&EPA
United States
Environmental Protection
Agency
Industrial Environmental Research
Laboratory
Research Triangle Park NC 27711
EPA-600/7-79-246
November 1979
Ceilcote Ionizing Wet
Scrubber Evaluation
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600 7-79-246
November 1979
Ceilcote Ionizing Wet
Scrubber Evaluation
by
David S. Ensor
Meteorology Research, Inc.
464 West Woodbury Road
Altadena,California 91001
Contract No. 68-02-2125
Program Element No. EHE624A
EPA Project Officer: Dale L Harmon
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
WdSr.'nqii.n DC. 204ou
-------
ABSTRACT
The Ceilcote ionizing wet scrubber installed on a refractory brick
kiln was evaluated with tests involving particulate mass emission, particle
size distribution, and opacity. The overall efficiency was 93 percent with
an average outlet opacity determined with a heated plant process visio-
meter (PPV) of 8 percent over a 1.68 m (5.5 ft) path length. The average
particle cut diameter of the scrubber system was 0.5 micron. The estimated
theoretical power requirement for the ionizing wet scrubber was 41 watts/am^
(1.54 hp/1000 ACFM). However, the scrubber system developed for the kiln
included a cooling tower to provide chilled water for the prescrubber to
condense volatile emissions which required 26 watts/am3 (2.5 hp/1000 ACFM).
The performance of the ionizing wet scrubber, based on theoretical power
input, exceeds that of a venturi scrubber. It is recommended that the
ionizing wet scrubber be considered in applications where practical for
the removal of fine particulate matter.
11
-------
CONTENTS
Abstract ji
Figures iv
Tables v
1. Introduction and Summary 1-1
2. Conclusion and Recommendations 2-1
3. Site Description 3-1
Process 3-1
Control device 3-4
4. Test Methods 4-1
Technical approach 4-1
Size distribution measurement 4-2
Opacity measurement 4-5
Gas composition 4-7
Process variables 4-7
5. Field Test Results 5-1
Calculation of scrubber performance 5-1
Mass collection efficiency 5-1
Estimation of power requirement 5-4
Particle collection efficiency 5-11
Scrubber performance 5-19
Opacity 5-22
6. Bibliography 6-1
Appendices
A. Manufacturer1s description A-l
B. Cascade impactor results B-l
111
-------
FIGURES
Number Page
3-1 Overview of Ceilcote ionizing wet scrubber 3-5
4-1 Assembly drawing of Model 1502 inertial cascade impactor 4-3
4-2 Diagram of the plant process visiometer 4-6
5-1 Scrubber process diagram 5-5
5-2 Scrubber performance as a function of scrubber-generated
aerosol 5-14
5-3 Differential size distribution for inlet and outlet of
scrubber taken with cascade impactors 5-17
5-4 Impactor and EASA differential size distributions for
11/21/78 5-18
5-5 Particle size dependent penetration for the IWS units 5-20
5-6 Particle size dependent penetration for cascade impactor
and EASA results 5-21
5-7 Conversion factor real to aerodynamic diameter 5-23
5-8 Aerodynamic cut-diameters of the Ceilcote ionizing wet
scrubber compared to the theoretical performance of
other scrubber types 5-25
5-9 Example of plant process visiometer monitoring of inlet 5-26
5-10 Example of plant process visiometer monitoring of outlet 5-27
5-11 Outlet opacity as a function of plant process visiometer
chamber temperature 5-28
5-12 Correlation of opacity with mass concentration 5-29
IV
-------
TABLES
Number Page
3-1 Production Schedule 3-2
3-2 Potential Materials in the Kiln Emissions 3-3
4-1 Summary of Blank Tests 4-4
5-1 Summary of Overall Mass Collection Efficiency 5-2
5-2 Gas Flow Rates and Theoretical Power 5-6
5-3 Summary of Orsat Tests 5-7
5-4 Estimation of Water Side Theoretical Power 5-8
5-5 Summary of Transformer Rectifier Power 5-9
5-6 Estimation of Theoretical Power Requirements 5-10
5-7 Total Solids in Water Streams 5-12
5-8 Estimation of Aerosol Formation in Quench Section 5-13
5-9 Size Distribution Geometric Mean Diameter and Standard
Deviation 5-15
5-10 Summary of Cut Diameters 5-24
-------
SECTION 1
INTRODUCTION AND SUMMARY
The Ceilcote ionizing wet scrubber (IWS) was evaluated with field
measurements of particle collection efficiency and an analysis of power con-
sumption.
This evaluation was one of a series of such evaluations being con-
ducted by the Industrial Environmental Research Laboratory of the United
States Environmental Protection Agency (EPA) to identify and test novel de-
vices which are capable of high efficiency collection of fine particles. The
test methods used were not the usual compliance-type methods but were, rather,
state-of-the-art techniques for measuring efficiency as a function of particle
size using cascade impactors and electrical aerosol size analyzers (EASA).
The IWS consists of a wetted plate, vertical plate ionizer followed
by an irrigated bed of plastic packing. The particulate matter is charged by
the ionizer and is collected in the irrigated packing. The subject equipment
was installed on a refractory brick kiln and controlled a submicron fume. The
scrubber consisted of a cold water quench followed by two IWS units. The
pressure drop was typically 7.6 to 13 cm H20(3-5 in. H20). The theoretical
power required was typically 67 watts/(am3/min) [2.5 hp/ 1000 ACFM] for the
scrubber system, including the IWS and cooling tower.
The scope of the study was limited to the field test of a single
unit. The following tests were conducted:
• In stack filter inlet and outlet
, Cascade impactor tests at the inlet and outlet
• Extractive sampling and subsequent measurement of submicron
particles at the inlet and outlet with a Thermosystems EASA
• Opacity measurement with a Meteorology Research, Inc., plant
process visiometer (PPV) at the inlet and outlet
The collection efficiency of the scrubber was 93 percent across the
scrubber. Additionally, it was found that cooling the flue gas caused the
formation of submicron particulate matter. Taking particle formation into
account the collection efficiency was 98 percent. The outlet opacity, mea-
sured under dry conditions with a PPV, was from 3.7 to 11 percent based on a
1.68 m (5.5 ft) path length.
1-1
-------
SECTION 2
CONCLUSION AND RECOMMENDATIONS
The following conclusions were made from the study:
1. The emission from the refractory kiln was a submicron fume
formed by condensation of volatile material baked from the
raw clay. The aerosol had a mean diameter of 0.6 micron
and a geometric standard deviation of 5 as determined with
a cascade impactor, assuming a particle specific gravity of
1.8 g/cm3. The cooling of the flue gas from 150° to 50°C
300° to 120°F) doubled the concentration of particulate
matter entering the ionizers and increased the mean diameter
considerably.
2. The average overall mass collection efficiency was 93 per-
cent for three days of testing. The average inlet concen-
tration was 0.25 g/dsm3 (0.109 gr/dsft3) and the average
outlet concentration was 0.017 g/dsm3 (0.0076 gr/dsft3).
The average outlet opacity was 8 percent over a 1.68 m
(5.5 ft) path length as measured with a Plant Process Vis-
iometer at about 99°C (210°F).
3. The particle cut diameter (the particle diameter collected
with a 50 percent efficiency) was 0.4 to 0.6 micron. The
total theoretical power regained by the scrubber system in-
cluding cooling tower for chilled water in the quench section
was 67 watts/(am3/min) (2.5 hp/1000 ACFM). The ionizers re-
quired the greatest percentage of the power input at 48.4
percent and the cooling tower required 38.4 percent. The use
of energy to remove particulate matter in the scrubber is
better than a theoretical high-pressure drop venturi scrubber.
It is recommended that the Ceilcote ionizing wet scrubber be con-
sidered in applications where scrubbers are practiclA for the removal of
fine or submicron particulate matter. ^
2-1
-------
SECTION 3
SITE DESCRIPTION
PROCESS
Globe Refractories, Inc., located at Newell, West Virginia, makes
bloating-type refractories. These refractory products are used in the steel
industry to line ladles. The term "bloating" means that the refractory
brick expands permenantly when reheated, sealing the lining of the ladle.
The raw material is a local clay called Lower Kittanning clay com-
posed mainly of Kaolinite, Quartz, Illite and Pyrite. Minor constituents
are organic matter, micas, and ammonium chlorides or fluorides. The clay
is formed into the required shapes including bricks, sleeves, nozzles and
pocket blocks and fired to about 1100°C (2,000°F) in a tunnel kiln under
a controlled temperature profile over 4 to 6 days' cycle. The formed clay
is loaded on tunnel kiln cars which are slowly pushed through the kiln.
The chemical reaction during firing includes oxidation of organic
matter to carbon dioxide and water, oxidation of pyrite to iron oxide and
sulfur oxides, decomposition of Kaolinite and Illite to release chemically
combined water, decomposition of ammonium chloride or fluoride to form am-
monia and gaseous chlorides and fluorides. The fluxing of alkalis forms a
glass that bonds the brick.
The major emissions problem from the kilns is believed to be a
NH4 HS04 smoke from reaction of ammonia gas and sulfjr oxides.
The scrubber controlled emission from kilns 4 and 5B. The No. 4
k'^ln contributed about 20 percent ofJLhe--f}*ie~§as^ The production rate
during the time of the test is shovkij jnjable 3-f^5)The N6T 4 kiln was
inoperable during part of the test due^to~~a==rar"wreck in the kiln.
Compounds which are hypothesized to be found in the emission are
summarized in Table 3-2. The chemical characterization of the emissions
was beyond the scope of this effort. These materials were used as a guide
to the selection of physical constants during the data reduction. The emis-
sion is highly corrosive when dissolved in water. It was noticed that 304
stainless steel probes installed for the test were severely corroded from
continuous exposure to the scrubber liquid over a two-week period.
3-1
-------
TABLE 3-1. PRODUCTION SCHEDULE
Date
Cars per 24-hour Day (6 am to 6 am)
Kiln 4 Kiln 5B
Kiln 4
(5.4 Ton/car)
Comments
IN I I II
-------
TABLE 3-2. POTENTIAL MATERIALS IN THE KILN EMISSIONS
Material
NH4 H F2
(NH4)2 $64
NH4 H $04
(NH4)2 S03 ,
NH4 Cl
NH4 F
Density
(g/cc)
1.315
1.769
1.78
. H20 1.41
1.527
— —
Refractive Index Comments
Del iquescence
1.521, 1.523, 1.533
1.642
1.315
Source: Handbook of Chemistry and Physics (1959)
3-3
-------
CONTROL DEVICE
General
The Ceilcote ionizing wet scrubber consists of five sections:
• Quench unit
4 Prescrubber (with cooling tower)
• First ionizing wet scrubber
• Second ionizing wet scrubber
• Induced draft fans and stack
About 28.3 amS/sec (60,000 ACFM) of flue gas at 150° C (300° F) is
piped to the scrubber through a 1.5 m (5 ft) diameter 30 m (100 ft) long
duct constructed of fiberglass reinforced plastic. A diagram of the scrub-
ber is shown in Figure 3-1.
Quench Section
In the quench section, the flue gas is reduced from 150°C (300°F)
to 60°C (140°F) by evaporative cooling. The quench water is supplied at
7.6 j?/sec (120 gpm) at a 3.6 x 105 n/nP (52 psig) pressure. The unit is
2.1 m (7 ft) in diameter and 2.7 m (9 ft) long.
Prescrubber and Cooler
The gas temperature is reduced to 46° C (115° F) in the prescrubber.
The prescrubber has a gas flow area 3 m by 3 m (10 ft by 10 ft) with an
overall length of 5.5 m (18 ft). It is of cross-flow design with a series
of inlet baffles and a 1.8m (6 ft) deep bed of Tellerette packing. There
are continuous water sprays on the inlet baffles, front of the packing, and
above the packed bed. Outlet baffles are sprayed on a periodic basis. Most
of the water for the sprays is cooled in the cooling tower. The cooling
tower reduces the temperature of the prescrubber water from 49°C (120°F) to
29°C (85°F) with a flow of 54 ^/sec (860 gpm) and a heat transfer rate of
3.78 x 109Cal/hr (15 x 106 Btu/hr).
The cooling tower is 3.8 m (12.5 ft) in diameter and about 6.6 m
(21.5 ft) high. The tower has a stack extension for a total height of 11 m
(36 ft). It has 5 cm (2 in.) Tellerette Type-R packing and the entrainment
separator is 0.3 m of 5 cm (2 in.) Tellerette Type-R packing. A fan rated
at 27.3 anr/sec (58,000 ACFM) at 10 cm H20) supplies cooling air at the
bottom of the tower. The cooled water is pumped to the prescrubber at
52.4 g/sec (832 gpm) at a 1.8 x 105 n/m2 (26 psig) pressure.
3-4
-------
CO
I
01
COOLING TOWER —i yi^
•TUNNEL FILM STACK \ I»J
CROSS FLOW SCRUBBER
IUS UNIT *2
PRE SCRUBBER
(CONDENSER/COOLER)
OUTLET TEST
LOCATION
Figure 3-1. Overview of Ceil cote ionizing wet scrubber.
-------
Ionizing Wet Scrubber (IWS)
The ionizing wet scrubber consists of two sections: an ionizer or
charger and a cross-flow scrubber. The ionizer consists of charging wires
suspended between irrigated grounding plates. The first ionizer operates
at 30 kV with a current of 100 to 110 ma and the second operates at 31.5 kV
with a current of 210 to 225 ma. The scrubber contains 1.2 m (4 ft) of
irrigated 5 cm (2 in.) Tellerette Type-R packing and 0.3 m (1 ft) of un-
irrigated packing for entrainment separation. The irrigated packing is
sprayed from the front and the top. The entrainment separator is flushed
periodically. The recirculation pump is rated at 36.3 £/sec (575 gpm) at
a pressure of 1.8 x 105 n/m2 (26 psig).
Fan and Stack
The fiberglass reinforced polyester fan is rated at 20 am-Vsec
(42,000 ACFM) at 46° C (115° F) water saturated and 28 cm WC (11 in. WC)
static pressure. The fiberglass reinforced plastic stack is 1.67 m (66 in.)
diameter and 46 m (150 ft) in height.
Test Locations
The test locations are indicated on Figure 3-1. Both the inlet and
the outlet were located on circular ducts with sufficient length before and
after the test port for smooth flow.
3-6
-------
SECTION 4
TEST METHODS
TECHNICAL APPROACH
Measurements were conducted in three areas: aerosol characteri-
zation, gas composition and process streams. The aerosol characterization
included scrubber inlet and outlet measurements as follows:
• Cascade impactors for particles between 0.4 to 10 microns
. Extractive sampling systems with a Thermosystems
Model 3030 Electrical Aerosol Size Analyzer and
diffusion battery for particles 0.01 to 1 micron
• An MRI PPV to measure plume opacity (0.1 to 1 micron
diameter particles)
> . Mass concentration with in-stack filters
The gas composition measurements included:
• Orsat measurement of C02, 02, CO
» Water content
The process measurements of interest included:
« Pressure drop through the scrubber
. Gas flow rate determined from velocity and
temperature traverses
• Water flow rate estimate
• Analysis of scrubber water for total dis-
solved and suspended solids
4-1
-------
SIZE DISTRIBUTION MEASUREMENT
Cascade Impactor
The MRI cascade impactor is an annular jet collector type, similar
to that reported by Cohen and Montan, 1967. A cut-away drawing of the in-
strument is shown in Figure 4-1. The body of the device consists of quick
quick connect rings supporting jet plates, collection discs and a built-in
filter holder. The design permits flexibility to various sampling situ-
ations.
The tests were conducted with procedures described by Harris, 1977.
The particles were collected on Apiezon grease coated on 304 stainless steel
foil collection discs. The discs were weighed to 0.01 mg on a Cahn electro-
balance.
The sample train used for the impactor tests consisted of:
. An in-stack impactor with a stainless steel probe
• A hose to four Greenberg-Smith impingers containing
water in the first two impingers, the third dry,
and the final containing silica gel
• A dry gas meter and pump following the impingers
The inlet impactors were operated at duct temperature. The outlet
impactors were heated to 121° C (250° F) with electrical heating jackets.
The nozzles on the outlet impactors were also extended by 46 cm (18 in.)
tubes which were also heated to 121°C (250°F) to dry the aerosol before
entering the impactor.
Blank tests consisting of exposing the impactor substrates with
filtered stack gas were conducted and the results are reported in Table 4-1.
The inconsistent blank values are believed to be due to the volatile nature
of the emission aerosol.
The impactor data were reduced with a procedure described by Mar-
kowski and Ensor, 1977, which is similar to the method described by McCain
et al., 1979.
Fine Particles
The measurement of the size distribution of submicron particles is
a two-stage process:
1. The aerosol sample was diluted with clean, dry air
2. The particulate matter in the diluted aerosol was then
measured with a Thermosystems Model 3030 Electrical
Aerosol Size Analyzer
4-2
-------
Nozzle
Jet Plato
Collection
Disc
1st Stage
'O" Ring
Filter
Figure 4-1. Assembly drawing of Model 1502 inertial
cascade impactor.
4-3
-------
TABLE 4-1. SUMMARY OF BLANK TESTS
Date
Stage
1
2
3
4
5
6
7
Filter
Temp (°F)
Time (min)
Flow rate (ft^/m)
Total Volume (IT?)
11/10/78
Outlet
2.38
0.83
4.94
3.59
0.23
0.01(a)
0.02(a)
-0.06
250
30
0.87
0.509
11/20/78
Inlet
0.66
0.55
0.49
0.41
0.33
0.02(a)
O.OO(a)
-0.19
281
30
0.54
0.311
11/21/78
Inlet
0.74
0.89
0.76
0.66
2.74
0.03(a)
-0.01(a)
--
287
45
0.49
0.136
11/20/78
Outlet
0.00
0.03
-0.03
-0.01
-0.02
+0.07
O.OO(a)
-2.02
250
89.0
1.40
2.50
(a) Control disc not exposed to flue gas
4*4
-------
Two separate dilution systems were used. The inlet dilution system
consisted of a sampling probe with a cascade impactor precutter to remove
particles greater than 2.5 microns followed by an out-of-stack, three-stage
quantitative dilution system. The sample can be diluted with filtered dry
air from 3:1 to 1000:1 by adjustment of control valves. The outlet dilution
system was a single stage in-stack mixing tee. In both systems, the clean
air flows are measured with orifices and the sample flows with Venturis.
The TSI Model 3030 Electrical Aerosol Size Analyzer (EASA) was used
at both the inlet and outlet. The EASA consists of a charger, where a known
charge is placed on the particles, and a mobility analyzer, where the
charged particles are attached to a central collecting rod. The size of
particles collected in the mobility analyzer depends on the applied voltage
on the collecting rod. The aerosol passing through the mobility analyzer
is detected by measuring the current transferred by the particles. The
aerosol distribution in 11 logarithmic steps from 0.003 to 1 micron is mea-
sured.
OPACITY MEASUREMENT
The opacity at the inlet and outlet of
with an MRI PPV. The instrument was installed
sample was heated to reduce relative humidity.
is shown in Figure 4-2. The aerosol particles
ated by a flash lamp with an opal glass filter.
tected by a photomultiplier tube at approximately right angles to the flash
lamp. The optics have been designed so that the output of the photomulti-
plier tube is proportional to the extinction coefficient due to scattered
light. The instrument is a physical analog of the following equation:
the scrubber was measured
on a three- inch port and the
A diagram of the instrument
in the chamber were illumin-
The scattered light was de-
scat =
0(9) sin 9 d 9
where
0(9)
(9)
= the scattering coefficient due to
scattered light
= volume scattering function
= scattering angle
If there is no light absorption, the scattering coefficient is identical to
the extinction coefficient. The extinction coefficient is related to plume
opacity with the Bouger Law.
4-5
-------
SAMPLE FLOW
LIGHT T.RAP
FLASH
LAMP
DIFFUSER
CALIBRATOR
LIGHT RAYS
ELECTRONICS
HOTO MULTIPLIER
ASPIRATOR
u
76-394/ I
Figure 4-2. Diagram of the plant process visiometer.
4-6
-------
Opacity (percent) = [l - exp (-bext L)] 100
where
bext = extinction coefficient, m
L = stack diameter, m
The instrument is spanned with an internal calibrator consisting
of an opal glass lens of known scattering coefficient. The lens was
mechanically placed in the view of the detector for calibration and was
retracted into a sealed chamber between calibrations. The PPV calibrator
is calibrated with oil smoke with reference instruments using both an in-
tegrating nephelometer and a transmissometer. The PPV was described in
detail by Ensor, et al., 1974.
The PPV at the inlet was mounted with the 3/4 inch probe pos-
itioned in the center of the duct. The probe was insulated and the chamber
electronically heated. The PPV at the outlet was placed on the ground and
a 3 m (9 ft) probe extended into the duct from the bottom. The probe and
chambers were electrically heated to about 93° C (200° F) to ensure that the
gas was above the water dew point.
GAS COMPOSITION
The concentration of 02, CO, C02 was measured with an Orsat analysis
following EPA Method 3.
The water content of the flue gas was obtained with the impinger
catch during the cascade impactor tests.
PROCESS VARIABLES
The process variables were obtained as follows:
• The velocity was determined with an S type pilot probe
following EPA Methods 1 and 2
• Pressure drop across the scrubber and pressure at the
draft fan was measured using pressure transducers
and recorded on a strip chart
• Samples of water were obtained for determinations of
dissolved sol ids
• The water flow rates, pressure, and power required
were estimated from the design specifications.
4-7
-------
SECTION 5
FIELD TEST RESULTS
CALCULATION OF SCRUBBER PERFORMANCE
The performance of this scrubber was evaluated with the following
procedure:
„ The theoretical power required for the scrubber was
computed from both the gas and water pressure drop
and the transformer-rectifier output
• The scrubber aerodynamic cut diameter was computed
from the cascade impactor and EASA results. The
cut diameter, as defined by Calvert et al., 1972,
is the particle size collected with 50 percent
efficiency in the scrubber
• Utilizing results reported by Calvert, 1971, and
adapted by Cooper and Anderson, 1975, the performance
of the scrubber was compared to the theoretical per-
formance of other common types of scrubbers
The overall particulate collection efficiency and opacity were also
determined to indicate the ability to meet air pollution regulations.
