-------
858-862
858
Bovement of Benoiyl in Field Soils as Influenced
by Icid Surfactants
Pitblado, B.E.; Edgington, L.V.; Dtp. Environ.
Biol., Pniv. Guelph, Guelph, Out.
Phytopathology (PBYTAJ), 62(5), 513-16; 1972
SUBPACTAHTS; BEIOSTL; SOILS; IDNCICIDBS;
BOVEMEHT; GAFAC SURFACTANTS; DBGE»C»TIOH
PRODUCTS; PBOTOUJTIOH; ACIDIJICA1IO»; BBTB1L
2-BENZIBIDAZOLECABBAIIATE
The movement of benoiyl in the sell vac enhanced
by surface-active agents. One percent tveen 20,
fagac rs-710 and Safac ra-600 increased the
solubility of methyl 2-benzimidazolecarbamate,
the fungicidal bzeakdovn product of benomyl. the
solubilixation of Ne2-benzimidazclecortamate bj
surface-active agents is partially doe to
acidification and partially to another effect,
possibly micelle Conation. The gafac
curfactants, vhich solubilized
ae2-benzimidazolecartamate to a greater extent
than did Tveen 20, showed a greater capacity to
•ore the fungicide through the sell.
859
Photochemistry of Pesticides. Discussi.cn of the
Influence of seme environmental factors
Pliamer, J.B.; Plant Sci. Bes. Div., Agric. 8es.
Serv., Beltsville, Hd
Part of Pestic. Chei., proc. Int. Congr. Pestic.
Chea., 2nd(2«WAay) 1972, 6, «7-7€; 1972
REVIEW; PESTICIDES: FHOTODECOBPOSITIOH; SOUS;
CLAI; PCE; EHOTCCBEmSTBT; AESOBE1ION: SILICA;
ABSORPTION; DDT; 2,«,5-T; DICHLOEEHIL; DIOIUS;
FBOFHAN; CHLORCJBOPH»H; PROPANIL; TRIPIOBALIN;
DECOMPOSITION; AESOFPTION; SAVELJNGTH; SPECTBDR;
LIGHT; OXYGEN; BIACTIONS; CHIOBOfBSZOIC ACID;
CH10BOBZNZONITRILE; CHLOHOEHENOLS;
TRICHLOROPHENOLS; TETRACHLOBOPBEBOLS;
CICHLOBOANILINI; SENSITIZES BOIECOIE; CXIDATIOB;
TRANSFER
Intermolecular reactions, determined largely by
environmental ccnditions surrounding the
pesticide tolecule, to a large extent direct the
decomposition cf pesticides on the ground
surface. Solvent or surrounding tolecules lay
participate in these reactions. A change in the
energy required to trigger photodecomposition may
be caused by adsorption of the pesticide molecule
to the surface of silica or clay mineral, thus
causing a change in the maxiiui mclecular
absorption wavelength. Spectral changes resulting
froa adsorption to silica have been measured in
DDT derived coipcunds, 2,1,5-T, o-chlorobentoic
acid, 2,3,6-trichlorobenzoic acid,
o-chlorobenzonitrile, dichlobenil, dioxins,
prophaa, chloropham, 3,4-aichlorcaniline,
prop anil, trifluralin, U-chlcropkcnol,
3,4,5-trich1orophenol, 2,3,5,6-tetrachlorophenol,
and PCT. Photosensitized decoipcsition cccurs
when a sensitizer aolecule aksorrs light energy
and transfers it to a reacting species. In
photosensitized oxidation singlet cxygen lay be
produced by interaction of a sencitizer with
oxyaen. Singlet oxygen can cause reactions at
sites remote from those at vhich it is generated.
Therefore, photochemical reaction is possible
some distance away from the absorbing surface.
660
1,3-bis(3,1-dichlorophenyl) Triazine from
Prcpanil in Soils
Chisak, a.; O.S.
0. Agric. Pood Chem., 18, 859-861; 1970
Plimmer, J.B.; Kearney, P.C
Dep. Agric., Beltsville, (ID
CA1I01S; BBBAKDOHN; TRACER;
1, 3-EISO, V-DICBLOBOPHEHTL) TBIAZIRB; CLAI;
IBCPI1IL; SOUS; DIAZOHIDB; 3.M-DICHLOBOASILUIB;
HITBITl
In a Chikugo light clay soil, a major unknown
product vas isolated fro* 1ttC-ring labelled
rrcpanil. Its identity vas established as
1,3-tis(3,U-dichlorophenyl) triazioe and it vas
prebatly formed by coupling of an intermediate
diazoniui cation Kith 3,1-dichloroaniline; soil
nitrite vas probably involved in the formation of
the cation.
861
Phctoalteration of Pesticides: Summary of
loikshop
Pliaeer, J.B.; fiabson, B.
Science, 180(«091), 120
-------
863-867
863
Behavior of Hercury Compounds in Soils:
Accumulation ana Evaporation
Poelstra, P.; Ptissell, N.J. ; Van der Klugt, ».;
Tap, ».; Association Eurato«-ITAL, Institnte fcr
Ato»ic sciences in Agriculture, Sageningen, the
Netherlands
Part of FAO/ IAEA/BHO Symposium CD Comparative
Aspects of Food and Environmental Contamination,
Held at Helsinki, Finland, 1973, SA/17:/**. Sp-i
1973
1ERCORY.; SOILS; FUNGICIDES; ATOMIC ABSORPTION
SPBCTROPBOTOMETRY; NEOTBON ACTIVATION ANALYSIS;
flERCORY 203; MITHTLHERCORY.; DIBETEILNEECOFT;
SERCORt CHIORIBZ
The background lercury concentration in the top
20 centimeters of 10 uncontaminated European
soils vas 0.02 to 0.10 ppi (average O.C7); the
concentration vas lover in the 2C-100 ca. depth.
In the bulb growing area (where lercury
fungicides had been used fcr many years) the
concentration Has about twice as high over the
whole ploughing depth. The rate of accumulation
is low; the rate of leaching is low, as is the
rate of volatilization. Still higher values (up
to 10 ppm) are feiind in areas flooded by the
heavily polluted Rhine river. In some areas
reclaimed 50 years ago, the soil vas evidently
contaminated then and still is. Evidently, there
is some mercury being deposited «ith rain in
almost all areas: this comes from fossil fuels,
smelters, etc. and is higher near industrialized
areas. Experiments shoved ttat dimethyl mercury
evaporated guickly fro« soilf; mercury as the
chloride hardly at all and at CH2 Eg Cl or
mercury metal very slowly (1/2 tc 1 percent in
about 6 months from the experimental scil columns
kept at 20 degrees C). Continuous or interrupted
leaching Bay have affected the vclalization
slightly; the former increasing it for CH3HgCl
and decreasing it for metallic mercury.
864
Effect of Aldrin, Dielarir, and Heptachlor
Compounds on the Absorption and Translocation Of
BBC and DDT Insecticides from the Soil into Maize
Plants
Polizu, A.; Rom.
An. Inst. Cercet. Prot- Plant.. »cad. Stiinte
Agr. Silvice(APSVBN), 6. 257-63, 1970; 1972
CHGAHOCHLOHIHE INSECTICIDES; PLANTS; BHC; DDT;
CORN; ALDBIN; CIILDBIN; HZPT1CBLCB; ABSORPTION;
TRIVSLOCATIOH; SOILS
865
Aldrin, Dieldrin. and Heptachlor Persistence in
Soil and Accumulation of Residues in Pctato
Tubers Following Soil Application!
Polizu, A.; Roman, H.; Bogultann, G. ; Bolt, Italy
An. In at. Cercet. Prot. Plant., lead. Stiiate
Agr. Silvice(APS'BN) Home, Italy 1970, 8, 271-81;
1972
INSECTICIDES: RESIDUES; SOILS; PCtlTOBS; ALCIIB;
tlELCBXN; HEPTICHLOR; DOST KG; ACCOHoLATIOll;
EPCXItE; TRANSFORMATION; PERSISTENCE
Ihcn potato fields verc dusted with tt-18kg
aldrin, 2-6 kg dieldrir or 1.25-2.S kg
heptachlor/ha, the residues in the tubers
exceeded for 3 years the maximum permissible
concentration of 0.1 ppm. The residue
accumulation by the tubers decreased in the
following order: aldrin, dieldrin and heptachlor.
In bcth soil and tubers, aldrin was converted
into its epoxide to a higher degree than vas
heptachlor. In the soil, residues were still
present in small amounts at 30 months after the
treatments.
866
Soil Persistence of Fungicides—Experimental
Design, Sampling, Chemical Analysis, and
Statistical Evaluation
Polzin, v.J. ; Brown, I.r.; Santhey, J.A.; Agric.
Res., Eli lilly 6 Co., Greenfield, Indiana
Pestic. Monit. J., 1, 209-215; 1971
PASIUCL; CHLOHOPHENfL-trjilDINEHETHANOI;
BEGRATATIONj SOILS; PEBSISTBHCE; FUNGICIDES;
STATISTICS; ANALYSIS
The design and technique used to determine the
persistence of parinol, alpha, alpha-bis
(f-chlorophenylj-3-pyridinemethanol were more
than adequate; this compound degraded to less
than 10X of the total applied within less than a
year.
667
The Effects of Trace Metals en Ground Water
Quality as Influenced fcy Soils Reflecting
Differences in Organic Hatter Content and Genetic
Conditions
Fender, F.; luskegee Inst., Ala.
Thesis, Tuskegee Institute, Alabama; Monitoring
Agency Rept. No. H7M-02211, OHBR-B-028-ALA ("») •
Frcj. Om-B-028-ALA; 69 p.; 1971, Nay
TRACI METALS; GBOUNDNATER; SOILS; GENETICS; ZISC-
iBSOBFTIOH; LE4CHIHG; BOH OFF; WATER; DITALEUT; '
GBCORD VAT IP
A review of literature on the correlation between
organic matter and zinc content of soil and an
investigation of zinc absorption using four
different types of soil. These soils, which were
selected to represent a vide range of organic
matter contents and genetic conditions, vere
prepared and submitted to studies of zinc
adtotption and leaching. Soil and run-off water
vere analyzed for zinc content. It is concluded
that organic matter is mainly responsible for the
retention of zinc oc other divalent metal by
forming stable complexes. Grouodwater having
passed through soils high rather than lov in
organic utter vill contain leaser quantities of
divalent cations.
138
-------
868-874
868
Effect of Solax Radiation on the Decomposition of
Herbicides on the Soil Surface and on their
Phytotoxicity
Popov, N.T.; Ladonin, V. F.
Tr. Vses. Nauch.-Issled. lost. Odobr.
Agropochvoved. (TVOAAG), Do. 51, 220-H; 1971
HERBICIDES; PRITOTOIICITT; LIGHT; FBOPiZINE;
CIUROK; ETEAHIH
The herbicides ptopazine diuton, and pyramin loss
some of their phytotoxicity toward oat plant:
when applied to sunlit soil at 2, 5, and S kg/ha,
respectively, 65 flays before the oats wece
planted. Coco and pea plants were ioce sensitive
to the phytotoxicity of these herbicides when
they were grown in full sunlight than Khan they
they vere grovn in the shade. The herbicides
suppressed peroiidase activity in the leaves of
the plant to a greater extent in Igiht than in
shade. Since it is known that pcrczidase is
involved in plant resistant to herbicides, this
loss is enzyme activity lay explain tht plant
se nativity to herbicides in light.
869
A Mew Physical Theory of the Node of Action of err
Pradhan, S.; Rangarao, P.V.
Experimental, 22(9), 619: 1966
THEORY; CDT
871
The Distribution and Nature of Arsenic in Soils
of the Bathurst. New Brunswick, District
Fresant, E.S.; Tapper, R.H.
Econ. Geol, 61, 1760-767; 1966
DISTRIBUTION; ARSENIC; SOILS
872
Use of Herbicides on Carrot Crops on Peat Soils
Frcskcia, U.S.; Okr. Sauk. Dosl. Inst.
Zeilercbstva, Kiev, osss
Jisn. Sil's' Rogospod. Rauki (VSNAAG) , 6, 70-75;
1913
HIRBICIDBS; SEEDS; CARHOTS; FFOPAZINE;
FBCHBIBTHE; TFICHLOEOACETATE; LIHOHOH; ALIFOB;
IE AT; SOILS
873
Iffect of an Organo Mercury Fungicide on
Saprophytic Fungi and en Litter Decomposition
Pugh, G.J.F.; iilliais, J.I.
Trans. BE. Hycol. Soc. , 57(1), 16H-166; 1971
GRASS; SOILS; HE8CDBI; FOHGICIDES; PDSGI;
DECOKEOSITIOR
870
Respiratory Effects and The Decomposition of Some
Pesticides in Soil
Praaer, D.; Bartha, B.
Part of Priiaveai, A. (Ed.), Progress in Soil
Biodynaiics and Soil Productivity, Pallotti,
Santa Maria, Brazil, 1968 Rutgers University, Ren
Jersey (p. 29-33) ; 1968
PESTICIDES; PRODUCTION; CHLOBIHATEB HYDROCARBONS;
RESPIRATION; NITRIFICATION; CABBABATES;
CYCLODIENES; PHENYLUHEA; THIOLOAHBAHATE; AMIDES;
AMILIDES; ORGANOfHOSPHATZS; EHEN1LCARBAHATES;
TRIAZINE; PROPIOBANILIDE; 3,«-D JCHL08CANILIHE;
TBTR»CHLOBOASOBE»ZENI; HERBICIDES: SOILS:
PERSISTENCE; TRAHSFORHATI01I; DTCCKIOSITIOH
The influence of 30 pesticides on C02 production
and nitrification by soil microorganisis was
determined. A few compounds were stable but
without significant effect in soil (chlorinated
hydrocarbons), some persisted and depressed
respiraticn and nitrification (carbamates,
cycliodienes, phenylureas, thiolcacbamates), and
others displayed toxicity cut were transformed by
soil micro-organisms (amides, anilities,
organophosphates, phenylcarbamatcs, trizaines) .
Some compounds cf the last type induced an
initial increase and subseguent decrease in C02
production by soil. The herbicide 3',
K'-dichlcroproficnanilide decomposed in soil to
C02 and 3,4-dichloroaniline, and two mclecnlos cf
the latter compcnnd condensed to ferm 3,3', 1,
I'-tetrachloroascbonzene. Scil microorganisms
were involved in toth transformaticns.
871
Arsenite Oxidation in Soil
Questel, J.B.; Scholefield, P.G.
Soil Science, 75, 279-285; 1953
ABSERITE; HI CROC RG AN IS US; SOILS; ADSORPTION;
SOEIOfl ARSIHATE; ARSENIC
Arsenite undergoes biological oxidation to
arsenata in soil. On repeated perfusion of a
soil with arsenite, conditions are obtained under
which arsenite is cxidized at a constant rate.
Addition of sodium azide to soil eliminates the
oxidation cf arsenite. The presence of
sulfanilamide also inhibits arsenite oxidation in
soil, but adaptation rapidly occurs. Arsenate
per s* has no deleterious effect on arsenite
oxidation. Arsenite is adsorbed by soil, the
extend of adsorption at pH 7 being directly
prcpcrtional to the concentration of arsenite. A
small but constant amount of arsenite is
apparently bound irreversibly to the soil. The
final rates of arsenite oxidation by soils
repeatedly perfused with arsenite depend on the
pH of the perfusate and the concentration cf
arsenite. After many perfusions of sodium
arsenite at pH 7 the oxidizing ability of an
enriched soil decreases. Soils enriched with
arsenite-oxidizing organisms are capable of
enrichment also with nitrifying organisms. These
crganisis apparently develop &t separate sites on
the scil surfaces. This acccunts for the fact
that repeated alternate perfusions with ammonium
ions and with sodium arsenite result in rates of
nitrification and arsenite oxidation almost
identical with those of soils exposed to either
sutstrate alone. The extents of oxygen uptake of
enriched soils in the presence of sodium arsenite
were measured •anometrically; the amounts were
those predicted for oxidation to arsenate.
139
-------
875-882
875
Arsenite Oxidation in Soil
Questel. J.R. ; Scholefield, E.G.
Soil Sci.. 75. 279-285; 195J
ARSENITE; OXIDATION; SOILS
876
Photoalteration of Pesticides: Summary of
Workshop
Babson, B. ; Plimmer, J. R.; Biol. Bisect, Di».
Bioied. Environ. Res., 0. S. Atomic Energy Con.,
Washington, DC 205U5
Science, 180(0091), 120H-1205; 1973
REACTION PRODUCTS; SOILS; REVIB8; IBOTCCHEBICAI
ALTERATIONOIC; DEGRADATION; BAHSALS; INSECTS;
EIELDRIN; RESIDDES; VOLATILITT; CIIDATION;
PHOTOREDUCTIOH; FHOTODIBERIZATION; HALOGEN BOKO
CLEAVAGE; PHOTOALTERATIONS; PESTICIDES
A workshop was held at the National Academy of
Science, Washington, DC, April 6-6, 1972. by the
U.S. Atoiic Energy Commission and the D.S.C.A. tc
evaluate the iiccrtance of photochemical
alterations in pesticides and to determine the
possibility of using such in format ion for the
improvement of future strategies of pesticide
use. In general, photochemical degradation
products are less toxic to mammals and insects
than the parent compound, but there are notable
except lions like dieldrin. few cf the reactions
are documented, and residue tonitoring systems do
not detect their products. Volatility, type of
application, soil characterittics, and other
factors influence the exposure of pesticides to
light. Photochemical oxidation, including the
reaction cf free radicals with oxygen to give a
peroxy radical, is an important aspect of th«
phencmenon. Photoreduction, photodiierizaticn,
halogen bond cleavage, and enhancement of phenol
acidity may also be significant ID the natural
environment. Research in the area of
photochemical alteration appears tc be decreasing
although much icte must be known before
standardized estimation and prediction of
photoalterations can be formulated.
877
Residues in Soils and Stra»berries-D Resulting
from Siiazine Applications
Ragab, H.T.H.; Leefe, J.S.
Can J Plant Sci, 52(2), 1«7-1U9; 1972
HERBICIDES; BEEIS; RESIDUES; SOUS; STBAIB1RRI1S;
SIHAZINE
876
Persistence of Trifluralin Order Field Conditions
in Saskatchewan
Rahman, A.; Ashford, R.; crop Sci. Dep., Univ.
Saskatchewan, Saskatoon, Saskatchewan, Canada'
Can. J. Plant Sci. (CPLSAY) , 53(2) «21-3; 1973
TRIFIORALIH; SOILS; RESIDUES; HERBICIDES-
PERSISTENCE; BILLET; BHEAT; HELD APPLICATION
When 1.12 or 2.2U kg trifluralin/ha was applied
in the field, the soil contained sufficient
trifluralin to produce a phytotoxlc effect on
geriian millet (SETARIA ITALICA) after one growing
season. A rapid decline in the amount of
triflcralin residue occurred during the first 2
months of the second growing season. The presence
of wheat (TRITICOH AESIIVUM) crop had no effect
en the persistence of trifluralin in the soil.
879
Soil Degradation of Twc Phenyl Pyridazinone
Herbicides
Rahn, t. R. ; Zimdahl, R.L.; Dep. Bot. Plant
fathol.. Colorado State Oniv., ?ort Collins, Colo.
»eed Sci. (BBESA6). 21(1), 31«-17; 1973
PTRIEAZIN01IE; HERBICIDES; SOILS; SAN 6706-
DEGRATATIOM
88C
Residues of Atrazine and Siiazine, and of Their
Hetabclites, in Soil after Long-Continued
Application
Ramsteiner, K.A.; Hermann, B.D. 0.; Eberle, D. •
Cita-Gaigy, Basel, Switzerland '
Sonderheft Zeitschrift fur Pflanzenlerankheiten
(Plfanzenpathologie) und Pflanzenschutz, 6.
«3-52; 1972
RESIDUES; SOILS; LOAM; SAND; HETABOLITES;
BEEBICIDES; SIBAZINE; ATRAZINE
Residues and metabolites of the s-triatine
herbicides were determined in sandy loams after
annual applications of 6 kg/ba simazine or 10 kg
atrazine over periods of 10-13 years.
881
Biedtgtadation of Halathion
Randall, C.W.; Laoderdale, 8.A.
Jour. San. Eng. Div., Froc. tier. Soc. civil
Ing., 93(516), 1«S; 1967
EIOD1GRADATION; DEGRADATION; MALATHION; PESTICIDES
882
The Arsenic Content in Soil Following Repeated
Applications of Granular Paris Green
Rathturn, C.B.
Roiqaito Hews, 26(4), S37-34; 1966
ABSEIIC; GRANOLAH PARIS GREBI; SOILS; PESTICIDES
140
-------
883-886
883
Residue and Action of Beooiyl on Fungi in Soil
Saynal, G.; Ferrari, 7.\ Inst. Natl. Agron.
Grignon, Thiverval-Grigon, Fiance
Fails
Phytiat.-Phytophar*.
-------
887-891
887
The Move lent and Iipact of Pesticides Used fcr
Vector Control en the Aquatic Environment in the
Northeastern Dnited States.
Reese, C.C.; Becker, D. L.; Little (Arthur D.),
Inc., Cambridge, HA
Pesticide Study Series 9; Contract DI-68-01-0129;
Monitoring Agency Sept. Ho. IPA-OwP-TS-OO-72-OS;
9; PB-217 8«3/2; 23a p.; 1972, July
SALT NARSHES; PERSISTENCE; PIETHOITCH 10S; 1ATIR;
MIMALS; RESIDOIS; INSECTICIDES; PISTICIDES;
tOLICIDAI; INSECTS; SWAMPS; ECT; CIELDSIH;
HA1ATHION; PIRETHROH; BIOCIDIS; IA8VAE; NIHEIAL
OILS; AQOATIC ESTUARIES; BIOEETERIORATION;
HETABOLISH; DISEASE VECTORS; HCSCOITOBS;
A BAT EM EN 1; STAGMINT RATER; DRAINAGE; ACQATIC
ECOSYSTEMS
In the Northeastern United States the losguitc
abatement prograis ace conducted for the vector
control of eastern equine encephalitis, to reduce
the nuisance problei caused by acsquitces, and tc
enhance recreation areas. Typically, these
programs consist of the application of pesticides
(Vectoricides) and the drainage cf stagnant
water. The report sunarizec a case stud; of a
specific vectoricide nse situatico documenting
the kinds and quantities used, their route from
the point of initial application into the water
environment, their ultimate effect on the
acosystea, and the lavs and regulations vhieh
affect their use. Cape Cod was chosen for the
study area.
888
On the Residue Cynamics of the Product* Tirzilin,
Trakephon and Beiceaa-CCC in the Sell
Reifenstein, R.; Czyrnia, I.; Beitz, a.; Bid.
Landesanstalt Berlin der Akad. der
Landwirtschaftsviss. der DDR, Inst. fuer
Pflanzenschutzfoischung Kleinaachnow,
Kleinaachnov, EBB
Nacbricbtenbl. PflanienschutJdienst DDE, 27(10),
20H-207; 1973
BESIDOES; TRIZILIN; TRAKEPHOi; LCESSj SOILS;
HODEL EXPERIMENTS; DIPREITL ZTREE; HALf-LIPZ;
DECOaPOSITION; SAND; COMPOST
The residue dynaiica of 2,4-dichloro-l'
nitrodiphenyl ether (active agent cf trizilin),
1-bntyla»inocycloheiane phoschonic acid dibntyl
ester (active agent of txakefhon), and of
chlorieguat chloride (b«rceia-CCC) in loess,
sandy, and coapcat soils ««re studied in aodel
experisents. Ciphenyl ether proved to be highly
persistent over several aonths in ill types of
soilf tested. An initial concentration of 1-5
pp» fell to 2.8-3.6 pp« in 107 days. Trakephon
had a half-lit* of 8 to 11 days. Ho residue! cf
chlorBeqnat were detected in loeias soils 28 days
after introduction. Only slight penetration vat
found for diphenyl ether and tcakephon. Although
chloraeqaat is highly vater-soliitlc, it is net
considered to be a potential grcundnatcr
contaminant on account of its rafid decoipositiCD.
889
A Hierarchy of Models for the Behavior of Bercurv
in th« 3cosyste»
Beiniqer, P.; frissel, d.J.; Poelstra, P.; Beek,
Fart cf Melsh, c.R. (Ed.), International Atoiic
Energy Agency Proceedings Series. Nuclear
Techniques in Environnental Pollution, Syaposiua
Dniput, Inc., He» lock, NY, (p. U07-«1U) 810 D •*
1971 P"
CHFOHJTOGRAPHT; TPANSPCET; SOILS; HADIOACTIVITI-
eCCEIS; BEFCOET; MOCEL tCOSYSTEd ' '
890
EeEticides in the Soil froi the cauliflower
Eistrict in Vintrie Skare
Benvall, E.; Lindskog, E.
Vaitskyddsnotiser, 36(3-«). K8-51; 1972
ALCBIS; DIFLDHIN; DCT; DDE; 1INDANE; PERSISTENCE-
FESTICIDES; SOUS
891
Fate cf Carbon-10-labeled Chloroneb in Plants and
Soils
Rhodes, E.G.; Pease, H.I.; Brantley, B.K.; Ind.
Eiochei. Dep., E. I. Du Pont De Neaours And Co.
Inc. , iilaington, Eel.
0. Agr. Pood Chei(JAFCAD), 19(11), 7U5-9; 1971
CRIOIC1EB; FONGICIEES; BETABOLISS; PLANTS; SOIL=>
HBTABCL1TES; QOINOMES "'
Chlorcneb uptake by cotton and bean plants was
deionEtrated, the fungicide teing priiarily
concentrated in the roots and lower stea portions
of the plants. Chloroneb and its principal
•etabclite, 2,5-dichloro-U-ietboxyphenol
accounted for 95* cf the residues extracted icon
treated plants, appearing in a 1:1 ratio. Saall
aacunts of 2,5-dichlorequinone and
2, 5-dichlorohydroqninone were also detected. The
half-life of chloroneb-ltc in soil was greater
thin 3-6 souths vhen incorcocated into the soil
Z-3 in. below the surface at a rate of 2 Ib/acre.
About 90X of the residual activity recovered froi
treated soil was intact Chloroneb.
142
-------
892-896
892
Retention of 3 Insecticides on Different Size
Soil Particles Suspended in later
ftichardsco. E.H.; Epstein, E.
Soil Sci Soc Aa Proc. 35(6), 88H-887; 1971
DDT; HETHOXtCHLOB; EHDOStJLPAN; PESTICIDES;
RESIDUES; 08GIHIC BATTEB; PABTIC1I Sill;
8BTEHTIOH; INSECTICIDES; SOU PARTICLES
Detention of DDT and lethoxycblor was greatest in
the less than 0.08 licroieter and 0.5-0.08
•icroieter fractions of both the 8 horixon of a
silt loai (pH 6.5, Cic 13.5, organic latter 0.9*)
and the X horizon of a second silt loai (pH 5.5,
CEC 24.il, organic latter 3.3*). Indosulfan
retention «as also greatest in the fine clay
fractions of the B horizon samples bnt in the *
horizon samples endosalfan retention was greatest
in the sand fraction (2000-50 licicieter) .
Retention DDT and lethoxycblor by the fine clay
fractions and of endcsulfan by all clay fractions
of the B horizon saiples was greatly reduced ty
organic latter reioval with H202 treatient. The
retention of DDT and Mthoxychlor was slightly
increased in the 0.5-1 and 1-2 licroieter clay
fractions by organic latter reioval. H2O2
treatient decreased retention of all 3
insecticides by the A horizon saiples except for
the retention of DDT by the 0.5-1 and 1-2
licroieter fractions which vas increased.
in size fro» 1.9-3.8 acres and located in the
loesgial soil region of western Iowa. Two of the
watersheds were planted to ridged corn, and two
were planted to surface-contoured corn. loveient
of atrazine, propachlor, and diazinon in the soil
profile and degradation cf these pesticides were
•easured. Pesticide losses were iuch greater
fro the surface-contoured watersheds than the
ridged watershed, significant aiounts of
surf ace-applied atrazine and propachlor were
reioved froi the surface-contoured watersheds by
stcris occurring shortly after the pesticides
were applied. Insignificant aiounts of diazinon
were reaoved in the surface runoff and sediaent.
Generally, pesticide concentrations were higher
in the ssdiient than in the runoff water;
however, greater total losses were associated
with the greater volu«e of water.
895
Environmental factors Affecting the Hoveient of
Atrazine, Propachlor, and Diazinon in Ida Silt
Loai
Bitter, V. t. ; Iowa State Oniv., Ales, Iowa
Thesis, Iowa State University, Aies, Iowa
(238p.): 1971
ATBAZINE; SOILS; PHOPACHLOH; DIAZIHON; MOVEMENT;
SIIT; LOAM
893
The Noveient of ICT in Forest Soil Solutions
Riekerk, H.; Gessel, S. P.
Soil Sci. Soc. Ai. Proc,, 32(1), 595-6; 1968
«0»EHEIIT: FOREST SOILS; DDT; SOUS
89«
Atrazine, Propachlor, and Diazincn Residues en
Siall Agricultural Ratersheds. Runoff losses,
Persistence, and Hoveient
Fitter, V.F.; Iowa State Oniv., Aies, lova
En*. Science E Technology, 8(1), 38-42; 1974,
January
ATRAZINE; PHOPACHIOR; DIA2IHCB; iATIRSBEDS;
RDNOFF; PHRSISTIHCE; ROVEHERT; BESIDDE!;
DE68ADATIO"; PESTICIDES; SEDIMENTS; SOUS; LOESS;
CORK
Atrazine (2-chloro-4-ethyl»»ino-€-isoptopyla»ino-s
-triaiine), propachlor (2-chlorc-H-isoiropyl8cetan
ilide) , and diazinon (0,0-diethyl
0-<2-isopropyl-6-«ethyl-»-pyriiidinyl)
fhosphorcthioate) losses in sediient and surface
runoff were leasured iron four watersheds ranging
896
Eiffusion of Atrazine, Propachlor, and Diazinon
in a Silt loai Soil
Fitter, S.F.; Johnson, H.P.; Lovely, W.G.; Dep.
Agric- Eng., oniv, Delaware, Newark, De
Sstd Eci. (SEISA6) . 21(5), 381-U; 1973
PESTICIDES; DIFFUSION; SOILS; DIAZINOH; ATBAZINE;
IBCP1CHLOR; SILT LCAH; SILT; LOAH; TEHPEBATDRE;
SATEB; BOLK DENSITY; MOISTDRI; DIFFUSION
COIJflCIENT; H07EMENT; DENSITT
The effect of soil teirerature, soil loisture
content, and soil bulk density on the diffusion
cf diazinon, atrazine and propachlor in silt
lea* soil was studied in the laboratory. The
diffusion coefficients for propachlor, atrazine,
and aiazinon were 1.90, 1,36, and 0.63 n2/day,
respectively, at 27 degrees. The greatest aionnt
cf loveient occurred at high temperatures and
•oistare contents. Soil loisture had the least
effect on diazinon loveient, a soaewhat greater
effect on propachlor icveient, and the greatest
effect on atrazine ioTe«ent. The loveient of all
3 pesticides decreased with an increase in the
sell balk density.
143
-------
897-903
897
Herbicides for Flue-cured Tobaccc.
Persistence
2. Soil
Rodriguez, E.B.; Rorshas, A.D.; Earket Dev.,
Monsanto Venezuela C.A., Apartadc Postal 6177,
Caracas 101, Venezuela
Tob. Sci.. 17. 170-174; 1973
TOBACCO: BESEFIH; ISOPROPALIB; PIEOLATI; R-7465;
HERBICIDES; DISSIPATIOH; OATS; BBIAT; SCI IS;
PERSISTENCE
Bioassays of soil from tobacco fields treated
with R-7465. benefin, isoptopalin, or tabulate
shoved R-7465 to be the lost persistent with 8C,
48, and 42* of 1.0, 2.0 and 4.0 Ib/acre applied
regaining after 20 weeks. Rhen incorporation was
pre-bed with the disk as compared to post-bed
incorporation with a power-driven rotary hoe, a
greater concentration of all herbicides was found
in the 3-to 6-inch scil layer than in the 0-
3-inch depth. Dissipation of tetcfin and
isopropalin did not vary significantly with
method of incorporation, bat disk-incorporated
pebulate disappeared more slowly at the 3- to
6-inch depth. Oats and wheat planted after
tobacco harvest were not injured in tie benefin,
isopropalin, or tabulate-treated plots, but were
almostly completely killed fcy residues in plcts
treated at 1 Ib/acre 8-7465. (19 references)
898
Degradation of Carbaryl by soil eicroorganists
Rodriguez, L.D.; Oniv. Kentuckj. lexington, KT
Thesis, University of Kentucky, Lexington,
Kentucky; Oniv. Hie refills, Ann Arbor, Rich.,
Order Ho. 73-29, 908; 1973
CA8BAFTL; SOILS; (IICGOORGARISHS; INSECTICIDES;
DEGRADATIOR
901
Degradation of tt Phony! (Jrea Herbicides by Mixed
Populations of Microorganisms for 2 Soil Types
Boss, J.A.; Tweedy, B.C.
Soil Eiol. Biochei., 5(6), 739-746; 1973
ILCOHITOHON; CHLOECXOHCN; METOBROMORON;
CHICREROMnRON; DENETHOXILATION; ANILINE;
HttRCIISIS; METABOLISM; SOILS; DEGRADATION-
FHIN11 UREA; HERBICIDES; MICROORGANISMS
902
Halonic Acid Conjugaticn by Soil Microorganisms
of a Pesticide-Derived Aniline Noiety
FOES, J.A. ; Tweedy, B.G.; Dniv. of Missouri,
Dept. of Plant Pathology, Coluibia, BO 65201
Bulletin of Environmental Contamination and
Toiicclogy, 10 («), 234-236; 1973, October
ACARICIDES; ANINES; EIODEGRACATION; ANILINE
HOIET1; HICROORGASISBS; HICROEIAL ACTIVITY;
SOILS; CHLORDISEPORH; BALINIC ACID; PESTICIDES
The conversion of the aniline loiety of the
acaride chloridmefori to its malonanilic acid
derivative is described. Nixed population
cultures of soil microcrganisms were prepared by
suspending 0.5 g of'soil in 50 ml of synthetic
•ediui containing 25 ilcrogram/il of
chlordimeform. After incubation and treatment,
samples were analyzed. In the soil cultures, 701
cf the parent compound decomposed. A major.
previously unreported metabolite which was not
present in the controls was fcund in each
inoculated culture, predominantly in the acidic,
ncnaqueous fractions. The compound was isolated,
purified, and a mass spectral analysis made.
Conjugation of the aniline moieties of pesticides
vith lalonic acid may te a significant
transformation in the soil.
899
The Effect of Arsenic Trioxide on the Srowth of
white Spruce Seedlings
Rosehart, R.G; Lee, J.T.
later Air Soil Pollut, 2(4), 439-443; 1973
GROWTH; RETARDATION; SOILS; 1BSIIIC TBIOIIDE;
TREES; SPRUCE; SIIDLINGS
900
Arsenic Fixation in Delation to the Sterilization
of Soils vith Sodium Arsenite
Roaenfela, R.S.; Crafts, a.S.
Bilgardia, 12(3), 203-229; 1939
ARSEBICS FIX1TI01; STERILIZATION; SOUS; SODICH
ARSBIITB
903
Movement and Accumulation of Mercury in Apple
Trees and Soil
Ross, E.G.; Stewart, D.K.R.
Canada J. Plant Sci., 42, 280-285; 1962
HOVEHINT; ACCDHOLATIOK; HERCORI; APPLE TREES;
AEPLE ORCHARDS; SPRATS; PBINTLHERCORIC ACETATE-
RESItOIS; IOLIAGE; FROITS; LEAVES; TRANSLATION-
OPIAKI; ROOTS; SOUS; IERSISTZIICB; APPLES; TREES*
In a mature apple orchard which received 21
pre-ccver sprays of phenylmexcury acetate in five
year* and 9 sprays in two years, residues of
1.11 and 0.5 ppm mercury occurred almost entirely
in the top two Inches of soil. The mercury moved
from the foliage to growing fruit and new leaves
by translocation, but there was no uptake through
the roots.
144
-------
904-909
904
Mature ana Effect of Environmental Pollution
Substances in Coiposts of Befose Sevagc Sludge.
2. Seduction cf the Herbicide Siiazine During
the Process of the Decomposition
Boszinski, H.; Berzel, P.; Inst. Kulturtech.
Gruenlandwirtsch. Fachbereicb, Tech. OniT.
Berlin, Berlin, Germany
Z. Knlturtech. Ilurtereinig. (ZKOFAIC). 13(5),
30«-10; 1972
REFUSE; SEWAGE; SLUDGE; DEGRADATION; SIMAZmi;
DECOMPOSITION; COMPOST; BREAKDOWN HEBEICIDES
The degradation of siiazine dating the
post-composting of a fresh coipost and another
•ature coipost was studied bj systematic sample
analyses using gas chroiatography and temperature
measurements. By comparing the temperature
curves and the siiazine decomposition curves, a
definite decrease in the siiazine concentration
in the composts as a function of the
post-composting intensity was estatlisted. The
rate of simazine decomposition, like tbe
post-co*posting activity, was highest during the
initial period of the post-composting process in
both types of composts. Since tie rotting
intensity in fresh coipost Has both higher and
•ore prolonged than in the mature compost, the
diminution of the siiazine concentration in the
former was first more rapid and more persistent
than in the mature coipost pit. As the
decomposition activity of the composts decreased,
the simaiine breakdown curves flatened
distinctly. The siiazine concentrations fell
from about SO ppi to over 10 ppm in 95 days in
fresh coipost and in 55 days in mature compcst.
Tbe observed decrease in the siiazine
concentration in the composts doe: not justify
the use cf siiazine for weed control in areas
froi which wastes may get into ccmposts.
905
Degradation of Pesticides in Agricultural Land
Botini, O.T.; Levi-Hinzi. B.; University of fisa.
Italy
Hotiz Sal Piante (82-83). 197C 9-36.
DEGRADATION; SOILS; PESTICIDES; IQtIILIEfilUM:
PBHSISTBHCE; ALCBIH; OIELDBIN; DCT;
MINERALIZATION; IIXATION; AHHONIHCATION;
NITRIFICATION; CECOHPOSITION; ORil; REVIEW;
NITROGEN CICLE
Interrelationships between pesticides and
productivity, biological equilibrium and soil
properties are reviewed, and the persistence of
chemicals (DDT, aldrin, dieldrin, etc.) in soil
and their effect on the N cycle (mineralization
and fiiation, ammonifiestion and nitrification)
as well as on the decomposition cf CaC«2 and urea
are discussed. (52 references)
906
Decomposition of Synthetic Compounds by
microorganisms. Literature Review
Buban, E.L.; Inst. Hicrobiol., Roscow, Dssr
Izv. Akad. Hank Sssr, Ser. Biol. (IAHBAM) , (3),
301-12; 1973
RE»IB»; SOILS; flICBOBBS; PESTICIDES; HERBICIDES;
mCROCBGANISliS; INSECTICIDES; METABOLISM;
ATBAZINE; CABBABYL; RESIDUES; DECOMPOSITIOH
A review on the effects of herbicides, such as
atrazine, and insecticides, such as carbaryl, on
tbe scil microorganisms and the letabolic
decomposition of pesticide residues in the soil
by these microbes. (63 references)
907
effects of so*e Pesticides on the Solubility of
Nutrients in Submerged Soil
Busso, 5.
Flso (Milan), 19(1), 37-5U; 1970
HICBCCBGANISflS; PESTICIDES; SOILS; SOLOB1LITI;
NimilNTS
908
Eevelcping a Soil Quality Indei
Bust, B.H.; Adams, U.S.; Martin, I.P.
Part of Thomas. Williams A. (Ed.). Indicators of
Envitcniental Quality. Proceedings of a
Symposium. Philadelphia, PA, Dec. 26-31, 1971.
Plenum Press: New York, NT; London, England, (p.
2K3-2U7) , 275 p.; 1972
SC1BEASS; CRCPS; ANINAIS; MICROBIOLOGY;
JIBTIUZERS; HERBICIDES; PESTICIDES; INDUSTRIAL
IFfUJIKTS; WASTES; DOHISTIC WASTES; WATERSHEDS;
SOILS; FRUIT FLK; INDUSTRIAL HASTE
909
Sutsutface Bater Pollution by Percolation -
Selected Abstracts.
Byerson, 9.B.; National Technical Information
Service, Springfield, VA
Final Sept. July 1961-Oct. 1972; Honitoring
Agency Sept. No. 18; NIIS-PK-134; 36 p.; 1972,
Noteiter
HAIER; LIQUID WASTE DISPOSAL; SOLID WASTE
tISPOSAL; SANITART LANDFILLS; GROUND MATES;
SDBSOmCE DRAINAGE; PBRCOLATION; LEACHIMG;
SIPTIC TANKS: FERTILIZERS: WASTE DISPOSAL: EARTH
FILLS; AGHICULTDBAL BASTES; IRRIGATION; INOEGAHIC
NI1SA1ES; WATER QUALITJ; PONDS; PESTICIDES;
IIRTIII2ERS
The ITISEAECH intonation package (NTIS-PFC)
contains 35 selected abstracts of research
repotts retrieved using the NTIS on-line
biblicgraphic search systei—NTISBARCH. The
abstracts include studies on percolation of
pollutants froi surface and sucsurface sources
such as septic tanks, leaching ponds, sanitary
land fills, and pesticides and fertilizers vised
in agriculture practices.
145
-------
910-914
910
Metabolic Pate ol Dieldrin-14c in Iheat Plants
and in ar Agricultural Soil
Saha, J.6.: Lee, T. H.
J. Econ. Entoaol., 62(2), 67C-671; 197C
C1AY LOAM; DIELDRIN; RADIOACTIVITY; ETHER; SATIB;
DEGRADATICN; BREIT; PLANTS; SANDY 10AM: CAS
CHROHATOGRAPHY; THACIH; SOILS; SANE
In a soil metabolise study in which 1000 grass of
a fertile clay loai soil was treated with
IOC-labeled dieldrin SO micrcCi, 72
•Ci/millimole, the average distribution of
radioactivity in the ether and water attracts
from 100 grams of a soil was 3500, 99.9, and 2.0
nci 0.1, indicating that very little degradation
to hydrophilic products tooK place. The
radioactive material in the ether extract was due
to lie-labeled dieldrin alone, at determined by
3 independent lethods. When wheat plants Here
grown in a sandy loam soil treated with
1<4C-lab«led dieldrin 1 microci/g cf soil and
harvested 30 days later, the distribution of
radioactivity in the ether and water aitracts of
the wheat plants was 180.0 91.0 and 5.6 3.0 nCi,
respectively, indicating very little degradation
to hydrophilic products. The radioactive
•aterial in the ether extract "as identified as
dieldrin by thin layer and gas clrcmatcgraphy,
and co-crystallination with authentic dieldrin.
Thus, little or no letabolisi of die Id tin took
place either in growing wheat plants or in the
soil.
911
Mercury Residues in Cereal Graint fro* Seeds or
Soil Treated with Organomercury Coipounds
Saha, J.G.; Lee, 1.9.; Tinline. B.C.; Chinn,
S.H.F.; Austenson, H.I. ; Canada Cepartment of
Agriculture, Research Station, Saskatoon,
Saskatchewan; University of Saskatchewan,
Department cf Crop Science, Saskatoon, Canada
Canadian Journal of Plant Science, SO, 597-599;
1970, September
NERCUBY; RESIDCZS; CEREALS: GBAIIS; SEIDS; SOUS;
BARLEY; NHEAT; PANOGEN PI; PAK06IN 15; HBHCOHY
RETENTION; GAME EIRCS; 7DNGICIDES; BIRDS
The purpose of this study was to deter line tbe
•ereury content cf barley and wheat grains growr
fro* treated seeds or treated soil under Canadian
prairie conditions, conquest tailiy. seeds were
treated with Pancgen PX, and Hanitou wheat seeds
were treated with Panogen 15, Tbe harvested
grains were analyzed for aercucy residues, in
another expedient, Panogen II was disked into
the soil, which was seeded with Hatcher wheat
about a week later. Determinations were made on
mercury residues in the harvested grain and in
soil samples collected after tbe harvest. A
significant amount of mercury was found in the
grain grcwn in sell treated vith Panogen PI, and
51 to 53 percent of the mercury estimated to have
been applied remained in the soil five months
after application. There was no significant
difference in the mercury content of wheat and
barley grains, whether or not they were grown
from dressed grain. Researchers concluded that
the reported contamination of game birds probably
results from tbe birds eating dressed seed left
uncovered by soil in the field ot elsenher*.
912
Organcchlorine Insecticide Residues in soil frog
Vegetable ?arms in Saskatchewan
Eaba, 0.6. ; Suiner, A. K.
Eestic Monit J, 5(1), 28-31; 1971
CRGANCCHLOHINE INSECTICIDES; RESIDDES; SOILS;
VEGETABLES; DDT; DERIVATIVES; INSECTICIDES
913
Adsorption of Urea by Some Sudan Soils
£aid, H.B.
Plant Soil, 36(1), 239-212; 1972
EXCHANGE CAPACITY; CLJI; HYDROLYSIS CONTROL;
AOTOC1AVING; MERCURIC CHLORIDE; HYDROLYSIS;
ADSOBETION; OREA; SOILS
911
BHC and DDT Residues in Arable Soil
Saitc, N.; Kitayama, N.; Hokkaido Inst. Pub
Health, Sapporo, Japan
Hokkaidoritsu Eisei Kenkyushoho (Rep. Hokkaido
Inst. Pub. Health), 23, 116; 1973
EHC; DOT; AIR; SOUS; PADDIES; DDE; INSECTICIDES
Soil specimens from four paddy fields and three
arable lands were collected in Nov.-Dec. 1972 and
analyzed for alpha, beta, gaima, and delta-BHC,
f, p'-DDT, and p,p'-DD£ to assess the effect of
the Hay 1, 1971, ban on BHC and DDT. The values
found for the two types of land were 0.007-0.0*7
and 0.001-0.005 of alpha-BHC; 0.529-0.848 and
O.C13-0.069 of gamma-BBC; 0.016-0.064 and
trace-0.002 of delta-BHC; 0.051-0.232 and
0.135-0.845 of p,p'-DDT; and 0.009-0.045 and
0.018-0.69 ppm of p,p'-DDE. when these values
were compared to those obtained two years before,
considerable decreases were seen in both
gaima-EHC and p,p'-DDT. Gamma-BHC in a paddy
field decreased fro* 0.935 to 0.490 and p,p'-DDT
from 0.052 to 0.036 ppm; gamma BHC in arable land
decreased from 0.192 tc 0.069 and p,p'-DDT from
1.272 to 0.845 ppm (all the values on an
air-dried soil basis). The percentage decrease
flcctnated, probably owing to the amounts of the
insecticides applied, properties of the soil, the
methcd of cultivation, and weather conditions.
146
-------
915-920
915
Progress Deport cf Residue studies on Dicamba
Osed for Ditchbank Seed Conticl
Salman, 9.H.; Hartley, T.B.; Hattrup, J.R.;
Bureau of Reclamation, Denver, Cclcradc
Engineering and Research Center, Denver, CO
Heport Mo. SEC-lRC-72-6, PB-209 C61; 20 p.
February
1972,
CHLORINE; IRRIGATION; RESIDUES; SOUS; RATES;
ANALYSIS; DICAHEJ; EIRBICICES; HUD COJTROL;
miGATION; SOL1ENT EXTRACTION; GAS CHJOBATOGRAPHY
The diiethylaiine salt of dicaaba was applied in
the fall of 1970 to 4 devatered laterals on the
South Columbia basin irrigation district. The
herbicide residues of iicaaba and 5-hydroxy
dicamba were d«teriined in ditchtank and
ditchbottoi soils and in the first irrigation
water released through the treated laterals in
the spring. Solvent extraction, followed by gas
chroiatography, was used to leasure the herbicide
residues. Levels of dicaita in the irrigation
waters, ditchbank soils, ditchbottoi soils were
•assured. Dicaita slowly leachei into the 6- to
12-inch soil depths during the winter. Good
control of broad-leaved annuals was achieved the
following suimer on all treated laterals.
916
Adsorption-Desciftion of Parathicn as Affected ty
Soil Organic Natter
Salt a an, S.; Kliger, L.; Yaccn, B.; inst. Soils,
Rater, Agric. Res. Organ., Bet Digan, Israel
J. Agr. rood Chen.. 20(6), 1224-1226; 1972
PABATHIOM; SOILS; ADSORPTION; OBGANOPHCSPHOBOS
INSECTICIDES; DISORPTIOH; ORGANIC BATTER;
IHSECTICIOES
Parathion adsorption and descrption were
determined for a dark rendzina, a nediterranean
soil and a terra rosa with 4.55, 3.72 and 4.881
organic latter, pB 7.1, 6.6 and 7.1 and
•ontiorillonitic, mixed and kaolinitic clay.
respectively. Adsorption and desorption were
also determined after oxidation with K202 which
decreased organic latter content tc 2.12, 1.20
and 1.95*. respectively. The distribution
coefficients fcr natural soil were 38.5, 76 and
164 for the Mediterranean soil, terra losa and
rendzina, respectively, and parathion adsorption
decreased by 60, 22 and 70K, respectively, after
oxidation. The parathion content after five
consecutive extractions with water was greater
than in natural soils than in oxidised soils.
917
Paxathion Adsorption from Aqueous Solutions as
Influenced by Soil Components
Saltzman, S.; Taron, B.; Dap. Soils Water,
Vclcani Inst. Agric. Res., Bet Dagan, Israel
Festic. Chei., Proc. Int. Congr. Pestic. ckem.,
2nd(2««Aay) 1972, 6, 87-100; 1972
FABATHIOH; ADSORPTIOH; SOILS; AQOEOOS MEDIA;
F0HOS; PEAT; SODIDB; HCSTB08ILLOHIIE; SATOPATICM;
ADEOfEIIOH ISOTHEB8S; SODIOB KAOLIHITE;
KACLIHITE; SODIOH BOHTHOHILLOHITE; GLASS BEADS;
SATE5; PESTICIDES
Organic material (peat with 95» organic latter)
and scdiui •ontiorillonite, over a concentration
range of 1-9 licrograis g/il, showed a very
strong affinity for parathion, and were far froi
apfrcaching saturation. Adsorption isothens «ere
obtained for 20 soils, sodiu« kaolinite, sodiui
icnticrillonite, organic laterial, and glass
leads. At the highest solution concentration,
tested, sodiui kaolinite was close to saturation,
and the glass beads were saturated.
918
The fate of Dieldrin in a Model Ecosystei
Sanborn, J.R.; lu, c.c.; Illinois Natural History
Survey
B. Env. contai. S lox., 10(6), 340; 1973,
September
CI1LCH«; nOB!l ECOS1STEK; PISTICIDES; fATE;
JIABII1TI; CHEHICAI TR AKSFORHATIOH ;
BIOTFAJISrOEHATIOU
As part of a continuous prograi to investigate
the effects of pesticides on the environment, the
fate ct dieldrin was eiaiined in a lodel
eccsystea. Exaiination of dieldrin clearly
demonstrated the stability of this insecticide
totards either biological or chemical
modification by elements of the model ecosystem.
Indications are that the extreme stability of
dieldrin, light lake it, like DDT, undesirable
foi widespread general use.
919
Preliminary Study of Mercury Residues in Soils
Rhere Rercury Seed Treatments Rave Been Osed
Sand, t.T.i Biersma, G.B.; Tai, H.; Stevens, L.J.
Pestic Konit J, 5(1), 32-33; 1971
BIBCOSI; RISIDDES; SOUS; SSED
920
Adsorption and Degradation of Chlorbromuron in
Soil
Savage, K. E.
Heed Sci, 21(5), 416-420; 1973
THIN IAIER CBROMATOGHAFHT; PREONDLICH EQUATION;
FR1TC10HCITT; NICSOBIAL ACTIVITY; ADSORPTION;
CIGRACATION; CHLORBRCBORON; SOILS
147
-------
921-926
921
Nitralin ana Trifluralin Persistence in Soil
Savage, F.E.; South Seed. Sci. Lib., Agric. Res.
Serv., Stoneville, Us
Heed Sci.J»EESA6), 21(4). 285-8; 1973
NITRALIN; TRIFLORALIN; SOILS; HEBEICIDIS;
PERSISTENCE; SILTY CIAY LOAH; LOAH; DIJSIPAlION;
SOBGHOH; AUTOCIA'ING; PH; MICBOBICIOGY; CLAY;
PHYTOTOXICITY
Nitralin ana trifluralin applied to silty clay
loam at 0.84 or 1.68 kg/ha dissipated to Ion
residual levels within 3-4 months. flitraliu
phytotoxicity to sorghum (SOBGHDH BICOIOE)
decreased more rapidly in a soil which «as
pretreated with nitralin, than in a soil with no
previous treatment. Microbiological involvement
is suggested, because this elfect was nullified
by autoclavlng the previously treated soil. Ho
such effect was observed with tritlucalin.
Nitralin was note persistent in acid tkan in a
neutral soil.
922
Fluoaeturon Adsorption Desorption Equilibria in
Soil
Savage, K.E.; Danchope, F.D.
Seed Science, 22(2), 106-110; 1974
HERBICIDES; ORGAHIC HATTEB; 1ISE1F COBB1LJTIOIIS;
AGITATIOHs ADSORPTION; DESORPTION; SOUS;
EQOIIIBRIOM
923
Effect of Pore Size on Diffusion Coefficients in
Porous Media
Saxena, S.K.; Bcersia, 1.; Linflstrcm, I.T.;
Young, J.I.
