fiPA-460/3-77-009
June 1977
TRUCK DRIVING PATTERN
AND USE SURVEY
PHASE II -
FINAL REPORT, PART I
•'.•'.
ft.
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
-------
EPA-460/3-77-009
TRUCK DRIVING PATTERN
AND USE SURVEY
PHASE II -
FINAL REPORT, PART I
b,
Wilbur Smith and Associates
Bankers Trust Tower
Columbia, S.C. 29202
Contract No. 684)1-0478
EPA Project Officer: Leroy Higdon
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
June 1977
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from the
Library Services Office (MD-35), Research Triangle Park, North Carolina
27711; or, for a fee, from the National Technical Information Service,
5285 Port Royal Road, Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency
by Wilbur Smith and Associates, Bankers Trust Tower, Columbia, S.C.
29202, in fulfillment of Contract No. 68-01-0478. The contents of
this'report,are reproduced herein.as.receive.d from Wilbur Smith and
Associates. The opinions, findings, and conclusions expressed are
those of the author and not necessarily those of the Environmental.
Protection.Agency. Mention of company or- product names is not to
be considered as an endorsement by.the Environmental Protection
Agency.
Publ.ication No. EPA-460/3-77-009
n
-------
ACKNOWLEDGEMENTS
This report is based upon information gathered by many
people. The author is indebted to many, but specifically wishes
to recognize the contributions of Mr. Michael L. Popovich,
Systems Analyst, Wilbur Smith and Associates, and Mr. Brian
Currier, Senior Project Engineer, Wyle Laboratories.
Major contribution to the field operations was received
from New York City Air Resources Board, who provided laboratory
facilities for truck installation and dynamometer facilities for
truck wheel horsepower calibration. Particular thanks are due
Mr. M. P. Walsh, Director of the Frost Street NYCARB Facility,
for his cooperation during the field operations, and to the
personnel who worked many hours of overtime to provide these
facilities to meet irregular hours of truck availability. Mr.
Norman Friberg coordinated these efforts and is deserving of
specific recognition in this regard.
The many contributions, guidance, and information received
from members of the APRAC CAPE-21-71 Project Group is gratefully
acknowledged.
Finally, the personal contributions of Mr. Leroy Higdon
to the survey, including his personal direction of field operations
for approximately 2 days per week over about a 6-week period
during the Summer of 1974, is acknowledged. This unusual effort
on his part was necessitated by the serious illness of the contrac-
tor's Field Survey Director, and contributed greatly to the
field operations during that critical period.
-------
TABLE OF CONTENTS
Chapter 1 INTRODUCTION
SUMMARY
Representative Sample
Truck Acquisition
Truck Implementation
Parameters Measured
Instrumentation Calibration
Instrumentation Validation Checks
Data Processing
Survey Funding Limitations
CONCLUSIONS
RECOMMENDATIONS
Chapter 2 SAMPLE PLAN
Chapter 3 TRUCK ACQUISITION PLAN
Truck Selection
Owner Contacts
Owner Response
Truck Condition
Chapter 4 TRUCK INSTRUMENTATION
Data Logger
Signal Conditioning Module
Power Supply
Road Type and Traffic Conditions
Vehicle Speed
Engine RPM
Load Factor
Throttle Valve Closure
Engine Temperature
Auxiliary Equipment
Prequalification Test
Field Installation
Field Calibration
Daily Equipment Calibration
Data Quality Control
Instrumentation Summary
Additional Instrumentation Problems
Encountered
Post Survey Activities
Page
1
4
5
6
6
7
8
8
9
9
10
13
15
19
19
19
20
20
23
23
27
27
27
29
29
30
31
32
32
33
34
34
38
39
40
40
42
-------
TABLE OF CONTENTS
(Cent.)
Chapter 5 SURVEY OPERATIONS
Operation Log
Origin-Destination Log
Chapter. 6 DATA REDUCTION AND PROGRAM DEVELOPMENT
Raw Data Tape Processing
Calibrated Tape Data.Processing
Other Programs. Developed But Not Applied
Chapter 7 SURVEY DATA OUTPUT
Survey'Truck Identifications
Survey Truck Distribution to Sample Plan
Survey Data Control
Calibration Models
Data File Format
Data File Cross-Reference
Utility Dump Program
Page
44
44
45
46
46
63
68
69
69
71
74
74
77
80
80
-------
FIGURES
Page
Figure 1 Block Diagram - Data Acquisition System 25
Figure 2 Data Acquisition System 26
Figure 3 Typical Truck Installation of Survey
Instrumentation 35
Figure 4 Overall Data Processing Flow Diagram 47
Figure 5 Cassette Conversion - Zero Scan Output 50
Figure 6 Flow Diagram - Translation Program 51
Figure 7 Flow Diagram - Average Zero Scans 55
Figure 8 Flow Diagram - Error Distribution and
Patterns 57
Figure 9 Flow Diagram - Load Calibration Data 61
Figure 10 Flow Diagram - Translation and Edit Program 62
Figure 11 Flow Diagram - Translated and Edit
Subroutine 65
Figure 12 Flow Diagram - Calibration and Raw Selection
Program 67
-------
TABLES
Table 1 Sample Plan Distribution - New York City
Table 2 Truck Acquisition .Response
Table 3 Data Acquisition System Equipment List
Table 4 Channel Assignments During Calibration
Table 5 Instrumentation Maintenance Summary
Table 6 Data Tape Summary - Scan Counts and
Distribution
Table 7 Survey Truck Descriptions
Table 8 Survey Distributions
Table 9 Survey Data Control Summary
Table 10 Calibration Model Summary
Table 11 Raw Data Tape Header Format
Table 12 Calibrated Data Tape Header Format
Table 13 Data Tape File Cross-Reference by
Truck Number and Truck Day
Table 14 Data Tape File Cross-Referenced by Tape
Number
Table 15 Test Data - Calibrated Tapes (Preliminary)
Page
16
21
•24
28
41
58
70
72
75
76
78
81
83
84
85
-------
APPENDICES
Page
Appendix A SAMPLE PLAN DESIGN 87
Appendix B EVALUATION AND IMPROVEMENT PROGRAM
DATA RECORDING AND RECOVERY 99
Appendix C EVALUATION AND IMPROVEMENT PROGRAM
ZERO SCAN EVALUATION AND ACCEPTANCE
CRITERIA DEVELOPMENT 112
Appendix D HORSEPOWER MODEL DEVELOPMENT 121
Appendix E PLANNED DATA PROCESSING AND ANALYSIS 151
Appendix F EQUIPMENT INSTALLATION PROCEDURE 169
Appendix G METRODATA POWER SUPPLY FAILURE
ANALYSIS AND MODIFICATION 173
Appendix H SURVEY FIELD OPERATIONS 180
Appendix I PROGRAM LISTINGS 223
-------
Chapter 1
INTRODUCTION
This report covers Part I of the study entitled "Truck
Driving Pattern and Use Survey - Phase II," performed for the
U. S. Environmental Protection Agency under contract number
68-01-0478 and for the Coordinating Research Council, Incor-
porated, under separate contract. This jointly sponsored pro-
ject was under the technical guidance of the APRAC CAPE-21-71
Project Group.
The Phase II study comprised the following major tasks:
*
the Analysis of Phase I data to develop appropriate strati-
fications by approved sample plans of the truck population
over 10,000 pounds gross vehicle weight (GVW) in both New York
City and Los Angeles County; instrument 50 trucks engaged in
their normal functions and obtain 172 truck-days of data in
each of the two areas in accordance with the sample plans;
process the collected data to a meaningful form and determine
vehicle modes of truck use, both individually and statistically
summarized. The survey also required the instrumentation of 5
buses and the acquisition of 15 days of operational data in
each city.
Several sample plans were developed during this survey
period. The final plan employed stratified trucks by borough
where truck operations began, by truck type (wheel configuration)
and by fuel type.
Wilbur Smith and Associates, "Heavy Duty Vehicle Driving
Pattern and Use Survey, Final Report, Part I - New York
City" for EPA and CRC, APDT-1523; also, "Heavy Duty
Vehicle Driving Pattern and Use Survey-Draft Final Report,
Part II - Los Angeles Basin" for EPA and CRC, February, 1974.
-1-
-------
Trucks were then obtained through owner agreement to
fit the stratified sample, were instrumented and calibrated,
and returned to owners for normal operation over a number of
days, also defined in the sample plan. The instrumentation
of 52 trucks and the accumulation of 185 days of truck use
data were accomplished during this study. Also, use data for
4 buses operating on both local and express routes for 14 days
were collected.
The instrumentation included the installation of a
data acquisition system comprised of a Government furnished
Metrodata DL 620B Data Logger, a Wyle Laboratories designed
and built Signal Conditioner module, and appropriate sensors
to monitor engine rpm, load factor, vehicle speed, engine tem-
perature and throttle valve closures. Manual inputs, operated
by an on-board observer, recorded road type and traffic con-
dition in 3 variables. After the truck's instrumentation and
prior to return to normal use, the sensors were calibrated
against the parametric quantities being monitored to enable
the generation of models for further data processing.
The operational data were scanned once each 0.863 seconds,
converted to binary coded decimal (BCD) form and recorded on 1/4-
inch tape cassettes by the data logger unit. These cassettes
were examined by data validity checks and if acceptable were
transcribed to 1/2-inch computer compatible 7-track tapes.
These data were further edited to contain only actual survey data.
Header identification data was added and transcribed to raw
data tapes. A total of 14 tapes comprised the available survey
data related to the New York City survey. These raw data were
then converted to engineering units such as R.P.M., miles per
hour, etc., by the application of calibration models developed
for each truck to provide 14 calibrated tapes of data for the
surveyed trucks. In the latter data, the load factor raw data
was not converted to horsepower, but was retained in original
sensor output form.
-2-
-------
Although computer programs were developed to process
these data into horsepower and then into vehicle modes and to
statistically combine these data into summary statements de-
fining vehicle pattern and use, these were not applied to
data collected due to technical problems and limitation of funds.
Programs for this process are discussed in the appendices of this
report.
This report covers only the New York City survey. The
Los Angeles survey was conducted by EPA with support from Olson
Laboratories.
Survey Data Availability
Survey data is available from either the Office of Air
and Water Programs, Mobile Source Air Pollution Control,
Emission Control Technology Division, Ann Arbor, Michigan,
48105, or the Coordinating Research Council, 30 Rockefeller
Plaza, New York, New York, 10020. These data, applicable to
New York City only, consist of 14 raw data tapes and 14 calibrated
tapes.
-3-
-------
SUMMARY
'The program began in the Spring of 1973. The instrument-
ation was developed, and demonstrated in formal qualification
tests. Sample plans based on Phase I study data were developed.
During this period a number of technical problems arose which
resulted in a cessation of field survey operations in November
1973 after data had been taken on 17 trucks for 60 truck days
and 4 buses for 18 days. Reliability of recording and reading
field data was extremely low due to a combination of technical
difficulties, mostly centering around the instrumentation.
An evaluation and improvement program was undertaken
by the contractor to locate and correct deficiencies in in-
strumentation, analyze and establish accept/reject criteria for
field data collected and to be applied in future field collection
procedures, and to continue computer program development in prep-
aration for data processing. The results of this program are
summarized in Appendices B and C.
These difficulties were identified and resolved through
equipment modification and data validity check development.
Analysis of data collected indicated that 49 days of data in-
volving 15 trucks and 14 days of data on 4 buses were acceptable
under these new criteria. Field survey operations were restored
in May 1974 and concluded in October 1974.
A summary of the survey operations follows.
-4-
-------
Representative Sample
The number of trucks in each city as well as the two
areas included in the survey were originally dictated by funding
available. The sample size selected, 50 trucks in each area,
is an extremely small sample of truck population. New York City
and Los Angeles County were selected as representative of the
extremes in urban traffic conditions. New York is characterized
by an older city with high congestion and intensive land use.
Los Angeles county is characterized by lower congestion and less
intense land usfi, with a well developed network of urban freeways.
Within Los Angeles County are many areas representative of smaller
communities in both traffic demand and facilities to meet these
demands.
Basically, three sample plans were employed during various
stages of the survey. These will be discussed in more detail
in the body and appendices of the report. The sample plan finally
applied in New York City consisted of 30 categories or cells.
Trucks were stratified by the 5 boroughs of the city, 3 vehicle
types, and 2 fuel types. The numbers of trucks and the number
of sample days were assigned to each category according to an
EPA-generated plan, which was a modification of the statistically
design plan generated by the contractor.
In addition to 50 trucks to be surveyed in each city,
5 buses were to be sampled for at least 15 days to determine
vehicle pattern and use data.
Truck Acquisition
New York State Department of Motor Vehicles was the
initial data input to the truck acquisition according to the
-5-
-------
sample plan. These data did not contain some of the required
information to fit trucks into the 30 categories. Vehicle owners
had to be contacted to obtain these missing data before the reg-
istration listings could be matched to the sample plan.
Owners were then approached concerning their voluntary
participation in the survey. Less than 10% of those contacted
actually participated. As an incentive and to defray costs to
ownpr fbr truck delivery to the installation site and return, a
payment was negotiated with him, ranging from $75 to $150.
Trucks were scheduled for installation at the New
York City Air Resources Board laboratory facilities in Brooklyn.
Truck Instrumentation
The instrumentation installed in each of the survey
trucks consisted of a Metrodata DL620B digital Data Logger, a
Signal Conditioner Module to interface the digital equipment
with the sensors monitoring the various truck parameters. The
Data Logger provided the facility to record, on 1/4-inch cassettes,
the data being sensed. The format of these data was 4-track
parallel BCD information recorded sequentially in 10-channels
with scans at 0.83 second intervals and a parity check at the
end of each scan.
Parameters Measured - The data on the cassette consisted
of the following: assigned truck number, time in hours and
minutes, engine rpm, engine load factor, vehicle speed, road
type in 3 levels as determined and entered into the system by
the ori-board observer, traffic conditions also in 3 levels obtained
in a similar manner, throttle valve position - open/closed and
-6-
-------
engine temperature sensor output. The 10th channel, a spare, was
employed to record various data as annotated on the cassette for
other analytical purpose.
The sensor selection and installation was governed by
the nature of field survey type operations. A nominal 4-hour
period was allowed for installation and calibration.. This
produced some compromise in the techniques of measurement and
sensor location. Of all the parameters that were measured, load
factor was the most difficult to obtain and is described in
detail in Chapter 4.
Instrumentation Calibration - Each sensor was calibrated
prior to or during installation. Load factor sensors were cali-
brated against wheel horsepower on a Clayton water-brake dynomo-
meter. Engine RPM and vehicle speed sensors were also calibrated
during this period. Engine temperature sensors were calibrated
against ambient temperature and boiling water. These data were
recorded for each truck installation for subsequent generation
of calibration equations to be employed during data reduction
processes.
Attempts were made during the field calibration period
to obtain maximum horsepower output by obtaining calibration
points in the "backside" of the horsepower curve. Due to
various physical limitations of chassis dynamometer and truck
conditions, these data were not obtained for all trucks.
Instrumentation Validity Checks - Operational checks
were performed approximately each 30 minutes by the on-board
observer to check general operational integrity of the in-
stallation during survey operations. Post-calibration validity
checks were performed by technicians at the end of each survey
-7-
-------
day. These checks included test for "engine off" and "idle" engine
RPM and load factor indications. A 60-Hz signal verified sensi-
tivity of instrumentation had not changed on channels for both
engine and vehicle speed. The temperature sensor was checked for
normal readings. Malfunctions in either test were corrected and
recorded data were examined against accept/reject criteria to
determine validity and usefulness of data obtained. Extension
of test was made in most cases if data for that day were rejected.
Data Processing
Data processing consisted of the following steps:
Validity check of Metrodata cassette data
Translation of 1/4-inch cassette tape data to
1/2-inch computer-compatible tape.
Edit of translated data tape
Final validity test of translated tape
Creation of raw data tape
Creation of calibrated model for engine rpm,
vehicle speed and engine temperature.
Processing of raw data tape to convert selected out-
puts to engineering terms (viz. engine rpm sensor
output to rpm, etc.)
Creation of calibrated tapes.
Raw Data Tapes - The raw data tapes contain individual
scan data indicating, for each truck day, the scan number, time
in hours and minutes followed by sensor values for the vehicle
parameters. Each data set corresponding to a specific truck
and truck day has header information defining truck identifi-
cation, engine rpm model coefficients and constant engine
temperature coefficient, and constant vehicle speed coefficient,
and load factor calibration data. Editing of translated tapes
was accomplished. In addition, the wheel horsepower model
-8-
-------
developed from the Clayton dynamometer calibration run and
validity check data is given. The raw data tape is written
in 9-track BCD, 800 bytes per inch Extended Binary Coded Decimal
Interchange Code (EBCDIC) format which is compatible with IBM
360 series equipment. Data for each truck day contains approximately
8',000 to 67,000 data scans. Data for 52 trucks with a total of
185 truck days are given on these tapes plus data on 4 buses for
a total of 14 bus days of operation.
Calibrated Data Tapes - The calibrated tapes consist of
raw data translated to engineering terms by the application of
models developed from calibration data, with the exception of
channel 4 (horsepower) which has been left in load factor sensor
output. The format is a 9-track format similar to raw data tapes
except that it is in floating point.
Survey Funding Limitations
Due to a combination of factors, the survey activities
were not funded beyond the end of the New York City survey.
These factors included extreme technical difficulties in in-
strumentation and lack of sufficient response and participation
by truck owners. ^Cost overruns from these problems resulted in
no further funding by the sponsors beyond the data processing
described above as applicable to New York City.
-9-
-------
CONCLUSIONS
The survey produced data on 52 trucks operating for a
total of 184 days in New York City. These data are in general
agreement to the final sample plan for the survey. These data
are available in both raw data and calibrated data form in 28 total
data tapes. Within the constraints of sample size, these data can
be considered representative of truck use in New York City.
The survey employed wheel horsepower measurement correlated
with appropriate engine load factor and rpm measurements. Wheel
horsepower measurements were obtained, since drive train losses
were not subject to measurement under field operation constraints.
Models created from Clayton dynamometer calibrations
under driving conditions proved to be inaccurate when the engine
was in the motoring or dynamic braking mode. Without calibration
data obtained on a dynamometer capable of motoring the engine,
no suitable model was generated for this mode condition. Such
a dynamometer was not available in the field. Further, there was
no constraint imposed on the model that at idle condition, the
horsepower be at or near zero. While in most cases, zero horse-
power values were included in the calibration data, the model
development procedure, that of multi-regression analysis, did
not necessarily produce such a result. Had the data been processed
by the mode determination program, these zero horsepower decisions
would have been, made by provisions therein. For these reasons,
the horsepower models developed for each truck may not prove to be
acceptable for-all potential users.
The problem.of correlating wheel horsepower to engine
horsepower and -the resolution of the dynamic braking mode
problem was also conceded to be not a part of this project.
-10-
-------
Under a Phase III contract, the raw data will be correlated with
engine manufacturer's data to create a suitable horsepower model
enabling the conversion of wheel horsepower and load factor data
taken in this survey to engine net horsepower and a rationalized
percent of rated horsepower.
The maintenance and- general physical condition of trucks
in the survey was generally poor. Many trucks did not have
serial number or engine number identification data which could be
located. These data were not reliably available from registration
data. Based on owner identification, license plate, and truck
manufacturer data.supplied by the contractor, EPA has obtained
these data from various sources related to the survey trucks.
The data in the survey data file includes a small number
of zeroed scans. In addition, some editing of data has been
accomplished to zero some data on the basis of rationales
given in this report. Tests performed by the contractor
indicate that these zeroed data to a level of 10%.of total scans
did not influence the mode determination potential .of the data
to a significant degree, provided the data processing program
was carefully written to anticipate and account for these
zeroed data. After the instrumenting difficulties were corrected,
this error rate seldom exceeded 2 percent. Programs prepared
but not applied by the contractor do adequately process these
data with satisfactory results in the presence of these zero
scans. These or other suitable techniques are recommended in
future data processing activities.
I
The scan data is sampled data at intervals of 0.863 scans
per second. Combinations of only two subsequential scans can
produce conclusions which may be misleading-. It is recommended
-11-
-------
that more than 2 consecutive scans be included in the logic of
analysis to smooth this sampled data. Programs were written by
the contractor to include "N" scans of data when attempting to
locate transitions in conditions/ such as mode changes. Preliminary
tests indicate that the number of scans included should be about
'5 in a running average type or other process to produce stabile
transitions logic. By this means, single zeroed scans can be
accommodated by considering the time interval between the adjacent
good scans as 1.726 seconds rather than 0.863 seconds or averaging
the two good scans to estimate the values of the missing data.
-12-
-------
RECOMMENDATIONS
A valuable insight into the operationl pattern and use of
trucks in New York City could be gained through the further process-
ing of the survey data. Mode determination and statistical analysis
programs have been prepared and are described in the Appendices
to this report which could be utilized for this recommended
data reduction. Other forms of data analyses other than those
related to truck engine cycle generation can result from analyses
of survey data.
One area of further research appears urgently required if
further surveys of this type are contemplated. This is in the
field instrumentation of trucks to measure, with confidence, the
horsepower or torque output of an engine in suitable field en-
vironments. This should not require the disassembly or modifica-
tion of engine, transmission, torque tube, differential or drive
wheels. If a suitable means were developed of measuring torque
by a device which can be independently calibrated and then
installed on the vehicle, the necessity to calibrate individual
installations in a laboratory equipped with a chassis dynamometer
would be eliminated. The truck could be instrumented at its
base location. Not only would this have saved both time and
money in this survey, it might have relieved the possible
hesitancy of truck owners in releasing their trucks to an
installation facility not under their control and supervision.
The other sensors could be suitably calibrated without the
chassis dynamometer.
It is further recommended that data recording in future
field surveys of this nature be accomplished by a device pro-
ducing tapes readily compatible with normal computer tape
-13-
-------
transports. Equipment available at the time of the survey to 'meet
this requirement was relatively large. There was not sufficient
room for both the instrumentation and an observer in most truck
cabs. Problems associated with attaching an instrumentation package
which would be weather-proof and environmentally controlled was
discussed. In view of the fact that instrumentation had to be
installed and calibrated in a few hours of truck availability the
contractor and the advisory group decided not to use this approach,
but to rely on the Metrodata unit which could be more readily
installed.
Had a machine-compatible unit been available of comparable
size, both program cost and time could have been saved. The data
validation test could have been more readily accomplished using
a computer directly to read and verify data tapes. The data proces-
sing procedures of translation and verification of the %-inch tape
cassette to the ^-inch tape format would have been eliminated.
The savings would have more than off-set the increased skill level
requirements of more frequent tape loads and other operational
problems.
-14-
-------
Chapter 2
SAMPLE PLAN
Part I of the survey called for the instrumentation
oF 50 operating trucks in New York City to an approved sample
plan and the collection of 172 truck-days of data defining the
truck operations. At various times during the field operation,
a total of three sample plans were employed. The derivation
and composition of these plans is given in Appendix A. The
final sample plan stratified the truck population by geographical
area, truck type and fuel type.
\
The geographical areas were the 5 boroughs (counties) of New
vork City. A truck was defined as based in that borough in which its
first daily trip originated, usually the destination of its last
daily trip, even though operations might require travel in other
geographical areas.
In truck type, 3 categories were chosen - two axle,
dual rear tire, sinqle unit trucks (2D), three axle, drive tandem
axle consistina of 8 tires, sinqle unit trucks (3A), and tractors
of both 2- and 3-axle configurations (TT).
Fuel type was divided into gasoline and diesel engine
cateaories.
The final sample plan is shown in Table 1, in which truck
type and fuel type is indicated in vertical columns while the
boroughs are indicated in horizontal lines. This matrix repre-
sentation contains 30 district cateaories or "cells" into which
50 trucks were assigned. The number of trucks assigned to each
-15-
-------
<3\
I
TRUCK TYPE
FUEL TVPE
BRONX
BROOKLYN
MANHATTAN
OUEENS
' RICHMOND
TOTAL
(26)/98
TABLE 1
SAMPLE PLAN DISTRIBUTION
NEW YORK CITY
3A
(8)/32
(10)/38 (2)/6
(2)/6
No. Trucks No. Days
-_£J.
LEGEND: (x) /xx '
TT
(2)/6
(2)/4 (2)/8 (2)/6
(2)/6
(2)/6
(10)/30
-------
cell is shown in parentheses. The number of days to be accumulated
by these trucks are indicated beneath the slash.
The sample plan required a total of 26 two axle, dual
.rear tiref single unit trucks with gasoline engines to be surveyed
for a total of 98 days. These were distributed in the numbers
shown among the 5 borouqhs. The same truck type with diesel engines
was assigned a total of 4 trucks for 14 days, with assignments to
3 of the 5 boroughs as shown.
In the three axle, single unit category, a total of 2
qasoline trucks accumulating a total of 6 days and 4 diesel
trucks for 10 days was assigned.
The gasoline-powered tractors in the sample plan totalled
4 units for 14 days, while the diesel-powered units totalled 10
for 30 days.
The distribution of total vehicles by type (axle configu-
ration and fuel) were in general agreement with the original
sample plan approved. The original plan statistically based the
truck numbers to relative percentages of vehicle miles of travel.
The distribution of the total number of days in the original sample
plan was based on variability estimates of nature of truck use
as determined by industry type of user. These statistics were
based on the data generated in Phase I of the study. The
final sample plan distributed these days in a slightly different
manner.
TT5"Heavy Dutv "ehicle Driving Pattern and Use Survey - Final
Report - Part I, New York City" by Wilbur {Smith and Associates
for CAPE-21-71, EPA, and CRC,"May 1973 (APTD-1523).
-17-
-------
The division of trucks by type among the 5 boroughs of
the final sample plan was generally determined by distribution
of truck registrations. Truck registrations are not a reliable
indication of truck location as defined in the sample plan.
However, these data were considered the best manner by which
assignments might be made..
Buses
The survey also includes data on 4 transit buses for an
accumulation of 15 days operation. These data were approximately
equally distributed between "Express" and "Local" bus operations.
-18-
-------
Chapter 3
TRUCK ACQUISITION PLAN
To acquire truck owner participation in the field
survey, two randomly accessed tapes were obtained from New York
State Department of Motor Vehicles. These tapes were restricted
to those vehicles with registered gross vehicle weight in excess
of 10,000 pounds with owner addresses in one of the 5 counties
comprising New York City. A total of approximately 3000 listings
were available from this source.
Truck Selection
^
These listings did not provide some of the data required
to sort trucks completely into the cell matrices of the various
sample plans employed during various stages of the survey. The
listings included categories of trucks by year, manufacturer,
body type, number of cylinders and fuel type. The location
of vehicle operation, and axle configuration were missing from
the data contained in the listings. It was therefore necessary
to obtain this information by direct contact with the owners
before the listing could be categorized as potential candidates
for various sample plan matrix cells in effect at the particular
field survey stage. It was also necessary to recategorize
trucks on which data had previously been taken with new descrip-
tors as the sample plan changed'.
Owner Contacts
The initial contact with the owner on the listing was
-19-
-------
by telephone. This required the determination of telephone
numbers from published directories and directory service.
The volume of these contacts proved so great that it was soon
recognized that the task required 3 full-time telephone personnel
to provide the necessary information to complete the truck and
owner descriptors, acquaint owners with the general objectives of
the survev, and discuss their participation in the survey.
When there was reasonable interest in their participation,
a letter and sample contract agreement was mailed to the owner
and followed up by personal contact by survey personnel to obtain
a siqned agreement. The installation was then scheduled to
match sample plan requirements and period of truck availability.
Owner Response
The response to the survey by the vehicle owners was not
as good as anticipated. To allow for attrition in other phases of
the program, a list of 100 candidate-owners of trucks was prepared
through solicitation. While this number was twice that of the 50
trucks to be instrumented, nearly all were subsequently contacted
for participation. To obtain these 100 potential participants,
over 1,200 listings had to be processed, a yield of less than 10
percent. An analysis of these unsuccessful contacts, including
the various owner responses, is summarized in Table 2. Some nega-
tive responses were received from owners who felt antagonized or
threatened by proposed regulations regarding truck emission and
noise controls contemplated by the administration. While this
directness was experienced in only a few declines, it could have
partially explained additional refusals.
-20-
-------
Table 2
TKUCK ACQUISITION RESPONSE
SUMMARY
Unsuccessful contacts
No longer own or not in service 49
Lease truck-owner not willing 6
Based/operated outside area 32
No room in cab for observer 58
Too busy (too much trouble) 109
Don't want to be bothered 69
Unqualified refusal • 113
Other reasons for refusal 137
Security problems 5
No longer business 14
Several contacts and call backs with no 149
response or decision
Truck not in category sought at the time 214
Not listed in telephone directory or 91
unlisted number
Legal problems 3
Insurance problems 6
Union problems 4
i.iwner deceased 3
TOTAl, 1062
-21-
-------
Truck (Condition
Even after agreement of the owner was obtained, not all
vehicles could be successfully instrumented. Many of the scheduled
trucks did not have operating speedometers. In those cases where
the malfunction was due to the speedometer instrument or cable,
the sensor could be installed directly at the takeoff point. In
those cases where the difficulty involved the transmission, the
vehicle had to be rejected.
Tires were the next deficiency noted. During chassis
dynamometer calibration, two truck tires failed despite extra-
ordinary precautions taken. In one case of a dual rear-tire truck,
one tire was noticeably undersized when compared with its mate,
throwing most of the wheel load on that single tread. Dynamometer
calibration was discontinued when this tire evidenced distress.
The extreme example, perhaps, was the case where one truck was
presented for installation which had only one gear in the trans-
mission operative; it was not surveyed.
Truck condition further reduced the yield of owner contacts
and added significantly- to the acquisition task. During the latter
stages of the survey and prior to the scheduling, the owners were
questioned regarding their vehicles condition to prefilter those
not suitable.
-22-
-------
Chapter 4
TRUCK INSTRUMENTATION
The data acquisition system used included sensors to
measure engine RPM, vehicle speed, engine load factor, engine
temperature, and throttle valve position; sensor signal condi-
tioning electronics; and, a digital data logger with integral
clock and magnetic tape recorder. Manually operated switches
were included to enable recording of road type and traffic con-
ditions for subsequent correlation with the sensor data. The
above signals, along with time of day from the data logger clock,
were sampled and recorded at the rate of one data set every 0.83
seconds.
Major components of the data acquisition system are
listed in Table 3. A system block diagram is shown in Figure 1.
System configuration for gas, Cummins diesel, and Detroit diesel
engines are shown in Figures 2, 3 and 4 respectively.
Data Logger
The central component of the data acquisition system
is the Metrodata Model DL620B Data Logger, Figure 5. This unit
accepted eight differential data inputs of 0 to +_ 1 Vdc, scanned
them sequentially, and converted the analog signal to a 16-bit
(3 digits plus sign) digital signal. These eight channels, plus
two channels of time, pre-parity, and parity bytes, were assembled
into a scan which was recorded at a rate of 1.2 scans per second.
This digital data was recorded on 4-track, 1/4-inch tape in a BCD
complement format at a density of 150 bits per inch. The tape was
loaded in a 1200-foot endless loop cassette, which provided 12
hours of continuous recording.
-23-
-------
TABLE 3
DATA ACQUISITION SYSTEM EQUIPMENT LIST
Equipment
Data Logqer
ouick Rewind
Tape Reader
Position Transducer
Pressure Transducer
Pressure Transducer
Magnetic Pickup
Speed Transducer
(Shaft Encoder)
Sneed Transducer
(Tach. den)
Position Switch
Thermistor
Siqnal Conditioninq
Module contains:
-Frequencv/Voltaqe
Converter
-Power Converter
-Voltaqe Requlator
CRT Controller
CRT Monitor
Quantity
6
2
2
2
5
1
3
6
8
6
12
5
10
5
5
1
1
Model/Part No.
DL620B
QR109 •
625-3
4046-3
556
218-12
3040A
885
JV5
ID751
—
4702
DD12-15B
LAS2305
R2480C
EVM11
Manufacturer
Metrodata
Metrodata
Metrodata
Research, Inc.
Bourns
Viatran
Electro-Tech
Disc Instruments
Spacekom
Microswitch
N. L. Industries
Wyle
Teledyne/Philbrick
f
Power -Mate
Lambda
Ann Arbor ..Terminal
Ann. Arbor' Terminal
-24-
-------
LOAD
FACTOR
t |5V
CONVERTER
MANUAL
SWITCHES
StGN&L CONDITIONER
12V
BATTERY
VEHICLE
BATTER^/
DATA
LOGGER
/^
c
Figure 1 Block Diagram - Data Acquisition System
-25-
-------
1. System Power
2. Manual Input — Traffic
3. Manual Input - Road Type
4. Power Indicator
5. 5 Amp. Power Fuse
6. RPM Sensitivity Adjust
7. Load Factor Sensitivity
8. Vehicle Speed Adjust
9. Inverter Power Fuse
10. Illuminated Power Switch
11. Illuminated Mode Switch - Standby/Record
12. Record Rate Switch (locked)
13. Thumbswitches to set Real Time
14. Time Reset Button - Starts Real Time
15. Channel Select - Displays in Item 16
16. Channel Data Display - 3-Digit + Sign
17. Polarity Display — Lights on (-)
18. Cassette Release Lever
19. Mode Test Switch
FIGURE 2
DATA ACQUISITION SYSTEM
-26-
-------
Front panel controls on the Data Logger included the
POWFR switch, Analog Display with CHANNEL SELECT switch, and
TIME SET controls. Time was displayed on Channels 1 and 2 in
the same manner as other channels. The channel format for all
tests is listed in Table 4.
Signal Conditioning Module
Signals from the transducers were fed into the Wyle-
built Signal Conditioning Module. The Signal Conditioning Module
provides interfacing and signal conversion between transducers and
data logger.
Power Supply
A separate 12 vdc battery powered the data acquisition
system, and is controlled by a front panel switch. An indicator
switch shows system power status.
Road Type and Traffic Conditions
Manual inputs for road type and traffic conditions were
pronrammed by two sets of switches on the front panel operated
by the observer. The switches were interlocked to prevent selec-
tion of more than one condition. These switches were push-button
type and established normal voltage of either + .86, - .86, or
0 volts correspondina to the condition entered, and is so recorded
on the tape in diqital form.
-27-
-------
TABLE 4
CHANNEL ASSIGNMENTS DURING CALIBRATION
<«
Channel No. Measurement
1 Truck No. and Time
2 Time (hours units and minutes)
3 Enqine RPM
4 Load Factor
5 Vehicle Speed
6 Poad Type
7 Traffic Conditions
8 Slow Idle Position
9 Engine Temperature
10 Dynamometer H. P.(Calibration only)
Otherwise, Vehicle Speed (Zero
reference on survey tapes)
-28-
-------
Vehicle Speed
The input signal for vehicle speed was an AC signal
from either a tachometer generator (on the first 15 trucks) or
a Disc Instrument Shaft Encoder. The voltage of the tachometer
generator or the frequency of the encoder was proportional to
vehicle speed.
A recurrent problem with vehicle speed shaft encoders
producinq an output when the vehicle was not in motion was experienced
during the second portion of field operations. The problem was
addressed by installing an additional speed transducer (Spacekom
tachometer-generator type) in the speedometer cable drive.
The output from this transducer was connected to Channel 10
on the data logger to indicate when the vehicle was stopped.
The tachometer generator output was reliably zero when the vehicle
was stopped. The presence of a signal from this.unit confirmed
the validity of the Channel 5 readings.
Engine RPM
The engine RPM input was derived from the ignition
coil or a maanetic pickup and was a series of pulses with a dc
level of 0.5 to 6 volts and a frequency proportional to RPM.
The re-.ultant pulse train is converted to a dc signal proportional
to input frequency bv a converter, and adjusted to a scale factor
approximately 0.1 V/1000 RPM. •
An alternate RPM input to the Signal Conditioner is
provided for use with speed transducer on vehicles with mechanical
taohometers. For Diesel engines which had a mechanical tachometer
-29-
-------
drive, engine RPM was measured by tach-generator. Disc I instru-
ment shaft encoder transducers were also used for diesel engines
with mechanical drive; however, their use was discontinued due
to occasional output signal when the engine was stopped.
Load Factor
Load factor was determined as wheel horsepower/ calibrated
on a chassis dynomometer, as opposed to clutch plate or net horse-
power. Wheel horsepower was correlated to appropriate engine
operating parameters during calibration.
Other means of obtaining load factor were considered.
Torque cell installation on the drive train was considered and re-
jected because of field installation problems and tendency to
oscillate under actual road transient conditions. Further, drive
train modifications would have to be tailored to each truck.
This was not compatible with field operations with limited in-
stallation times. The load factor technique utilized considered
the most compatible and suitable way to determine wheel horse-
power in field operations.
The problem of conversion of wheel horsepower to engine
net horsepower as required for engine cycle development was
recognized early in the program. The wheel horsepower does not
reflect drive train losses which occur between clutch plate
and wheel. This conversion to engine horsepower from measured
wheel horsepower was not within the scope of this survey.
Load factor signal sources were pressure transducers
for gasoline and Cummins diesel engines, and a displacement trans-
ducer for Detroit diesel engines and those employing a Bosch
fuel injection system.
-30-
-------
Gasoline Engines - The engine load factor for gas engines
was obtained using a Bourns Model 556 Pressure Transducer with a
range of 0 to -15 psig to measure intake manifold pressure. The
unit was mounted on the inside of the signal conditioning box.
The transducer connected to the Intake manifold with a section
of 1/4-inch automotive vacuum tubing approximately ten feet long.
A snubber valve was placed in the vacuum line to protect the
transducer from damage.
Detroit Diesel Engines - The engine load factor for
Detroit diesel engines was obtained from rack position using a
Research, Inc., Model 4046-3 Linear Displacement Transducer.
Cummins Diesel Engines - The load factor transducer for
Cummins diesel engines was a 0 to 300 psia pressure transducer
measuring rail pressure at the fuel pump outlet. The transducer
used was a Viatran Model 218-12 strain-gauge type.
Bosch Injection System - On engines using this system,
principally those of International Harvester production, the
load factor was measured in a fashion similar to Detroit Diesels.
The displacement of a rod controlling the effective stroke of
injection plunges was sensed employing a linear displacement
transducer.
Throttle Valve Closure
i
A microswitch, installed on the carburetor, was used
to sense closed throttle condition. This generated step function
voltage input to the signal conditioner to be recorded in Channel
8 to indicate "curb" idle or closed throttle deceleration
conditions.
-31-
-------
Engine Temperature
To sense engine temperature, a thermistor unit, type
ID751 (National Laboratories Industries) was clamped to the
coolant output header as close to the engine as possible. This
unit provided a scaled analog voltage proportional to coolant
temperature.
Auxiliary Equipment
Two processing equipment groups were available to the
Field Survey team. One equipment provided a "quick-look" capa-
bility to field personnel, permitting a preview of the 1/4-inch
cassette data for field acceptance and to provide equipment
malfunction analysis. The second processing equipment group
provided the facility to translate the 1/4-inch cassette data
to 1/2-inch, machine compatible, raw data tapes.
"Quick-look" Capability - "Quick-look" evaluation of
dflta in the field was accomplished by using a Metrodata model
624-3 tape reader in conjunction with an Ann Arbor Terminals
Model R2480C CRT display. The two units were interfaced with
a conversion module made by Wyle Laboratories to convert the BCD
format of the 1/4 inch cassettes to ASCII format required by
the terminal.
The use of the quick-look system in the latter stages
of field operation resulted in the detection of vehicle speed
error problems which occurred onlv a small percentage of the
time. Numerous other problems were discovered which otherwise
may not have been detected until later in the data processing.
^here were no cases of tapes beinq accepted on the quick-look
system which subsequently turned out to be unacceptable.
-32-
-------
Tape Conversion Equipment - Field tapes were read
at Wyle-Hampton on a Metrodata Model 625-3 Tape Reader which
processed at 12-hour tape in approximately 45 minutes. The
data output was parallel 4-bit BCD, and was interfaced directly
into a Varian OMI 620 Computer for data reformatting. Computer
compatible 1/2-inch tapes, termed Translated Tapes, were generated.
Pre-Qualification Test
In order to demonstrate the functional integrity of the
system as a whole, a simulated test was run at Wyle-Hampton prior
to the field operations.
Gas engine and diesel engine trucks were rented locally,
and the system was installed exactly as planned for field test
operations. The test vehicles were operated in the local area
to accumulate operating data and experience. These tapes were
cycled through the data reduction cycle to yield a complete system
and process verification.
An assortment of trucks were instrumented for purposes
of testing, evaluation, verification, and demonstration. They
included:
- Wyle (Cheverolet 6 Van)
- Ryder (International V8 Van)
- Ryder (Tractor with Cummins 6 engine)
- Leaseway (Tractor with Cummins 6 engine)
- Avis (Tractor with Cummins 6 engine)
- EPA (Ford V8 Van)
- Wyle (Ford V8 Station Wagon)
- U-Haul (Ford V8 Van)
- Ryder (International V8 Van)
- Leaseway (Tractor with Cummins 6 engine)
-33-
-------
Field Installation
Detailed description of the field installation is provided
in Appendix F. It is significant to note here that one installa-
tion was exactly the same as any other. Brackets, braces, and
cabling had to be custom-tailored to fit each vehicle. A typical
installation of the data acquisition system is shown in Figure 3.
Field Calibration
After installation, the sensors had to be calibrated.
Preceding the calibration, all tapes were run-in for approximately
15 minutes to give the cassette an opportunity to adjust to the
logger. This run-in was identified by an input of 00 in the
truck number location of Channel 1.
Engine RPM - In order to calibrate engine RPM, it was
necessary to use a function generator to achieve precise results.
The span was adjusted to give an indication on Channel 3 display
of ten percent of the true RPM. A frequency equivalent to 5000
RPM was inserted into the equipment input and on Channel 3.
As a further check, the engine was run at a speed of 2000 RPM
as indicated on a G.R. Strobotac and the Channel 3 display value
verified to read 200 + 2. Any discrepancy was corrected at
this time. Calibration points were taken at 0, 1000, 2000
3000, 4000, and 5000 RPM. This calibration was performed after
system installation at the buildup area.
Vehicles using a disc instrument shaft encorder or
Spacekom tachometer generator were calibrated the same way except
the frequency input was proportional to the RPM cable drive
gearing. In this case, the frequency-to-RPM relationship was
determined by measuring engine speed with a Strobotac.
-34-
-------
TRUCK DRIVING PATTERN AND USE SURVEY
i
CJ
Typical Truck Installation of Survey Instrumentation
lA/ilbur ^Imitk and ^StiMciatel
FIGURE 3
-------
Engine Temperature - Prior to securing the thermistor
assembly to the engine, calibration points were logged at ambient
temperature and with the assembly immersed in boiling water.
Vehicle Speed - The vehicle was operated on the dynamo-
meter, unloaded, at 50 mph, and the vehicle speed output adjusted
to read 500 counts. Calibration points were logged at 4 speeds
up to 50 mph. A 60 Hz electrical calibration was also performed
and the reading logged for field verification.
Load Factor Sensor Calibration - The sensors were calibrated
prior to installation as follows:
Gas Engines - Manifold pressure transducers were calibrated
by using a vacuum pump and calibration gauge to known input
pressure points of 21, 14, and 7 inches of mercury. These points
and ambient were entered on the calibration log.
Cummins Diesel Transducers - Rail pressure transducers
were calibrated with a pressure source (bottled N2) and calibration
qauge at pressures of 0 and 200 psiq in 40 psig increments. Cali-
bration points were entered on the calibration log.
After sensors were installed on Detroit Diesels and
those using Bosch Fuel Injection systems, they were spanned to
range adequately the rack position extremes. The rack was manually
moved over its full travel to define end points. Readings for
these end points were entered on the Calibration Log. Transducers
were calibrated for linear travel of 0 to 1 inch in 1/4-inch
increments with reading entered on a calibration log.
-36-
-------
Load Factor Dynamometer Calibration - The survey vehicle
was operated in high gear on the dynamometer with the data
system operating. Load factor, RPM, and dynamometer horsepower
from the Clayton control panel were recorded on the calibration
tape. During the load factor calibration procedure, ROAD TYPE
selector was placed in FREEWAY position during adjustment phases.
When the stable point corresponding to logged conditions was
reached and data for this selector was placed in the LOCAL
position and left in that position during stable conditions.
The selector was returned to FREEWAY position before proceeding
with setting the next calibration condition. In this way,
logged conditions could be identified with taped data on the
calibration tape.
The following was the calibration procedure ujjed in the
final stages of the field survey:
"Maximum" Power Curve - The "maximum" power curve was
determined by taking full power readings at increasing RPM
increments until the peak was reached or the governor limited
engine speed.* Engine speeds were selected to cover the indi-
vidual engine's operating range in roughly equal increments.
"Minimum" Power Curve - The "minimum" power curve was deter-
mined by taking readings with clutch disengaged and with engine
speeds corresponding to those in the "maximum" power calibration.
*This was an objective. In many cases, practical limitations
restricted the ability to achieve maximum horsepower at some
rpm's due to the nature of the chassis dynamometer operations,
tire and engine conditions and extreme concern that permanent damage
to owner's engine due to severe test conditions. Judgement was
conservatively made on continuation of the activities to prevent
such damage.
-37-
-------
Intermediate Power Points - Several intermediate power
points were taken at each engine RPM interval in quantity necessary
to provide at least 30 calibration points.
Plotting of Calibration Points - Calibration data obtained
above was plotted on a Horsepower versus engine speed chart to
confirm an acceptably smooth transition of points. Points off
a smooth transition were rechecked and either confirmed or
corrected.
Gear Ratio Calibration - With the vehicle still on the
chassis dynamometer, gear ratios were determined by operating
the engine at a fixed speed (usually 2000 rpm) and measuring wheel
speed and vehicle speed for each transmission and differential
gear. Wheel speed was strobed by a G-R Strobotac. Vehicle
speed was determined from the speed transducer output which had
been previous calibrated.
Daily Equipment Calibration
After each day of survey operation and before equipment
is removed, the instrumentation was checked for proper operation.
The following items were checked:
Engine Speed - Engine RPM readings were logged at engine-
off and at idle. A 60 Hz test signal was injected into the signal
conditioner input to ascertain that no sensitivity changes had
occurred. If a change greater than five counts for the 60 Hz
calibration was noted on the data readout, the Instrumentation
Supervisor was notified immediately.
Vehicle Speed - Vehicle speed was checked with a 60 Hz
test signal. A change greater than five counts was noted, the
Instrumentation Supervisor was notified immediately.
-38-
-------
Engine Temperature - The temperature channel was observed
for normal readings and proper direction of travel with changing
temperature. The Instrumentation Supervisor was notified of any
discrepancies. Corrective action was taken if these checks
exceeded the tolerances.
Data Quality Control
In order to allow for corrective action in the event of
data problems, it was imperative that data cassettes be evaluated
in a timely manner. Tape cassettes and log sheets were shipped
by Wyle-Hampton via Greyhound bus after a "quick-look" verification
in the field. Following transcription in Hampton, the 1/2-inch
"raw" data was shipped to WSA in Columbia, S.C. via Piedmont
Airlines Priority Express Package (PEP) service.
Quick-Look Data Evaluation - Quick-look data evaluation
was accomplished by reading the cassettes on a field reader and
outputting the data to a CRT display. During playback, the CRT
display was monitored for proper signals in the data channels. A
dual trace oscilloscope was utilized to monitor skew and jitter.
Pre-installation Equipment Test - The "quick-look"
capability was also employed to check performance of a data
acquisition system after its removal from a survey truck installa-
tion and before reinstallation in another truck. Each system was
checked for proper operation using the "quick-look" equipment,
as follows:
. Installed a special five minute cassette in the data
logger.
. Put standard voltages or conditions on each input
channel.
t
. Recorded these conditions on the cassette for approxi-
mately 4 1/2 minutes.
-39-
-------
. Observed recorded results on CRT Display to see that
all standard data has been recorded without error.
. Serviced as necessary any malfunction.
Instrumentation Summary
Survey trucks in New York City had instruments installed
for a total of 315 days. During this period, 166 acceptable
truck-days of data were generated in which acceptable horsepower
calibration models were generated. An additional 21 truck-days
of data were developed on trucks for which the horsepower model
was not acceptable. Two of these were not processed due to
reasons cited above. During the period, 9 truck-days were not
obtained due to tape jam problems, 15 truck-days were not accepted
due to faults in the Metrodata Data Logger, 12 days were not
accepted due to transducer failures, 12 tapes were unreadable
for various other reasons and 11 truck-days were rejected for
other reasons. On 69 days during the installed period, the
owner did not operate the truck. A summary of these experiences
bv truck number is shown in Table 5.
Additional Instrumentation Problems Encountered
During the 1974 field survey operations, several problems
developed as follows:
Data Logger Power Supply - An epidemic of power supply
failures (transistor 0103) occurred early in July, 1974. Immediate
action wa.s taken to modifv failed units in the field and an
en
-------
Table 5
Truck
Mo.
1
2
3
4
T>
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
32
33
34
35
16
37
38
39
40
41
42
43
44
4r>
46
47
48
49
50
51
52
53
54
55
56
57
58
59
r,0
r, j
h'.!
( •(
(.4
!>'•
70
3
3
6
4
3
2
4
6
4
4
3
7
2
9
7
4
5
3
7
10
5
9
5
5
6
9
14
8
5
2
7
7
4
15
10
6
2
5
9
7
6*
. G
4
11
4
6
7
2
7
2
3
3
5
4
7
2
1*
315
30
Hi
8.7
8'J
84
INSTRUMENTATION MAINTENANCE SUMMARV
No. Days
Installed
3
3
6
4
3
2
4
6
4
4
3
7
2
9
7
4
5
Good
2
2
5
3
2
2
3
5
3
3
3
4
3
4
Tape Logger Did Not Transducer
Jam Malfunction Go Out Malfunction
1
1
1
1
1
1
1
1
2
3
2
Other Un-
readable
1
2
2
2
5
HP Model
Not Accepted
5
2
i~6T
3
5
7
4
1
15
69
1
12
11
12
2
1
2
IT
'Indicates t.ruck 50 had 6 good days of data - clay 2 was 'extra therefore was pro^cssed as Truck
70
-41-
-------
Temporary modifications in the field to eliminate a
suspected transient problem included installation of diodes across
the tape drive motor, addition of capacitive filtering to the
tape motor drive circuit, and movement of the crowbar circuit SCR
anode to a point which blows the fuse but does not burn the Q103
transistor. Results of the engineering analysis are discribed in
Appendix F. Following the field survey in New York, all Metrodata
Loggers were permanently modified as described.
Vehicle Speed Transducer - Recurring problems were
experienced with output signal from Disc Instrument transducers
with no rotation. The use of a suppression circuit in the circuit
was rejected because it might introduce undesirable lag or other
problems. The solution finally utilized for vehicle speed was
to use a tachometer on channel 10 and the Disc Instrument trans-
ducer on channel 5. Channel 10 was then used as a zero reference
only during the subsequent data processing.
Post-Survey Activities
At the conclusion of the New York test program all equip-
ment was returned to Wyle-Hampton, calibrated and refurbished.
The calibrations were compared to those done prior to field
operations and no significant changes were noted.
The signal conditioner modules have been redesigned and
completely rebuilt to formally incorporate changes in transducer
types and calibration methods which evolved during program
performance. The new features include switch combinations allow-
ing selection of three types of load factor transducers and four
types of RPM sensors. A switch and variable resistor have been
added to correct vehicle speed output on trucks with two-speed
-42-
-------
rear axles. This observer-operated switch allows calibration in
both ranges and ensures proper speed readings at all times,
The Metrodata Data Loggers were permanently modified with
the incorporation of changes described in Appendix G.
-43-
-------
Chapter 5
SURVEY OPERATIONS
After the survey truck had been instrumented and calibrated,
the vehicle was returned to the owner. Each day thereafter a
Survey Observer reported to the truck and rode with it during its
normal operation.
Durinq this period, the observer performed three major
functions:
. Entered into the instrument keyboard the roadway
type and traffic conditions.
. Performed operational checks on the equipment and logged
the results.
. Maintained an Origin-Destination Log.
Operation Log
instructions required the observer to ripple through the
CHANNEL SELECT thumbwheel switches on the data logger and read
corresponding data in the read-out window of the logger. These
data were recorded on a log sheet provided. The observer judged
whether these readings were reasonably reflecting the operating
conditions of the vehicle based upon nominal values provided
him. If they did not, he entered appropriate comments on the
loq. In cases of serious malfunction, he reported the unsatisfactory
conditions immediately to the Field Survey Director. These •
operational checks were for maintenance purposes and were reviewed
dailv by a technician during his servicing of the instrumentation.
A cooy of the detailed instructions is included as Appendix H.
-44- '
-------
Origin-Destination Log
In addition, the observer maintained a log of the
origin and destination of each trip. This procedure was
initiated during field survey operations in 1974 beginning with
Truck number 25. A transcript log form and instructions for
these logs and a summary of Survey 0-D logs are given in Appendix H.
In this loq, the origin of one trip normally was the
destination of the previous stop. These locations were defined
as the major intersection nearest the actual point to avoid
recording exact names or adresses of the shipper/consignee. The
latter would have been objected to by a number of operators who
felt that such data was proprietary.
The percent visible load shown in the 0-D summary was a
judgmental factor determined by observer.
-45-
-------
Chapter 6
DATA REDUCTION AND PROGRAM DEVELOPMENT
The original data analysis portion of the Driving
"attern and Use Survey-Phase II, consisted of four work
elements. The first element was the conversation of raw data
cassette tapes, into manageable and useful formats. The second
element anareqated this raw data into real units and determined
its significant characteristics. The third element was intended
to statistically assemble these data into meaningful formula-
tions that described truck patterns and uses. The final
element was intended to mathematically combine these truck
days and stratifications.
The objective of this complete processing procedure was
to reduce collected field data and analyze truck pattern and
operational characteristics. However, due to project modifica-
tions, mode verification and reduction programs were not performed
on survey data. The calibrated tape in the data file did not
translate raw data load factor records to horsepower. Horsepower
models and data processing programs developed under this contract
are discussed in Appendix D and E respectively. The channel
assigned for horsepower contains load factor analog voltage. The
flow diagram for the overall data processing is shown in Figure 4.
Raw Data Tape Processing
The creation of raw data tapes in the data file, consist-
ing of a number of steps starting with the field recorded data
on cassettes through various validity tests and control evaluation;
the translated tape resulted. This tape was edited and became
a raw data tape in the data file.
-46-
-------
DUMP DATA
TAPES
SPLIT TAPli
PII
\
•:s
LISTING *
TRUCK HEADER
COUNT
____^-^
t
COMBINED*
RAW AND
CALIBRATED
LISTINGS
/
h
OTMFR
CALIBRATED
DATA TAPE?
SUMMARY*
DOCUMENT-
CALIBRATION
CONSTANTS
HARD COPY PRINTOUT KOR DIAGNOSTICS ONLY.
NOT AVAILABLE FOR ALL DATA SETS.
OVERALL DATA PROCESSING
FLOW DIAGRAM
Smjtl un
FIGURE 4
-47-
-------
Field Data Quality Control - This review procedure
was introduced into the program during the 1974 field operations.
The procedure was described in Chapter 4, and provided an
indication of acceptability of data and proper operation of
field instrumentation. In fact, no tape passing this inspection
subsequently failed remaining tests and all were acceptable.
Cassette Conversion Program - This program translated
the information collected on 1/4-inch cassettes to 1/2-inch
7-track IBM tapes. During this translation, certain checks
were made to test the reliability of the data. Primarily
these included preparity and parity checks. If there was
parity agreement this program would record complete data on the
1/2-inch tape. If these checks failed then the data scan*
being translated was zeroed.
Other validitv checks performed included the following:
(1) verification of the existence of 41 characters between
preparity characters; (2) verification that only 10 sign
characters exist between preparity characters; and (3) verification
that each sign character was followed by three valid data
characters. If anv one or any combination of the above criteria
O
were not met the entire scan was written on the 1/2-inch tape
as zeros. The beginning of the next scan was defined as the
first sign character following preparity and the process was
repeated.
A data scan is defined as 10 channels of information or
40 characters, equal to .88 seconds.
-48-
-------
This program not only translated 1/4- to 1/2-inch tapes,
but also summarized the distribution of zero scans in the data. An
,example of this output is found in Figure 5. A "z" was printed if
there were 60 consecutive scans of good data (sixty scans represented
one record). If there had been one or more scans zeroed in the
record the total number was then listed. For example, Figure 5
indicated that in the first record there were 58 zeroed scans, the
second had 4, and the third 1. The next 72 records contained
valid data before one scan was zeroed in the 73rd.
The analysis indicated the distribution of zeroed scans
throughout the records, and allowed for preliminary judgments to
be made on the acceptability of the data. At the end of the
transcription process, the total number of scans and the total
zeroed scans were printed out by the teletype unit. Figure 5
indicates "34,436" scans and "78" zeroed scans; or an error of
0.23 percent. The "PE 0" at the end indicated zero parity errors
on the transcribed 1/2-inch tape.
The flow diagrams for the translation programs employed
to process raw cassette data to translated tape form, including
the preliminary data control and validity analysis is shown in
Figure 6.
The sub-routines of this program are briefly described
as follows:
WSA
This routine controls the data transcription portion
of the WSA program. Upon entry, all counters used for
teletype summary page output are initialized. The
truck identification cards are read and processed.
Communication between computer and cassette is established,
and the program takes and records data on magnetic tape
in 900-word records = 60 scans with 15 words per scan.
-49-
-------
Figure 5
Casette Conversion - Zero Scan Output
Truck 3 Day 2
1 12
00058
00004
00001
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
zzzzzzzzzzzzzzzzzzzzzz 0001
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
zzzzzOOOOl
zzzzzzzOOOOl
zzzzzzzzzzzOOOOl
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
ZZZZZZZ2ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ2
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
00001
zzzzzzzzzzzzzzzzzzzzzOOOOl
zzzzzzzOOOOl
00001
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
zzzzzzzzOOOOl
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzOOOOl
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ2ZZZZZZZZZZZ
zzzzzzzzzzzzzzz PE 0
RUN 7
SC 34,436
EC 78
-50-
-------
FLOW DIAGRAM
TRANSLATION PROGRAM
ll'.fL, .\...il,
FIGURE 6
-51-
-------
DATA
READY TO
ACCEPT
ACCEPT
DATA
CHARACTER
WRITE
RUN TERMINATE
INDICATOR ON
MAG TAPE
TWXO
OUTPUT
PARITY
ERRORS
TWXO
OUTPUT
RUN
NUMBER
TWXO
SCAN
COUNT
i /
TWXO
ERROR
COUNT
( STOP J
FLOW DIAGRAM
TRANSLATION PROGRAM
li/ilbur J^mith and
FIGURE 6 (Confd.
-52-
-------
Upon either cassette end-of-tape, or operator inter-
vention, the program outputs a summary table to the
teletype and halts.
REPA
This routine, using other routines, reads and formats
ten channels of data. If an error is found, routine
ZERO is called which zeros the entire scan.
RCHA
This routine reads one channel. If the teletype is
ready, it also prints the number of errors found in
the record.
RECA
This routine reads one datum from the cassette. If a
cassette end-of-tape, or operator intervention is
detected, the routine TERM is called which outputs a
summary.
ZERO
During the playback process, the Metrodata reader is
coupled to DMI 620 computer system. Data is read in
four-bit parallel format each time a "data ready"
pulse is received from the reader. This data, beginning
with the first siqn character following the first pre-
parity is buffered scan-by-scan, for output to 1/2"
magnetic tape. Validity checks performed.
TXER
This routine outputs a "Z" on the teletype when called
if no errors occurred during the current record, or
a decimal number in the range of 1-60 indicating the
number of zeroed scans in this record.
TERM
This routine, when entered, disconnects the computer
from the cassette and indicates an end of run on the
one-half inch magnetic tape. It then outputs the
followinq to the teletype:
1. Parity errors (for this run)
2. Run number
3. Scan count
4. Error count (number of zeroed scans)
-53-
-------
The program then halts, awaiting recycling after the
next cassette is entered.
A truck-day of data was preliminary judged acceptable
if the transcribed data contained no parity errors and the zero
scan count was less than 10 percent of the total. This 10 percent
figure is not arbitrary, and a detailed explanation of this can be
found in Appendix C, Evaluation and Improvement - Zero Scan
Evaluation and Acceptance Criteria. The "Z" pattern test data
was only preliminary and a second analysis was run after subsequent
edit of the translated tape. The output of this processing produced
the translated tape. These tapes were further processed which
included the final validity review, editing, and calibration as
follows:
Split Tape Files Program; Dump and List Data Programs -
These programs were a series of initial processing procedures of
the translated tape which were required before further data
reduction could be performed. They converted the 7-track data
tapes into 9-track tapes, separated the truck files, counted scans,
determined start times, and listed the truck headers and any
desired raw field data.
The outputs of this initial translated tape breakdown
procedure were used to verify readability of tapes and collect
information to be used as input for further processing.
Average Zero Scans Program - The first editing of the
field data was performed in this program. Basically, the program
averaged channel 3, 4, and 5 data for those scans that were
zeroed in the initial processing. These channels were averaged
-54-
-------
READ (CARD)
TRUCK, DAY.
REC, NO.-DAY
READ DATA
SCANS,
REC. TIME
FLOW DIAGRAM
AVERAGE ZERO SCANS
WRITE
AVERAGED
SCANS
1. COPY CHANNELS 6, 7, 8, 9, 10
FROM IAST NON ZERO SCAN
2. AVERAGE RPM, LOAD fACTOR, VS
•^^^
ll/til>t
-------
based upon the last and the next non-zeroed scan. To identify
scans averaged, the truck ID and time (channels 1 and 2) were
*
zeroed. The logic flow of this program can be found in Figure 7.
The program also edited the beginning of the truck day if necessary,
For example, when a truck was first instrumented there was a
brief period of time in which the equipment was warming up, often
leading to initial scan errors that end up zeroed under initial
scan errors that end up zeroed under initial processing.
The "Z" pattern test in Figure 5 showed this? as 58 out of 60
scans were zeroed in the first record. Therefore, these scans
were stripped off the 9-track tape by the average program if it
occurred prior to the actual start time of the truck as was fed
into proaram from the observer log.
Error Distributions and Patterns Program - Input to
this program was the averaged data. The program is designed
to determine the total number of scans: total zero scans; total
good scans, and their frequency throughout the data. The program
ri.lso specified consecutive zero scans and the frequencies involved.
Fioure 8 shows program flow.
Table 6 is an example program output. Here, Bus 81,
Dav 5 had 35,717 scans read, 483 of which were zero, or an
error rate of 1.35 percent.
There were 8 hours 36 minutes and 46 seconds of good
occasionally, truck time contained zeros even though the
scan was not averaaed: therefore, identification of these
scans was not based solely on zeros in the Truck ID and time.
-56-
-------
END FILE
DETERMINE
LENGTH OF
TIME SCANS
WERE ZEROED
PUNCH
'ES1 CARD
FOR
CALIBRATION
f STOP J
FLOW DIAGRAM
ERROR DISTRIBUTION AND PATTERNS
It ithxr » VM///I ana
FIGURED
-57-
-------
TABLE 6
DATA TAPE SUMMARY
SCAN COUNTS AND DISTRIBUTIONS
TRUCK 81 DAY 5
cr A M C
bL A!N b
REAC
25717
CONSECUTIVE
ZFRO SCANS
1
7
3
4
5
6 - J.O
11 - 15
16 - 20
2] - 3C
21 - 4C
41 ~ 5C
51 - 6C
61 - 7C
71 - 100
10 - rccc
JOCI - UP
nMP _____
SCANS SECONDS HH.MN.SS SCANS
25234 31005.92 08.36.46 483
CORRFSPONDING NUMBER
TIME - SECONDS GROUPS
.88 456
1.76 12
2.64 1
3.52
4.40
5.26 - 8.80
<5.66 - 13.20
14.08 - 17.60
18.48 - 26.40
27.28 - 35.20
36. Ce - 44-00
44.66 - 52.80
53.66 - 61.60
62.46 - 88.00
ee.ee - aso.oo
68c.ee - IP
NOVEMBER 5, 1974
ZERO SCANS
TIME PERCENT
SCANS SECCNCS HH.MM.SS ZERO
483 425.04 00.07.05 1.35
-58-
-------
scans and only 7 minutes, 5 seconds of zero scans. The
consecutive frequencies of zero scans were: 456 groups of
scans 1 zero long; 12 groups 2 zeroes long; and 1 group of 3
zeroes. The length of time associated with each of these
blocks is also recorded. Note that the 12 qroups of 2 consecutive
zero scans actually represent 24 total scans that were zeroed.
The total oroups will not equal the total zero scans unless all
the qroups are found in the first zero frequency.
The tape summary was used as verification of the initial
"Z" pattern test. The two would not correspond exactly in
scan count or zero count becuase initial scans were stripped
from the data by the averaqe program. The primary purpose
of the summary was to determine potential reliability of data.
If the tape was found to lie within the statistically determined
limits of less than 10 percent, the data was defined as "good".
Potentially, the data would be a true indicator of the actual
truck behavior.
The result of the test of the edited tape is the statistic
entered subsequently in the header of the raw data tape.
Supplementary output from this proqram was an error summary (ES)
data card which load these data.
Engine RPM, Load Factor, Vehicle Speed, and Temperature
Calibration Programs - Survey instrumentation provided voltage
outputs which were analog functions of engine rpm, engine load
factor, and vehicle speed (mph) developed bv proportional sensors
installed on the vehicle, recorded in BCD form on the "raw data"
tapes. To convert these data to meaningful scales of rpm, hp, and
mph, each installation was calibrated under controlled conditions.
-59-
-------
Calibration values were converted to mathematical form so that
survev data could be translated to enqineerinn terms. The
following models were generated from calibration data:
Engine RPM Model was assumed to be linear and of the
following form:
RPM = a (x) + b
where:
a and b are calibration constants
x is the analog RPM voltage (Channel 3) output
Calibration values at each engine speed were fitted
to this eauation form by a least-squares linear regression pro-
cedure, and the best values of the constants determined and
stored.
Vehicle Speed Model was generated on the assumption
that the sensor outnut was linearly portional to vehicle speed
and passed through origin. The slope of the line was determined
hv the linear regression program to produce this coefficient.
Engine Temperature Model was generated using the least
souares linear reqression program. Input data was taken from
the field calibration sheets and fed into the program with the
resulting outout coefficients, satisfyinq the following equation
Temp. = A (channel 9) + B
Where :
Temperature is in decrees Fahrenheit.
-60-
-------
READ TRUCK
ID RECORD
CHECKS
COLUMNS 79-80
OF CARD
MUST BE ONE
CARD FOR
3, 4, 5, ES, MM
MAY BE ONE
OR MORE CARDS
FOR GR, HM, M4
IF ALL CHECKS
PASS WRITE SCAN
I'l'ilhur J^nutn ana
MUST BE IN SEQUENCE
3,4,5, GR, ES, MM, HM, M4
LOAD CALIBRATION DATA
FIGURE 9
-61-
-------
1
CTi
to
1
^
1 START J
/READ */
RPM CUTOFF /
VALUE /
(IDLE) y
I
/READ /
RPM /
PARAMETER /
TYPE (3) / t
X
COUNT
NUMBER OF
READINGS
RECORDED
I
CALL LSFIT
RETURNS
A & B COEFFICIENTS
FOR RPM CALIBRATION
|
*CARD INPUT-ALL OTHER CONTROLS
lA/ifour _3/m7n ana ^"fuocialel
X
READ A & B
COEFICIENTS
TEMPERATURE
4
READ
SPEED
CONTROL
TYPE (5)
i
~ 1
CALL CALCA 5
RETURNS SPEED
RATIO
CONVERSION
X
/SKIP /
UNUSED /
CALIBRATION /
RECORDS j
IA,_. f A ]
V ^-^ END FILE
/ READ DATA / PRINT / \
/ RECORD / ^ CONTROL "^STOP J
CALL CFLOAT
CONVERTS
VALVE & TEMPERATURE
TO FLOATING POINT
I
CALL CDATA
CONVERTS
\ CHANNELS 3-7
(SEE ATTACHMENT)
1
CHECK FOR NO
CHANGE IN RPM _
FOR 5 MIN.
CHECK FOP. NO PRINT ERROR
CHANGE IN L.F."""^ UNLESS VEHICLE
FOR 5 MIN. IS STOPPED
CHECK FOR NO
CHANGE IN VS -J
FOR 5 MIN.
A
(D
ON INPUT TAPE ^^
FLOW DIAGRAM
TRANSLATION AND EDIT PROGRAM
FIGURE 10
-------
Load Calibration Data Program - This program loaded
the truck header containincr the RPM calibration points, temperature
calibration coefficients, vehicle speed calibration points, qear
ratio parameters, error summary data, load factor model, and the
horsepower calibration points on the front of each truck day record.
Raw data for truck davs were then compiled on 14 tapes which pro-
vide the Raw Data Tape File. Figures 9 and 10 indicate the
Ionic flow of this proaram.
Calibrated Tape Data Processing^
The next step in data processing was to apply the models
developed for engine rpm, vehicle speed and enqine temperature
to each scan of each truck dav file to convert raw data for
these parameters to rpm, mph, and degrees Fahrenheit. Data
entries on road type, traffic condition and throttle valve
closure were coded to standard forn. Only the load factor
data in Channel 4 remained in raw data sensor form. The
data processincr utilized one program followed bv a quality
control proaram to permit the summary review of the calibration
orocess.
Translate Program - This routine which converted
selected BCD data on the raw data tape files to calibrated
tapo values for rom, vehicle speed, and temperature is shown
in the Plow diaqram, Fiqure 11.
Tn addition to conversion of continuous variables
described above, three channels wrv-e assiqned levels of nominally
constant voltaqes to indicate the 3 ro^.d tvpes, 3 traffic conditions
-63-
-------
and 2 throttle valve positions (channel 6, 7, 8 respectively).
Channels 6 and 7 were converted to numbers for future data pro-
cessing, as follows:
Raw Data Coded Digit Data Interpretation
Channel on Calibrated Channel 6 Channel 7
Value Tape Digit Road Type Traffic
-.900 + .050 1 Freeway Light
.000 + .050 2 Arterial Medium
4.900 + .050 3 Local Heavy
Channel 8 was converted by feeding in the corresponding
voltage reading for an open and closed valve condition. if the
channel 8 voltaqe indicated the valve was open, a 1 is placed
on the tape and a 0 if it indicates closed. For diesel trucks,
there was no measurement of this variable: therefore, channel
8 on the calibrated tape will contain a constant 1. The only
channel data that was not altered is channel 4 which contains
sensor voltage measurements of load factor. These data were
merely converted to the corresponding floating point number.
Channel 10 is used to store the R/V ratio which can be used
as an indicator of near changes.
Final Edit Program - in addition to the translation of
variables that was performed the final editing of the tape was
accomplished in this program. This editing included the following
logic checks:
. Tf RPM was less than 100, the RPM and vehicle speed
channels are set to 0.0. Essentially this says that
the truck engine was off and there should be no readings
in 3 and 5.
-64-
-------
C ENTER J^
CONVERT RPM
RPM=A(X)+B
CONVERT V.S.
VS=A(X)
FLOW DIAGRAM
TRANSLATED AND EDIT SUBROUTINE
CONVERT
TEMPERATURE
T=A(X)+B
IF CHANNEL*
10 .GT. 750
VS=VS * ADJ
1= -950 THRU - 850
2= - 50 THRU + 50
3= +850 THRU + 950
1= -950 THRU - 850
2= - 50 THRU + 50
3= -<-850 THRU + 950
Trucks instrumented before August 10, 1974.
* Performed either on Channel 5 or 10.
FIGURE 11
-65-
-------
. If RPM was greater than 100 and less than a determined
cut-off value, vehicle speed was zeroed. The cut-off
point was determined by inspection of raw data and
was chosen to allow for the variations in truck idle
conditions. This edit check identified a truck operating
idle and was conditioned on a corresponding zero speed.
. If vehicle speed (channel 5) was less than .5 mph,
then speed was set to zero.
. All trucks which were instrumented after August 10th
had a zero speed indicator in channel 10 of raw data indi-
cating 0000 when the truck was stopped. Channel 10
on these records was used as the control variable on
vehicle speed. When a zero was detected, channel 5
was also zeroed.
This program also performs a consistency check. For
example, if RPM, load factor, or VS remained constant for 5 minutes,
as long as VS was greater than 0, an error message was printed
and checked. This was to control the possibility of a channel
that was stuck.
The result of this program was a 9-track calibrated data
tape, in floating point format.
Calibration and Raw Selection Program - This program
was designed as a quality control measure to verify manually
the calibration, edit, and translation procedure. Figure 12
outlines this logic. Basically, the program printed 100 scans of the
raw and correspondinq calibrated data at 5 different locations
from the truck day. This printout was then visually checked
to verify the translation procedure. If any discrepancies were
found the raw data tape was reprocessed. This program was proven
to be a valuable tool in controlling the data.
Ocassionallv auxiliary programs not identified on the
flow stream were used to test pronrams, verify data, etc.
-66-
-------
READ
CALIBRATION
TAPE
PRINT
HEADING
READ
CALIBRATION
AND
RAW
TAPES
SEARCH
CALIBRATION
TAPE FOR
VEHICLE
SPEED THAT
IS GREATER
THAN .999
AND PRINT
100 SCANS
IF
PRINTING EQ.
5 TIMES END
PRINT
FLOW DIAGRAM
CALIBRATION AND RAW SELECTION PROGRAM
_\m/n ana -svi
FIGURE 12
-67-
-------
These included a plot program that schematically illustrates
data characteristics, a program to convert raw BCD data to raw
floating point data and a correction program that edited such
things as the truck number in the raw data.
Other Programs Developed But Not Applied
During the course of the program, other programs
were prepared to further process and analyze these field
data. For reasons previously given, they were not applied.
For record purposes, they are discussed in Appendices D and E.
-68-
-------
Chapter 7
SURVEY DATA OUTPUT
This chapter describes the trucks and buses Included in
the survey in New York City and relates these to the final sample
plan employed. Also given here are the results of data control
analyses imposed upon the data collected during field operations,
and indicates the accept/reject decisions made on individual
days of truck operational data. Contained herein is the
identification and cross references between the tapes available
in the data file to survey trucks. The detailed format of these
tapes is also defined.
Survey Truck Identifications
Trucks in the survey were assigned numbers varying from
1 through 70 and buses from 80 to 84 for control purposes during
the truck acquisition effort. Truck days were numbered accord-
ing to the anticipated acceptability of data for that day, based
upon apparent operational status of the instrumentation. Not all
numbers so assigned appear in the final survey data file because
some trucks were not instrumented, data on others were rejected
during subsequent data control analyses and processing, and truck
days were not necessarily sequential calendar-wise due to trucks
not operating.
Table 7 contains a listing of trucks included in the
survey, along with the "base" borough to which it was associated.
This was defined as that borough where daily trips originated
and usually where they terminated, at the end of their operations.
The number of sample days assigned to this category of truck by
the samole plan is indicated in the next column. Truck descriptors
-69-
-------
PAGE NOT
AVAILABLE
DIGITALLY
-------
according to truck type and fuel type are associated with each
survey truck. These descriptors were defined in Chapter 3.
The licensed or indicated gross vehicle weight was also indicated.
The table also indicates the date the vehicle was instru-
mented and the dates on which data were collected which was
potentially good, with indications (*) of days of data subsequently
rejected.
Data on engine make, model, and serial number were collected
during the installation, but subsequent review of these data
proved unreliable. The field installation team had difficulty
in locating these data from trucks due to their condition and general
lack of sufficient available data. These data were supplied separately
to EPA along with owners name, truck license number and other data.
EPA independently gathered additional information from manufacturers,
owners, registration data and other sources to create a more
complete identification of engine records. These data are included
in Table 9.
Survey Truck Distribution to Sample Plan
Table 8 compares the survey trucks by truck number and
number of truck days within the final data file with the sample
plan. This table indicates that the survey actually conducted
is in agreement, in general, with the plan.
A total of 29 single unit, 2-axle, gasoline powered trucks
have acceptable data for a total of 105 truck days. Three extra
trucks were surveyed in Brooklyn and 7 extra truck days are avail-
able in the data than were required by the plan. Some data,
previously rejected due to inadequate horsepower model development
-71-
-------
Truck Type
Fuel Type
Bronx
Subtotal
Brooklyn
(kings Co.)
Subtotal
Manhattan
(New York Co.)
Subtotal
nueens
Subtotal
Richmond
Subtotal
TOTAL
(1) 25/3
(2) 38/4
(3) 48/4*
/ll
(1) 02/2
(2) 06/2
(3) 11/3
(4) 26/5*
(5) 31/5
(6) 33/1
(7) 45/5
(8) 49/5
(9) 50/6
(10) 32/3
(11) 61/2
/39
(1) 04/5**
(2) 05/3**
(3) 12/3
(4) 13/5*
(5) 16/4
(6) 20/4
(7) 29/3
(8) 44/5
(9) 51/4
(10) 52/4
/38
(1) 03/2
(2) 08/3
(3) 09/5
(4) 17/3
(5) 35/4*
/17
(29) /105
(52) /185
TABLE 8
SURVEY DISTRIBUTION
New York City
2D
D G
(1) 47/3
3A
TT
/3
(1) 62/5
(1) -
(1) 57/2
/2
(1) 36/5
(2) 37/2
(1) 30/3
(2) 64/5
(1) 27/2
(2) 55/3
/5
(1) 60/3
(2) 43/4
/5
(1) 58/5
(2) -
/ll /8
(1) 54/4 (1) 39/4
/3
(1) 34/5
(2) 10/3
/5
/4
(1) 28/4 (1) -
(2) 59/2
(1) 07/2
/a
(1) 42/3*
(2) 56/4
(3) /3
TRUCK NUMBER
/2 . /7
(1) 65/2
(2) 53/5
n
(2) /6 (4) /13 (4) /14 (10) /34
(x) xx
/x
Sample Number
Number Good Truck
Days
* Indicates Good Raw Data Tape; Horsepower Model not Acceptable .
•• Cassettes for an additional day exist, but original transcribed tape was
not readable; could not reprocess due to return of equipment to Government.
-72-
-------
for a given truck, is otherwise acceptable by data control
procedures applied to raw data. Distributions of trucks within
this truck category by borough is otherwise in agreement with
the sample plan in both truck numbers and truck days.
The 2-axle, single unit, diesel truck category is repre-
sented by data on 3 trucks for 13 days as compared to 4 trucks for
14 days in the sample plan. Two trucks based in Manhattan were
required to be monitored for 6 days total in the sample plan. Due
to the small numbers of this type truck in Manhattan, truck acqui-
sition produced a problem. The single truck was surveyed for 5
days to generate representative data for Manhattan trucks in
this category.
In the 3-axle, single unit, gasoline truck category, 2
trucks were surveyed for 6 days. This total was in agreement with
the totals required by the sample plan, however, both trucks were
based in Queens rather than one each in Queens and Brooklyn. This
again was due to truck acquisition problems but the operational
characteristics of trucks in Brooklyn are thought to be comparable
to those in Queens and this sample is therefore representative.
The gasoline tractors in the survey total 4 vehicles
for 14 days and are distributed by borough in agreement with the
sample plan. Diesel tractors in the survey total 10 vehicles
for 34 days as compared to the sample plan of 10 vehicles is
distributed by borough in accord with the plan, the number of
acceptable days are in slight but not significant disagreement.
The two Bronx tractors produced 5 good days of data instead of
the planned 6 days. One extra was generated by the Brooklyn,
-73-
-------
Oueens, and Richmond tractors, and two extra days by the
Manhattan vehicles.
The survey data file contains data on a total of 52 trucks
and 185 truck days of data compared with the sample plan require-
ments of 50 trucks for 172 days.
These differences should be considered in future data
processing activities related to the survey data file.
Survey Data Control
Acceptability of data was primarily based upon the
criterion of percentage of zero scans to total scans in the
daily tapes, as described in Chapter 6. The results of these
control analyses is summarized in Table 9. Here, the total
scans, number of zero scans, the percent zeros, and the
accept/reject actions taken are cross referenced with truck
number and truck day. Two tapes were rejected because of
instrumentation difficulties not previously detected and not of
the nature to produce zero scans.
Calibration Models
The conversion of selected data to engineering terms
required the generation of mathematical relationships between
sensor output voltage and conventional dimensions. These models
were engine rpm, vehicle speed and engine temperature. These
models were applied to raw sensor outputs in channels 3, 5, and 9
of the raw data tapes to generate the calibrated tapes. Raw
data were recorded in millivolts; coefficients in models relate to
0-1 volt range. A summary of the coefficients resulting from the
application of field calibrations and data processing described
previously in the report is given in Table 10. Load factor
-74-
-------
PAGE NOT
AVAILABLE
DIGITALLY
-------
Table 10
CALIBRATION MODEL SUMMARY
Truck
No.
•1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
70
Buses
80
81
82
83
Engine RPM
Model
A(x) + B
A B
-
10022.75
9991.38
9976.77
10048.13
9999.98
9999.98
10002.79
10005.59
10030.03
9948.17
9809.23
10002.79
_
—
9979.91
9999.98
_
^—
9959.99
_
—
—
—
9988.50
2071.24
7499.55
10014.26
9997.08
9985.69
9999.98
22289.51
9982.79
6967.03
9965.63
9976.95
13333.31
9999.98
9999.90
—
—
15032.83
14162.13
20000.00
9999.98
__
4047.39
10000.01
10017.12
10C22.88
9999.98
10011.32
7987.16
3310.73
2499.04
3458.61
3200.43
3453.94
10002.67
10075.50
6313.18
3547.67
_
10022.86
3353.11
10222.88
V
16666.69
9852.11
10162.45
_
-12.37
0.49
15.79
-7.00
0.01
0.01
0.97
-1.40
-2.00
3.01
11.73
0.97
_
—
-3.29
0.01
—
. —
3.37
_
— —
—
—
6.21
8.44
0.23
-5.23
2.40
1.91
0.01
-3.45
4.31
-8.78
5.24
-0.44
0.00
0.01
3.36
—
—
-22.36
-2.68
0.00
0.00
_
-0.50
-0.01
--.62
-9.06
0.01
-2.83
2.67
8.09
1.18
4.69
1.21
4.96
-9.00
-12.10
-15.48
0.67
—
-19.08
-•22.18
-9.06
0.00
-1.63
-4.05
Vehicle Speed
Model
A(x) + 0
X= Channel 5
Voltage
_
99.80
100.00
98.62
99.21
100.00
98.42
100.40
100.20
98.43
99.40
98.81
100.20
__
—
99.60
99.21
^
—•
98.81
_.
—
—
—
98.80
102.04
100.00
72.67
100.00
100.00
100.40
100.25
100.40
100.00
100.81
100.00
99.75
100.00
100.56
—
—
103.73
102.25
100.00
99.49
_
10Q.OO
99.80
100.00
99.80
100.00
100.40
100.00
100.00
103.52
99.01
99.80
99.80
100.00
100.00
100.00
100.00
_•
99.80
100.00
99.80
100.00
100.00
100.00
100.00
Engine Temp.
Model
A(x) + B
x = Channel 8 Voltage
A B
-
-543.413
-272.931
-543.413
-J593.909
-393.548
-275.294
-311.213
-364.641
-549.356
-296.703
-331.707
-308.046
—
-347.319
-292.632
-257.885
^_
^—
-362.500
— _
^~
—
—
-242.532
-248.677
-228.663
-305.361
-311.946
-250.438
-304.051
-267.605
-291.028
-221.612
-360.704
-243.513
-274.390
-294.521
-309.090
—
—
-325.699 .
-152.454
-336.002
-238.178
—
-181.159
-235.690
- 331.476
-255.597
-406.154
-187.209
-396.875
-300.448
-335.092
-357.143
—
-333.333
-389.381
-173.442
-220.751
-338.753
— ~
-224.779
-335.979
-255.597
-307.692
-262.264
-262.264
-212.575
-
237.590
231.931
237.590
236.350
227.742
232.372
224.137
229.503
238.369
227.725
226.927
224.630
—
226.587
223.413
221.800
__
—
225.050
—
— •
—
—
222.186
222.196
221.604
224.214
225.413
222.268
227.203
223.507
223.932
225.518
226.068
226.611 '
223.799
223.486
224.363
—
—
225.027
226.636
225.440
221.289
—
225.587
221.427
725.922
223.502
242.462
226.212
250.100
223.717
226.074
226.286
—
224.999
227.964
224.835
223.100
227.921
—
238.266
225.775
223.502
224.306
222.491
222.491
220.503
Date Field
Calibrated
_
8/21/73
8/23
8/24
8/24
8/27
8/30
9/07
9/13
9/13
9/19
9/26
9/28
—
10/12
10/18
10/25
—
—
11/12
^_
•—
—
^~
5/20/74
5/02
5/30
9/18
5/28
5/29
6/03
8/17
6/05
7/03
6/10
7/31
6/13
6/18
6/1-7
—
~
6/24
8/05
7/17
6/25
—
8/14
6/28
7/15
7/25
7/26
9/10
8/16
9/13
8/08
8/16
8/19
9/12
8/21
8/23
9/04
8/27
^
8/29
8/29
7/25
10/3/73
10/12/73
11/02/73
11/08/73
-76-
-------
and horsepower models were also generated but not applied. They
are summarized in Appendix E.
Data E'ile Format
The survey data is available in 2 sets of 14 tape reels.
One set contains edited raw data in which the survey parameters
are in the sensor output voltage form. This set is termed the
Raw Data Tape File. The other set contains survey data in engineering
terms with the exception of load factor which remains in raw data
form. This set is termed the Calibrated Data Tape File.
Raw Data Tape Format - A number of. truck days are recorded
on each tape. Each truck day of data is preceded by a header of
the format shown in Table n , The header shows truck identification^
rom calibration points, ambient temperature calibration points,
and coefficients, vehicle speed calibration points, and coefficients,
near ratio calibration. The total scan count, total zero count and
percent zeros resultina from the validation test are also included
in the header. Manifold vacuum model coefficients, horsepower
model coefficients and horsepower calibration data are also included
in the header. Following this information, data for individual
scans are written. The scan interval in real time is 0.83 seconds.
Scans which were zeroed due to parity failure in reading cassette
data are carried as all zeroes. This identifies that the 0.83
second interval did occur in real time, but data for that interval
is invalid and should be considered in subsequent data processing.
Each scan contains 40 bytes of data corresponding to the 10 channels
nriqinallv recorded as shown in Table 11.
Raw data tapes are written in BCD, 9-track, EBC DIG format
at a density of 800 bytes per inch.