MASS COLLECTION EFFICIENCY
The overall performance from cascade impactors and in-stack filters
is shown in Table 5-1. The Phase I tests were taken under "as found" con-
ditions. As the Phase I test work proceeded, it was obvious several mechan-
ical problems existed in the scrubber. Due to settling of the water intake
at the pond, gravel was introduced into the water system requiring the re-
placement of two pumps and unplugging the spray nozzles. After the scrubber
was taken off line and inspected, it was also found that a high voltage
cable was misplaced and was shorting in the No. 2 Ionizer.
The Phase II tests were conducted with the scrubber in good mechan-
ical and electrical condition.
A second difference between Phase I and Phase II tests was in the
volumetric flow of flue gas treated. Gas is treated from the No. 4 kiln
and 58 kiln. A production problem caused shutting down No. 4 kiln during
5-1
-------
TABLE 5-1. SUMMARY OF OVERALL MASS COLLECTION EFFICIENCY
Inlet
Outlet
Cone. Cone.
Date mg/m3^) mg/m3^) Penetration Efficiency Opacity(b)
(1978) Run (gr/ft3) Run (gr/ft3)(a) (%) (%) (%) Comments
11/6 10
11
(c) la
Avg
11/7 21
22
^ (c) 2a
ro
11/8 23
24
(c) 3c
11/10 25
26
(c) 4a
11/18 27
28
230
229
252
237
(0.103)
371
279
287
312
(0.136)
248
254
224
242
(0.106)
259
256
271
262
(0.114)
349
318
333
(0.145)
5
6
Ib
7
12
2b
13
14
3b
16
17
4b
18
19
104
126
96.6
108.$ 45.9 54.1 34 Phase I tests
(0.0475)
104
74.5
100.4 29.8 70.2 34
92.96
(0.0405)
73.7
112
48.2
78.0 32.2 67.8 27
(0.0340)
756
471
360 IWS Power shutoff
529 201.9 -101.9 81
(0.231)
16.9 Phase II tests
34.8 after completion
25.9 7.77 92.2 11 or repairs
(0.0123)
-------
TABLE 5-1. SUMMARY OF OVERALL MASS COLLECTION EFFICIENCY(Continued)
U;
I
Date
(1978)
11/20
(c)
11/21
(c)
Inlet
Cone.
mg/m3'3)
Run (gr/ft3)
29 186
30 185
5a 226
199
(0.0831)
32 198
12 218
6b 311
242
(0.106)
Run
36
37
5c
38
39
6a
Outlet
Cone.
mg/m3!3) Penetration
(gr/ft3) (3) (%)
6.84
15.10
7.41
9.78 4.91
(0.00426)
19.7
21.1
9.38
16.7 6.90
(0.00728)
Efficiency Opacity(b)
(%) (%) Comments
95.1 3.7
93.1 6.8
Note: Both impactors and in-stack filters were heated to 121° C (250° F) at the outlet.
(a) 21.1°C, 76 cm, dry
(b) 1.676 meter (5 1/2 ft) path length
(c) In-stack filter samples - the other mass concentration results were computed from the cascade
impactor tests.
-------
the Phase II tests. The gas volume treated during Phase II was about 80
percent of that in Phase I.
The Phase II tests were analyzed in detail because the performance
is more representative of the unit performing as designed. The Phase I re-
sults are included only for completeness.
The overall average efficiency of the scrubber as a unit for the
Phase II tests was 93.5 percent. The "ionizer off" test conducted on Novem-
ber 10 may be used as an indication of the concentration of particulate
matter entering the IMS units. If it is assumed no particulate matter was
removed by the IMS packing, the IMS efficiency was 98.2 percent.
ESTIMATION OF POWER REQUIREMENT
Process Diagram
The scrubber is a multistage process. A diagram of the flows is
shown in Figure 5-1. Measured values are used for the gas flows. However,
only design water flow rates and pressures were available. Many of the
flow meters and pressure gauges were malfunctioning due to the corrosive
nature of the scrubber water. Using a combination of estimated process
streams, measured gas flows, and transformer-rectifier readings, an account-
ing was made of the power required for the scrubber.
Gas Measurements
The gas flows were measured with an S-type pitot probe. A 12-point
equal area tranverse was conducted at both the inlet and outlet of the
scrubber. The results are summarized in Table 5-2. The theoretical power
was computed using the equation reported by Strauss, 1974.
The results of the orsat analysis are summarized in Table 5-3. The
average water concentration was obtained from the impactor tests.
Water Flows
The water flows and power required were estimated from the design
value and are shown in Table 5-4.
Transformer-Rectifier Power
The corona power was computed from the secondary voltage and current
of the transformer-rectifier units (TR) observed during the test. An aver-
age power input was computed for the days of November 18, 20, and 21. The
results are shown in Table 5-5.
Total Power Input
The total theoretical power input to the scrubber is summarized in
Table 5-6. The electrical power to the cooling tower for air circulation
5-4
-------
QUENCH
PRESCRUBBER
IONIZING UET SCRUBBERS
en
i
en
DRAFT FAN
COOLING TOWER
PROCESS STREAMS
FLOW gpm PRESSURE
1 - 120 gpm
2 - 860 gpm
3 - 832 gpm
4 - 575 gpm
5 - 575 gpm
6-20 gpm
7-20 gpm
8 - SO.000 cfm
120 ftwc
75 ftwc
60 ftwc
60 ftwc
60 ftwc
30 ftwc
30 ftwc
4 inwc
SETTLING POND
79-260
Figure 5-1. Scrubber process diagram.
-------
TABLE 5-2. GAS FLOW RATES AND THEORETICAL POWER
en
i
Date
(1978)
11/10
11/18
11/20
11/21
Stream
In
Out
In
Out
In
Out
In
Out
Pressure
cmHg
(in.Hg)
73.66
(29.00)
72.75
(28.64)
74.55
(29.35)
73.96
(29.12)
75.01
(29.53)
74.17
(29.20)
75.01
(29.53)
74.14
(29.19)
Average
11/13/20,21
Pressure
Drop (a)
cmH20
(in.TI20)
12.75
(5.02)
7.82
(3.08)
11.58
(4.56)
11.43
(4.50)
10.26
(4.04)
Avg
Velocity
m/sec
(ft/sec)
16.1
(52.7)
16.9
(55.6)
12.5
(40.9)
12.9
(42.2)
14.0
(45.8)
13.9
(45.7)
11.9
(38.9)
(46.6)
Avg
Temp.
0 C
C F)
174
(345)
25.5
(78.0)
156
(313)
19.7
(67.5)
135
(2/5)
17.5
(63.5)
138
(281)
15.7
(60.3)
Average Inlet
11/18/20,21
Actual
Vol Rate
nr/sec
(acfm)
29.32
(62132)
19.80
(41959)
22.72
(48148)
15.02
(31826)
25.48
(53980)
16.25
(34434)
21.63
(45828)
16.59
(35158)
23.28
(49318)
Std Vol
Rate lb)
nr/sec
(dscfm]
17.27
(36600)
18.00
(38142)
14.73
(31216)
14.16
(29999)
17.47
(37022)
16.06'
(34022)
14.45
(30627)
16.16
(34237)
Water
by Vol
fe
\
7.69
3.60
3.63
2.69
3.63
2.69
5.33
2.01
Average
11/18,20,21
Power (c)
watt/nr/min
(hp/lOOOacfm)
21.0
(0.788)
12.9
(0.484)
19.1
(0.716)
18.8
(0.707)
16.9
(0.6345)
(a) Fl ange to flango
(b) 21.1° C, 76 cm llg, Dry - Inlet Area: 1.824 m2 (19.635 ft2); Outlet Area: 1.167m2 (12.566 ft2)
(c) Computed with Power = 0.157 APa where C&s pressure drop in 1^0
-------
TABLE 5-3. SUMMARY OF ORSAT TESTS
en
i
Date
(1978)
11/18
11/20
11/21
Location
Outlet
Outlet
Inlet
Inlet
Outlet
Outlet
Inlet
Inlet
Inlet
Inlet
CO 2
(Vol %)
2.4
2.2
2.0
2.2
1.8
1.4
2.0
2.0
2.1
2.0
02
(Vol %)
14.6
14.8
15.4
15.6
15.8
16.0
15.6
16.6
15.0
15.6
(Vol %)
83
83
82.6
82.2
82.6
82.6
82.4
81.4
82.9
82.4
Dry
Molecular
Weight
(g/g mole)
28.97
28.94
28.94
28.98
28.92
28.86
28.94
28.98
28.94
28.94
Average
28.96
28.96
28.89
28.96
28.94
Water
(Vol %)
2.69
3.63
1.58
3.53
5.33
Molecular
Weight
with Water
(g/g mole)
28.66
28.56
28.72
28.57
28.36
-------
TABLE 5-4. ESTIMATION OF WATER SIDE THEORETICAL POWER
Stream
From
Fig 5-1
1
2
3
4
5
6
7
Flow
//sec
(gpm)
7.57
(120)
54.3
(860)
54.3
(832)
36.3
(575)
36.3
(575)
1.3
(20)
1.3
(20)
Pressure Q
n/m2
(psig) (gal
3.6 x 1Q5
(52)
2.2 x 105
(32.5)
1.8 x 105
(26)
1.8 x 105
(26)
1.8 x 105
(26)
0.89 x 105(a)
(13)
0.89 x 105(a)
(13)
L /Qab)
^/m3
./1000 acf)
0.33
(2.43)
2.35
(17.4)
2.28
(16.9)
1.58
(11.7)
1.58
(11.7)
0.055
(0.41)
0.055
(0.41)
Theoretical Power(c)
Watts/(am3/min)
(hp/1000 acfm)
1.97
(0.074)
8.79
(0.330)
6.82
(0.256)
4.72
(0.177)
4.72
(0.177)
0.083
(0.0031)
0.083
(0.0031)
(a) Assumed for line pressure
(b) 23.28 am3/sec (49.318 acfm) based on inlet gas flow
(c) PL =0.583 A PL (QL /Q G ) (hp/1000 acfm)
APL = psig
QL = gpm; Q „ = acfm
5-8
-------
TABLE 5-5. SUMMARY OF TRANSFORMER-RECTIFIER POWER
Date
1978)
11/18
11/20
11/21
Flue Gas Unit l(a)
Treated Avg
am-Vmin Corona Power
(acfm) (watts)
1511 1581
(53,980)
1322 3080
(47,218)
1250 2609
(44,650)
Unit 2(a) Unit 1 Unit 2
Avg Power Power
Corona Power watts/am^ watts/am^
(watts) (hp/1000 acf) (hp/1000 acf)
3372 1.05
(0.039)
6620 2.33
(0.087)
5448 2.09
(0.078)
Average 1.82
(0.068)
2.23
(0.084)
5.01
(0.19)
4.44
(0.17)
3.89
(0.146)
(a)The product of the secondary voltage and current supplied to the
ionizers by the transformer rectifier units.
5-9
-------
TABLE 5-6. ESTIMATION OF THEORETICAL POWER REQUIREMENTS
Scrubber Stage
Quench
Prescrubber
IWS l(«)
IWS 2(a)
Cooling Tower (b)
Total
Percent of Total
Gas
watts/am^/min
(hp/1000 acfm)
8.47
(0.318)
8.47
(0.318)
16.7
(0.628)
33.6
(1.264)
50.6
Water
watts/am3 /mi n
(hp/1000 acfm)
1.97
(0.074)
6.82
(0.256)
4.80
(0.180)
4.80
(0.180)
8.79
(0.330)
27.2
(1.02)
40.8
Corona
watts/am^/min
(hp/1000 acfm)
1.82
(0.068)
3.89
(0.146)
5.71
(0.214)
8.5
of
Total
3.0
10.3
22.7
25.7
38.4
66.6
(2.50)(c)
(a) The gas pressure drop was divided between the two units
(6) Includes an estimate of the fan and the pump power requirements
(c) Note the total power on 11/21/78 measured with a Volt-amp meter was 149 hp or
3.02 hp/1000 acfm (80.5 watts/am3/min)
5-10
-------
and water circulation referenced to the volumetric flow of flue gas pro-
cessed was considered as the energy input to the scrubber. Also, the gas
side pressure drop was assumed to result only from the IWS units. The
greatest single power input is from the gas side pressure drops. (It should
be noted that this input includes the cooling tower air flow.) The major
power input from these estimations is in the cooling tower; thus, the need
to condense components of the flue gas stream in order to control the emis-
sion from the kiln results in an additional energy requirement when com-
pared to a process which emits only solid particles. Also, the tests were
conducted under atmospheric temperatures of about 4°C (40°F) which leads to
efficient cooling of the water streams.
Under summer conditions, the scrubber temperature, efficiencies,
and power requirements may be different than observed during the test.
Particulate Matter Formed in the Scrubber
An aspect of the process affecting scrubber performance is the for-
mation of particulate matter during cooling of the flue gas. The two mech-
anisms which could contribute to the formation of particles are evaporation
of water containing dissolved solids and condensation of volatile matter in
the flue gas. Analysis of the water streams is reported in Table 5-7.
Using the water analysis and the gas stream properties, the increase
in particulate matter concentration by evaporation is shown in Table 5-8.
It was assumed that the gas stream was initially cooled by evaporation under
conditions of constant enthalpy to saturation, then cooled by sensible heat
transfer to the observed quench temperature. It was assumed that cooling of
the gas from the saturation temperature did not cause the removal of partic-
ulate matter.
The fraction of particulate matter formed by evaporation of the
scrubber water is estimated by considering the test day of November 10 when
the ionizers were shut off. Particulate matter formation from water evapor-
ation accounts for about 30 percent, and about 70 percent results from con-
densation directly from gas phase for the particulate matter formed in the
scrubber. The influence of the particulate matter formed by the evaporation
of water is shown in Figure 5-2 with an analysis of Phase II tests. The
outlet concentration and scrubber penetration were directly related to the
quantity of water evaporated in the quench section and estimated particulate
matter. Thus, additional improvement in efficiency may be realized by re-
ducing the dissolved solids in the quench water. However, the emissions
were below any applicable regulation and cost of providing fresh water for
cooling the flue gas may not be warranted at the present time.
PARTICLE COLLECTION EFFICIENCY
Mean Particle Diameter
Size distribution statistics computed for the cascade impactor tests
are summarized in Table 5-9. The geometric mass mean diameter and geometric
5-11
-------
TABLE 5-7. TOTAL SOLIDS IN WATER STREAMS
Date
(1978)
11/10
11/18
11/20
11/21
Sample
Inlet
IMS Sump
Inlet
Sump
Inlet
Sump
Inlet
Sump
Total Solids(a)
(mg/liter)
2606
1633
2600
2580
2830
2950
2960
3160
(a) The sample contained negligible amounts of suspended solids
The inlet sampling location was the water intake at pond.
The outlet sampling location was the sump of the scrubber. This
location was the site of discharge of several discharge lines
which were poorly mixed in the sample area.
5-12
-------
TABLE 5-8. ESTIMATION OF AEROSOL FORMATION IN QUENCH SECTION
Date
(197B)
11/10
11/18
11/20
11/21
Volunetrtc
Gas Flow
Inlet Cond.
arVsec
(acf.)
29.32
(62132)
22.72
(48148)
25.48
(53980)
21.63
(45828)
Tee*.
Inlet
•c
CF)
174
(345)
156
(313)
135
(275)
138
(281)
Hater Cone.
by Voluee
Inlet
Percent
7.69
3.63
3. S3
5.33
Specific
Humidity
Inlet
9/9
(Ib/lb)
0.1342
(0.1342)
0.067
(0.067)
0.0589S
(0.0589S)
0.0907
(0.0907)
Solids
In Hater
•S/ liter
2606
2600
2830
2960
T After
Quench
•c
CF)
48
(118)
43
(110)
41
(106)
41
(106)
Specific
Hunidity
After Quench
9/9
(Ib/lb)
0.0755
(0.0755)
0.06
(0.06)
0.053
(0.053)
0.053
(0.053)
Hunidity
at Saturation
g/9M
(Ib/lb)
0.190
(0.190)
0.119
(0.119)
0.095
(0.095)
0.130
(0.130)
T at
Saturation
•C(a)
CF)
63
(145)
55
(131)
52
(125)
56
(132)
Increase
In Specific
Humidity
9/9
(Ib/lb)
0.0558
(0.0558)
0.052
(0.052)
0.0361
(0.361)
0.0393
(0.0393)
Increase In
Particulate
t^i'f
(gr/ft')
163.5
(0.0713)
147.0
(0.0641 )
115
(0.0501)
131
(0.0571)
Part Iculite
Matter fro™
Evaporation
Compared to
Inlet,
Percent(d)
63
44
60
54
Participate
Hitter fro*
Evaporation
Conplred to
Totll
Generited
Percent («)
32
tn
i
co
(a) It Is assuaed that the Inlet gas Is cooled by evaporation as a constant enthalpy process and then the
gas Is cooled by sensible heat transfer
(b) Obtained by the product of the Miter solids concentration and increase in specific hunldity, it is
assuMd after fomatlon. the particulate natter Is not rewvedd by condensation In the quench section
(c) Standard conditions 21.1* C. 76 a Hg. Ory
(d) Ratio of the Increase In particulate utter fomed froai evaporation to that Measured during the Inlet
tests
(e) Computed by dividing the Increase In partlculale Miter fro* evaporation by the outlet of 11/10 from
the average outlet concentrations from 11/18, 20. and 21. Assuaes negligible renoval of particulate
•alter In the prescrubber and deenerglied IMS.
-------
n •
10 •
9 -
8-
1 7-
t— f*>
§ 2
i —
Z X
^ u_ 6 '
(J *^
Z 0
o <"
1— t.
LU o> c .
_J •>
I —
g
4-
3-
2-
1 -
0
26
24
20
18
16
CO
E 14
i/)
"^
"*"•-
e 12
10
8
6
4
2
°C
O
/
/
/
J
/
/ /
/
/° /
/ /•
/ /
/ /
/ •/
I */
1 /
/ / »
/ /
L //
//
/*
A
re M A
0 OUTLET CONCENTRATION, 0.997 1.97 96.6
• PENETRATION, 0.975 0.0894 -5.18
™ —
,_ rc = CORRELATION COEFFICIENT
r y = A + MX
-
I I I I I I I 1 I 1
20 40 60 80 100 120 140 160 180 200
10
9
8flj
U
J~
Q.
7 ^
LU
CO
CQ
6 g
1/1
LU
5 ^
1
4 g
i —
z
o
3 r^
LU
O.
1
0
mg/dsm3
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
79-261
-
CONCENTRATION OF AEROSOL FORMED IN QUENCH SECTION OF SCRUBBER
Figure 5-2. Scrubber performance as a function of
scrubber- generated aerosol.
5-14
-------
TABLE 5-9. SIZE DISTRIBUTION GEOMETRIC MEAN DIAMETER AND STANDARD DEVIATION
en
i
en
Date
(1978)
11/10
Avg
Run
No.
25
26
Standard
Deviation
11/18
11/20
11/21
Avg
27
28
29
30
32
33
Standard
Deviation
Dg -
-------
standard deviation were determined with a least square fit to a lognormal
size distribution. The aerosol is submicron in size with a geometric mean
diameter of 0.6 micron entering the scrubber and 0.3 micron in the exhaust
gas.
The outlet size distribution obtained during the tests with the IWS
shut off had a geometric mass mean diameter of 1.5 microns. Thus, the for-
mation and growth of particles in the quench and prescrubber increases the
mean diameter considerably. The growth mechanisms are suspected to be
coagulation and humidification.
The differential size distribution (incremental mass concentration
per incremental logarithmatic particle diameter as a function of particle
diameter) dm/d log D vs D is shown for the cascade impactor results in
Figure 5-3. The change in particle size distribution from the removal in
the scrubber is shown for average results on November 18, 20, and 21.
In addition, the growth in aerosol size distribution from cooling
and humidification of the flue gas is shown to be primarily in the 1 to 10
micron particle diameter range, thus indicating the reason for an increase
in mean particle diameter indicated in Table 5-9.
The impactor and EASA results were combined to obtain particle size
distributions and fraction penetration curves. The last day of testing,
November 21, 1978, was selected for analysis in detail. All measurements
exhibited very good precision.
The differential size distribution is shown in Figure 5-4. The
figure illustrates many of the problems experienced with obtaining fine
particle data. It was noticed that the size distribution measured at the
inlet was related to the life of the silica gel used to dry the dilution
air. The size distribution obtained under conditions of fresh silica gel
was bimodal. However, as the silica gel was depleted, the distribution
grew to a single mode at 0.4 microns and appeared to match the impactor
results rather than the bimodal case. It is believed that the emission
was very reactive with water. The dilution system was operated with dil-
utions of up to 1000:1; therefore, with fresh silica gel the aerosol would
be measured with insignificant relative humidities (absolute humidity of
10~^g t^O/g air). The cascade impactor measured the particle size distri-
bution under flue gas conditions of about 3 percent relative humidity. The
single mode distribution is the one most likely to be present at the inlet
of the scrubber. The size distributions measured by the EASA were repeat-
able and the humidity phenomena was observed on other test days.
A second uncertainty is related to the data reduction procedures.
The EASA has cross sensitivity errors in the last four size channels (a
particle will be sensed in more than one channel). A computational pro-
cedure reported by Twomey, 1975, was used to reduce the data to correct
for cross sensitivity; the instruction manual method which does not cor-
rect for cross sensitivity was also used. The size distribution reported
for the EASA depends on the data reduction technique.