Soil Sci., 117(2), 80-86; 1974
2.1-D; MATHEHAIICAL MODE!; SCI1S; fORB SIZE;
POROOS HItIA; HOtEl
924
Technical Contribution to the Stud; of Migration
of Certain Organic Compounds in Soil*
Schiavon, H.; Jacqain, F.
Ball. EC. Rail. Super. Agron. In*. Aliment.,
14(2), 221-225; 1972
THIiZINE; HERBICIDES; MOBILITY; CHBOHA10GRAPHY;
ADSORPTION; LZACHING; DEGRADATION; SOUS; OSG1RIC
BATTER
925
The Hetabolism of Carbaiate Pesticiies - »
literature Analysis. Fart II
Sctlagbauer, A.W.J.; Schlagbauer, B.G.L.
Besiaue Rev., K2, 85-9C; 1972
CABBAHATE; RETABO1ISH; DEGRADATION; IANDEIH;
FCRMKTANATE; PEOPOXOH; CAHEAFYL; METHIOCAHE;
BSBCAETODIM2THUR; PLANTS; IDSECTS; NAdHALS;
BICBCOKSANISHS; SIHGLB ENZYME SYSTEBS;
HYtOTHESIS; HETABOIITES; HYCROLYSIS;
DARfl-ELOODID; BEVIES
liteiature on carba*ate metatolisi published
tetween May. 1970 and June, 1971 is reviewed.
Specific intonation on degradation of landrin,
forcetanate, propoxur, carbaryl, p-chlorophenyl
n->etb;l carbaiate, and nethiocarb
liercaptodiiethnr) by plants, insects, laaials,
soil licroorganisvE, and single enzyie systeis is
included. Th«s« later studies confirm the
previously advanced hypothesis that a variety of
metabolites is foried by each systen and only the
guantitative ratios differ. Hydrolysis is the
most important pathway for degradation of
E-substitutsd n-alVylc«rba»ates; warm*blooded
animals excrete more conjugates of hydrolysis
freflects than of hydroiylation products and
hydroxylation predominates in plants. The basic
degradation pathways of carbaiates appear to be
well established. (11 references)
926
Possibilities and Limitations of Biological
Purification of Drinking Hater
Sctmidt, K.
Gat wasser Abvasser, 53(2), 38-49; 1973
PURIIICATION; DRINKING RATER; SAND FILTERS;
PESTICIDES; IATER; DDT; SAND; ADSORPTION;
HE1ACH10ROBEHZENE; LIHEANE; RALATHIOH;
HTCEOLYSIS; DBGRADATIOli; DIMETHOATE;
IHCSPHAHID01I; LIUDROll; OiaaON; CHLORIS»T10»;
CZCNI2ATIOK; CABBON; FILTRATION; RESIDDES
Possltilit las ard limitatiooa of mechanical,
chemical, and biological purification of drinking
water are reviewed, and experiments on the
efficiency of slow sand filters in the retention
of pesticides from drinking water during
purification are described. A slow sand filter
retained DDT dosed in the microgram range
quantitatively over 50 days, partly due to the
• dcorption of DDT on suspended matter and filter
material. A complete elimination of
nexacklorofaenzcne by sand filter was observed
over 29 days. The percentage not retained
afterwards was only 1.6*. Sand filters were able
to retain less than SOU of lindane starting froe,
the first day of application; the rate of
malathion elimination increased to over 901 in
five days, partly doe to hydrolysis and microbial
degradation. Sand filters were not able to
decrease the diiethoate concentration. The rate
of eliiinatian of ptOBphamidcn applied at a rate
of 200 mg/1, decreased from 90* to 6* in 10 days.
Sand filters were ineffective for linuron,
diuron, and 2,4-C; however, 2,4-D showed
decreasing concentration due to microbial
degradation starting from the 5th day of
introduction, chlorioatioo, oioniiation, and
especially activated carbon treatment effectively
reduced pesticide concentrations la drinking
mater. Anaerobic filtration was suitable for the
elimination of lindane residues from drinking
water. (32 reference*)
148
-------
927-932
927
Reactions of Huiic Substances with Organic
Cheiicals, H-containinq Compounds, and
Physiological Properties of Huiic Substances
Schnitzer, H.; Khan, S.0. ; Soil Res. Inst.,
Canada Dept. Iqr., Ottawa, Ontario, Canada
Part of Huiic Substances in the Environment,
Harcel Dekker, Inc., New Tork, H.I., (f,
581-293); 1972
ADSORPTIOH; PESTICIDES; BONOS; TEHPERAIOBE;
ADSORPTION; PR; EETIE8; IOM EXCHANGE; SODIOR
HOHATB; DDT; HT.BHOGEN BOIDIHC; OEGMIC CHEHICALS;
SITE OSES COMPOUNDS; DIALYSIS
Adsorption of pesticides by huiic substances is
generally studied Kith the slurry technique, but
can be determined by dialysis, Elevation of
temperature increases adsorption which is optiiui
at higher temperatures and pH values
approximating the pKa of the pesticide. A review
of the literature shows that hydrogen bonding and
ion exchange are the primary lechanisis of
adsorption although much raiaina to be learned
about the nature of huiic substances. In
addition to adsorption capability, sodium humate
can act as a solubilizing agent fcr compounds
like DDT.
928
Moisture Influences on Bromacil Distribution in
the Soil and Resultant Optake ant Phytetoiicity
schreiber, J.D.; Oregon State Oniv., Ccrvallis,
Oregon
Thesis, Oregon State Oniversity, Ccrvallis,
Oregon, 124 p.; 1972
EROMACIL; SOILS; PHITOTOIICITY; SOIL BOISTOHB
929
Persistence and Degradation of the Fungicide. 1.
2,-Bis-3-Methoxycarbonyl-2-Thioureidobenzene in
Soil
Schultz, I.R.; Pleeker, J.H.
Proc. N. Dak. Acad. Sci. , 21(1), 31; 1«73
PERSISTENCE; DEGfADATION; EONGICIDF.S; SOILS;
1,2,-BIS-3-HETHOXV.CA8BOHYL-2-THICOBEIDOBENZlNE
930
Hoveient and Hetabolisi of Phorate Ond«r Field
Conditions After Granular Band Applications
Schulz, K.R.; Lichtenstein, I.P.; Fuhreiann,
T.H.; Liang, T.I.; Dep. Entoiol., Oniv.
Wisconsin, Badison, «i
J. Econ. Entoiol. (JEENAI) 1973, 66 (4) 873-5; 1973
FHCRATE; SOILS; RESIEOE; INSECTICIDES;
DEGRADATION; NEIABOLISH; GRANOLAB BAND
APPLICATION; APPLICATION; INSECTS; PHORATE
SOLFONE; PRORATE SOLFOXIDE; BOVEKENT; VERTICAL
POVEHENT; HORIZONTAL NOVEHZNT
Bore than 4 eonths following granular band
application of phorate (5 and 10 Ib/acre),
residues had loved in both horizontal and
vertical directions and test insects (DROSOPRILA
BELA10GASTBB) were controlled up to 2-4 inches
froa the application site. Phorate aetabolisi was
•ost xapid in the soil plots treated with S
Ib/acre phorat*. Phorate sulfone was the *ajor
component in all soil cores froi the plots
treated with 5 Ib/acre phorate. The relative
coipcaition of the soil cores froa the 5 Ib/acre
treatment was phorate snlfone greater than
phorate sulfoxide greater than phorate, whereas
the relative composition of soil cores froi the
1/tonnd/acre treatment was phorate greater than
[berate snlfone greater than phorate snlfoxide.
931
Persistence of Hexachlorobicyclo(2.2. 1)Heptene
Derivatives
Schupha. I.; Ballschiiter, K.: Inst. Anorg.
Ch«». Kei chei., Oniv. Mainz, Hainz, Ger.
Fresenius' Z. Anal. Che«. (ZACFAO), 259(1). 25-8;
1972
ALIRIN; DBGRADATI01I; DIE1DRIN; EHDOSOLFAN;
INSECTICIDES; PERSISTEHCE; CBLOROBIOTCLOHEIENE;
SOILS; HEPTENE; GAS CHBOMATOGBAPHT; HOVEHENT
The persistence of heiachlorobicyclo (2.2.1)
heptane and soie derivitives, aldrin, dielduin,
and endosulfan, was investigated by following the
dechlcrination by licrctitration of Cl according
to R. Belcher, et al. <1962) and the foraation of
reacticn products by gas chroiatography. The
saiples were decomposed by hydrolysis in 4 and 2N
HOB in aq. Heoh at SO degrees and 25 degrees
respectively and by DT irradiation in ag. Heoh at
22 degrees. Dechlcrination in soil under the
influence of pH is hardly possible.
Photochemical dechlorination on leaf surfaces and
in the atmosphere light be a significant route of
degradation.
932
Chemical and Sediment Movement from Agricultural
Land into Lake Erie: Project Completion Rept. 1
Jul 69-30 Jun 72
Schwab, G. 0. ; Hclean. E.O. ; Ohio State Oniv.,
Coluicus. Rater Resources Center.
Ohio State Oniv., Columbus. Hater Resources
Center, PB 213 192/8; Report No. 3901; Contract
DI-14-01-0001-3535; Honitoring Agency Rept No.
•73-01957, OBRR-A-018-OHIO (1); Proj.
0»BR-A-018-OHIO 41 p.; 1972, September
HOVECEKT; DICABBA; PABAQOAT; HERBICIDES; SURFACE
HATER; HONOFI; FERTILIZERS; PESTICIDES; LAKES;
SOEF1CE DRAINAGE; NUTRIENTS; ELECTRICAL
FESIS1IVITI; PH; BIOCHEMICAL OXYGEN DEMAND;
EflCSPBOROS; NITROGEN; SEDIMENTS; LEACHING; SOIL
CHEMISTRY; ALDRIN; DIELDRIN; HEPTACHLOR; 8ATER
149
-------
933-938
933
Picloran Persistence in Semi Arid Range and Soils
and Rater
Self res, C.J.; Hahn , H.R.; Colon, J. D. ; Rerkle,
R.G.; Texas ASH University, College Staticn, Tl
Reed Sol, 19(4), 381-384; 1971
HEBBICIDES; RESIDOES; PONOFF; IBEIGiTICH;
RANGELAME; SOILS; SIRI-ARID SOUS; PIC10RAH; RATES
Residues in seii-arid soil after application of
0.25 Ib/acre piclorai were usually restricted to
the top 12 inches fot 60 days, less than 5 ppb
were detected telov 12 inches 120 to 180 days
after application but the herbicide vas usually
dissipated fro* the profile Hi thin a year. Hive
•onthe after application, lore piclorai was
detected at 6 tc 19 inches at the lover end of
plots with a 3* slope than those with 0-2*
slopes. Dun-off vater froi plots irrigated 10
days after treatment contained 17 ppb piclorai,
tut run-off after 20 to US days contained less
than 1 pft piclorai.
93i«
Diffusion of Selected Herbicides in Rater and in
Soil to Soybeans
Scott, H.t). ; Unit. Kentucky, Lexington, Ky.
Thesis, University of Kentucky, lexington,
Kentucky; Univ. Ricrofilis, Inn Arbor, Rich.,
Order Ho. 72-21, 483 p.; 1971
HEBBICIDES; DIFFUSION; SOYBEANS; RATER; SOUS
935
Release of Herbicides fro« Clay Minerals as a
function of Rater Content. Part 1. Kaolinite
Scott, H.D.; Lutz, 3.1.; North Carclina
Agricultural Experiment Station, Raleigh, HC
Soil Sci Soc Ai Proc, 35(3), 374-379; 1971
SIMAZINE; DIOROH; CHLORPEOPHAn; TIOOHEIDBON;
2,4-D; ATBAZINE; HOVERBHT; HIBBICIEES; CLAT;
MIMEBALS; K&OLIMITE; ADSORPTIOH; BILEASE; TBICIR
Equilibria! preseures of 0.3, 0.5, 1.0, 5.0, 10
and 15 bars vert successive!] apflied to
kaolinite suspensions containing 1 and u ppi of
carbon la-labelled 2,4-D, fluoietoron, attatine,
chlorprophai, diaron and siiazine. For all the
herbicides except siiazine the concentraticn in
the extracts decreased vith incr««sing pressure.
The decreases vere greatest vith diurot and
chlorprophai. Simazina concentration UBS 2-3
tises greater in high than In Ion pressure
extracts. Fluoieturon and 2,4-D Here negatively
adsorbed, the others vere positively adsorbed.
The order of release in tens of total recovery
of herbicide afflied at the 1-ppi tate vas:
fluoaetoion greater than 2,4-D greater than
atrazine greater than chlorprophas greater than
siaaiine greater than diruon. At the 4 ppa rate
release of 2,4-E was greater than that of
fluoaeturon. Total herbicide recover* tanged froi
12* for diaron tc 921 for flooieturon.
S3f
Self-Diffusion Coefficients of Selected
Herbicides in Rater and Estimates of Their
Transmission Factors in Soil
Scott, H.D.; Phillips, B.E.;
Arkansas, Fayetteville, AD
Dept. Agron., Oniv.
Soil Sci. Soc. Aier. Proc., 37(6), 965-967; 1973
SCILS; HEBBICIDES; RATIR; TRANSMISSION FACTORS;
SElF-DIFPtJSICN COEFFICIENT; EIFFOSION COEFFICIENTS
Self-diffusion coefficients oi selected
herbicides were leasured in aqueous solution by
the capillary tube lethod. The diffusion
coefficients were approximately 0.6 x 1E-5
ci-sguared/sec at 23 C and were not particularly
related to the configuration of the herbicide
•olecule. Values calculated for the transmission
factor: of these herbicides differed with the
•ore lobila compounds teing associated with the
higher values. (11 references)
937 ,
tiffusion cf Herbicides to Seed
Scott, H.D.; Phillips, F. E.
Reed Sci, 19(2), 128-132; 1971
SOUBIANS; GLTClME-dAx; SEEDS; CHLORPHOPHAM;
HERBTCItES
936
Diffusion of Selected Herbicides in Soil
Scott, H.D.; Phillips, R.E.; Kentucky Agric. Exp.
Stn. , lexington, Ky
Soil Sci. Soc. Aier., Froc. (SSSAA8) , 36(5),
714-19; 1972
SOILS; DIFFUSION; ADSOSPTIOH; LOAH; CHLOBPBOPHM-
tlFHEHAIUD; PBOHETONE; TKIRSFORHATIOR;
TRIF10BALIR; ISOTHERHS; FLOORBTOBOH; SIHAZIHE;
1TBA7IHB; EBCnETBTME; 2,4-1; BEN1FIH; BEBBICIDES-
ANALYSIS; BATE; 70LATI1IZATIOM VAPOR PHASE;
SOLUTION PHASE; CLAY
The diffusion coefficients of herbicides were
measured in silty clay loam. The self-diffusion
coefficients of 2,4-D, chlorpropham, diphenaaid,
and proaetone decreased as the diffusion time
increased, suggesting that changes in the
structure might have occurred. The rate of
diffusion increased with the soil water content
for all herbicides, except trifluralin. Linear
adtorction isotheris Here obtained. The order of
adsorption vas: 2,4-D less than fluoaeturon less
than prometone less than siiazine less than
atiatine less than dipbenaaid less than
prcaetryne less than chlorprophaa less than
trifluralin less than benefin. Correlation
analysis shoved that the diffusion coefficients
cf the nonvolatile herbicides vere inversely
related to the amount of adsorption, indicating
that tost of the diffusion occurred in the
solution phase. Fox volatile herbicides,
diffusion occurred in the vapor phase and the
solution phase.
150
-------
939-944
939
Hoveaent of Herbicides through Sell to Soybean
Boot a
Scott. B.C.; Phillips. B.E.
Agron. J., 65(3), 386-390; 1973
HERBICIDES; SOTEIAN; ROOTS; CHLOBPBOPHAH;
ATKAZIHE; ABSOHPTIOM; HISS FIO«; PIBHEABILITV,
TRAHSPOHT; SOILS
940
Influence of Artificial Rainfall and
DI-1-P-nenthene ca Karbutilate Hoveaent in
Greenhouse Soil
See, B.R.; Hurtt, R.; Veg. Conttcl Div., Fort
Detrick, Fiedeiick. BD
Proc. northeast. Reed Sci. Sec. (PNBSBF) , 28,
127-32; 1974
BEEBICIDES; SOU EROSIOH; KiFBUTILATI; HOVMEHT;
SOIL HOI STORE; B4INFALL
Adsorption of the Herbicide Graaexcne Dnder Soil
Conditions
Segi. I.; Rar'Enko, Y.G.; Guyash, F.; Tliiryazev
S.-IC. Ikad., HOCCOH, USSS
in. Tiiiryazev. Sel'Skokhoz. Akad. (ITSAA7) , (4).,
14-19; 1973
SBABOJOBE; SOILS; AESOBPTIOR; BBKOHTB; BONUS;
CATIOKS; IZOTOEtCTRR; ASSAI
902
aicrobial Degradation of Insecticides in Flccded
Soil and in Anaerobic Cultures
Sethunathan, H.; Cent. Rice Res. Inat, , cattack,
India
Residue
. »7, 1U3-65; 1973
DEGRADATION; INSECTICIDES; LINDARE; BBC; DDT;
HEPTACHLCS; HETBCXICHLOR ; IN ERIN: IDE; CH10RDANE ;
DIELDRIH; ALDBIM; BIOCHEHlCAl TRANSFORMATION;
REDUCTIVE DECHIORIHATION ; HTCBOLISIS; CIIZIMCS ;
PABATRIOR; NITHC -GROUP REDUCTION; IIICBCORGINISHS ;
CRGAWOCHLORINE; INSECTICIDES: ORGAHOPHCSPRAIIS ;
IHAEROBIC; SOILS; FLOODIHG; BIXICBlOfiOEEllZEIII;
WATER; BEYIEV; IRCRIH; DEGRADATION PRODUCTS
Current knowledge of •icrohial degradation cf
erganochlorine and organophosphate ina«cticldes
in flooded soil and anaerobic cultures is
reviewed, certain organochlorint insaciticea
(lindane, other isoiers of BBC, CCT, heptacblor,
•ethoxychlox, «ndrin) arc rabidly tiodcgradable
in flooded soil; others (TDE, chlordanc.
dieldrin, aldrin) belonging to the sai« group arc
degraded slowly. In flooded soil, tioch«iical
transf ariationa, reductive dechlcrination (DDT),
hydrolysis (diazinon and parathicn), *nd
litre-group reduction (parathion) navt been
deionstcated. (68 refs)
9 , 602-4; 1973
EACATBION; SOILS; OBGANOPHOSPROROS IHSECTICIDES;
tlEBAEATION; HDBOS; PH; SOLFATB; BICBOBES;
BItBOLlSIS; FLOODIHG; SATER; BITROPHIIIOL; HEAT;
CABBC1; ISCLATIOB; ACIt SDLF1TI; ALLUVIAL SOIL;
INS1CIICIDBS; DEGRADATION PRODDCTS
Is shown in the laboratory, the degradation
degree of parathion in 5 flooded acid soils
increased with the organic latter content.
Fastest degradation occurred in an acid sulfate
soil, with an organic latter content of 12.2*.
due to licrobial participation. Parathion was
rapidly hydrolyzed to p-nitrophenol in a flooded
alluvial soil, following its repeated
applications. The activity of
parathion-hydrolyzing enriched culture froi the
alluvial soil, was retarded ty heat treataent,
indicating the role of biological agents in the
hydrolysis. BACILLDS sp., capable of decomposing
p-nitrophenol, as a sole carbon source, was
isclated fioi parathion-aiended flooded alluvial
soil.
944
Diazinon Degradation in Submerged Soil and Rice
Paddy water
Setbonathan, N.; Cept. soil nicrobiol, Internal.
Rice K«s. Inst., Los Banos, laguna
Adv. Choi. Ser., 111, 244-255; 1972
DEGRItATIOR; DIAZINOR; DICROORGANISNS;
HYDBCITSIS; BINEB»LIZAIION; RICE; PADDIES;
PERSISTB1ICE; FLOODING; INSECTICIDES; HETABOLITES;
DEGBltATIOl PRODOCTS
Ciazinon persisted for about 15 days in a flooded
coil (p3 6.6) that had been treated previously
with the insecticide; tut, in a flooded soil that
had never been exposed to diazinon, it persisted
for about 60 days. Similarly, water froi a
diazincn-treated field inactivated the
insecticide within 5 days after incubation.
Hicrocrganisis that developed in response to
insecticide application accelerated its
hydrolysis and the subsequent lineralization of
the hydrolysis product, 2-iscpropyl-6-iethyl-»-hyd
roiypyriiidine, to C02. A ?LAVOBiCTEEIDB sp.,
isclated froi water of a treated rice field, had
exceptionally high capability to letabolize
diazinon as sole carbon source. This provides
unequivocal evidence that licrobes are involved
in the rapid inactivation of diazinon in rice
field:.
151
-------
945-950
9i»5
Organic Hatter and Earatbion Cegradaticn in
Flooded Soil
Sethunathan, N.
India
Cent. Bice tea. lust. , Cuttack,
Soil Biol. Biochen. (SHIOAH), 5(5), £41-1; 1573
PARATHION; PERSISTENCE; BICE STHASj SOILS;
DEGRADATION; FLOODING; HOMOS; NAIEB; STAGNANT
BATES; INOCDLATICN; HTDROLTSIS; I-NITSCPHENOI;
CIETHTL TRIPHOSPHORIC ACID; H1I8C BEDDCTIOH;
ANINOPARATHION; METABOLITES; PATHWAYS; ORGANIC
MATTER; METABOLISM; DEGRADATION PBODOCIS
In soils inoculated with an enrichment culture
(pooled standing water samples) nhich exhibited
an exceptional!} high ability to hydrolyze
parathion, rice straw amendments inhibited
parathion hydrolysis, that IE, parathion to
p-nitrophenol and diethyl thiophcsrhoric acid. In
uninoculated soils, however, rice atran enhanced
parathion degradation. Via nitro reduction
aiinoparathion and an unidentified metabolite
(apparently possessing a p*s bond) were detected
in uninoculated soils amended vith ric< straw.
The influence ef organic latter on parathion
persistence in flooded soil is apparently
governed by the metabolic pathwaj involved in the
degradation process.
916
Increased Biological Hydrolysis ef Diaiinon After
Bepeated Application in Rice paddies
sethunathan, H.; Pat halt, H.D.; International Rice
Research Institute, Los Banoa, Laguna, Philippines
Journal of Agricultural and ?ood Cheiiatry,
30(3), 586-589; 1972
RTDBOLTSIS; DIACINON; PADDIES; DIGBADA1ION;
2-ISOPROPYI-6-HEIHY1-II-HIDB01T.PYBIHIDIIB; BICE;
SOILS; RHIZOSPHIE1; MICROOHGISISBS; MBUBOLIIES;
MINERALIZATION; DEGRADATION PBQDtCTS
Bepeated application of diazinon granules to soil
affected the development of a ilcrcbial factor
which caused the rapid degradation of iiazinon.
Bo degradation eceorred in nen-dlazinon treated
plots. The degrading activity of materials
collected froi diazinon-treated plots was in the
order paddy water greater than ihizospbere soil
greater than non rhizoaphere soil. Rhen
incubated with water froi diazincn-treated
fields, diazinon was bydrolyied tc
2-isopropyr-6-methyl-1-hydroxypyrimidine in 75
hoar*. In the next 25 hours this hydrclyiig
product «as coipletely lineralizcd.
9U7
Degradation of Chlorinated Hydrocarbon I by
Clostridini Species Isolated froi
Lindane-Aaended, flooded Soil
Sethanathan, ».; Toshiia, T.; Cent, lie* Hes.
Inst., Cuttack, India
Plant Soil(PLSOA2). 38(3), 6(3-6'. 1973
CLOSTRIDIOM; LINCANI; DICOHPOSITIOI;
HETBOXICH10B; BACTERIA; CHLOEINAUD PESTICIDE;
DEGRADATION; (1TIB; FLOODII6; HBITACBLOB;
JNAEBOBIC; HADIOACTITCTI; CABBOi DIOXIDE;
HBTR1IS; TBACEB; C1BBOR 14; BBIalDCIl;
DZGBACATIOII PRODUCTS
A clostridiui species isolated from flooded soil
aiended with lindane deconposed aethoxychlor,
liiidane, and heptachlor in that order under
anaercbic conditions. Curing the bacterial
degradation of ring-labeled lindane, there «as a
ICES cf radioactivity froe the reaction aixture
release of 1I4C02 during the degradation of carbon
14-lateled lindane was negligible. Chi vas not an
end product of lindane breakdown.
5 lie
Ccnveision of Parathion to P Nitrophenol by
tiazinon Degrading BACTERIUM PLAVOBACTESIOM-Sp
Sethunathan, M.; Yoshida, T.
Proc. Inst. Environ. Sci., 18, 255-257; 1972
FARATHION; PHENOL; DIAZINON; DEGRADATION;
D1TBOPBBS01; BACTERIA
919
Parathion Degradation of Submerged Rice Soils in
the Philippines
Sethunathan. N.; Yoshida, I.; Cept. Soil
Bicrobiol., Internat. Bice Res. Inst., Los Banos
lagung
J. Agr. Food Chei(JAFCAD) , 21(3), 50U-6; 1973
PABA1BION; PEBSISTEHCE; BICE; SOILS;
FLAVOEACTERIOM; DEGRADATION; DEGRADATION PBODOCTS
The persistence of parathion (0,0 diethyl 0 p
citrofhenyl phospborotbioate) in U Philippine
rice soils was investigate! in submerged and
upland conditions. The parathion in the soils
after incubation at 30 degrees was extracted with
a hexane acetone lixture and the asount vas
determined by gas chroaatoqraphy. The insecticide
disappeared core rapidly fro* submerged soils
than froi upland soils. In sniberged soils
paratbion was reduced to aiinoparathion (0,o
diethyl 0 p aiinopbenyl phosphorothioate).
Autoclaving of the soils increases the
persistence of paratihion under submerged
conditions, indicating microtial participation in
its degradation. Parathion degraded faster in
flooded soil inoculated with parathion
hydrolyzing flavobacterium sp. than in
nninoculated soil.
950
Effect of Atrazine on the Bate of Vitrification
In Black clay Loam soil
Sett}, B.I.; Baligar, V.C.; fa-til, S.7.; noiv.
Agric. Set., Dharvar, India
Hysore J. Agric. Sci., «, 111-113; 1970
ATEAZIIB; NITRIFICATION; SOUS; LOIR; CLAT
•hen applied to the soil in conjunction with
-------
951-956
951
In floe nee of Dalapon (2,2-Dichloropropionic Acid)
on Biotic Potential of Soil
Sharma, L.N.; Saiema, S.H.; Goft. Agr. Res.
Station, Durgapura, Jaipur (Bajasthan), India
Andhra Agr. J. , 18(2), 74-78; 1911
DALiEON; HICBOORGAHISHS; POTTED SOIL; lOSSI;
SOILS; DECOMPOSITION
Soil microorganisms dare counted at intervals
froi 2-32 days after application of various
aiounts of dalapcn to potted soil vhich had been
inoculated with AZOTOBACTIR CBROOCOCCOH to give
special stress en this licrote. Dalapon
significantly decreased AZOTOB1CTEB and the
bacterial population at concentrations above 3.0
ppm and increased actinomycetes at 1.5 pp» at
greater. No significant effect en soil fungi vas
noted. Maiimui activity vas observed tetveen
days 8 and 14, and it was assumed that most of
the dalapon vas decomposed daring this period.
952
Hicrobial Degradation of Phenoiy Herbicides in
Culture, Soil, and Aquatic Ecosystems
Sharpee, K.H.; Cornell Oni»., Ithaca, My
Dissertation; Ccrnell Univ., Ithaca, My;
University Hicrofilis Order Ho. 13-20, 177 p.;
1973
PHENOXY HEHBICICIS; HERBICIDES; SIODEGRADATIOM;
AQUATIC ECOSYSIEBS; EESSISIEICI; SCILS;
DEGRADATION; 2.4-D; IHZTBE; flAHGJHOOS IOHS;
CHIOHOSOCCINATE; CHLOROBALttlACETATE; SDCCIKATI;
PKESHHATIB; SEDIHJHTS; 2,4,5-T; PHENOL;
LACTONIZATION; CONTIHSION; FOHA8ATJ; SALAIE;
COENZYHES: DEGRADATION PRODDCTS
In studies on degradation cf 2,4-D,
2-chloro-4-carbo«ym«thylene tut-2-cnolide vac
forced froi cis, cis-2,4-dichlorcmuconate by a
lactonizing enzyie obtained from ARTHROBACTEE sp.
isolated froi scil. Manganous ions vere required
for activity and stability of the lactcnizing
enzyie. In experiients aimed at determining
intermediates betveen 2-chloroialeylacetate and
succinate, both d-chlorosucclnit« and
1-chlorosuccinate were poor substrates for
ABTHBOBiCTBP sp., indicating that chlorosuccinate
is net an intermediate in conversion of
chloromaleylacetate to succinate. Cell-free
extracts of the organism converted th«
chlorosviccinatc compounds to stall amounts of
malate and fumarate, indicating that the last
chlorine from 2,1-D vas removed by displacement
«ith a hydrozyl group. A pethvay «as proposed fcr
the metabolism of 2,1-D, in vhich coenzyme a is
the carrier foe the intermediates betveen
chloromaleylacctate and succinate. In soil and in
a fresh water and sediment system small atoonts
of 2,1-dichlorophenol or 2,
-------
957-965
957
Persistence of Benzole and Phenylacetic Acids in
Soils
Sheets, T.J.; Slith, J.W.; Kaufman, D. D.
Meed Sci., 16(2), 217-222; 1968
PERSISTENCE; BEHZOIC ACID; PHENYIACETIC ACIDS;
ACIDS; SOUS
SIKA2INE; CHIORCPHINYLCABBAHATH; PHYTOTOXICITI;
SOIL MCISTORI; SOILS; BAHLEY
Under huiid conditions, bailey germination and
initial growth were greatly affected by isopropyl
3-chlcrophenylcarbatate and to a lesser extent,
by siiazine (CAT) . The injury vas mostly
prevented by covering the crcp with greater than
3 cm sell layer. CAT in the soil had a residual
effect after 5-7 months under dry conditions.
958
Adsorption of DDT by soils. Soil fractions, and
Biological Materials
Shin, Y.C.; Chodan, J.J.; Holcott, A.B.;
Department of Crcp and Soil Service, Michigan
State University, East Lansing, nichigan
J Agr Pood Che«., 18(6), 1129-1133; 197C
SOILS; PLANTS; AESOBPTION; FOBGI; TISSUE;
PRECIPITATION; ORGANIC MATTES; SCI1 FRACTIOUS;
BUCK
Linear adsorption isotheras tere obtained for p,p
pri«e-DDT and un«xtracted or H202-digested scils
at ageuous matrix concentrations less than 1 ppb.
Precipitation contributed increasingly to
disappearance of DDT at equilibrium supernatant
concentrations above 2 ppb, and was the principal
•echanisi above 4 ppb. Heaoval ol lateiials
soluble in ethei and alcohcl increased adsorption
by aineral soils. After ether and slcoiol
extractions, the kd per unit of C was 2-3 tiles
greater in mineral soils than it Das in luck or
fungal or plant tissue. This relationship between
•ineial and organic soils was maintained through
subsequent sequential extraction! with hot water,
2* HCL and digestion with H2C2. deviations fici
linearity increased with successive extractions
through 2% HC1. The data illustrate 3 probable
sources of anomaly in attempts tc relate
adsorption of non-ionic pesticides to coil
organic-»atter content.
959
Soil-Applied Herbicides in the Control of
Temperature Zone Grasses, Broadleaf Heeds and
woody Plants
Shipia'n, B.D.; Pennsylvania State Oniv.
University Park, PA
Final Fept. May, 1969 - Aug. 1971, Penn. State
Oniv.; Contract EAAA 13-«9-C-0085; 4D-732 502;
153 p. ; 1971, Aug.
960
The Ecosystei Approach to Herbicide Evaluation
Shipian, R.D.
Proc. northeast l«ed control Cent., 25, 55-64;
1971
BEST DDES; ANALYSIS; PEROBOM; SOILS; 1ZRBBSTR1A1
ECOSYSTEMS; HERBICIDES; OATS
962
The Depth of Penetration with Water of the
Pesticide BHC in the Presence of Sulfancl into
the Ground
Shtarkas, E.H.
Gig Sanit, 37(2), 106-108; 1972
GRANOICNET8IC; SOUS; COMPOSITION; ADSORPTIOH;
HATEB; PESTICIDES; BHC; PERSISTENCE; SOLFANOL
Cegradation of Farathion by Bacteria Isolated
frei flooded Soil
Siddaraaappa, B.; Rajaram, K.P.; Sethunathan, N. ;
Dei. Soil Hicrobiol., Cent. Rice Pas. Inst.,
cuttack, India
Atrl. Hicrobiol. (APMBAI) , 26(6), 846-7; 1973
PABATBIOH; DEGBIDATIOH; BACTERIA; FLOODING;
BATEH; HYDROLYSIS; NITBITE; NITROPHENOL; NITBOGEN
CIOXIIE; DEGRADATION EEODCCTS
Two bacteria, BACILLUS sp. and PSEUDOHON AS sp.
were isolated froi parathion aiendad soil which
exhibited parathion-bvdrolyzing ability. Nitrite
waE liberated by BACIL10S from the
paratbion-hydrolysis product, p-nitrophenol, but
not fro* parathion, whereas PSEODOHON AS
hydrolyzed parathion, and then released HO2 froi
p-nitrophenol. These results establish parathion
degradation by bacteria past the p-nitrophenol
stage to the end product, NO2.
96 C
soils capacity for Accepting Organic Fertilizers
Slegel, 0.
Bodentnltur., 2* (3), 237-252; 1973
(IE1AIS; BASTES; OBGABIC PEHTILIZBRS; FOOD; SOILS
965
Behavior of Lindane in Soild and in Water
Siapar, n. ; E. Norck A.-G., Daristadt, Gariany
Scbriftenr. Ver. Basset-, Bodan-, Lufthyg.,
E«tlin-Bahle«(SV»HE) , Mo. 37, 175-85; 1972
BEVIES; LINDAHE; SOUS; BATBR
961
Influence of Soil Moisture on Phjtotoxicity and
Residual Activity of Simazin* (CAT) and CIFC
Shiraishi, K.V.; Hatanabe, T.; Zbiae
Igric. Bxp. stn., Hatsoyaia, Japan
Zasso Kenkyn(ZASKAI) , (14), «1-S; 1972
154
-------
966
Residue Analysis and Degradation of Horphactine.
Sieper, B-; E. Merck, Darmstadt, Germany
Part of Fate of Pesticides in Environment, Gordon
and Breach, London (p. 157-17
-------
972-976
972
Effect of Nemagcn on Some Soil Properties
Singhal, J.P.; Singh, C.P.; Alig«rb Huslim Doit.,
Aligarh, Ottar Pradesh, India
Indian J. Agr. Sci. , U3<3), ;60-;84; 1 S73
SOILS; NiaAGON; CIBBOHOCHLCBCPHOfANE; CALCIUM
CARBONATE; PH; NITKOGEN; FHOSJHOBOS; PCTASSION
In doses frog 0 to 2.5 mg/5 kg of soil, nemagon
(dibromochloroprcpane) increased tbe electrical
conductivity of the soil but had nc larked effect
on the pH or calcium carbonate content. A
maximum increase in soil organic latter was
observed 45 days after treatment with lost dcses.
Significantly higher available nitrogen was
found after 45 days Exposure to 1 il of nemagon/5
kg of soil, but large doses inhibited this
parameter. In 30 days a maximum level of
available phosphorus was found with an
application of 1.5 mg/5 kg of soil. A decrease
in available potassiui was otserved after 45 days
in treated soil.
973
Residues of Atrazine, Cyanazine, and their
Phytotoiic Metabolites in a Clay Loam Soil
Sirons, G.J. : ?rank, R.; Sawyer, T.; Prcv.
Eestic. Residue Test. Lab., Ontario Mi cist.
Aqric. Food, Guelph, Ontario, Canada
J. Agr. Food Chei. (JiPCAO) , 21(6), 1016-20; 1973
ATRAZINE; HETABCIITES; SOILS; CIINAZINI;
METABOLISM; CLAT LOAH; LOAN; TBASSFORHATION;
DEETHY1ATION; DEISOPBOPTLATION; CIAHAZINE ABIDE;
RESIDUES; DEGBADATIOH PBODOCTS
In clay loam soil, atrazine las converted to
2-chloro-4-amino-6-isopropylaminc-s-triazine
(deethylated atrazine) as major and to
2-chloro-4-amino-6-ethylamino-s-triazine
(deisopropylated atrazine) as minor phjtotoxic
•etabolites, and cyanazine was ccnverted to the
deisoprocylated atrazine as the lajor phytotoxic
letabolite. Cyanazine aiide was also fcond. The
concentration cf deethylated atrazine reached
peak concentrations in the soil £-6 months after
application of atrazine, whereas peak
concentrations of deisopropylated atrazine were
reached 2-3 months after atrazine cr cyanazine
application.
971
Some Iffects of an Insecticide (Dursban) and a
weedieide (Linuron) on the Bicroflora of a
Submerged Soil
Sivasithamparam, K.
Eiso 19, 339-346; 1970
KICRCILORA; DORSBAS; LIRaSOM; CLAY; LOAB;
tENIlBIPIIHES; BOH6I; IHSECTICIDES; WEEDKILLBSS-
SOILS; HICROCRGANISBS; DENITRITICATION
Dursban and linuron were applied to weliaada clay
loan (pH 5.35) and all nicrobiological analyses
«ere lade with the soil incubated in the dark.
Aerolic bacteria, actinoiycetes, aumonifers,
sulpbate reducers, cellulose, decomposers and
heterotrophic iron precipators were all
stimulated by both chemicals at both times of
saipling (3 weeks and 3 months). Both treatments
generally depressed denitrifers. Dursban
teiporarily inhibited the aerobic p dissolvers
and the aerobic N fixers at the second sampling.
linurcn stimulated fungi at toth samplings and
the aerobic N fixers at the second sampling.
tutsban increased the algal population vhile
linutcn suppressed it.
975
Eielogical and Chemical Degradation of Atrazine
in 3 Cregon Soils
Skipper, H.D.; Volk, V.V.; Oregon State
University, Corvallis, Oregon
8e«d Sci, 20(»), 3«U-3«7«; 1972
HEBBICIOES; SOIL HCISTOBE; DHTOIIPICATION;
EEGRAEITXON; ATRAZINE; HTDROXYATRAZINE; LOAH-
CLIT; SILT LOAH; DETOXIFICATION; HyDROiySIS
Microtial degradation of atrazine and
hydroiyatrazine in a loam, a clay and a silt loam
was dependent on soil type, atrazine
concentration and moisture content. The
hydroxyatrazine ring was attacked more readily
than the atrazine ring. Hydroxyatrazine accounted
for 1C1 of the extracted C11 from 4 atrazine
treated clay and Icam, and for 40% from the silt
loam detoxification of the atrazine in the silt
loam was mainly by hydrolysis and in the other
soils it took place by a combination of chemical
hydrolysis and slow microbial degradation.
976
Hovement of Prometryne in Irrigated Carbonate
Chernozem
Skoblln, A.P.; Zakordooets, V.». ; Drozdova, O.A.;
Krymskii Psdagogicbeskii Institut, Simferopol'
DSSR
Agrokbimiya 5, 140-143; 1972
ROVEREIT; P80METBI»E; CHERIOZEH; PENETRATION;
P1BSISTENCJ; IRRIGATIOI; SOILS
in a 3-y«ar axperiment in which prom«tryn» was
applied 3-5 days b«fore the emergence of caccot
seedlings on southern carbonate heavy loamy
chernozem, the prometryne penetrated as deep as
15 cm within a month after application. The
final depth reached was 30-60 cm, depending on
the rate of application. Toxicity persisted
3.S-S.O months.
156
-------
977-982
977
Herbicide Effectiveness, Soil Residues, and
Phytotoxicity to Peach Trees
Skroch, S.A.; Sheets, T.J.; Snith, J.W.; N.C.
State Oniv. , Raleigh, NC
Heed Sci., 19, 257-60; 1971
PHYTOTOXICITY; TREES; DICHIOBEIII; TE8E4CI1;
3-TERT-BOTY1-5- BROHO-6-HETHYLORACIL; DP-733;
BERBICIDES; SOUS; RESIDUES; PEACHES; IEOITS;
ACCOnULATIOH
Dichlobenil, tetbaeil and
3-tert-botyl-5-bromo-6-metbyluracil (DP-733) were
applied annually as soil surface 01 incorporated
treatments for 3 years. The herbicides did tot
accumulate in the 0-15 c» soil layer, low
concentrations vere detected at 30-60 cm 1 year
after the third annual application of 6.72 kg/ha
dichlobenil and H.48 kg/ha of DP-733. Terbacil
was not detected at 30-60 cm but was presented in
the 15-30 cm layer of the «.«8 kg/ha plots.
978
Use and Residues of Mercury Compounds in
Agriculture
Smart, M.A.
Residue Rev., 23, 1-36; 1968
0SAGE; RESIDUES; BEBCORY; AGRICD1TORB; SBVIIS;
CSOPS; SOILS
1 review of use cf mercury compounds agriculture,
including mercury residues in soil and crops.
(109 references)
CARBON DIOXIDE; 3,6-DICHLOBOSALICYLIC ACID;
SAIICYIIC ACID; CARBCXYLATION; BREAKDOHN;
DEGRADATION PRODUCTS
The degradation of dicaiba, carbon in-labeled in
the carboxyl group, vas studied in moist
oonsterile regina heavy clay at 25 degrees.
following soil experimentation with 0.1i CaC12,
gas chromatography and radiochemical analysis
vere used to monitor the breakdown at weekly
intervals. Loss was rapid, with only 10* of the
applied dicamba being recovered after 5 weeks.
Further treatment with 1 n NaOH rec overed small
amcunts of dicamba, and increasing quantities of
3,e-dichlorosalicylic acid. At the end of 5
weeks, approximately 28* of the dicamba vas
transformed. 11C02 was also liberated from the
treated source, indicating that dicamba, or
3,6-dichlorosalicylic acid, or both, underwent
decartcxylation.
Esters to 2,U-D
981
the Hydrolysis of 2,<«-D Acetate
in Saskatchewan Soils
Smith, A.E.; Canada Department of Agriculture,
Research Station, Regina, Saskatchewan
Seed fes., 12(U). 36U-372; 1972
ELECTRO* CAPTURE GAS CBROHATOGRAPHY; ESTERS;
2,H-D; SOILS
The isc-prcpyl and n-butyl esters were easily
hydrolyaed in soils of pH 1.0-7.5, the recoveries
being less than 151 after 1.5h and 0* after 2th.
loss of the iso-octyl ester was slover,
apjroxinately 20-30* remaining after 2th and 10*
after «8h.
979
The Loss of Five Thiolcarbamate Berbicides in
Honsterile Soils and Their Stability in Acidic
and Basic Solutions
Smith, A.; Fitzpatrick, A.; Canada Dep. Agric.,
Saskatchewan, Canada
J. Agric. Fd Chem., 18, 720-722; 1970
LOAN; EPTC; VERNOLATE; PEBULITt; CIALL1TE;
TRIALLATI; B1DROLYSIS; THIOLCARBAHATE;
BERBICIDES; SOILS; STABILITY; DEGRADATION; CLAT
In Regina heavy clay and ieyburn loam, EPTC,
vernolate, pebulate and diallate were lost within
2 to 4 weeks while the loss cf tiiallate vac much
slower. Treatment with 10 M NaOB solution at 95
degrees C for 1 hr did not affect EPTC, pebulate
cr vernolate, but diallate and triallate weie
degraded under milder alkaline ccnditions. In
acid solution a higher concentraticn of H2SO1 was
required for the hydrolysis of EFTC, vernolate
and pebulate than for that of diallate and
triallate.
980
Transformation of Dicamba in Regina Heavy Clay
Smith, A.E.; Regina Res. Stn., Canada rep.
Agric., Regina, Saskatchevin, Canada
J. Agr. rood Chei.(JArCXO) , 2U1), 708-10; 1973
SOILS; DICAHBA; HERBICIDES; IHAHSICRHATIOH; CIAY;
TRACER; 1ATER; B1GINA HEAVY CLAY; GAS
CHROHATOGRAPHY; RADIOCHEHICAL ANALYSIS; CA1CIOH
CHLORIDE: SODIOH HYDROXIDE; TRANSFORMATION;
982
Influence of calcium Hydroxide and Sulfur on 2,
U-C Cegradation in Scil
Smith, I.E.; Georgia University Agricultural
Elferi»ental Station
Soil Sci. 113(1), 36-11; 1972
GA£ CBROBATOGRAPHY; HICBOBIAL ACTIVITY;
FERTILIZERS; HERBICIDES; CALCHJK HYDROtlDE;
SDIFOB; 2,U-E; DEGRAEATIOS; SOILS
Sterilized and nonsterilized sandy loai soil (pR
6.8, 2.71 organic matter) was incubated with
0-HOOC ppm S or Ca(OH)2 at field capacity for 2
weeks; 2.U-D was then added and incubation was
continued for a further 2 weeks. 2,t-D
degradation in non-sterilized soil was
significantly inhibited by s concentrations
greater than 100 ppm and was almost completely
inhibited by 500 ppi S. 2.U-C degradation in
non-sterile soils treated with Ca(OH) 2 vas
greatest at pH 7.0-7.U (500 and 1000 ppm Ca(OH)2)
and high rates of Ca(OH)2 significantly decreased
2.U-C degradation. S and Ca(OH)2 did not affect
2,M-C degradation in sterile soil.
157
-------
983-987
983
Degradation, Adsorption and Volatility of
Diallate and Triallate in Erairie Soils
Smith, A.E.; Res. Stn, Can. Agric., Begins, Sask
Weed Bes, 10(4), 331-339; 1970
HESBICIOES; GAS CHROBATOQRAPHY; FICROBIOLOGY;
BREAKDOWN; LOAN; WILTING POINT; riGBADATIOR;
CLAY; SOILS; DECOMPOSITION; 1EACHIH6: ADSOBFTION;
VOLATILITY PRUIBIE SOILS
In laboratory experiments «ith fleyburn loam IpH
6.5), SOX of the di-allate applied at rates of
2.25 to 2.50 Ib/acre was degraded after 4 weeks,
when moisture was in excess ef wilting point. In
Begina heavy clay (pH 7.8) tie Icsses vere
slightly lower, in both soils little degradation
nas observed at moisture levels telo* nilting
points. As negligible losses occurcd in sterile
soils, Bicrobial degradation was considered an
important factor in di-allate breakdown. In both
soils, tri-allate dacoaposition was slower.
Highest di-allate leaching occurred in weybtirn
loan. In 4 soils, tri-allate was almost
completely adsorbed from aqueous solution. Vapour
losses of di-allate depended on soil type and
temperatures whereas for tri-allatt they were
negligible even on heating tc 50 degrees c for 26
days. In the field, 15-20* of tb« applied
tri-allate was fcund in the top 5 cm after 1
growing season, and only 511 cf the initial
di-allate. negligible residues of toth herbicides
were found at the 5-10 ci level.
984
Degradation of Cicamba in Prairie Soils
Smith, A.E.
Reed Res., 13(4), 373-378; 1973
GAS CHBOHATOGBAPHY; UHPEBATBBE; HIBBICIDES;
HICRCBIAL DECOHPOSITIOR; HOISTORI; SOUS;
DEGRADATION DZCOHPOSITION; tICAHBA
98«
Degradation of Bromoxynil in Regina Heavy clay
Smith, A.E.; Begin a Res. Stn., Canada Dep.
kgiic., Regina, Saslc.
Seed tea.(HEHEAT), 11(4), 276-82; 1971
EROHOXYNIL; CLAY; SOILS; HERBICIDES; DSCOBPOSITION
At rates eguivalent to 1« kg/ha greater than SOU
of the applied bromoxynil was degraded in Regina
hear; clay in 2 weeks at 25 degrees and at
moisture levels above the wilting point. Losses
at 18 degrees were slower, and little breakdown
occurred in sterile Begina clay soil, indicating
that licrobial activity coiuld be important. The
decomposition products included small amounts, of
3,5-ditro«o-4-hydroxybenz«mide and
3, E-dibromo-4-hydroieybenzoic acid. Bromoxymil
uas determined in soil by extraction with 0.4V
ROB in HeOH, evaporation, solution in 10% KC1,
and spectometry at 285-4 nm. Recoveries were
68-721 from bromoxynil-fortifled moist clay after
24 hr of equilibration. No interferences were
found. After spectrometry the solution was
acidified with HC1 and extracted with EtOAc. The
organic phase was dreid, evaporated, and the
residue dissolved in NeOH for chroiatography on
pafer (2-PROH-MH40H-H20, 20:1:2) or on silica gel
plates (C6H6-EtOAo, 1:1) to seperate and identify
decomposition products.
986
Disappearance of Triallate from Field Soils
Smith, A.E.; Canada Dep. Agric., Begina, Sask.
leed Sci. (IEESA6) 1971. 19(5) 536-7; 1971
IRIAIIATE; SOILS; DISAIPEARANCE; HERBICIDES;
FESICOE; PRAIRIE SOILS
Triallate can persist in prairie soils and could
be carried over frcm one growing season to the
next, suggesting that care should be taken when
sensitive crops, such as oats, are being grown in
rotation with wheat. Field plots were treated
with 2.8 kg triallate/ha in emulsion form. After
1 growing season (5 months) the residues
remaining in the 0-5 and 5-10 ci soil levels were
determined by gas chromatography. No residues
were detected at the 5-10 cm level, whereas
16-25H of the applied herbicide was found in the
top 5 cm level.
987
Persistence of Triflnralin in Small Field Plots
as Analyied by a Rapid Gas Chro»atographic Method
Smith, A.E.; Canada Department of Agriculture,
Begina, Saskatchewan
Journal of Agricultural and food chemistry,
20(4), 829-831; 1972
PIRSISIEXCI; TRIFIORALIN; GAS CRBOMATOGRAPBY;
ANALYSIS
158
-------
988-993
988
Degradation of Dinitraiine (H3, 113-Diethyl
Z.U-Dinitro-e-Trifluoroietnyl-H-Fhenyltnediaiine)
in Sell
Siith, R.A.: Belles, «.S. ; Shen, K.; Hoods, S.G. ;
O.S. Borax Res. Corp., Anaheim, Ca
Pestic. Eiochei. Physiol. (PCBP8S). 3(3), 278-88;
1973
DIIITHAHINE: SOILS; DEGRADATION; BERBICIDES; Sill
LOAM; LOAM; TRACER; RADIOACTIVITY; HETBTL
HYDROXIDE; METHYL CYANIDE; HITABC1ITES; THIN
LATER CHROHATOGRAPHT; EXTRACTION
The degradation of dinitraiine, incorporated at
0.5 Ib/acre (0.6 ppi), in Anaheii silty loam soil
vas studied over an 8-ionth period. For both
trifluorciethyl-14C-labelea dinitraiine and
ring-uniforily-labeled dinitramine, only 20* of
the radioactivity vac lost in 8 Booths froi the
incorporation zone. HeOH* or ReCN-cxtractabl«
radioacti?ity decreased rapidly during the
initial 60 days, and only 20H reiained after 2U4
days. One metabolite *as
6-aiino-1-ethyl-2-iethyl-7-nitro-5-(triflucrcmethy
1) benziiidazole (at 0.06 ppi). and unchanged
dinitraiine vas detected at 0.05 pp». Ivo otter
•etabolites Here tentatiTely identified by
thin-layer chroiatography. As
n3-ethyl-2,»-dinitro-6-(trif luorci ethyl)-m-phenyle
nediamine (at 0.01 ppi) and
6-aiino-2-iethyl-7-nitro-5- (triflucroiethyl) benzim
idazcle (at 0.01 ppi). Effective eitraction
•ethods are described.
989
Cheiical Stability of DDT and Belated Compounds
in Selected Alkaline Envircnient£
Smith, S.; Parr, J.F.; Soil later Conscrv. Res.
Div. , Agric. Res. Serv. . Bat en Rcuqe. la.
J. Agr. Food Chei. (JAICAO) , 20(4), 839-41; 1972
DDT; STABILITY; ALKALINE EHYIHONHEHT;
CKGAMOCHLORIHE IBSECTICIDES; SOILS; INSECTICIDES;
DE6EADATIO* PRODUCTS; DDE; DID; IEHO
DDT vas stable in soil treated vith anhydrous NB3
up to pR 10, and in sterile, buffered, glass
•ictobeads up to pR 12. The threshold pH fci
debydrochlorination of DDT tc DDI in licrobcads
was 12.5, vith greater than 70X conversion at pR
13.0, vhere the aionnt of applied CDT Unaccounted
for increased from 201 at 140 hr tc SOU after 30
days, suggesting the fonation of intermediates
that vere lost daring extraction, or vere not
detectable. Applied DDE vas relatively stable in
•icrobeads at pB 13.0, vhere nearly coiplete
recovery vas obtained after 7 days. Rcvever,
extended incubation to 28 days aliened a gradual
disappearance of DDE vith only 88 and 75X
accounted for at pR 10.0 and 13. C, respectively
suggesting a tiie-depenedent pH relation.
Siiilar pH effect vas shown on the
dehydrochlorination of DDD tc DDHD
(1-chlorO-2, 2-eiz (p-chlorophenyl) ethylene).
While DDD vas stable at pR 10.0, it converted
rapidly to DDHO at pR 13.0.
990
Cheiical Stability of DDT and Related Compounds
in Selected Alkaline Environments
Smith, S.; Parr, J.F.
