
Feed
wtt
14.4-15.6
13.8-15.8
8.2-8.7
Flocculant
Type | ppm
none
none
Nalco 8861 7.7-8.3
Overflow
gpm | wt%
3.6-3.7 0.04-0.11
7.0-7.2 0.07-0.51
32.0-35.5 0.03-0.07
Underflow
gpm 1 wU
1.3-1.
3.0-3.
6.0
4 39.9-52
2 33.6-48
41.0-52
.7
.7
.6
-------
Table L-6
SUMMARY OF SOLIDS CONCENTRATION PROFILES
OF LAMELLA SETTLER HOLD TANK
RUN NUMBER
Slurry Type
Flocculant
cone . , ppm
Slurry Feed, wt%
gpm
Lamella Settler
Overflow, vt%
gpm
Top of hold tank 1, wtt
2
3
4
5
6
7
8
Bottom of hold 9
tank
Underflow, w«
gpm
809-1A 714-2A 714-2A 714-2A 714-2A
LS/OX/NOFA LS/UNOX/NOFA LS/UNOX/NOFA LS/UNOX/NOFA LS/UNOX/NOFA
none Nalco Nalco Nalco Nalco
9,8 9,8 9,8 9.8
14.5 6.6 6.6 7.0 7.0
12 36.0 44.0 44,0 46.0
0.7 0.01 0.03 0,52 0.68
8.4 30.5 37.0 37.0 39.0
5.0 28.9 31.7 33.3 33.7
5.9 28.3 30.6 34.0 31.9
5.9 28.5 31.3 32.2 32.5
3.4 28.6 30.2 33.5 32.6
11.9 29,0 30.0 33.1 33.0
5.6 29.0 30.3 33.0 31.3
10.5 29.0 30.3 33.8 31.1
6.5 29.1 32.8 33.1 34.0
6.7 29.1 31.2 33.0 34.3
39.6 32.6 32.8 34.4 35.0
3.6 5.5 7.0U) 7.0(1) 7.0(1)
714-2A 862-1A 862-1A 717-1A
LS/UNOX/NOFA LIME/FA/OX LIME/FA/OX LS/FA/UNOX
Nalco none Nalco 8861 none
9.8 8.1
6.8 14.4 8.1 16.1
45,0 10.2 39.0 2.0
0.16 0.13 0.03 6.8
38,0 7.2 33.0 1.4
20.2 14.3 3.1 34.9
34.1 13.4 11.7 36.8
34.4 13.3 11.8 35.3
34.5 13.7 11.6 35.7
34.5 13.7 11.3 35.5
35.4 13.6 10.9 36.1
35.6 13.6 11.7 35.2
35.2 13.7 11.1 36.4
35.5 13.4 19.7 35.5
36.8 41.4 41.0 41.2
7.0(D 3.0 6.0 0.6
(1) Maximum attainable flow on underflow pump.
-------
Table L-7
LABORATORY CYLINDER SETTLING TESTS
Initial Slurry
Cone. , wt%
15
15
15
15
15
15
15
15
15
15
8
8
8
8
8
8
8
8
8
8
Flocculent
Type
none
Superfloc 1204
Superfloc 1204
Superfloc 1204
Superfloc 1204
Superfloc 1204
none
Nalco 8861
Nalco 8861
Nalco 8861
none
Superfloc 1204
Superfloc 1204
none
Nalco 8861
Nalco 8861
Nalco 8861
Nalco 8861
Nalco 8861
Nalco 8861
Cone. . ppm
5.0
10.0
10.0
15.0
25.0
8.0
12.0
16.0
4.0
8.0
0.5
1.5
3.0
7.5
8.0
12.5
Initial Settling Rate.
cm/min
0.28
0.30
0.38
0.46
0.41
0.36
0.19
0.19
0.22
0.22
0.94
4.78
4.57
0.93
4.98
11.20
16. 18
17.42
11.20
24.89
Surface Loading Rate. Ma a a I
gpm» ft ton/d
0.07 0.
0. 07 0.
0. 09 0.
0.11 0.
0. 10 0.
0. 09 0.
0. 03 0.
0.05 0.
0. 06 0.
0.08 0.
0. 19 0.
1. 16 0.
1.08 0.
0. 17 0.
1.8Z 0.
2.73 1.
3.86 1.
4. 42 2.
3.06 1.
5. 32 2.
Estimated Maximum Feed
^oading, Rate for the Lamella Settler,
»y/ft2 gpm(1)
07 3.9
07 3.9
09 5.0
11 6.3
10 5.6
09 5.2
03 1. 7
05 3. 1
06 3. 7
07 4. 3
10 11.0
58 66. 6
55 62.4
08 9-8m
92 1°4-6,
38 1B7-°7
94 222-°?
22 254.2,
176.0
67 305.9(Z)
(1) Based on 57. 5 ft clarification area
(2) Maximum design feed flow rate for the Lamella settler is 95
-------
Table L-8
SETTLING AND FUNNEL TEST RESULTS FOR THE VENTURI/SPRAY TOWER
Run No.
801-1A
801-1A
801-1A
801-1A
802-1A
802- 1A
802- 1A
802-1A
802- IA
802-1A
802- 1A
802- 1A
802- 1A
802-1A
803-1A
803-1A
803-1A
803-1A
803-1A
803-1A
804-1 A
804- 1A
804- IA
804- 1A
804- 1A
804- 1A
804- 1A
805-1A
805-1A
805-1A
805 -IA
805-1A
806- IA
806- 1A
806-1B
806-1B
806-1C
806-1C
806-1D
806-1D
Date
11 6/77J}'
I/ 8/771 '
I/ 9/77
1/15/77
1/25/77
1/26/77
1/27/77
1/28/77
1/29/77
1/30/77
1/31/77
2/ 1/77
2/ 2/77
2/ 4/77
2/ 5/77
2/ 6/77
2/ 7/77
2/ 8/77
21 9/77
2/10/77
2/11/77
2/12/77
2/13/77
2/14/77
2/16/77
2/17/77
2/18/77
2/19/77
2/20/77
2/21/77
2/22/77
2/23/77
2/24/77
2/25/77
2/26/77
2/27/77
2/28/77
3/ 1/77
3/ 2/77
3/ 3/77
Initial Settling
Rate, cm/min
0. 13
0. 11
0.87
0.63
1.08
1. 08
0. 96
1.08
1.08
1.08
1.08
1. 31
1.26
1.26
1.26
1.08
1.22
1.22
1.22
1.41
1.22
1.22
1. 08
1. 02
1. 15
1.05
1.05
1.08
1.02
1.02
1.41
1.08
0. 61
0.54
0.81
0.81
0. 70
0.61
0. 57
0.47
Ultimate
Settled
Solids, wt.%
38.5
36.4
66. 7
71.4
71.3
63.0
72.2
76.2
74.5
80.2
80.5
65.5
73.7
71.1
69.9
71. 1
79.4
77.4
74.5
76.3
80. 1
78.5
78.5
74.0
75.5
75.6
75.1
73.8
72.6
74.1
69.9
59.3
68.9
73.0
66.0
73.2
66.8
71. 1
68.6
65.7
Funnel Test
Cake Solids,
wt.%
..
__
--
69
71
71
70
73
72
72
67
66
65
66
60
70
72
72
73
72
74
74
72
73
66
67
66
67
64
72
71
72
69
67
69
73
70
71
79
64
Initial Solids,
wt.%
5. 1
6.5
13.3
14.8
15.8
12.9
13.8
15. 3
13.6
15.7
16.8
10.9
15.8
14.9
14.5
14.7
15.8
15. 1
15.3
15.9
16.4
16. 1
15. 1
15.9
17. 1
15. 1
16. 6
13.4
13.6
15.6
13.8
11.0
13. 3
14.8
13. 1
15.6
14. 1
14.5
13. 7
13.9
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
Fly Ash
Yes
Yes
Yes
Yes
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Venturi Inlet
pH, avg.
4.5
4.5
4.5
4. 5
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5. 0
5.0
5.0
S.O
5.0
5.0
5.0
5.0
5.0
5.0
5. 0
5.0
5.0
5. 0
5.0
5.0
5.0
5.0
5.0
5.0
5. 0
4.5
4.5
4.5
4.5
4.5
4.5
4. 5
4. 5
Sample
Oxidation.
mote %
80.4
98.7
93.3
96.8
96.5
97.0
97.4
95.2
98.0
97.3
93.4
90.2
98.2
97. 9
94. 1
98.2
96. 6
97. 9
97.4
97.7
96. 7
97. 3
98.2
97.8
97.8
86. 0
--
99.9
98. 5
97.8
90. 1
96.6
99.9
97. 1
97.7
97.2
91.4
99.9
71. 1
50. 1
Avg.
Air Stoich.
Ib-atoms O
Ib-mole SO? aba.
4.7
4.7
4. 7
4. 7
4.7
4. 7
4. 7
4. 7
4.7
4. 7
4. 7
4. 7
4. 7
4. 7
4.7
4. 7
4. 7
4. 7
4. 7
4. 7
4.4
4.4
4.4
4.4
4.4
4.4
4.4
3. 7
3. 7
3. 7
3. 7
3. 7
2.5
2.5
1. 7
1. 7
1. 0
1. 0
0.5
0.5
-------
Table L-8 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE VENTURI/SPRAY TOWER
Run No.
807-1A
807-1A
807-1A
808- 1A
808- 1A
851-1A
851-1A
8S1-1A
851 -1A
852-1A
852-1A
852-1A
853-1A
853-1A
8S3-1A
853-1A
853-1A
853-1A
853-1A
854-1A
8S4-1A
854-1A
854-1A
854-1A
854- 1A
854-1A
855-1A
856-1A
856-1A
857- 1A
857-1A
857-1A
857-1A
858-1 A
858-1A
858- 1A
858-1A
858-1A
858-1A
Date
It 4/77
3/ 5/77
3/ 6/77
3/ 7/77
3/ 8/77
8/11/77
3/12/77
3/13/77
3/14/77
3/16/77
3/17/77
3/18/77
3/19/77
3/20/77
3/21/77
3/22/77
3/23/77
3/24/77
3/25/77
3/26/77
3/27/77
3/28/77
3/29/77
3/30/77
3/31/77
4/ 1/77
Initial Settling
Rate, cm/min
0.34
0.47
0.54
0.61
0.62
0.70
1.31
0.69
1.31
0.81
0.20
0.12
0.57
0.96
0.99
0. 96
0.99
1.18
0.96
1.05
0.85
0.85
0.11
0.92
1.02
1.02
6/23/77 0.46
7/ 7/77( ' 0.18
7/ 7/77
1.67
7/ 8/77( ' 0.18
7/ 8/77
2.44
7/12/771 ' 0.18
7/12/77
1.53
7/15/77 1.67
7/15/771 ' 0.92
7/17/77.- 2.44
7/17/771 ' 0.92
7/19/77 2.62
7/19/771 ' 1.22
Ultimate
Settled
Sotida, wt. %
63.1
59.8
67.2
76.2
71.6
75.8
70.9
76.7
76.7
82.8
62.6
56.3
71. 3
81.7
80.9
80.2
79.1
76. 1
62.5
77. 1
84.7
78.3
60. 1
73.6
73.0
75.0
60.0
34.6
86.6
36.7
80.4
37. 9
72.6
73.9
81.2
64. 1
60.0
65.9
56.9
Funnel Test
Cake Solids,
wt.%
59
70
65
65
65
63
64
64
64
70
59
60
63
64
..
