United States Industrial Environmental Research EPA-600/8-80-024
Environmental Protection Laboratory May 1980
Agency Research Triangle Park NC 27711
Research and Development
TI-59 Programmable
Calculator Programs for
In-stack Opacity,
Venturi Scrubbers,
and Electrostatic
Precipitators
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of
environmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the SPECIAL REPORTS series. This series is
reserved for reports which are intended to meet the technical information needs
of specifically targeted user groups. Reports in this series include Problem Orient-
ed Reports, Research Application Reports, and Executive Summary Documents.
Typical of these reports include state-of-the-art analyses, technology assess-
ments, reports on the results of major research and development efforts, design
manuals, and user manuals.
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/8-80-024
May 1980
TI-59 Programmable Calculator
Programs for In-stack Opacity,
Venturi Scrubbers, and
Electrostatic Precipitators
by
S.J. Cowen, D.S. Ensor (Atmospheric Research Group),
and LE. Sparks
EPA, Paniculate Technology Branch
Industrial Environmental Research Laboratory
Research Triangle Park, North Carolina 27711
Program Element No EHE624A
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
ABSTRACT
The basic concepts of in-stack opacity as measured by in-stack
opacity monitors are explained. Also included are calculator programs
that model the performance of venturi scrubbers and electrostatic pre-
cipitators. The effect of particulate control devices on in-stack opacity
can be predicted by using these programs. The size distribution data
input can be either in lognormal or histogram format. The opacity is
calculated by using Deirmendjian's approximation to Mie series to ob-
tain extinction efficiencies. Also an alternative opacity program em-
ploying the exact Mie series solution is described. The running time
for this program is approximately 8 hours while the running time for
the approximate program is 30 minutes. The accuracy of these pro-
grams is as good as the measured data input.
ii
-------
CONTENTS
Figures v
Tables v
Acknowledgments vi
1. Introduction 1
2. Conclusion 6
3. Opacity and Control Device Program Interaction 7
ESP design for opacity control 7
Calculation procedure 8
Sample calculation 9
4. In-Stack Opacity 23
Background 23
Definition 23
Theoretical summary 24
5. Description of TI-59 Opacity Programs 26
Program No. 1: Approximate opacity program
with lognormal size distribution input ....... 26
Program No. 2: Approximate opacity program
with histogram size distribution input 32
Comparison of approximate in-stack opacity
programs 40
Program No. 3: Extinction efficiency (Qext)
approximation 43
Program No. 4: Mie theory extinction efficiency
calculation program 46
Program No. 5: Long opacity calculation using
TI-59 and lognormal size distribution 49
6. Description of TI-59 Electrostatic Precipitator and
Scrubber Programs with Incremental Size Data ... 54
ESP program 54
Scrubber program with incremental size data .... 69
References 74
Appendices
A Program No. 1: Approximate opacity (lognormal) . . A-l
B Program No. 2: Approximate opacity (histogram) . . B-l
iii
-------
CONTENTS (continued)
Appendices (continued)
C Program No. 3:
D Program No. 4:
E Program No. 5:
F Program No. 6:
G Program No. 7:
H Program No. 8:
I Program No. 9:
Extinction efficiency approximation
Mie extinction efficiency
Long opacity
ESP (histogram)
Venturi scrubber (histogram) . . .
Venturi scrubber (lognormal) . . . ,
ESP (lognormal) ,
C-l
D-l
E-l
F-l
G-l
H-l
1-1
IV
-------
FIGURES
Number
1 Relationship between control device programs
and opacity programs 4
2 Cumulative particle size distribution plotted
on log-probability graph paper 15
3 Particle size interpolation procedure used
in opacity program 34
4 Experimentally determined effect of resistivity
on allowable current density in a precipitator
(Hall, 1971) 62
TABLES
Number
1 Calculator Program Summary 3
2 Comparison of Approximate TI-59 Calculations
of Sp with Exact Values (m = 1.96 - 0.661) 41
3 Comparison of Approximate TI-59 Calculations
of Sp with Exact Values (m = 1. 5) 42
4 Comparison of Deirmendjian's Approximation
for Extinction Efficiency with Exact Mie Value ... 45
5 Reduced Effective Negative Ion Mobilities for
Various Gas Compositions 61
-------
ACKNOWLEDGMENTS
We wish to acknowledge the assistance of the Aerosol Sciences
Department of Meteorology Research, Inc., especially Greg Markowski
for his programming assistance. This work was supported by EPA Grant
R805650.
VI
-------
SECTION 1
INTRODUCTION
This report has three basic objectives:
1. Provide a handbook for calculating in-stack opacity for
particulate control devices on a Texas Instrument, Inc.
TI-59 programmable calculator.
2. Describe the latest versions of calculator programs to
simulate electrostatic precipitators (ESPs) and scrubbers.
3. Explain the basic concept of in-stack opacity as measured
by in-stack opacity monitors.
Developments in calculator technology have allowed mathematical
modeling of particle collection in venturi scrubbers and ESPs using a
Texas Instrument, Inc., SR-52 programmable calculator as described by
Sparks (1978). The development of the more sophisticated TI-59 makes
it possible to extend the capabilities of the Sparks' models, especially the
ESP model.
Applications of the scientific programmable calculator to gas cleaning
technology are further extended in this report to calculations of in-stack
opacity. Predicting in-stack opacity is essential for designing control de-
vices to meet strict opacity limitations. The advantages of using a program-
mable calculator for this purpose are its convenience, inexpensiveness,
and simplicity of operation, when compared to a large digital computer.
This report can be viewed as a handbook for calculating in-stack opacity
using the output of control device models or as an independent vehicle to
compute opacity for given stack conditions.
-------
Calculator programs were developed for a Texas Instrument, Inc.,
TI-59 programmable calculator with a PC-100A printer. Opacity programs
were designed to interface with the ESP and scrubber programs as much as
possible. The SR-52 scrubber program was rewritten to conform with the
more compact TI-59 coding and to provide data on the outlet particle size
distribution. The ESP model is totally new.
Calculator programs are summarized in Table 1. The function of each
program, the required data input, and compatible programs are also pro-
vided.
The user has a choice of three different in-stack opacity programs
(Figure 1), depending upon the type of particle size distribution and particle
index of refraction. The opacity calculation procedure for a control device
is outlined below. A sample calculation is presented in Section 3.
1. Obtain required data.
2. Select control,device.
3. Run control device program.
4. Check output of control device program. If particle size
output is in lognormal form, use opacity program No. 1
for lognormal case. If particle size output is a histogram,
use opacity program No. 2 for histogram case. Use opacity
program No. 5 if the index of refraction is not in following
ranges:
1.0 ^ real part ^ 1.5
0.0^ imaginary part s 0.25.
The best lognormal fit of size data is required for this
program.
5. Check opacity results:
a. If opacity is too high, increase the specific collection area
(SCA) for ESP or increase the pressure drop (AP) for scrubber.
b. If opacity is too low, decrease SCA for ESP or
decrease AP for scrubber.
The approximate opacity programs require that the index of refraction
be in the ranges 1. 0 to 1.5 for the real part and 0. 0 to 0. 25 for the imagi-
nary part. The long opacity calculation^ which is valid for any index of
-------
TABLE 1. CALCULATOR PROGRAM SUMMARY
Program
1. Approximate
Opacity
(lognormal)
2. Approximate
Opacity
(hiitogram)
3. Extinction
Efficiency
Approx-
imation
4. Long
Extinction
Efficiency
5. Long
Opacity
(lognormal)
6. Electrostatic
Precipitate r
(hiitogram)
Calculation
In-stack opacity
on lognormal
particle tize dis-
tribution
In-ftack opacity
on hiitogram
particle size
diitribution
Approximates
light extinction
efficiency for
apherical par-
ticles
Exact light ex-
tinction effici-
ency for spher-
ical panicles
In-stack opacity
on lognormal
distribution
Penetration in
ESP for each
particle size
and overall
penetration
outlet concen-
tration for each
particle size
Input required
Stack diameter.
mass concentration,
density, index of re-
fraction, wavelength,
geometric mass mean
diameter, geometric
standard deviation
Stack diameter.
mass concentration,
density, index of re-
fraction, wavelength
histogram distribution
(mass fractions at
particle diameter)
Particle diameter.
index of refraction.
wavelength
Particle diameter,
index of refraction,
wavelength
Same as for Pro-
gram 1, above
Particle diameter.
time increments,
vire to plate
spacing, applied
voltage, ion speed,
ion mobility, cur-
rent density, dia-
lectic instant, tem-
perature, viscosity,
pressure, specific
collection area.
precipitation length,
gas velocity, normal-
ized standard deviation.
pas flow, number of
sections, sneakaor.
fraction of sneakage.
histogram particle
size distribution
Can be used with:
ESP, Scrubber
Program with
lognormal dis -
tribution
ESP, Scrubber
Program with
histogram dis-
tribution
- -
ESP, Scrubber
Program with
histogram dis-
tribution
Opacity Program
with histogram
distribution, or
lognormal distri-
bution
7. Scrubber
(histogram)
Penetration and
outlet concen-
tration of »crub-
ber for each par-
ticle lice. Over-
all penetration
Temperature, pres-
sure factor of ~ (0. 5),
no. of particle dia-
meters, liquid to gas
ratio, gas velocity,
viscosity, liquid den-
ity, particle density
Opacity Program
with histogram dii-
tribution or lognor-
mal diatribution
-------
ELECTROSTATIC PRECIPITATOR
PROGRAM
RUNNING TIME ~ 40 MIN
SCRUBBER PROGRAM
RUNNING TIME ~ 40 MIN
OPACITY APPROXIMATION
PROGRAM WITH LOGNORMAL
PARTICLE SIZE INPUT
RUNNING TIME ~ 30 MIN
OPACITY APPROXIMATION
PROGRAM WITH HISTOGRAM
PARTICLE SIZE INPUT
RUNNING TIME ~ 60 MIN
LONG OPACITY PROGRAM
WITH LOGNORMAL
PARTICLE SIZE INPUT
RUNNING TIME ~ 8 MRS
79-272/1
Figure 1. Relationship between control device programs
and opacity programs.
-------
refraction, requires a running time of approximately 8 hours. The
approximation programs run 30 minutes for the lognormal particle size
input and 60 minutes for the histogram particle size input. The error
generated by these programs ranges from 5 to 20 percent depending upon
particle size distribution. These programs are generally as accurate as
the input data; i.e., the errors introduced by the programs are generally
less than the errors in the input data. A large digital computer is unlikely
to provide better answers unless the input data are essentially free of
error.
-------
SECTION 2
CONCLUSION
The calculator programs presented provide a convenient, useful pre-
diction of (1) in-stack opacity, and (2) the influence of venturi scrubbers
and ESPs in controlling in-stack opacity. The advantages of these programs
include savings of time, money, and effort.
The analysis of both the calculation of in-stack opacity and measurement
of opacity parameters shows that error in the calculator programs is less
than the measurement error of approximately 20 percent. The ability to
predict in-stack opacity depends on the quality of measurement methods,
especially particle size.
A major restriction in using the approximate opacity programs is the
exclusion of highly absorptive aerosols. The long opacity program is
especially designed to predict opacity for highly absorptive aerosols with
lognormal distributions. If the size distribution is not lognormal, then
either a computer should be used or a lognormal approximation should be
made. A major restriction in using the lognormal size input is that the
geometric standard deviation of the size distribution should be greater than
or equal to 1.009.
-------
SECTION 3
OPACITY AND CONTROL DEVICE
PROGRAM INTERACTION
This section is an example of the procedure used to calculate the effect
of a particulate control device on in-stack opacity. Since individual pro-
grams are detailed in later sections, only information regarding general
operation is covered here.
The following problem illustrates the relationship between the opacity
and control device programs.
ESP DESIGN FOR OPACITY CONTROL
Suppose the objective is meeting an opacity limitation of 3 percent on
a coal-fired utility boiler. The best way to reach this objective may be
to use an ESP as the control device. The following information is re-
quired to compute the required specific collection area for the ESP:
n
Inlet grain loading -3.5 g/m
Remember, all mass concentrations and volumetric flows for this
report are at actual, not standard, conditions.
Inlet particle size distribution -
Particle Diameter, gim Mass Fraction
0.2 Register 25 0.0001 Register 41
0.5 Register 26 0.002 Register 42
0.8 Register 27 0.004 Register 43
1.5 Register 28 0.0? Register 44
2.5 Register 29 0.15 Register 45
4.0 Register 30 0.25 Register 46
8.0 Register 31 0.35 Register 47
10.0 Register 32 0.4 Register 48
12.0 Register 33 0.3 Register 49
-------
Stack diameter = 7 m
Particle refractive index = 1.5 - 0. 002i
Particle density = 2. 5 g/cm
ESP wire-to-plate spacing = 0. 1143 m
Applied voltage = 30 kV
Ion speed = 528 m/sec
Ion mobility = 3 x 10~ ms/V-sec
Resistivity = 6. 71 x 1010 ohm - cm
Current density = 1.3 x 10~* A/m8 (calculated from resistivity) .
Dielectric constant = 100
Temperature = 150°C
Viscosity = 2.3 x 10~ poise
Pressure = 76 cm Hg
Precipitator length = 8 m
Gas velocity = 1.25 m/sec
Normalized standard deviation of gas flow = 0.25
Number of sections for sneakage = 4
Sneakage fraction = 0. 1
CALCULATION PROCEDURE
1. Estimate SCA to meet desired opacity.
2. Since particle size distribution is in the histogram format, run
corresponding ESP program.
3. Obtain outlet size distribution and total mass concentration.
4. Check to determine if size distribution is lognormal.
5. If size distribution is lognormal, use lognormal opacity program.
Otherwise, use histogram opacity program.
6. Compare computed opacity with desired opacity. If computed
opacity value is too high, use larger SCA for the ESP program.
If computed opacity value is too low, use smaller SCA.
7. Run ESP program with revised SCA.
8. Obtain new outlet size distribution and total mass concentration.
9. Use same opacity program from Step 5.
10. Compute new opacity.
Repeat Steps 6 through 10 until calculated opacity approximates
design opacity.
-------
SAMPLE CALCULATION
1. Let SCA = 160 m2/m3 /sec.
2. Run histogram ESP program (program No. 6).
a. Turn on calculator.
b. Push 1; enter side one of card 1. Push 2; enter side two.
c. Push A to enter following data.
d. Follow calculator prompting. Enter data; push R/S after
each entry.
The following is the printing of data entry.
Calculator Data to be
Prompting Entered
ESP ID 1. ESP identification
NP Number of particle diameters
9.
MM Number of time increments (5-10)
5.
(-( Wire-to-plate spacing, m
0. 1143
II Applied voltage, kV
3. 04*"
2.624671'? 05 Efl Average field
1.4998125 05 EP Field at plate, V/m
V Ion speed, m/sec
B Ion mobility, m /V-sec
3. -04
J Current density, A/m
1. 3-04
1.031875 13 HD Ion density, number /cm3
i( Dielectric constant
100.
T Temperature, °C
150.
VIS Viscosity, poise
2. 3-04
P Pressure, cm Hg
76.
SCFT
160.
3 , 3 i
?;(*:& m /m /sec
* The calculator printout: 3.04 = 3 x 10*. Press 3 EE 4 +/-.
-------
LENGTH Length of ESP, m
VEL " Gas velocity, m/s
1.25
SIGMfi Normalized standard deviation
(-i /;.c; of gas flow
NS Number of sections for sneak-
4. age
S Sneakage fraction
0. 1
Store particle diameters from page 7 in Registers 25-33.
e. Push Trace
f. Enter smallest diameter and push STO 25.
g. Enter next larger diameter, push STO 26, etc.
Store corresponding mass fractions from page 7 in Registers 41-49.
h. Enter mass fraction corresponding to smallest diameter
and by pushing STO 41, etc.
Store data on a magnetic card for future use.
i. Push 3, 2nd, write; enter side one of magnetic card labelled
data card.
j. Push 4, 2nd, write; enter side two of magnetic card labelled
data card.
Inactivate trace mode.
Run card 2 of program No. 6.
k. Push 1; enter side ane of card 2. Push 2; enter
side two.
1. Push A.
The following output is printed:
2, -01 =D Particle diameter, jim
6. 4 00 Residence time, sec
7. 9716505-09 Ideal penetration x mass fraction (Pt(d) x f^)
?'. 9718505 -05 Ideal penetration (Pt(d))
5. 898 3 30S -02 Ideal migration velocity (W(d))
4. 3768619-03 Corrected penetration (Pt(d))
4. 376861 '3-07 Corrected penetration x mass fraction (Pt(d)
xfi)
10
-------
5. -01
b, 4 00
.- -~| ~5 'I C - ,-i "J i-| .i
t. o > o.." i "+ r " U'-
4. 3342334-02
7. 7912055-03
1. 5582611-OS
S. -01 =D
6. 4 00
1.4282314-06
3.5705784-04
4.961003-02
7. 20596S9--03
Particle diameter, jim
Residence time, sec
Ideal Pt(d) x f.
Ideal Pt(d) l
Ideal W(d)
Corrected Pt(d)
Corrected Pt(d) x f.
1. b 00
6, 4 00
=n
2.2571985-06
1.128:992-04
5.6808519-02
4,853973-03
9.707946-05
2. 5 00
6. 4 00
3.252131-06
2. 1680~14-05
6. 7119289-02
3. 15955*5-03
4. 7393313-0*
4. 00
6, 4 00
6.9826971-07
2. 793C';'88--06
7,992728S-02
2,2569389-03
5.6423473-04
11
-------
1. 954C'70;i--iO
5. 58305"9--10
1.3316 3^:1-01
5. 5830579-10
11 954C:~'U3"lU
i ,-j i _T| Particle diameter, |im
,'.,t "4 QQ Residence time, »ec
... Ideal Pt(d) xf,
£.. U-.-'-^c-oiJi-IJL _, . __* .' i
5. 0871^111 -12 Ideal Pt(d)
i.6252t,9-0i Ideal W(d)
5.0871501-12 ' Corrected Pt(d)
2. 0348601 - 12 Corrected Pt(d) x f.
1. 2 OJ =D
6. 4 00
1.3986^4-14
4.6622467-14
1.9185434-01
4.6622467-14
i.39£674-l4
8.5186828-06 Ideal overall penetration
1. 1800917-03 Corrected overall pene-
tration
-------
3. The outlet size distribution i& found by using particle diameter
and the corrected penetration times the mass fraction (Pt(d) x
V-
Summarizing these values:
D Outlet f.
i
0.2 4.377 x 10'7
0.5 1.558 x 10-5
0.8 2.882 x 10-5
1.5 9.708 x lO'5
2,5 4.74X10"4
4.0 5.64xlO"4
8.0 1.95xlO-10
10.0 2.03xlO-12
12.0 1.40xlO*14
4. Check to determine if this size distribution is lognormal. First
change distribution to cumulative distribution and normalize.
The following
D
0.2
0.5
0.8
1.5
2.5
4.0
8.0
10.0
12.0
results are obtained:
Cumulative
Outlet f.
i
4.377x 10-7
1.602 x ID'5
4.484 x 10-5
1.419 x lO'4
6.159 x 10-4
1.180 x 1CT3
1.180 x 10'3
1.180 x 10"3
1.180 x lO'3
Normalized %
0.037
1.36
3.8
12.03
52.19
100.00
100.00
100.00
100.00
Plot the results on log-probability paper. If the plot is a straight
line, use the lognormal opacity program. If not, use the histogram
opacity program.
13
-------
5. In this case, a lognormal distribution is not found (Figure 2).
6. Run histogram opacity program No. 2 using outlet size distri-
bution obtained from ESP program. Do not use cumulative dis-
tribution. Since Dgo's are used to input particle diameters, the
mass fraction f-+j corresponds to D^ of D^Q.
a. Enter card 1; Push 1; enter side one.
b. Push A to enter data.
Enter the following data, pressing R/S after each entry.
KI:f'
"l f. ,*;
H50
T, B- r?
T. sr -.
ISO
0. 2
0.5
0. g
" e;
*» w
4.
8.
10.
Number of particle diameters
Particle diameters,
14
-------
10 I
1.0
d
*
o.i
0.01 0.1 0.5 2
J 1 L
1 1L.
J
10 30 50 70 90
CUMULATIVE HASS DISTRIBUTION (%)
99.8
99.99
M-J73
Figure 2. Cumulative particle size distribution plotted on log-
probability graph paper.
15
-------
F
F
F
F
F
F
F
F
F
1.558-05
2.8S2-05
9.708-05
4.74-04
5.64-04
1.95-10
2.03-12
1. 4-14
0. 00
J
Corresponding mass
fraction
c. Enter card 2 by pushing 1; enter side one. Push 2,
enter side two.
d. Enter card 3 by pushing A (partition automatically set)
Push 3, enter side one of card 3. Push R/S to start data
entry. Enter data, pressing R/S after each entry.
This step requires
approximately 30
minutes after
0. 55 is entered.
JEXT CftRIi
fl
B
W
1.5
0. 002
0.55
2.618259363
JJXT1
= SP
Real part of index of
refraction
Imaginary part of index
of refraction
Wavelength, jim
Specific extinction co-
efficient, cms/m3
e. Enter card 4 by pushing 1; enter side one. Push A to
start data entry. Enter data, pressing R/S after each entry:
MflSS?
0.00413
STflCK DIflMETER?
7.
DENSITY?
2. 4
3. 104694577
Inlet mass concentration
x overall penetration, g/m3
=DP--i
16
-------
The predicted opacity is within 3 percent of desired opacity so that
further iterations are not required. However, another iteration is pre-
sented for purposes of illustration.
6. Change to standard calculator partition by pushing 6, 2nd, Op,
17.
a. Enter card 2 of program No. 6 by pushing 1; enter side one.
Push 2; enter side two.
b. Enter magnetic card with ESP data stored during Step 2f
by pushing 3; enter side one of data card. Push 4; enter
side two.
c. Press D.
d. Press R/S after each entry.
7. Try SCA equal to 162 ma/m3/sec
SCfl
HP
62. m8/m3/sec
9.
0.2
6. 4
7. 084817-09
7. 034817-05
5.8981305-02
4.2-327131-03
4.2327131-07
Number of particle diameters
Particle diameter , jim
Residence time, sec
Ideal Pt(d) x *i
Ideal PT(d)
Ideal W(d)
Corrected Pt(d)
Corrected Pt(d) x fi
17
-------
5.-oi =n
6. 4 00
7.9409228-07
3.9704614-04
4.8342334-02
7.5041802-03
1.500836-05
8.-01 =D
6. 4 00
1.2933254-06
3.2333134-04
4.961008-02
6.942388-03
2.7769552-05
1.5 00 =D
6. 4 00
2.0147747-06
1.0073874-04
5.6808519-02
4.6888805-03
9.377761-05
2. 5 00 =D
6. 4 00
2.8435855-06
1.8957236-05
6.7119289-02
3.0713322-03
4.6069982-04
18
-------
4.
6. 4
00
00.
5.9511273-07
2. 3804509-06
7.9927288-02
2.2159553-03
5.5398883-04
= I<
Particle diameter, jim
Residence time , sec
Ideal Pt(d) x ft
Ideal Pt(d)
Ideal W(d)
Corrected Pt(d)
Corrected Pt(d) x fj
8. 00
6. 4 00
1. 4971871-10
4.2776774-10
1.3316321-01
4.2776774-10
1.4971871-10
1.
