United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park NC 27711
EMB Report 82-CAT-9
August 1983
Air
i
Petroleum
Refineries -
Fluid Catalytic
Cracking Regenerators
Particulate Test
Method Evaluation
Emission Test Report
Arco Petroleum
Products Company
Philadelphia, PA
-------
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
Cr";g c: Air Quality Planning and Standards
F.sss-r-. Triangle Park, Noah Carolina 27711
April 18, 1984
MEMORANDUM
SUBJECT: Source Test Report
FROM: J.E. McCarley, Chief, Field Testing Section,
Emission Measurenent Eranch, ESED (MD-13)
TO: See Below
The enclosed final source test report is submitted for your
information. Any questions recording the test should be directed
to the Project Officer (telephone: 8/629-5543). Additional copies
of this report are available froc the ERC Library, Research Triangle
Park, North Carolina 27711.
Industry: Petroleum Refineries—Fluid Catalytic Cracking Regenerators
Process: Particulate Test Method Evaluation
Company: Arco Petroleum Products Company
Location: Philadelphia, PA
Project Report Ka-t-sr: 82-CAT-9
Project Officer: George W. Walsh
Enclosure
Addressees:
Ken Knapp, ESRL (MD-46)
Arch MacQueen, MDAD (MD-K)
Rodney Midgett, EMSL (KD-77)
Mark S. Siegler, DSSE (MD-IS-Sil)
Director, Air and Waste Kar^ce^nt Division, Region III
(copy enclosed for State ct^-cy)
Ann Ingram, EPA Library Services (VO-35)
-------
EMISSION TEST REPORT
METHOD DEVELOPMENT AND TESTING
FOR FCCU REGENERATORS
Arco Petroleum Products Company
Philadelphia, Pennsylvania
EMB Report No. 82-CAT-9
ESED Project No. 82/04
by
PEDCo Environmental, Inc.
11499 Chester Road
P.O. Box 46100
Cincinnati, Ohio 45246-0100
Contract No. 68-02-3546
Work Assignment Nos. 14 and 20
PN: 3530-14 and 3530-20
EPA Task Manager
Mr. Winton Kelly
Emission Standards and Engineering Division
Emission Measurement Branch
U.S. ENVIRONMENTAL PROTECTION AGENCY
RESEARCH TRIANGLE PARK, NORTH CAROLINA 27711
February 1984
-------
DISCLAIMER
This report was furnished to the U.S. Environmental Protec-
tion Agency, Emission Measurement Branch, by PEDCo Environmental,
Inc., Cincinnati, Ohio, in fulfillment of Contract No. 68-02-3546,
Work Assignments 14 and 20. Its report are reproduced herein as
received from PEDCo Environmental, Inc. The opinions, findings,
and conclusions expressed are those of the author and not neces-
sarily those of the Environmental Protection Agency. Mention of
company or product names does not constitute endorsement or
recommendation for use.
11
-------
CONTENTS
Paqe
Figures iv
Tables v
Acknowledgment vii
Quality Assurance Element Finder viii
1. Introduction 1-1
2. Process Operation 2-1
3. Sampling and Analytical Plan 3-1
3.1 Sampling site 3-1
3.2 Sampling methods 3-4
3.3 Sample analysis 3-8'
4. Summary and Discussion of Test Results 4-1
4.1 Sample data 4-1
4.2 Thermogravimetric analytical results 4-4
4.3 Water-soluble sulfate analytical data 4-25
4.4 Recommendations for sample and analytical
methodology 4-37
5. Quality Assurance 5-1
References R-l
Appendix A Computer printouts and example calculations A-l
Appendix B Raw field data B-l
Appendix C Raw laboratory data C-l
Appendix D Sampling and analytical procedures D-l
Appendix E Calibration procedures and results E-l
Appendix F Quality assurance summary F-l
Appendix G Project participants and sample log G-l
111
-------
FIGURES
Number Page
3-1 Four-Train Sampling System Showing Nozzle
Position 3-2
3-2 FCCU Sampling Site 3-3
4-1 Average Particulate Concentration at Indi-
cated Conditioning Temperature (Runs 1, 3,
and 5) 4-14
4-2 Average Particulate Concentration at Indi-
cated Conditioning Temperature (Runs 7
and 8) 4-15
5-1 Onsite Dry Gas Meter Audit - Train A 5-5
5-2 Onsite Dry Gas Meter Audit - Train B 5-6
5-3 Onsite Dry Gas Meter Audit - Train C 5-7
5-4 Onsite Dry Gas Meter Audit - Train D 5-8
5-5 Onsite Dry Gas Meter Audit - Trains A and B 5-9
5-6 Onsite Audit Data - Trains C and D 5-10
5-7 Onsite Calculation Form - Example Test No. 3 5-11
IV
-------
TABLES
Number Page
3-1 Sampling Matrix 3-5
3-2 Analytical Plan 3-9
4-1 Summary of Sample Conditions 4-2
4-2 Summary of Thermogravimetric Analytical
Results 4-5
4-3 Comparison of Particulate Weights of 3- and
24-Hour Heat-Conditioning Period 4-7
4-4 Comparison of Weight Losses Above 160°C 4-8
4-5 Comparison of Filterable Particulate Concen-
tration After Heat Conditioning at Indicated
Temperatures 4-10
4-6 Filterable Particulate Relative Percent
Weight Loss After Conditioning at Tempera-
tures 160°, 232°, and 315°C 4-13
4-7 Summary of H_S04 and S02 Analytical Data 4-16
4-8 Statistical Data for Grouped Runs After
Conditioning at Indicated Temperatures 4-22
4-9 Summary of Precision Estimates After Condi-
tioning at Indicated Temperatures 4-23
4-10 Summary of Water-Soluble Sulfate Analytical
Results 4-26
4-11 Summary of Results for Residual Sulfate in
Within-In Run Samples Conditioned at 315°C 4-29
4-12 Comparison of Within-In Run Particulate Con-
centration After Correction for Residual
Sulfate to the M5W Test Results 4-30
v
-------
TABLES (continued)
Number Page
4-13 Summary of Results for Residual Sulfate on
Samples Conditioned at 315°C 4-32
4-14 Cations Found in Water Extraction by ICP 4-34
4-15 Soluble Sulfate Present in Sample Analyzed
by ICP 4-35
4-16 Charge Balance Results for Samples Analyzed
by ICP 4-36
5-1 Field Equipment Calibration 5-3
5-2 Example Filter and Acetone Blank Analysis for
the Thermogravimetric Procedure 5-13
5-3 Audit Report S02 Analysis 5-14
5-4 S0_ Reagent Blank Analysis 5-16
5-5 Water-Soluble Sulfate Blank Analysis Data 5-16
5-6 Comparison of Sulfate Results Obtained by 5-17
Titration and Ion Chromatography
VI
-------
ACKNOWLEDGMENT
Mr. Winton Kelly, EPA Task Manager, provided overall project
coordination and guidance and observed the test program. Mr.
K. C. Hustvedt, EPA Lead Engineer - Chemical and Petroleum Branch,
provided project coordination relative to process operation. Mr.
Gary Rabick represented Arco Petroleum Products Company and
provided assistance in scheduling and process operation. Mr.
Charles Bruffey was the PEDCo Project Manager. Principal authors
were Messrs. Charles Bruffey and Thomas Wagner.
VII
-------
QUALITY ASSURANCE ELEMENT FINDER
Title page
Table of contents
Project description
QA objective for measurement of data in
terms of precision, accuracy, completeness,
representativeness, and comparability
Sampling procedures
Sample custody
Calibration procedures and frequency
Analytical procedures
Data reduction, validation, and
reporting
Internal quality control checks and
frequency
Performance and system audits and
frequency
Preventive maintenance procedures and
schedules
Specific routine procedures used to
assess data precision, accuracy, and
completeness of specific measurement
parameters involved
Corrective action
Quality assurance reports to management
Location
Section Page
ii
1 1-1
Appendix F F-2
Appendix D D-l
Appendix C C-l
Appendix E E-l
Appendix D D-l
Section 5 5-1
Appendix F F-2
Section 5 5-1
Appendix F F-ll
Section 5 5-1
Appendix F F-3
Appendix F F-12
Appendix F F-4
Appendix F F-ll
Appendix F F-12
Vlll
-------
SECTION 1
INTRODUCTION
On March 8, 1974, the U.S. Environmental Protection Agency
(EPA) promulgated a New Source Performance Standard (NSPS) for
particulate emissions from fluid catalytic cracking unit (FCCU)
regenerators. The testing procedures in this standard specified
Method 5 for measurement of these emissions, and the data to
support the NSPS were collected during 1971-72 by this method.
The facilities tested were conventional regenerators equipped
with electrostatic precipitators and carbon monoxide (CO)
boilers.
Since promulgation of the NSPS, the EPA has received several
requests for clarification of the intent of the emission regula-
tion. In response, the EPA has stated that the intent was to
control "catalyst fines" or "mineral dust," not the condensible
sulfates that are in the gas phase at the operating temperature
of the control device.
In the public notice of proposed rulemaking for a revision
to the FCCU new source standard,* the EPA stated that because
Method 5 is capable of collecting condensible matter that is not
controllable by the best emission-reduction systems, a facility
*44 FR 60759 Monday, October 22, 1979.
1-1
-------
using these control systems could be found in noncompliance if
significant quantities of such condensibles were present as a
result of feed changes or process variations. Consequently, EPA
is evaluating sampling and analytical parameters designed to
minimize the collection of condensible sulfate materials from
these sources.
As part of a study performed under contract to the Emission
Measurement Branch of the U.S. EPA, PEDCo Environmental, Inc.,
conducted an atmospheric emission test project from August 23
through 27, 1982, at the Arco Petroleum Products refinery in
Philadelphia, Pennsylvania. Testing was performed at the final
exit stack of the FCCU regenerator. The purpose of the study was
either 1) to develop a modification to EPA Reference Method 5, or
2) to develop a new method to minimize the collection of condens-
ible sulfate materials in the measurement of particulate emis-
sions from these sources.
All samples were collected by use of a four-train (quad)
sample system at a single point in the FCCU exit stack. A total
of 10 quad train runs were performed during the test series. So
that the effect of sample temperature on sulfate collection could
be evaluated, probe and filter box temperatures were varied for
each run as follows:
Probe and filter box
Sample designation sample temperature
M5 121°C (250°F)
MSB 160°C (320°F)
M5-450 232°C (450°F)
1-2
-------
Paired trains in the quad system were run at similar temperatures
to allow within-run data comparisons as well as comparisons
between methods run at different sample temperatures.
Probe rinse and filter sample fractions were subjected to a
thermogravimetric analysis at predetermined temperatures to
assess sample weight loss as a function of drying temperature.
In addition, several samples (designated M5W) collected at
121°C (250°F) were analyzed for determination of total water-
soluble sulfate and subsequent particulate mass according to
modified procedures developed by the Texas Air Control Board.*
This method incorporates deionized water as the sample recovery
solvent and a series of titrations and gravimetric analyses to
measure water-soluble sulfates and subsequently derive the mass
of particulate matter that does not contain any water-soluble
sulfate. In addition, select sample fractions from the thermo-
gravimetric and water-soluble sulfate analyses were analyzed for
cation species to characterize the water-soluble sulfate other
than sulfuric acid in the samples.
Each individual sample train was followed by a modified EPA
Method 8** impinger section to allow analysis of sulfates as
sulfuric acid (H_SO.) and sulfur dioxide (S0_). Flue gas temper-
ature, moisture content, and composition [oxygen (O-), carbon
*
Texas Air Control Board - Laboratory Division. Determination
of Particulate in Stack Gases Containing Sulfur Dioxide.
December 1979.
**
40 CFR 60, Appendix A, Reference Method 8, July 1, 1982.
1-3
-------
dioxide (C02), and carbon monoxide (CO)] were measured in con-
junction with the emission tests.
Messrs. Winton Kelly and K. C. Hustvedt of the EPA observed
part of the test program and provided overall project coordina-
tion and guidance.
1-4
-------
SECTION 2
PROCESS OPERATION
PEDCo conducted this methods development project on FCC Unit
No. 1 at Arco's Philadelphia refinery. This unit utilizes high-
temperature regeneration techniques with a catalytic cracker feed
sulfur content in the nominal range of 0.5 to 1.7 percent.
Particulate emissions are controlled by an electrostatic precipi-
tator (ESP). For reasons of confidentiality, a detailed descrip-
tion of Arco's process operation is not provided in this report.
2-1
-------
SECTION 3
SAMPLING AND ANALYTICAL PLAN
All samples were collected with a four-train (quad) sampling
system at a single point in the FCCU final exit stack. This
system allows four trains to sample simultaneously at essentially
the same point in the stack (see Figure 3-1) , which reduces the
effect of spatial and temporal variations in the velocity and
particulate profiles on the sampling results. It also permits a
statistically significant number of samples to be taken in a
short time. Further, because two of the four trains are identi-
cal for every run, the within-train precision can be determined
while the relationship of the different trains is being compared.
This sample methodology was developed and validated in previous
studies.
This four-train sampling system was used to perform a total
of 10 runs, for a total of 40 individual samples.
3.1 SAMPLING SITE
Testing took place at the FCCU final exit stack, as depicted
in Figure 3-2. Four sampling ports with inside diameters of 15.2
cm (6 in.) were located approximately 2 duct diameters downstream
from the nearest flow disturbance. Only the southeast port was
used in this study.
3-1
-------
15 cm
8 cm
NOZZLE
4 cm
0.5 cm
NOZZLE
STACK GAS FLOW
TRAIN B A -C-j>- TRAIN A
-*1* 2 cm *] 1 . 4 cm
c!> *"
2 cm -*1* 2 cm
'S" TYPE PITOT TUBE
TRAIN C rt -^"j -
4 cm
Figure 3-1. Four-train sampling system showing
nozzle position.
3-2
-------
TO ATMOSPHERE
FLOW
3.05m
I.D.
SOUTHEAST
SAMPLE
PORT
6.10m
•W. 6m
_L
I
I
FLUE GAS
ENTRANCE
FROM ESP
GROUND
Figure 3-2. FCCU sampling site (no scale).
3-3
-------
3.2 SAMPLING METHODS
The four trains collected flue gas samples simultaneously
from a single point in the stack. The four-train assembly
(Figure 3-1) was positioned at least 3 feet from the stack wall
for each test. The desired sampling time was 120 minutes, and
readings of stack flue gas and sampling train data were recorded
at 10-minute intervals for each train. A single pitot tube and
thermocouple located in the four-train nozzle arrangement were
used to set isokinetic sampling rates for each train. Sampling
rates were determined by use of programmable calculators. Before
sampling was begun, a velocity and temperature profile was per-
formed according to procedures described in EPA Methods 1 and 2.*
The average velocity head (AP, inches H_0) was calculated, and a
single point representing the stack AP average was chosen for
sampling.
Table 3-1 presents the sampling matrix performed during this
test series. The particular conditions for each train are de-
scribed briefly below:
0 Method 5 - Designation M5
Filterable particulate was collected by use of a probe
and filter assembly heated to 121°C (250°F). Acetone
was used to rinse all sampling train components prior
to the filter.
0 Method SB - Designation MSB
Filterable particulate was collected by use of a probe
and filter assembly heated to 160°C (320°F). Acetone
was used to rinse all sampling train components prior
to the filter.
*
40 CFR 60, Appendix A, Reference Methods 1 and 2, July 1, 1982.
3-4
-------
TABLE 3-1. SAMPLING MATRIX
Run
No.
1
2
3
4
5
6
Sampling
train No.
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
Sampling method9
M5
121°C (250°F)
X
X
X
X
X
X
X
X
X
X
X
X
M5B
160°C (320°F)
X
X
X
X
X
X
M5-450
232°C (450°F)
M5W
121°C (250°F)
X
X
X
X
X
X
(continued)
3-5
-------
TABLE 3-1 (continued)
Run
No.
7
8
9
10
Sampling
train No.
7A
7B
7C
7D
8A
8B
8C
8D
9A
9B
9C
9D
IDA
10B
IOC
10D
Sampling method3
M5
121°C (250°F)
X
X
X
X
MSB
160°C (320°F)
X
X
X
X
•M5-450
232°C (450°F)
X
X
X
X
X
X
M5W
121°C (250°F)
X
X
aM5 (Method 5) - Probe and filter heated to 121°C (250°F).
M5B (Method 5B) - Probe and filter heated to 160°C (320°F).
M5 (Method 5) - Probe and filter heated to 232°C (450°F).
M5W (Method 5) - Probe and filter heated to 121°C (250°F); water rinse of
nozzle, probe, and front filter holder glassware.
3-6
-------
0 Method 5-450 - Designation M5-450
Filterable particulate was collected by use of a probe
and filter assembly heated to 232°C (450°F). Acetone
was used to rinse all sampling train components prior
to the filter.
0 Method 5W - Designation M5W
Filterable particulate was collected by use of a probe
and filter assembly heated to 121°C (250°F). Deion-
ized, distilled water was used to rinse all sampling
train components prior to the filter.
For each train, the probe and filter temperatures were set
at the predetermined temperature and monitored throughout each
test by the use of multiterminal digital indicators with the
thermocouples located in each probe and immediately behind the
Method 5 filter frits.
The back half of each sampling train represented a modified
Method 8 with five impingers. An unheated Method 5 filter as-
sembly was inserted between the second and third impingers to
preclude any sulfuric acid mist carryover. The contents of each
impinger are listed below:
Impinger Contents - All Runs
1 Empty
2 200 ml 80% IPA
3 100 ml 10% H202
4 100 ml 10% H2O2
5 400 g silica gel
All the filters were Whatman Reeve Angel 934AH. The filters
used in the Method 5 position were heated to 300°C prior to
identification and tare weighing.
The flue gas moisture content of each individual sampling
train was determined gravimetrically by weighing each impinger
3-7
-------
before and after every test. In addition, a flue gas grab sample
collected during each test was analyzed for oxygen, carbon diox-
ide, and carbon monoxide by use of an Orsat analyzer, as de-
scribed in Method 3* of the Federal Register.
3.3 SAMPLE ANALYSIS
Table 3-2 presents a matrix of the analytical plan followed
during this test program.
Thermogravimetric Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and weighed.
The probe rinse fractions were transferred to tared beakers,
allowed to evaporate to dryness at ambient temperature and pres-
sure, desiccated for 24 hours, and then weighed. The constant
weight criteria described in Reference Method 5* was achieved on
the Method 5B and Method 5-450 samples; however, the Method 5
sample fractions showed highly variable weights and did not meet
the constant weight criteria specified in Reference Method 5.*
This failure to meet the Method 5 constant weight criteria is
attributable to condensed sulfuric acid, which is highly hydro-
scopic and actually acts as a desiccating agent. This phenomenon
has been documented in previous studies concerning the effects of
condensible sulfate on particulate measurements from source
emission gas streams containing sulfuric acid and sulfur triox-
2345
ide. ' ' ' The MSB and M5-450 samples contained considerably
40 CFR 60, Appendix A, Reference Methods 3 and 5, July 1, 1982,
3-8
-------
TABLE 3-2. ANALYTICAL PLAN
Run
No.
1
2
3
4
5
6
Sample
Train No.
1A M5
IB M5
1C M5B
ID MSB
2A M5W
2B M5W
2C M5
2D M5
3A M5B
3B M5B
3C M5
3D M5
4A M5
4B M5
4C M5W
4D M5W
5A M5
5B M5
5C M5B
5D M5B
6A M5W
6B M5W
6C M5
6D M5
Thermogravimetric conditioning3
Ambient -> 160°C •»• 232°C -> 316°C
X
X
X
X
X
X
X (24)
X
X (24)
X
X
X
X
X (24)
X
X (24)
X
X
Water-soluble
sulfate .
determination
X
X
X
X
X
X
Sul fates
as S04"
by ICC4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ICPd
X
X
X
X
NH4+e
X
X
U)
(continued)
-------
TABLE 3-2 (continued)
Run
No.
7
8
9
10
Sample
Train No.
7A M5-450
7B M5-450
7C M5
7D M5
8A M5
8B M5
8C M5-450
8D M5-450
9A M5B
9B M5B
9C M5W
9D M5W
IDA M5-450
10B M5-450
IOC M5B
10D M5B
Thermogravimetric conditioning3
Ambient + 160°C + 232°C ->• 316°C
X
X (24)
X (24)
X
X
X
X
X
X
X
X
X
X
X
Water-soluble
sulfate .
determination
X
X
Sulfates.
as SO ~
by ICCa
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ICPd
X
X
X
X
NVS
X
X
U)
I
Thermogravimetric conditioning of probe rinse and filter fractions at indicated temperatures after
initial desiccation and ambient weights were obtained. The designation (24) for select samples indi-
cates a heat period of 24 hours. All other samples were heat-conditioned for 3 hours.
In this procedure, the mass of total water-soluble sulfates in the sample was determined and subtracted
from the total sample mass.
cAnalysis for total sulfates as SO, by ion chromatography.
Analysis for cation species by Inductively Coupled Plasma (ICP).
Analysis for ammonium ion by EPA Method 350.2.
Note: All back halves represent a modified Method 8, with analysis for sulfates as sulfuric acid and
sulfur dioxide.
-------
less sulfuric acid. Also, although they showed weight loss at
each heat conditioning temperature, these samples consistently
achieved a constant weight at each gravimetric step of the anal-
ysis. For the ambient M5 weights, the lowest weight recorded for
three separate gravimetric weighings was used. After the Method
5 sample fractions were heat-treated at 160°C, each sample met
the constant weight criteria.
After this initial analysis, probe rinse and filter frac-
tions were heat-conditioned in an oven for 3 hours at each of the
indicated temperatures (160°, 232°, and 315°C). As shown in
Table 3-2, for comparative purposes, samples from Runs 3A, 3C,
5B, 5D, 6A, 7B, and 7C were conditioned for 24 hours at the
indicated temperatures. Each sample fraction was cooled and
desiccated for 24 hours after its removal from the oven and
weighed to the nearest 0.1 mg until a constant weight was
achieved. Blanks were treated in a similar manner as actual
sample fractions were.
Water Soluble Sulfate Analysis
This method is designed to determine the particulate catch
corrected for any water-soluble sulfate retained in the Method 5
sample fractions. As documented in previous studies, the conden-
sible sulfate problem can be attributed to sulfuric acid, which
makes a direct gravimetric analysis difficult for two reasons.
First, the sulfuric acid is a powerful desiccating agent itself;
therefore, if a significant amount of sulfuric acid is present,
the Method 5 criteria for constant weight of the particulate
3-11
-------
cannot be met. Second, the number of water-molecules associated
with each sulfuric acid molecule is not consistent. The water-
soluble sulfate method developed by the Texas Air Board was
designed to overcome these problems. This method converts any
sulfuric acid present to suitable form for accurate gravimetric
analysis. Ammonium hydroxide is added to form ammonium sulfate
in the aqueous solutions. Ammonium hydroxide is used because any
excess reagent will evaporate. This procedure allows the deter-
mination of the gross particulate (sulfate as ammonium sulfate
and other particulate); the determination of sulfate as ammonium
sulfate from a Method 6* titration or ion chromatography; and
subsequently, the determination of non-water-soluble sulfate
particulate by subtraction of the sulfate (as ammonium sulfate)
from the gross particulate.
Sample Preparation—
Each sample fraction, including blanks, was handled and
analyzed as follows:
Filter - The filter was cut into small pieces and placed in
a 125-ml Erlenmeyer flask with a standard taper joint
equipped with an air condenser. The shipping container was
rinsed into the flask. About 50 ml of distilled water was
added and gently refluxed for 6 to 8 hours. The solution
was then cooled and diluted with water to exactly 250 ml in
a volumetric flask. This was reserved for total soluble
sulfate analysis, which is described in the following sub-
section.
Probe Rinse - The probe wash was poured into a 250-ml volu-
metric flask. The sample bottle was rinsed with distilled
water, and the rinsings were added to the flask. The solu-
tion was then diluted to the mark with distilled water.
40 CFR 60, Appendix A, Reference Method 6, July 1982.
3-12
-------
This solution was reserved for total soluble sulfate analy-
sis, which is described in the following subsection.
Total Soluble Sulfate Analysis—
A 20-ml aliquot was drawn from the settled samples (filter
and rinse) into separate 250-ml Erlenmeyer flasks with a clean,
dry pipet (making sure only solution was transferred, no solids;
if necessary a portion of the sample was centrifuged).* Eighty
ml of 100 percent isopropanol and two to four drops of thorin
indicator were added and titrated to the end point by using
0.0100 N barium perchlorate (EPA Method 6).+ This was repeated,
and the titration volumes were averaged. (A third titration may
be performed if deemed necessary.) A blank was run with each
series of samples. Duplicate titrations must agree within 1
percent or 0.2 ml, whichever is larger.**
Mass Determination--
Mass determination was made in the following manner.
Filter and Rinse Solution Preparation - Depending on whether
two or three titrations were performed for total soluble
sulfate, either 210 or 190 ml of the filter and rinse solu-
tions remained. Fifty milliliters of the settled sample was
The pipet is not rinsed. This is a deviation from normal pro-
cedures, but is necessary because the volume removed from the
volumetric flask is required in the calculations.
+40 CFR 60, Appendix A, Reference Method 6, July 1, 1982.
Divalent cations (each Cd++, Ca++, Fe++, Zn++) will interfere
with the analysis. The sample may be passed through strong
cation exchange resin before analysis to remove these interfer-
ences. The ion exchange method is limited to samples containing
relatively high sulfur concentration because of the inherent
sample dilution involved. A description of the titrametric
procedure is included in Appendix D of this report.
3-13
-------
drawn with a clean, dry pipet into tared, 250-ml beakers.
(The pipet is not rinsed.*) The filter solution was in
Beaker A and the rinse solution was in Beaker C. This
solution was evaporated to approximately 25 ml at 105°C and
allowed to cool before proceeding with the filter and rinse
solution analysis. The clear aqueous solution must be sepa-
rated from all undissolved solids, including the filters
from the filter sample. When more than 10 percent of the
total sample volume is required for the soluble sulfate
analysis, the total dissolved solids analysis is necessary
so that the dissolved nonsulfate particulate in the aqueous
portion used for the sulfate determination is not lost.
This loss would give a low bias. If less than 10 percent of
the total sample is used for the sulfate analysis, this bias
becomes negligibly small.
The remaining contents of each volumetric flask (160 or 140
ml) were poured into separate tared 250-ml beakers, and the
flask was rinsed with distilled water to transfer all par-
ticulate matter. The filter solution was in Beaker B, and
the rinse solution was in Beaker D. This solution was
evaporated to approximately 100 ml at 105°C and allowed to
cool before proceeding with the next analysis.
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers (A,
B, C, and D). Concentrated NH OH was then added drop by
drop until the solution turned pink. The samples were
returned to the oven and evaporated to dryness at 105°C,
cooled in a desiccator, and weighed to a constant weight.
Results were reported to the nearest 0.1 mg. For this
method, "constant weight" means a difference of no more than
0.5 mg or 1 percent of the total weight less beaker and/or
filter tare, whichever is greater, between two consecutive
weighings, with no less than 6 hours of desiccation time
between weighings.
Calculations—
Nomenclature—
TP = weight of total particulate, g
FP = weight of particulate on the filter, g
The pipet is not rinsed. This is a deviation from normal pro-
cedures, but is necessary because the volume removed from the
volumetric flask is required in the calculations.
3-14
-------
PRP = weight of probe rinse particulate, g
NWSSP = weight of non-water-soluble sulfate particulate, g
ASf = weight of ammonium sulfate in filter sample, g
AS = weight of ammonium sulfate in probe rinse sample, g
A = net weight Beaker A = gross weight Beaker A - tare
weight Beaker A, g (obtained from the 50 ml aliquot of
filter solution)
F, = Volume of aliquot Beaker A (50 ml) + Total of aliquot
volumes used for titrations, ml
Volume of aliquot Beaker A(50 ml)
B = net weight Beaker B = gross weight Beaker B - tare
weight Beaker B - filter tare weight, g (obtained from
remainder of the filter solution)
C = net weight Beaker C = gross weight Beaker C, g (ob-
tained from the 50 ml aliquot of probe rinse solution)
F2 = Volume of aliquot Beaker C (50 ml) + Total of aliquot
volumes used for titrations, ml
Volume of aliquot Beaker C (50 ml)
D = net weight Beaker D = gross weight Beaker D, g (ob-
tained from the remainder of the probe rinse solution)
Mass of Non-water-Soluble Sulfate Particulate
The total particulate (TP) collected is the sum of the
particulate collected on the filter (FP) and the particulate
collected in the probe rinse (PRP), which is also the sum of
non-water-soluble sulfate particulate (NWSSP) and ammonium
sulfate (AS) in both samples:
TP = FP + PRP = NWSSP + AS, + AS Eq. 1
r pr
The NWSSP can be found by subtracting the ammonium sulfate
in filter sample (ASf) and the AS in the probe rinse sample AS
from total particulate collected (FP + PRP).
3-15
-------
NWSSP = FP + PRP - AS,: - AS Eq. 2
r pr ^
where FP = B + AF1
PRP = D + CF2
The total particulate on the filter is equal to the net
weight of the residue in Beaker B (the total weight of Beaker B
minus the tare weights of the beakers and the original filter)
plus the weight of dissolved solids in the clear aqueous solution
removed for sulfate analysis and the determination of total
dissolved solids. According to the procedure, between 16 and 24
percent of the original clear solution is needed for the sulfate
determination (2 or 3 titrations). This clear solution will
contain all water-soluble compounds, not just sulfate species.
If the total dissolved solids of the clear solution are not
determined separately and added to the residue in Beaker B, the
results will be biased low by 16 to 24 percent of the weight of
the other water-soluble compounds. Therefore, the total dis-
solved solids are determined on a separate portion of the clear
solution (Beaker A), and the total weight of dissolved solids
removed from the original 250 ml sample is determined (AF..). The
same is done for the probe rinse sample (CF_).
ASf and AS are calculated by using Equation 3.
The equivalent mass of water-soluble sulfate expressed as
ammonium sulfate is calculated according to the following equa-
tion:
3-16
-------
V ,
AS = K1 (Vfc - Vfcb) N ( V501n) Eq. 3
O,
where
AS = ammonium sulfate equivalent of water-soluble sulfate, g
K, = 0.06607 (equivalent weight of ammonium sulfate), g/meq
V = volume of Ba(C10.)2 titrant for sample, ml
V.. = volume of BatClO.)^ titrant for blank, ml
tt> 42
N = normality of BafClO.)- titrant, meq/ml
V , = total volume of sample, ml
soln c
V = volume of sample aliquot titrated, ml
a
Sulfate Analysis by Ion Chromatography
Selected samples, as designated in Table 3-2, were analyzed
for total sulfates as SO. by use of standard ion chromatography
(1C) analytical techniques. Aliquots from the Method 5W samples
were analyzed to validate sulfate values obtained from the
barium-perchlorate titration performed as part of the water-
soluble sulfate method. In addition, within-run samples, heat-
conditioned to 315°C, were extracted with distilled water as
described in Method M5W, and 1C was used to analyze aliquots for
total residual sulfates as SO ~.
Cation Analysis by Inductively Coupled Plasma (ICP)
The extracts of selected filter and rinse particulate (see
Table 3-2) were analyzed for cations. Metallic ions and a
cross-check on sulfur were determined by ICP. Four samples were
analyzed for ammonium ion by a distillation/titration procedure
(EPA Method 350.2).
3-17
-------
Sulfate (as Sulfuric Acid Mist) Analysis
The volume of the sample solution was recorded and the pH of
the sample determined. If the pH was greater than 3, no ion
exchange column was used. The sample volume was diluted to 500
ml with 80 percent IPA. A 100 ml aliquot of this solution was
pipetted into a 250 ml Erlenmeyer flask with 2 to 3 drops of
thorin indicator and titrated to a pink end point using 0.0100 N
barium perchlorate. A blank was titrated for each sample in the
same manner.
Several samples required the use of an ion exchange column
to remove divalent cations (Cd , Ca , Fe , Zn ). A small ion
exchange column approximately 2.4 cm (1 in.) in depth and 1.9 cm
(3/4 in.) in diameter was prepared using a strong cation resin.
Twenty mis of sample was percolated through the column and col-
lected in a volumetric flask. The column was then rinsed with 20
mis of deionized, distilled water. The 40 ml solution (sample
and rinse) was then added to 160 ml of 100 percent IPA and ti-
trated per Method 6.
Sulfur Dioxide Analysis
The sample was diluted to 500 ml with deionized, distilled
water. A 20 ml aliquot of this solution was pipetted into a 250
ml Erlenmeyer flask with 80 ml of 100 percent IPA and 2 to 3
drops of thorin indicator. The solution was then titrated to a
pink end point using 0.0100 N barium perchlorate. A blank was
titrated in the same manner.
3-18
-------
SECTION 4
SUMMARY AND DISCUSSION OF TEST RESULTS
The results of the field sampling program are summarized in
this section to allow both within-run and between-run data com-
parisons to be made, especially between the thermogravimetric and
water-soluble sulfate test results. Appendix A contains computer
printouts and example calculations. Appendices B and C contain
the raw field and laboratory data sheets, respectively. Appendix
D presents details of the sampling and analytical procedures
used, and Appendix E addresses equipment calibration guidelines
and results.
4.1 SAMPLE DATA
Table 4-1 summarizes pertinent sample data. The actual
probe and filter temperatures, stack temperature," and moisture
content represent average values from each individual sample
train. All tests were conducted at a single point of average
velocity in the FCCU exit stack. The isokinetic criteria defined
in Reference Method 5* were met in each case. Tests 2A-D, 4A,
and 6A-D were stopped short of the 120-minute test time because
blinding of the front filter prevented maintenance of an iso-
kinetic sample rate.
*
40 CFR 60, Appendix A, Reference Method 5, July 1, 1982.
4-1
-------
TABLE 4-1. SUMMARY OF SAMPLE CONDITIONS
Test
No.
1
2
3
4
5
6
Date
(1982)
and time
(24-h)
8/23
10:56-
12:56
8/23
15:20-
16:40
8/24
9:55-
11:55
8/24
13:16-
15:16
8/25
9:36-
11:36
8/25
13:35-
15:35
Train
ID
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
Sample3
type
M5
M5
M5B
M5B
M5W
M5W
M5
M5
M5B
M5B
M5
M5
M5
M5
M5W
M5W
M5
M5
M5B
M5B
M5W
M5W
M5
M5
Sample temperature, °C
Probe
Desired
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
Actual
120 (248)
123 (253)
170 (338)
165 (330)
125 (257)
117 (242)
123 (254)
124 (255)
170 (337)
168 (334)
126 (258)
123 (253)
135 (276)
129 (264)
125 (257)
125 (257)
122 (251)
121 (250)
164 (328)
166 (330)
124 (255)
123 (253)
124 (254)
123 (253)
OF)
Filter
Desired
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
121 (250)
121 (250)
Actual
125 (257)
122 (252)
151 (303)
155 (311)
109 (228)
134 (273)
124 (255)
110 (229)
176 (350)
170 (338)
123 (253)
126 (258)
132 (270)
131 (269)
126 (259)
125 (257)
126 (258)
124 (255)
161 (323)
166 (330)
123 (253)
124 (256)
123 (253)
119 (247)
Metered
volume,
dNm3 (dscf)
2.19 (77.15)
2.28 (80.60)
2.27 (80.30)
2.26 (79.96)
1.36 (48.00)
1.62 (57.14)
1.51 (53.18)
1.26 (44.46)
2.07 (72.94)
2.18 (76.85)
2.21 (78.99)
2.07 (73.13)
1.18 (41.77)
2.45 (86.61)
2.42 (85.35)
2.05 (72.31)
2.04 (71.94)
2.14 (75.71)
2.18 (76.81)
2.04 (71.98)
1.92 (67.64)
2.32 (81.98)
2.28 (80.43)
1.93 (68.24)
Average
stack tem-
perature,
Of 1 o r \
w \ r j
234 (453)
235 (454)
234 (453)
233 (451)
233 (451)
232 (450)
Average
moisture
content, %
17.9
18.0
16.7
17.6
17.7
15.3
(continued)
-------
TABLE 4-1 (continued)
Test
No.
7
8
9
10
Date
(1982)
and time
(24-h)
8/26
9:21-
11:21
8/26
13:08-
15:08
8/27
9:28-
11:18
8/27
13:32-
15:32
Train
ID
7A
7B
7C
7D
8A
8B
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sample3
type
M5-450
M5-450
M5
M5
M5-450
M5-450
M5
M5
M5B
M5B
M5W
M5W
M5-450
M5-450
MSB
M5B
Sample temperature, °C (°F)
Probe
Desi red
232 (450)
232 (450)
121 (250)
121 (250)
232 (450)
232 (450)
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
Actual
232 (449)
229 (444)
125 (257)
120 (249)
235 (455)
236 (457)
91 (195)
123 (254)
167 (332)
168 (334)
123 (254)
121 (251)
236 (457)
237 (459)
163 (325)
166 (332)
Filter
Desired
232 (450)
232 (450)
121 (250)
121 (250)
232 (450)
232 (450)
121 (250)
121 (250)
160 (320)
160 (320)
121 (250)
121 (250)
232 (450)
232 (450)
160 (320)
160 (320)
Actual
232 (449)
221 (430)
118 (245)
125 (258)
232 (450)
231 (449)
115 (238)
129 (265)
167 (333)
167 (333)
124 (256)
121 (251)
230 (446)
235 (456)
162 (324)
166 (332)
Metered
volume,
dNm3 (dscf)
2.08 (73.38)
2.19 (77.24)
2.23 (78.58)
2.10 (73.90)
2.18 (76.87)
2.64 (93.29)
1.88 (66.48)
2.21 (78.09)
1.97 (69.57)
2.07 (72.95)
2.08 (73.36)
1.97 (69.55)
2.17 (76.62)
2.60 (91.87)
2.54 (89.54)
2.18 (76.94)
Average
stack tem-
perature,
°C (°F)
234 (453)
234 (453)
230 (447)
233 (451)
Average
moisture
content, %
15.8
15.7
17.1
16.1
I
OJ
Designation:
M5 = Reference Method 5 - desired probe and filter temperature, 121°C (250°F).
M5B = Reference Method 5B - desired probe and filter temperature, 160°C (320°F).
M5-450 = Modified Method 5 - desired probe and filter temperature, 232°C (450°F).
M5W = Modified Method 5 - desired probe and filter temperature, 121°C (250°F) with a water rinse
of the probe and analysis for total water-soluble sulfate and corresponding mass determina-
tion.
Sample volume in dry normal cubic meters (dNm3) and dry standard cubic feet (dscf).
cRepresents average of moisture content as determined gravimetrically from four individual trains.
-------
4.2 THERMOGRAVIMETRIC ANALYTICAL RESULTS
Table 4-2 presents the thermogravimetric analytical results.
The filterable particulate reported in Table 4-2 represents
material collected in the sample probe and on the filter for each
sample type (M5, MSB, M5-450). All weights are reported in
milligrams and sample concentrations in milligrams per dry normal
cubic meter (mg/dNm ).
As previously noted, the samples were heat-conditioned at
each interval for 3 hours, except for samples 3A and C, 5B and D,
and 1C, which were heated for 24 hours for comparative purposes.
Table 4-3 provides a within-run comparison on a total weight
basis for each heat interval. Although ambient weights for
grouped runs were variable, the relative percent weight losses
from ambient to each heat conditioning temperature were compar-
able, particularly at temperatures above 160°C. The largest
percent weight loss for the M5 samples occurred at a temperature
of 160°C. This trend was generally consistent regardless of
sample type or conditioning time. With the exception of Samples
5B and 5B, the sample possessing the higher ambient weight con-
sistently showed higher weights at each conditioning temperature,
regardless of heating time.
Table 4-4 provides within-run comparisons of the total
weight losses and losses above 160°C (320°F). Although during
Runs 3A and 3B, 3C and 3D, and 5A and 5B, the samples heated for
24 hours had higher ambient weights and therefore lost more total
weight through the heating sequence than the corresponding sample
4-4
-------
TABLE 4-2. SUMMARY OF THERMOGRAVIMETRIC ANALYTICAL RESULTS
Test
No.
1
2
3
4
5
6
7
8
Train
ID
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
7A
7B
7C
7D
8A
8B
8C
8D
Sample
type
M5
M5
MSB
MSB
M5Wa
M5Wa
MS
MS
M5Bb
MSB
M5B
MS
MS
MS
M5Wa
M5Wa
MS.
M5b
MSB,
M5Bb
M5Wa
M5Wa
MS
MS
M5-450
MSf-450
MS5
MS
M5-450
M5-450
MS
MS
Filterable particulate following conditioning
at indicated temperatures, °C (°F), mq
Ambient
Probe
61.0
118.0
71.1
84.3
84.9
63.1
72.5
63.9
126.4
114.3
64.7
125.7
117.2
124.9
81.7
67.6
118.2
105.4
29.8
35.6
68.5
123.7
13.6
59.2
108.0
99.1
Filter
168.8
140.6
69.1
71.1
59.9
101.6
101.5
94.2
200.1
168.1
94.8
122.2
129.7
145.7
73.1
70.4
83.0
114.0
85.4
88.3
170.8
149.8
77.2
91.0
138.2
130.7
160°C (320°F)
Probe
20.4
28.2
21.7
19.7
24.8
21.0
42.0
36.2
41.5
41.7
55.2
52.9
28.7
23.8
43.7
15.8
30.7
29.2
14.9
25.6
30.8
51.1
11.8
13.8
21.8
29.9
Filter
83.6
78.4
69.3
70.6
33.0
46.4
97.5
95.3
110.7
114.4
44.0
81.2
74.0
75.0
70.0
66.4
72.7
69.5
85.3
87.0
89.2
92.4
78.3
91.6
77.6
89.4
232°C (450°F)
Probe
13.1
16.6
21.0
17.9
20.3
12.3
38.0
33.1
35.7
35.0
15.8
18.1
16.2
16.8
13.1
9.4
17.3
17.1
9.9
11.9
18.2
31.6
4.2
9.6
13.2
15.0
Filter
84.2
77.0
67.7
69.4
31.6
44.2
96.0
91.0
108.5
115.3
42.0
80.8
73.5
73.1
67.8
64.3
68.5
64.4
81.7
82.6
88.1
88.1
74.9
88.5
73.2
81.8
316°C (600°F)
Probe
11.0
14.4
12.4
11.5
18.5
9.7
36.2
30.2
33.7
33.2
10.8
12.3
15.0
13.5
11.9
6.7
16.7
16.0
9.0
8.2
14.6
22.2
3.3
7.8
12.6
13.7
Filter
77 .4
71.8
64.6
65.4
30.5
41.2
93.1
88.3
107.1
100.5
40.3
75.0
69.7
71.2
65.3
63.0
69.5
63.8
80.1
81.7
87.3
85.0
74.9
88.1
72.7
82.6
(continued)
4-5
-------
TABLE 4-2 (continued)
Test
No.
10
Tra i n
ID
9A
9B
9C
9D
10A
10B
IOC
10D
Sample
type
M5B
MSB,
M5W*
M5Wd
M5-450
M5-450
M5B
MSB
Filterable particulate following conditioning
at indicated temperatures, °C (°F), mg
Ambient
Probe
19.9
98.0
_
-
26.0
18.1
87.4
69.1
Filter
77.1
76.4
127.9
99.0
80.1
72.9
160°C
Probe
20.1
26.7
-
11.6
12.9
30.2
14.5
320°F)
Filter
70.4
73.0
-
131.5
99.2
77.0
69.6
232°C (450°F)
Probe
12.7
15.0
-
6.9
7.3
15.4
9.2
Filter
67.1
68.2
-
118.5
93.4
76.0
67.2
316°C (600°F)
Probe
10.7
12.4
-
5.3
5.7
15.2
7.4
Filter
66.4
68.6
-
94.8
90.6
74.2
66.0
M5W samples analyzed total water-soluble sulfates and particulate mass by modified
Texas Air Board procedure described in Section 3 and Appendix D of this report.
DHeated for 24 hours; all others heated for 3 hours.
4-6
-------
TABLE 4-3. COMPARISON OF PARTICULATE WEIGHTS OF 3- AND 24-HOUR
HEAT-CONDITIONING PERIOD
Run No.
3A
38
3C
3D
5A
58
5C
5D
7C
7D
Heat
time
(h)
24
3
24
3
3
24
3
24
24
3
Sample
type
MSB
MSB
MS
MS
MS
MS
MSB
MSB
MS
MS
Ambient
weight, mg
174.0
158.1
326.5
282.4
246.9
270.6
154.8
138.0
239.3
273.5
Weight after heating .
at indicated temperature, mg
160°C
139.5 (20)
131.5 (17)
152.2 (53)
156.1 (45)
102.7 (58)
98.8 (63)
113.7 (27)
82.2 (40)
120.0 (50)
143.5 (48)
232°C
134.0 (23)
124.1 (22)
144.2 (56)
150.3 (47)
89.7 (64)
89.9 (67)
80.9 (48)
73.7 (47)
106.3 (56)
119.7 (56)
316°C
129.3 (26)
118.5 (25)
140.8 (57)
133.7 (53)
84.7 (66)
84.7 (69)
77.2 (50)
69.7 (-49)
101.9 (57)
107.2 (61)
Ambient weight (rinse and filter fractions) in milligrams.
Weight after heat treatment at indicated temperature. The numbers in
parentheses represent the relative percent weight loss for each heat interval
compared with the ambient weights.
4-7
-------
TABLE 4-4. COMPARISON OF WEIGHT LOSSES ABOVE 160°C
Run No.
3B
3B
3C
3D
5A
5B
5C
5D
7C
7D
Sample
type
MSB
M5B
M5
M5
M5
M5
MSB
MSB
MS
MS
Heating
time, h
24
3
24
3
3
24
3
24
24
3
Ambient
weight, mg
174.0
158.1
326.5
282.4
246.9
270.6
154.8
138.0
239.3
273.5
Total weight
loss to 316°C
(600°F), mg
44.7
39.6
185.7
148.7
162.2
185.9
77.6
68.3
137.4
166.3
Weight loss
above 160°C
(320°F), mg
10.2
13.0
11.4
22.4
18.0
14.1
36.5
12.5
18.1
36.3
4-8
-------
heated for 3 hours, it is significant that fewer milligrams were
lost at subsequent heatings above 160°C. Except during Runs 3C
and 3D, the differences are small. When the sample heated for 3
hours had the higher ambient weight and therefore lost more total
weight through the heating sequence (Runs 5C and 5D, 1C and 7D),
the sample heated for 24 hours again lost fewer milligrams during
subsequent heatings above 160°C. In this instance, the differ-
ences are much more evident.
Table 4-5 presents a comparison of particulate concentra-
tions after heat conditioning at the indicated temperatures. The
average concentration and standard deviations are given in
mg/dNm3 for all samples of a similar type and temperature. The
number of data points at each temperature is also shown. Table
4-6 summarizes the relative percent weight loss by sample frac-
tion at the indicated temperatures. Figures 4-1 and 4-2 graphi-
cally depict some of these data. Table 4-7 summarizes the EPA
Method 8* analytical results for sulfuric acid (H^SO.) and sulfur
dioxide (SO.).
Data presented in Tables 4-5 through 4-7 show the effects of
sampling and analytical temperatures on the measurement of par-
ticulate emissions from this source. As expected, the M5 samples
collected at 121°C (250°F) showed considerably higher particulate
catch then the MSB [collected at 160°C (320°F) and M5-450 (col-
lected at 232°C (450)] sampling runs. The M5 runs averaged 233.8
40 CFR 60, Appendix A, Reference Method 8, July 1982.
4-9
-------
TABLE 4-5, COMPARISON OF FILTERABLE PARTICULATE CONCENTRATION AFTER
HEAT CONDITIONING AT INDICATED TEMPERATURES3
Run No.
1A
IB
2C
20
3C
3D
4A
4B
5A
5B
6C
6D
7C
7D
8C
8D
Sample
ID
M5
M5
M5
M5
M5
M5
M5
M5
M5
M5
M5
M5
M5
M5
M5
M5
Average
Ambient
Total
weight,
mg
229.8
258.6
144.8
164.7
326.5
282.4
159.5
247.9
246.9
270.6
201.2
219.4
239.3
273.5
246.2
229.8
Concen-
tration,
mg/dNm3
104.9
113.4
95.9
130.7
147.7
136.4
135.2
101.2
121.0
126.4
88.2
113.7
107.3
130.2
131.0
104.0
X" = 118.0
ob = 16.8
NC = 16
160°C (320°F)
Total
weight,
mg
104.0
106.6
57.8
67.4
152.2
156.1
99.2
134.1
102.7
98.8
103.4
98.7
120.0
143.5
99.4
119.3
Concen-
tration,
mg/dNm3
47.5
46.8
38.3
53.5
68.9
75.4
84.1
54.7
50.3
46.2
45.4
51.1
53.8
68.3
52.9
54.0
X" = 55.7
o = 12.2
N = 16
232°C (450°F)
Total
weight,
mg
97.3
93.6
51.9
56.5
144.2
150.3
57.8
98.9
89.7
89.9
85.8
81.5
106.3
119.7
86.4
96.8
Concen-
tration,
mg/dNm3
44.4
41.1
34.4
44.8
65.2
72.6
49.0
40.4
44.0
42.0
37.6
42.2
47.7
57.0
46.0
43.8
X" = 47.0
o = 10.0
N = 16
316°C (600°F)
Total
weight,
mg
88.4
86.2
49.0
50.9
140.8
133.7
51.1
87.3
84.7
84.7
86.2
79.8
101.9
107.2
85.3
96.3
Concen-
tration,
mg/dNm3
40.4
37.8
32.5
40.4
63.7
64.6
43.3
35.6
41.5
39.6
37.8
41.3
45.7
51.1
45.4
43.6
X" = 44.0
a = 9.0
N = 16
•fc.
I
(continued)
-------
TABLE 4-5 (continued)
Run No.
1C
ID
3A
3B
5C
5D
9A
9B
IOC
10D
Sample
ID
MSB
M5B
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
Average
Ambient
Total
weight,
mg
140.2
155.4
174.0
158.1
154.8
138.0
91.0
174.4
167.5
142.0
Concen-
tration,
mg/dNm3
61.8
68.8
84.1
72.5
71.0
67.6
46.2
84.3
65.9
65.1
X" = 68.7
ob = 10.9
NC = 10
160°C (320°F)
Total
weight,
mg
91.0
90.3
139.5
131.5
113.7
82.2
90.5
99.7
107.2
84.1
Concen-
tration,
mg/dNm3
40.1
40.0
67.4
60.3
52.2
40.3
45.9
48.2
42.2
38.6
I = 47.5
a = 9.7
N = 10
232°C (450°F)
Total
weight,
mg
88.7
87.3
134.0
124.1
80.9
73.7
79.8
83.2
91.4
76.4
Concen-
tration,
mg/dNm3
39.1
38.6
64.7
56.9
37.1
36.1
40.5
40.2
36.0
35.1
I = 42.4
a = 10.0
N = 10
316°C (600°F)
Total
weight,
mg
77.0
76.9
129.4
118.5
77.2
69.7
77.1
81.0
89.4
73.4
Concen-
tration,
mg/dNm3
33.9
34.0
62.5
54.4
35.4
34.2
39.1
39.1
35.2
33.7
I = 40.2
a = 10.0
N = 10
(continued)
-------
TABLE 4-5 (continued)
Run No.
7A
7B
8A
8B
IDA
10B
Sample
ID
M5-450
M5-450
M5-450
M5-450
M5-450
M5-450
Average
Ambient
Total
weight,
mg
115.2
123.9
90.8
150.2
153.9
117.1
Concen-
tration,
mg/dNm3
55.4
56.6
41.7
56.9
70.9
45.0
I = 54.4
crb = 10.3
Nc = 6
160°C (320°F)
Total
weight,
mg
100.2
112.6
90.1
105.4
143.1
112.1
Concen-
tration,
mg/dNm3
48.2
51.4
41.3
39.9
65.9
43.1
I = 48.3
c = 9.7
N = 6
232°C (450°F)
Total
weight,
mg
91.6
94.5
79.1
98.1
125.4
100.7
Concen-
tration,
mg/dNm3
44.0
43.0
36.3
37.2
57.8
38.7
X" = 42.9
a = 8.0
N = 6
316°C (600°F)
Total
weight,
mg
89.1
89.9
78.2
95.9
100.1
96.3
Concen-
tration,
mg/dNm3
42.8
41.1
35.9
36.3
46.1
37.0
X" = 39.9
a = 4.1
N = 6
I
M
N)
Includes both filter and probe rinse fractions.
'standard deviation with N-l weighting for sample data,
"Number of data points.
-------
TABLE 4-6. FILTERABLE PARTICULATE RELATIVE PERCENT WEIGHT LOSS
AFTER CONDITIONING AT TEMPERATURES 160°, 232°, AND 315°C
I
M
OJ
Run
No.
1A
IB
2C
20
3C
30
4A
4B
SA
SB
6C
60
7C
70
8C
80
1C
10
3A
3B
5C
SO
9A
9B
IOC
100
7A
78
8A
8B
IDA
10B
Sample
ID
MS
H5
HS
MS
MS
HS
MS
HS
HS
H5
MS
MS
MS
MS
MS
MS
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
MSB
HS-450
M5-450
H5-450
H5-450
H5-450
H5-450
Ambient
temperature
Cone. . mg
Rinse
61.0
118.0
84.9
63.1
126.4
114.3
64.7
US. 7
117.2
124.9
118.2
10S.4
68. 5
123.7
108.0
99.1
71.1
84.3
12. 5
63.9
81.7
67.6
19.9
98.0
87.4
69.1
28.1
35.6
13.6
59.2
26.0
18.1
Filter
168.8
140.6
59.9
101.6
200.1
168.1
94.8
122.2
129.7
145.7
83.0
114.0
170.8
149.8
138.2
130.7
69.1
71.1
101.5
94.2
73.1
70.4
77.1
76.4
80.1
72.9
85.4
88.3
77.2
91.0
127.9
99.0
160°C (320°F)
Cone. . mq
Rinse
20.4
28.2
24.8
21.0
41.5
41.7
55.2
52.9
28.7
23.8
30.7
29.2
30.8
Sl.l
21.8
29.9
21.7
19.7
42.0
36.2
43.7
15.8
20.1
26.7
30.2
14.5
14.9
25.6
11.8
13.8
11.6
12.9
Filter
83.6
78.4
33.0
46.4
110.7
114.4
44.0
81.2
74.0
75.0
72.7
69.5
89.2
92.4
77.6
89.4
69.3
70.6
97^5
95.3
70.0
66.4
70.4
73.0
77.0
69.6
85.3
87.0
78.3
91.6
131.5
99.2
Wt. loss, %
Rinse
67
76
71
67
67
64
15
58
76
81
74
72
55
59
80
70
69
77
42
43
47
77
0
73
65
79
47
28
13
77
55
29
Filter
51
44
45
54
45
32
54
34
43
49
12
39
48
38
44
32
0
<1.0
4
0
4
6
9
5
4
5
<1.0
1.5
0
0
0
0
232°C (450°F)
Cone., mg
Rinse
13.1
16.6
20.3
12.3
35.7
35.0
15.8
18.1
16.2
16.8
17.3
17.1
18.2
31.6
13.2
1S.O
21.0
17.9
38.0
33.1
13.1
9.4
12.7
15.0
15.4
9.2
9.9
11.9
4.2
9.6
6.9
7.3
Filter
84.2
77.0
31.6
44.2
108.5
115.3
42.0
80.8
73.5
73.1
68.5
64.4
88.1
88.1
73.2
81.8
67.7
69.4
96.0
91.0
67.8
64.3
67.1
68.2
76.0
67.2
81.7
82.6
74.9
88. S
118.5
93.4
Ut. loss. I
Rinse
79
86
76
81
72
69
76
86
86
87
85
84
73
74
88
85
70
79
48
48
84
86
36
85
82
87
65
67
69
84
73
60
Filter
50
45
47
56
46
31
56
34
43
SO
18
44
48
41
47
37
2
2
5
3
7
9
13
11
5
8
4
6
3
3
7
6
315-C (600«F)
Cone. , mg
Rinse
11.0
14.4
18.5
9.7
33.7
33.2
10.8
12.3
15.0
13.5
16.7
16.0
14.6
22.2
12.6
13.7
12.4
11. S
36.2
30.2
11.9
6.7
10.7
12.4
15.2
9.4
9.0
8.2
3.3
7.8
5.3
5.7
Filter
77.4
71.8
30.5
41.2
107.1
100.5
40.3
75.0
69.7
71.2
69.5
63.8
87.3
85.0
72.7
82.6
64.6
65. 4
93.1
88.3
65.3
63.0
66.4
68.6
74.2
66.0
80. 1
81.7
74.9
88.1
94.8
90.6
Ut. loss, S
Rinse
82
88
78
85
73
71
83
90
87
89
86
85
79
82
88
86
83
86
50
53
85
90
46
87
83
86
68
77
76
87
80
69
Filter
54
49
49
59
47
40
57
39
46
SI
16
44
49
43
47
37
7
8
8
6
11
11
14
10
7
9
6
7
3
3
26
9
Height loss
Ambient weight - 160". 232°. 315°C xelght ,00
ambient weight
-------
140
•o
tT
,100
ft.
(XL
80
3 60
o:
-------
140
120
E
•o
- 100
80
o
o
Of.
CL
UJ
IS
cr
LU
>
60
40
20
01—L
M5
M5-450
I
I
AMBIENT
160° 232°
CONDITIONING TEMPERATURE, *C
315C
Figure 4-2. Average paniculate concentration at indicated
conditioning temperature (Runs 7 and 8).
4-15
-------
TABLE 4-7. SUMMARY OF H2$04 AND S02 ANALYTICAL DATA
Test
No.
0
O
4
c.
Train
ID
1A
IB
1C
ID
2A
2B
2C
2D
3A
3B
3C
3D
4A
4B
4C
4D
5A
5B
5C
5D
6A
6B
6C
6D
7A
7B
7C
7D
Sample
type
M5
M5
MSB
M5B
M5W
M5W
M5
M5
MSB
MSB
MS
MS
MS
MS
M5W
M5W
MS
MS
MSB
MSB
M5W
M5W
MS
MS
M5-450
M5-450
MS
MS
Total H2$04a
mg
24.2
18.6
101.0
69.0
15.1
17.2
16.8
14.1
117.0
118.0
28.0
30.9
9.3
26.6
32.4
15.2
17.9
21.1
70.9
105.0
19.2
29.4
79.4
25.9
147.0
135.0
19.4
23.1
mg/m3
11.1
8.2
44.5
30.5
11.1
10.6
11.1
11.2
56.8
54.1
12.7
14.9
7.9
10.9
13.4
7.4
8.8
9.9
32.5
51.5
10.0
12.7
34.8
13.4
70.7
61.6
8.7
11.0
Total S02b
mg
1413
1519
1570
1406
824
1006
924
783
1300
1374
1399
1298
779
1608
1587
1353
1576
1665
1690
1593
1392
1921
1712
1459
1401
1449
1530
1441
mg/m3
645.2
666.2
691.6
622.1
605.9
621.0
611.9
621.4
631.1
630.3
633.0
627.1
660.2
656.3
655.8
660.0
772.5
778.0
775.2
780.9
725.0
828.0
750.9
756.0
673.6
661.6
686.1
686.2
(continued)
4-16
-------
TABLE 4-7 (continued)
Test
No.
B
in
Train
ID
8A
8B
8C
8D
9A
9B
9C
9D
10A
10B
IOC
10D
Sample
type
M5-450
M5-450
M5
M5
MSB
MSB
M5W
M5W
M5-450
M5-450
MSB
MSB
Total H2S043
mg
152
237
23.1
52.5
77.8
55.5
22.6
28.6
151
157
125
107
mg/m3
69.7
89.8
12.3
23.8
39.5
26.8
10.3
14.5
69.6
60.4
49.2
49.1
Total S02b
mg
1442
1790
1302
1477
1268
1342
1373
1271
1314
1711
1712
1459
mg/m3
661.5
678.0
692.6
668.3
643.7
648.3
626.9
645.2
605.5
658.1
674.0
669.3
H2S04 (S03/H2S04 mist) - analysis per Method 8 (40 CFR, Appendix A,
Reference Method 8, July 1982.
Total S02 - analysis per Method 8.
4-17
-------
mg total ambient weight, with a corresponding average concentra-
tion of 118.0 mg/dNm3 and a standard deviation of 16.8 mg/dNm3.
The MSB and M5-450 sample runs averaged 149.5 mg ambient weight
(68.9 mg/dNm3, standard deviation of 10.9 mg/dNm3) and 125.2 mg
ambient weight (54.4 mg/dNm3, standard deviation of 10.2
mg/dNm3), respectively.
After thermal treatment to 315°C (600°F), the M5 sample
weight averaged 88.3 mg, with a corresponding average concentra-
tion of 44.0 mg/dNm3 and a standard deviation of 9.0 mg/dNm3.
The concentrations of the MSB sample runs averaged 40.2 mg/dNm3,
with a standard deviation of 10.0 mg/dNm3; the M5-450 concen-
trations averaged 39.9 mg/dNm3, with a standard deviation of 4.1
mg/dNm3 (Table 4-5) .
The MS rinse and filter samples consistently showed higher
relative percent weight losses at each conditioning temperature
than the MSB and M5-450 sample fractions (see Table 4-6). The
average MS sample weight at 315°C was about 62 percent less than
the ambient weight, compared with 42 percent for the MSB sample
and 27 percent for the M5-450 sample. The largest percentage
weight loss for the MS rinse and filter fractions occurred at
160°C, and the difference in percent weight loss above 160°C is
comparable to that in the MSB and M5-450 sample runs. Comparison
of weight loss by sample fraction shows that both the MSB and
M5-450 filter samples exhibited weight losses of less than 10
percent at each heat treatment. The MS filters showed weight
losses ranging from 16 to 59 percent, most of which occurred at
4-18
-------
160°C. The weight loss from the probe rinse fraction of each
sample type varied considerably. For all sample types, the probe
rinse consistently showed higher relative percent weight loss
than the filter, and as expected, the probe rinse ambient weights
decreased as the sample (probe) temperature increased. Although
the M5-450 probe rinse weight losses ranged from 38 to 87 per-
cent, the total catch (ambient basis) was significantly less than
either the M5 or MSB samples.
Figure 4-1 shows how the average particulate concentrations
for Runs 1, 3, and 5 compare according to whether sampling was
performed with Method 5 or Method 5B. The largest difference
occurs at ambient temperature. The concentration of condensible
particulates in the M5 samples at ambient temperature was 76.1
percent higher than that in the M5B samples. At the three se-
quential temperatures, concentrations in the M5 samples were 11.6
percent, 13.5 percent, and 13.0 percent higher than the MSB
samples. These results indicate that the more condensible mate-
rial collected, the greater the amount that remains at each
temperature. Figure 4-2 shows the same comparison for MS and
M5-450 samples. On the average, the concentration in the MS
samples at ambient temperature was about 58 percent higher than
that in the M5-450 samples. At the three subsequent tempera-
tures, concentrations in the MS samples were 26.5 percent, 20.9
percent, and 19.0 percent higher than those in the M5-450
samples.
These comparisons show that controlling the sampling temper-
ature to reduce the amount of the condensible particulate col-
lected has a significant impact on the data. Only Run 10 allows
4-19
-------
direct comparison of MSB and M5-450 samples. Results of this run
are not as easy to interpret. The probe rinse portions follow
the expected pattern in that the M5B samples collected the larger
amount of concentrations at ambient temperature; however, the
reverse is true for the filter portions. This run does show the
same general effect as other sample runs insofar as the sample
(either probe rinse or filter) that contained the most condensi-
ble particulate had the highest residual weight after the differ-
ent heat conditioning. The probe rinse for sampling train 10B is
an exception to the general pattern.
The data from Tables 4-5, 4-6, and Figures 4-1 and 4-2 show
that sample temperature is a significant variable that directly
affects the collection of condensible material in the front half
of the standard Method 5 sample train. The current understanding
of the thermogravimetric procedure is that only sulfate present
as H_SO is removed in the heating procedure, particularly at
160°C. Other water-soluble sulfates (e.g., ammonium sulfate or
metal sulfates) would not be removed depending, of course, on the
conditioning temperature. For example, ammonium sulfate, which
would be expected to volatilize at 280°C, would not be removed at
160° or 232°C but would be removed at 315°C. Therefore, weight
losses above 160°C observed for each sample type are probably
attributable to volatilization of sulfate species other than
sulfuric acid. Subsection 4.3 of this report addresses this.
Data from Table 4-7 confirm the relationship between sample
temperature and collection of condensible material in the front
4-20
-------
half of the sampling train. For each test type, the H-SO. con-
tent of the impinger section of the sampling train increased with
increasing sampling temperature. The average concentration of
H-SO. for all M5 sample runs was 13.2 mg/dNm3, compared with 43.5
mg/dNm3 for MSB and 70.3 mg/dNm3 for M5-450. Although the H2S04
results are variable, there is a general within-run correlation
between measured H-SO. and the relative percent weight loss
exhibited between similar samples. This would suggest that H-SO.
is the primary sulfate species being collected, and significantly
higher sampling temperatures [>121°C (250°F)] are required to
minimize the condensation of sulfuric acid in the front half of
the standard Method 5 sampling train.
Tables 4-8 and 4-9 present precision estimates for the heat
treatments evaluated. In Table 4-8, each group represents two
simultaneous runs of the same sample type. For each run group
and temperature, the table lists the mean filterable concentra-
tion, the standard deviation with N-l weighting for sample data,
and the percent coefficient of variation (CV), which expresses
the standard deviation as a percent of the mean concentration.
Table 4-9 summarizes precision estimates for M5, MSB, and M5-450
test data at each conditioning temperature. The mean filterable
concentrations were calculated by averaging the individual run
data to minimize roundoff errors. The mean standard deviations
were calculated by averaging standard deviation values for each
set of grouped runs (Table 4-8) to minimize the effect of
4-21
-------
TABLE 4-8. STATISTICAL DATA FOR GROUPED RUNS AFTER CONDITIONING AT INDICATED TEMPERATURES
I
NJ
Run No.
1A-B
2C-0
3C-D
4A-B
5A-B
6C-0
7C-D
8C-D
1C-D
3A-B
5C-D
9A-B
10C-D
7A-B
8A-B
10A-B
Sample
type
H5
H5
MS
M5
MS
M5
M5
M5
H5B
MSB
MSB
MSB
MSB
MS-4SO
M5-4SO
M5-4SO
Ant> lent
T.a
mg/dNm>
109.2
113.3
142.1
116.2
123.7
101.0
118.8
117.5
6S.3
78.3
69.3
6S.3
6S.S
56. 0
49.3
S8.0
b
0.
cng/dNm1
6.0
24.6
8.0
24.0
3.8
18.0
16.2
19.1
4.9
8.2
2.4
26.9
0.6
0.8
10.7
18.3
cv.c
I
5.5
21.7
5.6
20.3
3.1
17.9
13.6
16.2
7.6
10.5
3.5
41.3
0.9
1.5
21.8
31.6
160°C (320°F)
*.
mg/dNm'
47.2
45.9
72.2
69.4
48.3
48.3
61.1
53.5
40.1
63.9
46.3
47.1
40.4
49.8
40.6
54.5
o,
mg/dNm3
0.5
10.7
4.6
20.8
2.9
4.0
10.3
0.8
0.1
5.0
8.4
1.6
2.5
2.3
1.0
16.1
CV.
X
1.0
23.4
6.4
30.0
6.0
8.4
16.8
1.5
0.2
7.9
18.2
3.5
6.3
4.5
2.4
29.6
232°C (450°F)
T.
mg/dNm3
42.8
39.6
68.9
44.7
43.0
39.9
52.4
44.9
38.9
60.8
36.6
40.4
35.6
43.6
36.8
48.3
a,
mg/dNm3
2.3
7.4
5.2
6.1
1.4
3.3
6.6
1.6
0.4
5.5
0.7
0.2
0.6
0.6
0.6
13.5
CV.
%
5.5
18.6
7.6
13.6
3.3
8.2
12.6
3.5
0.9
9.1
1.9
0.5
1.8
1.3
1.7
28.0
316"C (600°F
Tf.
mg/dNm'
39.1
36.5
64.2
39.5
40.6
39.6
48.4
44.5
34.0
58.5
34.8
39.1
34.5
42.0
36.1
41.6
o,
mg/dNH'
1.8
5.6
0.6
5.4
1.3
2.5
3.8
1.3
0.1
5.7
0.8
0
1.1
1.2
0.3
6.4
CV.
I
4.7
15.3
1.0
13.8
3.3
6.3
7.9
2.9
0.2
9.8
2.4
0
3.1
2.9
0.8
15. 5
Mean filterable concentration.
Ulthln-run standard deviation with N-l weighting for sample data.
""Coefficient variance 1s the standard deviation expressed as a percent of the mean concentration.
-------
TABLE 4-9. SUMMARY OF PRECISION ESTIMATES AFTER CONDITIONING AT INDICATED TEMPERATURES
i
to
to
Run No.
1-8
1,3,5,
9,10
7.8.10
Sample
type
MS
MSB
M5-450
Ambient
I,"
mg/dNm'
118.0
Nd - 16
68.7
N = 10
54.4
N = 6
o,"
mg/dNm3
15.0
N = 8
8.6
N = 5
9.9
N = 3
rv,c
%
12.7
-
12.5
18.3
-
160°C (320°F)
T.
mg/dNm3
55.7
N = 16
47.5
N = 10
48.3
N = 6
o,
mg/dNm3
6.8
N = 8
3.5
N = 5
6.5
N = 3
w,
%
12.3
-
7.4
13.4
-
232°C (450°F)
I.
mg/dNm3
47.0
N = 16
42.4
N = 10
42.9
N = 6
o,
mg/dNm3
4.2
N = 8
1.5
N = 5
4.9
N = 3
TV,
%
9.0
-
3.5
11.4
-
316°C (600°F
T.
mg/dNm3
44.0
N = 16
40.2
N = 10
39.9
N = 6
Ot
mg/dNMJ
2.8
N = 8
1.5
N = 5
2.6
N = 3
cv,
%
6.3
-
3.8
6.6
-
Ttean filterable concentration based on grouped run values.
Mean standard deviation of grouped runs
°Mean coefficient variation (percent) calculated using the mean standard deviation and the filterable concentration of grouped runs.
N = Number of data points.
-------
temporal variation in emissions. In this way, the mean standard
deviation of the grouped runs (o in Table 4-9) more accurately
reflects method precision than does the standard deviation of
individual run concentrations (o in Table 4-5). The number of
data points included in each calculation is shown for considera-
tion in the evaluation of the precision estimates.
For a given group of runs, the within-run agreement was
expected to improve after each stage of heat treatment because of
further elimination of sulfate biases. Generally, the observed
precision was better after heating at 160°C, and for some sam-
ples, after heating at subsequent temperatures. The precision
decreased in some cases, however, probably as a result of in-
creased sample handling.
The mean standard deviation for eight M5 run groups was 15.0
mg/dNm3 at ambient conditions, which corresponds to a mean coef-
ficient of variation (CV) of 13 percent. Only three of the eight
groups had a standard deviation of less than 10.0 mg/dNm3, which
corresponds to a CV of 8 percent or less. The five MSB run
groups had a mean standard deviation of 8.6 mg/dNm3 and a corre-
sponding mean CV of 13 percent at ambient conditions. The three
M5-450 run groups had a mean standard deviation of 9.9 mg/dNm3
and a corresponding mean CV of 18 percent at ambient conditions.
The mean standard deviation for the eight M5 run groups
heated to 160°C (320°F) was 6.8 mg/dNm3 and the corresponding CV
was 12 percent, which was an improvement over results at ambient
conditions. For the five MSB run groups heated to 160°C, the
4-24
-------
mean standard deviation and CV were 3.5 mg/dNm3 and 7 percent,
respectively. The three M5-450 run groups heated to 160°C showed
a mean standard deviation of 6.5 mg/dNm3 and a CV of 13 percent.
Precision data for the M5 run groups heated to 232°C (450°F)
included a mean standard deviation of 4.2 mg/dNm3 and a CV of 9
percent. For the five MSB run groups, the average standard
deviation and CV were 1.5 mg/dNm3 and 4 percent. The M5-450 runs
showed a mean standard deviation of 4.9 mg/dNm3 and a CV of 11
percent.
Precision data for the eight M5 groups heated to 316°C
(600°F) included a mean standard deviation of 2.8 mg/dNm3 and a
CV of 6 percent. Six of the eight run groups had a mean standard
deviation of less than 5.0 mg/dNm3 and a corresponding CV of less
than 11 percent. For the MSB samples, the mean standard devia-
tion and CV were 1.5 mg/dNm3 and 4 percent. Four of the five MSB
runs, however, had a mean standard deviation of less than 1.1
mg/dNm3 and a corresponding CV of less than 3 percent. For the
M5-450 runs, the mean standard deviation on CV were 2.6 mg/dNm3
and 7 percent.
All of these statistical results indicate a high degree of
precision for the majority of samples. The enhanced precision of
each group was expected because of the reduction in the amounts
of condensible material from rinse and filter fractions.
4.3 WATER-SOLUBLE SULFATE ANALYTICAL DATA
Table 4-10 summarizes results from the water-soluble sulfate
analysis performed on the indicated samples. Since particulate
4-25
-------
TABLE 4-10. SUMMARY OF WATER-SOLUBLE SULFATE ANALYTICAL RESULTS
Test No.
2A
2B
4C
4D
6A
6B
9C
9D
Sample
ID
M5W
M5W
M5W
M5W
M5W
M5W
M5W
M5W
Total
NWSSP,
mg
55.3
61.1
76.4
66.8
65.3
74.3
78.8
71.4
Average =35.1
o = 3.2
N = 8
Concen-
tration,
mg/dNm3
40.7
37.7
31.6
32.6
34.0
32.0
36.0
36.2
Statistical data
for grouped runs
T."
mg/dNm3
39.2
32.1
33.0
36.1
o,C
mg/dNm3
2.1
0.7
1.4
0.1
CV,d %
5.4
2.2
4.3
0.4
Total non-water-soluble sulfate particulates (NWSSP of probe and filter
fractions) determined by the Texas Air Board water-soluble sulfate analyt-
ical method.
5Mean filterable concentration.
•*
"Within-run standard deviation with N-l weighting for sample data.
Coefficient of variance is the standard deviation expressed as a percent of
the mean concentration.
4-26
-------
cannot be determined gravimetrically in the presence of sulfuric
acid (because of the inexact amount of water retained by the
acid), this method is designed to convert the acid to a nonhydro-
scopic, nonvolatile product (in this case ammonium sulfate). The
acid is converted to ammonium sulfate and the weight of ammonium
sulfate calculated from an independent sulfate determination is
subtracted from the total weight. Section 3 and Appendix D of
this report detail the sample preparation and analytical tech-
niques as well as equipment and reagents used to perform this
analysis. Appendix C contains data and example calculations for
this method.
The M5W sample runs showed an average non-water-soluble
sulfate particulate concentration of 35.1 mg/dNm3 with a standard
deviation of 3.2 mg/dNm3. Statistical data for grouped runs
exhibited a high degree of precision, as characterized by a mean
standard deviation of 1.1 mg/dNm3 and a corresponding mean coef-
ficient of variation (CV) of 3.1 percent. A comparison of the
M5W results with the thermogravimetric results for M5 and MSB at
160°C (concentration basis), shows that the M5W results averaged
34.8 mg/dNm3 for Runs 2, 4, and 6, whereas the M5 results aver-
aged 54.5 mg/dNm3 for the same runs. In Run 9, the average
values were 36.1 mg/dNm3 for M5W and 47.1 mg/dNm3 for MSB. No
direct comparison with M5-450 is possible.
After heat treatment to 160°C, the average M5 results were
57 percent higher than the M5W results, and average MSB results
were 30 percent higher than the M5W results. Thus, it is obvious
4-27 •
-------
that the M5W procedure gives significantly lower results than M5
or M5B samples, which have been heat-conditioned at 160°C.
When compared with the M5, MSB, and M5-450 results after
conditioning at 315°C, the M5W concentrations still ranged from
12 to 20 percent lower than the others.
These data are consistent with the basic principle of the
thermogravimetric procedure in that only H_SO. and associated
water are removed by heating at 160°C, whereas additional sulfate
species (metal sulfates, ammonium sulfate, and possibly some
residual H_SO.) could not be removed. If these other sulfate
species were water-soluble, the expected M5W results would be
lower because the method is designed to correct for total water-
soluble sulfate, which includes H_SO..
In an effort to characterize this difference, the within-run
heat-conditioned samples were extracted with water, and aliquots
were analyzed by ion chromatography (1C) for residual water-
soluble sulfates as SO ~. Table 4-11 presents the results of the
within-run residual sulfate analysis. As shown, both the rinse
and filter fractions contained residual sulfate ranging from 2.5
to 4.4 mg in the probe fraction and from less than 0.1 to 11.6 mg
in the filter fraction. All samples exhibited the same basic
characteristics; i.e, residual water-soluble sulfate was found in
each sample fraction.
The particulate concentrations in samples conditioned to
315°C were corrected for residual sulfate and compared against
the M5W results. Table 4-12 summarizes the comparative data. As
4-28
-------
TABLE 4-11. SUMMARY OF RESULTS FOR RESIDUAL SULFATE (SO/)
IN WITHIN-IN RUN SAMPLES CONDITIONED AT 315°C
Sample
ID
2C
2D
4A
4B
6C
6D
9A
9B
Sample3
type
M5
M5
MS
M5
M5
M5
MSB
MSB
b
Residual sulfate as S04
Probe, mg
4.4
2.5
3.9
3.7
3.8
3.5
2.7
3.9
Filter, mg
<0.1
2.3
11.6
6.9
5.5
9.4
3.0
3.9
Total , mg
4.4
4.8
15.5
10.6
9.3
12.9
5.7
7.8
These samples, previously heat conditioned to 315°C, were extracted
with water and analyzed for total sulfate (S0d~) with ion chromato-
graphy (1C).
'Total sulfate (SO.") determined by 1C from aliquots of probe rinse
and filter fractions.
4-29
-------
TABLE 4-12. COMPARISON OF WITHIN-IN RUN PARTICULATE CONCENTRATION
AFTER CORRECTION FOR RESIDUAL SULFATE TO THE M5W TEST RESULTS
Sample
ID
2A M5W
2B M5W
2C M5
2D M5
4A M5
4B M5
4C M5W
4D M5W
6A M5W
6B M5W
6C M5
6D M5
9 A M5B
9B MSB
9C M5W
9D M5W
Uncorrected particulate
concentration, mg/dNm3
NAC
NA
32.5
40.4
43.3
35.6
NA
NA
NA
NA
37.8
41.3
39.1
39.1
NA
NA
Corrected partjculate
concentration, mg/dNm3
40.7
37.7
29.5
36.6
30.2
31.3
31.6
32.6
34.0
32.0
33.7
34.7
36.2
35.4
36.0
36.2
The uncorrected concentrations for M5 and M5B samples are calculated
concentrations after conditioning at 315°C.
DThe corrected particulate concentrations for the M5 and M5B samples were
calculated by subtracting the weight of residual sulfate as SO. (Table 4-11)
from the total catch at 315°C and dividing by the sample volume.
r*
"Not applicable.