64
70
71
71
70
70
72
69
71
65
70
66
38
72
43
81
61
73
82
_.
77
85
--
Initial Solids, Alkali
wt.%
14. 8 LS
12. 9 LS
15.8 LS
15.3 LS
15.9 LS
19.6 L
13.4 L
15.7 L
15.7 L
21.5 L
16.3 L
15.3 L
16.0 L
17.0 L
16. 3 L
16.7 L
16.3 L
14. 1 L
12.9 L
15.6 L
15. 6 L
15. 1 L
16. 9 L
16.6 L
14.8 L
15.8 L
15.0 L
7.7 L
15. 1 L
7.7 L
14.2 L
8.6 L
18.3 L
7.6 L
-15.0 L
6.5 L
~15.0 L
7.3 L
-14.5 L
Fly Ash Venturi Inlet
pH, avg.
Yes 4.5
Yes 4.5
Yes 4.5
Ye« 4.5
Yes 4.5
Yes 4.5
Yes 4.5
Yes 4.5
Yes 4.5
Yes 5.6
Yes 5.6
Yes 5.6
Yes 4.8
Yes 4.8
Yes 4.8
Yes 4.8
Yes 4.8
Yes 4.8
Yei 4.8
Yes 5.2
Yes 5.2
Yes 5.2
Yes 5.2
Yes 5.2
Yes 5.2
Yes 5.2
No 4.7
No 5.0
No 5.0
No 5.5
No 5.5
No 5.5
No 5.5
No 5.5
No 5.5
No 5.5
No 5.5
No 5.5
No 5.5
Sample
Oxidation ,
mole %
19.6
12.8
6.6
°6. 9
99.3
66.0
97.8
96.7
99.5
72.7
87.1
36.1
69.3
91.5
93.9
95.1
95.3
94.9
86.0
98.7
95.7
94.0
93.5
94.2
98.9
98.1
44.5
11.3
98.2
11.8
95.7
10.2
98.4
91.1
91.1
99.0
99.0
97.9
97.9
Avg.
Air Stoich.
Ib-atoms O
Ib-mole SO abs.
0
0
0
1.7
1.7
1.45
1.45
1.45
1.45
1.55
1.55
1.55
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.90
1.65
1.65
1.65
1.65
1.65
1.65
1.60
1.60
1.60
1.60
1. 60
1.60
I
t—»
CTi
-------
Table L-8 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE VENTURI/SPRAY TOWER
Run No.
859-1A
859-1A
859-1B
859-1B
859-1B
859-1B
859-1C
859-1C
859-1C
859-1C
859-1C
859-1D
859-1D
859-ID
859-1D
860- IA
860- 1A
860- 1A
860- 1A
860- 1A
Date
7/23/77
7/24/77
7/26/77
7/27/77
7/27/77
7/28/77
7/29/77
7/30/77
7/31/77
8/ 1/77
8/ 2/77
8/ 3/77
8/ 4/77
8/ 5/77
8/ 6/77
8/ 7/77
8/ 8/77
8/ 9/77
8/10/77
8/11/77
Initial Settling
Rate, cm/min
0. 16
0. 15
0.83
0. 14
0. 73
0. 73
0. 73
0. 10
0. 10
0. 13
0. 12
0. 05
0. 05
0. 05
0. 10
0.45
0.63
0.68
0. 81
0. 65
Ultimate
Settled
Solids, wt.%
57.5
65.8
68.5
34.4
66.5
71.5
66.8
58.0
56.1
60.0
57.7
47.6
34.1
44.9
58.0
66.8
75.9
70.2
75.3
66.0
Funnel Teat
Cake Solids,
wt.%
71
68
83
40
67
68
64
59
62
59
66
52
51
48
66
79
78
80
73
82
Initial Solids,
wt.%
13. 7
15. 3
14.4
7. 5
13. 7
14. 0
15. Z
15.7
15.0
15. 1
15.6
15.4
14. 5
14. 7
16. 8
13.8
15.2
14.4
15.0
13. 1
Alkali
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Fly Ash
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
Sam
Venturi Inlet Oxid
pH, avg. mol
5.5 84
5.5 79
5.5 96
Avg.
pie Air Stoich.
&tion, Ib-atoma O
e,% Ib-mole SO abs.
.3 1.20
.7 1.20
.6 1.50
5. 5 10. 0 1. 50
5.5 99
5.5 99
5.5 92
5.5 66
5.5 64
5.5 81
5.5 70
5.5 30
5.5 25
5.5 30
.2 1.50
.3 1. 50
. 0 1.0
.9 1.0
.2 1.0
. 1 1.0
.4 1.0
.4 0
.9 0
2 0
5.5 52.5 0
5.5 98
5.5 98
5.5 98
5.5 98
5.5 98
2 .75
2 .75
2 .75
5 .75
2 .75
(1) Sample from spray tower Blurry loop.
(2) These were originally at 6 percent initial aollda. They were concentrated to 15 percent so lid a
ao the result* could be compared with other runs.
The settling teat was performed in a 500 ml cylinder instead of the normal 1000 ml cylinder due to amall sample
aice when the •ample waa concentrated to 15 percent.
-------
Table L-8 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE VENTURI/SPRAY TOWER
00
Run
Number
809 -1A
810-1A
811-1A
81Z-1A
814- 1A
815-1A
816-1A
861-1A
862- 1A
817-1A
Date
8/13/77
8/14/77
8/15/77
8/17/77
8/19/77
8/Z1/77
8/Z4/77
8/25/77
8/27/77
8/31/77
9/4/77
9/5/77
9/7/77
9/11/77
9/13/77
9/15/77
9/17/77
9/19/77
9/21/77
9/ZZ/77
9/24/77
9/27/77
9/29/77
10/1/77
10/4/77
10/7/77
10/9/77
10/10/77
10/12/77
10/14/77
10/16/77
10/18/77
10/20/77
10/22/77
10/24/77
10/26/77
Initial Settling
Rate, cm/min
0.80
0.61
0.83
0.73
0.87
0.89
1.08
1.15
0.96
0.63
1.01
0.97
1. 10
0.98
1.10
0.92
0.63
0.71
0.61
0. 77
0.82
0.97
0.92
0.92
1.00
1.04
0.79
0.99
1.10
1.20
1.01
1.01
1.01
0.94
1.33
1.04
Ultimate Settled
Solid.. wt%
70.4
67.3
85.8
80.6
94.1
79.0
79.3
73.5
81.6
75.8
69.9
77.9
77.8
61.3
76.3
70.2
70.7
76.3
69.9
--
70.8
65.9
74.7
66.0
69.0
_.
77.7
68.1
68.1
65.9
61.0
66.2
65.8
68.6
66.4
70.2
Funnel Teat Cake
Solid., wt%
80.7
79.0
75.4
77.9
75.7
77.3
82.1
76.8
79.0
72.0
66.2
61.6
66.8
73.2
75.5 .
74.7
72. 7
74. 3
70.7
74.6
73.6
74.8
73.5
61.8
60.5
60.6
61.4
76.3
78.5
73. 1
69.4
72.5
72.1
65.9
68.8
67.9
Initial Solid*,
wt%
12.4
13.0
16.0
17. 1
18.8
16.5
14.0
13.3
14.6
16. 3
14.1
16.0
16.1
12.4
15.9
14.4
15.6
15.3
14.8
17. 1
14. 1
13.8
13.9
14.2
15.5
13.7
14.6
14.9
14.5
14.9
14.5
15.0
15.0
16.3
15.5
16.4
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
L
L
L
L
L
L
LS
LS
LS
LS
LS
Fly A ah
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Ye
Vaararl
Inlet pH
4,7
4.4
4.5
4.5
--
4.9
4.9
5.0
5.4
5.6
5.2
6.1
5.6
5.5
5.5
5.3
6. 1
6. 1
6.2
5.2
5.9
5.2
5. 1
5.4
5.3
5.4
5.2
5.3
5.3
5.5
5.5
4.8
5.6
5.6
5.6
5.5
Sample Oxidation,
mole %
96.9
98.5
95.4
99.0
98.9
95.2
97.9
99.0
99.2
79.0
95.9
98,9
98.9
. 95. 1
96.8
100.0
99.6
97.5
97.3
98. 1
98.3
98.9
96.6
92.8
98.6
99.0
98.7
99.2
98.4
98.7
99.1
75.8
97.8
97.6
99.4
98.0
Avg. Air Stoich.
Ib-atoma O
Ib-mole SO aba.