6.4
01
00
1^1 i"t * -t i"i -"i f 4 ^i
.£V*jyd*-l£
3.6754074-12
1.625269-01
3.6754074-12
1.2863926-12
1.2 01
6.4 00
-Ti
9.52'95842-15
3. 1765281-14
1.9185434-01
3.1765281-14
9.5295842-15
7.5481264-06
1. 1516676-03
Ideal overall penetration
Corrected overall
penetration
19
-------
8. The new outlet size distribution is summarized as follows:
D
0.2
0.5
0.8
1.5
2.5
4.0
8.0
10.0
12.0
fj
4.23x 10"7
l.Sx 10~8
Z.78 x 10"8
9.38 x 10~8
4.61x 10'*
5. 54 x 10"4
l.Sx 10"10
1.29x ID'18
9. 53 x 10~18
The outlet mass concentration = inlet mass concentration x overall
penetration
= (3.5 g/m3) x 0.00115 = 0.004025
9. Use histogram opacity program No. 2.
The output is as follows:
a. Enter card 1 by pushing 1; enter side one. Push A to
enter data, pressing R/S after each entry.
Number of particle
diameters
NDSO
nso
DSO
DSO
P50
DSO
DSO
nso
DSO
DSO
ct
' ^
0.2
0.5
0.8
1.5
2.5
4.
8.
10.
12.
j
V Particle diameters, p.m
20
-------
F
F
F
F
F
F
F
F
F
1
"
t_
9.
4.
e;
u1 §
1
l.
9.
.5
78
~> o
61
54
.5
£9
53
0.
-\
-05
-05
-05
-04
-04
-10
-12
-15
00 .
Corresponding mass fraction
b. Enter card 2 by pushing 1; enter side one. Push 2; enter
side two.
c. Enter card 3 by pushing A. Push 3, enter side one of card
3, Push R/S to start data entry. Push R/S after each entry.
NEXT CflRD
R
1.5
B
0. 002
0. 55
2.614291852
NXT1
d. Enter card 4 by pushing 1; enter side one. Push A to
start data entry, pressing R/S after each entry.
Real part of index of
refraction
Imaginary part of index
of refraction
Wavelength
= SP Specific extinction
coefficient
MflSS?
0. 004025
STflCK DIRMETER?
7.
DENSITY?
2.4
3.022451889
Inlet mass concentration
x overall penetration, g/m3
21
-------
The opacity limitation is 3 percent compared to the opacity using an
SCA of 162 re? /m3/sec, which is 3.02 percent. Further iterations could
be performed to obtain closer results by further increasing the SCA.
The individual opacity, scrubber, and ESP programs (including their
operation and formulations) are described in Sections 5 and 6.
22
-------
SECTION 4
IN-STACK OPACITY
BACKGROUND
In-stack opacity refers only to opacity (1-transmittance) as measured
by transmissometers in a stack. Out-of-stack plume opacity is much
more complex and is beyond the scope of this work. An out-of-stack
opacity measurement by observation requires understanding the effect
of background contrast, light scattering angles, and gas-to-particle
conversion of condensable material, such as SO3 . Out-of-stack opacity
can also be measured by instrumental techniques such as LIDAR and
photometry which are less sensitive to environmental factors than ob-
servers. When condensables are present, plume opacity may be much
greater than the in-stack opacity, because more light is scattered by
increased aerosol concentration.
In-atack opacity does not require the out-of-stack opacity parameters
to be characterized. In-stack opacity results from almost totally forward
light scattering and light absorption removing light from an incident beam.
At scattering angles less than 40°, the difference in particle scattering
between spherical and irregularly shaped particles is negligible. Thus
particle shape is not a factor in in-stack opacity. Also the problems
of background contrast and condensables do not apply to in-stack opacity.
DEFINITION
In-stack opacity is defined as 1 minus the transmittance of light using
the stack diameter as the path length. It is an accurate way to character-
ize plume opacity allowing more objective regulatory control. For many
years, the visual appearance of plumes has been used to enforce emission
from sources using the Ringelmann scale. Over the last 25 years stand -
dard smoke sources have been used, permitting training of inspectors to
associate the plume-to-background contrast for given conditions to an
in-stack transmittance. In-stack opacity as a supplement to human ob-
servers was given legal sanction by the 1971 New Source Performance
Standards requiring in-stack transmissometers as continuous monitors.
23
-------
THEORETICAL SUMMARY
The transmission of light through a volume containing an aerosol is
described by the Beer-Lambert law:
Opacity = 1 - transmittance = 1 - I/IO = 1 - exp (-
where
I is transmitted light
IQ is incident light
is the light extinction coefficient
L is the illumination path length (generally stack diameter
for our case).
Ensor and Pilat (1971) have shown that the aerosol mass concentration
is related 'to optical transmittance through a modified form of the Beer-
Lambert law:
I -ML Sp
=exp ^ (1)
where
M is the particle mass concentration
Sp is the ratio of the light extinction coefficient to specific
particulate volume (m /cm )
P is the average particle density
The specific extinction coefficient Sp is defined mathematically as
3 Td 3Q(d , X, m)n(d )d d
2 J p P P p
Sp= * (2)
Td n(d )d d
J P P P
24
-------
where
dp is the particle diameter
Q(dp, X,m) is the light extinction efficiency factor
A. is the wavelength of incident light
m is the aerosol index of refraction
t-
n(dp) is the number of particle size distribution.
Thus, Sp is defined for a given particle size distribution, particle index
of refraction, and wavelength of incident light, and is the indicator of
light extinction properties of the aerosol mass.
The light extinction efficiency Q(dp, X, m) is calculated by using Mie
equation for the particle size ranges associated with particulate control
devices (0.01 to 40 /im diameters). Expressions for the scattering and
extinction efficiencies are obtained by solving Maxwell's equations for
the interaction of a plane wave with a homogeneous sphere. The complete
derivation is explained by Born and Wolf (1959). The solutions were
adapted by Deirmendjian (1969) to computational forms and are easily pro-
grammed on the TI-59 calculator. (See Section 5, Mie theory extinction
efficiency calculation.) However, the size of this program and numerous
iterations result in a very slow calculation of Sp. Fortunately,, a good
approximation of the Mie series calculation was developed empirically by
Deirmendjian based on theoretical work by van de Hulst (1957). (See
Section 5, extinction efficiency approximation.) This approximation is
used with a Simpson 's Rule integration to obtain Sp with the TI-59 cal-
culator. The programs were developed for handling lognormal size dis-
tribution data or incremental size data. Using the approximation requires
less than an hour to obtain the calculation.
In-stack opacity is calculated by summarizing the above formulations
as follows:
Opacity (%) =
1 - exp
/Sp ML\
"V P /
x 100 (3)
This assumes a constant particle density and index of refraction. Generally
a wavelength of incident light of 0. 55 /im is used as representative of the
maximum photopic response of the human eye.
25
-------
SECTION 5
DESCRIPTION OF TI-59 OPACITY PROGRAMS
PROGRAM NO. 1: APPROXIMATE OPACITY PROGRAM WITH
LOGNORMAL SIZE DISTRIBUTION INPUT
This program computes in-stack opacity for an aerosol mass with a
lognormal particle size distribution. The lognormal size distribution is
-/a'(d /d
exp
g
where
d_. is the particle diameter
Og is the geometric standard deviation
dg is the geometric mass mean diameter.
It is important that the geometric mass mean diameter be converted to the
number mean diameter since the number distribution is required for the
integration. This function is substituted into the integral to calculate the
specific extinction coefficient (Sp), and the Simpson's Rule (continuous)
approximation is applied to obtain the two integral solutions. The inte-
gration program is provided by the master library module for all integra-
tions in this report. The extinction efficiency is calculated using Deirmend-
jian's approximation of the Mie series.
26
-------
This program can be divided into four basic operations
1. Data entry
/"
2. ist Integration = / d 3 n(d )d d
Q P P P
i
d
3. 2nd Integration = I d 3Q n(d )d d
4
/*n
= I
i
4. Calculation of opacity and specific extinction coefficient
Each integral above is calculated twice at two ranges of particle
diameters:
P
1. I Ad = 0.199
(T.QZ
/40
Ad= 1.8
-*
The two ranges are used to save calculation time and increase accuracy
of the program.
Program Operation
Two magnetic cards are required for operation;
1. Enter cards 1 and 2.
a. Push 1; enter side one of card 1.
b. Push 2; enter side two of card I.
c. Push A; (sets calculator partition).
d. Push 3; enter side one of card 2.
2. Enter data in following order:
Push R/S to start data entry. Push R/S after each entry.
27
-------
Data Register
a - (SIGMA) geometric standard deviation 08
g
DG - mass mean particle diameter, £1 m
M - particle mass concentration, g/m 26
S - stack diameter, m 27
DEN - particle density, g/cm3 28
W - wavelength of incident light, pi m 20
A - real part of refractive index 12
B - imaginary part of refractive index (positive) 13
Results
Directly following printout of B, the following is listed automatically:
1. Increment size (particle radius) of 1st integration
2. O. SD means end of 1st integration at lower range
3. Increment size (particle radius) of 1st integration at upper range
4. Increment size (particle ladius) of 2nd integration at lower range
5. O. SD means end of 2nd integration at lower range
6. Increment size (particle radius) of 2nd integration at upper range
7. Sp = specific extinction coefficient
8. OP (%) = in-stack opacity
Sample Calculation
Given: Standard deviation = 2
Mass mean diameter = 1 ^m
Wavelength of light = 0.55 JJ m
Real part of refractive index =1.5
Imaginary part of refractive index = 0
Mass concentration = 0.01 g/m.
Particle density = 2.4 g/cm3
Stack diameter = 6. 9 m
28
-------
Solutions:
Procedure
1. Enter card 1
2. Enter card 1
3. Enter card 2
4. Enter data
Enter
a (2)
g
DG (1.0)
M (0.01)
S (6.9)
DEN (2.4)
W (0.55)
A (1.5)
B (0)
Press
1
2
A, 3
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
Enter Display
Side 1 1
Side 2 2
719.29
Side 3 3
3624223013
2
1622
1.0
17
0.01
37
6.9
161731
2.4
43
0.55
13
1.5
14
0
Print
SIGMA a
2
DG
1.0
M
0.01
S
6.9
DEN
2.4
W
0.55
A
1.5
B
0
Summary ; Sp = 4,82
In-stack opacity = 12.9 %
Uses
0.0995
0 SD
0.0995
0.9
0 SD
0.9
4.821892388 = Sp
12.94494106 = OP %
This program can be used to estimate in-stack opacity for a given
facility. It can also be used with control device model programs to estimate
the design parameters required to meet an opacity limitation. See Sparks
(1979) for an example of this use. The effect on particle size distribution
29
-------
on the specific extinction coefficient and opacity can he examined by varying
the value of particle size distribution C7g and dg. Also, the effect on opacity
of variables such as particle density, stack diameter, and mass grain load-
ing can be examined for a given size distribution.
Another use of the approximate opacity program is to determine the
opacity for bimodal lognormal size distributions. The steps for this cal~
culation are:
1. Determine the specific extinction coefficient Sp for each mode,
using standard program operation.
2. Clear calculator display.
3. Sum these specific extinction coefficients,
4. Enter the sum from Step 2.
5. Push subroutine 607.
The printed result will show new specific extinction coefficient Sp and in-
stack opacity (OP %).
Sample Calculation
Given:
A bimodal distribution
Mode No. 1 standard deviation = 1.5, mass mean diameter = 0. 15 urn
Mode No. 2 standard deviation = 3, mass mean diameter = 5.0
Wavelength of light = 0. 55 jxm
Real part of refraction index =1.5
Imaginary part of refractive index = 0. 0001
Mass concentration = 0.01 g/m3
Particle density = 2.4 g/cm3
Stack diameter = 6. 9 m
30
-------
Solution
1.
2.
3,
4.
Procedure Enter Press
Enter card 1 1
Enter card 1 2
A
Enter card 2 3
Enter data Mode No. 1 R/S
a (1.5) R/S
g
DG (0.15) R/S
M (0.01) R/S
S (6.9) R/S
DEN (2.4) R/S
W (0.55) R/S
A (1.5) R/S
B (0.0001) R/S
Enter Display
Side 1 1
Side 2 2
719.29
Side 3 3
3624223013
1.5 1.5
1622
0.15 0.15
17
0.01 0.01
37
6.9 6.9
161731
2.4 2.4
43
0.55 0.55
13
1.5 1.5
0.0001 0.0001
Print
SIGMA
1.5
DG
0. 15
M
0.01
S
6.9
DEN
2.4
W
0.55
A
1.5
B
0.0001
0.0995
0 SD
0.0995
0.9
0. SD
0.9
3.55483634 = Sp
9.715243089 = OP %
5.
Enter data Mode No. 2 A
R/S
° 0) R/S
5
DG (5) R/S
M(0.01) R/S
S(6.9) R/S
31
719.29
3624223013
3 3.0
1622
5 5.0
17
0.01 0.01
37
6.9 6.9
161731
SIGMA
3.0
DG
5.0
M
0.01
S
6.9
DEN
-------
Procedure
Enter
Press
DEN (2. 4) R/S
W(0.55) R/S
A (1.5) R/S
B (0.0001) R/S
6. Enter sum of SP
iter
2.4
0.55
1.5
0.0001
Display
2.4
43
0.55
13
1.5
14
0.0001
Print
2.4
W
0. 55
A
1.5
B
0.0001
.Sp (4.89) SBR 607
0.0995
0 SD
0.0995
0.9
0 SD
0.9
1.335841986 = Sp
3.767731879 = OP %
4.89 = Sp
13. 11523626 = OP%
Lognormal Program Caution
This program will produce incorrect results for standard deviation
approaching 1.0; i.e., monodisperse aerosols. This logarithm equals
zero, and the subsequent division by zero is an undefined operation. The
limit for the standard deviation depends upon the geometric mean and the
range of particle diameters. Generally, standard deviations greater than
1.009 should provide correct calculations. A flashing display indicates
error; however, this is not a serious problem because aerosols found in
smoke stacks are not monodisperse.
PROGRAM NO. 2; APPROXIMATE OPACITY PROGRAM WITH HISTOGRAM
SIZE DISTRIBUTION INPUT
This program uses the opacity formulation in Section 3 with histogram
size data input. Light extinction efficiency is calculated with Deirmendjian's
approximation. The advantage of this program is that it allows opacity cal-
culation for aerosol masses with size distributions not conforming to log-
normal size distributions. The program is especially designed to handle
32
-------
cascade impactor data, although any siz.e distribution data in histogram
form ran he used.
The following manipulations of size distribution are performed:
1. Calculation of the geometric mean diameter X.
where D__ is the impactor diameter cut point; i.e., the diameter
of particles collected with 50 percent efficiency on that stage
2. Calculation of differential mass distribution Y.
i
(6)
where f. is the fractional mass loading on impactor stage with cut
point D^Q
i
The values of interpolated points for integration are derived by linear an-
alysis (Figure 3). Points outside the range of experimental values are
assumed to reside on a linear extension of the boundary lines as shown by
the dashed lines. Negative values of the differential mass distribution do
not have physical meaning and are set equal to zero.
This method of finite difference differentiation, although a crude approx-
imation, is the best technique for this program, especially considering the
limited number of available program steps. This method also allows a
maximum of 10 D "s to be used, so that the data from a low pressure
impactor with 10 stages can be used. The error in this program, generated
partly by the finite difference differentiation, is similar to that produced by
the lognormal opacity program.
The differential mass distribution is converted to the differential number
distribution before the continuous Simpson's Rule integration is applied.
The integrals solved in this program are identical to those contained in the
lognormal opacity program. This program can also be divided into four
basic operations;
33
-------
(X3, Y3)
1
1
2
*
oc
t?
*+
a
to
1/1
0.1
1.0
X1 GEOMETRIC MEAN DIAMETER'^m)
Figure 3. Particle size interpolation procedure used in opacity program.
10
-------
1. Data entry
f
2. 1st integration =1 d 2Q n(d )d d
^J P P
3. 2nd integration = / d 3 n(d )d d
J P P P
Each of these integrations
is performed twice at
particle diameter ranges,
0. 02 to 2. 0 and 2. 0 to 40.
4. Calculation of opacity and specific extinction coefficient
Program Operation
Card 1 is used to input the number of D 's (N D50), the D 's, and
the mass fraction f. in the ranee D.n to Dr _ . These D 's are entered
i e 50j 50i+i 50
starting with the smallest size cutoff. This part of the program computes
the geometric mean diameter (X.) and the differential mass distribution
or,),
Enter card 1.
a. Push 1, enter side one of card 1.
b. Push R/S after each entry that will be printed.
ND 50 = number of particle diameter cut points.
D 50 = particle diameter cut point (jUrn) starting with
smallest diameter. (Repeat this step for each particle
diameter cut point. )
F = mass fraction in the range D to D . (Repeat
i i+1
this step for the same number of points . )
NEXT CARD = indicates end of this part of program. Proceed to next
card.
Cards 2 and 3 are used to compute the integrations. The extinction
efficiency using Deirmendjian's approximation is computed for each par-
ticle diameter. As described earlier, a linear interpolation of the differ-
ential mass distribution is made for each increment of integration. The
differential mass distribution must be converted to the differential number
distribution for each increment of integration:
35
-------
1. Enter cards 2 and 3.
a. Push 1, enter side 1 of card 2.
b. Push 2, enter side 2 of card 2.
c. Push A to set partition = 719. 29.
d. Push 3, enter side one of card 3.
?.. Enter data.
a. Push R/S to start data entry.
b. Push R/S after each entry which will be printed.
A = real part of refractive index.
B = imaginary part of refractive index (positive).
W = wavelength of incident light.
The number of increments is fixed for a running time of 30 minutes. The
fixed ranges of integration for high efficiency control devices are 0.02 to
2 //m and 2 to 40 ^m in diameter.
Result
Sp = specific extinction coefficient
NXT 1 = end of this part of program. Proceed to card 4.
Card 4 computes the in-stack opacity (percent after some additional
data entry):
1. Enter card 4 - - Push 1, enter side one of card 4
Note: The calculator partition is still
equal to 719.29.
2. Enter data .
a. Push A to start data entry.
b. Push R/S after card entry that will be printed.
36
-------
/ a
Mass = particle mass concentration, g/m
Stack diameter = stack diameter, m
Density - density of purl ides, n/t:mn
Final result
OP (%) = in-stack opacity, %
Sample Calculation
Calculate the in-stack opacity for the case of nonlognormal aerosol
size distribution.
Given the following data;
Index of refraction = 1.5 (imaginary part equal to zero)
Wavelength of light = 0. 55 ^m
Mass concentration = 0. 01 g/m3
Particle density = 2.4 g/cm3
Stack : iameter = 6. 9 m
Cut Point Diameter Mass Fraction
D,.^, um
50 K
0.2
0.5
0.7
1.0
1.5
2.5
4.0
6.0
8.0
12.0
F.
i
0.0024
0.0572
0.09
0. 185
0.285
0.219
0, 105
0.033
0.018
0.0048
37
-------
Solution
Procedure Press Enter Press
Set partition 6, 2nd, Op,
1. Enter card 1 1 Side one
2. Enter data A
Note: This part ND (10) R/S
C Q
of the program
requires 40 seconds
after data are input: D5Q(0. 2) R/S
D. (0.5) R/S
D.n(0.7) R/S
50
D,n(1.0) R/S
50
D.ft(1.5) R/S
50
Dcft(2.5) R/S
50
D5Q(4.0) R/S
D,.(6.0) R/S
50
D50(8.0) R/S
D,n(12.0) R/S
50
F(0.0024) R/S
Display
17 479.59
1
31160601
160601
160601
160601
160601
160601
160601
160601
160601
160601
160601
21
Print
ND
10 5°
n
50
0.2
£)
50
0.5
D --v
30
0.7
r>
50
1.0
n
50
1.5
n
50
2.5
n
50
4.0
n
50
6.0
D.n
bO
8.0
D
50
12.0
F
0.0024
38
-------
Procedure Press Enter
F(0.0572)
F(0.09)
F(0.185)
F(0.285)
F(0.219)
F(0.105)
F(0.033)
F(0.018)
F(0.0048)
3. Enter card 2 1 Side one
2 Side two
4. Enter card 3 A
3 Side one
R/S
A(1.5)
B(O.O)
W(0.55)
5. Enter card 4 1 Side one
A
Press
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
Display
21
21
21
21
21
21
21
21
21
1
2
719.29
3
13
14
43
3.
3013363671
Print
F
0.0572
F
0.09
F
0.185
F
0.285
F
0.219
F
0. 105
F
0.033
F
0.018
F
0.0048
NEXT CARD
A
1.5
B
0.0
W
0.55
095120115- = SP
NXT 1
MASS?
Mass (0.01) R/S
Stack Diameter (6. 9) R/S
0.01
STACK DIAMETER?
6.9
39
-------
Procedure Press Enter Pross Display Print
DENSITY?
Density (2. 4) R/S 2.4
8.51404322 =OP%
Uses
The main function of this program is the relatively quick (less than
1 hour) approximate determination of in-stack opacity for size distribu-
tions in histogram format. This opacity program can also be used to
examine the effect of high efficiency particulate control devices.
In-stack Opacity Program Caution
The calculated specific extinction coefficient (Sp) may not be correct
because of the extinction efficiency approximation when a particle index
of refraction is not in the following ranges:
1.0s real part s 1. 5
0. 0 s imaginary part s o. 25
Table 2 shows that relative errors may vary from 1 to 111 percent for a
carbonaceous aerosol (m = 1.96 - 0. 66i). This table compares the exact
Sp derived numerically on a computer to the three opacity programs for
various size distributions. Since the errors are a function of the index of
refraction, caution is advised if one attempts to extrapolate the approx-
imate programs to aerosols with different light scattering and absorbing
properties. Overall, the magnitude of these errors allows only a very
rough estimate of in-stack opacity for high absorptive aerosols. If much
more accuracy is desired and if the user takes about 8 hours for the cal-
culation, the long opacity program gives very good results. (See Section
5, long opacity calculation. )
COMPARISON OF APPROXIMATE IN-STACK OPACITY PROGRAMS
The two opacity programs are compared in Table 3 for a refractive
index equal to 1.5. This table is presented in the same format as Table
2, with the specific extinction coefficient (Sp) data for various size dis-
tributions. Only the index of refraction is changed.
40
-------
TABLE 2. COMPARISON OF APPROXIMATE TI-59
CALCULATIONS OF Sp WITH EXACT VALUES
m
1.96 - 0.66 i X « 0.55fim
,
2
4
6
2
4
6
2
4
6
2
4
6
°m
1
1
1
2
2
2
3
3
3
4
4
4
Exact
SP
m8 /cm3
5.08
6.05
6.02
2.41
3.88
4.34
1.54
2.83
3.44
1.12
2.22
2.86
Approximate
Calculation
(Hi stogram
Size Data)
m3 /cm3
5.76
10.47
10.61
2.73
5.54
9.17
1.60
3.80
6.06
1.12
2.90
4.18
Approximate
Calculation
(Lognoraal
Size Data)
ma /cm*
6.63
10.79
12.51
2.35
6.18
8.26
1.42
4.25
6.32
1.02
3.2
5.18
Long
Calculation
(Lognormal
Size Data)
m3 /cm3
5.16
6.15
6.07
2,54
3.90
4.39
1.60
2.89
3.56
1.15
2.31
3.05
41
-------
TABLE 3. COMPARISON OF APPROXIMATE TI-59
CALCULATIONS OF Sp WITH EXACT VALUES
m * 1.5 A* 0.55
<7 D
Vn
2 1
4 1
6 ' 1
2 2
4 2
6 2
2 3
4 3
6 3
2 4
4 4
6 4
Exact
Sp
2 i 3
m /cm
4.99
3.67
3.06
2.62
2.88
2.62
1.64
2.31
2.27
1.17
1.91
2.0
Approximate
(Log normal
Size Data)
rr? /cm3
4.82
3.73
3.23
2.51
2.87
2.77
1.56
2.316
2.44
1.11
1.94
2.19
Approximate
(Histogram
Size Data)
a / 3
m /cm
4.92
3.95
3.38
2.99
3.21
2.88
1.91
2.6
2.55
1.31
2.17
2.47
42
-------
The average relative error for the lognormal size data (opacity pro-
gram) is 4. 1 percent with maximum value of 9. 5 percent. The running
time for this program is approximately 15 minutes. The greatest contri-
bution to error here is the extinction efficiency approximation. Accuracy
cannot be improved by using more increments. However, the opacity
from the size distribution a and D- = 4 can be improved by extending the
range of integration up to a particle diameter of 80 jim to avoid truncation
error.