-77-
-------
Table 11
"DSItlONi ; IHRu BO
RPn CRLIBRDII9N
our CARD
positions \ IHRU go
tuieitii lEnpcRaiuiE CSLJBRBIIOII
ONC CflRO
P31IIION5 . :N°I, 1C
Off CCRO
POSIIION: : THRU eo
K«t RBI 13 PRRfirntRS
(BR1R8U NjiiBfR CRRDS
OHf IWIO
o
5 j
i_
a
•x.
\
0
ID
',
a
LJ
',
O
LJ
ID
1—10
•-, 1
O
•x.
0 __
t— o
i_
?5 -5
« j_
RAW DATA TAPE HEADER FORMAT
PftOC 1 OF 2
LICENSE
NUMBER
: ,'° , . ,'*
a.
a:
3( , ,
TEMPERRTURE
RI1BIEN7
', ,
I
o_
zr
i_
OC
X
CRLIB
REROJNG
.'°, ,
o
z
-1 UJ
o a
03 3
10.
v>
(/}
CL
LJ
0
,
CNJ
r:
a.
QC
,11, ,
ENGINE ENGINE SERlflL
hODEL NUHB.ER
. ,*9, ...... , ,», , , » •?*, , - : ,40: , , , .«, , ^ ,:. ,SS, ,.,,«,,,, ,« «, ,,,,«,,,,,'=,,-. ,«, . , , ,«S, . : , ,«t , . . .'<
CflLIB 1
REROJNC 1
, /°,
Z
— X
U X
uT a ^
LU X
O X
,'S, , , , M
O
Z
— o
c —id
a. a: uj
DC LJ an
i i"i i i i11
z
UJ
U X .
u. ffi
UJ X
O X
l_> X
,*SI 1 1 . I1C
O O O
Z Z Z
— . o — o — o
CLCCUJ a_ a LU o_ a: uj
cc LJ CK a: LJ ct a. LJ 01
i i .ls i i r *D i , . *Ji . r I0i i i iS3i i i i*°i . i , ilsi i i i i70. . L i i"i » i i '
) 1 t l'5t • 1 1 I<0I t I 1 1*SI l 1 I I101 ) I 1 ,SSI 1 1 1 160I 1 ! 1 -*5t l > 1 ,101 ' , ) •'*! • I • '
flDJUST
FfiCTOR
2 xxx.xxxx
-j
a
( ,10 , , ,18, , , , :0, , , , ,fS, , , . ,30, . , , ,1», , , , ,'°, , , , ,'B, , , , ,50, ,,,,«,,,, >0. • t . i'si i . , (10, i , , ,1S. , , i '
O
— X
•— X
CC X
(K
X
> X
•^. x
0= X
TOTfll
SCflN
COUN
- TOTHL
ZERO
5CRN5
"^ ' -• > •' 1
WHEEL
uj RPn ^
* xxx -x ^ 3
o E -r. uj
Z. Q_ UJ Q_
LJ a: > 05
z
UJ X
LJOX
UJUJX
CL M x
' : '"' • 1
s
X
o o
I , i1ll i i i <0, i , i !41, , i i", , i r lfSl , i i I80T i . . l*5i i i J i'°i i i i I11! l i
1 '"'''' '•''''''' 1 1 1 > I 1 *l t 1 1 t 1 1 1 1 I 1 1 1 I 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1
Cf
l«
E
LZ
, . , ,33, , , , ,10 ,,,,85.,,. .00
. , 1 l", l , , ,!0 ", i , , °:
,,,,",,,, />'. , , , J* »0
,,,,",,,, I30, , , , /", . , , ,'"
1 i i i i"i l l i 1 "l i i l f ' l l : l""I
-------
Table 11 (Cont'd.)
RAW DATA TAPE HEADER FORMAT
"•U 2 0' 1
lot te«o
posmms i innu »c
<«RI»BL( NunSCII CHAOS
POSIilOIIS 1 THRU 90
[NO or CBUBRBtiO" osifl
OKf CflRO
POSI I IONS 1 THRU BO
«••'<"<•«'*••' «:«»i
o
a:
',
o
LJ
o;
I,
MflN.FOLD VflC
MODEL
COEFFICIENTS
a
'. • . '• •"• . . . .". • . : f. . . . ,"• . . . ."• . . .». : . . ," ". . . .
UUM
"•-'•• •". • . •. .'a- . . . .« ». .,..«..,
1
RPM £*x ro ,
U. 3 X UJ CC
— ID K tO UJ Z Z
z u • ct 3 er a
; aaxoor r
'l 1 1 S| 1 , 1 l'°l 1 1 1 l'*t 1 I (*°l 1 1 1 l"l 1 1 1 |1°l 1 1 1 |H| , 1 ] |'D I.I I*1! 1 1 J
0
! IHC ROflD
MHnn Q f fpE
i^ D D M
, ^: o uj o: Q — o uj uj z o
( U i 'JO UJ jJ U-OZ > 1/5 — Q_ — .
^> — ex. n ^ uj crzo _i o LD z: > —
o- j o j i o o uj o_ oco— cr _j z LU x a
nt
,'e
n.
flLL OTHER
POSITIONS
BLRNK
.11 ". • i • •". . , • •". . -8<
10. , , tilf , , , ,«0, , , , ,«*, - , ! ,">, , , , ,"•*, , 1 1 l'°i | | | |f!| , , , (I0, t , , f*\ ! , | .Ot
IDL p i i -'S . i . i*fli i • i t"i j i i10' i i i i""i i i . i
-------
Calibrated Tape Format - Similar header information
precedes each truck day entry on the calibrated tapes as shown in
Table 12. The data field follows consisting of 40 bytes per scan.
The first 2 bytes indicate truck number, followed by bytes indicating the
time in hours and minutes. The next 2 bytes are not assigned.
The remaining 32 bytes consist of 4-bytes data.for the eight
channels indicatino RPM, load factor, vehicle speed, road type,
traffic conditions, throttle valve position (open/closed), engine
temperature, and V/S ratio. This last entry was generated by the
process program by dividing vehicle speed by engine rpm to assist
in the determination of the gear being used in that data scan.
Calibrated tapes are written in 9-track, floating point, EBC DIG
format at a density of 800 bytes per inch.
Data File Cross-Reference
Each data tape and cassette was assigned a number. A
cross reference between truck and truck day for the cassette,
raw and calibrated data tapes is shown in Table 13. Another
cross-reference, Table 14, indicates the contents of raw
calibrated tapes by tape number. .
Another set of 6 tapes are included in the data file for
record. These tapes contain calibrated data for trucks, and
employed the corresponding horsepower models to transcribe raw
load factor clata to horsepower. These are considered test tapes
and are not part of the official survey data file. A cross
reference of these tapes to indicate truck number and day number
is given in Table 15.
Utility Dump Program
The purpose of this program is to list a raw or calibrated
tape. The program is written in COBOL and Assembler. A card
is read via the "ACCEPT" verb to provide control parameters.
-80-
-------
Table 12
00
•" •—• --• CALIBRATED TAPE HEADER
'•ill* fHftff H«
fell t loni i :H*U 90
«f Ifll IBftAl 10*
rOJIMWi 1 TM*u 90
SfaifNT TCfffrUHUftf tRUBflAl ION
3»r IflDO
rosi i 10*3 i THRU so
POll i )0ni i THflu 90
VS^IBBU nufldffi CHROS
POSI i IONS i THRU 90
ONI O*0
1
en
£
^ -
ce t;
'.
o
ID
i
O
CJ
§a
"•i
a
>— c
t
a
*— o
.<
^J
: LICENSE
.;, ;f-u"BER
^iS'i
*J»-h '
~ ^1? ^1
siEKGi NE ENGINE 5ER !RL :
1 ? M 0 0 E i NUMBER |
: U
! 1
n i . .••>. ,,,."i. f. , , . •», . ,». . , ,», . , . •«,,., ,-v .
„
oc
IEMPERBIURE
nnBiENI
>. , .
r
Q_
1,
K
s
1 J
1
CJ O
z z
CD — CN< OD —
— 0 — O
_j cr c _j a.
o a: on LJ ot
('0i ,'*, i i r"i
Z
0 ^ ^
^ ox
— Qt — X
_j UJ u. a •
ii g I
°: , .", , '»
o
z
— a
C _J CC
or i_> oz
z
UJ
— « X
U X
— X
u. ID
0. X .
UJ X
0 X
O X
. l"l , . , ,"
O CD
Z Z
*» CO — ' 'J^ CO — •
— o — • a
E _j cr E —i cr
FORMAT
P'i&t i Of ?
ID
«:
QC L_) Qt ftl LJ Ct QC.
Ill" J 1 lfl 1 • • '*! 1 1 J10. .
1 I1*! t I 1 l'°l • J • •'*!
", l :
-. CflL 1 B 1
- REBOING 1
,", ,
, l". ,,,,",!!, ,". , • ,", , ,
fflCtOR
» xxx.xxxx
_t
a
,10 , riv, , , , £s, , , ;s, , , ,10 it 40. , . , ti, ,
o
»— X
a: x
cc
> X
\ X
(XL XL
TOTfl
i o c P N
: COUN
i
L TOtflL
•' 'SCR'.'S
WHEEL
z XXX. X ^ £
0 E H UJ
z a, uj a.
UJ tt > t/}
. 1 . tD ' ...l.l" ''I
1 ._
' eta: •
G- rC >:
?•••;•• -
iC, , ,
I1*. .
. ."l , I i :". . . . ."l 1 : , l"l : ,
o
a.
X
0 0
a K
• L ,'V , . , '0. , , , .'*, , ,
"l . ,
i", i
l -"i . . , l". , 1 . ,:=, . , , .'S , .
1
G
.'
E
1 I1* • i • |*°| • i i**i • i00
, , , ,«, , , , r", , , , t* o;
. . , .«. , i : ,» , , P. , , . •"
3
cj « 10 , *» :•
-------
Table 12 (Cont'd.)
P33I : I3S5 I THRU 90
CALIBRATED TAPE HEADER FORMAT
MRN1FOLD VRCUUI1
MODEL
COEFFICIENTS
F,
H
,«,,,, ,», , , , ,»,
MORStPOil" VBHIBBl.CS
• fl°Ifl8U NUnacR COROS
POS1II5NS 1 t»F>U 90
z LJ
a: cc
o: z
o o
ill13
r40: j i i i**! i i i f*°i t i t i5*i i i _i. i*°i__j_j_i_i*V.i_. i i _iTO: r' > i iTSi i i j*C
CHC OF COUBHflTION DO IP
I
00
'CSI'ISM i IMR'J 90
flLL OTHER
POSITIONS
BLHNK
,ssr t t
:tl i I I 110I I : I I1*' I. t I t*°l I 1 1 l"l 1 I t Ii0i t I ! iS>l 1 ! I !601 I ! > I*SI 1 I ! 1T°J t I 1 I7'l I I t 11C1
i t i'Si
Kd. 06'= °CC9ftO;
-
o ^ gjS 2
3i . ;o
* flLL FIELDS BCD
SIGN BIT ON
EflCH CHflNNEL
-------
Table 13
DATA TAPE FILE CROSS REFERENCE BY TRUCK NUMBER AND TRUCK DAY
1
2
3
4
5
6
7
8
9
10
11
12
13
14
5
b
17
18
19
20
21
22
23
24
.'5
26
27
28
29
30
31
32
33
34
35
36
3?
3b
34
0
1
2
3
4
5
b
,
e
9
50
51
52
53
54
55
56
57
58
-.9
60
61
62
53
&4
65
70
Bus
60
Bl
92
b J
3 r""
352
355
360
364
366
368
371
?76
379
382
365
389
39]
396
32 J
331
451
1
28-
85*
220
47-
11
34
218
41
92
66
204
64
94
81
76
150. 145
114
60
209
139-
147
14-f
102
41R
210
411
104
213
219-
151
170
167
J01
185
400
149'-
503
'jO'j
1
536
536
548
540
542
550
5ri8
552
552
552
558
Tape
Tape
552
538
Tape
558
556
570
538
558
542
548
560
542
Tape
550
540
'.50
546
542
542
53B
550
548
540
556
538
562
562
550
560
556
564
570
558
564
560
556
572
560
562
560
-.70
554
154
—
, ; f
512
518
514
516
570
534
522
522
522
534
Re ject ed
522
512
Rejected
534
—
526
566
512
534
516
518
536
516
Rejected
520
514
520
516
516
516
512
520
518
514
526
512
544
544
520
536
526
546
566
534
546
536
526
566
536
S44
536
566
524
524
35!
353
356
361
365
367
369
372
277
380
383
385
390
392
39J
328
332
452
4
32'
415
49
48
41
52
100
208
16
77
87
126
124
91'
166
55-
108-
300-
208
406
192
205
193
155. 190
179
171
154
176
178
421
504
507
501
2
'> 19
^ Jq
548
540
540
542
552
54!
552
552
552
558
Tape
Tape
552
Tspe
Tape
564
—
—
—
—
556
570
558
548
560
546
550
540
550
546
542
S.42
550
548
540
556
538
562
562
562
570
556
564
560
558
564
560
556
560
562
560
—
554
',54
572
Calibrated
512
51 2
518
514
' 514
516
522
516
522
522
522
534
Rejected
522
Rejected
Rejected
546
—
—
526
566
534
518
536
518
520
514
520
518
516
516
520
516
514-
526
512
544
544
544
566
526
546
536
—
534
546
536
526
536
544
536
524
524
568
1
Cassette
357
362
370
37J
378
381
334
386
393
398
329
333
453
—
24
6
401
36
27
37
144
61
214
—
73
107
134'
71
172
115
221
207
405
201
180
217
157«
403'
158
409
422
188-
501
505
508
510
3
—
—
548
Tape
550
542
552
552
552
558
Tape
552
Tape
Tape
560
~—
556
570
—
570
570
548
560
550
540
550
538
550
546
540
556
562
562
562
570
556
564
560
564
564
556
560
572
562
554
554
554
572
Calvbratcd
518
Rejected
520
516
522
522
522
534
522
Rejected
Rejected
536
—
—
—
—
526
566
—
566
566
518
536
520
514
520
512
520
516
514
...
526
544
544
544
566
526
546
536
546
—
546
526
536
568
544
524
524
524
568
1
363
374
387
394
399
330
334
454
17
SO
420
45
160
—
148
79
21?
68
78
_
65
101
135-
59
74
57
206
216
414
201
210
999
175
207
169
416
502
514
4
Raw
540
S2B
558
552
538
Tape
558
570
Tape
558
560
540
550
540
556
558
542
538
558
546
540
536
562
562
550
570
556
564
560
564
—
564
^—
—
572
57?
554
554
572
.
514
514
.
534
522
512
Rejected
534
— K
_
„
566
Rejected
534
536
514
520
514
526
534
516
—
512
534
518
514
....
512
544
544
520
566
526
545
536
546
—
546
568
568
524
524
568
359
375
,^_
368
326
4SO
335
—
— -
__
13
ea
—
46
30
130
— _
110
161
93
70
—
—
136*
61
143
120
2LS.202
162
—
186
—
203
41?
—
408
S12
513
511
5
Raw
548
T-_-
526
-
-
558
Tape
538
Tape
,^_
__
—
_
—
570
538
542
560
540
——
558
sso
552
542
—
—
548
540
—
S38
562
562
556
564
564
572
562
554
554
572
Ca 1 ibrated
.__!
_
518
516
_- _
534
Rejected
512
Rejected
—
__
__
566
512
516
536
514
534
520
52J
516
—
— —
SIB
514
—
513
544
544
526
—
546
546
56B
~—
544
~~~
524
524
568
I
00
CO
I
dicatts Tr-icX -Jay -as
assi'inert : ror. rtay *.' Tr
for Process inqtie. Day !> Fie Id date replaces the first bod day of data 1-5, etc
-------
TAPE NUMBER
Table 14
DATA TAPE FILE CROSS REFERENCE
BY TAPE NUMBER
TAPE CONTENTS
CALIBRATED RAW
512
514
516
518
cJ> 52°
ife. -
1 522
524
526
534
536
544
546
566
568
538
540
542
548
550
552
554
556
558
560
562
564
570
572
3-1
5-4
38-2
4-1
34-2
10-1
80-3
25-3
8-1
61-3
49-1
56-4
52-4
83-3
3-2
5-2
38-1
4-2
34-1
10-2
80-4
25-2
13-1
62-1
49-3
56-5
26-4
83-4
17-1
6-1
39-2
4-3
34-3
10-3
80-5
25-1
13-2
62-2
49-4
56-3
26-3
83-2
17-4
6-2
39-4
4-5
34-4
16-1
81-1
47-1
13-3
52-1
49-5
54-1
26-1
83-5
17-5
45-5
39-5
33-2
36-1
16-2
81-4
47-2
13-4
55-4
49-2
54-2
26-2
61-1
(Truck No.
42-1 42-4
45-3
39-1
44-1
36-5
16-3
81-5
47-3
13-5
55-3
51-3
54-3
26-5
62-3
45-4
9-2
44-2
36-2
16-4
81-2
53-1
38-4
55-2
51-2
54-4
29-3
62-4
- Day No . )
42-3 48-4
45-1
9-3
44-3
36-3
12-3
81-3
53-2
20-1
59-1
50-1
58-2
56-1
62-5
45-2
9-4
44-4
43-1
12-2
82-1
53-3
20-4
59-2
50-4
58-5
70-1
64-4
48-5
35-2
9-5
44-5
43-2
8-2
82-3
53-4
34-5
65-1
50-3
58-1
52-3
48-1
35-4
29-1
30-1
43-3
11-1
82-2
53-5
43-4
65-2
50-5
58-3
52-2
48-2
35-3
29-5
30-2
51-1
11-2
60-1
57-1
20-3
50-2
58-4
28-3
2-1
35-1
7-1
30-3
51-4
11-3
6G-2
57-2
31-1
64-1
20-2
2-2
32-4
7-2
37-2
8-1
12-1
60-3
28-1
31-5
64-2
27-1
32-5
32-1
37-1
8-3
38-5
36-4
28-4
31-2
64-3
27-5
28-2
31-3
64-5
-------
Table 15
TEST DATA - CALIBRATED TAPES (PRELIMINARY)
Tape
No.
Tape Contents
(Truck No.
i
CD
Ul
i
528
529
530
531
532
533
2-1
45-5
17-1
31-1
8-1
34-2
2-2
45-3
17-4
31-5
8-3
34-1
9-2
45-4
17-5
31-2
8-2
34-3
9-3
45-1
33-2
31-3
11-1
34-4
9-4
45-2
3-1
31-4
11-2
34-5
. - Day
9-5
5-1
3-2
38-2
11-3
44-1
No. )
4-1
5-2
30-1
38-1
37-2
44-2
4-2
5-4
30-2
39-2
37-1
44-3
4-3
6-1
30-3
39-4
27-1
44-4
4-4
6-2
12-1
39-5
27-5
44-5
4-5
7-1
39-1
7-2
-------
The control card has the following format'
Positions
Maine From To
OPT 1 1
OPFLAG 2 2
OPCNT , 3 9
OpBYP 11 17
To list a raw data tape, code '5' in OPT. OPFLAG is
ignored. OPCNT is the record number of the last record to be
printed. OPBYP is the number of records to bypass before print-
ing beains. If OPBYP does not contain 7 numeric digits, OPBYP
will be set to '0000000'. The calibration control records are
always printed and are not included in OPCNT or OPBYP.
To list a calibrated data tape, code an '8' in OPT.
Code '-' in OPFLAG. OPCNT and OPBYP serve the same purpose as for
raw data tape.
A special list of a calibrated tape may be requested. If
OPT is coded '9', OPBYP and OPCNT are ignored. OPFLAG is coded
1 -'. The proaram reads records searching for a record where
the vehicle speed is greater than or equal to 1.0. It then
lists the next 500 records.
The program was written to run in a DOS environment. To
run in an OS environment, the call statements to 'INT', 'RHDR',
and 'NOTPMK' can be removed. This will allow the user to eliminate
the Assembler portion of the program. The Assembler routines
are unique to DOS, so their removal will not affect the OS user.
Listinq for this program is qiven in Appendix I.
-86-
-------
APPENDIX A
SAMPLE PLAN DESIGN
The Phase II survey called for the instrumentation of 50
trucks in New York City and the accumulation of a total of 172
truck-days of data respectively. The number of days that any
given truck to be monitored vary from 1 to 5 days.
Original Sample Plan
Twenty-four strata were originally identified based upon
combinations of the following:
Industry Type Vehicle Type Fuel Type
1. Wholesale 1. Two Axle/Single Unit 1. Gasoline
2. Manufacturing 2. Three Axle/Single 2. Diesel
3. Utilities/Communication/ nl
Transportation 3. Tractor-trailer
4. Other Combinations
The sampling plan must provide means for determining the
number of total trucks to be instrumented. These were to be
selected at random from the populations within each strata
based upon the statistical relationships within the Phase I
*
data. Means must also be established to determine the number of
days trucks in each strata are to be sampled. Subject to the
restrictions of sample size and total truck-days of data to be
assembled, the problem is to determine the distribution of
number of trucks and days assigned to each strata which minimizes
the variation between the estimate of vehicle use in VMT and
the actual use profile.
"Heavy Duty Vehicle Driving Pattern and Use Survey-Final
Report - Part I - New York City," by Wilbur Smith and Associates
for EPA and CRC, dated May, 1973 (APTD-1523).
-87-
-------
The original plan applied in the survey was mathematically
derived, based upon a given set of inputs and consisting of the
following for each stratification. It was assumed that a weight
could be assigned to each strata determined from the fraction
of total VMT attributed to trucks within that strata. It was
also assumed that the variance in daily average VMT over five
days for each truck in a given strata could be established or
estimated from the Phase I survey data. Also the variance of
daily VMT between trucks within the strata must be based upon
the previous survey data.
With these assumptions, the equation expressing the fraction
of trucks in strata h to be instrumented is:
V
50
(5 - .
KI a * V
N, d, r
h h /
And the number of days to sample for truck i of strata h is
given by:
VWh
X~^ Si']
2
h * "h "h lfh
vP = 172 — ~
h=l i=
Where:
Wh = Wei9nt assigned to strata h.
Nh = number of trucks in strata h.
Si,h = variance in daily average VMT over 5 days for truck
i in strata h.
8h = variance in daily average VMT between all trucks in
strata h.
L = number of strata = 24.
-88-
-------
The meaning and use of the variables can be clarified by examining
how the inputs were derived.
Total Trucks in the Strata
*
This input was compiled by reducing Table 12, page 34, by
eliminating the 6-10,000 pound GVW class and combining the total
trucks for each category of user industry in the sample plan.
This reduction yields the data in Table A-l.
Table A-l
Industry Trucks
Manufacturing 208
U/C/T 322
Wholesale 236
Other 225
991
The next step was to sub-stratify the number of trucks
in each industry class by axle arrangement. This is done by
using Table 11, page 32 and producing Table A-2.
Table A-2 includes trucks that weigh 6-10,000 pounds.
Most of these are found in the 2-axle classification. For each
industry, 2-axle class, the number of trucks was reduced by the
appropriate ratio for each of these groups thus: manufacturing -
200/219, U/C/T - 322/327, Wholesale - 236/251, and Other - 225/250.
Multiplying this ratio by the 2-axle trucks in each industry
yields the number of trucks found in the sample, (i.e., manufac-
turing, 2-axle = 190 trucks, U/C/T, 2-axle = 258 trucks, etc.).
The final sub-stratification was then done by fuel type. The
*
percentages of each fuel type are found in Table C-10, page C-10.
Again this table is reduced by eliminating the 6,000-10,000
pound weight class, and yields Table A-3.
*APTD-1523 (Ibid.)
-89-
-------
Table A-2
Stratification of Number of Trucks
•by Truck Type and User Industry
Industry
Manufacturing
Sub-total
U/C/T
Sub-Total
Wholesale
Sub-total
Other
Sub-Total
TOTAL
Truck Type
2
3
TT
2
3
TT
2
3
TT
2
3
TT
Number
of Trucks
200
7
12
219
263
10
54
327
235
8
8
251
221
17
12
250
1,047
-90-
-------
Table A-3
Sample Plan Distribution of Trucks
Industry
Manufacturing
U/C/T
Wholesale
Other
Truck Type
2
3
TT
2
3
TT
2
3
TT
2
3
TT
TOTAL
Number
of Trucks
190
6
12
258
10
54
221
8
8
196
17
12
991
Gas
174
3
7
237
5
37
202
4
5
174
9
8
Diesel
16
3
5
21
5
17
19
4
3
22
8
4
-91-
-------
VMT Weight for Each Strata •- The VMT weight for each strata
is derived in much the same manner as the number of trucks.
The first step is to summarize the total number of miles for each
industry. This is done by eliminating the 6,000-10,000 pound
*
weight class found in Table 28, page 57. The total VMT can then
be summed by industry and truck type. This produces Table A-4.
Next, the Single Unit trucks need to be sub-divided into
2- and 3-axle strata. The tractor-trailer group is the same
fraction found in the sample plan. The single unit trucks were
sub-divided originally by the computer program that produced
*
Table 28. However, this sub-stratification can be estimated by
* * *
using Table 31, pages 61-62 and Table 22, page 49. Table 31
outlines the number of trips per day for each industry and vehicle
type.
For example, there are 2,732 trips per day for U/C/T
2-axle trucks and 72 per day for 3-axle trucks. From Table 22
the average number of miles per trip for 2-axle is 2.45 and for
3-axle 4.2. These numbers are then used to estimate the total
miles traveled for U/C/T 2-axle trucks, 6,693.40, and U/C/T
3-axle trucks, 302.40 miles. As a fraction of the total miles,
this represents .225 and .010 which approximates the actual
fractions used in the sample of .231 for 2-axles and .011 for
3-axle.
The final sub-stratifications are by fuel and are performed
in the same manner, using Table C-10, as was done for the number
of trucks.
Variance in Daily Average VMT - This variance in VMT is
stratified only by industry and truck type. The variance is
considered the same for both gasoline and diesel trucks. This
statistic was compiled by the computer program that generated
* *
the information found in Tables 31 and 22. The values were
*APTD-1523 (Ibid.)
-92-
-------
Table A-4
Distribution of VMT By User Industry and
Single Unit/Tractor Trailer
Industry
Manufacturing
Sub-Total
U/C/T
Sub-Total
Wholesale
Sub-Total
Other
Sub-Total
TOTAL
Axle
SU
TT
SU
TT
SU
TT
SU
TT
Total Miles
5,820.74
1,394.91
7,196.93
1,819.82
6,906.94
277.58
5,846.94
450.16
29,714.02
Fraction of Total
.196
.047
T2T3
.243
.061
.304
.232
.009
.241
.197
.015
.212
1.000
-93-
-------
Table A-5
Statistical Relationships Used
in Sampling Plan
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
Strata
gh
Wholesale, 2 -Axle , Gasoline
Wholesale, 2-Axle, Diesel
Wholesale, 3-Axle, Gasoline
Wholesale, 3-Axle, Diesel
Wholesale, T-T
Wholesale, T-T
UT/Conun . /Trans
UT/Comm. /Trans
UT/Comm . /Trans
UT/Comm. /Trans
UT/Comm . /Trans
UT/Comm . /Trans
Manufacturing ,
Manufacturing ,
Manufacturing ,
Manufacturing ,
Manufacturing ,
Manufacturing ,
Other, 2-Axle,
Other, 2-Axle,
Other, 3-Axle,
Other, 3-Axle,
, Gasoline
, Diesel
., 2-Axle, Gasoline
. , 2-Axle , Diesel
., 3-Axle, Gasoline
. , 3-Axle, Diesel
. , T-T, Gasoline
. , T-T, Diesel
2 -Axle , Gasol ine
2-Axle, Diesel
3-Axle, Gasoline
3-Axle, Diesel
T-T Gasoline
T-T, Diesel
Gasoline
Diesel
Gasoline
Diesel
Other, T-T, Gasoline
Other, T-T, Diesel
2
2
2
2
2
2
4
4
4
4
4
4
1
1
1
1
1
1
5
5
5
5
5
5
V
422.
422.
360.
360.
9446.
9446.
739.
739.
690.
690.
1936.
1936.
473.
473.
458.
458.
871.
871.
515.
515.
1201.
1201.
929.
929.
1
1
3
3
9
9
9
9
5
5
0
0
2
2
5
5
3
3
1
1
7
7
5
5
Nh
174
16
3
3
7
5
237
. 21
5
5
37
17
202
19
4
4
5
3
174
22
9
8
8
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Wh
.175
.016
.003
.002
.026
.021
.212
.019
.006
.005
.042
.020
.204
.019
.005
.004
.005
.004
.155
.020
.012
.010
.010
01005
TOTAL
1.000
-94-
-------
Table A-5
Original Sample Plan
2-Axle 3-Axle Tractor
Industry Type Gas Diesel Gas' Diesel Gas" Diesel
Wholesale (6)/3 (l)/3 - - (4)/3 (4)/3
Utility/Conununication/
Transportation (10)/4 (l)/4 - - (3)/3 (2)/3
Manufacturing (8)/2 (l)/2
Other (6)/5 (l)/5 (l)/5 (l)/5 (l)/5
Legend: (x)/x
No. Trucks No. Days
-95-
-------
produced by sorting the vehicles by industry and axle class,
and calculating the variance in miles traveled for each of
these stratifications.
Estimated Variance in Average VMT Over 5 Days - This
variance value is a measurement of the variability of miles
traveled by all trucks in the strata for a period of 5 days.
These figures are based on the overall Phase I analysis. For
example, if an industry stratification has a variance value of
1, then all trucks in that strata will tend to drive the
same number of miles per day for 5 days. If this value were
5, then there is a greater variability in miles driven each day
for the same period. These values, are subjective•in magnitude
* *
only, and could be verified by examining Tables 22, 29, and
*
31. These values, are determined by the industry type only.
The variance in daily VMT over 5 days (S- , ) and variance
in average VMT ('3, ) for each strata are shown in Table A-5,
n •
derived from the above procedures.
The original sample plan initially employed during field
survey operations in 1973 is shown in Table A-6.
Revised Sample Plan
Prior to the restart of field survey operations in 1974, EPA
proposed that the original New York City plan be modified by
substituting a Geographical Category to replace the present
User-Industry Category; to reduce the number of single-unit
2-axle dual rear tire gasoline trucks (2D) by 4; and to reassign
these 4 trucks equally to the single-unit 3-^xle dual rear tire
trucks (gasoline and diesel) . The proposed plan recognized
APTD--1523 (Ibid.)
-96-
-------
that such an arrangement altered the VMT weighting and cited
that appropriate weighting factors can be assigned to data
before a specific cycle is generated. The initially proposed EPA
plan totaled 182 truck-days. After some adjustments, the revised
plan shown in Table A-6 was agreed upon. Field survey data
taken in 1973 and in inventory was reviewed and trucks were
assigned to the area in which they were based. This required re-
contacting all owners to establish actual base of operation
rather than county of registration.
The revised plan was implemented when field operations
restarted May, 1974. When truck owners were contacted to fill
this plan, an evident shift in the pattern of diesel versus
gasoline trucks in some truck types were evident. As a result,
another revised plan was proposed by the contractor and accepted
by EPA. This plan is shown in Table 1.
-97-
-------
Table A-6
Proposed EPA Sample Plan
Truck Type 2D
Fuel Type
Area
Bronx
Brooklyn
Manhattan
Queens
Richmond
TOTAL
Gas
(3)/ll
(8J/32
(10)/38
(5)/17
-
(26J/98
Diesel
(D/3
(D/5
'(2)/6
-
-
(4)/14
Gas
-
(D/2
-
(D/4
(D/2
(3)/8
3A
Diesel
-
(D/2
(D/4
(D/2
-
(3)/8
Tractor
Gas
-
(3)/9
(3)/9
(D/4
(D/4
(8)/26
Diesel
(D/2
(1) 5
(2)/7
(D/3
(D/l
(6)/18
Total
(5)/16
(15)/55
(18)/64
(9)/30
(3)/7
(50)/172
Legend :
(x)/x
No. Trucks No. Days
-98-
-------
APPENDIX B
EVALUATION AND IMPROVEMENT PROGRAM
DATA RECORDING AND RECOVERY
The readability, repeatability and reliability of the
recorded data came under serious challenge when it was realized
that some recorded data on the raw tape cassettes could not be
read and translated to IBM machine compatible tape for further
data processing. The manifestation of this difficulty was the
number of data scans which were failing to meet parity when the
cassettes were read and tape reels so developed were processed.
An immediate and urgent investigation was initiated to review
and analyze the entire process to disclose contributing factors.
All aspects of the data collection/transcription process were
studied including recording hardware, recording technique,
transcription hardware and software. To understand the total
implications of these efforts to date, it would serve a useful
purpose to review the various technical aspects of the processes.
Recording/Transcription Process
Data is recorded on cassettes using a slightly modified
Metrodata DL620B data logger. The recording density is 200
bits per inch at a tape speed of .25" per second. Each cassette
contains 1200' of tape thereby allowing for up to 16 hours
of continuous recording per cassette.
The cassettes themselves are of an endless loop type
normally used for analog data in the audio range. For use in
digital applications, the cassettes are presumably loaded by
Metrodata with tape consistent with the requirements of digital
data recording. Cassettes used during the testing are purchased
from Metrodata rather than from the original cassette manufacturer,
-99-
-------
The Metrodata tape transport system is a single capstan,
forward only device, utilizing a manually controlled, spring-
loaded pinch roller assembly to provide the tape drive. Tape
pressure against the record/read head is provided by a small
block of foam rubber-type material mounted in the cassette itself.
This system is used in both the data logger and tape reader.
Proper insertion of the cassette results in the tape being
forced against the head by the foam material. Since the cassettes
themselves provide no tape guiding action, tape guides are
attached to the upstream and downstream sides of the record/
read head.
Data recording is in a 4-bit parallel, BCD format. The
data for any given sample in a channel consists of a sign bit
followed by 3 BCD characters using a total of 4, 4-bit parallel
tape characters. One complete data scan consists of ten data
samples (40 characters) followed by preparity and parity
characters for a total of 42, 4 bit parallel tape characters. This
format is illustrated in Figure B-l
Upon completion of a given scan, the next scan begins
immediately with the sign bit of the first data channel of the
following scan with no special synchronization or spacing
interspersed.
One important point to note is that in the record process,
the data written on the cassette0 is the complement of the actual
data. That is, the presence of a bit on tape indicates the
absence of that bit in the data represented. For example, the
presence of a bit on tape in all four tracks for a given character
would be indicative of zero and the absence of a bit in all four
tracks would be indicative of a character with a value equal to
the sum of the four BCD weighted bits (1+2+4+8), which would in
fact represent an illegal character and is used only as an example.
-100-
-------
BCD
8
DECIMAL
CHANNEL
-l/4" TAPE
+2004-815 + 710-526-000+134-000-825*1 1 1+000
I I I
I I
I' 2 3 4 5 6 7 8 9 10 55
I DATA SCAN
CC
o.
IDEALIZED CASSETTE DATA FORMAT
Figure B-l
-101-
-------
Valid data characters are 0 through 9; sign ( + ) 10 or (-) 11;
and preparity,, 12 or 13. In the playback process, the characters
are again complemented resulting in data presumably identical
to that originally encoded for recording.
The playback process utilizes a Metrodata -625 reader.
In reading data from the tape, all four bits of each character
must be read simultaneously to form the proper BCD character.
The read electronics for each tape track include a read amplifier,
low pass filters, clipper, and peak detector. When a data bit
is sensed by the read head, it is amplified X 200, filtered to
eliminate noise, clipped to eliminate the negative portion of
ware form and input to the peak detector where transformation to
pulse form is accomplished. In the factory supplied unit,
the gains of all amplifiers are fixed.
In reading a character (4-bit parallel) from tape, the
output from the peak detector, that first detects a bit, triggers
a window normally set to one half of the character-to-character
spacing. At the end of this window, the data from all four
tracks is strobed out. These data then, consist of the first bit
detected, plus bits on other tracks occurring during the read
window period. In this manner, skew of up to one half of the
total character-to-character time can theoretically be
tolerated.
Other functions of the reader include detection of proper
sign and preparity characters for display, and synchronization
generation of a "data ready" pulse to notify coupled hardware of
the availability of data.
During the playback process, the Metrodata reader is coupled
to a DMI 620 computer system. Data is read in four-bit parallel
format each time a "data ready" pulse is received from the reader.
-102-
-------
This data, beginning with the first sign character following
the first preparity, is buffered scan-by-scan, for output to
1/2" magnetic tape. Validity checks performed include the
following: (1) verification of the existence of 41 characters
between preparity characters, (2) verification that only ten sign
characters exist between preparity characters, (3) verification
that-each sign character is followed by three valid data characters.
If any one or any combination of the above criteria are not met,
the entire scan (10 channels) is written out to 1/2" tape
as zeros. The beginning of the next scan is then identified as
the first sign character following preparity, and the process
is repeated.
This summarizes the process which was being employed at
the time decrepancies in the data process were discovered. The
description relates an ideal record/playback procedure.
Detection Against Gross Sensor Failure
The sensors in the instrumentation are of the nature that
gross or catastrophic failure will be the predominant failure
mode, that is, the output is present and valid or no output is
received. A second, but less likely type failure, would be that
resulting from a mechanical "hang-up" of a potentiometer wiper,
producing an ouput which does not vary in a logical manner.
These failure types are guarded against in at least four separate
test sequences.
"On-line" Failure Check - As described elsewhere, the survey
observer on the truck sequences at 1/2-hour intervals through a
test procedure during the truck run. Using the built-in features
incorporated in the data logger, he ripples the read-out selection
switch through the channels, observing and recording the data
indicated on a 3-digital "nixie" readout. He also checks for
"reasonable" variation in data when compared to the truck operation
-103-
-------
at that moment. Failure to meet these tests is immediately
reported. The installation is either repaired "on-the-spot" or
the installation is repaired at the end of the day, and that day
of data is repeated.
a
Monitoring at Time of Transcription - A procedure similar
to the "on-line" test is repeated while the raw data cassette
is being processed through the tape reader. This unit had similar
built-in features as the data logger. Unlike the "on-line"
test, this procedure now includes the recorded tape messages
in its test.
Sample Data Dump - At the completion of the transcription
to the 1/2-inch tape, this machine compatible tape reel is
processed to print out, in hard copy, a sequential sample of
1 minute per hour of data. This sample is then visually checked
for reasonable variations in data.
Data Processing Check - When the 1/2-inch tape is processed
through the initial "Calibrate" program, a routine has been
incorporated to monitor selected channels and search for value
variation. If one of these channels remains fixed while the
other guarded channels vary for a period of five minutes, the
program calls for the tape to stop and an alert is given.
Hardware Contributing Factors
In investigating the high error rate tapes it became
apparent that actual operation differed substantially from ideal
operation in several ways and for a variety of reasons. Following
is a discussion of the problems identified to date.
Tape Speed Instability - The tape transport mechanism in
the data logger, instead of moving the tape smoothly across
the recording heads, pulled the tape erratically. This jitter
in tape speed caused the spacing between bits to vary as
-104-
-------
much as 25%. This type of discrepancy is illustrated in
Figure B-2.
One major cause of this type operation can be attributed
to the tape drive system. In this design, the single pinch
roller system relies on the pressure of the foam rubber pad
holding the tape against the head, and the tape cassette
packing, to maintain constant tension on the tape. In practice
this tension seems to vary resulting in the erratic tape motion.
The problem was further aggravated by the Metrodata factory
modification to 12 channels per second rather than 48 channels
per second, which involved slowing the tape speed to 0.25
inches per second.
Skew - A vertical misalignment of the recording head
causes the four parallel bits that comprise a character to be
recorded in different longitudinal positions on a tape. The
skew can cause the Track 4 bit to appear as much as 40% of
the distance between the Track 1 bit of the same character
and the next bit on Track 1 as illustrated in Figure B-3. In
addition to head misalignment, the skew is also affected by
the position of the tape cartridge lock lever. Since the
pinch roller is pivoted at a point under the cartridge, the
roller makes contact with the lower portion of the tape before,
and more firmly than with, the upper edge of the tape. The
resulting uneven pressure apparently distorts the tape motion
across the head resulting in skew. On the tape reader, lever
position adjustment can result in variations in skew of as
much as 15%.
Obviously, with variations in skew, a fixed read window
size could result in invalidating data that could be salvaged,
at least in part, by making the window adjustable to electronically
compensate for the mechnically induced skew.
-105-
-------
INTERVALS EXPECTED WITH
NO JITTER
1
1
1
1
,
1
1
1
•
1
1
1
•
•
•
1
1
1
— 1 1
1 1
1 1
1
1
il
1 1
1
•
1
1
ILLUSTRATION OF TAPE JITTER
Figure B-2
-106-
-------
1
•
-------
All five data loggers and the reader were aligned by
Metrodata personnel for both skew and vertical tracking. The
tape speed of the data loggers was increased to precisely 150
bits per inch to alleviate jitter and skew problems. This change
allows more space and therefore time between characters and
decreases the probability of skew and jitter causing character
overlap.
Loggers were modified by Wyle Laboratories to provide
a metal cover over the cassette, holding cassette securely
in place and tape securely against head.
Misregistration - Vertical misalignment of tape with respect
to record or reader heads can cause reduction in amplitude
of data read. This condition is illustrated in Figure B-4.
Metrodata field personnel installed metal tabs on the guides
to position the tape as it moves across the heads. This is
supposed to stabilize the tape and prevent changes in vertical
alignment caused by cassette insertion in the loggers and reader.
Apparently, these tabs were omitted inadvertently during
manufacture.
Data Levels - In some cases a bit recorded on the tape
is not read at a strong enough level to trigger the peak
detector. This can be caused by misalignment of data bits with
respect to read heads, possibly from uneven tape width,
misplaced tape guides, vertical dislocation of record heads
or cassette problems. Low levels also result from excessive
tape to head gaps caused by oxide buildup, dirt, insufficient
tape tension or improper cassette construction.
It should be remembered that the recording is in a
complemented format, wherein the absence of a bit on tape is
indicative of a bit in the actual data recorded. Thus, data
bits not read for any of the above reasons are confused with
-108-
-------
RECORD
HEAD
GAPS
READ
,HEAD
GAPS
READ
HEAD
GAPS
7
I
Dl
MAGNETIZED
TAPE AREA
.MAGNETIZED
TAPE AREA
ILLUSTRATION OF MISREGISTRATION
Figure B-<
-109-
-------
data bits purposely lacking, resulting in erroneous data,
incorrect sign, incorrect preparity, or any combination of
such errors.
The correction of this deficiency was accomplished
electronically by modifying the reader. The individual bit
amplifiers were modified to allow adjustment of gain to bring
all bit amplitudes to same level. Further, the timing of the
ready pulse, which outputs data to the computer, was modified
to permit a continuous range of adjustment. This modification
permits the adjustment to be set to yield maximum readable data
for a given tape.
Reader Clock Problems - In the course of investigating
the cause, of excessive zero scans, it was noted that the output
of the internal clock was low in amplitude and distorted. This,
in turn, resulted in missing or erratic timing pulses and
ultimately in zero scans being generated.
A new master clock for the reader was designed and installed
to replace the original circuitry.
Cassettes - In general, it can be stated that the tape
cassettes are not of sufficient quality for their intended
purpose. The variance from cassette to cassette aggravates the
previously detailed problems and makes tape handling critical.
It appears that some data has been and will continue to be lost
because of imperfect cassettes.
Although difficult to define completely, the cassette
imperfections include (1) imperfections in the coating,
resulting in dropouts, (2) variations in tape width resulting
in misregistrations relative to the record/read head and (3)
variations in spool packing density which aggravates the erratic
tape motion problem due to variations in tension. The spool
-110-
-------
packing density also seems to vary under vibration, as
well as simply due to continuous running of the endless loop
cassettes.
As a partial corrective measure, all cassettes were returned
to Metrodata for rewinding to correct packing density. A quick
rewind unit was obtained to permit this operation in the field.
-Ill-
-------
APPENDIX C
EVALUATION AND IMPROVEMENT PROGRAM -
ZERO SCAN EVALUATION AND ACCEPTANCE
CRITERIA DEVELOPMENT
A study was undertaken during the evaluation and improve-
ment program to determine the effect of zero scans in data on
vehicle mode determination. This was necessary, not only to
judge which data collected during the 1973 field survey operations,
but also to establish a base for acceptance of data to be
subsequently generated.
Three factors were considered in this study. The effects,
singularly and in combination, were included:
. Percent of total scans which were zero scans.
. Number of consecutive zero scans.
. Distribution of zero scans.
Evaluation Procedure
The primary intended purpose of survey data was that of
determining the vehicle mode of operation to define its
pattern and use. A mode determination program had been developed
to perform this process by fixed logic. The influence of zeroed
scans with the data could be determined heuristically by selecting
a sample of actual field data with very low zero scans. These
data were then processed through the mode determination program
and the results analyzed statistically.
Under appropriately controlled conditions, a series of
similar mode statistics could be run on the same data, except
that random data sets were artificially generated with various
patterns of consecutive and non-consecutive zeroed scans. The
sensitivity of these events could then be determined by testing
-112-
-------
the significance of the differences in modes produced by the
base pattern generated from ideal data and those from artificially
controlled data.
The test was performed on field data recorded on truck
number 3, day 2. These data had an initial 0.6 percent random
zero scan error rate.
Matrices of mode pattern were generated both from the
ideal data and with those data sets generated from artificial
errors introduced into the ideal data. Both random non-consecutive
and block of errors were introduced. The following patterns and
percent zero scans were employed in the test:
1. Ideal (or base) mode matrix with 0.6% non-consecutive
zero scans (noted: 0.6/1+)
2. Mode matrix with 5.6% non-consecutive zero scans
(noted: 0.6/1+)
3. Mode matrix with 10.6% non-consecutive zero scans
noted: 10.6/1+)
4. Mode matrix with 5.6% zero scans, in randomly placed
groups of 14 consecutive scans (noted: 5.6/14)
5. Mode matrix with 5.6% zero scans, in randomly placed
groups of 50 consecutive scans (noted: 5.6/50)
6. Mode matrix with 10.6% zero scans, in randomly placed
groups of 14 consecutive scans (noted: 10.6/14)
7. Mode matrix with 10.6% zero scans, in randomly placed
groups of 50 consecutive scans (noted: 10.6/50)
8. Mode matrix with 20% zero scans, in randomly placed
groups of 100 consecutive scans (noted: 20.0/100)
9. Mode matrix with 25% non-consecutive zero scans (noted:
25.0/1+)
-113-
-------
Cruise mode frequency, acceleration mode frequency and
deceleration mode frequency matrices for these 9 patterns are
shown in Tables C-2, C-3, and C-4.
The statistical test applied to these matrices was the
*
Kolmogorov-Smirnov Test. Basically, the test evaluates the
significance of differences between observed and expected results
and establishes whether this difference is significant enough
to warrant rejection of the hypothesis that the two distributions
are similar. The steps of the test are summarized in Table C-l.
The first use of this test was performed on the mode
frequency matrix, with results found in Table C-2. The table
shows that only a 25 percent zero scan would be rejected. All
other observed distributions had statistically similar proportions
of mode changes. See Tables C-3 and C-4.
An important note here is that the observed distributions
are created by randomly introducing zeros in the "base" data.
Therefore, another run of, say, 5.6 percent zero scan would
produce a different cumulative matrix thus the maximum difference
may change. This difference could go either up or down. Hence,
there is a confidence level around each distribution in which
the Kolmogorov-Smirnov statistic (K.S.S.) would vary. However,
since the K.S.S. reported in Table C-5 are so far below that needed
for rejection, it is highly unlikely that in N random runs at
the zero scan levels there would ever be one that failed the
test, except at the 25 percent level.
A second point to consider here is that the Kolmogorov-
Smirnov test can produce varied results if the distributions
are summed differently. Therefore, to strengthen first test,
Statistical Theory, Lindgren, B. W., The MacMillan Company,
1968, pp. 329-333.
-114-
-------
Table C-l
KOLMOGOROV - SMIRNOV TEST PROCEDURE
1. Determine the expected matrices, 0.6% zero scan
(ideal or reference).
2. Determine the observed matrices by introducing
random zero scans to levels of 5.6%, 10.6%, etc.
3. Equate the observed to the expected, proportioned
so cumulative scans are approximately the same in
all cases.
4. Determine cumulative matrices = cf.
5. Determine the differences in observed and expected.
6. Take absolute maximum difference:
d = max (FQ (x) - Fg (x) )
7. Determine confidence level 99, 95, etc. and look
up value Z at the cf.
8. Calculate D = -£
n cf
9. If Dn < Z f accept;
D > Z -t- reject.
-115-
-------
Table C-2
KOLMOGOROV - SMIRNOV TEST
CP.l;ISE MODE FREQUENCY MATRIX
ZERO/PATTERN
From
fMPIl
0.0 -
5.1-
10. 1 -
15. 1 -
20.1 -
25. 1 -
30. 1 -
35. 1 -
M 40. 1 -
(Ti
1 - 45.1-
50. 1 -
55. 1 -
60. 1 -
65. 1 -
70. 1 -
75. 1 -
80.1-
Total F
To
!";. 0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
I'P
'requen
.6/1 +
22
10
60
95
84
55
27
19
10
0
0
0
0
0
0
0
0
cy 382
5.6/1+
23
10
58
94
83
55
26
20
10
0
0
0
0
0
0
0
0
379
10.6/1+
20
9
55
91
78
55
26
19
10
0
0
0
0
0
0
0
0
363
5.6/14
21
10
59
91
77
53
27
18
9
0
0
0
0
0
0
0
0
365
5.6/50
22
8
60
87
80
53
27
18
10
0
0
0
0
0
0
0
0
365
10.6/14
19
9
55
86
76
52
24
18
10
0
0
0
0
0
0
0
0
349
10.6/50
21
8
54
86
74
49
26
17
9
0
0
0
0
0
0
0
0
344
20.0/100
20
9
53
75
67
38
25
16
8
0
0
0
0
0
0
0
0
311
25.0/1+
18
9
51
78
72
53
26
19
10
0
0
0
0
0
0
0
0
336
Non-Sequential zeros,
-------
Table C-3
KOLMOGOROV - SMIRNOV TEST
ACCELERATION MODE FREQUENCY MATRIX
PER CENT ZERO/PATTERN
From
0.0
0.6
1.1
1.6
2.1
2.6
3..1
3.6
M 4.1
r s.i
6.1
7. 1
8.1
9.1
10.1
11.1
12.1
15.1
20.1
Total
- Non
To
- 0.5
- 1 .0
- 1.5
- 2.0
- 2.5
- 3.0
- 3.5
- 4.0
- 5.0
- 6.0
- 7.0
- 8.0
- 9.0
- 10.0
-11.0
- 12.0
- 15.0
- 20.0
- UP
Frequency
-Sequential
6/1 +
83
52
58
33
33
43
42
31
50
34
21
17
12
1 1
8
4
1
0
0
533
zeros.
5.6/1+
88
56
51
31
36
46
38
30
50
32
21
19
12
11
7
4
1
0
0
533
10.6/1+
102
50
52
30
36
44
39
33
49
38
14
16
17
7
7
4
1
0
0
539
5.6/14
84
53
55
33
33
40
40
29
48
30
19
16
12
1 1
8
4
1
0
0
516
5.6/50
83
49
59
32
31
42
41
30
48
33
20
15
10
11
8
5
0
0
0
517
10.6/14
87
58
47
32
33
46
33
29
41
30
17
13
10
10
7
3
1
0
0
497
10.6/50
85
50
53
30
29
39
35
27
45
26
19
16
12
10
8
4
0
0
0
488
20.0/100
78
36
46
26
29
36
31
27
38
26
"' 16
15
9
8
7
3
1
0
0
432
25.0/1+
120
48
51
35
35
38
39
28
53
33
15
21
13
9
5
3
1
0
0
547
-------
Table C-4
KOLMOGOROV - SMIRNOV TEST
DECELERATION MODE FREQUENCY MATRIX
PER CENT ZERO/PATTERN
From
0.0
0.6
1.1
1.6
2.1
2.6
3.1
3.6
I
1- 4.1
i _i
00
I 5.1
6.1
7. 1
8. 1
9. 1
10. 1
11.1
12.1
15. 1
20. 1
Tota:
To
- 0.5
- 1.0
- 1.5
- 2.0
- 2.5
- 3.0
- 3.5
- 4.0
- 5.0
- 6.0
- 7.0
- 8.0
- 9.0
- 10.0
-11.0
- 12.0
- 15.0
- 20.0
- UP
L Frequen
.6/1 +
28
27
20
20
14
16
15
20
21
26
17
13
9
2
3
2
2
1
0
cy 256
5.6/1+
32
28
20
20
13
15
11
21
24
22
20
1 1
9
2
3
4
1
1
0
257
10.6/1+
45
22
14
20
14
20
14
17
26
22
20
10
7
5
1
2
2
0
0
261
5.6/14
32
25
18
19
12
15
16
19
19
24
18
13
9
1 .
3
2
2
1
0
248
5.6/50
29
28
18
19
12
16
14
20
19
25
16
13
8
1
2
2
2
1
0
245
10.6/14
33
21
20
17
14
14
13
19
20
23
12
12
9
2
2
3
2
1
0
237
10.6/50
25
27
19
20
14
14
14
17
17
22
16
11
8
2
3
2
2
1
0
234
20.0/100
22
23
16
16
9
12
11
17
16
19
11
11
8
2
2
2
2
1
0
200
25.0/1+
44
25
18
17
16
14
21
12
20
24
19
12
5
2
3
1
0
0
0
253
+ Non-Sequential zeros.
-------
Table c-5
KOLMOGOROV - SMIRNOV TEST 1
1.
2.
3.
4.
5.
6.
7.
8.
9.
ZERO %
.6
5.6
5.6
5.6
10.6
10.6
10.6
20.0
25.0
PATTERNS MAX. DIFF.
BLOCKS Dn
Non -Consecutive
Non -Consecutive
14
50
Non-Consecutive
14
50
100
Non -Consecutive
-
8
11
4 -
29
8
10
9
83
K.S.S.+
.040++
.005
.007
.002
.020
.005
.006
.006
.050+++
RUN STATUS
Base
Accept
Accept
Accept
Accept
Accept
Accept
Accept
Reject
+ K.S.S. - Kolmogorov-Smirnov Statistic.
++ .040 - K.S.S. value determined from tables at 99% = 8
+++.050 > .040 therefore reject.
-119-
-------
K-S tests were run on the cruise, acceleration, and deceleration
mode matrices. These frequency matrices are accumulated by
speeds and intensities; therefore, they are summed accordingly.
The results of these analyses are given in Table C-5, and
verifies generally the first test. However, a zero scan
rate of 20 percent in blocks of 100 consecutive scans approaches
the "reject" criterion at a 99 percent confidence level.
Conclusions
It is possible to conclude from these results that data
tapes containing zero scans less than or equal to 10 percent
can safely be accepted for analysis, and will produce results
that are not significantly different from data tapes with a
zero error rate. Tapes of even higher zero scans could be
accepted if so desired. However, it was recommended that a
10 percent level be assumed a sufficient cut-off point. In
the actual survey data, this level was not approached in tapes
that were recorded on good operable equipment.
-120-
-------
Appendix D
HORSEPOWER MODEL DEVELOPMENT
Conversion of the recorded load factor measurements
to wheel horsepower is prerequisite to defining vehicle modes.
For this reason, each installation was calibrated on a chassis
dynamometer under controlled conditions, recording load factor
indications (sensor voltages) at various fixed condition of
wheel horsepower and engine speed (rpm). The development of
a mathematical model to establish the relationship between
wheel horsepower, the dependent variable, and the independent
variables of engine speed and load factor,measurment appeared to
be relatively straightforward, but proved to be a much more
complex, if not indeed, a pioneering effort.
Original Model
Original assumptions were made, based on the best in-
formation from industry, that the relationship between load
factor (intake manifold pressure for gasoline engines, or rack
position or rail pressure derived from the fuel injection system
of diesel engines) was a quadratic equation form with linear
relationship between horsepower and engine rpm. An original
model was proposed and developed based on these assumptions.
Field calibration of survey trucks run in 1973 (through truck
number 20 and bus number 83) involved the recording of 9 data
points (at 3 constant speeds with horsepower at maximum, S
load, and minimum).
Horsepower models developed from these calibration data
were employed to process field data on a sample basis. The
results did not meet the test of reason for a number of ob-
servations. Most obvious was the condition where wheel horse-
power indications other than zero were developed by the model
-121-
-------
when the vehicle was known to be at rest.
Secondly, the vehicle engine operates in two distinct
modes - a driving mode when the engine output is positive, and
a motoring mode when the engine is in the dynamic braking or
torque absorption mode principally during decelerations. While
the horsepower model generally produced negative horsepower
indications employing the model derived from only driving mode
calibrations on a Clayton dynamometer, the accuracy of the
magnitude of this horsepower projection was subject to question.
At this point, another question was reintroduced into
the program. Although the Phase II program was proposed and
approved as a vehicle mode profile approach employing wheel
horsepower, the output of this phase was to be employed by the
government to produce an engine dynamometer test cycle. How
could engine (clutch plate) horsepower be related to wheel
horsepower? Even though there had been previous general dis-
cussion of this point in the past, it-was considered beyond the
scope of this program.
During the development of the work plan, many alternat-
ive technical approaches to the truck instrumentation procedure
were evaluated. It was recognized that a torque cell in the
drive train, for instance, would have been preferable to a
chassis dynamometer calibration, greatly simplifying the cal-
ibration procedure and eliminating part of the drive train
losses. However, two main problems mitigated against this
approach. First, the installation of this sensor in the variety
of truck configurations would have been tailored to each vehicle
and therefore very costly and time consuming. Second, the
nature of the sensor cell provides unsatisfactory oscillations
in output under transient loads in field operations. Wheel
-122-
-------
horsepower with chassis dynamometer calibration was the approved
approach, not withstanding the undetermined drive train losses
between wheel and engine.
Original Horsepower Model
In the original horsepower model development, three
families of load factor analog voltage outputs (x), were taken.
Each of these families consist of the X-values for three dif-
ferent wheel loads, nominally high output near maximum out-
put for that RPM, a medium load, and zero or idle condition.
Let those engine loads at each RPM be denoted:
HPnm
Where n signifies the RPM grouping thus:
n=l {HP @ 1200 rpm}
n=2 {HP @ 1600 rpm}
n=3 {HP @ 2000 rpm}
m signifies the specific load condition thus:
m=l {High load}
m=2 {Medium load}
m=3 {minimum load}
iollowing the same notation, write the analog load
factor as Xnm.
It is assumed that these variables (Xnm) are related
to wheel horsepower in the general equation:
HP=aX^ + bX +c
nm n nm n nm n
The calibrate program takes the 9 calibration data
points and calculates the constants an, bn, cn by the
following relationships:
-123-
-------
{HPni - Hn2> ~ (HPn2 ' "^
a =
n - - -
(Xni2 - Xn22) (Xn2 ' Xn3> ' ^ ' Xn32) (Xni ' Xn2>
=
n
(Xni - Xn2)
C =HP.A X.2-b X.
n ni n ni n ni
The constants for each given calibrate RPM (n=l, 2,
and 3) are determined through the application of a least-
squares quadratic routine and arrayed by rpm into a.3 x 3
matrix. These are then solved for least-squares linear fit
to calculate aa, ba, ab, bfa, ac, and bc.
The coefficients of the quadratic horsepower model,
A, B, and C were then computed:
A = a (RPM) + b
a a
B = a. (RPM) + b,
b D
C = a^ (RPM) + b^ i
C C
The horsepower model then was:
HP = A 2 + B + C
A A
Revised Horsepower Model
The basic component of the model used in the revised
horsepower model was the step-wise regression program originally
developed at the Health Science Computing Facility, University .
^
of California, Los Angeles, and modified by Wilbur Smith and
Associates for use on the IBM system 360.
-124-
-------
The program computes a sequence of equations by
statistically determining which power or cross product of
the independent variables are significant and should be in-
cluded at each step. The term or terms which contributes the
most to predicting the observed values of the dependent vari-
able of horsepower are accepted. A statistical test is per-
formed to determine its significance. The test includes:
correlation, standard error of estimate, "F" values for the
coefficients of the variables, and the correlation squared.
Figure D-l schematically outlines the entire model devel-
opment.
An equation based on the initial regression run
allowing all variables to enter may not meet criteria for
model acceptance. A detailed analysis after the first run
and all succeeding runs determined the significance of each
model.
Horsepower Model Investigations
A special program was instituted by Wilbur Smith and
Associates; the subcontractor, Wyle Laboratori.es; and the
Ann Arbor Office of Air Programs, EPA. Three calibration
procedures were conducted. Two of these, run on the Chassis
Electrodynamometer in the EPA Laboratories, collected very com-
prehensive data on an EPA Heavy-Duty gasoline truck under
driving and motoring mode conditions. A third calibration was
conducted on a water-load dynamometer (Clayton) to simulate
a field calibration. Two road tests were run to obtain typical
survey-type data on a test route familiar in characteristics
to the EPA.
Another analysis was conducted, using EPA published
data for 4 engine types, to determine the adequacy of a 9-
point model in predicting horsepower.
-125-
-------
RECORD CALIBRATION
DATA
BUILD INPUT
DATA BASE
RUN MULTIPLE
REGRESSION ON
SET OF ALL
VARIABLES
EXAMINE SIGNIFICANCE
OF EQUATION
DETERMINE
SUBSET OF
VARIABLES TO
ENTER
EXAMINE
CORRELATION
MATRIX
ARE VARIABLES
SIGNIFICANT
(F TEST)
is STANDARD
ERROR OF ESTIMATE
LESS THAN PREVIOUS
STANDARD ERROR
DETERMINE
R AND R2
DETERMINE
NUMBER OF
VARIABLES IN
EQUATION
NO
IS EQUATION
ACCEPTABLE
RUN
REGRESSION
YES
TRUCK
HP
MODEL
HORSEPOWER MODEL DEVELOPMENT
^)mtth and ^tl
FIGURE 01
-126-
-------
Electrodynamometer Driving and Motoring Model - Using
a large selected number of calibration points for both the
drivincr and motoring engine conditions, a single model was created:
Model 1 - Electrodynamometer Driving and Motoring Mode
HP = 40.66525 (RPM)2 (X)2 (1Q-6) - 46.4883
(RPM)2 (X) (10-6)
+ 0.06914 (RPM2) (10-4) - 0.06477 (RPM)
+ 0.28312 (RPM) (X) - 0.16564 (RPM) (X)2 - 15.73058
This model was used to create plots of horsepower versus
manifold vacuum analog voltage (X) for 7 constant engine speeds,
shown in Figure D-2, and plots of horsepower versus engine speed
(RPM) for 13 constants manifold vacuum analog voltages (X) , as
shown in Figure D-3. Calibration points for both driving and
motoring conditions were used to generate this model.
Electrodynamometer Driving Only Model - A model was
created using 60 selected calibration points from the driving
conditions:
Model 2 - Electrodynamometer Driving Mode - Data Points
HP = -0.05953 (RPM)2 (10~4) + 0.06970 (RPM) - .112542
(RPM) (HG) -I- 0.0697078 (HG) - 25.77850
This model was used to plot corresponding horsepower versus
manifold vacuum and horsepower versus engine speed curves shown in
Figures D-4 and D-5. Calibration points from only the driving runs
were used to generate this model.
Clayton Driving Mode Only Model - This model was created
using 35 calibration points obtained from the Clayton dynamometer
calibration:
Model 3 - Clayton Dynamometer Driving Mode - Data Points
HP = - 0.07664 (RPM)2 (10~4) - 0.04069 (RPM) + 0.14007
(RPM) (X) - 109.00630 (X) + 47.72499
This model provides the corresponding two curves as shown
in Fiqures D-6 and D-7. Model generation was comparable to Model
2 above.
-127-
-------
GASOLINE ENGINE HORSEPOWER MODEL DEVELOPMENT
MODEL 1 - ELECTRODYNAMOMETER DRIVING
AND MOTORING MODE DATA
CURVE 1 - H. P. VERSUS MANIFOLD VACUUM ANALOG VOLTAGE
FOR CONSTANT ENGINE RPM'S
c
-------
GASOLINE ENGINE HORSEPOWER MODEL DEVELOPMENT
MODEL 1 - ELECTRODYNAMOMETER DRIVING
AND MOTORING MODE DATA
CURVE 2 - H P. VERSUS ENGINE RPM FOR CONSTANT MANIFOLD
. VACUUM ANALOG VOLTAGES
:^G.OC roc o:- ::•":' 03 i'3'j ap; 3.-- .?
-129-
FIGURE D-3
-------
GASOLINE ENGINE HORSEPOWER MODEL DEVELOPMENT
MODEL 2 - ElECTRODYNAMOMETER DRIVING
MODE DATA ONLY
CURVE 3 - H. f. VERSUS MANIFOLD VACUUM ANALOG VOLTAGE
FOR CONSTANT ENGINE RPM'S
£ j
0.30 0 3S 0-<0 O.lS O.SO O.bS 0 60 0.6S 0.70 Q.TS 0 80 0 BS
X •
FIGURE D-4
-130-
-------
GASOLINE ENGINE HORSEPOWER MODEL DEVELOPMENT
MODEL 2 - ELECTRODYNAMOMETER DRIVING
MODE DATA ONLY
CURVE 4 - H. P. VERSUS ENGINE RPM FOR CONSTANT MANIFOLD
VACUUM ANALOG VOLTAGES
B!S_
'60-00 ;?CI.OO 160.00 200.00 240-00 280 00 370.00 360.00 >00.00 ««0 00 . 480.01'. I-.'J CJ
RPM iio'
FIGURE D-5
-131-
-------
GASOLINE ENGINE HORSEPOWER MODEL DEVELOPMENT
MODEL 3 - WATER LOAD (CLAYTON)
DYNAMOMETER DRIVING MODE DATA
CURVE S - H. P. VERSUS MANIFOLD VACUUM ANALOG VOLTA6E
FOR CONSTANT EN6INE RPM'S
3.30 0 J'j U 40 U 45 O.bO O.SS 0.60 0.6S 0.70 0-1% 0-80 0.8S
FIGURE D-6
-132-
-------
GASOLINE ENGINE HORSEPOWER MODEL DEVELOPMENT
MODEL 3 - WATER LOAD (CLAYTON)
DYNAMOMETER DRIVING MODE DATA
CURVE 6 - H. P. VERSUS ENGINE RPM FOR CONSTANT MANIFOLD
VACUUM ANALOG VOLTAGES
850
CTa>'
(E
O
Q.
O
O
O
e
o
O
o
'80 00
120.00 160.00 700-00 240.00 280 00 320 00
.ior
360.00 400 00 440.00 480.00 520.00 560 00
D-7
-133-
-------
Comparison Between Model 1 and 2 - The curves provide
a simple means of comparing the model created using both
driving and motoring calibration data and the model using a
large number of points from the motoring mode — both sets
of inputs obtained on the electrodynamometer. It appears
obvious that the two models are not similar, particularly in
the area of low-load, slow engine speed. Serious distortion of
horsepower would result if Model 1 were used to calibrate field
data.
Comparison Between Model 2 and 3 - How well the field
- - " _. _ _ . c
calibration procedure and type dynamometer to be used could
replicate the "true" model created from a large number of
calibration points taken on a large, laboratory-type electro-
dynamometer, can be demonstrated from this comparison. While
some disagreement is evidenced between the two models — par-
ticularly in the area of low load, low engine speed — the two
models were judged to be in acceptable agreement.
Truncated Combination of Model 2 with Motoring
Only Model - It appeared that a model could be created using
only motoring mode data to replicate that mode of engine op-
eration which could then be truncated at zero horsepower with
Model 2 for a composite, ideal horsepower model. This pro-
cedure was not done because the question was academic to the
particular study. No field dynamometers were available to
perform this calibration procedure in the field operations.
Therefore, even if desirable results were found, it could
not have been implemented in this survey.
Validity Test of Model 2 - Variable Significance Test
The validity of variables in Model 2 was tested by the
following procedure, illustrative of the procedure used in all
subsequent model development. A sequence of equations were
-134-
-------
generated from the electrodynamometer driving mode data.
They are illustrated in Table D-l.
Equation 1 is the first solution obtained by allowing
all variables to enter. Note that all variables are significant,
in that the coefficients are all different from zero, as deter-
mined from the F-Value. This equation also gives the lowest
standard error of estimate (i.e. how well the curve fits the
data). If this were the only factor in judging the feasibility
of the equation, the solution would be used. The equation con-
tians 9 variables whereas equations 3, 4, and 5 contain only 4
and have approximately the same standard errors. A statistical
test found that equations 1, 3, 4, and 5 were equivalent. Any
one of these could be chosen as a valid horsepower model. Equa-
tion 4 was picked due to its simplicity. Note that equation 4
contains the variable (RPM2) , and in equation 5 (RPM-^) appears.
All other variables are the same form with slightly different
coefficents. The calculated statistics in the two equations are
the same, indicating no difference between the two equations in
predicting horsepower. The term of (RPM^) adds nothing to the
validity model for this specific truck engine.
Test of Validity of Models Developed from 9-Point Calibration
Data
Since the first group of vehicles in the survey were
calibrated from 9 data points, how valid would models devel-
oped from these data be if the regression analysis procedure
was employed? An investigation of this question required not
only data run at Ann Arbor, but also use was made of a number
of other models of trucks on which dynamometer/load factor/en-
gine speed data were available. Data on 4 models were avail-
able from a previous EPA study.*
*Southwest Research Institute, Exhaust Emissions from Gasoline-
powered Vehicles above 6000-lb. Gross Vehicle Weight pre-
pared for EPA, April 1972, NTIS #PB-220 365.
-135-
-------
Table D-l;
Selected Portion of Complete
Multiple Regression Analysis-driving Mode
Entered Variables
Equation 1
1.
2.
3.
4.
5.
6.
7.
8.
9.
HG
RPM
RPM
RPM2
RPM2
RPM2
RPM2
RPM
RPM3
* HG
* HG2
* HG2
* HG2
* HG4
* HG5
Equation 2
1. HG
2. RPM * HG
3. RPM
Equation 3
.2
1.
2.
3.
4.
HG
RPM * HG
RPM
RPM
Equation 4
1.
2.
3.
4.
HG
RPM * HG
RPM2
RPM
F-Value
7.16
7.66
6.93
5.56
9.91
11.58
12.42
352.81
7.58
Std. Err. Est,
1.60
159.69
387169
4.91
785.20
723.79
84.22
7.22
625.68
90.09
405.47
2.2855
99.67
5.2806
97.83
2.7534
99.43
2.6829
99.46
-136-
-------
Table D-l(contd.)
Entered Variables
Equation 5
HG
1
2
3
4
RPM * HG
RPM3
RPM
Equation 6
HG
1.
2.
3. RPM
RPM * HG
,2
4. RPM-
F-Value
(1)
7.12
629.82
91.23
744.52
4.12
445.32
527.69
286.55
Std. Err. Est.
2.6702
99.47
3.1468
99.46
(1) The F-Value determines the significance of the variable in
the Equation - In.this case if F is larger than 4.0 variable is
significant.
-137-
-------
This proved data inputs to generate five 9-point
horsepower models: One from the large number of calibration
points available from driving mode runs on the electro-
dynamometer on the EPA truck, one from 70 observed points on
a 1969 Chevrolet 250 cubic inch displacement engine, one from
59 points on a 1969 300 cubic inch displacement engine, one
from 66 points on a 1969 International Harvester 304 cubic
inch displacement engine, and one from 68 points on a 1969
International Harvester 304 cubic inch displacement engine,
and one from 68 points on a 1969 Dodge 318 cubic inch engine.
"True" horsepower models from these data are shown in Table
D-2.
The next step was to generate 3 horsepower models based
on 9 data points from each of the 5 data sets on the 5 vehicles.
In order to duplicate the original field calibration procedures,
the observed data points for the above vehicles were strati-
fied by RPM. For example, the 70 data points for the 250 CID
engine were stratified by 3 RPM ranges, low, medium, and high.
Next, 9 random numbers were generated, 3 for each stratification,
with each random number corresponding to one of the 70 data
points. This gives 3 data points in each stratification ran-
domly duplicating the original field operations. A sample HP
model was then developed for the 9 points and compared to the
actual models as shown in Table D-3. The 9-point model gen-
eration was performed three times for the five vehicles, thus
generating a total of 15 HP models.
The final step in the procedure was to generate HP
values from each model for substantially the complete operating
ranges of RPM and manifold vacuum. This was performed for
each of the 20 model", and a comparison made of the predicted
-138-
-------
Table D-2
"True" Horsepower Models
Engine 250 CID - 70 Data Points
HP = - 0.03809 (HG)2 - 6.79516 (RPM) (HG) - 20.75420
(RPM)2 (HG) + 369.95239 (RPM) - 7.62244
Engine 300 CID - 59 Data Points
HP = 0.29159 (HG) - 21.01509 (RPM) (HG) + 492.46118
(RPM) - 11.92026
Engine 304 CID - 66 Data Points
HP = - 1.12607 (HG) - 3.70481 (RPM)2 (HG)2 -I- 373.90845
(RPM) + 0.22626 (RPM)3 (HG)3 - 0.56951
Engine 318 CID - 68 Data Points
HP = 0.59851 (HG) - 24.53311 (RPM) (HG) - 563.64502
(RPM)2 + 722.61523 (RPM) - 27.19754
-139-
-------
Table D-3
Sample Horsepower Models
Engine 250 CID - 9 Data Points
(1) HP = - 0.06070 (HG)2 - 33.63466 (RPM)2 (HG) +
365.11035 (RPM) - 12.27338
(2) HP = - 3.85254 (HG) + 0.07887 (HG)2 - 26.82590
(RPM)2 (HG) + 335.34741 (RPM) + 12.96709
(3) HP = - 1.24092 (HG) - 328.88330 (RPM)2 - 38.62146
(RPM) (HG) + 523.56665 (RPM) - 22.05040
Engine 300 CID* - 9 Data Points
(1) HP = 5 0.04827 (HG)2 - 8.21326 (RPM) (HG) - 25.71581
(RPM) (HG) + 471.41431 (RPM) - 12.68788
(2) HP = 0.01644 (HG)2 - 20.82625 (RPM) (HG) - 0.26095
(RPM)2 (HG)2 + 523.40527 (RPM) - 15.32303
(3) HP = 0.02627 (HG)2 - 19.40298 (RPM) (HG) - 0.00001
(RPM) (HG)5 + 461.78760 (RPM) - 8.29637
Engine 304 CID - 9 Data Points
(1) HP = - 0.08299 (HG)2 - 39.43434 (RPM)2 (HG) +
272.35229 (RPM) + 678.85767 (RPM)3 + 11.88305
(2) HP = - 0.06369 (HG)2 - 14.31857 (RPM) (HG) +
451.63013 (RPM) - 494.45190 (RPM)3 - 1.10542
(3) HP = r 1.66892 (HG) + 597.63574 (RPM)2 - 53.91217
(RPM)2 (HG) + 211.75844 (RPM) + 19.24414
Engine 318 CID - 9 Data Points
(1) HP = 0.01459 (HG)2 -. 22.47321 (RPM) (HG) 634.48120
RPM - 1278.21313 (RPM)3 - 20.11766
(2) HP = - 1.94978 (HG) + 1014.28662 (RPM)2 - 50.82550
(RPM)2 HG + 46.21507
(3) HP = 0.63844 (HG) - 25.61179 (RPM) (HG) - 262.68872
(RPM)2 + 595.52539 (RPM) - 12.56421
Electo-Dyno Driving Mode - 9 Data Points
HP = 0.10606 (H
(RPM) - 8.21309
(1) HP = 0.10606 (HG)2 - 3162105 (RPM) (HG) + 504.74048
(2) HP = - 0.2599 (HG)2 + 0.00043 (HG)4 - 36.15044
(RPM)2 (HG) + 327.58.350 (RPM) + 15.42221
(3) HP = - 3.5390' (HG) + 466.91626 (RPM)2 - 1.91580
(RPM)2 (HG)2 + 68.88266
-140-
-------
results. RPM was varied from 1000-4000 and manifold vacuum ranged
from 23.32 to 0.18 inches of mercury. Table D-4 illustrates these
predicted HP values for the models.
Table D-5 summarized the 9-point data test. The two
columns that are most significant in determining the validity of
9 data points are the mean of the differences and the standard
deviation of the differences. The mean of the difference is
calculated by determining the HP for each increment of rpm and
manifold vacuum for each increment of rpm and manifold vacuum
for the expected horsepower model and each 9 point model. The
difference was then calculated between the "expected" and "predicted"
HPs. The differences were then summed and averaged. The standard
deviation of these differences were calculated.
Evaluation of these numbers provided an estimation of
the expected average error for 9-point horsepower models to
models that would be nenerated with 30+ points. In most cases,
the mean differences lie within 5 HP of the exoected values. The
electrodvnamometer 9-point tests did not fall in the above limits,
which is thought to be due to the fact that no 0 HP points were
qenerated in the original calibration test and the randomly selected
data points did not cover the entire range of engine operation.
It is important to note that during the original field
calibration, data points were collected based on a stratification
of two variables: RPM and Load factor. Whereas the 9-point data
test merelv stratified on RPM and let the load factor fall where
the random number generator indicated. Therefore the field
nenerated data points would give an even more accurate description
of HP since a greater portion of the curves would be covered.
As a result of this 9-point data test, the calibration
-141-
-------
Table D-4
Comparisons Between the "True" Model Horsepower and
the Predicted Horsepowers of the Three 9-point Models
"True"
Model
HP-250
6.25
13.69
20.00
25.17
29.21
4.51
15.40
25.15
33.77
41.25
47.60
1 22.93
35.39
46.72
56.91
65.98
12.13
28.83
44.41
58.85
72.16
84.33
12.90
33.12
52.21
70.16
86.98
102.66
11.66
35.79
Predicted
HP-1
4.20
11.91
17.80
21.89
24.18
4.77
15.90
25.22
32.74
38.45
42.36
24.97
36.56
46.35
54.33
50.51
15.10
31.41
45.93
58.63
69.53
78.63
15.35
35.23
53.31
69.59
84.06
96.72
12.33
36.43
Horsepowers
HP-2
1.40
8.97
18.89
31.16
45.77
6.42
12.93
21.80
33.01
46.57
62.48
22.38
33.05
46.07
61.44
79.16
19.07
29.72
42.73
58.08
75.78
95.82
21.48
34.98
50.83
69.02
89.57
112.45
21.75
• 38.14
HP-3
1.62
7.90
14.18
20.45
26.73
8.02
16.16
24.29
32.43
40.57
48.71
26.03
36.78
47.52
58.27
69.01
17.15
31.25
45.34
59.44
73.54
• 87.63
13.62
31.81
50.00
68.19
86.39
104.58
4.67
27.71
-142-
-------
Table D-4
"True"
Model
HP-300
9.08
16.06
23.04
30.02
37.00
6.27
17.30
28.34
39.37
50.40
61.44
10.44
25.53
40.62
55.70
70.79
85.87
14.62
33.75
52.89
72.03
18.79
41.98
65.17
88.36
22;96
50.20
77.45
104.69
Predicted
HP-1
5.87
15.12
22.93
29.32
34.26
4.50
18.01
30.09
40.73
49.93
57.70
11.32
28.15
43.55
57.51
70.03
81.12
15.63
36.28
55.49
73.27
17.45
42.41
65.93
88.02
16.76
46.53
74.86
101.75
Horsepowers
HP-2
7.88
14.46
21.44
28.82
36.65
6.39
17.01
27.94
39.19
50.75
62.63
10.56
25.82
41.25
56.86
72.65
88.61
14.24
34.31
54.37
74.44
17.43
42.48
67.32
91.75
20.12
50.33
80.08
109.37
HP-3
13.07
18.49
24.17
30.48
37.54
10.09
20.56
30.07
39.59
49.65
60.45
12.90
28.05
41.65
55.01
68.83
83.37
15.71
35.53
53.22
70.43
18.52
43.02
64.80
85.84
21.33
50.50
76.38
101.26
-143-
-------
Table D-4
"True"
Model
HP-304
11.08
18.84
25.74
31.69
36.62
20.54
32.02
41.81
49.67
55.31
27.43
43.46
56.98
67.37
74.01
9.34
32.38
53.45
71.33
84.82
8.42
36.04
62.25
84.95
102.03
7.98
39.06
70.15
97.91
Predicted
HP-1
13.43
23.71
31.52
36.85
39.72
20.97
33.15
42.85
50.09
54.87
26.95
41.79
54.17
64.07
71.50
11.17
31.90
50.16
65.96
79.28
11.40
36.32
58.76
78.74
96.24
10.85
40.71
68.10
93.02
Horsepowers
HP-2
5.71
17.95
28.30
36.75
43.31
15.94
27.94
44.05
55.27
64.58
25.06
42.83
58.70
72.67
84.75
10.28
32.70
53.23
71.86
88.59
13.30
38.48
61.77
83.16
102.66
14.10
42.04
68.09
92.25
HP-3
11.94
20.45
28.97
37.49
46.00
19.48
30.07
41.71
52.82
63.94
2 5 . 80
40.56
55.31
70.06
84.82
11.47
30.90
50.34
69.77
89.20
9.64
34.79
59.94
85.09
110.24
5.55
37.46
69.37
101.27
-144-
-------
Table n-4 (Continued)
"True"
Model
HP-318
10.48
17.63
24.79
31.94
39.10
20.42
32.31
44.19
56.08
67.96
27.55
44.16
60.78
77.39 •
94.01
31.85
53.20
74.55
95.89
7.26
33.34
59.42
85.49
32.01
62.82
93.63
Predicted
HP-1
10.53
17.66
25.22
33.22
41.65
21.69
33.15
45.04
57.37
70.14
29.96
45.76
61.99
70.65
95.75
34.40
54.53
75.10
96.10
10.02
34.05
58.52
83.41
27.95
56.75
85.98
Horsepwers
HP-2
18.00
27.48
36.96
46.44
55.92
20.76
32.69
44.62
56.55
68.48
24.63
39.99
55.35
70.71
86.08
29.60
49.38
, 69.15
88.92
10.52
35.68
60.85
86.01
42.87
74.40
105.94
HP-3
14'. 3 5
21.77
29.19
36.60
44.02
20.86
33.22
45.57
57.93
70.28
226.06
43.35
60.64
77.94
95.23
29.94
52.17
74.40
96.64
5.33
32.50
59.68
86.85
33.76
65.87
97.98
-145-
-------
Table c-4 (conid.)
"True"
Model Predicted Horsepowers
HP-Electro
9.18
16.29
23.41
30.52
37.64
16.75
28.77
40.78
52.80
64.82
21.35
38.27
55.19
72.11
89.03
22.97
44 . 79
66.61
86. 43
110.25
21.61
48.33
75.06
17.28
48.90
80.53
9.97
46.50
83.02
HP-1
18.74
19.75
23.91
31.23
41.70
19.31
26.41
36.67
50.08
66.65
19.87
33.07
49.43
68.94
91.61
20.43
39.73
62.19
87.80
116.56
20.99
46.39
74.95
21.56
53.05
87.70
22.12
59.71
110.46
HP- 2
4.74
16.24
30.80
42.60
48.11
14.06
27.31
43.62
57.16
64.41
20.57
36.26
55.00
70.98
80.67
24.25
43 .80
64.96
84 .08
96.91
25.12
47 .78
73.50
23.16
50.36
80.60
18.39
50.81
86.28
HP- 3
13.65
29.33
44.43
58.96
72.92
13.66
31.86
48.77
64.40
. 78.75
13.66
35.40
54.85
72.03
86.92
13.67
39.95
62.67
81.83
97.43
13.68
45.52
72.23
13.69
52.10
83.53
13.70
59.69
95.56
-146-
-------
Table p-5
9 POINT DATA TEST
Test
Model
HP-250
HP-1
HP-2
HP-3
Data
Points
70
9
9
9
Mean
Horsepower
39.70
38.36
44.27
37.52
Mean of the
Differences
1.34
-4.57
2.18
Standard
Deviation of
The Differences
2.70
6.92
6.62
HP-300
HP-1
HP-2
HP-3
59
9
9
9
52.89
49.60
53.87
51.46
3.29
-0.97
1.43
4.65
3.47
3.95
HP-304
HP-1
HP-2
HP-3
66
9
9
9
46.08
45.68
45.72
49.97
0.39
0.34
3.90
4.20
6.28
11.02
HP-318
HP-1
HP-2
HP-3
68
9
9
9
47.56
45.81
53.55
49.54
1.75
•5.99
•1.98
6.32
10.89
3.47
HP-ELECTRO 52
HP-1 9
HP-2 9
HP-3 9
38.84
46.04
47.22
33.71
•7.27
-8.39
5.12
9.77
18.34
15.50
-147-
-------
procedure applied to trucks 2-20 and buses 80-83 generated enough
data so an acceptable HP Model could be developed.
The conclusions drawn from these investigations were:
. Horsepower equation form was not necessarily quadratic -
a better fit could be obtained throuah a multiple regression
analysis procedure allowing any powers or products of
independent variables which were significant.
. Although models created by 9-point calibration could
be acceptable, using the new procedure better correlation
was obtainable with a larger number--say 30 points
(6 horsepower loads at 5 constant engine speeds.)
. Models created from driving mode calibrations could not
represent motoring mode loads—two distinctly different
models were generated under + and - horsepower calibrations,
and trucation of the two at zero horsepower was required
to develop a complete model.
. Calibrations performed on a water load dynamometer
replicate driving mode conditions of electrodynamometer
loads to an acceptable confidence level.
Horsepower Models for Purvey Trucks
Field calibration data for each of the survey trucks were
emnloyed in the revised methodologv to generate horsepower models.
TWO steps were included in this procedure.
<~>ne involved the generation of a load factor model which
converted the sensor output voltage, x, to appropriate engineering
terms. For gasoline engines, x was converted to manifold vacuum
in inches of Hg. Load factor measurements for those diesels in
which the sensor measured rail pressure, x was converted to pounds
oer sguare inch. For diesels where rack linear displacement was
monitored, no conversion was made, and the load factor, L was
enual to x.
The second step was to generate an acceptable horsepower
-148-
-------
model, in terms of the appropriate load factor dimension.
This employed the multiple step-wise regression program of the
revised horsepower model procedure. The two independent variables,
load factor (L) and enqine rpm (E) were permitted to be introduced
t.o 5th power, either singlarly or in products of the two variables.
Tests of standard error of estimate (0), and correlation squares,
and sinnificance test (F) were performed and examined to determine
the acceptability of the model. Generally, F-test results had
to be greater than 4.0 for a term to remain in the equation,
standard error of estimate low and h.iqh correlation.
Table D-6 indicates the load factor and horsepower
models created for each survey truck. Models derived were not
acceptable as a result of failure of these tests or insufficient
calibration data for trucks 13, 26, 35, 42, 43, and 55,
but raw data appeared acceptable as result of Z pattern tests and
other data control criteria are included in the survey data file.