1.88
1.9Z
1.71
1.70
1.57
1.29
2.07
1.77
1.73
1.57
1.80
1.80
1.59
1.53
1.76
1.62
1.75
1.53
1.83
1.62
1.78
1.56
1.56
1.83
1.57
1.59
1.59
1.35
1.74
1.57
1.71
1.62
1.51
1.9Z
1.84
1.55
-------
Table L-8 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE VENTURI/SPRAY TOWER
I
I—•
UD
Run
Number
818-1A
819-1A
819-1B
863- 1A
Date
10/27/77
10/29/77
10/30/77
11/01/77
11/03/77
11/05/77
11/07/77
11/09/77
11/11/77
11/13/77
11/15/77
11/17/77
11/19/77
11/21/77
11/22/77
11/23/77
U/24/77
11/28/77
12/2/77
12/5/77
12/6/77
12/7/77
12/13/77
1Z/M/77
12/17/77
12/19/77
12/21/77
12/22/77
12/Z6/77
12/29/77
12/31/77
1/02/78
1/04/78
1/06/78
1/08/78
1/10/78
1/11/78
1/14/78
1/15/78
1/17/78
1/19/78
Initial Settling
Rate, cm/min
1.04
1.05
1.23
1. 33
1.10
1.35
1.29
1.29
1. 17
0.96
1. 10
1.08
0.95
1. 10
1.41
1.01
1.35
1. 13
0.98
1.07
1.00
1. 10
1.20
1. 15
0.88
0. 77
0. 79
0. 92
1.01
1.05
1. 10
1.22
1.23
1.43
1.38
0.92
0.92
0.95
1.01
0.92
0.99
Ultimate Settled
Solids. wt%
77.8
71.7
68.8
62.0
65.7
68.4
75. 1
70.5
66.5
66.8
68.0
64.0
66. 1
74.9
70.8
68.9
81.8
65.3
76.2
73.5
75.6
75.4
65.9
74. 7
65.8
70/2
61.3
67. 7
64.4
80.2
69.6
73.2
73.2
80.8
69.9
83.6
65.3
74. 1
70.2
65.5
71.7
Funnel Test Cake
Solid., wt%
65.4
68.6
66.3
80.4
90.5
84.2
71.3
70.5
65.1
65.6
65.0
65.3
73.3
73.5
73.7
73.2
72.7
73.8
71.6
70. 1
71.3
76.0
74. 1
74.5
72.6
75.4
76.1
76. 1
74.9
72. 1
72. 1
69.5
72.1
73.2
63.9
77.9
70.7
74.4
70.5
74.8
72.0
Initial Solid.,
wt%
14.4
14.9
16.1
14.0
15.0
15.0
15.5
15.3
15.1
15.2
14.2
14.7
14.5
16.2
14.8
14.5
14.0
16.3
15.9
16.8
15.1
16.9
14.7
14.8
16.2
16.4
15.4
15.7
15.7
15.7
15.2
15.2
17.0
15.0
13. 3
16.6
13.8
14.6
16.4
13.4
14.9
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Fly A.h
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yer
Ye;.
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Venturi
Inlet pH
5.6
5.6
5. 5
5.3
5.4
5.5
5.3
6.0
5.3
5.5
5.4
5.4
5.7
5.4
5. 5
5.4
5.4
5.5
5.3
5.5
5.5
5.4
5.5
5.3
6.0
5.7
5.7
5.7
5.8
5.6
5.3
5. 5
5.7
5.7
5.4
5.6
5.6
5.5
7.8
5.6
5.5
Sample Oxidation
mole %
97.6
97.0
97.1
99.6
98.2
99.2
99.0
99.7
98.8
96.4
98.3
89.5
99.3
99.1
97.7
97.6
99.2
98.9
98.3
99.2
96.8
99.6
98. 1
98.8
96.5
98.3
98.6
98.5
95.6
98.6
99.2
97.7
98.1
99.0
88.4
99.2
99.6
98.2
16.6
97.6
98.3
Avg. Air Stoich.
Ib-atoms O
Ib-mole SO »b».
1.63
1.41
1.82
1.39
2.23
1.68
1.71
1.80
1.41
1.58
1.48
1.46
1.46
1.54
1.40
Z.26
1.51
1.29
1.42
1.37
1.44
1.65
1.53
2.24
2.41
4. 17
1.45
1.33
1.49
1.45
1.49
1. 33
1. 50
1.49
1.62
1.84
1.95
1. 70
1.97
--
1. 80
-------
Table L-8 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE VENTURI/SPRAY TOWER
INS
O
Run No.
864- 1A
865-1A
866- 1A
867-1A
820-1A
820- IB
820- 1C
821-1A
822-1A
822- IB
Date
1/21/78
1/23/78
2/5/78
2/6/78
2/7/78
2/8/78
2/10/78
2/11/78
2/12/78
2/14/78
2/16/78
2/17/78
2/13/78
2/19/78
2/20/78
2/23/78
2/27/78
3/3/78
3/5/78
3/19/78
3/20/78
3/22/78
3/26/78
3/27/78
3/31/78
4/1/78
4/2/78
4/5/78
4/7/78
4/8/78
4/9/78
4/14/78
4/15/78
4/16/78
4/20/78
4/22/78
4/23/78
4/26/78
4/27/78
4/29/78
4/30/78
5/3/78
5/4/78
5/8/78
5/9/78
Initial Settling
Rate, cm/mi n
0.92
1.07
0.77
0.61
0.48
1.23
0.92
0.78
1.02
1.05
0.97
0.99
0.88
0.50
0.12
0.98
1.53
1.19
1.02
1.84
0.23
1.10
0.32
0.61
0.36
0.76
0.78
0.18
0.18
0.28
0.40
0.07
0.09
0.09
0.56
0.96
0.93
0.72
0.18
0.26
0.22
0.26
0.15
0.18
0.10
Ultimate
Settled
Solids, wt.%
60.4
64.0
63.4
5C.2
5S.3
81.6
55.7
62.4
64.0
61.0
62.2
73.5
67.4
59.9
58.6
70.8
77.1
65.0
57.7
60.7
66.1
80.5
68.6
64.0
66.2
66.8
66.2
33.1
73.3
80.0
64.6
55.7
46.6
40.8
58.3
61.4
72.0
59.4
72.1
71.1
61.3
72.8
71.1
71.1
75.4
Funnel Test
Cake Solids,
wt.%
72.8
75.0
__
62.0
72.9
72.9
69.2
70.9
71.9
73.4
74.5
72.7
70.4
67.2
78.1
89.2
75.5
69.6
61.3
70.6
45.9
72.5
71.3
62.6
74.0
75.0
71.9
71.9
71.7
75.7
57.2
58.5
53.0
74.1
74.5
75.6
74.3
74.2
70.0
70.8
71.8
64.4
72.8
72.2
Initial Solids, Alk
wt.%
13.9 L
15.8 L
17.0 L
14.0 L
14.7 L
17.2 L
14.5 L
15.4 L
15.5 L
15.3 L
14.9 L
14.4 L
14.9 L
16.8 L
16.3 L
14.6 L
15.6 L
ili Fly Ash
Loading
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
12.8 LS HIGH
11.5 LS HIGH
13.2 LS HIGH
16.3 LS HIGH
11.6 LS HIGH
16.8 LS HIGH
16.4 LS HIGH
12.2 LS HIGH
15.2 LS HIGH
15.0 LS HIGH
7.5 LS HIGH
14.9 LS HIGH
16.0 LS HIGH
14.0 LS HIGH
16.9 LS HIGH
17.1 LS HIGH
15.2 LS HIGH
13.2 LS HIGH
13.0 LS HIGH
13.4 LS HIGH
12.0 LS HIGH
17.1 LS HIGH
14.2 LS HIGH
15.8 LS HIGH
13.1 LS HIGH
15.2 LS HIGH
14.7 LS HIGH
13.9 LS HIGH
Sa
Venturi Inlet Oxid
pH mo
5.5 97
5.6 94
5.2 98
5.5 95
5.9 69
5.4 98
5.7 93
5.6 97
5.6 94
5.6 98
5.4 99
5.6 99
5.4 98
5.0 87
5.6 62
5.5 99
5.7 96
5.8 99
5.4 99
Jiple Air Stoich.
ati on Ib- atoms 0
lei Ib-mole S02 abs.
.1 1.61
.8 1.90
.8 1.75
.3 2.03
.7 1.52
.2 1.55
.0 2.47
.7 2.26
.7 2.53
.4 3.20
.5 4.39
.0 4.00
.1 2.92
.9 2.16
.9 3.16
.7 1.48
.0 4.65
.5 3.18
.5 2.28
5.3 98.3 2.93
4.8 98
6.4 99
4.9 99
5.1 88
5.2 98
5.6 99
6.4 98
5.4 72
5.2 92
5.0 87
5.3 94
5.6 31
4.7 49
4.7 30
5.6 97
5.4 98
5.5 96
5.6 95
.6 1.58
.7 3.43
.4 1.84
.2 1.44
.5 1.64
.1 2.14
.3 1.98
.9 0.93
.8 1.08
.6 1.09
.8 1.40
.3
.6
.7
.5 5.16
.5 4.78
.7 10.2
.4 1.54
5.2 97.1 1.31
4.9 86
5.1 89
4.9 99
5.0 96
5.3 97
4.5 98
.9 1.31
.5 1.44
.0 1.53
4 1.39
7 1.76
3 1.78
Average
Effective
Magnesium
ppm
_
_
_
_
.
.
-
_
_
_
_
_
_
_
_
_
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
8000
-------
Table L-8 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE VENTURI/SPRAY TOWER
Run No.
823-1A
824-1 A
825- 1A
826-1 A
Date
5/13/78
5/14/78
5/15/78
5/16/78
5/17/78
5/20/78
5/21/78
5/22/78
5/23/78
5/24/78
5/25/78
5/26/78
5/27/78
5/28/78
5/29/78
5/30/78
5/31/78
6/1/78
6/2/78
6/3/78
6/5/78
6/6/78
6/7/78
6/8/78
6/11/78
6/13/78
6/14/78
6/15/78
6/16/78
6/17/78
6/18/78
6/19/78
Initial Settling
Rate, cm/mi n
0.77
0.37
0.29
0.37
0.29
0.46
0.46
0.42
0.46
0.55
0.35
0.55
0.38
0.37
0.31
0.32
0.53
0.50
0.46
0.50
0.61
0.46
0.44
0.35
0.42
0.35
0.38
0.37
0.31
0.37
0.60
0.46
Ultimate
Settled
Solids, wt.%
64.9
72.8
77.1
59.8
65.2
60.8
39.9
68.3
62.7
77.4
72.1
74.9
62.1
78.8
67.7
75.2
74.4
84.5
75.2
71.0
76.1
71.3
89.1
61.6
70.7
70.5
61.8
63.7
65.7
76.6
74.4
94.6
Funnel Test
Cake Solids,
wt.%
.
-
-
-
75.7
73.6
72.1
73.5
73.7
72.6
72.9
73.1
73.3
72.3
74.6
73.2
74.4
74.8
73.1
72.4
72.8
73.5
72.5
70.7
73.0
70.9
75.2
73.3
70.8
71.6
72.9
80.9
Initial Solids,
wt.«
7.6
10.3
13.2
17.9
17.1
15.6
6.3
16.2
15.9
18.6
20.1
20.1
20.2
16.2
19.9
21.5
18.0
18.3
18.3
15.5
14.7
15.3
18.7
14.7
16.1
14.5
15.6
14.6
16.6
16.6
16.9
17.6
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
Fly Ash
Loading
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
Venturi Inlet
PH
6.8
6.0
5.5
6.5
6.3
6.2
6.3
6.4
6.4
6.3
6.1
5.9
6.0
5.9
5.9
5.9
5.9
6.0
5.8
5.8
5.5
5.6
5.4
5.4
5.3
5.5
5.4
5.2
5.4
5.4
5.7
5.5
Sample
Oxidation,
mole %
95.7
98.0
95.9
98.5
96.9
98.1
91. £
98.6
97.3
98.3
99.2
94.7
99.0
96.4
98.7
97.3
98.9
98.0
96.1
97.7
99.5
96.9
99.0
93.0
97.4
99.5
97.3
95.8
87.5
95.7
97.8
96.0
Air Stoich.,
Ib-atoms 0
Ib-mole S02 abs.