5-16
-------
1000 r—
100
ro
10
1.0
0.1
* 9
I i
....I
O Inltt 11-18. 20, 21 *V9
• Outlet 18. 20. 21 Avg
O Inltt 11/10
• Outlet 11/10
One Sttndtrd Deviation
Limits Indicated
Spec Hie Gravity • 1.8 g/cn3
I I .1
0.1
To 10 20
PARTICLE DIAMETER, microns 79-262
Figure 5-3. Differential size distribution for
inlet and outlet of scrubber taken
with cascade impactors.
5-17
-------
103r-
O Inltt Cisudt liptctor
• Outlet Cticadt l«9>ctor
O Inltt EASA nit* Met Dilution Air
Q Inltt EASA .1th Dry Dilution A1r
Corrtcttd for Cross StnsHlvlty
A Inltt EASA irlth Dry Dilution A1r
Uncorrtcttd for Crois Stnsttlvlty
^ OutUt CASA - Corrtcttd for
Cross Stnsltlvity
A Outlet EASA - Uncorrtcttd for
Cross Stn»1ti«Hy
10'
10°
10-1
10
,-z
1.01
0.1 1.0
PARTICLE DIAMETER, aicrons
10
Figure 5-4. Impactor and EASA differential
size distributions for 11/21/78.
5-18
-------
In these tests, the instruction manual method agrees better with
cascade impactor size distribution than the results corrected for cross
sensitivity. However, the cascade impactors also have cross sensitivity
and the reduction technique used does not correct for nonideal behavior in
the impactor. Therefore, agreement of EASA and impactor size distributions
does not mean any particular size distribution is correct. For this reason,
results from different approaches are reported. The ambiguity in reported
size distribution indicates the difficulty of obtaining this information for
a reactive condensible aerosol even when state-of-the-art experimental tech-
niques are used.
Particle Size Dependent Penetration
The penetration of the particulate matter is a preferred way of re-
porting performance rather than efficiency. The significant figures of the
measurement on be preserved, and particle generation can be easily com-
puted. The penetration is obtained by dividing the outlet differential size
distribution curve by the inlet curve.
The average penetration for November 18, 20 and 21, as a function of
particle diameter obtained with the cascade impactors, is shown in Figure
5-5. In addition, a penetration curve computed with the outlet deenergized,
divided into the average size distribution for November 18, 20, and 21 is
shown in Figure 5-5. This curve may be a more realistic measure of the IMS
performance than the inlet/outlet tests because of particle formation in the
quench and prescrubber.
In Figure 5-6, the combined impactor and EASA penetration curves are
shown for November 21, 1978. The interpretation of the EASA results is an
important consideration in computation of the penetration. The data ob-
tained with partially spent silica gel at the inlet (diamond) is the most
believable in the 0.1 to 0.3 micron range.
SCRUBBER PERFORMANCE
Calculation of Aerodynamic Cut Diameter
The aerodynamic diameter as defined by Calvert et al . , 1972, is
given by:
daero = dactual
where
C = Cunningham correction factor
P = Particle density, g/cnr*
dactual = Actual cut diameter, microns
5-19
-------
100 I—
10
1.0
i
8!
0.1
0.01
D Average of Cascade Impactor
Tests 11-18, 20 and 21
O Estimate of Efficiency of IWS
Units obtained by dividing the Outlet
Distribution taken with the IWS shut-
off into the outlet Size Distribution
averaged for Tests 11-18, 20 and 21
I i i i i i i i I
i i i I Hi i
0.1 1.0
PARTICLE DIAMETER, microns
10
Figure 5-5. Particle size dependent penetration for
the IWS units.
5-20
-------
100 i—
10
S
i
1.0
O Cutldt Uoctor
O USA - Ml Dilution
*1r Corrected for
Croil S*niitw(ty
D USA - Dry Dilution
Air Correct** for
Croil Smtitioity
a USA . Meorrtcttd for
Croti Smsitivity
OM SUndird Oniition
LlHitl IndicitM
I
0.1
i I I I I I I
I i I I I i i i I
I ! I I . I I 1 I
0.01
0.1 1.0
PARTICLE: DIAMETER, microns
10
Figure 5-6. Particle size dependent penetration for
cascade impactor and EASA results.
5-21
-------
The actual diameter with 50 percent penetration was from Figure 5-6.
The aerodynamic cut diameters were then computed from the actual diameter.
The EASA size distribution was used because the cut diameter was below the
the resolution of the impactor.
The square root of the Cunningham correction factor and density
^C~P" was computed for the size range of interest in Figure 5-7. The actual
size cut diameters were taken from Figure 5-6 and reported in Table 5-10.
Depending on the measurement and data inversion technique, the aerodynamic
cut diameter was from 0.4 to 0.6 micron.
Comparison to Other Types of Scrubbers
The aerodynamic cut diameter from Table 5-10 and theoretical power
from Table 5-6 are shown in Figure 5-8. This figure has theoretical per-
formance curves for a number of different scrubber types for comparison.
These results suggest that the IMS is more efficient than a theoretical
venturi scrubber.
The aerodynamic cut diameter obtained for the whole scrubber on
November 21 is believed to be valid for the IMS units including the aero-
sol generated in the quench and prescrubber section. As shown in Figure
5-5, the generated particles are captured in the IMS in the 1 to 10 micron
diameter range. The penetration in the fine particle range, less than 1
micron, appears to be unaffected by particle generation. Thus, the aero-
dynamic cut diameter is unaffected by this phenomenon.
OPACITY
The PPV was a useful monitor of process variation. An example is
shown in Figure 5-9 showing a trace of the inlet opacity. The drop in
opacity every 1-1/3 hours is caused by the opening of doors to allow the
entry of formed bricks into the kiln on tunnel kiln cars. An example of
the outlet opacity is shown in Figure 5-10. The upsets on the chart were
due to the "tripping" of TR sets on Ionizer 2 and resetting by an operator.
Another physical property of the emission was the sensitivity of
opacity to measurement temperature and, presumably, relative humidity as
shown in Figure 5-11. This behavior is similar to that observed during the
measurement of the inlet size distribution when the size distribution
changed as the silica gel in the dilution system was depleted. The phen-
omenon was repeatable but the magnitude of the change in opacity with cham-
ber temperatures varied.
The wide ranges of concentration and opacity between inlet and out-
let conditions allowed the correlation of mass concentration and opacity as
shown in Figure 5-12. The correlation coefficient of 0.96 suggests that the
size distribution was fairly consistent (within a factor of 3 in mean dia-
meter) between the inlet and outlet of the scrubber as indicated in Table
5-1.
5-22
-------
PRESSURE
TEMPERATURE
MEAN FREE PATH
PARTICLE DENSITY
• 74.47 cmHg (29.32 1nHg)
• IB »C (64 V)
18 *C
0.1 O.Z 0.3 0.4 0.5 C.6 0.7 0.8 0.9 1.0
TOTICLE DIAMETER, ulcrons 79-z«t
Figure 5-7. Conversion factor real to
aerodynamic diameter.
5-23
-------
TABLE 5-10. SUMMARY OF CUT DIAMETERS
INi
Technique
Actual Diameter
at 50% Penetration
(micron)
Aerodynamic
yCP Cut Diameter
(g/cm3)l/2 (micron)
EASA uncorrected for channel
cross sensitivity
EASA inlet size distribution
dry dilution air
EASA inlet size distribution
water in dilution air
0.28
0.24
0.14
2.16
2.28
2.75
0.60
0.55
0.38
-------
in
ro
en
4.0
3.0
2.0
1.5
PRESSURE DROP. Inches HgO
5 6 7 8 9 10 15 20 30 40 50 60 80 100
1.0
S 0.8
» °'6
| 0.5
I 0.4
0.3
0.2
0.1
2aT
i I i i
I I I I I I T
la, Ib SIEVE PLATE SCRUBBERS
2a, 2b VENTURI SCRUBBERS
3 IMPINGEMENT PLATE
4 PACKED COLUMNS
AA11 Power Into System
OIWS Power Only
10
30 50 100
POWER, watts (anT/mln) , ,
300
0.25 0.5 0.8 1.0 2.0
POWER, hp/1000 acfm
I I I I i i i i i l
3.0
5.0
I l l
8.0 10
I
2a
5 6 7 8 9 10
20
30 40 50
70 90100
200 300
PRESSURE DROP, cm
Figure 5-8. Aerodynamic cut-diameters of the Ceilcote ionizing
wet scrubber compared to the theoretical performance
of other scrubber types (after Cooper and Anderson,
1975, adapted from Calvert, 1974).
77-413/2
-------
ro
o
o
1.4 .
1.2 .
1.0-
0.8
0.6.
0.4.
0.2-
0
-'•"
IS.
.p><^
-Car
: •
F
fcl
late
:..
.:_
rlna.
-
*M
KJln
' •
*tr
-40-
—30—
— 2OJ
—1O—'
. - ._
' _ j
":
. ...
1
•".
_'.
1 • L !_(, 1 . • .
" ™.
-:.-.
\y.
-'-
-—
-L~
•~":
--—
•~
~6o~~
r:.:.
1200 1100
.:..-.-.
:-~^
•~~
.-.:.
- —
::£a
'.•E£
;~
-~
-••'-
--..._
$
r-fe
>• Ent
_-
...
„".
(Ma
f-
j
prim
-
. . —
.^"
•_ ::.;
:
1 K11
•
. :;."
-
.£:
I".J_
- -
.- , .
-*NJ
a -
~:~
-H1Z1
^--•_-
^'bt-'
— 4O
/
•„-.;
—
• . -
. ._ .
- ....
H**
— —
~— ~ •
-~Z
1000
HOURS
79-270/1
Figure 5-9. Example of plant process visiometer monitoring of inlet.
-------
cn
i
ro
£
u
in
in
8
_ 1.0--
£ 0.8
u
UJ
o
i
oe
0.6- ^
0.2-
20-
10-
to
«M
>j —
0
-8
.O.
-§
_-{.
o
-o-
o
-s
-.0-
0
o
(M
00 •-«
CSJ »-*
in
t—i
o
J-
o
x
..O
p>
—O
i.
01
_0
t\
-I
)
1100
79-269
HOURS
Figure 5-10. Example of plant process visiometer monitoring of outlet.
-------
O)
£
HI
80 r-
70
60
50
40
30
11-21-78
1000
20
11-21-78
0800
10
180
80
185
85
CHAMBER TEMPERATURE
J
190 °F
90
79-267
Figure 5-11.
Outlet opacity as a function of
plant process visiometer chamber
temperature.
5-28
-------
5
*-
8
100
90
BO
70
60
50
40
30
20
fc • 0.01*2 + 0.210 (MASS CONCENTRATION, gr/ftj)
CORRELATION COEFFICIENT 0.956
0.1
0.2
«r/ft3
0.3
100 200 MO 400 500 400
MASS CONCENTRATION, Mg/m3
700
10
20
30
40
50
60 -
o
,„
70 o —
E
80
79-266
0.25
0.50
0.75
1.0
Figure 5-12. Correlation of opacity with
mass concentration.
5-29
-------
SECTION 6
BIBLIOGRAPHY
Calvert, S. 1974. Engineering Design of Fine Particle Scrubbers. J« Air
Poll. Cont. Assoc. 24:929-934.
Calvert, S., J. Goldshmid, D. Leith, and D. Mehta. 1972. Scrubber Hand-
book. EPA Contract No. CAP-70-95, PB-213-06.
Cohen, J.J., and D.M. Montan. 1967. Theoretical Considerations, Designs,
and Evaluation of a Cascade Impactor. Am. Ind. Hyg. Assn. J.
28:95-104.
Cooper, D.W., and D.P. Anderson. 1975. Dynactor Scrubber Evaluation.
EPA-60/2-74-083-a, U.S. Environmental Protection Agency.
Ensor, D.S., L.D. Bevan, and G. Markowski. 1974. "Application of Nephel-
ometry to the Monitoring of Air Pollution Sources." 67th Annual
Meeting of the Air Pollution Control Assoc., Denver, Colorado,
Paper No. 74-110.
Globe Refractories, Inc. 1978. "Stack Emissions from Plants Which Produce
Bloating Ladle Refractory Products," January 13.
Handbook of Chemistry and Physics. 1959. Chemical Rubber Publishing Com-
pany, Cleveland, Ohio.
Harris, D.B. 1977. Procedures for Cascade Impactor Calibration and Oper-
ation in Process Streams. EPA-600/2-77-004.
Klugman, W.L., and S.V. Sheppard. 1975. "The Ceilcote Ionizing Wet Scrub-
ber." Presented at the 68th Annual Meeting of the Air Pollution
Control Assoc., Boston, Massachusetts, June 15-20.
Markowski, G.R., and D.S. Ensor. 1977. "A Procedure for Computing Particle
Size Dependent Efficiency for Control Devices from Cascade Impactor
Data." 70th Annual Meeting of the Air Pollution Control Assoc.,
Toronto, Canada, June.
McCain, J.D., G. Clinord, L.G. Felix, and J. Johnson. 1979. A Data Reduc-
tion System for Cascade Impactors. Proceedings: Advances in Par-
ticle Sampling and Measurement. EPA-600/7-79-065.
6-1
-------
Mogul Corporation. 1977. Emission Evaluation Test Report: Globe Refrac-
tories, Inc., Newell, West Virginia, December 16.
Moore, R.F. "Globe Refractories, Inc., Air Pollution Control System"
Perry, J.H. 1963. Chemical Engineer's Handbook. McGraw-Hill Book Com-
pany, Inc., New York, New York. 15-5.
Strauss, W. 1974. Industrial Gas Cleaning. Pergamon Press, New York,
New York. 333-334.
Twomey, S. 1975. Comparison of Constrained Linear Inversion and an Iter-
ative Nonlinear Algorithm Applied to the Indirect Estimation of
Particle Size Distributions. J. of Computational Physics.
18:188-200.
6-2
-------
APPENDIX A
MANUFACTURER'S DESCRIPTION
A-l
-------
IONIZING WET SCRUBBER*
Ceil cote's Ionizing Wet Scrubber (IWS) was developed to remove fine
solid and/or liquid participate down to 0.05 microns and less at low energy
levels and high collection efficiencies. The IWS simultaneously removes
corrosive, noxious and odoriferous gases from the process stream as well
as coarse particulates.
The IWS incorporates advantages of electrostatic precipitators and
wet scrubbers within one device by combining the principles of electro-
static particle charging, image force attraction, agglomeration and in-
ertial impaction to increase particulate collection efficiencies in the
submicron range.
Low operating/installation costs, simplified design and construction
minimal maintenance/service requirements, high collection efficiencies
irrespective of load, nonsensitivity to particle size/composition and
high operating reliability are characteristics of the IWS.
A high voltage Ionizer section is utilized to charge particles in
the gas stream before entering a Tellerette (R) packed charged particle
scrubbing section.
Particulate is removed by conventional inertial impaction or by the
newly applied principle of Image Force Attraction whereby charged par-
ticulate is attracted to neutral packing surfaces within the wet scrubber
section of the IWS. The collected particulate and gases are removed con-
tinually from the stream by a liquid scrubbing medium which flows vertically
down through the packing.
Extensive use of plastic in IWS construction makes it extremely attrac-
tive for use in corrosive environments. However, the IWS can be constructed
of metal if desired.
For applications with particularly difficultl emission removal prob-
lems, the IWS can be employed as a multi-stage unit to increase collection
efficiency. Actual field, laboratory, and operating experience indicate
that two stages linked in series can solve most problems associated with
troublesome submicron particulates requiring high collection efficiency.
Compliance with stringent environmental regulations and codes govern-
ing output emission and opacity are possible with the IWS. And, IWS sys-
tems can be continually upgraded by installing additional units.
*Ceilcote Technical Bulletin 1255, July, 1976
A-2
-------
Appendix B. Cascade Impactor Results
TI ILC : U'.ITLE F *u;
TEST OAF*
TESF ojKAFiur, s
"It TE* 11 "'f . =
MtFL* PrfES s
bArtO. Prft.S =
NUZZLE OIA. 3
tfUL. "E1EW =
STACK KKESSilrtfc *
CO JO. .»AFtH s
tEir KEbULTS
f'tKCENT w'f)JSlUf
vJLO^t CAS bTD. U"
PtHttNT ISOKlMtT;
SIZE OISIH1HUI IO'M
CU-X hULI-
-!^ I .01 «.
c e 0 J 1 c i
/ 09 ^ ^1
jl 3 * 3 ft
S ,4« 2o.
«> .95 2'J.
LINEAR kE(.»tSSlUi^
< J9)ll/t'l//H 1V4S I'-'HTrt Ml/12t> b STSSES 2« HOLtS L*ST STARfg
120.0 MINUTES TM? I««PACTO» = 2SO. UESS. e
<»0. UEGS. F TE«IP AFMOS. » UO. Ot3S. F
.00 IN. VELOCITY z U1.QU Ft/SEC
29. bO INCH Hd SA^P^f rtAFk s 1 . 4h O(STA;n C;)^D.)
.2^00 INCHKS TUTAL I/O,. J*E ( ST AC^ ) s IbS.M Cf(STACK COM!).)
112.73 CuBH f-W HAHTICLE 5ENSHY = l.HO OKft^/CC
2-»,16 INCH HG SFAC< SUCTIUN a -,J-41E»00 INCH MS
«7.t< CC VISCOSITY = .22E-01 MiJISE
(t = 2.01
1 = ,4i4E*01 CUMJC **LFEW
C = 1U3.70
WfcSULTS
HOLE OSO vEi. MASS ^^AC1 CONC CJ*> CONC
OiAM£TE« (MJC^l'^S) CW/S;C >l[,t(A<(S MG/Cu'ilC ^ ^ii/CJHIC M
,9bi>E + 00 .lbSt»02 .HlEtOJ .<*00£-01 ,2h9E-01 .211E*02
.I9«E»00 .256E+OJ ,R79Et03 ,230E*00 .bHHt-01 . 2101+02
.119E + 00 .115E+OI .2«UE»0(| .S30£tOO .158E + 00 .209E + 02
.B4BE-01 ,fo2bt'»no ,4V4ftO« ,/79£f01 ,2i3f*01 .208E+02
.533E-01 ,?6«E*00 ,122E»OS ,4Ha£ + 02 .ll'jE + 02 ,16«E»02
FILTEH *EFSMT ,243£+o2 ,69bf*oi ,69bE»oi
TOTAL ftEIGHT ,70a£t02
*\ SULTS
O^t/ULOliO SJtT
^G/CoBIC 4 . PSI50
.71SE-01 .38
.9S4E-01 .38
,1S91»00 .48
.447E+00 .38
.9031*01 .38
.311E+02 .38
OEU^t FrtK ^EAA; DIAMETER s .271 «ICW(JNS
STO. UEJ»t THIC DEVIATION s 2.HP9
CURKELAIIUN COEFFICIENT f .898
P(CU*") ACTUAL D CALC. 0 9S MERCEMf tMITS
HE>
-------
u/«?i/7H
10^/10,?
snots tu HOLES LAST STAUM
TEST DATA
D3
I
TEST 0:JKA I KIM r
•It ft * If -"P. =
"*LTtrf rHtS =
HAhiO. Prtt S -
NJ^Lt OIA. =
VUL. "If. TEH =
S TAC^ >Mt SSJ«E =
LU'Mt). rtAltrt s
TtST rtESJLTS
PtWCExT "OlSFllHfc
VOLUME GAS SID. HHY
PErtLtNT ISDK | vt T 1C
CU^CtM TRA1 10M
SI^
TDTAL ^n..U^
PARTICLE
3TAC<
V
^f TEHORt,
o/SEC
,99bE»02
.273E»0 J
,7HSE*03
,2iBE»oa
,«UOE»OU
.109E»05
I^PACTOK a 2so. otss. F
P A1M03. s «3. IHGS. F
y/tLOCITY * a7.0a FT/SEC
?LE KATE » 1.23 CMSTAC* COMD.)
E(STACK) * 160.53 CHSTACK C3ND.)
DENSITY « 1.60 UHAM/CC
SJCTIUN s -.«UIE+OO INCH H3
1SCOSITY s .22E-03 POISE
21.1 OEG Cr 760 M^ HU)
MASS F^ACI CUNC CJM CUNC
MGKlAvis MS/CuiiIC "I ^2/CJHIC
,220£*00 ,6«at-01 ,197E»0
,1«OE + 00 ,7 2.719 tt.078
120 1.20b 3.112
272 ,bbH 1,229
«7 / .2HH .181
9b PEHCEVT
(MIC-»OX)
1 .02'' 1 3
.9/0 T3
.900 T3
.77b T3
.292 T3
.009 T3
LIMITS
33.559
2'J.63b
1 1».a7o
12.U96
5.182
3.577
O^/DLUGi)
MC/CU81C ^
,182E*00
. 1 lbt*00
.151E*00
.b5lE+01
.315E+02
S1HT
PS150
.18
.38
.38
. 38
.38
.38
.0000
-------
lull
V3 11/21/78 1U2S J*PT"I lib/106 / STAGES 12 MOLKS LAST ST
Itbt DiJKAII'l.M =
*fc Iff •* 1 1 +>> , *
"tETtw PXtS s
tiAHO. P*LS =
NO/^Lfr OIA. a
VUL. ^ElLS =
SIACK PrttSSU*EUS. F
.00 IN.
29. HO I'00 ,123E»02
. . 198E + 00 ,U6t F*0 1
. ,119t>00 .?0»E*f»l
.B3ht-01 .IIBEtOI
. .Siit-oi .sabfton
. .533E-01 ,35«E*ft()
ft«P |^t>ACTOV s ^H7. 01 SS. P
TE*? 4TMJS. = 46. Dt3S. p
WELUCITr a «2.97 PI/SEC
SA*PLK. HATE ,U6 ct(STA;i< CD^O.)
T01AL »/t)LU^E(STACK ) 6.H9 C^(3TAC•^ C3^D.)