3 Agric Food Chem, 20(U), 839-8U1; 1972
ABHOHIA TREATED SOILS; DEHTDROCHLORIHATION; PH;
E1ECT5CH CAPTOSE; GAS CHROMATOGRAPHT; INCUBATION;
GLASS BEADS; DDE; DDD; 1 CHLORO-2
2-EIS-CHLOROPHENIL ETHtLEME; SOILS
991
Effects of Surface Area Exchange Capacity and
Organic Batter Content On (liscible Displacement
cf Atiazine in Soils
Snelling.K.w.; Hobbs, J.A,; Povers, v.L.
Argon J, 61(6), 875-878; 1969
HERBICIDES; MOVEMENT; ORGANIC MATTER; ATRAZINE;
SOILS
992
Transport, Distribution, and Degradation of
Chlorinated Hydrocarbon Residues in Aquatic Model
Eccsysteis
Soedergren, A.; Dep. Anim. Cell., Dniv. Lund,
Land, Sved.
Oikos (OIKSAA) , 2t(1) , 30-41; 1973
INSECTICIDES; DEGRADATION; TRANSPORT; AQOATIC
ECOSYSTEMS; CHLOPHEN; tCT; DEE; MODEL ECOSYSTEM
993
Coloriietrically Deteriinable Herbicides.
Analysis, Degradation, and Toxicology
Socrcnsen, 0.; Ryg. Inst. Ruhrgebiets,
Gelsenkirchen, Germany
»oi iasser (vj»»At)) , 38, 17-26; 1971
HERBICIDES; COLORIMETRY ANALYSIS; ADSORPTION;
SCILS J DEGRADATION
Procedures vere given for determination of
herbicides in dilute aqueous solutions by
adsorption on ion exchange resins, elution, and
colorimetric analysis. Included were methods for
deteriination of chlorate, paraquat, diquat,
aminottiazole, and laleic hydrazide. Ose of
these methods revealed that paraquat and diquat
vere adsorbed irreversibly tc filter sand and to
humous soil in columns, whereas the other
herbicides vere not adsorbed. The adsorptive
capacity of a 1-cm deep layer of sand was 8.4
g/i2 for paraquat and 9.5 g/i2 for diquat. Study
of the biological degradation of the herbicides
in icist soil revealed the following half-lives:
laC103, 4 days; aminotriazole, 40 hr; diquat,
several lonths; paraquat not or very slowly
degraded. The slow degradation rates of diquat
and paraquat vere due to their firi binding to
ion eichangers in the soil. The toxicology of
the herbicides studied was reviewed.
159
-------
994-999
994
Effect of Herbicides on the Biological Activity
cf the Soil
Soldatov, A. B. ; Barbut'Ko. H.; Latushkin. L.
Tr. Beloruss, Sel'Skokhoz. Akad. (TESAA2) I 76,
131-1; 1911
HERBICIDES; SOILS; CATALYSIS; AI1FOE; EHOHEIRINE;
AMIBEN; SIMAZINE; PYRABIN; SOGAR BEETS; GATNON;
LENACIL; ENZYME
ilipur (1.2-2.4 KG/HI), prometryne (1.5-3.5
KG/HA), and aiiben (4-6 KG/HA), applied 3-4 days
before sugar beet soiling, and pyraiin (3-5
KG/HI), sUazine (2 KG/HA), gatncn (4-6 KG/HA).
and lenacil (2-4 KG/HA) . applied 2-4 days aftei
sowing, decreased the soil catalase activity
during the first 10 days after application, but
in the later period the enzyie activity was
similar to that in antreatfd soil.
995
Degree and Rate of Degradation of Soie Pesticides
Under Intensive Cheaical Control for Sugar Eeet
Protection
Sovljanaki, a.; Inst. Agr. Res., Novi Sad,
Yugoslavia
Bull. sci. cons. Acad. Sci. Acts RSF Yougoslavie
Sect. A, 18(1-3), 23-21; 1S73
DEGRADATION; PESTICIDES; SUGAR BIE1S; IDT;
FOLIAGE; HEPTACHLOR; TRICHLOBFON ; BOOTS; PLANTS;
fODDEB; THIOMETON; PERSISTENCE; FESIDOIS
Results of a three year study of the degradation
rates of pesticides used on zugax beets indicate
that the toot may be used as fodder several days
after one or t«c treatments with DDT while the
leaves should not be used tot this purpose until
six weeks after treatment. Other efficient, but
less persistent insecticides should be
substituted for DDT to maintain a tolerance limit
level of insecticide on the foliage. Th«
residues of heptachlcr found were completely
harmless, and the use of this insecticide has
been satisfactory. Trichlorfon en the foliage
vas degraded to the tolerance liilt within 10
days and had almost completely disappeared in 15
days. The roots of plants treated with
trichlorfon were fit for fodder immediately.
Thiometon residues were below tolerance limits at
all harvesting dates and hence treated plants
could be fed even to dairy cows.
997
Cosment on Chemistry and Netabolism of Terminal
Fesidues of Crganophosphorus Compounds and
Carbamates
Spencer, E.Y.; Bes. Inst., Canada Dep. Agric.,
Louden, Ontario, Canada
Pestle. Chen., Proc. 2nd Int. Congr. Pestic
Chsm., (2imAY) 1912, 6, 315-317; 1972
REVIEW; ORGANOPHOSPHATES; INSECTICIDES;
BETAECIISM; CABBAtlATIS
S96
Distribution of Pesticides Between Soil, Rater
and Air
Spencer, W.F.
Part of Pesticides in the Soil: Ecology,
Degradation, and Movement, Mich, state Dniv., E
Lansing, Mich., p. 120-128; 1970
DISTRIBUTION; PESTICIDES; SOILS; WATER; AIR-
CEGSItJTION; MOVEMENT
999
Pesticide Volatilization
Spencer, U.P.; Oniv. of CA, Riverside, California
Residue Reviews, 49, 1-45; 1973
VAIOE PBESSORE; VOLATILIZATION; LOSS; DEGRADATION
FRCBOCTS; SOILS; PESTICIDES; TRANSPORT;
DISSIPATION; REVIEW; RATE; MERCDBY
Literature pertaining to moderately and slowly
vclatile pesticides with vapcr pressures less
than 11-2 •• mercury is reviewed, factors
affecting volatilization losses, mechanisms of
volatilization, indirect and dirsct measurement
cf volatilization losses, volatilization of
degradation products, and calculations of the
magnitude of potential volatilization rates under
field conditions are discussed. Volatilization
frcm foils is emphasized since a high percentage
cf applied pesticides ultimately reaches the
loll. Evidence demonstrating the significant
roles of volatilization and vapor-phase transport
in dissipation of pesticides is discussed.
996
A Systematic Method for Evaluating the Potential
Environmental Impact of Rev Industrial Chemicals
sowinski, E.J.; Saffet, I.a.
Part of Barrekette, loval S. (id.). Pollution
Engineering and Scientific Solutions.
Proceedings of the First International Meeting of
the society of Engineering science. T«l Aviv,
Israel, June 12-17, 1972. Plenum Press: New
York, NY; London, England, (95-104), 764; 1973
POLYCHLOBINATED EIPHBNYLS; PESTICIDES;
BIODEGRACATION; PCS; IRDOSTBT
160
-------
1000-1003
1000
Desorption of Lindane fro« Soil as Belated to
Taper Density
Spencer, S.P.; Cliath, H.H.
Soil Sci. Soc. Amer. Proc., 34(4), 574-578; 1970
DESORPTIOH; LINtANE; TAPOR DEHSI1T; SOILS;
INSECTICIDES; ABSORPTION; TOIATIIIZATIOH;
1SOTHERHS; GILA SILT LOAD; SIT HE; GAS SATURATION;
BEHTONITI; FREDHILICH EQDATI01I
The vapor density of 4-50 microgram/gram lindane
absorbed on Gila silt loam with a water content
of 2.2, 3.94 01 10% was measured at 20. 30 and 40
degrees C by a ges saturation methcd. Taper
density UBS also measured for 2.5-20
microgram/gram lindane absorbed en bentonite at
65* water content and 30 degrees C. Rater content
had no effect en vapor densitj until the soil das
dried toN2.2* water content (that is, a
lonoiolecular layer of water). When more than
2.2X water was present in Gila silt loam, vapour
density increased with temperature and lindane
concentration until a saturated vapor density,
equal to that of lindane without soil was reached
at 50, 55 and 62 ppm lindane at 1C, 30 and 4C
degrees C, respectively. Desorption isotheris
for lindane on Gila silt loam and tantcnite
fitted the Freundlich eguaticn.
1001
Pesticide Volatilization as Belated to Hater Less
from Soil
Spencer, i.F.; Cliath, H.H.; Califcrnia Agric.
Exp. Stn., Agric. Res. Serv. , Riverside. Ca
J. Environ. Qual. (JETQAA), 2(2), 284-289; 1973
PESTICIDES; VOLATILIZATION; SOUS; LIMtANE;
CIELBRIH; SICK EFFECT; 8ATER; COCISTIL1ATIOH;
EVAPORATION; HDHIDITI
A water lass accelerated the volatilization rate
cf dieldrin and lindane frcm the scil, bat only
after the soil surface had been depleted of the
respective pesticide. The enhanced volatilization
rate was due to the wick effect, rather than to
codistillation. Pesticides which ace carried to
the surface of the soil in evaporating water can
either volatilize immediately, or after
remoistening of the soil surface fclloning
drying. Thus lindane would vclatillze
concurrently with water, since it is more
water-soluble than dieldrin, which would rise to
the soil surface during periods cf lov moisture
and relative humidity and then volatilize rapidly
upon remcistening.
1002
Tolatility of IDT and Related Compounds
Spencer, H. F. ; Cliath, N.H.; Soil water Conserv.
Res. Div., Agric. Res. Serv., Riverside, Calif.
J. Agr. Food Chem. (JFACAO), 20(3), 6U5-649; 1972
DDT; DDE! TOLATIIIZATION; SOUS; TAFOR PRBSSORI;
CBGAMOCHLORINES; INSECTICIDES
Tapor pressures of two DDT isomers, and of some
of their degradation products, measured by gas
saturation, indicated that the o,p' isomers are
more volatile than the p,p' isomers. The vapcr
pressure cf 0.p'-DDT was 7.5 times that of
p,p'-DDt. »t 30 degrees, the atmosphere abcve a
surface deposit of technical grade DDT contained
621 o,p'-DDT. then technical grade DDT vas
applied to moist soil at 20 micrograms/g, the
atmosphere in the above the soil contained egual
amounts of o,p'-DDT and p,p'-DDT, bat at higher
concentrations the ratio of c,p'- to p,p'-DDT in
the vapor phase increased. Cieldrin applied with
EDI did not affect the DDT vapor density. Air
drying of soil reduced volatility of all
compounds. The primary breakdown product of DDT,
p.p'-CDE has a higher vapor pressure than the
original compound, p,p'-DDT, indicating that luch
of the DDT now present in the soil may voltilize
as DEI.
1003
Tapor Density of Soil Applied Dieldrin as Related
to Scil Hater content. Temperature and Dieldrin
Concentration
Spencer, I.F.; Cliath, H.H.; Farmer, ».J.
Soil Sci. Soc. Am. Proc., 33(40), 509-511; 1969
EIILIRIH; TAPOR; TCLATILIZATIOH; DIFFOSIOH;
SOILS; STREAMS; NITROGEN GAS; GILA SILT LOAN;
WATER; GAS-WASHING; RElANE: GAS LIQUID
CHROHATOGRJPHT; CHLOBIBATED HTEROCA8BOMS;
ISSECTICIDIS; SILT LOAB
lata relating solid-phase dieldrin concentration
in scil to vapor density as affected by the
soil-water content and temperature are presented
and the implication of the results to
volatilization from soils and to diffusion
through soils is discussed. The vapor density of
dieldrin was determined by measuring the amount
of dieldrin in a stream of nitrogen gas slowly
icving through a column of Gilla silt loam
containing various concentraticns of dieldrin.
The dieldrin was removed from the nitrogen gas
stream in gas-washing bottles containing hexane
and its concentration in herane was determined by
election-capture gas-liguid chromatography.
Tapor densities at 2C, 30 and 40 degrees C were
determined on each column made up at a particular
dieldrin concentration and/or water content.
Results demonstrated that vapor densities of
dieldrin in dieldrin-soil mixtures increased with
temperature and dieldrin concentration but were
not affected by soil water content until the
water content decreased below that eguivalent of
one iclecular layer of water. Vapor densities
drcpfed to very low values when the water content
fell below this level, but increased again as
vater was added to the dry scil, indicating that
the drying effect is reversible. when more than
a loncmolecular layer cf water was present in the
soil, vapor density increased with increasing
soil dieldrin concentration until a saturation
vapoi density egual to that of aieldrin without
soil (54, 202 and 676 ng dieldrin/1 at 20, 30 and
40 degrees C respectively,) was reached at
approximately 25 pp> dieldrin. This implies that
surface application of dieldrin and probably
other similar chlorinated hydrocarbon
insecticides will volatilize as rapidly from
mineral soils as from the pure materials until
the concentration at the surface falls to
relatively low levels. The data indicate that
less cf water, per se, is not required for
significant rates cf volatilization to occur from
soils or other surfaces on which water can
successfully compete for adosrption sites. (1
references)
161
-------
1004-1011
100U
Volatility of DDT Residues ID Soil as Affected by
flooding and Organic natter Applications
Spencer, if. F. ; Cliath, H.H.; Parser, 9.J.;
Shepherd, R.A.
J. Environmental Quality, 3(2), 1<«-12S; 197
-------
1012-1018
1012
Effect of Soil Type and Irrigation Bet bod OB
Lateral Hoveient of Cycloate
Stanger, C.E.; Department of Fan Crops, Oregon
State University, Corvallis, Oregon
Seed Science, 19(6), 709-711; 1911
SOILS; LOAN; RATIR; BABNTABD GRASS; L01HT SJSD;
SILT LOAH; SILT; GRASS; SOIL NOISTORE; CTCLOATI;
CARBAHATZ; MOVEMENT; IRRIGATION; 1CAH
In greenhouse experiments in which cycloate
(S-ethyl-N-ethylthiocyclohexene carbaiate) was
applied by subsurface line injection, its lateral
loreient (as measured by its toiicity to
barnyardgrass) in irrigated soil «as greater in a
loamy sand than in two silt loaiE. Movement was
greatest when the soil was irrigated to near
field capacity before injection tut vac not
irrigated subsequently. Lateral loveient was
adequate with furrow irrigation after
application, but the treated band cf sell was
displaced. Movement was inadegate with sprinkler
irrigation and subsurface irrigation. In a silt
loai witti fur ton irrigation, cycloate «as lore
effective when lixed lechanically with the soil
than when injected. In a silt Icai irrigated
after injection, loveient was greater after
injection into loist soil than after injection
into dry soil.
1013
comparison of the Persistence and Vertical
Boveient of the Soil-Applied Rerticides Siiazine
and Broiacil
Stecko, v.; Dep. Plant Husb., Agric. Cell.
Sweden, Uppsala
Part of Proc. 10th br. Seed Ccntrcl Corf.
(303-306); 1970
BIOASSAT; HERBICIDES; MOVEMENT; EROHACIL;
SIMAZINE; PERSISTENCE; SOUS; SAKE; CLAI
Bioassay showed that when the herbicides were
applied to the soil surface, downward movement of
croiacil was lore rapid than that cf Siiazine.
Broiacil persisted Icnger in sandy soil than in
clay soil, whereas sinzlne persisted longer in
clay soil. Siiazine persisted Icnger in the top
layer than it did lover down, vhcreas troiacil
persisted longer lover down.
Residues of DDT and DDE in Sell frci Ncrvegian
Cheiicals by Soil Organic Matter Ereparaticns
sternersen, J.; Friestad, H.O.; Cniv. Birmingham,
England
Part of Eroc. 10th br. ieed Ccntrcl Conf. 3,
(1089-1100) ; 1969
CRGANIC HATTEE: EET: EDE; ORGANIC CHEMICALS;
ABSOBPTIOH; SLDBBT METHOD; GEI FIL1RATION;
FILTRATION; SOUS; CALORIHETRY; FILTHA1ION; HOMIC
ACID; TRIAZINE
The isolation of organic latter and lethods for
studying interactions in agueous solutions
between components and organic chemicals are
descrited. The techniques used to study
absorption included the slurry lethod, gel
filtration, pressure filtration and caloriietry
and were illustrated by interactions between
s-triazine herbicides and huiic acid preparations.
1015
Residues of DDT and DDE in Soil from Norwegian
Fruit Orchards
Stcrscn, J.; Friestad, H.O.
Acta Agr. Scand., 19(*j, 1969, 2U1-2UH
FRtJITS; SOILS; RESIDDES; DET; DDE; FRDIT ORCHARDS
1016
Rcnitcring Pesticides in Soils from Areas of
Regular Lilited and No Pesticide Ose
Stevens, L.J.; Collier, C.w.; Wood ha«, D.H.
Pestic. Monit. 0. ,
-------
1019-1023
1019
Long-Term persistence of BBC, DDT, ana chlordane
in a Sandy Loai Soil
Stewart, D.K.R.; Chisholi, D.; Res. Stn., Canada
Dep. Agric., Kentville, Hova Scotia, Canada
Can. J. Soil Sci.(CJSSAB) 1971, 51(3), 319-383;
1971
INSECTICIDES; PIBSISTENCE; SOILS; BHC; DDT;
CHLOBDANE; RESIDUES; TBANSPOHT; ICAH; SANDY IOAH;
DDE
Residues of technical BHC, DDT and Chlcrdane
present in a sandy loam soil 15 years after the
last application were 7.5, 55 and 16*
respectively of the aiounts applied. The BHC
residues consisted cf alpha-, beta', ga»a-,
delta-isomers at relative percentages cf 36, 36,
16 and 12, respectively. The beta isomer was the
lost persistent. DDT residues consisted chiefly
of p,p«-DDT and O.P'-DDT and of E.p'-DDE.
Residues in chlordane-treated plcts were
principally alpha- and gamma-chlcrdana. There
vas little downward or lateral movement of these
insecticides in the soil in IS years.
1020
long Ten Persistence of Parathion in Soil
Stewart, D.K.B.; Chisholm, D.; Ragab, B.T.H.;
Res. Stn, Canada Dep. Agric., Kentville. Hcva
Scotia, Canada
Mature, lond., 229, «7; 1970
PARATHION; LOAN; HOVEHENT; SOILS; SAID;
PERSISTENCE
Parathion at 31.4 It per acr< (15.7 ppi) was
applied annually in spring tc a sandy loai soil
in 19U9-1953. During 19*9-1 S69 there was little
downward movement of parat hien. Here was a
small amount of lateral moveient, probably as a
result of cultivation. About 0.1* of the total
parathion applied remained in 196?.
1021
The Influence of 5,Bromo-3 Secondary
Butyl-6-Hethyl Oracil on the Nitrifying and
Bespiratory Capacities of soil
Steyn, P.I. ;Wolff, S.».
Phytophylactica, 1 J3-») , 1969, 157-159
HICBOFLOFA; HERBICIDES; FLORA; RESPIRATION;
SOILS; DR1CIL
1022
Persistence of Aldrin, Dieldrin, Heptachlor,
lindane, and Crude BHC fiexachloracyclohexane'
Formulations in Four Queensland Soils
Etickley, E.D.A.
Eur. Sugar Ex Sta., Queens!., Tech. Comun., 1,
38; 1S72
FESSISTENCE; BHC; LINDANE; EIILDRIN; LIME;
CYCLOtlENE; ALDBIN; HEPTACHLOR; SOILS; HESIDOES;
INSECTICIDES; EPOXIDE
As sho«n in field experiments the persistence of
gaima-BHC in the soil increased, as the
peicentage of this isomer in the crude BHC
formulations, applied to the soil, decreased,
with gamma-BHC from the lindane treatments being
the least persistent. Purealpha-BHC, Beta-BHC,
delta-EHC, and dieldrin did not affect the
persistence of the gam«a-BHC, suggesting that the
high persistence is due to the presence of some
ether compounds in crude BHC. Line had no effect
en the persistence of gamna-BHC. Out of 3
cyclcdiene insecticides, dieldrin was by far the
most persistent. Aldrin and heptachlor were
epcxidized to dieldrin and heptachlor epoxide,
respectively in the soils, and residues, 13
months after the application of the insecticides,
consist almost entirely of the epoxides.
1023
Edaphic Aspects of the Disposal of On used
Pesticides, Pesticide wastes, and Pesticide
Coctainers
Stcjanovic, B.J.; Kennedy, M.V.; Shuman, F.L.;
Mississippi State Oniv., State College, Hiss.
J. Environ. Qual. (JEVQAA) 1972, 1(1), 50-62; 1972
PESTICIDES; EIODEGFADATION; SCILS; BACTEBIA;
DISPOSAL; 10AN; CALCARIOOS LOIR; flICROFLOBA;
EARAODAT; CIELDHINJ PICLORAN; VERNOLATE; BROMINE;
ZIRC; ARSEHIC
Complete biodegradation of all pesticides does
not occur in the soil. The biodegradation and
the effects in the soil micrcflora of 20
analytical grade and formulated pesticides, and 7
formulations mixtures were studied in a
calcareous loam. The soil was amended with
11,227 kg/ha of the respective active ingredient
(S), and was subseguently incubated for 56 days.
The extent of fciodegradation was estimated] from
the CC2 evclved during the incubation, and the
effects on the microbial populations vere
determined. From plate counts of the incubated
samples. Picloram, paraquat, Vernolate, and
Dieldrin, as well as 8 of the formulations, were
partly degraded. Single pesticides inhibited
racterial growth, but affected streptomyces and
fungi much less drastically. Nixtores of
formulations were more biodegradable than the
single pesticides, provided that at least 1 or 2
pesticides in the mixture. lere relatively
rapidly biodegraded. Ihe mixtures reduced the
number of bacteria, but favored growth of
stxeptomvces and fungi. Incineration of liquid
formulations at 900 degrees produced little ash.
The incineration of solids, however, yielded
substantial aiounts of incombustible residues.
Analysis of the ash from the solid indicated in
several cases the presence of toxic elements,
such as Br, As, Zn, etc.
164
-------
1024-1030
1024
nicrobial Versus Chemical Degradation of
Ralathion in sell
Stojanovic, B.J.; Ralker, 9.9.; Gulf Coast
Research tab., I. Beach, Ocean Spring*. US 3956H
Journal of Environmental Qcality, 2(2) , 229-232;
1973, April - Jane
INSECTICIDES; BALATHIOM; BIODZGRADATIO>; CUT;
HICBOOBGANISHS; DEGBADATIOK; SOUS; LCAH; PB;
ABATEMENT; HICBOJLOBA; DISSIFATICH; OBGARIC
HATTER; RTDROLT5IS
Chemical and aicrobiological degradation of
lalation was studied in 3 Riasissitpi coils
(Trinity loaa, freestone sandy loaa, and Okolona
clay) and their aqueous dilutions. Ralathion
abatement in all cases Mas acre rapid under
nonsterile than under sterile conditions,
indicating the involvement of th« soil ilcrcflcra
in Balathion diiaipation. Halathion
disappearance under sterile conditions was
interpreted as cheiical degradation. The
tagnitude of licrobial as coipared to chemical
degradation seeacd to increase with increasing
soil organic latter and »ae directly dependent 01
soil pH. Microbiological degradation
predominated in all 3 testa and their agueous
dilations. The greatest aaount of cheaical
degradation occurred in Okolena clay. Nalathicn
«as guite stable under neutral or acid pH
conditions, but was susceptible to hydrolysis in
the alkaline pH range.
1025
Environmental Indicators for Pesticide:
Strickland, J.; Blue, T.; Stanford Research
Inst., Kenlo Park, CA 94025
final Sept., Stanford Research Institute; Prcj.
SRI-BCU-1608; Contract EQC-217; Apr 72, 129
1026
2-Aryl-3-(Alk,ylamino)Acrylonitriles as fungicides
Strong, J.G.
U.S. (OSIXAH) 3696199 (424/3C4; a CIS) , 25
September, 1970. 6; 1972
ACBYLONITBILB; SOILS; FUHGICICES
1027
Influence of Soil Physico-chemical
Characteristics en the Efficacy cf Herbicide
Pentachlorophenol
Su, I.H. ; Lin, B.C.
Journal of the Chinese Agricultural Cheiical
Society, 8, 99-104; 1970
ADSORPTION; PCP; SOUS; OBGAKIC RATTEB; PH;
BEBBICIDES: PESTACHLOBOPBEHOL
Adsorption of PCP increased Kith increasing coil
organic latter content, soil surface area and
acidity.
1028
Covntermeasnres to Pesticides Besidae Problems
Taken in Fukushiia Prefecture
Suenaga, H.; Pukushiia Agric. Eip. Stn.,
*oxi]ama, Japan
Shckobutsu Boeki (SHBOAO), 27(10), 418-420; 1973
A1DBII; SOILS; RESIDUES; PES1ICIDES; AERATIOI;
FH; CCHPOST
The aldrin level of soils vas lowered by
aeration, by adjustment of scil pR to 5.0, and by
addition of coipost.
1029
Persistence and Degradation of Chlorf envinphos,
Ciazinon, Fonofos and Phorate in Soils and Their
Uptake by Carrots
Hatn. Teg. Ees. Stn, wellesbourne,
Festic. Sci., 2, 105-112; 1971
Suett, D.L.
England
PERSISTENCE; CBLOBfEHYIHPHOS; DIAZIHOll; FOUOFOS;
EHCBAT1; SOILS; UPTAKE; CABROTS; IHSBCTICIDES;
LOAM; EEGBADATION; PLAMTS: PEAT; SAHO; RESIDUES
The insecticides applied at 2 kg/ha persisted
longer in peaty loaa than in sandy loai. After 7
lonths the sandy loaa containd 1X of the applied
di si in en and 20-30* of the chlorfenrinphos,
fcnofcs and phorate. The residues in peaty loaa
vere 10, 40-50, 40-50 and 30-40K, respectively.
Cairots harvested 26 weeks after sowing contained
less than 0.2 ppa cf all insecticides.
1030
Degradation of 3-(3',5'-dichlorophenyl)
5,5-diiethyloxazolidin£-2,4-dione by Plants
Suiida, S.; Toshihara, B.; Hiyaaoto, J.; Res.
Cept. Pestic. Div., Suiitoio Cheiical Co., Ltd.,
Bycgc-ken, Japan
Agr. Hiol. Chei., 37(12), 2781-2790; 1973
CEGBACATIO«; PLAHTS; SOILS; UPTAKE; HETABOLISH;
BEARS; SBAFES; FLANTS; ROOTS; LEAP TISSUES;
BOfEHIRT; EDOD; BOA; DRCA; IIMON LANP;
(AEIOIRACEBS; CARBON 1«
Studies on uptake, tissue distribution, and
letabclisi of 3-(3',5'dichlorophenyl)-5,5-diiethyl
cxazolidine-2,4-diene (DDOD) by bean and grape
plants, and degradation by soil and light were
carried out using c-11 or 3H-DDOD. DDOD injected
at st€i or absorbed through roots of bean plants
was transported lainly to leaf tissues. No
downward aoveient of the label was observed.
tBCD was decomposed in the nutrient solution to
«-3,5-dichlorophcnyl-N-alpha-hydroxyisobutyl
carbnic acid (DRCA) and
alcha-hydroxyisobutyl-3,5-dichloroanilide (HDA).
Hetabclisi of DDOD in lean plants or on grape
terries theiselves occurred to only a siall
extent if at all. when injected into grap«
trees, DDOD underwent Eoie degree of
• etabolization to RDA and probably
3- (31,5'-dichloro-4'-hydroxyphenyl)-5,5diiethyloxa
Iolidine-2,»-dione. In soil, DDOD broke down to
DHCA. HDA, and 3,5-dichloroaniline, but formation
of tettachloroazobenzene was not observed under
the present experimental conditions. DDOD
decoicosed to seme degree when irradiated with a
xenon lamp.
165
-------
1031-1035
1031
Volatilization, Degradation, Adsorption, and
Desorption characteristics of Aldicarb
(2-Hethyl-2-(Methylthio) Pro pion aldehyde
0- (Bethylcarbamcyl) Oiime) in Soils and Clays
Supak, J.R.; Texas A And H Univ., College
Station, Tex.
Univ. Microfilms, Ann Arbot, Nicb., Order No.
72-21,336, Diss. Abstr. Int. E., 1972, 33(3),
982; 1972
ALDICARB; SOILS; CLAT; OXIHE; FESTICIDIS;
DEGRADATION; V01JTILIZATIOS; ADSCEFTIOR;
DESOBPTION
1032
Decomposition cf Herbicides in Different Soils,
Following Repeated and Combined Application.
Suss, A. ; Landanst. Pflbau, Muncben, German
federal Republic
Bayer, land*. Jb., «7, H25-UH5; 1910
SORPTION; DECOHFOSITIOH; HIREICICES; SCILS; SOIL
MOISTURE; TERPERATOBE; HONOLHORCR; THIAZIRE;
FTRAZON; TRIAZIRI; SIMAZIHZ; AREEIN; PSiRAHlR;
CLAY; ORGANIC HATTER; MICROORGANISMS
The tic-labelled herbicides Here applied tc
different soils (pH 6.1, 6.51 and 7.H9; sorption
values of 72.6, 78.1 and 91.6*) in the
laboratory. Decomposition (during 52 weeks)
•ainly depended en soil moisture and temperature,
and was highest at 30* of field capacity and at
30 degrees c (with lonolinnrcn and triazine) or
15 degrees C (pyrazon). Repeated application of
the saie herbicide generally increased the rate
cf decomposition, while coibined application with
triazine (siiazine) promoted the decomposition of
monolinuron (Arecin) and pyrazon (Fsyramin).
Ricrobial decomposition of the herbicides was
much affected by sorption en sell clay and
crganic matter, and generally resulted in a
progressive decrease in the C02 production daring
the first few weeks.
1033
Behaviour of Sorbed Herbicides in Soil, and Their
Availability to Plants
Suss, A.; Eben, C.; siegmnnd, H. ; Landesanstalt
fur Pflanzenbau, Sunchen, German Federal Republic
Sonderheft Zeitschrift far Pflanzenkrankhetten
(Pflanzenpatholcgie) and pflmnsenachuti, 6,
65-7
-------
1036-1041
1036
Translocation of Soil-Residual Organchlorine
Pesticides into Vegetables
Suzuki, H.; Tamato, 1.; Kitakyushu Manic. InSt.
Public Health, Kitakyushu. Japan
Shokuhin Ziseigaku Z ass hi (SKEZAF) . 1» (2) , 160-7;
1973
IHSECTICIBBS; BISIDOES; CHOPS; SOUS; UNDA1IE;
DDT; UPTAKE; CROPS; CXBROTS; TCRHIES; SPINACH;
SADISHIS; CABBAGE; TOMATOES; COCONBEBS; EHDBIN;
ALDRH: DIBLDRIK; BHC; BED; DDE
The uptake of alpha BBC, beta BHC, gana BRC, and
delta BRC from soil was higher by carrots,
turnip, spinach, and radish than by cabbage and
tomatoes. The uptake of an aldrln-dieldrin
•iztnre «av 16.6, 9.6, and it.ft* by cucumbers,
carrots, and spinach, respectively whereas the
uptake of endrin «as 21.6, 14.5, and 9.11 by
cucumbers, cabbage and radishes, respectively
although there vcre high levels cf p,p'-DDT
p'-DDT, p.p'-DDD, and p,p'-DEE it the soil, only
trace aiounts «cre found in the test ctops.
1039
Fhytctoxicity of Triflnralin Vapors fro* Soil
Svann, C.B.; Bebrens, R.B.; Dep. Agron. Plant
Genet., Univ. Minnesota, St. Paul, Minn.
Seed Sci. (1EESA6) | 20(2), U3-1U6; 1972
TRIPlORALItl; VAPOR; SOILS; EOXTAIL MILLET;
PLANTS; PBOSO NIUET; BILLET; ROOTS
The growth of foxtail roots and shoots was
inhibited by trifluralin, when exposed
selectively to trifluralin vapors arising from
soil. Suppression of root and shoot growth
increased as trifluralin application rates
increased. In shoot exposure, vapors arising
fic» soil treated with 5 ppi trifluralin vere
lethal to seedlings of both species. In root
exposure, root growth cf both species was severly
suppressed at 20 ppi trifluralin but shoot growth
was unaffected. The phytotoxic effects resulting
frci a given concentration of trifluralin were
•ore severe as greater carrier volumes were used
for application. Trifluralin vapors arising froa
soil 16-22 days after treatment were still
sufficient to cause shoot growth inhibition.
1037
Multiple Organochlorine Pesticide Residues in
Japan
Suzuki, H.; Yamato, T.; Oatanabe, T.; Kitakynsho
Runic. Inat. Public Health, Xitakyushu, Japan
Bull. Environ. Ccntaa. Toxiccl. (EECTA6), 10(3),
1*5-150; 1973
PESTICIDES; BESIDDES; SOUS; CHG1KCCHLCBIN!
PESTICIDES; DDT: BRC; ISOMERS; A1DRIN; DIEtDBIIf;
IRDBIK; DDE; ODD; FOOD
Many organochlorine pesticide residues were
detected in the agricultural soil cf a region in
japan that has been treated with large aiounts cf
pesticides. The soil contained high residual
levels of DDT and its related compounds, several
isoaers of BRC, aldrin, dieldrin, and endrin.
Since these soil pesticides can enter food
sources by iany routes, they represent a serious
environmental hazard.
1038
Trifluralin Taper Emission froa soil
Swann, C.w.; Behrens, R.: Dep. Agrcn. Flant
Genet., Dniv. Minnesota, St. Paul, Minn.
weed Sci. (WE1SA6), 20(2), 1O-14S; 1972
ntXFURlLXII; T»POBItATTO»; SOILS; REBBICIDBS;
VOLATILIZATION
then applied to soil, trlflnialin lost less than
5% of its initial amount by volatilization during
the first 12 hours during the first 2 hours the
vapox loss fro* u.48 Xg trifluralin/ha was only
3.5 times that shown at 0.56 kg tiiflaralin/ha.
Increasing the spray volume froa 2.311 to 300
kl/ha reduced the rate of trifluralin
vaporization loss by SOI. The experiments «ere
carried out on 2 soil types.
10«0
Fredicition of Atrazine Distribution and Noveaent
in Scil Systeas
Swanson, R.A.; Dniv. Arizona, Tucson, Ariz.
Dniv. Dicrcfilms, Ann Arbor, Mich., Order No.
72-25,627, Diss. Ibstr. Int. B., 1972, 33(2),
527; 1972
ATSAZIIE; CISTRIBOTIOH; SOILS; TRANSLOCATION;
1041
Chemical and Physical Processes that Affect
Attatine and Distribution in Soil Systems
Swanscn, R.A.; Dutt, S.F.; Arizona Agricultural
Experiaent Station, University of Arizona,
Tucson, Arizona
Scil Sci. Soc. Amer., Proc. (SSSAA8), 37(6),
672-876; 1973
ATSAzIKE; ADSORPTION; CESORPTION; SOILS;
IBIOHELICH EQUATION; MODEL; MATHEMATICAL MODEL;
DISTRIBUTION
Eoth the adscrption and desorption isotherms for
atraiine in soil fit the freundlich equation,
although the desorptioc isotheri followed a
different path back to the starting point. This
hysteresis effect indicated that the adsorption
>nd desorption of atrazine by soils were
irreversible processes. The presence of calcine,
iac,ne:iua, or sodiua icns had little effect on
atratine adsorption and desorption, but the
solubility of atrazine was exponentially related
to the ionic strength cf the solution. By using
the eguation developed, a coaputer model for
prediction of the distributicn and aoveaent of
atrazine in soil was prepared.
167
-------
1042-1047
10U2
Movement of Parathion in Soil Columns
Svoboda, A.P.: Thomas, G.H.
Lj. Aqr. Pood Ch«m., 923-7; 1968
MOVEMENT; PARATHION; SOILS; ROVEBIHT
10«3
Distribution of DDT and Toxaphene in Houston
Black Clay on Three Ratersheds
Swoboda, A.R.; Thoaas, G.W.; Cadj, F.B.; Eaiid,
R.H.; Knisel, R.G.
Environ. Sci. Technol., 5(2), 1971. 141-1«5
INSECTICIDES; 801EBEKT; LEHCHIBG; tDT; CLAY;
ILACK CL»t; TOIAEHEBI
Mechanist of BBC Pollution
Tachikava, R.
Sci. Ashai. 30(12), »5-51; 1570
BENZINE HEXACHLORIDI; "ATIB; FBE£RBATBR; SEA;
ANIMALS; RIVERS; DIIT; ISSEC1ICItIS; SCILS;
ADSORPTICH; RESICDES; RAINPAIL
In Japan, benzene hezachlotide, BBC, is used as
an insecticide. Beta-BHC has a higher toxicity
level than alpha-BHC, is less solutle in water,
and is lore persistent, therefore. more alpha-£RC
is used in western Japan. Because BBC is se
widely used there is very little fresh nater
which is unpolluted since the agricultural waters
on which BRC la used flo« into the rivers and the
sea. BHC condenses in living animals tecanse of
their contact vith the soil and «ater. The
residue concentration In water is low but,
nevertheless, it is adsorbed ty the surface layer
cf soil and when it rains it is dissolved by the
water and readsorbed by the plants. Ov-rays
break down gaseous BRC which enters the
atmosphere but re-enters the cycle through the
rain. The aiount of BHC varies with tie seasons
ranging fro* 0.1 ppb In the inland sea to His. ppb
in Yokohama City. Beef and dairy trodocts
contribute a large amont of BRC in the dift; fcx
adults 0.6 ig ter person is an allowable Halt.
The use of the BBC and DDT decreased but other
insecticides are expensive, therefore, other
safer agricultural chemicals lust te developed
and the old ones iiproved upon.
10 « 5
Pate of Pesticides in Environment
Tahori, A.S.; laiael Inst. for Biol. Bes.,
less-Ziona, Israel
Gordon and Breach Science Publishers* Bew
York-London-Paris, 572 p.; 1972
PATE; PESTICIDES; SOILS; BETABOLISM;
CBGAIMPHCSPHOBOS; FD1GICIDZS; FOCC CBAIiS;
BIOCBEHISTBY; BlSIDQtS; BAHBftLXal TOXICOLOGY;
ORGABOCHLORINZ; CAHBABATES; TBAC1B; BABHALII1
FRURACOLOGY; RZflBI
Pat* of Pesticides in Environient is vcluae sli
in the series Pesticide Cheaistrj representing
the proceedings of the Second International
congress on Pesticide cheaistry of the
International Onion for Pure and Applied
Cheiistry (IOPAC), held at Tel Aviv, Israel.
February 22-26, 1971. The congress vas attended
hy over 700 scientists representing 35 countries.
the current volu»e contains papers and
reconendations froi workshop sessions on:
factors influencing the fate ot pesticides in
soils; cheaistry and aetabolisi of teriinal
residues of organochlorine, orqanophosphoros, and
carbaaate coipounds, as veil as fungicides; and
the use of radioactive tracers for the study of
fate cf pesticide residues in food chains. Also
included are papers froa syaposia on
interpretation of tasic cheaical and
toiicclogical data involved in development of
pesticide residue tolerances and biochemistry of
pesticides in relation to aaiaalian toxicology
and pharmacology.
1046
Pollution and the Purifying Action of Soil. 3.
Foliation by Agricultural Chemicals
Takahashi, 1C.; Hyg. Res. Lab. Kanagawa Prefect.
Japan '
Bizu Shori Sijutsu (HSYCAO) , 13(6), 1-18; 1972
i; IHSECTICIDES; SOILS
10U7
Besults of investigation of Organocholorine
festicide Residues in Soils Shore Vegetables are
Grcvn
Taka'nnma, S.; lada, T.
Kantc Tosan Byogaichu Renkyukai Nenpo Proc.. 19
12H-125; 1972
CRGAHOCHLOBIRE PESTICIDES; HESIDOES; VEGETABIBS-
RICI; BHC; EUDBIW; CASIO"; PH; HOMOS; HOHIC ACIB-
PESTICIDES; DIELDBIN
Besults of investigations in 1970 of
organcchlorine pesicide residues in 32 soil
specimens in vegetable fields in nagano
prefecture are reported. The sampling and
analysis of the soil specimens were carried out
vith standard gas chromatography methods. Pour
vegetable fields where rice »as grovn previously
foi 1-5 years and four regular vegetable fields
were used. The smaller the amount of application
the smaller the residue. In the converted fields
the residue was relatively siall despite the
relatively large amounts of applied BRC. Endrin
residues did not parallel the aiount of the
application. The correlation between the
residues and pH and organic matters in the soil
were higher for delta-BRC and dieldrin. The
ciallcr residue of DDT was found in the soil with
a hick pR. The correlation between total carbon
and tie residues was high for alpha- and
gamma-BBC. There was also a high correlation
rctwecn humus and gamma-BHC and humic acid and
gamma- and alpha-BBC.
168
-------
1048-1052
1008
On the Fate of Disulfoton in th« Faddy yield Soil
Takase, I.; Nakamura, H.; Kobayashi, N.; Tsutoi,
l.: Vakahayashi. S.: Agr. Chem. lea. I tat.. Nihcn
Tokushu-Noyaku Seize Co. Ltd., Hino, Tokyo, Japan
Noyaku Kenkyu
-------
1053-1060
1053
Dynamics of DDT and BHC Residues in Fodder CICE
soil
Talanov, G.A.; Kovaleva, Y.S.
Tr. Vses. Nauchnc-Isslei Inst. Vet. Sanit., »1,
1972, 182-187
BEETS; VETCH; OA1S; COBH! POTATOES; SOUS; BET;
BHC; RESIDUES; CHOPS; FODDER
105«
The Adsorption of Some S-Triazin«s in Soils
Talbert, R.E.; fletchall, O.K.
Weed Sci., 13, 1965, 46; 1965
ADSOEPTICN; S-TBIAZINE; SOILS
1055
Effects of Activated Carbon on Pluometuron,
Kitralin, and Trifluralin Activity in Soil
Talbert, R.E.; Kennedy, J.M.; Agicn. Dep. , Oniv.
Arkansas, Tayettcville, irk.
Proc., S. Bead Sci. Soc.(SBSEBE), 25, 394-402;
1972
ACTIVATED CARBON; HERBICIDES; IS ACTIVATION;
FLOOBETORON; NITRALIH; SCILS; EIGSFIE; BIOASSAI;
WHEAT STRAY; COTTON STALKS; THIF10RALIN; COTTON;
SAND; SILT LOAN; siIT; LOAN
As shown by the pigweed bioassay, activated
carbon was greater than 100 times as effective at
vas wheat strati, and wheat straw was greater thai
10 times as effective as were cottcn stalks, in
inactivating nitralin in sand cultures. In a
silt loai soil, 0.177 ppm nitralin or 0.174 tpm
trifluralin weie inactivated by 100 ppi daicc gff
carbon. In field experiments, 1 Ib nitralin/acre
and 1.5 Ib fluoieturon acre were completely
inactivated by 500 Ib carbon/acre, when the
carbon and the herbicides weie applied at the
same time. The carbon was less effective when
applied subsequent tc the herbicide*.
1056
Behavior of Amiben and Dinoben Derivatives in
Arkansas Soils
Talbert, R.E.; Runyan, R.L.; Baker, H.I.
Veed Sci., 18(1), 10-15; 1970
HERBICIDES; SOILS; AMIBEi; DINOBEI
1057
Distribution of Lead Chelate in the Transpiration
Stream of Higher Plants
Tanton, T.w.; Crowdy, S.R.
Pestic. Sci., 2(5), 211-13; 1971
BE VIES; TITl; 1I»D; CHELITIOI; FURS; IBID
CBIL1TI; STEIAHS; FONGICIDIS
A reivew with 12 references on the use of 1:1
FDTA lead chelate as a free space marker in
plants. The chelate can be used for the study of
the transport of systeiic fungicides.
1058
DDT Residues in Forest Floor and Soil After
Aerial Spraying Oregon 1965-68
Tarrant, R.F.; Nooce, D.G.; Eollen, S.B.; Loper
E.E.
Peetie. Honit. J., 6(1), 1972, 65-72
MICROORGANISMS; DDE; ODD; INSECTICIDES; FOREST
SOILS ; SOILS; AIB
10!9
BHC Residues in the Environment
latsukawa, R.; wakiaotc, T.; Ogawa, T.
Part of Hatsuaura, Fuiio, G. Hallory Boush and
Tcioiasa Hisato (Ed.). Environiental Toxicology
cf Pesticides. Proceedings of a Dnited
States-Japan Seminar. Oiso, Japan, October,
1971. Illus. Haps. Acadeiic Press: Hey York, NY;
london, England, (p. 229-238); 1972
F1ANTS; HOHANS; TISSUE; AIB; HATER; SOUS; BHC;
fiZSITOIS
1060
Saiple Errors in Measurements of the Persistence
cf Dieldrin in a Field Soil
Taylcr, A.8.; Barrows, H.L.; Soil Hater Conserv.
Res. tiv., Agric. Res. Serv., Beltsville, MD
Pesticide Chemistry Proceedings International
Congress on Pesticide Chemistry, V, 139-U55; 1971
IIILDBIN; PERSISTENCE; SOILS; ORGA NOPHOSPHORUS •
IESTICIDBS; PBRSISTENCI; HIPTACHLOE; RATE OF LOSS
The less of dieldrin from fields during the 4.5
yeare after spraying was 0.75 ppb per day froi an
initial concentrations of 3 ppi. The standard
deviations for the 8 sections of the field were
30-7CI about their Bean. The lean did not show
any regular decrease with time. In a detained
sampling experiment of 108 ccce saiples, the
dieldtin content showed a 50-fold variation
(range of 16-797 mg/m2, lean of 207 mg/«2).
Statistical analysis cenfirmed that these
variatins would account for the differences
letween the bulked samples taken froi larger
areas. The wide variability in the separate
cores could be attributed to differences in spray
coverage and irregularities due to poor mixing
dnrin cultivation. Under these conditions
coefficients of variation of soil dieldrin
analysis could be decreased below 20V at
practical sampling rates. The rate of loss of
the less persistent heptachlor could be measured
with luch greater confidence.
170
-------
1061-1069
1061
Organic Environmental Residues
Taylor, 1.5.; Commonwealth laboratory, Melbourne,
Australia
{roc. Boy. Aust. Chem. lust. (FAOCAZ), 39(12),
350-35*; 1972
BEVIEW; PESTICIDIS) RESIDUES; ANALYSIS; ORGANIC
CHEMICALS
1062
Decomposition of Sevin by a Soil Bacterium
Tewfik. M.S.; Hamdi, l.A.
Acta Hicrobiol. Fol. Ser. B. Micrcbiol. Appl.,
2(2) . 133-135; 1970
DECOMPOSITION; SEV1N; SOILS; Sail EACIIPIA
1063
Accumulation and Distribution of chlorinated
Insecticides in Soil and their Effects on Plants
Thakre, S.K.; Dep. Agric. Chem. Soil Set., Coll.
Agric., Parbhani, India
Pesticides(PSTDill), 7(5), 25-9; 1973
REVIEK; CHLORINATED INSECTICIDES; SOILS;
CHGAKOCHLCRINE INSECTICIDES; PERSISTENCE;
RESIDUES; DISTRIBUTION; ACCDNUIATICB; ILANTS
The persistence end distribution of insecticidal
residues in soil, and the effects cf chlorinated
insecticides on plant growth are reviewed with 47
references.
10 6U
Persistence of Eiological Activity of Seven
Insecticides in Soil Assayed With FOLSCBIA ClNCItA
Thompson, A.R.; Canada Dep. Agric., London,
Ontario, Canada
J. Econ. Entomol. (JEENAI) , 66(
-------
1070-1075
1070
Deconpositi.cn cf Herbicides and Insecticides in
Soil (A Review of Literature)
Tinar, M.
Agrokea. Talajt. , 19, 357-365; 1S70
SOILS; DECOMPOSI1ION; HERBICIDES; IBSECTICIDZS;
REVIEW
A review with 63 references.
1071
An Enzyme Coaplei Capable of Degrading 2*1-0
Tomati, U.; Lippi, D.; Pietrcsanti, w. ; Inst.
Chi*. Phan, some Univ., Italy
Beded. Rijksfac. Landbwet. Gent. , 35, 829-836;
1970
ENZYME COMPLEX; SOILS; DEGHAEATICN; 2.U-D;
PESTICIDES; MICROORGANISMS
The enzyme complex was extracted from a species
of ARTHROBACTBR isolated from soil.
1072
Bicrobial Conversion of Mercury Compounds
Tonomura, 1C.; Puxukawa, K.; Yamada, II.
Part of Hatsumura, Fuiio, G. Ballcry Boush and
Tomomasa Risato (Ed.). Environmental Tcxicolcgy
of Pesticides. Proceedings of a United
States-Japan Seminar., Oisc, Japan, October,
1971. Academic Press: Mew Tor*, N.Y., O.S.A.;
London, England. (p. 115-133) 637 p.
MICEOB10LOGT; BERCORY; CONVERSION
1073
Interaction of Herbicides and Soil Microorganisms
Torgeson, B.C.; Boyce Thoipscn lost, fee Plant
Research
NY, Hater Poll Cent Research Series 16060 DBf,
EPA, OSGPO, <73) special report; 1971, March
DEGRADATION; DCPA; SOILS; COLTOHIS; BICBOIIOIA;
CECONTAHIIIATION
In pure cultures and in soils th« addition of
DC Pi had littl« effect upon cactfiial growth, and
ceveral microorganisms appeared to
utilize-the-herbicide as a carton source.
Encouragement of the soil »icroflora by the
addition of nutrient broths resulted in a
reduction of toxicity to plants cf a lumber cf
herbicides. The results indicate that the
decontamination of soil by tte d«grad»tiv«
activities of the natural ilcroflcia may be
accelerated by the addition of soitable nutrient
sources.
107U
Effects of Hocap, N-Serve, Telone, and Voder, at
Iwc Temperatures on Populations and Activities of
Eicrccrganisms in Soil
la, C.B.; Bes. Inst., Agric. Cep. Canada, London,
Cntaric, Canada
Car. J. Plant Sci. (CPLSAI) , 53(2), 401-5; 1973
SOILS; FOMIGANTS; MICROORGANISMS; RESPIRATION;
»MBONIfICATION; NITRIFICATION; FONGOS; SOLFOR;
OIIDA1ION; LOAM; MCCAP; N-SER7E; TELONE; 70RLEX;
IEITCHE; INHIBITION; A8MONHJH SDLFATE; GLOCOSE;
INCOBATIOS; P3S1ICIDES; OX1GEN; SITHOGEN;
IEBPIBATORE; BACTERIA; SANDT LOAN
As shown in the laboratory, 5 and 30 licrograns
•ocap 20 and 40 licrcgrams n-serve/g, 25 and 150
• icrcgrams telone/g and 30 and 180 licrograms
totlei/g, 4ia not suppress the bacteria
populations in a sandy loam, at 5 or 28 degrees.
At the high levels, the compounds decreased the
fungal populations at 5 degrees, after 2 weeks.
R-cerve and telone stimulated ammonification of
incorporated peptone, whereas vorlex had an
inhibitory effect. Hocap and telone, at low
levels, stimulated nitrification of the native
organic nitrogen, after 2 weeks at 5 degrees. All
the cciponnds inhibited the nitrification of
(NR«)2S04 and oxidation of elemental sulfur after
4 weeks at 28 degrees. Oxygen consumption
increased with increasing concentrations of
mocap. Simultaneous' treatment with the pesticides
and glucose, depressed respiration in the early
stages of incubation. The effects of the
pesticides on respiration shoved that soil
teipcrature was negatively correlated with
incubation time in the early stages of the
experiments.
1015
Bui Insecticide Soil Metabolism
Tucker, B. T. ; Pack, D.E.; Orthor Civ., chevron
Chem. Co., Richmond, Calif.
J. Agr. Food Chem. (J1FCAO) , 20(2), 412-16; 1972
EDI; IISKTICIDES; HYDROLYSIS; SOILS;
RETHT1CABBAHATE; H«T»BCLTSIS; CARBON 14; TRACER
GUI insecticide, a 3:1 mixture of
M-(l-BETHTLBOTTL)Phenyl methylcarbamte, was
readily metabolized by soil organisms by attack
at the carkamate ester linkage. Soils treated
with the carbonyl- 14C-labeled constituents
seperately evolved lab«ld carbon dioxide as the
parent carbamate content decreased. Each parent
carbaaate formed only one labeled metabolite in
the sell, H- (l-HIDBOXI-l-HBTHILBOTIL)Phenyl
methylcarbamate and B-(1-HTDROIY-1-ETHTLPROPTL)Phe
nyl methylcarbamate, which vere present only in
trace amounts. M-(l-BETBILBOTIL)Phenyl
n-hjdroiy-n-methylcarbamate,
m- (1-HYDBOIT-1-HBTHT1BOTIL) Phenyl
methylcarbamate, P-hydroxy-m-(1-HETHYLBOTTLT)Pheny
1 methylcarbamate, B-(I-BBTHYLBOTYL) Phenyl
n-hydroxymtthylcarbamate,
H-(2-BIDBOn-1-BHBIlBBTTL_Phenyl
•ethylcarbamate, and H-(3-HYEROTY-1-MITHYLBOTYL) Ph
enyl mrthylcarhamate were prepared to aid
metabolite identification.
172
-------
1076-1082
1076
floveaent and Degradation of Herbicides in Florida
Citrus Soil
Tucker. D.P.; Phillips, B. I. ; Department of Fruit
Crops, University of Florida, Gainesville, Fl
Citrus Industry, 51(3). 11-13; 1970
RESIDUES; DISTRIBUTION; HOVEBEST; TIBB1CIL;
BBOHACIL; DICHLOEMIl; TBIFLOEiLlH; SOUS;
HERBICIDES; DISFEHSIOB; DEGRADATION; CITBDS
The distribution of terbacil, brciacil,
dichlobenil and trifluralin in citrus coils which
had b«en treated with these herbicides for op tc
5 years was studied. Terbacil and broiacil
rapidly disappeared fro* the top 18 inches of
soil, but were fcund throughout the 18 inch layer
of soil. Only trace concentrations of residual
dichlobenil and trace aaounts or no residues of
trifluralin were found in the top 18 inches. The
Beans of dispersion and degradation arc discussed.