1.68
1.87
2.16
1.62
1.54
1.58
1.57
1.54
1.58
1.77
1.86
1.40
1.65
1.67
1.75
1.45
1.68
1.71
1.36
1.49
1.68
1.53
1.66
1.58
—
—
--
1.29
1.35
1.33
1.40
1.52
Average
Effective
Magnesium,
ppm
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
I
ro
-------
Table L-9
SETTLING AND FUNNEL TEST RESULTS FOR THE TCA
Run No.
701-2A
701-2A
701-ZA
701-2A
701-2A
701-2A
701-2A
701-ZA
702-2A
702-2A
702-2A
70Z-2A
702 -2A
702 -2A
702 -2A
703-ZA
703-2A
703-2A
703-2A
703-ZA
703-2A
703-ZA
704-2A
704 -ZA
704 -2A
704 -2A
704-2A
704 -2A
704 -ZA
704 -ZA
704 -ZA
704 -2A
704- 2A
704 -ZA
704 -2A
705-2A
705 -2A
705 -2A
705-2A
705-2A
705-2A
Date
11/29/76
11/30/76
12/ 2/76
1Z/ 2/76
12/ 3/76
12/ 4/76
1Z/ 5/76
1Z/ 6/76
1Z/ 7/76
1Z/ 8/76
12/ 9/76
12/10/76
12/11/76
12/12/76
12/13/76
12/14/76
12/15/76
12/17/76
12/17/76
1Z/18/76
12/19/76
12/20/76
12/23/76
12/24/76
12/25/76
12/26/76
12/27/76
12/28/76
1Z/Z9/76
1Z/30/76
1Z/31/76
I/ 1/77
I/ 2/77
I/ 3/77
I/ 4/77
I/ 5/77
I/ 7/77
1/11/77
1/12/77
1/13/77
1/14/77
Initial Settling
Rate, cm/rnin
0. 13
0.08
0. 11
0.08
0. 11
0. 23
0.42
0.09
0. 07
0. 20
0. 09
0. 10
0. 10
0.41
0. 37
0.83
0.47
0. 15
0. 19
0.40
0. 73
0.47
0.22
0. 17
0. 05
0. 05
0.06
0.06
0.06
0. 19
0. 17
0. 15
0. 19
0. 34
0. 10
0. 10
0. 10
0.09
0. 09
0.08
0. 08
Ultimate
Settled
Solids, wt.%
38.5
33.6
35.7
36.3
35.4
41.7
45.6
33.7
55.2
52.7
55.4
47. 1
52.1
62.4
66.5
54.3
45. 3
40.5
45.4
45.8
52.8
54.4
41.7
42.2
42.5
39.8
37.9
36.3
38.9
45.8
42.8
41.8
41. 5
43.8
40. 7
51.9
47.2
52.3
53.0
50.4
45.9
Funnel Test
Cake Solids,
wt.%
40
42
41
41
39
58
74
39
43
51
50
50
49
58
56
59
53
46
54
57
53
47
51
49
43
42
47
42
42
58
47
56
50
59
46
57
54
53
54
54
53
Initial Solids,
wt.%
8.0
8.3
7.8
8.6
7.9
8.4
7.8
7.6
15.7
15. 5
15. 1
15.5
15.3
15.4
15. 1
7.9
7.6
8.0
7.9
7. 7
7.6
7.7
8.2
8.6
8.4
8.9
8.0
8.0
8.2
8. 1
8.0
8.2
7.9
7.9
8.0
14.8
14.7
16.0
15.0
15.1
15.0
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
Fly Ash
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
TCA
Inlet
pH, avg.
5. 8
5.8
5.8
5.8
5.8
5. 8
5. 8
5. 8
5. 85
5. 85
5. 85
5.85
5. 85
5. 85
5.85
5.65
5. 65
5.65
5.65
5.65
5.65
5.65
5. 7
5. 7
5. 7
5. 7
5. 7
5.7
5. 7
5. 7
5. 7
5. 7
5. 7
5. 7
5. 7
5.85
5. 85
5.85
5. 85
5.85
5. 85
Sample
Oxidation,
mole %
6.8
28.9
Zl.Z
21.8
10.5
1.4
4.9
10. 1
6.8
1. 9
0. 5
3.7-
9. 1
9.6
Z. 9
6.6
3. 8
16.6
11.5
7.4
1.8
1.4
1.6
14.9
9.6
12.4
21.6
11.6
18.4
11.9
9.7
17.2
8. 5
6.0
8. 8
10.0
11.5
13. 1
5.4
33.6
17.2
Avg,
Air Stoich.
Ib-atoins O
Ib-mole SO abs.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
ro
ro
-------
Table L-9 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE TCA
Initial Settling
Rate, cm/min
Ultimate
Solldi
Solid., wt. %
Funnel Te.t
Cake Solid..
wt.%
InltUl Solid.,
*t.%
Fly A«h
TCA
Inlet
pH. .vg.
Sample
Oxidation,
mole %
Avg.
Air Stoich.
lb-atom« O
Average Eft.
Mag. . ppm
I
ro
CO
706-ZA
706-2A
713-2A
801-2B
80I-2B
802-2A
803-2A
804-2A
804-2A
804-2A
804-2A
805-2A
805-2A
805-2A
806.2A
806-2A
806-2A
806-2A
806-2A
807-2A
807-2A
807-2A
807-2A
807-2A
807-2A
807-2A
807-ZA
808-2A
808-2A
808-2A
808-2A
808-2A
808-2A
1/22/77
Z/ 3/77
6/20/77
6/29/77
6/30/77
7/ 7/77
II 9/77
7/16/77
7/18/77
7/20/77
7/22/77
7/25/77
7/27/77
7/28/77
7/29/77
7/30/77
7/31/77
8/ 1/77
8/ 2/77
a/ 3/77
8/ 4/77
8/ 5/77
8/ 6/77
8/ 7/77
8/ 8/77
8/ 9/77
8/10/77
8/11/77
8/12/77
8/13/77
8/14/77
8/15/77
8/16/77
0.06
0.09
0.08
0.30
0. 50
0.09
0.92
1.05
1. 18
0.99
1.22
0.80
1.08
1.26
0.63
0.05
0. 13
0. 18
0.36
1.22
1.02
0.96
0.96
1.31
1.02
1.02
1.02
0.94
0.89
0.73
0.87
0.94
0.81
50.4
46.3
46.7
66.9
69.1
59.6
64.9
84.4
72.7
76.1
73.3
71. 1
67.2
77.5
73.7
53.4
50.0
65.7
57. 1
75.3
70.2
72.0
66.1
68.3
71.4
73.9
69.0
76.8
75.3
70.2
71.1
80.0
76.3
50
49
49
68
73
65
77
76
75
80
80
80
74
73
73
62
63
67
70
79
78
75
77
81
79
79
73
75
73
74
73
75
76
14.7
13.8
14.5
14.5
16.0
14.8
14. I
14.8
16.5
15.0
13.8
13.9
J4.2
14.8
16.1
14.7
14.5
15.0
14.3
16.7
15.9
15.0
14.5
13.8
14.8
15.1
15.0
15.5
15.9
14.4
14.5
15.5
15.1
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
No
No
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye>
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye.
Ye>
Ye.
5.55
5.55
5.7
5.8
5.8
5.75
5.05
5.00
5.00
5.00
5.00
5. 35
5. 35
5. 35
5.35
5.35
5.35
5.35
5.35
5.45
5.45
5.45
5.45
5.45
5.45
5.45
5.45
5. 1
5.1
5.1
5. 1
5. 1
5. 1
10.4
10. 9
19.2
58.6
65.5
49.3
87.9
93.3
84.4
94.5
91.0
95.7
98.2
97.6
93.8
42.0
54.1
65.3
56.4
90.3
76.5
98.1
96.4
93.2
97.8
98.5
97.4
89.8
98.7
83.7
96.0
86.6
94.9
0
0
0
5.6
5.6
4.5
5.2
4. 5
4.5
4. 5
4.5
4.4
4.4
4.4
2.8
2. 8
2.8
2.8
2.8
4. 3
4.3
4. 3
4. 3
4.3
4. 3
4. 3
4. 3
2.0
2.0
2. 0
2.0
2.0
2.0
-------
I
ro
Table L-9 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE TCA
Run
Number
809-2A
810-2A
714-2A
811-2A
812-2A
813-2A
814- 2A
715-2A
Date
8/18/77
8/20/77
8/22/77
8/23/77
8/26/77
8/28/77
8/29/77
8/29/77
9/1/77
9/2/77
9/3/77
9/6/77
9/6/77*
9/6/77*
9/6/77*
9/6/77
9/6/77
9/8/77
9/9/77
9/10/77
9/12/77
9/14/77
9/16/77
9/18/77
9/20/77
9/22/77
9/25/77
9/26/77
9/28/77
9/30/77
10/2/77
10/3/77
10/8/77
10/11/77
10/13/77
Initial Settling
Rate, cm/min
1. 18
0.96
0. 81
0.96
1. 02
1.02
0.92
1.02
0. 11
0.09
0. 13
0.21
0. 28 (5 ppm)
0. 37 (10 ppm
0.48 (15 ppm
0.48 (25 ppm)
0.48 (10 ppm)
1.69
0.20
.03
.03
. 10
.09
.27
.07
.29
.61
. 14
.47
0.06
0.42
0.35
0.07
0. 12
0. 10
Ultimate Settled
Solidi. wt%
80.1
79.2
78. 1
/5. 1
74.0
80.5
75.0
74.7
47.5
41.5
49.6
58.0
42.6
49. 1
49. 1
49. 1
38.0
82.8
60.2
76.7
71.0
n.i
77. 1
86.3
69.9
68.2
63.9
79.1
66.9
59.6
53.3
61.0
37. 1
49.4
44.6
Funnel Teit Cake Initial Solids,
Solid*. wt% wt% Alkali
78.0 16.4 LS
75.6 17.2 LS
75.2 16.2 LS
73.1 14.7 LS
74.6 14.8 LS
80.8 14.9 LS
87.9 14.9 LS
75.9 14.8 LS
62.9 16.2 LS
79.6 16.1 LS
53.7 15.1 LS
14.6 LS
14.6 LS
14.6 LS
14.6 LS
14.6 LS
14.6 LS
51.5 14.7 LS
54.0 14.6 LS
73.3 12.5 LS
72.7 15.7 LS
74.8 16.0 LS
74.3 15.6 LS
74.3 16.7 LS
73.6 15.9 LS
74.6 11.3 LS
71.5 13.8 LS
74.1 14.8 LS
75.1 14.3 LS
56.1 14.4 LS
60.1 14.0 LS
61.7 14.5 LS
47. 1 14. 3 LS
50.0 15.0 LS
50.9 15.2 LS
TCA Inlet Sample Oxidation,
Fly A«h pH mole %
Ye 5.4 93.6
Ye 5.3 93.0
Ye 5. 0 97. 7
Ye 5.8 90.4
Ye 5.6 98.6
Ye 4. 8 99. 1
Ye 5. 7 99. 5
Ye -- 96.1
Ye 5.7 31.6
Ye 5.8 13.8
Ye 5.8 20.1
Ye 5.8 1.7
Ye
Ye
Ye
Ye
Ye
Ye 6. 1 4.7
Ye 6.0 6.1
Ye 5.8 82.4
Ye 6.0 92.2
Ye 5.8 92.2
Ye 5. 7 94. 7
Ye 5. 6 92. 3
Ye 5.7 94.2
Ye 5.7 96.6
Ye 5.2 85.5
Ye 5. 3 90. 9
Ye 5.2 97.0
Ye 5.3 72.4
Ye 5.4 53.2
Ye 5. 7 70. 7
Ye 5. 6 24. 7
Ye 5.7 21.1
Ye 5.6 28.1
Avg. Air Stoich.