FARTi;t£ 3fcNSITY l.SO GrtAw/CCI
STAC< SUCTION -.UH2F-01 INCH Hi
VlSCOSITf ,23e-03 POISE
MfcTfc«<(DHr, 21.1 Ot'U C» 760 M«> HG)
v^Ec VIA S3 F3AC! CONC C J -f CONC
C«/S£C MGKA4S M6/CU3IC « «»S/CJrtIC *
,370E»02 ,6lO£tOO ,. GtU-'t T»1C
10T
RfSUUTS
iv OIA*ttr£rt : ,<5b viicwa
Ot VI AT ION = 6.169
AL ALIGHT .2«0£*02
NS
CJrtWELAFIUN COEFFICIENT s .919
^ t H C t tv 1
) Q / H P
2 .951 8
3 .9307
a .9093
5 ,(H 700
6 ,t>IMb
7 .ibih
H .0000
ACTUAL 0 CALC. D
2.019 29.219 ia.010
1.665 12.332 7.33J
1.462 «.612 5.272
1.337 2.06? a. 051
1 . 1 «•/ 1.1HI 2. 7bU
.36? ,5U5 ,h«M
-,3<48 ,35a ,JH9
95 PEHCENT LIMITS
4.480 T3 5H.079
2.377 TO 22.620
1 .918 T3 1<».U«M
1.575 TD 1U.«20
1 . 1 2« T D 6. 796
.197 TJ ^.i97
.027 n 1.305
-------
D3
IITLt: l^Lil
rtsr jsra
TIU.\ =
*»t ft* it IP. =
ii> M/wv
15.'1 MViltS
uu. IH.US. f
.00 IN.
?9. u0 INCH MI,
IMCHtS
curtic H
II»CH MI;
cc
j. + oo runic
ATMUS. s
HATE s
TOTAL *Ji.J*E (STACK) =
PARTICLE HNSITy s
STAC< SilCUON s
i/ISCOSITv *
?H7.
aa.
2. 97
.si
7,hb
l.flO
IH3S. r
DE5S. f
H /SEC
CF(STAC<
CMSTA:*
.c!iE-03 POISE
Tt
DEG :,
SUE D13TKitJUTlU.»
CUi MDLt
.01
!o6
PLATE
i
(OLL
DIAIMt.H
osn
(M1CHQMS1
^ASH
CO'JC
CJ1* CONC
"5/CJ3IC '
a
S
H.
1?.
.U76E+00
.19HE+00
.1196+00
.1 1 7E*0<>
.U37E+01
1 liE + 03
.-so
.D43E-01
RESULTS
.lllEtoi
.•>! 1E»00
.330E+00
FILTEW
TOTAL /
,900£tOO
.690E+01
, 350E*01
.630E+01
,190Et03
,187Et03
.143E+03
.877E
.602E*01
.329E*03
Sri), GLLi^ETHlC JEVIAUON =
COfFFJClENT s
P(CU«IJ
ACTUAL 0 CALC. 0
.95rt7
J9^36
1.736 11.686
a.367
1.968
10.117
n.Hba
S.lSa
u.ovs
9S PERCMT LIMITS
Kb.SSl
t>
7
H
.3*1
.511
.350
.17S
TJ
TJ
1.33S TJ
1.0?6 T.1
,*017 TO
17.07«
1.J.S6?
8.UA1
^.917
1.769
.0000
S.IKT
PSI50
.38
.36
.38
.38
.*38
.38
-------
tliLt: ujfLtr
TEST UAIA
TEST i»'J«AIIO* =
37 n/2i>//« it>2J I*PT* iii/i2b 6 STAGES 2« HOLES LAST
TE*5"
MI rt»<
BAKU.
NOZZLE 0IA. s
VOL. MEIER =
STACK h*Kl S3UW£ »
CU'NO. *A1EK s
TEST
117.0
07.
.00
29. ao
.2500
116.62
?3.9h
$7.9
*lMUTtS
OfcUS. F
JN.
INCH HU
INCHtS
CUBIC FEfT
INCH HI,
cc
ATJIJS,
sAH£>Lt RATf
TOTAL V^wO^EOTACK)
1.5H
UOL'JME GAS SID. OWY z
PtWCENT 1SUKIMETIC =
COMCEfeTrfAllON c .1
SIZt UlSTKlMUUO* RESULTS
la8.Pl
DO
I
cn
PLATE
i
CUN rii)L^
COrt NulttEH
.01 •».
.Ott 12.
.10 2a.
.22 2«.
!"9 24.
.SbiE+OO
.198E+00
.83BE-01
.534E-01
LJ.fv.tAK
STJ.
COKBfLATION COEFFICIENT
ACTUAL u
(HICKON)
1
2
3
5
o
7
.9990
,99»b
.9982
.9959
.9331
.«932
.0000
J.099
2.997
2.920
2.b<(5
1 .500
-.017
Ih.lbb
b.790
2.510
1.108
.61 1
,2bO
STAC< SUCTION
VISCOSITY
5 ?SO.
-------
CO
I
IITLt: itjrtt-T
TESI DA I A
«UN 5t> 11/<»0/7H
lML'.I*S ,t>37
-.«'7b «2'3
f TEMP ATMOS.
VELOCITY
H{, SAMPLt RATE
S TOTAL VOLUME (STACK)
FEET PAHTICLE DENSITY
HI; STAC< SUCTION -,o*
WlSCOSHY .<
cueic ^fcit«
MGKAM/CUHIC METKHORY, 21.1 OEK c, 70o
Dbi) VE. MASS F^ACT
(MjCRQixS) C«/S£C MlikAIS
,lb8Et02 .10BE*03 .IbOttOO
,70bE+01 ,29bft03 .SOOE-01
,2blE + 01 ,f)S2E*03 ,2SO£ + 00
. 115K + 01 .?3bE + 0<4 ,luO£ + 00
,b37E*00 .a77E»OU ,b20-+00
,273E*00 .11HE+OS ,S51£»01
FILTEW wEISrtT ,132£»01
TOTAL rt[-IG^T .1UE + 02
,2UU vilcPDNS
a.ai b
.874
CALC. u 95 PEKCEVIT LIMITS
(M1CHON) («"IC'<0^)
b.lSl 1.091 TD 3a.b77
•j.229 1.03S TD 2».ai7
3.1«i .810 TD 12,203
2.600 . 70« TD 9. Sab
J.a7rt ,«00 TD t>.ab2
,!59 .000 TD 2,959
a7. otss. F
a7.33 FT/SEC
1.3a CMSTAC< COND.)
80.33 CF (STAC* CONO.)
1 .80 GKAM/CC
•1E400 INC4 rt3
?2E-03 POI3F
M^ HG)
CO^C CJM CONC
^S/CUalC * MG/CJSIC M
.990E-01 .6SUE+01
,309fc-01 ,67aF*01
,15St*00 .(>71E»01
,8bbt-01 ,b5St»Ol
.38at+00 ,(>U7£ + 01
.3ait«0l ,608t+01
.2b7E + Ol ,2(>7Et01
«00
SJ3T
PSI50
.38
.38
.38
.38
.38
.38
-------
niLM iMLtt « .50 24
7 .80 12
30.1) MINUTES
S2. OEUS.
.00 IN.
29. «0 IIMCH
.187S iNCHt
10.27 CUBIC
29.35 INCH
9.6 CC
HE s u.us
R» = ,2'>eK*00
1C s 96.7?
ON s ,185t+03
RESULTS
HOLE
R OIAlErER
,9b5E»00
. .47bt>00
.19H£t()0
,119E»00
.8J8E-01
. .533t-0)
.543E-01
F
HU
S
FEtT
HG
CUrtlC MJ-TFR
MGRA>»/CtJBIC
050
(WICRON3)
.270E+0?
.llbE+02
,032E*OJ
.195E»01
.1IOE+01
,SOSF»00
,326E»00
T£*P MPACTCH s
TE^P ATMUS. s
VELOCITY «
SAMPLE RATE i
TOTAL I/OL'J^E (STACK) *
PARTKLE DENSITY »
STAC* SUCTION s. -
VISCOSITY s
2H1. OtSS. f
S2. Dt3S. f
46.70 FT/SEC
.52 CMSTA;* :DNO.)
15.58 CFCSTA:* COMD.)
1.80 GRAvi/c:
.078E-01 INCH Hi
.23E-03 POISE
METERORV, 21.1 o^G :, 7bO »M HGJ
VEL MASS HACT
CM/SEC 1GRAM3
.419Et02 ,H90t*00
.Il3£t03 .8SOE+00
.330E»03 .7oOE»00
,91bF»03 ,730E»00
,185E»04 ,502E*01
.US7E»00 .201E+02
.9)«£«OU ,l43EtO?
FILTER "EIGHT ,122E*02
CONC CJ>« CONC
»«5/CUBIC M "lii/CJBIC M
.301E+01 .185Et03
,2H8f+01 .182E+03
.250E+01 .J79E+03
.247E*01 .177E*03
,170Et02 ,17flt+03
.679E+02 ,157tt03
.48JE+02 .895E+0?
.412Et02 .U12E+02
0«/DLOGO SJ«T
MG/CUHIC « »SI50
.803E*01 .38
,7b7E*01 .36
.58bE«01 .38
,713E»Ol ,J8
,6«7t*02 .38
.20U+03 .38
.254E+03 .38
TOIAl *EICHT .5U7E+02
LINEAK RECESSION
KEOMEHIC «EA
STU. iitOMETRIC
RESULTS
V DIAMETER =
DEVIATION «
.S6U 1ICRON
3.900
S
COWRLLATION COEFFICIENT s .90S
P(CII*)
Pt»
-------
HlLt.: 1 MI t 1 KuN 29 11/20/7M le40
Tt at DA T A
TtSt ujHATliri = 30.0 "UNllttS
•iLTcW tf -|f>. a 54. utGS. V
^tttrt P-^fcS a .00 IN.
UAkO. P«LS = 29.40 INCH HG
NOZ^tt rHA, : .1875 INCHES
VOL. *t!EM - 11.34 CUHIC f
SF.1O P*tSSu*t s 29. 3S INCH HG
CONU. *A1M s b.l CC
TKST rtESULlS
VJL'Ht GAS STD, Ml - .3c*b(«00 C
IMPIH 1J'/101 7 STAdiS 12 HULKS LAST STAUt^
Mi*? MPACTOH 2rtl. Ub'jS. F
TtM' ATMflS. S3. Dt3S. f
VELOCITY 4b.70 M/SEC
SAMPLE KATE ,5b CFfSTACH COMO.)
TOTAL VDtJ^E(STACK) lb.8S CF(9TA:< CDMD.)
tET PARTICLE DENSITY 1.80 c;H«.«/CC
STAC< SJCTION s -.47HE-01 INCH rlj
VISCOSITY a .23E-04 POISE
U8IC MtTt W
CO*Ct"i*THATIO* s .lrtbE + 03 "GRAM/CUBIC MKUHOWVi 21.1 DEB C. 7bO ** HG)
CiK* HJLK HOLt
1 1.01 B. ,9b^E+00
2 l.O*' 12. ,47bE + 00
3 l.Oto 24. .198C+00
4 1.13 24. .11 9t>00
•j 1.24 24. ,H38t-01
b 1.S3 ?«. ,533t-01
7 1.6S 12. .5i3t-01
LlNfcAK WtGxESSION RESULTS
i.tO^ETf .8753 1.1S2 l.OSb
b .S'jbO . 1 5H .482
7 .2250 -.7S5 ,310
050 vEu ^ASS F-JACT CONC C.J* CONC
(**ICHDNS) C^/StC MGHA^S ^G/CUrtlC « ^G/CJHK M
.2b3L + l>2 ,4S3E*02 ,112-tOl .344E401 ,18bfc«03
.111E + 02 .12«E»()3 ,570E»00 .175E + 01 .183E + 03
.41SE+01 .3b7E*03 ,M40ctOO .258E+01 .181E+03
.187E+01 .991E*03 ,820E»00 .2S2E+01 .179E+03
.lObt+01 ,200t»04 .422E+01 ,130fc'+0? .17&E+03
,4H^t+rtO .494E+04 .195E+0? .S97E+0? ,lb3t«03
.310t+0n .969E+04 .200E+02 .blbt+02 .103E+03
FILTER *EIGHT .137E+02 ,419t«02 ,419t+02
TOTAL HEIGHT ,b07£+02
.«94 DICKONS
.953
.889
CALC. D 95 PEMCE^T UHITS
(MICKJN) (^IC-JO^)
8.709 1,993 T3 38.054
b.8b3 1.779 T3 2b.474
5.344 1.S5? TD 1«. 395
4.438 1.383 TD J4.?40
2.408 .843 T3 !>.H74
.598 .134 T3 2.b55
,1/5 .018 T3 1.707
i)M/OLOl>D S^rtT
^G/CUBIC + PblSO
.917E+01 .36
,467Et01 .36
.b03Et01 .36
.72bTr+01 ,36
.523t+02 .36
.175E»03 .38
.321E+03 .38
0000
-------
1 1 ILL: i MLE i
(EST DA1A
TEST DJWAHJN
^tTt-v ft***.
MtTEH P*tb
bAKj. ^HfS
(xO/ZLt. 014.
VUL. *t H R
STACK PRtSSUWE
C.UMO. *ATEW
TEST rttSULtS
PERCENT "OI
VOLU^t GAS STl)
PERCENT ISdKl
SIZK 0 1ST* I HUT
SUN 28 11/18/78 16S7 IMPlK 116/106 7 STASES 12 HOLES LAS1 STAfctAJ
= Jn.o MlMUTES TE*f> HPACTOK s
= SI. OtGS.
= .00 IN.
s 29.20 INCH
= ,18/S INCH*
s 9.75 CurtIC
= 29.17 INCH
s 7.4 CC
SlUWt = 3.64
. DRY = .279E+00
^BTIC s 105.27
ATIO^ s .629E+03
ION RESULTS
co CUN HOLE HOLE
f IE*" ATMOS.
VELOCITY
MI» SA^Pl.£ RATE
S TOTAL VOWU^E (STACK)
FKET PARTICLE DENSIIY
H(i 3TAC< SUCTUirx
VISCOSITY
CUBIC >1ETER
*«r,RA>i/cu9ic METERO^Y, 21.1 DEG c» t
050 rfE. «"ASS F9ACT
51«. Ot^S. F
bl. OtSS. F
42.«6 FT/SEC
.51 CF(STAC< CO^O.)
J5.«2 CF(STACK COJO.)
1 .80 UKA«/CC
.272E-01 INCH H3
.24E-03 POISE
60 M^ MG)
COMC CJ«« CONC
' *>LA1E COR NU^'HR DIAMETER (MICRONS) C^/StC viURA^S V5/C081C »l "iG/CJrtlC *
1 .01
2 .02
{ .06
H .13
5 .2>i
o .si
7 .^
LlNtAK RfcU^ESSI
^EOMtrwic »
STD. KLiJ-'t Ti
CJHKELATION
h>(CUM)
PErtCtNl
1 .99hS
i> .9947
i .V911
4 .9HH2
S .97S*
7 .iOOU
H .0000
8. .965E+00
12. .476E+00
24. ,198E»00
24. .119E400
24. ,tt38E"01
24. ,i>3it-01
12. .533L-01
U^ ^tSULTS
IEAN DIA4ETE4 s
1C i)tVI*TION s
COEFFICIENT *
ACTUAL D
i cmcwo*)
2.t>94 28.02S
2.*3/l «I«13
2.264 1.966
1 .^ /S 1 . 1 22
.>V4 J .&!<•?
-.000 .329
.280E«02 .4]OI ,907E*03 .510E»00
.112E + OI ,183Et04 ,r-l7E*01
.512E+00 .452E + 04 . £?t>lE»0
.329£*00 ,90'sE + Ott ,57SE»02
FILTER WEISHT ,878£*02
TOTAL WEIGHT ,176E*Oi
,1«2 DICKONS
1. 1S8
,«69
CALC. o 95 PERCENT LIMITS
C^ICROft.) (MIC^OM)
8.449 1 . 779 TO 40.1 $1
6.940 1.63J TO 29.487
5.3«?9 1 .428 TO 19.885
4.579 1.30S T3 lb.065
3.0^ .961 TO 9,564
.697 .l«« '3 S.369
.182 .015 TO 2.274
,222t*01 .629E+03
.MlEtOl .6261*0}
.226F. + 01 ,625E*03
,183E*01 ,623E»03
.7/71*01 .621E*03
,934t*02 ,613E»03
,206E*03 ,520E«03
,3l«t«0i .ilUfc+03
D^/DLOUD S3RT
^G/CUBIC «4 PSI50
.592E»01 .38
,296E*01 .38
.527E*01 .38
,527E»01 .38
.313tt02 .38
.274E+03 .38
,107E»04 .38
-------
IIfLt : I Met i
TEST DAIA
TEST QjKAlIOM
MtIEK P*t.S
BAHO. pnes
NiU/Lfc 1)1A.
VOL. MFHK
STACK Ptft.SSJHt
C()"JO. .lAltft
TEST HESULTS
ei ii/i»/7a 1734
= 30.0
= 5u.
s .00
« 29.20
= .1875
* 9.89
= 29.17
= 7.4
lt"»/12b 7 SUlitS 12 HOLtS LAST StAGF^
UhGS. f
I'N.
INCH HG
CUBIC FEET
I'MCH HG
cc
TEMP IMPACTOrt
TEMP ATMOS.
VELOCITY
SAMPLE RATE
TOTAL VOuJME(STACK)
PARTICLE DENSITY
ST»C< SUCTION
VISCOSITY
318.
50.
42.46
.52
15.67
1.80
•.272E-01
.24E-03
OtiS. F
OtSS. F
FT/SEC
CFCSTAC* COMO.)
CKSTA:<
GftA«/CC
INCH H3
POISE
CO
I
PEHCE-JT MOISTll«E =
VQUJXE UAS STO, DHr =
I SO* Ht. TIC -
3.63
106.98
SIZE DISTKIriUTION 4ESUL1S
PLATL
i
2
3
4
5
6
7
CUM
COrf
.01
.02
.06
.1 3
.24
.54
L.66
H3LE
MlHHER
«.
12,
24,
24.
24 ,
2<«.
12,
01
.4
f 1
.1
.8
.5
• >*
H3LE
,«76fc*00
,119E*00
.830E-01
.533E-01
HtG«tSS10N Rt.SULTS
CUHIC
DSO
.117E*02
,197E*01
.11 lEtO]
.S07E+00
OEG C» 760 MM Hti)
VE.
C^/ScC
< t'-t
.589
.S8J
.573
.499
-.152
-.952
27. Itt
11.725
4.3/7
1.969
1.112
.507
.326
4.H96
4.830
4.73*
4.062
1.052
.201
,88i T3
.859 T3
,«55 T3
.850 TD
.798 13
.166 T3
,006 T3
32.655
27.899
27.269
26.414
20.683
6.657
7.084
-------
OJTLET
TEST DATA
JhSl Ojrt<
METL3 I
METLK
WON 19 11/16/7H 18«?0 I*PT* 131/102 h STAGES 24 HULLS LAST STAGtM
NU/ZLE DJA. *
YOL. METfrt s
STACK PMhSSUKE *
60.0
40.
.UO
29.20
.2SOO
S2.5S
28.76
29.5
DtKS. F
IN.
INCH HG
INCHES
CUBIC ^E
INCH MC
cc
Tf«P UPACTOK
AT>«OS.
tfELOCITV
HATE
TOTAL VOL^E (STACK)
PAHTICLE DENSITY
5TAC< SUCTION
VISCOSITY
aso.
1.30
77. aa
i.ao
OE3S. F
FT/SEC
CFCSTAC* CO^O.)
CF(STACK CONO.)
MS
.22E-03 POISE
TEST RESULTS
PF.HCENT
VOLUME GAS STI). [)KV =
CUBIC
HG>
sizt
RESULTS
03
i
CLATE
i
2
3
4
S
6
CiJ* HOLE
COrf NU"tBEK
.01 «.
.03 12.
.09 24.
.21 24.
.37 24.
.92 24.
HOLE
DIAMETL*
,9t>5t*00
,476EtOO
.198E*00
.1 19E*00
, H36t "01
.S33t»01
DSO vEL
(MJCHONS) C^/SEC
,170Et02 ,105F»03
.716E*01 .2A6Et03
,2b5t+0t .B2SEt03
.117E+0) ,2?9£»0«
.64NEtOO .462E*01I
,278E»00 .ItUEtOi
FILTEk HEIGHT
TOTAL WEIGHT
MASS HACT
HGKA4S
.flOOc-01
.SOOE-01
.900E-01
. 340E*00
,S73E»01
. 3SOE+02
.122E»02
,b35£*02
come
MS/CurtIC •»
.520h»01
.32SE-01
.58SF-01
.221 t*00
,373E*01
.2286*0?
.792E*01
CJM COMC
««G/CJ8IC M
.3486*02
.3U7E*02
t ft 7 1. ^ 0 ^
i u 7 E ^ o 2
. 344E*02
,307E*02
,792E*01
" tfEJMKlHlC -i
STO. GKDMETrf
COKHtLAI ION
P(CUM)
PfrtCENT
1 .S»9HS
2 i9«»76
3 ,9<>SV
4 .98VS
S ,H82«
6 .2277
LAN DIAMETER s
1C DEVIATION s
COEFFICIENT c
ACTUAL 0
/ (MICHUN)
2.969 17.028
2.H17 7.160
2.643 2.650
2.310 1.173
1.1H7 .64B
-.746 .2/H
.359 MICH
2. -530
.866
CALC. 0
(MICRON)
S.bUU
4.899
4.171
3.060
l.OBO
.179
ONS
9S PEWCEMT
(MJCHOVt)
1.021 T3
.974 T3
.912 T3
.771 T3
.249 T3
.010 T3
LIMITS
3I.20
-------
HILL: UUTLtT *U«< IB II/10//H lb«0 IMPTW 117/101 0 STAGES 2« HULtS LAST STAUtN
T £ b I 0 ft T &
TEST DJMAI1DM «
3
Z
HArtO, ^SfrS »
NOZZLE OIA, s
VOL .
STACK
60. 0
42.
.00
29.20
.2500
50.97
29. 76
28.6
*I VUlt S
DtGS. F
1^.