-149-
-------
Table 0-6
LOAD FACTOR AND HORSEPOWER MODEL SUMMARY
Truck
Number
1
2
3
4
5
f
7
B
«
10
12
1 j
14
11
16
17
Ifl
1"
20
21
22
:i
2J
M
?fc
27
26
,»H
TO
1]
.12
1)
TJ
1".
W
.17
IB
i"
jft
-1 1
•; J
j i
•i i
J*
j *<
j 7
iH
41
^n
M
''-
M
sr.
SO
«"
SB
09
60
hi
(•1
1. 1
M
tf.
70
30
Hi
f) J
Si
H- Manifold Vacuum ((1C)
• R= Rail Pressure
P- Rack Position
X- Channel 4 Voltayt>
^
M" - J? . 1 1 266
M- -31.65996
M- -36.85045
M" -33.45145
M- j 4. 2 184 6
M- 32.9H062
M« 34.43049
P- 1.00000
M« -33.292'JS
M» -33.66635
M- -33.79219
•-In -15.65921
I1- 1.00000
M- -33.35796
M- -36.27423
M' -34.97665
R- 340.11475
M- -34.42830
:\- -34.56602
M- -34.20691
M- -36.05095
R' 327.75491
M. -34.78876
R- 333.91740
:i" -35.05995
H- 348.65040
f 364.25700
M- -34.95789
•!• -33.20634
P* 1 . 0000
R" 235.45910
M- -35.82504
M- -35.07979
«° 335.59420
M. -35.07979
•'.» -34.63213
M- -13.S4.-21
••> -3 .15230
X- -5 .361711
M^ - 3 .13952
R- 35 .23120
P- .00000
r- .00000
R- 34 .646650
R» 34 .66780
M- -3 . J0755
t>- 407.10070
M- -33.45899
R- 326.28400
.1- -35.27802
H- 349.67510
M- -33.84221
p. 1.0000
P* 1.0000
P* 1 . 0000
p. :'oooo
Ix )
Ix)
(x)
Ix)
Ix)
Ix)
Ixl
Ix)
Ix)
Ix)
Ix)
Ix)
(x)
Ix)
Ix)
Ix)
(x)
(X)
Ix)
(x)
(X)
(>)
Ix)
Ix)
(xl
(xl
(X)
Ix)
Ix)
Ix)
(x)
Ix)
(Xl
(X)
Ix)
(x )
(X)
(X)
(x)
(X)
(X)
Ix)
(X)
(X)
Ix)
Ix)
Ix)
(X)
(X)
Ix)
(xl
(X)
Ix)
(xl
Ixl
(\)
Ixl
+ 30 . 76349
• 29.72824
i 30.53741
• 30.15271
« 29.94461
•29.55466
• 30.B3118
• 30.38422
. 10.39763
+ 29.93893
* 30.95053
• 30.37299
• 30.73193
• 31.5B215
» 13.72424
* 31.31189
» 31.50005
• 31.09253
* 31.77003
• 9.77350
* 3t.l4711
• 13.61060
» 31.09770
• 9.022B9
- 2.13960
* 31.21252
• 31.12112
- JO. 88330
• 31.57407
i 31.57.117
• 11.67310
* 31.27312
• 31.7:081
* 3; 3'-:'
' 31.27312
• ^.OS'-BB
* 30.1703J
• 10.31570
• 10.29100
• 11.37530
- JO. 42195
• 1.61800
• 30.68411
• 10.10490
• 11.25227
- 3.65970
• 31.31294
L - Load Factor (in Inches KG; or Rail pressure or rack position N0- °^
voltage) c°l •
B • Engine Speed (RPM) Points
Not. Assigned
- .70912(L) - .11'J04[L)? - 27 . 6344 (E) 2 ID -* 1G3.71953IE) + 15.25119
- 15.65S42IE) (LI + 28 ] . 536 1 3 IE) * 5.15494
- 3.467171:.) • .06S3ML)2 - 26 .95181 IE) 2 (L) f 228.86046(E) +21.12505
- 105161(L)! • 1125.S4321IE)1 - 214 . 28C93 IE) ML) • 2. 67747 IE) ! (L)' » 5.71136
- 1.84D43IL) - 24.60982(E)2(L) > 194.38349IE) * 14.20471
1.39651IL) - 34 . 43105(E) (D <• 610.19995IE) - 13.85268
- 19.6216KE1 (LI * 644.51H7IB) - 1674 .69897 (E) ' - 27.07355
- 2. 05627 (L) - 98.62094IE)2(L) » 2 . 55913 1C) 2 (LI ' • 327.07129IE) 4 9.08679
10G4.63989IL) - 1 684 . 01025 ID ! * 1877 . 13452 (L) ' (E) - 77.15215
- 26.96132IE) (LI » . 52334 IE) (L) 2 * 2005. 9502 (E) ' • 3831. 5(E|' » 13.67106
- 1.65231IL) • .11792IL)2 - 33 .99907 IE) : (D • 251.38724IE) < 23.0979
Not Assigned
626. 37524IE) IL)! - 1779. 34155 IE) ' ID : - 10.54032
- 24.81006IE) (L) » 1 . 94369 (E) 2 (L) ! ^ 417.74170IE) - 14 59 . 64429 (E) ' - 4.80102
Not Assigned
Not Assigned
- 6.93130IL) « .26943IL)2 - 9 . 52345 (E) ID • 1B6.6023KE) » 18.835(2
Data Not Accepted
Not Assigned
Not Assigned
Not Assigned
- 27.9187(E)(L) - 596.3894IE)2 « 642.19678IEI - 12.38226
Model Derived Was Not Acceptable
27.52293IE) ID - .05553 IE] ID ' * 8116. 69922 IE) : - 39018 . 55078 (E) ' » 7B. 88254
- 7.73532IL) * .30579ILI2 » 350.42847IEI - 923.6636(E)J - 199 . 9737 (E) ! (LI * 10.194
- 1.34054IL) - 269.121S8(£)2(D . 27 . V5665 (E) 2 ID 2 - .92299 (E)2 (L) ' • 3B0.2263(El - 2.37157
- 2.54953ID - 1 20. 511 6 IEI 2 (D * 547.B610BIE) • B.0593
- 4.01273ID » .10956ID2 - 55 . 34984 (E) • (LI . 242.5451IK) « 14.16556
- 3.686S7IL) • .60095IEI (L)2 » 1133. 79077 1C) 2 - 95. 4437 IE) ' (L) * 54.15414
- 2. 05491 (L) - 517. 52734 (E) s - 2. 94962 (E) : (D 2 + 406. 3476S (E> + .11803
2B.8J429IL) - .04334(1,)' - 99 . 84 196 (L) (E) • 5. 3 3105 (E) ' (D ' - 7.36953
Model Derived Was Not Acceptable
20.82198U) - 1.82519IL)2 » 94.73334 IE) ID - 1679.979 1C) ! » 3.24152
102.64738IE) ID - 20. 62505 (E) 2 II.) ' - 3394 . 61621 (E) ! » 20.90292
- 1.61528IL) - 116.99608(E)2(L) » 392.72582IE) » 9 . 60109 IE) ' (L) ' - 2.62664
- .87036(E)(D? - 192.19353IE) * 13.51J93
Mot Assigned
Not Assigned
Madcl Derived Was Not Acceptable
Model Needs zero IIP Datj Points
- 1.69085IL) - 946.24634IE)2 '- 1 . 8781 6 IE) J (D ' * 561.67749IE) - 19.33261
- 31.33009IE) (L) + 3603. 71 97J (E) ' » 70.18793
Data Not Accepted
- 43.8056ILI - 4.27959IL)' t 19 . 851 15 (El (L) • - 613 . 52979 (El ' ID - 24.90085
- 2.56398ID * 234.01665IE) - 252. 97844 (E) ' (D * 10 . 79330 (E) ' (L) ' - B. 35427
- 3.03911IL) - 76.44043(EI!(L) > 1 . 62354 (E) ' (D J • 310. B6011 IE) t 29.13473
2.44413ID - 40.35834 IE) (L) » 2 . 09964 IE) 2 (LI J • 402 21119IE) - 3.79414
- 6.13165IE) ». .15547IE)2 -.15. 26339 (E) • 95. 95163 (E) ' (LI » 54;88933
15.25521(M - 2. 95499 (E) (M : - 1536 . 1 3?1 6 (E) ' » 1 . 58271 {EJ ' (L) -- 5.68650
24.9S303ID » .87790ILI2 - .02401IL)1 - 132 . 21260 (El (L) - 9.30766
Model Needs Zero IIP Data Points
23667. 73047 (D - 17080. 1 2109 (LI ? + 11 106. 72266 (E) (L) * - 9240.629IE)7 - 8331.57
6.89497IL) - .95815IL)2 » 177 . 47729 IE) (L) - 34276. 57422 IE) ' + 34.74164
3B.05254IL) - 97 . 53494 (E) (D - 205.45979'E) * 1.34004
- 10.57573ID - 2014.0918(E)! • 104.' . 91 1 87 (E) - 42.35168
J9.5KL) - 2.20(L)J . .18(E1(L13 t 67 . !2 (F.) ' (L) 2 - 9402.92(EI! - 261 . 59 (El ! (LI 2 « 9.1
- 30.28737IEI ID * 8152 . 40234 (E) ' - :319.17627|E) * 249.09167
1S.71239ID - 254.21294 IEI ' (D - 11.74881
Not Assigned
- 1.53729ID - B7.41228(E|'(LI « 621 . 4il BB It) • 17.61893
16.30679ID - 1. 42973 (E) (D 2 - 843 . 901 1 2 (E) ; - 5.35431
Same as TrucX 50
- 212.26344ID2 - 10B56. 12109 IE) ; (LI • • 844.B064IEI • 83.51875
2950. 20654 IE) (L) - 6516 . 44 141 IS)' - 22.57326
- 6129.25IEKL) • 3375.94531(1:1 . 56.35547
- 92.36125IL) • 2.56059II.I2 • 1 . 1909 5 (El (L I ' - 1 557 . 1 2329 IE) ' ' 808.47705
H
10
10
9
10
10
10
10
10
10
10
10
10
10
30
-
26
33
36
30
26
10
30
26
-
10
28
30
14
-
"
32
34
32
39
39
27
37
34
31
"
34
24
23
32
36
32
20
32
31
10
10
10
10
o
. B9
4.74
3. 01
1.67
5.34
4. 62
4.79
3.90
3.90
1.57
3.?3
3.47
4.58
5.53
3.61
-
5.41
5.18
2.66
3.13
2. 22
2.53
2.97
4.31
-
3.21
4.39
3.12
2.77
-
-
2.36
4. 37
4.6S
6.50
4 .99
2.99
4 .07
3 . 49
5.97
"
4 . 62
3. 40
6.49
4.83
5.45
4 . 64
3.57
4.27
S.71
2.59
2 . 94
6. 69
4 .09
1
R2 ,
99 92
98^67 1
99 56 1
99'. 81
97.63
99.62
98.65
99.35
99.57
99.91
99.59
99.04
98.20
53.58
96.91
-
98.60
95.59
99.06
98.94
98.64
99.34
98.39
98.10
-
96.59
93.05
98.38
96.72
-
-
96.72
97.73
99.29
94.9?
97.44
98.87
89.50
98 '.08
-
99.50
99. «1
99.59
96.01
99.17
97.14
97.61
99.35
97.13
99.71
99.74
98. 02
moriela phoulii be
Oovn by 10 before
-150-
-------
Appendix E
PLANNED DATA PROCESSING AND ANALYSIS
The original data processing and analysis planned for
the survey is shown in the flow diagram, Figure E-l. This flow
begins with the cassette of raw data taken in the field and ends
with the summary statistics of the survey trucks defining their
pattern and use. Note that the field data was processed as shown
down through the BCD RAW DATA TAPE stage. Further, the survey
processing proceeded as shown to the CALIBRATED 9 TRACK TAPE/
FLOATING PT. stage except that Channel 4 (horsepower) was left
in raw sensor data form and horsepower models were not applied.
To continue with the processing as planned, these data must be
converted to horsepower.
Mode Determination Program - In order to completely evaluate
truck characteristics, it would be necessary to accumulate the
calibrated truck data in a manageable and useful form. The
mode determination program is the basic tool for analyzing this
calibrated data, and describing truck behavior in mode terms of
accelerations, decelerations, cruises, etc. Tests were made of
such a program initially generated, but which were not refined
to an acceptable level due to changes in contractual responsi-
bilities .
Figure E-l charts the logic flow of mode determination pro-
gram. This logic was based on various selection rules found
in Table E-l. The parameters specified were based on gas trucks
as outlined in Table E-2. Diesel truck logic would be identical
to that of gas trucks, only the parameters may differ slightly.
The output of the mode determination program would be
expressed in such a way as to allow both visual and mechanical
evaluation of truck behavior. To accomplish this efficiently
truck behavior, as specified by the above logic would be described
-1-51-
-------
TK.V
•
f
'
IS ION _ ^ ..,.. p
_^
•
COI'YINi;
I'RCH.'RAM
1 RANPCK IUI-11)
/TKUCX DATA I
1 7 TRACK I
\ lid* /
-
_.
'
DUMP DATA
TAPKS
SPLIT TAPE " ft
FILES
( TRACK )
V BCD J
DETE
TRUCK
TI
<
RHINE
*ES
AVURAGE
ZERO SCANS
•
,_
'
ERROR C
DISTRIBUTIONS
AND A^
PA1TEHNS TEST
i'AU CA1
DAT;
HP HOC
* DKVKLOl
T
TEMP
RPH
AND
MODKI. D
IRIUtTIlv:
OST1CS
ATTEHN
ST
^- —
PHASE
• .
LISTING
TRUCK
HEADER
ND RECORD
COUNT
PHASE 2
LISTING
START
TIMES
-^-
SUMMARY
OCUMENT
OF GOOD
D ZEROED
SCANS
_^^—1
MENT ""' J SUMMARY
CALIBRATION
ERATURE. P CHANTS
.'V.S.. J "^ 1
VACUUM '
EVELOPMENTS
f bl'D \
(H>»W DATA)
V TAPE /
•; HAr;si AI : i ::
A.M. i
•IT
•A . 1 1)
l.:^-:' i
"
CALIBF
/ q Tt
1 TA
\KlflAl
. ^
pUACr x MO
rn«st o nc^ou
_. 1
f TR\1
I SUMN
\ TAF
TR
ANAL
J
°™ER l_fr( SUM
TRUCKS p\ANAF
1
STR,
ANAL
^
OTHER / SUR
STRATA 1 SUM
S1UU
ANAL^
/
D^TE^
Not Avai able For
*-*Procrams Devetopc
FLO
DATA REDIK
PROGRAM
•KK,
;,•:: •'/•: IHK.-'i :'K:1
i :•:•: is-1
MODE
DETERMINATION
. . 1 . .
3TASTICAL
DOCUMENT
TRUCK
ANA LYS 1 S
1
STATISTCAL
SU.1MARY
DOCUMENT
1
STRATA
ANALYSIS
1
STAT1STCM.
SUMMARY
DOCUMENT
FLOW DIAGRAM
i ({/?.„, ,sl//,..,, 7 -•/, ....... /,.
FIGURE t-1
-152-
-------
Table E-l
TYPICAL MODE SELECTION LOGIC RULES
1. Unsmoothed calibrated data is used to show exact
chanoes in truck operation.
2. Gears are determined by the ratio of RPM to vehicle
speed. The distinct ranges of variation in this
ratio correspond directly to the actual number of
truck gears: i.f., for a 3 qeared truck, the following
sianificant ratios apply:
Patio near
< 10 or >10,000 None
175-10,000 1
75-175 2
10-75 3
3. A chanae of mode is not allowed for only one record
(0.88 seconds). This takes care of some fluctuations
that occurred in the original raw data.
4. if all limits fail for a qiven record, the record is
placed in the previous mode. This will give more
realistic picture of the truck behavior since premature
mode channes cannot take place.
5. Acceleration and deceleration intensities are calculated
by dividing the rate of change of vehicle speed by 0.2
as the base change of speed for acceleration or deceleration,
6. 7,ero records or records that contained less than the
required drta were counted and used in the determination
of the rate of change in speed for acceleration and
deceleration.
7. Rach record represented 0.88 of a second which was
multiplied times the number of records in mode to
qivc time in mode.
8. The 0.176 acceleration and deceleration change per
record is based on a 0.2 mph chanqe per second.
9. For acceleration and deceleration the trends in the data
must last for "N" scans.* "N" scans are held in memory.
i\n acceleration or a deceleration is not allowed unless
the avcracre vehicle spued is greater than or equal to
0.176 for these "N" scans.
*'' scans is a smoothinq constant to prevent mode decisions to 'be
made on a sinole nair of consecutive scans, and to prevent severe
oscillations in their indications. N is nominally 5, but can be
v.o rit the circumstance.
-153-
-------
in tabular and matrix form. This type of output could be trans-
ferred directly to paper and magnetic tape, for full evaluation
of operational characteristics.
A test of the experimental mode-change program was run.
The results of this run are shown in Table E-3. Because of reduc-
tion in contractual responsibilities, the program was not refined
to correct ambiguities appearing therein. This program was not
employed in further analysis of data. The table shows data divided
into the following:
Selected mode or submode.
Start and finish time of mode.
Initial speed.
Final speed.
Change of speed.
Rate of charge.
Intensity of rate of change based on 0.2 mph per second.
Total time in mode.
Sum of Horsepower for acceleration and cruise mode.
Figure E-2 indicates a sample plot of recorded data versus
mode decision as shown in Table E-3.
In order to summarize truck patterns for a complete day,
Table E-4 is prepared by the program. This summary includes the
following for all modes and submodes:
Mode frequency - describes the total number of times
the truck went from mode (i) and to mode (j) in one
day.
Mean time in mode - describes the mean time in each mode,
(hours: minutes: seconds).
Variance - describes the variation in the mean time in
each mode. (seconds squared).
Deviation - describes the standard deviations of the
mean time in mode. Equal to the square root of the
variance (hours: minutes: seconds).
Transition probability - describes the probability
given a change of mode, (i) will go to mode (j).
Tables E-5 and E-6 are final summaries and contain addi-
tional information not yet outlined. This summary contains 11
matrices and summaries which are as follows:
-154-
-------
Mode frequency matrix.
Mean time in mode matrix.
Variance matrix.
Transition probability matrix.
Cruise mode matrix.
Acceleration and deceleration intensity matrix.
Horsepower summation matrix.
Estimation distance traveled matrix.
Traffic condition matrix.
Summation of the total time the valve is closed
during deceleration.
Summation of total time vehicles is in idle, stop,
hot-soak, or other modes.
The first four matrices combine the submodes of the previous table.
The fifth matrix outlines the cruise mode in 5 mph increments and
the sixth deals with intensities calculated by dividing the rate
of change of vehicle speed by 0.2 mph per second. The seventh
matrix sums horsepower for acceleration and cruise submodes. The
eighth and ninth matrices would be used as an estimate of total
miles traveled and under what conditions. The tenth and eleventh
summations estimate times in modes. These tabulations and
statistical summaries completely describe the sampled truck's
behavior for that day of operation.
The daily summary for that truck would first be combined
with other daily summaries for the same truck and analyzed for
variance in trip patterns, for example, examining the variance
in trip distance, vehicle speed, mode profile, number of daily
trips and other parameters. Similar statistical examinations
might be made by combining all trucks of a similar type, using
similar fuel, and where sample plan permits, similar base locations,
The statistical approach would be to locate both similarities
and differences between trucks in the same strata and between
different strata.
-155-
-------
Table E-2
MODE SELECTION PARAMETERS - GAS TRUCKS
Stop
Idle
Acceleration
Acceleration
Throuqh Hears
Cruise
Decelerate
T-Tith Power
Decelerate with
Oynamic Brakinq
Decelerate
PARAMETERS
vehicle Speed
RPM
Engine Temp.
Vehicle Speed
RPM
Enqine Temp.
Vehicle Speed
RPM
Change in Vehicle
Speed
RPM
Vehicle Speed
RPM
Hear Chanqe
Change in Vehicle
Speed
HP
RPM
Chanqe in Vehicle
Speed.
Throttle Valve
Readinq*
RPM
Change in Vehicle
Speed
HP
RPM
= 0 + .1 mph.
=0+50 rpm.
> AmEient +50°°
= 0 + .1 mph.
=0+50 rpm.
< AmEient + 50°
= 0 + .1
> 100" rpm.
>_ + 0.176 for N
Scans
> 100
>_ + 0.176 for N
Scans
> 100
< + 2.5 Initial
record
>2.0
>100
<_ - .176 for N Scans,
= 1
> 100
< - .176
< 2.0
> 100
Chanqe in Vehicle < - .176 for N
Speed Scans
RPM . > 100
Throttle-Valve Reading*= 0
'"OcTSt
Vehicle Speed
Vehicle Speed
< Last Scan V.S.
i- o + .1
*Hoes not apnlv to diesel trucks.
-156-
-------
Table E 3
SAMPLE OF TYPICAL MODE CHANGE LISTING
f'iTf»N.r.
t iCCve S
IVP-
m! L Trr'
i. If '
[.AYS
PMTUL
SP> *r.
PV. as
DF
s P - r r
Ir.T^MTY
M-inr.
... ". n
* i f J f
•"> p . 7 C
•J * . i C
'i 3 . ? C
C*!20
C8.2C
OS.*!
3E.21
ie . zi
08.21
08.21
Ct.21
76.21
"e . 2\
•18.21
C8.72
id. 22
C8.27
'.? .T?
1 c . 7 7
" d. 22
01.27
18.73
32.23
• ') S . 2 3
C 8 . 2 3
••> >» . ? 3
•: i . ? ?
re* -3-3
:r.73
o a . ?. 4
CK.74
0 P . ? 4
??. ?'
09. i4
:s.24
•jf.?4
rfi.24
38. ?5
08. ?5
08. 2->
03.75
08.75
C8.J5
OE.21:
OH. 25
08.25
OS.?1)
C i . 2 C
'. - . ; c
rt .'C
.> • n
" '• • C
c •• . ? c
C E . : C
CF.2'
Cfc.21
cc.r-
c t . ;• i
Of .2.'
Of. 71
C'.21
C f- . 7 1
CE.21
cf .2:
ot.?;>
cs.2;
oe. 2;
Of.?;
C* .27
c c • r i
06.7;
i e . 2 :-
c £ . ? :-
o P . ; ;
CE.73
rp.2-
Ofc.7 :
0 F . 2 :
ru .i*
Cf .24
CI-.7.'-
0 f- • ? 4
0 F . 2 4
C t . 7 4
C '. • ? H
j t- . 't 4
•-' E . ' '.
Ct .2^
-Of .2!
c t . ; ;
C E . 7 ':
c H . ;• f
CE.21
C f . ~ '.
Ct .2i
rf .i t
Cf .2i
M .cc- ini>
:t.c;-icr.-r,i -k
:• .C2-&Cr.-C.rf.:.-
C t . C/-i-.Li_-GE A.-
" t r * — * ~ r .. ( TAT
L( !:4-tcc-o'r/iF
C7.CC-CCC-'.iVNtM|c
C! .CC- 1DLC
Cr.Ci-«CCHIrKAllO'J
C 7. CC— 'Jf-'C-'JYNAtMC
Cl .CC- 1 DLi
C< .02-ACC-GE«K
0( . C3-ACC-GF/!^
C4 . 04-cpui sr
C7.CC-UF.C-nYNAMIC
:*.C?--CPU! sr
c'!.cc-o?c-riYij/!Mic
C' .OC- IDLF
C4.C?-f.i'U! Sf.
C'. .00-Ul"
C'-Ol-^CCELF0* T!ON
CI.OC-CEC-iJYMA* 1C
Cc. C/-".i".C-UF.».K
Of . C3-4CC-G1- *R
Ct . Cc- *CC-:JE AF\
C4.o5-c<;ui sr
Cr,.C5-ACCElEP.A11QN
C4.C5-C«U1 SL
K.C3-:ntsT
C4.ce-c°u; st
C4.Cfc-C*01 SF
IC.C:-C:'IAST
c: .cc- luu
ct.ci-ACC-r.rAt-
Ct.C?-ACC-OFA°
c7.cc-c'c-riYN4Mic
C5.ci-ftCC3Lr p.t Tinrj
C4.Cb-CP.U! S!T
C?.C?-iCCf-Lf "?/> Tin-J
CT.OC-rEC-HYNtv|r
ce. cc- wrC-pnM"?
C4.c?-v;i»u! sr
C7.CC-r;rc-L'Y.\'.«KIC
iC.O!-CTf SI
C! .CC- 1.1L'
Cc.C'-if .'.-or r->
C/.Ci-tCsl-Of.',:.
C4.C*-C:»Ui S'
C4.Cb-'".'«tl Sh
.C
! .7
7.7
o.t
•j B ^
' 7^0
IS.':
.0
«.3
5.6
.0
B.I
9.1.
14.8
9.4
8.9
6.6
.D
4.1
.0
.B
7.8
10.4
19.3
2o.C
22.6
2) .B
2C.2
2?. 9
24.7
27 Q
. . a
24 . C
25.2
3.9
.0
7.4
15.4
;. j .2
4.9
2) .C
20.2
J7.1
r..E
V. ?
6.2
i . 3
. C
.-.1
i 3 . *
.14.5
7? . 1 -
.0
? .1
7.7
9.0
I ^ .0
.0
.0
11.2
1.5
.0
10. 8
14.4
IX .6
7.B
11. Z
.0
.0
4.2
.0
8.B
7.7
15.9
21 .9
26.0
17.0
23.2
25.7
21.9
24.9
27 .9
26 .9
3.9
1 .0
.0
11.7
16.0
6.7
17.1
19.6
?1 .7
13.'
9.0
1.0.4
•V.4
.fl
.0
k.".
' t .6
•6.7
- ?! .8
.0
1 .9
.G
.4
1 C
2.f
-19.3
.0
2.S
-4.1
.0
2.7
= .3
-3.2
-1 .fc
2.3
-6.4
.0
.1
.C
8.C
-.1
5.5
a ,t
,c
-? . c
1.4
5.3
-1. .0
.2
1-
2.9
-2.1.2
-2.fi
.C
9.3
. t
-4.5
12.:
-1.4
1.5
-4.:
-.E
.5
-1.8
-7.5
.C
(; .£
4.1.
! .9
-.3
1.0
.0
.1
* 6
.7
-1.4
.3
-1.0
.7
.4
-.3
• -.4
1.2
-2.2
.1
2.0
.0
.ft
. i
.0
-.7
.5
1.4
-.5
. 3
-1.5
-.6
.9
.2
-1.1
1.4
-.5
.5
-1.0
-.3
. 1
-.9
-1 ..?
.a
1.4
.6
.0
5.0
.C
.5
2 A
3 . U
3.5
-7.0
1.5
-5.0
3.5
2.0
-2.0
- j 1 . 0
'0.0
.0
T.O
.5
.0
2.5
-7.5
4.5
i.O
-5.5
7.0
2.5
-5.0
-1 .5
-4.5
4.0
7.0
tc.cr. ic
co.cc.o?
CO.CC.Ci
OO.CC.C3
r i r r r t-
1. vJ « U
-------
Table E-3 (Cont'd.)
SAMPLE OF TYPICAL MODE CHANGE LISTING
..U.vdL'F =
STAkT FlMSh
L f . ."•
08.?-:.
08.26
08.26
Cf
Cfc.Jf. ' C7.CC-::'7L-^YNf^>!C
O.c.2fc C7.CC-DEC-OYN/VWIC
C?.?(. C4.1(
sc
I
U1
00
1
oe.2t
CR.77
OE.27
TS.27
ifc.27
-•8.27
18. ?7
">6 .27
0 fi . ? 7
Cfi.?7
Of?. 2 7
"?. ?7
T t! . ? 1
oe.?.h
> CE.28
CR.2B
08.28
08.28
C^.23 •
CS.2.T
CB.21
•T 3 . 2 H
08.28
C 8 . ?. 8
08.2R
08.26
ne.28
C8.29
OP. 29
CR.29
C8.29
08.29
Cd .30
raise
I^.^C
: -t.20
"B.2C
Cc . rt
0 f . 2 7
c t . ; 7
1.3.77
C fc . 7 7
CP.27
Pd .77
Ci.27.
C6.2'/
CP.27
C°.?7
Cf.27
Ct.2t
C c . 2 '!
CF . ?£
Ofc.?«
CE.If.
Cf .28
C6.?£
CF. .ii
C l: . f i-
C»-.2t
OE.2E
CE.ZE
CP.2F
re. 28
C6.2S
CF.2S
CP . 'S
c 6 . :• «
f .' fi . 3 ^
CF.3C
C t . 3r
" R . ? 0
«.(.. :C
'.' F . 3 C
Ct.JC
C7.CC-05C-DYNAMIC
C1 ,»C- 1DLL
C4.CZ-CRU1 Sfc
'-«-.0:-ACr,-Ot-A:\
Cc. C'ji-irc-&r />F
C6.C4--".CC-&tAF.
Cfc. C?.— ACC-tS^c
Ct.C4-*CC-G£ AR
• C7.0C-l)cC-L)YI4AM!C
C4.C6-CXUI Sr
C4.C5-CKUI St
C7.CC-lJFC-nYNAKIC
C' .CC-IDLH
Ce.C!-ACC-'jLAR
\.t .02-ACC-'oF*k
C4.c?-cp.ui rr.
C7.0C-^rC— DYNtMlC
Ct.G2-ACC-Gt AR
Ct.C?-ACC-Gl'A"
C7.CC-DEC-OYNAVIC
C4.35-CRVJ1 St
'.C.CZ-C.JAST
C4.C6-CRUI SF
C5.C3-ACCFLFRATIO
C4.C6-r°.UIS?
•C.C2-C-JAS7
C4.C4.-CK.ui sr
Cc..C3-ACCFLEf(ATin
C7.CC-U5C-ilYNAKIC
C' .CC- IOLF.
• C4.cr-CKui sr
C* ,C?-C^ljI Sl:
c1. .c:--ftCCctri«tTio
C4!C4-C'-LIS!
v.7. CC~C.?C- jY.Jf ^IC
Cl .CC- !3L!:
C«.?.3
' 8.3C
OH.T
OK.31
Of.3C Ct.Ci-ALC.'.Lfi
Cf-.iC C4.C7-C°UISi
CAYS SAKF'Li ) = '
PATF dr
TH:r IN
c F . 3'
Ct.2j-
i ":.-J(•-.•»H.
^4.ct-r ^.i
CC";C4- -r.r
Zc.U
? .9
?* .<•
.:'. .5
iC.?
3.J.9
f .C
-5.2
.A
-5.9
2.2
-l.S
6.9
-3.2
-)7.2
.C
7".e
2.i
.C
.7
.4
.2
-.8
- .9
?. • 2
-21.7
.0
2 . t'
.C
8.1
-4.2
4.C
6.3
-1 .4
6.9
-.4 '
-3.6
2.2
-6.8
-1.2
1.4
3.2
-18.5
.0
.2
3.7
.7 '
-4.7
.e
-n.c
.c
3.1
1 .'i
1. i . i
.*
3*2
.9
. •>
-.0
.1
-3.0
i.r
-.5
.4
-.5
-1.6
1.5-
.3
' .0
.2
.2
.!
-.4
-.5
.3
-2.7
1.4
.0
2.0
-1.4
1.0
1.3
-.7
1.4
-.•>
-.6
.6
-.9
-.7
.5
.8.
-J.5
.1
.5
.2
' — .^
.A
-Li
1.0
.1,
\ .1
. i
..,
c
! .r.
.=
-15.0
-2.5
2.0
-8.0
1 .5
.0
1.0
) .0
.5
-2.0
-13.5
7.0
.0
-7.0
5.0
6.5
-3.5
3.0
.
4.0
-7.5
1 .0
-4.5
-t.Q
5.0
5.5
i.O
?.5
C0.7C.26
CO.CT.C6
CC.CC.C4
CO.OC.C2
coJcc.c?.
OO.CC.C4
oo.oc.ia
OC.OC.C7
CC.CC.ll
CO.CO.C9
CO.CC.C5
CO.GO.C9
OO.OC.02
CO.OC.C3
OO.CC.C2
OO.CC.C5
CO.CC.C2
OC.CC.C2
CO.OO.C4
QO.QC.C8
C0.3C.2C
OO.OO.C2
CO.Of.C3
CO.OC.C4
OO.OC.C3
CC.OC.C4
CO.OC.C5
CO.OC.G2
• OO.CC.C5
'CO.CC.C2
OO.CC.C6
CO.CC.C4
CO.OC.C8
OO.OC.C2
OO.OC.03
CO.CC.C4
CO.OC.12
OC.GC.3e
oo.oo.c?
CO.CC.C8
OO.OC.C4
CO.OO.C5
CO.CC.C7
00. OC. !>
CC.OC.17
CJ.OO.C3
CO.CC.C4
CQ.OC.ll
CC.CC.C5
CO.-QC.C8
rc.cc.cc
61. y 7
76.54
66.1 5
.00
55.93
.00
.00
'0.30
47.5?
.00
45.Si
'.05.36
93.51
83.97
48.23
.00
35.47
48.95
79.29
57.3,?
22.8!
72.74
'.CO
70.'--
17H.S4
91 .S9
.00
000' 0
COCC7
f>0004
COCO?
00002
OOC04
00020
00008
00013
00010
'oooot
OOOJ C
onbc?
0000?
OOC02
00006
00002
OOC02
00005
OOCC9
'000? 3
oocor
OOCC3
OOCOb
0000?.
00005
OOC06
00002
OOOC6
00002
OOOC7
00005
bodes
00002
0"C03
O0004
•00014
000*3
OOOC3
OOC09
00004
OOC06
oocrz
ooo- ?
000' S
OTC03
oocc*
OOCi 2
OOCC6
oocc<;
OOOC2
OCi«7
004??.
00429
004? 3
00«-?5
004 3 7
00441
0046).
00^69
00482
0049?
00498
005C8
005 JO
0057.3
005 '5
C0521
00523
00575
00530
00520
00562
CC544
OCf.t7
00572
00575
00580
C05E6
00588
00594
00556
00603
C06C8
006. '7
CC619
OP627
00676
COf 40
006 63
00686
006<=5
00699
OC7C5
C07C7
0077.0
OC7?9
0074?
00746
00759
00765
C0774
-------
Table E-3 (Cont'd.)
SAMPLE OF TYPICAL MODE CHANGE LISTING
CII»=M.Y.
I
(-•
Ul
vo
I
38.31
CB.31
5fc.j?
06. •>!
ia.21
09.3'
09.2!
DR. 31
d;3 . 2 1
C*8.3?
T3. '2
Ob. 32
09. 32
08.32
08.22
C8.32
06.32
08.12
08.3^
08.3'
08.32
03.2?
39.33
03.23
08.33
08.33
C8.33
""8.3?
ca.v:
08.33
06. •
OH. 3
C8. '
09. '
38. .'
"JE. .1
18. :
-;°. 4
D8. 34
08.34
Td . 34
C^.34
:e.i4
•>e!i4
08. 3<-
OR. 34
."• 'a . '• 4
OR. 34
"E . 3^
08.35
r ? . 3 1
eg . 3 1
i. t . ' '
C t . 1 .'
? fc . 3 t
Cf.31
OF. il
C 1- . ? 1
Cl .?i
Cf .->?
CP.32
r t . 3 2
Ot.32
rt . 3i
f. r . 2 i
oe.3?
C6.22
0 J . ? ?
OE.32
C F . 3 £
C •: . 2 J
0 '•! . 3 ?
ce. 32
Cfc.3?
C £ . 1 2
08.22
oe.2?
oe.33
Cf .3
0?. 1
Ct.3
Cf .-1
Of .3
CP.1
ce.?
^••.2
C' . ^4
t •'. .;'4
Cf .24
Ofc.34
0 F . 2 4
Gt .34
Ot.3*
OF. 2
•J ! . ?.
" f. . i
r. t . i
OF.. 2
C " . .- »
C t . 2 '.
rt .cf--'.c.:-(.! /-.t
C4.Ct-C'U! 3.-
C - . C4-fcCCf. LCL A 1 ! '.I'j
C4.C7-CRU1 Sfc
C7.CC-UEC-l1.Y!YN*y.!C
C4.C6-C".'J1SF
C7.CC-CEC-DYNAM1C
C5..C4-ACCELL^ATIQN
C7.CC-0?C-fJYNAMlC
Ct.C4-ACC-GFAR
Ct.C5-ACC-GEA«?
Ct.C4-.'iCC-GF.A>-
1 C. C 3-C!!£ iT
Ct.C4-ACC-Gf-AH
re .C5-4CC-G! JP.
C4.CB-CRUI SE
C7.GC-OEC-OYNf.«r;r- I'ITINSITY MODI
i .0
-i.)
.•>
-.6
-.8
.3
.5
.2
-1.2
.Q
-.6
.5
-2.S
.4
-.7
.3
-.6
.1
.3
-2.9
.fl
-) .6
.2
-.3
.6
— .4
.0
.3
.9
-1.7
.4
.0
-.4
-.3
. j
. 1
— J .4
. 3
.8
.0
.0
• .2
-2.7
.2
1.4
.*»
.3
-2.2
.3
-.1
.2
.0
2.5
-4.0
2.5
1.0
4.5
-3.0
-14.0
2.0
-3.5
1 .5
-3.0
-14.5
4.0
-8.0
- .'. . 5
3.0
-2.0
.0
1.5
4 .-3
2.0
.0
-' .5
1.5
. K
-7.0
4.0
.0
.0
1 .C
-J3.5
) .0
4.5
1 .5
-J 1.0
.0
- .f.
cc.cc.c?
CO.OC.C4
CO.CC.1C
CO.CC.C4
OO.OC.C9
CC.CC.10
CO.CC.C4
OC.CC.C4
OC.CC.C2
CO.OO.C3
co.oc.c?
CO.CC.C2
CO.CC.C3
OO.OC.C6
00.00.06
OO.OC.C4
co.nc.c-2
OO.OC.C5
CO.CC.ll
CO.CC.C2
CO.CC.C9
OO.OC.C5
CO.OO.C4
cc.cc.c?
CC.CC. >!
C0.3C.C2
co.oc.o?
OC.CC.C6
CC.CC. C2
CO.CC.C2
CO.CC.C3
CC.CC. C4
CO.CC.04
oo.oo.c?
OO.OC.10
CC.OC.C4
CO.CC.C7
CC.OC.C4
OO.CC.C4
00.00.04
co.cc.c?
ca.cc.C4
CO.CC.C5
CO.CC.C8
OO.CC.C3
CC.CC. C2
CO.OC.15
CC.CC. CJ
00.CC.lt
OO.OG.C4
CO.OC.C6
I'JO'JST" Y =
Si* IT
33.23
24.22
' .19
106.7')
«>5.?3
56.94
! 2.C8
.0?
.00
34.35
9.69
•i<>.7>>
11 .65
2C.71
2?. 67
224.18
95.39
124.94
55.66
.00
1 5.? 5
09.75
.00
.00
.00
.00
1.9.74
52.3£
64.15
.00
.00
9.57
OOOC3
OOC04
000? 1
00004
0001C
ooo.' :
OOC05
00004
ooco?
00003
OOCCI
ooco?
ococ?
00007
OOOC7
OOC04
oooc?
OOC!0
000' 2
OOOC2
OOC1C
OOC06
OOOC5
00002
000' ?
OOCC2
0000?
OOC07
COCC3
OOC02
OOOC 3
OOOG4
OOOC5
00002
0001 1
00004
00008
0000")
00005
00004
00002
00005
OOC06
oocr*
OOCC3
ooco?
00017
0000?
OOC! 8
00004
OOCC7
00776
00779
00783
00794
30751?
OC308
CC8J9
00924
00828
OC820
OOS'I
ooe?s
ooe?7
CCS40
OC84T
CC85*
00858
CC8/-0
OC870
00882
CCP84
C0854
009CO
009C?
CC9C7
C0919
00971
OC973
C0910
00921
OC9T5
C0??8
OC?42
00947
00949
CQ960
OC964
CC972
00977
C098?
CC«!86
OC988
CC993
CC999
0<008
O'.0)l
O'OJ?.
OJ03C
CIO??.
OlCfl
0?05S
-------
O\
'•JGU.<
START
»>-.. '.5
36.31
C8.35
: t. 15
Uti. >D
06.25
OC.35
0?.3t
06.36
oelifc
08.36
08.3fc
09.37
JH.37
•;fl.37
C8.37
•JB.37
ce.37
:e.' 7
06.37
C6.37
08.37
C t> . 3 7
16. 37
Ob.3H
ceise
08.3B
C. 8 . 2 8
CB. 3"
ca. ?P
C8.3H
06. 3t
•:e.3e
Cri.SS
.6.3"-
0°. 3',
r. 1 . •>. c
" (i. 3 '•}
CE.35
CE.'5
r r m J r
06. ?t
C6.it
Ce.37.
OF.37
C F . I-. 7
C6.?7
Cf .?7
c'e.->7
c .= .?•/
Gt.37
r •• . 2 I
C^.77
Cf.37
Cl.37
If. a
C ;- . 3 (
Cc.3t
Cf.3E
C>:.3t
c t:. 3 f.
CE.3E
6e!?=
C C . 3 c.
U.3S
r i-. 3 <;
C p . 2 '
Table E-3 (Cont'd.)
SAMPLE OF TYPICAL MODE CHANGE LISTING
KODE
t'»'.-' T10N
C6.C3-ACOGFAR
Ct.C4-Ar.c-GEAk
C7.0C-3EC-nYNAMIC
Cl .CC-IDLF
Ct.C3-»CC-GEA°.
Cf .C4-4r,C-i,f AK
' >..C3-LJASr
L4.C5-CPUISC
Ce.04-»CC-GEAR
Ct.05-»CC-GfiAH
C7.0C-DEC-nYNAf»IC
C4.Cf-C°llISF
C4.06-CRUlSf
C4.C7-CFU Sf
CE.CC-Df.L-fT.-t.Tf.
C4.C7-C»UI SF
Cl.OC-CEC-aYNAMIC
Ot.C4-ACC-GCAP.
C4.C«-CFLI SI
Cf-.CS-ACC-GEAH
Ct.C4-ACC-GtAR
C?.C4-ACCELFF,MION
C'.C7-CRUISF
C7.CC-i;er.-DYNAMC
l 5E
Cf .Ct-ACC-GF./?.
Ct.CS-ACC-GF AF.
c*.: c-Criuis'
:E.CC-I)CC-P'.I
'•«..C'.--L?UI SI
C1-. C4-4CCi:L::
'•-.'.s :*.H-i|-Lr
K = ) F-UI.
L TYFF.;
= iiAS
«'. IGHT = 05
L I Cfcr'S? = N
YttJlhC
B» CAYS SA«.PLEO = 5
INITIAL
SP'.TC
14.4
1 3.9
12.5
13.0
9.7
.C
9.2
34.1
?9.4
?0.5
19.5
23. C
32.5
3C.5
3C.9
33. C
28. C
2C.9
24.8
31 .9
31.4
26.1
32.0
ii.2
31.7
31. 2
76.1
3?. 8
.34.7
34.2
39.0
34.3
36.5
30.8
28.2
34.6
27. H
2t . 6
? 3. 1
35.3
3i.t
35. i
38.3
45. c.
4.-..?
4 ;• . 'i
i T> . 7
4i£ . H
4 Ji • i
40.0 ...
47.6
PEAK
SPHtO
17.6
1? .C
14.7
13 .0
.0
.0
31.3
2t..\
30.6
19.4
20.4
30.3
33.5
26.0
27.9
33.0
18.2
21. J.
23.7
3?.0
31 .5
21 .7
26.3
40. 7
29.8
38.4
37.)
36.2
27.1
34.2
39.0
34.3
3 .b
i) .6
4? .5
It .9
45.3
0,NCr.
SP'EC
3.2
-i •<;
2.2
.C
-9.7
.0
27.1
.C
1.2
-11.1
.9
7.3
.C
-4.5
-3.C
.C
-9.P
.2
-l.l
1.'
.1
— 5 «C
-5.7
7.9
-1.9
7.2
1.0
3.4
-7. t
.C
.e
.c
.c
-5.5
10.1
-16. C
13.2
1.4
4.9
-IS. 2
-l.C
.3
3.0
.0
-.1
. 3
-7.;
-11. Z
.4
- -J..'
1 .7
CAT:: or
CHANGE
.3
-.5
.6
.0
-2.4
.9
.0
.2
-2.8
.1
.4
.0
-.3
-l.J
.0
-2.5
.1
-.3
.3
.0
-.6
— ] .9
.7
-1.0
1.4
.3
1.1
-.2.5
.0
.0
.0
.0
-.9
.6
-4.3
1.0
.7
! .2
-3.2
-.1
. 2
.8
.0
-.1
.1
-1 .4
-1.4
.1
-.5
.3
INTENSITY
4.C
1.0
.0
-12.0
4.5
.0
1.0
2.0
.0
-1.5
-5.0
.0
-12.5
1.5
-3.0
3.5
-5.C
7.C
1.5
5.5
.0
.0
.0
.0'
-4.5
3.0
5.0
6.C
— ; 6 . C
-.5
4.0
.0
-7.0
.5
-? .5
Tl«r IN
HCir.e
CC.CC.C6
CO.CC.C4
CO.CC.C4
CO. 00. 04
CO.OO.C4
OO.CO.C4
CO.OC.24
CO.OC.C3
CO.OC.C5
OO.CC.C4
CO.OC.1C
CO. CO. 20
OO.OO.C2
GG.OC.17
CO.CO.C3
CO. 00. 02
OO.CO.C4
CO.OC.C3
Cu.CC.C4
CC.CC.C4
CO.CC.C3
OO.GC.C9
cc.no.c?
CC.TC.U
CO.OC.C2
OO.CO.C5
OC.OC.C4
CO.OC.C3
CC.C.C.C3
OO.CC.C?
OO.CC.C3
cc.oo.o?
co.no.C4
CO.CC.C6
OO.OC.17
CU.CO.C4
CO. CO. 1?
OO.OO.C2
CO.CC.C4
00.00.06
CO.OO.CB
OO.OC.C2
CO. 00. 04
OO.CC.C3
CC.CC.C2
CC.OC.C2
CC.CC.C5
CO.CC.Cb
OO.OC.G4
CO.OC.C6
CO.CC.C6
SUM
.00
1.05
73.94
44.1)
16.43
.00
94.96
59.16
.00
1.14.9C
187.64
136.20
69.10
.00
127.57
7?.67
B5.10
52.55
106.15
73.58
149.56
20!.. 85
43.18
1.44
51 .10
80.56
31 .17
94.45
67.38
51.6?
•56.C5
121 .57
'08.07
00304
OTC04
00005
OOC04
OOOC5
00004
00027
00003
00006
00004
00011
00023
OOC02
00019
00003
OOC02
nnccr
OOC03
ooocs
00004
OOOC3
OOC! C
CD003
00012
00 CO?
00006
00005
OOOC3
OOC03
ooccr
OOOC3
00002
OOOC5
00007
OOC19
OOC05
00015
OOCC2
00004
00007
00009
0000?
00004
OOCC3
00"C?
OOCC2
OOC06
OOCC7
OOC-C4
OOC07
00007
C1062
01066
C107C
07075
01079
01084
01088
0!M5
cms
Oil 24
01128
C1139
01162
01164
01183
01186
CJ ' 88
01? S3
01196
01201
01205
012C8
07.218
01221
0!?33
01235
07241
07.246
01249
01.252
01254
01257
01259
01264
01271
CJ2?0
0!295
01310
01312
01316
01323
0133?
01334
01??.8
0134]
01343
Ol?45
05351
01358
013(2
0'3*9
-------
Table E-3 (Cont'd.)
SAMPLE OF TYPICAL MODE CHANGE LISTING
TROCK=31 OAY = 3 CITY»N.Y. TYPE TRUCK"! FUEL TYFK=GAS
ENGINE (10DEL-GMC6500V6 SERIAL NUMBER"
WEIGHT°05 LlCENSE=NY662lHB INDUSTRY'
CAYS SAMPLED=5
START
08.39
08.39
08.39
08.40
08.40
08.40
08.40
08.40
08.40
08.40
08.40
08.40
08.41
08.41
08.41
08.41
08.41
08.41
08.41
08.41
08.41
08.42
08.42
08.42
08.42
08.42
08.42
08.42
08.42
08.42
08.42
08.42
08.43
08.43
08.43
08.43
08.43
08.43
06.43
08.43
08.43
08.43
08.44
08.44
08.44
08.44
08.44
08.44
08.44
08.44
08.44
FINISH
08.39
OC.3S
08. AC
08. 4C
08.40
08.40
08.40
08. 4C
08.40
08. AC
08. 4C
oe.4i
06.41
06.41
08.41
08.41
06.41
08.41
08.41
08.41
06.42
08.42
08.42
08.42
08.42
08.42
08.42
08.42
06.42
08.42
08.42
06.43
08.43
06.43
06.42
08.43
C8.43
08.43
08.43
08.43
08.43
08.44
06.44
06.44
06.44
OB. 44
08.44
OE.44
08.44
08.44
06.45
MODE
05.05-ACCELERATION
07.00-DEC-DYNAMIC
04.11-CRUI$E
C7. 00- DEC-DYNAMIC
04.10-CRUISE
07.00-DEC-DYNAMIC
C4.1O-CRUISE
06.CO-DEC-POHER
04. OS-CRUISE
CB.OO-DEC-POHER
05.04-ACCELERATION
C7.00-DEC-DYNAMIC
04.08-CRUISE
OS.04-ACCELERATION
C4.07-CRUISE
07.00-DEC-OYNAHIC
OC.OS-ACC-GEAR
OC.04-ACC-GEAR
04.03-CRUISE
C7.00-CEC-DYNAMIC
04.01-CRUISE
1C.01-COAST
C7.00-OEC-DYNAMIC
04.01-CRUISE
Cl.OO-IOLE
C4.01-CRUISE
07. 00- DEC-DYNAMIC
04.01-ACC-GEAR
06.C3-ACC-GEAR
07.00-OEC-OYNAMC
05.02-ACCELE RATION
07.00-CEC-DYNAMIC
C4.02-CRUISE
06.02-ACC-GEAR
04.03-ACC-GEAR
06.04-ACC-GEAR
C6.03-ACC-GEAR
07.00-OEC-OYNAMIC
1C.01-COAST
05.C3-ACCELERATION
04.03-CRUISE
07.00-DEC-OYNAHIC
OS. 03- ACCELERATION
C7.0C-DEC-OYNAMIC
06.03-ACC-GEAR
06.C4-ACC-GEAR
C1.0C-1DLE
06.01-ACC-GEAR
06.C3-ACC-GEAR
C 7. 00-DEC- DYNAMIC
Cl.OO-IOLE
INITIAL
SPEED
47.7
48.9
49.1
48.7
46.4
46.6
46.4
41.7
42.8
40.0
38.3
39.7
34.6
35.2
31.4
30.4
26.0
17.7
10.7
1.0
.5
.7
.5
.7
.0
.8
.7
6.3
11.5
6.6
6.4
5.8
5.1
9.9
17.2
22.5
21.7
27.0
9.3
11.4
10.3
10.6
13.4
16.8
11.0
14.0
.0
3.0
5.8
4.4
.0
PEAK
SPEED
50.3
47.9
51.0
46.1
48.1
45.5
43.6
39.1
41.9
30.1
41.6
34.6
32.9
38.6
33.7
23.9
26.0
20.2
4.1
.5
.8
.5
.0
.7
.0
.9
.0
7.9
11.5
5.8
8.9
4.8
6.2
19.0
19.3
25.1
27.8
14.8
8.6
14.1
13.4
10.2
21.8
10.3
14.0
14.0
.0
3.3
5.8
.0
.0
CHANGE
SPEEC
2.6
-1.0
1.9
-2.C
1.7
-1.1
-2.8
-2.t
-.9
-9.9
3.3
-5.1
-1.7
3.4
2.3
-6.5
.0
2.5
-6.t
-.S
.3
-.2
-.5
.0
.0
.1
-.7
1.6
.0
-.8
2.5
-1.0
1.1
9.1
2.1
2.6
6.1
-12.2
-.7
2.7
3.1
-.4
8.4
-6.5
3.0
.0
.0
.3
.0
-4.4
.0
RATE OF
CHANGE
.5
-.5
1.0
-.7
.9
-.3
-.1
-.2
-.3
-1.2
l.l
-1.3
-.2
.3
.6
-1.3
.0
.3
-1.3
-.1
.0
-.1
-.2
.0
.1
-.1
.5
.0
-.1
.2
-.3
.6
2.3
.5
.7
.3
-.7
-.4
.5
1.6
-.1
.4
-1.3
.6
.0
.1
.0
-1.1
I NT EN:
2.5
-2.5
-3.5
-1.5
-1.0
-6.0
5.5
-6.5
1.5
-6.5
.0
1.5
-.5
-1.0
-.5
2.5
.0
-.5
1.0
-1.5
11.5
2.5
3.5
1.5
-3.5
2.5
-.5
2.0
-6.5
3.0
.0
.5
.0
-5.5
TIME IN
MODE
00.00.05
00.00.02
00.00.02
00.00.04
00.00.02
00.00.04
00.00.19
00.00.17
00.00.03
00.00.08
00.00.03
00.00.04
00.00.07
00.00.13
00.00.04
00.00.05
00.00.07
00.00.10
00.00.05
00.00.04
00.00.13
00.00.03
00.00.03
00.00.11
00.00.04
00.00.02
00.00.05
00.00'. 03
00.00.03
00.00.06
00.00.11
00.00.04
00.00.02
00.00.04
00.00.04
00.00.04
00.00.18
00.00.17
00.00.02
00.00.05
00.00.02
00.00.04
00.00.19
00.00.05
00.00.05
00.00.04
00.00.11
OO.OO.C3
00.00.02
00.00.04
00.00.11
SUN OF
HORSEPOWER
.54
.00
.00
97.74
38.56
.00
.00
9.52
.00
.00
.00
.00
.00
.00
.00
23.53
.00
22.78
28.13
123.21
65.52
62.92
2T.10
.00
12.09
.00
.00
.00
.00
.00
00006
00002
00002
00005
00002
O0004
00022
00019
00003
00009
00003
00004
00008
00015
00005
00006
00008
00011
00006
00004
00015
00003
00003
00013
00004
00002
00006
00003
00003
00007
00012
00004
00002
00005
00005
00005
00021
00019
00002
00006
00002
00005
00022
00006
00006
00004
00013
00003
00002
00005
00012
01376
01382
01384
01386
01391
01393
01397
01419
01438
01441
01450
01453
01457
01465
01480
01485
01491
01499
01510
01516
01S20
01535
01538
01541
01554
01558
01560
01566
01569
01572
01579
01S91
01595
01597
01602
01607
01612
01633
01652
01654
01660
01662
01667
01689
01695
01701
01705
01718
01721
01723
01728
-161-
-------
PAGE NOT
AVAILABLE
DIGITALLY
-------
TABLE E-4
SAMPLE OF MODE SUMMARY LISTING
TRUCK=3l CITY=N.Y.
LJ
I
TYPE TFUCK=J
SFRUL
FUFL
l.OC-IOLf:
4.0i-CtLI$F
5.02-ACCELfc<'AT!GN
t.Cl-/.C.C-GEAR
t.C:-ACC-GEAF.
IC.01-OUS1
1 .OC-lCLc
-CCUISE
1.00-IOLE
7.CC-UF.C-CYNAMIC
JC.01-COAS1
1.00- IDLE
<..03-CRtISE
i.Ol-ACCELFRATION
5.U2-ACCELFKAT1CN
i.C3-AtCtLEF.ATION
t.CL-ACC-GEAf
t.C3-ACC-C-f»!«
7.00-CEC-CYNAMIC
12
3
I
5
t
It
1
T
5
IB
2
I
1
7
J.
3
2
1
1
5
1
J3
2
t
3
7
£
1
9
1
1*
7
1
1
524. So
12.89
16.13
7.48
123.43
20.04
11.44
153.30
17.45
3.81
2.20
96.62
059.56
3.18
1.76
3.23
2.46
2.84
7.48
1.76
4.40
3.65
7.0'
3.81
3.52
2.64
4.40
2.99
5.23
3.05
3.C3
2.23
2.64
4.C?
10.56
4.40
3.r>J
7.0'
3.29
3.Sc-
. 1 . 76
6.16
00.08.45
CO.OC.14
00.00.16
OO.CO.C7
00.02.03
00.00.20
OO.OC.ll
00.02.33
00.00.17
00.00.04
CO. 00. 02
OO.C1.37
00 . 1 1 . 00
OC.OO.C3
00.00.02
CO. 00. 03
00.00.02
00.00.03
CO. 00. 07
OO.OO.C2
00.00.04
GO. 00. 04
00.00.07
CO. 00. 04
CO.OO.C4
00.00.03
'00.00.04
00.00.03
00.00.05
00.00.03
00.00.03
00.00.03
CO.CC.03
CO.OO.C4
CO. 00. 11
JO.OC.C4
CO. 00. 04
CC-.CO.C7
CO.OC.C3
CC.00.04
CO.OO.C2
OO.OC.C6
725.188.600
436.200
1S7.159
9.636
133,048.499
146.285
71.922
5C1.7SC.946
125.602
1.792
.378
28.035.390
344,288.909
6.552
.000
3.335
.151
3.497
65.322
.000
.000
' 2.675
.000
4.106
.000
.000
.000
2.154
.000
4.835
3.458
2.976
.000
4.589
3.531
.000
3.295
.000
3.583
3.458
.000
.000
00.08.45
00. CO. 14
00.00.16
00.00.07
00.02.03
00.00.2C
00.00.11
00.02.33
00.00.17
00.00.04
00.00.00
00.01.37
00.11.00
00.00.03
00.00.00
00.00.03
00. CO. CO
00.00.03
00.00.07
00.00.00
CO. CO. 00
CO. 00. 04
00.00.00
00.00.04
' 00.00.00
oo.oo.oc
00.00.00
CO. 00. 03
00.00.00
00.00.03
CO. 00. 03
00.00.03
00.00.00
OC.00.04
00.00.11
oo.oo.oc
CO. 00. 04
00.00.00
00.00.03
CO. 00. 04
00. 00. 00
00.00.00
TRAMSITIUN
PRPBABILITY
5.19
17.C4
6.67
1.48
20.00
9.63
?.22
21.48
6.69
2.22
1.48
3.70
ICfl.CO
38.30
2.13
6.38
10.64
38.30
4.26
2.78
2.7U
19.44
2.78
8.33
S.56
2.78
2.78
13.89
2.78
36.11
3.70
11.11
5.56
12.96
3.7C
1.85
16.67
1.85
35.19
3.70
1.85
1.85
-------
TABLE E-4 (Cont'd.)
SAMPLE OF MODE SUMMARY LISTING
TRUCK=1 FU'L
SCCVfc
5. LICEN3E=NV6621HS iNDUSTRV=
CAYS SAKPLEO=5 DAY=3
MOUE-
4.C2-CRLISE
4.05-CnUlSF
i.Ci-ACCELlrATIUN
5.03-ACCELbRATIGN
5.04-ACCELEFATION
J;05-«CCELERATIUN
t.02-ACC-GEA«
6.04-ACOGEAK
7.CO-CEC-CYNAMIC
1C.CZ-CUAS1
4.04-CKLISE
5.03-ACCELEPATION
5.04-ACCELERATION
5.05-ACCELERATION
6.03-ACC-GFAR
6.C4-ACC-GEA?
7.0C-CEC-CYNAM1C
o.OO-DEC-PC*ER
1C.OJ-COAST
1C.03-COAST
4.06-CPUISC .
4.05-CSLISE
4.C7-CRLISE
4.C8-CHV.ISE
5. OS-ACCELERATION
5.04-ACCELERATION
E.05-ACCELERATION
t.C3-ACC-GEAR
t.04-/CC-tFAR
7.0C-CEC-CYNAMIC
e.co-cec-pnv»cR
1C.O?-CUAST
4.07-CRU1SE
4.06-CKLIS?
*.Of-Cr'LlSt
C.02-ACC^LEF«T ION
t.0.4-ACr-GE/-« '
7-.CO-CFC-LYHAMIC
.. e.OO-CEC-PCV.S(< •
1C.C7.-CCUST
1
8
2
2
1
1
1
11
4
3
6
3
3
3
14
1
4
1
5
6
1
4
6
1
2
2
7
14
4
2
KFAN T1PC
StCCNDS HH.fP.SS
4.4C
5.7?
2.64
2.64
4.19
2.64
3.C8
2.64
3.52
4.40
4.48
6.82
5.16
3.72
2.35
4.84
7.33
6.16
6.45
4.C9
1.76
3.74
4.40
3.70
5.13
1.76
4.18
3.52
4.40
6.1o
2.35
S.6B
4.02
5.06
4.64
2.42
3.52
4.99
4.6t>
7.C4
3.52
4.27
3.B7
3.02
CC.OO.C4
00.00.06
00.00.03
00.00.03
OO.OC.C4
OO.OO.C3
00.00.03
00.00.03
00.00.04
00.00.04
00.00.04
00.00.07
00.00.06
CO. 00. 04
CO. 00. 02
CO. 00. 05
00.00.07
00.00.06
00.00.06
00.00.04
00.00.02
00.00.04
00.00.04
CO .00. 04
, 00.00.05
00.00.02
00.00.04
00.00.04
00.00.04
00.00.06
CO. 00. 02
00. 00. 1C
00.00.04
OO.OO.C5
CO. 00. 05
00.00.02
CO.OU.C4
OO.OO.Cb
00.00.05
OO.OO.C7
00.00.04
OO.OC.C4
CO.OC.C4
CO .00. 03.
VARIANCE
SECONDS
.000
.37U
.510
.000
1.702
1.531
.378
.000
.000
.000
17.693
20.800
1.531
3.619
.252
17.230
23.440
21.630
7.969
5.056
.000
3.270
.000
3.233
7.227
.000
2.244
1.317
.000
1.531
1.020
.000
5.783
20.800
18.911
.701
.000
ll.Ool
8.678
.000
1.531.
10.408
7.951
2.014
DEVIATION
Hh.MM.SS
CO.OC.OO
OC.OO.CO
00.00.00
00.00.00
CO. 00. 04
00.00.03
00.00.00
00.00.00
00.00.00
00.00.00
00.00.04
00.00.07
00.00.06
00.00.04
00.00.00
00.00.05
00.00.07
CO. 00. 06
00.00.06
00.00.04
00. CO. 00
OOiOO.04
00.00.00
CO. CO. 04
00.00.05
00.00.00
00.00.04
00.00.04
00.00.00
00.00.06
00.00.02
00.00.00
00.00.04
00.00.05
00.00.05
00. CO. 00
CO. CO. 00
OO.CC.C5
CO. 00. 05
00.00.00
00.00.04
CO. 00. 04
00.00.04 •
CO. 00. 03
TRANSITION
PkDBAblLITY
2.63
5.26
10.53
2.63
21.05
5.26
5.26
2.63
2.63
2.63
28.95
10.53
4.08
18.37
6.12
12.24
6.12
6.12
6.12
28.57
2.04
8.16
2.04
s.ec
11.76
1.96
7.84
15.69
1.96
3.92
5.88
1.96
27.45
7.84
3.92
10.81
2.7C
8.11
18.92
2.7C
5.41
ia.92
- " 1-3 i 51-
18.92
-------
TABLE E-4 (Cont'd.)
SAMPLE OF MODE SUMMARY LISTING
TRUCK=2J CI7Y=N.Y. TYPv Tf!UCK=l FtiFL TYPE=1AS
rNGIMC *r'OEL=GMCt5CCV6 SI RIAL
FKbOUE'iCY SECCNCS
•6IGhT=05 LlCFNSE=NY6621He INDUSTRY:
CAYi SAMPLED=5 OAY=3
Tiff
VARIANCE LEVIATIQN TRANSITION
SECONDS HH.MM.SS PROBABILITY
CTi
4.37-CSLliE
4.0S-CKU se
S.04-ACCELEHAT10N
1.04-ACC-GEA*
7.00-DEC-DYNAM1C
t.CC-CCC-POhEK
4.09-CRuise
4.1C-CRLISF
?.04-«CCELfRATION
S.C5-4CC6LEFATION
t.04-ACC-GEAR '
7.CG-CFC-CYNAMIC
e.OO-CEC-POhER
10.04-CG«ST
4.IO-CRLISE
4.C7-CRUl£f
4.CC-CPUSE
4.11-CFLMSE
5.0<.-«CCELfcRA[lGrJ
5.05-ACCELtRAT10N
t.04-«CC-GE#R
7.CC-UEC-CYKAM1C
B.OO-OEC-FOWCR
1C.C5-CU«ST
4.11-CRUISE
«.lo-Cr;USfc
C.OA-ACC-GEAR
7.00-CEC-CYNAMIC
5.01-ACCtLE"»«TION
JF
',.02-CP.LlSt
7.00-CFC-CYHAf 1C
5.02-ACChLEKATIC.M
1.00-IOLc
5
5
7
2
«.C6-CEL15F
7.0C-CEC-CYf.A«11C
3
1
3C
4.40
5.10
5.94
3.23
2.64
1.76
3.70
3.87
6.29
5.28
7.92
7.04
2.93
4.40
8.80
7.1-J
3.52
3.52
b.28
16.72
6.29
7.70
2.64
7.57
6.16
2.64
2.64
" 3.: ?
5.2b
8.21
15.84
6.10
7.74
8.80
3.96
0.75
7.04
11.44
6.20
00.00.04
CO.CO.C5
00.00.06
OO.OC.C3
00.00.03
CO.OC.C2
00.00.04
00.00.04
00.00.06
00.00.05
.00. CO. 08
00.00.07
OO.OO.C3
CO. 00. 04
00.00.09
OO.CO.C7
CO .00. 04
OO.OO.C4
00.00.05
00.00.17
00.00.06
OO.OO.C8
00.00.03
CO.OO.C8
OO.OO.C6
00.00.03
00.00.03
CO.OO.C3
00.00.05
OO.OC.C8
00.00.16
OO.OO.C6
CO.OC.C8
00.00.09
00.00.04
CC.OC.C7
GO.OO.C7
00.00.11
OO.OO.C6
.000
6.712
14.291
3.335
2.305
.000
5.941
6.404
7.057
6.160
31.439
.000
1.792
9.257
.000
23.932
9.257
1.531
1.531
.000
49.098
65.681
.000
11.814
S.779
.000
1.531
.611
9.257
7.198
.000
10.224
10.967
.000
3.456
15.705
3.080
.000
6.139
00.00.00
00.00.05
00. CO. 06
CO. 00. 03
00.00.03
00.00.00
00.00.04
00.00.04
00.00.06
00.00.05
00.00.08
OO.CO.OC
00.00.03
00.00.04
00.00.00
CO. CO. 07
00.00.04
00.00.04
00.00.05
00.00.00
00.00.06
00.00.08
00.00.00
00. CO. 08
00.00.06
00.00.00
00.00.03
00.00.00
00.00.05
00.00.08
00. CO. 00
00.00.06
00.00.08
co.co.oc
CC.G0.04
00.00.07
CO. 00. 07
OO.CO.OC
00. CO. 06
4.55
22.73
36.36
13.64
13.64
9.09
16.67
16.67
23.33
6.67
13.33
3.33
10.00
10.00
3.13.
ie.75
9.38
6.25
6.25
3.13
21.88
12.50
3.13
15.63
57.14
14.29
28.57
10.64
6.38
6.38
2.13
63.83
1C.(4
3.03
b.Ct
9.C9
9.09
3.C3
69.70
-------
- ' TABLE E-4 (Confd.)
SAMPLE OF MODE SUMMARY LISTING
a\
I
n.c-i*:E
HOOE
5.03-ACCeLERATK'N
4.03-CRLISE
4.04-CRLISE
4.05-CrtUlSF
4.06-OLlSc
4.07-CRLIS6
7.00-OEC-CYNftHlC
e.OC-UEC-PUfcER
IC.OI-COAST
iO.OZ-CUAST
5.0«f-ACCfcLER*T|ON
1.00-IDLE .
4.03-CRUSe
4.04-CkLISE
4.05-CRUSE
4.0t-C*USE
4.07-CRU1SE
4.06-CRIISE
TYP-" TF.uCK = l FUtL
SERIAL NUPBF.P=
«.EIGt-T=05 UCENSE=.NY6621HB INDUSTRY:
CAYS SAMPLKD=5 DAY=3
fEAN TIKfc
SECONCS HH.^t-.SS
«.11-CRLISE
7.CO-CEC-CYNAMIC
e.OC-CEC-PUfcER .
10.03-CHAST
10.0«i-COAST
IC.OS-C'.IAST
5.05-.&CCELERA110N
«.0«-CRL1SF
4.05-CRLISe
CC.C0.07
"OO.CC.C?
CO.CO.C5
00. UO. C?
VARIANCE
SFCONDS
4.085
1.792
11.002
3.335
111.751
24.894
86. 988
.000
.378
.000
.000
46.754
15.580
£9.373
18.113
26.108
7.561
240.356
111.751
33.227
7.45S
120.893
1.531
.000
.000
.000
.000
.000
.0.00
1.531
1.768
.000
.000
3.590
9.179
.000
E.426
.030
.000
4.106
46.754
.916
10.4i2
'i.bii
LEVIATION
HH.MN.SS
CO. 00. 05
00. CO. 04
00.00.06
CO. GO. 06
CO. 00. 14
00.00.08
00.00.13
OO.CO.OC
cc.cc.oo
00.00.00
00. 00. DC
00. GO. 07
00.00.10
GO. CO. 10
00.00.08
00.00.07
00.00.08
00.00.14
00.00.13
00.00.06
00.00.05
00. 00. 1C
00.00.11
00. CO. 00
00. CO. 00
• CO.CO.OG
00. CO. 00
CO. 00. 00
cc.oo.oc
00.00.04
CO. 00. 03
CO. CO. 00
GO. CO. 00
00.00.04
00.00.0=
00.00.00
OO.CC.05
oo.oo.cc
cc.co.oo
00. CO. 05
00. CO. 07
OO.CO.OC
CC.OO.C5
cc.co.c-
TAANSITION
PROBABILITY
7.S4
4.76
6.35
4.76
3.17
65.08
3.17
1.59
3.17
1.C2
1.02
2.04
. 6.12
5.10
9.18
6.12
5.10
6.12
2.G4
44. 9C
4.08
4.06
2.04
1.02
7.14
7.14
7.14
7.14
7.14
14.29
4?. 66
7.14
1.85
68.52
20.37
1.85
7.41
.<;-
.S3
2.t6
1.9C
P. 57
60. CC
4.76
-------
Table E-5
SAMPLE OF MODE FREQUENCY MATRIX
iCCVi
5 LlCFNSE=NY66ZlHB I
CAVS SAMPLF.D=5 OAY-3
i . CO
1ULE
'i.CC-IDLr C
2. 00- STOP 0
3.0C-HOT-SOAK ft
4.00-o-utse. - 1.9
S.flo-.c«i.K.,ic.-, .
• t.OO-*CC-GEA^ 't
a\
~~1
I 7.00-1 !:<>UYNAf It 6tJ
6.0n-CeC-PO«E?. C
S.CC-CPC-IM.07-CLSB
'.C.CO-C JAIT .U
?.OC
STCP
• C
0
C
0
C .
C
C
0
C
C
3.00
SCAK
7
0
0
0
. C
0
1
0
0
C
4.00
34
0
0
83
82
47
106
19
0
32
5.00 6. CO 7.00 8.00 9.00
ACC ACC-GEAK CEC-OVN OEC-PHfc DFC-THC
43
0
C
90
0
0
88
17
0
17
46 0
0 0
0 0
50 . 10«J
0 144
23? 82
5C 0
2 2
C 0
4 '16
0
0
0
21
6
6
b
0
0
3
0
0
0
0
0
0
0
0
0
0
10.00
CCAST
'»
0
0
31
16
13
17
• 3
0
2
-------
Table E-6
SAMPLE OF MEAN TIME IN MODE MATRIX
y.lTY.s'.'.Y. TYP1-- T*-^'.< = 1 HJ"=L TYf-c=«AS k»6lG»-T=05 L ICCNSf =NY6621HB INDUSTRY"
rL=G '.LtiCCVt TruifiL •\LMHt-/i= CAYS S«MPLED=5 CAY=2
Ml.'N Till' 1-4 -'n;r f/.T«IX
TIME I.\ HClF^.
1.00 2.00 3.00 4.00 5.00 £.00 7.00 8.00 9.00 10.00
IOLC STUP SC*K CRUISE ACC ACC-CEAR DEC-OVN DFC-PWfi OEC-THC COAST
1.00-1DUC CO.GO.CO OC.CC.CO 00.08.45 CO.00.14 00.01.24 00.01.42 OO.CC.CO CO.00.00 00.CO.00 00.01.37
2.00-ST-.P 00.00.00 CC.CC.OO CO.00.00 CO.OC.OO 00.00.00 00.00.CO GO.OC.OO 00.00.00 OO.CO.OC CO.00.00
2.30-HOT-SuAK 00.11. CO CG.CC.CO OO.OO.CC CG.OC.OO 00.00.00 00.00.00 OO.OC.OO 00.00.00 00.00.00 00.00.00
•H.OU-CFUISc OO.OO.C3 00.CO.CO 00.00.00 00.00.04 00.00. Oi) 00.00.05 OC.OO.C4 00.00.04 00.00.00 00.00.05
5.00-ACC^LC^AlKlN CO.OO.C4 00.00.00 00.00.00 OO.CC.03 00.00.00 CO.00.00 00.00.07 00.00.07 00.00.00 00.00.09
H-1
E*'- 00.00.07 OC.CO.oO 00.00.00 00.00.04 OO.OO.OG 00.00.05 CO.OC.C5 OO.OO.O8 00.00.00 00.00.06
oo • . .
7.CO-LL-C-CYNAP1C 00.00.07 CC.CC.CO OU.OO.G6 00.00.04 00.00.05 00.00.05 OO.OG.CC 00.00.06 OO.OC.OO 00.00.06
8.00-LFC-POV.tR CO.00.CO 00.00.00 OO.OC.CG OO.OC.05 00.00.06 00.00.05 00.00.12 00.00.00 00.00.00 00.00.09
:LSU OO.OO.CL CC.CC.GC uo.oo.co oo.oc.oo oo.oo.oc oo.GO.oo oo.oc.oo co.oo.oo oo.co.oc co.oo.oo
CO.OO.u'i CO.CO.CO 00.00.00 CO.00.03 00.00.03 CO.00.02 CO.OC.C5 CC.00.03 OO.CO.CO 00.00.07
-------
Appendix F
EQUIPMENT INSTALLATION PROCEDURES
The following is a detailed description of the
step-by-step installation procedures:
Signal Conditioner and Data Logger;
Install data acquisition cabinet in place at passenger
location in truck cab. (See Figure F--.) Adjust braces
and clamps to secure platform. Install battery and case,
and secure. Exact location is determined for each installa-
tion. Connect power cable to Signal Conditioning Box
terminals: (+) to No. 1, (-) to No. 2.
Vehicle Speed Transducer . .
a. Disconnect speedometer cable from speedometer.
b. Insert speedometer cable tee into line between
speedometer head and cable.
c. Connect speed transducer to tee using short
extender cable/ if necessary.
Manifold Pressure (Gas Engines Only)
a. Install pressure fitting on. intake manifold.
Parts and locations to be determined for each
installation.
b. Connect tubing to fitting, route through fire-
wall and connect to fitting on Signal Conditioning
Box.
c. Install jumper wires on Signal Conditioning Box.
-169-
-------
1. Signal conditioning module
2. Data Logger
3. Support Legs
4. Equipment Table
Figure F-l Schematic of Equipment Installation
-170-
-------
Rail Pressure (Cummins Diesel Engines)
a. Mount pressure transducer with extension hose at
convenient location in engine compartment. Re-
move flex hose from fuel pump outlet and install
tee fitting. Connect flex hose and transducer
hose to tee fittings. Start engine and check
for leaks.
b. Connect cables from transducer to data acquisition
system.
Rack Position (Detroit Diesel Engines)
a. Remove rocker cover from engine and install
bracket on rack shaft. Reinstall cover.
b. Mount position transducer on bracket in line with'
rack movement and connect to bracket.
c. Connect cables from transducer to data acquisition
system.
Engine RPM (Gas Engine only)
Connect black lead of Cable No. 3A from Data System
Terminals 3 and 4 to battery side of the ignition coil.'
Connect white lead to ground near coil.
Engine RPM - Magnetic Pickup (Diesel Engines only)
Install bracket in front of engine to mount magnetic
pickup adjacent to fan blade. Set pickup to approximately
1/8-inch clearance from blade. Connect Cable No. 3A from
Data System Terminals 3 and 4 to pickup. Set internal
switch for diesel engines.
-171-
-------
Engine RPM Transducer (Diesel Engines Only)
In vehicles with a mechanical tachometer, install
speed transducer in tach cable drive line as described
for vehicle speed above.
Throttle Valve Closure Switch
Install bracket switch on engine so that switch is
depressed when idle screw is in slow idle position.
Engine Temperature
Secure thermistor assembly to engine side of water
pump housing.
-172-
-------
APPENDIX G
METRODATA POWER SUPPLY FAILURE
ANALYSIS AND MODIFICATION
In the actual field operation of the Metrodata
Data Logger, the series transistor, Q103 in the power
supply, and the fuse often failed. See Metrodata Systems,
Inc. drawing C-1945, Figure G-l. On occasion and in con-
junction with these failures, Q104, Q105, and Q106 also
failed.
Analysis
Due to the random nature of these faults, their
simulation on the bench was not possible. Therefore,
a certain amount of logical speculation was required.
The speculations and solutions are below:
1. When only Q103 and the fuse are blown, it is
obvious that the 12 VDC RUN ONLY line is short-
circuited. .As no other damage is present, it
is logical to speculate that a circuit, under
certain conditions, is intended to short-circuit
this line temporarily without damaging itself.
Only one such circuit was found (SCR, CR104),
in the logic diagram, Metrodata Systems, Inc.
drawing 1005B-TB/PWR, Figure G-2. When there
is a heavy transient on the 12V RUN ONLY line,
this SCR may conduct and exhibit the symptoms
mentioned above.
2. Under normal running conditions, the bias vol-
tages of chopper transistors Q101, Ql"02, Q105,
-173-
-------
and Q106 do not exceed + 5 volts. But, under
transient conditions, these voltages exceed
+ 5 volts, short-circuiting these transistors.
The emitter-bias breakdown voltage of these
transistors is rated at + 5 volts. If Q106
or Q102 are short-circuited, they short-circuit
the 12V RUN ONLY line burning the fuse and
Q103 in the process. See Metrodata Systems,Inc.
drawing 2670 (Figure G-3).
3. In Logger S/N 185, the capacitor C102 was not
making good contact. Thus, it failed to reduce
transient. It is rated at + 10 VDC although
the working voltage is + 12 VDC.
Two possible transient sources have been found. The
chopper oscillators are throwing transient on the line
and the DC motor can cause transients under certain condi-
tions. A transient may also be induced onto the line
from an external radiated source.
Modifications
The modifications in the power supply circuit are
listed below:
1. The diodes were connected as shown in Figure G-4
at the base of QlOl, Q102, Q105 and Q106 to pro-
tect the base of those transistors from excessive
negative voltage. This change does not impede
the normal working of the oscillators.
2. Instead of the SCR anode being connected to the
+12 VDC RUN ONLY line-, it was connected to the
+12 VDC STANDBY and RUN line. In the event of
SCR firing, only the fuse will burn.
-174-
-------
3. A diode was connected across the motor to suppress
any negative transient.
4. A low-inductive 1«,F, 35V capacitor was connected
across the 48 KftF capacitor to suppress high-
frequency spikes. A washer was inserted in the
junction of 48 K«F capacitor and the printed
circuit board to make a good contact (see
diagram).
5. A capacitor of 0.1#F was connected across
R 113 (See motor control logic diagram). This
will reduce any voltage fluctuation in the motor-
drive voltage which in turn will reduce transients,
CONCLUSION:
These changes eliminated the power supply problems.
As these were speculative investigations, the modified
power supplies should be observed for a long period to en-
sure correctness of speculations.
-175-
-------
I
M
-O
•TJ
• V-»-
vO
C
H
n>
CO D) CO
*< 3 O
01 QJ C
rt H
0) D- O
3 f ra
w er> ••
- NJ
o =
O O
O
n>
O
0) M
rt D»
W ft
3 t-1 O
NJ O 3
n>
(D O
a o
n>
D>
3
a
H- 3
o
o
I
o
h~* 0> 3
3' 0>
QJ QJ H-
0* 3
>
(D
3
0>
N) 0> 3
own
O (D
3
0)
(D
O W 3
sr = c
- DI
M M
VO 3
~J fl> Hi
NJ ft O
O
DJ ft
0, y
ft
0)
O
f
to
o
O SVDC STANDei ( SUM
NOTE
I. tOB UIUU. NO. 081 "ID *B«t
MmgOAU Sniua. I
OlJtGRAM. SCHCM1TIC
ton*
-------
M
*J
-O
Figure G-2
Systems
nc
2700-0
dated 20 March
972
Source: "Operation and Maintenance Manual for the DL620A
and DLG20B Data Logger and -Accessories", Metrodata
jfiaa.
-it our -«
mauuTEo OIHOM.I
0 ra
•>', »UN din (•}
• iz:r»NOJ» (5}
IPW u
.; ojuiMifT}
-*»
•CD THE SET
g a
UMIN .01SCC
0«TtO OUT
uMree
NOTES'
« i.e.'S 1-1 •« u«:«.
1. >IOI .•..«£] is • miLBBlCK 1300.
I.«LI. nsnion «»c i/««. .
{plulSDMi.iSIDB %nr& ibl U1D ABOVE
'1^
-------
-J
00
I
en D en
*< 3 O
urce: "Opera
d DL620B Dat.
stems, Inc.
VI (T
3 H-
3 M 0
NJ O 3
~J vQ
O u3 0>
0 fD 3
1 h( O,
O
i_ to S.
:3 0)
D* DJ H-
0) 3
ft >.ft
n> n n>
O 3
fl> 0)
2 CO 3
0) CO O
O M
D- H- S
fD 0)
to CO 3
O = C
* « Q)
M
. . >^
r- ' tS>
VO fl> H>
•J ft O
»^ to n n
P- • O
iQ QJ ft
C 0) 3"
H ft tt>
(D CU
o
ti' fi
1 M^
V** N)
O
a*
[in 1 «n» | SK*&
••: >OC. E j o-PI
iHiG 4.'7MEC
vioi n.oi I '*""• . *"* ' ui04
•pf •* 24. 9K KK.AIOI JWI IIQS mo 2.N147
i*^ 1S ^1 JH^ (b/ (P):°!!1ii
!!feIijL/p^«M.* " t»«r^?i!"' 1 ../^v.
'"^€) J&"",,. "" * W Ao.07 °~^*
\ W HOT ^ •«* V^Ji^^ta
lfilt MOTOR SPCCD ^.r
|CI*70 |''A
rurij-m W5 fFSQ"" ""f
rl g] =• '
n 171
"ir
Mlt i Hit? . .
lt»| 75- ; ,-[-
Q
-------
POWER SUPPLY
MODIFICATION
/^ SHADED 0O*£S
IN 4005
:
t
•
i\
:'•>>
4/02
••«
RI09
-n ** ^
_I\ , /tec/**
TP
«v.
^
105
CHMGS AlfOtt OF SO* FROM PlNt TO PlH 1$
(FROM +ll**M ONLY To +t*KSIMMS?* *M)
E
g
(w
P- — V
c^/o/i
,
k H
tlCl/^f
TBiyn
•
s i'
iu<
:
APD CAPACITOR ACROSS
a——
— >C MOTOR |
—1 iiB]
ADP PlOPC (tN^OOS) ACROSS DC MOTOR
(MOTOR COMTROL BOARJ>)
Figure c-4
-------
Appendix H
SURVEY FIELD OPERATIONS
Durincr survey operations, the observer kept an Operation
Loq and during the 1975 field operations, also maintained
a Origin-Destination Log. .The Operation Log was primarily used
to monitor the operation of the instrumentation at intervals of
approximately each 1/2 hour. These data were then checked by a
technician to determine if the equipment appeared to be functioning
properly, and to assist in locating instrument failures should
this be required. The logged information was taken in accordance
with the instructions given in Table H-l and recorded on the
form shown in Figure H-l.
The form for the Origin-Destination Log is given in
Figure H-2 in accordance with the instructions given on the
reverse side of this log. Summary of 0-D data is given in Table
H-2.
-180-
-------
Table H-l
TRUCK DRIVING PATTERN AND US P. SURVEY
Phase II
Wilbur Smith and Associates
OPERATION LOG
EQUIPMENT CHECK-OUT
Perform a system checkout before departure. Refer to illustration on reverse
side for explanation of symbol and item Cumbers used in these instructions, on
NOT MOVE ANY SWITCHES OR CONTROLS OTHER THAN THOSE SPECIFIED BELOW.
1. Power - Turn POWER/OFF switch {item 1) to "POWER". Observe that indicator POWER
(item 2} is on. Press MODE TEST switch (item 3) and observe that lights behind
mode switch (item 4) come on. If no liqht comes on. press POWER ON switch (item
5). The mode switch permits the selection of mode of operation of the instru-
mentation. Select "REC" (record) on item 4 and the system displays (item 6)
should indicate the values of inputs to the channel selected on the CHANNEL SELECT
thumbswjtches (item 7).
2. Truck Number - Dial into, the space marked DAYS of the date-time input (item 6)
the truck number obtained from the log by operating the thumbswitches.
3. Time Set - Dial local time on 24-hour clock basis into HOURS and MINUTES thumb-
switches (item 8). At the minute "mark", press TIME. SET button (item 9) to
initiate clock. Truck number and time is then displayed in item 6 when channels
"Ol" and "02" are selected by thumbswitches (item 7).
Example 1:
The truck number (54) is entered into DAYS switches.
If local time is 7:53 a.m., then enter "07"' in HOURS switches and "54"
into MINUTES switches. When 7:54 occurs, press TIME SET button. In CHANNEL
SELECT switch, select channel "01". Read item 6 display, which should indi-
oatf "540" (truck number is 54). Select channel "02". Read item f- display,
which should indicate "754".
Example 2:
Enter truck number as in example 1.
Tf local time is 2:36 p.m., on a 24-hour clock it is 1436 (1200 + 0236).
Kni.-r "14" in HOURS switches and "37" in MINUTES switches. When 2:37 arrives
operate TIME SET tauttom. Select channel "01" in item 7 and read "541" on
item b display. Select channel "02" in item 7 and read "437" on item 6 dis-
pl ay.