IB-atoms O
Ib-moles SO^abs.
3.24
2.54
2. 31
2.95
2. 57
2.45
2.57
2.50
0
0
0
0
0
0
0
0
0
0
0
2. 77
2. 19
2.24
2.87
3.22
3.07
3.08
3.48
2. 72
3.54
1. 32
1.61
1.27
0
0
0
* Slurry with American Cynamid's anionlc flocculant, Super floe 1204, added in concentrations indicated
-------
Table L-9 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE TCA
ro
Run
Number
716-ZA
717-2A
719-2A
816-2A
817-2A
818-2A
Date
10/15/77
10/17/77
10/19/77
10/21/77
10/23/77
10/25/77
10/28/77
10/J1/77
11/2/77
11/4/77
11/6/77
11/8/77
11/10/77
11/12/77
11/14/77
11/16/77
11/18/77
11/20/77
11/25/77 .
11/26/77
11/27/77
11/29/77
12/3/77
12/4/77
12/8/77
12/9/77
12/12/77
12/15/77
12/16/77
12/18/77
12/20/77
12/23/77
12/27/77
12/28/77
12/30/77
Initial Settling
Rate, ctn/min
0. 10
0.14
0.09
0.16
0.16
0.37
0.31
0. 15
0.13
0.31
0.17
0. 18
0.12
0.48
0.26
0.11
0.11
0.12
0.13
0.35
0.13
0.18
0.29
0.28
0. 14
0. 1!
0.18
0.17
0.35
0.85
0.92
1.47
0.11
0.42
0.40
Ultimate Settled
Solids, wt%
50.6
47.8
53.4
51.9
61.9
63.4
56.4
55.5
48. 1
62.3
50.9
66.9
49.0
85.1
68.4
49.6
47.1
55.0
43.9
92.5
50.7
55.2
55.5
56.7
49.1
55.3
56.2
55.4
72.0
38.8
87.0
79.9
51.5
67.2
61.0
Funnel Teat Cake
Solid., wt%
53.5
52.0
53. 1
54.2
51. 1
48.6
65.4
84.0
79.9
91.4
72.2
55.7
52. 5
54.5
51.9
52.5
58.4
48.9
52.2
53.0
51.5
55.7
47.5
56.4
57. 1
56.3
57.9
60.2
63.2
78.5
76.9
79.5
63.4
57.2
61.5
Initial Solid*.
wt*
14.6
13.1
15.0
15.4
14.8
14.9
14.4
14.8
14.9
14.1
14.1
15.4
15.7
14.3
14.8
14.8
14.4
15.3
15.1
13.6
13. 1
14.7
13.9
14.0
14.6
14.7
15.4
16. 1
16.2
14.1
16.4
14.7
14.3
14.2
14.9
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
Fly Ash
Yes
Yei
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
TCA Inlet
pH
5.8
5.7
5.8
5.7
6.0
5.9
5.9
5.8
5.7
5.8
5.9
6. 1
6.0
6.0
5.9
5.8
6. »
6.0
5.6
5.6
5.9
5.9
5.5
5.6
5.9
5.8
6.2
6.4
6. 3
6.0
5.8
5.8
6.2
6.2
6.4
Sample Oxidation,
mote %
16.0
33. 1
25.4
36.3
17.4
13.9
15.0
34.9
11.6
20.0
16.4
17. 8
11.5
14.4
14.4
28.4
16.9
17.8
28.8
27.4
16.7
27.2
19.2
21.8
13.4
24.6
36.3
37.6
10. 5
85.6
82.1
98.6
59.1
56. 7
63.9
Avg. Air Stoich.
Ib-atotns O
Ib-moles SO abs.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.03
0.99
1. 78
. 71
. 76
.28
.21
.24
-------
Table L-9 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE TCA
I
ro
Run
Number
818-2B
819-2A
Date
1/01/78
1/03/78
1/05/78
1/07/78
1/09/78
1/12/78
1/13/78
Initial Settling
Rate, cm/min
0.25
0.31
0. 15
1.03
1. 38
1.23
1.47
Ultimate Settled
Solids, wt%
57.2
55.9
51.2
59.0
61. 7
69.3
58.8
Funnel Test Cake
Solid.. wt%
49.5
63.5
51.4
73. 1
72.4
.70.5
73.6
Initial Solids,
wt%
14.7
15.3
14.5
14.2
13.5
14.3
12.2
Alkali
LS
LS
LS
LS
LS
LS
LS
Fly Ash
Ye
lYe
Ye
Ye
Ye
Ye
Ye
TCA Inlet
pH
6. 1
6.2
5. 5
5.4
5.7
5.6
5. 5
Sample Oxidation,
.mole %
19.6
15.8
27. 2
92. 9
98. 5
92.4
93.3
Avg. Air. Stoich.
Ib-atoms O
Ib-moles SOj abs.
..
-.
1.81
1.85
1.82
2.06
-------
Table L-9 (continued)
SETTLING AND FUNNEL TEST RESULTS FOR THE TCA
Run No.
820- 2A
590-28
618-2B
619-2A
620-2A
P2T-ZA
591-2A
592-2A
593-2A
594-2A
622-2A
Date
1/16/78
1/18/78
1/20/78
1/22/78
1/24/78
2/3/78
2/4/78
2/13/78
2/15/78
2/21/78
2/22/78
2/24/78
2/25/78
2/26/78
2/28/78
3/1/78
3/2/78
3/4/78
3/6/78
3/18/78
3/21/78
3/23/78
3/24/78
3/25/78
3/28/78
3/29/78
3/30/78
4/3/78
4/4/78
4/6/78
4/10/78
4/11/78
4/12/78
4/17/78
4/18/78
4/19/78
4/21/78
4/24/78
4/25/78
4/28/78
5/1/78
5/2/78
5/5/78
5/6/78
5/10/78
5/11/78
5/12/78
Ultimate
Initial Settling Settled
Rate, on/mi n Solids, wt.X
1.15 64.2
0.92 68.1
1.10 65.5
1.29 70.8
1.23 62.5
0.12 49.6
0.18 50.3
1.65 57.8
1.42 48.9
0.22 43.2
0.40 32.5
0.74 41.1
0.96 49.4
1.00 35.0
0.67 33.5
0.84 37.9
0.77 48.4
0.50 31.1
1.15 42.3
0.85 57.1
0.61 38.8
1.36 50.4
0.82 40.3
0.92 51.7
0.41 52.6
0.37 60.5
0.06 29.8
0.07 36.9
0.08 46.0
0.07 34.5
0.14 46.0
0.05 37.1
0.06 52.7
0.05 44.1
0.04 42.6
0.04 44.2
0.04 45.9
0.04 29.7
0.04 41.4
—
0.04 42.5
0.04 32.3
0.01 32.1
0.11 45.4
0.71 32.9
0.74 59.3
0.75 45.0
Funnel Test
Cake Solids, Initial Solids,
wt.X wt.%
73.8 13.0
76.3 14.5
74.8 14.3
73.0 12.0
72.2 12.5
15.4
14.2
61.4 8.0
61.1 7.9
47.6 8.3
47.1 8.8
63.3 7.3
68.2 7.7
83.8 7.2
42.7 7.4
54.5 7.5
50.4 7.8
52.9 7.3
52.0 9.1
50.9 9.8
44.7 6.8
51.8 8.9
53.2 8.8
54.9 8.2
64.1 10.1
60.5 15.1
45.0 12.1
54.2 13.7
59.3 14.6
78.0 13.2
68.5 14.5
55.3 14.2
53.2 15.4
47.8 14.5
49.2 15.1
47.1 17.0
60.8 15.0
53.4 14.2
51.8 14.0
46.8 14.7
52.0 15,5
49.0 15.6
56.7 14.5
54.1 14.8
37.7 8.0
7.9
8.2
Alkali
LS
LS
LS
LS
LS
LS
LS
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
L
L
L
Fly Ash
Loading
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH •
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
TCA Inlet
pH
5.6
5.4
5.7
5.9
5.8
5.1
5.4
6.9
7.1
6.9
5.2
7.0
7.3
6.4
7.0
6.9
6.8
7.3
8.2
6.7
6.7
7.4
6.8
7.0
4.8
4.6
5.4
5.5
5.5
5.5
5.0
5.5
5.5
5.4
5.5
5.3
5.5
5.4
5.3
5.4
5.5
5.5
5.2
5.2
7.1
7.0
7.2
Sample Air Stoi
Oxidation, Ib-ato
mole % Ib-mole
Average
ch., Effective
ms 0 Magnesium,
S02 abs. ppm
87.9 1.93
84. 6 1.99
90.4 1.95
91.7 2.52
94.3 2.08
32.6
24.9
39.7
34.2
22.3
22.9
8.5
32.8
42.7
39.1
24.4
17.8
26.7
37.0
42.6
34.9
37.4
24.9
25.4
70.2
72.3
41.1
41.0
49.8
21.4
48.8
36.3
35.1
to.o
18.6
35.5
24.8
38.3
37.5
29.1
13.9
19.3
20.9
11.0
17.8
22.7
28.8
-
-
-
-
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
5000
5000
5000
5000
5000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
9000
-------
Table L-10
FILTER LEAF TEST RESULTS FOR TEST BLOCKS 2, 3, AND 8
Teat
Block
2
2
Z
Z
2
3
3
3
3
3
3
3
8
8
8
K
p
Form
Time.