The average relative error for the incremental size distribution (opa-
city program) is 12.2 percent with a maximum error of 23,5 percent. The
running time for this program is approximately 30 minutes. The primary
cause of error arises from using a crude size distribution interpolation.
The second major cause of error is the approximation used to calculate
the extinction efficiencies.
PROGRAM NO. 3: EXTINCTION EFFICIENCY (Q J APPROXIMATION
ex.
Since a major part of the specific extinction coefficient calculation
depends on calculating the extinction efficiency, it is worthwhile to briefly
describe the algorithms used.
Deirmendjian's approximation for the extinction efficiency is based on
van de Hulst's (1957) formulation that does not use the exact Mie series
calculation, van de Hulst's formula is
Qext (P.rn) = 2 - C°S g exp (-p tan g) sin (p - g)
/cos E\2 (7)
APi 'C°S 2 g " CXp ^ tan g* COS ^ " 2g^ for m = a"bi
ffdp
where p = 2x(a-l), x = , and g = arctan b/(a-l): [m-ll * 0
with
p as van de Hulst's normalized size parameter
g as the absorption parameter such that p tan g gives the energy
absorbed along the axial ray within the sphere.
Deirmendjian then applied the following correction factors to this original
theory with great increase in accuracy:
43
-------
p s- _. < __._
3 2a (1 + 3 tan g) ' 1 + 3 tan g ^ - 1 -t- tan g v '
2.04(a-l)fffg) + l] _i^0§__
a f(g) p 1+tan g
where
f(g) = 1 + 4 tan g 4 3 tan g (12)
The van de Hulst approximation with 1 + D as a correction factor works
well for the ranges 1 < a £ 1. 50 and 0 s. b s 0. 25. Table 4 compares
Deirmendjian's approximation with exact Mie values. These discrepancies
are the partial cause of the errors previously discussed in Sp calculation.
Program Operation
The extinction efficiency program is operated in accordance with the
following procedure:
Enter card 1.
a. Push 1, enter side one of card 1.
b. Push 2, enter side two of card 1.
c. Push A to start data entry.
d. Push R/S after each entry that will be printed.
A = real part of refractive index register.
B = imaginary part of refractive index register.
44
-------
TABLE 4. COMPARISON OF DEIRMENDJLAN'S APPROXIMATION
FOR EXTINCTION EFFICIENCY WITH EXACT MIE VALUE
m
1. 212-0. 060H
1.29
1.29-0.04721
1. 315
1. 306-0.00181
1. 315-0.01431
1. 315-0. 13701
1.525
1.525-0.06821
Relative Error
x =
irdp/A.
1.0
3.0
6.0
10.0
1.0
3.0
6.5
10.0
15.0
2.0
5.0
7.0
12.0
2.0
4.0
6.5
10.0
1.0
3.0
6.0
10.0
2.0
4.0
6.5
9.0
2.0
4.0
6.5
7.0
1.0
2.0
4.0
6.0
10.0
1.0
2.0
4.0
6.0
10.0
_ Exact
Approximate
CW
0. 193
1.07
2.36
2.72
0.079
1.40
3.78
2.97
1.98
0.767
2.84
3.15
2. 17
0.648
2.55
3.93
2.30
0.096
1.56
3.76
2.41
0.717
2.53
3.66
2.76
1.22
2.41
2.60
2.36
0.322
1.76
4.23
2.43
2.71
0.576
1.99
3. SO
2.46
2.35
value - Approximate
Exact
Qext
0.203
1.08
2.37
2. 80
0.072
1.36
3. 80
2.81
1.97
0. 777
2.83
3.21
2.25
0.642 "
2.63
3.94
2.45
0.087
1.54
3.78
2.55
0.717
2.59
3.72
2.89
1.23
2.41
2.71
2.48
0.237
1.98
4.09
2.52
2.87
0.420
2.04
3.61
2.61
2.55
value
Relative
Error*
4.9
0.9
0.004
2.9
9.7
2.9
0. 5
5.7
0. 5
1.3
0.35
1.9
3.6
0.9
3.0
0.25
6. 1
10.3
1. 3
0. 5
5.5
0
2.3
1.6
4. 5
0.8
0
4. 1
4.8
36
11
3.4
3.6
5.6
37
2.5
3.0
5.7
7.8
Reference; Deirmendjian, 1969.
45
-------
W = wavelength of incidental radiation
dp = particle diameter
Results
The extinction efficiency Qext is calculated for aerosol physical and
optical characteristics.
: a leu lat i on
1. Enter card 1 Push 1, enter side one of card 1C
2. Push A
Enter 1. 5
Enter 0
Enter 0. 56
Enter 0. 2
A?
1.5
B?
0
W?
0.56
D?
0.2
Press
R/S
R/S
R/S
R/S
0.3831940388 Q
ext
Uses
The program for calculating only the extinction efficiency with the approx-
imate formulation allows a quick inspection of the various particle diameters
to determine their relative contribution to light scattering.
PROGRAM NO. 4: MIE THEORY EXTINCTION EFFICIENCY CALCULATION
PROGRAM
To make an exact calculation of extinction efficiency is time consuming
with the TI-59. The extinction efficiency, as derived by van de Hulst
(1957) using the cross -section theorem of quantum mechanics, is given by:
Q x(m,x) * (2n+1) Re an + bj ("I
x n=l
46
-------
where
m is the index of refraction
. .. . . ffdp
x is the size parameter r-1
an and bn, the Mie coefficients, are functions only of m and x.
Re indicates the real part of the complex expression.
Deirmendjian adapted the Mie coefficients as derived by van de Hulst
into a computational form by manipulating Bess el functions to obtain:
an(m,x) =
b (m,x) = ^ ^ L^-^ *-^ ; (15)
n
* » £*n i ,
where w (x) =% w (x)
(x) = sin x + i cos x
w_j(x) = cos x - i sin x
-1
y = mx
and A(y\ =_+ I-A fvn
niy; y * [y n-l(y)J
A (v\ - 8in p cos P * * sin^ q cosh q
p = a x
sin8 p + sinh2 q q = b x
47
-------
The magnitude of n, the number of terms in the Mie series, determines
the time required for calculation. The value of n necessary for accurate
evaluation of the extinction efficiency equals 2x.
The Mie theory calculation is used specifically for particle size with
a diameter range from 0. 1 to 5 jim for a 0. 5 |im wavelength. For x > 40
the value of the extinction efficiency equals 2 as determined by geometric
and diffractive scattering.
jProgram Operation
1. Enter card ID.
a. Push 1, enter side one of card 1.
b. Push 2, enter side two of card 1.
c. Push A«
d. Push 3, enter side three of card 2.
2. Press A to start data entry.
3. Press R/S after each entry that will be printed.
4. The data input is identical to the approximate extinction program;
i.e. , A, B, W, D.
Results
Along with the data printed above, the extinction efficiency is printed.
Sample Calculation
Enter Press Print
1. Enter cards 1 and 2
1 enter side
one
2 enter side
two
A Push A
3 enter side
three
48
-------
Enter Press Print
2. Enter data R/S
A(1.5) R/S 1.5
B(0) R/S 0.0
W(0.56) R/S 0.56
D(2.317295971) R/S 2.317295971
Solution summary: 2.281425826
Extinction efficiency = 2. 28
Uses
If time is not critical, the exact extinction efficiency can be computed
to determine the critical sizes for light scattering.
PROGRAM NO. 5: LONG OPACITY CALCULATION USING TI-5V AND
LOGNORMAL SIZE DISTRIBUTION
This program uses the exact Mie calculation to obtain the extinction
efficiency. The size distribution input is lognormal, and the continuous
Simpson's Rule integration is used. This calculation will produce very
accurate results with an average error less than 5 percent. The major
drawback is the time required for this program --8 hours. The program
integrates from particle diameter 0. 02 to 40 jim using Simpson's Rule for
100 increments. The 100 increments are required for sufficient accuracy
especially in the lower end of the particle size range.
Program Operation
Card 1 is used for initial data entry.
Enter card 1.
a. Set partition: Press 4, 2nd, Op 17.
b. Press 1, enter side one of card 1.
c. Press 3, enter side two of card 1.
d. Press A to start data entry.
49
-------
e. Press R/S after each entry which will be printed.
The following data need to be input: SIGMA, DC, W, A, and B.
Card 2 is used to calculate the following integral;
r
J dp
Qext n
This part of the program requires about 8 hours.
Enter card 2.
a. Push 1, enter side one.
b. Push 2, enter side two.
c. Push RST.
d. Push R/S.
Card 4 is used to calculate the opacity and specific extinction coefficient
Sp. The result from Card 1 is divided by the following integral to obtain
Sp:
d
/n
dpsn (dp)ddp
d
o
This calculation requires about 4 minutes.
The input data for opacity calculation are also entered with this card.
Enter card 4.
a. Push 1, enter side one.
b. Push A to start data entry.
50
-------
c. Push R/S after each entry which will be printed.
MASS? Aerosol mass concentration, g/m3 Register 22
DENS? Particle density, g/cm3 Register 23
STCK? Stack diameter, m Register 24
Results
The unlabeled output from card 1 is the solution to integral of the ex-
tinction efficiency.
The input for card 4 is as follows;
1. Mass concentration (MASS).
2. Aerosol density (DENS).
3. Stack diameter (STCK).
The output for card 4 is
1. Specific extinction coefficient (SP).
2. In-stack opacity (OP %).
All the above are printed automatically.
Sample Calculation
Calculate the in-stack opacity for lognormal size distribution given
the following data:
Geometric standard deviation = 2
Mass median diameter = 2 jim
Wavelength of light =0.56 (im
Mass concentration = 0.01 g/m3
Particle density =2.4 g/cm3
Stack diameter = 6. 9 m
Index of refraction (a-bi) = 1. 96 - 0. 66i
51
-------
Solution:
Procedure
Press
1. Set partition
2. Enter card 1 1
3. Enter card i 3
4. Enter data
5. Enter card 2
Enter
side one
side two
Press
2nd OP 1 7
Print
a (2)
g
d (2)
g
W(0.55)
A(1.96)
B(0.66)
1 sides 1
2 side 2
A
R/S
R/S
RVS
R/S
R/S
RST R/S
SIGMA
2
DC
2
W
0.55
A
1.96
B
0.66
C
i
639.39
0.6792158202
Enter card 3
a. Push 1, enter side one
b. Push A to start data entry
MASS (0.01) R/S
DENS (2.4) R/S
STCK(6.9) R/S
MASS ?
0.01
DENS ?
2.4
STCK DIAM?
6.9
2.541602496 Sp
7.0465236 OP (%)
52
-------
Uses
This program is especially useful for predicting opacity for highly
absorptive aerosols with a lognormal particle size distribution. Although
the calculation time is much longer, the program accuracy is much
greater than the approximate opacity programs (Table 2),
53
-------
SECTION 6
DESCRIPTION OF TI-59 ELECTROSTATIC PRECIPITATOR AND
SCRUBBER PROGRAMS WITH INCREMENTAL SIZE DATA
The theoretical modeling of electrostatic precipitators (ESPs) for
computers is fully developed by Gooch, et al. (1975), and for TI-59 pro-
grammable calculators by Sparks (1979). EPA publication EPA-600/7-
78-026 describes SR-52 calculator programs for ESPs and venturi scrub-
bers using lognormal size distribution. The TI-59 versions of these pro-
grams are in Appendices H and I. The only changes in the venturi scrubber
program are (1) Cunningham correction factor and (2) the use of Master
Library Simpson Rule integration.
ESP PROGRAM
A new program for ESPs has been developed by Sparks (1979). Because
this program is a major improvement in the SR-52 program and has not
been reported, a fairly complete discussion of the new TI-59 ESP model
is given here.
Recent advances in calculator technology have made available calcu-
lators with tremendous computing capability. This computing capability
can be used to model electrostatic precipitation without a large computer.
This paper describes such a model for the Texas Instruments TI-59
Calculator.
The Model
_The ESP model for the TI-59 calculator is based on the EPA/Southern
Research Institute (EPA/SoRI) ESP Computer Model Revision I by McDonald
(1978). A brief discussion of the theory behind the model and the assump-
tions in the model are given here. The reader interested in more detail
should consult the referenced reports.
Steps in Electrostatic Precipitation Process
The electrostatic precipitation process can be divided into four steps:
54
-------
1. Corona generation and establishment of electric field.
2. Particle charging.
3. Particle collection.
4. Removal of the collected material.
A complete model of the process would handle all four steps. However,
Step 4 is too complex to be modeled at this time and is neglected by both
the EPA/SoRI Model and the TI-59 Model. Step 1 is modeled in detail by
the EPA/SoRI Model but is neglected in the TI-59 Model. The TI-59
calculator does not have sufficient power to handle the computation used
in the computer program. Work is underway to develop approximations
for use in the TI-59. When these approximations are developed they will
be incorporated into the model. Until then the user must supply the
applied voltage and current density as input data.
Particle Charging
Particle charging generally takes place by two mechanisms: field
charging and diffusion charging. For large particles, field charging is by
far the dominant mechanism. Diffusion charging dominates for very small
particles. Particles of major interest in air pollution (those with 0. 1 s .
1. 0 iim) are charged by both mechanisms. Pontius et al (1977) have shown
that the following approximation for the charge on a particle agrees with
experimental data and detailed theory fairly well.
r?P
wd
" 2 Ci
bd /aEA Nt
P Av
b Nt + C
1 + 2
C2T
(16)
Tjp = number of charges
e = permitivity of free space
o
e = charge on electron
k = Boltzman's constant
b = ion mobility
E = average electric field
T = absolute temperature
N = free ion density
t = residence time for charging
K = particle dielectric constant
v = mean thermal speed of ions
dp = particle diameter
a = particle radius
The charge on a particle, q, in coulombs is given by
55
-------
This equation is used in the TI-59 program and in the approximation
procedure in the EPA/SoRI model.
The average electric field used in the calculation is given by
EA = U/H (I?)
Av
where U = the applied voltage,
H = wire to plate spacing, m
The free ion density, N, is given by
N = bEAv/j (18)
where b = average ion mobility, rn /V-sec
j = current density a /m
Particle Collection
Particle collection in an ESP is given by the Deutsch Andersen equation
Pt(dp) = «cp[-ou(d )A/V] (19)
where
cudp = electrical migration velocity of particles with diameter dD m/s
A = collector plate area, rn3
V = volumetric flow rate of gas, m.3/s
The ratio A/V is called the specific collection area (SCA).
The electrical migration velocity near the collector plate for small
particles is given by Stokes' law as
uu(dp) = qEpC'/3fffidp (20)
where q = the particle charge, coul. (q = erj)
E0 = the electric field at the plate, V/m
C1 = the Cunningham correction factor
= 1 f 2A
A = 1.246 + 0.42 esp (-0.87 dp/2X)
Lp
0.
X = mean free path of gas,
56
-------
X = mean free path at 23°C and 76 cm Hg pressure
o
P = barometric pressure, cm Hg
T = temperature, °K
p. = viscosity of gas, kg/m-s (10 poise = 1 kg/m-s)
McDonald reported that for an ESP collecting flyash:
E = EA /I. 75 (21)
p Av
This estimate of E is used in the TI-59 Model.
P
McDonald also reported that equation (20) underpredicts the migration
velocity for a real ESP. He recommends that the migration velocity be
corrected by an empirical factor to improve agreement between predictions
and theory. The corrected migration velocity is given by:
U)(dp) * uu(dp) x (1.7 - 0.45 dp)
where uu (dp)u is the uncorrected migration velocity. Equation (22) applies
for 0. 2 < dp <4/5 Mm. Outside this range equation (20) applies.
Non-Ideal Factors
The Deutsch Andersen equation applies to an ideal situation. Certain
non-ideal factors exist in real ESPs which result in higher penetrations than
those predicted by equation (19). Chief among these non- ideal factors are
non-uniform gas flow, sneakage, and reentrainment. Gooch et al. (1975)
have shown that the effects of these non-ideal factors can be estimated from:
Pt'(dn) = exp TrH (")
where Pt'(dD)= the corrected penetration
B = the correction factor for sneakage and reentrainment
F = the correction factor for non-uniform gas flow
In P 4- (d )
B = _J. __ (24)
N ln[S + (1 - S)Pt(d_
s p
57
-------
N = number of baffled sections
s
S = the fraction of particles that are reentrained and that by-
pass electrified region per section
F = 1 + 0.766 [1 - PttdpJlcr1' IOW + 0. 075 CT In [l/Pt(dp)l (25)
a = the normalized standard deviation of the gas flow
(
-------
An effective migration velocity for each diameter for the entire ESP is
calculated from
-In Pt(d )
E- (29)
-^P'e A/V
The penetration corrected for non-ideal factors Pt(d \i is calculated
from:
(«>(dp) A/V\
: I (3°)
BXF y
These calculations are performed for each of the m particle diameter in
the user specified particle size distribution. The overall penetration is
given by:
m
Ft = 2>t(dp)ifi (31>
and the corrected penetration:
m
Conclusion
(32)
The TI-59 model provides a useful tool for examining the performance
of an ESP. The answers are obtained quickly and without a large expensive
computer.
Program Operation for Program No. 6
The first step is to enter the inlet particle size distribution for as
many as 16 diameters. Since the histogram opacity program is limited
to 10 particle diameters, it is recommended that no more than 10 be used
for predicting opacity for an ESP.
Ion speed is calculated from :
V = [(8 x 8.31 x 107 x T°K)/(ff X32)]1/2 (33)
100
59
-------
Ion mobility is calculated from:
b = b X ^r~ X -e (See Table 5) (34)
r ^ i -5 .L
1. The particle diameters are stored in Registers 25-39.
2. The mass fractions fi at diameters di are in Registers 41-55.
Card 1 is used to enter all other data.
3. Enter data in following order:
ESP
NP
NN
H
U
V
B
J*
K
Push A to start data entry. Push
R/S after each entry is printed.
ID - (Any number for identification)
Number of particle diameters = 15
Number of time increments (5 to 10) Register 05
Wire to plate spacing (cm)
Applied voltage (V)
The following is printed;
Average electric field (V/m) EA
Electric field at plates (V/m) EP
Ion speed (m/sec)
Ion mobility (ms/V-sec)
Current density (A/ma)
The following is printed:
Ion density NO
Dielectric constant
Temperature (°C)
Register 01
Register 02
Register 01
Register 08
Register 09
J can be estimated from the relationship between J and P given by Hall
(see Figure 4).
60
-------
TABLE 5. REDUCED EFFECTIVE NEGATIVE ION MOBILITIES
FOR VARIOUS GAS COMPOSITIONS
Gas Composition
(Volume Percent)
N2 COz 0_2_ S02
100.0
100.0
100.0
(Laboratory air)
(Laboratory
79.4
73.5
65.9
71.0
75.7
75.1
78.5
78.3
77.9
77.6
14.7
13.6
12.2
11.2
11.6
11.5
10.9
19.8
10.8
10.7
4.6
4.2
3.8
3.7
3.2
3.2
3.6
3.6
3.6
3.7
air)
0.2
0.2
0.2
0.0
0.0
0.1
0.0
0.1
0.3
0.7
100.0
0.6
8.4
17.8
14.0
9.4
9.9
7.0
7.0
7.0
7.0
Reduced Effective
Ion Mobility
(cm2 /V-sec)
0.67 + 0.17
2.46 4 0.06
1.08 + 0.03
0.35
1.03
1.26 - 1.96
5.39
2.93
2.23
2.35
3.02
2.74
3.36
2.67
2.70
2.43
Source: McDonald, J.R. A Mathematical Model of Electrostatic Pre-
cipitation (Revision 1): Volume 1. EPA Report: EPA-600/7-78-
Ilia. June 1978. p. 75.
61
-------
100.0
I
10.0
i£
tH-f^gH £ BASED ON HALL'S EXPERIMENTAL DATA
~Z.U" .1~.!^_. ~ ."'.^.i,.~?
jj^^^t^-m^-ggggrj
10
Figure 4. Experimentally determined effect of resistivity
on allowable current density in a precipitator (Hall,
1971).
62
-------
Vis ViscoHity (poise) Register 04
P Pressure (cm Hg)
SCA Specific collection area (m2/m3/sec) Register 03
Length Length of precipitator (m)
Vel Gas velocity (m/sec)
SIGMA Normalized standard deviation of gas Register 06
NS Number of sections for sneakage Register 13
S Fraction of sneakage Register 14
Card 2 is used to calculate the overall penetration, the outlet
size distribution under ideal conditions, the corrected outlet size distri-
bution, ideal migration velocity as a function of diameter, and the ideal
and corrected penetrations as a function of diameter.
Press A to obtain above information.
Results
The results for each particle diameter are:
Output Particle diameter
Pt(dp) x fj (Penetration x mass fraction)
Ideal Pt(d ) (Ideal penetration)
Ideal W(d ) (Ideal migration velocity)
Corrected Pt (dp) (Corrected penetration)
Corrected Pti(dp) x ^ (Corrected penetration x mass
fraction)
After all the particle size data above are printed, the ideal and
corrected penetrations follow;
63
-------
Sample Calculation
Given;
Size distribution
N = 10
dp Mm f.