4-30
-------
shown, the average M5 and MSB sample concentrations corrected for
residual sulfate (Table 4-11) agreed to within 5 percent of the
average M5W results. Considering the overall complexity of the
M5W sample analysis and the number of analytical steps involved
in the thermogravimetric and 1C procedures, the data as presented
in Table 4-12 show no significant difference between the M5W
results and the M5 and MSB results heated to 315°C and corrected
for residual sulfate. These data substantiate the conclusion
that the primary difference in particulate concentrations between
samples heat-conditioned to 315°C and the calculated M5W results
represent water-soluble sulfate species not removed by thermal
treatment. As a further check, the remaining MS, MSB, and M5-450
sample fractions were extracted with water and analyzed by 1C for
residual sulfate. Table 4-13 summarizes these data. The data as
presented in Table 4-13 exhibit similar characteristics to data
presented in Tables 4-10, 4-11, and 4-12. Residual sulfate as
SO." was found in each sample with the exception of the rinse
fractions of Samples 5C and D (MSB), 7A and B (M5-450), and 10D
(MSB), and particulate concentrations corrected for residual SO.~
agreed closely for each sample type. The average corrected MS
concentration for Runs 1, 3, and 5 was 40.5 mg/dNm3, compared
with 39.8 mg/dNm3 for MSB. The average corrected MS concentra-
tion for Runs 7 and 8 was 40.6 mg/dNm3 compared with 38.4 mg/dNm3
for M5-450. For Run 10, the average concentration in MSB was
33.0 mg/dNm3, compared with 33.2 mg/dNm3 in M5-450.
4-31
-------
TABLE 4-13. SUMMARY OF RESULTS FOR RESIDUAL SULFATE (SO/)
ON SAMPLES CONDITIONED AT 315°C *
Run
No.
1A
IB
1C
ID
3A
3B
3C
3D
5A
5B
5C
5D
7A
7B
7C
7D
8A
8B
8C
80
10A
10B
IOC
10D
Sample0
ID
M5
M5
MSB
M5B
M5B
M5B
M5
M5
M5
M5
MSB
MSB
M5-450
M5-450
MS
MS
M5-450
M5-450
MS
MS
M5-450
M5-450
MSB
MSB
Total
as SO
Rinse
13.1
5.7
0.6
1.4
1.4
2.5
13.7
15.9
6.1
5.0
0
0
0
0
5.9
7.4
0.3
0.1
7.7
6.7
24.7
10.7
0.2
0
sujfates
4". m9
4 Filter
2.6
2.7
3.5
3.2
6.5
9.0
12.2
11.4
4.2
3.8
4.1
2.4
1.5
1.6
5.2
7.6
1.3
1.6
3.5
4.9
1.7
1.3
4.3
2.5
Total3
residual
sulfate
(S04~), mg
15.7
8.4
4.1
4.6
7.9
11.5
25.9
27.3
10.3
8.8
4.1
2.4
1.5
1.6
11.1
15.0
1.6
1.7
11.2
11.6
26.4
12.0
4.5
2.5
Particulate
concentration, mg/dNm3
Uncorrected Corrected
40.4
37.8
33.9
34.0
62.5
54.4
63.7
64.6
41.5
39.6
35.5
34.2
42.9
41.1
45.8
51.2
35.9
36.3
45.3
43.5
46.1
37.0
35.3
33.7
33.3
34.1
32.1
31.9
58.8
49.2
52.0
51.4
36.5
35.4
33.6
33.0
42.2
40.4
40.8
44.0
35.2
35.7
39.4
38.3
34.0
32.4
33.5
32.5
Total residual sulfate is the summation of the rinse and filter fraction
in mg.
DParticulate concentration in milligrams per cubic meter. The uncorrected
concentrations represent rinse and filter catch after heat conditioning at
315°C. The corrected values represent p§rticulate concentration after ad-
justing the sample fractions for the SO. values obtained by 1C analysis.
"These samples, previously heat-treated at 315°C, were extracted with water
and analyzed for total sulfate (S0.~) by 1C.
4-32
-------
For the characterization of sulfate species other than
H»SO., extracts of samples from Runs 2 and 9 were analyzed by ICP
for cations. Additionally, select samples were analyzed for NH.
using the titrametric procedure described in EPA Method 350.2.
The results of this analysis are presented in Table 4-14.
A 40-element ICP scan was determined. Four nonmetals were
included in this list—boron, phosphorous, silicon, and sulfur.
Sulfur was converted to the equivalent amount of sulfate. The
results are presented in Table 4-15. The agreement between
sulfate values obtained on the 1C and those obtained by ICP is
good considering the ability of ICP to detect sulfur. Twenty
elements were below 0.01 mg/liter. Nine others were less than
0.1 mg/liter (cobalt, copper, lithium, manganese, molydenum,
nickel, strontium, titanium, and vanadium). At 0.1 mg/liter, the
contribution of these elements are insignificant compared with
that of calcium and sodium at 5 mg/liter. As shown in Table
4-14, the concentration of ammonium cation is no more significant
than the other reported cations.
Table 4-16 presents the charge balance for the 16 samples
analyzed by ICP. Calculations of this charge balance are based
on each cation having the charge listed in Table 4-14 and all
-2
sulfate presented as SO. . The values for the M5W filter sam-
ples averaged 0.44 and those for the probe rinse samples averaged
0.11. These values indicate that more than 65 percent of the
sulfate on the filter is present as sulfuric acid and almost 90
percent of the probe rinse sulfate is sulfuric acid. This is in
4-33
-------
TABLE 4-14. CATIONS FOUND IN WATER EXTRACTION BY ICP
Sample
ID
2A Probe rinse
2A Filter
2B Probe rinse
2B Filter
2C Probe rinse
2C Filter
2D Probe rinse
2D Filter
9A Probe rinse
9A Filter
9B Probe rinse
9B Filter
9C Probe rinse
9C Filter
9D Probe rinse
9D Filter
Sample
type
M5W
M5W
M5W
M5W
M5
M5
M5
M5
M5B
M5B
MSB
MSB
M5W
M5W
M5W
M5W
Metal , mg
Al+3
0.12
2.2
0.038
0.82
0.46
0.37
0.20
0.68
0.22
0.42
0.37
0.47
0.24
2.1
0.091
2.5
Ca+2
0.30
2.1
<0.03
0.58
0.083
0.43
0.11
0.56
0.13
0.54
0.11
0.57
0.28
1.2
0.22
1.4
Fe+3
0.22
0.17
0.053
0.098
0.071
0.072
0.052
0.10
0.034
0.099
0.047
0.10
0.15
0.18
0.15
0.30
K+
0.17
<0.01
<0.03
<0.01
<0.004
0.021
0.12
0.16
<0.004
0.028
0.013
0.12
0.66
<0.01
0.083
0.28
Mg+2
0.088
0.50
<0.023
0.085
0.019
0.065
0.061
0.103
0.027
0.080
0.035
0.095
0.099
0.24
0.12
0.32
Na+
0.88
0.65
<0.008
0.58
0.26
0.53
0.20
0.82
0.22
0.82
0.22
0.94
0.56
0.65
0.71
0.82
Zn+2
0.41
0.003
0.27
0.13
0.050
0.076
0.034
0.005
0.028
0.038
0.031
0.007
0.75
0.018
0.41
0.009
Cation, mg
NH4
1.30
<0.26
<0.39
0.26
-
_
.
-
0.72
0.26
0.21
<0.26
I
U>
-------
TABLE 4-15. SOLUBLE SULFATE PRESENT IN SAMPLE
ANALYZED BY ICP
Sample ID
2A M5W
2B M5W
2C M5
2D M5
9A MSB
9B M5B
9C M5W
9D M5W
1C sulfate, mg
Probe rinse
37.6
33.4
4.4
2.5
2.7
3.9
75.0
61.9
Filter
50.2
17.4
6.5
8.9
9.6
10.5
42.4
46.6
ICP sulfate, mg
Probe rinse
30.2
38.9
4.5
2.3
2.4
3.9
60.5
52.3
Filter
41.9
17.2
6.3
7.5
8.7
9.9
38.2
36.0
4-35
-------
TABLE 4-16. CHARGE BALANCE RESULTS FOR SAMPLES
ANALYZED BY ICP
Sample ID
2A M5W
2B M5W
2C M5
2D M5
9A MSB
9B M5B
9C M5W
90 M5W
Charge balance3
Probe rinse
0.22
0.03
0.80
0.92
0.81
0.78
0.10
0.07
Filter
0.41
0.49
0.73
0.83
0.62
0.63
0.41
0.45
Milliequivalents cations/milliequivalents sulfate.
4-36
-------
direct contrast to the M5 and MSB sampler after heat-conditioning
at 315°C, in which the average charge balance for the probe rinse
was 0.83; this value is close enough to 1.00 at these extremely
low levels to lead to the conclusion that the remaining sulfate
is present as metal salts. The average charge balance for the M5
and MSB filters is 0.70, which means either that 70 percent of
the sulfate is present as metal sulfates or that some of the
metal salts are present as bisulfates, which would account for
the charge balance being less than 1.00. The formation of bisul-
fate is possible inasmuch as these salts are not being formed in
a true solution, but rather in the gas phase or on the surface of
the filter.
Based on the information from the thermogravimetric analysis
and the results of these metal analyses, one might reasonably
conclude that sulfuric acid collected with the particulate reacts
to form metal sulfates and/or bisulfates. This artifact forma-
tion explains why the greater the amount of sulfuric acid col-
lected during sampling, the higher the apparent particulate catch
after the different heat treatments.
4.4 RECOMMENDATIONS FOR SAMPLE AND ANALYTICAL METHODOLOGY
Data from this study support previous work that charac-
terized condensible sulfate biases of particulate measurements at
2345
source emission streams containing sulfur oxides. ' ' ' The EPA
has stated that the intent of the New Source Performance Stan-
dards (NSPS) for particulate emissions from FCC units is to
4-37
-------
control "catalyst fines" or "mineral dust" and not the condensi-
ble sulfates that are present in the gas phase at the control
device operating temperature. Emissions from fluid catalytic
cracking and thermoform catalytic cracking units are known to
contain sulfur oxides; therefore, sulfuric acid (H_SO.) and/or
its metal and ammonium salts are the most probably forms of
water-soluble sulfates. Water-soluble sulfate exists in many
complex chemical forms, the most common being sulfuric acid. The
results of this study show that H_SO. is the predominant sulfate
species in the FCCU emission stream and metal sulfates, primarily
sodium and calcium, constitute the remaining water-soluble sul-
fate of any significance. Therefore, a particulate sampling
method designed to minimize the collection of H?SO. and at the
same time reduce residual H-SO. immediately prior to gravimetric
analysis is required to minimize potentially high biases in
particulate measurements from these sources.
It is evident that sample temperature significantly affects
the retention of condensible sulfate (H^SO. in this case) mate-
rial in the front half of the standard Method 5 sampling train.
The thermogravimetric and back-half H_SO. data show that at
sampling temperatures below 160°C (320°F), a significant amount
of H-SO. is retained in the front half of the Method 5 sampling
train. Increasing the sampling temperatures (MSB and M5-450)
reduces the amount of H_SO. retained in the front half, but does
not eliminate it. If H-SO. collected with the particulate con-
denses reacts to form metal sulfates and/or bisulfates, this
4-38
-------
artifact formation compounds the problem of accurately deter-
mining the true particulate emissions (catalyst fines) from the
source.
In summary, the greater the amount of H-SO. retained in the
probe and on the filter, the greater the positive bias in partic-
ulate measurements from these sources. Increased H_SO. retention
in the probe and on the filter also increases the potential for
artifact formation and additional positive bias in particulate
measurements.
From an analytical standpoint, the thermogravimetric proce-
dure is the easiest and least expensive technique for reducing
H0SO. bias on rinse and filter samples collected at this source.
«. 4
The data clearly show that the greater the amount of condensible
sulfate (H SO.) initially collected, the more that will remain at
each heat interval, regardless of treatment temperature. The
analytical data indicate that H_SO. and its associated water are
significantly reduced by heating sample fractions to at least
160°C (320°F) prior to gravimetric analysis. Observed weight
losses at higher treatment temperatures are primarily attributa-
ble to the volatilization of residual H2S04 and otner water-
soluble sulfates not removed by heating at 160°, 232°, or 315°C.
The results from the water-soluble sulfate analysis of selected
samples supports this conclusion. The average particulate con-
centrations in M5, MSB, and M5-450 samples conditioned to 315°C
and corrected for residual water-soluble sulfate (as determined
by ion chromatography) compared to within 5 percent of the M5W
results.
4-39
-------
2345
Based on the results of this and similar studies, ' ' '
PEDCo offers the following recommendations relative to sample and
analytical methodology for particulate measurement at FCCU
sources.
4.4.1 Texas Air Control Board Method
The results of this study show that the Texas Air Control
Board (TACB) method, entitled "Determination of Particulate in
Stack Gases Containing Sulfur Dioxide," is applicable to these
sources. Modifications to procedures detailed in the TACB method
are presented in Section 3 and Appendix D of this report. A copy
of the method as received from the TACB is presented in
Appendix D.
Prior to analyzing field samples, PEDCo conducted an exten-
sive laboratory evaluation of the method. The experimental
design and the results of this study are described in a separate
method evaluation report issued under this task assignment. This
method entails the use of the sample procedures and temperature
[121°C (250°F)] described in EPA Reference Method 5, except that
deionized, distilled water is used instead of acetone as the
rinse reagent. The method converts any sulfuric acid present to
a suitable form for accurate gravimetric analysis. Ammonium
hydroxide is added to form ammonium sulfate in the aqueous solu-
tions. The procedure allows for the determination of gross
particulate (sulfate as ammonium sulfate to other particulate),
the determination of sulfate as ammonium sulfate from a Method 6
titration or ion chromatography, and subsequently, the determina-
tion of water-insoluble sulfate particulate by the subtraction of
4-40
-------
sulfate (as ammonium sulfate) from the gross particulate. No
direct comparison between this method and the thermogravimetric
procedures is possible because the method corrects for total
water-soluble sulfate (including H SO.), whereas the thermogravi-
metric procedure corrects primarily for H_SO and associated
water. The fact that the average heat-treated sample concentra-
tions corrected for residual water-soluble sulfate compare within
5 percent of the calculated M5W concentration explains the con-
sistently lower values obtained by M5W compared with the heat-
treated samples. Obviously, because this method corrects for
total water-soluble sulfate, the particulate results obtained are
expected to be equal to or lower than those in samples collected
at the same or higher temperature and analyzed thermogravimetri-
cally, regardless of treatment temperature. Considering the
overall complexity of the analytical procedure, the precision and
accuracy of the method are exceptionally good, as characterized
by a standard deviation of 3.2 mg/dNm3 and a relative standard
deviation of 3.1 percent for this set of data.
4.4.2 Modified Method 5
Because of the complexity of the TACB analytical procedure,
an alternative methodology incorporating higher sampling tempera-
tures in conjunction with the thermogravimetric analysis seems
appropriate. It is recommended that EPA Reference Method 5
sampling and analytical procedures, with the following modifica-
tions, be used to determine particulate emissions from sources of
this type:
4-41
-------
1. Sample collection temperatures should be maintained at
no less than 160°C (320°F), and the probe and filter
temperature should be monitored directly by thermo-
couple leads located at the exit of the sample probe
and immediately behind the filter frit. Most commer-
cially available stack sampling equipment is capable of
maintaining front-half temperatures of 160°C (320°F);
however, sampling at temperatures above 205°C (400°F)
will probably require equipment modifications to ensure
maintenance of the temperature required and the integ-
rity of sampling train components.
2. Prior to the gravimetric analysis, probe rinse and
filter fractions should be heated in an oven at not
less than 160°C (320°F) for 3 hours or more. Prior to
weighing, sample fractions should be allowed to cool in
a desiccator for approximately 2 hours and weighed
according to the constant weight criteria detailed in
Reference Method 5.
3. These results also indicate that the combination train
(Reference Methods 5 and 8) may not yield accurate
results for particulate and H2SO. unless the probes and
filter temperatures are considerably higher than 160°C
(320°F). The data indicate that the combination of
Reference Methods 5 and 8 train can be used to sample
for particulate and S02 simultaneously, provided the
train is air-purged for at least 15 minutes after
testing is completed to remove the S09 adsorbed in the
IPA.
4-42
-------
SECTION 5
QUALITY ASSURANCE
Because the end product of testing is the production of
representative emission results, quality assurance is one of the
main facets of stack sampling. Quality assurance guidelines
provide the detailed procedures and actions necessary for defin-
ing and producing acceptable data. Four such documents were used
in this test program to ensure the collection of acceptable data
and to provide a definition of unacceptable data. The following
documents comprise the source-specific test plan prepared by
PEDCo and reviewed by the Emission Measurement Branch: the EPA
Quality Assurance Handbook Volume III, EPA-600/4-77-027; the
PEDCo Environmental Emission Test Quality Assurance Plan; and the
PEDCo Environmental Laboratory Quality Assurance Plan. The last
two, which are PEDCo's general guideline manuals, define the
company's standard operating procedures that are followed by the
emission testing and laboratory groups.
Appendix F provides more detail on such quality assurance
procedures as QA objective; data reduction; quality control
checks; performance and system audits; preventive maintenance;
precision, accuracy, and completeness; corrective action; and
quality assurance reports to management.
5-1
-------
With regard to this specific test program, the following
steps were taken to ensure that the testing and analytical proce-
dures would produce quality data.
0 Calibration of field sampling equipment. (Appendix E
describes calibration guidelines in more detail.)
0 Checks of train configuration and calculations.
0 Onsite quality assurance checks such as leak checks on
the sampling train, the pitot tube, and the Orsat line
and quality assurance checks of all test equipment
prior to use.
0 Use of designated analytical equipment and sampling
reagents.
Table 5-1 lists the sampling equipment used for particulate
testing and the calibration guidelines and limits for this equip-
ment. In addition to the pre- and post-test calibrations, a
field audit was performed on the meter boxes used for sampling.
PEDCo-constructed critical orifices were used in this audit.
Figures 5-1 through 5-4 show an example audit run for each meter-
ing console used for testing. Figures 5-5 and 5-6 present addi-
tional onsite quality assurance checks of dry gas meter and
impinger thermometers as well as the thermocouple leads for the
quad train probe and filter assemblies. Onsite calculation
checks were performed to verify isokinetic sampling rates and for
comparison with expected values. Figure 5-7 presents an example
onsite calculation check for one of the quad train runs.
For both the thermogravimetric and water-soluble sulfate
analyses, numerous blank samples (filters, acetone, distilled
water, insopropyl alcohol, and hydrogen peroxide) were analyzed
5-2
-------
TABLE 5-1. FIELD EQUIPMENT CALIBRATION
Equipment
Meter box A
B
C
D
Pi tot tube
Digital A&B
indicator C&D
Thermocouple
and stack
thermometer
Orsat analyzer
Impinger A
thermometer B
C
D
Mettler balance
Barometer
Dry gas
thermometer
ID
No.
FB-8
FB-2
FB-10
FB-1
Q
No. 125
No. 220
No. 174
No. 142
No. 317
Calibrated
against
Wet test meter
Standard pi tot
tube
Millivolt signals
ASTM-2F or 3F
Standard gas
ASTM-2F or 3F
Type S weights
NBS traceable
barometer
ASTM-2F or 3F
Allowable
deviation
Y +0.02 Y
AH (3 +0.15
(Y +0.05 IY post-test)
Cp +0.01
0.5%
1.5%
(+2% saturated)
+0.5%
±2°F
±0.5 g
+0.10 in.Hg
(0.20 post-test)
±5°F
Actual
deviation
- 0.55
+ 1.4
- 0.83
- 0.80
0
0.18%
0.18%
0.12%
+ 0.25%
+ 1°F
+ 2°F
- 1 °F
0°F
+ 0.1 g
0.0
Avg. +2°F
(all)
Within
allowable
limits
y
/
/
S
S
/
/
/
/
/
/
/
^
/
/
/
Comments
en
I
Co
(continued)
-------
TABLE 5-1 (continued)
Equipment
Probe nozzle 1A
IB
1C
ID
2A
2B
2C
2D
ID
No.
A
B
C
D
E
F
J
K
Calibrated
against
Caliper
Allowable
deviation
Dn +0.004 in.
Actual
deviation
0
0.003
0.002
0.001
0.001
0.003
0.002
0.003
Within
allowable
limits
Comments
I
*».
-------
DATE: fr-/f-X'.l. CLIENT: VSf t'A - /V//:
BAROMETRIC
ORIFICE NO.
PRESSURE (P
II
t.J: >^./:« In. Hg METER BOX NO. fft- V
PRETEST v: (?. F
ORIFICE K FACTOR: H-?7' «<. /^"Y AUDITOR: I/ /^
Orifice
manometer
reading
AH
in H20
1 /
Dry gas
meter
reading
Vvf
ft3
^7,^,-c
*-//.,?.••;
Temperatures
Ambient Dry gas meter
Tas/Ta* Inlet Outlet
a T XT T XT
'i/'if 'oi/Tof
op op op
£"£ fy ^5~-
f-' 93 9-'
Duration
of
run
0
min
/?.*
Dry gas
meter
volume
\
ft3
/:<<>
Average temperatures
Ambient
Ta
°F
Z*
Dry gas V V Audit
meter std mact
Tm
°F ft3 ft3
?v /x-i /;,#•? '.-v/7y
Y
deviation
V|T1Std
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
/ 3. ^1
Audit Y
act.
V[nstd
^, -777
\ct
(1203)( 0 )( K )(PkaJ
fo oar
(Ta + 460)1/2
Q
/;u-y-
Y deviation, %
(Y audit - Y pre-test)(100%)
(Y audit)
r ' r '''-
Audit Y must be in the range, pre-test Y ±0.05 Y
Figure 5-1. Onsite dry gas meter audit - Train A.
5-5
-------
DATE: ft" - 2-0 - 59- CLIENT: u 5 e P* - ev*t n
BAROMETRIC
ORIFICE NO.
PRESSURE (P
bar): 3^/«^in. Hg METER BOX NO. /="/?- >L
PRETEST Y: * /??•?
ORIFICE K FACTOR: r, V3 r*/o "V AUDITOR: ^ P
Orifice
manometer
reading
AH
in H20
;.<-/
Dry gas
meter
reading
v./vf
ft3
•?F,/00
51.^06
Temperatures
Ambient Dry gas meter
Ta,-/Taf I^et Outlet
T /T T /T
'ii"if 'oi'of
op op op
^^ f^ -to
Average temperatures
Ambient
Ta
°F
^r
Dry gas V V Audit
meter std act
T Y
m
°F ft3 ft3
-----, ^— , . _
o '''J /3~'&3 /5,yo Or ?frf
Y
deviation
- *, ^
Vmstd
(17.647)( Vm )(Pbar + AH/13.6)
(Tm + 460)
/f'63
Audit Y
Vm t
Vmstd
^
-------
DATE:
'?/
»/
Orifice
manometer
reading
AH
in H20
/' f :
Dry gas
meter
reading
ft3'
7<.----
2 w ' r~
. . •• -
Temperatures
Ambient
VTaf
°F
n
9-
Dry gas meter
Inlet
vv
°F
75
^/•/
Outlet
Toi/Tof
CF
?<'•
7s
Duration
of
run
min
//, ^
y / y , c-t <—
Dry gas
meter
volume
\
ft3
/:.*•;<
Average temperatures
Ambient
Ta
°F
%%
Dry gas
meter
m
°F
^r
n3
/-\ot-
ft3
y/.3*
Audit
OAM
deviation
- ;•, i
mstd
(17.647)( Vm )(Pbar + AH/13.6)
(Tm * 460)
l2j u
Xct
(1203)( 0 )( K )(
Pbar^
a
It.X
Audit Y
Vmact
V
m std
t^.'l
Y deviation, /K
(Y audit - Y pre-test)(100%)
(Y audit)
'") // CTv
,- , ^
Audit Y must be in the range, pre-test Y ±0.05 Y
Figure 5-3. Onsite dry gas meter audit - Train C.
5-7
-------
DATE:
CLIENT: ,J5
R
BAROMETRIC
ORIFICE NO.
PRESSURE (PkaJ: ?
-------
Audit Name:
- /{/Ltd Date: 2 K
ASTM-3F at U-f ff 9
ambient temp. ,
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp, j
ASTM-3F at -
stack temp.
% 0^ in
ambient air
IOLM std.
weight
Corrected*
NWS value
•E-i ft
4 *»9fc
B I"/
I ft
7/fcX (>
20.8%
Value
Determined
$1
Z1
r— *?
^ ri
1*1 /f**
?r
73
f2-
9s
?3
?r
Deviation
0
^1"
&
-t y
/3°A?d
o
-/
-2
4f
- a
f^-e
Max. Allowable
Deviation
5°F
5°F
2°F
7°F
See table
0.7%
0.5 grams
0.20 in. Hg
Reference temp. °F
Max. deviation °F
32-140
7
141-273
9
274-406
11
407-540
13
541-673
15
674-760
17
* Correction factor:
NWS value (in. Hg) - [Altitude (ft)/lOOO(ft/1n. Hg)] + 0.74 in. Hg
(0.74 in. Hg is the nominal correction factor for the reference barometer
against which the field barometer was calibrated.)
If it is not feasible to perform the audit on any piece of equipment, record
"N/A" in the space provided for the data.
Figure 5-5. Onsite audit data - Trains A and B.
5-9
-------
Audit Name:
Date:
Auditor
: \] P
Equipment
Meter box
inlet thermo.
Meter box
outlet thermo.
Impinger
thermometer
Stack
thermometer
or
Thermocouple
Orsat
analyzer
Trip
balance
Barometer
Reference
ASTM-3F at J
ambient temp.
ASTM-3F at
ambient temp.1"
ASTM-3F at
ambient temp.
ASTM-3F at
ambient temp.
ASTM-3F at
stack temp.
% 02 in
ambient air
IOLM std.
weight
Corrected*
NWS value
Reference
Value
£&?o J?y
tn-i $K
Ft-f° Z
rn-i W
c ?t
£ 1(,
cf it*
^ F ft,
20.8%
Value
Determined
srr
r£
*6
?/
?t
<>
U
is-
?1
Deviation
^-;°
+ 2°
_-.r
->•
-7<
0
0
0
-/ °
-}°
Max. Allowable
Deviation
5°F
5°F
2°F
7°F
See table
0.7%
0.5 grams
0.20 in. Hg
Reference temp. °F
Max. deviation °F
32-140
7
141-273
9
274-406
11
407-540
13
541-673
15
674-760
17
* Correction factor:
NWS value (in. Hg) - [Altitude (ft)/1000(ft/in. Hg)] + 0.74 in. Hg -
(0.74 in. Hg is the nominal correction factor for the reference barometer
against which the field barometer was calibrated. )
If it is not feasible to perform the audit on any piece of equipment, record
"N/A" in the space provided for the data.
Figure 5-6. Onsite audit data - Trains C and D.
5-10
-------
-32—
»f «Tf «•! M»IM C
»u ^«vit
rank MMM i*
l.U
.tK<
1. »!•> e< m\»' «•*>• *t iu««i'*
t.«?0>t.
ii. ft
», . *
1
•»td
t.
to t!Mk fit.
•-•T-V '
17 f.
t to,
•DlK«l«' •<**< •« MK> fit
• O.MO c. 0,1 • C.MO it 0,1 • e.ao c. t( • « eei •
:«,.•. tt
to
4. (UCl 1*lK
-------
in a manner to that used on the collected samples. Table 5-2
presents example blank analytical data from the thermogravimetric
procedure. Filter and acetone blanks were heat-conditioned at
the designated temperatures and weighed to a constant weight.
Reported blank weights were not considered significant because
the fluctuations in weights between each conditioning temperature
and the ambient weight were attributed primarily to the number of
times each fraction was handled. Also, the sample mass and
corresponding concentration data were sufficiently large to
preclude the use of blank corrections, which on the average
represented less than 0.5 percent of the total sample weight.
This may not be the case at similar sources where particulate
concentrations are significantly less than those reported.
Audit solutions prepared by the EPA were used to check the
analytical procedures and reagents for SO- analysis. Table 5-3
presents the results of this analytical audit. Table 5-4 sum-
marizes results of the reagent blank analysis for isopropanol,
hydrogen peroxide, and the Method 5 filter used in the back half
of the Method 8 system.
Filter and water blanks were analyzed to check the reliabil-
ity of the analytical methods used to determine non-water-soluble
sulfate particulate. Table 5-5 summarizes the results of the
blank analysis. In addition, ion chromatography was used to
validate the sulfate results obtained by Method 6 titration as
described in the M5W procedures. Table 5-6 summarizes these
data, and the results show good agreement (within 2 percent).
5-12
-------
TABLE 5-2. EXAMPLE FILTER AND ACETONE BLANK ANALYSIS
FOR THE THERMOGRAVIMETRIC PROCEDURE
Sample type and
Lab ID number
Filter CM385
Acetone CM4243
Filter CM507
Acetone CM430b
Original
tare
weight, mg
349.4
100848.1
324.9
106364.7
Blank weight, mg
Ambient
mg
349.6
100853.4
324.9
106365.2
Net
+0.2
+5.3
0.0
+0.5
160°C
mg
349.3
100851.1
325.0
106366.0
Net
-0.1
+3.0
+0.1
+1.3
232°C
mg
349.6
100850.2
324.6
106365.4
Net
+0.2
+2.1
-0.3
+0.7
516°C
mg
349.5
100848.6
324.5
106365.0
Net
+0.1
+0.5
-0.4
+0.3
I
M
Ul
Initial volume, 100 ml.
'initial volume, 443 ml.
-------
Plant
TABLE 5-3. AUDIT REPORT S02 ANALYSIS
ft.R.C.0 PN Number
3530 -
Date samples received
Samples analyzed by
Reviewed by
Date analyzed
Date of Review
Sample
Number
OJLSI
3x> x A
mg S02/dscm
Determined
isn.H-
Source of
Sample
7" 'b'efr^'
Accepted
Value
/33y^
%
Difference
-/.I
(continued)
5-14
-------
TABLE 5-3 (continued)
Plant
PN Number 353o-
Date samples received
Samples analyzed by
Reviewed by
Date analyzed \p - i q - g
Date of Review
Sample
Number
CP 3
W7.0
%
Difference
+ 0.7
-3,1
5-15
-------
TABLE 5-4. S02 REAGENT BLANK ANALYSIS
Sample type
80% I PA
IPA/Filter
Blank
10% Hydrogen
peroxide
Lab
ID No.
CM608
CM609
CM610
CM611
CM668
Runs 1-4
CM669
Runs 5-10
Net blank weight, mg
as S02
~
1.3
<0.7
as H2S04
<0.1
<0.1
-
-
TABLE 5-5. WATER-SOLUBLE SULFATE BLANK ANALYSIS DATA
Sample
type
Filter
Deionized,
distilled
water (rinse)
Filter
Deionized,
distilled
water (rinse)
Lab
ID
CM542
CM553
CM996
CM554
Net weight
of particulate
plus ammonium
sulfate, mg
3.65
1.45
1.90
3.25
r =
CS04 , mg
4.11
<0.65
<0.3
<0.65
Weight
of ammonium
sulfate, mg
5.65
<0.9
<0.4
<0.9
NWSSP,
mg
OP
.6
i C O
+5.2
Note: "Less than" values are treated as zero in determining the NWSSP.
5-16
-------
TABLE 5-6. COMPARISON OF SULFATE RESULTS OBTAINED
BY TITRATION AND ION CHROMATOGRAPHY
Run No.
2A
2B
4C
4D
6A
6B
9C
9D
Sample
ID
M5W
M5W
M5W
M5W
M5W
M5W
M5W
M5W
Total sul fates as S04~, mg
Titration
81.7
47.9
133.2
124.6
123.0
111.5
112.4
102.6
K
ICD
83.7
46.7
129.9
122.4
122.8
116.2
113.3
104.5
These values were obtained by barium-perchlorate titration
techniques. The titration procedure is one of the analytical
steps in the Texas Air Board analytical procedure for "Deter-
mination of Nonsulfuric Acid Particulate" by use of the water-
soluble sulfate mass correction.
3Ion chromatographic results obtained from aliquots of rinse and
filter fractions.
5-J
-------
REFERENCES
1. Mitchell, W. J., and M. R. Midgett. A Means to Evaluate the
Performance of Stationary Source Test Methods. Environ-
mental Science and Technology, 10:85-88, 1976.
2. Oldaker, G. B. Condensible Particulate and Its Impacts on
Particulate Measurements. Draft Report. Prepared under EPA
Contract No. 68-01-4148, Task No. 69. May 1980.
3. Peters, E. T., and J. W. Adams. Sulfur Dioxide Interaction
With Filters Used for Method 5 Stack Sampling. In: Work-
shop Proceedings on Primary Sulfate Emissions From Combus-
tion Sources, Volume I - Measurement Technology. EPA-
600/9/78-020a, 1978. pp. 199-202.
4. Gushing, K. W. Particulate Sampling in Process Streams in
the Presence of Sulfur Dioxide. In: Workshop Proceedings
on Primary Sulfate Emissions From Combustion Sources, Volume
I - Measurement Technology. EPA-600/9-78-020a, 1978. pp.
202-227.
5. PEDCo Environmental, Inc. Comparative Evaluation of EPA
Methods 5 and 17. Draft Report. Prepared under EPA Con-
tract No. 68-02-3431, Task Nos. 88, 103, and 163. February
1983.
R-l
-------
APPENDIX A *
COMPUTER PRINTOUTS AND EXAMPLE CALCULATIONS
*
Note: Filter (sample box temperatures) are recorded on
field data sheets.
A-l
-------
A-2
-------
FIELD UATA
PL*NT
SAMPLING LOCATION
SAMPLE TVHE
OPERAIOR
AMBIENT TEMP. (OEG
BAR. PRESS. (IN.HG)
STATIC PRESS. (IN.
FILTER NUMBER(S)
STACK INSIDE DIM.
PITUT TUBE COEFF.
THERM. NO.
LEAKAGE
ARCO,
FCCU
PANT,
PHILADELPHIA
STACK
H2SU4,SU2
J PRUHASKA
.F) 75.
30.12
H20) -1.20
3530646
(IN) 120.
.64
.006
00 .00
CFM a 8.0 IN.HG
DATE
RUN NUMBER
PROBE LENGTH • TYPE
NOZ/LE 1 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD UIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. OIFF.
06/23/62
1AMS
6 FT HEATED GLASS
.269
13.0
PB8
1.90
6.32
250.
250.
.00
METER CALIB. FACTOR .996
RtAU ft RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK
POINT TIME TIME
NO. (MIN.) (24-HR
n fir*
(•LUIK
INIT 0 1056
> 10.0 1106
' 20.0 1116
W 30.0 1126
40.0 1136
50.0 1146
bO.O 1156
70.0 1206
80.0 1216
90.0 1*26
100.0 123b
110.0 1246
120.0 1256
GAS METER
READING
(CU.FT.)
1
9
655.713
662.240
668.845
875.655
662.180
666.775
895.390
902.035
908.600
915.065
921 .640
928.000
934.554
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TEMP
(IN.H20) (1N.H20) (DEG.F)
DESIRED
.400 .46
.400 .48
.430 .60
.360 .42
.400 .50
.400 .50
.400 .50
.360 .43
.3BO .45
.400 .52
.400 .52
.360 .45
ACTUAL
.50 459.
.50 457.
.60 457.
.40 457.
.50 456.
.50 457.
.50 457.
.45 450.
.45 444.
.50 444.
.50 447.
.45 444.
DRV GAS METER PUMP SAMPLE IMPIN6ER
TEMP VACUUM BOX
(OEG.F) (IN.HG) (OEG
INLET OUTLET
61. 60. 5.0
63. 80. -5.0
65. «1. 5.5
66. 62. 5.0
67. 63. 5.0
66. 62. 5.5
67. 63. 5.5
67. 63. 5,5
66. 63. 5,5
67. 63. 6.0
87. 63. 6.5
67. 63. 7,5
TEMP TEMP
.F) (OEG.F)
0, 60.
0. 66.
0. 67.
0. 66.
o. *•».
0. 72.
69.
. *0.
. ?1.
70.
. **.
. 66.
TOTALS
AVERAGE
120.0
78.641
1.49
1.49 453.
86.
62.
5.6
0.
66.
-------
PARTICIPATE FIELD DATA t kESULTS TABULATION
PLANT- NAM£ AND ADDRESS TEST TEAM LEADER
ARCO. PHILADELPHIA J PROHASKA
TEST 1AM5
FCCU STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
06/23/82
1056
1256
120.0
12
.998
.269 IN
.64
1.49 IN-M20
METRIC UNITS
08/23/62
1056
1256
120.0
12
.998
T.3
.64
37.8
PM
KM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL.ML.
VHC VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.* DRY
P02 PERCENT U2 BY VOL.. DRY
PCO PERCENT CO BY VOL.. ORY
PN2 PtHCtNT N8 BY VOL.. DRY
MD MOLECULAR MT-ORY STACK GAS
HMS HOLECUL** XT-STACK GAS
78.841 CU-FT
2.233 CU-M
64.0 F
T7.153 SCF
372.6
17.538 SCF
18.53
.815
lb.00
4.00
.00
81.00
30.56
2tt.23
26
2
372
16
15
4
81
30
26
.9 C
.185 3CM
.6
.497 3O
.52
.615
.00
.00
.00
.00
.56
.23
-------
PB BAROMETRIC PHES3URE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
QSSTU STACK FLUM RATE* DRY*
US ACTUAL STACK FLOW HATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.12 JN-MG
-1.20 IN-H20
3U.03 IM-HG
453. F
46.9 FPS
11310. SU-1N
6270033. SCFH
13250990. ACFH
106.1
229.B
.0460 GR/DSCF.
765.05 *M-MG
-30.46 PM-M20
762.61 PM-HG
234. C
14.3 KPS
7.297 Sa-M
177549. SCMH
375228.
106.1
229.B
JOS.195
I
cn
MN
CS
FILTERABLE-160
MG. EPA S
FILTERABLE-160
104.0
.0208 GR/DSCF*
104.0
47.606
CS
FILTERABLE-252
MG. EPA S
FILTERABLE-232
97.3
97.3
.0195 6R/OSCF. 44.541 HG/OSC*'
MN
CS
FILTERABLE-316
MG. EPA S
FILTERABLE-316
86.4
88.
.0177 6R/D3CF. 40.467
• 66 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST HO. 1AM5
FCCU STACK
VOLUME OF DKY GAS SAMPLED AT STANDARD CONOIUONS
VMSTO s (17.647 • VM * Y • (PB * PM / 13.6)) / (TM * 460.)
17.607 • 78.841 * .996 * ( 30.12 + 1.0S8 / 13.6)
WHSTD • ~ — • 77.153 DSCF
( 81. » 460.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VMC • .04707 * VLC
VMC > .04707 • 373. * 17.54 3CF
PERCENT MOISTURE IN STACK GAS
8*0 » (100. • VMC) / (VM9TD » VHC)
<^ 100. • 17.54
BHO « —— s 18.52 PERCENT
77.153 t 17.54
MOLE FRACTION OF DRY STACK GAS
FMD = (100. - BNO) / 100.
100. • 18.5
FMD * ———————— s .815
100.
AVERAGE MOLECULAR MEIGHT OF DRY STACK GAS
MO = (PC02 • .44) » (P02 • .32) * (PN2 * PCO) • .28
MO = (15.00*44/100) » ( 4.0*32/100) «• ((81.0* .0) • 28/100 = 30.56
MOLECULAR MEIGHT OF STACK GAS
MHS = MU • II. - 18*0/100)) « 16. • (BNU/100)
MHS = 30.56* (1. -(Id.52/100)) * 18. • (18.52/100) " 20.23
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP e SUM. OF THE. SQRT(VH • (TS + 460.))
VS • 65.49 • CP • OtLP / (SORT(HWS • PS) • PNTS)
VS « 85.09 • .84 • 226.043 / (SORT( 28.23 • 30.03) * 12. = 46.67 FP3
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS • AS * 3600/144
OS > 46.67 • 11310. 3600/144 s 13250990. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
OSSTO » 17.647 • flS • PS • (1. - (BNO/100)) / (TS * 460.)
17.647 • 13250990. * 30.03 • (1. • (18.S2/100))
OSSTD • ————— — ——— — ——— — — — — — * 6270033. SCFH
( 453. * 460.)
>
-!j PERCENT ISOKINETIC
ISO * (305.58«(TS»«60.))«{(0.002669*VLC)»(VM*T»(PB«(PM/13.6))/(TM«460.)))/(TT«V3<»P3oON«DN)
(305.56*( 453.*460.))*((0.002669* 373.)*( 76.841* .998M 30.12»( 1.466/13.6))/( 64.»460.)))
ISO s . .................... ..... .. . . ...... ................................ . 106.09 PERCENT
120. • 46.87 • 30.03 • .289 • .289
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS > 0.001 • MN • 15.43 / VMSTO
CS s 0.001 • 229.8 • 15.43 / 77.153 = .0460 GR/03CF
-------
FIELD DATA
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK EXIT
SAMPLE TYPE PART, H2S04, 302
OPEHATOH J PRUHASKA
AMBIENT TEMP.(OE6.FJ 75.
BAR. PRESS. (IN. Ht) JO. 12
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBER(S) 3530023
STACK INSIDE DIM. (IN) 120.00 .00
PJTOT TUBt COtFF. .64
THERM. NO. 174
LEAKAGE .003 CFM » 7.0 IN.HC
METER CALIB. FACTOR .989
READ i RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK 6«8 METER VELOCITY ORIFICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEPP
NU. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (DEG.F)
DESIHEO
INIT 0 1057 54.791
> 10. 0 1107 61.665 .400 .54
1 20.0 1117 68.500 .400 .55
00 30.0 1127 75.675 .430 .67
40.0 1137 62.590 .380 .40
50.0 1147 69.540 .400 .56
60.0 1157 96.575 .400 .56
70.0 1207 103.400 .400 .56
80. 0 1217 110.300 .380 .49
90.0 1227 117.010 .360 .50
100.0 1237 124.140 .400 .58
110.0 1247 131.100 .400 .58
120.0 1257 137.929 .360 .49
ACTUAL
.55 459.
.55 457.
.65 457.
.50 457.
.55 45«.
.55 457.
.55 457.
.50 450.
.50 444.
.60 444.
.60 447.
.50 444.
DATE 08/23/82
RUN NUMBER 1BM5
PROBE LENGTH • TYPE 6 FT HEATED GLASS
NOZZLE : 1.0. .297
ASSUMED MOISTURE 13.0
SAMPLE BOX NUMBER
METEN BOX NUMBER FB2
METER HEAD DIFF. 1.77
C FACTOR 6.56
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
REFERENCE PRESS. OIFF. .00
CRT GAS METER PUMP 8AMPLE IMPINGES
TEMP VACUUM BOX TEMP TEMP
(OEG.F) (IN.HG) (OEG.F) (OEG.F)
INLET OUTLET
77. 80. .0 0. 68.
80. 80. .0 0. »9.
85. 61. .5 0. 7).
67. 62. .0 0. 60.
67. 83. .0 0. 78.
67. 83. .0 0. 76.
07. 03. .5 0, 69.
68. 83. .5 0. *«.
88. 84. .5 0. 63.
66. 84. .0 0. 63.
88. 65. .0 0. 60.
66. 65. T.O 0, 61.
TOTALS
AVERAGE
120.0
63.136
1.55
1.55 453.
66.
63.
6.4
0.
69.
-------
PARTICULATE FIELD DAT* a. RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA J PROHASKA
TEST 1BM5
FCCU STACK EXIT
TEST DATE
TB
TF
TT
NP
Y
ON
CP
> PM
vo
VM
TM
VMSTD
VLC
VNC
BMO
FMO
PC02
P02
PCO
PN2
MD
MbS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRV GAS
PERCENT C02 8Y VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR nT-OHV STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
08/23/82
1057
1257
120.0
12
.969
.247 IN
.64
1.55 IN-H20
63.138 CU-FT
84.3 F
60.599 SCF
369.5
17.392 SCF
17.75
.623
15.00
4.00
.00
61.00
30.56
26.33
METRIC UNITS
06/23/82
1057
1257
120.0
12
.989
7.5 MM
.84
39.4 MM-H20
2.354 CU-M
29.1 C
2.282 SCM
369.5
.492 SCM
17.75
.623
15.00
4.00
.00
61.00
30.56
28.33
-------
PB BAROMETRIC PRESSURE
P9I STATIC PRES OF STACK GAS
PS STACK PRES, A83.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OS3TO STACK FLOW RATE. OUT*
OS ACTUAL STACK Ft_0« RATE
ISO PERCENT ISONINETIC
MM FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
46.8
11310.
6316646.
13228268.
104.1
258.6
30.12 IN-MG
-1.20 IN-H20
30.03 IN-Hb
453. F
FPS
SO-IN
SCFH
ACFH
.0495 GR/DSCF*
765.Ob MM-HG
-JO.48 VM-H20
768.81 KM-HG
234. C
14.3 KPS
7.297 SO-M
SCMH
374585. ACMH
104.1
256.6
113.316
MN
CS
FlLTERABLE-lbO
MG. EPA 5
FILTERABLE-160
106.6
.0204 GR/DSCF*
106.6
46.711
CS
FILTERABLE-232
MG. EPA S
FlLURABLE-232
93.6
.0179 GR/08CF*
93.6
41.013
MN FILTERABLE-316
MG. EPA 5
CS
FlLTbRABLE-316
86.2
.0165 GR/DSCF*
86.2
37.772
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. IBMS
FCCU STACK EXIT
VOLUME UF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD • (17.607 • VM • Y • (PB » PM / 13.6)) / (TM » 460.)
17.647 • B3.138 • .484 • ( 30.12 » 1.S50 / |3.6)
WMSTD « — — — . . ... * 80.549 OSCF
( 04. + 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC « .04707 • VLC
VNC • .04707 • 370. s 17.39 SCF
PERCENT MOISTURE IN STACK GAS
BNO • (100. • VNC) / (VMSTO « VHC)
100. • 17.39
BHO o . ——..—......——..... r 17.75 PERCENT
80.599 » 17.39
MOLE FRACTION OF DRY STACK 6*3
FMD • (100. - BNO) / 100.
100. - 17.7
FMD * — .—.—.. ... • .823
100.
AVERAGE MULECULAR HEIGHT OF DRY STACK GAS
Mb » (PC02 • .44) * (POe • .32) * (PN2 » PCO) • .28
MD = (15.00*44/100) » ( 4.0*32/100) + ((61.0* .0) • 26/100 s 30.56
MOLECULAR WEIGHT OF STACK GAS
M*S = MD • (1. > (BnO/lUO)) * IB. • (BHO/100)
MNS s 30.56* (1. -117.75/1UO)) t 18. * (17.75/100) e 28.33
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP B SUM. Of THE SORTCVH * (TS * ttbO.))
va • as.49 * CP • otLP / (SORT(HNS * PS) * PNTS)
V3 * 65.49 * .84 * 228.043 / (3QRT( 26.33 • 30.03) • 12. * 46.79 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS « VS • AS • 3600/144
OS s 46.79 • 11310. 3600/144 > 1322B26B. ACFH
3TACK GAS VOLUMETRIC FLO" AT STANDARD CONDITIONS
QSSTD « 17.647 • 09 • PS • (1. • (BMO/100)) / (TS » 460.)
17.647 * 13228266. * 30.03 • (1. - (17.75/100))
QSSTD « —... ————— — . — .. — .................... < 6318646. SCFM
( 453. » 460.)
>
M PERCENT ISOKINETIC
to
ISO « (305.58*(TS»460.))*((0.002669*VLC)+(VM*V*(PB+(PM/13.6))/(TM+U60.)))/(TT*VS*PS*DN*DN)
(305.58M 453.»460.))•(«>.002669* 370.)»{ 83.138* .989*( 30.12*1 1.550/I 3.6))/ ( 84.««60.)))
ISO * • ......... .......... ..... . .... . ..... .. ....... « 104.13 PERCENT
120. * 46.79 • 30.03 * .297 • .297
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 • MN • 15.43 / VMSTO
CS B 0.001 * 258.6 » 15.43 / 60.599 = .0495 GR/USCF
-------
FIELD DATA
U)
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPEHATOH
AMBIENT TEMP.IOEG.F)
BAR. PRESS. UN. MS)
STATIC PRfc3S.dN.Mao)
FILTER NUMBER(S)
STACK INSIDE DIM. (IN)
PITUT TUBE COEFF.
THERM. NO.
LEAKAUE
MtTfcR CALIB. FACTOR
ARCO
FCCU
PHILADELPHIA
OUTLET
PAt)T/H2S04/S02
DO
TO.
30.12
-1.20
3530841
120.
.64
.006
.967
READ & RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME
NO. (MIN.) (24-HR
^ i nf M i
CLUIKJ
INIT 0 1056
10.0 0
20.0 0
30.0 0
40.0 0
50.0 0
60.0 0
70.0 0
80.0 0
90.0 0
100.0 U
110.0 0
120.0 1256
READING
(CU.FT.)
935.469
942.550
949. 5TO
956.930
963.900
971.000
978.160
985.290
992.270
999.300
6.510
13.750
20.786
00 .00
DATE
RUN NUMBER
PROBE LENGTH • TYPE
NOZZLE I I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
NtTER BOX NUMBER
METER HEAD DIFF.
08/23/82
1CM5B
5* GLASS
.298
13.0
F10
1.84
PROBE HEATER SETTING 120,
CFM i 8.0 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TE»P
(IN.H20) (IN.H20) (DEG.F)
DESIRED
.400 .53
.400 .55
.430 .67
.380 .48
.400 .56
.400 .57
.400 .57
.380 .50
.380 .51
.400 .59
.400 .59
.380 .51
ACTUAL
.53 460.
.55 457.
.67 457.
.48 457.
.56 458.
.57 457.
.57 457.
.50 450.
.51 445.
.59 444.
.59 447.
.51 444.
HEATER BOX SETTING
DRY GAS METER PUMP
TEMP VACUUM
(UEG.F) (IN.MG)
INLET OUTLET
78. 81. .1
83. 82. .4
88. 83. .2
91. 84. .6
»3. «5. .7
93. 65. .7
93. 86. .8
•»«. 87. .7
95. 87. .8
95. 87. .2
95. 88. 7.4
*5. 88. 7.2
320.
•AMPLE IMPINKER
BOX TEMP TEMP
(DEG.F) (OEG.F)
0. 66.
0. 69.
0. 75.
o. ao.
0. 7T.
0. 66.
0. 67.
0. 66.
0. 66.
0. 66.
0. 66.
0. 65.
TOTALS
AVERAGE
120.0
85.317
1.55
1.55 453.
91.
65.
6.8
0.
69.
-------
PAHTICULATE FIELD DAT* & RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO PHILADELPHIA DO
TEST 1CM58
FCCU OUTLET
ENGLISH UNITS
TEST
TB
TF
TT
NP
r
ON
CP
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZ2LE DIAMETER
PITOT TUBE COEFFICIENT
08/23/62
1056
1256
120
12
.0
.967
.296 IN
.64
METRIC UNITS
oa/23/82
1056
1256
120
12
7
.0
.967
.6
.84
PM
PM AVERAGE ORIFICE PRESSURE
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY 6*3 SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VNC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
dHO PEHCENT MOISTURE BY VOLUME
FMO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PEHCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 Bv VOL., DRY
MO MOLECULAR MT-DRY STACK GAS
MRS MOLECULAR NT-STACK GAS
1.55 IN-H20
B5.317 CU-FT
86.£ F
BO.301 SCF
371.9
17.b05 SCF
39.4 MM-H20
2.416 CU-M
31.2 C
2.274 SCH
371.9
.496 SCM
17.90
.621
15.00
4.00
.00
81.00
30.56
26. Jl
17.90
.821
15.00
4.00
.00
61.00
30. 5b
28.31
-------
PB tiAKOMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, A8S.
TS AVERAGE STACK TEMP
V3 AVG STACK GAS VELOCITY
AS STACK AREA
US3TO STACK FLOW RATE, DRV*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
C3 FILTERABLE-AMBIENT
30.12 IS'-HG
-1.20 i
30.03 IN-HG
453. F
46.8 FPS
11310. SU-IN
6308695. SCFH
13233850. ACFH
103.2
140.2
.0269 GR/OSCF*
765.05 KM-HG
-30.48 PM-H20
762.81 KM-HG
234. C
14.3 HPS
7.297 SU-M
I7tt643. 3CMM
374743. ACMH
103.2
140.2
61.663 M6/DSCM
MN
CS
FlLTtRABLE-160
MG. EPA S
FILTERABLE-160
91.0
.0175 GR/DSCF*
91.0
40.024 *»G/DSCK
MN
CS
FILTERABLE-232
MG. EPA S
FILTERABLE-232
88.7
88.7
.0170 GR/OSCF* 39.012 MG/DSCP
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
77.0
77.0
.0148 GR/OSCF* 33.866 NG/DSOP
• 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO.
FCCU OUTLET
VOLUME OF DNT GAS SAMPLED AT STANDARD CONDITIONS
VH3TO • (IT. 647 • VM « t • (PB » PM / 13.6)) / (TM * 460.)
17.647 • 65.317 * .967 * ( 30.12 » 1.552 / 13.6)
VMSTD * — --------- -- --------- - — - ------ - -------------------- • 80.301 03CF
( B6. + 460.)
VOLUME UF NATER VAPOR AT STANDARD CONDITIONS
VMC 8 .04707 * VLC
VMC e .04707 * 372. = 17.51 SCF
PERCENT MOISTURE IN STACK GAS
BMO * (100. • VNC) / (VMSTD » VMC)
tL 100. • 17.51
0\ BMO * ...... = 17.90 PERCENT
80.301 » 17.51
MOLE FRACTION OF DRY STACK GAS
FMD = (100. > BMO) / 100.
100. - 17.9
FMD * .—...—.....
100.
AVERAGE MOLECULAR WEIGHT OF DRY STACK GAS
MO « (PC02 • .44) •» (P02 • .32) » (PN2 » PCO) • .28
MO * (15.00*44/100) + ( 4.0*32/100) «• ((01.Ot .0) • 28/100 = 30.56
MOLECULAR WEIGHT OF STACK GAS
MMS * MO • (1. • (8*0/100)) + 18. * (6*0/100)
MHS = 50.56* (1. -(17.90/100)) » 18. • (17.90/100) * 28.31
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP « SUM. OF THE SOHUVH * (TS * 460.))
VS = 85.49 « CP • OELP / (SURTCMNS • PS) • PNTS)
VS = «S.49 • .64 • 226.064 / (SQRT( 26.31 • 30.03) * 12. = 46.61 FP3
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS » VS • AS • 3600/144
OS • 46.81 • 11310. 3600/144 = 13233850. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD « 17.607 • US • PS • (1. - (BnO/100)) / (TS * «60.)
17.647 • 13233650. • 30.03 • (1. • (17.90/100))
OSSTD « —————— — — ——————— ———— — - c 6308695. SCFH
( 453. » 460.)
PERCENT ISOKINETIC
ISO * (30S.58*(TS+460.))*((0.002669«VLC)+(VM*V«(PB+(PM/13.6))/(TM«460.)))/(TT*VS«P9*ON*ON)
(305.58*( 453.«4bO.))*((0.002669* 372.)»( 85.31T* .967*( 30.12»( 1.552/13.6))/( 66.»460.)))
ISO « « . — • 101.21 PERCENT
120. • 46.61 • 3u.u3 • .298 • .296
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS « 0.001 • MM • IS.43 / VMSTD
CS * 0.001 * 140.2 • IS.43 / 60.301 = .0269 GR/USCF
-------
FIELD DATA
M
00
PLANT ARCO PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART/H2S04/S02
OPERATOR 00
AMBIENT TEMP.(OEG.F) 70.
BAR. PRESS. (IN. HG) 30.13
STATIC PRfc9S.dN.H20) -1.20
FILTER NUMBER(S) 3530819
STACK INSIDE DIM. (IN) 120.00 .00
P1TUT TUBE COfcFF. .6*
THERM. NO.
LEAKAGE .004 CFM a 5.0 IN.HG
METER CALIB. FACTOR .995
READ » RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK 6AS METER VELOCITY ORIFICE
DATE
RUN NUMBER
PROBE LENGTH • TYPE
NOZZLE 1 1.0.
ASSUMED MOISTURE
SAHPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
06/23/82
10M5B
6* GLASS
.289
13.0
FBI
1.65
PROBE HEATER SETTING 320.
PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (20-HR (CU.FT.) (IN.H20) (1N.M20) (DEG.F)
DESIRED
INIT 0 1057 351.240
10.0 0 358.200 .400 .53
20.0 0 364.970 .400 .55
30.0 0 371.990 .430 .67
40.0 0 378.700 .300 .46
SO.O 0 3B5.560 .400 .56
60.0 0 392.030 .400 .57
70.0 0 399.310 .400 .57
BO.O 0 406.060 .360 .50
90.0 0 412.600 .360 .51
100.0 0 419.700 .000 .59
110.0 0 426.660 .400 .59
120.0 1257 433.137 .360 .51
ACTUAL
.53 460.
.55 457.
.67 457.
.48 «57.
.56 456.
.57 457.
.57 457.
.50 450.
.51 4«5.
.59 tt<*4.
.59 447.
.51 444.
HEATER BOX SETTING
DRY GAS METER PUMP
TEMP VACUUM
(OEG.F) (IN.HG)
INLET OUTLET
B2. 77. 4.2
•5. 77. 3.6
b9. 78. .3
93. 79. .0
93. 61. .1
94. 61. .2
94. 01. .2
94. 61. .2
94. 62. .2
93. 61. .5
93. 62. .7
93. 61. .7
320.
8AMPLE IMP1NGCR
BOX TEMP TEMP
(DEG.F) (DEC.F)
0. 66.
0. »6.
0. 69.
0. 70.
0. 71.
0. 66.
0. 65.
0. 62.
0. 63.
0. 63.
0. 64.
0. 62.
TOTALS
AVERAGE
120.0
82.197
1.55
1.55 453.
91.
80.
4.3
0.
66.
-------
PARTICIPATE FIELD DATA & RESULTS TAbULATION
PLANT- NAME AND ADDRESS TEST HAM LEADER
ARCO PHILADELPHIA DO
TEST 1DM58
FCCU STACK
TEST OATfc
TB
TF
TT
NP
r
ON
CP
> PM
1
^_i
« VM
TP
VPSTD
VLC
VHC
BfcO
FMD
PC02
P02
PCO
PN2
MD
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITDT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT U2 BY VOL.. DRV
PEHCENT CO BY VOL., DRY
PEHCENT N2 BY VOL., DRY
MOLtCULAH NT-ORV STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
08/23/82
1057
1257
120.0
12
.995
.289 IN
.64
1.55 IN-H20
82.197 CU-FT
65.6 F
79.957 SCF
370.7
17.449 SCF
17.91
.621
15.00
4.00
.00
81.00
3V. bb
28.31
METRIC UNITS
06/23/82
1057
1257
120.0
12
.995
7.3
.64
39.4
2.326
29.9
2.264
370.7
.494
17.91
.821
15.00
4.00
.00
61.00
30.56
28.31
CM
PM-H20
CU-M
C
SCM
SCM
-------
PB dAHOMETRIC PRESSURE
P3I STATIC PHE3 OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK 6*3 VELOCITY
AS STACK AREA
OSSTO STACK FLO* RATE* OUT*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISUKINETIC
HN FILTERABLE-AMBIENT
MS. EPA 5
CS FILTERABLE-AMBIENT
30.12 IN-HG
-1.20 1H-H20
30.03 IN-HG
453. F
46.A FPS
11310. SO-IN
6307716. SCFH
13230306. ACFH
109.3
155.4
.0300 6R/DSCF*
765.05 PM-HG
-JO.OB PM-H20
762.81 CM-HG
234. C
14.3 *PS
7.297 SO-M
170616. SCMH
374756. ACMH
109.3
155.4
68.642 PG/OSC*
to
O
MN
C3
FlLTtRABLE-160
M6. EPA 5
FlLTERABLE-160
90.3
.0174 GR/D3CF*
90.3
39.667
MN
C8
FlLTERABLE-232
M6. EPA 5
FILTERABLE-232
67.3
.0166 6R/OSCF.
67.3
36.562
MN FlLTERABLE-316
MS. EPA 5
C3
FlLTERABLE-316
76.9
.0146 GR/DSCF*
76.9
33.966 KG/03CP
• 68 OEG F, 29.92 IN.HG,
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO.
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO • (17.607 • VM * Y • (PB * PM / 13.6)) / (TM « 460.)
17.647 • 82.197 * .995 • ( 30.12 * 1.558 / 13.6)
VMSTO » — ... --- ..... ----- .... -------- - --- .... ------ - -------- * 79.957 OSCF
( 86. + 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC 3 .04707 • VLC
VMC • .04707 • 371. * 17.45 SCF
PERCENT MOISTURE IN STACK GAS
BMO * (100. • VNC) / (VMSTD » VMC)
100. • 17.45
BMO a . = 17.91 PERCENT
79.957 * 17.45
MOLE FRACTION OF DRV STACK GAS
FMD 3 (100. - BMO) / 100.
100. - 17.9
FMD « — .————. s .821
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO - (PC02 • .44) • (P02 « .32) + (PN2 » PCO) • .28
MO s 115.00*44/100) » ( 4.0*32/100) » ((81.0« .0) • 28/100 s 30.56
MOLECULAR WEIGHT OF STACK GAS
MMS s MD • (1. > (BMO/100)) » 18. • (BMU/100)
MnS s 30.56* (1. -(17.91/100)) » 18, • (17.91/100) * 20.31
-------
STACK GAS VELOCITY *T STACK CONDITIONS
OELP * SUM. OF THE SORTCVri • (TS » 460.))
VS * 85.49 • CP * DELP / (SORT(MMS * PS) * PUTS)
vs * as.49 • ,«4 • 228.V64 / OQRTC 28.31 • 3o.o3) • 12. = 46.ai FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS • 3600/101
OS = 46.61 • 11310. 3600/144 = 13234308. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
033TD B 17.64? • OS • PS • (1. - (BMO/100)) / (TS * 460.)
17.647 • 13234308. • 30.03 • (1. - (17.41/100))
OS3TO « — — •• s 6307716. SCFH
( 453. » 460.)
>
I PERCENT ISOKINETIC
IsJ
10 ISO ° <305.5e«(TS«460.))ol(0.002669«VLC)«(VM«Y«(PB«(PM/13.6))/(TM»fl60.)))/(TT«VS*P3«ON*DN)
(305.56*( 45J.«460.))«((0.002669* 371.)*( 82.197* .99S*( i0.12»( 1.552/13.6))/( a*.«460.)))
ISO « ........ .. . ......... ... .............. 109.29 PERCENT
120. • 46.61 * 30.03 • .284 • .289
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 • MN • IS.43 / VMSTD
CS = 0.001 • ISS.4 • 15.43 / 79.957 = .0300 GK/USCF
-------
FIELD OAT*
I
N>
to
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART, H2SU4, 302
OPERATOR J P
AMBIENT TEMP. (DEC. F) 60.
BAR. PRESS. (IN. HG) 30.12
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBER(S) 3530840
STACK INSIDE DIM. (IN) 120.00 .00
PITOT TUBE COEFF. .64
THERM. NO. 174
LEAKAGE .015 CFM S 22.0 IN.HG
METER CALIB. FACTOR .996
READ A RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60.1
TIME
(24-HR
1520
1530
1540
1550
1600
1610
1620
1630
1640
READING
(CU.FT.)
934.748
940.995
947.075
953.200
959.240
965.310
971.400
977.560
963.557
HEAD
(IN.H20)
.400
.400
.400
.400
.400
.400
.420
.420
PRESSURE
STACK
DIFFERENTIAL TE'P
(IN.
DESIRED
.23
.23
.24
.23
.23
.26
.32
.32
H20)
ACTUAL
.25
.25
.25
.25
.25
.25
.30
.30
(OEG.F)
«57.
464.
«58.
466.
443.
445.
451.
447.
DATE 06/23/82
RUN NUMBER 2AM5N
PROBE LENGTH • TYPE 6 FT HEATED GLASS
NU22LE : I.D. .262
ASSUMED MOISTURE IT.O
SAMPLE BOX NUMBER
METER BOX NUMBER FB8
METER HEAD DIFF. 1.90
C FACTOR 5.26
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
REFERENCE PRESS. OIFF. .00
DRY GAS METER PUMP CAMPLE IMPIN6ER
TEMP
(DEG
IhLET
78.
79.
81.
83.
»5.
66.
66.
66.
.F)
OUTLET
76.
76.
78.
78.
79.
60.
61.
61.
VACUUM
(IN.HG)
5.0
9.0
4.0
4.0
4,5
4.5
4.5
•5.0
BOX TEMP
(OEC.F)
0.
0.
0.
0.
0.
0.
0.
0.
TEMP
(DE6.F)
60.
64.
65.
65.
66.
66.
66.
66.
TOTALS
AVERAGE
60.1
48.809
1.26
1.26 454.
63.
79.
4.6
0.
65.
-------
PARTICIPATE FIELD DATA t RESULTS TABULATION
PLANT- NAME ANU ADDRESS TEST TtAM LtADfcB
ARCO. PHILADELPHIA J P
TEST 2AM5W
FCCU STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
> PM
1
ro
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ORUP
ENGLISH UNITS METRIC UNITS
06/23/02 06/23/62
1520 1520
1640 1640
80.1 00.1
6 6
.996 .996
.262 IN 7.2 CM
.64 .64
1.26 1N-H20 32.1 PM-I
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VNC VOLUME OF HATER VAPOH
AT STANDARD CONDITIONS*
BHO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PEHCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRV
PCO PERCENT CO BY VOL., DRY
PN2 PEHCtNT N2 BY VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
MHS MOLECULAR NT-STACK GAS
48.609 CU-FT
1.382 CU-M
81.1 F
46.000 SCF
231.2
10.663 SCF
16.40
.615
15.00
4.00
.00
61.00
30.56
26.24
27,
1,
231,
»
16,
(
15,
4,
t
61,
30,
26,
,3
.359
.2
.306
.46
,613
,00
,00
.00
,00
,56
,24
C
SCM
SCM
-------
PB 8AHOMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRESt ABS.
T3 AVERAGE STACK TEMP
VS AVG STACK 6AS VELOCITY
AS STACK AREA
QSSTO STACK FLO* RATE* DRY*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINETIC
• 68 DEC F, 29.92 IN.H6.
30.12 IN-HG
-1.20 IN-H20
30.03 IN-HG
454. F
47.4 FPS
11310. SO-1N
6340560. SCFH
13412476. ACFH
102.7
765.05 *M-MG
-30.40 f*-M20
762.81 PM-HG
234. C
14.5 CPS
7.247 SO-M
179546. SCMH
379801.
102.7
10
en
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 3AM5*
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD ' (17.647 • VM • Y • (PB * PM / 13.6)) / (TM » 460.)
17.647 * 46.609 * .996 • ( 30.12 » 1.262 / 13.6)
VMSTD * -..——.... — .——-—...................... .- a 06.000 DSCF
( 81. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC = .04707 * VLC
VNC a .04707 • 231. • 10.86 SCF
PERCENT MOISTURE IN STACK GAS
BNO • (loo. • VNO / (VMSTD » VNC)
' 100. • 10.68
S; BNO » • —— — s 16.48 PERCENT
46.000 t 10.66
MOLE FRACTION OF DRV STACK GAS
FMD = (too. • BMO) / too.
100. . 18.5
FMD » ——...— ......... e .8i5
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD » (PC02 • .44) » (P02 • .32) » (PN2 * PCO) * .28
MO « (15.00*44/100) » ( 4,0*32/100) « ((81.0+ .0) • 36/100 c 30.56
MOLECULAR MblGHT OF STACK GAS
MNS a MO * (1. - (BNO/100J) » 18. • (BNO/IOO)
MHS t 30.56* (1. -(18.46/100)) » 16. * (18.48/100) = 28.24
-------
STACK CAS VELOCITY AT STACK CONDITIONS
OELP * SUM. OF THE SQRT(VH * (TS » 460.))
VS • 85.49 • CP * OELP / (SQRTtMMS * PS) • PN1S)
VS * OS.49 * .04 • 15J.695 / (SORT( 26.24 • 30.03) * 8. = 47.aa FP3
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS • VS • AS • 3600/144
OS » 47.44 • 11310. 3600/144 = 13412476. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
03STD • 17.647 • OS • PS • (1. - (8*0/100)) / (TS * 460.)
17.647 • 13412476. • 30.03 • (1. - (10.46/100))
OSSTO « ....... . x 6J40560. SCFM
( 454. » 460.)
PERCENT ISOKINETIC
ISO « (JOS.5B*(T3*460.))*((0.002669«VLC)*(VM*r*(PB«(PM/13.6))/(TM*460.)))/(TT«V3*PS*DN*DN)
(30S.58*( 454.*460.))*((0.002669* 231.)*( 46.009* .998*( 30.12«( 1.262/13.6))/( 61.»460.)))
ISO • ................. ....... .... ....... ..... ............................... , 10Z.70 PERCENT
60. * 47.44 * 30.03 • .262 • .262
PARTICIPATE LOADING -• EPA METHOD 5 (AT STANDARD CONDITIONS)
CS » 0.001 • MN • 15.43 / VMSTD
CS « 0.001 * O.OOOOE+00 • 15.43 / 46.000 a O.OOOOE«OU GR/OSCF
-------
FIELD DATA
I
N)
00
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART,H2SQ4,S02
OPERATOR J P
AMBIENT TEMP.(OEG.F) 80.
BAR. PRESS. (IN.HG) 30.12
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBERIS) 3530837
STACK INSIDE DIM. (IN) 120.00 .00
PITUT TUBE COEFF. .64
THEN*. NO.
LEAKAGE .005 CFM a 9.0 IN.HG
METER CALIB. FACTOR .989
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE
POINT
NO.
INIT
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
60.2
CLOCK
TIME
(24-HR
1521
1531
1541
1551
1601
1611
1621
1631
1731
GAB METER
READING
(CU.FT.)
138.160
145.545
152.900
159.950
167.170
174.415
181.760
169.295
196.690
VELOCITY
HEAD
(IN.H20)
.400
.400
.400
.400
.400
.400
.420
.420
ORIFICE
PRESSURE
STACK
DIFFERENTIAL TEPP
(IN.
DESIRED
.TO
.69
.71
.69
.69
.74
.82
.62
H20)
ACTUAL
.70
.70
.70
.70
.70
.75
.80
.60
(DEG.F)
457.
464.
«56.
466.
443.
445.
451.
447.
DATE 08/23/82
RUN NUMBER 28M5*
PROBE LENGTH t TYPE 6 FT HEATED GLASS
NOZZLE 1 1.0. .311
ASSUMED MOISTURE 17.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB2
METER HEAD DIFF. 1.77
C FACTOR 7.26
PROBE HEATER SETTING 2SO.
HEATER BOX SETTING 250.
REFERENCE PRESS. OIFF. .00
DRY GAS METER
TEMP
(OEG.F)
INLET OUTLET
78. 80.
79. 60.
63. 60.
64. 61.
65. 61.
86. 62.
66. 63.
87. 63.
PUMP
VACUUM
(IN.HG)
4.5
4,5
4.5
4.5
4.5
5.0
5.0
5.0
SAMPLE
BOX TEMP
(OEG.F)
0.
0.
0.
0.
0.
0.
0.
0.
IMPINGER
TEMP
(OE6.F)
39.
62!
63.
42.
61.
64.
64.
TOTALS
AVERAGE
60.2
58.710
1.73
1.73 454.
64.
61.
4.7
0.
62.
-------
PARTICIPATE FIELD DATA & KESULTS TABULATION
PLANT- NAME AND ADDRESS TEST UAH LEADER
ARCO, PHILADELPHIA J P
TEST 2BM5*
FCCU STACK
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
1
ro VM
TM
VMSTD
VLC
VNC
BMO
FHD
PC02
P02
PCO
PN2
MD
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR HT-ORY STACK GAS
MOLECULAR NT-STACK GAS
08/23/82
1521
1731
80.
8
.
.
.
1.
58.
82.
57.
275.
12.
18.
.
15.
4.
•
81.
30.
28.
2
989
311 IN
84
73 IN-H20
710 CU-FT
4 F
143 SCF
4
963 SCF
49
815
00
00
00
00
56
24
METRIC UNITS
08/23/82
1521
IM1
80,
8
1
7,
1
44,
1,
28.
1,
275,
«
18,
•
15.
4,
«
81,
30,
28,
,2
,989
,9
.84
.0
,662
,0
,618
,4
,367
,49
,815
,00
,00
,00
,00
,56
,24
KM
PM-H20
CU-M
C
SCM
SCM
-------
>
o
PB BAROMETRIC PRESSURE
PSI STATIC PRES Of STACK GAS
P3 STACK PRES, ABS.
TS AVERAGE STACK TEMP
V3 AVG STACK GAS VELOCITY
AS STACK AREA
QSSTO STACK FLUX RATE, DRY*
OS ACTUAL STACK FLOH HATE
ISO PERCENT ISOKINETIC
t 68 DEG F, 29.92 IN.HG.
30.12 IM-MG
•1.20 IK-H20
30.03 IN-MG
454. F
47.4 FPS
11310. SQ-IN
6340019. SCFH
13412742. ACFH
100.4
7bS.05 *M-HG
-30.48 fM-H20
7b2.«l XM-HG
234. C
14.5 CPS
7.297 3Q-M
179530. SOH
379609. ACMH
100.4
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST Nu.
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO • (17.647 • VM • T • (PB » PM / 13.6)) / (TH «• 460.)
17.647 • 56.710 • .969 • ( 30.12 » 1.731 / 13.6)
VM3TD * — — — — ---- ............. ---- .......... ----------- a 57.143 OSCF
( 62. + 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC • .04707 • VLC
VNC • .04707 • 275. • 12.96 SCF
PERCENT MOISTURE IN STACK 6A3
BNO • (100. • VNC) / (VMSTO « VNC)
100. • 12.96
BNO « —. — .—.— — -------- . z l«,49 PERCENT
57.143 » 12.96
MOLE FRACTION OF DRY STACK GAS
FMD • (100. - BMO) / 100.
100. - 16. 5
FMD » — — ----- • --- • -------- - = .615
100.
AVERAGE MOLECULAR NEIGHT OF DRY STACK GAS
MO = (PC02 • .44) * (P02 • .32) * (PN2 * PCO) • .26
MD = (15.00*44/100) » ( 4.0*32/100) » ((61.0* .0) * 26/100 = 30.56
MOLECULAR HEIGHT OF STACK GAS
MHS a MD * (1. • (8*0/100)) » 18. * (BHO/100)
MNS a 30. 5b* (1. •(16.49/100)) * 16. • (16.49/100) = 26.24
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUH. OF TMt 9QRT(VH • (TS * 460.))
VS * 6S. 09 • CP * OELP / (SQRT(HNS * PS) • PNTS)
V3 * a5.49 • .a« • J53.«9s / PERCENT ISOKINETIC
I
**? ISO •
(305.58«( 454. »460.))«((0. 002669. 275. )*( 58.710* .969*( 30.12*( 1 .731/ 13.6) ) /( 82,»460,)))
ISO « .— — ——...— — . — — — ..... ———. — — --- .................. — ............................... a 100.40 PERCENT
60. • 47.44 • 30.03 • .311 • .311
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS » 0.001 • MN • IS. 43 / VMSTD
CS = 0.001 • O.OOOOE»00 * 15.43 / 57.143 c O.OOOOEtOO UR/DSCF
-------
ItL'l U» I 4
PLANT
SAMPLING LtltAllUN
SAMHLt TVPt
UPEMATON
AMBltiXT TtMP.lUtb.FJ
BAH.PKtiS. (IN. Mb)
S1AIIC PHtSb.l iN.MiuJ
ULIEH NUMHtHlSj
STACK IUS10L UlM.lllvJ
PlFOT TliHt CULFF.
iMtNM. NU.
LEAKAGE
Htitw CALIH. FACTUR
MtAU ft KtCUKO DATA tVt"»
AKLU, PH1LADLLPH1A
KLLU SlACH
HAK1/M,>SU4/SU«?
UU
fU.
id. 10
-1.2U
.UU
IJAlt
HKL/Dt LtKblH « ITPt
l.U/ZLk : I.U.
AbbUKtU >-OI!)!UHfc
Kt ItK
"tit*
BOX NU^btH
t-tAU UIFF.
leO.UU
.04
.UUi> tFM 01
.**>!
10. 0 MINuTLS
HHUUt HtAIEh SklllNb
nfcAlfcN bOX SblMNb
t>' bLASb
,30/
16.0
1- 10
I.b4
<-bO.
7.0 IN. Mb
TNAVEWSt
P01N1
NU.
IIHE
(H1N.J
CLUCK
11 HE
CLUCK)
GAS MtTtk
HEADING
ICU.FT.)
VELUCI1Y
HbAU
UH1FICL
6TACK
U»
-------
to
P/.K1 IIUL.A It MbLU UAlA Ab
-------
PH UAMUMblKlC
PS1 STATIC HUES (jf- SI4L* bAb
PS STAC* HUES, AHS.
19 • AVbHAGb alALr, ItMH
V5 AVb STACK bAb VbLUCMY
AS STACK AHtA
USbTU STACK FLUW HATh. UNY*
US ACTUAL STACK FLUrt KAIfc
ISO PEHCtNT ISuKlMiTIC
HN fILTtRAbuE-AMtflENl
MG. bHA b
CS
fM-MU
30.01
17.
11410.
ACFh
94.6
144.0
14.4 *HS
SOn
Kb/USCC
MM
u>
(Jt
FILTtKAbLE-lbO
MG. LHA b
F ILTtRABLE-loU
57.0
(iH/UbLF* i8.3«S Cb/USC"
MN
CS
FlLTtMABLE-232
Mb. tPA b
51.«* bl.«*
,01'jl GK/UbLt-* 34.4/1 »b/USLK
CS
FiLTtRAbLt-Jlb
Mb. EPA b
FlLTbHABLE-31b
.b
49.0
* 68 DbU F,
IN.MG.
-------
PAHI iLULAlt CALLHLAl luiv;. ItbT NK. t-l.Wi
tCCU SIAU*
VULuMt OF I)KY liAS bftVKLtU Al blAMuAhl) L
VMS1D = U7.b (Ihl.U* .0) * 20/100 = JU.bo
MULtCULAH Atlt>HI UF SIACK GAS
UnS = Mu • 11. - (M.MJ/IUCJ) « Id. • < 0*0/1 110)
MH.S = iu.5o« (i. - 1 1 u.oi/ 1 uij j i « IB. •
-------
SIACK GAb VhLuClTr «T .SlACK CU'MUllluMb
OfcLP = SUM. Uf iHt JUKllVH * I Th « 4bU.j)
VS s oi.qs * CP • UtLP / IbliHItKMii • PS) • f'MS)
VS = ob.a»* • .64 « ibJ.a^'j / ibij(ii( ^u.ab * 5u.ulj
STACK GAS VULUMtTHIL FLUn Al STALK tlJI-0 1 T HK.S
us = vs • AS * jhuu/mi
US = M7.2tt * JIJIU. JbUU/14<4 = I3^t>79c!4. ACKh
STACK bAS VULUMbTHlL PLUM At STANuAKL)
OSSTD = l/.bt? * US • PS • (1. - (brtU/100)) / (IS «
17.047 • 133679^a. * 3U.U1 • (1. • (lb.Bi/100)J
USS1D = ——— — — — — — --. — .-- ——— — — — — — — = bM<4j^Sb. btfM
* a00.)