•1. Road Type - Road type is indicated by the observer by having one of the three
buttons, I--REE. ART or LOG (item 10) operated at all times watching the facility
l.t used. To test these inputs, select channel "06" on item 7. Operate the
switches of ite-n 10 and observe display (item 6) as follows:
V\-W. display should read from "870" to "930". The SIGN liqht (item 11)
should be "on" indicating a negative value (-900 _«_ 30).
A_yr, display should be from "000" to "030". The SIGN li-ihc may be either
"on" or "off". (0+^30)
I.i.-. the display should read fro-n "H70" to "930". The SIGN should he
"off". (+900 *_ 30) .
-181-
-------
S. Traffic - The operation of one of the switches in item 12 indicates traffic con-
ditions that prevail. Observer is to maintain one of these switches in operation
at all time's truck is moving. To check the operation of this input, operate
LT (Free Plow), MED (Restricted), and HVY (Congested) in sequence and observe
display (item 6) as follows:
LT, the display should read "-900" (-900 4- 30) (see above example).
MED, the display should read "000" (0 +_ 30) (see above example).
HVY. the display should read "+900" (+900 ^ 30) (see above example).
6. Standby - If a survey is to be taken shortly, place the mode selection switch
(item 4).to the STBY position. Otherwise, turn the equipment off by operating
main power switch (item 1) to OFF.
Report any tests performed which do not agree with the above procedures to the WYLE
Instru-nentation Director, telephone No. or the WSA Survey Dirctor, telephone
Mo. at once.
I). SURVEY OPERATIONS
The observer has two types of actions to perform during a survey trip. One is
to enter into the data certain information as soon as a change occurs. The other is to
perform periodic data observations to -determine if the eauipment is operating satisfac-
torily. Both will require careful judgement on the part of the observer.'
Changing data is primarily the update of switches which indicate ROAD TYPE and
TRAFFIC CONDITIONS. These require the proper operation during the survey of input
switches (items 10 and 12). Definitions of these conditions are given in the NOTES at
the end of this instruction. Under certain conditions, percent load barametric alti-
tude and other data must be noted in the log (Form 120210-2 or 120210-3) manually and
at appropriate times.
1. Begin Operation - When the vehicle driver prepares to start the engine, make sure
that the equipment checkout has been performed, check to see
that the equipment-is on and operating. Check Item 4.to see
that it is in. the REC position.
The following routine observations shall be made and results either entered into
data sheets or instrumentation as follows:
INSTRUMENTATION
1. Road Type - Enter road type being used by proper operation of road type switches
(item 10). Definitions are given in notes below. . it is important
that these switches be changed as soon as road type is changed so
that time of change and other data is properly recorded and related.
2. Traffic - Enter traffic condition by proper operation of traffic condition
Condition switches (item 12). Definitions are given in notes below, 'it is
likewise important that these switches be changed as soon as the
condition changes so that time of change and other data is properIv
recorded and related.
MANUAL IOC
The following additional data is manually entered into a hand written loq (Form
1J0210-2 or Form 120210-3. as indicated).
-182-
-------
Whenever load is picked up or discharged, enter this in Form 120210-2 as follows:
1. Purpose - Indicate this entry as a variable entry by checking column A
under PURPOSE.
2. Time - Read and enter instrument time in TIME column by alternately
selecting channels "01" and "02" (item 7) and enter display
read-out (item 6) in TIMR column.
T. Visible Load - Estimate the percent visible load and enter it at the h indicate proper instrument operation.
1. rm-posp - Indicate this entry as a routine check by checking Column B
under PURPOSE.
'• T.UUE " S*l*ct channels "01" and "02" (item 7) in sequence. Enifr
time displayed (item 0) in appropriate column.
!. En jinf RPM - Select channel "OJ" (item 7) . Enter engine displayed (iten:
• <.•). Place check ( 1 in column if this reading agrees with rhe
engine operation.
4. 1'ivjine Power - Select channel "04" (item 7) . Enter engine power displayed
(item 6). Place check ( ) in column if this reading anrees
with engine operation (decreases when engine is accelerated).
Vi-' u-lp Speed - Select channel "05" (item '') . Enter traffic condition Jisplayed
(item 6). -place check ( ) in column if this agrees with
i-iit ton selected (i-. pm I?).
R.sati -j-ypc . .- Delect channel "06" (item 7). Enter rnad type, displayed
(nom '.) . Place c'..-ck ( ) in coluin it' this agrees with
I.iirton selected (in-ni 121.
-183-
-------
.-.<.» 'JC710?
TRUCK DRIVING PATTERN AND USE SURVEY
PHASE II
OPERATION SURVEY DATA LOG
; Mn
OljMMvpr
PURPOSF
A
e
i
'
;
-— •-
•
=
• TIMl
tChinnH
1
§
1 . , I 1
II 1 .
1 l"
. 1
, ,
1 1
1 1 ' : '
• 1 1
'l 1
. ,
i ;
1 1
1 1
t (
1 1
I ,
1 l
(
1 1 *
: ! . ,'
'
t
I 1
1 1
1 1
1 1
1 1
1 1
PER CENT
VISIBLE
LOAD
1
1 !
' "
1 1
1 1
1 1
1 1
( (
(
1 l
,
f !
'
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
ENGINE
RPM
ICh 3:
R O
i i :
i i
i i
i i
! (
1 1
1 1
1 1
1 1
, '(
1 1
1 1
1 1
1 1
1 1
1 1
ENGINE
POWER
R-O
1 i
i l
i 1
l I
l 1
i l
1 i
i l
i i
i r
( (
i i
i i
i i
i i
i i
i i
-
VEHICLE
SPEED '
ICh 51
R-O
1 1
1 1
1 1
1 1
1 1
1 1
1 l
1 1
1 1
I 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 i
1 1
ROAD
TYPE
ICh. 61
R-O
1 1
1 1
1 1
1 1
1 1
1 1
1 l
, r
'
1 1
1 1
l 1
1 1
1 1
1 1
1 1
1 1
-
TRAFFIC
ICh. 71
'R-O
1 1
1 1
1 1
1 1
1 1
1 i
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 i
1 1
VALVE
ICh B>
RO
1 1
i -1
1 1
1 1
1 1
• 1 1
. 1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 '
ENGINE
TEMP
ICh. 9)
RO
1 1
1 1
1 1
1 1
1 1
1 i
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 l
1 l
' ' •
COMMENTS
"
• • '"i
'
C
0>
35
CO
*».
-------
|i. valve
rendition - Select channel "07" (item 7). Enter traffic condition
displayed (item 6). Place check ( ) in column if this
agrees with button selected (item 10).
- Select channel "08" (item 7). Enter idle stop read out
(item 6). Reading should be about "+860" when engine
first started and at idle. After engine has warmed up
and when accelerating, reading should be about "000".
"*. Engine Temp.
10. Comments
- Select channel "09" (item 7). Enter engine temperature
(item 6). Reading should decrease as engine heats up.
- Enter comments concerning data in the column.
Report any improper readings or operation to the WYLE Instrumentation Director.
telephone No. or WSA Survey Director, telephone Ho.
at the earliest opportunity.
NOTKS: DEFINITIONS
1. ROAD TYPE
FREEWAY -
'Facilities with medians and multi-lane pavements with controlled
access typified by on- and off-ramps, grade separations and
' no traffic control signals.
ARTERIALS - Facilities with three or more lanes with traffic provided priority
flow- (few or no STOP signs) and capacity to carry high volume of
traffic.
LOCAL STREETS - Facilities general hot included above, -but typified by frequent
STOP signs at intersections, low capacity design, slow speed limits
and less than 3 lanes of traffic.
:>. TRAFFIC FLOW
FREK -
STABLE -
CONGESTED -
Traffic flow where speeds are controlled by driver choice and
desires, speed limits and physical roadway conditions. Speeds
are relatively unaffected by presence of other vehicles.
Traffic flow where speeds are restricted by vehicles ahead.and
alongside vehicle being scored; however, number of vehicles
permit satisfactory progress even though they somewhat restrict
free choice of lane and of speed.
Traffic flow characterized by low driver comfort, slow speeds
with frequent stops and at times moderate queues of vehicles
formed along route.
-185-
-------
I
M
00
Data Acquisition Controls
-------
TRUCK DRIVING PATTERN AND USE SURVEY - PHASE II DA'
ft
TIME
START
ORIGIN DESTINATION LOG
ORIGIN
DESCRIPTION
•
•
DESTINATION
DESCRIPTION
p
•
•
TRUCK 1
DAY
OBSERV
TIME
END
•
FE:
SO.
MO.
ER:
% VISIBLE
LOAD AT 'ORIGIN
.
r
t
"*
-187-
-------
Observer Instruct Jons
ORIGIN DESTINATION LOG
During a truck survey, this lop; is to be used by the ob-
server to enter the .general area .in which truck trips start
(ORHU.N) and end (DESTINATION) , the TIME or each event, and the
% VI3J.HLE LOAD AT ORIGIN.
• V-^r these purpose:;, a tru-.-k trip is defined as travel by
';he vehic."K? in performing any fuiu? t. J.on regardless of whether1 de-
livering ("oods, .-services, l;ran:jpu!-i. Ln»j personnel or whatever.
Tho ORIGIN and DESTINATION are the location from which the
1-egan and endc-d. Enter in this log on the same line the
litT'L-i-i designations of the nearest intersection to the points
where.1 the trip began and ended. For example, enter "6th Ave./'tSth
St." rather than "1212 - 6th Ave . " . DO NOT ENTER FIRM NAMES OR
ADDRESSES as the description of these data.
In most cases, the DESTINATION of one trip becomes the
ORIGIN of the next trip, and should be so entered in the log.
The TIME entries should be obtained from the digital
readout of the instrumentation so that the log can be referred
directly to the recorded data.
Enter in the column % VISIBLE LOAD AT ORIGIN an estimate
o!1 the truck load compared with its capacity. This is a rough
indication of the volume occupied by the load to the volume cap-
•,..•! iv •- f the truck, according to its body type. For example,
i :' ».::.- lru.jk cargo si-ace 1 :; ono-half full, enter '"}0!8" , or quartor-
r.il ! , "252".
-188-
-------
VISIBLE
LOAD
00
vo
too
on
45
S
100
75
5-»
51
45
30
25
15
10
10
100
95
90
85
80
75
60
50
40
ORIGIN
TRUCK 75 - DAY 1
138th St.
41st & 1st Ave.
5th Ave. & Baybridge Pkwv
86th St. & 5th Ave.
13th Ave. & 52nd St.
Nostrand & Skillman
Bedford & Herkimer
Sumner & Bainbridge
TRUCK 25 - DAY 2
132 St.
1st Ave. & 43rd St.
8th Ave. & 61st St.
New Utrecht & 61st St.
Ave. J. & E 15th St.
Coney Island & Kings Hwy
Ave. X & Hubbard St.
Brighton Ave. & Brighton St.
Shore Pkwy & E. 19th St.
Nostrand Ave. & Ave. Y.
Ave. N. & E. 49th St.
TRUCK 25 - DAY 3
132nd St.
Foster Ave.
Foster Ave.
E. 98th St.
Foster Ave.
Ave. I & E.
Ave. N. & E
& E. 101st St.
& E. 99th St.
& Lavonia
35th St.
49th St.'
Ocean Ave. & Ave. Y
Coney Island Ave. & Ave. Y.
Neptune Ave. & W. 5th St.
4th Ave. & Senator St.
TIME • -DESTINATION
LEFT
ORIGIN
1845 41st & 1st Ave.
1005 5th Ave. & Baybridge Pkwy
1026 86th & 5th Ave.
1046 13th Ave. & 52nd St.
1138 Nostrand & Skillman
1256 Bedford & Herkimer '
1405 Sumner & Bainbridge
1450 138th St.
0815 1st Ave. & 43rd St.
1050 8th Ave. & 61st St.
1146 New Utrecht & 61st St.
1217 Ave. J. & E 15th St.
1759 Coney Island & Kings Hwy
1355 Ave. X & Hubbard St.
1423 Brighton Ave. & Brighton St.
1451 Shore Pkwy & E. 19th St.
1525 Nostrand Ave. & Ave. Y.
1544 Ave. N & E. 49th St.
N.R. 132 St.
0905 Foster Ave. & E. 101st St.
1043 Foster Ave. & E. 99th $t.
1106 E. 98th St. & Lavonia
1129 Foster Ave.
1208 Ave. I & E. 35th St.
1226 Ave. N. & E. 49th St.
1308 Ocean Ave. & Ave. Y
1355 Coney Island Ave. & Ave. Y
1442 Neptune Ave. & W. 5th St.
1549 4th Ave. & Senator St.
1705 132nd St.
ARRIVAL
TIME
0950
1017
1031
1102
1207
1300
1417
1655
0920
1105
1154
1239
1312
1406
1431
1500
1534
1558
1830
1018
1047
1116
1137
1222
1323
1408
1450
1611
1819
-------
vo
o
I
% VISIBLE
LOAD
100
0
0
100
0
0
100
0
100
0
100
0
100
0
100
0
100
0
100
0
100
0
100
0
100
0
100
0
ORIGIN
TRUCK 26 - DAY 3
57 Seabring St.
40th & 2nd
Front & Dock
Walcott & Ferris
40th & 2nd
57 Seabring
Walcott & Ferris
40th & 2nd
TRUCK 26 - DAY 4
57 Seabring St.
40th & 2nd
Walcott & Ferris
40th & 2nd
Walcott & Ferris
40th & 2nd
TRUCK 26 - DAY 5
57 Seabring
40th & 2nd
Walcott & Ferris
40th & 2nd
Walcott & Ferris
40th & 2nd
TRUCK 26 - DAY 6
57 Seabring
40th & 2nd
Walcott & Ferris
40th & 2nd
TRUCK 26 - DAY 7
57 Seabring St.
40th & 2nd
Walcott & Ferris
40th & 2nd
TIME DESTINATION
LEFT
ORIGIN
1955 40th & 2nd
2119 Front & Dock
2212 Walcott & Ferris
2304 40th & 2nd
0148 57 Seabring
0236 Walcott A Ferris
0310 40th & 2nd
0515 57 Seabring
1945 40th & 2nd
2145 Walcott & Ferris
2236 40th & 2nd
0157 Walcott & Ferris
0332 40th & 2nd
0535 57 Seabring
1940 40th & 2nd
2153 Walcott & Ferris
2328 40th & 2nd
0204 Walcott & Ferris
0318 40th & 2nd
0500 57 Seabring
1935 40th & 2nd
2154 Walcott & Ferris
2326 40th & 2nd
0500 57 Seabring
1937 40th & 2nd
2105 Walcott & Ferris
2245 40th & 2nd
0125 Walcott & Ferris
ARRIVAL
TIME
2035
2149
2234
2358
0220
0247
0408
0613
2050
2243
0035
0237
0457
0633
2019
2228
0018
0259
0416
0554
2021
2233
0011
0553
2108
2150
2353
0207
-------
100
0
Walcott & Ferris
40th & 2nd
0313 40th & 2nd
0515 57 Seabring
0409
0545
% VISIBLE ORIGIN TIME
LOAD LEFT
ORIGIN
TRUCK ?7 - DAY 4
DESTINATION
ARRIVAL
TIME
I
M
vo
M
I
0
90
30
0
90
30
0
100
55
0
0
90
64
0
Ql
0
0
10">
100
0
100
"90
90
•>5
0
Craven & Randall Ave. 0626
Locust Ave. & 138th St. 0650
East Ave. & 4th 0749
97th Ave. & West Ave. 0834
Locust Ave. & 138th St. O937
Thieriot & Guerlain 1021
161st & Prospect St. 1100
Locust & 138th St. 1135
197th & Grand Concourse 1222
Field Place 1300
TRUCK 27 - DAY 5
Craven & Randall Ave. 0605
Locust Ave. & 138th St. 0624
214th St. & Broadway 0705
Scarsdale 0804
Anderson & Columbus 0854
190th St. & Amsterdam 0948
188th & St. Nicholas 1014
Anderson & Columbus 1057
182nd & Aaueduct 1150
Phelan & Tremont 1214
96th & Columbus 1300
TRUCK 29 - DAY 5
10th Ave. W. 25th St. 0821
48th Ave. 30th St. 1118
10th Ave. W. 25th St. 1413
E. 4th Broadway 1443
E. Houston St., Crosby St. 1457
Crosby St. 1520
E. Houston, Orchard St. 1613
Locust Ave. & 139th St.
East Ave. & 4th
97th & West Ave.
Locust Ave. & 138th St.
Thieriot & Guerlain
161st St. & Prospect
Locust & 138th St.
197th & Grand Concourse
Field Place
Craven & Randall
Locust Ave. & 138th St,
214th & Broadway
Scarsdale, N.Y.
Anderson & Columbus
190th & Amsterdam
188th & St. Nicholas
Anderson & Columbus
182nd & Aoueduct
Phelan & Tremont
96th & Columbus
Craven & Randall
48th Ave. 30 St.
10th Ave. & W. 25th St.
E. 4th Broadway
E. Houston St., Crosby St.
Crosby St.
E. Houston St., Orchard St.
10th Ave. & W. 25th St.
0635
0715
0809
0920
0937
1039
1117
1155
1229
1327
0611
0640
0704
0842
0922
0951
1044
1140
1155
1230
1320
0906
1159
1435
1448
1513
1559
-------
VO
ro
% VISIBLE ORIGIN TIME
LOAD LEFT
ORIGIN
TRUCK 29 - DAY 6
10T 10th Ave. W. 25th St. 0810
0 7th Ave, E. 37th st. 0837
100 10 Ave. W. 25th St. 1215
0 Frost St. & Adams St. 1330
100 10th Ave. W. 25th St. 1508
80 6th Ave. & W. 25th St. 1528
0 6th Ave. & W. 25th St. 1623
TRUCK 30 - DAY 1
0 Varwick St. 0825
100 82nd St., 42nd Ave. 1109
TRUCK 30 - DAY 2
0 Varwick Ave. 0745
100 Bridge Plaza 23St. 1029
0 Thompson & Court 1421
TRUCK 30 - DAY 3
100 Varwick Ave. 0820
0 Court 1022
100 23rd St., Bridge Plaza 1458
TRUCK 31 - DAY 1
?4 Frost St. 0828
74 • Olive St. & Maspeth St. 0846
50 Flushing Ave. & Thames St. 0943
45 Thames St. & Knick St. 1006
80 Woosten & Grand St. 1044
45 Kent Ave. & N. 5th St. 1246
45 Grafton St. & Morgon Ave. 1328
50 Flushing Ave. & Thames St. 1344
90 Weirfield St. Wyckoff Ave. 1440
50 Morgan Ave., STAGG 1521
DESTINATION
7th Ave. N. 37th St.
10 Ave. W. 25th St.
Frost St. & Adams St.
10th Ave. W. 25th St.
6th Ave. W. 25th St.
6th St. 6th Ave.
10th Ave. & W. 25th St.
82nd St., 42nd Ave.
Varwick St.
Bridge Plaza 23St.
Thompson & Court St.
Varwick Ave.
Court
23'St., Bridge Plaza
Varwick Ave.
Olive St. & Maspeth St.
Flushing Ave. & Thames St.
Thames St. & Knick Ave.
Woosten. & Grand St.
Kent Ave. and N. 5th St.
Grafton St.
Flushing Ave. & Thames St.
Weirfield St. Wyckoff Ave.
Morgan Ave., STAGG
Flushing Ave., Thames St.
ARRIVAL
TIME
0820
0847
1250
1410
1513
1623
0900
1134
0807
1034
1447
0848
1035
1540
0836
0858
0953
1031
1200
1304
1332
1352
1450
1531
-------
VISIBLE
LOAD
ORIGIN
TRUCK 31 - DAY 2
TIME
LEFT
ORIGIN
DESTINATION
ARRIVAL
TIME
10
85
85
89
015
030
015
185
085
Flushing Ave. & Thome St. 0855
Seacliff Ave. 1?06
Graftan St. & Knickerboker Ave.1328
Flushing Ave. & Thames St. 1^54
Wythe Ave. N. 5th St. 1516
TRUCK 31 - DAY 3
Flushing Ave. & Thames St. 0820
College P Blvd., 28th Ave. 1010
Flushing Ave. & Thames St. 1038
129th St. 15th Ave. 1320
Graftan St. & Morgan Ave. 1416
Kent Ave. N. 5th St. 0512
Sea Cliff Ave.
Graftan St. & Knickerboker St,
Flushing Ave. & Thames St.
Wythe & N. 5th St.
Flushing Ave. & Thomas St.
College P Blvd., 28th Ave.
Flushing Ave. & Thames St.
129th St. 15th Ave.
Morgan Ave. & Graftan St.
Kent Ave. N. 5th St.
Flushing Ave. & Thames St.
0937
1301
1329
1400
1538
0847
1040
1205
1350
1437
1529
vo
Ul
007
707
917
"115
T75
015
010
110
090
100
0
0
100
TRUCK 31 - DAY 4
Flushing Ave. & Thames St. 0932
Sea Cliff Ave. & Hazel St. 1121
Kent Ave. N. 5th St. 1250
Olive St. & Maspeth Ave. 1306
TRUCK 31 - DAY 5
Flushing Ave. & Thames St. 0815
St. Nicholas Ave. W. 167th St. 0909
Coolidge Ave. & Overpeck Ave. 1033
Kent Ave. N. 5th St. 1220
Flushing Ave. & Thames St. 1236
Graftan St. & Kinderback St. 1311
14th Ave. 129th St. • 1455
TRUCK 32 - DAY 1
Sebring St. & Van Brunt 1940
Ferris & Walcott 2051
40th St. & 2nd Ave. ?20J.
Sebring St. & Van Brunt 2259
Ferris & Walcott 2326
Sea Cliff Ave. & Hazel St.
Kent Ave. N. 5th St.
Olive St. & Maspeth Ave.
Flushing Ave. & Thames St.
St. Nicholas Ave. W. 167th St.
Coolidge Ave. & Overpeck
Kent Ave. N. 5th St.
Flushing Ave. & Thames Ave.
Graftan"St. & Kinderback Ave.
14th Ave. 129th St.
Flushing Ave. & Thame St.
Ferris & Walcott
40th St.& 2nd Ave.
Sebring St. & Van Brunt
Ferris & Walcott
40th St. & 2nd Ave.
1016
1205
1300
1315
0859
0925
1127
1235
1246
1337
1530
1944
2145
2207
2310
0123
-------
VO
*>.
% VISIBLE
LOAD
0
100
100
1
100
0
100
0
0
100
0
0
100
70
30
30
15
0
ORIGIN
TRUCK 32 - DAY 1
40th St. & 2nd Ave.
Ferris & Walcott
TRUCK 32 - DAY 4
Sebring & Van Brunt
Ferris & Walcott
40th St. & 2nd Ave.
Ferris & Walcott
40th St. & 2nd Ave.
Ferris & Walcott
40th St. & 2nd Ave.
TRUCK 32 - DAY 4
Sebring & Van Brunt
Walcott & Ferris
40th St . & 2nd Ave.
Walcott & Ferris
40th St, & 2nd Ave.
Walcott & Ferris
TRUCK 33 - DAY 1
Albermarle & Nostrand
Grandview & Harmon
TRUCK 34 - DAY 1
30th St. & llth Ave.
Henderson & Irst St.
30th St. & llth Ave.
36th St. & 7th Ave.
33rd St. & 9th Ave.
TIME DESTINATION
LEFT
ORIGIN
0140 Ferris & Walcott
0245 Sebring St. & Van Brunt
2006 Ferris & Walcott
2102 40th St. & 2nd Ave
2243 Ferris & Walcott
0121 40th St. & 2nd. Ave.
0245 Ferris & Walcott
0400 40th St. & 2nd Ave.
0546 Sebring & Van Brunt
2006 Walcott & Ferris
2047 40th St. & 2nd Ave.
2255 Walcott & Ferris
0120 40th St. & 2nd Ave.
0305 Walcott & Ferris
0407 Sebring & Van Brunt
0750 Grandview & Harmon
1440 Albermarle & Nostrand
1110 Henderson & Irst St.
1202 3oth St. & llth Ave.
1314 36th St. & 7th Ave.
1346 33rd St. & 9th Ave.
1418 30th St. & llth Ave.
ARRIVAL
TIME
0226
0248
2044
2216
0100
0222
0336
0515
0639
2022
2227
0056
0240
0352
0410
0841
1527
1140
1233
1339
1401
1436
-------
VISIBLE
LOAD
vo
O
100
0
0
0
100
0
no
->
100
0
0
0
100
75
65
60
50
45
35
ORIGIN
TRUCK 34 - DAY 2
30th St. & llth Ave.
Global Terminal
21st St. 12th Ave.
30th St. & llth Ave.
Global Terminal
TRUCK 34 - DAY 3
25th St. s. 12th Ave.
21st St. & 12 Ave.
TRUCK 34 - DAY 4
30th St.& 12th Ave.
Van Brunt & Sebring
Washington & Warren
Van Brunt & Sebring
Washington & Warren
TRUCK 34 - DAY 5
30th St. & 12th Ave.
Port Elirabeth
32nd St. & llth Ave.
30th St. & 12th Ave.
Sebring & Van Brunt
TRUCK 35 - DAY 1
75 Frost St.
S. Fulton, 5 St.
N. Ave., Lincoln Ave.
E. Tremont - Maps
E. Burnside - Ryer Ave.
E. lOOst - Clinton
Grand - Burnside
Jerome - Macombs
TIME
LEFT
ORIGIN
0721
0901
1035
1147
1405
1150
1455
0647
0922
1035
1337
1515
0620
0850
1220
1232
1355
0825
1011
1101
1145
1226
1231
1259
1318
DESTINATION
Global Terminal
21st -St. & 12th St.
30th St., llth Ave.
Global Terminal
30th St.. llth Ave.
21st St.
25th St.
& 12 St.
& 12th Ave.
Van Brunt & Sebring
Washington & Warren
Van Brunt & Sebring
Washington & Warren
30th St. & 12th Ave.
Port Elizabeth
32nd St. & 11 Ave.
30th St. & 12th Ave.
Sebring & Van Brunt
30th St. & 12th Ave.
S. Fulton- 5th St.
N. Ave., Lincoln Ave.
E. Tremont A.ve., Maps
E. Burnside - Ryer Ave.
E. 180st - Clinton Ave.
Grand - Burnside
Jerome - Macombs
Morris Ave. 165th St.
ARRIVAL
TIME
0748
0955
1100
1305
1450
1157
1509
0730
1000
1120
1415
1548
0718
1050
1227
1315
1445
1005
1047
1137
1202
1225
1242
1308
1226
-------
vo
% VISIBLE ORIGIN
LOAD
TRUCK 35 - DAY 1 Cont.
15 Morris Ave. 165th St.
10 125th St. 8 Ave.
5 , 57th St. 9th AVE.
0 E. 12th, 4th Ave.
TRUCK 35 - DAY 2
100 76th St. & Jamicn
80 161 St., Forest
75 Post Ave., Dykman
70 St. Nicholas, 162nd St.
60 St. Nicholas, 161 St.
50 157th Broadway
40 150 Broadway
30 138th Broadway
20 131 Amsterdam
10 W. 100 Amsterdam
0 W. 68th Broadway
TRUCK 35 - DAY 3
100 76th St., Jamica
90 Fulton, Albany
50 Rodchester, Sterling
25 St. Johns, Utica
0 St. John, Troy
10 St. John, Brooklyn
0 3rd Ave. 23rd St.
10 36th St. 3rd Ave.
100 34th St. 3rd Ave.
TIME DESTINATION
LEFT
ORIGIN
1336 125th St., 8th Ave.
1406 57th St. «»th AVE.
1441 E. 12th 4th AVE.
1507 76th St. & Jamica Ave.
0815 161 Forest Ave.
0945 Post Ave., Dykman
1030 St. Nicholas, 162nd St,
1057 St. Nicholas, 161 St.
1113 157th Broadway
1126 150 Broadway
1155 138 Broadway
1219 131 Amsterdam
1234 W. 100 Amsterdam
1257 W. 68th Broadway
1321 76th St. Jamica
0815 Fulton, Albany
0923 Rodchester, Sterling
0959 St. Johns, Utica
1036 St. John, Trov
1050 St. John, Brooklyn
1106 3rd Ave. 23rd St.
1233 36th Ave. 3rd Ave.
1249 34th St. 3rd Ave.
1428 76th St. Jamica
ARRIVAL
TIME
1354
1422
1500
1547
0935
1011
1045
1100
1118
1128
1158
1223
1246
1308
1446
0906
0933
1003
1047
1058
1151
1240
1252
1508
50
45
40
35
30
20
TRUCK 35 - DAY 4
76th St. Jamica
3rd Ave., 104 St.
Braodway, W. 144 St.
Shakespeare, Jacobs
St. Annes, E. 139
Westchester, West Fargis
0800 3rd Ave., 104 St.
0940 Broadway, W. 144
1013 Shakespeare, Jacobs
1049 St, Annes, E. 139
1123 Westchester Ave., West Farm
1144 Fulton, Landon
0928
1000
1037
1117
1135
1207
-------
% VISIBLE
LOAD
10
100
100
SO
•>5
0
0
100
100
50
50
25
0
100
0
100
45
07
100
0
100
0
ORIGIN
TRUCK 35 - DAY 4 (cont._>
Fulton, Landon
Hunts Point
TRUCK 36 - DAY 1
Paidge St. McGuiness
217th St., 58th Ave.
219th St., 51st Ave.
47th Ave., Springfield Blvd.
235th St. & 40th Ave.
TRUCK 36 - DAY 2
Paidge, Mdg. Blvd.
Doug Laston
43rd St., ?2 Ave.
98th St., 63rd St.
TRUCK 36 - DAY 3
Paidge, McGuinness
97th & 63rd St.
53rd Ave., 156th St.
59th St. Grand Ave.
64th St., Madison St.
TRUCK 37 - DAY 1
Maspeth Ave. & Vandervoert St.
Warren & Columbia St.
Maspeth & Vandervoort
Troutman St. & Central Ave.
Metropolitan St. & 61st St.
Maspeth Ave. & Vandervoort
E. 4th St. Bowery
Maspeth & Vandervoort
Boston Rd. & Pelhon Pkwy
TIME DESTINATION
LEFT
ORIGIN
1216 Hunts Point
1425 76th Jamica
0815 217th St. 58th Ave.
1306 219th St., 51st Ave.
1430 47th Ave., Springfield
1517 235th St., 40th Ave.
1755 Paidge & McGuinness
0630 Doug Laston
1020 43rd St., ?2 Ave.
1110 98th St., 63rd St.
1714 Paidge & Mcquinness
0645 97th & 63rd St,
1058 53rd Ave., 156th St.
1259 59th St. Grand Ave.
1341 64th St., Madison St.
1418 Paidge & McGuinness
0645 Warren & Columbia St.
0815 Maspeth Ave. & Vanderwoort St.
0857 Troutman St. & Centra). Ave.
0945 Metropolitan St. & 61rst St.
1051 Maspeth Ave. & Vandervoort St.
1209 E, 4th St. & Bowery St.
1350 Maspeth & Vandervoort
1446 Boston Rd. & Pelhon Pkwy
1639 Maspeth & Vandervoort
ARRIVAL
TIME
1249
1515
0848
1412
1432
1751
1830
0705
1045
1139
1736
0739
1111
1323
1400
1800
0725
0832
0908
1013
1100
1240
1413
1530
1745
-------
V0
GO
I
% VISIBLE ORIGIN TIME
LOAD LEFT
ORIGIN
TRUCK 37 - DAY 2
100 Maspeth Ave. & Vandvoort St. 0648
0 Kissena Blvd. & 65th Ave. 0825
100 Maspeth Ave. & Vandervoort 0926
100 35th St.. 45th Ave. 0958
17 Roosevelt Ave. & 88th St. 1100
2 49th St. & 50th Ave. 1136
100 Maspeth Ave. & Vandervoort 1240
7 Columbia St. & Warren St. 1347
100 Maspeth St. & Vandervoort 1430
0 Conduit Blvd., 153rd 1541
TRUCK 38 - DAY 1
4-0 233rd & Dyre Ave. 0243
36 196th & Lexington . 0314
33 86th & 2nd Ave. 0348
45 84th & 2nd Ave. 0436
44 76th & 2nd Ave. 0442
44 81rst & East End 0447
44 79th & 2nd Ave. 0453
43 80th & Lexington 0459
42 81rst & Lexington 0506
42 82nd & 2nd Ave. 0512
40 79th & 2nd Ave. 0529
40 72nd & 2nd Ave. 0536
39 66th & 2nd Ave. 0543
39 56th & Lexington . . 0548
38 58th & 1st Ave. 0556
38 68th & 1st Ave. 0616
80th & 1st Ave. 0628
81st & 1st Ave. 0636
61st & 1st Ave. 0651
73rd & 1st Ave. 0703
74th & 1st Ave. 0715
79th & 1st Ave. 0720
76th & 2nd Ave. 0726
75th & 2nd Ave. 0733
87th & 2nd Ave. 71st
DESTINATION
Kissena Blvd. & 65 Ave.
Maspeth Ave. & Vandervoort St.
35th St., 45th Ave.
Roosevelt Ave. & 88th St.
49th St. & 50th Ave.
Maspeth Ave. & Vandervoort St.
Columbia St. & Warren St.
Maspeth Ave. & Vandervoort
Conduit Blvd., 153rd St.
Maspeth Ave. & Vandervoort
196th & Lexington
86th & 2nd Ave.
84th & 2nd Ave.
76th & 2nd AVE
Slrst & East End
79th & 2nd Ave.
80th & Lexington
Slrst & Lexington
82nd & 2nd Ave
79th & 2nd Ave.
72nd & 2nd Ave.
66th & 2nd Ave.
56th & Lexington
58th & 1st Ave.
68th & 1st Ave.
80th & 1st Ave.
81st & 1st Ave.
82nd & 1st Ave.
1st Ave.
1st Ave.
73rd &
74th &
79th & 1st Ave.
72 & 2nd Ave.
75th & 2nd Ave.
89th & 2nd Ave.
71st & 2nd
ARRIVAL
TIME
0720
0855
0944
1023
1118
1146
1258
1402
1502
1410
0307
0321
0351
0440
0446
0451
0454
0501
0507
0522
0532
0539
0546
0556
0557
0618
0626
0642
0658
0703
0716
0722
0726
0821
0827
-------
VISIBLE
LOAD
ORIGIN
TRUCK 38 - DAY 1 (Cont.)
VD
vo
I
*OPERATED
88th
82nd
83rd
84th
& 1st Ave.
& 1st Ave.
& 1st St.
& Lexington
IN SAME AREA
TRUCK 38 - DAY 2
20
18
18
15
65
63
65
65
62
61
61
60
60
58
58
50
45
45
35
32
35
30
30
26
8
7
233rd
96th
83rd
84th
84th
78th
83rd
83rd
73rd
67th
65th
58th
64th
68th
79th
82nd
81st
67th
69th
74th
88th
84th
86th
82nd
73rd
82nd
81st
& Dyre
& Lexington
& 1st Ave.
& 2nd Ave.
& 2nd Ave.
3rd Ave.
& 3rd Ave.
& 2nd Ave.
& 2nd Ave.
& 2nd Ave.
& 2nd Ave.
& 1st Ave.
& 1st Ave.
& 1st Ave.
& 1st Ave.
& 3rd Ave.
& 2nd Ave.
& 1st Ave.
& 1st Ave.
& 1st "ve.
& Lexington
& Lexington
& 1st Ave.
& 1st Ave.
& 1st Ave.
& 1st Ave.
and 1st St.
TIME
LEFT
ORIGIN
1049
1134
1338
1200
0235
0310
0318
0387
0428
0448
0455
0501
0510
0517
0521
0528
0533
0542
0552
0600
0620
0639
0648
0800
0824
0900
0923
0956
1301
1313
1212
DESTINATION
85th & 1st St.
87th & 1st St.
83rd & 1st St.
84th & Lexington
233rd & Dyre
96th & Lexington
83rd & 1st Ave.
84th & 2nd Ave.
84th & 2nd Ave.
78th 3rd Ave.
83rd & 3rd Ave.
83rd & 2nd Ave.
73rd & 2nd Ave.
69th & 2nd Ave.
65th & 2nd Ave.
58th & 1st Ave.
64th & 1st Ave.
68th & 1st Ave.
79th & 1st. Ave.
82nd & 3rd Ave.
81st & 2nd Ave.
67th & 1st Ave.
69th & 1st Ave.
74th & 1st Ave.
88th & Lexington
86th & Lexington
1st Ave.
1st Ave.
86th &
82nd &
2nd St.
82nd &
1st Ave.
233 & Dyre
ARRIVAL
TIME
1045
1115
1134
1142
1225
0258
0317
0320
0400
0431
0453
0458
0503
0512
0519
0523
0529
0533
0544
0554
0600
0628
0640
0649
0809
0824
0906
0932
0932
1306
1306
-------
O
o
% VISIBLE
LOAD
10
9
5
50
60
504
48
47
47
46
46
46
45
44
43
42
42
41
40
39
39
38
37
36
36
35
35
34
34
33
32
ORIGIN
TRUCK 38 - DAY 4
233rd & Dyre
96th & Lexington
84th & 2nd
84th & 2nd
83rd & 2nd
80th & 3rd
78th & 2nd
79th & 3rd
82nd & 3rd
72nd & 2nd
66th & 3rd
58th & 1st
64th & 1st
64th & 1st
80th & 1st
81st & 2nd
75th & 2nd
76th & 3rd
65th & 2nd
62nd & 2nd
69th & 1st
73rd & 1st
74th & 1st
79th & 1st
76th & 2nd
84th & 1st
85th & York
86th & 1st
85th & 2nd
86th & 3rd
88th & Lexington
86th & Lexington
82nd & 2nd
TRUCK 38 - DAY 5
TIME
LEFT
ORIGIN
DESTINATION
0312
0339
0535
0444
0450
0455
0512
0517
0525
0532
0536
0542
0545
0554
0604
0615
0626
0633
0638
0650
0651
0707
0711
0719
0775
0741
0745
0749
0758
0759
0815
0830
0841
96th & Lexington
84th & 2nd
84th & 2nd
83rd & 2nd
80th & 3rd
78th & 2nd
79th & 3rd
82nd & 3rd
72nd & 2nd
66th & 3rd
58th & 1st
64th & 1st
64th & 1st
80th & 1st
81st & 2nd
75th & 2nd
76th & 3rd
65th & 2nd
62nd & 2nd
69th & 1st
73rd & 1st
74th & 1st
79th & 1st
76th & 2nd
84th & 1st
85th & York
86th & 1st
85th & 2nd
86th & 3rd
88th & Lexington
86th & Lexington
82nd & 2nd
56th & Lexington
ARRIVAL
TIME
0332
0343
0356
0445
0454
0501
0514
0519
0528
0535
0539
0544,
0550
0557
0606
0618
0628
0636
0640
0654
0657
0709
0716
0721
0780
0742
0747
0751
0755
0801
0815
0836
0854
20
233rd & Dyre
0250
96th & Lexington
0313
-------
I
NJ
O
% VISIBLE
LOAD
29
55
55
54
53
53
52
52
51
50
50
49
44
44
43
42
42
40
39
38
37
36
35
35
34
33
32
25
25
23
21
20
0
100
0
100
ORIGIN
TRUCK 38 - DAY 5
TIME
LEFT
ORIGIN
DESTINATION
96th
84th
83rd
84th
76th
78th
79th
81st
83rd
81st
73rd
58th
74th
79th
81st
76th
65th
69th
73rd
78th
79th
74th
86th
88th
86th
86th
78th
71st
66th
73rd
82nd
East
&
&
Lexington
2nd
& York
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
East
2nd
2nd
3rd
3rd
2nd
3rd
2nd
1st
1st
2nd
1st
2nd
2nd
1st
1st
1st
1st
2nd
3rd
End
Lexington
Lexington
2nd
2nd
2nd
1st
1st
1st
End &
TRUCK 39 -
25th
25th
21st
25th
St
St
St
St
. &
. &
. &
. &
83rd
DAY 2
llth
llth
llth
llth
Ave
Ave
Ave
Ave
0321
0442
0450
0453
0458
0513
0518
0528
0534
0057
0601
0609
0616
0628
0635
0639
0645
0707
0726
0734
0738
0753
0803
0824
0839
0846
0901
0925
0942
0950
1015
1028
84th
83rd
85th
76th
78th
79th
81st
83rd
81st
73rd
58th
69th
79th
81st
76th
65th
69th
73rd
75th
79th
74th
86th
88th
86th
86th
78th
71st
66th
73rd
82nd
East
84th
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
2nd
York
East End
2nd
2nd
3rd
3rd
3rd
3rd
2nd
1st
1st
2nd
1st
2nd
2nd
1st
1st
1st
1st
2nd
3rd
Lexington
Lexington
2nd
2nd
2nd
1st
1st
1st
End & 83rd
&
York
0851 25th St. & llth Ave.
1042 21st St. & llth Ave.
1156 25th St. & llth Ave.
1524 21st St. & llth Ave.
ARRIVAL
TIME
0325
0448
0452
0457
0502
0516
0520
0531
0535
0543
0605
0611
0622
0630
0657
0641
0667
0708
0730
0734
0742
0758
0810
0825
0865
0848
0904
0927
0942
0982
1017
1031
0854
1052
1201
1539
-------
I
INJ
O
ro
i
% VISIBLE ORIGIN TIME
LOAD LEFT
ORIGIN
TRUCK 39 - DAY 4
100 25th St. & llth Ave. 1302
0 21st St. & lltlv Ave. 1518
TRUCK 39 - DAY 5
100 25th St. & llth Ave. 1045
0 21st St. & llth Ave. 1217
100 25th St. & llth Ave. 1518
0 ' 21st St. & llth Ave. 1720
TRUCK 39 - DAY 6
100 25th St. & llth Ave. 1044
0 21st St. & llth Ave. 1230
TRUCK 42- - DAY 1
100 130th St. & Northern 1307
0 2oth Ave. & 21st St. 1410
TRUCK 42 - DAY 3
100 130th St. & Northern 0849
10 W. 31st St. & 9th Ave. 1109
5 E. 158th St. Courtlandt Ave. 1220
0 8th Ave. E. 160th St. 1245
100 20th Ave. 35th St. 1550
TRUCK 42 - DAY 4
100 . 130th St. & Northern . 0724
0 Along Side 3rd East 1032
100 31st & 20th Ave. 1345
0 1st Toll &.N.J. Turnpike 1541
TRUCK 43 - DAY 1
40 40th & 2nd 0828
0 22nd. & 3rd 0840
DESTINATION
21st St.
25th St.
& llth Ave.
& llth Ave.
21st St. & llth Ave.
25th St. & llth Ave.
21st St. & llth Ave.
25th St. & llth Ave.
21st St.
25th St.
& llth Ave.
& llth Ave.
20th Ave. & 21st St.
130th St. & Northern
W. 31st St. & 9th Ave.
E. 158th St. Courtlandt Ave.
8th Ave. E. 160th St.
20th Ave. 35th St.
130th & Northern
Along Side 3rd East
31st St. & 20th Ave.
1st Toll & N.J. Turnpike
130th St. & Northern
22nd & 3rd
Pier 1
ARRIVAL
TIME
1314
1530
1051
1224
1532
1732
1054
1238
1320
1425
1015
1200
1235
1250
1613
1115
1516
1630
0831
0858
-------
I
to
o
OJ
% VISIBLE
LOAD
85
40
50
0
100
0
0
100
0
100
0
0
25
0
100
100
100
80
80
80
80
80
80
80
80
80
80
ORIGIN
TRUCK 43 - DAY 1
Pier 1
40th & 3rd
43rd & 1st
Pier 1
Port Newark
Pier 1
Union Bo1tic
Port Newark
Pier 1
TRUCK 43 - DAY 2
40th St. & 4th Ave.
Pier 5-
Pier 1
TRUCK 43 - DAY 3
40th St. & 3rd Ave.
Pier 2
40th St. & 3rd Ave.
Calcutta & Corbin
Woodbridge
TRUCK 44 - DAY 1
97th & Lexington
91st & 1st Ave.
100th & 2nd Ave.
116th & 3rd Ave.
96th & Lexington
TRUCK 44 - DAY 2
97th & Lexington
91st & 3rd Ave.
117th & 3rd Ave.
97th & 2nd Ave.
92nd & 2nd Ave..
TIME
LEFT
ORIGIN
1028
1534
1600
1617
1736
1850
1929
2024
2135
1600
1632
1652
1030
1110
1413
1543
1710
0841
0924
0945
1342
1358
0848
0905
1045
1102
1140
DESTINATION
40th & 3rd
43rd & 1st
Pier 1
Port Newark
Pier 1
Union Boltic
Port Newark
Pier 1
43rd St. & 1st
Pier 5
Pier 1
40th St.
& 4th Ave.
Pier 2
40th St. & 3rd Ave.
Calcutta & Corbin
Woodbridge
40th St. & 3rd Ave.
91st & 1st Ave.
100th & 2nd Ave.
116th & 3rd Ave.
96th & 'Lexington
102nd & 5th Ave.
91st & 3rd Ave.
117th & 3rd Ave.
97th & 2nd Ave.
92nd & 2nd Ave.
97th & Lexington
ARRIVAL
TIME
1040
1540
1618
1716
1843
0856
2010
2126
2150
1620
1643
1718
1051
1125
1505
1656
1815
0855
0927
0950
1349
1400
0852
0912
1049
1110
1150
-------
ts>
O
% VISIBLE
LOAD
80
80
80
80
80
80
80
80
80
80
80
0
0
0
0
100
0
0
100
100
0
ORIGIN
TRUCK 44 - day 2
97th & Lexington
106th & Lexington
91st & 2nd Ave.
121st & 2nd Ave.
TRUCK 44 - DAY 6
102nd & 8th
97th & Lexington Ave.
96th St. & 3rd Ave.
91st & Mad. A e.
97th & 3rd Ave.
105th St. & 1st Ave.
1st Ave. & 112th Ave.
96th & 3rd Ave.
TRUCK 44 - DAY 7
96th & 3rd Ave.
97th & Lexington
TRUCK 44 - Day 8
102nd & 5th Ave.
97th & Lexington
96th & 3rd Ave.
TRUCK 45 - DAY 1
Sebring & Commerce
Ferris & Walcott
Pacific & 6th St.
Seabring & Van Brunt
Ferris & Walcott
Seabring & Van Brunt
Pacific & 6th St.
TRUCK 45 - DAY 3
Seabring & Van Brunt
TIME
LEFT
ORIGIN
1302
1333
1349
1557
0752
0843
1138
1157
1507
1536
1608
1620
1622
1628
0744
0822
1317
0803
0840
0950
1020
1115
1244
1402
0812
DESTINATION
106th & Lexington
91st & 2nd Ave. '
121st & 2nd Ave.
102nd & Park
97th & Lexington Ave.
96th St. & 3rd Ave.
91st Mad. Ave.
97th & 3rd Ave.
105th St. & 1st Ave.
1st Ave. & 112th Ave.
96th & 3rd Ave.
102nd & 5th Ave.
97th St. & Lexington
102nd & 5th St.
97th & Lexington
96th & 3rd Ave.
102nd & 5th Ave.
Ferris & Walcott
Pacific & 6th St.
Seabring & Van Brunt
Ferris & Walcott
Seabring & Van Brunt
Pacific & 6th St.
Seabring & Van Brunt
Walcott & Ferris
ARRIVAL
TIME
1306
1337
1356
1608
0758
0853
1142
1201
1504
1539
1617
1632
1624
1632
0749
0824
1727
0808
0924
1005
1053
1122
1303
1419
0818
-------
% VISIBLE ORIGIN
LOAD
TRUCK 45 - DAY 3 (Cont.)
100 Walcott & Ferris
0 Pacific & 6th St.
100 Walcott & Ferris
0 Pacific & 6th St.
0 Seabring & Van Brunt
100 Walcott & Ferris
0 Pacific & 6th St.
TRUCK 45 - DAY 5
0 Seabring & Van Brunt
100 Walcott & Ferris
0 Pacific & 6th St.
TRUCK 48 - DAY 5
100 Bronx River Pkwy
100 Webster & 201st St.
100
100 Webster & 201st St.
TRUCK 48 - DAY 6
100 Bronx River Pkwy
100 Fordam Rd.
100 Webster & 201st St.
100 Bronx Park E. & Mace
100 Webster & 201st St.
TRUCK 48 - DAY 7
100 Bronx River Pkwy
100 Webster & 201st St.
100 Fordam Rd.
100 Webster & 201st St.
TRUCK 49 - DAY 1
TIME
LEFT
ORIGIN
0830
0938
1052
1147
1328
1405
1459
0806
0837
0950
0830
1149
1225
1546
0845
0930
1148
1237
1554
0841
1152
1241
1608
DESTINATION
Pacific & 6th St.
Walcott & Ferris
Pacific & .6th St.
Seabring & Van Brunt
Walcott & Ferris
Pacific & 6th St.
Seabring & Van Brunt
Walcott & Ferris
Pacific & 6th St.
Seabring & Van Brunt
Webster & 201st St.
Webster & 201st St.
Bronx River Pkwy
Fordam Rd.
Webster & 201st St.
Bronx Park .E. & Mace
Webster & 201st St.
Bronx River Pkwy
Webster & 201st St.
Fordam Rd.
Webster & 201st St.
Bronx River Pkwy
ARRIVAL
TIME
0912
1040
1137
1204
1335
1445
1533
0810
0923
1005
0842
1235
1639
0850
0933
1201
1243
1638
0841
1157
1249
1636
Frost & Adams
0925
43 Van Brunt
0939
-------
I
10
o
(Tv
I
% VISIBLE ORIGIN TIME
LOAD LEFT
ORIGIN
TRUCK 49 - DAY 1
0 43rd Van Brunt St. 1028
2 1st Ave. & 39th St. 1052
TRUCK 49 - DAY 3
2 43rd Van Brunt 0902
0 42nd St. & 1st Ave. 0938
TRUCK 49 - DAY 4
7 43rd & Van Brunt St. 1259
0 1st Ave. & 58th St. 1330
TRUCK '.-9 - DAY 5
0 Other Yard 1152
0 43rd Van Brunt St. 1160
100 Other Yard 1324
0 1st Ave. 1347
TRUCK 50 - DAY 1
0 N. Henry St. 0655
100 College Point & Cross Way 0725
92 Main,St. & 61st St. 0800
94 65th'Ave. & 165th St. 0818
89 168th St. & 67th Ave. 0827
81 65th Ave. 181st St. 0838
79 64th Ave. & 184th St. 0848
72 182nd & 69th Ave. 0858
68 69th Ave. & 181st St. 0905
65 69th Ave. & 181st St. 0912
59 69th Ave. & 180th St. 0920
56 182nd St. & 73rd Ave. 0929
50 186th St. & 75th Ave. 0937
47 193rd St. & 75th Ave. 0947
42 196th St. & 75th Ave. 0950
39 Union TPK & 184th St. 1005
DESTINATION
1st Ave. & 39th St.
43rd Van Brunt St.
42nd St. & 1st Ave.
43rd V.'n Brunt
1st Ave. & 58th St.
43rd & Van Brunt
43rd V^n Brunt St.
Other Yard
1st Ave. & 58th St.
Other Yard
College Point & Cross Way
Main St. & 61st St.
65th Ave. & 165th St.
168th St. & 67th Ave.
65th *ve. & 181st St.
64th Ave. & 184th St.
182nd & 69th Ave.
69th Ave. & 181st St.
69th Ave. & 181st St.
69th Ave. & 180th St.
182nd St. & 73rd Ave.
186th St. & 75th Ave.
193rd St. & 75th Ave.
196th St. & 75th Ave.
Union TPK & 184th St.
181st St. & Union TPK
ARRIVAL
TIME
^1048
1108
0930
1001
1320
1343
1158
1212
1340
1406
0711
0752
0812
0819
0832
0840
0850
0859
0906
0914
0923
0931
0941
0949
1000
1007
-------
I
10
% VISIBLE
LOAD
36
31
29
19
2
25
20
16
13
9
4
0
75
69
64
58
51.
45
39
32
23
18
5
0
100
95
91
84
80
76
72
ORIGIN
TRUCK 50 - DAY 1 (Cont.)
181st & Union TPKE
179th & Union TPKE
179th & 75th Ave.
174th St. & 76th Ave.
Birch St. & Willow
Hoffman Rd. & Plaza Ave.
171st & 71st Ave.
77th Ave.
141st St. & 71st Rd.
142nd St. & 71st Rd.
70th Rd. & Main St.
TRUCK SO - DAY 2
North Henry St.
Vernon & 43rd St.
83rd & 34th St.
79th St. & 32nd Ave.
& 32nd Ave.
& 30th Ave.
. & 84th St.
& 32nd
&
78th St,
82nd St.
32nd Ave,
86th St.
88th St.
89th St.
92nd St.
96th St.
30th Ave.
& 30th Ave.
& 31st Ave.
& 34th Ave.
College Point Crossway
TRUCK 50__,- Day 3
N. Henry St.
College Point Crossway
65th Ave. & 157th St.
78th Rd. & 160th St.
165th St. & Goethals Ave.
85th Ave. & 165th St.
161st & Hillside Ave.
89th & 184th St.
TIME
LEFT
ORIGIN
1013
1022
1031
1052
1208
1224
1303
1322
1333
1342
1357
0700
0724
0753
0803
0827
0840
0850
0912
0927
0937
0949
0958
1015
0700
0741
0813
0828
0847
0900
0916
0930
DESTINATION
179th & Union TPKE
179th & 75th Ave.
174th St. & 76th Ave.
Birch St. & Willow
Hoffman Rd. & Plaza Ave.
171st & 71st Ave.
77th Ave.
141st St. & 71st Rd.
142nd St. & 71st Rd.
70th Rd. & Main St.
N. Henry St.
Vernon & 43rd St.
83rd & 34th St.
79th St. & 32nd Ave.
78th St. & 32nd Ave.
82nd St. & 30th Ave.
32nd Ave. & 84 St.
86th St. & 32nd Ave.
88th St. & 30th Ave.
89th St. & 30th Ave.
. 92n3.St. & 31st Ave.
96th St. & 34th Ave.
College Point Crossway
128 & College Point Crossway
65th Ave. & 157th St.
78th Rd & 160th St.
165th St. & Goethals
85th Ave. & 165th St.
161st & Hillside Ave.
89th & 184th St.
186th St. & Jamaica
ARRIVAL
TIME
1016
1024
1036
1152
1219
1257
1314
1326
1335
1348
1426
0714
0747
0758
0818
0832
0843
0851
0921
0929
0941
0952"
1008
0732
0806
0820
0833
0851
0909
0924
0932
-------
O
00
I
% VISIBLE
LOAD
68
61
57
50
47
42
37
31
28
25
19
12
q
5
0
50
47
41
36
29
25
21
14
10
10
100
96
91
81
83
79
74
74
71
69
69
ORIGIN
TRUCK 50 - DAY 3
186th St, & Jamaica Ave.
91st Ave. & 189th St.
198th St. & 120th Ave.
223rd St.
233rd St.
232nd St.
137th Ave.
Newhall Ave.
145th Ave.
134th Ave.
& 118th Ave.
& 120th Ave.
& 120th Ave.
& 256th St.
& 241st St.
& Francis Blvd.
& 244th St.
Hillside Ave., Springfield
218 PI. & 90th Ave.
90th Ave. & 222
25th Ave. & 169th Ave.
25 Drive & 157th St.
TRUCK 50 - DAY 4
N. Henry St.
58th St. & 148th St.
61st St. & 148th PI.
Fairchild Ave. & Fresh Meadow
201st St. & 58th Ave.
& 58th Ave.
& 201st St.
& 56th Ave.
& 53rd Ave.
198th St.
58th Ave.
213th St.
211th St.
201st St.
& 35th Ave.
College Point Blvd.
33rd Ave. & 150th PI.
146th St. & 17th Ave.
148th St. & 12th Ave.
10th Ave. & 147th St.
7th Ave. & 147th St.
9th Ave. & Leggett Pi.
14th Ave. & 166th St.
16th Ave. & 163rd st.
166th St. & 23rd Ave.
154th St. & 20th Rd.
TIME DESTINATION ARRIVAL
LEFT TIME
ORIGIN
0938 91st Ave. & 189th St. 0941
0951 198th St. & 120th Ave. 1003
1010 223rd St. & 118th Ave. 1016
1022 233rd St. & 120th Ave. 1025
1030 232nd St. & 120th Ave. 1032
1038 137th Ave. & 256th St. 1044
1051 Newhall Ave. & 241st St. 1057
1114 145th Ave. & Francis Blvd. 1118
1124 134th Ave. & 244th St. 1130
1145 Hillside Ave., Springfield 1206
1245 218 PL & 90th Ave. 1248
1258 90th Ave. & 222 1301
1308 25th Ave. & 169th Ave. 1320
1330 25 Drive & 157th St. 1335
1345 Norman & Newel 1411
0714 58th St. & 148th St. 0733
0740 61st St. & 148th'Pi. . 0745
0758 Fairchild Ave. & Fresh Meadow Lane 0809
0819 201st St. & 58th Ave. 0827
0835 198th St. & 58th Ave. 0838
0853 58 Ave. & 201st St. 0858
0904 213 St. & 56th Ave. 0906
0911 211th St. & 53rd Ave. 0913
0920 201st St. & 35th Ave. 0927
0937 College Point Blvd. 0949
1000 33rd Ave. & 150th Pi. 1019
1024 146th St. & 17 Ave. 1030
1036 148th St. & 12th Ave. 1038
1043 10th Ave. & 147th St. 1045
1051 7th Ave. & 147th St. 1052
1102 9th Ave. Leggett Pi. 1106
1113 14th Ave. & 166th St. 1118
1124 16th Ave. & 163rd St. 1128
1135 166th St. & 23rd Ave. 1138
1144 154th St. & 20th Rd. 1200
1237 193rd St. & 37th Ave. 1245
-------
VISIBLE
LOAD
68
68
67
66
1
(O
o
1
32
29
25
21
18
14
11
8
5
0
100
97
92
89
85
81
78
60
52
45
37
25
25
18
15
15
20
16
16
ORIGIN
TRUCK 50 - DAY 4 (Cont.)
193rd St. & 37th Ave.
162nd St. & 43rd Ave.
157th St. & Laburnum Ave.
Kalmia Ave. & Parsons
TRUCK 50 - DAY 5
N. Henry St.
124th St. & 23rd Ave.
123rd St. & 21st Ave.
121st St. & 9th Rd.
115th St. & 14th Rd,
115th St. & 17th Rd.
149th & 9th Ave.
147th St. & 10th .
Whitestone Expressway & 7th
150th St. & 14th Ave.
178th & College Point Crossway
149th St. & 17th Rd.
159th & Cross Island Pkwy
13th Ave. & 160th St.
175th St. & 73rd Ave.
172nd St & 69th Ave.
76th Ave. & 175th St.
75th Ave & Utopia Pkwy
75th Ave. & Utopia Pkwy
76th Ave. & Utopia
Utopia & Union Tpke
177th St. & Union Tpke
193rd St. & Union Tpke
75th Ave. & 196th St.
39th Ave. & 55th St.
50th Ave. & 48th St.
TRUCK 50 - DAY 6
N. Henry St.
Nassau Ave. & Hausman St.
N. Henry St. & Norman
TIME
LEFT
ORIGIN
1252
1307
1326
1335
0715
0744
0755
0807
0829
0837
0845
0854
0901
0914
0950
1005
1020
1027
1052
1101
1118
1140
1151
1208
1215
1225
1331
1348
1420
1448
0709
0721
0731
DESTINATION
162nd St. & 43rd Ave.
157th St. & Laburnum Ave.
Kalmia Ave. & Parsons
N. Henry St.
124th St. & 23rd Ave.
123rd St. & 21st Ave.
121st St. & 9th Rd.
115th St. & 14th Rd.
115th St. & 17th Rd.
149th & 9th Ave.
147th St. & 10th
Whitestone Expressway & 7th Ave.
150th St. & 14th Ave.
178th St. & College Point Crossway
149th St. & 17th Rd.
159th St. & Cross Island Pkwy
13th Ave. & 160th St.
175th St. & 73rd Ave.
172nd St. & 69th Ave.
76th Ave. & 175th St.
75th Ave. & Utopia Pkwy
75th Ave. & Utopia Pkwy
76th Ave. & Utopia
Utopia & Union Tpke
177th St. & Union Tpke
& Union Tpke
& 196th"St.
& 55th St.
193rd St.
75th Ave.
39th Ave.
50th Ave.
& 48th St.
N. Henry St.
Nassau Ave. & Hausman Ave.
N. Henry St. & Norman
Engert Ave. & Eckford St.
ARRIVAL
TIME
1257
1320
1328
1411
0738
0746
0800
0811
0831
0840
0846
0855
0904
0922
0959
1011
1022
1047
1054
1105
1120
1141
1153
1209
1217
1228
1333
1412
1427
1456
0712
0725
0739
-------
VISIBLE
LOAD
10
100
92
87
B2
79
75
71
68
64
60
57
54
50
44
40
37
37
37
32
29
27
23
20
16
16
100
100
100
100
100
ORIGIN
TRUCK 50 - DAY 6
Engert & Eckerd St.
Norman & Hausman St.
Flushing Ave. & Woodward
Tonsor Ave. & Himrod St.
Sleeker St. & Butler Ave.
Catalpa & 64th St.
Central Ave. & 67th Pi.
88th Ave. & 77th St.
76th St. & Park Lane
85th St. & 85th Rd.
94th St. & 85th Rd.
98th St. & Park Lane S.
86th Rd. & 102nd St.
88th Ave. & 104th St.
95th Ave. & 115th St.
116th St. & Liberty Ave.
107th & Lefferts Blvd.
103rd Ave. & 104th St. '
94th St. & Liberty Ave.
93rd St. & Sutter Ave.
86th St. & 106th Ave.
133rd Ave. & 82nd St.
91st & 103rd Ave.
81st St. & Liberty Ave.
Myrtle Ave. & 78th St.
Woodhaven & Cooper Ave.
TRUCK 51 - DAY 1
132nd & Broadway St.
Blake Ave. & Stone Ave.
TRUCK 51 - DAY 2
136"th St. & Broadway
129th & Amsterdam
116th & Pleasant Ave.
130th St. & Broadway
129th & Amsterdam
TIME DESTINATION
LEFT
ORIGIN
0745 Norman & Hausman St,
0806 Flushing Ave. & Woodward
0829 Tonsor Ave. & Himrod St.
0839 Bleeker St. & Butler Ave.
0849 Catalpa & 64th St.
0909 Central Ave. & 67th Pi.
0917 88th Ave. & 77th St.
0938 76th St. & Park Lane
0948 85th St. & 85th Rd.
0956 94th St. & 85th Rd.
1009 98th St. & Park Lane S.
1033 86th Rd. & 102nd St.
1104 88th Ave. & 104th St.
1115 95th Ave. & 115th St.
1126 116th St. & Liberty Ave.
1137 107th & Lefferts Blvd.
1144 103 Ave. & 104th Ave.
1155 94th St. & Liberty Ave.
1221 93th St. & Sutter Ave.
1229 86th St. & 106th Ave.
1239 133rd Ave. & 82nd St.
1250 91st & 103rd Ave.
1258 81st St. & Liberty Ave.
1308 Myrtle Ave. & 78th St.
1328 Woodhaven Blvd. & Cooper Ave.
1338 N. Henry St.
0825 Blake Ave. & Stone Ave.
1445 132nd & Broadway
0816 129th & Amsterdam
1024 116th & pleasant Ave.
1112 130th St. & Broadway
1306 129th & Amsterdam -
1506 130th St. & Broadway
ARRIVAL
TIME
0749
0816
0834
0841
0857
0912
0931
0945
0950
0959
1028
1057
1107
1120
1129
1139
1150
1200
1223
1236
1243
1254
1301
1322
1331
1356
0947
1540
0820
1043
1132
1310
1512
-------
VISIBLE
LOAD
I
to
100
100
100
100
100
100
100
75
50
100
0
100
0
25
0
100
75
e
50
0
50
30
30
75
20
0
ORIGIN TIME
LEFT
ORIGIN
TRUCK 51 - DAY 3
130th St. & Broadway 0835
124th St. & Park Ave. 0910
East Gunhill Rd. & Barnes 1410
TRUCK 51 - DAY 4
130th & Broadway 0825
Pelham Pkwy & Lurting 1311
129th & Amsterdam 1510
TRUCK 52 - DAY 1
Canal & Hudson 0917
Newark NJ 0934
Lodi NJ 1100
NJ 1208
Lodi NJ 1337
Canal & Hudson 1505
W. 35th & 8th Ave. 1644
TRUCK 52 - DAY 2
Canal & Hudson 0800
Varick, 7th *ve. 0851
Canal & Hudson 0952
Archer Ave., 144th Place 1131
Far Rockaway 1309
Canal & Hudson 1453
Hackensack 1629
TRUCK 52 - DAY 3
6th Ave. Spring 0830
Howard 0900
Canal & Hudson 0956
6th Ave. & 19th St. 1040
25th St. & 7th Ave. 1059
24th St. & 5th Ave. 1118
18th St. & Park 1144
Lafayette & Bond 1226
DESTINATION
124th St. & Park St.
East Gunhill Rd. & Barnes
130th St. & Broadway
Pelham Pkwy & Lurting
129th & Amsterdam
130th & Broadway
NJ & Newark
Lodi NJ
NJ
Lodi NJ
Canal & Hudson
W. 35th & 8th Ave.
Canal & Hudson
Varick, 7th Ave.
Canal & Hudson
Archer Ave. , 144th Place
Far Rockaway
Canal & Hudson
Hackensack
Canal & Hudson
Howard
Canal & Hudson
6th Ave. & 19th St.
25th St. & 7th Ave.
24th St. & 5th Ave.
18th St. & Park
Lafayette & Bond
Varick & Hudson
ARRIVAL
TIME
0843
0932
1446
0853
1341
1515
0932
1017
1143
1308
1450
1525
1700
0807
0901
1103
1219
1430
1612
1720
0835
0933
1015
1050
1107
1123
1156
1237
-------
VISIBLE
LOAD
100
25
0
0
50
0
100
0
100
25
100
0
100
10
-------
I
to
% VISIBLE ORIGIN TIME
LOAD LEFT
ORIGIN
TRUCK 54 - DAY 2 (Cont.)
0 Secaucus, NJ 1040
0 E. 45th St. & U.N. Plaza 1141
100 Duane St. & w. Broadway 1335
TRUCK 54 - DAY 3
100 37th St. & llth Ave. 0658
0 Carney, NJ 0800
100 37th St. & llth Ave. 1014
0 Secaucus, NJ 1155
0 72nd St. & 3rd Ave. 1258
TRUCK 55 - DAY 2
100 N.Y. City Terminal Market 0627
95 86th St. & 7th Ave. 0712
90 Shore & Bay Pkwy 0735
86 Burgher Ave. 0800
80 Forest Ave. 0830
75 Forest Ave. 0842
75 0902
0 Rahway Ave. & Pearl St. 1012
TRUCK 55 - DAY 3
100 N.Y. City Terminal Market 0618
90 33rd St. & Astoria Blvd. 0727
80 34th Ave. & 46th St. 0748
85 Queens Blvd. & 50th St. 0811
75 Queens Blvd. & Woodhaven Ave. 0830
70 Woodhaven Blvd. & 23rd St. 0852
60 Flushing Ave. & 61st St. 0914
54 Northern Blvd. & 146th St. 0944
50 Northern Blvd. & 195th St. 1002
40 Northern Blvd. 1025
33 Hillside Ave. & Hollis Ct. 1129
DESTINATION
E. 45th St. & U.N. Plaza
Duane St. & W. Broadway
37th St. & llth Ave.
Carney, NJ
37th St. & llth Ave.
Secaucus, NJ
72nd St. & 3rd Ave.
37th St. & llth Ave.
86th St. & 7th Ave.
Shore Pkwy & Bay Pkwy
Burgher Ave.
Forest Ave.
Forest Ave.
N.Y. City Terminal Market
33rd St. & Astoria Blvd.
34th Ave. & 46th St.
Queens Blvd. & 50th St.
nueens Blvd. & Woodhaven
Woodhaven Blvd. & 23rd St.
Flushing Ave. & 61st St.
Northern Blvd. & 146th St.
Northern Blvd. & 195th St.
Northern Blvd.
Hillside Ave.
Hillside Ave.
Blvd.
& Hollis Ct.
& 144th St.
ARRIVAL.
TIME
1122
1225
1355
0752
0332
1145
1244
1320
0704
0723
0754
0825
0836
0857
0944
1422
0712
0738
0756
0822
0842
0904
0932
0952
1016
1120
1144
-------
% VISIBLE
LOAD
to
100
90
80
70
65
50
40
35
0
0
75
50
3
10
25
25
25
50
50
50
5
0
0
ORIGIN
TRUCK 55 - DAY 3 (Cont.)
Hillside Ave. & 144th St.
Rockway Blvd. & 94th St.
TRUCK 55 - DAY 4
Hunts Point Market
Coop City & Wetstone
Queen Blvd. & 50th St.
Queens Blvd. & Metropolitan
Woodhaven & Rockway Blvd.
No Cross Streets
Independence Ave.
No cross streets
No cross streets
TRUCK 56 - DAY 1
Springfield Blvd. & Merick Rd.
Price Pkwy
Grand Ave.
Oceanside Rd.
No cross streets
TRUCK 56 - DAY 6
Springfield Rd. & Merick Rd.
No cross street
Route 110 & Prince'Pkwy
Marine St. & Baiting Place Rd.
Grand Ave. & McConnell Ct.
Oak & Brook St.
Hargale Rd. & Mott St.
TRUCK 57 - DAY 1
Maspeth
Crescent & 39th Ave.
TIME DESTINATION
LEFT
ORIGIN
1210 Rockway Blvd. & 94th St.
1235 N.Y. City Terminal Market
0604 Coop City & Wetstone
0630 Queen Blvd & 50th St.
0711 Queens Blvd. &. Metropolitan Ave.
0740 Woodhaven & Rockway Blvd.
0809 No Cross Streets
0908 Independence Ave.
1032 No cross streets
1139 No cross streets
1223 NYC Terminal Market
0745 Price Pkwy
1058 Grand Ave.
1203 Oceanside Rd.
1254 No cross streets
1508 Springfield Blvd. & Merick Rd.
0736 No cross street
0845 Route 110 & Prince Pkwy
1212 Marine St, & Baiting Rd.
1338 Grand Ave. & McConnell Ct.
1521 Oak St. & Brook St.
1617 Hargale Rd. & Mott St.
1745 Springfield Blvd. & Merick Rd.
1335 Crescent & 39th Ave.
1607 Maiden Lane & William St.
ARRIVAL
TIME
1220
1322
0623
0701
0726
0800
0846
1017
1058
1202
1312
0902
1120
1233
1421
1550
0809
0926
1319
1405
1547
1659
1834
1150
1640
-------
I
10
M
tn
% VISIBLE
LOAD
100
0
100
0
100
0
100
0 FDR
100
0
100
0
100
0
100
0
0
100
0
100
0
100
0
100
0
100
0
0
100
0
100
0
100
0
ORIGIN
TRUCK 57 - DAY 1
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
& William St.
36th St.
& William St.
36th St.
& William St.
36th St.
& William St,
36th St.
& William St.
36th St.
& William St.
36th St.
& William St.
36th St.
& William St.
36th St.
TRUCK 57 - DAY 2
Crescent & 39th St.
2nd Ave. & 116th St.
West Side Highway & Cedar St.
2nd Ave. & 116th St.
West Side Highway & Cedar St.
2nd Ave. & 116th St.
West Side Highway & Cedar St.
2nd Ave. & 116th St.
Hunts Point Ave.
2nd Ave. & 116th St.
Hunts Point Ave.
Crescent & 39th Ave.
Maiden Lane & William St.
DSR Drive & 36th Ave.
Maiden Lane & William St.
FDR Drive & 36th St.
Maiden Lane & William St.
South St. & Market
TIME
LEFT
ORIGIN
1709
1729
1804
1824
1901
1922
1906
2018
2050
2114
2146
2103
2229
2246
2311
2332
0731
0907
0950
1107
1152
1327
1412
1505
1529
1603
1626
1653
1734
1755
1824
1850
1918
1925
DESTINATION
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Maiden Lane
FDR Drive &
Crescent &
36th St.
& William St.
36th St.
& William St,
36th St.
& William St.
36th St.
& William St.
36th St.
& William St.
36th St.
& William St.
36th St.
& William St.
36th St.
39th St.
2nd Ave. & 116th St.
West Side Highway & Cedar St.
2nd Ave. & 116th St.
West Side Highway & Cedar St,
2nd Ave. & 116th St.
West Highway & Cedar St.
2nd Ave. & 116th St.
Hunts Point Avenue
2nd Ave. & 116th St.
Hunts Point Ave.
Crescent & 39th Ave.
Maiden Lane & William St.
FDR Drive & 36th Ave.
Maiden Lane & William St.
FDR Drive & 36th St.
Maiden Lane & William St.
South St. & Market
Maiden Lane & William St.
ARRIVAL
TIME
1728
1750
1823
1844
1920
1942
2016
2036
2111
2128
2101
2117
2243
2301
2331
2344
0828
0948
1101
1145
1311
1409
1449
1524
1550
1622
1650
1721
1751
1813
1845
1906
1924
1927
-------
% VISIBLE ORIGIN
LOAD
TRUCK 57 - DAY 2 (Cont.)
100 Maiden Lane & William St.
0 South St. & Market
100 Maiden Lane & William St.
0 South St. & Market
100 Maiden Lane & William St.
0 South St. & Market
100 Maiden Lane & William St.
0 South St. & Market
100 Maiden Lane & William St.
0 South St. & Market Lane
TIME
LEFT
ORIGIN
1940
1945
2010
2015
2032
2037
2055
2102
2117
2124
DESTINATION
South St. &
Maiden Lane
South St. &
Maiden Lane
South St. &
Maiden Lane
South St. &
Maiden Lane
South St. &
Crescent &
Market
& William St.
Market
& William St.
Market
& William St.
Market
& William
Market
39th St.
TIME
1944
1948
2014
2018
2036
2040
2101
2105
2123
2140
I
KJ
M
a\
0
100
0
0
0
100
0
0
0
100
0
0
0
100
0
TRUCK 58 - DAY 2
34th St. & 12th Ave.
Erie & Lack. Terminal
Saw Mill Rd. & Lake
Erie & Lack. Terminal
TRUCK 58 - DAY 4
34th & 12th St.
Erie & Lack. Terminal
Lane & Saw Mill Rd.
Erie & Lack. Terminal
TRUCK 58 - DAY 5
34th & 12th Ave.
Erie & Lack. Terminal
Saw Mill Rd. & Lake Ave.
Erie & Lack. Terminal
TRUCK 58 - DAY 6
34th & 12th Ave.
Erie & Lack. Terminal
Saw Mill Rd. & Lake Ave.
0615 Erie & Lack. Terminal
0645 Saw Mill Rd. & Lake
1540 Erie & Lack. Terminal
1735 34th St. & 12th Ave.
0610 Erie & Lack. Terminal
0635 Lane & Saw Mill Rd.
1405 Erie & Lack. Terminal
1510 34th & 12th St.
0612 Erie & Lack. Terminal
0641 Saw Mill Rd. & Lake Ave.
1350 Erie & Lack. Terminal
1449 34th & 12th Ave.
0605 Erie Lack. Terminal
0633 Saw Mill Rd. & Lake Ave.
1356 Erie & -Lack. Terminal
0632
0805
1729
1755
0625
0746
1500
1545
0625
0732
-1438
1610
0617
0715
1450
-------
% VISIBLE
LOAD
I
KJ
100
90
80
70
60
50
40
30
20
10
0
100
90
80
70
60
50
40
30
15
0
0
0
0
100
ORIGIN
TRUCK 58 - DAY 6 (Cont.)
Erie & Lack. Terminal
TRUCK 59 - DAY 1
58th & Maspeth
Westchester & Sand
Baychester & Pitman St.
White Plains & 232nd St.
Pelham Pkwy & Lurting
Williamsbridge & Morris
Tremont & Randall St.
Gun Hill Rd. Bronywood
Gun Hill Rd. & DeKalb
Grand Concourse 7 204th St.
Park View & 196th St.
TRUCK 59 - DAY 2
58th & Maspeth St.
Westchester & St. Theresa St.
Williamsbridge & Rhind Ave.
Tremont & Roosevelt
Baychester & Fremont
White Plains Rd. & 232nd St.
Gun Hill Rd. & Bronywood
Grand Concourse & 204th St.
Creston & 198th St,
Park View & 196th St. v
TRUCK 60 - DAY 1
4th Ave. & 21st St.
Kane St. & Sedwich St.
Secaucus St.
Senaca Ave. & Flushing Ave.
TIME
LEFTQ
ORIGIN
1505
0440
0533
0603
0641
0658
0709
0749
0814
0829
0853
0924
0455
0549
0612
0711
07-50
0855
0920
0945
0955
1000
0656
0826
1006
1456
DESTINATION
34th & 12th St.
Westchester & Sand
Baychester & Pitman
White Plains & 232nd St.
Pelham Pkwy & Lurting
Williambridge & Morris
Tremont & Randall St.
GunHill Rd. & Bronywood
Gun Hill Rd. & DeKalb
Grant Concourse & 204th St.
Park View & 196th St.
58th & Maspeth St.
Westchester & St. Theresa St.
Williamsbridge & Rhind Ave.
Tremont & Roosevelt Rd.
Baychester & Fremont
White Plains Rd. & 232nd St.
Gun Hill Rd. & Bronywood
Grand Concourse & 204th St.
Creston & 198th St.
Park View & 196th St.
58th & Maspeth St.
Kane St.. & Sedwich St.
Secaucus St.
Senaca Ave. & Flushing Ave.
4th Ave. & 21st St.
ARRIVAL
TIME
1552
0508
0546
0608
0641
0704
0722
0801
0825
0835
0858
1008
0523
0558
0638
0728
0758
0902
0933
0948
0958
1116
0718
0927
1117
1605
-------
VISIBLE
LOAD
ORIGIN
TIME
LEFT
ORIGIN
DESTINATION
ARRIVAL
TIME
I
10
!-•
CO
I
0
0
100
100
0
100
0
0
0
100
0
100
0
100
0
100
0
100
0
100
0
100
98
90
5
TRUCK '60 - DAY 2
Pier 9B
Secaucus, NJ
Seneca Ave. & Flushing
TRUCK 60 - DAY 3
21st & 4th Ave.
Pier 9A
21st & 4th. Ave.
Bayonne, NJ
Maher Terminal
TRUCK 61 - DAY 1
Seabring & Van Brunt
Ferris & Walcott
40th & 2nd St.
Ferris & Walcott
40th & 2nd
Ferris & Walcott
40th & 2nd
TRUCK 61 - DAY 3
Seabring & Van Brunt
40th & 2nd
Walcott & Ferris
40th & 2nd
Walcott & Ferris
TRUCK 62 - DAY 1
75th Frost St.
W. Henry St.
Harison Ave.
St. Johns & Troy Ave.
Lincoln Pi.
0945 Secaucus St.
1046 Seneca Ave. & Flushing
1646 21st & 4th Ave.
0801 Pier 9A
0928 21st & 4th Ave.
0947 Bayonne
1050 Maher Terminal
1606 21st St. & 4th Ave.
2005 Ferris & Walcott
2050 40th & 2nd
2219 Ferris & Walcott
2344 40th & 2nd
0240 Ferris & Walcott
0355 40th & 2nd
0523 Seabring & Van Brunt
2025 40th & 2nd
2247 Walcott & Ferris
0146 40th & 2nd
0350 Walcott & Ferris
0512 Seabring & Van Brunt
0831 W. Henry St.
0854 Harison St.
0949 St. Johns & Troy Ave.
1007 Lincoln Pi.
1010 634th Union St.
1030
1212
1755
0814
0938
1023
1115
1714
2011
2153
2332
0217
0340
0440
0617
2217
0111
0320
0501
0519
0843
0931
0958
1012
1045
-------
% VISIBLE
LOAD
80
70
60
50
30
0
70
1
to
M
vo
1
100
95
90
85
80
70
55
40
30
25
15
100
90
85
70
65
60
50
40
30
100
ORIGIN
TRUCK 62 - DAY 1 (Cont.)
634th Union St.
President St. & Utica Ave.
1427 Pitkin Ave.
Pennsylvania Ave. & Pitkin
Malta St.
Euclick & Blake Ave.
98th St.
TRUCK 62 - DAY 2
265th Pennsylvania Ave.
E. 49th St.
Ryder St. 1639
Quentin Rd. & 32nd St.
E. 3rd. St. 2297
Dale & Quentin Rd.
21st Ave. & 59th St.
2178 & 69th St.
70th St. & 16th Ave.
72nd St. & 21st Ave.
1st Gave
Court St. & Bryant St.
Brant & Smith St.
E. 2nd St. & Caton Ave.
E. 3rd St. Ave. C
Rogers & 693rd Ave.
125th E. 31st St.
TRUCK 62 - DAY 3
265th Pennsylvania Aye.
354th Pennsylvania Ave.
407th Jerome St.
698th Shweck St.
Jamaica Bay Oil Corp.,
140
TIME
LEFT
ORIGIN
1108
1144
1216
1236
1256
1319
1437
0746
0813
0835
0845
0904
0931
0949
1212
1029
1047
1124
1156
1229
1308
1370
1348
1413
0750
0804
0822
0840
0930
DESTINATION
President St. & Utica Ave.
1427 Pitkin Ave.
Pennsylvania Ave. & Pitkin Ave.
Malta St.
Euclick & Blake Ave.
98th St.
265th Pennsylvania Ave.
E. 49th St.
Ryder St. 1639.
Quentin Rd. & 32nd St.
E. 3rd St. 2297
Dale & Quentin Rd.
21st Ave. & 59th St.
2178 & 69th St.
70th St. & 16th Ave.
72nd St. & 21st Ave.
1st Gave
Court St. & Bryant St.
Brant & Smith St.
E. 2nd St. & Caton Ave.
E. 3rd St. Ave. C
Rogers & 693rd St.
125th E. 31st St.
265th Pennsylvania Ave.
354th Pennsylvania Ave.
407th Jerome St.
698th Shweck St.
Jamaica Bay Oil Corp., 140
E. 36th St. & 1573
ARRIVAL
TIME
1120
1151
1227
1249
1305
1401
1441
0808
0828
0839
0900
0919
0944
1000
1019
1035
1107
1134
1218
1256
1313
1241
1401
1432
0751
0814
0830
0852
0949
-------
I
NJ
N)
O
I
% VISIBLE ORIGIN TIME
LOAD LEFT
ORIGIN
TRUCK 62 - DAY 3 (Cont.)
90 E. 36th St. & 1573 0957
80 1016th Ave. 1024
75 Ocean Pkwy 1040
70 63rd St. & Bay Pkwy 1057
65 84th St. & 2131 1122
60 57th St. & 21st Ave. 1143
50 5th Ave. & 40th St. 1213
45 E. 3rd St. & 534 1258
40 1140th Rogers Ave. 1322
20 Classon & Rogers Ave. 1416
10 Cleveland St., 675 1456
100 Jamaica Bay Oil Corp. 1519
TRUCK 62 - DAY 4
70 265th Pennsylvania Ave. 0816
65 Alabama Ave. & Linden Blvd. 0839
60 Bradford St. & Pitkin Ave. 0849
55 Dumant Ave. 0907
45 Baffalo Ave. & Prospect Pi. 0935
40 Brooklyn Ave. & President St. 0955
30 35th Schrmerhorst 1034
25 Waren St. & Columbia St. 1051
100 Court St. 1110
90 N. 1st St. 1200
80 Harrison Ave. & Hewes St. 1223
45 43rd St. & Church Ave. 1355
TRUCK 62 - DAY 5
25 265 Metropolitan Ave. 0754
20 92nd St. & 101st Ave. 0828
70 140 Jamaica Bay Oil Corp. 0906
65 South Rd. & Suphin Ave. 0927
60 Liberty Ave. & 169th St. 0940
DESTINATION
1016 Ave.
Ocean Pkwy
63rd St. & Bay Pkwy
84th St. 2131
57th St. & 21st Ave.
5th Ave. 40th .St.
Z. 3rd St. & 534
1140th Rogers Ave.
Classon & Rogers Ave.
Cleveland St., 675
Jamaica Bay Oil Corp.
265th Pennsylvania Ave.
Alabama Ave. & Linden Blvd.
Bradford St. & Pitkin Ave.
Dumant Ave.
Baffalo Ave & Prospect Place
Brooklyn Ave. & President St.
35th Schrmerhorst
Waren St. & Columbia St.
Court St.
N. 1st St.
Harrison Ave. & Hewes St.
43rd St. & Church Ave.
265th Pennsylvania Ave.
92nd St.. & 101st Ave.
140 Jamaica Bay Oil Ave.
South Rd. & Suphin Ave.
Liberty Ave. & 169th St.
190th St. & 48th Ave.
ARRIVAL
TIME
1010
1035
1051
1108
1129
1200
1249
1312
1327
1443
1506
1535
0827
0844
0858
0929
0953
1028
1043
1100
1136
1210
1339
1415
0818
0846
0922
0932
1006
-------
VISIBLE
LOAD
I
10
K>
55
50
45
40
100
95
85
80
75
100
0
100
0
0
100
100
0
50
25
0
50
50
0
ORIGIN
TRUCK 62 - DAY 5
190th St. & 48th Ave.
Lamunt Ave. & Glean St.
43rd Ave. & 61st St.
6829, 76th St.
No cross st.
Greene Ave. & Stuyvan Sant
Rochester Ave.
258th Albany Ave.
No cross street
TRUCK 64 - DAY 1
21st & 4th Ave.
Van Brunt & Irving
Seneca & Flushing
Van Brunt & Irving
TRUCK 64 - DAY 2
21st St. & 4th Ave.
Meserole & Banker
Port Newark
176th & Webster
TRUCK 64 - DAY 3
21st St. & 4th Ave.
Cooper. St. & 78th St.
Willams Ave. & Dewet
Atlantic Ave. & 133rd Ave.
21st St. & 4th Ave.
1st Ave. & 58th St.' ,
TRUCK 65 - DAY 1
TIME
LEFT
ORIGIN
1015
1050
1124
1157
1240
Ave.1317
1352
1406
1424
0711
1008
1157
1602
0626
0735
1711
0725
0933
1148
1339
1432
1551
DESTINATION
Lamunt Ave. & Glean St.
43rd Ave. & 61st St.
6829. 76th St.
No cross St.
Greene Ave. & Stuyvan Ave.
Rochester Ave. -
258th Albany Ave.
No cross st.
265th Pennsylvania Ave.
Van Brunt & Irving
Seneca & Flushing
Van Brunt & Irving
21st & 4th Ave.
Meserole & Banker
Port Newark
176th & Webster
21st & 4th Ave.