1077
Effect of Cheiical Agents Applied in Ccibatting
After-Sncw slipperiness of Beads on the Greenery
Soil in Lublin
Turski. B.; Flis-Bujak, II.; Risztal, N.; Inst.
Glebozn. Che*. Pcln. lydz. Boln., Akad. Eoln.,
Lublin, Poland
Ann. Uniy. Maria Curie-Sklodowska, Sect. E
(ACEAA2), 27, 89-105; 1972
ROADSIDE SOIL; CB10BIDE; LEU; CCPPIH; CHIOS;
SOILS; SHOW; LOBIIH
1078
Possibilities cf Binding Herticices of Triaiine
Derivates by Ruiic Acids
Turski, R.; Steinbrich, A.; Inst. Soil, Sci.
Agric. Che»., coll. Agric., Lutlin, Poland
POl. J. Soil Sci.(PJSOBH) 1972, 1(2). 119-24; 1972
HESBICIDE; SOHPTIOH; HOHIC ACID; CARBOXTL GBOOF;
HOHATE; TRIAZIHE; ACIDS; HTDECXTI
1079
Retabolisi of 3- (p-broiophenyl) - l-aethcxy-1-aethjl
area (Hetobroeurcn) by Selected Soil
Microorganisms.
Tweedy, E.G.; Loeppky, C.; Boss, J.A.; Missouri
University, Coluibia, MO
J. Agric. Fd. Chei. 18, 8S1-f53; 1570
METABOLISM; METOBROMOBOH; DBGRAD JTIO".;
3-(P-BBOMOPBEHT.L)-1-HrTHOXI-1-HE3BYLOHEA;
MICROORGANISMS; HERBICIDES; SOUS; BROHOA1II1I1IE:
ACETAMILIDE; METABOLITES; DEGBAC11ICM IBODOCTS
Degradation of the herbicide by TALABOMYCBS
SORTBAHII, FOSARIOM OXYSPOBON, CBIOBEL1A TOLGARIS
and BACILLDS sp., after 18 days incubation vas
37*, 11*. 1* and IK, respectively. All
•icro-organisBE rapidly converted p-bromoaniline
(an intermediate in the degradation process) tc
p-acetanilide.
1080
Eiodigradation of Pesticides by nicroorganisis.
3. Factors Affecting the Absorption of BBC
Isoiers by Fungal Hyceliua
Oeyaia, A.; Egawa, H.; Hasuko, H.; Shikata, B.;
Pestic. Res. Inst., Kycto Oniv., Kyoto, Japan
>ippon Kingakkai Kaiho (XGKKAT) , 12(2). 103-7; 1971
BHC; ABSORPTION; FDBGI; INSECTICIDES; SOILS;
It has been suggested that the persistence of BRC
in scils iay be caused by fungal absorption. The
absorption ot the alpha, beta, gaiaa, and delta
isciers by FOSABIOR BOSZUH was 0.01U, 0.080,
0.68, and 0.095 aicrc/ag fresh ayceliua for 500
•g ijceliui, respectively. Thus, the aiount
absorbed is not proportional to the aycelial
weights, and the gaaia and delta isoaers were
absorbed in larger quantities than the alpha and
beta isoeers. The laiiaua absorption level of F.
BOSEDM during successive treataents with aedia
counting consistant concentrations of ga»a-BHC
was 0.54 aicro/ig frest weight. The absorption
of gaaaa-BBC by COCHIICBOLOS NIYABEANUS in aedia
containing 115-92,080 ng/U al was aaiiaua 1028
ng/ag aycelial weight, indicating that it can be
absorbed up to a level of 0.U of the aycelial
weight changes in culture conditions
> (light/dark, shaking/stationary) had variable
effects on gaaaa-BHC absorption by C. NITABEANOS.
1061
Fate cf Aiiprophos in Soil
Deyam, I.; Takase, I.; Toiiiawa, C. : tiihon
Tokushu lloyaku Seizo Cc., Tokyc, Japan
Zasso Kenkya(ZASKAR) , »15), 28-3U; 1913
AHIPFOPHOS; PERSISTE»CE; SOILS; DE6BADATIO1I;
IMSECTICIDES; TBA«SFCRHHTIOH
1082
Detoiification and Translocation of the Herbicide
KRIS! in Soil
Oearcv, A.A.; Loi, N.F.; Tsoi, Z.I.; Inst. Khii.
fastit. Veshch., Tashkent, OSSR
Khi«. Sol. Khoz. (KSKZA1I) . 11(7), 5U5-7; 1973
KHIB5; SOILS; HERBICIDES; DETOXIFICATION;
BEHZIBIDAZCLE; COTTOII; HEEDS; ANSOALS; RATE;
ACSORFTION; SATER; BAIKFALL; 4PPLICATIOH;
TRIN5LOCATION
RHIB5 (5-chloro-n-isopropenyltcnziaidazolone),
applied preeaergence tc cotton fields at 5-10
kg/ha, effectively controlled annual weeds.
Although KHIE5 reaained active for 2-5 aonths,
incorporation into soil or increasing the
application rate strengthened its herbicidal
activity. Increasing soil aoisture levels
retarded the inactivation of KHIB5 in the soil.
KHIB5 tended to reaain in the top layer of the
soil (was strongly adsorbed) independently of its
application rate and the aiount of rainfall.
173
-------
1083-1089
1063
Perspectives on Herbicide Behavior in Soil
Opchurch, B.P.; Monsanto Co., St. Louis, Ho
Festic. Chei., Pice, Int. Cocgr. P«stic. Chei.
;nd(24HAAY), 6, 127-38; 1972
REVIER; HERBICIDES; SOILS; PJTE; AIPLICATION
A retiev which discusses th« behavior cf
herbicides in sell in celaticn tc the
environment, rates or lethcds of herbicide
application, and the develcpient ft ne«
herbicides.
1084
Eerbicidal Action of non-0573 Is Influenced ty
Light and Soil
Upchurch, R.P.; Eaird, D.D.; Monsanto Co., St.
Louis, Ho.
Proc. Rest. Soc. Reed Sci. (flSRPAf) . 25, 41-4; 1972
IHOSPHONOHETHY.L GLYCINE; HEKEICItES; GBASS;
II6HT; flCH 0468; SOILS
1067
An Evaluation of Kinetic and Equilibrium
Iqautions for the Prediction of Pesticide
Hoieient through Porous Media
Van Genuchten, M.T.; Davidson, J.M.; wierenga,
F. J.
Soil Sci. Soc. Ai. Proc., 38(1), 29-35; 197U
ABSORPTION; DESORPTIOH; PESTICIDES; KINETICS;
ECOIIIBRIDM; MOVEMENT; FOROUS MEDIA
ioee
Effect of Several Herbicides on Bacterial
Populations and Activity and the Persistence of
These Herbicides in Soil
Van Schreven, D.A.; lindenbergh, D.J. ; Koridon,
A.; Biol. lab., I jsselieerpclders Dav. Auth. ,
Kaipen, Netherlands
Plant Soil (PLSOA2), 33(3), 513-532; 1970
PERSISTENCE; IOJCTNIL; CALAEON; NECOPROP;
CICHLCRPROP; HCPA; PICLORAM; AMITBOLE;
BIEBICIDES; SOILS; BACTEPIA; AZOTOBACTEBJ
«ITRIfICATION; HICBOOBGANISNS
1085
Fate of the Fungicide 2, 6-dichloro-4-nitroanilin€
in Soil
Van Alfen, N.K.; Kosuge, T.; Oniv. California,
Davis, CA
Phytopathology, 63(2), 209; 1973
FATE; 2.6-DIcnLOBO-U-HITRO»!milII; DCMA;
DICHLORAS; METABOLITES; 4-AHIHO-3,5-DICHLOBOICITJN
ILIDE; 2,6-DICflICBO-P-PHmLIJBEimiB;
FONGICIDES; SOUS; METABOLISM; TFACEH
Labeled DC HA (dichlotan) «as rapidly xtabolized
in ncnaterile, flooded soil aiended vith glncose.
14C02 was not detected during the experiment. A
large fraction (up to 65K) of the radioactivity
could not be extracted using an «c«ton«-»at«r
•ystei. The lajor eztractable »€tabolite vas
identified as a-a»ino-3,5-dichloioacetanilid«,
and 2,6-dichloro-p-pbenylene-diaiioe wa« alio
recovered. In sterile soil lost of the
radioactivity extracted after 9 days *a< intact
DCKA.
1086
Physico-Che«ic«l Study of the Adsorption of
Organic Pesticides by Clay Minerals
Tan BlacJel, R. ; Facnlte dea Sciences ifronoiiquez
de Louvain, Belgia*
Annales de Geitloux, 77(3), 183-194; 1S71
SALT; SOILS; AESCBPTIOH; O8GADIC PESTICIDES;
CLAT; FBIDGOR; ROMTHOTtlLLOVITI; IEI10II1E; PE
Soie experiiental results regarding the
adsorption of fenuron by 2 types of clay minerals
(•ontaorillonite and Ryoiing-tentonite) are
discussed tilth particular reference to the effect
of pB, salt concentration and type of clay
ainoral. Adsorption increased with decreasing pB
and Mith salt concentrations graeter tban 1.0 I
laci. Adsorption va> considerably higher on
tentonite than on lontiorillonite.
10E9
Effect of Several Berbicides on Bacterial
Populations and Activity and the Persistence of
these Herbicides in Soil
Van SchrevEn, D.A.; Lindenbergh, D.J.; Koridon,
A.; Eiol. Lab., Kaipen, Netherlands
PI. Scil 33, 513-532; 1970
HERBICIDES: BACTERI1L POPULATIONS; PERSISTENCE;
ICAM; BITRIFICATION BATE; DALAFON, DICHLOROPORP;
10 IT NIL; NZCOPROP, ABI1EOLE; PICLORAM; HCPA;
BICRCCFGANISHS; SOILS
Saiples of polder soil (illitic sandy loai) vere
incutatad (at 29 degrees C and 65% water-holding
capacity) iiith different herbicides applied at
noraal and 10- or 100-fold rates; the effects of
herbicides on nitrification rate were studied in
(HHU) 2504-treated saiples. Azotobacter counts
were decreased after 2-4 necks by norial rates of
dalapcn, dichloroprop, ioxynil and lecoprop, and
by all herbicides applied at the 100-fold rate;
in several cases bacterial populations increased
in treated soils for longer or shorter periods.
Horaal rates of herbicides slightly depressed
nitrification in the first week; nitrification
tended to be strongly inhibited for soae tiae
(especially by a»itrole-T) at the 10-fold rate
and all herbicides (except picloraa), at the
100-fcld rate, depressed nitrification for longer
or shorter periods. Evolution of C02 in the
first neek was highly significantly depressed by
herbicides, especially when applied at very high
rates. After 9 lonths, traces of dalapon and
•ecofrop, 7.2* ioxynil, 29.81 dichlorprop, 39*
RCIA « dichlorprop, and about 52% pioclorai and
aiitrcle -T persisted in active fora.
174
-------
1090-1097
1090
Bio Degradation of Piperonylic-Acid an
Insecticide Synetgist by a Soil Esendomonad
vasavada, P.C. ; Forney, T.V.
Abstr. Anna. Meet Km. Soc Hicrctiol., 13, 31;
EZGRADATIO"; INSICT1C IDES; SCIIS
1091
Residues of Heptachlcr in Plants and Sell in
Relation to the Method of its DEC
Yasil'ev, V.P.; Kosmatyi, E.5.; tudel, K.A.;
Polonskaya, F.I.; Zatserkovskii, V.I.
Khim. Sel'sk. Khoz., 10(3), 32-34; 1972
HERBICIDES; SOILS; RESIDUES; HIPIACBLOJ; PlIBTS
1092
Interactions Betneen Pesticides and Soil
Microorganisms
Venkatmraman, G.S.; Rajyalaksbmi, B.; ti».
Bicrcbiol., Indian Agric. Res. lust., New Delhi,
India
Indian J. Exp. Biol.(IJEBA6) 1971, 9(4) 521-2;
1971
PESTICIDES; SOUS; HICROORGASISH; CALAIOM;
AZOTOBACTER; DITHAHI; BACTERIA; ACIIHOBICEIE;
FOIGI: 2,tt-D; CZEESAN R
•bile soil fungal population vas not adversely
affected by Dalapon Ceresan R, dithane, 2,»-t,
and four other pesticides, the bacterial and
actinomycetes populations vete suppressed.
Species cf ASPEHGILLOS, the dominant ccnstitoents
of the fungal flora, were tolerant to icst of th«
pesticides. Also, AZOTOBACTIf CRROOCOCCON
exhibited considerable strain vaiition in its
tolerance to different pesticides.
2,e-tlCHLOSOBENZABIDE; SOILS; DEGRADATION;
BEIB1CIDES
Eecoiposition, sorption, evaporation loss, and
penetration intc scil of the herbicide and of its
degradation product (2,6-dichlorobenzaaide) are
discussed.
1095
Herbicide Dichlobenil and its Decomposition
Irodncts in Soils and Hater
terlocp. A.; Nolle, H.H.; Forschungslab., N. V.
Fhilips-Dufhac, leesp. Netherlands
Schriftenr. Ver. Nasser-, Boden-, Lufthyg.,
E€tlin-Dahlei(ST8LAE), 37, 85-9; 1972
EICHICEEHII; SCILS; VATEB; HtFEICIDES;
TIRRISIHIAL BCOSTSIEBS; AQOATIC ECOSTSIEHS;
BESIIDES; EV»P05AIIO»; PLANTS; HIDPOITIATICN;
COUDGATION; 2 ,6-DICHICROBSNZ ABIDE ;
2, e-IICHLO ROBED ZOIC ACID; DECARBOXILATION;
ADSOBfTION ;OEGSADATICN; METABOLITES; FISH; NOCK
A large portion of applied dichlobenil is lost by
evaporation, shat is left in aquatic and
terrestrial plants breaks do*n through
hydroiylation and conjugation. Dichlotenil is
hydrclyzed into 2,6-dichlorobenza«ide and further
converted into 2,6-dichlorofc«ntoic acid for
further decarboxylation in the soil »here the
2,i-dichlorobenzaBide is taken up, hydrojylated,
and conjugated by plants. The adsorption rate vas
reduced and the degradation rate increased in
risistant aquatic plant species, compared to
susceptible ones, tichlobenil accumulated
temporarily and then Has rapidly eliminated in
aqeitic plants. Elimination ot both dichlotenil
and its metabolites and little evidence of
•eta to Lite residues Here observed in fish.
Initial dichlobenil concentrations of 0.5-1.5 ppt
in vater fell to or belox O.OS pp» in 2-3 months.
tichlobenil vas eliminated from bent hie muck in
six months. 2,6-dichlorobenza«ide vas not
detected in fish.
1093
Fate of the Herbicide Dichlotenil in Plants and
Soil in Relation to its Biolcgical Activity
Terloop, A.; Res. Lat., R. V. Philips-Duphar,
Veesp, Netherlands
Besidae Bev. (RBIVAR, 43, 55-1C3; 1S72
BEVin; CICHIOBIHTL; PLAITS; SOILS; HERBICIDES;
AVAILABILITY; DEGRADATION; BICIOGICAL ICTIVITT
1091
Recent Data on the Behaviour of Cichlobenil in
Soil
ferloop. A.; Wimmo, B.I. ; Forschungslatoratorium,
Philips-Duphar, fieesp, Netherlands
Sonderheft Zeitschrift fur Pflaniankrankheiten
(PFLAMIENPATHOLCGIE) und Fflanzecschutz, 6,
53-58; 1972
BBCOBP05ITIOII; £OBPTIO»; IVAPOHAIICII;
PIBETBATIOH; DIGF»DATIOH PROCOCTE;
10S6
Eodern Tievpoints in the Tosicological Evaluation
cf Pesticides
Vcrschuuren, H.G.
Nahrnng, 16(2), 126-127; 1972
UAS1S; ASIBALS; SOILS; PESTICIDES
10S7
Action of Simazioe on the Antibiotic Activity cf
Hicrcscopic Soil Vangi
Vlahov, S. ; Damyanova, L.; Gousterov, G. ;
Kamencva, I.
fart of Szegi, j. (Ed.). Proceedings of the
Symposium en Soil Ricrcbiology , »ol. 2.
Budapest, Bungary, June 16-20, 1970. Akademiai
Jiado; Budapest, Hungary, 1912, (p. 365-368J US»
SIRAZINE; ANTIBIOTIC; SOILS; FONSI
175
-------
1098-1105
1098
Residues of Dieldrin, Lindane, DET, and Parathior
in a Light Sandy soil aft«r Bepeeted Application
Throughout a Period of 15 Tears
Voerian, S.; Beseser, F.H.; lab. Fes. Insect..
El. Frot., Hageningen, Netherlands
J. llgric. Pd Chem. , 18, 717-719; 1970
PESTICIDES; CROPS; DDT; DISLtBIN; 1ISDJHE;
BESIDOES; SOILS; PERSISTENCE; PLANTS
The pesticides nere sprayed en crops several
tines a Tear and applied as soil tieattents once
a year. DDT and dieldrio Here Mere persistent
than Lindane but, below 20 c«, ttey appeared only
as traces. Parathion disappeared about one-half
year after the last application.
1099
Pesticide Residues in Nature
Veerodin. A.V.; OSSB
Zashch. Bast. (Hcscow) (ZRVBAS) , 16(8), 24-5; 1971
SEVIEH; PESTICIDES; SESIDOES; DDT; SOUS: RAtER;
EICHIOHOPHBNOXYACETATE; PLANTS; FHENOXY.ACITATB
ACIDS; POOD; 2,«-E
1103
Soie Current Problems in the Hygiene of Pesticides
Vrcchinskii, K.K.
Gigisna I Sanit., 34(5), 110-111; 1969
BESIDOIS; OBF.A; 2,4-D; S-TRIAZINB; HERBICIDES;
SEVIH; FRUITS CROPS; DDT; ACCOHaLATION;
HIGHAIION; FLORA; FADNA; FOOD; HCH; PERSISTENCE;
SATEF; PESTICIDES
Topics such as the potential hazards of
environmental contamination with residues of
urea, 2,<4-D derivative and s-triazine herbicides
and sevin on fruit crops are discussed. DDT soil
accumulation a,nd migration and DDT accumulation
in Okranian flora and fauna received attention.
A paper on the hygienic evaluation of food
products in relation to DDT and HCH use and
persistence in white Russia was presented. A
report was given on hydraulic, geological and
ether factors in relation to surface water
quality and the degree of pesticide pollution.
Atmospheric carbophos contamination in
agriculture in Uzbekistan was the subject of
ancther report. The conference also discussed
existing principles for setting up norms for
pesticides in the environment en the basis of
several pertinent papers. The conference adopted
an expanded resolnticn determining the basic
directions for research into the problem areas it
was concerned with.
1100
Effect of a Soil Absorbing Complex on the
Phytotoxicity cf Herbicides
Voitekhova, V.A.; Nauchno-Issled. lost. Odotr.
Insektofnngits., Boscow, OSSB
Khim. Sel. Khoz.
-------
1106-1111
1106
Kinetics of Losses of PCRB and DCRA in Three
California soils
fag, C.H.; Broadbent. P.B.; Eep. Soils Plant
lutr.. Univ. California. Davis. Calif.
Soil Sci. Soc. tier., Proc. (SSSIA8), 3<(5),
742-5; 1972
POHGICIDZS; SOILS; CHLORORITBOBBIZIRB;
CHLORORITB01RILIRE; PCRB; BCRA
The losses of PCRB and DCRA in 3 Cilitctnia soill
were measured in the Iba. Under controlled
temperature and moisture content, both fungicides
ware lost according to let-order kinetics.
Higher and soil organic Batter wee assocd. with
slower PCRB loss, bat enhanced DCR1 loss. PCRE
Mas lost mainly through volatiliiation, whereas
DCR1 vas lost through ilcrobial degradation and
other processes.
11','-,
Possible Importance of Transfer Pactors in the
Bacterial Degradation of Herbicides in latoral
Ecosystems
laid, J.S.; Dep. Bot., Univ. Canterbury,
Christcharch, lev Zealand
Beaido« Bev. (BBBVAH) , «4. 65-71; 1972
BIVIER; BACTERIA: BBBBICIDES; SOILS; GBRXTICS;
TBARSTEB; DBGBAtATIOR; RECBXRISB; DECOBPOSITIOB;
HICBCILOBA; RODIPICATIOR; BICBOOBGARISRS;
EP1SOBAL TBARSPBB
The genetic mechanism by which microorganisms are
•odified so that they can decompose herbicides
that ordinarily resist decomposition is
ditcnssed. The episomal transfer of genetic
information may preserve the ability of natural
•icrcflora to degrade resistant molecules. (25
references)
1107
Action of Pungicides (Thinram, Vapam) on the
Degradation of Triazine Herbicides in Soil
wagenbreth, t>.; Kluge, E.-, Inst. lorstniss.,
Dtsch. Akad. Landwirtschaftmiss. Berlin,
Ebersvalde, Germany
Arch. Pflanzenscbutz(AVPZAS) , 7(6), H51-9; 1971
IDMGICIDES; BEBEICIDE5; DECORPOS1T10H; SOILS;
THIOEAN; SINAZIHE; VAPAR; PBCRETtTlE
The fungicides, thiaram and »apan, inhibited the
breakdown of the triazine herbicides, Croietryne
and simazine by inhibiting the
herbicide-decomposing microorganisis such as
BHIZOCTORIA SOLAHI, in the soil. As a result of
this inhibition, the triaiin herbicides shoved a
prolonged time of action, and constgoently the
number of postesergence treatments with
herbicides could be decreased.
1110
Vertical Distribution of Herbicides in Soil and
Their Availability to Plants. Treatment of
Different Proportions of the Total Boot systems
Walker, A.; Rational Teg. Res. Stn.,
vellesbourne/Warvick. Ingland
leed Bes. (RESEAT) . 13 («) . 416-21
HEBBICIDES; UPTAKE; PLAHTS; BOOTS; WHEAT;
ATBAZIIE; 1IIOBOR; CABEOH 11; SEEDLIIGS; SOUS;
CISTBIEOTICR
The uptake of lie-labeled atrazine and linnron by
wheat UIITICOH AESTITOR seedlings Has
trcpcitional to the fraction of the total root
system eiposed to herbicide-treated soil. This
factor vonld offset the effect of the redness in
herbicide concentration in soil, following
incorporation of kg/ha tc 3,6, or 9 cm depths.
1108
A Simple Biotest Method for Estiiating the
leaching of Herticid«s in Soil columns and Rtans
of Mathematical-Statistical Evaluation
•agenbretb. D.; Trommer, B.
Rachrbl. Dt. Pfl-Schutzdienst. Bcrl. 2, 24-31;
1971
BIOTEST METHOD; LIACHIRG; BEBBICIEIS; SOIL
C010HRS; STATISTICAL BTALUATIOI
1111
Effects of Quintozene en the persistence and
Phyto Tozicity of Chlorpropham and Sulfallate in
Soil
Ralker, A.
Hort. Bes.. 10(1), «5-«S; 1970
CAEBAGf, HERBICIDES: POHGICIDES; StREFGISB;
GROSTB IRHIBITIOI; DISEASE COKTR01; CHLOBPROPBAN;
SQIPAI1ATK; SOUS; QOIRTOIIRI; PEKSISTERCE;
FHrTOTOlICITT; H»L»-LI?E
In pert experiments, the disappearance of
chlorfropham incubated at 1.6 ppm in soil at 23
degrees c with and without 96 ppm of qniitozene
was determined by bioassay. Quintozene increased
the half-life of chlortropham from 11.5 to 18.5
days. In a similar experiment, the half-life of
sulfallate vas increased only slightly.
Cuintczene was slightly toxic to cabbage
seedlings, and this effect vas additive vith the
growth inhibition cansed by chlorpropham.
Snlfallate and a proprietary mixture of
sulfallate plus chlorpropham also produced
additii* effects vith quintozene.
177
-------
1112-1117
1112
Availability of Linuron to Plants in Different
Soils
(lalker. A.; National Vegetable Research Station,
Hellesbourne/Harwick, England
Pestic. Sci. (PSSCBG) , 1(5), 665-75; 1973
LINURON; AVAILABILITY; 1HEAT; HERBICIDIS;
ADSORPTICN; DESCSPTION; PLANTS; SOILS; OPTARZ:
REDISTRIBUTION
Total uptake of linuron by vbeat seedlings in
nutrient solutions was close to that expected
froi the product of the aiounts cf water
transpired by the plants and the concentrations
of herbicide in solution. Uptake ircm 19
different soils was less tban the aleant supplied
by mass-flow vhen the concentrations of linuron
in the soil solution Here estimated from slurry
adsorption measurements. Osing a
pressure-ieabrane technique, it was shewn that
the acutal soil solution concentrations of
linuron were less than those estimated, and
following rewetting of pressure-ieitrace samples,
the rate of redistribution of liouron between the
adsorbed and solution phases was low. The
results suggest that under the ccnditicns of the
uptake experiments, the systems were not in
equilibirum, and show that the rates of
adsorption and desorption of linurcn may be
important in determining its availability to
plants.
1113
Influence of Soil Factors on availability cf
Atrazine and Linuion to Plants
Walker, A.; National Vegetable Research Station,
Rellesbourne, United Kingdom.
Proceedings, 11th British Beed Ccntrol Confetence
2, 800-805; 1972
PLANTS; AVAILABILITY; ADSORPTION; JTBAZINE;
LINURON; SOILS; UPTAIU; HIHBICIDIS; 1HIAT
The adsorption of cm-labelled atrazine and
linuron in various soils was studied in
laboratory incubation experiment! and the uptake
of the herbicides from soil ty wteat seedlings
was studied in pet experiments. Atrazine was
less strcngly adsorbed than linuicn. Elant
herbicide concentrations were directly
proportional to the rates applied to the soil.
111*
Availability of Atrazine to Hants in tifferent
soils
talker, 1.; Natl. »eg. Bos. Stn.,
Bellesbourne/warwick, England
Pestic. Sci. (PSSCBG) 3(2), 139-146; 1572
ADSORPTION; TRANSPIRATION; ATRAZIHI; P1ARTS;
UPTAKE; SOILS; R18BICIDES; NOT BUMS
11 15
Vertical Distribution of Herbicides in Soil and
Their Availability to Plants. Shoot compared
with Foot Uptake
Salker, A. ; Natl. Veg. Res. Stn.,
lellesbourne/Barwick, England
Deed Fes. (WEHEAT) , 13(«), 107-15
BEBBICIDES: SOILS; PLANTS; SHOOT; SOOTS; UPTAKE;
ATEAZINE; TURNIPS; LETTUCE; BYIGRASS; SEEDLINGS;
VERTICAL DISTRIBUTION; INUBOH; AZIPROTRYNE;
SIHA2INE; 1ENACII; PHONAMIDH; CHLOHOPEOPHAH;
CABBON 1<»; SHOOT-ZONE; ROOT-ZONE; TRACER
Experiments were carried out by separating root
and shoot exposure of turnip (BRASSICA RAPA),
lettuce (LACTOCA SATIVA) or ryegrass (LOLIOM
PERENAI) seedlings tc herbicides, in order to
siiulate conditions originating fron the unequal
vertical distribution of herbicides in soil.
Atrazine, inuron, aziprotryne and to a lesser
degree simazine and lenacil applied to shoots,
were toxic at concentrations which were lower
than those resulting from normal field
applications. Root exposure to all 5 herbicides
caused seedlings deaths at concentrations lower
than those required for shoot-zone toxicity.
Prcnamide and chlorprofham were tested against
ryegrass only, and were toxic only when localized
in the shoct zone. Root exposure suppressed root
growth, but the shoots grew normally if the soil
•as kept moist. At emergence, the atrazine-lac
uptake was higher in the shoct-zone as conpared
to the root-zone, but whereas the shoot-zone
uptake remains stationery, the root-zone uptake
increased with time.
1116
Persistence of Pronamide in Soil
talker. A.; National Vegetable Research Station,
iellesbourne, Warwick, England
Festic. Sci., 1, 237-239; 1970
SOUS; SOIL HOISDTRH; HALF-LIFE; PERSISTENCE;
PRONAHIDE; LEACHING; DECOMPOSITION
Under field conditions, there was little loss of
hetbicidal activity after spring application of
frcnamida when the soil temperature remained
telow about 13 degrees C, but under normal summer
conditions the half-life was only 2-4 weeks. The
rate cf loss was decreased when the surface soil
tscaie very dry. Aftet autumn application,
activity did not change during the winter and
little leaching from the top 5 cm had occurred by
the following spring. In the laboratory.
decomposition of pronamide followed first-order
kinetics. Half-lives at 101 soil moisture were
29 days at 23 degrees C, 63 days at 15 degrees
and 140 days at 8 degrees. At 23 degrees, the
half-life was extended to 52 days when the
soil-moisture content was decreased by 501.
1117
lew Criteria for Development of Herbicides
lalker, E.I.
Proc. Northeast Beed Contr. Conf., 24, 429-431;
1910
FLINTS; ANIBALS; RESIDUES; DEGRADATION;
BEBBICIDES ; CRITEBIA
178
-------
1118-1123
1118
The Effects of Horticultural Practices on Han and
His Environment
•alker. K.C.
Bortscience, 5(1). 239-2112; 1970
PESTICIDES; PLUHIS; HOTRIEHTS; SAlIHITf; WATIB;
SHORE; SOILS; EBOSIOB; HOETICOITCBE
1119
Use of Granular Pesticides fro* the Point of Tien
of Residues
Walker, P.T.; Trap. Pestle. Res. On it. Overseas
Dev. Adm., Portcn Down/Salisbury, Ingland
Residue Rev. tRREVAH), 40, 65-131; 1971
BEVIES; GRAHDLAR APPLICATION; PESTICIDES;
BESIDDBS; BIFDS; SOUS; CHOPS; BUS; KSECTS;
•ATEB; FOOD CHAIHS; HOHAHS
A review of granularlat pesticide residues, «ith
disc us si ens on granule distribution, ace in
water, use in soil, use on crops, residues in
bees, birds, and food chains, and toxic hazards
to human beings, «ith 400 refererces.
1120
Degradation of Ralathion bj Indigenous Soil
Microorganisms
Walker, B.B.; Mississippi State Oniv.. State
College, Miss.
Univ. Microfilms, Ann Arbor, Rich., Order Mo.
72-25,991, Diss. Abstr. Int. B. , 1972, 33(«),
1317; 1972
MALATHION; DEGRIIATIOH; SOILS; RICBOOH6AHISHS; IR
VITRO: THIH LAY.IB CHROHATOGBIPHI; IHZTIE
IHHIBITIOS
Degradation of malathion by five sell tacteria
was demonstrated. One of these, an AHTBROBAC1EB
species, readily degraded lalathion ID vitro to
•alathion half ester, malathicn dicarboxylic acid,
fotassiui diiethjl fhosphorodithioate, potassium
diiethyl pohsphorothioate, and an unidentified
•etabolite. 0-deiethyl malathion, potassium salt,
vas produced by e ncnbiological lechanism.
Metabolites vere tentatively identified by
thin-lay«r chromatography and confirmed by
infrared spectroscopy. Acetylchclinest«rase
inhibtioo vas determined lancietrically for each
•etabolite. Nalathion half-ester had one-third
the enzyme toxicity of lalathion vhile other
•etabolites shoved essentially nc enzyie
inhibition, conversion of aalathion to lalathion
half-ester eay represent ccipletc lalatbion
degradation, but not complete insecticide
detoxication, Ofon its return to the environment,
thenvironient, the tacterinm's atllity to degrade
•alathion USE severely impeded. The loss of
activity vas attributed either tc the tacteiiui1c
inability to reestablish itself in the soil after
prolonged cultnring or to adsorption of the
bacterial cells fey the soil solids, rendering the
cells unavailable for insecticide metabolism.
1121
Ralathion Degradation by an ABTHBOBACTER Species
talker, 1.1.; Stojanovic, B.J.
J. Environ. Quality. 3(1). «-10: 197«
CEGAICIHOSEROBDS IHSIC1ICIDIS; MICSOOFGXHISUS;
DissmTioi; SOILS; EICHETABOLITES; DEGRADATIOI;
RALATBIOI BALP-ESTEB; ULATRI01 DICABBOXILIC
ACID; POTASSIOR DIHETR1L PBOSPBOBOTHIOATE;
POIASSIOR CIHBTBTI PHOSPHOBODITHIOATE;
o-nsHiTHTi HALATHIOR; POIASSIOH SALT;
IISECTICIDtS
The dissipation of malathion from agricultural
soils has been shonn tc involve both chemical and
ticlogical aeehanisis, »ith tiodegradation being
of sutstantial magnitude. This investigation vas
conducted to (1) isolate from soil by enrichment
techniques a bacterium or several bacteria
capatle of readily metabolising malathion, and
(2) isolate and identify the malathion
metatelites resulting from this microbial
degradation. Of 18 soil bacteria examined, 5
«ere capable of utilizing the malathion molecule
«ith degradation of added insecticide ranging
from m to 951. The most efficient malathion
utiliter, an ARTRBOBACTER species, degraded
malathion to malathion half-ester, malathion
dicarbozylic acid, potassium dimethyl
phcsphorothioate, potassium dimethyl
phcsphorodithioate, and one other unidentified
metaeclite. o-desmethylmalathion, potassium
salt, vas also produced, but the mechanism
involved vas nonbiological in nature. Malathion
dissipation vas monitored by electron-capture
gas-liquid chromatography, and metabolites vere
identified by thin-layer chromatography and
infrared spectroscopy.
1122
Bicrctial Vs. Chemical Degradation of Nalathion
in Soil
malker, 1.1. ; Stojanovic, B.J.
0. Environ. Qual., 2(2), 229-232; 1973
OFGA»CFHOSPHOATIS; IHSICTICIDES; PR; HIDBOLTSIS;
lEGBltiTIOl; HALATBIOM; SOILS
11J3
Interaction of Three Iowa Soils vith the
Organcchasphorns Insecticide P ho rate and its
Metabolites, and the Effect of These Compounds on
Southern Corn Bootvorm Larvae
Daller, J.B.; lova State Oniv., Ames, lova
Oniv. Microfilms, Ann Arbor, Rich., Order So.
13-9*57, Diss. Abstr. Int. B., 83(10), »8«8; 1972
SOILS; PROBATE; COBN; ROOTiOBN; ORGINCEHOSfROHOS
INSECTICIDES
179
-------
1124-1128
112U
Phorate loss frci lava Soils as Affected by Tile,
Teiperature, and Soil Sterilization
Waller, J.B.; Dahm, P.A.
Proc. North Central Branch Entoicl. Soc. Am.. 28,
171; 1973
INSECTICIDES; PBORATB; SOILS; 1EBPEBATORE;
PERSISTENCE; SOIL STERILIZATION
1125
Decomposition el Phenyl Amides bj Soil
Nicoorganisms
NallDoefer, P.
Mitt Biol. Bundesanst Land- fcrstwirtsch
B«rl-Dahlem, 1146, 169; 1972
SOILS; DECOMPOSITION; HERBICIDES; FUNGICIDES;
PHEHYLANIBZS; HICROORGAVISHS
1126
The Behavior of Pesticides as Environmental
Chemicals in Hatore, as Exemplified tj Some
Phenylamides
wallnoefer, P.; Bayerisehe Landecanstalt fuer
Bodenkultur und Flfanzenbau, Dunich, Germany
Gesunde Fflanz., 2«<11), 160-183; 1972
AC1TLANILIDES; ANILINl; PHENYLAHIDE J;
DECORPOSITION; HCMALIDE; PBOEBA8; BICRCOB6MISRS;
DEGRADATION; BETABOLISH ; BIRBICIIIS; FUNGICIDES;
BODEL EXPERIMENTS: CARBOXIN; CBICRCBBNZOIC ACIE
AKILIDE; TOLTLIC ACID UNHIDE; P1BINIC ACID
AHILIDI; OXIDATION; HTDT1OITLATIOB
The mechanism of the microbial metabolism and
soil degradation of some herbicides and
fungicides was studied in todel «if«rii«nts using
N-phenylcarbaaic acid esters,
N-iethoxyphenylareas, and acylanilidea.
Hetabolisi of carboxin, cblotobaixcic acid
anilide, tolylic acid anilide, and pyranic acid
anilide by BDCOBACEAB and RHIZOPOS species vas
observed. Varieos HDCOBACIAE and HBIZCPBS
spec las vere able to oxidiie thete coapoanda at
the acyl and aniline radicals. lh« side chains
of the acid radicals are preferentially
hydroxylated, while sulfur in caitcxin is
oxidized to sulfoxide and salfone. The anilides
of 2-sethylbenzoic acid and 2-chclcrob«nzoic acid
are bydroiylated on the anil in* aoieties. The
extent of such aetabolic processes nadtr aerobic
conditions ranged froa 10* to 901. Acylanilides,
and possibly also H-phenylcarbaeic acid esters,
vere attacked by BACILLDS SPHABRICOS at the aside
bonds. However, B. SPHAEBICOS ii unable to
farther setabolixe the anilines resulting fros
the aetabolisa of the phenylaaid«i. Anilines can
be further decoafosed by other aicroorgaaisas of
the soil, e.g., ty oxidative diicritaticn to
carbon dioxide and aaionia. The free acids froa
the decomposition of phenylaaides each as
•onalide and prophae are easily inactivated by
soil BicroorganiSBS, while B. SPBAIBICDS is
unable to degrade the acids foritd ftoi
acylanilides. (16 references)
11J7
fersistence and Noveaent of C-6989 in Soils and
Plants
falter, J. P.; Eastin, I.?.; Heckle, M.S.; Texas A
6 e university College Station, Texas
Abstract, Part of Proceedings Twenty-Second
Annual Besting cf Southern Need Science Society.
1968 (p. 121); 1969
FLOOBCDIFEN; LOAM; LEACHING; PERSISTENCE;
BOVBHINT; SOILS; C-6989; PLANTS
After application of fluorodifen (C-6989) at
3-4.5 Ib/acre, chrosatcgraphic analysis showed
that less than 10)1 regained after 5 aonths in a
clay and less than SOX after 3 aonths in a sandy
loai. There was little tendency to leaching.
1128
Effect of Soil Treatments on Losses of Two
Chlotenitrobenzene Fungicides
lang, C. H. ; Broadbent, F.E.; Dep. Soils Plant
Nutr., Univ. California, Davis, Ca
J. Environ. Qual. (JBVQAA). 2 (
-------
1129-1134
1129
Adsorption of Parathion in a Haiti-Component
Solution
Rang. R. C.; lee, 6.P.; Spyrldakis. D.; Illinois
State Rater Survey, Peoria, II
later Sea., 6(10), 1219-1228; 1972
CLAI; LAKES; SBDIHBHTS; HITHTLBHl BLOB; PRZROL;
ADSOBPTIOR; PAB1TRIOI; BHOOA1I1I E
Adsorption of parathion on different clay
•inerala in aqueous suspension vac enhanced by
rhodamine b, bat not methylene blue. Ike amount
of parathion adsorbed increased nith increasing
rhodamine b:clay ratio regardlest of partielt
size, and a 6-fcld increase in parathion
adsorption vas noted at 2.4 *g rhodamine b/g of
clay (0.3-1 aictcieters). phenol had a slight
inhibitory effect on adsorption. In both caaes,
equilibria! *as reached within 1 hcur. In
contrast, lake sediients froi vhich the organic
•atter «as partially removed had increased
parathion adsorption capacity, From 14 to 211 of
the adsorbed parathion could t< removed with
distilled water, indicating a weak parathion-clay
association.
1130
DDT Moratorium in Arizona. Agricultural Residues
After 2 Tears
Rare, 6. R.; Estesen, B.J.; Cahlll, R.P.; D«p.
Entomol., Oniv. Arizona, Tucson, Ariz.
Pas tic. Honit. J.(FERJAA), 5(3). 276-60; 1971
DDT: OBGABOCHLOBISIS; IHSECTICICIS; ALFALFA; FAT;
RESIDUES
The 1969 and 1970 aoratoriue on agricultural use
of DDT in Arizona vas very effective. Besidnes
on green alfalfa declined to a plateau of 0.05
ppe. Residues in beef fat dropped in 1970 tc
one-half the level found in 1969. Soil residues
changed cnly negligibly, suggesting a half-life
greater than 10-12 years. The residues vere
primarily DDE, indicating that any future
porblems during the DDT moratorium will be
attributable to this "universal contaminant"
rather than to the parent DDT.
1131
Decomposition cf Pesticides by sell
Microrganisas. Special Emphasis en the Flooded
Soil Condition
fatanabe, I.; Fac. Agr., Ivate Oniv., Ivate. Japan
jarq (Jap. Agr. Bes. Quart.) (JABJA9) 1913, 1(1),
15-18; 1973
HTDBOLTSIS; HE1IF.H; PESTICIDES; HICBOOiGAKISH;
SOILS; HEBBICICIS; IHSECTICIEF.S; PIRSISTENCS;
DEGRADATION PCF; FLOODISG; fBOSIHIL; tlPBIHYI;
OKGASOCHLOR1BE; ERC; DDT; TDI; HFTBOITCflLOB;
BEPTACHLOB; OBGABOPHOSPHATF.S
The persistence of pesticides in flooded and
upland soil is reviewed. Degradation of PCP vas
primarily achieved by bacteria at
-------
1135-1140
1135
Interaction of Organic Pesticides trith
Paniculate Hatter in Aquatic and Soil Systems
Weber, J.E.; crop Sci. Dap., North Carolina state
Onive. , Raleigh, NC
Fart of Faust, S.D. (Chairiai) .F.atc of Organic
Pesticides in the Aquatic Environment, Syip. civ.
of Pesticide cheiistry, 161st Betting, Aierican
chemical Society, Los Angeles, California, (larch
29-31, 1971, Advances in Chemistry Series III.
Aierican Cheiical Society. Rasbicgton, D.C. (p.
55-120); 1972
HINEBALS; ORGANIC HATTED; CHIBCOJI; IONIZABIIITT;
HOIECULAB SIZE; FUNCTIONAL GBOuPS; SOluBILlTT.;
VAPOE PRESSURE; ION EXCHANGE; DIIHOLE
INTERACTIONS; BEVIES; PESTICIDES; ADSOFPTICH;
SOILS; ABSORPTION; CtAT
1136
Adsorption of s-Triazines ty flontiorillonite a: a
Function of pH and Molecular Structure
Weber, J.B.; N. Carolina State University,
Raleigh, NC
Proc. Soil Sci. Soc. Ai. 3D, D01-4C4; 197a
IELAHINE DERIVATIVES; ADSORPTION;
eONTHORILLONITI; HERBICIDES; AHETETRE; ITRAZIHt;
PRONBTONE; HILANINE; FUNGICIDES; PH; HC1ECOLAR
STRUCTURE
Adsorption by Na montmorillonita cf 11
structurally related herbicides (asetryne,
atrazioe, proietone, etc.), and. cf aealaine and
lelasine derivatives (fungicides) at different pB
levels (pH 1, 2, 3. 6.5) and concentrations vat
investigated. The aiounts adsorbed depended on
the pH of the systei and on the tolecular
structure of the coipound (such as, dialkylaaonc
greater than icncalkylaiino groups), laxiini
adsorption occurring near the PKA cf each
coipound and vith higher basicity of tie
s-trialines used.
1137
Rechanisis of Adsorption of S-Triaxinas by clay
Colloids and Factors Affecting Plant Availatilitj
Weber, J.B.; N. Carolina State OBI*.. Saleigh, 1C
Residua Rev. 32, 93-130; 1970
HTDHOfiEN BONDING; RE?lf«; PI AITS; BEHBICIB1S;
ADSORPTION; PH; CATION EXCHANGE; C1AT;
AVAILABILITY
The herbicides aie readily adcorted by various
clay minerals. Adsorption is dependent on EH,
having a taxlmui in the vicinity of the
ionixation constants of the respective compounds.
Adsorption froi a neutral solution vas
attributed to n-bonding and ether non-ionic
forces. At pn levels vher« the compounds «ece IB
the cationlc fcri the process vac attributed to
cation exchange «nd completing vitb H-ions on the
clay surfaces. Other factors influencing
adsorption are revieved. (106 references)
1138
Activity and Movement cf 13 Soil-Applied
Herbicides as Influenced by Soil Reaction
Beter, J.B.; Best, J.A.; Crop Sci. Dep., North
Carolina State Oniv., Baleigh, N. c.
free., S. Seed Sci. Soc. (SBSPBE) , 25, U03-13; 1972
HEBBICIDES; SOUS; ACIIITi; HOEILITT;
PZBSISTENCI; WEEDS; GRASS; CJCANBA; »C H780;
ERCHACIL; PYRICHOR; FEHOROH; DICHLOBSNIL;
JinOBITOHON; PROHETRINI; CHLOBANBEN; PROPACHLOR;
CDAA; CHLOBPROPHAH; PARAQUAT
Eroadleaf veeds Mere acre prevalent in neutral
zcil (pH 7), than they were on acid soil (pH 5).
Ihe inverse nas true fcr grass. The activities
cf 1- herbicides against broafleaf veeds on
nettral soil vere in the decreasing order:
Sicaira, broaacil, pyriclor, NC i|780, fenuron,
Sichlcbenil, fluoieturon, proietryne, chloraaben,
prcpachlor, CDAi, chlorpropham, and paraquat.
For grass, the activity vas in the decreasing
crder: bromacil, pyriclor, NC 4780, dicaiba,
chloramben, fenuron, propachlor, fluoneturon,
CDAA, prometryne, chlorpropham, dichlobenil, and
paraquat. Only proietryne and paraquat vere soil
ph-dep«ndent, both compounds being more active on
neutral soil than on acid one. The relative
•olilities of tie herbicides vere leasured by
their lovesents over the soil surface into
adjacent control areas. Bromacil, pyriclor and
NC U760 vere very lobile; fenuron, dichlobenil,
ptcpachlor, dicaiba, chloramten, and fluometurcn
•ere cf intermediate lobility; and chlorprophai,
crcietryne, cdaa and paraquat vere iimobile. The
•ost persistent herbicides vere bromacil,
pyriclor, and NC U780.
1139
The Influence of Temperature and Time on the
Adsorption of Paraquat, Diquat, 2,4-D, and
Preietone by Clays, Charcoal, and Anion Exchange
Resin
•eter, J.B.; Perry, U.; Opchnrch, R.P.
Soil Eci. Soc. Amer. Proc., 29, 678; 1965
ADSORPTION; PARAQUAT; IIQOAT; 2,4-D; PROMETONE-
CLAT; CHARCOAL; ANIOI EXCHANGE RESIN
1100
Adiotftion and Desorption of Diquat, Paraquat,
and Iroaetone by Hontiorillonitic and Kaolinitic
Clay Minerals
•eter, J.B.; Reed, s.B.
Soil Sci. Soc. Aier. Proc., 32, 485; 1968
ADSORPTION; DESORPTION; DIQOAT; PARAQUAT;
PFCHITONE; HONTNORILLONITE; KAOLINITIC; CLAT
182
-------
1141-1146
1141
Weber, J.B.; Seed, S.B.; sheets, T.J.; North
Carolina State Dniv.. Raleigh, 1C
Crops Soils Hag., 25/1. (14-17); 1972
VOLATILITY; CATICRIC CONFOtJB tS; ICIBIC COHPCOHDS;
SOUS; HCVEREVT; REACTIONS; IOIIC COMPCOKDS;
BEVIER; PISTICItIS
In order to aid the farmer in coitrolllng pests
without harming the environment, this discussion
explains how the three basic groups of pesticides
move and react chelically in the sell. The basic
groups are: ncn ionic volatile, nonionlc
nonvolatile, and ionic. Th« ionic group is
farther divided into three subsections: cationic
compounds, basic compounds,
-------
1147-1153
Persistence of Bidrin in 2 Fciest Soils
Werner, B. A.
D.S. Forest Serv. B«s. Note S«. 139; 1970
PERSISTENCE; BirEIH; FORESTS; SOUS;
INSECTICIDES; BISIDCES; HOBIIITY; CUT
1148
Interaction of Pesticides with Natural Organic
Material
wershaw, B.L.; Eurcar, P.J.; Goldberg, B.C.
Envir. Sci. Tech. 3, 271-273; 1969
PESTICIDES: SODIDH; DDT; BATIB; 2,0,5-T;
SOLUBILITY; HIIHIC ACID; SOIL-WATIR INTERACTIONS;
SOBPTION
Sodiui humate strongly solubilized DDT in water
and humic acid strongly sorbed 2,0,5*1. These
interactions are assumed to represent th« tytes
cf interaction occurring when an; organic
pesticide is applied to a soil-water system.
1149
Soie Factors Influencing the Persistence of
Chlorfenvinphos in Soil
•heatley. G.A.; Suett, D.L.; flardman, J.A.; Rat.
Vegetable Res. Sta. , Hellesbcurne, Rarwick,
England
Part of Fate- of Pesticides in Environment, Gordon
and Breach, London, (p. 77-8!); 1912
LOAM; BIHLUND GBAHOLIS; CnlOmMImPHOS; CIBB01S;
RADISHES; PEBSISTENCI; RISIDCIS; 1.1 ACHING; III
SOILS; CHOPS; FLINTS; SOILS; IlSIClICIDBS
in area of sandy loai soil was rctary-cultivated,
and the insecticide, Birland Granules, containing
9.2* chlorfenvinphos, was spread to give 1.85 kg
a.i. ha-1. The insecticide was worked into the
soil to depths of 0-1 ci or 0-10 cm. Carrots and
radishes were sown. Interval soil aamclaa were
taken until after the harvesting of the crop.
Factors affecting the persistence of
chlorfenvinphoc were studied. Saiples stored for
seven days at room temperature averaged a 281
loss of chlorfenvinphos residue. Bexane extracti
of treated soil similarly stored suffered no
change in chlorfenvinphos concentrations.
Results indicate that leaching would not move any
significant amount of the insecticide telow the
maximum depth of cultivation within a feason.
There was no measurable effect of depth of
incorporation of chlorfenvinfho* on itt
subsequent rate of decay, chlorfenvinphos is
relatively persistent in the highly organic fen
•oils, and care is needed to avoid accumulation
of residues under abnormally dry conditions in
mineral or fen soils or if crops like carrot* art
treated too frequently on the sax land. This
insecticide persists in the soil without change
while soil t««f«rature« are below 6-8 degrees
degrees c and must be considered when applying
the insecticide the following season. The
absence of any marked deceleration or
acceleration of loss rate in the) antuin or
spring, respectively, associated with the winter
stability, suggests that the prinry breakdown of
chlorfenvinphos in this soil was biologically
dependent. (20 references)
11EO
Persistence and Microbiological Effects of Acarol
and Ctlorobenzilate in Two Florida Soils
Rhceler, V.B.; Bothwell, D.F.; Hubbell, D.H. ;
Eef. Soil Sci., Oniv. Florida, Gainesville, Fla.
J. Environ. Qual. (JEVQAA) , 2(1), 115-18; 1973
PEKSISTBBCI; ACABO1; NITBIFICATION; 3011,3;
CHIOSCEEHZILATE; (IITICIDI; SAMD; AWALTSIS; FDNGI;
SACTIBIA; ACTIN01TCETES
The influence of the siticides acarol (benzilic
acid, 0,0'-dibroio-isopropyl ester) and
chlorctenzilate (benzilic acid,
O.O'-dichloro-ehtyl ester) on nitrification
capacity and relative •icrofcial nuibers in
lakeland and leon fine sands was determined.
Since chlorobenzilate is now used coasercially
and a porposal is pending for the registration
and sale of acarol, it is important to assess the
effects of these materials on soil microbial
populations. The •iticides vere applied to both
soils at rates of 0, 0.25, 0.50, and 1.0 ppa
incubated in the labcratory for 16 weeks, and
sampled for analysis at periodic intervals.
Neither chemical influenced the nitrification
capacity of either soil or the numbers of fungi,
bacteria, and actinomycetes. Acarol was more
persistent than chlororenzilate; both chemicals
remained at higher levels fcr longer periods of
tile in leon soil .than in lakeland soil. The
miticides had finite rates of disappearance from
both soils.
Pesticides in the Environment
Ihitc-Stevens. B.
Harc«l Dekker, Inc., Hew Tork, 1(2), 62S; 1911
PESTICIDES
1152
Pesticides in the Environment
whitf-Stevens, B.
Barcel Dekker, Inc., New York, 1(1), 104; 1971
PESTICIDES; FOHGICIDES; HEBBICIDES
1153
The Influence of Hoisture, Temperature and Soil
Prcperties on the Disappearance of Lindane and
titldrin from Soil
white, A.w.
Eiisertation Abstr. Intern., 30(12, Pt. 1),
•3J7E-8B; 1970
HOISTOIE; TIHPBBATORB; LIIDIRI; DIELDBII; SOILS
184
-------
1154-1160
115U
Thermal and Basecatalyzed Hydrolysis Products of
the Systeiic Fungicide Benoayl
White, E.B.; Bos«, E.A.; Ogawa, J.R. ; Haoji,
B.T.; Kilgore, «..».; Dept. of Environ. Toxicol.,
Oniv. of California, Davis, CA 95616
J. Agr. Pood Chea.. 21(l») , 616-618; 1913
FUNGICIDES; DEGRADATION; HYDROLYSIS; BEHOMY1;
FATE: HYDROLYSIS EBODOCTS
The chemical fate of benotyl fungicide in
practical use situations was investigated and is
described. Conversion products were isolated,
purified, and subsequently subjected tc a nulbec
cf specttoscopic techniques appropriate for
structural characterization. Synthesis routes
for obtaining ether»ise unavailable reference
standards of hydrolysis products are described
and a degradative pathway of benoiyl to these
conversion products is proposed. (7 references)
1156
Pesticide Retention by Clay Minerals
Shite, j.i.; Hortland. H.H.