INCH HG
INCHES
CUBIC KEfT
INCH HG
CC
IMPACT 04 s
TE1? AT»«OS. s
vELOClfV >
TOTAL
PAHflCLE
ST*C<
DENSITY »
SUCTION a
75. dl
I.BO
uess. F
OESS. F
f-T/SEC
CF(STACK CONO.)
CMSTAZK CONO.)
GRAM/CC
INCH Hi
POISE
"UISIUHt =
CAS STD. OHr =
T ISOKIMtUC =
^.69
,la9E+01
156.69
CUHIC
Mfc'TtHORY, 21.1 DEG C» 760 MM
Slit
CD
I
PLATE
i
2
i
4
5
6
cu*
CUrt N
1.01
1.03
1 .09
1.20
1,37
1.90
HJLE
8.
12,
24,
24.
24.
24.
HOLE
OlAMEUK
, 965E+00
. 476E+00
.198E+00
. 1 19t +00
.838E-01
,53iE-01
I/EL
MASS F^ACT
CONC
CONC
,!73E+n?
.7281+01
.270E+01
.119E+01
.661E+00
.101E+05
.277E+03
.798E»03
.100t+00
.420E+00
FILTER
,447E«04
.110t+05
wEICHT
.2SOE+00
.22IE+OI
.931E+01
.6731-01
.2H3E+00
.269E+00
.168L+00
.166E+02
,163t+02
.62/fctOl
.147E+02
.8U1E+01
.179E+00
.751F+00
.624E +00
.476E +00
.579E+01
.171E+02
S3RT
PSI50
.38
.36
.36
.36
.38
.36
LJNEArt
*ESOLlS
TOTAL HEIGHT
.«?S2E*02
GEOMETRIC ^LA'-i DIAMETER =
STO. GKOMETHIC DEVIATION *
CUrfKELATIUN COEFFICIENT f
P(CUM) ACTUAL 0
1
i
3
<4
5
6
7
PERCENT
.9960
.9793
.9635
.V535
.H6SH
.4960
.OOOU
2
2
1
1
1
•
I
.655
.041
.793
.681
.107
.010
(MICROS)
17.
7.
2.
1.
•
•
322
285
697
195
661
285
.}H1 XICRON5
U.8P3
.939
CAI.C. I) 9S PERCEMT Li
(MICRUN)
11.828
4J502
3.047
2.553
1.035
.179
2
1
1
1
(Ml
.660
.587
.197
.030
.376
.027
IC*OV
TD
TO
TD
TO
TO
n
)
52
12
7
6
2
I
*ITS
.59«
.770
.758
.328
.847
.189
-------
CD
I
Tint:
Ttsr D
24 ll/ H/7H 1710 IMPIH Ufa/101 7 STAGES
HULf S LAST STAGEN
TEST DURAtlUN s 32.0 MINUJES
METEW TEM^. 3 54. otuS.
METER P*ES * .00 IN.
UAKO. PRES s 29.06 INCH
F
HG
HO//LE OIA. a .18/5 INCHES
VUL. MEIER s 10.47 CUBIC
STACK PRESSURE = 28.97 INCH
CilmO. /vAUR = 16.2 CC
TEST RESULTS
PERCENT MOISTURE = 7.26
VOLUME GAS StD. DRY = .297E+00
PERCENT ISUKIVt TIC » 96.50
CONCENFRA1 ION = ,25«E*03
SI^E OlSTRIbUTIQN RESULTS
CUN MULE HOLE
PLATE COR NUMBER DIAMETIH
1 1.01 8. ,965E*00
2 .02 12. .U7b£t00
3 .06 2a. ,198E*00
4 .14 24. ,119EtOO
5 ,2« 24. .8JHE-01
o .55 2<4. .533E-01
7 .89 12. .S33E-01
KKET
HG
CUHIC METFR
MGRAM/CU3IC
050
(MICRONS)
.275E+02
.H6Et02
.432E+01
, 1 94E+0]
.1 lOE+Ot
.499E+00
. J20E*Ofl
TE*P IMPACTOR =
TEMP ATMOS. c
VELOCITY
SAMPLE RATE
TOTAL VOIUME(STACK)
PARTKLt DENSITY
STAC< SJCTION
VISCOSITY s
317. IHSS.
54. D13S.
48.21 FT/SEC
.53 CKSTA
17.12 CMSTA
1 .80 GRAM/C
.flflr'E-Ol INCH H
.2iO£ + OU
,119E»03 .770E+00
.340Et03 .870£«00
.9auF«03 .780C*00
.191E»04 .199E+01
•471E+04 ,250£t02
,9a?E»04 .2H3E+02
FILTER ««iEI3HT .lb9E*02
CONC
CJM CONC
MS/CUHIC M MG/CJ8IC M
.212E+01
,260E*01
,293E*01
,26it+01
,671t»01
,841E*02
.954^*02
.57l£t02
,25a£*03
.252t»03
.249E+03
,24bEt03
.243E+03
.2«7E*03
,153t*03
.571E+02
DM/DLOGD S3HT
MK/CUBIC M PSISO
.5668+01 .38
.6928+01 .38
,6«5t+0> .38
,757t+01 .38
,270Et02 .38
.2«6f+03 .38
,493E»03 .38
TOTAL *HGHT ,753E»02
LINEAR REGRESSION RESULTS
GEUMEMIC MEAN DIAMETER *
S10. GEOMETRIC DEVIATION s
CORRELATION COEFFICIENT s
P
-------
HiN r»i ll/ S/7«< Ib23 1MP1H J?0/10b 7 SUSES 12 HOLES LAST
TtST OftTA
TtSr OJHATIUN
*e TEN PHES
8AHO. PrftS
UO//LE D1A.
VOL. vtTew
STACK •'WtSSUKt s
CONO. AATt R =
32.0
56.
.00
29.06
.J»7S
10.34
29.97
16.0
"IMUTtS
(HGS. F
I*".
INCH HG
INCHKS
CU8IC FtfT
INCH HG
cc
T£vip
TE".P ATMQS.
VELOCITY
SAMPLE HATE
TOIAL vOuUME(STACK)
PAKriCLE 3ENSITY
STAC< Sl/CTION
VISCOSITY s
s
:
3
*
*
z
:
s
417.
56.
48.21
.54
16.84
1.80
-.8B2E-01
.24E-03
OtSS. F
oess. F
FT/SEC
CF(STACK COMD.)
CHSTA:< COVO.)
GW4M/CC
INCH HS
POISE
TEST WES'JirS
GAS
MOISTURE
SID. 0*1
.292E+00 CUBIC METE*
SIZt DISTKIhUTIUN HtSULTS
CD
PLATL
i
2
4
4
5
6
r
CUM
Curt
.01
.02
.06
• 14
.24
.S4
.88
MULE
NU^HFW
8.
12.
24.
24.
24.
24.
12.
HJLE
OIAMETI-9
.96SEtOO
.4f6t«00
. 19H£*00
. 1 19E + 00
.H38E-OI
.533E-01
.S33E-01
LlNEAK MCGWESSION RESULTS
UEOMtMIC <*EAN DIAMETER
STO. UtOMtlHIC DEVIATION
COKHELATION COEFFICIENT
1
2
3
o
/
8
PEHCENT
.9014
.9830
ACTUAL D
2 (MICRON)
2.3»4 27,677
2.120 11.674
1.959
1.106
.0654 1.818
,26Urt -.628 .323
.0000
MGRA*/CUHJC MfcUH(DHY, 21.1 OEG C, 760 MM HG)
OSO
(MICWONS)
,277E»02
VEL
MASS F^ACT
.436E+01
.196E+01
.IHE + Ol
,504E*00
.323EtOO
llbE+03
435Et03
.620EtOO
.610E+00
.600E+00
.670E+00
CONC
MG/CUHIC M
.212E+01
,209E*01
.206E+01
.2301+01
,239£*02
,820t»02
,927E*04
FILTEH *EIGHT
TOTAL *E1GHT
CJM CONC
MC/COH1C M
.24HE+03
.245E+03
.2436+03
.241E+03
.239E+03
.229E+03
.147E+03
.656E+02
OM/OLOGD
MG/CUHIC M
.S67E+01
.557E+01
.661E+01
.406E+02
.4221+03
3J«T
PSI50
.38
.38
.38
.38
.38
.38
.38
.724E+02
3.681
.88H
CALC. 0
(MICRON)
6.781
5.468
4.572
2.787
.582
.189
95 PERCENT LIMITS
43.187
25.589
18.753
14.669
8.043
2.716
1.824
2.117 TO
1.797 TJ
1.594 T3
1.425 TD
.966 TD
.125 TD
.020 T3
-------
ou
i
riTLl: (UlLtr HUM lit ll/ 8/7H
•EST DATA
IMPI«
6 SUGES 24 HOLES LAST
TEST UJHAT1UM a 30.0 MINU1ES
MI-TK* n-.^P. a 38. OKGS.
"ETtW PHt.S » .00 IN.
BAHO. P*ES = 29.06 INCH
F
HG
NO^LE OIA. s .2500 INCHES
VOL. itTEH a 29.78 CUBIC
STAC* PKtbSUWt « 28. 06 INCH
CO.MO. /vArew s 14.4 cc
TEST rttSUtfS
PfcrfCEiMT WUISTUWE s 2.32
tfOLUMt GAS Sfo. OMY * .87JL+00
PERCENT 1SUKJNEUC = 157.05
COMCE-v»TRUIOM s .112E+03
SUE oisiwiBuTJON RESULTS
CON HLILE HOLE
PLAft COM NUXrtEH DIA*tTEH
1 1.02 H. .9b5t. + 00
2 1.04 12. .476E+00
i 1.10 24. ,198EtOO
4 1.22 24. .119t»00
5 l.«l 24. .Sjat-01
6 2.02 24. .54it-Ul
FEET
HG
CUBIC *ETE»
MURAM/CUHIC
050
(MICRONS)
. 1 60£>02
.672E+OJ
,«?48E*01
.110f+01
,602E*00
.255E*00
FILT
TE*P I^PACIOH
T£«IP ATMiQS.
VELOCITY
SAMPLE RATE
TOTAL vOLO*E(STACK)
PARTICLE DENSITY
STAC< SUCTION
VISCOSITY
250. Of GS. F
iB. DfSS. F:
5t>.44 FT/SEC
1.47 CKSTACK
44. o« CMSTA;*
1 .80 G«Ay/CC
,404E»00 INCH H3
.22E-03 POISE
C3^0. )
COMD.)
MtTtftO^r, 21.1 OEG C» /bO M^ HG)
VFt MASS F^ACT
C^/SEC MOHA«IS
.119Et03 .OOOEtOO
.324Et03 .HOOE-01
,935E»03 ,100E»00
.2S9E+04 .202£*01
,!>2ilFt04 .24t>Et02
,12»E»05 ,506£»02
tR *EI3HT .204£»02
CONC CJ* CONC
^G/CUBIC «i «tG/CJ8IC »*
.ooot+oo
.919E-01
.115E*00
,232t»01
,2«3t*02
.5H1M02
.2301- *02
1 1 2E*03
112E*03
I12E*03
11?E*03
1 10E + 03
915E*02
23«Et02
TOTAL /«EIG^T .9^8£»02
UlNtAH Ktlt^tSSlON ^tSULtS
GKOMtl«lC itAN DIAMETER s
sru. GEU^EfKIC DEVIATION a
COkHtLATlON COEFFICIENT =
P(CUM) ACTUAL o
PMCENF / («ic«uN)
1 1.0000 9.042 15. 991
2 .t»992 3.150 6.719
3 ,<*9«2 2.905 2.482
« .9775 2.005 1.095
5 .7256 .599 .602
0 .2061 -,H13 .255
7 .0000
.5P4 MICRON
1.516
.918
CALC. 0
(MICRON)
25.1B3 2
2.16H
1.95?
1.340
.750
.417
S
95 PEHCEMT LIMITS
(MICROM)
.4*5 TO 260.4Q4
.761 n 6.174
.691 T3 5.544
.459 TD 3.947
,209 TH 2.69^
.084 TD 2.06H
D^/DLOUt)
.oooe»oo
.244EtOO
.265E+00
. 109E t03
.156Et03
SJ«r
PSI50
!38
.38
.38
.38
.38
-------
I
CTi
IIIU: OUTLfF KI.I* ij
TEST OAT A
B/7tt 1645 I"PT« 109/102 6 3TAGES 24 HOLES LAST SUGhN
TEST
MO//LE 01A.
VOL.
STACK
COND. *ATE«
fitSJLTS
30.0
50.
.00
29.06
.2500
36.36
28.66
s 17.6
MINlUlES
DttS. F
IN.
INCH HG
INCHES
CUBIC FEET
INCH HG
cc
TEMP UPACTOR
TE1P A1MOS.
VELUCITV
SAMPLE HATE
TOTAL VOuUHE(STACK)
PARTICLE DENSITY
ST»C< SUCTION
VISCOSITY
250.
SO.
52.««
1.7S
«.58
1.80
-.U04E+00
.22E-03
UtGS. F
FT/SEC
Cf(STACK COMO.)
CKSTACK CUND.)
GRAM/CC
IN:H MS
POISE
PErtCk-'JT MOISTUWE * 2.37
VOLUME (iAS STD. 0*Y = .104E+01
PtKCE^T ISOKIMETIC * 163.49
Sl/t DISTRIBUTION RESULTS
PLATE
i
2
3
4
5
6
CUN HOLE HOLE
COR NUMBER DIAMETER
.02 8. .965E+00
.04 12. .476E+00
.11 24. .19BE+00
.24 24. ,119E«00
.4S 24. .tt38E-01
2.17 24. .533E-OI
tunic METEH
MGRAM/CUBIC M
DSO
(MICHOMS)
.146E+02
.614E+01
.226E+0]
.993E+00
.543E+00
.226E*00
•«•»"••
«/E.'
CM/SEC
,141E*03
,387E»OJ
. 1 12t t04
. ^09E»OU
.625E+OU
. 154Et05
FILTER WE13HT
LlNtA*
SIO
M£G«tSSlUfo RESULTS
U^ETrttC MLAN DIAMETER »
. titOMETRIC DEVIATION s
CORRELATION COEFFICIENT «
1
2
3
4
b
6
7
P3
.9630 1.787 .993
.7316 .617 .543
.1H70 -.889 .226
.0000
TOTAL
.370 MICRONS
2.765
.914
AEIGHT
CALC. 0 95 PERCENT
(MICHON)
6.2S3 1.
4.520 1.
3.719 1.
2.277
.693
.150
(MIC^OM)
369 TO
183 TO
Ob5 TO
760 T3
188 TO
015 TD
21.1 Dt.U C» 7feO MM HG)
MASS F^ACT CONC
MGKAXS MU/CUUIC M
,210c+00 .202E+00
. i20£ + 00 .3086 *00
.360E+00 ,347EtOO
,194£*01 ,187E»01
.177E+02 .170E+0?
.417E«02 ,401t*02
.143E+02 ,13BE«02
,765C»02
LIMITS
28. $6 7
17.275
12.9«2
6.822
2.556
1.466
CJM CONC DVDlOUD SIRT
4G/CJHIC M MG/CU8IC M PSI50
,737E«02 ,537E»00 .30
.735E+02 .81flt»00 .38
.731E»02 ,799EtOO .38
.7281*02 ,523Et01 .36
.709E*02 .6«9E*02 .38
.539E+02 .105Et03 .38
. 13BE«02
-------
u ILL:
rest o
TEST 0
«t. n
*ET
IMLtl -.(| "MMlThS
J Th«K. = S2. DtUS.
t-k H«ES s .00 IN.
dAKo. i^tS = 29.01 INCH
.Ji)/^!
VOL
STACK P
CLHO
TEST Ml
Ht«|
VJLlHt,
PtRtk-
(
SIZfc 01
cr-
I
-- PLATE
^ i
2
i
a
5
o
7
Lt 'HA. s .1H75 iNCHt
. *tltrt s 10.47 CUbIC
XK.SbUWt s 2S. 91 INCH
. AUtH = uj.5 CC
sSULl S
:KXT Moisiit«t = 17. 3«
OAS SID. (JrtY = ,29/t+OO
'Jf IbUKl xlTIC - 10H.39
:OMCt'iTrt«Iplo^ * ,279fc + (J3
isrwieuTiLjM -^tsiiLts
CU"< HOLE MOLfc
C0« ^u^dER 01A^ETf.«
1.01 H. ,9b5EtOO
1.02 12. ,4/bEtOO
1.07 2«. .1V8E+00
1.15 2u. .119E+00
1.26 2a. ,B3«E-0|
1.59 ^'^. .543E-01
1.9b 12. .533E-01
F
106 7 STAGES
Tfc-P I
IE*!?
12 HULtS LAST STAUEN
"IPAC10W s U1. 1)1:35. "
ATMOS. : 52. DF3S. *
VELOCITY s 18.17 FT/SEC
HU
S
FKET
HG
CUHIC vifTER
MGKA>6
.9S7b 1.72U 1.H24
.1597 1.079 1.027
.S12S .031 . 1.
1.726
.365
.226
(MIC-»0<»)
113 TD ao
Ibl TJ 2<»
Oi« T3 14
753 TD 11
.009
.194
.066
.11/6
731 TD a.Of'j
092 TD 1
OU5 TJ 1
.UU4
.13?
.oonu
-------
UTLtl l^LM •<•
TEST DATA
fhST iJJRATION s
"IfcTFK TMP. =
MtTtrt P^tS «
H A W I) . H^tS S
MJZZLf iHA. s
VOL. if ft R *
STACK
CO NO.
TEST
?l ll/ //78 Ib5«
32.0
SI.
.00
29.01
.l«7b
10.31
2B.91
«iNims
IHGS. F
IN.
INCH KG
luCHES
CUBIC mT
INCH HI;
CC
iou/103 7 STAGES 12 HULfcS LAST STAlitN
IE*" IIPACTOR
t/ELOCITY
SAMPLE RATE
TOTAL VOLU«ECSTACK)
PARTICLE DENSITY
ST»C< SOCT1UM
VISCOSITY
x 314.
s 51.
48.17
.59
18.95
1.80
-.9SSE-01
.23E-03
OE55. c
DE5S. f
FT /SEC
CF (STACK
CF(STAC<
GkA4/CC
IMCH H3
POISE
COMO.)
COMD.)
OO
I
CO
s
VOLlMt (.AS STI1. DHY s
PE^CLMT ISOKHET1C =
.29JE*00
106.91
.571E+03
SIZt OI3TKIHUTIUN RESULTS
PLATE
i
2
3
4
S
6
7
CUM
ClIK
1.01
1.02
1.07
1.1U
1.2b
1.S8
1 .'i>
HDLE
NU«HEK
».
12.
24.
2<*.
24 .
?4.
»2.
DI
..=»
.4
.1
.1
.«
.S
.5
,476t*00
,198E*00
. 119E+-00
.818E-01
.S33E-01
,53i£-01
RESULTS
CUBIC *
MUrtAM/CUBIC MfTfcR(D«Y, 21,1 DtG C» 760 M* HG)
OSO
.261E+0?
.110Et02
.409Et01
.477E»02
.13lEt03
.377£*03
STI).
DEVIATION
COLFFICUNT
,10i£*ni
,46hE*00
.10«EtOb
FILTER WEIGHT
TOTAL WEIGHT
U.6SH MICRONS
64.716
.793
MASS F*ACT
.512E»02
.131E+01
.670ctOO
.870E*00
.103-»01
CONC
KG/CUBIC 1
,174E»03
.1131*02
.228Et01
.297E+01
.35IEt01
C.M CONC
DM/OLOGO
.22HE*02
.109£*03
ACTUAL D
CAIC. D
(MICRON)
2
3
5
6
7
0
.U930
.U7S6
.4612
.U74 26.050
-.002 10.VH2
-.017 4.094
>.U37 1.H48
-.061 1.045
•.3SS .46H
.0000
4.618
4.331
3.9HU
4.609
1.061
.161
95 PERCEXT uHITS
40.258
24.601
21.332
18.785
10.264
S.594
4.812
.903 TD
.879 TD
.845 TD
.801
.201
TD
TD
.flOS TD
,778tt02
,37U*03
.196E403
.185E+03
.183E+03
,176E*03
.144E+03
.778E+0?
.465E»03
.301E»02
,533Et01
,8S2fct01
.141E*02
.123M03
.287Et03
S3RT
PSISO
.38
.38
.38
.38
.38
.38
.38
-------
rilLtl IMLtJ HUM <) ll/ 7//H
TEST HA1A
TtdT DUKAT10N s
METER n*t>. s
Mfc.TtW PfcKS s
BAkO. PKES ;
NUZZLf DIA. s
VOL. «ETt« s
STACK PKk 3SUKE s
CONQ. «A|£K s
TtST HtSJLTS
32.0
51.
.00
29.01
.1875
10.31
28.91
U2.9
MINuTtS
DfGS. F
IN.
I INCH HG
INCHfrS
CUBIC FtFT
INCH HG
CC
104/10J 7 STAGES 12 HOLES U»ST STAGfcN
TEMP ]JPACTOH
TE"P ATM;)S.
VELOCITY
SAMPLE rtATE
TOTAL VDl(JME(STACK)
PARTICLE DENSITY
STAC< SUCTION
VISCOSITY
31«.
51.
4H.17
.S9
1H.95
1.80
-.955E-01
.2JE-03
OE3S. f
Dt5S. F
FT/SEC
CFOTA:K
CF (STACK
CHAM/C:
INCH MS
POISE
COND.)
COND.)
MOISTURE =
VOLUME GAS STO. owr =
1SUKINETIC s
CO>«CEiNTHATI04 s
17.3?
,29i£+00 CUBIC MFTEW
106.91
,5B5E*02 iMGRAM/CUBIC
OEG C, 760 MM HG)
SlZt DISIKlSimON HESULTS
CD
PLAH
i
^
j
14
5
6
7
CUN
CUK
.01
.02
.07
.!«
.26
.5**
.95
MOLE
NU^HEH
».
12.
2«,
2a.