Cooper St. & 78th St.
Willams Ave. & Dewet
Atlantic Ave. & 133rd St.
21st St. & 4th Ave.
1st Ave. & 58th St.
21st & 4th Ave.
ARRIVAL
TIME
1042
1107
1148
1230
1310
1332
1359
1408
1436
0737
1110
1323
1623
0730
1106
2021
0834
1016
1214
1428
1446
1605
Frost & Meeker
0805
Richmound Terrace & Nicholas
0844
-------
% VISIBLE
LOAD
0
100
LOO
ORIGIN
TRUCK 65 - DAY 1 (Cont.)
Richmound Terrace & Nicholas
Pennsylvania
TRUCK 65 - DAY 2
Baltimore
TIME
LEFT
ORIGIN
0905
1333
1400
DESTINATION
Pennsylvania
Richmound & Nicholas
Richmound
ARRIVAL
TIME
1142
1608
1733
10
ro
10
I
-------
Appendix I
PROGRAM LISTINGS
The programs developed for the EPA truck study are
written in COBOL, Assembly, and FORTRAN languages. The FORTRAN
and most of the COBOL programs use Assembly language subroutines.
The Assembly language programs use MACROS (mainly for input/output)
which are unigue to DOS and are not included in the listings. All
of the programs in the system will run in a 56K DOS partition.
1. Separate raw data files (7 track)
2. Format M4 cards for calibration data
3. List number scans in each time slot (HHMM)
4. Utility dump program (lists raw & calibrated tapes)
5. Average zero scans
6. Print zero distribution summary - Punch ES card
for calibration
7. Load calibration data
8. Translation and edit program
9. Mode - Profile
10. Mode - Print summary tables
11. Mode - Condense summary records produced in Profile.
12. Mode combine truck days
13. List first 80 characters of each file (Debug aid)
14. Calibrated and raw listing program
15. Mode - Print spooled output (created in profile)
16. Apply initial edit - Load open and closed valve
closure readings
17. Convert raw data to floating point
18. Horsepower model development
-223-
-------
1 - SEPARATE RAW DATA FILES PROGRAM LISTING
// EXEC FFCjRIRAN
COMMCN X1ECCJ
WRITE (2,82)
KCN = C
ICN = C
ICM = C
1 CALL ICdt^t ItXM) tlfiCCI
CALL IC(2,«,INC,LEN)
IF (INC .NE. C) GG TO 1
IF (LEN .EC. EO) GG TO ICC
CALL 1C (2,5,X,16CC)
CALL IC(3,5,INCX)
2 ICN - ICN * 1
ICM = 1C? * 1
GO TO 1
100 CONTINLE
KCN = KCN «• 1
IF (KCN .EC. 1) GO TO 1C5
CALL IC(«,5)
1C5 CALL IC(2t£*X,EC)
CALL IC(2,5,INOX)
I WRITE (3V8C) ICN, ICM
M WRITE (3,£1) (X(I),1 = 1,20)
•f ICN = C
GO TO 1
CONTINUE
C CALL IC(4,EJ
.. C CALL ICU.5)
i C CALL IC(3,£,INDX)
00 WRITE <3,8C) ICN, ICM
WRITE (3,82)
STOP
80 FORMAT ('OBLOCKS = •,110.10X,1ACCUK = (,I10» 10X,'LEN =»,I10)
81 FORMAT (2CA4)
82 FORMAT (•!•)
END
-------
2 - FORMAT M4 CARDS FOR CALIBRATION DATA
ro
to
tn
I
// EXEC
LOOP
LOCPX
LOOP I
MVC
PUNCH
PLCOP
EOJ
SKC
RSYSIPT
A5«E«"!LY
MUE 'IfC. Fi.qPil I.L -r:r(CCLC" CIL CAFCS 12
PRIM NCCEN
EMEft hi?
LSING TAE.Rll
PAL RS.RSYSIPT
PACK C VB tKGf 1 1 1 )
CVE R2.CVB
PACK CVB|KC*%(2I
CV8 Rl.CVB
BCTS PI,C
Lh R3t SuD
LA F1,CIR1,R3)
STH Rl.fVC*'.
LA R3.240
L Rllt-ACTABl
BAL RS.RSYS1PT
CLl KCiC1*'
Ef FLNCI-
HVC KO»l(2)fKD
HVC 1AB.KO
MVC UB«23l 3) tM3»2t
MVC 1AB«26(3I,KO»32
fVC 7A8*29( 1) «KO»29
LA Rll.L'TABlKllI
8 LOOP I
LR P10.R11
L Rllt>AlTAB)
LA R3.1IR3J
»-VC CC,«8CC' •
OC TAB(2«I,«2SC'0« DC NOT KILL PCS 30
MVC CO(2».TA8+1
STC R3,CO*2
HVC C0»* 141 iTAB»6
MVC CO*«t2),TAB»ll
HVt CO«ll.C«.t
HVC CD«12(3),TA8*13
HVC CD»lt ( 4 ) tTAB+lS
MVC CD*2H3) tTAB»23
CVC CG«24C*M4>
BAL R9,hPCH
LA Rll.LMABIRll)
CR P1C,R11
BNE FLCCP
BCT R2. PUNCH
B LOOPX
FCU •
M.VC cp,=eoc- •
BAL R9,bPCH
MVI CL.15
BAL RS.bPCH
EOJ
CC SIKOt
RC RS» S Y J 1 PTtKO »EO J
12C210A8C'
WPCH
ss
CC
KC
CAY
eve
TAB
PC
CC
OS
cs
cs
ES C
LICRG
CS CL3C
EMC
,CL
ciec
CL8C
CLl
-------
3 - LIST NUMBER OF SCANS IN EACH TIME SLOT (HHMM)
RESET
I
10
NJ
(Ti
I
RFAD
HUE 'FF« LIST TAPES liC21C ABC1
PRIM NCGEN
ENTER R12
LSINC T1.R11
LSING TAB,RIO
ZAP COKil.'P'C*
BAL RS.RSYSIPT
PACK CDI4),CDI«)
COMRG
TN ZBIRlJ.X'aO'
BZ PESET .
ZAP PRT.-P'lOOl1
MVI SM»1,240
L R1C,=A(TAB)
LA R3.1000
NVC
LA
BCT
MVI
ZAP
ZAP
ZAP
ZAP
EXCP Rcce
HA IT RCCB
TH
BO
BAL
BAL
OC
BAL
PACK
CI
CVB
Hh
t!NE
KCLC.Tl
CNT.'P'O*
/CNI.-P'O1
ICNTI.-P'C'
PBTi-P'O"
PCCB»<.,1
EDJ
PS.OVRFL
R9.RSYS011
TIOOI.-JOC'O1
R9,h3<
A R10,-A(TAB1I
AP TAB<3),*P'1<
PACK CVB,T1»12(3)
01
CVB
HH
A
Uf
CLC
bE
CLC
BE
B
CLC
cve«7,is
"1C,CVB
P1C,=H«3«
R10.-A(TAB2)
1&B131 ,'P'l1
TIOCJ.'BCC'
ZER01
TH2I,-C'CO'
ZERO
FIRST
HCLD.T1
ACC
ZERO
ZERQ1
FIRST
PRINT
ZAP
EJSH
CUMPACC
CUMPACC1
AP CNT.'P'I*
e REAC
AP ZCNT.'P'l1
e ADO
AP 2CNT 1 ,-P • 1 •
B AQC
MVI Sh»l,C
B ADD1
XC PR, PR
AP PRT.'PM1
MVI CC.5
MVC PRI2J.HOLC
fVC PR*4(2),HCLO»2
MVI PH*4tCt.«
MVC PR«7(2),HCLO»
-------
3 - LIST NUMBER OF SCANS IN EACH TIME SLOT (HHMM) (CONT.)
I
to
to
-o
ID FIC.R3
A P1C,=AUAB)
01 T«B«2.1S
UNPK Ffl*S(SI,TAB
AP CUH1.TAB
CLM1*2,15
PR»12t 5I.CUM1
CUM, TAB
CI
AP
LR
*
01
R10.»A|TAB1)
1AB«2.XS
UNPK PR«22I5).TAB
AP CUM2.TAB
01 CUM2»2tlS
UNPK PR*2«ISI.CUM2
AP CUM. TAB
LR P.10.R3
* R10,-A
BAL US.liSYSLST
XC PR, PR
B /AP
EOF NVI EJSh«l,0
ZAP PRT,«P»0«
B PRINT
OVBFL LR RO.R<)
HVI CC.X-eB'
BAL RSfhSVSLST
XC PR, PR
NVI CC.1T
HVC PR.hO
BAL R«,h!VSLST
LR PS.RO
BR R«
EOJ HVI CL.19
BAL RS,h!VSLST
EOJ
LTCRG
FILES OC PL*'0«
CCh CCb 2,HD,C.eC
RCCB CCB SYSOU.CCk
CNT OS PLS
ZCNT OS PLS
2CNT1 CS FLS
PRT CS • PLS
hC OS CL6C
CC OS CL1
PR CS CLCC
CVB OS C
CUM OC PL3«0'
cum oc PL3'o«
CUM2 OC PL3-0'
CUH3 OC PL3'0«
REF OC PL3*0*
HC1 OC CLS* •
OC C« RPM •
OC CL5» •
DC C»— HP •
OC CLS* •
OC C' ¥S •
HOLD OS CL6
CC OS CL60
RSVS01I RT R9.STSOll.Tl.Rll,30,1600,ECF,,,0.0 -
HSVSLST PRTP R9.SY5LST,CC,81,CV,CL,Tl«360C,500,56
RSVSIPT RC R9,SVSIPT,CO.RESET
Tl OS C13C
COM
TAB OS 1000PL3
TAB1 OS 1000PL3
TAB2 OS 1000PL3
END
-------
« - UTILITY DUMP PROGRAM (LISTS RAM I CALIBRATED TAPES
C'CIC
C1C2C
C1C2C
C'0»o
C.I07C
CJC'iO
01!00
C11IO
CI120
CI13C
U1*C
CI150
C1160
C11TC
Cl!»0
CI19C
Cl?00
C'.ZIO
I'TNI T iiilGK 'StSCl?1 UTILITY 2*00.
S:LEC' PMF ASML.\ 's»scc9' LMT-RFCCRC 1*03.
iff- tfcf f ]R TtPIX. TAFCT.
3M» tlvlinu.
FILE SCCUCK.
H, TAPIX
HECOFOINO cnn* F,
LJbEL HiCCH,S CHIMED,
"ICI.'Fr CU.iTMNS 40 CHARACTERS.
ttlUCr. CONTAIN!, 270 OfCCROS,
LATA o.ECUM) TAP1K-S6C.
X-Pf r..
T-* flCTU-C SS°.
01
C7
C7
C7 VC* Cn"PLT4T|ONil.-J
C7 CHtF COHPUTATlCML-
C7 Otis PEUEF1NES CHEF.
'.<. CMC PICTLPE J
i< (he: Ficu«f: »
CCCUPS 5 TIMES.
to HfEO
or. o.;to re
i "-^TO
rlZ8C
1790
i 700
1710
132C 01
13?C
.' 7?0
1760 IS
'77C
I ' ?0
1J9C
IMC
•'4 20
1450
'460
147C Ft
1 4KC
1 4^0
( I « CO C *
I. 'CIO
Cl Cr'i
C7 Cui
PICUS.L
U/nEU
?ECrll>L)
ElOCn
t 4 1 ft C
TAPIN-FEC.
C7 UK
C7 iri!'
TAP'll
c[^!;TMCM.::i:
iriu. HfCiF. f.
fCaens CM1T1EC,
CONTAINS 30 CMfRAtTF.RS,
CONTAINS 120 fECCSOS,
ECOnO TAPIM-REC.
PICTUFE S99.
MILTl/PE SV999 CCClRi 8 TlfF.S.
HFCOhclr.u M»cr. F,
L ' o r. U
FFU:.-.-
", ' T e. i-
C"''! = K-C'
C7 SAY-L,
C7 VCL-C
P-7F
: r,_-j[ '
C a T£ -
<--•(.
c? FILL:-°
»CCCI!ii/S C-.ITTCC,
cr^TAiNs 4.7 CH»°ACTFRS.
r-C-.''!i TtPIjT-PFC.
PICTUPF 9s.
PICTURE XX.
f..j»PUTATlCNAL-l CCCUiKS 8 TI'IS.
IN'J "1 Lc r. LAitl P^CC't'S OMITTF.C.
r:r.ip.K3 n i .
>lf. lUkl X.
C2802
C28G2
C2802
C2802
C2802
C2802
C 2 805
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2eo; ,
C28C2
C2802
C2802
C2B02
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2802
C2B02
C2802
C2802
C2802
C28C2
C2.B02
C2802
C2802
C2802
C2EC2
C2802
C2802
C2S02
rrc.>c
C2C3C
CiC40
C2C5C
C2CtO
C2C7C
C2CSC
C2100
j"Tl.
»4 = £C PIC io.1." £171 .
14 FILL = ° PITTl.Sc »X.
14 P-T^K PICTURf 9?.
14 riLLt* Plr.1V;iI30).
1.4 PRT8 PICTURE »(30I.
!4 PRT? PICTLFE xi30).
WORKING-STORAGE SECTION.
77
77
77
77
77
77
01
01
CCrPh CCMPL'TATICNAL-1 .
XI PICTURE J<"J9 CO-PLTATtti.AL.
CNT PICTURE S9I7)"VAIU¥ JtPC CQKFUT I30).
cD P^.T'HC F1CTLDE >l30lp
14 FILLER PICTURE *«•! VALU1: •
C7 PFTh.
14 FIULEr PICTURE X(17| VALUE
:« riLLCR PICTLKF. XI12) VALUE
14 FILLER PICTL'E X(C?) VALUE
14 riLLCh CICTLS.E JIGS) VALUE
14 FILLER PICTLPF xicst VALLF
!4 FILLEK FICTLFE XIC9I V£Lbc
14 fllLE'. rICTLF? XIC5) VALU?
!4 FILLED ?ICTL°? »I09I Vtl'J?
14 FULta P.'CTiPr xicei VALUE
!« rilltK PICTLS-t X(16) VALUE
C7 LI^C^T PlCTUSi'' SV(") V'-LLE i£PC
11.
1 CALieRATEO*.
VALUE SPACE.
RAM* .
• RECCP-C TPK
•TIHE •
•3
•4 • .
•5 .
•6
•7
ia ,
'9 • .
'10
CCKPLTMIONAU
C2E02
C2EC2
Cieoi
C2SC2
C2802
C28C2
C2SOJ
C280Z
C2602
C2°02
C2802
C2802
C2802
C2802
C2B02
C2807
C280?
C2602
C2602
C2802
C2802
C?80i
C2P02
C2C02
C2802
C2EC2
R/V1
C2C02
c?eo;
C2802
C280?
C2CC2
C28C2
C280?
C28C2
C2602
C2802
C2802
C26C2
C2802
C2802
C28C2
C28C2
CI802
C2802
C2802
C2802
C2802
C28C2
C2802
-------
« - UTILITY DUMP PROGRAM (conf dl
1
NJ
N)
VO
1
C1C4C
03C50
ClCtC
C3C70
C?C«C
C-C9C
C7100
C311G
CM20
C?13C
cn*o
C3i:o
03140
C3I7C
03180
C'110
C3200
0!210
C3220
C?230
03240
03250
C3260
OJ27C
C3280
C3290
C37CO
C331C
CS!2C
C3?3C
C3340
C3350
C3360
M370
03380
B3J90
0339!
C3400
03*10
C3*:o
03430
C34*0
c;*5c
C3*70
C3*eo
C3SQO
C4C10
C*C20
C«CiC
c*c*o
C4G50
C*060
C*C70
C*C8C
CSIK&
PRPCSCLPE CIVISION.
ACCEPT OPX.
If OPBYP NOT
KOtf. ZERO TO OPt)VP.
SNTFR LIHK46C
CALL "iN
Elite COBOL.
IF on - e OR CPI - •» co
HPT " * OPEN 'INPUT T*PIX bITH NO REMIND.
ir -:PT LESS THAN *
OPEN IUPIT1 T»P1N HITH KC REklNO.
Ir LP> • 2 CR OPT * 3 OPEN CUIPUT T«POT.
OPFN
CUTPLT PHTF.
IF OPT NCT • 2
HOVE 'PACE TC PPT, kUTE PUT AFTER 0.
IF OPT - 5 GP TO READ-RAk.
IF OPT • 6 60 TO READ-JE"l-»Ak.
IF UPT • 7 GO TO PtAD-SEPI-RAM.
IF CRT LESS THIN 4 CO TC PfAC-LOCP-1.
HOVE SPACE TO PRT.
HF.AB 1APIX INTO PRT* AT EKC STOP RUN.
READ 1APII INT1 PRT5 AT END STCP RUN.
NCVE PRT3 TO PRT3H1.
n-l-O-1.
MRITE PRT FROM PRT3H AFTER 0.
kRITF PRT FROM PRTH AFTER 2.
"QV? 2 TO LINCNT.
MOVE SPACE TO PF.T.
kPITr PRI AFTEP I .
It OPT • * OR CM NCjT > Zf^C
CC TO READ-LUOX.
LI:T-CAL.
HC»c SPACE TO PIT.
READ TAPII INTO PRT4 AT END STCF RUN.
REAC TAPIX INTO PPTS AT EKC STCP RUN.
IF PRI* - ••• MOVt ••• TC ASTSk.
fcRITt PRT AFTEk 1.
ACO I TO LINCNT.
Ir s:l£k • •*• GO TC. L1ST-CAL-1.
IF LINCNT GHEAT6K THAN 55 CO TC k-HD-1.
CO TC LIST-CAL.
LIST-CAL-1.
MOVE SPACF TO PPT.
kP-ME PKT AFTER 1.
ACC 1 TO I. INC NT.
IF LINCNT LESS THAN 45 CO TC READ-LCCX.
nune PPI FKCM PRTSH AFTER o.
hPIIE PRT FRC1 PRTH AFTER 2.
HOVt 2 T1 LINCNT.
MOVE SPACE TO PfT.
kRITP PRT AFTEk 1.
OF«D-LOC«.
IF FL40-INT - 1 00 TC ENC-FIL6.
-t»C TAP14 AT END CO TC END-FILE.
MGVF. SPtCE TO PI-T.
C2602 C4CSC ACC 1 TO CNT. >-CVC CM TC FRC.
czaoz IF OPT N0i = g GO n SKI
C2802 IF vex 13) G'.EfcTFP TH/.K
C280Z CC"PtTF JPCNT • CNT « 50C,
C2802 HOVE e TO OPT,
CZ802 GO TO SKIP-FINC-REC.
C2802 CC TO CFAD-LOOJI.
C2802 SK1P-F1NC-REI.
C2802 C*IOO IF CKT NCT GREATEK THAN CPBVP
C2802 C4110 CO TO READ-LOOX.
CZ802 C4120 IF CN1 CRcATER THAN OPCKT GO TC END-FILE.
C2802 0*130 NOVE TRX TO P-TRK. •
C2802 0*1*0 HOVE TIHX TO P-TIPF.
C2802 C4150 IF Tl>x = 00 M0« '1ERC' TC P-ZEPC.
C2802 0*160 MOVE VOX 111 TO P-VCL (1).
C2802 0*170 MCVE VC< 121 TO P-VOL (21.
C2802 04!BO MOVE VOX 13) TO P-VUL 131.
C2802 04190 MOVE VOX 141 TC P-VCL 1*1.
C2802 04200 MCVE VOX (51 TO P-VOL 15).
C2802 if OPFLAG • •-•
C2*a2 fOVE CH8F TO P-VOL (tit ELSE
czeoz fOve CHS TC P-VOL 161.
C2802 04220 MOVE CH9 TC P-VOL (7).
C2802 C4230 MOVE CHA TO P-VOL (8).
C2802 C4330 REAO-LCCX-PESUME.
C2802 04340 MCVE ZERO TO P-V.
C2802 04350 IF VOX 131 NOT • O.C
C2802 C4340 COMPUTE R-V • VOX 111 / VCX (31.
C2802 C4310 kRITE PUT AFTER 1.
C2802 C4?80 ACO 1 10 LINCNT.
C2802 C4390 IF LINCNT GREATER THAN 52 CC 1C K-HC-1.
C2802 04*00 GO TO READ-LOOX.
C2802 M410
C2BC2 C4«20 REAO-SEMl-KAk.
C2802 C4«30 OPEN INPLT TAPIN k!TH KC REklNO.
C2802 04«*0- REAC TAP1IJ INTO PRT6HA AT FNb STCP PUN.
C**50 kltl. T4P1N INTO PRTAHb AT END STCP RUN.
C2802 C4460 0-EAC TAPIN INTO PRT6HC AT END STCP PUN.
C26C2 C*«70 SEMI-RAM-hFAC.
C44CC kRIIE PRT FROM PRT6H AFTER 0.
C2802 C4*9C MCVE 5 TC LINCNT.
C2802 C*50C hRITE PRT FROM PRTh AFTER 2.
C2802 05010 MOVE -SPACE TO PRT.
C2802 C5C20 kRITE PRT AFTER 1.
C2802 C5C30 IF OPT « 7 GO TO RFAO-LCCP.
C2802 C5C*0 SEMI-RAk-PR|NT.
C2802 05C*5 MCVE SPACF TO PkT.
C2802 C5C5C fFAC TAPIN INTO PR 17 AT ENC STCF FUN.
C2802 C5060 kEAO TAP1K INTO PRT8 AT ENC STCF RUN.
C2802 C5C70 RF«C TAPIN INTO PRT9 AT ENC SICF RUK.
C2802 QS075 IF PRT7 - •*• HOVE ••• TG ASTSk.
C2802 CSC80 kRITF PPT AFTLfc I.
C2802 09090 ACD 1 TO LINCNT.
C2802 C5JOO IF ASTJk • ••• GO TO EKO-SEfl-HAk-CTL.
C2802 C5110 Ir LINCNT GREATER THAN 52 GC 1C SENI-KAW-HEAC.
C280? CM20 GC- TO
-------
I
to
LJ
O
C5I30
Cil*0
CM SO
C5J40
CIITC
CJICO
til'C
0^200
CJJ10
C!i2C
C5230
C52«>
C5?50
C5760
CS27C
CSJ80
C5290
05300
CS310
«3.?0
05330
C53*0
CS3SO
C5360
0:370
CS380
CI.'SC
C5400
C5MO
C5-.2C
C5A30
*.MC-Sl"iI-*Ak-CTl.
IF LINCNT GREAIEb
GC IT READ-LOOP.
CSAtO
C?4?C
CiiOO
CtCIO
Ctt20
CeC30
CtCIO
CC050
CtOtC
C6070
Ct080
C6090
CtlOO
CCltO
CtlZO
IHAN 50 GC 1C h-HC-2 .
ENTEB LINKAGE.
C«LL 'HMOS' USING PRT6M1.
ENTER CUSOL.
OPE* INPCT TAPIN WITH NO KEklKC.
kRITC PRT FROM PRT6H AFTES 1.
CC 1C CO»«JN-PRINT.
HElD-LOCP-1.
PEAC TAPIN INT11 PRT7 AT ENC STCF hUN.
afAC TAPIN IMP. PRI8 AT END STCF RLN.
READ TAP1N INTU P&T1 AT END STCP RUN.
IF OPT « 2 OR OPT • 3
WPIIF TAPOT-RFC FRCP PPT«,
kBITt TAPOT-REC FRCF PfT5.
1CVI CRT* 1C PKT6HI.
k«ITE PRT Fftf.M PPT6H AFTER 0.
ACG 2 TD LINCNT.
PERFOBH PEAC-LOOP-?.
COHHOIi-PRINT.
HCVE 5PACE TO PKT.
kPITE PRT AFTER 1.
.fllf PRT FRCH PRTH AFTFR 2.
MCMt SPICE TO PM.
kMIE PRT AFTER 1.
ACC « 10 LINCNT.
GC T? REAO-ICOP.
REtO-lOOP-2.
MOVE SPACE TC PRT.
KCAC TAPIN INTQ PF.T7 AT END STCF RUN.
R»1C TAPIS IIJT1 PRT8 AT EMC STCP RUN.
r TO P-VOL t(!l.
HCVE ZERC TC B-V.
IF VCL (!) NOT = 4E=0
COMPLTE f--V > VOL 1*1 / VCL 13).
fc-'ITE PRT 1FTEO. 1.
ACC 1 TO LINCNT.
IF LINCNT NCI uKE'T^R' TKAK 52
GO TO »-HD-3.
i*-hD-2.
WRITE PRT FRCM PRT6H AFTER 0.
WRITE PR1 FRCM PRTH AF1ER 2.
MOVb 3 10 LINCNT.
HCVE SPACE TO PUT.
kPITE PHT AFTER 1.
w- 1-0-3.
IF CPT * \ GO TO REA3-ICCF.
IF OPT . 5 GO TO READ-LCCP.
IF OPT • 6 GO TO READ-LOOP.
IF OP1 - 7 GO TO READ-LOOP.
MR~TAPE.
HOVF TRK TO TRK-0.
KCVE TIME TO TIME-C.
MOVE "1 ' TO DAY-C.
MC-VE 1 TO XI..
PERFCiPM I«0»6-VOL 8 TIMES.
hPITf TAPOT-PEC.
GC TO READ-LOOP.
ENC-FILT.
IF TPT • i OR Uf-T = 3 ClCSE T4PCT kITH NC REKI
)F OPT = 4 Cf OPT - 8 CP CFT = 9
CLOSF UP1X hITh NC PEklND.
IF OPT NOT = <. tNO 3PT NCT = B
CLCSE TAPIN klTI- NC REklND.
ClCSE PRTF.
IF OPT NQ1 = S STOP PIN.
ENTEF LINKAGE. CALL -NCTPFK* USING BSR. ENTER
EN7FP LINKAGE. CALL 'NETPHK1 LSING BSR. ENTER
EATCh LINKAGE. CALL -NCTPPK- USING BSD. ENTER
STGF RLN. •
"WJXf-VCL.
MOVE VOL 1X11 TC VCL-C (XII.
ADD 1 TO XI.
t ASSFK8LV
TITLF «kFan i eo CHAPACTES RLCCRC'
POINT NC-GEN
STAPT
USING *i!5
STM l
-------
4 - UTILITY DUMP PROGRAM (cpnfd).
!-ct»
=CCE
I
ro
LJ
S*VE
SAV1
CAP
MVC
LM
HP
ecu
CCb
CieC,2I.CO
".,12,12(13)
?,CC,C.£C
StSCll.PCCr,
ns CLEC
LTCPG
CSfcCT
USING *,J5
STM 14,12,12(13)
L l.CIH
ST 1.SAV1
STXIT OCfCAP.SAV*;
L^ )4,12,12(131
EB !4
OS SD
US F
LTORG
BALR 1£,C
LSING *,15
L 1,=A(SAV1)
L l.C(l)
MVI Cll),Z
-------
5 - AVERAGE ZERO SCANS PROGRAM
1
ro
U)
t\J
it t • It.
C1C1CC
C1CZCC
010 ICC
UC4CC
cuic:
f. ICeCt
r\- KC
CIC-OC
CIC901.
cr. ccc
. CI1IOC
CI120C
ClUOC
rmcc
CI11CC
CMtCC
ciiirr
CII'OC
CIISOC
C12COC
C1210C
C1220C
C1230C
01240C
C1250C
C12tOC
C127CC
C12GCC
CI2SCC
CI3CC1
C 1 3 \Q!
01320*
CU'0«
ci:«c*
Cl * "C<
C134CC
>. i f L I
HINT U ILA1!(.\ dlvl SIO».
PPPLR A*- 1 L . 'C2761*.
F \V 1 RrfcPEh T T1VISION.
IKPLl-CLTPLl SECTION.
; : 1. 1 - ; CMPQl .
•.IIEC1 TAPIN ibSll.h •
SELECT TAPCT «SSIOK •
SELECT PBTOI ASS1GK '
SELECT CARCIN ASSIGN
DATA E IV1MCN.
FILE SECTION.
FO TAPIN RECORDING »OCF
i»SCll' LTILI 1 . ?tOO.
S> SC121 L1ILI T t 24GC.
s>soo9' UMT-BECOC 1*03.
•STSCC7- LKIT-RECCRC 2S40B.
F, CLCCit CCKTAIhS 120 BECCROS,
LABI! RECORDS ABE CHITTED, CAIA RECCRO IS IP.
Cl IF.
.C? HC1.
Cl IRK-hC
C^ FILLER
Cl kPH
ci PP«« nencfiNF.
C5 MP
C5 V"
C5 FHLt»
•C5 OAT
05 FILLER
05 CODE
FO TAPCT RFCOROIMG HCOE
FICTL"E XX.
PICTUBF II*).
PICTURE 5*99.
i PFf FICTUBE XXX.
PICTURE S999.
PICTURE S999.
PICTURE X(3).
PICTURE X.
PICTURE XIBI.
PICTURE X(J).
F, 8LCCX CONTAINS 120 RECORDS,
HPU RFCORCS A»f CHITTED, CtT< RECCRD IS CP.
Cl If.
C? OP1.
Cl UP 1-2
CS OP- 3
Cl OP-RPM
05 CP-HP
05 CP-VS
CS FILLER
C5 CP-2F
FO P'Ul "ftTPDINO VCOE
PICTURE XX.
PICTURE X(«l.
PICTURE S9(3I.
PICTURE S9I3I.
PICTURE S9I3I.
PIC1URE XI12).
PICTURE XU).
F.
C\?7CC L»eiL HECOFTS A(£ CHITTEOi CATA BECCRD IS PRT.
Cl!hOC
C139CC
CloOOC
C1410C
ri4?oe
'I«.3CC
(.1 * *C(
CI4-OC
C1KOC
C1470C
C14BOC
ri49oe
CISOOC
C2010C
02020C
020300
C2C«OC
Cl Phi.
C3 PBT1.
05 FILLER
OS PL1T1
OS FILLER
05 FTPK-NO
05 FIlLFk
05 PL 112
05 F 1 LLEG
05 POAY
05 FILLER
D» PLIT3
05 FILLFR
OS PFILE-NO
OS FILLER
05 P-DATE
OS F | iLEh
PICTURE >.
PICTURE >(9I.
PICTURE XX.
PICTURE XX.
PICTURE XI4I.
PICTURE XI3I.
PICTURE XX.
PICTURE X.
PICTURE XI10I.
PICTURE IUI.
PICTURE IX.
PICTLPE XX.
PICTURE IUI.
PICTURE II18I.
PICTURE XI73I.
[;•!>.«
r 2 Itol
C2U5
C77S5
C27&5
C2715
C27t5
C27«5
C2765
C77CS
C2769
C2765
C2765
C2761
C2765
C276S
C27t5
C27tS
C27t5
C2765
C2765
C276S
C2765
C2765
C2T6S
C2765
C276S
C27«5
C2765
C2765
C276S
C27*5
C2769
C276S
C276S
C2765
C2769
C2765
C2T45
C2745
C27ti
C2769
C2765
C2765
C2765
C2765
C2769
C2745
C2765
C27«9
C2745
C276S
C2769
C2769
C2C5CC
C?C6CC
C207CC
C2CBOC
C209CC
C210CC
02IIC1
021702
021303
021404
C2 1 5CS
0216CC
02170
02180
C2190<;
C219C9
02190^
0220CC
02210C
02220C
02230C
022400
C22900
022*00
022700
022800
C22901
023000
02310C
02320C
C2330C
02340C
023900
C23«00
023701
023802
C2390C
C24001
024102
024203
02430!
Q244C f
C2450?
02460S
C247C'
C2480C
G2490C
C2500C
03C10C
c:c2oc
C3C30C
C3C40C
C305C1
030602
C?C7C3
03C8CC
FC
01
c ;- oc 12 L^it
C1 r ILU-
c: F .(.»
C' FILLH
C5 HM4
Cl F1LLF"
T-..!: "ill.
PICU'c J.
PIClLtE 9151.
FICTL.E »x.
rICILFE »(li).
FICU-E M110I.
CA«C|N FFCCKOlr.G »>^CP F, PiCtK CCNT4INS 60 tmsCTEr',,
LAoEL
CPC.
C3 C-1BK-DA)
C? RPflC
C3 HUCOEC
CFCCCDS ASF cn'Tfr. c«i« BECCFC is CBC.
PICTURE 1(3).
PIC1LBE x.
PICTURE 99999.
C3 FILLER PICTLPf X.
03 M-TRK-DAY
03 FILLER
C: OPT-HP
C3 FILLER
PICTLRE x.
PICTLBE X.
PICTL'E >.
PICTLBE XI67).
UQRKIKG-STORAGE SECTICK.
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
Cl
Cl
Cl
LIT1 PICTURE
LII2 PICTLRE
LI13 PICTLRE
LIT4A PICTLRE
LIT4B PICTURE
LIT4C PICTURE
LIT40 PICTLRE
Z-REC-COLNT
ZCOLNT
W-«EC-CCLNT
G-HEC-COLUT
SKIP
Fl«!T-Sk
HTRK-NC
R-REC-COUNT
END- SI.
F-CClNT
ZCNT
HDAt
A
DIP
JC-CNT
M-ICCLM
IP-PEC
Z-BEC
SH
HCA1E
HCLC-REC.
C3 FILLER
c: HRPN
C3 HHP
C3 HVS
C! HDATA
C3 FILLER
H-1RR-0»>.
C? MT1
C2 HOI
I-EAC-CC.
XI5I VALLF "TRUCK1.
XOI VALLE >C«t'.
X(*l VALUE "FILF*.
XC15I VALUE 'KECCRDS READ •.
XI1SI VALUE 'RECCROS kRITTEK*.
X(15I VALUE 'GCCC RECORCS '.
XI1S) VALUE 'ZERC RECCRCS '.
PICTURE 915) VALUE ZERC.
PICTURE 915) VALUE ZERC.
PICTURE 915) VALUE ZERC.
PICTURE 915) VtLUE ZERC.
PICTURE 999 CCPPLTAT ICIHL VALUE 012
FIClLBF 9 vtLUC 0.
PICTURE XX.
PICTURE 9(51 VALUE ZERC.
FICTLPF 9 VALUE ZE«C.
FICTUFE 99 VALUE 01.
PICTURE 9V19S VALUE 1.000.
PICTURE X.
PICTLBE 9(5).
FICTLRE S9I3).
PICTURE 99 VALLE ZERC.
PICTLBE 9(51 VtLUE ZERC.
PICTURE XI30I.
PICTURE XI30I.
PICTURE X VALUE '0'.
PICTLBE 1118).
PICTLRE Mtl.
FICTLRE S999.
PICTLRE S99«.
PICTLRE S999.
PICTURE KI12).
FICTLRC >I3).
PICTLBE XX.
PICTLBF I.
' '. ' t !
r ', T.f.
•:nt:
ant*.
f.nt'.
.: ?7«;
C.2 Jet
C?7t5
C27t5
C27t9
C27<5
C2765
C2765
C27«9
C2765
C2765
C2765
C2765
C276S
C2745
C2765
C27ti
C2745
C27tS
C2769
C276S
C2765
C2765
C2765
C27C
C77t5
C27t5 '
C2765
C276J
C2765
C2765
C2765
C2765
C2765
C27«S
C27t9
C2765
CJ765
CJ745
C2765
C2745
-------
5 - AVERAGE ZERO SCANS PROGRAM (cont'd)
1
ro
U)
10
1
C ••',01
C.-lCCi
.•MI;;
C ' 1 ? '! *
C.M1C*
C M*C"
C ?190(
'- - 1 607
CM70I
OM80<
f i 190S
C32CO*
C!2ieC
C32201
C!2102
C ?2*0 J
C 37)0*
C.'JtCC
C3J70C
c»2eoc
03290!
01300C
C33100
03320*
CI230C
013407
033*01
c:?tc«.
: .•• ;cc
t .- -'CC
; : . ••-• i
C3*C02
C 3*10*
?;*J"
... ..IJ-'.C CICIl.1. <(•..).
c; ' iLif •• 'Kill' H3CI.
ci f : i .
c; . r.i.
C1 CCll-*1..
C? COII-).
C9 CCll-2 PIC7LBF «.
C9 CCli HCTURE .
C7 COl*-*<.
C) MILE' PICTURE 1*51.
C9 CCL49 FICTL'F .
C; C';i*0-90 PICTUHF 1*1).
C< CC! REDEFINES C02.
d Gill PICTLRF HI30I.
C*. Cl.12 PIC1l*E XIGI.
C*. OUI3 PICUPf 1130).
PRCCECLBE CIVISION.
OPCk INPLT CARDIN. TAP1K mix DC REllftC. OUTPUT PRTOT
HCH SI-ACtS 10 PRT.
»CvC ALL *0' TO 2-REC.
KCAG-J-CABC.
SIAC CARCIIt AT FkO Gf TC EkO-JCC.
PtPFrRl* CPEIv— PPoTI KE •
"LVI !P«CE ! 10 HC4U.
FK lr f L| KKAGE .
w'Ll *GFTOAT> USING HDATE.
i' 1!' c?eci.
«l Al-.'-Tf P.
f • I. - 1 IMklGE.
:•'.. '^r-L'1 LSING >-E»D-CC.
i- ii- c;eci.
-r.r C'l?-5C TO COll-49, «CVE SFACES TC CGI 50-90.
•Ct» CC.Ll-2 TO HT1. XCVE CCL49 TC HC1.
•jfuL rni i_ 5 ir. uTtt •—tun i§r uc i*n<.a tr. i_r>«w
C1*907
C?'.OC7
04010
0*0208
C*CJO<
C4C*OC
C*050I
C*C602
C*C703
C40804
C»C90«
C*lCCt
041107
C«I20«
II i.-lm-DH Ibl • SPACE
xcvt N-1««-D»» 7C CCl*9. HC-3>1 NOT C.Utl 1C H-IPK-C«Y, CC TO J-CRRCR.
• '. .'111 T- 3P. •»!!£ CF.
•'..! "1.1? 10 OPi «P|IE CP. •
•CVf CLI> 10 OP. >Pirc C(.
»CC M.CRFL 10 R-REC-CCLk7.
If MJHP.EC • IEI>0 GC TC CHECK-FIRST.
PCttmtn SKIP-RECORDS THRU SKIP-EXIT NUPREC TIPES.
Cf 1C CfEO-FIPST.
SUP-'ECPkLS.
>E«C I>P|N *l (NO CC TC EkC-FIlE.
smp-r >n.
H»C ItPlh 41 EKO GO TC END-FILF.
If OPI-IC ' •-• »CtE '.OCt 1C tfn.
"CvE IP 10 IP-BEC.
tMEP LlkPAGE.
Ctll MR4N/' USING IP-RFC, S.I.
I' If CCfcLl.
It !*' -• :. -jvl C '• S>1, 4LC 1 TC R-REC-CCkOT.
C274S
C27ti
C27ci
C776S
C27CJ
C2765
C2765
C2765
C2765
C2765
C2745
C2T69
C2745
C2765
C2765
C276>
C2765
ADD i TC E-FEC-CCUNT. GC TC CHECK-FIRST,
C27«5
C2745
C2745
C27t5
C2745
C27t5
C274S
C276S
C27H
C2765
C2T69
C2765
C276!
C2765
C2765
C2765
C2T69
C2765
CJ765
C27CJ
C2765
C2765
C270
C2765
C2765
C276S
C27C5
C27«9
C2745
C2769 .
C2719
C2765
C276J
C276J
C2765
C2765
<)41SG«. IF IP-.fC = I-»EC
C*ltC< rL!l GO TC
C4I70C -f»0-r»PE.
C41BCC °EAC 1APIN AT EHU GC TC EKD-FIIE.
IF »P»10 " •-• HOVE CCCL 1C RfP».
Ctl'JOl l-Cv: If IP IP-REC.
C*2CO? EMiB IIM14GE.
C42103 CALL MRANZ* JSING IP-REC. SkT.
C42204 EkTFP C080L.
C4230*. PRCCE'S-R.
G4240C HCVE I 10 ENO-Sk.
042509 IF SkT - It HOVE 0 TO ShT. AOO I TO P-REC-COUNTi
04260f CO TO READ-TAPE.
C4270C IF IP-REC • 2-REC. GG 1C ACC-2-REC.
C4280C ACG 1 TG B-REC-CCIM.
04290C IF RPH IS NEGATIVE. CONFUTE RFP » HP" • -1.
04300C IF I-P IS NEGATIVE AND
OP1-HP • SPACE
COHPbTE HP . HF • -1.
G4310C IF VS IS NEGATIVE! COPPkTE VS « VS • -1.
0*320; HGVE COLI-2 TO TRK-NO.
04330C HOVE IP TO HOLD-REC. ACC 1 TC G-REC-COUNT.
043400 HOVE IP TO OP. kRITE OPt AOO 1 TC k-REC-COUNT.
043SOC GC 1C READ-TAPE.
04360C ACC-Z-REC.
04370C ADD 1 TO Z-REC-COUNT, ADD 1 TC M-ICOUHT.
041801 ICCP-BtC.
043905 ADC 1 TO R-REC-COUNT.
04400C REAC TAPIN AT END CO TC EUD-FIIE.
IF RPH10 - •-• MOVE CCOE TC RFPt.
044101 HCVE IP TO IP-REC.
044202 ENTER LINKAGE.
044103 CALL MRANZ* USING IP-REC. SkT.
044*04 ESTER COBOL.
044501 HOVE 1 TO ENO-Sk.
044607 IF SHI • It HOVE 0 TO SkT. GC TC LCCP-REC.
044TOC IF IP-REC - Z-RECi GO 1C ACC-Z-REC.
04480C AGO 1 TO R-REC-COUNT.
C44904 PROCESS-Z.
045005 HOVE MGLO-REC TO OP. HCVE '0000* TC OP-3.
09010* HGVE •00* TO OP1-2.
050200 IF RPH IS NEGkTIVEt COPPUTE RPP • RP" • -1.
IF HP IS NEGATIVE AND
OPT-HP . SPACE
CONFUTE HP • HF • -1.
09040C IF VS IS NEGATIVE. COCPL1E VS > VS • -1.
CS050C COVPLTE 4 . 2-REC-CCUKT • 1.
05C60C CCfPlTE OIF • RPH - HRFP.
OSOTOC CCNPUTE OP-RPH ROUNDED - HRPP • OIF « UCNT / Al.
etoeoc ccfPUTE OIF -HP - HHP.
C90900 COPPITE OP-HP BOUNDED ' HHF • GIF • KCNT / Al.
CilOCC CCOFITE GIF - V£ - HVS.
05110C CCKPLTE OP-tS ROUNDED ' HVS • GIF • IZCfcT / Al.
C5120C
C:I3CC
MRITE OPi ADO 1 TC i-REC-CCLM,
ACC-I 1C tCGtNT.
ADC 1.000 TC JCNT.
C276!
C276*.
C2765
C27«5
C2765
C27«5
C27AS
C2769
C27«5
C2765
C2765
C2765
C2765
C2T49
C27A5
C2769
C2745
C2769
C2T69
C2T69
C2765
C2T69
C2T6S
C27tS
C2165
C2765
C2765
C276J'
C2T65
C276S
C276!
C2765
C2T65
C2765
C276S
C2765
C2765
C2765
C2765
C276!
C2765
C27«5
C27A5
C2765
C276!
C2745
C27t5
L2769
-------
5 - AVERAGE ZERO SCANS PROGRAM (cont'd)
I
to
OJ
05i*oc
C515CC
C'ltO!
C5170C
C51801
C51<>02
C5200C
C52ici
052202
052303
OS240C
C5250C
C5260!
05270C
C5280C
05290C
CS300C
05310C
C5320C
OS330C
C5340C
C5350C
C534CC
05370C
053800
C5390C
CS'iOOC
C5410?
C5420C
C5430C
C5^60C
054705
C54806
C5A907
05500C
CeClOC
C6C?Oi
CtC30£
C6C<.CC
ctcsci
C60602
CtCTO?
C6CBOC
C60<50C
CtlCOC
if /r.nuNT - /-REC-CCUM, GC TC FINI-Z, ELSF c-c TO PROCESS-/.
F IM-^.
"CVE CQL1-2 TO TOK-NU.
MCVE IP 10 HCLC-RFC, MCVE IP 1C CP, hPITE CP.
ATL I TO h-RFC-CCUNT , HCVE l.OOC TC ZCNT.
ACC 1 TO G-REC-CCUNT, *CVK ZERCS TC Z-PEC-CCUM.
M!-)VE ZERCS TL /COUNT, GC TC REAC-TAFE.
J-ERRCR.
DISPLAY 'NO HATCH - JOE CANCELEC* UFCM CCNSCLE.
STOP RIN.
PRIN1-OLT.
MOVE SPACES fO PRT , WRITE FPT AFTER AOVANCIFiC 0.
MCVE SPACES TO PKT.
MCVE LIT1 TO PLIT1, KnvE HTRK-NC TC FTPK-NC.
MOVE LIT2 TO PLIT2, HCVf HOAY TC PCAY.
MC\iE LIT2 TO PLIT3, fCVE F-CCL^T TC PFILE-NC.
HOVE HDATE TO P-DATE, kRITE PRT AFTER ACV/hCINC 2.
MCVfc SPACES'TO PRT, MOVE LIT4/S TC PLIT.-REC-COt^T FRCf ^•-REC-COU^T .
SUcHFACT H-zr.PUNT FPCH H-ZCCUNT.
SLPlhACT ZCOUNT FRCM ZCCUNT, SUBTRACT JC-CNT FROM JC-CNT.
MCVE l.CCO TO 2CNT.
ACC 1 TO F-COUNT.
CLC5B 7APGT hITH NC
GO TC RtAO-J-CARD.
OPEN OlTPUT TAPOT hITH hC PFhlNT.
EKTER LINKAGF.
CALL 'NOTPMK- USING SKIP.
CNTEt- rceOL.
FNC-jre.
CLOSt TAPIN bITH NO REUINC, FPTTT, CARCIN.
S1CF PLN.
C2765
C2765
C27t5
C2765
C2765
C27ei
C27t5
C?765
C276S
C2765
C2765
C2765
C27t5
C2765
C2765
C2765
C2765
C2765
C2T6S
C2765
C2765
C276S
C2765
C276S
C2765
C2765
C276J
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C2765
C276E
C2765
C2765
-------
5 - AVEPAGE ZERO SCANS PROGRAM (cont'd)
// E»FC
TrtANZ
G01
SETSM
TABLE
1ITLC
PPIM
JTABT
'SIMP
NOGEN
iONtS
CAT*1
// EXEC
RhCR
ST"
L
L
TRT
BNZ
oc
LM
BR
KVI
e
CC
CC
CC
CC
CC
OC
CC
END
14, 12, 12113)
e,4in
C«3C, 51, TABLE
SETS*.
14,12.12113)
1^
CIM.C*!'
coi
RCCM
RCCB
CO
ICX'CC*
6X«FF»
ICX'OC1
22X»FF»
10X*00*
tX»FF»
ASSEMBLY
TITLE 'READ
PRIhT NCGEN
START
CSING
i BO CHARACTER
STH
L
LA
EXCP
HA IT
MVC
LM
Bit
CCh
CCB
OS
END
14,12.12(131
2, C(l>
l.RCCB
(1)
(1)
C
-------
6 - PRINT ZERO DISTRIBUTION SUMMARY - PUNCH ES CARD FOR CALIBRATION
I
to
u>
II 1 ill. A!
CAL «9,BlYiOU
XVI CC.17
MVC PR15I t *C" TRUCH*
HVC PR<6l2liTl
"VC PCIRKiTl
•vc IRK.TI
•VC PB«10I3I ,-C'OA»»
•VC PRiI«llliTI»*e
•VC PCC4Vtll*40
•VC C£Y,T1»46
• VL PRCSII1I ,04TE
BAL "S..LST
«C PC.PP
• vi cc.<;
8>L »9,BilS011
BAL R4.RStS01l
5P4CE
B41 R9,RSrS011
AP RC i *P* 1 '
BAL R9fbLST]
CLC MIJI.-C'OC-
BE PR«17(5J./C
BAl R9iklil
AP IG.GC
A2791
A7791
A2 791
A2191
42191
42191
42191
A 2 141
42191
42141
42141
42141
42191
A2791
42741
A279I
A2741
42141
42141
42741
42741
42191
42141
42141
42141
42141
42141
42141
42711
42741
42191
42141
42191
42141
42141
42141
42191
42141
42^41
42141
42791
42141
42111
42711
42711
. 42141
42141
42141
' 42141
42141
42141
42141
42141
C2C4C
C2C1G
020CO
C2C1C
02CtC
C2C40
C2100
G2110
C2I20
02130
C2140
C2190
02UOCLP
02110
02110
C2140
022CO
02210CAOO
02220CNTCR?
C2230
C2240
C229Q
02260
02210
022 BO
02«fl
C2300
02310SH
02320
02110
C2340fOJ
023SO
023P<1*
SPACE 2
CP ZCi-P'O'
BE CNTGRP
LA R2.CN1S
LA R3.CBS
CP ZC.OIL'CSJ.IH)
Bl C400
LA R2.L'CNT5IR2I
L4 R3.L>CRS|R3I
8 - CLP
AP OIL*CNTS,R2I>-P>1<
E0t< •
SPACE 2
I4P GC.-P'D"
Z4P £CtHP*Ov
CLI OV.O
BE S>
•VI CCtl'SB*
BAl R4.HLST
HVI CC.4
B 400C
B EOJ1
SPACE
HVI Sk42
I4P Alifl
B CKOK
EQl •
OP CVB.N/
ZAP A2.CVBUI
601 •
n i f r* 9 14
L'l 1 u * 3 1 1 7
01 T/»3.IS
01 NG«3il9
CI Ni»3,lS
42111
427S1
42791
42141
42141
42191
42191
42141
42191
42141
42191
42141
42141
47141
42141
42141
4,2141
42141
42141
42141
42141
42741
42791
42141
42191
42141
42141
42111
42141
42141
42141
42711
Mill
42111
42141
42141
42141
42141
42141
42191
42141
42191
42791
42141
42741
42141
42791
42741
42791
42141
42141
42191
42141
42141
42141
42191
-------
6 - PRINT ZERO DISTRIBUTION SUMMARY (cont'd)
I
ro
OJ
c.M .;
:*lio
c;i20
cine
CM4C
C1ISG
cneo
OlIK
CHIC
01140
CJ2CC
OHIO
C3220
C)?JO
£32*0
C!2iO
C32CO
0327C
cina
CS240
C3300
01310
CJ320
c:;io
01340*
OHIO*
C33tO*
C31IO
C33BC
:!390EOJ24
C««OC
CHIC
C3«20
03410
Cl«40
C341C
C!«40
03*70
C3««0
CI«4C
C2ic:
• C1C
«C20
«C1C
»l*0
4050
toto
to 10
«CBC
«04C
«ICC
• I1C
«I2C
4131
1.1*0
CM'.C
1.1 -CO, IV
Cl 4GO.1*
Cl 4/.3.IS
VNPK |»| ,«C
LNPll 1*2. 16
LkP> IK). II
LkPn ;•*.«;
UNP> {»>,Ni
UMP> IHti*b
UN» 1N1.M
•VC «(?»). 1M
e>l «4,klST
fVC P»(2»)./I«J
•*l PfiklST
•VC P"(JSI.J"3
e>i I.S,»LST
• VC I>Rie5l,J»»
(*L Dt.bLST
•we p«i25i.i>-:
B<1 P4.HLST
•VC PRIZ51.1K6
»»l l«.kl.ST
(•«( P»(25>.;«7
B*L X.UST
»P fCi-PM"
CP FC..PMJ'
. «£ EOJ2
"«l Sk>l,t«0
!P»CI >
MVI cc.j-es1
B>1 *4.kLST
1C P« ,P«
*vi cCiS
XVC PD'2611'hClliHDl
B«L Pt.kLS'
C P«,PP
VI CC.I7
VC P«>?OU*HC2I.HD2
»L Rt.klST
C PP.PR
VI CC.17
VC PR>4Bll!!.OtU
VC PP(l'M06»L'I»P«l'M06e«l'0»tl,hC(,
e»L m,»isr
•VI CC.«
1C Pit! PR
VVC »S.11H.'MC1.1'H03»I .MC3
6*1 D4,klS7
1C PlifPfl
• VC PPIL*HD««l'M04NO«EHC4Cl.li04
6«l (H.kLST
KVI CC.17
1C PR,P>
• VC PRIL'HO><2«1 'fC'.m 'MD58I ,HC1
eti PI.II.ST
11 ft, ft
<2I«1
12741
42791
• 2741
«21<1
• 2791
• 2741
12791
•Z791
»2741
42791
A27SI
42791
»2791
42741
42791
•2791
42741
42791
42791
42791
41141
42791
42791
42741
42741
42791
. 42741
42791
42791
42791
42741
42741
42741
42791
42741
•1791
42791
41791
42791
• 2791
42791
• 2791
• 2791
• 2791
• 2741
42791
4J791
• 2791
42791
• 2141
42791
• 2791
• 2191
42191
• 2791
C«160
e»i70
C4110
04190
04200
C4210
04220
C4230
042*0
0*290
C426C
0*210
04200
04290
C*!00
04310
04320
043)0
C434O
C43IO
C4I60
04370
04100
C4390
C4400
0*410
C**20
0*421
0*427
0*430
C4440
C*«SO
04460
C4«70
o*«co
0*«90
o«:oo
C9C10
c:c2o
C!C3C
c:c*o
c«cso
C'CdO
CiCTOlCOP
csceo
C5090
0:100
0:110
05120
09130
09140
C9190
05l92CPk1!k
0:i:4
- 05156
oiisestSEi
CVI CCiIJ
COM EOO,«C«1 ,P»'l
ECU [DO,tC«l,PB.12
I*P eve, it
B»L R4.CVSEC
xvc p»»i4iiBi .sec
EDI1 EOO.TJ»1,PR.»J
i«p cve.u
B4L R9.CVSEC
•«c pR**9iiai.sic
I4P CVB.Ti
•P CVB.'P'IOOOOO1
OP CVBfKC
•P CVSI«I,»P>S<
HVQ CVBI*).Cvei3l
6011 IDJ,CVB«1,P«»7C
CLI PIK7*.C* •
BNE •<«•*•«
• VI P»1*.C*.'
OC PR'lim.-C'OO-
SP4CE 2
01 »C«l'»C-l.l5
UNPK PCCNT.tC
01 TI«L'7I-I.15
kNPK Kli.Tl
•VC PCPCT.P««72
OC PCPCTI2I.-2C>C'
CLI OPRlSk«li24C
BE »«i*
B4L R9,kPCH
!P4CE 2
B41. Pt.kLSI
a. PR. PR
•vi cc,<;
• VC PML*M07liH07
B4l R«,kLST
>C PR. PR
•VI CC.17
HVC PRIL'HDBI.HOD
B4L RC.klST
14 R2.16
'.4 R1.C2S
14 Rt.CNTl
>C PH. PR
»V1 CC.17
HVC P>ll*CISI.O(R3)
HVC PR*32I«>.»>4C202C202020
F.O P«<32ltl.CIR*l
B4L Rt.kLST
L« P.J.LCNISIR«l
BC1 R2.LOOP
NCP RESET
•VI OP"Sk279I
42741
427C1
42791
42791
42741
42791
42191
42791
12741
42741
42791
42791
42191
42191
-------
6 - PRINT ZERO DISTRIBUTION SUMMARY (cont'd)
N>
00
I
c;i6C
CS17C
CllfC
c;i90
05200
C3JIO
C5220
OJ230ECJ2
05240
OHIO
052*0
Oil TO
OHIO
C5290
05300
o;:io
C!320
0!330CVSEC
OS340
C93JO
C5360
C5S70
053BO
CS390
C5400
05410'
C!420
01430
C5490
C*4tC
ci*7C
c;»«c
Ci*40
CV.JC
ctcic
ctozo
CCC3C
C6C4CC-. r;
CtC'.O
'^CeCc : 1
>.c ~T> r
C'.CsCK
Cc JCur-L
CM I'M I
CH2CI! r
Ctl?Ol '
Ctl«ChC C
c t i *c*r
celcOrl t
CdlTCt-C t
CtlBCH
CM90I-
CtiCOtCe*
C62IOC4V
SI-4CI 1
IK Tt.-P'O'
!•• 1;.'P'0>
I4P IC.-P'O*
HI M.=fC"
Iff •U.-P'O-
B NEk
(8L •
•VI CL.li
ML «9,HST
•VI PCTR».C" •
•DC PCIRK«K74I.PCIR»
B4L R9.tPCM
•VI CLPCH.IS
B4L R9.kPCM
ECJ
SPACE 2
EOL •
"P CVBi'P'O.BB1
•VC SECkm .•>'402C2C2C202C«il2020>
ED SECkl9>,CvB>4
4P CVb,*P>SO*
I've Cve,Cvf>l7>
HVC CVE.CVBI7I
JAP Ckk.CVB
OP CVB.-P14»« SECx.Cvec.1
Cl SfCH»l,24C
P-P C»6,.Pl*'3tOO'
!P Cbk.CVB
CP CVBi>PL4a60*
LNPH SEC'.CVBI^I
ifkp* src Si c vn«* t* )
r.l SEC*M.2<.C
01 4fCS.l,24C
5t k9
31-40
CC C< 41 - 30
CC C< 51 - to
CC C1 61 - 10
DC C* 11 - 100
DC C1 101 - 1000
DC c'looi - UP e
SP4CE 2
CCk 2.00.0,80
CCB SVSIPT.RCCU
OS CL6C
SPACE
DC C • •
0! CCL18
OC CLE- •
OC C- •
OC C'»>'
OC C • . •
oc (:•»«•
cc c1.1
DC (.•**•
SP4CF
OC ><4C?C2C?C?C2C>
OC f f4C2PiC2] 4B2C2C •
cc riie- •
SPACE 2
CC CIS1 •
f. Cl" •
bC CL?0* 7TT*l GCCC1
CC CIS- •
OC CL2C- 7CI4L 2EHC-
DC CLJ' •
OC CL2C- KUPBE> GCCC
CC CL5- •
cc CL2C* MI*BF> IERC
CC CL5' •
OC CL20' «VEe4GE kUP
OC CIS- •
rc CL2C* 4VEP461 KLf
CC«°E&CCKCIKG kUPEER*
1\H - SECCKCS G'CUPS
16,21,31.41-
ICCI. 9994499 •
.88
1.76
2.64
3.52
4.40
t.za - a. BO
9.68 - 13.20
14. CB - 17.60
IB. 46 - 26.40
27. 2B - 35.20
3c.ce - 44. oc
44. BB - 52. BC
53.6C - 61.60
«2.4C - 88.00
Ee.ae - BBO.OO
G0.8B - IP
GRCLFS*
GRCliFS*
Iff CCCO-
CER IFPP"
42791
42191
42791
42791
42791
42791
42791
42791
42191
A21S1
42191
42191
41191
42191
42791
42191
42791
42191
42191
42191
42791
42791
42791
42191
42191
42191
42791
47791
42791
42191
42191
42191
-42791
42791
42791
42191
42791
42791
42191
42791
• 2791
42791
• 2791
42791
42791
42791
42791
42191
42191
42191
42191
42791
42191
42191
42141
-------
6 - PRINT ZERO DISTRIBUTION SUMMARY (cont'd)
I
ro
CO
VD
C728CCVB
C72SCCV*
C7300FILEJ
07210FC
C7320CC
C733C2C
C73401G
C7-507Z
C736CNG
C737CNZ
C7380KC
C7390AG
C74CC0Z
07410CC
07420PR
C7«3CSS
C74<«OPCTRK
C7450PCOAY
C7460
07A70PCCNT
C7480
C7490PCTZ
C7500
C8010PCPC1
C8C20
C8C30
G8C40
08C50hPCh
08C60ULST
08070RSYSC11
C8C80
C8C9071
C8100
PH'O*
PL*»0»
PL^'O*
PLA'O*
CI D
D! D
DC
CC
DC
CC
DC
CC
DC
DC PL'i'O'
CC PL*'0«
DC PL«'0»
DC PL^'O"
DS CL1
OS CL132
DC x«Cl« *»•
DC C'»'
CC C'>"
DC C' •
CC CL5'
CC C1 •
CC CL5'
DC C" • ' *•*•••»
CC CL5* • •»•••
DC CL56' • »**
DC C'ES» . *
LTCRG
PC R9,SYSPCH,SS,ei,CLPCH
PRTM P9 ,SYSLST,CC,133,CV,Cl,11*7200,100,56
RT R9.SYS011,Tl,Pll,3C,3eOO,ECJ,,,OsO
DROP
OS
FNC
RE
CL3C
A2791
A2791
A2791
A2791
A2791
A2791
A27S1
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
A2791
-------
6 - PRINT ZERO DISTRIBUTION SUMMARY•(cont'd)
I
o
// EIK A«Si»
ICTl
C1010BATE
C10ZOHTOA1
01010
01040
010)0
OIOTO
01000*
010*0* Rl
01100* R2
OHIO* RI
OHIO* R4
OHIO*
C11SO*
cmo*
01170*
onto*
01140*
01IOOEIP
C20IO
C2020
02030
92C40
OlVJfJO
C20M
C20TO
C20M
«2C«0
02100
02110
02120
02IJOCONEBT
0214,0
C2UO
C21CO
C21TO
C21BOCONE
C2I90
C22CO
ClCIOCPOtt
i!C2CC*6
01030CTAB
C10»C
CJCSO
cioto
C9CTC
03CBO
C1090
01100
C31IO'
0120
CJ130
011*0
031*0
CJleO
e.71.21
TITLE •CCBVERT CO«RC CtTE TC ENGLISH (EC*
ITAP.7 0
LUNG *.!»
ITU 1.4.0(13)
L 2.CI1I
CbP*G
• OATI ""/DO/IT
• OATI JAMJAR* 1. If TO 18 CHAKACTEPS
« toORR
• MIRK
L tKKAGC
CALL GETDAT. ICATEI
USES STANDARD DOS LIKKAGE
PACK CVB.OI2.lt
CVB .C«B
BCTIC ,0 •
HM .•MMO*
L* ,"
1C .OTABI1I
LA .OT*B»1I3I
"El 4.0MVE
LA 2.214.2)
CLI 3111. 24C
BE DONE
**C CI2.2I .3111
LA 2.212)
HVC 014*21 ."C*. If*
LA 2.4121
I*VC OI2.2l.ltlll
L" 1.4.01111
B* 14
•VC 3C1.2I.4I1) .
LA 2.112)
9 OONERT
«VC CIO. 21.0131
0! 0
OC f'Ct'
OC fH •JAhllASlf*
DC, >'C7'
CC CLt'FEBRUt'Y*
OC I'04«
DC CH'IURCM-
OC >*04*
CC CH'APRH-
OC »'02« •
OC CL«>NAV>
CC »'01'
OC Cl^'JUNC*
OC »*03'
OC .CLV'JULt*'
GETCAT
GET DAT
GETOAT
GFTOA1
GETCAT
GFTOAT
GETDAT
GETC»T
GETOAT
GETOAT
GETOAT
GETDAT
GETOAT
GETDAT
GETOAT
GETOAT
CETOAT
GETDAT
•GETDAT
CETOAT
GETOAT
CETOAT
GETOAT
'• 'CETOAT
CETOAT
GETOAT
• GETDAT
GETOAT
• GETOAT
CETOAT
CETDAT
GETOAT
GETOAT
CETOAT
GETOAT
GETOAT
GETOAT
GETOAT
GFTOAT
CETOAT
CETOAT
GETCAT
GETOAT
GETOAT
CETOAT
GETOAT
GFTOAT
GETOAT
«ETOAT
GETOAT
GETCAT
GETOAT
CETOAT
GETOAT
CETOAT
GETOAT
CJ17C
C518C
0319C
0401C
C4C20
C4C30
04040
C40SC
04060
04C70
C40BO
-
CC
CC
CC
CC
oc
DC
oc
oc
oc
DC
ENC
I«C5«
CL«*AUGLST<
I'CB'
•Of
«'07"
CLS'NOVEMBEP.'
>>07>
CETCAT
GETCAT
GETCAT
CFTC4T
GETCAT
GtTDAT
GETDAT
GETOAT
GETOAT
GETOAT
GETDAT
-------
6 - PRINT ZERO DISTRIBUTION.SUMMARY (cont'd)
/' fill *Mf»(L<
r. ;iAii c
• COBMlft IC/U/J7 IABCI
!'ACI
CAII IG.>
»-4
•>!
i-FoitAic
?-CAC»kAAC
O-ALL-OK.
I-EOF
TO M»0 CALL IO.UEAO.lOCICAl.rCDe.AOOBElS.LINCT|.|
E»4llF-Lt 10 k«|If OIL lOtlNIITEilOCICAlfACOIESSiLENCTM
ElAHFll TC !i«SE CALL ID.lSfNU.LGtlCAl.lKDICATHt
lunrti 10 !C»$i MO MSI HNCTH CAII it ISEHIE.LOCICAL, mc
IIANFIC TO MITE Em Ull C«LL ICiliHOf IIE.LCC1CIII
IU*flf 10 HklHO Ull IO.I»EllM).lCCIC4LI
Id IftulaO Ull lOIMUUfeUCICIll
10 roiMio tur MM cm to IMF.UCICUI
l»l>nE 10 aCCIil
LOOUC "EClil "I If tOC'. C.I CCB.
tool. CF »L»ctirh TO trr,ui
LOtOItC Fu'CIICN TC «(C(3I
HGI3I BT 4
L0»0|l« (CCI4I >I1H »Ct». CF FUNC BOUTINE
T»FF|C (IT
10
II
12
11
14
IS
1*
IT
II
I*
to
21
21
I>
2*
IS
26
IT
21
2»
10
91
12
II
14
31
It
97
it
It
4C
41
42
44
III
110
111
112
CON I
IOC
CCN1
HEM
CCkl
CCB2
CC.J
ccei
CC
oc
cc
cc
cc
oc
oc
cc
cc
SPACE
oc
cc
SPACE
CC
cc
oc
DC
CC
C!
cc
cc
oc
cc
cc
cc
cc
DC
CCk
CC
cc
cc
DC
CC
CC
cc
oc
cc
CCk
cc
OC
CC
DC •
•OC
CC
cc
oc
cc
Ml*
614IIF.AOI
AL4lkHI TCI
M.4I!EN»I
AL4IENDFILEI
ALA IRCklNOI
AL 41 UNLOAD)
AL4IFSFI
AL4IBSF 1
FM*
F'C
A14ICCB1I
AL4ICCB2I
A14ICCB1I
Alt(CC84l
AL«(C»5I
CO
U2*C'
••(CCC-
»LJ'C'
AL1III
'ECOO*
Ili'C*
AHIU
AL1IJI
Ill'C-
ALllCCkJI
H-I'C"
AlllCI
RESIOLAl CCIM
CODFUNICATICk! BT
cs» sTAiis CITES
LOCICAl Lkll 1C.
CO AOC*ES!
STATIS a«TF
CSK CCk IOOESS
.C
ft
5*
»
»*
>4
1*
St
91
6«
61
••1
61
6f
TC
TI
rz
Tl
?4
If
TC
»T
76
TC
ec
«J
(4
16
Cl
t<
4C
-------
6 - PRINT ZERO DISTRIBUTION SUMMARY (cont'd)
I
to
**
ro
I
LC» J
CCf*
11.4
CCB4 .
CCK5
KIAO
FCRHO
CoAOCR
EltCl
•
CC.
CC
CC
oc
CC
CC
CC
CC
oc
CC
CC.
oc
DC
CC
oc
CC
CC
oc
oc
oc
CCk
L
CLI
•E •
• VI
a
• VI
• VC
L
MVC
CLI
• VC
am
• VI
I
MVC
XVI
L
All
s
SI
• VC
11
;vc
BtGIN
Cll
BNC
TK
BO
SVC
••(C'.C.x'CC-
•li'C-
>>CCOC-
•IJ'C'
• LI 111
Al 1 ( * 1
XLI'C1
Aimckti
Ill'C1
ALSICI
t'CC'.C.i'OC'
lll'O1
1 • |000>
*Cl'
FOB HO
UIM.x-OC*
CKAOOR
16151, x-02-
1713, !l. 1311)
7.ICI1I
2K3.5I.1I2)
1 £1 51 , X >OC *
REG3.1CI5I
EIEC1
REGS. 1*00*
?.»EG3
REC3i20l 91
«EG3,I«00>
3.REC1
?,3
7.COKI
7.REC3
17I3.5I,REG3>
1.5
C
CMAHCt
ltl5li>'lF*
RE TURK
2111. >*80*
• •6
7
.C
,
.C
.0
AODR. CF HOPE TO RECI2I.
FOIMJIE
BACkkARO REAC
FOUIIARC RCAC
DATA AODR. 10 CCk.
•DOS. OF DATA LENGTh TO REGI2I.
DATA LEkGlh 10 CCk.
1
ADOR. CF CCB TO REGI1I
•
CHANCE KAOE 10/16/72 IABC)
TC ISSLE kAIT II-HECUTEIY
AFIER kBITf TtPEHARK
46
47
49
100
101
102
101
104
101
106
107
loa
no
in
112
113
'114
119
lit
117
118
lit
120
121
122
12J
124
12!
126
127
12B
121
134
CNO Ct-lNCE
•
• RITE
.
REUINC
.
UNLOtC
.
FSF
.
BSF
.
ENCFILE
.
SENSE
cueust
HKC
t
'F
e RETURN
PVC 1713. 5), Sill 0<1« AQCR. TC CCk
L ?. 12111 40DP. CF CAIA LENGTF TO REGI2I.
-vr 2113.51,1121 C,«T» LEKCTh 1C CCk.
HVI UC5I.X-C1- kl>17E CCCE 1C CCk.
B EXEC1
MVI UI5),X'07' RE k I NO CCCE 70 CCk.
•VI 23ISJ.«'Ol> LENGTH CF 1 TC CCk.
B EXEC1
•VI ltlSli>'OF<
•VI 2315), »'C1'
B EIEC1
•VI ItlfliU'lF1
•VI 23'01*
B EIEC1
•VI 16151, X'ZF1
HVI 23151, X'Ol'
t EXEC1
• VI ItlSI.XMF- TAPE »ARK CCCE TC CCk.
HVI 23)!>,1>C1< IENG1H CF 1 1C CCk.
B EXEC1
L .6111 Add*. CF IKCICATCR IN PEGI6I
LR .!
Til ISI.X'Cl* LMI EtCEFTIC*
BC ,"«C
L ,CCM
SI ,C«I
B ETLRN
SR ,2
;T .del
L ,<«I13)
TM lll.X'BC'
BO ETURN
L iCCI ADDR OF CCk
L> .4121
L 2.CI2I
MVC FFF«2(2I,OI!I
E. 2. FFF
L 1,12111
SI 2, Cll)
B RETURN
DC F ' C '
END
13!
IK
117
13*
lit
14C
141
142
143
14«
144
146
1*7
14«
14f
150
151
152
153
154
155
116
157
ISt
15?
UC
161
1*2
it;
1«4
16!
166
167
ue
161
17C
174
IT:
180
181
112
111
184
its
lit
117
1B6
184
190
191
192
193
-------
7 - LOAD CALIBRATION DATA PROGRAM
// .-tl'l
1' Tl
C 1 C *C
titf.
CICtO
(1(>C
CllCC
euoo
C11IG
ciuc
Ollll
oiiii
CIIIOtTAPI
ClltC
C1I!G
CII60
euro
OHIO
CII90
C1200
C1210
01210
CI2JO
01140
C1210
onto
CI2JC
C12IO
cme
C130C
CIJ03
cllioatc
(.132:
ci:ie
CI340
CIMC
ClJt-
C137C
ci ??r
r | T"»C
CUCu
C1-.20
CI«)C
C1440
oi*;o
Cl«tC
Cl«7fl
Cl««C
Cl 49C
CHOC
C20IC
C2C2C
t. 71.21
I .. | M KCOt N
nut • EPA LCAO cii c»cs
«T«»1 «*2IOCt
FslEI> 1*12
l!ING 1I.«11
CC»«G
HVC OAlEiOimi
• VC lPSISk.2111111
BAL Af.aSfSlPT
HVC COH.CD
BAL R9ihSvSC12
BAL «9.RSVSall
HVC CCI30I.I1
BAL R9tASVS011
HVC CD«10llOltTl
BAL P.9.ISVS011
HVC CO«6C(30I,11
HVC THIO.CD
HVC OAt.CD'tB
BAL HSiOVFl
HVC PBI8CI.CO
BAL RftkSTSLST
HVC T2.CO
BAL «f.kS>S012
• VC T2.COOC
BAl •> 5 • bSvSCl 2
• Vf. T2tCU*6C
bAL x^ibSVSOI2
• vc coieoi.cot-
BAL i=,''StllPl
>C Pt.PD
•VI CC ,5
HVC ppieoi.co
HI It.klvSLST
• VC 12.CD
bAL R4tk&VSC12
.-VC 12.CD-30
BAl '?.»StS012
l-vC 12,CD«6C
cii c»!cJ
BE ««e
BAL FStHVFl
Cll CC.C1*1
BE COP1
CIC LAS7.-C1"'
BE C«3
CIC IA<1..C' 3-
BE C«*
CLC IAS1.-C1 •,'
ftf CHS
S»«-»Lt CJI» I20210ieC'
A2B9S
A2J95
A2C95
A2C4!
• 2O;
A2C9!
A2C95
C2C?:
C2C«,C
C2c;o
C2CtC
C2C7C
CiHC
CJlfC
C2UC
02ITOCK3
C2IBC
C2I90
C220C
C2J-0
C2220C««.
C2230
C2240
C2210
C2260
r227CC«5
C22BO
C2290
C2300
o;;io
C2320CRCR
C2320
C2340
C2HO
C236C
G2370CKES "
02360
C23SC
CJ'CC
C2«1C
C?«20
C20C
C2««0t«""
C2««C
C7460
c;«ic
C2»ec
C2*9CC«Hf
CiiOO •
C3CIO
C7C2C
03C30
C3C4CCKIK, .
C3C9C Ct
C3C40
C3C70
C1CKO
C3C5C
C3ICC
"LI LJ'.I.-C' i1
BF C'C1
Cl- L •.!!.=£ 'L:<
3f. >'.«:'.
r\.<. L«S71.C"S1
.-f CHI"
CIC. lASIi-C'"1
ii C»"i
CIC lASI.-C'f*'
te cue"*
e CJKCSi
SPACE
Cll CD'79.20
ONE CANCEL
fVC LASJ.-C' 3"
t »C'.EPT
SPACE
CLI CD.7«,2H
Ml CANCEL
HVC LASI.-C* <••
B ACCEPT
SPACE
CLI CO«7S,2«5
BKE CANCEL
HVC LASI.-C* S1
B ACCEPT
SPACE
CLC CD«78(2I,-C
b«.r CANCEL
••VC lAST.-C'GI1
fc ACCEPT
!PACE
CIC CD»7d(2l,-C
et ACCEPT
cii co«78c;i,=r.
PKE CAKCfll
••VC LAET.-C'ES1
t tCCEPT
JPACf
CLC '.0<7Di:i.>C
BK'E CANCFl
KVC LiSl.-C'KP'
t ACCEPT
SPACE
CIC CL>78(2I,«C
EKE CAKCEl
fVC LAST.'C*H>*
e ACCFPT
SPACF
cic cc.7,m,.c
ACCEPT
CLC co»7o(ri,-'-
tk, CANCEL
HV(. LiOTt'C'Pi1
e ACCEPT
SPAC!-
• 7ES!
A?ES!
Gl"
A2C9!
A2«;
A2E
-------
7 - LOAD CALIBRATION DATA (cont'd)
N)
it*
•t»
I
" 1 > .
.' ! 1 ? .
i .' 1 *ta4C'_ • :' '
' : 1 • '.
".-I?;
:>itc
r 5 1 "iCfp'
C!?OC
C321C
C!22C
C!?3C
C3?4C
CS25C
C12tt
0327C
C!2»C
CJ29C
CMOO
C33IO
C33IC
CJ3JO
CJJ40
01330DROP
e«*o
CJJ7C
•'??6C
( 3?%C
CJ40C
C!*IC
1 J*?C
•' ' * 3 b
??44C
CS4»:
CJ*tO»lAPI
.3470
C34PC
C3*SC
CI100
C4C10
C4C2C
•C4C10
C4C4G
•I 4 c 5 "
£4CbCCA'jCfL
C4C70.KDTP
C4C60
C4C9C
C4IOO
C4I10
C4110
:4iso
'
1 »l
CIC
: = *'.!
€ tL
CIC
(•Kr
»VC
PVI
1C
BAL
.**•» I L
'- ' C F p T
•
u in ii .cc
->::
?
•
Ll'l.-C'H,'
'C4KCEL
LAST. -£••••
CC.27
PR. PR
P^.hSVSLST
A2C9t>
4269 \
A2fc9ft
4?C95
lllli
42feS*
42E95
4269!
42695.
42695
A26$S
A2C9S
A2E9S
• !P»CF .- 42E9S
If
82
MVI
P^I
"VC
HVC
BAL .
LO
. »C
BAl'-
"vC
841
•• VC
•BAL •
*VC
BAL'
BCT
'.1 eCt
^C
b4i
B»t-
OH.
ftr
"lit
".1
-l.r
4i-.
!*AL
6C.
h .
. " V 1
. BAl
C*^Cf
'VI
04 L
»c
"^1
'DAL
I)
;.NPr.
LPi I Sh. V ' P0"
A T4Pt
cc.s
PR.C"»«
PF.*1 (1311 t Pft
PR*10O2J .-CL3?«ClD CCiMACL C'T* EElliC OELETCO*
P?t hSVSLSV
t 2 .'7
PR. PR . -
R9.RSYSOU
«HI30»,11
B^tRSvSOll
!1»>«3CljCt iTJ
•*1««PSVSOJ 1
-•- «b01 30 1 tTl
? S » » 5 T '. 1 SI
R?tOFCP
;?
?- .P»
1't- 1 «)i* SI SI
*S * P Sy &01 1
^S»»-^Tf SiSH
PCMP«P«1<
I2fTl-
1212). "C'CO*
*• 1C
/C M . rP* i *
»•** »i*£t iCli
nCNT.*0"!1
- TAP!
C L SY&L SI *1S
*V*I>STSISI
L
CL.15
»S«hSVS012
Pk.PR
CC.17
r.9.iiSVSLST
ktMtL'RCM-J.IS.
P4I1I.RCM '.
A269E
42695
A2ECS
A2E9"
42895
47895
A2E9!
A2£9£
A2E9S
A289E
A269S
A289S
42S9S
4289J
A2695
A269S
A2895
42695
A2B9*
•'A7695
A2C9*
42695
>2C9!
42(95
A269J
4289£
A269S
A2E9f
42695 '
A2B95t
42695
4269S
A2E9!
A2695
42695
42P95
C4DC
C4I6C
C4170
C41BC
• C42CC
C4210
C4220 •
C4230
C424C
C4256'
0426C
04263
G4267
C427C
C4280-
C42900VFL
' 0*300
' 04310.
C4320.
C4330
04340
043SO
C4360
C4S70
04360
04340
C4400:
04410
C4420
C4430-
C4440 '
04450'
C4460EOJ
C4470
C44SC.
C4490
C45CO
CSC1C
C5C10
OJC20
C5C3CLAS1
C5C40C»lt
C5C50IKIC
C5C60C4Y
OSC7CCVH
OSOBOCC
C9090RCNT
CSlOObCNT
CS1102CNJ .
C512CECO
C5130
C514C
C51SC
C5UORJYSIPT
I«VC PR»9I2VI .-Cl.2i "EfCkCS fe«C'
841 ftS.wSYbLSl
CI KNKL'/CkT-! •!>
L.'.'PK PRI7).<(NT
PVl FK>«I2SI.-C12S'II-PC ktCCRCS CK CbTPUT*
r.I .CM'L'fcCH-l ,15
LNK PM7l,fcCNT
HVC PR»9l2S>.-CL25>RECCPOi kRITTEN*
84 L R9.WSY5LST
21P .CCNT.-P'C*
/AP /CNI.-P'O*
2AP kCNT.'P'O*
HAL R9.RSYSIPT
HVC CDI-.CO
B E14P2
SPACE 2
HVI CC.S'BB*
LR . RO.R9
BAL «9ikSYSLST
'1C- PR. PR
HVI CC.9-
NVC- PR'OOISt.'C'TRUCK*
HVC PR«06(2I,1K|D
NVC' PfttlOOIt-C'OAV
HVC- PR»050I8)',DATE
BAl Rf.bSYSLSf
«C ' PR-.PR '
BAL R9.fcSYSLST
'LR ' R9VRO
HVI OV.C
BP~- R9
'SPACE -2
ECL ' •
HVI .-CC.X'BB'
BAL R9,kSYSLST
«VI. CLSYSLST.15
EAL fcS.hSYSLST
kTK SY5C12
B!P SYSC12
ec-j
CC C'»»«
DS -CL8
CI CL2
'OS CLI
CS D
EC' CISC' •
CC PL4«0«
OC PL4«0« •
DC PL-4'0' .
CLI CC,C«»«
if. EGJ
b CANCEL
L1COG.
. RC R9.SYSIPt,CO,ECO
42E91
A2FS*
esf<;:
42695
A269!
1 A2C9!
A2891
A26
-------
I
10
7 - LOAD CALIBRATION DATA PROGRAM (cont'd)
05I70LPSIS*
0518CCC
C51SOPS
05IS5CCH
C5200KSrSlST
05210RSVSC11
C5220MSYSC12
C52JOBLFF
CI2AO
CS2SCT1
05260T2
05270
c:
cs
o<
OS
01
OS
CCM
OS
OS
END
CL1
CL1
CL132
CLEC
R9.SYSLST,CCtl33.CV,ClSVSlST.ei,FF,100i36
P«;,SVSOn,Tl,PM,3C,3tCO,EKCTF,,.0,0
KS,SVS012,T2,(!lC,3C,3eCO,CL,ShBLK,,0,0
CL1
24CCL30
24CCL3C
42895
42895
42895
A2895
A289!
4289'
4?895
A269S
A269S
A2895
A28S5
A2895
Ul
-------
8 - TRANSLATE AND EDIT PROGRAM
// txc urtins
COKPCS /CLl/ CLTOfF. IB, «VSf'
C0«lf>. ICIIOCI
"fit II ,CC,E>>0'«9I IREC. KFIlf .CtlCFF
i: ICLICir .EC. 0.01 CC TC 2CC
CO ICC IfllE > 1, RFIIE
C»ll OPSTSI'ICAC'.'CALIBI •)
DO 1C I • 1. 100
ICIII • C
CONTINLE
Call AitSedf UE.IREC)
COMTINLE
STOP
FOPMT i;i;,F;.9,2l»i
lOR'Al (•1CUICFF RATE IS ECUAl
•RUE 13,811
REAC il.801 IREC
CO TO iCl
EMC
10
ICO •
9«
1C
II
2CO
ici
a\
I
BGOI7B96
ROOT2B«t
ICFF, LH. KVSF POOT28St
Rccuatt
ROOT2B4C
ROOT2B9O
ROOT2a*9t
RCCT289t
HOOT2B9A
« 0012*96
ROOT2B9c
IEFC-.////I RCDT2I96
ROOT2J96
ROOT289C
RDOT2896
ROOT2Ma
"
f
ii ttit AjiEK
ICIl
cieio' PPIH
CI0202t96
cicjctxtt'
C1C«0
C10SO
cioao
C1G70
C1C30
C1090
01100
OHIO
01120*
OHIO*
01140*
OHIO*
01160*
01 no*
oiiao
.en 90
01 100 -
01210
C1120
01230
01240
OHIO
C126C
CIZ80
01290
C1300
OHIO*
01320
C13JO
.01340
01390
C1260
OI3TG
C1380
01340
01400
01410
C1420
C1«SO
01*40
• .01490
01440
C147O
C1480
C1490
t.71.21
1 KCGEN
TITLE *£P« CCNVERT Ctt C1T1
MAPI
Mr 14,12.121111
ENTER R12.R7
LStNG TliRIO
L51HG 72.R11
LSI KG COHHON.FB
ST. R13.UV13
L Ra.-AICORRCNI
• 11 RIJ,-9t>'0«
NAIK LINE PASSES PAPAPETEP
PJPAPE1EI
LH R2.R3.0IA1)
L RO.OIR2I
CVD RO.CVB
2AP FILE, CVB
L RO,0(R)I
CVD .RO.CVB
IAP REC3.CVB
;8)AL R9,hSVS012
L -lll.'VICtTI
f R1.BIR1I
CM. R1.'H>2'
NVI VSlOSk.O
PVI RIllCKiO
COHRC
KVC HOL4.0IR1I
fVI CCfI'68'
BAL RS.IiSYSLST
BAL R9.RSTSIN
1C PR, PR
«VC PRI10I.T1
b»L P9,RS»SIN
HVC PR. 301301 ,TI
BAl R9,«STSIK
»>C PR.tO(30).Tl
Hue 12. PR
B4L RS,»SXSOU
MVC T2,PR»«0
Ml B?,kS«OlZ
PVC IRICIO.PR
•VC TR«D»»,PP.«»B
MVC HDll.TRHO
IIVC HCL2.TRKOM
fVC. HDL3.PR*47
•»I • CC,«
BAL Rf.kSVSLST
T4FES I202IOABC*
1 • FILE MIPtE*
2 '« IrUNCER RECCRCS TC CHECK
FCR PACMIIIE MLFUKTION
SHOULC APPRC«m«TE 1 NIN
Mttt
»2«9t
»2f9»
»2I96
*2«96
Htli
tint
»J(9t
»2«9t
»2»96
• 2*9e
»ze9t
•2«9t
<2B9C
»2«96
12896
42896
42I9C
42l«e
42896
42896
A269C
*2B«a
«2(9(
4289t
»2««6
»2«9t
*2«96
•2B9t
A2B9C
»289t
A269C
-------
8 - TRANSLATE AND EDIT PROGRAM (cont'd)
CI'OO*
C20IC*
C201C
120*0
C20IC
C20M>
02010
oieio
02C40
01100
OHIO
OJI20
02130
Cll«o
02110
021*0
C2ITO
C2240
C2230*
022*0*
C2210
022*0
02290
02100 .
onto*
. 0»tO»
1 OJ110*
ro 021*01 PI
,r». 021JO
, C2140
•J 021 re
1 023*0
02190
02400
C2410
02420
C2430
024*0*
C2«JO*
C2*60»
C?«TC*
02*«0
C?«90
C2*00
C3010PPM.OEO
C1C20
01030*
. 010*0*
01C10*
03C40
01010
01010*
01090*
CJ100"
OHIO
*E*C CONTROL CIOO 1
«>l RO.RSYSIk
•VC COI30I.I1
BAL *9.RSYSIk
• VC CDOOI3CI,1l
1*1 Rt.RSVSIk
•VC CD*«OI30».T1
•VC T2.CO
Btl R4.MYS01!