PtWCENT
ISO = l3«b.ie*(TS*«oO.J J «l (u.U()«;bbta.0 s — — — - --- -- ----------- - — ......... — .... ------ . — ---- ... ---- ._._..-.-........................... : <»«.bB PEHCtM
BO. • 47.i>e * 30.01 • .JU7 • .307
PARTICULAIt LUAUING -- tPA Mt T HOU S (Al STAM)*HU L UuU I I 1 UNS J
CS = O.uOl • MN * Ib.li / VMS 10
Cb = 0.001 • 144.8 * lb.43 / 'j3.17b =
-------
fItLU UAIA
OJ
00
SAKPLlUb LULAIIUN HLLU SIALK
JjAMfLL 1* ft KAk 1 /HrlSOl/bUd
UHtrfATUk i)d
AMHltrtT iLMH.lUtG.FJ 7u.
riAM.PMtbS.UN.Hb) 40.10
SIAIIL PHtSb.llH.H2u) -I.«!U
FILftrf NUtfUtMlS) ibjOttlb
SIALK INSlDt ulM.Uh) 1*0.00 .00
PHUT Tunt LULFF. .Ml
THbHM. I«U.
LtAivAiit .Olb CFM m 14.0
MtTtk LAL1H. FACTUK .>*Sb
HtAu ft ktLUhU OAlA tVtWT 10. 0 Mll.uUS
TkAVtkSt
HU1N1
mi.
IM1T
TOTALb
AyEHAbE
SAMHLt
HMt
(MIN.)
0
10. U
e-0.0
30.0
10.0
bo.o
bO.O
70.0
70.0
CLUCK CiAb MtTtk
flMt KtAOlNb
(^1-M» ICU.KT.J
CLULK J
Ib2l «>3.Bi3
U 440. blO
U 447.^10
U 453.000
o 4o0.bbO
u 4b7.5ub
u 4 7. 4. bo 0
loll 479.J08
*S.ieb
[A UAlt un/cJi/He
hurt NLfbtk ^uMb
HhOot LtMjIH 6 IVHt *' GLASS
r%U^^LL : I.U. ,i!HS
A^SU^-tU ^OlSTUkt lb.0
Ktltk bL* NUKbth fbl
ft 1 tk ht AU UIFF . 1 .ob
fkLUk ftAltk StlllNb <^bO.
HLAIth bUX SblllNb «?bO.
IN. Mb
VtLbLIlY UklFlCt Hktba'Jht blACK UhY
HEAD
OlfftKLNIjAL Ttl»H
I.Ai KtltH
ItKH
1K«.H<*(J] (JN.HeJOj (Utb.Fj (UtG.F)
I
.400
.400
.400
.400
.400
.41)0
,4«:0
>kd!Mfcu ACIUAL ^Lt
.44 ,4« 157. 01
.47 .17 Obi. Oc
.4<* .49 4bt). Ot>
.Iti .Mb 4bb. tiS
.be .be* 413. si
.be! .bd 445. •*•;
,5S ,b9 ibl. 1<
l.bl l.bl «b^. o«
1 LtUtI
77.
77.
77.
/7.
7b.
79.
79.
7b.
PtfP
VACUUM
IIK.HGJ
4.7
l.b
i.b
4.0
4.*f
5.0
0.0
5.3
SAHFLt I»PIM»LH
BUX HHP TtMP
lOkG.Fj (DEb.FJ
U. 57.
0. bO.
V. 6*.
U. be.
0. b4.
V. bS.
9. 7e.
0. 64.
-------
PAHIlLULAlk MtUI IIAlA t. ht6IILIj I AbllL A 1 I Ul>«
PLANT- NAME ANU AOuHESb It^f TEAf
A»U>i PHILADELPHIA L.U
TEST
TEST DATE
FCtU S1ACK
tNGLlSM UNI IS
t-.trmc tMis
IB
IF
IT
HP
1
UN
CP
PV
OJ Vf
\o
Tf
VCbTU
VLt
V»L
dfcu
f*u
pcua
P0
-------
»>B BANllMtlHJC
PSi STATIC PktS Ul- SIACK i,A.t
PS STACK PKtS, *'**•
IS AVtHAUt iTACn ItMP
VS AVl> blACK bAi WtLdCM*
AS 6TACK AKtA
USbTU ^TAC^ FLU* HAlLf UK'*
US ACTUAL SIACK FLU* KAIt
1SU HEKCtNl ISUK1NLTIC
MN FlLTtKABLE-AkHltNT
riG. tPA b
CS FlLTtRAULE-AKtlltM
»U.1» IN-HO
-I. eii )^-hl;o
iU.OI llt-hb
17.3 FPb
1M1U. bU-lN
iCFH
ACFH
lbl.7
-10.
"M-hb
L
. a
1U0.1
GK/USLF*
>
o
CS
FlLTtHAHLt-lbU
HG. tPA 5
FlLTtKABLE-lbU
67.
b7.a
GH/USCF*
CS
Mb. tPA b
.UlSb GK/UbLF* 4<4.B/e
CS
F lLTtWAOLE-3ib
b
5U.S
.1/177 b
* b» Otb F,
iN.Hb.
-------
IKAMHLt f'AHl 1LUL» It CAI.LIII.AI lurtli I L J> I Ml.
t^CCU SIAtK
uF SIAC.K GAS
KnS = Ku • M. - Ibn'J/lUOJ) * Id. * dinu/IUu)
MnS = ill. "bo* Cl. -l lo. lo/ iwUj) » in. • (in.)«/lUU)
VOLUMfc UF UKY GAS SA^PLtU AT jTANUArtl.1 L
= (I7.f><|7 • Vf « T • IHU » fM / li.bJJ / ITM * 4bU.)
17.1*47 * tJ
iuo. * s.oe
-------- --- ------ ------ s Ib.lB PtKLtM
14.464 •» q.eb
WULt FHACTIuN UF UHT STACK UA5
FHD = I1UU. - UftOJ / 1UU.
IUO. - lo.<;
FMD s -..-....-..-----..-.-.. - ,al«
100.
AVtKAbt MULLCULAH tttlbHT OF UKY SIACX UAb
MU S IPLOC « .44J * (HOii * .It!) «• (PNc; + HCU) * ,d»
100) * ( «.o« i^/i ou j + (t«l.o» .0) *
-------
S1ACK GAS VtLULiTr M I SIALK LuivU I 1 I
ObLP = 5»llM. OF IHt oUKllVh • lib »
US = J»b.4S * CP • ObLH / I SlJk T (HKi * HS) • l-NIb)
Vb s eb.lS * .d« * li<4.ife> / IbuUlt c'B.tftt * 30. OU * 7. = «/.ic! FPS
STACK GAS VuLUMtTKlL FLU* AT 6TALK CUI.I) 1 1
US = W!> * As • 3buO/M1
Ub = <4r.i<: * llilu. 300U/144 = I33BUOU2. ACFH
SIALK b«S VuLu^b TMlC f-LUtt AT STANlUAKI)
UbSTD = 17.b47 • US • PS • 11. - (bmd/IUU)) / (IS » ObU.)
17.B47 • liitJUUUd. • 3U.ol * (1. - (la.tti/lUO))
QSSTO =
ISURlNEflC
to tbO = (^Ob.bB* (1>j««t>U.) )• I (U.UO«?b«>9*VLC J*lVK*r« IPb* IPC/ 1 3.b J )/ IfM+tbO.J J J/ ( I T • VS*PS*UIM*UM
3U.10»t 1 .bU4/ 1 3.b) ) / t
ISO = ...................... — ...... ---- . — .. ---- .............. --- ........................... --- ....... = lo«.ia PbkCEKT
70. * 47.32 * 3U.01 * .£ttJ •
PARIILULAU LUAUIUG -- LPA M 1 HUU 5 (AT STAMlAkU COUOHIUNSJ
Cb = U.OU1 • MN * Ib.ai / VMbTI)
Cb s 0.1*01 * 104.7 * lb.U3 / «4.
-------
FItLO OAT*
4^.
U>
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLt TYPE PART,HeSU4,3U2
OPERATOR J PROHASKA
AMBIENT TEMP. (DEG.F) 80.
BAR. PHE33. (IN.HG) 30.07
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBER(S) 3530824
STACK INSIDE DIM. (IN) 120.00 .00
PITOT TUBE COEFF. .«a
THERM. NO. 174
LEAKAGE .001 CFM i 5.? IN.HG
METER CALIB. FACTOR .996
READ ft RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL UPP
NO. (MIN.J (24-HR
-------
PARTICIPATE FIELD DATA 6 RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCOr PHILADELPHIA J PRUHASKA
TEST 3AM5B
FCCU STACK
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
> P*
1
*> VM
TM
VMSTD
VLC
VMC
BMO
FMD
PC02
P02
PCO
PN2
MO
MNS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGER3 AND SILICA GEL.ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL.. DRY
MOLECULAR WT-ORT STACK GAS
MOLECULAR NT-STACK GAS
08/24/82
955
1155
120.
12
.
.
.
1.
76.
95.
72.
316.
14.
16.
•
IS.
4.
•
81.
30.
28.
0
998
289 IN
84
36 IN-H20
266 CU-FT
6 F
939 SCF
7
907 SCF
97
830
00
00
00
00
56
43
METRIC UNITS
08/24/62
955
1155
120.
12
.
7.
.
34.
2.
35.
2.
316.
•
16.
•
15.
4.
•
81.
30.
28.
0
996
3
84
5
160
3
065
7
422
97
830
00
00
00
00
56
43
I'M
PM-H20
CU-M
C
SCM
SCH
-------
PB BAROMETRIC PKES3URE
PSI STATIC PRE3 OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK CAS VELOCITY
AS STACK AREA
833TO STACK FLO* RATE, DRY*
US ACTUAL STACK FLON HATE
ISO PERCENT I30KINETIC
MN FILTERABLE-AMBIENT
MG. EPA S
CS FILTERABLE-AMBIENT
30.07
-i.io
29.98
453.
46.5
11310.
6327546.
13150460.
99.4
174.0
lf<-HG
1N-M20
1N-M6
F
FPS
SB-IN
SCFH
ACFH
763. 7d
-30.48
761.54
234.
1«.2
7.297
179177.
372382.
99.4
174.0
HM-HG
HM-M2U
KM-MG
C
KPS
SQ-M
SCMH
ACMH
.0368 GR/OSCF*
84.253
MN FILTERABLE-160
MG. EPA S
CS FILTERABLE-lbO
139.5
139.5
.0295 GR/OSCF* 67.548
MN FILTeRABLE-232
MG. EPA 5
CS FILTERABLE-232
134.0
134.0
.0283 6R/OSCF* 64.885
MN FILTERABLE-316
MG. EPA 5
CS FILTtRABuE-316
129.3
129.3
.0274 GR/OSCF* 62.609 f6/OSC»
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. SAMSB
FCCU STACK
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD « (17.647 • VM * Y • (PB * PM / 13.6)) / (TM » 460.)
17.647 * 76.266 * .996 * ( 30.07 + 1.3S6 / 13.6)
VMSTO = — • • — • 72.939 OSCF
( 96. » 460.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VNC s .04707 * VLC
VNC » .04707 • 317. = 14.91 SCF
PERCENT MOISTURE IN STACK GAS
BNO • (100. • VNC) / (VMSTD * VMC)
100. * 14.91
BNO = • ....... . - 16.97 PERCENT
72.939 » 14.91
MOLE FRACTION OF DRY STACK GAS
FHO « (100. • BNO) / 100.
100. - 17.0
FMO « — ———— — — — « .830
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD = (PC02 • .44) » (P02 • .32) * (PN2 + PCO) • .26
MO = (15.00*44/100) » ( 4.0*32/100) * (181.0+ .0) • 28/100 = 30.56
MOLECULAR HEIGHT OF STACK GAS
MNS s Mu • (1. - IBHO/100)) + 18. • (BHU/100)
MNS ' 30.56* (1. -(16.97/100)) » 18. » (16.97/100) c 26.43
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP * SUM. OF THE S8RT(VH • (TS * 460.))
VS « 05.49 • CP • OttP / CSORMMHS • PS) * PNTS)
VS = 65.49 • .80 • 226.904 / (SORT( 80.43 • 29.96) « 12. = 46.51 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
QS s VS • AS • 3600/144
03 • 46.SI * 11310. 3600/144 s 13150460. ACFH
STACK GAS VOLUMETRIC FLOH AT STANDARD CONDITIONS
BSSTD > 17.647 * BS • PS • (1. - (BNO/IOO)) / (TS » 460.)
17.647 * 13150460. • 29.96 • (1. • (16.97/100))
QS3TD • —• — — » 6327*46. 3CFH
( 453. « 460.)
> PERCENT ISOKINETIC
5 ISO « (305.5a*(T3*460.))*((O.Q02<»69«VLC)«(VM*YotPB4(PM/l3.b))/(TM*460.)))/(TT*VS*PS*DN*DN)
(3U5.58*( 453.+460.))«((0.002669* 317.)»( 76.266* .99a*( 30.07«( 1.356/13.6))/( 96.»460.)))
130 e ......... .. ........... . . .... . ........ .............. « 99.36 PERCENT
12V. • 46.51 • 29.98 • .289 • .269
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 * MN • 15.43 / VMSTO
C3 > 0.001 • 174.0 • IS.43 / 72.939 = .0366 GH/OSCF
-------
FIELD OAT*
i
^.
00
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEG.F)
BAR. PRESS. (IN.HG)
STATIC PRESS. (IN. M20)
FILTEH NUMBER(S)
STACK INSIDE DIM. (IN)
PITOT TUBE COEFF.
THEMM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO,
FCCU
PANT,
PHILADELPHIA
STACK
H2SU4,SU2
J PRUHASKA
80.
30.07
•1.20
3530630
120.
.64
174
.002
.989
READ * RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK CAS METER
POINT TIME TIME
NO. (MIN.) (24-HR
INIT 0 956
10.0 1006
20.0 1016
30.0 1026
40.0 1U36
50.0 1046
60.0 1056
70.0 1106
80.0 1116
90.0 1126
100.0 1136
110.0 1146
120.0 1156
READING
(CU.FT.)
197.146
203.790
210.335
217.120
223.710
230.560
237.400
244.035
250.900
257.515
264.360
271.220
276.046
00 .00
CFM 8 6.5 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL T£fP
(IN.H20) (IM.H20) (DEG.F)
DESIRED
.360 .36
.360 .36
.400 .43
.360 .37
.400 .45
.400 .44
.360 .37
.400 .45
.360 .37
.400 .45
.400 .45
.400 .45
ACTUAL
.35 453.
.35 453.
.45 454.
.35 453.
.45 453.
.45 453.
.35 452.
.45 452.
.35 451.
.45 454.
.45 454.
.45 454.
DATE
RUN NUMBER
PROBE LENGTH t TYPE
NUZZLE > 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
fETEH BOX NUMBER
METER HEAD 01FF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. DIFF.
06/24/82
3BM5B
6 FT HEATED GLASS
.297
18.0
FB2
1.77
5.93
320.
320.
.00
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX
(DEG.F) (IN.HG) (DEC
INLET OUTLET
85. 66. .0
87. 67. ,5
91. 66. .5
94. 69. .5
•»*. 92. .0
«»8. 93. .0
««. 94. .0
100. 95. .0
100. 96. .0
101. 96. .0
1U1. 97. .5
102. 96. .5
TEMP TEMP
.F) (DEG.F)
«. 62.
0. 68.
0. 67.
0. 68.
0. 74.
0. 75.
0. 75.
0. 76.
«. 77.
fl. 77.
«. 78.
0. 74.
TOTALS
AVERAGE
120.0
80.902
1.41
1.41
453.
93.
6.0
0.
73.
-------
PARTICULATE FIELD DATA » RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA J PROHASKA
TEST 3BM5B
FCCU STACK
VD
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
VM
TM
VMSTD
VLC
VHC
BMO
FMO
PC02
P02
PCO
PN2
MO
M*S
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NUZZLE DIAMtTER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
t>ROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METEH TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGtRS ANU SILICA GEL, ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRV GAS
PERCENT C02 BY VOL., ORY
PERCENT 02 BT VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 8Y VOL., ORY
MOLECULAR NT-DHY STACK GAS
MOLECULAR MT-3TACK GAS
ENGLISH UNITS
08/24/82
956
1156
120.0
12
.989
.297 IK
.84
1.41 IN-H20
80.902 CU-FT
90. 4 F
76.851 SCF
319.7
15.018 SCF
16.37
.836
15.00
4.00
.00
81.00
30.56
28.50
METRIC UNITS
08/20/82
956
1156
120.0
12
.489
7.5 MM
.84
3S.8 MM-H20
2.291 CU-M
34, T C
2.176 SCM
319.7
.426 SCM
16.37
.836
15.00
4.00
.00
81.00
30.56
28. SO
-------
PB BAHOMETRIC PRESSURE
PSI STATIC PRE3 OF STACK GAS
PS STACK PBE3, ABS.
TS AVERAGE STACK TEHP
VS AVG STACK GAS VELOCITY
AS STACK AREA
093TD STACK FLOM RATEt DRT*
OS ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
HN FILTERABLE-AMBIENT
M6. EPA S
CS FILTERABLE-AMBIENT
30.07 IN-HG
-1.20 IN-H20
29.98 IN-M6
453. F
46.4
11310.
6364520.
13133210.
98.6
158.1
FPS
SU-IN
SCFH
ACFH
14.2
7.2
180224.
371893.
98.6
158.1
76J.78 CM-HG
-30.48 PM-H20
761.54 PM-HG
234. C
!
!97
3CHH
ACHH
.0317 GR/DSCF*
72.657 KG/DSC'
in
O
MN
CS
FILTERABLE-160
MG. EPA S
FILTERABLE-160
131. 5
.0264 GR/DSCF*
131.5
60.433
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
124.1
124.1
.0249 GR/DSCF* 57.032 KG/DSCK
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
116.5
118.5
.0238 GR/DSCF* 54.456 PG/DSC'
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS IEST NO. SBMSB
FCCU STACK
VOLUME OF DRY GAS SAHPLfcD AT STANDARD CONDITIONS
VM9TO • (17.647 • VM • T • IPB * PM / 13.6)) / (TM » 460.)
17.647 • 80.902 • .969 • ( 30.07 «• 1.408 / 13.6)
VMSTD » ———————— —— — .—— — — — — . .... * 76.851 DSCF
I 9
-------
STACK GAS VtLOCITT AT STACK CONDITIONS
OELP * SUM. OF THE SORMVH • (TS * 460.))
VS • 65.49 • CP • DELP / (SQRTCMWS • PS) • PHIS)
VS e «5.49 * .04 * 226.904 / (3URT( £6.50 * 29.98) * 12. = 46.45 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
03 * VS • A3 * 3600/140
OS * 46.45 * 11310. 3600/144 = 13133210. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD • 17.647 * QS • PS * (1. • (BMO/100)) / (TS » 460.)
17.647 • 13133210. * 29.98 • (1. - (16.37/100))
OSSTD « — "———— — " « 6364520. SCFH
( 453. * 460.)
> PERCENT ISOKINETIC
(^ ISO » (305.58*(TS«460.))*((0.0026b9*VLC)»(VM*Y*(PB«(PM/l3.6))/(TM«460.)))/(TT*VS*P3*ON*DN)
(305.58M 453.*460.))*((0.002669* 320.)*( 60.902* .989*( 30.07M 1.406/13.6))/( 94.*4*0.)))
ISO » —— ...... . .... ....................................... . 9B.57 PERCENT
120. • 46.45 • 29.98 • .297 • .297
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
C3 • 0.001 * MN • 15.43 / VMSTD
CS = 0.001 • 158.1 • 15.43 / 76.851 s .0317 GR/DSCF
-------
PLANT ARCO,
SAMPLING LOCATION FCCU
PHILADELPHIA
SUCK
SAMPLE. TTPE PAHT/H23U4/SU2
OPEMATOR 00
AMBIENT TEMP.(OE6.F) 80.
BAR. PHESS. (IN.HG) 30.07
STATIC PRESS. (IN.H20) -1.20
FILTER NUMBER(S) 3530825
STACK INSIDE DIM. (IN) 120.
PI TOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000
METER CALIB. FACTOR .967
READ * RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME READING
NO. (MIN.) (24-HR ICU.FT.)
^i nr tf I
tLUtn)
INIT 0 955 60.415
10.0 0 07.360
•f 20.0 0 94.260
Ji 30.0 0 101.390
U) 40.0 0 108.340
50.0 0 115.480
60.0 0 122.620
70.0 0 129.650
80.0 0 136.860
90.0 0 143.930
100.0 0 1S1.160
110.0 U 158.430
120.0 1155 165.583
00 .00
CFM * 8.0 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TEfP
(IN.H20) (1N.H20) (DEG.F)
DESIRED
.360 .44
.380 .45
.400 .53
.380 .46
.400 .54
.400 .55
.380 .48
.400 .56
.380 .48
.400 .55
.400 .56
.400 .56
ACTUAL
.44 453.
.45 453.
.53 454.
.46 453.
.54 453.
.55 453.
.48 452.
.56 452.
.48 451.
.55 454.
.56 454.
.56 454.
DATE
RUN NUMBER
PROBE LENGTH 8 TTPE
NUZ2LE I I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
PETER BOX NUMBER
KETER MEAD OIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
08/24/82
3CMS
5* GLASS
.298
18.0
F10
1.84
250.
250.
DRT GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX
(DEC.F) (IN.HG) (DEC
If
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PL«NT« NAMt AND ADDRESS TEST TEA* LEADER
ARCOr PHILADELPHIA 00
TEST 3CM5
fCCU STACK
en
ENGLISH UNITS
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
06/24/62
955
1155
120
12
1
.0
.967
.296 IN
.64
.51 IN-M20
METRIC UNITS
06/24/82
955
1155
120
12
7
38
.0
.967
.6
.64
.4
KM
*M-
DROP
VM VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPIN6ER8 AND SILICA GEL»ML,
VHC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BHU PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC(J2 PERCENT CO* BY VOL., DRY
P02 PERCENT 02 BY VOL., ORY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
MMS MOLECULAR NT-STACK GAS
65.168 CU-FT
102.4 F
77.993 SCF
336.3
15.630 SCF
2.412 CU-M
39.1 C
2.209 SCM
336.3
.446 3CP
16.67
.631
15.00
4.00
.00
61.00
30.56
28.44
16.67
.831
15.00
4.00
.00
61.00
30.56
28.44
-------
PB bAHOMETRIC PRESSURE
PSI STATIC PftES OF STACK GAS
PS STACK PRE9, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLON RATE* DRr*
03 ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
MM FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
50.07 IN-HG
-1.20 IN-H20
a^.se IN-HG
453. F
46.5 FP3
11310.
6333621.
13107618.
99.9
326.5
SO-1N
SCFH
ACFH
.0646 GR/DSCF*
763.78 CM-HG
-30.48 KM-H20
761.54 HM-HG
234. C
14.2 *P3
7.297 Sg-H
179349. SCMH
372301. ACMH
99.9
326.5
147.
MN
1/1
Ln
FlLTERABLE-160
MG. EPA S
FILTERABLE-160
152.2
.0301 GR/DSCF*
152.2
66.922
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
144.2
.0565 GR/OSCF*
144.2
65.299 fG/DSCP
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
140.6
140.8
.0279 GR/OSCF* bS.759 »G/DSC»
* 68 OEG F, 29.92 IN.H6,
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 3CM5
FCCU STACK
VOLUME UP DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTD a (17.647 • VM • Y • (PB * PM / 13.6)) / (TM » 460.)
17.647 * 65.168 * .967 * ( 30.07 + 1.513 / 13.6)
VMSTD s — — — — . s 77.993 DSCF
( 102. * 460.}
VOLUME OP HATER VAPOR AT STANDARD CONDITIONS
VHC • .04707 • VLC
VHC e .04707 * 336. > 15.63 SCF
PERCENT MOISTURE IN STACK GAS
BHO * (100. • VHC) / (VMSTD * VHC)
^ 100. • 15.83
iji BHO » —— — — — — c 16.87 PERCENT
0\ 77.993 » 15.63
MOLE FRACTION OF DRY STACK GAS
FMD • (100. - BHO) / 100.
100. • lb.9
FMO « — — — 3 .831
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD • (PC02 • .44) * (P02 • .32) » (PN2 * PCO) * .26
Ml) = (15.00*44/100) » ( 4.0*32/100) » ((61.0* .0) • 28/100 = 30.56
MOLECULAR HEIGHT OF STACK GAS
MHS = MD • (1. • IBnO/lOO)) » 10. • (BMU/100)
MWS - 30.Sb* (1. -116.87/100)) » IB. » (16.87/100) = 26.44
-------
STACK GAS VfcLOClTT *T STACK CONDITION*
OELP • SUM. OF THE SOHUVH * (TS * 460.))
VS » 65.49 • CP • OELP / (3QRT(MNS • PS) • PNTS)
VS = 05.49 • .04 • 226.904 / (SORT( 28.44 « 29.96) • 12. = 16.50 FPS
STACK GAS VOLUMETHIC FLO* AT STACK CONDITIONS
OS a VS • AS * 3600/144
OS * 46.SO * 11310. 3600/144 s 1)147616. ACFM
STACK GAS VOLUMETRIC FLO" AT STANDARD CONDITIONS
03STO * 17.647 • OS • PS • (1. - (8*0/100)) / (TS « 460.)
17.647 * 13147616. • 29.96 • (1. - (16.67/100))
03STO « — — — ——— ——— ———— — — — — — —— c 6333621. SCFH
( 453. * 460.)
I PERCENT ISOKINETIC
cn
^ ISO » (305.b6*(TS«460.»«((0.0026fa9*VLC)»(V»4*Y*(PB«(PM/13.6))/(TM+460.)))/(TT*VS*PS*DN*DN)
(305.58«( 453.»460.))«l(0.002669* 336.)»( 65.166* .967*( 30.07*( 1.513/13.6))/( 102.»460.)))
ISO » — — —— • 99.65 PERCENT
120. • 46.50 • 29.99 • .296 • .296
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 • MN * 15.43 / VMSTO
CS » 0.001 • 326.5 • 15.43 / 77.993 = .0646 GR/OSCF
-------
FIELD DATA
en
ca
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(OEG.F)
BAR. PRESS. (IN. H
-------
PARTICIPATE FIELD DATA « HESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA DO
TEST 30M5
FCCU STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
1
cn
vo VM
TM
VMSTD
VLC
VNC
BNO
FMD
PC02
P02
PCO
PN2
MO
MN3
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF ORY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL.HL.
VOLUME OF NATEH VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAH NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
08/24/82
U56
120.0
12
.995
.289 IN
.84
1.35 IN-HZO
76.933 CU-FT
97.3 F
73.128 SCF
306.2
14.413 SCF
16.46
.835
15.00
4.00
.00
81.00
3U.S6
20.49
METRIC UNITS
08/24/82
956
1156
120.0
12
.995
7.3 MM
.84
34.2 PN-H20
2.178 CU-M
36.3 C
2.071 SCM
306.2
.408 SC»
lb.46
.835
15.00
4.00
.00
81.00
30.56
28.49
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
P3 STACK PRES, AB3.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLOM RATE* DRY*
03 ACTUAL STACK FLOM RATE
ISO PERCENT ISOK1NETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
C3 FILTERABLE-AMBIENT
30.07 IN-MG
-1.20 1N-H20
29.98 Ifc-HG
453. F
46.6 FPS
11310. SG-1N
6378510. SCFH
13163774. ACFH
98.9
262.4
.0596 GR/OSCF*
763.76 FM-HG
-30.48 fM-M20
761.54 PM-HG
234. C
14.2 PPS
7.297 SO-M
180451. SCHH
372759. ACMH
98.9
282.4
136.387 KG/DSC*
MN
CS
FILTERABLE-ibO
MG. EPA S
FILTERABLE-160
156.1
.0329 GR/OSCF*
156.1
75.390
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
150.3
150.3
.0317 GH/OSCF* 72.589 KG/DSC*
CS
FILTERABLE-316
MG. EPA b
FUTERABLE-316
133.7
133.7
.0282 GR/OSCF* 64.572 PC/DSC*
t 68 DEC F, 29.92 IN.HG,
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NU. 30M5
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD « (17.647 • VM • Y • (P0 » PM / 13.6)) / (TM » 460.)
17.647 • 76.933 • .995 • ( 30.07 » 1.347 / 13.6)
VMSTD = .-- —. — — — . ——— — . — .-. —...........-.. — -. * 73.128 DSCF
( 97. « 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC = .04707 • VLC
VNC • .04707 • 306. « 14.41 SCF
PERCENT MOISTURE IN STACK GAS
BNO • (100. • VNC) / (VMSTO » VNC)
> 100. • 14.41
' BNO a ....-—................... = 16.46 PERCENT
PJ 73.126 » 14.41
MOLE FRACTION OF DRT STACK GAS
FMD « (100. - BNO) / 100.
100. • 16.5
FMD « ——--—— — — — - 3 .635
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO • (PC02 • .44) « (P02 • .32) « (PN2 » PCO) * .26
MD a (15.00*44/100) » ( 4.0*32/100) * ((81.0* .0) • 26/100 = 30.56
MOLECULAR HEIGHT OF STACK GAS
MHS s MO • (1. - (BHO/100)) » 16. • (HHO/100)
MnS = 50.56* (1. •116.46/100)) » 16. • (16.46/100) = 28.49
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OCLP c SUM. OF THE SORTIVH * ITS « 460.))
VS = 85.49 • CP • DELP / (SURHMKS * PS) • PNTS)
VS = 85.49 • .84 * 227.387 / (3u»T( 28.49 • 29.98) » 12. = 46.56 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS • AS * 3600/144
OS = 46.56 « 11310. 3600/144 x 13163774. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO « 17.647 • OS • PS • (1. - CBNO/100)) / (TS » 460.)
17.647 • 13163774. » 29.98 * (1. • (16.46/100))
OSSTO " — — • — - — « 6372516. SCFH
( 453. * 460.)
> PERCENT ISOKINETIC
I
CT ISO « (305.5a*(T3«460.))*l(0.002669*VLC) + (V»4*Y*(PBMPH/13.6))/(TM*460.))
rO
(305.58*( 453.»4t>0.))«((0.002664* 306.)»( 76.933* .995*( 30.07*( 1.347713.6))/ ( 97.•460.)))
ISO * - — — — -- — - — ------ — [[[ • 90.94 PERCENT
120. * 46.56 • 29.98 • .289 • .289
PARTICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS < 0.001 • MN • IS.43 / VMSTD
-------
FIELD DATA
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(OEG.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.MaO)
FILTEH NUMBER(9)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO, PHILADELPHIA
FCCU OUTLE1
PART,H2SU4,302
J PROHASHA
95.
30.11
•1.20
353082U
120.00 .00
.04
174
.010 CFM d 29.0 IN.HG
.998
DATE
RUN NUMBER
PROBE LENGTH ft TYPE
NUZZLE I 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
PETER HEAD DIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. DIFF,
06/24/82
4AMS
6 FT HEATED GLASS
.262
ie.o
FB6
1.90
$.17
250.
250.
.00
READ & RECORD DATA EVERY 10.0 MINUTES
TRAVEMSt
POINT
NO.
INIT
>
1
cn
Ul
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
so.o
60. 0
71.5
CLOCK
TIME
(24-HR
I* 1 t\f H 1
CLOCK J
1316
1326
1336
1346
1356
1406
1416
1026
GAS METER
READING
(CU.FT.)
60.468
66.710
72.835
/B. 910
85.260
91.600
97.915
104.207
VELOCITY ORIFICE PRESSURE
HEAD DIFFERENTIAL
(IN.H20) (IN.H20)
DESIRED ACTUAL
.400
.400
.400
.420
.420
.420
.420
.26
.26
.26
.33
.33
.33
.33
.25
.25
.25
.35
.35
.35
.35
STACK
TEMP
(DEG.F)
446.
«53.
451.
450.
455.
450.
450.
DRY GAS METER PUMP
TEMP VACUUM
(DEG.F) (IN.MG)
INLET OUTLET
94. 95.
95. 95.
97. 95.
100. 95.
101. 96.
101. 97.
101. 97.
.5
.5
.5
.5
.5
.5
.5
SAMPLE
BOX TEMP
(DEG.F)
0.
0.
0.
0.
«.
0.
0.
IMPINGER
TEMP
(OEG.F)
66.
44.
*».
78.
76.
72.
70.
TOTALS
AVERAGE
71.5
43.T39
1.30
1.31 451.
98.
96.
4.5
0.
71.
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT- NAPE AND ADDRESS TEST UAH LEADER
ARCO, PHILADELPHIA J PRUHASKA
TEST 4AH5
FCCU OUTLET
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
1
2 VM
TM
VMSTO
VLC
VMC
bhO
FMD
PC02
P02
PCO
PN2
MD
M»S
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PHOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGER3 AND SILICA GEL, ML.
VOLUME OF HATER VAPOM
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRV
PERCENT N2 BY VOL., URY
MOLECULAM NT-DHY STACK GAS
MOLECULAR NT-STACK GAS
06/24/62
1316
71
7
1
43
97
41
213
10
19
13
4
61
30
27
.5
.996
.282 IN
.84
.31 IN-H20
.739 CU-FT
.1 F
.769 SCF
.3
.040 SCF
.38
.606
.40
.60
.00
.60
.34
.95
METRIC UNITS
06/24/62
1316
1426
71
7
7
33
1
36
1
213
19
13
4
81
30
27
.5
.996
.2
.84
.2
.239
.2
.163
.3
.264
.36
.806
.«0
.60
.00
.80
.34
.95
MM
MM-H20
CU-M
C
sen
SCM
-------
PB dAMOMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLON RATE. OHT*
US ACTUAL STACK FLON RATE
ISO PERCENT I90KIMETIC
MN FILTERABLE-AMBIENT
KG. EPA 5
CS FILTERABLE-AMBIENT
4B.O
11310.
6363485.
13568176.
99.8
159.5
3U.11 1N-HG
-1.20 1N-H20
30.0? IN-HG
F
FPS
SO-IN
SCFH
ACFH
.0589 GR/OSCF*
764.79 FM-HG
-30.48 PM-H20
762.55 KM-MG
233. C
14.6 FPS
7.297 SO-M
180195. 3CHM
384210. ACHH
99.8
159.5
134.866
OS
ui
FILTERABLE-UO
M6. EPA S
FlLTt»ABLE-l60
99.2
99.2
.0366 GR/OSCF* 83.879
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
57.8
57.6
.0214 GH/DSCF* 48.873 K6/D3C*
MN FILTERABLE-3I6
MG. EPA 5
CS
FILTERABLE-316
51.1
.0189 GR/OSCF*
51.1
43.208
* 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO. 4AM5
FCCU OUTLET
VOLUME OF DRY GAS SAMPLED AT STAMOAHD CONDITIONS
VMSTO » (17.647 • VM • Y • (PB » PM / 13.6)) / (TM + 060.)
17.647 • 43.739 * .998 * ( 30.11 * 1.307 / 13.6)
VMSTO = ................. ..................—......... c 41.769 DSCF
( 97. « 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC » .04707 • VLC
VMC * .04707 • 213. I 10.04 SCF
PERCENT MOISTURE IN STACK GAS
BMO s (100. • VNC) / (VM8TD » VMC)
& 100. • 10.04
<^ BMO « = 19.38 PERCENT
CTi 41.769 » 1U.U4
MOLE FRACTION OF DRY STACK GAS
FMO c (100. - BMO) / 100.
100. • 19.4
FMD » — — ...—. — —....... 3 .806
100.
AVERAGE MOLECULAR NEIGHT OF DRV STACK GAS
MO » (PC02 • .44) » (P02 • .32) * (PN2 » PCO) • .20
MO i (13.40*44/100) « ( 4.8*32/100) » ([81.8* .0) • 28/100 x 30.34
MOLECULAR HEIGHT OF STACK GAS
MHS * MO * (1. > (8*0/100)) » 18. * (UNU/100)
MMS a 30.34* (1. -(19.38/100)) * IB. * (19.30/100) t 27.95
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP « SUM. OF THt SQHHVH • (TS * 46U.))
VS • 85.49 * CP • OELP / (SQRT(MN!> * PS) * PNTS)
VS B bS.49 « .84 • 13S.49U / ISURU 27.95 * 30.02) * 1. = 47.99 FPS
STACK 6AS VOLUMETRIC FLON AT STACK CONDITIONS
OS « VS • AS * 3600/144
OS * 47.99 • 11310. 3600/144 a 13568176. ACFM
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
03STO • 17.647 • OS • PS • (1. - (BNO/100)) / (TS » 460.)
17.647 * 13566176. • 30.02 • (1. - (19.38/100))
OSSTD » ———-.-. . . ... i 6363465. SCFM
( 451. » 460.)
"f PERCENT ISOKINETIC
a\
-J ISO * (305.58*(TS+460.))*((0.002669*VLC)*(VM*V*(PB*(PM/13.6))/(TM«460.)))/(TT*VS*PS*ON*ON)
(305.56«( 451.t460.))*((0.002669* 213.)»( 43.739* .996M 30.1l*( 1.307/I 3.6))/( 97.«460.)))
ISO a —.—.——[[[ —....................—........ m 99.75 PERCENT
72. * 47.99 • 30.02 • .282 * .282
PARTICIPATE LOADING •- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 * MN • 15.43 / VMSTO
-------
FIELD DAT*
a\
GO
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERA TOR
AMBIENT TEMP.(OEG.F)
BAH.PHESS. UN.HG)
STATIC PRESS. (IN. H2U)
FILTEK NUMBE.RO)
STACK INSIDE DIM. (IN)
PITUT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO,
FCCU
PHlLADtLPHIA
OUTLET
PART, H23U4, 302
J PROMASHA
95.
30.11
•1.20
3530B30
120.
.84
174
.002
.969
READ 4 RECORD DATA EVERT 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME
NO. (MIN.) (24-HR
n nrtt )
iiuiR /
INIT 0 1317
10.0 1327
20.0 1357
30.0 1347
40.0 1357
50.0 1407
60.0 1417
70.0 1427
80.0 1437
90.0 1447
100.0 14S7
110. 0 1507
120.0 1517
READING
ICU.FT.)
278.315
285.870
293.500
300.825
308.535
316.225
324.100
331.670
339.325
347.050
354.700
362.295
369.887
00 .00
CFM d 5.5 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL lf.*P
(IN.H20) (1N.H20) (DEG.F)
DESIRED
.400 .76
.4UO .76
.400 .76
.420 .83
.420 .83
.420 .84
.420 .84
.420 .85
.420 .83
.420 .83
.420 .83
.420 .83
ACTUAL
.75 446.
.75 453.
.75 451.
.85 450.
.85 455.
.85 450.
.85 450.
.85 450.
.85 454.
.85 450.
.85 454.
.85 450.
DATE
HUN NUMBER
PHOBE LENGTH I TYPE
NOZZLE I I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
PETER BOX NUMBER
METER HEAD OIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. DIFF.
08/24/02
4BM5
6 FT HEATED GLASS
.311
18.0
FB2
1.77
7.13
250.
250.
.00
DRY GAS METER PUMP SAMPLE IMPIN6ER
TEMP VACUUM BOX
(DEG.F) (IN.MC) (DEC
INLET OUTLET
90. 95. 4.5
95. 95. 4.5
9S. 96. 4.5
101. 96. 4.5
103. 97. 5.0
102. 98. S.O
101. 47. 4.5
101. 97. 5.0
101. 97. 5.0
1U1. 97. 5.0
101. 96. 5.0
100. 95. 5.5
TEMP TEMP
.F) (DEG.F)
0. 6*.
0. *7.
0. 68.
0. 80.
0. 82.
0. S4.
0. 74.
0. 73.
0. 71.
0. 69.
0. 64.
0. 65.
TOTALS
AVERAGE
120.0
91.572
1.82
1.82 451.
100.
96.
4.6
0.
72.
-------
PARTICULATE FIELD DATA 4 RESULTS TABULAMUN
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCOf PHILADELPHIA J PRUHASKA
TEST 4BM5
FCCU OUTLET
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PM
1
0(
<£> VM
TM
VMSTD
VLC
VMC
BMO
FKD
PCU2
P02
PCO
PN2
MD
MHS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METEK CALIBRATION FACTOR
SAMPLING NUZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOH
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PEttCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR Wt-ORY STACK GAS
MOLECULAR hT-STACK GAS
08/24/82
1317
1517
120
12
1
91
98
86
375
17
16
13
4
81
30
28
.0
.989
.311 IN
.64
.82 IN-H20
.572 CU-FT
.1 F
.605 SCF
.8
.689 SCF
.96
.830
.40
.80
.00
.80
.34
.24
METRIC UNITS
08/24/82
1317
1517
120.
12
.
7.
.
46.
2.
36.
2.
375.
•
16.
.
13.
4.
.
Bl.
30.
28.
0
989
9
84
4
591
7
432
8
501
96
830
40
80
00
80
34
24
MM
PM-H20
CU-M
C
9CP
• 1C*
-------
PB BAROMETRIC PRESSURE
PS1 STATIC PRE3 OF STACK GAS
PS STACK PRESi ABS.
TS AVERAGE STACK TEMP
VS AVe STACK GAS VELOCITY
AS STACK AREA
USSTD STACK FLUH RATE. DRY*
US ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MS. EPA 5
CS FILTERABLE-AMBIENT
30.11 1N-HG
-1.20 IN-H20
30.02 IN-H6
451. F
06.0 FPS
11310. SU-IN
654bb7£. SCFH
13557762. ACFH
96.5
247.9
.0442 GR/DSCF*
764.79 CM-HG
-30.46 V
762.55 PM-HG
233. C
14.6 KH3
7.297 30-M
185362. SCNH
383915. ACMH
98. 5
247.9
101.095 >6/D3O
CS
FILTERABLE-160
MS. EPA 5
FILTERABLE-160
134.1
.0239 GR/OSCF*
134.1
54.607 KG/DSC*
CS
FItTERABtE-232
MG. EPA 5
FILTERABLE-232
98.9
.0176 GR/DSCF*
98.9
40.332 MG/DSO
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
67.3
.0156 GR/OSCF*
87. 3
35.602 KG/DSC)*
* 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NU. 46M5
FCCU OUTLEI
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO • (17.647 • VM • T • (Pb » PM / 13.6)) / (TM » 460.)
17.647 • 91.572 • .969 • ( 30.11 » 1.825 / 13.6)
VMSTO = -—-— — — — - .__..._._._._._...__.-—.... s 86.605 D3CF
( 9d. « 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 * VLC
VHC * .04707 • 376. s 17.69 SCF
PERCENT MOISTURE IN STACK GAS
8*0 • (100. • VMC) / (VMSTD + VNC)
•f 100. * 17.69
«j BHO * . — — ..— — ... — -...... s 16.96 PERCENT
H> 66.605 + 17.69
MOLE FRACTION OF DRY STACK GAS
FHD = (100. • BHO) / 100.
100. - 17.0
FMD a --.--——--- — - — ---. s .830
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO s (PC02 • .44) » (P02 • .32) * (PN2 » PCO) • .it
MO * (13.40*44/100) » ( 4.0*32/100) » ((81.B» .0) * 28/100 : 30.34
MOLECULAR WEIGHT UF STACK GAS
MHS = MD • (1. - (BwO/100)) » 16. • (BMO/100)
MHS = 30.34* (1. -(16.96/100)) » IB. • (16.96/100) = 26.24
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE SQRUVH • (TS « 460.))
VS * B5.49 • CP * DELP / (SQRTCMNS • PS) * PNTS)
VS = 65.49 * .64 • 233. 335 / (S(JRT( 86.24 • 30.02) * 12. = 47.45 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS s VS • AS * 3600/144
03 x 47.95 • 11310. 3600/111 = 13557762. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD a 17.647 * OS • PS • (1. - (BMO/100)) / (TS » 460.)
17.647 * 13557762. • 30.02 * (1. - (16.96/100))
8SSTO « --------------------------------------------------- s 6546672. SCFH
( 451. * 4bO.)
I PERCENT ISOKINETIC
-J
M ISO * (305.56*(TS*460.))*((0.002669*VLC)+(VM*r*(PB+(PM/13.6))/(TM+460.)))/(TT*VS*PS*DN*DN)
(305.56*( 451. *4bO.))*((0. 002669* 376. )»( 91.572* .969*( 30.11»( 1 ,«25/l 3.6) ) / ( 96.«460.)))
ISO « ——.— — .. --- .... --------- . ------ . -------- . --------- . --- .......................... ---- ....... 8 96.49 PERCENT
120. * 47.95 • 30.02 • .311 • .311
PARTICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
C3 B 0.001 • MN « 15.43 / VMSTD
CS < 0.001 • 247.9 * 15.43 / 66.605 = .0442 GR/DSCF
-------
FIELD DATA
>
U)
PLANT ARCO>
SAMPLING LOCATION FCCU
PHILADELPHIA
STACK
SAMPLE TYPE PAHT/H2SU4/S02
OPERATOR 00
AMBIENT TEMP.IDEG.F) 65.
BAR. PRESS. (IN. HG) 30.11
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBER(S) 3530625
STACK INSIDE DIM. (IN) UO.
PITUT TUBE COfcFF. .84
THERM. NO.
LEAKAGE .004
MtTER CALIB. FACTOR .967
READ k RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME READING
NO. (MIN.) (24-HR (CU.FT.)
n nf tf i
CLULK 1
INIT 0 1316 165.827
10.0 0 173.600
20.0 0 161.170
30.0 0 188.750
40.0 0 196.520
50.0 0 204.340
60.0 0 212.100
70.0 0 219.830
60.0 0 227.630
90.0 0 234.430
100.0 0 243.220
110.0 U 251.000
120.0 1516 258. Til
00 .00
CFM H 9.0 IN.MG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TEMP
(IN.H20) (IN.H20) (DEG.F)
DESIRED
.400 .75
.400 .73
.400 .74
.420 .84
.420 .63
.420 .64
.420 .64
.420 .83
.420 .63
.420 .63
.420 .83
.420 .83
ACTUAL
.75 446.
.73 453.
.74 451.
.64 450.
.83 453.
.64 450.
.64 450.
.83 451.
.63 454.
.83 450.
.63 454.
1.83 450.
DATE
RUN NUMBER
PROBE LENGTH 6 TYPE
NUZZLE S 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
PROBE HEATER BETTING
HEATER BOX SETTING
08/24/82
4CM5M
5* GLASS
.307
16.0
F10
1.84
aso.
250.
DRY GAB METER PUMP SAMPLE IMPINGED
TEMP VACUUM BOX TEMP TEMP
(OEG.F) (IN.H6) (DEC.
INLET OUTLET
99. 100. 6.7
99. 99. 6.7
103. 99. 6.B
106. 100. 7.0
107. 100. 7.9
107. tOl. 7.2
105. 100. 7.2
105. tOO. 7.4
104. tOO. 7.7
103. 99. 7.8
104. 99, B.O
103. 9B. B.t
F) (OEG.F)
65.
66.
69.
78.
76.
76.
76.
75.
71.
76.
B4.
61.
TOTALS
AVERAGE
120.0
92.884
1.81
1.81
451.
104.
100.
7.3
0.
75.
-------
PARTICIPATE FIELD DATA & HESULTS TABULAHUN
PLANT- NAME AND ADORtSS TEST TEAM LEADER
ARCO, PHILADELPHIA DO
TEST 4CM5M
FCCU STACK
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
06/24/U2
1316
1516
120.0
12
.967
.307 IN
.»«
1.61 IN-H20
METRIC UNITS
08/24/82
1316
1516
120.0
12
.967
7.8 MM
.64
46.0 MM-
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VhC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
8*0 PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRV
P02 PEHCtNT 02 BT VOL., DRY
PCU PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BV VOL., DRY
MD MOLECULAR WT-ORY STACK GAS
MMS MOLECULAR NT-STACK GAS
92.684 CU-FT
101.7 F
65.347 3CF
370.6
17.454 SCF
2.630 CU-M
36.7 C
2.417 SCf
370.6
.494 SCM
16.96
,630
13.40
4.60
,00
81.00
30.34
28.24
16.96
.630
13.40
4.60
.00
81.80
30.34
26.24
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK CAS VELOCITY
AS STACK AREA
033TO STACK FLO" RATE, DRT«
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKJNETIC
• 68 OEG F, 29.9Z IN.HG.
48.0
11310.
6545250.
13SS8V04.
4<).b
3U.11 Ih-HG
-1.20 JN-H20
30.02 IN-MG
451. F
FPS
SU-1N
SCFH
ACFH
764.79 HM-HG
•30.46 KM-M20
762.55 PM-HG
233. C
14.6 PP3
7.297 30-M
185342. 30H
3S3948. ACMH
99.6
>
Ul
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.
FCCU STACK
VOLUMt OF DRY GA3 SAMPLED AT STANUAHD CONDITIONS
VMSTO * (17. baT • VM • Y • (PB * PM / 13.6)) / (TM » 460.)
17.647 * 92.684 • .967 * C 30.11 * 1.610 / 13.6)
VMSTO * ...----. — — ---- — ------- ------ ........... ------ .... > 65.347 DSCF
. « 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC • .04707 • VLC
VHC « .04707 • 371. s 17.45 SCF
PERCENT MOISTURE IN STACK GAS
BHO • (100. • VHC) / (VMSTD » VHC)
> 100. • 17.45
I BHO • — • • • s 16.96 PERCENT
^ 85.347 * 17.45
MOLE FRACTION OF DRY STACK GAS
FMD » (100. • BHO) / 100.
100. - 17.0
FMO n ....................... - .830
100.
AVCHAGE MOLECULAR HEIGHT OF DHY STACK GAS
MD 3 (PC02 • .44) * (P02 • .32) » (PN2 » PCO) • .28
MO = (13.40*44/100) » ( 4.6*32/100) * ((81.6* .0) • 26/100 = 30.34
MOLECULAR HEIGHT UF STACK GAS
MHS = Ml) • (1. - (BnO/100)) » 18. • (bMU/100)
MN3 e 30.34* (1. -Ue.ve/100)) » IB. * (16,98/100) s 26.24
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP « SUM. OF THE SORTUH • (TS * 460.))
VS • 85.49 • CP • OELP / (SuRUHHS • PS) * PNTS)
VS B 05.49 * .64 • 233.336 / (SuRH 2B.24 • 3D.02) • 12. 3 17.95 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS B VS • AS * 3600/144
OS • 47.95 • 11310. 3600/141 a 13558904. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTD a 17.607 • OS • PS • (1. • (BnO/100)) / (TS * 460.)
17.617 * 13558904. • 30.02 • (1. - (16.98/100))
OSSTD = — . — — — .- — ............ . . c 6545250. SCFH
( 451. » 460.)
K, PERCENT ISOKINETIC
I
^J ISO = (305.58«(TS*460.))«((0.002669«VLC)»(VM«Y«(PB*(PH/13.6))/(TM«460.)))/(TT«VS»PS«ON«DN)
vJ
(305.58*( 451.«460.))«l(0.002669* 371.)»( 92.884* .967*1 30.11»( 1.810/13.6))/( 102.«460.)))
ISO « ——--.——.-------- — — -...--.—.— — ...- — -.--.-.--—.. — ...-.----.-- — ...—.- — -——..-.— • 99.62 PERCENT
120. • 47.95 • 30.02 • .307 • .307
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS & 0.001 • MN • 15.43 / VMSTD
CS * 0.001 • 0.0000t»00 • 15.43 / 85.347 « O.OOOOE+00 GR/DSCF
-------
FIELD DATA
>
00
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PAHT/H2SU«/S02
OPENATOH DO
AMBIENT TEMP. IDES. F) 65.
BAR.PKES3.UN.H6) 30.lt
STATIC PRt3S.llN.H20) -1.20
FILTEH NUMBtRtS) 3530831
STACK INSIDE UIM.(IN) 120. 00 .00
P1TCT TUBE COEFF. .84
THERM. NO.
LEAKAGE .002 CFM •) 6.0 IN.HG
METER CALIB. FACTOR .995
READ t RECOHO DATA EVERY 10.0 MINUTES
TRAVEHSt SAMPLE CLOCK GAS METER VELOCITY ORIFICE
PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TE*P
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (DEG.F)
\» V W n f
DESIRED
1NIT 0 1317 556.969
10.0 0 563.230 .400 .27
20.0 0 569.410 .400 .26
30.0 0 575.600 .400 .26
40.0 0 581.970 .420 .33
SO.O 0 588.380 .4*0 .33
60.0 0 594.770 .420 .34
70.0 0 601.120 .420 .34
80.0 0 607.540 .420 .33
90.0 0 613.890 .420 .33
100.0 0 620.290 .420 .33
110.0 0 626.660 .420 .33
120.0 1517 633.042 .420 .33
ACTUAL
.27 446.
.26 453.
.26 451.
.33 450.
.33 455.
.34 450.
.34 450.
.33 451.
.33 454.
.33 450.
.33 454.
.33 450.
DATE
HUN NUMBER
PROBE LENGTH I TYPE
NOZZLE 1 1.0.
ASSUMED MOISWE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
PROBE HEATED SETTING
HEATER BOX SETTING
08/24/82
4DMSM
6* GLASS
.263
1B.O
FBI
1.05
2SO.
250.
DRY GAS METER PU*P SAMPLE IMPINGES
TEMP VACUUM BOX
(DEG.F) (IN.HG) (DEC
INLET OUTLET
96. 43. 4 2
97. 43. 4 2
101. 43. 4 2
104. 44. 4 5
106. 44. 4 6
105. 45. 4 7
105. 44. 4 7
104. 44. 4 a
103. 43. 4 9
103. 93. 5 1
103. 43. 5 2
102. 42. 5 3
TEMP TEMP
.F) (OEG.F)
« 66.
0 47.
0 68.
0 68.
0 69.
0 69.
0 66.
0 65.
0 64.
0 69.
a •«.
0 82.
TOTALS
AVERAGE
120.0
76.073
1.32
1.32 451.
102.
93.
4.7
64.
-------
PARTICIPATE FIELD DATA a HEbULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
AHCO, PHILADELPHIA DO
TEST 4DMSM
FCCU STACK
ENGLISH UNITS
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
08/24/82
1317
1M7
120,
12
<
(
<
1,
,0
,995
,283 IN
,84
,32 IN-H20
METRIC UNITS
08/24/82
1317
1517
120.0
12
.995
7.2
.84
33.4
MM
MM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY 6*3 SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPIN6ERS AND SILICA GEL,ML.
VNC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
FMU MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRV
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MD MOLECULAR NT-OUT STACK GAS
M«S MOLECULAR NT-STACK GAS
76.073 CU-FT
97.9 F
72.320 SCF
318.7
15.001 SCF
2.154 CU-M
36.6 C
2.048 SCM
318.7
.425 SCM
17,
13,
4,
81,
30,
28,
,18
,828
.40
,80
.00
.80
,34
.22
17.18
.828
13.40
4.80
.00
81.80
30.34
28.22
-------
PB BAROMETRIC PRESSURE.
P3I STATIC PRES OF STACK GAS
P3 STACK PRE3» ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLO* RATE, DRV*
US ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
• to8 DEG F, 29.92 IN.HG.
30.11
-1.20
30.02
«5I.
48.0
11310.
6532257.
13564062.
99.5
1N-HG
1N-H20
1N-HG
F
FPS
SO-IN
SCFH
ACFH
764.79
-30.46
762.5%
233.
14.6
7.297
104974.
384116.
99.5
KM-HG
CM-H2
KM-MG
C
PPS
SO-M
SCfH
ACHH
00
o
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.
FCCU STACK
VOLUME OF OHT GAS SAMPLED AT STANDARD CONDITIONS
VMSTD = (17.647 • VH • Y • (Ptf » PM / 13.6)) / (TH « 460.)
17.647 • 76.073 • .995 • I 30.11 » 1.315 / 13.<>)
VMSTD * —.—..«... — .—— — — — . — . — .—.. — . — .--.. — . — . > 72.320 D3CF
I tO. * 4bU.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC • .04707 • VLC
VNC » .04707 « 319. * 15.00 SCF
PERCENT MOISTURE IN STACK GAS
BNO • (100. • VNC) / (VM3TO » VHC)
100. ft 15.00
BNO » -————-----—---• — - s 17.18 PERCENT
72.320 » 15.00
MOLE FRACTION OF DRV STACK GAS
FMD a (100. - BNO) / 100.
100. • 17.2
FMD * -—— — — --..——---- : .828
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD » IPC02 • .44) * (P02 • .32) * (PN2 » PCO) • .28
MO = (13.40*44/100) * ( 4.8*32/100) « ((61.8* .0) * 28/100 = 30.30
MOLECULAR WEIGHT OF STACK GAS
MMS » MO • (1. - (8*0/100)) « 18. • (8*0/100)
MbS « 30.14* (1. •117.18/100)) * Id. • (17.18/100) * 28.22
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP a SUM. OF THE 8flHT(VH * (TS « 460.))
V3 * 85.49 • CP • OELP / (SORT(HNS * PS) * PNTS)
V3 = 65.49 • .04 * 233.336 / (SORT ( 28.22 • 30.08) * 12. ' 47.96 FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS a VS • AS • 5600/144
OS = 47.98 * 11310. 3600/144 = 13S64B62. ACFM
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTO • 17.647 • US * PS • (1. - (BMO/100)) / (TS » 460.)
17.6*7 • 13564662. • 30.02 * (1. • (17.18/100))
OSSTD • ————— — « 6532257. SCFM
( 451. » 460.)
•J* PERCENT ISOKINETIC
00
to ISO B (J05.58*(TS«460.))*((0.002669»VLC)«lVM*Y*(PB*(PM/l3.6))/(TM*4bO.)))/(TT*VS*PS*DN*ON)
(305.58«( 451.»460.))*((0.002669* 319.)»( 76.073* .99$*( 30.11*( 1.315/J3.6))/( 98.»«60.)))
ISO » « 99.54 PERCENT
120. * 47.98 « 30.02 * .283 • .283
PARTICIPATE LOADING -- EPA METHOD S (AT STANDARD CONDITIONS)
C3 * 0.001 • MN • IS.43 / VMSTO
C3 = 0.001 • O.OOOOE«00 • IS.43 / 72.320 a O.OOOOE'OO 6R/OSCF
-------
FIELD DATA
CO
Ul
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE pART,H2su4,su2
OPERATOR J PRUHASKA
AMBIENT TEMP. (DEG.F) 75.
BAR. PRESS. (IN. HG) £9.83
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBERO) 3530000
STACK INSIDE DIM. (IN) 120.00 .00
PITUT TUBE COEFF. .64
THEHM. NO. 174
LEAKAGE .001 CFM H 5.0 IN
METER CALIB. FACTOR .998
READ ft RECORD DATA EVERY 10.0 MINUTES
.HG
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE PRESSURE
STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEPP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20)
(OEG.F)
DESIRED AC1UAL
INIT 0 936 104.484
10.0 946 110.465 .360
20.0 956 116.400 .360
30.0 1006 122.580 .380
40.0 1016 128.820 .380
50.0 1026 135.060 .300
60.0 1036 141.270 .380
10.0 1046 147.465 .300
60.0 1056 153.675 .360
90.0 1106 159.800 .360
100.0 1116 166.135 .4UO
110.0 1126 172.385 .380
120.0 1136 176.604 .380
.21 1.20
.21 1.20
.20 .30
.20 .30
.29 .30
.29 .30
.29 .30
.30 .30
.23 .23
.37 .35
.30 .30
.30 .30
450.
450.
453.
450.
450.
«52.
451.
450.
450.
«53.
•51.
450.
DATE 08/25/82
RUN NUMBER SAM5
PKOBE LENGTH » TYPE 6 FT HEATED GLASS
NOZ2LE I 1.0. .269
ASSUMED MOISTURE 18.0
SAMPLE BOX NUMBER
PETER BOX NUMBER FBB
PETER HEAD OIFF. 1.90
C FACTOR 5.71
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
REFERENCE PRESS. OIFF. .00
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(OEG.F) (IN. KG) (OEG.F) (DEG.F)
INLET OUTLET
76. 76. .5 0. 59.
77. 76. .5 0. 64.
01. 77, .5 0. 65.
83. 78. .5 0. 66.
05. 79. ,5 0. 67.
06. 60. .5 0. 68.
87. 61. .5 0. 69.
08. 61, .0 «. 69.
69. 83. .5 0. 69.
91. 84. .5 0. 70.
91. 65. .0 0. 71.
92. 66. .0 0. 68.
TOTALS
AVERAGE
120.0
74.120
1.28
1.28 451.
86.
81.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT* NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA J PRUHASKA
TEST 5AM5
FCCU STACK
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
V
ON
CP
PM
1
2 VM
TM
VMSTD
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
08/25/82
936
1136
120
12
1
74
83
71
.0
.998
.289 IN
.84
.20 IN-H20
.120 CU-FT
.0 F
.939 SCF
METRIC UNITS
08/25/82
936
1136
120
12
7
32
2
28
2
.0
.998
.3
.84
.6
.099
.3
.037
KM
MM-H20
CU-M
c
SCM
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VHC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
HNO PERCENT MOISTURE BY VOLUME
FMO MOLE FRACTION U»V GAS
PCU2 PERCENT C02 BY VOL.* OHY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL., DRV
PN2 PERCENT N2 BY VOL.. DRY
MO MOLECULAR NT-DRY STACK GAS
MNS MOLECULAR NT-STACK GAS
327.3
15.406 SCF
327.3
.436 SCM
17.64
.824
14.40
3.80
.00
81.80
30.46
28. Ht>
17.64
.824
14.40
3.80
.00
81.80
30.46
28.26
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
V3 *V6 STACK GAS VELOCITY
A3 STACK AREA
USSTO STACK FLOW RATE, DRV*
QS ACTUAL STACK FLO* RATE
ISO PERCENT ISOK1NETIC
MN FILTERABLE-AMBIENT
MS. EPA 5
CS FILTERABLE-AMBIENT
29. 63
-1.20
29.74
451.
45.9
1131U.
6156065.
1297115ft.
100.8
246.9
1N-HG
IN-M20
IN-HG
F
FPS
SO-IN
3CFH
ACFH
757.68
-30.48
755.44
233.
14.0
7.297
174321.
367304.
100.8
246.9
PM-MG
KM-M20
MM-H6
C
KP3
30-M
SCMH
ACMH
.0930 6R/DSCF*
121.214
MN FILTERABLE-160
MG. EPA 5
CS FILTERABLE-160
102.7
102.7
.0220 GR/OSCF. 50.420 HG/OSC*
MN FILTERA8LE-232
MG. EPA 5
CS FILTERA8LE-232
89.7
89.7
.0192 GR/OSCF* 44.038 PG/OSCf
MN FILTERABLE-JU
MG. EPA 5
CS FlLTtRABLE-316
84.7
84.7
.0182 GR/DSCF* 41.583 KG/DSC*
• 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. SAMS
FCCU STACK
VOLUME OF DRV GAS SAMPLED AT STANDARD CONDITIONS
VMSTO » (17.647 * VM • V • (PB » PM / 13.6)) / (TM «• 460.)
17.647 * 74.120 * .998 * ( 29.83 » 1.283 / 13.6)
VMSTO » — • « 71.939 OSCF
( 83. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC = .04707 * VLC
VNC a .04707 * 327. a IS.41 3CF
PERCENT MOISTURE IN STACK GAS
BNO a (100. • VNC) / (VMSTO * VNC)
100. * IS.41
BNO « -——- ————— — - — — -- s 17.64 PERCENT
71.939 * 15.41
MOLE FRACTION OF DRV STACK GAS
FMO * (100. • BNO) / 100.
100. - 17.6
FMO » ..—..—.............. - .624
100.
AVERAGE MOLECULAR NEI6HT OF DRY STACK GAS
MO • (PC02 • .44) » (P02 • .32) » (PN2 * PCO) • .28
MO a (14.40*44/100) « ( 3.8*32/100) * ((81.6+ .0) * 28/100 * 30.46
MOLECULAR WEIGHT OF STACK GAS
MNS * MO • (I. - (6*0/100)) * 16. • (BMO/100)
MNS a 30.46* (1. •(17.64/100)) •» 16. • (17.64/100) c 26.26
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP * SUM. OF THE 3QRUVH • (TS » 460.))
VS « 65.49 • CP • OELP / (SORT(MWS * P9J • PNTS)
vs * 85.49 • .84 • 222.246 / JSURU 20.26 * 29.74) • 12. = 45.aa FPS
STACK GAS VOLUMETRIC FLOW Al STACK CONDITIONS
OS 3 VS • AS • 3600/144
OS * 45.88 • 11310. 3600/144 * 12971156. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
QS3TO * 17.647 • 8S • PS » (1. - (BNO/100)) / (TS » 460.)
17.647 • 12971156. * 29.74 • (1. - (17.64/100))
OSSTD * [[[ « 6156065. SCFM
( 451. » 460.)
PERCENT ISOKINETIC
ISO > (305.5e«(TS»460.))«((0.002669*VLC)»(VM»Y«tPB»(PM/l3.6))/(TM»460.)J)/(TT«V3«P3«ON«ON)
(305.58«( 451.«460.))*((0.002669* 327.)*( 74.120* .998*( 29.83»( 1.283/13.6))/( 83.•460.)))
ISO a — • 100.75 PERCENT
120. • 45.88 • 29.74 • .289 • .289
PARTICIPATE LOADING — EPA METHOD S (AT STANDARD CONDITIONS)
CS « 0.001 • MN • 15.43 / VMSTO
-------
FIELD OAT*
oo
CO
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART.H2S04, SC2
OPERATOR J PRUHASKA
AMBIENT TEMP.(OEG.F) 75.
BAR. PRESS. (IN. HG) 29.83
STATIC PRESS. (IN. H20) -1.80
FILTER NUMBERIS) 3530810
STACK INSIDE DIM. (IN) 120.00 .00
PITOT TUBE COEFF. .&«
THERM. NO. 174
LEAKAGE .001 CFM 4 6.0 IN.HG
METER CALIB. FACTOR .989
READ 6 RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (OEG.F)
\f l> U \f n i
DESIHED
INIT 0 937 370.104
10.0 947 376.500 .360 .26
20.0 957 362.870 .360 .26
30.0 1007 389.450 .380 .33
40.0 1017 396.075 .300 .33
50.0 1U27 402.675 .380 .34
60.0 1037 4U9.270 .380 .34
70.0 1047 415.875 .380 .34
80.0 1057 422.475 .380 .35
90.0 1107 4^8.920 .360 .28
100.0 1117 435.665 .400 .4i>
110.0 1127 442.300 .380 .36
120.0 1137 448.9Q2 .380 .36
ACTUAL
.25 450.
.25 450.
.35 453.
.35 450.
.35 450.
.35 «52.
.35 451.
.35 450.
.30 450.
.40 453.
.35 451.
.35 450.
DATE
RUN NUMBER
PROBE LENGTH C TYPE
NOZZLE t 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. OIFF.
08/25/82
5BM5
6 FT HEATED GLASS
.297
18.0
FB2
1.77
5.93
2SO.
250.
.00
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX
(OEG.F) (IN.HG) (OEG
INLET OUTLET
75. 77. 5
77. 77. 0
81. 77. 5
84. 79. 5
85. 60. 5
86. 81. 5
87. 82. 0
88. 83. 0
89. 84. 5
91. 85. 0
92. 87. .«
93. 87. .0
TEMP TEMP
.F) (OEG.F)
«. 39.
0. 6i.
0. 63.
0. 62.
0. 63.
0. 64.
0. 65.
0. 66.
0. 68.
0. 70.
0. 69.
0. 69.
TOTALS
AVERAGE
120.0
78.798
1.33
1.33 451.
86.
82.
5.7
0.
65.
-------
PARTICIPATE FIELD OAT* & HESULTS TABULATION
PLANT- NAME ANO ADDRESS TEST TEAM LEADER
ARCOf PHILADELPHIA J PROHASKA
TEST S8M5
FCCU STACK
ENGLISH UNITS
TEST
TB
TF
TT
NP
Y
ON
CP
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
08/25/82
937
1137
120
12
.0
.989
.297 IN
.64
METRIC UNITS
08/25/82
937
1137
120
12
7
.0
.969
.5
.84
I'M
CD
\0 VH
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VNSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VMC VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
BftO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.. DHY
P02 PERCENT 02 BY VOL., DRY
PCD PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., U»T
MD MOLECULAR NT-DRY STACK GAS
MMS MOLECULAR NT-STACK GAS
1.33 IN-H20
78.796 CU-FT
83.6 F
75.711 SCF
362.6
17.066 SCF
33.9 HM-H20
2.231 CU-M
28.7 C
2.144 SCM
362.6
.463 SCP
18.40
.616
14.40
3.60
.00
81.60
30.46
20.16
18.40
.616
14.40
3.80
.00
61.60
30.46
26.16
-------
P8 BAROMETRIC PRESSURE
PSI STATIC PHES OF STACK GAS
P9 STACK PRES, ABS.
T8 AVERAGE STACK TEMP
VS AV6 STACK 6AS VELOCITY
AS STACK AREA
US3TO STACK FLOW RATE, ORV*
g9 ACTUAL STACK FLOW RATE
ISO PERCENT I30KINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
C9 FILTERABLE-AMBIENT
29.83 1M-HG
•1.20 1N-H20
29.70 IN-HG
451. F
46.0 FPS
11310. SO-1N
6109636. SCFH
12992870.
101.2
270.6
ACFH
.0551 6R/OSCF*
757.68 KM-H6
•30.48 PM-H20
755.44 PM-HG
23S. C
14.0 PPS
7.297 SO-M
17J007. SCMH
367919. ACMH
101.2
270.6
126.230 PG'DSC*
MN
FILTERABLE-UO
MG. EPA 5
FILTERABLE-160
98.8
.0201 GR/03CF.
98.8
46.088 PC/DSC*1
MN
cs
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
89.9
.0183 GR/OSCF*
89.9
41.937 P»G/OSC»*
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
84.7
.0173 GH/OSCF*
84.7
39.5il
* 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICOLATE CALCULATIONS TEST NO.
FCCU STACK
VOLUME UF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD » (17.647 * VM • Y • (PB » PM / 13.to)) / (TM » 460.)
17.647 • 78.798 * .989 • ( 29.83 + 1.333 / 13.6)
VMSTO « —— —— a 75.711 DSCF
( 84. * 460.)
VOLUME OF WATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 • VUC
VMC * .04707 • 363. = 17.07 SCF
PERCENT MOISTURE IN STACK GAS
BMO » (100. * VMC) / (VMSTO » VMC)
' 100. • 17.07
M BMO a ————— s 18.40 PERCENT
75.711 * 17.07
MOLE FRACTION OF DRY STACK GAS
FMO = (100. - BMO) / 100.
100. - 18.4
FMO « . ——.——.
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO = (PCOe • .««) » (P02 • .32) * (PN2 » PCO) • .28
MO = (14.40*44/100) » ( 3.8*32/100) » ((81.t»» .0) * 28/100 = 30.46
MOLECULAR ME.IGHT OF STACK GAS
MHS = MD « (1. - (BnO/100)) * 18. • (BHO/IOO)
MMS s 30.46* (1. •(U.40/1UO)) » 18. • (18.40/100) : 28.16
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP • SUM. OF THE SORUVH • (TS » 460.))
VS > 65.49 • CP • DELP / (SURT(MNS • PS) • PNTS)
VS = OS. 49 • .84 • 222. 24b / (SQRM 28. lb * 29.74) * 12. = 4,5. 9b FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
QS * VS • AS * 3600/144
OS = 45.95 • 11310. 3600/144 s 12992070. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTD * 17.b47 * OS • PS • (1. - (BMO/IOO)) / (TS « 460.)
17.647 • 12992670. • 29.74 • (1. - (18.40/100))
flSSTD = ---- - ----- • --------------------------------------- - = 6109636. 3CFM
( 451. « 460.)
> PERCENT ISOKINETIC
I
if* ISO • (305.56*(TS»460.))«((0.002669*VLC)*(VMY*lPe*lPH/l3.6) )/( TM*460 .)))/( T T«VS«P3«DN«ON)
ro
(305.58*( 4S|.t460.)>»((0. 002669* J63. )»( 78.798* .989*( 29.63»( 1 .333/1 3.6) )/( 64.»460.)))
130 a - — - ---- ..... --- .. — ... ---- . --- . — ............ ------ .. — ................... -------- ..... — ... — .. a 161.16 PERCENT
120. • 45.95 • 29.74 • .297 • .297
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 • MN • 15.43 / VMSTO
CS = 0.001 • Z70.6 • 15.43 / 75.711 = .0551 GH/OSCF
-------
FItLU DATA
VO
U>
PLANT ARCO. PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TTPE PART/H2S04/SG2
OPERATOR DO
AMBIENT TEMP. (DEG.F) 75.
BAR. PRESS. (IN. HG) 29.83
STATIC PRESS. (IN. M20) -1.20
FILTER NUMBER(S) 3530820
STACK INSIDE DIM. (IN) 120.00 .00
PITOT TUBE COEFF. .84
THERM. NO.
LEAKAGE .004 CFM it 8
METER CALIB. FACTOR .967
READ & RECORD DATA EVERT 10. 0 MINUTES
TRAVERSE SAMPLE CLOCK GAS MtTtR VELOCITY
POINT TIME TIME READING HEAD
NO. (MIN.) (24-HR (CU.FT.) (IN.H20)
PI flP M \
ILOLK J
INIT 0 9S6 258.430
10.0 0 2b5.670 .360
20.0 0 272.250 .360
30.0 0 279.080 .300
40. 0 0 285.910 .560
50.0 0 292.050 .360
60. 0 0 299.770 .380
70.0 0 306.660 .360
60. 0 0 313.600 .360
90.0 0 320.360 .360
100.0 0 327. 520 .400
110.0 0 334.480 .360
120.0 1136 341.390 .300
DATE
RUN NUMBER
PROBE LENGTH • TTPE
HOJi.ll 1 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
PETER BOX NUMBER
METER HEAD DIFF.
08/25/82
5CM5B
5* GLASS
.248
18.0
F10
1.84
PROBE HEATER SETTING 120.
.0 IN.HG
ORIFICE PRESSURE STACK
DIFFERENTIAL T£*P
(IN.H20)
(DEG.F)
OE3IREO ACTUAL
.34
.34
.42
.13
.44
.44
.44
.45
.37
.53
.46
I.Ob ]
.34 450.
.34 450.
.42 453.
.43 450.
.44 450.
.44 452.
.44 451.
.45 450.
.37 450.
.53 453.
.46 451.
.46 450.
HEATER BOX SETTING
ORT GAS METER PUMP
TEMP VACUUM
(DEG.F) (IN.HG)
INLET OUTLET
79. 79. 4
61. 79. 7
85. 80. 0
89. 81. 2
91. 83. J
93. 84. 3
95. 85. 3
95. 87. 7
97. 88. 4
99. 89. |
100. 91. a
100. 92. 9
320.
•AMPLE IMPINGER
BOX TEMP TEMP
(DEC.F) (OEG.F)
0. »l.
0. 64.
0. 64.
0. 63.
0. 66.
0. 72.
0. 72.
0. 73.
0. 74.
0. 74.
0. 69.
0. 66.
TOTALS
AVERAGE
120.0
82.460
1.43
1.43 451.
92.
85.
0.
69.
-------
PARTICIPATE FIELD DATA & RESULTS TABULATION
PLANT" NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA UO
TEST 5CM5B
FCCU STACK
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
08/25/02
936
1136
120.0
12
.967
.298 IN
.84
1.43 IN-H20
METRIC UNITS
08/25/02
936
1 136
120.0
12
.967
7.6
.84
36.2
I'M
•WM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMpINGERS AND SILICA GEL.ML,
VOLUME OF WATER VAPOR
AT STANDARD CONDITIONS*
8*10 PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRV GAS
PC02 PERCENT C02 BY VOL.. DRY
P02 PERCENT U2 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL.. DRY
MD MOLECULAR ftT-OHY STACK GAS
M*S MOLECULAR NT-STACK GAS
82.460 CU-FT
88.4 F
76.808 SCF
336.6
15.844 SCF
2.335 CU-M
31.3 C
2.175 SCP
336.6
.449 SCM
17.10
.829
14.40
3.80
.00
81. HO
30.46
28.33
17.10
.829
14.40
3.80
.00
81.80
30.46
28.33
-------
PB BAHOMETRIC PRESSURE
PSI STATIC PHES OF STACK GAS
P3 STACK PRES, ABS.
TS AVERAGE STACK TCHP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
USSTD STACK FLO* RATEr DRY*
03 ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
29.4)3 IN-HG
-l.«!0 IN-H20
29.74 IN-HG
451. F
45.6 FPS
11310. SO-IN
6166936. SCFH
ACFH
100.6
154.8
.0311 GR/OSCF*
757.68 KM-HG
-30.46 MM-M20
755.44 KM-M6
233. C
14.0 »PS
30-M
SC*M
366670. ACMH
100.6
154.8
71.160 MS/DSO
Ol
MN
CS
FILTERABLE-lbO
MG. EPA S
FILTERABLE-lbO
113.7
.0226 GR/OSCF*
113.7
52.261 MG/OSC*
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
80.9
60.9
.0163 GR/OSCF* 37.199 MG/OSC*
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
77.
GR/OSCF*
77.2
35.496 MC/OSC'
* 66 OEG f, 29.92 IN.H6.
-------
EXAMPLE PARTICIPATE CALCULATIUNS TEST NO. 5CM5B
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANUARO CONDITIONS
VM3TD = (17.647 • VM • Y • (PB » PM / 13.6)) / (TM » 460.)
17.647 • 62.460 • .967 • ( £4.63 * 1.427 / 13.6)
VMSTO » = 76.608 U3CF
( 88. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VWC = .04707 • VLC
VNC > .04707 • 337. a 15.64 3CF
PERCENT MOISTURE IN STACK GAS
BNO » (100. • VNC) / (VMSTD » VNC)
100. • 15.64
BHO « -— — s 17.10 PERCENT
76.806 * 15.64
MOLE FRACTION OF DRY STACK GAS
FMD s (100. - BNO) / 100.
100. - 17.1
FMD * — — s .629
100.
AVERAGE MOLECULAR (HEIGHT OF DRY STACK GAS
Ml) = (PC02 • .44) «• (P02 • .32) » (PN2 * PCO) • ^8
MO = (14.40*44/100) » ( 3.6*32/100) » ((81.6* .0) • 28/100 s 30.46
MOLECULAR WEIGHT OF STACK GAS
MuS = MO • (I. - (BHO/100)) * 16. • (BHU/100)
MH3 s 30.46* (1. -U7.10/1UO) ) » 16. * (17.10/100) * 26.33
-------
DELP • SUM. OF THE SORT(VH * (T3 * 460.))
VS « 85.49 • CP * DELP / (SORT(HNS • PS) • PNTS)
VS = 85.09 • .84 • 822.246 / (SORT( 28.33 • 29.74) • 12. = 45.02 FPS
STACK GAS VOLUMETRIC FLO" AT STACK CONDITIONS
OS s VS * AS • 3800/134
03 = 45.82 • 11310. 3600/144 = 12955606. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OS3TD * 17.647 • OS • P9 • (1. - (BNO/100)) / (TS » 460.)
17.647 • 12955806. • 29.74 • (1. - (17.10/100))
OSSTD * ———— • — — • = 6188936. SCFM
( 451. » 460.)
•f PERCENT ISOKINETIC
vo
-J ISO B (305.58*(TS*460.))*((0.002669*VLC)«(VM*Y*(PB*(PM/13.6))/(TM*460.)))/(TToVS*P8*DN*DN)
(30S.58*( 451.»460.))«((0.002669. 33T.)»( 82.460* .967*( 29.83»( 1,427/13.6))/( 88,»460.)))