0.2 Register 25 0.00033
0.4 Register 26 0.00253
0.7 Register 27 0.0903
1. 1 Register 28 0.0815
1.6 Register 29 0.0152
2.5 Register 30 0.03542
3.5 Register 31 0.01652
4.5 Register 32 0.01652
6.0 Register 33 0.01982
8.5 Register 34 0.03304
Register 41
Register 42
Register 43
Register 44
Register 45
Register 46
Register 47
Register 48
Register 49
Register 50
Number of time increments = 5
Wire to plate spacing = 0. 1143 cm
Applied voltage = 3. 00 X 10* V
Ion speed = 528 m/sec
Ion mobility = 3 X 10~*m8/V-sec
Current density = 1.3 X 10"* A/m3
Dielectric constant = 100
Temperature = 150°C
Viscosity = 2. 3 x 10"*
Pressure = 76 cm Hg
SCA = 55 ma/m3 /sec
Length of precipitator = 8 m
Gas velocity = 1. 25 m/sec
Normalized standard deviation of gas =0.25
Number of sections for sneakage = 4
Sneakage fraction = 0. 1
64
-------
Solution
Procedure
Press
Set Partition 6, 2nd, Op, 17
Enter card 1 1
2
Enter data
Enter size data
Press Trace
Enter
Side 1
Side 2
Press
Print
ESP ID (1)
NP (10)
NN (5)
H (0. 1143)
U (3.0 x 10*)
V (528)
B (3 x 10"*)
J (1.3 x 10"*)
K (100)
T (150)
VIS (2.3 x 10~*)
P (76)
SCA (55)
Length (8)
Vel (1.25)
Sigma (0.25)
NS (4)
S(O.l)
0.2
0.4
0.7
1.1
A
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
STO 25
STO 26
STO 27
STO 28
1
10
5
0. 1143
3. EE 04
2,6246719 05 EA
1.4998125 05 EP
5.28 02
3.0 -04
1.3 -04
1.031875 13 NO
100
150
2.3 -04
76
55
8
1.25
0.25
4.0
0.1
65
-------
Procedure
Press
Inactivate Trace
Enter card 2
Enter
1.6
2.5
3.5
4.5
6.0
8.5
0.00033
0.00253
0.0903
0.0815
0.0152
0.03524
0.01652
0.01652
0.01982
0.03304
Side 1
Side 2
Press
STO 29
STO 30
STO 31
STO 32
STO 33
STO 34
STO 41
STO 42
STO 43
STO 44
STO 45
STO 46
STO 47
STO 48
STO 49
STO 50
A
Print
Particle diameter
Residence time
Ideal Pt(d) x fi
Ideal Pt(d)
Ideal W(d)
Corrected Ptfd)
Corrected Pt(d) x
01 =;
6. 4 00
1. 2872856-05
3.9008653-02
5.8931305-02
8.4685383-02
2.7946177-05
66
-------
Print
4. -01
6. 4 00
1 . f- 'rl Fi A fi fl A - f ! 4
6. 7019787-02
4. 9141225-02
1. 2236769-01
3 . 0959027-04
7. -01
6. 4 00
6. 1418485-03
6 . 8 0 16041 - 0 2
4. 887294-02
1. 2362949-01
1. 1163743-02
6. 4
4. 5412242-03
5. 5720543-02
5. £43;=:29&-fi£
1. 0773313-01
8. 7802503-03
1. 6 00
6. 4 00
6. 2958231-04
4. 1419889-02
5. 7890802-02
8. 8141568-02
1. 3397518-03
2. 5 00
6. 4 00
8. 7864081 -04
2. 4933054-02
6. 7119289-02
6. 3229764-02
2. 2282169-03
67
-------
Print
3. 5 00
6. 4 00
2.5268282-04
1.5295571-02
7.6003491-02
4.6565039-02
7.6925444-04
4. 5 00
6. 4 00
1. 8525515-04
1. 1213992-02
8. 1647145-02
3. 8619206-02
6. 3798929-04
6. 00
6. 4 00
= T;
6.5903855-05
3.3251188-02
1.0375-01
1.9627458-02
3.8901621-04
8. 5 00
6. 4 00
1.4549037-05
4.4034617-04
1.4050817-01
7,8121544-03
2.5811358-04
Ideal overall penetration
Corrected overall penetration
2. 5915234-02
68
-------
Uses
The opacity program, can be implemented immediately to determine the
effect of an electrostatic precipitator on opacity.
Also, the SCA can be changed to observe its effect on ESP performance.
This is performed oy entering the inlet size data, then entering card 2
and pressing D.
SCRUBBER PROGRAM WITH INCREMENTAL SIZE DATA
The theory for venturi scrubber computer model has been developed
by Yung, et al.(1977), and adapted by Sparks (1978) for SR-52 calculators.
Refer to these reports for theoretical derivations and formulations. The
SR-52 program presented by Sparks has been written for the TI-59 and
a new program for histogram size distribution has been written.
grogram No. 7 Operation
1. Enter particle size distribution: diameters in Registers 25-39;
mass fractions in "Registers 41-55.
2. Enter card 1
a. Push 1, enter side one.
b. Push 2, enter side two.
3. Enter data in following order:
a. Push A to start data entry.
b. Push R/S after each entry that will be printed.
T Temperature, °C
P Pressure, cm Hg
F Factor - f (0.5)
N Number of particle diameters
. «a «a
L/G Liquid to gas ratio, m /m
UG Gas velocity, cm/sec
The following is printed;
AP Pressure drop, cm
69
-------
VIS
RHO
RHO
Viscosity, poise
L-Liquid density, g/cm3
P- Particle density, g/cm3
Results
Directly following the printout of RHO, P, the following is listed for
each particle diameter:
Particle diameter
Penetration pt (dp)
Outlet concentration
Then, after all diameters are printed the following appear:
Overall penetration
Overall efficiency
Sample Calculation
Given;
Size Distribution
N = 10
Diameter, p.m
0.2
0.4
0.7
1. 1
1.6
2.5
3.5
4.5
6.0
8.5
Mass Fraction, f
_ _
0.00033
0.00253
0.0903
0.0815
0.015ZO
0.035Z4
0.01652
0.01652
0.01982
0.03304
70
-------
Temperature
Pressure
Factor (f)
Number of particles
Liquid to gas ratio
Gas velocity
Viscosity
Liquid density
Particle density
Procedure
Enter size data
Press Trace
Press
= 65*C
= 76 cm Hg
= 0.5
= 13
= 9 x 10~4 m3/m3
= 6. 5 x 103 cm/sec
= 1.8 - 10-4 poise
= 1 g/cm3
= 2.4 g/cm3
Enter
Press
0.2
0.4
0.7
1.1
1.6
2.5
3.5
4.5
6.0
8.5
0.00033
0.00253
0.0903
0.0815
0.0152
0.03524
0.01652
0.01652
0.01982
0.03304
STO 25
STO 26
STO 27
STO 28
STO 29
STO 30
STO 31
STO 32
STO 33
STO 34
STO 41
STO 42
STO 43
STO 44
STO 45
STO 46
STO 47
STO 48
STO 49
STO 50
Print
Inactivate Trace
71
-------
Solution
Procedure Press
Enter card 1 1
Enter card 1 2
Enter data
Particle diameter,
Pt (dp)
Outlet concentration
Enter
Side 1
Side 2
Press
Print
T (65)
P (76)
F (0.5)
N (10)
L/C (9 x 10"*)
VC (6.5 x 103)
VIS (1.8 x 10"*)
RHO L (1)
RHO P (2.4)
A
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
R/S
65
76
0.5
10
9. -04
6.5 03
3. 13326 01
1.8-04
1.00
2.400 .
2. -01
7.3544066-01
2.4269542-04
4. -01
3. 1897058-01
8.0699556-04
7. -01
8.6663485-02
7.8257127-03
1. 1 00
2.6899234-02
2. 1922876-03
F"
= ^
FT
ri
FT
1. 6 00
1. 1891733-02
1.8075435-04
FT
2. 5 00
5.9545995-03
2. 0984009-04
FT
72
-------
Print
3. 5 00 =D
4.2499663-03 PT
7.0209443-05 =D
4.5 00 =L
3.577094S-03 PT
5.9093606-05 =0
6. 00 «D
3.1225421-03 PT
6.1888784-05 =0
8. 5 00 =D
2.8159444-03 PT
9.3038803-05 =D
Overall penetration i. i 7^2^U. -02 -DPT
OveraU efficiency 9, 88257*8-01 =DE
Uses
This program predicts the collection efficiency of a venturi scrubber
and also demonstrates the effect of a scrubber on in-stack opacity. The
basic input parameters can be changed so that the effect on particle col-
lection and in-stack opacity can be observed.
73
-------
REFERENCES
Born, M., and E. Wolf. Principles of Optics. Pergamon Press, Oxford
England, 1959.
Deirmendjian, D. Electromagnetic Scattering on Spherical Polydis-
persions. American Elsevier Publishing Co., Inc., New York,
NY, 1969.
Ensor, D. S. , and M. J. Pilat. Calculation of Smoke Plume Opacity from
Particulate Air Pollutent Properties. J. Air Poll. Contr. Assn.
2J_: 496, 1971.
Gooch, J. P., J. R. McDonald, and S. Oglesby, Jr. "A Mathematical
Model of Electrostatic Precipitation. " EPA-650/2r75-037 (NTIS
PB 246-188)* Southern Research Institute, Birmingham, AL, April
1975.
Hall, H. J. "Trends in Electrical Energization of Electrostatic Precipi-
tate rs. " Presented at Electrostatic Precipitator Symposium,
Birmingham, AL, February 23-25, 1971.
McDonald, J.R. A Mathematical Model of Electrostatic Precipitation
(Revision 1): Volumes I and II. EPA-600/7-78-llla and b. (NTIS
PB 284-614 and -615), Southern Research Institute, Birmingham,
AL, June 1978.
Pontius, D. H., L. G. Felix, J.R. McDonald, and W. B. Smith. Fine
Particle Charging Development. EPA-600/2-77-173 (NTIS PB 271-
727), Southern Research Institute, Birmingham, AL, August 1977.
Sparks, L. E. "A Model of Electrostatic Precipitation for TI-59 Calcu-
lator. " Presented at the 1979 US/USSR Symposium on Particulate
Control Technology, Russia, September 1979.
Sparks, L. E. SR-52 Programmable Calculator Programs for Venturi
Scrubbers and Electrostatic Precipitators. EPA-600/7-78-026
(NTIS PB 277-672), USEPA, RTP, NC, March 1978.
74
-------
van de Hulst, H.C. Light Scattering by Small Particles. John Wiley
and Sons, Inc., New York. NY, 1957.
Yung, S. S. , S. Calvert, and H. Barbarika. Venturi Scrubber Performance
Model. EPA-600/2-77-172 (NTIS PB 271-515), A. P. T., Inc., San
Diego, CA, August 1977.
175
-------
APPENDIX A
Title of Program: PROGRAM NO. 1: Approximate Opacity (Lognormal)
Location Code Key Location Code Key
000 76 LBL 035 54 ;:'
001 16 FT 036 92 RTN
002 61 GTD 037 76 LBL
00:-: fi:-: 03 038 19 D1
004 05 OR ?39 43 RCL
005 92 RTN 040 11 '11
006 76 LBL 041 32 XJT
007 17 B1 04£ 53 (
008 61 GTD 043 05 5
009 03 03 044 65 x
010 46 46 045 43 RCL
Oil 92 RTN 046 16 16
012 76 LBL 047 54 )
013 18 C1 048 77 GE
014 61 GTD 049 01 01
015 02 Ti2 050 15 15
016 10 10 051 53 (
017 92 RTN 052 04 4
018 76 LBL 053 93 .
019 10 E1 054 00 0
020 53 < 055 08 8
021 01 1 056 55 -r
022 85 + 057 53 (
023 04 4 058 01 1
024 65 x 059 85 +
025 43 RCL 060 43 RCL
026 10 10 061 10 10
027 30 TON 062 30 TfiN
028 85 + 063 65 x
029 03 3 064 03 3
030 65 x 065 54 >
031 43 RCL 066 54 >
032 10 10 067 77 GE
033 30 TflN 068 01 01
034 33 X2 069 58 58
A-l
-------
Title of Program: Approximate Opacity (Lognormal)
location Code Key Location Code Key
070 53 ( 115 53 <
071 04 4 116 43 RCL
072 93 . 117 16 16
073 00 0 118 33 X*
074 OS 8 11* 55 -r
07FJ PiF. -r 120 53 <
076 53 C 121 01 1
077 01 1 122 93 .
078 85 + 123 06 6
079 43 RCL 124 03 3
080 10 10 125 02 2
081 30 TflH 126 65 x
082 54 > 127 43 RCL
083 54 ) 128 12 12
084 77 GE 129 54 >
085 01 01 130 65 x
086 82 82 131 53 <
087 53 < 132 10 E1
088 53 ( 133 85 +
089 02 2 J34 01 1
090 93 . }£":' 54 )
091 00 0 }^ §5 4
092 04 4 }i:l' 5y <
093 65 x 13« 93 .
094 43 RCL I39 02 2
095 16 16 I40 65 x
096 65 x 141 43 RCL
097 53 <:: 1*2 11 11
098 10 E' I43 75 -
099 85 + I44 43 RCL
100 01 1 145 12 1
101 54 -> 146 85 +
102 54 ) I47 01 1
103 55 * I4* 54 )
104 53 < I4'? 55 *
105 43 RCL 150 53 <
106 12 12 151 43 RCL
107 65 x 152 16 16
108 43 Pi":L 153 65 x
109 11 11 154 10 E'
110 65 x 155 54 )
111 10 E1 156 54 >
112 54 > 157 92 RTH
113 54 "> 158 53 <
114 92 RTH 159 43 RCL
A-2
-------
Title of Program: Approximate Opacity (Lognormal)
Location Code Key Location Code Key
160 16 16 206 54 ':>
161 55 ^ 207 54 )
162 53 ( 208 54 ':>
163 08 8 2i"i9 92 PTN
164 93 . 210 53 ':
165 01 1 211 53 (
166 06 6 212 02 2
167 65 x 213 75 -
168 43 RCL 214 53 f
169 12 12 215 fi4 4
170 54 ) 216 - 65 x
171 65 x 217 53 (
172 43 RCL 218 43 RHL
173 11 11 219 10 in
174 65 x 220 39 f:Dc;
175 53 :: 221 . 55 -"
176 10 E' £22 43 Pf:L
'177 85 + 223 11 ii
178 01 1 224 54 ':
179 54 ) 225 65 x
180 54 > 226 53 ,;
181 92 RTH 227 43 RCL
182 53 < 228 11 H
183 43 RCL 229 94 +,'-
184 16 16 230 65 x
185 65 x 231 43 PCL
186 53 < 232 10 10
187 10 E' 233 30 TflN
188 85 + 234 54 ':
189 01 1 235 22 INV
190 54 ) 236 23 LHX
191 55 - 237 6=i x
192 53 < 238 53
193 02 2 239 43
194 65 x 240 11 i
195 43 RCL 241 75 -
196 12 12 242 43 RCL
197 65 x 243 10 in
198 53 ( 244 54 >
199 01 1 245 38 SIN
200 85 + 246 54 :
201 03 3 247 85 +
202 65 x 248 04 4
203 43 RCL 249 65 x
204 10 10 250 53 <
205 30 TflN 251 43 RCL
A-3
-------
Title of Program: Approximate Opacity (Lognormal)
Location Code Key Location Code Key
252 10 10 298 85 +
253 39 CDS 299 01 1
254 55 -r 300 54 )
255 43 RCL 301 54 )
256 11 11 302 61 GTD
257 54 ) 303 00 00
258 33 X* 304 17 17
259 65 x 305 42 STD
260 53 :: 306 06 06
261 53 ( 307 87 IFF
262 02 2 308 01 01
26:": 6=! x 309 03 03
264 43 RCL 310 19 19
265 10 10 311 53 <
266 54 ) 312 43 RCL
267 39 CDS 313 06 06
268 75 - 314 33 X*
269 53 < 315 65 x
270 43 RCL 316 17 B1
271 11 11 317 54 >
272 94 +/- 318 92 RTN
273 65 x 319 53 <
274 43 RCL 320 43 RCL
275 10 10 321 06 06
276 30 TflN 32.2 65 x
277 54 > 323 04 4
278 22 INV 324 65 x
279 23 LNX 325 89 ir
280 65 x 326 55 -r
281 53 < 327 43 RCL
282 43 RCL 328 20 20
283 11 11 329 65 x
284 75 - 330 43 RCL
285 53 < 331 16 16
286 43 RCL 332 54 >
287 10 10 333 42 STD
288 65 x 334 11 11
289 02 2 335 53 (
290 54 -> 336 43 RCL
291 54 "> 337 06 06
292 39 CDS 338 65 x
293 54 > 339 17 B'
294 54 j 340 65 x
295 65 x 341 18 C1
296 53 < 342 54 >
297 19 D1 343 61 GTD
A-4
-------
Title of Program: Approximate Opacity (Lognormal)
Location Code Key Location Code Key
344 00 00 qqn n--- -.
345 05 05 391 69 DP
53 < 392 oi 01
-':-: (- 393 69 DP
348 43 RCL -::q4 ** n«=
349 06 06 39>, 9] p,c
350 55 -r 39£ ^q
351 43 RCL ^9-7 4;
352 07 07 398 Og 0£
35o 54 .; -Vjq
354 23 LHX 4,:in
355 33 X2 40f ni 7
356 55 - 4^4 ^ !
^C"7 c--( . HUi. Ub I-.
o-jf jo >.. 4rr-' n-T-
oco ri--, .-, »'-'_' Uii ^
1:1 404 02 2
pn 405 *9 DP
Oft n- 406 02 0
Uo Uo 4Q-j
23 LHX Ll
409 9i R/S
41°
54 > 4n 55 +
366 94 +/- 412 02 2
367 22 IHV 413 95 ^
368 23 LHX 414 2'~- LH^
369 61 GTD 415 75 - '
370 00 00 416 43 RCL
371 11 11 417 08 08
372 76 LBL 418 23 LHX
11 fl 419 33 XS
03 3
69 DP
p ,: ni-
p..-- o 4-r.
*-
4 --,
^
d-T-
nn '
UU
A-5
4 -,£
°
S 428 00 00
d 4-~-q
d
- 43°
' - 431
s I i
-------
Title of Program: Approximate Opacity (Lognormal)
Location Code Key Location Code Key
436 99 PRT 483 69 DP.
437 42 STD 484 02 02
438 26 26 485 69 DP
439 69 DP 486 05 05
440 00 00 487 91 R/S
441 03 3 488 99 PRT
442 06 6 489 42 STD
443 69 DP 490 12 12
444 02 02 491 75 -
445 69 DP 492 01 1
446 05 05 493 95 =
447 91 R.--S 494 42 STD
448 99 PRT 495 16 16
449 42 STD 496 69 DP
450 27 27 497 00 00
451 69 DP 498 01 1
452 00 00 499 04 4
453 01 1 500 69 DP
454 06 6 501 02 02
455 01 1 502 69 DP
456 07 7 503 05 05
457 03 3 504 91 R,--:=;
458 01 1 505 99 PPT
459 69 DP 506 42 STD
460 02 02 507 13 13
461 69 DP 508 55 +
462 05 05 509 43 RCL
463 91 R/S 510 16 16
464 99 PRT 511 95 =
465 42 STD 512 22 IHV
466 28 28 513 30 TflH
467 69 DP 514 42 STD
468 00 00 515 10 in
469 04 4 516 93 .
470 03 3 517 00 0
471 69 DP 518 01 1
472 02 02 519 42 STD
473 69 DP 520 21 21
474 05 05 521 02 2
475 91 R.-"S 522 42 STD
476 99 PRT 523 22 22
477 42 STD 524 02 2
478 20 20 525 00 0
479 69 DP 526 42 STD
480 00 00 527 23 23
481 01 1 528 00 0
482 03 3 529 42 STD
A-6
-------
Title of Program: Approximate Opacity (Lognormal)
Location Code Key Location Code Key
530 14 14 c,7f. nci QQ
531 42 STD 577 . . ...
""2 15 15 578 44 SUM
- 02 2 579 15 15
42 STD 5SO 02 2
535 09 09
536 43 RCL
21 1 583
2
5S4 00 0
535 42
540 22
541 12 B 5ft7 5^ o"
542 43 RCL 588 00 5
*ii f^ ^ 589 42 STD
-44 1J L 590 *' --
545 22 IHV c;Qj ^; ^
546 86 STF 5i2 Ji
547 01 01 593 05
548 36 PGM 594 ^ *f
%* ?! g9 595 43 RCL
55U 14 D
551 44 SUM
552 14 14
C C- - - .-, 1-1 1- ^ '-'
55J &y DP 59Q
554 00 00 666 4
'' :':' '-! 601 65 x
Ufc fc, 602 Q4
"1 ? 603 55 -
Lit. b 604 Cr-: o
559 69 DP |Q? QS -
560 04 04 606 ^ i"v
561 25 CLR
562 69 DP oft
563 06 06 609 69 Dp
"
...... ou
565 01 01 611 06 6
566 43 RCL 612 04 4
567 21 21 613 03 3
568 15 E 614 06 6
569 43 RCL 615 03 3
£<: £.-£. 616 03 3
571 12 B 617 69 DP
572 43 RCL 618 04 04
573 23 23 619 25 CLR
574 13 C 620 43 RCL
575 36 PGM 621 25 25
A-7
-------
Title of Program: Approximate Opacity (Lognormal)
Location Code Key Location Code Key
622 69 DP 668 76 LBL
623 06 06 669 15 E
624 43 RCL 670 42 STD
625 25 25 671 01 01
626 65 x 672 92 RTH
627 43 RCL 673 76 LBL
628 26 26 674 12 B
629 65 x 675 42 STD
630 43 RCL 676 02 02
631 27 27 677 92 RTN
632 55 -H 678 76 LBL
633 43 RCL 679 13 C
634 28 28 680 42 STD
635 95 = 681 05 05
636 94 +/- 682 35 1/X
637 22 IHV 683 65 x
638 23 LHX 684 53 :'
639 94 +--- 685 43 RCL
640 85 + 686 02 02
641 01 1 687 75 -
642 95 = 688 43 RCL
643 65 x 689 01 01
644 01 1 690 54 >
645 00 0 691 95 =
646 00 0 692 99 PRT
647 95 = 693 42 STD
648 42 STD 694 03 03
649 29 29 695 92 RTN
650 69 DP
651 00 00
652 06 6
653 04 4
654 03 3
655 02 2
656 03 3
657 03 3
658 06 6
659 01 1
660 69 DP
661 04 04
662 25 CLR
663 43 RCL
664 29 29
665 69 DP
666 06 06
667 91 R.
A-8
-------
APPENDIX B
Title of Program: PROGRAM NO. 2: Approximate Opacity (Histogram)
Card 1
Location Code Key Location Code Key
000 76 LBL 034 69 DP
001 11 Fl 035 05 05
002 08 8 03c 53 :
003 42 STD 037 91 R/S
004 04 04 038 99 PRT
005 25 CLR 039 65 x
006 69 DP 040 01 1
007 00 00 041 00 0
008 03 3 042 00 0
009 01 1 043 00 0
010 01 1 044 54 >
Oil 06 6 045 72 ST*
012 00 0 046 04 04
013 06 6 047 01 1
014 00 0 048 44 SUM
015 01 1 049 04 04
016 69 DP 050 97 DSZ
017 01 01 051 07 07
018 69 DP 052 00 00
019 05 05 053 34 34
020 91 R/S 054 08 8
021 99 PRT 055 42 STD
022 42 STD 056 04 04
023 06 06 057 43 RCL
024 42 STD 058 06 06
025 07 07 059 42 STD
026 01 1 060 07 07
027 06 6 061 02 2
028 00 0 062 Oi 1
029 06 6 063 69 DP
030 00 0 064 01 01
031 01 1 065 69 DP
032 69 DP 066 05 05
033 01 01 067 91 R/S
B-l
-------
Title of Program: Approximate Opacity (Histogram) Card 1
Location Code Key Location Code Key
068 99 PRT 113 04 04
069 74 SM* 114 44 SUM
070 04 04 115 05 05
071 01 1 lib 97 DSZ
072 44 SUM 117 07 07
073 04 04 118 GO 00
074 97 DSZ 119 96 96
075 0? 07 120 53 ( '
076 00 00 121 43 RCL
077 65 65 122 06 06
078 53 < 123 75 -
079 43 RCL 124 01 1
080 06 06 125 54 >
081 75 - 126 42 STD
082 01 1 127 07 07
083 54 ) 123 08 8
084 42 STD 129 42 STD
085 O'7 07 130 03 03
086 08 8 131 09 9
087 42 STD 132 42 STD
088 04 04 133 04 04
089 09 9 134 01 1
090 42 STD 135 09 9
091 03 03 136 42 STD
092 01 1 137 05 05
093 09 9 138 53 <
M
J -'
094 42 STD 139
095 05 05 140 73 RC*
096 53 < 141 03 03
097 73 RC* 142 22 IHV
098 03 03 143 59 INT
099 59 INT 144 55 -r
100 65 x 145 53 (
101 73 RC* 146 73 RC*
102 04 04 147 04 04
103 59 INT 148 59 INT
104 54 > 149 55 +
105 34 TX 150 73 RC*
106 59 INT 151 03 03
107 72 ST* 152 59 INT
108 05 05 153 54 )
109 01 1 154 28 LDG
110 44 SUM 155 54 )
111 03 03 156 35 -r
112 44 SUM 157 01 1
B-
3
-------
Title of Program: Approximate Opacity (Histogram) Card 1
Location code Key Location Code Key
158 00 0 202 Oi i
159 54 > 203 01 1
160 74 SM* -?fi4 iT? 7
161 05 05 2H^ ri4 4
162 01 1 2n6 H4 4
163 44 SUM 5-07 m -:
164 03 03 2H8 H7 7
165 44 SUM 209 69 DP
166 04 04 21n 0' 01
167 44 SUM ?ii -11 1
168 05 05 212 OR 5
169 97 HSZ 213 01 1
170 07 07 214 03 3
171 01 01 215 03 3
172 38 38 216 OR 5
173 53 ( 217 01 1
174 43 RCL 218 06 6
175 U6 06 219 69 DP
176 75 - 220 02 02
177 01 1 221 69 DP
222 05 05
223 25 CLR
224 69 DP
225 00 00
226 91 R/S
176
173
180
181
182
1 83
184
185
1 86
187
188
189
190
191
192
193
194
195
196
197
198
199
200
54
42
07
01
09
42
05
08
42
03
73
05
72
03
01
44
03
44
05
97
07
01
88
>
STD
07
1
9
STO
05
8.