•VC T2.CO**0
•Al (t.kS'SOl]
1C PI. PI
•VI CC.«
1AL >9,liSYSlSl
P.VC PRI90I.CO
1AL 19.kSVSLSI
DC CO.-BOC'O-
STORE CONTSMTI IN CO>PCk FCP LITE* USE
It P.4.0 R9 • 1 THRU «. IUSCO *S INCE
1* R2.1 LIRII ICCP TC HUlHIHi OP 6
11 Rl.CORPH
•3 • CUMEHT ERTRY III CIIO AMI
fOR* I1IIYYYY nan . .C1UAL RHI
YYYY > CAIIKATIOR) RE1C
PICK CV1.0I*.R3)
CP CV(.-P*9«49> CHECI PCP HIT EWTRY |*
IT tPMlMO
Cv» RI.CV1
SI R1.PARK1
PICK CVO.tM.RII
CVB ll.CVk
SI R|,P4RP2
Al- BS.'H'l*
«1 R4.SIA
IDRPP> IS SUBROUTINE 1C CCkvElT TC FLOIYIKC
AND STORE IN CCPPCk FCt LATER USE
CALL LOAPH.(P*RPl .FARH2 .Slk.TAVI
LA R3.4IH1I
KT R2.1P1
Egi •
SPACE
li!ES MLMS FROR CMO 1 TC 00 LEAST SQUARE
CILl tSMT.ICM.CM.llI.CMNU.IAII
SPACE 1
CONVERT AHljIERT TEMEAATURE RECOHO
SAL *«.RIYSm
11
HUES
CA«C
POINT
FIT
tieot
tit<,t
*2<9C
*21«t
*2B9t
*2ei«
• 2I9«
*2B9t
*219*
*»«<
*Z*9<
• 1191
A2191
*219<
AII9I
AZ094
»219»
•2191
• *219<
*2B9t
*2«9«
• 2894
*219t
*2I9«
«2I9«
*Z19*
*2»9t
*Z196
*2*9«
»2B9»
>2I9(
«ZI9<
*Z19*
I2B91
>289t
I2E9*
*2B9<
*ZI9t
12896
V<9«
*Z19t
»2»96
*Z19t
• 219«
*2t9*
C3I20
C'130
DlltO
03150
C3160
031 TO
01100
OHIO
03700
01210
03220
03210
03240
03290
03260
C32TO
01210
01290
01100
OHIO
01320*
01J10*
G3140*
01390
OHIO
0)170
01380
C3390
C1400
01410
01420
01*10
C1440
01490
03*60
034TO
03*10
01490
C*C60
0*.OTO
0*010
C*090
C4100
0*11C
04120
C4110
041*0
0*190
0*1*0
0*170
0*110
04190
04200
04210
04(20
KtC COI3CI.M
6«l Hf.HStSIN
«VC CO«JOI301.I1
1>L CH.RSYSlf,
MtC CO. 601301. Tl
»VC CO<:il29l.-40C< •
PVC T2.CO
III *.f,kSYS012
MVC I2.CO»«0
8U R9,*STS012
CLI CTRPM.C*-*
BNE *»*«6
H>I CI«P«»l.>CTKf'»Z-llllt.t«
CLI CTIPB1.C'-'
ONE «»»»6
mul CIHPS2»lICT»Pe2-llll."C<
RVC CTHP42-1.CTPPI2
•VC C1MPB2-ltCTHP12
FIC«I CTNPA1 ,T.liCPTPP»
FLC«I CTNPBIiT.liCPTPPB
!P*CE 2
RFAO aND STO'E C*RC 9 VIII 1 111
OIL R9fRSTSIII
«VC COI30I.11
BIL R9.1STSIK
«VC CO*10I10I»T1
BIL CV.RSVSIk
H(C CO'tOOOl.Ti
MVC 12, CD
Bil R9,kSVS012
*VC T2.CO»*0
B*l R9.bSVS012
>C PR. PR
•VI CC,9
BIL R9.kSrSlST
HtC PRI90I.CO
BIL R9.»SYSIST
PICK CVB.C5CPK
CVB Rl.CVB
51 NI.PMH1
PACK CVB.CSRO
CiB Rl.CVB
ST R1.PA9M2
SPICE
PICI t«B,CMlOCl
01 CVB»T,l!
HP r.VB.-PMOOOO- SHIFT
CVB Rl.CVB
PICK CVB.CH10C2
01 CVB.T.II
CV1 R19.CVE
*• RI.R19
SI R1.PARP3
SP*CE
J"
J>
ES
EEC 1 Ml
*2I«C
*ZB9e
*?I9(
*2t9t
4219C
*2I9«
12196
*2I9«
*Z19*
*2996
*ZI96
*zn«
A2I96
*ZKt
»2194
*Zt9«
»ZI9»
42896
AZM6
*2I9«
*Z>9»
*2I9C
*219*
MBit
Ate*)*
»289t
»289t
*Z196
*Jt9t
»2«9»
AZI9*
»289«
42)96
»2»96
AZ19«
A2I4*
A2I4C
*2>96
»2B96
A2196
12896
A2846
12896
*2««t
*2(9C
12894
*Z19«
• 2196
*Z(46
*ZI9t
1ZI91
12196
»2«96
-------
8 - TRANSLATE AND EDIT PROGRAM (cont'd)
04? 1C
c*?»c
C42SO
COtO
C*?1C
C*t(C
C«?90C.CPV.
C*!00
C4»|0
04310
£4710
£4540
COM
Ct *fcO
C4*TC
C45P.O
C*J9C '
C4*CC
' C4MO
CU70BCA.1A
C**SO
. 05020
09010
CSC40
05C90
C5060
1 CtCIO- '
|SJ C5140* •
.^ CMiCV.
T* C5I40
CXJ . 09110- -
1 01180
. CM 90.
C9200 . .
0!2IO
05220
05*10
C9240 '
0*262
09264
0526*
0!269
CS270'
05260
09290
C5300*
05310*.
CS320* • '
C9330 .
EJ340
OSJSO
• C5960
CMT«
C13tC
(.11 L L4LC11.IPAIIH1,FAR»2>FAPP.'I|
!P*Cf
BAl R4.QVRFL
(.ILL 0>-ff.OO
HI B9.CV»Fl
!P«CI 2
EM.'- >9.>S>Slk COFt UftUSEC CALIEIJTION CAFA
•VC COUOl.tl
BAL R9.R&VSIN
M»C CD»»OI30I,T|
BAL -RSfRSVSIRj
»VC COXOI30l.il
C'H CO»T8I2I,-C'MP«
if COPV
"Vf. .72. CD
taAL R9.bSVS012
MVC T2.CO»»0
BAL R9.hSTS012
Cl! 'CO.C'*'
BNE COPV
SPACE. 2
.•'BAL^T ~R4«RtSVS|k
AP vt«RECNT . BP* I9
«VC • 72,-tOC1-*
•MVC - TRKI02.TDKI01
OC HRIUI.-BOC'O*
MVC HR2|HR1
-PVC ' HN2.MM1
SPACE 2
CCNVERT CHANNELS a- AMI 4 ic FLOATING PCINT
PACK 'CVB. CH81
CVB Rl.CVB
ST Rl .PARN1
PACR-CVB.CH9I .
01. CVB'7.13
CVB -P1.CVB
ST R1.PARM2
CALL CFLOAT. 1 FARMl .PAPF31
MVC CHB2.PARM!
CLC TRKIOl.-C'OO*
BNE •««»6
AP ERCHT.-PM'
SPACE 2 '
MVC CH42tPARP4
1C PR. PR • .
MVC PRMOI30I.T1
CONVERT CHANNELS- 1.4.9.*. AND 7 TO BINARY
PACK CVB.RPM1 CHANNEL 3
CV8 Rl.CVB
SI R1.PARN1 '
PACK CVB.LFI CHANNEL 4
CVO Pl'.CVB
!T R1.PARM2
A?€9t
A289t
A2894
A2B4«
A2896
A284C
A2(9t
A2894
A2B96
A269t
A2(9t
A2(9C
A2 (9£
A2C96
A2896
42 896
A2E96
•2896
42896
A2(9t
A2896
• 289*
A2I96
•2696
A284C
•2696
A2B96
A 2 816
A2846
A.2646
.A2896 .
A2844.
A2644
42(94
A2B46
A289A '
•2696
A2B46
A2B96
A2896
A2896
•2896
•284*
•2896
•2*1*
•289*
•289* '
•284* .
•269*'
•284*
*2<16
A2816 .
•2616
CS210
C5«00
C9410
C5420
C'OO.
0*44C
05*50-
C9460
0547C
03480
05*90
09900
C6C10
KILLCK
C6C20
CtCJO
06040
VSlCSfc
f
C609C*
C6C60*
06070*
06C80*
ceoio*
06100CATA1
C6I10 '
CC120 -
06130 '
06140DATA2
06158* '
06160*
9«170*.
0*1 BO*
GtlSO-
CS200 •
•06210-
06220CATA>
0«23C>
06240*
• 06250*
C6270
06280
C6290
06300CATA4
06310
0*320*
. 06330* '
06340*
0*350*
• 0*3*0*
0*3TC
CtSBO
PACIC cva.vsi ci-tKNEi ;
CVB Rl.CVb
»1
B DATA1
CP CVBi-P*5>
tH ••«•*
1C PARM3r.PARP3 2ERC CK 5
- JE^
CHECK RPM FOR NO CHANCE IN 9 MINUTES
IF SO. MALFUNCTION IN EOlilPKEHT (DATA IS
CLC .PARH1.LSTRPP.
BE OUPRPM ' '
MVC LSTRPH'.PARPl
IAP RPPJCNT.-P'O*
CLC PARM2.LSTLF
'
CHECH LOAD FACTOR FCR kC CHARGE IN 5 MINUTES
IF
-------
8 - TRANSLATE AND EDIT PROGRAM (cont'd)
I
tsj
*..
C4J90
c*4co
0»»IO
Ct* 'CkCC 1C
C6««0
C»*«
onto
CIOIO
C7CJO
C7CSO
criiocuP
C7I20
OHIO
CJI40
cmo
CJI60
Clllfl
CIHO
C1190
C1200
OT110
CT220
C7210DI|PHPN1
0?I40 '
012JO
07J400UPIF
OTJ'O
•12BO
01290
0300
CT1IO
C7J20
CT1IO
C?>40
01190
onto
C1J10
o>3BaotPLFi
C1400
01'lOCtPV!
CT420
C14JO
CT440
C74JC
07*60
C7»7C
C1400
C7490
CT *00
cioioctPtsi
CQ02C
cieie
OC040
•
•11
IN
II
BAl
e
SPACI
AP
etc
BE
ClC
BE
CP
SI
HVI
Ml
HVI
KVC
B*l
c«u
if
B
AP
CLC
BE
ClC
lit
CP
Bl
• VI
BAl
• VI
• VC
BAl
EUL
B
AP
CV.C
BE
CP
ei
• VI
BAl
• VI
•vc
EOU
i4p
B
•PACE
IFI.PABPl
>S;.PAHPB
tll.fMKI
POAIIOtPABPC
Dl^kSIIOlI
ov.l»
• DATA
•fiOwiri
• DATA
I
• PICNT..PM'
PHKI..F-0'
ObPP-P^I
P«H»}.-F41l3CI.-Cl9C>Ol.PllC»«•!. -f«0"
C\.PIFI
LFCHI.Hf.C5
OAtAI
CCtl*
m ,»$»sis7
cc>«
P««»2I30I,-C13CICUP4.IC CIMITES*
niikStSlSI
•
DATA 3
vSCHIi***!'
H««3,-f -C1
DUPvil
VSCHT.IEC9
DATA4
CC.I«
• 9.kS*U.ST
CC i«
P*«42I10I.-C13C>OUPIIC«1E VS FOR 9 PIMITES'
•
vSCMt "P'O*
DATA4
;
A2I96
A2I«t
A2B96
A204t
A2B44
A2(«4
A2I96
A2B9C
A26SC
A2»t
A2<«(
tjeit
A2e«e
A2C9C
A2E9t
A?«9«
A2B9«
AI>9t
A2B9C
A2B9A
A269i
A2(9t
A2B9t
A2B96
A2696
A2B96
A2C94
*2(96
A2<9«
AJ894
A2B96
A2B96
A2»9»
A2B96
A.2B4C
A2H96
A2896
A2B96
A.2894. •
A2B9t
A2C9«
A2B44
A2C94
A2l9t
A2696
A2B9«
A2>9«
A2B9C
A>69«
A2896
A2B^t
AJ«9t
A2I9C
CeCfCDVDFL
C<060
CB010
cecto
CA100
CII10
0*120
CB130
01140
01190
OII'O
CI170
caieo
cai90kSYSCi2
062CC»!YSIN
0«2IObSTSLSI
C<220
ce;ooECF
C9UIC
0902C
C9030 •
09C40
09C50
09040
C90TO
09010
C9090
09 ICO
09110
09120
09130
09140
0*190
09160
09110
091 BO
09190
09200
09210
09220
09230
09240
09290
092AO
09290HOL
09300
09310K1I. I
09320
C9330F012
C9340
Q43SOHCL 3
auto
C43TQ^CL4
C93(C
09I90PEC1
SI K5.CH.
•C P«,P«
•VI CC.>'SB>
•VI CC.27
BAl ^9..S>SlHtll.HDl
BAl «1.kS»SLSl
•VI OViC
L »1,CVB
6R R4
SPACE 2
kl P.9,STS012.T2.tll.40.10BOO.ClSfS012.SH(L>..0,0
>T «;.S1SOll.Tl.PlC,3C.JtCC.ECF.,tC.O
PHI B1.^»SLST,CC,133.CV.:ii^L:T
SPACE 2
ESI •
XVI CC.I'SB-
BAl Rt.bmiSI
•VI CC.t
>c P«,PR
01 FlLE'l'FIlc-1,15
UNPI PDIIOI.FIIE
•vc pRimii.-c'FiiE kc*
BAL •9>>S>SLS1
01 «ECNT»L«l)£CNI-lil9
LNPK PBI 101 iRECNT
•VC P«»12(12I.-C'HECC»CS >EAC<
BAL R9,tSVSLSI
01 E«CHI.L'f«Cm-l,li
tNPK PRI10I.ERCN1
•VC P*«12litl.-C'{E«C RECCRCS PROCCISEC'
BAL «9i»SYSlSl
•VI CC,»'8B-
BAl R9,VSTSLS1
•VI CLSYS012.19
BAL R9.HSYS012
HVI CLSISLSItlS
BAL R^i hSVSLST
L R11.SAV13
LH R1496
A2(9«
A2J94
*219«
A2I96
A2B96
42096
A2896
A219C
A2I9C
A2696
A2B96
A2«96
UI9*
A2«94
A.2B96
A2<94
A2B96
A.2B96
A2«96
A2B9C
•i!4«
A2I96
A2I96
A2«9«
A269*.
«2B9*
A2I9A
A2<9«
A2B96
A2I96
A2894
42«96
A2B9t
-------
8 - TRANSLATE AND EDIT PROGRAM (cont'd)
C<«OCfllt
C9*10»KN1
T4*20f RCftl
C9*jCBPtC *
C««40*!C«
09«»OIK«
C94601S1I •
C9OOL £11
C9*BOlSlt
C9490
09UOPUS7
10010
10020
IOC30
10C40P4M1
100SOP4RM2
10060PHR3
10B70P4RN4
ioaaop4R»g
10090P4RIK.
lOlOOPARHl
10110P4RKI
10IZOPARM
10130P4RH4
IOI40PMM
101MPARPC
10160
10170CC
lotaocoi
1 I0190C02
' I0200C01
M 10210CD4
Ul 10JIOCOA
O 10Z10CTR.U0
| I0240C1
1 IOMOC1R*
I0260COAT
I02TOCNP
10280CCRPK
I0290CMIOC1
10300CHIOC2
10310C9HPI-
10320CfRC
lOJHClMPAl
10J4K1HPA2
10310C1MPB1
10160C1NPB2
10310
10300SAV1*
10390
lfl«OOC»B
104101RKIO
104201RKG4T
10430CC
10440PR
DS Pit
DC Plt'O'
OC Pl«'0'
OC Plt'O*
OC H.4'0'
DC
DC
DC
OC
SP4CE
OC
OC
DC
OC
DC
C!
CS
OS
CS
CS
0!
05
OS
CS
OS
OS
OS
14*0"
*0"
• gi
•0*
IP4RH1 ,P4>»2 tPIBM ,P4RM • P4RH9 1
1 P4RN6 .P4RHT ,P«R P8 . P4P.P9 , P6PP« 1
(P4RHai
>80*
L3IP4RNCI
SP4CE
OS OC190
DS OCLl
OS OC12
0! OCL3
0! OC14
OS KlIO
EOt CDt
EOL COL 79
EIL C02
EOt C01.2
EOU COI<3
IOC CD«»
EOU C03.ll
EOV CD«.|9
EUb C02.4
COL C03.1
EOl CD«» 13
EOU COS.18
EOL C0»» 22
E«U C01.27
OS C190
OS P
SP4CE
OS 0
01 C12
DS Cll
os en
IIS CLlll
42896
A 2 896
42894
42896
A2896
A2a94
A289C
• 2896
42896
Azna
42896
42894
42896
A2B96
A2896
A 2 896
4.2896
A2896
A2896
A2BSC
A2B96
A2694
42694
&2t96
At896
81896
iZ896
12896
42896
42896
42896
42696
42896
A2896
A2A96
At 896
A2896
A2696
A2896
A2896
42896
A 2 896
A2E96
AZ896
42896
A2B96
AZ696
' 42696
42896
A2896
A2696
A2B96
10490
10460
10*10
1046011
10490112
10900113
1I010C41IRO
I1010CALP1
1I030CRPH
11040CLF
I1090CVS
I10601RKIC1
1IOTOI-RI
llCBO'lll
1101CCH1
lllOOCKSl
11110RPH1
1I1201F1
11130»
1I430CM4J
11*40CHO»CJ
11490CM1NP6
11460CK1HPB
11*70
L10RG
DROP R12
OROP
DS
0!
Oi
EO.U
EOl
ECl
EOl,
eei
601
EOl
EOl
EOl
EOl
E«l
EOl
EGL
EOl
EOl
Ffil
0!
OS
05
OS
DS
05
E91
EOl
EBli
EQU
EOl
E3L
E9k
EOl
EOL
EOl
Egi
05
CO
EOL
OS
0!
CS
0!
o:
DS
DS
DS
as
END
Rl
OCL30
OCIZ
OC13
113.27
11Z.2
113.6
Tll.9
113.12
112
112.2
112.4
113.21
113.24
113.6
113.9
113.12
113.19
113.18.
113.27
240TL30
CC140
OCLl
OCL2
OCL6
OCL3
122
122.2
122*4
121.4
124*28
124*12
T24.36
124.12
T24.lt
124*20
T24.24
94CCL40
•
F«6"
SE'O.O-
6F
F
f
f
f
I
47P9*
• 2196
«2W6
42894
»269t
42896
42894
4Z896
>289t
42894
42194
42896
42894
4? 894
12(94
42896
.<•*•
42894
42C96
>Z8
-------
8 - TRANSLATE AND EDIT PROGRAM (cont'd)
a E»tc FrcpiBih
// FfC IDlC-f
:i«:«riiii>i cult
;. CU' SRI C11C1111F. r
rn»»ci /en/ CLIIFF. in. «VSF
N)
Ul
»l»ltli 1. B. lit CH10FI
NSIO «l»l. Mil. ITflll,
1P»1, 1P«[
tltljl
*/
VHMIBLES
[111 til /ICCC.O/
SlOSli CCMOCl CAPO 1 VIOHCIES l» 1>P«TS
EN1PV ICBP" IIIIRP».KIV11|NO*,V|
BP>IM!>I • FlCllliavlL) / D<1
i moil • HIRPP
CO 10 -fS^
C11CUL1TES CCKVEHSICk MCtCP
•HIGH CCNVEMS C114 REiCIOG! 1C SPEED
FNIPT C1LC1S IMPH, II
•• • NP»
1«0 • FLCillKCDI / 0OCI XII • I.C
UfPEMluRC
tl?l • 1»< • IFlCtTIHTEIIII / Oil • TKK
CO 1C "•<•
CIIP.
c*ie i
Ctlft 6
OIB 1
C»LB
C»LB
C»L6
C»IB
oie
01.0
C«LB
ctin
OIB
1C
11
12
11
1*
IS
16
17
IB
19
CM.B
C«LB
CtlB 2C
C«IB 21
CllB 22
C«LB
CllB
C*IB
C«lfl
OIB
CtlB IB
C«LB.
CllB 30
CJIB
CllB
CllB
CllB
CllB
CllB
CUB
CllB
29
2t
27
11
1!
14
le
11
II
CllB
CllB
CllB
101
102
USING 0111 SHPrC FCCP 1BC>: SbEDCLMkES
CCN«ECTS CHIkkElS 3. ». 4>C »
EMPV CC1T1 IPRPP^FlfRSV.ICPI ,KTRF i
I 0»t'. OLF. OvS, OBI. OlPf. >F11C.
FLCItlPPPPI / OIL
PP • « • »> • B
l • i* • 11
PP> • IPPK
IF l«v!F .£(.. 1
1 IFL1C .01.
.OP..
Cl DVS • DVS • ChlOF
OIF • FLCMIKFll / 0*1
Fli ICLE ikO STOP COKOITICkS
IF IO*FP .11. ICC.01 CC TO 1CI
IF ICRPr .11. CliTOFFI CC 1C 1C2
IF IC«! .11. C.JI GO 1C 101
CO 10 1C]
CSPr . C.C
CONIINlE
CVS • C.C
CONIINlE
PvP.il • C.C
IF IOV< .Cl. C.OI P.VB1T ' C'PK / OVS
CH1NNCLS fc » 7
.1NO.
.1NO.
.INC.
OUT . C.C
IF (Kill .CE. -45C
I KP1 .LE.-I9CI
I OP1 • I.C
IF (KR1 .CE. -JC
1 Kill -LE.!0)
I OBI • 2.C
IF |M1 .CE. ISO
I Kit .IF-.tSO)
1 D'T • 3.C
OTRF . C-0
IF IHTBf.CS. -tjr.
I HIRF.LE.-eSCl
1 D1RF. 1.0
IF IKTRF.tE. -90
1 11P.F.LE.SOI
1 01«F. 2.C
IF IKIP.F.GE. no
I KllF.LE.1SOI
1 0'B.F- I.C
GO 10 "'
.INC.
-4NO.
.INC.
»INT our viRueics in COBPCN
C1LB 41
CUB 44
CUB 4!
c«ie 4t
cue 47
CllB 44
CUB 9C
CUB 91
CUB 52
C1LB SI
C1LB S4
C1LB
CUB
CUB
CUB
CllB
CUB
CllB
CllB
C1LB
MLB
CllB 60
C1LB 61
cue 6i
CUB 6)
MLB 64
MLB 69
CUB 66
MLB 67
MLB 6B
CUB 6«
CllB TO
CUB 71
CM.3 T2
CUB II
CUB '/«
CUB TS
CUB T6
CUB TT
CUB IB
CUB 7»
CUB BO
MLB Bl
CUB SI
C1LB Bl
C1LO B4
CUB B9
CUB BB
-------
>8 - TRANSLATE AND EDIT PROGRAM (cont'd)
C INSERTED AJ -* BEGUCGING AIC OMY CALB 87
C . CALB 88
ENTRY CCFCCH . CALB 89
taRME I2.82» CALB 9C
oo eC3 J • ii KSIH CALB 91
603 WRITE I3t90) J. C3RPMIJ), RPMJI CALB 92
• WRITE (3f85l A, 9 CALB 93
WRITE (3feSI AS CALB 94
LMSb • LCh
IF ILH .EO. I) LhSM = HIGH
WRITE (3*911 LhSht CUTOFF
IF IKVSF .EC. 1) WRITE O.S2I
IF IKVSF .EC. 21 WRITE C3t«31
CO TO <9« CALB 95
BC FORMAT (•!•! CALB 96.
82 FORHAT I'OCARO 3 VARIABLES*t . CALB 97
84 FORMAT (• '. 15. 3F15.5) • CALB 98
89 FORMAT 1*0*. «A«».F20.3.5X, 'B-S F20.3I CALB 9«
,W FORMAT CO*. •A5«»,F20.3I CALB 100
90 FORMAT (• '.13. 2F10.3) CALB 101
91 FORMAT <*G VALVE CLOSED READIM IS ».A4, /,
1 .'0 RF^. I OLE CUTOFF IS*»fl0.3l . '
92 FORMAT (*9 VEHICLE BOOST VALUE IS BEING APPLIED TC. ALL. RECORDS1.!
93 FORMAT I'0 CHANNEL 10 IS BEING USED TC CHECK ZEROVEHICLE SPEED*I
END CALB 102
r
10
U7
to
I
-------
8 - TRANSLATE AND EDIT PROGRAM (cont'd)
LflC K.B.C.D.t.F.G)
» »,B,C.O,E.f.G
f'. UM;
'•il
Fit.i.Sill
I
to
Ul
CJ
I
II E»EC
soenouilNC LSFIT n,b,r,,t,i>
CIMENSICK Mil. Till
CAIA PRCC y'LSFI'/ •
c
c
c
c
c
N • NUPBCR
> • VOL1AGE
V • RPP
!M«Y > C.C
snx • C.C
SHY - C.C
!-*>2 « C.C
ca ice « •
XI . «l*l
>Y • vm
SHXY • £pxv
C<)< PC
II N
til*
rv
Six
100
!!>>
JO
SH>2
CONTINIE
Jtl • N • JPXf - SMX • SPY
tZ m H • JNIIj> - SNX • SK
4 • C
IF 1*2 .NE. C.OI » • *1 I A2
f • ISPY - • • S««l / N
C41L DBC(PROC,'S«»Y'. SP.SP«.'SP» '.SKY I
C*li oeoiPROC.'SKxz- .scjz.'xi •,««,'YY <.YYI
CALL CBCIPROC.**! '.»Ii '*2 ',tl,'t •,«!
CALL OBCIPR06.*B <.B.> >,C.O.> • .0.01
RETURN
END
IJFII
LSFIT
LSFIT
ISFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
L JFIT
LSFIT
LSFIT
LSFIT
LSFIT
LSFIT
LJF1T
-------
9 - MODE PROFILE PROGRAM
I
I/I
// IAIC
CIOIO
CI020
CIC.'O
CIC»0
01CSO
C1DCC
C1C70
cicac
Cll°0
nice
CHIC
C1I2C
cn:c
CIUC
C1I5C
ClltO
C117C
:uao
C1I10
ciioo
:i2ic
01220
01230
C1240
C12!0
OK 60
cu-ic
ci2ac
C1210
(i; U»IT-(ECC°C 1*03.
SELECT IAPIN ASSIGN 'StSOll* LTIIIK 2*OC.
SELECT TAPOT ASSIGN *SVS012* LTIIITI 2«OG.
SELECT SPOOL ASSIGN •SVS013* LTIUTt 2*00.
DATA CIVISION.
'lir !(C>IO>|.
Fl P>1'
'ECORDING HODE F. LABEL RECCPDS CKITTEC,
DA1A RECCRD PRT.
Cl pal.
Cl CL PICTURE >.
C) PRT1 PICTURE 1181).
C7 PPT2 PICTURE (ISO).
FC 'APIN
RECCROING "OCC F, LABEL RECCRC! CKIITEC.
BLCO CONTAINS 90 RECQRLS, RECCRC CCNTAINS *0 CHARACTERS.
• CA1A RECORD TAPIh-BEC.
Cl TAPIH-REC.
Cl FILLER PICTURE HI40I.
>C TAPCI
BFCCPtlKG OOOE f. LABEI RfCCROS CKITTECi
BLOC' CCNTAINS 131 PECCtCS RECCRC CCNTAINS 20 CHARACTERS
CATA RECCRD TAPOT-BEC.
Cl 1APCI-REC.
11 r-F*CCE PICTU'F 9"iV9S.
Cl .'".C
C 1250
C 1 ?6C
CIIIC
:i3tc
' 1 ?TO
'.1*00
CI*IO
CI42C
CK3C
Cl««0
C1-.50 >L
CI'OC
C7
C7
r?
C7
C7
Cl
C7
C-F«COCI CCOEFINFS C-FPCUE.
1* c-PFP PICILFE «.
1* 0-SFP PICTLRE V99.
C-THOUE PIC'U*E 99V99.
^-lll". HCTU«E SI7IV»9, COPLItTIOHAL-!.
C-FRE-. PICTUFE Sllil CCP IUTAI IC.KAL- •.
FILLEF PICIUBF ««.
O-FLACS PICTURE >.
C-FLAC PICTL'E >.
SFCCL RtCUKQING 'COE F,
LA3EL RECCRDS OIT1EC.
CHIC
CMCC
C2CIC
C2c:c
!2CJC
clCCi CCNTAINS !0 RECCRCS.
BFCOfiP CCMAINS 131 CHARACTERS.
DA1A "fCCBO IS SFCCL-CUT.
••CCL-OUT.
Cl SPUOL-CC PICTIRE I.
CJ SPUOl-l»A«,t PIC'l'E 1I13J).
C?e3l
C2631
C2631
C2«31
C2631
C2k31
CJ631
CJ631
C2631
C2C31
C2631
C2t31
C2C31
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2«31
C2631
C2C31
C2631
C?t31
C263I
C2631
C2131
C7031
C2C31
C?631
C2631
CiCSO nn»ING-SIORAGt !
C2C31
C2«31
C2631
C2631
C2«31
C2«31
C2631
C2631
C263I
C2631
C2631
C263I
C2C*0
C2C70
C2C80
C2090
02100
C2110
C2I20
C2110
C21*0
C2150
C2140
C2IIO
C2180
02190
C2200
C2210
C2220
32230
022*0
C2250
C22«0
02270
C22IO
02290
02300
02310
02320
02330
02340
02390
02 3 tO
C237Q
02380
02390
02400
02*10
02*20
C2430
C2440
02490
024«0
C2470
C2*eo
C2490
02)00
C3C10
C3C20
C3C30
030*0
03090
C3060
C3070
C3CIO
C30SO
CJ100
CMIO
01 HF.A
07
Cl
07
C7
Cl
C7
C7
Cl HEA
07
C7
C7
C7
07
07
C7
C7
07
07
C7
Cl
C7
07
C-l.
FILLER PICTURE
FILLED PICTURE 11221
FILLER PICTURE II2II
Hll-CME PICTURE 11191
FILL?* PICTLRE
FILLER PICTURE
HOI-PACE "ICTLRE
C-?.
FILLER PICTLRE
FILLER PICTLRE
FILLER FICTLRE
FILLER PICTtRE
FILLER PICTtRE
FILLER PICTURE Kit)
FILLER PICTURE Mil
FILLER PICTUR? XI7)
FILLER PICTURE 1181
FILLER PICTURE Iff)
FILLER PICTURE 1112)
FILLER PICTLRE >I4I
FILLER PICTURE 116)
FILLER PICTURE l*l VALUE TCOE*.
VALLE SPACE.
VALUE "SPEED '.
VALU't -SFEEO >.
VAILE -SFEED '.
VALUE •CHANGE *.
VALUE 'INTENSITY '.
VALUE 'MCCE*.
VALUE SPACE.
VALUE •HCRSEPCNE'" .
01 HEAO-2C.
C7
07
07
07
C7
Cl
07
07
C7
FILLER PICTURE KI3BI
FILLER PICTURE MS)
FILLER PICTtRE 117)
FILLER PICTURE 1181
FILLER PICTURE M7I
FILLER PICTURE 1(1*1
FILLER PICTURE 'ICTuBE «.
DT-HOOE-CU»1Y FEDEFIDE
1* OT-HOOE9 PICTLRE
14 FILLER PICTLRE
14 DT-PJOOE99 PICTURE
FILLER PICTURE
DT-MOOED PICTLRE
S 0<--»C3E.
S91.
I.
SV99.
It VALUE •-• .
'(1*1.
FILLER PICTURE » VALUE SFACE.
Dt-|l»-5PO PICTURE
FILLER PICTURE
DT-FN-SPC PICTURE
FILLER PICTLRE
— -•9.
>l*l VALUE SPACE.
.9.
»• VALUE SPACE.
C2O1
C2631
C261I
C2t31
C2«31
C2&31
C2A31
Cl«31
C243I
C2631
C2»31
C2C31
C2t31
C2«ll
C2»3I
C2631
C2«31
C2«3I
C26M
C263I
C2631
C2t31
C2«31
C2t21
C2631
C2«3I
C2C31
C2«31
C2t3l
C2631
C2«3I
C262I
C2631
C2«31
C2CII
C2t31
C2631
C263I
C2«31
C2631
C2631
C2t31
C2131
C2631
C2«3I
C2S3I
C26?l
C2631
C2C31
C2«31
C?b31
C2671
C2t31
C2C31
C26!l
-------
9 - MODE PROFILE ' (cont'd)
i
10
Ul
en
I
cine
C3110
03140
01190
CM«0
C3IIC
C3IBO
CM90
03200
C32IC
C3230
C1290C
c;?60
C32IC
C*2(C
C1290C
C3IOOC
C3JIOC
0??20C
0!!10C
C1340
G3190
C1340
C31TO
C13BO
03190
C1400
C14IC
C3420
0143L
C1440
C1490
C14tC
C147C
01410
C1490
C1400
C4CIO
C4020
C4030
C4C40
CtC*-0
C4C6C
C4C7C
C4060
C40-IO
C4ICC
C4110
en 20
(41 1C
Cl Ol-O-SPC 1ICTUPE .9.
Cl MILE* (IC1LRE >lll IALUE SPACE.
Cl DT-RAir-CM RICIbRE .9.
Cl OI-IRAIE-CH RfDEFIkFS OT-Hlt-Cf PICTURE 1191.
C7 FIllFI PICTIRE II4-I VALUf SFACE .
C7 UT-IMLNSI'V PICTL'C .9.
LI OT-.IMENSITY REDEFIkES CI-lf'.NSITT PICTURE 1191.
ci FILLER PICILPE «<6i VALL; SFACF.
07 OT-TH PICTIRE 99.
Cl OT-PU PICTURE >i VALUE '.'.
C7 1T-I" PICTURE «9.
C7 FULIR PICTURE 1. VALUE '.'.
Cl OT-1S PICTLRE 99.
Cl MILF« PICTURE lilt VALUE SPACE.
Cl O'-MP PICTURE I. tit. III. 99.
Cl OT-HPl REDEFINES OI-HP tICTURE 11121.
ci FILLIP PICTURE 1121 VALLE SPACE.
Cl OI-IERO PICTLPE 1141.
Cl FILLER PICTURE Illl VALUE SPACE.
07 GT-REC° PICTURE 9191 VALUE IERC.
Cl FIlLEk PICTURE » VALLE SFACE.
Cl DT-AkECP PICTURE «ISI VALLE JERC.
EIO-IY-BYTES.
Cl EICHTV-OUNHV.
C7
Cl
Cl
Cl
6Y1ES-1-40 PICTURE 11*01.
BTTES-41-ec FICTURE .
N-CITY PICTURE .
N-MP-TRB PICTURE .
M-FuEl PICTURE . '
•-•EIGHT PICTURE I.
•-LICENSE PICTURE 111.
H-INO PICTLFE I.
PI-ENGINE PICTURE 1101.
"-SfPIAl PICTURE IIOI.
N-NDATS PICTURE .
•-DAT FICTURE .
H-CI-IBENT tCDEFII.ES E!Sh t-CUPNV.
IRn-OT-l FICTLRE >ll«l CCCUPS * TINES.
«-TE»PE«ATURF 'ECtFlkES E 1GHT Y-OU'PT .
FILLER PICTLRE «i»i.
FIllE" FICTLPE M4II.
IRK-VCI PICTLFE I.
FILLER PICTLPt I.
1BK-*C2 PICILkF 999.
Fllll" P1CH.RI >I24I.
T««-CO-IYP FICTURE >I2I.
»-GeA2-RAHC RfOfFISFS E IGHT V-CUPHT.
>lllI4I.
lln-GFAP PICTURE S9.
FILlFh PICTLRr >.
TRk-KVl PICTLUE S9I4I.
FILLER PICTLRE >.
C2t31
C2t31
C263I
C26I1
C2631
C2631
C2C3I
C263I
C2631
C2631
C26J1
C263I
C2«ll
C2631
C26M
C2631
C2631
C2631
C2611
C263I
C26S1
C2631
C2611
C2631
C2611
C263I
C2631
C2631
C2611
CZ611
C263I
C2411
C263I
C2631
C2611
C2611
C263I
C2611
C26II
C2631
C263I
C2631
C2631
C2»3I
C2611
C2631
C2tll
C2631
C2611
C2611
CJ63I
C4I40
C4160 Cl
04170
. C4I90
C4140
04200
04210
04220
04210
C4240
C4290
C4240
C4210
C42IO
C4290
04300
04310
04!2U
04310
04340 01
04390
C4360
04370
04310
04390
04400
C44IO
04420 Cl
04430
0*440
04490
04460
04470
04410
04490
04900
05010
09020
09C30
050*0
09090
09060
090TO
C5080
09090
09100
0911C
09120
09130
05140
CS19C
09160
09170 '
C9UO
C9190
MD!
Cl
01
C7
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
01
07
07
07
C7
HC4
Cl
Cl
07
Cl
07
Cl
CON
01
Cl
07
01
'.7
I* 1R«-PV2 PICIIRE SV999.
'FILLER PICTURE «m VALUE •
HU3-TRK-IO PICTIRE II.
FILLER PICTURE 1161 VALUE •
HC3-DAY PICTIRE I.
FILLER PICTURE 1171 VALUE •
H03-CITV • PICTIRE 1141.
FILLER PICTURE Illll VALUE •
H03-TTP PICTLRE 1.
FILLER PICTURE 11121 VALUE •
H03-FLEL PICTIRE Mil.
FILLER PICTURE 119) VALUE •
HDVkl PICTIRE II.
FILLER PICTLRE MIDI VALUE •
MD3-LICENSE PICTIRE liai.
FILLER PICILRE Illll VALUE '
1-03-INO PICTLRE II.
.
FILLER FICTURE 1114) VALUE *
HD4-EKGINE PICTIRE MIDI.
FILLER PICTURE H16I VALUE •
HO*- SERIAL PICTURE II20I.
FILLER PICTURE II19I VALUE •
HD4-NOATS PICTIiNE >.
-STANI-S.
ROOE-TCTALS CCNPuTATICkAL-3 OCCURS
14 "ODE-TOTALS2 CCCLRS 10 TIMS.
21 MT-RVREO PICTURE S9I9I.
21 NT-NT I PE PICTLRE S9I9IV99.
1« RO-TIN OCCURS 4 TINE? PICTV"
HOOE-T01ALS1 CCHPuTATir>Al-3 CCCUPS
14 NT-SFR60 PICTURE I9I9I. '
14 NT-STINE PICTURE S9I»IV99.
14 NT-FNOOE PICTURE SS9V99.
14 NT-TNOOE PICTURE S99V9C.
COXP-»-» COPPUTATIGKAL. '
1* 1 PICTURE S9I4I.
14 3 PICTURE S999 VALUE I.
14 4 PICTURE S999 VALUE 11.
14 9 PICTURE S999 VALUE 10.
14 e PICTURE S999 VALUE 9.
14 t 1 PICTURE S999 VALUE 100.
14 ig PICTURE S999 VALUE 36.
14 I« PICTURE S999 VALUE 11.
14 RILL-TN PICTURE !999 VALUE 13.
(NIT-CHECK PICTURE >,
FIRST-PRINT PICTLRF. >. V1LUE IERC.
T»L't«-'.
Oi»-'.
CITV.'.
TYPE TRUCR*'.
FUEL TTFE-'.
• EICM.'.
ItCEKSE-'.
IkCLtl'v.'.
EHCIKF -OCEL-'.
SERIAL NUPBER-
0
-------
9 - MODE PROFILE (cont'd)
c:;oc
Cf i 1 C
C572C
C1J3C
CJ24C
Ci.'iC
C»10
01280
C529O
CS300
C5310
C5I20
C5J30
C5340
Cl'SC
03360
05370
OSJfO
C5340
05400
01410
05420
05430
054*0
09450
05460
| 0*470
K , 03480
I*3 05490
UT CSSOO
in ctoio
I 06020
C6030
CcCiO
06050
C6C60
CtOlO
c«cec
0604C
:cioo
CtllC
C6120 01
C6130
06140
06150
C6160
C6170
CtlfC
06190
t620C
C621C
CC220
'.6230
C6240
Cl
Cl
C7
Cl
Cl
07
07
Cl
C7
07
07
07
C7
07
07
C7
07
07
07
07
C7
07
01
01
Cl
Cl
07
C7
CCM
C7
01
Cl
Cl
01
Cl
10- Skill* PICTLPE >i VAH.C IESC.
fCk-s«rTC" HCTHE >. VALVE ii'i.
i IR!l-Sk|TC» P|CU»E > VALLF ll'C.
VC- SklTC" FICU»E ». vAUF •"'.
N-OESC PIC USE M14I.
MOIO-NCDE PICTLRE » VALUE IERC.
SLB-DOOE PICTLRE 19.
SUB-NODE- 1 PICTURE V99 REDEFINES SUE-PCCE.
NEk-HODE PICTURE S9V99 . CCPFUTAT ItfcAl-3.
•001 PICTLRE 59V49 COPKT IT ICk Al- !.
LA*T-NCO> PICTURE «V99 CCPFUTATICItAL-!
VALUE 01.00.
H-TINE PIC1URE S"i<7lk99 CCPCLIATICNAL-3 .
SF-CNO PICTURE 9151 VA1LE lift..
LINCNT PICTURE S999 CCNPLTATI CNAL-3 VALUE 998
COW— 3— 3 CCCPUTATICKAL-'.
4 LOOK-AHEAD PICTURE S999, VALUE IERC.
* FORCE-ACC PICTURE S999. VALUE IERC.
4 FORCE-DEC PICTURE S999, VALUE 2ERC.
4 SUO-VC PICTURE S4ISI VALUE ItBC.
EC-LEFT PICTURE $999 CCPFL-IATICNAL-S VALUE ZERC.
•1 PICTURE S9I7I CCIFLTATICKAL-
k2 PICTURE S9I7) CCI-FLIAT ICNtl-
kl PICTURE S9I7I CCNFLTAT ICNAL-
k4 PICTURE S99V4 CCPFLTATICNAL-
TkS PICTURE S99V9 CCKPLTAT IONAL-
INTENS PICTURE 99V9 CCPPLTATICNAL-3.
01-AREC PICTURE S4ISI VALUE Iff CCrPUT AT IONAL-3.
1APC1-HOLO PIC1LRE HI20I.
1-1I.
TRAFF1C-CON01T1CN CCPFUTAI ICNAl-3 .
14 TRAF-4 PICUPE S9I7IVO9 CCCURS 3 TINES.
C-C1L "1CTUPE X.
-ST-CONP-1 COfPtlATICMl-1.
M-VS-RPC.
L'A«T-VS-»PN.
LA51-VS.
INI 7- vi.
AVC-SPEED-CHAhCE.
GEAP-RATID-MEAOER.
14 CFAK1.
14 CEAR2.
14 fiEAI3.
14 GEAR4.
14 GEARS.
C263I•
C?631
C2631
C263I
C2631
C2631
C2631
C263I
C2631
C2631
C2631
C2631
C2631
C26.ll
C2A31
C2631
C2631
C2631
C2A31
C2631
C2631
C2631
C2631
C2A3I
C2631
C2631
C2631
C2631
C2631
C2131
C2«31
C2«31
C2tll
C2631
C263I
C2631
CZe.31
C2631
C2631
C2631
C2«31
C2631
C2631
C2631
C2631
C2631
C2631
C2«ll
C2631
C2«31
C2631
C2631
C263I
C2631
C2631
Cl GEAa-RATIO-I REDEFINES SEAR-RATIC-MfADER.
CC26C
C127C
06260
CC290
C63CC 01
C63IO .
C6320
C6330
C6340
08350
06360
Cc!70
C13BG
06340
C6400
C1410
06420
06430
Ob*«0
Ct450
06*60
C647C
06*80
06490
06500
C7010
C7020
C7030
C7C40
CTOSO
C1C60
C7070 01
0708C
C7C90
C7100
07110
C7120
C7130
C7140 Cl
C7150
C1160
C7170
07180
C7140
CT2CC
OT210
OT220
C7230
07240
G7260
CT270
C7280
C7290
C730C 01
01310
C>
C-
C!
c:
C3
03
03
CC
01
07
07
li-
CI
C7
C7
01
07
r.7
Cl
Cl
C7
Cl
01
01
TA
02
14 GEAR-RATIO CCCtRS 5 TIDES.
AN8IENT-PLUS-F1FTY.
IABLE-1.
SH-SPO CONPUTATIOKAL-2 CCCUFS 4 TIMS.
SN-RTI OCCURS 5 TIPES CCPFUTATICMl-3.
C7 SN-RT OCCURS 3 TIPES PICTURE S4I7I.
C-1AB-2 PICTURE M300I.
C-TAB-3 REDEFINES C-TAB-2.
CT C- TABLE CCCURS 4 TIPES.
14 ST-TINE FICTLRE S49V94.
14 FN-TINE PICTURE S49V44.
14 T-NODE FICTL-RE S99V99.
14 BODED FICTLRE 1114).
14 INIT-SPO FICTUDE S999V4.
14 FIN-SPD FICTUCE S994V4.
14 NIN-SPO ' PICTURE S944V9.
14 MI-SPO PICTURE S999V9.
14 REC PICTURE SM5I.
14 1-REC PICTURE I.
14 ENT-AC1 PICTURE I.
14 OEC-VC PICTUtE S9I5I CCNPUTA1 ICNAL-3
14 HP-SUN COPPUIAIICNAL-I.
.C-1AB-4 REDEFINES C-TAB-2.
07 C-1AB-5 CCCURS 4 TIPES.
21 PIILER PICTUPE «I8I.
21 PODEH PICTLRE 19.
21 NODES PICTLRE V99.
21 FILLER PICTURE >I44|.
HF-L1-2 CONPUTATICkAL-2.
BD-SPX OCCURS 10 TINES.
14 RD-SPO CCCURS 4 TIPES.
05T-1HV.
CST-Olt.
1APIN-REC.
1-IRUCK-IO PICTURE ».
1-1INE PICTURE 99V99.
T-OA> PICTURE I.
FILLEB PICTURE >.
T-RPN CCPPLTATIONAl-1.
T-LF COKPL'TAIICNAL-l.
T-VS COKPLTATICKAL-l.
T-RT COHPUTATICNAL-
T-TC COHPUTATICkAL-
T-VC CONPUTATICkAL-
T-TNP CONPUTATICNAL-
HP-RATIO COBPUTAIICdAL-
PIN-REC-SAVEO-RECOROS.
S-IAPIN-PEC CCCU«S 10 TlrES.
CI611
C26J1
C26J1
C2631
C2631
C2631
C2»l
C26JI
C2611
C2631
CM1I
C2631
C26II
CI611
C2631
C2631
C2631
C2631
C2631
C2631
C26JI
C2631
C2631
C2631
C2631
C2A11
C2631
C2431
C2631
C2631
C2631
C26M
C2631
C2631
C2631
C263I
C2631
C263I
C2631
C2631
C2631
C2H1
C2631
C26I1
C2631
C2631
12631
C2631
C2631
C2631
C2631
C2631
C.263I
C2631
C2«31
-------
9 - MODE PROFILE (cont'd)
CIIIC
C1310
Cll«0
I 1!»C
C13CC
C73IC
C73BO
C739C
C74CO
C7«IO
' C»4|0
CJ440
C74»
C74«C
C747C
C74BO
C7490
C7100
ceoio
CBC70
CtOiO
GB040
ceoo
CBC60
caoio
CBOIO
OBQ9O
| CIICO
KJ ceiio
.„ CM2S
*•* CBIJO
•>J C8140
1 c«»o
C'ltO
CM 30
CB240
[(250
CC2tO
CB270
OBI BO
CB299
ce?oc
OB'IO
t«l?0
C7 S-IBLCk-IU PICTLOE II.
Cl S-1IP* PIClLPE f9v99.
Cl 4-CA» PIC1LIE I.
Cl Sllll' PIClLkE t.
Cl S-PH- CCPPllAtlCkkl-l.
Cl S-LF COPPllAllCklL-l.
Cl S-V! CONPlllllCkAL-l.
Cl S-m CONPUlAllCkAl- .
Cl S-7C COBPVIATICkAL- .
01 S-VC COPUlAllCkAL- .
Cl S-1HP COltPUTATICNAl- .
Cl SP-B11IO COPPUlAIICkll- .
Cl CP1ICN.
Cl OP1I PIC1URE 1.
C7 CP12 PICIUHE 99999.
«-.CEC»E ClklSICN.
•CCEP1 CPllCk.
1' CPU NCI MUNEMC KOVf 999 1C CP12.
OPEk INPL1 lAPIk kllh kC BEklkD
OUIPII IkPOI. P«1F, SFCCL kllH kC PEnlkC.
EklFP LlkOCE.
' C»ll 'NOIPHk- USING KILL-IP.
Ektrt COBOL.
EkltP LINkkGE. C41L *GClDkl* V3ING HD1-CA1E*
Ekiip cceci.
EkIEP Llkkktt. Oil -SUPPS'. CklEI CCBCL.
•IVE LCk-k4lLE 10
GE»-P.kllO-HE*D[*.
-C.t (EBC 10 FCB> >0>F-MEADEB.
IF CPU • 1 CC 1C Snlf-lMIS-CF.euG.
•CVE !PEC AVBIENT-FLUS-FIFIf.
Ell-loll k!"lC VC-SlllCH.
SklP-lhlS-CEBUG.
•C»F 1 10 11.
PEP.FOII' CLttRD 10 HUES.
•C»E 1 1C II.
PEPFODK HEARS 17 1IPES.
•C«l 1EPO 10 C-TABLC-I.
•CVl IERC 10 1RAF-4 III. lR«F-« 121. IPIF-« 131.
•Ovt -SPO 111. SP-SPC 121. S'-iPC 131. S»-SPb 1*1.
SK-RI It, II. !»-»l 14. 21. SP-P1 14. •!.
ICv! !«-»ll 141 10 t*-Ptl 111. SP-P7I 121. SP-F11 111,
SP-R11 HI.
cc'PLit isi-oiv • a.et / 3«oc.c.
C2611
C2631
C2C31
C2631
C2631
C2611
C263I
C263I
C2631
C2631
C2631
C2631
C2631
C2631
C263I
C2631
C2631
C2631
C2631
C263I
C263I
C2631
C2631
C2631
C2611
C2631 .
C2631
C2«3I
C2631
C2631
C2631
C263I
C26I1
C2631
C2631
C2631 '
C2631 .
C263I
C269I
C2C31
C2t3l
C243I
C 6^4C
C635C
09360
CB17C
C«38C
CG3SO
CB400
CB420
CB440
. CB4tC
CB460
CB41C
CB4BO
CB490
08500
C9010
C9C20
C9030
C9040
09060
C9070
C9C80
C9C90
C9100
09110
09120
09130
09140
091 SO
09160
C9170
CO BO
C9190
09200
C9210
09220
C9230
C«240
C92JO
C5?tO
C9ZTC
C9290
C9100
C9MO
C4320
C??40
• 01350
CS360
C9370
• Etc I«PP. «i tun SICP BUk.
•"•.<,' TIPIN-'FC 1C S-t»PIK-BE
°S»I. 1APIN 11 END SIOP BUk.
NCVE 1AP1N-OEC 1C S-lAPIk-REC 131. ICC I 1C BBC-LEF1.
121. C 1APIK Al ENO STOP BUk.
NO*E 1APIN-PEC 1C S-lkPlk-BEC (SI.
•E«C 1APIN Al END STOP PUk.
•OE 1APIN-REC 1C S-TAPIN-PEC 161.
BCAC It'll AT END STOP «Uk.
•CC I 1C BEC-IEF1.
ACC 1 1C BEC-tEFI.
IOC 1 10 REC-LEFT.
IAPIN-PEC 1C :-iAPik-BEC ill. irr i ir BEC-IEFT.
RD-IOCP.
PEP-FOR* GE1-BECCRO.
If EOf-S»l'C»' • 1
GO 1C END-FILE.
IF CI-kDEC C»E«TE« THkk CPT2 -CVE 1 TC EC«-i«IICf.
CCHPUTE DST-TRV • 1-VS • CS1-OIK.
IF 1-1C > l.C ADD 1.00 1C lR«F-4 111.
IF 1-1C - 2.0 ADO l.OC 1C 1B»F-* 121.
IF 1-1C - 3.C >DD 1.00 1C l«IF-<, 13).
111.
11. 11.
1 1L SI-H II. 21.
? 103 1 1C S«-BI II. 31.
IF 1-tRUCK-IO • 'OC1
PO»E *i' 10 i-iec
PERFPRP FlkC-NODE.
IF FIRSI-SklTCH > 1EBJ
GC 1C BE8I.D,
IF pdDi kOl • 1-PCDE 111
GO 1C BHEAI-1.
PBHCE!!.
ACC 051-IPV 10 SN-SPD 111.
IF 1-R1 • 1 ADO I 1C
IF 1-R1
IF I-R1
PPCCE!«-1.
rc\t I-IIXE 1C FN-1IPE 111.
"OVE 1-kS 10 FIK-SPO III.
II 1-LF CKEAIER 1HAN O.C
>OC '-If 10 HP-SUN 111.
IF 1-VC LESS 1HAN .200
>OC 1 10 OEC-VC 111.
•CC 1 1U 'EC III.
HCVE 1 10 CNI-AC1 111.
IF FIH-SPO 111 LESS IMAk PIN-SPC 111
"OVE FIN-SPD 111 1C ?-"'.-5FC 111.
IF FIN-Si>0 111 GP.EJ1E" IHAk VII-SPC 111
•OvE riN-SPO III TC PAI-JFC 111.
C2631
C263I
C2«31
C2631
C26I1
CZ631
C2431
C2631
U4II
C26S1
C2411
C2431
C2631
C2C31
CI631
C261I
C2631
C2C31
C2631
C2631
CK.31
C2631
C2631 .
C2631
C263I
C263I
C2631
C263I
C2631
C26I1
C263I
C2631
:2s:i
C2f31
C2631
C263I
C263I
C2c31
C2631
C263I
C2631
C2631
C2C3!
C263i
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2431
-------
9 - MODE PROFILE (cont'd)
Is)
in
CD
I
CO90
CS400
C««IC
C««20
csoo
CftJO
C9460
«HC
IC010
1C02C
IC03C
1CC4C
ICCSC
1006C
1CCTO
1COBO
10C90
10100
10110
ICI20
1C13C
101*0
toitc
1C1TC
iciao
ici-.c
IC20C
IC210
1C22C
1C21C
102*0
ic?;o
IC26C
10210
1C2CO
ICkiC
10300
10310
10320
1013C
1C140
1C3«
•C3tC
1C!7C
ICJfO
1Q!90
1C4CC
1C41C
cc ir RO-ICCP.
IF I |P!T-P>INI . 0
•OVE SPACE 1C FIRST-PRIkl,
CC TC BREIH-7.
l> "Ft 111 • I
t,C TC DtMMV-IN.
If tUl-ICI 111 • 1 PEBfCe* FP1H-II*€.
BRFAH-2.
HIVE C-KCLE 111 1C C-TABLE HI.
•CVE C-1ABIF 121 TC C-IieiE 131.
•CVE C-TABLE 111 TC C-Tieif 12).
•CVE !"-:PD 131 ic S-—SFC 1*1.
«rvi P-JPO ID IL S"-ifo 121.'
•CVC »-»ll 1)1 TC SK-tT! 141.
"CVF P-R11 121 TC SP-PT1 131.
C2«3l
C2«ll
C2631
"CVE
P-R11 121
P-RM 111 1C iv-RIl 121.
ELSE
«RLC.
HCvf SPACE 1C F1RS1-SMITCH. C-IIBLE 111.
•CVE 1-II'C TO IT-TIME 111.
MOVE 1-T1PE TO Fk-TIPE 111.
•CVE P00> TO T-PIOOE 111.
• •CVE O-OESC TO MOOEO 111.
•CVF T-V! TO 1NIT-SPO 111, FIH-SPO 111, INIT-VS.
•IN-SPD III. MAI-SPD 111.
HCVt 1 1C PEC 111.
HOVE 1 TO ENT-ACT 111.
•CVE !M-RTI IS) TO SH-R1I III.
•OVC OST-1RV TO SB-SPD 111.
It 1-VC LESS 1HAN .200
•CVE 1 1C OCC-VC 111,
•OVE lt*0 1C OFC-VC ID.
II 1-LF G'EAIEI THAN 0.0
•OVE 1-LF TO HP-SUP 111, ELSE
POVE 0.0 TO HP-SUP 111.
CC 10 RD-LOOP.
DbPP*-lk.
MCVE FN-1IME 111 TC FN-IIPt 121.
•CVE FIN-SPO 111 TO Flk-SPO 121.
ACC 1 1C PEC 121.
IF MIM-JPO III LESS THAU PIN-SPC (21
HOVE N1H-SPO 111 TO Plfc-SPO 121.
IF VAi-SPD 111 CREITER THAU MIH-SPO 121
•CVE "I»-SPD ID TC I-AH-SPC 12).
AOC !P-!PD 111 TO SM-SPD 121.
• CC !P»R1 II, II TC SP-RT 12. II.
ICC -«1 <2. 21.
ICC !P-R1 II. 31 TC S"-PI 12. 31.
• CO OCC-VC ID 1C OEC-VC 121.
• CC HP-SI" ID TO MP-SLP 121-
GC 1C REELO.
tl!MP.
C2631
C2631
C2631
C2«ll
C2t3!
C2631
C2631
C2631
C2631
C2631
C2631
C2U1
C2631
C2631
C2631
C26J1
C2431
C2«31
C2tll
C»31
C2631
C2t31
C2»31
C2631
C2>31
C2631
C2t31
CZ631
C2631
C2631
C2>31
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2831
C2631
CI611
C26J1
C2631
C2«31
C2631
C2631
C2631
10*20 MOVE ZERO TO KO-SPC I>1, II, RC-SPO 111. 21, RC-SPC 111, II, C24J1
10*30 P.O-TIP III, tl, RD-SPC 111. *). C2»31
10««0 RD-T1K III, II, BO-II» l«l. 21, ID-TIN III, II. C2631
I0»i0 KCVE 1 TC »2. C2631
10460 PERFORM CLE4RK1 10 TIKES. C163I
104TC AOO I TO >l. CZ«11
10480 Clfiai-1. Cl«31
10«ilO MOVE IERO TO HT-KFUEd III, «2I. PT-HTIfE HI, III. Cttll
10JOO IOC 1 TO «2. CI»«1
I'OIO NOTE • • • END DF PERFORPEC RCUTINE • • •. C2M1
11020 CLEIRS. C2»l
11030 NOVE 2ERO TO NT-ShBEO 1111, PT-STI« IJ1I, C2«l
110*0 KT-FP.OOE Oil, PT-TPCOE III). C1431
11090 ICC 1 TO >1. ' C1631
HOfcO NOTE • • • END OF PEHFCRP.EO RCUTINE • « «. C26JI
11010 Cltll
1100C OVBFL. C26J1
11090 «OC 1 TO h01-P*CE. C26S1
11100 mil KEtO-1 TO PPT. C263I
11110 MOVE 1 TO C-CTL. C2631
11120 PERFORP kRITE-SPOOL. • C2631
11130 'CVE HO3 TO PRT. C2631
111*0 "OVE 2ERC TO C-CTL. C2631
11150 PERFGRH kRITE-SPOOL. C2631
11160 HOVE HO* TO PRT. C243I
11170 MOVE • • 10 C-CTL. C2631
11180 PERFORM kRITE-SPOOl. C2631
11190 "OVE KEID-20 TO PPI. C2631
11200 MOVE IERO TO C-CTL. C2631
11210 PERFORP kRITE-SPOOl. C2631
11220 MOVE HE«0-2 TO PRT. C2«31
11230 KCVE • • 10 C-CTL. C24J1
112*0 PERFOKPi kRIIE-SPOOL. C2431
11250 MCVE SPICE TO PRT. C2«31
11260 MCVE ' • TO C-CTL. C2631
11270 PERFORM hRlTE-SPOOL. C2*31
11280 MOVE 2ERO TO LINCNT. C2»31
11240 NOTE END OF PERFDRPEO ROUTINE. C2631
11300 C2611
11310 PRINT-LIKE SECTION. C2631
11320 IF REC l?l •= I IND REC 1*1 LESS THIS 2 C2«31
11330 100 1 TO OT-AREC. C2631
11340 GO TO PP|NT-llhE-E>IT. C2631
11390 IF IPOOEM 121 - 6 CO MCCEr 121 • 31 ADO C2«3I
11360 IPODEM 131 • 6 CR PCDEP 131 • 91 C2631
11370 AND MODES 121 KOT * PCDES 131 C2631
11310 I*OVE 6 TO rOOEP 121, PCDEP 131, C263|-
11340 HOVE 'ACC-GEAR* TO HCOEO 121, PCOEC 131. C2631
11400 IF l-CDEM 121 ' i AkO C?63)
il«10 POOCP (31 - 6 T2t31
11*20 MOVE 6 TO fOOEP 121, C2631
11430 HOVE -ACC-tEAR- TO PCDEO 121. C2631
11*40 JF T-MOOE 12) • T-MOOE 131 • C2631
114JO "OVE FH-TIRE 121 TC Fk-llKE 131, C2631
114*0 MOVE FIN-SPO 121 1C Flk-SPC 131, C2631
11410 ADD REC 121 TO DEC 131i C2631
-------
9 - MODE PROFILE (cont'd)
KJ
U1
vo
I
11*80 CC TC PRlkT-llftt-EHT-l.
IF PEC Itl LESS THIN 2
CC 10 PRINT-llNE-EilI.
11*40 II IIOCN1 CREI1ER .IMAN 90 IE«*CtP CVIF1.
1HOC If i-REC Ml • 'I' '
uno MOVI -/Etc- TO OI-IERC Eisc
12020 MOVE SPACE 10 CI-IIPC.
120)0 HOVE SI-TIDE 141 1C 01-STIPE.
12040 HOVE Fit-Tint (41 1C 01-FTIPE.
12090 NOVf 1-NOOE l«l TO OT-KCOE.
12060 MCVE HODEO 1*1 TO CT-HCCEC.
12070
12100 KC11 I 10 >l.
11110 IF !H-R1 It. ll LESS INAli SP-R1 I*, 21
11110 . MOVE 2 TO HI.
121)0 HOVE SK-IIT I*. 21 1C SP-R1 l«. II.
12I«0 IF !M-Rt It, 11 LESS THAU «p-«1 I*, 31
121)0 HOVE ) TO II.
llltO MCVE 01-MOOES TC 12.
12110 If !H-*T I*. II - fERO l»0
I21>0 !»-RT It. 21 . ««C *»C
12140 SM-R1 I*. II • 1ERC
17100 «OVC * TO M.
I2210 AID R.EC Itl 10 RO-1IH l>2. ill.
12210 ACO.SN-SPD iti TO PD-SPO 112. m.
I22t0
1115C COMPL1E It* • rlk-SPO 1*1 - IM1-SPC Itl.
iiitc; IF IDI-HOOE> • at a* DT-»CCE« • osi •».£
12ZTC lint NEGATIVE CR Tk* • 1EICI
I2««fl! COMPUTE FIN-SPC Itl • PO-SPC Itl.
IZ24C IF lOI-HCOEl GREATER THAU 061 INC
12100! I1M POSITIVE CR Tk* • JEICI
12110 COPUTE MN-SPC 1*1 • PIM-SPD Itl.
12120 COHPL'IE Tk* • INIT-SPO 1*1.
121)0 COPtir Tkl • FIN-SPD 1*1.
129*C IF GT-HODO LESS InA* C*
12)50 HQ«E IE«C TO Tk*. Iki.
!2>tC COPL1E DI-IN-SPO • Tkt.
UI'O CC-P11F DT-FN-SPO • TkJ.
123*0 SL»1P»CI l»t FROH 1k>.
I1?1C CCNPL1E [T-CH-SPO • Ikt.
!<«CC IC'PIIE Ul CQUNOEC • SEC 141 • 0.86.
l<«iO HCVE IPiCf 1C OT-«mTE-CM. CT-I|NTEKSIT«.
I1-?C If kl-»rLII Itii THIS Ct
•2tlO ll TC P'IK'T-LlkF-1.
1?^C CCCPL1E 1»* F^JNOEU • IkJ / Tkl.
!>•'.: CC'l-LIE Cl-XIC-Cr • Ik*.
11«CL If LI->CDE> • 10 CR DI-OCCEI • 04
•J»>C LO 10 ?kim-I.INE-l.
I2*eo cccpi.ii ik* EUUNDEO > ut / 0.2.
llt«C 'C>t Ibt TC 1NTFKS.
ll:OC C'jrrilE bl-IMENSMT • Ik*.
IIC10 HINI-l IhE-l.
i?c;o »c«t >PICI TO OT-HPI.
i!C?< cornt tb? • iki / )6CC.
11C»" Ct"«ll« Ol-lM • Tk2.
C2611
C2t)l
C2631
C2631
CZ611
C2t3I
C2611
C2631
C2«)l
C1611
C2611
C26I1
Clt)l
C2eil
C2611
C2631
C2611
C2631
C2431
C26)l
C1631
C2631
C2611
C2631
C2611
C2631
C2611
C2631
C26)l
C2631
C2O1
GPE NOT • Ct
13160 CO 10 C»E»IE-IMENSIT»-BECCSC.
1314C HCVE SPACE 1C TAPCI-«'-C.
1320C «CVE 6 10 O-FLAG.
1)210 MP.kF 6 1C 0-FLtCS.
11220 "CkC 1 TO C-fPEU.
111)0 MOkE HP-SUP Ul 1C rr-UPE, CI-hF.
DltO CCKPL1E C-FKGDE • IC.OC • CT-PCCE9«.
1)290 kRIIC 11PCI-BEC.
1)2 • 06
13)20 «C«€ 1 10 O-FIACS.
13)30 IF OT-HOOE> • OT NCVE 2 ir. C-FKCS.
133tO IF OI-MC-Gtl • 0» "CVC ) 1C C-Fl«CS.
13350 IF C1-»ODE> • 04 HOVE t 1C C-F-liOS.
1)360 CCPPlie 0-TlfE • REC Itl • O.It.
1)370 NCVE 1 10 0-FREG.
1)180 IF INTENS CREATE* 1M«S 09.1 CC 1C CPFM«-!M«fM"-Pll'HF.
1239C IF IDIEN! LESS THtk CO.6
13*00 i-OVE 01 10 SUB-KOOE. CO 1C CUE»t€-IKTFHSITV-1.
lltlO IF IN1EN! LESS THtN 01.1
13«20 POVE U? 10 SUB-HODf.
13*30 If IKIES! LESS IHtN 01.6
134*0 HOVE 03 10 5UB-KODE.
13t9C If IN1EN! LESS THtN 02.1
13*60 POVE Ot 10 SUS-HOOEi
i?tTO ir IN:ENS LESS TN>N 02.e
13*80 HOVE 05 10 SUO-HOOE.
13*90 IF IH1ENS LESS THIN 03.1
13*00 HOVE C6 10 SUB-HOOE,
14010 IF 1NTEN! LESS THIN 03.6
1*020 MOVE OT TO SUB-xCOE,
1«C)0 IF IK1CN! LESS 1H>K 0*.l
ItOtO HOVF OB 10 SUB-MODEi
1*050 CBEATE-INIbNSITt-MIDDLE.
1*060 IF INIENi LESS THIh 05.1
ItOTO ' HOVE 04 10 SUB-MODE.
I4C80 IF IN1ENS LESS THIk 06.1
Itr40 HOVE 10 TO SUB-MODEt
14100 IF INTCNS LESS THIN OT.l
CC TC CREITE-INTEHSITT-l.
GO TC CRf-tTE-INTENSITT-l.
GC 1C CREITE-INTINSITV-1.
GO TC CRE>TE-lfcTCNII1V-l.
GO TC C«E»1E-lkTENSIT»-l,
GC TC CREME-INTEMSITY-1,,
CO TC CREllE-INTINSIIT-l.
GC TC CBEITE-INTEHSI1Y-1.
GC It CBEMF.-INTCNSI1T-1.
C2C11
C2631
C2611
C2631
C2C11
C2611
Cltll
C263I
C263I
C263I
C2631
C2631
C2431
C2631
C2631
C2631
T26J1
C2631
C2631
C2631
C2631
C2631
C2611
C2631
C2611
C2631
C263I
C2611
C2611
Cltll
C2631
Cltll
UM1
C2631
C2631
C2631
CZ631
C2611
C2631
C2611
C26I1
C26S1
C2«lf
C2611
C2631
C2611
C2611
C2611
C263I
C2t)l
C261I
C2631
-------
9 - MODE PROFILE (cont'd)
C\
O
I
1
1
1
1
i
i
i
cc
GC
CC
cc
CO
cc
cc
GC
1C
1C
TC
1C
1C
1C
1C
1C
cRfMF-iKTEnsiiT-i
CPEtIE-IMEIiSnv-1
CRFAlF>lkTtkSI1v-l
C«EtT£-IMI»Sllv-l
CRF.ATE-INTEFlSltT-1
CRF.ATE-IHTF.kSIM-1
CREATE-IhTF.kSITV-1
CREATE-IKTEASITV-1
4110 >1VE 11 TO SUB-MCDt.
4120 IF IMEh! LESS TMtfc OB.I
4130 "OVF 12 II SUB-MODE.
'•. 40 l> IKI>N<. LESS IMAH 09.1
4HO Mtlvt 13 10 SuB-MOOE.
•It: H IMEN! LFSS TMAK 10.1
41 7C -UVC 14 10 SUB-MODE.
41(C If IhlEhS LESS THAU 11.1
»i«o MOVE is in SUB-HOOE
• 200 IF IN1E'-'! LESS IMA* 12.1
•210 "Ovl 1« 10 SUB-MODE
4220 If IHIfft! LESS THAR 19.1
4?ic «OVF IT TO SUB-MODE.
424G If IMENS LESS THAN
4J5C -rive 18 10 SUB-MODE,
426C "LVE It 1C SLB-MODE.
42»C CMfAlf-ISIENSIlt-1.
42BC CCPPL1E D-FMOOE - 5O.OC » SLR-KCDE-1.
• 290 kRIU 1AP01-REC.
4300 CCf>1F.-!lM-xCRSEPOkER-ACC.
4310 IF C.l-HODEl LESS THAN C5 CR
t!?0 01-MODE' GREATER THAN 06
• 330 G'_ 10 PRINI-LIHE-2.
4340 MCVE SPACE 1C IAP01-REC.
•350 MC»E 6 TC O-FLIG.
4360 MCVE I TC 0-FLtGS.
4310 MCVE I TG 0-FBEO.
• 3BO MCVE -P-SL" 141 10 D-U»E, Cl-Hf.
• 390 CCMFL-IF C-FNOUE • 50.OC • SUB-PCDE-1.
4400 ktllE 1'POl-REC.
4410 PPIM-llKE-2.
•420 MCIE OE1-LINE TO PRT.
•430 MOVE • • 10 C-CTl.
4440 PERFORM MITC-SPOOL.
44401 >CC PEC 141 TO OT-AREC.
4460 »CO 1 TO LI-.CNI.
44TC2 HCVE SPACE 10 IAP01-REC.
4410 MCVE B TO 0-FLAG.
•490! MCVE I-MOOE I4i 10 r-FPOOE.
450Ct "HE I-MOOE 131 TO C-TPCOE.
'.C!C COFL1I 0-llnf - "EC 14) • D.BB.
•-02C tICvf 0-11 ME TO M-IIMF.
?030 MCVE 1 TO 0-FBEO.
!040 IF fIBbl-i.lTCH • S GC TC FRIkT-LINE-E>IT.
•1TC PEBFORM LOAD-TOTALS.
MBC kUlE-CP.
1519C MCVE 3 ID 0-FLAGS.
1520C kRME 1APOT-REC.
1!2IO GC 10 PRINl-LINE-EMT.
15220 PRINT-LINE-Elll-1.
15230 IF NIN-SPD 121 LESS IHAk P1K-SPC 131
I!24C HOVE Hln-SPD 121 1C PU-SFD 131.
ll'SO IF MAH-SPO 121 GREATS 1HH Clt-SPO 111
U2tO PDVE MAI-SPO 121 TC «<>-SPC 131.
152TC IF I-REC 121 - •<•
i:?CO MOVE •/• 10 <-REC 131.
C7C31
r.2t31
C2431
C2CJ1
llt\\
C2C31
C2«]|
C2631
C2631
C2631
C263I
C2631
C2631
C2tll
C2631
C2631
C263I
C243I
C263I
C263I
C2t31
C2«31
C2631
C2«31
C2631
C2631
C263I
C2«31
C2A31
Cl«3l
C2«31
C2«31
C2631
C2631
C2631
C2631
C2t31
C2631
C2631
C2631
C2«31
C2631
C2631
C2631
C2631
C2A31
C2631
C2«31
C2631
C2431
£2631
IfitG tCC !M-SPD i;i TO SM-SPO 121. C263I
I530C tCC !H-R1 13. II 1C SP-RT 12. II. C2631
1!310 tCC 1 13, 21 1C SM-R1 12. 21. C2631
15!20 tCD !>-P1 13. II TC SM-PT 12. 31. C263I
1533C XCVE C-HBLF 131 TC C-ltBLE 121. C2631
MCVE C-1ABLE 141 1C C-1ABLE 131.
MOVE SM-R11 141 10 iM-CTl 131.
1CVE SH-SPD 141 TC SM-SPD 131.
15340 PRIN1-LINE-EXT. C2631
19350 Elll. C2631
1T36C C2631
193TO FlhC-fflCE SECTION. C2631
153(0 tCC 1 10 RECNO. C2631
15390 IF CP11 LESS THAN 3 C2631
15400 01 SCLAV ••• •• •• •• » •• •• •. C263I
1*410 RECNO. • •• •• •• •• «t t* •• •••. C2631
1542C IF OPTI • 2 C26S1
15430 READY TRACE. C2611
15440 IF OPI1 LESS THAN 1 C2631
15490 EXHIBIT NAMED T-VS. T-LF, IhiT-VS, HGLC-NOCE. C2«31
15460 HOVE 0.0 10 H-VS-RPH. C2631
15460 If I-VS NOT • C.O C2631-
154JO COMPUTE H-VS-RPH - T-RFP / T-VS. C2631
19490 IF FORCE-ACC NOT • 2.ERC CZtJl
19500 HOVE SPACE TO INIT-CHECK. C2C11
16010 CO TO CHECK-NODE-ACC-2. CJ631
16020 IF FORCE-DEC NOT - ZERO C2631
16030 HOVE SPACE TO INIT-CHECK, C2O1
16C40 CO TC OECELERATE-2. C2631
16050 MCVE 2.ERO 10 I NIT-CHECH. ' C2631
16060 IF FIRST-SklTCH - ZERO GG 1C MCCE-IOLE. C2611
160TO ALTER CONIION-GO-TO TO PROCEED TC NCT-SA"E-»S-lOCE-ICLE-SO»-STOP. CJ6SI
16090 IF MOLD-MODE - 06 GO TC CHECR-RCOE-CRUIiE. C26J1
16100 IF- HOLO-MOOE • 05 CR HGLD-PCOE - 06 12641
16110 GO TO CHECH-MOCE-ACCEIERATICN. C2631
I612C IF HOLD-NODE LESS IHAIt 10 GO 1C CHECH-POCE-CECELERITION. C2631
16130 IF HOLD-MODE • 10 GO TO CHECK-PCDE-CCASI. C2631
161*0 N01-SIME-A5-LIS1. C26SI
16150 HOVE SPACE TO INIT-CHECK. C2611
16160 ALTER COMBON-GO-TC TO PRCCEED TC CHECK-1. C2631
16170 CC 'C CHECK-MODE-IDLE-SCAK-STCP. C2631
16180 CHFC>-1. C2631
16190 ALTER COMMON-GO-1C 1C PRCCEEO TC CHECK-2. C2631
1620C GO 10 CHECK-M10E-CRUISE. C2631
ItZIO CHECK-2. C2631
16220 ALTER COMHON-GO-TO TO PROCEED ic CHECH-:. • C2631
I623C GO 10 CHECK-HODE-ACCELERATICk. ' C2631
1(2*0 CH£C«-3. C2631
16250 ALTER COHMON-GO-TO TO PRCCEED TO CrECK-4. C2631
16260 GC-TO CHECX-NODE-OECELERITICh. C2631
U27C CNECH-4. C2631
162BO tlTER COMMON-GO-TO TO PROCEED 1C CKEC«-5. C2631
1629G GC 10 CHECK-KOOE-COAST. C2631
16100 ChECH-i. .C26JI
1C3IO ALl-FAILEC. C2631
-------
9 - MODE PROFILE (cont'd)
1
to
o>
I—I
1
1
I«J»C
ItISC
I«!6C
K37C
l«3RO
16340
lt«CO
K410
IC420
K43C
44C
4SC
46C
47C
480
440
400
11C10
17C20
I.TC3C
ITC4G
170 JO
17060
1I07C
I7C80
1704"
111CC
17110
17120
III 30
171 40
11150
17160
11170
Hieo
11140
17200
1)210
17220
1723C
17240
172 SO
17260
' 17270
1778C
17740
1T3CC
17310
i?3.-:
171- 10
!7?40
17350
11160
17370
'.- 1' "Cll-CLT.
IF 1-V! NOT LESS THAR C.5
CC 1C CONNON-GC-TO.
I) |->PH GPEA1CF TH". 2CO.O
CO TC -OOF-ICIE.
IF I-1MP GREATER THAK »>BIFH1-FlUS-FIFTt
co ic MOOE-HCT-SOA*.
CO 10 OCOC-STOP.
Ct-FC«-MCOE-C>LI£F.
IF 1-«S GFEtlEa IfAk IIMl-ts • 2.SI
CO 10 C-.ECH-«OCC-«CCElFB»l|tk.
IF 1-VS lf!S IHAK IIMI-VS - 2.31 C
1-lF LESS THAk l.C
CH TG Cn£C«-"r)Cf-CfCELE'»IlCN.
FORCE-CRUSE.
COMFH.U SL»-MODE RCUKOEC • n-»i - 1.01 /
ADC 1 10 SUB-MODE.
IF ->nOF-ACC-l.
Cl-tC«-»COE-ACC-7.
•-LETRACT 1 FROM FCBCE-ACC.
IF FCRCE-ACC - JF«C
MOVE ICO'-AHEAC TO FCRCC-ACC,
v,r ir THEO-MODE-ACC-*.
LESS THAN CEOS
10 SUB-MODEf
•cv; c
.••: n
IF t— v«-F»M LESl Ih«S GEAR*
MOlE C* 10 SUB-MODEi
CZ631
C2631
1.2631
C2631
C2631
C263I
C2631
C2»31
C2631
CZ631
C2«31
C261I
C2631
C2t31
C2631
C2t31
C26J1
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2611
CZ631
C2631
C2631
C2631
C2631
C2631
C2631
C2«31
C2631
C2631
C2631
C2611
CZ611
C2631
Oil C2611
C2C31
C263I
C2631
C2631
C263I
C2631
C2631
C2631 .
C2C31
C2631 '
CJ631
C2631
CI631
C2631
C201
17'sc
17340
I74CO
17410
17470
•7410
17440
17450
17460
1747C
1748C
17440
I75CC
18010
1EC2C
18C30
180*0
1801C
18060
1807G
18080
18040
181 00
18110
18120
18130
18140
181 SO
18160
181 TO
18180
18190
18200
18210
18220
1B230
18240
182!0
18260
18270
182BO
18240
183CC
IS31C
18320
1B33C
183*0
18350
18360
ie?TC
18340
IF
IF
MGI
GC
CKECK-I
IF
IF
Sll
CC
OFCK-l
IF
IF
MCM
OECELEI
IF
IF
Stl
CO
DECELEi
SLf
ir
NCI
PE>
N01
IF
CECELEI
IF
IFCRCE-ACC - 1.0011
CC 1C >A1|CA.
f- VS-fP" IES1 THAU Cr:*»!
"CVE Zl V. SUB-"COt,
CO 'C i-CCE-«CCli:=«1ICk.
>-v!-PP- ItjS 1MAN CFAF2
"OWE 02 in SUB-MODE.
CO 1C PODE-«CCElE>«TICk.
E 01 1C SLB-KCDE.
GC 1C NOCE-ACCELEIIATICk.
K-PaCC-ACC-4.
IF FORCE-ACC • 1
StOlBACT 1 FdOC FORCf-ACC,
CO TC CHECK-HODE-ACC-;.
us-vs IFORCE-ACCI - T-VSI
I! GREATER THAN 0.176
MOVE IERU TO FCRCE-ACCt
CO TO CHECK-MOOC-ACC-3.
SIBTPACT 1 FROM FC«CE-ACC.
CC 10 CHECK-PODE-ACC-4.
IF T-k! LESS THAN (LAST-vS - 0.1761
NE>1 SFMENCE ELSE
GO TO CHECH-HOCE-COAS1.
IF 1-lF IESS THAN 0.0 CR
T-LF - C.O
GO 1C HOOE-nECELERATE-CtkAHIC.
note LOOK-AHEAO TC fCRCF-CEC.
IEB«E-1.
IF FORCE-CEC * 1
MOVE {ERG TO FCRCE-CEC,
60. TO CHECH-PCOE-CCAST.
IF UJ-V! irORCE-OECI - T-VSI / IFCPCE-ftC - 1.001 I
I! LESS THAN -0.176
CO 1C DECELERATE-!.
RACI 1 FRON FORCE-DEC.
CO TO OECELERATE-1.
2.
T 1 FROM FCSCE-Ott.
IT FORCE-DEC • 2ERC
MOVE LOCK-AHEAC TC hCRCE-CEC,
GC 1C DECELERATE- 4.
PEP'OR* CET-AVERAGE-SPEEO-CHAkGE.
NOTE • • • •
IF AVG-SPEEO-CHAIiGE LESS THAk -C.I 76
NEIT SENTENCE ELSE
GO TO CHECK-fGOt-CCAST.
TE-2.
IF IVC-SHICH • >l* AUC
1-iC LESS 'rHAK 0.200)
CR
IVC-SklTCH • "H- AKC
T-«C NOT LESS Tll«ft C.20CI
CO TO NOOE-OECELERATE-THRCTHE.
C26JI
C263I
C2631
C2631
C2631
C2611
C24J1
C2631
C2631
C2631
C2631
C2631
C26I1
C2tll
C2631
r.7«31
C2631
C2631
C2631 '
C2631
C2631
C2631
C2C31
C2631
C2CI1
C2631
C2631
CJ631
C2611
C263I
C2631
C2t:i
C263&'
C2»:
C2C31
C2611
C2631
C2631
'C2631
C2631
C263L
C2631
C2631
C2631
r.2«31
C263H
C2631
C2631
C2631
C2631
C2631
-------
9 - MODE PROFILE (cont'd)
I
10
">IO»-CC-TO.
i< i-t: LESS IH•OCE-•CCtLE«*IIC^.
-CCl-ILlf.
""H Cl 1C HCLO-CCDF..
HCVE ci.cc ic mot.
KCVE 'IDLE' 10 H-DESt.
CC 1C "COt-OLI.
"C..I C? 1C xC\.3-»CCl.
-cv c;.c: ic -OD>.
"CVE V1CP1 10 o-OESC.
CC 1C ^C5E-OLT.
p-ccc-cci-:c»».
1CVI 03 10 nCLO-fiCOE.
«i vi cs.cc TC »eo».
"CVE 'HCT-SOA*' 10 "-OESC.
cr ic -CCE-CLI.
"Cvf 1C 1C MCLI/-HCDE.
HOVE HEn-«COE TG I-COX.
"OvE >CC»!1* TO H-DESC.
GC 1C RCOE-OLI.
"Ctt-CRLME.
XCVE NEIi-fuOE TC "COX.
••CVE C* 1C nCLD-rCOt.
«rvt "CRLisE1 ic ••-oesc.
CC 10 "CDE-OLT.
•CCE-ACCELERCTICN.
HCVE Ci'TC HCLC-fCOE.
CCHPL1E CCO> • 5.00 • iLB-PCOE-l.
HCVF >ACCELEX«TIOk< TC P-OESC.
C26M
C2«31,
C2631
CJ621
C2t31
CJ631
C2631
CJ631
C2631
C2631
C2631
C2O1
C2C3I
C2631
C2631
C2tll
C2431
C2631
C2«31
C2631
C2«31
C2«31
C2631
C2631
C2631
C2631
C2631
C2t31
12631
C.2631
C2«31
C2631
C2631
C2431
C2631
C2631
C2631
C2631
C2631
C2131
C2631
C2631
'C2631
C2631
C2431
C26J1
C2431
C2631
C2431
C2691
C2631
C2»31
C2631
C2631
C2631
20010
10020
20030
200*0
20050
20060
20070
20080
2C01C
// Pll
20100
20110
20120
20130
201*0
20150
20160
20170
20 ISO
20190
20200
20210
20220
20? 30
20240
20290
20260
20270
20210
20290
20300
20310
20320
20330
203*0
203SO
2C360
2C?7C
2G3BC
20390
20*00
20410
20*20
20*30
20440
20410
20*60
20470
20480
2C490
20900
CC 1C KCOE-OLI.
HCCE-CECELERlTE-OtNMIC.
"OVE 07 10 HOLO-PCDE.
CCVE C7.CC TC XCOI.
"OV.E 'OEC-OVN4XIC1
CC 10 ROCE-OIT.
•ICCE-CECE1.EB4TE-POBEB.
»OVE c< TO HCLO-MCOE.
1CVE Ca.OO TC H00«.
•OVE 'OEC-POkER'
GC ic ocoe-oui.
«OCE-CECELEB»TE-TMBCITTIE.
HOE Cl TC MCLC-NCOE.
KCVE C9.CC TO HOOI.
E
"CVE •OEC-TMP.OT-CISO*
CL 1C -CDt-OlT.
"CCE-CL1.
IF CPU LESS THIN 3
EIKIEIT NAMED NOOli L»ST-PCD«. L»ST-VS. INIT-CfECK.
IF IklT-CHECK • lERn .
HOVE T-VS TO LAST-VS.
MOVE HOC I TO L>ST-MH».
IF CPTl • 2
BE!E1 TRACE.
MCCE-OLI-*.
EXIT.
"-CESC.
TC — CESC.
TC C-CESC.
CET-«VEB«CE-2.
IF P.EC-LEFT LESS THAN 1 CC TC AVG-EXT.