Part of Eesticides in the Soil: Ecology,
tegradation, and Movement, Hich. State Oniv.. E.
Lansing, Mich., p. 95-100; 197C
PESTICIDES; RETENTION; CLAY MINERALS;
EEG8HCATI01; MOVEHF.NT; CLAY
1157
Persistent Insecticides Protectors of Health and
Eniircnmental Pollutants
SHC; lorld Health Crganization
S.H.C. (World Health Organ.) Chron, 25(5),
206-208; 1971
DDT; IERSISTENCE; INSECTICIDES
1155
Role of Soil Colloids in the Behavior and late of
Pesticides in soils
White, J.I. ; Cruz, H.; Dep. Agron. , Purdue
Lafayette, In
pestic. Che*., proc. Int. Congr. testic. Chem..
2nd<2<*BAAY) 1972, 6, 23-U5; 1972
PESTICIDES; ADSOBPTIOM; SOU COI1CIDS;
CHEMlSOFfTION; tEGPADATION; SOILS; OBGAHIC
BATTER; AIDMHIOSIIICATE; DITCIIP1CATIO*;
DESOBPTIOH; T01ATIL1ZATIOK; CBIORCTSI1ZIMES;
ANITBOIE; HYDPOXTTBIAZI1IE; HOSTBCBILIOIIITE;
VEBBICOLITE; BETHOIITBI iZIHE; IHCB1TOHI;
HETHYLTHIOTRIAZIHE; PROHET8YHE; IBOPAZ1HE;
PEOTONATION; HTDBOIITSHZINE ; EXIStCTICH;
MECHANISM; BATIE; PR; CLAY; UTE
Pesticide-soil interaction is greatly influenced
by the colloidal properties cf sell particle*.
Various spectroscopic studies of surface reaction
mechanists between organic molecules and
alusinosilicat c ainerals suggest aechaoisac
involved in adsorption, degradation, and
detoxification of pesticides by sell cciponentt.
Infrared studies suggest that pesticide aolecules
and nater molecules competing for adsorption
sites lay explain losses by desorption and
volatilization. In the acid environment of clay
surfaces certain pesticides cuch as the
chlorotriazines are subject to reactions that the
organic cations of aiitrole are not. Toe
chlorotriazine are hydrolyzed to tcoduce th«
protonated hydroxytriazine. In ceils rich in
•ontiorillonite ex vermiculite this protonated
hydroxytriazine is strongly held and the aacont
of s-triazine and its aegraflatioo projoct in th«
soil «ater will be reduced. The lethoxytriaiine
(proMtone) and lethylthiotriaiine (prcietryne)
are more readily protonated upon adsorttion en
•ontcorillonite than the chlorotriatint
(propazine) . Failure to acknowledge this
protonated hydroxytriazine state takes ixtraction
procedures to reiove triazines and their
degradation predicts froi th« soil very
difficult. (37 references)
1158
Rational Soils Monitoring Prograi, 6 States, 1967
iiersaa, G.B.; Sand, P.P.; Schutzaann, R.L.
lestic. Bonit. J., 5(2), 1971, 223-227
; CHLOBDASI; OCT. 000; DOE; PESTICIDES;
DISTGIBOTICM; CBOPIAMD
11S9
Pesticide Residues in Soil fro* S Cities 1969
iiersia, G.B.; Tai, B. ; Sand. P. F. ; Pesticides
Regulation Division, EEA. Hashington, DC 20«6Q
testic. Bo nit. J., 6(2), 126-129
CDV, DIELDBI1; CHICHDAHZ; HZPTaCHLOB; EUDSIK;
TC1AI8BBE; PISTICItES; BESIDDIS; SOUS;
BITABCLITZS; DDTK; HEPIACHIOB EPOXIDE
soil saaples froi eight cities vere analyzed for
pesticide residues. Besides DDT and its
•etabclites (DDTB) , other pesticides detected
were die Id tin, chlcrdane, heptachlor, heptachlor
epoxide, toxaphene, and endrin. No
crgaoophosphate residues were detected. Levels of
DDIB varied significantly aicng the eight cities,
with the highest average residue level in Hiaai,
Fla. (5.98 ppi) and the lowest in Houston, Tex.
<0.3S ppa) . then residue levels in lawn or garden
areas were compared to those in nnkept areas
within the cities, DDTB residues were
significantly greater for lawn areas.
11CO
Pesticide Residue Levels in Soils, Fiscal Tear
1969. National Soils Kcnitaring Program
Viersaa. G.B.; Tai, H.; Sand, P.F.; off. p«tic.
Programs. Environ. Prot. Agency. Washington, D. C.
Pestic. Bonit. J. (PKHJAA) , 6(3), 19B-228; 1972
INSECTICIDES; SOILS; BEBBICICES; PESTICIDES;
BISlCQtS; BO PITCHING
185
-------
1161-1167
1161
Degradation and Synthesis of Chloroneb by Soil
Microorganisms
Viese, M.V.; Vargas, 3. H.
Phytopathology, 62(10), 1112; 1912
DEGRADATION; CBLOBONZE; MICROORGANISMS;
FUNGICIDES; SOUS
lies
veriiculite and Activated carbon Adsorbents
Protect Direct Seeded Toiatoes-D fro* Partially
S«lecti*« Herbicides
lilliai. B.D.; Boianovski, J.B.
J. Ai. Soc. Hortic. Sci., 97(2), 245-249; 1972
HIIRAIIB; REEDS; SOIL GHOSTING; VERHICDLITE;
ADSORPTION; TOMATOES; BEBBICIDJS; SEEDS
1162
Inter conversion of Chloroneb and
2,5-Dichloro-4-Hethoxy Phenol by Soil
Ricroorganisis
Wiese, H.». ; Vargas, J. H.
Vest Biochei. Physiol., 3(2). 214-222; 1973
FUNGICIDES; STABILITY; HETHYIATB; DEGRADATION
SOILS; CHLORONEE; PHENOL; HICROOfGASISBS;
2,5-DICHLOBO-U-HITHOXY PH1HOC
1163
Interconversion of Chloroneb and
2,5-Dlchloro-4-Hethyoxyphenol by Soil
Microorganisms
Wiese, H.V.; Vargas, J. H.; Dep. Eot. Plant
Pat hoi., Michigan State Univ., East Lansing, Hi
Pestic. Eiochei, Physiol. (PC8PBS), 3(2), 214-22;
1973
CHLORONEB; DEGRAtATION; SYNTHESIS; SOILS;
NICBCBES; CHLOBOMETHOXTPHEHOL; IITEBCOMVEBSION;
FUNGI; IN VITRO; METHJLATION; DESKTRESIS;
METABOLISM
Of 23 soil microorganisms tested, 13, and
especially FUSABIUH SOL All I, demethylated up to
SOX of the available fungicide Chloroneb (0.5
micrograms/ml) to its principle degradation
product 2,5-dichloro-4-methoxyph«nel, whereas 8,
especially TBICHCDEBHA VIRIDI and flOCOE
RAMANNIANOS, converted up to 20* cf the available
2,5-dichloro-tt-methcxyphenol (0.5 licrcgrami/ml)
to chlorcneb in vitro. CEPHAICSPCRIOH GAHI1ZOM,
BHIZOCTONIA SOLAN!, H. BANAMRIANOS, and P. SOLANI
fungi could both lethylate and demethylate
2.5-dichloro-4-methoxyphenol to (reduce chlcroneb
and 2,5-dichloichydroguinone, respect!vely. Eoth
degradation and resynthesia ef Chloroneb
coincided with periods of active microtial growth
and letabolisi. Thus, the interccnversion of
Chloroneb and 2,5-dichloro-U-methoxyphcnol by
soil microorganisms lay be biochciieally
•ediated, and contribute to the relative
stability and long ttri effectiveness cf
Chloroneb in the soil.
1161
Toxic Besidues in Soil 9 Tears After Treatment
vith Aldrin and Heptachlor
Wilkinson, A.T.S.
Science, 143, 681*682; 196U
BESIDUES; TREATMZNT; ALDBIN; REPIACHLOB; SOILS;
PEBSISTENCE
1166
reteriinatioi of Besidues of Tensulfothion and
Iti Solfone in Muck Soil
lilliais, I.R.; Brown, M.J.; linlayaon, D.G.;
Canada Department of Agriculture, Vancouver 8,
Canada
•J. of Agric. E food Chem., 20(6), 1219-1221; 1972
FIBSOITOTHIOI; SDLFONE; BOCK; SOILS; SOIL
BCISTDBE; ZXTBACTICN; EESIDDIS
In the method described fensulfothion and its
sulfcnc were extracted froi luck soils using an 8
h Soxhlet extraction with a 9:1
chloroform-ethanol mixture. Cleanup and
fractionation was on an alumina-silica gel column
and determination was fcy gas chroiatography with
flamcphotometric detection. Optimum recoveries
nere obtained at 20-601 soil moisture content.
Recoveries from soils fortified at 0.1, 1.0 and
10 ppi were 601 or greater.
1167
Eerhicides-Their Fate and persistence in Soils
tiUiams, J.H.
Gt. Brit. Nat. Agr. Adv. Ser. Quart. Eev., 87,
119-31; 1970
EBfAKECaN; PERSISTENCE; SOILS; HERBICIDES;
ACSOBETION; VOLATILIZATION; WEEDKILLERS; UPTAKE;
PLANTS; 2,4-D; HCPA; SIMAZINE; DIUBON; LINURON;
CHIOFCjaRON: AHITBCLE; DiLAEON; DICHLOBENIL;
CHLOH1HIAMID; PABAQUAT; BEVIER; LEACHING
Some of the presently known facts about the
breakdown and persistence of herbicidal chemicals
in sells are reviewed. The persistence of growth
regulators and soil-acting herbicides has been
studied by various investigators. The results of
some cf these studies are summarized in this
paper. Herbicides in the soil may breakdown
under the influence cf microbial action,
ultraviolet radiation cr chemical hydrolysis.
The factors affecting breakdown and persistence
include adsorption of the herbicide in the soil,
vclatiiation of the weedkiller from the soil
surface as well as compound solubility and
leachability and uptake of the herbicide by
plants. These factors, as well as the
persistence of growth regulating herbicides
including 2,4-D and HCFA, soil-acting herbicides
such as simazine, diurcn, linuron, chloroxuron,
amitrcle, dalapon, dichlobenil, chlorthiaiid and
a fcliar-applied herbicide, paraquat, are
discussed. (42 references)
186
-------
1168-1175
1168
Agricultural Chemicals in Surface Runoff, Ground
water, and Soil. I. Endrin
Willis, G.H.; Hamilton, R.I.; Agrlc. Bes. Set?.,
Baton Rouge, La.
J. Environ. Qual.(JEVQAA) , 2(<4), 463-6; 1973
SOILS; HATER: B»t)HIN; INSECTICIDES; SOGARCANI;
BOHOFF
Endrin (0.337 KG/HA) ma surface-applied to
sugarcane (SACCHAHUH 07FICINAHOH). Runoff, ground
space water and soil were analyzed toe andrin
over 2 years. Only less than 0.I* endiin vere
lost annually in runoff, and little tnirin
accumulated in sell. Trace aiounts of endrin
moved through scil. In the ground water endrin
was less than 1 ppb. Less endric »as present in
the runoff, ground water and soil when tise
between application and rainfall vas 72 hoots as
compared tc 24 hears.
1169
Pesticides in Air Volatilization of soil Applied
DDT and tCD froi Flooded and Hen(leaded Plctz
Hillis, G.H.; Parr, J.F.; Siith, S.
Pestic. Honit. J., 4(4). 204-208; 1971
PESTICIDES; AIR; DDT; ODD; CURATE;
VOLATILIZATION: FLOODING
1170
Volatilization of Dieldrin fros Tallow Soil as
Affected by Different Soil Rater Regimes
lillis, G.H.; Parr, J.F. ; Smith, S.; Carroll,
B.E.; Soil And Rater Conserv. Res. Dir., Agric.
Bes. SerT., Baton Rouge, La.
J. Environ. Qual. (JEVQAA), 1(2), 193-6; 1972
CIELDBIN; VOLATILIZATION; SOUS; NCISTOHE;
IHSECTICIDES
rive months after application of 10 ppi dieldrin
to soil, 2,18, and 7* was volatilized from
flooded, moist (SPRINKLED), and ncnflocded (DO
HATER APPLIED CTHEB THAN NATDIAL RAINFALL) plots,
respectively. Temperature had the greatest
effect on dieldrin volatilization cf tfce climatic
variables measured. There was nc apparent
dieldrin degradation in any cf tie plots.
1172
fate ct Pesticides in the Environment - *
Frcgrcss Report
Hilson, B.R.
Trans. «.Y. Acad. Scl., 28(6), 694-705: 1966
FATE; PESTICIDES
1173
Eersistence and Movement of Alpha- and
Gamma-chlordane in Soils Following Treatment with
High-Purity chlordane (Velsiccl BCS-3260)
Wilson, D. B. ; Cloffs, P. c.
Canadian J. of Soil Science, 53(4), 956-472;
1973, lovember
UACflllG; RAINFALL; HALF-LIFE; RESIDUES; SOIL
flOISTQRE; VELSICOL HCS-3260; PESTICIDES;
PEBSISTENCI; MOVEMENT; SOILS; CHLOHDANE
Residues from high-purity chlordane (Velsicol
HCS-3260) were determined in British Columbia
coils for 16 months following applications in
June 1971 at two rates of 5.6 and 11.2
-------
1176-1181
1176
Global Aspects of Pesticide Residue Problems
vinteringham, F. F.; rood Agric. Organ. United
Nations, laea, Vienna, Austria
Isr. J. Entomol. (IJENB9) , 6(2), 171-81; 1971
REVIEW; ENVIRONMENTAL; PESTICIDES; RBSJDOES
1177
Persistence of Parathion in Soil
Wolfe, H.H.; Staiff, I.e.; Armstrong, J.F.;
Comer, S.w. ; Per tine Private lab.. Environ. Prot.
Agency, Nenatchee, Ha
Bull. Environ. Cental. Toiicol. ((BECTA6), 10(1),
1-9; 1973
PARATHION; PERSISTENCE; SOILS; HICBCFlCBi;
INSECTICIDES; BACTERIA; MAMMALS; SPILLAGE;
RESISTANCE
Parathion persisted in the soil at relatively
high levels for 5 years following gross topical
contamination Kith a U5.6X eiolsifiable
concentrate fonulation. Soil level decreased
fro* an initial level of 30,000-55,000 ppm
parathion to 13,800 pp» parathion in the top 1
inch of soil over the 5 year piricd. it the end
of 6 years very little parathion Has found below
the 9 inch level. The nuaber of cclonies of soil
bacteria fro» parathion-trtated coil was lower
than froi untreated soil, and no resistance to
parathion was observed over a 2 year period.
Parathion can persist in the soil up te 16 year*,
and soil contamination by spillage must be given
attention in view of its high toiicity to mammalc.
1178
Metabolism of Fungicides and Hematocides in Soils
Woodcock, D. ; Res. Stn. , Oniv. Bristol, Long
Ashton/Bristol, Ingland
Soil Biochem.(17ESAB), 2, 337-60; 1971
REVIEW; SOILS; PESTICIDES; DIG8ACATIOH;
•EHATOCICIS; PDNCICIDBS
1119
Total Toxic Aldicarb Residues in Soil,
Cottcnseed, and cotton Lint Following a Soil
Trtatment with the Insecticide on the Texas High
Plains
Rocdhal, D.8.; Edwards, R.S.; Beeves, S.G.;
Schutiaan, R.L.; O.S. Eepartment of Agriculture
Animal and Plant Health Inspection Service, Plant
Prctection Program, Brownsville, TX 78520
J. Agr. Food Chea. , 21(2), 3C3-307; 1973
ANALYSIS; PESTICIDES; SOILS; ADSOPPTIONj
AltlCABB; RESIEOIS; COTTONSEED; COTTOM 1IHT;
FEFSISTENCI; SOLPHON!; IRRIGATION
Aldicarb 10G at 15 Ib/acre (1.5 Ib of active
ingredient) was applied at the side of rovs of
seedlings on sandy loam soil. In non-irrigated
fields, aldicart residues (SB the sul phone) in
the rcw soil averaged 1.65 ppm three days after
application and 0.2U ppm after a month, and
completely disappeared in four months. In
irrigated fields, the residues in row soil
averaged 0.7 ppm 13 days after application and
disappeared completely in 12 days. No
significant residues occurred in soil between
treated rows or in adjacent untreated fields.
1160
Persistence and Reactions of (1»C)-Cacodylic Acid
in Scils
ioolson, E.A.; Kearney, P.C.; Agric. Res. Cent.,
Agric. Res. Serv., Beltsville, ltd.
Intiico. Sci. lechnol. (ESTHAG) 1973, 7(1) 47-50-
1913
CACODILIC ACID; SOILS; HERBICICES; DEGRADATION
then 1-100 ppm 1tc-label«d cacodylic acid was
incorporated into 3 coils, the concentration of
eacodylie acid was the highest in the
water-aolntle fraction, followed in decreasing
crder by the Al, Fe, and Ca fractions. Inorganic
arcenate accumulated mcstly in the Fe and Al
fractions. Cacodylic acid persistence was a
function of soil type. Cacodylic acid was
decoiposed into a volatile alkylarsine, under
both anaerobic and aerobic conditions.
regradmtion under aerobic conditions also
occurred by cleavage of the C-As bond, presumably
yielding C02 and A«0«3.
1181
Hicrotial Degradation cf « Carbory-1-Methyl
Eyridininm Chloride a Fhotolytic Product of
Paraquat
Vright, K.A.; Cain, R.B.
Bicchtm. J., 118(3), 52-53; 1970
DEGRICITIOI; PHOT01TSIS; PABAQOAT; PESTICIDES;
188
-------
1182-1186
1182
Degradation of Herbicides by Soil Hicro-Organisas
fright. S.J.L.i school Biol. sci.. Bath,
Soa«ra«t, England
Soe. Ippl. Bacteriol. Syap. Sec. 1, 233-254; 1971
BIODlGRiDlTION; EHZTSE; PHESQITHKiSQUTBS;
AHILIHB; HICBOOBGANISBS; OIIEAT10N;
PHEHYLCIHBUUTES; PHBMHIRB1; HTCKLITIC
DECBLORINATION; METABOLISH; CHLORINATED ALIPHATIC
ACIDS; BENZOiTES; TRIIZUE; IARACOAT; CIQDIT
Tor a pesticide to be subject to biodegradation,
organisms effective in metabolizing the compound
must exist in the soil or b« capable of
developing there, be in a degradable fore, reach
the organisms, and induce the formation of
enzyies necessary for degradation, conditions in
the environment Bust favor the proliferation of
the organists and operations of the enzyaes.
Evidence of microbial degradation has been
obtained for most of the herbicides.
phenoxyalkanoates can be degraded by
beta-oxidation cf compounds Kith long fatty acid
soieties, cleavage of the ether link between the
side chain and the aromatic ring, and ring
hydroxvlation prior to attack on the side chain.
The formation cf nonphytotoxic anilines fros
pheoylcarbaaates is apparently a process widely
distributed asoog soil sicrobca. Detoxicaticn of
phenylarea compounds also takes place in soil,
and anilines are foraed in the prccess.
Bydrolytic dechlorination is the first step in
the aetaboliss of chlorinated aliphatic acids.
Substituted benzoates and triazine coafounds are
quite resistant to attack. Several organisms
have been isolated which, degrade paraquat and
dignat, but these cheaicals are strongly adsorbed
by some soil particles and are thus unavailable
to biological systems, duch of the wotk on
degradation of herbicides has been done with
isolated organisis and pure chemicals. This
needs to be extended with conditions mere closely
resembling those found in thf field.
1183
Microbiological Aspects of the Breakdown of
Herbicides in the Environment
Bright, S.J.L.; School Biol. Sci., Oniv. Bath,
Bath, Somerset, England
j. »fpl. Chem. Biotechnol., 22(7), 880-681; 1972
PERSISTENCE; HERBICIDES; PHENTLCJRBAIU1BS;
PHEHOITilMSOiTZS; T5IAZINE; EISZCJTtS;
DEGRADATION; PBENY.LANUIDES; CHLCROAHXIINES;
CHLOROIZOBENZBNES; BREAKDOHH; SOUS;
MICROORGANISMS; USAGE
The persistence of herbicides varies and ranges
from several weeks for phenylcarfcamates and
phenoxyalkanoates to many months for triazines
and substituted benzoates. * dearth of
information concerning the complex field
situation is apparent although degradation of
herbicides by isolated organisms has been studied
extensively. Phenylcarbamates aid phetylanilides
are generally inactivated by the formation of
aniline compounds, but the persistence and
toxicity cf some chloroanilines and
chloroazobenzenes suggests that these residues
should be carefully monitored in soil. Practical
uses, such as antidotal application of microtial
preparations on spillage of herbicides, have
resulted from investigation cf the breakdown of
these chemicals in the soil.
Betabclism of the Berbicide Earban by a Soil
Penicillin*.
fright, S.J.I,.; Forey, A.
Soil Eiol. Biochem., «(2), 207-213; 1972
3 CBLOB01NILINB; AHIDAS1; HEHBICID1S; SOUS;
IE1AECIISH; BABBAN
1165
Characteristics of Hineral Diluents Affecting the
Decomposition of Snmithion in Dust Formulations
Sub, K.D.; Han, S.S.; Keum, S. s.; Ihn, S.H.; Lee,
C.H.; Inst. Plant Environ., Off. Rural Dev.,
Suwon, S. Korea
Ran'Gok Sikmnl Poho Bakhoe Chi (HSHCA8), 10(2),
77-83; 1971
SOBITHION; DECOMPOSITION; DILUTION; INSECTICIDES;
EIMTONITB; OIATOHACEOOS EARTH; KAOLIN; TALC
Enring a study of the effects of mineral diluents
on the decomposition of sumithion in dust
formulations. Snmithicn decomposition was higher
in the order bentonite greater than diatoaaceons
eaitb greater than kaolin greater than talc.
Suaithion decomposition products were identified
as dimethylphosphorothionate,
3-methyl-
-------
1187-1192
1187
Naptalam Estimation in Cranberry-E Bog Soil
Taklich. H.B.; Demoranville, I.E.; Devlin. B.H.
Proc. Northeast Reed Sci. Soc., 56, 293-296; 1972
HERBICIDES; PERSISTENCE; BBEAKDOIH; SOILS;
NAPTALAM; BOG; CBANBEBBY BOG
1168
Persistence of Organochlorine Pesticides in Soil
and Crops 1. Absorption and Tranclceation of
Aldrin and Dieldiin in strawberries
Yaaaberi, B.; Yano, H.; Shinmyo, N.; Kagava
Agric. Exp. Stn., Takamatsu, Japan
Kagava-Ken Nogyoshikenjo Kenkyu Hokohi (KNKRA2),
(22) , 36-i*2; 1972
ADBIN; DIILDBIN; RESIDUES; STBAWEEBRIE£;
INSECTICIDES; PERSISTENCE; SOUS; CROPS; BATE;
BERRIES; OBGANOCELOBINE PESTICIDES
Aldrin and dieldiin residues were determined in
strawberries 75 and 110 days fcllowing a soil
application of aldrin (0.3-100 PF»)> Berry
residues were lees than 0.001 ppm aldrin and less
than 0.003 ppm dieldrin after 110 days in an area
in which aldrin had been used over a 3 year
period. Aldrin to dieldrin conversion rates are
jiven.
1189
Adsorption of Ametryne and Atrazine on an Oiiscl
Montmorillonite and Charcoal in Eelaticn to pR
and solubility Effects
Yamane, V.K.; Green, B.E.; Hawaii University,
Honolulu, Hawaii
Soil Sci. Soc. Ai. Proc., 36(1), 56-6«; 1972
HERBICIDES; SOUS; ADSORPTION; IHITRYIII;
ATRAZINE; NORTNOBILLONITE; CHARCCAI; PB;
SOLUBILITY; PBOTOVATION; OXISOL
imetryne vai adicrbed to a gr«at«r extent than
atrazine on soil and montacrillonit* at Ion and
high pH. Aaetryne shoved a greater increase in
adsorption vith decrease in pH (FM apEcoziiatcly
equal to «. 0) than atrazine (PKA • 1.68).
Addition of charcoal iask«d the pB effect of
aaetryne adsorftion. Adsorption cf asetryne on
charcoal decreased at the low ph valuei condocive
to asetryne protcnation. There *as higher
adsorption of both aeetryae end etzasine at 25
than 10 degrees C. 1 vetting agent in ccsiercial
aietryne bad no effect on adsorption.
1190
Interaction of Eipyridyliui Herbicides and Soil
flicrc-Organises
Jang, J.S.; funderturk, H.H.; Curl, E.A.; Auburn
Dniv., Ala.
Abstr. Meet. Seed Sci. Soc. Ai., 38; 1968
IIPTB1EYLIOH HEBBICIDES; DIQOAT; P&BAQOAT;
BEBBICIDES; BICBCOFGANISHS; TIASTS; SOILS;
EEGBAEATION; ENZTHE
Several species cf soil sicrc-organisns were
tcletant to 5000 ppi fliquat and some species
degraded it. Diquat and paraquat vere degraded
enzy»atically by the soil yeast UPOMYCES
STAHKMI.
1191
Influenca cf Water and Temperature on Adsorption
cf Parathion by Soils
Jaron, B.; Saltzsan, S.; Volcani Center, Bet
Dagan, Israel
Soil Sci. Soc. As. Proc., 36 (i»), 538-586; 1972
INSECTICIDES; CABBON 1
-------
1193-1197
1193
Degradation of Gamma BRC in Bice sells
Tosh Ida. T.; Castro, I.T.; int. lice Res. Intt.,
Los Banos, Laguna, Philippines
FCOC. Soil Sci. SOC. Al., 3D, 440-442
DEGBiDATIOM; SOILS; HIXACHLOSOBEHZMB; 1IHD»RB;
IHC; IIISECTICIDES; OFGiHIC 81TIZI; DHCCHPOSITIOR;
TBHPBHATOFB; F100DIRG; PICE
Degradation of the insecticide it different rice
soils (pR 4.7-7.6, organic latter 1.5-4.4%) was
rapid under flooded conditions, and its rate of
decomposition was directly r«latcd to
organic-latter level. Bate of gaisa-BBC
degradation vas increased by increasing
teiperatnre, and retarded by HO2 as veil as by
•O3 and Nn02.
1194
Diagnosis of Environment Seen frci
Soil-Pollution. The Present State of Soil
Pollution by Heavy Metals and Pesticides
Yoskiike, A.; Section of Soil and Pesticides fcr
Agriculture, the Environment Agency of the
Japanese Government, Tokyo, Japan
Kankyo Sozo (Environ. Creation), 4(1), 84-89; 1974
CHGilOCHlOBIRE INSECTICIDES: SOUS; AGBICOLTDBt;
HETAIS; TB1CI ILIKIHTS; BEKZIRt BIXACHLORIDE;
CHOPS; PESTICIDES; POTATOES; COC 0(1 BEES; ALDRIR;
EXEBIR; BIGOLATIOK-. BBC; DDT
The present state of soil pollution in Japan is
outlined. Soil foliation by pesticides used for
agricultural uses is attributed to persistent,
net-easily deccmtosed organochlorine
insecticides. Ihese pollute the field soil, .are
absorbed by the crops and in turn pollute the
agricultural produce. Instances of
crop-pollution through polluted soil are pctatces
and cucuibers (reduced in eight prefectures and
containing aldrin, dieldrin, and/or endrin sore
than the standard value in 1970. Coontermeajures
for soil polloticn by pesticides include the
regulation of pesticides vith severe restrictions
on the use of aldrin and dieldrin and prohibition
of the use of BRC and DDT. Pesticides applying
for registration will be held back if they are
persistent and pollute the sell. Fields polluted
by persistent pesticides are not recomiended for
planting of vegetable crops such as cucoiber and
Japanese radish, bat can be used fcr glowing
oxnaiental plants.
1195
Effects on Groundwater
Toong, 8.H.P.
J. Rater Pollut. Contr. Fed., 44(6), 1208-1211;
1912
GRCUREV.ATER; PESTICIDES; SBEEP DIP; LARD;
STfEARS; LAKES; A1GAL ELOOMS; HATER; BBSIDDBS;
LIKB1RG; BEBBICIDES; FERTILIZERS; SOIL; GROORD
SA1ERS
Contamination of groundwater by pesticides has
teen reported several times. Sheep dip,
discharged on land, was transported through a
storage aquifer into a feeder stream of a lake.
The subsequent depression of DAPHNIA, BOSHIRIA,
and CBIRORCNIDS resulting in algal blooms made
the lake temporarily unsuitable as a water
source. Backfill of a well with groundwater from
a site previously used for flushing DDT and
toiaphene sprayers resulted in a gradual increase
in residues of these insecticides in the well
vater. Irrigation application rates and
frequency and soil properties affected the
leaching of herbicides and fertilizers into
grcundwater in Hawaii, novement of other
contaiinats in soil has also been reported. (26
tefecences)
1196
EDI Besidues in Forest Soils.
Tnle, S.N. ; Chem. Control Res. Inst., Can. For.
Seiv., Ottawa, Ontario, Canada
Bull. Bnvl. Contam. Toxicol. , 5, 139-11*4; 1970
EDI; tlSTRIBOTIOR; FOREST SOILS; LITTER; SOILS;
PSSSTSTBRCI; RESIDUES
A preliminary report on forms, amounts and
distribution of DDT in the forest soils of New
Brunswick, and results of toxicoloqical tests
with these soils. Although CDT persisted in
study tlots mainly in the form of the most toxic
iscmer (pp DDT) in considerable quantities (11
oz/acre), and mostly in the litter layer, the
direct toxic effects of these residues were
greatly attenuated by the soil itself.
Consegnently, their direct ecological
significance is very much less than chemical
analysis alone might indicate.
11S7
Intensive studies of DET Residues in Forest Soil
Tule, l.R.; Dep. Envircn., Can. For. Serv.,
Ottawa, Ontario, Canada
lull. Inviron. Contam. Toxicol. (BECTX6), 9(1)
57-64; 1973
til; BlSIDOES; FOREST SOILS; SOILS
Summary of intensive studies on the vertical and
horizontal distributions of DDT in the forest
soil environment at Priceville, and traces
qualitative and quantitative changes that have
occurred in soil residue status between 1967 and
1971.
191
-------
1198-1203
1198
Contamination of Drinking Water Sources with
Solid Refuse
Zaafir, G.; Neatase, V.
Gig. Sanit., 36(12), 80-81; 1911
PESTICIDES; FLOOIPLAIN; WATEB; DIBOTOX: DIHOSBB;
CRGANOPHOSPHORUS PESTICIDES; DZTCX; DOILITCI;
HEKLOTOX; ALDRIH; EKATOX; ORGAROCHLORIIE
PESTICIDES; CBZEK; CHINICAL I11H1; PISH DBA1BS;
HEflBW; FISH; GBCDHDiATia; Will tATEB; SROOIt
RATED
Cases of veil, ground and ci«er nater
contamination by pesticides end ether ebeaicals
in Ruaania are revieved. nearly 100 veils in a
floodplan vere poisoned over tvo years by
contaminated »«t«r discharged aft«r Baching
dibntox (dinoseb) pesticide containers.
Concentrations of 0.1 to 2.0 ig/1 vere aeaanred.
The coaaunal vatcr supply of a city vas poiscned
by large aaounts of organochlorine and
organophosphorue pesticides |d«tcx, daflitoi,
betclctox, aldrin, and eXatox) due to a violatici
of the rules of residue discharge.
Organochlorine pesticide concentrations in the
order of 10 ag/1 vere neasored IB the later of a
creek near a cheaical plant. NassiTe fish deaths
in pesticide ccntaiinated creeks ««re reported.
1202
Infestigations on the Disappearance of Siaazine
free light Soil
Zucavski, H.; Ploszynski, H.
Fact of Bavden, Sic Fredrick (President) .
Proceedings of the 9th British Seed Control
Conference Held Ho». 18-21, 1968 at Brighton,
Ingland. Syiposiui. Vcl. 1,2,3 (p. 115-118),
13E8 c.; 1968
BAIZI; OATS; BIOASSAT; HERBICIDES; SOILS; SIHAZINI
1203
Significance of the Soil in Inviroaiental Quality
iBcrcteient. A Reviev
Zversan, P.J.; DeRaan, F.A.; New lork Coll.
Agric. Life Sci., Cornell Oniv., Ithaca, NT
Sci. Total Environ. (SIEVA8) , 2(2), 121-155; 1973
1199
Carbaryl Degradation by PSZODOROIIS-PHISEOIICOIA
and ASPIBGILIDS-IIIGIB
Zuberi, B.; lutalri, H.I.
?ak. J. Sci. TDd. Bes., 1«(«-5), 1971, 383-384
CABBARTL DBGBACltIO*.; IWS1CTICIDIS
1200
3todies on the Bio Degradation of Parathion
luckeraan, B.H.; Deobert, H.H.; Backievics, ».;
Gunner, R.
Plant Soil, 33(2), 1970. 273-281
VIVEGAB; FLT; ABKOPARATHIOI; CBOLII; 1ST1BA5E;
IISECTICIDES
1201
Laboratory In»«stigatlon« of Siaailne
Inactlvation Bit*
Xnraraki, 8.; Pisa, J.; tytsia Stk. tola.,
Iroclav, Poland
Boc*. Qlebozn. (BOGIAA) , 22(1), 12«-13<; 1971
SIBAfliB; SOILS; BBGBlDATIOi; PIBSIST1ICS; IITBB
SAID; BLACK UIT1; ALWJTIAL SOU
Hi»er e*nd, alltvial soil, aid black earth, alxed
vitb slaaxine shotted after 10 veeks 70, 20 and
10*. respectively, of the initial siaaslne
content.
192
-------
Aa»i. H. 317
Abafy, J. «0
Abdel-Gawaaa, A. A. 16
Abernathy, J.R. 17, 18. 19
Abo-Xlghar. N.R. 676
Abratova. K.A. 20
».ckley, I.B. 21
Ada*, 1. 22. 759
AdatoYlc, V.M. 1169
Ada»s, E.N. 23
Adais. R.S. 2U, 25, 137, 90S
Adais, S.S., Jr. 853
Addington, U.K. 717
Agbakoba, C.S.O. 26
Aggarval, J.C. 364
Agnihotri, N.p. 218
Agulhon, R. 27
Ahlrichs, J.L. 28. 628, 730
Ahied, H. 29
Ahn, S.R. 1185
Ahr, «.B. 30
Akasaki, K. 477, 478
Akishina, T.K. 31
AKsenoy, v.B. 32
Alexander. H. 33, 34, 35, 36, 31,
217, 425, 494. 849, 1067
All, E.S.N.H. 314
Allen, H. 38
Allen, T.J. 39
Alley, B.P. 739
Al*assy, G. 40
Altom, J.D. 41
Anastasis, KB. 42
Anderson, J.P. 43, 44, 45
Anderson, J.R. 46, 47, 48
Anderson, t.D. 432
Andrawes, S.R. 49, 50
Aotal, J. 40
Aoiine, S. 51, 194
Applegate, H.G. 68
Alines, J. 71
Aristovskaya, T.V. 52
Arle, H.F. 382
Armstrong, D.E. 577, 857
Armstrong, J.F. 1177
SECTION II
AUTHOR INDEX
Aroca, S.K. 53
ArahidinoT, A.A. 54
Arvlk, J.H. 55
Asai, 8.1. 56
Asannia, S. 307
lahfotd, S. 878
»shton, r. 57, 579, 581
Ataba«», S.R. 58, 59
Atzert, S.F. 60
Aucaap, J.I. (1
Austensoo, H.H. 911
Avrahaii. R. £2
Eagley, H.P. 49, 50
Bahig, K.R. 22, 759
Baida, T.A., Jr. 63
Baig, R.K.H. 794
Eailey. G.*. 64, 65
Eaird, D.D. 66, 1084
Eaird, S.i. 1043
Etkalivanov, C. 67, 815
Eakar, D.R. 232
Baker, R.R. 1056
Baker. 8.D. 68, 81
Balasubra»emi»n, A. 69
Baligar, ».C. 950
Ballard, T.M. 70
Ballester, A. 71
EallschBiter. K. 931
Ealuja Harcos, G. 72
Banelli, G. 73
Bankov. V.F. 74
Eannink, D.V. 862
Ear but'Ko, R. 994
Barisley, C.E. 75
Barlow, F. 76
Earnes, B.C. 77, 78
Earnhisel. R.I. 851
BartCMS, H.L. 1060
Bartha, R. 79, 121, 122,
125. 452, 870
Bar thai, li.T. 80
Bartlej, T.B. 915
Easier, I. 1171
Eatterton, J.C. 129
Baur, J.R. 81, 133. 134
193
Ba»eja, A.S. 199
Bazzi, B. 82
Beall, H. 83
Beall, H.L. 84, 786, 787
Beard. V.B. 356, 357. 358. 359
Beaslay, n.L. 85
Beasley, R.P. 968
Becker. D.L. 886. 887
Beckian, B.O. 86
Beak, R. 889
Beestian, E.G. 87
Bebrens, 8. 230, 1038
Bebrens, R.R. 1039
Beltz, R. 417, 888
Miles, V.S. 988
Belyea, G.T. 246
Bencivelli, A. 298
Benezet, H.J. 88, 693
Bsnjaain, I. 741
Benn«r, J. E. 8
-------
Blue, T. 1025
Bluienbach, D. 107
Bobrova, V.I. 108
Bode, I.E. 109, 110, 111
Boersia, L. 656, 923
Boguleanu, G. 865
Bollag, J.H. 112, 113, 11«, 115,
665, 666
Bollen, w.B. 1058
Bollt, E.D. 23
Boiar, N.T. 116
Bonderian, B.P. 117
Bone, H.T. 118
Booth, G.H. 119
Bordeleau, L.R. 120, 121, 122,
123, 124, 125
Borger, R. 126
Bose, :. A. 1154
Boucher, F.R. 127
Bourk, J.B. 60S
Bourke, J.H. 128
Boush, G.B. 101, 129, 130, 131,
132, 694, 695, 696, 697, 698,
699, 700, 701
Botey. U.S. 81, 133, 13», 135, 705
Bowen, H.J.H. 136
Bovian, B.T. 131
Bovian, H.C.F. 138
Bo»«r, K.H. 139
Boyd, J.C. 1*0
Bozarth, G.X. 101
Bradley, J. R. 142, 956
Brady, H.A. 143
Brantley, B.K. 691
Briggs, 6.G. 494
Brinckian, r.E. 803
Bciaki, A. 144
Bro-Rasinsaen, I. 145
Broadbent, F.E. 622, 1106, 1126
Brook*, 6.T. 146, 147
Brooks, T.N. 148
Brown, t.R.X. 150
Brown, B.I. 542
Brown, D.A. 149
Brown, I.F. 866
Brown, II. J. 1166
Brown, ».J. 150
Brown, M.S. 163
Brust, R.A. 151
BubaloT, H. 731
Euchanan, G.A. 152
Eudoi, G. 153
Ball, A.I. 77, 78
Ball, D.I. 154, 215
Barest, P.O. 1118
Barge, ».D. 155. 156, 157, 158
Eurk, G.A. 285
Earn, I.G. 159
Burnett. E. 134
Earns, I.G. 160, 161, ItJ
Earns, R.G. 163
Earnside, C.C. 164, 165, 725
Earrough, I.H. 166
Eusvell, J.A. 167
Batcher, J.w. 61
Batler, H.£. 211
Batler, I.I. 829
Byers, G.E. 672
Eyrd, B.C. 166
Cady, F.E. 1043
Cahill, «.F. 1130
Cain, S.B. 161, 169, 1181
Calderbank, A. 170
Caley, C. 80
Caipbell, I.». 171
Capek, 1. 172
Card«w, R.H. 345
Carey, A.I. 173
Carlson, I.E. 556
Caro, J.H. 174, 175, 176
Carolu«, B.L. 177
Carroll, E.R. 1170
Carrcll, P. 280
Carrow, B.». 178
Carter, f.l. 179, 180, 161
Carter, R.T. 182
Carter, 1.1. 183
Carter, B.I. 138
Casanova, H. 184
Casida, J.I. 185
Castro, T.T. 166, 1193
Catrooi, G. 300
Cencelj, J. 1»U
Cesari, A. 297, 298
Chal»aignac, B.A. 187
Cha«[ion, D.F. 188
Chandler, I. 28
Chang, R.K. 231
Chapian, R.K. 321
Chester, G. 301
Chesters, G. 189, 577, 856, 857
Cheung, H. K. 9. 211
Coha, F. 212
Colbert, F.O. 213
Colby, S.R. 840
Coleian, R.I. 326
Collier, C.I. 1016
Collins. J.A. 621
Collins, R.F. 214
Collins. R.I. 85
Coll yard, K.J. 491
Colon, J.D. 933
194
-------
Colwell, R.R. 803
Coaer. S.I. 1177
Copp«dge, J.S. 154, 215, 616
Cor bin, F.T. 216
CorKe, C.T. 463, 1009
COBhov, ».P. 386
Coop in, L. SOU
Coatta, J. S67
Cox, D.P. 217
Crafts, A.s. 900
eraser, J. 218
Cripps, R.E. 219
Critchley, B.R. 220
Crocket, ». 970
Crosby. E.G. 221, 222. 223, 22«
Crossland, J. 225
Crondy, S.H. 1057
Cruz, R. 226, 1155
Csapo, I. 40
Culliaore, D.R. 227
Curl, E.A. 1190
Czarnowski, S. 600
Czervinska, 5. 488
czyrnia. 8. 888
Dale, J.J. 275
Oagley, S. 556
Dans. P.*. 1120
Daaanakiz, H. 228
Daiyanova, I. 1097
Daniel, 3.9. 229
Danon, S. 61U
Darlington, I.e. 55
Dam ant, A.I. 230
Das, B. 196
Das. N. 196
Daoay, 6.0. 296
Davidson. J.H. 18, 231, 232, 233,
447. 1087
Davis. A.C. 234, 60S, 606
Davis, E.A. 235
DaTison, J.6. 204
Davytav. V.D. 713
Dans on, J. 1067
Day, B.E. 236, 237. 238, 495
Cay, C.L. 110, 111
d« Botgai, E. 239
da Tranne, E. 240
da Hete, R.T. 276
D«Haan, F.A. 1203
takhnijzan, R.H. 201
Eelas, J. 2«2
laiing, O.i. 87
Ceaorantill*, I.e. 11E7
Casi, I. 2U3
Danbttt, K.R. 2««, 2«!, 361, 1200
na»lin, S.B. 1187
Eavan, R.S. 971
tewlen, J.I. 238
tieter, C.I. »2»
Diaond, J.E. 2*6
Dindal, E.I. 247
Eishon, I. 807
titaan, I.F. 722
Oixon, J.B. 248
Djiraatai, A. S90, 591
toasch, I.H. 249
Dorovgh. H.W. 215. 250, 251
Drees, R. 252
Dcefahl, B. 568
Ecennan, E.S.R. 228
Ccev, I.A. U7
Drobnikova, T. 253
Dtozaova, O.A. 976
Crai, 1.6. 254, 255
Eabaeh, t. 318
tube, J.R. 783, 784
Dubranski, R. 60C
Cubroca, J. 184
Indley, R.T. 487
Cuff, «.G. 256
Dunigan, !.P. 257
ransing, H. 417
Care, 6. 1145
Cuseja, D.R. 258, 284
Dott, 6.R. 623, 1041
tnxbury. J.n. 1067
ttezeva, 6. 614
Zastin, I.P. 1127
Ibbersten, S. 259
Iben, C. 1033, 1034, 103S
Zberle, D. 880
Ebatle, D.C. 260
Eberspaecher, J. 240
Bbner, L. 367
Idgington, L.T. 858
Edwards, C.A. 261, 262, 263, 264.
1065
Edwards, N.J. 264, 1065
Edwards, R.8. 1179
Edvaids, V.fl. 17«, 265, 406
Effei, B.R. 266
£ga««, R. 1080
Eguchi. S. 817
Ehlers, I. 267, 268
Ehaan. P.J. 269
Eiehler, D. 270, 271
Hl-6tyar, ».H. 16
El-R«fie, U.S. 272
El-Raseiny, I.B. 678
Elgar, K.E. 95
lliseeTa, H.A. 681
Ellington, c.p. 540, 5»1
Elliott, t. 687
Ellis, J.R. 851
Elrlck, D.E. 273, 274
End, C.S. 275
Engelhard, A.V. 276
Sngelhardt, G. 277
England. c.B. 278
Ingst, R. 279
Enlov. R.E. 23
Ensoi, P.D. 423, 791
Epstein, E. 892
Ercegovich, C.D. 280, 528
Erdos, G. 243
Einst, J. 281
Errin, J.O. 690
Eshel, T. 282
Essei, fl.O. 283
Estasen, B.J. 1130
Etzel, J.E. 560
Ivans, J.O. 284
Evans, ».C. 312, 313, 830, 831
Exnei, J.R. 285
Eye, J.I). 286
195
-------
Eyring, H. 655
Fakhr, I.H. 22, 759
Fa», E.Z. 500
Farcer, V.J. 267, 268, 287, 288,
289. 290. U60, 461, 462. 1173,
495. 636, 953, 1003, 1004, 1005
FateyeYa, O.F. 291
Paust, S.D. 737, 738
Fedorova, I.H. 761
Felbeck, 6.T. 6«1, 642
Feltner, K. C. 852
Fenstar, C.R. 164, 165, 625
Fenton, S.H. 137
Ferguson, T.L. 626
Ferrari, F. 883
Finlayson, D.G. 1166
Fishbein. 1. 292
fisser, H.G. 166
FisyunoT. A.T. 293
Fitzpatrlck, A. 979
Flan, H.G. 292
Fleeltet, J.E. 929
Fleming, S.A. 29U
Fletchall, o.H. 1054
Flis-Bujak, H. 1077
Foesa, G.R. 295
Fontanilla, I.I. 722
Forey, A. 1181
Forney, F.B. 296, 1090
Foschi, S. 297. 298
Foster, U.K. 299
Fournier, J.C. 300
Foy, C.L. 441 , 579, 581
Franci, H. 309
Prank, H. 973
Frailer, B.E. 301
Freed, «.H. 302, 389, 465, 752,
754
Freeman, R.P. 174
Frere. N.H. 303
Fries, 6.F. 304
Friestad, H.O. 1014, 1015
Frissel, H.J. 862, 889
Frissell, H.J. 863
Fryer, J.D. 228, 559
Fuhreiann. T.R. 648, 649, 650,
651, 653, 654. 930
Fajiioto. I. 305, 516
Fukunaga, K. 306
Funazaki. Z. 307
Funderburk, H.fi. 141, 1190
Funderburk, B.I. 23
fumkava, K. 308, 1072
Fusi, E. 309
Gaeb, S. 510
Galba, 3. 442
Gall, H. 23
Gaiar, T. 776
Gais, 1. 498
Gar, 1C.A. 254, 25S
Garbcr, H.J. 432
Gardiner, H. 656
Garravay, J.L. 311
Gaunt. J.K. 312, 313
Gavaad, A.l.A. 310
Gaynor, J.t. 315
Gebhardt, I.R. 110
qebhardt, B.B. 111
Gaissbnhler, R. 316, 317, 367,
1102
Gerber, H.B. 318
Gersh, I.E. 601
Gessel, S.F. 893
Getzin, l.«. 319, 320, 321. 322,
323
Giardini, 1. 324, 325
Gibrail. H.A. 836
GigineiahTili, ».». 553
Giliour, J.T. 326
Giordano, F.H. 327
Girgor'Bva. T.I. 594
Glass, B.I. 265
Glotftlty. D.E. 174
Goel, E.I. 197
Goering, C.I. 110, 111
Gogiya, L.I. 328
Go gn a die, f.D. 328
Golat, T. 329
Goldberg, B.C. 1148
Gontalez-Ibanei, J. 662, 663
Gonzalez, G.C. 669
Goodin, J.B. 26, 495
Gorbach, S. 330, 331
Sorchakovskaya, K.N. 578
Soring, C.A. 332, 3!3, 334, 717
Sortlevskii, A.A. 638
Gorzelak, A. 335
Gosvaii, K.P. 336, 337
Goto, S. 516
Colliding, R.I. 338, 752
Gousterof, G. 1097
Go»en, H.J. 774
Graboxski, K. 339
Grah&B-Bryce, 1.3. 340, 341
Grailich, J.T. 329
Gra«pp, B. 1034, 1035
eras so, c. 342
Gray, R.A. 343, 344
Green, B.E. 336, 337, 1189
Greenvood, R.A. 365
Grice, R.B. 345
Griffin. D.P. 23
Griffiths, D.C. 346, 347
Grigor 'I»a, T.I. 595
Grigor'E*a. T.I. 596, 597
Gross, I.E. 158
Groasbard, E. 348
GroTer, R. 349, 350, 351
Groves, K. 352, 353
Grnetner, P. 354
Godding, R. 355
Guenzi. I.D. 356, 357, 358, 359
Gulati, K.C. 971
Gunner, R. 1200
Gunner, R.B. 360, 361, 671
Gunther, F.». 56, 362, 363, 432,
•82, 483
Gupta, D.S. 740
Gupta, K.G. 364
Gutenaann, (.R. 36S
Guth, J.A. 316, 366, 367
Gnthrie, F.E. 368
Gnyasb, F. 941
Gyriaco, G.G. 365
Gth«got«kii, H.I. 369
Baan. C.T. 370
Haaring. R. 331
Raaa, R.H. 371
196
-------
Hadavary. ».B. 76
Hagedorn, D.J. 745
Haghiri, F. 372
RahD, R. B. 371. 933
Haider, K. 086. 691
Hall, J.K. 373, 37*
RaMd, M.X. 16
Raaaker, J.W. 334, 375, 376, 371,
717
Haadi, I.a. 378, 379, 1062
Raa««4, S.T. 380
Haielink, J. 381
Halilton, K.C. 382
Haailton, R.». 1168
Raaierton, J.L. 383
Haaaond, L.C. 686
Haaroll, B. 384
Han, s.s. 1185
Hance, R.J. 385, 386. 387, 763,
764, 765
Hansen, B.J. 119
Haque, H. 302, 388, 389
Hardaan, J.A. 1119
Hargrove, P.S. 390
Hargrove, T. S. 391
Harris, C.I. 393
Harris, C.R. 392, 394, 395. 396,
397, 398, 399, 400, 401, 402.
403, 404, 105, 734
Harris, I.G. 83, 787, 788, 789,
790, 791, 792
Harrison, D.L. 748
Harrold, L.L. 406
Hartisch, J. »17
Hartley, G.s. 107. 408
Far twig, K.L. 280
Harvey, J.J. «09
Harvey, R.G. «10, 411
Harvey, T.L. 568
Haselbach, C. 317
Hattrnp, »^R. 915
Hayes, H.H. 159, 160, 161, 162,
345, 412, 413. 414
Head, >.K. »15
Hedlund, R.T. 717
Hedrick. H.G. 1143
Rein, I'D. 8tt°
Heinnlaan, D. 181
fleiaiach, I. 416, 417, 418
Helling, C.S. 419. 420, 121, 422,
423, 424, 425, 126. £33, S34
H«l*«g, 1. 427, 426. 429, 430
Beiing, B.S. 171
Henn*. B.C. 431
Rerberg. E.J. 329
Beriansoa, H.P. 432
Dercett, B.I. 49
Herve, 3.3. 433
flerael, f. 434, SOU
Riger, *.l. 576
Biggins, E.R. 374
Hill. I.F. 435
Hiltbold. I.E. 152, 493
Hilton, H.«. 436
Hindin, B. 431
Bir««, ».S. 727
Hobba, J.i, 991
Hocevar, J. 144
Hock, S.K. 438
Hodges. 1.1. 439
Hodgson, J.H. 440
Roffaan, G.O. 371
Hollist, P.L. 441
Boll7, K. 228
Rolobrady, K. 442
Holroyd, J. 387
Bolt, R.T. 443
Hoaeyer, E. 444
Bo.onnay Csehi, H.X. 445
Hoover, 8.1. 720
Hopkine, t.l. 568
Hocaann, K.D. 260
Roriann, K.D. 0. 880
Bornsty, ».G. 446, 447
Horowitz. R. 448, 449
Hcrsgood, U.K. 48
Eorvath, P.S. 450
Hovghton, G. 169
Housenorth. L.D. 451
Howard. C.I. 720
Baa, T. 452
Huang, J.C. 453, 454, 455, 456,
457
Huang, J.C. 458
Babbell. O.R. 459. 1150
Haggenberger. r. 460. 4(1, 462
Hughes, I.F. 463
RalU, V. 449
Ranter, J. R. 464
Butler K. 46S, 466, 467
Rartig, R. 468
Hurtt, I. 940
Russ. R. 469
Rutchinson, ».D. 23
Hutson, D.B. 94
Hylin, J.B. 92, 470
Hytak, D.I. 471
Ida, a. 472
Igae, R. 288, 289, 473
lare, B.I. 474, 475
Inch, T.D. 476
Inge bo. P.*. 235
Inoae, K. 51
Isensee, A,R. 423. 534, 535
Ishikava, R. 477, 478
Ishikora, R. 479
Isin, H.H. 54
Isoa. «.H. 480
Ivanova, L.S. 481
Tverson, s.P. 803
Iwabara, S. 522
Ivata, I. 482, 483
lyatomi, K. 524, 525
lyengar, L. 484
Iyer. J.G. 485
Jackson, H. B. 142, 956
Jacquin, P. 924
Jagnov. G. 486
Jaees, P.B. 487
Janjic. ». 212
Jaake. 2. 488
Janscn. L.I. 793
Jarrar, S. 1146
Jensen, c.B. 290
John, H.K. 489, 490
Johnsen. S.E. 491. 771
Johnson, B.T. 492
Johnson. I. 238
Johnson, H.P. 749, 896
197
-------
Johnson, I.P. 493
Johnston, H.». 494
Jones, G.E. D23
Jordan, 1.5. 495
Jordan, F.D. 496
Ju«ar, X. 384
Jyothi, V. 497
Kaars Sijposteijn, A. 241
Kaastra-Ho»eler, L.H. 498
Kabata-P«ndias, A. 499
Kadoui, A.M. 568
Kadunce, R.E. 246
Kaiser, P. 504
Kaeel, A.R. 500
Kaaenova, L. 1091
Kaaenskii, V.I. 1006, 1007
Kanazava, J. 501
Kanerskii, A.A. 750
ICapoor, I.P. 727, 728, 729
Karanth, ».G. 502, 503
Karki, A.B. 504
Karrs Sijpesteijn, 1. 505
Kaufian, 0. D. 957
Kaufaan, D.D. «24, 506, 507, 508,
509, 510, 526, 529, 615
Raul, R. 590, 591
Ravahara. T. 305, 511. 512, 513,
514, 515, 516, 517, 518, 51S,
520, 521
Kavai, N. 522
Kavakishi, S. 523
ICavaaori, I. 524, 525
Kavasaki, H. 51
Kazano, R. 526
Kaiantzia, G. 527
Kazarova, L.S. 59
K«arby, B.R. 528
Kearney, P.C. 192, 423, «25, 510,
526, 529, 530, 531. 532, 533,
534, 535, 536, 537, 538, 539,
540, 541, 615, 860, 1160
Kail, 3.1. 542
Keller, t. 543
Kelly. K.I). 23
Render, i.J. 42
Kennedy, J. H. 1055
Kennedy, II.T. 544, 1023
Kene, S.S. 118!