sec
10
5
5
5
10
5
5
5
10
5
5
5
5
5
5
10
5
Dry
Time,
sec
20
25
40
60
20
25
40
60
20
6°<1)
40
40(1>
25
40
60
20
25
Cycle
Time,
sec
40
40
60
87
40
40
60
87
40
87
60
60
40
60
87
40
40
Initial
Solidi,
wt. %
58. 3
58.4
59. 5
57.4
60. 7
52.9
--
53.4
52.0
53.9
53.9
60.0
58.4
58.9
60.8
58.9
Cake
Solids,
wt. %
80. 1
82. 3
83. 1
85.6
78.6
70. 1
70. 0
--
70.2
69.5
74.0
73.7
82. 1
82. 0
8Z.O
79.4
79.8
Cake
Thickness.
in.
1
3/4
3/4
11/16
1
1/4
1/4
1/4
3/8
1/4
1/4
1/4
7/16
7/16
7/16
5/8
7/16
Dry Solids
Loading,
Ib/ft2-hr
663
428
320
171
640
236
155
--
135
229
157
151
248
168
116
362
258
Filtrate
L,oading,
gal/ft2-hr
41.6
27.3
19.7
12.6
30.9
9.2
6.8
16.9
6.6
10. 1
9.7
14.3
10. 6
7. 1
17.8
14.7
Submergence,
% of
cycle
25.0
12.5
8. 3
5.7
25.0
12.5
8. 3
5.7
25.0
5. 7
8.3
8. 3
12.5
8. 3
5.7
25.0
12.5
Comments
Run 853-1A (3/21/76),
Sample was 95 percent
oxidized. Lime, fly agh,
2 stage forced oxidation.
Run 853-1A (3/18/76),
Sample from early in
test during air problems.
Oxidation was —36 percent.
Run 808-1A (3/8/77),
Sample was 99 percent
oxidized. Limestone, fly
ash, 2 stage forced oxida-
tion.
I
ro
CO
9/16/77
(1) 20 seconds with flapper and 20 seconds without flapper.
-------
Table L-ll
FILTER LEAF TEST RESULTS FOR TEST BLOCK 5
Form
Time,
sec
5
5
5
5
5
5
5
5
5
5
5
5
5
Dry
Time,
sec
20
20
20
30
30
30
40
40
40
60
60
60
20
Cycle
Time,1 '
sec
33.3
33.3
33.3
46.7
46.7
46.7
60. 0
60. 0
60.0
86.7
86.7
86.7
33. 3
Initial
Solids,
wt. %
46.4
47.9
54.4
49.0
48.1
52.9
57.0
55.0
57.0
57.0
52.8
58.9
59.2
Cake
Solids,
wt.%
71.3
70. 1
79.2
73.2
71.3
76.8
85.3
82.6
83.8
85.8
79.5
88.8
83.8
Cake
Thickness,
in.
7/16 - 9/16
3/8
5/16 - 7/16
3/8 - 1/2
3/8 - 1/2
3/8 - 1/2
3/8 - 1/2
3/8 - 1/2
7/16 - 9/16
5/16 - 7/16
5/16 - 1/2
5/16 - 1/2
7/16 - 1/2
Dry Solids
Loading,
Ib/ft2-hr
339.9
294. 6
309. 3
191.7
182.4
240. 7
169.7
164. 1
169. 7
117.9
103.5
128.8
359.8
Filtrate
Loading,
gal/ft2-hr
30. 6
23.3
21.3
15.5
14.8
17. 0
11.8
11.9
11.4
8.3
7.9
8.8
22.5
Submergence,
% of
cycle
30
30
30
21
21
21
17
17
17
12
12
12
30
I
ro
(1) Assumes start of form time at 6 o'clock position, discharge at
3 o'clock position (scraper discharge).
(2) Run 860-1A (8/9/77, 0900), Sample was 97. 8 percent oxidized.
Lime, fly ash-free, forced oxidation run.
8/17/77
-------
Table L-12
FILTER LEAF TEST RESULTS FOR TEST BLOCK 6
I
CO
o
Form
Time,
sec
5
5
5
5
5
5
5
5
5
5
5
5
5
Dry
Time,
sec
20
20
20
30
30
30
40
40
40
60
60
60
20
Cycle
Time/1'
sec
33. 3
33. 3
33. 3
46.7
46.7
46. 7
60.0
60.0
60.0
86. 7
86. 7
86. 7
33.3
Initial
Solids,
wt. %
40.3
39.3
39.5
39.1
38.8
39.4
39.9
40.9
39.5
39.4
40. 1
38.8
39.3
Cake
Solids,
wt. %
51.5
49.9
49. 7
52.0
49.7
49.9
50.7
53.1
50.2
50. 4
50.2
50.2
49.9
Cake
Thickness,
in.
7/16
3/8
3/8 - 1/2
3/8 - 1/2
3/8 - 7/16
3/8 - 7/16
7/16
7/16
7/16 - 1/2
7/16
7/16
7/16
7/16
Dry Solids
Loading,
Ib/ft2-hr
288.4
281. 0
304.6
209.9
219.1
215.9
156.5
156.4
162. 1
107. 3
122.4
105.5
280.5
Filtrate
Loading,
gal/ft2-hr
18.8
18. 1
18. 9
16.0
14.8
14. 2
10. 0
10.5
10.5
7. 1
7.4
7.4
18. 1
Submergence,
%of
cycle
30
30
30
21
21
21
17
17
17
12
12
12
30
(1) Assumes start of form time at 6 o'clock position, discharge at
3 o'clock position (scraper discharge).
(2) Run 857-1A (7/12/77, 1300). Sample was 24.1 percent oxidized.
Lime, fly ash-free, no forced oxidation. Sample taken from
spray tower slurry loop.
8/17/77
-------
Table L-13
FILTER LEAF TEST RESULTS FOR TEST BLOCK 7
Form
Time,
sec
5
5
5
5
5
5
5
5
5
5
5
5
5
Dry
Time,
sec
20
20
20
30
30
30
40
40
40
60
60
60
20
^Cled>
Time,
sec
33. 3
33.3
33. 3
46.7
46.7
46.7
60.0
60.0
60.0
86.7
86.7
86. 7
33. 3
Initial
Solids,
wt. %
59.1
51.1
51.9
53.1
53.7
53.5
53.0
51.8
52.9
52.2
52.2
54.3
52.6
Cake
Solids,
wt. %
86.7
78.7
78.9
80. 1
78.8
80.7
80.0
79.5
80.2
77.8
79.2
80.1
76.4
Cake
Thickness,
in.
1/4 - 3/8
1/4 - 5/16
5/16 - 7/16
5/16 - 3/8
5/16 - 7/16
5/16 - 7/16
5/16 - 7/16
5/16 - 3/8
5/16 - 7/16
5/16 - 7/16
3/8 - 1/2
5/16 - 3/8
5/16 - 7/16
Dry Solids
Loading,
Ib/ft2-hr
338.6
250. 3
314.8
234. 1
211.9
243.8
175.4
164. 3
208. 5
117.3
134.8
143.3
334. 6
Filtrate
Loading,
gal/ft2-hr
21.9
20. 6
24.9
17.8
16. 0
18.4
13.4
13.3
16. 1
8.8
10.5
10.2
23.8
Submergence,
% of
cycle
30
30
30
21
Zl
21
17
17
17
12
12
ia
30
I
co
(1) Assumes start of form time at 6 o'clock position, discharge at
3 o'clock position (scraper discharge).
(2) Run 804-2A (7/22/77, 1200). Sample was 99. 3 percent oxidized.
Limestone, fly ash, 1 stage forced oxidation.
8/17/77
-------
Table L-14
OPERATING VARIABLES DURING PARTICLE SIZE
DISTRIBUTION TESTING WITH THE HYDROCLONE
r-
i
1.0
Inlet
Pressure,
psig
27. 0
27.2
27.4
27. 53
17.5
17.2
17.0
17. O3
13
12.8
12. 1
12.03
Feed
Flow Rate,
gpm1
18.4
18.4
18.4
18.4
15.0
15.0
15.0
15.0
12.8
12.8
12.8
12.8
Solids,
wt%
13.8
14.0
13.89
15.37
14. 61
14.41
14. 36
14.25
15.52
15. 14
14.27
14.99
Overflow
Flow Rate,
gpm2
15.5
15.5
15.5
15.3
12.1
12.0
12.0
11.9
10.3
9.8
10. 1
10.2
Solids,
wt%
2.0
1.98
1.93
1.87
2. 18
2.25
2.19
3.27
2.59
2.75
2.83
2.67
Underflow
Flow Rate,
gpm2'4
3.3
3.2
3.3
3.3
2.0
1.9
1.9
1.9
2.7
2.8
2.5
2.6
Solids,
wt%
52.7
52. 13
55. 14
59.08
54. 37
67. 88
68.21
32.69
53. 19
54.06
69.55
55. 11
1 Measured with a magnetic flow meter.
2 Measured by bucket and1 stopwatch.
3 Samples taken for Chemical Analyses and Particle Size Distribution.
4 Values at 15. 0 gpm feed rate are questionable. Error may be due
to incorrect reading of stopwatch.