PERFCBH COBPL'TE-OIF REC-lEfl HUES.
OIVICE REC-LEFT INTO AVC-SPEEC-CHAKC-E.
CO 10 AVG-EIIT. .
CO-PUT'-CIF.
CC-PL1E »V&-SPEED-Ct-4NGt > AVC-SFEEC-ChAKCE •
S-VS I>2I - S-VS Oil.
AOC 1 TO >l. ADC 1 TC >2.
AVC-EIIT.
EIIT.
CET-RECORD SECTION.
IF EC«-S»ITCH • 1 GO TC FLLSt-PECORC.
DEAD TAPIN AT END
HOVE 1 1C EOR-S»ITC>-,
CO TC FLtSH-RECORO.
. ACC 1 TO REC-LEFT.
FLCSH-RECORD.
COVE S-TAPIN-REC 121 TC
L26JI
C2631
C263I
C263I
C2t31
C263I
C2631
C26I1
C2631
C2631
C26J1
C2431
C263I
C2CI
C2«31
C2631
C2631
C2t31
C2631
C263I
C2631
C261I
C2631
C263U
C26J1
C2631
C2«31
C2431
CIUI
CI01
C2631
C2631
C2.il
C261I
C2631
C2631
C2631
C2631
C2»31
C2631
C2631
C2631
C2631
C2631
C2631.
C263I
C2631
C2631
C263I
C2«^l
C2t31
C2631
C2631
C2431
C2631
-------
9 - MODE PROFILE (cont'd)
10
cr>
71010 !-IAPln-IEC lit. k-TAFIk-PEC.
2IC2C MOVE S-IAPIN-IIEC 111 TC
11030 S-TAPIN-REC 111.
110*0 IF EOR-SkllCH NOT - 1
21010 HOVE T«PIN-«EC TO S-TAPII>-*EC
21060 MOVE REC-LEFT TO LCOB-AHEAC.
7ICIO SLBIRACT 1 FROM REC-LEFT.
21C80 IF REC-LEFT LESS THAN IERC
11010 MOVE I TO EOF-J.ITCH.
11100 GfI-IICCRO-EIIT.
11110 Oil.
CEI-SbB-NODt SECTION.
•CVE t 1C StB-MODE.
IF I-V! LESS THAN 11.0 »GVE 1 1C SliB-MCOE.
CO TO GET-SUB-rOOE-EIIT.
IF I-V! LESS TMkk 11.C PCVE 2 1C SUB-NCCE.
CO 1C GET-iUB-PGDE-tllT.
IF T-V! LESS THAN 31.0 PCVE 1 1C SUt-NGCE.
CO TC CET-SUI-MOOE-EIIT.
IF T-V! LESS THAN 41.0 PCVE 4 1C SUt-NOOE.
CO If CET-Sua-NODE-EIIT.
IF T-VS LESS THAN 51.0 POVE 5 1C SUB-NODE.
GO TO GET-SUB-VODE-EIIT.
GET-SkB-NOOE-EIIT. EIIT.
LOAC-TCKL! SECTIOM.
CCVPLIE >1 - NODE* 1*1.
CO-PI It il • NODEP II).
ACD I TO NT-WIEO ml. 111.
ICO H-IIM TO NT-DTINE 01. 111.
HOC I* TO >1.
LCIC-IOIALS-1.
IF PI-FNODE IIII • 2EAC
HOVE T-HODE Ul TO PT-FMCOE IIII.
HOVE T-KOOE 111 TO PT-TPCOE IXI I.
HOVE 1 TO NT-1FRE8 IIII.
tOO H-TIVE TO *T-STIliE till.
CO TC lC«O-TOT»LS-2.
IF n-FMOOE l«ll . T-liCOE 1*1 »NO
"1-TKODE IIII . T-P-COE 111.
•00 I TO HT-JFRES IIII.
tOO H-TIHE TO H-STIKE IIII.
60 TO LCUO-TOmS-2.
>00 I 10 >1.
IF >l • It
KG ME 1«POT-«C TO T»POT-KOIO.
•0«E •* TO II.
PERFORM OU«P-STOT«IS 16 TIPES.
•OVE I* TO II,
PEDFORN CLEUt 16 HUES,
HOVE It TO Hi
"OVE KPOT-MOIO TC TtFCT-BEC.
CC TO lX«O-tOT«LS-J.
LC*0-TOI*IS-1.
11110
lino
21160
2I1TO
21180
21110
21200
21210
21220
21210
21140
HIM
21260
211TO
1128O
11110
11300
11310
11120
11130
213*0
11310
21160
213TO
213BO
21210
21400
21410
21420
11*10
21*40
2144O
21460
21470
11*80
21*10
21400
22010
11020
12010
210*0
11010
11060
C2631
C2631
C2631
C2631
C2631
C2631
C26S1
C263I
C2631
C26SI
C2611
CZ63I
C2631
C261I
C26S1
C263I
C263I
C2631
C2611
C1431
C2631
C1631
C261I
C2611
C263I
C2611
C1631
CZ631
C261I
C1631
C1611
C163I
C2611
C263I
C261I
C2631
C261I
CZ63I
C2631
C2611
C261I
C2611
CZ611
C261I
C2611.
C2611
C263I
C2611
C261I
CZ611
22070
220BO
22090
22100
22110
22120
22130
221*0
22150
22160
221TO
2J1BO
22110
22100
2221C
12120
12230
22240
222!C
11160
12170
22210
12290
22300
22310
11310
22330
213*0
22150
11360
223 TO
12310
22310
22400
22410
22420
22430
22460
22490
22460
214TO
1I4BO
22410
12500
23020
23030
210*0
210SO
21060
230TO
23110
22120
23130
231*0
21130
211(0
HCVE >1 TO >1.
I.C»0-TCT«LS-3.
IF h-TIME • IF«C
CO TO LC10-TOTILS-EIIT.
IF »T-FHOOE 111! • C
•CVE T-KOOE 141 TO PT-FI-CDE IIII.
MOVE 1 TO NT-SFREii IIII.
tOD M-TIKf TO PT-SIIPE III),
CO TC LC1D-TOT«LS-EIIT.
IF PT-FNOOE IIII - I-«COE 141
ADD 1 TO "I-SFPCC IIII.
ADO H-TIHE TO PT-STIPE Illli
GO TO LOAO-TOTILS-EIIT.
tCO 1 TO II.
IF HI • fi
NOVE 1400T-REC TO T«PCT-HCLC.
>C«E 13 TO II•
PERFORN OUHP-STOTtlS 15 TIPES.
POVE 13 TO IIi
PERFORM CLEARS 13 TIPfS.
NOVE >3 TO IIf
NOVE TtPOT-HOlO TC T B.OO < II / 100.
NOVE TRAF-« nil TC n-T!*E.
MOVE 1ERO TO 0-FREO.
HOVE 1 TO 0-FLAC.
NOVE I TO 0-FLACS.
IF 0-TINE NOT • iERO
URITE TAPOTHIF.C.
ADO 1. TO II.
UVPP-KOO SECTION.
XO*E 1 TO 12.
PERFORM DUNP-ROAO-1 * TlfES.
ADD I TO II.
CO 10 OLNP-ROAD-EIIT.
OUNP-RCAO-1.
MOVE SPACE TO TAPOT-REC.
CGPPUTE O-FPOOE • II • II / 100.
HCVE 1 TO 0-PLAC.
NCvE 2 TO 0-FLAGS.
CCPPCTE O-T1NE ROUNCtD • RO-SPO (II. III.
CCPPUTE 0-FREO ROUkOED - RD-TIP. Ill, 121 • C.CE.
•CC 1 10 12.
IF C-FRf, NOT • IERO
URITE TAPOT-REC.
DUI>P-ROAl>-EIIT.
EIIT.
C2631
C2631
C2611
C1631
C1631
C2611
C2611
C2611
C2631
C2611
C2611
C2611
C1631
C1C31
C1631
C2631
C2t31
C1611
C2631
C2631
C2631
C2631
C2611
C2611
C2631
C261I
C2611
C2611
C2611
C2611
C2611
C2631
C2611
C2611
C2611
C2611
C261I
C2611
C2631
C2631
C2M1
C2631
C26S1
C7631-
C<631
C2631
C2631
C2631
C2631
C261I
C2611
C2611
C1611
C1631
-------
9 - MODE PROFILE (cont'd)
PfUFCBI* PBINT-LIN*.
"CVE C-IA4.LE 131 1C C-IAeL! (-.1.
1
to
Oi
It^
1
? ?l 3P
IJI9C
23l«
12210
21220
!!23C
21240
2325C
!3}tC
2 *7 TC
2J:ac
2329O
21300
21110
21120
2131C
2114C
111*0
233*0
21370
23310
23390
13*00
21410
2342C
23430
234*0
234*0
234tO
21470
23460
71490
21:00
24010
24C20
24010
24040
•rn i-i>fei! in 11 :-TA9i; u>
•I «t Sf-!»0 111 1C S -SFC 141.
MCVE SM-iPj 121 1C. J -SFC 111.
,r»«. M-SP.- in TL s -SPC ill.
•Lt- "-HI 111 I'/ J -HI |«l.
MC»S --P11 121 1C ! -til Dl.
,Cvt .-fll III TC •. -HI 121.
PC«HJ • PPINI-LINE.
•rvf -TABLE 111 1C C-TA6LE 141
•Ckl -HbLE 121 1C C-TACIE 111
»ttl '-'PO 111 1C S**-!FO 141.
MCVI »-IPC I2i ir SM-Sfc i;i.
MCVt »-BTI 111 If SM-RI1 141.
»Cv( >-kll 121 TC SP-PTl l]|.
»cvc «e 10 i-cotf 121.
PFRFCPP ctlNT-LINE.
MCVE C-liBLE 111 TC C-IA6LC 141
MOVE SM-SPO 111 TO SP-SFO 141.
MOVE SM-HI HI TO SM-RT1 141.
MOVE ft IP MODEM 111.
MCVE 9 TC FIRST-SklTCH.
PEBfO«« PVINT-LINE.
EM-JCt.
NCtC 1 I' >l.
>CVE 1 10 >l.
PERFORM OUMP-STOTALS «J IlPtS.
MCVE I TC 11.
PERFORM OUHP-TRAF 3 TI»ES.
•BIIE-PCAD-IVPES.
•OV( 1 TO II.
PERFORM DUMP-ROAD 10 TlPfJ.
MCVE SPACE 1C TAPCI-'EC.
MCVE • 6 TO O-FLAG.
MCVE 7 TO 0-FLAGS.
NCVt 1ERO TO 0-TIME.
•CVE !LM-VC TO 0-FPFC.
"CVF iC.CC TO 0-FMCOE.
«B|TE 1APOT-REC.
CLC!F TAPOT, PRTF,
IAPIN kllH NC "EWIKC,
EFCOL HIM NO P.E»lhC.
STOP «LN.
OLMP-P1C 1AL S.
MCVE 1 TO 12.
PERFCPP OLP7-JTOTALS1 10 TIPES.
ADC 1 It. "I.
DUMP- £ TC TAL SI .
MCVE SPACt TO TAPOT-REC.
C2611
C2631
C2611
C2631
C2631
C2631
C2611
C2631
C2631
C2631
C2631
C2611
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
(.2631
C2631
24C5C
24C60
24070
2>CBO
24090
24100
24110
24120
24130
241*0
2*150
24160
24170
24180
241«0
2*200
2*210
2*220
24230
24240
2*290
2*260
2*270
24280
24290
24300
24?10
24320
24310
2434O
24350
24360
2437C
24360
24390
24 « CO
24410
24420
24430
24440
2 44 SO
24460
2*470
24460
24490
24900
2:010
2:020
2S030
250*0
2SC50
25060
25070
25080
2S09C
CCPPUE L-FBCOE • «1.
CCPPUE C-TMOOE • >2.
CCVE V1-HFREO !2.
DUPP-STCTAl! SECTION.
IF PT-FMODE Oil • iERC
GO 1C OUfP-SIOTAlSJ.
MOVE SPACE 10 TAPOT-REC.
MOVE PI-FNOOE Oil TO C-FPCOE.
MOVE 2ERO TC 0-TDOOE.
HOVE MI-STIPE (ill TC C-TIPE.
MOVE MI-SFREO Oil TO C-FHEt.
IF PT-TMCDE IXII • 2ERC
POVE 1 TO 0-FLAGS ELSE
NDvr HT-TNCDE l»ll TC C-TKCCE,
WOVE 2 TO C-FLAGS.
MOVE 8 TO O-FLAG.
»R11E IAPOT-REC.
OL'«P-STOTALS2.
ADO 1 TO II.
MOVE-HEADER SECTION.
READ TAPIN INTO BVTES-1-40 AT EkD STCF RUK.
RfAC TAPIN INTO BtTES-41-BO AT EKD STOP HUN.
HOVE M-TRK-IO TO HD3-TPP-IC. T-TIUCK-ICI.
MOVE N-DAT TO H03-OAV• T-CA1X.
MOVE •••••• TO MOl-CITt.
IF 0-CITV • 2ERO MOVE 'k.r.1 TC HD3-CITV.
IF M-ClTt . l HOVE '1.A.' TC H03-CITV.
MCVE M-TVP-TRK TO H03-TVP.
MOVE 'OTHER • TO HDS-FUEl.
IF M-fUEI. ' JERO HOVE *GA1 • TC HCJ-FUEl.
IF P-FUEL > 1 MOVE 'OIESEI.' TC l-03-FUEl.
MOVE P-hEIGHT TO HD3-HT.
MO«E (^LICENSE TO H03-LICEKSE.
"CVt M-1NO TO HD3-IMO.
MCVE M-ENGIDE TO HGt-EhGlhE.
MCVE M-SERIAl 1C HC4-SEDIAI.
MOVE H-NDAVS TO HD4-NDXS.
HC«E 18K-C1-1 111 TC 14PCI-PEC.
MCVE 1 TO O-FLAG. h'lTE TAFCT-EEC.
MCVE TRK-nt-1 121 II. TAFCT-PEC.
MCVE 2 TO >FLAb. k'lTE TAFCT-PEC.
MCVE TRK-QT-1 131 TG TAPCT-DEC.
MCVF 1 TO O-FLAG. kBITE TAtCT-PfC.
-CvE TRK-OT-1 141 TC TlFCT-tEC.
«CVE » TO O-FLAG. »M1£ TAFCT-ECC.
aVPASi-CALIBCATlON.
P.EAO TAPIN IhTO BVTES-1-4C AT EDO STOF SUK.
-BEAC TAPIK IkTO BVTES-41-CC AT CNC JTCF full.
IF IR»-CI>-T»P • I 4- »»C
ITRK-VCl • •-' OB
C2631
Cltll
C2631
C2611
C2631
C2631
C2631
C2611
C2611
C2611
C2631
C261I
C2631
C2611
C2611
CZ631
C2631
C2631
C2631
C2631
C2631
C2631
C2611
C261I
C261I
C2631
C2631
C2631
C2631
C2631
CZ631
C2611
C2611
r.'ell
C2611
C2611
C2611
C2631
C2631
C2631
C2611
C2611
CZ631
C243I
C2631
C2611
C261I
C2631
C2611
C2611
C2631
C2«ll
C2A11
C2611
-------
9 - MODE PROFILE (cont'd)
I
10
TRK-VC2 LESS THAN 200)
MOVE 'L' 1C VC-ShlTCH.
25090 IF 1RK-CD-TYP = • 4»
251GO COMPUTE AMBIENT-PLUS-fIFTY = TPK-afEIEKT * $0.
25110 IF TRK-CD-TYP = §GR§
25120 COMPUTE GBAR-RATIC (TRK-GEAP) =
25130 TRK-RV1. * TRK-RV2.
251*0 IF 6YTES-1-40 NOT = ••• GO 1C 6YFASS-CAL1BRAT1CN.
25150 HOP-EXIT. EXIT.
25160
25170
25180 MRITE-SPCCL SECTION.
25190 MCVE PRT TC SPOOL-CUT.
25200 MOVE C-CTL 1C SPOOL-CC.
25210 WRITE PRT AFTER C-CTL.
25220 WRITE SPCOL-OUT.
25230 WRITE-SPOCL-EXIT.
25240 EXIT.
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
C2631
U1
I
-------
9 - MODE PROFILE (cont'd)
// EXFC
ASSEMBLY
ICTL (,71,21
ro
OC C'PC PSH = •
OS CL17
CCN 9*MFS,0,25
CCB SVSLST.CCh
OC F«C»
ENC
Dill- TC PRPGUA* CHECK
ABC*
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
.SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
SUPRS
. SUP.RS
SUPRS
-------
9 - MODE PROFILE (cont'd)
// EXEC ASSFHBLV
ICTL
C1010NOTP
C1020NCTPHK
C1C30
C1C6C
C1070
oicec
C1090
01095
CllOO
C1110
C1120
01130
C11«C
C115C
CllfcO
C1170CC*
C1180CCB
C1190
t , 71 , ?
TITLE
START
LS1NG
ST
LA
ST
MVC
L
L
LH
STC
LA
EXCP
WAIT
Bft
ecu
CCB
END
1
•SUPPRESS MPEMARK CN FRONT
C
*,15
1,C(13)
l.CCh
1,4(13)
CCB*9(3)T £(13)
1,0(13)
l.C(l)
1,0(1)
l.CCB+7
l.CCB
(1)
(1)
14
A7,*,0,l
SYSCOO.CCk
CF COBOL OUTPUT ABC*
I
to
-------
10 - PRINT MODE SUMMARY TABLE
II I'll. ttCll
:UK iDtMii i
CIC4C
C1CM.
: i c ' :
CK'C
uc . ' flP t
11 irPI
11
C7
C7
C7
Cl
C7
FU PR IF
01 P»l.
C7
tl
C7
•OP«ING-
77
01 MCLC
il
Cl
07
07
C! CCPF
C7
Cl
Cl COP
Cl
4.
»EtC«rikO -ODE F ,
l«efi OECOPOS c-iirtc.
-FCOL CC».IAJ».<, 2C CHARACTERS,
olCO CCKTAIMS 181 kECCRCS.
2AIA ^CCCRU TAPIh-l-FC.
•->Ft.
T-PQCE-IPAbf .
14 1-F«ODE PICTLRt REDEFUES T-FPCOE.
21 T-F.KOOE* PICTLRE 599.
21 T-FJUB PICTURE S99.
14 I-TPLiUE PICTURE WV9<:.
!. 1-T>CDE9 REOEFIDES T-TPCOE PICTURE S99.
-1I»E PICTLRE S9I7IV99, COPPUT IT ICKAL-I.
-'»it PICTURE SSI5I CCrFLTAYIOKAL-2.
ILlFP PK1UPF IX.
-FLiCi PICTLRE >.
-FLAf PICTLRE ».
•EtosciM, HDDE F, IADEI RECCROS CKITTEC.
DATA RECCRO PRT.
F ILl'P PICIURE I.
PR11 PICILRE XS1I.
PRI2 PICTURE X51I.
ITCSACt 'ECTICh.
!1»SL-»LCM PICTLRE I. VALUE SPICE.
-AREAS.
H-F'COE PICTURE 99V1S.
H-FPLCE9 REOF.FIMES N-FPCOE PICTURE SS9.
H-TKOOE PICTURE 99V99.
H-TdOOEf REDEFINE' M-FI-OOE PICTURE S99.
-IAS COMPUTATIONAL.
•1 PICTURE S999.
•2 PICTURE S994.
-3-1AB COMPUTATICNAL-3.
LII.CM PICTURE !999 VALUE 900.
C2643 ,
C2t43
C2643
C2643
C2643
C2643
C2643
CZ143
C2643
C2643
CZ643
C2643
C2643
CZt43
C2S43
CZ643
C2M3
CZ643
CZ643
CZ643
CZ643
CZM3
CZ»43
C2«43
CZ»43
C2643
CZM3
CZ643
CZ643
C2643
C2643
C2643
CZ64S
CZ643
CZ643
CZ643
CZ643
CZ643
C2643
CZC43
C2643
C2t43
C?£43
CZ643'
C2t43
C2»43
CZ643
C2643
C2643
C2643
02030
C2C40
C2C!0
C20tO
C2070
C2C60
C2090
C21CO
02110
02120
02110
02140 Cl
02150
onto
02170
021(0
C2190
C2200
C2210
C2220
C2230 01
02240
02250
czito
C2270
C2280
C2Z90
02300
02310
C2320
02130
01340
02350
C2300
C231C
C23BO
02340 01
C2400
C241C
C2420
0243C
C2440
C245C
C2410
C2470
C24BO
024 PICTURE SSIIIV99.
kl PICTURE S9I7I.
kZ PICTURE SSI*).
k-IIME PICTURE S9ITIV99.
k-FRE<. PICTURE S9ii>.
TM-FIEC PICTURE SI 171.
Ti-FREO PICTURE SSI7I.
i s— ' i IKE PICTURE ss 17 1 V99.
k-DiF PICTURE s«uiv99.
N-OAYS PICTURE S9, VALUE 1.
FILLER PICTURE
FILLER PICTLRE
FILLER PICTURE
FILLER PICTURE
HOI-DATE PICTURE
FILLER PICTURE
HOI-PAGE PICTURE
FILLER PICTURE
H09-TRK-IO PICTLRE
FILLER PICTLRE
K03-CITV PICTUM
FILLER PICTURE
H03-TVP PICTLRE
FILLER FICTLRE
H03-FLEL PICTLRE
FILLER PICTLRE
MOJ-kT PICTLUE
FILLED PICTLRE
H03-UCENSE PICTURE
FILLER PICTLRE
HO VINO PICILRE
FILLEF PICTLRE
H04-ENGINC PICTLRE
FILLER PICTURE
HD4-SEPI1L PICILRE
FILLER PIC.TUPE
KC4-NDAt£ PICILFE
CIY-FIELO.
14 H04-COAY PICILRE
14 HD4-COAYS PICTLRE
14 H04-COAYS1 PIC
CAY-CIEL01 REDEFINES C
14 HD4-SDAV PICTLRE
14 X04-OAT PICTLRE
FILLER PICTURE I2C>.
II15I
k.
II 161
>, VAL
TURE >
IV-FIE
»l 1 1 .
1.
VALLE
VALLE
VALLE
VALLE
VALUE
VALLE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
UE SP
18)
LD.
SPAC
i
•
•EPA TRUCK STUDY1.
•120210 '.
SPACE.
SPACE.
•PACE '.
IERC.
• TRUCK--.
• CITY-'.
• TYPE TRUCK'*. .
• FUtl TYPE-".
• •E1CHT-*.
* LICEKSE-*.
• INDUSTRY-*.
• CNGIAE rOOEL-'.
* SERIAL NUMBER-'
• DAYS SAMPLED-*.
SPACE.
ACE.
VALUE SfACE.
E.
«E»N TICE *.
HAPIAF.CE *.
•DEVIATION*.
C2»4)
C2»41
C2t43
C2t43
C244I
C2643
C2C43
C2643
C2C43
C2C43
C2«43
C2t*3
C2643
C2643
C2C4I
C2643
C2t43
C2*4I
C2643
C2«43
CJ44S
C2643
C2»43
C2643
CJ643
C1M3
C2M3
C2A43
C2»43
C2t43
C2»43
C2»43
C2»43
C2*43
C2«4!
C2t«3
C2C43
C2C4?
I /64.'
(2! ..
[ It-.-
i It,:
C2t43-
C2643
C2«43
C2C43
C264!
C2»43
C2643
C2C43
C2»43
C2643
-------
10 - PRINT MODE SUMMARY (coht'd)
1
to
io»i VALUE SPACE.
FILLER PICTUIE 1141 VALUE '6.00'.
FILLER PICTURE 1(061 VALUE SPACE.
FILLER PICTURE AMI VA1UE '7.00'.
FILLER PICTURE 11041 VALUE SPACE.
FILLER PICTUDE 11*1 VALUE '«.oo>.
FILLER PICTUDE 11061 VALUE SPACE. '
FUIFB PICTUtE 1141 VALUE '4.00*.
IILLER PICIUDE MC5I VALUE SPACE.
FILLER PICTURE MSI VALUE '10.00'.
HOCI.
14 FILLED PICTURE II16I VALUE • MOCE FREOUENCr '.
U FILLFD PIC1LDE ltC.il VALUE 'MATIII'.
^OC2.
14 FILLER PICTURE Aim VALUE ' MEAN TIME IN NODE •
1* FIILER PICTURE 1141 VALUE 'MATPIl*.
PDC2-1 •
14 FlllC> PICTLRE 1181 VALUE • TIME Ik'.
1* Finn PICTLRE 11141 VALUE • POURS. MINUTES'.
14 FILLED PICK«E IICBI VALUE '.SECONCS*.
hD63.
14 FULEF FICTUkE 1(161 VALUE • VADIARCE RATDIX'.
hDE*.
14 FILLED PICURE >IUI VtLUE • TD)NSITIOH PDOB-.
14 FILLED PICTLRE 111*1 VALUE -ABILITY MATRIX'.
HOC).
C2643
C2C43
C2A43
C2C43
C2t43
C2(43
C2441
C2(43
C2C43
C2643
C2C43
C2«43
CJ643
C264]
C2643
C2«43
C2643
C2143
C2«43
C2t43
C2J43
C2«43
C2«43
C2«43
C2M1
C2443
C2643
C2643
C2643
C2643
C2643
CJ643
C2A43
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C264J
C2443
C2443
C2443
C415C
C4I6C
C4IIO
C4ieo
C4|«C
C4200
c»;io
04?20
C4J30
C4240
C4JJO
04260
04J7G
C42EC
C4210
C4300
C4?10
C43ZO
C4330
0*340
04390
04360
C437C
C43IO
C4J40
C4400
04410
04420
04430
04440
04450
04460
044 »0
044 BO
04410
C4«,on
C5C10
«020
C9030
CJ040
CJC50
Cl
Cl
01
01
C7
.01
Cl
01
Oi MO-
OT
01
01 MOS
01
Cl
07
07
07
07
07
Cl
07
07
01
Cl
Cl
01
0>
1* MUCK P|CTl«E
HDtt.
14 FILI.FB PICTURE
1-0(1.
14 FILLFD PIC Iiet
14 FILLER PICTURE
hoea.
14 FILLER PICURE
1* HUE* FICTLRE
HOie-1.
14 FILLER PICTURE
14 FILLER PICTLRE
14 FILLER PICTURE
NOIL
14 FILLER PICTURE
14 FILLER PICTURE
1-DtO.
14 flLLER PICTURE
14 FILLE* PICTLRE
14 FILLER PICTIRE
14 M140-1 PICTURE
MOM.
14 FILLER PICTLRE
14 FILLER PICTURE
N0«.
14 FILLED PICTURE HI
14 FILLER PICTURE 91
OPERATING-TINE.
M)-TINE.
14 FILLER PICTURE
14 FILLER PICTICF.
14 FILLED PICTURE
14 FILLER PICTURE
OF— TIHt-KEC.
14 FILLER PICTIRE
14 OP-MOOE PICTURE
14 FILLER PICTLRE
I* OP-HHS PICTURE
.
FILLER PICTURE
FILLER PICTLRE
FILLER PICTLRE
FILLER PICTLRE
FILLER PICTURE
FILLER PICTURE
FILLER PICTURE
FILLER PICTLRE
FILLER PICTURE
FILLER- PICTURE
FILLER PICURE
FILLER PICTURE
FILLED PICTURE
FILLER PICTURE
FILLER PJCTURF
Mill VALUE • CRUISE M031 MTRI1'
« ESTIMATED CISIANCE1
lilt! «4LLE • TRAVELEC NATRII'.
11191 VALUE • TRAFFIC COHDItlON '
• 161 VALUE 'MATAII'.
1151 VALUE SPACE.
11161 VALUE 'PERCENT OF TIPE '.
tiai **LUE -TRUCK in*.
Illtl VALUE • SUP HOtSEPONER •.
HI06) »»LUE 'PtTRII*.
>llll VtLUE • CECELEMTE HODE1 •
IIICI VALUE 'TIM V«1VE CLCSEC •
X13I VALUE MHH.MP.SSI - •.
iiai.
I4I VALUE '"CCE-.
JI7I VALUE SFACE.
1141 VALUE MIPE-.
»' VALUE SPACE.
X8I.
» VALUE SPACE.
>l>l.
HI21I V1LUE SPACE.
1141 VALUE MCLE*.
»(6) VALUE SPACE.
1141 VALUE 'STOP1.
X6I VALUE SPACE.
>I4I VALUE 'SOAR1.
»I4I VALUE SPACE.
X6I VALUE -CRUISE'.
XII VALUE SPACt.
II01I VALUE 'ACC*.
>I2I VALUE SPACE.
Stltl VALUE >.
•131 VALUE SPACE.
M07I VALUE 'CEC-CTI.'.
Illl VALUE SPACE.
C2643
C2643
C2641
C2A41
C2641
C2443
C2641
C264S
C2641
C2643
C2643
C2641
C2643
C264]
C2641
C2»41
C264I•
C2641
C2643
C2643
C264S
C2641
C2643
C2643
C264I
C2643
C2643
C2M1
•C2643
C2643-
C2641
C2C43
C2643
C264J
C264J
C2643
C2443
C2<41
-------
10 - PRINT MODE SUMMARY (cont'd)
C'CtC
C*C7C
c*ceo
C9090
041CO
C9110
c;i2c ci
CM1C
£MtC
0*1*0
CM6C
CMPO
CM9C
C*. i OC
ctMc
C * 120
092 1C
c;;tc
C*?90
c:;«c
Cf.?TC
C5«eO
CS2SO
C'.JOC Cl
C9MO
«120
J ' : 3C
C? JtC
Cl'Si
C*!6C Cl
C i?7C
C *. ?8C
C * 2*IC
CHOC
I5I.IC
C!*JO
C*.*30
C14*C
C9*SC
C'.*60
C94IC
C*48G
C944C
C550C
CtOlC
C1C2C
C6C30
cec»o
CtOiO
CtC'.C Cl
CtCIC
cecac
CtOSC
CtlCO
CC113
Cl FILLIP PICTLRC 1107) >ALLC 'CEC-P.f
Cl FILLED ricIUPE IIJI VALUE SP'CE.
Cl MILE' PICTUIt 1(071 VALUE 'CEC-TKC'
07 FILLER PtCTb'E 1191 V1LI.E SPACE.
DEI.
Cl FULfR HCTlOf H9I vILLlf SPICE.
Cl U-«CCFI1 PICTLRE «.9f.
Cl FILLER PICTUIE >. VALUE •-" .
Cl C-KCOEI2 PICILPF 111*1.
C7 n-FREC PICILS5 I. Ill, HI.
Cl U-1INE PICTURt IU,III.S<,.
C.1 FIlLfk PICTUI.E 1121 ILLF SFACF.
Cl C-Il»F-»-"S PICTLBE 1 81.
Cl IJ-V1PIINCE FICTLRE I I .lll.W).
Cl 0-V1H »fUCFI»,FS C-tA» AkCE PICTUPF 1(111.
Cl FILLER PICTLI"^ 1131 ALLlC SFACE.
Cl C-OEV-HNS PICTLPE 1(31.
Cl MILE' PICTUHF «(5I VALLE SPICE.
Cl D-IRANb P1CTUF! 1 1 til I ,, VALLE •-• .
C7 F-»nif-fi PICTLRE llltl.
OET-2.
C7 IILLFP PICTLUL- 1.
r; 1--CL! PICTURE It.
Cl 'ILLfF. PICTLRE 1141 VALUE '.00-1.
Cl L-l-COFO PICILRE llltl.
Cl MLLFt PICTURE 1 VALUE SFACE.
C7 l-COH PICTURE 111091.
Cl L-COM REDEFINES l-CCN.
It l-C.Cl-2 OCCURS 10 TICES.
21 L-c< PICTURE N9IV.
01 L-CCC3 PEOEFIF.ES L-CCX.
It L-CCf* OCCURS 10 TINES.
21 L-P2 PICTURE 111,111.1*.
Cl L-CO»9 REDEFINES l-CCN.
It L-COH6 CCCURS 10 TINES.
21 L-P3 PICTURE ll.lll.lll.
Cl L-CON7 REDEFIhES l-CCN.
1* L-CCN8 CCCL'RS 10 1INES.
21 l-PC PICTURE II10I.
MC-CN.
Cl *-o-CNl.
14 FULCR PICTLPE 1(4) VALUE SPACE.
1* FILLER PICTLRE Kill VALUE *— SPEEC
It FILLER MCTIRE Mill VALUE SPACE.
It FILLER PICTLRF 1171 VALUE 'AVERAGE*.
C2t*3
C2t*3
C2«t3
C2tt
C2«t
C2«t
C2C>
C26*
C26*
C2tt
C26*
CZtt
C26*
C2Ct
C26t
C2tt
C2tt
C26*3
C26*3
C26*3
C2«t3
C26t3
C2t*3
C26*3
C26t]
C26t3
C2tt3
C2At3
C26»J
C2H3
C2643
C2tt)
C2643
C26t]
C26t3
C2«t3
C2643
C2643
C2643
C2643
C2643
C26t3
C2643
C2t43
U643
C2M3
C2641
C2643
C2643
C2643-
C2«t3
C2649
C2643
C2643
C26»3
C2643
Ctl2C
CtliC
Cfl*C
Ctl50
CtltO
oeirc
ctieo
Ctl90
Ct200
CtJIO
06J20
C4230
062*0
C6250
C6260
C6!TO
C4260
0(290
C630U
CC310
0432C
C«?30
C«3«0
C63SO
06560
01370
0£3»0
Ct39C
06*00
Ot»10
06*20
06«?C
ct«*o
C(«SO
Ct»6C "Cl
C647C
ct*ao
Ct*90
C6500
07010
07020
C7010
C7040
07090
C7060
C7070
07080
C7G90
C7<00
C7110
C7120
C71IO
07140
07150
C7160
C717Q
Cl HO-CR2.
1* FILLER
It FIllH
It FILLER
1* FILLER
It FILLER
1* FIlltK
C7 MC-CN3.
It FILLER
1* Fluei
it FILLER
It MLIE*
It FILLER
It FILLER
It FIUFJ
It FILlEt
It FILLER
It FILlf«
It FILLER
It FILLER
It FILLER
It FILLER
It FILLER
It FILLER
It FILLER
C7 HD-CM REDt
I* HO-CM5
Cl CN-CET.
14 FILLER
It CN-SPEED
14 FILLER
14 CN-FftEQ
14 FILLER
It CK-IIRE
KC-INT.
Cl HO-IM1.
It FILLER
It FILLER
14 FILLER
It FILLER
14 FILLER
14 FILLER
It FILLER
14 FILLER
14 FILLER
14 FllLFR
14 FILLER
07 HD-INT2.
' 14 FILLER
14 FILLER
14 FILLER
14 FILLER
14 FILLER
14 FILLER
14 FILLER
14 FILLER
PICTLRE
PICTLRE
PICTURE
PI CURE
PICTLRE
PIC'LRC
FICURE
PICTURE
PICTLRE
PICTLPE
PICTLRE
PICTURE
PICTLRE
FICTLCE
FICTbRE
PICTLRE
FICTLRE
PICTURE
PICTURE
PICTLRE
PICILRE
PICTLRE
PICTURE
FINES MO-
PICTURE
PICTLRE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTLRE
PICTURE
PICTURE
PICTLRE
PICTURE
PICTLRE
PICTURE
PICTLRE
PICILRE
PICTURE
PICTLRE
PICTURE
PICTURE
PICTLRE
PICTLRE
PICTURE
PICTLRE
PICIL-RE
PICTLRE
Iltl XLLE iP«C£.
>llll VALUE *FPCP TO*.
Illl V1LLE SPiCE.
1191 V1LL.E 'FRECUERCV1.
Ilil >*LbE SPtCE.
till VALUE 'HI-.P1N.SS*.
Kill VAlliE ' 0.0 - 5.0'.
>! VALUE • 5. - 10.0*.
Kill VALUE MO. - 15.0'.
Ullll VALUE 'IS. - 20.0*.
1(11) VALUE '20. - 25.0*.
1(111 VALUE '29. - !0.0>.
Kill VALUE *30. - 39.0*.
lllll VALUE "35. - tO.O*.
Kill VALUE *40. • 4>.0>.
lllll VALUE -49. - S0.0>.
Hill VALUC '30. - 99. O*.
1(111 VALUE *S9. - 60. 0>.
Kill VALUE '60. - 69.0'.
Ullll VALUE '65. - 70.0*.
lllll VALUE -70. - 75.0'.
Kill VALUE '79. - 80.0'.
XIII VALUE '80. - UP •.
-CP.3.
Hill) OCCURS 17 TIKES.
>I4I VALUE SPACE.
lllll.
IIJI VALUE SPACE.
I. 111. 111.
>«• VALUE SPACES.
11121.
1(191 VALUE SP«C(.
Kill) VALUE • ACCELERATION •.
»I4) VALUE •-—-•.
IIS) VALUE SPtCE.
11 HI VALUE • CEC-OTNAMC -•
Illl VALUE •---• .
1(91 VALUE SPACf.
II19I VALUE • CEC-PCHCR — •
1(31 VALUE • '.
Illl VALUE SPACE.
11201 VALUE • CEC-THIOTTLE CLOSED
>(J> VALUE- SPICE.
1191 VALUE >UTENSIIT>.
II18I VALUE SPACE.
1171 «ALUE ••VFRIGE".
II2CI VALUE SPACf.
1171 VALUE 'AVERAGE*.
11201 VALUE SPACf.
1171 VALUE 'AVERAGE*.
C2641
C2643
C2643
C26*3
C26*3
C2MJ
CX641
C2643
C2643
C2641
C2641
CZ64J)
C264S
C2A43
C2643
C2643
C2M1
C264S
C2643
C2M1
C2M3
C2t*3
C2643
C2M1
C264I
C2643
C2M1
C2C43
C2643
C264I
C2643
C2A43
C2643
02*43
C2643
C2643
C2643
C26*3
C2643
C2643
C26t3
C2t43
C2t43
C2643
C2643
C26t3
C2643.
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
-------
10 - PRINT MODE SUMMARY (cont'd)
M
t-:?c
!0
l.'tC
7>'C
T7'-r.
T'CC
CTIJC
C'.'tC
(7MC
Cl.'"-
17HC
;i-:o
C74IO
r?*;o
C741Q
C7440
CT450
CU40
ci47o
C74«0
01440
CI900
cecio
cecio
cacio
01090
ceoeo
ceo7o
caoao
HI oo
08120
cane
atit:
ceiic
Cblt.0
cano
CiltO
CB190
C8200
C12JC
4 IILLLP
0-1*' '.
4 * i L i r '
4 Mil1.-
4 1 II ill
• 'Illlk
4 Flllfk
•• F I Hi L
4 FILLER
<. FILLEh
4 F 11 LEi*
4 FILLEP
4 FIIUS
4 FILLED
N-DET.
4 FILLER
4 IRjI-SPEIO
4 FILLER
4 INT-AFAig
4 FILLER
4 IHT-1TIIIE
4 11LH
4 ST-OFREO
4 ILLF.R
4 A -DTIPO
4 1 IF<"
4 N -CFREP
4 1 lEa
4 S -OTI«P
4 IN -OFREO
4 > 1 LEB
4 F| LER
4 IN -OTI«E
0-INT .
4 FILLER
4 FILLER
4 FILLER
4 FILLER
4 FILLER
4 FILIER
4 FILLER
4 FILLER
4 FILLER
4 F I L LER
4 FILLER
4 FILLER
4 FILLER
4 FILLEB
4 FILLCP
4 FILLER
4 FILLED
4 FILLER
4 FILLER
1 1 1 1 1. c >
- 1 1 1 1 P f
' 1C TLSl
HCU'E
"ICILRE
eiCH.Pt
SICILf!
flCTLRC
(ICTkPE
HCTLBE
ciCTktE
PIClLtt
PI CTLRE
PICTURE
PICTLRE
PICTtRE
PICTURE
PICTLRE
PICTkRE
PICTURE
PICTURE
PICTLRE
PICTURE
PICTURE
PICTLRE
PICTURE
PICTURE
PICTURE
PICTURE
PICTLR1
FICTI.PE
PIC.ILRE
PICTURE
PICTLPE
PICTkBE
Pit TufrE
FICIL.BE
PIC TLf'E
PICIkBE
PIC 7 LBE
(ICTLRF
FICIlRE
PICTkFF
> ICTkRE
'ICIkRE
HCIIRE
PIC'LPE
PICIl«t
MCTL«E
•I2CI VALUE
• 171 V»IUE
• 14) ^
•111) V
• 1121
ALUE
• LUE
• LUE
1113) V«LU£
XI9) VALUE
• 1131
XI9I
• 191
• 1131
• 1^1 \
• 191
M 1 31
XI4)
•111).
ALUE
AlUE
ALUE
AlUE-
ALUE
AlliE
ALUE
AlUE
XI 31 VALUE
1,111,1
XXX VA|
II 121.
24.
UE SI
Ill VAlUt
1,111,1
»• VAI
• 1121.
• •• 1
24.
Ul SI
ALUE
•AVERAGE*.
SPICI
•FRCI
•
TO".
REfiUENCT".
• Ch.HII.SS*.
SPICK .
•FRECUERJCV.
•
SPAC
•FRE
•
SPIC
•FRE
«
SPIC
Kb. ••.$$',
.
:UE«CV.
HH.RM.SS*.
.
LUENCV>.
hh.HH.SS* .
.
SPICE.
ICE.
SPICE.
>ACE.
SPAC
i.
J.1U.K4.
Ill VA|
•1121.
1,111.1
• XX t
UC SI
24.
ALUE
• CE.
SPIC
m
I» HllUF SPICF.
•112).
Xllll
Xllll
Xllll
•mi
• mi
Xllll
• Mil
• 111 1
• 1 1 1 1
HID
• 1111
• Ill)
• 111)
• 1111
• 111)
• 111)
• 111!
• 1 111
• LUI
• LUE
• LUE
• LUE
ALUE
HUE
AlUE
AlUE
ALUE
ALUE
ALUE
«IU?
&LI»
• IV
• Lit
• LUE
A 1 'j1
• ll.'
• 0.
1 0.
, ,_
• 2.
• 2.
• 3.
• 3.
• 4.
1 6.
• 7.
• R.
' 9 .
•10.
'11.
•12.
•15.
'20.
.5-.
.0".
.0' .
.9".
.0".
.9'.
.0".
.0*.
.0".
.0" .
.0' .
- 10.0*.
- 11. Q1.
- 12.0'.
- 19.0*.
- 20.0 '.
- UP '.
0-INI9 REDEFINES HD-IM4.
C2643
C2443
CZ64J
C7643
C2643
C2643
C2443
C2443
C2M2
C2MI
CZ64!
C2443
C2*43
C244J
C2643
CZ643
C2t43
C2443
C»t43
C2643
C2643
C2643
CZMJ
C2643
C2643
tit* 3
C2A43
C7443
C264J
C2643
CZM1
ue«i
t»«43
C2443
C2443
C2S43
C2443
CZ«3
CZ643
CJ643
C2643
C2643
C2t43
C2«43
C2«43
C2«43
C2643
C2443
C2«43
C2643
C2W3
C7643
1* hlj'IM6 Hr.Tl.Sfc III!) QCCU'S 19 Ilȣi.
cb;»c ,-.i
CG2HC
CP290
ce:oo
CPU C
C3270
C8J30
CP240
C8150
C»3tO
CD270
C8.?GO
Cd3*)0
C840C
CB410
C8«20 .
CB430
08440
C8450
CB460
(E47C
CB4HO
CE410
CE900
C9C10
94020
C9030
04040
09090
09040
09C70
C9C6C
CS09C
C9IOO
CS110
C9120
C9I30
C4140 01
C915C
C916C
C9170
05180
CM90
C4IOO
CS210
09220
C9230
C9240
C92*0
C9260
C9270
CSiBC
C9290
C7 MD-HI.
14
14
|4
14
14
14
14
14
C7 HD-
1 4
1 4
14
14
14
14
14
14
14
14
07 RT-
14
14
14
14
14
14
Cl 1C-
14
14
14
MC-Sk»-
C7 HO-
14
14
14
1-t
14
14
14
14
C7 HO-
14
1*
14
14
F1LLEB
FILLER
FILL!*
FILLER
MILE"
FILLER
F II LEB
FILLER
RT2.
FILLER
FILLER
FILLEk
FILIER
FILLER
FILLER
FILLER
FILLER
FILIER
FILLER
OT.
FILLER
RT-RHOEC
'ILLER
R1-POOED
FILLER
RT-HLES-1
21 10- Hi
21 FILLER
21 RD-Tia
21 FltlFI:
01.
FILLER
TC-TYPE
10-PCT
riORSF.VOMER.
HPI.
FILLE"
FIllEK
FILLER
FILLER
FILLER.
c II LER
' Ill'R
FILLER
hP2.
FILLER
I ILLER
FILLER
FILLER
PICTLPE
PICTLRE
PICfkRE
PICTkRE
PICTLRE
PICTURE
PICTkRE
PICtLRE
PICTkRE
PICTkRE
PICIL'E
PIC THE
PICTkRE
PICTLBF.
PICTkRE
PICTkaE
PICTLRE
PICILBE
PICILRE
PICTURE
PICTLRF
PICTkRE
PICTLRE
IKE CC<
ES Pl(
?1(
! Pl(
• 1281
xiiei
• 191
xnai
1191
xuai
• 19)
• 1181
XI9I
1141
• 1221
ill!)
II 121
1119)
1112)
• 1 19)
• 1121
• I 19 )
X VIL
19.
XI4I.
• 1141
• IX.
.URS 4
TUBE
.TUBE
TURE
PIC TURF
PICTURC
PICTURE
PICTURE
PICTURE
FICURE
PICTkRE
PICTURE
PICTLRE
PICTURE
PICTURE
PICIkRf
PICTURE
Firi'.RF.
PICT ^RF.
PICTkRE
I.
XI 71.
1171.
II04I
XI 12)
XI14I
Xllll
mil
HI 141
II08I
Hll!)
'1091
XI09I
11061
XlOtl
VALUE
VALUE
VALUF
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
ALUE
ALUE
ALUE
ALUE
• LUE
kc SPAC
.
TIKES.
l,llltl
XI.
nai.
• in.
*j4.
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
SPACE.
•~--- ARTERIAL -•
SPICE.
• FBEEn'T — -
SPICC.
• LOCAL
SPACE.
•— » UhimQHh — -
SPACE.
••COE1.
SPACE.
••IIES TIPE1
SPACE.
••ILES TIPE'
SPACE.
••ILES TIM"
SPACE.
••ILES TIPE1
E.
Ur94.
SPACE.
ALL •-'.
1 ACCELERATICN '.
UL "-'.
SPACE.
ALL •-'.
• CRUISE *-
•ll •-•-
SPACE.
•IkTENSITr".
SPACE.
•Sun OF'.
T2643
C2643
C2«43
C2t«J
C2C«1
C2C43
C2M3
C2143
C2t41
C2143
C264J
C244I
C2«43
C2643
C2«43
C2«4!
C2643
C2643
C2«»3
C2443
C2t41
C2t<,3
C2643
C2643
MM3
C264J
C2643
C2641
C2t41
M441
C2<41
C2t*3
C2143
C2643
C2649
C2M3
CZ643
C2143
C2M1
C2<43
CJM3
C2443
C2M3
C2C43
r.2«4i
-------
10 - PRINT MODE SUMMARY (cont'd)
;••"• *. llllH BKIlkE M09I VALUE SP1CC.
:<3."c
'.1 ': 'C
CS-4C
C S?5C
C^'fcO
f < ? ' .
C* !feC
C^?*C C 1
C4&OC!
?S4t C
C%* 20
C ••* .'0
•-*«•.
CS-OC
C *<>feC
C14TC
t<4"C
CS49C-
"'=..
'.ocic
ILI.T
1CC3C
1C040
10050
ICCtC
1C07C C7
, locac
• ICG9C
ro icioc
,J 10110
ro 10120
, 101 3C
1 ICI4C
1C150
IC16C
IC17C
101'C
1CHC
IC220 Cl
1C>30 C7
4 (1111" HCTHE MC7I VALUE 'HP TIM1.
4 FUli* CICILPE Mill VALUE SPACE.
- FILL-' PICTLPF Mill VALUE •— SPEEC — '.
i Mil'. FIC1LBE IIC5I VALUE SPACE.
* 5ILLH lICTuSE >ICt) VALUE 'SUM CF>.
MLIER FICTLRE M02I VALUE 'TC* .
<• IILLEB PICTLPE MSI VALUE SCACE.
- flLLFR FICTLRE M1CI VALUE 'HCRSEPCHER* .
- > ILLEB PICTLPF M03I VALUE SPACE.
<. MLLEP. FICTLRE MOD) VALUF 'HC.CP.SS' .
t (HIES PICTUPE Mill VALUE SFACE.
4 FILLER PICTURE >I04I VALUE •FRON* .
<. C|LLt> PICTLPE M05I VALUE SPACE.
-. F1LLE° PICTURE HI02I VALUE 'TC-.
4 FILLER PICTLBE M 05 1 VALUE SPACE.
4 MLLE* PICTLPE M10I VALUE •HCRStPOkER* .
<. FILLER PICTURE MOJI VALUE SPACE.
4 FILLER FICTLRE MOBI VALUE 'Hh.RII.SS'.
"-CtT.
<• MLLER PICILPE M4I.
» PP-IKT PICTLRE Mill.
4 FILLED PICTURE MSI.
4 HP-AHP PICILRE 1.222.122.99.
« FILLcB PICTLRE Mil.
I. MP-ATI-F PICTLRE M6I.
4 FILLER PICTLRE Mill.
4 HP-SPO PICTLRE Mill.
4 FILLER PICTLBE MJI.
4 HP-CHP PICTUBE 2.122.122.99.
• FILLER PICTLBE M3I.
4 HP-CTIOE PICTLRE Mdl.
1-E-kC PICIL'E S9CII VALUE 2EPC. CCF-PUT ATIDNAL-!.
LFTFI<1 CCCUP! 10 1II-FS.
IG240 14 SLMNARV-NATPIK2 CCCUBS 10 TINES.
10250 21 Sn-FREC PICTURE S9I7) CCNPUTATICNAL-3.
1C2«0 21 SN-NEAh CCI-PUTATICNAL-1.
1C2TC 21 SN-SNSORS CCI-FUT JT IONAl-2.
10280 21 TIP*E-lk-IIOOt PICTURE S9ll3IV9f,
K2VC ' CU'FUTATICkAL-3.
IC30C C7 Sur--PC. PICTURE S9I7I CCNPUTAT1CNAL-3.
1CMC
1032C C7 >L>»ABT-MATRII3 CCF-PUTAT ICML-3
ic;« CCCURS :o TINES.
IC340 14 CRL'ISF-FREC PICTURE S9ITI.
ic!50 14 CRUISE-TINE PICTURE S9i?iv99.
C2C43
C7643
C2643
C2«43
C2443
C2«43
C2643
C2643
C2643
C2>43
C2643
C2«41
C2643
C2A43
C?641
C2t43
C2643
C2643
C2643
C2641
C2S43
C2643
C2643
C2643
C2643
•C2643
C2643
C2643
C2643
C2643
C2643
CI643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
€2643
C2643
C2643
C264I
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
1031,0
1C37C
103BO
1C390
1C40C
10410
10420
1C430
1044C
10450
10460
10470
1C4RO
10490
IC'OO
11C10
1102C
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
into
11170
11180
11190
11200
11210
11220
11230
11240
11250
11260
11270
11280
11290
1130C
11.110
11320
11330
11340
11330
11360
11370
11380
07
C7
C7
C7
07
07
C7
01 EIG
CT
C7
14 ACC-FREC flCTURE S9I7I.
14 ACC-T1NE PICTURE S9I7IV9S.
14 DEC-FREO FlCTURE S9ITI.
14 DEC-TINE FICTUBE S9I7IV99.
14 CEC-FPEC FICTUPE S9I7I.
14 OEC-TINC PICTURE S9IT>V99.
14 OEC-FREP FlCTURE S9I7I.
14 OEC-TIXP FlCTURE S9ITIV99.
14 ACC-HP PICTURE S9I7IV99.
14 CRUISE-HP PICTURE S9I7IV99.
SLNHART-ftTRIX4 CC»PUIATICKAL-3 CCCUPS 1C TINES.
14 RT-KT.
21 SUKNARV-NtTPlIS CCCURS 4 TINES.
2S R1-»ILE5 PICTURE S9I7IV99.
28 RT-TINE PICTURE S9I5I.
!UXI>tRt-NAIRIX4-A CGNPUTAT ICNAL-3 CCCURS 5 TINES
14 ' IT-TIM PICTLRE S9 1 7 1 .
SUHNARV-NATRI >t CCNPUTATICkAL-3 CCCURS 3 TINES.
14 TC-PCT PICTLRE S9I7IV99.
7C-PCT-TCT PICTURE S9I7IV99 CCKPUT1T ICKAL-3.
HNS.
14 FILLER PICTURE «(2I.
14 HH PICTURE 99.
14 HPN PICTURE >.
14 NN PICTURE 99.
14 NPS PICTURE X.
14 ss PICTURE <;•;.
HNS- SHORT REDEFINES HNS.
14 FILLER PICTLRE BI2I.
14 HNS-I PICTURE X8I.
CUHHV-1.
14 DUH-1 PICTURE mill.
14 FILLER PICTURE >.
HIT-BYTES.
EIGHTV-OUNNV.
14 BVTES-1-19 PICTURE XI19).
14 BVTES-20-38 PICTURE Mill.
14 BVTES-39-57 PICTURE M19I.
14 BVTES-58-T6 PICTURE XI19).
1RK-IOENT-FHT REDEFINES EIGHTV-DUNNV.
14 C-tRK-IO PICTURE >X.
14 N-CITV PICTURE X.
14 H-TTP-TPK PICTUPE X.
14 H-FUEL PICTURE >.
14 H-kEIGHT - PICTURE XI.
14 H-LICFNSE PICTURE MSI.
14 t^IND PICTURE X«.
14 N-EKGINE PICTUPE XI10I.
14 Fl-SERIAL PICTURE M20).
14 N-HDAYS PICTURE «.
C2643
C2643
C2643
C2643
C2>6*3
C2643
C2643
C2M3
C26*3
C2643
C2443
C2643
C2M3
C2643
C2443
C2643
C2643
C2643
C2643
C2643
C2643
C2M3
C2643
C2645
C2643
C2643
C2643
C2643
C2643
C2643
C2M3
C2643
C2643
C2643
C2643
C2643
C2M3
C2642
C2643
C2643
C2643
C2643
C264J
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
-------
10 - PRINT MODE SUMMARY (cont'd)
line
ll.CC
11*10
11420
I1*3C
II**C
n*:o
II»»C
ll«(0
11*90
ll'.oc
I2C1C
I202C
I203C
120*0
12C10
120*0
12CTC
I2CRC
12040
12100
11110
12120
12130
121*0
12110
I2ICO
12IIC
12110
| 12140
(S; 12200
_
"^*
(jJ
|
I22IC
12120
I22JC
12210
I22EO
12240
12300
12310
123?C
I2!3C
I2!»C
I215C
I2!«C
1* M-OAV F1C1UPE >.
1* »-0*»S PIC1LRF MSI.
Cl- IR«-inE*>1-'»l-l RFCEF1MES E IGHTT-GUMMV.
It FIllEB PICTLRE >(*«!.
1* P-CK1 P1C1LPE II. CCCURS 4 TIPIS.
Cl Sfc-llCcE!.
Cl >l'!1-DA1t PICHRf I. VALUE IERC.
Cl L-BREAK PICTURE I. VALUE SIACE.
Cl 1-BREAR PICTLRE «. VALUE S«*CE.
01 CCMP-UIA1IONAL-1 COMPUIATICk.AL-1.
Cl k-PEAN.
01 CCPP-L1ATIONAL-2 COPPll AIICkAl -2 .
Cl I-SIPSORS.
Cl k-VAR.
Cl P-CSC-1.
Cl M-DSC-2.
1* FILLER PICTURE »ll«l VALUE 'ACC-CEA*
1* FILLER PICTURE 111*1 VALUE 'DEC-CVRAPK.
14 FILLER PICTURE 11(141 VALUE 'DEC-PObER
I* FILLER PICTURE »(!*> VALUE 'DEC-TMPCT-CLSD
1* FILLER PICTURE >ll«l VALUE 'COAST
Cl N-DSC-1 REDEFINES P-DSC-2.
1* M-DSC OCCURS 10 TIPFS PICTURE 111*1.
01 P-CSC-4.
1* FILLER PICTLPE 11(1 VAI.UE MOLE
1* FIlLfS PICTlFf 11(1 VALUE 'S1CP
I* (IlLtR PICTURE IICI VALUE 'hCT-SCAR
1* FILLFR PICTLRE >l(l VALUE 'C1I-EB
1* FILLER PICTLRE >l(l VALUE • TCTAL
Cl P-OSC-5 BEULFIhES P-OSC-4.
14 CP-ttPE FICTLRE IIBI OCCURS 5 TIMES. '
P'CCECLPE ClklSICN.
OPFK INPLl 1APIN kITH 1.0 PEklkO.
CL1PL1 PRTF.
Ekliil LINIAGE. CALL 'GE10A1' CS1NG NCI-DATE.
EMf» CCBOL.
EkltR LIKHAGE. CALL 'SbPIS'. EMEU COBCL.
PCVE • .GO-' TO RT-OT.
>CVE Itar TO TC-PCT 111. TC-PCT 121. TC-FCT 131.
PCvE 2ERO TO TT-TIME 111. TT-TIPC 121. TT-TIPE 111.
11-1IHE 1*1, TT-TIPE 111.
ptpFrRp POVE-MEADER.
•Ctl 1 1C ll.
fit! Of CIE1»-SU»PA«T 10 TlfES.
C2t*l
C2**3
C2**3
C2*43
C2M1
C2**3
C2**l
C2«*3
C2443 •
C2«43
C2643
C26O
C2**3
C2««3
C2643
C2443
C2«*3
C2««3
C2**l
C2**l
C2*43
C2*«3
C2«43
C2>«1
C2»»3
C2643
C2643
C2A43
C2t«3
C2««3
C2**l
C2643
C26*3
C2k*3
C2643
C2643
C26*1
C2643
C2643
C26*3
C16*3
C2643
C2643
C2«41
12370
123*0
12390
12*00
12410
12*20
12*30
12««0
12*90
124*0
12*70
12410
12490
• 12>00
13010
13020
13010
110*0
11(90
110*0
I10TG
noao
13040
13100
13110
13120
13130
13140
13190
131*0
13170
niao
11190
13200
1J210
11120
11210
11240
13290
1326C
13! TO
132(0
13290
13300
13310
13320
131)30
13340
13390
13340
I33TC
133(0
11190
11*00
11*1C
I342C
LCA
BCAI
FIR
OTh
PRO(
SUB-
'CtC 1 1C II.
PERFORM CLEIH-K2 20 TIPES.
REtC T*PIN »T tHO SIO» PUk.
IF T-FLtC • 5
PERFORP LORD-SUHIKRt.
CO TO 10»0-T»BLCS.
IF 1-F14G - 6
PERFO«« LOtD-|l>TENSIT«.
CO 1C LCW-TRBLES.
IF 1-FL1G • 1
PERFORM LO»0-RO»0-TYPE.
GO TC LOAD-TABLES.
GC TO FlftSI-TINE-S»ITCH.
-LCCP.
READ TAPIN »t END CO TC ERO-FILE.
FIRST-llPE-SklTCH.
CC TC FIRST-1IKE.
OTHER-ll-AN-FIRST-TIHe.
IF 1-fPOOE HOT • H-FMCOE
MOVE HIV TO F-SREAH
GG 10 NCk-TO-MODE.
IF T-FLAGS • 1 GO TO SUB-PCOE-TCT-1.
IF H-TMOOE • IERO
»0ve T-TMODE TP H-TPDDC.
!F I-TPODE NOT • H-TNODE GO TC Nf V-TO-PflCE .
IF 1-FLACS • 1
GO 10 SbB-MUUE-iOT*l.
IF T-FLAGS • 2 60 JO SIR-PODE-TCT.
IF 14- TIKE • IERO
GO TO READ-LOOP.
IF F1RS1-DAU • ZERU
MOVE SPACE TO FIRSt-CATA. PCVE itn/ TC K-S
COPPLTE k-MEM ROUkDEC • TJ-TINF. / fS-fPEC.
COKPUTE k-OIF • T-TI'E - k-PEAk.
CCPPLTE k-SUMSORS ROUNCEO • V-SLPSCES •
k-OIF • «-DIF.
CCMPLTE k-OIF - T-TIME - SP-PEAk IT-FHCOE9, T-THGCF9).
COMPUTE SH-S«5SRS (l-rrCDf). T-TPODE9I RCUkCEC •
!M-SHSCK£ II-FMOOE9, T-TPC019I •
k-DIF • K-OIF.
ACO T-IIPE 10 TINC-IN-PUOE IT-FPCOF.4, 1-1KCCE4I.
CC 10 READ-LOOP.
ACC 1-FREO 10 TS-FSEC.
AOC T-1IPE 10 TS-TIKE.
IF I-FMCDE4 NUT • 0*
GO TO READ-LOOP.
MCVC 1-F«tb 10 HI.
ACC 1-FBEC TO CRUiSE-FPEC
ACU I-I1HE TO CKUISE-MPE
•iC 1C RE AD- LOOP.
C2b«3
C2M1
C2*41
C2**l
C26*3
C2**l
Ct*41
C2M1
C2*4J
C2M1
CX*41
C2M1
CIM1
MM1
C2**l
C1643
C2**l
C2M1
C264J
C2641
C2*4J
C2*41
C2M1
C2**l
U641
C2M1
C2641
C2M1
C2**l
C2MJ
C2M3
C2**l
C2«43
C2643
C2M3
C2M1
C2641
.C264]
C2e*3
11641
f.2645
12*43
(2*43
C2»41
C2*4l
C2M3
C2«41
C2«*j
C2ft*3
C2MI
C2k*l
C2*«l
C2M1
C2643
-------
10 - PRINT MODE SUMMARY (cont'd)
13430
1344C
13450
13460
I34TC
134BO
1349C
1390C
4C10
4020
4CJO
4040
4050
4060
4CrC
«0"»C
4I3C
411C
4i;o
4130
414C
4150
4I6G
4170
4ISO
4190
4200
4710
4220
4230
4240
4?5C
4< bC
4210
42BO
4330
434C
43SC
4360
4310
43(0
4100
4400
4410
*420
4430
4440
4450
4460
4470
44EO
4410
4*OC
;cic
15020
SliB-UCCI- 101-1.
ACC I-FPIS 10 TM-FPFC.
Gr ir READ-LCOP.
FIPSI-MME.
ALllfc F IRST-llMt-SklTCH If. P'CCEEC 1C ClHER-1hFIEP i.
Gi: 10 PBCC-RCCORO.
NLv-FBrp-f*COF .
IF UKCM GBEA1ER THAN 45 PEBFCRM CVRFL,
kRlir PR1 FROM M05 AF1F.R 2.
kPIII PHI FRCM H06 AF1ER 1.
"Cll 1-F"CLE TO F-MODCF1.
NCvt M-CJC I1-FMOOE9I 1C F-PCOEF2.
hFIIE PR1 FRCN DE1-I AF1EB 2.
ACD 2 10 IINCNI.
•CVE if.HO TO IK-fRES.
GC 10 RESET-CONTROLS.
Mk-IC-MOOE.
XCVf t--I«OUE IU 0-MGDE1I.
"CvF- M-OSC Ih-KCOEII 1C Q-PCOET2.
Cr.-Fi.1E L-FKEO - IS-Fkft.
COMPU1E k> ROUNDED • 1S-IIPE / 1S-FPEO.
CCP-PL1L kl ROUNDED • Ml.
CCPFL1E D-IIME - NX.
PtKH!RM CCHVFRl-m-i:-HH-«h-SS 1MRL CGNVER1-I-I-MM-SS-END.
•CvE ff'.-t 10 D-TIPE-H>S.
IF 15-FBEC • 1
•OU 2EGL- IP .-VI*. ELSE
COMPUE k-v«l> RCUOCED •
k-SunSSRS / I1S-FREC - 1.0001.
IF k-VAR LESS THAN 1000000.000
COMPLTE D-VARIANCE > k-V>R ELSE
HOVE • •••••••• TC 0-VARI.
IF k-VAR • 2.
PERFORM CLEAR-SUMPART-3 4 1IPES.
ACD 1 10 11.
CLEAR-SLMMARY-2.
MCVE 2ERC 1C TIME-IN-MCCE Ol, 121.
MOVE ZERO 1C SM-FREO Ol, «2I, £P-NE»N Ol, «2I,
SM-SPSGRS (>1, <2I.
ADO 1 10 >2.
CLEAR-SLHPART-3.
HOVE 2ERO TO RT-NIIES Ol, >2I. RT-TIME Ol, X2I
ADC 1 TO S2.
CLEAR-H2.
HOVE ZERO TO CRUISE-FREO Oil. CRUISE-TIME Oil,
ACC-FHEO Oil. ACC-IIME Oil.
CEC-FREO till. OEC-FREP Oil.
DEC-HMD Oil, DEC-TIMF Oil.
ACC-HP 1X11, CRUISE-HP Oil.
OEC-FREC till, DEC-TIME Oil.
ADO 1 TO >1.
LOAO-ldlENSIlY SEC1IOK.
MCVE 1-FSLB 10 XI.
IF 1-FLAGS 1 GO TO ACC- 1 MEfSI TY.
IF 1-FLAGS 2 GO TO OECD-IDIEKSITI.
•IF T-FLACS 3 GO TO OECP-IKTEKSITY.
IF 1-FLAGS 5 GO TO ACC-SLP-HP.
IF T-FLACS 6 GO TO CBLI SE- SIX-HP.
IF 1-FLAGS 7 CO TO OEC-VC-LCAC.
ACD 1-FREO TO DEC-FREO Oil.
IDC 1-1IHE TO DEC-TIME lull.
GC 10 I.OAD-INTENSITV-EKIT.
ACC-IN1ENMIY.
ADO 1-FREO TO ACC-FREO Oil.
ADC 1-1 1 HE TO ACC-TIME Oil.
GO TO LOAO-INTENSITY-EMT.
CECO-miENSIIY.
ADO 1-FREO 10 DEC-FRED Oil.
ADC 1-1 1 ME 10 DEC-TIMD Oil.
GO 10 LOAD-IKTENSMY-exIT.
OECP-IK1ENSI1Y.
ACO 1-FREIi TO DEC-FPEP Oil.
ACC 1-1IME TO DEC-TIPF lull.
GO TO LOAO-INTENSITY-EK1T.
C2643
C2643
C2641
C2643
C2443
C2643
C2643
C2643
C2C43
C2C43
C2643
C2643
CZ64>
C2643
C2643
C2M3
C2643
C2643
C2643
C2C43
C2643
C2643
C2643
CZ643
C2643
C264J
C2643
C2«43
C2641
C2643
C2643
C2643
C2643
C2«43
C2643
C2643
C264J
C2*43
C2643
C2t43
C2t43
C2i<-3
C264J
C2643
C2643"
C2C43
C2643
C2643
C2643
C2643
C2643
C2643
C2643
C2643
-------
10 - PRINT MODE SUMMARY (cont'd)
ItOIC
16100
1*110
K12C
1613C
1*1*0
IlliC
U16C
IM7C
I6IIC
1C2SC
ItJiC
1
ro
-o
U1
1
1
1627C
1*280
16250
1630C
ItilC
U32C
16330
163*0
ItHO
I636C
1637C
U360
16340
16*00
16410
IC42C
K43C
16440
IC*6C
I647C
16460
It 5 00
17010
1702C
11030
170*0
170*0
17COC
11010
neio
•CC-M»-i-P.
*CC 1-TIBC tl 4CC-MP III).
CC 7C IMO-IV1FNSI T»-E«IT.
tCC 1-TIPE 1C CRUIiE-«P Oil.
tC K lC«P-lsTlNSIlr-l«ll.
i'ic-vc-ia*c.
tec T-FWC TO im-vc.
mi.
u.COt«l
CC TC tC»D-BO»t-1"PF-J«ll.
Cr«PlIF 11 * 1-FMOOE4.
CCMFL1F >2 • 1-FSU6.
tCC 1-FP.EO 10 R1-7I-I III,
«c: I-FP.CC to «t-n-£ ii,
tOC 1-1IHE TO RT-PILES III.
tCt 1-1IHI 10 IT-PILES II.
tCC T-F1-6 TO TT-TI«t 141.
CC 10 lOtD-ROtO-TTPE-EIIT.
TRtP-COKD.
IF 1-FSte . 1 tOO T-7IPE tC
IF 1-FSLI • 2 tOO T-TIPE TC
IF 1-FSU* • 3 tOO 7-1IPC TC
LCtC-ROtC-TTPF-EllT.
E«M.
lO«D-!lP«»Rt SECTION.
•cc T-FPCC 10 SM-FREQ ir-FPcoE4
l> 1-FPEt • lERb
HOVE IFRO TO i»-"E«l> II
COMPUTE SH.>Elh II-
1-IIHE / 1-FREC.
LCKO-iUPHIRI-nOOEV-EIIT.
EMI.
CC1Pl.il. 1C-PC1-101 • TC-PC7 111
IF 1C-PC1-I01 • 2ERC CC 1C HC-PE
COPUTE 1C-PCT III c 1C-PC1
COPPUIF U.-PCT I?) • 1C-PC1 121
CC'PKll TC-PCT 131 . TC-rct
•CUE 1 1C II.
•Ovt TC-PCT 111 10 7C-PC1-1C7
IF TC-PC1 121 GRE41EB Ihlk TC-FC1
«OvE ? 10 II.
»OVE TC-PC1 121 70 TC-»CT-1C7.
IF 1C-PC1 131
•OVE i 10 II.
FMCDtll,
m
21.
21.
12 1!
1C-PC7 III.
1C-PC1 121.
1C-PC1 131.
OE4, 7-TKOOE4I.
BCC19, T-1P.COHI FISt
COF?. T-TPOCE4I RCUKOEC •
11 TC-PCT 121 • U-PCT HI.
-PE CE»T.
II 100.00 / 1C-PC1-10T.
21 100.00 / 7C-PO-TOT.
31 100.00 / 1C— PCI— 1C7.
.
-FC1 111
-1CT.
-PC1-1CI
C2643
C2643 .
C2643
C2M3
C2C43
C2643
C2A49
C2643
C2M3
C264!
C264J
C2643
C2643
C2643
C264J
C2t43
C26>3
*
C2«43
C2643
C2»«3
C2643
C2641
C2643
C2443
C2iMS
C2643
C2643
C2641
C2643
C2643
C2t43
L2643
C2643
C2643
C2C43
cr 6*3
C26<3
C2643
C2643
C2643
C7643
C2643
C26»3
C2643
C2643
C2643
• C2643
C2643
nose
1710C
17110
17120
17110
17140
1715C
11160
I7I7C
111BO
17140
17200
17210
17220
1723C
11240
17750
1777C
172BO
17240
1 7300
1731C
17:20
17330
113*0
17390
17360
17?70
1 731C
1'390
1 7400
11410
17420
11430
1 I44C
17*40
11*60
17470
174 BO
174»C
17*00
IPOIO
IflC.'C
16030
180*0
leoto
1B06C
180*0
I60«C
16100
IBllg
I812C
1«130
181*0
IF 1 • 1
CC» UlE TC-PCT ID • 1CO.CC - (TC-PCT 121
if i • :
CC* UlE 1C-PC1 12) •= '.CO. 00 - I7C-PC7 III
IF 1 * I
CO* UTf TC-PCT 131 • ICO. CO - ITC-FCT 11)
NC-PERCENT .
IF »-CM 111 VST • • • ICC 1 1C S-CtYS.
IF r-CM 121 NOT •> • tOO 1 1C N-C»»S.
If «-CM 131 NOT • ' ' tOC 1 1C N-OtVS.
IF P-CN1 141 NOT • < • *00 1 1C N-OtfS.
PEBICR" 0»BFl.
«B|TF POT t»C.f HO 7 JFTEF 2.
• PI It PRT F»OH nOI AFTER 1.
PERFORP IIST-FREOLENC*.
PERFCR" OVRFl.
•RITE PR1 FRQH HOB2-1 «FTE* 7.
UPITE PRT FBQf M07 1FTCA 2.
•Rllt PR1 FKO" HOt >FTEI< 1.
PERFORP IISI-NE1N.
BfRFOB" OVBFl.
• RUE PRT FRO- HOB? »FTEB 2.
•RtlF PR1 FBOK HO 7 iFTER 2.
•RITE PUT FRO« HOS tfTfB 1.
PERFORM LIS1-v>R|«hCE>
BERFOR" CVBFI.
tlBIIF PR1 FRQn HOS ! 1F1F.B 2.
WRITE PRT FRO" HO/ AF1F.II /.
MBIU PRT FRCK H05 »FftB 1.
PERFORM 11S1-V«S ItkCE-TRU'.i.
OUMP-7RiNS.
PEPFOBP OvRFL.
NRIlt PRT CRQH H064 tFIER 2.
hfllTF PRT FJ1CH HD7 4FTE!< 2.
•R11E P»T FRC" HOO 1FTER 1.
PEBFOB- I ISI-TB4NSMICK.
PFUFCF" nvBFl.
.PI IE POT FRQK MOB' «flfP t.
• Rill P«l F«OP MO-CH «HE« 2.
•BITE PUT FRO" "C-C»3 JFTEP 1.
•OVC 1 TC '\.
PERFCRP OVRFt.
.BUS PB1 F«0" H086 JF'pt 2.
• RUE Pill FRGP xn-ihll 4FTFP 2.
• BITE PRT F>0> HOINT2 JFTEH 1.
.P Ml PHI Fan* MO-1NT3 PF1C* 1.
"CVF. 1 1C *l.
i'FPFORP 1. I 5T-lnTEN5IT» 11 TIMES.
• 1C-PCT 131}
• TC-PCT 13)1
• TC-PCT Ull
C2443
C2443
C2»43
C2**l
C2e«3
C2643
C26«3
C2M3
C2643
C26*:
U64>3
C2«43
C2(41
C2«41
C2t*I
C2(41
C2643
C2*43
C2643
C264J
C2641
C2643
CJ643
C264]
C2643
C2643
02*43
C2643
»**}
C2643
CI643
C2643
C264J
C2643
C2«43
C2641
C2643
C2643
C2C4!
C2643
C26*3
C2«4»
C2i«3
C?643
C2643
C264>
C2643'
CJ64)
C2643
C2643
C2443
C2649
C2t*3
£26*3
CJ643
C2643
-------
10 - PRINT MOPE SUMMARY (COIVt' d)
iai«o
to
-4
01
161(0
11110
ia2oo
tmo
l«22fl'
1823C
.16240
16290
1B2CC
1(270
i>280
1(290
I COO
1(310
K32C
18330
r>]«o
18350
l,e"3tC
1 83 10
1(360
'16390
IC«00
1(410
Io420
-.(•30
IC440
if»so
i (no
ie*tc
TICK
I1C2C
'.«jc
ISC40
19C^C
I'.CfC
14CTC
i«»c
ISCSC
ni?:'
KI10
19120
m'ic
IS14C
II!'-.
••HE PUT FRON H089 JHER 2.
k*HE P«T FUCK HO-HP1 AFTER 2.
•RHE Oil fRON HO-HP2 AFTFR 1.
kRIU Ml FROM HD-HP1 AFTER 1.
•GVE 1 JO >1.
PERFOR* (. I SI-HP |f Tl*t>.
PERFORM CVRFl.
kPITE PRT FRCN HOB7 AFTER 2.
kRITE PRT FROM HD-RT1 AFtEF 2.
«P|T« PIT F»0» MO-BIZ AFTER-1.
•CVE * TC ».
PERFORM LISl-ROiO-TYPt a TirES.
•CVE !P»Ct 10 PBT.
hRITE PRI *FTE* >.
•CVf IP1CE: Tn PRT.
kRUE PRI »FTEk 3.
•CUE 5PICE TO PRT.
•KITE PD.T'AFTFR' 3.
none ppT-FROH-'HDee AFTER 2.
•RUE PRT.FROH.HO«8-1 1FIEP 2.
•CVE 1 TO II.
PERFORM-LIST-TRAFFIC 1 TlrES.
CONFUTE kl ROUNDED • TIPE-VC » O.ia
PERFORM:coN«ERT-ki-Tc-nH-itp-ss THRU CCKVERT-PH-PP-SS-ENO.
MCvE HMS-t TO HD90-1.
KOVt !P*CE TD PIT.
•RITE PRI AFTER 2.
kRITE PPT FROM'H090 AFTER 3.
PEB'CRK CVPFL.
kHITE PRI mC" HD92 AFTER 3.
•RITE PRT-FRCC HD-11PE AFTER 2.
MC»E I TC i|.
PLBFORP IIST-QPERITING-YIPE S 1IPES
CLCif PRTF.
<1CF >LN.
I I !l-FlEtlFMV SECTICK.
MCVE 1 TC XI.
PERFORM LiST-FREQUENCV-RCk 10 TlfES.
GC 1C LIST-FkESUEMV-EMT.
UI!T-FPECLENCT-ROk.
•CVt 1 TC «2.
MOVt • .CC-' TC OEI-2.
PER":P» IIST-FkEkOENCV-CClLPk 1C TINES.
CCrPl-lE L-fCOE > II.
. f.CvE »-D!C III) TC L-fCCEC.
.Kill PBT caci* OCT-.' >FTFR 3.
AL't 1 TT, ll TO L-MCOEO.
KRITE PRT FROM-OET-2 AFTER 3.
AOO 1 10 HI.
LI!T-PEAN-COLI>MN.
HOVE SM-MEAN.«lt 2.
L1ST-MEAN-EXT.
EXIT!
LlST-HEANrHNS SECTION. *
CCMPVTE kl ROUNOEO - S»-«AK (>1. »2I.
CONVERT-fcl-TO-HH-NM-SS.
MCVE SPACE. TC HHS.
CCPPITE k2 • HI / 3600.
CCP.PlTE. HM - .2,
MOVE •-• TO HPP,,
COMP.ViTE kl - kl - Ik2 • 36001.
MOVE '.' TC "PS.
CCMPUTE- k2 - •! / CO.
CCMPLTE CM - «2. •
• COHP.LTE 55- > kl.- («? • 601.
CONVERT-hHrPHt-SSrEND.
NOTE 1HIS ROLT-INE, IS PERFCRPEC «kO ALSC
IS-I.SEO AS A FALL Th«L RCUTINE.
HST-PEAN-hMS-1.
MOVE hPS TO L-PC 1X2).
ACD 1 10- X2.
LIST-CEAN-I-NS-EXIT.
EXI1.
LIST-VARIANCE SECTIOk.
MC.VE 1 TO XI.
PERFCRP LIST-VARIANCE-ROk 10 TIPES.
GC 1C LIST-VARIANCE-EXIT.
LIST-tAFIANCE-ROk. .
•CVE 1 TG 12.
MCVE • .CO-' TO DET-2.
•PERFORK LIST-VARlANCE-CGLbpk 10 TINES.
cci-Pi.it L-HODE - >i.
NCVE M-OSC 1X11 TO L-MCOEO.
CS643
CZ643
C2643
C26*S
C2643
C2M3
M643
C2M1
C2M1
C2643
C2643
C2643
C2643
C2643
C2t«3
C26«3
C2t43
C2643
C2643
C2643
C2643
C2643
C2643
C2643
. C2643
C2M3
C2643
C2643
C2643
C2643
CZ643
C2643
CI643
C2643
C2643
C2643
C2643
C2443
CSA43
C2t43
C>643
C7643
.C264J
TJ643
C2643
C264J
C264J
C264J
• C2643
C2443
C2643
C2643
C2643
C2643
CZ643
C2643
-------
10 - PRINT MODE SUMMARY (cont'd)
202*0
202 TO
202 aC
20240
70300
20110
70120
20130
2C3*0
7CI50
7o:cc
2C370
2C3SO
20340
7C400
20*10
70*70
20*30
204*0
Z0450
20*60
2O4 TO
204 ao
10*40
20900
11010
210ZO
21C30
71C40
210*0
210TO
71080
21090
*»J 21100
' I 21110
ill 20
21130
21150
7IUO
7IITO
21190
71140
21200
21210
21220
21210
212*0
21250
71260
212TO
21200
21240
21100
21110
N>
kCITE PB1 f*Cl> L'.t-t >F1CR 1.
*CL I 10 II.
LIJT-MRUPXE-COLUPN.
IF !«-FPEt. III. 121 • IMC CP
!»-HEtN IM, >2I . UPC C"
SK-FPEO HI. 121 • 1
ROVE ICIC TO k-v«« ELSE
COP.PL1C k-v«« FCU»CIC • S«-S»S(RS HI
ISP-FPEl III.
IF k-v» irss THin icoooc.coo
COPPLTE i-P! i«:i • k-v»R ELSE
POVE • •••••««• 1C l-FC 1121.
<00 1 10 12.
LI!I-V»I1NCE-EI1T.
on.
ll!r-v»llNCF-1RUC« SECUCK.
»ovf i 10 «i.
PERFORM LIST-VAfcl'ICE-RCk-TRUO 10 TIMES.
CC 10 USI-VMIMCE-TPICI-EIIT.
LI SI-VM l**JCE-ROk-TRUCI.
HOVE 1 10 >2.
HOVE • .00-' TO OET-2.
PERFORM LIST-VlRUPXE-CCLUPh-TRUCK 10 TIMES.
COPPLTF. l-HOGE - >l.
' HOVE M-OSC I'll 1C L-M.ODEO.
kRIU PP1 F»C« DFT-2 «FTER 1.
•CO I 10 II.
121 -
ELSE
COPPLTE k-«R •
SP-DON lul
IIPE-lk-PCCE HI
>2>.
COMPLTE k-V» • «-V*B • k-V««
IF k-v«R LESS TM1K ICOOOO.OOO
COPPLTE 1-P3 K2I • k-VINSI1ION SECTIOK.
•C4f 1 10 II.
PEPFOPli LIST-rMNSITICk-PrK 10 HUES.
uC 1C LIS1-IIUNSI1IOM-EIIT.
•C»E 1 1C >2.
HOVE 2EP.C 10 SUH-IGH.
PEP FOB" LISI-TPlNSIIIOM-SbP 10 HUES.
HOVE 1 1C >2.
•CVE • .00-' TO OET-2.
PEPFOHH LIS1-TR*NSITIOK-COlUPk 10 TIPES.
CCPPtlE L-HOOE • II.
HO«E "-OSC nil TO L-VCOEO.
k«ME PP1 FRO* OE1-2 »FUR 1.
•CC 1 10 II.
C2*4
C 2*4
C2*4 '
C2C4
C2*4
C2*4
C2*4]
HI. 121 / C2»*3
- II. C2*43
02*43
C2643
02643
C2643
02*43
CZ643
C2443
02*43
CZ643
02*43
C2*43
02*43
C2643
C2643
C2641
02*43
C2443
C2*43
C2«43
C26*l
C2643
C264S
CZ641
C2643
02*43
C2*43
02*43
C2643
C2*43
C2643
C2643
C2643
02*43
02643
02*43
C2*43
02*43
CZ641
C2«43
C2641
02*43
02643
C2643
C2443
CZ643
C2443
C2»43
21320
2133H
2U40
21310
211*0
21370
213BO
71340
21400
21410
71420
21*10
71*40
21*90
21460
21470
2I4SO
21440
21100
22010
22020
22030
220*0
22C50
220*0
22010
22010
22C40
22100
22110
22120
22130
22I4C
22150
22160
22170
22l«B
22140
722DC
22210
22220
22230
222*0
22250
22260
22270
222(0
22240
22390
22910
22320
22130
22340
22310
223*0
22370
IF <»-M£»N ,,1, 12 i 10! • K»C
•DO S"-F«tJ III. 121 1C SCP-XOk.
•CD 1 10 >2.
LIST-TP«h
!M-ME<1 HI. 171 • IERC
•OvE ZE'C TC 1-P2 1121 ELSE
OjMPLTE L-P2 1121 RCUfcOEC >
ISM-FREO 01. «2I • 100.001 / SUM-POk.
•DC 1 10 12.
LIST-TR>NSITinv-EllT.
E > 1 T.
LIST-CRl-ISE-MCCE SECTION.
MOVE MO-CM 5 III) TC CM-SFEEO.
MCVF CRUISE-FRED III) 1C CP-FREC.
IF CRLISE-FREO Oil • 2ERC
PCVE ZERO TO kl ELSE
COMPUTE kl HOUNDEC • CRUSE-TIME III) /
CP.UISE-FREI 111).
PERFORM CCNVFRT-kl-TO-HH-PP-SS THRU CCHVEPT-HH-PM-SS-ENC .
HCVE HPS 1C CN-TIPE.
kRITE PRT FROM CH-OET «FTER 2.
•CC 1 10 11.
L IM-CRLISE-MODE-EHIT.
E I1 1.
LISl-IMENMIi SECTIi-.M..
HOVE fO-INT* III! II! IkT-SFEEC.
HCVE >CC-FREQ IHII 1C IM-4FREC.
IF ICC-FREC III) > JE"C
HCVE 2FRO TO m . ELSE
COPPLTE kl ROUKOEC •* JCC-TIPE 111! •
•CC-FKEO till.
PERFORM CGNVEBT-kl-!0-HH-»M-S', THRU COf.VERI-HI— PP—SS-ENO.
HCVE CEC-FREP III) 10 IkT-DFREF.
IF CEC-FREP till • i£»C
PCVE 2ERO TO •!. tlif
CCHPtTE kl FOUNDF.C •• CEC-llrF lit) / CEC-FREP Kll.
PEPFOPH CONVERT-»l-TO-M>i~»»-SS THRU CCkvECT-XH-PM-SS-END.
HCVE HHS 10 INT-OT1MP.
HOVE OEC-FREO Kll 1C :itl-CFREU.
IF CEC-FREO I>1) • ZERC
HOVE ZERO TO kl , ELSE
COKPLTE •! ROUkOEO ' CEC-TIPC II1< ' DEC-FPEC (XII.
PERFORM CCNVERT-kl-IO-HH-PP-SS THRU CdkVERT-M—PH-SS-END.
HOVE HHS TO INT-OT1MI).
HOVE OEC-FREO nil TO Ihl-CFREC.
IF OEC-FREQ Kll • ZER-T
MOVE ZERC 70 11 i ELSE
COMPUTE kl R.OUMOED " CEC-IIPE Kll / DEC-FREO l«ll.
PEHFORH CONVERT-kl-10-HK-PM-SS THRU CCKVtRT-HH-PH-bS-ENO.
C2**3
C2<*3
07643
C2«*l
C2«*l
0264!
02*41
02641
C264)
C2**3
C2643
0264!