Khalilov, I. H. 545
Khan, S.O. 546, 547, 546, 549,
550, 551, 927
Khanvilkar, V.G. 700
Khasano*, J.D. 59
Khodzhtniyazov, A. -52
Khokhryakora, ».S. 254, 255
Khubutiya, R.A. 553
Rhullar, F.C. 196
Khorana, A.D. 554
Kiigeeigi. U. 555
Kilgore, H.S. 556, 1154
Kl«uta, T. 557
King, P.H. 556, 706
Kiritani, K. 501
Kirkland, X 559
Rirkwood, J.I. 670
Kirach, I.J. 560
Kitayaia, B. 914
Klee. G.E. 561
Klein, D. 752
Kl«in. H. 310, 562. 563. 573, 574,
575, 588, 589, 590, 591. 766, 767
Kleinheepel, C. 564
Kliger, 1. 916
Klisenko, B.A. 565
Huge, I. 1107
Rlate, H. 953
Rnaak, J.B. 566
Knaaf, 1. 331
Knight, B.A. 6. 567
Knight. H. 830, 631
Knisel, S.G. 134, 1043
Rnatton, H. 568
Ko. t.H. 569, 570
Kobayachi, H. 1048
Koch, 1. 571. 572
Xocher, R. 572
Kohli, J. 562, 573, 574, 575
Kolipinski. H.C. 576
Konnai, 8. 1051, 1052
Konrad. J.G. 577
KonstattincT, O.K. 578
Koo, F.K.S. 660, 664
Koren, B. 579
Koren, !. 580, S81
Koridon, A. 1088, 1089
Korogchenko, T.T. 582
Korotko»a, O.A. 583
Korschgen, I.J. 584
Korte, F. 310, 562, 563, 574, 575,
585, 586, 587, 588, 589, 590, 591
Kosaatyi, I.s. 1091
Kossiaan, K. 592
Kosuge, T. 1085
Kotaleva, T.S. 593, 1053
Kozhinova, L.A. 594, 595, 596, 597
Kramer, D. 598
Kratky, B.A. 599
Krechniak, J. 600
Kruglo», T.V. 601, 602
Kruezdoror, A.M. 89
Krzycanska, J. 603
Kadel, K.I. 1091
Kahr, 8.J. 604, 605, 606
KniuidzhieTa, T. 614
Kunatsuka, S. 607
Kuo. E.C. 608
Kupyrov, V.N. 609
Kuvatsnka, S. 610, 611
Rnz'ain, I.A. 612
Kuzyakina, T.I. 613, 805
Kyriacou, D. 285
l«0cbe», I.V. 614
Laanio, T.I. 615
LaBall, D.I. 616
Ladonin, T.F. 617, 868
Lafleur, U.S. 618, 619
Lageiwerff, 3.1. 487
Lakshiinarayana, T. 620
Langlois, B.t. 621
Larson, A.D. 296
laskovski, D.A. 622
lataehkin, L. 994
lanbscher,J.A. 623
Laodtcdale, H.I. 881
La»y, T.t. 624, 625, 725
lawless, E.W. 626
le Baron, H.B. 627
L* Peintre, R. 828
tear, B. 439
198
-------
lee, B.6. 301
l»*. C.I. 1185
Me, F.G. 127
lee, G.r. 1129
lee. 6.P. 189
lee, J.T. 699
l«e, I. »• 910
lee, I.I. 911
le«fe, J.S. 877
leenbeer, J.X. 628
Miner, J. 172
leistra. «. 629, 630, 631, €32,
633
leaon. B.R. 176, 634. 838
lentz, 6.1. 968
lepple, F.K. 635
letey, J. 267, 268, 460. 461, 4€2,
636, 637, 825, 953
levehenko, II.P. 638
le»i-Rinzi, 8. 905
leirallen, H.J. 639
lewis, C.C. 792
le«is. D.E. 2»8
lewis, D.I. 837
ley, R.t. 476
U. G.C. 640, 6»1, 642
Liang, T.T. 650, 930
U«0, C.S. 455, 156, «45, 646, 647, 648,
649, 650, 651, 652, 653, 6S4, 930
lin, C.S. U91
lin, B.C. 1027
lin. S.H. 655
Lindenbergh, D.J. 1088, 1089
lindquist, D.». 215
Lindskog, H. 890
lindctroe, r.t. 656, 923
Lingens. F. 240, 572, 657, £58,
659
lippi, D. 1071
Lisk, D.J. 128
little, B.J. 365
litvinotr, I.i. 768
Lia, l.C. 660. 661. 662. 663, 6C4
Un, S.I. 113, 114, 115, 665, 666
lloyd-Jones, c.P. 667
loadhoU, C. B. 542
lackvood. J.I. 569, 570
toeppKj, C. 1079
laftas, 6. 128
tai, l.P. 1082
longley. B.E. 361
loos, H.A. 668
lopec. B.R. 1058
lopez-Gonzalez, J.D. 669
lopez, C.I. 670
lord, K.lh. 794
lord, I. J. 671
lovely. I.G. 749, 896
In, Po-!nng 728
landie, P.B. 345, 412
latz, J.T. 672, 935
luzanyi, 1. 475
lykken, I. 673, 674
lysan. R.B. 675
lynbenko, P.K. 676
Haas, G. 813
NacDonald, K.B. 273
Hacek, J. 144
BacGcegoi, J.H. 853
Bachiiara, R. 677
Hackievicz. It. 1200
Hackietiicz, S. 603
Maclean. l.R. 274
RacPbee, ».». 193
Raeda, H. 516
Baertin, E. 281
Hahiond, S.X. 678
Raiet-Bode, R. 679, 680
Hakarova, S.T. 681
Balichenko, S.H. 684, 6C!
Ralkoees, H.P. 682
Ralone, C.R. 683
Hanji. B.I. 1154
Ranorik, ».?. 684, 685
Hansell, R.S. 232, €86, 687
Hanthey, J.I. 866
Har'Inko, T.G. 941
Rartens, B. 688
Martin, J.F. 289. 473. 669, 690,
691
Rartin, w.p. 908
Haalennikava, I. S. 595
Hasada, T. 692
Hasnko, H. 1080
Hatso-Ura, It. 517
Ratsai, R. 518
Hatsuura. F. 88, 101, 130, 131,
132, 693. 694, 695, 696, 697,
698, 699, 700, 701
Hatsnshisa, S. 702
Hatthes, D. 703
Hattbey, G. 703
Ranter, J. 475
Kayaudon, J. 187
Rclvoy, «.J. 704
Recall, B.C. 705
RcCarty, P.L. 558, 706
HcCaskill, B.R. 619, 707
HcClnre, G.I. 708, 709
RcCnlly, R.G. 705
RcDoagal, J.R. 233
He In tosh, T.R. 257
HcKenry, «.». 710, 711
HcKercher, B.B. 299, 415, 764, 765
HcKone, C.I. 205, 206, 387, 763
Hclane. H.I. 712
Hclean, E.G. 932
HcRac, D.H. 1192
Hedvcdev, T.I. 713
Hedzhibovskaya, Z.I. 724
Reggitt, «.F. 714
Heikle, R.I. 71S, 716, 717
Hel'»iko», ».». 718, 719
Heltcn, J.B. 720
Henges, R. R. 721
Henon, P.K. 620
Renz«l. D.E. 106
Henzer. R.I. 256, 722
nenzie. C.n. 723
Rerenynk, G. V. 724
Rerkle, R.G. 134, 371, 390. 705,
933, 1127
Hesscrseith, C.G. 725
Hetcalf. R.L. 726, 727, 7J8, 729
Beyers, K.I. 730
Bice», R. 731
199
-------
Mickovski, M. 732
Hiettinen. J.K. 733
«ika«i, T. 522
Miles, J.K. 40», 734
Bilhaud, G. 735
Miller, C.W. 361, 736
Miller, D.E. 509, 510
Miller, H.N. 276
Miller, P.». 737, 736
Hiller, V.I. 557
Hills, J.T. 739
Misato, T. 698
Hislira, P.C. 7UO
Miso»ic, R. 212
Hisra, S.S. 741, 742, 743, 744
Nisztal, H. 1077
Mitchell, E.M. 810
Mitchell, J.E. 745
Mitchell, H.G. 80, 173
Niyaioto, J. 746, 1030
Moe, P.G. 747
Moilanen, K.W. 223, 224
Hoku, N. 519, 520
Hoi, J.C.H. 748
Molnau, M.P. 749
NolozhanoYB, E.S. 481, 750
Nolozhanova, L.6. 1010
Nonke, E.J. 28
Montgomery, H. I. 751
Montgomery, B.I. 752, 753, 754
Moore, D.E. 248
Moore. D.G. 1058
Moraghan, J.I. 755
Borishita, T. 756
Morley, H.T. 757
Moroz, A.M. 369
Morris, B.T. 758
Morrison, P.O. 29
Hortland, fl.M. 1156
Hottteat, J.J. 327
Mostafa, I.T. 22, 759
Botazinskii, ».». 760, 761
Bount, D.A. 171
Boassin, R. 504
Hoyer, J.B. 762, 763, 764, 765
Boza, P. 766, 767
Nozheiko, A.M. 768
Brak, I.H. 769
dueller, G. 770
Huellei, «. 590, 591
Bulling, D.E. 771
Bullisen, S. R. 772
Munnecke, D.E. 773
Nuraiatsn, K. 523
Hurphy, H.J. 774
Hurphy, P.T. 60
Bnrtagh, G.J. 775
Bastafa, M.A. 776
Kaidu, S.N. 777
Naik, H.R. 778
Haishtein, S.I.A. 779
Kaito, R. 780
Nakagava, R. 224
Rakajiia, S. 780
Rakaiura, H. 305, 517, 518, 520,
521, 1048
Nakaanra, T. 781
laideo, K.I. 782, 783, 784
Kaiiki, R. 523
Randeo, K.R. 785
Rash, K.G. 83, 84, 53*, 786, 787,
788, 789, 790, 791, 795, 793
laaii, A.I. 794
Rassif, F.R. 795
Rasnda. K. 677
laaaana, K. 796, 797
Rayshtvyn, S.T. 798, 799
«*arpass. t.C. 800, 801
»«ely, o. 802
Relson, J.I. 803
Iclson, 1.1. 804
Rraova, 6.R. 90
l«po»ilo«», T.I. 613, 80:
R*stas«, T. 1198
leattrota, L.I. 850
I»th«ry, A.A. 806
l«tx«r. C. 807
R«arar«r, H. BOS, 809
Itvsoi. B.C. 810, 811
R«son. J.t. 712
Riciana, P. 812, 813
Riki, T. 472
RikoloTa. G. 814, 815
Nikonova, A.G. 594, 597
Ri»o, H.B. 1094
Missen, T.V. 816
Roda, K. 817
Hoddegaard, t. 145
Nolle, H.H. 1095
Rorris, L.A. 753, 818, 819
Rose, K. 820
Rovak, A. 821
Hovinska, J. 822
O'Connor, e.A. 823
Oblisaii, G. 69
Obucnovska, I. 824
Ochiai, I. 522
Oddson. J.K. 637, 825
Ogava, J.H. 1154
Ogawa, T. 1059
Oh, I.K. 826
Okaiura, J.P. 827
Olivier, H.R. 828
Oloffs, P.C. 1173
Olsen, S..F. 188
Onsager, J.A. 829
Orpin, C.G. 830, 831
Orsanyi, H.L. 40
Osgerby, J.H. 832, 833, 834
Ostrovski, J. 835
Oteifa, B.A. 836
Otsuji, H. 307
Ozawa, K. 817
Pack, D.E. 1075
Paris, D.F. 837
Paricle, L.H. 634, 838
Paroch.tti, J.T. 839, 840, 841
Pacownskaya, L. I. 602
Parr, J.P. 842, 843, 989, 990,
1169, 1170
Parts, L.A. 844
Pass, B.C. 250, 251
Pathak, B.D. 906
Patil, K.C. 700, 701
Patil. S.T. 950
Pawlos. B. 373, 374
200
-------
Payne. «.!). 845
Peach, (t.l. 846
Peas*, H.L. 409, 891
Pel'tsar, 1.5. 847
Penney, B.G. 758
Perry, ». 1139
Pesson, P. BUS
Pfsender, ?.K. 849
Pfefferkorn, V. 466
Phil'Henshtein, I.e. 850
Phillips, B.H. 707
Phillips, H.E. 851. 936, 937, 938,
939
Phillips, R.L. 1976
Phillips, H.H. 852
Picardi. B.E. 23
Pick, II. I. 413, »14
Pietrosanti, «. 1071
Pi«tz. 8.1. 853
Pillay, A.B. 854
Pisentel, D. 556
Pinault, I. 735
Pinthus, H.J. 855
Pionke, H.B. 856, 857
Piotrovska, H. 499
Piss, J. 1201
Pitblado, B.B. 858
Plapp, R. 277
Plisser, J.R. 423. 534. 536. 537,
859, 860, 861, 876
Ploszynski, H. 1202
Poe, E.A., Jr. 23
Poelstra. P. 862, 863, 889
Polizu, A. 864, 865
Poller, B.C. 77, 78
Polonskaya, F.I. 1091
Poluboyarino»a, I.V. 32
Polzin, W.J. 866
Ponder, F. 867
Ponti, I. 297, 298
Pope, J.D. 845
Popo*, H.T. 868
Posio, P. 95
posner, A.H. 1134
Pospisilova, T. 253
Powers, H.L. 991
Prabhakara Bao, k.V.S. 484
Pr*dhan, 3. 869
Praier, D. 870
Presant, 1.1. 871
Froskura, B.3. 872
Pogh, G.J.I. 873
Patnas, I.E. 177
Qaentia, K.E. 1145, 1146
Qnestel, J.H. 874, 87!
Qnirk, J.P. 1134
Fabson, S. 861, 876
Rachinskii, T.V. 613
Badeiacher , B. 467
Paqab, H.I.H. 877. 1620
Bahian, A. 878
Bahn. P.B. 879
Bajarai. K.P. 963
Bajyalakshii, B. 1092
Baisteiner, K.I. 880
Baadall, C.W. 881
Bangarso, p.v. 869
Bangas»a«i, G. 1011
Bathbnrn, c.B. 882
Bay. U.K. 200
Raynal, 6. 883
Bead, D.C. 884, 885
Beed, J.P. 1175
Feese, C.D. 886, 887
Beeves, B.C. 1179
Beifensteic, B. 417. 418. 888
Beinis«r, P. 889
Ben*all, S. 890
Beoszer, H.f. 28
Bhoads, F.H. 459
Bhodes, B.C. 891
Bichardson. C. 134
Richardson, E.n. 892
Bidgevay, 5. L. 616
Biekerk, R. 893
Biggs. R.I. 100
Bitter, «.I. 894. 895, 896
Roa. 1. 433
Boas, C.C. 623
Robinson, t.l. 671
Robinson, S.H. 436
Bodrignex, l.B. 897
Bodrigaes, L.D. 898
Berth, F.«. 625
Boian, H. 865
Rounowski, B.R. 1165
Boiine, B.B. 50
Bosefield, I. 322. 323
Bosekart, R.G 899
Rosenfels, R.S. 900
Boss. J.A. 901, 902. 1079
Boss. R.G. 903
Rosiinski, R. 904
Both, B. 281
Bothvell, C.P. 98, 459, 1150
BotiDi, 0. T. 905
BOMnfil'd, A. A. 676
Rnban, E.L. 906
Ruiz. R.B. 177
Banyan, R.I. 1056
Bask. R.H. 829
Basso, S. 907
Rust, R.H. 908
Ryerson, ».R. 909
SagaI, 6.R. 1133
Saha. J.G. 910. 911, 912
Said, R.B. 913
Sait. T. 524
Saito. H. 914
Saito. T. 525
Sakaeoto, P. 472
Salsan. H.A. 915
Saltzsan, S. 916. 917. 1191
Saaple, E.G. 327
Sanborn, J.B. 918
Sand, P.F. 919, 1158. 1159, 1160
Sand if er, S. H. 542
Sangha, 6.K. 729
Saonikov, G.P. 761
Sans, ».«. 392, 401, 402, 403. 404
Sarsa, B.D. 200
Sasaki, T. 522
Sa*age, K.E. 75, 920. 921, 922
Sav
-------
Saxena, S.N. 951
Schaffner. J.P. 846
Schechter, M.S. 138
Schia»on, n. 924
Schlagbauer. ».».J. 925
Schlagbauer, B.G.I. 925
Schaaland, G. 598
Schsedding, D.B. 389
Schiidt, K. 926
Schnitzer. It. 927
Scholefield, P.O. 874, 875
Schreiber, J.D. 928
Schreiber, L.E. 138
Schultt. I.R. 929
Schulti, K.R. 651
Schulz. K.R. 6«8. 649, 650, 652,
653, 65M, 930
Schupban, I. 931
Schutzun, B.I. 1179
Schutziann, R.I. 1158
Schwab, G.O. 932
Scifres. C.J. 135, 371, 933
Scott, H.D. 93
-------
Saett, D.L. 1029, 11*9
Saffet, I.H. 996
Swifla, S. 1030
Saioer. A.K. 912
Supak. J.R. 1031
Suss, A. 589, 1032, 1033, 1034,
1035
Suzuki, H. 1036, 1037
S»ec, H.J. 392
Svann, C.t. 1036, 1039
Swan son, H.A. 1040, 1041
S*arcevic2, N. 821
Snithenbank, C. 1192
Svoboda, A.B. 1042, 1043
Svoyer. G.F. 568
Syko, H. 40
Tachikava, S. 1044
Tahoti, X.S. 1045
Tai. A. 699
Tai, H. 173, 919, 1159, 1160
Takahasbi. K. 1046
Takanuia, S. 1047
Takase, I. 1048, 1049, 1050, 1061
Takeiataa, T. 1051, 1052
Takeuchi, I. 1051, 1052
Talano», G.A. 593, 1053
Talbert, R.E. 1054, 1055, 1056
Taaaz, S. 721
Tani, T. 780
Tanton, T.t. 1057
Tap, ». 863
Tappan, i.B. 459
Tarrant, R.F. 1058
Taschenberg, 1.1. 234, 606
Tatsakava, R. 1059
Taylor, A.W. 175, 176, 634, 838,
1060
Taylor, I.S. 1061
Tehan, T.T. 854
Teller, R.H. 748
Terriere, L.C. 555
Tevfik, M.S. 376, 379, 1062
Thakre, S.K. 1063
Thou as, C.A. 707
Thoias, G.». 1042, 1043
Thoiason, I.J. 710, 711
Ihoipoaon, J.R. 377
Thompson, A.R. 263, 4C5, 1064,
1065
Thoipson, C.t. 1066
Ti«dj«, J.HI 1067
Tietx, R. 1068
Uleians I 1069
Tiiat, H. 1070
Tinline, R.o. 911
liwari, R.C. 742, 743, 744
loiati, 0. 1071
Toiizava, C. 1081
loilinaon, T.I. 170, 567
lots, B.A. 413, 414
1ono«nra, R. 308, 1072
Torg«son, t.C. 1073
Tro«aer, F. 1108
Isoi, I.I. 1082
Tsabol, A. 1048
Tsada, R. 1049, 1050
Tu, C.H. 405, 734, 1074
Tucker, B.I. 1075
lacker, t.F. 1076
Tapper, ».fl. 871
Turner, E.c. 17«, «26
Tatski, R. 1077, 1078
Iweeiy, B.6. 951, 901, 902, 1079
Ceyaia, A. 1080
Oeyamn, I. 1081
Oiarov, A.A. 1082
Oiehaia. A. 781
Dpcborch. F.P. 216, 1083, 1084.
1139
Oskova, I.A. 20
Otley. D. 476
Vaid, U.K. 53
Van Alfen, U.K. 1085
Van Elidcl, R. 1086
van aei Klaqt, X. 862
Van der Rlagt, R. 863
Van Genuchten, H.I. 1C87
Van Scbt«v«n, D.A. 1068, 1089
VanLaeihoten, C.J. 490
Vargas, J.H. 1161. 1162. 1163
Varlo. R. 40
Vasantharajan, V.R. 502, 503
Vasavada, P.C. 1090
Vaahkalat, R.P. 779
V»sil»e». V.P. 1091
Venkataraman, 6.5. 1092
Verblyudova, R.I. 565
Verloop, A. 1093, 1094, 1095
Verscbauren, R.G. 1096
Vieltei, I. 71
Viets, T.G.. Jr. 359
Vlahot, S. 1097
Voerean, S. 1096
voerodin, A.v. 1099
Voitekhova, V.A. 1100
Toldui-clausen, K. 1«5
Volk, V.T. 975
VolkoT, k.I. 583
Volodin, V.S. 1101
Von, 8. 626
Vonandt, 0.8. 510
Vonk, J.«. 241, 505, 969
toss, G. 1102
Vrocbinskii, K.K. 1103, 110»
»«da. T. 1047
•adleigh, C.H. 1105
Rag, C.R. 1106
Ragenbreth, D. 1107, 1108
•aid, J.S. 1109
Sakatayashi. S. 1048
»aki»oto. 1. 1059
Ralker, A. 1110, 1111, 1112, 1113,
111», 1115, 1116
Halk
-------
Rarren. G.F. 282, 599, 841
Watanabe, H. 472, 523
Ratanabe, I. 472, 522, 1131, 1132
Ratanabe, T. 516, 961, 1037
Ratkin, E.H. 1133
Ratson, J.B. 113ft
Wane hope, B. D. 922
Wax, L.N. 19
Weber, J.B. 93, 1135, 1136, 1137,
1138, 1139, 1140, 1111
wefle»eyer, C. 1142
Seed, S.B. 93, 1140, 1141
Reeks, L.V. 825
Reeks, S.E. 1143
Rei-Tsung 1144
Reichet, J. 172
Weierich, A.J. 343, 344
W«il, L. 1145, 1146
Reisgerb«r, I. 562, 573, 574, 575,
590, 591, 766, 767
Werner, B.A. 1147
Wershav, ft.L. 1148
West lake, H.B. 56, 482, 483
Rh«atl«y, G.A. 1149
Wheeler, H.B. 459, 687, 1150
Rhite-Ste«ins, B. 1151, 1152
White, A.I. 1153
Rhite, E.F. 1154
Whit*, J.I. 64, 65, 226, 730,
1155, 1156
•HO 1157
Ricks, G.A. 164, 165
Wi«r«nga, P.J. 823, 1087
WUrssa, G.B. 173, 919, 1158,
1159, 1160
Wi«««, H.V. 1161, 1162, 1163
Wilkinson, A.T.S. 1164
Rilliai, R.D. 1165
Williaas, C.S. 168
WUlian, I.H. 1166
Rllliau. J.H. 1167
lilliaas. J.I. 873
Willis, 6.R. 843, 1168, 1165, 1170
Wills, G.D. 1171
tillBon, D.L. 55
Wilson, B.R. 1172
Wilson, D.H. 1173
Singo, C.R. 1174
Sinkler, P. 418
Rinnett, 6. 1175
Sinteringhai, T.t. 1176
sitkcnton, S. 280
«ojeck, G.A. 619
tolcott, A.R. 958
•olfe, H.P. 1177
Wolff, S.R. 1021
Wong, A.S. 224
Wood. 1.6. 185
Woodcock, D. 1178
Woodhai, D.W. 1016, 1179
Soods, S.G. 811, 988
Roolson. E.A. 423, 534, <38, 539,
540, 541 , 791, 1180
Worshas, A.D. 897
Wright, A.I. 94, 96, 57
Wright, K.A. 169, 1181
Wright, S.J.I. 203, 1182, 1183,
1184
Wah, K.D. 1185
tarster, C.F. 1186
lybieralski. j. 821, 822
laklich, R.R. 1187
Taklotle»«, I.I. 850
Tasabari, B. 1188
Tasada, I. 781
Tasada, n. 1072
tasane, T.K. 1189
Tasato, T. 1036, 1037
Tug, J.S. 1190
lano, B. 1188
lacoa, B. 916, 917, 1191
latts, B.I. 576
lib, R.I. 1192
loshida, 1. 186, 947, 948, 919,
1193
Toskihara. B. 1030
Tosklsoto. T. 1049. 10SO
losklike, A. 1194
Toang, J.I. 923
loong, 8.8.P. 1195
Toangsonv C.R. 717
M, C.C. 119, 918
la, T.C. 754
Tule, R.K. 1196, 1197
tarasoYa, C.I. 594, 596, 597
Turo»skaya, T.H, 798, 799
Yushiia, T. 501
zador, s. 40
Zahran, H.K. 379
Zaki, II.N. 678
Zakordonats, v.A. 976
Zaifir, s. 1198
Zarif, S. 575
Zatserkovskii, V.A. 1091
ZaTarzin, G.A. 52
Zharasov, S.O. 201
ZhQlinskaya, T.A. 796, 799
Zidan, Z.H.A. 272
Ziagler, P. 318
Zildahl, 8.1. 879
Znbairi, H.I. 1199
Zubeti, R. 1199
Zuckernan, B.H. 361, 1200
Zoravski, H. 1201, 1202
Zvcrsan, P.J. 1203
204
-------
ABATEHHIT 8. 687. 1024
ABSORPTIOHETER 795
ABSORPTIOR 60, 62, 84. 90, 211,
218, 244, 257, 329, 335, 372,
397, 101, 105, 452, 490, 513,
514, 521, 546, 616, 644, 681,
686, 753, 756, 834, 859, 859,
864, 867, 939, 968, 1014, 1069.
1080, 1100, 1135, 1171
»BDHDi»CE 372
ICAHBACIDE 1104
ACAHICIDES 280, 417, 425, 687, 902
ACAROL 687, 1150
ACC0HOLATIOS 6, 59, 60, 63, 88,
105, 119, 174, 369, 490, 506,
655, 728, 855, 862, 865, 903,
977, 1063, 1103
ACETAHIDE 431, 506
ACBTA1IILIDE 87, 839, 1079
KETATE 313, 379
ACETIC ACID 275
ACETIC ACIDS 284
ACBTOBACTER 601
ACETOHITEILE 285
ACBTYL ESTERASB 296
ACHEOHOBACTER 169
ACID SOUS 195, 841
ACID SOLFATJ 943
ACIDIC COMPODRDS 1141
ACIDIC SOILS 798
ACIDIFICATION 858
ACIDITT 487, 801, 1138
ACIDS 274, 349, 681, 957, 1078
ACRTLONITHILE 1026
ACTINOHYCETE 1092
ACTIKOHTCETES 118, 201, 459, 504,
569, 671, 688, 731, 796, 815,
1150
ACTIVATED CARBOR 410. 835, 1055
ACTIVATION 550
ACTIVATION ENERGY 641, 747, 754
ACTIVE TRANSPORT 177
ACYL AHItA-SE 277
ACTL ANILIDE 277
ACYLAHIDAS! 157
ACYLANILIDBS 506, 509, 1126
ADDITIVES 8, 47, 572
SECTION III
KEYWORD INDEX
ADSOBBBITS 341. 351
ADSORPTIOR 18, 19. 25, 51, 53. 64,
65, 72, 93, 99, 100, 105, 126,
127, 137, 149, 159, 160, 161.
162. 170, 188. 189. 196, 197,
210, 228. 231, 232, <33, 239,
245, 257, 258, 269, 274, 282,
284, 287, 302. 303. 315, 317,
325, 326. 345, 349, 351, 366,
366, 372, 377, 386, 388, 389,
406, 406. 411. 413. 414. 420,
435, 441, 442. 446, 447, 449,
453, 454, 455, 456. 457. 458,
460, 461, 465. 475, 496. 511,
543, 546, 541, 548, 550, 550,
577, 581, 593, 607, 608, 628,
630, 638, 642, 660, 661, 664,
687, 690, 705, 730, 741, 742,
743, 748, 762, 763, 764, 765,
776, 794, 800, 801, 804, 806,
812, 813, 818, 825, 827. 833,
834, 835, 841, 651, 654. 859.
874, 913, 916, 917, 920. 922,
924, 926, 927, 927. 935, 938,
941, 958, 962, 983, 993, 1000,
1004, 1017, 1018, 1027. 1031,
1041, 1044, 1048. 1052, 1054,
1082, 1086, 1087, 1095, 1112,
1113, 1114, 1129, 1134, 1135,
1136, 1137, 1139, 1140, 1145.
1146, 1155, 1165, 11t7, 1179,
1189, 1191
ADSORPTION ISOTHESHS 917
ADSORPTICR HBCHARISRS 547, 1017
ADSORPTION EATI 454
ABRATICR 1007, 1028
AERIAL APPIICATIOH 59
AEROBIC 254, 329, 357, 538, 539,
842
AEROSOL 417
AGELON 731
AGGREGATE SIZE 446
AGGRBGATIOK 502
AGITATION 922
1GRICOLTORAI CHEHICAIS 341
AGRICULTURAL VAST IS 804, 909
AGRICOLTORI 23, 252. !6C, 269,
303, 372, 391, 418, 457, 489,
499, 686. 733, 769. 845. 978.
1105, 1194
AGROCHBHISIRY 607, 820
AGROICOT 66
AGROTIS 392
AIR 11, 136, 176, 218, 222, 236,
243. 263, 2C9. 355. 006. 468,
481, 573. 586, 626, 63*. 698.
735, 769. 856, 914, 953, 970.
998, 1010, 1058, 1059, 1169,
1171, 1166
AIR HO* 289
AIR-DRIED 59
AIRCRAFT 14
ALACHLOE 87, 390. 839
ALDICARB 49, 50, 154, 171, 528,
566, 616, 719, 1031, 1179
ALCICA8B SOL POME 49
ALDICARB SOLFOXIDE 49
ALBRIN 14, 59, 72, 92, 149, 171,
173, 179, 180, 186, 297, 301,
310, 365, 370, 395, 396, 397,
398. 415, 432. 434. 444. 445.
484, 514, 520, 521. 562, 568,
573, 575, 584, 587, 603, 620,
626, 647, 649. 651. 652. 674.
677, 702, 757, 766, 767, 771,
791. 629, 846, 864, 865, 890,
905, 931, 932, 942, 968. 1022,
1028, 1036, 1037, 1164, 1175,
1194, 1198 , 1188. 403
ALFA1FA 84, 251, 607, 1004, 1130
ALGAE 34, 55. 119. 130. 576, 602,
654
ALGAI BLOOHS 34, 295, 1195
ALGAL RATS 576
ALIPHATIC ACIDS 532
ALIPDR 339, 872, 994
ALIQOOTS 818
ALKALI 790
ALKALINE ERVIRONHENT 989
ALKAIIRE SOUS 195, 798, 841
ALKY1 ARSINES 10, 538
ALKT1ATION 820
ALLOPRANE 51
ALLUVIAL SOIL 943, 1051. 1201
ALLTl ALDHIIDH CARBIDE 796
ALPHA CHLORO-R-N-DIALLTL
ACETANIDES 212
ALOHIRA 469
ALOHIHOSILICATE 1155
ALOHIHON 137, 485, 608
ALORIHDH HYDROXIDES 442
AH BE ELITE 159, 160
AHtTRYME 336, 366, 465. 469. 660,
662. 663. 1136, 1189
AHIBEH 8, 173, 709, 762, 994, 1056
ANIDASE 1184
ABIDES 533, 870
AHIHE SALT 105
AHIHES 902
AHINO ACIDS 219, 691
AHIROPARATRION 189, 945, 1200
AHIHOTRIAZOLE 818
AHIHCTRICHLOROPICOLINATE 464
205
-------
AMIPROPHOS 1081
AHITROLE 7, 216, 352, 801, 813,
818, 1088, 1155, 1167
AMMONIA TREATED SOILS 990
AMMONIA-NITROGEN 779
AMHONIFICATION 428, 504, 779, 905,
1074
AMMONIOM 1*9, 285, 327
ANMONIOM SULFATE 1074
AMYLASE 104
ANAEROBIC 254, 329, 357, 842, 843,
942, 947, 1007, 1009, 1128, 1142
JNAEROBIC FERMENTATION 828
ANALINE 158
ANALOGS 727, 727
ANALYSIS 108, 290, «23, 467, 544,
551, 635, 681, 866, 915, 938,
960, 981, 1061, 1146, 1150, 1119
AMILIDES 870
ANILINE 120, 121, 123, 141, 203,
901, 1126, 1182
ANILINE BENEFIN 411
ANILINE MOIETY 902
ANILINES 125
AHIMAL CYSTS 348
ANIMAL HASTES 443
ANIMALS 14, 60, 94, 136, 150, 269.
270, 348, 405, 490, 566, 583,
587, 588, 590, 591, 605, 635,
683, 703, 716, 719, 735, 753,
887, 908, 1044, 1096, 1117, 1142
ANION 1134
ANION EFFECT 742
ANION EXCHANGE 8ESIN 1139
ANNUALS 1082
ANSAR-138 269
ANTIBIOTIC 1097
ANTICHLOI»ESTEB.ASl THIBET 321
AKTICHOLINESTEBISI 306
ANTICHOLIWESTERASE PESTICIDES 3
ANTIMICROBIAL 285
APHIDS 145, 321, 1008
APPLE ORCHARDS 605, 903
APPLB TSKS 491, 671, 903
APPLES 54, 260, 271, 291, 516,
72«, 756, 903, 1010
APPLICATION 174, 650. 930, 1082.
1063
APBOC1RB 820
AQOAFIOM WATER 1 19
AQOATIC 11
AQUATIC HDIFER 853
AQOATIC ECOSYSTEMS 28, 189, 218,
222, 243, 295, 349, 381, 454,
468, 837, 848, 856, 686, 887,
952, 992, 1095, 1104, 1142
AQOATIC ECOSYSTEMS 119
AQOATIC ESltJABIES 887
AQOATIC FOOD CHAIN 119
AQOATIC MOIEL 454
AQOATIC CPGANISHS 735
AQOATIC PLANKTON 216
AQOATIC SFCIHINTS 295
AQOEOOS BE CIA 917
AQOEOOS SOSPENSIONS 76
AQOIPBB 127
ABABINOSZ 308
AHBORICIDES 760, 761
ARESIN 1032
ARID ZONE 776
AROCLCR 389
AROCLOB 1254 389, 483
AROMATIC ACID BIRBICIDIS 393
AROMATIC COHPOONDS 284, €58, 1134
AROMATIC RINGS 2, 820
ARBHENIOS EQUATION 717
ARSENATE 305, 442, 51t, 538, 742,
744, 756
ARSENA1E IONS 743
ARSENIC 30. 34, 3«, 42, 53, 173,
178, 193, 217. 269, 305, 493,
535, 538, 539, 674, 719, 741,
742, 744, 756, 774, 828, 871,
874, 882. 1023
ARSENIC THIOXICZ 899
ARSENICAL IHOSPHOROS BIRBICIDE 178
ARSENICALS 10, 674
ARSENICS FIXATION 900
ARSENITE 53, 741, 742, 743, 744,
874, 875
ARSENITE ICN5 743
A8THROBACTIP 731, 849
ARTRBOPOD 183, 397, 561
ARTIFICIAL ROBIN I10ID 329
ABYLOIACBTIC ACID 719
ASH 1051
ASSAY 941
ATMOSPHERE 218, 222, 635, 856
ATHOSPHERIC TRANSPORT H68
ATOMIC ABSORPTION 720
ATOMIC ABSORPTION
SPECTROPHOTOMETRY 173, 863
ATRATOHE 326, 465, 85U
ATRAZINE
152
257
324
366
410
461
553
663
762
854
935
991
i
,
f
i
,
9
1
,
t
1
,
153
266
326
373
417
465
613
664
764
880
938
8,
t
,
,
9
1
t
1
,
,
f
,
, 1007.
1100,
1115,
1101
1136
67
164
28U
335
374
119
1)69
625
684
805
894
939
r
t
9
9
t
t
t
9
t
1
f
t
1040
90.
173
293
336
382
422
480
640
685
813
895
950
96,
t
f
f
f
r
t
t
,
i
f
,
189
309
337
385
«51
U96
641
709
839
896
973
, 1041,
, 1110,
1
»
9
f
9
t
1
»
9
t
V
t
39,
199
315
348
386
460
508
642
731
844
906
975
144,
r
r
t
9
9
»
t
9
t
»
1100,
1113,
1114
, 1189
r
AOTOCLAVIHG 427, 572, 913, 921
AOTORADIOGRAPHY 130, 3U8, »76,
1171
AVAILABILITY 482, 757, 835, 853,
1033, 1034, 1035, 1093, 1112,
1113, 1137
AZIHFHOS 346
AZIPBOTRYNE 1115
AZOBENZENB 463
AZOTOBACTER 732, 941, 1088, 1092
EACTIRIA 8, 36, 48. 118, 129, 155,
202, 300, 309, 353, 427, 459,
486, 488, 492, 504, 529. 601.
671, 700, 733, 782, 785, 797,
803, 815, 947, 948, 963, 1011,
1023, 1074, 1088, 1092, 1109,
1132, 1150, 1177
BACTERIAL METABOLISM 203
BACTERIAL POPULATIONS 1089
BABBAN 1184
BABK 1171
BABLIY 480, 545, 765. 911. 961
BARLEY 271
BAIM YARD GRASS 66, 1012
BASSA 820
BATCH EQOILIBRION 608
BITCH TECHNIQUE 258
BATTERI SHELTERS 490
BAY 92114 394
BAYGON 364
BEANS 193, 269, 353, 451, 595,
835, 1030
BEDROCK 265
BEERS LA* 162
BEES 1119
206
-------
BBBT 1010
BEETLE FAORA 770
BEETLES 220
BEETS 575, 592, 595, 1053
BBRBFIR 329, 897, 938
BEREFIT-RISK 585
BENFLORALIR 480
BBRLATE 298, 1143
BEROML 297
BBROHTL H27, 429, 438, l»98, 719,
807, 856, 883. 1154
BERSOLFIDE 721
BBBTAZON 19, 119
BERTHIOCARB 477, 478
BERTORIT1 669, 737, 738, 941,
1000, 1086, 1185
BERZAC 372
BERZCTE 158, 669
BERZEME HEXACHLORIDI 674, 1044,
1194
BERZIHIDAZOLE 1082
BERZOATES 548, 1182, 1183
BEBZOFORAE 320
EERZOIC ACID 719, 957
BERZOQOIIORE POLYKERS 159, 160
BERRIES 1188
BETAHIL 281, 592
BHC 38, 88, 189, 193, 48U, 511,
512, 513, 515, 517, 518, 519,
521, 597, 693, 698, 789, 789,
791, 820, 864, 914, 942, 962,
1019, 1022, 1036, 1037, 1047,
1053, 1059, 1080, 1131, 1193,
1194
BIBLIOGRAPHY 292
BICHLORIDE 970
BIDHIH 1147
BIHDIHG 321, 482, 551
EIOACCOHDLATIOM 543, 693
EIOACTIVITY 25, 449, 885
BXOASSAY 66, 92, 139, 204, 228.
259, 318, 321, 346, 424, 427,
449. 510, 532. 559. 662. 663.
883, 1013, 1055, 1064. 12.02
BIOCHEMICAL OXYGZR DEHAHD 932
BIOCHBHICKL TRABSFOBHATIOHS 942
BIOCHESISTRY 52, 407, 1045
BIOCIDES 69, 355, 416, 887
BIOCOHVBBSIOH 292
EIODEGBADAEILITY 727
EIODBGRADAELB PESTICIDES 698
EIODBGBADATION 34, 216, 249, 275,
338, 358, 556, 560, 67U, 726,
728, 729, 752, 881, SOS, 952,
996, 1023. 1024. 11H2. 1182
BIODSTBRIOHTIOH 8, 36, 728, 887
BIOIIDICATCRS 545, 559
BIOLOGICAL AClIflTY 1093
BIOLOGICAL DECCHPCSITICR 717
BIOLOGICAL DB10X1F1CATIO* 823
BIOLOGICAL rSACTICRATICH 136
BIOLOGICAL SYS1EHS 644
BIOLOGICAl-CHEfllCAL BUD CCRTBOL
854
EIORAGRIIICATIOII 726, 72E, 729
EIOHETABOLITES 1121
EIOSPHIBE 243, 571, 635, 848
BIOTA 222
BIOTEST METHOD 1108
BIOTRARSFOWUTIOW 112, H6, 229,
311, 848. 918
EIPHEH1LS 483, 728
EIPIRIDYLIOH 546, 546, E!1, 666
BIROS 12, 243, 527, 543, 674, 712,
718, 911, 1119, 1186
BIRLARD GPAHOLES 1149
BISDITRIOCARBAHATt 50!, 969
BISOLFHE 285
BI58EC 354
SLACK CLAY 1043
ELACK EARTR 339, 1201
ELACK SOIL 350
ELACKCORRARTS 206
ELADIN 171
EUJEBMRY 42
BODY 490
EOG 244, 1187
EORDEAOX 724
EOROH 372
EOTTOH HOD 263
BRIAKDOBR 13, 56. 118, 219, 271,
379, 409, 427, 429, €5?. 699,
725, 772. 860, 904, 947, 980,
983, 1167, 1183, 1187
BREAKDOWN FFOCOCTS 16
BBOSACtL 8, 266, 388, 928, 1013,
BROHACIL 1076, 1138
BROHEGRASS 84
BROMIDE 285
BROHIHE 1023
BEOHOAKILINE 1079
BFO«CFE»OIIH 252
BROHOPHOS 145, 270, 346
BROHOPHOS ETHYL 270
BROHOIYRIL 985
BROHOXYNIL OCTAMOATE 214
BODS 970
BDFFIRS 853
BDILDOP 955
BDLFUH 339
BOLK DEKSITY 110, 267, 896
BDTACHLOH 66, 87
BDTAROHE 296
BOTH1CHLORCMETHILORACIL 599
BOX 566, 1075
C-6989 1127
CABBAGE 63, 269, 307, 758, 1036,
1111
CABBAGE MAGGOTS 884
CACOtYLIC ACID 10, 269, 538, 539,
1160
CADHIDB 294, 490, 781
CALCIREOOS IOAH 1023
CALC1UB 93, 137, 1*1, 196, 233,
294, 326, 743, 813, 826
CALCIOH ARSINATE 42
CALCIOH CARBONATE 972
CALCItin CHLORIDt 18, 93, 813, 980
CALCIDH HYDROXIDE 677, 982
CALCIOfl RITRATB 1128
CALCIOH OXIDES 372
CALORINETRY 413, 414. 1014
CABPKRE 676
CAMAIS 284
CAPTAH 173, 249. 298. 451, 626
CARBIKATE 185, 306, 433, 477, 583,
716, 747, 837, 925. 1012, 1064
CARBIBATF.S 8, 132, 158, 212. 387,
507, 532, 566, 604, 695, 698,
708. 719. 728, 750. 836. 870,
997, 1045, 1142
CASBANILIC ACID 747
CARBARYL 28, 113, 114, 171, 297,
207
-------
CABBABTL 397, 526, S66, 626, 626,
665, 666, 678, 719, 730, 777,
898, 906, 925
CABBABTL DEGRADATION 1199
CARBATHION 31
CAPBOFOS 798
CABBOPUBAN 171, 320, 39», 566,
88«, 1064
CARBOHYDRATE 20
CABBON 91, 219, 240, 312. 315,
427. a9«, 607, 826, 926, 943.
10117
CARBON DIOXIDE 66, 101, 214, 285,
SOU, 544, 560, 688, 9»7, 980
CARBON DISOLFIDE 469
CARBON MONOXIDE 544
CARBON 14 77, 130, HI, 192, 29C,
320, 348, 409, 486. 573. 57«,
577, 589, 654, 667, 751, 947,
1030, 1075, 1110, 1115, 11«1
CARBON-14 DIOXIDE 486
CARBONPORAN 174
CARBONYL 192, 5«9
CARBONYL OXTGEN 608
CA.R.BONYL OXYGEN ATOMS 137
CARBOPHENOTHION 346
CARBOPHOS 799
CARBOXALDEHIDES 787
CAB BOX III 191, 1126, 1144
CARBOXIN TITATAX 190
CARBOXYESTERAT1C 22
CARBOXII GROOP 608, 6*2, 1078,
1134
CABBOXYtATION 960
CARBOXYLIC ACID 256, 574, 766
CARBOXT1IC ACIDS 562
CARBOXTLIC 10* EXCHANGE 162
CARCINOGENS 14. 674
CARROTS 269. 28Q, 401, 402, 417.
474, 573. 650, 757, 770, 872,
1010, 1029, 1036, 1149
CAS080N 615
CATALTSIS 104, 210, 994
CATBCHOL 203
CATIOU 1077
CATION EFFECT 742
CATION EXCHANGE 737, 776, 806,
1137
CATION EXCHANGE BBS IN 351
CATION-BXCHANC1 CAPACITY 660
CATIONIC CCHPCONDS 1141
CATIONS 93, 137, 161, 196. 197,
258, 549, 813, 851, 860, 941
CAOLIPLONEf 1010
CDAA 839. 1138
CELERT 770
CELL 1A1I 716
CELLOLCLYSIS 504
CELLULOSE 104, 249
CELLOICSE DEGRADATION 104
CELLULOSE PONDER 351
CBNTIPIDI 183
CEREAL CROPS 467
CEREALS 271, 911, 9€6
CERESAN H 1092
CBREZAN 474. 475
CESIDN 661
CHAFP 372
CRAPARBAL IATIBSEID 235
CHARCOAL 496. 1135. 1139, 1189
CHARGE-TRANSFER 546, J51
CHBIATION 804, 1018, 10E7
CHEMICAL ANALYSIS 36
CHEMICAL BCNDS 530
CHEMICAL PIANT 1198
CHEBICAL SEEDBED tREFABATION 775
CBERICAL S1ROCTOBI 618
CHEMICAL TBANSICRBATION 918
CHEMICALS S86
CHEHISOIPTION 1155
CHBHOTHEBAPT 276
CHERIOSEH 104. 2!3, 613, 684, 688,
713. 779, 808, 976, 1100
CHEBNOtBBIC SOILS 415
C8EM1 260
CHIC«-IBA 293
CHITII 249
CHLOPHIN 992
CHLOIAl HICRATI 271, 417
CHLOIABBIN 216, 1138
CHLOBATB 417. 418
CHLOIAIIII 293
CHLOIAXONE 201
CHLOBBIOHDBON 17, 366, 367, 901,
920
CHLOBDAHE 92, 1UO, 173, 179, 180,
186, 193, 251, 365, 397, 432,
484, 620, 771, 789, 829, 942,
1019, 1066, 1158, 1159, 1173,
1175, 626
CHLOBDAN1ICHS-3260 250
CHLOFDECONE 16, 16
CHLOBDENE 395
CHLORDIHEPOBH 902
CHLOFEHBIC ACID 688
CHLOBPENVINPHOS 29, 94, 264, 428,
476, 1029, 11U9
CHLORIDE 1077
CHLORINATED ALIPHATIC ACIDS 1182
CHLORINATED BIPHENTLS 223
CHLOBINATEC HTDBOCARBON PESTICIDES
454, 457
CHLOBINATED HYDBOCABBONS 2, 16,
34, 173, 225, 279, 292, 359, 416,
417, 444, 454, 484, 521, 531,
535, 543, 585, 674, 698, 707,
791, 857, 870, 1003, 1142, 1145,
1146
CHLOBINATED INSECTICIDES 73, 138,
342. 486, 623, 766, 1063
CHLOBINATED PESTICIDE 586, 947
CHLORINATED PESTICIDES 529
CHLOSINATION 926
CHLORINE 8, 58, 100, 219, 247,
284, 389, 681, 728, 751. 915
CHLOSINE ALIPHATIC COMPOUNDS 686
CRLOEHIDIKI 411
CHLOBO S- 624
CRLOBOACtTIMIDtS 839
CHLOBOAHINOTRIAZINES 719
CBLOROANILINE 1034
CBLOBOANILINES 79, 124, 452, 1183
CHLOEOAEOBENZENES 1183
CHIOBOBEHZENE 184
CHLOBOBENZILATE 1150
CHLOBOBENZOIC ACID 859, H26
CHLOBOBEItONITBILE 859
CHLOBOBIOTCLOHBXENE 931
CHLOBOCAHPBBNB 676
CHLOBOCATBCHOLS 1067
CHLOBODIBSNtODIOIIN 423
CRIOBODIOXII 103, 423, 534, 540
CBLOBODIOIINS 541
208
-------
CHLORORALBtLlCBTATB 952
CHLORORBTHOITPHENOL 1163
CHLOHOHBTHTL 312
CHLORONEI 891. 1161. 1162. 1163
CHLORONITRO ANILINE 1106, 1128
CHLORONITROBBNZINB 1106. 1128
CHLOSOPHMOLS 116, 184, 190, 275,
472, 541, 859
CHLOROPHBHOIT 275
CHIOROPHEHOHACITATE 133, 230.
608, 625, 850
CHLOROPHEKOTTACmC ACID 780
CHLOBOPRENTL 156
CHLOROPHEHYL-PTaiDINBHBTHABOl 8«6
CHIOBOPHB1ITLACITIC ACID 849
CHL080PHEHYLCARBAHATE 961
CRLOBOPHEHYLS 394
CHLOBOPHOS 63, 799
CHLOHOPHOPHAH 859, 1115
CHLOROBGAHIC 1064
CRLORORGANIC PESTICIDES 594
CHLOROSOCCINATE . 952
CHLOROTRIAZIHES 1155
CHLOROXORON 901, 1167
CHLOBPROPHAH 384, 422, 935, 937,
938, 939, 1111, 1138
CHLORPtRIFOS 392, 1064
CHLORTHIAHID 27, 97, 205, 2C6,
832, 1167
CHLORTOLORON 366
CHOLERA 674
CHOLIN 260, 1200
CHROHATOGRAPHT 71, 173, 223, 260,
280, 322, 337, 378, 419, 420,
422, 424, 467, 476, 477, 494,
SOB, 889, 924
CHHORIUR 294
CHFOHOSORB V 477, 827
CHBOHIC BRONCHITIS 490
CIBA 1824U 394
CIGABETT1S 519, 520
CIPC 372, 510, 799. 747
CISCDLATIOM 218, 848
CITSDS 553, 1076
CITBDS TREES 553
CLAMS 119
CLAT 51. 68, 72, 102, 137. 149,
CLAT 154, 163, 179, 192, 197, 199,
210, 2*8, 256, 281, 288. 309,
315, 319, 325, 335. 349, 350,
351. 356. 359, 372. 373, 396.
412, 413, 414, 420. 432, 454,
455, 456, 457, 458, 463. 518,
524, 536, 546, 549, J98, 608,
609. 616, 669, 690, 714, 725,
730, 737, 779, 812, 813, 817,
822, 835, 859, 860, 913, 921,
935. 938. 950. 968. S74. 975.
979. 980. 983. 985, 1009, 1013,
1018, 1024, 1031, 1032, 1043,
1049. 1052. 1065, 1086, 1129,
1135. 1137. 1139, 1140, 1145,
11«7. 1155. 1156, 1192
CUT ICAR 256. 346, 422, 424, 524,
910, 973, 1049, 1065
CUT BHEIALS 1156
CLAT SESQOIOIIDES 53
CLATS 738
CLIRATt 399, 1169
C10PRE1 A 60 1145
CLOQOATO SOIL 315
CLOSED STSTEH 390
CLOSTBID1DB 947
CLOTIF 62, 493
CtTP 817
COAL 635
COASTAL PLAIDS 639
COBALT 294
CODISTIIIATION 473, 1C01
COENZTNES 952
COLLEMBOLA 193, 569
COLLOIDS 51, 813
COLOR1HB1P.1 158. 845
COLORIHEtBI MULT SIS 593
COLUMN CRRORATOCRAPHT 811
CONBIHATION 506
COHBOSTION 681
CONETABOLISH 435
COHPLZIBS 757
COMPOSITION 804, 822, 962
COHPOST 682, 741, 742, 143, 888,
904, 1026
COHPOTIR DATA BANELIBG 128
CORPOTIB MODEL 629
COHCESTBATIOB 295
COHCEHTRATIOH FACTOR 543
COHDENSATION 124
COKSAR1E SAUDI 10AH 769
COHJOGATIOH 222, 716, 1095
CONTACT POISOW 402
COITARIRAITS 540
COITARIIITIO* 63
CORTIIOOaS F10» 345
COHTBOL 585. 839
CO»»ECTITI TRAISPOBT EQOATIOI 233
COHYERSIO* 32, 61, 256. 357, 792,
952, 1072
COPPIR 137, 177, 200, 242, 294.