ISO » « 100.63 PERCENT
120. • 45.82 • 29.74 • .298 • .298
PARTICULATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS » 0.001 • MN • 15.43 / VMSTD
C3 a 0.001 * 154.8 • 15.43 / 76.808 = .0311 GR/D3CF
-------
FIELD OAT*
i
«>
oo
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PANT/H2S04/SU2
OPERATOR DO
AMBIENT TEMP.(OEG.F) 75.
BAR. PRESS. (IN.HG) 29.63
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBER(S) 3530646
STACK INSIDE DIM. (IN) 120.00 .00
P1TOT TUBE COEFF. .64
THERM. NO.
LEAKAGE .000 CFM 4 5.0 IN.HG
METER CALIB. FACTOR .995
READ * RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (OEG.F)
DESIRED
INIT 0 937 633.242
10.0 0 639.260 .360 .19
20.0 0 645.320 .360 .19
30.0 0 651.490 .360 .26
40.0 0 657.630 .380 .27
50.0 0 663.930 .300 .28
60.0 0 670.170 .380 .26
70.0 0 676.480 .360 .26
60.0 0 662.750 .360 .29
90.0 0 668.930 .360 .22
100.0 0 695.430 .400 .36
110.0 0 701.790 .360 .29
120.0 1137 708.115 .360 .30
ACTUAL
.14 450.
.19 4SO.
.26 453.
.27 450.
.28 450.
.28 452.
.26 451.
.29 450.
.22 450.
.36 453.
.29 451.
.30 450.
DATE
RUN NUMBER
PROBE LENGTH ft TYPE
NOZ/LE 1 I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
08/25/82
5DM5B
6* GLASS
.289
18.0
FBI
1.65
J20.
320.
DRY GA8 METER PUMP SAMPLE IMPINGES
TEMP VACUUM BOX
(OEG.F) (IN.HG) (OEG
IKLET OUTLET
79. 75. .2
81. 75. .2
86. 75. .5
40. 77. .5
92. 79. .7
13. 60. .7
95. 61. .6
96. 62. .6
IT. 63. .6
41. 65. .2
101. 67. .1
101. 07. .1
TEMP TEMP
.F) (DEG.F)
0. 57.
0. 60.
0. 61.
0. 62.
0. 60.
0. 36.
0. 59.
0. 63.
0. 64.
0. 66.
0. 66.
0. 69.
TOTALS
AVERAGE
120.0
74.673
1.27
1.27 451.
13.
61.
3,7
0.
62.
-------
PARTICIPATE FIELD DATA « RESULTS TABULATION
PLANT- NAME AND ADDRESS TFST TEAM LEADEN
ARCO, PHILADELPHIA DO
TEST 5DM5B
FCCU STACK
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
> PM
vo
vo
VM
TN
VMSTO
VLC
VNC
BNO
FMU
PC02
P02
PCO
PN2
NO
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, HIM.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERA6E ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H80 COLLECTED IN
IHPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.* DRV
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT Hi BY VOL., DRY
MOLECULAR NT-OHY STACK GAS
MOLECULAR NT-STACK GAS
06/25/82
437
1137
120
1?
1
74
66
71
337
Ib
17
14
3
01
30
26
.0
.995
.289 IN
.64
.27 1N-H20
.873 CU-FT
.5 F
.964 3CF
.6
.420 SCF
.64
.624
.40
.60
.00
.60
.46
.26
METRIC UNITS
08/25/62
937
1137
120
12
7
32
2
30
2
327
17
14
3
61
30
26
.0
.995
.3
.64
.2
.120
.3
.036
.6
.437
.64
.624
.40
.60
.00
.80
.46
.26
VM
NM-H20
CU-H
C
SCH
SCP
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
OSSTD STACK FLOW RATE, CRT*
OS ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
CS FILTERABLE-AMBIENT
29.03 IK-HG
-1.10 IN-H20
29.74 IN-MG
151. f
flS.9 FPS
11310. SO-IN
6155814. SCFH
12971274. ACFH
100.6
138.0
.0296 6R/DSCF*
757.6tt fM-HG
-30.48 fM-HJO
755.44 *M-HG
233. C
14.0 »PS
7.297 SQ-M
174314. 3CKH
367300. ACMH
100.B
136.0
67.707 MG/DSCN
MN
S
o
FILTERABLE-160
MG. EPA 5
FILTERABLE-160
82.2
.0176 6R/OSCF*
62.2
40.330 PC/DSC*
MN
CS
FILTERABLE-232
MG. EPA S
FILTERABLE-232
73.7
73.7
.0158 GR/OSCF* 36.160 M6/09O
MN FILTERABLE-316
MG. EPA 5
CS
FILTERABLE-316
69.7
.0149 GR/OSCF*
69.7
34.197 PG/DSCP
• 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. SONSB
FCCU STACK
VOLUME Or DRV CAS SAMPLED AT STANDARD CONDITIONS
VMSTO 8 (17.6*7 • VM • T « (PB » PM / 13.6)) / (TM «• 460.)
17.647 • 74.873 • .995 • ( 89.63 » 1.268 / 13.6)
VMSTD » ................................................. --- . a 71.984 D3CF
( 87. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 • VLC
VMC 8 .04707 • 338. 8 15.42 SCF
PERCENT MOISTURE IN STACK GAS
BMO • (100. • VMC) / (VMSTD * VNC)
>
' 100. • 15. «Z
b BMO 8 ....... ----- . ------- ...... s JT. 64 PERCENT
I-1 71.984 « 15.42
MOLE FRACTION OF DRY STACK GAS
FMD 8 (100. - BMO) / 100.
100. - 17.6
.............. 3 .824
too.
AVERAGE MOLECULAR MEIGHT OF DRY STACK GAS
MO 8 (PC02 • .44) » (P02 • .32) » (PN2 » PCU) • .28
MO e (14.40*44/100) * ( 3.8*32/100) » ((81.8* .0) • 28/100 = 30.46
MOLECULAR MEIGHT OF STACK GAS
MMS : MO • (1. - (BMO/100)) * 18. * (BNO/100)
= 30.46* (1. -(17.64/100)) » 18. • (17.64/100) 8 28.26
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP • SUM. OF THE SORT(VH • (T3 « 460.))
V9 « 85.09 • CP * OELP / (SGRUMWS * PS) • PNTS)
VS : 85.99 • .84 • 222.246 / (SORT( 28.26 • 29.74) * 12. = 45.68 FPS
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS • 3600/144
QS = 45.88 • 11310. 3600/144 a 12971274. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD = 17.647 • OS • PS • (1. • (BNO/100)) / (TS « 460.)
IT.647 • 12971274. • 29.7« • (1. - (17.64/100))
OSSTD * — ————— — — — — — — — ——— ——.........— r 6153814. SCFM
( 451. «• 460.)
>
I PERCENT ISOKINETIC
° ISO * (305.5S«(T3*460.))*((0.002669*VLC)*(VM*Y«(PB*(PM/13.6))/(TM»46<).)))/(TT»VS*P3*ON*DN)
(305.5B*( 451.»«60.))«((0.002669* 328.)»( 74.873* .995*( 29.83»( 1.268/13.6))/( 87.»460.)))
tso « — — —._———— —— ........... . 100.82 PERCENT
120. • 45.88 • 29.74 • .289 • .289
PARTICIPATE LOADING " EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 * MN • IS.43 / VMSTO
CS « 0.001 • 138.0 • 15.43 / 71.984 « .0296 GR/OSCF
-------
FIELD DATA
O
OJ
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEG.F)
BAR. PRESS. (IN.HG)
STATIC PRESS. (IN. H20)
FILTER NUMBERO)
STACK INSIDE DIM. (IN)
PJTOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCOf
FCCU
PART,
PHILADELPHIA
STACK
M2304.SU2
J PRQHASKA
85.
29.80
-1.20
3530847
ieo.
.64
17a
.015
.996
READ » RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME
NO. (MIN.) (29-HR
INIT 0 1335
10.0 1345
20.0 1355
30.0 1405
40.0 1415
50.0 1425
60.0 1435
70.0 1445
60.0 1455
90.0 1505
100.0 1515
110.0 1525
120.0 1535
READING
(CU.FT.)
178.894
164.950
190.700
196.530
202.400
206.440
214.460
220.400
226.360
232.350
236.240
244.230
249.940
00 .00
DATE
RUN NUMBER
PROBE LENGTH I TYPE
NOZZLE 1 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
C FACTOR
06/25/62
6AM5H
6 FT HEATED GLASS
.262
16.0
FB8
1.90
5.17
PROBE HEATER SETTING 250.
CFM » 22.0 IN.HG
MINUTES
VELOCITY ORIFICE
HEATER BOX SETTING
250.
REFERENCE PRESS. OIFF. .00
PRESSURE STACK
MEAD DIFFERENTIAL TE*P
(IN.H20) (IN.HZO) (DEG.F)
DESIRED
.380 .18
.360 .11
.360 .12
.360 .13
.360 .19
.380 .19
.360 .20
.360 .20
.380 .20
.360 .20
.360 .20
.360 .20
ACTUAL
.20 447.
.10 450.
.10 451.
.15 448.
.20 453.
.20 407.
.20 448.
.20 451.
.20 449.
.20 450.
.20 452.
.20 409.
DRY GAS METER PUMP
TEMP VACUUM
(DEG.F) (IN.HG)
INLET OUTLET
65. 86. .5
68. 67. .0
91. 67. .0
94. 69. .0
95. 90. .«
95. 91. .0
95. 92. .5
97. 93. ,5
96. 93. .5
99. 94. .0
99. 95. 6.0
99. 96. 21.0
SAMPLE IMPINGER
BOX TEMP TEMP
(OEG.F) (DEG.F)
0. 63.
0. 66.
0. 76.
0. 76.
0. 75.
0. 76.
0. 76.
0. 79.
0. 61.
0. 74.
0. 70.
0. 68.
TOTALS
AVERAGE
120.0
71.046
1.16
1.18 450.
95.
91.
5.8
0.
74.
-------
PARTICIPATE FIELD DATA * RESULTS TABULATION
PL*NT» NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA J PROHASKA
TEST 6AM5«
FCCU STACK
ENGLISH UNITS
TEST DATt
TB
TF
TT
NP
Y
DN
CP
>PM
1
O
TM
VMSTO
VLC
VNC
BNO
FMO
PC02
P02
PCO
PN2
MO
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRV
PERCENT 02 BY VOL.* DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
08/25/82
1335
1535
120
12
1
71
92
67
252
11
14
14
•
82
30
28
.0
.998
.282 IN
.84
.18 IN-M20
.046 CU-FT
.8 F
.643 SCF
.2
.871 SCF
.93
.851
.00
.00
.00
.00
.40
.55
METRIC UNITS
08/25/82
1335
1535
120
12
7
30
2
33
1
252
14
14
4
82
30
28
.0
.998
.2
.84
.0
.012
.a
.915
.2
.336
.93
.851
.00
.00
.00
.00
.00
.55
KM
MM-M20
CU-M
c
SCM
SCM
-------
PB BAROMETRIC PKESSURt
PSI STATIC PRES OF STACK GAS
PS STACK PRES, »BS.
T3 AVERAGE STACK TEMP
V9 AVS STACK GAS VELOCITY
AS STACK ARE*
OS3TD STACK FLOW RATE* DRV*
OS ACTUAL STACK FLO* RATE
ISO PERCENT I90KINETIC
* 68 DEG F, 29.92 IN.HG.
29.80 1N-HG
•1.20 1N-H20
29.71 IN-MG
450. F
05.5 FPS
11310. SO-IN
6313520. SCFH
12874670. ACFH
97.0
756.<»i fM-HG
= 30.08 PM-H20
750.68 MM-HG
232. C
13.9 KPS
7.297 3Q-M
176780. SCUM
364572. ACMH
97.0
I
h->
O
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NU.
FCCU STACK
VOLUME OF DKY GAS SAMPLED AT STANOAND CONDITIONS
VMSTO = (17.647 • VM • T • IPB » PM / 13.6)) / (TM «• «60.)
17.647 • 71.006 • .998 • ( 2«».80 » 1.179 / U.fc)
VMSTO e ........................ ------- ................ ------ z 67.643 OSCF
( 93. » 4bO.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC a .04707 • VLC
VMC • .oa707 • 252. • 11.07 SCF
PERCENT MOISTURE IN STACK GAS
6*0 « (100. • VHC) / CVM3TO » VHC)
f, 100. • 11.07
O BNO » -------------------------- * lfl.93 PERCENT
°> 67.643 » 11.87
MOLE FRACTION OF DRY STACK GAS
FMO = (100. - BNO) / 100.
100. • 14.9
FMD » — — — — — --- ....... a .851
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
Ml) * tPCOe • .44) * (P02 • .32) » (PN2 » PCO) • .20
MO = (14.00*44/100) » ( 4.0*32/100) * ((82.0* .0) • 28/100 = 30.40
MOLECULAR HEIGHT OF STACK GAS
MMS = MU . (1. . (B«0/100)) » 16. • (BNU/100)
= 30.40* (1. -114.93/100)) » 18. • (14.93/100) s 28.55
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP « SUM. OF THE SQRT(VH * (TS + 460.))
VS • 85.09 • CP * OELP / (SORT(HM3 • PS) • PUTS)
VS s 85.49 • .64 • 221.610 / (SQRT( 38.55 • 39.71) • |2. = 45.53 FPS
STACK 6AS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS • AS • 3600/144
OS • 45.53 • 11310. 3600/144 a 12674670. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD a 17.64? • OS • PS • (1. • (BNO/100)) / (TS » 460.)
17.647 * 12674670. • 29.71 • (1. - (14.93/100))
OSSTO a [[[ e 6313526. SCFH
( 450. « 460.)
PERCENT ISOKINETIC
ISO « (305.be«(T3»4bO.))*l(0.002669«VLC)*(VM*Y«(PB*(PM/l3.6))/(TM»«60.)))/(TT»VS«P3«»ONODN)
(305.58M 450.«460.))*((0.002669* 252.)»( 71.046* .996* ( 2
-------
FIELD DATA
o
00
PLANT ARCOf PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART, H2S04. 302
OPERATOR J PRQHASKA
AMBIENT TEMP.(OEG.F) 65.
BAR.PHESS.(IN.HG) 29.60
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBER(S) 3530603
STACK INSIDE DIM. (IN) 120.00 .00
PITOT TUBE COEFF. .88
THERM. NO. 174
LEAKAGE .005 CFM a 6.0 IN.HG
METER CALIB. FACTOR .989
READ * RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
PRESSURE STACK
POINT TIME TIME HEADING HEAD DIFFERENTIAL T£MP
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20) (DEG.F)
*• 1 \l\f ~ /
DESIRED
INIT 0 1336 449.122
10.0 1346 456.310 .360 .62
20.0 1356 463.360 .360 .54
30.0 1406 470.415 .360 .55
40.0 1416 477.500 .360 .56
50.0 1426 484.640 .380 .64
60.0 1436 492.125 .360 .64
70.0 1446 499.430 .360 .66
80.0 1456 506.900 .380 .67
90.0 1506 514.145 .360 .67
100.0 1516 521.490 .360 .66
110.0 1526 526.780 .360 .66
120.0 1536 536.107 .380 .66
ACTUAL
.60 447.
.55 450.
.55 451.
.55 446.
.65 453.
.65 447.
.65 446.
.65 451.
.65 449.
.65 450.
.65 452.
.65 449.
DATE
RUN NUMBER
PH08E LENGTH S TfPE
NOZZLE 1 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD DIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. OIFF.
06/25/62
6BM5H
6 FT HEATED GLASS
.311
16.0
FB2
1.77
T.15
250.
250.
.00
ORT GA8 METER PUMP SAMPLE IMPIN6ER
TEMP VACUUM BOX
(DEG.F) (IN.HG) (PEG
INLFT OUTLET
65. 87.
86. 67.
93. 69.
96. 90.
97. 91.
97. 92.
97. 93.
96. 93. 0
100. 95. 0
101. 95. 0
101. 95. 0
102. 96. 0
TENP TEMP
.P) (DEG.F)
0 Tl.
o ra.
0 60.
« 82.
0 83.
0 64.
0 64.
0 66.
0 79.
0 76.
0 72.
0 70.
TOTALS
AVERAGE
120.0
66.985
1.63
1.62 450.
96.
92.
4.6
76.
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT* NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA J PROHASKA
TEST 6BM5M
FCCU STACK
TEST DATE
Tfl
TF
TT
NP
Y
ON
CP
* P*
o
* VM
TM
VMSTO
VLC
VNC
BNO
FMO
PC02
P02
PCO
PN2
MO
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MtN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.. DRV
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRV
PERCENT N2 BY VOL., DRY
MOLECULAR HT-ORY STACK GAS
MOLECULAR MT-STACK GAS
ENGLISH UNITS
08/25/62
1336
1536
120.0
12
.989
.311 IN
.64
1.62 IN-M20
86.985 CU-FT
90.1 f
81.976 SCF
306.6
10.535 SCF
15.06
.849
14.00
4.00
.00
62.00
30.40
26.53
METRIC UNITS
08/25/82
1336
1536
120.0
12
.989
7.9
.84
41.2
2.463
34.5
2.321
306.8
.012
15.06
.849
14.00
4.00
.00
82.00
30.40
26.53
MM
MM-H20
CU-M
C
SCM
SCM
-------
I
M
I-1
O
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES. AB3.
T3 AVERAGE STACK TEMP
V3 AVG STACK GAS VELOCITY
AS STACK AREA
(JSSTO STACK FLOW RATE, DRY*
US ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
• 68 DEG f, 29.92 IN.HG.
29.80 IN-HG
•1.20 IN-H20
29.71 IN-HG
050. F
15.5 FP3
11310. SO-IN
6305589. SCFH
12976312.
96.8
ACFH
756.92 MM-HG
-30.06 CM-M20
754.66 MH-HG
232. C
13.9 VPS
7.297 SQ-M
178555. SCNH
364676. ACMH
96.6
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 66*5*
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VM3TO » (17.6a7 • VM • T * (PB » PM / 13.6)) / (TM » 060.)
17.647 • 06.985 • .989 • ( 29.60 «• 1.621 / 13.6)
VMSTO » ————— — — — — — ................. . * 81.976 OSCF
( 9a. » 060.)
VOLUME UF MATED VAPOR AT STANDARD CONDITIONS
VNC * .04707 • VLC
VMC = .04707 • 309. • 14.54 SCF
PERCENT MOISTURE IN STACK GAS
BNO » (100. • VMC) / (VMSTO » VHC)
100. • 14.54
BNO « ——— ............ , 15.06 PERCENT
SI.976 » 14.54
MOLE FRACTION OF DRT STACK GAS
FMD * (100. • BNO) / 100.
100. . 1S.1
FMD m ....................... e .849
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD * (PC02 * .44) • (P02 • .32) » (PN2 «• PCO) • .28
MO = (14.00*44/100) » ( 4.0*32/100) » ((82.0* .0) • 28/100 = 30.40
MOLECULAR HEIGHT OF STACK GAS
MMS = MO • (1. - (BHO/IOO)) » 18. * (BMO/100)
MMS = 30.40* (1. -(15.06/100)) » 18. • (15.06/100) * 28.53
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP » SUM. OF THE SORT(VH • (TS » 060.))
VS » 85.09 • CP • OELP / (SORT(MMS • PS) • PNTS)
VS s 85.09 • .84 * £21.610 / (SQRTC 88.53 • 29.71) » 12. s 45.55 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS = VS • AS • 3600/104
OS * 45.55 • 11310. 3600/lOfl s 12078342. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTD a 17.647 • QS • PS • (1. - (BnO/100)) / (TS » 460.)
17.647 • 18878342. * 29.71 * (1. - (15.06/100))
OSSTD a ...— .... * 6305509. SCFH
( 450. » 460.)
PERCENT ISOKINETIC
ISO s (J05.58*(TS«460.))*((O.Q02669*VLC)*(VM«T*(PB«(PM/13.6))/(TM«460.)))/(TT*VS*P9«ON«DN)
(305.58M 450.»460.))«((0.002669. 309.)«( 86.985* .989*( 2«.80«( 1.621/13.6))/( *4.«460.)))
1SO * . ..... . • «».7* PERCENT
120. • 45.55 • 29.71 • .311 • .311
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS s 0.001 • MN • 15.43 / VMSTD
CS = 0.001 * O.OOOOE»00 • 15.43 / 81.976 3 O.OOOOE+00 GR/D3CF
-------
FIELD DATA
>
i
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEC. F)
BAB. PRESS. (IN. MG)
STATIC PRESS. (IN. H20)
FILTER NUMBERO)
STACK INSIDE DIM. (IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO.
FCCU
PHILAOtLPHIA
STACK
PART/H2304/3U2
00
eo.
29.80
-1.20
3530817
120.
.84
.002
.967
READ & RECORD DATA EVERY to.o
TRAVERSE SAMPLE CLOCK GAS MEUR
POINT TIME TIME
NO. (MIN.) (24-HR
f 1 t\fM\
CLOCK 1
INIT 0 1335
10.0 0
20.0 o
30.0 0
ao.o o
SO.O 0
60.0 0
70.0 0
ao.o o
90.0 0
100.0 0
110.0 0
120.0 1535
READING
(CU.FT.)
341.713
344.020
356.160
363.280
370.400
377.780
385.120
392.490
399.930
«07.340
«14.730
422.130
Q24.473
00 .00
DATE
RUN NUMBER
PROBE LENGTH ft TYPE
NOZZLE 1 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
PETER HEAD OIFF.
06/25/82
6CM5
5* GLASS
.307
18.0
F10
1.84
PROBE HEATER SETTING 950.
CFM 3 8.0 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TE»P
(IN.H20) (IN.H20) (DEG.F)
DESIRED
.380 .63
.360 .54
.360 .55
.360 .56
.380 .64
.380 .65
.380 .65
.380 .65
.380 .66
.380 .66
.380 .66
.380 .67
ACTUAL
.63 447.
.54 450.
.55 451.
.56 448.
.64 453.
.65 447.
.65 448.
.65 451.
.66 449.
.66 450.
.66 452.
.67 445.
HEATER BOX SETTING
DRY GAS METER PUMP
TEMP VACUUM
(DEG.F) (IN.HG)
INLET OUTLET
89. 69. .«
91. 89. .3
95. 90. .3
«»«>. 92. .2
101. 93. .8
101. 94. .B
101. 95. .8
103. 95. .1
105. 97. 7.1
105. 97. 7.1
105. 98. 7.1
107. 99. 7.2
250.
SAMPLE IMPINGER
BOX TEMP TEMP
(DEG.F) (DEG.F)
0. 71.
0. 74.
0. 80.
0. 82.
0. 84.
0. 86.
0. 88.
0. 79.
0. BO.
0. 79.
0. 77.
0. 74.
TOTALS
AVERAGE
120.0
87.760
1.63
1.63 449.
100.
94.
6.8
0.
ao.
-------
PARTICULATE FIELD DATA a, RESULTS TABULATION
PLANT- MAMt AND ADDRESS TEST TEAM LEADER
ARCO» PHILADELPHIA DO
TEST 6CM5
FCCU STACK
ENGLISH UNITS
TEST DATE
TR
TF
TT
NP
Y
ON
CP
f PM
M
*" VM
TM
VMSTO
TIME-START
TIME-FINISH
NET TIME OF TESTi MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
OB/25/B2
1335
1535
120
12
1
87
97
80
.0
.967
.307 IN
.84
.63 IN-H20
.760 CU-FT
.1 F
.432 SCF
METRIC UNITS
08/25/82
1335
1535
120
12
7
41
2
36
2
.0
.967
.8
.84
.3
.465
.2
.278
KM
MM-H20
CU-M
C
3CM
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BMO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.i DRY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL.* DRY
PN2 PERCENT N2 BY VOL.r DRY
MO MOLECULAR HT-DHY STACK GAS
MMS MOLECULAR NT-STACK GAS
312.2
14.695 SCF
312.2
.416 8CH
15.45
.84b
14.00
4.00
.00
82.00
30.40
28.48
15.45
.846
14.00
4.00
.00
82.00
30.40
28.48
-------
PB BAROMETRIC PRESSURt
PSI STATIC PHES OF STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
A3 STACK AREA
83STO STACK FLOW RATE, DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
C3 FILTERABLE-AMBIENT
05.6
11310.
6263270.
12886814.
97.6
29.60 1N-HG
-1.20 1N-H20
24.71 IN-WG
449. F
FPS
30-IN
SCFH
ACFM
.0366 GR/DSCF*
756.92 VM-HG
-30.48 MM-H20
750.66 fM-HG
232. C
13.9 HPS
T.297 30-M
177923. 3CMM
364916. ACMH
97.6
201.2
68.347 KG/DSC*
>
I
U1
MN
C3
FILTERABLE-160
MG. EPA S
FILTERABLE-160
103.4
.0196 GR/OSCF*
103.4
05.403 HG/OSCH
MN
cs
FILTERABLE-232
MG. EPA 5
FILTERA8LE-232
65.6
.0165 6R/DSCF*
6S.6
37.675
MN FILTERABLE-316
MG. EPA 5
C3
FILTERABLE-316
86.2
.0165 GR/OSCF*
66.2
37.651 NG/09CH
• 68 OEG f, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO. 6CM5
FCCU STACK
VOLUME UF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD « (17.647 • VM • Y • (PB » PM / 13.6)) / (TM + 460.)
17.647 • 87.760 • .967 • ( 29.60 » 1.627 / 13.6)
VMSTD s .———— — — — — — — — — — — — - — — - a 80.432 DSCF
( «>7. » 4bO.)
VOLUME UF HATER VAPOR AT STANDARD CONDITIONS
VMC ~ .04707 • VLC
VMC * .04707 • 312. = 14.70 3CF
PERCENT MOISTURE IN STACK GAS
BMO s (100. • VMC) / (VMSTD + VMC)
100. • 14.70
8MO = — —————--- a 15.45 PERCENT
80.432 + 14.70
MOLE FRACTION OF DRY STACK GAS
FMD 3 (100. - BMO) / 100.
100. . 15.4
FMD * ...—-....—.—..—.. s .846
100.
AVERAGE MOLECULAR MEIGHT OF DRY STACK GAS
MD « (PC02 • .44) » (P02 • .321 » (PN2 » PCD) • .28
MO = (14.00*44/100) * ( 4.0*32/100) + ((82.0* .0) • 26/100 = 30.40
MOLECULAR MEIGHT OF STACK GAS
MMS 3 MD * (1. - (8MO/100)) » 18. • (BMO/100)
MMS = 30.40* (I. -(15.45/100)) » IB. • (15.45/100) = 26.48
-------
STACK GAS VELUCITY AT STACK CONDITIONS
OELP s SUM. OF THE SQRT(VH • (TS » 060.})
VS * BS.49 • CP * OELP t (SORT(HMS • PS) • PNT3)
VS s 85.49 • .84 • 881.569 / (SORT( 28.48 * 29.71) • 12. * 45.SB FPS
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
OS = VS • AS • 3600/144
OS * 45.58 * 11310. 3600/144 x 12886814. ACFM
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTD > 17.647 • OS • PS • (1. - fBNO/100)) / (TS » 460.)
17.647 • 12886814. • 29.71 • (1. • (15.45/100))
OSSTD a — . ....... ..... ... . a 6283270. SCFM
( 449. » 460.)
PERCENT ISOKINETIC
ISO a (305.5B*(T94460.))*((0.002669*VLC)«(VM«r*(PB«(PM/13.6))/(TM«460.)))/(TT*VS*P3*ON*ON)
(305.58*( 449.«460.))*((0.002669* 312.)»( 87.760* .967*( 29.80»( 1.627/13.6))/( 97.»460.)))
ISO c . > 97.80 PERCENT
120. • 45.58 • 29.71 • .307 • .307
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 * HN • IS.43 / VMSTO
CS = 0.001 • 201.2 • 15.43 / 80.432 = .0386 GR/OSCF
-------
FIELD OAT*
I
M
M
00
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEC
BAR. PRESS. (IN. HG)
STATIC PRESS. (IN.
FILTER NUMBER(S)
STACK INSIDE DIM.
P1TOT TUBE COEFF.
THERM. NO.
LEAKAGE
ARCO,
FCCU
PHILADELPHIA
STACK
PART/H2S04/SU2
.F)
H20)
DO
80.
29.80
-1.20
DATE
RUN NUMBER
06/25/82
60M5
PROBE LENGTH I TYPE
NOZZLE
> I.D.
6* GLASS
.263
ASSUMED MOISTURE
3530B15
(IN)
METER CALIB. FACTOR
READ & RECORD DATA EVERY
TRAVERSE SAMPLE CLOCK
POINT
NO.
INIT
TIME TIME
(MIN.) (24-HR
PI rtr v
CLOCK
0 1336
10.0 0
20.0 0
30.0 0
40.0 0
50.0 0
60.0 0
70.0 0
80.0 0
90.0 0
100.0 0
110.0 0
120.0 1536
120.
.84
.000
.995
10.0
GAS METER
READING
(CU.
I
1
708
714
720
725
731
737
743
750
756
762
768
774
780
FT.)
.306
.300
.110
.960
.810
.880
.940
.000
.080
.180
.230
.360
.414
no .00
SAMPLE BOX
METER BOX
METER HEAD
NUMBER
NUMBER
01FF.
PROBE HEATER SETTING
CFM A .0 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
MEAD DIFFERENTIAL TE*P
(IN.H20) (IN.H20) (DEG.F)
OFSIHEO
.380 .18
.360 .12
.360 .12
.360 .13
.380 .19
.380 .20
.380 .20
.380 .20
.380 .20
.380 .20
.380 .20
.380 .21
ACTUAL
.16 447.
.12 450.
.12 451.
.13 448.
.19 453.
.20 447.
.20 448.
.20 451.
.20 449.
.20 450.
.20 452.
.21 44?.
HEATER BOX
DRY GAS METER
TEMP
(DEG.F)
INLET OUTLET
86. 84.
91. 85.
95. 85.
99. 87.
101. 89.
101. 89.
101. 90.
103. 91.
104. 92.
104. 93.
105. 93.
106. 93.
SETTING
PUMP
VACUUM
(IN.M6)
2
0
1
1
3
3
4
7
8
8
«.e
4.9
16.0
FBI
1.85
250.
250.
SAMPLE
601 TEMP
(OEC.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IMPINGER
TEMP
(DEC.
66
67
74
75
76
73
70
69
69
66
66
66
F)
.
,
.
.
.
.
.
•
.
.
.
.
TOTALS
AVERAGE
120.0
72.108
1.16
1.18 449.
100.
89.
4.5
0.
70.
-------
PARTICULATE FIELD DATA a RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCOr PHILADELPHIA DP
TEST 6DM5
FCCU STACK
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
ENGLISH UNITS
08/35/82
1336
1536
120.0
12
.995
.283 IN
.84
1.18 IN-H20
METRIC UNITS
08/25/82
1336
lS3b
120.0
12
.995
7.2 MM
.84
30.0 MM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VNC VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.* DRY
P02 PERCENT 02 BY VOL.* DRV
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL.. DRY
MO MOLECULAR NT-DRY STACK GAS
MNS MOLECULAR NT-STACK GAS
72.108 CU-FT
94.5 F
68.237 SCF
271.7
12.789 SCF
2.042 CU-M
34.7 C
1.932 SCM
271.7
.362 SCM
15.78
.842
14.00
4.00
.00
82.00
30.40
28.44
15.78
.842
14.00
4.00
.00
62.00
30.40
28.44
-------
PB BAHOMETRIC PRESSURE
PSI STATIC PRES l)F STACK GAS
P3 STACK PRE3, A8S.
T3 AVERAGE STACK TEMP
VS AV6 STACK 6A3 VELOCITY
AS STACK AREA
OSSTD STACK FLON RATE* DRV*
03 ACTUAL STACK FLOM RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
M6. EPA 5
CS FILTERABLE-AMBIENT
29.80 1N-HG
-1.20 IN-H20
29.71 IN-HG
449. F
45.6 FP3
11310. SO-1N
b2b2896. SCFH
12896244. ACFH
98.0
219.4
.0496 GR/DSCF*
756.92 MM-MG
-30.46 NM-H20
754.66 MM-HG
232. C
13.9 NPS
T.29T SO-M
177347. SCMH
365183.
98.0
219.4
113.556
MN
CS
FILTERABLE-160
MG. EPA S
FRTERABLE-160
98.7
98.7
.0223 GRXOSCF. 51.085 KG/DSC"
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
81. 5
81.5
.0184 GR/DSCF* 42.182
MN FILTERABLE-316
MG. EPA 5
CS
FILTERABLE-3I6
79.8
79.8
.0180 GR/DSCF* 41.303 KG/DSC*
• 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO. 6DM5
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANOAHD CONDITIONS
VMSTO « (17.607 • VM • Y • IPB » PM / 13.6)) / (TM » 460.)
17.647 • 72.106 * .995 * ( 29.00 » 1.179 / 13.6)
VMSTO « * 68.237 OSCF
( 95. » 060.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VKC • .00707 * VLC
VNC « .00707 • 272. a 12.79 SCF
PERCENT MOISTURE IN STACK GAS
.p BNO * (100. • VNC) / (VMSTD » VMC)
I
H-1 100. • 12.79
£> BNO • .................... e 15.76 PERCENT
M 68.237 » 12.79
MQLE FRACTION OF DRY STACK GAS
FMO * (100. • BNO) / 100.
100. • IS.8
FMD « ....................... c .602
too.
AVERAGE MOLECULAR HEIGHT OF ORY STACK GAS
MD • (PC02 • .44) «• (P02 • .32) » (PN2 * PCO) • .20
MO • (10.00*00/100) » ( 4.0*32/100) » ((02.0* .0) • 28/100 = 30.40
MOLECULAR HEIGHT OF STACK GAS
MhS » MO • (1. - (8XO/100J) * 16. • (BMU/100)
MHS x 50.00* (t. -(15.70/100)) » 18. • (15.78/100) * 28.44
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DILP » SUM. OF THE SORUVH * (TS * 460.))
V9 » 05.49 • CP • OEUP / (SQRUMWS * PS) • PNTS)
VS = 05.09 * .04 • 321.569 / (SURH 28.44 • 29.71) • 12. a 45.61 FP3
STACK GAS VOLUMETRIC FLO* AT STACK CONDITIONS
QS a VS • AS • 3600/144
OS * 45.61 * 11310. 3600/144 r 12896244. ACFH
STACK GAS VOLUMETRIC FLON AT STANDARD CONDITIONS
OSSTO e 17.647 • 03 • PS • (1. - (BHO/100)) / (TS » 460.)
17.647 • 12*96244. • 29.71 * (I. • (15.78/100))
Q3STD « — « 6262098. SCFH
( 449. + 460.)
>
M PERCENT I30KINETIC
M
M ISO = (30S.50*(TS+460.))*((0.002669*VLC)+(VM*T*(PB*(PM/13.6))/(TM»460.)))/(TT*VS*PS*DN*ON)
(305.50«( 449.»460.))«((0.002669. 272.)»( 72.108* ,995«( 2"».00*( 1.179/13.6))/( 95.4460.)))
ISO « ................ ..... ....... ..... .... ... .... a 97.96 PERCENT
120. * 45.61 • 29.71 • .203 • .203
PARTICULATE LOADING •- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 • MN • 15.43 / VMSTO
CS = 0.001 • 219.4 * 15.43 / 60.237 e .0496 CR/DSCF
-------
FIELD DAT*
>
t-1
10
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEC. F)
BAR. PRESS. (IN.HG)
STATIC PRESS. (IN. H20)
FILTER NUMBERO)
STACK INSIDE DIM. (IN)
PJTUT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO,
FCCU
PANT,
PHILADELPHIA
STACK
H2S04.SU2
J PRUMASKA
80.
30.16
-1.20
3530822
120.
.84
174
.003
.998
READ & RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME
NO. (MIN.) (24-HR
INIT 0 921
10.0 931
20.0 941
30.0 951
40.0 1001
50.0 1011
60.0 1021
70.0 1031
80.0 1041
90.0 1051
100.0 1101
110.0 1111
120.0 1121
READING
(CU.FT.)
250.285
256.450
262.700
268.850
275.115
281.400
287.720
294.050
300.420
306.680
313.030
319.370
325.715
00 .00
CFM * 5.5 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
MEAD DIFFERENTIAL T£*P
(IN.H20) (IN.H20) (DEG.F)
DESIRED
.400 .35
.400 .35
.400 .36
.400 .37
.400 .37
.400 .37
.400 .37
.400 .37
.400 .37
.400 .37
.400 .37
.400 .37
ACTUAL
.35 451.
.35 455.
.35 453.
.35 452.
.35 456.
.35 451.
.35 456.
.35 452.
.35 452.
.35 452.
.35 45J.
.35 452.
DATE
RUN NUMBER
PROBE LENGTH S TYPE
NOZZLE 1 I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. OIFF.
08/26/82
7AM545
6 FT HEATED GLASS
.289
18.0
FB8
1.90
5.71
450.
450.
.00
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX
(DEG.F) (IN.HG) (DEC
IKLET OUTLET
81. 81. 4.5
83. 81. 5.0
88. 83. 5.0
91. 84. 5.5
93. 86. 5,5
«3. 87. 5.5
92. 87. 5,5
91. 87. 5.5
•»!. 87. 5.5
91. 87. 5.5
93. 88. 5,5
93. 89. 6.0
TEMP TEMP
.F) (DEG.F)
0. 68.
0. 70.
0. 73.
0. 75.
0. 78.
0. 76.
0. 75.
0. 71.
0. 72.
0. 73.
0. 69.
0. 68.
TOTALS
AVERAGE
120.0
75.430
1.37
1.35 45J.
to.
86.
5.4
0.
72.
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT* NAME. AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA J PROHASKA
TEST 7AMS45
FCCU STACK
ENGLISH UNITS
TEST DATE
TB
TF
TT
NP
Y
ON
CP
PN
1
M VM
to
TN
VMSTD
VLC
VMC
8X0
FHD
PC02
P02
PCO
PN2
MD
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET 3AMPLIN6 POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRV
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PEKCtNT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
08/26/82
921
1121
120
12
1
75
67
73
281
13
15
13
4
62
30
26
.0
.996
.289 IN
.84
.39 IN-H20
.430 CU-FT
.B F
.362 SCF
.1
.231 SCF
.26
.847
.70
.20
.00
.10
.36
.47
METRIC UNITS
08/26/82
921
1121
120.0
12
.998
7.3
.64
34.3
2.136
31.0
2.078
281.1
.373
15.26
.847
13.70
4.20
.00
82.10
30.36
28.47
MM
MM-H20
CU-M
C
SCM
SCM
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OP STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVB STACK 6A3 VELOCITY
A3 STACK AREA
QSSTD STACK FLO" RATE, OHY«
QS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.16
-1 .20
30.07
453.
46.9
11310.
6530520.
13260036.
96.9
113.5
1M-MG
1N-M20
I*-HG
F
FP3
SO-IN
SCFM
ACFH
766.06
-30.46
763.82
234.
14.3
7.297
160925.
375465.
96.9
113.5
NM-M6
*M-H2
NM-HG
C
>PS
30-M
3OH
ACNH
.0239 6R/03CF* 54.626 MG/OSCH
MN
(o
tn
FILTERABLE-I60
M6. EPA 5
FILTERABLE-160
100.2
100.2
.0211 GR/DSCF* 48.225 »-G/OSCK
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
91.6
91.6
.0193 GK/OSCF* 44.066 MG/OSCH
MN
CS
FILTtRABLE-316
MG. EPA 5
FILTERABLE-316
69.1
89.1
.0167 GR/OSCF* 42.663
• 66 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTKULATE CALCULATIONS TEST No.7»M545
FCCU STACK
VOLUME Or DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO = (17.647 • VM • T • (PB « PM / 13.6)) / CTM » a60.)
17.647 • 75.430 * .946 * ( 30.16 * 1.350 / 13.6)
VMSTO * .— — . — . — ..- —................ ........ . s 73.38* OSCF
( 88. » 4bO.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VMC * .04707 • VLC
VMC » .oa707 * 281. » 13.23 SCF
PERCENT MOISTURE IN STACK GAS
BMO • (100. • VMC) / (VMSTO » VMC)
100. • 13.23
BMO « — -- — = 15.28 PERCENT
73.382 » 13.23
MOLE FRACTION OF DRY STACK GAS
FMD * (100. • BNO) / 100.
100. - 15.3
FMD a « .807
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO a (PC02 • .44) • (P02 • .32) » (PN2 + PCO) • .28
MD = (13.70*44/100) » ( 4.2*32/100) » ((82.1* .0) * 28/100 = 30.36
MOLECULAR HEIGHT Of STACK GAS
MNS r MU • (1. - (BMO/100)) * 16. * (6MO/100)
MMS s 30.36* (1. -US.26/100)) » 18. • (15.28/100) a 28.47
-------
STACK G*3 VELOCITY AT STACK CONUITIONS
DtLP • SUM. OF THE SORMVH • (TS * «60.))
VS » 85.09 • CP • DELP / (SURHMHS * PS) • PNTS)
VS » 85.09 • .80 • 229.312 / ISQRTt 28.07 • 30.07) • 12. * 06.90 FPS
STACK GAS VOLUMETRIC FLOM AT STACK CONDITIONS
OS * VS • AS • 3600/100
OS 3 06.90 * 11310. 3600/100 a 13260038. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OS3TD = 17.607 • 83 • PS • (1. - (BHO/100M / (TS * 060.)
17.647 • 13260038. • 30.07 • (I. - (15.26/100))
OSSTD • — — * 6530530. SCFM
( 053. » 060.)
*p PERCENT ISOKINETIC
I
»- ISO « (305.58«(T3»060.))«((0.002669«VLC)*(VM»T«(PB»(PM/13.6))/(TM«fl60.)))/(TT«VS«PS«ON«DN)
to
^ (305.58«( 093.«460.))*((0.002669* 281.)»( 7S.030* .998*( 30.16«( 1.390/13.6))/( 88.»060.)))
ISO « .............. ... . ................... . ...... ..... .. ........ • 96.88 PERCENT
120. • 06.90 • 30.07 • .289 • .289
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS • 0.001 * MN • IS.03 / VMSTO
CS * 0.001 • 113.5 • 15.03 / 73.382 a .0239 6R/DSCF
-------
FIELD DATA
M
00
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEC
BAR. PRESS. (IN.HG)
STATIC PRESS. (IN.
FILTER NUMBERO)
STACK INSIDE DIM.
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
ARCO,
FCCU
PAHT,
PHILADELPHIA
STACK
H23l)4,SU2
J PRUHASKA
.F) 80.
30.16
H20) -1.20
3530844
(IN) 120.
.84
174
.012
00 .00
CFM 8 9.0 IN.HG
DATE
RUN NUMBER
PROBE LENGTH ft TYPE
NOZZLE 1 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. OIFF.
08/26/82
7BM545
5 FT HEATED GLASS
.297
18.0
FB2
1.77
5.93
«50.
450.
.00
METER CALIB. FACTOR .989
READ ft RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK
POINT TIME TIME
NO. (MIN.) (24-HR
ft fir M
LlUl"
INIT 0 922
10.0 932
20.0 942
30.0 952
aO.O 1002
50.0 1012
60.0 1022
70.0 1032
80.0 1042
90.0 1052
100.0 1102
110.0 1112
120.0 1122
GAS METER
READING
(CU.FT.)
t
1
536.948
543.650
550.300
556.800
563.435
570.080
576.810
583.490
590.180
596.870
603.575
610.300
616.990
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL T£KP
(IN.H20) (IN.H20) (DEG.F)
DESIRED
.400 .41
.400 .41
.400 .41
.400 .42
.400 .42
.400 .42
.400 .42
.400 .42
.400 .42
.400 .42
.400 .42
.400 .42
ACTUAL
.40 451.
.40 455.
.40 453.
.40 452.
.40 456.
.40 451.
.40 456.
.40 452.
.40 452.
.40 452.
.40 453.
.40 452.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX
(DEG.F) (IN.HG) (DEC
INLET OUTLET
78. BO. 8.0
81. 81. 7,5
87. 82. .0
88. 83. .0
91. 85. ,5
93. 87. ,5
93. 87. ,5
91. 87. ,5
91. 87. .5
92. 87. .5
93. 89. .5
94. 89. ,5
TEMP TEMP
.F) (DEG.F)
0. 72.
0. 76.
0. 75.
0. 79.
0. 85.
0. 86.
0. 82.
0. 80.
0. 76.
0. 77.
0. 71.
0. 70.
TOTALS
AVERAGE
120.0
80.042
1.42
1.40 453.
89.
85.
8.3
0.
78,
-------
PARTICIPATE FIELD DATA a kESULTS TABULATION
PLANT* NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA J PROHASKA
TEST 7BMS45
FCCU STACK
ENGLISH UNITS
TEST DATE OB/26/H2
TB
TF
TT
NP
Y
ON
CP
PM
1
^j
N) VM
TM
VMSTD
VLC
VNC
BMO
FMD
PC02
P02
PCO
PN2
MD
MNS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL. ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.. DRV
PERCENT 02 BY VOL.. DRY
PERCENT CO BY VOL.. DRY
PERCENT N2 BY VOL.. DRY
MOLECULAR KT-DHY STACK GAS
MOLECULAR WT-STACK GAS
922
1122
120
12
1
80
67
77
287
13
14
13
4
82
30
26
.0
.989
.297 IN
.64
.40 IN-M20
.042 CU-FT
,3 F
.240 SCF
.3
.523 SCF
.90
.651
.70
.20
.00
.10
.36
.52
METRIC UNITS
08/26/62
922
1122
120.0
12
.989
7.5
.64
35.6
2.267
30.7
2.167
287.3
.383
14.90
.651
13.70
4.20
.00
62.10
30.36
26.52
MM
MM-H20
CU-M
C
3CM
SCM
-------
PB bAKOMETRIC PRESSURE
PSl STATIC PRE3 Of STACK GAS
PS STACK PRES, ABS.
T3 AVERAGE STACK TEMP
V3 »V6 STACK 6*3 VELOCITY
AS STACK AREA
QSSTO STACK FLOH RATE. DRY*
03 ACTUAL STACK FLOH RATE
ISO PERCENT I30KINETIC
MN FILTERABLE-AMBIENT
MG. EPA S
C9 FILTERABLE-AMBIENT
SO.lfe IN-HG
•1.20 IN-MiO
30.07 IN-HG
053. F
06.9 FPS
11310. SO-1N
6550220. SHFH
ACFH
96.2
123.9
.0208 GR/DSCF*
Tbfe.Ob ^
-30.aa ^
763.64 MM-HG
230. C
ia.3 fP3
T.297 30-M
165596. SCNH
375178. ACCM
96.2
123.9
56.653 K6/D3CI*
U)
o
MN
CS
MN
CS
FILTERABLE-160
MG. EPA S
FUTERA8LE-160
FILTERABLE-232
MG. EPA S
FILTERABLE-232
112.6
.0225 GR/OSCF*
90.5
112.6
51.086 KG/DSC*
90.5
.0169 GR/DSCF* 43.210 PC/DSC*
MN
CS
FILTERABLE-3I6
MG. EPA S
FILTERABLE-316
09.9
89.9
.0160 GR/DSCF* 01-. 106 f6/03CH
• 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIUNS TEST
FCCU STACK
VOLUME OF DRY CAS SAMPLED AT STANDARD CONDITIONS
VMSTO 2 (17.647 • VM • V • IP8 « PM / 1J.6)) / (TM 4 460.)
17.647 • 80.042 • .989 • ( 30.16 » 1.400 / 13.6)
VMSTD s ——— — ..- — . — — — ------ --- ---- ............... - 77.240 D3CF
( S7. • 060.)
VOLUME OF HATER VAPUR AT STANDARD CONDITIONS
VHC » .04707 • VLC
VMC > .04707 • 287. a 13.52 SCF
PERCENT MOISTURE IN STACK GAS
BNO « (100. • VNC) / (VMSTD * VMC)
> 100. • 13.52
1 BNO « • ..... : 14.90 PERCENT
£ 77.240 » 13.52
MOLE FRACTION OF DRY STACK GAS
FMD • (100. • BNO) / 100.
100. - 14.9
FMD « — — — « .851
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO * (PC02 • .44) » (P02 * .32) » (PN2 «• PCO) • .28
HO f (13.70*44/100) » ( 4.2*32/100) » ((82.1* .0) • 28/100 = 30.36
MOLECULAR HEIGHT OF STACK GAS
MNS a MO • (1. • (BNO/100J) * 18. * (BHO/100)
MMS 3 30.3b* (1. •(10.90/100)) » 16. * (14.90/100) = 20.52
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP * SUM. OF THE SQRMVH • (TS » 060.))
V3 * 85.89 • CP • OELP / (SURT(MK5 • PS) • PNTS)
VS = 85.OS • .80 « 229.312 / (S PERCENT I30KINETIC
U) ISO ' (30b.58»(TS*460.))«((0.002669«VLC)»(VM«T»(PB»tPM/13.6))/(TM»J
(305.59«( 453.*460.))*((0.002669* 887.)»( 60.042* ,989*( 30.J6»( 1.400/13.6))/( «7.»460.)))
ISO * —— —• — ... . — . .......... ... z 96.20 PERCENT
120. • 46.86 • 30.07 • .297 • .297
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
C3 > 0.001 * MN • 15.43 / VMSTD
C3 « 0.001 • 123.9 • 15.43 / 77.240 * .0248 6R/OSCF
-------
FIELD OAT*
U)
Ul
PLANT ABCO,
SAMPLING LOCATION FCCU
PHILADELPHIA
STACK
SAMPLE TYPE PAHT/H2SQ4/SU2
OPERATOR DO
AMBIENT TEMP. (DEG.F) 60.
BAR. PRESS. (IN. HG) 30.16
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBERIS) 3530613
STACK INSIDE DIM. (IN) 120.
P1TUT TUBE COEFF. .84
THERM. NO.
LEAKAGE .000
METER CALIB. FACTOR .967
READ & RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME READING
NO. (MIN.) (24-HR (CU.FT.)
PI nr u \
CLOCK J
INIT 0 921 030.042
10. 0 0 436.970
20.0 0 443.640
30.0 0 450.740
40.0 0 457.660
50.0 0 464.690
60.0 0 471.670
70.0 0 478.730
80.0 0 465.600
90.0 0 492.850
100.0 0 499.940
110.0 0 507.020
120.0 1121 510.050
00 .00
CFM 9 8.0 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL T£MP
(IN.H20) (IN.H20) (DEG.F)
DESIRED
.400 .50
.000 .50
.400 .51
.400 .51
.400 .52
.400 .53
.400 .53
.400 .53
.400 .53
.400 .54
.400 .53
.400 .54
ACTUAL
.50 451.
.50 455.
.51 453.
.51 452.
.52 456.
.53 451.
.53 456.
.55 452.
.53 452.
.54 452.
.55 453.
.54 452.
DATE
RUN NUMBER
PROBE LENGTH a TYPE
NOZZLE 1 I.D.
ASSUMED HOISTURE
SAMPLE BOX NUMBER
PETER 801 NUMBER
METER HEAD OIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
06/26/82
7CM5
5' GLASS
.298
16.0
F10
1.84
250.
250.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DEC.
INLET OUTLET
•3. S3. 5,4
65. 83. 5,7
90. 85. 5.8
93. 86. 6.1
96. 88. 6.2
99. 90. 6.3
99. 91. 6,6
99. 91. 6.6
99. 93. 7.0
99. 93. 7.2
101. 93. 7,3
101. 94. 7.4
F) (DEG.F)
se.
62.
64.
66.
66.
69.
69.
71.
TO.
69.
68.
67.
TOTALS
AVERAGE
120.0
64.008
1.52
1.52 453.
95.
69.
6.5
67.
-------
PARTICIPATE FIELD DATA a HESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHUADtLPHIA 00
TEST 7CM5
TEST DATE
FCCU STACK
U)
DROP
VM VOLUME OF DRY SAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VMC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
0NO PERCENT MOISTURE BY VOLUME
FMO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.r DRY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL., 0»Y
PN2 PERCENT N2 BY VOL., URY
MO MOLECULAR NT-OHY STACK GAS
MHS MOLECULAR WT-STACK GAS
ENGLISH UNITS
OB/lb/02
TB
TF
TT
NP
V
ON
CP
PM
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
921
1121
120
12
1
.967
.298 IN
.84
1.52 IN-M20
84.008 CU-FT
92.3 F
78.582 SCF
326.3
15.359 SCF
METRIC UNITS
08/26/82
1121
120.0
12
.967
7.6 I'M
.84
38.7 MM-H20
2.379 CU-M
33.5 C
2.225 SCM
326.3
.435 SCM
16.35
.837
13.70
4.20
.00
82.10
30.36
28.34
16.35
.837
13.70
4.20
.00
82.10
30.36
28.34
-------
P8 BAKOHETRIC PHES3URE
P9I STATIC PRES OF STACK GAS
PS STACK PRES* ABS.
T9 AVERAGE STACK TEMP
V3 AVG STACK GAS VELOCITY
AS STACK AREA
033TO STACK FLOW RATE* DRY*
OS ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. tPA 5
CS FILTERABLE-AMBIENT
30.16 IN-M6
•1.20 IN-H20
30.07 1N-HG
453. F
47.0 FPS
11310. SO-IN
6462073. SCFM
13291036. ACFM
96.6
339.3
.0470 GR/DSCF*
766.06 KM-HG
-30.40
763.62 MM»HG
a34. C
14.3 >»P3
7.297 30-M
103009. SCMH
376362.
90.6
239.3
107.551
MN
OJ
FILTERABLE-160
MG. EPA S
FILTERABLE-160
120.0
120.0
.0236 GR/OSCF* 53.933 PG/03CP
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
106.3
106.3
.0209 GR/DSCF* 47.775 CG/OSC*
MN
CS
FILTERABLE-316
MG. EPA S
FILTERABLE-316
101.9
101.9
.0200 GR/DSCFo 45.798 PG/OSC*
* 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO. 7CM5
FCCU STACK
VOLUME OF OUT GAS SAMPLED AT STANQAHD CONDITIONS
VMSTD » (17.647 * VM • T • (PB » PM / 13.6)) / (TM » 460.)
17.647 * 84.008 • .967 « ( 30.16 » 1.523 / 13.6)
VMSTD = .———— — . — — - ................... * 78.582 DSCF
( 92. * 060.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VRC * .04707 • VLC
VHC * .04707 * 386. r IS.36 SCF
PERCENT MOISTURE IN STACK GAS
BMO * (100. • VHC) / (VMSTD * VHC)
"f 100. • IS.36
M BHO s —. — ... 3 16.35 PERCENT
J£ 78.582 «• 15.36
MOLE FRACTION OF DRV STACK GAS
FMD s (100. > BHO) / 100.
100. > 16.3
FMD » —— —————- s .637
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO > (PC02 • .44) + (P02 • .32) * (PN2 «• PCO) • .26
MO = (13.70*40/100) » ( 4.2*38/100) * ((82.1* .0) * 28/100 = 30.36
MOLECULAR HEIGHT OF STACK GAS
MHS * MO • (I. - (BMO/100)) * 10. * (BNO/100)
MHS * 30.36* (1. '(16.35/100)) + 18. * (16.35/100) = 20.34
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP » SUM. OF THE SQRMVH « (TS » ObO.))
VS a 85.09 • CP • DELP / 13UBT(MNS • PS) • PNTS)
VS « B5.09 • .80 « 229.312 I (SQRU 38.30 * 30.07) * 12. x 47.01 FPS
STACK GAS VOLUMETRIC FLON AT STACK CONDITIONS
OS * VS • AS • 3600/140
OS « 47.01 • 11310. 3600/144 e 13291036. ACFH
STACK GAS VOLUMETRIC FLO" AT STANDARD CONDITIONS
OSSTD n 17.647 • OS • PS • (1. - (BNO/100)) / (TS « 460.)
17.647 • 13291036. * 30.07 • (1. - (16.35/100))
OSSTD « — — -- — ———.......... ...........—........ z 6462873. SCFH
( 453. » 460.)
> PERCENT ISOKINETIC
w ISO * (305.58«(TS«460.))«((0.002669*VLC)«(VM*r*(PB>(PM/13.6))/(TM«460.)))/(TT*VS*PS«ON«DN)
-J
(305.58»( 453.*460.))«((0.002669* 326.)»( 64.008* .967*( 30.16*( 1.523/13.6))/( 92.*460.)))
ISO « ...... . ........ ... ..................................... • 98.59 PERCENT
l?0. • 47.01 • 30.07 • .298 • .298
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • MN • 15.43 / VMSTO
CS * 0.001 * 239.3 • 15.43 / 78.582 » .0470 GR/DSCF
-------
FIELD DATA
U)
00
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(OEG.F)
BAR. PRESS. (IN. HG)
STATIC PRESS. (IN. H20)
FILTER NUMBER(S)
STACK INSIDE DIM. (IN)
PITUT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCOr
FCCU
PHUADtLPHlA
STACK
PAHT/H2S04/SD2
00
60.
30.16
•1.20
3530814
120.
.84
.002
.995
READ & RECORD DAT* EVERY 10.0
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME
NO. (MIN.) (24-HR
INIT 0 922
10.0 0
20.0 0
30.0 0
40.0 0
50.0 0
60.0 0
70.0 0
80.0 0
90.0 0
100.0 0
110.0 0
120.0 1122
READING
(CU.FT.)
780.620
786.960
793.260
799.600
805.930
612.290
616.660
625.090
831.540
637.970
844.440
650.870
657.262
00 .00
CFM 8 5.0 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TEMP
(IN.H20) CIN.H20) (DEG.F)
DESIRED
.400 .33
.400 .33
.400 .34
.400 .35
.400 .35
.400 .36
.400 .36
.400 .36
.400 .36
.400 .37
.400 .36
.400 .37
ACTUAL
.33 451.
.33 455.
.34 453.
.35 452.
.35 456.
.36 451.
.36 456.
.36 452.
.36 452.
.37 452.
.36 453.
.37 452.
DATE
RUN NUMBER
PROBE LENGTH i TYPE
NOZZLE t 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
KETER MEAD OIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
06/26/62
70M5
6* GLASS
.269
16.0
FBI
1.65
250.
250.
DRY GAS METER PUMP SAMPLE IMPINCER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.MG) (OE6.F) (DEG.F)
INLET OUTLET
82. T8. .2
85. 78. .2
91. 79. .4
94. 81. .5
97. 83. .7
100. 85. .7
101. 66. .8
101. 87. .6
101. 87. .0 0
102. 68. .1 0
103. 69. .2 0
104. 90. .2 0
57.
60.
61.
66.
66.
69.
69.
70.
70.
70.
70.
69.
TOTALS
AVERAGE
120.0
76.662
1.35
1.35 453.
97.
84.
3.7
67.
-------
U)
V£>
PARTICIPATE FIELD DATA ft HESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TtAM LEADER
ARCO, PHILADELPHIA 00
TEST TONS
TEST DATE
FCCU STACK
IB TIME-START
TF TIME-FINISH
TT NET TIME OF TEST, MIN.
NP NET SAMPLING POINTS
Y METER CALIBRATION FACTOR
ON SAMPLING NOZZLE DIAMETER
CP PITOT TUBE COEFFICIENT
PM AVERAGE ORIFICE PRESSURE
DROP
VK VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TX AVERAGE GAS NETER TEMP
VNSTD VOLUME OF DRY CAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
BNO PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL., DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR NT-DRY STACK GAS
MRS MOLECULAR NT-STACK GAS
ENGLISH UNITS
08/2t>/82
922
120.0
12
.995
.289 IN
.64
1.39 IN-M20
76.662 CU-FT
90.5 F
73.991 SCF
316.3
14.886 SCF
METRIC UNITS
06/26/82
922
1122
120.0
12
.995
7.3 I'M
.64
34.4 MM-H20
2.171 CU-M
32.5 C
2.095 3CM
316.3
.422 SCM
16.75
.632
13.70
4.20
.00
82.10
30.36
28.29
16.75
.632
13.70
4.20
.00
82.10
30.36
28.29
-------
PB BAROMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
P3 STACK PRES, A8S.
T9 AVERAGE STACK TEMP
V9 AVG STACK GAS VELOCITY
AS STACK AREA
03STO STACK FLOW RATE, CRT*
03 ACTUAL STACK PLOW RATE
ISO PERCENT I90KINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.16 IN-MG
•1.20 1N-M20
30.07 IN-HG
453. F
47.0 FPS
11310. SO-IN
64374B9. SCFH
13302688. ACFM
99.1
273.5
.0570 GR/D9CF*
766.06 >»M-M6
-30.08 KM-H20
763.82 CM-HG
234. C
14.3 CP3
7.297 SO-M
162290. SCMH
*CMH
99.1
273.5
130.549 PC/DSC*
> C3
FILTERABLE-160
MG. EPA 5
FILTERA8LE-160
143.5
.0299 GR/OSCF*
143.5
68.496
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
119.7
.0250 GR/DSCF*
119.7
57.136 K6/08CM
MN FILTERABLE-316
MG. EPA 5
CS
FILTERABLE-316
107.2
.0224 GR/OSCF*
107.2
51.169 MG/DSC*
• 68 DEC F, 29.92 IN.H6.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST Nu. 70M5
FCCU STACK
VOLUME OF ORT GAS SAMPLED AT STANDARD CONDITIONS
VMSTO « (IT.baT • VM • Y • tP8 » PM / 13.6)) / (TM » 460.)
17.647 • 76.668 • .995 • ( 30.16 » 1.353 / 13.6)
VMSTO • -— ——— — — --- — - ............ .— B 73.991 DSCF
( 91. * 060.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC « .04707 • VLC
VMC * .04707 • 316. « 14.89 3CF
PERCENT MOISTURE IN STACK GAS
BHO • (100. * VNC) / (VMSTD * VNC)
100. • 14.89
ftftO « ————————— = 16.75 PERCENT
73.991 • 14.89
MOLE FRACTION OF ORT STACK GAS
FMO * (100. • 8*0) / 100.
100. - 16.8
FMD • • — — — — • .832
100.
AVERAGE MOLECULAR NEIGHT OF DRY STACK GAS
MO « (PCO* • .04) * (P02 • .32) » (PN2 * PCO) • .28
MO = (13.70*44/100) + ( 4.2*32/100) « ((82.1 •* .0) • 28/100 = 30.36
MOLECULAR NEIGHT OF STACK GAS
MHS r MO * (1. - (BMO/100)) » 18. • (HNO/100)
MNS = 30.36* (1. -(16.75/100)) » 10. • (16.75/100) B 28.29
-------
STACK GAS VtLUClTT AT STACK CONDITIONS
DELP = SUM. OF THE SORTCVH • IT3 » 160.))
V3 * 85.49 • CP • DELP / (SURTtMHS * P3) • PNT3)
V3 = 65.09 • .64 • 229.312 / (SORTt ?8.29 • 30.07) * 12. s 47.05 FP9
STACK 6A3 VOLUMETRIC FLOM AT STACK CONDITIONS
OS * VS • AS • 3600/144
OS « 47.05 * 11310. 3600/144 • 13302668. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
OSSTO = 17.647 • OS • PS • (I. » (BNO/100)) / (TS * «60.)
17.647 • 13302680. • 30.07 • (1. - C16.75/100))
OSSTO a --.--. — .-.—.—.- —.......... —... . . s 6437409. SCFH
( 453. « 460.)
PERCENT ISOKINETIC
>
I ISO * (305.58*(T3+460.))«((0.002669*VLC)*(VM«Y«(PB»(PM/13.6))/{TM'»460.)))/(TT«VS«P3«DN«ON)
S (305.58*( 453.*460.))*((0.002669* 316.)*( 76.662* .99S*( 30,I6»( 1.353/13.6))/( 91.+460.)))
ISO s ... ... ....... .. . . . .... ................................ • 99.09 PERCENT
120. * 47.05 • 30.07 • .289 • .289
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • HN * 15.43 / VMSTD
CS s 0.001 • 273.5 • 15.43 / 73.991 e .0570 GR/OSCF
-------
FIELD DATA
M
4*
CO
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART,H2SU4,SU2
OPERATOR J PROMASKA
AMBIENT TEMP.(OEG.F) 65.
BAR. PRESS. (IN. HG) 30.20
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBtR(S) 3530616
STACK INSIDE DIM. (IN) 120.00 .00
PITUT TUBE COEFF. .64
THERH. NO. 174
DATE
RUN NUMBER
06/26/02
6AM545
PROBE LENGTH I TYPE t FT HEATED GLASS
NOZZLE 1 I.D. .282
ASSUMED MOISTURE
16.0
SAMPLE BOX NUMBER
PETER BOX NUMBER
PETER HEAD OIFF.
C FACTOR
FB6
1.90
5.17
PROBE HEATER SETTING 450.
HEATER BOX SETTING «50.
LEAKAGE .000 CFM 9 6.0 IN.HG
METER CALI8. FACTOR .996
READ ft RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK CAS METER VELOCITY ORIFICE PRESSURE
POINT TIME TIME READING HEAD DIFFERENTIAL
NO. (MIN.) (24-HR (CU.FT.) (IN.H20) (IN.H20)
STACK
TEMP
(DEG.F)
DESIRED ACTUAL
INIT 0 1306 323.912
10.0 1316 332.300 .«50
20.0 1326 33S.970 .500
30.0 1336 345.660 .500
40.0 1346 352. 335 .500
50.0 1356 359.030 .500
60.0 1406 365.655 .460
70.0 1416 372.365 .500
80.0 1426 376.960 .460
90.0 1436 385.600 .460
100.0 1446 392.190 .460
110. 0 1456 398.760 .460
120.0 1506 405.321 .400
.39 1.40
.54 1.55
.55 1.55
.55 1.55
.56 1.55
.50 1.50
.56 1.55
.50 1.50
.51 1.50
.51 1.50
.51 1.50
.51 1.50
451.
«55.
451.
451.
•52.
453.
• 55.
•51.
453.
«57.
•52.
452.
REFERENCE PRESS.
DRY GAS METER PUMP
OIFF. .00
•AMPLE IMPINCER
TEMP VACUUM BOX TEMP TEMP
(DEG.F) (IN.HG) (DEG.F) (DEG.F)
IMLET OUTLET
65. 65.
67. 65.
90. 66.
92. 66.
94. 67.
95. 69.
96. 90.
97. 91.
97. 92.
96. 93.
97. 93.
97. 93.
0. *6.
• * *9.
0 74.
7«.
71.
72.
79.
•2.
83.
• 5.
• 6.
90.
TOTALS
AVERAGE
120.0
79.409
1.52
1.51 453.
94.
89.
5.4
0.
78.
-------
PARTICIPATE FIELD DATA « HESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA j PRUHASKA
TEST 8AM545
FCCU STACK
ENGLISH UNITS
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
08/26/82
1308
1508
120
12
1
.0
.998
.262 IN
.84
.51 IN-H20
METRIC UNITS
08/26/82
1308
1508
120
12
7
38
.0
.998
.2
.84
.«
MM
MM-I
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTD VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML,
VNC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
8X0 PERCENT MOISTURE BY VOLUME
FMO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.* DRY
P02 PERCENT 02 BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PERCENT N2 BY VOL., DRY
MO MOLECULAR HT-ORY STACK GAS
M*S MOLECULAR NT-STACK GAS
79.409 CU-FT
2.249 CU-M
91.5 F
76.871 SCF
285.9
13.457 SCF
14.90
.851
13.80
2.40
.00
83.80
30.30
28.47
33
Z
285
14
13
2
83
30
28
.0 C
.177 SCM
.9
.381 SCM
.90
.851
.80
.«0
.00
.80
.30
.47
-------
PB BAROMETRIC PRESSURE
P9I STATIC PRES OF STACK GAS
P3 STACK PRES* ABS.
TS AVERAGE STACK TEMP
V3 AVS STACK 6A3 VELOCITY
AS STACK AREA
033TO STACK FLOW RATE. ORV*
03 ACTUAL STACK FLOW RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.JO IN-HG
•1.20 IN-H20
30.M IN-HG
053. F
51.6 FPS
11310. 30-IN
7230088. SCFH
10601248. ACFH
96.2
90.8
.0103 CR/DSCF*
767.Oa KM-HG
•30.08 KM-H20
764.80 CM-HG '
230. C
15.7 »P3
7.297 SQ-M
200808. SCMM
413064. ACMH
96.2
90.8
01.718
I
M
*a.
LH
MN
CS
CS
FILTERABLE-160
MC. EPA 5
FILTERABLE-160
FILTEHABLE-232
MG. EPA S
FILTERABLE-2S2
90.1
.0181 GR/OSCF*
79.1
.0159 GR/OSCF*
90.1
41.396 PG/03CP
79.1
36.342
MN
CS
FILTERABLE-916
MG. EPA 5
FILTERABLE-3I6
78.2
.0157 GR/OSCF*
78.2
35.9J9 KG/03CH
* 68 DEC F, 29.92 IN.HG,
-------
EXAMPLE PARTICULATE CALCULATIONS TEST N0.6»M545
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO = (17.647 • VM • Y • (P8 » PM / 13.6)) / (TM * 460.)
17.6*7 • 79.409 • .996 * ( 30.20 «• 1.513 / 13.6)
VMSTO r — * 76.671 DSCF
( 91. » 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC a .04707 • VLC
VHC * .04707 * 266. « 13.46 SCF
PERCENT MOISTURE IN STACK GAS
BHO * (100. • VHC) / (VMSTO » VHC)
100. • 13.46
BHO = .................. = 14.90 PERCENT
76.671 * 13.46
MOLE FRACTION OF DRY STACK GAS
FMO s (100. - BHO) / 100.
100. • 14.9
FMO « -• ......... ... - .851
100.
AVERAGE MOLECULAR HEIGHT OF DRV STACK GAS
MO * (PC02 • .44) « (P02 • .32) » (PN2 « PCO) • .26
MO s (11.60*44/100) * ( 2.4*32/100) » ((83.6* .0) • 28/100 = 30.30
MOLECULAR HEIGHT OF STACK GAS
MHS = MO • (1. - (BMO/100)) » 10. • (BMU/100)
MMS = 30.30* (1. -(14.90/100)) » 18. • (14.90/100) = 28.47
-------
StACK GAS VELOCITY AT STACK CONDITIONS
DELP = SUM. OF THE 30RHVH • CTS •» 4t>0.))
VS « 65.49 • CP • DELP / OORT(HMS • PS) • PNTS)
VS e 85.49 • .84 • 252.670 / (SOBT( 28.aT • 50.11) • 12. = 51.64 FPS
STACK GAS VOLUMETRIC FLO" AT STACK CONDITIONS
05 = V3 • AS • 3600/104
OS s 51.61 • 11310. 3600/144 * 14601248. ACFH
STACK GAS VOLUMETRIC FLON AT STANOAHO CONDITIONS
03STD » 17.647 • OS • PS • (I. • (BNO/100)) / (T9 » 460.)
17.6*7 » 14601240. • 30.11 * (1. - (14.90/100))
OSSTO « — • • = 7234088. SCFM
( 453. » 460.)
PERCENT ISOKINETIC
ISO « (305.58*(T3*460.))*U0.002669*VCC)»(VM«T«(PB«(PM/13.6))/(TM»460.)))/(TT*V3*P3*DN*DN)
(305.58*( 453.*460.))t((0.002669* 286.)»( 79.409* .998*( 30.20*( I.513/13.6))/( 91.«460.)))
130 • .———..—....... ... .......... ............................................. . 96.J« PERCENT
120. • 51.64 • 30.11 • ,282 • .202
PARTICULATE LOADING -• EPA METHOD 5 (AT STANDARD CONDITIONS)
C3 » 0.001 • MN • 15.43 / VMSTD
CS : 0.001 • 90.8 • 15.43 / 76.871 = .0182 GR/D3CF
-------
FIELD DAT*
i
M
*»
00
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (OEG.F)
BAR. PRESS. (IN. HG)
STATIC PRESS. (IN. H20)
FILTER NUMBERS)
STACK INSIDE DIM. (IN)
P1TOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALI6. FACTOR
ARCOt PHILADELPHIA
FCCU STACK
PART,H2900,SO?
J PRUHASKA
65.
30.20
-1.20
3530859
120.00 .00
.84
170
.003 CFM H 6
.989
.0 IN.HG
DATE
RUN NUMBER
PROBE LENGTH I TYPE
NOZZLE i i.o.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
*ETER HEAD OIFF.
C FACTOR
PROBE HEATER SETTING
HEATER BOX SETTING
REFERENCE PRESS. OIFF.
06/26/62
6BMS45
5 FT HEATED GLASS
.311
16.0
FB2
1.77
7,15
•50.
«50.
.00
READ ft RECORD DATA EVERY 10.0 MINUTES
TRAVERSE SAMPLE CLOCK CAS METER VELOCITY
POINT TIME TIME
NO. (MIN.) (24-HR
INIT 0 1309
10.0 1319
20.0 1329
30.0 1339
40.0 1349
50.0 1359
60.0 1409
70.0 1419
ttO.O 1429
90.0 1439
100.0 1049
110.0 1059
120.0 1509
READING HEAD
(CU.FT.) (IN.M20)
617.017
625.260 .450
633.000 .500
641.580 .500
649.750 .500
657.940 .500
666.030 .460
674.280 .500
682.380 .480
690.080 .060
696.610 .060
706.650 .0«0
714.667 .480
ORIFICE
PRESSURE
STACK
DIFFERENTIAL TE*P
(IN.
DESIRED
1.93
2.13
2.10
2.15
2.16
2.08
2.16
2.09
2.09
2.09
2.09
2.09
H20)
ACTUAL
1,95
2.15
2,15
2.15
2.1$
2.10
2.15
2.10
2.10
2,10
2.10
2.10
(OEG.F)
451.
«55.
051.
051.
052,
«53.
055.
051 .
«53.
057.
«52.
«52.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP VACUUM BOX TEMP TEMP
(OEG.F) (IN.MG) (OEG.F) (OEG.F)
INLET OUTLET
65. 67. . Q
87. 67. , «
91. 67. . g
92. 67.
95. 66.
96. 90. .0
97. 91. .0
98. 92. .0
99. 93. .0
100. 94. .0
96. 94. .0 0
97. 93. .0 0
66.
69.
70.
72.
TO.
76.
T7.
77.
62.
99.
69.
90.
TOTALS
AVERAGE
120.0
97.270
2.1V
2.11 053.
95.
90.
5.6
76.
-------
PARTICULATE FIELD DATA ft RESULTS TABULATION
PLANT- NAME AND ADDRESS
ARCO, PHILADELPHIA
TEST TEAM LEADED
J PROHASKA
TEST 8BM545
FCCU STACK
VD
TEST DATt
TB
TF
TT
NP
Y
ON
CP
PM
VM
TM
VMSTO
VLC
VMC
BUG
FMD
PC02
P02
PCO
PN2
MO
MMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRV
PERCENT CO BY VOL.* ORY
PERCENT N? BY VOL.* DRV
MOLECULAR MT-DHY STACK GAS
MOLECULAR WT-3TACK GAS
ENGLISH UNIT"
Ofl/2b/82
1309
1509
120.0
12
.989
.311 IN
.84
211 f III •>! tf\
• • • 4 ™ ^DHH
97.270 CU-^
92.4 F
93.265 SCF
353.5
Ib.b39 SCF
15.14
.649
13.60
2.40
.00
83.60
30.30
26.44
METRIC UNITS
08/26/82
1309
1509
120.0
12
.989
7.9 MM
.84
53.6 MM-H20
2.754 CU-M
33.6 C
2.642 3CM
353.5
.471 SCM
15.14
.849
13.80
2.40
.00
83.60
30.30
28. 44
-------
PB BAROMETRIC PRESSURE
P9I STATIC PRES Of STACK GAS
PS STACK PRtS, A9S.
T3 AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
AS STACK AREA
033TD STACK FLOW RATEr OUT*
Q3 ACTUAL STACK FLO* RATE
130 PERCENT ISOMNETIC
MN FILTERABLE-AMBIENT
MG. tPA 5
C3 FILTERABLE-AMBIENT
10.20
-1.20
JO. 11
453.
51.7
11310.
7217512.
14608766.
96.2
ISO. 2
IN-HG
IN-H20
IN-HG
F
FPS
SU-IN
SCFH
ACFH
767.06
-30.48
764.84
234.
15.7
7.297
204378.
413677.
96.2
150.2
MM-HG
f M»H2
KM-HG
C
*PS
30-M
SC"H
*C*M
.0200 GR/OSCF*
56.666 NG/03CM
cn
o
MN
MN
C3
FILTERABLE-160
MG. EPA 5
FILTERABLE-lbO
FILTERABLE-232
MG. EPA S
FILTERABLE-232
105.4
.0174 GR/OSCF*
98.1
.0162 GR/OSCF*
109.4
39.905 *fi/03CP
37.141 K6/OSCN
MN
C3
FILTERABLE-316
MG. tPA 5
FILTERABLE-316
95.9
.0159 6R/D3CF*
95.9
36.308 NG/03C*
• 68 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.BBM5«S
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD x (17.607 * VM • Y • (PB « PM / 13.6)) / (TM »
-------
STACK GAS VtLOClTY AT STACK CONDITIONS
DELP s SUM. OF THE SQRUVH • ITS + 060.))
VS » 85.49 • CP « OELP / (SQRT(M»»3 • PS) • PNTS)
VS e 8S.99 • .84 * 358.670 / (SURTC 26.ao • 30.11) • 12. = 51.67 FPS
STACK GAS VOLUMETRIC FLO" AT STACK CONDITIONS
OS = VS • AS • 3600/1*4
OS s 51.67 • 11310. 3600/144 s 14600766. ACFM
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD 3 17.647 • OS • PS • (I. - (BNO/100)) / (TS » 460.)
17.647 • 14606788. • 30.11 • (1. • (19.14/100))
OSSTD = • — ........... 3 7217512. 3CFM
( 453. * 460.)
> PERCENT ISOKINETIC
Ln ISO = (305.58«(T3*«60.))*((0.002669«VLC)«(VM«Y«(PB*(PM/13.6))/(TM»«60.)))/(TT«VS*P3»DN«DN)
M
(305.58*( 453.»4fcO.))*((O.OOe669* 354.)»( 97.£70* ,969*( 30.20»( 2.106/13.*))/( 9Z.»460.)))
ISO = — - - ....... . n.Z« PERCENT
1?0. • SI.67 • 30.11 • .311 • .311
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN * 15.43 / VMSTD
CS = 0.001 t 150.3 » 15.43 / 93.265 = .0248 GR/OSCF
-------
FIELD DATA
O)
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TTPE PAHT/M2S04/SU2
OPERATOR DO
AMBIENT TEMP. (OEG.F) 65.
BAR. PRESS. (IN.HG) 30.20
STATIC PRESS. (IN. H2U) -1.20
FILTER NUMBER(S) 3530654
STACK INSIDE DIM. (IN) 120.00 .00
P1TUT TUBE COEFF. .64
THERM. NO.
LEAKAGE .008 CFM a 25.0 IN.HG
METER CALIB. FACTOR .967
REAU t RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY ORIFICE
POINT
NO.
INIT
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
TIME
(24-HB
ft nr v i
CLOCK |
1306
0
0
0
0
0
0
0
0
1436
READING
(CU.FT.)
514.314
522.160
530.350
536.670
546.950
555.310
563.430
571.770
579.770
565.604
HEAD
(IN.H20)
.450
.500
.500
.500
.500
.460
.500
.480
.480
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
1.93
2.13
2.14
2.15
2.16
2.08
2.16
2.09
2.09
H20)
ACTUAL
1.93
2.13
2.14
2.15
2.16
2.08
2.16
2.09
1.50
STACK
TEMP
(OEG.F)
450.
455.
451.
451.
452.
453.
455.
451.
453.