STD
03
RC*
05
ST*
03
1
SUM
03
SUM
05
DSZ
07
01
88
201 03
B-3
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key Location Code Key
000 76 LBL 045 01 01
001 11 fl 046 02 2
002 03 3 047 42 STD
003 69 DP 048 02 02
004 17 17 049 02 2
005 91 R/S 050 00 0
006 01 1 051 36 PGM
007 03 3 052 09 09
008 69 DP 053 13 C
009 01 01 054 36 PGM
010 69 DP 055 09 09
Oil 05 05 056 14 D
012 91 R/S 057 43 RCL
013 99 PRT 058 04 04
014 42 STD 059 44 SUM
015 23 23 060 17 17
016 01 1 061 86 STF
017 04 4 062 01 01
018 69 DP 063 02 2
019 01 01 064 00 0
020 69 DP 065 42 STD
021 05 05 066 05 05
022 91 R/S 067 36 PGM
023 99 PRT 068 09 09
024 42 STD 069 14 D
025 24 24 070 43 RCL
026 04 4 071 04 04
027 03 2 072 44 SUM
028 69 DP 073 18 18
029 01 01 074 22 IHV
030 69 DP 075 86 STF
031 05 05 076 01 01
032 91 R/S 077 02 2
033 99 PRT 078 42 STD
034 42 STD 079 01 01
035 25 25 080 04 4
036 00 0 081 00 0
037 42 STD 082 42 STD
038 17 17 083 02 02
039 42 STD 084 01 1
040 18 18 085 00 0
041 93 . 086 36 PGM
042 00 0 087 09 09
043 02 2 088 13 C
044 42 STD
B-4
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key Location Code Key
089 36 PGM 133 54 >
090 09 09 134 69 DP
091 14 D 135 06 06
092 43 RCL 136 61 GTD
093 04 04 13? 07 07
094 44 SUM 13ft 04 04
095 17 17 139 76 LBL
096 86 STF 140 16 ft1
097 01 01 141 53 <
098 01 1 142 42 STD
099 00 0 143 00 00
100 42 STD 144 61 GTD
101 05 05 145 01 01
102 36 PCM 146 58 58
103 09 09 147 43 RCL
104 14 D 148 00 00
105 43 RCL 149 33 X*
106 04 04 150 65 x
107 44 SUM 151 43 RCL
108 18 18 152 20 20
109 22 INV 153 65 x
110 86 STF 154 43 RCL
111 01 01 155 28 28
112 25 CLR 156 54 )
113 69 DP 157 92 RTN
114 00 00 158 53 (
115 06 6 159 43 RCL
116 04 4 160 06 06
117 03 3 161 75 -
118 06 6 162 01 1
119 03 3 163 54 ':>
120 03 3 164 42 STD
121 69 DP 165 07 07
122 04 04 166 OS 8
123 53 :: 167 42 STD
124 43 RCL 168 19 19
125 17 17 169 53 (
126 55 + 170 73 RC*
127 43 RCL 171 19 19
128 18 18 172 55 +
129 65 x 173 01 1
130 01 1 174 00 0
131 93 . 175 00 0
132 05 5 176 00 0
P-5
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key Location Code Key
177 54 ) 222 59 INT
178 32 XJT 223 42 STD
179 43 RCL 224 07 07
ISO 00 00 225 53 (
181 22 IHV 226 73 RC*
182 77 GE 227 19 19
183 01 01 228 59 INT
184 96 96 229 42 STD
185 01 1 230 21 21
186 44 SUM 231 01 1
187 19 19 232 44 SUM
188 97 HSZ 233 19 19
189 07 07 234 53 >:
190 01 01 235 73 RC*
191 69 69 236 19 19
192 01 1 237 22 INV
193 22 IHV 238 59 INT
194 44 SUM 239 75 -
195 19 19 240 43 RCL
196 53 < 241 07 07
197 43 RCL 242 54 >
198 08 08 243 65 x
199 59 INT 244 01 l
200 55 -f 245 00 0
201 01 1 246 55 -r
202 00 0 247 53 (
203 00 0 248 73 RC*
204 00 0 249 19 19
205 54 > 250 59 INT
206 32 XJT 251 55 -
207 43 RCL 252 43 RCL
208 00 00 253 21 21
209 22 IHV 254 54 )
210 77 GE 255 28 LDG
211 02 02 256 65 x
.-i 4 .-i 4 -7 j
. 1 £ 1 I' 1
£.i£. I ( 1 i £-'! -' O '..
213 01 1 258 43 RCL
214 22 INV 259 00 00
215 44 SUM 260 55 ~
216 19 19 261 43 RCL
217 00 0 262 21 21
218 32 XJT 263 65 x
219 73 RC* 264 01 1
220 19 19 265 00 0
221 22 IHV 266 00 0
B-6
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key
267 00 0
26B 54 >
269 2'o LOG
270
85
271 43 RCL
272 07 07
273 65 x
274 01 1
275 00 0
276 54 ;>
277 68 HDP
278 77 GE
279 02 02
280
281
95
55
232 01 1
283 25 CLR
284 42 STD
285 07 07
286 01 1
287 32 XJT
288 43 RCL
289 00 00
290 22 IHV
291 77 GE
292 02 02
293 97 97
294 25 CLR
295 42 STD
296 07 07
297 53 (
298 53 <
299 43 RCL
300 07 07
301 65 x
302 06 6
303 55 -r
304 89 ir
305 55 +
306 43 RCL
207 00 00
308 45 Y*
309 03 3
310 54 )
311 65 x
Location Code Key
312 53 <
313 53 (
314 43 RCL
315 00 00
316 85 +
317 43 RCL
318 03 03
319 54 )
320 55 *
321 43 RCL
322 00 00
323 54 )
324 28 LDG
325 55 +
326 43 RCL
327 03 03
328
4 )
329 42 STD
330 28 . 28
331 22 INV
332 87 IFF
333 01 01
334 03 03
335 43 43
336 43 RCL
337 00 00
338 42 STD
339 20 20
340 61 GTD
341 01 01
342 47 47
343 70 RfiD
344 53 (
345 53 <
346 43 RCL
347 00 00
348
349
350
351 43 RCL
352 25 25
353 54 )
354 42 STD
355 26 26
65
03
55
B-7
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key Location Code Key
356 65 x 400 43 RCL
357 02 2 401 23 23
358 65 x 402 75 -
359 53 < 403 01 1
360 43 RCL 404 54 ':<
361 23 23 405 54 >
362 75 - 406 22 IHV
363 01 1 407 77 GE
364 54 > 408 04 04
365 54 > 409 65 65
366 42 STD 410 53 <
367 27 27 411 53 <
368 32 KIT 412 43 RCL
369 53 < 413 23 23
370 53 < 414 75 -
371 43 RCL 415 01 1
372 24 24 416 54 :>
373 55 * 417 33 X*
374 53 ( 418 55 H-
375 43 RCL 419 01 1
376 23 23 420 93 .
377 75 - 421 06 6
378 01 1 422 03 3
379 54 ) 423 02 2
380 54 ) 424 55 =-
381 42 STD 425 43 RCL
382 29 29 426 23 23
383 33 X£ 427 65 x
384 65 x 428 53 (
385 03 3 429 43 RCL
386 85 + 430 19 19
387 04 4 431 85 +
388 65 x 432 01 1
389 43 RCL 433 54 )
390 29 29 434 85 +
391 85 + 435 52 <:
392 01 1 436 93 .
393 54 > 437 02 2
394 42 STD 438 65 x
395 19 19 439 43 RCL
396 53 < 440 27 27
397 05 5 441 75 -
398 65 x 442 43 RCL
23
399 53 < 443 2? -"-'
B-8
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key Location Code Key
444 85 + 489 01 1
445 01 1 490 54 >
446 54 > 491 55 *
447 55 - 492 08 8
448 53 < 493 93 .
449 43 RCL 494 01 1
450 23 23 495 06 6
451 75 - 496 55 *
452 01 1 497 43 RCL
453 54 > 498 23 23
454 55 + 499 65 x
455 43 RCL 500 "S3 (
456 19 19 501 43 RCL
457 85 + 502 19 19
458 01 1 503 85 +
459 54 > 504 01 1
460 42 STD 505 54 >
461 21 21 506 65 x
462 61 GTD 507 43 RCL
463 06 06 508 27 27
464 03 03 509 85 +
465 53 < 510 01 1
466 04 4 511 54 )
467 93 . 512 42 810
468 00 0 513 21 21
469 08 8 514 61 GTD
470 55 - 515 06 06
471 53 ( 516 03 03
472 01 1 517 53 <
473 85 + 518 04 4
474 03 3 519 93 .
475 65 x 520 00 0
476 43 RCL 521 08 8
477 29 29 522 55 -r
478 54 > 523 53 <
479 54 > 524 01 1
480 22 IHV 525 85 +
481 77 GE 526 43 RCL
482 05 05 527 29 29
483 17 17 528 54 >
484 53 < 529 54 )
485 53 < 530 22 INV
486 43 RCL 531 77 GE
487 23 23 532 05 05
488 75 - 533 70 70
B-9
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key Location Code Key
534 53 < 579 75 -
535 53 < 580 01 1
536 43 RCL 581 54 >
537 23 23 582 65 x
538 75 - 583 53 <
539 01 1 584 43 RCL
540 54 ) 585 19 19
541 65 x 586 85 +
542 53 < 587 01 1
543 43 RCL 588 54 )
544 19 19 589 55 +
545 85 + 590 43 RCL
546 01 1 591 23 23
547 54 ) 592
548 55 + 593 43 RCL
549 02 2 594 19 19
550 55 + 595 55 -
551 43 RCL 596 43 RCL
552 23 23 597 27 27
553 55 + 598 85 +
554 53 < 599 01 1
555 01 1 600 54 )
556 85 + 601 42 STD
557 03 3 602 21 21
558 65 x 603 53 <
559 43 RCL 604 53 <
560 29 29 605 02 2
561 54 > 606 75 -
562 85 + 607 53 C
563 01 1 608 04 4
564 54 ) 609 65 x
565 42 STD 610 43 RCL
566 21 21 611 29 29
567 61 GTD 612 22 IHV
568 06 06 613 30 TON
569 03 03 614 39 CDS
570 53 < 615 42 STD
571 02 2 616 07 07
572 93 . 617 55 +
573 00 0 618 43 RCL
574 .04 4 619 27 27
575 65 x 620 65 x
576 53 ( 621 53 <
577 43 RCL 622 43 RCL
578 23 23 623 27 27
B-10
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key Location Code Key
624 94 +.-- 669 27 27
625 65 x 670 94 +/-
626 43 RCL 671 65 x
627 29 29 672 43 RCL
628 54 ) 673 29 29
629 22 INV 674 54 >
630 23 LHX 675 22 INV
631 65 x 676 23 LHX
632 53 < 677 65 x
633 43 RCL 678 53 <
634 27 27 679 43 RCL
635 75 - 680 27 27
636 43 RCL 681 75 -
637 29 29 682 53 <
638 22 INV 683 43 RCL
639 30 TfiN 684 29 29
640 54 ) 685 22 INV
641 38 SIN 686 30 TflN
642 54 > 687 65
643 85 + 688 02 2
644 53 < 689 54 )
645 04 4 690 54 )
646 65 x 691 39 CDS
647 53 < 692 54 >
648 43 RCL 693 54 >
649 07 07 694 54 >
650 55 + 695 65 x
651 43 RCL 696 43 RCL
652 27 27 697 21 21
653 54 ) 698 54 >
654 33 X^ 699 42 STD
655 65 x 700 20 20
656 53 ( 701 61 GTD
657 53 < 702 01 01
658 43 RCL 703 47 47
659 29 29 704 25 CLR
660 22 INV 705 69 DP
661 30 TflN 706 00 00
662 65 x 707 03 3
663 02 2 708 01 1
664 54 > 709 04 4
665 39 CDS 710 04 4
666 75 - 711 03 3
667 53 ( 712 07 7
668 43 RCL 713 00 0
B-ll
-------
Title of Program: Approximate Opacity (Histogram) Cards 2 and 3
Location Code Key
714 02 2
715 69 DP
716 01 01
717 69 DP
718 05 05
719 91 R--'S
B-12
-------
Title of Program: Approximate Opacity (Histogram) Card 4
Location Code Key location Code Key
000 76 LBL 045 69 DP
001 11 ft 046 02 H2
002 25 CLR 047 01 1
003 69 DP 048 07 7
004 00 00 049 03 3
005 03 3 050 07 7
006 00 0 051 01 1
007 01 1 052 07 7
008 03 3 053 03 3
009 03 3 054 05 5
010 06 6 055 07 7
Oil 03 3 056 01 1
012 06 6 057 69 DP
013 07 7 058 03 03
014 01 1 059 69 DP
013 69 DP 060 05 05
016 01 01 061 91 R.-S
017 69 DP 062 99 PPT
018 05 05 063 42 STD
019 91 R.--S 064 02 02
020 42 STD 065 25 CLR
021 01 01 066 69 DP
022 99 PRT 067 00 00
023 03 3 068 01 1
024 06 6 069 06 6
025 03 3 070 Hi 1
026 07 7 071 07 7
027 01 1 072 03 3
028 03 3 073 01 1
029 01 1 074 03 3
030 05 5 075 06 6
031 02 2 076 02 2
032 06 6 077 04 4
033 69 DP 078 69 DP
034 01 01 079 01 01
035 00 0 080 03 3
036 00 0 081 07 7
037 01 1 082 04 4
038 06 6 083 05 5
039 02- 2 084 07 7
040 04 4 085 01 1
041 01 1 086 00 0
042 03 3 087 00 0
043 03 3 088 00 0
044 00 0 089 00 0
B-13
-------
Title of Program: Approximate Opacity (Histogram) Card 4
Location Code Key Location Code Key
135 01 1
13'6 00 0
137 00 n
13S 95 =
139 69 DP
140 06 06
141 91 R,:=;
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
US
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
69
02
69
05
91
99
42
03
06
04
03
02
03
03
06
01
69
04
43
17
55
43
IS
65
01
93
05
65
43
01
65
43
02
55
43
03
95
94
22
23
94
85
01
95
65
DP
02
DP
05
RxS
PRT
STD
03
6
4
H
2
i
;";
6
1
DP
04
RCL
17
~
RCL
18
;/
1
5
'RCL
01
RCL
02
-i-
RCL
03
=
+ / -
IHV
LHX
+ / -
+
1
=
X
B-14
-------
APPENDIX C
Title of Program: PROGRAM NO. 3: Extinction Efficiency Approximation
Location Code Key Location Code Key
000 76 LBL 036 05 05
001 11 fl 037 91 R/S
002 25 CLR 038 99 PRT
003 69 DP 039 42 STD
004 00 00 040 08 08
005 01 1 041 01 1
006 03 3 042 06 6
007 07 7 043 07 7
008 01 1 044 01 1
009 69 DP 045 69 DP
010 01 01 046 01 01
Oil 69 DP 047 69 DP
012 05 05 048 05 05
013 91 R/S 049 91 R/S
014 99 PRT 050 99 PRT
015 42 STD 051 42 STD
016 00 00 052 09 09
017 01 1 053 65 x
018 04 4 054 89 rt
019 07 7 055 55 *
020 01 1 056 43 RCL
021 69 DP 057 08 08
022 01 01 058 95 =
023 69 DP 059 42 STD
024 05 05 060 02 02
025 91 R/S 061 70 RflD
026 99 PRT 062 65 x
027 42 STD 063 02 2
028 01 01 064 65 x
029 04 4 065 53 <
030 03 3 066 43 RCL
031 07 7 067 00 00
032 01 1 068 75 -
033 69 DP 069 01 1
034 01 01 070 54 )
035 69 DP 071 95 =
C-l
-------
Title of Program: Extinction Efficiency Approximation
Location Code Key Location Code Key
072 42 STD 115 01 1
073 03 03 116 95 =
074 32 XIT 117 33 X*
075 43 RCL 118 55 -r
076 01 01 119 01 1
077 55 -r 120 93 .
078 53 < 121 06 6
079 43 RCL 122 03 3
080 00 00 123 02 2
081 75 - 124 55 *
082 01 1 125 43 RCL
083 54 ) 126 00 00
084 95 = 127 65 x
085 42 STD 128 53 <
086 04 04 129 43 RCL
087 33 X* 130 05 05
088 65 x 131 85 +
089 03 3 132 01 1
090 85 + 133 54 >
091 04 4 134 85 +
092 65 x 135 53 <
093 43 RCL 136 93 .
094 04 04 137 02 2
095 85 + 138 65 x
096 01 1 139 43 RCL
097 95 = 140 03 03
098 42 STD 141 75 -
099 05 05 142 43 RCL
100 05 5 143 00 00
101 65 x 144 85 +
102 53 d 145 01 1
103 43 RCL 146 54 )
104 00 00 147 55 *
105 75 - 148 53 (
106 01 1 149 43 RCL
107 54 > 150 00 00
108 95 = 151 75 -
109 22 INV 152 01 1
110 77 GE 153 54 >
111 45 YX 154 55 +
112 43 RCL 155 43 RCL
113 00 00 156 05 05
114 75 - 157 85 +
C-2
-------
Title of Program: Extinction Efficiency Approximation
Location Code Key Location Code Kev
158 01 1 203 43 RCL
159 95 = 204 03 03
160 42 STD 205 85 +
161 06 06 206 01 1
162 13 C 207 95 =
163 76 LBL 208 42 STD
164 45 YX 209 06 06
165 04 4 210 13 C
166 93 . 211 76 LBL
167 00 0 212 34 fX
168 08 8 213 04 4
169 55 -r 214 93 .
170 53 < 215 00 0
171 01 1 216 08 8
172 85 + 217 55 *
173 03 3 218 53 (
174 65 x 219 01 1
175 43 RCL 220 85 +
176 04 04 221 43 RCL
177 54 > 222 04 04
178 95 = 223 54 >
179 22 IHV 224 95 =
180 77 GE 225 22 INV
181 34 fX 226 77 GE
182 43 RCL 227 33 X^
183 00 00 228 43 RCL
184 75 - 229 00 00
185 01 1 230 75 -
186 95 = 231 01 1
187 55 -r 232 95 =
188 08 8 233 65 x
189 93 . 234 53 <
1^0 01 1 235 43 RCL
191 06 6 236 05 05
192 55 -r 237 85 +
193 43 RCL 238 01 1
194 00 00 239 54 >
195 65 x 240 55 *
196 53 < 241 02 2
197 43 RCL 242 55 -r
198 05 05 243 43 RCL
199 85 + 244 00 00
200 01 1 245 55 *
201 54 > 246 53 <
£02 65 x 247 01 1
C-3
-------
Title of Program: Extinction Efficiency Approximation
Location Code Key Location Code Key
248 85 + 292 42 STD
249 03 3 293 06 06
250 65 x 294 76 LBL
251 43 RCL 295 13 C
252 04 04 296 02 2
253 54 > 297 75 -
254 85 + 298 53 <
255 01 1 299 04 4
256 95 = 300 65 x
257 42 STD 301 43 RCL
258 06 06 302 04 04
259 13 C 303 22 INV
260 76 LBL 304 30 TflN
261 33 X* 305 39 CDS
262 02 2 306 42 STD
263 93 . 307 07 07
264 00 0 308 55 +
265 04 4 309 43 RCL
266 65 x 310 03 03
267 53 < 311 65 x
268 43 RCL 312 53 (
269 00 00 313 43 RCL
270 75 - 314 03 03
271 01 1 315 94 +/-
272 54 > 316 65 x
273 65 x 317 43 RCL
274 53 < 318 04 04
275 43 RCL 319 54 >
276 05 05 320 22 INV
277 85 + 321 23 LHX
278 01 1 322 65 x
279 54 ) 323 53 <
280 55 + 324 43 RCL
281 43 RCL 325 03 03
282 00 00 326 75 -
283 55 * 327 43 RCL
284 43 RCL 328 04 04
285 05 05 329 22 INV
286 55 * 330 30 TflN
287 43 RCL 331 54 >
288 03 03 332 38 SIN
289 85 + 333 54 >
290 01 1 334 85 +
291 95 = 335 53 <
C-4
-------
Title of Program: Extinction Efficiency Approximation
Location Code Key Location Code Key
336 04 4 381 54 )
337 65 x 382 39 CDS
338 53 :: 383 54 >
339 43 RCL 384 54 >
340 07 07 385 95 =
341 55 * 386 65 x
342 43 RCL 387 43 RCL
343 03 03 388 06 06
344 54 ) 389 95 =
345 33 X£ 390 99 PRT
346 65 x 391 91 R.'S
347 53 (
348 53 <
349 43 RCL
350 04 04
351 22 INV
352 30 TflH
353 65 x
354 02 2
355 54 >
356 39 CDS
357 75 -
358 53 <
359 43 RCL
360 03 03
361 94 +/-
362 65 x
363 43 RCL
364 04 04
365 54 >
366 22 INV
367 23 LNX
368 65 x
369 53 <
370 43 RCL
371 03 03
372 75 -
373 53 <
374 43 RCL
375 04 04
376 22 INV
377 30 TflH
378 65 x
379 02 2
380 54 >
C-5
-------
APPENDIX D
Title of Program:
ram: PROGRAM
a:
Location
000
00 1
002
003
004
005
006
007
008
009
010
Oil
012
013
014
015
016
017
01 S
019
020
021
022
025
024
025
026
027
028
029
030
031
032
033
id Z, Ban!
Code Key
76 LBL
ii ft
04 4
69 DP
17 17
91 R/S
25 CLR
69 DP
00 00
01 1
03 3
69 DP
01 01
69 DP
05 05
9). R/S
99 PRT
42 STD
20 20
0: i
0* 4
69 DP
01 01
69 DP
05 05
91 Rxs
99 PRT
42 STD
21 21
04 4
03 3
69 DP
01 01
69 DP
, Card.