674, 681, 724, 756. 781. 851.
1077
COPPIR NITRATE 847
COPPIR SOLPATB 724. 756
COB* 84, 152, 153, 171, 173, 250,
269, 293, 365, 372. 373. 410.
451. 593, 634, 650, 789. 836,
864, 894, 1053, 1101. 1123
CORN rODDBB 372
CORK HOUR 835
COTOFAK 328, 367, 545
COTTON 50, 59, 142, 215, 379, 480,
493, 552, 559, 836, 956, 1055,
1082
COTTON FIELD 616
COTTCN LINT 1179
COTTCN SEED 59
COTTON STALKS 1055
COTTONSEED 1179
COVER CROP 651
COSS 140
CRABS 119
CBANBERRT BOG 244, 1187
CFEATIOH 607
CREDAZINE 1052
CREEK 1198
CRESCL 378
CRES! 80fl
CRICKETS 396, 402
CRITIRIA 1117
CROP ANALYSIS 692
CROPLAND 382, 1158
CROPS 38, 117, 173, 174, 175, 193,
271, 315, 367, 372, 382, 397,
410, 436. 480. 493, 512, 518,
519, 643, 644, 645, 649, 650,
651, 652, 667, 677, 756, 789.
808, 810, 820, 838, 855, 862,
908, 978, 1036, 1036, 1053, 1098,
1119, 1149, 1188, 1194. 235
CROSS LINKAGE 159
209
-------
CROTOXYPHOS 94
CRUSTACEANS 576
CRYZALIN 580
CUCUMBERS 84. 545, 1010, 1036,
119U
COLICIDAE 887
CULTIVATION 261
CULTURES 1073
CUPFOSAN 724
CUTIN 2*9
CUTHORMS 392, 396, 402
CYANAZINE 95, 96, 973
CYAMAZINE AMIDE 973
CYANOACETAMIDE 285
CYCLIHG 247, 1192
CYCLOATE 3*3, «33, 1012
CYCLODIEHI 132, 484. 695, 1C22
CYCLODIENIS 870
DA UPON 10«, 105, 216, 237, 532,
612, 783, 78», 785, 951, 1088,
1092, 1167
DAL* PON 1089
DALDRIN 92
DASANIT 405
DASANIT SOLFONE 405
DAZOMET 796
DBM 817
DBNPA 285
DBF 68, 751, 8«9
DCA 155, 157, 1009
DCBK 817
DCNA 352, 353, 1085, 1106, 1128
DCPA 8, 118, 1073
DD» 587, 751, 11«2
ODD 68, 186, 254. 255. 357, 358.
359, 403, 57D, 578, 593, 605,
606, 803, 8*9, 989, 990, 1000.
1036, 1037, 1058. 1158, 1169
DDE ^, 61, 68, 132, 150, 209. 231,
254, 255. 356. 403. 434, 578,
605, 649, 695, 712, 751, 790,
792, 843, 890. 914, 989, 990.
992, 1002, 1004, 1014, 1015,
1019, 1036, 1037, 1058, 1142.
1158
DON 68
DDKS 849
DDHO 989
DDOD 1030
CDT 2
38,
92,
142,
188,
247,
298,
398,
1434.
456,
492,
555,
585.
605,
626.
695,
771,
792.
859,
892,
927,
1004
1019
1098
1142
1158
1196
, 10, 12, 15,
43, 44, 45, 61
98, 100, 106,
146, 150, 151
193, 209, 218
254, 255, 289
356. 357. 358
403. 415, 416
437. (143. 450
458. 459, 483
520, 521. 522
561. 565. 570
587. 593, 594
606, 607, 620
647. 649. 669
719, 726, 727
777, 778, 779
820. 824. 829
864, 869, 886
893, 905, 912
942, 989, 992
1010, 1014,
1036, 1037,
1099, 1103,
1145, 1146,
, 1159, 1169,
1197
51, -0, 36, 37,
, €8, 70, 84,
119, 130, 132,
, 156, 186,
. 234, 246,
. 291. 297,
. 359, 370,
, 417, 432,
, 454, 455,
, 484, 491,
. 543. 552.
, 576. 578.
. 597, 600,
, 621, 623,
. 674, 693.
, "5, 751,
, 788, 790,
, 843. 849.
, 687, 890,
, 914, 926,
. 995, 1002,
1015, 1016,
1043, 1053,
1130, 1131,
1148, 1157,
11E6, 1194.
DDTR 1159
CDVP 822
CEACTIVAT10N 496
EZALKYIATION 533, 533, €80, 757
EEAHINATIOS 716
I£CASfiCXTI.»TIC» 680, 1095
DECAY 106, 451
DECHLCHI NATION 310
DECOMPOSITION 7, 27, 101, 154,
155, 156, 157, 159, 201. 210,
221, 234, 240, 253, 254, 285,
306. 324, 329, 353, 376. 379,
384, 385, 390, 418, 429, 430,
436, 453, 466, 470, 472, 488,
512. 523. 524. 531, 533, 544,
560, 592, 612, 612, (13, 658,
659, 666, 682, 684. 688. 722,
746, 747, 750, 766, 194. 796,
797, 798, 805, 814, 820, 821,
822, 834, 847, 859, 670, 873,
888, 904, 905, 906, 947, 951,
983, 984, 985, 1032, 1034, 1062,
1070, 1094, 1107, 1109, 1116,
1125, 1126, 1185, 1193
CECOHPOSITIOH SATES 299
OECO»TAallUTICN 341, 418, 531,
1073
CEETHTUTICH 973
EBP 719
DEPOIIINT 417
DEGRAD1TIOK 1, 2, 3. 7. 8, 15, 33,
35. 36. 37. 41. 43. 44. 45, 47,
48, 66, 66, 77, 78, 85, 94, 95,
96, 97, 101, 104. 115. 118, 130,
131, 132, 134, 137, 141, 148,
152, 159, 167, 169, 170, 172,
180, 181, 186, 189, 190, 195,
198, 202, 203, 205, 212, 214,
218, 219, 223, 225, 227, 234,
240, 2K9, 256, 271, J73, 274,
275, 277, 279, 280, 283, 296,
297, 298, 299, 303, 304, 306,
309, 311, 319, 322, 334, 337,
338, 341, 347, 348, 35€, 360.
DEGRADATION 36«, 376, 378, 379,
384, 385, 397, 405, 409, 429,
435, 443, 448, 450, 453, 470,
471. 482, 491, 492, 494, 506,
507, 507, 508, 510, 519. 523,
524, 526. 534, 542, 556, 557,
559. 561. 564, 572. 575, 577,
585, 587, 588, 589, 606, 607,
610, 621, 622, 625, 643, 653,
657, 665, 670, 674, 675, 677,
680, 688, 691, 69U, 695, 696,
697. 698, 699, 708, 709, 713,
722, 723, 728, 729, 734, 735,
751, 753, 754, 757, 763, 764,
767, 772. 782, 785. 786. 787,
794, 799, 799, 803, 805, 808,
811, 816, 819, 820, 823, 837,
842, 843. 861, 866, 876, 879,
881, 894, 898, 901, 904, 905,
91C, 920, 924, 925, 926, 929,
930, 931, 942, 943. 9UU, 945,
946, 947, 948, 949, 952, 963,
966, 967, 975, 979, 982, 983,
984, 988. 992, 993. 995, 998,
1004, 1009, 1011, 1024, 1029,
1030, 1031, 1033, 1034, 1035,
1049. 1051. 1067, 1071, 1073,
1076, 1079, 1081, 1090, 1093,
1094. 1095, 1102, 1109, 1117.
1120, 1121, 1122, 1126. 1131,
1142, 1144, 1154, 1155, 1156,
1161, 1162, 1163, 1174, 1178,
1180, 1181, 1183, 1190, 1193,
1201
DEGRADATION PRODUCTS 767, 858,
942, 943, 944, 945, 946, 947,
949, 952, 963, 966, 973, 980,
98S, 999, 1079, 1094
DEHAIOGEHATION 435, 533
EEHTERATIOH 435
EEHYtROCHLOBIHATION 313, 990
DEHYDROGENASE 308, 308, 504, 796
DEISOP80PYLATION 973
DEL1UV 476
DEHETHOXTLATION 901
DERETHYLATION 141
DENITRIPICATION 974
DEHITRIFIIIRS 974
DENITROPHENOLS 252
DENSITY 288, 896
DEPOSITION 455
DERIUTinS 912, 1128
DESERT 382
DESHETHYLATION 22
DESOSPTIOH 64, 65, 72, 160, 232,
233, 258, 315, 446, 447, 453,
454, 455, 457, 458, 618, 705,
762, 764, 776, 813, 818, 916,
922, 1000, 1031, 1041, 1087,
1112, 1140, 1155
DZSTMHESIS 1163
DBTBCTIOi IIRIT 173
DETERGENTS 646
DETEEIORATION 116
210
-------
DETEHMIHATIOH 110, 111, 178, 469,
681
DETOX 1198
DETOXIPICATIOH 34, 60, 74, 114,
255, 337, 495, 602, 665, 975,
975, 1082, 1155
DETRITDS 683
OEXOS 276, 502, 503, 745
DHCA 1030
DI-SYSTOR 1049
DIALKYLDlTHIOCAmHATES 505, 969
DIALLATB 979
DIALYSIS 123, 927
DIATOBACEOOS EARTH 1185
DIAZINOH 29, 171, 323, 360, 361,
395, 398, 533. 568, 607, 646,
648, 683, 794, 894. 895, 896,
942, 944, 946, 948, 968, 1029.
106U
OIAZONETHAHE 642, 602
OIAZONItJH 860
DIBERZOPORAR 223
DIBROMIDE 711
DIBROHOACETAHIDE 285
DIBROHOACETIC ACID 285
DIBROHOCHLOROPHOPAM! 972
DIBOTOX 1198
DICAHBA 8, 39, 41, 89, 165. 216,
420, 559, 709, 719, 915, 932.
980, 984, 1138
DICARBOXIIIC ACIDS 767
DICHIOBtjPHBlOXYACITATB 1099
DICHLOBBHIL 97, 177, 206, 216,
832, 840, 859, 977, 1076, 1093,
1095. 1138, 1167, 754
DICHLOPERTHIOH 476
DICHLORAR 1085
DICHLORIDI 782
CICHLOROAHILIHE 125, 157, 536,
859. 1009
tICHLOROBERZAHIDE 27, 1192
DICHLOROSITROARILIRES 353
DICH LORD PHENOL 752
DICHLOROPHEHOLS 472
DICHLOROPHEHOXYACFTAHIDE 104
tICHLOROPHEHOXTACETATE 105, 349,
497. 661
DICHLOHOPHERYL 1192
DICHLOROPROPAHZ 711
DICBLOSOPROPERE 710, 711
CICHLOFPHOP 41, 559, 1088
CICHLOBVOS 354, 522
IICOFOL 605, 649, 771, 820, 820
CICROTOPHOS 94
CIELDRIR 13, 14, 43, 84, 92, 100,
101, 127, 131, 173. 176, 179.
180, 182. 186, 208, 244, 245,
263. 264, 286, 288. 28S, 290,
298, 310, 359, 370, 396, 401,
402, 403, 406, 415, 432, 434.
443, 454, 455. 458, 473, 486,
486, 514, 520, 521. £62, 568.
569, 573, 574, 575, 187, 621,
626, 634, 649, 677, 696, 699,
701, 757, 771, 777, 789, 791,
829, 838, 846, 861, 864, 865.
876, 667, 890, 905, 910, 918,
931, 932, 942, 1001, 1003, 1016,
1022, 1023, 103€, 1037, 1047,
1060, 1064, 1065, 1098, 1145,
1146, 1153, 1158, 1159, 1170,
1174, 1175, 1188, 11S4
EIETHYL 346
tlETim. TR1PHOSPBOR1C ACID 945
tIETHYLERI GLYCOL 301
IIPPtJSIOR 109, 110, 111, 159, 231,
267, 268, 288, 290, -40, 375,
422, 455, 497. 550, 614, 624.
630, 631, 656, 710, £25, 841.
896, 93», 937, 938. 953. 1003
DIPPOSIOH COEPPICIEHT 110, 111,
851, 896
DIPUJSIOR COEJJICIERTS 936
CIPOCOt 417
DIPOBAIE 16, 16
CIPT 1044
IIGZSTITI TRACT 61
EIHYDROCBLCRDIRE-1.3-DICABBOXYLIC
ACID 310
DIHtDROCaLCFDlREDICARBCXYLIC ACID
574, 575
EILAR 789, 791
EILOTIOR 135, 1185
tlHETHIHORAPHTBALHE 702
256. 340. 52*. 525,
607, 740, 820, 926
CIMETHOXOH 256
DIHETHTL 118, 346
DIMETHYL ASSINE 10
DIMETHYL AI5IHIC ACID 536, 539
tlHETBtt PBOSPBAT1 22
IIimHU PBOSfBOSCDIlBIOATI 22
DIHBTH1L PBOSPHORCTHICATE 22
DIMETHYL SULPHATE 642
tlHBTBIL 5-(1-ISOPBOPYl-3-BBTBTL-
PTRAZOLYL-CARBAHATE) 321
OIRETHYLBEMZYL OCTADETL-AHROIIOfl
CHLORIDE 737
DIBEIHYLHEBCORY 863
DIRITR1RIRE 411, 810, 811. 988
DIRITROAIILIRES 615
DIIITBODIABIRE 615
DIKITROPBEIOL 172
DISOEEH 1056
DIIIOSEB 177, 1198
DIOCTADECYL-ABBOHIOB CBLORIDE 737
DIOBETSIC DETE8HIHATIO» 681
DIOXIS 541
OIOXISS 225, 531, 534, 693, 859
DIPBMAHID 449, 709, 845. 938
DIPBIHYL 1131
DIFBIRYL ETBER 888
DIPHIBYLTIH 78
DIPBCLE INTERACTIORS 1135
DIPROPYL 343
DIPTIREX 614
DIPYBIDYlXOn HBRBICIDBS 1190
DIQOAT 93. 216. 248, 372. 413,
414, 424, 546, 551, 831, 1139.
1140, 1182, 1190
DISASPEIFJLHCE 535, 58U. 611, 717.
986
DISEASE 271, 294, 438
tISEASE COHTROL 1111
DISEASE fBCTORS 887
DISinriCTART 40, 475, 681
DISKING 382
tlSPtFSIOH 848, 1076
DISPLACEBERT 231. 372, 549
DISPOSAL 9, 777, 1023
DISSIPATIOR 39, 49, 56. 87, 164,
165. 174. 209. 367, 418. 725.
841. 897, 921, 999. 1024. 1121
DISTILLED VATER 458
DISTRIBUTION 60. 182. 191, 233.
247. 256. 302. 361, 372, 381.
439. 454, 454, 460, 462, 481.
490. 594, 631, 806. 825. 862.
871, 998, 1040, 1041, 1063, 1076,
1110, 1142, 1158, 1196
DISTRIBOTICR COEPPICIERT 447
DISOLPOTOR 340, 524, 525, 626.
722, iooe, loae, ioso
DISYSTOR 272. 971
211
-------
DITCHES 284
DITHANE 69, 675, 1092
DITHIANON 967
DITHIOCARBABATP. 279
DITHIOCASBABIC ACIDS 719
DITHIZOH1 853
DIORON 8, 139. 216, 266, 281. 284.
300, 366, 382, 381, 460, 461.
U65, 488, 496. 532, 553, 617,
660, 662, 663, 670, 709, 762,
765, 776, 854, 868, 926, 935,
1167
DIVALENT 867
CM BO DA 737
DNOC 466, «67
DODECYLAHDIE 737
DOHATOI 335
DOMESTIC WASTES 908
DOSES 153
DOWNWARD HOVEHIRT 372, 139
DP-733 977
DRAINAGE 207, 887
DRAINAGE WATER 767
ORAZOXOLON 118
DRENCH APPLICATION 807
OR I OKI KG »ATBB 926
DRIPLIHE AREA 23tt
DOFF 166
DDHPIHO 703
DOPLITOX 1198
DORSBAN 398, 974
DOST 63, K17
DOST CORTBOL 626
DUSTING 1«, 865
DOTCR BLH 038
DYFOHATE 29, 171, 185, 653, 654
DYHAID 732
DYNAMICS 768
URTR FILLS 909
URTHHOBHS 2X6, 397, 543. 712
BCOSYSTBHS 133, 728
EPFICIERCY 212
BGGPLANT 807
BGGS 543
BGGSHBLL THICKRBSS S«3. 674
EKATOX 1198
ILBAHIl 770
ILECTRICAL RESISTIVITY 932
ZLECTRO CIALYZID 372
ELECTROLYTE SOLOTIOH 851
ELECTBCims 465, 813
ELECTRON 210
BIECTBOH CAPTORE 544, 9SO
ELECT ECU CIPTOR! GAS
CHROBATOGBAfHT 981
ElECTROH-CAPTOBE GAS
CHBODATOGRAPHY 810
ILB«EHIR»Y CYCLES 136
ILB 438, 1171
HLOTIOH 366
BHPRYSBHA 490
EHOLSIOH 387, 850
BSCEPHALITIS 578
ENCRYTBtBIOS 569
EHDODIOL 688
BMDOETREB 688
IRDORYDBOXYETRER 688
EHDOLACTOMI 688
IHDOSOIFAH 297, 330, 331, 5*2,
688, 688. 735, 771, 820, 892, 931
IMDOTRll 812
INDBI* 16, 16. 83. 84, 148, 173,
359, 403, 432, 520, 543, 590,
591, 620, 674, 677, 70C, 702,
771, 786, 787, 789, 791, 9»2,
942, 1036, 1037, 1047, 1159,
1168, 1175, 119K
BRDRII ALCOHOL 83
EKDRII ALDEHYDE 83, 787
ESDRH DELIA RITOIE 83, 787
EIDRIH KBTCRE 83
EMBICRHBNT 391
ERTIBOIHERT1L 1176
IRZYHATIC CLBATA6I 530
IRZYHB 48, 86, 104, 112, 123, 146,
147, 177, 187, 203, 577, 313,
322, 504, 506, 543, 587. 783,
952. 994, 1182, 1190
IRZYH1 COBFLBJ 1071
IHZYHI IRDDCTIOI 585
IRZTHI IRRIBITIOR 1120
IIZYHI SYSIEHS 716
IIZYRIC DBGRADATIOI 1*7
BPISOHAL TBARSFBB 1109
IP» 522
BPOXIDATIO» 132, 695
EPOTIOE 180, 402, 865, 1022
EPTAK 719
EPIC 638, 719, 979
IQOATIOMS 585, 631, 825
IQOILIBHION 159, 160, 233, 455,
550, 905, 922, 1087
IQOILIBRIDH MODEL 1145
EROSION 284, 303, 370, 391, 406,
1105, 1118
ESTER HYDROLYSIS 533
ESTBFASE 260, 322, 1200
ESIEIIFICATIOR 422
ESTESS 349, 354, 719, 981
ISTGIBS 820
ISTOABIRE «ATER 244
ETD 470
ITHARE 2, 156
ETRAROL 156, 642, 669
ETREB 681, 910
ETHEB FISSIOH 533
1THIOH 437
ETHYL ACETATE 469
ETHYL ALCOHOL 257
ETHYI ETHEB 257
ET8YLERE 156, 711
ETBYLERE TRIOOBEA 470
ETRYLERE TRIOBM DISOLFIDE 470
ETHYLERE THIOBAH HOROSDLFIDE 470
ETHYLERE-BIS-DI'HIOCARBAHATBS 470
ETRYLEREBIS 279
ETRYLEREDIAHIRE 969
ZTRYLBRETHIOORBA 969
BTRYLERETHIORtN ROROSOLFIDB 969
ETHYLTHIOHBTOR 820, 1051
BTRYITRICHBTOR SOLFOXIDB 1051
BTIOIOGY 276
ETH 470, 969
BID 470, 969
ET»POF1TIO» 408, «40, 512, 616,
680, 834, 1001, 1048, 1069, 1094
1095 *
ETAPOTBARSPIRATIOR 838
EICHA1GB CAPACITY 321, 913
EICHAVCE BQDILIBBIOH 381
212
-------
ncuioi tuns 83s
ncBBtzoB to
BXfBBTXOB 790
nniCfZOI 257. 33J, 332, 419,
661, 742, 757, 786, 788, 911,
1155, 1166
ricm riujfs 3*8
nuow nm» 1«»
TIM 403
nt 257, 5*3, 1130
Fin 10, 79, 80, 103, 119, 1M,
150, 15*, 222, 317, 381, 436,
•53, 505, 525, 531, 5*2, 513,
583, 586, 587, 590, 591, 616.
654, 674, 723, 778, 812, 88C.
918, 9«9, 10*5, 10*8, 1085, 1154,
1153, 1172
IOTI ICZD 622
kCXBS 372
183, 193, 683, 1103
mi 1057
rm tori 34
nms 3«s, 67«
m sons 11*9
miC 372, 420, 422, 532
ratunoB 200
mxnofnot 1«3. 516, 522
nnuB son, i6i
monor 559
rnSttlOTBXOB 29, 62. 444, 1166
rnrn »c*»n 78
rSMBOV 32*, 304, 465, 760, 761,
960, 1086, 1104, 1138
RSBU 193, 969
RUB imin 305
rmxusBB 443
mtZLIIBU 34, »0, 1*9. 303, 327,
341, 499, 804, 908, 909, 909,
932, 982. 1109. 1195
rxcx's tit 110
nn.0 irnxcuxoi 878
FIBLB CBOH 403
rxBio BicBonoTs 392
mon-tou 467
rXlTUnOB 123. 161, 609, 926,
1014, 1014
rxsB sue 171
IXMIUXMS rxsa 60S
117, 119, 243, 252, 4«8, 543.
571, 576, 674, 693, 719, 735,
fin 735, 753, 1095, 1142. 1186,
1198
nn Buns 1198
nn cms 12, 3*3
nmoi 313
YZUnOI 104, 781, 90S
tun lOHUTlOi 544
ntfOMCTtnoi 949
runs 119
TIX18 402
noooiD sons 53*, 1051
nOODZM 66, 186, 244, 339, 482,
843. 942, 943, 144, 945, 947,
963, 1004, 1051, 1131, 1169, 1193
noovruxf 1198
flOM 498, 683, 1021, 1103
riotisn caoii cnoBitociarn 610
ftOISIt 835
flO« Utl 231, 284
notiBzn runs 684
riOCHOMlXII 411
rtvontoM* K, 141, 149, 233,
316, 366, 367, 446. 447, 618.
619, 661, 662, 901, 93!, 938,
1055, 1138
nOOBBMIt 966
nooBonris 17, 1127
nOBBBOl 966, 967
rtOBrCOt 966
nos 63*
nvi I»I 635
ni 1200
rOODBl 417, 995. 1053
rOlZUB 709, 903, 995
mm irrixcBtioB* 14, ;*«
rcBoros 1029
rOOO 363, 479, 490, 649, 674, 698,
702, 718, 735, 769, 964, 1037,
1099, 1103
rOOB CU»S 10, 119, 392, 436.
527, 543. «74, 728. 104S, 111»
rooo conkBZBktxoB 432
roBiai 810
roBBSt riocB ^
NBBST SOXIS 619, 693, 1058, 1196,
rOBBSIS 5, 7. 70, 246, 307, 517,
561. 618, 819. 886. 1147
rOBUlXB 796
rOBBMXOB 701
rOBBBtmtB 925
tOBIOUTXOI 261
roxtm 839
ronixt BxitR 560. 1039
rBACnOBUXOB 372, 565
119, 649, 952, 1044
CB&BS 119
BOOUIOB 99, 197, 233,
920, 1000, 1041
nsvmixcB toon 258
rBOOS 605
nnt ni 908
OBCBIBDS 1015
271, 291, 593, 724, 756.
903, 977, 1015
ntxts cBors 1103
rOlTXC ftCXB 551
rOUUTB 952
332, 444, 629, 632, 711,
827, 641, 1074
rOBXOtTXOB 394, 630, 682
roBcnoBit oBovrs 1135
roMii cms 112
rncu nsnBS 112
ramu no§» 496
max 6, 112, m, 116, 122, 129,
155, 201, 346, 429, 451, 459,
508, 569, 601, 671, 779, 805,
673, 683, 951. 958, 974, 1011,
1060, 1092, 1097, 1150, 1163
rVMXCXBAl BXCnOtOVXIXTKUinXIBi
353
nrwiciBB 78
fMCICXBBS 34, 48, 116, 172. 173,
184, 190. 191, 229, 241, 2«2.
249, 271, 276, 277, 296, 305,
311, 332, 417, 425, 427, 429.
438. 451. 459. 479. 485, 487,
490, 502, 503, 505. 506. 522.
527, 557. 657, 659, 674, 675,
696, 745, 773, 780, 802. 007.
620, 637. 858. 663. 866, 873.
691, 911. 929, 969, 1026, 1045,
1057, 1066, 1005, 1104, 1106,
1107. 1111, 1125, 1126, 1128,
1136, 1143, 1152, 1154, 1161,
1162, 1176
TCWtS 43, 44. 113, 121. 123. 311,
569, 665, 694. 697, 731, 759.
815, 1074
459
TOUB 225
rOBBC* XBBiatTOB 57
smric soBTicums 656
213
-------
GAMBOSIA ?ISH 119
GAME BIRDS 911
GAMMA HCH 681
GAMMA-CHLOSCANI 403
GAMHA-HEXACHLOBOCYCLOHEXANE 1100
GAMHA-PEHTACHLOROCYCIOHZXAHE 356
GAMMA-PEHTACHLOROCYCLOHEXBHE 208
GARDEN 169
GAS 10, 622, 632, 810
GAS CHRONATOGBAPHr 139, 173, 181,
271, 301, 371, 372, 384, 390,
<»77r 478. 544, S22, 632, 710,
751, 816, 845. 910, 915, 931,
980, 982, 983, 984, 987, 990, 810
CAS LIQUID CHROHATOGRAPHT 1S8,
296, 340, 507, 721, 786, 1003
GAS SATURATION 1000
GAS-HASHING 1003
GASEOOS DIFFOSICN COEFFICIENT 667
GATKON 99«
GEL PI1TBATION 123, 161, 551, 1C14
GENETICS 867, 1109
GEOTHITE 1134
GEOTBICHOH 125
GERHIHATION 545
GILA SILT LOAM 288, 289, 1000,
1003
GLASS 346
GLASS BEADS 917, 990
GLIOCLADIUM 113
GLUCOSE 156, 249, 308, 458, 486,
1051, 1074
GLUCOSIDE 71
GLUTANATE 379
SLYCINB-HM 852, 937
SI, TO If LIC ACID 285
GRAINS 372, 500, 911
SBANOXONE 941, 1133
GRANULAR APPLICATION 80, 1119
GRANULAR BAND APPLICATION 930
3RAH01AR PARIS GREEI 882
SRAHDLBS 387, 749
GRANOLOBITBIC 962
GRAPES 260, 516, 606, 1030
GRASS 23, 152, 178, 266, 284, 372,
748, 873, 966, 1010. 1012. 1084.
1138
GRASSES 552
GRASSLAND 39, 133, 135, 371, 783,
784
GBASSLANC ECOSYSTEMS 135
GRAVEL 1133
GRAVEL BDLCH 372
GREBES 543
GREENHOOSB 66, 84, 496, 7%, 815
GROUND HATER 4, 9, 12. 34, 273,
338, 596, 619, 639, 686, 804,
856, 867, 909, 956, 1198
GROUND HATIRS 1195
GROUNDtATER 4, 100, 574, 856, 867,
956, 1195, 1198
GHOKTB 47, 55, 130, 431, 815, 899,
GBOVTH CHAMBER 66
GROWTH INHIBITION 1111
GS 14254 315
GYPSY ROTH 886
BALI-LIFE 7, 41, 56, 77, 87, 106,
117, 174, 182, 299, 4»3, 471 ,
515, 600, 607, 616, «41, 754,
820, 829, 888, 967, 1048, 1051,
1111, 1116, 1173, 966
BALOGE1 BOND CLEAVAGE 861, 876
BALOGENATIt HYCBOCABBOMS 827
BAY 173
HAZARDOUS CHEMICALS 225, 292
8AZARCOOS MATERIALS 626
BAZABES 225, 292
HCB 184
BCR 552. 1103
BDA 1030
HEALTH 294
BEALTB HAZARDS 674
BEAT 794, 943
HEAVY HEIAIS 34, 200, 294, 443,
535
HBKLOTOI 1198
BEPTICBLOR 80, 84, 92, 117, 179,
180, 181, 186, 251, J72, 359,
395, 397, 398, 402, 403, 432,
434, 454, 455, 458, 484, 620,
621, 634, 651, 652, 677, 712,
73«, 735, 771, 786, 789, 791,
838, 846, 864, £65, 532, 942,
947. 968, 995. 1022, 1060, 1091.
1131, 1159, 1164, 1174
BBPTACHLOR EPOIIOE 92, 251, 301,
HEPTACHLOR EPOXIDE 402, 403, U3H
677, 771, 846, 968, 1145, 1146,'
HEPTIHE 931
HERBAM 545
HEBBICIDAL ACTION 152
HERBICIDE 164, 1078
HERBICIDES 5. 7, 8, 12, 17, 18,
19, 20, 24. 26, 32, 34, 39, 41,
46, 47, 55, 57, 64. 66. 67, 74,
79, 81, 85 86, 87, 90, 95, 96.
97, 99, 104, 105, 108, 109, 120,
121, 122, 123. 125, 133, 134,
135, 139, 141, 144, 152, 153,
155, 158, 166, 168, 169. 17ol
173, 178, 19U, 199, 201, 202,
203, 205, 206, 207. 211 212
213, 214, 216, 225. 227. 228,
230, 231, 232, 233, 235, 239.
42 239, 240, 248. 252. 257 266.
275, 277, 281. 282, 284, 287
292, 299, 300, 303. 307. 309.
312, 313, 315, 316. 318. 324,
325, 326, 328, 335, 336, 337,
338, 339. 341, 343, 344. 345,
348, 349, 350, 351. 366, 367,
369, 371, 372, 373, 374, 375,
376, 378, 379. 382, 383, 384,
386. 387, 388, 390. 393, 407!
410, 411, 413, 414, 417, 418.
419, 421, 422, 424, 425, 431.
433, 440, 441, 446, 447, 448.
449, 450, 451. H52. 464, 46s!
467, 469. 471. «72, 477. 478.
480, 488, 493, »9a, 495, 496.
497, 504, 506, 508, 530, 532
533, 534, 539, 540, 541, 545,
546, 548, 549, 550, 551, 553^
559, 571, 580, 581, 582, 587
589, 592, 598, 599, 607, 609.
610, 611, 612. 615, 617, 618
624, 625, 626, 627, 629, 638,
657, 658, 659, 661, 662, 663.
668, 670, 672, 674, 679, 680!
684, 685, 686, 690, 698, 704,
705, 708, 709, 714. 717, 721.
725, 731, 732, 747, 749, 753,
754, 757, 758. 760, 762. 763,
764, 765, 768, 770, 772, 775,
776, 782, 783, 784, 785, 80o!
801, 805, 806, 808, 809, 81o|
811, 812, 814, 815, 816, 817!
818, 819, 820, 823, 826, 831.
832, 834, 837, 839, 840, 84l)
8«2, 845, 854, 855, 868, 870,
872, 877, 878, 879, 880, 897.
901, 904, 906, 908, 915, 921,
922, 924, 932, 933, 934, 935.
936, 937, 938, 939, 940, 952,
954, 960, 975, 977, 979, 98o!
982, 983, 984, 985, 986, 988.
991, 993, 994, 1006, 1009, 1011
1013, 1017, 1018, 1021, 1027.
1032, 1033, 1034, 1035, 1038,
1052, 1055, 1056, 1070, 1076.
1079, 1082, 1083, 1084, 108e!
1089, 1091, 1093, 1094, 1095.
1100, 1101, 1103, 1104, 1107!
1108, 1109, 1110, 1111, 1112|
1113, 1114, 1115, 1117, 1125.
1126, 1131, 1132, 1133, 1134.
1136, 1137, 1138, 1152, 1160.
1165, 1167, 1171, 1180, 1183!
1184, 1187. 1189, 1190, 1195
1202. 126
HERRING 543
HEIACHLOHAN 596
214
-------
HBIiCHLORiRE 779
HEXACHLOBOBERZEm 181, 511, 512,
515, 517, 518, 519, 603, 693,
926, 9«2, 1193
RBIACHLOFOCYCLOHKAR1! 59t|
BBXACHLOtOCYCLOB«ERl 552
HEXICHLOROCYCLOPIRTADIBRB 395
HEXA HE 352, 1003
HEIILORE 108
HEXOSAHIRE 78*
HIGOS1H «75
HIBOSAR 522
HISTORICAL TRERDS 674
BORE YT IRE 211
HOP 260
HORIZORTAL HOVEBERT 930
HORHORBS 5113
HOBTICUiTDBI 236, 1118
ROOSE Tit 649
ROLLS 329
HOBARS 14, 2113, 479, 490, 571,
588, 604, 644, 735. 769. 1059,
1119, 1186
HUNATE 1076
BHHIC ACID 162, 187, 257, 326,
454, 548, 550. 551, 640, 642.
691. 1014, 1017. 1047, 1078,
1145, 1148
BORIC ACIDS 641
HUHIDITY 195, 390, 473, 764, 10C1
HOHOS 70, 105, 144, 159, 160, 161,
197. 239, 242, 288, 345. 349,
350, 384, 396, 427, 457, 517.
546, 561, 592, 690, 691, 731,
808, 812. 813, 826. 839, 917,
927, 941, 943, 945, 1004, 1007,
1017, 1018, 1047, 1052, 1100,
1128
mmns SARI 632
HORGAZIR 768
RYDRATIOR 137
HYDRO QOIRORE 162
HYD80CARBORS 816. 1186
HYDROCHLORIC ACID 160, 544
RYDROGER 196. 210, 544. 60.8
HYDHOGER BORD 642
HYDROGER SORDIDG 137. 210, 927,
1137
RYDROGKR BRIDGE 813
RYDPOLOGY 278. 886
HYDROLYSIS 8, 56. 112. 115, 132,
HYDROLYSIS 1«1, 157, 189, 222,
271, 285, 320, 320. 327, 349,
435, 436, 482, 506, £26, 533,
572, 577, 641, 674, 681, 688,
695, 716, 741, 757, 800, 820,
901, 913, 925. 926, 942, 943,
991, 9«5. 94€. 563, 575. 979.
1024. 1048, 1051, 1075, 1122.
1131, 11J4. 1192
HYDROLYSIS COKTHOL 913
BYDROLYSIS PRCDOCTS 1154
HYDROLYTIC DECBIOHIRATIOI 1182
HTDROPHOBIC 1134
HYDROSPHERE 635
HYDHOXY ATAEZim 189
RYDROIY BERZOIC-ACID 71
BYDROXYA1RAZIKE 336, 331, 975
HYDROIYCHLORDERE 117
BYDROXYL 1078
HYDROXYL GROUP 713
HTDFOm GROOPS 602
BYDROXYL1BIRE DERIVATIVES 719
HYOROXYLHTIOR 114, €80, 820, 1095,
1126
BTOROXYTBXAZIWE 1155, 1155
RYPERTERSICR 490
HYPOTHESIS 925
ULITE 325, 4,58
IBROBILIZATIOR 438, 469
IR VITRO 1120. 1163
1R VIVO 541
mClIVATICR 496. 1055
IRCORPORATIOR DEPTH 721
IHCRDSU1ICR 417
IHCOBATIOR 88, 199, 253, 353. 990.
1074
IRDOSTRIAI CBEBICA1S 566
IRDOSTRI1L EFILOERTS 527, 728,
735, 908
IRDOSTRI1L SASII 908
IRDOSTRIU »IST1 1RBATBER1 626
IKDOSTBI1I RASTES 9, 338, 626, 728
IRDOS18IAL WAltB TREAT8EBT 285
IRODSTRY 9, 225, 285, 292, 360,
418, 586, 566, 626. 698. 733. 996
IWORHATIOS RETRIEVAL SYSTEM 128
IRPHARED ARALYSIS 372
IRFRARID SPECTRA 544
1RPBARED SPECTROPBOTCHITRY 494
IRTRABED SPBCTBOSCOPY 137, 546,
551
IRGESTIOR 693
IRHIEITIOR 55, 66, 260. 617, 796.
1074
IROCOUTIOR 430, 945
IHOEGAMIC HITRITBS 909
IHOPGMIIC SALTS 258
IRSICTICIDE 380, 789
INSECTICIDES 2, 5, 16, 24, 29, 30,
35. 36. DO. 42. 43, 44. 45, 56,
64, 70, 72. 73. 76, 82. 84, 94,
100, 113, 114, 115, 132, 138,
115, 146, 163, 167, 171, 173,
174, 175, 179, 180, 182, 188,
195, 197, 208, 209, 220, 234,
251, 256, 260, 261, 262, 264,
270, 272, 288, 289, 298, 301,
304. 306, 314, 320, 321. 322,
330, 340, 342, 346, 347, 354,
356, 359, 360. 361, 363, 365,
366, 368, 370, 375, 376, 392,
394, 396, 397, 398, 399, 400,
401, 402, 403, 404, 409, 417,
424, 425, 428, 432, 434, 435,
437, 444, 459, 468, 473, 476,
479, 481, 482, 486, 500, 501,
506, 524, 525, 531, 535, 542,
543, 554, 562, 566, 568, 574,
576, 577, 587, 588, 590, 591,
595, 600, 604, 614, 620, 620,
623, 626, 628, 645, 647, 649,
650, 651, 653, 654, 665, 666.
674, 676, 677, 678, 683, 694,
695, 698, 700, 716, 722, 726,
727, 730, 734, 735, 740, 746,
748, 750, 759, 766, 770, 771,
786, 787, 788, 790, 791, 794,
799, 820, 821, 822, 824, 837,
843, 857, 865, 884, 885, 887,
892, 898, 906, 912, 914, 916,
930, 931, 942, 942, 943, 944,
953, 968, 974, 989, 992, 997,
1000, 1002, 1003, 1008, 1019,
1022, 1024, 1029, 1036, 1043,
1044, 1046, 1050, 1051, 1058,
1064, 1069, 1070, 1075, 1080,
1081, 1090, 1104. 1105, 1121,
1122, 1124, 1130, 1131, 1147,
1149, 1157, 1160, 1168, 1170,
1177. 1185, 1186, 1188, 1191.
1193, 1199, 1200
IRSECTICIDE5 DIETHYLTHIOIHOSPHORIC
ACID 189
IRSECTS 15, 183. 220, 394, 396,
399, 402, 444, 566, 578, 586.
604, 683, 716, 861, 876, 887,
925, 930, 1064, 1119
IHTERACTIOR 91
INTEFCON VERSION 1163
IHTRAP1RTICLE DIFPOSIOR 550
IROROH 1115
ItHEmSB 104
INVERTEBRATES 247, 569
IODIDE 681
IQS 137, 160, 265
IOR EXCRARGE 159, 160, 162, 188,
210, 322, 326, 804, 927, 1135
215
-------
IOR BX CHARGE HIS lit It
IOR-DIPOLB 137, 210, 813
IONIC COHPOORDS 1141
IORIC STBBRGTH ««S, 113*
IORISID PESTICIDES 5(7
IORIUBILITT 1135
lOHIIkTIOR 810
IOXTRIL 1088. 1089
IPC 8, 203, 7*7
ISOR 2. 52, 137. 177, 2»2. 29*.
828
»0* HYDROXIDES ««2
IBBADI1TIOR 223, »27, 561, 586,
966
imttTIO* 16, !7, 59. 105, 153,
208, 26*. «37, »39, »*8. »80.
•85, 552, 568. 598. 855, 9C9,
91S. 915, 933, 976, 1012, 1179
IBBIUtlOR RXLLBT 721
IBBIttTIOB WTJB 669
mxeinoR IITBRS 736
ISOBBRIJLR 1064
ISOBOTtBfclDBBTDt 156
1SOCIL 216, 328, 388
XSODBXR 173. 789. 791
ISOLU 321
IS01MIOR 9*3
isoanmtxoB 88. in, sis
XSOHBtS 223. 389. 511. 512. 536.
713, 791, 100«, 1037
ISOPROPillR 411, 897
ISOPKPYt R-PRSfYLClBBiaUB 203
ISOPBOPTl-R-3-CBIOlOPBBm
CUBUkXBS 212. 708. 770
ISOTUIC BB1T 6*2
isornns 7«4, 938. 1000
ISOTOPES 136
ISOTOPIC IMBllIBS 728
ISOX1IOLORB »8
UOLIB
-------
BMIBIUI 177. 196. 281. 294, 7S2.
813. 826
UBBBSZQB OXZB-B 792
UIIB 17*. 493. 1202
R1XSB-B 17S
BlUOXOB 22
RiuRzi. s«3, 674
UUTB 952
RUlTBXOa 3, 22. 137. 173. 189,
195. 322. 500, 533, 577. 626,
67». 697, 730, 759. 777, 798,
881. 887. 926, 1024, 1120, 1122
UUTBXOB DZkCZD 22
HkunxoB BxckiBonuc ncxo 1121
BkUTBIOB HUV-BSTBR 1121
ULkfRZOR BOROkCID 22, 533
BkLBIC BYORklZOI «30
BkLZHXC 1CID 902
BkLOlkR 367
BkBRkLZkR PBUB1COL06T 1045
BkRflkLZkR TOIICOIOGI 10*5
BkBfliLS 78, 271. 279, 310, »»*,
522. 571. 566. 60*. 861, 876.
925. 1177
UBCOBBB 69
UBDUZBS 553
UBBB *70. *8S, 9<9
UB8UB3B 177, 29* , *8S
UMkBOOS IOWS 952
BUOD 3*. 1*0. «91. 100*
BkRXRE BIOLOGY 130
RkKXRB PBYTOPLkBRTOB 12, 218
BkBSR 335. «63
RkSS FLO* 939
BkSS SPBCTBOSCOPY 665
HISS IRkVSPZB 637, 825
RkSS TBUSPORT «61
RkTHBHkTICkL BOBIl 232, *«6. *«7,
632. 633, 832, 83*. 923, 10*1
UTRBBkTXCkl TBIORT 656
BCP 780
RCPk 299, 324, 325, 559. 1088,
1089. 1167
BCPB 559
BCPC1 817
BBC1BSOH 145
BBCBUZSH 107, 210. 5*7. 1109,
1155
IBCOPIOP 1088
OCOPlOf 1089
BBLtBZn 1136
nuBzn Dnzvinns 1136
•ntni 110*
UBBItn 177
1BBUOB 1008
BBOBU 566. 820
•BlC»»IODZntBtJl 925
UBCIMOUUSZIB 781
UBCK SZIZU «tl 669
BBB.COBZC CBLOBIOJ 913
R1ICQ1T 3*. 37, 51. 229, 29*. 308,
*7*. OS. «87, S27. 1ST, 635,
67*. 698, 720, 733. 735. 7S5.
781. 803. 862. 863. (73. 889.
903. 911. 919, 970, 978, 999.
1072
BnCQBl IZCBLOIZ&I 970
BBUCtJH CBIOBZDB 8*7. 8«3
BBBCQBT P01SOBIIO 635
BBBCOB1 BHBBYIOB 911
BIBCOB1 203 8(3
BBtlBOtZC nABSFOIBlTZCIS 757
I, 3V1, 313, BU«. 013. 0»3,
I, 665. 66«. 675. C«C. i9S,
I, 701, 716, 719, 759, 766,
I. 81*. 8C7. «91, 901. 906,
925, 930. 9*5, 973. 997. 1030,
10*5. 1C67. 1068, 1079, 1085,
1126. .1132, 1163, 1182, 118*
780
925.
10*5
UllBOUtB 337
Bmecims 22, 66. 98. in, 119,
1*3. 1*5. 156, 185. 191. 217,
2*0. 256, 310, 312, 3*6, «22,
• 86. 526. 52). 53*. 562. 57*.
575, 576. 587, (0*. 60S, 695,
700. 751. 7S«, 830. C31, 832.
8*3, 8*9. 880, 891. 925, 9««.
9*5. 9*6. 973, S88. IOC*. 103*,
1035, 1048, 10*9, 1051, 1079.
1085, 10(5, 11*2, 1159
BBTIBOHSXS 1075
BtTIBRCBOBCT 1**
BBTHSOSISTOX 678
BBT111IC BBtCDII 37
BmiS 136. 3*1, *99, 756. 781,
80*, 96*, 119*
BRiPBOS (3, 798, 799
RBTH1BIIS1BIIZOROR 2!2
BBTBtCBlOltBBBPBOP 572
BMBUB 62«, 9*7
BBtHWOt 156
BttBZVUBIOB 319, 366
925
189
BBtBOBTl 398, *09. 566
ntBCXRHlOB 186, 265, *06. »17.
67*. 82*. M7, 692. 9*2. 9*7,
1131, 11*5
BBfBOIRBZlBZBB 1155
BBTHtL «22
anaii. CTIBZDB 966
ntan. BIMOHBI $81, 9>8
BBTBH PillTBZOB 63, 66, 626. 798
1BTHIL 2-BIBSZBZDlIOLBClBBlfllTI
«27, 858
BBTBH.»SZBB 217
BBtBtUTI 1162
BBTBTtttZOB 3*. 372. 527. ««2.
1163
UniLBBOBIDl €82
BBTBTLCiRBkBKB *22. 506, 510,
526. 1075
BBTRTLBVt BLOB 1129
RBTBII.BBBCORT 3*. 863
BBTHnOIIDB BlTRtCTZOM 810
RBnilTBZOfRZlIZIB 1155
RBTOEBOBOBOR 366, 367. 901, 1079
RBTRIBOSZB 471
BBTOBZB 601
HBTIBPROS 9*
HBUCUBITt 693. 716
RXCS 2, 522
HlCaC-HOTS 372
RZCBOBBS 3*. 157. 169. 219. 337.
3*7. *30, 482, 610, 613, 701,
73*. 837. 906. 9*3. 1163
RZCBOBUl kCTZVITY 320, *72. 79*.
902, 920, 962
BICBOBUL COBVBRS10B 505
HICBOBH1 DSCORPOSITIOB 98*
glCBOBIil DBGRkDiTZOR 530
RICBOBXIL OBTOZiriCkTIOR 663
BZCBOBIkt, l?IBCt 777
RICBOBXIl HOTRXBRT BROTRS 709
BICJOBtOLOGICJU. ICtZTITT 8*2
217
-------
MICROBIOLOGY 35, 36, 87, 116, 213,
«29, 532, 561, 691, 908, 921,
983, 1011, 1072
HICHOCALOBIHETBY 113
KC8OCLIHATE 25
HICROPLOBA 67, 7U, 86, 253, 328,
503, SOU, 724. 131, 731, 732,
739, 794, 815, 8
-------
NITRIFICATION RATE 1089
NITRITE 69, »1fl, 860, 963
KITHO GROUPS 812
HIIRO REDUCTION 945
JITRO-GROOP REDUCTION 942
NITROANILINES 353
NITROFEN 17, 719, 817
NITROFOR 545
NITROGEN 34, 36, US, 77, 91, 10M,
104. 105. 1U9, 177, 193, 608,
810, 932, 972, 1074
NITROGEN COMPOUNDS 927
NITROGEN CTC1E 905
NITROGEN DIOXIDE 963
NITROGEN GAS 1003
NITROGEN ORGANIC SYSTEMIC
INSECTICIDES 321
NITROGEN OXIDES 544
NITROGEN UTILIZATION 775
NITROPHENOL 943, 948, 963
NOCARDIA 782
NOGOS 821
NONACHLOR 395
NONIONIZED HERBICIDE MOLECULES 239
NOREA 662
NUCLEAR TECHNIQUES 733
NUCLEIC ACID 257
NUCLEOPHTLLIC REACTION 222
NUTRIENT CYCLING 683
NUTRIENTS 17, 385, 391, 853, 907,
932, 1114, 1118
HOTS EDGE 704
NYMPHS 396
0-DESMETHYL BALATHION 1121
0,0-DIETHYL S-(E1HYLTHIO) METHYL
PHOSPHORODITHIOATE 321
OAK 41
OAK BRUSH HI
OATS 153, 373, 37U. 410, 090, 493.
U96, 534. 593, 758, 775, 789,
897, 960, 1053, 1202
OATS-H 449
OCCURRENCE 98, 371, 588
OCEAN 12
OILS 257, 1490
OLD FIELD ECOSYSTEM 683
ORANGES 553, 756
ORCHARDS 21, 139, Hit, 403. 555,
605. 724, 756
ORGANIC CHINICALS «13, 414, 637,
825, 927, 1014, 1061
ORGANIC FERTILIZERS 961
CRGANIC HERBICIDES 252
ORGANIC HATTER 2», 33, 53, 162,
199, 288, 292. 321, 327, »12,
463. 556, 608, 630, 600, 660,
682, 800, 801. 835. £39, 892,
916, 922, 924, 945, 956, 968,
991. 1004. 1014, 1017. 1024.
1027, 1032, 1033. 10«9, 1135,
1155, 1193
ORGANIC PESTICIDES 6, 735, 1086
ORGANIC PHOSPHATES 728
CRGANIC SCILS 319, 693
CRGANIC TDRBIt HATTER 1105
ORGANO-TOXICANTS 4
CRGAN01RSINIC 305
ORGANOCHLORINI 594, 600, 620, 719,
942, 1045, 1131
ORGANOCHLOEINE HERBICICES 39
CRGANOCHLCRINE INSECTICIDE
RESIDUES 404
ORGANOCHLORINI INSECTICIDES 24.
30, 146, 186, 301, 304, 401, 402.
43U, 437. 576. 590, 591. S77.
712, 771. 790, 664, 512, 989,
1063, 1194
CRGANOCHLCRINI PESTICIDES 173.
457, 512, 515, 519, !2C, 621,
779, 1037, 1047, 1188, 1198
ORGANOPHOSPHATES
ORGAIOPHOSEHOATES 1122
412
CRGANOCHLCSINES 12, 58, 189. 209,
288, 341, 397, 443. !8i, 586,
587, 693, 1002, 1130, 1142
CRGANCCHLOFINIS INSECTICIDES 179,
473
ORGANOCHLORINES PESTICIDES 511
CRGANCCHLOFINIC 837
CRGANOCLAY 189. 738
ORGANOCLAYS 546, 737
ORGANOMERCORIALS 229, 527, 698
CRGANONERCURY FUNGICIDES 557. 820
CRGANOHETALLICS 292. 862
CRGANOfRORUS INSECTICIDES 403
CRGANOtHOSFHAT! INSECTICIDES 506
ORGANOPROSPRATES 34, 132. 173,
279, 297, 397, 444, 583, 607,
650. 653. 674, 695. 698. 837.
870, 942, 997, 1131. 1142
ORGANCERCStRATES INSECTICItES 29
ORGANOPRGSPHORDS 63, 525, 798,
1045, 1060
CRGANOPROSPHORUS INSECTICIDES 16,
14!, 165, 189, 220, 361. 476,
654, 740, 746, 759, 821, 916,
943, 1121, 1123
ORGANOPHOSFHORUS PESTICIDES 3, 63,
692, 799, 1198
ORGANOTOXICANT PESTICIDES 28
ORIGIN 103
ORNAMENTAL 271
ORTHPHOSPHATI 327
ORYZALIN 411
OTERLAND FLOS 7
OXALIC ACID 285
OXIDASE 123
OXIDATION 112, 132. 222, 253, 435,
450, 470, 533, 559, 574, 616.
695. 830, 831, 859. 875, 876.
1048, 1051, 1074, 1126, 1144,
1182
OXIDATION HETABOLISH 674
OXIDATIYE N-DEHETHYLATION 716
CXIDC REDDCTASE 308
OXIHI 1031
CXISOL 1189
OXYCASBOXIN 191
OXYGEN 34, 549, 859, 1074, 1128.
1128
OXYGENASE 313
OYSTEFS 543
OZONIZATION 926
P AMINOPHENOL 189
F-KITROPHENOL 945
PACKING 626
PADDIES 331. 472, 511, 518, 607,
677, 794, 817, 914, 944, 946,
1048, 1050, 1051
PADDY SOIL 192
FANOGEN PX 911
PANOGEN 15 911
PARA CHLOHOPHEHYLHETHY1CARBAHATE
505
PARAQUAT 47, 93, 159. 160. 161.
162, 169. 170, 216, 228, 32«,
37i, 413, 414, 424, 546, 551,
705, 782, 783, 830. 644. 845.