DATE 06/26/62
RUN NUMBER 6CM5
PROBE LENGTH • TTPE 5* GLASS
N022LE 1 1.0. .307
ASSUMED MOISTURE is.o
SAMPLE eoi NUMBER
METER BOX NUMBER FIO
METER HEAO*OIFF. i.ea
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS METER PUMP SAMPLE IMPINGER
TEMP
(OEG
INLET
69.
91.
94.
95.
99.
102.
103.
104.
105.
.F)
OUTLET
91.
91.
91.
91.
92.
93.
94.
95.
97.
VACUUM BOX TEMP
(IN.HG) (OCG.F)
7.J
6.1
,«
.2
.2
.1
.a o
.1 0.
20.0 0.
TEMP
(OCG.F)
66.
68.
74.
72.
761
76.
69.
66.
TOTALS
AVERAGE
90.0
71.290
2.10
2.04 452.
98.
93.
9.6
0.
72.
-------
PARTICIPATE FIELD DATA s RESULTS IAHULATIUN
PLANT* NAME AND ADDRESS TEST TEAM LEADER
APCO. PHILADELPHIA DO
TEST 8CM5
FCCU STACK
TEST DATE
T8
TF
TT
NP
Y
ON
CP
PM
VN
TK
VM3TD
VLC
VMC
BMO
FMO
PC02
P02
PCO
PN2
MD
HMS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL»ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.. DRY
PERCENT 02 BY VOL., DRV
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL.» D»Y
MOLECULAR MT-ORY STACK GAS
MOLECULAR WT-STACK GAS
ENGLISH UNITS
08/26/82
1308
1438
90.0
9
.967
.307 IN
.84
2.04 1N-H20
71.290 CU-FT
95.4 F
66.479 SCF
276.0
12.991 SCF
16.35
.817
13.80
2.40
.00
83.80
30.30
28.29
METRIC UNITS
08/26/82
1308
1438
90.0
9
.967
7.8
.84
51.8
2.019
35.2
1.882
276.0
.368
16.35
.837
13.80
2.40
.00
83.80
30.30
28.29
MM
MM-H20
CU-M
C
sen
SCM
-------
PB BAROMETRIC PRESSURE
P9I STATIC PRES OF STACK GAS
PS STACK PRESi ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
OSSTO STACK FLON RATE* ORVt
OS ACTUAL STACK FLON RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.0 IN-HG
•1.20 IN-H20
10.lt IN-HG
452. f
51.9 FPS
11310. SU-IN
7146996. SCFH
14672762. ACFM
94.7
246.2
.0571 GR/OSCF.
767.08 PM«HG
•30.46 *M-H20
TbO.Oa MM-HG
234. C
15.0 *P3
7.297 3U-M
202436. 3Ct«H
415469. ACMH
94.T
246.2
130.797 t-S/OSCH
M
cn
MN
CS
FILTERABLE-160
MG. EPA 5
FILTERABLE-160
99.4
99.4
.0231 GR/OSCF* 52.606 PG/03C*
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-Z32
86.4
86.4
.0201 Gft/OSCF* 45.901 P-G/DSO
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
65.3
.0196 GR/OSCF*
85.3
45.317
66 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTtCULATE CALCULATIONS TEST NO. BCM5
FCCU STACK
VOLUME OF DAT GAS SAMPLED AT STANDAHO CONDITIONS
VMSTD » (17.647 • VM • T t (PB « PM / 13.6)) / (TM * 4bO.)
17.647 • 71.290 • .967 * I 30.20 * 2.036 / 13.6)
VMSTD = .......................... ............. : 66.179 03CF
( 95. * 460.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VftC = .04707 • VLC
VMC « .04707 • 276. « 12.99 SCF
PERCENT MOISTURE IN STACK GAS
BNO « (100. • VNC) / (VMSTD * VNC)
100. • 12.99
BWO » = 16.35 PERCENT
fcb.479 » 12.99
MOLE FRACTION OF DRY STACK GAS
FMD e (100. - BNO) / 100.
100. • 16.3
FMD = a .837
100.
AVERAGE MOLECULAR MEIGHT OF DRY STACK GAS
MD * (PC02 • .44) » (P02 • .32) » (PN2 » PCD) * .26
MO * (13.00*44/100) » ( 2.4*32/100) + ((63.8+ .0) • 28/100 r 30.30
MOLECULAR WEIGHT OF STACK GAS
MNS s MD * (1. - (flnO/100)) » 18. * (BNO/100)
MHS * 30.30* (1. -(16.33/100)) * 18. • (16.35/100) s 28.29
-------
STACK GAS VtLUClTT AT STACK CONDITIONS
OELP a SUM. OF THE SORT(VH • (TS » 160.})
VS • 65.49 • CP « OELP / (SQRT(MNS * PS) • PNTS)
VS » 85.09 • .84 • 189.833 / (SURT( 26.29 • 30.11) • 9. s 51.89 FPS
STACK CAS VOLUMETRIC FLUN AT STACK CONDITIONS
QS r VS • AS • 3600/100
OS = 51.69 • 11310. 3600/100 ; 14672762. ACFH
STACK GAS VOLUMETRIC FLON AT STANOAHD CONDITIONS
03STD * 17.b47 • OS • PS • (I. » (BltO/100)) / (TS « 460.)
17.647 * 14672762. • 30.11 • (1. - (16.35/100))
OSSTO « — — — — B 7146996. SCFH
( 452. » 460.)
>
H PERCENT ISOKINETIC
Ui
^ ISO c (30S.58*(T3*460.))«((0.0026b9*VLC)»(VM*Y*(PB«(PM/13.6J)/(TM«460.)))/(TT*V3*PS*ON*DN)
(305.58*( 452.+«60.))*((0.002669* 276.)»( 71.290* .967*( 30.20»( 2.038/13.6))/( 95.4460.)))
130 » ..... . . ......... . ..... ... ................. B 94.73 PERCENT
90. • 51.89 • 30.11 • .307 • .307
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
C3 B 0.001 • MN • 15.43 / VM3TO
CS * 0.001 • 246.2 • 15.43 / 66.479 = .0571 GR/OSCF
-------
FIELD DATA
Ul
00
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (OEG. F)
BAR. PRESS. (IN. HG)
STATIC PRESS. (IN. H20)
FILTER NUMBERO)
STACK INSIDE DIM. (IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO,
FCCU
PHILADELPHIA
STACK
PART/H2S04/902
00
65.
30.20
-1.20
3530642
120.
00 .00
DATE
RUN NUMBER
PROBE LENGTH • TYPE
NOZZLE : 1.0.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
fETER MEAD OIFF.
08/26/62
60MS
6* 6LAS9
.283
18.0
FBI
1.65
.68 PROBE HEATER SETTING 850.
.002
.995
READ a RECORD DATA EVERY to.o
TRAVERSE SAMPLE CLOCK GAS METER
POINT TIME TIME
NO. (MIN.) (24-HR
INIT 0 1309
10.0 0
20.0 0
30.0 0
40.0 0
50.0 0
60.0 0
70.0 0
80.0 0
90.0 0
100.0 0
110.0 0
120.0 1509
READING
(CU.FT.)
860.680
867.260
874.060
860.690
887.660
894.530
901.300
906.180
915.010
921.610
928.630
935.450
942.221
CFM i 6.0 IN.HG
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TE*P
(IN.H?0) (IN.H20) (DEG.F)
DFSIRFO
.450 .40
.500 .55
.500 .56
.500 .56
.500 .56
.080 .51
.500 .57
.480 .52
.480 .52
.400 .51
.460 .52
.400 .51
ACTUAL
.40 450.
.55 455.
.56 451.
.56 451.
.56 452.
.51 453.
.57 453.
.52 451.
.52 453.
.51 457.
.52 452.
.51 452.
HEATER BOX SETTING
DRV GAS METER PUMP
TEMP VACUUM
(DEC.F) (IN.M6)
INLET OUTLET
91. 87. «.T
93. 87. 4.9
96. 67. 4.9
97. 67. 4.9
100. 68. 5.1
103. 90. 5.1
105. 91. 5.2
105. 93. 5.3
106. 93. 5.4
108. 95. 5.6
105. 95. 5.8
103. 94. 5.8
250.
SAMPLE IMPINGER
BOX TEMP TEMP
(OEC.F) (OEG.F)
0. 58.
0. 59.
0. 62.
0. 63.
•0. 66.
0. 69.
0. 71.
0. 74.
0. 81.
0. 82.
0. 86.
0. 90.
TOTALS
AVERAGE
120.0
61.541
1.52
1.52 453.
101.
91.
5.2
0.
72.
-------
PARTICIPATE FIELD DATA 6 RESULTS TABULATION
PLANT- NAML AND ADDRESS TEST TEAM LEADER
ARCOr PHILADELPHIA UO
TEST 80M5
FCCU STACK
TEST DATE
TR
TF
TT
NP
Y
DN
CP
•? PM
tn
vo „„
TM
VMSTO
VLC
VMC
8X0
FMD
PCU2
P02
PCO
PN2
MO
MNS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DRUP
VOLUME OF DRY 6*3 SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL. ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PEHCENT MOISTURE BY VOLUME
MOLE FHACTION DRY GAS
PERCENT C02 BY VOL.. DRY
PERCENT 02 BY VOL., DRV
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
08/26/62
1309
1509
120.0
12
.995
.283 IN
.64
1.52 IN-H20
81.501 CU-FT
95.8 F
78.086 SCF
321.1
15.114 SCF
16.22
.838
13.80
2.00
.00
63.00
30.30
28.31
METRIC UNITS
06/26/82
1309
1509
120.0
12
.995
7.2
.84
38.7
2.309
35.4
2.211
321.1
.428
16.22
.838
13.80
2.40
.00
83.60
30.30
26.31
*M
PM-H20
CU-M
C
SCM
SCM
-------
PB BAHOMETRIC PRESSURE
P3I STATIC PRES OF STACK GAS
PS STACK PRES, ABS.
T9 AVERAGE STACK TEMP
V9 AVG STACK GAS VELOCITY
AS STACK ARE*
USSTD STACK.FLO* RATE, DRY*
OS ACTUAL STACK FLOH RATE
ISO PERCENT I30KINETIC
MN FILTERABLE-AMBIENT
HG. EPA 5
C3 FILTERABLE-AMBIENT
30.20 IN-HG
-1.20 IN-H20
3o.il IN-HG
«5J. f
51.8 FPS
11310. SO-IN
7143356. SCFH
14641032. ACFH
90.3
229.8
.0454 GN/OSCF*
767.08 KM-HG
-30.48 CM-H20
764.84 >»M-HG
834. C
15.8 PPS
7.297 SQ-H
802276. 3CMH
414590. *C»M
98.3
229.8
103.937
MN
S CS
FILTEP.ABLE-160
MG. EPA 5
FlLTERABLE-lbO
119.3
.0236 CR/OSCF.
119.3
53.959 KG/DSC*
MN
cs
FILTERABL6-232
MG. EPA 5
FILTERABLE-232
96.8
96.8
.0191 GR/OSCF* 43.782 MG/DSCP
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
96.3
96.3
.0190 GR/03CF* 43.556
* 68 OEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NU. BOMS
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO * (17.647 • VM • T • (PB * PM / 13.6)) / (TM * abO.)
17.647 • 81.541 • .995 • ( 30.20 « 1.524 / 13.6)
VMSTD * .. — . — .—.- — -.. —.-..........._-.. — ......-. . a 78.086 DSCF
( 96. » ObO.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VMC » .00707 • VLC
VMC » .04707 • 331. • IS.11 3CF
PERCENT MOISTURE IN STACK GAS
> OHO • (100. • VMC) / (VMSTD * VMC)
I
£ 100. • IS.11
I-. BNO « — — .——..-.-. 16.22 PERCENT
76.086 » 15.11
MOLE FRACTION OF DRV STACK GAS
FMD « (100. • BMO) / 100.
100. • 16.2
FMD » —————. ——— : .838
100.
AVERAGE MOLECULAR NEICHT OF DRY STACK GAS
MO » (PC02 • .««) * (POZ • .32) » (PN2 * PCO) • .28
MO c (1J.BO*44/10Q) » ( 2.4*32/100) » ((83.B* .0) • 28/100 = 30.30
MOLECULAR HEIGHT OF STACK GAS
MHS = MO • (1. - (BffO/100)) * 18. » (BMO/100)
MNS = 50.30* (I. -(16.22/100)) » la. * (16.22/100) = 28.31
-------
STACK GAS VELOCITY »T STACK CONDITIONS
DELP 3 SUM. OF THE SQRT(VH • (TS « 0.))
VS » aS.09 * CP * DELP / OORT(HMS • PS) * PNTS)
VS « 85.09 • .BO • 252.635 / (SORT( 26.31 * 30.11) • 12. = 51.78 FPS
STACK GAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS * VS • AS * 3600/140
OS * 51.70 » 11310. 3bOO/l«0 * 10641032. ACFH
STACK GAS VOLUMETRIC FLUN AT STANDARD CONDITIONS
033TD » 17.607 • OS • PS * (1. - (BNO/100)) / (TS » 460.)
17.647 * 14641032. • 30.11 * (1. - (16.22/100))
OSSTO « » 7143356. SCFH
I 453. * 460.)
H PERCENT ISOKINET1C
Ol
M ISO « (305.58*(T9«460.))*((0.002669*VLC)«(VM*r*(PB«(PM/l3.6))/(TM+460.)))/(TT*VS*PS*ON*DN)
(305.56*( 453.*460.))M(0.002669* 321.)»( 61.541* .99S*( 30.20»( 1.524/13.6))/( «6.*460.)))
ISO « . . . • 98.20 PERCENT
120. * 51.78 * 30.11 * .283 • .283
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS > 0.001 • MN • 15.43 / VMSTO
CS « 0.001 • 229.8 * 15.43 / 76.086 = .0454 GR/DSCF
-------
• ItLW L4.
.4c!
.4d
.4
-------
Ht.LU
o>
PLANT- NAVt ANU AUKKLSj
AHLtl, PHILADELPHIA
IEST
IEST DATt
IB
IF
1 T
NP
Y
FCLU S
IP
PI*
VLC
HMO
PCU2
POi
PCO
PNtf
Ml)
Ntl TIME Of- ItST, KIH.
NET SAMPLING POINTS
METEK CALIBRATION
SAMPLING NUf*Ll
PHUT TUuE COEFFICIENT
AVtHAGb UU1F1CL PhtSbUWE
VULUMt OF UM l)Ab
AT
AVLRAlit GAS KEttW IEMP
VOLUME OF L/WT uAb SANiPLtL)
AT siANUARI> tuuui
TOTAL H2U LULLLCIEU
ANU
> 1A|,ULAI|I|\
1 1. o T Tl^ LbAUtU
J I'MUMASKA
tUGLlbH UMTS
VULUME OF rtAlEW VAPOK
Al SIANUAHU LOl'.Dl T10KS*
PEKCL^T MOlSIUWt 01 VULUMt
MULE FKALTION (1*1 GAb
PEhCkM Hid bY VUL.p LIWY
PEKCtNT u2 HT VOL.»
PtKCtNT LU MY VOL.>
PEhCtNl Ui> DT VUL.f
MOLtLOtAK ftl-U^Y blALK I. AS
HlitKCULAk nl-blACK GAS
1 1 Id
110.0
11
.04
1.40 It
7U.C45 CU-FI
77.b F
b4.bbV SCF
31 7.9
J>CK
I7./0
.Bii
13. bO
4.<«0
.00
iu.i'l
e!«.l 7
ME rwic UM is
1 1 10
1 10.U
11
7.1
35.7
tU-M
^S.3 C
1.470 SCK
317.-*
.4£4 SCC
17.70
13. bO
«.40
.00
02.00
dS.17
-------
HB
PS1
PS
IS
VS
AS
I1SOTU
US
ISO
MN
tS
ItAKIJMblHIC fht
bTATlC Pktii UF STACK t.Ab
bTAO HWtS, AHj.
AVtWA(;t MAC* ItdH
AVb bTACK (,Ab VtLULIIY
aTACiv FLUN WATt. I)KY«
ACTUAL STACK FLUn «Alt
PEHCtNT ISUKlNtTIC
F iLTbHAHLE-AMrtlbNT
HG. tfA ^
ULltKABLE-AMHlEM
10. Id
30.03
9s. s
l^-h«;u
bCFh
ACFH
SU-M
ACKH
97.0
GH/USCF*
S
cs
F iLTtWAHLE-lbO
MG. tPA b
FlLTbRABLE-lbU
90.5
90.b
45.944
CS
MG. fcPA
79.b
.0177 G
79.8
fb/OSC»>
FlLTt«ABLE-31b
Mb. tPA b
77.1
77.1
.0171 GK/USCF* 39.141
• 68 Utb F, iV.Vf IN.HG.
-------
t*AMHLt PAHIlLULAlt t AL L UL A I 1 Ufc3 ItbT IVU.
I-CCU STALK
VuLUMt UF UKY GAS SAKMLLl) Al JTANUAhl) CUNUllIUM)
VHSIU = (17.b«7 • V* • Y • (fa + HN / 13. b) ) / (TM * «bU.)
17.647 • 7U.£4!> • .SStt • ( 30.1c> » 1.105 / IJ.b)
VMS1D = — — -- ---------- - --- -- — . ---- . ---- .. ---- --- ----- ----- = tV.<3bV USCF-
I 77. «
-------
S1ACK (,A:i VLLUC|T> Al SULK LUNU I I I UN Ji
DtLP = SUM. UK 1HI bUHllVH • (T5 « UbU.J)
Vb = US.4«* • CP • ULLH / (SukUMVlb • PS) • PM!>)
V!> = ub.4<* • .01 * cM-4.nl>-.> / ISUKl ( c!b.l7 • iU
SIACK GAS VULUMtlxlt I-LUK Al bTACr,
US = VS • Aa * 3600/1 <4U
lii» = ««.!<< • 115IU. JeUU/iaa = 13b240U4. ACf H
SIACK GAS VuLUPtThIL FLUW AI STANUAKU CUNUIlluNS
OSS1U ~ 17.b«7 * US • PS • (I. - IHNU/1UOJ) / (IS « 4bU.)
17.647 • 13b«!aU4il. • 30.03 * (I. - (17.7U/1UUJJ
HSS10 = ---- •--- ---- - — - — — — — — — — ........... --- ... s b55UObr. SCFH
I n't?. » «bO.)
PERCENT ISUKlNETIC
ISO s (30b.b««(lSt«loU.))*l(U.«««!«>b9«WLC ) « m • T • iHb* IPKX I J.b ) ) / ( TM*
-------
UATA
PLANT
SAMPL
UAlE
LULAI|UN
TPt
1-tLII SULK
UPLHAIUM
STATIC PPtSb. I iM.Ht-u)
FlLTfcH NUMBbHlb)
SIACK IhiSlUb UlK.lKv)
HITuT Tobk LULFF.
1HEKM. NU.
LbAKAbE
CALIH. fACTuH
PAKT,1
J PKuHASKA
70.
-I'.iO
lr?O.IIO
.84
174
.Old CFM o>
.984
.00
8.0 IN.H&
PHUbt LbMjTh a 1 YHE
NUllLb : l.L).
AbSU^bU PUISrOb
SACPLb BOX NUKUbH
KbTbH HtAll UlK- .
C FALlLh
PHUbt htATEM itrilMt
MtAtbN bOX bblTlNb
HEFbHbltCb PHbbS. UIFF.
9HM58
•3 FT HEAlbU bLAbb
18.0
FB«J
1.77
.00
KtAi/ 6 KfcCPKU UATA tVt»Y 10. U
00
THAVEHSb SAMPLt
HU1NI TIME
NU. (HlN.)
1NIT 0
10.0
£0.0
50.0
40.0
bO.O
bO.O
70.0
80.0
40.0
100.0
1 10.0
CLUCK
1 1Mb
r i nr • i
t LUL^ J
424
439
949
454
1009
1 014
1044
1034
1049
1054
1 1 04
1114
GAS MbTtW
HEADlNb
tCU.F t.)
715.400
7d2. 150
7^8.040
735.790
742.750
749.505
756.255
763.010
769. 7«9
776.600
783.170
764.914
VELOCITY UMFlCb PXbbbUKE bTACK UHT liAb fETtH PUMP SA^PLb IMPlNUbH
HbAU UIFFbHbNIlAL IbCH IbMP VACUUM BOX TEMP TbMP
(IN.h2(j) (IN.HdU) (Utb.F) (UEti.F) (^.HG) lUEG.F) (DEIi.FJ
OEblHtU ACTUAL INLbT CUTLtl
.420 .46 .45 446. 73. 74. 8.0 U. 57.
.4*0 .47 .45 446. 74. 74. 7.5 0. 62.
.4bO .57 .bS 450. 77. 74. 8.0 0. 63.
.450 .57 .55 445. 80. 75. 8.0 (i . 65.
.440 .47 .45 448. 81. 75. 7.5 b. 66.
.4*0 .47 .45 447. 84. 76. 7.5 0. 68.
.4*0 .47 .45 447. 85. 77. 7.5 0. 69.
.420 .47 .45 450. 84. 78. 7.5 0. 70.
.400 .41 .40 446. 85. 79. 7.5 0. 71.
.400 .41 .40 447. 86. 80. 7.5 0. 72.
.400 .41 .40 446. 07. 81. 7.5 U. 69.
TOTALS
110.0
74.514
1.47
1.45 447.
81.
77.
7.6
0.
66,
-------
PARI 1LULATL FltLU IIATA A
PIAMI- NAMt ANU AUUHtSj
ANLUf PhlLAUtLPHIA
lEbT
TEbT DATt
IH
TF
IT
KCCO
'ollLtb IA|tU|_Allult
ItbT UAK
J PUUHASKA
ENGLISH UNllS
Y
UK
LP
If
VCbTu
VLL
tthU
PCU
KD
I IME-STAMT
TIME-F IN1SI1
NET TIME UH ItoT, MlN.
NET SAMPLING PUlNTb
METEN LALIDHAUUN FAL'TUR
iAMPLliMb NuZ/Lt IMAMtTtH
PITUT TUBE COEFFICIENT
AVtKAGt U»lFJCt
DM UP
VOLUME UF UHY bAb' SAMPLlU
AT MtTbH CUMlI I lUNb
AVtRAGk bAS METEM 1EPP
VOLUMt I)F OKI (,Ab bAMPLEU
AT SIANUAMu CUi«UlTlUNS*
10TAL H2U LOLLtCTEU IN
IMPlNbLHb ANu blLllA GbLffL.
VOLUMt UF nAIEh vAPUk
AT SIANlJAUO CCi-.01 THINS*
PEHCtNT MUISIUKE UV VOLUME
MULE FWACTIUI. UHY bAb
PEHCEM LUd bV VUL., OKY
PEHCbNT 08 HY VOL.f
PEMCENT CO HY VOL.,
PLKCtM Nf HT VOL.,
MIlLtLULAK nt-UKY STACK GAS
•il-S1«LK bftS
1114
1 10.0
I 1
.989
.b«
1.15 IN-HiO
7a.bl«4 CU-FT
7b.9 F
7
-------
PH
PSI
PS
IS
VS
AS
USJsTU
US
1SU
KN
UAWtlHt 1 HIC. t'ht-.iSUht iU.Ir1 !N-ll(j 7bb.O
STATIC »'KE5> uF StALK GfeS -l.cMI U-HdU -3U.4
STACK HUtbf ABb. 30.05 IN-hb 7b(!.tt
AVtHAbt STACK ItcH 447. h c! 3 1 .
AVU OTACK i,As I/FLOLIIY un.o I-PS 14. b
STACK AHtA 11310. SU-1N 7.^
STACK FLUM WATt* DKY* ub3*<44b. SCFH IBttOO*).
ACTUAL STALK FuUn hATt t35(S3b*b. ACFH 304646.
PEHCtNT 1SUK1M.T1C 97.0 97. «
F [LTtHABlF.-AMHlENT 174.4 174.4
tS
MG. tPA b
FlLTLHABLE-AMBLtftT
SU-M
.03t>9 GH/uSCF*
MG. tPA b
9«».7
CS
GM/USCF*
4tt.^bS
Mb. LPA b
CS
F lLTEKAHLt-316
Mb. LPA b
81.0
ttl.O
CS
FlLTtRABLE-Mb
.0171 UK/USCF*
39.21b
* 68 L»tG F, 89.va IN.Mb.
-------
'Lt HAk I IUJLA It- C AL LUL A I I IJNb 1 1 :> T l\u.
(-CLU STALK
of UMY UAS SufPLtl) Al STAMIAKl)
VHSTU = (17.647 • Mr. * r t (fu « t>V / IJ.oJJ / (TM « IbO.J
* 7«.b|4 * .S6S * ( 50. Id * 1.4b5 / 13. b)
- — -- --- ..... ---- - ---- - ----------- -
I 7«*. * IbO.)
VMS1U =
USCF
VULUMt UF WATkK VAPUK AT bTANUAHO
VnC = ,ua7U/ • VLL
VhC = .00707 » 5u3. = 14. £5 SCF
PtRttNT MUISTUKb IN STACK GAS
R«0 = (100. • VwCJ / tVKSIO * VMCJ
IUO. • 14.25
» l«*.^b
= lb.34
MULk FHACTIUN OF U^K STACK GAS
FMI) = (100. - BnUJ / 10U.
IUO. - lo.j
— . — — — — . — —
10U.
FMU =
,u37
MOLtCULAR NtlbHI UF UHY STACK GAS
HU = (PLOd * .44) + (HOd * . 3
-------
S1ACK (,«S VtLUtltr At SULK CdNU I I I
MtLH = bllM. Uh 1HL blJHllVh • ITS »
Vh = tiS.<4«* • Lf • li / ISuwH 2B.3J • ju.w'j • ii
SUCK bAS VuLUMtTkIL KLun Al bTACK LOMD1 1 KINS
IJ5 = VS • Ab * 5bUU/la«
(Ji, = UA.U4 * IlilO. 3bUU/104 =
SIACK GAS VuLU*bTKIt I-LUA AT bTA^U»K(l
QbSTU = 17.b*( 1 ,a55/ 1 J.b J ) / ( 79.*97 * .
LU«UI«G -- LPA ^tlHUU 5 (AT STAhUAhu CONOITIUNSJ
Cb = U.U01 * PN * li.al / VMbID
Cb = u.OOl • 1/o.u • li.<(3 / /if.Sa9 = ,03b«» Uk/ltSCF
-------
FIELD DATA
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART/H2S04/S02
OPERATOR DO
AMBIENT TEMP. (DEC. F) 70.
BAR. PRESS. (IN. HG) 30.12
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBERIS) 3530656
STACK INSIDE UIM.(IN) 120.00 .00
PIT0T TUBE COEFF. .64
THERM. NO.
LEAKA&E .002 CFM 4 6.0 IN.MG
METER CALIB. FACTOR .967
READ ft RECORD DATA
TRAVERSE
POINT
NO.
1NIT
OTAL3
VERAGE
SAMPLE
TIME
(MIN.)
0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
110.0
CLOCK
TIME
(24-HR
^ i fir ic i
ELUIK /
926
0
0
0
0
0
0
0
0
0
0
1116
EVERY 10.0
GAS METER
READING
(CU.FT.)
585.966
592.660
599.730
607.000
614.240
621.230
628.190
635.240
642.260
649.210
656.150
663.128
77.162
MINUTES
VELOCITY
HEAD
(IN.H2U)
.420
.420
.450
.450
.420
.420
.420
.420
.400
.400
.400
ORIFICE
PRESSURE
DIFFERENTIAL
(IN.
DESIRED
1.56
1.56
.67
.69
.58
.58
.59
.58
.52
.52
.53
1.58
H20)
ACTUAL
.56
.56
.67
.69
.56
.58
.59
.58
.52
.52
.53
1.58
STACK
TE*P
(DEG.F)
446.
446.
450.
445.
448.
447.
447.
«50.
446.
447.
446.
447.
DATE 06/27/82
RUN NUMBER 9CM5»
PROBE LENGTH 4 TYPE 5* GLASS
NOZZLE > I.D. .296
ASSUMED MOISTURE te.o
SAMPLE BOX NUMBER
PETER BOX NUMBER MO
METER HEAD OIFF. 1.94
PROBE HEATER SETTING 250.
HEATER BOX SETTING 250.
DRY GAS METER
TEMP
(DEG.F)
INLET OUTLET
75. 76.
75. 75.
81. 75.
65. 77.
87. 77.
69. 79.
89. 80.
91. 61.
92. 62.
93. 63.
94. 64.
86. 79.
PUMP
VACUUM
(IN.MG)
5.
5.
6.
6.
6.
6.
6.
6.
6.
7.2
7.2
6.7
•AMPLE
BOX TEMP
(PE6.F)
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
IMPIN6ER
TEMP
(OE6.F)
96.
58.
59.
59.
63.
64.
65.
65.
69.
74.
71.
64.
-------
PARTICIPATE FIELD DATA 5 RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA DO
TEST 9CM5*
FCCU STACK
ENGLISH UNITS
TEST
TB
TF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
08/27/82
928
1118
110
11
1
.0
.967
.298 IN
.84
.58 IN-H20
METRIC UNITS
08/27/62
928
1118
110
11
7
40
.0
.967
.6
.84
.1
I'M
t»M-l
DROP
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL,ML.
VMC VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
8X0 PERCENT MOISTURE BY VOLUME
FMD MOLE FRACTION DRY GAS
PC02 PERCENT C02 8V VOL., DRY
P02 PERCENT 0? BY VOL., DRY
PCO PERCENT CO BY VOL., DRY
PN2 PEHCENT N2 BY VOL., DRY
MD MOLECULAR NT-DRY STACK GAS
MHS MOLECULAR NT-STACK GAS
77.162 CU-FT
82.7 F
73.358 SCF
317.6
14.949 SCF
2.185 CU-M
28.2 C
2.077 SCM
317.6
.423 SCM
16.93
.831
13.60
4.40
.00
82.00
30.35
28.26
16.93
.831
13.60
4.40
.00
82.00
30.35
28.26
-------
>
I-1
-o
PB bANOMEIRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRE3. AB3.
TS AVERAGE STACK TEMP
VS AV6 STACK GAS VELOCITY
A3 STACK ARE*
OS3TO STACK FLOM RATE. DRY*
OS ACTUAL STACK FLO* RATC
ISO PERCENT ISOKINETIC
• 68 OEG f, 29.92 IN.HG.
30.12 IN-HG
-1.20 IN-M30
30.03 IN-HG
007. F
08.1 FPS
11310. SO-IN
6601193. SCFM
13601020.
96.3
ACFM
765.05 HM-MG
-30.08 *
762.81 MM-HG
231. C
14.7 fP3
7.297 SQ-M
186926. 9CMH
385140. AC*H
98.3
-------
EXAMPLE PARTICULATE CALCULATIONS TEST NO.
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO = (17.647 • VM • Y • (Pfl 4 PM / 13.6)) / (TH 4 460.)
17.647 • 77.162 • .967 * ( 30.12 4 1.580 / 13.6)
VHSTD * .. — ——— -..--- — — ... — .-. — ........... --- ....... a 73.358 OSCF
( US. 4 4bO.)
VOLUME OF HATER VAPOR AT STANDARD CONDITIONS
VMC « .04707 • VLC
VNC « .04707 • 316. s 14.95 SCF
PERCENT MOISTURE IN STACK GAS
> BMO * (100. • VMC) / (VMSTO + VtlC)
I
J~J 100. • 14.95
^ BNO » .. — .—....—. ———.— s 16.93 PERCENT
73.358 4 14.95
MOLE FRACTION OF DRY STACK 6A3
FMD > (100. - BNO) / 100.
100. > 16.9
FMD » ---- - --- - ------ — — — r .831
100.
AVERAGE MOLECULAR WEIGHT OF CRY STACK GAS
MO * (PC02 * .44) 4 (P02 • .32) 4 (PN2 «• PCO) • .26
MO * (13.60*44/100) * ( 4.4*32/100) » ((82.04 .0) « 28/100 = 30.35
MOLECULAR MEIbHT OF STACK GAS
MHS = MO • 11. - (9*0/100)) 4 16. • (BNO/100)
MnS = 30.35* (1. -(16.93/100)) 4 18. • (16.93/100) * 28.26
-------
STACK GAS VELUC1TT AT STACK CONDITIONS
DELP « SUM. OF THE SORTIVH « (TS « 460.))
V3 « 85.49 • CP • OELP / ISQRTfMWS * PS) • PUTS)
VS • 65.99 * .84 * 214.665 / (SORTt 28.26 • 30.03) * 11. * U6.10 FPS
STACK GAS VOLUMETRIC FLOM AT STACK CONDITIONS
OS a VS • AS • 3600/144
OS = 40.10 • 11310. 3600/144 a 13601020. ACFH
STACK GAS VOLUMETRIC FLOM AT STANDARD CONDITIONS
OSSTD ' 17.647 • OS • PS • (1. » (8*0/100)) / (TS * 460.)
17.647 * 13601020. • 30.03 • (1. - (16.93/100))
OSSTO « — —.— — ——.— . ........... a 6601193. SCFH
I aar. » 460.)
>
M PERCENT I90KINETIC
^J
^ ISO * (305.58*(T9«460.))*((0.002669*VLC)+(VM*r*(PB+(PM/13.6))/(TM*460.)))/(TT*V3*PS*ON*DN)
(305.58*( 447.*460.))*((0.002669* 31$.)»( 77.162* .967*( 30.12+( 1.960/13.6))/( 83.«460.))>
ISO • • —... ....... .. ....................... .. .... • 98.30 PERCENT
110. • 48.10 • 30.03 • .298 • .298
PARTICIPATE LOADING " EPA METHOD 5 (AT STANDARD CONDITIONS)
CS ° 0.001 • MN • 15.43 / VMSTD
CS * 0.001 • O.OOOOE'OO • 15.43 / 73.358 c O.OOOOE+00 GR/DSCF
-------
FIELD DAT*
00
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEG
BAR. PRESS. (IN.HG)
STATIC PRESS. (IN.
FILTER NUMBERO)
STACK INSIDE DIM.
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
ARCO.
FCCU
PHILADELPHIA
STACK
PART/H23U4/S02
00
.F) 70.
30.12
H20) -1.20
3530643
(IN) 120.
.80
.002
00 .00
DATE
RUN NUMBER
PROBE LENGTH ft TYPE
NOZZLE I I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
METER BOX NUMBER
METER HEAD OIFF.
08/27/82
9DM5K
6* GLASS
.289
ta.o
FBI
1.85
PROBE HEATER SETTING 250.
CFM d 5.0 IN.HG
HEATER BOX SETTING
250.
METER CALIB. FACTOR .995
BEAU & RECORD DATA EVERY 10.0
TRAVERSE SAMPLE CLOCK
POINT TIME TIME
NO. (MIN.) (24-HR
ft fir* v
CLOCK
INIT 0 929
10.0 0
20.0 0
30.0 0
40.0 0
50.0 0
60.0 0
70.0 0
80.0 0
90.0 0
100.0 0
110.0 1119
OTALS 110.0
GAS METER
READING
(CU.FT.)
«
1
942.454
948.800
955.230
961.800
968.530
974.940
981.410
987.880
994.300
.700
7.060
13.478
71.024
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
HEAD DIFFERENTIAL TEfP
(IN.H20) (IN.H20) (DEG.F)
DESIRED
.420 .39
.420 .39
.450 .49
.450 .50
.420 .40
.420 .41
.420 .41
.420 .41
.400 .35
.400 .35
.400 .36
ACTUAL
.39 446.
.39 446.
.49 450.
.50 445.
.40 448.
.41 447.
.41 447.
.41 450.
.35 446.
.35 447.
.36 046.
DRY GAS METER PUMP
TEMP VACUUM
(OEG.F) (IN.HG)
INLET OUTLET
75. 71. 3
77. 71. 3
83. 72. 7
87. 73. 8
89. 75. 7
91. 75. 8
92. 77. 8
93. 77. 0
94. 79. 0
95. 79. 1
96. 81. 2
•AMPLE IMPIN6ER
BOX TEMP TEMP
(OEG.F) (OEG.F)
0. 59.
0. 62.
0. 62.
0. 62.
0. 62.
0. 42.
0. 44.
0. 46.
0. 68.
0. 68.
0. 68.
AVERAGE
1.41
1.41 447.
88.
75.
3,8
*4.
-------
PARTICIPATE FIELD DATA 5 RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA DO
TEST 9DM5K
FCCU STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
1 PM
H
vo
VM
TM
VMSTO
VLC
VMC
exo
FMO
PC02
P02
PCO
PN2
MO
MHS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF NATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL.. DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
ENGL
ISH UNITS
08/27/82
929
1119
110
It
1
71
61
69
307
la
17
13
4
82
30
26
.0
.995
.269 IN
.84
.41 IN-H20
.024 CU-FT
.9 F
.553 SCF
.7
.463 SCF
.23
.628
.60
.40
.00
.00
.35
.22
METRIC UNITS
08/27/82
929
1 1 19
110,
11
7,
35,
2,
27,
1,
307,
1
17,
4
13.
4,
1
62,
30,
26,
.0
.995
,3
.64
.7
.011
,7
,970
,7
.410
,23
,626
,60
,40
,00
,00
,35
,22
HM
MM-H20
CU-M
C
SCM
SCM
-------
PB BAHOMETRIC PRESSURE
PSI STATIC PRES Or STACK GAS
PS STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
AS STACK AREA
QSSTD STACK FLOW RATEr OHT*
US ACTUAL STACK FLO* RATE
ISO PERCENT 1SOK1KETIC
* 68 DEC f, 29.92 IN.HG.
30.12 JN-HG
•1.20 IN-H20
30.03 1N-MG
447. F
06.1 FPS
11J10. SO-IN
b561292. SCFH
13610122.
99.4
ACFH
765.05 fM-HG
-30.08 *
762.81 P
231. C
14.7
7.297 90-M
186362. SCKH
J85398. »CKM
99.4
00
O
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO. 9DMSM
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTD a (17.647 • VM • Y • (PB « PM / 13.6)) / (TH * 160.)
17.647 • 71.024 • .995 • ( 30.12 » 1.405 / 13.6)
VMSTD a — ------ - -------------- - ----------------------------- « 69.553 OSCF
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VHC a .04707 • VLC
VHC * .04707 • 90S. = 14. 4B SCF
PERCENT MOISTURE IN STACK GAS
BMO • (100. • VNC) / (VMSTD * VNC)
100. • 14. OB
—— —
69.553 » 14.40
2 BHO « ————— —— ---- .... = 17.23 PERCENT
MOLE FRACTION OF DRY STACK GAS
FMO a (100. - BMO) / 100.
100. > 17.2
FMD e ——.—.— — .-. i .828
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MD c (PC02 • .44) » (P02 « .32) » (PN2 » PCO) • .20
MO = (13.60*44/100) » ( 4.4*32/100) » ((88.0* .0) • 28/100 = 30.35
MOLECULAR HEIGHT OF STACK GAS
MUS s MO • (1. - (BNO/100)) » 18. • (BNO/100)
MMS • 30.35* (1. -(17.23/100)) » 18. • (17.23/100) * 28.22
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP t SUM. OF THE SORT(VM • (TS » 460.))
V3 » 85.49 • CP • OEUP / (SURT(M*S • PS) • PNTS)
VS * 85.09 • .64 • 814.665 / (SORTC 8b.88 • 30.03) * 11. = 46.la FPS
STACK CAS VOLUMETRIC FLON AT STACK CONDITIONS
OS * VS • AS * 3600/144
OS * 48.14 • 11310. 3600/144 s 13610188. ACFH
STACK GAS VULUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD * 17.647 • OS • PS • (1. • (BMO/100)) / (TS * 460.)
IT.647 • 13610188. • 30.03 • (1. - (17.83/100))
OSS10 a —---—.................... .................... 3 6581298. 3CFH
( 447. * 460.)
>
M PERCENT ISOKINETIC
00
M ISO * (J05.S8*(TS»460.))*l(0.008669*VLC)«(VM»Y*(PB*(PM/13.6))/(TM»460.)))/(TT*VS«P8«DN*DN)
(305.58M 447.»460.))*((0.00866** 308.)*( 71.084* ,99S*( 30.18+( 1 . 405/13.6))/( 88.««60.)>)
130 • ..... . — — .. — — -—- n 99.40 PERCENT
110. • 48.14 • 30.03 • .889 • .889
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 • MN • 15.43 / VMSTD
CS = 0.001 • O.OOOOE«00 * IS.43 / 69.553 « O.OOOOE*00 GR/DSCF
-------
FIELD DAT*
OO
U)
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP. (DEC. F)
BAR. PRESS. (IN. HG)
STATIC PRESS. (IN. H20)
FILTER NUMBER(S)
STACK INSIDE DIM. (IN)
P1TOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO.
FCCU
PHILADELPHIA
STACK
PART,H2S04
,30?
DATE
RUN NUMBER
08/27/82
10AM54
PROBE LENGTH • TYPE
J PRUHASKA
80.
30.09
-1.20
NOZZLE
I 1.0.
6 FT
HEATED GLASS
.282
ASSUMED MOISTURE
3530879
BEAD • RECORD DATA EVERT
120.
.64
174
.004
.998
10.0
TRAVERSE SAMPLE CLOCK CAS METER
POINT
NO.
INIT
TIME TIME
(MIN.) (24-HR
PI rtn/ t
tuuc* 9
0 1332
10. 0 1342
20.0 1352
30.0 1402
40.0 1412
SO.O 1422
60.0 1432
70.0 1442
80.0 1452
90.0 1502
100.0 1512
110.0 1522
120.0 1532
READING
(CD.
«7b
482
486
495
501
508
514
521
527
534
541
547
554
FT.)
.153
.565
.930
.315
.700
.250
.640
.0)0
.660
.400
.090
.900
.713
00
.00
SAMPLE BOX
METER BO*
METER HEAD
C FACTOR
NUMBER
NUMBER
OIFF.
PROBE HEATER SETTING
CFM
a 10.0 IN.HG
HEATER BOX
REFERENCE
SETTING
PRESS. OIFF.
18.0
F88
1.90
5.17
450.
450.
.00
MINUTES
VELOCITY ORIFICE
PRESSURE STACK
MEAD DIFFERENTIAL TE*P
(IN.
H20) (IN.H20) (DEG.F)
DESIRED
.450 .38
.450 .38
.450 .39
.050 .39
.480 .49
.450 .40
.450 .40
.480 .49
.480 .49
.500 .55
.500 .55
.500 .55
ACTUAL
.40 448.
.40 448.
.40 452.
.40 450.
.50 451.
.40 453.
.40 449.
.50 453.
.50 452.
.55 450.
.55 454.
.55 450.
DRY GAS METER
TEMP
(OEG.F)
INLET OUTLET
01. «1.
83. 81.
85. 81.
87. 82.
88. 83.
89. 83.
89. 84.
89. 84.
89. 85.
89. 85.
89. 85.
90. 85.
PUMP SAMPLE
VACUUM BOX
(IN.HG) (DEC
6.
5,
5.
6.
7.
7.
e.o
a. 5
9.0
10.0
10.9
10.0
TEMP
•
0
0
0
0
0
0
0
0
0
0
0
0
F)
•
•
•
•
•
•
•
t
•
•
*
•
IMPINGER
TEMP
(DEG.F)
57.
60.
61.
62.
62.
64.
69.
70.
71.
78.
77.
76.
TOTALS
AVERAGE
120.0
78.560
1.45
1.46 451.
87.
83.
7.8
67.
-------
PARTICULATE FIELD DATA « RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCOr PHILADELPHIA J PROHA9KA
TEST 10AM54
FCCU STACK
TEST DATE
TB
TF
TT
NP
Y
ON
CP
E ""
00
** VM
TM
VMSTD
VLC
VMC
BMO
FMD
PC02
P02
PCO
PN2
MO
MXS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRV GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRV GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRY
MOLECULAR WT-DRY STACK CAS
MOLECULAR HIT-STACK GAS
ENGLISH UNITS
OB/27/B2
1332
1532
120.0
12
.998
.292 IN
.84
1.46 IN-H20
78.560 CU-FT
85.3 F
76.621 SCF
311.1
14.643 SCF
16.05
.800
13.80
4.20
.00
82. 00
30.38
28. 39
METRIC UNITS
08/27/82
1332
1532
120.0
12
.998
7.2 MM
.84
37.1 MM-H20
2.225 CU-M
29.6 C
2.170 SCN
311.1
.415 SO
16.05
.840
13.80
4.20
.00
82.00
30.38
28.39
-------
PB BAROMETRIC PKISSUBE
PSI STATIC PRES OF STACK GAS
P3 STACK PRES, ABS.
TS AVERAGE STACK TEMP
VS AVG STACK GAS VELOCITY
A9 STACK AREA
OSSTO STACK FLO* RATE. CRT*
gS ACTUAL STACK FLO* RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.09 1M-H6
-1.20 1N-H20
30.00 IN-HG
451. r
50.9 FPS
11310. SO-IN
7022679. SCFH
IQ390992. ACFM
9s.e
153.9
.0310 GR/DSCF*
7J>4.29 *M-HG
-30.08 *M-M20
7b2.0Q PM-HG
233. C
15.5 »P3
7.297 30-M
190867. SCMH
407510. ACMH
98.8
153.9
70.939 VG/DSC*
00
Ul
MN
CS
FILTERABLE-160
MG. EPA 5
FILTERABLE-160
143.1
143.1
.0286 GH/OSCF* 65.961
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-2J2
125.4
12$.4
.0253 GR/OSCF* 57.802
MN
CS
FILTERABLE»316
MG. EPA S
FILTERABLE-316
100.1
.0202 GR/OSCF*
100.1
46.141
* 66 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NO.IOAMSQ
FCCU STACK
VOLUME Of DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO » (17.647 * VM • Y • (PB « PM / 13.6)) / CTM » 460.)
17.647 • 76.560 • .996 • ( 30.09 » 1.462 / 13.6)
VMSTO » — — —... —........................... ... . i 76.621 OSCF
( 85. » 460.)
VOLUME OF NATE" VAPOR AT STANDARD CONDITIONS
VNC » .04707 • VLC
VNC 3 .04707 • 311. > 14.64 3CF
PERCENT MOISTURE IN STACK GAS
£, BHO = (100. • VNC) / (VMSTD » VMC)
I
>-> 100. • 14.64
8NO » • —- s 16.05 PERCENT
76.621 » 14.64
MOLE FRACTION OF DRY STACK GAS
FMD » (100. - 8NO) / 100.
100. > 16.0
FMD « —-——————— • .840
too.
AVERAGE MOLECULAR NEIGHT OF DRY STACK GAS
MD * (PC02 • .44) » (P02 • .32) » (PN2 * PCU) • .28
MO * (13.60*44/100) » ( 4.2*32/100) » ((62.0» .0) • 26/100 = 30.36
MOLECULAR WEIGHT of STACK GAS
MMS a MO • (1. - (BMO/100)) » 16. • (BMO/100)
MNS s 30.36* (1. -db.05/100) ) » 18. • (16.05/100) = 26.34
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP « SUM. OF THE SORUVH • (TS » 060.))
VS * 85.49 • CP • DELP / (SORT(MNS • PS) • PNT3)
VS * 05.49 • .80 • 248.224 I ISURU 28.39 • 30.00) • 12. = SO.90 FPS
STACK 6AS VOLUMETRIC FLO" AT STACK CONDITIONS
os • vs • AS • 3600/iofl
OS > SO.90 • 11310. 3600/100 s 14390992. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
OSSTD • 17.647 • OS • PS • (I. - (BMO/100)) / (TS » 060.)
17.647 • |«390992. • 30.00 * (1. - (16.OS/I 00))
OSSTO » —... . _. . . . r 7022879. SCFH
( 451. » 4bO.)
>
M PERCENT ISOKINETIC
CO
>J ISO « (J05.5B«(TS*460.))«((O.OOZ669«VLC)»(VMM«(PB«(PM/13.6))/(TM4460.)))/(TT«VS«P3«DN»DN)
(305.58«( 451.»460.))«<(0.002669. 311.)»( 78.560* ,998«( 30.09»( I.462/13.6))/( 85.«460.)))
ISO « • — ——.—..... .. ....... .............. ....................... ... • 90.79 PERCENT
l?0. • 50.90 • 30.00 * .28? • .282
PARTICULATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS a 0.001 * MN • IS.43 / VMSTO
CS * 0.001 • 1S3.9 • IS.43 / 76.621 s .0310 GH/03CF
-------
FIELD DATA
CO
00
PLANT ARCO, PHILADELPHIA
SAMPLING LOCATION FCCU STACK
SAMPLE TYPE PART,HeSU4,SU2
OPERATOR J PROHASKA
AMBIENT TEMP. (DEC. F) 60.
BAR. PRESS. (IN. MG) 30.09
STATIC PRESS. (IN. H20) -1.20
FILTER NUMBER(S) 3530639
STACK INSIDE DIM. (IN) 120.00 .00
PITOT TUBE COEFF. .84
THERM. NO. 174
LEAKAGE .020 CFM 4 6.5 IN.HG
METER CALIB. FACTOR .969
READ ft RECORD DATA EVERT 10.0 MINUTES
TRAVERSE SAMPLE CLOCK GAS METER VELOCITY UR1PICE PRESSURE STACK
POINT TIME TIME READING HEAD DIFFERENTIAL TEMP
NO. (MIN.) (24-HR (CU. FT.) (IN.H20) (1N.H20) (OEG.F)
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
kUUl* " J
1333
1343
13S3
1403
1413
1423
1433
144]
1493
1503
1513
1523
1533
DESIRED
790.217
797.930
•OS. 620
613.265
620.910
626.900
636.7J5
844.590
652.660
660.690
666.965
877.170
665.411
.450
.450
.450
.450
.460
.450
.450
.460
.460
.500
.500
.500
.91
.91
.92
.92
2.06
.92
.93
2.06
2.06
2.15
2.15
2.15
ACTUAL
1.90
1.90
1.90
1.90
2.05
1.90
1.95
2.05
2. OS
2.15
2.15
2.15
DATE 06/27/62
HUN NUMBER IOBM54
PROBE LENGTH ft TYPE 5 FT HEATED GLASS
NOZZLE t i.o. .311
ASSUMED MOISTURE 16.0
SAMPLE BOX NUMBER
METER BOX NUMBER FB2
KETER HEAD OIFF. 1.77
C FACTOR 7.15
PROBE HEATER SETTING 450.
HEATER BOX SETTING 450.
REFERENCE PRESS. OIFF. .00
DRY 6A8 METER PUMP SAMPLE IMPIN6ER
TEMP VACUUM BOX TEMP TEMP
(OEC.F) (IN.HG) (OEC.F) (OEG.F)
INLET OUTLET
446.
448.
452.
450.
«51.
«53.
4«9.
«S3.
«52.
450.
454.
450.
80.
63.
87.
89.
«1.
•»!.
91.
91.
91.
91.
92.
93.
61.
61.
62.
63.
64.
65.
65.
65.
66.
67.
67.
66.
.5
.0
.0
.0
.5
,5
.5
,5
.5
.0
.0
.5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
5*.
58.
S9.
63.
»».
66.
»*>.
70.
71.
76.
74.
72.
TOTALS
AVERAGE
120.0
95.194
2.01
2.00 451.
89.
65.
5,5
0.
67.
-------
PARTICIPATE FIELD DATA a RESULTS TABULATION
PLANT- NAME AN|) ADDRESS TEST HAM LEADER
ARCO, PHILADELPHIA J PRUHASKA
TEST IOBM54
FCCU STACK
TEST DATE
1
H
00
vo
TB
TF
TT
NP
t
ON
CP
PM
VM
TM
VMSTO
VLC
VMC
BMO
FMD
PC02
P02
PCO
PN2
MO
MftS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
1MPINGERS AND SILICA GEL, ML.
VOLUME OF HATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BY VOL., DRY
PERCENT 02 BY VOL., DRY
PERCENT CO BY VOL., DRY
PERCENT N2 BY VOL., DRV
MOLECULAR rtT-ORV STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
08/27/82
1333
1533
120
12
2
95
86
91
371
17
16
13
4
82
30
28
.0
.989
.311 IN
.84
.00 1N-M20
.194 CU-FT
.8 F
.868 SCF
.7
.496 SCF
.00
.840
.80
.20
.00
.00
.38
.40
METRIC UNITS
08/27/62
1333
1533
120
12
7
SO
2
30
2
371
16
13
4
82
30
28
.0
.989
.9
.84
.9
.696
.5
.601
,T
.«95
.00
.840
.80
.20
.00
.00
.38
.90
KM
CM-H20
CU-M
C
SCM
SCM
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES OF STACK GAS
PS STACK PRES, AB3.
TS AVERAGE STACK TEMP
V3 AVG STACK GAS VELOCITY
AS STACK AREA
QS3TD STACK FLO" RATE, DRV*
US ACTUAL STACK FLOW RATE
190 PERCENT I90K1NETIC
MN FILTERABLE-AMBIENT
MG. EPA 5
C9 FILTERABLE-AMBIENT
30.09 1N-HG
•1.20 IN-M20
30.00 IN-HG
451. f
50.9 FPS
11310. SO-IN
7026112. SCFH
14389506.
97.3
117.1
ACFH
.0197 GR/DSCF*
764.29 KM-MG
-30.48 PM-M20
762.04 MM-Mfi
233. C
15.5 VPS
7.297 SO-M
196956. SCMH
407466. «CMN
97.3
117.1
45.016
> MN FlLTtRABLE-160
I MG. EPA 5
I-1
o CS FI(.TERA8(.E-t60
.i
.0188 GR/OSCF*
112.1
•3.096 CG/DSC*
MN
C9
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
100.7
.0169 GR/OSCF*
100.7
36.713 MG/DSCH
MN
C9
FlLTtRABLE-316
MG. EPA 5
FILTERABLE-316
96.3
.0162 GR/OSCF*
96.3
37.022 PG/DSCP
• 66 DEC F, 29.92 IN.HG.
-------
EXAMPLE PARTICULATE CALCULATIONS TEST N0.10BM54
FCCU STACK
VOLUME OF OKI GAS SAMPLED AT STANDARD CONDITIONS
VMSTO a (17.647 • VM • Y • (PB •» PM / 13.6)) / (TM «• 460.)
17.647 • 95.194 • .989 • ( 30.09 » 2.004 / 13.6)
VMSTO » * 91.868 03CF
( 87. • 460.)
VOLUME OF NATER VAPOR AT STANDARD CONDITIONS
VNC a .04707 • VLC
VNC * .04707 * 372. a 17.50 3CF
PERCENT MOISTURE IN STACK GAS
BNO a (100. • VNC) / (VMSTO » VNC)
100. • 17.50
BNO a ....—......... c 16.00 PERCENT
91.068 « 17.50
MOLE FRACTION OF CRT STACK GAS
FMO a (100. - BNO) / 100.
100. - 16.0
FMD a ....................... c .840
100.
AVERAGE MOLECULAR NEIGHT OF DRY STACK GAS
MO « (PC02 • .44) » (P02 • .32) » (PN2 » PCO) • .28
MO a (13.80*44/100) + ( 4.2*32/100) « ((82.0* .0) * 28/100 = 30.38
MOLECULAR NEIGHT OF STACK GAS
MBS = MO • (1. - (BNO/100)) » 18. * (BNO/100)
MNS = 30.38* (1. -(16.00/100)) » 18. • (16.00/100) = 26.40
-------
STACK GAS VELOCITY AT STACK CONDITIONS
DELP a SUM. OF THE SORUVH t (TS * 4bO.))
VS • 85.19 * CP • OtLP / (30RT(M*S * PS) • PNTS)
V3 c 85.89 • .04 • 248.224 / (SORT( 26.10 • 30.00) * 12. : 50.69 FPS
STACK GAS VOLUMETRIC FLOH AT STACK CONDITIONS
OS s VS * AS • 3600/144
09 * 50.89 • 11310. 3600/144 r 14369506. ACFH
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTO ' 17.647 * 93 • P8 • (1. - (BHO/100)) / (TS « 460.)
17.647 • 14389506. • 30.00 • (1. - (16.00/100))
OSSTO n —• — • = 7026112. SCFH
( 451. » 460.)
PERCENT ISOKINETIC
ISO « (305.58»(TS*«60.))«((0.002669*VLC)»(VM»T«(PB*(PM/13.6))/(TM*460.)))/(TT«VS«P3«DN«DM
(305.S6*( 431.»460.))M(0.002669* 372.)*( 95.1<>4« ,969«( 30.09*( 2.004/13.6))/( e7.»460.»)
130 * ........... .......... .. ..... ......... .. .. —a «7.34 PERCENT
120. * 50.89 • 30.00 * .311 • .311
PARTICIPATE LOADING -• EPA METHOD 5 (AT STANDARD CONDITIONS)
CS = 0.001 • MN • 15.43 / VMSTO
CS s 0.001 » 117.1 * 15.43 / 91.668 = .0197 GR/DSCF
-------
FIELD OAT*
PLANT
SAMPLING LOCATION
SAMPLE TYPE
OPERATOR
AMBIENT TEMP.(DEC.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITOT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
READ * RECORD DATA EVERY
ARCO, PHILADELPHIA
FCCU STACK
PART/H2SOO/S02
00
80.
30.09
-1.20
3530851
120.00
.eo
.00
.002 CFM * 10.0 IN.HG
.967
10.0 MINUTES
DATE 06/27/82
RUN NUMBER IOCM5B
PROBE LENGTH S TYPE 5* GLASS
NOZZLE t I.D. .307
ASSUMED MOISTURE 16.0
SAMPLE BOX NUMBER
METER BOX NUMBER F10
PETER HEAD OIFF. 1.64
PROBE HEATER SETTING 320.
HEATER BOX SETTING 320.
TRAVERSE
POINT
NO.
SAMPLE CLOCK
TIME TIME
(MIN.) (24-HR
6A3 METER
READING
(CU.FT.)
VELOCITY
HEAD
(IN.H20)
ORIFICE PRESSURE STACK
DIFFERENTIAL TEMP
(IN.H20) (OEG.F)
DESIRED
ACTUAL
DRY GAS METER
TEMP
(DEG.F)
INLET OUTLET
PUMP SAMPLE
VACUUM BOX TEMP
(IN.HG) (OEG.F)
IMPIN6ER
TEMP
(DEG.F)
>
I-1
\0
INIT 0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
OTAL3 120.0
1332
0
0
0
0
0
0
0
0
0
0
0
1532
663.460
671.200
676.960
666.730
694.560
702.570
710.420
716.270
726.390
734.070
702.770
751.050
759.238
95.758
.050
.050
.450
.450
.480 i
.050
.050
.480 i
.480 i
.500 <
.500 «
.500 J
.91
.12
.'1
.'3
.06 <
.93
.10
!.07 ,
!.07 i
!.16 i
!.15 i
!.16 i
.91
.92
.91
.93
>.06
.93
.94
>.07
'.07
'.16
'.15
'.16
048.
048.
«52.
050.
051.
053.
409.
45J.
452.
450.
454.
450.
83.
66.
91.
95.
96.
97.
97 ,
96.
99.
99.
100.
100.
85.
85.
85.
87.
87.
68.
89.
90.
91.
91.
92.
93.
7.3
7.6
7.6
7.7
8.2
7.8
7.8
8.5
6.6
It t
9,3
9.3
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
61.
62.
63.
63.
60.
66.
66.
69.
70.
70.
70.
70.
AVERAGE
2.02
2.02 451.
95.
89.
8.2
0.
66.
-------
PARTICIPATE FIELD DATA A RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO. PHILADELPHIA DO
TEST 10CM50
FCCU STACK
>
1
TEST
TB
YF
TT
NP
Y
ON
CP
PM
DATE
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
ENGLISH UNITS
08/27/82
1332
1532
120.0
12
.967
.307 IN
.84
2.02 IN-H20
METRIC UNITS
oe/27/ea
1332
1532
120.0
12
.967
7.8 I'M
.84
51.2 OM-l
vo
VM VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
TM AVERAGE GAS METER TEMP
VMSTO VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
VLC TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL.ML.
VNC VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
BHO PERCENT MOISTURE BY VOLUME
FMO MOLE FRACTION DRY GAS
PC02 PERCENT C02 BY VOL.. DRY
P02 PERCENT 02 BY VOL.* DRY
PCO PERCENT CO BY VOL.. DRY
PN2 PERCENT N2 BY VOL.. DRY
MO MOLECULAR NT-DRY STACK GAS
MNS MOLECULAR NT-STACK GAS
95.758 CU-FT
91.6 F
89.501 SCF
362.3
17.053 SCF
2.712 CU-M
33.2 C
2.536 SCM
362.3
.483 SCM
16.00
.840
13.60
4.20
.00
82.00
30.38
26.40
16.00
.640
13. 8g
4.20
.00
82.00
30.38
28.40
-------
PB BAROMETRIC PRESSURE
PS1 STATIC PRES OF STACK GAS
PS STACK PRE9» ABS.
T9 AVERAGE STACK TEMP
V9 AVG STACK fiAS VELOCITY
AS STACK AREA
OSSTO STACK FLO* RATE* DRY*
US ACTUAL STACK FLOH RATE
ISO PERCENT ISOKINETIC
MN FILTERABLE-AMBIENT
MG. EPA b
CS FILTERABLE-AMBIENT
50.9
11310.
7026073.
14389526.
97.4
167.5
30.09 1N-HG
-1.20 1N-H20
30.00 IN-H6
asi. F
FP3
SO-IN
SCFM
ACFH
.0289 GR/D3CF*
764.29 PM-HG
-30.46 *M-H20
762.04 MM-HG
233. C
15.5 *PS
7.297 90-M
198957. SCMM
407468. ACMH
97.4
167.5
66.067 X6/DSO
CS
FILTERABLE-160
MG. EPA 5
FILTEP-ABLE-160
107.2
.0185 GR/OSCF*
107.2
02.283
CS
FILTEPABLE-232
MG. EPA 5
FILTERABLE-232
91.4
91.4
.0158 GR/DSCF* 36.051 NG/08C"
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
69.4
89.4
.0154 GR/OSCF* 35.262
• 68 DEC
29.9? IN.HG,
-------
EXAMPLE PARTKULATE CALCULATIONS TEST
FCCU STACK
VOLUME OF DRV 6AS SAMPLED AT STANDARD CONDITIONS
VMSTO = (17.647 * VM • Y * (PB * PM / 13.6)) / (TH + 460.)
17.647 * 95.758 • .967 • ( 30.09 » a. 018 / 13.6)
VMSTD » — - ---- • ------- ... .. --- . ------------------------- ... * 89.541 DSCF
( 92. » flbO.)
VOLUME OF MATER VAPOR AT STANDARD CONDITIONS
VNC * .04707 • VLC
VNC * .04707 * 362. > 17.05 SCF
PERCENT MOISTURE IN STACK GAS
fr BNO « (100. • VNC) / (VMSTD » VNC)
I
£ 100. • 17.05
0> BNO « — ----- .——.——. — .- « 16.00 PERCENT
S9.541 » 17.05
MOLE FRACTION OF DRY STACK 6AS
FMD * (100. - BNO) / 100.
100. - 16.0
FMD « .... — — ...... — ...... i .goo
100.
AVERAGE MOLECULAR HEIGHT Of DRV STACK GAS
MD • (PC02 • .44) « (P02 • .32) » (PN2 * PCO) • .26
MO = (13.80*44/100) » ( 4.2*92/100) * ((82. 0* .0) • 26/100 = 30.36
MOLECULAR HEIGHT OF STACK GAS
MNS » MO • (1. - (BMO/100)) » IB. * (bMU/100)
MHS = 30.36* (1. -(16.00/100)) « 10. • (16.00/100) * 26.40
-------
STACK GAS VtLOClTY AT STACK CONDITIONS
OELP * SUM. OF THE SORT(VH • (TS * 460.1)
VS • 65.49 • CP • DtLP / (SgRUMWS • PS) • PNTS)
vs = e?.«9 • .so * 246.224 / (SORU aa.oo • so.oo) • 12. = 50.99 FPS
STACK GAS VOLUMETRIC FLOM AT STACK CONDITIONS
OS = VS • AS • 3600/140
OS * SO.69 • 11310. 3600/144 « 14369526. ACFK
STACK GAS VOLUMETRIC FLO* AT STANDARD CONDITIONS
OSSTD • 17.647 • OS • PS • (1. - (BNO/100)) / (TS * 460.)
17.647 • 14369526. • 30.00 * (1. • (16.00/100))
OSSTD » —• ——« — —— — • • « 7026073. SCFH
( 451. » 460.)
>
M PERCENT I90KINETIC
vo
^ ISO * (30S.56*(TS*460.))*((0.002669*VLC)*(VM*Y*(PB«(PM/13.6))/(TM«460.)))/(TToVa*P3*DN*DN)
(305.56«l 45l.*460.))«((0.002669* 362.)»( 95.756* .967*( 30.09*( 2.016/13.6))/( 12.«460.)))
1SO s .... .............. ............. . 3 97.37 PERCENT
120. * 50.69 • 30.00 • .307 • .307
PARTICIPATE LOADING — EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • MN • 15.43 / VMSTO
CS = 0.001 • 167.5 • 15.43 / 69.541 r .0269 GR/OSCF
-------
FIELD OAT*
PLANT
SAMPLING LOCATION
SAMPLl TYPE
OPERATOR
AMBIENT TEMP.(DEC.F)
BAR.PRESS.(IN.HG)
STATIC PRESS.(IN.H20)
FILTER NUMBER(S)
STACK INSIDE DIM.(IN)
PITUT TUBE COEFF.
THERM. NO.
LEAKAGE
METER CALIB. FACTOR
ARCO, PHILADELPHIA
FCCU STACK
PART/H2304/S02
00
80.
30.09
-1.20
3530626
120.00 .00
.64
.008 CFM
.995
6.5 IN.HG
READ a RECORD DATA EVERT 10.0 MINUTES
TRAVERSE
POINT
NO.
SAMPLE CLOCK
TIME TIME
(MIN.) (24-HR
CLOCK)
GAS METER
READING
(CU.FT.)
VELOCITY
HEAD
(IN.H20)
ORIFICE PRESSURE
DIFFERENTIAL
(IN.H20)
STACK
DATE
RUN NUMBER
PROBE LENGTH I TYPE
NUZZLE > I.D.
ASSUMED MOISTURE
SAMPLE BOX NUMBER
PETER BOX NUMBER
HEAD DIFF.
PROBE HEATER SETTING
HEATER BOX SETTING
08/27/82
IODMSB
6* GLASS
.203
ta.o
FBI
1.85
320.
320.
(DEG.F)
DRY GAS METER PUMP
TEMP VACUUM
(OEG.F) (IN.HG)
•AMPLE
BOX TEMP
(OEG.F)
IMPIN6ER
TEMP
(DEG.F)
DESIRED
ACTUAL
INLET OUTLET
1NIT
vo
00
0
to.o
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
110.0
120.0
1333
0
0
0
0
0
0
0
0
0
0
0
1533
TOTALS
AVERAGE
120.0
13.708
20.220
26.650
33.130
39.630
46.340
52.680
59.480
66.150
72.650
79.770
86.640
93.482
79.774
.450
.450
.450
.450
.480
.450
.450
.480
.480
.500
.500
.500
.39
1.39
.39
.40
.49
.40
.01
.50
.50
.57
.56
.57
1.46
.39
.39
.39
.40
.49
.40
.41
.50
.50
.57
.56
.57
448.
448.
452.
450.
051.
«53.
449.
453.
458.
450.
454.
450.
1.46 451.
85.
87.
92.
«5.
07.
98.
99.
99.
99.
99.
100.
100.
96.
80.
80.
81.
82.
83.
83.
85.
85.
85.
86.
87.
87.
84.
.7
.7
.7
.7
.8
.8
.8
.0
.1
.3
.5
.6
5.0
0.
57.
5«.
59.
60.
• It
t>t.
62.
•».
68.
»«.
*«.
70.
63.
-------
PARTICIPATE FIELD DATA a, RESULTS TABULATION
PLANT- NAME AND ADDRESS TEST TEAM LEADER
ARCO, PHILADELPHIA 00
TEST 100M5B
FCCU STACK
TEST DATE
TB
TF
TT
HP
1
ON
CP
1 PM
vo
vo
VM
TN
VMSTD
VLC
VHC
BNO
FMO
PC02
P02
PCO
PN2
MO
MNS
TIME-START
TIME-FINISH
NET TIME OF TEST, MIN.
NET SAMPLING POINTS
METER CALIBRATION FACTOR
SAMPLING NOZZLE DIAMETER
PITOT TUBE COEFFICIENT
AVERAGE ORIFICE PRESSURE
DROP
VOLUME OF DRY GAS SAMPLED
AT METER CONDITIONS
AVERAGE GAS METER TEMP
VOLUME OF DRY GAS SAMPLED
AT STANDARD CONDITIONS*
TOTAL H20 COLLECTED IN
IMPINGERS AND SILICA GEL, ML.
VOLUME OF MATER VAPOR
AT STANDARD CONDITIONS*
PERCENT MOISTURE BY VOLUME
MOLE FRACTION DRY GAS
PERCENT C02 BV VOL., DRY
PERCENT 02 BT VOL., DRY
PERCENT CO BY VOL., DRV
PERCENT N2 BY VOL., DRY
MOLECULAR NT-DRY STACK GAS
MOLECULAR NT-STACK GAS
ENGLISH UNITS
08/27/82
1333
1533
120.0
12
.995
.203 IN
.84
1.46 IN-M20
79.774 CU-FT
89.8 F
76.942 SCF
319.5
15.039 SCF
16.39
.837
13.80
4.20
.00
82.00
30.38
28.35
METRIC UNITS
08/27/82
1333
1533
120.0
12
.995
7.2
.•4
37.2
2.239
32.1
2.179
319.5
.426
16.35
.837
13.80
4.20
.00
82.00
30.38
28.35
fM
MM-H20
CU-M
C
SCM
SCM
-------
PB BAROMETRIC PRESSURE
PSI STATIC PRES UF STACK GAS
PS STACK PRES, ARS.
T3 AVERAGE STACK TEMP
V9 AV6 STACK GAS VELOCITY
AS STACK AREA
USSTO STACK FLOW AATEr DRY*
OS ACTUAL STACK FLO" RATE
ISO PERCENT I90KINETIC
HN FILTERABLE-AMBIENT
MG. EPA 5
CS FILTERABLE-AMBIENT
30.09 IN-H6
-1.80 1N-H20
30.00 IN-HG
451. f
50.9 FPS
11310. SO-IN
7002034. SCFH
14000562.
98. B
102.0
ACFH
.0265 GR/OSCF*
764.29 CM-MG
-30.48 CM-H20
762.04 CM-HG
233. C
15.5 *P3
7.297 30-M
198277. SCMM
407781. ACMH
98.8
142.0
65.181
MN
CS
FILTERABLE-160
MG. EPA S
FILTERABLE-160
84.1
.0169 GR/OSCF*
84.1
38.604 »6/03C"
MN
CS
FILTERABLE-232
MG. EPA 5
FILTERABLE-232
76.4
76.4
.0153 GR/OSCF« 35.069 MG/D3CP
MN
CS
FILTERABLE-316
MG. EPA 5
FILTERABLE-316
73.4
73.4
.0147 GR/OSCF* 33.692
* 68 DEG F, 29.92 IN.HG.
-------
EXAMPLE PARTICIPATE CALCULATIONS TEST NU.10DM5B
FCCU STACK
VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS
VMSTO » (17.647 « VM o V * (PB « PM / 13.6)} / (TM » 460.)
17.647 • 79.774 • .995 • ( 30.09 * 1.464 / iS.fc)
VMSTO * ———«————— — — — — — .............. • 76.942 DSCF
( 90. » 460.)
VOLUME OF NATER VAPOR AT STANDARD CONDITIONS
VHC * .04707 • VLC
VNC * .04707 • 320. a 15.04 SCF
PERCENT MOISTURE IN STACK GAS
> BNO « (100. * VNC) / (VMSTO » VNC)
I
10 100. • 15.04
3 8*0 « „-.—................. 3 16.35 PERCENT
76.942 • 15.04
MOLE FRACTION OF DRY STACK GAS
FMD » (100. - BNO) / 100.
100. - 16.3
FMD « —— ———.-.——. 3 .837
100.
AVERAGE MOLECULAR HEIGHT OF DRY STACK GAS
MO = (PC02 * .44) » (P02 « .32) * (PN2 4 PCO) • .20
MD = (13.60*44/100) » ( 4.2*32/100) * ((82.0» .0) • 20/100 s 30.36
MOLECULAR HEIGHT OF STACK GAS
MNS B MU • (1. - (8*0/100)) * 16. • (BMO/100)
M*S * 30.36* (1. -(16.35/100)) » 16. • (16.35/100) = 26.35
-------
STACK GAS VELOCITY AT STACK CONDITIONS
OELP = SUM. OF THE SORT(VH • (TS » 460.))
VS • 85.09 • CP • OELP / (SORT(MMS • PS) « PUTS)
VS * 85.49 • .64 • 248.224 / (SQRT( 38.35 • 30.00) • 12. = 50.93 FPS
STACK CAS VOLUMETRIC FLOW AT STACK CONDITIONS
OS s VS • A3 • 3600/144
OS * 50.93 • 11310. 3600/144 • 14400562. ACFH
STACK GAS VOLUMETRIC FLOW AT STANDARD CONDITIONS
033TD > 17.647 • 83 • PS • (1. - (BNO/100)) / (TS » 460.)
17.647 * 14400562. • 30.00 • (1. - (16.35/100))
OSSTD » —— —————— — — ———— — — — —— r 7002034. SCFH
( 451. » 460.)
>
I
to
g PERCENT ISOKINETIC
ISO • (305.58»(TS»460.))«(C0.002669«VLC)*(VN»T*(P8*(PH/13.6))/(TM«4&0.)))/(TT*VS«P3*DN«>DN)
(305.58*( 451.*460.))*((0.002669* 320.)*( 79.774* ,995«( 30.09«( 1.464/13.6))/( 90.«460.)))
ISO * — ——..—.—...... ........ ... ....... ... .............................. • 9«.80 PERCENT
120. • 50.93 • 30.00 • .263 • .283
PARTICIPATE LOADING -- EPA METHOD 5 (AT STANDARD CONDITIONS)
CS * 0.001 • MN * 15.43 / VMSTD
C3 * 0.001 • 142.0 • 15.43 / 76.942 = .0265 GN/USCF
-------
APPENDIX B
FIELD DATA
B-l
-------
B-2
-------
CAS VELOCITY AND VOLUME DATA
PLANT AND CITY
RUN DATE
It
J7 40
SAMPLING LOCATION
u o
CLOCK
TIME
66
69
RUN
NUMBER
/'/
OPERATOR
N/ 9
AMB. TEMP.
("F)
.*.*
BAR. PRESS
(in. Hg)
3 .o.o.f
STATIC PRESS
(in. H20)
- /jz..
MOLECULAR
WT.
.&.?.?.
STACK INSIDE DIMENSION (in.)
>IAM OH SIDE 1
A3-,*. . .
SIDE 2
PITOT
TUBE Cp
•o.ry
MOISTURE
«
73. ,
40
44 Si
61
FIELD DATA
64
73
76
TRAVERSE
POINT
NUMBER
7.8.9 .10
/
£-
1
1
J $
T,' A
7
•^
POSITION
(in.)
1 1 ,1 7 ,13 «U
VELOCITY
HEAD
(ipg) , in.H20
5 5, 76 e J 7 , 58 ,29
vc>
HSV
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE.
COMMENTS:
TFST
SAMPLING TIME (24-hr CLOCKS
SAMPLING LOCATION
SAMPLE TYPEQBAG)INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD Orso~L
AMBIENT TEMPERATURE
OPERATOR A
b
^4^Jf±fr4X^' /, ^3
.ORSAT LEAK CHECKE6
^^^^^ RUN
GAS ^\
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
I3.C
$4
184
NET
13-6
t*
o.o
2
ACTUAL
READING
/3.3
l%.z~
K-z
NET
I3J
w
00
3
ACTUAL
READING
/3^
/8.Z,
18.2.
NET
/3,
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
.TEST NO.
f
SAMPLING TIME (24-hr CLOCKS
SAMPLING inCATIQH
//JO
SAMPLE TYPE (BAG, INTEGRATED/gNTWPOUS? /ffi"
ANALYTICAL METHOD
AMBIENT TEMPERATURE
OPERATOR
.ORSAT LEAK CHECKED
\. RUN
GAS ^"\^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
/2/^/
^
NET
/#f
*,i
0
«/.8
2
ACTUAL
READING
/#?
a>
NET
/^
u
0
0.a
3
ACTUAL
READING
rt.+
^
NET
/4.1
•5.^
0
g^.g
AVERAGE
NET
VOLUME
///
SJ
MULTIPLIER
44/100
32/100
-«
»*
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib 'Ib-mole
i?M
^
0
>7.^
30.-/4
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE.
COMMENTS:
_TE$TNO.
SAMPLING TIME (24-hr CLOCK).
SAMPLING LOCATION.
SAMPLE TYPE@(j)lNTEGRATEO. CONTINUOUS).
ANALYTICAL METHOD ^ "^
AMBIENT TEMPERATURE
OPERATOR Pftill
.ORSAT LEAK CHECKED
*\^^ RUN
GAS ^\
C02
02 (NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
/V.o
iio
NET
Af.o
^.0
0
^
2
ACTUAL
READING
/r
3
ACTUAL
READING
/V.o
/8,Q
NET
/^.o
V.O
D
^T/
AVERAGE
NET
VOLUME
rf.0
Y o
MULTIPLIER
44/100
32/100
a/100
a/ioo
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
HLj. Ib'lb-mole
6-/^
/.^
d>
^Z,1^
TOTAL ^0,^(0
w
I
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT.
DATE_
COMMENTS:
.TEST MO
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG.
ANALYTICAL METHOD _
AMBIENT TEMPERATURE
OPERATOR . fl.
/
-fe.T
75~
.ORSAT LEAK CHECKED//
\^ RUN
GAS ^\
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N £ (METIS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
t3.%
/to
NET
/?.8
y^
0
g^-i
2
ACTUAL
READING
/S?7
/Z8
NET
X^7
*f
0
fa-\
3
ACTUAL
READING
/J.7
//^
NET
/^7
/,*
0
feLl
AVERAGE
NET
VOLUME
/U7
<
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
.TEST NO
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION O^T/fj'
SAMPLE TYPE dJA<5 INTEGRATED, CONTINUOUS).
ANALYTICAL METHOD
AMBIENT TEMPERATURE.
OPERATOR
.ORSAT LEAK CHECKED
\. RUN
GAS ^^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 WIN US
ACTUAL CO READING)
1
ACTUAL
READING
I3.S
/*•*-
NET
A3. 8
z.4
0
rA\
2
ACTUAL
READING
/3-t»
ft*
NET
/S.4
z,4
D
*4.$
3
ACTUAL
READING
13.*
/£>*-'
NET
/S-?
z^
()
„„<,
'
AVERAGE
NET
VOLUME
ft&
?*
- ^
iS
MULTIPLIER
44/100
32/100
a/100
,100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib'Ib-mole
£''?
•7tt
o
'(,
2S>1
<#»v>
I
oo
-------
DRY MOLECULAR WEIGHT DETERMINATION
w
i
VO
PLANT.
DATE.
COMMENTS:
.TEST NO.
SAMPLING TIME (24-hr CLOCK).
SAMPLING LOCATION.
SAMPLE TYPE*®) INTEGRATED, .CONTINUOUS).
ANALYTICAL METHOD.
AMBIENT TEMPERATURE.