-------
Table L-15
RESULTS OF TWO-HOUR HYDROCLONE TEST:
SOLIDS ANALYSES AT 18 GPM FEED RATE
Pressure, psig
Flow Rate, gpm
Solids, wt% 2
Fly Ash, wt% in solids
CaSO,, wt% in solids3
CaSCC wt% in solids4
CaCO3, wt% in solids5
Feed
27.5
18.4
15.37
28.4
1.8
45.6
5.1
Overflow
15.3
1.86
66.7
1.9
10.8
4. 3
Underflow
3. 3
59.08
21. 3
1.2
56.5
5.1
Percent in Overflow
82
26
15
2.1
9
1 From Mass Balances Based on Total Solids in Samples = 100% and Percent
Overhead = 100 x Overflow/(Overflow + Underflow)
2 Measured as Acid In solubles
3 Based on Measured Sulfite
4 Based on Measured Sulfite and Total Sulfur
5 Baaed on Measured Carbonate
L-:
-------
Table L-16
RESULTS OF TWO-HOUR HYDROCLONE TEST;
SOLIDS ANALYSES AT 15 GPM FEED RATE
Pressure, psig
Flow Rate, gpm
Solids, wt%
Fly Ash, wt% in solids
CaSO,, wt% in solids3
CaSO , wt% in solids4
CaCOj, wt% in solids5
Feed
17. 0
15.0
14.24
34. 7
1. 3
47.8
4.8
Overflow
11.9
3. 26
70.6
2.5
11. 3
4. 3
Underflow
1.9
32. 69
17.9
1.9
58.0
4. 7
Percent in Overflow
86
38
17
2.9
13
1 From Mass Balances Based on Total Solids in Samples = 100% and Percent
Overhead = 100 x Overflow/(Overflow + Underflow)
2 Measured as Acid Insolubles
3 Based on Measured Sulfite
4 Based on Measured Sulfite and Total Sulfur
5 Based on Measured Carbonate
-------
Table L-17
RESULTS OF TWO-HOUR HYDROCLONE TEST:
SOLIDS ANALYSES AT 12 GPM FEED RATE
Pressure, psig
Feed Overf
1Z.O
.ow Underflow Percent in Overflow
Flo-w Rate, gpm 1Z. 8 10. Z 2.6 79
Solids. wt%
- 14.98 Z.67 55.10
Fly Ash, wt% In solids" Z9. 5 59. Z 31.5 ZZ
CaSO., wt% in
CaSO^, wt% in
CaCOj, wt% in
solids3 2. 3 6.
solids4 46.8 13.
I 1.5 37
I 56.0 3.3
solids5 5.9 7.1 6.4 14
1 From Mass Balances Based on Total Solids in Samples = 100% and Percent
Overhead = 100 x Overflow/(Overflow + Underflow)
Z Measured as Acid Insolubles
3 Based on Measured Sulfite
4 Based on Measured Sulfite and Total Sulfur
5 Based on Measured Carbonate
-------
APPENDIX M
PARTICULATE MASS LOADING
TEST RESULTS
M-l
-------
This Appendix presents the results of routine mass loading
tests performed on the venturi/spray tower and TCA systems
during the reporting period.
M-2
-------
Table M-l
VENTURI/SPRAY TOWER PARTICULATE MASS LOADING TEST RESULTS
Run
No.
806-1C
807- 1A
808- 1A
808-1A
808-1A
808- 1A
852-1A
852-1A
852-1A
852-1A
855-1A
855-1A
856-1A
856-1A
856-1A
856-1A
858- 1A
858-1A
858-1A
858- 1A
859-1C
810-1A
811-1A
815-1A
815-1A
815-1A
815-1A
Date
2/28/77
3/ 4/77
3/ 7/77
3/ 7/77
3/ 8/77
3/ 8/77
3/17/77
3/17/77
3/18/77
3/18/77
6/22/77
6/23/77
6/29/77
7/ 5/77
7/ 8/77
7/11/77
7/14/77
7/15/77
7/18/77
7/19/77
8/ 2/77
8/23/77
9/ 1/77
9/19/77
9/21/77
9/22/77
9/23/77
Inlet,
gr/dscf
5.08
4.52
5. 33
4.06
6. 05
4.86
5.48
4. 14
5.25
4.59
-.
-.
--
-.
-_
..
._
_-
--
..
--
--
--
--
..
--
Outlet,
gr/dscf
0.023
0.023
0.025
0.022
0. 039
0. 029
0.039
0. 041
0.052
0.062
0.005
0.006
0. 007
0.005
0.005
0.010
0.007
0. 012
0.007
0.007
0.009
0.006
0, 007
0.013
0.009
0.019
0.013
Removal,
%
99.5
99.5
99.5
99.5
99.4
99.4
99.3
99.0
99.0
98.6
--
--
--
--
_-
-.
-.
-.
..
--
--
-.
--
..
--
Alkali
LS
LS
LS
LS
LS
LS
L
L
L
L
L
L
L
L
L
• L
L
L
L
L
L
LS
LS
LS
LS
LS
LS
Fly Ash
Yes
Yes
Yes
Yes
Yes
Yea
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
System
ap,
-------
Table M-l (continued)
VENTURI/SPRAY TOWER PARTICULATE MASS LOADING TEST RESULTS
™un Date
No.
819-1A ll/ 3/77
ll/ 4/77
III 7/77
ll/ 8/77
11/14/77
11/21/77
11.Z2/77
11/23/77
11/25/77
Inlet.
gr/dscf
4. 12
4.53
__
--
3. 32
4. 08
3.93
3.09
3.64
4.39
4. 86
5. 00
3.91
4.08
3.36
Outlet,
gr/dscf
0.036
0.021
0.048
0.035
.-
0.030
0.047
0.041
0.040
0. 047
0.053
0.063
0.051
0. 054
0.053
0.051
Removal,
%
99. 1
99.5
__
-.
-.
98.8
99.0
98.7
98. 7
98.8
98.7
99.0
98.6
98.7
98.5
Alkali
LS
System
•*« ,,"S;o"
Yes 15.0
1
13. 1
11.2
11. 3
--
6.0
7.9
..
13.8
13. 8
14. 7
14.7
6.0
6.0
, 6.0
' 6.0
Venturi
AP,
in. HO
9. 1
8.2
6.6
6.8
--
3.6
3. 8
3. 5
7.5
7.5
8. 5
8. 5
3.0
3.0
3.0
3.0
Gas Rate,
acfm
@ 300°F
33.000
' 31,000
29, 000
29, 000
--
19, 500
20, 000
20,000
34, 500
34, 500
33,000
33. 500
18, 000
18,000
18, 000
18,000
Slurry Rate,
gpm
V | ST
600 1600
1
i
(1) Excluding mist eliminator pressure drop.
-------
Table M-l (continued)
VENTURI/SPRAY TOWER PARTICULATE MASS LOADING TEST RESULTS
Run
No.
819-1B
819-1B
863-1A
863-1A
863- 1A
863- 1A
863-1A
863-1A
863-1A
863- 1A
863- 1A
86 3-1 A
863-1A
863-1A
863-1A
864-1A
864-1A
866-1A
822-1A
822-1A
822-1A
Dace
12/09/77
12/09/77
12/20/77
12/22/77
12/27/77
12/28/77
12/28/77
12/29/77
12/29/77
01/03/78
01/05/78
01/05/78
01/19/78
01/19/78
01/20/78
31/24/78
01/24/78
02/17/78
05/01/78
05/02/78
05/04/78
Inlet,
gr/dsci
3.55
3.55
3.90
5.66
4.80
4.80
4.28
5.28
4.13
.
5.37
2.31
5.49
4.58
4.25
Outlet,
gr/dscf
0.044
0.038
0.036
0.038
0.039
0.051
0.034
0.044
0.046
0.051
0.054
0.059
0.044
0.037
0.047
0.032
0.035
0.023
Removal ,
Z
98.8
98.9
99.1
99.3
99.2
98.9
99.2
99.0
98.7
99.3
99.0
— —
Alkali
LS
LS
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
LS
LS
LS
Fly Ash
Loading
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
Venturl
P,
in. H20
6.7
6.8
6.3
7.8
8.6
8.5
8.3
8.5
8.5
8.2
8.2
7.8
5.2
6.5
7.0
7.5
7.5
9.1
7.7
7.9
7.9
System
P,(l)
In. H20
13.4
13.1
11.2
14.4
15.3
13.8
15.0
14.8
15.8
15.1
15.3
14.9
9.5
10.3
12.2
15.2
15.1
16.7
15.2
15.5
14.5
Gas Rate,
acfn
@ 300° F
32,000
32,000
29,000
34,000
35,000
33,000
35,000
35,000
35,000
30,000
35,000
35,000
29,000
28,000
30,000
35,000
35,000
35,000
31,000
31,000
30,000
Slurry Rate,
gpm
V | SI
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
600 1600
MgO
Addition
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
YES
YES
Solids Recir-
culated,
vt Z
8.6-10.5
8.6-10.5
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
8.9-11.9
9.1- 9.9
9.1- 9.9
8.7-11.1
6.6- 9.4
6.6- 9.4
6.6- 9.4
I
en
(1) Excluding mist eliminator pressure drop.
-------
Table M-2
TCA PARTICULATE MASS LOADING TEST RESULTS
Run
No.
708-2A
708-ZA
709-2A
806 -2A
806 -2A
806-2A
806-2A
807-2A
807-2A
807-2A
807-2A
808-2A
808-2A
809-2A
809-2A
809-2A
810-2A
810-2A
810-2A
714-2A
714-2B
811-2A
811-2A
811-2A
811-2A
Date
3/10/77
3/14/77
3/15/77
7/29/77
7/29/77
8/ 1/77
8/ 1/77
8/ 3/77
8/ 3/77
8/ 4/77
8/ 4/77
8/15/77
8/16/77
8/18/77
8/18/77
8/22/77
8/25/77
8/25/77
8/29/77
9/ 2/77
9/ 8/77
9/12/77
9/13/77
9/14/77
9/15/77
Inlet,
gr/dscf
5.05
5.03
4.57
-_
--
--
--
--
4.39
3.85
--
--
--
--
--
--.
--
--
--
--
--
--
--
Outlet,
gr/dscf
0.059
0.048
0. 096
0.048
0.047
0.044
0.045
0.040
0.035
0.033
0. 033
0.058
0.048
0.059
0. 044
0. 067
0. 040
0. 040
0. 045
0.027
0.048
0.035
0.036
0. 038
0. 049
Removal,
%
98.8
99.0
97.9
_-
__
_.
99.2
99.1
-.
__
_.
__
-.
-.
_-
_.
-.
--
--
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
Fly Ash
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
System
Ap.m
in. H20
7.9
7.5
5.8
7.9
7.9
7.9
7.9
8.5
8.5
8.6
8.6
8.2
8.4
8.5
8.5
8.6
8.6
8.6
8.5
8.5
5.7
8.2
8.3
8.2
8.2
Gas Rate,
acfm
@ 300°F
30, 000
30, 000
30, 000
30,000
30, 000
30, 000
30, 000
30, 000
30, 000
30,000
30,000
30,000
30, 000
30, 000
30, 000
30, 000
30,000
30, 000
30, 000
30,000
30,000
30, 000
30,000
30,000
30,000
Slurry
Rate,
gpm
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
(1) Excluding mist eliminator pressure drop
-------
Table M-2 (continued)
TCA PARTICULATE MASS LOADING TEST RESULTS
Run
No.