Key
34 05 05
09
n? °^
ul 01
69 Dp
°44 05 05
°45 91 R--
:
050 43 RCL
Si
°5
o
059 42 STD
i ^ STD
' 34 34
42 STD
°6 °6
43
"** 5^ 09
43 RCL
D-l
-------
Title of Program: Mie Extinction Efficiency, Cards 1 and 2, Banks 1,2,3
Location
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
Code Key
05 05
65 x
0 1 1
:~t -~i
? '- ' *
04 4
9 5 =
59 INT
42 STD
08 08
04 4
32 XJT
43 RCL
08 08
77 GE
10 E1
65 x
02 2
95 =
42 STD
08 08
76 LBL
10 E1
43 RCL
05 05
38 SIN
42 STD
07 07
43 RCL
05 05
39 CDS
42 STD
1 8 1 8
42 STD
17 17
43 RCL
07 07
94 +/-
42 STD
1 0 1 0
76 LBL
45 Y*
43 RCL
08 08
01 1
44 SUM
ation
1 1 2
114
115
116
117
1 1 8
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
Code
0 t.
02
65
43
06
75
01
95
55
43
05
95
42
12
65
43
07
95
42
11
43
12
65
43
.18
95
42
13
43
11
75
43
17
95
42
11
43
13
75
43
10
95
42
13
43
Key
06
o
L_
x
RCL
06
-
1
=
f
RCL
05
=
STD
12
x
RCL
07
=
STD
11
RCL
12
x
RCL
18
=
STD
13
RCL
11
-
RCL
17
STD
11
RCL
13
-
RCL
10
=
STD
13
RCL
D-2
-------
Title of Program: Mie Extinction Efficiency, Cards 1 and 2, Banks 1,2.3
Location Code Key Location Code Key
158 07 07 20? 95 =
159 4? STD 204 42 STD
160 17 17 205 25 25
161 42 Rf.L 206 22 IHV
162 if: 18 207 23 LNX
163 42 STD ^°* *5 +
164 in in 209 43 RCL
165 43 RCL 210 25 25
166 11 11 211 94 +/-
167 42 STD 212 22 INV
16S H7 n7 213 23 LNX
169 43 RCL 214 .95 =
170 13 13 215 55 *
171 42 STD 216 02 2
172 18 IS 217 95 =
173 87 IFF 218 42 STD
174 no nn 219 26 26
175 44 SUM 220 43 RCL
176 86 STF 221 25 25
177 00 00 222 22 INV
178 43 RCL 223 23 LNX
179 20 20 224 75 -
18Q 65 x 225 43 RCL
181 43 RCL 226 25 25
182 ns TiF, 227 94 +."-
1ft:-: *Fi =" 228 22 INV
184 42 STD 229 23 LHX
185 22 22 230 95 =
186 38 SIN 231 55 *
187 42 STD 232 02 2
188 23 23 233 95 =
189 43 RCL 234 42 STD
190 22 22 235 27 27
191 39 CDS 236 65 x
192 65 x 237 43 RCL
193 43 RCL 238 26 26
194 23 23 239 95 =
195 95 = 240 42 STD
196 42 STD 241 £8 28
197 24 24 242 43 RCL
198 43 RCL 243 23 23
199 21 21 244 33 X*
200 65 x 245 85 +
201 43 RCL 246 43 RCL
202 05 05 247 27 £7
D-3
-------
Title of Program: Mie Extinction Efficiency, Cards 1 and 2, Banks 1,2,3
Location Code Key Location Code Key
248 33 X£ 293 95 =
249 95 = 294 42 STD
250 42 STD 295 12 12
251 29 29 296 43 RCL
252 43 RCL 297 11 11
253 24 24 298 36 PGM
254 55 * 299 04 04
255 43 RCL 30C 11 fl
256 29 29 301 43 RCL
257 95 = 302 12 12
258 42 STD 303 36 PGM
259 24 24 304 04 04
260 43 RCL 305 11 fl
261 28 28 306 43 RCL
262 55 * 307 24 24
263 43 RCL 308 36 PGM
264 29 29 309 04 04
265 95 = 31C 16 fl1
266 42 STD 311 43 RCL
267 28 28 312 28 28
268 76 LBL 313 36 PGM
269 44 SUM 314 04 04
270 43 RCL 315 16 ft'
271 22 22 316 36 PGM
272 36 PGM 317 04 04
273 05 05 318 17 B1
274 11 fl 319 36 PGM
275 43 RCL 320 05 05
276 25 25 321 15 E
277 36 PGM 322 43 RCL
278 05 05 323 11 11
279 11 fl 324 36 PGM
280 36 PGM 325 04 04
281 05 05 326 16 fl1
282 15 E 327 43 RCL
283 65 x 328 12 12
284 43 RCL 329 36 PGM
285 06 06 330 04 04
286 95 = 331 16 fl1
287 42 STD 332 36 PGM
288 11 11 333 04 04
289 32 X!T 334 17 B1
290 65 x 335 42 STD
291 43 RCL 336 24 24
292 06 06 33^ 32 XJT
D-4
-------
Title of Program: Mie Extinction Efficiency, Cards 1 and 2, Banks 1,2,3
Location Code Key
33S 42 STD
location Code Kev
382 I'7 17
339 28 28 383 95 =
340 43 RCL 384 42 STD
341 20 20 385 19 19
342 36 PGM 386 43 RCL
343 04 04 387 11 11
344 16 fl1 388 36 PGM
345 43 RCL 389 04 04
346 21 21 390 IL fl
347 94 +/- 391 43 RCL
348 36 PGM 392 12 12
349 04 04 393 36 PGM
350 16 fl1 394 04 04
351 36 PGM 395 11 ft
352 04 04 396 43 RCL
253 18 C1 397 CT 07
354 85 + 398 36 PGM
355 43 RCL 399 04 04
356 06 06 400 16 fl1
357 55 -r 401 43 RCL
358 43 RCL 402 13 IS
359 05 05 403 36 PGM
360 95 = 404 04 04
361 42 STD 405 16 fl'
362 11 11 406 36 PGM
363 32 X
-------
Title of Program: Mie Extinction Efficiency, Cards 1 and 2, Banks 1,2,3
Location Code Key Location Code Key
426 1" B' 471 04 04
427 42 STD 472 11 fl
428 11 11 47? 43 RCL
429 32 X!T 474 28 28
430 42 STD 475 36 PGM
431 12 12 476 04 04
432 43 RCL 477 11 fl
433 19 19 478 43 RCL
434 36 PGM 479 20 20
435 04 04 480 36 PGM
436 11 fl 481 04 04
437 43 RCL 482 16 fl1
438 13 13 483 43 RCL
439 36 PGM 484 21 21
440 04 04 485 94 +.-'-
441 11 fl 486 36 PGM
442 43 RCL 487 04 04
443 11 11 488 16 fl1
444 36 PGM 489 36 PGM
44Fi 04 04 490 04 04
446 16 fl1 491 13 C
447 43 RCL 492 85 +
44ft 12 12 493 43 RCL
449 36 PGM 494 06 06
45fl fi4 04 495 55 -r
451 16 fl§ 496 43 RCL
452 36 PGM 497 05 05
453 04 04 498 95 =
454 18 C§ 499 42 STD
455 42 STD 500 14 14
456 11 11 501 32 X!T
457 75 - 502 42 STD
458 93 . 503 15 15
459 05 5 504 43 RCL
460 95 = 505 14 14
461 33 Xs 506 65 x
462 85 + 507 43 RCL
463 32 X!T 508 Q7 07
464 42 STD 509 95 =
465 12 12 510 42 STD
466 33 X* 511 13 13
467 95 = 512 43 RCL
468 43 RCL 513 15 15
469 24 24 514 65 x
470 36 PGM 515 43 RCL
D-6
-------
Title of Program: Mie Extinction Efficiency, Cards 1 and 2, Banks 1.2.3
Location Code Key Location Code Key
516 07 07 559 04 04
517 95 = 560 16 fl1
518 42 STD 561 43 RCL
519 19 19 562 10 10
52H 43 RHL 563 36 PGM
521 13 13 564 04 04
522 75 - 565 16 fl'
52" 43 RCL 566 36 PGM
524 17 17 567 04 04
525 95 = 568 17 B1
526 42 STD 569 42 STD
527 13 13 570 14 14
52S 43 RCL 571 32 X!T
529 14 14 572 42 STD
5:-:n 36 PGM 573 15 15
5*31 04 04 574 43 RCL
532 11 fl 575 13 13
533 43 RCL 576 36 PGM
534 15 15 577 04. 04
535 36 PGM 578 11 fi
536 04 04 579 43 RCL
537 11 fl 580 19 19
538 43 RCL 581 36 PGM
539 07 07 582 04 04
540 36 PGM 583 1i fl
541 ri4 n4 584 43 RCL
542 16 fl1 585 14 14
543 43 RCL 586 36 PGM
544 1ft 18 587 04 04
545 36 PGM 588 16 fl1
546 04 04 589 43 RCL
547 16 fl1 590 15 15
548 36 PGM 591 36 PGM
549 04 04 592 04 04
550 13 C 593 16 fl1
551 42 STD 594 36 PGM
552 14 14 595 04 04
553 32 XIT 596 18 C1
554 42 STD 597 42 STD
555 15 15 598 14 14
556 43 RCL 599 32 XU
557 17 17 600 42 STD
558 36 PGM 601 15 15
D-7
-------
Title of Program: Mie Extinction Efficiency, Cards 1 and 2, Banks 1,2 3
Location
602
603
604
605
606
607
608
609
MO
611
612
613
614
615
6 1 6
617
61 8
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
Code Key
43 RCL
11 11
85 +
43 RCL
14 14
95 =
65 x
53 (
02 2
fifi X
43 RCL
06 06
RF, +
01 1
54 )
42 STD
2h 36
95 =
44 SUM
16 16
97 DSZ
OS 08
45 YX
43 RCL
16 16
65 x
02 2
55 -
43 RCL
05 05
33 X*
95 =
99 PRT
98 FiBV
22 IHV
86 STF
00 00
91 R--S
D-8
-------
APPENDIX E
Title of Program: PROGRAM NO. 5: Long Opacity, Card 1. Bank 1
Location Code Key Location Code Key
nn? I* LiL °3* « RCL
UUl li H
002 59 DP
003 oo oo
004 03 3 40 -
m % S OS 23LHX
uuo j.:. i 04'1 ?«=;
43 RCL
02
010 03 3
on oo o 047
012 01 i r,4p ^ -
.-. j .-. ,-,.-, .-. -'T'-- l_l.;,
Uio UJ J 049
017 05
018 91
019 99 PRT 05^ n
020 42 SID 056 4^ cn
9?! 39 39 05? nT "6?
^ ^ i 058 42 STD
UtO Jt- b Q5C> ;T.L.;
024 02 2 0^6 52 £
Uii5 !J2 2 061 nn o
026 69 DP 062
02? 01 01 06^
n-pc £Q np V?-1
Ui... b^ Uh Qft4 4-:-' c-rn
Tl O Q n cr ,-, er n *t - ^ I U
p - °65 33 33
°4
' crn
°6? °3 3
ftd np
033 99 PRT a m
01
E-l
69 GP
071 05 05
-------
Title of Program: Long Opacity, Card 1, Bank 1
Location Code Key
072
073
n?4
075
076
077
078
079
080
08 1
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
09S
099
inn
101
102
103
104
105
106
107
108
109
110
111
112
9 1
99
42
09
01
03
69
Oi
69
05
91
99
42
20
01
04
69
01
69
05
91
99
42
21
01
00
00
36
09
13
42
32
00
42
04
42
31
04
69
17
91
R/S
PRT
STD
09
1
""t
DP
01
DP
05
R/S
PRT
STD
20
4
4
DP
01
DP
05
R/S
PRT
STD
21
1
0
o
PGM
09
C
STD
32
0
STD
04
STD
31
4
DP
17
R/S
E-2
-------
Title of Program: Long Opacity, Card 1, Bank 3
Location Code Key Loc.tion Code Key
480 85 + 524 43 RHL
481 43 RCL 525 18 18
482 06 06 526 36 PGM
483 55 * 52? 04 04
484 43 RCL 528 16 fl1
485 34 34 529 36 PGM
486 54 ) 530 04 04
487 42 STD 531 13 c
488 14 14 532 42 STD
489 53 :: 533 14 14
490 32 KIT 534 32 X!T
491 65 x 535 4£ STD
492 43 RCL 536 15 15
493 07 07 537 43 pCL
494 54 > 539 17 17
495 42 STD 539 36 pGri
4?b ly ly 540 04 04
4y," 5a :. 54i 16 fi.
498 43 RCL 542 43 RP.L
499 14 14 543 10 10
5UU b5 x 544 3£ pGM
501 43 RCL 545 04 04
502 07 07 546 16 R.
503 54 > 547 36 PGM
504 42 STD 548 04 04
.jij.j ia la 549 17 gi
506 53 < 550 42 ^TD
507 43 RCL 55i 14 14
508 13 13 552 32 v:T
510 43 RCL 554 15 ~15
511 17 17 555 43 RCL
c £ *i crn 556 13 13
51J 4£ bTD 557 42 STD
514 lo la 553 01 01
515 43 RCL X
516 14 14
517 42 STD
518 01 01
519 43 RCL 563 43" Rfp
520 07 07 ° KI"L
521 36 PGM
566 04 04
567 16 fl1
E-3
-------
605 45 YX
606 53 <
607 43 RCL
608 16 16
609 65 x
610 02 2
611 55 -
Title of Program: Long Opacity, Card 1, Bank 3
Location Code Key Location Code Key
568 43 RCL 612 43 RCL
569 15 15 613 34 34
570 36 PGM 614 33 X^
571 04 04 615 54 >
572 16 fl1 616 42 STD
573 36 PGM 617 30 30
574 04 04 618 22 IHV
575 18 C1 619 86 STF
576 42 STD 620 00 nn
577 14 14 621 43 RCL
578 32 XJT 622 35 35
579 42 -STD 623 42 STD
580 15 15 624 01 01
581 53 ( 625 43 RCL
582 53 < 626 33 33
583 43 RCL 627 42 STD
584 11 11 628 02 02
585 85 + 629 43 RCL
586 43 RCL 630 32 32
587 14 14 631 42 STD
5S8 54 ) 632 03 03
589 65 x 633 43 RCL
590 53 < 634 31 31
591 02 2 635 42 STD
592 65 x 636 04 04
593 43 RCL 637 61 GTD
594 06 06 638 00 00
595 85 + 639 20 20
596 01 1
597 54 >
598 42 STD
599 36 36
600 54 )
601 44 SUM
602 16 16
603 97 DSZ
604 08 08
E-4
-------
Title of Program: Long Opacity, Card 2, Banks 1 and 2
Location Code Key Location Code Key
000 36 PGM 045 94 +/-
001 09 09 046 22 INV
002 14 D 047 23 LHX
003 99 PRT 048 54 )
004 91 R/S 049 92 RTH
005 76 LBL 050 76 LBL
006 16 ft1 051 10 E1
007 53 < 052 43 RCL
008 42 STD 053 04 04
009 37 37 054 42 STD
010 03 3 055 31 31
Oil 32 XIT 056 53 (
012 43 RCL 057 43 RCL
013 37 37 058 37 37
014 22 INV 059 65 x
015 77 GE 060 89 tr
016 10 E1 061 65 x
017 02 2 062 02 2
018 42 STD 063 55 -r
019 30 30 064 43 RCL
020 43 RCL 065 09 09
021 37 37 066 54 >
022 68 HDP 067 42 STD
023 65 x 068 34 34
024 43 RCL 069 76 LBL
025 30 30 070 34 TX
026 65 x 071 70 RfiD
027 53 ( 072 00 0
028 53 ( 073 42 STD
029 43 RCL 074 16 16
030 37 37 075 42 STD
031 55 * 076 06 06
032 43 RCL 077 53 <
033 38 38 078 43 RCL
034 54 ) 079 34 34
035 23 LHX 080 65 x
036 33 X* 081 02 2
037 55 - 082 54 >
038 02 2 083 59 INT
039 55 + 084 42 STD
040 43 RCL 085 08 08
041 39 39 086 43 RCL
042 23 LHX 087 34 34
043 33 X* 088 38 SIN
044 54 > 089 42 STD
E-5
-------
Title of Program: Long Opacity, Card 2, Banks 1 and 2
Location Code Key l-oc«tion Code Key
090 07 07 135 18 IS
091 43 RCL 136 54 >
092 34 34 137 42 STD
093 39 CDS 13S 13 13
094 42 STD 139 53 <
095 18 18 140 43 RCL
096 42 STD 141 11 11
097 17 17 142 75 -
093 43 RCL 143 43 RCL
099 07 07 144 17 17
100 94 +/- 145 54 )
101 42 STD 146 42 STD
102 10 10 147 11 11
103 76 LBL 14S 53 (
104 45 YX 149 43 RCL
105 01 1 150 13 13
106 44 SUM 151 75 -
107 06 06 152 43 RCL
108 53 ( 153 10 10
109 53 : 154 54 >
110 53 C 155 42 STD
111 02 2 156 13 13
112 65 x 157 43 RCL
113 43 RCL 158 07 07
114 06 06 159 42 STD
115 75 - 160 17 17
116 01 1 161 43 RCL
117 54 > 162 18 18
118 55 -r 163 42 STD
119 43 RCL 164 10 10
120 34 34 165 43 RCL
121 54 ) 166 11 11
122 42 STD 167 42 STD
123 12 12 168 07 07
124 65 x 169 43 RCL
125 43 RCL 170 13 13
126 07 07 171 42 STD
127 54 > 172 18 18
128 42 STD 173 87 IFF
129 11 11 174 00 00
130 53 < 175 44 SUM
131 43 RCL 176 86 STF
132 12 12 177 00 00
133 65 x 178 53 <
134 43 RCL 179 43 RCL
E-6
-------
Title of Program: Long Opacity. Card 2, Banks 1 and 2
Ideation Code Key . .,
***»«« Cod, K.y
*9 20 20 2« f
197
0 r,r.i
o KCL
1 P-o : -i ". -»
loo o4 d4
184 =1*1 -,
iOt Jt ,<
ioe; j-, c.Tn
iWv.1 «fil b I U
186 22 22
18? 38 SIN
188 42 STD
236 22
I- ° 238 54
O v' X
II f
"3 RCL
: 24?
RCL 040
^5 g 51 I 28 28
18? 548 "111 3 ^
208 54 > f'l 23 23
209 42 STQ 5$J ^ X'
210 25 25
211 22 INV
212 23 LNX -s^
213 85 + ^'
214 43 RCL ;2S
215 25 25 ^ J! STD
216 94 ^/- *JJ 29 29
217 22 INV 5Ji 55 ,,<
218 23 LUX §££ 43 RCL
219 54 ) 555 §4 £4
220 55 + If4 55 *
221 02 2 If5 43 RCL
222 54 ) 5*S 29 29
223 42 STD **_ 54 >
224 26 26 ||| 42 STD
E-7
-------
Title of Program: Long Opacity, Card 2, Banks 1 and 2
Location Code Key Location Code Key
270 53 :: 315 28 28
271 43 RCL 316 36 PGM
272 28 28 317 04 04
273 55 + 318 16 FT
274 43 RCL 319 36 PGM
275 29 29 320 04 04
276 54 > 321 17 &'
277 42 STD 322 36 PGM
278 28 28 323 05 05
279 76 LBL 324 15 E
280 44 SUM 325 43 RCL
281 43 RCL 326 11 11
282 22 22 327 36 PGM
283 42 STD 328 04 04
284 01 01 329 16 Ft1
285 43 RCL 330 43 RCL
286 25 25 331 12 12
287 42 STD 332 36 PGM
2SS 02 02 333 04 04
289 36 PGM 334 16 ft1
290 05 05 335 36 PGM
291 15 E 336 04 04
292 43 RCL 337 17 B1
293 06 06 338 42 STD
294 36 PGM 339 24 24
295 04 04 340 32 XJT
296 16 fi1 341 42 STD
297 00 0 342 28 28
298 36 PGM 343 43 RCL
299 04 04 344 20 20
300 16 fi1 345 36 PGM
301 36 PGM 346 04 04
302 04 04 347 16 fi'
303 13 C 348 43 RCL
304 42 STD 349 21 21
305 11 11 350 94 +/-
306 32 XJT 351 36 PGM
307 42 STD 352 04 04
308 12 12 353 16 fi1
309 43 RCL 354 53 (
310 24 24 355 36 PGM
311 36 PGM 356 04 04
312 04 04 357 18 C'
313 16 fi1 358 85 +
314 43 RCL
E-8
-------
Title of Program: Long Opacity, Card 2. Banks 1 and 2
location Code Key Location Code Key
?59 43 RCL 403 04 04
3bO 06 06 404 16 ft
^.-. ^ * 405 36 PGM
oe^ 4d RLL 406 04 04
:jb>; 34 34 40? 1;-; >.
2Si *4 > 408 42 STD
J&5 4L£ bTD 409 11 n
366 11 11 410 32 X|T
S!i H ,,L 411 42 STD
Jt-y Jii ft IT 4J2 12 1'"'
369 65 x 41-3 40 p,--p
370 43 RCL 414 17 17
371 07 07 415 36 PGM
*f 416 c,4 04
*!* 42 STD 417 16 ft'
:£;£.* :f! 1::: 4is 43 RCL
i:: 419 10 10
pji, -420 36 PGM
R 421 °4 °4
S- or. 423
4.ji RLL 424 04 ri4
jyl U." U7 4^-e; 17 Di
382 54 ) 4£4
383 42 STD 4^
384 19 19 428
.-, ,-, c- ->c- TWO
obj f5 - 429 4-? c;Tn
386 43 RCL 430 I* JS
2SJ ll 1? 431 43 RCL
JSy 54 ; 432 iq i c,
389 42 STD 43^! 4-^ crn
390 19 19 434 01 1?
SSi 4? ^ 435 43 RCL
jy^: 11 11 4^i i -t. .-,
393 42 STD 437 ^
394 01 01 438 0*
395 43 RCL 43q 4^
396 07 07 446 Jj
397 36 PGM
,
442 04
399 16 ft' 44^ V4
400 43 RCL 445
401 18 18
402 36 PGM
E-9
-------
Title of Program: Long Opacity, Card 2, Banks 1 and 2
ation
447
44S
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
Code
04
16
36
04
18
42
11
o o
*' iZ.
42
12
43
24
42
01
43
28
42
02
43
20
36
04
16
43
21
94
36
04
16
53
36
04
13
Key
04
ft1
PGM
04
C1
STD
11
XJT
STD
12
RCL
-I A
it
STD
01
RCL
28
STD
02
RCL
20
PGM
04
Fi*
RCL
21
+ ,- -
PGM
04
H1
(
PGM
04
c
E-10
-------
Title of Program: Long Opacity, Card 3, Bank 1
Cation cod. Key
000 76 LBL 04=1 01 1
001 11 Ft 046- 0=i 5
002 25 CLR 047 0* *
003 69 DP 04ft 06 6
004 00 00 049 OH n
005 03 3 050 00 n
006 00 0 051 69 DP
007 01 1 052 01 ill
008 03 3 053 01 1
009 03 3 054 06 6
010 06 6 055 0' '
Oil 03 3 056 04 4
012 06 6 057 01 1
013 07 7 058 03 3
014 01 1 059 Q3 3
015 69 DP 060 On 0
016 01 01 061 07 7
017 69 DP 062 01 1
018 05 05 063 69 DP
019 91 R/S 064 02 O-
020 99 PRT 065 69 DP"
021 42 STD 066 05 05
022 W ££ 067 91 p ."=;
023 01 1 068 99 PRT
U.^4 Ub t 069 4-? cyn
025 01 1 070 24 "i"
026 07 7 071 25 CLP
027 03 3 072 69 DP
028 01 1 073 00 on
029 03 3 074 01 l"
030 06 6 075 00 n
031 07 7 076 On n
032 01 1 077 36 PGP
033 69 DP 078 09 n*
034 01 01 07* U r*
035 69 DP 080 25 CLP
036 05 05 081 6* DP
037 91 R/S 082 00 00
038 99 PRT 08'' fif e
039 42 STD Q84 04 4
040 23 23 085 00 0
041 03 3 086
042 06 6 087
043 03 3 088
044 0,- t 089 03
3
E-ll
-------
Title of Program: Long Opacity, Card 3, Bank 1
Location Code Key
090
091
092
093
094
095
fi9A
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
06
03
03
69
04
43
04
42
08
00
42
04
36
09
14
61
01
38
76
16
53
42
-i -j
_' r
.*i .'i
65
53
53
43
O !