OPERATOR
.ORSAT LEAK CHECKED
^v. RUN
GAS ^\^
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N2 (NET IS 100 MINUS
ACTUAL CO READING)
1
ACTUAL
READING
\5.L.
\&,0
NET
J3.(*
*t.4
V
2
ACTUAL
READING
)3.6
/7?
NET
/3.C
^3
D
3
ACTUAL
READING
/3.t
/ip
NET
13+
1J
V
AVERAGE
NET
VOLUME
/3 6
4A
O
1*
MULTIPLIER
44/100
32/100
n/m
^/IDO
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib'lb-mole
^51
/•4/
o
^
^.Se>
-------
DRY MOLECULAR WEIGHT DETERMINATION
PLANT
DATE
COMMENTS:
TPSTMO /O
SAMPLING TIME (24-hr CLOCK)
SAMPLING LOCATION
SAMPLE TYPE (BAG. INTEGRAJEDri3fi[nj5Kp)
ANALYTICAL METHOD _
AMBIENT TEMPERATURE
OPERATOR .D.
ORSAT LEAK CHECKED
^"v. RUN
GAS ^\
C02
02(NET IS ACTUAL 02
READING MINUS ACTUAL
C02 READING)
CO(NET IS ACTUAL CO
READING MINUS ACTUAL
02 READING)
N 2 (NET IS 100 WIN US
ACTUAL CO READING)
1
ACTUAL
READING
tf't
sj.o
NET
&!
*{,}.
D
f\^
2
ACTUAL
READING
w
/2,o
NET
#J
#3-
D
w
^
3
ACTUAL
READING
a*
i <.
I T>
NET
13,*
•
f,^
0
"" /
"b'K
AVERAGE
NET
VOLUME
/J.f
v»x
O
"
MULTIPLIER
44/100
32/100
^
.'100
TOTAL
MOLECULAR WEIGHT OF
STACK GAS (DRY BASIS)
Md, Ib 'Ib-mole
6.07
i -2 (J
/
O
2 a.
^^
%.^
03
I
-------
1MT t (III
i rr\ ?ci\ p if
l-«-». (fe^tur XO*v » *JtJ I- — IT 91
MM
rT.Tt7.i[..[.iI.i|.4|.»|.t|..|..ptHc|..ii.|iiH4|i.|,.|,,|,.|,i|,.|..|.,|,.
i i i i
it|ii|ii[ii|n|«ii|«i
UWfllW. lOtMIM
l|4«[t[il|n|»4|l
i j i i i i i i i i i F\A Afi
im
l|/e|ll|/l|ll|t4|l>|l4|u[(4|M|M
ii* •.
lAMfi i l^i
WC (AIM
1 l 1 1 i i i
•M.
Ill*
I'fJ
ill2li
(in.
MU1I MMU(i)
'l"NHv|»l"l^l"l»l
i i i i t i i i
il«£« IISIM
DIM*.
' i 1 ' i A ' i
IUU
ThtW
io{nju n(i4Jn
JO.
PMC
MUM LU6TM M) ll«
f\n
•OI/ll.
1.0. M).
i I
!eoi w.i got 10
ii|i4|n i.|i.|u
Mill
A M t
Nil* CAl.
rtcia »
IM.
Offlfffl
LEAK CMICI
crn
I 41 4l|4l(M
i!!t
t
FMTW
C
MCIM
MU, Uf
t4|«>[l«J»i
MAI ttl
nt.
]»M
UCORO
OAU
HIM
yuwio
5?| 5 3 I 54
17
WAVE Ml
•01 Wt
ctoc* rim
lAMTUHCN. |]4 hr
VCtOCITff
(t'
OBI r ice russuu
DirrtUMTIAL
CTACI
DDT CAS NCTCI
TCHPL*ATUR£
VACUUM*
DCS I MED
IT. i.«r
in
fAMTIX MX
TDtftBATUU
OUTLET
IT. ».«»
IMMNCUI
TDtrCM
•r
3'+
.5 .
2-0
/ .
>6s~S~
O.b
/ .
/*-*(>
VST
£0.0
.3?
76
0.
VS~7
11L6 6
0.3.
23
AXJ.O
0 .
f?
//o
-------
EMISSION TESTING FIELD DATA
Ittl I CITl
l|M|ll|K|'>l'«l"l"l"llol"l"l"
l i l 1
1 1
Mil
i«N..J»'N"M'
IOCAIIM
>|4l|l|»<|l>
I I I
MM..M.o|..|u|..|,.|,tRTOT.
IIM «.
OWMIM
Jl
l|»|ii|ii|ii|n|<«|it|u|ii|iiju|;fl|ii|n|ii|i4|i>|it|n
I I i I l I I i i l
Hi*
CM
Ml. SMIIC
MISS. MISS
II*. Ng)l (II. HI
"I"!"!" »I»T"M"
_L
Mllll MMU(S)
ie[«l]«>|4l]44|4t |«t|l>|4l|4l|%«|%
I ' ' ' I ' » 1 I ' '
IHSIH
DINII. IIKMS)
i"l" "1»>T>'M
' ' » ' > ^ ' '
MUM LfttTM AM IIH
61 t
•0/KI.
MO.
!eoi no i »oi to
I "I" "I"'" "I"'"
Mill
« N •
Will (At.
»*£!(• I
»ftlBC
l»l. I*'
VELOCITY
MEAD
(•»,). ia.l
OBI rice russuM
DirrtUHTlAL
IAMI.llt.NjO)
CTftCK
pay CAS MXTCB
TrMPCKATURC
SAMPLE BOX
5"V •
DCS I IIEO
I NUT
IT. i.»r
in
VACUUM,
OUTUT
IT >.«r
out
S/ff?
7 ?
zro
o
0*10
y.r'7
.
FT
. J
l .
Fa.
/JLf 9
//^7
9"? .5V
/ .575
75"
-------
KAMI t till
im.i|..|.i|.i
WiliUJfi
iUlll
'I'"!"!"!"
im/iC/jK . 11 11 111111 11 i 11 i 11
PEI G_
0*11
,D
UMPl IMC tOUl IOM
r...
"i^ra'vt"*"*tt\ ilj.>jyptl**r1Mr*r'it'l*'l"!**!**!^)'!!
i i i
d
l« *>.
I'l'I'Hl
i I« I I I I I I I i I I I I I I
Mil.
llltf
1UIIC
ram
(in. Hq) (I*. N?0)
II|ll IllM js|lt|ll[»ll1
riiui
nM/i 111111)1
MACI I«SIW
DIM*. IIMCMS)
' ' * ' '
»MO?
IUM
C»
IMIH
ii|'4jn
"i"i'«r
-------
EMISSION TESTING FIELD DATA
-------
to; si
i cut
3
il'[M*l"l"ll'l"l'l'tl"l"l"l1°l"l"l"
I i I 1
I I I I I
0*11
VUVlIM IOUIION
4j|4l|44|4V |4»|4l|4l|4||>«|tl|»|M|yi|n|>l|
1 | | J I I I I I
Mi..|..ti«i,.|,.r.if..T..iMi..i..i»n
II*
OMMIW
Jl
i i 111111 11
Ill*
CM
Ulii.
(I*. IN)
»|ll|l)|x
JU1IC
MtiS.
Mllil MV(B(S)
I I I I I I
Sltfl IHSIDt
DIM*. 1 IKK VI
1 1 1
ritoi
tuu
fACf
MBH lUCn AM UN
lIl|l|«l*|tH|i|t|ll|llMlH|t«|l*|ll|ll|H|H
Mini.
1.0.
(il* BOI HO I Ml to
iilnlii iilw ii n iilii
i i ' ' i * *
Mill
A N •
'l"l"l"
LC fi ff".
Mill CAl.
>*CIO> 1
IIAK CMtCK
U. Hal CFM
4l]M|«t J4t|4l
fffa
K
FACTW
c
ricitt
»|n|M|H
MOM
MUI Ul
MUt HI
"l"l"l"
I^A AfilA
U[lt[ll|ll
MUMO
Ml*
HIM
i
y|»|v|ionli?|i3ii
IV|70|?» j }7|23|?
3ar3»T40|4
4?J43|44|4S|46N7 4J
57IS3I 34
17
CMCK T»N«
(14 hr
CM UTUI »»B1B6
IWI. It*
VKLOCITV
ounce russuu
CTMK
tIMFKUTVM
OR* CAS NCTCB
TCNPLtUTURC
( 4.7^). !•.
IAHI.ln.NjOI
DESIRED
I HUT
T l.»r
"in
. run*
VACUUM,
OUTLET
out
•AMTLC Mtl
U
r
INMMCU
»t
•r
o.Vo
u.-n
£,0
/S7o
y .21
r.
3SV MO
-¥•
1(f •*>
y.
Ul
J6/V
85
7'? .
A
1 I 5"5~ 7
y.Ja
.is
f-S
3S?
7~D
S o
TV
111
-------
EMISSION TESTING FIELD DATA
»i«*r t cm
I I I I I I
0*11
"1»I"J"HT
lOUIICM
iH4«Ht.|t,|M|»H>
l*mi lift
tl* •).
(VIUIM
|«|«|n[ii|iiiii|i«|it|i4|iijii|ii|»|ii|»|iijnjn[i>|>i
Ji Pi i i i i i i i i i i i i i i i i i I igidhiq/ tH~ ilJ-i
Ml
111*
Cf)
iijnfn
!*• iUIIC
PUSS. MU$»
(IN. Mjl (II. H^.0)
»i|ii|ii[:« n]i>]i>Jit|»
Illlll MMII(S)
«0|«l|«>|4l|*l|«t |4>|«l[4t|«||M|tl[tlpl|i4[tt|
MAU IMIOI
OIM.I. (IKNfi)
I I I I 4 I I
MOM IU6T» **
|iTiI«ltT«I»l«|tMiiM'i|"l'Mnl"ln|i«
WIIll.
i.o.
io[|i|n|nj»
w-
Iwtlt ' Mill
lioi NO.IWIK. A N t
"I"!"
it[iiii»
WTfl CAl.
r*ct« »
LEAK CM(M
cm
Ife. Nfl
FACTW
1 1 1 1 1
r«ci«
MOM
MAI ui
riioi
IUU
It
TM
r«cf
it|ii[n[
KAI HI
•If.
•f
u|it|u|>i
•I coil)
0»U
aa
iff
y|8|9|lO
37l33j 3«T
37
TJkAVTMS
COIMT
TIM
1)4 bf
VKUKITV
ounce PUSSUM
OirrtlUMTIAL
tUVCUTUU
OUT CAS NCTCM
TtMFCRATUW;
/ .TAV
* #0
DESIRED
IHLCT
In
. rmir
VACUUM*
OUTLET
«»_ ».
out
•AMPLE Mil
TCMFCIATUU
•r
CM1
1*10
J"7
ifr
y.
23S~ 3-70
QA
P"?
£-£>
62-
ito I
7 . / 7
V.C 'i
C'5
1 61 1
6.
/AJ-f
t,/
r.
-------
1 SI PE.'
,D
cm
U|ll|H|u|l«|lt|li|l>|tt|H|/c|N|>l|)l|)«|n|M|>l|M|>l|>0|ll|ll|ll
,,
Mil
l.|ltl)l|l. il Itlflir
SMPLlkC lOUIION
.i|..H"M"l"l««|.*l"l"h
.l|H|ilj>
tin
¥/i<
d
-------
EMISSION TESTING FIELD DATA
i cm
> i
1 1 ii 1 1 u.i i ii ii i n
UT[
IOUIION
HH
...........
OTIMtM
»l'»l M
iihil»l:« isliiln uln
^iLA^ -vA_^b^L^B^^
f IIUI MM(«(S|
41 «i •tltilwht lul|>I|I«[
B^^^fc^^^
MOM IIKTH MB UK
1.0
M).
",0. UAJ*>I[ INITII I Mill
(f) Isoi M.IBOHO. » » »
MTU Ui.
MUM I
m. is
LUK CMtCI
cm
FKTM
NUI Ut
NUT Ml
«».
•r
vcon
o«u
•IM
'J!1?''""""'11"1"1"1"1"1""*
jLuMjuixty*
— 1
-------
1 SI_.. JEi
,D
HA»T » cm
Mil
M|ll|ullt|ll[llJ«0|ll
MNTLIK lOtADOK
im
>4|..|.l|»H"l"l'l|"N'«l"l"l*l«
OMMIM
I I I I I I I I I I I iSfrUPUM ~
1IKP
Cf)
i|njio
III Kg)
R;
li|l> 1) ;•
sum
(!• M 01
Mini
I ' ' I I ' I ' ' I
il«I IKSIH
OlMt*. (IBCKSI
' ' » I 1 * ' 1
mot
luu
mit
±«t
MOM lutn MD iw
i/i/T
Mf/ll.
MjO. SAWlflMITII I
(I) llOl HO 1801 N
AM*
Mill Ul.
r«CTo> *
'i OS^ifiJT
*
I UK CMfCK
cm
in.
/5^ ^<">6
MAt Ul
I')
»r
l"'"''*'"
Bicora
MU
HIM
"lul
«^
ZlVl9T»OliTl2ll3il
19(70121 1
3il3* UOI
42|43l44|43|4d« 1 4d4»bOJ
52J33IS4
17
POINT
vcuxrirv
I
ounce russuu
DirrCRXMTIAI.
(AH) .llt.M}O)
STACK
DM* CAS NCTCB
DESIRED
"fSIif
tr. i.»r
VACUUM,
•AM»LC MU
TOtfCMTUU
OUTUT
T
Ho
.31
J .
/OO
76
•TJ.
/O a
7?
(9
97
^2,1'/
a*,
/
Jo
71
-------
EMISSION TESTING FIELD DATA
KMT I Cltl
I.lM.|.|.|.|..|n|..|..N.>|..|..|..|..|,.|>.|,.|n|M|n|,.|,,|,.|M|..|..|..|.
i i i i |
i i i i i
0*11
«|)%ll»||r|),|ll|«o|«t
•"••*"-» • * y
UMTlIM lOUIKW
l[4l|«,|4'l|s«|M|w|MH"l>*M"l"Htllt'l"lMl'i
1 i l 1
im
>l|t.|llN'0|n|'l|.l|M|M|.l|..|.l|>«|.
IM «.
ONMIM
Ml.
Ill*
CM
J^l.
(IK.
STMIC
«li\
(I*. H.jO)
n|ii|))|;« is|u|ji|ii|n
• •I IK
FIITU
~i7iOi%t3Pi i i i i i i i I l I /lPr1«T»T'Q
52l 53 I 54
55l5d| 57
vuvcua
•OIMT
CLOCK TIHl
h»
VXUXITT
IWI. II
oniricc PKXSSUU
OirrCRCHTIAL
IAHI.tn.MjO)
STACK
ICItfCliATUU
O*V CAS HCTKB
TSttr"
DLa I H£D ACT
. PUMP
VACUUM,
OUTLET
out
•AMPLE Ml
TCMtMATUU
•9
IMPINCU
flMCAA
3 . 790
33 9 143
3/0 .
337
3°.*
333 33;*
67
. 7/
.J?
6?
/.Y.
7 /
9V
7. V
0.
3J7
0.3
//? 6)
77
0
/ r
77
119.6
?/
0
78-
-------
ES ; i
ftttl 1 Cllf
yi
8
iHltf-im i i i i i i i i i i i i i i i
Mil
VMVIIM. IOUIION
?|4l[44|4t|l4|4l|4t[4lho|M|U|M|S4|»|l
^ 1 1 I I I I I I
im
.|iiliiMidtii[i.i|tilMi[nIiiIiiTiiTitIi
•M
QfllAIM
i i
i i i i
IIHP
CO
Ml. Sl»1lt
MISS. MISS
II*. ng) (>• N.,0)
yac7
>l|/l|lolll|l))ll J4 is|n]ll|ll[l1
i/Ji-
imot
DIM*. IIKMi)
II I I A I I
MOM LUtTN MO
iTi|iUI«Ji|»l«H'i|'«M'»l"
UIIU.
lUUVK IWtll I
iBOl kO.IUl §0
IiH
II M 1%
ItAK CMICK
CfH
IH. N«
..M,
£>
h
C
»«C1M
IUU
TM
rut
|ii|i«li«.[M
HUT U1
'l"l'»l'i
>4|n|u|>i
IICMO
MM
HIM
7H7
J1L+220
Hl70|a» j 331331^
3iT3»|40|4
-------
EMISSION TESTING FIELD DATA
t tin
liilW'Jl'l'J'W
i|n|N|ii|M|i>|u|ii|ii|;i|io|)i|ii|ii
l i i l i' l l i i i i l i i i i
Mil
'•isr.W'TJT:
SMtfllM IOU1 ION
^v
111111
SMKI tm
IN •>•
OMUIM
HiL
( I I
1IM
cn
Ml. iUHC
ram. ram
(IN. Hg»l (I*. M (
iiiui
O|4l|4)
40|ll|«I14) 44
«|>I|»|M|M|>V|M|M tmtjn n|»[n
lllllllll
msioc
DIM*. (IKtfl)
MflU lUCIM MO tlH
•ami.
1.0.
•1.0. liWll Ixuii I
It) llOi NO I Ml §0
Mill
a M •
Mill Ul.
f«£10i 1
IU>. CHCC«
I*, ngj CFH
fACTM
Uf
rnoT
Illli
TMM
'n"I"j'
MGC
sn
nr.
UiOtO
MU
HIM
-------
IS:
EL
I Cllt
Mil
HHH'M"[^^
i i i i i i i . i i i i i i i
i i i i i i i i
~r\.\te£\o\tA.\Sr3\l^
IW *>.
QflMIV
JLL
Mill
MJL MM 1C
HISS. wm.
(I*. H9)1 ('• ";<
mill nMii|s)
si«c« IMIOI
OIMI. (IMCMS)
1 1 I I A I 1
fllOl
IIM
C»
TM1M
no.
i"T"W
MOM men AW im
111 |«t|" Ml l|l«[<»|UJI l|lljlt
6. ^7T
MIUI.
1.0.
n|n[lljii(M
CA%&
» i t i
0. k*»»if Ulli I will
) lioi W.IBOI loJ A M t
"I«'|ii
JJ.
Mill CM.
HCT01 T
IUK CHECK
cm
m.
'"H»»H"!
11 i i A
c
MCIM
MAT Ml
MUT U1
'Ql'il'ttn
itOW)
c*t»
HIM
ifc
n<7oL>'T»ai>3|a4
3il39T40H
3)|33 I 34
CMO T1W
114 hr
VtLOCITff
TMCrMl«
. ft
omricc rucssuu
OirrCUMTIAL
|AH|.ln.N20)
tTftCI
TIMPMA1UU
D«V CAS NETCK
060 .
DCSIMCD
nur
IT i.»r
in
. run*
VACUUM*
•AMFLC Mil
TCMTCIATUU
OUTUT
IT_ i.
•out
IM>IMCC«
CMI
•r
3.PY
/o o
V.
/ol
AJ3
/ o /
/o /
f> :
r
±ci
-------
EMISSION TESTING FIELD DATA
PlMT t Cltl
l|H|lo|ll|ll|l|[n|lt|l>|tl|l«|jl|10l"l"l"
MIC
14 Itlll II ]|[|1 <
I i 1 I I J
WWUNG lOUIIOIt
,|..H» H«M"H"h
H"l"l"l'
\floiTi l*e\Tn
i i
uvu un
»li.Hll*l|.l|t.|ll|ll|Ml,>T^|.l|,.|H|M
tUI tt.
OflMIOI
1 I 1 I 1 1 I III
CM
II|H|10
wa. MMIC
P«VS. «li%
III. ng)l (II HO)
II M IS III IfIII 11
,liulj,
' * ' '
mot
IUU
c»
HUM
\o&y\/™
fACC
MOU iu*m AM im
«1«I»I«I«I*IM «I»I"1"P»1'>l'*l"l"l'»I"I'»
i/irr
•0//U.
1 1
B.o7|iAJ»U'w HIM
(t) !BOI noiBOiw
M|II[II II|M|IV it|ii[n
Will
A H •
A3 7
MUI CAi.
ruioa f
«i[M|rt HI|«I
lUl CHtCK
IN.
crn
o.o
I
fACTOI
MUI Ml
NUT U1
n[n|ii|i»
Mf.
I.|M|»|H
•ICOAO
o»u
JOtD
ikira
321 53 I 3<"
73|2J|?
42)43l44J4a|4«il47
57
TIM
(24 he
CM ncna »run»c
!»!. «»'
VXLOCITV
ounce ritcssuM
oirrcuHTiAL
(AH) .In.H^O)
KTACI
WV CAS MCTCI
, TCHPLRATURE
"IMLST^
DESIRED
IT. i.»r
. runr
VACUUM.
OUTLET
0«lt
KAMflX BOI
iA
f
HtflnCU
K
r
3'
/o .a
y .
3-O ,0
/337
/o/
JP
/oj
/o
33 f
/Of
73-
3/9
/£> /
r.
71
o
/.rr
/Of
/ 577
«
/ 0 °
9 r
6?
-------
HAM 4 Cltl
TE IG LD 'A
Mil
111 i_l«I»I«I' I«I«l"l"l"l' il"!1*!'*!1 '|"l"P°l"l"l"l"l"l»l"l"l"l'0l "l"l"
ifl/i/n
UMPUHG IDUIICW
1 i i
i I I 1
KM •).
OMIAIOI
m» n[ii|n|ii|'4|i>|u|ii|ii|n()o|ii|ti|ii|i«|n|it|>i
i I t I I I i I
11*
m
MAIIt
MIJ4
«!• N20)
0&
mill MMtll(S)
n"H"J"H"HHH^"HH»M"
i i i i i i i i i
INSIM
DIM! (IKMil
MhlUC n|u|»IMJM|ti|u|M|u
' ' I ' ' * '
MOM IU6TM MD UK
iJ*|t • l»l«l«M"|u|'i|"l"H.i|..|.t
i5i 'i
i i i i i i i i i
•Of/ll.
1.0.
M).
1111
•t.0, Lu«>ltlMIIII I
(i> !toi M.IBOIIO
H|M|U
Will
6 N 1
Mill Ui
f AC 101 f
LUU CHtCK
in. ugl cru
"-
FACTM
C
MCIOI
tl]ll|M|tt
NUt Uf
»lt)[lllt1
mot
TUU
M
J-L
FACE
NUT U1
"i"!"'"
'I"!"!'
now
DATA
HIM
/
dE
y|«T9Tio
I9J20T?' I 77|?3|?4
3iT3»T»OH
43J43{44|43|4.V47
5?l53 I 34
OAVEBM
»oiifr
HCTEa ••"'IT
VELOCITY
ounce PUSSUM
DirrCKXMTIAL
STACK
TUtfCMTUU
DR* CAS KCTCA
TENPCRATuaC
DCSIHJCD
IMLXT
T !.-»
•in
VACUUM,
•AMPLE BOX
TCNTCiUTUU
OUTLET
»T_ ».
•out
/o.
J/D
VI
7T7>
100
.7
//-/ . 7
K
loo
25T
^r^"
/CO
rr ^
/ .IX
/ f*^7
toT
2CJL
Too
1.2.
.YZ
/.
/CO
-------
EMISSION TESTING FIELD DATA
4 cm
l|l4|lt|lt|ll|ll|ll|l»|ll|ll|ll
,ii
OAK
14 It III I 'I II 11 «0|4
UM>HkG 1 OUT ION
4J 4IJ44 4t lill4l|4lU«M|tl tllMlVtltt
'•Jj**.1.' '^.' f 4 ,' 1*1 ' ' '
l|t)[.l|M|H
ywrit tm
mm'vnite
iw •.
OMIAIM
i]l|t|.t|t.|u|.l|..|.t|lt|ll|ll|lll)t|"l"l'l|»l»l»l"
il/tCt
i i i i i i i
Mtf
CM
PBISS.
UN. M,)
tlMIC
C«tii
(1*. H2Q)
rum
U It Ml 41 44 IIS* tl t)M '
I— I ' 1 II I I I I
SIMI
OIMI.
tlttM|..|»|....|.t|>.]
MOlI lUtn MB
iW^ijT'i'
t[ll|ll|ll|ll|l4[lt|ll|l)|ll|H
i i i i
Mini.
NO.
M-
l^TT
Mt(l
(01 W.flOl 10.
ll|n|lt
'»|'l|l«
A N •
z
l
Milt CM.
ftCTOI f
6^,
41 4lluUt
IUK CHICK
cm
in. H«
^
K
FACTO*
MCIM
•HOT
lutt
t.
TMM
rut
ii
MAT MT
lit It M
III
MCORO
MIA
• IM
I^J]
fc
Illl?|l3ll4^i|l6|
3O|3li3?|33J34|li[l^l
4tJ4»bQ JS
33 I 34
33l3ol if
•BAVUU
POINT
TIM
MNPUMfiX. 124 be
TlM,Bla XXUKII
VELOCITY
omricc Pfttssuu
K'
UH|.in.H2OI
STACK
TCMTCIUTUU
IT^I.'f
our CAS MCTCB
TrMPCKATURC
"ISltT"
. rtoir
VACUUM,
"S.1-"
•AM*LC BOI
TDtrCMTIMB
OUTLET
IT. i.»r
"out
IV1MCU
TBirCM
•r
I'O.
^.Z/7
/.Z7
/t^/
S
c
.3!
S^
/OS'
ti-
YrV
U.
/o
r.rg
v^Y
vr^"
¥.
*fr
>. Z-7t>
//ft.
/5"/7
107-
ST.}
-------
SI 'E!
D
KMT t Cltl
i i i i i i i i i i i i i
(Mil
UM»llMi IDCAIICM
tm
idl ft.
•M «.
tfCUIOt
1 I I » 1 I I I.J.
Ml.
Ill*
rn
ll|ll|H
Jiii
MISS.
(II. H,)
(II. tf.01
riifti
40J4I 4; 4)U* 4% |S3 I 54
J7
•01 VT
TIN*
(14 h*
VXLOClTf
oaincc PMCSSUU
IVI.
•TACI
1UVCHATUU
OKV CAS NCTCB
TCNPLRATUU
IAMTLC WU
I«N| .in.M^OI
/« y
I HUT
"X.1-*'
VACUIM,
OUTUCT
«T. |.
"out
INTIMCU
TDtfCMfV
•r
4' -t
// 0
7-6
P.?.
J77
/>> o fe
0.3
7?
^jrr
CO
1 .jo
M
/•J
yy/..
2-16
tx
?«.$.
/o
/f 9
/o
o.3P
7 .30
#3
10
(9. 5J
To
»."5S"
£-
57
1 1
-------
EMISSION TESTING FIELD DATA
KMT » Cltl
I|I>|M|I»|II|H|III|II|»|II
I I l I l l l l I I I I I
Mil
VMPllK. IOCAIIW
±
i|>;|ti|n|n
I I I I
MMTLI TIM
..|.iH..|..|,i|.iH.»|nM»T
IIM *>.
VI MUM
Vi
i i i i i i i i i
I'M
MliV
(II. •*))
iuue
rum
A i i i i i i i i
SIAtI
OlMtl.
1 1 A 1 1
MOM itKTH MO UPC
niIiT*TtriI»Ii|ihi|tiMi»l"|iMM|t»lii|i«
i/A5A7i,fiDi
»OI III.
w.
N.O. lumilNTll I
It) IBOI w l BOI to AN*
H||l|ll
ii|n|n i>
\
Mill
i±di
Mill Ul.
fKIOi f
LIAK CHICK
IN. Hfl
era
F*CTW
c
MCIM
7 J
MOM
101 Ml
IUW
t»
mm
fMi
MUI HI
II|M[)?|M
M"l^
IIUMO
D*t*
HIM
D.I.
{/~O(t*-
lll2]l3ll4Lll6h
71H7T
22|23|2
52l aa I 34"
5?
•oivr
ciau. TIM
124 hr
CM MTU UAAU6
!»!. ft'
VKUKITV
ounce rncssuu
DirrtUMTIAL
I6HI .In.M^OI
• TACI
lUVCMTVU
BUT CAS HCTCB
, TJHPtBATUM:
~nni"¥~
. run*
VACUUM
d o
IT. i.»r
in
OUTLJCT
(T. ».«»
•oat
SMtfIX KUI
Tovcunuui
•r
INMMCUI
TCMTCMtU
•r
3'
07 Y 7
3 76 . .5-0
« J 6
0 <7S~?
97
to.o
loon
77
/ o/ 9
376 . ^ ?
.0
fro
269
6<>m
3 o
Q.35-
.3 ^~
Jo .0
2-6?
/OS"}
. 3
6.
//o 7
« J 6
y .
/ .
70
//o.o
o.
/ / 3 9
-------
EN [01 ST Fl
AMI i CITl
''fiT'.'•_'•'''
«|ll|»l|ll|ll|»|lO| ll|»|ll
i i i i i i
lilt
0*11
UMPUM 10UHON
i;|4)[«|4t |«l|«l|4l||
Jli!ii
i i i i i i i i i
Tin
ii.|i.H.o).. »i|,n..M.iI»T.
II* «.
OHWIM
jiiiiiiiiiiiiiiii
Ill*
CM
Mm. P«ii
lia. mil I in M 01
2AHJ ii/Ji
nun
MACI IHIOI
OINU. IIKNISI
m
lliil!
HUM lUtTM A« IIH
iwit
*UU
il
i i i i i i i
•01 III.
I.D.
N.O. VUtj>l[IMfltl I WUI
(i) ll
leoi no i MI io.| a H t
II|M|H
tillllM]»401..|.
I"
\JA/J\%
W1U CM
fACIOi T
ILU CHtCK_
CFM
IN. H«
tt*
FACTO*
c
fMIOI
NUT UT
»IIOT
1UW
m
HUT UT
iiliil'tlHi
ur.
'I"'"'"
•ICOSO
o*u
HIM
illltl
o
'I'M'O
22|23J2
llL
53 I 34
aaid 37
tKAVEMS
KANPUMii
Tina
ll« hr
CM MCTU tttOIBC
IV. It*
VEUXT1TV
oairicc
OirrCUNTIAL
|AH) .in.M^OI
STACK
1tM»MATUU
OBV CAS NCTEB
TtHPtRATUfct
DCS I RED
IMIXT
T_ |.
"in
run*
VACUUM,
EAM»LC BOI
TCMKUTUU
INPIMCCB
OUTLCT
IT. |.»F
out
/O.
l3W
ysv
7?
.w
r/
TTyZ
613
.
vo
Lti
#9.7
AV.y
AY/
^C
0.
sr
i.r
.7
13
I.27
£
.
//fl.
T7
120.
I. We
J—*-4-
I •
J-J-I
I — I
-------
EMISSION TESTING FIELD DATA
*MI 1 Cltl
TjTjT^|iI»[i|il;i]iiMnI'iI'ili»l |.ip°l"l"l"l"l»l"l"l"l"l"l"l"l"|
J_L
.1 I i i t i t i I i i i I I I I
Mlf
'M"J»M"I"H«'
UUVUK IOU1IQM
4;|«l|4«|«% |«»[«l|H|4<|s«|M|v)|M|vi|>%|M|M]M[%t|>CJH||)|H|H[H
. . , .
IM»U TIN
>«|.J|iiHil.ol.. n|.i|,.|.>|,.LM|,.l
onuio*
I i i i i I I I i I i I I t i I
IIMf
MISS.
IK. Hg|
MA1IC
f 111(1 MMtl(S)
il«£i IMIH
DIM*. flKNfi)
PI 101
IUH
C.
nan LUCID MB im
J^X.
«1' I »J«I» *\* iT*I'»T"p'I''I'*l'*l'«l|'l"l'»
1.0
M.
H,0. k«J*>uUlll I Mill
(I) !«
IMI MI 101 M
M III II II M
AMI
Will CAL.
IX1» f
lUt OHM
m. M] cm
•IJ44|«» H»l«'
AY^iST
1 1 1 A
IJ|IJMJH
ut
HI
MUI Ut
nil
• r
, !>• in
•ICtMO
MU
DIM
'•I
TTT
53
1361 ay
nxvtua
POINT
METU UABU6
VCUXITV
oniricc PKCSSUM
DirrCUMTIAL
STAC!
TCM^CIUIUU
OKI CAS MCTBK
TtHPtRATOM;
DESIRED
in
VACUUM.
OUTLET
•AMTLK Ml
TCMTCUTUU
•»
INTIMCU
c
•r
/./v
yro
yjT?
7-T
M
'2^.
VST
.
*
5.
/M
S^1"
o
3Z7
^Z7
-«-
ys
6.7^.
/JUT
rT
9
HO.
76/.7V
YS/
^
g
1 • •
V.
-------
PE;
HAM 4 till
[»|l|4|»|«| l|l|l|ll|ll|n|tl|l4|n|i>|ll|ll|n|;o|ll|M|<)|n|l>|l>|»|>l|M|lo|ll|ll|'ll l«|»|n|ir|ll|»|io|«l
I I I
Mil
VMKIU IOUIIM
1 1 1 1 1 1 l 1 1
VMTit Ifff
|t)|u|»|io|n|ii|n[n|n|»ilii|n|n|
i
D.r
IM •>.
VIUIM
Ji
Mil.
1INP
cn
ll[H|li
MISS.
(II. "))
VMIC
Wl
(W.
"l"l"l"l"
MIUI MMII(i)
i l i i i i i l l
1IKI IMIM
OIMM. IWMIS)
'AM
MUM lutm MB tm
•at ill.
w.
H7o. yumilw Tit I
(t) ;eoi wiMI to
n|u u|n|n it,
i i F£g Afic/i
Will
AH*
J!
• III Ul.
racial *
m.
IUK CMtCK
crn
/fTflo.o/
r«CT(M
c
ucian
MAI Ul
IUU
c»
mw
fMC
MAI Ul
H|ll[>t|l)
"I"N"
•I COM
Ml*
HIM
.Ail.*!
?ISl9]lO
38)39
7 4d49bol5
5?l5> I S/
J7
VOIMT
Tina
(14 h*
VCtOCITV
IV . It
ounce rucssuM
OirrCUMTIAL
|6Hl.ln.N20)
STACK
TIMTCIIAIVU
BUT CAS NCTU
TtHPLRATORT
"JtUjtf
VACUUM,
. ft*?**
DtSIMKD
in
OUTLET
out
•«JU>LC Mil
TtMTKIATUM
•r
ttHTCU
•r
J'f-
iff m
VV9
r
£3
f-'fO .76
?. 36
/./o
y v/
./j?
V1//
Y.T3
y.
.3^
: 3?
Ck
I/'
is-/
71
-0.. J5~
llo .0
-7O
ij-r
• 1
-------
EMISSION TESTING FIELD DATA
1M1 4 till
'I tl>l"l"I"l"l"l'Mltl"l"l"Klll"l"l'
I I 1 1 I I I 1 I I I I I I
Mil
UMPlIM IOUIIOM
;[«i|«i|«t |««[ti|«i|4i|M|ti|M|u|t«pi|»i|»i}ii|n|t«jti|ii[n|M|i
I I I I I I I I 1 I I I**!*1
lun «.
OfiMIOI
MB.
1IM>
en
Mlii.
II* ng)
4»li'
MtiS
»|n|ii|ii|n
»>|«i|«j|o|«4|«t|«i|«»|4i|«i|*]M|»|n|M|n|MJ
MflH LU6TN A« tlH
TnriT«i«iii»i«i»N..ht|.i|..H'»i"i.ii..
•oini.
tV3i/i/i
•0.
«,0. VUVU Infill I Mill
(i) !toi MO.IIOI 10. a H »
1 1 1 1
•1H"
II[M[IS
Mi
MTU Ui
IK rot t
IUI CHICK
cm
IN.
^
FACTOR
MClOt
MUI Ul
Ti/^ \AW±
»IIOT
1UM
c»
fMM
MAT Ul
Mf.
*f
1 1
•I UNO
Ml*
HIM
nlu]iaii4frM'6l iy|u
I. fk*
VCUXITV
Iff ftp
<*?,>, i».»,0
oiiiricc russuu
DirrCUHTIAL
tTACI
TUtftMATVU
DAT CAS HCTCfc
. TtHPCRATUM:
TiDrf
DCS I RED
IT_ i.»r
'in
.rtmr
VACUUM*
•ANTU BOS
TDtfCUTUtt
OUTLCT
out
INPINCU
r»
•r
Po.
72-
y.
y.
1 "/?-(,
A/V
VT3
3 6
/•t (,
6 : T
/. f 7
2-S7 ZSY
79
ol
7
76
/of
/o
76
11!
• 1
J_J
-------
EM
ST
AMI t cm
iiit
s
|;i|n|)i|i4|n|i>|ii|ii|M|m[ii|ii|ii
l l
Mil
'TJT!^
IMPlIM lOUMOtt
!inii
ill
sM»u im
ii II|M nlitlii iilnlM it it ii
•r-vwKTar"*/- ^^"V*vi —^-' t.
I
ttm «.
til
» •
OMM1D1
I I I I 1 I 1 I i I i I I 1 1 I
MB.
HM
m
PB14S.
MISS.
(!• M.,0)
rum Mutant
Mill! *MUI|l)
UiUiliiluliv 4i|ii iiUts* ti t; u uK%\t
' _;*_f.. . r i i i i i i i i
/ I « I I I ' I 1
Sl*" "SIM
01|(fB
H«
S
M "I*1!" "I'M"!*'!'
' ' 1 ' ' ^ ' '
MflH lUtlH MO tlN
t «|i i
i i i i i i
MIILI.
i.o.
>i niii
NO.
N,0. IwwriC Iwili I Mill
111 !ui *01801 M. AN*
LOU CMC*
ii|ii nl
I
»CTOR
NUI Ml
rnoi
lust
c»
U
io]n
^
IUM
'»J'«j'
0_L
a
rue
ii|i»|iifii
MAI «1
"l"l'»l'l
•I COM
MIA
HIM
s
5J| 53 1 54
Jllldf
JJ|73l74
«l39JUo|
17
VC
TIKI
124 kf
VCU1C1TV
TMC.at*
•
S£
oatricc russuM
OirrCWMTIAL
(AHt.tn.H2O)
TCIVCM1UU
D«T CAS HCTCB
. TTHPtRATUdE
TBDtiT
DESIRED
IT. i.»r
VACUUM.
•AMTLC BOX
TOtftWTWM
|N»IMCU
OUTLET
IT. I.»F
CMlt
£
£
71
vo
^
W
to
Inl
^
101
IL
IJ^T
IO?
7?
Tod
.ZY
-
/or
7.
o
iTTt
M
110.
It
-------
EMISSION TESTING FIELD DATA
•VUt 1 CITI
'ltl'|«IMMMM^VI''li»M'Miil'M'i|iiM"t'M"l"N»i|»M'iMi«|i'l"'F?
i i i i i i i i i i i i i i i i
0*11
vwruw IOUIKMI
mc£\\\:;::::::: u*tf>
tm
MCTU UMUK
otiricc PUSSUW
oirrtUNTi*L
IAHI,ln.H oi
STACK
KMFUIATU
BUT CAS HCTCm
TrMFLHATUlU
•AMTUE MUI
TfMKMTUU
-------
t Cll?
TE IG LD 'A
Mil SAWLIMG IOU1IM
ilihlihH .|i|»|.i|..|.i|.i|"l.»|"l"l"l'«P'l»l"|M|..|i>|ii|iM»H"l"l<'l"HH»»|"l»l"H
• /t . I f^tl i s1 ^ ^r i fj , / - A . . \(rf^J^/f.
_i_L
\S\r\Ac\.<\ i i i
i i i i t i i
i
IM •>.
oriuioi
»|i«||it|it|n|nH»i|nH)«|i>|i»|>i
i i i i i i i i i i
ll»llt
•>•[»
II*. H9) (!•• H?0)
nun MMIIISI
I I/A^T ^'l-'l-^'t^l^f-t 1 I I I I I I I 1 I
IkSIH
OIK*.
II I I A I
lutf
c»
npijti jT[
TXIW
PMC
±±
MOM 4.0*™ *» IfK
i/i/l
«0»ll-
MO.
V-
if) !
i
101 WJUIM.
Will
6 H 0
MKI Ui.
MCIOI 1
LCAK CHtCK
CFM
IH. IS
.0\O.et
rurm
C
racial
MAI Ml
in
Btf.
HOMO
0»l»
HIM
H|M|M
77|73|7
3i|39l40l4l
olio IJ
57I53IS4
17
fkAVtM*
•OIMT
CLOCK T1H»
U4 hr
CM MTU
IVI. 1*'
vcuxrirv
ounce russuM
STACK
TUWCIUTUW
OUT CAS MCTCI
IAN) .ln.N2OI
g1
"fiiTitf"
^'"
VACUUM,
OUTLET
|T_ ».
out
•AIVL£ BOX
TEIWMATIMB
•r
HVIMCC*
c
•r
/« .0
- 9
. Ytf
'.3r
Sri
8 \
'>/ v/y
73
Yo.
fool
5.J
0. Vo
'.j?
yyy
"
/ o ^
> "t
/ .
o.y
21
76,
9(3.0
y .
71
J* 6 .
/ / 01
o«.
y/;
7*
// 0 •
1 1 i 1
/• 3?
?J
VJT
?^J>~ .9/5"
J_L
-------
EMISSION TESTING FIELD DATA
1 Cltl
tli|i|«>i|i|t|i|t|i»|tili*lii|»«l»|ii|it|innlii|iiln|ii|ii|itlnli»|HNi«imii|n-
i i i i i i i i i i i I i.
QAM
•I'?!'*!"!"!")"!*'
VMPLIM IOU1IOM
i i i i i i i i i i i
UMTlf TIK
. * ,!• iii
VCUtM
' liliMtiMi
i i i i i i i i i
Mil.
1INP
cn
njnjio
fMSI.
Ill >*)>
l'[ll|ll|!<
MM 1C
PBISi
(II H^
-," ICi / 1C I I/Art Vl5lJ-l'-'L'. « H I
/ift
ul«li
I 111 » ««|«i «i
l!±
Will CAL.
1 if 1O» ¥
JM. Kg
ICAK CHICK
cm
I
FACTO*
ilUt
MOM
NU> UT
mot
1UM
c»
1M
ll[l4|H
PMf
MAT U1
Mr.
Af
"I'*!"!'
MCDSO
0*1 »
4^4»bO J3
51J53 I 34
17
CUJC* T1MI
|]4 fcr
CM MTU UA0U6
vtuxtrr
on r ice riussuM
DirrtUHTIAL
KTACI
D«T CAS NCTEB
TCNPLRATUMC
•.»F
in
OUTLET
IT, ».«r
. ruwr
VACVIM,
EA«VIX BOX
TOtftMATVII
tcnrcui
5 y s •t->~"
y .
5 /
-f c
5 »Y ;5~
o . Vc
/ •'-'A
V-T/
ss~
^C.C
' 1
3 7
*7/
f")
V.T2.
1 1
-------
EI 10 :sn
» i
AMI t CITI
na
nMjh
1
"i"i"i"i"
i 11111 i i i
i i i
Mil
VMFlING IOUIIOH
I .1 I 1 I II Jill 11
i i i i i i i i i i ifimrilL
wmi TIK
-------
EMISSION TESTING FIELD DATA
-------
1 SI
,D
n««i i cm
I I I I I I I I I I I I I I
Mil
)«|n|i»|»|ji|nl«o|4i
i • • f • * t •
VMPlIK lOCAIlOW
ffFF
^ /-igg't-.-'i
i i i
umi TIPI
JllllnllOlMl.!!!!!!.!!.!..!.!!!.^!.,
OftUIOI
|.|»|..|n|..|..|..|.>|..|..l
tug
UNP
en
PUSS.
it* it,
MM 1C
PUSS
(1*
i.|»|.,|;. »|u|..[..|i
ii, HI
Mill!
i i i i i i
"*" >«'«
OWM. IIKUSI
JllltJ !•]•!]»
MOM LUtlN U0 UK
i/iTl
l)lt]ll|ll|H
•OIIll.
1.0.
»I«i
H?0. lsA»»l|l>« II«T
It) |eoi M.IMIN
•Ij^l
Mill
AM*
"l"l«'l«
MTU Ui.
±
IUU CNCCI
cm
Ik. h«
/i.l />*co /
I
FACTM
NUI UT
luM
TX1IH
MCE
"»"l"li
WAI «1
«|i>|ii|i
IICOW
Ml*
HIM
01
14^1161
nnTTT
I«|70l2l | 77|23|J4
34
CM NCTU UA0UC
vcuxrin
ounce piassuu
oirrcuHTiAL
IAHI.ln.MjOI
STAC!
PHY CAS NCTCB
TrNPLRATURC
I NUT
. runr
VACUUM,
OUTUT
IT.. l.«r
Out
CAM* IX MX
TtM/CMTVU
•r
IMMMCU
TEMTCIIAIII
•r
/c. o
/
J» r . f ?
0^0
33-T
/.JT"
7+
.97
73
y.ro
'77
r«r
S
/%
AJ7
/•/v
S-.T
1 1
-------
EMISSION TESTING FIELD DATA
t cm
.hli|'|i|»l'l»l«M"l'il'»H'»h'l"H'«Ni'l"l»M»l'«l»l»l'«|i»|i.|»|"
i i i i i i i i i i i i i i
Mil
*|»J"H"I'
MltfllM IOUIION
ill
±
d'ic/1 gj/J/VfXi i i i i i i i i i i i i i
im
M|M|..|»|..l..|.l|.l|..|,M..l..I..lHTM
-7
Jd
OflUIOI
' I '
_l_L
Ill*
en
•isli
riiii.
li*. •*))
11MIC
cic
(II
•i"i"i'
^illAZ
M"!"!'
-L
MLIII MMUdl
Mill! •««[•())
.|.,|..M.>|..|..i..|..H»l»l"HH»l
U2£_
' » ' ' i ' i » ' '
"SIM
Ol*«. ||«*i|
J_L
n|»t|>i[n[n[i
11*11
MOM LUktTN AJO 1IPI
Mini.
I I I I
w-
T
!eoi miwi 10
H|II|II »}M|H u|it[n
Will
A M t
>|»0[<||4>
MKI CAl.
LUU CMtC«
IN. H«l CFW
rXc"^-
I
FACTW
C
racioi
NUI Uf
mot
tuu
c»
THIW
rue
MAI Ul
in
T3W>
•ICOU
Ml*
HIM
Ziilvl.o'
IV|70|?I
43J43144I45
5>l 53 I 54*
57
Tin*
(14 hr
CM NCTU MABUK
VCUXTITT
omricc rucssuu
DirrCKCNTIAL
|AN).ln.N}0)
TUVCMTUU
DCSIRfD
DftV CAS NCTCM
TrNPCRATURC
"ilD:*
«T_ I.
. PUMP
VACUUM.
SAMPLC KU
TCNTCMTUI
OUTLET
out
IHTIMCU
EW>
r
5 / ' <7
•/
v/ .
r 7
/J
7*-
74
vrs
/£
ro
76
77
2*0?
77
95*
6.
/&(/»
-*°
¥
6.
t to .0
Jo
6 .
-------
JMI )N
KMT 4 CITI
^TTT
£A
i i
i i i i i i
TI
Mil
DA
"N'*I"1"["H"
%MTIIK IOU1ION
'^f*fi C~7U*^ IS '
y»»i.t tin
il I
OMIAIOI
I I I I I I I I I I I t |
UNf
Ml Si.
I*. «»)
l'|ll|)l|)
M«1IC
ritsi
(II N2
l\\ll|IIIll|II 4l|«l|4>
nun
•I*'!*'!"!*
' ' ' ' ' » i ' t
il«£I IMSIOI
OIMM. (IKltfi)
I A I .
MOII Lucn ue ttff
y^
|.|.|*m..|..|ul.»H.»|'i|"."l"
M^bMl^^BMB^pM^B^AvMhM^La^HMk^M^^LaA
rrf ijioifjr i i i i i i i i i
'l«l»l»o
±
MUM.
1.0.
t|t»|ll|ll
0. |vM>lCIWIll I Mill
) !«OI HO I Ml M>. ft N •
Wllill'
m
III 111 II «|«|
A f M fm'
ICAK CNICI
cm
IN. H«
I
FACTO*
t
ucitw
tfjtl »4Jll
MI
>t|ll|ll|t1
•A/t
tUU
TMM
>i|i4jit
tut
MUI Ul
"I'M"!'
UCOM)
OAIA
HIM
m.
«»boJ5
5>|S3 I 14
17
BAVCM*
•oivr
v CLOCK Tina
UMTUM6X. 1)4 fcr
TlMC,Bl» X^CUKB)
CM HCTU UAAU6
10. ft»
vcuxrin
ounce russuu
OirrCRXHTIAL
IAHI.tn.H O)
STMII
TIMtCMIUU
DAT CAS MCTCI
TCHPtRATUHC
/.X7f
DCSIRCD
>.»r
VACUUM.
fAJtfU KM
TCM»KATUU
OUTUT
out
•r
/o.
rf
J
£6
*
I'")!/
"T&
tfrf
i
76
5 7 LI?
o>
XV.
./r
•I
105^
ffm
ivy*
/*$
I > I
• I »
-------
EMISSION TESTING FIELD DATA
AMI t cir»
I I^tj*i"l"l"l"l'4l'*ll*l"l"ll*i»l"l"l"j"l'tl'tl"l"l"l1°)"l"l"
11 i 111 . I I I I I I I I I I I
Mlf
i.|.>iii|i.|ii|i'j»|.7
1
VMPlItt IOCAHOM
Mill
im
IUI ».
CflMIM
iT»I» . •JM1 >1>I*1"I"1"M"IIMI«I"1"
RDMfTi iJiQ i i i i i i i i
Ml.
ut»
m
ram.
ii". H,)
SMI It
rim
(i«. N.,O)
-rilA
rum
4l|4<|4l 44|4t Itt 4>[4l|4l|l«JM[»[M|%4[»|tt['
LJfiagiffMi.........
il*CI IISIH
OIMI.
Mill
PHOT
1UU
m
rue
-------
roirr
ci.aca Tim
•JWtfUHt.V (14 be
IV. It*
VEUXTITT
oairicc PM.SSUU
DirrctUMTiikt.
IAHI .In.NO)
STAC!
TWWCHATUM
DHV CAS MCTCB
TtMPtHATUlU:
"fitCtT
in
OUTLCT
'
out
. PUMP
VACUUM,
CAN^LC Mil
INTINCU
CM
•r
JO
o
/ ./o
-a.r
n?
yy/
V .3
6O
~
o
76
r.
tt)
Vo.
/ O n
0*1 r
93
/ c / -
o J
6,7
/ 0
73 pi.
-------
EMISSION TESTING FIELD DATA
i cut
I I I I I I I I I I I I I I
0*11
j»l)lill|]lll1J40l4
1 • f i ' y •
UMPlIK lOUIIOM
WMHI Tiff
IIM B).
OMIAIOI
|i|i|n|n|ii|i)|i«|n|u|t>|i>|nNii|»i|ii|»4|"|i>
i*-*/1 * 11 * i*.* ^
I 1 i l i I I i l 1
rn
MCiS.
MAI 1C
ClliV
(I*. N^
Mill
n|n|n|i4 i>|ii|ii|ii|n
ruin
Jl^lliQS^^i i l l i i i I I
1UCI IMIM
OIMN.
''111
"l"l""l"l"l"l"l'
HUM iutn u* im
TT«T.T«1.|'|tl.|t|..|..Ml,,|..|.»
•Of ill.
lUlll I Hill
IBOI M.iui to. AN*
»i|» H|M|» »|ii|n
f&*4/V
afcyla*1.
Will Ul.
f*cioi i
,"i"i**i
IUU CHICK
CFN
B. H,
f
oto l >
K
FWIOI
MCIM
MUI
fltOt
lUM
rxi
I0|ll|ll D|l4|M
rut
MUI Ul
nt.
If COM
Ml*
HIM
I4hiii6i
^5-2s
I9J70|»I
3»l39 UO]4
57] 53 I 44
17
tBAVHM
rot NT
TIM*
U« hr
VKLOCITf
IV • '*'
1*9,1. I*.
omricc russuu
DirrtUNTIAL
UMI ,ln.H}0)
BTACB
DKSIHCO
If.l.'f
DB> CAS MCTCB
TtMPCKATUftC
"TMlJtT"
VACVUM,
IT. i.»r
In
OUTLET
out
J-o.
Of
\~ . 7
97
sr*
/ 6 O
;.
7 J
"> r
7.
,,0
••/
0*13-
37?
7^
. y?
6 *
/•y/
r 3
V/6
-------
;K ES F )
-------
EMISSION TESTING FIELD DATA
HMI i cm
. »jiI. t i
i|)>||l|ll|M|lC|ll|ll|ll
Mil
UM-UNG lOUHOW
im
HjtMI^Ut|)Ol>l|H|ll|nJn|nJl)|l||>t[|i
it* «.
I ' > * >
onuiM
SUJ I IHG
i i i i i
1INP
CM
!J£
±
UN. Hg) |l« M^
ii|ii|n|!4 isju|)ilii[ii
nun
DIM*.
1UU
c»
lOlltlll Illl4|
^•^HMH M^^^
TWI
tut
iijiilni^
vxuxrtTf
•oirr
ounce russuM
DirrCUNUAL
(AMI , In.MOl
•TACK
DHV CAS MCTCM
TtMPCRATUItC
~I5Ixf~
DtS I HCD
. run*
VACUUM,
OUTLET
JT_ i.«r
out
IltflMCEB
CHA
•r
^2-
7
•
7/z-
2£L
t
t.c
ON
/.y/
ft
m-
7
. vo
ZY7\ 2fy
J—LL
-------
fiA»i A cm
TE IG LD 'A
Mil
11111141111| i [ 11 «|ii|ii[itluli4|i>|u|ii|uii«po|ii[iiln|i4|it|it|>i|n|/i|iolii|»|
oi ,iPi/*/nA
I i I i I I I I 1 I I I i I
SMfllMi IOUIIM
»|4)|««|«S |«t|4)|u|«'l|M|ll|t;|si[vi|»|n|>l|\i]*l[>c(n|»|n|M|ll
I 1 I I I 1 I 1
im
UiIiM*.'
onwiM
ili|«H«i|iiliiN'M'M"H"N»'I"l"l'«l'>l"l
11 11 1 I I
Ml.
1INP
CM
iJn[M
MISS.
II*. H,|
Sl*l 1C
MISS
Il|ltjll[l4 l\|ll|ll|ll|>1
flflrw
''''I'll''
itACl IkSIOf
DIMM. 4 kr
VELOCITY
TIMC,Bla
I*J. «**
OKI rice rucssuu
DirrCUMTIAL
l«Hl.ln.M2OI
STACK
ORT CAS MCTCR
TCNPERATURE
TSFif"
DESIRED
IT ».«f
in
. run*
VACUUM,
OUTLET
•AMTLC Mil
mWCRATIMS
/%, KF //
INMNC
•r
sr/
60
S- 9
9.
<*•<>
mV ' C
-* 66
S'V
7/
/ to
7-7
5~5Y. ?/ 3
9 o
• i «
1
-------
EMISSION TESTING FIELD DATA
nMt i cm
11111«I»111' I«HN..|.i|nH"l'*l' i|.i|.tNi.|"|"|i.|nlnUi|it|/t|»| »Tifr|
1 i I I 1 I 1 I I
Mil
UMFllftC IOU1ION
I I I I I I I
UMHI
»i|i»lii|u|>o|n|u|n[i4|n|ii|ii|n|n|i
II* 0.
* » •
oriMiu
it i i i l i
CM
filiS.
II". •*))
'l"l"l"
Mlii
(II. M
HUU MMU(l)
4l|4.|4l[4l|M|4t |4l|«l[4
ilAtl liSIM
DIM*. IIKMSI
MOM lUtn MO If*
\hT\
['«l"]»tI"l-«l'»i-»T"T'
•01 HI.
1.0.
V-
III
TMUI I mill
leoi w.l soi M. » H •
illi
ill Ul.
ICAK CNtCC
crn
U. N«J
i
FUTOi
|lj|MJIt
NUt U»
rnoT
IUM
c»
TMIH
ijiiji
rut
H
MUf Ul
'"
A 1 1
t(UWB
MU
Nlrt
Of
i
77l?3|7.
3i|3VUol4
J2
•01 NT
TIME
114 hr
CM MRU >r>DIBC
vcuxrinr
omricc
STACK
TBWCM1UU
TLMZ.Mkl*
DDV CAS MCTCa
. TtMPtaATuw:
TSDtiT
/ '? 3
7 ?
DES 1 RED
IT l.»r
in
. MM*
VACUtM.
OUTLCT
out
KAfVLC
l
r
IltflMCUl
TM
•r
Jo •
13 V3
/I S~3
JV
/If ?
* y
6* 4
/
/ .
00
/ .
r.r
70
9" .0
/e-c .
/r/3
/to
r 7
.0
S~O
-------
El 1C
HMI 4 cut
L
11 i|i l.|i|i|>|«l«l'«l"ll'l"l'4ll>l"l"l"l"H"l"l"l"l'>l'»l"l"l"l"'l"l"l"
Mil
UWPllkb 10011C*
i i i i i i i i i i
yu»u UK
«!
OMMIM
"la.1:
Ml. 11*11C
fitii. Mlii.
(IK. »S|I (!• MO)
flltCI HMII(S)
aff f^
DIM*.
fllOI
IUU
TMI
tut
nou men A* im
'l»|»l>l«l«l'ltJ*l"l"P'l"ll>l'M'«l"l"l"
/i i i i i i
•aim.
i.o.
»H»|llll4
•0.
M|»[<>|»||1
i i i /
N-O. jumil
It) eoi M.I
IWIII I MTU
It) !eoi M.IBOI w.l » N •
M IllH
I
MTU CM
MCTOI ?
«)|44J4t HJ"
as
3^^
ICAK CNCCI
IN. m| cru
««|4l[s«Jtl[tl|M|M[»
,007
K
FACTO*
M|>ljtlJH|njii
A A
c
iitum
lljl)[H|«'
NUI Ul
NUT Ul
W.
»r
II COM
0»U
HIM
33 53 1 34
0]
404
4?
VELOCITY
oairicc russuw
•TACK
DRV CAS MCTEB
TCMPCKATURC
•AMPLC KU
IAHI.ln.HjOI
TBDcr"
IT l.«r
In
VACUUM.
OUTLET
IT. ».»r
"out
r
IMTIHCUI
CM
•r
vyr
3.2JO
$%7
w
?
2L
2
-70
IC
'/.It,
70
/0O
7c
JQQ
• i >
' '
-------
EMISSION TESTING FIELD DATA
1MI 1 CITl
l|l|4 > » I I
•iiHMP^il^^*"^1
l|ll|ll|n|lo|>l|>l|/4»|lt|l>|ll|ll|H|M|ll|ll|ll
I I I I
nil
ivn'j'j"!
VWPlllib lOUIIOH
^ C£A/i v
IA irp-r>-ivi iJi
>[M|%t|t4|>q>l|M|i
U»tl TlPf
IllllblllOllI llllllMlltllljMllI
'J* Jj»/. 'pM ' Urn
IW «.
onuioi
ilt
I I I i
I I I I I
HUP
CM
Ml. MAI 1C
HIM. rim.
(I*. Hg)l (l« NO)
"'"'"'i' "l"1''1'T*
flltll NMll(S)
SIAtl IKSIM
DIM*. IIKMt)
TTV1'"1""
»IIOT
IUU
IM
m
tut
.L])6l >ll
3ll53 I 54"
7l«|9llO
72|?3|?4
i
POINT
VCUOCITf
OBincc rwcssuM
STAC!
1UUCIIATUU
UMI.ln.NjO)
DftV CAS HCTCI
TtHPCRATOUE
"iSLtt
DCSIHiTD
IT I.'F
In
. rimr
VACUUM,
CMtTLC BOI
TOtrtMATUM
OUTLET
out
INTIMCU
CK
•r
YO.
ip
j
/.y.g
^^^^^^^^^f
ro
z,
60
s
t
tvf
0
'oo.
VST)
77
/DO
7^7
/eo
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
S/PV) Sample date &/Z V# 2-
Sample location & ^
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
l A M
sample type
filter number
filter sample
20 min (check
»r/* r
Recovery
f" Recovered by
S M5 M5-320
3S3t> tH% S
I.D. ^POP /?
I.D. '
when completed) *-
S
$0&A ^
s
date g/23/
//Pi>3
M5-450
/
/
M5W
filter in back half After- Z.U() Hm^Noei-'
1st
impinger
7W 9 g
W.8 g
1^0. \ g
i ^,
MOISTURE
2nd 3rd
impinger impinger
£60, "7 g 5 7S
-31-8 g ^
Total moisture 37 1
t-.l 9
?.rg
•6> g
i
4th
impinger
5.U.7 g
3)-l g
70
Silica gel
o ' 1 1 ' g
S 2-£ .O g
7V-/ g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
I PA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
I PA
H202
H,0
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Acetone ///Tfl /f
Samples storedand locked
Remarks
LABORATORY CUSTODY
Received by
Remarks A
Date
B-51
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number / S
Particulate sample type \s M5
Particulate filter number
Sample date
Recovery date _
Recovered by /fP bS
M5-320
M5-450
M5W
Particulate filter sample I.D.
Probe rinse A t.
I.D. ^K Cfl A *
Purge train 20 min (check when completed) *x
Location of filter in back half After Z. ^Lp
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
Final wt
Initial wt
Net wt
Total moisture
-3
g
g
g
g
. g
25
g
g
spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored^nd locked
Remarks
-ft
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
//
. /Jo •
*
Received by
Remarks
LABORAORY CUSTODY
Date
T
B-52
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
-ftfaV Sample date B/Z3/X2-
Sample location $*<-?/
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
/£ Mf
sample type
filter number
filter sample
20 min (check
iff Recovery date &/Z3/gl~-
ft Recovered by
M5 S M5-320
J53&JY/ ^
I.D. 53^6 _^ ^
^ I.D. ^fyb "A
when completed) ^^^
/MP b5
M5-450 M5W
y
filter in back half A-f+er Z"^ I^P^ef
1st
impinger
' / ' J Q
H1/.Z- g
1^377 g
MOISTURE
2nd 3rd
impinger impinger
L>Tt*v> g ^^.^ g
66s.5.9 g 60! .5 g
x-j^ g 5Lj^ g
Total moisture -J/A/ g
o
4th
impinger Silica gel
6oM g ^l^.^ g
334 g ?M g
5^ % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stpred^xand locked
Remarks ^^
RECOVERED SAMPLE
tQS
A^ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
& A
MS* ft
Received by
Remarks
LABOATORY CUSTODY
Date
B-53
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
wcy
Sample date
Sample location XX-r/£
Run number / £ MS
Parti cul ate sample type
Particulate filter number
Parti cul ate filter sample
Probe rinse /TC &->
Purge train 20 min (check
\f Recovery date &/E3/4
ft Recovered by 2)5 ftp
M5 i/ M5-320 M5-450
.f^.^6 >m{.r
1st
impinger
Final wt /i£>, ^ g
Initial wt /?6>-7 g
Net wt «P 5~O g
' J
MOISTURE
2nd 3rd 4th
impinger impinger impinger
6/5,? g 65^. a g CY/-1/ g
(aii~.t~) g G>o2.-Cf g fco"?-^ g
-28. / g .Sb.z. g 33.9 g
Total moisture 37o."7 g 6>>
Silica gel
%"]^>i 9
^/^-7 g
CJ'T , 7 g
^
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored^and locked
Remarks
-ft
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
6 fa it
//
Received by
Remarks
RY CUSTODY
Date
B-54
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant S/frQ
Sample location ^^T/C^
Run number / /? /^^/
Particulate sample type
Sample date %\zMl
Recovery date £/!/•/
Recovered by MP Jb.5
M5 M5-320 M5-450
2-—
/82-
t/^MSW
Particulate filter number jf"5I?£> rf*/O ^
Particulate filter sample I.D.
Probe rinse hJfl-T'zP
Purge train 20 min (check when
Location of filter in back hal
57/x .>? \ 9 6)8.3 9 6jl&,2--g koE.O g
Initial wt Y^T.O 9 (**
Net wt /47.V 9 "•
Total
PROBE RINSE CONTAINER I.D. t
IPA IMP. CONTAINER I.D. J
H,0, IMP. CONTAINER I.D. J
f f ' (@ g O iu • ^) g ~^ o 7 • t.J g
31.) g £7^ g y.g.Z^g
moisture Z.3l.2--g ^5b
RECOVERED SAMPLE
»/3. ^ ^ s
tf!3 -fl \,' s LIQUID LEVEL MARKED -"
\%/V A i/ LIQUID LEVEL MARKED -^
Silica gel
8'&.) g
' » /O 9
ys.8 g
> % spent
/
/
/
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks,
LIQUID LEVEL MARKED
A
Received by
Remarks
LABORATORY CUSTODY
Date
^i+tem J JSW/
B-55
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /f tfcd
Sample location <^7aTi
Run number 2 £ M ^"
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse t- @
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt 6»"7& -3 g
Initial wt r^-^ g
Net wt /££.# g
Sample date V13/
(<^ Recovery date ft/?!/
(A) Recovered by /ftp b.5
M5 M5-320 M5-450
JL£?0 /,? 7 «x
I.D. f/yr^y
I.D. Wfifi^
when completed) \s
half A-ffdr- iNjIUp(Mr^
( J
MOISTURE
2nd 3rd 4th
impinger impinger impinger
^7.^ g ttk>.^\ g 637- C. 9
^77-^g ,5<8k-£> g ^^L5".7 g
-*/!.? g 53. S g //.7 g
Total moisture 2/7bi/ g (cO
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks "^ /*%&?£' ^.
RECOVERED SAMPLE
v57/^ ^^ LIQUID LEVEL MARKED s
3~//? A tX LIQUID LEVEL MARKED wx
LIQUID LEVEL MARKED
/^' ' .'^ r* \jr .^^
jft // ^ /J
//W// >/" ^^^
/AF0 /^ ^//4 «--
xibr tf/Ajt- CiJ-r, fJff.^ //70 /
8 *-^/
^2^
/XMSW
Silica gel
S$b,/ g
42..^ g
% spent
/
/
X
/
^
/
^-
9,/
Received by ( — ^^7^^
Remarks /CC'q ^ £<£
• LABORATORY CUSTODY /
^\^^-T^/u^C s Date jP/3d /f.
?9^5 (/ ^J?7// 7
/
B-56
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant -fflr.Q
Sample location Z^^-T
Run number ^ d /^/J
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse -///, £r<3/<
Purge train 20 min (check
Sample date k7Z3/^
•/4v Recovery date fy/l^j
r Recovered by /fp 2X5
M5 M5-320 M5-450
^.r?0 /j*^ ^
I.D. &// & '-
^ I.D. sy/jfls
when completed) «X
l^
<**^
M5W
Location of filter in back half A^fer zH 3>ipiw«^r~
1st
impinger
Final wt 6»5^-2x g
Initial wt *-/76.k g
Net wt /&l>(o g
•
' ^
MOISTURE
2nd 3rd 4th
impinger impinger impinger
£»5"&.1 g L&^.o g 5^7. o g
6»/o . / g u»n.3 g ^5iti g
-~3Z.. o g V^ • j g "*C>-C» g
Total moisture ZJ2.S-6* g CO
Silica gel
876,-S g
fe/,7 g
g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored, and locked
Remark s£
LIQUID LEVEL MARKED
^LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
I/&9
. AJl, //?/ A
; 1144A
Received by
Remarks
LABORATORY CUSTODY
~
Date
B-57
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant JtttO
Sample location ^7<< r/j£T~
Run number XJ) ^.5"
Particulate sample type t/
Sample date Ull/^l
Recovery date Jj/2,3/
Recovered by )\$ /l|p
M5 M5-320 M5-450
<-^
C^^
M5W
Particulate filter number ^f3^> Jr*/'fs
Particulate filter sample I.D.
Probe rinse TTc^.-T'fl d6
Purge train 20 min (check when
Location of filter in back hal
<^>/ (I'
I.D. ,5??y /i /
completed) — -'
^ nT"^f 2.^ "TVnniMQior*
/ J'
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt (cvSl.'f- g 6-3y-; 7 g 6»3l-^-^g &l£>>(c> g
Initial wt 48$ ,ft g 4>6
Net wt /V2..C, g
Total
)3.C g G>03.8 g 5?Z-0> g
2-? ."7 g 2-7- 7 g /i -O g
moisture 2o9.9 g v5^5
Silica gel
357. /g
J?o8-3 g
Jb.^, g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
-A*' LIQUID LEVEL MARKED
A \/ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
(IW*
Received by
Remarks
LABORATORY CUSTODY
Date
/
B-58
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /AKCO
Sample location Oot/^t
Run number 3KtA,5B
Particulate sample type
Particulate filter number,
Particulate filter sample
Probe rinse rVodo'v/d^-'
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt 133. C* g
Initial wt *"f?^ • ' 9
Net wt o)35.b g
Sample date fc/Zr/K1"
Recovery
Recovered by L
M5 ^ M5-320
3S~3b8zy- '
T n ^J ^"7 P» /
1 . U. «-TT^ ' ^J i^
I.D. 3^3,1 A/
when completed) X
half /^^4fcr- ?,^ IDnpiN
MOISTURE
2nd 3rd
impinger impinger
6>M Q •/ g G?^-3-^ g
/ '7*7 O c Q Ll /
L>( 1 •] g SOT. 6- g
-2?.o g 3?.t g
Total moisture 3lt-1 g
date £/24/fcZ^
>s /y\p
M5-450 M5W
^
3^
4th
impinger Silica gel
(.oo.1^ g 7z-7 •'l^ g
S7(T.
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location
Run number
Sample date
Recovery date
M5
Particulate sample type
Particulate filter number
Particulate filter sample I.D. 3441
Probe rinse
_ Recovered by
*/ M5-320
JAP
M5-450
M5W
I.D.
Purge train 20 min (check when completed) *
Location of filter in back half A-Pfer ZV'
f*9
MOISTURE
1st
pine
fe \
impinger
-7£T '
2nd
impinger
3rd
impinger
4th
impinger
Final wt
Initial wt
Net wt
6,73.^
Total moisture
g
g
g
Silica gel
g
g
g
spent
77^-1
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received
Remarks
LABORATORY CUSTODY
Date
B-60
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ^RCO Sample date ^/l^l^l^
Sample location CuJficf" Recovery date fc/z^r/fr"^
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
3Cs N^5 . Recovered by
sample type S M5 M5-320
filter number 3S~3OO^5 ^
filter sample I.D. S'HH B *'
AaitoM^ I.D. 34S ^"P
M5-450 M5W
/
. i/
9 r"^
4th
impinger Silica gel
6^4 •/ q 76£o g
^ > 7 g *-^u • / g
7 j * spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
LABORATORY CUSTODY
Date
C3 7//
B-61
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ^"RQD
Sample location Outlet
Run number^ ^ 1*^5
Particulate sample type *•
Particulate filter number
Particulate filter sample
Probe rinse Ac^foNjd-.
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt 7$"b .% g
Initial wt .ffoo.T g
Net wt Z£0T g
Sample date QflH/Qi
Recovery date fr /£•/;
Recovered by ^)5lv
S M5 M5-320 M5-450
3 53o fj/'
I.D. *4L&\8 ""
I.D. 4^| A/
when completed)
half ,/\-Fta~ 7^ Xmp(Nl^r^
MOISTURE
2nd 3rd 4th
impinger impinger impinger
^7'^g <^33.^ g 623,9 g
6>5b.$ g 60^ -^> g 5?7-O g
_C«T 703 "7^fl
j^o g L-i-O g fcr^' / g
Total moisture 3o4,Z—g jfa
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
^tfcl ^ •" /
5^34 /L^ LIQUID LEVEL MARKED ' .
5C3rA J/ LIQUID LEVEL MARKED 4
LIQUID LEVEL MARKED
^(,4^ A */ ^
im-Sh ^ iX
/lio A.-- ^-^
^
M^
M5W
Silica gel
760.? g
~loL,.o g
5lf^ g
i % spent
c'
^
/4^
Received by' — <^t^"^f-'^-
Remarks /l£
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant A^0 Sample date &/L4/&^
Sample location ftutl^t" Recovery date fc/lH /{f^-'
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
•-fAflLS Recovered by MP D-*
sample type •/ M5 M5-320 M5-450 M5W
filter number J3L5^O i/
kcAt^e^ I.D. 5U34, A ^
20 min (check when completed) .X
filter in back half /\-fier Z,Nc) "'"^
MOISTURE
1st 2nd 3rd
impinger impinger impinger
634.$"' g 6^/0-1 g (* IT C
/ 1 / • 1 Q u?Dr*3 Q *5oOi^
_« • ~* 1 1 / 1 1 •* I
Total moisture 2.13. 3
s
ai^tK
4th
impinger Silica gel
g 4/3o g /Oj.l g
g 511-O g 6^. 2^ g
g X£iS g 3b.l-' g
g ~7O % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
5131
5631
A
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
A
ll^SAr ^
Acetone //fro frlT"
Samples stored and locked
Remarks
Received
Remarks
LABORATORY CUSTODY
Date
#643723
B-63
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant AR£r>
Sample location Ou~HeT
Run number 4BNV5
Particulate sample type t
Particulate filter number
Particulate filter sample
Probe rinse Ac£ToNd-
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt llC^.^g
Initial wt T?/.? g
Net wt Z£M-3 g
Sample date W^/
Recovery date fc/2.4
\2^
III,
Recovered by Af? JX^
/ M5
353O }to "*- *"
I.D. v5^o 2> *
I.D.
when completed)
half A-R».r- ?
M5-320 M5-450
s
v5C^o A
^/
^ n>,pMq£r
' vJ
MOISTURE
2nd 3rd 4th
impinger impinger impinger
k5"liT g C>3)-k g L5i. o g
6S7.5^g 5^
-35.C, g H
Total moisture 3
&>'? g 6zJ?.^. g
^.1 g 30.7^ g
'TS'..? g o/
M5W
Silica gel
731. £- g
5^.^-g
1 spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
ML
Received by
Remarks
LABORATORY CUSTODY
Date
B-64
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant f^(
10
Sample location OuTldt'
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
V-C/A5V/
sample type
filter number
filter sample
20 min (check
filter in back
1st
impinger
7 (>*$• ^ g
47?. 4 g
2-S5.9 q
Sample date %(2*f/\
Recovery date &/Z5-//
Recovered by A[p £)3
M5 M5-320 M5-450
^
I.D. 5C.41B*/
lofer- I.D. ^LV3A ^
when completed) — -*^^
half A^-'fer" 2x° ^Ir^p/Njq^ r*^
MOISTURE
2nd 3rd 4th
impinger impinger impinger
4S1-0 g 67r,f g 5C1.) g
(0^T,o g ^z/S-2^ g ^*-/T.(s> g
"" il.J g y/.L- g Z-Z_i^ g
Total moisture 370,o g /£>
\(^
'Vl^
/ M5W
Silica gel
777-^ g
73Z--6 g
57 g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
RY CUSTODY
Date
B-65
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /\KCO
Sample location OCjtleT
Run number ^J^/I/L^ Vy
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse y/oltVn —
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt ~f"L^ -^ g
Initial wt T?'. *~- g
Net wt MY. "3 g
Sample date tMfy
Recovery date &/^f/
Recovered by -D5> n\P
M5 M5-320 M5-450
3s3frK38 *s
I.D. 5^(oS> •/
I.D. 544 k A, ^
when completed) >/
half AT-fcr 7,^ n>p>Motr^
MOISTURE
2nd 3rd 4th
impinger impinger impinger
(,^f(t& g Lr^j-1 g 6»/9-3 g
6? ^9 , *T g 6/3 , 3 g 5*72. , y g
'M-.9 g 3/. / g 2^.^ g
Total moisture 5/£ g %
<^-
'bZ-
j/ M5W
Silica gel
7 £3,1 g
133 ,*/ g
Vf.i g
) % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
//fo k
Received b.
Remarks
LABO
Y CUSTODY
Date
B-66
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant _^
Sample location OutleTf
Run number
Sample date gzT/E
Recovery date
Particulate sample type _
Particulate filter number
Particulate filter sample I.D.
Probe rinse Ac£.1oN)g--
M5
Recovered by
M5-320
}>S
M5-450
M5W
I.D. ~ f/M A/
Purge train 20 min (check when completed) ^s
Location of filter in back half Airier 2,***
1st
impinger
151/J
MOISTURE
Final wt
Initial wt
Net wt
9
g
2nd
impinger
(35.
3rd
impinger
4th
impinger
g
g
Silica gel
"7^-^ q
IV+.j q
Total moisture 32- r -3
spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
-54STI A
Received by
Remarks
.ABORATO.RY CUSTODY
^- ,
Date
B-67
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant /\KCO
Sample location Ojfl£T
Run number 5BIA &
Particulate sample type <
Particulate filter number
Particulate filter sample
Probe rinse Ace.'toNl2-'
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt 7gt . f g
Initial wt SoL>$ g
Net wt Z3i . 7^- g
Sample date ilt-S/il^
Recovery date %/LC/f2
Recovered by
x^ M5 M5-320
?&» n *
I.D. JS£7 /? ^
I.D. J/<^7
when completed) \/
half Afv^r Z.^ ICrn
MOISTURE
2nd 3rd
impinger, impimjen
, Cti\M 6»4-7vX
ltL>j >3 g koZ- ^
— ^4 g H^r-
273. 3" T . r-^*. . Y;*'6'
Total moisture ^cZ', £
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
RECOVERED SAMPLE
j^f^ i £t *
- ^^prffr-/ fi
Jftffl (X LIQUID
,-5^^ /9 •^LIQUID
>^S MP
M5-450
pmrr
4th
impinger Sil
fr3«ffi
g o7,i '^ g o ' ^
g 6/Z--7 g 6/
g /ii^' g ^
9 ^^ ?r^
xx
LEVEL MARKED ^X
LEVEL MARKED ^
M5W
ica gel
9y 9
/^ g
^ g
% spent
BLANK CONTAINER(S) I.D.
IPA
H202
H20
LIQUID LEVEL MARKED
Acetone sc,5| ft
Samples stored and locked
Remarks
Received by
Remarks
LABORATORY CUSTODY
Date
A37/t
B-68
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant AKCo
Sample location GLIM^-'
Run number ACM5^
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse /W/toH^-'
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt 74"$ ,U g
Initial wt ^/^.^ g
Net wt 2^H g
Sample date \\l£l$>1^
Recovery date $/z?/Kl^
Recovered by 7>5 /^P
M5 ,X M5-320 M5-450
1100 no •
I.D. Jfjpft^
I.D. 5%$D A i/
when completed) , ^
M5W
MOISTURE
2nd 3rd 4th
impinger impinger impinger Silica gel
/ ^ "? d t "7 "~7 -? / i-***! "" 1 ~i(? ~n Q
c^33.7 g c^^/Og Cp'TJ./ g 7$ 7.7 g
6^-,? g 5&1- 1 q 613.5 g 73(
'3^7 g ^.x' g 13. ^ g J7.
Total moisture %?>L<(o g vD %
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
~5t3J flf LIQUID LEVEL MARKED ^^
.'TO^^ |X LIQUID LEVEL MARKED ^^
LIQUID LEVEL MARKED
M6»S$A ^-^x
Mutt-A*^ — ^
5(,s"/A >^ '
D.V g
•' g
spent
rW
Received by^^^c*^*1^^^-
Remarks /L^t^^ #
LABOR^O^V CUSTODY / /
*\^'A-JL'lL~' tote f/3o/ftL
tf%>3 i £37/1 ' f
— ''
B-69
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant f\RLO
Sample location ftjt'JdJ
Run number Shm5*£>
Particulate sample type
Sample date r/2.r/Vi^'
Recovery date fc/ZS'/^Z-''
Recovered by MP ^
M5 S M5-320 M5-450 M5W
Particulate filter number ^S^O R^ii •
Particulate filter sample I.D.