24.
24.
12.
HOLt
DIAMETEH
,965fc*00
,a76E»00
. 19H£»00
,119fc»00
,838t-0 1
.53SE-OJ
.533E-OJ
050
(MICRONS)
.261E+0?
/Et
CM/SEC
.U77E+02
MASS F^ACT
MGHAM3
,«09Et01
.18«Ef01
.550t*00
.500E+00
.211EtOa
RESULTS
*1C «tAN DIAltTER s
STO. 5tJM£t«IC i)t.VIAT10N «
COKWELATIOW COEFFICIENT s
.298E+00 ,10«ft05
FILTEK WEIGHT
TOTAL wtlGHT
,a«? MICHONS
9.779
.600E-01
.aooE-01
,870Et01
.172c»02
COr.C
«3/CU61C M
.392E+01
.187E+01
,170t+0|
,140t+01
.196E t02
,205fc+00
CONC
,585Et02
,5tt6E*02
.527E»02
.510E+02
.U96Et02
,300Et02
,?98E+02
«G/CubIC «*
,105fct02
.SOOEtOl
.402EtO|
.593fctOO
.696ttOO
S2RT
P3I50
.38
.38
.38
.16
.38
.38
.38
P(CU")
P£»CEM
ACTUAL D
(MICrtON)
1
2
3
it
6
7
8
.9330
.9010
.8719
.HUHO
.5125
1 .499
1.287
I.MS
1.028
.Oil
26.050
10.982
U.094
1.838
1.035
CALC. 0
(MICHJN)
13.498
H.332
5.891
4.610
.<47S
95 PEKCFMT LIMITS
S4.97J
27.227
16.836
12.198
.5067
.0000
.017
.298
.U60
3.314 TD
2.550 TD
2.061 TD
1.742 TD
.129 TD
,12h TD
.123 TD
1.726
1.714
-------
ro
o
UJLf: 1-JfLtf
TEST DATA
HI IN If ll/ 7/7H 1910 ]MP1« 119/126 6 STAGES 20 HOLES L*ST STAGED
TEST DJHATll'\ s
*1E !£K
*IE rt«
bAKO.
NOHLE
VOL.
STACK P>4t
CONO.
I t MP. s
fftt S *
PrfES s
OIA. s
*hff.H *
SSUrtL =
rtATEH >
30.0 ^INUTFS tE"? I«!PACTOH
02. DEGS.
,00 IN.
29.oi INCH
F
HG
.2500 INCHES
J1.09 CUBIC
2ft. b» INCH
09.6 CC
FEET
MG
TE*
SAX
TOTAL VDnJ^
PAKTKLE
STAC<
V
? ATMOS.
VELOCITY
PLt «ATt
E (STACK )
DENSITY
SUCTION -.
ISCOSITY
250. OE3S. F
02. DECS. F
5D.45 FT/SEC
1.62 CMSTACK
OH. 70 CF(STAC«
1 ,80 GUAM/CC
430E+00 INCH H5
.22E-03 POISE
COND.)
C3ND.)
TESI HESULIS
PtHCt-
NT MOISTiJKh
s 7.23
VOLUME (.AS STI). D«Y s ,9l2EtOO
PERCEMT
CO
ISOKIXt TIC
NCtNTKATin^
= 103.32
s ,7USE*02
CUBIC vififR
MGRAVCUBIC
MtTM(5RY,
21.1 OtG C, 760 M* HG)
SIZt OIsmirtUTION RtSULlS
PLATt
1 1
2 1
3 1
0 1
5 1
6 2
CU'N( HOLE
CUR MI.HHEO
.02 0.
.00 12.
.10 20.
3 £{|
43 ^u
10 2 U
HOLE
01 A^tTtR
,965E*00
. u7bLtOO
.19HE+00
.119E+00
.84HE-01
.S33L-01
DSO
(M1CHONS)
.152E+02
.63WE+0 1
,23SEt 0 1
,10«E»01
,567E»00
.? ^HE «00
FIL
vEu
C^/SEC
.lilfc+OJ
. 3S9£t03
,103EtOO
.287E+00
.579E+OU
.lOiEtOS
TEC wEISHT
10TAL *EIG-»T
lINtAM H
GEO'i
SID.
EGrfKSSjn* 4
fc!»lC >*EAi^
tSULTS
DIAVIETEH *
iibO^LMlC DEVIATION *
CUHWtLAIlON COEFFICIENT «
1
2
3
0
5
6
7
Pt«CEM
.9999 4
.9996 3
.9966 2
.9/23 I
.6851
.20«>7
.0000
ACTUAL o
.620 15.201
.325 6.3«a
.708 2.354
.916 1.036
.OH2 .567
.H32 .238
.363 MICHO
2.300
.956
CALC. 1)
7.HH6
6.138
3.632
1.8S3
.547
.179
NS
95 PERCEMT
2.006 TD
2.103 TD
1.511 TD
,«53 TD
.195 TD
.039 TD
MASS F^ACT
CONC C
JM CONC
viGRA*S "G/COBIC «l «tG/CJHlC M
l.OOOE-02
.200E-01
.200E+00
.IbSEtOl
. I9SE+02
.32BE+02
. 1 3H£4>02
,679£t02
LIMITS
25.01S
17.57H
8.729
4.025
1.533
.82H
.110E-01
.219E-01
.219E+00
.1811*01
.21«E»02
.3S9E+0?
.1511+02
.705E+02
, 705E +0?
,700tt02
,702£f 02
.720E+02
.510E+02
.151E*02
DM/DLOGU
.582E-01
.50bE+00
,507Et01
.819Et02
.951E*02
S3RT
P3150
.38
.38
.38
.38
.38
.38
-------
TITLE: ojiuti
TEST OAFA
/ ii/ 7/78
109/102 6 ST&UE.S 20 HOLES LAST STAUEN
TEST DURATION =
ML re* u *P. s
Mt. TER P*tlj »
WAWt). ^*ES s
NOZZLK L>IA. s
VOL. METER s
STACK HtftSSlHE =
CJ'^iJ. wAlfcW =
TEST KESULtS
VOLUME GAS Ml). OHY
PERCENT 1SOMMETIC
30.0 MNOUS
02. DECS.
.00 IN.
29.01 INCH
F
HG
.2500 INCHES
27.50 CUBIC
2H.5H INCH
oi. a cc
= ,79«L+00
- 125.30
FEE!
HG
CUBIC *fcUH
TEVIP IVIPACTOR z
TE*P AJMOS. a
VELOCITY a
SAMPLE RATE c
TOTAL VOuJ^ECSTACK) s
PARTKLE DENSITY s
STAC< SUCTION s -.04
VISCOSITY s .2
coNCE'MWAT IOM = ,ioot+o3 MGRA^/CUBIC "U-TERO^Y* 21.1 OEG c« 760
SIZE DISTRIBUTION rt
co CUN HOLE
' PLATE co* NU*H.EH
-> 1 1,01 H.
2 1.04 12.
3 1.10 20.
0 1.22 20.
S l.«0 2o.
b 2.00 20.
Ll^tAR REfcKtSSlON rt
(iJ-O^KlHlC WEAN
HOLE
DIAMfcTEH
.9b5E+00
.U76£f00
.19HE+00
.119E+00
.83li»E-01
.533E-01
1SULTS
DIAMtTER =
STi>. JtU^ETfllC DEVIATION s
ClIrtRELATION COEFFICIENT *
P(CU~O
PERCENT
1 .9QH3 2
2 .9952 2
i ,«6b5 1
o . 7t)20
5 .6132
6 .12^2 -1
7 .0000
ACTUAL o
I MICHON)
.932 Ib.2b3
.5M9 6,»35
.110 2.526
.779 1.115
,2«7 .610
.150 .dbl
050
(M1CHONS1
.lb3E*02
,663Et01
.253E *01
.112E+OI
, 6 1 0 E 1 0 0
.2blE»Of>
FlLTf
TOTAL
,b«b "DCRONS
2.716
.962
CALC. D 9
(MICHON)
1?.089 S.
e!s«3 u'.
1.95H 1.
l.OOb .
.861
.200
VEL MASS F^ACT
CM/SEC i(iwA*is
,ll3E+03 .100E+00
,il«E*03 ,2bO£+00
,90«E*03 .107E+02
.251E+OU ,702t»01
,50bE»00 .100E+02
.12SE»05 .006E+02
W WEIGHT .103£t02
MEIGHT .831E«U2
5 PERCENT LIMITS
(MICROS)
2o5 TD 27.flb2
09H TJ 17.975
187 T3 3.231
H02 T3 2.350
OP2 T3 1.536
078 TD .531
250. OEGS. F
02. OtiS. F
55. OS M/SEC
i.«2 CKST*:K CIIND.)
02. b2 CF(STA-< COND.)
1 .HO uRAM/CC
aF+00 INCH Hi
«?E-03 POISE
MV« MU)
CONC CJ« CONC
M[i/CUrtIC x ^G/CJSIC *
.176E+00 .100E+03
.326E+00 ,100Et03
.130E+02 .10uf+03
,880t+01 ,*02tt02
,17bE»02 .910E+G2
,509£*0? ,!>i9E + 02
.129E+02 .129E+02
DM/DLOUD
.Ubt>E+00
.flbfet»00
.310E»02
.208E+0?
,67HFt02
.137E*03
S'JRT
P3I50
.38
!*8
.38
.38
.58
-------
IAILEI SUN 11 n/ 6/?e ITS? IMPTH i?o/io6 7 STAGES 12 MOLES LAST STAGIN
TEST OAT A
03
I
no
ro
TEST UUWATIUN 12.0 HINDUS TEXP UPACTOR
MhTtH ItMP. 65. OEGS.
METEW P*ES .00 IN.
rtAHO. PrftS 29,45 INCH
NOZZLE OIA. .1875 INCHt
VOL. MtTER 10.33 CUBIC
STACK PRtSSJRfc 29.36 INCH
CONU. rtATfcR 7.7 CC
TEST RESULTS
PERCENT MOISTURE « 4.66
VUL'.IMt liAS STD. DRY f ,290t + 00
PERCENT ISOKIMETIC « 97.04
CONCENTRATION s .229E+04
SIZE DISTRIBUTION RESULTS
CUM HJLE HULt
PLATE COR NUMBER UIA-IEIER
1 .01 8. .¥65E*00
i. .02 12. .14761+00
3 .06 24. .198E+00
4 .13 24. .1191*00
5 .24 24. .83HE-01
6 .52 24. ,533t-01
7 .83 12. ,S3*t>01
LINEAR REGRESSION RESULTS
GEOMETRIC *IEAN DIAMETER c
STO. GEOMfrT^IC DEVIATION *
COKRELATION COEFFICIENT «
P(CU««) ACTUAL 0
PERCENT I (MICRON)
1 .9917 2.397 2B.467
2 .9830 2.121 12.009
3 .9727 1.922 4.485
4 .9611 1.764 2.020
5 .9210 1.U12 1.142
o .S948 .237 ,S23
7 .2855 -.566 .337
8 .0000
F TE*P ATMOS.
VELOCITY
HG SAMPLE RATE
S TOTAL VOwU^EtSTACK)
PUT PARTICLE DENSITY
HG STACK SUCTION = -.
VISCOSITY c
CUBIC *ETEH
419. DE5S. F
65. DtGS. F
4U.69 FT/SEC
.50 CHSTAC* CO^D.)
15.96 CMSTA'K CUMD.)
l.RO GKAM/CC
882E-01 INCH HS
.24E-03 POISE
MGRAI/CUHJC METE*(ORY» 21.1 OEG c» 760 MX MU)
OSO VEL "IASS F^ACT
(MICRONS) CM/SEC ^GHAXS
.285E+0? ,402Et02 .550E+00
.120E+02 .110E+03 .5HOE+00
,449E*01 ,317E*03 .690E*00
.202E*ft| .880E*03 .770E+00
.114E-MU ,17HttO« .267E+OJ
,S23E*00 ,44<»E + 04 ,2l*E*02
.337E»00 ,fl7»E»04 .205£»02
FILtfR WEIGHT .190E+02
TOTAL lEIGHT .666E+02
.422 MICRONS
3.833
.899
CALC. 1) 9S PERCENT LIMITS
(MICRON) (M1C*OX)
10.56M 2.450 TD 45.594
7.2B9 2.035 TO 26.102
5.577 1.742 TJ 17.849
4.510 1.514 73 13.440
2.811 1.029 T3 7.6BO
.580 .134 T^ 2.53h
.197 .023 TD 1.662
CONC CJ"I CONC
MG/CUHIC M XG/CJBIC M
.189E+01 .229E+03
,200E*01 ,??7E+03
.2381*01 .225E*03
.265Et01 .22)E^03
,<*19E*01 .2201+04
,750Ef02 ,211Et03
,707F*02 .136E+03
.654EtO? ,654Et02
DM/DLOGO SSRT
MG/CUBIC M PSISO
.505E+01 .38
.5331*01 .38
.555E+01 .38
.765E+01 .38
.371E+02 .3ft
.221E*03 .38
.)70E*03 .38
-------
CD
I
ro
CO
TlfLt: JviLt' *UN 10 ii/ e//P in
TEST DATA
S5 ]*H1* 10R/101
ItSr OiltiATIDM z 30,0 *INUHS
*». U« T|-«H. = 72. OfcGS.
MLTEK PHES = .00 IN.
rtAWO. P*tS 9 29.45 INCH
NOZZLh tMA. s .1875 INCH!
VOL. ««LHW = 7.79 CUBIC
STACK PrtESSUKL = 29.36 INCH
COxl). .»ATEK s 5.8 CC
TEST KESULIS
PEKCKMT MOISTUHE = 3.70
VOLJMt- GAS STO. PHY s .216E + 00
PEHCE'Ml JSOKlNtriC = 77.06
CONCENTRATION « .230E+03
SIZE DISTRIBUTION WfcSULlS
CUN HOLt. rtrtLl-
PLATE cow MIHUJEK OJA^IEJEW
1 1.01 8. .965E+00
3 !o5 ^n'. .1981 + 00
4 .12 24. .119E+00
5 .20 24. .83HE-01
b .45 24. .5J3E-01
? .70 12. .513L-01
f
HG
7 STA&ES 12 HOLES LAST
Tt*P I^PACIDH =
T£««S
319E+02 .117E+01
2S2E+03 !s30E+00
699E+03 ,640£»00
141E+04 .160E+01
349E+04 .170E+02
697E+04 .164E+02
ULThM WEISHT ,116ci02
LlNEAf* kEGWt- SSIOM KESUL'TS
UtU»ETHIC "tAN OIAMETEH =
STO. GtUMETrflC UE^IATION *
CUSWtLATION COEFFICIENT «
P(Ct)M) ACTUAL D
HE«Ct.NT Z (MICHON)
1 .9765 ,98e 31.961
e .9600 .75) li.492
3 .9493 .638 5.049
4 ,93h4 .526 2.282
5 .9042 .106 1.296
6 .5631 .156 .601
7 .2330 -.729 .391
H .0000
TOTAL *E
,h?l DICKONS
4.034
.861
CALC. 0 95 P
(MICRON) (M
9.918 1.977
7.143 1.722
6.108 1.590
5.219 1.452
3.843 1.171
.775 .150
.225 .017
IG-1T .497E + 02
EWC^MT LIMITS
TO 49. 74H
TO 29.640
T3 2J.459
TO 1<».75/
TO 12.608
T3 4.0IV
TD 2.909
72.
U4.69
.10
11.8H
1 .80
OtiS. F
t r/sEC
Cf(STACK
CKSTACrt CO^D.)
,24t-03 POISE
HG)
COMC
CONC
s:m
.541t+01
.579E+01
.2966+01
.7401+01
.230E+03
.224E+03
.221E+03
.218E+03
.21SE+03
.7591+02
.5361+02
.129E+03
.536E+02
.145E+02
.101E+02
.574E+01
.85HE+01
.3026*02
.2356*03
.408E+03
.38
.38
.38
.38
[38
.38
-------
I-LET
\\/ 6/7« it>«>s
104/103 r STAGES 12 HOLES LAST STAGE.,*
TEST ORATION =
*tu « Tt^p. »
BAHJ. PHtS »
NOZ2Lt OJA. s
VOL. -*(-TtH a
STACK PRtSSlJRt =
C0'*l>. *ATtR =
TEST KESJLTb
30.0
72.
.00
29.45
.1875
7.79
29.56
-UNUTES
OEGS. F
IN.
INCH HG
INCMt S
CUMIC ffrfcT
INCH HG
CC
I 1PACTDR
ATMJS.
VELOCITY
SAMPLE MATE
TOTAL vOuu*E(STACK)
PARTICLE DENSITY
STAC< SUCTION
i/ISCOSI TY
=
X
319.
72.
4W.69
.40
11.88
1.80
-.882E-01
.24£-03
Ut 35. f
OliS. f
M/SEC
CF(STAC<
CHST&C*
tftAM/CC
INCH HS
POISE
CONO.)
CONO.)
CO
i
ro
PfcRCt^T MOISTURE * i.70
VOLUME GftS STO. 1>WY a ,21nttOO
PERCENT ISOKlMtTIC = 77.06
CONCfcNTKATIO^ s ,I48Et02
SliE. 01STMIBUTION HtSULTS
CUM HOLE HOLE
PLATE co« NIMBEK OIAMETIH
1 .01 8. ,96'}E + 00
2 .02 12. .476t.tOO
3 .05 24. .198E+00
4 .12 24. ,119ttOO
S .20 24. ,83ftt-01
6 .45 24. .533E-01
7 .70 12. ,b45E-01
LINEAR whi.HFssniN MLSULTS
(,EOMM«1C MEAN DIAMETER =
STO. SmMfUlC DEVIATION t
CUHHHAI1UN COEFFICIENT *
P(COM) ACTUAL D
Pt.HCF.Nr i (MICRON)
1 .6589 1.076 31.96]
2 .6740 .451 14.492
3 .5298 .075 5.049
4 .4014 -.2SO 2.2H2
5 .2H21 -.576 1.296
6 .2727 -.604 .601
7 .2696 -.614 .391
8 .0000
CUBIC Mf T( R
MGRAM/CUBIC MtTE»O»Y,
P50 VEL
(MICRONS) CM/SEC
,320E*02 ,41i»Et02
.|35E + Oi» .R74E + 02
,505Et01 ,?S2Et03
,228Et01 ,699E*04
.liOf+01 .t41EtOU
,601E»00 .349F+04
.491E+00 ,697E»Ott
ULTtK WEIGHT
TOTAL rfEIG-O
3.420 DICKONS
11.364
.967
CALC. 0 95 PERCENT
(MICRON) (MICRON)
as. 330 12.95b TD 1
9.922 4. M2 TD
4.979 2.195 TD
1.H09 ,9Hb TD
.818 .381 T1
.764 .349 TD
.747 .339 TD
21.1 0
MAS
M
•
•
•
•
•
•
1.
•
•
LIMITS
bH.614
21. 345
7.21 3
3.321
1.759
1.674
1.646
OEG C, 760 MM HG)
ASS F*ACT
MUHA4S
,450£tOO
.590E»00
,460E»00
,«10E*oo
.3HO£tOO
.300E-01
1 .OOOE-02
.860E+00
.319£t01
CONC
rtG/CUHIC M
.208t*OJ
,273F*01
.213E+01
,190E»01
.176E*01
,149E»00
.463t-01
,S98E*01
CJM CONC
MG/CUBIC M
.lU8t«02
.127E+02
. ?95E«01
.782E+01
.592Et01
.416E401
.403E«01
.398E*01
OM/DLO&O
MG/CUBIC M
,5S6Et01
,729E*01
,499Et01
,5SOtt01
. 71 bE tOl
,415EtOO
,249fc»00
S3RT
PS150
.38
.38
.38
.38
.38
. 38
.38
-------
T I ILL : 'JjFut
TEST DMA
TEST
K1IU 6 ll/
194H
6 STAGtS 24 HOLES LAST STAGtM
BAKU,
'VOllLt 1)1 A. =
VOL. ^ETtR a
STACK PRESSURE ~
CONO. *ATtR =
60.0 «
52. DECS. F
.00 IN.
29.4b INCH HG
.2SOO INCHES
60.37 CUBIC ^^t^
29.02 INCH HG
70.6 CC
TEST RESULTS
PERCEMf MUISTI.WE s b.50
VOLuMt UA3 Sit). 0«Y = ,174Et01
PtWCE'MT ISOKl-METIC a 147.78
CONCENTRATION « .126L+03
SHE DISTRIBUTION KESULIS
CO
I
ro
en
aLATE
1
2
3
4
•3
6
CUN
COR N
1.02
1.04
1.10
1.22
1.40
2.01
HOLe
UlHf R
H.
12.
24.
24.
24.
24.
HOLE
DIAMETER
,96')L*00
,476E*00
,19HEfOO
.1 19t*00
.8ittt-0|
.U33E-01
LINEAK Mt«RtSS10N HESULT3
STiJ. GUJ^ETMIC JEVIATIOM s
COWMtLOTlON COEFFICIENT «
P(CUM)
2
3
o
7
ACTUAL o
(MICRON)
IS.836
6.6SS
.<>«>6!> 2.700
.S97
IMPACTOR
AT^JS.
VELOCITY
HATE
101AL VOwJ^E(STACK)
PAHTI2LE DENSITY
STAC< SUCTION
VISCOSITY
S2.
49.59
l.bO
tt».89
1 .HO
•.426E. + 00
.22E-03
OE3S. F
DE3S. F
FT/SEC
CKSTACK CUMO.)
CF(STACK C3NO.)