55
43
3 8
54
., . ,
O 'T1
55
02
55
43
39
2-"i
~l -~l
I' O
54
94
~l **!
6
.*,
.~i
DP
04
RCL
04
STD
OS
0
STD
04
PGM
09
D
GTD
01
38
LBL
H§
f
STD
~i ~?
J1 I
!>:! ^
.*.
i'
i
RCL
. , i
o r"
-i-
RCL
38
\i
LHX
X *
r-
V
f
RCL
39
LHX
1 1 .
i***i *^
'j
4- , - -
IHV
Location
1 35
136
1 37
13S
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
Code Key
23 LHX
54 >
92 RTH
53 <
43 RCL
OS OS
55 -
43 RCL
04 04
65 x
03 3
55 +
04 4
54 >
42 STD
09 09
69 DP
06 06
06 6
04 4
03 3
02 2
03 3
03 3
0 0 0
0 0 0
06 6
01 1
69 DP
04 04
53 (
53 <
5 3 <
43 RCL
22 22
65 x
43 RCL
0 9 n 9
65 x
43 RCL
24 24
55 +
43 RCL
2 3 2 '''
54 r
E-12
-------
Title of Program: Long Opacity, Card 3, Bank 1
Location Code Key
ISO 94 + ."'-
181 22 IHV
182 23 LHX
183 94 +/-
184 85 +
185 01 1
186 54 >
187 65 x
188 01 1
189 00 0
190 00 0
191 54 >
192 69 DP
193 06 06
194 91 R/S
£-13
-------
APPENDIX F
Title of Program: PROGRAM NO. 6: ESP (Histogram) Card 1
Location Code Key Location Code Key
000 76 LBL 036 91 R-'S
001 11 fl 037 99 PRT
002 69 DP 033 42 STD
003 00 00 039 00 00
004 01 1 040 42 STD
005 07 7 041 5^ 57
006 03 3 042 03 3
007 06 6 043 01 1
008 03 3 044 03 3
009 03 3 045 Ol 1
010 CO 0 046 69 DP
Oil 00 0 047 01 01
012 69 DP 048 69 DP
013 02 02 049 05 05
014 02 2 050 9'. R.'S
015 04 4 051 42 STD
016 Oi 1 052 22 22
017 06 6 053 99 PRT
018 00 0 054 02 2
019 00 0 055 03 3
020 69 DP 056 69 DP
021 03 03 057 Ol 01
022 69 DP 058 69 DP
023 05 05 059 05 05
024 91 R/S 060 91 R/S
025 99 PRT 061 99 PRT
026 03 3 062 42 STD
027 01 1 063 Ol 01
028 03 3 064 C4 4
029 03 3 065 Ol i
030 69 DP 066 t9 DP
031 00 00 067 01 01
032 69 DP 06S 69 DP
033 01 01 069 05 05
034 69 DP 070 91 R.-'S
035 05 05 071 99 PRT
F-l
-------
Title of Program: ESP (Histogram) Card 1
Location Code Key Location Code Key
072 55 ^ 117 99 PRT
073 43 RCL 118 42 STD
074 01 01 119 08 08
075 95 - 120 0: 1
076 42 STD 121 04 4
077 02 02 122 69 -DP
07S 55 - 123 02 02
079 01 1 124 69 DP
080 93 . 125 05 H5
081 07-7 126 51 FvS
OS2 05 5 12? 99 PRT
083 95 = 128 42 STD
084 42 STD 129 09 09
085 01 01 130 69 DP
086 69 DP 131 00 00
08~ 00 00 132 02 2
OSS 01 1 133 05 5
089 Q7 7 134 69 DP
090 01 1 135 01 01
091 03 3 13 A A 9 DP
092 69 DP 137 05 05
093 04 04 13S 91 R/S
094 43 ROL 139 99 PRT
095 02 02 14H 55 --
096 69 DP 141 01 1
097 06 06 142 93 .
098 01 1 143 06 6
099 C7 7 144 52 EE
100 03 3 145 94 +,'-
101 03 3 146 01 1
102 69 DP 147 09 9
103 04 04 148 55 +
104 43 RCL 149 43 RCL
105 Ol 01 150 02 02
106 69 DP 151 55 ^
107 06 06 152 43 RCL
108 69 DP 153 09 09
109 00 00 154 95 =
110 04 4 155 42 STD
111 02 2 156 11 11
112 69 DP 157 03 3
113 02 02 158 01 1
114 69 DP 159 03 3
115 05 05 160 02 2
116 91 R/S 161 69 DP
F-2
-------
Title of Program: ESP (Histogram) Card 1
Location Code Key
162 04 04
163 43 RCL
164 11 11
165 69 DP
166 06 06
167 69 DP
168 00 00
169 02 2
170 06 6
171 69 DP
172 01 01
173 69 DP
174 05 05
175 91 R---S
176 22 INV
177 52 EE
17t 99 PRT
179 42 STD
ISO 12 12
181 03 3
182 07 7
183 69 DP
184 01 01
185 69 DP
186 05 05
187 91 R.--S
188 99 PRT
189 S5 +
190 02 2
191 07 7
192 03 3
193 95 =
194 42 STD
195 05 05
196 04 4
197 02 2
198 02 2
199 04 4
200 03 3
201 06 6
202 69 DP
203 01 01
204 69 DP
205 05 05
206 91 R/S
Location Code Key
207 99 F'RT
20H £5 x
209 53 .
210 01 1
211 £5 =
212 42 STD
213 04 04
214 03 3
215 03 3
69 DP
21? 01 ni
21S 69 DP
219 05 05
220 91 R.-'S
221 22 INV
222 52 EE
223 99 PRT
224 35 1/X
225 65 x
226 07 7
227 06 6
228 65 x
229 93 .
230 00 0
231 06 6
232 05 5
233 03 3
234 65 x
235 43 RCL
23 05 05
237 55 -r
23S 02 2
239 09 9
240 06 6
241 93 .
242 02 2
243 95 =
244 42 STD
245 07 07
246 03 3
247 06 6
248 Oi i
249 05 5
250 01 1
251 03 3
F-3
-------
Title of Program: ESP (Histogram) Card 1
Location Code Key Location Code Key
.
52 69 DP 296 02 2
25:? 01 01 297 07 7
254 69 DP 298 69 DP
255 05 05 299 Ol 01
256 91 R/S 300 69 DP
257 99 PRT 301 05 05
258 42 STD 302 91 R/S
259 03 03 303 99 PRT
260 02 2 304 35 1/X
261 07 7 305 65 x
262 01 1 306 43 RCL
263 0? 7 307 20 20
264 03 3 308 95 =
265 Cl 1 309 42 STD
266 02 2 310 10 10
267 02 2 311 03 3
268 03 3 312 06 6
269 07 7 313 02 2
270 69 DP 314 04 4
271 01 01 315 02 2
272 02 2 316 02 2
273 03 3 317 03 3
274 00 0 318 00 0
275 00 0 319 01 1
276 00 0 320 03 3
277 00 0 321 69 DP
278 00 0 322 01 01
279 00 0 323 69 DP
280 00 0 324 05 05
281 00 0 325 91 R/S
282 69 DP 326 99 PRT
283 02 02 327 42 STD
284 69 DP 328 06 06
285 05 05 329 03 3
286 91 R/S 330 01 1
287 99 PRT 331 03 3
288 42 STD 332 06 6
289 20 20 333 69 DP
290 69 DP 334 01 01
291 00 00 335 69 DP
292 04 4 33fc 05 05
293 02 2 337 91 R/S
294 01 1 338 99 PRT
295 07 7 339 42 STD
F-4
-------
Title of Program: ESP (Histogram) Card 1
Location Code Key location Code Key
34n 13 13 384 2 I 21
341 f!3 :-; 3S5 91 R/S
34? 06 6 386 ?6 '-Bl-
343 69 DP 387 12 B
344 ni m 388 43 RCL
34=; 69 op 389 00 00
346 05 05 390 42 STD
347 91 R/fi 391 20 20
343 99 ppf 392 43 RCL
349 42 STD 393 17 17
3Fin 14 14 394 42 STD
351 02 2 395 21 21
3«i? *:; 396 76 LBL
353 02 2 397 13 C
354 H2 2 398 01 1
355 04 4 399 06 6
356 52 EE 400 69 DP
357 OS 8 401 01 01
358 42 STD 402 69 DP
359 IF. 15 403 05 05
:-;6n Oft ft" 404 91 R/S
361 93 f 405 99 PRT
362 06 6 406 72 ST*
363 P? 7 407 17 l?
364 ni 1 408 01 1
365 52 EE 409 44 SUM
366 05 5 410 17 17
367 94 +/- 411 97 DSZ
36ft 42 ftTD 412 00 00
369 16 16 413 13 C
370 H2 2 414 43 RCL
371 OR 5 415 20 20
372 42 STD 416 42 STD
373 17 17 417 00 00
374 04 4 418 43 RCL
375 01 1 419 £1 21
376 42 STD 420 42 STD
377 IS 18 421 17 17
378 42 ftTD 422 43 RCL
379 19 19 423 18 18
380 00 0 424 42 STD
381 42 STD 425 £1 21
382 20 20 426 76 LBL
383 42 STD 427 14 D
F-5
-------
Title of Program: ESP (Histogram) Card 1
Location Code Key
428
429
430
431
432
433
434
435
436
437
43S
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
45 S
459
460
461
462
463
464
465
466
0 3
00
01
03
03
06
ns
06
69
01
69
05
91
. -
i"' il
18
*i *.
44
18
97
00
14
43
21
42
18
43
20
42
00
00
42
21
00
42
20
42
21
91
3
0
i
3
~ i
H
~:
f:
DP
01
DP
05
R/S
PRT
ST*
18
4
SUM
18
nsz
00
n
RCL
21
STD
18
RCL
20
STD
00
0
STD
21
n
STD
20
STD
21
R/S
F-6
-------
Title of Program: ESP (Histogram) Card 2
Location Code Key Location Code Key
000 76 LBL 045 89 ir
001 12 B 046 65 x
002 01 1 047 73 RC*
003 52 EE 048 17 17
004 94 +/- 049 -r
005 06 6 050 02 2
006 32 X!T 051 52 EE
007 61 GTD 052 06 6
008 50 Ixl 053 65 x
009 76 LBL 054 43 RCL
010 17 B'- 055 15 15
Oil 43 RCL 056 65 x
012 23 23 057
013 22 IHV 058 43 RCL
014 77 GE 059 09 09
015 87 IFF 060 65 x
016 61 GTD 061 73 RC*
017 60 DEC 062 17 17
018 76 LBL 063 55 -
019 10 E1 064 02 2
020 53 ( 065 52 EE
021 73 RC* 066 06 6
022 17 17 067 65 x
023 77 GE 068 43 RCL
024 87 IFF 069 02 r«2
025 23 LHX 070 65 x
026 65 x 071 43 RCL
027 93 . 072 58 58
028 04 4 073 65 x
029 05 5 074 43 RCL
030 94 +/- 075 11 11
031 85 + 076 55 -r
032 01 1 077 53 C
033 93 . 078 43 RCL
034 07 7 079 09 09
035 54 > 080 65 x
036 92 RTH 081 43 RCL
037 76 LBL 082 58 58
038 87 IFF 083 65 x
039 01 1 084 43 RCL
040 54 > 085 11 11
041 92 RTH 086 85 +
042 76 LBL 087 43 RCL
043 13 C 088 15 15
044 53 ( 089 54 >
F-7
-------
Title of Program: ESP (Histogram) Card 2
Location Code Key Location Code Key
090 65 x 135 43 RCL
091 53 ( 136 15 15
092 01 1 137 65 x
093 85 + 138 43 RCL
094 02 2 139 16 16
095 65 x 140 65 x
096 53 ( 141 43 RCL
097 43 RCL 142 05 05
098 12 12 143 54 )
099 7=i 144 85 +
100 01 1 145 01 1
101 54 ': 146 54 )
102 55 T 147 23 LNX
103 53 ( 148 54 )
104 43 FTL 149 54 >
105 12 12 150 92 RTN
106 85 + 151 76 LBL
107 02 2 152 18 C'
108 54 ':> 153 53 (
109 54 ':> 154 01 1
110 85 + 155 85 +
111 43 FTL 156 02 2
112 16 16 157 65 x
113 65 x 158 43 RCL
114 43 RCL 159 07 07
115 05 05 160 55 +
116 65 x 161 73 RC*
117 52 < 162 17 17
118 73 FT* 163 65 x
119 17 17 164 53 (
120 55 - 165 01 1
121 02 2 166 93 .
122 52 EE 167 02 2
123 06 6 168 06 6
124 65 x 169 85 +
125 43 FTL 170 93 .
126 58 FiR 171 04 4
127 65 x 172 02 2
128 43 RfL 173 65 x
129 11 ii 174 53 (
130 65 x 175 01 1
131 43 FTL 176 93 .
132 OP, HP 177 00 0
133 55 I' 178 08 8
134 53 -: 179 6!
F-8
-------
Title of Program: ESP (Histogram) Card 2
lx>c.tio» Code Key
ISO 73 RC*
181 17 17
182 55
183 53 :: 228 ?5
02 2 4;
185 65 x 230 58
43 RCL 231 01 I
£ ?7 II!
S! --
s «
54 ) 238 13 C
54 ) 239 65 x
24 CE 240 01 1
196 92 RTH 241 ^
197 76 LBL 242 06 e
198 11 fl 243 5? EE
199 04 4 244 51 i
2UO 93 . 245 09 i
201 05 5 246 94 +'-
202 32 X!T £47 65 x
2U3 98 flUV 248 4-< pri
204 69 DP 249 01 01
205 00 00 250 ^ 1
206 06 6 251 S? 't
207 04 4 252 06 e
?0? 01 1 255 65 v
aOy U6 6 254 8^ fl:
?}? 6* DP 255 65 x
*U '"'4 04 256 «jq (:
!,12. ?2 R?J £57 73 RC*
^l-"1 1'" 17 258 17 i-»
214 69 DP
215 06 06
216 43 RCL
217 22 22
218 42 STD S? S4
219 24 24 264 « v
220 43 RCL 26? 4^ pri
221 10 10 52
222 99 PRT
223 55 -
224 43 RCL
F-9
-------
Title of Program: ESP (Histogram) Card 2
Location Code Key Location Code Key
27H 65 x 315 12 B
271 10 E1 ' 316 65 x
272 95 = 317 17 B'
273 65 x 318 54 )
274 43 RCL 319 65 x
275 03 03 320 43 RCL
276 55 ^ 321 03 03
277 43 RCL 322 94 +/-
278 22 22 323 95 =
?.7c, 94 +,-_ 324 22 IMV
280 95 = 325 23 LNX
281 22 INV 326 95 =
282 23 LNX 327 99 PRT
2ft:-: 95 = 328 65 x
284 49 PRH 329 73 RC*
285 23 23 330 18 18
286 43 RCL 331 95 =
287 59 59 332 99 PRT
2 ft ft 44 filIM 333 72 ST*
289 58 58 334 19 19
290 97 DSZ 335 44 SUM
291 24 24 336 20 20
292 30 TON 337 01 1
293 98 RDV 338 44 SUM
294 43 -RCL 339 17 17
295 23 23 340 44 SUM
296 65 x 341 18 18
297 73 RC* 342 44 SUM
298 18 18 343 19 19
299 95 = 344 97 DS2
300 99 PRT 345 00 00
301 44 SUM 346 11 fi
302 21 21 347 98 flDV
303 43 RCL 348 43 RCL
304 23 23 349 21 21
305 99 PPT 350 99 PRT
:-:rib 23 LNX 351 43 RCL
3D7 94 +,- 352 20 20
30ft 55 - 353 99 PRT
309 43 RCL 354 92 RTN
310 03 03 355 76 LBL
311 95 = 356 50 Ixl
312 99 PRT 357 53 <
313 55 - 358 43 RCL
314 53 ( 359 23 23
F-10
-------
Title of Program: ESP (Histogram) Card 2
Location Code Key ^^ ^ Key
360 22 IHV 405 22 23
361 77 GE 406 54 ':
362 87 IFF 407 65 x
363 23 LNX 408 43 FTL
3^4 55 -r 409 06 06
365 53 < 410 4Fi yx
366 43 RCL 411 01 1
367 13 13 412 92 .
368 65 x 413 07 7
369 53 < 414 08 ft
370 43 RCL 415 06 6
371 14 14 416 85 +
372 85 + 417 93 .
373 53 < 418 00 n
374 01 1 419 07 7
375 75 - 420 05 5
376 43 RCL 421 05 5
377 14 14 422 65 x
378 54 ) 423 43 RCL
379 65 x 424 06 fib
380 43 RCL 425 65 x
381 23 23 426 53 <
3«£ 45 YX 427 42 PCL
383 43 RCL 428 23 23
384 13 13 429 35 1/X
3 «5 35 1.--X 430 54 "«
386 54 > 431 23 LNX
387 23 LNX 432 54 "
388 54 ) 433 92 RTN
3B9 54 ) 434 76 LBL
3yu 92 RTN 435 14 H
391 '76 LBL 436 69 DP
392 60 DEC 437 00 00
**3 53 < 438 02 3
-1*4 01 1 439 06 6
3?5 85 + 440 01 1
i! P r ra s? !
o|o Lib 6 443 03 3
Jnn "* 6 444 69 DP
4UO- b5 x 445 01 01
40.. 1* ! 4^' 69 DP
400 ^ 1 447 05 05
^U^. ,-5 - 440 CM p ,c
404 43 RCL 449 99 PRT
F-ll
-------
Title of Program: ESP (Histogram) Card 2
Location Code Key
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
42
03
03
01
03
03
69
01
69
05
91
99
42
00
00
42
20
42
21
02
05
42
17
04
01
42
IS
11
92
05
STD
03
3
i
j
~i
DP
01
DP
Ci5
R/S
PRT
STD
00
0
STD
20
STD
21
^
5
STD
^ ?
4
1
STD
18
H
RTH
Fi
F-12
-------
APPENDIX G
Title of Program: PROGRAM NO. 7: Venturi Scrubber (Histogram) Card 1
Location Code Key
ooc
001
002
003
004
005
006
007
008
009
0 1 0
Oil
012
013
014
015
0 1 6
017
0 1 8
019
02C
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
76 LBL
11 H
69 DP
00 00
03 3
07 7
07 7
Oi 1
69 DP
02 02
69 DP
05 05
91 R/S
99 PRT
42 STD
01 01
03 3
03 3
07 7
01 1
69 DP
02 02
69 DP
05 05
91 R/S
99 PRT
42 STD
02 02
02 2
01 1
07 7
01 1
69 DP
02 02
69 DP
05 05
Location Code Key
03 1
037
038
OSS
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
91 R/S
99 PRT
42 STD
03 n:3
03 3
01 1
07 7
01 1
69 DP
02 02
69 DP
05 05
91 R/S
99 PRT
42 STD
12 12
02 2
07 7
06 6
03 3
02 2
02 2
07 7
01 1
69 DP
02 02
69 DP
05 05
91 R/S
99 PRT
42 STD
067 05 05
068 04 4
069 01 1
070 02 2
071 02 2
G-l
-------
Title of Program: Venturi Scrubber (Histogram) Card 1
Location Code Key
072
073
074
075
076
077
078
079
080
081
082
083
084
085
08 1
087
088
US?
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
07 7
0 :. I
69 DP
02 02
69 DP
05 05
91 R '
99 PRT
42 STD
0 6 0 6
16 R '
04 4
02 2
I J V V
04 4
03 3
06 6
U ,' 7
0 1 1
69 DP
02 02
69 DP
05 H5
91 R/S
99 PRT
42 STD
07 O"1
03 3
05 5
~\2 2
0 3 3
03 3
02 2
69 DP
02 02
02 2
07 7
00 0
0 0 0
00 0
00 0
69 DP
03 03
69 DP
05 05
117
lib
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Q *
'-; '.-i
42
04
H ~:
U '-<
;~i f|
00
00
00
69
03
6 9
05
9 "
99
42
08
05
00
55
43
06
85
09
01
9'~!
08
65
43
05
45
01
93
05
95
42
10
65
02
55
05
ns
65
43
R/S
PRT
STD
04
3
3
0
0
0
fi
DP
03
DP
05
R/S
PRT
STD
08
5
0
~
RCL
06
+
9
i
r
3
l-lt
RCL
05
yx
i
,
5
STD
10
X
£
~
5
5
ROL
G-2
-------
Title of Program: Venturi Scrubber (Histogram) Card 1
Location Code Key Location Code Key
162 ri5 nr, 207 02 2
163 65 x 208 07 7
164 43 RCL 209 03 3
165 H6 H6 210 85 +
166 65 x 211 43 RCL
167 43 RCL 212 0, 01
16ft 04 Hi 213 54 >
169 55 . .1 214 55 -
170 43 RCL 215 02 2
171 07 0? 216 09 9
172 95 = 217 06 6
173 42 STD 21S 93 .
174 H9 H9 219 02 2
175 43 RCL 220 . 95 =
176 H6 fi6 221 42 STD
177 65 x 222 1! 11
178 43 RCL 223 .12 B
17'^ nft na 224 92 RTN
Ifin 55 -r 225 76 LBL
181 53 :: 226 16 fi«
IQ? flq q ZZ? 06 6
183 52 EE 228 04 4
184 08 8 229 07 7
'iftfv 65 x 230 05 5
186 43 RCL 231 03 3
187 07 fi7 232 03 3
188 65 x 233 69 DP
189 42 RHL 234 04 04
190 10 10 235 08 8
191 95 = 236 93
192 42 STD 237 02 2
193 in in 23a 04 4
194 93 . " 239 52 EE
195 00 0 240 04 4
196 06 6 241 94 +,'-
197 05 5 242 65 x
198 03 3 243 53 <
199 65 x 244 43 RCL
£00 07 7 245 06 06
201 06 6 246 33 X*
202 55 -r 247 65 x
203 43 RCL 248 43 RCL
204 02 02 249 05 05
205 65 x 250 95 =
£06 53 :: 251 69 DP
G-3
-------
Title of Program: Venturi Scrubber (Histogram) Card 1
Location Code Key
252 06 Ot".
253 69 DP
2^4 00 00
255 92 RTH
256 76 LBL
257 12 E
258 43 RCL
259 12 12
260 42 STD
261 00 00
262 02 2
263 05 5
264 42 STQ
265 13 13
266 04 4
267 01 1
26S 42 STD
269 14 14
270 00 0
271 42 STD
272 15 15
273 98 flDV
274 06 6
04 4
276
., ^ «^i
ii f ('
278
279
280
281
282
283
284
285
28t
'<-. y f
28&
28'?
2 9 0
291
292
293
294
295
296
01
06
69
04
I' O
1 -.