Probe rinse /W~to <>/£-•
r/j.?fl ^
I.D. tftfA*/
Purge train 20 min (check when completed)
Location of filter in back half AL^^ ~^^ Jj^pn^^f^
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
Final wt ~if5^. ' 9 (oO^.^ g fc^o 9 oZf.O g 7 L&>Lt> 9
Initial wt 4^-7 g ^
Net wt Z.SS.'-t g
Total
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant y
<\KOe>
Sample location ^jf/dT
Run number
Particulate
Parti cul ate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
Sample date ^ll^(^\
Recovery date fr/z,C"/'
i^
g"U^
^•/\f(V5>V/ Recovered by MP h-^
sample type
filter number
filter sample
Wefe'"'
20 min (check
filter in back
1st
impinger
4T7.7 g
M5
S&Df**
I.D. 5j56-.Bi
I.D
when completed)
half After
M5-320 M5-450
*7 s
/
fttlo K ^
^
-?^A ^Lmpirtqe,^
7 ^J
MOISTURE
2nd 3rd 4th
impinger impinger impinger
I I f
L&6.I g C?o7.T g k>i£.o g
^5-11,4, g f
-5^.rg
Total moisture 2
a^J g 5??-^g
/f.3 g A- 3 g
:rz..i^ g 9s"
»X M5W
Silica gel
6,73. 2-g
V7.f g
/
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
gag A
/
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Acetone 5^51 A
Samples stored and locked
Remarks
Received
Remarks
0
RATORY CUSTODY
Ate..
Date
B-71
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant AlLCO Sampl
e date ^llXlii^
Sample location £)/7Mdt Recovery date fc/LfT/fc l-^
Run number 6i"6hV5>V/ Recovered by rfjp £)S
Particulate sample type M5 M5-320
M5-450 .X M5W
Particulate filter number ^^>Qff^f^^
Particulate filter sample I.D. 5frj°! $ ^
Probe rinse WtdejT" I.D. J^f/
v/
Purge train 20 min (check when completed) ex
Location of filter in back half A^er 3** IT.
MOISTURE
1st 2nd 3rd
impinger impinger impinger
Final wt "/'rS"?"/ g C3L.9 g 665~.C-
Initial wt T?/./ g ^'-o g 57%. 1
Net wt 2SN-.0 g — 4S .1 g ^"/^
Total moisture 3oS-o
mp.wdtr^
4th
impinger Silica gel
g 6cS-O g ^oo,^ g
g 639. / g "?S"3,I g
g 2-o- j g T '-3 g
g ?$" * spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
4023 A
Received by
Remarks
LABORAtOR
DY
B-72
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date
Sample location OiT^leT Recovery date £/2.r/JTz^
Run number £ CM.,5 Recovered by /ftp J^S
Particulate sample type X M5 M5-320
M5-450 M5W
Particulate filter number 2 £30 f/7
Particulate filter sample I.D. $4^- 8 ^
/
Probe rinse A(>~To^(L_^ I.D. f^XA
Purge train 20 min (check when completed) ex
Location of filter in back half Jtfier 1^ ^^pi^^f^
MOISTURE
1st 2nd 3rd
impinger impinger impinger
Final wt ~74f7-3 g G'fl. I g t,S~l.~J g
Initial wt H7fc7 9 »'7,2-^ g 6>^-^"°g
Net wt 2^3. G g -56.| g 35^7 g
Total moisture 3l'z-t^ — g
O
4th
impinger Silica gel
573.? g 763.7 g
55) ^ g 7I7.O g
22-3 g ^.1 g
/!> % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
/)
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
56.CIA
Received by
Remarks
Y CUSTODY
^ Date
B-73
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant AT2-CO
Sample location Ojt*l % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
.X
A
•LABJDRATpRJf CUSTODY
X^/ ;
Received by
Remarks
B-74
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant AK.CO
Sample location Ouflert
Run number VA fAS *f5
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse AceJbA/* —
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt "IDl.U g
Initial wt ^£.1 g
Net wt ZH.S g
Sample date &/Z6/a£'-~
Recovery date 4/2,6 A t-^
O Recovered by //P h^
M5 M5-320 i/ M5-450 M5W
353O^Z-^^
I.D. 5L^-^ £> *
I.D. 5^rA- ^
when completed) ^
half Affer J-^ JZ>7 P/V^f"
/ <_J
MOISTURE
2nd 3rd 4th
impinger impinger impinger Silica gel
673.1 g 57^ g 5*6. !f g C,TS.o g
^1-7 g 31-^ g X1-1 g 51,4 g
Total moisture 2&1 . | g &5 % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
sczr/Vi/ /
5lZC>AvX LIQUID LEVEL MARKED ^
5 tV? A J^ LIQUID LEVEL MARKED /
LIQUID LEVEL MARKED
*ft?fA^ y
^6S3A^ x^
HtS'Z'A •'X ^X
^(.n A X .^S
<-X
f~\ >?/ ^<
Received byLJxc^^^o^;
Remarks /^<^ •# A3 ,
LABORAjmY CUSTODY
^ vSv^^L-^-d^L-. Date £ Ad& / (?£U
f~f n P ^-/ '
B-75
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant H*-CO
Sample location C^C^\e^r
Run number 7£>N\5 45~£
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse AoToM^
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt 7o3. (& g
Initial wt 5oL»3 9
Net wt /?~/.3 9
Sample date 5/Z.t/j
Recovery date *&llL f\
) Recovered by Mp &>
M5 M5-320 i,/ M5-450
3O t? y I.D. ^(p'LiQ ft/
when completed) u/
half After ^ 3^plfJY<^
/ s^y
MOISTURE
2nd 3rd 4th
impinger impinger impinger
toZ-7-T Q »30i/ o L~*>(o-l a
i ^ ^ ^^ J7i "~ i • ' ^
fc>6D«^ 9 S9S^> / 9 (i>/5^^ 9
~3o,J g 35". G g Zo.7 g
Total moisture 2-^7-3 9 00
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
St^/V -X LIQUID LEVEL MARKED :
5C,0^ Ac //LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
HC.V3A"' /
*-f(o^^A i/ /^
St^'/A'^x ^^
z^
rZ^
M5U
Silica gel
' ' 9
77^-0 g
6V.*/ g
% spent
^
/
X
s
A-/
Received by ^^CJ^-^-y^
Remarks Sc^-tl— ^ ^
LABORATORY^aUSTODY , /
r\/V/ / -• x)/
^ ^ V\^/L^ ^^te y^^
^ 7&3 f &37/ / f
/£") ^,
/c ^ -— -
B-76
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant hlLCD Sample date \/U /i t^
Sample location Out/e~t" Recovery date V/^^/f^
Run number ~7C(V\^' Recovered by As tAP"
Particulate sample type -^ M5 M5-3?0 M5-450
M5W
Particulate filter number ^5"30 ^ 1^3 u
Particulate filter sample I.D. 5(*oS 3 *
Probe rinse /-jceTaNd— ' I.D. 50o^A*/
Purge train 20 min (check when completed) \/
Location of filter in back half r$\t.f e? CZHp/rja^.r'
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt "73?-^ g G33.<] g (,37^ g £^7J g
Initial wt <*|lo,b' g ^O-^0 g ^?/9/j g
Net wt Z^fk.) g -JL-U g y^- / g 2/7. & g
Total moisture 3CLL.3 g /O
Silica gel
L99.I g
Vfc-7 g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
5LCI
Received by
Remarks /
LABOfiATOUSTODY
B-77
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant fl^-CO
Sample location 0\3"\&Y
Run number "y^MS'
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse RceTf"o»o^
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt ~7Vo. (a g
Initial wt */??'/ g
Net wt Z-4 1 . 2^ g
Sample date £/Z,6 /
Recovery date £/2-4/
Recovered by ^5 Af P
^ M5 M5-320 M5-450
JOo ?l*/X
I.D. 54o^c 3
I.D. 560^A^
when completed) ./^
half pr-W g
Total moisture 3)6, -3 g ?$""
ffz^
^•z^
M5W
Silica gel
~?6o^ g
^6.7 g
^
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
A ^
lo
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
./
Received by
Remarks
B-78
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant A^CO Sample dat
Sample location Oofj^i Recovery d
Run number $A(!\5^H53 Recovered by Ji[\
Particulate sample type *S M5 M5-320 ^
Particulate filter number ^5^0 $lb V ,
Particulate filter sample I.D. 5bl\ B */
Probe rinse ,Ac\
MOISTURE
1st 2nd 3rd
impinger impinger impinger i
Final wt ~7ob-l g (at\ ."7 g L}^.^ g 6
Initial wt 4^7. & g kS"^."? g S'?/-^-- g S
Net wt ~2-)£'3g — 33,o g 7^ . 3 g 2
Total moisture ~L&5.cj g
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. ^6, 1 1 k ^
IPA IMP. CONTAINER I.D. 5^\~L k ^ LIQUID LEVEL
H,0, IMP. CONTAINER I.D. 5^12) A iX LIQUID LEVEL
e %lzb/$l^
ate W2-47J ^
D i>>S
^ M5-450 M5W
D 1 M A ^.f"
r J
4th
mpinger Silica gel
?T.fl g 0^-7.3 g
-<^ g 5"S^J g
^C*^ % spent
/
MARKED X
MARKED v
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
/
SL<;\ A
Received by
Remarks
' LABORAJjQRY CUSTODfY
C^'-^n^a^ V \^/L^j^l _ Date
B-79
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location _
Run number % B
Sample date _
Recovery date
Participate sample type
M5
Recovered by
M5-320
M5-450
M5W
Particulate filter number jfe"? o ^5"*?
Particulate filter sample I.D.
Probe rinse
I.D. ,54/V A
Purge train 20 min (check when completed)
Location of filter in back half After
Ol M
MOISTURE
1st
impinger
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
Final wt
Initial wt
Net wt
3g
g
g
g
g
g
*//.(/
g
g
g
g
g
g
Total moisture 3^3 -3* g
RECOVERED SAMPLE
%<>
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Acetone 56r/A
Samples stored and locked
Remarks
..O
spent
Received by
Remarks
LABORATORY CUSTODY
- Date
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant H
IIUJO
Sample location Obtlel
Run number
Particulate
Particulate
Particulate
Probe rinse
Purge train
Location of
Final wt
Initial wt
Net wt
^CNV'C -^5
sample type
filter number
filter sample
20 min (check
Sample date 5/2,4 /&,
f Recovery date 9/Z^A
Sd- Recovered by 1)5 Mp
W^V/M5 M5-320 j^J^ M5-450
J.£30 tff^v'
I.D. 5(*I7&V'
I.D. ^/?A ^
when completed) ^^
7^
2^
M5W
filter in back half AfVr J ^ ^n^atf
1st
impinger
4^-3 g
Zo3. G g
1 U
MOISTURE
2nd 3rd 4th
impinger impinger impinger
L> %> • / g L>(*>\ t\, g 5£0-3 g
6?2_^g 61^,9 g 5fcl.) g
"~ i(^. ) g nv'-J g ' // ^~ g
Total moisture Z74/O g 7^
Silica gel
776.0 g
7^-M g
^"3 >vP g
% spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
A ^ LIQUID LEVEL MARKED
(\*/ LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
LABORATORY CUSTODY
/ /./
Date
B-81
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant HIC.LO
Sample location OJilel
Run number $DN\5" -^GQ
Particulate sample type >^
Sample
date 5/UA
T*^
Recovery date 6/£(/£2-
Recovered by
M5 M5-320
/WP ^XS
v^ M5-450
M5W
Particulate filter number J^^ ftf^-d-
Particulate filter sample I.D.
Probe rinse Qtelo^c~j
Purge train 20 min (check when
Location of filter in back hal
5fc2o3 J
I.D. 5(>LQl
completed) ^x^
— •
v/
frjc"i^ ^ K>« -r- j
• vTT«?r^ cJ ^Lrr\r>fW4^r"^
MOISTURE
1st 2nd 3rd
impinger impinger impinger
Final wt "732--( g b\~\-^ g LVl(5. 3 g
Initial wt ^ ),$""* g L>
Net wt 1^0 •*) g ~J
Total
6>i?-S^g 6 H •*>""" g
JO Q 21
10-0 g 3^>.6 g
moisture O^ • ' g
1 .3 g
2-0^3 g
?D
Silica gel
ISV-S^g
a.? g
% spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
56-z.o A ^
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
2,1,
Received by
Remarks
B-82
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant J\KLO
Sample location OutleJ
Run number f A M$~\B
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse ^ceTr&Nfc*
Purge train 20 min (check
Location of filter in back
1st
impinger
iQhl
Final wt • /CnM g
Initial wt *"/?"?. 3 g
Net wt 2*f©rt> g
2-oLf.(o
1
Sample date 3/27/& <
Recovery date £/£?/$
Recovered by rffP bS
M5 .X M5-320 M5-450
Jt>3u ^'CXv/
I.D. <5^^-'6'3 6 i/
I.D. SL-L^k^
when completed) iX'^
half Afftr 2.wd "X^PfM '°'!b g C*i| • ji g
/ 1 1 / C" 0 1 G C~(L 7 C"
(e>i(^tO g ^tol.i g O^t-O g
^iP. g ^^ g £&^ g
-37 1 **o.(- -a.0 a
*"^ I -^ rj-j T OV-/I 1 ^-
oLdl moisture ^-=*7.L7 9 &'
^
\T^
M5W
Silica gel
^,
6<3O.6> g
ZC-J g
C^ % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
RECOVERED SAMPLE
5L23A_^
i- x LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
^
Received by
Remarks
- LABORATORY CUSTODY
Date ^X^/r
B-83
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ARf.D
Sample location Ootldt"
Run number ?^Al5B
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse AceTfbNfcx-
Purge train 20 min (check
Location of filter in back
1st
impinger
Final wt ^-h^> g
Initial wt -SoL<~7 g
2.0^.8
Net wt 2>f o. 4> g
Sample date &/Z-1/82
Recovery date £/£7/<
Recovered by /l\P 0S
M5 M5-320 M5-450
/f?0 /5^ ^
I.D. M7ooB ^
I.D. ^OO-A ^
when completed) /
half Af-fer Z^r^p^ef
i U
MOISTURE
2nd 3rd 4th
impinge_r impinger impinger
LU4.3 g (*tn.o g ^o^-t g
^25/i7 J^- Y/^'^g
Total moisture -3£i3-^ g %S
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
RECOVERED SAMPLE
54>o2. A / LIQUID LEVEL MARKED '
5^,0 3 A tX LIQUID LEVEL MARKED -x
^-
?T-
M5W
Silica gel
7? 7-0
73£. « g
/// f/^Ot
rl . j~ g
% spent
/
/
/
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
Received by
Remarks
LABORATORY CUSTODY
Date
B-84
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant AR(LO
Sample date 9/z~? /£
Sample location
Run number
Recovery date 1/2,1 A
Particulate sample type
Particulate filter number
M5
Recovered by /]/[p
M5-320
M5-450
M5W
Particulate filter sample I.D.
Probe rinse V/a"fg.r"
I.D.
Purge train 20 min (check when completed)
Location of filter in back half Affe.r 2^
MOISTURE
Final wt
Initial wt
Net wt
2nd
impinger
3rd
4th
impinger
Silica 5.el
9
'
g 67^.7 g 5?5~.
g -^Q^g
Total moisture
Z5 . /
Q^ 57.
"Q % spent
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
RECOVERED SAMPLE
A* ^
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
L
#
Received by
Remarks
LABORATORY CUSTODY
Date
B-85
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ftfiC-n
Sample location r}i7f)£T
Run number ^bM^Y/
Particulate sample type
Particulate filter number
Particulate filter sample
Probe rinse V/otex*^
Purge train 20 min (check
Location of filter in back
1st
impinger
^H
Final wt tttr 9
Initial wt Soo.O g
NeL wl Ti-ii^T- y
T
Sample date \IT\\^1^
Recovery date ^{ttfal^
Recovered by S1[p 2>$
M5 M5-320 M5-450 tX
#30/:Tl/
I.D. M^HB^
I.D. "-/tVlA^
when completed) S
half After V* T^pi^Cf^
MOISTURE
2nd 3rd 4th
impinger impinger impinger Silii
-^rf^-r-J g -£*"ph3 g _£:&-rfa—q — &frf
i>^7~] g 6.0Z.U g 6»G>3. .^( 9
&Ug
spent
307-7
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
44S3 A
Received by
Remarks
CUSTODY
Date
B-86
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant . jAR(LC>
Sample location Ou\\£^
Run number /OASIS' ^S~o
Particulate sample type M5
Sample date %/2.~]fkZ^
Recovery date Jr/L7/52^
Recovered by fl\P 1\$
M5-320 ^ M5-450 M5W
Particulate filter number *jS3o £7^ S
Particulate filter sample I.D. 5Jfa// R *
Probe rinse Ace-ToMO
I.D. .'ftWA*/
Purge train 20 min (check when completed) ix^
Location of filter in back half /Vf~fer Z- ipip/rostr"''
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger Silica gel
Final wt "73"?."^-' g £>!l-k g (y\b.~l' g £zS-7 g £?9-7 g
Initial wt / y/O g £>^(/rf g
Net wt Z^o,^ g -3?.S g
J|.^> g 2JL3 g S).1 g
Total moisture 3'M g oJ % spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D. ^ ^/ A ^ ^ /
IPA IMP. CONTAINER I.D. fTff /
H,0, IMP. CONTAINER I.D. ££5TbA
BLANK CONTAINER(S) I.D.
IPA ^49 ^A,J/
^ LIQUID LEVEL MARKED / j
^ LIQUID LEVEL MARKED ^
LIQUID LEVEL MARKED ,
H,0? ^3A f /
H,0 4t^iT-/V^- ^^
Acetone /SkS"l A ^^^
Samples stored and locked
Remarks
/ A ^ LABORATp
Received by L3S^r<>t^<2>' \^>^*'
RY CUSTODY . ,
•1 / ' / /
^-£LC&— Date /^A^/tf/^
Remarks /rL^^^^^^ f 03 7//
BC87
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample location f
Run number Jo?) Mr
Sample date _
Recovery date
Particulate sample type _
Particulate filter number
M5
Recovered by
M5-320
M5-450
M5W
J53 0
Particulate filter sample I.D.
Probe rinse
Purge train 20 min (check when completed)
Location of filter in back half
MOISTURE
Final wt
Initial wt
Net wt
1st
impinger
"7U.Og
.3 g
2nd
impinger
3rd
impinger
4th
impinger
Silica gel
593.?
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked
Remarks
Total moisture 371 .'J
RECOVERED SAMPLE
J'
/f
t,'
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
- V
spent
Received by
Remarks
LABORATORY CUSTODY
Date
B-88
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant
Sample date £fzl($
Sample location OuTleTT"
Run number )Of MV^J^
Particulate sample type
Particulate filter number
Particulate filter sample I.D.
Probe rinse $\ceJ(>
Purge train 20 min (check when
Location of filter in back hal
Recovery date
Recovered by 1)5 Mf
M5 X M5-320
.3r3a xPs-y^
^4 & r
I.D. k^r^x
completed) uX
f A-f-f1*'^' 2-w 3s\Pivcitr
btzitii^
M5-450 M5W
X*
/
H-i.O g ^.^ g ZC,
moisture 3C>Z-'3 g
•1 g 7^,1 g
g 4'-r g
75^^ * spent
RECOVERED SAMPLE
PROBE RINSE CONTAINER I.D.
IPA IMP. CONTAINER I.D.
H202 IMP. CONTAINER I.D.
BLANK CONTAINER(S) I.D.
IPA
H202
H20
Acetone
Samples stored and locked _
Remarks
<&<;< ft
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
Received by
Remarks
LAB
^ -^
CUSTODY
Date
B-89
-------
QUAD TRAIN SAMPLE RECOVERY AND INTEGRITY SHEET
Plant ATCCO
Sample location (
Run number Ift^bf
Particulate sample
Particulate filter
Particulate filter
Probe rinse p^
Vrl1-
K".R
type
number
sample I.D.
Purge train 20 min (check when
Location of filter in back hal
Sample date Wl"J /i
Recovery date ^llTJI
Recovered by A|P D5
M5 tX M5-320 M5-450
i3&033-l» /
-5^5-7 ^ /
I.D. rt'Z'f A*/
completed) \^^
f After ^^lou.a^r-
/ >J
MOISTURE
1st 2nd 3rd 4th
impinger impinger impinger impinger
Final wt 73C.-"Z-g £z-' '/ g £.^"J.S 9 Co~7.7 9
Initial wt ?/
Net wt 2tfy
£-O 9 b
!,Zx g -
Total
PROBE RINSE CONTAINER I.D. '
IPA IMP. CONTAINER
H202 IMP. CONTAINER
BLANK CONTAINER(S)
Samples stored and
Remarks Frft" D<
r
Received by O3^t
Remarks /t£'f~ ^
I.D. J,
I.D. 5
I.D.
IPA <
H202 — '
H?0
Acetone
locked
~t~ 11 / -f'
/
f^t*^^*
03%)3
fj'O'i 9 (gli'V* g vSo-^- i 9
V7.bg J^.l g ^'S g
3) 0 r-""' <^r- — "
' 70 g » 5
RECOVERED SAMPLE
^7yf-
?!f/ # J^ LIQUID LEVEL MARKED
"J^7? /I tX LIQUID LEVEL MARKED
LIQUID LEVEL MARKED
m3A f7"
44^z, A ^',- ^
5 C.O A ^'
' r- ) ToUs^r^ J r)ur r>r u^ ,y\
'o /
LABORATORY CUSTODY
^C^^2^ Date
-------
APPENDIX C
LABORATORY DATA
C-l
-------
C-2
-------
THERMOGRAV1MLTR1C PARTICIPATE ANALYSIS
PN
Plant (JL.5.
- Philc.de
Sample location
Relative humidity
Run No.
Analyst
C. "
Density of acetone (pa) .7308
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£/n$5
Cm 353
Sample I.D.
itmsft
/-4
IAMB
tfims
Container No.
I147A
tl$oA
UWA
5100 A
IIWB ^
59oD&
Initial Vol. (ml)
tOD mJi
9
527 MJi S
3^3 w. "V
Tare Wt. (mg)
10094$. 1 -•
lot, 36^.7 x
/£>3f^3,7 ?
(o477f.o ^
&W.4- <
550. & ^
o
I
OJ
Analysis results (mg)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Cm <+24-
£"143O
cm 4-3a
Cm 39 P-
Cm?>i5
£nf(?>53
Initial wt.
(ambient)
5.3 •/
0.5 S
13 /
6/.0 ^
0.3. <'
/6^.8/
^a. ? /,
Heat to
320°F,
3 hour
cool ,
weigh
3-0 /
1.3 /
on /
jo.tj-s
-O.I '
83.^^
lo4.o^
Heat to
450°F,
3 hour
cool ,
weigh
€?-/ ^
0-7 /
afc ^/
/3J /
a 51 ^
8^.31^
97.3«/,
Heat to
600°F,
3 hour
cool ,
weigh
0-5 ^
^•3 ^
c>.^ ^^
//.o *
a/ •
77.4-^
8^.^^
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by _
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530 -1'4
Plant U.5. £PA- At-CO -PhitoJelchi'*.
Run No.
Sample location
Relative humidity 5O%
Analyst (L.
Density of acetone (pa) .7*?<3fl
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm 4*5
£rti430
Cm 1422*
Cm?fl2>
Cm3?5
Cm 354-
Sample I.D.
16ms
1-lL.
1 8>ff\5
1 6ms
Container No.
IW(\
llfoA
nw ft
5?03A
ims
5$0*>&
Initial Vol. (ml)
7/ M^i •/
W3w^'i ^
5«L7n«/'5 ^
«3^m/'5 ^
Tare Wt. (mg)
<73^4.5 ^
10(0^(0^77 ^
103843.7 ^
Io222i-l. B ^
344.4. ^^
3^-y.6
0
I
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cmn-3-5
Cm 43>o
cmtei-
C/T13^
Heat to
450°F,
3 hour
cool ,
weigh
/.3
on *
O.(o -y
lb.t>. ^
0.3L ^
77.0 ^
43.6 ^
Heat to
600°F,
3 hour
cool ,
weigh
o.Q>
0.3 •,
0, ^,
/^•^ ^
O./ -
7/.8 •
8L>.2-^
Heat to
320°F,
24 hour
cool ,
weigh
/•
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAviMtTRiL HART IOUL ATE ANALYSIS
PN 5530-14-
Plant U.S.
Run No. ICWSB
Sample location
Relative humidity
Analyst (2.
Density of acetone (pa) __,
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
&Y143&
Cm 430
Crr\42>3i
C/n39 •<
o
I
en
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cm f£6
C(Y\L&O
cm 433-
cmwf-
Cm 385
Cm 555
Initial wt.
(ambient)
3//-
0.5 •
/.^ ^
7/./ ^
O.SL ^
6?./ ^
I4o.zj
Heat to
320°F,
3 hour
cool ,
weigh
^.5
/.3 */
07 v/
J-l-7 '
"O.f ^
&).*> *
1l.o /
Heat to
450°F,
3 hour
cool ,
weigh
/.I
OH y
O.& ^
J-l.o y
0.9- -
67.7 '.
88.7^
Heat to
600°F,
3 hour
cool ,
weigh
on .
0.3 ^,
0.9 ^,
/p.^- ^
o-/ -
&{->& *
77. of
Heat to
320°F,
24 hour
cool ,
weigh
/
/
/
/
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530*-ft
U.S. C-Pft- fltce - Phfl&oielpht^
location
ve humidity 5o°fo
Density
Run No.
Analyst
of acetone (pa)
lDm6&
£. Tort&s
.7? }OQ
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm mn
Cm <&o
Cm^zz*
CmWs
cmzts
£m356
Sample I.D.
It>rn5 £>
i—lL.
IDM5A
IDMX&
Container No.
1160$
Itfo*
//4^
StolA
11446
58&1&
Initial Vol. (ml)
IZbmL'S y
44ZmJL's ^
527rYi*'s ^
921 rvJL>s y
Tare Wt. (mg)
IOSC&S.2* ^
loh^Co^T? "*
(038^3.7 ^
8&4-/.3 ^
3ttf,4- ^^
?>SO.B ^
o
I
Initial wt.
(ambient)
t.s s
0.5 ^
14 /
8^.3 ^
cxa *
71.1 /
1 55.+ ^
Heat to
320°F,
3 hour
cool ,
weigh
4.31
/•3 c.
on ^
tf -7 y
-o.i ^
70. (a ^
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3630-14-
Plant
. £Pft
-/%/
Run No.
Sample location
Relative humidity So^Yo
Analyst C.-
Density of acetone (pa) ."7^
(g/ml
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C.m<4*&
Cm 430
Cm^^i
cmwb
cm 3?*
cm 357
Sample I.D.
«2£m/5
i-l-
icms
zc,ms
Container No.
ini(\
II toft
1 * ^f g* *t
£\ fl / Q A
^J V 1 fl rj"
H4y*1--~7 ^ •
lo36tt^>n ^
^533,5 ^
3^,
Cl7\3Q6
cmzsi
Initial wt.
(ambient)
5.5- ,/
0.5 y
/. y
84. ^
0,^ ^
51.*! S
m.s/s
Heat to
320°F,
3 hour
cool ,
weigh
3,fc
/•3 x
^7 ,/
34,8 /
'O.I c/
33.0v/
57-8^
Heat to
450°F,
3 hour
cool ,
weigh
<2,6
^.7 •
£?,6 "
PO.3 /
0,5L ^
3/-6 ^
5/,^? <
Heat to
600°F,
3 hour
cool ,
weigh
1. 5
O."b ^,
o,<1 -.
/g-5 ^
o.i ^
30.5 <
W.o<
Heat to
320°F,
24 hour
cool ,
weigh
x
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U'S- CPfr- fie CO -
Sample location
Relative humidity 6Q°/o
Run No.
Analyst C.<
Density of acetone (pa) _,
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm ij-zq
CfY\43O
ClY\i+33i
CW&7
Cm 365
C/T1356
Sample I.D.
^"DrxiS.
/'f
2Dm5
Container No.
inzft
//?o#
//^/4
5&3iif{
HWS
583-16
Initial Vol. (ml)
Ulnl'S ^
443me'5 ^
527 rt~t'S ^
320mJl'3 „
Tare Wt. (mg)
\0nqi.fo ^
lod&^n ^
lo38 ^
3^4 -/
35^.4
o
I
oo
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
£"14319
am nzo
cm^ap.
£m&7
CW38S
Cm 358
Initial wt.
(ambient)
7.8 y
O.5 ^
[* '
(c&.\ y
0.3. /
\o(.a> y
\(**n ^
Heat to
320°F,
3 hour
cool ,
weigh
3.8
1-3 y
en y
£/.o y
"O.[ ^
L&.y-y
<
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant
Sample location
Relative humidity 5o%
Run No.
Analyst
Density of acetone (pa) .
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm+zo
Cm (+33.
Cm 338
Cm 385
Cm 35
Sample I.D.
/-*/•
3ftmse
3AM56
Container No.
ino(\
//*//?
34374
//4V6
3437£
Initial Vol. (ml)
V43nd^ •
557m^'J •x.
^88 ^-'5 x
Tare Wt. (mg)
_^*
/ ™^^^ P / "W^ • • V
101245.2. ^
3<7x/ ^>
3V6.6 ix-.
n
i
MD
Analysis results
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cm 430
CfT)if35L
Cm 2>18
dm 385
Cm 35?
Initial wt.
(ambient)
O«5 >/•
/. ^
7P.5 y
0.2. ^
101.5 /
/74.0 /,-
Heat to
320°F,
3 hour
cool ,
weigh
/.3 -
0.7 ^
-o./ ^
Heat to
450°F,
3 hour
cool ,
weigh
orj -
a 6 •
aa ^
Heat to
600°F,
3 hour
cool ,
weigh
o.-b ." -
O.q " ,
o.\ ^^
Heat to
320°F,
24 hour
cool ,
weigh
'
V2.0 ^
^?7.5 ^
73^.5 ^
Heat to
450°F,
24 hour
cool ,
weigh
3&.OS
(,.o v
/34.0^
Heat to
600°F,
24 hour
cool ,
weigh
36-5^ <
*?3 / ^
lyt "i x
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
Plant
Run No. 360156
Sample location
Relative humidity 50*70
Analyst C.
Density of acetone (pa) .
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C,rf\^>0
Cm&Z
/? ^1 *3L.CLQ
\^t 1 1 Sl^
Cmsts
cmsbo
Sample I.D.
/-4-
2>6mse>
36/7756
Container No.
1 1 ?0 ft
/W4
3W/7
//V46
Initial Vol. (ml)
443/nTs ^
5,27 rva 3 ^
SS'fcw '5 ^
Tare Wt. (mg)
/0636IA7 "
/d3g^3-7 "
11033-j,-^ <
3^.4 ^
353.5 v<
o
M
O
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CM 4-30
dm 433-
£m3^9
dm 385
Cm$t>o
Initial wt.
(ambient)
0,5 ^
/. »/
63.9 /
o.z y
V4.3- ^
158. 1 <
Heat to
320°F,
3 hour
cool ,
weigh
f-3 -^
C>.7 -
36.2 y
-o.y ^
45.3 /
/3/.5£
Heat to
450°F,
3 hour
cool ,
weigh
0.7 "
C?.fc ^
33. / ^
.A •
4Ao /
/^./ ^
Heat to
600°F,
3 hour
cool ,
weigh
C?.b^
c?.^^ .
30.SL \^
O./ ^
3S.3 <
//f .5 ^
Heat to
320°F,
24 hour
cool ,
weigh
,'
^
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
(ML
^ •
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3530-/^
Plant U.S. £Pf{ -ftHCO-
Run No. 3>Cm$
Sample location
Relative humidity 5C>%
Analyst C. Tories
Density of acetone (pa) . 7^06
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CMt&o
Cm 453*
£m^oo
£/r?305
Crf\"b(o\
Sample I.D.
1-4-
3*m?>
3Am5
Container No.
HBoft
imA
&m-ft
im&
WH-&
Initial Vol. (ml)
Wm^'S /
537we/s S
SLWuJL'z
Tare wt. (mg)
/0636^.7 ^*
1038437 ;
loqo-ii.o ^
2ttf.4 -/
350.^? <,
o
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
CML&O
Cm <+*>£
cm^oo
CmttS
dm 3t,i
Initial wt.
(ambient)
O.5 •
14 s
136.4- S
O.2. s
3co.\
336.5^
Heat to
320°F,
3 hour
cool ,
weigh
1.3 "
0.7 -
-a/ ^
Heat to
450°F,
3 hour
cool ,
weigh
O7 |X
O.b ^
O.Z '
Heat to
600°F,
3 hour
cool ,
weigh
0.3 ',
0.3 "<
O.I ^~
Heat to
320°F,
24 hour
cool ,
weigh
4J.S s
liorj •
753LSl<
Heat to
450°F,
24 hour
cool ,
weigh
35.7 •
IOQ.S s
im*.
Heat to
600°F,
24 hour
cool ,
weigh
53-7 ^
107.1 ^
140,8 *
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530-
Piant
Sample location
Relative humidity 5C?°/c
Run No.
Analyst C.
Density of acetone (pa) .71O&
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CfY\L&o
C(Y\4-3Z
£m4oi
/7*yi 31QC"
t--/* I ^Di^
CW2>&?>
Sample I.D.
f—lL
3fcm5
3T>m5
Container No.
1180 A
/W-/4
4681 A
1144-6
46816
Initial Vol. (ml)
WZrit's ^
527 mJi's. ^
398m£i5 •
Tare Wt. (mg)
/o63£>*/-.7 "^
/03S4-3.7 <
l ^
344.4- '
26>3.q ^
o
I
I-1
to
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Cm 430
Qrn42>3.
Cm Hoi
Cm 385
CfH363i
Initial wt.
(ambient)
0.5 v/
/. y
IW-.3 ^
0.31 ^
lfa&' i
O ^^ C/-' /
^*«O ^* r^^V
Heat to
320°F,
3 hour
cool ,
weigh
/•3 ^
on '
4:1. 1^
-O.I ^
n4.4-y
\Sb.\^
Heat to
450°F,
3 hour
cool ,
weigh
on '
O.6 ^
35.0 /
O.9i "
//5.3 ^
/50,3 <
Heat to
600°F,
3 hour
cool ,
weigh
0-3 " "
0,9 - .
33/3, <>
O./ <
/oo-5^
/33.7 /
Heat to
320°F,
24 hour
cool ,
weigh
'
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530-14
Plant U.S.
Sample location _
Relative humidity
Run No.
Analyst
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£01430
cm 433.
£rr?4oa
cm&B
Cms
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3530 ~/«f
Plant (Jj,6
Sample location _
Relative humidity
Run No. 46m5
Analyst C.
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
cm 430
Cm 432
Cm 403
Cms>&5
Cm2&4
Sample I.D.
1-4
46I7J5
Container No.
neon
11444
Sbtoft
fi4&
5b*to6
Initial Vol. (ml)
• • '3 fflJt- ^
&&- 1 /H-t 5
^3 m£'5 ^
Tare Wt. (mg)
{CXoXo+.l ^,
1030437 ^^
lo4&8.l *
3*44.4- ->
366.4- ^
n
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
£W430
Cf*\ 432
Cm4c3
Crm>Q5
Cm 364
Initial wt.
(ambient)
O.£> ^
l.l y
/3L6.7 «/
o.z. /
122.1 ^
Z47.9 S.,
Heat to
320°F,
3 hour
cool ,
weigh
/.3 -
on '
534 /
-o.i „
8/.3L^
/34./^
Heat to
450°F,
3 hour
cool ,
weigh
on sx
€>.<<, *
18.1 '
o,^/
go.&v/
^8,9 ^
Heat to
600°F,
3 hour
cool ,
weigh
0.3 ".
of) ^ .
/5.3 ^
o.l ^
76,0 ^
87,3 ^
Heat to
320°F,
24 hour
cool ,
weigh
'
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
[AH-
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVlMhTRlU PARTICIPATE ANALYSIS
PN 353O "1
Plant
Sample location
Relative humidity 5o°/o
Run No.
Analyst C
Density of acetone (pa) __.
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm 43,1
Cm 432,
C r{\ 4o4~
ft iy\ *)Qt?
CmsbS
Sample I.D.
5-/0
SflV)5
5fims
Container No.
565 / A
/W#
Sfet^ft
H44B
52-146
Initial Vol. (ml)
127nJL'l "
52-~1rrJi'3 ^
£lOmt'3 ^
Tare Wt. (mg)
/S2733.4- "
/ 03^43 7 <
lo±736>.(0 <
$itf.4- ^
3bo. & •
n
i
M
cn
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Cm*tei
em<+3Z
Cfli4o4-
£W3?S
cm 34,5
Initial wt.
(ambient)
2.31 /
/.9 ^
//7.3L*/
.£. •
/^.7 y
^6-^^
Heat to
320°F,
3 hour
cool ,
weigh
M ^
on ^
2%.~1 ^
~o.\ -
74.0^
I00SJ ^
Heat to
450°F,
3 hour
cool ,
weigh
0.& v
O.(o ^
\ 1(^,2
0.3. ^
73.5 ^
8^ "^K
/5.O t/
O.I "„
6^,7 X
8^-7 ^
Heat to
320°F,
24 hour
cool ,
weigh
*
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
K
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
piant (Ji,S.
Sample location
Relative humidity
Run No.
Analyst
Density of acetone (pa) /»
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm 43t
CW432.
Cm 1406
On 3?5
CtY)3bb
Sample I.D.
6- to
56^5
56^15
Container No.
56?£f $
IM4A
S$,}7/4
UW&
S32-16
Initial Vol. (ml)
A/P7,n£'S •"
S&rtd's ^
2-SSrrdt'S ^
Tare Wt. (mg)
/OP733.^ ^
/03K3-7 '
loyi<±s,$ ^
3*f?. 4- ^
36-5.3 •
n
i
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Cfr)43l
C/71435L
Cm ^06
<2fll3?5
<3M3k&
Initial wt.
(ambient)
2-3- •
/•^ ^
/^/.^ /
fi?-3L ^
/tf5.7 y
^70-6 4
Heat to
320°F,
3 hour
cool ,
weigh
/-/ «/
c?."7 ^
'O.{ •
Heat to
450°F,
3 hour
cool ,
weigh
0.1 ^
G.(o '
0-3. ^
Heat to
600°F,
3 hour
cool ,
weigh
-0*3-'
o.Q -•
0. | <
Heat to
320°F,
24 hour
cool ,
weigh
'
3-2>'$ y
75,0 ^
9?.? ?
Heat to
450°F,
24 hour
cool ,
weigh
lb'8 ^
7d.l ^
M4 ^
Heat to
600°F,
24 hour
cool ,
weigh
/3-S <
~il-^^
?+7 <
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAViMtlRIl HAKTILULATE ANALYSIS
Plant U.S.
Run No.
Sample location
Relative humidity
Analyst 0'.
Density of acetone (pa) -
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
(3fVl43l
C/r>43P.
Cw*4oCo
C/ri3?5
ClT)3k7
Sample I.D.
S-/0
5C/n5£
ScVy?5/3
Container No.
5(06 1 A
/ / Y^/ /)
Sf30$
/ lLh'-t-&
£>%BoQ
Initial Vol. (ml)
l2n»JL**> -'•
S^"7 m^'i •
32bfAjL's ^
Tare Wt. (mg)
/0a733X/- "
/^3?<0i
Initial wt.
(ambient)
^SL ^
/.^? ^
8/-7 ^
o.p. ^
75-1
l&hl ^
Heat to
320°F,
3 hour
cool ,
weigh
M ^
e?-7 s
m>n y
-0-1 '
Jo.O /
11*1 4
Heat to
450°F,
3 hour
cool ,
weigh
0,9 u.
O.(* ^
/3./ ^
0.3- ^
67.?^
ft>.?"?
Heat to
600°F,
3 hour
cool ,
weigh
-o.**
C>3 "'
K. q -<•
o. ( ".
fc5-3 <
77 P,^
Heat to
320°F,
24 hour
cool ,
weigh
/
'
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant ujt<>. CPb-
Run No.
Sample location
Relative humidity
Analyst CL,
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C/^4,31
Csn^&d*.
Cm^o~l
@jfC\ S?S
Cm3b$
Sample I.D.
S-/D
SD/nS/g
5D^66
Container No.
6fcSI A
/W£
6P334
IMQ&
5?33£
Initial Vol. (ml)
-^Im/'S ^
63r}mJk'^> ^ .
3^7Wf^ •/
Tare Wt. (mg)
/0 2-733- 4- '
tostn-zri ^
lOlj3tf-*-t' ^
3<^,?,0 ^
Heat to
320°F,
3 hour
cool ,
weigh
/./ -
0-1 •
-0-1 ^
Heat to
450°F,
3 hour
cool ,
weigh
o.a •
(9-6» ^
C.9^ x
Heat to
600°F,
3 hour
cool ,
weigh
-0.2- ^
oq ^
a i ^
Heat to
320°F,
24 hour
cool ,
weigh
"'
t ^? O ^/^
i ^» 0
^6.4- •
Q^r* C*^ *
Heat to
450°F,
24 hour
cool ,
weigh
^•"f ^
64-.^ •
7$-7<
Heat to
600° F,
24 hour
cool ,
weigh
t^9« / v'
^^ O « t^ tx"
fcf.7^
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
Piant U.S. €Pf\ -frfco -A;
Sample location
Relative humidity SO°/o
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3S30-/4-
Run No.
Analyst _
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cfft 43 /
QjfT\ 433-
Cjm (4t>$
Cm2>$S
CmSb'i
Sample I.D.
5-/0
(ffCW£>
(cCtns
Container No.
Sfc>5/4
IW44
S?Wl&
Initial Vol. (ml)
^p-7m^ /
SPItni'S ^
2l$~mt'3 "
Tare Wt. (mg)
/ 02-73 3-- '
/03&V3.7 ^
/0/73/.S "
3V-4 ^
3Sf/f ^
o
I
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Cm<&(
Cjr\+?>2-
crn^o*
/I L VI R j?^
C--* ' ' *JQ *>J
CM3&1
Initial wt.
(ambient)
^SL/
14 ;
//?.?. ^
O.Qi. /
83,0 /
20f.Z.\ s
on ^
3o-l •/
-c?./ •
7*7 ^
/o3.4^
Heat to
450°F,
3 hour
cool ,
weigh
0.? ^
C1,^ -
/7-i ^
O-P>-
6^-5^
?s?/^
Heat to
600°F,
3 hour
cool ,
weigh
-0-3L ^
O-9 v^'
/6>7 ^.
o.l ^
6?^-S ^
^.3-^
Heat to
320°F,
24 hour
cool ,
weigh
/
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
-Atco - Phi
Plant 6C,5.
Sample location
Relative humidity GO°/o
Run No. 6?D/r?-6
Analyst C
Density of acetone (pa) _._
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C»*>43l
Ojff\ 432-
£^?409
Cm&tiS
Cm 3io
Sample I.D.
5-/D
(0&tYi5
foDms
Container No.
6(cSifi
IW4A-
5WS^
/ lUCf A
£i 9^ A
Initial Vol. (ml)
427 *d^ '
S2-lmJL's ^
O Q 7 v t ^ v^"
^/ * / ^ ^^^. j
Tare Wt. (mg)
102733.4- <
/03?V3-7 ^
103,033,4 ^
3^.^- -t
35f,f ^
n
i
NJ
O
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Crt42>l
cvn^3^
Cm<-toq
On 3*6
(Um&io
Initial wt.
(ambient)
2-*. •
i.q ^
IOS.± /
0.3- ^
11^.0 ^
W9. 4 ^
Heat to
320°F,
3 hour
cool ,
weigh
/•/ ^
on ^
&<3.s
-O.I -
M'S •
WHJ
Heat to
450°F,
3 hour
cool ,
weigh
0.? ^
a(* ^
/-7J v/
C7-P- ^
frf-.tJ-S
ns*
Heat to
600°F,
3 hour
cool ,
weigh
-O-3- ^
0
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
n
i
to
Plant U.S.. £Pb -
Sample location
Relative humidity
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
-fleto- Ph
6P7c7
Lab No.
@JY) ^/<3f
(Lm 4-32-
Cm^io
CW3?5
Cm*f]i
• ItuteM.'*,
Sample I.D.
5^/c?
74 ^5^/60
"JAwSySo
Density o
Container No.
6>bS( A
HWA
S&lSfl
j lUfJ /2
^te^^^/fj
Run No. 7/3-^)5 i
Analyst (:-3~oiJ<
f acetone (pa) nio$
Initial Vol. (ml)
*/P7/r^'S ^
6P-7m^"b ^
P6P-^'5 ^
/60
25
(g/mi)
Tare Wt. (mg)
t03-7te-. 1 ".
go. { ^
«./ ^
Heat to
320°F,
24 hour
cool ,
weigh
<-
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
CAJ C
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant
~(\(t£0
Run No.
Sample location
Relative humidity
Analyst C •
Density of acetone (pa)
(9/rnl)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm f 3 i
e^^B^
Cwm\
v^- f f • ^J 0 ^?
f * \A^\ ^i ~" ) ^
Sample I.D.
S-/0
76/nsvso
l&rns^Sv
Container No.
SbS/A
/f2~
Cw+n
C,rr\$
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3S3Q-'*/
Plant
Sample location
Relative humidity
SO°lo
Run No.
Analyst
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
csr\m>\
C/n«f33.
Cm 4/3-
Cm 3fS
Cmsis
Sample I.D.
S-/0
-?ems
icms
Container No.
SfcSf /»
//e/4-tf
5ko54
11^6
6
Initial wt.
(ambient)
9-. 2- ^
L_ M ^
bt-S y
0,^ •
/7D-? /
£3?.2>^
Heat to
320°F,
3 hour
cool ,
weigh
M ^
0.1 ^
-CM -
Heat to
450°F,
3 hour
cool ,
weigh
o.^ -
c?-c^ ^
C7,p- •
Heat to
600°F,
3 hour
cool ,
weigh
-O-JL^
c?-9 •*
c^J ^
Heat to
320°F,
24 hour
cool ,
weigh
'
3o.? /
?9.^ v/
IX).Q^
Heat to
450°F,
24 hour
cool ,
weigh
/?.2. /
S'S'J >^
; /ofe-3 ^
Heat to
600°F,
24 hour
cool ,
weigh
W'(c ^
87' 3 ^
lol.q <
Remarks
Data reviewed by
tf
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 3
Plant U.S. EPfr-
Run No.
Sample location
Relative humidity
Analyst £. Jb/vJeS
Density of acetone (pa) .
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
#n^3f
£>T)lf3pL
cm 4/3
£fn3?S
Cm37<4
Sample I.D.
S-io
7Z>^is
7D/^>S
Container No.
565/4
IW<4fl
S60ffl
HW&
'zbOZB
Initial Vol. (ml)
42? Ws /
SP-7m£':> ^
3/5 ^'S ^
Tare Wt. (mg)
/ 0^735.4- •"
/c3?43-"7 ^
lo^/os.^ u
3^,4 ^
355,^ •
o
to
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
cmi+ai
Cw+33-
CWtiS
<2>r?3?5
zmsii-
Initial wt.
(ambient)
^-2. y
/'^ y
/P-3r? y
C>.^ ^
/^' ^ •/
W><5^
Heat to
320°F,
3 hour
cool ,
weigh
/-I "
on '
6/,| ^
-a< ^
9P-4-/
m.^.
Heat to
450°F,
3 hour
cool ,
weigh
0.? •
c?-t. ^
5/-G •
dP-X s
?%
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant 6/-S. CPft -
Sample location
Relative humidity
Run No.
Analyst C.• Ucvt/e S
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
6"7mX'5 ^
/f^/n/'b •
Tare Wt. (mg)
/0733,4 ^
/Oi?^3<7 ^
IOH$I?.G ,
3^,
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN 3S«0 -l<4-
Plant (j.S. &>A -fttco- Philtxte'ohiG
Sample location
Relative humidity SO°/0
Run No. V6m5^/-3O
Analyst £?.JcWeS.
Density of acetone (pa) .14 O$
(g/mi)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
fitf>7k
Sample I.D.
S-/O
?6/^5*/5o
?&/ysvsc»
Container No.
56s/ 0
_/N44
5k /4 #
//^/-/S
,5^/6
Initial Vol. (ml)
4<£7m£<5 -/
5P-7 ^ '5 ^
PV/ «U '5 ^
Tare Wt. (mg)
/O5'733<^/-' **^
/£>3 P>3-'7 "^
fotj-S&o.O ^
3^,4, ^^
35/<^. ' — "
o
I
NO
Analysis results (nig)"
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
£/r? «/-3 1
C^V32
£/n4/s
(3^395
^n37fc
Initial wt.
(ambient)
2.3L ^
14
5^,5. ./
O-*- vX
^/,o >/
ISO.?./,
Heat to
320°F,
3 hour
cool ,
weigh
M '
o.i ^
/3.? v^
-O. < -
^/.(^^
/os 4^
Heat to
450°F,
3 hour
cool ,
weigh
0.8 ^
O.fe .
q,1 y
?*>! *
f$-1 <
Heat to
320°F,
24 hour
cool ,
weigh
,
'
^
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICIPATE ANALYSIS
PN3S50-/4-
Plant
u,s.cpfr-fl£co -rni(to*-£(f>h^ Run NO. irons
location
ve humidity SO°fo
Analyst
Density of acetone (pa)
C'. CfpA){
Cm
CW$ 5
<2fn577
Sample I.D.
5-/O
tfC/^S
?C>ns
Container No.
7«d'<> "
6^7 m£ '3 "^
Zotnd'S ^
Tare Wt. (mg)
/OP-733-4- ",
/o3?i/S'7 ^.
^6»65S.O ^
^M-^'^- ^
35o,3k •:
o
NJ
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
C/n^5|
6^1 *£3^
G*r\m(t>
6/n3P5
Cmyil
Initial wt.
(ambient)
A-?- •
/'^ x
tof.os
0.3- ^
/3?«3- ^
^/4-^^
Heat to
320°F,
3 hour
cool ,
weigh
/.I iX
on ^
P//J •/
-o- / ./
77-6? y
w.±<
Heat to
450°F,
3 hour
cool ,
weigh
0,? ^
O.(^> ^
/3,p, /
ax -
73. 5L «/
- ?6.^f<
Heat to
600°F,
3 hour
cool ,
weigh
-a a. <
O-^f ^
/P' ^? ^
C>- 1 "'
T3-<~1 ^
?5,^ <
Heat to
320°F,
24 hour
cool ,
weigh
x-
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
o
I
NJ
OO
Plant tt'S- EPfr-
Sample location
Relative humidity
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Vico „ pi
S0*fo
Lab No.
(2//11/-5/
C*r\^3pL
Crn<4c\
£>>3?S
£*r?37£
W«cfe^,«L
Sample I.D.
5-/0
9D^S
?£)^S
Density o
Container No.
5to5/A
IIWA-
&b3oA
i\^n&
£<0}O&
Run No. ?DmS
Analyst C- ~3otJ<-
r acetone (pa) -""P^cpf
Initial Vol. (ml)
^yi ni\JL '5 ^
£>y] rvjil^> -^
3-l$rvd'b «^
*±>
(g/mi)
Tare Wt. (mg)
/02/733,^<
/03?i/3r7 ^.
(ooSto. 5 •
3^.4 ^.
&j?.7Jrs
Initial wt.
(ambient)
^P- •
/X? ^
W/ ^
a?- „
/3o.l ^
^^,? ^
Heat to
320°F,
3 hour
cool ,
weigh
M /
07 /
^,f •
-C-( •
nt--*
mm
Heat to
450°F,
3 hour
cool ,
weigh
a? ^
Q. <^ ^
IS.O ^
o. ?- ^
?/-? ^
<&,?*/„
Heat to
600°F,
3 hour
cool ,
weigh
-0.^. ^
O3 ^
/3-7 ^
0'\ <
W.fc.^
9^3>
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN SS50-/4-
plant 6*-S.
Sample location _
Relative humidity
Run No.
Analyst Q. Jb/QgS
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
£w43t
Cnn^dZ
£jfD t/7 ^
Ofll 3?S
£?/X)37^
Sample I.D.
S-IO
qtmse,
CfAm5£
Container No.
565/^
/'S^A
56P-3A
ttwe>
56 A3 6
Initial Vol. (ml)
W^'S -^
557 AnZ'^ ^
5->7^ ^ ^
Tare Wt. (mg)
/0P-733.4-. ^^
(O2>?iq
Initial wt.
(ambient)
^3L -
/^ ^
/^,9 «/
a a- .
7/ y
^/.O ^
Heat to
320°F,
3 hour
cool ,
weigh
/ '
on -
2o< ( '
-o.( ^
7D.M' '
fa$s.
Heat to
450°F,
3 hour
cool ,
weigh
0. ? -
O.07 ^
/^-7 ^
0^ -
67.1 ^
7?.? <
Heat to
600°F,
3 hour
cool ,
weigh
-t?.a ^
0.^ ^ "
/o.-? ^
oJ ^
fcfc.^ ^
77./ x
Heat to
320°F,
24 hour
cool ,
weigh
'
/
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 5530- /4-
Plant
Run No.
o
Sample location Analyst C-. TOAJ£^
Relative humidity SOlo Density of acetone (pa) ,~7^O? (g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
C,tf\42>l
CJm
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant #'5. £M- fleco - Pb'.lode Ipk
Run No.
Sample location
Relative humidity 5O°/o
Analyst C- Jo/v/g.S
Density of acetone (pa)
(g/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
Cm43l
Cm 463.
Cm 42-D
Cm 3?s"
Cm 3? /
Sample I.D.
5-/o
lo*MSs tJSO
Container No.
5fe5/4
im A
£*WA
//40
s?y?6
Initial Vol. (ml)
^-yimJL-'S ""
S^W's ^
fl?»(Ji'5 ^
Tare Wt. (mg)
/o3-"73 3 . ii~ "^
/c>3^^3 '7 ~^
i°?$Hq,<4- ^
3><44> .7 ^
n
i
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Cm<&\
flm43&
Cm^^o
Cm$$6
cm$$i
Initial wt.
(ambient)
2.?. '
//? s
34>.O /
0.5. ~
/^7
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN 362*0-IV-
piant
Sample location _
Relative humidity
Run No.
Analyst Q.
Density of acetone (pa)
(9/ml)
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Lab No.
CS*tso
Container No.
S
Initial Vol. (ml)
427r*l't -
S27m£'6 '
!2>2>r*j£'S «x-
Tare Wt. (mg)
(02-733.4- "'
{03V43-7 ^x
loSZStf'g, ^,
344 <4 ^
*>63- <
n
i
Ul
to
Analysis results (mg)*
Sample type
Acetone blank
Acetone blank (2)
Acetone blank (3)
Acetone rinse
Filter blank
Filter
Total particulate
Lab No.
Cm 4-31
C,rfl432L
Cm^\
£m2>?5
Cm 3$3>
Initial wt.
(ambient)
P.P- -
I'l ^
/?,/ ^
a 5. ^
49.0 s
//?'/ ^
Heat to
320°F,
3 hour
cool ,
weigh
M -
0.7 •
I3tf -^
-o.i ^
49-3^
Iti.lJ
Heat to
450°F,
3 hour
cool ,
weigh
0.9 '
O.<0 •
7-3 ^
O.P- x
4"3.^ ^
foorj "^
Heat to
600°F,
3 hour
cool ,
weigh
-a 3. ;
c?.4? ^
6^ ^
o.y -?
^0.^ ^
- %,} <
Heat to
320°F,
24 hour
cool ,
weigh
Heat to
450°F,
24 hour
cool ,
weigh
Heat to
600°F,
24 hour
cool ,
weigh
Remarks
Data reviewed by
These are net weights (gross wt. avg. minus tare wt.) without blank subtraction.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
Plant ttB>
lOCmSQ
Container No.
S66/ A
IIW ft
6>?S
0.9 ^
IS.2-V/
O.I ",
74--3-^
M.
-------
THERMOGRAVIMETRIC PARTICULATE ANALYSIS
PN
Plant U,6. EPfl-keco- Phi\cjLe_lph
/Wi 3>9<
{_-* r I <_xo j
cm 3?-
Sample I.D.
6-/0
io&ms&
loomsft
Container No.
SfoSt A
W/?
5?574
IIV16
5W6
Initial Vol. (ml)
^7m/'5 y
52-7>u£<5 ^
{$1 mJL'S ^
Tare Wt. (mg)
/C>P-733«^ ^
io^<±$n ^
Wbl-Ztf ^.
33-
Cm V-P-3
Cm3?5
CW5$4-
Initial wt.
(ambient)
^•^ •
\tf •/
6^./ y
ap. --
72'<1 ^
142,0 /
Heat to
320°F,
3 hour
cool ,
weigh
M -
on ^
I4<5 ^
-o.i ^
67.6 */
P^./ ^
Heat to
450°F,
3 hour
cool ,
weigh
o.t ~
O.
-------
PEDCO ENVIRONMENTAL, INC.
1 1499 CHESTER ROAD
CINCINNATI. OHIO 45246
(513) 782-47OO
TELECOPIER (513) 782-48O7
SUMMARY
USEPA - ARCO
PN: 3530-14
H202 Impingers
Sample ID.
1AM5
1BM5
1CM5B
1DM5B
2AM5W
2BM5W
2CM5
2DM5
3AM5B
3BM5B
3CM5
3DM5
4AM5
4BM5
4CM5W
4DM5W
5AM5
5BM5
5CM5B
5DM5B
6AM5W .
6BM5W
6CM5
6DM5
7AM5450
7BM5450
7CM5
7DM5
8AM5450
8BM5450
8CM5
8DM5
9AM5B
PEDCo Lab No.
Total mg SO?
CM628
CM629
CM630
CM631
CM632
CM633
CM634
CM635
CM636
CM637
CM638
CM639
CM640
CM641
CM642
CM643
CM644
CM645
CM646
CM647
CM648
CM649
CM650
CM651
CM652
CM653
CM654
CM655
CM656
CM657
CM658
CM659
CM660
BRANCH OFFICES
1413
1519
1570
1406
824
1006
924
783
1300
1374
1399
1298
779
1608
1587
1353
1576
1665
1690
1593
1392
1921
1712
1459
1401
1449
1530
1441
1442
1790
1302
1477
1268
/
CHESTER TOWERS
DALLAS. TEXAS
KANSAS CITY. MISSOURI
C-35
COLUMBUS. OHIO
DURHAM. NORTH CAROLINA
-------
PEDCO ENVIRONMENTAL, DNC.
1 1 499 CHESTER ROAD
CINCINNATI, OHIO 45246
(513) 782-47OO
TELECOPIER (513) 782-48O7
SUMMARY
(Continued)
USEPA - ARCO
PN: 3530-14
H2O2 Impingers
Sample ID. PEDCo Lab No. Total mg SO?
9BM5B CM661 1342
9CM5W CM662 1373
9DM5W CM663 1271
10AM5450 CM664 1314
10BM5450 CM665 1711
10CM5B CM666 1712
10DM5B . CM667 1459
H202 blank Runs 1-4 CM668 1.3
H202 blank Runs 5-10 CM669 <.7
/ ,. , ^r .^--i BRANCH OFFICES
DALLAS. TEXAS COLUMBUS. OHIO
CHESTER TOWERS KANSAS CITY. MISSOURI DURHAM, NORTH CAROLINA
C-36
-------
PEDCO
., DNC.
1 1499 CHESTER ROAD
CINCINNATI, OHIO 45246
(513) 782-47OO
TELECOPIER (513) 782-48O7
SUMMARY
USEPA - ARCO
PN: 3530-14
IPA Impingers
Sample ID.
1AM5
1BM5
1CM5B
1DM5B
2AM5W
2BM5W
2CM5
2DM5
3AM5B
3BM5B
3CM5
3DM5
4AM5
4BM5
4CM5W
'4DM5W
5AM5
5BM5
5CM5B
5DM5B
.6AM5W
6BM5W
6 CMS
6 DM5
7AM5450
7BM5450
7CM5
7DM5
8AM5450
8BM5450
8CM5
8DM5
PEDCo Lab No,
CMS 6 8
CMS 6 9
CMS 70
CMS 71
CMS 7 2
CMS 7 3
CMS 74
CMS 7 5
CMS 7 6
CMS 7 7
CMS 7 8
CMS 7 9
CMS 80
CMS 81
CMS 8 2
CMS 8 3
CMS 8 4
CMS 8 5
CMS 8 6
CMS 8 7
CMS 8 8
CMS 8 9
CMS 90
CMS 91
CMS 9 2
CMS 9 3
CMS 9 4
CMS 9 5
CMS 9 6
CMS 9 7
CMS 9 8
CMS 9 9
Total mg H2SC-4
24.2
18.6
101
69.0
15.1
17.2
16.8
14.1
117
118
28.0
30.9
9.3
26.6
32.4
15.2
17.9
21.1
70.9
105
19.2
29.4
79.4
25.9
147
135
19.4
23.1
152
237
23.1
52.5
BRANCH OFFICES
CHESTER TOWERS
DALLAS. TEXAS
KANSAS CITY. MISSOURI
COLUMBUS, OHIO
DURHAM. NORTH CAROLINA
C-37
-------
PEDCO ENVIRONMENTAL, QNC.
1 1499 CHESTER ROAD
CINCINNATI, OHIO 45246
(513) 782-47OO
TELECOPIER (513)782-4807
SUMMARY
(Continued)
USEPA - ARCO
PN: 3530-14
IPA Impingers
Sample ID.
9AM5B
9BM5B
9CM5W
9DM5W
10AM5450
10BM5450
10CM5B'
10DM5B
IPA/filter blank
Runs 1-4
IPA/filter blank
Runs 5-10
PEDCo Lab No.
CM600
CM601
CM602
CM603
CM604
CM605
CM606
CM607
CM608
CM609
CM610
CM611
Total mg H2S04
77.8
55.5
22.6
28.6
151
157
125
107
BRANCH OFFICES
CHESTER TOWERS
DALLAS, TEXAS
KANSAS CITY, MISSOURI
COLUMBUS. OHIO
DURHAM. NORTH CAROLINA
C-38
-------
EXAMPLE WATER SOLUBLE SULFATE ANALYTICAL DATA
AND CALCULATIONS
C-39
-------
n
i
LABORATORY REPORT
U.S. EPA
PN: 3530-14 (OCTOBER 25, 1982)
ARCO PETROLEUM
NONWATER SOLUBLE SULFATE PARTICULATE ANALYSIS
mg
Run No.
2A
2B
4C
4D
6A
6B
9C
9D
Blank
nlanb
Lab No.
CM534/CM543
CM535/CM544
CM536/CM545
CM537/CM546
CM538/CM547
CM539/CM548
CM540/CM549
CM541/CM550
CM542/CM553
rMaafi/rMcc/i
B
65.25
51.20
90.65
94.30
97.70
88.90
84.65
83.00
2.90
i -?n
AF n PF
r\r -i u ur f\
1fl °n ( \ AT. TR /I ^n ( ^
7 do ( . } dfi dn ? fiR r .. ^
13 80 (10°) 111 7 14 85 (1001
18 ^5 f100) 80 * 13 60 (1001
19 S5 (10°) 73 05 1' 05 (10°)
11.45 (^) 90.00 12.95 (ij£)
OU 3U
10, qc ^1^^^ 7Q pn 11 -jc; /15U\
LO.JD \ en/ /j.OU 11.03 \ Kfj '
13.85 (^) 60.70 11.40 (^)
0.30 (^) 0.10 0.45 (i|J)
i en /100\ n -7n n oc /150^
ASf
63.31
21.25
59.86
76.95
84.16
48.09
53.93
57.50
5.65
^n a.
49.02
44.69
123.41
94.50
85.07
105.30
100.68
83.61
<0.9
*-n Q
NWSSP
55.3
61.1
76.4
66.8
65.3
74.3
78.8
71.4
-0.6
R •}
The dilution factors are larger than described in the method because additional sample was required
for ion chromatography analysis and additional titrations when divolent metal ion interferences were
present in original titrations.
Probe rinse volume received from the field were between 399 and 763 ml (not less than 250 as speci-
fied in the method).
Reviewed by
-------
ri IFNIT
;PN 35
LABORATORY DATA
ANALYSIS
DATE lo-L»-83~
ANALYST
METHOD NUMBER
CHECKER
Ifl -IV. q:oaa.»»- lo-u- H.oo
NO. OZ37
C-41
-------
LABORATORY DATA
ri IFNT DC. £pft -
PN 3530- 1 M- DATE lo-T-g:>
ANALYST
METHOD NUMBER
CHECKER
£ ,
^J C^pOft L o ,
*^
<.o5
o.oioo rt w.<;o
15
15.^3
±
15.50
O.otoofx/ (»J Hu):i Sex
±
It. -
(i ' .
. ,2
jLO
/-
01?,
-*>.
55n
55 ^ ^>«?"
<.o5
5.0
0. 0
Crv.
_^0_
0-0*011
a.i
0,02115
Stl
NO. 0237
n.t\ I OL
C-42
-------
CLIENT L)S
RAC.O
LABORATORY DATA
ANALYSIS
PN 3630 -IH-
ANALYST_JdCIlD_
DATE
METHOD NUMBER
CHECKER
(Lro.
ft.
«/
"A
-5-.V1 A
101. ^
\\\. H.1L,
IO4-.
toS.
-/
,01
lot. .^g to
lol.nl 5?S
53 1 a •/
10?.
. o \ \ t-S
C rn 5>4-S
C. /
.M-3L.5
QltaS v
I/
V
T>
lo'l L.o'7O
b
c :
too.
loo,
. 01 ax>5
D
u.a. .1.1,
_^_
' /
T) ..
,
C, 00
-------
LABORATORY DATA
CM-IFNIT OS
PN 3530-1*
ANALYST _t£0£i
DATE
METHOD NUMBER
CHECKER
T- •£ • %/ •
ft 1;^..^.
.Or-, el
/
y
ISO
1.3S
y
. 0-3 5 3
J54-8
. tO^.'bQ >/
i r\. 'f
C.P
<.o5
ZLD
iV\ . v^ o ~T 1
(Lo v->-Jl-
•- . TViOO
)l JO.T
K L-t rv
»' 0 VQL lO D 0
O
an
l.ro
05 q L. u
. OS
y
f.uo
.on i. fiS
y
y
lo.5c>
Olfi |l» >/
y
y
. Ot 3 1 1
NO. 0237
-------
WATER SOLUBLES
CM 545/536 4CM5W
Participate, g + (NH4)2$04 = 0.0138 x 152. + 0.09065 + 0.01485 x ~- + 0.1117
= 0.0276 + 0.09065 + 0.0297 + 0.1117 = 0.25965
Particulate, g = 0.25965 - 0.12341 - 0.05986 = 0.07638 = 76.4 mg
CM 546/537 4DM5W
Participate, g + (NH4)2S04 = 0.01825 x ^ + 0.09430 + 0.0136 x ^ + 0.0802
= 0.0365 + 0.09435 + 0.0272 + 0.0802 = 0.23820
Participate, g = 0.23825 - 0.09450 - 0.07695 = 0.06675 = 66.8 mg
CM547/538 6AM5M
Particulate, g + (NH4)2S04 = 0.01985 x M + Q.0977 + 0.01205 x ^ + 0.07305
= 0.0397 + 0.0977 + 0.0241 + 0.07305 = 0.23455
Particulate, g = 0.23455 - 0.08507 - 0.08416 = 0.06532 = 65.3 mg
CM548/539 6BM5W
Particulate, g + (NH4)2S04 = 0.01145 x ^Q. + 0.0889 + 0.01295 x 1§2 + 0.0900
= 0.0229 + 0.0889 + 0.0259 + 0.0900 = 0.2277
Particulate, g = 0.22780 - 0.10530 - 0.04809 = 0.07431 = 74.3 mg
C-45
-------
Cation Data
046
-------
'ATIOM
PAGE 1
RECEIVED: 06/02/83
Analytical Serv REPORT
06/21/8309:48:14
LAB I 83-06-015
REPORT Padea Environments, 1
TO 11499 Ch««t»r Road
Cincinnati. Ohio 4324A
PREPARED Radian Analytical 8»rvic»«
BY 8301 MoPac Blvd.
P. D. Bo i 9948
ATTEN Mr. Tom Maan«r
CLIENT PEDCfl
Austin. T»ia« 78766
COMPANY P«dco Environmental
FACILITY
SAMPLES 43
ATTEN
PHONE (312) 494-4797
CERTIFIED BY
CONTACT HEINRICH
n
i
WORK ID ICP analu«i«
TAKEN
t»r eitracti
TRANS UPS.
TYPE
P.O. * PEI-83-7139L-3MQ-14
INVOICE under separate cover
SAHPLE IDENTIFICATION
QJ. CM 357 -" acnS f-
Q2 C_rj_358 " J*fi f f
03 CM 379
Q4 CM 380
07 CMZ4>gy^^
Analytical Serv TEST CODES and NAUES used on this report
CP 4O Complete ICPE3 Analmii
19 cu 465
2O_ cu 466
-------
PAGE 2
RECEIVED: 06/02/83
SAMPLE IDENTIFICATION
CU 488 (10 5BM3 P*
2Z
2B
22
32
31
32
33
31
32
CQ 709^3530-14
CQ 72A^353O-14
CQ 727^3530-14
CQ 739*" 353O—14 ,»i*
CQ 740^ 353O-14
CQ 757^3530-14
CQ 739X333Q-14
Analytical Serv REPORT
06/21/8309:48:14
LAB f 83-06-015
CM 553^l«t»r Blank
CQ 7OB - 3530-14
3Z
O39-
? 32
512
11
12
-------
COIII* OTtOM
PAGE 3
RECEIVED: 06/02/83
SAMPLE ID CM 357
Analytical Serv REPORT
Results by Sample
LAB I 83-06-015
DATE
CODE
AG
AL
AS
AU
B
? BA
u
* BE
BI
CA
CD
CO
CR
CU
FE
NOTES
ANALYZED
METAL
Silver
Aluminum
Arsenic
Gold
\B_oron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Cocoer
Iron
AND DEFINITIONS
RESULT
C O02
3. 7
<. 06
<. 03
<. 71
C 001
C OOO5
<. 05
4. 3
<. O02
0. 053
<. O01
0. 002
0. 72
FOR THIS
Date
CODE
HG
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
REPORT.
FRACTION 01A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in
NA = not analgzed
* = less than 5 times the detection limit.
METAL
Mercury
Ind ium
Potassium
Li th ium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
PiPhosphorous
Lead
Platinum
Sulfur
Antimony
uq/ml unless otherwise specified.
ted not specified
RESULT
<. O3
<. Q5
0. 21
0. 031
0. 65
O. 010
<. 002
5. 3
0. 084
O. 94
<. OS
<. 03
21
<. 032
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VER
METAL
Selenium
,' Si licon
Tin
Strontium
Tel lurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
IFIED BY DLH
RESULT
<. 08
2. 3 ~J>
<. 12
0. 019
<. 10
<. 005
<. 09
<. 06
<. 003
<. 03
<. 002
0. 76
NA
NA
N
-------
PAGE 4
RECEIVED: 06/02/83
SAMPLE ID CM 358
Analytical Serv REPORT
Results by Sample
LAB ft 83-06-015
DATE
CODE
AG
AL
AS
AU
B
?BA
tn
O
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED 06/06/83
METAL RESULT CODE
Silver <. 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Berg 1 Hum
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
6. 8
<. 06
<. 03
1. 5
< OQ1
0. 002
<. 05
5, 6
0. QQ4
O. O86
0. 020
0. 048
1. 0
FOR THIS REPORT.
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION 02A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in
NA = not analyzed
* = less than 5 times the detection limit.
METAL
Mercury
Ind ium
Potassium
Li th ium
Magnesium
Manganese
MO Molybdenum
Sod ium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ug/ml unless otherwise specified.
ted not specified
RESULT
<. 03
<. O5
1. 6
0. 082
1. O3
0 022
0. 031
a. 2
0. 16
Q. 44
<. OB
<. 03
25
C 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Cateqory
VERIFIED BY DLH
METAL RESULT
Selenium <. 08
Silicon
Tin
Strontium
Tel luriuoi
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
3. 5
<. 12
0. 028
<. 10
0. 20
<. 09
<. O6
0. 15
<. 03
<. OO2
0. 050
NA
NA
-------
PAGE 5
RECEIVED: 06/02/83
SAMPLE ID CM 379
Analytical Serv REPORT
Results by Sample
LAB I 83-06-015
DATE
CODE
AG
AL
AS
AU
B
?BA
Ln
M
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED 06/06/83
METAL RESULT CODE
Silver
-------
PAGE 6 Analytical Serv REPORT LAB f 83-06-015
RECEIVED: 06/02/83 Results by Sample
SAMPLE ID CM 380 FRACTION 04A TEST CODE ICP 40 NAME Complete ICPES Analysis
Date & Time Collected not specified Cateqoru
DATE
CODE
AC
AL
AS
AU
B
n
J,BA
N)
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
ANALYZED O6/Q6/Q3
METAL RESULT C
Silver <. OO2
Aluminum
Arsenic
Gold
Boron
Barium
Beryl lium
Bismuth
Calc iuflt
Cadmium
Cobalt
Chromium
Copper
Iron
4. 7
<. 06
<. 03
1. 0
<. 001
0. O01»
<. O5
5. 7
0. 015
O. 097
Q. 003
0. 025
1. 0
AND DEFINITIONS FOR THIS REPORT.
All results reoorted in ua/ml
:ODE METAL
HC Mercury
IN Indium
K Potassium
LI Lithium
MG Magnesium
MN Manganese
MO Molybdenum
NA Sodium
NI Nickel
P Phosphorous
PB Lead
PT Platinum
S Sulfur
SB Antimony
unless otherwise
RESULT
< 03
C 05
1. 2
0. 076
O. 95
0. 023
0. 026
9. 4
O. 20
0. 35
<. O8
<. O3
33
<. 03
spec if ied.
VERIFIED BY DLH
CODE METAL RESULT
SE Selenium <. O8
SI Silicon 5.6.
SN Tin <,r \%
SR Strontium O. 029
TE Tellurium <. 10
TI Titanium Q. 15
TL Thallium <. O9
U Uranium <. O6
V Vanadium Q. 088.
U Tungsten <;. Q3
Y Yttrium <. OO2
ZN Zinc O. 070
NA
NA
NA = not analyzed
* = less than 5 times the detection limit.
-------
PAGE 7
RECEIVED: 06/02/83
SAMPLE ID CM 396
Analytical Serv REPORT
Results by Sample
LAB ft 83-06-015
DATE
CODE
AG
AL
AS
AU
B
?BA
&E
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED 06/06/83
METAL RESULT CODE
Silver <. 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Bery 1 1 turn
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
4. 6
C 06
<;. 03
0. 24
C 001
<. 0005
<. 05
0. 83
0. 013
0. 43
O. OO5,
C 001
0. 71
AND DEFINITIONS FOR THIS REPORT.
All results reported in uq/ml
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
unl
FRACTION 05A TEST CODE ICP 4Q NAME Complete ICPES Analysis
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sod ium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ted not specified
RESULT
<. 03
<. 05
C 04
<. O01
0. 19
0. 018
<. 002
2. 6
0. 11
<. 18
<. 08
<. 03
15
<. 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium <. OS
Si 1 icon
Tin
Strontium
Tel lur ium
Titanium
Thai 1 ium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
0. 69
<. 12
0. 012
<. 10
<. O05
<. 09
<. 06
<. 003
<. 03
<. 002
0. 50
NA
NA
specified.
NA = not analyzed
* = less than 5 times the detection limit.
-------
RADIAN
COf* «»O« MTIOM
PAGE 8 Analytical
RECEIVED: 06/02/83 1
SAMPLE ID CM 397 FRAC
DATE
CODE
AC
AL
AS
AU
B
n
^,BA
*»
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
ANALYZED Q6/Q6/B3
METAL RESULT
Silver C 002
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calc ium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
2. 0
<. 0$
<. 03
0. 52
C OO1
0. 002
<. 05
1. 1
0. 003
O. 073
0. 034
0. 027
0. 52
FOR THIS REPORT
Date
CODE
HG
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
'V REPORT
Results by Sample
LAB ft 83-06-015
FRACTION 06A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in
NA = not analyzed
» = less than 5 times the detection limit.
METAL
Mercury
Ind ium
Potass ium
Li th ium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
uo/ml unless otherwise specified.
ted not specified
RESULT
<. 03
<. 05
1 2
0. 028
O. 61
0. O28
O. 025
2. O
0. 088
0. 38
C O8
C 03
7. 6
<. O3
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VER
METAL
Selenium
Silicon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
IFIED BY DLH
RESULT
<. 08
0. 33
<. 12
0. 012
C 10
0. 18
<. 09
<. O6
0. 094
<. 03
<. 002
O. 34
NA
NA
-------
PAGE?
RECEIVED: 06/02/83
SAMPLE ID CM 418 27
Analytical Serv REPORT
Results by Sample
LAB ft 83-06-015
FRACTION 07A TEST CODE ICP 40 NAME Complete ICPES Analysis
Date & Time Collected not specified Cateaoru
DATE
CODE
AG
AL
AS
AU
B
? BA
Ln
Ul
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
ANALYZED Q6/06/B3
METAL RESULT CODE
Silver <. 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
2. 2
<. 06
<. 03
O. 32
< poi
<. O005
C OS
1. 3
0. 034
0. 07O
O. 003
0. 008
O. 34
AND DEFINITIONS FOR THIS REPORT.
All results reported in uq/m}.
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
unli
METAL
Mercurg
Ind ium
Potassium
Li th ium
Magnesium
Manganese
Molybdenum
Sod ium
Nickel
Phosphorous
Lead
Platinum
Sulfur
Antimony
>ss otherwise
RESULT
<. 03
<. O5
<. 04
0. 008
0. 27
O. 01O
<. OO2
2. 2
O. 12
<. 18
<. OS
C 03
7. 9
•C. O3
specified.
VERIFIED BY DLH
CODE METAL RESULT
SE Selenium <. 08
SI Si 1 icon 0. 38
SN Tin <. 12
SR Strontium 0. 015
TE Tellurium <. IO
TI Titanium O. 028
TL Thallium <;. O9
U Uranium <. Oft
V Vanadium Q. 021
W Tunasten C O3
Y Yttrium <;, Q02
ZN Zinc 0.28
NA
NA
NA = not analyzed
* = less than 5 times the detection limit.
-------
PAGE 10
RECEIVED: 06/02/83
SAMPLE ID CM 419 28
Analytical Serv REPORT
Results by Sample
LAB t 83-06-015
DATE
CODE
AC
AL
AS
AU
o B
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED 06/06/83
METAL RESULT CODE
Silver <. 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Bery 1 lium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
3. 7
<. 06
<. 03
0. 21
<- PP1
C 0005
<. 05
*• 1
0. 013
0. 03O
0. 003
<. 001
O. 47
AND DEFINITIONS FOR THIS REPORT.
All results reported in uq/ml
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
unl
FRACTION 08A TEST CODE ICP 40 NAME Complete ICPES Analysis
METAL
Mercury
Ind ium
Potass ium
Lith ium
Magnesium
Manganese
MO Molybdenum
Sod ium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ted not specified
RESULT
<. 03
<. 05
0. 13
C OO05
0. 35
0. Oil
<. O02
2. 2
0. O70
<. 18
<. 08
<. 03
13
C 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium <. 08
Silicon
Tin
Strontium
Tel lur ium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
0. 17
<. 12
O. 012
<. 10
<. 005
<. 09
<. 06
<. 003
<. 03
<. OO2
0. 31
NA
NA
specified.