GWAM/CC
IN:H H3
POISE
CUH1C
C> 760
MG)
1ASS F9ACT
.665E+01
.108E«01
,5S1E*03
. I40£t00
.2HO£tOO
,3oO£f00
.S62£*01
COMC
MS/CUBIC *
,BOa£-Oi
.IhlttOO
,19bE+00
.32iE*01
.326E+02
CO^C
>«G/CJHIC *
QM/DLO(.U
^G/CUHIC »
,427E»00
.125E+03
,122t+03
,909£t01
.126E+03
FILTER HE
TOTAL *UG-»T
. 100£»03
.5S6E+02
S9RT
P3I50
.3«
.38
.38
.38
.38
.38
J19Et02
.319E+02
,3S3 AKRONS
2.S66
CALC. D
(MICRON)
7.i51
S.390
4.SOO
2.106
.597
.1H9
.oono
9S HFHCEMT LIMITS
18.01i
13.92b
5.404
2.071
1..
1 .M3
1.4b4
.821
.17?
.029
ID
T J
TD
T3
13
-------
TItLt: 'UFLtT
b ll/ t>//rt 1 /5S J*>>1W 109/102 6 STfttiES
MULES LAST
TESf DATA
TEST IVfWftTHrj s
50.0 MINUTES
M£TtH PrffcS
HAHQ.
VOL. *EftH s
SfAC* P*tSSll«h s
COW). lATtrt s
TEST HESJLTS
PEHCtNT «UISTU«E
i/OLO»*t GAS STO. i~MY
PtrtCEMT ISIlRlMtllC
CONCfcNTWATIJV
.1)0
29.4S
,2bOO
29. b2
29.02
34. b
IN.
INCH HG
INCMtS
CUBIC ffcfT
INCH Hi,
CC
5.51
.H5IE+00
Ho.68
.104E+03
SIZt OISIKlrtUTIOM 3tSUlTS
DJ
I
ro
01
PLATE
i
i
3
4
CUM
COM
.1)1
.03
.07
.16
H3LK
NLMHL*
8.
12.
^4,
24.
01
.9
.«
.1
.1
HOLE
.96bt+00
,«7b£+00
198E+00
,U9t + 00
LlNEAH
-*t)3.
VELOCITY
SAMPLE HATE
TOTAL t/Ou\J<«E (STACK)
PAWTICLE DENSITY
STAC< SUCTION
VISCOSITY
s 250.
: b4.
s 49.59
.88
43.94
1.80
-.U26E+00
.22E-03
OtiS. '
UE3S. F
FT/SEC
CF(STACK
Cf (STACK
KRAM/CC
INCH H3
POISE
CO*D.)
CJMO.)
CUBIC METfH
DSO
vEL
C, 7bO
MACT
A««S
Ot-01
.aoo-.oi
wc/CUdlt 1
.5H8fc-01
,14St*01
.HllEtOO
,361E*00
FILTEK
TOTAL /(^I(.^T
77JEtOa
.I35£f02
.H84E«02
,l«IttOO
,788E*00
. 194E + 0?
.677E +02
.1S8E+02
CJ" CONC
"IG/CJBIt *i
.loafc+03
.104E+03
.104E+03
.104t+03
.10JE+03
.B35E+02
.1S8E+02
DM/ULOGD
XC/CUH1C *
,1S7E»00
.626E-01
,32HttOO
.22bE»01
,19?fc*03
PS1SO
.18
.38
.38
.38
^.?\^
CALC. 0
9S PEWCE>*T LIMITS
b.HOl
S.34?
3.535
1.086
.2«»
TJ
1 .4/8 T3
1.S29 TD
1.034 TD
.259 TD
.019 TD
31.301
2l.«6b
12.082
U.5b5
3.106
-------
TITLE: luu -ton at, ji/io/78 i65o
TEST I)ATA
i2o/ir>6 7 STAGES 12 HOLES LAST STAGE
ro
TEST OUKATIOv 30.0 MINUTES
MEHW TLMt>. bl. DEIiS. F
METE.H puts .00 IN.
HArtO, P>1A. .1875 INCHES
VUL. MtTE* 1 I.b4 CUBIC ^f^ T
STACK PKESSUHE 29.02 INCH HG
Ci)NO. «AUrt s 19.0 CC
TEST WESULTS
PfcKCMT MnibTiJPE = 7.69
VDLtJMt GAS STO. Oft f = ,32oE+00 CUBIC "ETEW
PEHCtM IbOMNtTIC = 101.50
CUNCENTHAUOM s .256E+03 MRRAM/CU8IC
SIZE 01STHIBUTION RESULTS
CUM HOLE HULt DSO
PLATE co* NUMHEH DIAMETER (MICHOMS)
1 .01 H. ,9bSE*00 .252E+02
2 .03 12. .476E+00 .10<,E + 02
3 .07 24. .IVBEfOO .395F401
4 .16 24. .I19E+00 .177E+01
S .28 24. .H38E-01 ,991E»00
6 ,6!> 24. .533E-01 ,443EtOO
7 2.08 12. ,S33t-01 ,279E»00
TEMP IMPACTDH s
TEMP ATMQS. =
VELOCITY s
SAMPLE RATE =
TOTAL VOLJME(STACK) s
PARTICLE DENSITY s
STAC* SUCTION E -.1
VISCOSITY :
wtTEHMRY, 21.1 OEG :, 7bO
VEL MASS F?ACT
CM/SEC MGWAMS
.527Et02 .126E+01
.144E+03 .670£+00
.416E+03 .6SOE+00
.115E+04 .366E+01
,?3iE»04 ,457E»01
,b7iE + 04 .31 H£t02
.115E+03 .247E+02
FILTER *EI:;HT ,163E»02
347. OE3S. F
61. (JESS. F
55.98 Ff/SEC
.65 CFtSTAC* COND.)
19.60 CF(STAC« CONO.)
1.80 GRAM/CC
03E+00 INCH H3
24E-03 POISE
MM HG)
CONC CJM CUNC
MK/CU8IC M MC/CjBIL M
,3H6t+01 .256E+03
.205E+01 .252E+03
.199E+01 .250E+03
. 1 12E+0? . 248E +03
.140E+02 .237E+03
.975E+02 .223E+03
.758E+0? .126E+03
.498E+02 .498E+02
TOTAL MEIGHT .836E+02
CINE AH rtEG^ESSIdN RESULTS
UEU^ETHIC ^F.AN DIAMETER s .S09 ^ICHUN
STO. GEOMETRIC DEVIATION s 3.728
CORRELATION COEFFICIENT * .909
p(cu^) ACTUAL o CALC. D
PfcHCfcNT I (MICRON) (MICHON)
1 .9H49 2.16H 25.173 H.H14 2
2 .9769 1.994 10.606 7.022 1
3 .9691 1.8h8 1.948 S.953 J
4 .92S3 1.442 1.766 3.397 1
b .H7()6 l.li?9 .991 2.251
6 .4901 -,I'2S .443 .49)
7 .194S -.861 .2/9 .164
e .nnoo
S
95 PEWCEMT LIMITS
(MICRON)
.228 TD 35.020
.975 T3 24.962
.798 T3 19.704
,22« TD 9.391
,rt55 T3 S.9?7
.119 TD 2.035
.021 TD 1.271
DM/DLOGO
.105E+02
.547E+01
.464E+01
.321E+02
.279E+03
.378E+03
SJ«T
PSI50
.58
ise
.38
.38
.'38
-------
i l tL* : HU T *T DATA
TEST D'JwATItn =
«t. Tt« [{"P. =
*tTtw P-*ES =
BAWO. P*tS =
•MOZZLt 01A. =
VJL. ""ETI-K «
STACK ^tSSUrtE s
CONO. AAIt* s
TEST rftSJLTS
H£*CtNT *OISTvJ
V'JLiMk GAS STO. l)
PtKCMT IsnxIMM
2S 11/10/7H ISSH JMPT* Kb/
30.0 ^IMUI
62. OEUS.
.00 IN.
29.12 INCH
.1875 JMChh
11.42 CUHIC
2=».0<> INCH
16. b CC
H£ = 7,h9
KY s ,319t+00
1C = 99.39
ts
F
101 7 STAGES
TE*P I
TE*"
12 HOLES LAST STAC.KM
<*PACTOH : 347. DE3S. *
ATV()S. : 62. OE3S. F
VELOCITY = 55. 9» FT/SEC
HG
S
FFK
HI;
CUbIC *ETtH
SAMPLE HATF s ,b4 CF(STACK COW.)
TOTAL VO^J^E
PARTICLE
STAC<
VI
(STACK) = 19.19 CF(STAC< CO>4 24
7 2.06 12
•lES'JUTS
HOLf
K DIAMLTtK
. ,9bSEtOO
. ,U7bt»00
,|9(JE*00
,119t*00
,938fc-01
.•sSSL-Ol
.iiiE-01
050
(^ICHONS)
,250EtO?
.107E+0?
,399E*01
.179E»0]
.inOE+01
,449E*00
.2H4E»00
VEL
C^/SEC
.SlbEtoe
.141E»03
,407E»OJ
.11 iE»OU
,?28t»0«
.563E»0(4
.113E»Os
FJLUK HEIGHT
TOTAL «FIGHT
LINK AH Hti.KLSSION
UtiJ-'ETKlC ^tA
SfO. GfO^ET^IC
KtSULTS
N OlA^ETtft s
DEVIATION B
CDHKtLATlON COEFFICIENT s
P(CiH)
PEKCtfxT
1 .9M40
2 .<»76i
3 ,9b3h
a .9^37
S .9267
b .boftO
7 .I9MJ
H . 0 1 j 0 0
ACTUAL 0
I (DICKON)
2,9t 2^.440
!.«»«* 10.720
1.794 i.99|
l.t>«2 «.7«6
l.«S2 1.002
.166 .449
-.H4H ,2«3
.4bH DICKON
3.S66
.676
CALC. 0
(DICKON)
fi.60b 1
S.621 1
4.579 1
3.969 1
2.963
.577
.159
S
9S PEMCEMT i.
(MIC^O^)
.740 T3 U
MASS F*ACT CONC CJ1* CONC
MGKA«S ^G/CUrtlC X "(G/CJUlt «
,910ttOO .2851+01 ,2S9fct03
.10SE+01 ,329E*01 ,256E*03
.105Et01 .329E»01 ,253E*03
.820E*00 .257E+01 .249E+03
,223E*01 ,69HE»01 ,247tt03
.298E*02 ,93at*02 ,240Et03
.304£»02 .952t+02 .lUTfc+OJ
.I64£t02 ,S13E*02 .513E+02
,827£*02
MITS
2.557
D^/OLO(il> 33RT
"G/CUBIC «l PSI50
.7591*01 .38
,ft7bE+Ol ,3«
.76bE*01 .38
.73bE*01 .38
,27HE»02 .38
,26ftE*03 .38
.47bE+03 .38
.459 T3 23.214
.279 T3 1
.169 13 1
."43 T3
.119 T3
.014 T.T
6.394
3.474
9.311
2.80H
l.«74
-------
rilLt: ilJTLtl
TEST DAT 4
1? 11/10/70 1711 I^PU 119/l^b f. STASES 2U HULKS LAST STAUtM
rtST juKAiiiiu *
*ETE-v IMP. =
VOL. 'UTfcW s
S f 4t« Prft SSUtffr s
CO-NO. 11 A TEH =
TEST RESULTS
HEHCMT MOISIUKL
V/OL'JIE GAS STi). DuV
PLKCE'MT ISHKlMhUC
COMCEuTHATION
Sl^t 013 IrtlHUTIO-V Hi
^ CU'J MOLL
iNi "LATE COS ^i.i^tJEw
10 1 .02 H.
1 .oa 12.
3 .10 in.
it .23 24,
5 .42 24.
6 2. OS 24.
LlutArt htfi^LbSJ ON •*(•
8.0 MIMul
ae. necs.
.00 IN,
2*. 12 INCH
.2500 iNCMt
H.34 CUBIC
28.66 IMCH
6.2 CC
= 3.S7
= 131.62
= .«71k+03
SUL1S
HOLt
DIAMETER
.96SL+00
.476E+00
. 19HL»00
.119t*00
,H3Bfc"01
.533E-01
STO. [JtCHtTXIC DEVIATION *
COWHtUAJION COEFFICIENT «
p(cu"^> ACTUAL D
1 ,9S4b 1.747 1 1.b4b
2 .MOHb .P73 6.573
3 .S238 .OS9 2.«27
•3 ,iSn4 -,3bH ,S87
f> .0613 -1.S44 ,24B
7 .11000
VELOCITY s
HI; SA^PLE SATE *
S TOTAL i/OuJ^ECSTACK) s
FtFT PAkTKtE DENSITY s
HG STAC< SUCTION = -.4
VISCOSITY s
CUhJC -
-------
uJlLH «UM it, M/10/78
I*PT« 109/102 6 STAGES ?rff SS J«t =
CO (I). /.Attrt a
TEST WESJLTS
f>t*CEMi *iOisruHt
VOLUME GAS STD. OKY
PtWCt^f ISiiKlNLTIC
IDNCEMHAT IUN
SUE OISTrtihJTIU^ *
C"-- CiJ1* hJLE
oo PLATL ci)^ NIJMBEH
0 1 .01 H.
2 .04 12.
3 .10 24.
4 .22 24.
b .40 2 y .
b 2.00 24.
LINEAR «M13S111N »
GEo-tT^ic MLA^
SID. GeUMf,Ti«IC 0
CO-*-E»OU ,2«3£»0?
.S33L-01 ,259E»f>0 .12bf»0b ,417E*02
FRTtK WE13HT ,14SE*02
TOTAL "EIGHT ,148£»03
tSOLTS
DIAMETER = 1.270 MICHONS
EVIATIUN » 4.149
FICIENT a .963
ACTUAL r> CALC. » 95 PE^CE^T LIMITS
i (MICRON) (MJCHOM) (MJC-J3N)
.762 lb.173 lfe.021 b.701 T3 39.307
.1)31 b.797 5.507 3.028 TJ 10.017
.331 2.S12 2.034 1.26S TD J.272
.177 1.109 1.632 1.012 TD 2.bS2
.307 .bll .821 .471 TD 1.432
.294 .2S9 .202 .0*1 T;i .499
250. i)ESS. f
57. OkSS. f
57.02 M/SEC
1.44 Cf (STACK CONl). )
10.06 CHSTAC* COND.)
1.80 GWA-/CC
J1E*00 INCH H;
?2E-03 POISE
MM HG)
CONC CJM CUNC
MG/CUHIC M MG/CJHK M
.283E+02 .7SbE+03
,860tto2 .727E+03
.165E+OJ ,b41t*0i
,4Sltt02 ,47bE+03
.144Et03 .U1IE+03
.21 3d »03 .287E »03
.740fc+02 ,7«OEt02
7SIE*0?
SJST
PSI50
.38
.38
.38
-------
TITLt: 1'H
TEST DATA
lt.Sr
ll/ i/7« 17S7
120/106 7 STAGtS 1? HOLES LAST STAGEN
HARU. PRES s
VOL. METER e
STACK PRt SSJRE »
31.0
62.
.00
29.10
.1875
18.57
29.04
25.0
^INUTES
DECS. F
IN.
INCH MG
INCHES
CUBIC H
INCH HG
cc
VELOCITY
RATE
TOTAL vOwJ"E(STACK)
PARTICLE DENSITY
STAC< SUCTION
i/ISCOSITY
3la.
b?.
29.50
l.HO
•.SHHE-OI
DF3S. F
L)E3S. F
f T/SEC
CKSTA:«
CF(STAC< COMD.)
INCH H2
.23E-03 POISE
TEST RESULTS
PERCENT MOISTURE «
y/OLiJMt" GAS STO. DRY =
PERCENT
,51"»E*00
l«»2.7h
.276E+03
CUhIC
MGRAM/CUBIC METEHORY, 21.1 DEC C, 760 MM HG)
SIZE DISTRIBUTION RESULTS
PLATE
i
2
3
a
5
6
7
COR
1.01
1.03
1.08
1.19
1 • i«
1.81
2.37
HOLE
NUMBER
H.
12.
24.
2«.
if a.
in ,
1 2.
01
.9
.«
.1
.1
.»
9 J
.S
HULK
D50
MASS F3ACT
,965ttOO
.U76E+00
198E+00
119EtOO
.B3BE-01
.H64E+01
.J20Etni
,l«2E+ni
.792E+00
.210E+03
.Si3E-01
LINEAR REGRESSION RESULTS
__ _ _ ^EAN OIAMETtH »
STL). GEOMETRIC DEVIATION s
CORRELATION COEFFICIENT «
.213E+00
FILTER
TOTAL
.556 MICRONS
2.893
,9JH
:+0!|
.lb7E+OS
«EI3HT
neiGHT
.102Et01
.960£tOO
.102t+01
,169-tOl
,3aOE+02
,537£t02
.3bl£t02
CONC
MS/CUBIC *i
.197E+01
.lesE+oi
.197E+01
,32bEtOl
,655Et02
.10aEt03
CONC
^G/CUB1C
.2H2E+02
.276E+03
,27aE+03
.272E+03
.270E+03
.267E+03
.20U+03
.978E+02
+ 02
.«92E*01
.U56E+01
.925E+01
.257E+03
.288E+03
.332Et03
PSI50
.38
.38
.3«
.3H
.38
PERCENT
ACTUAL D CALC. D 95 PCRCEMT Li1
7
a
7297
,1022
,0000
2.«51
2.202
2.035
1.802
,b!2
-.373
•1.270
rt.bib
3.203
l.«2«
.792
.3U6
.213
7.512
5.767
«.82b
3.933
1 .06S
.37u
1.970 TD
1.703 TD
1.531 TD
1.3«? TD
.398 TD
.095 TD
/t022 TD
28.6U9
19.5ia
15.210
11.521
2.1
1.'
,9«5
-------
TltLt: l*i
TEST OAtft
*UN <4 \\t 3/7H I
10H/101 7 STAGES 12 HQLt.S LAST STA(iE'
oo
no
IEST
«ETt* fE«P.
MfcHK P*f-S
HAKO. PrtfcS
NUZZLE OIA.
VUL. IfcUH
STACK PHLSSjrtE
CfJNU. * A It ft
TEST HESJLIS
us.o
59.
.00
29.10
.187S
2*. 20
29.0<4
31.3
MINUTE S
OEUS. F
IN.
INCH HG
INCHI- S
CUBIC FEET
INCH HG
cc
MfMSTiME * b.ttS
VOLUME UAS STD. DHY » ,6'i2t>00
PErtCEMT ISOKINKTIC » 16O.79
CU^CtMRATIU^ > .201E»03
Sl/E DlSTKlHlMinw RESULTS
H3LE
A*IETEH
.965L>00
.476E+00
PLATL
l
2
3
5
6
1 i
CUN
CUR
.01
,ov
.08
!ii
. 1 4
J.22
HOLE
NUMBER
«.
12.
2 4
2 ti
2 1
12!
01
.9
.«
-1
!e
.i
.83HE-01
!i33E-01
LINE AM WFGWtSSIOrv RESULTS
D1A<1 CONC
«G/CJBIC M
.201E+03
.189E+03
,237EtOO
FILTEK WEI5HT
TOTAL WEIGHT
.H03 MICRONS
J.33S
.640
.USOEt02
.917Et01
.1S1E+03
.187E+OJ
.18SEt03
.155E+03
.S3»E*02
.iaiEt02
DM/OLOGO
MC/CUHIC *
.323E+02
,29ftE»01
.253E+01
.68?E»01
,115Et03
.200E+03
.337E+03
PSI50
.38
.38
.38
. 3H
.38
.38
.38
CALC. D
(MICRON)
S.20-*
a.93«
a.697
9b
1.9/2
.616
.13*
1.039 TD
1.016 TD
.995 TD
,9!>1 TO
,S5b TD
.115 TD
.008 TD
LIMITS
26.12S
23.960
22.16U
7.003
?.29S
2.411
-------
llfLt: IMLEF -TJ-j 5 ll/ 4/7H 1 Q 1 ,» I"PT* 104/105 7 STAG£3 12
fEof DATA
5 L*ST STAGED
I
Co
co
TEST DUMA i i DY =
MMF.R TF*P. ~
*E FEW HRLS ^
HAkO, PRL3 *
NOi/Lt OIA. =
VOL. *ET£» s
STACK Prtf 3SUHE =
CiMO. '•AIM s
TEST tfESULlS
PEHCE^iT MDISTUK
45.0 MJNUIES TE^f* I^PACTOrt s
59. DtGS.
.00 IN.
29.10 INCH
.1875 INCHf
24.20 CUBIC
29.04 INCH
31.3 CC
(E = 6.43
VOLUME liAS STU. OKY « .652E+00
F TE*f» AT^flS. *
VELOCITY s
Hli SA^»L£ MATE i
S TOTAL vOuJ«£(STACK) s
FtM PARTKLE DENSITY s
HG STAC< SUCTION = -
VISCOSITY s
CUBIC *i.Tt B
J1U. DE3S. s
59. OE3S. F
42.93 FT/SEC
,«2 CF ( STACK CD^D, )
37.05 CF(STAC< CDMO.)
1 ."0 GWAH/CC
.5HBE-01 IN:H H3
.23E-03 POISE
PEHCENT ISOKINETIC s 166.79
CUMCtNTKATU
SUE OlbTHlrtUUON
CUM HOLE
PLATE CI>K NUMIJEH
1 .01 8.
2 .03 12.
4 .08 2U.
4 .17 24.
5 .31 24.
b 1.73 24.
7 2.22 12.
LINEAR KEU«ESS10M
(iEO^fc F«IC *EAM
STO. UEO^EfRIC
N s .342L+01
RESULTS
HOLE
DIAMETER
.965E+00
.4/6E+00
.198E+00
.1 19£+00
.8 4t)E*01
.54JE-01
.543E-01
RESULTS
DIAMETER r
DEVIATION B
CORRELATION COEFFICIENT s
HCCUM)
PERCEM
1 .M206
2 .623 i
i .41 26
it .2511
5 .uSS?