69
06
18
42
16
00
00
03
03
03
07
69
04
15
69
1
6
DP
Mil
RC*
13
DP
06
0*
STD
16
o
ij
~i
x
.,
i'
DP
04
E
DP
338
339
Location Code Key
297 06 Ob
29S 06 6
599 04 4
300 03 3
301 02 2
302 00 0
303 00 0
304 69 DP
305 04 04
306 15 E
307 65 x
30S 73 RC*
309 14 1-i
310 95 =
311 69 DP
312 06 06
313 44 SUM
314 15 15
315 98 flDV
316 01 1
317 44 SUM
318 13 13
319 44 SUM
320 14 14
321 97 USZ
322 00 00
323 02 02
324 74 74
325 14 D
326 92 RTH
327 76 LBL
328 18 C '
329 53 (
330 01 1
331 85 +
332 02 2
333 65 x
334 43 RCL
335 11 11
336 55 -r
337 73 RC*
13 13
65 x
340 53 <
341 01 1
G-4
-------
Title of Program: Venturi Scrubber (Histogram) Card 1
Location Code Key Location Code Key
342 93 . 38? 15 E
343 02 2 388 53 (
344 04 4 389 43 RCL
345 02 2 390 09 fi*
346 85 + 391 65 x
34f 9o . 392 53 (
348 04 4 393 93 .
349 02 2 394 07 7
350 65 x 395 94 +/_
351 53 ( 396 75 -
352 93 ._ 397 13 r
353 Oo 8 398 65 x
354 07 7 399 43 RCL
355 65 x 400 03 03
356 ,-3 RC* 401 85 +
357 13 13 402 01 1
358 55 -r 403 93 .
35'- 53 (. 404 04 4
3bO U£ 'd 405 65 x
361 65 x 40A 53 C
362 43 RCL 407 53 <
363 11 11 408 43 RCL
364 54 ,> 409 03 03
365 94 +/- 410 65 x
366 54 ) 411 13 C
367 22 IHV 412 85 +
368 £3 LNX 413 93
369 54 ) 414 07 7
370 54 ) 415 54 >
371 92 RTN 41ft 55 -
372 76 LBL 417 93 .
373 13 C 418 07 7
374 53 ( 419 54 >
375 73 RC* 420 23 LNX
?Z* l-'". ,,.1:-! 421 85 +
37,- jy X- 422 93
378 65 x 403 ^4 4
379 43 RCL 4^4 09 9
380 10 10 4^-5 55 ^
381 65 x ....
382 43 RCL
383 16 16 4oc; 0-»
384 54 ) "
385 92 RTN
386 76 LBL
G-5
-------
Title of Program: Venturi Scrubber (Histogram) Card 1
Location
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
44S
449
450
451
452
453
454
455
456
457
45S
459
4 f, f i
461
462
463
464
465
466
467
468
469
470
471
472
473
Code Key
43 RCL
0 3 0 3
54 :
54 :
55 -
1 3 C
54 .>
22 INV
23 LNX
92 RTH
76 LEL
14 D
0 6 6
04 4
03 3
02 2
03 3
03 3
0 3 3
07 7
69 DP
04 04
43 RCL
15 15
69 DP
06 06
0 6 6
04 4
03 3
U w hi
01 i
07 7
69 DP
04 04
01 1
75 -
43 RCL
15 15
95 =
69 DP
06 06
92 RTH
G-6
-------
APPENDIX H
Title of Program: PROGRAM NO. 8: Venturi Scrubber (Lognormal)
Location Code Key Location Code Key
000 76 LBL n-3t 75
001 16 fl1 037 43 RCL
002 42 STD 038 10 in
003 06 06 03* 85 +
004 53 ( 04H 6l 1
005 15 E 041 93 .
006 65 x 042 ("14 4
007 19 B1 043 65 x
008 54 > 044 53 (
009 92 RTH 045 53 <
010 76 LBL 046 43 RCL
Oil 15 E 047 10 10
012 53 ( 048 85 +
013 43 RCL 049 93
014 06 06 05H 67 7
015 33 X* 051 54 >
016 65 x 052 55 -
017 43 RCL 053 93 .
018 08 08 054 07 7
019 65 x 05?. c,4 j
020 13 C 056 23 LNX
021 65 x 057 8Fi +
022 43 RCL 05£ 53 C
023 16 16 059 93 /
024 54 > 060 04 4
025 42 STD 061 Oq q,
026 10 10 062 55 -
ye: i? l- 063 53 c
UiJB j'J <. 064 93
029 43 RCL 065 ^ 7
S3? \* 19 066 85 +
t- * °67 43 RCL
oi (- 06S 10 10
54 '
035 94 +/- l
H-l
-------
Title of Program: Venturi Scrubber (Lognormal)
Location
Code Key Location Code Key
072 55 T 117 85 +
073 43 RCL 118 02 2
074 10 10 11? 65 x
075 65 x 120 43 RCL
43 RCL 121 22 22
08 Oft 122 55
54 ) 123 43 RCL
079 22 IMV 124 06 06
080 23 LHX 125 65 x
081 54 > 126 53 <.
082 92 RTH 12f 01 1
083 76 LBL 128 93 .
084 13 C 129 02 2
085 53 C 130 04 4
086 93 . 131 06 6
087 00 0 132 35 +
088 06 6 133 93
089 05 5 134 04 4
090 03 3 135 02 2
091 65 x 136 65 x
092 07 7 137 53 <
093 06 6 138 93 .
094 55 -r 139 '08 8
095 43 RCL 140 07 7
096 21 21 141 65 x
097 65 x 142 43 RCL
098 53 ( 143 06 06
099 02 2 144 55 -
100 07 7 145 53 <
101 03 3 14t 02 2
102 85 + 147 65 x
103 43 RCL 143 43 RCL
104 07 07 149 22 22
105 54 > 150 54 >
106 55 151 54 )
107 02 2 152 94 +/-
108 09 9 153 22 IHV
109 06 6 154 23 LHX
110 93 . 155 54 ;
111 02 2 156 54 )
112 54 > 157 92 RTH
113 42 STD 158 76 LBL
114 22 22 159 19 D1
115 53 ( 16H 53 <
116 01 1 161 43 RCL
H-2
-------
Title of Program: Venturi Scrubber (Lognormal)
Location Code Key
162 IS
163 35
164 65 x
165 43 RCL
166 06 06
35 1. ';>:
65 x
53
167
168
169
170 53 (
171 43 RCL
172 06 06
173
174
175
55 -r
43 RCL
09 09
176 54 >
177 23 LNX
178 33 X*
179 55 *
ISO 43 RCL
181 17 17
182 54 )
183 22 IHV
184 23 LHX
185 54 )
186 92 RTN
187 76 LBL
188 17 B'
189 25 CLR
190 93 .
191 01 1
192 42 STD
193 01 01
194 02 2
195 93 .
196 42 STD
197 02 02
198 93 .
199 00 0
200 09 9
201 05 5
202 42 STD
203 03 03
204 02 2
205 00 0
206 42 S
Location Code Key
207 05 05
208 36 PGM
20S 09 09
210 14 D
211 42 STD
212 20 20
213 02 2
214 42 STD
215 01 01
216 05 5
217 42 STD
218 02 02
219 02 2
220 00 0
221 42 STD
222 05 05
223 93 .
224 01
225 05
226 42 STQ
1
5
236
237
238
227 03 03
228 36 PGM
229 09 09
230 14 B
231 44 SUM
232 20 20
233 05 5
234 42 STD
235 01 01
02 2
00 0
42 STD
239 02 02
240 02 2
241 00 0
242 42 STD
243 05 05
244 93 .
245 07 7
246 05 5
247 42 STD
248 03 03
249 36 PGM
250 09 09
251 14 D
H-3
-------
Title of Program: Venturi Scrubber (Lognormal)
Location Code Key Location Code Key
252 44 SUM 297 69 DP
-ic--- .-,.-. -,.-, -''Cio n=: i"! i
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
20
69
00
03
03
03
07
69
04
43
20
~: -~i
il*.
52
69
06
92
76
11
47
25
69
00
03
07
00
00
07
01
69
02
69
05
91
99
42
07
03
03
00
00
07
01
69
02
2H
DP
00
~i
i
~i
r
f
DP
04
RCL
20
IHV
EE
DP
He.
RTH
LBL
fl
CMS
CLR
DP
00
3
n
!'
o
0
i'
i
DP
02
05
R/S
PRT
STD
07
3
3
0
0
I1'
1
DP
02
298
299
30C
301
302
303
304
305
-\flr.
307
308
309
310
311
312
313
314
315
316
317
318
3 1 9
220
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
05
9 1
42
z. i
99
M £.
n '
0 0
nn
07
01
69
02
69
05
91
99
42
08
n:";
05
02
03
03
02
02
07
69
02
69
05
9l
99
42
li
69
00
02
07
06
03
02
02
07
05
R/S
STD
21
PRT
^
1
n
n
i'
I
DP
02
DP
05
R/S
PRT
STD
fi O
U O
-;
5
2
-!
-1
V
W.
^1
-7
i'
DP
02
DP
05
R/S
PRT
STD
11
DP
00
p
7
6
il1
2
2
7
H-4
-------
Title of Program: Venturi Scrubber (Lognormal)
Location Code Key Location Code Key
342 01 1 387 14 14
343 69 DP 388 99 PRT
344 02 02 389 03 3
345 69 DP 390 05 5
346 05 05 391 02 "
347 91 R/S 392 03
348 99 PRT 393 03
349 22 IHV 394 02
35fl 52 EE 395 03 *
351 95 = 396 03 3
352 42 STD 397 69 DP
353 12 12 398 02 02
354 69 DP 399 69 DP
355 nn nn 400 05 05
356 04 4 401 91 R/S
357 rn [ 402 22 IHV
358 02 2 403 52 EE
359 02 2 404 95 =
:-:6n i"i7 7 405 99 PRT
361 01 i 406 42 STD
362 69 DP 407 15 15
363 02 02 408 69 DP
364 69 DP 409 00 00
365 05 05 410 03 3
366 91 R/S 411 06 6
367 99 PRT 412 02 2
368 22 IHV 413 04 4
369 52 EE 414 02 2
370 95 = 415 02 2
371 42 STD 416 03 3
372 13 13 417 00 0
373 04 4 418 01 1
374 02 2 419 03 3
375 02 2 420 69 DP
376 04 4 421 02 02
377 03 3 422 69 DP
378 06 6 423 05 05
379 07 7 424 91 R/S
380 01 1 425 99 PRT
381 69 DP 426 23 LHX
382 02 02 427 42 STD
383 69 DP 428 10 10
384 05 05 429 33 X*
385 91 R/S 430 65 x
386 42 STD 431 02 2
H-5
-------
Title of Program: Venturi Scrubber (Lognormal)
Location Code Key Location Code Key
432 94 +/- 476 13 13
432 95 = 477 33 X*
434 42 STD 478 22 INV
435 17 17 479 52 EE
436 43 RCL 480 95 =
437 10 10 481 42 STD
438 65 x 482 10 10
439 53 f 483 69 DP
440 02 2 484 00 00
441 65 x 485 Oi i
442 89 tf 486 06 6
443 54 ) 487 01 1
444 34 fX 488 07 7
445 95 = 489 02 2
446 42 STD 490 07 7
447 18 18 491 03 3
448 69 DP 492 07 7
449 00 00 493 01 1
450 01 1 494 03 3
451 06 6 495 69 DP
452 02 2 496 01 01
453 02 2 497 03 3
454 07 7 498 03 3
455 01 1 499 00 0
456 69 DP 500 00 0
457 02 02 501 00 0
458 69 DP 502 00 0
459 05 05 503 00 0
460 91 P--S 504 00 0
461 99 PRT 505 69 DP
462 42 STD 506 02 02
463 09 09 507 69 DP
464 08 8 508 05 05
465 93 . 509 43 RCL
466 02 2 510 10 10
467 04 4 511 99 PRT
468 52 EE 512 25 CLR
469 04 4 513 43 RCL
470 94 +/- 514 13 13
471 65 x 515 65 x
472 43 RCL 516 43 RCL
473 12 12 517 15 15
474 65 x 518 55 +
475 43 RCL 519 09 9
H-6
-------
Title of Program: Venturi Scrubber (Lognormal)
43 RCL
14 14
55 -r
14 D
Location Code Key
520 55 -r
521
522
523
524
525
526 01 i
527 52 EE
528 94
529 08 8
530 95 =
531 42 STD
532 16 16
533 02 2
65
+/-
-
0
5
5
534
535
536 H5
537 65 x
538 43 RCL
539 12 12
540 65 x
541 43 RCL
542 13 13
543 65 x
544 43 RCL
545 11 11
546 65 x
547 14 D
548 55 -r
549 43 RCL
550 14 14
551 95 =
552 42 STD
553 19 19
554 17 B1
555 92 RTN
556 76 LBL
557 14 D
558 53 <
559 05 5
560 00 0
561
562
563 13 1
55 -r
43 RCL
Location Code Key
564 85 +
565 09 9
566 01 1
93
OS
65
53
567
568
569
570
571 43 RCL
572 12 12
57"; 54 )
574 45 Y*
575 01 1
576 93 .
577 05 5
578 54 )
579 92 RTH
580 76 LBL
581 -12 B
582 69 DP
583 00 00
584 04 4
585 01 1
586 02 2
587 02 2
588 07 7
589 01 1
590 69 DP
591 02 02
592 69 DP
593 05 05
594 91 R--S
595 42 STD
596 13 13
597 99 PRT
59S 02 2
599 07 7
600 06 6
601 03 3
602 02 2
603 02 2
604 07 7
605 01 1
606 69 QP
607 02 02
H-7
-------
Title of Program: Venturi Scrubber (Lognormal)
Location
ens
609
610
611
612
613
614
615
616
Code
69
05
91
99
42
12
61
04
59
Key
OP
05
R/S.
PRT
STD
12
GTD
04
59
H-8
-------
APPENDIX I
Title of Program, PROGRAM NO. 9: ESP (Lognormal)
Location Code Kev t
000 76 LBL "7£ °
nrn m r« Uoto bj
UUl 1U t
rn i
ui i H4i
44 CUM :
ft ..ilJII 11.1"
010 76 LBL
01 1 11 ft U4
'
Or,--- ,-,,-, nn co
UU._. UU 00 r,qci 04 r-...
fifi4 £ "=; " -^ J :''-i
UU«4 t'.J .-
7 nn
f UU 1-14-:. ?£. i D,
QC; _ u**« « b LbL
^..i - H44 1 -. r,
92 RTN *
, .,
014 2 2 « 00
015 42 STD
016 00 00
Hi? n- i
^ i °53
10 E^ °54
9i I- °55 10
7i P.-' - -r. ....
*
.-.er-7 00
i ti v
LHix.
i i-i
lu
° ' L*
024 19
7b LBL
13 c
02? io :-; 062 S9 PRT
026 95 - 063 94 +x-
029 94 +"- °^4 65 x
030 10 E'' 2!? °9 9
031 40 pri 06b 42 STD
032 19 19 °*7 00 00
033 65 J9 068 01 i
,
5s u^ i 07° 87 IFF
071 01 01
1-1
-------
Title of Program: ESP (Lognormal)
Location
072
073
074
075
076
, , ^ ^.
U C C
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
Code Key
88 DMS
10 E1
92 RTH
76 LBL
88 DMS
.« »" . .
t-5 -:-:-
01 1
93 .
09 9
06 6
09 9
52 EE
94 +,--
03 '";
95 =
10 E1
92 RTH
76 LBL
14 D
99 PRT
42 STD
19 19
01 1
01 1
42 STD
00 00
43 RCL
19 19
45 Y*
01 1
93 «
07 7
08 8
06 6
95 =
65 x
93 .
07 7
06 6
06 6
Q5 =
« '
10 E1
43 RCL
19 19
Location
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
Code
65
9-~!
00
07
05
05
95
10
92
76
15
9 '^
10
91
99
io
92
76
16
99
65
01
06
42
00
Ol
95
10
9 1
99
10
91
99
10
i*"i ~*
O i'
02
78
17
76
78
43
17
75
43
Key
*
o
I'
cr
.j
cr
J
=
E1
RTH
LBL
E
PRT
E1
R/S
PRT
E1
RTH
LBL
FT
PRT
x
1
h,
STD
00
1
=
E1
R.--S
PRT
E"
R/S
PRT
E1
IFF
02
1 +
B1
LBL
T+
RCL
17
-
RCL
1-2
-------
Title of Program: ESP (Lognormal)
Location Code Key
16C 16
16
161
162
163
164
165
166
1 6 ;'
168
169
170
171
172
173
174
175
176
177
178
179
1 80
181
182
1 83
184
185
1 86
187
1 88
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
95 =
5F-1 -
43 RCL
18 18
95 =
42 STD
18 18
99 PRT
17 B1
76 LBL
17 B1
00 0
42 STD
19 19
42 STD
59 59
43 RCL
16 16
42 STD
01 01
22 IHV
86 STF
01 01
22 IHV
86 STF
02 02
22 IHV
52 EE
98 flDV
43 RCL
09 09
94 +.---
99 PRT
98 FiDV
91 R.--S
00 0
00 0
00 0
nn n
00 0
00 0
00 0
00 0
00 0
Location
.205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
~>-~> 1
w. £ i.
~> " '
iiliL--!
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
Code Y
00
uu
00
00
00
00
00
00
00
00
0 0
00
00
00
00
00
00
00
uu
00
nn
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
76
10
53
73
00
65
53
01
44
:ey
f'j
fj
o
0
o
o
o
0
o
0
o
0
o
o
o
o
o
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LBL
E'
r'
RC*
00
x
(
1
SUM
1-3
-------
Title of Program: ESP (Lognormal)
Location
25H
£51
£52
£53
£54
£55
£5 A
£57
£58
£59
£60
£61
£6£
£63
£64
£65
£66
£67
£68
£69
£70
£71
£72
£73
£74
£75
£76
.~i i ^
d c (
278
279
£80
281
£8£
£83
£84
£85
286
287
288
289
290
291
£92
293
294
Code Key
00 00
54 )
01 1
54 ;
92 RTH
76 LBL
19 D1
53 <
72 8T*
00 00
65 x
53 <
01 1
44 SUM
0 0 0 0
54 )
01 i
54 >
92 RTH
76 LBL
18 C1
43 RCL
0 1 0 1
92 RTN
76 LBL
14 B
53 (.
E7 -"t
D O \
53 ::
10 E1
55 =-
10 E1
54 )
23 LHX
33 X£
55 T-
10 E'
54 >
££ IHV
£3 LHX
55 -r
18 C1
55 -r
10 E1
54 )
Location
295
£96
£97
298
£99
300
301
30£
303
304
305
306
307
30 R
309
310
311
312
313
314
315
316
317
318
319
320
321
~i - -~i
Otil
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
Code
92
76
15
53
53
10
85
18
65
10
85
18
-~i -"i
65
10
54
19
65
10
54
£2
23
19
53
43
08
55
CT -"i
5-J
01
opr
10
65
53
01
75
17
54
85
10
65
53
17
35
'"' "T1
Key
RTN
LBL
E
(
E1
+
C1
». .
/.
E1
+
C1
i > .
X i
x
E1
)
Ii'
.-.
E1
':<
INV
LHX
D1
C
RCL
08
r-
.
I.
1
f
E1
;.;
.**
1
-
B§
)
+
E1
x
/
B1
1/X
LHX
339
54
1-4
-------
Title of Program: ESP (Lognormal)
Location Code Key
340 54 )
341 55 ~
342 53 (
343 17 B1
344 23 LNX
345 55 4-
346 10 E1
347 55 -
348 53 <:.
349 10 E1
350 85 +
351 53 (
352 01 1
353 7=; -
354 43 RCL
355 14 14
356 54 )
357 65 x
358 17 B'
359 45 Y*
360 10 E1
361 43 RCL
13 13
363 35 1/X
54 )
£3 LNX
54 )
65 x
43 RCL
369 09 09
370 54 )
371 ££ INV
37£ £3 LNX
373 92 RTH
374 76 LBL
375 17 B'
376 43 RCL
377 10 10
378 92 RTH
379 76 LBL
380 11 R
381 01 1
382 42 STD
383 00 00
384 53 C
362
3
364
365
366
367
368
Location Code Key
385 53 (
386 14 D
387 65 x
388 15 E
389 54 >
390 65 x
391 53 >:'.
392 18 C1
393 75 -
394 10 E1
395 54 )
396 67 EQ
397 88 HMS
398 53 <
399 18 C'
400 75
401 10 E'
402 54 )
403 67 EQ
404 89 tr
405 77 GE
406 89 ti
407 01 1
408 76 LBL
409 77 GE
410 54 )
411 44 SUM
412 19 19
413 43 RCL
414 18 18
415 44 SUM
416 01 01
417 25 CLR
418 61 GTD
419 11 fl
420 76 LBL
421 88 DMS
422
423
424
425
426
93 .
05 5
61 GTD
77 GE
76 LBL
427 89 tt
428
429
93
05
5
1-5
-------
Title of Program: ESP (Lognormal)
Location Code Key
430 54 )
431 44 SUM
432 19 19
433 53 <
434 10 E'
435 10 E1
436 65 x
43 RCL
IS
439 54 )
44C 99 PRT
441 44 SUN
442 59 59
443 18 C1
444 99 PRT
445 91 R/S
435 18
1-6
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
f REPORT NO. 2.
EPA-600/8-80-024
i. TITLE AND SUBTITLE
TI-59 Programmable Calculator Programs for In-stacfc
Opacity , Venturi Scrubbers , and Electrostatic
Precioitators
7, AUTHOR(S)
S.J.Cowen, D.S.Ensor (Atmospheric Research Group),
and L.E. Sparks
Q. PERFORMING ORGANIZATION NAME AND ADDRESS
EPA, Particulate Technology Branch
Industrial Environmental Researcl Laboratory
Research Triangle Park, North Carolina 27711
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
. RECIPIENT'S ACCESSION NO.
. REPORT DATE
May 1980
6. PERFORMING ORGANIZATION CODE I
8. PERFORMING ORGANIZATION REPORT NO.
10. PROGRAM ELEMENT NO.
EHE624A
11. CONTRACT/GRANT NO. .
NA (Inhouse)
13. TYPE OF REPORT AND PERIODCPVERED
User Manual; 7/78-7/79
14. SPONSORING AGENCY CODE
EPA/600/13
is. SUPPLEMENTARY NOTES IERL-RTP author Sparks can be reached at Mail Drop 61, 919/541-
2925. Work of authors Cowen and Ensor was supported by EPA Grant R805650.
is. ABSTRACT The repOrt explains the basic concepts of in-stack opacity as measured by
in -stack opacity monitors. Also included are calculator programs that model the per-
formance of venturi scrubbers and electrostatic precipitators . The effect of particu-
late control devices on in-stack opacity can be predicted by using these programs.
The size distribution data input can be either in lognormal or histogram format. The
opacity is calculated using Deirmendjian's approximation to Mie series to obtain
extinction efficiencies. An alternative opacity program employing the exact Mie
series solution is also described. The running time for this program is about 8
hours; that for the approximation program is 30 minutes. The accuracy of these
programs is as good as the measured data input.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
. COS AT I Field/Group
Pollution
Approximation
Measurement
Flue Gases
Opacity
Dust
Aerosols
Computer Programs
Electrostatic Precip-
itators
Scrubbers
Pollution Control
Stationary Sources
Particulate
TI-59 Calculator
Venturi Scrubbers
13B
12A
14B
21B
11G
07D
09B
131
07A
if. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
152
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
1-7
------- |