NA = not analyzed
« = less than 5 times the detection limit.
-------
fir
PAGE 28 " ~
RECEIVED: 06/02/83
SAMPLE ID CM 534 1C
POttJVTtOM
Analytical Serv REPORT
Results by Sample
LAB ft 83-06-015
DATE
CODE
AO
AL
AS
AU
B
?BA
Ol
^j
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED 06/06/83
METAL RESULT CODE
Silver <. 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Bery 11 ium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
9. O
<. 06
<. 03
1. 6
<. 001
<. 0005
<. OS
8. 3
0. 008
O. 026
0. 004
0. Oil
0. 67
FOR THIS REPORT.
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION 26A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in
NA = not analyzed
* = less than 5 times the detection limit
METAL
Mercury
Ind ium
Potassium
Li th ium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
uq/ml unless otherwise specified.
ted not specified
RESULT
<. 03
<. 05
<. 04
0. 006
1. 9
O. 013
<. O02
2. 6
0. O12
<. IB
<. 08
<. 03
56
<. 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium C 08
Sil icon
Tin
Strontium
Tel lurium
Titanium
Thai lium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
6. 8
C 12
O. O25
<. 10
0. 037
<. 09
<. 06
O. O64
<. 03
<. 002
0. 013
NA
NA
-------
COftlHMtATKM
RADIAN
COftlHM)
PAGE 29
RECEIVED: 06/02/83
SAMPLE ID CM 535
Analytical Serv REPORT
Results by Sample
LAB I 83-06-015
FRACTION 27A TEST CODE ICP 40 NAME Complete ICPES Analysis
Date & Time Collected not specified Category
DATE
CODE
AG
AL
AS
AU
o B
£ BA
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
ANALYZED 06/06/S3
METAL RESULT CODE
Silver C 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Berg 1 1 turn
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
3. 3
<. 03
<. 03
O. 39
<. 001
<. OO05
<. 05
2.. 3
C 002
O. OO7
<. 002
<. OO2
O. 39
AND DEFINITIONS FOR THIS REPORT.
All results reported in uq/ml
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
unit
METAL
Mercurg
Ind ium
Potassium
Lith ium
Magnes ium
Manganese
Molybdenum
Sod ium
Nickel
Phosphorous
Lead
Platinum
Sulfur
Antimony
>ss otherwise
RESULT
<. O3
<. O5
<. O4
<. 0005
0. 34
0. 007
<. OO2
2. 3
O. 008
<. 18
<. O8
<. O3
23
<. O3
spec if ied.
VERIFIED BY DLH
CODE METAL RESULT
SE Selenium C 08
SI Silicon 2.4
SN Tin <. 13
SR Strontium 0.014
TE Tellurium <. 10
TI Titanium •$. OO5
TL Thallium <. O9
U Uranium <. 06
V Vanadium 0.029
W Tungsten <. 03
Y Yttrium <. 002
ZN Zinc O. 52
NA
NA
NA = not analyzed
* - less than 5 times the detection limit.
-------
PAGE 30
RECEIVED: 06/02/83
SAMPLE ID CM 540
Analytical Serv REPORT
Results by Sample
LAB « 83-06-015
DATE
CODE
AG
AL
AS
AU
? B
SBA
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED Q6/Q&/B3
METAL RESULT CODE
Silver <. 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Berg 11 ium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
8. 3
<. 06
<. 03
0. 71
00}
<. 0005
<. 05
4. 6
C 002
0. O2O
<. 001
< PQ*
0. 71
FOR THIS REPORT.
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION 28A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in .
NA = not analyzed
» = less than 5 times the detection limit.
METAL
Mercury
Indium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
uo/ml unless otherwise specified.
ted not specified
RESULT
<. 03
<. O5
<. O4
<. 001
0.97
O. 014
<. 002
2. 6
O. 043
<. 18
<. OS
<. 03
51
<. O3
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium <. 08
Si 1 icon
Tin
Strontium
Tellurium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
7. 2
<. 12
0. 024
<. 10
0. 030
<. 09
<. O6
0. 054
<. 03
<. 002
O. 072
NA
NA
-------
PAGE 31
RECEIVED: 06/02/83
SAMPLE ID CM 541
Analytical Serv REPORT
Results by Sample
LAB « 83-06-015
DATE
CODE
AC
AL
AS
AU
B
BA
O
c^BE
o
BI
CA
CD
CO
CR
CU
FE
JTES
Date
ANALYZED 06/06/83
METAL RESULT CODE
Silver <. O02 HC
Aluminum
Arsenic
Gold
Boron
Barium
Beryl 1 ium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
10
<. 06
C O?
1 2
C 001
0. QO1
<. 05
5. 5
0 020
0 040
O. 0*7
0 034
1. 2
AND DEFINITIONS FOR THIS REPORT.
All results reported in ufl/ffli
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
unli
FRACTION 29A TEST CODE ICP 40 NAME Complete ICPES Analysis
METAL
Mercury
Ind ium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ted not specified
RESULT
<. 03
<. 05
1. 1
0. O29
1. 3
0. 024
0. 022
3.3
0. 082
<. IB
<. OS
<. O3
48
<. O3
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Cateqoni
VERIFIED BY DLH
METAL RESULT
Selenium C. O8
Silicon
Tin
Strontium
Tel lur ium
Ti tan ium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
6. 2
<. 12
0. 029
<. 10
0. 20
<. 09
<. 06
0 18
•C. 03
<. 002
0. 037
NA
NA
NA = not analyzed
* =* less than 5 time* the detection limit.
specified.
-------
RAD AN
CORPORATION
PAGE 32
RECEIVED: 06/02/83
SAMPLE ID CM 543
DATE ANALYZED O6/O6/B3
CODE METAL RESULT
AG Silver <;. Q02
AL Aluminum 0. 19
AS Arsenic <^. 06
AU Gold <;. 03
-> B Boron O. 36
i " "
Ti
BA Barium Q. 005
BE Berullium <^ OQ1
BI Bismuth
-------
RADIAN
PAGE 33 Analytical Serv REPORT LAB 1 83-06-015
RECEIVED: 06/02/83 Results by Sample
SAMPLE ID CM 544 FRACTION 31A TEST CODE ICP 40 NAME Complete ICPES Analysis
Date & Time Collected not specified Cateooru
DATE
CODE
AG
AL
AS
AU
B
0
c^ BA
to
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
ANALYZED 06/06/83
METAL RESULT CODE
Silver C 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Berullium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
C 03
1. 1
<. 03
C 010
C 001
C. 0005
C 05
<;. Q4
C 002
O 006
<. O01
<. 001
0 069
FOR THIS REPORT.
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
METAL
Mercury
Indium
Potassium
Li th ium
Magnes ium
Manganese
Molybdenum
Sod ium
Nickel .
Phosphorous
Lead
Platinum
Sulfur
Antimony
RESULT
<. 03
<. 05
<. 04
C 001
<. 03
<. 001
0. OO6
<. Ol
C 003
C 18
<. 08
C 03
17
C 03
VERIFIED BY DLH
CODE METAL RESULT
SE Selenium <. 08
SI Silicon
SN Tin
SR Strontium
TE Tellurium
TI Titanium
TL Thallium
U Uranium
V Vanadium
W Tungsten
Y Yttrium
ZN Zinc
C 020
<. 12
O. O51
<. 10
<. 005
C O9
90
<. 003
C 03
<. 002
O. 36
NA
NA
All results reported in
NA = not analyzed
* = less than 5 times the detection limit
uq/ml unless otherwise specified.
-------
PAGE 34
RECEIVED: 06/02/83
SAMPLE ID CM 549
Analytical Serv REPORT
Results by Sample
LAB ft 83-06-015
DATE
CODE
AG
AL
AS
AU
? B
3\
"" BA
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED O&/QA/S3
METAL RESULT CODE
Silver C 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Bery 1 1 ium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
0. 52
<.0&
<;. 03
0. 24
<. 001
0. 001
C 05
0. 59
<, 002
<, OO6
0. 022
<. 001
0. 33
FOR THIS REPORT.
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION 32A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in
NA = not analyzed
* = less than 5 times the detection limit.
METAL
Mercury
Ind ium
Potassium
Li thium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
uq/ml unless otherwise specified.
ted not specified
RESULT
<. O3
<. 05
1. 4
O. 014
0. 21
O. 013
0. 033
1. 2
0. 025
2. 6
<. 08
<. O3
43
C 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VER
METAL
Selenium
Silicon
Tin
Strontium
Tellurium
Titanium
Thai 1 ium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
IFIED BY DLH
RESULT
<. 08
3. 4
<. 12
O. Oil
<. 10
0. 044
<. 09
<. 06
0. 034
<. O3
<. 002
1. 6
NA
NA
-------
PAGE 35
RECEIVED: 06/02/83
SAMPLE ID CM 550
Analytical Serv REPORT
Results by Sample
LAB ft 83-06-015
DATE
CODE
AG
AL
AS
AU
B
1
&\ RA
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
Date
ANALYZED 06/06/83
METAL RESULT CODE
Silver < 002 HG
Aluminum
Arsenic
Gold
Boron
Barium
Beryllium <
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
O. 22
<. 06
<. 03
0. 18
<. O01
f . QO05
<. 05
0. 32
<. OO^
C 006
0. 014
<. 001
0. 35
FOR THIS REPORT.
IN
K
LI
MG
MN
MO
NA
NI
P
PB
PT
S
SB
FRACTION 33A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in
NA = not analyzed
* = less than 5 times the detection limit.
METAL
Mercury
Ind ium
Potassium
Lithium
Magnesium
Manganese
MO Molybdenum
Sodium
Nickel
P Phosphorous
Lead
Platinum
Sulfur
Antimony
ug/ml unless otherwise specified.
ted not specified
RESULT
<. 03
<. 05
0. 20
<. 001
0. 28
0. O19
<. OO2
1. 7
0. O34
1. 5
C 08
<. 03
42
C O3
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
U
Y
ZN
Category
VER
METAL
Selenium
Silicon
Tin
Strontium
Tel lur ium
Titanium
Thallium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
IFIED BY DLH
RESULT
<. 08
0. 70
C 12
O. 007
<. 10
<. 005
<. 09
<. 06
<. O03
<. 03
<. 002
0. 98
NA
NA
-------
COHPOMATIOf*
PAGE 36
RECEIVED: 06/02/83
SAMPLE ID CH 553 Mater Blank
Analytical Serv REPORT
Results by Sample
LAB ft 83-06-015
DATE
CODE
AG
AL
AS
AU
0 B
I
* BA
BE
BI
CA
CD
CO
CR
CU
FE
NOTES
ANALYZED 06/06/83
METAL RESULT
Silver < 002
Aluminum
Arsenic
Gold
Boron
Barium
Beryl 1 ium
Bismuth
Calcium
Cadmium
Cobalt
Chromium
Copper
Iron
AND DEFINITIONS
<. 05
C 06
<. 03
O. 08
<. 001
<. OO05
<. 05
C 05
C 002
C 006
<. 001
<. 001
<. 008
FOR Tl
FRACTION 34A TEST CODE ICP 40 NAME Complete ICPES Analysis
All results reported in
NA = not analyzed
* = less than 5 times the detection limit.
CODE METAL
HG Mercury
IN Indium
K Potassium
LI Lithium
MG Magnesium
MN Manganese
MO Molybdenum
NA Sodium
NI Nickel
P Phosphorous
PB Lead
PT Platinum
S Sulfur
SB Antimony
uo/ml unless otherwise specified.
ted not specified
RESULT
<. 03
<. 05
0. 12 /
<. 001
<. O3
<. 001
O. O05 --
0. 86 '
<. 003
<. 18
<. 08
<. 03
C 03
<. 03
CODE
SE
SI
SN
SR
TE
TI
TL
U
V
W
Y
ZN
Category
VERIFIED BY DLH
METAL RESULT
Selenium <. 08
Si 1 icon
Tin
Strontium
Tel lurium
Titanium
Thai 1 ium
Uranium
Vanadium
Tungsten
Yttrium
Zinc
O. 050 .,
<. 12
<. OO1
<- 10
<. 005
<. O9
<. 06
<. O03
<. 03
<. 002
<. O03
NA
NA
-------
APPENDIX D
SAMPLE AND ANALYTICAL PROCEDURES
D-l
-------
D-2
-------
SAMPLING AND ANALYTICAL PROCEDURES
The following methods were used in this test program. Where
applicable, sampling procedures followed those described in
Method 5 of the Federal Register.*
SAMPLING APPARATUS
The particulate sampling train (s) used in these tests at the
exit stack met design specifications established by the Federal
EPA and were assembled by PEDCo personnel. Each train consisted
of:
Nozzle - Stainless steel (316) with sharp, tapered leading
edge and accurately measured round opening.
Probe - Borosilicate glass with a heating system capable of
maintaining the desired gas temperature at the exit end
during sampling.
Pitot Tube - Type S pitot tube that met all geometry stan-
dards was attached to the probe system to monitor stack gas
velocity.
Filter Holder - Pyrex glass with heating system capable of
maintaining a filter temperature at desired levels.
Draft Gauge - An inclined manometer made by Dwyer with a
readability of 0.01 inch H_0 in the 0 to 10 inch range was
used.
Impingers - Five impingers connected in series with glass
ball joints. The first, fourth, and fifth impingers were of
the Greenburg-Smith design, modified by replacing the tip
with a 1/2 inch I.D. glass tube extending to 1/2 inch from
the bottom of the flask.
40 CFR 60, Appendix A, July 1981,
D-3
-------
Metering System - Vacuum gauge, leak-free pump, thermometers
capable of measuring temperature to within 5°F, calibrated
dry gas meter, related equipment to maintain an isokinetic
sampling rate, and to determine sample volume. The dry gas
meter is made by Rockwell and the fiber vane pump is made by
Cast.
Barometer - Aneroid type to measure atmospheric pressures to
±0.1 inch Hg.
SAMPLING PROCEDURE
After selecting the sampling site and the minimum number of
traverse points, the stack pressure, temperature, moisture con-
tent, and range of velocity head were measured according to
procedures described in the Federal Register.*
For each train, approximately 300 grams of silica gel was
weighed and placed in a sealed impinger prior to each test.
Glass fiber filters** (3-inch diameter) were heated to 315°C,
desiccated for at least 24 hours, and weighed to the nearest 0.1
mg on an analytical balance.
The backhalf of each sample train was a modified Method 8
with five impingers. An unheated Method 5 filter assembly was
inserted between the second and third impingers to preclude any
sulfuric acid mist carryover. The contents of each impinger was
as follows:
Impingers Contents - All Runs
1 Empty
2 200 ml 80% IPA
3 100 ml 10% H202
4 100 ml 10% H202
5 300 grams silica gel
*40 CFR 60, Appendix A, July 1981.
**
Whatman Reeve Angel 934AH.
D-4
-------
Each train was set up with the probe as shown in Figure D-l. The
sampling trains were leak checked at the sampling site prior to
each test run by plugging the inlet to the nozzle and pulling a
15 inch Hg vacuum, and at the conclusion of the test by plugging
the inlet to the nozzle and pulling a vacuum equal to the highest
vacuum reached during the test run.
The pitot tube and lines were leak checked at the test site
prior to and at the conclusion of each test run. The check was
made by blowing into the impact opening of the pitot tube until 3
or more inches of water were recorded on the manometer and then
capping the impact opening and holding it for 15 seconds to
assure it was leak free. The static pressure side of the pitot
tube was leak checked using the same procedure, except suction
was used to obtain the 3 inch H_0 manometer reading. Crushed ice
was placed around the impingers to keep the temperature of the
gases leaving the last impinger at 68°F or less. For each train,
the probe and filter temperatures were set at the predetermined
temperature and monitored using multiterminal digital indicators
with thermocouple leads located in each probe and immediately
behind the Method 5 filter frits.
During sampling, stack gas and sampling train data were
recorded at each sampling point and when significant changes in
stack flow conditions occurred. Isokinetic sampling rates were
set throughout the sampling period with the aid of a programmable
calculator. All sampling data were recorded on the Particulate
Field Data Sheet.
D-5
-------
STACK WALL
D
HEATED AREA
\
/THERMOMETER
GLASS PROBE
•TEMPERATURE
SENSOR
LOCATION
I L
IMPINGERS
ICE WATER BATH
irr UATCD nATU —'
THERMOMETERS
BY-PASS
VALVE
MAIN VALVE
VACUUM GAUGE
_2_,
VACUUM LINE
VACUUM PUMP
IMPINGER CONTENTS
RUNS 1-10
1. EMPTY
2. 200 ml 80% I PA
3. 100 ml 10% H202
4. 100 ml 10% H202
5. 400 g SILICA GEL
Figure D-l. Method 5 sampling train schematic.
-------
SAMPLE RECOVERY
The components of the quad train sample system were labeled
and disassembled at the stack for transport to the sample clean-
up/setup area. The filter and probe assemblies were recovered as
follows:
0 All filters were carefully removed from the filter
holder and placed in a petri dish. These filters were
sealed and labeled for shipment.
0 For Methods 5, 5B, and M5-450, loose particulate from
all sample exposed surfaces prior to the filter and
acetone washings were placed in a polyethylene con-
tainer, sealed, and labeled. For Method 5W, deionized,
distilled water was used for the probe rinse. Particu-
late was removed from the nozzle and probe with a nylon
brush. The liquid level was marked after each con-
tainer was sealed.
The impinger section of each individual sample train (modi-
fied Method 8) was purged with ambient air for 15 minutes before
recovering the contents. The impingers were removed from the ice
bath prior to purging.
The contents were recovered as follows:
0 After gravimetric weighing, the contents (80 percent
IPA) of the first and second impingers were placed in a
polyethylene container. The impingers and connecting
glassware prior to the backhalf filter were rinsed with
80 percent IPA and the rinse was added to the container
along with the backhalf filter. The containers were
then sealed, labeled, and the liquid level marked.
0 After gravimetric weighing, the contents of the third
and fourth impingers (H202) were placed in a polyethyl-
ene container. The impingers and connecting glassware
were rinsed with deionized, distilled water and the
rinse was added to the container. The containers were
then sealed, labeled, and the liquid level marked.
0 The color of the silica gel was noted on the sample
recovery sheet and the net weight gain determined
gravimetrically.
D-7
-------
Blank samples were taken each day of sampling for the fol-
lowing: acetone; deionized, distilled water; 80 percent IPA; 10
percent H_0_; and a filter. In addition, each probe was rinsed
prior to initial use with either acetone or water (depending on
method type).
SAMPLE ANALYSIS
Thermogravimetric (Particulate) Analysis
Initially, the filter particulate catch was placed in a
tared glass weighing dish, desiccated for 24 hours, and weighed
until a constant weight was achieved. Constant weight criteria
as described in Method 5* was achieved on the Method 5B and
Method 5-450 samples. The lowest weight obtained from three
separate weighings of the Method 5 filters was used for these
samples. The probe rinse fractions were transferred to tared
beakers and evaporated to dryness at ambient temperature and
pressure, desiccated for 24 hours, and weighed to the nearest 0.1
mg. Once again, the MSB and M5-450 fractions met the Method 5
constant weight criteria whereas the M5 fractions did not. The
lowest recorded weight from three separate weighings was used as
the ambient weight. After this initial analysis, probe rinse and
filter fractions were heat conditioned in an oven for 3 hours at
each of the indicated temperatures (160°, 232°, and 315°C). As
shown in Table 3-2, samples from Runs 3A, 3C, 5B, 5D, 6A, 7B, and
7C were conditioned for 24 hours at the indicated temperatures
40 CFR 60, Appendix A, Reference Method 5, July 1982.
D-8
-------
for comparative purposes. Each sample fraction was cooled and
desiccated for 24 hours after removal from the oven and weighed
to the nearest 0.1 mg until a constant weight was achieved.
Water Soluble Sulfate Analysis
This method is designed to determine the particulate catch
corrected for any water-soluble sulfate retained in the Method 5
sample fractions. As documented in previous studies, the conden-
sible sulfate problem can be attributed to sulfuric acid, which
makes a direct gravimetric analysis difficult for two reasons.
First, the sulfuric acid is a powerful desiccating agent itself;
therefore, if a significant amount of sulfuric acid is present,
the Method 5 criteria for constant weight of the particulate
cannot be met. Second, the number of water-molecules associated
with each sulfuric acid molecule is not consistent. The water-
soluble sulfate method developed by the Texas Air Board was
designed to overcome these problems. This method converts any
sulfuric acid present to suitable form for accurate gravimetric
analysis. Ammonium hydroxide is added to form ammonium sulfate
in the aqueous solutions. Ammonium hydroxide is used because any
excess reagent will evaporate. This procedure allows the deter-
mination of the gross particulate (sulfate as ammonium sulfate
and other particulate); the determination of sulfate as ammonium
sulfate from a Method 6* titration or ion chromatography; and
subsequently, the determination of non-water-soluble sulfate
particulate by subtraction of the sulfate (as ammonium sulfate)
from the gross particulate.
*40 CFR 60, Appendix A, Reference Method 6, July 1982.
D-9
-------
Sample Preparation—
Each sample fraction, including blanks, was handled and
analyzed as follows:
Filter - The filter was cut into small pieces and placed in
a 125-ml Erlenmeyer flask with a standard taper joint
equipped with an air condenser. The shipping container was
rinsed into the flask. About 50 ml of distilled water was
added and gently refluxed for 6 to 8 hours. The solution
was then cooled and diluted with water to exactly 250 ml in
a volumetric flask. This was reserved for total soluble
sulfate analysis, which is described in the following sub-
section.
Probe Rinse - The probe wash was poured into a 250-ml volu-
metric flask. The sample bottle was rinsed with distilled
water, and the rinsings were added to the flask. The solu-
tion was then diluted to the mark with distilled water.
This solution was reserved for total soluble sulfate analy-
sis, which is described in the following subsection.
Total Soluble Sulfate Analysis—
A 20-ml aliquot was drawn from the settled samples (filter
and rinse) into separate 250-ml Erlenmeyer flasks with a clean,
dry pipet (making sure only solution was transferred, no solids;
if necessary a portion of the sample was centrifuged).* Eighty
ml of 100 percent isopropanol and two to four drops of thorin
indicator were added and titrated to the end point by using
0.0100 N barium perchlorate (EPA Method 6).** This was repeated,
and the titration volumes were averaged. (A third titration may
be performed if deemed necessary.) A blank was run with each
*
The pipet is not rinsed. This is a deviation from normal pro-
cedures, but is necessary because the volume removed from the
volumetric flask is required in the calculations.
**
40 CFR 60, Appendix A, Reference Method 6, July 1, 1982.
D-10
-------
series of samples. Duplicate titrations must agree within 1
percent or 0.2 ml, whichever is larger.*
Mass Determination—
Mass determination was made in the following manner.
Filter and Rinse Solution Preparation - Depending on whether
two or three titrations were performed for total soluble
sulfate, either 210 or 190 ml of the filter and rinse solu-
tions remained. Fifty milliliters of the settled sample was
drawn with a clean, dry pipet into tared, 250-ml beakers.
(The pipet is not rinsed.**) The filter solution was in
Beaker A and the rinse solution was in Beaker C. This
solution was evaporated to approximately 25 ml at 105°C and
allowed to cool before proceeding with the filter and rinse
solution analysis. The clear aqueous solution must be sepa-
rated from all undissolved solids, including the filters
from the filter sample. When more than 10 percent of the
total sample volume is required for the soluble sulfate
analysis, the total dissolved solids analysis is necessary
so that the dissolved nonsulfate particulate in the aqueous
portion used for the sulfate determination is not lost.
This loss would give a low bias. If less than 10 percent of
the total sample is used for the sulfate analysis, this bias
becomes negligibly small.
The remaining contents of each volumetric flask (160 or 140
ml) were poured into separate tared 250-ml beakers, and the
flask was rinsed with distilled water to transfer all par-
ticulate matter. The filter solution was in Beaker B, and
the rinse solution was in Beaker D. This solution was
evaporated to approximately 100 ml at 105°C and allowed to
cool before proceeding with the next analysis.
Divalent cations (each Cd , Ca , Fe , Zn ) will interfere
with the analysis. The sample may be passed through strong
cation exchange resin before analysis to remove these interfer-
ences. The ion exchange method is limited to samples contain-
ing relatively high sulfur concentration because of the inher-
ent sample dilution involved.
**
The pipet is not rinsed. This is a deviation from normal pro-
cedures, but is necessary because the volume removed from the
volumetric flask is required in the calculations.
D-ll
-------
Filter and Rinse Solution Analysis - Five drops of phenol-
phthalein indicator were added to all the tared beakers (A,
B, C, and D). Concentrated NH.OH was then added drop by
drop until the solution turned pink. The samples were
returned to the oven and evaporated to dryness at 105°C,
cooled in a desiccator, and weighed to a constant weight.
Results were reported to the nearest 0.1 mg. For this
method, "constant weight" means a difference of no more than
0.5 mg or 1 percent of the total weight less beaker and/or
filter tare, whichever is greater, between two consecutive
weighings, with no less than 6 hours of desiccation time
between weighings.
Calculations—
Nomenclature—
TP = weight of total particulate, g
FP = weight of particulate on the filter, g
PRP = weight of probe rinse particulate, g
NWSSP = weight of non-water-soluble sulfate particulate, g
ASf = weight of ammonium sulfate in filter sample, g
AS = weight of ammonium sulfate in probe rinse sample, g
A = net weight Beaker A = gross weight Beaker A - tare
weight Beaker A, g (obtained from the 50 ml aliquot of
filter solution)
F, = Volume of aliquot Beaker A (50 ml) + Total of aliquot
volumes used for titrations, ml
Volume of aliquot Beaker A (50 ml)
B = net weight Beaker B = gross weight Beaker B - tare
weight Beaker B - filter tare weight, g (obtained from
remainder of the filter solution)
C = net weight Beaker C = gross weight Beaker C, g (ob-
tained from the 50 ml aliquot of probe rinse solution)
F_ = Volume of aliquot Beaker C (50 ml) + Total of aliquot
volumes used for titrations, ml
Volume of aliquot Beaker C (50 ml)
D = net weight Beaker D = gross weight Beaker D, g (ob-
tained from the remainder of the probe rinse solution)
D-12
-------
Mass of Non-water-Soluble Sulfate Particulate
The total particulate (TP) collected is the sum of the
particulate collected on the filter (FP) and the particulate
collected in the probe rinse (PRP), which is also the sum of
non-water-soluble sulfate particulate (NWSSP) and ammonium
sulfate (AS) in both samples:
TP = FP + PRP = NWSSP + ASf + AS Eq. 1
The NWSSP can be found by subtracting the ammonium sulfate
in filter sample (AS.p) and the AS in the probe rinse sample AS
from total particulate collected (FP + PRP).
NWSSP = FP + PRP - AS, - AS Eq. 2
r pr
where FP = B + AF,
PRP = D + CF2
The total particulate on the filter is equal to the net
weight of the residue in Beaker B (the total weight of Beaker B
minus the tare weights of the beakers and the original filter)
plus the weight of dissolved solids in the clear aqueous solution
removed for sulfate analysis and the determination of total
dissolved solids. According to the procedure, between 16 and 24
percent of the original clear solution is needed for the sulfate
determination (2 or 3 titrations). This clear solution will
contain all water-soluble compounds, not just sulfate species.
If the total dissolved solids of the clear solution are not
D-13
-------
determined separately and added to the residue in Beaker B, the
results will be biased low by 16 to 24 percent of the weight of
the other water-soluble compounds. Therefore, the total dis-
solved solids are determined on a separate portion of the clear
solution (Beaker A), and the total weight of dissolved solids
removed from the original 250 ml sample is determined (AF,). The
same is done for the probe rinse sample (CFO .
ASf and AS are calculated by using Equation 3.
The equivalent mass of water-soluble sulfate expressed as
ammonium sulfate is calculated according to the following equa-
tion:
AS = Kx (Vt - Vtb) N ( vS°ln) Eq. 3
a
where
AS = ammonium sulfate equivalent of water-soluble sulfate, g
K, = 0.06607 (equivalent weight of ammonium sulfate), g/meq
V = volume of BafClO.)- titrant for sample, ml
V . = volume of Ba(C10.)2 titrant for blank, ml
N = normality of BalClO.)- titrant, meq/ml
V , = total volume of sample, ml
soln
V = volume of sample aliquot titrated, ml
3.
Sulfate (as Sulfuric Acid Mist) Analysis
The volume of the sample solution was recorded and the pH of
the sample determined. If the pH was greater than 3, no ion
exchange column was used. The sample volume was diluted to 500
ml with 80 percent IPA. A 100 ml aliquot of this solution was
D-14
-------
pipetted into a 250 ml Erlenmeyer flask with 2 to 3 drops of
thorin indicator and titrated to a pink end point using 0.0100 N
barium perchlorate. A blank was titrated for each sample in the
same manner.
Several samples required the use of an ion exchange column
to remove divalent cations (Cd , Ca , Fe , Zn ). A small ion
exchange column approximately 2.4 cm (1 in.) in depth and 1.9 cm
(3/4 in.) in diameter was prepared using a strong cation resin.
Twenty mis of sample was percolated through the column and col-
lected in a volumetric flask. The column was then rinsed with 20
mis of deionized, distilled water. The 40 ml solution (sample
and rinse) was then added to 160 ml of 100 percent IPA and tit-
rated per Method 6.
Sulfur Dioxide Analysis
The sample was diluted to 500 ml with deionized, distilled
water. A 20 ml aliquot of this solution was pipetted into a 250
Erlenmeyer flask with 80 ml of 100 percent IPA and 2 to 3 drops
thorin indicator. The solution was then titrated to a pink end
point using 0.0100 N barium perchlorate. A blank was titrated in
the same manner.
The following procedure was developed for the M5W analysis
in which ion chromatography is used to determine water-soluble
sulfate instead of the titrametric procedure described previ-
ously.
D-15
-------
ION CHROMATOGRAPHY
Apparatus
0 125-ml Erlenmeyer flasks with standard taper joints and
matching air condensers
0 250-ml volumetric flasks, Class A.
0 Assorted volumetric flasks, Class A.
0 250-ml beakers.
0 Assorted pipets, Class A.
0 Oven capable of maintaining 105°C.
0 Ion chromatograph, Dionex Model 10
Reagents
0 Concentrated ammonium hydroxide (NH.OH), reagent grade.
0 Phenolphthalein indicator solution; dissolve 0.05 g
phenolphthalein in 50 ml of ethanol and add 50 ml of
distilled water.
0 Standard eluent (0.003 M NaHC03, 0.0024 M Na2CO3>
Sample Recovery
Sample recovery follows standard Method 5 procedures except
deionized water is used instead of acetone as the solvent for the
probe rinse.
Sample Preparation
Each sample fraction plus blanks are handled and analyzed as
follows:
Filter - Cut the filter into small pieces and place in a
125-ml Erlenmeyer flask with standard taper joint equipped
with an air condenser. Rinse the shipping container into
the flask. Add about 50 ml of distilled water and gently
reflux for six to eight hours. Cool and dilute to exactly
250 ml with water in a volumetric flask. Reserve this
solution for total soluble sulfate analysis, which is de-
scribed below.
D-16
-------
Probe Rinse - Pour the probe wash into a 250-ml volumetric
flask. Rinse the sample bottle with distilled water and add
the rinsings to the flask. Dilute to the mark with di-
stilled water. Reserve this solution for total soluble
sulfate analysis, which is described below.
Total Soluble Sulfate Analysis
Pipette a 5-ml aliquot (Note 1) with a clean, dry pipet from
the settled samples (filter and rinse) into separate 100-ml
volumetric flasks (made sure only solution is transferred, no
solids; centrifuge a portion of the sample if necessary). Dilute
to mark with the standard eluent. Analyze this solution for
sulfate using ion chromatography. Follow the vendor's recom-
mended procedure for analysis. The ion chromatograph must have
0.1 mg/liter sensitivity for a 0.5 mg sulfate detection limit.
Mass Determination
Pour a portion (175 ml) of the remaining contents of each
250 ml volumetric flask into separate tared 250 ml beakers.
Evaporate this solution to approximately 50 ml at 105°C. Pour
the remaining contents of each 250 ml volumetric flask into the
corresponding 250-ml beakers and rinse the flask with distilled
water to transfer all particulate matter. The filter solution is
in Beaker B and the rinse solution is in Beaker A. Evaporate
this solution to approximately 100 ml at 105°C. Let this solu-
tion cool and proceed with analysis below.
Note 1: Do not rinse the pipet. This is a deviation from normal
procedures but is necessary because the volume removed from the
volumetric flask is required in the calculations.
D-17
-------
Filter and Rinse Solution Analysis
Add 5 drops of phenolphthalein indicator to all the tared
beakers. Add concentrated NH.OH dropwise until the solution
turns pink. Return the samples to the oven and evaporate to
dryness at 105°C. Cool the samples in a desiccator and weigh to
a constant weight. Report results to the nearest 0.1 mg. For
this method, "constant weight" means a difference of no more than
0.5 mg or 1 percent of the total weight less beaker and/or filter
tare, whichever is greater, between two consecutive weighings,
with no less than 6 hours of desiccation time between weighings.
CALCULATIONS
Nomenclature
TP = weight of total particulate, g
FP = weight of particulate on the filter, g
PRP = weight of probe rinse particulate, g
NWSSP = weight of nonwater-soluble sulfate particulate, g
AS = weight of ammonium sulfate, g
ASf = weight of AS in filter sample, g
AS = weight of AS in probe rinse sample, g
A = Gross weight Beaker A - tare weight Beaker A = net
weight Beaker A, g
B = Gross weight Beaker B - tare weight Beaker B - filter
tare weight = net weight Beaker B, g
C = Concentration of sulfate determined by 1C, mg/liter
D = Dilution factor if any of sample saved for sulfate
analysis
D-18
-------
132.14 = molecular weight AS
96.06 = formula weight sulfate
Mass of Nonwater-Soluble Sulfate Particulate
The total particulate (TP) collected is the sum of the
particulate collected on the filter (FP) and the particulate
collected in the probe rinse (PRP), which is also the sum of
nonwater-soluble sulfate particulate (NWSSP) and ammonium sulfate
(AS) in both samples:
TP = FP + PRP = NWSSP + AS Eq. 1
The NWSSP can be found by subtracting the AS in filter
sample ASf and the AS in the probe rinse sample AS from the sum
of FP + PRP.
NWSSP = FP + PRP - AS, - AS Eq. 2
t pr ^
where:
FP = B
PRP = D
ASf and AS are calculated using Equation 3.
AS = C x — x D x 132'14 x 0.250 liter Eq. 3
5 96.06
SULFATE ANALYSIS BY ION CHROMATOGRAPHY
Selected samples, as designated in Table 3-2, were analyzed
for total residual sulfates as SO by use of standard ion chro-
matography (1C) analytical techniques. Aliquots from the Method
5W samples were analyzed to validate sulfate values obtained from
D-19
-------
the barium-perchlorate titration performed as part of the water-
soluble sulfate method. In addition, within-run samples, heat-
conditioned to 315°C, were extracted with distilled water as
described in Method M5W, and 1C was used to analyze aliquots for
total residual sulfates as SO.~.
D-20
-------
TACB Method
D-21
-------
Ifodified December 20, 1979
Laboratory Division
Texas Air Control Board
DETERMINATION OF PARTICULATE IN
STACK GASES CONTAINING SULFUR OXIDES
A. GENERAL
Participate is collected on a glass fiber filter and in the first
impinger. The participate caught is determined gravimetrically
after analyzing the samples for ammonia and sulfur trioxide/
sulfuric acid. The sulfur trioxide/sulfuric acid is converted to
ammonium sulfate and the weight of ammonium sulfate formed subtracted
from the total weight. Ammonium sulfate formed from ammonia present
in the stack is accounted for separately.
B. APPLICABILITY
This method is applicable to stack samples that may contain sulfur oxides
or sulfur oxides and ammonia in appreciable amounts. Fine particulate will? ^
penetrate the stack sampling filter and be caught in the first ijnpinger. ^/ '
This particulate will often be water or acid soluble and cannot be deter-
mined by a filtration technique. Particulate also cannot be determined ~
gravijnetrically in the presence of appreciable sulfuric acid as an inexact/^
amount of water will be retained by the acid. This method converts the
acid to a non-hygroscopic, non-volatile product. Results obtained by
this technique are 1 to 2% low. If an unheated filter is used then this
same technique must be used for analysis of the probe wash and filter.
Ammonia in the stack will combine with the sulfur oxides to form
ammonium sulfate. The ammonium sulfate is determined from the amount of
ammonia and sulfate present in the sample and reported separately.
Thorin indicator used in the Ba(Cl 04)2 titration+is a^ivalent cjtion
indicator. Any divalent cation such as Cd"*"1", Qi , Fe , and Zn will
interfere. An interfering ion will turn the thorin pink as soon as the
indicator is added. Therefore sulfur oxides analysis done on the filter
and probe wash must be done using an alternate method, such as ion
chromatography, if these cations are present.
C. APPARATUS
250 ml beakers
Thermostatically controlled oven, preferably with a fan
Analytical balance with 0.1 mg sensitivity
125 ml Erlenmeyer flask with standard taper joints,
matching air condenser
Additional apparatus as specified in the "Determination
of Sulfur Dioxide, Sulfur Trioxide, and Sulfuric
Acid Mist in Stack Gas"
Additional apparatus as specified in the "Determination
of Ammonia", if aranonia is present in the stack
D-22
-------
50 ml volumetric flasks
The following equipment is necessary if samples are to be analyzed by
ion chromatography:
Dionex Ion Chromatograph equipped with 3 x 250 mm anion separator
column and 6 x 250 mm cation suppressor column
Electronic filter to suppress the cyclic signal created by
pulsating pressure in the detector cell
Electronic integrator
Pipettors with disposable plastic tips capable of transferring
0.10, 0.25, 0.50, 0.75, and 1.0 ml quantities, either alone
or in combination
Sufficient disposable 20 ml plastic beakers
1 - 5 ml plastic syringe, with tapered Luer tip
1 - 4000 ml volumetric flask
3 - 500 ml volumetric flasks
6 - 100 ml volumetric flasks
Membrane filters, 0.45 urn pore size, for aqueous solutions
Apparatus for suction filtration of aqueous solutions
D. REAGENTS
All reagents should be ACS reagent grade
(I) Concentrated ammonium hydroxide (NH.OH)
(2) Phenolpthalein indicator
Dissolve 0.05 g phenolphthalein in 50 ml ethanol
and add 50 ml distilled water
(3) Additional reagents as specified in the "Determination
of Sulfur Dioxide, Sulfur Trioxide and Sulfuric Acid
Mist in Stack Gas"
(4) Additional reagents as specified in the "Determination
of Ammonia"
The following reagents are necessary if samples are to be analyzed
by ion chromatography:
(5) Stock NaHCO ^Solution
Dissolve 25~!20 g NaH003 in distilled water in a 500 ml
volumetric flask. Dilute to the mark with distilled water
(6) Stock Na7COT; Solution
Dissolve 25.44 g Na^COj in distilled water in a 500 ml
volumetric flask ana dilute to the mark.
(7) Eluent Buffer Solution
Pipet 20 ml NaHCC^ stock solution and 10 ml ^COj into a 4000 ml
volumetric flask and dilute to volume with distilled water. This
solution is 0.003 M in NaHC03 and 0.0012 M in Na2C03. Filter the
solution through a 0.45 ym pore size membrane filter and store in
a flexible plastic bottle out of contact with air. (To achieve the
desired retention time, separation, etc. the eluent buffer may vary
from 0.0009 M carbonate to 0.0015 M carbonate).
!D-23
-------
(8) Sulfate Stock Standard
Dissolve 0.1109 g anhydrous 1X3250. in distilled water in a
500 ml volumetric flask and dilute to_the mark. The solution
contains a concentration of 150 yg SO^/ml.
E. COLLECTION OF SAMPLE
The sample is collected using a normal stack sampling train set up
for isokinetic collection of participate and SOj/HTSO, and/or S02.
An 80% isopropyl alcohol solution is used to trap the SOj/I^SO/j and
particulate and a 6$ hydrogen peroxide solution is used to trap S02.
F. TEST PROCEDURE
(1) Sample Preparation
(a) Pour the probe wash into a 500 ml volumetric flask. . Rinse
the sample bottle with distilled water. Four the rinsings
into the volumetric flask. Dilute to the mark with distilled
water.
(b) Cut the filter into small pieces and place in a 125 irl " ~
Erlenmeyer flask equipped with an air condenser. Add
50 ml of distilled water and reflux gently for six to
eight hours. Pipet a 5 ml aliquot into a 50 ml volumetric
flask. Dilute to the mark with distilled water. Place
the rest of the extract and the filter in a 250 ml beaker.
Rinse Erlenmeyer flask with three 10 ml portions of dis-
tilled water. Pour rinsings into the 250 ml beaker.
(c) Pour the content? of the first impinger into a 500 ml
volumetric flask. Rinse the impinger or sample bottle
with distilled waiter several times. Pour the rinsings into
the sane flask. Dilute to the mark with distilled water.
(2) Ammonia Analysis
Following procedures in "Determination of Ammonia" for analysis
and preparation of the standard curve, analyze the probe wash,
filter extract, and contents of first iirpinger for ammonia.
For the probe wash and first impinger use 5 ml aliquots taken
from the samples after dilution to 500 ml and dilute with dis-
tilled water again to 500 ml. Another dilution may be necessary
so extra developed blank should be prepared.
For the filter take a 10 ml aliquot from the diluted sample in
the 50 ml volumetric flask and dilute this with distilled water
to 100 ml in a volumetric flask. Use this as the sample for
ammonia analysis. Another dilution may be necessary, so extra
developed blank should be prepared.
D-24
-------
(3) Sulfate Analysis
(a) Following procedures in "Determination of Sulfur Dioxide,
Sulfur Trioxide, and Sulfuric Acid Mist in Stack Gas"
analyze the probe wash, filter extract, and contents of
first impinger. For the probe wash and first impinger
take 5 ml aliquots taken from the sample after dilution
to 500 ml. For the filter extract take 5 ml aliquots
from the sample in the 50 ml volumetric flask.
Check the sample pH before beginning titrations. The sample
solution should be acidic. If there is excess NH^, the
solution will be basic giving a poor end point for the
Ba(C104)? titration. If the solution is basic, acidify
it us ing TO.
If divalent cations are present, then thorin indicator will
not work. The samples must then be analyzed by ion chrpma-
tography.
fo) Procedure for Ion Ghromatographic Analysis
Using a pipettor with disposable tips, transfer 0.50 and
1.0 ml SOr stock standard into 100 ml volumetric flasks
and dilute to volume with distilled water. These standards
contain 0.75 yg SOj/ml and 1.50 ug SO^/ml.
Set the pump in the ion chromatograph to give an eluent buffer
solution flow rate which provides a convenient retention time
for S0| and complete separation from other ions. (Eluent
buffer strength may also have to be varied). The chromatograph
output should be connected through the electronic filter and
the integrator to the recorder, in that order. Set the
electronic filter so that the signal from the pulsating pressure
in the detector cell just disappears from the recorder trace.
Transfer portions of the standards and samples to disposable
plastic beakers which have been pre-rinsed with distilled
water. Inject them into the instrument, taking care to rinse
the syringe with eluent or distilled water between solutions
and to avoid the introduction of air bubbles into the instru-
ment. Using the integrated values of samples and standards
determine the approximate sulfate concentrations. From these
values determine the proper range for the standard curve.
Prepare and run five standards to cover this range. Using
the integrated values for peak areas of standards and samples,
calculate a standard curve and from it the SO^ concentrations.
(4) Particulate Analysis
(a) Preparation
Allow the beakers to equilibrate in a humidity controlled
environment for at least 24 hours before use. Label and
weigh sufficient 250 ml beakers for the number of samples
and blanks.
D-25
-------
(b) Sample Analysis
Place samples in the tared beakers. Boil the samples
reducing the volume to approximately 100 ml to remove
any residual S02. Add 5 drops of phenolpthalein. Add
concentrated iNfyOK dropwise until the sample turns pink.
This converts all the H2S04 to (NH4)2 S04. The exact
amount of MPLOH added is not important as long as there
is an excess to assure that all the ^SO. has been converted.
Evaporate the sables by heating in an oven at a temperature
at which the particulate is neither lost nor altered, generally
1050 C. Cool the beakers to room temperature and allow them
to equilibrate for at least 6 hours in the same humidity con-
trolled environment as before. Weigh the beakers. Place the
beakers in the oven again. Heat for at least 2 hours. Cool
and allow to equilibrate in the humidity controlled environ-
ment for 6 hours. Repeat the process until constant weight
(within 0.5 mg or II of the particulate weight, which ever is
greater) is obtained.
(c) Special Handling
After evaporation, beakers containing deliquescent samples
should be placed in desiccators to equilibrate to keep
moisture content to a minimm. Weigh to a constant weight
as before.
G. CALCULATIONS
(1) Probe Wash and First Impinger
(a) g NH, - (^NH>D(500ml)(500na) = (yg ^ /ml)(0.05) ^ g/ug)
(5 ml) (10* ug/g)
(b) See "Determination of Sulfur Dioxide, Sulfur Trioxide, and
Sulfuric Acid Mist in Stack Gas" for standardization calculations.
g H2S04 =
[Volume Ba (Cl 0/1)2] [Normality Ba (Cl O^l [0.049 g/eq I/ml] [sample volume]
aliquot volume
= [volume Ba (Cl 04)2] (Normality Ba (Cl 04)2] [0.049 p/eq 1/ml] [100]
for a 5 ml aliquot, 500 ml sample volume
D-26
-------
(c) Particulate
g [Particulate + (NH4)2 S04] = Final beaker weight - Initial beaker wt.
g (NH4)2 S04 from NH3 and H2S04 in stack =
[g NH3] [1W (NH4)2 S04] (g NH3) C132.13 g/mole)
[MW NH3] [2] (17.03 g/mole)
g (NH4)2 S04 from H2S04 = g H2S04 (from b) x
(g NH3) (3.88)
MW H2S04
= g H2S04 x 1.347
Particulate = g [Particulate + (NH4)2 S04] - [g(NH4)2 S04 from NH3
and H2S04 in stack] - [g (NH4)2 S04 from H2S04]
(2) Filters
(a) g NH, - (5° ^ (5°
(10 ltd) (S ml) (106 pg/g)
(b) g H2S04
[Volijme Ba (Cl 0A)2] [Normality Ba (Cl 04)2] [0.049 g/eq I/ml] [sample vol.]
aliquot volume
[Volume Ba (Cl 04)?] [Normality Ba (Cl 0A)?] [0.049 g/eq I/ml] [SO, ml] [50 ml] :
[5 ml] [5 ml]
[Volume Ba (Cl 04)2] [Normality Ba (Cl 04)2] [0.049 g/eq I/ml] [100]
(c) Particulate
gfParticulate + (Mi4)2 S04] = Final beaker weight - Initial beaker weight
- filter weight
g (NH.)7 SO. from NH, and H7SO,. in stack = [g NH?][MW (NH^) 2^^. = rg NH_)(3.88)
4 L 4 5 - 4 [MW NH3] [2] 3
g (NH/)? SO. from H?SO. = g H?SO,. (from b) x W Q^lh ^ = g H7SO. x 1.347
^ L * m H2S04 ^ ^
g Particulate = [g [Particulate + (NH4)2 S04]] - (g(NH4)2 S04 from NHj and.
H2S04 in stack] - [g (NH4)2 S04 from H2S04]
D-27
-------
H. QUALITY CONTROL
Follow procedures out-lined in "Determination of Ammonia" and "Determination
of Sulfur Dioxide, Sulfur Trioxide, and Sulfiiric Acid Mist" for ammonia
and sulfate analyses.
In addition:
Reweigh 4 out of the batch of clean beakers. If the weight of any one -
beaker does not agree within 0.5 mg of original weight, then all the
beakers rcust be reweighed.
Reweigh 72 or at least 4 out of a batch of clean filters. If any weight
does not agree within 0.5 mg, then the entire batch of filters inust be
reweighed.
Run a distilled water blank using a known amount of distilled water
(at least 200 ml). Follow the procedure in F 4 b. The blank should
contain less than 0.1 mg/1 solid material.
D-28
-------
APPENDIX E
CALIBRATION PROCEDURES AND RESULTS
E-l
-------
E-2
-------
CALIBRATION PROCEDURES AND RESULTS
All of the equipment used was calibrated according to the
procedures outlined in Maintenance, Calibration, and Operation of
Isokinetic Source-Sampling Equipment.*
NOZZLE DIAMETER
The nozzles were calibrated by making three separate measure-
ments using different inside diameters and calculating the aver-
age. If a deviation of more than 0.002 inches was found the
nozzle was either discarded or reamed out and remeasured. A
micrometer was used for measuring. These calibration data are
shown in Figure E-l.
PITOT TUBE CALIBRATION
The pitot tube used in sampling was constructed by PEDCo
Environmental and met all requirements of Method 2, Section 4.1
of the Federal Register.** Therefore, a baseline coefficient of
0.84 was assigned to each pitot tube. See Figures E-2 and E-3
for alignment requirements of Method 2.
*
Office of Air Programs Publication No. APTD-0576.
40 CFR 60, Appendix A, Reference Method 2, July 1981.
E-3
-------
Date
g/tt/gZ.
Calibrated by
Q.
Nozzle
identification
number
1 KN\5
IBKV5
ic^s.3
I 0 lA5> J3
D.,, in.
o.z#?
o.z^r
o.Ml
D2, in.
o.z&
O i c~j d
/*N 7 Q !?
Oi ^ o O
D3, in.
o.zS?
O.T31
O.Z11
AD, in.
0-000
O-003
O. ooZ,
O.ool
avg
o.zS?
0-25I1
°-^
o.ztf\
where:
Dl 2 3 = n022^e diameter measured on a different diameter, in.
' ' ' Tolerance = measure within 0.001 in.
AD = maximum difference in any two measurements, in.
avg
Tolerance = 0.004 in.
= average of D,, D?, and D,.
Figure E-l. Nozzle calibration data.
E-4
-------
Date
Calibrated by
M.ehll,
Nozzle
identification
number
x.ANl5v\/
ZB^VS W
7_cNV.5
«M
D., in.
6.Z&2,
O-^T]
.a,
D2, in.
0.28:6
o.3l/
»18,
D3, in.
0.2g3
ojo"?
a*
AD, in.
O.ool
O.oo3
O.oo3
avg
LA ^^J ^
0-31
0-^2
where:
Dl 2 3
J. t £. , J /
AD
avg
nozzle diameter measured on a different diameter, in.
Tolerance = measure within 0.001 in.
maximum difference in any two measurements, in.
Tolerance = 0.004 in.
= average of D.. , D_, and D,.
Figure E-l. Nozzle calibration data (continued)
E-5
-------
TRANSVERSE
TUBE AXIS
FACE
*~ OPENING -
PLANES
(a) ENDVIEW
0.48 cm < Dt < 0.95 cm
(3/16 in.) (3/8 in.)
A-SIDE PLANE
L.VI1O1 1 UUlflML.
TUBE AXIS (
I
1 ' /
^ Dt
t
A ./
B "^\
NOTE:
|1.05 Dt < P < 1.50 Dt
B-SIDE PLANE
(b)
A or B
(c)
Figure E-2. Properly constructed Type S pitot tube, shown in: (a) end view;
face opening planes perpendicular to transverse axis; (b) top view; face open-
ing planes parallel to longitudinal axis; (c) side view; both legs of equal
length and centerlines coincident, when viewed from both sides. Baseline
coefficient values of 0.84 may be assigned to pitot tubes constructed this way.
E-6
-------
TRANSVERSE
TUBE AXIS
LONGITUDINAL
TUBE AXIS
(c)
(e)
(f)
B2 (+ or -)
Bl (+ or -)
"
(9)
Figure E-3. Types of face-opening misalignment that can result from field
use or improper construction of Type S pi tot tubes. These will not affect
Cp so long as ai and a? <10°, Bi and B? <5°, z <0.32 (1/8 in.) and w <0.08
cm (1/32 in.).
E-l
-------
DRY GAS METER AND ORIFICE METER
Figure E-4 was the set-up used for the initial and post-test
calibration. A wet test meter with a 2-cubic-feet-per-minute
capacity and + 1 percent accuracy was used. The pump was run for
approximately 15 minutes at an orifice manometer setting of 0.5
inch of water to heat up the pump and wet the interior surface of
the wet test meter. The information in Figure E-5 (example
calculation sheet) was gathered for the initial calibration, and
then the ratio of accuracy of the wet test meter to the dry test
meter and the AH@ were calculated.
POST-TEST METER CALIBRATION CHECK
A post-test meter calibration check was made on the meter
box used during the test to check its accuracy against its last
calibration check. This post-test calibration must be within +^5
percent of the initial calibration. The initial calibration was
performed as described in APTD-0576. The post-test calibration
was performed using the same method as the initial calibration.
Three calibration runs were made using the average orifice
setting obtained during each test run and with the vacuum set at
the average value obtained during each test run. After running
the post-test calibration check all three runs were within the +5
percent range allowed by the Federal Register.*
The initial and post-test meter box calibration data are
presented in Figures E-6 through E-9.
40 CFR 60, Appendix A, Reference Method 2, July 1981.
E-8
-------
UMBILICAL I
I
/'GLASS TUBE
THERMOMETER
METER BOX %,.^
PRESSURE
CONTROL
VALVE
U - TUBE
MANOMETER
WET TEST METER
Figure E-4. Calibration setup.
DATE
MROKtTRIC
in. Hg.
KtTCR BOX MO.
DRY CIS METER NO.
Orifice
•anoaeter
•etting
6H
in. HjO
O.b
1.0
l.S
2.0
1.0
4.0
Gai volume
wet tett
•eter
V
"j
5
i
10
10
10
10
Ga» volvune
dry g«i
•eter
V«'
fl3
Met test Dry g>» veter
•eter
*«•
•r
Inlet
*di'
•f
outlet
*dn'
•r
Average
V
•r
Ti»e
e.
•In
t
&H«
Avercg*.
AH
O.S
1.0
l.S
2.0
1.0
4.0
AH
TT7I"
0.0)68
0.07J7
0.110
0.147
0.221
0.294
t
VW PK '*d * o2
Pfc (td * 460) [ vw J
V • Ratio of accuracy of wet tect neter to dry test neter. Tolerance • « 0.01
oD( • Orifice of preeture differential that giv«e 0.7S cfm of air at 70T and 29.92 inehea of
awrcury, in H->. Tolerance • *0.1S.
Figure E-5. Calibration data sheet.
E-9
-------
DATE:
CALIBRATOR:
'83-
METER BOX NO. pti- 6
BAROMETRIC PRESSURE (Pb) 2 f.
1n. Ng
Leak Checks:
Positive (minimum 5 in. H20): _^_^_
Negative (within 3 in. Hg of absolute):
•Not to exceed 0.005 cfm.
. ooO cfm*
2-7.
Orifice
manometer
setting
AH
in H20
Volume
wet test
meter
ft
Volume
dry gas
meter
ft
Temperatures
et test
•eter
Dry gas meter
e
T1
•F
C
tlet
To
Average
Duration
of
test
9
Din
Vacuum
setting
In
Hg
In H20
0.5
70 J
70
7I0.6&0
1.0
70 3
802.130
ffo
7J
/ff.O
1.5
6QZ.&J
BO
73
•70,?
7/
120
2.0
€•!?, £NO
•70.3
&
. -J
77. 6
Jf.O
3.0
/1 ,000
82.
76
4.0
SSS.I&
76
•v must not deviate by more than +0.02 y.
AHP must not deviate by more than 0.15 in H20.
Average
AW
AH
)(Td 4 460)
( Vd )(Pb + AH/13.6) (Tw + 460)
(0.0317)( AH )
)(Td4460)
* 460} (0)
0.5
11 WO )
O.
f
=a_
1.0
IH.olO M 2.3.
If .TAJ.
\P*)1l?\( f. 0 )
f <3K, 1 »
1.5
2.0
3.0
J.O
4.0
f/fc.
. 2
TJ^ «
. f A • OoO
Figure E-6. Train A - Initial calibration.
E-10
-------
DATE:
BAROMETRIC PRESSURE (Pbar):
PLANT:
Hg
PROJECT MANAGER:
METER BOX NO.
PRETEST Y: j
PROJECT NO. _
CALIBRATOR: t
F3-
/.
Orifice
manometer
setting
*
AH
in. H20
/S-
/-^T
AT
Wet test
meter
vol ume
Vw
ft3
(c>
<£
'z-
Dry gas
meter
volume
vd
ft3
£,OvT.3oo
6r.S-.Zir
QS.lto
<=&>, 1 Vo
6i?.3Vb
feV?.33c
Temperatures
Wet test
meter
w
°F
TV
?y
?
?y
?y
7^
Dr
3nlet
Tdi
°F
"7/
-73
TV
7^
7^
?/
/ qas meter
Outlet
Tdi
°F
7£
^
~>i
?/$
75.zr
77. zr
Vacuum
setting
**
in. Hg
l&
(o
10
Duration
of run
0
min
$•2-
^ ^
/-? ^
f7 t>&
(-?%*
' /^^.o
Post-test average***
Y
/.oc^y
/,00
-------
DATE:
CALIBRATOR:
METER BOX NO.
BAROMETRIC PRESSURE
3 9.
In. Hg
Leak Checks:
Positive (minimum 5 1n. H20): __^^_
Negative (within 3 in. Hg of absolute}:
%>t to exceed O.OOS cfm.
efi*
Orifice
wnoneter
setting
AH
In H20
Volume
vet test
avter
ft
Volume
dry gas
•ter
ft
Temperatures
et es
avter
\
•F
Dry gas meter
Inlet
T«
•F
£;
•
tlet
To
Average
Duration
of
test
•in
Vacuum
setting
In
AHP
n M20
0.5
. O6O
7-3
72
1.0
l
•?£.*
/ft
1.5
72; CT
77
1.9
2.0
7/.20?
72O
3.0
$,000
s
76
&-
13
4.0
99.3oO
7J.o
c
•v Must not deviate by acre than +0.02 >•
AH9 nust not deviate by aere than" 0.15 1n H20.
Average
AHB
AH
J(P
460}
(0.031 7 )( AH )
){Td*460)
(TB •» 460) (1)
0.5
Hft
3f
1.0
u »?/ w , o
£4
.( (0,000
1.5
.{
2.0
3.0
\
a.tsoo
4.0
IA
i/t.
H Z
MXia.2 \
b. ov
Figure E-7. Train B - Initial calibration.
E-12
-------
DATE:
BAROMETRIC PRESSURE (PKaJ: ffi/rin. Hg
/I.-, , - bar —' ' '
PLANT: EHZ.C' 0
PROJECT MANAGER: Q '.
METER BOX NO.
PRETEST Y: .
PROJECT NO.
CALIBRATOR:
/.77
Orifice
manometer
setting
*
AH
in. H20
Wet test
meter
vol ume
ft
Dry gas
meter
volume
n
Temperatures
Wet test
meter
Dr
Inlet
Tdi
•F
gas meter
Outlet
•F
Average
""d
Vacuum
setting
. Hg
Duration
of run
min
•n
Zlf
.97*
li
I
li
li
3V}
is
2/,r
,1-u
Post-test average***
Mr
AHL"
w
bar
Vd )(pbar
AH/13. 6)(Tw + 460)
(0.0317)( AH )
460)
"(Tw +460) (
/C,f
5" )
/*,
n 2
)(
)(rK?r)
)(
n 2
i
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test y +p.05y
Post-test AH@ must be within the range, pre-test AH@ +0.15
Figure E-7. Train B - Post-test calibration (continued)
E-13
-------
DATE:
CALIBRATOR:
/2l/*
METER BOX NO. f'J- ' O
/L A
BAROMETRIC PRESSURE (Pb)
1. Hg
Leak Checks:
Positive (minimum 5 1n. H20): -
Negative (within 3 1n. Hg of absolute): o.ovl cfm*'
•Not to exceed 0.005 cfm.
In. Hg
Orifice
Manometer
setting
AH
1n
Volume
wet test
•eter
ft
Volume
dry gas
•eter
ft
Temperatures
Wet test
•eter
Dry gas meter
Inlet
T1
•F
£
tlet
To
Average
Duration
Of
test
f
•In
Vacuum
letting
1n
Hg
AHP
In H20
0.5
•/,&
W-3/.Z
77.3
*
*
1.0
i 00°
zs
>/. o
?7.0
60
/0<0
1.5
sy
76
182-
2.0
*)/•<>
3-7
3.0
a?
'0
4.0
If.D
GL
Y nust not deviate by wore than 40.02 Y.
AHP must not deviate by more than 0.15 In H^O.
Average
AH?
AH
)(Td*460)
( Vd )(Pb + AH/13. 6)(Tw+ 460)
(0.0317H AH )
( Pb )(Td + 460)
(T * 460) (P
0.5
. fO
1.0
.«>3/7l(
1.5
. 10
.(
. 331)
2.0
Jo. 10
(o.oJ/7)( 2.
(Jt.ro
3.0
(to,
. 0
to.oln M
4.0
IK.
-30 -10
V.*3n)( y
-J
Figure E-8. Train C - Pre-test calibration.
E-14
-------
DATE: ___^
BAROMETRIC PRESSURE (Pbar):
PLANT: A^C-P _ .
PROJECT MANAGER:C
n. Hg
METER BOX NO.
PRETEST Y: SL
PROJECT NO.
CALIBRATOR:
Orifice
manometer
setting
*
AH
in. H20
u,
u
it
Wet test
meter
volume
«3
10.0
(C,C
/o.o
Dry gas
meter
volume
ft3
no.%
7f#?4
mw
Tf/,28
7H7fl
Mlffic
— _, .
Temperatures
Wet test
meter
Tw
°F
1$.f
' 7^
13S
'Wf
'llf
71 f
Dr.
•Inlet
°F
11
If
If
11
It
to
/ gas meter
Outlet
°F
H
1S^
7-r
%
-76
11
Average
°F
%
11
If
Vacuum
setting
**
in. Hg
wr
i*,r
^
Duration
of run
min
lU
ff.lt
i1, If
Post-test average***
W
W
x»
Oft
ifel
If*
iffi
if*
bar
(0.0317)( AH )
Vd Mpbar * AH/13.6)(Tw + 460)
Tw+460)( 0
w
( /fi.OH
^ )( ^i Tt-
r/7
n 2
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test y +0.05y
Post-test AH0 must be within the range, pre-test AH@ +0.15
Figure E-8. Train C - Post-test calibration (continued)
E-15
-------
DATE
CALIBRATOR:
MX MO.
IAROHETR1C PRESSURE (»>b)
.
AHP Must not deviate by mart thM 0.15 in
AH
Pb ){Td*460)
Vd )(Pb * AH/13. 6)(TW * 460)
(0.0317H AH )[•(
( Pb )(Td*460)["
* 4«0)(f
0.5
sr.ofs
,VM"
1.0
itP
'"
1.5
2.0
)(
3.0
, 0
4.0
)f
Figure E-9. Train D - Pre-test calibration.
-------
DATE:
BAROMETRIC PRESSURE (PKaJ: ?//
PLANT: i>l?rO
PROJECT MANAGER:
C. <
METER BOX NO.
Hg PRETEST Y:
PROJECT NO.
CALIBRATOR:
Orifice
manometer
setting
*
AH
in. H-0
AS
If
If
Wet test
meter
vol ume
ft3
10,0
it*
10,0
Dry gas
meter
volume
tfd
n3
lefts?
ItWx
I ij fl't'J
III fyf-f"
MM
i^jii
MM
Temperatures
Wet test
meter
w
°F
7/
?y
n
T/
ii
ll
Dr
Inlet
Tdi
°F
11
fl
n
f£
n
Kr
1 qas meter
Outlet
°F
H
11
11
1%
73-
75-
Average
°F
Iff
r~\t t^ ^^
/U-*/ • _V
77.7r
Vacuum
setting
**
in. Hg
2 of
mr
^
Duration
of run
0
min
Hr/f
W
Ml
Post-test average***
Y
,fc7
QOi'i
ifyCs
Qpn
AHP
I.K7
ins
w
w
Td+46°
)(Pbar * AH/13' 6)(Tw+ 460)
(0.0317)( AH )
460)
"(Tw +460 )( 0 )
w
<##•)( 5*5*31
)( M.
)(S'&,7fl
_)
L
*To be the average AH used during the test series.
**To be the highest vacuum used during the test series.
***Post-test Y must be within the range, pre-test Y +0.05Y
Post-test AH@ must be within the range, pre-test AH@ +0.15
Figure E-9. Train D - Post-test calibration (continued)
E-17
-------
THERMOCOUPLE
Thermocouples were calibrated by comparison against an
ASTM-2F thermometer at approximately 32°F, ambient temperature,
100°F, and 500°F. The thermocouples read within 1.5 percent of
the reference thermometer throughout the entire range when ex-
pressed in degrees Rankine. If the thermocouple did not read
within 1.5 percent, a correction formula based on a least squares
analysis of the data was utilized. The correction formula cor-
rected the data to within 1.5 percent. The thermocouple was
checked at ambient temperature at the test site to verify the
calibration. Calibration data are presented in Figure E-10.
DIGITAL INDICATOR FOR THERMOCOUPLE READOUT
A digital indicator was calibrated by feeding a series of
millivolt signals to the input, and comparing the indicator
reading with the reading the signal should have generated. Error
did not exceed 0.5 percent when the temperatures were expressed
in degrees Rankine. Calibration data are shown in Figure E-ll.
DRY GAS THERMOMETERS
The dry gas thermometers were calibrated by comparison
against an ASTM-2F thermometer at approximately 32°F, at ambient
temperature, and at approximately 110°F. The thermometers agreed
within 5°F of the reference thermometer. The thermometers were
checked prior to the test series at ambient temperature to verify
calibration. Calibration data are included in Figures E-12
through E-15.
E-18
-------
Date:
Ambient temper a ture:
Calibrator: £?. /I
—f-—
Thermocouple No.:
T Barometric pressure:
•"••"/ J " *{£
Reference: Jhor>r**> cc*.'/^/^
Reference
point
No.
1
2-
1
i
Sourer , *
(specify)
7
(
Reference j Thermocouple
•thermometer
temperature,
op* * «
73 C 7 j)
3^ ftrt
3 7?AO
_? ;
^^. y^
- G.tf
-/, ^
Correction factor****: Slope: /. /
Intercept:
Reference
point
Nc.
/
2
j
y
Reference
thermometer
temperature ,
°r
f>
3i
"76
•?w
Corrected
thermocouple
temperature ,
OF
Dif f erenr-i ,
I*"
7^ . 0 00
31 o.CO
loo -c.72.
353
o./Z.
Critical test points are 32C, 100C, and 500C .
*Source: 1) Ice bath
2) Ambient
3) Furnace
**Percent difference ;
Reference temp. °F - thermocouple temp. "F
(Reference temp. °F + 460°F) x
Each percent difference must be less than or equal to 1.5r.,
***Reference thermometer must be ASTM.
****Correction factor must be determined if any percent difference
is >1.5%.
100'.
Figure E-10. Thermocoupl? calibration data sheet.
E-19
-------
Date
Indicator No.
Operator /g A
Test Point
No.
0
1
2
3
4
Millivolt
signal*
**
Equivalent
temperature,
op*
7/
3l.o
/
-------
Date
/£/
Indicator No.
Operator
Test Point
No.
0
1
2
3
4
Millivolt
signal*
**
Equivalent
temperature,
°F*
7/
32.0
118. 7
£-3S,0
lf&6.8
Digital indicator
temperature reading,
°F
•73
S/
/??
^-j^r
f&y
Difference,
%
D-l
0-2&
0. 0.5""
. 3O
D.(7
Percent difference must be less than or equal to 0.5%.
Percent difference:
(Equivalent temperature °R- Digital indicator temperature reading °R)(100°-)
(Equivalent temperature
Where °R = °F + 460°F
*See thermocouple digital indicator calibration verification device calibra-
tion for these values.
**This point is ambient temperature. The device is off and therefore is
supplying no signal other than ambient temperature.
Figure E-ll. Thermocouple digital indicator
calibration data sheet (continued).
E-21
-------
Date:
,////s
Meter Box No.:
Calibrator;
Inlet
^ /•/OQ.C. /c/ Reference;
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
J?^
73
/C?S
Dry gas
thermometer
temperature ,
•F
3&
?y
/o%
Difference,
•p*«
?L
1
C)
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
36
73
/«S
Dry gas
thermometer
temperature ,
•F
33
72-
fof
Difference,
•F**
3
i
3
•Source: 1) Ice bath
2) Ambient
3) Water bath
••Difference must be less than or equal to +5°F.
Figure E-12. Dry gas thermometer calibration data sheet - Train A.
E-22
-------
Date:
Calibrator; y^ A <""*
Inlet
Meter Box No.:
Reference:
Reference
point
No.
1
2
3
Source •
2
1
3
Reference
thermometer
temperature ,
•F
?3.f
32.. 0
/x.?- 0
Dry gas
thermometer
temperature ,
•F
70
32.£~
/Zo
Difference,
•p**
^^
6.f
?.&
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
7i.tr
3^0
J/32.0
Dry gas
thermometer
temperature ,
•F
7Z
?/-3^
/-:«?
Difference,
•p**
/. JT
0.3~
J-0
•Source: 1) Ice bath
2) Ambient
3) Water bath
••Difference must be less than or equal to ±5°F.
Figure E-13. Dry gas thermometer calibration data sheet - Train B.
E-23
-------
Date:
'*/
Meter Box No.:
Calibrator; /?.
Inlet
o
Reference ; A S T rA -
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
?/
J£
/zo
Dry gas
thermometer
temperature ,
•F
?S
3^
I Zo
Difference,
•p*«
O
2
6)
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
7/
3£
1*0
Dry gas
thermometer
temperature ,
•F
?/
3V
fHo
Difference,
•p*«
O
2
c>
•Source: 1) Ice bath
2) Ambient
3) Water bath
"Difference must be less than or equal to +5°F.
Figure E-14. Dry gas thermometer calibration data sheet - Train C.
E-24
-------
Date:
Meter Box No.
Calibrator; 8. A ,*- ^ «, ->
Inlet
Reference:
Reference
point
No.
1
2
3
Source •
2
1
3
Reference
thermometer
temperature ,
•F
7^-0
37. .T
/20. 0
Dry gas
thermometer
temperature ,
•F
?
32
//<£
Difference,
•p**
Z o
0.5"
y.o
Outlet
Reference
point
No.
1
2
3
Source *
2
1
3
Reference
thermometer
temperature ,
•F
72.0
?^.<"
/ 2.0.0
Dry gas
thermometer
temperature,
•F
70
3o
//^T
Difference,
•p**
f. o
-?..r
r. ^
*Source: 1) Ice bath
2) Ambient
3) Water bath
'•Difference must be less than or equal to +5*F.
Figure E-15. Dry gas thermometer calibration data sheet - Train D.
E-25
-------
TRIP BALANCE
The Mettler digital trip balance was calibrated by compari-
son with a Class-S standard weight and agreed within 0.5 g.
BAROMETER
The field barometer was calibrated to within 0.1 in.Hg of an
NBS-traceable mercury-in-glass barometer before each test series.
The field barometer was checked against the mercury-in-glass
barometer after each test series to determine if it read within
0.2 in.Hg. If it did not read within 0.2 in.Hg, a correction
factor was determined for the last test series. Calibration data
are included in Figure E-16.
ORSAT ANALYZER
The orsat analyzer was calibrated before each test series by
determining the percentages of oxygen, carbon monoxide, and
carbon dioxide in a calibration gas containing known percentages
of each. The analyzer read within 0.5 percent of the known value
for each gas. Calibration data are shown in Figure E-17.
E-26
-------
BAROMETER
NO.
n3.1
PRETEST
POST-TEST
-'H
BAROMETER
READING
REFERENCE
BAROMETER
READING
DIFFERENCE*
DATE
CALIBRATOR
z,^r
Z^.M
O>c> 1
-------
Reference Gas: AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No.:
Gas (circle one): 02
CO
librator
Date
Value Det.
5-0
4.5%
5.5%
—I—
• j.
J_L
....4.
Figure E-17. Orsat calibration data sheet -
co2.
E-28
-------
Reference Gas: AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Orsat No.:
Gas (circle one):
co2 co
5.0%
5.5%
:igure E-17. Orsat calibration data sheet - 02 (continued)
E-29
-------
Reference Gas: AGA Burdox
Cylinder No. 112704
Invoice No. 0382088
Lab Ref. No. VII:46-23
Ortat No.:
Gas (circle one): 02 C02
Calibrator
Date
Value Del.
5.0%
5.5%
Figure E-17. Orsat calibration data sheet - CO (continued).
E-30
-------
APPENDIX F
QUALITY ASSURANCE SUMMARY
F-l
-------
F-2
-------
QUALITY ASSURANCE
The following summary addresses the general steps taken to
insure data quality and accuracy for any given emission test
project.
PROJECT ORGANIZATION AND RESPONSIBILITIES
The project organization and responsibilities of the project
team are generally defined in the test plan. Specific responsi-
bilities for this field test are shown in Appendix G, Project
Participants.
QUALITY ASSURANCE OBJECTIVE
The primary objective of this program is to develop a modifi-
cation to EPA Reference Method 5* (or develop a new method) that
will minimize the collection of condensible sulfate materials in
the measurement of particulate emissions from fluid catalytic
cracking unit (FCCU) regenerators. Therefore, all procedures
used in the collection and analysis of emission samples were as
outlined in applicable EPA reference methods, where applicable.
The sample methodology used for this project (quad train - single
point) has been previously validated specifically for research
and methods development type projects. Test results were pre-
sented in several units to allow for their comparison with data
from other organizations wishing access to the data summary.
F-3
-------
DATA REDUCTION, VALIDATION, AND REPORTING
Data reduction and reporting provide one of the greatest
potential sources of system error. To help minimize this source
of error, PEDCo performs most test method calculations by use of
a validated computer program. The field data sheets are set up
on standard computer cards to allow accurate input of data into
the computer by individuals unfamiliar with testing procedures.
The data printout is then validated by comparison with the field
and analytical data sheets. In addition, hand calculation checks
generally are made to validate the computer output. Other data
validations are made whenever possible.
PERFORMANCE AND SYSTEM AUDITS AND FREQUENCY
When feasible, PEDCo performs both performance and system
audits. Three types of performance audits were performed for
this test program. All dry gas meter systems were audited for
accuracy in the field by the use of a critical orifice. In
addition, the analytical procedure for sulfur dioxide was audited
for accuracy by the use of audit samples supplied by EPA prior to
sample analysis. Also, onsite calculations were used to check
the completeness and accuracy of the particulate test data.
SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION,
ACCURACY, AND COMPLETENESS
Because the precision of the standard EPA reference methods
used had previously been determined, no further attempt was made
to assess data precision. These precision results are summarized
F-4
-------
in "The EPA Program for the Standardization of Stationary Source
Emission Test Methodology, A Review," EPA-600/4-76-044. The
comparability (relative accuracy) of the different methods
studies is made using the EPA Method 5 results as the standard.
Presently, there is no particulate standard method for the MSB,
M5-450, and M5W samples since particulate emissions are defined
by regulation as the material collected on a filter and probe at
121°C.
Three audit procedures were used to determine accuracy.
Accuracy audit procedures used for the dry gas meter and sulfur
dioxide, analysis are the standardized written procedures used by
the EPA Quality Assurance Division program. The procedure for
determining data completeness is the same as that for New Source
Performance Standards, as documented in the Code of Federal
Registers 40 CFR 60, Section 60.8
INTERNAL QUALITY CONTROL CHECKS
Several internal quality control checks are usually made for
each test. Normally, most of these checks deal with the field
sampling analysis. For this test series, control samples for the
sulfur dioxide analytical procedures were analyzed. Also, filter
and reagent blanks were returned to the laboratory for gravi-
metric analysis. A quality control check of both the initial and
final weighing was thus provided. Results of the control sample
checks are included in Section 5. Blanks were analyzed according
to procedures used for the M5W and 1C analytical work.
F-5
-------
CORRECTIVE ACTION
PEDCo has two methods for corrective action. The first
involves the use of control limits, such as audit sample results,
control sample results, and calibration results. When any of
these limits show that the integrity of the data is questionable
the procedure is repeated, additional data are collected, or the
data are rejected. The second method involves the use of red
tags. Whenever any piece of equipment is suspected of producing
unacceptable data, the entire apparatus or malfunctioning com-
ponent is replaced and a red tag is placed on the item. That
piece of equipment is then rejected until its ability to perform
its function correctly is verified by the proper individuals.
The use of numerous control limits and the red tagging system
reduces the amount of unacceptable data and provides a system by
which to track and correct items and procedures that show an
unusally high occurrence of unacceptability.
PREVENTIVE MAINTENANCE PROCEDURES AND SCHEDULES
PEDCo has a very comprehensive preventive maintenance pro-
gram. Many of the major components of test equipment have pre-
test checklists. These checklists ensure that all functions are
checked and action is taken to repair or replace any part that
shows probability of malfunction. The checks are made before
every field test series, however, only the control console (meter
box) check are recorded. Even though PEDCo's preventive mainte-
nance program and schedule are not in writing, our commitment of
F-6
-------
three full-time experienced persons for the express purpose of
equipment construction, preparation, calibration, and maintenance
has created a program based on experience and skill that cannot
be matched by a written guideline.
QUALITY ASSURANCE REPORTS TO MANAGEMENT
The standard quality assurance procedures used in this test
program generated sufficient documentation to indicate the data
quality. All evidence of the execution of the quality assurance
guidelines is reviewed by management. In addition, during weekly
meetings of all PEDCo's EMB task managers and project managers,
all aspects of the project are discussed including the quality
assurance of each task. No written report results from this
meeting because all interested parties are verbally apprised of
the situation during each meeting.
Two other reports are made to managements, which are not EMB
task related. PEDCo1s emission test and laboratory groups par-
ticipants in all national audits by EPA's Quality Assurance
Division, and PEDCo's quality assurance coordinator, Tom Wagner,
makes several independent checks for management.
F-7
-------
APPENDIX G
PROJECT PARTICIPANTS AND SAMPLING LOG
G-l
-------
G-2
-------
TABLE G-l. FIELD TEST CREW AND RESPONSIBILITIES
Name
C. Bruffey
D. Osterhout
J. Prohaska
R. Antesberger
D. Scheffel
M. Phillips
W. Kelly
K.C. Hustvedt
Title
Project Manager
Engineer
Engineer
Technician
Technician
Engineer
U.S. EPA - EMB
U.S. EPA - ISB/CPB
Field test assignment
Coordinated test activity; sample train
setup and disassembly
Site leader; participate tests FCCU
outlet stack; meter reader quad train
Particulate tests meter reader quad
train
Assisted at sample site; quad train
assembly and disassembly
Site leader; clean up area; setup and
recovered sample trains
Setup and recovered sample trains;
Orsat analysis
Observer
Observer - process operation
G-3
-------
TABLE G-2. FIELD SAMPLING SCHEDULE
Day
Thursday-Friday
Monday-Friday
Friday
Date (
8/19 -
8/23 -
8/27
1982)
8/20
8/27
p.m.
Activity
Equipment and site cleanup. Took aW
initial site measurements (Methods 1
through 4). Performed all pre-test
quality assurance checks. Setup clean-
up area and sample trains for 2 runs.
Two full test runs per day.
Packed equipment and left site.
G-4
------- |