6 .OHO;
7 .i>5«3 •
rt .0000
ACTUAL D
/ C«ICKON)
.91H 22.0/2
.314 9,?9a
•.221 3.453
-.b/1 1.540
1.371 .860
1.401 .380
1.S70 .237
MUf»A^/CU8IC WETEHORY, 21.1 OEG C> 7bO ** HG)
t)50 V£L ^ASS f ^ACT
(MICRONS) C^/SEC vlGWA^S
.221E»n^ .664E+02 .400E+00
,929£+01 ,1H?E+03 ,440£tOO
,345E+0| .524E+03 ,470£+00
,lS4f»Ot ,143£»0'4 .360E+00
,8hOt»00 .293E+04 .370E+00
,380f. + nO ,725E»T< 1,000£-02
.237E+00 ,14bE»U3 .500E-01
FILTLW HVEIJ^T ,i$or+oo
TOTAL nUli^f .223E + 01
5.010 MJCWONS
5.541
.984
CAI c. r> 9s PFMCEMT LIMITS
(MICRON) (MIC*OM)
24.069 10.646 TD 54.417
».5h9 4.754 TD 15.444
3.436 2.196 TD 5.37b
1.59J 1.047 TJ 2.418
,«8(l ,?74 TO .842
.457 .258 TD .808
.342 .183 TD .641
COMC CJ«« CONC
^s/curtic * ^G^CJBJC *
,bl4E +00 . 342E + 0 1
.&75E+00 .231E+01
.721E+00 .213E+01
.552E+00 .141E+01
,56«E+00 .8598+00
.155E-01 .291E+00
.7671-01 .276E+00
.199E+00 .199E+00
-
D^/OLOCiO S3RT
«G/CUIUC «* P3I50
. 1631+01 ,3rt
.ieOt+01 .48
.1681+01 .38
.157E+01 .38
,2248+OJ .38
.432E-01 .38
.3741+00 .38
-------
2 1 1 / j/7« mi?
M7/ia6 o starts «?<4 HOLES LASI STAGEN
TEST JAIA
TEST DUMA 1 I ilN s
*t Tf « 1 L*P. s
METE** P^ES »
tJAWJ. PrfLS *
MUZ^Lt OIA, >
VUL. 1ETH* s
STACK fttLS30 i/fct
H JIA^tTER (MlCHOi^S) C"/SEC
. ,96it + 0u ,208E*0,> ,70JEtO?
. ,u7bE + 00 .H7t>E + 01 .193EtOi
. .19UE + 00 ,3?bE-»01 .bb5E»03
. ,11'E»00 .145Et01 .lb"EtOU
. .838E-01 ,H14E»00 .illEfOU
. ,S33t-01 .361E+00 .7bSF*0«
FILU W *l 13HT
TOTAL fit 1UHT
RESULTS
\ 01A«lETEiJ s 2.390 AKRONS
OEVIATIUN s 1.371
HPACTUrt = 2SO. OE^b. f
P AT"OS. s 48. OEiS. '
l/ELOCITY s S3.?9 Ft/SEC
PLE RATE s .87 CMSTAC<
E(STACK) s 31. gt> CFCSTA:K
DENSITY s 1.80 GH»*/CC
SUCTION s -,U2bE+00 IN3H n3
ISCOSITY s .22E-OJ POISE
21.1 DEC C» 760 *1 HG)
MASS F-J4CT CONC C
MURALS MS/CUHIC ^ *&
.120E+00 .164E+00
.700E-01 .Vb«E-01
.410E+00 .SflbE+00
.2JOE+00 ,313E*00
.H63- »01 . 1 1 HE *0?
.320E+0? ,43bE»02
.OOOt+00 .OOOE«QO
.41SE+02
C3NO. )
C3MO. )
J* CONC
/CJHIC *
.SbSE+02
. bb)E+u2
• S63E+02
. 557E+02
.55«F+02
. u3bE+02
.OOOEtOO
COt^HELATlJM COEFFICIENT « .727
P4
S ,9M50
4 ,979'j
S . 1 lit
0 .0000
7 .0000
ACTUAL 11 CALC. 1) 9b PtRCEMT
i (MICWONJ (MICRON) (MICRON)
2.7bO «?0.7H8 «.t>2« .SH7 T3
2,bOb H.7S6 4.461 .bBS TJ
2.172 J.«?Sb 4.020 ,S7« TD
2.04a l.«S« 3.b9*) ,Sb9 TD
.743 ,*14 2.H55 .08? TD
-V.04i» .361 .274 .004 TD
LIMITS
3b.4hH
34.015
28.176
26.730
1 b.VO 1
1 9. 7hO
OM/DL05U
»00
+ 00
.I3b£+01
P3I50
.3K
Is*
.3H
.38
.38
-------
en
TITLE: i^LLf HUM 1 ll/ <>/!*
TtSF DATA
10//10J / 5I&SE.S 12 HOLES LAST STAUEN
TEST OuWATICM =
ME uw \i*t>. -
MEJEtf P«E5 *
SARD. PHES =
MUZ/LE OIA. a
VUL. «tTeR a
SIAC* PRl SSUWL s
C0NO. .iATE* »
TEST RESULTS
3U.O M| NUT
56. UfGS.
.00 IN.
r>9.ib INCH
f S
F
HG
.187b INCHES
12. «>0 CUBIC
29.09 INCH
41.2 CC
1 £ 4P
IE
SA
IMPACT OR =
4? 4TTI3. I
wELOLITY ;
if*LE RATE s
TOTAL VOuUIE(STACK) s
31 a. ol 35. F
bb. OESS. •
«2.93 FT/SEC
,bS CF(STA;<
22.07 CF(STAC<
:DNO.)
CONO.)
F^T PARTI3LE OENSITY s l.flO (iH»vi/c:
HG
STAC< SUCTION s -
VISCOSITY s
.SHHE-01 INCH HJ
.23E-03 PUISE
PEKCENT MUISTUWE s 1U.20
VOLUME GAS STO. 0
PERCENT ISOKINM
CO^CENTWATI
SIZE DISTRIBUTION
CUN HOLE
PLATE cow Nu*tn
1 .01 H
2 .03 12
3 .07 <»u
« .IS fa
<3 .27 2u
n .62 2u
7 2.01 12
«v = .357E+00
1C = 131. SI
UV s .19SE+02
RESULTS
HUH.
W OlA^ETER
,9bt)E + 00
. .y7b£+00
. ,19«t*00
,119t«00
.83HE-OI
.S4JE-01
.S33E-01
CUBIC 1ETE*
MGHAM/CUBIC *
I>SO
(MICRONS)
.2U9E+02
. J OSEtOr>
rS'Mf *01
.17SEtf)l
. 9 8 U I t n 0
,tt«3E»no
.?ftOf ton
^TER(DHY, 21.1 OEG ", 760 M^ MG)
"Eu
CM/SEC
.S24E tOP
. j U3E + 03
,ai 4Etn!
,11SE»OU
,2S1 E»OU
.571E*Oa
,ll«t*05
FILTER "EISHT
LlNEAW HEGRfSSION
GEOMETRIC *EA
STO. GEOMP T *IC
CUXrtELATIUN CD
P(CL)«*)
PERCENT
J .9S-53
g .H704
3 .7968
« .7190
b .7190
0 ./1VU
7 .7190
rt .liOOO
RESULTS
N DIA4ETE4 *
TOTAL
.115 *ICRDNS
A f- IG-fT
MASS MAC!
CONC CJ
« CONC
*l.RA>tS MS/CUbIC * "IG/CJ8IC M
.310E+00
,590£*00
.51 0£*00
,SaO;tOO
.OOOE+00
.000- »00
.OOOEtOU
,«99;»01
,69«t»01
.869E+00
,!6bE+01
,1UJE»01
.1S1E+01
.OOOEtOO .
,oooE»on
.OOOEtOO
,140Et02
19SJ+02
186E+02
169E*02
1 55E»02
moEto?
1 UOE to?
1UOE+02
1 «OE*02
DEVIATION s 31.15S
EFFICIENT *
ACTUAL o
L MICRON)
1.699 2U.H7U
1.128 ID.UflS
.H30 3.V05
. 5fl" 1 . 7bO
,SHO .9HU
.^JHI) . a u J
,S*0 .2(^0
,69U
CALC. n 9s PERCENT
(MICRON)
39.527 3.
5.5U) I.
I.990
, Ha i ,
,^«1
.»«M
.««!
(MIC40M)
LIMITS
002 TD «59.320
S66 TD
70<4 TD
2
-------
iMttr *UM
11/21/76 luoo
7 STALLS 1 HOLES LAST
TfcSr DATA
f £3 T OUWA T I U'J =
""E TER T I *H. s
Mt TEH h>>ies =
8AKJ. Prtl S r
NOZZLE 01A, s
VOL. MtHR *
STALK PRESSURE =
CO 'MO. *ATM s
TEST RESULTS
peHCE^i MOISTURE
VOLUME GAS STD. i>Hr
PERCENT ISOKI^ETIC
CONCENTRATION
SUE 01 STR I HUT I ON R
cu CUN HULL
' PLATE COR NO^HER
& 1 .01 H.
2 .02 12.
3 .06 24.
" .12 24,
5 .22 2a.
6 .48 2«.
7 .77 12.
15.0 MINUT
760 MM HG)
MASS MACT COMC CJ"I CONC
MGRA4S MG/CU4IC 4 MG/CJHIC M
,740E»00 .S«5E»01 ,397E*03
.890£tOO .656E+01 .392E+03
,7bO-*00 ,SbOE»01 ,39SE*03
,6bOE*00 ,«B6E*01 .179E+03
,274£t01 .«?02£*02 ,375E*03
.OOOE+no .OOOE400 ,i5«E+03
,000t*00 .OOOE*00 ,3SttE«03
.4H1E+02 ,35«t»03 .J50E+03
.S39E+02
DM/OLOGO 3J*T
MS/CUBIC H PSI50
. !U6t *02 .38
,17Sfc»02 .38
. 1 31 1 +02 .38
.l«lEt02 ,3«
,819E»02 .38
.OOflfctOO .38
.OOOE*00 .36
L.INEAR REGRESSION RESULTS
GEU^ETWIC MEAN
DIAMETER s
STO. GEOMETRIC DEVIATION *
CORHtLATlON COEFFICIENT =
P(CUM)
PERCENT
1 ,98o4 2
2 .9697
i ,9SSb
4 .9(130
5 ,89?S
6 .891*5
1 .B9,">
ft .0000
ACTUAL 0
I (MICRON)
.205 28.429
.87B 11.996
.703 «.«8«
.584 2. ('23
.210 1.146
.240 .527
,2«0 .3M1
.00^ MICRONS
66.425
.969
CALC. D
(MICRON)
34. OSS 1
8.609
4. 1 32
2.51S
.59U
.594
.594
95 PERCEMT
(MK^OM)
0.7/8 TJ 1
4.131 TD
2.28S TD
I.U36 TD
.270 TD
.270 TD
.270 T3
LIMITS
07.601
1 7.944
7.473
4.406
1 . .109
1.309
1.309
-------
TITLE:
TLST OAT4
i RUN l 1 .01 8
f ,OJ 1«?
3 .09 24
4 .21 24
5 .39 24
b ,9b 24
. ,9i>5E + 00
. . 476E + 00
.198E+00
.I19E+00
. ,B3eE-oi
. ,!>3iE"01
CUBIC *f TER
MGRAM/CUHIC *
050
(MICRONS)
.164E+0?
.6S9E+0 I
.255E+01
.113E+01
,b2 1 E + 00
«265E + 00
/Eu MASS F^ACT
CM/SEC *ORA<1S
.11JE+03 .OOOE+OO
.309E+03 .OOOt+00
.H89E+03 .000-+00
.24/E+04 .OOOi+OO
.4WSF+04 .OOOE+OO
.123E+05 .OOOE+OO
FILTfH WEIGHT .OOflc+00
LINEAR REGRESSION
GEOMETRIC *tA
STO. GEOMETRIC
RESULTS
N DIAMETtR *
DEVIATION =
TOTAL
1.778 "ICWE1NS
1.035
«EICHT .OOOE+OO
I MX HG)
CONC CJ^ COhC
VI3/COHIC x XG/CJBIC M
.OOOE+OO .OOOt+00
.OOOE+00 .OOOE+OO
.OOOE+OO .OOOE+OO
.OOOE+00 .OOOE+OO
.OOOE+00 .OOOE+00
.OOOE+OD .OOOt+00
.OOOE+00 .OOOE+00
DX/DLOliU SJRT
^G/CUHIC ^ PS150
.OOOt+00 .58
.OOOE+00 .38
.OOuE+00 .38
.OOOE+00 .38
.OOOE+00 .38
.OOOE+00 .38
CORRELATION COEFFICIENT s SSSlSSSfl
P(CU^)
ftRCENT
lit.* kil*$*t
*»***>***«
3Jtttiiiti»
ut&}$$i*l>'t>S
Siti*******
biitlit f%.*»*
ACTUAL o
2 (MICRON)
2.51b Ib.i99
2.51b 6.893
2.51b 2.549
2.516 1.127
2. Sib .621
2.516 ,2b5
CALC. D 95 PER:EXT ui^ns
(MICRON)
.941
.941 .
.9
-------
/1*PCT J OJ JM
I 0$ JM
: 03 UN *j«»07fcri
I
co
CD
-------
TITLEJ 1'VLt.T hii.iN $1 11/20/78 17\0 IMPM I2fi/iou
TEST L)ATA
7 STAG;:; 12 HOLhS LAST sraot^
TEST DURA MUM = 30.0 MINUTFS TE*P IMPAC10W ~
MtTE* TE-IP. = 52. IHGS. f TEMP ATMfis. z
ME TEW PKtS = .00 IN. VELOCITY s
HAUL). PrfES = 29. uo INCH H& SAMPLE RATE s
NU^/LE 01A. s .0000 I^CHeS TOTAL VOtJME (STACK ) z
VOL. MfcTEW = 10.81 CUBIC FFtT PAWTI'LE DENSITY s
STACK PRESSURE = 29.35 INCH HG STACK SUCTION : -
CiJNt). WATER = 7.9 CC VISCOSITY =
TEST RESULTS
PERCENT MOISTURE = 3.«9
VOLUME GAS STO. ORX = .311E+00
PERCENT ISUKtNETIC = »*»»*4 JJSS
CONCENTRATION = ,7BJEt01
Sl/t DISTRIBUTION RESULTS
co CUix HOLf HOLf
/> PLATE CUR NUMBER DIAMETIR
vo 1 1.01 8. ,96SEtOO
^ .02 12. .U76E+00
3 .06 2«. .198E+00
a .13 2«. ,119fc+00
•> .23 ?«. .H38E-01
6 .SI 2a. .533E-01
7 .83 12. .533E-01
LINEAR WfcGwESSION RESULTS
GEO^M^IC MEAN DIAMETER =
STO. GEOMETRIC DEVIATION *
CORRELATION COEFFICIENT s
p(Cu*) ACTUAL D
PERCENT I (MICRON)
1 .7125 .620 26.832
2 .b062 .Olb 11.319
3 ,30ab -.511 a.22fl
a ,11S« -1.099 1.90U
5 .0000 -9.0U2 1.077
6 .0000 -=*.002 .093
/ .0000 -9,oa2 .317
8 .0000
/IMfCT I 0} UV -i)S26SO'i
/IMPCT I 03 UN •i326%0^
/IMPCT : 03 KM -vief&SOrt
/IMPCT : 03 U^ *S26^0rt
CUBIC vETER
MGRAM/COHIC METERORY, 21.1 OI-G ;, 7
OSO VfcL MASS F-JACT
(MICRONS) CM/SEC MGRAMS
,?68Et02 .U36Ft02 .bSOt+00
.113E+02 .120F403 .SbO-tOO
.121E+01 ,l««Et03 ,«90E*00
.190E+01 .9SSFt03 .«10E+00
.10ME+01 .193FtOO .330E+00
,U93EiOO .u7SEtOU .OOOEtOu
.317E+00 ,9S3EtO« ,OOOE»OU
FILTER *EISHT .OOOt+00
TOTAL *MGMT ,2a3E»Ol
e.02b MICHONS
1.3^>6
.867
TALC. 0 9S PE»CEN1 LIMITS
(MICRON) (MIC^JN)
9.69U 2.07S TO «S.<>92
8.06U 1.913 TO 31.997
6.Hh9 1.770 T3 ?S.bSh
b.70? 1 .609 T!) ?0.188
.511 .102 T3 2.Sh2
.M) .102 TJ ?.bb2
.511 .102 TO 2.bb2
t>81. D63.S. f
f>2. Ot3S. F
«b.70 FT/SEC
.bo CF(STAC< C3ND.)
lb.2a CF(STAC< COND.)
l.HO URAM/CC
.07HE-01 INCH H3
.23E-03 POISE
60 M4 HG)
CONC CJM CONC
MG/CUHIC 1 MG/CJHIC M
,209Ef01 ,761E*01
.177E+01 .S72E+01
,15«t»01 .395E»01
.132€*01 ,238E»01
.106E+01 .106E+01
.OOOF. + OO .OOOE + 00
.OOOttOO .OOrtEtOO
.OOOEtOO .OOOEtOO
,S57t»01
,36flE+01
,380Et01
.OOOE^OO
SJRT
33150
.38
.38
.18
.19
.38
.18
.18
-------
DO
I
TITLE.: LKtlLf t
TES1 DATA
IS 11/10/7H 13SO IMP I* lil/ii., b jl<.,,:.S
-.'L(-'5 L '• -> I
Tt3T DURATION s 30.0 MJMJTFS IE"-1
*tTEH ft*P. » 53. Ut&S. F TE'
MEftH P^t S » .00 IN.
HAP.U. PWtS « 29. Ib INCH HU SA«
NO//LL OlA. s .0000 IMCHES TUTAL VOLU«
VOL. METtft * 17.88 CUBIC FFM PARTICLE
STACK PHESSUHt * ?8.72 INCH HG STAC<
COND. *ATE» = 13.3 CC v
TEST KE3ULTS
PEHCEM MOISTURE = 3.60
VOLU^t GAS SID. ORY s .509E+00
SUE DISTRIBUTION RESULTS
CUN HOLt HOLE
PLATE co« NU««HF« DIA^ETEH
1 1.01 H. , 9b5E *00
2 1.03 12. .U76k+00
3 1,07 2<4. ,198E*00
a 1.17 21. ,119t»00
5 1.30 2a. .836E-01
b 1.69 2a. .533E-01
LINEAR KtG^ESSIOH RESULTS
STD. iiEO^ETRIC DEVIATION =
COrtHELAtlON COEFFICIENT *
P(CU^) ACtUAl. D
PEHCINT I (MICRON)
1 .HOSb .8bl 20.«31
2 .7377 .636 8.774
3 .1342 -.428 3.263
4 .0408 -1.741 1.457
5 .0057 -2.529 .6)6
6 .0049 -2.583 ,3b2
7 .0000
CUBIC «fcnw
OSii
(MICH. INS)
IB77E+01
.lUbE+01
F1LH.
TOTAL
b. J30 ^ICROMS
2.S96
.973
CALC. D 9
(MICRON)
14.411 5.
«!206 2.
1.200
!S3/ '.
C«/3EC
./OlFtOt?
,192E»03
.i53E*oa
k NEI3HT
b PFHCENT
739 TD
232 TD
blO TD
«>33 TD
21H TD
VELOCITY
LE HATE
(ST»CK)
OEMS!!*
SUCTIOM
VISCOSITY
53.
57.02
.67
26.07
1.60
-.4U1E+00
.22E-03
DECS. F
FT/SEC
CF (STAC*
CF(STAC<
GRAM/CC
INCH H3
POISE
CDND.)
CDND.)
OEU C,
MASS F-J4CI
,2SH£f01
.H30E*00
,iS9Et01
.4}0£tOO
1.OOOE-02
.600E-01
7.926
2.361
t.372
1.12S
COMC
CJ«* CONC
^G/CJBIC '
.163Et01
,970E*01
,705E«01
.844E+00
.19bE-01
.HHEtOO
MC/CUB1C *
.124E+02
.U34E>01
.eoittoi
.9B2E+00
.im + oo
.UBEtOO
,201E*02
,335fct01
P3ISO
.3M
.38
.38
.18
!38
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
REPORT NO.
EPA-600/7-79-246
2.
3. RECIPIENT'S ACCESSION NO.
TITLE AND SUBTITLE
Jeilcote Ionizing Wet Scrubber Evaluation
5. REPORT DATE
November 1979
6. PERFORMING ORGANIZATION CODE
. AUTHOR(S)
I. PERFORMING ORGANIZATION REPORT NO.
David S. Ens or
. PERFORMING ORGANIZATION NAME AND ADDRESS
Meteorology Research, Inc.
464 West Woodbury Road
Altadena, California 91001
10. PROGRAM ELEMENT NO.
EHE624A
11. CONTRACT/GRANT NO.
68-02-2125
2. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 9/78 - 9/79
14. SPONSORING AGENCY CODE
EPA/600/13
5. SUPPLEMENTARY NOTES TERL-RTP project officer is Dale L. Harmon, Mail Drop 61,
919/541-2925.
6. ABSTRACT
The report gives results of an evaluation of a Ceilcote ionizing wet scrub-
ber installed on a refractory brick kiln. Tests involved particulate mass emission,
particle size distribution, and opacity. Overall efficiency was 93% with an average
outlet opacity determined with a heated plant process visiometer (PPV) of 8% over a
1. 68 m (5. 5 ft) path length. The average particle cut diameter of the scrubber sys-
tem was 0. 5 micrometer. The estimated theoretical power requirement for the _
ionizing wet scrubber was 41 W/actual cu m (1.54 hp/1000 actual cu m. The scrubber
system developed for the kiln included a cooling tower to provide chilled water for
the prescrubber to condense volatile emissions which required 26 W/actual cu m
(2. 5 hp/1000 acfm). The performance of the ionizing wet scrubber, based on theo-
retical power input, exceeds that of a venturi scrubber.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
. COSATI I icld/Group
Pollution
Scrubbers
lonization
Kilns
Refractories
Dust
Pollution Control
Stationary Sources
Ceilcote Ionizing Wet
Scrubber
Particulate
13B
OTA, 131
07B,07C
13A
11B
11G
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
94
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
B-41
------- |