CZt*3
026*3
02*43
C2C4
C2«4
C2C*
C2C4
C2C*
C2C4
Clt-
C2(4
C2t*
C2C4
r.rt4
C2C*
C2C4
C2*«
r.2C*
02643
r.2*4)
C2*41
026*3
02443
02403
C2«43
C2643
C26«l
02*43
CZ643
C2643
CJ54
C2t*
C2*43
C244I
C2641
-------
10 - PRINT MODE SUMMARY (cont'd)
77!n
22140
11*90
22*10
J74ZO
224JO
22»*0
17*50
22460
22470
27*10
;;*io
)3C10
'3070
:3c«o
210*0
?!C50
73CTO
••jcec
J3C50
73100
2311C
7M20
7JI 30
231*0
7H4C
2!ltC
«M»c
1 ?>uo
K> JSiio
, 23700
>J 73710
00 717,0
1 717 !-"S 1C INT-OTIHE.
• «I1€ Ml F«tl» lh-GF.1 Aflf» 2.
•CD 1 10 >1.
IIM-I11ENSITY-OI1.
EFI1.
LI.SI-HCAC-ltPl SECTION.
CC'PLIE Rl-i-COEC • 11.
IOVE »-j;c (»ii ic RT-«I)EC.
IF 11 • 1!
«OVF 1 tD 11
kRIlt PR1 triEO 1,
"L'VE SPACE TO Hl-OIt
•UVE 'TCI*!. • 1C RT-kCDEL.
•Cvc 1 1C »2.
PERFOkP LIST-40AC-TYPE-1 * TIPES.
•CD 1 10 11.
uC 10 IIST-BDAO-TVPE-E»M.
LIS1-POAC-TVPE-1.
•CVE BI-CILE^ III, 121 TC RO-'ILES (X2).
CCO'LIE k] • Rl-Ilrf III, >2l.
J>E«FO«" CCN»E«1-H-TO-MM-II»-SS THPU CCK«Clll->2.
LIM-BClC-lfPC-Elll.
EH1.
L l>1- I'l'F IL SECIIOh.
If .1 - 1 «OkE '1.ICHI • 1C K-TtPE.
IF i| . 7 "OVE •HEDIUN • TC IC-TtPE.
IF .1 • 3 MOVE 'HE4VY • 1C U-TYPE.
"CVt 1C-PC1 Oil If. TO-PCT.
HBI1E PIT FP.O" 1C-01 »FTfP 2.
>OC 1 10 11.
Ll*l-ip>rr ic-EHT.
till.
UM-rP ifCtH-J.
"CVF ;f«CF 10 HP-Of.1.
"CvF. H0-l«1t 1111 1C MP-1M.
'CUE 4CC-HP lull TC rtl>-(HF.
CCfPLIE H RCUNDED • «CC-hF III! • Q.8C.
PE»fCk» CON»»T-kl-TO-HI— >"-SS 1MBU CCNVfRI-hh-HK-
l-Cvt ««!-! TC MP-4IIPE.
IF II b»t«T[» IM»N IT CC 1C LIJT-HP-kRITE.
•rir i-C-Cfi «1) TC HP-SPO.
•;v: c»LisF-hp mi ia I-P-CMF.
CL^^LU «l RCUhDED • CKLlSE-fF Cxll • 0.66*
Pfgfio CCNvERI-nl-TC-ht— m-si 1MRL CChVEKl-l-l— (•»-
«c*t «-p<-» 10 «p-cime.
l r ;
C2643
C2641
C2643
C2643
C2643
C2443
C2*43
C1M3
C264)
C2649
C2643
C2643
C2643
C2643
C2M3
C2643
C214!
C2643
C2643
C2643
C2643
C2643
C/H3
r.2«43
126*3
12643
C2643
C264J
C2641
C264J
C16*J
C2643
C2643
C2643
C2643
C2643
C2643
-------
11 - CONDENSE MODE SUMMARY RECORDS
// ElEC FCCBCL
CBl SbP'IP.CllSI
OOIOIC ICENTIFICttlCIt DIVISION.
*NJ
^J .
Ifl
00107C
OCI01C
00104C
OC109C
CCI 0*C
CCIC7C
ocioac
CCIC9C
renoc
ccmr
OCL12C
OC11JC
CC114C
001 19C
00114C
C0117C
ocuac
OCI19C
COI20C
OC20IC
00202C
CC203C
CC2C*C
CC201C
CC20»t
CC2C7C
f C2CBC
CCICtC
CC210C
C02I1C
C02I2C
CC2HC
CCJMC
00211C
OCMtC
OC217C
CC2IIC
CC2I4C
CC220C
CC301C
;:-o?c
CC303C
00304C
CC30SC
coiotc
CC307C
cc;iec
C0317C
cense
OCllfC
CC920C
00*01 C
CC4C2C
PICt>**~IC. C2?«6.
PE '!»•!. EPI 12021C
MICH RECGROS CN FUG. POM. FLICS. INC
Sll»lP|2E 1IPE IkC FRECUENCi.
FNt|PC»EN7 CltlSICN.
HIPll-OllPlT SECTION.
FILF-CCMPOL.
SEIECI TtPE-IN ISSIC* TC STS012-UT-2400-S.
SELECT ItPE-CuT (SSICN TO !»S014-UT-J*00-S.
SELEC1 PRINT-OUT tSSItk 1C S»SOO«-UP-1403-5
RESERVE NO IL7ERNI1E A«E«.
SHIFI
0111 Cl VISION.
FILE !EC1ION.
FC TIPE-IN
RECORDING "ODE IS F
LIBEL RECORDS IRE CRIMED
RECC«G CONUINS 20 CHtltCTERS
BLOCn CONUINS 181 RECCROS
0171 RECORD IS TtPEK.
SRIPI
Cl TIPEN.
c: IP-IRUCR PIC ii.
c'. FILLER FIC >iai.
c; IP-DIV FIC >.
C? FILLER FIC 1(81.
c: IP-REC-NC PIC >.
SKIPl
01 IP PCOIFINFS IIPEN.
C-. IP-REC-I-03E FIC 1(81.
Ci IP-RF.C-7|«| (i; S9HI COP-3.
Cl IP-PCC-F«?g FIC S9I5I COP-3.
C! f IllEF. FIC 11.
C! IP-REC-FL4GS FIC I.
o; IP-RIC-FIIO FIC i.
!>|P1
FO 7IPE-017
RECORCING HOOE IS F
LIBEL IcCORDS IRE CHITTED
RECCRC CONUINS 20 CHARACTERS
OLCCF CQKTIINS lal PECCPCS
Ollt RECORD IS TtPEO.
SR 1PI
01 TI'EO.
C5 FILLFR ' PIC II20I.
S«IPI
FO PRIN1-OLT
RECCROING PQDE IS f
LtaEL PECOROS IRE OITTED
RECORC CONUINS in CMtRtCTER]
DITI RECCRO IS PP.INTIR.
SRIPI
C2746 •
C27«t
C276t
C2766
C276t
C27tt
C2766
C27«4
C2764
C2746
C276*
C2766
C2766
C2766
C276»
C2766
C2766
C27t*
C2T6«
C2T«»
C2766
C276«
C2766
C27M
C276«
C2766
C2766
C27A6
C2766
C276«
C2766
C27At
C27A£
C276t
C2166
C2764
C276*
C276*
C2766
C7766
C2766
C2766
C2T44
C2T66
C276*
C2166
C216t
C27»t
• C2746
C2766
C2746
C2766
C2766
CC404C
cctcec
OC«07C
oo4oac
00*081
0040R2
C04CC3
OOI08C
003C9C
001100
OC311C
CC312C
0031 1C
C01I4C
COJI5C
CC409C
00* IOC
00*110
00412C
0041 1C
00*1*0
00«I5C
00416C
0041TO
OC418C
004 19C
a042oc
00501IJ
005020
005010
oa!o*q
nC9C5C
0050*0
005070
oosoac
CCfOlO
C0510C
005110
OC9IIC
00511C
OCSI40
0051 tO
005160
009ITC
00518C
00519C
CC520C
C0601C
00402C
'ooe03c
00604C
00605C
OCS06C
cctorr
91 PRINTia
S>IP2
.OPilINC-SIORIGE SECTICk.
77 REC-REIO
77 REC->RIT
77 SHIP
T7 HLD-lmE
77 HLC-FREO
T7 FLIG-OH
SRIPI
Cl OP.
o: OP-REC-KOOE
09 OP-RCC-TINE
C5 OP-REC-FREfl
C5 FILLER
c: OP-REC-FltGS
09 OP-REC-Fltc
SRIPI
01 HD1.
05 FILLER
05 HDl-TRl'CKS
05 FILLER
09 MOl-OIT
05 FILLER
05 HOl-OtTE
09 FIllEH
SKIP1
01 HD2.
C5 FILLER
0! H02-REID
09 FILLER
09 FILLER
SIIPI
01 HOI.
09 FILLER
05 HOl-kRI!
C' FILLER
• RECORDS BRITTEN'.
C5 FILLER
EJEL (
PROCECURf DIVISION.
OPEN INPL1 TtPE-IN,
OL'IPLT 1IPE-OUT HI
ENTER LIKRIGE.
CALL •NOIPP.K* USING SK
ENIEH coeoi.
•CVE CURREM-OtTE TO H
HOVE SPtCES TO TIFcO,
SnlPl
REIC-FIRST-RIC.
REIC IAPE-IH IT FND CO
If IP-fEC-KC • • , »CVE
IF IP-PEC-NO • 3, I-OVF.
HOVE 11PEN 10 7IFEI).
X«Ilt TlffC.
VlkE SPtCES 1C (IFFC.
PIC
FIC
PIC
PIC
PICTURE
PIC7UPE
FIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
FIC
PIC
PIC
PIC
PIC
If NT REhl
IP.
01-DlTE.
i-RlkTIR.
TO END-C-
1F-1RUC>
IP-CH TC
»imt.
«I5I VILUE t.
4151 VtLUE *.
9111 VILUE 014 COUP STM.
S9I19I CCNF-3 VILUE IERCS.
S1II9I CCKF-1 VILUE IEROS.
1 VILUE UPC.
nai.
S9I4I CCPP-1.
S9ISI COPP-3.
II.
I.
I.
1191 VtLUF • TRUCK - *.
II VtLUE SFIC£S.
ii ai vtiuE • ctv - >.
I VtLUE SPtCES.
II 101 VILUE SPICES.
XI 18) VILUE SPICES.
IIB5I VILUE SPICES.
> VILUE SPICES.
2191.
HI 1*1 VILUE • RECCROS REtD*
Illlll VtLUE SPICES.
I viLUE SPICES.
1191.
Ill'fi VILUE
II110I VILLE *FICF.S.
NO, FPIkl-CUT.
FILE.
TO t.Cl-TRUC(S.
HO:-OIT.
C27*t
C2766
C27AA
C2766
C27*k
C2166
C21A6
C27««
CJ76*
C21M
C2766
C276»
C2766
C2766
Ciltt
C2766
C2766
C2T66
C27k«
C2T*6
C2764
C2764
C2T66
C2TA6
C2766
C2746
.C2766
C2766
C2T66
C2766
C276t
C2744
C27J4
C21*P.
C27K
C 2T*-t
C276t
1 2I6i
C2TOC.
C2TU
C2T6«
C2166
C2746
C2T64
C2766
C2T6«
C2766
C276K
C2T66
C276*
-------
11 - CONDENSE MODE SUMMARY (COlTt'd)
cc»:«i if ir->r<-kG • «. CO ic UK-it.
CCtCIC GC..IC- PEAO-F IRST-MHC.
cctirc .SHIPI
CCtllC REAO-IP-.
COM It
OGtllC
00«1JI
OC6UC
0061 »C
oetiti
CCtUl
OOtlTC
cctiac
CC»lSt
CCTQ1C.
ftEIO.lAPE— IN »r tlH> "GO 1C EkD*C-FllE.
ADD 1 10 IEC-*fAtt.
IF PEC-RfAO • i .HOVE 1C 1C CF
ADD £F-REC-TIPC TO KLO-1ME
AOD-CP-PEC-FBEC TC K.O-FREC
GO tO READ-IP..
IP-REC-FLACS . •»• AND IP-REC-FLAG - «8«
CC 1C HI IE -OP.
IP-REC-FLAG • OP-REC-FUC. AND
IP-REt-POOE • OP-PEC-PCCE. ME
MLO-TIKE
HIC-FREC
C2T66
C216C
C2V66
C1T66
Cllt«
QOTIJC kRUE PRINTAR f»0« HCt AF.TER FC5ITICMHG 0 LlkES.
OOT16C kRME PRINTAO PRrf "02 1F1EP PCSITICklkC 2 LlkES.
OOI17C NalTE PRINtAR FRGM «C> AFTER FCSITICNlNC 1 LlkES.
OOT18C 'HOVE SPACES 10 ("ftlhTAB.
OOTI9C KRITE PRlNlAR AFTER PESITICkINC 0 HUES.
tOTZOC CLOSE TAPE-IK. PRIkl-CLT, lAPE-Ctil klTr NO REhlNC.
cceoic -STOP RUN.
OC802C EJECT
CZT66
C216*
CiTte
CZT6A
C2T66
CZT6C
OC.701C. •EI.1E-0*.'
-
IF
IF
POVC I 1C FltC-ON
COHPVTE HLO-TIKE •
coxpue HLO-FRCO •
CC TC-REtO-IP.
SCI PI
IP-BEC-7IKE
IP-REC-FBEG
.
-'0. GO TO kRITE-B>»«U.
'IF hLD-TI«E LESS THAN 1COOCCOOOO -«kC HLO-FREC
LESS THtk. 100000
HCVE HLO-1IPE TO-OF-PEC-TIPE
HCVE HlOrfR-EQ TO OP-dtC-FREt
CO 10 .H«1.TE-BYP»SS.
'
CZTtt
C2T6C
CZT6A
to
00
o
I
.
IF N.D-TIHE GREATER IHAk SfSf«9999
'•PCVE -1 10 FLAG-ON '
' ' CONFUTE MO-IIP-E =• fLO-TIP-E - 9199999*1
PJOVE 99V999991 TO CP-REC-TIKE
ELSE -OVE-HLO-TIIIE -ic CP-REC-Tim.
•C»E,-»LO-F»E( TO tP-REC-KEC.
«CtE IERC5 10 Klo-fREO.
IF FLAC-CN - I kKITE IAPEC FRO CP '0 ANC HLC-FREC - 0
•KOVE OP 10 TAPED KITE TAPEC ELSE
»OVE MLD-FBEO TO CF-REC-FREC
HFVE HLO-TINE 10 OF-REC-IIPE
COVE OP TO TAPED' KITE IAPEC.
OOT13C KCVF REC-READ TO H02-REAO.
OOTI4C 1CVE REC-hRIT TO MDJ-MPIT.
CZ7««
CZT6*
C2?66
CZTU
CJ746
C2T64
-------
12 - MODE COMBINE TRUCK DAYS
1
1
to
00
I-1
1
// lift
cei «o
oic:ic.
3HC.C
eiccic
•-•CC!'!
:icotc
'.ICCTt
3ICCIC
OICOI2
* 1C3B*
ciccrc
OICC1C
C1C1C'.
oicn:
C1C11-.
OICI2C
OIGI3C
cicu;
(• 1C' *C
CICISC
010159
oicuo
01C16!
Old re
01017:
oioi ac
010109
010140
010200
Cl C20 1
CI0210
01012C
C2COIO
32CC2C
::cc'c
>• ?oo«i
C2CO-.C
CJCOr '.
CiCC'C
02COBC*
02CC1C
C201CC
C21IIC
02C12C
C2C13C
02C1«0>
C3COIC
03C02C
oieojc
03O04C
o loose
IICICL
TftLNC .CL I ! 1 1 luPPA*
1 11 N 7 \\ ICA1 1^ OIVfSIGk.
PBCCRA--IC. 'C2717-.
•iTk't . US.
FIIF Ck 1 nl 2 INPUT UPtS. CLTPUT IS A STACREC TAPF
= < 1 it' SIKBE'. S*S901 - STI009 ABE OIS> kCR« FILES USED
"F EFCf STEP.
'.UkFICLB IIOK SECTION.
SPECIAL- AHf!.
CCI 1! 10-ICP-OF-PAGE.
!-tPll-OLIPLl SFCUON.
• llf-CCMJOL.
illfCt IKPC11 ASSIGN TC SISOI1-LT-240C-S
«E!f-.i ^ALTERNATE AREf.
'.UPCT l-.irlJ iriIGN TC S«!C12-lT-2*00-S
'ILFC1 CLICK ASSIGN 11 '.«SCll-VT-2«OC-S
PF!FPVF hO ALTEHKAIt »I>E«.
•ElfHE kO ALTERNATE >PE>.
StLTCl kr««0i ASSIGN 1C S ASSIGN TC S»SOO»-uT-23ll-S
RESERVE NO ALTERkATr A>EI.
SELECT CARCIN ASSIGN TC S»SOO»-UR-25*OR-S .
SI1FCT PR10LT ASSIGN 1C SISOOV-UR-1403-S
SA>1 i20i.
FC INFC12
•LOCK COklAIHS 101 ICCCROS
RECORD CONTAINS M CHAD AC TEDS
LACFl HECOkOS ARE OHI71EO.
C< RECC12 PIC «I20I.
FO kCRKCl
BLCO '.OMllli 111 RECORDS
-ICCRI CONTAINS 20 CHARACTERS
LABEL .ECORD! ABC STANOMD.
01 PFCCI PIC JI70I.
C2T67
C2767
C271T
CJI767
C2767
C2767
C2767
C2767
C276I
C27t7
C2I61
C27H
C2767
C2767
C2767
C276I
C2767
C2767
C2I6T
CZ'67
C2767
C2767
C2767
C2T67
C27t?
C2767
C2747
C7767
C2767
01)67
030130 fO
0301»C
030150
03C1AC 01
03301C FO
03302C
03303C
0330«C 01
013I2C FO
0331 3C
01314C
01315C C\
oieoic FO
03102C
03t03G
C'«C»0 01
03(120 FO
01(130
03C14G 01
03(19C
03I20I.
BLOCK CO^TAINS 111 RECCBOS
LABEL RECORDS ARE STANDABC.
•FCC] PIC >I20I.
BLOC* COMAINS ill RECORDS
LACEL RECORDS ARE STANCARC.
RCCC* PIO KlZOt.
kCRIO*
DIOCK COMAINS 111 RECCPOS
LABEL RECOPOS ARE STANDARD.
RCCC5 PIC M2UI.
CARCIN
LABEL RECORDS ACE CHITTED.
CARO-REC.
09 IRliCK PIC «.
05 FILLER PIC >.
0! NOOATS PIC 1.
66 NODAfS-IS-VALIO VALUES ARE 1 THRU 5
05 FILLER PIC >.
0* FILES PIC III.
(C ONE-FILES VALUE 'CNt'.
(f TWO-FILES VALUE MkC<.
05 FILCPfk 1".C ».
BB OP:H-REIIIRD KAiur •••.
0; FILLER PIC IITl;.
•RTCkT
LABEL RECORDS ARE OHITfE'J.
PB INT-PEC.
:•. cc PIC i.
«i CP1-LINE PIC 1113H,
OLTC13
BLOCK CRKTAIN; ill RECCBDS
KECCRt CCMA1NS .'0 CHARACIF.i:
LABEL RECORDS ARE CHITTED.
Oll-REC.
a: CUT-*OOC- FIO «is;.
Ci CUT-1I«E PIC SSIIi COP-3.
05 OUT-FPEO PIC S1I5I COHP-3.
D; OUT-FILL PIC ».
OS CUI-FIAGS PIC X.
C! CUT-FLAG PIC I.
EJECT
05001C MOPKIhG-STCRAGE SECTION.
CJC02C 11
09C03C 77
• C5CO*C 77
OIC05C 77
o:ccs: 77
Sk-CN PIC > VALUE '•'.
SkrCFI- PIC > VALUE • '.
SCM-Sk P(t 1 VALLt • ••
SKIPC13 PIC S9I3I COUP S«P,C VALLE >13.
Fl. PIC S.
C27t7
C2747
CJJtl
C27t7
C2767
C27t7
C2767
C27t7
C2747
C2767
C2ICT
C2I61
C2767
C2767
C27C7
C27»7
C2767
C2767
C2747
C276I
C27«7
C2767
C2747
C2I6T
C2T17
C27A7
C2T67
r.Z7«7
C27«7
C2767
C2761T
C2747
C2767
C2767
CZ767
C27C7
C2T67
•-.2767
C2767
C2I67.
C2767
C2767
C2767
-------
12 - MODE COMBINE TRUCK DAYS (cont'd)
(O
CO
ISJ
1
C )CCTC*
t'CCtt-
C'.CIOC
C-CI7C
C5CI6C
C'C! Tl
C5CloC
05C20C
CMcac*
c:i«c
C1. IICC
05111C*
CS112C*
C'.I13C
o; IMC
CJ5CIC CI
C5SC2C
OM03C CI
05!04C
c?;c5f •
J55C6C CI
05507C
05107!
C? 508C
0*SC1C
CS110C
C5SIIC
C5SI2C*
0**l3C CI
OS1KC
Q5M45
OilISC
9" it c
C1I171
CS'.ISC
C?M 9C«
cisjoe 01
C6CCIC 01
otcojc
OC003C
06C04C
06CC5C
OCOC6C
06CC7C
otcoio oi
060100
06CI1C
OtCIJC
Fi.L<.»A»-CtL»TERS CC1P-3.
iaiTTE» 1C CIS«.
CA>-C(.IM MOLD'S »C CAV! 1C 1! FtUNt.
C! -••-'.ri.'.l PIC S« VALUE JfPC.
c: Acnvf-cciNT PIC si VALUE UPC.
C'. niPll-COLNI PIC S9I7I VAIUE 2EIIC.
C*. PAGF.-CCl.NI PIC S1I3I VALLE IFPC.
c; FUE-CCUM PIC s«m >HUE JERC.
C* HAI-LINE PIC 51(31 VILUC >56.
hrHK ACCU^LLAICR^
C'. ICC-11FE »IC S9I15I tlluE IfRC.
0; «CC-r»EC PIC &1I15I VALUE .
1C CD -OOF PIC MBI.
1C CBFIACS PIC >.
C7 CEFIlf PIC >.
SCR 1-BLCCftS.
c: SB CCCIPS 5 lines.
CI !B-«C*.
1C FL«C PIC '.
1C !E«GCE PIC >l(l.
U SI-FLACS "1C «.
C7 Scl 1LE PIC ».
HCLC-eLCCK FIC Mill VALUE SFACES.
CTI.
Oi FILLED PIC MOtl VALUE • FILE '.
0! Cll-F PIC 221.
Oi FILLER PIC IIOTI VALUE • 70LCK '.
0! C11-I PIC 99.
Oi FILLEF PIC 11061 VAIUE • OAVS '.
0! C11-0 PIC II09I VALLE SPACES.
oi;.
C! CT2-EOII PIC 1,111,110.
C! FIllE" PIC >ll«l VALUE • PECC'OS >EAC *.
C6CI4C nl
OCC15C
OC016C
CCC17C
o«ciec
CCCI^C*
Ct5ClC CI
Of.CJC
01503C
OA504C
OC50JC
06506C
OC50CO
065CSC
Ct510C
065110
06512C CI
OC513C
065140
065150
065160
OT001C 01
OT0020
070030-
07CC4C
07005C
C7006C
07007C
070CP.O
070010*
CI01CC 01
07011C
07012C
0701JC
07014C
07C15C
C70HC
01JCIO 01
075C2C
015030
01SC4C 01
07505C 01
01506C
075C70
07508C
07501C
075IOC
075IIC
0 Y5IZC
075I9C 01
OYSI4C 01
01515C
01S16C
Ct FILLEP PIC M1CM VALUE SFACES.
01?.
C' FILLER PIC I VALU? SPACE.
cs CIS-ECU PIC j.;?/./it.
C! FILL'f PIC Mill VALUE • iECCRDS ktlTTEk •.
C'. 1 ILLEU PIC MICt) VALUE SPACES.
£R 1 .
CS FILLER PIC Mill VALUE • ElFECTINC •.
05 ER1-E01 PIC I VALUE SPACE.
C: FILLER PIC III6I VALUE • OAVS FCP TRUCK •.
OS ERl-T PIC II.
05 FILLER P»C V (061 VALUE * t FCU^O * •
O: ER1-E02 PIC I VALUE SPACE.
05 FILLER PIC M»> VALUE '. USIKC '.
C: ER1-ED3 PIC X VALUE SPACE.
0: FILLF> PIC f VALUE •.'.
C* FILLER PIC HIB3I VALUE SPACES.
ER2.
OS FILLER PIC XI HI v.lOt • TRUCK NUHBER '.
05 ER2-T PIC II VALUE SPACES.
05 FILLER PIC Kiel VALUE *. 00 FILES FOUdC.'.
05 FILLER PIC >I99) VAtuE SPACES.
HD1.
05 FILLER PIC M4JI VALUE • JOB 1102 1O EP< KATCH/HHCE TRUC
• > DATA •.
05 t-Dl-OATE PIC IIBI.
0* FILLER PIC M060I VALUE SPACES.
05 FILLER PIC 1151 VALUE "PACE '.
OS HOI-PACE PIC II.II«.
05 FILLER PIC II12I VALUE SPACES.
suescRiPis COUP STNC.
05 I PIC S1I4I VALUE IERC.
05 J PIC S1I4I VALUE IERC.
05 « PIC 51(41 VALUE IEP.O.
05 L PIC S1I4I VALUE IERC.
05 « PIC S«l*l VALUE IERC.
Cf N PIC S9UI VALUE IERC.
HCLO-REC1.
o: H-IRUCH PIC ii.
c: FILLER PIC iiiai.
HGLO-REC2 PIC II20I.
HCLO-REC3.
OS FILLER PIC MIOI.
05 H-OESC1.
1C H-OA< PIC «.
10 FILLER PIC 1111.
Ot H-OESC2 REDEFINES H-OESC1.
ID H-OAtS PIC 1111.
HCLO-REC4 PIC II20I.
INI 1 1%L 1 IE— HOLD— DA VS .
•0! FILLE* PIC II VALUE *9 '.
05 HOLD-OAVS.
-------
12 - MODE COMBINE TRUCK DAYS (cont'd)
C';in
C IMPC
ti-.i-.c
U MCIO-CAT CCCbRS 5 1IPIS.
19 H-0 PIC >.
li H-C PIC I.
CCC1CC Cl tCBi-IECCROS.
OfCllC 03 Ml.
1
10
CO
U)
1
"3006C
cscoic
cicoec
C!C«c
CSCIOf
OK1U
C1C12C*
GIC2IC
030I7C
cionc
C3C19C
00200
03C2IC
03C22C
eicnc
OilOK
01306C
013070
01301C
0!30«0
OI310C
0331IC*
CiCMC
033160
C!!I10
03!leO
C3M4C
0!!210
OC091C
CKC9C
a'.totc
c'toic
OXOEC
o;«osc
C3C1CC
c:«uo*
OI061C 01
OR062C
OS061C
0106*1
0106*1
OI066C
KC67C
OIIC1C 01
OIIC20 01
ICCOIC PI
C1. -COEOl
C! II'ECI
Zt FBEGCI
C! FIllCI
C! Fl«C!01
C! FLAGC1
C3 kR2.
Of HOOEC2
0* IIHE02
c; FRIBO;
C! FIIL02
C! FIAGSC2
C! FLAG02
C'-kH).
Q'.-rcotci
09 1IRE03
o; FBICCJ
c; PIILOJ
0! FIAGS03
C* FIAGC?
c: ••«.
C* «OOEO«
o: IIHEO*
c: FPEOO«
C! FlllCt
C! FLAGSC*
C'. FlAGOt
0! kRJ.
C! "ODEC!
C! II«tCi
0* FBfCC)
c: F 11105
C* FIIGSC9
c: FLAGC:
•K-REC.
09 k-HODE
09 k-IIHC
09 k-F«EO
0! k-FILL
0! k-FLACS
0* k-FLAG
ce-» PIC
ce-ci.i PIC
EJECT
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC I
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
11101
x( 101
Mil.
S9I9I
SI 151
".
1.
1.
1101 ,
S9I9I
S9 19)
IV.
I.
I.
niai.
S9I1I
S9I9I
AX.
I.
1.
KOI.
S9I9I
S9I9I
VK.
1.
1.
nei.
S9I9I
S^19I
I*.
I.
X.
IIRI.
S9I9I
S9I9I
•X.
I.
I.
VALUE
VALUE
• fc E «
CCHF-J.
CCPP-1.
CCPP-1.
CCP«-1.
CCPP-1.
CCP.P-1.
CC»P-i.
CCHP-1.
CCPP-1.
CCPf-1.
CCPP-1.
CCPP-1.
HIGH-VALUE
LOk-VALUE.
OCtCltC CItlSION.
CJ761
C21«l
C27t1
C2767
CIT«>
CZ1»7
C2T67
C2767
C27*7
C27«7
C2767
C27t7
CJ767
C2767
CI767
C27tT
C2T«I
C27»l
C2761
CZ767
C2T67
C2767
C2767
C27»7
C27«7
C27t7
C27S7
C2767
C2767
C27«7
t21»7
C2767
C2767
C274T
C2787
CZ717
C2761
C2767
C2767
C2767
C2767
C?7»7
C2747
C27«7
C2767
1CC02C OPEk IkPLT CfKOlN C27»7
100031 CLIPLT PIIOUT. CJ747
10004C MOVE CUMElil-DME TO HC1-OATE. C2767
I900SC fEIOIKG-PCLIINE. C2767
ICOOtC «CO 1 10 PAGE-COUNT MCVE PAGE-CCUkT 1C t-01-FACE. C27A7
1C007C k«I7C PKIHT-KK. F»C" MD1 AF7f> ACVAKCIkC TC-1CF-OF-PACE. C27«7
lOOOtC HCVE SPACE! 10 PRIM-BEC ««ITE FBHT-KtC AFTd 2. C2761
iocoa; KOVE 3 ic LIOE-COLKT.
10004C INIIIALI/E. • C2767
100100 DOVE AIL -9' 70 CCNTKOl-BUCHS SCIT-UCCIS. C27AI
IOOI1C KOVC SPACES 10 «CII«e-T««H ll>ACIIVE-lEAC C»Clh >T EMI CO 1C ECF-CCUBCL-tAHC.
100UC IF OPEN-PEblHO OPEN UPdl IkPOll ELSE CPEN IMPU1 INP011
lOOlt! HIM NO DEklMO.
100170 IF NODIVS-IS-VALID HCVE NHUIVS 10 OAT-COUN7 ELSE HOVE 9 TO C2767
10010C OAT-COLNT. C2761
10019C IF 1P.UCK IS HOT KUPERIC fir. 10 CCNTICL-CAIO-EMGP.. C2761
100200' ALTER AL1EREO-GO 1C PRCCEEO TO FEAD-STS011. . C2T67
110010 HOVE 1 TO STSTEH-CCUNT. C27C1
11002C HOVE 1ERC TO ACTIVE-COLHT. C2717
110030 READ-!T!011. C2767
1100*0 READ INP011 INTO MOLO-AECl «1 EkE GO 10 EOF-STSOli. C27«7
110090 IF H-1>liC> NOT EOUAL 1C TRUCK CC TO SPACE-FILE. C2767
1100CC CC TC >1 12 H A* AS OEPEMtlK CN S»SI EH-CCUkT. C2761
11007C SPtCE-FILE. C2767
1100IC 9EAC INP011 EM) GO TO Bf•C-SlSOll. C2T61
11009C GO 10 SPUE-FILE. C2?*1
110100* CIT67
110110* «1 - A! OPEK kOIHOl - VORIC! AkO CCPV 1 FILE F'CP STS011 ONTO C2767
110120* THE SELEC1EO kORk-FILCi THEk FLAG THE kOP.l-FII.E AS ACTIVE AND C27C
110130* CLOSE II. All ROUTINES SETUP* CCkTPCL TO OiECB-CG'JM. C2767
I101«0* «1«1
110190 A>. C276»
I10UC OPEk Ol'TPtT kORKOl. C2767
11011C ACC 1 TC INPUT-COUNT. E1 GC 1C ECF-A1. C2U7
I1022C ACO 1 10 INPUT-COUNT. C2IC7
11C23C CO 1C LOOP-A1.
12COIC EHF-Al. CI167
120010 CLOSE kORP.01. C27»r
12003C CD )0 CHECH-COUNT. C2767
1200*C A2. C27«7
12005C OFEk 011P11 kOR>02. . C27*7
120060 HOVE HCLD-RFC1 TO REC01 kRITE REC02. C27H
12007C ADC I 10 INVUT-COUkT, ACfIVE-CCtkl. SVSTEH-CCUkl.
120C8C LOOP-A2. .C27»7
120090 *EAC INPOII INTO REC02 AT EkC GC 1C ECF-A2. C27»7
120100 kill IE «£C02 INVALID «Et GC TC ECF-12. C2761
1201IC ADC ', 10 INPII-COUN1. C2761
-------
12 - MODE COMBINE TRUCK DAYS (cont'd)
00
I2CI2C
I2013C
I2CMC
liCliC
I2CICC
I2CI1C
IJOHC
l.'Cf.C
12C20C
i;coic
13CC2C
I'COIC
13C04C
'2C01C
13C060
I'CCIC
I'COIC
1300«C
I3C10C
I3C11C
UCI2C
I!OI3C
13CMC
1'CIJC
I20UC
13C11C
13C11C
i-cnc
I«C01C
I4C02C
U003C
i«eo«c
itcosc
itcotc
ttCCIC
i«ooac
I1010C
UC1K
GO It LOCP-A1.
EOF-*!.
CLOSE MHU02.
CC 10 CMECK-CQLIN1.
-o>f XClO-*eCl TO BEC03 BBI1E PEC03.
ACC 1 ; IN'Oll INTO HEC05
• 'lit »t(.OJ INVIL10 KM
• CC 1 I? INPbT-CObM.
CO 1C LOC'-ll.
EOF-*?.
CIC'.I >CMC>.
Cr 1C CxFC'-OuM.
CfF*. CITPLI »0»0«.
"Ptr HCLO-BEC1 TO 9EC04 »«ME HEC04.
«CC 1 1C INPLT-COIiKT. tCIKE-CCUMT, STSTEH-COUM.
lCCP-»».
RE»C IftPCll INTO «ECO« c»»o«.
CC 1C CHEO-COLKl.
it.
?P(k OL'Ul >U«kC5.
«C>E i-ClO-PFCt TO PECOi bPIIE MC05.
ACT 1 1C INPLI-* UU«*T , ACTI WE-CCUhT.
LTCP-t'.
f'tt ISPC1I IMT «iCC« >i t«C CC 1C EOP-Ai.
• Hit «tCC4 II.VAIIO "E» CC 1C ECF-J5.
AtC 1 1C IHPL1-COLK1.
CC 1C LOOP-AS.
-Al .
UC!C >0«KCi.
UC13C CctC>-CCl>1.
ItOKC IF AC1IVE-CCLN1 LESS THAU CAV-CCUN1 CC 1C «E«C-SYS011.
i»ci5t cirr-.E iNPoii >IIH NO >t«ikc.
UC1CC CC 10
I'.COIC
i;co?c
14003C
I5CC4C
ISOO^C
t'.ooec
I5COH
ItCOIC
11001C
15C1CC
CLCSE INPOII.
IF I.O-fllES GO TC IBT-'TS012.
CffCK-ACIIkllV.
IF AClltE-COkNT EI.UAL 1C 1EP.C EC 1C NO-ACIIVITt.
MOVE OAY-COtUT TO EP.1-EOI.
•CtE ACTIVE-COUNT 10 ER1-E02 E»l-E03.
KOtl 1RUC« 10 E»1-I.
.hi IE PP.1N1-PIC FBC» EPI AF1EP I.
CC 10 >A1CH-PEP.CE.
•10-tCllvllt.
C2T61
CJ167
C2161
C2T61
C2TA7
CZT67
C2TC7
C21t7
CP761
C216I
CZ7A7
C2767
CZ767
CZ76T
C216T
C2I6T
C2767
C2T«1
C2T6T
C2167
C2T6T
C2767
C2747
C2T»7
C2767
C2T67
C27«7
C2767
C2767
C2767
C2767
C276T
C2747
C27C7
C2767
C2767
C2767
C2767
C2767
C2767
C2767
C2767
C27«7
C2T67
C2767
1*0120 "CVE 1»UC" K tn?-I. C2767
15C13C ««I1E PO|M-ofr fRC> fo; 1FTE> 2. C2747
150I«C "C^c. C»BO-"EC TO PHI-LIKE tB|1E PUM-BEC (FIEP I. C2767
1SOIJC GC 1C <012. C2767
1SC17C OPFK INP11 INP012.
i;c\«c BCAc-?ei1C KEAC IKPCI2 INTO HCL3-PEC1 EUC CO 1C EOF-SHS012. C2767
15CeOC IF I— 1BLCH NOT ECUAL TC TBtCn CC TC SP ACF.-F ILE-012. C2767
ijoiic cc in ai e: a B» ei OEPE»OIHC ck S«STEP-CCUI>I. cziti
ItCOlO SPACC-FKE-012. C2767
1AC020 READ INPC12 CNb GC TT "EAC-STS012. C2767
UC03C CC 10 SPKF.-FIIE-012. C2707
U003I EOF-SYSCI2.
160032 CLOSE IDPC12.
I6C032 r.u 1C CHECK-ACT!VI 1».
EJECT
leOO«0« C2747
1CC05C* 81 - 65 OPEk kORKCI - klBHO* AkC CCPT I FILE FP.GK STS012 ONTO C27»7
ItCOtC* II-E SELECTED kOBK FILEi FLAG 1«E FILE ACTIVE AhC CLOSE IT. C2767
16C07C* ALL UCLTINES SE1URN CCNTRCl 10 CHEU-CCUNT-012 C2761
l«00ac> C2767
16C09C 81. C2767
16010C OPEN OlilPLT kORKOl. C2767
160110 >DO I 10 INPlT-COUkt, ACT1VE-CCLDT. STSTEN-CCUHT.
14012C HOVE HCLO-REC1 TO RECOl Milt REC01. C2767
16C130 LOOP-CI. C2T67
16014C REAC INP01J INTO RECOl EkO GC 1C ECF-B1.
KCUC MITE IEC01 INVALID KEY CO TC ECF-ei. C2767
itoitc ACL i TO INPUT-COUNT. C2T61
Italic GO 1C LOOP-U. CZT61
160180 EOF-B1. C2741
160I«C CLOSE MWK01. C2767
160200 CO 10 CHECK-COUNT-012. C2767
170010 62. C2T61
1100ZO OPEN OUTPUT MJRK02. C2767
110010 "OVE HOLD-HECl TO REC02 UBITE SEC02. C2161
110041 ADD 1 10 INPUl-COUkT. ACIIkE-CCUkT. SYSTEM-COUNT.
110090 LOOP-62. • C2161
ITOOCO REAC II.P01Z INTO REC02 EKO CC 1C EOF-C2. C2T67
110010 WI1E REC02 INVALID KEY GC TC ECF-C2. C2717
HOOet AOO 1 TO INPUT-COUST. C?7tl
17001C GO 10 LOOP-82. C27t7
170100 EOf-B2. C2Tt7
11011C CLOSE HORK02. C27t1
170120 CO TO CHECK-COUN1-012. C2K1
170130 63. C2167
17014C OPEk nUIPUT WWK03. . C2T61
110ISC HOVE HCLD-REC1 TO R^CO.1 kPITE BEC03. C2167
17016C >CC 1 TC INPLT-COLMi ACT 1 VE-CCL.KT, SYS1EH-CCUKT.
17CI1C LOCP-63. - ' ' C21H
17018C B.EAC INP012 INTO REC03 EkC GC 1C ECF-f3. C2161
110190 HRI7E REC03 INVALID KEY GC TC ECF-01.
11020C ADC 1 -1C INPUl-CObNI. " C2767
17C210 CG 1C IOGP-63. C2161
11022C EOF-61.
-------
12 - MODE COMBINE TRUCK DAYS (cont'd)
ClC!l «O»»C?.
cc ic CN
N)
00
Ul
I
UC/JC
i7cj»e
uccic x.
iccc.'c -.tin C-.TTLI toilet.
leeojc «G»I *CLO-»KI TO reto» nut »tco«.
1E004C tGO 1 1C INPL.I-COLM . 'CTIvl-CCLM, SVS1EB-CCUM.
itcosc ioap-r.4.
•9COCC BEAD INP012 IftTf. BFCCXi T*t CC !C ECF-14.
leccic «RIU BEC04 IMMIIO «f> i.c ic ECF-P*.
HOOH >CC 1 10 INPUT-COUNT.
1IC01C CO tC LOOP-B*. .
IIC10C EOF-B*.
none CLOSE to»o*.
IBOI2C CC 10 CHEO-COUNT-012.
HCIJC »'.
IE014C CPE* OHPU1 kOP.no>.
HOVE MOLD-BEtl '0 BECO» kMIE *ECO*.
II LESS 1H» CO-CCUNf CO 1C 'E1C-SYS012.
CC 10 ECI-SISOI2.
lilS JECH9N MTCH/KERCE! 1 TC J DISK FILES SUHPMI1 IM
H»f tic FBECl-'ENCf.
.
IJEC1
->1C»-»E>CE SECMO*.
npti. ouiPui OUIGII HUM nc IEHIKO.
fME* Ll»*&E.
190077 C»Ll 'NOIPIX' USING S«I»OH.
19007» CNIEI coeoi.
nooec >I«E .»LL •«• in coM»ci-eiccns, "OVE i TO i PCVE o 10 J.
19C08! >OVE IM1UINE-MOIO-0»»S 1C HCLD-O'S.
190012 *UVE cICH-vtLbE 10 "OPPt-IIECCPCS COTfOl-CLCOS.
\- FILE.
l^OUC*
KOI«C*
HOMC F!.
ISOltC CPEH INPLt kOillOi.
HC17C . "CVE I IP >.
-HOIBC LCCP-Fi. «E»D bOBHOi.
I SO1 10 IF i EfiUtl 1C I HOVE P.ECOS 10 hCLO-PEC) CC I 10 « IF K NCI CIO1O l"«k * GC TC ICCP-FS.
K022C HOVE Sk-CN 1C »CT-S» 191
KC23C IE>0 kO»09 1X10 k»
1902*C »C»t •COEOi 10 C>rCDE III PCVE FLAC09 1C CCFKC ISl
II016C
1IC17C
KDICC
IP.CI9C
IIMOC
MC01C
MC02C
110022
11C02*
ISCOJl-
.ISOO«C*
K001C*
KCOtC*
IVC07C
C2767
C2i»7
C27»1
C2T67 .
C216T
tnti
C2»»7
C2I67
C2I»7
C27»7
C2Tt7
'C2I67
CJ7»7
CZ747
CZ767
CZ767
C276?
C?I«7
C2767
CJ167
C27&7
C2767
CJ767
CJ767
C2I«7
C2767
C2747
C2I67
CZlt
C27t
C276
C
C27A
C214
C27CI
l«02;0 CCVE FL1CSO« 1C CBFllG! 1*1 VCVE •>• TC CtFILE lit.
20COIC V.. OPE* IhPU (OHIO*.
200020 "CtE 1 1C «.
ZCC03C LCCO-K. I.C'0 WC"<0-..
2CCO«C IF > ESUll TO J "CVE tECO« TC I-CIO-PEC: 4CC 1 TC J -CVC
20C09C . H-0>« TO H-t Ul.
20004C CT-Sk 141.
200012 «UC bC««0«. INTO b«4
20001: HCVE «OOC04 TO CB'COE 1*1 rCvE FKC04 TC CtFLX 1*1
200077 "OVE FLHOS04 IT C9FKCS 141 PCVE •«• 1C CtFUE 141.
icooic fi. an* INPLT KTSHOJ.
jocose XCVF i to K.
200100 LOCP-FI. «t»i; WOP.KOJ.
200110 If K fOO*l TC 3 KCVK "ECO! 1C HCIO-HEC3 «CC I TC J MOVE
2C012C H-0«v TC H-O Ul.
iCOUC *CC .'. 10 « IF n KCT CPEtlEli Tn>» 4 CC TC LCOP-FS.
20C14C *C\e !k-CN IU >CT-S> 131.
cOOlt! «E»C kC»C? IN1C k«3
20014! Nt!VE fOOf.Ol 10 CSfCOE Ul PCVC FLM03 10 CEFLlC 131
200147 I'CVE FL1CSR3 TO CBF14C? 13) PCVE '3* 1C CtFllE 131.
200110 F2. OPEN INPLT kORK02.
2C016C "0>€ 1 10 >.
20011C LODP-F.2. »E»0 HOBK02.
200160 IF « EOU«L TO 3 HIJVE BCC02 1C ' 10 H-O Ul.
20020C >OC 1 TO « IF K KCT CBE1TE> THlk 4 CC TC LCCP-F2.
200210 HC>< E«C kOBKOl INTO HCLO-BEC3.
2100JC «E«C kODlcOl INTO HCLO-HEC4.
210055 HO<|E Sk-CN 10 BCT-Sk 111.
iioatc tec v 10 J «ove M-c»v ic H-O ;j!.
ilOOt2 HOC kGRKOl INTO •«!
210064 :iOVE »COEOJ .10 CBXCOE Ul >C THIN :ve <»i cc TC 54.
2I014C SI. «OC I 1C H. H.
210190 IF N LESS TM«N J CC rq S2,
21016C IF E *<-& 1PI TC H-D INI.
21020C 'CVE St-G*1 TO H-0 l«<-
C21C1
C27«I
C2147
C2767
C2U7
C2767
C2767
C2M7
C2767
C2747
C2TA1
C2161
C2TA1
C2747
C216T
C2T67
C216T
tlltl
C2767
C21«7
C21«7
C2717
C27t7.
C27t7
C2717
C2167.
C2TM
C27»1
C2U1
CZ767
-------
L2 - MODE COMBINE TRUCK DAYS (cont'd)
ic.-:
..ecu-
.»n». -uLu-uA>ys PEPUCIM. ILL '9* e<
CGMktS TO SUPTFO C«YS Ik MOID-IMS Ak[ 'CVE TO
" CFCCRD J«
C27C
C2T67
C27«T
C2141
C2 JeT
irfLCIC
HCCtC -'..
72CC 'it »•* .
*?CCc( •- * .
i ;CC^C »-.' .
«2cc»« -I.
2;CCS 7
??CIC1
22C102
J2CIC-
.10020
I3CC3C 1PI
23C032 «•:.
i!0034
232010
M202C
132030
M204C
Uiwo ""
JH03C
1 M304C
tO 234CIC
oa 23so*)0
_ 23«07C
i.'. 11 ••
**CV^ '•
•rv: •.
u. t1 I ,
•Cvi '.
llZVL HC
»OVt •?
.01 IF C
• •.HE C
•our c
H1VF. SB;
H; rt> *.«. t-^ !3EFFkO|kG C^ j.
1? — C IM.
T? H-C 131.
'0 — <. 121.
i; — c in.
l-0»Ti 10 n-DESC2.
1C M-I.C3.
1-BEC FFCP H^IC-'ECI.
1-REC FCC" HCLO-REC2.
T-EFC F»C« HCLC-REC*.
i
CBS TO OUT-REC. PCVE LCt-vllUE TO CB-OUT.
. CC 1C GET-*f£RGE-Rcr.OHC.
IF h-FRCC kOT NUMERIC PCVE 0 1C n-FFEC.
IF t-l|Hf kCI NUMERIC PCVE 0 TC K-TIPf.
IF OUT-FLAG EJUAL 19 IB* AkC CUT-FUGS ECUAL TC '3*
GO 1C OPi.
IF CB-.« FCUAL TO CB-OU7 ACC H-FREO TO ACC-FBEC ACC K-TIME TO
ACC-1IHF CO 1C GET-PEBGf-BfCOBO.
IF ACC-FREO GhEAlEB TM»k HAX-fBEC PCVE Hil-FHEC 10 OUT-FREC
!IP1»AC1 MAI-FREG FflfP ACC-FCEl
ELSE POVE tCC-FFEl 1C CUT-IBEC SUETRICI ACC-FBEC
F*CH ACC-rRF',.
II ACC-IIP.F CHA1H TUlk »A>-1I*E PCVE HAI-TIPE TO OUT-TIDE
•LB1RAC1 HA >- 11 HE FROP 1CC-TIPF
C27t7
C27t1
C2767
C2767
C27«l
CJ767
C27»7
ELSE HOVE tCC-TIKE TC CLT-TI"£ SUBKICT
27C19C
NOVE k«-BtC TO OUT-PEC.
•CvE .-FIEO TO »CC-F«El PCkE >-TIPE TG iCC-TIPE.
XUVt Ct-»* TO CB-OLT.
E«M.
GG 1C -tl-«E«GE-BECU1D.
-CCPFIEIE.
PE1FOP CP2 IHRU OP3.
CIC:C 01.1013 »11M so BEtlftO.
CJ747
C27»7
C27«7
21GI6C
21CI1C
/1C1EC
21C11C
jic.-cc
e* CkE BEC3BO FROH THE HOOF-FILES. BEU'XIKC CCkTROL TC <« IF C27C7
24COOB* AkCTKER RECORD IS AVAILABLE, CB TO FILE-COPPIETE IF NOT. C2767
24001C GET-MEBGE-RECCRO. C2767
24C02C HOVE 1 TC FL. C27C7
24093C HCVE »R1 TO hK-REC C27C?
24004C 1OE Cb It) TO CB-kK. C27e7
24009C IF CB 12) IS LFSS THAN Cfe-kic PCVE 2 TO FL C2T67
24CC6C POVE >R2 T3 kn-REC "CvE Cfi 121 TC C!-». C27t7
24001C IF CB !3> IS LESS lHAk CB-kH PCVE 3 TC FL C27A7
24CCIC PCVE *R3 TO n-REC PCVE CB 131 TO Cf-««. C2Tt7
24004C IF CB 14! IS LFSS THAk C8-.H PCVE 4 TC >l- C2T«7
24C10C PCVE >R4 TO HK-HEC PCVE CB 141 TO Ct-.«. C27C7
24011C IF Cf C5I IS LESS THAk Ci-b> PCVE 5 TC FL C27C7
24C12C MOVE kRS TO UK-REG PCVE CB 151 TC CP-Nk. C2717
24013C IF CB-nK EOL.AL TO HIGH-VALUE GC TC Fl LE-CCPFLETE. C2767
SKIP2
24014C* C27BT
240i;C« t-.C«f REPLACE THE APPROPRIATE RECmC. TEST FCR ECF. CLCSE FILES. C2761
2401«C« ILL RETLRk COHTBCL TC "i. C27el
2401TC V.C 1C Cl C2 C3 C4 C5 OEPEkOIKG CD FL. C27»f
2401IC Cl. KEtO KOBH01 INTO «R1 EkC HOVE HIGH-VAL1.E TC .«1 CB 111 . C276I
Z4C1<< CLOSE MM01 GO TC B9. C27e1
24020C HCVE HODE01 TO CBPUOE 111 PCV. FLAGSOI TO CEFLAGS ID C2M1
24021C «CVE FLAG01 10 CBFIAG 111 GC TC R9. C27C7
29001C C2. READ »ORKOP INTO MR< cKC PCVE hIGH-ViLUc TC ««2 CE 12)
2SC02C CLOSE »OR«02 CC TC ">. C27C7
*. C2767
29008C MCVE rLAGO] TO CBFLAG 131 PCVE PCOE03 TO CfrCCE 13) C2T6f
2!009C HOVE FUICI01 TO CflFLACS 131. C2767
29010C GC TO R9. C2767
290110 C4. READ IIORK04 INTO >R4 ENC HOVE HIGH-VALUE TC b>« Cd 141 C2767
29012C CLOU KORHO4 CC TO 01. C2767
2!01?C HCVE FLAGS04 TO CBFLAGS 141 PCVE FIAG04 TC CEFLAC 141 C2Tt7
2!01«C POVE HOOC04 1C CC«Cne 141. C27H
25013C GC 10 R«. C2767
2901CC C5. BEAT) MIRrtOS INTC *F5 EkC PCVE HIGH-ViLL£ TC «R3 CB IS) C27
25011C CLOSE .OBK05 GO TO •«. C2T67
-------
12 - MODE COMBINE TRUCK DAYS (cont'd)
25C16C *CVE fOnE05 TU CBMODE (51 fCVE FLAG05 TO CEFLAC (5)
25C19C MOVE FLAGS05 TO CBFLAGS (5).
25G20C G: TO R9.
•CC13C ECF-CCMTROL-CARG.
2CC14C CLC5F CAROIN.
3C0150* POT 2 TAPENARKS ON OUTPUT TAPE.
100160 OPEN OUTPUT OUT013 WITH KC RENINO.
2CC17C CUCSE CUT013.
1CC16C CLCJE PRTOUT.
3CC19C STOP RLN.
31C01C CCNTROL-CARD-ERRCR.
31002C HOVE • CCNTROL CARD ERPCR • TC FPT-LINE.
31C03C WRITE PRINT-REC AFTER 2.
310QAC MOVE CARD-PEC TO PRT-LIKE fcRITE PRINT-PEC »FTEP 1.
31C05C GC 10 REAO-CCNTROL-CARC.
C27fc7
C276V
C2767
C2767
C2767
C2767
C2767
C2767
00
-------
- LIST FIRST 80 CHARACTERS EACH FILE - (Debug-Aid)
// EXEC ASSEMBLY
TITLE 'LIST HEADERS
PR-I'M NOGEN
ENTER R12
LSING Tl.RU
EXCP CCB
hAM CCB
PACK CO(4),CDU)
CP COI4I,=P«C«
ENE
I
to
CO
CO
I
EOF
EOJ
SM
Sul
12C210 ABC*
ccw. co i.co.c.ec
Cfce CCB SVSIPT.CCh
CC CS CLCC
LTORG
CC CS CL1
PR CS CL132
Tl CS CLfiC
END
WR
READ
PRT
ZAP
LA
CALL
MVI
BAL
XC
HVC
HVC
KVI
PAL
frAL
CVI
CLI
•BE
.B
XC
COI4) ,*P'SS99'
RlSt-'O'C*
CETCAT.IOATE)
CC.X'SB'
RS.hSYSLST
PR, PR
PR(7),CD*10
PR«25( 181., DATE
CC.17
PS,WSYSLST
SS.RSYSOll
£hl,.l
S.h.,-1.
.PRT
READ
PR, PR
.AP
CI KNT*L'KNT-1,15
.LNPK PR(4),KKT
B • -kR
SPACE
AP CNT,
CP .C0< 4),CNT
.BE EOJ
CLI Shl,0
*t EOJ
.SM,1
•-XC- PR, PR
•MVI CC,9
GSP SYSCII
-B .hR .
KbU SYS011
KVI CL.15
BAL RSttaSVSLST
EOJ
CC X«C1'
CC X»OC'
MSYSLST PRT R9,SYSLST,CC,133,CV,CL
RSYSC11 RT R9,SYS011,T1,R11,80,8C,ECF,,WLR,0,0
CATE
CNT
KNT
CC
CC
CC
CLie» •
-PL-3'C'
PL3§0'
-------
14 - CALIBRATED & RAW LISTING
// otc
I
ro
aa
vo
I
Cl
ICFMIF ICATIOh DIVISION.
PHCC»>r-IC. -EPA'.
FNVIHCSCIM IIVISION.
INPIT-CLTPLT SECTION.
FILE-CC1TROL.
SEltCT T1PE-CALIB 4SSIGN 1C StSCll-UT-24CO-S.
SELECT T»Pt-P««. ASSIGN TC £ tS012-UT-2400-S.
SELECT PRINT-OUT ASSIGN TC SYS009-U"-!*03-S
RESERVE NO ALTERNATE A2E«..
GMA ClVISIOh.
FILE SECTION.
FC TAPF-CALIB
LABEL RECORDS ARE CHITTED
RECCRC CONTAINS *0 CHARACTERS
BLOCK CCNT11NS 270 RECCPD!.
CtLltt.
0! CALIO-hEAD.
1C TRUCK-10
COLS REDEFINES
IS CALIB-AST
is FILLER
CITY
TYPE-TRUCK
FtEL-TYPE
HEIGHT
LICENSE
CLASS
ENGINE-MODEL
ENGI.NE-N01
CALIB-HEA02 REDEFINES CALIE-HEAO.
10 ENGINE-NO! PIC XI7I.
10 NO-DAYS FIC X.
10 DAYS PIC X.
10 FILLER . FIC XI31I.
CALIB-CATA REDEFINES CAIIB-HEAO.
10 CALIB-TRUCK-IO PIC XX.
10 FILLED FIC XI6I.
1C CALIB-RPM CCPF-1
1C CALIB-HORSE-POkER -COfP-l
1C CALIB-VEH-SPEEO CCCP-1
10 CALIB-RO-TYPE CCFF-
10 CALIB-TRAF-COND CCPF-
10 CALI3-VALVF-CLCSEC CCPF-
10 CALIB-ENGINE-TEPF CCPF-
1C CAL1B-VS-HULTI CCCF-
OS
0!
1C
1C
1C
10
10
10
1C
1C
10
FIC XX.
H-IC.
PIC X
PIC x
PIC X
FIC X
PIC X
PIC XX. '
PIC XIBI.
FIC XX.
FIC XI10I.
FIC XI 131.
FO
01
T»PE-RAk
LABEL RECORDS ARE CMITTEC.
RFCCRO CONTAINS 30 CHARACTERS
BLOCK CONTAINS 120 RECCROS.
Rth.
0! RAk-TRUCK-ID fIC XX.
Ci COL REDEFINES RtM-TRUCK-1C.
1C RAc-AST PIC X.
ic FILLER FIC >.
Cl
FC
01
C! Pttr-MI>E
0! RAk-PPM
C; R4.-i.U»D-F»C
C! Rtk-VEH-SPEEO
0! Rtk-RO-TYPE
0! Rlk-TRAF-CONOS
C! R«k-VALVE-CLOSEb
C! RAk-ENGINE-TEHP
C! Rtk-VS-FLAG
R
-------
14 - CALIBRATE & RAW LISTING (cont'd)
to
vo
o
C1 HD12
C* FILLER
CS MLLFR
c* CAIE
Cl HE«C2.
c; FILLER
cs FILLER
C5 FILLER
05 FILLED
OS FILLER
C-. FILLER
OS FILLER
09 FILLER
OS FILLER
09 FILLER
Of FILLER
C! FILLER
0' TILLER
C* FILLER
OS FILLER
CS FILLER
OS FILLER
0! FILLER
OS FILLER
05 FILLER
09 FILLED
C9 FILLER
09 FILLER
•01 PRINT-RAb.
09 FILLER
09 PR-REC
05 FILLER
09 PR-TRK
c: FILLER
OS PR-TIME
05 FILLER
o: PR-3
05 FILLER
c; PR-«
0! FILLER
CS PR- 5
OS FILLER
C5 PR-«
05 FILLER
5 PR-7
« FILLER
; pR-e
! FILLER
: PR-9
5 FILLER
C* PR-1C
0! FILLER
01 PRINT-CAL1B.
C5 FILLER
C9 PC-REC
05 FILLER
FIC «.
FIC «.
fIC M50I.
HI XI18).
FIC » VtLuE SPICES.
FIC «(6I VtLUF 'PECCRC*.
FIC » VtLL'l SFKES.
FIC »x» V«LUE 'TRK*.
FIC XXI V«LUf SPtCES.
FIC «(*! ViLUE 'TIPE'.
FIC IX VtLUE SF»CES.
FIC 11101 VALUE • 3*.
FIC «« VtLUE SPICES.
PIC XI10I VtLUE • *'.
PIC XX VtLUE SPKES.
PIC XI10I VtLUE • S*.
FIC XX VtLUE SFICES.
FIC II10I VALUE ' 6'.
PIC XX VILUE SFtCES.
FIC XI10I VtLUf • T>.
FIC XX VtLUE SPtCES.
PIC XI10I VALUE • 8>.
FIC XX VtLUE SPtCES.
FIC XI10) VALUE • 9>.
PIC XX VALUE SPtCES.
PIC XI10I VALUE • 10*.
PIC XI31) VALUE SPtCES.
FIC X.
PIC {(61.
FIC XXX.
PIC XX.
FIC XX.
FIC 99.99.
PIC XI12I.
PIC -.999.
PIC X<7).
FIC -.999.
PIC XITI.
FIC -.999.
FIC XITI.
FIC -.999.
PIC X(TI.
FIC -.999.
FIC XITI.
FIC -.999.
FIC XITI.
FIC -.999.
PIC XT END GC TC SKF-FUN.
HCVE CALIB TO PRINT1.
IF CALIB-AST - ••• COVE ••' TC JST-Sk.
REIC TAPE-CALIB »T END GC TC STCP-RUN.
MOVE CALIB TO PKINT2.
MRITE PXINTAR AFTER POSITICMNG 1 LINES.
MCVE SPACES TO PRIKTAR.
IF AST-Sk • ••• GC TO PEtD-Rtk*tST .
GO TO READ-CtLIB-AST.
REtD-Rtk-AST.
PRIM-CALIB.
-------
14 - CALIBRATE & RAW LISTING (cont'd)
f
NJ
vo
MOVE SPACES 10 ASI-Sk.
KltC TAPE-RAb AT EM) CC 1C STCF-RUN.
IF Sk . 1 HCVE RJH.-TBUCH-IC 1C t-LD-R-TPK.
IF RAW-AST • ••• KCVE ••• 1C AS1-SW.
•E HIC-CAYS CR
HLD-R-1RK N01 = HLC-1RK
MOVE 'HEADINGS 00 KCT CATCH - JC6 ABCRTEC* TO PRINT
HRI1E PRINTAR AFTER PCSITILMNG 0 LIKES
MOVE SPACES TO PRIMAR
MOVE HLO-REC TC PR1KT
kRITE PRINTAB AFTER PCSITICMNG 2 LINES
GO TG REAO-CALIB-EMi.
REAC TAPf-RAW AT END CG TC STCP-RUN.
IF AST-Sfc - •••
kRITL PRINTAR FROM HEA01 AFTER FCSITIOMKC 0 LINES
kRITC PRINTAR FRO* HEAC2 AFTER FCSITIGhlNG 3 LINES
MOVE SPACES TC PRINTAR
ADD 2 TC L1NE-CNT
GO TO READ-TAPES.
GO TO REAO-RAH-A$T.
DEAD-TAPES.
REAC TAPE-CALIB AT END GC TC READ-RAM-ENO.
REAC TAPE-RAk AT END GC TO STOP-RUN.
ACC 1 TO COUNT.
ASl-fINI.
IF COUNT-100 GREATER THAN 0 GC TO PRINT-100.
IF CALI6-VEH-SPEEO GREATER ThAK .944 '
GO TO PRINT-IOC.
GC TO READ-TAPES.
PRIN1-1CO.
MCVE COUNT 10 PC-REC.
KCVE RAM-1RUCK-1D TO PR-TRK.
HCVE RAlt-TINE TO PR-TIPE.
NCVE RAH-RPM TO PR-J.
MCVE RAM-LOAO-fAC TO PR-*.
HOVE RAM-VEH-SPEEO TO P»-».
NCVE RAk-RD-TVPE TC PR-6.
HOVE RAM-TRAF-CONDS TO PR-7.
MOVE RAh-vALVE-CLCSEO 1C PR-8.
HOVE RAM-cNGINE-TECP TC PR-1.
MCVf RAk-VS-FLAG TC PR-10.
MRI1E PRIN1AR FROM PRIKI-RAk AFTEP POSIT [Oil IkG 1 LINES.
HOVE SPACES TC PRIM-HAfc.
HOVE CALIB-RPH TO PC-3.
MOVE CAL1B-HORSE-PCUER TO PC-4.
MOVE CALib-vEH-sPEEn TC PC-S.
HOVE CALIB-RO-TVPE TO PC-6.
HCVE CALIB-TRAF-COkD TC PC-T.
MFVE CALIB-trALVE-CLOSEC TC PC-8.
MOVE CAL1B-ENGINE-TENP TO PC-S.
HOVi CALIB-VS-CULII Tr FC-10.
WHITE PRINTAR FR.CM PR1M-CALIB AFTER POSITICNIIiG 1 LINES.
HOVE SPACCS TO PRInT'CAllB.
ACC 2 TO LISE-CUT.
ACC 1 10 COLNT-100.
IF CGUNT-100 GREATER ThAK 99 HOVE 0 TO CCUM-IOO
ACC 1 TC PROCESS-TIPES
GO TO REAO-1000.
IF L1NE-CNT GREATER THAK 44
MOVE 2 TO LINE-CNT
URITE PRINTAR FROH HEA01 AFTER POSITIOMKG 0 LINES
WRITE PRINTAR FROH HEAOZ AFTER PCS ITIOMIkC 2 LINES.
GO 1O READ-TAPES.
RC40-1CCO.
IF PROCESS-IIMES • 6. GC TC REAC-CALIB-EkC.
ADD 1 TO COUNT-1000.
P(*C TAPE-CALIB AT EM) GO TC READ-RAk-ENC.
REAC TAPE-RAk AT EKO GC TC STCP-RUN.
AGO 1 TO COIKT.
IF COLNT-1000 • 1000 CCVE 2ERC TO CCUNT-1000
GO TC READ-TAPES.
GO TO READ-1000.
REAC-CALIB-ENO.
READ TAPE-CALIB AT =NO GO TO READ-RAk-ENC.
GO TO READ-CALIB-SMD.
XEAO-RAb-END.
READ TAPE-RAk AT EM> CC TC STCP-RUN.
GO TO REAO-RAB-RNO.
STCP-RLh.
CLOSE TAPE-CALIB NIT-< KC REMIKC. it?*-*** kUn NO REMIND
PRINV-OkT.
STOP RliN.
-------
15 - MODE-PRINT SPOOLED OUTPUT
// E»tC COBOL
TICIC IC.ENT IF ICA1 ICN DIVISION.
PPCGRJK-rC. -SPOOL'.
ENVIRCNPENT DIVISION.
INPLT-OLTPL1 SECTION.
FItE-CCNTPOl.
SELECT CRDR ASSIGN •
C1C2C
cicao
C1C40
CIC'3
ciotc
cut:
c i c 7:
C1C9C
CllOr
Pflf.
STCF RLN,
SYSC07" LMT-RECCRC 2540R.
SELFCT PPTF ASSIGN 'SYSOCS' LNIT-RECCRC 1403.
SELECT t/.PI.\ 4SSIGN "SYSCll* LTUITY 2«00.
CIVISION.
FILE SECTIOS.
C1120
C1130
C114C
CII^C
C112C
C1130
CHOP
01150
C1160
C1170
ciieo
CI
Cl
PECOKDING M>JOE F- L4BEL PECCPOS CCITTEC.
U»TA RECORD CARO-U.
PICTLPF =999.
PICTLPE >.
PICTURE 9999.
LABEL RECCROS CMITTECi
C7 »HCb-FILE
17 FILLF*
C7 N'C-CCPIFS
PPTF
kECQKOING H.QDE F
CATA RECORD PRT.
PkT,
C7 CC PICTURE X.
C7 PRT1 PICTURE XI81I.
C7 PRT2 PICTURE XI51I.
I
to
\a
to
C12CG FC TAPIN
01210 RECORDING MODE F, LABEL RECCRCS CMITTEC,
BLOCK CONTAINS SO PECCRCS,
RECORD CONTAINS 133 CHARACTERS,
CATA RECORD IS SFCCL-IK.
01 SFCCL-1N.
C7 SFOOL-CC FICTLPE ».
07 SPOOL-IMAGE PICTLPF X1132I.
C2100 WORKING-STORAGE SECTION.
Cl CONSTANTS.
C7 t-CTL PICTURE X.
PfcOCECLRE DIVISION.
CPEN CLTPLT PRTF,
INPLT TAPIN I.ITH NC REHNO.
RFAC-DS.
REAC TAPIN AT END GO TC CNC-FILE.
MCVE SFCCL-IN TO PPT.
HCVE SFOCL-CC TC C-CTL.
nKITF PRT AFTER C-CTL.
GO TO REAR-CS.
END-FILE.
CLC'E TAPIN klTh NC
-------
16 - APPLY INITIAL EDIT - LOAD OPEN S, CLOSED VALVE READINGS
KJ
\0
U)
// E«EC COBOL
. ICCNIIMCATION DIVISION.
PBCOIC-IC. "EPA".
ENVIRCNHEN1 CIVIS10N.
INPUT-OUTPUT SECTION.
FILE-CCNIROL.
SELECT CARD-IN ASSIGN >SfS007< INIT-RECORO 2S40H.
SELECT TAPf-IN ASSIGN 'SYSCll' UTIlMr 2400.
SELECT TAPE-OUT ASSIGN 'SfSOlZ1 UTILITY 2*00.
0*1* CltlSION.
FILE 5ECTION.
FO CARC-IN
RICOROIKC KOCE IS f
LABfL RECORD: ARE CHITTED
RECCPC CONTAINS 80 CHARACTERS
0*1« PECOXd IS CARON.
C! (.Kit..
C1 »-VAlLr HC1UR£ Q9S.
I1. FILL?- PICTURE a.
C5 J-CfTli-1 HCTURE «4I.
09 x-OPEN-2 PICTURE X.
OS FILLER PICTURE *.
0* X-CLS PICTURE XI5I.
OS FILLER PICTURE XI6SI.
re TAPE-IN
RECORDING NOEE IS F
LABEL RECORDS ARE CHITTED
•CCCRO CONTAINS 40 CHARACTERS
BLOCK CONTAINS 090 RFCCROS
DATA RECORD IS IP.
01 IP.
0! AST PICTURE X.
09 MILE* ' PICTURE KI7I.
OS CHANNELS CONPUTATICKAI-I.
10 CH-3.
1C CH-4.
1C CM-S.
10 CH-t.
10 CM-7.
OS CH-6 PICTURE SVI-J?.
OS FILLER PICTURE *.
OS FILLER PICTURE »OI.
FO TAPE-CU
RECORD IKG HOCE IS F
LABEL RECORDS ARE CHITTED
RECCRD CONTAINS 40 CHARACTERS
BLCCK CONTAINS 090 RECCUCS
DATA RECORD IS OP.
01 or.
OS FILLER PICTURE KPI.
0! OP-CHANNELS COHPUTATICNAL-1.
10 OP-CH-3.
10 OP-CH-*.
1C OP-CM-5.
10 CP-CM-6.
1C OP-CH-T.
1C CP-CM-8.
15 FILLFP
WORKING-STORAGE SECT 101..
?7 SKIP P1CCURF :*<) VALUE 12 CCPPUTATICkAi.
FUTURE »18I»
77
77
?7
77
77
17
01
CCLNT
HLC-OPEN
HLU-CLS
VAIUE-CS
VALUE-»
VALUE-100
HLD-REC.
05 HLD-REC-1.
10 FILLER
10 SEC-OPEN
10 FILLER
10 REC-1
•-•; HLD-REC-2. '
1C REC-1-1
FILLER
BEC-CLS
FILLER
REC-2
FILLER
PICTURE 99 VALUE 2ERO.
PICTURE X(4I VALUE -OPEN*.
PICTURE X(«l VALUE -CLCSED'.
COPPUTATIOkAL-1.
CC'FUTATIONAL-1.
CCPFUTATIOkAL-1.
PICTURE XI31I.
PICTURE
PICTURE
PICTURE
1C
1C
1C
1C
1C
141.
141.
PICTURE
PICTURE
PICTURE XI6I.
PICTURE ».
PICTURE XIS).
FICTURE XI26I.
PROCECLRE CIV1SION.
OPEN INPUT CARD-IN. TAPF.-IK hlTH NC REMIND
OUTPUT TAPE-OUT hl»h NC EEklKD.
ENTER LINKAGE.
CALL HK> USINU SK-.P.
F.MS" erect.
H0*"= SPACES TO OP.
H.EAC CARC-IN AT END (iC 1C SICF-RUN.
MCVE X-VALUE TO VALUE->-.
"CVE C.5 TO "ALUE-05..
MOVE 100 TC VALUE-100.
RE4C-TAPE.
RE'C TAPE-IN AT FNO 00 TC STCP-PUN.
ICC 1 TC COUNT.
IF CCUNT = ! HOVE II- •'.(. HLC-RcC-1
GC TC READ-TAPE.
IF COUNT - 6 MOVE IP TC HLC-PEC-2
COVE HLD-OPFN TO REC-CPEN
HOVE HLD-CL5 TC RtC-CLS
PCVE X-OPEN-1 TC REC-1
HOVE X-CPEN-2 TO REC-1-1
HCVE X-CLS TC REC-2
MCVE HLD-REC-1 TO CP
«HU CP
KCVE HLD-REC-I TO CP
kit ME OP
MOVE SPACES TO HLD-REC
GC TO READ-TAPE.
IF AST - ••' MOVE IP TC CP WRITE OP
CC TC LAST-AST.
MOVE IP TO OP.
kRJTE CP.
r,C TO READ-TAPE.
-------
16 - APPLY INITIAL EDIT (cont'd)
MGVF
TC STCP-PUN.
EMJ GC TC STCF-RUN.
LAST-JS1.
Rf«C TAPE-IN M ENC GC
IF TO CP.
CP.
PRCCEES-TAPE.
e.E«C T«PF-IN AT
MCVE IP TO CP.
IF CH-S LESS THAN VALUE-05
MOVE ZEROS TO OP-GH-5=f- CF-?CH-4.
IF CH-2 LESS THAN VAIUE-X-
MOVE ZERCS TO OP-GH-Vt OP-Ch-^S.
IF CH-3 LESS THAN WALUE-IOO
MOVE ZEROS TO OP-CH^-3i .OP.-CH^,. OP-Ch-5,
MCVE CH-8 TO'OP?-CH-8i.-
hRITE CP.
MOVE .SPACES. -TO. OP..
GC TC.PRCCESSrrTAPE.,
STOP-RUN.
CLOSE- CAROTIN,
TAP.E-!-OUT WITH
STOP 'RUN.
I
10
vo •
-------
17 - CONVERT RAW DATA TO FLOATING POINT
to
vo
in
I
// KEC
C1G10
CH?'.
c i:*i
CIC'C
C1C70
cicec
CIOVO
cn:c
C1110
C1'2C
C1130
0114C
ClliO
ClltC
ci-;c
Cliit
Cl?*0
013SG
01360
C1JTC
CIS80
C1390
C140C
01*10
01420
C143C
0144C
C1*SO
01460
01*70
01*80
Cl«90
CISCO
02010
0202C
C2C20
02C4C
020SO
02060
02C7C
C2cec
C2090
C2100
C2110
02113
02115
02120
02130
02140
OZltO
02ITO
02180
C(
IDI
PR r
t*H|
i .1
f II
D»'
t 11
FC
Cl
FD
01
FO
Cl
IDENTIFICATION CIV1SIOK.
PRCGR4P-U. "HCAT-.
>-fM CIVIS1CA.
i..
1* PRTCH1.
20 PRT6HA PICTURE XI30).
2C PRT6HB PICTtRE XI30).
20 PRT6HC. PICTURE XI30I.
14 FILLER PICTtRE XI10) VALtE
1* FILLFR PICTLRE X(5) VALUE
14 PR T 6-0 PICTL.1E XI 20) VALUE
0? PRTH.
14. FILLER PICTtRE X(17I VALUE
14 FILLER PICTLRE X(12) VALUE
14 FILLER PICTLRE XI09) VALUE
14 FILLER PICTLRE 2109) VALtE
i* FILLER PICTLRE xio9> VALUE
1* FILLER 'PICILRE XI09I VALUE
14 FILLER PICTLRF XIC9I VALL'E
14 F.ILLER PICTtRE KC9I VALUE
1* FILLER PICTURE XIC8) VALUE
1* FILLER 'ICTtRE XI 16) VALUE
07 LINCNT PIi;ruSF S«I3I VALtE ZHRC
PROCEDURE CIVISION.
OPEN INPLT TAPIM klTH NC REUINO.
OPEN OliTPUl TAPOT klTH NC REHIMC.
OPFN Ot-TPCT PRTF .
ENTER LINKAGE.
CALL 'NOTPHK1 LSING DSR»
ENTER COBOL.
ENTER LINKAGE.
CALL >GE70MT> LSING PRT6-C.
ENTER COBOL.
REAC TAPIN INTO PRT1 AT ENE STCF RUN.
REAC TAPIN INTO PRT8 AT ENC STCP RUN.
REAC TAPIK INYO PRT9 AT END STCF RUN,
VALUE SFACE.
• RA.-FLCAT*.
SPACE.
SPACE.
• RECCRC TRK
MINE •-
•3
•4
•5
-6
"7
•'8
•*! '.
•10
CCHPUT«TION»L-3
MRITE TAPOT-REC FRCN PRT4.
hRITE TAPOT-REC FRCH PRT5.
MOVE PRT7 TC PRT6HA.
MOVE PRT6 TO PRT6H6.
HOVE PRTS TO PRT6HC.
PERFORC k-HO-2.
SEMI-RAh-PRINT.
MOVE SPACF TO ffi.
-------
17 - CONVERT RAW DATA TO FLOATING POINT (cont'd)
I
10
\o
05050 REAC.1APIN INTO PRI7 AT ENC SUP RUN.
05060 REAC TAP1N INTO PRT8 AT ENC STCF RUN.
C5C7C - "fAC TAPIN INTO PR'S AT £NC STCP RUN.
C5CJS ' IF PRTT • ••• «f)VE ••• TC «STS».
hRME TAPOT-REC FRCH PP1*.
•KITE lAPbT-REC FRCH PPT5.
CSCEC . URITE PRT'AFTER 1.
CiCSC ACC 1 >TC LINCNT.
CSIOC II AJTSfc » ••• GO 10 ElkD-SEM-RAN-CU.
Oil 10 If UNCUT 'GREATER- THAN 56 PERFOC X-l-C-2.
OM2C OC 1C SEMl-RAk-PRINT.
C5I30 ENC-SEMl-RAh-CU.
05140 . IF LINCNT 'GREATER THAN 40 PERF-CPM h-hD-2.
C»4«0 REAC-LCCP.
06010 REAC TAPIN-AT EKO CO TC EKD-FUE.
0*370 . MCVE TRK T : TRK-C.
Ct380 . HCVE llfE 1C &-TIHE.
MCVE J-TIHj TO T1HE-0.- '
O63.«0 HOVE • . •' TO OAV-0. '
XCVE VOL- 111 .TO1 VOl-0 (I).
NCVE VOL (Zl TQ.VOl-C 12).
MCVE VCL «S) TO; VOL-0 (31.
HOVE VGL Hi: TO: VOL-0 Ml'.
• MCVE VCL IS). TO-VCL-0 15).
«(CVE V.OL I6):TO'-VOI-0 tt).
HOVE vbi «'7ji'To:vot-o: ITI-.
MC.VE VCt- «81 TQ VOL-0 «8I.
• CtCSC -.. HCVE SPACE TC."PRT".
CtC*0, ACC 1 TC CM.. PCVE CK.T- TC REC.
04C70 U CN1 CREA.TER- THAN 24« CC TC hR-TAPE.
060«0 ' KOVF TRK TO:P^TRK-.
0«0«0 MOVE'TIKE TC'P-T-IHF.
MCVE VCL-C.-|M'-TO:P-VOL <1:).
ftvF. VOL-C «2> TO.P-VCL 12).
HOVE voi-c or TO:P-VOL 131.
"CVE VCL-0 (VI TO P-VOl 14).
MCVE vct-c isi TO.p-vot is).
MCVE .VCt-O It) TO'P^-VCl 16).
HOVE VC-l-G IT) TO P-VCl (71.
MCVE VOl-0 C8) TO' P-'VOL (81.
IF P-1RK • CC
• HOVE ''ZERO* TO P-ZERC.
CC21C »B]le PR! AFTER- 1.
0*220 AGO 1 1C-LINCNT.
C«23C~ • IF LINCNT NCT OREATEK THAN 56
Cib24C GO TO hP-TAPF..
C«25C M-HD-J.
Ct?60 HFI'TE PRT FRO*'PRT6H AFTER 0.
C6270 hlll'.TC PRT FRCM-PRTH-AFTER 2.
c«?ao MOVE 3 TT LINCKT..
C62«0 HOVE SPACE TO PRT.
CtICO 'hPITE PRT AFTER 1.
0*2*0 Mk-TAPE.
0<42C NPITF TAPOT-REC.
Ct*3C GC IT KEAO-LCOP.
C644C
END-FILE.
MCVE CM TO PSG-N.
hFITE PRT FRCf HSG AFTER 2.
CLCEE TAPIN kITH NO BEkINO, TAfCT ttlTH NC REklKC,
•PBTF.
STCP RLN.'
-------
18 - HORSEPOWER MODEL DEVELOPMENT
JU8 12C21C MCRSEPOM* HOOEl OttEUi
CM ION LlMilFC.il
£«FC FF'PTPtk
CCWVEH > TC IC»0 F*C1C'
// tȣC
// «SSOr;
/ • 1 «'. C
'•:. CICK ••' ' Ti-fc
PC«E* •««•••!•«<
LIHENSICN nEAC Ci»l
K>
VO
S FO«*»T I
t F.flC I l.
IH )
l *>B
=.£«-. I ' ,lic
\l I ! . ..I'-'-Ct | (.
!••;•.••! I IS. :•* , t5. 2
KO - J«« • s
i>- • i->. «;ecc
It- 1 - In/lCCC
IhZ • 1H-IHJ»IOOC
IFI |F|.LT.CHH1»C
1FI lf.2.LT.CI|N?-l
S I I ilcP».>.!'-FiLH3,l-E«D
I FKRHCT I I5(
HRITt 12.21
2 FORMAT I l*.IS.|],l3il7.F6.3.F6.3.«SAll
kOITF (3,21 I,IHPr,lHl.lH7,l»-P,O3.»,ME»C
c.i T.. ;
•*•. JIOP
(NO
«<:IX-Ft.C«1IJI))*IOOOO«.COn3.
J3-PPM
I >X2
1! -(x2-FLrii( i i )•) crcrccccr.
12 -»3
13 -IX3-FLC«T(|2ll*\OroCOCOCC.
u -*«
i; i(»*-rirM< ]:.)
IT «IX;-FLL«T( ioic-1 ccccrooc.
ie =f.Prx
i. =IRP»»-i LC'III^II'ICCCCCCJSC.
-------
18 - HORSEPOWER MODEL (con'd)
JS=I10
l
N>
so
oo
• -tir->1iii?i)*)"0':c':';(.c.
11.;•""•!
1 • : =1 "•>
: • . = :p«ii
i :>.<|i>:»i'-rir.M(|l'l ) •) CJ^CCC'CC.
1 • • - :.r»»;
118) i«ic-.cic:'.c:.
)«!OOCCCCCCO.
) 1'iacccccccc.
•'CCCOCCOCC.
•1COCCCOOCG.
i.- i = iii>i»;»;-
I Ti,,J3^7,-.
' •?•! i Jv?u=_
; _• f a V 3 * : • b
131:(-P«3-FLOAT< 130) )* 1 CCCCCOCCC.
13? '('Pcii-FLOATI U2 I l*:CCCCCuCCn..
•1CCCCCOCCC.
•ICCCCCCCCC.
H
IF
IF
! F
IF
IF
If
IF
IF
IF
IF
IF
IF
IF
IF
IF
p"2»:-Fia/TI
II .uT.
12 .GT.
I j . r, i .
I •• .LI.
.'3 .uT.
!• .Gt.
I ' .C'.
IS .1,1.
nc.r, i.
Ill.GT.
1:2.01.
IU.GT.
Hi.GT.
1U.C.T.
117.GT.
IH.GT.
ui.n.
r e t r. ^^. -.
coccrcccc.
\i =12 /IC
I • =13 /IC
15 =15 /IC
cc ic e
GC TO 6
IE =18 /ic
IS =19 /IC
I1C=11C/1C
11 2 = 113 /1 i.
115-115/10
I17-I17/1C
I?C=!2C/1C
I r
\t
• e
i F
i f
\'
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
!NL'
SSSSS99SS
34.GT.
i'.GT. SSSSSS999
34.GT.
fl.GT.
36.GT. SSSS4999S
!«,C.CT.
t-*H3tlr.
:. i * i •=./!•:
i .• •. * I < 6 / '. C
•C-I30/1C
3KI31/1C
32«I32/1C
33 =
37«I37/1C
36«138/IC
I«G*I
-------
18 - HORSEPOWER MODEL (cont'd)
// r«tc LKKtci
// ASSCN srscci. *•!<(:•
//
E«fC
// ASSC'J iYSCCi.X'CCC •
// 4S5CN SVSCC^.I'CCE*
»SSCN 5
//
c
c
c
C
r
N tuiTiPtt
p-cca«f. e»c
M
U>
vo
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT'NO.
EPA-460/377-009
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Truck Driving Pattern and Use Survey
Phase II - Final Report, Part I
5. REPORT DATE
June, 1977
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
John C. Cosby
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORG "VNIZATION NAME AND ADDRESS
Wilbur Smith and Associates
Bankers Trust Tower
Columbia, South Carolina 29202
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-01-0478
12. SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
2565 Plymouth Road
Ann Arbor, Mi. 48105
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
200/05
15. SUPPLEMENTARY NOTES
16. ABSTRACT
The report covers activities in Part I of Phase II of the title study, which developed
sampling plans and instrumental 50 heavy duty trucks in normal operation in New
York City for 172 days, and, similarly, 5 transit buses for 15 days. Operational
profile data included: engine speed, engine load factors, vehicle speed, engine
temperature, and throttle valve closure. These data, obtained from sensors installed
and calibrated with vehicle operating on a chassis dynometer, were recorded in
digital form at 0.863 second intervals on magnetic tape cassettes. Recorded data
was edited and certain values translated to engineering terms using calibration
data obtained at time of instrumentation installation. The report describes the
sampling plan, instrumentation equipment, calibration methods, edit procedures,
survey vehicle types, and technical problems encountered and their solutions. A
set of 14 raw data and 14 calibrated, machine-compatible tapes were generated which
are available separately from sponsor. Operational use profile data thus generated
was basic input to generation of driving cycles for emission testing programs
in subsequent program phases by EPA.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Vehicle Use Sampling Plans, Urban Truck &
Bus Use Profiles,Vehicle Speed; Engine
Speed, Load Factor, Vehicle Operating Sen-
sors, Instrumentation and Calibration with
Chassis Dynometer, Sensor Signal Con-
ditioning, Vehicle Use Data Acquisition &
Processing
'1. DISTRIBUTION STATEMENT
Release Unlimited
19. SECURITY CLASS (ThisReport)
lot Classified
21. NO. OF PAGES
300
20. SECURITY CLASS (TMspage)
22. PRICE
EPA Form 2220-1 (9-73)
------- |