932, 1023, 1133, 1138. 1139,
1140. 1167. 1181, 1182. 1190
PARAQUAT HERBICIDE 686
219
-------
UMTHIOI 3, 68, 171, 193, 196,
198, 279, 297, 3»fi, 3*7, 459,
«62, 522, 5«2, 96$, 607, 626,
628, 6«6, 6*7, 6*8, 67*, 736,
7«8, 795, 797, 916, 917, 9«2,
9*3, 9*5, 9*8, 9*9, 963, 1020,
10*2, 1129, 1177, 1191
PABATBIOB DMI »DmC« 189
PUIBOt 866
PISSIEY «7t
PtBTICLE SIZE 892
PUTICU SIZE OISTSIBWIOS 690
PtSTOBE-BlBSBLlBO 59
PtSTOBSS 13*, 7*8, 862
P1TBI1TS 312, 523, 9*5, 953
P1TOUB 367
PCI 608
PCB 223, 369, 996
PCC 676
PCCH 208, 209
PCW 184, 1106, 1128
PCP 522, 59«, 595, 607, 617, 859,
1027, 1131
PUCIBS 977
PE1BOTS 329, 5*3
PItS 230, «87, 617, 7*5, 1008
PZ1SID1S! 123
PI1T 90, 163, 2»«, 3*6, 351, 632,
682, 76*, 872, 917, 1029, 1033,
1065, 1133
PUT-BOO 613
PUTT S1BD 632
mTXSS 293
tlSOUTE 3*3, 897, 979
PECIH 2*9
PZBETI1TIOB 207, 366, *62, 596,
6*5, 672, 7*8, 976, 1005, 109*
rasa oi BS 5*3
PBBTACBlOBOCTCtOBUUB 789
(BBTaCBLOSOBXTBOBBBZEBB 18*, *17
PBSTICBLOIOPBESOI 560, 1027, 1132
HSTlCinOtOTBXimXSS 1128
ramcgtoBonxmsoii 1120
PEPPOS 807
PEPTXDBS 691
PSPTOtl 107*
PBBCOIATIOB 265, 3*7, *06, 909
PS1POSIOB 21*
FBBBStBXlXn 177, 939
moxxsist 123, 125
PBBOIIDATXC 12*
mSISlZSCI 1,9, 16, 3«, 36, 56,
59, 60, a, 76, 92, 119, 1*3,
1«i, 152, 163, 16«, 165, 173,
180, 162, 193, 203, 20*, 205,
206, 207, 208, 225, 2*C, 252,
256. 259, 272, 260, 307, 316,
319, 320, 323, 32«, 331, 3*3,
359, 361, 369, 371, 360, 382,
387, 392, 39«, 397, «01, «02,
•05, «10, *17, «18, *25, *28,
•30, «31, *32, *«3, «««, »52,
• 59, «68, »60, *82, 483, 500,
506, 510, 512, 515, 518, 526,
530, 531, 532, !3«, !3«, 537,
5*0, 543, 5*5, 949, 55«, 555,
564, 575, 579, 56*, «8«, 588,
592, 611, 619, 627, 629, 6*6,
6*6, 650, 662, 663, 671, 672,
67», 660, 693, 719, 719, 721,
735, 736, 7*0, 7*5, 748, 757,
758, 760, 789, 795, 798, 602r
807, 610, 817, 820, 822, 623,
837, 852, 856, 865, (6(, 870,
878, 885, 887, 890, 89(, 897,
903, 905, 921, 929, 931, 9**,
9*5, 9*9, 952, «5*, 957, 962,
971, 976, 987, 99', 1007, 1013,
1019, 1020, 1022, :029, 1050,
1060, 1060, 1063, 106*, 1081,
1066, 1089, 1096, 1103, 1111,
1116, 112*, 1127, 1126, 1131,
1138, 11*2, 1147, 1149, 1150,
11S7, 1164, 11«7, 1173, 1174,
1175, 1177, 1179, 1183, 1186,
1167, 1166, 1196, 1201
PEST COBTBOL 866
PSSTXCIOI 552, 6*1
PESTICIDES 1,2,*, 5, 6, 8, 9,
10, 11, 12, 1», 23, 2«, 25, 26,
3«, «6, «9, 50, 63, 65, 66, 82,
6*, 91, 102, 103, 107, 112, 12*,
127, 126, 130, 132, 1*7, 1*9,
173, 176, 189, 193, 19«, 206,
210, 217, 219, 221, 222, 224,
225, 226, 236, 2*3, 2*9, 250,
252, 273, 279, 283, 289, 292,
295, 296, 302, 303, 30!, 320,
332, 3*0, 3*5, 356, 362, 363,
36«, 366, 366, 370, 372, 375,
376, 361, 391, *06, *08, *12,
•15, »19, «20, «22, 423, 42*,
*2S, *26, *36, «39, *«3, *SO,
(53, *54, 45!, 456, 451, 460,
»61, 475, 476, 479, 484, 499,
506, 507, 511, 512, !1S, 516,
522, 529, 533, 535, 536, 539,
543, 544, 547, 556, !5C, 563,
567, 583. 584, 58'5. 587, 566,
594, 596, 597, 603, 607, 613,
614, 619, 621, 622, 626, 629,
633, 634, 636, 639, 640, 643,
644, 647, 655, 660, 669, 673,
674, 683, 687, 689, 692, 693,
693, 706, 711, 715, 718, 719,
723, 724, 728, 729, 733, 735,
73», 752, 756, 757, 761, 769,
777, 778, 779, 793, 796, 798,
799, 802, 604, 813, 620, 825,
629, 630, 633, 836, (37, 846,
848, 850, 856, 859, 662, 870,
876, 881, 682, 866, (67, 690,
692, 894, 896, 902, 905, 906,
907, 906, 909, 917, 916, 926,
927, 932, 955, 956, 962, 967,
995, 996, 996, 999, 1001, 1005.
1010, 1016, 1023, 1028, 1031,
1037, 1045, 1047, 1060, 1061,
PESTICIDES 1066, 1071, 1074, 1067,
1092, 1096, 1096, 1099, 1103,
1104,1105, 1118, 1119, 1131 i
1135, 1141, 1142, 1146, 1148,
1151, 1152, 1155, 1156, 1158,
1159, 1160, 1169, 1172, 1173,
1176, 1176, 1179, 1181, 1194,
1195, 1198 '
PESTICIDES
IBTIOLIOB 691
51*
PBTlOtEOB ETBSB 681
PFPS 571
PB 66, 123, 15*, 174, 194, 196,
196, 258, 285, 295, 315, 320,
337, 372, 379, «18, 420, ««2*
454, »57, 456, 463, 577, 601 1
607, 608, 6*1, 660, 677, 686,
690, 738, 7*3, 779, 787, 792*
799, 800, 826, 835, 641, S«7,
921, 927, 932, 943, 972, 99o!
1024, 1027, 1026, 1047, 1066,
1122, 1136, 1137, 1155, 1189
miBACOlOOY 644
PREBOBIBZOIOE 300
PBBBOI 252, 320, 587, 659, 691,
713, 738, 946. 952, 1129, 11«2
JBBBOIIC 71, 642
PBEBOXXDE 626
FBSBOXt tUMOXC 1CXD8 666
PBBBOXT BS1BICIDES 41, 952
PBEBOXIICBTHE ACIDS 548, 1099
PBXBOXT1CETIC KID 284
PBBBOmCITXC ICXDS 252, 659, 736
PBEBOXTIIXIBOITBS 1182, 1183
FBSSCXTBOTTIMS 559
PBBBOXIETBtBOtS 760
IBBBTHIOMI 661
PBBBH 277, 532
PBBBTL ETBIB 626
PBBBH, BE1COEXC 1CITUB 308
PBEBIt OBB1 901
PBSBmCBTXC Id OS 957
PREBTUBIDES 1125, 1126
PBSBTLlBXtXDBS 1183
PBEBtLCllBUITI 203
FBSSTLatSmTSS 506, 670,
PBBBTLHBBCOSIC 1CST1TS 51,803,
PBBBTlOBEl 424, 613, 870, 1182
PBOB1TB 28, 163, 171, 220, 397.
626, 650, 722, 730, 864, 930,
968, 1029, 1064, 1123, 1124
PBOBMB SOLPOBB 650, 930
220
-------
PBOBKB soirozzDB 930
paosttiB 1*3, 321
PROSHIT 719
taospBiaiDi «3
nOSMUZDOB 94, 926, 1102
IBOSPB1TISB (83
nOSVBUBS 217, 303, 327, 535, 136
IBOSPBIBB 436, 436
BBOspBOBonooBZotTB 112
JBOSPBOBOBBTBYl 01TCIBB 1084
IBOSPBOBOTBIOITZ 08*, 085
H08HOBZC ICItS 681
CBOBMOBODZTBXUTB IBSBCtZCZOB 577
fBOSBBOBOTBZOltl 084, 085
nosnOIOS 62, 91, 105, 293, 327,
932, 972
IBOSPHOB08 32 647
nOTO lUCLBOPBIlIC 224
IBOTO SBBSITIZZBS 673
SBOTOILDBXB 562
PHOTOILTBBITXOBS 861, 876
HOTOCBBBICftl 111BB1TI000XC 876
PBOTOCBBBICIL UTBBHZOBS 861
PBOTOCBBBICll OSXUTIOB 861
PBOTOCBBB1STII 859
BBOIODBCBLOIIBHIOB 587
MOTODBCOBPOSITIOB 78, 87, 135,
223, 934, 757, 842, 059
IBOta>BOB»e»TIOB 674, 1048
PSOTODIBIDBIB S62, 573, 575, 649,
701
nOTODZBBBZZlTZOB 861, 876
PBOCOBLSCTBIC CklOBZBBBT 63
IBOfOBTDBMBBktXOB 310
PBOTOXSOBtBIZmOB 310, 507
nOTOlTSZS 680, 811, 1181
raOTOBBTBl 477
PBOTOBBOOCTIOB 861, 876
IBOT08TBTBBSZS 12
PBOIIB 444, 444
PBTBILATBS 8, 726
PBTBUZBXP1 ClPtlB 279
PBTBU.OPBOS 719
PBICOBICBtBS 36
IBTTOPBTBOU 70
PBYTOPUBKTOB 218
mrOlOXICITT 153, 165, 213, 216.
230. 282, 300, 315, 441, 538,
579, 599, 617, 638, 72!, 737,
772, 809, 8S2. 868, 520. 921.
928, 961, 977. 1006, 1100, 1111
fZ-BOBtXBG 210
PZCOlZBftBICZ 831
IXCOIIBXC Kit 284
FX«m» 1055
PIPBBCIH BUTOSXDB 674
PXBZBZPBOS 394
PUXBPXBID 31 ID 647
II.1ZBS 568
FLlBftfXB 545
PUBKTOBS 543, 719
FUBT 552
PUBt M1BOBBI3 34
n.ui soirtcBS 1005
FL1BTS 369
PUBTS 20. 42, 60. 62, 78, 89, 94,
130, 136, 139, 140, 143, 150,
175, 18«, 191, 202, 215, 230,
259, 269, 270, 271, 281. 294,
303, 30$, 310, 317, 229. 348,
353, 361. 366. 372, 401, 425,
435, 436, 451, 474, 481, 490,
490, 511. 514. 521, !32. 534,
545, 559, 562, 566, 569. 574,
575, 583, 516, 587. «88, 590,
591. 593. 595, 598, 604, 626,
663, 668, 671, 677, 682, 683,
684, 716. 73S, 748. 751. 753,
755. 756, 758, 761, 767, 769,
779, 793, 795. 807, 810, 814,
835, 862, 864, 891, 910, 925,
954, 958, 971. 995. 1018, 1029,
1030, 1030, 1033, 1034, 1039,
1037, 1059, 1063, 1069, 1091,
1093, 1095, 1096, 1098, 1099,
1110, 1112. 1113. 1114, 1115,
1117, 1118, 1127, 1137, 1149,
1167, 1174
(UBTVIK 191
niSTZCXSEBS 728
flOfllQ OfBB 779
POt COITIOt 178
PODZOL 104, 242. 339, 600, 613
MZSOBZB8 60
(OLlBOaBmXC 285
fOLI CBlOBfZBIBI 565
POLTC1BB1BXBB 719, 1104
POITCB10BZBITBD BZPBBBTL IBOttOB
1254 309
POLTCBIOBZBITBD BIPBBBTIS 173.
483, 757. 837, 996
POIYCBLOBOPZBBBB 594, 595
POLTBtBS 81, 159, 160, 162, 292,
S<4, 691
POltSiCCBillWS 257, 257, 691
POBDS 14, 142, 263. 264, 730. 909
POliSIlZC 827
tOtt SZZI 923
POtt flTH f BLOC ITT 231, 233, 446
POBODS 110, 710
POBOOS BBDX1 923, 1087
POBOOS HIDIOB 375
POTASSXOB 105. 177. 196. 240. 293.
294, 349. 813, 826, 972
POtlSSIOB 1IIDB 841
POUSSXBB OIBJTHTI
PBOSPBOBODITBI01TB -4121
POUSSIOB IIBBTBTl
PBOSPBOBOIBIOITB 1121
POHSSXOB BTDBOZIDB 681, 787
POUSSIOB SILT 1121
POT1TO 78
POT1TOBS 49, 144, 260. 269, 200,
417, 562, 573, 593. 595, 650.
77C, 774, 779, 865, 1010, 1053,
1194
POttID SOU 951
POBOBB SPHlt 417
POBOBBBD ZZBC 2
PI1IBIB SOILS 349, 350, 903. 906
PBBCIPITITIOB 004, 958
PBBDITOB COBTBOt 60
PBBfSBOL 339
PBOCBSSIBQ I1STBS 34
PBODOCTIOB 870
PBOBBTOBB 216, 266, 326, 801, 938.
1136, 1139, 1140, 1155
PBOBRBTBB 18, 90, 144, 149, 233,
326, 326, 366, 382, 480. 661.
662, 663, 685, 731, 764, 770,
817, 872, 938, 976, 994, 1107,
1136, 11S5
PBOBUIDB 1115. 1116
PBOP1CBIOB 87, 173, 749, 839, 894.
895, 896, 1138
122, 155, 157. 150. 192.
221
-------
PROP MIL 422, 463, 537, 859, 860,
1131
PROPAZIME 90, 293, 417, »17, 617,
800, 868, 872, 1155
PROPHAH 8, 281, 422, 835, 8S9,
1126
PROPIHEB 522
PROPIOHALDEHYDI 49
PROPIORANILIDE 870
PROPIONIC ACID 572
PROPOIOR 925
PROPYL 842
PROSO BI11BT 1039
PROTEIN 257
PROTEIHAS! 783, 78a
PHOTOLYSIS 738
fROTONATION 210, 813, 858, 1155,
1189
FROXIMPRAH 281, 384
PRONE 260
fSEUDOHOMAOS 347
PSTRAHIN 1032
PU HP KINS 271
PDHIFICATIOH 322, 926
EOTIPHOS 719
PYRAHIN 372, 617, 868, 994
PYRAMINE 659
PYRANIC ACID AHIIIDE 1126
PTRAZOR 240, 589, 659, 714, 1032,
1034, 10J5
PYRA20N-DEGRADING BACTERIA 200
PTRETHRUB 674, 887
PTRICHOE 1138
PTRIDAZINOHZ 704, 879
PYRIDIHB 284, 686
PYRIDINITRILE 967
PYRIMIDINI 253
PYBO PHOSPHATE 327
PYROCATBCHOL DERIVATIVE 659
PYROZOKE 812
PYTHIDII 276
ODIMIZARIN 257
QOIHONES 891
QOINTOZENE 1111
R-7465 897
BAPIO CHROBATCGRAIHI 187
RADIO BBSPIROBZTRY 187
RADIOACTIVITY 256, 372, 467, 562,
573, 574, 667, 848, 889, 910,
947. 988
B1DIOASSA1S 667
RADIOCHERICAL AIA1YSIS 980
BADIONCOlItES 647
RADIOTRACHRS 130. 1030
SAOISHZS 174, 1036, 1149
RAI« TALI 669
BAIHTALL 19, 134, 182, 235, 261,
315, 371, 383, 542, 721, 753.
766, 808, 855, 940, 1044, 106S,
1082, 1173
BAHGE1AMD 135, 933
BAPHATOX 467
BAT 719
BATE 159, 174,-288, 269, 350, 353,
384, 466, 493. 587. 672, 938.
970, 999, 1005, 1082, 1083, 1128,
1188
BATE COHSTANTS 550
BATE OF 10SS 1060
BATS 229, 252, 269, 444
BEACTlCN FBODDCTS 310, 575, 794,
876
REACTIONS 608, 665, 859, 1141
BECOVER1 309
BECRYS1AILIZATION 811
RECYCLING 588
BED SCIl 743
BED SFBDCZ 183
REDISTRIBUTION 1112
BEDROOT FIGWEIE 580
SEDUCTION 112, 222, 418, 435, 533,
651, 780, 813, 842, S7C, 1051
REDUCTIVE DECHIORINATICH 472, 942
BEfOBESTFATION 5
BEPOSI 904
EEGIRA HEAVY ClAY 980
BEG01ATION 368, 676, 1194
RELATIVE HOHIDITT 1S8, 7«4
BELEAS1 449, 454, 935
BEBOVAl 372, 418, 435, 652
BERDZIKA 253
BEPRODOCTION 836
BESERVCIRS 28, 59, 218, 1104
RESIDOE 27, 380, 518, 692, 930,
986
RESIDUES «r 6, 7, 12, 21. 29. 31,
32, 38, II' «, 50, 54, 59, 63,
73, 81, 63, 84, 89, 92, 98, 104,
107, 123, 128, 133, 13,( U2f
143, 144, 150, 151, 173j 184j
199, 207, 208, 250, 251, 259,
260, 261, 269, 270< 271( 279>
286, 291, 301, 307f 331f 3,2<
348, 354, 362, 368, 373, 382,
400, 403, 409, u-|0/ ,15j ,,17>
417, 432, "45, «52f (,69f n16>
482, 506, 509, 511p 512> 516f
524, 528, 535, 537f 5((2, 5a3f
544, 552, 553, 555, 562> 568(
574, 575, 576, 578, 583, 585,
587, 593, 598, 600, 603, 605,
606, 607, 611, 620, 638, 644,
650, 651, 652, 671, 673, 674,
676, 679, 681, 698, 698, 704,
707, 708, 718, T2H, 733, 745,
748, 757, 758, 76ir 772, 77U,
777, 779, 786, 789, 810, 320,
824, 829, 832, 846, 855, 856,
865, 876, 877, 878, 880, 883,
887, 888, 892, 894, 903, 906,
911. 912, 915, 919, 926, 933,
960, 966, 971, 973, 977, 978f
995, 1004, 1015, 1019, 1022.
1028, 1029, 1036, 1037, 1044,
1045, 1047, 1053, 1059. 1061,
1063, 1066, 1068, 1076, 1091,
1095, 1098, 1099, 1102. 1103.
1117, 1119, 1130, 1133. 1147,
1149, 1159, 1160, 1164, 1166,
1173, 1176, 1179, 1186, 1188.
1195, 1196, 1197
RESIDUES 517
RESIHS 93, 162, 705
RESISTANCE 33, 440, 444, 643, 1177
RESISTANT SFECISS 543
RESPIRATION 104, 118, 503, 504,
87C, 1021, 1074
RESPIRATION CORVE 253
RESTBICTID AERATION 337
RETARDATION 899
BETEHTION 31, 166, 366, 372, 524,
546, 798, 827, 850, 892, 1156
BEVIES
97,
185,
241,
304,
332,
376,
425,
506,
567,
611,
657,
660,
718,
755,
820,
876.
965,
1045
1068
1109
1141
1186
24, 25, 52,
107, 112, 126,
202, 210, 222
262, 279, 283
306, 311, 324
334, 362, 368
381, 399, 405
433, 435, 448
529, 531, 547
583, 585, 587
633, 635, 643
658, 659, 668
689, 692, 695
723, 726. 727
773, 812, 813
833, 837, 856
905, 906, 925
978, 997, 999
, 1046, 1057,
, 1070, 1083,
i, 1119, 1131,
, 1142, 1167,
, 1198
60, 65
136,
227.
295,
325.
369,
416,
453,
554.
604.
644,
675,
702,
735.
814.
859.
927.
1017
1061,
1093,
1135,
1176,
. 74, 94,
146, 147,
239,
302,
330,
375,
423.
501,
563.
607,
645,
679,
715,
739.
819,
862.
942,
, 1018,
1063,
1099,
1137,
1178,
HH-315 1192
222
-------
RHIZOSPHERE 361. 68U, 946
HHODAHINE B 1129
BICE 305. 331. 472, 511. 513. 518.
527, 537, 607, 817, 944, 946,
949. 1047, 1048, 1193
RICE SHEATH BLIGHT 305
PICE STRAW 915
RING FUSION 313
RISKS 586
RITER SARD 1201
RIVERS 517, 1044
80-HEET 201
ROADSIDE SOIL 1077
ROBINS 206, 543
ROCKT HOONTAIN FEVER 674
RODENT CONTROL 60
RODENTICIDE 436
ROHIT 201
ROOT CROPS 779
SOOT ROT 276
ROOT SYSTEM 406
ROOT ZOHE 265, 1115
ROOTS 20, 291, 329, 353, 490, 521,
7U5, 756, 808. 834, 903, 939,
995, 1018, 1030, 1039, 1110,
1115, 1171
ROOTBORH 1123
ROSE SNARTVEED 20
ROSES 20, 970
ROT 745
ROTATION 372
ROTENOHE 674
BOOTES 820
HOHINANT ANIMALS 329
RUH OPF 867
ROHOPF 5, 28, 13», 174, 175, 265,
303, 315, 370, 371, 312, 373,
374, 406, 406, 009, 443, 804,
845, 850, 856, 894, 932. 933.
968, 1065, 1142, 1168
ROTAEASAS 884
HEGRASS 62, 1115, 1133
S 404
S-TRIAZINB 189, 315, 326. 417,
l»21, «24. 495, 801, 1054, 1103
SACCHAROSE 254
SALICYLIC ACID 980
SALINITY 236. 1118
SALMON 543
SALT 295, 454, 457, 458, «58, 465,
582, 1086
SALT NARSRIS 887
SALT PBEClflTATION 123
SALTING GDI 813
SALTS 719
SAHPLING 36. 635
SAS 6106 879
SAND 127, 154, 163, 171, 192, 195,
197, 244, 256, 309, 319. 321,
346, 356, 389. 410, 432. 463.
471, 480. 482, 518, £24, 598,
601, 616, 687, 693. 125. 779.
812, 846, 860, 888, 910, 926,
1013, 1018, 1020, 1029. 1049,
1055, 1064, 1065, 1100, 1133,
1150, 1192
SAND FILTERS 926
SANDSTONE 265
JAKDt CLAY 609, 822
SAHDt CLAT SOUS 335
SANDY LOAH 29, 49, 59, 63, 193,
195, 350, 390, 431, 467, 517,
789, 910, 1C19, 1049. 1065, 1074
SANDY. SOILS 135, 179, U11, 779
SANITARY LANDFILLS 909
SAPONIFICATION. 680
SATURATION 233, 917
SCHRADIN 321
SCOTCH PINI 528
SEA 36, 218. 1044
SEACOAST 36
SEA50H 1171
SEDIMENT RONOFI 5
SEDIMENT V1TIR INTEFACTICNS 856
SEDIHENTS 6, 30, 36, 175, 188,
244, 295, 315, 374, 454, 457,
543, 635, 730. 856, 894. 932,
952, 968, 1129
SEED 919
SEED APPLICATION 554
SEED DRESSINGS 285, 527
SEEDLINGS 758, 899, 1110, 1115
SEEDS 475, 487, 681, 707, 911,
937, 116S
SEEDS tISINFECIANT 681
SELENIBH 34
SELP-DIPFOSION COEFFICIENT 936
SEMI-ABIE SOILS 933
SERIARID GRASSLAND 39
SERCOR 661
SEHSITIZ8R HOLSCOLE 859
SEPIOLITE 669
SEPTIC TANKS 909
SEQUENCE 161
SEQUENTIAL DEALKYLATION 842
SESQOIOXIDES 743
SETTLIHG PONDS 14
SEVIN 115, 297. 298. 364, 481.
678. 750, 886, 1010, 1062, 1103
SE8AGE 904
SHEEF 748
SHEEF DIP 476, 1195
SHELLFISH 244
SHOOT 1115
SHOOT-ZONE 1115
SHRIHP 693
SILICA 859
SILT 109, 110, 171, 179, 204, 256,
265, 280, 288, 289, 319, 365.
373, 422. 463, 536, 660, 682,
842, 895. 896. 1012, 1018, 1055
SILT CLAY 51
SILT LOAD 109, 110. 257, 289, 320,
340, 473, 649. 896, 953, 975,
988, 1003, 1012, 1055
SILTY CLAY LOAH 359, 524, 921
SILVER NITRATE 847
SILVEJt 41
SIBAZIHB 27, 5*, 69, 96, 139, 144,
177, 204 205. 207, 293, 32U.
335, 348
589, 602
805, 854
938, 961
417. 420, 532, 553,
671, 684, 685, 770,
877, 880, 904, 935,
994, 1013, 1032. 1033,
1034, 1035, 1097. 1100, 1100,
1101, 1107, 1115, 1167, 1201,
1202
SI» A IB IN 523
SINC 177
SINGLE ENZYHE SYSTEMS 925
SLODGE 475, 457, 733, 904
SLOGS 605
SLURRY METHOD 449, 1014
SMAR1HEED 20
SBEC1ITE 248
SHELTERS 490
SROKI 1118
SMOKING 519
223
-------
SHOBITZ1 808
SBIIL3 119, 605
SBO» 1077
3ODDT-POEZOL 10*
50DI01 137. 161, 177, 196. 294,
$82. 813. 826, 917. 1148
SODIOB IBS BUTE 874
SOD I OB 4BSBRITE 92, 900
90BIOH CBLOHME 418, SO*
SODIOH HOH1TB 927, 11*5
SODin HTDBOIIDI 752, 980
SODIDH R10LIBITE 917
SODIOH HOIOFlOOBICBriTB 60
SODIOH HORTHORILIOBITB 917
SODIOH PEBT1CRLOHOPHBBOIIDB 826
SODIOH PBBT1CBLORPBBR1TZ 560
SODIOH SALT 582
SODIOH TC» 201
SODIOHTRICRLOB01CBT1TB 612
SOIL 31, 77, 16«, 3*2, 36«, 1195
SOIL B1CTKRI1 1062
SOIL CBBRISTBY 686, 804, 932
SOIL COLLOIDS 762, 1155
SOIL COL OBIS 258. 350. 393. 462.
686. 1065. 1108
SOIL COMPOSITION 714
SOIL COBSBBTkTIOB 443
SOIL COBTIBT 261
SOIL CHOSTIIG 1165
SOIL BftOSIOR 5, 940
SOIL PJLOIt 183
SOIL PUCTIORS 958
SOIL roBcos 22. 101
SOIL BICBOkRTBIOFOD 683
SOIL HICIOFLOB1 361
SOIL BICBOPLOT 401, 402
SOIL HOISTOBB 179, 356. 422. 42C,
473, 517. 599. 630. 638, 682.
749, Y8B, 792, 827, 841, 843,
847, 928, 940. 961, 975, 1007,
1009, 1012. 1032. 1034, 10S1,
1166, 1173
SOIL HOISDTBB 1116
SOIL P1BTICLBS 892
SOIL PIOFILE 594
SOIL PBOPBBTIBS 686
SOIL S1RPLIBG 234
SOIL SIIBILART BBIBICICBS 686
SOIL STIRILIZIIIOR 1124
SOIL STODIZS 449
SOIL-IOBBZ P»TBOGB»S 276
SOIl-PISTICIDI IITBB1CTI01S 757
SOIL-ltSIZ IRtmCTIOBS «99
SOIL-I1TIR BCOSTSIKH 136
30IL-MTIB IIIIB1CTICIS 1148
SOILS 5, 6, 8, 9, 10
15, 16. 17, 18, 19.
24, 25, J7. 29, 30.
38. 39. 40. 41. 43.
48, 49. !1, 52, S3,
57. 58, 59, 62, 63.
67. 68. 69, 70, 71,
75. 76, 78, 79, 80,
84, 86. 87, 88, 89,
93, 94, «S, «6, 98,
104, 105, 108. 109,
112. 113. 114. 115.
118. 120, 121. 122.
125. 125. 126. 127.
132, 133. 134, 135,
138. 139. 140, 141,
144. 145, 148. 149.
153, 154. 155, 156,
159, 160, 161, 162.
166, 168. 16$, 170,
174, 175, 176, 178,
180, 181, 183, 18«,
188. 190, 192, 194,
197. 198. 199. 200.
203. 204. 205, 206.
209. 210. 213. 21«,
217. 220. 222. 225.
228, 229. 231. 232.
236. 237. 239, 240,
245. 246. 247. 248.
251, 252, 253. 254,
257. 258. 259. 261.
264. 266. 267. 268.
274. 275. 278, 280,
283, 284. 285, 286.
289. 290, 291. 293,
297. 298. 299. 300.
303. 305. 307, 309,
313, 314, 315. 316,
319. 320. 321. 322.
32S. 327. 328. 329,
334. 335, 336, 337.
340. 341, 341, 342,
345. 346, 347, 348,
351. 352, 353, 355.
358, 359. 361, 365.
372, 373, 374. 375,
379. 380, 382, 383,
387. 389, 390, 391.
394, 395, 396, 397,
400. 401, 402. 403.
406. 407, 409, 410,
413, 414, 415, 416,
418. 419. 420. 421,
425. 426, 427. 128,
431. 432, 434, 435.
438, 439, 440, 441,
446, 447, 448, 449.
452. 459. 460, 461.
465. 466, 467, 467,
470. 471, 472, 473,
476. 476, 477, 478,
482. 483, 485, 486,
489, 490, 491, 492,
498. SOI. 502. S03.
511. 512. 513. 515,
519, 525. 526, 527,
530, 531. 532, 533.
536. 537. 538. 539.
545. 548. 551. 553,
, 12. 13, 14,
20. 21, 23.
32. 34, 37,
44. 46. 47.
!*, !5, 56,
(4. 65, 66,
72, 73. 74,
El, 82, 83,
90, 91, 92,
99. 100, 101,
110, 111,
116, 117.
123, 124,
129. 131,
136, 136,
142. 143,
150. 151,
157. 158,
163. 165.
171. 173,
178. 179,
186, 187,
19!, 196,
201. 202,
207, 208,
21S. 216.
226. 227,
233. 234.
543, 244,
249, 250..
25!. 256,
262. 263.
269. 272.
281. 282.
287. 288,
294, 296,
301, 302,
310. 312.
311, 318,
323, 324,
331, 332,
33«. 339.
343, 344,
349. 350.
356. 357,
366, 367.
376, 377,
384, 385.
392. 393.
398, 399,
404, 405.
411, 412.
417, 418,
422. 424.
42S, 430,
436, 437.
442. 445,
450, 451,
463. 464.
468. 469,
474. 475.
480. 481,
487. 488.
493, 496,
504, SOS.
517, 518,
528, 529,
534, 535,
540. 541,
554, S55,
SOILS 557, 558. SS9. S61, 562,
563, 564. 565. 566. 567, 568,
569, 570, 571, 572, 573, 574,
575, 577, 578, 579, 580, 581,
582. 584. 589. 592. 593. 594,
595. 596, 597, 598, 599, 600,
601, 602, 603, 606, 607, 608,
60S, 609, 610, 611. 612, 613,
613, 614. 615, 616. 618, 619.
622, 623, 624, 625, 627. 628,
629, 630, 631, 632, 633, 635,
636, 637. 638, 639, 640, 643,
644, 645, 646, 647, 648, 650.
652, 653, 654, 655, 656, 657,
65€, 659, 660, 661, 662, 663,
664, 668, 670, 671, 672, 677,
678, 680, 682, 684, 685. 686,
687. 688. 689, 690, 691, 692,
694, 695, 696, 697, 698, 699,
700. 701. 702, 704. 706. 707,
708, 709, 710, 711, 712, 713,
714, 715, 716, 717, 718, 720,
72A. 722, 724, 725, 130, 731,
732, 734, 735, 739, 740, 741,
742, 743, 744, 745, 748, 749,
750, 751, 753, 754, 755, 757,
758, 759, 760, 761, 763, 764,
766, 767, 768, 769, 771. 772,
773, 774, 775, 776, 777, 778,
779, 781, 783, 784, 785, 787,
788, 789, 790, 790, 792, 793,
794. 795, 796, 797, 798, 799,
801, 804. 805, 806, 807. 808.
809, 810, 812, 813, 814, 815,
816, 817, 819, 820, 821. 822.
824. 826. 827, 828, 829. 830,
831, 832. 833, 834, 835, 836,
837, 838, 839, 840, 841, 842,
843, 844, 845, 846, 847, 849,
851. 852, 853. 854, 855, 856,
851, 858, 859, 860, 862. 863,
864, 865, 866, 867, 870, 871,
872. 873. 874. 875, 876, 877,
878, 879, 880, 882, 883, 885.
888, 889, 890, 891, 893. 894,
895, 896, 897, 898, 899. 900.
901. 902, 903, 90S, 906. 907.
908. 910, 911, 912, 913, 914,
915. 916. 917. 919, 920, 921,
922, 923, 924, 928, 929. 930,
931. 933, 934, 936, 938. 939.
941, 942, 943, 945, 946, 949.
950, 951. 952, 954, 955, 956,
9S1, 958. 960, 961, 962. 964.
965, 966, 967, 968, 971, 972,
973, 974, 976, 977, 978. 979.
980, 981, 982, 983, 984, 985,
986, 988. 989, 990, 991. 993,
994. 998, 999, 1000, 1001, 1002,
1003. 1005, 1006, 1007. 1008.
1009, 1010, 1011. 1012, 1013,
1014, 1015, 1016. 1017, 1018,
1019, 1020, 1021, 1022, 1023,
1024, 1026. 1027. 1028, 1029.
1030, 1031. 1032, 1033, 1034,
1035, 1036, 1037, 1038, 1039.
1040, 1041, 1042, 1044, 1045.
1046, 10*8, 1049, 1050. 1051,
1052, 1053, 1054, 1055, 1056,
1058, 1059, 1060, 1062, 1063.
1064, 1065, 1069, 1070, 1071.
1073, 107*. 1075, 1076, 1077.
1079. 1080, 1081, 1082, 1083,
1084, 1085, 1086, 1088, 1089,
1090. 1091. 1092. 1093, 1094,
1095, 1096, 1097, 1098. 1099.
1100. 1101, 1105, 1106, 1107,
1109, 1110, 1111, 1112, 1113,
1114, 1115, 1116, 1118, 1119,
1120, 1121, 1122, 1123, 1124,
1125. 1127, 1128, 1131, 1132,
1133, 1135, 1138, 1141. 1142.
11*3, 11*4, 11*5, 1146, 11*7,
11*9, 1150, 1153. 1155, 1159,
1160. 1161, 1162, 1163, 1164,
1166, 1167, 1168, 1170, 1171,
224
-------
1173. 117*. 1177. 117«.
1179, 1180. 1183, 118», 11(7,
11M, 1189, 1190. 1191, 1192.
1193, 1U». 1196, 1197, 1201,
1202
30LAB BADXATIOB 5
SOLID iitnmsis 953
SOLID MSN DISPOSAL 909
SOLID IASTB3 3*
SOLOULITT 66, 261. 315. 327. 6C8.
C69, 67«, 728, 907, 1135, 11*8,
1186. 1189
SOLOTIOB D1PPOSIOI 110
SOLOTXOB PHASB 938
SOlfBIT BXT1ACTIOI 915
SOIfnTS 66. 469
soBirxcATxoB iss
SOBOBOH 173. 3C2. 480. »93, 560.
921. 971
SOMHOH-BXCOLOB 721
30BPTIOI 28. 76, 100. 135. 160.
200. 295, 442. 454. 457, 567,
580, 737, 738. 764, 827. 835,
1018. 1032. 1078. 109*, 11«8
90TBIM 293, 372, 939
SOTBUn 83, 8«. 173. 269. 493,
534. 707, 786. 789, 908. 934, 937
SPECIFIC C1AVITT 294
SPBCTBOSCOPT 71
SPBCTBOH 859
SP11T LZQOIOI 418
SH 1134
SPUCBOH HISS 1133
SHDBBS 183
SPILLAGE 1177
SKB1CB 34. 1036
SP01BS 779
spoiiPBioos BACTBBIA 201
SPUn 81. 903
SPBIBBUrLS 2
SPIIIKUB I11I8ATIOB 164
SPBOCB 899
STABILITY 40. 798, 799, 918. 979.
989, 1006. 1007. 1162
STAQUIT WTBB 887, 945
STATISTICAL ABALTSIS 776. 793
STATISTICAL XTA10ATXOB 1108
STATISTICS 866
STBABIC ACID 458
STBHS 329. 511, 593. 1171
STBBILISATXOB 309, 320, 900
STB11LIIIIS A«IBI3 648
STILL 111 til IB 667
STOBMI 40. 612
StOlH BOBOPP 406
STOBBS 28
STB1IB 372
Still 271. 351
3TB»B1BBI(3 877, 1188
3TBBAB-BOTXOH HOD 605
STBBAHIL01 406
STBEABS 5. 7. 12. 235. 303, 605.
1003. 10!7. 119!
STBBPTOBTCIS 782
ST1IP 3PBATIB« 609
STBOBTIOR TO! 372
SnOBTIOH 90 372
STOBTBB 431
SQBLITUl 1186
SOBSOILS 342. 804
SUBSQlflCI DB1IU6B 9C9
SOCCIBITI 952
SWAB 731
SMAB BBETS 281. 382, 480. 575,
592. 593. 714, 809. 829. 994. 995
SOBABCABI 1168
SWABS 353
lUlPAHATI 1111
SOLPABCL 962
EVLPATB 680. 943
S9LPXTB 418
SOLPOBATB 502
SDLPOBI 616. 1051. 11(6
SVLPOXIDZ 616, 1048
SBLPOB 91. 193. 982. 1074
SHLFQBXC ACID 787
SOLPH01E 1144. 1179
SBIPBOIIBB 1144
EDHXTRIOB 1185
SBIHITCL 284
Sim LICBT 673
SHPPBB3SIOB 67
SOPBkCIOE 171
3HBPACB 226. 416
30BPACB DBAZBAOB 932
SOBPACB HIM 4, 5, 28. 142. 284.
443, 932
SOBPACTABTS 580, 025. 658
SOSCBPTIBILITI 440
SDSPBBDBD PAITICLBS 543, 1145
SOSPBBDBD SOLIDS 1146
SI UPS 887
STB TBIASIBBS 685
STBBB6ZSH 122, 167, 384. 1111
STBTUSIS 1163
STBTBXSZS CBBBZSTBT 626
STBTBBTXC FBOCB3S 112
STSIBBTBB 823
STSTBBIC HBBBICIDBS 686
STSTBBZC IISBCTICIDBS 971
TADPOLES 605
TAI8A FOCI 578
TAILIIC 233
TALC 1185
TABKA«B 970
TCA 201. 612
TCAB 155. 157, 192, 536, 537, 1009
TCDD 531, 693
TCPC 601
TDB 132. 491. 593, 695, 942. 1131
TBLOBB 1074
TKHIC 272, 298, 626
TBBIB ALDICABB P1STICIDE 49
TBHPB1ATBBB 66, 68, 111. 261. 267.
295, 343. 390. 458, 542, 660.
682, 717. 722. 725. 754. BOB,
822. 840, 841. 847. 096, 927.
984. 1007. 1032. 1074. 1124.
1128. 1153, 1171. 1191. 1192.
TBHPBBATOBB BPPBCTS 471
TBBPBUTBBB 690
TBBTB 215
TBPP 674
TBBATOCBB 534
TE1BACIL 599. 662, 664. 687. 977,
1076
TBBBVfBYBB 252. 366, 315
TXBBBOL 682
225
-------
TERMINAL 604
TERMINAL RISTDIIES 1068
TERMITES 92, 180
TERNITICIDE 92
TERRESTRIAL ECOSYSTEMS 28, 133,
135, 218, 243, 247, 264, 848,
960, 1095, 11 «18( 421 §
469, 627, 684, 685, 781, 801,
805, 814, 837, 839, 870, 924,
954, 1014, 1032, 1032, 1078,
1182, 1183, 443
TBIAZINES 252, 62U
TRIAZOLE 352
TRICH.LORFON 40, 63, 614, 798, 847
995
TRICHLOROACETATE 872
TSICHL080ACETIC ACID 417
TRICHLOROBENZENE 519
THICHLORONUTE 145
TRICHLOROPHENOLATE 681
TRICHLOROPHENOLS 472, 859
TRICHLOKOPHENOXACETATE 534
TRICHLOROPHENOXY 284
TRICHLOROPHENOXYACFTATE 143, 672
TRIETHYLAMINE SALTS 134
TSiriORALIN 75, 109, 110, 111,
177, 372, 379, 382, 411, 441,
480, 580, 626, 705, 721, 725,
842, 845, 859. 878, 921, 938,
987, 1038, 1039, 1055, 1076
TRIFORINE 271
TRIPHENYLTIN 77, 78
TRIPHENYLTTN ACETATE 77
TRISBEN-200 20
TRITHIOD 476
TRITOX 824
TRIZILIN 888
TROPHIC NETWORKS 848
TROBAN 276
TRYPTOPHAN 187
TOBEBS 774
TOLAREMIA 674
TOBFGBASS 178
TDBNIPS 514, 593, 1036, 1115
TYPHOS 543
OLTBAFILTRATION 161
ULTRAVIOLET LIGHT 195
DLTRATIOLET RADIATION 68, 563, 586
ON-IONISED PESTICIDES 833
ON DA BE 77.1
OPTAKE 62, 84, 295, 3«8, 372, 425.
435, 454, 490, 534, 677, 693,
226
-------
OPTAKB 704, 757, 765, 779. 835,
903. 954, 1010. 1029. 1030, 1033,
1034. 1035, 1036, 1110, 1112,
1113, 1114, 1115, 1146. 1167
URACIL S, 253, 1021
ORANIN 469
URANHJH 294
ORBAN 698
URBAN PROXIHITY 489
ODEA 8, 202, 239, 277, 284, 300,
417, 488, 532, 670, 719, 783,
784, 847, 905, 913, 1103
OFEA DERIVATIVES 252
OREASE 685, 783, 784
USAGE 86, 568, 719, 812, 978, 1183
VAN DER HAALS FORCE 210
VANILLIC-ACID 71
VAPAB 796, 1107
VAPOR 389, 634, 711, 953, 970,
1003, 1039
VAPOP AERATION SYSTEM 720
VAPOF DENSITY 1000
VAPOR DIFFUSION 110
VAPOR FLOX 838
VAPOR LOSSES 840
VAPOR PHASE 1005
VAPOR PRES5DRE 289, 667, 999,
1002, 1135
VAPORIZATION 176, 402, 1038, 552
VARIATIONS 372
VEGETABLES 271, 392, 403, 543,
620, 677, 912, 1047
VEGETATION 41, 151, 682, 753. 856,
VELSICOL HCS-3260 1173
VELVET!/) AF 230
VERHICOLITE 248. 669, 1155, 1165
VERNOLATE 979. 1023
VERTEBRATES 14. 1186
VERTICAL DISTRIBUTION 651, 1115
VERTICAL LEACHING 421
VERTICAL MOVEMENT 244, 930
VETCH 493, 593, 1053
VINEGAR 1200
VINETABD 27
VINETARDS 144, 234, 606, 724, 832
VINYL IHOSPHATI 94
VINYL IHOSPHATE INSECTICirES 94
VIRAL INCEFRALITIS 674
VIRGIN CLAT 677
VITAVAX 191, 1144
VOLATILITY 208, 209, 261, 387,
674. 841, 876, 983, 1101
VOLATILIZATION 75. 78, 87, 148,
154, 170, 175, 234, 238, 255,
287, 268, 289, 303, 338, 356,
375, 396, 40C, 406, 409, 411,
422, 435, 453. 473, 581, 616.
643, 667, 840, 999, 1000, 1001,
1002, 1003, 1004, 1005, 1031,
1038, 1066, 1155, 1167, 1169,
1170
VOLATILIZATION VAIOR FHASI 938
VOLCANIC ASH SOIL 1051
VOLCANIC SCILS 817
VORLEX 1074
SARH-BIOCDF.D 719, 925
(ASHING 3
HAS HOOT 767
WASTE DISPOSAL 9, 656, 116, 909
SASH TREATMENT 457, 457
HASTES 355, 391, 406, 4SE, 703,
752, 908, 96«
HATER 4. 5. 6, 8. 9. 12, 22. 28,
34, 36, 59, 66, 85, 94, 108, 119,
134, 136. 142. 149, 168. 174.
175, 182, 166, 188, 19C, 222.
231, 233, 235, 236, 243, 255.
256, 257, 257, i63, 164, 265,
267, 273, 27fi, 284, 285, 286,
289, 295, 303, 215, 334, 338,
339, 342, 349, 350, 35*. 359,
370. 371, 372, 381, 381, 387,
389, 406, 409, 416, 419. 420,
936, 443, U4E, 450, 4SC, 453,
454, 458, 462, 467, 501, 515,
517, 549, 551, 562. 565, 571,
372 574, 576, 580, 582. 598. 605.
607, 609, 616, 626, €32, 634.
635, 644, 648. 672, 677, 686.
698, 701. 716, 728, 733, 735,
753, 760, 761, 765, 766, 769,
792, 796, 804, 613, 62C. 837,
855, 867, 886, 887, 896. 909.
910, 915, 917, 926, 93<, 933,
934. 936. 942. 943, 945, 947.
953, 953, 95«, 962, S63, 965.
966. 967, 980. 998. 1000. 1001,
1003, 1004, 1005, 1010, 1012,
1035. 1044, 1059, 1082, 1095.
1099, 1100. 1101, 11C3, 1104,
1105, 1118, 1119, 1128, 1144,
1145, 1146, 1148, 1115, 1168,
1186, 1191. 1195, 1198
SATER EATR 669
RATER FLEAS 119
HATER BARDSESS 582
HATER BOVIHE1CT 289
1ATEB QOALITY 909
RATER-BIRDING 796
RATERFLOR 406
RATERS 342
RATERSBED 730
RATERSREDS 28, 134, 137, 174, 235,
284, 303, 406. 634, 672, 838,
856, 894, 908
RATERRAIS 14
RAVELENGTH 859
RAXES 257
HEATHER 954
HEATHERING 182
HEED CONTROL 212, 266, 686, 915
REEDKILLERS 324, 325, 417, 816,
974. 1167
REEDS 26, 152, 284, 411, 582, 826,
872. 877. 1082, 1138, 1165
HELL HATER 9, 639, 1198
RETTED SOILS 827
HHEAT 84, 194, 372, 451, 487, 500,
789, 878, 897, 910, 911, 1010,
1110, 1112, 1113
HHEAT STRAY 1055
HRIAT-H 854
SHIT! HOSTADD 339. 835
HHITHFISH 543
HICK EFFECT 1001
HILDLIFE 60, 623, 1142, 1186
HU.T1SG POINT 983
RIND HOVEH1RT 4«0
HINDPORHE 338
RINGID ELH 1171
HINTF.R HHBAT 293, 372
RITHCPARAL 14
HOFATOX 63
ROOD PBLP PROCESSING PLASTS 527
HOODCOCK 712
ROREHORH 171
HORHS 171, 543, 605
X-RAY DIFFRACTION 137, UU1
X-RAY FL008ESCBNC! 851
IARTBATE 681
XENOEIOTIC 112
XEROR LAMP 1030
ITU* 249
YALAR 201
227
-------
IBISIS 379, 1190
rrMlUB 90 372
U1-B1TS 37*
S21-B1T3-B 164
IKCTIII 566, 693, 716
IBO-XABB 159. 160
IIK 200, 29«, 327, 490. 8S3, 8C7,
1023
UIC PBOSPBIDl *36
CUB «S9, 969
SXIOnoS 323. 106*
SZB1B 969
soopuBiMB 218
1 CHLOtO-2 2-BZS-CBLOBDPBBBTL
BTBTUBI 990
1 HPBTBtl CHHBHI 666
1-BTIBOXICBLOBDBBB 395
1-BinOIlCAIBOBIL-1-PBOPBB-2-T1
BZBBTBTl PBOSPBHB 321
1,2-DZBBOBO-3-CBXOBOPBOPUB «39
1.2.-BI3-3-BBTHOITC11BOITL-2-
TBZ001BZBOBBBIIBB 929
1,3-BI3(3.4-OZCBIOBOPBMTL)
TIUSIR 860
1.3-Kcn.OlOPlOPHl 630. 631, 632
2 BBTBT1-* CBL01CPBCTOIT 1CBTIC-
»CID 299
3- (3,5-DXCBLOBOPBnn)-4.*-
DZBBTBTL-S-BBTBYIBBBOIUOIZBB
1192
2-CBLOBO-4-BZTBOPBBBOL 172
2-CBLOBOn.OOlEIOBE 966
2-ISOPBOm-6- B IIBTl-*-
BTDBOITPTBIBZDZBI 9*6
J-BBTBTl-2-BBTBIlTBIO
PIOPIOMLDKBTCI 0-
BBTBTLCllBlBOn. OIZBB 215
a-PIBOBB-6-CUBOITLIC 659
2.3.6-TBI *50
2.3,6-niCBlOlO BBBIOIC-1CID 16!
2,3. 7, 8-TiniCBLOBODIBBBSO-P-
DIOXZB 534
2.4-B 7. 26. 32. 37. «1. 55. 10!.
211, 216. 230, 25*, 27*. 275.
299. 32«. 325. 338. 3*9. «19.
•20, «22, «*0, »67. 550, 582,
608, 625. 626. 656. 661. 737.
738. 752, 780, 818, 826, 923,
• 35. 938, 952. Ml, 982. 1067,
1071, 1M2, 1099, 1101, 1183,
113*. 1139, 1167
2-*-DICBLOPnBOIT ftCHIC
ten 686
2,*-DXCBICfOPBIBOlS 752
2.*, 5-t «1, 133. 13«, 1*3, 252,
265, 299, 299, 307, *06. *22,
»50. 531. 612, 751, 753, 780.
818. 823, 8!9, 952, 11*1, 1171
3,»,5-I 626
2,S-DXCBlOBO-«-BSTBOXT PBCIOC 1162
2.6 DICBlOBOBIBUBIDf 7*1
2,6-DICBlOBO-I-PBIBTLBBBBiaanB
1085
2,6-DICfllCK>-*-BXTBOIBltlBI 1085
2.6*BIC1IOnB1BUBZn 832. 109«,
1095
2.6-BICBIOBOBIBSOZC 1C TO 1095
3 CBLOIOtmiBI 1188
3 «-0 PTBIBZBZB-4 SB-OBI 806
3- (P-BBOBOPBBBU) -1-BITBCIT-1-
BltBTLDBIl 1079
3-CBlOfOBIBOIC-lCID «9*
-5- BBOBO-e-
977
3.3-OICBIOIOIIOBBKIII 158
3.3.*.*- TRBlCBLOlOlIOBlinn 155
3,3,*,8-nniCBtOI01tCnBZlBI 158
3.*-DZCBlCI01BIUBB 155, 158, *63,
536, 860, 87C
3,4,3 (PBZBI) -IBZCBLOBOIZPBDT1
1145
3,4,3, (PBZBI) ,4 (PBZBI) -
nTBlCnCBOBZPBIBIl 1145
3,5-01 BnaO-0 CIISOI 376
3,6-DZCBlOBOSaiZCIlZC ICIt 980
4-1BZBO-3. !-BZCBlOBOICIIlBnZBI
1085
312
4-cnOBOtBZLZBB 1035
•'CBLOB01BZLZBIS 1034
5-lBIBO-*-On.OBO- 2- f 2, 3-CZB-
BXBmClKTCUlHft-4, 6-BIBBB-t-
TL)-3(2B)-PTBD»ZMR 659
6 nannii-a-zsononizfcusoio
806
228
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/9-79-024b
2.
3. RECIPIENT'S ACCESSIOf*NO.
4. TITLE ANDSUBTITLE
MOVEMENT OF HAZARDOUS SUBSTANCES IN SOIL:
A BIBLIOGRAPHY
Volume 2. Pesticides
5. REPORT DATE
6. PERFORMING ORGANIZATION CODE
August 1979 (Issuing Date)
7. AUTHOR(S)
8. PERFORMING ORGANIZATION REPORT NO.
Emily D. Copenhaver and Benita K. Wilkinson
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Toxic Materials Information Center
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830
10. PROGRAM ELEMENT NO.( FY79~1 DC81 8 )
ROAP 21BFQ, Task 002 1DDOC4
11. CONTRACT/GRANT NO.
Interagency Agreement
EPA-IAG-D4-F476
12. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
See also Volume 1
Project Officer:
Selected Metals
Mike H. Roulier
16. ABSTRAC1
This bibliography is intended for use by personnel concerned, either via research or
management, with the disposal of hazardous wastes, other than sewage sludge, on land.
It is the result of a search of recent literature (1970 through 1974) and includes in-
formation on the transport, transformation, and soil retention of arsenic, asbestos,
beryllium, cadmium, chromium, copper, cyanide, lead, mercury, selenium, zinc, halo-
genated hydrocarbons, pesticides, and other hazardous substances. About half of the
2000 entries include an abstract. In order to limit the size of the resulting publi-
cation, the literature search focused on processes directly related to transport (ad-
sorption, ion exchange, etc.) and documentation of the occurrence and extent of trans-
port while specifically excluding topics such as uptake and translocation by plants,
modeling, and effects on microorganisms and processes mediated by microorganisms. The
bibliography has been divided into two volumes to facilitate its use: Volume 1 con-
tains all tlie substances studied except pesticides; Volume 2 contains the pesticide
citations.
7.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
COSATI Field/Group
*Pesticides
*Transport Properties
*Soil Chemistry
*Bibliographies
Waste Disposal
Contaminants
Attenuation
Adsorption
Pollutant Migration
Ion Exchange
13B
18. DISTRIBUTION STATEMENT
RELEASE TO PUBLIC
19. SECURITY CLASS (This Report)
UNCLASSIFIED
21. NO. OF PAGES
20. SECURITY CLASS (This page)
UNCLASSIFIED
22. PRICE
EPA Form 2220-1 (9-73)
229
* US GOVMNMim POINTING OFFICE 1979 -657-060/5452
-------