715-2A
716-2A
717-2A
71B-2A
Date
10/11/77
10/12/77
10/13/77
10/15/77
10/17/77
10/18/77
10/19/77
10/25/77
10/26/77
10/Z8/77
ll/ 1/77
ll/ 2/77
ll/ 9/77
11/10/77
11/11/77
11/15/77
11/16/77
11/17/77
11/18/77
11/28/77
11/29/77
Inlet,
gr/dacf
--
4.89
3.65
4. 10
4.21
3.64
3.74
--
--
--
--
__
2.86
3.26
3. 33
3.99
4.58
..
..
.-
..
5.23
5.23
3. 38
3. 91
--
--
--
--
3.21
2.95
3.01
4. 05
3. 32
3.90
3.03
3.45
3.29
4.00
3.95
3.75
4.83
3. 59
Outlet,
gr/dscf
0.033
0.032
.-
0.034
0.034
0.060
0.038
0.041
0.026
0.032
0.029
0.024
0.022
0.018
0.020
0.028
__
0.026
0.027
0.031
0.033
0.034
0.031
0.036
0.027
0.026
0.069
0.051
0.054
0.050
0.046
0.043
0.036
0.043
0.041
0.059
0.064
0.051
0.062
0.041
0.046
0.044
0.038
0.039
Removal,
%
--
__
99. 1
99.2
98.6
99.0
98.9
.-
--
.-
--
__
99.4
99.4
99.2
_.
99.4
__
..
__
99.4
99.3
99.2
99. 3
.,
__
._
._
98.6
98.5
98. 8
98.9
98.8
98.5
97.9
98.5
98.1
99.0
98.8
98.8
99.2
98.9
Alkali
LS
1
s?pfl>
F*A'h inH20
Yes 10.0 -
1
12.8 -
10
11
9
10
9
8
11
12.5
16. 1
.9
. 1
.6
. 5
.7
.5
3
10.9
7
10
6
3
5
5
6.4
6.3
6
10
10
10
10
6
6
-
_
1
9
6
2
5
3
3
6.5-8.2
1
Gas Rate,
acfm
@ 300°F
30
.
27,
|
29,
29,
27,
29.
29.
27,
30,
29,
25,
28,
20,
20,
20,
20,
30,
30.
30,
30,
20.
20.
30,
30,
30.
1
000
000
1
000
000
000
000
000
000
000
000
000
500
000
000
000
000
000
000
000
000
000
000
000
000
000
Slurry
Rate,
gpm
1000
1000
1
t
1000
1
1200
t
Scrubber
Internals
3-beds, 4-grida
7-1/2 in. per bed
3 -beds. 4 -grids.
10 in. per bed
3-bed, 4-grids.
7-1/2 in. per bed
i
Cellcote Support
Plated2'
(1) Excluding milt eliminator pressure drop.
(2) 4-grlds. 23 layers at Cellcote support plates (46 In. total height) between 2nd and 3rd grid!
-------
Table M-2 (continued)
TCA PARTICULATE MASS LOADING TEST RESULTS
Run
No.
719-2A
719-2A
719-2A
719-2A
719-2A
719-2A
719-2A
719-2A
719-2A
719-2A
815-2A
815-2A
815-2A
816-2A
817-2A
818-2B
818-2B
590-2A
618-2A
618-2A
618-2A
618-2A
618-2A
618-2A
618-2A
618-2A
Date
12/02/77
12/02/77
12/05/77
12/05/77
12/06/77
12/06/77
12/07/77
12/07/77
12/08/77
12/08/77
12/12/77
12/12/77
12/14/77
12/16/77
12/19/77
01/04/78
01/04/78
01/25/78
02/08/78
02/09/78
02/10/78
02/14/78
02/14/78
02/15/78
02/16/78
02/16/78
Inlet ,
gr/dscf
4.11
3.28
3.29
3.27
3.25
3.67
3.18
4.25
4.58
4.01
4.49
4.57
5.11
4.76
3.68
4.72
2.92
3.73
4.11
2.95
4.22
3.65
3.89
3.89
Outlet,
gr/dscf
0.064
0.059
0.060
0.064
0.060
0.056
0.056
0.065
0.057
0.055
0.045
0.059
0.118
0.031
0.040
0.036
0.037
0.082
0.032
0.029
0.040
0.031
0.027
0.035
0.029
0.029
Removal ,
%
98.4
98.0
98.2
98.3
98.3
98.2
98.2
98.7
99.0
98.5
97.4
99.3
99.2
99.2
99.0
98.3
98.9
99.2
99.0
98.9
99.4
99.0
99.3
99.3
Alkali
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
LS
L
L
L
L
L
L
L
L
Fly Ash
Loading
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
System
AP.U)
in. H20
2.8
2.8
3.0
3.2
3.4
3.9
3.8
3.6
4.0
3.5
13.1
13.0
11.3
11.9
7.0
8.0
8.0
10.6
12.9
10.6
10.6
13.3
12.0
14.1
12.3
13.3
Gas Rate,
acfm
@ 3000 F
18,000
18,000
18,000
18,000
18,000
18,500
17,500
17,500
18,500
18,000
30,000
30,000
29,500
28,000
19,000
25,000
25,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
Slurry
Rate
gpm
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1000
1000
1000
1000
1000
1000
1000
1200
1200
1200
1200
1200
1200
1200
1200
1200
MgO
Addition
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
Solids Recir-
culated,
wt %
14.1-15.5
14.1-15.5
14.1-15.5
14.1-15.5
14.1-15.5
14.1-15.5
14.1-15.5
14.1-15.5
14.1-15.5
14.1-15.5
14.2-15.6
14.2-15.6
14.2-15.6
14.7-15.7
13.6-15.2
13.8-14.8
13.8-14.8
13.2-14.5
6.5- 9.1
6.5- 9.1
6.5- 9.1
6.5- 9.1
6.5- 9.1
6.5- 9.1
6.5- 9.1
6.5- 9.1
I
CO
(1) Excluding mist eliminator pressure drop.
-------
Table M-2 (continued)
TCA PARTICULATE MASS LOADING TEST RESULTS
Run
No.
619-2A
619-2A
619-2A
619-2A
619-2A
619-2A
619-2A
621-2A
592-2A
622-2A
622-2A
622-2B
622-2B
622-2B
623-2A
623-2A
623- 2A
Date
02/21/78
02/22/78
02/22/78
02/23/78
02/23/78
02/24/78
02/24/78
03/24/78
04/19/78
05/11/78
05/12/78
05/15/78
05/16/78
05/17/78
05/22/78
05/23/78
05/26/78
Inlet,
gr/dscf
3.15
3.31
2.23
7.57
4.69
4.54
4.11
4.17
5.28
4.26
3.67
4.16
Outlet,
gr/dscf
0.043
0.046
0.046
0.044
0.047
0.045
0.038
0.042
0.055
0.061
0.055
0.064
0.038
0.038
0.054
0.052
Removal ,
Z
98.6
98.7
97.9
99.4
98.8
98.5
98.7
98.8
99.1
98.5
98.8
Alkali
L
L
L
L
L
L
L
L
LS
L
L
L
L
L
L
L
L
' Fly Ash
Loading
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
System
P,(D
in. H20
10.5
11.0
10.5
8.4
9.5
7.0
8.8
9.4
8.6
7.2
6.8
6.9
6.4
6.4
7.5
6.9
7.3
Gas Rate,
acfm
@ 300° F
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
30,000
Slurry
Rate
gpm
1200
1200
1200
1200
1200
1200
1200
1200
1200
900
900
900
900
900
1200
1200
1200
MgO
Addition
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
Solids Recir-
culated,
wt %
7.3- 8.8
7.3- 8.8
7.3- 8.8
7.3- 8.8
7.3- 8.8
7.3- 8.8
7.3- 8.8
6.6- 9.6
14.3-15.7
7.7- 9.5
7.7- 9.5
7.3- 8.7
7.3- 8.7
7.3- 8.7
7.4- 9.0
7.4- 9.0
7.4- 9.0
I
IO
(1) Excluding mist eliminator pressure drop.
-------
TECHNICAL REPORT DATA
(Please read Inunctions on the reverse before completing)
1. REPORT NO.
EPA-600/7-79-244b
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
EPA Alkali Scrubbing Test Facility: Advanced
Program, Fourth Progress Report; Volume 2.
Appendices
5. REPORT DATE
November 1979
6. PERFORMING ORGANIZATION COD€
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO,
Bar Ian N. Head and Shin- Chung Wang
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Bechtel National, Inc.
50 Beale Street
San Francisco, California 94119
10. PROGRAM ELEMENT NO.
EHE624
11. CONTRACT/GRANT NO.
68-02-1814
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Periodic; 11/76 - 6/78
14. SPONSORING AGENCY CODE
EPA/600/13
is.SUPPLEMENTARY NOTES IERL-RTP project officer is John E. Williams, Mail Drop 61,
919/541-2483. Earlier progress reports are EPA-600/2-75-050, -600/7-76-008, and
-600/7-77-105.
16. ABSTRACT The report gives results of advanced testing (late-November 1976 - June
1978) of 30,000-35,000 acfm (10 MW equivalent) lime/limestone wet scrubbers for
SO2 and particulate removal at TVA's Shawnee power station. Forced oxidation with
two scrubber loops was developed on the venturi/spray tower system with limestone,
lime, and limestone/MgO slurries. Bleed stream oxidation was successful only with
limestone/MgO slurry. Forced oxidation with a single scrubber loop was developed
on the TCA system with limestone slurry. Other test blocks on the TCA were lime-
stone with low fly ash loadings, limestone type and grind, automatic limestone feed
control, limestone reliability, limestone with Ceilcote egg-crate type packing, lime/
MgO, and flue characterization.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Pollution
Flue Gases
Scrubbers
Tests
Calcium Oxides
Calcium Carbonates
Sulfur Oxides
b. IDENTIFIERS/OPEN ENDED TERMS
cos AT i Field/Croup
Dust
Aerosols
Magnesium Oxides
Pollution Control
Stationary Sources
Particulate
13B
2 IB
07A,13I
14B
07B
11G
07D
13. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
396
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
M-10
-------
|